

A HUDlan Oriented Proof Presentation Method

Huang Xiaorong

Fachbereichlnformatik, Universitiit Kaiserslautern

Postfach 3049, D-6750 Kaiserslautern, W.-Germany

This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2

A Human Oriented Proof Presentation Method

Huang Xiaorong

Fachbereich I nfomatik, Universität Kaiserslautern
Postfach 3049, D-6750 Kaiserslautern, W.-Germany

This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (DZ)

1 Introduction

A Human Oriented Proof Presentation Model

Xiaorong Huang

Fachhereich Informatik, Universitiit Kaiserslautern

Kaiserslautern, West Germany

E-mail: huang@uklirb.uucp

Abstract

It has long become a general consensus in the field of natural language generation that the whole generation task

can be divided into two relatively independent parts: a so called text planner that decides on "what to say" and a

generator that decides on "how to say it". This paper describes a text planner that decides on "what to say", currently

under development at the University of Kaiserslautern for our automated theorem prover MKRP. The most important

observation of this paper is, that the transformationtliskoftili,splatlller is P1:iJ:rl~Y:n.~i1ll~r~li~gI1Wic .problM1 nor
._- -­-~

a purely logical problem in the traditional sense: the transformation steps presented in this paper are based on a

mental model of human proofpresentation and our main effort was to make this model cognitively adequate. The

model of hmnan presentation consists primarily of the following three parts :

1. The identification of the size of human mathematical reasoning steps. The main observation is that human style

inference steps usually have the "size" of at least an application of an axiom or a theorem. An algorithm is developed

to generate domain-specific compound inference rules from axioms and theorems, which are then used to raise proofs

to the so called conceptualievel .

2. The ordering or "linearization" of proof parts: besides the logical constraint that proof lines must be first proved

before they can be used, other pragmatic constraints on the ordering used in the "natural" human proof presentation are

identified. In addition, a focus mechanism developed for natural language discourse is adapted and integrated to provide

a total order.

3. Reference choices for each step: after the ordering each proof step will be translated into one message unit, which

corresponds roughly to a sentence in the output text. Therefore, for each step we must decide how to refer to the used

inference rules and the proof lines used as premises for this step, which parts to mention explicitly, implicitly and

which ones to omit. A proof unit model is designed to attack this problem.

Introduction 1

A Human Oriented Proof Presentation Model

Xiaorong Huang

Fachbereich Informatik, Universität Kaiserslautern

Kaiserslautern, West Germany

E—mail: huang@uklirb.uucp

Abstract

It has long become a general consensus in the field of natural language generation that the whole generation task
can be divided into two relatively independent parts: a so called text planner that decides on "what to say" and a
generator that decides on "how to say it". This paper describes a text planner that decides on "what to say", currently

under development at the University of Kaiserslautem for our automated theorem prover MKRP. The most important

observationofthispaper iiifiiifiiifififiéfgfillifign __taSICOffl‘llSplalmerls manly ngimet.a_.lingu;u1ie ...problemnor
a purely logical problem in the traditional sense: the transformation steps presented in this paper are based on a
mental model of human proof presentation and our main effort was to make this model cognitively adequate. The
model of human presentation consists primarily of the following three parts :

1. The identification of the size of human mathematical reasoning steps. The main observation is that human style

inference steps usually have the "size" of at least an application of an axiom or a theorem. An algorithm is developed

to generate domain-specific compound inference rules from axioms and theorems. which are then used to raise prooß

to the so called conceptual level .

2. The ordering or "linearization" of proof parts: besides the logical constraint that proof lines must be first proved

before they can be used. other pragmatic constraints on the ordering used in the "natural" human proof presentation are

identified. In additionI a focus mechanism developed for natural language discourse is adapted and integrated to provide

a total order.

3. Reference choices for each step: after the ordering each proof step will be translated into one message unit, which

corresponds roughly to a sentence in the output text. Therefore, for each step we must decide how to refer to the used

inference rules and the proof lines used as premises for this step, which parts to mention explicitly, implicitly and

which ones to omit. A proof unit model is designed to attack this problem.

mailto:huang@uklirb.uucp

2 mtroduction

Content

1. Introduction 3

2. Domain-Specific Compound Inference Rules 7

3. Ordering Proof Trees 16

4. Proof Unit Model and Reference Choices 23

5. Conclusion and Future Work 29

6. References 32

Introduction 2

Content

1 . Introduction ... 3

2. Domain-Specific Compound Inference Rules .. 7

3. Ordering Proof Trees .. 16

4 . Proof Unit Model and Reference Choices ... 23

5. Conclusion and Future Work .. 29

6. References . 32

3 Introduction

1. Introduction

It has long become a general consensus in the field of natural language generation that the
whole generation task can be divided into two relatively independent parts: a so called text planner
that decides on "what to say" [McKeown 8S] and a generator that decides on "how to say it"
[McDonald 83]. Roughly speaking, the planner accepts information from the underlying application
program and then selects a subset, which is relevant for the current discourse purpose. It should
then organize the chosen information into an appropriate text form and produce a sequence of
ordered paragraphs and sentences in some internal code. This is the so called message
which is now taken over by a generator or tactical component. It transforms the internal code into
natural language using a dictionary that contains natural language interpretations for tokens in the
internal knowledge representation language. This paper describes such a text planner we are
developing at the University of Kaiserslautern for our automated theorem prover MKRP [MKRP
84]. See-Fig 1 for an overview of the whole system architecfure. Iii our case ilieilieorem prover is
the underlying application program and the information the planner accepts will be a Gentzen style
natural deduction proof. Output of the planner will be a sequence of ordered internal code units each
of which corresponds roughly to a sentence in die fmal natural language output. This text planner
together with a natural language generator constitutes the Logic-to-Natural-Language Translator in
Fig. 1.

The most important observation of this paper is, that the transformation task of this planner is
primarily neither a linguistic problem nor a purely logical problem in the traditional sense. This
observation changed the course of our original work plan: the transformation steps presented in this
paper are based on a mental model ofhuman proofpresentation and our main effort was to make
this model cognitively adequate.

After this transformation at the conceptual level, the final transformation into narurallanguage is
then (we believe) more or less straightforward. Although this model is entirely logic oriented,
striking similarities can be found between this model and the theories and methods developed for the
natural language discourse in recent years. The model of human presentation consists primarily of
the following three parts:

1. The identification of the size of human mathematical reasoning steps. In particular, it will be

argued that the size ofreasoning steps of a Gentzen proof is normally much too small. Then we will

show how domain-specific inference rules can be automaticlly generated that are used to raise the

size of reasoning steps.

2. The ordering or "linearization" of proof parts and proof lines: besides the logical constraint that

proof lines must be first proved before they can be used, other pragmatic constraints on the ordering

used in the "natural" human proof presentation are identified. In addition, a focus mechanism

developed for natural language discourse is adapted and integrated to provide a total order.

3. Reference choices for each step: after the ordering each proof step will be translated into one

message unit. Therefore, for each step we must decide how to refer to the used inference rules and

Introduction 3

1 . Introduction

It has long become a general consensus in the field of natural language generation that the
whole generation task can be divided into two relatively independent parts: a so called text planner
that decides on "what to say" [McKeown 85] and a generator that decides on "how to say it"
[McDonald 83]. Roughly speaking, the planner accepts information from the underlying application
program and then selects a subset, which is relevant for the current discourse purpose. It should
then organize the chosen information into an appropriate text form and produce a sequence of
ordered paragraphs and sentences in some internal code. This is the so called message
which is now taken over by a generator or tactical component. It transforms the internal code into
natural language using a dictionary that contains natural language interpretations for tokens in the
internal knowledge representation language. This paper describes such a text planner we are
developing at the University of Kaiserslautern for our automated theorem prover MKRP [MKRP
84].- See---Fig«-l-~for~-an overview-- of the-"whole system architecture. Ifi our casememeaem prover is
the underlying application program and the information the planner accepts will be a Gentzen style
natural deduction proof. Output of the planner will be a sequence of ordered internal code units each
of which corresponds roughly to a sentence in the final natural language output. This text planner
together with a natural language generator constitutes the Logic-to-Natural-Language Translator in
Fig. 1.

The most important observation of this paper is, that the transformation task of this planner is
primarily neither a linguistic problem nor a purely logical problem in the traditional sense. This
observation changed the course of our original work plan: the transformation steps presented in this
paper are based on a mental model of human proof presentation and our main effort was to make
this model cognitively adequate.

After this transformation at the conceptual level, the final transformation into natural language is
then (we believe) more or less straightforward. Although this model is entirely logic oriented,
striking similarities can be found between this model and the theories and methods deve10ped for the
natural language discourse in recent years. The model of human presentation consists primarily of
the following three parts:

1. The identification of the size of human mathematical reasoning steps. In particular, it will be
argued that the size of reasoning steps of a Gentzen proof is normally much too small. Then we will
show how domain-specific inference rules can be automaticlly generated that are used to raise the
size of reasoning steps.

2. The ordering or "linearization" of proof parts and proof lines: besides the logical constraint that
proof lines must be first proved before they can be used, other pragmatic constraints on the ordering
used in the "namral" human proof presentation are identified. In addition, a focus mechanism
developed for natural language discourse is adapted and integrated to provide a total order.

3. Reference choices for each step: after the ordering each proof step will be translated into one
message unit. Therefore, for each step we must decide how to refer to the used inference rules and

4 Introduction

Mathematical Theories of a Textbook Presented in Natural Language

Human Translator

Formal Mathematical Language

....----*--
Machine Translator

(Predicate Logic ofFirst Order with Sorts)

+
Theorem Prover

Proofs in Refutation Graph

Translator from Graphs into Natural Deduction Proofs

(Gentzen Style Natural Deduction Proofs)

~

Translator from Natural Deduction Proofs in Natural

Lan a e

investigated by

M. Kerber

The traditional

MKRP-Group

investigated by

Ch. Lingenfelder

investigated

by Huang Xiaorong

C Mathematical Proofs in Natural Language)

Fig. 1

the proof lines that have already been proved in the previous context and are used as premises for

this step. We may decide to refer to them explicitly, which leads to translations such as "because 1

is the unit ofF, by the deftnition of unit, ..." . On the contrary, we may also omit them, for examle,

Introduction 4

(mathematical Theories of a Textbook Presented in Natural Language)

_$
Human Translator

(_— 4130:1331 Mathematical Language)

_ l investigated by
Machine Translator M, Kerber

t
'CPredic—ate-Logicottfirst Order with Sons)

i n ;
Theorem Prover The traditional

__ 4 __ MKRP—Group

(Proofs in Refutation Graph)

_ V . _
mvesngated by

Translator fiom Graphs into Natural Deduction Proofs

l __
CGentzen Style Natural Deduction Proofs)

Ch. Lingenfelder

__ ‘ ti atTranslator from Natural Deduction Proofs in Natural mves g ed .Language __ by Huang Xiaorong

C Mathematical Proofs in Natural Language)

Fig. 1

the proof lines that have already been proved in the previous context and are used as premises for
this step. We may decide to refer to them explicitly, which leads to translations such as "because 1
is the unit of F, by the definition of unit, ..." . On the contrary, we may also omit them, for examle,

5 Introduction

if a reason has been proved just before or if an inference rule is already familiar to the user. This

may lead to a translation as simple as "thus" or "therefore". A proofunit model is designed to attack

this problem.

In the rest of this section we give a ~hort introduction to the Gentzen calculus. which is the
formalism of our input proofs. and a short introduction to the three components of the model. The
three main components ofour proofpresentation model and the transfonnations will be dealt with in
more detail in section 2. section 3. and section 4. respectively. Section 5 presents our plans for
future work. including the connection to the tactical component. A complete example is used
through the whole paper. which shows how an input proof of forty-seven proof lines is translated
into a sequence of fourteen message units.

The calculus developed by G. Gentzen in 1933 [Gentzen 1935] is called "natural" because its
structural inference rules resemble the normal inference manner of human mathematicians: for
example. assumptions are :ftrst introduced and then discharged after conclusions are drawn. making
the conclusion independent of the assumptions; proofs are divided into cases; and so on. Yet the
examples inSection2 reveal that notenoughis donetoinereasethe"inference step sizell

; While; for
example. a human mathematician will derive ae F from the facts ae U and UkF in one step. eight
Gentzen proof lines are needed to draw the same conclusion. Small and tedious proof steps make
even simple proofs long and difficult to understand. In section 2 we will argue that human
mathematicians usually reason at a higher level which we call the "conceptual" level. We first try to
pin down the size of the proof steps at the conceptual level and claim that they should correspond to
one application of either an axiom. a definition. a proved theorem or a lemma. Then we show
fonnally how a proof step of this "size" can be achieved by rules which are "compound" Gentzen
inference rules. The problem is that usually only some basic and general rules are included in a
calculus. as there is no universal way to incorporate all those infinitely many compound rules. As
the first important observation of this paper, however, we claim that ifwe concentrate on a specific
mathematical domain, there is always a rather small set of compound inference rules each
corresponding to an application of an axiom or a theorem of this particular domain which are in fact
the only compound rules used and can thus be picked out and integrated into the Gentzen calculus.
An algorithm is designed in Section 2 that generates these domain-specific compound inference
rules from the axioms and theorems of a mathematical theory. These newly generated rules. together
with other standard Gentzen rules. essentially form a new domain-specific calculus. A fairly simple
algorithm is then used to transform the original Gentzen proof into a proof in this new calculus.
where only those newly generated domain-specific rules and the structural Gentzen rules are used.
The following is a brief introduction to the Gentzen calculus. the generation of domain-specific rules
is then discussed in section 2.

The calculus developed by G. Gentzen differs from earlier axiomatic systems in that it provides
a mechanism for introducing and discharging assumptions. This means that new logical conclusions
are derived from assumptions introduced rather than from logical axioms which are part of the
calculus. The following is the Gentzen style calculus we are using at present. "D" and "I" mean
"deletion" and "introduction", respectively. Ft-- G means G is derivable from F in the Gentzen
calculus. For convenience of presentation, inference rules are characterized as structural and non­
structural: Structural rules are those helpful for determining the overall structure of a proof:
introducing or discharging assumptions, dividing into cases. etc. Here ..L denotes the contradiction.

Introduction 5

if a reason has been proved just before or if an inference rule is already familiar to the user. This
may lead to a translation as simple as "thus" or "therefore". A proof unit model is designed to attack
this problem.

In the rest of this section we give a short introduction to the Gentzen calculus, which is the
formalism of our input proofs, and a short introduction to the three components of the model. The
three main components of our proof presentation model and the transformations will be dealt with in
more detail in section 2, section 3, and section 4, respectively. Section 5 presents our plans for
future work, including the connection to the tactical component. A complete example is used
through the whole paper, which shows how an input proof of forty-seven proof lines is translated
into a sequence of fourteen message units.

The calculus developed by G. Gentzen in 1933 [Gentzen 1935] is called "natural" because its
structural inference rules resemble the normal inference manner of human mathematicians: for
example, assumptions are first introduced and then discharged after conclusions are drawn, making
the conclusion independent of the assumptions; proofs are divided into cases; and so on. Yet the
examples .inSectionZ reveal---that-not—enough---is~ done--to--inerease~the~--‘-’ inference step "size-"':‘Whil'e; for
example, a human mathematician will derive ae F from the facts ae U and UgF in one step, eight
Gentzen proof lines are needed to draw the same conclusion. Small and tedious proof steps make
even simple proofs long and difficult to understand. In section 2 we will argue that human
mathematicians usually reason at a higher level which we call the "concept " level. We first try to
pin down the size of the proof steps at the conceptual level and claim that they should correspond to
one application of either an axiom, a definition, a proved theorem or a lemma. Then we show
formally how a proof step of this "size" can be achieved by rules which are "compound" Gentzen
inference rules. The problem is that usually only some basic and general rules are included in a
calculus, as there is no universal way to incorporate all those infinitely many compound rules. As
the first important observation of this paper, however, we claim that if we concentrate on a specific
mathematical domain, there is always a rather small set of compound inference rules each
corresponding to an application of an axiom or a theorem of this particular domain which are in fact
the only compound rules used and can thus be picked out and integrated into the Gentzen calculus.
An algorithm is designed in Section 2 that generates these domain-specific compound inference
rules from the axioms and theorems of a mathematical theory. These newly generated rules, together
with other standard Gentzen rules, essentially form a new domain-specific calculus. A fairly simple
algorithm is then used to transform the original Gentzen proof into a proof in this new calculus,
where only those newly generated domain-specific rules and the structural Gentzen rules are used.
The following is a brief introduction to the Gentzen calculus, the generation of domain-Specific rules
is then discussed in section 2.

The calculus developed by G. Gentzen differs from earlier axiomatic systems in that it provides
a mechanism for introducing and discharging assumptions. This means that new logical conclusions
are derived from assumptions introduced rather than from logical axioms which are part of the
calculus. The following is the Gentzen style calculus we are using at present. "D" and "I" mean
"deletion" and "introduction", respectively. F t— G means G is derivable from F in the Gentzen
calculus. For convenience of presentation, inference rules are characterized as structural and non—
structural: Structural rules are those helpful for determining the overall structure of a proof:
introducing or discharging assumptions, dividing into cases, etc. Here _L denotes the contradiction.

6 Introduction

Structural Gentzen Rules:

FI-G FvG, F 1-- H, G 1- H 3x F(x), F(a) I-H

F 1-- F F=>G H H

HYPothesis DEDuction CASE CHOICE

F, --.G I-l.

