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Abstract A general theory of deduction systems is presented. The theory 
is illustrated with deduction systems based on the resolution calculus, in 
particular with clause graphs. This theory distinguishes four constituents of a 
deduction system: the logic, which establishes a notion of semantic 
entailment; the calculus which provides the syntactic counterpart of 
entailment; the logical state transition system, which determines the 
representation of formulae or sets of fonnulae together with their 
interrelationships, and also may allow additional operations reducing the 
search space; the control, which comprises the strategies and heuristics used 
to choose the most promising from among all applicable derivation steps. 

For the last two levels many alternatives are presented and appropriately 
adjusted notions of soundness, completeness, confluence, and Noetherian­
ness are introduced in order to characterize the properties of particular 
deduction systems. For more complex deduction systems, where logical and 
topological phenomena interleave, these properties can be far from obvious. 
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1 Introduction 

Statements about the real world or about fictive or abstract worlds are often interrelated in 
that some of them follow from others. For example, given the statements: 

"Every cat eatsfish" 
"Garfield is a cat" 
"Garjield eats fzsh" 

one would agree that the third statement follows from the other two. Whenever we as­
sume the first and the second statement to be true (in our considered world), we also have 
to accept the truth of the third statement. The same holds for the statements: 

"Every hwnan is monal" 
"Socrates is a luunan" 
"Socrates is monal" 

where, again, the third statement follows from the other two. Now, the interesting point 
is that the reason why the third statement follows from the others is apparently the same 
in both cases. It does not depend on whether we talk about cats eating fish or about 
humans being mortal or even about objects we don't know having properties we don't 
know: 

"Every ~ has property 0"
 
"i'is a ~"
 

"i'has property 0"
 

Obviously the third statement follows from the other two, no matter what the symbols in 
these statements are supposed to mean. 

The staggering observation that the "follows from" relationship between statements 
can be established by regarding only their fonn but disregarding their contents, goes back 
to the antique Greek philosophers. Expressed in modern terms, there seems to be a 
syntactic characterization of a relationship which at first sight appears to be semantic in 
nature. If that's the case, the relationship can also be determined by machines. A program 
with this capacity is called a deduction system. 

There are several variations in specifying the precise task of a deduction system. 
Given some statements called hypotheses and some statements called conclusions, 
the task may be: to decide whether the conclusions follow from the hypotheses; to 
automatically demonstrate that the conclusions follow from the hypotheses if they really 
do; or, given only hypotheses, to generate new statements that follow from these 
hypotheses. 

In order to achieve such goals, a deduction system requires a series of four constitu­
ents, each depending on the fonner: a logic, a calculus, a state transition system, and a 
control. 

A logic is a fonnallanguage in which statements can be fonnulated. It defines syntax 
and semantics of its formulae, which are the entities of the formallanguage that corre­
spond to statements. The semantics definitions include a relation if't= y ("if entails y" 
or "y follows from if" or " y is a consequence of if "), which formalizes the intuitive 
relationship between statements in a way that is precise, yet unsuitable to algorithmic 
treatment. 
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In this paper we deal with the clausal sublanguage of fIrst-order predicate logic. 

The next constituent, a calculus, extends a logic by syntactic rules of inference. 
These rules allow the derivation of fonnulae from formulae through strict symbol 
manipulation, without recourse to the semantics. This gives rise to another relation, 
:F'r- (j, which means that from :Fit is possible to derive (j by arbitrarily many successive 
applications of inference rules of the calculus. Ideally, this syntactic derivability 
relation coincides with the semantic entailment relation. Among the major scientific 
achievements of this century are the findings that for first-order predicate logic there do 
exist calculi for which the two relations coincide, and that for more powerful logics, in 
which the natural numbers can be axiomatized, there don't. 

The resolution calculus to be discussed in this paper was developed especially with 
regard to computer implementations. 

To implement a calculus for a logic, one needs a representation of fonnulae and opera­
tions corresponding to the inference rules. Somewhat more abstractly, one has to defIne a 
state transition system. The states represent (se.ts of) fonnulae with their inter­
relationships, providing infonnation on the development of the derivations up to the 
respective point and on their possible continuations. The transitions model the changes to 
the states as inference rules are applied. Better state transition systems for the same 
calculus can be obtained by refining the states, for instance such that they indicate directly 
where inference rules can be or have been applied. More common improvements define 
additional transitions, which are not based on the rules of the calculus, but simplify the 
fonnulae or eliminate redundancies in the search space. 

The state transition systems described in this paper are based on sets of clauses and on 
graph structures imposed on them. 

Finally, the control constituent is in charge of the selection from among the possible 
transitions and of the administration of the sequences of steps already perfonned and 
states thereby produced. In order to choose the most promising transitions, a number of 
strategies and heuristic criteria can be used. 

In this paper we try to focus on the underlying principles of such criteria. 

The traditional concern of logicians has been how to symbolically represent know­
ledge and how to symbolically reason with such knowledge, in other words, they investi­

. gated logics and calculi. This does not require a separation of the two constituents as
 
strict as we presented it above. Often, in fact, a calculus is considered a part of the syntax
 
of a logic. In Artificial Intelligence, on the other hand, one is interested in useful and, as
 
far as possible, effIcient problem solvers. To that end all four of the constituents have to
 
be investigated, in particular the third and fourth, to which traditional logic did not contri­

bute very much. 

In the following sections we shall address all four constituents, presenting techniques 
to obtain powerful problem solvers based on predicate logic and resolution. 
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2 Logic: Clausal Form of First-Order Predicate Logic 

First-order predicate logic is probably the most widely used and most thoroughly studied 
logic. For this logic the semantic relation of entailment and the syntactic relation of 
derivability are perfectly balanced, and it is the most expressive logic with this and similar 
important properties [Lindstrom 69]. 

In addition, fIrst-order predicate logic serves as the basis of many other logics. New 
logics have been developed from it in a variety of ways, for example: relevance logic in­
troduces new junctors; higher-order logics use new quantifiers; temporal, deontic, dyna­
mic, and other modal logics provide a new category of operators different from junctors 
and quantifiers; fuzzy logic and quantum logic extend the classical set of truth values; 
default logic and other kinds of non-monotonic logics modify the notion of derivation by 
new kinds of inference rules. There are many more examples. All of these logics share a 
substantial fragment with first-order predicate logic. Hence it is useful to be equipped 
with well-understood methods for this fundamental reference logic. Moreover, the effects 
of other logics can often be simulated by meta-Ievel components for first-order predicate 
logic, and presently there even is about to emerge a new discipline investigating the com­
pilation of formulae from other logics using fIrst-order predicate logic as sort of a 
machine language [Ohlbach 88, 89]. These reasons explain why most of the research on 
deduction systems has concentrated on ftrst-order predicate logic. 

Sometimes one is also interested in restrictions of a logic rather than extensions. The 
most familiar sublogic of first-order predicate logic is, of course, propositionallogic. 
Other specializations are deftned by considering only formulae in a certain normal form. 
This reduces the number of syntactic forms, often without limiting the expressive power. 
Clausal logic is a prominent example of that. 

2.1 Clauses and Clause Sets 

A clause is a universally closed disjunction of literals. A literal is a negated or 
unnegated atomic formula (atom, for short), which in turn consists of a predicate symbol 
applied to an appropriate number of terms. A term, literal, or clause is called ground if it 
contains no variables. Unit clauses are clauses with only one literal. 

The meaning of a clause can be defined by specifying an interpretation in the sense of 
the standard Tarski semantics. Here is an example of a clause: 

tixyz -'spouse(x, y) v -,Parent(x, z) v Parent(y, z) v Step-parent(y, z) 

Using de Morgan's rule and the definition of the implicationjunctor, this clause can be 
transformed into the equivalent formula: 

tixyz Spouse(x, y) A Parent(x, z) => Parent(y, z) v Step-parent(y, z) 

which shows more clearly the intended "natural" interpretation: if x is married to y and 
parent of z, then y is a parent or step-parent of z. This syntactic form, which is 
sometimes called Gentzen form, does without negation sign and uses atoms rather than 
literals as its elementary parts. Often, the implication sign is reversed (and pronounced 
"if'), such that the positive literals of the disjunctive form are collected on the left hand 
side, the negative literals on the right hand side. 

Another modiftcation exploits that the formula tix (!}'(x) => g), where the subformula g 
contains no free occurrence of the variable symbol x, is equivalent to (3x !}'(x» => g. 
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Thus the variables occurring only in negative literals can be existentially quantified within 
the negative part, and our example becomes: 

\iyz Parent(y, z) v Step-parent(y, z) <== 3x Spouse(x, y) 1\ Parent(x, z) 

This form is most appropriate for a procedural reading of the clause: in order to show that 
y is a parent or step-parent of z, fmd an x that is married to y and parent of z. 

Finally, disjunction is associative, commutative and idempotent, which are just the 
properties of a set constructor. Therefore one can also define a clause as a set of literals: 

r-.spouse(x, y), -.Parent(x, z), Parent(y, z), Step-parent(y, z)} 

Here the quantifier prefix is omitted because it is uniquely determined by the set of va­
riables occurring in the clause. This definition abstracts from the irrel~vant order of the 
literals and automatically excludes duplicate occurrences of the same literal in a clause. In 
an implementation, however, the removal of duplicate literals has to be programmed 
anyway, and it is not always convenient to place this operation on the abstraction level of 
the representation of clauses. 

Which of these syntactic variants is to be preferred, depends largely on personal habit 
and taste. Semantically they are all the same. In this paper we adhere to the set syntax, 
but usually omit the set braces and occasionally do allow duplicate literals. 

Clausal logic is the sublanguage of first-order predicate logic consisting of the formu­
lae that are clauses. For this special case some of the standard semantic notions become 
somewhat simpler. An interpretation satisfies a ground clause iff it satisfies some literal 
of the clause; it satisfies an arbitrary clause iff it satisfies each ground instance of that 
clause (we only need to consider Herbrand interpretations - see textbooks on classical 
logic). Obviously each clause is satisfiable, provided that it contains at least one literal. 
The empty clause [J, which like the "empty disjunction" corresponds to the truth value 
false, is the only unsatisfiable clause. A clause is valid, i.e., satisfied by all interpreta­
tions, iff it contains an atom and its negation. Such a clause is called a tautology, the 
atom and its negation are complementary literals. 

As usual, a set of formulae is interpreted like the conjunction of its members. Thus an 
interpretation satisfies a set of clauses iff it satisfies each clause in the set; such an inter­
pretation is also called a model of the clause set. A clause set is valid iff each member 
clause is a tautology. This holds vacuously for the empty clause set, which contains no 
clauses at all - not even the empty clause. A clause set containing the empty clause, on 
the other hand, is unsatisfiable. There are some more criteria for special satisfiable or un­
satisfiable clause sets, but a general characterization of satisfiability or unsatisfiability 
based on the syntactic form of the clause set does not (and cannot) exist. 

Why should we be interested in such properties? The original problem is, after all, 
whether some hypotheses 9f], ...,:J-fn entail a conclusion Cwhether 9f], ..., :J-fnI=Cholds. 
For predicate logic formulae JIi and Ccontaining no free variables, this is the case iff the 
formula :Ji] 1\ •.. 1\ :J-fn => Cis valid, which in turn holds iff the formula :Ji] 1\ •.. 1\ 9-fn 1\ --,C 
is unsatisfiable. (The first iff is known as the deduction theorem, the second is 
straightforward.) As it happens, any formula can be converted into a clause set that is 
unsatisfiable iff the formula is, and now we have translated our problem into the question 
whether a certain clause set is unsatisfiable. That's why the unsatisfiability of clause sets 
is of interest. 
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2.2 Conversion to Clausal Form 

Earlier, we used the example that the formula (3x !J(x)) => g, where the subformula g 
contains no free occurrence of the variable symbol x, is equivalent to 'tIx(!J(x) => g). 
What that really means is that the two formulae entail each other: any interpretation satis­
fies one of them iff it satisfies the other. In other words, the formulae have the same mo­
dels. Even stronger, whenever one of them occurs in a larger formula :J{and we replace 
this occurrence by the other, the resulting formula has exactly the same models as:Jl 

Thus we can read the pair of formulae as a transformation rule which, expressed pro­
cedurally, moves a quantifier from the first subformula of an implication to the front of 
the entire implication, reversing the quantifier in the process. This transformation rule can 
be applied to any formulae without affecting their models. There are more model preser­
ving transformations of this kind, and together they allow to move all the quantifiers of a 
predicate logic formula to the front. The resulting formula is said to be in prenex form 
it consists of a quantifier prefix and a quantifier-free subformula called the matrix. In 
order to convert a predicate logic formula without free variables into clausal form, we 
start by converting it into prenex form. 

As an example consider one of the unfamous "epsilontics" from Analysis, namely the 
definition that a function g is uniformly continuous: 

'tie (e>O => 38 (8)0/\ 'tIxy (/x-y/<8 => /g(x)-g(y)/<e))) 

Using model preserving transformations, we obtain the equivalent prenex form of this 
formula: 

'tie 38 V'xy e>O => 8>0 /\ (/x-y/<8 => /g(x)-g(y)/<e) 

The next goal in the conversion to clausal form is to eliminate the quantifier prefix. If 
there are only universal quantifiers, we can simply omit the prefix because it is uniquely 
determined by the variables occurring in the matrix.,!f, like in the example above, the 
prefix contains existential quantifiers, we apply a transformation called Skolemization: 
each existentially quantified variable is replaced by a term composed of a new function 
symbol whose arguments are all the variables of universal quantifiers preceding the 
respective existential quantifier in the prefix. In the example above, we replace 8 in the 
matrix byfee) for a new function symbolfo; the 38can then be deleted from the prefix. 

Skolemization is not a model preserving transformation; applied to a formula !J in 
prenex form it produces a formula !J* that is not equivalent to !J. However, 
Skolemization preserves the existence of models: !J has a model iff !J* has one. In other 
words, !J is (un)satisfiable iff !J* is. For more details on Skolemization see textbooks on 
classical logic. 

In any case, after Skolemization there remain only universally quantified variables. 
Now we can drop the prefix because it is implicitly determined by the matrix. Our 
example is transformed into the following quantifier-free form: 

e> 0 =>f8e»0 /\ (/x-y/</t/e) =>/g(x)-g(y)/<e) 

The remaining conversion uses again model preserving transformations. For instance, 
subformulae of the form !J=>(j are replaced by ,!Jv(j. With this and similar rules any 
connectives other than negation, conjunction and disjunction can be eliminated. After that 
all negation signs are moved inside subformulae by de Morgan's rules. We obtain the 
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negation normal form, which is a formula consisting of literals and arbitrarily nested 
conjunctions and disjunctions: 

-£>0 v (jae) >0 A (-Ix-y/<fae) v/g(x)-g(y)/<e)) 

Finally, the distributivity laws allow the multiplication of this formula into conjunc­
tive normal form: 

-£>0 vftfe»O) A (-£>0 v ../x-y/<ftfe) v/g(x)-g(y)/<e) 

This conjunction of clauses can now simply be written as a set of clauses. If we use the 
set syntax also for each individual clause, we get the following clausal form of our 
example: 

{{..e>0, fie»Oj, (..e>0, -Ix-y/<ft/e), /g(x)-g(y)/<e)) 

In this way, any predicate logic formula without free variables can be converted into a 
clause set which is (un)satisfiable iff the formula is. If the prenex form of the formula 
contains no existential quantifiers, the clause set is even equivalent to the formula. In case 
the formula is a conjunction of subformulae, its clausal form is always the union of the 
clausal forms of these subformulae. This is especially convenient if we regard our 
original problem whether the hypotheses :F1, ..., :Fn entail the conclusion g, which was 
translated into the question whether the formula :F1 A ... A :Fn A ..g is unsatisfiable. To 
convert the latter into a clause set whose unsatisfiability corresponds to the original 
problem, we can convert each hypothesis individually, convert the negation of the 
conclusion, and unite all the clause sets thus obtained. In many real examples, each 
hypothesis corresponds to a single clause anyway. 

There are a number of technical improvements that avoid certain redundancies in the 
conversion. One of them is relevant if the logic supplies an equivalence junctor <:::>. A 
formula :F <:::> 9 has to be transformed such that the equivalence junctor disappears, at 
latest when converting to negation normal form; if :F and 9 contain quantifiers, the 
transformation is necessary already for the prenex form. :F <:::> 9 can be replaced by 
( ..:Fv g)A (:Fv ..g), corresponding to (:F~g)A(:F~g), or alternatively by 
(:FA g) V ( ..:FA ..g). Both are model preserving transformations, but the first has a 
disadvantage if afterwards multiplied into conjunctive form: it results in 
( ..:F A :F) v (g A :F) v (..:FA ..g) V (g A ..g), which is just the. second form plus two 
tautologies containing four additional copies of the subformulae. In general these 
tautologies cannot be recognized as such if :F and 9 are themselves complex formulae 
which are changed during the conversion. The second form would avoid this 
redundancy. However, if the whole equivalence occurs within the scope of a negation, 
disjunctions and conjunctions exchange as the negations are moved to the literals. Then it 
is the second form which results in redundancies avoided by the other form. Thus, an 
equivalence in the scope of an even number of (explicit and implicit) negations should be 
replaced by a conjunction of disjunctions, an equivalence in the scope of an odd number 
of negations by a disjunction of conjunctions. 

Regardless which of the forms is used, the transformation of an equivalence involves 
a replication of subformulae. The same holds for an application of the distributivity rule 
in order to multiply into conjunctive normal form. Depending on the nesting of junctors, 
this may lead to an exponential increase in the size of the formula, which can be limited to 
a linear increase by a special technique. Consider the formula :Fv(9 A 91). An application 
of the distributivity law would duplicate the subformula r. Instead, we can abbreviate the 
subformula (g A 9-l) by P(Xl'" .,x,J, where Xl,.'" Xn are the free variables in (gA 91) and 
P is a new predicate symbol. The original formula '.J v (9 A 9-l) is then transformed into 
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(~vP(Xl> ..., X,J) A (-,F(Xl>"" X,J v (j) A (-,P(Xl> ...,X,J v:J-f), which uses three copies 
of P(xj , ••• , x,,). But this is only an atom and need not be further transformed. The 
possibly very complex formula :J, on the other hand, still appears only once. 

