

-1­

Deduction Systems Based on Resolution*

Norbert Eisinger, Hans Jiirgen Ohlbach

FB Infonnatik, University of Kaiserslautern

D-6750 Kaiserslautern,

Gennany

Abstract A general theory of deduction systems is presented. The theory
is illustrated with deduction systems based on the resolution calculus, in
particular with clause graphs. This theory distinguishes four constituents of a
deduction system: the logic, which establishes a notion of semantic
entailment; the calculus which provides the syntactic counterpart of
entailment; the logical state transition system, which determines the
representation of formulae or sets of fonnulae together with their
interrelationships, and also may allow additional operations reducing the
search space; the control, which comprises the strategies and heuristics used
to choose the most promising from among all applicable derivation steps.

For the last two levels many alternatives are presented and appropriately
adjusted notions of soundness, completeness, confluence, and Noetherian­
ness are introduced in order to characterize the properties of particular
deduction systems. For more complex deduction systems, where logical and
topological phenomena interleave, these properties can be far from obvious.

* This work was supported by the "Sonderforschungsbereich 314, Kunstliche Intelligenz" of the German

Science Foundation (DFG).

-2­

TaNe of Contents
1 Introduction 3

2 Logic: Clausal Fonn of First-Order Predicate Logic 5

2.1	 Clauses and Clause Sets 5

2.2	 Conversion to Clausal Fonn 7

2.3 Specializations and Modifications 9

3 Calculus: Resolution 10

3.1	 The Resolution Rule 11

3.2 Properties of Resolution and other Types of Calculi	 15

3.3	 Modifications 16

3.3.1 Macro Resolutions	 17

3.3.2 Theory Resolution	 18

3.3.3 Kinds of Theories	 22

3.3.3.1 Algorithmic Theories	 22

3.3.3.1.1 Equality Reasoning	 23

3.3.3.1.2 Theory Unification	 25

3.3.3.2 Representational Theories 28

. 3.3.3.3 Compiled Theories 30

4 Logical State Transition Systems 32

4.1	 Resolution with Reduction Rules 33

4.2 Clause Graphs and Transition Rules	 37

4.2.1 Clause Graphs	 37

4.2.2 Deduction Rules for Clause Graphs	 38

4.2.3 General Reduction Rules for Clause Graphs	 .41

4.2.4 Specific Reduction Rules for Clause Graphs	 43

4.3 Properties of Logical State Transition Systems	 .46

4.4	 Graphs as Representations for Proofs 48

4.5 Extracting Refutation Graphs from Clause Graphs 53

5 Control " 56

5.1	 Restriction Strategies 56

5.2 Ordering Strategies	 58

5.3 Filters	 , 59

5.4	 Results on Control Strategies for the CG State Transition System

61

6 Conclusion 63

7 References 64

8 Index 67

-3­

1 Introduction

Statements about the real world or about fictive or abstract worlds are often interrelated in
that some of them follow from others. For example, given the statements:

"Every cat eatsfish"
"Garfield is a cat"
"Garjield eats fzsh"

one would agree that the third statement follows from the other two. Whenever we as­
sume the first and the second statement to be true (in our considered world), we also have
to accept the truth of the third statement. The same holds for the statements:

"Every hwnan is monal"
"Socrates is a luunan"
"Socrates is monal"

where, again, the third statement follows from the other two. Now, the interesting point
is that the reason why the third statement follows from the others is apparently the same
in both cases. It does not depend on whether we talk about cats eating fish or about
humans being mortal or even about objects we don't know having properties we don't
know:

"Every ~ has property 0"

"i'is a ~"

"i'has property 0"

Obviously the third statement follows from the other two, no matter what the symbols in
these statements are supposed to mean.

The staggering observation that the "follows from" relationship between statements
can be established by regarding only their fonn but disregarding their contents, goes back
to the antique Greek philosophers. Expressed in modern terms, there seems to be a
syntactic characterization of a relationship which at first sight appears to be semantic in
nature. If that's the case, the relationship can also be determined by machines. A program
with this capacity is called a deduction system.

There are several variations in specifying the precise task of a deduction system.
Given some statements called hypotheses and some statements called conclusions,
the task may be: to decide whether the conclusions follow from the hypotheses; to
automatically demonstrate that the conclusions follow from the hypotheses if they really
do; or, given only hypotheses, to generate new statements that follow from these
hypotheses.

In order to achieve such goals, a deduction system requires a series of four constitu­
ents, each depending on the fonner: a logic, a calculus, a state transition system, and a
control.

A logic is a fonnallanguage in which statements can be fonnulated. It defines syntax
and semantics of its formulae, which are the entities of the formallanguage that corre­
spond to statements. The semantics definitions include a relation if't= y ("if entails y"
or "y follows from if" or " y is a consequence of if "), which formalizes the intuitive
relationship between statements in a way that is precise, yet unsuitable to algorithmic
treatment.

-4­

In this paper we deal with the clausal sublanguage of fIrst-order predicate logic.

The next constituent, a calculus, extends a logic by syntactic rules of inference.
These rules allow the derivation of fonnulae from formulae through strict symbol
manipulation, without recourse to the semantics. This gives rise to another relation,
:F'r- (j, which means that from :Fit is possible to derive (j by arbitrarily many successive
applications of inference rules of the calculus. Ideally, this syntactic derivability
relation coincides with the semantic entailment relation. Among the major scientific
achievements of this century are the findings that for first-order predicate logic there do
exist calculi for which the two relations coincide, and that for more powerful logics, in
which the natural numbers can be axiomatized, there don't.

The resolution calculus to be discussed in this paper was developed especially with
regard to computer implementations.

To implement a calculus for a logic, one needs a representation of fonnulae and opera­
tions corresponding to the inference rules. Somewhat more abstractly, one has to defIne a
state transition system. The states represent (se.ts of) fonnulae with their inter­
relationships, providing infonnation on the development of the derivations up to the
respective point and on their possible continuations. The transitions model the changes to
the states as inference rules are applied. Better state transition systems for the same
calculus can be obtained by refining the states, for instance such that they indicate directly
where inference rules can be or have been applied. More common improvements define
additional transitions, which are not based on the rules of the calculus, but simplify the
fonnulae or eliminate redundancies in the search space.

The state transition systems described in this paper are based on sets of clauses and on
graph structures imposed on them.

Finally, the control constituent is in charge of the selection from among the possible
transitions and of the administration of the sequences of steps already perfonned and
states thereby produced. In order to choose the most promising transitions, a number of
strategies and heuristic criteria can be used.

In this paper we try to focus on the underlying principles of such criteria.

The traditional concern of logicians has been how to symbolically represent know­
ledge and how to symbolically reason with such knowledge, in other words, they investi­

. gated logics and calculi. This does not require a separation of the two constituents as

strict as we presented it above. Often, in fact, a calculus is considered a part of the syntax

of a logic. In Artificial Intelligence, on the other hand, one is interested in useful and, as

far as possible, effIcient problem solvers. To that end all four of the constituents have to

be investigated, in particular the third and fourth, to which traditional logic did not contri­

bute very much.

In the following sections we shall address all four constituents, presenting techniques
to obtain powerful problem solvers based on predicate logic and resolution.

-5­

2 Logic: Clausal Form of First-Order Predicate Logic

First-order predicate logic is probably the most widely used and most thoroughly studied
logic. For this logic the semantic relation of entailment and the syntactic relation of
derivability are perfectly balanced, and it is the most expressive logic with this and similar
important properties [Lindstrom 69].

In addition, fIrst-order predicate logic serves as the basis of many other logics. New
logics have been developed from it in a variety of ways, for example: relevance logic in­
troduces new junctors; higher-order logics use new quantifiers; temporal, deontic, dyna­
mic, and other modal logics provide a new category of operators different from junctors
and quantifiers; fuzzy logic and quantum logic extend the classical set of truth values;
default logic and other kinds of non-monotonic logics modify the notion of derivation by
new kinds of inference rules. There are many more examples. All of these logics share a
substantial fragment with first-order predicate logic. Hence it is useful to be equipped
with well-understood methods for this fundamental reference logic. Moreover, the effects
of other logics can often be simulated by meta-Ievel components for first-order predicate
logic, and presently there even is about to emerge a new discipline investigating the com­
pilation of formulae from other logics using fIrst-order predicate logic as sort of a
machine language [Ohlbach 88, 89]. These reasons explain why most of the research on
deduction systems has concentrated on ftrst-order predicate logic.

Sometimes one is also interested in restrictions of a logic rather than extensions. The
most familiar sublogic of first-order predicate logic is, of course, propositionallogic.
Other specializations are deftned by considering only formulae in a certain normal form.
This reduces the number of syntactic forms, often without limiting the expressive power.
Clausal logic is a prominent example of that.

2.1 Clauses and Clause Sets

A clause is a universally closed disjunction of literals. A literal is a negated or
unnegated atomic formula (atom, for short), which in turn consists of a predicate symbol
applied to an appropriate number of terms. A term, literal, or clause is called ground if it
contains no variables. Unit clauses are clauses with only one literal.

The meaning of a clause can be defined by specifying an interpretation in the sense of
the standard Tarski semantics. Here is an example of a clause:

tixyz -'spouse(x, y) v -,Parent(x, z) v Parent(y, z) v Step-parent(y, z)

Using de Morgan's rule and the definition of the implicationjunctor, this clause can be
transformed into the equivalent formula:

tixyz Spouse(x, y) A Parent(x, z) => Parent(y, z) v Step-parent(y, z)

which shows more clearly the intended "natural" interpretation: if x is married to y and
parent of z, then y is a parent or step-parent of z. This syntactic form, which is
sometimes called Gentzen form, does without negation sign and uses atoms rather than
literals as its elementary parts. Often, the implication sign is reversed (and pronounced
"if'), such that the positive literals of the disjunctive form are collected on the left hand
side, the negative literals on the right hand side.

Another modiftcation exploits that the formula tix (!}'(x) => g), where the subformula g
contains no free occurrence of the variable symbol x, is equivalent to (3x !}'(x» => g.

-6­

Thus the variables occurring only in negative literals can be existentially quantified within
the negative part, and our example becomes:

\iyz Parent(y, z) v Step-parent(y, z) <== 3x Spouse(x, y) 1\ Parent(x, z)

This form is most appropriate for a procedural reading of the clause: in order to show that
y is a parent or step-parent of z, fmd an x that is married to y and parent of z.

Finally, disjunction is associative, commutative and idempotent, which are just the
properties of a set constructor. Therefore one can also define a clause as a set of literals:

r-.spouse(x, y), -.Parent(x, z), Parent(y, z), Step-parent(y, z)}

Here the quantifier prefix is omitted because it is uniquely determined by the set of va­
riables occurring in the clause. This definition abstracts from the irrel~vant order of the
literals and automatically excludes duplicate occurrences of the same literal in a clause. In
an implementation, however, the removal of duplicate literals has to be programmed
anyway, and it is not always convenient to place this operation on the abstraction level of
the representation of clauses.

Which of these syntactic variants is to be preferred, depends largely on personal habit
and taste. Semantically they are all the same. In this paper we adhere to the set syntax,
but usually omit the set braces and occasionally do allow duplicate literals.

Clausal logic is the sublanguage of first-order predicate logic consisting of the formu­
lae that are clauses. For this special case some of the standard semantic notions become
somewhat simpler. An interpretation satisfies a ground clause iff it satisfies some literal
of the clause; it satisfies an arbitrary clause iff it satisfies each ground instance of that
clause (we only need to consider Herbrand interpretations - see textbooks on classical
logic). Obviously each clause is satisfiable, provided that it contains at least one literal.
The empty clause [J, which like the "empty disjunction" corresponds to the truth value
false, is the only unsatisfiable clause. A clause is valid, i.e., satisfied by all interpreta­
tions, iff it contains an atom and its negation. Such a clause is called a tautology, the
atom and its negation are complementary literals.

As usual, a set of formulae is interpreted like the conjunction of its members. Thus an
interpretation satisfies a set of clauses iff it satisfies each clause in the set; such an inter­
pretation is also called a model of the clause set. A clause set is valid iff each member
clause is a tautology. This holds vacuously for the empty clause set, which contains no
clauses at all - not even the empty clause. A clause set containing the empty clause, on
the other hand, is unsatisfiable. There are some more criteria for special satisfiable or un­
satisfiable clause sets, but a general characterization of satisfiability or unsatisfiability
based on the syntactic form of the clause set does not (and cannot) exist.

Why should we be interested in such properties? The original problem is, after all,
whether some hypotheses 9f], ...,:J-fn entail a conclusion Cwhether 9f], ..., :J-fnI=Cholds.
For predicate logic formulae JIi and Ccontaining no free variables, this is the case iff the
formula :Ji] 1\ •.. 1\ :J-fn => Cis valid, which in turn holds iff the formula :Ji] 1\ •.. 1\ 9-fn 1\ --,C
is unsatisfiable. (The first iff is known as the deduction theorem, the second is
straightforward.) As it happens, any formula can be converted into a clause set that is
unsatisfiable iff the formula is, and now we have translated our problem into the question
whether a certain clause set is unsatisfiable. That's why the unsatisfiability of clause sets
is of interest.

-7­

2.2 Conversion to Clausal Form

Earlier, we used the example that the formula (3x !J(x)) => g, where the subformula g
contains no free occurrence of the variable symbol x, is equivalent to 'tIx(!J(x) => g).
What that really means is that the two formulae entail each other: any interpretation satis­
fies one of them iff it satisfies the other. In other words, the formulae have the same mo­
dels. Even stronger, whenever one of them occurs in a larger formula :J{and we replace
this occurrence by the other, the resulting formula has exactly the same models as:Jl

Thus we can read the pair of formulae as a transformation rule which, expressed pro­
cedurally, moves a quantifier from the first subformula of an implication to the front of
the entire implication, reversing the quantifier in the process. This transformation rule can
be applied to any formulae without affecting their models. There are more model preser­
ving transformations of this kind, and together they allow to move all the quantifiers of a
predicate logic formula to the front. The resulting formula is said to be in prenex form
it consists of a quantifier prefix and a quantifier-free subformula called the matrix. In
order to convert a predicate logic formula without free variables into clausal form, we
start by converting it into prenex form.

As an example consider one of the unfamous "epsilontics" from Analysis, namely the
definition that a function g is uniformly continuous:

'tie (e>O => 38 (8)0/\ 'tIxy (/x-y/<8 => /g(x)-g(y)/<e)))

Using model preserving transformations, we obtain the equivalent prenex form of this
formula:

'tie 38 V'xy e>O => 8>0 /\ (/x-y/<8 => /g(x)-g(y)/<e)

The next goal in the conversion to clausal form is to eliminate the quantifier prefix. If
there are only universal quantifiers, we can simply omit the prefix because it is uniquely
determined by the variables occurring in the matrix.,!f, like in the example above, the
prefix contains existential quantifiers, we apply a transformation called Skolemization:
each existentially quantified variable is replaced by a term composed of a new function
symbol whose arguments are all the variables of universal quantifiers preceding the
respective existential quantifier in the prefix. In the example above, we replace 8 in the
matrix byfee) for a new function symbolfo; the 38can then be deleted from the prefix.

Skolemization is not a model preserving transformation; applied to a formula !J in
prenex form it produces a formula !J* that is not equivalent to !J. However,
Skolemization preserves the existence of models: !J has a model iff !J* has one. In other
words, !J is (un)satisfiable iff !J* is. For more details on Skolemization see textbooks on
classical logic.

In any case, after Skolemization there remain only universally quantified variables.
Now we can drop the prefix because it is implicitly determined by the matrix. Our
example is transformed into the following quantifier-free form:

e> 0 =>f8e»0 /\ (/x-y/</t/e) =>/g(x)-g(y)/<e)

The remaining conversion uses again model preserving transformations. For instance,
subformulae of the form !J=>(j are replaced by ,!Jv(j. With this and similar rules any
connectives other than negation, conjunction and disjunction can be eliminated. After that
all negation signs are moved inside subformulae by de Morgan's rules. We obtain the

-8­

negation normal form, which is a formula consisting of literals and arbitrarily nested
conjunctions and disjunctions:

-£>0 v (jae) >0 A (-Ix-y/<fae) v/g(x)-g(y)/<e))

Finally, the distributivity laws allow the multiplication of this formula into conjunc­
tive normal form:

-£>0 vftfe»O) A (-£>0 v ../x-y/<ftfe) v/g(x)-g(y)/<e)

This conjunction of clauses can now simply be written as a set of clauses. If we use the
set syntax also for each individual clause, we get the following clausal form of our
example:

{{..e>0, fie»Oj, (..e>0, -Ix-y/<ft/e), /g(x)-g(y)/<e))

In this way, any predicate logic formula without free variables can be converted into a
clause set which is (un)satisfiable iff the formula is. If the prenex form of the formula
contains no existential quantifiers, the clause set is even equivalent to the formula. In case
the formula is a conjunction of subformulae, its clausal form is always the union of the
clausal forms of these subformulae. This is especially convenient if we regard our
original problem whether the hypotheses :F1, ..., :Fn entail the conclusion g, which was
translated into the question whether the formula :F1 A ... A :Fn A ..g is unsatisfiable. To
convert the latter into a clause set whose unsatisfiability corresponds to the original
problem, we can convert each hypothesis individually, convert the negation of the
conclusion, and unite all the clause sets thus obtained. In many real examples, each
hypothesis corresponds to a single clause anyway.

There are a number of technical improvements that avoid certain redundancies in the
conversion. One of them is relevant if the logic supplies an equivalence junctor <:::>. A
formula :F <:::> 9 has to be transformed such that the equivalence junctor disappears, at
latest when converting to negation normal form; if :F and 9 contain quantifiers, the
transformation is necessary already for the prenex form. :F <:::> 9 can be replaced by
(..:Fv g)A (:Fv ..g), corresponding to (:F~g)A(:F~g), or alternatively by
(:FA g) V (..:FA ..g). Both are model preserving transformations, but the first has a
disadvantage if afterwards multiplied into conjunctive form: it results in
(..:F A :F) v (g A :F) v (..:FA ..g) V (g A ..g), which is just the. second form plus two
tautologies containing four additional copies of the subformulae. In general these
tautologies cannot be recognized as such if :F and 9 are themselves complex formulae
which are changed during the conversion. The second form would avoid this
redundancy. However, if the whole equivalence occurs within the scope of a negation,
disjunctions and conjunctions exchange as the negations are moved to the literals. Then it
is the second form which results in redundancies avoided by the other form. Thus, an
equivalence in the scope of an even number of (explicit and implicit) negations should be
replaced by a conjunction of disjunctions, an equivalence in the scope of an odd number
of negations by a disjunction of conjunctions.

Regardless which of the forms is used, the transformation of an equivalence involves
a replication of subformulae. The same holds for an application of the distributivity rule
in order to multiply into conjunctive normal form. Depending on the nesting of junctors,
this may lead to an exponential increase in the size of the formula, which can be limited to
a linear increase by a special technique. Consider the formula :Fv(9 A 91). An application
of the distributivity law would duplicate the subformula r. Instead, we can abbreviate the
subformula (g A 9-l) by P(Xl'" .,x,J, where Xl,.'" Xn are the free variables in (gA 91) and
P is a new predicate symbol. The original formula '.J v (9 A 9-l) is then transformed into

-9­

(~vP(Xl> ..., X,J) A (-,F(Xl>"" X,J v (j) A (-,P(Xl> ...,X,J v:J-f), which uses three copies
of P(xj , ••• , x,,). But this is only an atom and need not be further transformed. The
possibly very complex formula :J, on the other hand, still appears only once.

Another improvement involves the movements of quantifiers. The prenex form of the
formula 'rIx«'tIyP(x,y» v(3zQ(x,z») is 'tIx 'rIy3z«P(x,y» v(Q(x,z»). Skolemi­
zation of the prenex form would replace z by f(x,y). The original formula shows,
however, that the existential quantifier does not at all depend on the second universal
quantifier. The 3z came into the scope <if 'rIy only because the latter happened to be
moved into the prefix before the existential quantifier. Thus we can use the smaller
Skolem termf(x) for z. For this and similar reasons one often converts in a different way:
the negation normal form is constructed from the un-Skolemized matrix, then all the
quantifiers are moved into subformulae as far as permitted by model preserving
transformations. The resulting anti-prenex form is then Skolemized.

2.3 Specializations and Modifications

Clauses with at most one positive literal are called Horn clauses. They are usually
written in the implication syntax: L1 A ... A L n => L n+1 or, more frequently,
L n+1 <= L1 A ••. A L n for atoms Li. Sets of Horn clauses have many convenient special
properties. In this paper, we shall not go into details here.

