
Subsumption Algorithms for Some
Attributive Concept Description

Languages

Bernhard Hollunder
SBKI Report SR-89—16

Subsumption Algorithms '

for Some

Attributive Concept Description Languages

Bernhard Hollunder

Deutsches Forschungszentrum

fiir künstliche Intelligenz

Abstract.

This paper investigates subsumption algorithms for logic-based knowledge representation

languages of the KL-ONE—family. We amalgamate the attributive concept description

language flILC, that contains value restrictions, intersections, unions and complements

with number restrictions, role hierarchies (to model the KL—ONE’s roleset differentiation),

and Feature Logic, respectively. We show that deciding consistency and subsumption of

MC extended with number restrictions and MC extended with role hierarchies is

PSPACE-complete. Furthermore, for all these languages we give subsumption

algorithms.

Acknowledgements .

I am very grateful to Manfred Schmidt-Schauß and Werner Nutt. Manfred introduced me

to the area of knowledge representation languages. Furthermore, he gave me hopeful ideas

to do this work. With Werner I had fruitful diSCussions about the contents and the

structure of this paper. His ideas influenced this paper, too. I would like to thank both,

Manfred and Werner, for reading earlier drafts of this thesis.

Contents

In troduct ion . . 4

Attributive concept descriptions . 9

2.1. The language fllLCM .._ 9

2.2. Related ACD-languages...........................'.. 12

Constra in t systems . 14

Propagat ion .. 20

4.1. Completion rules .. 20

4 .2 . Consistency checking as “comple t ion . . ."m. 23

4.3. A completion procedure .. 24

4 .4 . Optimization . 34

PSPACE-completeness of :1c . 42

Role h ierarchies '... 55

6 . 1 . Simplification and unfolding of am and ALCACR- concept

descriptions .. 56

6 .2 . Consistency checking of ELC‘K- concept descriptions 57

6 .3 . PSPACE-completeness of flLCR, .. 60

6 .4 . Consistency checking of flLCIACR- concept descriptions 67

Attributive concept descriptions and features 75

7.1. Syntax and semantics of MC? - concept descriptions 75

7.2. Simplification and unfolding of MC? - concept descriptions 77

7 .3 . Propagation . 80

Conc lus ions 87

References 89

1 Introduction

Main research topics in knowledge representation are the development of formalisms to

describe knowledge and to reason with the represented knowledge. After the definition of

a knowledge representation language and its semantics, one can describe a specific domain

by filling the knowledge base with explicit knowledge. The derivation of knowledge only
represented implicitly will be called reasoning. Basically, it can be more difficult to reason

correctly with one knowledge representation language than with another. Moreover, this

difficulty increases as the expressive power of the language. This amounts to a tradeoff

between the expressiveness of a knowledge representation language and its computational

complexity.

In this paper we are interested in logic-based knowledge representation languages

based on KL—ONE [Levesque/Brachman 87, Nebel 88, Donini/Lenzerini 88, Schmidt-

SchauB/Smolka 88]. These languages aim at describing sets of objects by specifying

restrictions on‘attributes the objects may have. We will call this formalism attributive con-

cept description (ACD, for short). ACD-languages employ two kinds of symbols, called

concepts and roles. Concepts are interpreted as sets and roles are interpreted as binary

relations. To form concept descriptions we allow _a few operators. The concept description

defined by

. VR:C can be read as the set of “all objects for which all R’s are in C”,

' EIR:C can be read as the set of “all objects for which there is an R in C”,

° (atleast N R) can be read as the set of

“all objects for which there are at least N R’s”, and

«» (atmost N R) can be read as the set of

“all objects for which there are at most N R’s”,

where R is a role, C a concept description, and N is non-negative integer.

Now, let us consider a small example. The class of vehicles is partitioned into the

disjoint subclasses of vehicles with motor and vehicles without motor. A motor-cycle is a

vehicle with a motor and with exactly two wheels. A motor-car is a vehicle with a motor

and with at least 3 and at most 4 wheels. A truck is a vehicle with a motor and with at least

6 wheels. This can be expressed by the following axioms:

vehicle_without__motor E vehicle

vehicle_with_motor = vehicle I'I -—. vehicle_without_motor

motor-cycle = vehicle_with_motor r1 (atleast 2 wheels) I1 (atmost 2 wheels)

motor-car = vehicle_with_motor I'I (atleast 3 wheels) l'l (atmost 4 wheels)

truck = vehicle_with_motor n (atleast 6 wheels),

where the n is the intersection and the —: is the complement of sets.

Given an interpretation I for the occurring concept and role symbols, these concept

descriptions are interpreted as the sets

. I[VR:C] = {ae QIIV(a,b)e I[R] : be I[C]}

o I[EIR:C] = {-ae 1)’|El(a,b)e I[R] : be I[C]}

° I[atleastNR] = {ae oi l ll {be DI“! (a,b)e I[R]] I I ZN}

' I[atmostNR] = {ae (D’! II { be {DTI (a,b)e I[R] } I ISN] ,

where 93’ is the domain of I. Since concept descriptions are interpreted as sets, it is

obvious how to handle concept intersection, concept union and concept complement. We

will speak of an ACD-language if at least VR:C, EIRzT (where I[T] = 01 in every inter-

pretation I) and concept intersection are available.

So far we have established how to form concept descriptions in ACD-languages.

Now we will See‘how to do reasoning in these languages. Given two concept descriptions

C and D , we want to know whether C is subsumed by D, that is , if every interpretation

interprets C as a subset of D. In KL-ONE systems the subsumption test is needed to find

out subsumption relations between several concept descriptions. Besides the subsumption

test we are interested in two further problems:

' Is a concept description C consistent, that is, does there exist an interpretation I

such that I[C] at Q) ?

- Is a concept description C equivalent to a concept description D, that is, i s

I[C] = I[D] for every interpretation I ?

If an ACD-language contains complement, then the different problems can be reduced " to

each other in linear time.

We go back to our starting-point and consider the tradeoff between the express-

iveness of ACD-languages and their computational tractability. The expressiveness is

determined by the operators we admit to the language, and the tractability is determined

by the computational complexity of the subsumption algorithm, that is, what time is.

needed to get an ansWer to the question: is concept description C subsumed by concept

description D ?

In [Levesque, Brachman 87] the minimal ACD-language fL“, which contains the

operators VRzC, 3R:T and concept intersection, is examined, and it is shown that

subsumption can be decided in quadratic time. In [Schmidt-SchauB/Smolka 88] further

ACD—languages with enhanced expressiveness as compared to ‚‘TL' are investigated. For

example, the language flLCthat admits the operators VR:C, EIR:C‚ intersection, union and

complement is defined, and it is shown that checking consistency of .flLc - concept

descriptions is PS PACE-complete.

Very often it is demanded that the subsumption test is tractable, that is , that

subsumption can be checked in polynomial time. This means that the expressiveness of

ACD-languages must be restricted dramatically. For example, ACD-languages satisfying

this demand are less powerful than propositional logic. In particular, these languages must

not contain simultaneously intersections, unions and complements like the propositional

logic. One remedy is the use of incomplete subsumption algorithms. The practical

usefulness of such incomplete algorithms depend-s on what kind of subsumption relations

the algorithms don’t find out. It is of great help to examine complete subsumption

algorithms and then to restrict them, such that the algorithms are efficient. Then, of

course, one can investigate what kind of subsumption relations the algorithms don’t find

out.

In this thesis we examine the computational complexity of consistency checking

algorithms for some ACD-languages. Starting from the language ZLC , we amalgamate

this language with some well-known operators occurring in KL-ONE.

In chapter 2 we define the syntax and semantics 'of the language MOM (ALG +

Mlmber restriction), which is the language MC amalgameted with number restrictions .

Since the applicative structure of concept descriptions is not very suitable for devising

consistency checking algorithms, the concept descriptions will be translated into constraint

systems. The definition of constraint systems and the translation of concept descriptions

into constraint systems is performed in Chapter 3.

Chapter 4 shows that checking consistency of MCM - concept descriptions is

decidable.

In chapter 5 we characterize the problem of checking consistency of m- concept

descriptions with respect to the computational complexity and we show that this problem

is PSPACE-complete.

In chapter 6 we define role hierarchies , which are partial orders on role symbols. If

P S R is in a role hierarchie, then P denotes a subrelation of the relation denoted by R. The

idea behind this is to model the roleset - dWerentiation in KL-ONE. We prove that

checking consistency of ‚$?!c - concept descriptions (MC + :Rple hierarchies) i s

PSPACE-complete. Furthermore we give an algorithm for checking consistency of

m- concept descriptions (MC+ Number restrictions + Role hierarchies).

Feature Logic as described in [Smolka 88] is very similar to the language fllLC . In

Feature Logic it is assumed that the role-s are functional. That is, the interpretation of a

functional role, which is called a feature, is not only a relation, but a partial function.

. Furthermore the logic contains the agreement and disagreement operators, counterparts to

role value maps in the KL-ONE world. Smolka shows that Feature Logic has an

NP-complete consistency problem and a co-NP-complete subsumption problem. In

chapter 7 we examine the language M697, that is a combination of ALG and feature

Logic. We show that checking consistency of flLCf - concept descriptions is decidable.

2 Attributive concept descriptions

In the first part of this chapter we define the syntax and semantics of the attributive

concept description language M, that admits VR:C, EIR:C, intersections, unions,

complements and number restrictions. After that we compare this language with some

related ACD-languages.

2.1. The language flLCflC

Let two disjoint alphabets of symbols, called concepts and roles, respectively, be

given. The special concept symbols T and 1. are called top symbol and bottom symbol.

The letters A und B will always denote concept symbols, the letter R will always denote a

role symbol, and the letter N will always denote a non-negative integer represented in

binary.

The concept descriptions of the ACD-language am are given by the abstract syn-

tax rules

C ,D —) A | VR:C |.'-.lR:C ! Cl'l D | CU D I -.C I atleastNR ! atmostNR.

An interpretation I = (231', I[o]) consists of a set DI (the domain of 1) and a

function I[-] (the interpretation function of I) that maps every concept description to a

subset of of, and every role symbol to a subset of 9’ x DI, satisfying the following

equations:

° IlT] = 9’

- zu] = @
-I[VR:C] = {ae DI |V(a ,b)e I[R] : be I[C]}

-1[E|R:C] = [ae DI l3 (a ,b)e I[R] : be I[C]]

' I [C"1D] = I [C lfiHD]

°I[C'-'D] = I [CJUI ID]

' I[fiC] = CDI - I[C]

°I[atleastNR] = {ae QJII | | {be EDII (a,b)e I [R] } I I 2N}

{aefl J I I | | { beD f l (a ,b) e I [R]} | |SN} ,° I[atmost N R]

where ll-II denotes the" cardinality of sets.

An interpretation I is a model for a concept description C if I[C] is nonempty.

A concept description is consistent if it has a model. If C and D are concept descrip-

tions, then C is subsumed by D if I[C] E I[D] for every interpretation I, and C is

equivalent to D if I[C] = I[D] for every interpretation I.

Proposition 2.1. Let C and D be concept descriptions. Then:

a) C is subsumed by D if and only if C n —.D is inconsistent.

b) C is equivalent to D if and only if (C rt —D) L! (D n —C) is inconsistent.

Proof. Follows immediately from the definitions. El

Since our language admits unions, intersections and complements an algorithm for

checking consistency can be used for deciding subsumption and equivalence. In the

following chapters we will work out an algorithm for checking consistency of MCM-

concept descriptions and determine its complexity.

The syntax of m is redundant. For instance, EIR: C is equivalent to -.VR: —C,

J. is equivalent to A Fl -1A for every concept symbol A, and C L! D is equivalent to

"1("IC l'l —ID).

The redundant syntax allows for the simplification of complex complements to

10

simple complements of the form —.A, where A is a concept symbol different from T

and .L. This can be done by the following simplification rules reducing concept

descriptions to equivalent concept descriptions:

. —-.T —> _L

. -1J_ —> T

--——.(VR: C) —-> EIR: fiC
o—‚(El C) _) VR: -—:C

°fi (Cn D) —> —.CLJ —1D

°—.(CLI D) —> —.Cl'l —1D

°—l—1C _) C

atmostN-IR i fN>0

J. if N = 0
«» —.(atmost N R) —> atleast N+1 R .

' -1(at1e.ast N R) —> { __

A concept description is called simple if it contains only simple complements.

Proposition 2.2. Let the concept description C ' be obtained from the concept

description C by application of a simplification rule. Then

a) C is equivalent to C ’,

b) C is consistent if and only if C ’ is consistent.

Proof. It i s easy to see that the simplification rules preserve consistency and

inconsistency. ' D

Proposition 2.3. For every concept description one can compute in linear time an

equivalent simple concept description.

Proof. A simple concept description can be obtained from a concept description in

linear time by rewriting with the simplification rules in top-down order. El

11

2.2. Related ACD-languages

Schmidt-SchauB and Smolka [88] investigate different sublanguages of m . They

define the following sublanguages:

language: abstract syntax rule:

flu; C,D-—>A|VR:C|EIR:T|Cr'IDl—.A

ME C,D—>AIVR:C|3R:CICnDI—1A

flL‘u C,D—>A|VR:C| ' : ' IR :TICnDICLJDl- IA

MC C,D—>AIVR:CI3R:C|CHDICuDl—.C

The names of the languages are put together as follows: 141.12 is obtained from 2L

by adding general existential role quantifications, mm is obtained from AL by adding

unions, MC is obtained from AL by adding general complements, and Mac is ob-

tained from ,4c by adding the so-called number restriction operators (atleast N R) and

(atmost N R).

In [Schmidt-SchauB/Smolka 88] we can find the following results:

° consistency of ZL - concept descriptions can be checked in linear time

° inconsistency of ELLE - concept descriptions can be decided in nondeterministic

linear time

° checking consistency of ALU - concept descriptions is NP-complete

° checking consistency and subsumption of ‚€c - concept descriptions are

PSPACE-complete problems that can be decided with linear space.

Checking consistency of M2: - concept descriptions is quite an interesting problem.

Up to this day we could find neither a polynomial algorithm nor a proof for the

NP-hardness for this problem in the literature.

12

Schmidt-Schauß [88] shows that an ACD-language with role value maps has an

undecidable subs-umption- problem if roles are not reStricted ' to partial functions, even if

union and complement are not available.

13

3 Constraint systems

The applicative structure of concept descriptions is not very suitable for devising

consistency checking algorithms. Therefore every concept description will be translated

into a constraint system such that the concept description is consistent if and only if the

constraint system is consistent. For constraint systems we will give transformation rules

such that we obtain constraint systems, that can be checked in polynomial time for

consistency. This fundamental technique has also been used successfully for Feature

Logic [Smolka 88] and the ACD-languages AL, AME, 541.11 and fllLC

[Schmidt-SchauB/Smolka 88].

We assume the existence of two further disjoint alphabets of symbols, called

individual variables VI and concept variables VC, respectively. The letters x, y, z

will always range over individual variables and the' letters X, Y, Z will always range over

concept variables.

Let I be an interpretation. An I-assignment is a function on that maps every

individual variable to an element of 11)! and every concept variable to a subset of auf.

ASST is the set of all I-assignments.

A constraint has one of the following forms:

X E C, X(VR)Y, X(EIR)Y, X E Y Ll Z, x:X, s , n, X(atleast N R),

X(atmost N R),

where the C in X E C is a simple concept description and the A in s is a concept

symbol. Let I be an interpretation. The interpretation function I[-] of I will be extended to

constraints by interpreting them as sets of I-assignments:

l4

«] [XE C] = {ae ASSfloc(X)<_= 1[C]}

- ztam = { ate ASSII'Va e oc(X) V (a,b)'e “][R]: be oc(Y) }
-I[EI(VR)Y]={0LE ASSIIVae oc(X) 3(a,b)e I[R]: be am}
.][XE Yu Z] : { one ASSrc(X); a(Y)ua(Z) }

' I[x:X] = { Ole ASSII oc(x) e 0t(X)}

° 'I[x:A] = { OLE ASSII 0t(x) e 1[A]}

° IIn] ={ ae ASS’ I (oc(x)‚a(y)) 6 IR] }
° l[X(at1eastNR)]={0te ASSIIVae a(X):ll {be ®I|(a,b)e][R] } I I ZN}

' I[X(atmostNR)] ={ one ASSI IVae 0t(X) : Il { be Dil (a,b)e][R] } IISN}.

A constraint system S isa rinite, nonempty__ set of _ constraints. The interpretation

of a constraint system S by an interpretation I is defined as I[S] := nee S][c]. An

interpretation I is a model for S if [S] is nonempty. A constraint system is consistent

if it has a model.

