Subsumption Algorithms for Some
Attributive Concept Description
Languages

Bernhard Hollunde_r
SEKI Report SR-89-16

Subsumption Algorithms
for Some

Attributive Concept Description Languages

Bernhard Hollunder

Deutsches Forschungszentrum

fir kiinstliche Intelligenz

Abstract.

This paper investigates subsumption algorithms for logic-based knowledge representation
languages of the KL-ONE -family. We amalgamate the attributive concept description
language ALC, that contains value restrictions, intersections, unions and complements
with number restrictions, role hierarchies (to model the KL-ONE'’s roleset differentiation),
and Feature Logic, respectively. We show that deciding consistency and subsumption of
ALC extended with number restrictions and A2LC extended with role hierarchies is
PSPACE-complete. Furthermore, for all these languages we give subsumption

algorithms.

Acknowledgements.

I am very grateful to Manfred Schmidt-SchauB3 and Werner Nutt. Manfred introduced me
to the area of knowledge representation languages. Furthermore, he gave me hopeful ideas
to do this wbrk. With Werner I had fruitful discussions about the contents and the
structure of this paper. His ideas inﬂpcnccd this paper, too. I would like to thank both,
Manfred and Werner, for reading earlier drafts of this thesis.

Contents

Introduction. ..ottt iei e tret e e eeeeeeeeneneasnseanannnns 4
Attributive concept descriptions..........cccccoiiiiiiiiiiiiiiiiieniiiniennnn. 9
2.1. The 1anguage ALCN..ccccceeeiiitiiieieiiiiiiiieeeeetreseaeetnesnessnesanenes 9
2.2. Related ACD-TaNEUATES. :omsusnssomsmnnss sassunsss sromonss s s5uanss 485005 s s508 12
Constraint SYSteIMS.....ciiiiiiiiiiiiiiiiiiiiiieiiieieeeeeeererareeaeeaeaeanans 14
P rOP A BB O TN uiimmmnsinssssssmsss osiso s s anieh 556 440568 555 554 ARS8 20
4.1. Completion TUIES...ciciiiiiiiiiiiiiiiiiiniiiiie e ceneeeeneeneensnesnesnnenns 20
4.2. Consistency checking as completion..........cccceeeriieenneienieniainenennn. 23
4.3, A completion ProCeAULE . wessssmmsssmsess sweuss s exsmns swansssnss s 24
4.4, OptimMiZAtION. . iciiiuiuiiiiiiiniereeiieeeeeneesaseseseeensnsasasesensesesnsncns 34
PSPACE-completeness Of ALCA..cccccoieuiiiiiiieieiiiriieieriineenennnnns 42
ROIe hierarCRies.........coooveuuuiiiniiiiiiiiiiiiieeeeeeeeeeeeeereeeeeeeeeeeeneeeeens 55

6.1. Simplification and unfolding of ALCR and ALONR - concept

Qe SCTIPIONS . tuiiiiitieiiiiiiiiieieeiiieteteeeenentenetenensnenesesnsnsansaes 56
6.2. Consistency checking of ALCR - concept descriptions....................... 57
6.3. PSPACE-completeness Of ALCR,..cccceeeiuiiiiiiuiiieninierernieeeneieneenns 60
6.4. Consistency checking of ALCNR - concept descriptions.................... 67
Attributive concept descriptions and features.............ccooevvuvennnen. 75
7.1. Syntax and semantics of ALCF - concept descriptions...............eu.... 75
7.2. Simplification and unfolding of ALC¥ - concept descriptions............... 77
T3 PIOPAZAIION. . ivosansoissiinniis s ainssnsasaststistennionnmmemmormesns se s 80
ConeClUSIOMS. .ottt 87
R eI eMCeS . iiniiiiiiiiiiiiii e et e s 89

1 Introduction

Main research topics in knowledge representation are the development of formalisms to
describe knowledge and to reason with the represented knowledge. After the definition of
a knowledge representation language and its semantics, one can describe a specific domain
by filling the knowledge base with explicit knowledge. The derivation of knowledge only
represented implicitly will be called reasoning. Basically, it can be more difficult to reason
correctly with one knowledge representation language than with another. Moreover, this
difficulty increases as the expressive power of the language. This amounts to a tradeoff
between the expressiveness of a knowledge representation language and its computational

complexity.

In this paper we are interested in logic-based knowledge representation languages
based on KL-ONE [Levesque/Brachman 87, Nebel 88, Donini/Lenzerini 88, Schmidt-
SchauB/Smolka 88]. These languages aim at describing sets of objects by specifying
restrictions on attributes the objects may have. We will call this formalism attributive con-
cept description (ACD, for short). ACD-languages employ two kinds of symbols, called
concepts and roles. Concepts are interpreted as sets and roles are interpreted as binary
relations. To form concept descriptions we allow a few operators. The concept description
defined by

¢ VR:C can beread as the set of “all objects for which all R’s are in C”,

+ JR:C canberead as the set of “all objects for which there is an R in C”,

» (atleast NR) can be read as the set of

“all objects for which there are at least N R’s”, and
¢ (atmost NR) can be read as the set of
“all objects for which there are at most N R’s”,

where R is arole, C a concept description, and N is non-negative integer.

Now, let us consider a small example. The class of vehicles is partitioned into the
disjoint subclasses of vehicles with motor and vehicles without motor. A motor-cycle is a
vehicle with a motor and with exactly two wheels. A motor-car is a vehicle with a motor
and with at least 3 and at most 4 wheels. A truck is a vehicle with a motor and with at least
6 wheels. This can be expressed by the following axioms:

vehicle_without_motor E vehicle

vehicle_with_motor = vehicle 1 — vehicle_without_motor

motor-cycle = vehicle_with_motor M (atleast 2 wheels) M (atmost 2 wheels)

motor-car = vehicle_with_motor M (atleast 3 wheels) N (atmost 4 wheels)

truck = vehicle_with_motor N (atleast 6 wheels),

where the M is the intersection and the — is the complement of sets.

Given an interpretation I for the occurring concept and role symbols, these concept
descriptions are interpreted as the sets

e IIVR:C] = {ae DIIV (a,b)e I[R] : be 1[C])

* IM[AR:C] = {ae D13 (a,b)e IR] : be 1C]}

e Iatleast NR] = {ae DIl I{be DIl (a,b)e R] }II=N}

e INatmostNR] = {ae D!l lI{be DIl (ab)e R]}I<N},
where D! is the domain of I. Since concept descriptions are interpreted as sets, it is
obvious how to handle concept intersection, concept union and concept complement. We
will speak of an ACD-language if at least VR:C, 3R:T (where I[T] = D! in every inter-

pretation I) and concept intersection are available.

So far we have established how to form concept descriptions in ACD-languages.
Now we will see how to do reasoning in these languages. Given two concept descriptions
C and D, we want to know whether C is subsumed by D, that is, if every interpretation
interprets C as a subset of D. In KL-ONE systems the subsumption test is needed to find

out subsumption relations between several concept descriptions. Besides the subsumption

test we are interested in two further problems:
» Is a concept description C consistent, that is, does there exist an interpretation I
such that [C] # @ ?
» Is a concept description C equivalent to a concept description D, that is, is
I[C] = I[D] for every interpretation I ?
If an ACD-language contains complement, then the different problems can be reduced to

each other in linear time.

We go back to our starting-point and consider the tradeoff between the express-
iveness of ACD-languages and their computational tractability. The expressiveness is
determined by the operators we admit to the language, and the tractability is determined
by the computational complexity of the subsumption algorithm, that is, what time is
needed to get an answer to the question: is concept description C subsumed by concept

description D ?

In [Levesque, Brachman 87] the minimal ACD-language .-, which contains the
operators VR:C, JR:T and concept intersection, is examined, and it is shown that
subsumption can be decided in quadratic time. In [Schmidt-SchauBl/Smolka 88] further
ACD-languages with enhanced expressiveness as compared to L are investigated. For
example, the language ALC that admits the operators VR:C, JR:C, intersection, union and
complement is defined, and it is shown that checking consistency of 4LC - concept

descriptions is PSPACE-complete.

Very often it is demanded that the subsumption test is tractable, that is, that
subsumption can be checked in polynomial time. This means that the expressiveness of
ACD-languages must be restricted dramatically. For example, ACD-languages satisfying
this demand are less powerful than propositional logic. In particular, these languages must

not contain simultaneously intersections, unions and complements like the propositional

logic. One remedy is the use of incomplete subsumption algorithms. The practical
usefulness of such incomplete algorithms depends on what kind of subsumption relations
the algorithms don’t find out. It is of great help to examine complete subsumption
algorithms and then to restrict them, such that the algorithms are efficient. Then, of
course, one can investigate what kind of subsumption relations the algorithms don’t find

out.

In this thesis we examine the computational complexity of consistency checking
algorithms for some ACD-languages. Starting from the language ALC, we amalgamate
this language with some well-known operators occurring in KL-ONE.

In chapter 2 we define the syntax and semantics of the language ALCA[(ALC +
Afimber restriction), which is the language ALC amalgameted with number restrictions .

Since the applicative structure of concept descriptions is not very suitable for devising
consistency checking algorithms, the concept descriptions will be translated into constraint
systems. The definition of constraint systems and the translation of concept descriptions
into constraint systems is performed in chapter 3.

Chapter 4 shows that checking consistency of ALCA. - concept descriptions is
decidable.

In chapter 5 we characterize the problem of checking consistency of ALCA(- concept
descriptions with respect to the computational complexity and we show that this problem
is PSPACE-complete.

In chapter 6 we define role hierarchies , which are partial orders on role symbols. If
P <R is in a role hierarchie, then P denotes a subrelation of the relation denoted by R. The
idea behind this is to model the roleset - differentiation in KL-ONE. We prove that
checking consistency of ALCR - concept descriptions (ALC + Role hierarchies) is
PSPACE-complete. Furthermore we give an algorithm for checking consistency of

ALCNR - concept descriptions (ALC + Afimber restrictions + Role hierarchies).

Feature Logic as described in [Smolka 88] is very similar to the language ALC . In
Feature Logic it is assumed that the roles are functional. That is, the interpretation of a
functional role, which is called a feature, is not only a relation, but a partial function.
Furthermore the logic contains the agreement and disagreement operators, counterparts to
role value maps in the KL-ONE world. Smolka shows that Feature Logic has an
NP-complete consistency problem and a co-NP-complete subsumption problem. In
chapter 7 we examine the language ALCY, that is a combination of ALC and Feature

Logic. We show that checking consistency of ALCF - concept descriptions is decidable.

2 Attributive concept descriptions

In the first part of this chapter we define the syntax and semantics of the attributive
concept description language 4LCA, that admits VR:C, JR:C, intersections, unions,
complements and number restrictions. After that we compare this language with some

related ACD-languages.

2.1. The language ALCN

Let two disjoint alphabets of symbols, called concepts and roles, respectively, be
given. The special concept symbols T and L are called top symbol and bottom symbol.
The letters A und B will always denote concept symbols, the letter R will always denote a

role symbol, and the letter N will always denote a non-negative integer represented in

binary.

The concept descriptions of the ACD-language ALCA are given by the abstract syn-
tax rules

CD—>5>A|VR:CIJR:CICNDICuUuD | =C | atleast NR | atmost NR.

An interpretation I'=(DI, I[*]) consists of a set D! (the domain of I) and a
function I[] (the interpretation function of /) that maps every concept description to a

subset of D/, and every role symbol to a subset of DI x D!, satisfying the following

equations:
«A[T] = of
fLl] =9

*[VR:C] = {ae DIIV (@ab)e IIR] : be I[C] }
«I[3R:C] = {ae DIIT(ab)e MR] : be NC]}

«[Cn D] = NC] N I[D]

« [Cu D] = NC]u D]

« [-C] = DI - IIC]

e fJatleast NR] = {ae DIl I {be D!l (a,b)e MR]} 12N}
e [atmost NR] = {ae DIl I {be D!l (ab)e IIR]}IISN},

where ll+ll denotes the cardinality of sets.

An interpretation Iis a model for a concept description C if I[C] is nonempty.
A concept description is consistent if it has a model. If C and D are concept descrip-
tions, then C is subsumed by D if I[C] € I[D] for every interpretation I, and C is

equivalent to D if /[C] = I[D] for every interpretation I

Proposition 2.1. Let C and D be concept descriptions. Then:
a) C is subsumed by D if and only if C n =D is inconsistent.
b) C is equivalent to D if and only if (C 1 —=D) U (D rn —C) is inconsistent.

Proof. Follows immediately from the definitions. a

Since our language admits unions, intersections and complements an algorithm for
checking consistency can be used for deciding subsumption and equivalence. In the
following chapters we will work out an algorithm for checking consistency of ALCA(-
concept descriptions and determine its complexity.

The syntax of 2LCN(is redundant. For instance, 3R: C is equivalent to =VR: —C,
1 is equivalent to A M —A for every concept symbol A, and CuU D is equivalent to

The redundant syntax allows for the simplification of complex complements to

10

simple complements of the form —A, where A is a concept symbol different from T
and L. This can be done by the following simplification rules reducing concept
descriptions to equivalent concept descriptions:

ol —» L

o=l T

e=(VR: C) —» JR:=C

e—=(FR: C) —» VR:=C

+—~(Cn D) » =Cu-D

e—(CubD) » -Cn D

o—C > C

atmost N-1R if N>0
* —(atleast NR) —

1 if N=0

e —(atmost NR) — atleast N+1 R.
A concept description is called simple if it contains only simple complements.

Proposition 2.2. Let the concept description C° be obtained from the concept
description C by application of a simplification rule. Then :
a) Cisequivalentto C",

b) C is consistent if and only if C’ is consistent.

Proof. It is easy to see that the simplification rules preserve consistency and

inconsistency. o

Proposition 2.3. For every concept description one can compute in linear time an

equivalent simple concept description.

Proof. A simple concept description can be obtained from a concept description in

linear time by rewriting with the simplification rules in top-down order. m]

11

2.2. Related ACD-languages

Schmidt-Schaul and Smolka [88] investigate different sublanguages of ALCAL. They
define the following sublanguages:

language: abstract syntax rule:

aL C,D—->AIVR:CI3R:TICNn DI-A

ALE C,D—-AIVR:CIJR:CICn DI=-A

aLu C,D->AIVR:CIFR:TICNnDICuUuDI-A
aLc C,D—>AIVR:CIFR:CICADICUDI-C

The names of the languages are put together as follows: ALE is obtained from 4L
by adding general existential role quantifications, ALU is obtained from 4L by adding
unions, ALC is obtained from AL by adding general complements, and ALCN is ob-
tained from ALC by adding the so-called number restriction 6pcrators (atleast N R) and

(atmost N R).

In [Schmidt-SchauB/Smolka 88] we can find the following results:

* consistency of AL - concept descriptions can be checked in linear time

* inconsistency of ALE - concept descriptions can be decided in nondeterministic
linear time

* checking consistency of ALU - concept descriptions is NP-complete

* checking consistency and subsumption of ALC - concept descriptions are

PSPACE-complete problems that can be decided with linear space.

Checking consistency of ALE - concept descriptions is quite an interesting problem.
Up to this day we could find neither a polynomial algorithm nor a proof for the

NP-hardness for this problem in the literature.

Schmidt-SchauB8 [88] shows that an ACD-language with role value maps has an
undecidable subsumption problem if roles are not restricted to partial functions, even if

union and complement are not available.

13

3 Constraint systems

The applicative structure of concept descriptions is not very suitable for devising
consistency checking algorithms. Therefore every concept description will be translated
into a constraint system such that the concept description is consistent if and only if the
constraint system is consistent. For constraint systems we will give transformation rules
such that we obtain constraint systems, that can be checked in polynomial time for
consistency. This fundamental technique has also been used successfully for Feature
Logic [Smolka 88] and the ACD-languages 4L, ALE, ALU and ALC
[Schmidt-Schau3/Smolka 88].

We assume the existence of two further disjoint alphabets of symbols, called
individual variables VI and concept variables VC, respectively. The letters x, y, z
will always range over individual variables and the letters X, Y, Z will always range over

concept variables.

Let I be an interpretation. An I-assignment is a function o that maps every
individual variable to an element of D! and every concept variable to a subset of DL

ASS/is the set of all -assignments.