FI-G

IP(lndirect Proof)

Non-Structural Gentzen Rules

F, G F G F(a) F(a)

FI\G FvG FvG Vx P(x) 3x F(x)

vI VI 31

F, P=>G Vx F(x) F, -.F F<=>G P<=>G
G Pea) 1. F=>G G=>F

=>D VD -.D

Every figure above shows an inf<?rence rule. Formula schemes separated by comma above the
bar represent premises. Premises are also called reasons. Now a Gentzen proof is a sequence of
proof lines each of the fonn:

line-No assumption-set I- a derived fonnula Inference-rule-name(reason-pointers)

where assumption-set is a set of proof lines introduced as assumptions this particular line depends

on. Reason-pointers, on the other hand, is a set of proof lines used by the inference rule in deriving

this new line. The last line of a proof is the conclusion line, whose assumption set is either empty or

contains only assumptions, which are actually the premises to the theorem to be proved. The

derived formula is often called a proof line too as far as no ambiguity occurs. The following is a

very simple Gentzen proof:

1. I I- A HYP

2. 2 I- B HYP

3. 1,2 I- AAB 1\(1,2)

Here line 1 and 2 introduce two assumptions A and B. The "and introduction rule" is used in

drawing the third line which is therefore dependent on the tITst two lines.

Mter the input proof is raised to the conceptual level by the domain-specific inference rules, we

shall enforce an appropriate order on proof parts and proof lines. Instead of a direct linearization,

however, we first try to build an ordered proof tree. This tree structure maintains the complete

information about the proof structure which will be used later on. A post-order traversal will

provide a linearization. The nodes of the proof trees are proof lines, and the links represent the

Introduction 6

Structural Gentzen Rules:

F |--G FvG, F I-— H, G l—- H 3x F(x), F(a) l—H
F I—— F F=>G H H

HYPothesis DEDuction CASE . CHOICE

F, —1G l"'-_L

F 1—6

IPflndirect Proof)

Non-Structural Gentzen Rules

F , G F G F(a) F(a)
FAG FvG FVG Vx F(x) 3:: F(x)

AI VI VI _EII

FAG FAG F, F=>G VX F(x) F, -—.F F¢=eG F<=>G
F G G F Ea) _|_ F=>G G=>F

AD =>D VD —.D ¢=>D

Every figure above shows an inference rule. Formula schemes separated by comma above the
bar represent premises. Premises are also called reasons. Now a Gentzen proof is a sequence of
proof lines each of the form:

line-No assumption-set |— a derived formula Inference-rule—name(reason-pointers)

where assumption-set is a set of proof lines introduced as assumptions this particular line depends
on. Reason-pointers, on the other hand, is a set of proof lines used by the inference rule in deriving
this new line. The last line of a proof is the conclusion line, whose assumption set is either empty or
contains only assumptions, which are actually the premises to the theorem to be proved. The
derived formula is often called a proof line too as far as no ambiguity occurs. The following is a
very simple Gentzen proof:

1 . 1 |— A HYP
2 . 2 |— B HYP
3 . 1 ,2 |— AAB A(1,2)

Here line 1 and 2 introduce two assumptions A and B . The "and introduction rule" is used in
drawing the third line which is therefore dependent on the first two lines.

After the input proof is raised to the conceptual level by the domain—specific inference rules, we
shall enforce an appropriate order on proof parts and proof lines. Instead of a direct linearization,
however, we first try to build an ordered proof tree. This tree structure maintains the complete
information about the proof structure which will be used later on. A post-order traversal will
provide a linearization. The nodes of the proof trees are proof lines, and the links re resent the

7 Introduction

reason-logical-successor relation. After constructing an initial tree from the raised input proof,

which is the output of the :fIrst component, the task is now to enforce an order on the children of

each node. The following three ordering criteria are identifed: first of all, the logical constraint says

that reason must precede logical successors. This is in fact guaranteed by the tree structure.

Secondly, we claim that many structural Gentzen inference rules entail a particular order in which its

reasons must be presented. Finally, if these two contraints do not suffice to enforce a total order, a

focus mechanism is tried. The basic principle of this mechanism is similar to the focus mechanism

developed for natural language discourse: In the case ofmathematical proofs, it says once we start

to prove propenies of a particular object (collection), which is the focus space at the moment, we

will first try to continue in this space before we turn to another focus space, as far as this is allowed

by the other two constraints.

The main task of the [mal step of our model for proof presentation is to generate one message

unit from every node of the odered proof tree, while the proof process traverses the tree in post­

order. At each node, which is a proof step, the decision about "what to say"must be ma4e~E~rQQW
iiiference-ruIesandreasons~"ihreere:teience:forms are identified: expii~it, i~pii~it, ~d ';omit". For

example reasons proved far before in the context may be repeated explicitly, while reasons just

proved will usually be omitted. In other cases, an implicit hint might be chosen. A very important

observation is that the choices on reference forms for reasons depend on the structural relationship

between the proof unit where the reasons are proved on the one hand, and the current active proof

unit on the other hand, as well as the "physical" distance between the point where the reasons last

appear and the point where they are used. A proof unit model that identifies proof units and

specifies relationships between proof units is described in section 4. It will be also argued that as

opposed to the references for reasons, the reference choice for inference rules are not context

sensitive.

2. Domain-Specific Compound Inference Rules

We want to determine the size of the inference steps that human mathematicians usually prefer.

While it is certainly true that mathematicians reason at very different levels of abstraction depending

on their background, skill and also on their field of expertise, we are nevertheless arguing that they
all reason on the level ofmathematical concepts,which are connected by axioms and later by proved

theorems. As an example we have taken the very first theorem of an introductory book on algebra
and automata [Deussen 71] and encoded it. The result is a long proof with many small "logical

level" (instead of conceptual level) steps. In this section, a simple algorithm for deriving conceptual

level inference rules will be discussed, it will be shown, how these rules can be used to reorganize a
proof, and how to abstract from the "logical level" to the conceptual level. While these two terms
are not very precise and the boarder line is somewhat blurred, it will nevertheless become clearer on
how much we can simplify a proof using these ideas.

Let us first have a look at the example and explain our ideas in more detail. Suppose we have
the concept of "subset" encoded in the following way:

Vg {=> Vx xeU => xeF

Introduction _ 7

reason-logical-successor relation. After constructing an initial tree from the raised input proof,

which is the output of the first component, the task is now to enforce an order on the children of
each node. The following three ordering criteria are identifed: first of all, the logical constraint says
that reason must precede logical successors. This is in fact guaranteed by the tree structure.
Secondly, we claim that many structural Gentzen inference rules entail a particular order in which its
reasons must be presented. Finally, if these two contraints do not suffice to enforce a total order, a

focus mechanism is tried. The basic principle of this mechanism is similar to the focus mechanism
developed for natural language discourse: In the case of mathematical proofs, it says once we start
to prove properties of a particular object (collection), which is the focus space at the moment, we

will first try to continue in this space before we turn to another focus space, as far as this is allowed
by the other two constraints.

The main task of the final step of our model for proof presentation is to generate one message
unit from every node of the odered proof tree, while the proof process traverses the tree in post—
order. At each node, which is a proof step, the decision about __‘jyhgg 93913335;q_g;_gg1__g‚__ljgg 1291.11
ififéféficé"i‘ulesandreasonsthreereférenceforms are identified: explicit, implicit, and “omit". For
example reasons proved far before in the context may be repeated explicitly, while reasons just
proved will usually be omitted. In other cases, an implicit hint might be chosen. A very important
observation is that the choices on reference forms for reasons depend on the structural relationship
between the proof unit where the reasons are proved on the one hand, and the current active proof
unit on the other hand, as well as the "physical" distance between the point where the reasons last
appear and the point where they are used. A proof unit model that identifies proof units and
specifies relationships between proof units is described in section 4. It will be also argued that as
opposed to the references for reasons, the reference choice for inference rules are not context
sensitive.

2. Domain—Specific Compound Inference Rules

We want to determine the size of the inference steps that human mathematicians usually prefer.
While it is certainly true that mathematicians reason at very different levels of abstraction depending
on their background, skill and also on their field of expertise, we are nevertheless arguing that they
all reason on the level of mathematical concepts,which are connected by axioms and later by proved
theorems. As an example we have taken the very first theorem of an introductory book on algebra
and automata [Deussen 71] and encoded it. The result is a long proof with many small "logical
level" (instead of conceptual level) steps. In this section, a simple algorithm for deriving conceptual
level inference rules will be discussed, it will be shown, how these rules can be used to reorganize a
proof, and how to abstract from the "logical level" to the conceptual level. While these two terms
are not very precise and the boarder line is somewhat blurred, it will nevertheless become clearer on
how much we can simplify a proof using these ideas.

Let us first have a look at the example and explain our ideas in more detail. Suppose we have
the concept of "subset" encoded in the following way:

U;F<=>Vx e=>xeF

Domain-specific Inference Rules 8

Now everyone with a standard mathematical training will fmd it natural to deduce aE F given the fact

that Ug and ae V. What we want to say is, even if he is not familiar with set theory, he will

immediately reason at this level of abstraction, just as if he were using a calculus with an inference

rule like:

ale VI, VlkFI
where aI, VI, FI denote arbitrary terms 2.1

aleFl

This single inference step at the conceptual level corresponds to the following Gentzen-proof

segment, Le. the following steps at the lQgicallevel:

1. 1 I- VlgI HYP

2. 2 I- aleVl HYP

3. 3 I- W,V VcF<=}~x xeV:::>xeF HYP

4. 3 I- UlgI<=}\lx xeUI:::>xeFI VD(3)

5. 3 I- VlgI=::}\Ix XE UI=::}xe FI ~D(4)

6. I, 3 I- \Ix xe Ul=::}xe Fl :::>D(I,5)

7. I, 3 I- aleUl:::>aleFl VD(6)

8. 1,2,3 I- aleFl :::>D(2,7)

Eight Gentzen proof steps are used: three to introduce the given facts and the set inclusion
definition, two to instantiate the universal quantifier, one to split equivalence, and two applications
of Modus Ponens.The point is that the conciseness at the conceptual level is not really based on the
person's competence in this particular area, and the tediousness at the logical level is not caused by
the machine's inability of fmding elegant proofs. The reasoning simply takes place at different
levels of abstraction.

Rules like 2.1 are domain-specific, because they are only defmed for domain-specific predicates
(in our case k and e, both written in infix form in our example). Yet it is not difficult to fmd their
general counterpart. For example, the general counterpart of inference rule 2.1 is given as 2.2.

P(x y)<=}\lz (Q(z x):::>Q(z y)), Pea b), Q(c a)
where a, b, c denote arbitrary terms 2.2Q(c b)

It is straightforward to prove that 2.2 is a compound rule in the sense that it can be taken as an
abbreviation of a sequence of basic Gentzen rules and is therefore correct. Why then did Gentzen
call his calculus "natural deduction" and what makes our compound rules more natural? The point
is, that Gentzen designed his calculus for any mathematical field (Le. not domain-specific) on the
observation that human mathematicians usually develop proofs in such a way: they introduce

assumptions (HYPothesis Rule) and later discharge them, i.e. make the conclusion independent of
the assumptions (DEDuction Rule); they prove by cases (Rule of CASE), and so on. This means
that the "structural" Gentzen inference rules provide a "structural" means to construct and develop

proofs similar to the way human mathematicians are used to. But its naturalness is therefore also
limited. We might call it "structurally natural" in fact. That means that those non-structural
infererence rules are still basic and usually too small as an appropriate "inference step size". While
it is possible to introduce the sort of particular compound rules as mentioned above (2.2), there is
practically no way to do that in general, for generally no specific compound inference rules have
dominance over others and there are infinitely many of them.

Domain-gpecifrc Inference Rules 8

Now everyone with a standard mathematical training will find it natural to deduce ae F given the fact
that U__CF and ae U. What we want to say is, even if he is not familiar with set theory, he will

immediately reason at this level of abstraction, just as if he were using a calculus with an inference
rule like:

316 U1, U lgF l
where a l , U1 , Fl denote arbitrary terms 2.1

a l e F 1

This single inference step at the ggncggtfll lgvgl corresponds to the following Gentzen-proof
segment, i.e. the following steps at the W:

1 . l l— UlgFl HYP
2 . 2 l— a l eUl HYP

3 . 3 I— VEU Uczb‘vfx xe U=>xe F HYP
4 . 3 l— U1;F1¢:>Vx xe U1=>xeF1 VDO)
5 . 3 l— U1_C_F l=>Vx X§U1=>xe F l <=?D(4)
6. 1, 3 |— vx xe U1=>xeF1 =>D(1, 5)
7 . l , 3 t— a leU1=>aleF1 VD(6)
8 . 1, 2 , 3 l-— a l e F1 =>D(2, 7)

Eight Gentzen proof steps are used: three to introduce the given facts and the set inclusion
definition, two to instantiate the universal quantifier, one to split equivalence, and two applications
of Modus Ponens.The point is that the conciseness at the conceptual level is not really based on the
person ’s competence in this particular area, and the tediousness at the logical level is not caused by
the machine’s inability of finding elegant proofs. The reasoning simply takes place at different
levels of abstraction. '

Rules like 2.1 are domain-specific, because they are only defined for domain-specific predicates
(in our case ; and e , both written in infix form in our example). Yet it is not diffit to find their
general counterpart. For example, the general counterpart of inference rule 2.1 is given as 2.2.
PÜ‘ Y)<=>Vz (Q(z ‚(lieg-ä; y)), P(a b) ’ Q“: a) where a, b, c denote arbitrary terms 2.2

It is straightforward to prove that 2.2 is a compound rule in the sense that it can be taken as an
abbreviation of a sequence of basic Gentzen rules and is therefore correct. Why then did Gentzen
call his calculus “natural deduction" and what makes our compound rules more natural? The point
is, that Gentzen designed his calculus for any mathematical field (i.e. not domain—Specific) on the
observation that human mathematicians usually develop proofs in such a way: they introduce
assumptions (HYPothesis Rule) and later discharge them, i.e. make the conclusion independent of
the assumptions (DEDuction Rule); they prove by cases (Rule of CASE), and so on. This means
that the "structural" Gentzen inference rules provide a "structural" means to construct and deve10p
proofs similar to the way human mathematicians are used to. But its naturalness is therefore also
limited. We might call it "structurally natural" in fact. That means that those non-structural
infererence rules are still basic and usually too small as an appropriate "inference step size". While
it is possible to introduce the sort of particular compound rules as mentioned above (2.2), there is
practically no way to do that in general, for generally no specific compound inference rules have
dominance over others and there are infinitely many of them.

9 Domain-specific Inference Rules

If we concentrate on a special area of mathematics, however, there are rules such as 2.1 or 2.2

that are distinguished from others and worth separating. Indeed, they usually correspond exactly to

one application of either an axiom or a theorem. A quite simple but powerful method is developed
below to derive domain-specific compound inference rules from axioms and theorems. These

compound inference rules, affected by the specific encoding manner of the axioms or theorems,

reflect a certain degree of subjective reasoning style, as opposed to the general "objective" rules of
G. Gentzen. New rules are then incrementally added to the calculus as new theorems or even

intermediate results or lemmas are proved, which corresponds to the observation that in a

mathematical textbook the reasoning usually starts at some very basic level and becomes more and
more "abstract" and conceptual towards the end, where the kowledge of the reader is assumed to

contain all the previously introduced material. We will show that astonishingly all the conceptual

level inference rules needed in our examples can be derived by this quite simple method. The

resulting level of abstraction turns out to be quite natural and satisfactory. The basic observation is

that mathematicians apply axioms and theorems as a fundamental unit of reasoning and skip those

small logical manipulations enforced at the Gentzen calculus level. The table 2.1 summarizes our

rules that can be used to derive co~P0.ndiIlf"er~IlCe}lJle.s.

Rule 2 in table 2.1 reflects the basic idea, that axioms and theorems are usually given in
implication form. Taking into account that implications can be nested, Rule 3 is designed to make a
recursion out ofRule 2 (and of course also other rules). Rule 4 is a recursion in the other direction.
Rule 5 splits the equivalences that often appears in axioms and theorems in order to apply rule 2.

Rule 6 to Rule 8 save the effort to split or combine disjunctive and conjunctive formulas.
(Therefore, a slight change is made to the syntax, that is to apply a rule, it suffices to find for each

reason P a preceding proof line in the form of ...II. P II. .•• , instead of a proof line in form P, as

required in the Gentzen calculus. Rule 1 is used to introduce axioms and theorems that other rules

may start with.

Let us have a look again at the above subset example and see how the axiom can be used to

derive inference rules. Notice the propagation of quantifiers is not given explicitly in our discussion.
The axiom is: .

U~F (::::} \Ix xeV ~ xeF

As the first step we always apply Rule 1. Then in our case we apply Rule 5 to split the equivalence.

Now we proceed from one of the two new inference rules produced by Rule 5:

2.3
VP,V U~F=>Vx xeV=>xEF

According to Rule 3, Rule 2 can be applied repeatedly and produces

Ul~Fl
2.4

Vx xe Ul=>xE Fl

and

..., (Vx XE Ul=>xE FI)
2.5

...,(VlcFI)

Domain-gnome Inference Rges __ 9

Ifwe concentrate on a special area of mathematics, however, there are rules such as 2.1 or 2.2
that are distinguished from others and worth separating. Indeed, they usually correspond exactly to
one application of either an axiom or a theorem. A quite simple but powerful method is developed
below to derive domain- specific compound inference rules from axioms and theorems. These
compound inference rules, affected by the specific encoding manner of the axioms or theorems,
reflect a certain degree of subjective reasoning style, as opposed to the general "objective" rules of
G. Gentzen. New rules are then incrementally added to the calculus as new theorems or even
intermediate results or lemmas are proved, which corresponds to the observation that in a
mathematical textbook the reasoning usually starts at some very basic level and becomes more and
more "abstract" and conceptual towards the end, where the kowledge of the reader is assumed to
contain all the previously introduced material. We will show that astonishingly all the conceptual
level inference rules needed in our examPles can be derived by this quite simple method. The
resulting level of abstraction turns out to be quite natural and satisfactory. The basic observation is
that mathematicians apply axioms and theorems as a fundamental unit of reasoning and skip those
small logical manipulations enforced at the Gentzen calculus level. The table 2.1 summarizes our
rules that can be “sad to (iffy? 0092999 mference 111165

Rule 2 in table 2.1 reflects the basic idea, that axioms and theorems are usually given in
implication form. Taking into account that implications can be nested, Rule 3 is designed to make a
recursion out of Rule 2 (and of course also other rules). Rule 4 is a recursion in the other direction.
Rule 5 splits the equiv alences that often appears in axioms and theorems in order to apply rule 2.
Rule 6 to Rule 8 save the effort to split or combine disjunctive and conjunctive formulas.
(Therefore, a slight change is made to the syntax, that is to apply a rule, it suffices to find for each
reason P a preceding proof line in the form of .../\ P A..., instead of a proof line in form P, as
required in the Gentzen calculus. Rule 1 is used to introduce axioms and theorems that other rules
may start with.