Another improvement involves the movements of quantifiers. The prenex form of the 
formula 'rIx«'tIyP(x,y» v(3zQ(x,z») is 'tIx 'rIy3z«P(x,y» v(Q(x,z»). Skolemi­
zation of the prenex form would replace z by f(x,y). The original formula shows, 
however, that the existential quantifier does not at all depend on the second universal 
quantifier. The 3z came into the scope <if 'rIy only because the latter happened to be 
moved into the prefix before the existential quantifier. Thus we can use the smaller 
Skolem termf(x) for z. For this and similar reasons one often converts in a different way: 
the negation normal form is constructed from the un-Skolemized matrix, then all the 
quantifiers are moved into subformulae as far as permitted by model preserving 
transformations. The resulting anti-prenex form is then Skolemized. 

2.3 Specializations and Modifications 

Clauses with at most one positive literal are called Horn clauses. They are usually 
written in the implication syntax: L1 A ... A L n => L n+1 or, more frequently, 
L n+1 <= L1 A ••. A L n for atoms Li. Sets of Horn clauses have many convenient special 
properties. In this paper, we shall not go into details here. 

While this is just a sublogic, there are some modifications that change the underlying 
logic. The most common is the incorporation of special symbols with "built-in" fixed 
interpretations, for example for the equality relation. More recently many-sorted logics 
have become increasingly popular. Such modifications may allow more concise or more 
"natural" representations. Much more important, however, is whether they contribute to 
better derivations. Therefore we address them in a later section (3.3), after derivations 
have been discussed. 



- 10­

3 Calculus: Resolution
 

A calculus presupposes a logic and provides syntactic operations to derive new fonnulae 
of this logic from given ones. The basis for the operations are so-called rules of· 
inference, which have the following general fonn: 

~1'" ~1l 

~ 

The objects above the line are called the premises of the inference rule, the object 
below is its consequent. Premises and consequent are fonnulae or rather schemata of 
fonnulae. An application of the rule is possible if the fonnulae 1}, ..., :F are given or 1l 

have been derived by previous rule applications; the effect of the application is that the 
consequent fonnula :F is derived in addition. For obvious reasons we exclude inference 
rules with infinitely many premises and consider only so-called finite premise rules. 

Two well-known inference rules are the modus ponens rule and the instantiation 
rule: 

:F :F=> (j 'Ix :F[x] for a tenn t 
(j :F[t] 

We demonstrate the application of these rules to the following frrst-order predicate logic 
fonnulae: 

'Ix Cat(x) => Fish-eater(x) 
Cat(Garjield) 

The first fonnula has the fonn of the premise of the instantiation rule, where :F[x] is 
Cat(x) =>Fish-eater(x). Taking Garfield as the tenn t to be substituted for the variable x, 
we derive the new fonnula: 

Cat(Garjield) => Fish-eater(Garfield) 

This has the fonn of the second premise :F=>(j of the modus ponens rule. Since the 
fonnula corresponding to the first premise :r. in this case Cat(Garfield), is also given, we 
can now derive the fonnula 

Fish-eater(Garjield) 

with the modus ponens rule. 

There may be many different calculi for the same logic. For first-order predicate logic 
a calculus was designed by David Hilbert. Later, further calculi for this logic were 
presented by Gerhard Gentzen and by others. In a sense all of these calculi are 
equivalent, and they are often subsumed under the collective name classical calculi. 
Some people even go as far as talking about "the predicate calculus"l. 

Classical calculi are designed such that the fonnulae following from given fonnulae 
can be enumerated by applying the inference rules. There may also be no given fonnulae 
at all, in which case the fonnulae enumerated by the calcl;1lus are just the valid fonnulae of 
first-order predicate logic. In order to apply its inference rules in this case, a calculus 
needs some elementary tautologies as a starting point. These are provided by the logical 
axioms, the second ingredient of a calculus beside the inference rules. Hilbert's 

1	 AI-ticians seem to be particularly fond of saying that something can or cannot be expressed "in the 

predicate calculus" when they usually mean "in first-order predicate logic" 
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calculus, for instance, contains all formulae of the fonn ~~((j~~) among its logical 
axioms, and the modus ponens rule among its inference rules. 

Such a calculus for valid fonnulae is called a positive calculus. Dual to that, one 
can also construct negative calculi for unsatisfiable fonnulae; then the logical axioms 
provide the elementary contradictions as a starting point. 

Independent of the distinction between positive and negative calculi, there is a 
distinction between the ways the inference rules are to be used [Richter 78]. With a 
generating calculus, one starts from the logical axioms and applies inference rules 
until the fonnula to be proven (valid or unsatisfiable, depending on whether the calculus 
is positive or negative) has been derived. The inference rules of a testing calculus, on 
the other hand, are applied starting from the formula whose validity or unsatisfiability is 
to be shown, until arriving at logical axioms. Generating calculi can also be called 
forward calculi or synthesizing calculi, testing calculi can be called backward calculi or 
analyzing calculi. 

A generating calculus can be converted into a testing calculus and vice versa, by 
simply exchanging the premises and consequents of each inference rule. If we do that for 
the modus ponens rule, however, it says that given a fonnula (j we derive the two 
formulae ~and ~~(j where ~is any arbitrary formula. Such a rule is not very useful. In 
the original fonn the rule confonns to the subformula principle: given concrete 
premise formulae, the consequent formula is determined as some subformula of these. As 
rules are reversed, the subfonnula principle is often violated. A famous calculus by 
Gerhard Gentzen, the sequent calculus, was defined as a generating calculus and then 
turned into a testing calculus: in his "Hauptsatz" Gentzen showed that the only rule 
whose reversal violates the subformula principle was unnecessary. 

3. 1 The Resolution Rule 

Specialized to clausal logic, the modus ponens rule would have the form 

L -J.." M], ..., Mm 

Ml> ..., Mm 

for literals L, -J.." M j. The ground resolution rule is a generalization in that the first 
premise may be a clause with other literals beside L, which are then also part of the 
consequent clause (from now on we write the premises below each other): 

L, K], , KIl 

-J.." Ml> , Mm 

The consequent is called a resolvent of the premises, which are also called the parent 
clauses of the resolvent. Land -.L are called resolution literals. Thus, from the 
clauses 

Cat(Garfield), Thinker(Garjield) 
-eat(Garjield), Fish-eater(Garfield) 

where the second is the clausal fonn of Cat(Garjield) =>Fish-eater(Garfield) used above 
in the modus ponens example, we can derive the resolvent 

Thinker(Garjield), Fish-eater(Garjield) 
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It is easy to see that a resolvent is a consequence of its parent clauses: Suppose there is 
an interpretation satisfying both parent clauses, we have to show that it satisfies the 
resolvent as well. To satisfy the parent clause, the interpretation has to satisfy at least one 
literal each of them. Let us first consider the case that the interpretation satisfies L. Then it 
cannot satisfy ....,L in the second premise clause and hence satisfies one of the Mi. This 
literal belongs to the resolvent, which is therefore also satisfied. In the other case the 
interpretation does not satisfy L and hence satisfies one of the Ki of the first premise 
clause and thus also the resolvent. 

The essential point of the ground resolution rule is that there must be two 
complementary literals in the parent clauses. For the non-ground case, the requirement 
that they are complementary is relaxed such that they need not be, but can be made 
complementary by substituting terms for their variables. Since x and y are different in the 
clauses 

Cat(x), Thinker(x) 
-'cat(y), Fish-eater(y) 

Cat(x) and -,Cat(y) are not complementary. They can be made complementary by 
instantiating x and y with, say, GarfieLd, yielding the same clauses as above. Therefore 

Thinker(GarfieLd), Fish-eater(GarfieLd) 

is also a consequence of these more general clauses. Instantiating x and y with Garfield is 
not the only possibility to obtain complementary literals. The termfriend-of(Odie) for 
example would also do, as well as infinitely many others. 

Mappings like {x f- Garfield, y f- Garfield} and (x f- friend-of(Odie), y f- friend­
of(Odie)} are called substitutions. They can be applied to terms, atoms etc. resulting in 
objects that differ only in that each variable appearing to the left of an arrow is replaced 
by the corresponding term to the right of the arrow. For example, the application of the 
first substitution to Cat(x) results in Cat(Garfield), and so does the application of the 
substitution to Cat(y). A unifying substitution or simply unifier for two terms or 
atoms is a substitution whose application to either of them produces the same result. Thus 
each of the substitutions above is a unifier for the atoms Cat(x) and Cat(y). For these two 
atoms the effect of any unifier can be obtained by first applying the substitution {x f- y} 
and then instantiating further. For example, the effect of the unifier {x f- Garfield, y f­

Garfield} is the same as that of {x f- y} followed by {y f- GarfieLd}. We call {x f- y} 
a most general unifier for Cat(x) and Cat(y). Fortunately, if two terms have a unifier 
at all, they always have a most general unifier, which is unique up to variable renaming 
[Robinson 65]. 

Various unification algorithms computing a most general unifier for two terms, 
term lists, or atoms have been developed. The earliest known stems from 1920. It was 
discovered by Martin Davis in Emil Post's notebooks. Most of the algorithms are 
exponential in the size of the terms. Using special representations for terms it is, 
however, possible to unify two terms in linear time [Paterson & Wegman 78]. The most 
intuitive version of the unification algorithm views unification as a process of solving 
equations by a series of transformations: To compute a most general unifier of term lists 
(Pj"",Pk) and (q}t ...,qk) start from the set of equations {Pj=qj, ..., Pk=qk} and 
transform the set with the following rules as long as any of them is applicable: 
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{x=x} u E ---+ E (tautology)
 
{X=t} u E ---+ {x=t} u E[x replaced by tl (application)
 

if x occurs in E but not in t
 

{t=x} u E ---+ {x=t} U E (orientation)
 
if t is a non-variable tenn
 

(f(Sj"",sn)=f(tj> ,tn)) U E ---+ (Sj=t]. ..., sn=t,J u E (decomposition) 
(f(s]. ... ,sJ=g(t]. ,tm)} U E ---+ failure (clash) 
{x=t} u E ---+ failure (cycle) 

ifx occurs in t 

where x stands for a variable, t for a tenn, and E for a set of equations. • 
Example: We want to unify the tenn lists (f(x,g(a,y», g(x,h(y))) and(f(h(y),g(y,a», 
g(z,z». 
The system of equations 

(f(x,g(a,y» = j(h(y),g(y,a», g(x,h(y» = g(z,z) } 
can be transfonned into
 

(x =h(y), a =y, y =a, x =z, h(y) =z}
 
by applying the decomposition rule several times, then into
 

( x =h(a), y =a, a =a, h(a) =h(a), z =h(a) } 
with the application and orientation rules, and finally into 

(x =h(a),y =a, Z =h(a)) 
by using the tautology rule. 

No further rule application is possible. Thus, the substitution (x r- h(a), y r- a, z r ­
h(a)} is a most general unifier for the original tenn lists. • 

With the concept of most general unifiers we can now define the full resolution rule 
[Robinson 65]: 

clause!: L, K], , Kn O'is the most general unifier 
clause2: -J..:, MJ, , M", of L andL'. 

resolvent: 

The two clauses should not contain the same variables. This can be achieved by 
automatically replacing the variables in a newly generated clause by completely new 
variables. The logical justification for the replacement is that fonnulae 'v'x :F[xl and 
'v'x' :F[x 7 are equivalent. 

Since any instance of a literal is a consequence of this literal, it is easy to see that the 
resolvent is a consequence of its parent clauses also for the full resolution rule. 

Let us now look at some sample applications of the resolution rule: 

Human(Socrates)
 
-J{uman(x), Mortal(x) 0' = {x r-Socrates}
 

Mortal(Socrates) 

P(x, a), Q(x) 
-rP(f(y), y), R(y) 

Q(f(a», R(a) 

Shaves(x, x), Shaves(Barber, x) 0'= {x r-Barber, y r-Barber} 
,shaves(Barber, y), ,shaves(y, y) 
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Shaves(Barber, Barber), -..5haves(Barber, Barber) 

The last example is the famous Russel antinomy in clausal form: the barber shaves a 
person if and only if that person does not shave himself. This statement is inconsistent. It 
also shows that a refinement of the resolution rule remains necessary. The contradiction 
can be derived only if, before generating the resolvent, in either parent clause the two 
literals are instantiated by a substitution such that they become equal and merge into one 
literal: 

Shaves(x, x), Shaves(Barber, x) I­ Shaves(Barber, Barber) 
-..5haves(Barber,y), -8haves(y, y) I- -8haves(Barber, Barber) 

o 

Originally, Robinson integrated this instantiating and merging operation into the 
resolution rule; for practical reasons, though, it is usually handled as a supplementary 
inference rule of its own, called factoring. 

Most classical calculi are positive generating calculi. In contrast, the resolution 
calculus is a negative testing calculus: the empty clause is its only logical axiom and 
represents the elementary contradiction; resolution and factoring are its rules of inference, 
which are applied to the clause set whose unsatisfiability is to be shown, until the logical 
axiom has been reached. 

Example: We illustrate the whole procedure by proving the transitivity of the set 
inclusion relation. ,Our hypothesis is the definition of c in terms of E: 

\fx,y x c y <=> \fw w EX=> W E Y 
We want to show that the following conclusion is a consequence of the hypothesis: 

\fx,y,z x cy 1\ Y S;; z => X S;; z 

Transforming the hypothesis and the negated conclusion into clause form we obtain the 
initial clause set: 

HI: -.x kY, -.W E x, W E Y (~ part of the hypothesis) 
H2: xs;; y, f(x,y) E x (two <= parts of the hypothesis, 
H3: x c y, -.f(x,y) E y fis a Skolem function for w) 
Cl: a cb (three parts of the negated conclusion, 
C2: b kC a, b, c are Skolem constants for x, y, z) 
C3: -.a cc 

Resolution derivation (HI,1 denotes the first literal of clause HI as a resolution literal): . 
HI,1 & Cl, {x ~a, y ~b} ---? RI: -. WE a, WEb 
HI,1 & C2, {x ~b, y ~c} ---? R2: -. wEb, W E c 
H2,2 & RI,I, (x ~ a, W ~f(a,y)} ---? R3: a ky,f(a,y) E b 
H3,2 & R2,2, (y ~ c, W ~f(x,c)} ---? R4: x cc, -.f(x,c) E b 
R3,2 & R4,2, {x ~ a, y ~ c} ---? R5: a cc, a cc 
R5 (factoring) ---? R6: a cc 
R6&C3 ---? R7: 0 

The derivation of the empty clause means that the initial clause set is unsatisfiable. 
Therefore the conclusion follows indeed from the hypothesis. • 
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3.2 Properties of Resolution and other Types of Calculi 

Classical calculi usually have two properties, soundness and completeness. A positive 
generating calculus is sound, if each of its logical axioms is valid and any formula 
derived by applying inference rules follows from the formulae from which it was 
derived. Obviously, for the latter property it is sufficient to show that each individual 
inference rule is sound, Le., that its consequent follows from its premises. As we have 
seen earlier, the resolution rule has this property. So has the factoring rule, and thus the 
resolution calculus is sound. 

The requirement for completeness of a positive generating calculus is that each 
formula following from given ones can be derived from the given ones by applying 
inference rules of the calculus. The resolution calculus is not complete in this sense. 

For example, consider the formula :J = V'x P(x) , which is just a unit clause. The 
resolution rule cannot be applied here at all; so even though there are an infinite number 
of formulae following from :J, none can be derived in the resolution calculus. 

One consequence of :J would be the formula P(t) for an arbitrary term t. In most 
classical calculi it can be derived with the instantiation rule or a similar rule. But by the 
same rule any other instances of P(x) would also be derivable. For every variable in a 
formula, the instantiation rule provides as many alternative derivations as there are terms. 
This tremendous branching rate is alleviated in the resolution calculus by the idea of 
unification: variables are instantiated just as far as necessary to apply a rule, and the 
derivations are carried out at the "most general" level possible. 

:Jalso entails the formula V'x P(x) vQ. To derive it one needs an inference rule which, 
in the special case of a clausal form, allows from any clause the derivation of a new one 
containing arbitrary additional literals. Obviously this violates the subformula principle 
and thus results in a large search space, which the resolution calculus avoids in the first 
place. 

Further, any tautology follows from :J, for instance Q v -,Q. In a complete calculus 
they can all be derived. But it is not at all desirable to derive all formulae that are valid 
independent of :J. After all, an unsatisfiable formula :Jwould entail every predicate logic 
formula, but we are not interested in being able to derive them all from :J. Derivations of 
this kind are also ruled out by the resolution calculus. 

Thus the resolution calculus is not complete in the sense that all consequences of a 
formula are derivable from it. But resolution has the property of refutation 
completeness: From an unsatisfiable clause set it is always possible to derive the empty 
clause, the elementary contradiction, in finitely many steps. Since no interpretation 
satisfies the empty clause and the calculus is sound, this means that a clause set is 
unsatisfiable if and only if the empty clause can be derived from it in the resolution 
calculus. 

This property is sufficient to prove all consequences. By the deduction theorem a 
formula C follows from given formulae !Jf.I, ..., !J-f,. iff the formula ~ A .•. A !J-f,. ==> C is 
valid. This is the case iff:J-6 1\ ..• 1\:J-f,.1\ -e is unsatisfiable, which is equivalent to saying 
that the clausal form of the last formula is unsatisfiable. This in turn holds if and only if 
the empty clause can be derived from this clause set. : ~ 

However, the property is not sufficient to decide whether a formula is a consequence. 
One can systematically enumerate all resolvents derivable from the appropriate clause set. 
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If the empty clause is derivable, it will be obtained after finitely many steps. Otherwise 
the generation of new resolvents may go on forever. In cases where it is known a-priori 
that only finitely many different resolvents can be derived from any given clause set, for 
instance in the ground case, the resolution calculus can of course be the basis of a 
decision procedure for the special class of formulae. 

In summary, the resolution calculus has the following properties: 

•	 The resolution calculus is sound. This implies in particular that whenever the 
empty clause can be derived from the clausal form of Jiypotlieses /\ 
...,Condusion., then the hypotheses do entail the conclusion. 

•	 The resolution calculus is not complete, but refutation complete. Whenever 
some hypotheses entail a conclusion, it is possible to derive the empty clause 
from the clausal form of Jiypotlieses /\ ...,Concfusion. 

•	 Since first-order predicate logic is not decidable, the resolution calculus can at 
best be the basis for a semidecision procedure for the problem whether some 

.hypotheses entail a conclusion. Only for certain subclasses	 of first-order 
predicate logic can it provide a decision procedure. 

The abandonment of classical completeness was a major step in improving the 
efficiency of a calculus. Of course implementations and thus efficiency were beyond the 
concern of the time when classical calculi were developed, when the objective was to 
study whether the semantic entailment relation could in principle be determined by 
syntactic operations. 