A constraint has one of the following forms:
Xe C, X(VR)Y, X(@R)Y, XE Yu Z, xX, x:A, xRy, X(atleast N R),
X(atmost N R),
where the C in X £ C is a simple concept description and the A in x:A is a concept
symbol. Let I'be an interpretation. The interpretation function I[+] of I will be extended to

constraints by interpreting them as sets of I-assignments:

14

+[XEC] = {ae ASSTI aX) € I[C] }

« [X(VR)Y]={ae ASS/IVae a(X) V (a,b)e IIR]: be oY) }

« [A(VR)Y]={ oce ASSTIVae oX) 3 (ab) € NIR]: be oY) }

e MXEYU Z]={ae ASSTI (X) € (Y) U (Z) }

e [x:X]={ e ASSTl oux) € aX) }

e [x:A]={ e ASSTI o(x) € I[A] }

* IIxRy] = { o € ASSTI (aux),a(y)) € NR] }

e [X(atleast NR)]={ oo ASS/IVae aX):lIlI{be DllI(ab)e NNR]}IIZN}
e [X(atmost NR)] = { aoe ASS/IVae aX): Il {be DIl(a,b) e NR] } I<N}.

A constraint system S is a finite, nonempty set of constraints. The interpretation
of a constraint system S by an interpretation Iis defined as I[S] := ('\ce s Ilc]. An
interpretation I is a model for S if I[S] is nonempty. A constraint system is consistent

if it has a model.

We obtain the standard interpretation I, of a constraint system S by taking for Dls
all individual variables occurring in S, for IJA] all x such that x:A is in S, and by taking
for I[R] all pairs (x,y) such that xRy is in S. The standard I-assignment o is defined
by mapping individual variables to themselves and by taking for ou(X) all x such that x:X

isin S.

The next proposition shows the relationship between simple 2LCA-concept

descriptions and constraint systems.
Proposition 3.1. Let x be an individual variable and X be a concept variable. A simple

concept description C is consistent if and only if the constraint system {x.X, X £ C} is

consistent.

15

Proof. "=": Suppose the simple concept description C is consistent. Then there
exists an interpretation I'=(DI, If*]) with I[C] # @. Let x be an individual variable, X be
a concept variable, and S be the constraint system {x:X, X £ C}. We will define an
Fassignment o such that o e I[S].

Since I[C] # @, there exists a d € DI such that d € I[C]. Define o(x):=d and
a(X) := I[C], o(X) := {d}. Then o € I[S], and S is consistent.

"&": Suppose the constraint system {x:X, X £ C} is consistent. Then there exists an
I-assignment o with ou(x) € ou(X) and ou(X) € I[C]. Hence a(x) € I[C] and C is con-

sistent. (m}

A constraint system S is simple if for every constraint X £ C in S the concept
description C is either a concept symbol different from T and 1, or a complemented

concept symbol.

The following unfolding rules can be used to simplify general constraint systems
to simple constraint systems:
«XE VR:C = X(VR)Y, YE C, where Y is a new concept variable
*XeE3JR:C = XER)Y,YE C, whereY is a new concept variable
«eXeECnD > XECXED
*XECUD —» XEYUZYEC,ZE D, where Y, Z are new concept variables
*XE T — nothing
+XeEl —» XE A, XE A, where A is a new concept symbol
nothing ifN=0
X(atleast NR) ifN>0
e Xt atmost NR — X(atmost N R).

eXcC atleast NR — {

Proposition 3.2. Let the constraint system S” be obtained from the constraint system S

by the application of an unfolding rule. Then S is consistent if and only if S’ is consistent.

16

Proof. Suppose the constraint system S” has been obtained from S by the second
rule. Then S = {XE JR: C} U Syer and S = {X@R)Y, Y E C } U Spegr, Where Yis a
new concept variable not occurring in S.

If S is consistent, then there exists an I-assignment o with o(X) € I[3R: C].
Put a’(x) = a(x) for every x € VI, a’(X) = a(X) for every X € VC, X # Y and
o.’(Y) = I[C]. Then for every a € a’(X) exists (a,b) € I[R] with b € a’(Y) and
o’(Y) € I[C]. Thus o’ e I[X(AR)Y, YE Cland S = {X(FR)Y, Y E C} U Seq is
consistent.

If S’ is consistent, then there exists an I-assignment o such that 1.) for every
d € oX) there exists an e € oY) such that (d,e) € [R] and 2.) a(Y) € I[C]. This
implies that for every d € o(X) there exists an e € I[C] such that (d,e) € I[R]. Hence
o € I[S] and S is consistent.

The proofs for the other rules are similar. m]

Proposition 3.3. For every constraint system S one can compute in linear time a

simple constraint system S’ such that S is consistent if and only if S” is consistent.

Proof. A simple constraint system S” can be obtained from a constraint system S in

linear time by rewriting with the unfolding rules in top-down order. o

Let S be a simple constraint system obtained by unfolding the constraint X € C where
C is a simple ALCA - concept description. Then the constraint system S” = S U {x:X]} is
called fresh and the individual variable x is called the individual root of S”. Note that

the constraint x:X in S” is the only one that contains an individual variable.

Theorem 3.4. For every concept description C one can compute in linear time a fresh

constraint system S such that C is consistent if and only if S is consistent.

17

,

Proof. The concept description C is transformed into a simple concept description C
using the simplification rules. Now the constraint system {x:X, X & C’} is created, which
then is simplificated to a fresh constraint system using the unfolding rules. All three steps

require at most linear time-and preserve consistency and inconsistency. a

A simple constraint system defines a directed graph, called its skeleton, as follows:
every concept variable occurring in the constraint system is taken as a node, the
constraints X(VR)Y and X(3R)Y define universal and existential edges from X to Y, and
a constraint X £ Y U Z defines an or-connected pair of edges from X to Y and Z.
Furthermore, the constraints X € A and X £ —A define A and —A as labels of node X.
The constraints X(atleast N R) and X(atmost N R) define (atleast N R) and (atmost N R)
as labels of node X. Thus every node has a finite, possibly empty set of labels. The
individual constraints x: X and xRy don’t contribute to the skeleton. A constraint tree is
a simple constraint system whose skeleton is a tree. Note that the skeleton of a fresh

constraint system is a tree.

VR IR

Figure 3.1. A constraint tree representing the constraint system

S = {x:X, X(VR)Y, YE A, X(3R)Z, ZE —-A}.

Example 3.1.
Let C = (VR: A) m =(VR: A) be a concept description. The simple concept descrip-
tion C* = (VR: A) N (3R: —A) is obtained from C using the simplification rules. The

constraint system {x:X, X £ C’} is transformed into the fresh constraint system

18

S = {x:X, X(VR)Y, YE A, X(AR)Z, Z £ —-A} by application of the unfolding rules.

A constraint tree for S is shown in figure 3.1.

19

4 Propagation

We now define so-called complete constraint systems whose consistency can be checked
in polynomial time. Every fresh constraint system can be completed (by application of
completion rules) to a complete constraint system preserving consistency and incon-
sistency by adding individual constraints of the form xRy, x:X and x:A, where A is either

a concept symbol or a complemented concept symbol.

4.1. Completion rules

Let S be a constraint system. For an individual variable x we count the number of indivi-
dual variables y with xRy for some role symbol R. We therefore define

ng s(x):=ll{ ye VIIxRye S }II.
If it is obvious which constraint system is considered, we often write ng(x) instead of
ng s(x). With

{y « z}S
we define the constraint system that is obtained from S by replacing each occurrence of y

by z.

Proposition 4.1.1. Let S be a constraint system. Then:

1. ifxX, xRy and X(VR)Y are in S, then S is consistent if and only if S U {y:Y} is
consistent

2. ifxX and X(IR)Y are in S and y is an individual variable not occurring in S, then S
is consistent if and only if S U {xRy, y:Y} is consistent

3. ifxXandXEYU ZareinS, then S is consistent if and only if S U {x:Y} or S U

{x:Z} is consistent

20

4. ifxxX and X £ A are in S, then S is consistent if and only if S U {x:A} is
consistent

5. ifx:X and X(atleast N R) are in S and N > ng(x) then S is consistent if and only if S
U {xRy} is consistent, wherey is an individual variable not occurring in S

6. ifx:X and X(atmost N R) are in S, N > 0 and ng(x) > N, then there is a choice of y,
z € VI with xRy and xRz in S, such that {y ¢« z}S is consistent if and only if S
is consistent.

7. if x:X, X(atleast N R), x:Y, Y(atmost M R) are in S and N > M, then S is not
consistent

8. ifx:X, xRy and X(atmost OR) are in S, then S is not consistent.

Proof. We show the first and seventh part of the proposition. The proofs of the
other parts are similar.

1. Let S = {x:X, xRy, X(VR)Y} U S;eqt-

Suppose S is consistent. Then there exists an I-assignment o with ou(x) € a(X),
(ou(x),0(y)) € I[R], and for every a € o(X) such that (a,b) € I[R] we have b € o(Y). It
follows that a(y) € o(Y), and therefore S“ =S U {y:Y} is consistent.

Now suppose S is not consistent. Then I[S] = @ and 1[S7] = I[S] N Iy:Y] = @.
Thus S” is not consistent.

7. Let {x:X, X(atleast N R), x:Y, Y(atmost M R)} € S and N > M. Suppose there
exists an J-assignment o with o € I[x:X, X(atleast N R), x:Y, Y(atmost M R)]. Then
we have ll{b e DIl (a(x),b) € R]}I 2N and li{b e D!l (a(x),b) € NR]}II £M. Since
N > M this is a contradiction. Thus [x:X, X(atleast N R), x:Y, Y(atmost M R)] = @ and

S is not consistent. (m]
Every constraint system can be extended using the following Ry-completion rules:

1. S—oy{yY}uS
if x:X, xRy and X(VR)Y are in S and y:Y is notin S

21

2. S—-o3{y:Y,xRy}uS
if x:X and X(3JR)Y are in S and there exists no individual variable z such that
xRz and z:Y are in S, and y is an individual variable not occurring in S
3. S—o,{xZ}uUS
if x:X and XE Y; U Y, arein S, neither x:Y nor x:Y5 isin S, and Z is either
Y;orY,
4. S—o{xtA}US
if x:X and XE Aarein S and x:tAisnotin S
5. S —>ageast {XRy} U S
if x:X, X(atleast N R) are in S and ngr(x) < N, and y is a new individual
variable not occurring in S
6. S —amost 1y < z}S
if x:X, X(atmost N R), xRy and xRz are in S and ng(x) > N
7. S Demor {X:A, x:mA)
if x:X, X(atleast N R), x:Y, Y(atmost MR) areinSand N>M or
if x:X, X(atmost 0 R), xRy are in S.

A constraint system is Ry-complete if no R{-completion rule applies to it.

Proposition 4.1.2. Let S and S° be constraint systems. Then:

a) If S’ is obtained from S by application of the (deterministic) — vy - rule,—3- rule,
—¢ - rule, =g4eq5 - TUlE OF —4pppp - Tule, then S is consistent if and only if S” is
consistent.

b) If S’ is obtained from S by application of the (nondeterministic) —, - rule or
—atmost - Tule, then S is consistent if S” is consistent. Furthermore there is a choice

for S” such that S’ is consistent if and only if S is consistent.

Proof. Follows from proposition 4.1.1. o

22

4.2. Consistency checking as completion
The next proposition justifies our interest in Rj-complete constraint systems.

Proposition 4.2.1. An Rj-complete constraint system is inconsistent if and only if it

contains, for some x € VI and some concept symbol A, the constraints x:A and x:—A.

Proof. "s": Let S be an Rj-complete constraint system not containing the constraints
x:A and x:—A for any x € V! and any concept symbol A. We show that the standard
interpretation I;of S is a model for S. In particular we show that for the standard
I-assignment o, we have o€ Ic] for every ¢ € S and hence o, € IS]. We distinguish
three kinds of constraints: Constraints of the form x:X, x:A, X E A, xRy, constraints of
the X(VR)Y, X(JR)Y, X E Y U Z, X(atleast N R), X(atmost N R), and constraints of the
form x:—A. |

1. We show that o, e I[[x:X] : Because of the definition of I; and oc; we have
oyx) = x and a(X) = {x | x:X € S}. Therefore a(x) € a(X) and o, e I[x:X]. |
Similarly, it can be shown that o, € I[x:A], o€ L[[XE A] and o, € I[xRy].

2. Next we show that o, € IJX(dR)Y]. If there is no constraint x:X in S, then it is
easy to see that o, € I[X(JR)Y]. Now assume that {x:X, X(3R)Y} € S. Since S is
R;-complete, there are constraints xRy and y:Y in S, since the —3 - rule doesn’t apply.
Hence o, e [[{ x:X, X@R)Y }]. Similarly, it can be shown that o, e [[X(VR)Y],
o€ I[XE YU Z], a,e I[[X(atleast N R)] and o, € [[X(atmost N R)].

3. We prove that o, € I[x:—A] if the constraint x:A is not in S. Suppose x:A ¢ S.
Then o (x) ¢ I[A] and a(x) € Dls- [[A]. Hence o e I[x:—Al.

"&": Suppose the R;-complete constraint system S contains the constraints x:A and x:—A
for some x € VI and some concept symbol A. Since the sets I[[A] and [-A] are disjoint
for every interpretation I, there doesn’t exist an I-assignment o that maps x

simultaneously to an element of I[A] and I[-A]. Thus I[x:A] N I[x:=A] = @. Since

23

{x:A, x:—A} € S we conclude that I[S] is empty and S is inconsistent. O

Example 4.2.1.
Let S = { x:X, X(VR)Y, YE A, X(3R)Z, ZE —A } be a fresh constraint system (see
example 3.1.). The following constraint systems are created using the Rj-completion
rules:
S —3 S u {xRy, y:Z}

—c S U {xRy, y:Z, y:=A}

—v S U {xRy, y:Z, y:—=A, y:Y}

= S U {xRy,y:Z, y:—A, yY,y:A} = §°
Observe that only deterministic completion rules apply to S. The Rj-complete constraint

system S~ is not consistent since S” contains the constraints y:A and y:—A.

4.3. A completion procedure

Let S be a fresh constraint system. In the following we will show, that in finitely many
propagation steps one can nondeterministically compute an R-complete constraint system
S’, such that S is consistent if and only if S” is consistent. To do this, we have to impose
some control on the application of the rules in order to avoid infinite chains of completion

steps. The following example illustrates that such a control is indeed necessary.

Example 4.3.1.

Let S = {x:X, X(atleast 2 R), X(atmost 1 R)} be a fresh constraint system. Then:

S —ateast S Y {XRy} —apeast S U {XRY, XRz} = 3most {2 < ¥}S =S U {xRy} —4east
S U {xRy, xRz} —3imost -~ and we have an infinite chain.

On the other hand if the control strategy applies the —¢por - Tule before applying the

—most - Tule, we get S —aieast S U {XRY) Dageast S U {XRY, XRZ} —epror (XA, x:mA),

24

and we have an Rj-complete constraint system.

Let S be a constraint system. We write S =« S, * € {V, 3,4, E, atleast, atmost,
error}, if S =S~ or the constraint system S”is obtained from S by applications of the

—x - rule, and the —« - rule doesn’t apply to S”.

Let S be a constraint system whose skeleton is a constraint tree. We assign levels to
the concept variables occurring in S as follows:
1. the concept variable that is the root of the constraint tree has the level 0,
2. if the constraint tree contains a constraint X(VR)Y or X(JR)Y and X has the
level n, then Y has the level n+1,
3. if the constraint tree contains a constraint XE Y U Z, then X, Y and Z all have
the same level.
This defines a unique level assignment for constraint systems that are obtained from fresh
constraint systems by application of completion rules. Remember that the skeleton of a

fresh constraint system is a tree.

We extend the level assignment to constraints: A constraint is at level n, if the first
concept variable occuring in the constraint has level n. Constraints of the form xRy will
not be assigned a level. A constraint system is complete at level n, if no completion

rule applies to constraints at level n.

Next we define the recursive function Completion. The call Completion(S,0)
computes an Rj-complete constraint system for the constraint system S given as
argument. The algorithm is obtained from the Rj-completion rules by adding some
control. The control guarantees that a “breadth-first completion” is performed: As long as
possible apply the R;-completion rules to constraints at level i, and then apply the rules to

constraints at level i+1. The number given as second argument indicates the level. The

25

function terminates, since there exists a number n bounding the levels of constraints in S.
Suppose Completion(S,i) is called. Let S; be the set of all constraints at level i. The
sequence of applications of the Rj-completion rules is important: Since the —, - rule is
the only one that introduces constraints at level i, this rule is applied first. The —3 - rule
and the —411ea4¢ - Tule add constraints of the form xRy, therefore these rules are applied
before the —y - rule. Furthermore, the — ¢y - rule must apply before the — 405t - Tule

to avoid infinite chains of completion steps (see example 4.3.1.).