Let us have a look again at the above subset example and see how the axiom can be used to
derive inference rules. Notice the prepagation of quantifiers is not given explicitly in our discussion.
The axiom is: '

UgF4=> Vx e ==> xeF

As the first step we always apply Rule 1. Then in our case we apply Rule 5 to split the equivalence.
Now we proceed from one of the two new inference rules produced by Rule S :

?

2 .3
VF,U UgF=>Vx xe U=>xe F

According to Rule 3 , Rule 2 can be applied repeatedly and produces

UlgF l

Vx xe U1=>xe F1
2.4

and

——. (Vx e1=>xeF l)
2.5M

10 Domain-specific Inference Rules

RULES FOR DERIVING NEW INFERENCE RULES

Gnvellll Facts aumtdl fumfeJrelDlce R1Ullles New ~JP1eci2n J!llulurpose lfunferell1l.ce]Rllllne

kix P(x)=:>Q(x) 2.

P3. and : ' is derivableI from Q0­
P P'

I-P4. Itr'PT and PI

P
5.
VX QI<=}Q2

Pl\!'P1
,.

6. Q

PI /\ P2

7. Q

P

8.

Ql /\ Q2

lP, given as axiom or theoreml. P

Table 2.1

Applying Rule 3 and Rule 2 on 2.4 once more, we again obtain two new rules:

ale VI, Vl~FI
2.6

aleFI

ale FI, UI~Fl
2.7

aleUI

where 2.6 is in fact 2.1. Because...., (\Ix xe Ul=>xe FI) can be rewritten into 3x xe UI 1\ xe Fl,

combined with the 31 Rule of the Gentzen calculus, we can apply Rule 4 on 2.5 to produce 2.8:

ae VI, ae FI
2.8

....,(UI~Fl)

Notice that Rule 4 is the only one that can not be carried out in a fully automatic way. But we
believe it is easy to develop some simple heuristic methods to cover the common rewriting cases,
for example that negation should often be propagated inside implication and rewritings between
pairs....,V and 3, and ..3 and V. The following is the example which we will use through the paper.
All compound inference rules used in our example are listed. They are derived from the five

lIt means inference rule ~', is derivable by this algorithm from fonnula Q.

Pea) and -,Q(a) where a denotes Q(a),P(a)

an arbitrary tenn

P,P
R'

P'
--0
P P

and
VX Ql=:>Q2 Vx Q2=>Ql

. ---"., -------_ .. ­

PI P2
and <rQ

PI, P2
Q

P P
andQI Q2

Domainjpecific Ir_1f_erence Rules 10

" RULES FOR DERIVING NEW INFERENCE RULES
" Given Facts and inference Rules

1. P, given as axiom or theorem

New S—pECiall Purpose mänä Rule

P

P(a) d _” Q(a)W —-.P(a) where a denotes\ 2. Vx P(x)=>Q(x)

an arbitrary term

3. % and—R35- is derivable1 from Q IR?

4%,..girnp1np __QL

P _P_ and P _
Vx QlceQZ Vx Q1=>Q2 Vx Q2=>Q1

' Q Q Q
7 P l A P2 P1 , P2

' Ö Q
P P 4” P8. -—-— and -——“ Q1 A Q2 Q1 Q2

Table 2 .1

Applying Rule 3 and Rule 2 on 2.4 once more, we again obtain two new rules:

a le U1 , U lgF l
2 .6

a leF l

a l e F1 , U1gF_1_

a leUl
2.7

where 2.6 is in fact 2.1. Because -—: (Vx xe U1=>xe F1) can be rewritten into 3x xe U1 A xe F1,
combined with the 31 Rule of the Gentzen calculus, we can apply Rule 4 on 2.5 to produce 2.8:

ae U1 , ae F1 2.8——.(U1g1=1)
Notice that Rule 4 is the only one that can not be carried out in a fully automatic way. But we

believe it is easy to develop some simple heuristic methods to cover the common rewriting cases,
for example that negation should often be propagated inside implication and rewritings between
pairs -.V and 3 , and -—El and V. The following is the example which we will use through the paper.
All compound inference rules used in our example are listed. They are derived from the five

IIII means inference rule is derivable by this algorithm from formula Q.
/R'/—/

11 Domain-specific fuference Rules

definitions and one lemma which is supposed to be proved in advance and used in the proof of the
theorem. The original proof of forty-seven proof lines is reduced to a proof of fifteen lines.

Theorem: 1.9 Satz 1.9 in [Deussen 71.]

group(F op) 1\ subgroup(U Fop) 1\ unit(F lop) 1\ unit(U Iu op)::::> 1= Iu

IfF is a group, U is a subgroup ofG, I, Iu the unit element ofF and U respectively, then 1= lu

Definitions, axioms and lemmas as context

t1. Def.

"11 F ,OP semigroup(F OP) {=:}"IIx,y,z XE F 1\ yE F 1\ ZE F::::> (xy)z=x(yz)

1\ ("IIx,y XE F 1\ YEF:::> xyEF) (not used in this example)

t 2. Def.

"II1,F,OP unit(F 1 OP)<=> semigroup(F OP) 1\ lEF 1\ ("IIffEF::::>lf=f1=t)

(Note If=fI=f is an abreviation of If=f 1\ n=f, first order predicate logic with equality is assumed.

And expressions in form of apply(op x y) are abreviated to xy throughout our example, for

simplicity.)

t 3. Def.

W,OP group(F OP)<=>semigroup(F OP)I\(31 unit(F lOP) 1\

(VffEF:::> 3f-I f- IEFl\f-1f=l)

t4. Def.

"IIf,g,x,F,OP solution(f g x FOP){=:} semigroup(F OP) 1\ f,g,xE F 1\ fx=g

(f,g,xe F is an abreviation of fE F 1\ ge F 1\ XE F)

t5. Lemma

Vf,g,Xt.X2,F,OP group(F OP) 1\ solution(f g Xl F OP)l\solution(f g X2 F OP)::::>Xl=X2

t 6. Def

V V,F,OP subgroup(V F OP)<=>semigroup(F OP) 1\ Vg 1\ group(U OP)

0. Def.

'if U,F D~F<=>Vx xeU:::> xEF

Proof 1: Input proof in Gentzen Calculus

F, D, OP, 1, lu are constants. Notice a slight syntactic change has been made: in the
assumption-set part of proof lines, line numbers of proof lines introduced by the HYP rule are
preceded by a symbol "a", standing for assumption.

Domain-specific Inference Rules 11

definitions and one lemma which is supposed to be proved in advance and used in the proof of the
theorem. The original proof of forty-seven proof lines is reduced to a proof of fifteen lines.

Theorem: 1.9 Satz 1.9 in [Deussen 71]

group(F op) A subgroup(UFop) A unit(F 1 op) A unit(U 1u op) => I: In

HP is a group, U is a subgroup of G. 1, 1“ the unit element of F and U respectively, then 1: lu

Definitions, axioms and lemmas as context
m

t l . Def.

V F ‚OP semigroup(F OP) <::>Vx,y,z xe F A ye F A ze F =» (xy)z=x(yz)

A (Vx,y xe F A yeF => xye F) (not used in this example)

t 2 . Def.

V1,F,OP unit(F 1 OP)¢=> semigroup(F OP) A l eF A (Vf fe F=>lf=f1=t))

(Note 1f=f1=f is an abreviation of 1f=f A f l=f, first order predicate logic with equality is assumed.
And expressions in form of app1y(op x y) are abreviated to xy throughout our example, for
simplicity.)

t 3. Def.

VF,OP group(F OP)¢=>semigroup(F OP)A(31 unit(F 1 OP) A

(v r fe F=> arl f—le melt—.1)

t 4 . Def.

Vf,g,x,F,OP solution(f g x F OP)¢=> semigroup(F OP) A f,g,xe F A fx=g

(f,g,xe F is an abreviation of fe F A geF A xe F)

t 5 . Lemma

Vf,g,x1,xz,F,OP group(F OP) A solution(f g x l F OP)Asolution(f g X; F OP)=>3r1=.-x2

t 6. Def

V U,F,OP subgroup(U F OP)4:>semigroup(F OP) A UgF A groupCU OP)

t7. Def.

V U,F UgF<=>Vx e => xe F

Proof 1: Input proof in Gentzen Calculus

F, U, OP, 1, 111 are constants. Notice a slight syntactic change has been made: in the
assumption—set part of proof lines, line numbers of proof lines introduced by the HYP rule are
preceded by a symbol "a", standing for assumption.

12 Domain-specific Inference Rules

1. al ~ group(F op) A subgroup(U Fop) A unit(F lop)

1\ unit(U Iu op) HYP

2. al I- group(Fop) AD(l)

3. al I­ subgroup(U Fop) AD(l)

4. al I­ unit(F lop) AD(1)

5. al ~ unit(U lu op) AD(l)

6. 12 I­ unit(U Iu op)<=> semigroup(U op) A lu eU

A (Vf fe U==> luf=f1u=f) VD(12)

7. t6 I­ subgroup(U F op)<=:>semigroup(F op) 1\ Ug

A groupCU ()p) VD(t6)

8. t6 ~ subgroup(U F op)~semigroup(F Op) A Uk;F

A group(U op) <=:>D(7)

9. al,t6 I­ semigroup(F op) A Ug A group(U op) ==>D(3,8)

10. al,t6 I­ U~F AD(9)

11. 12 I­ unit(U l u op)~ semigroup(U op) /\ lu eU A

(Vf fe U~Iuf=flu=f) <=:>D(6)

12. 12, al ~ semigroup(U op) A lu eU A (VffeU:::::>Iuf=f1 u=f) ==>D(5,1l)

13. 12, al I­ lu eD AD(l2)

14. t2,al I­ 3xxeU 31(13)

15. a15 ~ ueU HYP

16. 12, al ~ Vf fe U==> Iuf=f1u=f AD(12)

17. 12, al I­ ue U:::::>Iuu=ulu=u VD(16)

18. 12, al,a14 ~ luu=u1u=U :::::>D(15,17)

19. t2, al,a15 ~ u1u=u AD(l8)

20. t7 I- Ug{::::}Vx xeU ==> xeF VD(t7)

21. t7 I- U~F:::::>Vx xeU:::::> xeF <=:>D(20)

22. al,t6,t7 ~ Vx xeD:::::> xeF ==>D(10,21)

23. al,t6,t7 I­ ueD ==> ueF VD(22)

24. a l,a15,t6,17 I­ ueF :::::>D(l5,23)

Domain—specific Inference Rules

1 .

P‘

. “

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24 .

al

al

al

al

al

t6

t6

a1,t6

a l ‚t6

t2, a l

t2, a l

t2,a1

a15

12, al

t2, a l

t2, a1,a14

t2, a1,a15

t7

t7

al,t6,t7

a1,t6,t7

a1,a15,t6,t7

I— group(F op) A subgroupCU F op) A unit(F 1 op)

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

A unit(U 1u 0p)

gToup(F Op)

sub group(U F ep)

unit(F 1 op)

unit(U 1u op)

unitCU 1u op)<::> semigroupCU op) A In e U

A (Vf fe U=>1uf=f1u=f)

subgroup(U F op)¢=>semigroup(F op) A U_C_F

A groqJ op)

subgroup(U F op)=>semigroup(F op) A UgF

A grouPCU op)

semigroup(F 0p) A U_c_F A groupCU Op)

UgF

unit(U 1u op)=> semigroupCU op) A l u e U A

(Vf fe U=>1uf=f1u=fl
semigroup(U op) A 1“ EU A (Vf fe Uzbluf=f1u=fl

116 U

Vf fe U=>1uf=f1u=f

ue U=>1uu=u1u=u

luu=u1u=u

u1u=u

UgFee‘v’x xe U => KG F

UgF=>Vx xe U => xe F

Vx xe U => xe F

ue U => ue F

ueF

12

Ana)
AD(1)

AD(1)

AD(I)

VD(t2)

VD(t6)

<=>D(7)

=>D(3,8)

AD(9)

¢:>D(6)

=>D(5,11)

AD(12)

31(13)

HYP

AD(12)

VD(16)

=>D(15,17)

AD(1 8)

VD(t7)

¢=>D(20)

=$D(10,21)

VD(22)

=>D(15,23)

13 Domain-specific Inference Rules

25. aI,t6,t7 I-	 IueU=>IueF \fD(22)

26. aI,t2,t6,t7 I-	 Iu eF =>D(13,25)

27. t6, aI I-	 semigroup(F op) 1'1>(9)

28. aI,aI5,t2,t6,t7 I-	 semigroup(F op) A ueF A Iu eF A uIu=u 1'.1(24,26,27,19)

29.	 t4 I- solution(u u IuFop){=} semigroup(F op)

A u, Iu,ue F Aulu=u VD(t4)

30.	 t4 I- semigroup(F op) Au, Iu,ue F AuIu=u

~soIution(u u Iu Fop) {=}D(29)

31.	 aI,aI4,t2,t4,t6,t7

J- solution(u u Iu Fop) =>b(28,30)

32.	 t2 J- unit(F I op)~ semigroup(F op) Ale F

A (V'ffeF=>lf=fl=t) 'vD(t2)

33.	 t2 I- unit(F I op)~ semigroup(F op) A I eF

A (V'ffeF~lf=fl=t)) {=}D(32)

34. aI,t2 I-	 semigroup(F op) A I eF A (V'ffeF~lf=fl=t) ~D(4,33)

35. aI,a I-	 V'ffeF=>lf=fl=f AD(34)

36. aI,a I-	 ueF=>lu=ul=u V'D(35)

37. al ,aI4,t6,t7,t2 I-	 Iu=ul=u =>D(24,36)

38. al,aI4,t6,t7,t2 J-	 ul=u AD(37)

39. t2 I-	 IeF AD(34)

40. al,aI4.t6,t7,t2 I-	 semigroup(F op) AueF Al eF AueF A ul=u 1'.1(27,38,39,24)

41.	 t4 J- solution(u u I FOP){=} semigroup(F op)

A u, 1,ueF A ul= u 'vD(t4)

42.	 t4 I- semigroup(F op) A u,l,ueF I\. uI= u

=>solution(u u IF op) ~D(41)

43. aI,aI4, t4 ,t6,t7,t2
I ­ solution(u u I Fop) =>D(40,42)

44. al,aI4, t4 ,t6,t7,t2

I ­ groUP(F op) A solution(u u 1 Fop)

Domain-specific Inference Rules 13

25.

26.

27.

28.

29.

30.

31 .

32.

33.

34.

35.

36.

37.

38.

39.

40.

41 .

42.

43.

44.

a1,t6,t7 !—

a1,t2‚t6‚t7 |—

t6, a l I—

al,a15,t2,t6,t7 [—

|_t4

t4 T

a1,a14,t2,t4,t6,t7

|_.

t2 1--

a1,t2

al,t2

a1,t2

a1,a14,t6,t7,t2

al,a14,t6,t7‘,t2

t2

a1.a14,t6,t7,t2

T
T

T
T

T
T

T
T

t4

t4 T

a1,a14, t4 ‚t6,t7,t2
|_

a1,a14, t4 ,t6,t7,t2

|_.

lue U =1ue F VD(22)

111 e F =:>D(13,25)

semigroup(F op) AD(9)

semigroup(F op) A ueF A lu e F A u1u= u AI(24,26,27,19)

solution(u u 1n F 0120:) semigroup(F op)

A u, Iwue F A u1u=u VD(t4)

semigroupCF op) A u, Imus F A u1u=u

=>solution(u 11 In F 0p) 4:)D(29)

solution(u 11 In F op) =>D(28,30)

unit(F 1 op)¢=> semigroup(F op) A 1 eF

A (Vf fe F=>1f=f1=f)) VD(t2)

unit(F 1 op)=> semigroup(F op) A l eF

A (Vf fe F=>1f=fl=f)) <=D(32)

semigroup(F op) A 1 eF A (Vf fe F=>1f=fl=f) =>D(4‚33)

Vf fe F=>1f=f1=f AD(34)

ue F=>1u=ul=u VD(35)

lu=u1=u =>D(24,3 6)

u1=u AD(37)

l e F AD(34)

semigroup(F op) A as F A 1 e F A ue F A u1=u AI(27,38,39,24)

solution(u u 1 F 0P)¢:> semigroup(F op)

A u, 1,ueF A u1= u VD(t4)

semigroup(F op) A u,1,ueF A 111: u

=>solution(u u 1 F 0p) ¢=>D(41)

solution(u u 1 F op) =>D(40,42)

group(F op) A solution(u u 1 F 0p)

Domain-specific Inference Rules 14

/\ solution(u u l u Fop) /\1(2,31,43)

45. 15 I­ group(F op) /\ solution(u u 1 Fop)

/\solution(u u lu F op)~l= 1u V'D(15)

46. a1,a14, t4,t6,15,t7,t2

I­ 1= lu =>D(44,45)

47. a1,t4 ,t6,15,t7,t2 I­ 1= lu Choice(46,14)

Compound Inference Rules generated from axioms and lemmas actually used in
the proof

For space limitation only rules used in our example proof are listed. For example, t1.2 is a rule
derived from axiom tl. The symbols F1, VI, OPl, 1, u1 can be substituted by any well formed
terms.

t2.1
unit(FI I OPI) t2.2

unit(FI 1 OPI), uIEFl

1 EFl uIl =UI

t3.l
semigroup(FI OPI)

group(Fl OPI)

aI, bl, Cl EFl, alCl=bI, semigroup(Fl OPl)
t4.1

solution(al bl Cl Fl OPl)

solution(al bl' Cl Fl OPl), solution(al bl Cl Fl OPl), groUp(Fl OPl)15.1 61 - 61

subgroUP(Ul Fl OPI)
t6.1

Ug;;;Fl

Vg;FI, alEUI
a.1

alE Fl

Proof two: reduced by applying compound inference rules above

OP, 1, 1u are constants. They have nothing to do with the symbols used in inference rules.