Resolution does no longer bother to derive all consequences, but still sufficiently 
many. The resolution calculus also has the following, less widely known property: for 
every non-tautologous clause D following from a given clause set, a clause C is derivable 
that entails D. The entailment is of a special, syntactidlly easy to recognize form: from C 
one can obtain D by instantiation and addition of further literals. This trivial form of 
entailment between two clauses is called subsumption. For example, from the clauses 
(P(x), Q(x)} and (-,P(f(y))} the clause D = {Q(j(a)),R} follows. It cannot be derived, 
the only possible resolvent is C =(Q(f(y))}. From C one can obtain D by instantiating C 
with {y ~ a} and by adding the literal R, in other words, C subsumes D. The resolution 
calculus can derive any consequences "up to subsumption", and in this sense it is 
powerful enough to derive all "interesting" consequences. 

3.3 Modifications 

The branching rate in the search space generated by the resolution rule is always finite 
and in general not too high. Compared to the usually infinite branching rate of classical 
calculi, this was such a tremendous improvement that in the early days of automated 
theorem proving many researchers thought the problem was solved once and for all. Very 
soon, however, the first implementations of resolution theorem provers brought the 
inevitable disillusionment. Although some really nontrivial theorems could be proved 
now, there was still no chance of proving routinely everyday mathematical theorems. 
Various modifications of the basic resolution calculus were then developed in order to 
strengthen its power by further reducing the search space. All the rest of this paper is 
dedicated to such improvements on the different levels ofdeduction systems. 
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3.3.1 Macro Resolutions 

The first group of modifications is aimed at overcoming the problem that different 
sequences of resolution steps may result in the same final resolvent. The idea is to group 
these steps together into one macro step which generates the resolvent only once. 

Unit resulting resolution (or UR-resolution) simultaneously resolves n unit 
clauses with a clause consisting of n+l literals, called a "nucleus". The result is a new 
unit clause. 

For example, let the following clauses be given: 

Cl: -,P(X,y) , -.P(y,z), P(x,z)
 
C2: P(a,b)
 
C3: P(b,c)
 

Then, among others, the following resolution steps are possible: 

CI,1 & C2 1­ RI: -J>(b,z), P(a,z)
 
RI,1 & C3 1- R2: P(a,c)
 

The second resolvent can also be obtained by a another derivation, which differs from the 
fIrst one only in an insignifIcant reversal of the order of the steps: 

CI,2 & C3 1­ RI': -.P(x,b), P(x,c)
 
RI',1 & C2 1- R2: P(a,c)
 

UR-resolution would combine the two steps so that R2 is derived in one go and the order 
of the steps does no longer matter. 

The general schema for UR-resolution can be graphically represented as follows: 

unit 
clauses 

"nucleus" 

••• 

••• 

••• 
simul­
taneous 
unifier (J 

UR- , 
resolvent 

This representation illustrates that all unit clauses have the same status and that the 
order in which they are used for resolution has no effect on the final result. The 
simultaneous unifier can be computed from two term lists, one obtained by concatenating 
the term lists of the unit clauses1, the other by concatenating the term lists of their partner 
literals in the nucleus. The two term lists have equal lengths and are unified as usual. In 
our transitivity example above, the term lists are (x,y,y, z) and (a, b, b, c). Their most 
general unifier is {x ra, y rb, z rc}. 

1 The variables of the unit clauses used more than once have to be renamed. 
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The abstraction from the order of the n unit resolution steps is not the only effect of 
UR-resolution. It also omits the n-l clauses occurring as intermediate results. In the 
example above, neither RI nor RI' would be added to the clause set. On the face of it 
there is no justification for this omission. Thus UR-resolution actually represents a new 
rule of inference, for which the same properties as for the resolution rule have to be 
shown. 

UR-resolution is not in general refutation complete, but it is for the unit refutable class 
of clause sets. Clause sets from this class can be refuted by allowing resolution only 
when at least one resolution partner is a unit clause. All unsatisfiable Horn clause sets 
belong to this class. The procedure described in section 4.5 for the extraction of 
refutation trees essentially simulates a UR-derivation. 

Hyper-resolution can be regarded as a generalization of UR-resolution. It was 
developed by John Alan Robinson [Robinson 65b] and is described by the following 
schema: 

••• 

••• 

L......::.L-_ • • • _.L.-:..:.L-.....:.:.~_ 

simul­
taneous 
unifier (J 

"electrons" 

• • • ~ -Ln+ml "nucleus" 

Here a clause with at least one positive literal serves as "nucleus". In unsatisfiable 
clause sets, such clauses always exist. For every positive literal of the nucleus, a so­
called "electron" is needed, a clause containing only negative literals. Again, such clauses 
always exist in an unsatisfiable clause set. The nucleus is resolved with all electrons 
simultaneously, resulting in a purely negative clause which, in turn, can be used as an 
electron for the next hyper-resolution step. The purely negative clauses take on the part of 
the unit clauses in UR-resolution. 

Dual to this so-called negative hyper-resolution, one can define positive 
hyper-resolution simply by reversing the signs of the literals in the nucleus and the 
electrons. Since normally a negated conclusion contains only negative literals and can 
thus be used as electron for negative hyper-resolution, the latter is suitable for backward 
reasoning from the conclusion toward the hypotheses, whereas positive hyper-resolution 
can work in the forward direction from the hypotheses toward the conclusion. Both 
variants of hyper-resolution (with factoring built in) are refutation complete for arbitrary 
clause sets. 

3.3.2 Theory Resolution 

Resolution is a universal rule of inference. From a theoretical point of view this has the 
advantage that any first-order predicate logic formula that is provable at all is provable 
with the resolution calculus. From a practical point of view, however, the disadvantage is 
that the rule does not know anything about the semantics of the symbols it manipulates. 
Domain specific knowledge and algorithms can therefore not directly be exploited in a 
pure resolution theorem prover. Even such simple things like adding two numbers have 
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to be done by resolution with the axioms of number theory. A control component would 
have to be quite intricate to select the resolution steps in such a way as to simulate an 
execution of the addition algorithm. While this simulation of an algorithm is possible, it is 
certainly not the way humans work. Humans tend to apply techniques as specific as 
possible and resort to general purpose techniques only when they lack specific 
knowledge. This kind of considerations were the motivation for the ideas presented in the 
next section. 

Theory resolution is a scheme to exploit information about the meaning of 
predicate symbols and function symbols directly within the calculus, by using specially 
tailored inference rules instead of axioms for these symbols. General theory resolution 
was proposed by Mark Stickel at SRI [Stickel 85]. Many special cases, however, were 
known before by different names. 

As a motivation for the approach, let us recall the justification for the soundness of the 
resolution rule: 

clause I: L, K], , K,.
 
clause2: -,L, M]> , Mm
 

resolvent: 

The essential argument for the parent clauses' entailing the resolvent was that an 
interpretation satisfying the literal L falsifies -1... The crucial point is that no interpretation 
can satisfy both L and -1... This is the case for two literals whenever they meet the purely 
syntactic condition of being complementary, i.e., if they have opposite signs, equal 
predicate symbols, and equal term lists. 

In many cases one can generalize this syntactic notion of complementarity by utilizing 
the fact that not any arbitrary interpretations need to be considered, but only certain 
classes of interpretations. For instance, a set of fonnulae might contain axioms for a 
predicate symbol <, such that interpretations can be models only if they associate with < a 
strict ordering on the universe. Due to the properties of strict ordering relations, no such 
interpretation can satisfy both a < band b < a. These two literals are not syntactically 
complementary, but, as it were, semantically contradictory in the assumed context, where 
the following derivation step would also be sound: 

clause!: a< b,K
 
clause2: b< a,M
 

resolvent: K,M 

As a further generalization, we can even abandon the restriction to two parent clauses. 
No interpretation of the assumed class can satisfy each ofthe literals a < band b < c and 
c < a. Analogous to the justification for the simple resolution rule, only with more 
cases, the following step can also be shown to be sound: 

clause!: a< b,K
 
clause2: b<c,M
 
clause3: c < a,N
 

resolvent: K,M,N 

Thus the idea is to proceed from the special case of two syntactically complementary 
resolution literals to an arbitrary set of resolution literals such that no interpretation of a 
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given class can satisfy -all of them. The "class of interpretations" is defined more precisely 
by the notion of a theory. 

In first-order predicate logic, a satisfiable set Jit of formulae can be uniquely associated 
with the class 9.fof its models, i.e., of the interpretations satisfying all the formulae in JiL 
This class of interpretations in turn uniquely corresponds to a maximal (in general 
infinite) set T of formulae that are satisfied by all interpretations in M. The set T is 
maximal in the sense that any additional formula would restrict the class M of models 
because it would be falsified by at least one model of JiL By definition, Tis just the set of 
consequences of Jit. From this perspective, M and T contain the same information, and 
both are often called the theory of JiL Since different sets of formulae may have the same 
models, any specific Jit is just one alternative in defining the theory. Jit is also called a 
presentation or axiomatization of the theory. 

For a given theory Tand a formula ~ the 'T-models of :Fare simply all those models 
of T that are models of :F as well. The notions T-consequence, ':T-satisfiable, 
':T-unsatisfiable, etc. are then defined correspondingly. 

For example, let Jit be the set (\:fxy P(x, y) => pry, x)}, consisting only of the 
symmetry axiom for P. The theory Tresults from all interpretations associating with the 
predicate symbol P a symmetric relation on the universe. The formula pea, b) 1\ -,F(b, a) 
is satisfiable, but not tT-satisfiable for this theory. P(b,'a) is a tT-consequence of pea, b). 

Now the propositional schema for total theory resolution is as follows: let The a 
theory and let Cl> ..., C" be clauses, each of them containing a literal L j such that the 
conjunction of all these literals is tT-unsatisfiable. The union of these n clauses minus the 
resolution literals L j constitutes a 'T-resolvent. This clause is a tT-consequence of the 
formula Cl 1\ '" 1\ C". 

For predicate logic, in analogy to the simple resolution rule, the conjunction of the Lj 

need not be directly 'T-unsatisfiable. We have to use a substitution a, a so-called 
'T-unifier, such that the formula aLl 1\ •.. 1\ aL" is tT-unsatisfiable. The 'T-resolvent is 
then instantiated with a. However, a most general 'T-unifier for a set of expressions 
needs no longer he unique (up to variable renaming). Depending on T, there may he one, 
a finite number, or infinitely many most general 'T-unifiers independent of each other. 
Two substitutions are independent if it is not possible to obtain one from the other simply 
by instantiating variables. In nasty cases there don't even exist most general 'T-unifiers, 
but only non-most-general ones. 
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The theory of the symmetry of P mentioned above is an example of a theory having a 
finite number of most general C:Z:unifiers. It generates at most two most general unifiers. 
For 

clausel: P(a, b), Q 
clause2: -,P(x, y), R(x) 

the first two literals have the most general 'T-unifiers (Jj = {x ~ a, y ~ b} and 
(J2 = {x ~ b, y ~ a}, hence two independent 'T-resolvents (Q, R(a)} and (Q, R(b)} can 
be derived. 

The concept of theory resolution allows a much more natural and efficient treatment of 
frequent specific interpretations of symbols than would the usual axiomatization and 
normal resolution. The knowledge about the particular theory is essentially encoded in the 
unification algorithm, which, however, has to be developed for each theory anew. To 
ensure the refutation completeness of theory resolution, this theory unification algorithm 
must generate (or, in the infinite case, at least enumerate) all most general unifiers. 

The unification algorithm required for an implementation of theory resolution may, for 
some theories, be too expensive or not even known. This holds in particular when the 
theory actually consists of several subtheories that are not independent of each other. 

As an example consider the theory ~ whose models associate with the predicate sym­
bol ~ a reflexive and transitive relation on the universe and with the predicate symbol = 
the largest equivalence relation contained in the former relation. Each of these 
interpretations satisfies an atom s =t for two terms s, t, if and only if it satisfies both s St 
and t Ss. Another theory rz:. be such that its models associate with the predicate symbol = 
the equality relation. In the combination of these two theories, the conjunction of the 
literals a Sb, b ~a, P(a), -P(b) is unsatisfiable, so that these are candidates for resolution 
literals in a theory resolution step. 

However, an appropriate theory unification algorithm would have to be designed for 
just this combination of theories. As soon as a thirq theory was added, the algorithm 
could no longer be used. Therefore it would be more" convenient to develop algorithms 
for the individual theories only and to have available a general mechanism that takes care 
of the interaction between theories. 

Consider the combination of the theories rz;,; and 'L above and the clauses:
 

clausel: a ~ b, K clause3: P(a), M
 
clause2: b 5 a, L clause4: -P(b), N
 

from which we ought to be able to derive the resolvent {K, L, M, N}. We can obtain this 
clause through a generalized 'l;;-resolution followed by a 'h.-resolution. If an interpre­
tation of the theory 'l;; satisfies a ~b as well as b Sa, then by construction it satisfies the 
literal a =b as well. It is easy to verify that the clause C = {a =b, K, L} is a 
'1;;-consequence of clausel and clause2. The literals a =b, P(a), -P(b) can now be 
recognized by the algorithm for er.. as resolution literals for an "equality theory resolution 
step" involving the intermediate clause C and clause3 and clause4, which results in the 
desired resolvent {K, L, M, N}. 

The first step, producing the intermediate clause C, goes beyond theory resolution as 
presented so far, because the conjunction of the resolution literals is not ~-unsatisfiable 

and moreover a new literal was added to the resolvent. This so-called residue is 
characterized by the property that in the theory under consideration it follows from the 
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resolution literals. Its predicate symbol does not even need to appear in the parent 
clauses. If a residue is included, one speaks of partial theory resolution, otherwise 
of total theory resolution. 

As a residue we may also admit a disjunction of several literals. The empty residue 
then stands for false, and hence follows from the resolution literals only if their 
conjunction is unsatisfiable in the current theory. This special case corresponds to total 
theory resolution. 

For the most general case, (partial) theory resolution is described by the following 
schema: 

aL1 "... " aL n 1='1' residue 

partial
Iresidue[O:~ •••:Ji~	 theory 

resolvent 

The prerequisite for partial theory resolution to be refutation complete is that the 
unification algorithm generates not only all most general unifiers but also all "most 
general residues". More thorough investigations on the completeness for combinations of 
theories have not yet been carried out, however. 

3 . 3 .3 Kinds of Theories 

The concrete instances of theory resolution look quite different. So far three major classes 
can be identified which shall be presented by a few but important representatives. The 
classes can be called algorithmic theories, representation theories, and compiled theories. 

3.3.3.1 Algorithmic Theories 

In most applications special symbols with a very particular meaning occur. The equality 
predicate symbol is a typical example. In standard predicate logic this particular meaning 
must be axiomatized with predicate logic axioms. A typical formula set to be presented to 
a theorem prover now consists of three parts: 

.5Vdomatization of special sym60fs 
!Jfypotlieses' 
ConcCusion 

where the axiomatization of special symbols is the same l in all problems where these 
symbols occur. If it is possible to replace these axioms, or at least some of them, by 
special inference rules, the user is not only relieved from providing them each time again, 

1	 Sometimes the axiomatization is not exactly the same but depends on the set of predicate and function 
symbols occurring in the remaining formulae. This is for example the case for the equality symbol. 
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but part of the search is replaced by execution of an algorithm, which in general increases 
the efficiency of the deduction system. We call these theories algorithmic theories because 
the semantics of these special symbols is implicitly contained in the algorithm 
implementing the special inference rule. 

3.3.3.1.1 Equality Reasoning 

The very first symbol for which special inference rules have been developed is the 
equality predicate. In first-order predicate logic, the equality predicate cannot be 
formalized by a finite set of axioms. Depending on the symbols appearing in the formula 
set, the necessary axiom set is obtained by instantiating an axiom schema. 

\7'x x = x (Reflexivity) 
\7'x,y x = y => Y = x (Symmetry) 
\7'x,y,z x = y Ay = Z =>x = z (Transitivity) 

For each argument of each function symbol! appearing in the formula set, a substitution 
axiom of the following form is needed: 

\7'x] .. .x" Y Xi =Y => !(x!> ...,Xi,''',x,,) =j(x!> ...,y,...,x,,) (Substitution axiom) 

For each argument of each predicate symbol P, another substitution axiom is needed: 

\fx] .. .x" y Xi = Y A P(x!>...,xi," .,x,,) => P(x!> ...,y,'...,x,,) (Substitution axiom) 

Alan Bundy has investigated the size of the search space generated by these axioms for 
a relatively simple example [Bundy 83]. The problem is to show that a group in which 
x2 = 1 for each X, is commutative. The axioms for a group with a binary function 
symbol· (group operation) and a unary function symbol i (inverse) are: 

\fx y z (x· y) • Z := x· (y. z) (Associativity) 
\fx 1 • x := X (Left identity) 
\fx x·1 = x (Right identity) 
\fx i(x) • x =1 (Left inverse) 
\fx x • i(x) =1 (Right inverse) 

The additional assumption is 

\fx x • x = 1 (Assumption) 

The conclusion is 

\7'x Y x • Y = Y • x 

One way to prove this conclusion would be 

(Left identity)x • Y = (1 • x) • Y 
=((y. Y) • x) • y (Assumption) 
= ((Y • Y) • x) • (y • 1) (Right identity) 
=((y • y) • x) • (y • (x· x» (Assumption) 

=(y • ((y • x) • (y • x») • x (Associativity) 
=(y ·1) • x (Assumption) 
=y·x (Right identity) 

Using resolution, every transformation step would have to be painstakingly replaced 
by several resolution steps, and the search space would again be enlarged intolerably 
because of the several new deduction alternatives. There would be about 1021 deductions 
using a level saturation search [Bundy 83]. This method is just not feasible. Numerous 
calculi and control strategies have been developed in order to overcome this complexity 
problem (see for example: [Wos et al 67, Robinson & Wos 69, Sibert 69, Morris 69, 
Knuth & Bendix 70, Brand 75, Shostak 78, Harrison & Rubin 78, Digricoli 79, Huet & 
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Oppen 80, Lirn & Henschen 85, BIasius 87]). Since a discussion of equality reasoning 
is beyond the scope of this paper, we here present only the most elementary method as an 
illustration for partial theory resolution. 

The equality axioms actually axiomatize the well known Leibniz principle which 
states that two objects are equal if all their properties are equal. In any context, an object 
can be replaced by another equal one. Replacing equals by equals as an inference rule, 
however, is too weak in the presence of variables. Similar to the case of the modus 
ponens rule, the application of an instantiation rule becomes necessary in order to 
establish the prerequisites for applying the inference rule. 

The idea of unification, introduced by I.A. Robinson [Robinson 65], eliminates the 
need for arbitrary instantiations and enables goal-oriented instantiation on the most 
general level. In the same way modus ponens was generalized to resolution using 
unification, G. Robinson and L. Wos generalized the "replace equals by equals" rule to 
obtain the paramodulation rule [Robinson &Wos 69]. 