Function Completion (S, i)
let S; be the set of all constraints at level iin S
if§;=0
then return S
else let Su, S3, Sageast: Sv> Se» Serrors Si-complete Such that
Si =u Su =3 S3 Sapleast Satleast @V Sv =& Sg Derror
Serror =atmost Si-complete 5
Completion (S U S;_complete, i+1)

end Completion.

Proposition 4.3.1. Let S be a constraint system obtained from an ALCN. - concept
description. Consider the call Completion(S,0). Let
8= 8 USo-complete U S1-complete Y - Y S(j-1)-complete »
that is, S/ is the argument of the j-th recursive call. Then:
a) The constraint system S;_complese is complete at level i for all i.
b) The constraint system S is complete at level i for all i < j.

¢) The call Completion(S,0) terminates.

Proof: a) Let Sj be the set of all constraints at level i. Observe that the constraint

systems Sy, S3, Satleast» S> Sg» Serror a1d Si_complete have the following properties:

26

Sy, is obtained from S; by adding the constraints x:Y or x:Z for every
{x:X, XE YU Z} c S;. The constraints x:Y and x:Z are at level i.

S3is obtained from S, by adding the constraints xRy and y:Y for every
{x:X, X(3R)Y} € S,. The constraint y:Y is at level i+1.

Satleast 1S obtained from S by adding constraints of the form xRy for every
{x:X, X(atleast NR)} € Sg, such that N=1I{ y € VII xRy € Syqeasi}l-

Sy is obtained from S,¢jess¢ by adding the constraints y:Y for every
{x:X, X(VR)Y, xRy} € Szgeast- The constraint y:Y is at level i+1.

Sg is obtained from Sy by adding the constraints x:A for every {x:X, XE A} € Sy.
If the —eryor - Tule applies to Sg, then Seprgr = {X:A, x:—A}, otherwise Seprr = Sg. Finally
the constraint system S;_complete 1S Obtained from Serrq, by finitely many applications of

the —43most - Tule.

Now we will show that no Rj-completion rule applies to constraints at level i in
Si-complete~

Consider the —, - rule, the —3 - rule and the —¢ - rule:
Constraints of the form x:X, which have been introduced by the —5 - rule and the
—v - rule, are at level i+1. If the constraint x:X is at level i in S ¢omplete, then x:X is
already in S,,. Therefore the —, - rule, the —3 - rule and the —¢ - rule don’t apply
to Si-complete-

Consider the —y - rule:
Since the —¢ - rule, the —¢pyor - Tule and the — a6t - Tule, which are applied after the
—y - rule, don’t introduce constraints of the form xRy and x:X, the —v - rule doesn’t
apply t0 S_complete-

Consider the —41eq5 - Tule:
Assume that the —;qeag; - Tule applies to Sj_complete- Then
{x:X, X(atleast N R)} € S complete and N > Il y I xRy € Si-complete I Since

N =Il{ y | xRy € Syqeasi}l after the application of the — 645 - Tule, the constraints x:Y

27

and Y (atmost M R) must be in Sj_complete and N > M. But then the —¢ror - rule would
have been applied to Sg and we have a contradiction. Thus our assumption is false and
the —ag1east - Tule doesn’t apply to S;_complete-

It is obvious, that the —epor - rule and the —,m gt - rule don’t apply to S(Deomplete-
Now we have shown that no Rj-completion rule applies to constraints at level i in
Si-complete and hence Sj_complete is complete at level i.

b) We prove the claim by induction on the level i:

Base case i=1: The constraint system S! = SO U Sq.complete is complete at level 0.

Induction step: St =81 U S; complete- The constraint system S;_complete is complete
at level i and doesn’t contain constraints at level 1 for 1 < i. By the induction hypothesis
we know that Si is complete at level 1 for 1 < i. Since Si-complete contains every
constraint, which is in Siand is at level i, we conclude that Si*1 is complete at level 1 for
1 <i+l.

c) Every constraint system obtained from a finite ALCA - concept description has a

maximal level and hence the function terminates. (m]

The next theorem shows how to obtain an algorithm for checking consistency of

ALCN - concept descriptions.

Theorem 4.3.2. Let S be a fresh constraint system obtained from an ALCN- concept
description C.

a) If C is consistent, then there exists a computation using Completion, such that the call
Completion(S,0) returns an Rj-complete constraint system not containing x:A and x:—A
for any individual variable x and any concept symbol A.

b) If C is not consistent, then every call Completion(S,0) returns an R;-complete
constraint system containing x:A and x:—A for some individual variable x and some

concept symbol A.

28

Proof. Let C be an ALCA(- concept description. Then C is transformed into a fresh
constraint system S using the simplification and unfolding rules. Note that C is consistent
if and only if S is consistent. The call Completion(S,0) nondeterministically computes an
R;-complete constraint system S” for S (proposition 4.3.1.). Furthermore there is a choice
when applying the Rj-completion rules, such that S is consistent if and only if S” is
consistent (proposition 4.1.2). Hence, if every Rj-complete constraint system for S is

inconsistent, then the concept description C is inconsistent, otherwise C is consistent. O

Now let us turn to the time and space complexity of this algorithm. Transforming a
concept description C into a fresh constraint system can be done easily, that means in time
O(n), where n is the length of C (see theorem 3.4.). Whether a constraint system contains
the constraints x:A and x:—A, can be checked in time O(n2), where n is the number of

constraints.The following examples illustrate the complexity of the R;-completion rules.

@ atleast NR
b)
VR

(Y) atleast NR

VR

@ atleast NR

Figure 4.3.1. Constraint trees for constraint systems, where at least exponentially

many propagation steps are necessary for a completion.

Example 4.3.2.
a) Let C=3dR:An JR:B N (VR: @R:A 1N 3R:B 11 VR: (...))) be a concept

29

description and let S be a fresh constraint system obtaihed from C (cf. [Schmidt-Schaufl
Smolka 88, page 17]). Figure 4.3.1.a shows a constraint tree for S. Every R;-complete
constraint system for S contains two constraints of the form y:Y at level 1, four con-
straints of the form y:Y at level 2, and in general 21 constraints of the form y:Y at level n.
b) Figure 4.3.1.b shows a constraint tree for the fresh constraint system
S = {x:X} U S” where S” is obtained by unfolding the constraint X £ C with
C = (atleast N R) 1 (VR: ((atleast N R) N VR: (...))). Every Ry-complete constraint
system of S contains N constraints of the form y:Y at level 1, N2 constraints of the form

y:Y atlevel 2, and in general N™ constraints of the form y:Y at level n.

In the following we investigate how many propagation steps are necessary to obtain
an R;-complete constraint system from a fresh constraint system. To ease our notation we
make the following definition: With Il ¢ € S Il we denote the number of all constraints of

the form c, which are in the constraint system S.

Theorem 4.3.3. If S is a fresh constraint system, then in at most exponentially many
progagation steps one can nondeterministically compute an R j-complete constraint system

S, such that S is consistent if and only if S” is consistent.

Proof: Let S be a fresh constraint system. The call Completion(S,0) computes non-
deterministically an Rj-complete constraint system. There is a choice when applying the
nondeterministic —, - rule and — 4o - Tule, such that S is consistent if and only if the

R1-complete constraint system is consistent (theorem 4.3.2.).

Next we give an upper bound for the number of propagation steps needed to obtain an
Rj-complete constraint system from a fresh constraint system:
Let S be a fresh constraint system with Il S Il = m, that is, m is the length of the string S.

Consider the constraint system

30

S' 1= S U So_complete Y S1-complete Y -+ U S(i-1)-complete
that is computed by the call Completion(S,0). Note that the constraint system S is com-
plete at level j for j < i. Let S; be the set of all constraints at level i in Si. Put s := Il S; Il.
Remember that we obtain the constraint system Sj complete from S; in the following

manner:

Si =u Su =3 S3=atleast Satleast =V SV =t Sg =error Serror = atmost Si-complete-

The —, - rule applies to every constraint of the form x:X at most | XE YU Z € §;lI
times. Because ll x:X € Sjll<sand | XE YU Z € §; |l <m, the —, - rule applies at most
(s * m) times. Each application of the —, - rule adds one constraint of the form x:X, such
that the constraint system S, contains at most (s + s * m) < (2 * s* m) constraints of the
form x:X.

The —3 - rule applies to every constraint of the form x:X at most Il X(@R)Y € S, Il
times. Since Il x:X € S, Il £ (2 * s* m) and Il X(IR)Y € S, Il £ m, we know that the
—3 - rule applies at most (2 * s * m2) times. Each application of the —5 - rule adds one
constraint of the form x:X, such that the constraint system S3 contains at most
(2* s*m) + (2% s* m2) < (4 * s* m2) constraints of the form x:X. Furthermore we
note that for every individual variable x with x:X € Sgthere are at most
I X(AR)Y € Sy, Il < m constraints of the form xRy in the constraint system S5 for
some role symbol R and some individual variable y.

The —aqeas; - Tule applies to every constraint of the form x:X at most N times,
where N = max { M | X(atleast M R) € S3} for some role symbol R. Since the
positive integer N is represented in binary, we have logy(N) < m and hence N is not
greater than 2M. Thus the —,(eaq - Tule applies for x:X at most 2™ times. Because
Il x:X € S3ll < (4 * s * m2), the = z1eas; - Tule applies at most (4 * s m2% 2m)
times. Note that the — yeqq¢ - Tule doesn’t add constraints of the form x:X, hence
Il x:X € Sypeast Il = Il x:X € Sl < (4 * s *m?2). Furthermore the constraint system S jeast

contains for every individual variable x with x:X € S,ea5 at most 2™ constraints of the

31

form xRy for some role symbol R and some individual variable y.

The —v - rule applies to the constraints x:X, xRy at most Il X(VR)Y € Sggeaq |l
times. Since we know that to every individual variable x with x:X € Spyjeqqt there are at
most 2™M constraints of the form xRy in the constraint system S,yea5¢ fOr some role
symbol R and some individual variable y, and Il X(VR)Y € Szjeqst !l < m, the —y - rule
applies at most Il x:X € Syeast I * 2M * Il X(VR)Y € Sypjeat Il (4 * s m3 % 2M) times.
Each application of the —y - rule adds one constraint of the form x:X, such that there are
at most (4 * s * m2) + (4 * s* m3 * 2M) < (8 * s * m3* 2M) constraints of the form x:X
in the constraint system Sy.

The —¢ - rule applies to every constraint of the form x:X at most | XE A € Syl
times. Because Il x:X € Syl < (8% sx* m3% 2M)and 1 XE A e Sy Il £ m, the —¢ - rule
applies at most (8 * s* m%x 2Mm) times.

The —¢rror - Tule applies at most one time. If the —¢prq, - rule doesn’t apply, then
Serror = Sg.

Now let us consider the — g¢most - Tule: We know that for every individual
variable x with x:X € Sg there are at most 2™ constraints of the form xRy in the con-
straint system Sg for some role symbol R and some individual variable y. Suppose (the
worst case) X(atmost 1 R) € S¢. Then the =44 - rule applies to x:X € Sg at most 2
times. Since Il x:X € S 1 < (8 * s m3 % 2m) , the = ,¢most - Tule applies at most

(8% s# m3x 2M) % 2M = (8% 5 m3* 22m) times.

Altogether in at most
(s* m) + (2% s* m2) + (4% s m2% 2M) 4 (4% 5% m3 % 2M) 4 (8 x s % m% % 2m)
+ (8 % s % m3x 22m)
= s* [m+ (2% m2) + (4% m2% 2M) + (4% m3% 2m) + (8 m?x 2m)
+ (8 % m3 x 22m))
< I1Sj 1l (27 % m*x 22m)

propagation steps one can nondeterministically compute the constraint system

32

Si-complete from the constraint system S;. Furthermore we know that
I Si.complete Il < 11 Sill +2 % Il S; I % (27 m% » 22m)
= Il Sj Il % (1 + 54 % m* % 22m)

since an application of an Rj-completion rule adds at most two new constraints.

Now we compare the size of Si+! to the size of Si:

ISH1I = IS U Sicomplete !
< USHL + 11 Sicomplete !
< ISHE + 1Syl (1 + 54 % m#x 22m)
< IS+ 1 SHll* (1 +54 % m#x 22m)
< NSt * p(m) where p(m) < (55% m® % 22m),

Note that a constraint system S with Il S Il = m doesn’t contain constraints at level M
with M 2 m. Thus the constraint system S™ is R;-complete and we have:

ISmIl < p(m)x* Il SM-1]|

IA

p(m) * p(m) * Il SM-2] < .

A

[p(m)]™ * 1l SO1I

[p(m)]™ % m

[p(m)]m+1
= e(m+1)* In(p(m)

IA

A

em+)*p’(m) where p’(m)

In(p(m))
< In(55) + 4 % In(m) + 2* m* In(2).

If S is a fresh constraint system, then we obtain an R;-complete constraint system
from S by adding at most exponentially many constraints. Since every R;-completion rule
adds at most two constraints, we conclude that in at most exponentially many propagation

steps one can nondeterministically compute an R;-complete constraint system. o

33

4.4. Optimization

As seen in example 4.3.2. and theorem 4.3.3. in the worst case exponentially many
propagation steps are necessary to obtain an Ri-complete constraint system for a fresh
constraint system. One point to reduce this complexity is a modification of the —geqqt -
rule. The idea behind this modification is as follows: Suppose a constraint system contains
the constraints x:X and X(atleast N R). Then it is not really necessary to apply the —aqeast
- rule N times adding the constraints xRyj, ... , XRyy . In the following we will show

that it is sufficient to add only the single constraint xRy, where y represents the individual

variables yq, ... , YN -

!

First we define the Ry-completion rules: We get the Ry-completion rules from the
R;-completion rules by modifying the —41ea5¢ - Tule in the following manner:
Let S be a constraint system. Then:
S atleast {xRy} U S
if x:X, X(atleast N R) are in S, N> 0, ng g(x) =0 aﬁd y is a new individual

variable not occurring in S.
A constraint system is Ry-complete if no Ry-completion rule applies to it.

It is easy to see that the application of the modified — 41,4 - Tule to a constraint
system preserves consistency and inconsistency. Furthermore we note that every
R1-complete constraint system is Ry-complete. An Ry-complete constraint system S is
R1-complete if it doesn’t contain constraints of the form x:X and X(atleast N R) with

nR s (x) <N.

In the following we consider constraint systems that are constraint trees. This

assumption is justified because every constraint system obtained from a fresh constraint

34

system is a constraint tree. We will show that an Ry-complete constraint tree is consistent
if and only if it doesn’t contain the constraints x:A and x:—A for any xe V! and any
concept symbol A. To show this we pursue the following idea: Suppose the constraint tree
S is Ry-complete and doesn’t contain constraints of the form x:A and x:—A. Then we add
constraints to S, such that we obtain an Rj-complete constraint tree S” not containing
constraints of the form x:A and x:—A. With proposition 4.2.1. — an Rj-complete
constraint system is consistent if and only if it doesn’t contain the constraints x:A and
x:—A for any xe VI and any concept symbol A — we know that S” is consistent and we
conclude that the Ry-complete constraint tree S is consistent. The following example

illustrates how one can obtain an Rj-complete constraint tree from an Ry-complete

constraint tree.

Figure 4.4.1. A constraint tree.

Example 4.4.1.
Let S = {x:X, X(atleast 2 R), X(VR)Y, YEUU V,VE B,UEFR")Z, ZE A} be a fresh
constraint tree, which is shown in figure 4.4.1. We obtain the Ry-complete constraint tree
S, from S in the following way:

S —ateast S VU {xRy}

vy S U {xRy, y:Y}

35

-y S U {xRy, y:Y, y:U}
-3 S U {xRy, y:Y, y:U, yR7z, z:Z}
—c S U {xRy, yY, y:U,yRz, z.Z, z:A} = S,.
Note that the constraint tree S, doesn’t contain constraints of the form x:A and x:—A.
Now we construct the Ry-complete constraint tree S which has the following properties:
e S
* S; doesn’t contain constraints of the form x:A and x:—A.
Since the constraint tree Sy is not Ri-complete, we have to add constraints to S, to obtain
the R{-complete constraint tree Sy:
S; = S5 U {xRyp} Now we have lIl{ y e VIIxRy e S; }ll =2 and the
—atleast - Tule of the Rj-completion rules doesn’t apply
to x:X, X(atleast 2 R).
U {y2Y} Now the -y - rule doesn’t apply to x:X, xRy,, X(VR)Y.
U {y2:U} We have to add either the constraint y,:U or y,:V such that
the —, - rule doesn’t apply to y,:Y, YE UU V. We
choose y;:U since the constraint y:U is in S».
U {y2R’z} Now the —3 - rule doesn’t apply to y,:U, U@R")Z
since the constraint y,R "z is added and the constraint z:Z
isin S,.
The idea behind this “R;-completion” is, that the individual variable y, has to be a copy of
the individual variable y, which occurs in the Ry-complete constraint tree. It is easy to see
that the constraint tree Sy is Rj-complete. Furthermore the constraint tree S; doesn’t
contain constraints of the form x:A and x:—A. With proposition 4.2.1. we know that S; is

consistent and hence the constraint tree S, is consistent.