1. a1 I­ group(F OP) /\ subgroup(U FOP) /\ unit(F 1 OP)

/\ unitCU 1u OP) hyp

2. a1.2 I-­ U!;;F t6.1(1.2)

3. a1.4 I-­ 1u EU t2.1(1.4)

4. a1.4 I-­ 3x XEU 31(3)

5. as I-­ ueU h~

6. a1.4,a2 I-­ ulu=U t2.2(1.4, 5)

7. a1.2,a2 I-­ ueF t7.1(2,5)

8. a1.2, al.4 I-­ lu eF t7.1(2,3)

9. aLl I­ semigroup(F OP) t3.1(1.1)
10. aLl, a1.2, a1.4,a2

Domain-specific Inference Rules 14

A solution(u u In F op) AI(2,31,43)

45. IS I— group(F op) A solution(u u 1 F op)

Asolution(u u In F 0p)=>1= lu VD(t5)

46. a1,a14, t4 ,t6,t5,t7,t2

}— 1: In =>D(44,45)

47 . al,t4 ,t6,t5,t7,t2 +— 1= 11] Choice(46,14)

Compound Inference Rules generated from axioms and lemmas actually used in
the proof

For space limitation only rules used in our example proof are listed. For example, t1.2 is a rule
derived fi'om axiom t l . The symbols F1, U1, 0P1, 1, ul can be substituted by any well formed
terms.

unit(P1_1_OP1) unit<F1 1 0P1).31::F1t2.1 t2.2

B 1 _gromflaiom)
' semi group(F1 OP1)

t41 a l , b l , 01 € FL alc1=b1, semigroup(F1 0P1)
' solution(a1 bl c1 F1 0P1)

5 '1 solution(a1 b1’ c1 F1 OP1), solution(a1 b1 01 F1 0P1), 8T0uP(F1 0P1)

.
b l =1D1

t6 1 SUnOUPCU 1 F1 0P1)

. UlgFl

U gF , a eU{7.1 1 1 1 1

a le F1

Proof two: reduced by applying compound inference rules above

OP, 1, 1u are constants. They have nothing to do with the symbols used in inference rules.

1 . al I— group(F OP) A subgroup(U F OP) A unit(F 1 OP)
Aunit(U1u OP) hyp

2 . a1.2 !— UgF t6.1(1.2)
3 . a1.4 l— 111 e U t2.1(1.4)
4 . a1.4 l— EIX e 31(3)
5 . a5 I— ueU hyp
6 . a l .4 ,a2 !— u1u=u t2.2(1.4‚ 5)
7 . a1.2,a2 l— ueF t7.1(2, 5)
8 . a1.2, 31.4 !— 1u eF t7.1(2, 3)
9 . a1 .1 !— semigroup(F OP) t3.1(1.1)
10 . a1.1, a1.2, a1.4,a2

15 Domain-specific fuference Rules

I­ solution(u u 1uF OP) t4.1(6,7,8,9)

11. a1.2, a1.3,a2 I ­ u1=u t2.2(1.3,7)

12. a1.3 I ­ lEF t2.1(1.3)

13. al.l,a1.2,a1.3, a2

I ­ solution(u u 1 FOP) t4.1(7,11,12,9)

14. aI, a2 I ­ 1= 1u t5.1(1.1,10,13)

15. a1 I­ 1= 1u Choice(4,14)

Notice the assumption sei of proof lines. For example a1.2 indicates the second conjunctive
subexpression of the line al. In the last two lines, it is simply written as aI, for all subexpressions

are included.

QED.(Satz 1.9)

The reader may have noticed that axioms and theorems do not appear in the proof as premises
(proof line in fact) any more, once they are used to guide the derivation ofnew compound inference
rules. But the "deductive ability" of the overall system is not weakened since axioms and theorems
are provable with these compound inference rules and general Gentzen rules (A formal proof is
omitted). Indeed, it is not completeness and correctness problems we are primarily concerned with,
but the naturalness of these derived rules, which we believe corresponds to the naturalness of the
given axioms and theorems (or rather their encoding), and closely related, it also depends on the
depth of the recursive application of Rule 2. Of course, more careful studies are necessary.
Furthermore, derivation rules for encoding patterns other than the implication (Rule 2 in our
algorithm) might be useful too. In order to produce really natural proofs, structural information of
the Gentzen proof must be used such that more compound inference rules will be generated not only
from given lemmas or previously proved theorems, but also from intermediate results from within a
proof.

The next problem, after the derivation of domain-specific compound rules, is how to shorten
the original Gentzen proof. A brute force method is currently used in our implimentation. We
simply test first for each proof line if there is an applicable compound rule in a bottom-up direction
(since rules are all disjoint there is no problem of conflict and no special treatment for the resolution
of conflicts is needed right now. This may be necessary, however, once we have more rules,
particularly if they are non-disjoint). If a rule is applicable, change the inference rule item of that line
to this compound rule, and change the reason pointers to the lines as far back in the logical
predecessor relation as possible. For example, if A is used as reason in the justification that one
particular inference is applicable, and we have two previous proof lines:

pI I­ AAB

p2 I- A

where pI precedes p2 in the proof, then the reason pointer should point to pI.

Mter the completion of the test above, we go through the whole proof again and delete the lines
not used in the new proof (i.e. they are not reachable from the concluding line following the new
reason relation backward). The assumption set of the remaining lines must be adapted
correspondingly too. Notice that now definitions (axioms) and lemmas, since they do not appear

Domain-specific Inference Rules 15

I— solution(u u 111]?“ OP) t4.1(6,7,8,9)

l l . a1.2, a1.3,a2 l— u1=u t2.2(1.3,7)
12 . a1.3 l— 1 e F t2.1(1.3)

13 . a1.1,al.2,a1.3, a2

I— solution(u u 1 F OP) t4.1(7,11,12‚9)

14 . a l , a2 l-- 1= 1n t5.1(1.1,10,l3)
15 . al I-—]: 1u _ Choice(4‚14)

Notice the assumption set of proof lines. For example a1.2 indicates the second conjunctive
subexpression of the line a l . In the last two lines, it is simply written as a l , for all subexpressions
are included.

QED.(Satz_1k9)

'Ihe reader may have noticed that axioms and theorems do not appear in the proof as premises
(proof line in fact) any more, once they are used to guide the derivation of new compound inference
rules. But the "deductive ability" of the overall system is not weakened since axioms and theorems
are provable with these compound inference rules and general Gentzen rules (A formal proof is
omitted). Indeed, it is not completeness and correctness problems we are primarily concerned with,
but the naturalness of these derived rules, which we believe corresponds to the naturalness of the
given axioms and theorems (or rather their encoding), and closely related, it also depends on the
depth of the recursive application of Rule 2. Of course, more careful studies are necessary.
Furthermore, derivation rules for encoding patterns other than the implication (Rule 2 in our
algorithm) might be useful too. In order to produce really natural proofs, structural information of
the Gentzen proof must be used such that more compound inference rules will be generated not only
fi'om given lemmas or previously proved theorems, but also from intermediate results from within a
proof.

The next problem, after the derivation of domain—specific compound rules, is how to shorten
the original Gentzen proof. A brute force method is currently used in our implimentation. We
simply test first for each proof line if there is an applicable compound rule in a bottom-up direction
(since rules are all disjoint there is no problem of conflict and no special treatment for the resolution
of conflicts is needed right now. This may be necessary, however, once we have more rules,
particularly if they are non-disjoint). If a rule is applicable, change the inference rule item of that line
to this compound rule, and change the reason pointers to the lines as far back in the logical
predecessor relation as possible. For example, if A is used as reason in the justification that one
particular inference is applicable, and we have two previous proof lines:

p l l— AAB
p2 l— A

where p l precedes p2 in the proof, then the reason pointer should point to p l .

After the completion of the test above, we go through the whole proof again and delete the lines
not used in the new proof (i.e. they are not reachable from the concluding line following the new
reason relation backward). The assumption set of the remaining lines must be adapted
correSpondingly too. Notice that now definitions (axioms) and lemmas, since they do not appear

16 Domain-specific Inference Rules

anymore as assumption proof lines, disappear from the assumption set of proof lines too. They are
no longer taken as part of the premises, instead, they become part of the calculus. More elegant
algorithms could be developed to narrow the candidates of possibly applicable compound rules.
But the brute force method is itself not that inefficient because the number of axioms and theorems
which a proof line depends on is always of a reasonable size.

3. Ordering Proof Trees

Having raised input Gentzen proofs to proofs at the conceptual level! we now proceed to
translate them into so called message sequences. A message sequence is in fact a sequence of
message units in internal code, each of which corresponds roughly to a sentence in the output
paragraph. This sequence will later be taken over by the tactical component and translated into
natural language. A linearization of the proof lines is therefore necessary. But instead of a direct
linearization as e.g. in [Chester 76], we first organize the proof into an ordered tree. While the
parents-children relation represents the basic inference relation (therefore the root of the tree is the
conclusion of the theorem), the order on the children is based m~!e on other .8.tI1!£;t1l!illJlIld
pragmatic relations. Notice as a tree, tlleremlgiit bem.uch redundancy of nodes (proof lines).
Obviously, an ordered tree of this kind not only provides us with a total order (through a simple
post-order traversal), but also preserves all information of the original proof structure, for example
the subproof structures. In the next section we will show how decisions on "what to say" for each
single proof step are made, using among other things, this structural information.

Before going into concrete defmitions and algorithms, let us first make clear what kind of
constraints there are on the order of presenting a proof. First of all, there is the logical constraint
that says reasons must be first proved before they can be used to justify any inference steps. As a
matter of fact, this is nearly the sole constraint used in previous proof transformation
systems[Chester 76]. However, there are another two kinds of important constraints which we
found extremely useful and want to introduce in this section.

The first one is what we call structural constraints. This is based on the observation that many
structural Gentzen inference rules demanding more than one reason impose an inherited order on

their reasons, Le. reasons are usually always derived in a particular order, although there is nothing
logical forbidding doing it another way round. For example, in a proof applying the inference rule
"CHOICE", we nearly always first derive

3xP(x)

before we assume

P(a) r.-P(a)

and then prove

P(a),A r.- Q

and then fmally, discharge the constant "a" and derive A r.-Q by the rule "CHOICE". Logically it

makes no difference if we prove P(a),A I- Q before deriving 3xP(x). The same holds for the rule

"CASE". We usually first derive

Ar.-FvG

Dgainfiecific Inference gulps 16

anymore as assumption proof lines, disappear from the assumption set of proof lines too. They are
no longer taken as part of the premises, instead, they become part of the calculus. More elegant
algorithms could be developed to narrow the candidates of possibly applicable compound rules.
But the brute force method is itself not that inefficient because the number of axioms and theorems
which a proof line depends on is always of a reasonable size.

3. Ordering Proof Trees

Having raised input Gentzen proofs to proofs at the conceptual level, we now proceed to
translate them into so called message sequences. A message sequence is in fact a sequence of
message units in internal code, each of which corresponds roughly to a sentence in the output
paragraph. This sequence will later be taken over by the tactical component and translated into
natural language. A linearization of the proof lines is therefore necessary. But instead of a direct
linearization as e.g. in [Chester 76], we first organize the proof into an ordered tree. While the
parents-children relation represents the basic inference relation (therefore the root of the tree is the
conclusion of the theorem), the order on the children is based more 99,9}.11? structurgland
pragmatic relations“. Notice as“ a tree, theremrghtbe much—redundancy of nodes (proof lines).
Obviously, an ordered tree of this kind not only provides us with a total order (through a simple
post—order traversal), but also preserves all information of the original proof structure, for example
the subproof structures. In the next section we will show how decisions on "what to say" for each
single proof step are made, using among other things, this structural information.

Before going into concrete definitions and algorithms, let us first make clear what kind of
constraints there are on the order of presenting a proof. First of all, there is-the logical constraint
that says reasons must be first proved before they can be used to justify any inference steps. As a
matter of fact, this i s nearly the sole constraint used in previous proof transformation
systems[Chester 76]. However, there are another two kinds of important constraints which we
found extremely useful and want to introduce in this section.

The first one is what we call Structural constraints . This is based on the observation that many
structural Gentzen inference rules demanding more than one reason impose an inherited order on
their reasons, i.e. reasons are usually always derived in a particular order, although there is nothing
logical forbidding doing it another way round. For example, in a proof applying the inference rule
"CHOICE", we nearly always first derive

3xP(x)

before we assume

P(a) !— P(a)

and then prove

P(a),A I— Q

and then finally, discharge the constant "a" and derive A I—Q by the rule "CHOICE“. Logically it
makes no difference if we prove P(a),A +— Q before deriving El(x). The same holds for the rule
"CASE". We usually first derive

Al—FVG

17 Ordering Proof Trees

before proceeding to check the two cases:

FI-H and

GI-H

and fmally derive by the rule "CASE"

AI-H.

This order is, of cause, closely related to the "forward chaining" proof development style that
we take in our system. And forward chaining style is in fact the plainest and the most commonly

used style in mathematical text books.

A closer investigation of proof examples reveals that a mere combination of logical and

structural constrains normally does not suffice to impose a total ordering. Therefore another rather
pragmatic constraint, the focus mechanism, is also used in our system. The focus mechanism was

fIrst <ieveJ()p~d inllaJ~<l11<lllgtl(lgel!1l~<l~J:st~<ling!;yst~l1ls.Itprov~<l to pe @effe~tiye

computational tool in discourse interpretation. The global focus manipulation mechanism and the
immediate focus manipulation mechanism were discussed in [Grosz 77] and [Sidner 79],

respectively. McKeown [McKeown 85] frrst adapted the immediate focus mechanism of Sidner and
incorporated it in her text generation system Text. When more than one choices concerning
information inclusion or ordering still remain after the application of all other text structuring rules,
the focus mechanism will be tried to single out a choice. Similarly, the focus mechanism in our
system will be employed in such a secondary way as well.

In general, global focus refers to the fact that we usually center our attention on a particular
object (collection) throughout a consecutive set of utterances. Immediate focus, on the other hand,
describes the way in which our attention shifts or remains constant over two consecutive sentences.
While we may use the immediate focus in the introsentential treatment which is one of the planned

work, the global focus is already integrated with the other two constraints in our system to try to set
up a total order for proof trees. It is in fact the fust time that the global focus mechanism is used in a
text planner in such a concrete manner.

The general observation is that, the focus phenomena discovered in natural language discourses
also occur in a rather similar way in a proof presentation. As far as complying with the logical and
structural constraints, consecutive proof lines always tend to center around one particular object
(collection), in other words, properties of the same object are normally grouped together. That is to
say, once we have started talking about a collection of particular objects, useful and derivable
properties of this collection will be derived concecutively before the proof turns to properties of
other objects. The argument will be made more precise by the following defmitions.

We fIrst briefly defme the concept of a proof tree. Informally a proof tree is a tree with proof
lines (or conjunctive subexpressions ofproof lines) as nodes. The logical inference relation is then
represented by the parents-children relation. The root is the conclusion of the whole proof. Leaves
are assumptions, including premises of the theorem and assumptions introduced during the
development of a proof which are discharged later. Assumptions and subproofs (subtrees) are
possibly duplicated in order to build a tree instead of a graph. We decide not to label duplications
differently in the tree, instead we will talk about different occurrences of nodes in the sequel.

Ordering Proof Trees 17

before proceeding to check the two cases:

F I— H and

G t— H

and finally derive by the rule "CASE"

A I—H.

This order is, of cause, closely related to the "forward chaining" proof development style that
we take in our system. And forward chaining style is in fact the plainest and the most commonly
used style in mathematical text books.

A closer investigation of proof examples reveals that a mere combination of logical and
structural constrains normally does not suffice to impose a total ordering. Therefore another rather
pragmatic constraint, the focus mechanism, is also used in our system. The focus mechanism was
first develgpsd in natural language __„uadgazstagdigg syswms _1_t_____pxoy9<_1 _.tp hc aneffcctive
computational tool in discourse interpretation. The global focus manipulation mechanism and the
immediate focus manipulation mechanism were discussed in [Grosz 77] and [Sidner 79],
respectively. McKeown [McKeown 85] first adapted the immediate focus mechanism of Sidner and
incorporated it in her text generation system Text. When more than one choices concerning
information inclusion or ordering still remain after the application of all other text structuring rules,
the focus mechanism will be tried to single out a choice. Similarly, the focus mechanism in our
system will be employed in such a secondary way as well.

