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Abstract: Background: Revision hip arthroplasty presents a surgical challenge, necessitating meticu-
lous preoperative planning to avert complications like periprosthetic fractures and aseptic loosening.
Historically, assessment of the accuracy of three-dimensional (3D) versus two-dimensional (2D)
templating has focused exclusively on primary hip arthroplasty. Materials and Methods: In this retro-
spective study, we examined the accuracy of 3D templating for acetabular revision cups in 30 patients
who underwent revision hip arthroplasty. Utilizing computed tomography scans of the patients’
pelvis and 3D templates of the implants (Aesculap Plasmafit, B. Braun; Aesculap Plasmafit Revision,
B. Braun; Avantage Acetabular System, Zimmerbiomet, EcoFit 2M, Implantcast; Tritanium Revision,
Stryker), we performed 3D templating and positioned the acetabular cup implants accordingly. To
evaluate accuracy, we compared the planned sizes of the acetabular cups in 2D and 3D with the sizes
implanted during surgery. Results: An analysis was performed to examine potential influences on
templating accuracy, specifically considering factors such as gender and body mass index (BMI).
Significant statistical differences (p < 0.001) in the accuracy of size prediction were observed between
3D and 2D templating. Personalized 3D templating exhibited an accuracy rate of 66.7% for the
correct prediction of the size of the acetabular cup, while 2D templating achieved an exact size
prediction in only 26.7% of cases. There were no statistically significant differences between the 2D
and 3D templating methods regarding gender or BMI. Conclusion: This study demonstrates that 3D
templating improves the accuracy of predicting acetabular cup sizes in revision arthroplasty when
compared to 2D templating. However, it should be noted that the predicted implant size generated
through 3D templating tended to overestimate the implanted implant size by an average of 1.3 sizes.

Keywords: revision arthroplasty; hip (joint); acetabular cup; 2D; 3D; computed tomography

1. Introduction

The growing prevalence of primary arthroplasty of the hip is expected to lead to an
increase in the number of revision surgeries in the future [1–3]. Based on projections, the
incidence of revision hip arthroplasty will rise by as much as 43% to 70% between the years
2014 and 2030 [2]. The indications for revision total hip arthroplasty encompass a range of
factors with common causes, including aseptic loosening (52%), instability (17%), infection
(5.5%), debilitating pain, periprosthetic fractures, or component failure [4].

In a recently published study, it was demonstrated that scaling discrepancies in
anteroposterior pelvic radiographs used for templating in total hip arthroplasty planning
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can result in errors of ≥3 mm in 25% of patients and ≥6 mm in 2% of patients, when
compared to CT-based planning [5]. CT scans are also used for biomechanical analysis and
modeling of hip implants, allowing simulation of material combinations and thus implant
improvement [6–9].

Revision hip arthroplasty poses significant challenges, particularly in cases involving
severe bone loss, and necessitates meticulous preoperative planning to achieve precise
intraoperative outcomes. Preoperative planning for primary hip arthroplasty has long been
recognized as a means to reduce complications such as periprosthetic fracture or aseptic
loosening resulting from inaccurate estimation of implant size [4,10–14]. Additionally, it
has resulted in other benefits, such as decreased surgical time, improved postoperative
stability, and greater range of motion. Furthermore, preoperative planning has a growing
legal significance, enabling surgeons to demonstrate their thoroughness and potentially
mitigating allegations of negligence [15–17]. Postoperative leg length discrepancy (LLD)
following total hip replacement is a common issue, and it is the most frequent cause of
legal disputes involving orthopedic surgeons [18–21]. LLD exceeding ±5 mm is typically
noticeable to the patient, and it can lead to discomfort, potentially requiring further revision
surgeries. Therefore, particularly in revision hip arthroplasty, meticulous preoperative
planning is necessary in order to address this concern [22,23]. Studies investigating ways
of enhancing preoperative planning have compared three-dimensional (3D) templating
with two-dimensional (2D) templating in primary hip arthroplasty, and the results have
shown that 3D templating provides greater accuracy and reliability in predicting implant
size [24–26]. In a systematic review by Bishi et al., it was demonstrated that the 3D
template provides higher accuracy and reliability in predicting implant size in preoperative
planning compared with the 2D template in primary arthroplasty [25]. However, in both
clinical practice and the current literature, 2D templating still endures as the standard
technique [27,28]. Existing studies on preoperative planning in revision arthroplasty have
predominantly centered around the application of 3D printing [29,30].

To date, there are no studies available regarding the accuracy of 3D templating in
revision hip arthroplasty. The objective of this study is to assess the precision in acetabular
cup positioning using computed tomographic (CT) 3D templating in revision arthroplasty
compared to conventional 2D templating.