36

Proposition 4.4.1 Let S be an Ry-complete constraint tree not containing the con-
straints x:A and x:—A for any xe V! and any concept symbol A. Then there exists an
Rj-complete constraint tree S” such that

e Sc€8° and

« S’ doesn’t contain the constraints x:A and x:—A for any xe VI and any concept

symbol A.

Proof. First we define the set Vg of all tuples (z,Z) € VI X VC for the constraint
tree S, such that the — e - Tule of the Rj-completion rules applies to constraints of the
form z:Z, Z(atleast N R):

Vg={(z2Z)e VIx VC| {z:Z, Z(atleast NR)} € S and ng g(z) < N}.

Let S be an Ry-complete constraint tree not containing the constraints x:A and x:—A

for any xe V! and any concept symbol A. Consider the following two cases:
a) Suppose Vg = @. Then the constraint tree S is Rj-complete, because

* the —41east - Tule of the Rj-completion rules doesn’tapply to S and

» S is Ry-complete.

b) Now assume that Vg # @. Then we construct a constraint tree S” from S, such that

» S’is Ry-complete,

e Se ¥,

S’ doesn’t contain the constraints x:A and x:—A for any xe VI and any concept

symbol A and

e IIVgdl = 1IVgll-1.

Thus after finitely many iterations — since Vg is finite for a finite constraint tree — we
obtain an R;j-complete constraint tree not containing the constraints x:A and x:—A for any

xe V! and any concept symbol A.

Now let us construct a constraint tree S” from S with the required properties: We

choose (x,X) € Vg, such that there is no pair (y,Y) € Vg where Y has a level greater

37

than X. Note that there is at least one element in Vg with this property. Then {x:X,
X(atleast N R)} € S with ng g(x) < N. In the following we often refer to the constraint
xRy € S for a fixed individual variable y. Note that there is at least one constraint of the
form xRy € S for some individual variable y because of the — gqeaqt - rule of the

Ry-completion rules.

First we define the constraint tree

S1 =S U {xRyj,..., XRyg | d = N - ng §(x), y1, ..., ¥q are new individual variables}.
Observe that Il Vgill = Il Vg Il - 1 and that in general the constraint tree S! is not
R,-complete. In the following we add constraints to S! such that we obtain an
Ry-complete constraint tree not containing constraints of the form x:A and x:—A.

Consider the constraint xRy € S. We add for every concept variable Y with y:Y the
constraints y;:Y, ..., y4:Y and obtain the constraint tree

S2=SluU {y;:Y, ..., y4:Y 1Y is a concept variable with {xRy, y:Y} € S!}.
We observe that the —, - rule doesn’t apply to S2: Suppose {y:Y, YE UL V} ¢ S1,
The constraint tree S! contains either y:U or y:V because S is Ry-complete. By definition
the constraint tree S2 contains either the constraints y;:U or y;:V for 1 <i < d. Thus the
—, - rule doesn’t apply to S2.

Now we add for every concept symbol A with y:A the constraints yj:A, ..., y4:A
which gives the constraint tree:

S3 =820 {yq:A, ..., yqg:A | A is a concept symbbl with {xRy, y:A} € S2}.
It is easy to see that the —¢ - rule doesn’t apply to S3. Furthermore we note that the
constraint tree S3 doesn’t contain the constraints x:A and x:—A for any x € VI and any
concept symbol A. Suppose xRy, y:A € S2. Then the constraints y;:A, ..., yq:A are
added to S2, where yj, ..., yq are new individual variables not occurring in S. We know
that y:—A ¢ S2 and therefore the constraints y;:—A ¢ S3 for 1 <i < d. If the constraints
xRy, y:—A € S2, similar arguments apply.

Next we add constraints to S3, obtaining the constraint tree S”, such that the —vy -

38

rule and the —3 - rule don’t apply to S”. The constraint tree S” is obtained from $3 by
adding the constraints y;Rz, ..., y4R "z for every yR 'z € S3 for some role symbol R and
some individual variable z:

S"=83U {y;Rz, ..., ygR"z | R" is a role symbol and z is an individual variable

with {xRy, yR"z} € S3}.

We observe that the —3 - rule doesn’t apply to S Suppose {y:Y, Y@R")Z} € S3. Then
the constraints yR 'z and z:Z are in the constraint tree S3, since S is Ry-complete. Thus for
the constraints y;:Y, Y(3R)Z (1 <£i<d) the constraints y;Rz (1 <i<d) and z:Z arein
S’, and the —3 - rule doesn’t apply to S°. Furthermore for the. constraints y;:Y, yjRz,
Y(VR")Z (1 <i<d) the constraint tree S” contains the constraints z:Z. Thus the —y -

rule doesn’t apply to S”.

Let us now summarize the properties of the constraint tree S°. Remember that we
chose (x,X) € Vg such that the level of X was maximal. Furthermore, S contains
constraints x:X and X(atleast N R) where ng g(x) <N.

1) ng s(x) = N.

2) The —, - rule, the —¢ - rule, the —3 - rule and the —y - rule don’t apply to S”.

3) The —4yeas; - Tule of the Ry-completion rules doesn’t apply to S”.

Suppose yi:Y € S (1 <i<d) where y; is a new individual variable not occurring in
the constraint tree S. Then there exist constraints x:X, xRy and y:Y for some individual
variable y in S. By the choice of (x,X) € Vg, we know that in S there are no constraints
y:Y, Y(atleast M R") with nr-s(y) < M. Hence, there is no constraint Y(atleast M R”) in
S” with ng- g-(yj) <M, which implies that (y;,Y) ¢ Vg-. Thus the —,jeas; - Tule of the
R, - completion rules doesn’t apply to S”.

4) The —aymest - Tule doesn’t apply to S”.

We know that there are no constraints y:Y, Y(atmost M R”) in S with ng-s(y) >M
because S is Ry-complete. Hence, there are no constraints y;:Y, Y(atmost M R") in S°

with ng- g-(yj) > M for 1 <i<d and the —,ymeg - Tule doesn’t apply to S”.

39

5) The —¢pyor - Tule doesn’t apply to S”.

There are no constraints y:Y, Y(atleast NR"), y:Z, Z(atmost MR) in S with N>M
and hence there are no constraints y;:Y, Y(atleast N R"), y;:Z, Z(atmost M R) in S” with
N>Mforl1<i<d.

6) S” doesn’t contain constraints of the form x:A and x:—A.

As mentioned above, S3 doesn’t contain constraints of the form x:A and x:—A.

T) I Vgl = Il Vgl - 1.

Now we have shown that no Ry-completion rule applies to S°. Thus we have
constructed from an Ry-complete constraint tree S not containing constraints of the form
x:A and x:—A an Ry-complete constraint system S” not containing constraints of the form
x:A and x:—A. Furthermore, Il Vgl = Il Vg Il - 1, and after finitely many iterations we

obtain an Rj-complete constraint system. o

Theorem 4.4.2. An Rj-complete constraint tree is inconsistent if and only if it

contains, for some xe V! and some concept symbol A, the constraints x:A and x:—A.

Proof. "=": Let S be an Ry-complete constraint tree not containing the constraints x:A
and x:—A for any x € VI and any concept symbol A. One can construct an Rj-complete
constraint tree S from S, such that {x:A and x:—A} ¢ S” for any x € VIand any concept
symbol A (see proposition 4.3.1.). Using proposition 4.2.1. we conclude that S~ is
consistent and hence S is consistent.

"&": As in proposition 4.2.1. o
Theorem 4.4.3. Let S be a fresh constraint system obtained from an ALCN- concept

description C. We modify the function Completion of chapter 4.3. such that the — 41,4 -

rule of the Ry-completion rules is used instead of the Rj-completion rules.

40

a) If Cis consistent, then there exists a computation using Completion, such that the call
Completion(S,0) returns an Ry-complete constraint system not containing x:A and x:—A
for any individual variable x and any concept symbol A.

b) If C is not consistent, then every call Completion(S,0) returns an Ry-complete
constraint system containing x:A and x:—A for some individual variable x and some

concept symbol A.

Proof. Using theorem 4.3.2. and 4.4.2. o

41

5 PSPACE - completeness of ALCAL

In this chapter we show that checking the consistency of ALCAL- concept descriptions is
PSPACE-complete. The idea behind our algorithm is, that it is not necessary to keep the
whole constraint system in memory. We define subsets - so-called R g,y -traces - of
Ry-complete constraint systems with the following property: If each of these R g, -traces is
consistent, then the whole constraint system is consistent. While the size of an Ry-complete
constraint system can be exponential, the size of R g, -traces is linear in the size of the

initial concept description.

Let S be a constraint system, R a role symbol and x an individual variable occurring in
S. We want to count the number of 3JR-edges issuing from nodes X with x:X. We therefore
define

J-edgeg sx) :=1I{ Y1 {x:X, X(3R)Y} < S }II.
We also want to keep track of the maximal number of constraints xRy such that the —40t -
rule doesn’t apply to {x:X, X(atmost N R)} € S for some concept variable X. If there is no

“atmost - restriction”, then the value oo is returned. We thus define
min {N | {x:X, X(atmost N R)} € S for some X}
atmostg g(x) := if {x:X, X(atmost N R)} € S for some x

0o otherwise.

Consider an Rj-complete constraint system S containing an individual variable x with
J-edgeg s(x) > atmostg g(x). Then we have |
{x:X1, X1(3R)Y, x:X,, X2(3R)Z, xRy, y:Y, y:Z} € S
for some concept variables X;, X5, Y, Z and some individual variable y, that is, the

constraint xRy is “distributed” to at least two IR-edges from nodes X with x:X.

42

Figure 5.1. A constraint tree for the constraint system S = {x:X, X(atmost 2 R),

X@R)Y;, Y1 E A, XER)Y,, YoE B, X(3R)Y3, Y3E =A}.

Example 5.1.
Consider the constraint system S given by the tree in figure 5.1. Since atmostg g(x) = 2,
two constraints xRy, xRz are added to S, where y and z are new individual variables.

Since 3-edgeg s(x) =3, the following distributions are possible:

S1 = SU {xRy, xRz} U {y:Yq, y:Y5, Y3} U {y:A, y:B, z2—A}
Sy = SU {xRy, xRz} U {y: Y], Y5, y:Y3} U {y:A, z:B, y:—A}
S3 = SU {xRy, xRz} U {y:Yq, z:Yp, z:Y3} U {y:A, z:B, zz—A}

Note that S;, S and S3 are obtained from S by applications of the R,-completion
rules. Since at least one of the constraint systems S, Sp and S3, respectively, is

consistent, we know that S is consistent.

For the following we need the following definitions:

Let Y = {Yy, ..., Y,} be a set of concept variables and let m be a positive integer
with m < n. We divide Y into m pairwise disjoint subsets my, ..., Ty, , such that
TV ..URL=Y and nj# @ (1 <i < m). The set {ny, ..., T} is called an
m-partition of (Y, ..., Y}.

Given a constraint system S and individual variables x and y occurring in S, y is

called a successor of x if S contains a constraint xRy.

43

Now we define completion rules, such that we obtain so-called R g, -traces for a
fresh constraint system. The idea behind the R g, -traces is, that every individual

variable occurring in an R g, -trace has at most one successor. We do this by restricting

the Ry-completion rules.

The R acc-trace rules consist of the —, - rule, the —y - rule, the —¢ - rule, the

—error - Tule and following three rules:

S >3 {y:Y, xRy} US
if x:X and X(3R)Y are in S,
J-edgegr s(x) < atmostg g(x),
there is no constraint xRz in S, and y is a new individual variable.
S —Tatleast (XRy} US
if x:X, X(atleast NR) are in S,
J-edgegr s(x) =0,
there is no constraint xR z in S, and y is a new individual variable.
S —Tamost S
if 3-edgeg s(x) =n, atmostg g(x) =m, n>m,
{x:Xj, X1ER)Yy, ..., x: Xy, XAR)Y,) € S,
{®1, ..., Ty} is an m-partition of {Yy, ..., Y},
S’e S={{xRy1} U {y1:1Z 1Ze m;} US,
{xRyy} U {y2:Z 1Ze m;p} US, ..,
{xXRyp} Y {ymZ1Z e mn,} US}},

there is no constraint xRz in S, and yj, ..., ¥, are new individual variables.
Let us now discuss the newly defined rules.

The —T3 - rule is a restriction of the —3 - rule, such that the —3 - rule can be

applied to at most one existential edge at every level. Hence every individual variable has

44

at most one successor.

The — Tageast - rule forces the — 41ea5t - Tule to be applied to S only, if
J-edgeg s(x) = O for some x. Otherwise, if 3-edgeg g(x) > 0, the —13 - rule applies to S
and there is no need to apply the —41eas: - Tule.

Suppose d-edger s(x) > atmostg g(x) = m for some individual variable x occurring
in S. Then the nondeterministic —>Timost - Tule applies, adds the single constraint
xRy, and distributes it to at least one JR-edge. Consider the constraint system
U =uU{S"IS’e s} where S” ranges over all the possible constraint systems obtained with
a fixed m-partition. Then ng yj(x) = atmostg y;(x), and for every {x:X, X(3R)Y} € U
we have {xRy, y:Y} € U for some y. Thus the — 4;nost - Tule doesn’t apply to
{x:X, X(atmost N R)} € U and the —3 - rule doesn’t apply to {x:X, X(@R)Y} € U for

any concept variable X.

Let T be a constraint system obtained from a fresh constraint system S by application
of Rgpm-trace rules. We call T an Ry, -trace of S if no Rg.m -trace rule applies

to T.

Proposition 5.1. Let T be an R gy -trace. Then:

a) IfxoccursinT atlevel i, then every successor of x occurs at level i+1.

b) Every individual variable occurring in T has at most one successor.

c) Ateverylevel , there occurs at most one individual variable in T.

d) IfT contains the constraints x:X and y:X, thenx =y (that is, every concept variable

has at most one individual variable associated with).

Proof.
. a), b) follow by definition of the rules.
c) follows from a) and b), since there is only one individual variable at level 0.

d) follows, since every concept variable has a unique level. o

45

Propsition 5.2. Let S be a fresh constraint system. The number of applications of

R grcoc-trace rules to S is bounded linearly in the size of S.

Proof. Follows from the fact that there is at most one individual variable x with x:X

for a concept variable X in an R g, -trace of a fresh constraint system. m

Note that for a fresh constraint system there are finitely many R g, -traces modulo
renaming of individual variables. In the following we show that we obtain an Ry-complete
constraint system by the union of finitely many R g, -traces. Furthermore we will see
that it is possible to compute all R g, -traces for a fresh constraint system such that at
most one R g, -trace needs to be kept in memory. Since the size of R gron-traces is
bounded linearly in the size of the fresh constraint system, polynomial space is needed.
The next example demonstrates that it is not necessary to take the union of all Rg,m¢

-traces to obtain an Ry-complete constraint system.

Example 5.2.
Consider the constraint system S = {x:X, XE YU Z, YE A, ZE B}. Using the RM‘
trace rules we obtain the following two R g, -traces:

1) Ti=Su {xY,x:A} and

2) T =S U {x:Z, x:B}.
Since both Ty and T, are Ry-complete constraint systems, it is sufficient to consider either
Ty or T,. We will say that T} is an alternative trace of T, since only one of both R g/

traces is needed to obtain an Ry-complete constraint system.

Let Tbean R acon-trace containing constraints x:X, X & Y U Z, x:Y for some indivi-
dual variable x and some concept variables X, Y and Z. Then an R g, -trace T is called |
an alternative trace of T, if T’ contains constraints x:X, X E YU Z, x:Z. Let S be a

fresh constraint system and 7, be the set of the finitely many R g, -traces modulo

46

renaming of S. A subset 7T of Ty is called an Rgm -trace system of S, if for

every T e T either T or an alternative trace of T is in Z.

Proposition 5.3. Let T be an Rg cyc -trace system. Then S= U{T |T € T} is

Rj-complete.

Proof. Let T be an R g, -trace system. We will show that no Ry-completion rule
appliesto S=U{TITe 7}.