We obtain the standard interpretation f, of a constraint system S by taking for 9315"

all individual variables occurring in S, for I‚[A] all x such that x:A is in S , and by taking

for [JR] all pairs (x,y) such that n is in S. The standard I-assignment onJ is defined

by mapping individual variables to themselves and by taking for 0t(X) all x such that x:X

ems .

The next proposition shows the relationship between simple fiLCSM-concept

descriptions and consu'aint systems.

Proposition 3.1. Letx be an individual variable and X be a concept variable. A simple

concept description C is consistent if and only if the constraint system {x._'X, X E C} is

consistent.

15

Proof. "=>": Suppose the simple concept description C is consistent. Then there

exists an interpretation I =(of ,][0]) with I[C] at @. Let x be an individual variable, X be

a concept variable, and S be the constraint system [x:X, X E C}. We will define an

I—assignment on such that on e I[S]. -

Since][C] at @, there exists a d e QJI such that d e 1[C]. Define acc) := d and

0t(X) := [C], 0t(X) := {d}. Then on e I[S], and S is consistent. .

"<=": Suppose the constraint system [x:X, X E C} is consistent. Then there exists an

I—assignment oz with 0t(x) e oc(X) and 0t(X) E 1[C]. Hence 0t(x) e I[C] and C is con-

sistent. III

A constraint system Siss1mple1f____fo; every. ..cqnsuaint XE C in S the concept

description C is either a concept symbol different from T and .L, or a complemented

concept symbol.

The following unfolding rules can be used to simplify general constraint systems

to simple constraint systems:

' X E VR: C —> X(VR)Y, Y E C, where Y is a new concept variable

' X E 3R: C —> X(E|R)Y, Y E C, where Y is a new concept variable

-XECnD—> XEC,XED A
OX; Cu D -—> XE Yu Z, Y E C,Z E D, whereY, Zarenewconceptvan'ables

° X E T --> nothing

° X E _L ——> X E A, X E —.A, where A is a new concept symbol

nothing if N = 0

X(at1east N R) if N > 0

. X E atmost N R —> X(atmost N R).

oXE atleastNR—> {

Proposition 3.2. Let the constraint system S ’ be obtained from the constraint system S

by the application of an unfolding rule. Then S is consistent if and only if S ’ is consistent.

16

Proof. Suppose the constraint system S" has been obtained from S by the second

rule. Then s = {X ; 3R: C} u s]rest and S’ = {xerox Y ; c } u srest , where Y is a
new concept variable not occurring in S.

If S is consistent, then there exists an I-assignment on with 0t(X) ;][EIRz C].

Put 0t’(x) = 0t(x) for every x e VI, 0t’(X) = 0t(X) for every X & VC, X at Y and

a’(Y) = 1[C]. Then for every a e 0t’(X) exists (a,b) e [[R] with b e a.’(Y) and

0t’(Y) €.: 1[C]. Thus (1’ e 1[X(E|R)Y, Y E C] and S ’ = {XGR)Y, Y E C} U Srest is

consistent.

If S ’ is consistent, then there exists an I-assignment oz such that 1.) for every

d e 0t(X) there exists an e e (1(Y) such that (d,e) e][R] and 2.) 0t(Y) E 1[C]. This

implies that for every d E °C_(X) „there„fc__xi‚s_t_s‚ an e e ‚_IIC] __su9h__t‚hat me) e .IlRl. Hence
cc e][S] and S is consistent.

The proofs for the other rules are similar. I:

Proposition 3.3. For every constraint system S one can compute in linear time a

simple constraint system S’ such that S is consistent if and only if S ’ is consistent.

Proof. A simple constraint system S ’ can be obtained from a constraint system S in

linear time by rewriting with the unfolding rules in top-down order. El

Let S be a simple constraint system obtained by unfolding the constraint X E C where

C is a simple fill-CM- concept description. Then the constraint system S ’ = S U {s} is'

called fresh and the individual variable x is called the individual root of 8’ . Note that

the constraint x:X in S’ is the only one that contains an individual variable.

Theorem 3.4.~ For every concept description C one can compute in linear time a fresh

constraint system S such that C is consistent if and only if S is consistent.

I?

IProof. The concept description C is transformed into a simple concept description C

using the simplification rules. Now the constraint system {x:X, X E C’) is created, which

then is simplificated to a fresh constraint system using the unfolding rules. All three steps

require at most linear time-and preserve consistency and inconsistency. n

A simple constraint system defines a directed graph, called its skeleton, as follows:

every concept variable occurring in the constraint system is taken as a node, the

constraints X(VR)Y and XGR)Y define universal and existential edges from X to Y, and

a constraint X E Y LI Z defines an or—connected pair of edges from X to Y and Z.

Furthermore, the constraints X E A and X E —-1A define A and —A as labels of node X.

The constraints X(at1east N R) and X(atmost N R) define (atleast N R) and (atmost N R)

as labels of node X. Thus every node has a finite, possibly empty set of labels. The

individual constraints x: X and n don’t contribute to the skeleton. A constraint tree is

a simple constraint system whose skeleton is a tree. Note that the skeleton of a fresh

constraint system is a tree.

Figure 3.1. A constraint tree representing the constraint system

s = {x:X, X(VR)Y, Y ; A, xemz, z ; —-.A}.

Example 3.1.

Let C = (VR: A) rl fi(VR: A) be a concept description. The simple concept descrip-

tion C’ = (VR: A) n (3R: -.A) is obtained from C using the simplification rules. The

constraint system {x :X, X E C’] is transformed into the fresh constraint system

18

S = {x:X, X(VR)Y, Y E A, X(EIR)Z, Z E —-.A] by application of the unfolding rules.

A constraint tree for S is shown in figure 3.1.

19

4 Propagation

We now define so-called complete constraint systems whose consistency can be checked

in polynomial time. Every fresh constraint system can be completed (by application of

completion rules) to a complete constraint system preserving consistency and incon-

sistency by adding individual constraints of the form n, x:X and s. where A is either

a concept symbol or a complemented concept symbol.

4.1. Completion rules

Let S be a constraint system. For an individual variable x we count the nuniber of indivi-

dual variables y with n for some role symbol R. We therefore define

nR‚s(x) := "{ y. (5 VI l n e S }II.

If it is obvious which constraint system is considered, we often write nR(x) instead of

nR,S(x). With

{y (— z } S

we define the constraint system that is obtained from S by replacing each occurrence of y

by z .

Proposition 4.1.1. Let S be a constraint system. Then:

I . if x:X, n and X(VR)Y are in S, then S is consistent if and only if S U {y:Y} is

consistent

2 . if x:X and X(ElR)Y are in S and y is an individual variable not occurring in S, then S

is consistent if and only if S U {n, y:Y } is consistent

3 . ifx:X and X E Y LI Z are in S, then S is consistent if and only if S U {x:Y} or S U

{x:Z} is consistent

20

4. if x:X and X 5 A are in s, then s is consistent if and only if s u {x:A} is
consistent

5 . if x:X and X(atleast N R) are in S and N > nR(x) then S is consistent if and only if S

U {n} is consistent, where y is an individual variable not occurring in S

6 . if x:X and X(atmostN R) are in S, N > 0 and nR(x) > N, then there is a choice of y,

z e V1 with n and s in S, such that {y (— z}S is consistent if and only if S

is consistent.

7 . if x:X, X(atleast N R), x:Y, Y(atmost M R) are in S and N > M, then S is not

consistent

8 . if x:X, n and X(atmost 0 R) are in S, then S is not consistent.

Proof. We show the first and seventh part of the preposition. The proofs of the

other parts are similar.

1. Let S = [x:X, n, X(VR)Y] U Srest.

Suppose S is consistent. Then there exists an I-assignment or. with 0t(x) e oc(X),

(0t(x),0t(y)) e [R], and for every a e 0t(X) such that (a,b) e I[R] we have b e OL(Y). It

follows that or.(y) e 0t(Y), and therefore 8 ’ = S U [y:Y] is consistent.

. Now suppose S is not consistent. Then I[S] = @ and I[S'] = I[S] n I[y:Y] = 0.

Thus 8’ is not consistent. .

7. Let {x:X, X(atleast N R), s , Y(atmost M R)} S S and N > M. Suppose there

exists an I—assignment on with on e I[x:X, X(atleast N R), s , Y(atmost M R)]. Then

we have "{b e mil (0t(x),b) e I[R]}|| 2 N and ||{b e 9’! (0t(x),b) e 1[R]}|| S M. Since

N > M this is a contradiction. Thus I[x:X, X(atleast N R), x:Y, Y(atmost M R)] = 0 and

S is not consistent. El

Every constraint system can be extended using the following Rl-completion rules:

1. S “’V {y:Y} U S

if x:X, n and X(VR)Y are in S and y:Y is not in S

21

S ——)3 {y:Y, n} U S

if x:X and X(ElR)Y are in S and there exists no individual variable z such that

s and z:Y are in S, and y is an individual variable not occurring in S

S —>„ {x:Z} U S

if x:X and X E Y1- Ll Y2 are in S , neither x:Y1 nor x:Y2 is in S, and Z is either

Y1 or Y2

S _); {x:A} U S

ifx:X andXE Aare inS andx:AisnotinS

S aafleast {n} U S

if x:X, X(atleast N R) are in S and nR(x) < N, and y is a new individual

variable P°F°°°mg in s
S —>atmost{y <— z}S

if xzx, X(atmost N R), n and s are in S and nR(x) > N

S —’error {x:A, x:—.A]

if x:X, X(atleast N R), x:Y, Y(atmost M R) are in S and N > M or

if x:X, X(atmost 0 R), n are in S .

A constraint system is Rl-complete if no Rl-completion rule applies to it.

Proposition 4.1.2. Let S and S ’ be constraint systems. Then:

a) If S ’ is obtained from S by application of the (deterministic) —>V- rule, —>3- rule,
_); - rule, added” - rule or —>e„‚o‚. - rule, then S is consistent if and only if S’ is

consistent.

b) If S’ is obtained from S by application of the (nondeterministic) —>,_, - rule or

aamst - rule, then S is consistent if S ’ is consistent. Furthermore there is a choice

for S " such that S ’ is consistent if and only if S is consistent.

Proof. Follows from proposition 4.1.1. EI

22

4.2. Consistency checking as completion

The next proposition justifies our interest in Rl-complete constraint systems.

Proposition 4.2.1. An R I-complete constraint system is inconsistent if and only if it

contains, for some x e V1 and some concept symbol A, the constraints x:A and x:—A.

Proof. "=>": Let S be an Rl-complete constraint system not containing the constraints

x:A and x:—.A for any x e VI and any concept symbol A. We show that the standard

interpretation 1, of S is a model for S. In particular we show that for the standard

I-assignment on, we have use I‚[c] for eycry c 6 Sand hence 99, e {,[S]. We distinguish

three kinds of constraints: Constraints of the form x:X, x:A, X E A, n , constraints of

the X(VR)Y, XGR)Y, X E Y LI Z, X(atleast N R), X(atmost N R), and constraints of the

form lit-1A. . .

1. We show that oz, e I‚[x:X] : Because of the definition of [, and oz, we have

(150:) = x and oc‚(X) = {x l x:X &" S} . Therefore 0550:) e 0t,(X) and on, 6 I‚[x:X]'. .

Similarly, it can be shown that a, e I‚[x:A], oz, e I_‚[X E A] and oz; e I‚[n].

2. Next we show that cc, e I‚[X(EIR)Y]. If there is no constraint x:X in S , then it is

easy to see that d, e I‚[X(EIR)Y]. Now assume that {x:X, X(EIR)Y] E S . Since S is

Rl-complcte, there are constraints n and y:Y in S, since the —>3 - rule doesn’t apply.

Hence oz, & I,“ x:X, X(EIR)Y }]. Similarly, it can be shown that oz, e I‚[X(VR)Y],

oz, e I5[X E Y LJ Z], on, e I5[X(atleast N R)] and Gt, e I,[X(atmos_t N R)].

3. We prove that oz, e I‚[x:—1A] if the constraint x:A is not in S. Suppose x:A e S.

Then oc,(x) e I‚[A] and oc_‚(x) e 131: - I,[A]. Hence use I‚[x:—|A].

"<=": Suppose the Rl-complete constraint system S contains the constraints x:A and xz—IA

for some x @ VI and some concept symbol A. Since the sets I[A] and I[-1A] are disjoint

for every interpretation 1, there- doesn’t exist an I-assignmcnt 0t that maps x

simultaneously to an element of I[A] and I[—1A]. Thus 1Ix:A] n I[x:—.A] = @. Since

23

{x :A, xz—IA} E S we conclude that [[S] is empty and S is inconsistent. El

Example 4 .2 .1 .

Let S = [x:X, X(VR)Y, Y E A, X(EIR)Z, Z E —.A } be a fresh constraint system (see

example 3.1.). The following constraint systems are created using the Rl-completion

rules:

S —>3 S U {n, y:Z}

—>; S U {n, y:Z, yz—wA}

—)V S U {n, y:Z, y:—:A, yzY}

'95 S U {n, y:Z, yHA, y:Y, yzA} = 8’

Observe that only deterministic completion rules apply to S. The Rl-completc constraint

system S ’ is not consistent since S ’ contains the constraints yzA and y:—.A.

4.3. A completion procedure

Let S be a fresh constraint system. In the following we will show, that in finitely many

propagation steps one can nondeterministically compute an Rl-complete constraint system

S’, such that S is consistent if and only if S ’ is consistent. To do this, we have to impose

some control on the application of the rules in order to avoid infinite chains of completion

steps. The following example illustrates that such a control is indeed necessary.

Example 4.3 .1 .

Let S = {x:X, X(atleast 2 R), X(atmost 1 R)} be a fresh constraint system. Then:

S _)afleasts U {n} aafleasts U {n , XRZ}—’atmost {z <— y}S = S U {n} “"atleast

S U {n, s}—>atmost and we have an infinite chain.

On the other hand if the control strategy applies the Amor — rulc before applying the

Amos, - rule, we get S aafleast S U [XRY]—)afleast S U {n, s} Amor {x:A, at:—„A},

24

and we have an Rl-complete constraint system

Let S be a constraint system. We write S =>. S’, * e {V , El, U , E , atleast, atmost,

error}, if S = S ' or the constraint system S’ is obtained from S by applications of the

—>* - rule, and the ——>* — rule doesn’t apply to 8’.

Let S be a constraint system whose skeleton is a constraint tree. We assign levels to

the concept variables occurring in S as follows:

1 . the concept variable that is the root of the constraint tree has the level 0,

2 . if the constraint tree contains a constraint X(VR)Y or XEIR)Y and X has the

level n— #11.a has thclcvel 9e
3. if the constraint tree contains a constraint X E Y U Z, then X, Y and Z all have

the same level.

This defines a unique level assignment for constraint systems that are obtained from flesh

constraint systems by application of completion rules. Remember that the skeleton of a

fresh constraint system is a tree.

We extend the level assignment to constraints: A constraint is at level n, if the first

concept variable occuring in the constraint has level n. Constraints of the form n will

not be assigned a level. A constraint system is complete at level n, if no completion

rulc applies to constraints at level n.

Next We define the recursive function Completion. The call Completion(S,0)

computes an Rl-complete constraint system for the constraint system S given as

argument. The algorithm is obtained from the Rl-completion rules by adding some

control. The control guarantees that a “breadth-first completion” is performed: As long as

possible apply the Rl-completion rules to constraints at level i, and then apply the rules to

constraints at level i+1. The number given as second argument indicates the level. The

25

function terminates, since there exists a number n bounding the levels of constraints in S.

Suppose Completion(S,i) is called. Let Si be the set of all constraints at level i. The

sequence of applications of the Rl-completion rules is important: Since the -—)._. - rule is

the only one that introduces constraints at level i , this rule is applied-first. The —>3 - rule

and the aafleast - rule add constraints of the form n, therefore these rules are applied

before the —>V - rule. Furthermore, the eel-for - rule must apply before the _’aunost - rulc

to avoid infinite chains of completion steps (see example 4.3.1.).

Function Completion (S, i)

let Si be the set of all constraints at level i in S

if Si = Q

then return S

else let SL„ 83, Sagem, SV, SE, Senor, Si-complete such that

Si => LI Su => El SE! =i’atleast Sa t l eas t => V SV =>; 35 => error
Serror =>atmost Si-complete;

Completion (S U Si-completca i+1)

end Completion.

Proposition 4.3.1. Let S be a constraint system obtained from an .?!c - concept

description. Consider the call Completion(S,0). Let

Si : S USO-complete USl-complete U USU-1)-complete »
that is, Si is the argument of the j-th recursive call. Then:

a) The constraint system Si-complete is complete at level i for all i.

b) The constraint system Si is complete at level ifor all i < j.

c) The call Completion(S,0) terminates.