Formally, the paramodulation rule as a partial theory resolution rule is defined as 
follows: Consider the two clauses 

CJ : [L]> L2, •••, L,.} 
C2 : {l = r, K2 , ..., K"J. 

IfL J contains the subterm s, and if s and I can be unified with the most general unifier a 
(Le. as and (J[ are syntactically identical terms), then the clause 

a{L/, L2 , ••• , L", K2 , ... , K"J 

is a paramodulant of the clauses C J and C2 , where L/ is generated from L J by 
replacing term s by term r. A paramodulation step is really a partial theory resolution step. 
Its special "algorithmic" part computes the residue LJ'. 

Example: Given the clauses P(c, h(f(a, y), b)), R(y) 
f(x, e) =g(x), Q(x), 

the paramodulant of these clauses is P(c, h(g(a), b)), Q(a), R(e). 
The terms f(a,y) andf(x,e) were unified by (x r- a, y r- e). This substitution was 
applied to the new clause. + 

In two aspects, paramodulation is more general than the principle mentioned above, to 
"replace equals by equals". 

•	 Paramodulation handles not only unconditional but also conditional equations. 
In other words, the clause containing the equation can also contain additional 
literals. 

•	 The two terms used to make a substitution possible do not have to be equal; 
they just have to be unifiable, Le. there have to be instances of the participating 
clauses such that the corresponding terms are equal. 

The paramodulation rule is sound: if S is a clause set and C is paramodulant of two 
clauses in S, then any E-models of S (that is, any model of the equality axioms that 
satisfy S) is also an E-model of S u (C) 

The resolution calculus, extended to include the paramodulation rule and the 
reflexivity axiom (x = x), constitutes a refutation complete calculus (called 
RP-calculus) for predicate logic with equality: for every E-unsatisfiable clause set there 
is a derivation of the empty clause using the rules and axioms in the calculus. The 
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reflexivity axiom is necessary, because otherwise the empty clause could not be derived 
from the E-unsatisfiable clause set containing only the clause {-a ;;: a}. 

Compared to the explicit application of equality axioms, the search space for the 
derivation of the empty clause is reduced significantly when the paramodulation rule is 
included. Many useless resolutions with and between the equality axioms are then no 
longer possible. But without skillfully controlling paramodulation, the resulting search 
spaces are still far too large, because this rule can also be applied almost anywhere in the 
clause set. For the nrst example in section I, a breadth-first search requires about 1011 
steps to fmd the proof to the theorem [Bundy 83]. 

3.3.3.1.2 Theory Unification 

Paramodulation brought a considerable improvement compared to equality reasoning with 
resolution and the equality axioms. Nevertheless the search space is still enonnously 
large and, mostly due to the symmetry of the equality, full of redundancies. For example, 
formulae like V'x y g(x,y) = g(y,x) defining the commutativity of certain function 
symbols are especially troublesome to deal with. The commutativity fonnula may lead to 
repeated switching of arguments of the commutative function symbol. For this reason, 
there were already quite soon attempts to remove such equational fonnulae from the 
fonnula set and replace them by modified deduction rules. 

Gordon Plotkin suggested a modification of the resolution rule in such a way that 
ordinary unification is replaced by a unification procedure that takes the removed 
equational fonnulae into consideration. He also detennined the condition under which 
this replacement is allowed to take place [Plotkin 72]. Assuming that the equality 
predicate appears only in unit clauses, Le. that the clause set contains a finite number of 
clauses {ll = rl}, ..., (In = r,J, and the equality predicate does not appear in any other 
clause, unification may be replaced by so-called theory unification respecting these 
equational axioms. This rather strong restriction can be weakened, but doing so here 
would only complicate the matter further. 

Example: In section 3 we demonstrated the unification algorithm for the system of 
equations 

{f(x,g(a,y)) =f(h(y),g(y,a)), g(x;h(y)) = g(z,z)} 

for which we obtained the unifier (x ~ h(a), Z ~ h(a), y ~ a}. If we use the unification 
algorithm for the commutativity of g, we get{x ~ hey), Z ~ hey)}, which is obviously 
even more general than the previous one. The "old" one can be obtained from the new 
one by substituting a for y. • 

Naturally, we now want to find a most general unifying substitution. In general, 
however, this cannot be accomplished. There may exist more than one most general 
unifier. Our commutativity example illustrates this: the equation (g(x,y) =g(a,b)} has 
two independent solutions (x ~ a, y ~ b) and {x ~ b, y ~ a}. The latter reflects that 
subtenns may be exchanged because g is commutative. There is no more general 
solution, Le. there cannot be a common more general one, either. Even more problematic 
cases exist, for example those involving an associative function!, where 
V'xyz!(x!(y,z)) = !(f(x,y),z). In this case the system of equations (f(x,a) =!(a,x)} has 
an infinite number of independent solutions: 

(x ~ a), {x ~ !(a,a)} , (x ~ f(a/(a,a))} , {x ~ f(a/(a/(a,a)))}, .... 

Since!is associative, all other possible solutions will be equal to one of these solutions; 
in other words, the tenn substituted for x differs from one of the tenns listed above only 
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in the way it is parenthesized. But even in this awkward case it pays to use theory 
unification: using resolution or paramodulation without theory unification, terms 
containing associative function symbols would constantly be reparenthesized. 

Let E := {n = rJ, ..., {I" = r,J} be a set of clauses, all of them unnegated equations. 
On the set of all terms, E induces an equivalence relation =E which is the smallest 
equivalence relation containing all term pairs (I;. rJ from E and being closed under term 
construction and instantiation: 

if Sj =E t1>" .,S" =E t" andfis an n-ary function symbol thenf(sb' ..,s,,) =Ef(tj> ...,t,,) 
ifS =E t and a is a substitution then as =E O't. 

It is possible to show that a pair Cs, t) of terms is in the equivalence =E if and only if 
the equation S = t follows from axioms in E, Le. if S = t belongs to the theory defined by 
E. For simplicity we call the theory just E, too. 

Example: Let C := (g(x,y) = g(y,x)} be the commutativity theory for g. 
Then g(a, b) =c g(b, a), andf(x, g(a, b), z) =cf(x, g(b, a), z). • 

Given a theory E and a set r= {Sj = tb ...,S" = t,,} o( equations, we denote by DECD 
or UECSj = tb .••,S" = t,,) the set of all substitutions awith as; =E at;for I s: is: n. These 
substitutions are called E-unifiers of r. Assuming that there exists a procedure 
computing UECD for arbitrary r, the resolution rule can be modified as follows: 

clause1: P(Sj,. ..,S,,), Kl> , Km
 
clause2: --.P(tj, ...,t,,), L], , L Ic aE UECSj = tb ..., S,,= tn)
 

In general, a set UECD is infinite. It is therefore desirable to use only a representative 
subset /-LUECD ~ UECD,which is as small as possible. In the case of common syntactical 
unification, which corresponds to unification with respect to the theory with empty 
axiomatization, we could always use a singleton subset containing the most general 
unifier. Depending on E, this is not always possible. We need a minimal and complete 
set of E-unifiers, which has the following properties: 

• /-LUECD c UECD	 CSoundness) 

•	 For all OE UECD there exists a aE /-LUECD and some 
substitution Awith & =E Aox Cfor all x in' D CCompleteness) 

•	 For all (T, 'r E /-LUECD: if there is a substitution A 
with 1X =E Aox (for all x in D then a = 'r CMinimality) 

In other words, the members of /-LUECD must really be E-unifiers of r, each E-unifier 
must be an instance of a member of /-LUECD, and no two members of /-LUECD may be 
instances of each other. 

Gordon Plotkin could show that for a refutation complete resolution calculus it 
suffices to use only aE /-LUE(D in the E-resolution rule above. Of course this sti11leaves 
the problem whether there is an algorithm computing /-LUE(D. Unification theory is the 
field investigating this problem. 

Theory unification needs not be restricted to equational theories. Also certain 
equivalences are suitable for treatment by a unification algorithm. For example, the 
symmetry of a predicate P, namely \txy P(x,y) <=> P(y,x), can be handled by a 
unification algorithm that unifies two atoms P(s,t) and P(s',t') by either unifying the 
arguments directly or with one argument list reversed. The only difference for the 
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resolution rule is that the whole atoms and not only their argument lists have to be 
submitted to the unification algorithm. 

When the equations treated by a theory unification algorithm are the only equations 
occurring in a clause set, resolution with theory unification suffices to refute it. In case 
there are still other equations, equality reasoning with theory unification becomes 
necessary. The following example shows that just substituting theory unification for 
standard unification in the paramodulation rule is not sufficient to obtain a complete calcu­
lus. Suppose the function f is declared associative, i.e. tixyz f(x,f(y,z)) = f(f(x,y), z) 
holds and this axiom is replaced by an A-theory unification algorithm. Let the remaining 
clauses be 

AI: f(a,b) = f(c,d) 
A2: P(f(a!(b,e))) 
A3: -rP(f(c!(d,e))) 

The atoms P(f(a!(b,e))) and P(f(c!(d,e))) are not unifiable, neither with the standard 
algorithm nor with the A-unification algorithm. Neither f(a/(b,e)) nor f(b,e) nor 
f( c,f(d,e)) nor I(d,e) is unifiable with either side of the equation. Therefore no 
paramodulation is possible. Nevertheless, if for example I(a!(b,e)) is reparenthesized to 
f(f(a,b),e), which equalsf(a/(b,e)) because of the associativity off, paramodulation is 
possible with A2 yielding P(f(f(c,d),e) which in turn is A-unifiable with P(f(c/(d,e))) 
such that the empty clause can be derived. 

Reparenthesizing, however, is not an allowed inference rule. The problem is that 
sometimes paramodulation into a subterm of an element of a term's 'T-equivalence class is 
necessary, where 'Tis the equational theory handled by the theory unification algorithm. 
That means that one needs a mechanism to iterate over the equivalence class of terms and 
to fmd subterms unifiable with a given side of an equation. 

One possibility is to allow paramodulation with functional reflexive axioms. The 
functional reflexive axiom for f in the example above is tix y f(x,y) = f(x,y). A­
unification of f(x,y) andf(aJ(b,e)) yields the two most general unifiers (x ~ a, 
y f- f(b,e)} and (x ~ f(a,b), y f- e}. Using the second unifier, paramodulation with 
A2 yields just the desired reparenthesized literal P(f(f(a,b),e)). The main observation we 
have exploited is that a minimal and complete set of theory unifiers for the terms t = 
(t], ...,tn) andf(x]" ..,xn) generates the equivalence class of t, and that is just what we 

wanted. 
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3.3.3.2 Representational Theories 

Predicate logic formulae are surely not always the best way to represent information. 
Facts have to be represented such that inference algorithms have easy access to relevant 
information. The statements that for example 0 is an Integer, all Integers are Reals, 
Socrates is a Human, the function father-of maps Humans to Humans and the function 
number-of-children maps HumansxHumans to Integers, would have to be encoded as 
follows: 

Integer(O) 
Human(Socrates) 
\:fx Integer(x) ==> Real(x) 
\:fxy Human(x) A Human(y) ==>Integer(number-of-children(x,y)) 
\:fxy Human(x) ==> Human(father-of(x)) 

In order to conclude from these formulae that the term number-of-children(Socrates, 
Socrates) denotes a Real, three resolutions are necessary. When at the same time 
thousands of resolutions among other clauses of the current problem are possible, it is 
not at all obvious that this sequence of three resolutions makes any sense. 

In sorted logics this kind of information is represented in an entirely different way. 
Some properties, such as being an Integer or a Real or a Human, are not encoded as 
unary predicates but as sorts. Sort information is attached to the other symbols, and the 
subsort relationship, such as between Integer and Real, is represented in a tree or a graph 
such that transitivity is automatically built in. The sort of a term needs now no longer be 
deduced, but can be computed by accessing this information directly. This is done only 
when the information is really necessary, typically during the unification of a variable 
with a term. 

We call this kind of theories representational theories, because formulae are not 
simply removed and replaced by inference rules, but the information encoded in them is 
represented in a different syntactic structure. The prototype of this kind of theories is 
many-sorted logic [Cohn 87, Walther 87, Schmidt-SchauB 89]. 

Syntactically a many-sorted logic enriches the notion of the signature, which in the 
classical case is just the set of all constant symbols, function symbols, and predicate 
symbols together with their arities. Now there is another set of primitive symbols called 
the sort symbols. An example for a set of sort symbols is {Human,Integer}. In addi­
tion, the signature specifies: for each constant symbol a sort (typically in a syntactic form 
like Socrates:Human, 0 :Integer); for each function symbol a list of argument sorts and a 
result sort (father-of: Human ~Human, number-of-children: Human xHuman ~Integer 

is a typical syntax); for each predicate symbol a list of argument sorts (typical syntax: 
Contemporary: HumanxHuman, Primefactor: Integer xlnteger). 

This determines for each ground term whether it is ill-sorted or well-sorted and what 
its sort is in the latter case. For instance,father-of(O) is ill-sorted because the sort of 0 is 
not the argument sort offather-of The termfather-of(Socrates) is well-sorted and has the 
sort Human. The term number-of-children(father-of(Socrates), 0) is ill-sorted although 
each of its subterms is well-sorted. Note that these are purely syntactic categories, just as 
number-of-children(father-of(Socrates)) is not well-formed because the defined arity of 
the function symbol is violated. Analogously we define the well-sortedness of ground 
atoms and other ground formulae. By giving sorts to variable symbols, this extends to 
first-order predicate logic. For instance, \:fx:Human Contemporary(xJather-of(x)) is 
well-sorted, \:fx:Human Contemporary(x, number-of-children(x, x)) is not. The restric­
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tion of formulae to well-sorted ones prevents the formulation of many meaningless 
statements by purely syntactic criteria. 

To adapt the resolution rule to this simple many-sorted logic, the only change required 
is a modification of the unification algorithm. It has to ensure that for a variable x of sort 
S only a term t of the same sort (or of a subsort of S) can be substituted. When dealing 
with more complex sort relationships, this may mean that even though a term t is not of 
the correct sort, instantiations of t with the correct sort can be found by instantiating 
variables with other variables of a weaker sort. 

As an example, consider the sorts {Even, Odd, Integer}, with the subsort relation­
ships Even clnteger and Odd clnteger. Further, let the signature specify a function 
symbol +: (Even x Even ~ Even, Odd x Odd ~ Even, Even x Odd ~ Odd, 
Odd x Even ~Odd, Integer xEven ~Integer, ..., Integer xInteger ~Integer). Unifica­
tion of the terms x:Even and +(y:Integer, z:Integer) yields two different solutions, namely 
{x f- +(y':Even, z':Even), y f- y':Even, z f- z':Even} and {x f- +(y':Odd, z':Odd), 
y f- y':Odd, z f- z':Odd}. These reflect the fact that the sum of two integers is even iff 
both summands are even or both are odd. Thus, in this' case we have not only one but 
two most general unifiers, independent of each other. 

If there are only a finite number of sorts, the simplest way to fmd all solutions is to 
systematically check all combinations to instantiate variables with variables of weaker 
sorts. Often, however, a clever organization of the search results in more efficient 
methods. 

Altogether, sorted logic has a number of advantages over unsorted logic. Some of 
them concern questions of the cognitive adequacy of the representation. For instance, the 
sorted formula 'rIx:Even -JJivides(x,3) comes closer to saying that no even number 
divides three than its unsorted counterpart 'rIx Even(x) => -JJivides(x,3), which 
expresses that anything in the world has the property that if it is an even number then it 
does not divide three. But more important for our purposes are the advantages with 
respect to the search space. One of them is that sorted representations result in smaller 
clause sets. For instance, the clause expressing that all even numbers are integers is not 
present in the sorted representation and has therefore not to be considered as a potential 
parent clause. Further, the fact that no even number divides three is represented by a two­
literal clause in the unsorted case, but by a unit clause in the sorted case, reducing the 
number of literals to be "resolved away". Finally, among the remaining literals there are 
fewer resolution possibilities. If we have another unit clause Divides(3,3), we cannot 
resolve it against the unit clause in the sorted case, because 3 has the sort Odd and can 
therefore not be substituted for x of sort Even. However, we can resolve it against the 
corresponding literal in the unsorted case, producing the redundant resolvent -Even(3). 

Sorted logics are not the only logical formalisms with an alternative representation of 
certain information. Feature types, for example, are a kind of sort structures where the 
sorts are not atomic, but contain more complex descriptions of sets [A'it-Kaci & Nasr 86, 
A'it-Kaci & Smolka 87]. An example for a feature sort is car[speed:nat, colour = red] 
denoting a set of objects (cars) whose speed feature is of type nat and whose colour 
feature has the value red. Feature types and feature unification play an important role in 
unification grammars [Shieber 86]. 

Even more complex taxonomic hierarchies and relations can be represented in KL­
ONE like knowledge representation systems [Brachman & Schmolze 85]. How theory 
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resolution can be extended to handle such rich sort structures instead of the still rather 
simple feature types, has not yet been investigated. 

3.3.3.3 Compiled Theories 

For the theories presented so far the algorithms and inference rules have been developed 
mainly from semantical considerations and not by looking at the corresponding axioms. 
And in fact, a rule like paramodulation is much easier to understand from the semantics of 
the equality symbol than from the form of the equality axioms. In certain less complex 
cases, however, it is possible to take an axiom and straightforwardly translate it into a 
theory resolution rule. And this translation can even be done automatically. The basic 
idea, which goes back to [Dixon 73], is as follows: From a clause C = L], L2 generate a 
resolution rule as follows: 

K] is resolvable with L] and K2 with L2 
with a (most general) simultaneous unifier crI. 

oR}, crR2 

This rule is sound because the resolvent can also be obtained by two successive 
resolutions with C. The first thing we need for completeness is an additional factoring 
rule which comprises a resolution and a factoring operation: 

K] is resolvable with L] and K2 is unifiable with L2 
with a (most general) simultaneous unifier crI. 

aK2, aR 

Examples: Let C = (-,P(x,y), -,p(y,x)} (asymmetry clause) 
A C-resolution is P(a,z), Q(z) 

P(b,v), R(v) a={z~b,v~a} 

Q(b), R(a) 

A C-factoring is P(a,z), -'p(b,v), S(z,v) a={zf-b,v~a} 

-'p(b,a), S(b,a) • 
The rule is not complete for recursive (self-resolving) clauses, Le. clauses which are 

resolvable or theory resolvable with a renamed copy of themselves. For example, the 
clauses C = -R(x), R(f(x)) 

R(a) 
-R(f(f(a)) 

are refutable with three successive resolutions. There is, however, no C-resolvent with 
R(a) and -,R(f(f(a)) because x with a andf(x) with f(f(a)) are not simultaneously 
unifiable. An extension of the compilation idea to handle at least self-resolving clauses 
with only two literals is presented in [Ohlbach 90]. 