While this is just a sublogic, there are some modifications that change the underlying
logic. The most common is the incorporation of special symbols with "built-in" fixed
interpretations, for example for the equality relation. More recently many-sorted logics
have become increasingly popular. Such modifications may allow more concise or more
"natural" representations. Much more important, however, is whether they contribute to
better derivations. Therefore we address them in a later section (3.3), after derivations
have been discussed.

- 10­

3 Calculus: Resolution

A calculus presupposes a logic and provides syntactic operations to derive new fonnulae
of this logic from given ones. The basis for the operations are so-called rules of·
inference, which have the following general fonn:

~1'" ~1l

~

The objects above the line are called the premises of the inference rule, the object
below is its consequent. Premises and consequent are fonnulae or rather schemata of
fonnulae. An application of the rule is possible if the fonnulae 1}, ..., :F are given or 1l

have been derived by previous rule applications; the effect of the application is that the
consequent fonnula :F is derived in addition. For obvious reasons we exclude inference
rules with infinitely many premises and consider only so-called finite premise rules.

Two well-known inference rules are the modus ponens rule and the instantiation
rule:

:F :F=> (j 'Ix :F[x] for a tenn t
(j :F[t]

We demonstrate the application of these rules to the following frrst-order predicate logic
fonnulae:

'Ix Cat(x) => Fish-eater(x)
Cat(Garjield)

The first fonnula has the fonn of the premise of the instantiation rule, where :F[x] is
Cat(x) =>Fish-eater(x). Taking Garfield as the tenn t to be substituted for the variable x,
we derive the new fonnula:

Cat(Garjield) => Fish-eater(Garfield)

This has the fonn of the second premise :F=>(j of the modus ponens rule. Since the
fonnula corresponding to the first premise :r. in this case Cat(Garfield), is also given, we
can now derive the fonnula

Fish-eater(Garjield)

with the modus ponens rule.

There may be many different calculi for the same logic. For first-order predicate logic
a calculus was designed by David Hilbert. Later, further calculi for this logic were
presented by Gerhard Gentzen and by others. In a sense all of these calculi are
equivalent, and they are often subsumed under the collective name classical calculi.
Some people even go as far as talking about "the predicate calculus"l.

Classical calculi are designed such that the fonnulae following from given fonnulae
can be enumerated by applying the inference rules. There may also be no given fonnulae
at all, in which case the fonnulae enumerated by the calcl;1lus are just the valid fonnulae of
first-order predicate logic. In order to apply its inference rules in this case, a calculus
needs some elementary tautologies as a starting point. These are provided by the logical
axioms, the second ingredient of a calculus beside the inference rules. Hilbert's

1	 AI-ticians seem to be particularly fond of saying that something can or cannot be expressed "in the

predicate calculus" when they usually mean "in first-order predicate logic"

-11­

calculus, for instance, contains all formulae of the fonn ~~((j~~) among its logical
axioms, and the modus ponens rule among its inference rules.

Such a calculus for valid fonnulae is called a positive calculus. Dual to that, one
can also construct negative calculi for unsatisfiable fonnulae; then the logical axioms
provide the elementary contradictions as a starting point.

Independent of the distinction between positive and negative calculi, there is a
distinction between the ways the inference rules are to be used [Richter 78]. With a
generating calculus, one starts from the logical axioms and applies inference rules
until the fonnula to be proven (valid or unsatisfiable, depending on whether the calculus
is positive or negative) has been derived. The inference rules of a testing calculus, on
the other hand, are applied starting from the formula whose validity or unsatisfiability is
to be shown, until arriving at logical axioms. Generating calculi can also be called
forward calculi or synthesizing calculi, testing calculi can be called backward calculi or
analyzing calculi.

A generating calculus can be converted into a testing calculus and vice versa, by
simply exchanging the premises and consequents of each inference rule. If we do that for
the modus ponens rule, however, it says that given a fonnula (j we derive the two
formulae ~and ~~(j where ~is any arbitrary formula. Such a rule is not very useful. In
the original fonn the rule confonns to the subformula principle: given concrete
premise formulae, the consequent formula is determined as some subformula of these. As
rules are reversed, the subfonnula principle is often violated. A famous calculus by
Gerhard Gentzen, the sequent calculus, was defined as a generating calculus and then
turned into a testing calculus: in his "Hauptsatz" Gentzen showed that the only rule
whose reversal violates the subformula principle was unnecessary.

3. 1 The Resolution Rule

Specialized to clausal logic, the modus ponens rule would have the form

L -J.." M], ..., Mm

Ml> ..., Mm

for literals L, -J.." M j. The ground resolution rule is a generalization in that the first
premise may be a clause with other literals beside L, which are then also part of the
consequent clause (from now on we write the premises below each other):

L, K], , KIl

-J.." Ml> , Mm

The consequent is called a resolvent of the premises, which are also called the parent
clauses of the resolvent. Land -.L are called resolution literals. Thus, from the
clauses

Cat(Garfield), Thinker(Garjield)
-eat(Garjield), Fish-eater(Garfield)

where the second is the clausal fonn of Cat(Garjield) =>Fish-eater(Garfield) used above
in the modus ponens example, we can derive the resolvent

Thinker(Garjield), Fish-eater(Garjield)

- 12­

It is easy to see that a resolvent is a consequence of its parent clauses: Suppose there is
an interpretation satisfying both parent clauses, we have to show that it satisfies the
resolvent as well. To satisfy the parent clause, the interpretation has to satisfy at least one
literal each of them. Let us first consider the case that the interpretation satisfies L. Then it
cannot satisfy,L in the second premise clause and hence satisfies one of the Mi. This
literal belongs to the resolvent, which is therefore also satisfied. In the other case the
interpretation does not satisfy L and hence satisfies one of the Ki of the first premise
clause and thus also the resolvent.

The essential point of the ground resolution rule is that there must be two
complementary literals in the parent clauses. For the non-ground case, the requirement
that they are complementary is relaxed such that they need not be, but can be made
complementary by substituting terms for their variables. Since x and y are different in the
clauses

Cat(x), Thinker(x)
-'cat(y), Fish-eater(y)

Cat(x) and -,Cat(y) are not complementary. They can be made complementary by
instantiating x and y with, say, GarfieLd, yielding the same clauses as above. Therefore

Thinker(GarfieLd), Fish-eater(GarfieLd)

is also a consequence of these more general clauses. Instantiating x and y with Garfield is
not the only possibility to obtain complementary literals. The termfriend-of(Odie) for
example would also do, as well as infinitely many others.

Mappings like {x f- Garfield, y f- Garfield} and (x f- friend-of(Odie), y f- friend­
of(Odie)} are called substitutions. They can be applied to terms, atoms etc. resulting in
objects that differ only in that each variable appearing to the left of an arrow is replaced
by the corresponding term to the right of the arrow. For example, the application of the
first substitution to Cat(x) results in Cat(Garfield), and so does the application of the
substitution to Cat(y). A unifying substitution or simply unifier for two terms or
atoms is a substitution whose application to either of them produces the same result. Thus
each of the substitutions above is a unifier for the atoms Cat(x) and Cat(y). For these two
atoms the effect of any unifier can be obtained by first applying the substitution {x f- y}
and then instantiating further. For example, the effect of the unifier {x f- Garfield, y f­

Garfield} is the same as that of {x f- y} followed by {y f- GarfieLd}. We call {x f- y}
a most general unifier for Cat(x) and Cat(y). Fortunately, if two terms have a unifier
at all, they always have a most general unifier, which is unique up to variable renaming
[Robinson 65].

Various unification algorithms computing a most general unifier for two terms,
term lists, or atoms have been developed. The earliest known stems from 1920. It was
discovered by Martin Davis in Emil Post's notebooks. Most of the algorithms are
exponential in the size of the terms. Using special representations for terms it is,
however, possible to unify two terms in linear time [Paterson & Wegman 78]. The most
intuitive version of the unification algorithm views unification as a process of solving
equations by a series of transformations: To compute a most general unifier of term lists
(Pj"",Pk) and (q}t ...,qk) start from the set of equations {Pj=qj, ..., Pk=qk} and
transform the set with the following rules as long as any of them is applicable:

- 13­

{x=x} u E ---+ E (tautology)

{X=t} u E ---+ {x=t} u E[x replaced by tl (application)

if x occurs in E but not in t

{t=x} u E ---+ {x=t} U E (orientation)

if t is a non-variable tenn

(f(Sj"",sn)=f(tj> ,tn)) U E ---+ (Sj=t]. ..., sn=t,J u E (decomposition)
(f(s]. ... ,sJ=g(t]. ,tm)} U E ---+ failure (clash)
{x=t} u E ---+ failure (cycle)

ifx occurs in t

where x stands for a variable, t for a tenn, and E for a set of equations. •
Example: We want to unify the tenn lists (f(x,g(a,y», g(x,h(y))) and(f(h(y),g(y,a»,
g(z,z».
The system of equations

(f(x,g(a,y» = j(h(y),g(y,a», g(x,h(y» = g(z,z) }
can be transfonned into

(x =h(y), a =y, y =a, x =z, h(y) =z}

by applying the decomposition rule several times, then into

(x =h(a), y =a, a =a, h(a) =h(a), z =h(a) }
with the application and orientation rules, and finally into

(x =h(a),y =a, Z =h(a))
by using the tautology rule.

No further rule application is possible. Thus, the substitution (x r- h(a), y r- a, z r ­
h(a)} is a most general unifier for the original tenn lists. •

With the concept of most general unifiers we can now define the full resolution rule
[Robinson 65]:

clause!: L, K], , Kn O'is the most general unifier
clause2: -J..:, MJ, , M", of L andL'.

resolvent:

The two clauses should not contain the same variables. This can be achieved by
automatically replacing the variables in a newly generated clause by completely new
variables. The logical justification for the replacement is that fonnulae 'v'x :F[xl and
'v'x' :F[x 7 are equivalent.

Since any instance of a literal is a consequence of this literal, it is easy to see that the
resolvent is a consequence of its parent clauses also for the full resolution rule.

Let us now look at some sample applications of the resolution rule:

Human(Socrates)

-J{uman(x), Mortal(x) 0' = {x r-Socrates}

Mortal(Socrates)

P(x, a), Q(x)
-rP(f(y), y), R(y)

Q(f(a», R(a)

Shaves(x, x), Shaves(Barber, x) 0'= {x r-Barber, y r-Barber}
,shaves(Barber, y), ,shaves(y, y)

- 14­

Shaves(Barber, Barber), -..5haves(Barber, Barber)

The last example is the famous Russel antinomy in clausal form: the barber shaves a
person if and only if that person does not shave himself. This statement is inconsistent. It
also shows that a refinement of the resolution rule remains necessary. The contradiction
can be derived only if, before generating the resolvent, in either parent clause the two
literals are instantiated by a substitution such that they become equal and merge into one
literal:

Shaves(x, x), Shaves(Barber, x) I­ Shaves(Barber, Barber)
-..5haves(Barber,y), -8haves(y, y) I- -8haves(Barber, Barber)

o

Originally, Robinson integrated this instantiating and merging operation into the
resolution rule; for practical reasons, though, it is usually handled as a supplementary
inference rule of its own, called factoring.

Most classical calculi are positive generating calculi. In contrast, the resolution
calculus is a negative testing calculus: the empty clause is its only logical axiom and
represents the elementary contradiction; resolution and factoring are its rules of inference,
which are applied to the clause set whose unsatisfiability is to be shown, until the logical
axiom has been reached.

Example: We illustrate the whole procedure by proving the transitivity of the set
inclusion relation. ,Our hypothesis is the definition of c in terms of E:

\fx,y x c y <=> \fw w EX=> W E Y
We want to show that the following conclusion is a consequence of the hypothesis:

\fx,y,z x cy 1\ Y S;; z => X S;; z

Transforming the hypothesis and the negated conclusion into clause form we obtain the
initial clause set:

HI: -.x kY, -.W E x, W E Y (~ part of the hypothesis)
H2: xs;; y, f(x,y) E x (two <= parts of the hypothesis,
H3: x c y, -.f(x,y) E y fis a Skolem function for w)
Cl: a cb (three parts of the negated conclusion,
C2: b kC a, b, c are Skolem constants for x, y, z)
C3: -.a cc

Resolution derivation (HI,1 denotes the first literal of clause HI as a resolution literal): .
HI,1 & Cl, {x ~a, y ~b} ---? RI: -. WE a, WEb
HI,1 & C2, {x ~b, y ~c} ---? R2: -. wEb, W E c
H2,2 & RI,I, (x ~ a, W ~f(a,y)} ---? R3: a ky,f(a,y) E b
H3,2 & R2,2, (y ~ c, W ~f(x,c)} ---? R4: x cc, -.f(x,c) E b
R3,2 & R4,2, {x ~ a, y ~ c} ---? R5: a cc, a cc
R5 (factoring) ---? R6: a cc
R6&C3 ---? R7: 0

The derivation of the empty clause means that the initial clause set is unsatisfiable.
Therefore the conclusion follows indeed from the hypothesis. •

- 15 ­

3.2 Properties of Resolution and other Types of Calculi

Classical calculi usually have two properties, soundness and completeness. A positive
generating calculus is sound, if each of its logical axioms is valid and any formula
derived by applying inference rules follows from the formulae from which it was
derived. Obviously, for the latter property it is sufficient to show that each individual
inference rule is sound, Le., that its consequent follows from its premises. As we have
seen earlier, the resolution rule has this property. So has the factoring rule, and thus the
resolution calculus is sound.

The requirement for completeness of a positive generating calculus is that each
formula following from given ones can be derived from the given ones by applying
inference rules of the calculus. The resolution calculus is not complete in this sense.

For example, consider the formula :J = V'x P(x) , which is just a unit clause. The
resolution rule cannot be applied here at all; so even though there are an infinite number
of formulae following from :J, none can be derived in the resolution calculus.

One consequence of :J would be the formula P(t) for an arbitrary term t. In most
classical calculi it can be derived with the instantiation rule or a similar rule. But by the
same rule any other instances of P(x) would also be derivable. For every variable in a
formula, the instantiation rule provides as many alternative derivations as there are terms.
This tremendous branching rate is alleviated in the resolution calculus by the idea of
unification: variables are instantiated just as far as necessary to apply a rule, and the
derivations are carried out at the "most general" level possible.

:Jalso entails the formula V'x P(x) vQ. To derive it one needs an inference rule which,
in the special case of a clausal form, allows from any clause the derivation of a new one
containing arbitrary additional literals. Obviously this violates the subformula principle
and thus results in a large search space, which the resolution calculus avoids in the first
place.

Further, any tautology follows from :J, for instance Q v -,Q. In a complete calculus
they can all be derived. But it is not at all desirable to derive all formulae that are valid
independent of :J. After all, an unsatisfiable formula :Jwould entail every predicate logic
formula, but we are not interested in being able to derive them all from :J. Derivations of
this kind are also ruled out by the resolution calculus.

Thus the resolution calculus is not complete in the sense that all consequences of a
formula are derivable from it. But resolution has the property of refutation
completeness: From an unsatisfiable clause set it is always possible to derive the empty
clause, the elementary contradiction, in finitely many steps. Since no interpretation
satisfies the empty clause and the calculus is sound, this means that a clause set is
unsatisfiable if and only if the empty clause can be derived from it in the resolution
calculus.

This property is sufficient to prove all consequences. By the deduction theorem a
formula C follows from given formulae !Jf.I, ..., !J-f,. iff the formula ~ A .•. A !J-f,. ==> C is
valid. This is the case iff:J-6 1\ ..• 1\:J-f,.1\ -e is unsatisfiable, which is equivalent to saying
that the clausal form of the last formula is unsatisfiable. This in turn holds if and only if
the empty clause can be derived from this clause set. : ~

However, the property is not sufficient to decide whether a formula is a consequence.
One can systematically enumerate all resolvents derivable from the appropriate clause set.

- 16­

If the empty clause is derivable, it will be obtained after finitely many steps. Otherwise
the generation of new resolvents may go on forever. In cases where it is known a-priori
that only finitely many different resolvents can be derived from any given clause set, for
instance in the ground case, the resolution calculus can of course be the basis of a
decision procedure for the special class of formulae.

In summary, the resolution calculus has the following properties:

•	 The resolution calculus is sound. This implies in particular that whenever the
empty clause can be derived from the clausal form of Jiypotlieses /\
...,Condusion., then the hypotheses do entail the conclusion.

•	 The resolution calculus is not complete, but refutation complete. Whenever
some hypotheses entail a conclusion, it is possible to derive the empty clause
from the clausal form of Jiypotlieses /\ ...,Concfusion.

•	 Since first-order predicate logic is not decidable, the resolution calculus can at
best be the basis for a semidecision procedure for the problem whether some

.hypotheses entail a conclusion. Only for certain subclasses	 of first-order
predicate logic can it provide a decision procedure.

The abandonment of classical completeness was a major step in improving the
efficiency of a calculus. Of course implementations and thus efficiency were beyond the
concern of the time when classical calculi were developed, when the objective was to
study whether the semantic entailment relation could in principle be determined by
syntactic operations.

Resolution does no longer bother to derive all consequences, but still sufficiently
many. The resolution calculus also has the following, less widely known property: for
every non-tautologous clause D following from a given clause set, a clause C is derivable
that entails D. The entailment is of a special, syntactidlly easy to recognize form: from C
one can obtain D by instantiation and addition of further literals. This trivial form of
entailment between two clauses is called subsumption. For example, from the clauses
(P(x), Q(x)} and (-,P(f(y))} the clause D = {Q(j(a)),R} follows. It cannot be derived,
the only possible resolvent is C =(Q(f(y))}. From C one can obtain D by instantiating C
with {y ~ a} and by adding the literal R, in other words, C subsumes D. The resolution
calculus can derive any consequences "up to subsumption", and in this sense it is
powerful enough to derive all "interesting" consequences.

3.3 Modifications

The branching rate in the search space generated by the resolution rule is always finite
and in general not too high. Compared to the usually infinite branching rate of classical
calculi, this was such a tremendous improvement that in the early days of automated
theorem proving many researchers thought the problem was solved once and for all. Very
soon, however, the first implementations of resolution theorem provers brought the
inevitable disillusionment. Although some really nontrivial theorems could be proved
now, there was still no chance of proving routinely everyday mathematical theorems.
Various modifications of the basic resolution calculus were then developed in order to
strengthen its power by further reducing the search space. All the rest of this paper is
dedicated to such improvements on the different levels ofdeduction systems.

- 17­

3.3.1 Macro Resolutions

The first group of modifications is aimed at overcoming the problem that different
sequences of resolution steps may result in the same final resolvent. The idea is to group
these steps together into one macro step which generates the resolvent only once.

Unit resulting resolution (or UR-resolution) simultaneously resolves n unit
clauses with a clause consisting of n+l literals, called a "nucleus". The result is a new
unit clause.

For example, let the following clauses be given:

Cl: -,P(X,y) , -.P(y,z), P(x,z)

C2: P(a,b)

C3: P(b,c)

Then, among others, the following resolution steps are possible:

CI,1 & C2 1­ RI: -J>(b,z), P(a,z)

RI,1 & C3 1- R2: P(a,c)

The second resolvent can also be obtained by a another derivation, which differs from the
fIrst one only in an insignifIcant reversal of the order of the steps:

CI,2 & C3 1­ RI': -.P(x,b), P(x,c)

RI',1 & C2 1- R2: P(a,c)

UR-resolution would combine the two steps so that R2 is derived in one go and the order
of the steps does no longer matter.

The general schema for UR-resolution can be graphically represented as follows:

unit
clauses

"nucleus"

•••

•••

•••
simul­
taneous
unifier (J

UR- ,
resolvent

This representation illustrates that all unit clauses have the same status and that the
order in which they are used for resolution has no effect on the final result. The
simultaneous unifier can be computed from two term lists, one obtained by concatenating
the term lists of the unit clauses1, the other by concatenating the term lists of their partner
literals in the nucleus. The two term lists have equal lengths and are unified as usual. In
our transitivity example above, the term lists are (x,y,y, z) and (a, b, b, c). Their most
general unifier is {x ra, y rb, z rc}.

1 The variables of the unit clauses used more than once have to be renamed.

- 18­

The abstraction from the order of the n unit resolution steps is not the only effect of
UR-resolution. It also omits the n-l clauses occurring as intermediate results. In the
example above, neither RI nor RI' would be added to the clause set. On the face of it
there is no justification for this omission. Thus UR-resolution actually represents a new
rule of inference, for which the same properties as for the resolution rule have to be
shown.