In general, global focus refers to the fact that we usually center our attention on a particular
object (collection) throughout a consecutive set of utterances. Immediate focus, on the other hand,
describes the way in which our attention shifts or remains constant over two consecutive sentences.
While we may use the immediate focus in the introsentential treatment which is one of the planned
work, the global focus is already integrated with the other two constraints in our system to try to set
up a total order for proof trees. It is in fact the first time that the global focus mechanism is used in a
text planner in such a concrete manner.

The general observation is that, the focus phenomena discovered in natural language discourses
also occur in a rather similar way in a proof presentation. As far as complying with the logical and
structural constraints, consecutive proof lines always tend to center around one particular object
(collection), in other words, properties of the same object are normally grouped together. That is to
say, once we have started talking about a collection of particular objects, useful and derivable
properties of this collection will be derived concecutively before the proof turns to pr0perties of
other objects. The argument will be made more precise by the following definitions.

We first briefly define the concept of a proof tree. Informally a proof tree is a tree with proof
lines (or conjunctive subexpressions of proof lines) as nodes. The logical inference relation is then
represented by the parents-children relation. The root is the conclusion of the whole proof. Leaves
are assumptions, including premises of the theorem and assumptions introduced during the
development of a proof which are discharged later. Assumptions and subproofs (subtrees) are
possibly duplicated in order to build a tree instead of a graph. We decide not to label duplications
differently in the tree, instead we will talk about different occurrences of nodes in the sequel.

18 Ordering Proof Trees

Definition of Global Focus

Let N be an arbitrary node in a proof tree. The subtree rooted at N, which is a subproof, will
be denoted by N too. The global focus of a subproof N is defmed as follows:

focus(N)=F u E

where

F={x Ix is an object mentioned in subproof N}

E={x 13 y yE F and x is "associated" to y}.

Notice the concept of focus is introduced with respect to structural objects. More precisely,
Frame-like entity-constituent relations are considered. For our purpose, we use such a strategy that
if an object is mentioned and hence in focus, all associated objects (for example, all its parts) are
also in focus. At present we do not distinguish between explicit and implicit focus [Grosz 77].
While it might be improper under other circumstances, it works well for our mathematical
application. Relations between objects currently considered include set-elemehts relation, algebraic
structure-carrier set and -operator relation. A Frame-like internal representation will be used for
such relations. A partial order Qocus is also defmed on focus spaces:

Let SI, S2 be two arbitrary focus spaces, the following holds

SI ~focus S2 <::>Vx x E SI => x E S2 v 3 y (y E S21\ X ~ y)

This means elements of SI are either elements of S2, or , in the case of set elements, a subset of

some elements of S2. More elaboration is needed ifobjects with more complex structures are taken

into account.

Now we can restate the previous discussion as follows: if we have started a proof, and at a
certain point we have several alternatives to chose from as the next step, we should chose the one
which remains in the same focus space, as far as this is allowed by the other two constraints. Here
we have two points to make: in the first place the focus mechanism only plays a secondary role, the
basic proof structure is determined by the logical and structural constraints. In the second place,
concerning its practical applicability, we must fust have a "start" point, i.e. a "start" focus space
within which to continue, in order to apply the focus constraint. This "starting" focus space in turn
must be set up by the other two constraints, as we will show. In our system, these three constraints
are integrated in the following way in order to provide a total order.

First of all we build an initial proof tree from a proof already raised to the conceptual level.
With the guarantee that the logical constraint has been satisfied, we start from the root node and
proceed in a pre-order manner to try to enforce an order on children ofevery node. At each node we
will fust try those structural constraint rules. For example ifwe arrive at a node N with a proof line

At-Q

which is derived by the rule "CHOICE" from the following two proof lines

P(a),At-Q

3x P(x)

O£d_e_fingProof Trees 18

Definition of Global Focus

Let N be an arbitrary node in a proof tree. The subtree rooted at N, which is a subproof, will
be denoted by N too. The global focus of a subproof N is defined as follows:

focus(N)=F u E

where

F={x Ix is an object mentioned in subproof N}

E={x E! y y e F and x is "associated" to y}.

Notice the concept of focus is introduced with respect to structural objects. More precisely,
Frame—like entity—constituent relations are considered. For our purpose, we use such a strategy that
if an object is mentioned and hence in focus, all associated objects (for example, all its parts) are
also in focus. At present we do not distinguish between explicit and implicit focus [Grosz 77].
While it might be improper under other circumstances, i t works well for our mathematical
application..-Relations between obj cots-currently considered include set-element's relation, a'lgébfäic
structure-carrier set and -operator relation. A Frame-like internal representation will be used for
such relations. A partial order goons is also defined on focus spaces:

Let SI , SZ be two arbitrary focus spaces, the following holds

Slg focusSZcäVxxe Sl==>xe 82v E ly (ye SZ /u rgy)

This means elements of 81 are either elements of 82, or , in the case of set elements, a subset of

some elements of SZ. More elaboration is needed if objects with more complex structures are taken
into account.

Now we can restate the previous discussion as follows: if we have started a proof, and at a
certain point we have several alternatives to chose from as the next step, we should chose the one
which remains in the same focus space, as far as this is allowed by the other two constraints. Here
we have two points to make: in the first place the focus mechanism only plays a secondary role, the
basic proof structure is determined by the logical and structural constraints. In the second place,
concerning its practical applicability, we must first have a "start“ point, i.e. a "start" focus space
within which to continue, in order to apply the focus constraint. This "starting" focus space in turn
must be set up by the other two constraints, as we will show. In our system, these three constraints
are integrated in the following way in order to provide a total order.

First of all we build an initial proof tree from a proof already raised to the conceptual level.
With the guarantee that the logical constraint has been satisfied, we start from the root node and
proceed in a pre—order manner to try to enforce an order on chfldren of every node. At each node we
will first try those structural constraint rules. For example if we arrive at a node N with a proof line

A I— Q

which is derived by the rule "CHOICE" from the following two proof lines

P(a),A I— Q

Elx P(x)

19 Ordering Proof Trees

attached to node NI> N2 respectively, an order will be enforced on the two children NI and N2 such

that NI follows N2. Beside this enforcement of order, some particular nodes of some subproofs are

"marked", indicating that these proof lines should appear at the very beginning of the corresponding

subproof (No conflictions have been encountered so far, therefore no conflictions handling

mechanism is considered at the moment). In our case a node in subproof NI attached with a proof

line Pea) I-Pea) is marked, indicating that after the derivation of the existence of objects with certain

properties, we usually first introduce such a constant, and then proceed to prove some other

properties, and then discharge this constant again. Notice because we are working downward from

the root, this marking that is often far "beneath" the current node provides frequently an "initial"

focus space within which to continue.

Concretely these markings will be used at nodes where no existing structural rules are
applicable. Suppose we arrive at such a node N with children NI. N2,..., Nk. And moreover
suppose that we now have within the subtree N a node n marked by the previous process. This
m~~~that N must be first said and therefore it establishes !iD. "initi(ll" foc;us sPl),c~. NQWif
possible, we are going to first proceed in this focus space before turning to another. A most
straightforward thought might lead us to try to single out a child Nj satisfying

focus(n)=focus(Nj)

and make it the first child. The actual algorithm is neverthless a little more complicated in two ways:

firstly, we do not always demand equality of the focus spaces, i.e. we claim that the proof will tend

to continue in a subproof with the smallest focus space satisfying

focus(n)~focusfocus(Nj).

Secondly, if the focus mechanism can not directly link a marked node to a child Nj of the
current node N, it generally suffices if it will link to a node which occurs exclusively in Nj. Nj will
be picked out as the first child of N since the focus mechanism says the proof should at least
complete a part of it, and since we usually do not interrupt subproofs (it is indeed guaranteed by the
post-oder traverse manner in the production of a linear message sequence from an ordered tree
later.).

With the above discussion on the general underlying principles in mind we give the following
algorithm which enforces an order on the initial proof tree. Let rule(N) denote the inference rule
used in deriving the proof line attached to node N, formula(N) the proof line, and order(N) the
number of children of node N, respectively. While working through the proof tree, we have in fact
as intermediate data structure a partially ordered tree, if we combine the post-order of the tree with
the order imposed on children of nodes. In the sequel NI<N2 denotes that node NI precedes node
N2 in a (partially) ordered proof tree. The concept of duplication in an ordered tree which is used
in our algorithm is defmed as follows:

Node n is a duplication node if there is a node n' attached with the same proof line such that
n'<n. Notice it follows that all nodes in a subtree rooted by a duplication node are necessarily
duplication nodes, therefore we can talk about duplication subtrees. Intuitively, a node n is a
duplication node if its proof line has already been proved in the preceding context. Therefore, for
the convenience of discussion, nodes attached with proof lines introduced by the "HYP" rule
(including premises of the theorem) are also considered as duplication nodes.

Ordering Proof Trees 19

attached to node N1, N2 respectively, an order will be enforced on the two children NI and N2 such

that N1 follows N2. Beside this enforcement of order, some particular nodes of some subproofs are
"marked", indicating that these proof lines should appear at the very beginning of the corresponding
subproof (No conflictions have been encountered so far, therefore no conflictions handling
mechanism is considered at the moment). In our case a node in subproof N1 attached with a proof
line P(a) t— P(a) is marked, indicating that after the derivation of the existence of objects with certain
properties, we usually first introduce such a constant, and then proceed to prove some other

properties, and then discharge this constant again. Notice because we are working downward from
the root, this marking that is often far "beneath" the current node provides frequently an "initial"
focus space within which to continue.

Concretely these markings will be used at nodes where no existing structural rules are
applicable. Suppose we arrive at such a node N with children N1, N2,..., Nk. And moreover
suppose that we now have within the subtree N a node 11 marked by the previous process. This
means that N müßt be fits? staid 311d therefore it establishes im Initial £99115 Space Now ___if
possrble, we" are going to first proceed in this focus space before turning to another. A most
straightforward thought might lead us to try to single out a child N j satisfying

focus(n)=focus(Nj)

and make it the first child. The actual algorithm is neverthless a little more complicated in two ways:
firstly, we do not always demand equality of the focus spaces, i.e. we claim that the proof will tend
to continue in a subproof with the smallest focus space satisfying

focus(n)c_;focusfocus(Nj).

Secondly, if the focus mechanism can not directly link a marked node to a child Nj of the
current node N, i t generally suffices if i t will link to a node which occurs exclusively in Nj. N j will
be picked out as the first child of N since the focus mechanism says the proof should at least
complete a part of it, and since we usually do not interrupt subproofs (it is indeed guaranteed by the
post-Oder traverse manner in the production of a linear message sequence from an ordered tree
later.).

With the above discussion on the general underlying principles in mind we give the following
algorithm which enforces an order on the initial proof tree. Let rule(N) denote the inference rule
used in deriving the proof line attached to node N, formula(N) the proof line, and order(N) the
number of children of node N, respectively. While working through the proof tree, we have in fact
as intermediate data structure a partially ordered tree, if we combine the post-order of the tree with
the order imposed on children of nodes. In the sequel N1<N2 denotes that node N1 precedes node
N2 in a (partially) ordered proof tree. The concept of duplication in an ordered tree which is used
in our algorithm is defined as follows:

Node n is a duplication node if there is a node 11’ attached with the same proof line such that
n’<n. Notice it follows that all nodes in a subtree rooted by a duplication node are necessarily
duplication nodes, therefore we can talk about duplication subtrees. Intuitively, a node n is a
duplication node if its proof line has already been proved in the preceding context. Therefore, for
the convenience of discussion, nodes attached with proof lines introduced by the "HYP" rule
(including premises of the theorem) are also considered as duplication nodes.

20 Ordering Proof Trees

Ordering Algorithm

Start at the root of the initial proof tree. Let N denote the current node under processing. IfN is

not a leaf node. execute rule 1. 2. 3 consecutively.

1. The structural rules

l.a. If rule(N)="CHOICE". fonnula(N)=A I-Q. order(N)=2. Let Nb N2 be children of N such

that

formula(Nl)=P(a). A I- Q and

fonnula(N2)=3x P(x)

then make N2 precede NI, denoted as N2 < NI. Furthermore, mark node n with proof line

P(a)l-p(a) in subtree NI.

1.b. If rule(N)="CASE". fonnula(N)=A I- H, order(N)=3. Let NbN2. N3 be children of N such

that

formula(NI)=A I- F v G

formula(N2)=A, F I- H

formula(N3)=A. G I- H

then make NI precede both N2 and N3. denoted as:

and

Notice no order between N2 and N3 is specified by this rule. Furthermore mark node n with
proof line F I- F in N2 and n' with proof line G I-- Gin N3. respectively.

l.c. Ifrule(N)="DED". fonnula(N)=A I-- F=>G. order(N)=l. Let NI be the child of NI such that

fonnula(Nl)=A. F I-G

then mark node n with proof line F I--F in NI. Notice no order is specified by this rule. This
marking information might later cooperate with the focus mechanism. The same holds for rule l.d.

l.d. Ifrule(N)="IP". formula(N)=A I--F. order(N)=l. Let NI be the child ofN such that

formula(NI)=A • -,F I-- .1

then mark node n with proof line -,F I-- -,F in NI.

2. The focus constraint rule

If order(N) ~ m > 1 and Nl. N2..... Nm are remaining unordered. non-duplication children of
N. Let n be a marked non-duplication node occurs in at least one of the subtrees Nj 1 ~ j ~ m. A
particular child Ni will be picked out to precede the other children if we can find a node n' such that

1'. n' is a logical successor of n. Le. n occurs in a subtree rooted by n'

Ordering Proof Trees 20

Ordering Algorithm

Start at the root of the initial proof tree. Let N denote the current node under processing. If N is
not a leaf node, execute rule 1, 2, 3 consecutively.

1. The structural rules

1.a. If ru1e(N)="CHOICE", fonnula(N)—-=A I—Q, order(N)=2. Let N1, NZ be children of N such

that

formula(N1)=P(a), A P— Q and

formula(N2)=3x P(x)

then make N2 precede N1, denoted as N2 < N1. Furthermore, mark node n with proof line
P(a)I-— p(a) in subtree N1.

1.b. If ru1e(N)="CASE", formula(N)=A I— H, order(N)=3. Let N1,N2, N3 be children of N such

that

formula(N1)=A I- F v G

formula(N2)=A, F I— H

formula(N3)=A, G |— H

then make N1 precede both N2 and N3, denoted as:

N1<N2 and N1<N 3

Notice no order between N2 and N3 is specified by this rule. Furthermore mark node n with
proof line F I— F in N2 and n’ with proof line G l— G in N3, respectively.

1.c. Ifrule(N)="DED", formula(N)=A l— F=:»G, order(N)=1. Let N1 be the child of N1 such that

formula(Nl)=A, F l—G

then mark node n with proof line F l—F in N1. Notice no order is Specified by this rule. This
marking information might later c00perate with the focus mechanism. The same holds for rule l.d.

l .d . If ru1e(N)="IP", formula(N)=A I-—F, order(N)=1. Let NI be the child of N such that

formu1a(N1)=A , —.F |— _L

then mark node n with proof line —.F l— —.F in N1.

2. The focus constraint rule

If order(N) 2 m > 1 and N1, NZ, ..., Nm are remaining unordered, non-duplication children of
N. Let n be a marked non—duplication node occurs in at least one of the subtrees Nj l S j _<. m. A
particular child Ni will be picked out to precede the other children if we can find a node n’ such that

1’. n’ is a logical successor of n, i.e. 11 occurs in a subtree rooted by n’

21 Ordering Proof Trees

2'. n' occurs exclusively in the subtree Ni

3'. for any other logical successor n", focus(n')~focusfocus(n")

That Ni is picked out means:

Repeat rule 2 on the remaining child list as long as possible, until it is empty or there is no marked

node usable.

3. IF order(N) ~ m > 1 and N10 N2, ... , Nm are remaining unordered, non-duplication children of

N. Rearrange them in an order

such that

This last pragmatic rule says "longer" subproofs usually precede shorter ones so that conclusions of

subproofs will not be too far away from the point where they are used as reasons. The size function

is at the moment defined as:

size(N)=number of non-duplication nodes in the subtree N

+ number of largest duplication subtrees in N

where largest duplication subtrees are duplication subtrees without larger duplication subtrees

containing them. They are counted as one proof line in the size function since they are all proved in

the "preceding context" and will be simply used.

4. Repeat the whole process recursive1y on every child of the current node N.

Let us now return to our example and illustrate how the algorithm works. The initial proof tree
constructed from the raised proof (proof 2 in appendix) and the resulting ordered tree are given in
Fig. 2 and Fig. 3, respectively. Duplication nodes are shadowed in both trees. In the initial tree,
only "premise nodes" are shadowed because no order is yet dermed. In the resulting ordered tree
however, all the duplication nodes are shadowed. Furthermore, only the root nodes of duplication
subtrees are explicitly shown in the resulting tree. Numbers inside circles indicate the corresponding
proof line or the corresponding conjunctive subexpression of a proof line. Thus for example, 1.4
indicates the 4th. conjunctive subexpression (from left to right) of the fIrst proof line. In Fig. 3,
children ofnodes are .drawn according to the imposed order from left to right as well.

Ordering Proof Trees 21

2’. 11’ occurs exclusively in the subtree Ni

3 ’. for any other logical successor n”, focus(n’)gfocusfocus(n ”)

That Ni is picked out means:

Ni<Nj IS jSmand ja t i .

Repeat rule 2 on the remaining child list as long as possible, until i t is empty or there is no marked

node usable.

3. IF order(N) 2 m > 1 and N1, N2, ..., Nm are remaining unordered, non-duplication children of
N. Rearrange them in an order

N1 ’<N2 ‚< . . ‚<N‚m

such that

size(N1 ’) 2 size(Nz’) Z. „2 size(N ”m)

This last pragmatic rule says "longer" subproofs usually precede shorter ones so that conclusions of
subproofs will not be too far away fi'om the point where they are used as reasons. The size function
is at the moment defined as:

size(N)=number of non—duplication nodes in the subtree N

+ number of largest duplication subtrees in N

where largest duplication subtrees are duplication subtrees without larger duplication subtrees
containing them. They are counted as one proof line in the size function since they are all proved in
the "preceding context" and will be simply used.