Consider the —3 - rule:
Assume that the —3 - rule applies to S. Then x:X, X(3R)Y are in S and xRy, y:Y are not
in S for any individual variable y.
1) If 3-edgeg s(x) < atmostg g(x), then we obtain an R g/~ -trace T & T by applying
the —1g- rule to x:X, X(JR)Y and we have a contradiction.
2) If 3-edgeg g(x) > atmostg g(x), then there exists an R g, -trace T € 7 containing
x:X, X(3R)Y, xRy, y:Y, because of the —>Tamost - Tule and we have a contradiction.
Thus our assumption is false and the —3 - rule doesn’t apply to S.

Consider the —,qeq5t - TUlE:
Suppose {x:X, X(atleast NR)} € S.
1) If 3-edgeg s(x) >0, then {x:Y, Y(FR)Z, xRz, z:Z} € S and ng s(x) > 0.
2) If 3-edgegr s(x) = 0, then the —>T,peaq - Tule has applied to x:X, X(atleast N R)
adding xRy. Hence ng g(x) > 0.
Thus the —41eq5¢ - Tule doesn’t apply to S.

Consider the =44y 05t - TUlE:
If {x:X, X(atmost N R)} € S, then ng g(x) < N because of the —,mqs - rule. Thus the
—atmost - Tule doesn’t apply to S.

It is easy to see that the other Ry-completion rules don’t apply to S. Thus no

Ry-completion rule applies to S and S is Ry-complete. (m]

47

Proposition 5.4. A constraint system S is consistent if and only if there exists an

Rareac-trace system T of S, such that no T € T contains the constraints x:A and x:—A

for any individual variable x and any concept symbol A.

Proof. Let7 beanR AL -trace system of S, such that no Raron-trace T e T
contains the constraints x:A and x:—A for any individual variable x and any concept
symbol A. Suppose x:A or x:—A is in T for some concept symbol A. Thenno T'e T
(T’# T) contains constraints of the form x:B or x:—B for any concept symbol B. Since no
T € 7 contains x:A and x:—A, we know that S"=U{T I T e T} doesn’t contain x:A and
x:—A. The constraint system S is R g, -complete (proposition 5.3.) and hence S is
consistent.

Now suppose every R g, -trace system 7 of S contains an R g7~ -trace T, such

that x:A and x:—A are in T for some individual variable x and some concept symbol A.

Then x:A and x:—A arein S” and S is inconsistent. m}

Figure 5.2. A constrainttree for the constraint system
S = {x:X, X(@R)Y}, Y; E A, X(VR)Y>, Ya(atmost 2 R), Y,3R)Z;, Z; £ A, Y,(3R)Z,,
7/2 E B, Y2(3R)Z3, Z3 C —A, Y2(3P)Z4, Z4 = B}.

48

a) (%) b) (X) c) X)
®» O » O » @
@) 2 6@ @) @ @ @ (@) @ © &

Figure 5.3. An Rg -trace system for the constraint system S. The 3-edge from
node X to node Y is drawn in bold, if x:X, X(3R)Y, xRy, y:Y are in an R arcn-trace.

Example 5.3.
Figure 5.2. shows a constraint tree for the constraint system
S = {x:X, X@R)Y;, Y1 E A, X(VR)Y,, Yy(atmost 2 R), Yo(3R)Zy, Z; E A,
Y,(3R)Z,, Z,E B, Y5(3R)Z3, Z3 E —A, Yo(3P)Z4, Z4 E B}.

An Rg .~ -trace system for S is shown in figure 5.3.

We now define the function ALCA-Completion . The call ALCN-Completion (x,S)
computes up to renaming every R g, -trace of a fresh constraint system S with x as
individual root. If there exists an Ry, -trace system 7 of S, such that no R g, -trace
T € T contains the constraints x:A and x:—A for any individual variable x and any
concept symbol A, then the call returns frue , otherwise false. Thus the function
ALCN-Completion yields true if and only if the constraint system S is consistent (see
proposition 5.4.).

For the computation of R g, ~-traces it is redundant to keep constraints of the form
xRy in memory, bécause x:X, X(*R)Y, y:Y, where * € {V, 3} implies the existence of a

constraint xRy.

49

Function ALCA-Completion (x,S) =
if ({xA,x:=A}cS)V
({x:X, X(atleast NR), x:Y, Y(atmost MR)} €S A N>M) v
({x:X, X(atmost O R), xRy} € S) (% 1%)

then return false

else if {x:X,XEA}<cS A xtAg S (x 2%)
then ALCAN-Completion (x, {x:A} U S)
else if {x:X,XEYUZ}cS AxxYeS AxZeS (* 3%)

then ALcAN-Completion (x, {x:Y} U S) v arca-Completion (x, {x:Z} U S)
else if {x:X, X(atleast NR)} €S A J-edger s(x)=0 (x 4 %)
then ALcA-Completion (y, {y:U | 3{x:Z, Z(VR)U} € S} U S)
else if [forall {x:X, X(3R)Y} < S (% 5%)
with (atmostg g(x) =) V (atmostg g(x) 2 3-edgeg s(x)) the call
ALcN-Completion (y, {y:Y} U {y:U13{x:Z, Z(VR)U} € S} U S),
where y is a new individual variable, returns frue]
A [for all (x:X1, X;GR)Y}, ..., x: Xy, X@R)Y,) € S (* 6%)
with (atmostg ¢(x) =m) A (3-edgegrs(x)=n) A (m<n) the calls
ALCN-Completion (yy, {y1:Z 1 Z € m1} U {y1:VI I{x:U, UVR)V} € S} LU S)
A LA
ALCN-Completion (Y, {(YmZ ! Z € T} U {ym: VI 3{x:U, UVR)V} € S} US),
where {®y, ..., Ty, } is an m-partition of {Yy, ...,Y,} and
Y1s ---» Ym are new individual variables, return true
then return true]
else return false

end ALcN-Completion.

Condition (* 1 x) tests if the —¢or - Tule applies to S. If so, then S is an incon-

sistent R g, mc-trace and false is returned.

S0

If condition (% 2 *) is satisfied, then the —¢ - rule applies to S and we obtain a
recursive call with x and S U {x:A} as arguments.

If the —, - rule applies to {x:X, XE YU Z} € S, then S is consistent if and only if
either S U {x:Y} or S U {x:Z} is consistent. This is checked by condition (* 3 *) and
we obtain two recursive calls.

Condition (* 4 %) tests if the —>T,1ea5¢ - Tule applies to S. If so, then we add for
every {x:Z, Z(WVR)U} € S the constraint y:U. Note that it is not necessary to add
constraints of the form xRy. Thus, the constraint system given as argument to the
recursive call is obtained from S by application of the —Tpqjeast - Tule and the —y - rule
and doesn’t contain constraints of the form xRy.

If the — 3 - rule applies to S, then condition (* 5*) is satisfied and for every
{x:X, X(@R)Y} € S with (atmostg g(x) =0) or (atmostg g(x) > J-edgeg s(x)), we
have to check whether the recursive call

ALCN-Completion (y, {y:Y} U {y:U | 3{x:Z, Z(VR)U‘} cS}jus)
returns true . We have to evaluate n further recursive calls, where n = 3-edgeg g(x),
which are put on a stack. Constraints of the form xRy are not added.

Condition (* 6 *) treats the case, that the — T,¢most - Tule applies to S. If
atmostg g(x) =m and 3-edgeg s(x) =n and m <n for some role symbol R, then we
have to consider all m-partitions of {Yy, ...,Y,}. To ease our notation we assume that an
m-partition of {Yy, ...,Yy} is chosen nondeterministically. At this point the (linear space-)
algorithm of proposition 5.5. is inserted and all m-partitions of {Yjy, ...,Y,} are
enumerated. If there exists at least one m-partition of {Y7, ..., Y}, such that we obtain an

consistent R g, v -trace system, then the call returns true .

Now let us apply the function ALCN-Completion to the constraint system of
example 5.3. We obtain the call

ALCN-Completion (x,S) =
(x 1 %) ALcN-Completion (y, {y:Yq, y:Yp} U S).

S1

The —1g - rule applies to x:X, X(3R)Y and the constraint y:Y is added. Further-
more, because of x:X, X(VR)Y,, X(3R)Y; the constraint y:Y, is added. Now the
JR-edge and the VR-edge from node X are completed and the next recursive call (« 1)
is evaluated.

ALCN-Completion (y, {y:Y1, y:Y2} US) =

(x 2%) ALCN-Completion (y, {y:A} U {y:Y1, y: Y2} US).

The constraints y:A is added, because of y:Y1, Y; E A, and we obtain the recursive
call (x 2x).LetSl = {y:A} U {y:Y},y:Y2} US). Then:

arcn-Completion (y, S1) =

& 3%) ([aLca-Completion (z, {z:Z1, z:Z3} U S1) A

(* 4%) ALCN-Completion (u, {u:Zy} L S1) 1 v
™ 5%) [AccN-Completion (z, {z:Z1,2:Zy} U S) A

(* 6%) ALCN-Completion (u, {u:Z3} LU S1)] v
*7%) [Aaccn-Completion (z, {z:Z;} U S1) A

(x 8 %) ALCN-Completion (u, {w:Zy, u:Z3} U S1) 1) A
(*x 9 %) ALCN-Completion (v, {v:Zy} U S1)

Because d-edgegr si(y) =3 and atmostg g1(y) = 2, the —Tames - Tule applies to
S1, and we have to consider all 2-partitions of {Z;, Z,, Z3}. Further below we will see
that there exists a linear space algorithm that enumerates all m-partitions of a finite set. In
this example we assume that all 2-partitions of {Z;, Z,, Z3} are simultaneously put on the
stack. This is done by the call (* 3 x*), ..., (* 8 *). If there exists at least one 2-partition
(that is, a distribution of xRz, xRu to the three IR-edges), such that we obtain an
Rj-complete constraint system not containing the constraints x:A and x:—A, then S in
consistent. Furthermore, the —3 - rule applies to S! and we obtain the call (* 9 x). Note
that the recursive calls are put on a stack. Now the call (* 3 *) is taken from the stack and

is evaluated. Then:

52

(x 3%) ALCN-Completion (z, {z:Z1, z2Z3} U S1) =
ALCN-Completion (z, {z:A} U {z:Z;, zZ3} U S1) =
ALCN-Completion (z, {z-—A} U {z:A, z:Z1, z2Z3} U S) = false .

Let S2 = (z:Z;, z:Z3} U S1. The —¢ - rule applies to S2 and we obtain a constraint
system containing z:A, z:—A. Thus the call (* 3 *) is evaluated to false and there is no
need to evaluate the call (* 4 %) . Now the call (* 5x*) is taken from the stack. Then:

(x 5%) ALCN:Completion (z, {z:Zy, z2Z,} L Sh =
ALCN-Completion (z, {z:A} U {z:Z, zZ,} U S1) =
ALCN-Completion (z, {zB} U {z:A, z:Z,, z:Z,} U S1) =true.

Let S3 = (z:B, z:A, z:Z;, :Z,} U SL. Then no R g, -trace rule applies to S3. Since
the constraint system S3 doesn’t contain constraints of the form x:A and x:—A, the call
returhs true. Note that, if we add “enough” constraints of the form xRy to S3, then we
obtain the Rm-lrace of S, that is shown in figure 5.3.a. Similarly the call (* 6 *)
evaluates to frue. Thus we have found a “consistent” distribution of xRz, xRu and need
not to evaluate the calls (* 7*) and (* 8 *) . Finally the call (* 9 *) evaluates to true .

Thus the call 2LcN-Completion (x, S) returns true and S is consistent.

If we stored all m-partitions of a finite set simultaneously on a stack, then we would

need exponential space. Note that

n
b lII m-partition of {1,2, ..., n}Il = 2n-1 |
m=)

The algorithm NEXEQU [Nijenhuis/Wilf, 1975, page 81-85] enumerates all parti-
tions (that is, all i-partitions for i 2 1) of a finite set. Furthermore, the algorithm

needs linear space in the size of the input.

Proposition 5.5. Enumerating all i-partitions of a finite set can be done with linear

space.
Proof. By modifying the algorithm NEXEQU. a

53

Now let us consider the complexity of the function ALCN:Completion . The maximal
recursion depth is the height of the given constraint tree. The function can be executed
such that at most one R g, -trace needs to be kept in memory. Furthermore, for every
level in an R g/ -trace we have to administrate at most one partition which needs linear
space in the size of the input constraint system. Hence the function ALCA-Completion

needs at most quadratic space in the size of the input constraint system.

Theorem 5.6. Checking consistency of ALCN - concept descriptions can be done with

quadratic space.

Proof. Let C be an ALCAN(- concept description. Then C is transformed in linear
time into a fresh constraint system S. Let x be the individual root of S. The call
ALCN-Completion (x,S) yields true if S is consistent and false otherwise. Furthermore,

the function ALCN-Completion needs at most quadratic space in the size of S. o

Theorem 5.7. Checking consistency of ALCN, - concept descriptions is PSPACE-

complete.

Proof. The language ALC is a proper sublanguage of 2LCA.. Checking consisten-
cy of ALC - concept descriptions is PSPACE-complete [Schmidt-Schauf8/Smolka 88].
With theorem 5.6. we conclude that checking consistency of ALCN - concept descrip-

tions is PSPACE-complete. O

54

6 Role hierarchies

It was assumed by the definition of the languages ALC and ALCA/, that there is no further
information about roles. We now define dependencies between roles and investigate their
consequences for the consistency checking algorithm of the languages ALC and ALCAL.
The idea is to model the roleset differentiation in KL-ONE: A roleset differentiates
another when the former denotes a subrelation of the relation denoted by the latter

[Brachman/Schmolze 1985].

One possibility to model the roleset differentiation is the introduction of the role-
forming operator androle with the following semantics:

I[(androle Ry, ..., Rp)] = { (ab) e DIx DIl (a,b) € NMRy], ..., (a,b) € MR,] },
where Ry, ..., R, are role symbols. In BACK [Luck/Nebel/Peltason/Schmiedel 1987] the
androle-operator is implemented in a restricted version: Only two arguments are permitted,

and the second argument appears only in other androle expressions with the same first

argument.

In this chapter we pursue another concept: A role hierarchy is a pair (&, <) such
that R _is a set of role symbols and < is a partial order on K. By abuse of notation we will
also refer to the role hierarchy by the letter ®. Let ® be a role hierarchy. An interpretation
I is an R-interpretation if (a,b) € I/[P] implies (a,b) € I[R] for P<Rin ®. An
R-interpretation is an ®-model for a concept description C if I[C] is nonempty. A
concept description is R-consistent if it has an ®-model. Furthermore we define

RK-subsumption and R-equivalence as one would expect.

The languages ALC and ALCN. combined with the definition of role hierarchies are
called ALCR and ALCAR,, respectively.

35

The androle concept and the role hierarchy concept are very similar. Differences occur
since (androle R P) defines a new role, which is exactly the intersection of the roles P and
R. On the other hand, if Q £R and Q < P then I[Q)] is a subset of the intersection of I[R]

and I[P] for every ®-model L

6.1. Simplification and' unfolding of ALCR and ALCAR. - concept

descriptions

Let C be an ALCR or ALCNR. - concept description. Using the simplification rules of
chapter 2 we obtain a simple concept description C”. Before the concept description C” is

transformed into a constraint system we need the following definitions:

Let R be a role hierarchy. An I-assignment o is an Ig-assignment if
(a(x),0(y)) € I[P] implies (o(x),c(y)) € I[R] for P<Rin R. ASSI/® is the set of all
Ig-assignments. An R-interpretation I is an R-model for a constraint system S if
there exists an Iz-assignment o € ASS/® such that oe I[S]. A constraint system is

R-consistent if it has an R-model.

The next proposition shows the relationship between simple ALCR (ALENR)) - con-

cept descriptions and constraint systems.
Proposition 6.1.1. Let x be an individual variable and X be a concept variable. A
simple ALCR (ALCNR) - concept description C is R-consistent if and only if the constraint

system {x:X, X £ C} is R-consistent.

Proof. Similar to the proof of proposition 3.1. O

56

Using the unfolding rules of chapter 3, the constraint system {x:X, X € C} is trans-
formed into a simple constraint system S preserving ®R-consistency and R-inconsistency.
For the completion of the simple constraint system S we need the following completion

rule:

Let S be a constraint system. Then:
S -><{xRy} US
if xPy isin S, P <R, and xRy isnotin S.

The next proposition shows that the application of the —< - rule preserves R-con-

sistency and R-inconsistency.

Proposition 6.1.2. Let S be a constraint system. If the constraint xPy isin S and

P <R, then Sis R-consistent if and only if S U {xRy} is R-consistent.

Proof. LetS be a constraint system containing xPy and let P <R.