Proof: a) Let Si be the set of all constraints at level i. Observe that the constraint

systems S„, 83, Sagem, SV, SE, Serror and Sißomplete have the following properties:

26

Su is obtained from S i by adding the constraints x:Y or x:Z for every

[x:X, X E Y LI Z} 9 Si. The constraints x:Y and x:Z are at level i.

83 is obtained from SL. by adding the constraints n and y:Y for every

[x:X, X(EIR)Y} E Su. The constraint y:Y is at level i+1.

Safleast is obtained from 83 by adding constraints of the form n for every

{x:X, X(atleast N R)} g sg; such that N = II[y 6 VI I n e safleastm.
S V is obtained from Sat l eas t by adding the constraints y:Y for every

{x:X, X(VR)Y, nl E Sagem. The constraint y:Y is at level i+1.

S,; is obtained from SV by adding the constraints x:A for every [x:X, X E A} E SV.

Ifthe am, - rule applies to 8;, then Sen,or = {x:A, x:—.A}, otherwise Serror = 8;. Finally

the constraint system Sircompl,etei$._ obtained from .Serror by finitely many applications of

Now we will show that no Rl-completion rule applies to constraints at level i in

Si-complete-

Consider the —->._‚ - rule, the —>3 - rule and the a; - rule:

Constraints of the form xzx, which have been introduced by the ->3 - rule and the

"’V - rule, are at level i+1. If the constraint x:X is at level i in Si-completea then x:X is

already in SL,. Therefore the -—>._‚ - rule, the —>3 - rule and the —>; - rule don’t apply

to Si—complew

Consider the av - rule:

Since the _); — rule, the am, -- rule and the ammo“ - rule, which are applied after the

—>V - rule, don’t introduce constraints of the form n and x:X, the AV - rule doesn’t
aPPlY to Si-complete-

Consider the aafleast - rule:

Assume that the ——>afleast - rule applies to Si—complete- Then

{x:X, X(atleast N R)] E Si-complete and N > "I y l n e Si -comple te } | l - Since

N = M y I n e Safleasml after the application of the aafleast - rule, the constraints x:Y

27

and Y(atrnost M R) must be in Si—complete and N > M. But then the dam. - rule would

have been applied to S; and we have a contradiction. Thus our assumption is false and

the aafleast - rule doesn’t apply to 'Simmplem.

It is obvious, that the Amor - rule and the —>aunost - rule don’t apply to S(i)complete°

Now we have shown that no Rl-completion rule applies to constraints at level i in
Si-complete and hence Si—complete is complete at level i.

b) We prove the claim by induction on the level i:

Base case i = 1: The constraint system S1 = S0 U SO—complete is complete at level 0.
Induction step: Si+1 = Si U Si-complete° The constraint system Si—complete is complete

at level i and doesn’t contain constraints at level 1 for 1 < i. By the induction hypothesis

we know that 8? is completeat level 1 for 1 < i. Since Si-complete contains every

constraint, which is in Si and is at level i, we conclude that Si"‘l is complete at level 1 for

l < i+1.

c) Every constraint system obtained from a finite MCM- concept description has a

maximal level and hence the function terminates. El

The next theorem shows how to obtain an algorithm for checking consistency of

m- Concept descriptions.

Theorem 4.3.2. Let S be a fresh constraint system obtained from an MGM- concept

description C.

a) If C is consistent, then there exists a computation using Completion, such that the call

Completion(S,0) returns an R1 -complete constraint system not containing x:A and x:—.A

for any individual variable x and anyconcept symbol A.

b) If C is not consistent, then every call Completion(S,0) returns an R 1-complete

constraint system containing x:A and x:—A for some individual variable x and some '

concept symbol A.

28

Proof. Let C be an :?LLCM- concept description. Then C is transformed into a fresh

constraint system S using the simplification and unfolding rules. Note that C is consistent

if and only if S is consistent. The call Completion(S‚0) nondeterministically computes an

Rl-complete constraint system S ’ for S (proposition 4.3.1.). Furthermore there is a choice

when applying the Rl-completion rules, such that S is consistent if and only if S ’ is

consistent (proposition 4.1.2). Hence, if every Rl-complete constraint system for S is
inconsistent, then the concept description C is inconsistent, otherwise C is consistent. El

Now let us turn to the time and space complexity of this algorithm. Transforming a

concept description C into a fresh constraint system can be done easily, that means in time

O(n)‚ where n is the length of C (see theorem 3.4.). Whether a constraint system contains

the constraints s and XHA, can be checked in time 0(n2), where n is the number of

constraints.The following examples illustrate the complexity of the Rl-completion rules.

afleast N R
b) '

V R

afleast N R

V R

atleast N R

Figure 4.3.1. Constraint trees for constraint systems, where at least exponentially

many propagation steps are necessary for a completion.

Example 4.3.2.

a) Let C = EIRzA r'l ERzB Fl (VR: (EIRzA I'I EIRzB r1 VR: ())) be a concept

29

description and let S be a fresh constraint system obtained from C (cf. [Schmidt-SchauB

Smolka 88, page 17]). Figure 4.3.1.a shows a constraint tree for S. Every Rl-complete

constraint system for S contains two constraints of the form y:Y at level 1, four con-

straints of the form y:Y at level 2, and in general 2n constraints of the form y:Y'at level n.

b) Figure 4.3.1.b shows a constraint tree for the fresh constraint system

S = [x :X] U S " where S ’ is obtained by unfolding the constraint X E C with

C = (atleast N R) F1 (VR: ((atleast N R) n VR: ())). Every Rl-complete constraint

system of S contains N constraints of the form y:Y at level 1, N2 constraints of the form

y:Y at level 2, and in general Nn constraints of the form y:Y at level 11.

In the following we investigate how many propagation steps ”are necessary to obtain

an Rl-complete constraint system from a fresh constraint system. To case our notation we

make the following definition: With II c e S II we denote the number of all constraints of

the form c, which are in the constraint system S.

Theorem 4.3.3. If S is a fresh constraintsystem, then in at most exponentially many

progagation steps one can nondetenninistically compute an R] —complete constraint system

S ’, such that S is consistent if and only if S ’ is consistent.

Proof: Let S be a fresh constraint system. The call Completion(S,0) computes non-

deterministically an Rl-complete constraint system. There is a choice when applying the

nondeterministic —->._, - rule and ammost - rule, such that S is consistent if and only if the

Rl-complete constraint system is consistent (theorem 4.3.2.).

Next we give an upper bound for the number of propagation steps needed to obtain an

Rl-complete constraint system from a flesh constraint system:

Let S be a fresh constraint system with II S II = m, that is, m is the length of the string S.

Consider the constraint system

30

Si := S U S0-cornplete U S l-complete U U S(i-l)-complete

that is computed by the call Completion(S‚0). Note that the constraint system Si is com-

plete at level j for j < i. Let Si be the set of all constraints at level i in Si. Put s := II Si II.

Remember that we obtain the constraint system Si-complete from Si in the following

manner:

Si =>u Su =>3 SB =>atleast satleast =>V SV =>; SE =>error Serror =>atmost Si-complete-

The ->._. - rule applies to every constraint of the form x:X at most II X E Y LI Z & Si II

times. Because || x:X e Si || s s and H X L=. Y LI Z 5 Si || s m, the —>._‚ - rulc applies at most

(s * m) times. Each application of the —->._. - rule adds one constraint of the form x:X, such

that the constraint system Su contains at most (s + s * m) S (2 if s * m) constraints of the

form x:X. V . .

The —>3 - rule applies to every constraint of the form x:X at most II X(EIR)Y e S„ II

times. Since || x:X e S„ II S (2 * s * m) and || X(3R)Y e S._‚ II S m, we know that the

—)3 - rule applies at most (2 * s * m2) times. Each application of the —->3 - rule adds one

constraint of the form x:X, such that the constraint system 83 contains at most

(2 * s * m) + (2 * s * m2) S (4 * s * m2) constraints of the form x:X. Furthermore we

note that for every individual variable x with x:X e 83 there are at most

II X(EIR)Y e S._‚ II S. m constraints of the form n in the constraint system 83 for

some role symbol R and some individual variable y.

The aaflcast - rule applies to every constraint of the form x:X at most N times,

where N = max { M I X(at1east M R) e 83} for some role symbol R. Since the

positive integer N is represented in binary, we have log2(N) s m and hence N is not

greater than 2‘“. Thus the aafleast - rule applies for x:X at most 2m times. Because

ll x:X e 83 Il s (4 * s * m2), the _)afleast - rule applies at most (4 * s * m2... 21“)

times. Note that the 'aafleast - rule doesn’t add constraints of the form x:X, hence
II x:X e Safleast II = II x:X e Sa H s (4 a: s *m2). Furthermore the constraint system Safleast

contains for every individual variable x with x:X e S aflcast at most 2m constraints of the

31

form n for some role symbol R and some individual variable y.

The —>V - rule applies to the constraints x:X, n at most II X(VR)Y e Safleast ||

times. Since we know that to every individual variable x with x:X e Saueast there are at

most 2m constraints of the form n in the constraint system Safleast for some role

symbol R and some individual variable y, and ll X(VR)Y e Safleast Il s m, the —>V - rule

applies at most u x:X e safleas. II * 2m * || X(VR)Y e safleastn s (4* s * m3 * 2m) times.
Each application of the —>v - rule adds one constraint of the form x:X, such that there are

at most (4* sah m2) + (4* 3* m3* 2‘“) S (8 * s* m3* 2m)constraints ofthe formx:X

in the constraint system SV. .

The —>E - rule applies to every conStraint of the form x:X at most Il X E A 6 SV II

times. Because II x:Xe SV Il___<__(8 as _sfk m3af 2F!) and II X E A e SV II S m, the -—); - rule

applies at most (8 * s * m4 * 21”) times.

The —>c — rule applies at most one time. If the Amer - rule doesn’t apply, then

Serror = SE-

Now let us consider the ammo“ - rule: We know that for every individual

variable x with XX 6 S; there are at most 2m constraints of the form n in the con-

straint system S; for some role symbol R and some individual variable y. Suppose (the

worst case) X(atmost 1 R) 6 SE. Then the ammo“ - rule applies to x:X e SE at most 2m

times. Since || x:X e SE ll s (8 * s * m3v=k 2m) , the aaunost- rule applies at most

(8* 3* m3* 2m)* 2m = (8*s* m3* 221“) times.

Altogether in at most

(5* m)+ (2* sat m2) + (4*s* m2=k 2m)+ (4* s* m3-k 2m)+(8* 3* m4* 2‘“)

+ (8* s* m3* 221“)

= s»: [m+(2* m2)+(4* m2=r 2m)+ (4* m3* 2m)+(8* m4~u 2m)

+ (8 * m3 * 22m»

s || Sills: (27* m4* 22m)

propagation steps one can nondeterministically compute the constraint system

32

Si—complete from the constraint system Si. Furthermore we know that

Il Si-complete II S ll Si II + 2 * II Si ll * (27 * m4 * 221“)

= Il Sills: (1 +54% m4wk 22m)

since an application of an Rl-completion rule adds at most two new constraints.

Now we compare the size of Si+l to the size of Si:

|| si+1II = u si u simmplewn
s || sill + II simmpmu
5 "Si" + IISillnc (1+54* m4... 22m)
s IISiII + using: (1+54* m4... 22m)

5 " Si" * P(m) where p(m) $ (55* m4... 22m).

Note that a constraint system S with II S II = m doesn’t contain constraints at level M

with M 2 m. Thus the constraint system Sm is Rl-complete and we have:

ll Sm || S p(m) * II sm—l II

S p(m) * p(m) * II. Sm-2 II s

s [p(m)]m
an n s0 H

[1)(m)]m * m

s [p(m)1m+l
can“) * 1n(P(m))

s e(m+1) * P'Cm) where p’(m) = 1n(p(m))

s 1n(55) + 4 * 1n(m) + 2* m* ln(2).

If S is a fresh constraint system, then we obtain an Rl-complete constraint system

from S by adding at most exponentially many constraints. Since every R 1-completion rule

adds at most two constraints, we conclude that in at most exponentially many propagation

steps one can nondeterministically compute an Rl-complete constraint system. El

33

4.4. Optimization

As seen in example 4.3.2. and theorem 4.3.3. in the worst case exponentially many

propagation steps are necessary to obtain an Rl-complete constraint system for a fresh

constraint system. One point to reduce this complexity is a modification of the _)afleast - _

rule. The idea behind this modification is as follows: Suppose a constraint systemvcontains

the constraints x:X and X(atleast N R). Then it is not really necessary to apply the aafleast

- rule N times adding the constraints n1 , , nN . In the following we will show

that it is sufficient to add only the single constraint n, where y represents the individual

variables yl , , yN .

First we define the Rz-completion rules: We get the R2-completion rules from the

Rl-completion rules by modifying the aaaeast - rule in the following manner:

Let S be a constraint system. Then:

S aafleast {n} U S .

if x:X, X(atlcast N R) are in s, N > 0, nme-;) = o and y is a new individual
variable not occurring in S.

A constraint system is Rz-complete if no Rg-completion rule applies to it.

It is easy to see that the application of the modified —’atleast - rule to a constraint

system preserves consistency and inconsistency. Furthermore we note that every

Rl-complete constraint system is Rz-complete. An Rz-complete constraint system S is

Rl-complete if it doesn’t contain constraints of the form x:X and X(atleast N R) with

nR,S(x) < N.

In the following we consider constraint systems that are constraint trees. This

assumption is justified because every constraint system obtained from a fresh constraint

34

system is a constraint tree. We will show that an R2-complete constraint tree is consistent

if and only if it doesn’t contain the constraints x:A and xz—IA for any xe VI and any

concept symbol A. To show this we pursue the following idea: Suppose the constraint tree

S is Rz-complete and doesn’t contain constraints of the form x:A and x:—:A. Then we add

constraints to S, such that we obtain an Rl-complete constraint tree 8 ’ not containing

constraints of the form x:A and xz-aA. With proposition 4.2.1. — an Rl-complete

constraint system is consistent if and only if it doesn’t contain the constraints x:A and

xzfiA for any xe VI and any concept symbol A — we know that S’ is consistent and we

conclude that the Rz—complete constraint tree S is consistent. The following example

illustrates how one can obtain an Rl-complete constraint tree from an Rz-complete

constraint tree.

x atleast 2 R

VR

EIR'

A

Figure 4.4.1. A constraint tree.

Example 4.4 .1 .

Let S = {x:X, X(atleast 2 R), X(VR)Y, Y E U U V, V E B, U(EIR’)Z, Z E A} be a fresh

constraint tree, which is shown in figure 4.4. 1. We obtain the R2-comp1ete constraint tree

82 from S in the following way:

S aafleast S U {n}

-—>V S U {n‚ y :Y}

35

—>„ S U {n, y:Y‚ y:U]

—)3 S U {n, y:Y, y:U, yR’z, z:Z}

—>; S U [n, y:Y, y:U, yR’z,-z:Z‚ z:A} = SZ.

Note that the constraint tree 32 doesn’t contain constraints of the form x:A and x:—\A.

Now we construct the Rl-complete constraint tree S 1 which has the following properties:

° 81 doesn’t contain constraints of the form x:A and xz—tA.

Since the constraint tree 82 is not Rl-complete, we have to add constraints to 32 to obtain

the Rl-complete constraint tree SI:

SI = 52 U {KRYZ} Now we have "[y 6 VI I n e SI }" = 2 and the

aafleast - rule of the Rl-completion rules doesn’t apply

I to x:X, ”Xi(latlleast 2 R).

U {y2:Y] Now the —>V - rule doesn’t apply to xzx, ng, X(VR)Y.

U [Y2:U} We have to add either the constraint yzzU or y2:V such that
the -—>„ - rule doesn’t apply to y2:Y, Y E U U V. We

choose y2:U since the constraint y:U is in 82.

U {yzR’z} Now the —>3 — rule doesn’t apply to y2:U, U(3R’)Z

since the constraint y2R’z is added and the constraint z:Z

is in 82.

The idea behind this “RI-completion” is, that the individual variable y2 has to be a copy of

the individual variable y, which occurs in the R2-complete constraint tree. It is easy to see

that the constraint tree 81 is Rl-complete. Furthermore the constraint tree SI doesn’t

contain constraints of the form x:A and xz—tA. With proposition 4.2.1. we know that 81 is .

consistent and hence the constraint tree 32 is consistent.

36

Proposition 4.4.1 Let S be an Rz-complete constraint tree not containing the con-

straints x:A and x:—.A for any xe VI and any concept symbol A. Then there exists an

R I-complete constraint tree S’ such that .

' S S S ' and

° S’ doesn’t contain the constraints x:A and x:—|A for any xe VI and any concept

symbol A.