4. Repeat the whole process recursively on every child of the current node N.

Let us now return to our example and illustrate how the algorithm works. The initial proof tree
constructed from the raised proof (proof 2 in appendix) and the resulting ordered tree are given in
Fig. 2 and Fig. 3 , respectively. Duplication nodes are shadowed in both trees. In the initial tree,
only "premise nodes" are shadowed because no order is yet defined. In the resulting ordered tree
however, all the duplication nodes are shadowed. Furthermore, only the root nodes of duplication
subtrees are explicitly shown in the resulting tree. Numbers inside circles indicate the corresponding
proof line or the corresponding conjunctive subexpression of a proof line. Thus for example, 1.4
indicates the 4th. conjunctive subexpression (from left to right) of the first proof line. In Fig. 3,
children of nodes are drawn according to the imposed order from left to right as well.

22 Ordering Proof Trees

Ffg.2 Inftfal Tree

Ffg. 3 Ordered Tree

The ordering process starts from the root node 15 in Fig. 2. Rule l.a is applicable. Thus an
order is imposed such that node 4 < node 14. And node 5 in the subtree rooted by node 14 is
marked. Notice there are several duplications of node 5, which introduces a new constant u such
that UE U. The subtree rooted by node 4 has no further branchings and is hence already ordered.
Now the algorithm arrives atnode 14. A domain specific inference rule is used in the derivation of
line 14 and no structural ordering rule is applicable. We have to try the focus constraint rule.
Calculating the focus spaces of the marked node 5 and its logical successors node 6 and node 7 we
have:

focus(node 5)={U} u {x IXEU}

focus(node 6)=focus(node 5)

focus(node 7)=focus(node 5) U {F} U {x IXEF}

Note for set objects their elements are the only "associated" objects. Apparently node 6 has the
smallest focus space. Checking the tree we tmd that node 6 has a unique occurrence in the subtree
rooted by node 10, so an order is imposed such that node 10 < node 13. A similar argument makes
node 6 the first child of node 10. The other three children of node 10 are ordered simply by rule 3
by decreasing size. Notice the ordering and the shadowing of duplications must be done hand in
hand. After the shadowing the subtree rooted by node 13 can be ordered very simply too by rule 3.

The whole focus mechanism is still at the experimental stage. Much investigation on the
appropriate definition of the focus space is underway. In addition, we are also considering
incorporating a local focus mechanism similar to the one described in [McKeown 85]. Some of the

Ordering Proof Trees 22

Fig. 3 Drder‘ed Tree

The ordering process starts from the root node 15 in Fig. 2. Rule 1.a is applicable. Thus an
order is imposed such that node 4 < node 14. And node 5 in the subtree rooted by node 14 is
marked. Notice there are several duplications of node 5 , which introduces a new constant u such
that us U. The subtree rooted by node 4 has no further branchings and is hence already ordered.
Now the algorithm arrives at node 14. A domain specific inference rule is used in the derivation of
line 14 and no structural ordering rule is applicable. We have to try the focus constraint rule.
Calculating the focus spaces of the marked node 5 and its logical successors node 6 and node 7 we
have:

focus(node 5)={U} U {x Ixe U}

focus(node 6)=focus(node 5)

focus(node 7)=focus(node 5) U {F} U {x lxeF}

Note for set objects their elements are the only “associated” objects. Apparently node 6 has the
smallest focus space. Checking the tree we find that node 6 has a unique occurrence in the subtree
rooted by node 10, so an order is imposed such that node 10 < node 13. A similar argument makes
node 6 the first child of node 10. The other three children of node 10 are ordered simply by rule 3
by decreasing size. Notice the ordering and the shadowing of duplications must be done hand in
hand. After the shadowing the subtree rooted by node 13 can be ordered very simply too by rule 3.

The whole focus mechanism is still at the experimental stage. Much investigation on the
appropriate definition of the focus space is underway. In addition, we are also considering
incorporating a local focus mechanism similar to the one described in [McKeown 85]. Some of the

23 Ordering Proof Trees

ordering decisions made by rule 3 based on subproof size may be justified by the local focus as
well.

4. Proof Unit Model and Reference Choices

Once we have imposed an order on the proof tree, a simple post-order traversal will be used to
produce a linearized message sequence which will be taken over by the tactical component and
realized in natural language. During the traverse, decisions about "what to say" must be made at
each node, or in other words, for each proof step. Generally, for each proof step a message unit of
the format

«inference-rule, reasons, proof-line» 4.1

will be generated which contains the three necessary components of each inference step: the

inference rule justifying this particular inference step, the already proved proof lines used by the

inference rule as reasons, and the newly derived proof line itself. While the proof line will usually

be handed over unchanged to the tactical component (one exception will be mentioned at the ~nd of

this section), there are alternative reference choices both for the inference rule and the reasons. The

three reference choices we have identified and are dealing with in our system are:

1. The explicit form: this is the case where we may decide to indicate explicitly which inference rule

we are using, which might be translated as "by the definition of unit element", "by the uniqueness

of solution" etc., for corresponding domain-specific rules. For structural Gentzen rules we have

such appropriate translations as well.

2. The omit form: in these cases simply a word such as "thus", "therefore" will be used.

3. The implicit form: this is between the two extremes of explicit and omit. By an implicit form we

mean that although nothing is said directly as to the inference rule, an implicit hint to the inference

rule is nevertherless given in the translation of the reasons (or of the proof line itself). For example,

if we have a translation of a reason that reads "since 1 is the unit element of F", we might decide to

omit the translation of the inference rule which would read "by the definition of unit". Another

possible hint form is using a hint word. For example "similarly" is used to indicate that the same

rule is used as in the previous proof step.

Similarly, three reference forms are found for reasons:

1. The explicit form: for example, reasons proved "far before" will usually be explicitly repeated.

2. The omit form: reasons can be omitted if they have just been proved or mentioned in other proof

steps.

3. The implicit form: similar to inference rules, reasons can be "hinted" implicitly. For example,

consider the case where we infer 1u=u from the two reasons unit(l FOP) and u E F using an

inference rule derived from the definition of unit. Suppose unit(l FOP) is proved somewhere in the
previous context. Now directly after proving u e F we may say: "by the defmition of unit, lu=u".

Here the reason unit(l FOP) is implicitly refered to by an explict translation of the inference rule

Ordering Proof Trees __ _ Ä

ordering decisions made by rule 3 based on subproof size may be justified by the local focus as
well.

4. Proof Unit Model and Reference Choices

Once we have imposed an order on the proof tree, a simple post-order traversal will be used to
produce a linearized message sequence which will be taken over by the tactical component and
realized in natural language. During the traverse, decisions about "what to say" must be made at
each node, or in other words, for each proof step. Generally, for each proof step a message unit of
the format

«inference—rule, reasons, proof-line» 4.1

will be generated which contains the three necessary components of each inference step: the
inference rule justifying this particular inference step, the already proved proof lines used by the
inference rule as reasons, and the newly derived proof line itself. While the proof line will usually
be handed-over unchanged to the" tactical component (dire exception" W111 be mentioned" at the end of
this section), there are alternative reference choices both for the inference rule and the reasons. The
three reference choices we have identified and are dealing with in our system are:

1. The ealicit form: this is the case where we may decide to indicate explicitly which inference rule
we are using, which might be translated as "by the definition of unit element", "by the uniqueness
of solution" etc., for corresponding domain—specific rules. For structural Gentzen rules we have
such appropriate translations as well.

2. The omit form: in these cases simply a word such as "thus", "therefore" will be used.

3. The implicit form: this is between the two extremes of explicit and omit. By an implicit form we
mean that although nothing is said directly as to the inference rule, an implicit hint to the inference
rule is nevertherless given in the translation of the reasons (or of the proof line itself). For example,
if we have a translation of a reason that reads "since 1 is the unit element of F", we might decide to
omit the translation of the inference rule which would read "by the definition of unit". Another
possible hint form is using a hint word. For example "similarly" is used to indicate that the same
rule is used as in the previous proof step.

Similarly, three reference forms are found for reasons:

1. The emiicit form: for example, reasons proved “far before" will usually be explicitly repeated.

2. The omit form: reasons can be omitted if they have just been proved or mentioned in other proof
steps.

3. The implicit form: similar to inference rules, reasons can be "hinted" implicitly. For example,
consider the case where we infer lu=u from the two reasons unit(1 F OP) and u e F using an
inference rule derived from the definition of unit. Suppose unit(1 F OP) is proved somewhere in the
previous context. Now directly after proving u e F we may say: "by the definition of unit, luzu“.
Here the reason unit(1 F OP) is implicitly refered to by an explict translation of the inference rule

24 Proof Unit Model and Reference Choices

(compare the implicit reference choice for inference rules described above, which is exactly in the

opposite direction).

Let us trrst consider the reference choices for inference rules. Unlike the reasons, the
explicitness or implicitness of referring to an inference rule at a particular node is irrelevant to the
position of the node in the whole proof. That means it is less concerned with the proof context than

with the user's familiarity with the particular inference rule, or in the case of domain-specific
inference rules, with the corresponding definition or theorem. With no sophisticated user model at
our disposal at the moment, the following relatively simple strategy is used for the reference of

inference rules:

Reference Choice Rules for Inference Rule

1. Reference Choices for Gentzen Inference Rules

We assume that our user is familiar with the standard Gentzen Calculus and therefore translate
all Gentzen inference rules in a predescribed way. This means that each Gentzen rule will either be

given always implicitly or alwaysexplicitly;tmchanged thiough()ut the whole proof and in all
proofs. No additional assumption on user's knowledge is taken into account. The standard

reference rules are:

l.a All structural Gentzen rule will be explicitly given.

l.b. All non-structural Gentzen rules will be omitted (a word like "thus", "hence", etc. will be

used).

Notice that sometimes a reference choice for an inference rule can have influence on the choice
of reference for the corresponding reasons. For example, an explicit translation of the case rule will
be something like: "From case A and case B, it follows....", which requires that the two reasons,
represented here by their names, should be at least implicitly mentioned. The reader will find a
definition of various ways ofmentioning a reason afterwards when we discuss decisions on reason
references.

2. Reference Choices for Domain-specific Inference Rules

In general domain-specific inference rules the user is familiar with can be omitted. Otherwise

they will be explicitly indicated. Users are assumed to be familiar with definitions and theorems of
the "underlying theory" which our current theory is based upon. For example, when we are
reasoning about properties of group theory we assume that the users are familiar with basic set
theory and omit the inference rules derived from the definitions or theorems of basic set theory. The
information about theory levels and their interdependency will be stored in our knowledge base. A
current theory level pointer must be set as well. Thus we have:

2.a. All domain-specific inference rules derived from a definition or theorem of a lower level will

be omitted.

2.b. For each inference rule derived from a definition or theorem of the current level, try first to tmd

an implicit form. Ifnot possible, an explicit indication will be given. Notice no distinction is made

between different rules derived from the same theorem or defmition.

Proof Unit Model and Reference Choices _ 24

(comp are the implicit reference choice for inference rules described above, which is exactly in the
Opposite direction).

Let us first consider the reference choices for inference rules. Unlike the reasons, the
explicitness or irnplicitness of referring to an inference rule at a particular node is irrelevant to the
position of the node in the whole proof. That means it is less concerned with the proof context than
with the user’s familiarity with the particular inference rule, or in the case of domain-specific
inference rules, with the corresponding definition or theorem. With no sophisticated user model at
our disposal at the moment, the following relatively simple strategy is used for the reference of
inference rules:

Reference Choice Rules for Inference Rule

1. Reference Choices for Gentzen Inference Rules

We assume that our user is familiar with the standard Gentzen Calculus and therefore translate
all Gentzen inference rules in a predescribed way. This means that each Gentzen rule will either be
given always implicitly or always" explicitly; unchanged malignant ihé whole proof and in all
proofs. No additional assumption on user’s knowledge is taken into account. The standard
reference rules are:

1.a. All structural Gentzen rule will be explicitly given.

1.b. All non-structural Gentzen rules will be omitted (a word like "thus", "hence", etc. will be
used).

Notice that sometimes a reference choice for an inference rule can have influence on the choice
of reference for the corresponding reasons. For example, an explicit translation of the case rule will
be something like: "From case A and case B, it follows....", which requires that the two reasons,
represented here by their names, should be at least imPlicitly mentioned. The reader will find a
definition of various ways of mentioning a reason afterwards when we discuss decisions on reason
references.

2. Reference Choices for Domain-specific Inference Rules

In general domain-specific inference rules the user is familiar with can be omitted. Otherwise
they will be explicitly indicated. Users are assumed to be familiar with definitions and theorems of
the "underlying theory" which our current theory is based upon. For example, when we are
reasoning about properties of group theory we assume that the users are familiar with basic set
theory and omit the inference rules derived from the definitions or theorems of basic set theory. The
information about theory levels and their interdependency will be stored in our knowledge base. A
current theory level pointer must be set as well. Thus we have:

2.a. All domain-specific inference rules derived from a definition or theorem of a lower level will
be omitted.

2.b. For each inference rule derived from a definition or theorem of the current level, try first to find
an implicit form. If not possible, an explicit indication will be given. Notice no distinction is made
between different rules derived from the same theorem or definition.

25 Proof Unite Model and Reference Choices

Therefore, what fmally appears at the position "inference rule" in the message format 4.1 will
be one of the following:

1. A name of one of the structural Gentzen rules,

2. A name of a defmition or theorem of the current theory level, or

3. "omit", currently for all other cases, much refmement of this rule is needed.

A natural language interpretation will be given in the dictionary for each of this. This, however,
will be the task of the tactical component and will not be discussed in this paper.

Now let us turn to choices on reason reference forms. The three reason reference forms listed
above may have reminded us of the various ways to refer to objects in natural language discourses:
using a pronoun, by name, using a full describtion and so on. Similar to their counterpart in natural
language discourse, as has been mentioned, decisions on reason reference forms are also normally
context sensitive. On the one hand the concrete physical distance plays an important role, for
example a reason proved "far before" will very likely be repeated. Choices of reference forms for
reasons, on the otherhand, dep-endonarmtherat least equally important facior as welL That is tIie
proof structure. In general every proof is composed of some subproofs, which in turn may consist

of their own subproofs. This structure, though simpler, has some striking similarities with the
discourse context structure discovered by R. Reichman for natural language discourses [Reichman
85]. While discourse context theory was used to decide whether a particular referent is currently in
foreground or background of the focus of attention, in order to choose an appropriate reference
form, we are going to discuss how the proof structure will affect a choice of reference forms for a
particular reason. For example, a human mathematician reading a proof is normally supposed to still

remember the assumptions of the particular subproofhe is working on, although the last mention of
that assumption may be physically quite "far away". In other words, the assumptions are in

foreground and an explicit repetition should be avoided. In the rest of this section we will first give
a defmition of our proof structure, espetcally the definition of its basic units, which we call proof
unit. Then an algorithm will be given to show how reference forms will be affected by both this
proof structure and the physical distance.

In general every proof structure is a recursive structure of basic components which we call
proof units. In our ordered proof tree a proof unit is simply a subtree. But apparently not all
subtrees can be appropriately taken to be a proof unit. Proof units are intuitively subtrees which a
human mathematician will accept as a subproof, which is in fact a conceptually integral unit inside a
proof on which he will once concentrate during the construction or reading of a proof. First of all

we claim that the structural inference rules of Gentzen natural deduction calculus provide us with an
excellent means of dividing proofs into units. For example, the CASE rule naturally divides a proof

into three units: the whole proof itself and the two cases. Secondly we claim that a unit is also
completed when an "important" intermediate restilt is reached, which is often the result of applying
an inference rule derived from the theory of current level. On the contrary, applications of inference

rules derived from lower level are usually considered trivial and do not form a conceptual subproof.
The following is a fonnal defmition of proof units:

Definition of Proof Unit

1. Every subtree in a proof tree rooted at a node derived by an "important" inference rule, an

inference rtile derived from a definition or theorem of the current level is a proof unit.

Proof Unite Model and Reference Choices 25

Therefore, what finally appears at the position "inference rule" in the message format 4.1 will
be one of the following:

1. A name of one of the structural Gentzen rules,

2. A name of a definition or theorem of the current theory level, or

3. "omit", currently for all other cases, much refinement of this rule is needed.

A natural language interpretation will be given in the dictionary for each of this. This, h0wever,
will be the task of the tactical component and will not be discussed in this paper.

Now let us turn to choices on reason reference forms. The three reason reference forms listed
above may have reminded us of the various ways to refer to objects in natural language discourses:
using a pronoun, by name, using a full describtion and so on. Similar to their counterpart in natural
language discourse, as has been mentioned, decisions on reason reference forms are also normally
context sensitive. On the one hand the concrete physical distance plays an important role, for
example a reason proved "far before" will very likely be repeated. Choices of reference forms for
.reasons,--~on the otherhand, depend ‘on‘anotherat least equally unportant factor as we’ll." That 1s “the

proof structure. In general every proof is composed of some subproofs. which in turn may consist
of their own subproofs. This structure, though simpler, has some striking similarities with the
discourse context structure discovered by R. Reichman for natural language discourses [Reichman
85]. While discourse context theory was used to decide whether a particular referent is currently in
foreground or background of the focus of attention, in order to choose an appr0priate reference
form, we are going to discuss how the proof structure will affect a choice of reference forms for a
particular reason. For example, a human mathematician reading a proof is normally supposed to still
remember the assumptions of the particular subproof he is working on, although the last mention of
that assumption may be physically quite "far away". In other words, the assumptions are in
foreground and an explicit repetition should be avoided. In the rest of this section we will first give
a definition of our proof structure, espetcally the definition of its basic units, which we call proof
unit. Then an algorithm will be given to show how reference forms will be affected by both this
proof structure and the physical distance.