2. Materials and Methods

This retrospective study included all patients who underwent revision arthroplasty
with revision of the acetabular cup at our institution, performed by senior surgeons,
between April 2019 and November 2022. Inclusion criteria were all patients who under-
went revision hip arthroplasty in our institution with reimplantation of an acetabular cup
between April 2019 and November 2022 and who had routine preoperative computed
tomography of the pelvis. Patients who did not undergo acetabular cup revision or who
did not have preoperative computed tomography were excluded. The included implants
were: Aesculap Plasmafit, B. Braun, Melsungen, Germany; Aesculap Plasmafit Plus 3, B.
Braun, Melsungen, Germany; Aesculap Plasmafit Plus 7, B. Braun, Melsungen, Germany;
Aesculap Plasmafit Revision, B. Braun, Melsungen, Germany; Avantage Acetabular Sys-
tem, Zimmer Biomet, Warsaw, IN, USA; EcoFit 2M, Implantcast, Buxtehude, Germany;
Tritanium Revision, Stryker, Mahwah, NJ, USA.

The study respected the ethical standards for biomedical research in accordance with
the Declaration of Helsinki [31]. It received approval from the local Ethics Committee (refer-
ence number 160/22) and complied with the ethical review requirements of our institution.

2.1. Preoperative Imaging

All patients included in the study underwent standard conventional radiography
as part of their diagnostic evaluation. This involved anteroposterior (A/P) views of the
pelvis and lateral views of the hip in the Lauenstein position. Additionally, preoperative
CT scans of the pelvis were routinely conducted to assess the extent of bony defects and
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aid in surgical planning. A helical CT scanner with a slice thickness of 0.75 mm was
utilized for image acquisition. The acquired CT data were subsequently transferred to
our Picture Archiving and Communication System (PACS), Sectra, Sweden (Sectra AB,
Linköping, Sweden).

2.2. Digital Templating

Prior to surgery, conventional 2D digital templating was conducted using X-ray images
in two planes. Two-dimensional planning is performed with implant templates based on
digital X-ray images. To determine the magnification factor, a radiopaque metal ball with a
standardized diameter of 25.0 mm was placed between the patient’s legs at the level of the
hip joint rotation center. Preoperative 2D planning was performed by senior surgeons using
the Sectra 2D planning system (Sectra AB, Linköping, Sweden) and the corresponding 2D
templates for the acetabular cup.

The 3D modeling and templating process for the acetabular cup was based on the
analysis of CT imaging of the pelvis, as depicted in Figure 1. The 3D planning is per-
formed in three planes (axial, saggital and coronary). For this process, the Sectra Joint
Replacement Tool (“3D Joint Sectra”), a medical imaging IT solution from Sectra (Sectra AB,
Linköping, Sweden), was employed. This tool utilized the 3D templates for the acetabular
cup (Aesculap Plasmafit, B. Braun, Melsungen, Germany; Aesculap Plasmafit Plus 3, B.
Braun, Melsungen, Germany; Aesculap Plasmafit Plus 7, B. Braun, Melsungen, Germany;
Aesculap Plasmafit Revision, B. Braun, Melsungen, Germany; Avantage Acetabular Sys-
tem, Zimmer Biomet, Warsaw, IN, USA; EcoFit 2M, Implantcast, Buxtehude, Germany;
Tritanium Revision, Stryker, Mahwah, NJ, USA). The 3D templating was performed inde-
pendently of the previous 2D templating, and it was compared with the actual size of the
implanted acetabular cup by an independent examiner, who then evaluated the accuracy
of the 3D templating in predicting the appropriate implant size.
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coronary) and was also confirmed intraoperatively.
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2.3. Surgical Procedure

All patients included in the study underwent surgery using a lateral approach. The
surgery was performed by one of three senior surgeons. The specific types of acetabular
cups used are outlined in Table 1. The surgical objectives focused on achieving stable
anchoring of the acetabular cup within the host bone. Additionally, the surgical procedures
aimed to restore natural biomechanical conditions, including leg length, center of rotation,
and lateralization.

Table 1. Acetabular cup revision.

Acetabular cup Revision 30

Aesculap Plasmafit

- Plasmafit Plus
- Plasmafit Plus 3
- Plasmafit Plus 7

10
2
4
4

Aesculap Plasmafit Revision
Avantage Acetabular System

14
4

EcoFit 2M 1
Tritanium Revision 1

Cementless implantation of the acetabular cup was performed in 27 cases. In three
cases, a cemented implantation was performed. In one case, an acetabular wedge augment
was used to achieve adequate stability of the implant (Figure 2). To ensure optimal position-
ing, the acetabular cup was placed within the Lewinnek safety zone, with an inclination
range of 40◦ ± 10◦ and an anteversion range of 15◦ ± 10◦ [32]. These ranges were selected
to maintain the desired biomechanical stability and function of the hip joint.
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Figure 2. Personalized 3D templating using 3D Joint Sectra (Sectra AB, Linköping, Sweden) planning
software. This image shows the preoperative planning of a Tritanium revision acetabular cup (size
66 mm) with a 62/20 mm acetabular augment. Stable fixation of the augment and the cup can be
planned in three planes (shown on the right side of the picture).
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2.4. Statistical Analysis