The compilation of clauses into resolution and factoring rules is in the same way 
possible for clauses with more than two literals. In the general case C-theory resolution 
involves as many resolution partners as the compiled clause contains literals. Again there 
is the restriction that this clause must not be recursive. 

1 The domain of the unifier can of course be restricted to the variables occurring in K1 and K2. 
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Example: Let C = (-Father(u,v, -Father(v,w), Grandfather(u,w)} 

A C-resolution is Father(x, Tom), P(x) 
Father(Tom, Jane) 

-Grandfather(Jim,y), Q(y) G= {x ~Jim, y ~Jane} 

P(Jim), Q(Jane) 

The algorithm into which C is "compiled" essentially selects two Father literals and a 
-.Grandfather literal as potential resolution literals, concatenates their term lists, and 
unifies the result with the term lists (u,v,v,w,u,w). If there is a unifier, it is restricted to 
the variables in the selected literals to produce the (J in the resolution step. • 

The compiled theory resolution rule is a simultaneous n-step resolution. It has the 
advantage that no intermediate results and therefore in particular no useless intermediate 
results are produced. It realizes a deeper look-ahead into the search space and is therefore 
able to cut dead ends earlier than standard resolution. 

The modifications of the resolution rule presented in section 3.3 are by no means the 
only ones. The basic idea, namely to look for complementary subformulae, or at least for 
subformulae which can be made complementary by instantiation, and to join the rests of 
the formulae to form a resolvent, has been applied to many other logics: full predicate 
logic with arbitrary formulae, nonclassicallogics etc. To present all these developments 
would surely require more than one book. 



- 32­

4 Logical State Transition Systems 

There is a straightforward way to obtain a computer program from a calculus: 

• design a representation for sets of formulae, these sets are the possible "states"; 

• define initial states and final states according to the calculus; 

• for each inference rule 1'1 .;; l'n implement the following transition operation, 
which can be applied to any state S: 

check if S contains each of :11 ... !Fn; if so, perform a transition to S U {11. 

Then one just has to implement an appropriate control regime that uses these 
operations to transform initial states into final states. 

Let's call the above the "trivial logical state transition system" for a calculus. A 
state in this system is a set of formulae, for the resolution calculus a set of clauses. For a 
generating calculus there would be just one initial state consisting of the logical axioms of 
the calculus and the hypotheses, while each formula set containing the conclusion would 
be a final state. For the resolution calculus an initial state consists of the clauses 
representing the hypotheses and the negated conclusions, while each clause set containing 
the empty clause is a final state. The transition operation for the resolution calculus goes 
from a clause set S to the clause set S u {1J where !F is a resolvent or factor of members 
of S. 

Several problems that are either vacuous or trivial for the trivial logical state transition 
system, become considerably hard in the context of more sophisticated systems. Their 
description requires an adequate level of abstraction going beyond traditional notions like 
completeness. The following conceptual framework, which covers both old and new 
phenomena, largely relies upon the principles extracted from different problem areas in 
Artificial Intelligence by Nils Nilsson [Nilsson 80] and upon Gerard Huet's digestion of 
classical results on the lambda calculus and other systems [Huet 80]. 

A state transition system consists of a set S of states and a binary relation ~ on S 
termed the transition relation. Frequently ~ is the union of some simpler relations 
conceived as a set of elementary transition rules. There are two distinguished subsets of 
S, the initial and the final states. A sequence of states successively related by ~, 

beginning with S and ending with S', represents a derivation of S' from S. As usual, 
..:4 and -4 denote the transitive and the reflexive-transitive closure of ~. A state S' is 
reachable, if S-4S' holds for some initial state S, and unreachable otherwise. With the 
appropriate restriction of the transition relation the reachable states define the reachable 
subsystem of a state transition system. 

If the states represent logical formulae and the transitions are based on the inference 
rules of a calculus, we speak of a logical state transition system. 

The selection from among the possible transition steps and the administration of the 
sequence of steps already performed and states thereby produced are subject to a separate 
constituent named the control strategy. Control strategies come under two major 
classes: when applying a transition rule, tentative control strategies make provisions 
for later reconsideration of alternatives, whereas irrevocable control strategies do 
not. Backtracking and hill-climbing, respectively, are prominent examples of the two 
types of control strategies. Tentative control strategies essentially require the storage of 
more than one state at a time, which tends to render them unfeasible for state transition 
systems with complex states. With an irrevocable strategy just a single state at a time 
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needs to be stored, and the transition can be implemented by destructive modifications of 
this state. 

The following property characterizes a commutative state transition system: 
whenever two transition rules can be applied to some state, each of them remains 
applicable after application of the other, and the resulting state is independent of the order 
in which the two steps are performed. The advantage of commutative state transition 
systems lies in their automatic admittance of irrevocable control strategies, because the 
choice of an irrelevant rule only delays, but never prevents the "right" steps. 

Most logical state transition systems happen to be commutative. For the most famous 
exception, the lambda calculus [Church 41], a weaker property bearing the name of its 
investigators Church and Rosser could be shown. Equivalently, a state transition system 
is confluent, if for all states 5, 51, 52 with 5.-451 and 5.-452 there exists a state 5' 
with 51.-45' and 52.-45'. In other words, any two derivations from the same ancestor 
state can be continued to a common descendant state. A less restrictive requirement than 
commutativity, confluence still allows for irrevocable control strategies, especially for 
Noetherian systems where no derivations of infinite length exist. 

5tate transition systems provide a general framework for the coherent description of a 
wide range of computational systems, such as term rewriting systems [Huet & Oppen 
80], semi thue systems [Book 82], various types of automata [Hopcroft & Ullman 79], 
or logical calculi [Richter 78]. They trace back to the Postian production systems, which 
in contrast to computationally equipotent formalisms like Turing machines do without 
inherent control structure. 

One advantage of this abstraction lies in the possibility to independently investigate 
properties of the state transition system and properties of (classes of) control strategies 
for the state transition system. But it also reflects a shift in paradigm brought about by 
recent developments in Artificial Intelligence, where a clean distinction between 
procedural knowledge and control knowledge proved superior to the conventional 
hierarchical organization of programs. 

The basic notions describing qualities of interest for logical state transition systems are 
soundness and completeness, further confluence and Noetherianness. In a later sub­
section we shall see that the distinction of some more specific properties is necessary for 
non-trivial state transition systems. 

There are two kinds of potential refinements of the trivial logical state transition 
system: the structure of the states may be enriched to represent not only formulae but also 
information as to where rules can be and have been applied; and additional transition rules 
may be provided, which are not necessarily based on the inference rules of a calculus, but 
reduce the search space. In the following section we present some refinements of the 
second kind. After that we deal with improvements based on richer states. 

4.1 Resolution with Reduction Rules 

In the trivial logical state transition system for the resolution calculus each transition rule 
allows a transition to a superset containing an additional clause. Depending on the 
system's organization, there might also be rules adding several clauses in one go, for 
instance all possible UR-resolvents for a given nucleus clause. Let us use the name 
deduction fule for any transition rule that produces a state containing objects not 
present in the predecessor state. 
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As deduction rules are applied in the course of a derivation, increasingly larger states 
are obtained, which tend to contain more and more useless parts. To make deduction 
systems feasible, it is expedient to also provide reduction rules, which allow 
transitions to smaller states by removing superfluous fragments of the predecessor state. 

Many popular reduction rules for resolution are based on logical simplifications. For 
instance, the tautology rule allows a transition from a clause set 5 to S - {D} where D 
is a tautological clause in S. A tautology D is satisfied by all interpretations, thus any 
interpretation satisfies 5 if and only if it satisfies 5 - {D}, hence the two states are 
logically equivalent. 

If a clause set 5 contains two clauses C and D such that C entails D, then 5 and 5­
{D} are logically equivalent. It is not in general decidable whether or not a clause C 
entails a clause D, but there are simple sufficient criteria: for example, ifD is subsumed 
by C. The subsumption rule allows a transition from 5 to 5 - {D} where D is 
subsumed by another member of 51. 

Other reduction rules eliminate "useless" formulae. A typical example is the purity 
principle for the resolution calculus: a clause containing a literal that is not resolvable 
with any other literal in the clause set, is useless; any resolvent or factor derivable from it 
would in turn contain such a "pure" literal. Therefore the clause cannot contribute to a 
derivation of the empty clause and may be removed from the clause set. 

It appears natural to define as reduction rules also those rules that eliminate literals 
from clauses, without removing entire clauses. A simple example for this kind of 
reduction rule is the merging rule, which deletes multiple occurrences of literals from a 
clause by an explicit operation (rather than hiding the idempotence law in the definition of 
a clause as a set of literals). 

In this spirit we speak of a reduction rule whenever the rule only removes something 
without adding anything. Reduction rules decrease the number of objects in the current 
state and thus the number of alternatives from which the next deduction step has to be 
selected, whereas just the opposite holds for deduction rules. The application of reduction 
rules alone, quite unlike deduction rules, always terminates after finitely many steps, and 
intuitively they can never hurt because they reduce the size of the problem at hand 
("never" actually depending on certain properties to be discussed later). This 
simplification effect is the stronger the more reduction rules a system has at its disposal 
and the more powerful they are. Therefore it is useful to enrich the reduction rule 
repertoire. 

One way to find reduction rules beyond subsumption, tautology removal, and 
merging, lies in the analysis of the combined effect of sequences of transition steps in 
special situations and in defining shortcuts simulating this effect. To get a feeling what 
that means, let us go through an example: 

Example: "The police investigate a theft committed in a hotel. They ascertain that 
exactly one of the suspects Billy, Lucky, or Jacky is the thief and that none of the 

1 By this definition each factor is subsumed by its parent clause. It is up to the control constituent to 
prevent that factoring and subsumption cancel each other's effect. To avoid this phenomenon, one 
sometimes tightens the definition of subsumption and requires that C must not have more literals than 
D. 
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three is able to utter any three sentences without lying at least once. When 
interrogated, the men make the following statements, which are sufficient for the 
police to determine who is the thief: 

Lucky: I'm innocent.l haven't even been in the hotel. The man you want is Billy. 
Billy: Nonsense, it wasn't me. Everything Lucky said was a lie. 

Jacky's innocent too. 
Jacky: You bet I'm innocent. It' s not true that Lucky hasn't been in the hotel. 

But Billy's second statement is a lie." 

Using the constant symbols b, l,j for the suspects and the predicates T(x) for "x is the 
thief' and H(x) for "x was in the hotel", the facts can be coded in first-order predicate 
logic as follows, and the formulae directly convert into the set of ten clauses below 
(sorted by their lengths): 

T(b) v T(l) v T(j) the thief is one of the suspects 
-,f T(b) /\ T(l) v T(b) /\ T(j) v T(l) /\ TU)] only one of them is the thief 
\ix T(x) => H(x) the thief was in the hotel 
-,f -,T(l) /\ -H(l) /\ T(b)] Lucky's statements are not all true 
-,f -,T(b) /\ (T(l) /\ H(l) /\ -,T(b» /\ -,T(j)] Billy's statements are not all true 
-,f ..T(j) /\ H(l) /\ -,(T(l) /\ H(l) /\ ..T(b»] Jacky's statements are not all true 

Cl: ..T(b) , -,T(l) C6: T(l), H(l), ..T(b) 
C2: -,T(b), ..T(j) Cl: T(j), -H(l), T(l) 
C3: ..T(l), ..TU) C8: TU), -H(l), H(l) 
C4: ..T(x) , H(x) C9: T(j), -H(l), ..T(b) 
CS: T(b), T(l), T(j) ClO: T(b), ..T(l),-H(l), T(b), TU) 

We now insert these clauses one by one into the current clause set, starting with the 
empty set and applying between any two insertions as many reduction rules as possible. 
Nothing interesting happens during insertion of the first five clauses. Having added to 
{Cl, C2, C3, C4, CS} the clause C6, we notice that a resolution step between 
C6,1 and Cl,2 would result in ..T(b), H(l), ..T(b), from which the first literal could 
then be removed by merging. The remaining clause C6': H(l), ..T(b) is a proper subset 
of C6 and would now subsume C6. We simulate the total effect of this resolution­
merging-subsumption sequence by simply removing the first literal from C6 and call this 
reduction rule subsumption resolution. After that we add C7 with no further 
consequences and obtain the current clause set: 

Cl: ..T(b) , ..T(l) CS: T(b), T(l), TU) 
C2: ..T(b) , ..TU) C6': H(l), ..T(b) 
C3: ..T(l), ..T(j) Cl: T(j), -H(l), T(l) 
C4: ..T(x), H(x) 

Being a tautology, the clause C8 disappears right after its insertion, and we proceed with 

C9: T(j), -H(l), ..T(b). 

Now a resolution between C9,2 and C6',1 would produce the proper subset TU), 
-,T(b) ofC9, because the literal IT(b) descending from C6' can be merged into the last 
literal of the resolvent. Again we simply remove the second literal from C9 by the 
subsumption resolution rule simulating a resolution step followed by merging followed 
by subsumption. Note that this reduction operation would not be possible if we had not 
reduced C6 to C6' before. Subsumption resolution using C2 as the partner further 
removes the first literal from C9, and there remains only C9':-,T(b). This clause 
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subsumes Cl, C2, and C6' and serves to remove the fIrst literal from C5 by subsumption 
resolution, and after all these reductions the current clause set is 

C3: -,T(l), -,T(j) Cl: TU), -Jl(l), T(l) 
C4: -,T(x) , H(x) C9': -,T(b). 
C5': T(l), T(j) 

The last clause, ClO: T(b), -,T(/), -Jl(l), T(b) , T(j) can fIrst be merged, then the 
removal of the second occurrence of T(b) simulates a resolution with C9' followed by a 
subsumption. In the same way T(j) can be removed by subsumption resolution with the 
partner C3, and -Jl(l) with the partner C4 (the literal descending from C4 is the instance 
-,T(l) of -,T(x) and can be merged away). Altogether the last clause becomes 
ClO': -,T(l), which subsumes C3 and enables a subsumption resolution of C5' to TU), 
which fInally subsumes Cl. We end up with 

C4: -,T(x), H(x) C9': -,T(b) 
C5": TU) ClO': -,T(/). 

This clause set was obtained from the original set {Cl, ... , ClO} by applying only 
reduction rules. Incidentally, the last three unit clauses directly tell us who is or is not the 
thief, which in the original clause set was far from obvious. The reduction rules 
happened to solve the problem before we even asked for a solution by adding a clause 
corresponding to a negated conclusion. If we insert C11: -,T(j) as such a clause, we can 
use the partner C5" to remove the first (and only) literal from Cl1 by subsumption 
resolution. Thus we derive the empty clause from the original problem using only 
reduction rules, without ever performing a proper deduction step adding a new clause. A 
control component capable of selecting from among several applicable deduction rules 
would never have to be activated for this example. • 

Any step performed in the example can be explained in terms of resolution, merging, 
subsumption, and tautology removal, therefore the last clause set is logically equivalent to 
the original. Even stronger, any refutations using clauses from the original set can be 
transformed into refutations using clauses from the final set instead, such that the 
complexity of the transformed refutations (measured, for instance, in terms of the rm-size 
[Kowalski & Kuehner 71], which essentially counts the number of applications of 
deduction rules) remains the same as before or even improves. This is a property all 
reduction rules ought to guarantee. 

More precisely, if a reduction rule removes literals from clauses, it obviously neither 
destroys the refutability nor increases the complexity of possible refutations. However, it 
might turn a non-refutable clause set into a refutable one, thus we need sound 
justifications for the literal removals. In the case of merging, soundness is trivial. 
Reduction rules removing entire clauses from clause sets do not cause a soundness 
problem, but we have to make sure that they preserve the refutability and do not increase 
the complexity of refutations. For subsumption and tautology removal these are well­
established properties, see [Chang & Lee 73, Loveland 78]. 

There is hardly any bound to the ingenuity with which the developer of a deduction 
system may design such reduction rules. Whether they can actually be used in a particular 
situation, however, depends in general not only on a formula's logical status but also on 
the overall state of the search procedure in that situation. The search algorithm might be 
able to succeed with the unreduced set of formulae, but might fail with the reduced one. 
We shall discuss this problem when presenting reduction rules for clause graphs. 
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It goes without saying that reduction rules like subsumption resolution are only useful 
if there is a reasonably efficient way to recognize situations in which they can be applied. 
All the rules presented here have been implemented in an automated deduction system 
named Markgraf Karl [Ohlbach & Siekmann 89], which is based on Kowalski's 
connection graph proof procedure [Kowalski 75]. Its underlying clause graph structure, 
which will be presented in the next section turned out to be a good basis to detect the 
applicability of many reduction rules. 

4.2 Clause Graphs and Transition Rules 

We now turn to a more complex type of states for logical state transition system based on 
the resolution calculus, and to transition rules exploiting the richer structure. The idea to 
use a graph of clauses instead of a set of clauses goes back to Robert Kowalski and his 
connection graph proof procedure [Kowalski 75]. While this is an approach for 
standard resolution, we present a slightly more generalized version covering total theory 
resolution. However, we restrict ourselves to theories for which there always exist 
finitely many independent most general unifiers. 

4.2.1 Clause Graphs 

A clause graph is based on a set of nodes which are l~belled with literals. These literal 
nodes are grouped together to clause nodes, which represent sets of literals (Le., 
clauses). Usually, literal nodes are graphically depicted as little boxes in which the 
labelling literals are written, clause nodes as contiguous clusters of such boxes. 

Arbitrary relations between literals can now be represented by links between literal 
nodes. The most important relation, the resolvability relation, is represented by so-called 
R-Iinks. They connect the resolution literals that can participate in a (theory) resolution 
step. The R-links themselves are often marked with the most general unifiers for the 
atoms in the incident boxes. 

The reason for the distinction between literals and literal nodes and between clauses 
and clause nodes is purely technical. Different nodes may very well be labelled with the 
same literal but be linked to entirely different places. If the literals themselves were 
regarded as the nodes of the graph, one couldn't even formulate a phenomenon like this. 
However, in the sequel we will not strictly distinguish between nodes and formulae, as 
long as there will be no confusion. 

Example: 
P(j(a,b),f(c,d)) 

This clause graph contains six clause nodes. R-link I connects two resolution literals 
for a simple resolution step with most general unifier {x ~a, y ~b, z ~c}. Performing 
this step would produce the resolvent (P(f(a,b),f(c,d)), --,Q(g(a),b,c), -'P(f(b,a), 
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f(b,c))}. R-link 2 also represents a simple resolution step, its unifier is {x (-a, y (-C, 

Z (- w). 