In general every proof structure is a recursive structure of basic components which we call
proof units. In our ordered proof tree a proof unit is simply a subtree. But apparently not all
subtrees can be appropriately taken to be a proof unit. Proof units are intuitively subtrees which a
human mathematician will accept as a subproof, which is in fact a conceptually integral unit inside a
proof on which he will once concentrate during the construction or reading of a proof. First of all
we claim that the structural inference rules of Gentzen natural deduction calculus provide us with an
excellent means of dividing proofs into units. For example, the CASE rule naturally divides a proof
into three units:- the whole proof itself and the two cases. Secondly we claim that a unit is also
completed when an "important" intermediate result is reached, which is often the result of applying
an inference rule derived from the theory of current level. On the contrary, applications of inference
rules derived from lower level are usually considered trivial and do not form a conceptual subproof.
The following is a formal definition of proof units:

Definition of Proof Unit

1. Every subtree in a proof tree rooted at a node derived by an "important“ inference rule, an
inference rule derived from a definition or theorem of the current level is a proof unit.

26 Proof Unit Model and Reference Choices

2. Every subtree in a proof tree rooted at a node derived by the Gentzen inference rule DED, IP is

a proof unit; in both cases, mark the "assumption nodes" (see introduction) such that they will not

be included in any further subordinate unit. Marking assumptions means that they are assumptions

of the whole proof unit and should not be included in any subordinate units.

3. Every subtree in a proof tree rooted at a node derived by the Gentzen inference rule CASE is a

proof unit, all its cases are proof units. Mark "assumption nodes" in all cases, respectively.

4. Every subtree in a proof tree rooted by a node derived by the Gentzen inference rule CHOICE

is a proof unit, its two reason subtrees are proof units. Mark the assumption node in the subtree

rooted at anode with proof line inform ofP(a),A ~Q.

Notice the marking here has nothing to do with the previous marking of duplication nodes. ill
graphs this new marking is then shown by darking the number inside the circles (see node 5 in Fig.
4).

As it is shown in Fig. 4, five proof units ar~)dentifiedby applyiIlg1:lJ,~ll1:>Qv~J]lle_son J:he
ordered proof tree in Fig. 3. Unit pI is the whole proof and thus the outermost proof unit. p2 and

p3 are identified by the CHOICE rule and are directly subordinate to pI. Notice the "assumption
node" in p3, node 5, is marked and is therefore not included in the subordinate unit p4. p4 and p5
are justified by the fact that node 10 and node 13, their roots, are both derived by an "important"
domain-specific rule, which comes from the definition of solution of equation in the theory of
current level.

pi

p2

Fig. 4 Proof Units

The ultimate objective of developing a proof unit model is to study the relations between proof
units and to reveal their impact on the choices on reason reference forms. The approch we take here
is similar to the discourse context theory of Reichman [Reichman 85]. While he identified seven
types of context spaces, only four proof unit types are currently dermed in our proof unit model.

Proof Unit Model and Reference Choices 26

2. Every subtree in a proof tree rooted at a node derived by the Gentzen inference rule DED, IP is
a proof unit; in both cases, mark the "assumption nodes" (see introduction) such that they will not
be included in any further subordinate unit. Marking assumptions means that they are assumptions
of the whole proof unit and should not be included in any subordinate units.

3. Every subtree in a proof tree rooted at a node derived by the Gentzen inference rule CASE is a
proof unit, all its cases are proof units. Mark "assumption nodes" in all cases, respectively.

4. Every subtree in a proof tree rooted by a node derived by the Gentzen inference rule CHOICE
is a proof unit, its two reason subtrees are proof units. Mark the assumption node in the subtree
rooted at a node with proof line in form of P(a),A I— Q.

Notice the marking here has nothing to do with the previous marking of duplication nodes. In
graphs this new marking is then shown by darkn the number inside the circles (see node 5 in Fig.
4).

AS it is shown...in.-..1?ig-... 4.a.‚__fi.V=‘<_Pf°°_f units ar9_i£19n.tifi9d .by applying $991293. rules on the
ordered proof tree inuFig. 3. Unit p1 is the whole proof and thus the outermost proof unit. p2 and
p3 are identified by the CHOICE rule and are directly subordinate to p l . Notice the "assumption
node" in p3, node 5, is marked and is therefore not included in the subordinate unit p4. p4 and p5
are justified by the fact that node 10 and node 13, their roots, are both derived by an "important"
domain-specific rule, which comes from the definition of solution of equation in the theory of
current level.

Fig. 4 Proof Units

The ultimate objective of deve10ping a proof unit model is to study the relations between proof
units and to reveal their impact on the choices on reason reference forms. The approch we take here
is similar to the discourse context theory of Reicbman [Reichman 85]. While he identified seven
types of context spaces, only four proof unit types are currently defined in our proof unit model.

27 ProofUnite Model and Reference Choices

Proof Unit Types

Let us suppose that we are traversing an ordered tree and generating one message unit at every
node. With respect to the current node in an ordered proof tree under processing we defme:

1. The active proofunit is the smallest proof unit containing the current node. There is exactly one

active proof unit at a time.

2. The controlling proofunit is the smallest proof unit containing the active unit. There is exactly

one controlling proof unit at a time, except when the active proof unit is an outmost proofunit.

3. Precontrol proofunits are proof units containing the controlling proofunit.

4. Closed proof units are proof units lying before the active proof unit in the ordered proof tree,

Le. nodes inside any closed proof unit have already been processed when the traverse procedure

reaches the current node.

Now take node 11 in Fig 4 as the current node. Then.p5 an~p3 aretheJ:l~ti"e 1J1.lit~dthe

controllihgumt, respectivdy. pt and P4are already closed and pI is the only precontrol unit at the
moment. Similar to the fact that the reference choices in natural language discourses depend on the
status of the context space in which the corresponding referent is last mentioned, our proof unit
model claims that the status of the proof unit in which a reason is proved or last mentioned has a
strong influence on the reference form of the reason. More precisely, the status of the smallest proof
unit in which the reason last appears determines, together with the "physical distance" between this
last appearence and the current point, the reference form of the reason. In the sequel, as far as not
otherwise indicated, the proof unit of a reason is always assumed to be this smallest unit.

For example, if a reason is last mentioned or proved in the active proof unit, which is the proof
unit a human proof reader/writer is currently working on, it is supposed that this reason should still
remain in his focus of attention. If the reason is in a closed unit, on the other hand, it is very likely
that the reason has already been moved out of the reader/writer's focus of attention. It is claimed that
this focused attention space has a strong influence on the reference forms. Reasons that still remain
in the focus of attention when the process reaches the current point will be considered "structurally
close" to the current point, otherwise they will be considered "structurally far ". In the following
we give rules assigning this"structural closeness":

Assignment of Contextual Status for Reasons

1. Reasons in the active proof unit are structurally close.

2. Reasons in the controlling proof unit but not inside any closed unit are structurally close.

3. Reasons that are root nodes of immediate subordinate closed proof units are structurally close.

Other reasons in closed proofunits are structurally far.

4. Reasons in precontrol proof unit are far (We are still experimenting with this rule.).

Rule 3 means that only the conclusions of closed subproofs still remain in the focus of
attention. In addition, as a special treatment, premisses of theorem (which are shadowed in our
ordered tree, see Fig. 3) will be defined as both structurally far and far in distance. Now the
following rules provide a criterion of reason reference choice.

Proofgqite Model an_d_13eference Chpi_c_e§__ 27

Proof Unit Types

Let us suppose that we are traversing an ordered tree and generating one message unit at every
node. With respect to the current node in an ordered proof tree under processing we define:

1. The active proof unit is the smallest proof unit containing the current node. There is exactly one

active proof unit at a time.

2. The controlling proof unit is the smallest proof unit containing the active unit. There is exactly
one controlling proof unit at a time, except when the active proof unit is an outmost proof unit.

3. Precontrol proof units are proof units containing the controlling proof unit.

4. Closed proof units are proof units lying before the active proof unit in the ordered proof tree,
i.e. nodes inside any closed proof unit have already been processed when the traverse procedure
reaches the current node.

NOW take node “ in Fig 4 as the current node. ???...95 andp3 3!?» £119....ttgtircumtand ‚the
cofin‘dllihg'fifiit, respectively. p2 and p4 are already closed and pl is the only precontrol unit at the
moment. Similar to the fact that the reference choices in natural language discourses depend on the
status of the context space in which the corresponding referent is last mentioned, our proof unit
model claims that the status of the proof unit in which a reason is proved or last mentioned has a
strong influence on the reference form of the reason. More precisely, the status of the smallest proof
unit in which the reason last appears determines, together with the "physical distance" between this
last appearance and the current point, the reference form of the reason. In the sequel, as far as not
otherwise indicated, the proof unit of a reason is always assumed to be this smallest unit.

For example, if a reason is last mentioned or proved in the active proof unit, which is the proof
unit a human proof reader/writer is currently working on, it is supposed that this reason should still
remain in his focus of attention. If the reason is in a closed unit, on the other hand, it is very likely
that the reason has already been moved out of the reader/writer’s focus of attention. It is claimed that
this focused attention space has a strong influence on the reference forms. Reasons that still remain
in the focus of attention when the process reaches the current point will be considered "structurally
close " to the current point, otherwise they will be considered "structurally far ". In the following
we give rules assigning this "structural closeness":

Assignment of Contextual Status for Reasons

1. Reasons in the active proof unit are structurally close.

2. Reasons in the controlling proof unit but not inside any closed unit are structurally close.

3. Reasons that are root nodes of immediate subordinate closed proof units are structurally close.
Other reasons in closed proof units are structurally far.

4. Reasons in precontrol proof unit are far (We are still experimenting with this rule.).

Rule 3 means that only the conclusions of closed subproofs still remain in the focus of
attention. In addition, as a special treatment, premisses of theorem (which are shadowed in our
ordered tree, see Fig. 3) will be defined as both structurally far and far in distance. Now the
following rules provide a criterion of reason reference choice.

28 Proof Unit Model and Reference Choices

Reference Choice Rules for Reason

1. If a reason is structurally close and near in distance, it will be omitted.

2. If a reason is structurally close but far in distance, first try to fmd an implicit form, if not

possible, use an explicit form.

3. If a reason is structurally far but near in distance, first try to frod an implicit form, ifnot possible,

omit it.

4. An explicit form will be used if a reason is both structurally far and far in distance.

Here physical distance means the textual distance between the last mentioning of a reason and
the current sentence where the reason is used. This distance is currently calculated in an ad-hoc
way. Notice that the result of applying rule 2 and rule 3 depends on the fact that an implicit form is
possible, which often interacts with the choice of reference for the inference rule.

Now it is easy to combine the Reference Choice Rules for Reason and the Reference Choice
Rules for Inference Rules to constrUct an a:lgonth.fu to produce a message sequence from the
ordered tree: we first declare all nodes associated with a proof line which is the premise of the
theorem as duplicate, they are also initialized as both structurally far and far in distance. Then we
simply traverse the whole ordered tree in a pre-order manner and apply the two sets of rules at each
non-duplication node. Notice at each node only one rule in both rule sets will be appliable. Of
course there is nevertherless still the possibility ofnon-determinency if a rule allows more than one
reference form, for example, the second and third rule for reason reference. Very often a decision
made by one rule set will help to select between remaining alternatives in the other. For example,
suppose the process arrives at node 3, the first node in fact. Since node 1.4, its unique reason, is a
premise of the theorem and thus both structurally far and far in distance, an explicit form is chosen.
This choice on reason references leads to the choice of an implicit form for the inference rule, which
is one of the alternatives in rule 2.b. This is because this reference rule is derived from the
definition of unit, which is a definition of the current level, and our knowledge base tells us that
mentioning unit(lu U OP) in the reason reference provides an implicit hint that some rule about unit
is used. This produces the first piece ofmessage in our message sequence:

«omit, unit(1u U OP), Iu EU»

.When this is not the case, that means either there are more than one alternatives in the appliable rules

of both set, or the decision in one rule set does not help to narrow the alternatives in the other set,

the process is allowed to choose arbitarily at present. For example suppose we are now at node 6.

The reason node 1.4 is now structurally far but near in distance. It can be either realized in an

implicit form or be omitted. And there are two reference possibilities for the domain-specific

inference rule as well. An artbitrary choice will produce:

«def.unit, omit, uIu =u»

where an implicit form and omit form are used for the infererence rule and the reason, respectively.

Finally we want to indicate that although normally the proof lines will be handed over into the

message units unchanged, there is one exception. It is omitted in the translation of a proof step

justified by the Getzen structural rule "CHOICE", since the proof line is essentially not changed,

Proof Unit Moon and Referenpe_Choices__ _ 28

Reference Choice Rules for Reason

1. If a reason is structurally close and near in distance, it will be omitted.

2. If a reason is structurally close but far in distance, first try to find an implicit form, if not

possible, use an explicit form.

3. If a reason is structurally far but near in distance, first try to find an implicit form, if not possible,

omit it.

4. An explicit form will be used if a reason is both structurally far and far in distance.

Here physical distance means the textual distance between the last mentioning of a reason and
the current sentence where the reason is used. This distance is currently calculated in an ad-hoc
way. Notice that the result of applying rule 2 and rule 3 depends on the fact that an implicit form is
possible, which often interacts with the choice of reference for the inference rule.

Now it is easy to combine the Reference Choice Rules for Reason and the Reference Choice
Rules for Inference--“Ru"les to construct an algofifii'ih to practice a message Sequence from the
ordered tree: we first declare all nodes associated with a proof line which is the premise of the
theorem as duplicate, they are also initialized as both structurally far and far in distance. Then we
simply traverse the whole ordered tree in a pre-order manner and apply the two sets of rules at each
non-duplication node. Notice at each node only one rule in both rule sets will be appliable. Of
course there is nevertherless still the possibility of non-determinency if a rule allows more than one
reference form, for example, the second and third rule for reason reference. Very often a decision
made by one rule set will help to select between remaining alternatives in the other. For example,
suppose the process arrives at node 3, the first node in fact. Since node 1.4, its unique reason, is a
premise of the theorem and thus both structurally far and far in distance, an explicit form is chosen.
This choice on reason references leads to the choice of an implicit form for the inference rule, which
is one of the alternatives in rule 2.b. This is because this reference rule is derived from the
definition of unit, which is a definition of the current level, and our knowledge base tells us that
mentioning unit(In U OP) in the reason reference provides an implicit hint that some rule about unit
is used. This produces the first piece of message in our message sequence:

«omit, unit(1u U OP), 1u e U»

'When this is not the case, that means either there are more than one alternatives in the appliable rules
of both set, or the decision in one rule set does not help to narrow the alternatives in the other set,
the process is allowed to choose arbitarily at present. For example suppose we are now at node 6.
The reason node 1.4 is now structurally far but near in distance. It can be either realized in an
implicit form or be omitted. And there are two reference possibilities for the domain-specific
inference rule as well. An artbitrary choice will produce:

«def.unit, omit, u lu =u»

where an implicit form and omit form are used for the infererence rule and the reason, respectively.

Finally we want to indicate that although normally the proof lines will be handed over into the
message units unchanged, there is one exception. It is omitted in the translation of a proof step
justified by the Getzen structural rule "CHOICE", since the proof line is essentially not changed,/ / / h

29 Proof Unite Model and Reference Choices

only an assumption is discharged. The translation might read "the result is independent of the choice

of constant a". The whole message sequence of the ordered tree in Fig. 4 is given as follows:

Message Sequence Produced

1. «omit, unite1u U OP), 1u EU»

2. «omit, omit, 3x XEU»

3. «suppose, omit, UE U))

4. «def.unit, omit, u1U =:0»

5. «omit, subgroup(U F OP), U~F)

6. «omit, omit, UE F»

7 . «similar, omit, 1u E F»

8. «omit, group(F op),semigroup(F op)>> this step will be omitted in the future

9 . «omit, omit, solution(u u 1u FOP)>>

10. «omit, unit(F lOP) A. uEF, u1=:o»

11. «omit, omit, 1 E F» (10 and 11 should be merged into

«omit, unit(F 1 OP) A. UE F, ul=:o A. 1 E F», because premise of 9 subsumes premise

of 10)

12. «omit, omit, solution(u u 1 FOP)>>

13. «lmiqueness-of-solution, omit, 1= 1U»

14. «independent-of(u), omit, omit»

Just like the focus mechanism in the last section, much refinement is needed for both the

def'mition of proof unit and for the reference choice algorithms. For example it may be necessary

that we distinguish "directly" before from near in distance. In addition, more elaboration is needed

for the reference forms themselves. For example we are just considering splitting the "omit" form
for reasons further into two, since the surface translation of the cases where the reasons are just
proved and where the reasons are just mentioned in another proof step is usually different. In the

fIrst case it may be something like "it follows," or simply "thus" or "therefore", in the second case,

however, the word "and" might be used to indicate the same reason is used. In other words, better

categorization of reference forms may be necessary. Finally, we are also considering mechanisms
that merge message units for consecutive proof steps when appropriate. For example, we are
experimenting with merging consecutive message units with identical "reason" or "inference rule".

5. Conclusion and Future Work

In this section, we flrst give a possible natural language translation and compare it with the
original text, then we will mention briefly the future developments we are planning.