Proof. First we define the set VS of all tuples (2,2) 5 VI x VC for the constraint

tree S, such that the —)afleast - rule of the Rl-completion rules applies to constraints of the

form z:Z, Z(atleast N R):

. Vs =..{ (21) € VI X VCI {z=Z„ Z(atlcast N R)} 9 ‚S and nR,s.(_z) < N}.
Let S be an R2-complete constraint tree not containing the constraints s and x:—-.A

for any xe VI and any concept symbol A. Consider the following two cases:

a) Suppose Vs = @. Then the constraint tree S is Rl-complete, because

° the aafleast — rule of the Rl-completion rules doesn’t apply to S and

° S is Rz-complete.

b) Now assume that VS at @. Then we construct a constraint tree S ’ from S, such that

° S ’ is Rz-complete,

. S f.: S ',

' S' doesn’t contain the constraints x:A and xz—uA for any xe VI and any concept

symbol A and

° . ll sll = II V5 ll - 1.

Thus after finitely many iterations - since V3 is finite for a finite constraint tree - we

obtain an Rl-complete constraint tree not containing the constraints x:A and x:—:A for any

xe VI and any concept symbol A.

Now let us construct a constraint tree 8 ’ from S with the required properties: We

choose (x,X) 6 Vs, such that there is no pair (y,Y) 6 Vs where Y has a level greater

37

than X. Note that there i s at least one element in Vs with this property. Then {x:X,

X(at1east N R)} E S with nR,s (x) < N. In the following we often refer to the constraint

n e S for a fixed individual variable y. Note that there is at least one constraint of the

form n e S for some individual variable y because of the aafleast - rule of the

R2-completion rules.

First we define the constraint tree

S1 = S U {n1, . . . , nd I d = N - nR,S(x), yl, ..., yd are new individual variables}.

Observe that H Vslll = Il Vs II - 1 and that in general the constraint tree S1 is not

RZ-complete. In the following we add constraints to S1 such that we obtain an

Rz-complete constraint tree not containing constraints of the form x:A and x:—tA.

Consider the constraint n e s. we add for every concept variable Y with y:Y the
constraints yl, ..., ys and obtain the constraint tree .

82 = S1 U [y1:Y, ..., yd:Y | Y is a concept variable with [n, y:Y} 9 SI}.

We observe that the —->„ - rulc doesn’t apply to SZ: Suppose {y:Y‚ Y E U U V] E SI .

. The constraint tree S1 contains either y:U or y:V because S is RZ-complete. By definition

the constraint tree 82 contains either the constraints yizU or yi:V for 1 S i S d. Thus the

—n_‚ - rule doesn’t apply to SZ.

Now we add for every concept symbol A with y:A the constraints yl , ..., ydzA

which gives the constraint tree:

S3 = 82 U {y1:A, ..., yd:A I A is a concept symbol with {n, y:A} €.: SZ}.

It is easy to see that the -—>E - rule doesn’t apply to S3. Furthermore we note that the

constraint tree S3 doesn’t contain the constraints x:A and x:—hA for any x e VI and any

concept symbol A. Suppose n , y:A e SZ. Then the constraints y l , ..., ydzA are

added to 82, where y], ..., yd are new individual variables not occurring in S. We know

that y:—tA es 82 and therefore the constraints yi:—tA e S3 for 1 S i S d. If the constraints
n, y:—tA 6 SZ, similar arguments apply.

Next we add constraints to s3, obtaining the constraint tree 8’, such that the —>V -

38

rule and the ->3 - rule don’t apply to S’. The constraint tree 8 ’ is obtained from S3 by

adding the constraints l’z, ...,. ydR’z for every yR’z. e S3 for some role symbol R’ and

some individual variable z:

S ' = S3 U {l’z, ..., ydR’z l R’ is a role symbol and z is an individual variable

with [n, yR’z} 9 S3}.

We observe that the —>3 - rule doesn’t apply to 8’: Suppose {y:Y, Y(3R")Z} S.:. S3. Then

the constraints yR’z and z:Z are in the constraint tree S3, since S is Rz-cornplete. Thus for

the constraints yizY, Y(EIR’)Z (1 S i S d) the constraints yiR’z (l S i S d) and z:Z are in

S’, and the -—>-3 - rulc doesn’t apply to 8’. Furthermore for the. constraints yizY, yiR’z,

Y(VR’)Z (1 S i S d) the constraint tree 8 ’ contains the constraints z:Z. Thus the “’V -

rule doesn’t apply to S ’.

Let us now summarize the properties. of the constraint tree 8’. Remember that we

chose (x,X) e Vs such that the level of X was maximal. Furthermore, S contains

constraints x:X and X(atleast N R) where 1112.3 (x) < N.

1) nR‚s'(x) = N.

2) The —>‚_, — rule, the -—>E - rule, the —->3 - rule and the "N - rule don’t apply to S’.

3) The engem - rule of the Rz-completion rules doesn’t apply to S

Suppose yizY e S ’ .(1 Si S d) where yi is a new individual variable not occurring in

the constraint tree S . Then there exist constraints xzx, n and y:Y for some individual

variable y in S. By the choice of (x,X) 6 Vs, we know that in S there are no constraints

y:Y, Y(atleast M R’) with nRv‚S(y) < M. Hence, there is no constraint Y(atleast M R’) in

S’ with nR»,Sf(yi) < M, which implies that (yi,Y) e s. Thus the aafleast - rule of the

R2 - completion rules doesn’t apply to S’.

4) The ammo“ - rule doesn’t apply to S ’.

We know that there are no constraints y:Y, Y(atmost M R’) in S with nR-v’s(y) > M

because S is R2-complete. Hence, there are no constraints yi:Y, Y(atmost M R’) in S ’

with nR'‚S'(Yi) > M for 1 S i S d and the _)atmost - rule doesn’t apply to S'.

39

5) The ""error - rule doesn’t apply to 8’.

There are no constraints y:Y, Y(at1east N R’), y:Z, Z(atmost M R) in S with N > M

and hence there are no constraints yizY, Y(atleast N R’), yizz, Z(atmost M R) in S ’ with

N>Mfor 1 SiSd .

6) S ’ doesn’t contain constraints of the form x:A and xz—uA.

As mentioned above, S3 doesn’t contain constraints of the form x:A and xz—uA.

7) IIVS'II = Il Vs ll - 1.

Now we have shown that no Rz-completion rule applies to 8’. Thus we have

constructed from an Rz-complete constraint tree S not containing constraints of the form

x:A and x:—1A an Rz-complete constraint system S ’ not containing Constraints of the form
x:A and xz—uA. Furthermore, II V5," = II V3 ll - 1, and after finitely many iterations we

obtain an Rl-complete constraint system. El

Theorem 4.4.2. An Rz-complete constraint tree is inconsistent if and only if it

. contains, for some xe VI and some concept symbol A, the constraints x:A and x:—.A.

Proof. "=>": Let S be an R2-comp1ete constraint tree not containing the consu'aints x:A

and xz—uA for any x e VI and any concept symbol A. One can construct an Rl-complete

constraint tree S ’ from S, such that {x:A and XHA} $ S ' for any x 6 VI and any concept

symbol A (see proposition 4.3.1.). Using proposition 4.2.1. we conclude that S ’ is

consistent and hence S is consistent.

"<=": As in proposition 4.2.1. El

Theorem 4.4.3. Let S be a fresh constraint system obtained from an MCM- concept

description C. We modify the function Completion of chapter 4.3. such that the _)adeast -

rule of the Rz-completion rules is used instead of the R I-completion rules.

40

a) If C is consistent, then there exists a computation using Completion, such that the call

Completion(S,0) returns an Rz-complete constraint system not containing x:A and x:—.A

for any individual variable x and any concept symbol A. }

b) If C is not consistent, then every call Completion(S,0) returns an Rz-complete

constraint system containing x:A and x:—.A for some individual variable x and some

concept symbol A .

Proof. Using theorem 4.3.2. and 4.4.2. I:

41

5 PSPACE - completeness of 21,6%

In this chapter we show that checking the consistency of MCM- concept descriptions is

PSPACE—complete. The idea behind our algorithm is, that it is not necessary to keep the

whole constraint system in memory. We define subsets - so-called RMGM -traces - of

Rz-complete constraint systems with the following property: If each of these R m-utacesis .

consistent, then the whole constraint system is consistent. While the size of an Rz-complete

constraint system can be exponential, the size of RMCM -traces is linear in the size of the

initial concept description.

Let S be a constraint system, Ra role symbol and xuan individual variable occurring in

S. We want to count the number of EIR—edges issuing from nodes X with x:X. We therefore

define

E-edgeR’SOt) := M Y I {x:X, X(EIR)Y} E S }II.

We also want to keep track of the maximal number of constraints n such that the "atmost -

rule doesn’t apply to {x:X, X(atmost N R)} s S for some concept variable X. If there is no

“atmost - restriction”, then the value oo is returned. We thus define

min {N l {x:X, X(atmost N R)} ; S for some X}

atmostR‚3(x) := if {x:X, X(atmost N R)} E S for some x

oo otherwise.

Consider an Rz-complete constraint system S containing an individual variable x with

a-edgeR‚s(x) > atmostR,5(x). Then we have '
{ s1 , X1(3R)Y, x:X2, XZGIR)Z, n, y:Y, y:Z} S S

for some concept variables X1, X2, Y, Z and some individual variable y, that is, the

constraint n is “distributed” to at least two 3R-edges from nodes X with x:X.

42

Figure 5.1. A constraint tree for the constraint system S = {x:X, X(atmost 2 R),

X(3R)Y1, Y1 E A, X(3R)Y2, Y2 E B, X(3R)Y3, Y3 E ' IA} .

Example 5.1.

Consider the constraint system S given by the tree in figure 5.1. Since annostR,S(x) = 2,

two constraints n , s are added to S , where y and z are new individual variables.

Since S-edgeKs(x) = 3, the following distributions are possible:

81 = S U {n , s} U {y:Y1, y:Y2, z:Y3} U {y:A, y:B, ZHA}

82 = S U {n, s} U {y:Y1, zzY2, y:Y3} U {y:A, z:B, y:——.A}

S3 = S U {n, s} U {yzY1, zzYz, z:Y3} U {y:A, z:B, z:—|A}

Note that S l , 82 and S3 are obtained from S by applications of the Rz-completion

rules. Since at least one of the constraint systems 81, $2 and 83, respectively, is

consistent, we know that S is consistent.

For the following we need the following definitions:

Let Y = { Y1, ..., Y“) be a set of concept variables and let m be a positive integer

with rn < n. We divide Y into 111 pairwise disjoint subsets 11:1, ..., nm , such that

1:1 U U 1cm = Y and ni at Q (l S i s m). The set {1:1, ..., rum] is called an

m-partition of [Y], ..., Yn].

Given a constraint system S and individual variables x and y occurring in S , y is

called a successor of x if S contains a constraint n.

43

Now we define completion rules, such that we obtain so-called RMac—traces for a

fresh constraint system. The idea behind the RMLM -traces is, that every individual

variable Occurring in an Rm—trace has at most one successor. We do this by restricting

the Rz-completion rules.

The Rm—trace rules consist of the —>._, - rule, the —>V - rule, the _); - rule, the

amt - rule and following three rules:

S —>T3 {y:Y, n} U S

. if x:X and X(3R)Y are in S ,

3'?dg°13,s(?‘) S annOStRsß),

there is no constraint xR’z in S , and y is a new individual variable.

S ")Tatleast [n] U S
if xzx, X(atleast N R) are in S ,

a-edgeR‚s(x) = 0,
there is no constraint xR’z in S, and y is a new individual variable.

S _)Tatmost S ,

if 3-edgeR,s(x) # n, 'atmostR,S(x) = m, n > 111,

{x:X1, XIGIR)Y1, ..., xzxn, X„(3R)Yn] ‘; S ,

{1:1, ..., arm} is an m-partition of {Y1, ..., Yu},

S’ e .S = { {XRYI] U {y1:Z IZe 1:1} U S ,

{n21 U {yzzz | Z 6 n2} U S, ...,

{nm} U {ym:Z lZe nm} U S} },

there is no constraint xR’z in S , and y] , ..., ym are new individual variables.

Let us now discuss the newly defined rules.

The—>13 - rule is a restriction of the —>3 - rule, such that the ‘9T3 - rule can be

applied to at most one existential edge at. every level. Hence every individual variable has

44

at most one successor.

The —)Tafleast - rule forces the -—> afleast - rule to be applied to S only, if

E-edgeR,s(x) = O for some x. Otherwise, if El-edgeRs (x) > O, the —"I‘EI - rule. applies to S

and there is no need to apply the ‘9atleast - rule.

Suppose E-edgeR,s(x) > atmostRS (x) = m for some individual variable x occurring

in S. Then the nondeterministic _)Tatmost - rule applies, adds the single constraint

n, and distributes it to at least one ER-edge. Consider the constraint system

U = UIS ’ | S ’e S} where S ’ ranges over all the possible constraint systems obtained with

a fixed m—partition. Then nR,U(x) = atmostR’U(x), and for every {x:X, X(E|R)Y} ; U

we have {n , y:Y} ; U for somey. Thus the aatmost - rule doesn’t apply to

{x:X, X(atmost N R)} E U and the —>3 - ruledoesn’t apply to {x:X, X(:'IR)Y} ; U for

any concept variable X.

Let T be a constraint system obtained from a fresh constraint system S by application

of Rm—trace rules. We call T an Rm—trace of S if no Rm-trace rule applies

to T.

Proposition 5.1. Let Tbe an R m-trace. Then:

a) If x occurs in T at level i, then every successor of x occurs at level i +1 .

b) Every individual variable occurring in T has at most one successor.

c) At every level , there occurs at most one individual variable in T.

d) If T contains the constraints x:X and y:X, then x = y (that is, every concept variable

has at most one individual variable associated with).

Proof.

. a), b) follow by definition of the rules.

0) follows from a) and b), since there is only one individual variable at level 0.

d) follows, since every concept variable has a unique level. I:!

45

Propsition 5.2. Let S be a fresh constraint system. The number of applications of

R yam—trace rules to S is bounded linearly in the size of S .

Proof. Follows from the fact that there is at most one individual variable x with xzx

for a concept variable X in an RJHam-trace of a fresh constraint system. El

Note that for a fresh constraint system there are finitely many R m—traces modulo

renaming of individual variables. In the following we show that we obtain an Rz-complete

constraint system by the union of finitely many R m-traces. Furthermore we will see

that it is possible to compute all R M-traces for a fresh constraint system such that at

most one R Jam-trace needs to be lcept in memory. Since the size of R film-traces is

bounded linearly in the size of the—fresh constraint system, polynomial space is needed.

The next example demonstrates that it is not necessary to take the union of all R MGM

-traces to obtain an Rz-complete constraint system.

Example 5.2.

Consider the constraint system S = {x:X, X E Y LI Z, Y E A, Z E B} . Using the RM‘

trace rules we obtain the following two R Memes:

1) T1: 5 u {x:Y, s } and
2) T2 = S U {x:Z, x:B}.

Since both T1 and T2 are RZ-complete constraint systems, it is sufficient to consider either

T1 or T2. We will say that T1 is an alternative trace of T2, since only one of both Rm-

traces is needed to obtain an Rg-complete constraint system.

Let T be an R film-trace containing constraints xzx, X E Y Ll Z, x:Y for some indivi-

dual variable x and some concept variables X, Y and Z. Then an Rm—trace T’ is called '

an alternative trace of T, if T’ contains constraints x:X, X E Y LI Z, x:Z. Let S be a

fresh constraint system and qgu be the set of the finitely many RMCM -traces modulo

46

renaming of S. A subset ‘1‘ of ‘Tall is called an Rflm-trace system of S, if for

every T 6 Tall either T or an alternative trace of T is in ‘1:

Proposition 5.3. Let ‘1‘ be an R MCM -trace system. Then S = U_{T / T e '17 is

Rz-complete.

Proof. Let ‘1‘ be an R yam-trace system. We will show that no Rz-completion rule

applies to S = U{T IT 6 T}.

Consider the —>3 - rule:

Assume that the —>3 — rule applies to S . Then xzx, X(EIR)Y are in S and n , y:Y are not

in 5 for any individual variable Y» __ . . _ __ _ . _ _
1) If El—edgeR’S (x) S atmostR‚5(x), then we obtain an Rm—trace T e ‘1‘ by applying

the "’13 - rule to x:X, X(EIR)Y and we have a contradiction.

2) If E-edgeR’SOt) > atmostR,s(x), then there exists an R mac-trace T e ‘1‘ containing

xzx, X(3R)Y, n, y:Y, because of the —>Tam°st — rule and we have a contradiction.