If S is R-consistent, then there exists an Iz-assignment o with (au(x),0u(y)) € I[P]
and (ou(x),0(y)) € I[P] implies (ci(x),0(y)) € I[R]. Hence S U {xRy} is R-consistent.

If S is not R-consistent, then I[S] = @ and I[S"] = I[S] N I[xRy] = @. Thus S” is not

R-consistent. (m}

6.2. Consistency checking of ALCR - concept descriptions

In the following we give rules to complete constraint systems obtained from ALCR -

concept descriptions.

S7

The R g.cg-completion rules consist of the —vy - rule, the —3 - rule, the

—, - rule, the —¢ - rule and the —¢ - rule.

A constraint system is R g/ ~g-complete if no R 4, ¢-completion rule applies to it.

Proposition 6.2.1. Let S and S’ be constraint systems. Then:

a) If S’is obtained from S by application of the (deterministic) —\ - rule, —3- rule,
—c - rule or —<- rule, then S is R-consistent if and only if S” is R-consistent.

b) If S’ is obtained from S by application of the (nondeterministic) —, - rule, then
S is R-consistent if S” is R-consistent. Furthermore, there is a choice for S’ such that

S’ is R-consistent if and only if S is R-consistent.

Proof. In proposition 4.1.1. it was shown, that the application of the —y - rule, the
—3 - rule, the —¢ - rule and the —, - rule preserve consistency and inconsistency.
Furthermore, these rules preserve K-consistency and R-inconsistency. In proposition
6.1.2. we proved, that the application of the — - rule preserves R-consistency and

R-inconsistency. o

Proposition 6.2.2. An Rg,cg-complete constraint system is R-inconsistent if and
only if it contains for some x € VI and some concept symbol A, the constraints x:A and

xX:—A.

Proof. "=": Let S be an R g, g-complete constraint system not containing the
constraints x:A and x:—A for any x € VI and any concept symbol A. Consider the standard
interpretation I, and the standard I-assignment o for the constraint system S. In
proposition 4.2.1. it was shown that a e I[S]. Furthermore (ot/(x), a/y)) € I[P]
implies (o (x), o (y)) € I[R] for P <R, because of the —< - rule. Hence o, e ASS/g

and the constraint system S is ®-consistent.

S8

"&": As in proposition 4.2.1. =]

In the following we will show how to compute an R 4, ~-complete constraint system

for a fresh constraint system.

Theorem 6.2.3. Let S be a constraint system obtained from an ALCR. - concept
description and let R_be a role hierarchy. Then in at most exponentially many propagation
steps depending on the size of S and R (where the size of R.is the number of elements in
R.) one can nondeterministically compute an R g4, ~g-complete constraint system S’, such

that S is R-consistent if and only if S” is R-consistent.

Proof. Consider the function Completion from chapter 4.1. There we showed that
the call Completion(S,0) computes nondeterministically an R;-complete constraint system
for a constraint system S given as argument. We modify this function in the following
manner: Suppose Completion(S,i) is called. Let S; be the set of all constraints at level i.
Then the constraint system Sj_complete i obtained from S; by

Si ®u Su =23 S3 =2<S<3v Sv 3¢ Sicomplete-

Now we will show that the constraint system S;_complete iS Rgog-complete at level i; that
is, no R g ~x-completion rule applies to constraints at level i in S complete

Consider the —, - rule, the —3 - rule and the —¢ - rule:

Constraints of the form x:X, which have been introduced by the —3 - rule and the
—vy - rule, are at level i+1. If the constraint x:X is at level i in Sj.completes then x:X
is already in S, ,. Therefore the —, - rule, the —7 - rule and the —¢ - rule don’t apply
to Si—completc.

Consider the —< - rule:

Since the —y - rule and the —¢ - rule, which are applied after the —« - rule, don’t

introduce constraints of the form xRy, the —< - rule doesn’t apply to Si-complete-

59

Consider the —y - rule:
Since the —¢ - rule, which is applied after the —y - rule, doesn’t introduce constraints
of the form x:X and xRy, the —y - rule doesn’t apply to Si_complete.

Now we have shown that no R 4, ~-completion rule applies to constraints at level i in

Si-complete» and hence S;_complete is complete at level i.

Since a constraint system S with ISl = m doesn’t contain constraints at level M with
M 2 m, after finitely many iterations the modified function terminates and computes the
R g1 cx-complete constraint system S™. Note that the —¢ - rule applies at most IRl * IS5l
times. Thus at most lIRll * lISgll constraints are added. As in theorem 4.1.4. one can
construct a polynomial p, such that 1IS™|l < e(m+1) * p(m), and we conclude that in at
most exponentially many propagation steps one can nondeterministically compute an

R g1 cg-complete constraint system. O

6.3. PSPACE - completeness of ALCR

In the following we will prove that checking consistency of ALCR-concept descriptions is
PSPACE-complete. The idea is that an R 5/ w-complete constraint system can be obtained
as the union of so-called R 4, ¢-traces. If none of these R4, ¢-traces contains the
constraints x:A and x:—A, then the R 4, x-complete constraint system doesn’t contain the
constraints x:A and x:—A. While the size of an R 4, ~¢-complete constraint system can be
exponential, the size of R 4, ¢-traces is linear in the size of the initial concept description

and the role hierarchy.
First we define completion rules, such that we obtain so-called R g, ~¢-traces for a

fresh constraint system. R 4, ~¢-traces have the property that every individual variable

occurring in an R g, m-trace has at most one successor.

60

The R g/ -g-trace rules consist of the —, - rule, the —¢ - rule and the following
two rules:
S 513 {y:Y, xRy} U S
if x:X and X(3R)Y are in S, there is no constraint xR’z in S, and y is a new
individual variable.
S o7y {y:Y}US
if x:X, xPy, X(VR)Y arein S, P <R, and y:Y is not in S.

Let T be a constraint system obtained from a fresh constraint system S by application

of Rgrgtrace rules. We call T an R g g-trace of S, if no R g, g-trace rule applies to T.

Proposition 6.3.1. Let T be an R g, cg-trace. Then:

a) Ifxoccurs at level i, then every successor of x occurs at level i+1.

b) Every individual variable occurring in T has at most one successor.

c) Atevery level, there occurs at most one individual variable inT.

d) IfT contains the constraints x:X and y:X, then x = y (that is, every concept variable

has at most one individual variable associated with).

Proof. As in proposition 5.1. (u]
Proposition 6.3.2. Let S be a fresh constraint system and R be a role hierarchy.
The number of applications of R g cg-trace rules to S is bounded linearly in the size of S

and R,

Proof. Follows from the fact that for a concept variable X there is at most one

individual variable x with x:X in an R g ~¢-trace of a fresh constraint system. O

61

Let T be an Rg/¢-trace containing constraints x:X, X £ YU Z, x:Y for some
individual variable x and some concept variables X, Y and Z. Then an R g/ ¢-trace T” is
called an alternative trace of T, if T’ contains constraints x:X, XE YU Z, x:Z. Let S
be a fresh constraint system and Z,j; be the set of the finitely many R 4, ~¢-traces modulo
renaming of S. A subset 7" of ‘Z‘au‘is called an R g/ ¢-trace system of S, if for every

Te T either T or an alternative trace of Tis in Z.

Proposition 6.3.3. Let T be an Rg g-trace system and let Top= U {T|T € 7).

Then the constraint system S = Tg U { xRy [xPy € Ty, P <R} is R g;cg-complete.

Proof. Let T be an R g4/ -trace system and let To=U(T | T e 7}. We will show
that no R g/ ~g-completion rule applies to S =Ty U { xRy | xPy € Ty, P <R}.

Consider the —3 - rule:
Assume that the —3 - rule applies to S. Then x:X, X(3R)Y are in S and xRy is not in S
for any individual variable y. But then we obtain a trace T ¢ 7 by applying the —13 - rule
to x:X, X(@R)Y and we have a contradiction. Thus our assumption is false and the —3 -
rule doesn’t apply to S.

Consider the —vy - rule:
Assume that the —y - rule applies to S. Then x:X, xRy, X(VR)Y are in S and y:Y is not
in S. Two cases are possible.
1) If xRy is in T, then x:Z, Z@R)U are in Tg. Let T € 7 be an R 4, ~g-trace containing
x:Z, Z(AR)U, xRy. Note that such an R 4/ -trace exists. Then y:Y is in T, because of the
—Tv - rule. Hence y:Y is in S and we have a contradiction.
2) If xRy is not in Ty, then x:Z, Z(3P)U, xPu are in Ty and P <R. Then there exists an
Rgrcx-trace T € 7T containing x:Z, Z(IR)U, xPu. But then y:Y € T, because of the
—Tv - rule. Hence y:Y € S, and we have a contradiction.
Thus our assumption is false and the —y - rule doesn’t apply to S.

It is easy to see that the —, - rule and the —¢ - rule don’t apply to S. Furthermore,

62

the —< - rule doesn’t apply to S because of construction of the constraint system S. Thus

10 R g, ~-completion rule applies to S and S is R g, g-complete. a

Proposition 6.3.4. A constraint system S is R-consistent if and only if there exists an
Rgrcx-trace system T of S, such that no T € T contains the constraints x:A and x:—A

for any individual variable x and any concept symbol A.

Proof. Let T be an R g, -g-trace system of S, such that no Rg, g-trace T € T
contains the constraints x:A and x:—A for any individual variable x and any concept
symbol A. Suppose x:A or x:—A is in T for some concept symbol A. Thenno T'e T
(T’# T) contains constraints of the form x:B or x:—B for any concept symbol B. Since no
T € T contains x:A and x:—A, we know that To=U{T | T € 7} doesn’t contain x:A and
x:—A. Then To U { xRy | xPy € T, P <R} is R g/ g-complete (proposition 6.3.3.) and
hence S is R-consistent.

Now suppose every R4/ x-trace system 7 of S contains an R 5/ ¢-trace T, such that
x:A and x:—A are in T for some individual variable x and some concept symbol A. Then

x:A and x:—A are in Ty and S is K-inconsistent. o

Figure 6.3.1. A constraint tree for the fresh constraint system
S = {xX,X3AP)Yy, Y1 E A, X(@R)Y,, Y, E A, X(VR)Y3, Y3(3P)Z;, Z, E A,
Y33ER)Zy, Zo £ A, Y3(VR)Z3, Z3E A} with R = {P<P,R<R,P<R}.

63

vy v @ 0@ 9 @
OO 0BG 000 0O

Figure 6.3.2. R g/ g-traces for the constraint system S. The 3-edge from node X to

node Y is drawn in bold, if the —3 - rule has applied to x:X, X(3R)Y.

Example 6.3.1.
Consider the constraint tree in figure 6.3.1. The R g, ¢-traces for this constraint tree are

shown in figure 6.3.2.

We now define the function MC&Compleﬁon . The call ALCR-Completion(x,S)
computes up to renaming every R g, ~g-trace of a fresh constraint system S with x as
individual root. If there exists an R g g-trace system 7 of S, such that no R4, ~¢-trace
T € T contains the constraints .x:A and x:—A for any individual variable x and any
concept symbol A, then the call returns frue, otherwise false. Thus the function
ﬂCﬂ{-Completion yields true if and only if the constraint system S is consistent (see
proposition 6.3.4.).

As mentioned before, it is not necessary to keep constraints of the form xRy in

memory.

64

Function 4LC®-Completion (x,S) =

if {x:A, x:—A} € S then return false ' (* 1%)

else if {(x:X,XE A} €S A x:Ag S(x 2%)
then 2LCR-Completion (x, {x:A} U S)

elseif {(x:X,XE YU Z}cS A xxYe&S A xxZe S (* 3%)
then ALCR-Completion (%, {x:Y} US) Vv ALCR-Completion (x, {x:Z} U S)

else if for all {x:X, X(@P)Y} € S the call (* 4%)
ALCR-Completion (y, {y:Y} L {y:U | 3{x:Z, Z(VR)U} € S,P<R} US),
where y is a new individual variable, returns true
then return zrue

else return false

end 2LCR-Completion.

Condition (* 1) tests if S is an R-inconsistent constraint system.

If condition (¥ 2 *) is satisfied, then the —¢ - rule applies to S and we obtain a
recursive call with x and S U {x:A} as arguments.

If the —, - rule applies to {x:X, XE YU Z} € S, then S is R-consistent if and only if
either S LU {x:Y} or S U {x:Z} is R-consistent . This is checked by condition (* 3 *) and
we obtain two recursive calls.

If the —T3 - rule applies to S, then condition (* 4 *) is satisfied and for every {x:X,
X@P)Y} € S, we have to check whether the recursive call

ALCR-Completion (y, {y:Y} L {y:U I 3{x:Z, Z(VR)U} € S,P<R}UYS)
returns frue . Note that it is not necessary to add constraints of the form xRy. Thus the
constraint system given as argument to the recursive call is obtained from S by application
of the — T3 - rule, the —y - rule and the —< - rule. We have to evaluate n further

recursive calls, where n = 3-edgeg s(x), which are put on a stack.

65

Now let us apply the function ALCR-Completion to the constraint system of example
6.3.1. We obtain the following evaluations:

ALCR-Completion (x, S) =
(k1x) ALCR-Completion (y1, {y1:Y1, y1:Y3} US) A
(*2%) ALCR-Completion (y, {y2:Y2, y2:Y3} U S).

Since the —13 - rule applies to x:X, X(AP)Y; and x:X, X(3R)Y> , the recursive
calls (x1x) and (*2%) are puton a stack. Consider the call (x1x) : The constraint y;:Y;
is added to S because {x:X, X(3P)Y} € S, and y;:Y3 is added to S because {x:X,
X@AP)Y, X(VR)Y3} € S and P <R. Now the call (x1x) is taken from the stack and is
evaluated. Let S1 = {y;:Y;, y1:Y3} U S. Then:

ALCR-Completion (y1, S1) =
(*3%) ALCR-Completion (y1, {y1:A} US]) =
(x4x) ALCR-Completion (z1, {21:Z1, 21:Z3} U {y1:A} U SY) A
*5%) ALCR-Completion (zp, {zp:Zy, 29:Z3} L {y1:A} U SD).

Since {y1:Y1, Y1 E A} € S1, y;:A is added and we obtain the call (*3%). Because
there are two J-edges from node Y3, the rccursi{/e calls (*4%) and (x5«) are puton a
stack. Now (x4%) is taken from the stack. Let S2 = {z;:Zy, z1:Z3} U {y;:A} U SL
Then:

ALCR-Completion (21, S2) =

ALCR-Completion (z;, {z1:A} U S?) = true .

First the —¢ - rule is applied to S2 adding z;:A. Let S3 = {z;:A} U S2. Then no
R g cx-trace rule applies to S3. Since S3 doesn’t contain the constraints x:A and x:—A for
any individual variable x and any concept symbol A, true is returned. Note, if we add
“enough” constraints of the form xRy to S3, then we obtain an R accgtrace of S. Then
(*5%) is taken from the stack and evualutes to true. Thus the call (*1%) returns true.
Similarly the call (*2x) returns true, and the call ALCR-Completion (x, S) evaluates to

true. Thus the constraint system S is consistent.

66

Now we consider the complexity of the function ALCR-Completion . The maximal
recursion depth is the height of the given constraint system. The function
ALCR-Completion can be executed such that, besides some control information, at most
one R g/ ~g-trace needs to be kept in memory. Hence the function ALCR-Completion

needs at most linear space in the size of the input constraint system and the role hierarchy.

Theorem 6.3.5. Checking R-consistency of ALCR-concept descriptions can be done

with linear space.

Proof. Let Cbe an ALCR-concept description. Then C transfbrmed in linear time
into a fresh constraint system S. Let x be the individual root of S. The call
ALCR-Completion (x, S) yields true if S is R-consistent and false otherwise. Further- -

more, the function ALCR-Completion needs at most linear space in the size of S and . O

Theorem 6.3.6. Checking R-consistency of ALCR-concept descriptions is PSPACE-

complete.

Proof. Since ALCis a proper sublanguage of ALCR. and the fact, that checking con-
sistency of ALC-concept descriptions is PSPACE-complete [Schmidt-Schau/Smolka 88]
we know that checking R-consistency of ALCR-concept descriptions is PSPACE-hard.
With theorem 6.3.5. we conclude that checking R-consistency of ALCR-concept

descriptions is PSPACE-complete. a

6.4. Consistency checking of ALCAR - concept descriptions

In the first part of this chapter we defined the language ALCR , that is the language 4LC

amalgamated with role hierarchies. In 6.3. we have shown that checking the consistency

67

of 4LCR - concept descritions is PSPACE-complete. We now investigate the language
ALCNR., that is the language ALC supplemented by number restrictions and role
hierarchies. We give rules to complete constraint systems obtained from ALCAR - concept
descriptions. Since an algorithm applying these rules needs exponential space, we leave
the reader at this point with an open problem: does there exist a polynomial space
algorithm for checking consistency of ALCAR - concept descriptions?