UR-resolution is not in general refutation complete, but it is for the unit refutable class
of clause sets. Clause sets from this class can be refuted by allowing resolution only
when at least one resolution partner is a unit clause. All unsatisfiable Horn clause sets
belong to this class. The procedure described in section 4.5 for the extraction of
refutation trees essentially simulates a UR-derivation.

Hyper-resolution can be regarded as a generalization of UR-resolution. It was
developed by John Alan Robinson [Robinson 65b] and is described by the following
schema:

•••

•••

L......::.L-_ • • • _.L.-:..:.L-.....:.:.~_

simul­
taneous
unifier (J

"electrons"

• • • ~ -Ln+ml "nucleus"

Here a clause with at least one positive literal serves as "nucleus". In unsatisfiable
clause sets, such clauses always exist. For every positive literal of the nucleus, a so­
called "electron" is needed, a clause containing only negative literals. Again, such clauses
always exist in an unsatisfiable clause set. The nucleus is resolved with all electrons
simultaneously, resulting in a purely negative clause which, in turn, can be used as an
electron for the next hyper-resolution step. The purely negative clauses take on the part of
the unit clauses in UR-resolution.

Dual to this so-called negative hyper-resolution, one can define positive
hyper-resolution simply by reversing the signs of the literals in the nucleus and the
electrons. Since normally a negated conclusion contains only negative literals and can
thus be used as electron for negative hyper-resolution, the latter is suitable for backward
reasoning from the conclusion toward the hypotheses, whereas positive hyper-resolution
can work in the forward direction from the hypotheses toward the conclusion. Both
variants of hyper-resolution (with factoring built in) are refutation complete for arbitrary
clause sets.

3.3.2 Theory Resolution

Resolution is a universal rule of inference. From a theoretical point of view this has the
advantage that any first-order predicate logic formula that is provable at all is provable
with the resolution calculus. From a practical point of view, however, the disadvantage is
that the rule does not know anything about the semantics of the symbols it manipulates.
Domain specific knowledge and algorithms can therefore not directly be exploited in a
pure resolution theorem prover. Even such simple things like adding two numbers have

- 19­

to be done by resolution with the axioms of number theory. A control component would
have to be quite intricate to select the resolution steps in such a way as to simulate an
execution of the addition algorithm. While this simulation of an algorithm is possible, it is
certainly not the way humans work. Humans tend to apply techniques as specific as
possible and resort to general purpose techniques only when they lack specific
knowledge. This kind of considerations were the motivation for the ideas presented in the
next section.

Theory resolution is a scheme to exploit information about the meaning of
predicate symbols and function symbols directly within the calculus, by using specially
tailored inference rules instead of axioms for these symbols. General theory resolution
was proposed by Mark Stickel at SRI [Stickel 85]. Many special cases, however, were
known before by different names.

As a motivation for the approach, let us recall the justification for the soundness of the
resolution rule:

clause I: L, K], , K,.

clause2: -,L, M]> , Mm

resolvent:

The essential argument for the parent clauses' entailing the resolvent was that an
interpretation satisfying the literal L falsifies -1... The crucial point is that no interpretation
can satisfy both L and -1... This is the case for two literals whenever they meet the purely
syntactic condition of being complementary, i.e., if they have opposite signs, equal
predicate symbols, and equal term lists.

In many cases one can generalize this syntactic notion of complementarity by utilizing
the fact that not any arbitrary interpretations need to be considered, but only certain
classes of interpretations. For instance, a set of fonnulae might contain axioms for a
predicate symbol <, such that interpretations can be models only if they associate with < a
strict ordering on the universe. Due to the properties of strict ordering relations, no such
interpretation can satisfy both a < band b < a. These two literals are not syntactically
complementary, but, as it were, semantically contradictory in the assumed context, where
the following derivation step would also be sound:

clause!: a< b,K

clause2: b< a,M

resolvent: K,M

As a further generalization, we can even abandon the restriction to two parent clauses.
No interpretation of the assumed class can satisfy each ofthe literals a < band b < c and
c < a. Analogous to the justification for the simple resolution rule, only with more
cases, the following step can also be shown to be sound:

clause!: a< b,K

clause2: b<c,M

clause3: c < a,N

resolvent: K,M,N

Thus the idea is to proceed from the special case of two syntactically complementary
resolution literals to an arbitrary set of resolution literals such that no interpretation of a

- 20­

given class can satisfy -all of them. The "class of interpretations" is defined more precisely
by the notion of a theory.

In first-order predicate logic, a satisfiable set Jit of formulae can be uniquely associated
with the class 9.fof its models, i.e., of the interpretations satisfying all the formulae in JiL
This class of interpretations in turn uniquely corresponds to a maximal (in general
infinite) set T of formulae that are satisfied by all interpretations in M. The set T is
maximal in the sense that any additional formula would restrict the class M of models
because it would be falsified by at least one model of JiL By definition, Tis just the set of
consequences of Jit. From this perspective, M and T contain the same information, and
both are often called the theory of JiL Since different sets of formulae may have the same
models, any specific Jit is just one alternative in defining the theory. Jit is also called a
presentation or axiomatization of the theory.

For a given theory Tand a formula ~ the 'T-models of :Fare simply all those models
of T that are models of :F as well. The notions T-consequence, ':T-satisfiable,
':T-unsatisfiable, etc. are then defined correspondingly.

For example, let Jit be the set (\:fxy P(x, y) => pry, x)}, consisting only of the
symmetry axiom for P. The theory Tresults from all interpretations associating with the
predicate symbol P a symmetric relation on the universe. The formula pea, b) 1\ -,F(b, a)
is satisfiable, but not tT-satisfiable for this theory. P(b,'a) is a tT-consequence of pea, b).

Now the propositional schema for total theory resolution is as follows: let The a
theory and let Cl> ..., C" be clauses, each of them containing a literal L j such that the
conjunction of all these literals is tT-unsatisfiable. The union of these n clauses minus the
resolution literals L j constitutes a 'T-resolvent. This clause is a tT-consequence of the
formula Cl 1\ '" 1\ C".

For predicate logic, in analogy to the simple resolution rule, the conjunction of the Lj

need not be directly 'T-unsatisfiable. We have to use a substitution a, a so-called
'T-unifier, such that the formula aLl 1\ •.. 1\ aL" is tT-unsatisfiable. The 'T-resolvent is
then instantiated with a. However, a most general 'T-unifier for a set of expressions
needs no longer he unique (up to variable renaming). Depending on T, there may he one,
a finite number, or infinitely many most general 'T-unifiers independent of each other.
Two substitutions are independent if it is not possible to obtain one from the other simply
by instantiating variables. In nasty cases there don't even exist most general 'T-unifiers,
but only non-most-general ones.

- 21 ­

The theory of the symmetry of P mentioned above is an example of a theory having a
finite number of most general C:Z:unifiers. It generates at most two most general unifiers.
For

clausel: P(a, b), Q
clause2: -,P(x, y), R(x)

the first two literals have the most general 'T-unifiers (Jj = {x ~ a, y ~ b} and
(J2 = {x ~ b, y ~ a}, hence two independent 'T-resolvents (Q, R(a)} and (Q, R(b)} can
be derived.

The concept of theory resolution allows a much more natural and efficient treatment of
frequent specific interpretations of symbols than would the usual axiomatization and
normal resolution. The knowledge about the particular theory is essentially encoded in the
unification algorithm, which, however, has to be developed for each theory anew. To
ensure the refutation completeness of theory resolution, this theory unification algorithm
must generate (or, in the infinite case, at least enumerate) all most general unifiers.

The unification algorithm required for an implementation of theory resolution may, for
some theories, be too expensive or not even known. This holds in particular when the
theory actually consists of several subtheories that are not independent of each other.

As an example consider the theory ~ whose models associate with the predicate sym­
bol ~ a reflexive and transitive relation on the universe and with the predicate symbol =
the largest equivalence relation contained in the former relation. Each of these
interpretations satisfies an atom s =t for two terms s, t, if and only if it satisfies both s St
and t Ss. Another theory rz:. be such that its models associate with the predicate symbol =
the equality relation. In the combination of these two theories, the conjunction of the
literals a Sb, b ~a, P(a), -P(b) is unsatisfiable, so that these are candidates for resolution
literals in a theory resolution step.

However, an appropriate theory unification algorithm would have to be designed for
just this combination of theories. As soon as a thirq theory was added, the algorithm
could no longer be used. Therefore it would be more" convenient to develop algorithms
for the individual theories only and to have available a general mechanism that takes care
of the interaction between theories.

Consider the combination of the theories rz;,; and 'L above and the clauses:

clausel: a ~ b, K clause3: P(a), M

clause2: b 5 a, L clause4: -P(b), N

from which we ought to be able to derive the resolvent {K, L, M, N}. We can obtain this
clause through a generalized 'l;;-resolution followed by a 'h.-resolution. If an interpre­
tation of the theory 'l;; satisfies a ~b as well as b Sa, then by construction it satisfies the
literal a =b as well. It is easy to verify that the clause C = {a =b, K, L} is a
'1;;-consequence of clausel and clause2. The literals a =b, P(a), -P(b) can now be
recognized by the algorithm for er.. as resolution literals for an "equality theory resolution
step" involving the intermediate clause C and clause3 and clause4, which results in the
desired resolvent {K, L, M, N}.

The first step, producing the intermediate clause C, goes beyond theory resolution as
presented so far, because the conjunction of the resolution literals is not ~-unsatisfiable

and moreover a new literal was added to the resolvent. This so-called residue is
characterized by the property that in the theory under consideration it follows from the

- 22­

resolution literals. Its predicate symbol does not even need to appear in the parent
clauses. If a residue is included, one speaks of partial theory resolution, otherwise
of total theory resolution.

As a residue we may also admit a disjunction of several literals. The empty residue
then stands for false, and hence follows from the resolution literals only if their
conjunction is unsatisfiable in the current theory. This special case corresponds to total
theory resolution.

For the most general case, (partial) theory resolution is described by the following
schema:

aL1 "... " aL n 1='1' residue

partial
Iresidue[O:~ •••:Ji~	 theory

resolvent

The prerequisite for partial theory resolution to be refutation complete is that the
unification algorithm generates not only all most general unifiers but also all "most
general residues". More thorough investigations on the completeness for combinations of
theories have not yet been carried out, however.

3 . 3 .3 Kinds of Theories

The concrete instances of theory resolution look quite different. So far three major classes
can be identified which shall be presented by a few but important representatives. The
classes can be called algorithmic theories, representation theories, and compiled theories.

3.3.3.1 Algorithmic Theories

In most applications special symbols with a very particular meaning occur. The equality
predicate symbol is a typical example. In standard predicate logic this particular meaning
must be axiomatized with predicate logic axioms. A typical formula set to be presented to
a theorem prover now consists of three parts:

.5Vdomatization of special sym60fs
!Jfypotlieses'
ConcCusion

where the axiomatization of special symbols is the same l in all problems where these
symbols occur. If it is possible to replace these axioms, or at least some of them, by
special inference rules, the user is not only relieved from providing them each time again,

1	 Sometimes the axiomatization is not exactly the same but depends on the set of predicate and function
symbols occurring in the remaining formulae. This is for example the case for the equality symbol.

- 23­

but part of the search is replaced by execution of an algorithm, which in general increases
the efficiency of the deduction system. We call these theories algorithmic theories because
the semantics of these special symbols is implicitly contained in the algorithm
implementing the special inference rule.

3.3.3.1.1 Equality Reasoning

The very first symbol for which special inference rules have been developed is the
equality predicate. In first-order predicate logic, the equality predicate cannot be
formalized by a finite set of axioms. Depending on the symbols appearing in the formula
set, the necessary axiom set is obtained by instantiating an axiom schema.

\7'x x = x (Reflexivity)
\7'x,y x = y => Y = x (Symmetry)
\7'x,y,z x = y Ay = Z =>x = z (Transitivity)

For each argument of each function symbol! appearing in the formula set, a substitution
axiom of the following form is needed:

\7'x] .. .x" Y Xi =Y => !(x!> ...,Xi,''',x,,) =j(x!> ...,y,...,x,,) (Substitution axiom)

For each argument of each predicate symbol P, another substitution axiom is needed:

\fx] .. .x" y Xi = Y A P(x!>...,xi," .,x,,) => P(x!> ...,y,'...,x,,) (Substitution axiom)

Alan Bundy has investigated the size of the search space generated by these axioms for
a relatively simple example [Bundy 83]. The problem is to show that a group in which
x2 = 1 for each X, is commutative. The axioms for a group with a binary function
symbol· (group operation) and a unary function symbol i (inverse) are:

\fx y z (x· y) • Z := x· (y. z) (Associativity)
\fx 1 • x := X (Left identity)
\fx x·1 = x (Right identity)
\fx i(x) • x =1 (Left inverse)
\fx x • i(x) =1 (Right inverse)

The additional assumption is

\fx x • x = 1 (Assumption)

The conclusion is

\7'x Y x • Y = Y • x

One way to prove this conclusion would be

(Left identity)x • Y = (1 • x) • Y
=((y. Y) • x) • y (Assumption)
= ((Y • Y) • x) • (y • 1) (Right identity)
=((y • y) • x) • (y • (x· x» (Assumption)

=(y • ((y • x) • (y • x») • x (Associativity)
=(y ·1) • x (Assumption)
=y·x (Right identity)

Using resolution, every transformation step would have to be painstakingly replaced
by several resolution steps, and the search space would again be enlarged intolerably
because of the several new deduction alternatives. There would be about 1021 deductions
using a level saturation search [Bundy 83]. This method is just not feasible. Numerous
calculi and control strategies have been developed in order to overcome this complexity
problem (see for example: [Wos et al 67, Robinson & Wos 69, Sibert 69, Morris 69,
Knuth & Bendix 70, Brand 75, Shostak 78, Harrison & Rubin 78, Digricoli 79, Huet &

- 24­

Oppen 80, Lirn & Henschen 85, BIasius 87]). Since a discussion of equality reasoning
is beyond the scope of this paper, we here present only the most elementary method as an
illustration for partial theory resolution.

The equality axioms actually axiomatize the well known Leibniz principle which
states that two objects are equal if all their properties are equal. In any context, an object
can be replaced by another equal one. Replacing equals by equals as an inference rule,
however, is too weak in the presence of variables. Similar to the case of the modus
ponens rule, the application of an instantiation rule becomes necessary in order to
establish the prerequisites for applying the inference rule.

The idea of unification, introduced by I.A. Robinson [Robinson 65], eliminates the
need for arbitrary instantiations and enables goal-oriented instantiation on the most
general level. In the same way modus ponens was generalized to resolution using
unification, G. Robinson and L. Wos generalized the "replace equals by equals" rule to
obtain the paramodulation rule [Robinson &Wos 69].

Formally, the paramodulation rule as a partial theory resolution rule is defined as
follows: Consider the two clauses

CJ : [L]> L2, •••, L,.}
C2 : {l = r, K2 , ..., K"J.

IfL J contains the subterm s, and if s and I can be unified with the most general unifier a
(Le. as and (J[are syntactically identical terms), then the clause

a{L/, L2 , ••• , L", K2 , ... , K"J

is a paramodulant of the clauses C J and C2 , where L/ is generated from L J by
replacing term s by term r. A paramodulation step is really a partial theory resolution step.
Its special "algorithmic" part computes the residue LJ'.

Example: Given the clauses P(c, h(f(a, y), b)), R(y)
f(x, e) =g(x), Q(x),

the paramodulant of these clauses is P(c, h(g(a), b)), Q(a), R(e).
The terms f(a,y) andf(x,e) were unified by (x r- a, y r- e). This substitution was
applied to the new clause. +

In two aspects, paramodulation is more general than the principle mentioned above, to
"replace equals by equals".

•	 Paramodulation handles not only unconditional but also conditional equations.
In other words, the clause containing the equation can also contain additional
literals.

•	 The two terms used to make a substitution possible do not have to be equal;
they just have to be unifiable, Le. there have to be instances of the participating
clauses such that the corresponding terms are equal.

The paramodulation rule is sound: if S is a clause set and C is paramodulant of two
clauses in S, then any E-models of S (that is, any model of the equality axioms that
satisfy S) is also an E-model of S u (C)

The resolution calculus, extended to include the paramodulation rule and the
reflexivity axiom (x = x), constitutes a refutation complete calculus (called
RP-calculus) for predicate logic with equality: for every E-unsatisfiable clause set there
is a derivation of the empty clause using the rules and axioms in the calculus. The

- 25­

reflexivity axiom is necessary, because otherwise the empty clause could not be derived
from the E-unsatisfiable clause set containing only the clause {-a ;;: a}.

Compared to the explicit application of equality axioms, the search space for the
derivation of the empty clause is reduced significantly when the paramodulation rule is
included. Many useless resolutions with and between the equality axioms are then no
longer possible. But without skillfully controlling paramodulation, the resulting search
spaces are still far too large, because this rule can also be applied almost anywhere in the
clause set. For the nrst example in section I, a breadth-first search requires about 1011
steps to fmd the proof to the theorem [Bundy 83].

3.3.3.1.2 Theory Unification

Paramodulation brought a considerable improvement compared to equality reasoning with
resolution and the equality axioms. Nevertheless the search space is still enonnously
large and, mostly due to the symmetry of the equality, full of redundancies. For example,
formulae like V'x y g(x,y) = g(y,x) defining the commutativity of certain function
symbols are especially troublesome to deal with. The commutativity fonnula may lead to
repeated switching of arguments of the commutative function symbol. For this reason,
there were already quite soon attempts to remove such equational fonnulae from the
fonnula set and replace them by modified deduction rules.

Gordon Plotkin suggested a modification of the resolution rule in such a way that
ordinary unification is replaced by a unification procedure that takes the removed
equational fonnulae into consideration. He also detennined the condition under which
this replacement is allowed to take place [Plotkin 72]. Assuming that the equality
predicate appears only in unit clauses, Le. that the clause set contains a finite number of
clauses {ll = rl}, ..., (In = r,J, and the equality predicate does not appear in any other
clause, unification may be replaced by so-called theory unification respecting these
equational axioms. This rather strong restriction can be weakened, but doing so here
would only complicate the matter further.

Example: In section 3 we demonstrated the unification algorithm for the system of
equations

{f(x,g(a,y)) =f(h(y),g(y,a)), g(x;h(y)) = g(z,z)}

for which we obtained the unifier (x ~ h(a), Z ~ h(a), y ~ a}. If we use the unification
algorithm for the commutativity of g, we get{x ~ hey), Z ~ hey)}, which is obviously
even more general than the previous one. The "old" one can be obtained from the new
one by substituting a for y. •

Naturally, we now want to find a most general unifying substitution. In general,
however, this cannot be accomplished. There may exist more than one most general
unifier. Our commutativity example illustrates this: the equation (g(x,y) =g(a,b)} has
two independent solutions (x ~ a, y ~ b) and {x ~ b, y ~ a}. The latter reflects that
subtenns may be exchanged because g is commutative. There is no more general
solution, Le. there cannot be a common more general one, either. Even more problematic
cases exist, for example those involving an associative function!, where
V'xyz!(x!(y,z)) = !(f(x,y),z). In this case the system of equations (f(x,a) =!(a,x)} has
an infinite number of independent solutions:

(x ~ a), {x ~ !(a,a)} , (x ~ f(a/(a,a))} , {x ~ f(a/(a/(a,a)))},

Since!is associative, all other possible solutions will be equal to one of these solutions;
in other words, the tenn substituted for x differs from one of the tenns listed above only

- 26­

in the way it is parenthesized. But even in this awkward case it pays to use theory
unification: using resolution or paramodulation without theory unification, terms
containing associative function symbols would constantly be reparenthesized.

Let E := {n = rJ, ..., {I" = r,J} be a set of clauses, all of them unnegated equations.
On the set of all terms, E induces an equivalence relation =E which is the smallest
equivalence relation containing all term pairs (I;. rJ from E and being closed under term
construction and instantiation:

if Sj =E t1>" .,S" =E t" andfis an n-ary function symbol thenf(sb' ..,s,,) =Ef(tj> ...,t,,)
ifS =E t and a is a substitution then as =E O't.

It is possible to show that a pair Cs, t) of terms is in the equivalence =E if and only if
the equation S = t follows from axioms in E, Le. if S = t belongs to the theory defined by
E. For simplicity we call the theory just E, too.