Thus our assumption is false and the —)3 - rule doesn’t apply to S .

Consider the aafleast - rule:

Suppose {x:X, X(atlcast N R)} E S .

1) If EI—edgeR’sOt) > 0, then {x:Y, Y(E|R)Z, s, z:Z} E S and nR’S(x) > 0.

2) If 3-edgeR,s(x) = 0, then the _)Tafleast - rule has applied to x:X, X(atleast N R)

adding n. Hence nR‚S(x) > 0.

. Thus the _)afleast - rule doesn’t apply to S.

Consider the —>atmost - rule:

If {x:X, X(atmost N R)] E S, then nR,s(x) S N because of the aTamOst - rule. Thus the

ammo“ - rule doesn’t apply to S.

It is easy to see that the other R2-comp1etion rules don’t apply to S . Thus no

RZ-completion rule applies to S and S is Rg-complete. El

47

Proposition 5.4. A constraint system S is consistent if and only if there exists an

Rm-trace system r1' of S, such that no T e ‘1' contains the constraints x:A and x:—.A

for any individual variable x and any concept symbol A .

Proof. Let ‘I be an R MCM -trace system of S , such that no R m-trace T e ‘1'

contains the constraints x:A and xz—nA for any individual variable x and any concept

symbol A. Suppose x:A or x:-—.A is in T for some concept symbol A. Then no T’e '1‘

(T ’;t T) contains constraints of the form x:B or x:-1B for any concept symbol B. Since no

T e ‘1‘ contains x:A and xzfiA, we know that S’ = U{T I T e ‘1‘] doesn’t contain x:A and

:::—‚A. The constraint system S’ is R„mc-complete (propOsition 5.3.) and hence S is

consistent. f , _ _ __ _ _. .. _ _ f

Now suppose every R m-trace system ‘T of S contains an R MGM—trace T, such

that x:A and x:—-A are in T for some individual variable x and some concept symbol A.

Then x:A and xz—IA are in S ’ and S is inconsistent. El

Figure 5.2. A constrainntree for the constraint system

S = [x:X, XGR)Y1, Y1 E A, X(VR)Y2, Y2(atmost 2 R), Y2(EIR)ZI, 21 E A, Y2(EJR)ZZ,

7/2 E B, Y2(3R)Z3, Z3 E -1A, Y2(3P)Z4, Z4 E B} .

48

a) @ b)

Figure 5.3. An Rm-n'ace system for the constraint system S. The B-edge from

node X to node Y is drawn in bold, if x:X, XGIR)Y, n, y:Y are in an R MGM-trace.

Example 5.3.

Figure 5—2- shows a consmttree forthe constraint system
S = {x:X, XGIR)Y1, Y1 E A, X(VR)Y2, Y2(atmost 2 R), Y2(3R)Zl, 21 E A,

Y2(EIR)ZQ, 22 E B, YZGR)Z3, Z3 E —.A‚ Y2(3P)Z4‚ Z4 E B}.

An Rm—trace system for S is shown in figure 5.3.

We now define the function MOM-Completion . The call yum-Completion (x,S)
computes up to renaming every Rm -trace of a fresh constraint system S with x as

individual root. If there exists an Rm -trace system ‘1‘ of S, such that no R MOM-trace

T e ‘1‘ contains the constraints x:A and x:——.A for any individual variable x and any

concept symbol A, then the call returns true , otherwise false. Thus the function

MGM—Completion yields true if and only if the constraint system S is consistent (see

proposition 5.4.). _ .

For the computation of RMCM -traces it is redundant to keep constraints of the form

n in memory, because x:X, X(*R)Y, y:Y, where * e {V, El] implies the existence of a

constraint n .

49

Function ALCM—Completion (x,S) =

if ({x:A‚ xz—uA} E S) V

' ({x:X, X(at1east N R), s, Y(atmost M R)} E S A N > M) V

({x:X, X(atmost O R), n} 9. S) (* 1 *)

then return false

else if { s ,XEA};S A x :AeS . 032*)

then MOM-Completion (x, { s} U S)

elseif{x:X,XEYLIZ}<_=.S A x:YeS A x :ZeS (*3ac)

then WCompletion (x, { s} U S) V MOM-Completion (x, {x:Z} U S)

else if {x:X, X(atleast N R)] E S A EI-edgeR’s(x) = 0 (a: 4*)

the“ Mcwkfion (y: {Y‘U ' 33:2, .Z(VR)U.} s S.} .u S).
else if [for all {x:X, X(EIR)Y} s S (* 5 *)

With (annostR,s(x) = 00) V (atmostR,S(x) 2 EI-edgeR,s(x)) the call

MCompletion (y, {y:Y} U [yzU I El{x:Z, Z(VR)U} E S} U S),

where y is a new individual variable, returns true ']

A [for all { s] , X1(EIR)Y1‚ xx“, xemYn} g s (* 6...)
with (atmostR,s(x) = m) A (El-edgeR,s(x) = n) A (m < n) the calls

MCompletion (yl, {y1:Z I Z e 1:1} U {yll E|{x:U, U(VR)V} E S} U S)

A A .

WCompletion (ym, {ymzz | Z e um} U {ysl El{x:U, U(VR)V] S S] U S),

where {11:1, ..., um} is an m-partition of [Y1, ...,Yn} and

yl , ..., ym are new individual variables, return true

then return true]

else return false

end MCompletion.

Condition (* l *) tests if the am“ — rule applies to S. If so, then S is an incon-

sistent Rm-trace and false is returned.

50

If condition (* 2 *) is satisfied, then the —>; - rule applies to S and we obtain a

recursive call with x and S U {x:A} as arguments.

Ifthe —->‚_‚ - rulc applies to {x:X, X E Y LI Z} S S , then S i s consistent ifand only if

either S U {x:Y} or S U {x:Z} is consistent. This is checked by condition (* 3 *) and

we obtain two recursive calls.

Condition (* 4 *) tests if the engem - rule applies to S. If so, then we add for

every {x:Z, Z(VR)U} L:. S the constraint yzU. Note that it is not necessary to add

constraints of the form n . Thus, the constraint system given as argument to the

recursive call is obtained from S by application of the _)Tafleast - rule and the "’V - rule

and doesn’t contain constraints of the form n.

» If the _?13 ' “11° ?PPlies ws , th“! Gondifion. „(* 5 *) „ ‚is satisfied and for every
{x:X, X(EIR)Y] s S with (atmostR’3(x) = oa) or (atmostR‚s(x) z 3-edgeR’s(x)), we

have to check whether the recursive call

Mali-Completion (y, {y:Y} U {y:U l El{x:Z, Z(VR)U.} <; S} U S)

returns true . We have to evaluate 11 further recursive calls, where n = EI—edgeR,s(x),

which are put on a stack. Constraints of the form n are not added.

Condition (* 6 *) treats the case, that the "’Tatmost — rule applies to S. If

atmostR’S(x) = m and 3-edgeR,s(x) = n and m < n for some role symbol R, then we

have to consider all m—partitions of {Y1, ...,Yn]. To ease our notation we assume that an

m-partition of {Y1, ...,Yn} is chosen nondeterministically. At this point the (linear space-)

algorithm of proposition 5.5. is inserted and all m—partitions of { Y1, ...,Yn} are

enumerated. If there exists at least one m-partition of [Y] , ..., Yu}, such that we obtain an

consistent Rm-trace system, then the call returns true .

Now let us apply the function Mat-Completion to the constraint system of

example 5.3. We obtain the call

MOM-Completion (x, S) =

(* 1*) MCM-Completion (y, {y:Yl, y:Y2] U S).

51

The —)T3 — rule applies to x:X‚ XGR)Y1 and the constraint y:Y1 is' added. Further-

more, because of x:X, X(VR)Y2, XGR)Y1 the constraint y:Y2 is added. Now the

ElR-edge and the VR-edge from node X are completed and the next recursive call (* 1 *)

is evaluated.

MOM-Completion (y, {yzY1, y:Y2} U S) =

(* 2*) MCM-Completion (y, {y:A} U {y:Yl, y:Y2} U S).

The constraints y:A is added, because of y:Y1, Y1 E A, and we obtain the recursive

call (* 2*) . Let S1 = {y:A} U {y:Yl, y:Y2} U S). Then:

MmECompletion (y, 81) =

(* 3*) ([MCM-Comletion (z, {z:Zl, 2:23} U SI) A

(* 4*) _”LQGCOWPWOMH;{1123935 _ __ . . .] v
(* 5 *) [MOM—Completion (2, {2:21, 2:22} U Sl) A

(* 6 *) MGM-Completion (u, {uzZ3} U 81)] v

(* 7 *) [MCompletion (2, {2:21} U SI) A

(* 8 *) Mac-Completion (u, {u:ZQ., u:23} U 81)]) A

(* 9 *) MCEC—Completion'w, {s4} U 81)

Because E-edgeR’sKy) = 3 and atmostR,51(y) = 2, the erfand“ - rule applies to

SI , and we have to consider all 2-partitions of [ZD Z2, Z3] . Further below we will see

that there exists a linear space algorithm that enumerates all m-partitions of a finite set. In

this example we assume that all 2-partitions of [Z], ZZ, 23} are simultaneously put on the

stack. This is done by the call (* 3 *) , ..., (* 8 *) . If there exists at least one 2-partition

(that i s , a distribution of s , xRu to the three EIR-edges), such that we obtain an

Rz-completc constraint system not containing the constraints x:A and xz—uA, then S in

consistent. Furthermore, the "T3 - rule applies to S1 and we obtain the call (* 9 *). Note

that the recursive calls are put on a stack. Now the call (* 3 *) is taken from the stack and

is evaluated. Then:

52

(wk 3 wk) mall-Completion (z, {z:Zl, z:Z3_} U 81) =

MCompletion (z, [z:A} U {2:21, 2:23} U 81) =

ÄLCM-Complerion (z, {zz—1A} U {z:A, zzzl, 2:23} U 81) = false .

Let S2 = {z:Zl, z:Z3} U 81. The a; - rule applies to S2 and we obtain a constraint

system containing z:A, z:—tA. Thus the call (wk 3 wk) is evaluated to false and there is no

need to evaluate the call (wk 4 wk) . Now the call (wk 5 wk) is taken from the stack. Then:

(it 5 wk) MGM-Completion (z, {_zzzl, 2:22} U SI) =

film-Completion (z, {z:A} U { 2:21, 2:22} U 81) =

WCompletion (z, {z:B} U {z:A, 2:21, 2:22] U SI) = true .

Let S3 = [z:B, z:A, 2:21, 2:22} U 81. Then no RJam-trace rule applies to S3. Since

the constraint system S3 doesn’t contain constraints of the form x:A and _x;-—.A, the call
returns true. Note that, if we add “enoug ” constraints of the form n to S3, then we

obtain the Ram—trace of S, that is shown in figure 5.3.a. Similarly the call (wk 6 wk)

evaluates to true. Thus we have found a “consistent” distribution of s, xRu and need

not to evaluate the calls (wk 7 wk) and (wk 8 wk) . Finally the call (wk 9 wk) evaluates to true .

Thus the call MCompletion (x, S) returns true and S is consistent.

If we stored all m-partitionsof a finite set simultaneously on a stack, then we would

- need exponential space. Note that
n

Z 1Il m-partition of {1,2, ..., n}ll 2 211-1 .
m= _

The algorithm NEXEQU [Nijenhuis/Wilf, 1975, page 81-85] enumerates all parti-

tions (that is , all i-partitions for i 2 1) of a finite set. Furthermore, the algorithm

needs linear space in the size of the input.

Proposition 5.5. Enumerating all i-partitions of a finite set can be done with linear

space.

Proof. By modifying the algorithm NEXEQU. n

53

Now let us consider the complexity of the function MOM-Completion . The maximal

recursion depth is the height of the given constraint tree. The function can be executed

such that at most one R MCM —trace needs to be kept in memory. Furthermore, for every

level in an R MCM -trace we have to administrate at most one partition which needs linear

space in the size of the input constraint system. Hence the function ALMCompletion

needs at most quadratic space in the size of the input constraint system.

Theorem 5.6. Checking consistency of M- concept descriptions can be done with

quadratic space.

Proof. Let C be an M“ concept description. Then C is transformed in linear

time into a fresh constraint system S . Let x be the individual root of S . The call

WCompletion (x,S) yields true if S is consistent and false otherwise. Furthermore,

the function film-Completion needs at most quadratic space in the size of S. tl

Theorem 5.7. Checking consistency of MGM - concept descriptions is PSPACE-

complete.

Proof. The language fllLC is a proper sublanguage of MCM. Checking consisten-

cy of flLC - concept descriptions is PSPACE-complete [Schmidt-SchauB/Smolka 88].

With theorem 5.6. we conclude that checking consistency of m- concept descrip-

tions is PSPACE-complete. ‚ El

54

6 Role hierarchies

It was assumed by the definition of the languages flLCand MCM, that there is no further

information about roles. We now define dependencies between roles and investigate their

consequences for the consistency checking algorithm of the languages M and m.

The idea is to model the roleset difierentiatian in KL-ONE: A roleset differentiates

another when the former denotes a subrelation of the relation denoted by the latter

[Brachman/Schmolze 1985].

One possibility to model the roleset difi‘erentiation is the introduction of the role-

forming Operator androle With Ehe followmg semanncs
1[(androle R1, ..., Rn)] = { (a,b) 6 mix EDI | (a,b) e [[Rl], ..., (a,b) e][Rn] },

where R1, ..., Rn are role symbols. In BACK [Luck/Nebel/Peltason/Schmiedel 1987] the

androle-operator is implemented in a restricted version: Only two arguments are permitted,

and the second argument appears only in "other androle expressions with the same first

argument.

In this chapter we pursue another concept: A role hierarchy is a pair (a, S) such

that :R, is a set of role symbols and S is a partial order on R,. By abuse of notation we will

' also refer to the role hierarchy by the letter R. Let K. be a role hierarchy. An interpretation

I is an Lit-interpretation if (a,b) e][P] implies (a,b) e IIR] for P s R in K.. An

Ryinterpretation i s an &model for a concept description C if][C] is nonempty. A

concept description is x-consistent if it has an Eli-model. Furthermore we define

flcsubsumption and K—equivalence as one would expect.

The languages MC and MCM combined with the definition of role hierarchies are

called m and m, respectively.

55

The androle concept and the role hierarchy concept are very similar. Differences occur

since (androle R P) defines a new role, which is exactly the intersection of the roles P and

R. On the other hand, if Q 5 R and "Q 5 P then I[Q] is a subset of the intersection of][R]

and][P] for every &model I.

6 .1 . Simplification and unfolding of 141.691 and MONK - concept

descriptions

Let C be an Mer flLLCm- concept description. Using the simplification rules of

Chapter 2 We. °b@m.a...§i¥9P1? 0°99§PF 995.91'ipti99_C7+....B¢f9rc the concept „description C’ is
transformed into a constraint system we need the following definitions:

Let :R, be a role hierarchy. An I—assignment O t i s an lat-assignment i f

(oc(x),oc(y)) e I[P] implies (0t(x),0t(y)) e 1[R] for P s R in K. ASS fx, is the set of all

[gt-assignments. An LIL-interpretation I is an “R'-model for a constraint system S if

there exists an Ixassignment oz e ASSIx such that ix e][S]. A constraint system is

K-consistent if it has an £;model.

The next proposition shows the relationship between simple m(m) - con-

cept descriptions and constraint systems.

Proposition 6.1.1. Let x be an individual variable and X be a concept variable. A

simple MMLCMU - concept description C is :R;consistent if and only if the constraint

system {x:X, X E C} is flit-consistent.

Proof. Similar to the proof of proposition 3.1. _EI

56

Using the unfolding rules of chapter 3, the constraint system {x:X, X E C} is trans-

formed into a simple constraint system S preserving &consistency and fli—inconsistency.

For the completion of the simple constraint system S we need the following completion

rule:

Let S be a constraint system. Then:

S _)S {XRy} U S

i f y i s inS ,PSR,andy i snot inS .

The next proposition shows that the application of the “’s - rule preserves ge,-con-

sistency and R—inconsistency.

Proposition 6.1.2. Let S be a constraint system. If the constraint xPy is in S and

P s R, then S is &consistent if and only if S U {nJ is K—consistent.

Proof. Let S be a constraint system containing xPy and let P s R.

If S is &consistent, then there exists an [gt-assignment on with (0t(x),0t(y)) e I[P]

and (0t(x),0t(y)) e I[P] implies (ot(x),0t(y)) e I[R]. Hence S U {n} is fli-consistent.

If S is not fleconsistent, then I[S] = @ and I[S'] = I[S] n I[n] = 9. Thus 8’ is not

fi-consistent. E]

6.2. Consistency checking of :71c - concept descriptions

In the following we give rules to complete constraint systems obtained from MCK-

concept descriptions.