The problem of combining number restrictions and role hierarchies is quite
interesting. Nebel [88] shows that checking subsumption in £~ extended either by
number restrictions or by the androle operator (an operator to create new roles by
conjoining them - comparable to role hierarchies) can be done in polynomial time, whereas
FL extended simultaneously by number restrictions and the androle operator is NP-hard

in the strong sense, that is, it is independent in which way the numbers are coded.

We obtain the R 4, -ag-completion rules from the R g.-z-completion rules by

adding following three rules. Let S be a constraint system. Then:

S —atleast {XRy} U S
if x:X, X(atleast N R) are in S, ng s(x) < N, and y is a new individual
variable not occurring in S
S —atmost {y <2} 8
if x:X, X(atmost N R), xRy, xRz are in S with ng s(x) >N, and
whenever x:Y, Y(atleast M P), xPy, xPz are in S, P <R, then np g(x) > M.
S —error (XA, x:mA}
if x:X, X(atmost O R), xRy are in S or
if x:X, X(atleast N P), x:Y, Y(atmost MR) arein S, N> M, and P <R.

68

A constraint system is R g, ~g-complete if no R g, ~g-completion rule applies to

it.

The —aqeast - Tule and the —¢por - Tule are obvious. The following example illustrates

the —4tmost - Tule:

Example 6.4.1.
Consider the constraint system
S = {x:X, X(atmost 2 R), X(atleast 2 P), X(atleast 1 Q), X(VP)Y, YE A, X(VQ)Z,
Zc —A} andtherole hierarchy R={ P<P,Q<Q,R<R,P<R,Q<R}.
A constraint tree for S is shown in figure 6.4.1. We obtain the constraint system S” by
applications of the —,je45t - Tule and the —¢ - rule:
S°=S U {xPyj, xPys, xQz} U {xRy;, xRy, xRz}
If we use either the substitution {y; < y2}S” or {y; « y;}S’, then we obtain follo-
wing infinite chain of completion steps:
S = S U {xPyy, xPyj, xQz} U {xRy;, xRy, xRz}
—>amost (Y2 ¥1)8” = S U {xPy}, xQz} U (xRyj, xRz}
atleast S Y {xPyy, xPy, xQz} U {xRy), xRz}

—< S U {xPyy, xPyj, xQz} U {xRy;, xRy, xRz}

atmost 2 R
atleast2 P

Figure 6.4.1. A constraint tree for the constraint system S.

69

Otherwise with the — a0 - Tule of the R g, mpg-completion rules we get a substitution
{y, ¢ z} and obtain
S” = S U {xPyy, xPyy, xQz} U {xRy], xRy,, xRz}
—ammost (Y2 2}S” = S U {xPyy, xPz, xQz} U {xRyj, xRz},

and the —441e45¢ - Tule does’t apply.

Proposition 6.4.1. Let Sand S° be constraint systems. Then:

a) If S’ is obtained from S by application of the (deterministic) —\/ - rule,—3- rule,
—c - rule,— 10051 - TUIE,—gryor - TUlE Or —< - rule, then S is R-consistent if and
only if S”is R-consistent.

b) If S’ is obtained from S by application of the (nondeterministic) —, - rule or
—atmost - Tule, then S is R-consistent if S* is R-consistent. Furthermore there is a

choice for S such that S” is R-consistent if and only if S is R-consistent.

Proof. Follows from propositions 4.1.1. and 6.1.2. m]
Proposition 6.4.2. An Rg ag-complete constraint system is R-inconsistent if and
only if it contains for some x € VI and some concept symbol A, the constraints x:A and
x:—=A.

Proof. The proof is similar to the proofs in proposition 4.2.1. and 6.2.2. o
Theorem 6.4.3. Let S be a constraint system obtained from an ALCNR. - concept
description. Then in at most exponentially many propagation steps depending on the size

of § and R one can nondeterministically compute an R g ~x-complete constraint system

S7, such that S is R-consistent if and only if S” is R-consistent.

70

Proof. Consider the function Completion from chapter 4.1. There we showed that
the call Completion(S,0) computes nondeterministically an R;-complete constraint system
for the constraint system given as argument. We modify this function in the following
manner: Suppose Completion(S,i) is called. Let S; be the set of all constraints at level i.
The constraint system S;_complete 1S Obtained from S; by

Si &u Su =23 S3 Sadeast Satleast P< S< 3V Sv 3¢ St Zeror Serror

=atmost Si-complcte-
Now we will show that the constraint system Sj_complete iS R g, cng-complete at level i;
that is, no R g, mgg-completion rule applies to constraints at level i in S complete:

Consider the =, - rule, the —3 - rule and the —¢ - rule:
Constraints of the form x:X, which have been introduced by the —3 - rule and the
—>v - rule, are at level i+1. If the constraint x:X is at level i in S; complete, then x:X is
already in S ;. Therefore the —, - rule, the —3 - rule and the —¢ - rule don’t apply to
Si-complete-

Consider the —< - rule:
Since the —v - rule, the —¢ - rule, the =g, - Tule, and the — 4406t - Tule, which are
applied after the —< - rule, don’t introduce constraints of the form xRy, the—< - rule
doesn’t apply to S complete-

Consider the —y - rule:
Since the —¢ - rule, the —¢rr - Tule and the —p¢05¢ - Tule, which are applied after the
—v - rule, don’t introduce constraints of the form x:X and xRy, the —y - rule doesn’t
apply 10 S;_complete-

Consider the —,jeqq - Tule:
Assume that the —,geag; - rule applies to S complese- Then
{x:X, X(atleast N R)} € Sj.complete and N> ll{ y | xRy € Si-complete}!l. Since
N =Il{ yI xRy € Sypeaq }l after application of the —ageqq; - fule, either
a) {xY, Y(atmost MR)} € Sj complere With N >M,

that is, only the first part of the — o - rule has been satisfied or

71

b) ({x:Z, Z(atmost M P), xPy, xPz} € Sg with np g(x) >M and

{x:X, X(atleast N R), xRy, xRz} € Sg withng g(x) =N andR<P,

that is, both parts of the — 44yt - Tule have been satisfied.

Note that in the first case the —¢rror - Tule would have applied to S¢ and thus we have a
contradiction. In the second case we know that the — 505t - Tule has applied to
{x:Z, Z(atmost M P), xPy, xPz} € S although the condition for applying the
— atmost - Tule to Sg, has not been satisfied. Thus our assumption is false and the
—atleast - Tule doesn’t apply to Si_complete:

Now we have shown that no R g, mg-completion rule applies to constraints at level i
in Si_complete> and hence S;_complete is complete at level i.

Note that a constraint system S with IIS Il = m doesn’t contain constraints at level M
with M 2 m. Thus after finitely many iterations the modified function terminates and
computes the R g, mg-complete constraint system S™. Combining the estimates in the
proofs of theorems 4.3.3. and 6.2.3. one can construct a polynomial p, such that
lISm|| < e(m+1) * p(m), and we conclude that in at most exponentially many propagation

steps one can nondeterministically compute an R g, mg-complete constraint system. O

Why is it difficult to find a polynomial space algorithm for the problem of checking
R-consistency of ALCAR - concept descriptions? In chapter 5 we proved that checking
consistency of ALCAL- concept descriptions is in PSPACE. There we used the following
fact: Let S be a constraint system containing the constraints x:X and X(atleast N R). We
showed, that it is not necessary to introduce N new constraints of the form xRyy, ...,
xRyn, but it is sufficient to add the single constraint xRy. The following example

demonstrates that this “trick’ doesn’t work here:

72

Example 6.4.2.
Consider the constraint system
S = {x:X, X(atmost 2 R), X(atleast 2 P), X(atleast 1 Q), X(VP)Y, YE A, X(VQ)Z,
Zc —A} and the role hierarchy R={P<P,Q<Q,R<R,P<R,Q<R} of
example 6.4.1.
Through the application of R g, mg-completion rules we obtain following constraint

systems:
S ateastS U {xPy1}

v S v {xPy1, y1:Y}

—c S U {xPyy, y1:Y, y1:A}

Sateast S Y {xPy1, y1:Y, y1:A, xPy3}

v S U {xPy1, y1:Y, y1:A, xPyy, y2:Y}

- S U ({xPyy, y1i¥, yi:A, xPys, y2:Y, yp:A}

atteast S U {xPy1, y1:Y, y1:A, XPy», y21Y, y2:A, xQz}

—v S U {xPy1, y1:Y, Y1:A, xPys, y2:Y, y2:A, xQz, z:Z}

- S U {xPyy, y1:Y, Y1:A, xPys, y2:Y, yo:A, xQz, z.Z, z—A} = S’

—p<r S'U {xRy;}

—-p<R S7U {xRy}, xRy;}

—-p<r S7U {xRy;, xRy, xRz} = S

Because {x:X, X(atmost 2 Q)} € S”°, we have to consider the following

substitutions:

’,

) S —amost {y1 < z}S°
i) S —amost {y2 < z}S”
i) S8 —amost {z <~ y1}S8”
iv) 87 —amost {z < y2}8”

Each of these four constraint systems contains the constraints x:A and x:—A for some
x € VI and some concept symbol A, and we conclude that S is not ®-consistent. On the

other hand, if we use the —4¢eq5¢ - Tule, which adds the single constraint xRy, then we

73

obtain the constraint system
S U {xPy,yY,y:A, xQz, z:Z, z:-A, xRy, xRz},
that doesn’t contain constraints of the form x:A and x:—A. We might come to the incorrect

conclusion that S is R-consistent.

As mentioned above, Nebel shows that £~ extended simultaneously by number
restrictions and the androle operator is NP-hard in the strong sense, that is, it is
independent in which Way the numbers are coded. The complexity of an algorithm for
checking the consistency of ALCAR - concept descriptions using traces as defined in
chapter 5 and 6 depends on the coding of the numbers. Consider the fresh constraint
system S = {x:X, X(atleast N R)}. To complete S with the R;-completion rules we have
to add the constraints xRy, ..., XRyn. If N is a big number, then the length of the string
N might be about the length of the string S.

1) If we assume that N is represented in binary (as we have done), then log(N) = lISII
and N = e!Sll. Thus exponential space is needed to store the N constraints simultaneously.
To prevent this we have shown in chapter 4.4. that is sufficient to add the single constraint
xRy.

2) On the other hand, if we assume that N is coded in unary, then N = lISIl. Thus
linear space in the size of the input constraint system is needed to store the N constraints.
As a consequence, we obtain an PSPACE-algorithm for checking consistency of ALCNR.

- concept descriptions, if the numbers are coded in unary.

74

7 Attributive concept descriptions and features

The restricted version of the language ALC obtained by interpreting all role symbols as
partial functions (so-called features), is a subset of the Feature Logic investigated in
[Smolka 88]. Smolka includes the selection, agreement and disagreement operators for
features. The selection operator f:C takes a feature symbol f and a concept description C as
arguments and denotes the set of all elements of the domain for which the feature f is
defined and the application of f yields an element of the set denoted by C. Thus the
selection operator corresponds to the VR:C and JR:C operator for roles. The agreement
and disagreement operators are similar to KL-ONE’s role value map for features as role
symbols. In the following we combine the language 4ALC with Feature Logic (without
subsort). Thus, we obtain an ACD-language that admits roles, which are interpreted as

any relations, and features, which are interpreted as partial functions.

7.1. Syntax and semantics of 4LCF-concept descriptions

If Dis asetand F: D — D is a partial function on D, then

dom F = {d € DI Fis defined at d}
denotes the domain of F. If G: D — D is another partial function, then the composition
FoG has the domain

dom FeG = {d € dom G | G(d) € dom F}.

We assume a further alphabet of symbols, called features, disjoint from concept and
role symbols, respectively. The letters f, g will always denote a feature symbol. A path,
denoted by p, q, is a sequence fj...f;, of feature symbols. The empty path is denoted

by €. .

75

The concept descriptions of the language ALCF (ALC+ Features) are given by the

abstract syntax rule
C,D—>AIVR.CIFR:CICuUDICNDI-CIf:ClplqlpTq.

An interpretation I'= (D, I[+]) interprets every feature symbol and every path as a

partial function from 2/ to DI, maps every concept description to a subset of D! and every

role symbol to a subset of DIx DI, satisfying the following equations:

I(€](a)
1[fpl(a)
1T] =
1] =
I[f:.C]
I[plq]
1pTq]

= a foreveryae D! (I[€] is the identity function on D7)

I[p](1£f](a))

ol
(4]

{ ae dom If] | I[fl(a) € 1C])
{ ae dom I[p] N dom /[q]| M[pl(a) = Iql(a) }
= {ae dom I[p] N dom I[q] | N[p](a) # Nql(a) }

and the equations for I[VR:C], [3R:C], [Cu D], [Cn D], [-C] as in chapter 2.

An interpretation I'is a model for an ALCF - concept description (concept descrip-

tion, for short) C if I[C] is nonempty. Furthermore, consistency, subsumption, and

equivalence are defined as always.

The selection operator f:C denotes the set of all elements of the domain for which the

feature f is defined and for which the application of f yields an element of the set denoted

by C. The agreement operator plq (disagreement operator pTq) taking two paths as

arguments, denotes the set of all elements of the domain for which p and q are both

defined and the application of p and q yields (doesn’t yield) the same element as result.

Note that
MpTql = Mp:T N q:T N —(plqg)]

for every interpretation 1.

76

Let R be a role symbol such that (a,b) € I[R] and (a,c) € I[R] implies b =c, that
is, R denotes a partial function. Then we have

* I[VR:C] = IIR:C U —(R:T)]

 I[AR:C] = IIR:C].
Thus the VR:C and the JR:C operators can be expressed in terms of the selection
operator, if R is a partial function. Conversely,

e If:C] = I[3f:C]
and the selection operator can be expressed with the IR:C operator. The agreement and

disagreement operators are new and enhance the expressiveness of the language.

7.2. Simplification and unfolding of ALC¥-concept descriptions

A complement is called simple if it has either the form —A, where A is a concept

symbol different from T and L, or the form —f:T.
We supplement the simplification rules of chapter 2 by following rules:
e ofi:C — —fiT U £:C
e —plq = —p:T u—qT uplq
e —pTq — —p:T u—qT uplqg.

A concept description is called simple if it contains only simple complements.

Proposition 7.2.1. For every ALCT - concept description one can compute in linear

time an equivalent simple ALCF - concept description.

Proof. A simple ALCF - concept description can be obtained from an ALCF - concept

description in linear time by rewriting with the simplification rules in top-down order.

77

Note that the simplification rules preserve consistency and inconsistency. O

As in chapter 2 we will transform ALCF - concept descriptions into constraint sys-
tems. We have to define further constraints for coding the selection, agreement and dis-
agreement operators, respectively. A constraint has one of the following forms:

1) Xe C, X(VR)Y, X(AR)Y, Xt YU Z, x:X, x:A, xRy

2) X(plq), X(pTq), X(®OY, X(—f:T), xpy, xy.

The interpretation functions for constraints of the first group are as in chapter 2. For the

other constraints we define the interpretation functions as follows:

o IIX(plg)] = {ae ASSTIVae aX):
a € dom I[p] N dom I[q], Ilpl(a) = 1[ql(a) }
o [X(pPTQ] = {ae ASSIIVae aX):
a € dom I[p] N dom I[q], I[pl(a) # I[q](a) }
e [X(OY] = {oae ASS/IVae aX): ae dom If], I[f]l(a) e oY) }
e I[X(—f:T)] = {ae ASSTIVae aX): a¢ dom I[f] }
* I[xpy] = { ae ASSTl a(x) € dom 1p], Ipl(cu(x)) = oY) }
o I[x#y] = {ae ASSTl a®x) = o(y) }.

We define constraint systems, models, consistency, standard interpre-

tations and standard I-assignments as usual.
Proposition 7.2.2. Let x be an individual variable and let X be a concept variable. A
simple ALCF - concept description is consistent if and only if the constraint system

{x:X, X £ C} is consistent.

Proof. Analogous to the proof of proposition 3.1. a

78

A constraint system S is simple if for every constraint X £ C in S the concept
description C is either a concept symbol different from T and 1, or a complemented
concept symbol. The unfolding rules of chapter 3 supplemented by

- Xeplg » X@lg

- Xeplq » X@Tg

« XEfiC —» XY, YEC, whereY isanew concept variable

e XCAf:T » X(-£fT)
can be used to simplify general constraint systems obtained from ALCF - concept descrip-

tions to simple constraint systems.