Example: Let C := (g(x,y) = g(y,x)} be the commutativity theory for g.
Then g(a, b) =c g(b, a), andf(x, g(a, b), z) =cf(x, g(b, a), z). •

Given a theory E and a set r= {Sj = tb ...,S" = t,,} o(equations, we denote by DECD
or UECSj = tb .••,S" = t,,) the set of all substitutions awith as; =E at;for I s: is: n. These
substitutions are called E-unifiers of r. Assuming that there exists a procedure
computing UECD for arbitrary r, the resolution rule can be modified as follows:

clause1: P(Sj,. ..,S,,), Kl> , Km

clause2: --.P(tj, ...,t,,), L], , L Ic aE UECSj = tb ..., S,,= tn)

In general, a set UECD is infinite. It is therefore desirable to use only a representative
subset /-LUECD ~ UECD,which is as small as possible. In the case of common syntactical
unification, which corresponds to unification with respect to the theory with empty
axiomatization, we could always use a singleton subset containing the most general
unifier. Depending on E, this is not always possible. We need a minimal and complete
set of E-unifiers, which has the following properties:

• /-LUECD c UECD	 CSoundness)

•	 For all OE UECD there exists a aE /-LUECD and some
substitution Awith & =E Aox Cfor all x in' D CCompleteness)

•	 For all (T, 'r E /-LUECD: if there is a substitution A
with 1X =E Aox (for all x in D then a = 'r CMinimality)

In other words, the members of /-LUECD must really be E-unifiers of r, each E-unifier
must be an instance of a member of /-LUECD, and no two members of /-LUECD may be
instances of each other.

Gordon Plotkin could show that for a refutation complete resolution calculus it
suffices to use only aE /-LUE(D in the E-resolution rule above. Of course this sti11leaves
the problem whether there is an algorithm computing /-LUE(D. Unification theory is the
field investigating this problem.

Theory unification needs not be restricted to equational theories. Also certain
equivalences are suitable for treatment by a unification algorithm. For example, the
symmetry of a predicate P, namely \txy P(x,y) <=> P(y,x), can be handled by a
unification algorithm that unifies two atoms P(s,t) and P(s',t') by either unifying the
arguments directly or with one argument list reversed. The only difference for the

- 27­

resolution rule is that the whole atoms and not only their argument lists have to be
submitted to the unification algorithm.

When the equations treated by a theory unification algorithm are the only equations
occurring in a clause set, resolution with theory unification suffices to refute it. In case
there are still other equations, equality reasoning with theory unification becomes
necessary. The following example shows that just substituting theory unification for
standard unification in the paramodulation rule is not sufficient to obtain a complete calcu­
lus. Suppose the function f is declared associative, i.e. tixyz f(x,f(y,z)) = f(f(x,y), z)
holds and this axiom is replaced by an A-theory unification algorithm. Let the remaining
clauses be

AI: f(a,b) = f(c,d)
A2: P(f(a!(b,e)))
A3: -rP(f(c!(d,e)))

The atoms P(f(a!(b,e))) and P(f(c!(d,e))) are not unifiable, neither with the standard
algorithm nor with the A-unification algorithm. Neither f(a/(b,e)) nor f(b,e) nor
f(c,f(d,e)) nor I(d,e) is unifiable with either side of the equation. Therefore no
paramodulation is possible. Nevertheless, if for example I(a!(b,e)) is reparenthesized to
f(f(a,b),e), which equalsf(a/(b,e)) because of the associativity off, paramodulation is
possible with A2 yielding P(f(f(c,d),e) which in turn is A-unifiable with P(f(c/(d,e)))
such that the empty clause can be derived.

Reparenthesizing, however, is not an allowed inference rule. The problem is that
sometimes paramodulation into a subterm of an element of a term's 'T-equivalence class is
necessary, where 'Tis the equational theory handled by the theory unification algorithm.
That means that one needs a mechanism to iterate over the equivalence class of terms and
to fmd subterms unifiable with a given side of an equation.

One possibility is to allow paramodulation with functional reflexive axioms. The
functional reflexive axiom for f in the example above is tix y f(x,y) = f(x,y). A­
unification of f(x,y) andf(aJ(b,e)) yields the two most general unifiers (x ~ a,
y f- f(b,e)} and (x ~ f(a,b), y f- e}. Using the second unifier, paramodulation with
A2 yields just the desired reparenthesized literal P(f(f(a,b),e)). The main observation we
have exploited is that a minimal and complete set of theory unifiers for the terms t =
(t], ...,tn) andf(x]" ..,xn) generates the equivalence class of t, and that is just what we

wanted.

- 28­

3.3.3.2 Representational Theories

Predicate logic formulae are surely not always the best way to represent information.
Facts have to be represented such that inference algorithms have easy access to relevant
information. The statements that for example 0 is an Integer, all Integers are Reals,
Socrates is a Human, the function father-of maps Humans to Humans and the function
number-of-children maps HumansxHumans to Integers, would have to be encoded as
follows:

Integer(O)
Human(Socrates)
\:fx Integer(x) ==> Real(x)
\:fxy Human(x) A Human(y) ==>Integer(number-of-children(x,y))
\:fxy Human(x) ==> Human(father-of(x))

In order to conclude from these formulae that the term number-of-children(Socrates,
Socrates) denotes a Real, three resolutions are necessary. When at the same time
thousands of resolutions among other clauses of the current problem are possible, it is
not at all obvious that this sequence of three resolutions makes any sense.

In sorted logics this kind of information is represented in an entirely different way.
Some properties, such as being an Integer or a Real or a Human, are not encoded as
unary predicates but as sorts. Sort information is attached to the other symbols, and the
subsort relationship, such as between Integer and Real, is represented in a tree or a graph
such that transitivity is automatically built in. The sort of a term needs now no longer be
deduced, but can be computed by accessing this information directly. This is done only
when the information is really necessary, typically during the unification of a variable
with a term.

We call this kind of theories representational theories, because formulae are not
simply removed and replaced by inference rules, but the information encoded in them is
represented in a different syntactic structure. The prototype of this kind of theories is
many-sorted logic [Cohn 87, Walther 87, Schmidt-SchauB 89].

Syntactically a many-sorted logic enriches the notion of the signature, which in the
classical case is just the set of all constant symbols, function symbols, and predicate
symbols together with their arities. Now there is another set of primitive symbols called
the sort symbols. An example for a set of sort symbols is {Human,Integer}. In addi­
tion, the signature specifies: for each constant symbol a sort (typically in a syntactic form
like Socrates:Human, 0 :Integer); for each function symbol a list of argument sorts and a
result sort (father-of: Human ~Human, number-of-children: Human xHuman ~Integer

is a typical syntax); for each predicate symbol a list of argument sorts (typical syntax:
Contemporary: HumanxHuman, Primefactor: Integer xlnteger).

This determines for each ground term whether it is ill-sorted or well-sorted and what
its sort is in the latter case. For instance,father-of(O) is ill-sorted because the sort of 0 is
not the argument sort offather-of The termfather-of(Socrates) is well-sorted and has the
sort Human. The term number-of-children(father-of(Socrates), 0) is ill-sorted although
each of its subterms is well-sorted. Note that these are purely syntactic categories, just as
number-of-children(father-of(Socrates)) is not well-formed because the defined arity of
the function symbol is violated. Analogously we define the well-sortedness of ground
atoms and other ground formulae. By giving sorts to variable symbols, this extends to
first-order predicate logic. For instance, \:fx:Human Contemporary(xJather-of(x)) is
well-sorted, \:fx:Human Contemporary(x, number-of-children(x, x)) is not. The restric­

- 29­

tion of formulae to well-sorted ones prevents the formulation of many meaningless
statements by purely syntactic criteria.

To adapt the resolution rule to this simple many-sorted logic, the only change required
is a modification of the unification algorithm. It has to ensure that for a variable x of sort
S only a term t of the same sort (or of a subsort of S) can be substituted. When dealing
with more complex sort relationships, this may mean that even though a term t is not of
the correct sort, instantiations of t with the correct sort can be found by instantiating
variables with other variables of a weaker sort.

As an example, consider the sorts {Even, Odd, Integer}, with the subsort relation­
ships Even clnteger and Odd clnteger. Further, let the signature specify a function
symbol +: (Even x Even ~ Even, Odd x Odd ~ Even, Even x Odd ~ Odd,
Odd x Even ~Odd, Integer xEven ~Integer, ..., Integer xInteger ~Integer). Unifica­
tion of the terms x:Even and +(y:Integer, z:Integer) yields two different solutions, namely
{x f- +(y':Even, z':Even), y f- y':Even, z f- z':Even} and {x f- +(y':Odd, z':Odd),
y f- y':Odd, z f- z':Odd}. These reflect the fact that the sum of two integers is even iff
both summands are even or both are odd. Thus, in this' case we have not only one but
two most general unifiers, independent of each other.

If there are only a finite number of sorts, the simplest way to fmd all solutions is to
systematically check all combinations to instantiate variables with variables of weaker
sorts. Often, however, a clever organization of the search results in more efficient
methods.

Altogether, sorted logic has a number of advantages over unsorted logic. Some of
them concern questions of the cognitive adequacy of the representation. For instance, the
sorted formula 'rIx:Even -JJivides(x,3) comes closer to saying that no even number
divides three than its unsorted counterpart 'rIx Even(x) => -JJivides(x,3), which
expresses that anything in the world has the property that if it is an even number then it
does not divide three. But more important for our purposes are the advantages with
respect to the search space. One of them is that sorted representations result in smaller
clause sets. For instance, the clause expressing that all even numbers are integers is not
present in the sorted representation and has therefore not to be considered as a potential
parent clause. Further, the fact that no even number divides three is represented by a two­
literal clause in the unsorted case, but by a unit clause in the sorted case, reducing the
number of literals to be "resolved away". Finally, among the remaining literals there are
fewer resolution possibilities. If we have another unit clause Divides(3,3), we cannot
resolve it against the unit clause in the sorted case, because 3 has the sort Odd and can
therefore not be substituted for x of sort Even. However, we can resolve it against the
corresponding literal in the unsorted case, producing the redundant resolvent -Even(3).

Sorted logics are not the only logical formalisms with an alternative representation of
certain information. Feature types, for example, are a kind of sort structures where the
sorts are not atomic, but contain more complex descriptions of sets [A'it-Kaci & Nasr 86,
A'it-Kaci & Smolka 87]. An example for a feature sort is car[speed:nat, colour = red]
denoting a set of objects (cars) whose speed feature is of type nat and whose colour
feature has the value red. Feature types and feature unification play an important role in
unification grammars [Shieber 86].

Even more complex taxonomic hierarchies and relations can be represented in KL­
ONE like knowledge representation systems [Brachman & Schmolze 85]. How theory

- 30­

resolution can be extended to handle such rich sort structures instead of the still rather
simple feature types, has not yet been investigated.

3.3.3.3 Compiled Theories

For the theories presented so far the algorithms and inference rules have been developed
mainly from semantical considerations and not by looking at the corresponding axioms.
And in fact, a rule like paramodulation is much easier to understand from the semantics of
the equality symbol than from the form of the equality axioms. In certain less complex
cases, however, it is possible to take an axiom and straightforwardly translate it into a
theory resolution rule. And this translation can even be done automatically. The basic
idea, which goes back to [Dixon 73], is as follows: From a clause C = L], L2 generate a
resolution rule as follows:

K] is resolvable with L] and K2 with L2
with a (most general) simultaneous unifier crI.

oR}, crR2

This rule is sound because the resolvent can also be obtained by two successive
resolutions with C. The first thing we need for completeness is an additional factoring
rule which comprises a resolution and a factoring operation:

K] is resolvable with L] and K2 is unifiable with L2
with a (most general) simultaneous unifier crI.

aK2, aR

Examples: Let C = (-,P(x,y), -,p(y,x)} (asymmetry clause)
A C-resolution is P(a,z), Q(z)

P(b,v), R(v) a={z~b,v~a}

Q(b), R(a)

A C-factoring is P(a,z), -'p(b,v), S(z,v) a={zf-b,v~a}

-'p(b,a), S(b,a) •
The rule is not complete for recursive (self-resolving) clauses, Le. clauses which are

resolvable or theory resolvable with a renamed copy of themselves. For example, the
clauses C = -R(x), R(f(x))

R(a)
-R(f(f(a))

are refutable with three successive resolutions. There is, however, no C-resolvent with
R(a) and -,R(f(f(a)) because x with a andf(x) with f(f(a)) are not simultaneously
unifiable. An extension of the compilation idea to handle at least self-resolving clauses
with only two literals is presented in [Ohlbach 90].

The compilation of clauses into resolution and factoring rules is in the same way
possible for clauses with more than two literals. In the general case C-theory resolution
involves as many resolution partners as the compiled clause contains literals. Again there
is the restriction that this clause must not be recursive.

1 The domain of the unifier can of course be restricted to the variables occurring in K1 and K2.

- 31 ­

Example: Let C = (-Father(u,v, -Father(v,w), Grandfather(u,w)}

A C-resolution is Father(x, Tom), P(x)
Father(Tom, Jane)

-Grandfather(Jim,y), Q(y) G= {x ~Jim, y ~Jane}

P(Jim), Q(Jane)

The algorithm into which C is "compiled" essentially selects two Father literals and a
-.Grandfather literal as potential resolution literals, concatenates their term lists, and
unifies the result with the term lists (u,v,v,w,u,w). If there is a unifier, it is restricted to
the variables in the selected literals to produce the (J in the resolution step. •

The compiled theory resolution rule is a simultaneous n-step resolution. It has the
advantage that no intermediate results and therefore in particular no useless intermediate
results are produced. It realizes a deeper look-ahead into the search space and is therefore
able to cut dead ends earlier than standard resolution.

The modifications of the resolution rule presented in section 3.3 are by no means the
only ones. The basic idea, namely to look for complementary subformulae, or at least for
subformulae which can be made complementary by instantiation, and to join the rests of
the formulae to form a resolvent, has been applied to many other logics: full predicate
logic with arbitrary formulae, nonclassicallogics etc. To present all these developments
would surely require more than one book.

- 32­

4 Logical State Transition Systems

There is a straightforward way to obtain a computer program from a calculus:

• design a representation for sets of formulae, these sets are the possible "states";

• define initial states and final states according to the calculus;

• for each inference rule 1'1 .;; l'n implement the following transition operation,
which can be applied to any state S:

check if S contains each of :11 ... !Fn; if so, perform a transition to S U {11.

Then one just has to implement an appropriate control regime that uses these
operations to transform initial states into final states.

Let's call the above the "trivial logical state transition system" for a calculus. A
state in this system is a set of formulae, for the resolution calculus a set of clauses. For a
generating calculus there would be just one initial state consisting of the logical axioms of
the calculus and the hypotheses, while each formula set containing the conclusion would
be a final state. For the resolution calculus an initial state consists of the clauses
representing the hypotheses and the negated conclusions, while each clause set containing
the empty clause is a final state. The transition operation for the resolution calculus goes
from a clause set S to the clause set S u {1J where !F is a resolvent or factor of members
of S.

Several problems that are either vacuous or trivial for the trivial logical state transition
system, become considerably hard in the context of more sophisticated systems. Their
description requires an adequate level of abstraction going beyond traditional notions like
completeness. The following conceptual framework, which covers both old and new
phenomena, largely relies upon the principles extracted from different problem areas in
Artificial Intelligence by Nils Nilsson [Nilsson 80] and upon Gerard Huet's digestion of
classical results on the lambda calculus and other systems [Huet 80].

A state transition system consists of a set S of states and a binary relation ~ on S
termed the transition relation. Frequently ~ is the union of some simpler relations
conceived as a set of elementary transition rules. There are two distinguished subsets of
S, the initial and the final states. A sequence of states successively related by ~,

beginning with S and ending with S', represents a derivation of S' from S. As usual,
..:4 and -4 denote the transitive and the reflexive-transitive closure of ~. A state S' is
reachable, if S-4S' holds for some initial state S, and unreachable otherwise. With the
appropriate restriction of the transition relation the reachable states define the reachable
subsystem of a state transition system.

If the states represent logical formulae and the transitions are based on the inference
rules of a calculus, we speak of a logical state transition system.

The selection from among the possible transition steps and the administration of the
sequence of steps already performed and states thereby produced are subject to a separate
constituent named the control strategy. Control strategies come under two major
classes: when applying a transition rule, tentative control strategies make provisions
for later reconsideration of alternatives, whereas irrevocable control strategies do
not. Backtracking and hill-climbing, respectively, are prominent examples of the two
types of control strategies. Tentative control strategies essentially require the storage of
more than one state at a time, which tends to render them unfeasible for state transition
systems with complex states. With an irrevocable strategy just a single state at a time

- 33 ­

needs to be stored, and the transition can be implemented by destructive modifications of
this state.

The following property characterizes a commutative state transition system:
whenever two transition rules can be applied to some state, each of them remains
applicable after application of the other, and the resulting state is independent of the order
in which the two steps are performed. The advantage of commutative state transition
systems lies in their automatic admittance of irrevocable control strategies, because the
choice of an irrelevant rule only delays, but never prevents the "right" steps.

Most logical state transition systems happen to be commutative. For the most famous
exception, the lambda calculus [Church 41], a weaker property bearing the name of its
investigators Church and Rosser could be shown. Equivalently, a state transition system
is confluent, if for all states 5, 51, 52 with 5.-451 and 5.-452 there exists a state 5'
with 51.-45' and 52.-45'. In other words, any two derivations from the same ancestor
state can be continued to a common descendant state. A less restrictive requirement than
commutativity, confluence still allows for irrevocable control strategies, especially for
Noetherian systems where no derivations of infinite length exist.

5tate transition systems provide a general framework for the coherent description of a
wide range of computational systems, such as term rewriting systems [Huet & Oppen
80], semi thue systems [Book 82], various types of automata [Hopcroft & Ullman 79],
or logical calculi [Richter 78]. They trace back to the Postian production systems, which
in contrast to computationally equipotent formalisms like Turing machines do without
inherent control structure.

One advantage of this abstraction lies in the possibility to independently investigate
properties of the state transition system and properties of (classes of) control strategies
for the state transition system. But it also reflects a shift in paradigm brought about by
recent developments in Artificial Intelligence, where a clean distinction between
procedural knowledge and control knowledge proved superior to the conventional
hierarchical organization of programs.

The basic notions describing qualities of interest for logical state transition systems are
soundness and completeness, further confluence and Noetherianness. In a later sub­
section we shall see that the distinction of some more specific properties is necessary for
non-trivial state transition systems.

There are two kinds of potential refinements of the trivial logical state transition
system: the structure of the states may be enriched to represent not only formulae but also
information as to where rules can be and have been applied; and additional transition rules
may be provided, which are not necessarily based on the inference rules of a calculus, but
reduce the search space. In the following section we present some refinements of the
second kind. After that we deal with improvements based on richer states.

4.1 Resolution with Reduction Rules

In the trivial logical state transition system for the resolution calculus each transition rule
allows a transition to a superset containing an additional clause. Depending on the
system's organization, there might also be rules adding several clauses in one go, for
instance all possible UR-resolvents for a given nucleus clause. Let us use the name
deduction fule for any transition rule that produces a state containing objects not
present in the predecessor state.

- 34­

As deduction rules are applied in the course of a derivation, increasingly larger states
are obtained, which tend to contain more and more useless parts. To make deduction
systems feasible, it is expedient to also provide reduction rules, which allow
transitions to smaller states by removing superfluous fragments of the predecessor state.

Many popular reduction rules for resolution are based on logical simplifications. For
instance, the tautology rule allows a transition from a clause set 5 to S - {D} where D
is a tautological clause in S. A tautology D is satisfied by all interpretations, thus any
interpretation satisfies 5 if and only if it satisfies 5 - {D}, hence the two states are
logically equivalent.

If a clause set 5 contains two clauses C and D such that C entails D, then 5 and 5­
{D} are logically equivalent. It is not in general decidable whether or not a clause C
entails a clause D, but there are simple sufficient criteria: for example, ifD is subsumed
by C. The subsumption rule allows a transition from 5 to 5 - {D} where D is
subsumed by another member of 51.

Other reduction rules eliminate "useless" formulae. A typical example is the purity
principle for the resolution calculus: a clause containing a literal that is not resolvable
with any other literal in the clause set, is useless; any resolvent or factor derivable from it
would in turn contain such a "pure" literal. Therefore the clause cannot contribute to a
derivation of the empty clause and may be removed from the clause set.

It appears natural to define as reduction rules also those rules that eliminate literals
from clauses, without removing entire clauses. A simple example for this kind of
reduction rule is the merging rule, which deletes multiple occurrences of literals from a
clause by an explicit operation (rather than hiding the idempotence law in the definition of
a clause as a set of literals).