57

The R „ Lax-completion rules consist of the -—>v - rule, the -—)3 - rule, the

—->L,-ru1e,the-—>E-ruleandthe—>S-rule.

A constraint system is R mcomplete if no R mcompletion rule applies to it.

Proposition 6.2.1. Let S and S ’be constraint systems. Then:

a) If S ’ is obtained from S by application of the (deterministic) “"V - rule, —>_:, - rule,

_); - rule or _); - rule, then S is tit-consistent if and only if S ’ is iii-consistent.

b) If S ’ is obtained from S by application of the (nondetenninistic) ->,_, - rule, then

S is 9t:consistent if S ’ is fleconsistent. Furthermore, there is a choice for S ’ such that

S’ is R:consistent if and only if S is LIL-consistent.

Proof. In proposition 4.1. 1 . it was shown, that the application of the —>V - rule, the

—)3 - rule, the _»; - rule and the —>._, - rule preserve consistency and inconsistency.

Furthermore, these rules preserve LIL-consistency and fi-inconsistency. In proposition

6.1.2. "we proved, that the application of the —)5 - rule preserves flit-consistency and

:R:inconsistency. El

Proposition 6.2.2. An R z Lat-complete constraint system is Qinconsistent if and

only if it contains for some x e V1 and some concept symbol A, the constraints x:A and

x:—'.A.

Proof. "=>": Let S be an R‚um-complete constraint system not containing the

constraints x:A and xzfiA for any x e VI and any concept symbol A. Consider the standard

interpretation I_, and the standard I-assignment oz, for the constraint system S. In

proposition 4.2.1. it was shown that u se I‚[S]. Furthermore (a‚(x), oc‚(y)) e I[P]

implies (a‚(x), usw)) e 1[R] for P S. R, because of the —>S - rule. Hence a, e ASSIx

and the constraint system S is fli-consistent.

58 '

"<=": As in proposition 4.2.1. D

In the following we will show how to compute an R„mx-complete constraint system

for a fresh constraint system.

Theorem 6.2.3. Let S be a constraint system obtained from an 54c - concept

description and let !(be a role hierarchy. Then in at most exponentially many propagation

steps depending on the size of S and R, (where the size of {Us the number of elements in

ER) one can nondeterministically compute an R mcomplete constraint system S’, such

that S is tit-consistent if and only if S ’ is reconsistent.

Proof. Consider the function Completion from chapter 4.1. There we showed that

the call Completion(S,0) computes nondeterministically an R1 -comp1ete constraint system

for a constraint system S given as argument. We modify this function in the following

manner: Suppose Completion(S,i) is called. Let Si be the set of all constraints at level i.

Then the constraint system Si-complete is obtained from S; by
Si =>u Su =>E| SE! =>S SS =’V SV =>: si-complete-

Now we will show that the constraint system si-complete is R momplete at level i; that

is, no R Mcompletion rule applies to constraints at level i in Si-complete:

Consider the ->:.: - rule, the —>3 - rule and the _); - rule: _

Constraints of the form x:X, which have been introduced by the —->3 - rule and the

—>V - rule, are at level i+1. If the constraint x:X is at level i in Si-complete’ then x:X

is already in Su. Therefore the —>„ - rule, the ~93 - rule and the "’s - rule don’t apply

to Si-complete.

Consider the ‘95 - rule:

Since the -->V - rule and the —>E - rule, which are applied after the —>$ - rule, don’t '

introduce constraints of the form n, the "’s - rule doesn’t apply to Si—complete-

59

Consider the —>v - rule:

Since the —>; - rule, which is applied after the —-)V - rule, doesn’t introduce constraints

of the form x:X and n, the '—>V — rule doesn’t apply to Si-complete.

Now we have shown that no R Mcompletion rule applies to constraints at level i in

Sifiomplete, and hence S i-complete is complete at level i.

Since a constraint system S with IISII = m doesn’t contain constraints at level M with

M 2 m, after finitely many iterations the modified function terminates and computes the

R „complete constraint system 8‘“. Note that the —>5 - rule‘applies at most Ilfll * "Sal!

times. Thus at most lll * IlSall constraints are added. As in theorem 4.1.4. one can

consmt a___P°1yn0mia1 P SUChthat ___|__|__S__m|| S49?” * _P_(m)_‚„and we conclude that in at
most exponentially many propagation steps one can nondeterministically compute an

R mcomplete consU'aint system. CI

6.3. PSPACE - completeness of flLCK,

In the following we will prove that checking consistency of Mai-concept descriptions is

PSPACE-complete. The idea is that an R Mat-complete constraint system can be obtained

as the union of so-called RMGR-traces. If none of these Rflex-traces contains the

constraints s and :::—‚A, then the R„La-complete constraint system doesn’t contain the

constraints x:A and x:—-A. While the size of an RMcomplete constraint system can be

exponential, the size of Rmtraces is linear in the size of the initial concept description

and the role hierarchy.

First we define completion rules, such that we obtain so-called Rflat-traces for a

fresh constraint system. R mtraces have the property that every individual variable

occurring in an Rm-U'ace has at most one successor.

60

The Rmtrace rules consist of the —->._‚ - rule, the ">; - rule and the following

two rules:

S —>T3 {y:Y, n} U S

if x:X and X(EIR)Y are in S , there is no constraint xR’z in S , and y is a new

individual variable.

S —)TV {y:Y} U S

if x:X, xPy, X(VR)Y are in S , P s R, and y:Y is not in S .

Let T be a constraint system obtained from a fresh constraint system S by application

of Rtce rules. We call T an Rmtrace of S, if no Rmtrace rule applies to T.

Proposition 6.3.1. Let T be an RMat-trace. Then:

a) "If x occurs at level i, then eve successor of x occurs at level i+1.

b) Every individual variable occurring in T has at most one successor.

c) At every level, there occurs at most one individual variable in T.

d) If T contains the constraints x:X and y:X, then x = y (that is. every concept variable

has at most one individual variable associated with).

Proof. As in proposition 5.1. El

Proposition 6.3.2. Let S be a fresh constraint system and xbe a role hierarchy.

The number of applications of R mtrace rules to S is bounded linearly in the size of S

andflE,

Proof. Follows from the fact that for a concept variable X there is at most one

individual variable x with x:X inan Rmaace of a fresh constraint system. El

61

Let T be an Rama-trace containing constraints x:X, X E Y u Z, x:Y for some

individual variable x and some concept variables X, Y and Z. Then an R „mu-acc T’ is

called an alternative trace of T, if T’ contains constraints x:X, X E Y u Z, x:Z. Let S

be a fresh constraint system and '1511 be the set of the finitely many R mtraces modulo

renaming of S. A subset ‘T of Tallis called an Rmat-trace system of S, if for every

T e 9;,“ either T or an alternative trace of T is in ‘IZ

Proposition 6.3.3. Let ‘! be an R flax-trace system and let To = U {T / T e '1}.

Then the constraint system S = To U { n ly 6 T0 , P S R} is R„(m-complete.

_ ' Pr00f- . _, Let ‘1' be anRzLarflaccsystemandlct To -—_- LAT J T e 31}. We will show
that no Rmcompletion rule applies to S = To U { n | xPy e To, P S R}.

Consider the —>3 - rule:

Assume that the -—>3 - rule applies to S. Then x:X, X(EIR)Y are in S and n is not in S

for any individual variable y. But then we obtain a trace T e ‘1‘ by applying the "’13 - rule

to-x:X, XGR)Y and we have a Contradiction. Thus our assumptioniis false and the —>3 -

rule doesn’t apply to S.

Consider the -—)V - rule:

Assume that the —>V - rule applies to S . Then x:X, n, X(VR)Y are in S and y:Y is not

in S . Two cases are possible.

1) If n is in To, then x:Z, ZGIR)U are in To. Let T e ‘1' be an R mtrace containing

x:Z, Z(E|R)U, n . Note that such an R mtrace exists. Then y:Y is in T, because of the

—>-I-v - rule. Hence y:Y is in S and we have a contradiction.

2) If n is not in To, then x:Z, Z(3P)U, xPu are in To and P s R. Then there exists an

RMGR-trace T e ‘1‘ containing x:Z, Z(E|R)U, xPu. But then y:Y e T, because of the

“’Tv - rule. Hence y:Y e S, and we have a. contradiction.

Thus our assumption is false and the —>v - rule doesn’t apply to S .

It is easy to see that the -—>‚_‚ - rule and the ">; - rule don’t apply to S . Furthermore,

62

the —>5 - rule doesn’t apply to S because of construction of the constraint system S. Thus

no R mcompletion rule applies to S and S is R mcomplete. I:

Proposition 6.3.4. A constraint system S is “&consistent if and only if there exists an

R MGR-trace system 'I' of S, such that no T e ‘1’ contains the constraints x:A and x:—.A

for any individual variable x and any concept symbol A.

Proof. Let ‘T be an RMCK-trace system of S, such that no RflLCR-trace T e T

contains the constraints x:A and x:—-.A for any individual variable x and any concept

symbol A. Suppose x:A or xz—uA is in T for some concept symbol A. Then no Te ‘1'

(T ' ? T) contains constraintspithc. fOMXB .91 X13 „_fQI any concept symbol B. Since no

Te ‘1‘ contains x:A and xz-aA, we know that To = U{T I T e T} doesn’t contain x:A and

xz—uA. Then To u { n | xPy e To , P S. R} is RMax-complete (proposition 6.3.3.) and

hence S is !(:consiStent. .

Now suppose every R mtrace system 9" of S contains an R mtrace T, such that

x:A and x:—:A are in T for some individual variable x and some concept symbol A. Then

x:A and x:-1A are in To and S is fit-inconsistent. El

Figure 6.3.1. A constraint tree for the fresh constraint system

S = {x:X, X(E|P)Y1, Y1 E A, X(3R)Y2, Y2 E A, X(VR)Y3, Y3(3P)Zl, 21 E A,

Y3(E|R)Zz, Z2 E A, Y3(VR)Zg, 23 E A} with K = {P S P, R S R, P S R}.

63

[a) @ b) @ C) @ d) @ [

@@@ 935% 332) @@‘29

Figure 6.3.2. Rflat-traces for the constraint system S. The El-edge from node X to

node Y is drawn in bold, if the —>T3 - rule has applied to x:X, XGIR)Y.

Example 6 .3 .1 .

Consider theconS'traint tree'in figure ”6.3.1. TheRMtraces fer this constraint tree are

shown in figure 6.3.2.

We now define the function MGR-Completion . The call ALCK-Completionaß)

computes up to renaming every RflLCK-trace of a fresh constraint system S with x as

individual root. If there exists an RMax-trace system ‘1‘ of S, such that no Rmat-trace

T e ‘T contains the constraints Ix :A and x:—-.A for any individual variable x and any

. concept symbol A, then the call returnstrue, otherwise false. Thus the function

flat-Completion yields true if and only if the constraint system S is consistent (see

proposition 6.3.4.).

As mentioned before, it is not necessary to keep constraints of the form n in

memory.

64

Function MGR-Completion (x,S) =

if {x:A, xz-wA} E S then return false" . (* 1*)

e l s e i f{x :X ,XE A} s S A x :Ae Sec 2*)

then ÄLCR-Completion (x, {x:A} U S)

e l se i f{x :X ,XEYLIZ}ES A seS A x:Zs£S (*3*)

then mat-Completion (x, {x:Y] U S) V mCompletion (x, {x:Z} U S)

else if for all {x:X, xepm g s the call ' (* 4 *)
Jami-Completion (y, {yzY} U {y:U | 3{x:Z, Z(VR)U} E S, P S R] U S),

where y is a new individual variable, returns true

then return true

else return false

end MCompletion.

Condition (* 1 *) tests if S is an Rzinconsistent constraint system.

If condition (* 2 *) is satisfied, then the ">; — rule applies to S and we obtain a

recursive call with x and S U {x:A} as arguments.

If the —->‚_‚ - rule applies to {x:X, X E Y LI Z} 9 S, then S is .‘R:consistent if and only if

either S U {x:Y] or S U {x:Z} is LIE-consistent . This is checked by condition (* 3 *) and

we obtain two recursive calls.

If the —’Ta - rule applies to S , then condition (* 4 *) is satisfied and for every {x:X,

X(E|P)Y} E S , we have to check whether the recursive call

flax-Completion (y, {y:Y} U {y:U I EI[x:Z, Z(VR)U} E S, P S R} U S)

returns true . Note that it is not necessary to add constraints of the form n. Thus the

constraint system given as argument to the recursive call is obtained from S by application

of the “>T3 - rule, the -—>V - rule and the —>5 — rule. We have to evaluate 11 further

recursive calls, where n = EI-edgeR,s(x), which are put on a stack.

65

Now let us apply the function mCompletion to the constraint system of example

6.3.1. We obtain the following evaluations:

fiat-Completion (x, S) =

(*1*) MCOMPletion (Y1, {Yl i a Y11Y3} U S) A
($22k) MGR-Completion (yg, {y2:Y2, y2:Y3} U S).

Since the _>TEI - rule applies to xzx, XGP)Y1 and x:X, X(EIR)Y2 , the recursive

calls (* 1*) and (*2*) are put on a stack. Consider the call (#11:) : The constraint y1:Y1

is added to S because {x:X, X(3P)Y1} E S , and y1:Y3 is added to S because {x:X,

X(EIP)Y1, X(VR)Y3} E S and P s R. Now the call (#11:) is taken from the stack and is

evaluated. Let S1 = [yl1‚ y1:Y3] U S. Then:

mCompletion (yl, 81) =_ .

(*3ak) MCompletion (yl, {yl l U SI) =

(Man) mCompletion (zl, {21:21, 21:23} U [y1:A} U SI) A

(16*) mCompletion (zZ, {z2:ZQ, 22:23} U [y1:A} U SI).

Since {y1:Y1, Y1 E A} ; SI, y1:A is added and we obtain the call (*3-k). Because

there are two B-edges from node Y3, the recursive calls (*4*) and (* 5*) are put on a

stack. Now (#44:) is taken from the stack. Let 82 = {21:21, 21:23] U {y1:A} U Sl.

Then:

mCompletion (zl, SZ) =

film-Completion (zl, {z1:A} U SZ) = true.

First the _); - rule is applied to 82 adding zl. Let S3 = {zl} U 32. Then no

Rmtrace rule applies to S3. Since S3 doesn’t contain the constraints x:A and xz—uA for

any individual variable x and any concept symbol A, true is returned. Note, if we add

“enough” constraints of the form n to S3, then we obtain an RMactrace of S. Then
(* 5*) is taken from the stack and evualutes to true. Thus the call (* 1*) returns true.

Similarly the call (#24:) returns true, and the call Mali-Completion (x, S) evaluates to.

true. Thus the constraint system S is consistent.

66

Now we consider the complexity of the function MEL-Completion _. The maximal

recursion depth i s the height of the given constraint system. The function

mat—Completion 'can be executed such that, besides some control information, at most

one R”(x-trace needs to be kept in memory. Hence the function MGR-Completion

needs at most linear space in the size of the input constraint system and the role hierarchy.

Theorem 6.3.5. Checking Q-consisnency of mat—concept descriptions can be done

with linear space.

Proof. Let C be an film-concept description. Then C transformed in linear time

into a fresh constraint system 3- F?? _¥_b¢_ the „individual root of S- The call
MCompletion (x, S) yields true if S is flt-consistent and false otherwise. Further- .

more, the function MCompletion needs at most linear space in the size of S and at. El

Theorem 6.3.6. Checking ficonsistency of .flLCR-concept descriptions is PSPACE-

complete.

Proof. Since fllLCis a proper sublanguage of m and the fact, that checking con-

'sistency of film-Concept descriptions is PSPACE-complete [Schmidt-SchauB/Smolka 88]

we know that checking seconsistency of Mai-concept descriptions is PSPACB-hard.

With theorem 6.3.5. we conclude that checking fleconsistency of flLCR-concept

descriptions is PSPACE-complete. I:

6.4. Consistency checking of filLCMR, - concept descriptions

In the first part of this chapter we defined the language MR, that is the language MC

amalgamated with role hierarchies. In 6.3. we have shown that checking the consistency

67

of m- concept descritions is PSPACE-complete. We now investigate the language

150%, that is the language }?c supplemented by number restrictions and role

hierarchies. We give rules to complete constraint systems obtained from W— concept

descriptions. Since an algorithm applying these rules needs exponential space, we leave

the reader at this point with an open problem: does there exist a polynomial space

algorithm for checking consistency of Mflt- concept descriptions?