R-link 3 connects two literals within the same clause. They have equal predicate 
symbols and opposite signs, but their term lists are not directly unifiable. This R-link 
indicates a possible resolution step using a copy of the clause, (Q(x',y',z'), 
--,Q(g(x'),y',z'), -'p(j(b,x'),j(y',z'))}, in which the variables have been renamed by the 
substitution p = (x(-x', y(-y', z(-z'j. The first literal in the original clause is now 
resolvable with the second literal in the copy, using the unifier (x(-g(x'), y(-y', z(-z'j 
and generating the resolvent (Q(x',y',z'), -,P(f(b,x')J(y',z')), -,Q(g(g(x')),y',z'), 
-,P(f(b,g(x')),j(y',z')}. (The analogous step using the first literal of the copy and the 
second of the original would result in a resolvent in which the primed and unprimed 
variables are simply exchanged; therefore one of the variants suffices.) In actual 
implementations such a self-resolution of a clause with a copy of itself is almost 
always omitted. For theory resolution it is necessary, however. 

R-link 4 is a proper theory-R-link. In the theory of ordering relations and equality, the 
conjunction of the literals w5e, d:2:e, d;t:e becomes contradictory when instantiated with 
the substitution {w(-d}. Thus the theory resolvent (--,Q(a,c,d)} can be derived. Finally, 
R-link 5 involves two different variants of the commutativity clause, (f(u,v) = f(v,u)} 
and (f(u',v') = f(v',u')}. This link is marked with two most general unifiers: {x(-a, 
y(-c, z(-d, u(-a, v(-b}, and {x(-a, y(-d, Z(-C, u(-a, v(-b, u'(-c, v'(-d}. The first 
unifier corresponds to applying the commutativity law to the subterm f(a,b) before 
unifying it withf(b,x), whereasf(c,d) andf(y,z) are unified without prior swapping. The 
second unifier uses commutativity a second time to also switch the arguments inf(c,d).• 

4.2.2 Deduction Rules for Clause Graphs 

A naive transfer of the resolution rule to clause graphs is as follows: generate, in the 
usual way, the resolvent indicated by an R-link, create the clause node representing it, 
and compute the new R-links by examining all resolution possibilities between the new 
literals and those present before this step. The latter operation is very expensive, but it 
can be considerably simplified: the literals of the resolvent are instances of literals 
appearing in the parent clauses, their ancestor literals. There cannot be a resolution 
possibility with a new literal unless there already is a corresponding resolution possibility 
with its ancestor literal. Thus it suffices for each new literal to examine the resolution 
possibilities with literals connected to its ancestor by R-links. The new R-links can be 
obtained from the old ones by inheritance. 
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Example: Inheritance of R·links 
2 3 

1 Q(x)...,P( (a» 4 

In this initial clause graph let us resolve "on" R-link 4, resulting in the following 
intennediate situation: 

• 
Thus there is an advantage of the clause graph representation: the R-links provide an 

excellent indexing to compute the resolution possibilities between a resolvent and the old 
clauses. For a comparatively large class of theories it is even possible to compute the 
unifiers of the new R-links directly from the unifiers of the old links, without having to 
unify any literals (see [Ohlbach 87]). 

The R-links described so far are just special cases of a more general type of links. As a 
motivation let us consider the logical meaning of an R-link. If there is an R-link for a 
theory 'Tconnecting literals L}> ..., Ln and marked by a unifier cr, then the conjunction of 
the literals crL}> ..., crLn must be 'T-unsatisfiable. This in turn is the case if and only if the 
formula crLl 1\ ••. 1\ crLn => [J is 'T-valid. 

Now the generalization suggests itself to connect two groups of literals, the 
antecedent L}> ...,La and the succedent K j , ••• , Km, by a so-called implication link (or 
simply I-link, for short), whenever the formula crLl 1\ •.. 1\ crLa => crKl v ... v crKm is 'T­
valid. For an empty succedent we get just the special case of an R-link, indicating a 
resolution possibility. The other special case, with an empty antecedent, signifies that the 
formula crKl v ... v crKm is 'T-valid and thus indicates a tautology clause. Links of this 
type are called T-links. Graphically, we depict the different links as follows: 

I-link R-link T-link 

~ rr:::r .-r:-t 
antecedent succedent antecedent succedent 

antecedent succedent 
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A general I-link corresponds to a partial theory resolution step in which the instance 
aK1 v '" v aKm of the succedent is the residue. This interpretation of the link types 
requires the antecedent literals (joined conjunctively) to be parts of different clauses, and 
the succedent literals Qoined disjunctively) to be parts of the same clause. Several 
antecedent literals within the same clause are taken to mean that they belong to different 
copies of this clause. If succedent literals are scattered over several clauses, the I-link 
represents no executable operation. However, other steps may cause instances of these 
succedent literals to become part of the same resolvent, so that inheritance creates an 
executable I-link. If antecedent and succedent literals belong to the same clause, it is 
possible to derive a new clause by removing the antecedent literals and instantiating the 
remainder. This corresponds to an oriented factoring operation. 

Example: Execution and inheritance of I-links 

l:Zf-b 
3: x f- b, Y f- a 
4: x f- b, y f- a 
5: Z f- x 
6: x f- b 
7: y f- a, Z f- b 
8: Y f- a 

resolution on .. factorin& on ..
 
R-link 2 I-link 4'
 

Sb 

factorin& on .. resolution on ..8'" D
I-link 1 R-link 8'" 

a>b:&
I-link 1 is a proper theory-I-link for the theory of ordering relations. It represents the 

validity of the implication a<b => aSh in this theory. The I-links 3 and 4, on the other 
hand, simply denote the propositional equivalence a>b ~a>b, and are thus somewhat 
redundant. But the representation of the equivalence by two implications allows more 
flexibility for factoring, as we shall see in the second step. 

The fIrst step is to resolve on R-link 2. The resolvent and the inherited links are shown 
in the second diagram, but the parent clauses are left out just to save space; they and their 
links still belong to the graph. The new I-links 3' and 4' are generated by inheritance of 1­
links 3 and 4. 

In the next step we derive the factor a>b using I-link 4' (showing, again, only the 
interesting subgraph in the diagram). The same factor could also be derived with I-link 
3'; however, if the literals a>x andy>b in the parent clause had links to different places in 
the graph, the resulting graphs would be different, because the factor's literals and links 
always descend from the non-antecedent literals. If reduction rules as discussed in the 
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next section are used, it is indeed possible that literal nodes labelled with equal literals 
have links to different places. 

The last two operations are self-explanatory. • 
Now we can already obtain a logical state transition system for the resolution calculus 

using clause graphs as states rather than clause sets. Given a clause set whose 
unsatisfiability is to be shown, we construct the initial clause graph examining all 
resolution possibilities and computing the links. The deduction rules above can be seen as 
operating "on" links, enabling transitions to supergraphs. These rules can be applied until 
a clause graph containing the empty clause has been derived from the initial state, which 
proves the unsatisfiability of the initial clause set. 

This logical state transition system does note differ very much from the trivial one. Its 
disadvantages are the overhead for the computation of the initial state and the increased 
cost of handling the more complex states. In return there is an advantage. In classical 
procedures the order in which resolution steps take place is more or less fixed by the 
search algorithm. The explicit representation of resolution possibilities by R-links in 
clause graphs, on the other hand, allows the assessment of all R-links prior to execution 
and a selection of the best alternative by heuristic criteria. 

4.2.3 General Reduction Rules for Clause Graphs 

The clause graph data structure lends itself easily to an efficient implementation of the 
reduction rules mentioned at the beginning of section 4.1. We now present the clause 
graph versions of the most important of the reduction rules that are generally applicable to 
resolution based systems: tautology removal, subsumption, and literal removals. 

A tautology clause is a disjunction of literals that is valid (in the given theory). It is 
indicated by a T-link with "empty unifier", the identity substitution. 

General schema for Examples:
 
tautology recognition:


Mr... ---r;t.Odentity unifier ~ 

From a logical point of view, tautology clauses are useless when searching for a 
contradiction and should therefore be removable from the clause set. In a more complex 
search procedure, however, it is not just the logical status of a formula that counts, but 
also its context in the derivation process. For systems using clause graphs this context is 
determined, among others, by the presence or absence of links. Link removal rules as 
described in the next section can lead to situations where resolvable literals are not con­
nected by an R-link. As a consequence it may happen that a tautology is in fact necessary 
for the derivability of the empty clause, as in the following graph: 

Resolution on the first R-link and subsequent resolution on the successor of the 
second R-link produces the empty clause. The removal of the tautology clause would 
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result in a clause graph with two complementary unit clauses but no links; the empty 
clause could no longer be derived. 

The so called bridge link condition [Bibel 81] guarantees that a tautology clause is 
indeed superfluous: if L} v .. , v L n is a tautology in theory 'T, then the formula 
-,L} 1\ ..• 1\ -,Ln is 'T--unsatisfiable. That means that any n-tuple of literals that are 
reachable from the tautology via simple R-links (without a theory), can be the parent 
literals of a 'T-resolution step and should therefore be connected by an R-link. If that is 
the case, the tautology may be removed, otherwise not. Of course one can reinsert 
missing links to make the tautology removable. 

The second important reduction rule, subsumption, is a special form of entailment 
between clauses that is syntactically easy to recognize. The original definition (without 
theories) is: a clause C subsumes a clause D if there is a substitution a such that GC cD 
holds. With theories the definition can be slightly generalized: when testing for aC {;;D, 
the literals are not only tested for syntactic equality but also for implication in the given 
theory. In a clause graph such implications are indicated by I-links. 

General schema for Example: 
subsumption recognition: 

simultaneous Xf-a 
one sided unifier 

Here, the bottom clause subsumes the clause on top. The subsumed clause, that is the 
longer one, can usually be removed. However, factors are always subsumed by their 
parent clause, without being superfluous in genera1. The application of subsumption 
again requires the consideration of the clauses' context. In systems using clause graphs, 
there is another condition on the links: a subsumed clause may be removed only if each 
R-link at a literal in the subsumer has a counterpart at the corresponding literal in the 
subsumed clause [BibeI81]. 

Another class of reduction rules modifies single clauses by literal removals. 
Literals may be removed from a clause in a clause set whenever the clause set with short­
ened clause is logically equivalent to the origina1. In contrast to the removal of whole 
clauses, literal removals do not require consideration of existing or nonexisting links in a 
clause graph. 

A trivial case is literal merging: one of two syntactically identical literals in a clause 
may be removed. This application of the idempotence law for disjunction is in a sense 
automatically built into the formal definition of a clause as a set of literals; in an actual 
program it has to be implemented anyway. The above-mentioned view of a clause node 
as a set of literal nodes that may be labelled with equal literals but may have links to 
different places, also suggests an explicit merging operation. 

Somewhat more general is subsumption factoring. If a clause can be split into two 
disjoint subsets C and D such that C subsumes D with a substitution a that does not have 
any effect on D, then all literals in the subset C may be removed. This time it is not the 
subsumed part, but the subsuming part that is not needed, and we're left with D. The rule 
has its name from the fact that D is a factor of the original clause CuD, subsuming its 
own parent clause. The removal of the C part simulates a sequence of factoring and 
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subsumption operations. Again, the subsumption test can be modified to test for the 
implication in a theory instead of syntactic equality. 

General schema for Example: 
subsumption factoring: D = (pea), a~y, Q(z)} 

~mo1lanOOUSmatch", " % ~ Q 

L:-6:6i:~+-J.- ...;tiQn =~~:~~=:=:::=~::~:: 
x x X not instantiated by (j 

Literals marked by x may be removed from the clause. 

A further generalization is subsumption resolution. It covers all cases in which a 
proper subset D is derivable from a clause by a sequence of resolution and factoring 
operations, without instantiating the remaining literals. In this case, D subsumes the 
parent clause and all intermediate clauses, so that technically the operation can be 
performed simply by removing all literals not belonging to D. 

Some schemas for Examples:
 
subsumption resolution: D = (a~y, Q(z), R}
 r~-reooIUtiO.lirernls p(a)

x~a 

are not instantiated 

... :IIJ :~:===:::=~::~: 
x 

non-resolution literals
 
that are instantiated
 

subsume literals
 
r----"'L"'" not instantiated
 

In principle the power of literal removal rules can be pushed as far as one desires; in 
the extreme case, up to the point where all literals may be removed from a clause (which 
thus becomes empty) because the whole clause set is unsatisfiable. Of course this would 
require criteria as powerful as the whole proof procedure itself, and thus would only shift 
the overall problem. But by cleverly exploiting the link structure and the substitutions in a 
clause graph, quite a lot of situations in which literal removals are applicable can be 
recognized efficiently. 

As a further advantage of the clause graph representation we note that the links support 
a great number of algorithms for the recognition of redundancies in the clause set 

4.2.4 Specific Reduction Rules for Clause Graphs 

The form of the clause graphs and of the operations on clause graphs as presented so far 
can be seen as an implementation-oriented rendering of the resolution calculus. In this 
section we study further operations that enable the removal of links or clauses. They 
block certain derivation alternatives that would be possible with the trivial logical state 
transition system. 

The first idea is to remove R-links and I-links onc~ the corresponding derivation step 
has been executed, in order to prevent a repetition of the same step. This seemingly 
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harmless administrative measure has a tremendous effect when combined with link 
inheritance: the removal of a link disables the creation of any links that could potentially 
be inherited from it, and thus blocks later generations of resolution steps. 

Example: We compare two derivations from the following initial clause graph. On the 
left hand side link removal is applied, on the right hand side the links operated upon are 
drawn as dotted lines. 

Resolution on link 1 with removal without removal
 
2 1""""'::"T'""::"""1 2 r--::"T'"'::'""'I
 

Resolution on link 2 with removal without removal 

[]]]] I-,QIR I~R QS "'+QIR :.7..~ si 
2' l' 2' 

EQ[IJ P R -,Q S P R ~ 
In the graph to the left only one resolution possibility is represented, whereas there are 
two in the graph to the right, both leading to the same resolvent, though. • 

In general, link removal prevents multiple derivations of resolvents from the same 
clauses through different orders of the resolution steps. 

The second specific reduction rule allows the removal of clauses that contain a "pure" 
literal without any links. This purity rule is based on the observation that a derivation 
of the empty clause requires that all literals of a clause involved in the refutation must 
eventually be "resolved away". A literal node without links cannot be resolved away. If a 
clause contains a purity, so does any resolvent derived from it or its descendants, hence 
the empty clause cannot be among the clauses derivable from the pure one. The removal 
of a pure clause of course implies the removal of all its links, which can result in new 
purities in neighbouring clauses. Thus, one application of this rule can cause a chain 
reaction of further reductions. 

Example: 
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Resolution on the R-link marked by *, with link removal:
 

Chain reaction: 

P(u,d,u) 

• 
It is in fact possible that all clauses disappear due to this chain reaction - the graph 

collapses to the empty graph. In this case the initial set of clauses was satisfiable. 

Another class of specific reduction rules exploits that an R-link or I-link actually 
represents a potential new clause. If after its creation such a new clause would be 
eliminated right away by some reduction rule for clauses, one can try to detect this in 
advance. Then a simple removal of the link simulates the operation on the link followed 
by the application of a reduction rule to the new clause. Such a look-ahead link removal 
can result in purities and thus cause further reductions. 

As an example, let us sketch the recognition of tautological R-links, where T-links are 
used as indicators: 
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General schema for Examples: 
tautology R-link recognition: 

Algorithms that recognize links leading to subsumed or pure clauses are also possible, 
but increasingly complicated and time-consuming, even when using I-links as indicators. 
In addition, to ensure refutation completeness, one has to test whether a logically 
redundant link may really be removed from the graph, or whether the clause generated by 
it would violate one of the link conditions discussed above. 

On the whole, it is advisable to weigh the cost for the detection of reduction 
possibilities against their potential benefit. A fourth advantage of the clause graph 
representation is that it supports additional reduction rules and thus restrictions of the 
search space which are not possible with the trivial logical state transition system for 
resolution. 

4.3 Properties of Logical State Transition Systems 

Since this paper is concerned with deduction systems based on resolution we limit the 
following considerations to transition systems based on testing calculi. A generalization 
covering also generating calculi would be straightforward, but would complicate the 
formalism. 

So we assume a logical state transition system with a set of states and a transition 
relation. Further, we assume that each formula or set of formulae :Fof the appropriate 
logic corresponds to an initial state INIT(1) of the state transition system. It is actually 
not necessary that non-initial states of the system represent logical formulae, although 
they usually do. Of the final states we assume that they are partitioned into classes, each 
class standing for a semantic property like satisfiability or unsatisfiability. The idea is that 
whenever transitions from INIT(1) lead to a final state, the system ascribes to 'J the 
property for which the class of this final state stands. 

The trivial logical state transition system for the resolution calculus has two classes of 
final states: the final unsatisfiability states are the clause set containing the empty clause; 
the final satisfiability states are the clause sets that are closed under resolution and 
factoring, without containing the empty clause. 

Depending on what kinds of links are permitted in a graph and which transition rules 
are allowed, one can define many different logical state transition systems using clause 
graphs. The one underlying Kowalski's connection graph proof procedure is as follows: 
its states are clause graphs with binary (non-theory) links. Its initial states are clause 
graphs where no possible link is missing. Its final unsatisfiability states are the clause 
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graphs containing the empty clause, and there is just one final satisfiability state, the 
empty clause graph, which contains neither links nor clauses (not even the empty one). 
Its transition rules are the clause graph versions of factoring and resolution, including 
link removal as an integral part of the transition, further the merging, purity, and 
tautology rule. Let us call this the cg state transition system. 

For logical state transition systems as described we now define the following 
properties. The system is called: 

unsatisfiability sound iff whenever INIT(.1) ~ some final unsatisfiability 
state then .ris unsatisfiable, 

unsatisfiability complete iff whenever .ris unsatisfiable 
then INIT(S) ~ some final unsatisfiability state, 

unsatisfiability confluent iff whenever .r is unsatisfiable and 
INIT(.1) ~ SI and INIT(.1) ~ S2 
then SI ~ S' and S2 ~ S' for some state S', 

unsatisfiability closed iff whenever some final unsatisfiability state ~ S 
then S is a final unsatisfiability state. 

In exactly the same way we define the properties of the logical state transition system 
with respect to satisfiability and to other properties of formulae. 