In this spirit we speak of a reduction rule whenever the rule only removes something
without adding anything. Reduction rules decrease the number of objects in the current
state and thus the number of alternatives from which the next deduction step has to be
selected, whereas just the opposite holds for deduction rules. The application of reduction
rules alone, quite unlike deduction rules, always terminates after finitely many steps, and
intuitively they can never hurt because they reduce the size of the problem at hand
("never" actually depending on certain properties to be discussed later). This
simplification effect is the stronger the more reduction rules a system has at its disposal
and the more powerful they are. Therefore it is useful to enrich the reduction rule
repertoire.

One way to find reduction rules beyond subsumption, tautology removal, and
merging, lies in the analysis of the combined effect of sequences of transition steps in
special situations and in defining shortcuts simulating this effect. To get a feeling what
that means, let us go through an example:

Example: "The police investigate a theft committed in a hotel. They ascertain that
exactly one of the suspects Billy, Lucky, or Jacky is the thief and that none of the

1 By this definition each factor is subsumed by its parent clause. It is up to the control constituent to
prevent that factoring and subsumption cancel each other's effect. To avoid this phenomenon, one
sometimes tightens the definition of subsumption and requires that C must not have more literals than
D.

- 35­

three is able to utter any three sentences without lying at least once. When
interrogated, the men make the following statements, which are sufficient for the
police to determine who is the thief:

Lucky: I'm innocent.l haven't even been in the hotel. The man you want is Billy.
Billy: Nonsense, it wasn't me. Everything Lucky said was a lie.

Jacky's innocent too.
Jacky: You bet I'm innocent. It' s not true that Lucky hasn't been in the hotel.

But Billy's second statement is a lie."

Using the constant symbols b, l,j for the suspects and the predicates T(x) for "x is the
thief' and H(x) for "x was in the hotel", the facts can be coded in first-order predicate
logic as follows, and the formulae directly convert into the set of ten clauses below
(sorted by their lengths):

T(b) v T(l) v T(j) the thief is one of the suspects
-,f T(b) /\ T(l) v T(b) /\ T(j) v T(l) /\ TU)] only one of them is the thief
\ix T(x) => H(x) the thief was in the hotel
-,f -,T(l) /\ -H(l) /\ T(b)] Lucky's statements are not all true
-,f -,T(b) /\ (T(l) /\ H(l) /\ -,T(b» /\ -,T(j)] Billy's statements are not all true
-,f ..T(j) /\ H(l) /\ -,(T(l) /\ H(l) /\ ..T(b»] Jacky's statements are not all true

Cl: ..T(b) , -,T(l) C6: T(l), H(l), ..T(b)
C2: -,T(b), ..T(j) Cl: T(j), -H(l), T(l)
C3: ..T(l), ..TU) C8: TU), -H(l), H(l)
C4: ..T(x) , H(x) C9: T(j), -H(l), ..T(b)
CS: T(b), T(l), T(j) ClO: T(b), ..T(l),-H(l), T(b), TU)

We now insert these clauses one by one into the current clause set, starting with the
empty set and applying between any two insertions as many reduction rules as possible.
Nothing interesting happens during insertion of the first five clauses. Having added to
{Cl, C2, C3, C4, CS} the clause C6, we notice that a resolution step between
C6,1 and Cl,2 would result in ..T(b), H(l), ..T(b), from which the first literal could
then be removed by merging. The remaining clause C6': H(l), ..T(b) is a proper subset
of C6 and would now subsume C6. We simulate the total effect of this resolution­
merging-subsumption sequence by simply removing the first literal from C6 and call this
reduction rule subsumption resolution. After that we add C7 with no further
consequences and obtain the current clause set:

Cl: ..T(b) , ..T(l) CS: T(b), T(l), TU)
C2: ..T(b) , ..TU) C6': H(l), ..T(b)
C3: ..T(l), ..T(j) Cl: T(j), -H(l), T(l)
C4: ..T(x), H(x)

Being a tautology, the clause C8 disappears right after its insertion, and we proceed with

C9: T(j), -H(l), ..T(b).

Now a resolution between C9,2 and C6',1 would produce the proper subset TU),
-,T(b) ofC9, because the literal IT(b) descending from C6' can be merged into the last
literal of the resolvent. Again we simply remove the second literal from C9 by the
subsumption resolution rule simulating a resolution step followed by merging followed
by subsumption. Note that this reduction operation would not be possible if we had not
reduced C6 to C6' before. Subsumption resolution using C2 as the partner further
removes the first literal from C9, and there remains only C9':-,T(b). This clause

- 36­

subsumes Cl, C2, and C6' and serves to remove the fIrst literal from C5 by subsumption
resolution, and after all these reductions the current clause set is

C3: -,T(l), -,T(j) Cl: TU), -Jl(l), T(l)
C4: -,T(x) , H(x) C9': -,T(b).
C5': T(l), T(j)

The last clause, ClO: T(b), -,T(/), -Jl(l), T(b) , T(j) can fIrst be merged, then the
removal of the second occurrence of T(b) simulates a resolution with C9' followed by a
subsumption. In the same way T(j) can be removed by subsumption resolution with the
partner C3, and -Jl(l) with the partner C4 (the literal descending from C4 is the instance
-,T(l) of -,T(x) and can be merged away). Altogether the last clause becomes
ClO': -,T(l), which subsumes C3 and enables a subsumption resolution of C5' to TU),
which fInally subsumes Cl. We end up with

C4: -,T(x), H(x) C9': -,T(b)
C5": TU) ClO': -,T(/).

This clause set was obtained from the original set {Cl, ... , ClO} by applying only
reduction rules. Incidentally, the last three unit clauses directly tell us who is or is not the
thief, which in the original clause set was far from obvious. The reduction rules
happened to solve the problem before we even asked for a solution by adding a clause
corresponding to a negated conclusion. If we insert C11: -,T(j) as such a clause, we can
use the partner C5" to remove the first (and only) literal from Cl1 by subsumption
resolution. Thus we derive the empty clause from the original problem using only
reduction rules, without ever performing a proper deduction step adding a new clause. A
control component capable of selecting from among several applicable deduction rules
would never have to be activated for this example. •

Any step performed in the example can be explained in terms of resolution, merging,
subsumption, and tautology removal, therefore the last clause set is logically equivalent to
the original. Even stronger, any refutations using clauses from the original set can be
transformed into refutations using clauses from the final set instead, such that the
complexity of the transformed refutations (measured, for instance, in terms of the rm-size
[Kowalski & Kuehner 71], which essentially counts the number of applications of
deduction rules) remains the same as before or even improves. This is a property all
reduction rules ought to guarantee.

More precisely, if a reduction rule removes literals from clauses, it obviously neither
destroys the refutability nor increases the complexity of possible refutations. However, it
might turn a non-refutable clause set into a refutable one, thus we need sound
justifications for the literal removals. In the case of merging, soundness is trivial.
Reduction rules removing entire clauses from clause sets do not cause a soundness
problem, but we have to make sure that they preserve the refutability and do not increase
the complexity of refutations. For subsumption and tautology removal these are well­
established properties, see [Chang & Lee 73, Loveland 78].

There is hardly any bound to the ingenuity with which the developer of a deduction
system may design such reduction rules. Whether they can actually be used in a particular
situation, however, depends in general not only on a formula's logical status but also on
the overall state of the search procedure in that situation. The search algorithm might be
able to succeed with the unreduced set of formulae, but might fail with the reduced one.
We shall discuss this problem when presenting reduction rules for clause graphs.

- 37­

It goes without saying that reduction rules like subsumption resolution are only useful
if there is a reasonably efficient way to recognize situations in which they can be applied.
All the rules presented here have been implemented in an automated deduction system
named Markgraf Karl [Ohlbach & Siekmann 89], which is based on Kowalski's
connection graph proof procedure [Kowalski 75]. Its underlying clause graph structure,
which will be presented in the next section turned out to be a good basis to detect the
applicability of many reduction rules.

4.2 Clause Graphs and Transition Rules

We now turn to a more complex type of states for logical state transition system based on
the resolution calculus, and to transition rules exploiting the richer structure. The idea to
use a graph of clauses instead of a set of clauses goes back to Robert Kowalski and his
connection graph proof procedure [Kowalski 75]. While this is an approach for
standard resolution, we present a slightly more generalized version covering total theory
resolution. However, we restrict ourselves to theories for which there always exist
finitely many independent most general unifiers.

4.2.1 Clause Graphs

A clause graph is based on a set of nodes which are l~belled with literals. These literal
nodes are grouped together to clause nodes, which represent sets of literals (Le.,
clauses). Usually, literal nodes are graphically depicted as little boxes in which the
labelling literals are written, clause nodes as contiguous clusters of such boxes.

Arbitrary relations between literals can now be represented by links between literal
nodes. The most important relation, the resolvability relation, is represented by so-called
R-Iinks. They connect the resolution literals that can participate in a (theory) resolution
step. The R-links themselves are often marked with the most general unifiers for the
atoms in the incident boxes.

The reason for the distinction between literals and literal nodes and between clauses
and clause nodes is purely technical. Different nodes may very well be labelled with the
same literal but be linked to entirely different places. If the literals themselves were
regarded as the nodes of the graph, one couldn't even formulate a phenomenon like this.
However, in the sequel we will not strictly distinguish between nodes and formulae, as
long as there will be no confusion.

Example:
P(j(a,b),f(c,d))

This clause graph contains six clause nodes. R-link I connects two resolution literals
for a simple resolution step with most general unifier {x ~a, y ~b, z ~c}. Performing
this step would produce the resolvent (P(f(a,b),f(c,d)), --,Q(g(a),b,c), -'P(f(b,a),

- 38­

f(b,c))}. R-link 2 also represents a simple resolution step, its unifier is {x (-a, y (-C,

Z (- w).

R-link 3 connects two literals within the same clause. They have equal predicate
symbols and opposite signs, but their term lists are not directly unifiable. This R-link
indicates a possible resolution step using a copy of the clause, (Q(x',y',z'),
--,Q(g(x'),y',z'), -'p(j(b,x'),j(y',z'))}, in which the variables have been renamed by the
substitution p = (x(-x', y(-y', z(-z'j. The first literal in the original clause is now
resolvable with the second literal in the copy, using the unifier (x(-g(x'), y(-y', z(-z'j
and generating the resolvent (Q(x',y',z'), -,P(f(b,x')J(y',z')), -,Q(g(g(x')),y',z'),
-,P(f(b,g(x')),j(y',z')}. (The analogous step using the first literal of the copy and the
second of the original would result in a resolvent in which the primed and unprimed
variables are simply exchanged; therefore one of the variants suffices.) In actual
implementations such a self-resolution of a clause with a copy of itself is almost
always omitted. For theory resolution it is necessary, however.

R-link 4 is a proper theory-R-link. In the theory of ordering relations and equality, the
conjunction of the literals w5e, d:2:e, d;t:e becomes contradictory when instantiated with
the substitution {w(-d}. Thus the theory resolvent (--,Q(a,c,d)} can be derived. Finally,
R-link 5 involves two different variants of the commutativity clause, (f(u,v) = f(v,u)}
and (f(u',v') = f(v',u')}. This link is marked with two most general unifiers: {x(-a,
y(-c, z(-d, u(-a, v(-b}, and {x(-a, y(-d, Z(-C, u(-a, v(-b, u'(-c, v'(-d}. The first
unifier corresponds to applying the commutativity law to the subterm f(a,b) before
unifying it withf(b,x), whereasf(c,d) andf(y,z) are unified without prior swapping. The
second unifier uses commutativity a second time to also switch the arguments inf(c,d).•

4.2.2 Deduction Rules for Clause Graphs

A naive transfer of the resolution rule to clause graphs is as follows: generate, in the
usual way, the resolvent indicated by an R-link, create the clause node representing it,
and compute the new R-links by examining all resolution possibilities between the new
literals and those present before this step. The latter operation is very expensive, but it
can be considerably simplified: the literals of the resolvent are instances of literals
appearing in the parent clauses, their ancestor literals. There cannot be a resolution
possibility with a new literal unless there already is a corresponding resolution possibility
with its ancestor literal. Thus it suffices for each new literal to examine the resolution
possibilities with literals connected to its ancestor by R-links. The new R-links can be
obtained from the old ones by inheritance.

- 39­

Example: Inheritance of R·links
2 3

1 Q(x)...,P((a» 4

In this initial clause graph let us resolve "on" R-link 4, resulting in the following
intennediate situation:

•
Thus there is an advantage of the clause graph representation: the R-links provide an

excellent indexing to compute the resolution possibilities between a resolvent and the old
clauses. For a comparatively large class of theories it is even possible to compute the
unifiers of the new R-links directly from the unifiers of the old links, without having to
unify any literals (see [Ohlbach 87]).

The R-links described so far are just special cases of a more general type of links. As a
motivation let us consider the logical meaning of an R-link. If there is an R-link for a
theory 'Tconnecting literals L}> ..., Ln and marked by a unifier cr, then the conjunction of
the literals crL}> ..., crLn must be 'T-unsatisfiable. This in turn is the case if and only if the
formula crLl 1\ ••. 1\ crLn => [J is 'T-valid.

Now the generalization suggests itself to connect two groups of literals, the
antecedent L}> ...,La and the succedent K j , ••• , Km, by a so-called implication link (or
simply I-link, for short), whenever the formula crLl 1\ •.. 1\ crLa => crKl v ... v crKm is 'T­
valid. For an empty succedent we get just the special case of an R-link, indicating a
resolution possibility. The other special case, with an empty antecedent, signifies that the
formula crKl v ... v crKm is 'T-valid and thus indicates a tautology clause. Links of this
type are called T-links. Graphically, we depict the different links as follows:

I-link R-link T-link

~ rr:::r .-r:-t
antecedent succedent antecedent succedent

antecedent succedent

- 40­

A general I-link corresponds to a partial theory resolution step in which the instance
aK1 v '" v aKm of the succedent is the residue. This interpretation of the link types
requires the antecedent literals (joined conjunctively) to be parts of different clauses, and
the succedent literals Qoined disjunctively) to be parts of the same clause. Several
antecedent literals within the same clause are taken to mean that they belong to different
copies of this clause. If succedent literals are scattered over several clauses, the I-link
represents no executable operation. However, other steps may cause instances of these
succedent literals to become part of the same resolvent, so that inheritance creates an
executable I-link. If antecedent and succedent literals belong to the same clause, it is
possible to derive a new clause by removing the antecedent literals and instantiating the
remainder. This corresponds to an oriented factoring operation.

Example: Execution and inheritance of I-links

l:Zf-b
3: x f- b, Y f- a
4: x f- b, y f- a
5: Z f- x
6: x f- b
7: y f- a, Z f- b
8: Y f- a

resolution on .. factorin& on ..

R-link 2 I-link 4'

Sb

factorin& on .. resolution on ..8'" D
I-link 1 R-link 8'"

a>b:&
I-link 1 is a proper theory-I-link for the theory of ordering relations. It represents the

validity of the implication a<b => aSh in this theory. The I-links 3 and 4, on the other
hand, simply denote the propositional equivalence a>b ~a>b, and are thus somewhat
redundant. But the representation of the equivalence by two implications allows more
flexibility for factoring, as we shall see in the second step.

The fIrst step is to resolve on R-link 2. The resolvent and the inherited links are shown
in the second diagram, but the parent clauses are left out just to save space; they and their
links still belong to the graph. The new I-links 3' and 4' are generated by inheritance of 1­
links 3 and 4.

In the next step we derive the factor a>b using I-link 4' (showing, again, only the
interesting subgraph in the diagram). The same factor could also be derived with I-link
3'; however, if the literals a>x andy>b in the parent clause had links to different places in
the graph, the resulting graphs would be different, because the factor's literals and links
always descend from the non-antecedent literals. If reduction rules as discussed in the

- 41­

next section are used, it is indeed possible that literal nodes labelled with equal literals
have links to different places.

The last two operations are self-explanatory. •
Now we can already obtain a logical state transition system for the resolution calculus

using clause graphs as states rather than clause sets. Given a clause set whose
unsatisfiability is to be shown, we construct the initial clause graph examining all
resolution possibilities and computing the links. The deduction rules above can be seen as
operating "on" links, enabling transitions to supergraphs. These rules can be applied until
a clause graph containing the empty clause has been derived from the initial state, which
proves the unsatisfiability of the initial clause set.

This logical state transition system does note differ very much from the trivial one. Its
disadvantages are the overhead for the computation of the initial state and the increased
cost of handling the more complex states. In return there is an advantage. In classical
procedures the order in which resolution steps take place is more or less fixed by the
search algorithm. The explicit representation of resolution possibilities by R-links in
clause graphs, on the other hand, allows the assessment of all R-links prior to execution
and a selection of the best alternative by heuristic criteria.

4.2.3 General Reduction Rules for Clause Graphs

The clause graph data structure lends itself easily to an efficient implementation of the
reduction rules mentioned at the beginning of section 4.1. We now present the clause
graph versions of the most important of the reduction rules that are generally applicable to
resolution based systems: tautology removal, subsumption, and literal removals.

A tautology clause is a disjunction of literals that is valid (in the given theory). It is
indicated by a T-link with "empty unifier", the identity substitution.

General schema for Examples:

tautology recognition:

Mr... ---r;t.Odentity unifier ~

From a logical point of view, tautology clauses are useless when searching for a
contradiction and should therefore be removable from the clause set. In a more complex
search procedure, however, it is not just the logical status of a formula that counts, but
also its context in the derivation process. For systems using clause graphs this context is
determined, among others, by the presence or absence of links. Link removal rules as
described in the next section can lead to situations where resolvable literals are not con­
nected by an R-link. As a consequence it may happen that a tautology is in fact necessary
for the derivability of the empty clause, as in the following graph:

Resolution on the first R-link and subsequent resolution on the successor of the
second R-link produces the empty clause. The removal of the tautology clause would

- 42­

result in a clause graph with two complementary unit clauses but no links; the empty
clause could no longer be derived.

The so called bridge link condition [Bibel 81] guarantees that a tautology clause is
indeed superfluous: if L} v .. , v L n is a tautology in theory 'T, then the formula
-,L} 1\ ..• 1\ -,Ln is 'T--unsatisfiable. That means that any n-tuple of literals that are
reachable from the tautology via simple R-links (without a theory), can be the parent
literals of a 'T-resolution step and should therefore be connected by an R-link. If that is
the case, the tautology may be removed, otherwise not. Of course one can reinsert
missing links to make the tautology removable.

The second important reduction rule, subsumption, is a special form of entailment
between clauses that is syntactically easy to recognize. The original definition (without
theories) is: a clause C subsumes a clause D if there is a substitution a such that GC cD
holds. With theories the definition can be slightly generalized: when testing for aC {;;D,
the literals are not only tested for syntactic equality but also for implication in the given
theory. In a clause graph such implications are indicated by I-links.

General schema for Example:
subsumption recognition:

simultaneous Xf-a
one sided unifier

Here, the bottom clause subsumes the clause on top. The subsumed clause, that is the
longer one, can usually be removed. However, factors are always subsumed by their
parent clause, without being superfluous in genera1. The application of subsumption
again requires the consideration of the clauses' context. In systems using clause graphs,
there is another condition on the links: a subsumed clause may be removed only if each
R-link at a literal in the subsumer has a counterpart at the corresponding literal in the
subsumed clause [BibeI81].

Another class of reduction rules modifies single clauses by literal removals.
Literals may be removed from a clause in a clause set whenever the clause set with short­
ened clause is logically equivalent to the origina1. In contrast to the removal of whole
clauses, literal removals do not require consideration of existing or nonexisting links in a
clause graph.

A trivial case is literal merging: one of two syntactically identical literals in a clause
may be removed. This application of the idempotence law for disjunction is in a sense
automatically built into the formal definition of a clause as a set of literals; in an actual
program it has to be implemented anyway. The above-mentioned view of a clause node
as a set of literal nodes that may be labelled with equal literals but may have links to
different places, also suggests an explicit merging operation.

Somewhat more general is subsumption factoring. If a clause can be split into two
disjoint subsets C and D such that C subsumes D with a substitution a that does not have
any effect on D, then all literals in the subset C may be removed. This time it is not the
subsumed part, but the subsuming part that is not needed, and we're left with D. The rule
has its name from the fact that D is a factor of the original clause CuD, subsuming its
own parent clause. The removal of the C part simulates a sequence of factoring and

- 43­

subsumption operations. Again, the subsumption test can be modified to test for the
implication in a theory instead of syntactic equality.