The problem of combining number restrictions and role hierarchies is quite

interesting. Nebel [88] shows that checking subsumption in :}‘L’ extended either by

number restrictions or by the androle operator (an operator to create new roles by

conjoining them - comparable to role hierarchies) can be done in polynomial time, whereas

ff, extended simultaneouSly by number rcsfi'ictions and the. androle Operator is NP-hard
in the strong sense, that is, it is independent in which way the numbers are coded.

We obtain the R„Lam-completion rules from the RMGR-completion rules by

adding following three rules. Let S be a constraint system. Then:

S "’atleast {XRY} U 3
if x:X, X(atleast N R) are in S, nR‚s(x) < N, and y is a new individual

variable not occurring in S

S aamost {y <— 2} S

if x:X, X(atmost N R), n , s are in S with nR’S(x) > N, and

whenever s , Y(atle_ast M P), xPy, xPz are in S , P _<_ R, then nP,S (x) > M.

S acne, {x:A, x:—.A}

if x:X, X(atmost 0 R), n are in S or

if x:X, X(atlcast N P), s , Y(atmost M R) are in S , N > M, and P s R.

68

A constraint system is Rmcomplete if no Rmam-completion rule applies to

it.

The ")afleast - rule and the 46m - rule are obvious. The following example illustrates

Example . 6 .4 .1 .

Consider the constraint system

S = {x:X, X(atmost 2 R), X(atleast 2 P), X(atleast l Q), X(VP)Y‚ Y E A, X(VQ)Z,

Z; —A} andtherolehierarchy R={ P SP , QSQ‚R SR, PSR, QSR }.

A constraint tree for S is shown in figure 6.4.1. We obtain the constraint system S’ by

applications of the +3163“ - rule and the —>5 - rule:
8’ = S u {xPy1‚xPyz‚ xQz} U [n1 .nz ‚ s }

If we use either the substitution {y l e— y2}S’ or {yz (— y1}S', then we obtain follo-

wing infinite chain of completion steps:

8’ = S U {xPy1, xPy2‚ xQz} U {n1 , nz, s]
Amos. {Y2 '<—- mS' = s u txPyl. XQz} u {n1 . s }

“’afleast S U {XPYb xPy2‚ xQz} U {KRYIa XRZ}

“’s S U {XPYb XPY2‚ XQZ} U {XRYb XRYz» XRZ}

atmost 2 R

Figure 6.4.1. A constraint tree for the constraint system S.

69

Otherwise with the ammo“ - rule of the R Wcompletion rules we get a substitution

{yz (— z} and obtain
8 ' = s u {xPy1‚ xPy2.xQz} u {n1 .n2 . s}

“"atmost {3’2 (_ Z]S’ = S U {XPYb XPZ: XQZ} U [XRYIa XRZL

and the —>afleast - rule does’t apply.

Proposition 6.4.1. Let S and S ’ be constraint systems. Then:

a) If S ’ is obtained from S by application of the (deterministic) —->V - rule—)3 - rule,
»; - rule, added“ - rule, emo, - rule or —->< - rule, then S is Rgconsistent if and

only if S ’ is K—consistent.

b) If S ' is obtained from 5 by QPPÜCGÜO" „effhe (nondeterministic) —_>„ - rule or

60mm - rule, then S is ‘R:consistent if S’is deconsistent. Furthermore there is a

choice for S such that S ’ is x-consistent if and only if S is aficonsistent.

Proof. Follows from propositions 4.1.1. and 6.1.2. :1

Proposition 6.4.2. An R mam-complete constraint system is aft-inconsistent if and

only if it contains for some x 5 VI and some "concept symbol A, the constraints x:A and

x:—|A.

Proof. The proof is similar to the proofs in proposition 4.2.1. and 6.2.2. El

Theorem 6.4.3. Let S be a constraint system obtained from an Mm- concept

description. Then in at most exponentially many propagation steps depending on the size

of S and a one can nondetenninistically compute an R Wcomplete constraint system

S ’, such that S is &consistent if and only if S ’ is LIL-consistent.

70

Proof. Consider the function Completion from chapter 4.1. There we showed that

the call Completion(S‚0) computes nondeterministically an R1 -complete constraint system

for the constraint system given as argument. We modify this function in the following

manner: Suppose Completion(S‚i) is called. Let Si be the set of all constraints at level i.

The constraint system Sifiomplete is obtained from Si by

Si =’u Su =>El SE! gatleast Satleast =’5 SS =>V SV =>; SE =‘i’error Serror

="almost Si—complete°

Now we will show that the constraint system Si—complete is RMam-complete at level i;

that is, no RWcompletion rule applies to constraints at level i in Si—complete:

Consider the —->„ - rule, the —>3 - rule and the—>5 - rule:

Constraints of the form x:X, which havebeen introduced by the -—>3 - rule and the

—)V - rule, are at level i+1. If the constraint x:X is at level i in Si-complete: then x:X is

already in S._‚. Therefore the —>‚_‚ - rule, the —>3 - rule and the _); - rule don’t apply to

Si—complete-

Consider the —>5 - rule:

Since the —>v - rule, the “>; - rule, the —)error - rule, and the —)atmost - rule, which-are

applied after the —>5 - rule, don’t introduce constraints of the form n, the—>3 - rule

doesn’t apply to Si—complete-

Consider the —->v — rule:

Since the ">; — rule, the am, - rule and the "atmost - rule, which are applied after the

—>V - rule, don’t introduce constraints of the form x:X and n, the av - rule doesn’t

apply to Si—complete'

Consider the aafleast — rule:

Assume that the aafleast - rule applies to Si—complete- Then

{x:X, X(atlcast N R)} <; S i-complete and N > "{ y | n e S i-completei'l- Since

N = "{ y | n e Saumt }" after application of the aafleast - fine, either
a) {x:Y, Y(atmost M R)} s; Si-complete with N > M,

that is, only the first part of the —->atmost - rule has been satisfied or

71

b) {x:Z, Z(atmost M P), xPy, xPz} <; S; with IIP’S(X) > M and

[x:X, X(atleast N R), n, s } f.: S; with nR,s(x) = N and R S P,

that is, both parts of the —>atmost - rule have been satisfied.

Note that in the first case the -—>em‚r - rule would have applied to S; and thus we have a

contradiction. In the second case we know that the aatmost - rule has applied to

[x:Z, Z(atmost M P), xPy, xPz} E 8; although the condition for applying the

aatmost - rule to 8;, has not been satisfied. Thus our assumption is false and the

eafleast - rule doesn’t apply to Simmplete.

Now we have shown that no R Wcompletion rule applies to constraints at level i

in Si-complete’ and hence Si—complete is complete at level i.

Note that a 00113t .SXSFQIDS With “S ." „= m doesn"t_contain constraints at level M

with M 2 m. Thus after finitely many iterations the modified function terminates and

computes the R mam—complete constraint system Sm. Combining the estimates in the

proofs of theorems 4.3.3. and 6.2.3. one can construct a polynomial p , such that

llSmll S e(m+1) "' PW), and we conclude that in at most exponentially many propagation

steps one can nondeterministically compute an R Weomplete constraint system. El

Why is it difficult to find a polynomial space algorithm for the problem of checking

seconsistency of MONR- concept descriptions? In chapter 5 we proved that checking

consistency of m- concept descriptions is in PSPACE. There we used the following

fact: Let S be a constraint system containing the constraints x:X and X(atleast N R). We

showed, that it is not necessary to introduce N new constraints of the form nI , ...,

nN, but it is sufficient to add the single constraint n. The following example

demonstrates that this “tric ” doesn’t work here:

72

Example 6 .4 .2 .

Consider the constraint system

s = {s , X(atmost 2 R), X(at1east 2 P), X(atlcast 1 Q), X(VP)Y, Y E A, X(VQ)Z,

ZE -\A} andthcrolehierarchy 9Q: {PSP,QSQ,RSR,PSR, Q_<_R} of

example 6.4.1.

Through the application of RWcompletion rules we obtain following constraint

systems:

S —')afleast S U {xPyl}

"N S U {KPYb YIIY}

—>; S U {KPYb yliY» YIIA}
_)3fl638t S U {xPy1, y-l, yl, xPyz}

->v S U {KPY1‚Y12Y‚ Y1 =A, xPyz‚ yz=Yl
">; S U {xPyp ye‚ Y1=A‚xPyz‚ Y2=Y, yz=Al

-—>aueasc S U {XPYb yl=Y. WA. xPyz, yz=Y‚ yz=A‚ xQz}

“"V S U {xPy1, y1:Y, y1:A, xPyz, y2:Y, 2:A, xQz, z:Z}

—>= S U {xPy1, yl, y1:A, xPy2, yzzY, yzzA, xQz, z:Z, zz—uA] = S '

->PsR S ' U {KRY1}

—>PSR S ' U [nb KRY2}

—->p5R S’ U {n1 , n2‚ s} : S"

Because [x:X, X(atmost 2 Q)} E S” , we have to consider the following

substitutions:

i) S" _’atmost {3’1 (— z}S”
ii) S" am... {Y2 +— z}S"
iii) S" —’atmost {z <— y1}8"
iv) S" “’atmost {z ‘" YZ}S"

Each of these four constraint systems contains the constraints x:A and x:—.A for some

x e VI and some concept symbol A, and we conclude that S is not feconsistent. On the

other hand, if we use the aafleast - rule, which adds the single constraint n, then we

73

obtain the constraint system

S U {xPy, y:Y, yzA, xQz, z:Z, z:-.A, n, s } ,

that doesn’t contain constraints of the form xtA and x:—1A. We might come to the incorrect

conclusion that S is consistent.

As mentioned above, Nebel shows that }“L' extended simultaneously by number

restrictions and the androle operator is NP-hard in the strong sense, that is, it is

independent in which way the numbers are coded. The complexity of an algorithm for

checking the consistency of m- concept descriptions using traces as defined in

chapter 5 and 6 depends on the coding of the numbers. Consider the fresh constraint

system S = {KN X<at1¢aStN R21 TocompleteSwnh thecomplefion rules we have
to add the constraints n1 , ..., nN. If N is a big number, then the length of the suing

N might be about the length of the string S.

1) If we assume that N is represented in binary (as we have done), then log(N) = IISlI

and N = el's". Thus exponential space is needed to store the N constraints simultaneously.

To prevent this we have shown in chapter 4.4. that is sufficient to add the single constraint

n .

2) On the other hand, if we assume that N is coded in unary, then N = IISII. Thus

linear space in the size of the input constraint system is needed to store the N constraints.

As a consequence, we obtain an PSPACE-algorithm for checking consistency of W

- concept descriptions, if the numbers are coded in unary.

74

7 Attributive concept descriptions and features

The restricted version Of the language fllLC obtained by interpreting all role symbols as

partial functions (so-called features), is a subset of the Feature Logic investigated in

[Smolka 88]. Smolka includes the selection, agreement and disagreement operators for

features. The selection operator f:C takes a feature symbol f and a concept description C as

arguments and denotes the set of all elements of the domain for which the feature f is

defined and the application of f yields an element of the set denoted by C. Thus the

selection operator corresponds to the VR:C and .:.!c operator for roles. The agreement

and disagreement operators are similar to KL—ONE’s role value map for features as role

symbols. In the following we combine the language 31136 with Feature Logic (without

subsort). Thus, we obtain an ACD—language that admits roles, which are interpreted as

any relations, and features, which are interpreted as partial functions.

7 .1 . Syntax and semantics of fllLCIF-concept descriptions

IfD is a setandF: D —>Dis apartial function on D, then

l domF={deDlF i sdefineda td}

denotes the domain of F. If Gz'D —-> D is another partial function, then the composition

FoG has the domain

dom FOG = {d e dom G | G(d) e dom F] .

We assume a further alphabet of symbols, called features, disjoint from concept and

role symbols, respectively. The letters f, g will always denote a feature symbol. A path,

denoted by p , q, is a sequence f1...fn of feature symbols. The empty path is denoted

by e. .

75

The concept descriptions of the language flLCf (flILC+ features) are given by the

abstract syntax rule

-C,D—>A|VR:C|3R:CICLIDICnDI-1CIf:Clpiq|q.

An interpretation I = (DI, I[o]) interprets every feature symbol and every path as a

partial function from a)! to 13’, maps every concept description to a subset of QT and every

role symbol to a subset of QJI x DI, satisfying the following equations:

' I[E] (a) a for every a e a)! (I[e] is the identity function on a)!)

' I[fp](a) = I[p](I[fj(a))

- m = a)!
o [[_L] = @

. rifle] = {a‘e'dhom Animus I[C]}
- ftp—Leu = { a e dom 11p] n dem IIq]|1[p1(a) = I[q](a)}

- 1&3q = {a e dom I[p] n dom I[q] I I[p](a) == I[q](a)l

and the equations for I[VR:C], I[E|R:C], I[C LI D], I[C n D], I[—-.C] as in chapter 2.

An interpretation [is a model for an MC? - concept description (concept descrip-

tion, for short) C if IIC] is nonempty. Furthermore, consistency, subsumption, and

equivalence are defined as always.

The selection operator f:C denotes the set of all elements of the domain for which the

feature f is defined and for which the application of f yields an element of the set denoted

by C. The agreement operator piq (disagreement operator q) taking two paths as

arguments, denotes the set of all elements of the domain for which p and q are both

defined and the application of p and q yields (doesn’t yield) the same element as result.

Note that

I[q] = I[P=T “ q=T "' %pitv]
for every interpretation I.

76

Let R be a role symbol such that (a,b) e I[R] and (a,c) e I[R] implies b = c, that

is, R denotes a partial function. Then we have

° I[VRzC] 1[R:C LI --(R:T)]

. I[E|R:C] = 1[R:C].

Thus the VR:C and the 3R:C operators can be expressed in terms of the selection

operator, if R is a partial function. Conversely,

° I[f:C] = IEls]

and the selection operator can be expressed with the 3R:C operator. The agreement and

disagreement Operators are new and enhance the expressiveness of the language.

7.2. Simplification and unfolding of flLCEF—concept descriptions

A complement is called simple if it has either the form —.A, where A is a concept

symbol different from T and J., or the form —|f:T.

We supplement the simplification rules of chapter 2 by following rules:

° fifzc —> —.f:T LI fz-wC

. fipiq —> —.p:T LI —.q:T u q

- —1q _) -.p:T LI —uq:T LI plq .

A concept description is called simple if it contains only simple complements.
...—-"

Proposition 7.2.1. For every MC? - concept description one can compute in linear

time an equivalent simple w - concept description.

Proof. A simple MC?" - concept description can be obtained from an flLCf— concept

description in linear time by rewriting with the simplification rules in top-down order.

77

Note that the simplification rules preserve consistency and inconsistency. El

As in chapter 2 we will transform MC.? - concept descriptions into constraint sys-

tems. We have to define further constraints for coding the selection, agreement and dis-

agreement operators, respectively. A constraint has one of the following forms:

1) X E C, X(VR)Y, X(EIR)Y, X E Y Ll Z, xzx, x:A, n

2) X(plq), X(q), m, X(--tf:T), xpy, Katy .

The interpretation functions for constraints of the first group are as in chapter 2. For the

other constraints we define the interpretation functions as follows:

. I[X(p~Lq)] = { ae ASSIIV ae oc(X):

a = dm 413104091 Im. linken _= Itq1<a> _}
° I[X(t1)] =. {ae ASSI IVae 0L(X):

a e dom I[P] 0 dem IM], Ilp](a) == I[q1(a) }
° I[X(f)Y] = {ae ASSII V ae 0t(X): ae dom][f], 1[fl(a)e a (Y)}

' I[X(—.f:T)]= {aeASSI IVaeaOQzaedomII f J}

° IIXPY] = { 05 € ASS! | 050i) E dom HP]; I[p](or.(x)) = 0CU) }

° [[xaty] = { 0t 6 ASSII 0t(x) at 0t(y) } .

We define constraint systems, models, consistency, standard interpre-

tations and standard. I-assignments as usual.

Proposition 7.2.2. Let x be an individual variable and letX be a concept variable. A

simple fllLCflr - concept description is consistent if and only if the constraint system

{x:X, X E C} is consistent.

Proof. Analogous to the proof of proposition 3.1. EI

78

A constraint system S is simple if for every constraint X E C in S the concept

description C is either a concept symbol different from T and _L, or a complemented

concept symbol. The unfolding rules of chapter 3 supplemented by

° X E piq —> X(piq)

' X E q —> X(q)

«- X E f:C —> X(f)Y. Y E C, where Y is a new concept variable

° X E -:f:T —> X(-nf:T) .

can be used to simplify general constraint. systems obtained from MC?" - concept descrip—

tions to simPIe constraint systems.

“01305“?a 723 ROI??? CQ’ISITQW system _S one can compute in. linear time a
simple constraint system S ’ such that S consistent if and only if S i. is consistent.