Pro_o_f Unite_M_odel and Reference Choices _ 29

only an assumption is discharged. The translation might read "the result is independent of the choice
of constant a.". The whole message sequence of the ordered tree in Fig. 4 is given as follows:

Message Sequence Produced

1 . «omit, unit(1u U OP), In 6 U»

2 . «omit, omit, 3x xe U»

3 . «suppose, omit, ue U»

4 . «def.unit, omit, u lu =u»

5 . «omit, subgroup(U F OP), UgF »

6 . «omit, omit, ue F»

7 . «similar, omit, 1u 6F»

8. «omit, group(F op),semigroup(F op)» this step will be omitted in the future
9 . «omit, omit, solution(u u 111 F OP)»

10 . «omit, 11t 1 OP) A ue F, u1=u»

11 . «omit, omit, l e F» (10 and 11 should be merged into
«omit, unit(F 1 OP) A ue F, u1=u A 1 e F», because premise of 9 subsumes premise
of 10)

12 . «omit, omit, solution(u u 1 F OP)»

1 3. «uniqueness—of-solution, omit, 1:: In»

14. «independent-of(u), omit, omit»

Just like the focus mechanism in the last section, much refinement is needed for both the
definition of proof unit and for the reference choice algorithms. For example it may be necessary
that we distinguish "directly" before from near in distance. In addition, more elaboration is needed
for the reference forms themselves. For example we are just considering splitting the "omit" form
for reasons further into two, since the surface translation of the cases where the reasons are just
proved and where the reasons are just mentioned in another proof step is usually different. In the
first case it may be something like "it follows," or simply "thus" or "therefore", in the second case,
however, the word "an " might be used to indicate the same reason is used. In other words, better
categorization of reference forms may be necessary. Finally, we are also considering mechanisms
that merge message units for consecutive proof steps when appropriate. For example, we are
experimenting with merging consecutive message units with identical “reason" or "inference rule".

5. Conclusion and Future Work

In this section. we first give a possible natural language translation and compare it with the
original text, then we will mention briefly the future developments we are planning.

30 Conclusion and Future Work

The theorem (translated from German originally given in [Deussen 71]):

Let F be a group and Ue F a subgroup, if l u E U is a unit element oiU, then l=lu.

Proof (A Possible Natural Language Translation):

(1) Because Iu is the unit element of U, Iu e U. (2) Thus 3x x E U. (3) Now suppose u is an
arbitrary element of U. (4) By the defmition of unit, uIu=u. (5) Because U is a subgroup of P,
U~F. (6) Thus ue F. (7) Similarly, 1u EF. (8) In addition, F is a semigroup because it is a group.
(9) Now we have proved that 1u is a solution of the equation ux=u in F. (10) On the other hand,
because 1 is the unit element of F and ue F, ul=u and lE F. (11) Thus 1 is also a solution of the
equation ux=u in F. (12) By the uniqueness of solution in a group, l=lu. (13) This conclusion is
independent of the choice of the element u.

Sentences are numbered for convenience of discussion. Notice besides message unit 10 and 11,
which are combined into one sentence (sentence 10), each message unit is translated into a separate
sentence.

Proof: (a translation from the original German text given in [Deussen 71])

l u is the solution of the equation u·x=u in U. Since xeUg and F is a group, equation ux=u
has a solution in F, namely x=l. By the uniqueness of solution, l=lu.

The original proof in German [Deussen 71]:

l u ist die Losung der Gleichung ux=u in U. Da xEU~F und F Gruppe ist, hat ux=u eine
Losung in F, nfunlich x=1. Die Eindeutigkeit der Losung bringt 1=1u.

The distinction between the original proof and the proof generated by our system is still very
clear. Our proof resembles a proof where a mathematician decides not to leave out a single proof
step. This means that the small proof steps appearing in the input Gentzen proof and left out in our
output text in fact never appear in a proof written by a human mathematician. If we examine the
original text of [Deussen 71] carefully, however, we fmd that the proof is in fact somewhat above
this conceptual level. Some conceptual proof steps are omitted and must be reconstructed by the
reader himself, if he wants to be strict. Only the steps most crucial to the whole proof (and some
steps related to the crucial steps) are explicitly given (in our case the application of the unique
solution theorem, and the premises required by the theorem.). Because these crucial steps
correspond closely to the crucial steps in Alan Bundy's proofplan [Bundy 87][Bundy et al88], we
may say that proofs found in mathematical text books are sometimes more or less on the plan level.

As has been pointed out in the corresponding sections, more elaboration is necessary for all the
three main components of our proof transformation system. In this section, we are going to touch
some of the future developments that are not part of any of the three components.

1. Introsentential treament: the formula of proof lines is usually extremly simple in mathemetical

applications. Therefore we at present hand over the proof lines unchanged to the tactical component.

But essentially treatment of the proof line itself is also necessary if the translation is to be really

Conclusion and Future Wor15_ __ _ _ sq

The theorem (translated from German originally given in [Deussen 71]):

Let F be a group and Us F a subgroup, if In E U is a unit element of U, then 1=1u .

Proof (A Possible Natural Language Translation):

(l) Because Iu is the unit element of U, lu e U. (2) Thus 3x x eU. (3) Now suppose u is an
arbitrary element of U. (4) By the definition of unit, ulu=u. (5) Because U is a subgroup of F,
UgF. (6) Thus ue F. (7) Similarly, lu 6F . (8) In addition, F is a semigroup because it is a group.
(9) Now we have proved that lu is a solution of the equation ux=u in F. (10) On the other hand,
because 1 is the unit element of F and as F, u1=u and l e F. (11) Thus 1 is also a solution of the
equation ux=u in F. (12) By the uniqueness of solution in a group, 1:111. (13) This conclusion is
independent of the choice of the element 11.

Sentences are numbered for convenience of discussion. Notice besides message unit 10 and 11,
which are combined into one sentence (sentence 10), each message unit is translated into a separate
sentence.

Proof: (a translation from the original Gennan text given in [Deussen 71])
1n is the solution of the equation u-x=u in U. Since xe U_c_F and F is a group, equation ux=u

has a solution in F, namely x=1. By the uniqueness of solution, 1=1u_

The original proof in German [Deussen 71]:

In ist die Lösung der Gleichung ux=u in U. Da xe UgF und F Gruppe ist, hat ux=u eine
Lösung in F, nämlich x=1. Die Eindeutigkeit der Lösung bringt 1=1u_

The distinction between the original proof and the proof generated by our system is still very
clear. Our proof resembles a proof where a mathematician decides not to leave out a single proof
step. This means that the small proof steps appearing in the input Gentzen proof and left out in our
output text in fact never appear in a proof written by a human mathematician. If we examine the
original text of [Deussen 71] carefully, however, we find that the proof is in fact somewhat above
this conceptual level. Some conceptual proof steps are omitted and must be reconstructed by the
reader himself, if he wants to be strict. Only the steps most crucial to the whole proof (and some
steps related to the crucial steps) are explicitly given (in our case the application of the unique
solution theorem, and the premises required by the theorem.) Because these crucial steps
correspond closely to the crucial steps in Alan Bundy’s proof plan [Bundy 87][Bundy et al 88], we
may say that proofs found in mathematical text books are sometimes more or less on the plan level.

As has been pointed out in the corresponding sections, more elaboration is necessary for all the
three main components of our proof transformation system. In this section, we are going to touch
some of the future deve10pments that are not part of any of the three components.

1. Introsentential treament: the formula of proof lines is usually extremly simple in mathemetical
applications. Therefore we at present hand over the proof lines unchanged to the tactical component.
But essentially treatment of the proof line itself is also necessary if the translation is to be really

31 Conclusion and Future Work

natural. Because one proof line is normally translated into one sentence in natural language, we call

it introsentential treament. We believe no general solution to this problem is possible at present,

since the treatment of even one of the most simple formula schemes

Pl"P2" ... "Pn

equals the problem of generation from a knowledge base. The information units picked out from a
knownledge base are in fact connected together in a conjunctive manner. In general for each special

field of mathematics an "assertive" or "descriptive" scheme similar to those in [McKweon 85] is

required. More precisely, typical schemes for presenting mathematical facts must be identified and

specified. For example the "from whole to parts" strategy will enforce a translation "F is a group

with unit element I" instead of a translation "1 is the unit element ofF and F is a group". The local

focus mechanism should be used to ensure coherence as well.

2. The Overlapping ofnatural language interpretation and "natural" coding.

A dittionary containing the natural language interpretation of all predicates used will be

employed by the tactical component. Depending on the particular coding we have, overlapping of
natural language interpretation for different predicates may occur. This, if translated without
simplification, leads to redundancy in the final natural language output. The reason underlying this

phenomenon is that the predicates used in most logic based knowledge bases are "larger" than word
senses. So in general a simplification is needed. At the same time we are testing the "naturalness" of
the coding too. The following is our new coding procedure:

Conceptualization: A precise definition of the problem field is flIst defined, including defmitions of

objects (object types), which is currently a Frame-like structure[Kerber 89] [Brachman et al 1983]

and defmitions of all relations (tuples they should contain).

Axiomatisation: Axioms and definitions are formulated in predicate logic such that the

conceptualization is a model of it. Although an axiomatisation such that the conceptualization is its

unique model is not always available, model A will be considered "better" as model B, if A is

"smaller" than B. Natural codings will usually reduce duplications of natural language

interpretation.

Finally we want to briefly indicate that the whole process described in this paper is not
restricted to first-order predicate logic. It can be used nearly unchanged for natural deductions
written in higher order logic. Indeed, the problems are very often first coded in a higher order
formal language and then translated down to first order, before the MKRP theorem prover can
prove it. But afterwards it must be again transformed back to higher order before the transformation
described in this paper can take place.

Acknowledgement

I would like to thank Christoph Lingenfelder and Manfred Kerber for many discussions. I would
like also to thank Norhert Reithinger who introduced me into the field of Text Generation. I would

Conclusion anc_l_Fu_tuie Work 31

natural. Because one proof line is normally translated into one sentence in natural language, we call
it introsentential treament. We believe no general solution to this problem is possible at present,
since the treatment of even one of the most simple formula schemes

PIA P2 A A Pn

equals the problem of generation from a knowledge base. The information units picked out from a
knownledge base are in fact connected together in a conjunctive manner. In general for each special
field of mathematics an "assertive" or "descriptive" scheme similar to those in [McKweon 85] is
required. More precisely, typical schemes for presenting mathematical facts must be identified and

specified. For example the "from whole to parts" strategy will enforce a translation "F is a group
with unit element 1" instead of a translation "1 is the unit element of F and F is a group". The local
focus mechanism should be used to ensure coherence as well.

2. The Overlapping of natural language interpretation and "natural" coding.

A dictionary containing "the natural language interpretation of all predicates used will be
employed .by the tactical component. Depending on the particular coding we have, overlapping of
natural language interpretation for different predicates may occur. This, if translated without
simplification, leads to redundancy in the final natural language output. The reason underlying this
phenomenon is that the predicates used in most logic based knowledge bases are " larger" than word
senses. So in general a simplification is needed. At the same time we are testing the "naturalness" of
the coding too. The following is our new coding procedure:

Conceptualization: A precise definition of the problem field is first defined, including def'mitions of
objects (object types), which is currently a Frame-like structure[Kerber 89][Brachman et al 1983]
and definitions of all relations (tuples they should contain).

Axiomatisation: Axioms and definitions are formulated in predicate logic such that the
conceptualization is a model of it. Although an axiomatis ation such that the conceptualization is its
unique model is not always available, model A will be considered "better" as model B, if A is
"smaller" than B. Natural codings will usually reduce duplications of natural language
interpretation.

Finally we want to briefly indicate that the whole process described in this paper is not
restricted to first-order predicate logic. It can be used nearly unchanged for natural deductions
written in higher order logic. Indeed, the problems are very often first coded in a higher order
formal language and then translated down to first order, before the MKRP theorem prover can
prove it. But afterwards it must be again transformed back to higher order before the transformation
described in this paper can take place.

Acknowledgement

I would like to thank ChristOph Lingenfelder and Manfred Kerber for many discussions. I would
like also to thank Norbert Reithinger who introduced me into the field of Text Generation. I would

32 Conclusion and Future Work

like to thank especially Jorg Siekmann and Norbert Eissinger for the many discussions and
constructive suggestions on earlier versions of this paper.

6. References

[Bundy 87] A. Bundy(1987), The Use of Explicit Plans to Guide Inductive Proofs. Dai Research

Paper No. 349, Dept. of AI, Univ. of Edinburgh.

[Bundy et al 88] A. Bundy, F.van Harmelen, J. Hesketh, A. Smaill (1988), Experiments with

Proof Plans for Induction. Dai Research Paper No. 413.

[Brachman et al 1983] Ronald J. Brachman, Richard E. Fikes, and Hector J.Levesque,

KRYPTON: A Functional Approach to Knowledge Representation. In: R.J. Brachman and H.J.

Levesque ed: Readings in Knowledge Representation.

[Chester 76] D. Chester, The Translation of Formal Proofs into English. AI 7,1976.

[Deussen 71] P. Deussen, Halbgruppen und Automaten. Springer-Verlag, 1971.

[Fatemen et al 88] Richard Fatemen, AIan Bundy, Richard 01ceefe, Leon Sterling (1988)

Commentary on: Solving Symbolic Equations with Press. Dai Research Paper No. 357.

[Gentzen 35] G. Gentzen, Untersuchungen tiber das logische SchlieBen I, Math. Zeitschrift 39,

1935.

[Grosz 77] B.J. Grosz, The Representation and Use of Focus in a System for Understanding

Dialogs. In B. J. Grosz et al ed: Readings in Natural Language Processing, 1986.

[Hayes 1979] Patrick J. Hayes, The Logic of Frames. In RI. Brachman and RI. Levesque ed:

Readings in Knowledge Representation 1985.

[Kerber 89] M. Kerber, A Frame Based approach to Representing Mathematical Concept. SEKI­

Report, to appear.

[Lingenfelder 86] C. Lingenfelder, Transformation of Refutation Graphs into Natural Deduction

Proofs. SEKI-Reprot, SR-86-1O, 1986

[Lingenfelder 88] C. Lingenfelder, Structuring Computer Generated Proofs. SEKI-Report SR-88­

19.

[MKRP 84] Karl Mark GRaph, The Markgraf Karl Refutation Procedure, Memo-SEKI-Mk-84-01,

Universitlit Kaiserslautem, 1984.

[McDonald 83] D.D.McDonald, Natural Language Generation as a Computational Problem. In :

Brady/Berwick: Computational Models of Discourse, MIT Press, Cambridge, MA, 1983.

[McKeown 85] K. R McKeown, Text Generation. Cambridge Univ. Press, 1985.

[Reichman 85] R Reichman, Getting Computer to Talk Like You and Me. Discourse Context,

Focus, and Semantics (An ATN model). MIT Press, 1985.

[Sidner 79] C.L. Sidner, Focusing in the Comprehension of DefInite Anaphora. In B. J. Grosz et al

ed: Readings in Natural Language Processing, 1986.

Conclusion and Future Work 32

like to thank especially Jörg Siekmann and Norbert Eissinger for the many discussions and
constructive suggestions on earlier versions of this paper.

6. References

[Bundy 87] A. Bundy(1987)‚ The Use of Explicit Plans to Guide Inductive Proofs. Dai Research
Paper No. 349, Dept. of AI, Univ. of Edinburgh.

[Bundy et a1 88] A. Bundy, Evan Harmelen, J. Hesketh, A. Smaill (1988), Experiments with
Proof Plans for Induction. Dai Research Paper No. 413 .

[Brachman e t al 1983] Ronald J. Brachman, Richard E . Fikes, and Hector J .Levesque,
KRYPTON: A Functional Approach to Knowledge Representation. In: R.] . Brachman and H.] .
Levesque ed: Readings in Knowledge Representation.

[Chester 76] D. Chester, The Translation of Formal Proofs into English. AI 7, 1976.

[Deussen 71] P. Deussen, Halbgruppen und Automaten. Springer-Verlag, 1971.

[Fatemen et al 88] Richard Fatemen, Alan Bundy, Richard O'keefe, Leon Sterling (1988)
Commentary on: Solving Symbolic Equations with Press. Dai Research Paper No. 357.

[Gentzen 35] G. Gentzen, Untersuchungen fiber das logische Schließen I, Math. Zeitschrift 39,
1935.

[Grosz 77] B.] . Grosz, The Representation and Use of Focus in a System for Understanding
Dialogs. In B. J. Grosz et al ed: Readings in Natural Language Processing, 1986.

[Hayes 1979] Patrick J. Hayes, The Logic of Frames. In R.] . Brachman and H.]. Levesque ed:
Readings in Knowledge Representation 19 85.

[Kerber 89] M. Kerber, A Frame Based approach to Representing Mathematical Concept. SEKI-
Report, to appear.

[Lingenfelder 86] C. Lingenfelder, Transformation of Refutation Graphs into Natural Deduction
Proofs. SEKI-Reprot, SR—86-10, 1986

[Lingenfelder 88] C. Lingenfelder, Structuring Computer Generated Proofs. SEKI-Report SR—88-
1 9 ..

[MKRP 84] Karl Mark G Raph, The Markgraf Karl Refutation Procedure, Memo-SEKI—Mk-84-01 ,
Universität Kaiserslautern, 1984.

[McDonald 83] D.D.McDonald, Natural Language Generation as a Computational Problem. In :
Brady/Berwick: Computational Models of Discourse, MIT Press, Cambridge, MA, 1983.

[McKeown 85] K. R. McKeown, Text Generation. Cambridge Univ. Press, 1985.

[Reichman 85] R. Reichmau, Getting Computer to Talk Like You and Me. Discourse Context,
Focus, and Semantics (An ATN model). MIT Press, 1985.

[Sidner 7 9] CL. Sidner, Focusing in the Comprehension of Definite Anaphora. In B. J. Grosz et al
ed: Readings in Natural Language Processing, 198 6.