General schema for Example:
subsumption factoring: D = (pea), a~y, Q(z)}

~mo1lanOOUSmatch", " % ~ Q

L:-6:6i:~+-J.- ...;tiQn =~~:~~=:=:::=~::~::
x x X not instantiated by (j

Literals marked by x may be removed from the clause.

A further generalization is subsumption resolution. It covers all cases in which a
proper subset D is derivable from a clause by a sequence of resolution and factoring
operations, without instantiating the remaining literals. In this case, D subsumes the
parent clause and all intermediate clauses, so that technically the operation can be
performed simply by removing all literals not belonging to D.

Some schemas for Examples:

subsumption resolution: D = (a~y, Q(z), R}
 r~-reooIUtiO.lirernls p(a)

x~a

are not instantiated

... :IIJ :~:===:::=~::~:
x

non-resolution literals

that are instantiated

subsume literals

r----"'L"'" not instantiated

In principle the power of literal removal rules can be pushed as far as one desires; in
the extreme case, up to the point where all literals may be removed from a clause (which
thus becomes empty) because the whole clause set is unsatisfiable. Of course this would
require criteria as powerful as the whole proof procedure itself, and thus would only shift
the overall problem. But by cleverly exploiting the link structure and the substitutions in a
clause graph, quite a lot of situations in which literal removals are applicable can be
recognized efficiently.

As a further advantage of the clause graph representation we note that the links support
a great number of algorithms for the recognition of redundancies in the clause set

4.2.4 Specific Reduction Rules for Clause Graphs

The form of the clause graphs and of the operations on clause graphs as presented so far
can be seen as an implementation-oriented rendering of the resolution calculus. In this
section we study further operations that enable the removal of links or clauses. They
block certain derivation alternatives that would be possible with the trivial logical state
transition system.

The first idea is to remove R-links and I-links onc~ the corresponding derivation step
has been executed, in order to prevent a repetition of the same step. This seemingly

- 44­

harmless administrative measure has a tremendous effect when combined with link
inheritance: the removal of a link disables the creation of any links that could potentially
be inherited from it, and thus blocks later generations of resolution steps.

Example: We compare two derivations from the following initial clause graph. On the
left hand side link removal is applied, on the right hand side the links operated upon are
drawn as dotted lines.

Resolution on link 1 with removal without removal

2 1""""'::"T'""::"""1 2 r--::"T'"'::'""'I

Resolution on link 2 with removal without removal

[]]]] I-,QIR I~R QS "'+QIR :.7..~ si
2' l' 2'

EQ[IJ P R -,Q S P R ~
In the graph to the left only one resolution possibility is represented, whereas there are
two in the graph to the right, both leading to the same resolvent, though. •

In general, link removal prevents multiple derivations of resolvents from the same
clauses through different orders of the resolution steps.

The second specific reduction rule allows the removal of clauses that contain a "pure"
literal without any links. This purity rule is based on the observation that a derivation
of the empty clause requires that all literals of a clause involved in the refutation must
eventually be "resolved away". A literal node without links cannot be resolved away. If a
clause contains a purity, so does any resolvent derived from it or its descendants, hence
the empty clause cannot be among the clauses derivable from the pure one. The removal
of a pure clause of course implies the removal of all its links, which can result in new
purities in neighbouring clauses. Thus, one application of this rule can cause a chain
reaction of further reductions.

Example:

- 45­

Resolution on the R-link marked by *, with link removal:

Chain reaction:

P(u,d,u)

•
It is in fact possible that all clauses disappear due to this chain reaction - the graph

collapses to the empty graph. In this case the initial set of clauses was satisfiable.

Another class of specific reduction rules exploits that an R-link or I-link actually
represents a potential new clause. If after its creation such a new clause would be
eliminated right away by some reduction rule for clauses, one can try to detect this in
advance. Then a simple removal of the link simulates the operation on the link followed
by the application of a reduction rule to the new clause. Such a look-ahead link removal
can result in purities and thus cause further reductions.

As an example, let us sketch the recognition of tautological R-links, where T-links are
used as indicators:

- 46­

General schema for Examples:
tautology R-link recognition:

Algorithms that recognize links leading to subsumed or pure clauses are also possible,
but increasingly complicated and time-consuming, even when using I-links as indicators.
In addition, to ensure refutation completeness, one has to test whether a logically
redundant link may really be removed from the graph, or whether the clause generated by
it would violate one of the link conditions discussed above.

On the whole, it is advisable to weigh the cost for the detection of reduction
possibilities against their potential benefit. A fourth advantage of the clause graph
representation is that it supports additional reduction rules and thus restrictions of the
search space which are not possible with the trivial logical state transition system for
resolution.

4.3 Properties of Logical State Transition Systems

Since this paper is concerned with deduction systems based on resolution we limit the
following considerations to transition systems based on testing calculi. A generalization
covering also generating calculi would be straightforward, but would complicate the
formalism.

So we assume a logical state transition system with a set of states and a transition
relation. Further, we assume that each formula or set of formulae :Fof the appropriate
logic corresponds to an initial state INIT(1) of the state transition system. It is actually
not necessary that non-initial states of the system represent logical formulae, although
they usually do. Of the final states we assume that they are partitioned into classes, each
class standing for a semantic property like satisfiability or unsatisfiability. The idea is that
whenever transitions from INIT(1) lead to a final state, the system ascribes to 'J the
property for which the class of this final state stands.

The trivial logical state transition system for the resolution calculus has two classes of
final states: the final unsatisfiability states are the clause set containing the empty clause;
the final satisfiability states are the clause sets that are closed under resolution and
factoring, without containing the empty clause.

Depending on what kinds of links are permitted in a graph and which transition rules
are allowed, one can define many different logical state transition systems using clause
graphs. The one underlying Kowalski's connection graph proof procedure is as follows:
its states are clause graphs with binary (non-theory) links. Its initial states are clause
graphs where no possible link is missing. Its final unsatisfiability states are the clause

- 47­

graphs containing the empty clause, and there is just one final satisfiability state, the
empty clause graph, which contains neither links nor clauses (not even the empty one).
Its transition rules are the clause graph versions of factoring and resolution, including
link removal as an integral part of the transition, further the merging, purity, and
tautology rule. Let us call this the cg state transition system.

For logical state transition systems as described we now define the following
properties. The system is called:

unsatisfiability sound iff whenever INIT(.1) ~ some final unsatisfiability
state then .ris unsatisfiable,

unsatisfiability complete iff whenever .ris unsatisfiable
then INIT(S) ~ some final unsatisfiability state,

unsatisfiability confluent iff whenever .r is unsatisfiable and
INIT(.1) ~ SI and INIT(.1) ~ S2
then SI ~ S' and S2 ~ S' for some state S',

unsatisfiability closed iff whenever some final unsatisfiability state ~ S
then S is a final unsatisfiability state.

In exactly the same way we define the properties of the logical state transition system
with respect to satisfiability and to other properties of formulae.

These definitions cover the phenomenon that logical state transition systems may have
non-initial and unreachable states. In the trivial logical state transition system any formula
set could be the one the system was given to start from, thus it has no unreachable states.
On the other hand, there are clause graphs that cannot be reached from any initial state in
the cg state transition system. One can even construct states from which both the empty
clause and the empty graph can be reached, but this is irrelevant because they are not part
of the reachable subsystem. The definitions above allow to express properties of the
relevant subsystems.

Soundness with respect to a semantic property means that if the system ascribes this
property to a formula, then the formula does indeed have the property. The trivial logical
state transition system for the resolution calculus is unsatisfiability sound and
satisfiability sound. If we defined the clause sets consisting of only tautologies as the
final validity states and included the purity rule among the transition rules, the system
would not be validity sound.

Completeness with respect to a semantic property guarantees that a formula's having
this property can always be demonstrated with the system. The trivial system for
resolution is unsatisfiability complete. For some decidable subclasses of first-order
predicate logic, for instance for the ground case and for the Herbrand class (where only
unit clauses occur), it is also satisfiability complete. See [Joyner 73] for more details on
this subject.

Confluence and closedness are the properties that allow irrevocable control strategies
in the respective subsystems. Suppose that .ris unsatisfiable and INIT(.1) ~ V for a final
unsatisfiability state V and also INIT(1) ~ S with an alternative derivation. Then
unsatisfiability confluence ensures that there is a continuation S --4 ut to a common
successor state. If the system is unsatisfiability closed, V'is also a final unsatisfiability
state. To be closed is just a technicality that can easily be ensured for any system.
Confluence, and even commutativity, on all subsystems is an immediate property of
trivial logical state transition systems.

- 48­

For the cg state transition system the results are as follows [Eisinger 89]

• it is unsatisfiability sound and satisfiability sound

• it is unsatisfiability complete

• it is unsatisfiability confluent but not satisfiability confluent.

These results also hold if the subsumption rule is included. Thus the more advanced
reduction rules, which are just combinations of simple ones, are also covered. If all of
these reduction rules are included, the system is one of the strongest with respect to the
ability to recognize the satisfiability while trying to prove the unsatisfiability. This is
when satisfiability soundness carries weight.

If we define the tautology rule without the special "bridge link" condition (section
4.2.3), which incidentally is Kowalski's original definition, the system retains all of the
properties above for the unit refutable class of clauses (see section 5.1) [Smolka 82].
However, in the general case it loses satisfiability soundness and unsatisfiability
confluence. Thus with the original definition there always exists a refutation, but in some
cases an attempt to find it may lead into a dead end from which the refutation is no longer
possible. This result clearly demonstrates the uselessness of traditional completeness
alone. In the case of subsumption there is no similar irrelevance of the link condition for
the unit refutable class.

Finally, let us demonstrate that completeness and confluence are indeed independent
properties. For propositional Horn clauses it is known that if there is a resolution
refutation at all, then there also is one in which no clause is used more than once as a
parent clause in resolution steps. We now modify the trivial logical state transition system
for the resolution calculus such that each transition replaces two resolvable clauses by
their resolvent; that is, the parent clauses of the resolvent are no longer contained in the
successor states. By the above, the resulting logical state transition system is unsatisfiabi­
lity complete for propositional Horn clause sets. The following example shows that on
the other hand it is not unsatisfiability confluent for this class of fonnulae:

{ {P}, {-.Q,R}, {-.R,Q} , {-.Q,P} , {-.P} }
~ ~

{Cl, {-.Q,R}, {-.R,Q}, {-.Q,P}} { {P}, {-.Q,R} , {-.R,Q} , {-.Q} }

~
{ {P}, {-.Q,R} , {-.R} }

~
{ {P}, {-.Q} }

The clause set on the left is a fmal state of the unsatisfiability class; from the last set on
the right no further transition is possible; no common state can be reached from the two
states. In the search space there does exist a clause set containing the empty clause, but an
irrevocable control regime might miss it and run into a dead end.

4.4 Graphs as Representations for Proofs

Clause graphs can be used for entirely different purposes. So far we have seen them as a
richer data structure for the states of a deduction system. However, one can also use
special clause graphs to represent the result of a deduction system, namely the sequence
of derivation steps through which the empty clause was obtained. These clause graphs
represent refutations and thus proofs.

- 49­

In this section we present an abstraction from the usual notion of a proof. The basic
observation is that literals in resolvents are nothing but instances of literals appearing in
the initial clause set. In principle a resolvent may therefore be represented by a set of
pointers to literals in the initial clause set, along with a substitution. Yet, not even this is
really necessary. Actually it suffices to mark the resolution literals in the initial clauses by
an R-link. Such a link then signifies (as opposed to its meaning in the state transition
systems discussed so far) that the corresponding resolution step is to be considered as
executed and that thus both resolution literals have been "resolved away". The set of
literals not incident with a link, or rather their instances, now corresponds to the
resolvent. We demonstrate the idea with a simple example.

Example: Abraham is the father of Isaac, and Isaac is the father of Jacob. Therefore
Abraham is the grandfather of Jacob. In clausal form the hypotheses and the negated
conclusion are as follows:

Father(Abraham, Isaac)
Father(Isaac, Jacob)
-,F'ather(x, y), -Father(y, z), Grandfather(x, z)
~randfather(Abraham, Jacob)

Below we develop a resolution refutation on the left hand side, and on the right hand
side a clause graph in which the successive resolution steps are represented by R-links
joining the initial clauses. The shaded connections are pointers from the literals in the
resolvents to their literals of origin. To save space, we abbreviate predicate symbols and
constant symbols.

First resolution step:

-.F(x,y),-.F(y,z),G(x,z) -.G(Ab,Ja)

'V
-.F(Ab, y),-.F(y,Ja)

Second resolution step:

-.F(x,y),-.F(y,z),G(x,z) -.G(Ab,Ja)

'V
F(Is,Ja) -.F(Ab, y),-.F(y,Ja)

~
-.F(Ab, Is) -----­

- 50­

Third resolution step:

.F(x,y),.F(y,z),G(X,Z) .G(Ab, Ja)

'V
F(Is, Ja) .F(Ab, y), .F(y, Ja)

~
.F(Ab, Is) F(Ab, Is)

~
[J

This was a proper refutation proof. The following three diagrams show a "positive"
resolution proof. where the conclusion is explicitly derived as the second-to-Iast clause.

First resolution step:

F(Ab, Is) .F(x,y), .F(y,z),G(x,z)

~
.F(Is, z),G(Ab, z)

Second resolution step:

F(Ab, Is) .F(x,y),.F(y,z),G(x,z)

~
.F(Is, z),G(Ab, z) F(Is,Ja)

~

X f- Ab,
L...,;,,"":';';'O~...;..:.;:..:.;;.;:....L,;..:.;;,:;~

Y f- Is,
Z f- la

G(Ab,Ja) ---~----------

Third resolution step:

F(Ab, Is) .F(x,y)••F(y,z).G(x,z)

~
.F(Is, z),G(Ab, z) F(Is,Ja)

~
G(Ab. Ja) .G(Ab, Ja)

~
[J •

Although the two resolution proofs are different. they result in the same clause graph.
In either refutation. each of the three unit clauses is used as a parent clause exactly once.
only in different orders. The clause graph representation abstracts from this irrelevant
order of the steps and altogether represents six different refutations. These can be

- 51 ­

reconstructed by executing the steps represented by the R-links in any order, using the
transition rules described before.

A clause graph which in that way represents a class of derivations of the empty clause,
is called a refutation graph.

Naturally, not every clause graph is also a refutation graph. The example above shows
some conditions such graphs have to meet: every literal node is incident with exactly one
R-link, and there exists a global substitution that unifies every pair of connected atoms.
All clauses are members of the initial clause set to be refuted. If an initial clause is needed
twice in the resolution derivation, the refutation graph contains two copies of this clause
with renamed variables, so that the copies may be instantiated in different ways. A
resolvent needed several times corresponds to copies of the subgraph representing this
resolvent

Finally, a refutation graph must not contain any cycles. A cycle is a path that starts
from a clause and along one or more links returns to the same clause. Without this
condition, the following satisfiable graph would also be a refutation graph:

EfI]]f-~Eill!Jt--2-~
3

The clause set corresponds to the formulae P =>Q, Q=>R, R=>P. Resolution on R­
links 1 and 2 results in the tautology {-,P, P}, the empty clause cannot be derived. The
link sequence I, 2, 3 is a cycle. The example shows that cyclic paths represent derivation
chains "biting their own tail": in order to prove P, one has to prove R; to prove R, one
has to prove Q; to prove Q, one has to prove P; ...

Refutation graphs were first examined by Robert E. Shostak: [Shostak: 76]. He was
able to show that a clause set is unsatisfiable if and only if for a sufficient number of
copies of these clauses there exists a refutation graph, that is a nonempty, noncyclic
clause graph in which every literal node is incident with exactly one R-link, so that some
global substitution unifies every pair of connected atoms.

In order to represent in a refutation graph the phenomenon of two literals being
merged by factoring, we have to generalize the form of R-links for refutation graphs.
Each side of an R-link may be incident not only with one, but with several literal nodes,
and thus the link may fan out on either side.

Form of R-links clause graph refutation graph

simple resolution:)>--oc>---r("

theory resolution:

An R-link consists of as many major branches as there are clauses in the resolution
step. For simple resolution, there are two, but for theory resolution, there may be
several. Each major branch of an R-link fans out into one or more minor branches, which
show which literals must merge before the resolution step can actually be executed.

- 52­

Example: First step:

P(x, z)j P(Y_'C_)factoring IP_(_x:r'z) j(Y, c) I y f- x,
I Z f- C

P(x, c)

Second step:

P(x, z), pry, c)
I

factoring
I y f- a,

P(x, c) -,P(a, c), -,P(b, c) Zf-C

X f- a,

~

~-~-~-~----~-----,P(b, c)

Third step:

P(x, z), pry, c)
I

factoring
I

P(x, c) -,P(a, c), -,P(b, c)

X f- a,
y f- a,
Z f- C

V X'f- b,
Y'f- b,
Z'f- C

IJ

links are just special cases of I-links) not only for refutation graphs, but for arbitrary
clause graphs in the way above. Then a major branch of an R-link would correspond to
the disjunction of the literals at its minor branches, while the entire R-link would still
represent the conjunction of all its major branches. To carry out a resolution step, one has
to select exactly one minor branch of each major branch, and use their literals as
resolution literals. But we do not pursue this generalization.

In a refutation graph, a major branch does not have to fan out to a single clause, as it
happens in the example above. Minor branches leading to different clauses indicate that
not the initial clauses, but some resolvent of theirs has to be factored or merged. When no
major branch of any R-link fans out to different clauses, this is a special kind of
refutation graph; it represents a derivation factoring only initial clauses.

Even more special refutation graphs are such that the major branches do not fan out at
all, representing derivations without factoring or merging. In this case, the refutation
graph has a treelike structure and is also called a refutation tree. A theorem by M.C.
Harrison and N. Rubin [Harrison & Rubin 78] states that there exists a refutation tree for
a given clause set if and only if this clause set is unit refutable (for instance, if it is an
unsatisfiable Horn clause set).

The clause set {{P, Qj, {-.P, Qj, {-,Q,Pj, (-,Q, -.P)) is unsatisfiable and has only
refutation graphs that are no refutation trees. Thus it is not unit refutable, and any

•
It would be possible to generalize the definition of R-links and I-links (recall that R­

- 53­

refutation requires at least one merging step. The reader may wish to try and construct the
resolution refutations represented by the following two refutation graphs for this set:

4.5 Extracting Refutation Graphs from Clause Graphs

The study of refutation graphs leads to a better understanding of the topological structure
of resolution proofs and thus of the interdependencies of consequences. Refutation
graphs are also quite useful in examining theoretical properties of deduction systems. So
far we did not tell whether they are also useful in searching for a proof; in the examples
we always translated complete resolution refutations into corresponding refutation
graphs. How to find these refutations, remained open.

In this section we introduce a procedure that enables us to extract a refutation tree for a
unit refutable clause set directly from the initial clause graph. If the procedure succeeds, a
proof has been found without generating a single resolvent. The basic idea leading to the
extraction procedure can best be seen in an example involving a somewhat more complex
refutation tree for a propositionallogic clause set:

Literals have

D been omitted

In this refutation tree there are three clauses, A, C, and D, with the property that all but
one of their literals resolve with a unit clause. Let's take, say, A and successively resolve
with all three of the unit clauses. The final resolvent consists of just the fourth literal node
A4 and is a new unit clause linked to B by a descendant of link 4. Proceeding likewise
with C, we obtain another unit clause Cl, connected to B by a descendant of link 5.
Combined, A4 and Cl enable us to resolve away the fIrst two literal nodes in B, leaving
B3. At this point every literal node in D is linked to a unit clause and the empty clause can
be derived.

Thus in a clause graph containing all possible R-links, one simply has to look for a
subgraph in which each literal of a clause is connected to a unit clause by an R-link. If
this succeeds, one has found a refutation tree and is done. Otherwise, one considers the
subgraphs in which all but one of the literals of a. clause are connected to a unit clause by
an R-link. A subgraph of this kind represents a unit resolvent consisting of a successor of
the exempted literal. This literal can now be treated as if it were a "proper" unit clause,
such that an appropriate subgraph may be found for other clauses, for which this was not
possible before.

When working with predicate logic clause sets, the unifIers of the R-links have to be
considered as well. Our next example, which contains a transitivity axiom, shows the
effects of that.