Proposition 7.2.3. For every constraint system S one can compute in linear time a

simple constraint system S” such that S consistent if and only if S” is consistent.

Proof. A simple constraint system can be obtained from a constraint system in linear
time by rewriting with the unfolding rules in top-down order. Note that the unfolding

rules preserve consistency and inconsisteny. m]

Theorem 7.2.4. For every ALCY - concept description C one can compute in linear

time a fresh constraint system such that C is consistent if and only if S is consistent.
Proof. Using the simplification and unfolding rules. m]

For the construction of constraint trees for constraint systems obtained from 4LC¥F -
concept descriptions we adopt the following conventions:
* the constraint X(f)Y defines a “feature” edge from node X to node Y, and
 the constraints X(p»Lq), X(qu) and X(j:f:T) define (piq), (qu) and X(-f:T)
as label of node X.

79

7.3. Propagation

Now we are going to define completion rules to complete constraint systems obtained

from ALCF - concept descriptions.

Proposition 7.3.1. Let S be a constraint system. Then:

1.

if x:X, X(f)Y are in S and y is a new variable not occurring in S, then S is consistent
if and only if S U {xfy, y:Y} is consistent

if x:X, X(piq) are in S and y is a new variable not occurring in S, then S is
consistent if and only if S U {xpy, xqy} is consistent

if x:X, X(pTq) are in S and y, z are new variables not occurring in S, then S is
consistent if and only if S U {xpy, xqz, y#z} is consistent

if xfpy isin S, p # € and z is a new variable not occurring in S, then S is consistent if
and only if S U {xfz, zpy} is consistent

if xfy, xfz are in S, then S is consistent if and only if {z ¢ y}S is consistent

if x:X, X(—f:T), xfy are in S, then S is inconsistent

if x#x is in S, then S is inconsistent .

Proof. We show the third part of the proposition. The proofs of the other parts are

similar. Let S = {x:X, X(pTq)} U Segt.

Suppose S is consistent. Then there exists an I-assignment o with a(x) € a(X), for

every a€ o(X) we have a € dom I[p] N dom I[q], and I[p](a) # I[q](a). It follows

that there exist b, ¢ € D! such that I[p](a) = b, I[ql(a) =c and b # c. Let y and z

new individual variables. Put o’(x) = a(x) forx e VI, x#y, x#2z, a’(y) = b,

o’(z) =c and a’(X) = (X) for X € VC. Hence Ipl(a’(x)) = o (y), [q](" (X)) = a’(z)

and o’(y) #a’(z). Thus " € S”=S U {xpy, xqz, y#z} and S” is consistent.

If S is inconsistent, then I[S] =@ and I[S’] = I[S] N I[xpy, Xqz, y#z] = @. Thus

S’ is not consistent. m|

80

We define the R g4 -completion rules that consist of the -y - rule, the —3 -

rule, the —, - rule, the —¢ - rule and the following rules:

S —3 feamre {y:Y, xfy} U S
if x:X, X(f)Y are in S and there exists no individual variable z such that xfz is
in S, and y is an individual variable not occurring in S

S OV _feature {(Y:Y} U S
if x:X, X(f)Y, xfy arein S and y:Y isnotin S

S = {xpy, xqy} U S
if x:X, X(plq) are in S and there exists no individual variable z such that xpz
and xqz are in S, and y is an individual variable not occurring in S

S -1 {xpy, xqz, y#z} U S
if x:X, X(pTq) are in S and there exist no individual variables u, v such that
Xpu, Xqv, u#v are in S, and y, z are individual variables not occurring in S

S —path {xfz, zpy} U S
if xfpy is in S, p # € and there exist no individual variables u, v such that xfu,
upv are in S, and z is an individual variable not occurring in S

S —function {y < z}8
if xfy and xfz are in S

S —eror (KA, xmA)
if x:X, X(—f:T), xfyarein S or if x#xisin S.

A constraint system is R g, ~r-complete if no R 5,4 -completion rule applies to it.
Proposition 7.3.2. If the constraint system S’ is obtained from the constraint system
S by application of the —3.fequure - TUle, the =y feqnyre - rule, the — | - rule, the —>1 -

rule, the —pgp, - rule, the —gpction - Tule or the —4pp,, - rule, then S is consistent if and

only if S is consistent.

81

Proof. Follows from proposition 7.2.1. o

Proposition 7.3.3. An Rg, g -complete constraint system is inconsistent if and only

if it contains for some x € VI and some concept symbol A, the constraints x:A and x:—A.

Proof. "=": Let S be an R4, 4-complete constraint .system not containing the
constraints x:A and x:—A for any individual variable x and any concept symbol A. We
show that the standard interpretation I;of S is a model for S. In particular we show that
for the standard I-assignment o, we have o € I]c] for every c € S.

Suppose, o ¢ I][c] for some c € S, then the completion rule for ¢ applies. If ¢ has
the form X(VR)Y, X(3R)Y, XE YU Z, x:X, x:A, X E A or xRy, then a,e I]c] (see
proposition 4.2.1.) Furthermore o e I[x:—A]if x:A is notin S.

Now we show that o e I,[X(pi«q)]. If there is no constraint x:X in S, then
o€ IS[X(piq)] holds trivially. If {x:X, X(plq)} € S, then the constraints xpy, xqy are
in S, because S is R4,y -complete. Hence o e [[x:X, X(pl«q)].

Next we show that o€ I,[X(qu)]. If there is no constraint x:X in S, then
a,e I[X(pTq)] holds trivially. If {x:X, X(pTq)} € S, then the constraints xpy, xqz,
y#z are in S, because S is R g, ~4-complete. Hence o e I[x:X, XpTq)].

Furthermore we have o € [c], where ¢ has the form X(f) Y, X(—f:T), xpy or x#y.

"&": As in proposition 4.2.1. o

Now we will show that checking the consistency of ALC¥ - concept descriptions is
decidable. To do this we prove that every fresh constraint system obtained from an ALCF
- cbncept description can be extended to an R 4, ~complete constraint system preserving
consistency and inconsistency. R 4, ~p-complete constraint systems can be checked in

polynomial time for consistency (proposition 7.3.3).

82

Function ALcF-Completion (S,i)
let S; be the set of all constraints at level i in S
ifS; = @
then return S
else let Sy, Sy, ST, Spath» Stunction> S3> S3-feature» SV -features SV» Se»
Si-complete such that
Si =u Su = S| =1 ST =path Spath =function Sfunction =3 S3 =3-feature
S3.feature =V-feature SV-feature =V SV = S =error Si-complete
ALCF - Completion (S U S;_complete i+1)

end ALCF- Completion.

Proposition 7.3.4. Suppose the call ALCF - Completion (S,0) returns the constraint
system S°, where S is a fresh constraint system obtained from an ALCF - concept
description. Then:

a) S’is Rgrcq-complete.

b) S is consistent if S”is consistent.

c) After at most exponentially many propagation steps the function terminates.

Proof. (Sketch) a) Let S be a constraint system obtained from an ALCF-concept
description. Suppose ALCF - Completion (S,i) is called, that is, S is the argument of the
i-th recursive call. Let S; be the set of all constraints at level i. Consider the constraint
system S;_complete» Which is obtained from S; in the following manner:

Si=u Su =] S| =1 ST =path Spath =function Sfunction =3 S3 =3-feature

S3.feature =V-featre SV-featwre =V SV =t St =ermor Si-complete-

We will show that no R 4, ~s-completion rule applies to constraints at level i in
Si—complete-

Consider the —, - rule, the — - rule, the —1 - rule, the —3 - rule, the =3 feature -

rule and the —¢ - rule:

83

Constraints of the form x:X, which have been introduced by the —3 - rule, the =3 feature
- rule, the —V/_feamre - Tule and the —y - rule are at level i+1. If the constraint x:X is at
level i in Sj_complete then x:X is already in S, Therefore the —, - rule, the — - rule, the
—1 - rule, the —3 - rule, the —3_feamre - Tule and the —¢ - rule don’t apply t0 Sj_complete-

Consider the —pah - Tule:
Since the — - rule and the —1 - rule are applied before the —pa - rule, the —pa - rule
doesn’t apply t0 Sj_complete-

Consider the —fynction - Tule:
Obviously, the = gynction - Tule doesn’t apply to Sgyncrion- We consider the following two
cases:
1) The constraints x:X, X(f)Y are in Sgypction and there is no constraint xfy for any
feature f and any individual variable y in Sgyncrion- Then xfy, y:Y are added by the
—3_feamure - Tule and the —gynerion - Tule doesn’t apply to S3.feamre-
2) The constraints x:X, X(f)Y, xfy are in Sgynction- Then the —3_feapure - Tule doesn’t
apply, but the —>v/_fearure - Tule adding the constraint y:Y. Thus the —gynetion - rule doesn’t
apply to0 Sv/_feature-
Furthermore, the —v - rule, the —¢ - rule and the — ¢, - rule don’t introduce
constraints of the form xfy, and the —fynction - Tule doesn’t apply to S complete-

Consider the —v_feamre - Tule and the —y - rule:
Since the — - rule and the —¢pyr - Tule, which are applied after the —v._feamre - rule and
the —y - rule, don’t introduce constraints of the form xRy, xfy and x:X, the v _feapure -
rule and the —y - rule don’t apply to S;_complete:

It is obvious that the —epror - Tule doesn’t apply to Si complete-
Thus we shown that no R4 4completion rule applies to constraints at level i in
Si-complete and hence S; complete is complete at level i.

Transforming a finite 2LCF-concept description into a constraint system, we obtain a
finite constraint tree. Thus with induction on the level we prove that the function

terminates and returns an R 4, ~4-complete constraint system.

84

b) Follows from the definition of the R g, ~4completion rules.
c) Asin theorem 4.3.3. we can construct a polynomial p such that lIS”ll < e(m+1) * p(m),

where m in the length of the string S. ' (|

Theorem 7.3.5. Let S be a fresh constraint system obtained from an ALCF - concept
description C.

a) If Cis consistent, then there exists a computation using ALCF-Completion, such that
the call ALCF-Completion(S,0) returns an R g q-complete constraint system not
containing constraints of the form x:A and x:—A.

b) If C is inconsistent, then every call ALCF-Completion(S,0) returns an

R g/ cq-complete constraint system containing constraints of the form x:A and x:—A.
Proof. Follows from the propositions 7.3.3. and 7.3.4 . O

Up to this day we couldn’t find a PSPACE-algorithm for checking consistency of
ALCTF - concept descriptions. The idea behind the PSPA CE-algorithms of chapter 5 and
chapter 6 is, that a complete constraint system is the union of so-called traces. Traces have
the property that they could be inspected independently. The following example shows

that this approach is not viable in the presence of agreements.

Example 7.3.1.
Figure 7.3.1. shows a constraint tree for the constraint system
S = {(x:X, X(flg), X()Y1, Y1(3R)Z1, Z1 E A, X(g)Ys, Yo(VR)Zy, Zp E —A}.
Using the R 4/ ~completion rules we obtain the following constraint systems:
S —plg {xfy, xgy} U S
—-feanre {Xfy, X8y, y:Y1} US
—W_feare {XfY, XgY, y:Y1, y: Y2} US
—3 {xfy, xgy, y:Y1, y:Yp, yRz, z2Z;} U S

85

—> {xfy, xgy, y:Y1, y:Y2, yRz, zZ1, zZA} U S
v {xfy, xgy, y:Y1, ¥: Y9, YRz, .71, z:A, 2275} U S
—c {xfy, xgy, y:Y1, y:Ys, YRz, zZ1, z:A, 27,5, z2—A} U

Note that the constraint system S~ is obtained from S by application
completion rules. Hence the ALCF - concept description
C=flg n f:3R:A) M g:(VR:i-A) is 'inconsistcnt.

Now consider the following two traces

Ty =S U {xfy, y:Y1, YRz, z2Z;, z:A} and

Ty =S U {xg8y, y:Y9, YRz, z2Z;, z2—A}

for S, which are not independent because of the agreement flg.

fo,g

f g

W @
IR VR
A@Z) @A

Figure 7.3.1. A constraint tree for a constraint system obtained fror

concept description C=flg M f:@R:A) M g:(VR:-A).

86

8 Conclusions

Many articles have been published in the last years that handle the theoretic backgrounds
of knowledge representation languages based on KL-ONE, for example [Levesque
Brachman 87, Nebel 88, Donini/Lenzerini 88, Schmidt-Schau3/Smolka 88]. To do
reasoning in these languages it is unavoidable to have subsumption algorithms for these
languages. The question, whether the problem of checking subsumption is decidable, and

if so, what computational complexity it has, is very important.

One of the early results is published in [Levesque, Brachman 87]. There the language
FL, which is the language AL without simple complements, is defined and it is shown
that determining subsumption in £~ can be done in polynomial time. Furthermore,
Levesque and Brachman define the restrict-operator with the following semantics:

I[Restrict RC] = { (a,b) € DIx DI | (a,b) e [R]and be I[C] }.
It is shown that the subsumption test for £, which is the language 7L~ enhanced by the

msﬁict-operator, is NP-hard.

In his paper on feature logic, Smolka [88] shows that feature descriptions as used in
computational linguistics are closely related to KL-ONE. The main difference between
feature descriptions and KL-ONE concept descriptions is that in feature logic roles are
interpreted as partial functions (called features) while in KL-ONE roles are interpreted as
any binary relations. Notationally very similar, one minor difference in the semantics
causes major computational differences. If agreement is used with roles, it causes
undecidability [Schmidt-Schaul 88], while its use with features neither destroys

decidability nor causes a complexity jump.

In [Schmidt-SchauB/Smolka 88] we can find some important results. In addition to

complexity results on some ACD-languages they give algorithms for checking

87

subsumption and consistency in these languages. The algorithms work as follows:
Concept descriptions that are checked for consistency are transformed into constraint
systems, which are extended by completion rules. Completed constraint systems can be
checked easily for consistency. Based on that idea we amalgamated the language ALC by
number restrictions (chapter 2 - 5), role hierarchies (chapter 6), and feature logic (chapter

7), and gave consistency checking algorithms for these languages.

We proved that checking consistency of ALCN (ALC + Number restriction) and
ALCR. (ALC + Role hierarchy) concept descriptions, respectively, is in PSPACE. That is,
the addition either of number restrictions or of role hierarchies doesn’t raise the
computational complexity of ALC. On the other hand we could not find a PSPACE
algorithm for checking consistency of 2LCAR (ALC + Number restriction + Role
hierarchy) concept descriptions (we conjecture that this problem in not in PSPACE). A
similar phenomenon has been established by Nebel [88]. Checking subsumption in 7.~
extended either by number restrictions or by the androle operator (an operator to create
new roles by conjoining them - comparable to role hierarchies) can be done in polynomial
time, whereas 7L~ extended simultaneously by number restrictions and the androle

operator is NP-hard.

88

9 References

K. H. Blisius, H. J. Biirckert (Hrsg.): Deduktionssysteme. Oldenbourg Verlag 1987.

R. Brachman, J. Schmolze: An overview of the KL-ONE knowledge representation

system. Cognitive Science 9(2) 1985, 171 - 216.
F. Donini, M. Lenzerini: TermLog : a Logic for Terminological Knowledge. 1988.

J. Hopcroft, J. Ullman: Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley 1979.

H. Levesque, R. Brachman: Expressiveness and tractability in knowledge representation

and reasoning. Computational Intelligence 3, 1987, 78 - 93.

K. von Luck, B. Nebel, C. Peltason, A. Schmiedel: The Anatomy of the BACK
System, KIT Report 41, FB Informatik, TU Berlin, Berlin, West Germany, 1987

B. Nebel: Computational Complexity of Terminological Reasoning in BACK. Artificial
Intelligence 34, 1988, 371 - 383.

B. Nebel: Reasoning and Revision in Hybrid Representation Systems. Dissertation.

1989.
A. Nijenhuis, H.-Wilf: Combinatorial Algorithms. Academic Press 1975.

M. Schmidt-SchauBl, G. Smolka: Attributive Concept Description with Unions and

Complements. SEKI Report SR-88-21, Universitit Kaiserslautern, West Germany.

M. Schmidt-SchauB8: Subsumption in KL-ONE is undecidable. SEKI Report SR-88-14,
Universitit Kaiserslautern, West Germany. Also: Proc. of Knowledge Represen-

tation '89, Toronto, Ontario, Canada, pp. 421-431, 1989.

89

G. Smolka: A Feature Logic with Subsorts. LILOG Report 33, IBM Deutschland, West
Germany, May 1988.

90