These definitions cover the phenomenon that logical state transition systems may have 
non-initial and unreachable states. In the trivial logical state transition system any formula 
set could be the one the system was given to start from, thus it has no unreachable states. 
On the other hand, there are clause graphs that cannot be reached from any initial state in 
the cg state transition system. One can even construct states from which both the empty 
clause and the empty graph can be reached, but this is irrelevant because they are not part 
of the reachable subsystem. The definitions above allow to express properties of the 
relevant subsystems. 

Soundness with respect to a semantic property means that if the system ascribes this 
property to a formula, then the formula does indeed have the property. The trivial logical 
state transition system for the resolution calculus is unsatisfiability sound and 
satisfiability sound. If we defined the clause sets consisting of only tautologies as the 
final validity states and included the purity rule among the transition rules, the system 
would not be validity sound. 

Completeness with respect to a semantic property guarantees that a formula's having 
this property can always be demonstrated with the system. The trivial system for 
resolution is unsatisfiability complete. For some decidable subclasses of first-order 
predicate logic, for instance for the ground case and for the Herbrand class (where only 
unit clauses occur), it is also satisfiability complete. See [Joyner 73] for more details on 
this subject. 

Confluence and closedness are the properties that allow irrevocable control strategies 
in the respective subsystems. Suppose that .ris unsatisfiable and INIT(.1) ~ V for a final 
unsatisfiability state V and also INIT(1) ~ S with an alternative derivation. Then 
unsatisfiability confluence ensures that there is a continuation S --4 ut to a common 
successor state. If the system is unsatisfiability closed, V'is also a final unsatisfiability 
state. To be closed is just a technicality that can easily be ensured for any system. 
Confluence, and even commutativity, on all subsystems is an immediate property of 
trivial logical state transition systems. 
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For the cg state transition system the results are as follows [Eisinger 89] 

• it is unsatisfiability sound and satisfiability sound 

• it is unsatisfiability complete 

• it is unsatisfiability confluent but not satisfiability confluent. 

These results also hold if the subsumption rule is included. Thus the more advanced 
reduction rules, which are just combinations of simple ones, are also covered. If all of 
these reduction rules are included, the system is one of the strongest with respect to the 
ability to recognize the satisfiability while trying to prove the unsatisfiability. This is 
when satisfiability soundness carries weight. 

If we define the tautology rule without the special "bridge link" condition (section 
4.2.3), which incidentally is Kowalski's original definition, the system retains all of the 
properties above for the unit refutable class of clauses (see section 5.1) [Smolka 82]. 
However, in the general case it loses satisfiability soundness and unsatisfiability 
confluence. Thus with the original definition there always exists a refutation, but in some 
cases an attempt to find it may lead into a dead end from which the refutation is no longer 
possible. This result clearly demonstrates the uselessness of traditional completeness 
alone. In the case of subsumption there is no similar irrelevance of the link condition for 
the unit refutable class. 

Finally, let us demonstrate that completeness and confluence are indeed independent 
properties. For propositional Horn clauses it is known that if there is a resolution 
refutation at all, then there also is one in which no clause is used more than once as a 
parent clause in resolution steps. We now modify the trivial logical state transition system 
for the resolution calculus such that each transition replaces two resolvable clauses by 
their resolvent; that is, the parent clauses of the resolvent are no longer contained in the 
successor states. By the above, the resulting logical state transition system is unsatisfiabi­
lity complete for propositional Horn clause sets. The following example shows that on 
the other hand it is not unsatisfiability confluent for this class of fonnulae: 

{ {P}, {-.Q,R}, {-.R,Q} , {-.Q,P} , {-.P} } 
~ ~ 

{Cl, {-.Q,R}, {-.R,Q}, {-.Q,P}} { {P}, {-.Q,R} , {-.R,Q} , {-.Q} } 

~ 
{ {P}, {-.Q,R} , {-.R} } 

~ 
{ {P}, {-.Q} } 

The clause set on the left is a fmal state of the unsatisfiability class; from the last set on 
the right no further transition is possible; no common state can be reached from the two 
states. In the search space there does exist a clause set containing the empty clause, but an 
irrevocable control regime might miss it and run into a dead end. 

4.4 Graphs as Representations for Proofs 

Clause graphs can be used for entirely different purposes. So far we have seen them as a 
richer data structure for the states of a deduction system. However, one can also use 
special clause graphs to represent the result of a deduction system, namely the sequence 
of derivation steps through which the empty clause was obtained. These clause graphs 
represent refutations and thus proofs. 
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In this section we present an abstraction from the usual notion of a proof. The basic 
observation is that literals in resolvents are nothing but instances of literals appearing in 
the initial clause set. In principle a resolvent may therefore be represented by a set of 
pointers to literals in the initial clause set, along with a substitution. Yet, not even this is 
really necessary. Actually it suffices to mark the resolution literals in the initial clauses by 
an R-link. Such a link then signifies (as opposed to its meaning in the state transition 
systems discussed so far) that the corresponding resolution step is to be considered as 
executed and that thus both resolution literals have been "resolved away". The set of 
literals not incident with a link, or rather their instances, now corresponds to the 
resolvent. We demonstrate the idea with a simple example. 

Example: Abraham is the father of Isaac, and Isaac is the father of Jacob. Therefore 
Abraham is the grandfather of Jacob. In clausal form the hypotheses and the negated 
conclusion are as follows: 

Father(Abraham, Isaac) 
Father(Isaac, Jacob) 
-,F'ather(x, y), -Father(y, z), Grandfather(x, z) 
~randfather(Abraham, Jacob) 

Below we develop a resolution refutation on the left hand side, and on the right hand 
side a clause graph in which the successive resolution steps are represented by R-links 
joining the initial clauses. The shaded connections are pointers from the literals in the 
resolvents to their literals of origin. To save space, we abbreviate predicate symbols and 
constant symbols. 

First resolution step: 

-.F(x,y),-.F(y,z),G(x,z) -.G(Ab,Ja) 

'V 
-.F(Ab, y),-.F(y,Ja) 

Second resolution step: 

-.F(x,y),-.F(y,z),G(x,z) -.G(Ab,Ja) 

'V 
F(Is,Ja) -.F(Ab, y),-.F(y,Ja) 

~ 
-.F(Ab, Is) -----­
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Third resolution step:
 

.F(x,y),.F(y,z),G(X,Z) .G(Ab, Ja) 

'V 
F(Is, Ja) .F(Ab, y), .F(y, Ja) 

~ 
.F(Ab, Is) F(Ab, Is) 

~ 
[J 

This was a proper refutation proof. The following three diagrams show a "positive" 
resolution proof. where the conclusion is explicitly derived as the second-to-Iast clause. 

First resolution step: 

F(Ab, Is) .F(x,y), .F(y,z),G(x,z) 

~ 
.F(Is, z),G(Ab, z) 

Second resolution step: 

F(Ab, Is) .F(x,y),.F(y,z),G(x,z) 

~ 
.F(Is, z),G(Ab, z) F(Is,Ja) 

~ 

X f- Ab,
L...,;,,"":';';'O~...;..:.;:..:.;;.;:....L,;..:.;;,:;~ 

Y f- Is, 
Z f- la 

G(Ab,Ja) ---~----------

Third resolution step: 

F(Ab, Is) .F(x,y)••F(y,z).G(x,z) 

~ 
.F(Is, z),G(Ab, z) F(Is,Ja) 

~ 
G(Ab. Ja) .G(Ab, Ja) 

~ 
[J • 

Although the two resolution proofs are different. they result in the same clause graph. 
In either refutation. each of the three unit clauses is used as a parent clause exactly once. 
only in different orders. The clause graph representation abstracts from this irrelevant 
order of the steps and altogether represents six different refutations. These can be 
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reconstructed by executing the steps represented by the R-links in any order, using the 
transition rules described before. 

A clause graph which in that way represents a class of derivations of the empty clause, 
is called a refutation graph. 

Naturally, not every clause graph is also a refutation graph. The example above shows 
some conditions such graphs have to meet: every literal node is incident with exactly one 
R-link, and there exists a global substitution that unifies every pair of connected atoms. 
All clauses are members of the initial clause set to be refuted. If an initial clause is needed 
twice in the resolution derivation, the refutation graph contains two copies of this clause 
with renamed variables, so that the copies may be instantiated in different ways. A 
resolvent needed several times corresponds to copies of the subgraph representing this 
resolvent 

Finally, a refutation graph must not contain any cycles. A cycle is a path that starts 
from a clause and along one or more links returns to the same clause. Without this 
condition, the following satisfiable graph would also be a refutation graph: 

EfI]]f-~Eill!Jt--2-~ 
3 

The clause set corresponds to the formulae P =>Q, Q=>R, R=>P. Resolution on R­
links 1 and 2 results in the tautology {-,P, P}, the empty clause cannot be derived. The 
link sequence I, 2, 3 is a cycle. The example shows that cyclic paths represent derivation 
chains "biting their own tail": in order to prove P, one has to prove R; to prove R, one 
has to prove Q; to prove Q, one has to prove P; ... 

Refutation graphs were first examined by Robert E. Shostak: [Shostak: 76]. He was 
able to show that a clause set is unsatisfiable if and only if for a sufficient number of 
copies of these clauses there exists a refutation graph, that is a nonempty, noncyclic 
clause graph in which every literal node is incident with exactly one R-link, so that some 
global substitution unifies every pair of connected atoms. 

In order to represent in a refutation graph the phenomenon of two literals being 
merged by factoring, we have to generalize the form of R-links for refutation graphs. 
Each side of an R-link may be incident not only with one, but with several literal nodes, 
and thus the link may fan out on either side. 

Form of R-links clause graph refutation graph 

simple resolution: )>--oc>---r(" 

theory resolution: 

An R-link consists of as many major branches as there are clauses in the resolution 
step. For simple resolution, there are two, but for theory resolution, there may be 
several. Each major branch of an R-link fans out into one or more minor branches, which 
show which literals must merge before the resolution step can actually be executed. 
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Example: First step: 

P(x, z)j P(Y_'C_)factoring IP_(_x:r'z) j(Y, c) I y f- x, 
I Z f- C 

P(x, c) 

Second step: 

P(x, z), pry, c) 
I 

factoring 
I y f- a, 

P(x, c) -,P(a, c), -,P(b, c) Zf-C 

X f- a, 

~
 
~-~-~-~----~-----,P(b, c) 

Third step: 

P(x, z), pry, c) 
I 

factoring 
I 

P(x, c) -,P(a, c), -,P(b, c) 

X f- a, 
y f- a, 
Z f- C 

V X'f- b, 
Y'f- b, 
Z'f- C 

IJ 

links are just special cases of I-links) not only for refutation graphs, but for arbitrary 
clause graphs in the way above. Then a major branch of an R-link would correspond to 
the disjunction of the literals at its minor branches, while the entire R-link would still 
represent the conjunction of all its major branches. To carry out a resolution step, one has 
to select exactly one minor branch of each major branch, and use their literals as 
resolution literals. But we do not pursue this generalization. 

In a refutation graph, a major branch does not have to fan out to a single clause, as it 
happens in the example above. Minor branches leading to different clauses indicate that 
not the initial clauses, but some resolvent of theirs has to be factored or merged. When no 
major branch of any R-link fans out to different clauses, this is a special kind of 
refutation graph; it represents a derivation factoring only initial clauses. 

Even more special refutation graphs are such that the major branches do not fan out at 
all, representing derivations without factoring or merging. In this case, the refutation 
graph has a treelike structure and is also called a refutation tree. A theorem by M.C. 
Harrison and N. Rubin [Harrison & Rubin 78] states that there exists a refutation tree for 
a given clause set if and only if this clause set is unit refutable (for instance, if it is an 
unsatisfiable Horn clause set). 

The clause set {{P, Qj, {-.P, Qj, {-,Q,Pj, (-,Q, -.P)) is unsatisfiable and has only 
refutation graphs that are no refutation trees. Thus it is not unit refutable, and any 

• 
It would be possible to generalize the definition of R-links and I-links (recall that R­



- 53­

refutation requires at least one merging step. The reader may wish to try and construct the 
resolution refutations represented by the following two refutation graphs for this set: 

4.5 Extracting Refutation Graphs from Clause Graphs 

The study of refutation graphs leads to a better understanding of the topological structure 
of resolution proofs and thus of the interdependencies of consequences. Refutation 
graphs are also quite useful in examining theoretical properties of deduction systems. So 
far we did not tell whether they are also useful in searching for a proof; in the examples 
we always translated complete resolution refutations into corresponding refutation 
graphs. How to find these refutations, remained open. 

In this section we introduce a procedure that enables us to extract a refutation tree for a 
unit refutable clause set directly from the initial clause graph. If the procedure succeeds, a 
proof has been found without generating a single resolvent. The basic idea leading to the 
extraction procedure can best be seen in an example involving a somewhat more complex 
refutation tree for a propositionallogic clause set: 

Literals have 

D been omitted 

In this refutation tree there are three clauses, A, C, and D, with the property that all but 
one of their literals resolve with a unit clause. Let's take, say, A and successively resolve 
with all three of the unit clauses. The final resolvent consists of just the fourth literal node 
A4 and is a new unit clause linked to B by a descendant of link 4. Proceeding likewise 
with C, we obtain another unit clause Cl, connected to B by a descendant of link 5. 
Combined, A4 and Cl enable us to resolve away the fIrst two literal nodes in B, leaving 
B3. At this point every literal node in D is linked to a unit clause and the empty clause can 
be derived. 

Thus in a clause graph containing all possible R-links, one simply has to look for a 
subgraph in which each literal of a clause is connected to a unit clause by an R-link. If 
this succeeds, one has found a refutation tree and is done. Otherwise, one considers the 
subgraphs in which all but one of the literals of a. clause are connected to a unit clause by 
an R-link. A subgraph of this kind represents a unit resolvent consisting of a successor of 
the exempted literal. This literal can now be treated as if it were a "proper" unit clause, 
such that an appropriate subgraph may be found for other clauses, for which this was not 
possible before. 

When working with predicate logic clause sets, the unifIers of the R-links have to be 
considered as well. Our next example, which contains a transitivity axiom, shows the 
effects of that. 
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~:x~v, Y~f(v) 

0'2: Y ~ v. z ~ f(v)
O'i x~f(b),y ~ c 
0;,: y ~f(b). z ~ c 

os: x ~ a, y ~ b 
0'6: y ~ a, z ~ b 
0'7: x ~ f(w),z ~ f(c) 

Here it is of course not the third literal P(x, z) of the transitivity axiom itself that can be 
turned into a unit clause, but at best some instance of it. Possible instances are determined 
by finding compatible combinations of unifiers of the R-links to the unit clauses. In order 
to see which ones these are in our example, we organize the unifiers in a table, showing 
the instantiations for the variables x, y, z in a fixed order one beneath the other. The four 
compatible combinations are now found by unifying pairs of term lists, namely those 
given by the entries for the respective substitutions in the two tables. (The variable v in 0"2 

is renamed in order to simulate that another copy of the clause P(v,f(v)) must be used.) 

z 
v f(v) z 

fib) e z 
a b z 

z 
x v' f(v') 0'],0'2 
x f(b) e 0'], (j4 

x a b OJ,Oi 
OJ,Oi 

z 
v fey) f(j(v» 
b f(b) e 

f(b) c f(e) 
a b f(b) 

From the four compatible combinations, four new unit clauses can now be derived by 
instantiating the third literal P(x, z). These new unit clauses are: (P(v,f(f(v)))} , 
(P(b, c)}, (P(f(b),f(c))}, and (P(a,f(b))}. By looking at the unifier 0"7 one realizes that 
only those instances can be useful later on, in which x is replaced by f(. ..) and z by f(e). 
With this constraint only the combination 0"),0"2 remains, resulting in the unit clause 
(P(f(b),f(c))}. However, the corresponding instance of 0"7 can also be computed directly 
from a7 and the combination a), 0"2 by a merging algorithm for substitutions; the result 
is (x ~f(b), z ~f(c), w ~b}, and the detour of computing the instantiated literal has 
been saved. 

The whole procedure for the extraction of refutation trees from clause graphs now 
works as follows [Antoniou & Ohlbach 83]: 

Select a clause whose literals are connected to unit clauses by R-links, with the 
exception of at most one literal, say K. Compute the set of compatible combinations of 
the unifiers of the R-links to unit clauses. For each unifier of each R-link incident with 
literal K and for each compatible combination, apply the merging algorithm. Mark the R­
links of K with the instances of their unifiers thus obtained. These instances correspond 
to the unifiers of the R-links to the unit clauses potentially derivable from K. They can, in 
subsequent search steps, be used as if the unit clauses were indeed "properly" present in 
the graph. The algorithm terminates if a clause is found in which all literals are connected 
to proper or potential unit clauses by R-links with compatible substitutions. In order to 
construct the tree and, if required, to translate it into a resolution proof, one simply has to 
gather all used links and substitutions. 

This approach is based on the observation that refutations are characterized by a 
topological structure and a compatibility property of the substitutions involved. By 
extracting the topologically suitable subgraphs, whole classes of refutations are treated at 
once, such that an improvement of the overall cost can be expected. 
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In the version presented, the method applies to clause sets that are unit refutable with 
simple resolution. The extension to theory resolution is unproblematic. A generalization 
of this method to non-unit-refutable clause sets has not yet been worked out, but there are 
a number of approaches with the same underlying idea [Sickel 76, Chang & Slagle 79, 
Shostak 79]. The matrix method of Andrews and Bibel also belongs to that category 
[Andrews 68, Bibel 81,82]. 
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5 Control 

In principle, all one needs to do in order to find a proof with a logical state transition 
system, is to systematically enumerate all states reachable from the respective initial state 
- assuming, of course, appropriate system properties. However, deduction systems 
become feasible only if they avoid "bad" steps and prefer "good" steps as much as 
possible. 

The selection of "good" steps actually requires domain specific knowledge about the 
field to which the statements to be proven refer. Unfortunately, so far little is known 
about what exactly constitutes such knowledge and how a deduction procedure can be 
controlled by it. But there are also purely syntactic criteria, which exploit only the 
structure of the formulae and can therefore be applied independent of the domain. 
Although they are necessarily of limited power, they do help to avoid gross ineffi­
ciencies. At the present state of the art, such syntactic criteria are the decisive factor for a 
tolerable functioning of deduction systems. 

For the resolution calculus two types of syntactic criteria have been studied. The 
emphasis has long been on restriction strategies, which prohibit some of the possible 
steps altogether. Essentially they result in a smaller branching rate of the search space, 
but compared to the unrestricted system they often increase the lengths of the proofs in 
return, such that their overall benefit becomes questionable. Some restriction strategies 
empirically turned out to be quite useful, though. In contrast to restriction strategies, 
ordering strategies do not prohibit any steps but dictate the order in which the 
possible steps are chosen. Syntactic heuristics can play a role in determining this order. 