- 54­

~:x~v, Y~f(v)

0'2: Y ~ v. z ~ f(v)
O'i x~f(b),y ~ c
0;,: y ~f(b). z ~ c

os: x ~ a, y ~ b
0'6: y ~ a, z ~ b
0'7: x ~ f(w),z ~ f(c)

Here it is of course not the third literal P(x, z) of the transitivity axiom itself that can be
turned into a unit clause, but at best some instance of it. Possible instances are determined
by finding compatible combinations of unifiers of the R-links to the unit clauses. In order
to see which ones these are in our example, we organize the unifiers in a table, showing
the instantiations for the variables x, y, z in a fixed order one beneath the other. The four
compatible combinations are now found by unifying pairs of term lists, namely those
given by the entries for the respective substitutions in the two tables. (The variable v in 0"2

is renamed in order to simulate that another copy of the clause P(v,f(v)) must be used.)

z
v f(v) z

fib) e z
a b z

z
x v' f(v') 0'],0'2
x f(b) e 0'], (j4

x a b OJ,Oi
OJ,Oi

z
v fey) f(j(v»
b f(b) e

f(b) c f(e)
a b f(b)

From the four compatible combinations, four new unit clauses can now be derived by
instantiating the third literal P(x, z). These new unit clauses are: (P(v,f(f(v)))} ,
(P(b, c)}, (P(f(b),f(c))}, and (P(a,f(b))}. By looking at the unifier 0"7 one realizes that
only those instances can be useful later on, in which x is replaced by f(. ..) and z by f(e).
With this constraint only the combination 0"),0"2 remains, resulting in the unit clause
(P(f(b),f(c))}. However, the corresponding instance of 0"7 can also be computed directly
from a7 and the combination a), 0"2 by a merging algorithm for substitutions; the result
is (x ~f(b), z ~f(c), w ~b}, and the detour of computing the instantiated literal has
been saved.

The whole procedure for the extraction of refutation trees from clause graphs now
works as follows [Antoniou & Ohlbach 83]:

Select a clause whose literals are connected to unit clauses by R-links, with the
exception of at most one literal, say K. Compute the set of compatible combinations of
the unifiers of the R-links to unit clauses. For each unifier of each R-link incident with
literal K and for each compatible combination, apply the merging algorithm. Mark the R­
links of K with the instances of their unifiers thus obtained. These instances correspond
to the unifiers of the R-links to the unit clauses potentially derivable from K. They can, in
subsequent search steps, be used as if the unit clauses were indeed "properly" present in
the graph. The algorithm terminates if a clause is found in which all literals are connected
to proper or potential unit clauses by R-links with compatible substitutions. In order to
construct the tree and, if required, to translate it into a resolution proof, one simply has to
gather all used links and substitutions.

This approach is based on the observation that refutations are characterized by a
topological structure and a compatibility property of the substitutions involved. By
extracting the topologically suitable subgraphs, whole classes of refutations are treated at
once, such that an improvement of the overall cost can be expected.

- 55­

In the version presented, the method applies to clause sets that are unit refutable with
simple resolution. The extension to theory resolution is unproblematic. A generalization
of this method to non-unit-refutable clause sets has not yet been worked out, but there are
a number of approaches with the same underlying idea [Sickel 76, Chang & Slagle 79,
Shostak 79]. The matrix method of Andrews and Bibel also belongs to that category
[Andrews 68, Bibel 81,82].

- 56­

5 Control

In principle, all one needs to do in order to find a proof with a logical state transition
system, is to systematically enumerate all states reachable from the respective initial state
- assuming, of course, appropriate system properties. However, deduction systems
become feasible only if they avoid "bad" steps and prefer "good" steps as much as
possible.

The selection of "good" steps actually requires domain specific knowledge about the
field to which the statements to be proven refer. Unfortunately, so far little is known
about what exactly constitutes such knowledge and how a deduction procedure can be
controlled by it. But there are also purely syntactic criteria, which exploit only the
structure of the formulae and can therefore be applied independent of the domain.
Although they are necessarily of limited power, they do help to avoid gross ineffi­
ciencies. At the present state of the art, such syntactic criteria are the decisive factor for a
tolerable functioning of deduction systems.

For the resolution calculus two types of syntactic criteria have been studied. The
emphasis has long been on restriction strategies, which prohibit some of the possible
steps altogether. Essentially they result in a smaller branching rate of the search space,
but compared to the unrestricted system they often increase the lengths of the proofs in
return, such that their overall benefit becomes questionable. Some restriction strategies
empirically turned out to be quite useful, though. In contrast to restriction strategies,
ordering strategies do not prohibit any steps but dictate the order in which the
possible steps are chosen. Syntactic heuristics can play a role in determining this order.

In some cases the difference between restriction strategies and ordering strategies
becomes somewhat blurred. Whenever an ordering strategy prefers an infinite number of
steps over certain others, it has the effect of a restriction strategy.

5.1 Restriction Strategies

One of the most simple restriction strategies for resolution is called unit resolution. It
prohibits the generation of resolvents from two parent clauses if both of them contain
more than one literal. Worded positively, every resolvent must have at least one unit
parent clause. This restriction greatly reduces the number of successor states of a clause
set. It always leads to resolvents with fewer literals than the larger parent clause.
Moreover, it is easy to implement. Unit resolution has also proved rather successful in
practice.

However, sometimes this strategy is too restrictive. A restriction strategy ought to
preserve as many of the properties of the underlying state transition system as possible.
While soundness properties cannot be affected by restriction strategies, completeness and
confluence properties might be lost. Unit resolution is not in general unsatisfiability
complete; that is, with this strategy the empty clause cannot be derived from each unsatis­
fiable clause set. Still, unsatisfiability completeness is guaranteed for an important class
of clause sets, which includes the class of Horn clause sets and which for lack of a
syntactic characterization is called the unit refutable class. This is the same class of
clause sets for which refutation trees can be constructed (see sections 4.4 and 4.5).

Independent of completeness, one also has to ensure the confluence of restriction
strategies for the relevant classes of formulae. For example, we could define a restriction
strategy for simple resolution by prohibiting that any clause be used more than once as a

- 57­

parent clause. This restnctIon strategy would be unsatisfiability complete for
propositional Horn clause sets, but not unsatisfiability confluent. Compare the remarks
on unsatisfiability completeness and confluence of state transition systems at the end of
section 4.3.

For the class of unit refutable clause sets, another important restriction strategy, input
resolution, is unsatisfiability complete. It prohibits the generation of resolvents whose
parent clauses are both resolvents. Worded positively, every resolvent must have at least
one parent clause from the initial clause set. The major advantage of this restriction is that
for each admissible resolution step, one of the resolution literals is known a priori. In
particular, any unification involves some arbitrary atom and an atom from the initial
clause set. For each of the latter a specific unification algorithm can be "compiled", which
computes the most general unifiers for "its" initial atom and an arbitrary atom it takes as
an argument. Such an algorithm is usually much more efficient than one capable of
unifying two arbitrary atoms.

In an input derivation each resolvent has a "far parent" from the initial set and a "near
parent" that may be any clause. The resolvents and factors can be partially ordered by the
ancestor relation, which imposes a tree structure upon them. Many restrictions weaken
the condition on the far parent in order to cover arbitrary clause sets, while trying to
preserve as much as possible of the flavour of the input restriction.

The merging restriction [Andrews 68] accepts as far parent either an input clause
or a "merge". Such a clause results from a resolvent by merging or factoring two literals
descending from different parent clauses.

Another relaxation characterizes linear resolution. Beside input resolution steps,
this strategy also permits resolution steps between two resolvents in cases where one is
an "ancestor" of the other. By admitting ancestor steps only when a factor of their resol­
vent subsumes the near parent and by making this factoring compulsory, we obtain the s­
linear restriction [Loveland 78]. The t-linear restriction [Kowalski & Kuehner 71]
further limits ancestor steps to so-called "A-ancestors", all of whose literals excepts for
the one resolved upon have descendants in all intermediate clauses down to the near
parent. Moreover, near parents resolvable with an A-ancestor where the resolvent
subsumes the parent clause may not participate in input steps. An additional qualification
calling for a single most recently introduced literal of the near parent to be the only one
ever resolved upon in input steps leads to SL resolution [Kowalski & Kuehner 71].

Some restrictions are more concerned about the factoring rule. For example, the half­
factoring restriction excludes resolution steps between two factors [NolI 80]. Finally,
factoring can be restricted in a new way. Let "kindred literals" be such as have a common
ancestor literal. For instance, resolution between (P(x), Q(z)) and (-.Q(a),-.Q(b))
produces (P(y),-,Q(b)) which again resolves with the first clause giving (P(x'), P(y')).
This resolvent consists of kindred literals. The kindred factoring restriction
confines factoring to kindred literals.

Finally, the set-of-support restriction strategy is widely used and on the whole
rewarding. It distinguishes between clauses stemming from the hypotheses and clauses
obtained from the (negated) conclusion. Assuming that the hypotheses are not
contradictory in themselves, a contradiction must invblve the conclusion. Therefore the
strategy prohibits the generation of resolvents from two hypothesis clauses. Somewhat
more general, one can distinguish any satisfiable subset of the initial clause set, and

- 58­

prohibit resolution between members of this distinguished subset; only the other clauses
are "supported".

5.2 Ordering Strategies

The most simple ordering strategy for resolution is the level saturation strategy.
Each clause is associated with its "depth": initial clauses from the original clause set have
depth 0, factors are of the same depth as their parent clauses, and the depth of a resolvent
is one more than the larger of the parent clauses' depths. The level saturation strategy
orders the possible steps simply by the depths of the clauses generated, so that a clause of
depth n may be added to a clause set only if all clauses with a smaller depth have already
been derived. The order in which clauses of the same depth are generated is not specified,
but left up to the particular implementation. A possible condition might be to prefer
clauses with the smallest number of literals from among all clauses of the same depth.

A frequently used modification of the level saturation strategy is obtained by
subtracting some constant positive integer c from the depth of each resolvent having a
unit parent clause. Then, all derivable factors and resolvents will still be systematically
generated, but those with a unit parent occur c levels earlier than others. This variant of
the level saturation strategy has become known as the unit preference strategy.

At least for the trivial logical state transition system of the resolution calculus, both
strategies are exhaustive: for any clause appearing in any state of the search space, a
state containing this clause will be reached after a finite number of steps (unless a final
state is reached before that). If the underlying state transition system and the combination
of restriction strategies used are complete and confluent with respect to some class of
final states, then an exhaustive ordering strategy always reaches a final state of this class
after finitely many steps.

In some systems, however, it is impossible for ordering strategies to be exhaustive.
Then one has to guarantee at least their fairness: no step must be postponed relative to
infinitely many others.

The preference of certain steps need not be confined to resolvents with unit parent
clauses in order to preserve fairness. When a given fair ordering strategy is modified
such that steps producing resolvents with fewer literals than either parent clause are given
priority over all other steps, another fair ordering strategy is obtained. The highest
priority can in principle be given to any class of steps considered useful, provided that no
infinite succession of steps of that class is applicable from any state. For example, in the
cg state transition system one might give highest preference to the resolution steps that
cause the purity of both parent clauses, or to the steps that render one parent clause pure
and derive a clause that is shorter than this parent clause.

Many reduction rules actually also contribute to an ordering strategy. Strictly
speaking, the look-ahead link removal (section 4.2.4) enforces that a link whose factor or
resolvent can be eliminated by some clause reduction rule be processed before any other
links. Even subsumption factoring and subsumption resolution, which only eliminate
single literals from clauses, really simulate the derivation of new clauses. If they get
highest priority, this defines a new ordering strategy. In general, one cannot combine
arbitrary reduction rules with arbitrary ordering strategies without jeopardizing properties
of the strategy.

For those cases in which certain steps cannot be generally preferred, one can define a
heuristic priority. To ensure fairness, the depth of the clauses has to enter into this

- 59­

priority. But the priority may also depend on further syntactic features, such as the
number of literals or the term complexity. It is a common technique for heuristic search to
compute the priority value as a weighted sum of these feature values, where the weights
can be adjusted by the user in order to influence the system's behaviour.

In principle, the heuristic values might also be based on domain specific knowledge,
although there is the standard objection that such knowledge can hardly be encoded in a
simple priority value.

And come to that, the user is often endowed with control knowledge that ought to be
made available to the system in an appropriate way. However, at present the structure of
such control knowledge and the mechanisms to bring it in are largely unknown.

5.3 Filters

For a formal description of strategies we have to return to the general level of logical state
transition systems with a set S of states and a transition relation ~. Here the difference
between restrictions and orderings disappears.

A filter for a state transition system is a unary predicate <I» on the set of finite
sequences of states. The notation S~S' stands for a derivation S~S' where <I»(S ... S')
holds. For an infinite derivation, So-V... -vSn-q... means that <I»(SO...Sn) holds for each
n.

The name "filter" is due to Smolka [Smolka 82]. Intuitively, a filter <I» conceals all
derivations for which the predicate does not hold, i.e. <I» retains a sub-portion of the state
transition system's original search space. While it is not impossible to apply some
tentative control regime in the remaining search space, there is a canonical way to
associate with <I» a class of irrevocable control strategies. Having derived from some
initial state So some non-final state Sn, such a strategy may choose as successor any state
S with Sn~S and <I»(So.. ,SnS), thus pursuing one single derivation with <1». The strategy
may freely exploit any nondeterminism left by the filter, and one may not make any
assumption about its choices. Under these conditions the system's behaviour depends
entirely on the properties of the filter <1».

Traditional strategies for resolution are often described by means of an auxiliary struc­
ture called deduction tree [Chang & Lee 73, Loveland 78], which is an upward
growing tree whose nodes are clauses and whose arcs connect resolvents or factors with
their parent clauses (we used deduction trees in the Abraham-Isaac-Jacob example in
section 4.4). One can think of deduction trees as being embedded in clause sets or clause
graphs or other kinds of states composed of clauses in the following way: Given
So~ So, associate with each clause C in Sn a deduction tree made up according to the
steps of the derivation. Its nodes are clauses from the union of all Si. with leaves from So
and root C. Loosely speaking, Sn contains a set of such deduction trees. A transition step
Sn~ S producing a new clause introduces a new deduction tree, which is contained in G
and not contained in Sn, but its immediate subtrees are.

A restriction strategy essentially depends upon a predicate that admits only certain
deduction trees. The corresponding restriction filter Cl> is defined as <I»(Go...GnG) iff
Gn~G and the deduction tree introduced by G is admitted by this predicate. An ordering
strategy relies on a merit ordering of deduction trees (or of linearizations thereof
[Kowalski 70]). Given a merit ordering one obtains the corresponding ordering filter
<I» as <I»(GO...GnG) iff Gn~G and none of the deduction trees introduced by any other
potential successor of Go has better merit than the deduction tree introduced by G.

- 60­

Example: Let <I>INPUT(SO...SoS) iff the root of any deduction tree introduced by S is
adjacent to a leaf from SO. Further let a deduction tree T1 have better merit than T2, if the
depth of Tl is less than the depth of T2, and let <I>LEVEL be the ordering filter
corresponding to this merit ordering. For the trivial state transition system for the
resolution calculus an irrevocable control strategy based on <1>INPUT 1\ <!>LEVEL perfonns
a level saturation derivation in the search space left by the input restriction. The remaining
nondeterminism leaves it up to the strategy to sequentialize at pleasure the generation of
clauses of the same level. •

Reduction steps can also be treated by both kinds of filters. An ordering filter might
postpone the removal of subsumed clauses to certain resolution steps. A restriction filter
might preclude backward subsumption. Furnished with appropriate node attributes
indicating if and why the Clause is not present in the respective state, deduction trees may
serve as a definitional aid for such cases too.

With this background the behaviour of control strategies can be described in terms of
filters and their properties. There is a natural way to accommodate to fIlters the notions
introduced in section 4 for the state transition system:

A filter <I> for a logical state transition system with initial state INIT(.1) for a formula J"is
called:

unsatisfiability sound iff whenever INIT(.1) ~ some final unsatisfiability
state then J" is unsatisfiable;

unsatisfiability complete iff whenever J"is unsatisfiable
then INIT(.1) ~ some final unsatisfiability state

unsatisfiability confluent iff whenever J"is unsatisfiable, and
INIT(.1) ~ S1 and INIT(J) ~ S2

then INIT(1) ~ S1 ~ S and
INIT(.1) ~ S2 ~ S for some S;

unsatisfiability Noetherian iff whenever J"is unsatisfiable then there is no
infmite derivation
INIT(.1) iF S1 -w ... -w So -w ...

Note that -w needs not be transitive, hence the special fonn of confluence. Again, the
concepts for satisfiability and other properties read correspondingly. •

The logical state transition system's soundness properties are obviously not affected
by any strategy, Le. each filter is unsatisfiability sound and satisfiability sound if the state
transition system is. Unsatisfiability completeness of a filter <I> only signifies the
existence of a refutation with <I> from any unsatisfiable initial state. For the trivial state
transition system this is the central and usually the only property of restrictions ever
investigated. Unsatisfiability confluence of a filter is necessary to avoid the need for
backups to earlier states of a derivation, like the same property of the sate transition
system. Most of the restrictions mentioned in section 5.1 are unsatisfiability complete for
the trivial state transition system for resolution and many of them can even be combined
without destroying unsatisfiability completeness. Their unsatisfiability confluence is
usually rather obvious for the trivial state transition system, but hardly ever mentioned.

Unsatisfiability completeness and unsatisfiability confluence of a restriction filter do
not exclude infinite branches in the search space. It requires additional properties of the
filter to ensure that an existing refutation will actually be found by an irrevocable control
regime. The normal thing would be to call for unsatisfiability Noetherianness. Alterna­

- 61 ­

tively, one might squeeze a restriction to a point where it is unique, i.e. it accepts at most
one successor state in each situation. Then its irrevocable application is deterministic and
unsatisfiability completeness alone is sufficient. While for certain state transition systems,
e.g. in syntax analysis, filters with such qualities do exist, none of the traditional
restriction filters for resolution comes anywhere near uniqueness or unsatisfiability
Noetherianness.

Instead, termination is usually considered a problem to be handled by an ordering
strategy. The definition of an appropriate merit ordering yields an ordering filter. For
each of them one has to ascertain unsatisfiability completeness, unsatisfiability
confluence, and unsatisfiability Noetherianness, and ideally these qualities should be
maintained in conjunction with any unsatisfiability complete and unsatisfiability confluent
restriction filter.

Now in fact all orderings proposed for resolution belong to the same class of
exhaustive orderings. A merit ordering is exhaustive, if each derivation admitted by the
corresponding filter potentially, Le. if sufficiently continued to non-fmal states, reaches
every deduction tree in the search space. Note the repugnance of this property with the
very nature of restriction filters. Exhaustive ordering filters trivially enjoy all the
properties we strive for.

Unfortunately exhaustiveness heavily depends on the state transition system's
commutativity. For non-commutative systems exhaustive ordering filters do not in
general exist. Then we must attempt to capture the intention of exhaustiveness with a
weaker notion: fairness, which means that each possible operation has a finite chance to
be performed and none is infinitely postponed. Depending on the state transition system,
the precise definition of fairness may vary. The goal is that each fair ordering filter, when
combined with any unsatisfiability complete and unsatisfiability confluent restriction
filter, is unsatisfiability complete, unsatisfiability confluent and unsatisfiability
Noetherian.

5.4 Results on Control Strategies for the CG State Transition System

In this section we summarize the most important findings on control strategies for the cg
state transition system [Eisinger 89]. Section 4.3 described the properties of this state
transition system itself.

Allowing a single application of a copy rule1 at the beginning, the combination and
thus each subset of the following restrictions is unsatisfiability complete: set-of-support,
linear, s-linear, half-factoring, kindred factoring. With the same proviso the t-linear and
the SL-restriction are unsatisfiability complete, and so is the input restriction for the unit
refutable class. Without the copy rule the unit restriction is unsatisfiability complete for
the unit refutable class and the input and the SL restriction are for the Horn class.

The conjunction of the set-of-support and the merging restriction is not unsatisfiability
complete (although it is for the trivial system [Andrews 68]). This demonstrates that
completeness results for strategies for the trivial state transition system do not simply
carry over to other state transition systems.

The copy rule allows insertion of additional variants of a clause in the graph. The copy rule is needed
in the completeness proof. There is a strong conjecture that this nile is an artifact of the completeness
proof technique and actually not necessary.

- 63 ­

6 Conclusion

The ability to draw logical conclusions is of fundamental importance to intelligent
behaviour. For this reason, deduction components are an integral part of numerous
Artificial Intelligence systems. Even though the original motivation for developing these
systems was to automatically prove mathematical theorems, their applications now go far
beyond. Logic programming languages such as PROLOG have been developed from
deduction systems, and these systems are used within natural language systems and
expert systems as well as in intelligent robot control. In addition, this field's logic­
oriented methods have influenced the basic research of almost all areas of Artificial
Intelligence.