Proof. A simple constraint system can be obtained from a constraint system in linear

time by rewriting with the unfolding rules in top-down order. Note that the unfolding

rules preserve consistency and inconsisteny. El

Theorem 7.2.4. For every MC}? concept description C one can compute in linear

time afresh constraint system such that C is consistent if and only if S is consistent.

Proof. Using the simplification and unfolding rules. El

For the construction of constraint trees for constraint systems obtained from ÄLCT -

concept descriptions we adopt the following conventions:

° the constraint X(f)Y defines a “feature” edge from node X to node Y, and

. the constraints X(ptq), X(q) and X(j-f:T) define (ptq), (q) and X(-1f:T)
as label of nodc X.

79

7.3. Propagation

Now we are going to define completion rules to complete constraint systems obtained

from fllLCf - concept descriptions.

Proposition 7.3.1. Let S be a constraint system. Then:

I . ifx:X, X(f)Y are in S and y is a new variable not occurring in S, then S is consistent

if and only if S U (mi, y:Y} is consistent

2 . if x:X, X(p$q) are in S and y is a new variable not occurring in S, then S is

consistent if and only if S U {xpy, q} is consistent

3 . if x:X, X(p Tq) are in S and y, 2 are new variables not occurring in S, then S is

consistent if and only if S U {xpy, xqz, y¢z} is consistent

4 . if ufpy is in S, p # 8 and z is a new variable not occurring in S, then S is consistent if

and only if S U {#2, zpy} is consistent

5 . ifufy, xfz are in S, then S is consistent if and only if {2 <— y}S is consistent
. 6 . ifx:X, X(—3f: T), m are in S, then S is inconsistent

7 . if x¢x is in S, then S is inconsistent .

Proof. We show the third part of the proposition. The proofs of the other parts are

similar. Let s = {x:X, X(q)} u 3,63,.
Suppose S is consistent. Then there exists an I-assignment oz with oc(x) e 0L(X), for

every a e oc(X) we have a e dom I[p] n dom I[q], and I[p](a) ;;- I[q] (a). It follows

that there exist b , c e DI such that I[p](a) = b, I[q](a) = c and b at e. Let y and z

new individual variables. Put 0t’(x) = 0L(x) for x e VI, x at y, x at z, 0t’(y) = b,

oc’(z) _= c and oc’(X) = 0L(X) for X 6 VC. Hence I[p](a’(x)) = oc’(y), I[q](a'(x)) = oc’(z)

and a’(y) #: a’(z). Thus a ’ e S’ = S U {xpy, xqz, y¢z} and S ’ is consistent.

If S is inconsistent, then I[S] = @ and I[S'] = I[S] n I[xpy, xqz, yvfiz] = Q. Thus

S ' is not consistent. _ El

80

We define the R MC,- -completion rules that consist of the —->v - rule, the -—>3 -

rule, the _)u - rule, the _); - rule and the following rules:

s ”El-feature {y=Y. xfy} u s
if x:X, X(f)Y are in S and there exists no individual variable z such that xfz is

in S, and y is an individual variable not occurring in S

S _>V-featuré {yzY} U S

if x:X‚ X(f)Y, xfy are in S and y:Y is not in S

S ->¢ {xpy. q} U S
if x:X, X(piq) are in S and there exists no individual variable z such that xpz

and xqz are in S, and y is an individual variable not occurring in SS _)T {KW, xqz’ yfl} _U S _ _ __ __ ._

if x:X, X(q) are in s and there exist no individual variables u, v such that

xpu, xqv, uaev are in S , and y, z are individual variables not occurring in S

3 am, {'f, zpy} u 3
if xfpy is in S, p at e and there exist no individual variables u, v such that xfu,

upv are in S, and z is an individual variable not occurring in S

S "function {Y <— z}S

if xfy and xfz are in S

s em, {x:A, ‚::—A} '
if xzx, X(—-af:T), xfy are in S or if x¢x is in S .

A constraint system is RJug-complete if no R54569” -completion rule applies to it.

Proposition 7.3.2. If the constraint system S ’ is obtained from the constraint system

S by application of the —>_:,_feam‚e - rule, the avfeamm - rule, the —>J, - rule, the _)? -

rule, the amt}, - rule, the —’fimction - rule or the emo, - rule, then S is consistent if and

only if S ’ is consistent.

81

Proof. Follows from proposition 7.2.]. CI

Proposition 7.3.3. An R 2L6? -complete constraint system is inconsistent if and only

if it contains for some x 5 VI and some concept symbol A, the constraints x:A and x:—A.

Proof. "=>": Let S be an R flat-complete constraint system not containing the

constraints x:A and XHA for any individual variable x and any concept symbol A. We

show that the standard interpretation !, of S is a model for S. In particular we show that

for the standard I—assignment as we have as e I‚[c] for every c e S.

Suppose, oz, 6! (‚[c] for some c e S, then the completion rule for c applies. If c has

_ the form X(VR)Y, X(EIR)Y, X E Y LI Z, x:X, x:A, X L:. A or n , then use I‚[c] (see

proposition 4.2.1.) Furthermore use “Is[x:—1A] if x:A is not in S.

Now we show that age I‚[X(piq)]. If there is no constraint x:X in S, then

a, e I,[X(piq)] holds trivially. If {x:X, X(piq) } ; 3, then the constraints xpy, q are
in S, because S is R Mc; —comp1ete. Hence a,. e I‚[x:X, X(p~Lq)].

Next we show that u se I_‚[X(q)]. If there is no constraint x:X in S; then

age I‚[X(q)] holds trivially. If {x:X, X(q)} ; S, then the constraints xpy, xqz,

yrtz are in s , because 8 is RMC,—complete. Hence one gmx, X(q)].

Furthermore we have oz, e I5[c], where c has the form X(f)Y, X(—.f:T), xpy or x¢y.

"<=": As in proposition 4.2.1. “

Now we will show that checking the consistency of 1211.69r - concept descriptions is

decidable. To do this we prove that every fresh constraint system obtained from an my

- concept description can be extended to an Rwcomplete constraint system preserving

consistency and inconsistency. R Mat—complete constraint systems can be checked in

polynomial time for consistency (proposition 7.3.3).

82

Function mar-Completion (S,i)

let Si be the set of all constraints at level i in S

ifSi =0 '
then return S

else let SLI» SJ» ST : Spa th : S func t ions SE] : SEl-features SV- fea tu rea SV, SE»

Si-complete such that

Si =>u SL, =>~L Si =>T ST =>path Spath =”function Sfunction =>':'I SE! =>El-feature

SEI-feature =>V-feature SV-feature =>V SV =; S; =>error Si-complete I

MCIF- Completion (S U Si-complete:i+1)

end ALG? - Completion.

Proposition 7.3.4. Suppose the call ALG? - Completion (S,0) returns the constraint

system S’, where S is a fresh constraint system obtained from an MC? - concept

description. Then:

a) S’is R„cf-complete.

b) S is consistent if S ’ is consistent.

C) After at most exponentially many propagation steps the function terminates.

Proof. (Sketch) a) Let S be a constraint system obtained from an MCf-concept

description. Suppose fllLCflr - Completion (S,i) is called, that is, S is the argument of the

i-th recursive call. Let Si be the set of all constraints at level i. Consider the constraint

system Simmplete, which is obtained from Si in the following manner:

Si =>u Su =~L SJ, =>T ST =>path Spath =>function Sfunction =>EI SH =3-feature
SEI—feature =>V-feature SV-feature =>V SV =>; SE =elmr Si—complete—

We will show that no R May—completion rule applies to constraints at level i in

Si-complete

Consider the —>„ - rule, the —>J‚ -— rule, the —>1~ - rule, the —>3 - rule, the +34t -

rule and the —)E - rule:

83

Consuaints of the form x:X, which have been introduced by the —>3 - rule, the —-)3_fcature

- rule, the —)V_feamre - rule and the av - rule are at level i+1. If the constraint x:X is at

level i in Summe, then x:X is already in s„. Therefore the —>„ - rule, the —>¢ - rule, the
_>T - rule, the —>3 - rule, the —->3_feamre - rule and the —>; - rule don’t apply to Si-complete-

Consider the —>pafl, - rule:

Since the —)J, - rule and the -)T - rule are applied before the '—>path - rule, the "’path - rule

doesn’t apply to Si—complete-

Consider the afuncüon - rule:

Obviously, the ammo“ - rule doesn’t apply to Sfuncfion. We consider the following two

cases: I

1) The constraints x.X, X(f)Y are in Sfuncfion and there IS no constraint xfy for any

feature f and any individual variable y in Sfunction. Then xfy, y: Y are added by the

—-)3_feam - rule and the afuncfion - rule doesn’t apply to Sg_feame.

2) The constraints x:X, X(f)Y, xfy are in Sfuncfion. Then the —>3_feamre - rule doesn’t

apply, but the —>V_fm - rule adding the constraint y:Y. Thus the emotion - rule doesn’t

apply to SV-feature-

Furthermore, the "W - rule, the ">; - rule and the am“ - rule don’t introduce

constraints of the form xfy, and the ammo“ - rule doesn’t apply to Si—complete-

Consider the '—)V_feamre - mle and the -—>V - rule: .

Since the a; - rule and the Amor - rule, which are applied after the —>V_feamre - rule and

the av - rule, don’t introduce constraints of the form n, xfy and x:X, the —)V_feature -

rule and the —>v - rule don’t apply to Si—complete—

It is obvious that the --)error — rule doesn’t apply to Si-complete-

Thus we shown that no RMcfcompletion rule applies to constraints at level i in

Si-complete and hence Si-complete is complete at level i.

Transforming a finite filLCflLconcept description into a constraint system, we obtain a

finite constraint tree. Thus with induction on the level we prove that the function

terminates and returns an R mcomplete constraint system.

84

b) Follows from the definition of the Rmcompletion rules.

c) As in theorem 4.3.3. we can construct a polynomial p such that IIS ’" S C(m+1) * PO“),

where m in the length of the string S. ' ' El

Theorem 7.3.5. Let S be a fresh constraint system obtained from an ‚911;i — concept

description C.

a) If C is consistent, then there exists a computation using Mgr-Completion, such that

the call ALCf-Completionwfl) returns an R„Lg-complete constraint system not

containing constraints of the form x:A and x:—A.

b) If C is inconsistent, then every call flLCf-Completion(S,0) returns an

Ram—complete constraint 51-???” containing constraints ofthefomz x:A and x:—A.

Proof. Follows from the propositions 7.3.3. and 7.3.4 . [J

Up to this day we couldn’t find a PSPACE-algorithm for checking consistency of

515693 concept descriptions. The idea behind the PSPACE-algorithms of chapter 5 and

chapter 6 is, that a complete constraint system is the union of so-called traces. Traces have

the property that they could be inspected independently. The following example shows

that this approach is not viable in the presence of agreements.

Example 7.3 .1 .

Figure 7.3.1. shows a constraint tree for the constraint system

3 = {s, xaig), X(f)Y1, Y1(EIR)Zl, 21 ; A, X(g)Y2, Y2(VR)ZZ, za _: —1A].
Using the R mcompletion rules we obtain the following constraint systems:

S *)piq {xfy‚ xgy} U S

—>v.feauue {xfy. xgy. y=Y11 U S
“)V-feamre {Xföß xgy. i l s iz} U S
——>3 {xfy, xgy, _yzY1‚ y:Y2, s , 2:21} U S

85

—>; {xfy, xgy, y:Y1, y:Y2, s, z:Zl, z:A} U S

' —>V {xfy, xgy, y:Y1, y:Y2, s, 2:21, z:A, 2222} U S

—>‚; {xfy, xgy, y:Y1, y:Y2, s , 2:21, z:A, 2:22, z:-1A} U

Note that the constraint system S ’ is obtained from S by application

completion rules. Hence the 3413i - concept description

C = fig I'1 f:(E|R:A) I"! g:(VR:—-1A) is inconsistent.

Now consider the following two traces

T1 = S U {xfy, y :Y1, s, 2:21, z :A} and

T2 = S U {xgy, y:Y2, s, 2:22, z:—.A}

for S, which are not independent because of the agreement fig.

xa f ig

f g

o @
3R VRAa. w

Figure 7.3.1. A constraint tree for a constraint system obtained fro:

concept description C = fig I'I f:(ElR:A) I'I g:(VR:—.A).

86

8 Conclusions

Many articles have been published in the last years that handle the theoretic backgrounds

of knowledge representation languages based on KL-ONE, for example [Levesque

Brachman 87, Nebel 88 , Donini/Lenzerini 88 , Schmidt-SchauB/Smolka 88] . To do

reasoning in these languages it is unavoidable to have subsumption algorithms for these

languages. The question, whether the problem of checking subsumption is decidable, and

if so, what computational complexity it has, is very important.

One of the early results is published in [Levesque, Brachman 87]. There the language

9'13", which is the .languageflL. without simple. complements, is defined and it is shown

that determining subsumption in fL’ can be done in polynomial time. Furthermore,

W and Brachman define the restrict-operator with the following semantics:

_ ***"!ERfltfictR C] ={ (a,b) e flfx {D’ I (a,b) e][R] and b e I[C] }.

1mm that the subsumption test for fL, which is the language 91." enhanced by the

autumn, is NP-hard.

In his paper on feature logic, Smolka [88] shows that feature descriptions as used in

computational linguistics are closely related to KL-ONE. The main difference between

feature descriptions and KL-ONE concept descriptions is that in feature logic roles are

interpreted as partial functions (called features) while in KL-ONE roles are interpreted as

any binary relations. Notationally very similar, one minor difference in the semantics

causes major computational differences. If agreement is used with roles, it causes

undecidability [Schmidt-SchauB 88], while its use with features neither destroys

decidability nor causes a complexity jump.

In [Schmidt—SchauB/S molka 88] we can find some important results. In addition to

complexity results on some ACD-languages they give algorithms for checking

87

subsumption and consistency in these languages. The algorithms work as follows:

Concept descriptions that are checked for consistency are transformed into constraint

systems, which are extended by completion rules. Completed constraint systems can be

checked easily for consistency. Based on that idea we amalgamated the language MC by

number restrictions (chapter 2 - 5), role hierarchies (chapter 6), and feature logic (chapter

7), and gave consistency checking algorithms for these languages.

We proved that checking consistency of m (flLC + Mrmber restriction) and

m (MC + Role hierarchy) concept descriptions, respectively, is in PSPACE. That is,

the addition either of number restrictions or of role hierarchies doesn’t raise the

computational complexity of MC. ‚On the other hand we could not find a PSPACE

algorithm for checking consistency of MCM (MC + Number restriction + Role

hierarchy) concept descriptions (we conjecture that this problem in not in PSPACE). A

similar phenomenon has been established by Nebel [88]. Checking subsumption in fL‘

extended either by number restrictions or by the androle operator (an operator to create

new roles by conjoining them - comparable to role hierarchies) can be done in polynomial

time, whereas 1H." extended simultaneously by number restrictions and the androle

operator is NP-hard.

88

9 References

K. H. Bläsius, H. J. Bfirckert (Hrsg.): Deduktionssysteme. Oldenbourg Verlag 1987.

R. Brachman, J. Schmolze: An overview of the KL-ONE knowledge representation

system. Cognitive Science 9(2) 1985, 171 — 216.

F. Donini, M. Lenzerini: TermLog : a Logic for Terminological Knowledge. 1988.

J. Hopcroft, J. Ullman: Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley 1979.

H. Levesque, R. Brachman: Expressiveness and tractabih'ty in knowledge representation

and reasoning. Computational Intelligence 3, 1987, 78 - 93.

K. von Luck, B . Nebel, C. Peltason, A. Schmiedel: The Anatomy of the BACK

System, KIT Report 41, FB Informatik, TU Berlin, Berlin, West Germany, 1987

B. Nebel: Computational Complexity of Terminological Reasoning in BACK. Artificial

Intelligence 34, 1988, 371 - 383.

B. Nebel: Reasoning and Revision in Hybrid Representation Systems. Dissertation.

1989.

A. Nijenhuis, H.Wilf: Combinatorial Algorithms. Academic Press 1975.

M. Schmidt-SchauB, G. Smolka: Attributive Concept Description with Unions and

Complements. SEKI Report SR-88-21, Universität Kaiserslautern, West Germany.

M. Schmidt-Schauß: Subsumption in KL-ONE is undecidable. SEKI Report SR-88-14,

Universität Kaiserslautern, West Germany. Also: Proc. of Knowledge Represen-

tation '89, Toronto, Ontario, Canada, pp. 421-431, 1989.

89

G.. Smolka: A Feature Logic. with Subsorts. LILOG Report 33, IBM Deutschland, West

Germany, May 1988.

90