In some cases the difference between restriction strategies and ordering strategies 
becomes somewhat blurred. Whenever an ordering strategy prefers an infinite number of 
steps over certain others, it has the effect of a restriction strategy. 

5.1 Restriction Strategies 

One of the most simple restriction strategies for resolution is called unit resolution. It 
prohibits the generation of resolvents from two parent clauses if both of them contain 
more than one literal. Worded positively, every resolvent must have at least one unit 
parent clause. This restriction greatly reduces the number of successor states of a clause 
set. It always leads to resolvents with fewer literals than the larger parent clause. 
Moreover, it is easy to implement. Unit resolution has also proved rather successful in 
practice. 

However, sometimes this strategy is too restrictive. A restriction strategy ought to 
preserve as many of the properties of the underlying state transition system as possible. 
While soundness properties cannot be affected by restriction strategies, completeness and 
confluence properties might be lost. Unit resolution is not in general unsatisfiability 
complete; that is, with this strategy the empty clause cannot be derived from each unsatis­
fiable clause set. Still, unsatisfiability completeness is guaranteed for an important class 
of clause sets, which includes the class of Horn clause sets and which for lack of a 
syntactic characterization is called the unit refutable class. This is the same class of 
clause sets for which refutation trees can be constructed (see sections 4.4 and 4.5). 

Independent of completeness, one also has to ensure the confluence of restriction 
strategies for the relevant classes of formulae. For example, we could define a restriction 
strategy for simple resolution by prohibiting that any clause be used more than once as a 
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parent clause. This restnctIon strategy would be unsatisfiability complete for 
propositional Horn clause sets, but not unsatisfiability confluent. Compare the remarks 
on unsatisfiability completeness and confluence of state transition systems at the end of 
section 4.3. 

For the class of unit refutable clause sets, another important restriction strategy, input 
resolution, is unsatisfiability complete. It prohibits the generation of resolvents whose 
parent clauses are both resolvents. Worded positively, every resolvent must have at least 
one parent clause from the initial clause set. The major advantage of this restriction is that 
for each admissible resolution step, one of the resolution literals is known a priori. In 
particular, any unification involves some arbitrary atom and an atom from the initial 
clause set. For each of the latter a specific unification algorithm can be "compiled", which 
computes the most general unifiers for "its" initial atom and an arbitrary atom it takes as 
an argument. Such an algorithm is usually much more efficient than one capable of 
unifying two arbitrary atoms. 

In an input derivation each resolvent has a "far parent" from the initial set and a "near 
parent" that may be any clause. The resolvents and factors can be partially ordered by the 
ancestor relation, which imposes a tree structure upon them. Many restrictions weaken 
the condition on the far parent in order to cover arbitrary clause sets, while trying to 
preserve as much as possible of the flavour of the input restriction. 

The merging restriction [Andrews 68] accepts as far parent either an input clause 
or a "merge". Such a clause results from a resolvent by merging or factoring two literals 
descending from different parent clauses. 

Another relaxation characterizes linear resolution. Beside input resolution steps, 
this strategy also permits resolution steps between two resolvents in cases where one is 
an "ancestor" of the other. By admitting ancestor steps only when a factor of their resol­
vent subsumes the near parent and by making this factoring compulsory, we obtain the s­
linear restriction [Loveland 78]. The t-linear restriction [Kowalski & Kuehner 71] 
further limits ancestor steps to so-called "A-ancestors", all of whose literals excepts for 
the one resolved upon have descendants in all intermediate clauses down to the near 
parent. Moreover, near parents resolvable with an A-ancestor where the resolvent 
subsumes the parent clause may not participate in input steps. An additional qualification 
calling for a single most recently introduced literal of the near parent to be the only one 
ever resolved upon in input steps leads to SL resolution [Kowalski & Kuehner 71]. 

Some restrictions are more concerned about the factoring rule. For example, the half­
factoring restriction excludes resolution steps between two factors [NolI 80]. Finally, 
factoring can be restricted in a new way. Let "kindred literals" be such as have a common 
ancestor literal. For instance, resolution between (P(x), Q(z)) and (-.Q(a),-.Q(b)) 
produces (P(y),-,Q(b)) which again resolves with the first clause giving (P(x'), P(y')). 
This resolvent consists of kindred literals. The kindred factoring restriction 
confines factoring to kindred literals. 

Finally, the set-of-support restriction strategy is widely used and on the whole 
rewarding. It distinguishes between clauses stemming from the hypotheses and clauses 
obtained from the (negated) conclusion. Assuming that the hypotheses are not 
contradictory in themselves, a contradiction must invblve the conclusion. Therefore the 
strategy prohibits the generation of resolvents from two hypothesis clauses. Somewhat 
more general, one can distinguish any satisfiable subset of the initial clause set, and 
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prohibit resolution between members of this distinguished subset; only the other clauses 
are "supported". 

5.2 Ordering Strategies 

The most simple ordering strategy for resolution is the level saturation strategy. 
Each clause is associated with its "depth": initial clauses from the original clause set have 
depth 0, factors are of the same depth as their parent clauses, and the depth of a resolvent 
is one more than the larger of the parent clauses' depths. The level saturation strategy 
orders the possible steps simply by the depths of the clauses generated, so that a clause of 
depth n may be added to a clause set only if all clauses with a smaller depth have already 
been derived. The order in which clauses of the same depth are generated is not specified, 
but left up to the particular implementation. A possible condition might be to prefer 
clauses with the smallest number of literals from among all clauses of the same depth. 

A frequently used modification of the level saturation strategy is obtained by 
subtracting some constant positive integer c from the depth of each resolvent having a 
unit parent clause. Then, all derivable factors and resolvents will still be systematically 
generated, but those with a unit parent occur c levels earlier than others. This variant of 
the level saturation strategy has become known as the unit preference strategy. 

At least for the trivial logical state transition system of the resolution calculus, both 
strategies are exhaustive: for any clause appearing in any state of the search space, a 
state containing this clause will be reached after a finite number of steps (unless a final 
state is reached before that). If the underlying state transition system and the combination 
of restriction strategies used are complete and confluent with respect to some class of 
final states, then an exhaustive ordering strategy always reaches a final state of this class 
after finitely many steps. 

In some systems, however, it is impossible for ordering strategies to be exhaustive. 
Then one has to guarantee at least their fairness: no step must be postponed relative to 
infinitely many others. 

The preference of certain steps need not be confined to resolvents with unit parent 
clauses in order to preserve fairness. When a given fair ordering strategy is modified 
such that steps producing resolvents with fewer literals than either parent clause are given 
priority over all other steps, another fair ordering strategy is obtained. The highest 
priority can in principle be given to any class of steps considered useful, provided that no 
infinite succession of steps of that class is applicable from any state. For example, in the 
cg state transition system one might give highest preference to the resolution steps that 
cause the purity of both parent clauses, or to the steps that render one parent clause pure 
and derive a clause that is shorter than this parent clause. 

Many reduction rules actually also contribute to an ordering strategy. Strictly 
speaking, the look-ahead link removal (section 4.2.4) enforces that a link whose factor or 
resolvent can be eliminated by some clause reduction rule be processed before any other 
links. Even subsumption factoring and subsumption resolution, which only eliminate 
single literals from clauses, really simulate the derivation of new clauses. If they get 
highest priority, this defines a new ordering strategy. In general, one cannot combine 
arbitrary reduction rules with arbitrary ordering strategies without jeopardizing properties 
of the strategy. 

For those cases in which certain steps cannot be generally preferred, one can define a 
heuristic priority. To ensure fairness, the depth of the clauses has to enter into this 



- 59­

priority. But the priority may also depend on further syntactic features, such as the 
number of literals or the term complexity. It is a common technique for heuristic search to 
compute the priority value as a weighted sum of these feature values, where the weights 
can be adjusted by the user in order to influence the system's behaviour. 

In principle, the heuristic values might also be based on domain specific knowledge, 
although there is the standard objection that such knowledge can hardly be encoded in a 
simple priority value. 

And come to that, the user is often endowed with control knowledge that ought to be 
made available to the system in an appropriate way. However, at present the structure of 
such control knowledge and the mechanisms to bring it in are largely unknown. 

5.3 Filters 

For a formal description of strategies we have to return to the general level of logical state 
transition systems with a set S of states and a transition relation ~. Here the difference 
between restrictions and orderings disappears. 

A filter for a state transition system is a unary predicate <I» on the set of finite 
sequences of states. The notation S~S' stands for a derivation S~S' where <I»(S ... S') 
holds. For an infinite derivation, So-V... -vSn-q... means that <I»(SO...Sn) holds for each 
n. 

The name "filter" is due to Smolka [Smolka 82]. Intuitively, a filter <I» conceals all 
derivations for which the predicate does not hold, i.e. <I» retains a sub-portion of the state 
transition system's original search space. While it is not impossible to apply some 
tentative control regime in the remaining search space, there is a canonical way to 
associate with <I» a class of irrevocable control strategies. Having derived from some 
initial state So some non-final state Sn, such a strategy may choose as successor any state 
S with Sn~S and <I»(So.. ,SnS), thus pursuing one single derivation with <1». The strategy 
may freely exploit any nondeterminism left by the filter, and one may not make any 
assumption about its choices. Under these conditions the system's behaviour depends 
entirely on the properties of the filter <1». 

Traditional strategies for resolution are often described by means of an auxiliary struc­
ture called deduction tree [Chang & Lee 73, Loveland 78], which is an upward 
growing tree whose nodes are clauses and whose arcs connect resolvents or factors with 
their parent clauses (we used deduction trees in the Abraham-Isaac-Jacob example in 
section 4.4). One can think of deduction trees as being embedded in clause sets or clause 
graphs or other kinds of states composed of clauses in the following way: Given 
So~ So, associate with each clause C in Sn a deduction tree made up according to the 
steps of the derivation. Its nodes are clauses from the union of all Si. with leaves from So 
and root C. Loosely speaking, Sn contains a set of such deduction trees. A transition step 
Sn~ S producing a new clause introduces a new deduction tree, which is contained in G 
and not contained in Sn, but its immediate subtrees are. 

A restriction strategy essentially depends upon a predicate that admits only certain 
deduction trees. The corresponding restriction filter Cl> is defined as <I»(Go...GnG) iff 
Gn~G and the deduction tree introduced by G is admitted by this predicate. An ordering 
strategy relies on a merit ordering of deduction trees (or of linearizations thereof 
[Kowalski 70]). Given a merit ordering one obtains the corresponding ordering filter 
<I» as <I»(GO...GnG) iff Gn~G and none of the deduction trees introduced by any other 
potential successor of Go has better merit than the deduction tree introduced by G. 
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Example: Let <I>INPUT(SO...SoS) iff the root of any deduction tree introduced by S is 
adjacent to a leaf from SO. Further let a deduction tree T1 have better merit than T2, if the 
depth of Tl is less than the depth of T2, and let <I>LEVEL be the ordering filter 
corresponding to this merit ordering. For the trivial state transition system for the 
resolution calculus an irrevocable control strategy based on <1>INPUT 1\ <!>LEVEL perfonns 
a level saturation derivation in the search space left by the input restriction. The remaining 
nondeterminism leaves it up to the strategy to sequentialize at pleasure the generation of 
clauses of the same level. • 

Reduction steps can also be treated by both kinds of filters. An ordering filter might 
postpone the removal of subsumed clauses to certain resolution steps. A restriction filter 
might preclude backward subsumption. Furnished with appropriate node attributes 
indicating if and why the Clause is not present in the respective state, deduction trees may 
serve as a definitional aid for such cases too. 

With this background the behaviour of control strategies can be described in terms of 
filters and their properties. There is a natural way to accommodate to fIlters the notions 
introduced in section 4 for the state transition system: 

A filter <I> for a logical state transition system with initial state INIT(.1) for a formula J"is 
called: 

unsatisfiability sound iff whenever INIT(.1) ~ some final unsatisfiability 
state then J" is unsatisfiable; 

unsatisfiability complete iff whenever J"is unsatisfiable 
then INIT(.1) ~ some final unsatisfiability state 

unsatisfiability confluent iff whenever J"is unsatisfiable, and 
INIT(.1) ~ S1 and INIT(J) ~ S2 

then INIT(1) ~ S1 ~ S and 
INIT(.1) ~ S2 ~ S for some S; 

unsatisfiability Noetherian iff whenever J"is unsatisfiable then there is no 
infmite derivation 
INIT(.1) iF S1 -w ... -w So -w ... 

Note that -w needs not be transitive, hence the special fonn of confluence. Again, the 
concepts for satisfiability and other properties read correspondingly. • 

The logical state transition system's soundness properties are obviously not affected 
by any strategy, Le. each filter is unsatisfiability sound and satisfiability sound if the state 
transition system is. Unsatisfiability completeness of a filter <I> only signifies the 
existence of a refutation with <I> from any unsatisfiable initial state. For the trivial state 
transition system this is the central and usually the only property of restrictions ever 
investigated. Unsatisfiability confluence of a filter is necessary to avoid the need for 
backups to earlier states of a derivation, like the same property of the sate transition 
system. Most of the restrictions mentioned in section 5.1 are unsatisfiability complete for 
the trivial state transition system for resolution and many of them can even be combined 
without destroying unsatisfiability completeness. Their unsatisfiability confluence is 
usually rather obvious for the trivial state transition system, but hardly ever mentioned. 

Unsatisfiability completeness and unsatisfiability confluence of a restriction filter do 
not exclude infinite branches in the search space. It requires additional properties of the 
filter to ensure that an existing refutation will actually be found by an irrevocable control 
regime. The normal thing would be to call for unsatisfiability Noetherianness. Alterna­
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tively, one might squeeze a restriction to a point where it is unique, i.e. it accepts at most 
one successor state in each situation. Then its irrevocable application is deterministic and 
unsatisfiability completeness alone is sufficient. While for certain state transition systems, 
e.g. in syntax analysis, filters with such qualities do exist, none of the traditional 
restriction filters for resolution comes anywhere near uniqueness or unsatisfiability 
Noetherianness. 

Instead, termination is usually considered a problem to be handled by an ordering 
strategy. The definition of an appropriate merit ordering yields an ordering filter. For 
each of them one has to ascertain unsatisfiability completeness, unsatisfiability 
confluence, and unsatisfiability Noetherianness, and ideally these qualities should be 
maintained in conjunction with any unsatisfiability complete and unsatisfiability confluent 
restriction filter. 

Now in fact all orderings proposed for resolution belong to the same class of 
exhaustive orderings. A merit ordering is exhaustive, if each derivation admitted by the 
corresponding filter potentially, Le. if sufficiently continued to non-fmal states, reaches 
every deduction tree in the search space. Note the repugnance of this property with the 
very nature of restriction filters. Exhaustive ordering filters trivially enjoy all the 
properties we strive for. 

Unfortunately exhaustiveness heavily depends on the state transition system's 
commutativity. For non-commutative systems exhaustive ordering filters do not in 
general exist. Then we must attempt to capture the intention of exhaustiveness with a 
weaker notion: fairness, which means that each possible operation has a finite chance to 
be performed and none is infinitely postponed. Depending on the state transition system, 
the precise definition of fairness may vary. The goal is that each fair ordering filter, when 
combined with any unsatisfiability complete and unsatisfiability confluent restriction 
filter, is unsatisfiability complete, unsatisfiability confluent and unsatisfiability 
Noetherian. 

5.4 Results on Control Strategies for the CG State Transition System 

In this section we summarize the most important findings on control strategies for the cg 
state transition system [Eisinger 89]. Section 4.3 described the properties of this state 
transition system itself. 

Allowing a single application of a copy rule1 at the beginning, the combination and 
thus each subset of the following restrictions is unsatisfiability complete: set-of-support, 
linear, s-linear, half-factoring, kindred factoring. With the same proviso the t-linear and 
the SL-restriction are unsatisfiability complete, and so is the input restriction for the unit 
refutable class. Without the copy rule the unit restriction is unsatisfiability complete for 
the unit refutable class and the input and the SL restriction are for the Horn class. 

The conjunction of the set-of-support and the merging restriction is not unsatisfiability 
complete (although it is for the trivial system [Andrews 68]). This demonstrates that 
completeness results for strategies for the trivial state transition system do not simply 
carry over to other state transition systems. 

The copy rule allows insertion of additional variants of a clause in the graph. The copy rule is needed 
in the completeness proof. There is a strong conjecture that this nile is an artifact of the completeness 
proof technique and actually not necessary. 





- 63 ­

6 Conclusion 

The ability to draw logical conclusions is of fundamental importance to intelligent 
behaviour. For this reason, deduction components are an integral part of numerous 
Artificial Intelligence systems. Even though the original motivation for developing these 
systems was to automatically prove mathematical theorems, their applications now go far 
beyond. Logic programming languages such as PROLOG have been developed from 
deduction systems, and these systems are used within natural language systems and 
expert systems as well as in intelligent robot control. In addition, this field's logic­
oriented methods have influenced the basic research of almost all areas of Artificial 
Intelligence. 

In this paper we have presented a general theory of deduction systems. The theory has 
been illustrated with deduction systems based on the resolution calculus, in particular 
using clause graphs. In this theory there are four levels making up an entire deduction 
system. The first level is constituted by a logic, which establishes the syntax and the 
semantics of a formal language and thus defines the permissible structure and meaning of 
statements. The logics of interest to deduction systems define a notion of semantic 
entailment which, however, does not provide any means to determine algorithmically 
whether or not a given statement entails another one. This is accomplished by a calculus, 
the second level of a deduction system. A calculus defines syntactic derivations as 
operations on formulae. The third level of a deduction system, the logical state transition 
system, determines the description of formulae or sets of formulae together with their 
interrelationships, and also the representation of the various states of the derivation 
chains. Often, additional operations are introduced at this level, for instance the removal 
of redundant statements, rendering impossible some derivations allowed by the calculus ­
hopefully unnecessary ones. Finally, the control, the fourth level a deduction system is 
composed of, comprises the strategies and heuristics used to choose the most promising 
among all applicable derivation steps. 

For the last two levels appropriately adjusted notions of soundness, completeness, 
confluence and Noetheriailness have been introduced in order to characterize the 
properties of particular deduction systems. For more complex deduction systems, where 
logical and topological phenomena interleave, these properties can be far from obvious. 
We discussed these properties in particular for the system underlying Kowalski's 
connection graph proof procedure and listed the present knowledge about this system. 

We presented only a very small fraction of the activity going on in the fascinating field 
of the automation of reasoning. We hope that the developed framework proves useful in 
other areas of the field as well. 
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