In this paper we have presented a general theory of deduction systems. The theory has
been illustrated with deduction systems based on the resolution calculus, in particular
using clause graphs. In this theory there are four levels making up an entire deduction
system. The first level is constituted by a logic, which establishes the syntax and the
semantics of a formal language and thus defines the permissible structure and meaning of
statements. The logics of interest to deduction systems define a notion of semantic
entailment which, however, does not provide any means to determine algorithmically
whether or not a given statement entails another one. This is accomplished by a calculus,
the second level of a deduction system. A calculus defines syntactic derivations as
operations on formulae. The third level of a deduction system, the logical state transition
system, determines the description of formulae or sets of formulae together with their
interrelationships, and also the representation of the various states of the derivation
chains. Often, additional operations are introduced at this level, for instance the removal
of redundant statements, rendering impossible some derivations allowed by the calculus ­
hopefully unnecessary ones. Finally, the control, the fourth level a deduction system is
composed of, comprises the strategies and heuristics used to choose the most promising
among all applicable derivation steps.

For the last two levels appropriately adjusted notions of soundness, completeness,
confluence and Noetheriailness have been introduced in order to characterize the
properties of particular deduction systems. For more complex deduction systems, where
logical and topological phenomena interleave, these properties can be far from obvious.
We discussed these properties in particular for the system underlying Kowalski's
connection graph proof procedure and listed the present knowledge about this system.

We presented only a very small fraction of the activity going on in the fascinating field
of the automation of reasoning. We hope that the developed framework proves useful in
other areas of the field as well.

-64­

7 References

Abbreviations:

CADE Conference on Automated Deduction
CSLI Center for the Study of Language and Infonnation
IEEE Institute for Electrical and Electronics Engineers
UCAI International Joint Conference on Artificial Intelligence
JACM Journal of the Association of Computing Machinery
JAR Journal of Automated Reasoning
JCSS Journal for Computer and System Sciences
LNAI Lecture Notes in Artificial Intelligence
SIAM Special Interest Group on the Automation of Mathematics

AYt-Kaci & Nasr 86 H. AYt-Kaci, RNase: LOGIN: A Logic Programming Language with

Built-In Inheritance. Journal of Logic Programming, No. 3, 1986.
AYt-Kaci & Smolka 87 H. AYt-Kaci, G. Smolka: Inheritance Hierarchies: Semantics and Unification.

MCC Technical Report, 1987.

Andrews 68 P.B. Andrews: Resolution with Merging.

JACM, Vol. 15, No. 3, pp 367-381, 1968.

Antoniou & Oh1bach 83 G. Antoniou, HJ. Oh1bach: Terminator.

Proc. of 8th IJCAI, Kar1sruhe 1983.

Bibe181 W. Bibe1: On Matrices with Connections.
JACM, Vol. 28, No. 4, pp 633-645, 1981.

Bibe182 W. Bibe1: Automated Theorem Proving.

Vieweg VerIag, 1982.
BHisius 87 K.H. Blasius: Equality Reasoning Based on Graphs.

SEKI Report SR-87-01, FB Informatik, University of Kaisers1autem, 1987.
Brachman & Schmolze 85 R Brachman, J. Schmolze: An Overview of the KL-ONE Knowledge

Representation System. Cognitive Science Vol. 9, No. 2, p. 171-216, 1985.

Book 82 RV. Book: Confluent and other Types of Thue Systems.

JACM, Vol. 29, No. I, pp. 171-182, 1982.
Brand 75 D. Brand: Proving Theorems with the Modification Method.

SIAM Journal of Comp., vo1 4, No. 4, 1975
Bundy 83 A Bundy: The Computer Modelling ofMathematical Reasoning.

Academic Press, London, 1983.

Chang & Lee 73	 C.-L. Chang, R,C. Lee: Symbolic Logic and Mechanical Theorem Proving.
Computer Science and Applied Mathematics Series (W. Rheinbo1dt, ed.),
Academic Press, New York, 1973.

Chang & Slag1e 79 c.-L. Chang,J.R Slagle: Using Rewriting Rulesfor Connection Graphs to
Prove Theorems. Artificial Intelligence, Vol. 12, No. 2, pp. 159-178, 1979.

Church 41 A Church: The Calcule ofLambda Conversion.

Princeton University Press, Princeton 1941.
Cohn 87 AG. Cohn: A More Expressive Formulation ofMany Sorted Logic.

JAR Vol. 3, No. 2, pp. 113-200, 1987.

Digricoli 79 V.J. Digricoli: Resolution by Unification and Equality.

Proc. 4th Workshop on Automated Deduction, Texas, 1979
Dixon 73 J.K. Dixon: Z-Resolution: Theorem Proving with Compiled Axioms.

JACM, 20,1, 1973.

7 References

Abbreviations:

—64—

CADE Conference on Automated Deduction
CSLI Center for the Study of Language and Information
IEEE Institute for Electrical and Electronics Engineers
IJCAI International Joint Conference on Artificial Intelligence
JACM Journal of the Association of Computing Machinery
JAR Journal of Automated Reasoning
J CSS Journal for Computer and System Sciences
LNAI Lecture Notes in Artificial Intelligence
SIAM Special Interest Group on the Automation of Mathematics

Ai't-Kaci & Nasr 86

A‘it-Kaci & Smolka 87

Andrews 68

Antoniou & Ohlbach 83

Bibel 81

Bibel 82

Bläsius 87

Brachman & Schmolze 85

Book 82

Brand 75

Bundy 83

Chang & Lee 73

Chang & Slagle 79

Church 41

Cohn 87

Digricoli 79

Dixon 73

H. AIt—Kaci, R.Nasr: LOGIN: A Logic Programming Language with
Built-In Inheritance. Journal of Logic Programming, No. 3, 1986.
H. Ai't-Kaci, G. Smolka: Inheritance Hierarchies: Semantics and Unification.
MCC Technical Report, 1987.
P.B. Andrews: Resolution with Merging.
JACM, Vol. 15, No. 3, pp 367-381, 1968.
G. Antoniou, HJ. Ohlbach: Terminator.
Proc. of 8th IJCAI, Karlsruhe 1983.
W. Bibel: On Matrices with Connections.
JACM, Vol. 28, No. 4, pp 633-645, 1981.

W. Bibel: Automated Theorem Proving.

Vieweg Verlag, 1982.
K.H. Bläsius: Equality Reasoning Based on Graphs.
SEKI Report SR-87-01, FB Informatik, University of Kaiserslautern, 1987.
R. Brachman, J. Schmolze: An Overview of the KL—ONE Knowledge
Representation System. Cognitive Science Vol. 9, No. 2, p. 171-216, 1985.
R.V. Book: Confluent and other Types of Thue Systems.
JACM, Vol. 29, No. 1, pp. 171-182, 1982.
D. Brand: Proving Theorems with the Modification Method.
SIAM Journal of Comp., vol 4, No. 4, 1975
A. Bundy: The Computer Modelling of Mathematical Reasoning.
Academic Press, London, 1983.
C.-L. Chang, RIC. Lee: Symbolic Logic and Mechanical Theorem Proving.
Computer Science and Applied Mathematics Series (W. Rheinboldt, ed.),
Academic Press, New York, 1973.

C.-L. Chang, 'J .R. Slagle: Using Rewriting Rules for Connection Graphs to
Prove Theorems. Artificial Intelligence, Vol. 12, No. 2, pp. 159-178, 1979.
A. Church: The Calcule of Lambda Conversion.
Princeton University Press, Princeton 1941.
A.G. Cohn: A More Expressive Formulation of Many Sorted Logic.
JAR Vol. 3, No. 2, pp. 113—200, 1987.
V.]. Digricoli: Resolution by Unification and Equality.
Proc. 4th Workshop on Automated Deduction, Texas, 1979
LK. Dixon: Z-Resolution: Theorem Proving with Compiled Axioms.
JACM, 20,1, 1973.

- 65­

Eisinger 89 N. Eisinger: Completeness. Confluence. and Related Properties ofClause

Graph Resolution.
SEKI Report SR-88-07, FB. Infonnatik, Univ. of Kaiserslautem, 1989.

Harrison & Rubin 78 M.C. Harrison, H. Rubin: Another Gimeralization ofResolution.

JACM, Vol. 25, No. 3, pp. 341.-351, July 1978.

Hopcroft & Ullman 79 J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages

and Computation. Addison-Wesley, Reading, MA 1979.

Huet 80 G. Huet: Confluent Reductions: Abstract Properties and Applications to
Term Rewriting. JACM, Vol. 27, NO. 4, pp. 797-821, 1980.

Huet & Oppen 80 G. Huet, D.e. Oppen: Equations and Rewrite Rules.

in: Fonnal Language Theory: Perspectives and open Problems

(Bd. R. V. Book), Academic Press, New York, 1980.

Joyner 73 W. Joyner: Automatic Theorem Proving and the Decision Problem.

Report 7n3, Center Research Comp. Tech. Havard University, 1973.

Knuth & Bendix 70 D. Knuth, P.Bendix: Simple Word Problems in Universal Algebras.

in: Computational Problems in Abstract Algebra. (I. Leech, ed.),

Pergamon Press, pp. 263 - 297, 1970.

Kowalski 70 R. Kowalski: Search Strategies for Theorem Proving.
Machine Intelligence (B. Meltzer, D. Michie eels.), Vol. 5,

Edinburgh University Press, Edinburgh, pp. 181-201, 1970.

Kowalski 75 R. Kowalski: A ProofProcedure Using Connection Graphs.

JACM, Vol. 22, No. 4, 1975.

Kowalski & Kuehner 71 . R. Kowalski, D. Kuehner: Linear Resolution with Selection Function.
Artificial Intelligence, Vol. 2, No. 3-4, pp. 227-260, 1971.

Lim & Henschen 85 Y. Lim, LJ. Henschen: A New Hyperparamodulation Strategy for the

Equality Relation. PrO'. ITCAI-85, Los Angeles, 1985.

Lindstrom 69 P. Lindstrom: On Extensions of Elementary Logic.

Theoria 35, 1969.

Loveland 78 D. Loveland: Automated Theorem Proving: A Logical Basis.

Fundamental Studies in Computer Science, Vol. 6,

North-Holland, New York, 1978.

Morris 69 J.B. Morris: E-Resolution: An Extension ofResolution to include the

Equality Relation. PrO'. IJCAI, pp. 287-294, 1969.

Nilsson 80 N. Nilsson: Principles ofArtificial Intelligence.
Tioga, Palo Alto, CA, 1980.

NolI 80 R NolI: A Note on Resolution: How to Get Rid of Factoring without

Losing Completeness.

PrO'. of 5th CADE, Springer LNCS, Vo187, pp. 250-263,1980.

Ohlbach 87 H.J. Ohlbach: Link Inheritance in Abstract Clause Graphs.
JAR, Vol. 3, No. 1, pp. 1-34, 1987.

Ohlbach 88 HJ. Ohlbach: A Resolution Calculus for Modal Logics.
PrO'. of 9th CADE, Springer LNCS 310, pp. 500-516, 1988.

SEKI Report SR-88-08, FB. Infonnatik, Univ. of Kaiserslautem, 1988.

Ohlbach 89 RJ. Ohlbach: Context Logic.

SEKI Report SR-89-08, FB. Infonnatik, Univ. of Kaiserslautem, 1989.

Ohlbach & Siekmann 89 HJ. Ohlbach, J.H. Siekmann: The MarkgrafKarl Refutation Procedure.
SEKI Report SR-89-20, FB. Infonnatik, Univ. of Kaiserslautem, 1989.

Ohlbach 90 H.J. Ohlbach: Compilation ofRecursive Two-Literal Clauses into
Unification Algorithms. PrO'. of AIMSA-90. Albena-Vama, Bulgaria, 1990.

Paterson & Wegman 78 M.S. Paterson, M.N. Wegman: Linear Unification.

JeSS 16, pp. 158-167, 1978.

- 66­

Plotkin 72

Richter 78

Robinson 65

Robinson 65b

Robinson & Wos 69

Schmidt-SchauB 89

Shieber86

Shostak 76

Shostak 78

Shostak 79

Sibert 69

Sickel76

Smolka 82

Stickel85

Walther87

Wos et al67

G. Plotkin: Building in Equational Theories.

Machine Intelligence 7,1972.

M. Richter: Logikkalkiile. Leitfiiden der angewandten Mathematik und
Mechanik, Band 43, Teubner, Stuttgart, 1978.

J.A. Robinson: A Machine-Oriented Logic Based on the Resolution

Principle. JACM, Vol. 12, No. 1, pp. 23-41, 1965.

J.A. Robinson: Automated Deduction with Hyper-Resolution.

Intern. Journal of Comp. Mathematics 1, pp. 227-234, 1965.

G. Robinson, L.Wos: Paramodulation and TP in First Order Theories with

Equality. Machine Intelligence 4, pp. 135-150, 1969.

M. Schmidt-SchauB: Computational Aspects ofan Order-Sorted Logic with

Term Declarations. Springer LNAI 395, 1989.

S.M. Shieber: An Introduction to Unification-Based Approaches to

Grammar. Stanford University, CSLI Lecture Notes, 1986.

RE. Shostak: Refutation Graphs.

Artificial Intelligence 7, pp. 51-64, 1976.

RE. Shostak: An Algorithm for Reasoning about Equality.

JACM, Vol. 21, No. 7, 1978.

RE. Shostak: A Graph-Theoretic View ofResolution Theorem Proving.

Report SRI International, Menlo Park, Ca, 1979.

E.E. Sibert: A Machine-Oriented Logic Incorporating the Equality Axiom.

Machine Intelligence 4, pp. 103-133, 1969.

S. Sickel, A Search Techniquefor Clause Interconnectivity Graphs.

IEEE Trans. on Computers C-25(8), pp. 823-835, 1976.

G. Smolka: Completeness and Confluence Properties ofKowalski's Clause

Graph Calculus. Univ. Karlsruhe, Techn. Report 31/82,1982.

M.E. Stickel: Automated Deduction by Theory Resolution.

JAR, Vol. I, No. 4, pp. 333-356, 1985.

Ch. Walther: A Many-Sorted Calculus Based on Resolution and

Paramodulation.

Research Notes in Artificial Intelligence, Pitman Ltd., London 1987.

L. Wos. D. Carson, G. Robinson, L. Shallar:
The Concept ofDemodulation in Automated Theorem Proving.

JACM, Vol. 14, No. 4, pp. 698-709, 1967.

8 Index

ancestor literal 38

antecedent 39

anti-prenex form 9

atom 5

axiom

equality 23

logical 10

reflexivity 24

substitution 23

axiomatization (of a theory) 20

bridge link condition 42

calculus 4

classical 10

generating 11

negative 11; 14

positive 11

refutation complete 15

resolution 14

RP- 24

testing 11; 14

cg state transition system 47

chain reaction (of reductions) 44

classical calculi 10

clausal form 8

clause 5

empty 6

ground 5

Horn 9

parent 11

satisfiable 6

tautology 6; 41

unit 5

unsatisfiable 6

valid 6

clause graph 37; 48

clause node (clause graph) 37

collapse (of a clause graph) 45

compiled theory 30

complementary literals 6

completeness (of a calculus) 15

conjunctive normal form 8

connection graph proof procedure 37

consequence 3

consequent (inference rule) 10

control 4

control strategy 32

irrevocable 32

tentative 32

- 67­

deduction rule 33

deduction system 3

deduction theorem 6

deduction tree 59

derivability 4

derivation 32

descendant literal 38

E-unifier 26

empty clause 6

entailment 3

equality axiom 23

exhaustive (ordering filter) 61

exhaustive (ordering strategy) 58

extraction (of refutation trees) 54

factoring 14

fair (ordering filter) 61

fairness (of an ordering strategy) 58

filter 59

(un)satisfiability complete 60

(un)satisfiability confluent 60

(un)satisfiability Noetherian 60

(un)satisfiability sound 60

ordering 59

exhaustive 61

fair 61

predicate cancellation 62

restriction 59

final state 32

finite premise rule 10

first-order predicate logic 5

follows 3 .

follows from 3

formula

anti-prenex form 9

clausal form 8

conjuctive normal form 8

negation normal form 8

prenex form 7

quantifier-free 7

generating calculus 11

ground clause 5

ground li~ral 5

ground resolution rule 11

Horn clause 9

hyper-resolution 18

negative 18

positive 18

hypotheses 3

I-link 39

inference rule 10

inheritance (of links) 38

INIT(1) 46

- 68­

initial state 32

input resolution (restriction strategy) 57

Leibniz principle 24

level monotonicity (ordering strategy) 62

level monotonicity strategy 62

level saturation (ordering strategy) 58

linear resolution (restriction strategy) 57

link 37

I-link 39

R-link 37; 39; 51

T-link 39

link removal 44

literal 5

complementary 6

ground 5

resolution 11

literal node (clause graph) 37

literal removal (reduction rule) 42

logic 3

logical axioms 10

logical state transition system 32

trivial 32

matrix (of a formula) 7

merging 42

merging (of substitutions) 54

merging restriction 57

merging rule 34

merit ordering 59

model (for clauses) 6

modus ponens rule 10

most general unifier 12

negation normal form 8

negative calculus 11

ordering fIlter 59

exhaustive 61

fair 61

ordering strategy 56

exhaustive 58; 61

fair 61

level monotonicity 62

level saturation 58

predicate cancellation 62

unit preference 58

paramodulant 24

paramodulation 24

parent clauses 11

partial theory resolution 22

positive calculus 11

predicate calculus 10

predicate cancellation (ordering fIlter) 62

predicate cancellation filter 62

predicate logic 5

first-order 5

premise (inference rule) 10

prenex form 7

presentation (of a theory) 20

purity principle 34

purity rule 44

quantifier-free form 7

R-link: 37; 39; 51

reachable state 32

reduction rule 34; 41

link removal 44

literal removal 42

merging 34; 42

purity 34; 44

subsumption 34; 42

subsumption factoring 43

subsumption resolution 35; 43

tautology 34; 41

reflexivity axiom 24

refutable·

unit 56

refutation completeness 15

refutation graph 51

refutation tree 52

representational theories 28

residue 21

resolution

ground 11

hyper- 18

partial theory 22

self- 38

soundness of 12

theory 19

total 20

UR- 17

resolution calculus 14

resolution literals 11

resolution rule 13

resolvent 11

restriction filter 59

restriction strategy 56

half-factoring 57

input resolution 57

kindred factoring 57

linear resolution 57

merging 57

s-linear 57

set-of-support 58

SL resolution 57

t-linear 57

- 69­

unit resolution 56

RP-calculus 24

rule

deduction 33

factoting 14

finite premise 10

hyper-resolution 18

inference 10

instantiation 10

paramodulation 24

reduction 34; 41

link removal 44

literal removal 42

merging 34

purity 34; 44

subsumption 16; 34; 42

subsumption factoting 43

subsumption resolution 35; 43

tautology 34; 41

resolution 13

ground 11

self- 38

theory resolution 19; 20

UR-resolution 17

rule of inference 10

s-linear resolution 57

satisfiable 6

self-resolution 38

set-of-support (restriction strategy) 58

signature 28

Skolemization 7

SL resolution (restriction strategy) 57

sort symbol 28

soundness (of a calculus) 15

soundness (of the resolution rule) 12

state transition system 4; 32

commutative 33

confluent 33

logical 32; 47

Noetherian 33

strategy 56

ordering 56

exhaustive 58; 61

fair 61

restriction 56

subformula principle 11

substitution 12

substitution axiom 23

subsumption 16; 42

subsumption factoring 43

subsumption resolution 35; 43

subsumption rule 34

succedent 39

'T-unifier 20

'T-consequence 20

'T-interpretation 20

t-linear resolution 57

'T-link 39

'T-model20

'T-satisfiable 20

'T-unsatisfiable 20

tautology 6; 41

tautology rule 34

testing calculus 11

theory 20

algorithmic 23

compiled 30

representational 28

theory resolution 19

partial 22

total 22

theory unification 25

total theory resolution 20

transition relation 32

unification

completeness 26

minimality 26

soundness 26

theory 25

unification algorithm 12

unifier 12

E-26

most general 12

'T- 20

unit clause 5

unit preference (ordering strategy) 58

unit refutable 56

unit resolution (restriction strategy) 56

(un)satisfiability closed 47; 60

(un)satisfiability complete 47; 60

(un)satisfiability confluent 47; 60

(un)satisfiability sound 47; 60

unsatisfiable 6

UR-resolution 17

valid clause 6

variable disjointness (of clauses) 13

	UR_0005.jpg