Statistical analyses were performed using the SPSS software package (Version 29; IBM
SPSS Statistics, Chicago, IL, USA). A two-sided significance level of p < 0.05 was used to
determine statistical significance. To assess systematic differences between 2D and 3D
templating and the implant size used during surgery, contingency tables and the Sign tests
were employed. The contingency tables allowed for the comparison of categorical variables,
while the Sign tests were used for non-parametric paired comparisons. The accuracy of
size predictions by the two planning methods, referred to as accuracy, was calculated and
compared between 2D and 3D templating using McNemar’s test, which is suitable for
analyzing matched-pair data. To examine the influence of the patient’s sex on the accuracy
of templating, Fisher’s test for 2 × 2 contingency tables was utilized. This test allowed for
the assessment of associations between categorical variables. The influence of body mass
index (BMI) on planning accuracy was examined using the Mann–Whitney U test. This
test was chosen for comparing patient groups with correctly predicted sizes to those with
incorrectly predicted sizes, taking into account the non-parametric nature of BMI data.

3. Results

Strictly adhering to the predetermined inclusion and exclusion criteria, a cohort of
30 cases was selected for the present study. Within this cohort, 46% (n = 14) of the patients
were female and 53% (n = 16) were male. The mean age of the entire cohort was 71 years
(±9.6), the female patients had a mean age of 70.5 years (±11.7), and the male patients
had a mean age of 72.4 years (±7.5). The demographic profiles of the participants are
presented in Table 2. In accordance with the World Health Organization’s criteria [22], five
patients were classified as within the normal weight range, while fifteen patients were
classified as overweight, and ten were classified as obese. The process of 2D preoperative
templating was executed by three highly skilled senior surgeons, whereas the personalized
3D templating procedure was carried out by a resident under the supervision and guidance
of the senior surgeons. A total of 13 patients underwent surgery for aseptic loosening and
17 patients for infection.

Table 2. Patients’ demographic data.

Age (mean ± SD) 71 ± 9.6

Female 14

Male 16

BMI (WHO classification in kg/m2)
underweight (<18.5) 0
normal weight (18.5–24.9) 5
overweight (≥25.0) 15
obese (≥30.0) 10

SD standard deviation.

The precise determination of the acetabular cup size during intraoperative assess-
ment showed that personalized 3D templating yielded accurate predictions for 20 of the
30 patients (66.7%), while conventional 2D templating achieved this level of accuracy
for only 8 of the 30 patients (26.7%), (McNemar test, p < 0.002), as presented in Table 3.
Notably, 2D templating demonstrated a higher frequency of overestimation rather than
underestimation of the intraoperatively determined size, though the difference was not
statistically significant (Sign test, p = 0.523). The size was over- or underestimated by one
size in 12 cases (12/30). A discrepancy of 2 implant sizes was observed in 5 cases (5/30),
and in 5 other cases, the prediction deviated by 3 implant sizes (5/30). The calculated mean
difference of correct acetabular size prediction in 2D templating was 1.68, with a standard
deviation of 0.93 and a range discrepancy of −3 to +3 sizes between the template size and
the size finally implanted.
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Table 3. Results of comparison 2D and 3D templating.

Accuracy of Templating 2D Templating 3D Templating

Precise
determination of
acetabular cup
(2D vs. 3D)

26.7% (8/30) 66.7% (20/30) p < 0.002

Gender
(2D vs. 3D) Female

Male
21.4% (3/14)
31.3% (5/16)

50% (7/14)
81.3% (13/16)

2D: p = 0.689
3D: p = 0.122

BMI
(2D vs. 3D)

Normal weight
Overweight
Obese

0% (0/5)
46.7% (7/15)
10% (1/10)

60% (3/5)
73.3% (11/15)
60% (6/10)

2D: p = 0.765
3D: p = 0.812

Regarding 3D templating, the intraoperatively determined size was underestimated
in one case, while overestimations were observed in 9 cases (Sign test, p = 0.109). In 7 cases,
the correct size was under- or overestimated by one size (7/30), while 3 cases showed a
discrepancy of 2 implant sizes (3/30). The calculated mean difference of accurate acetabular
cup size prediction in the context of 3D templating was determined to be 1.3, accompanied
by a standard deviation of 0.67. Furthermore, a range discrepancy of −2 to +2 sizes was
observed between the template size and the size finally implanted.

The acetabular cup alignment was within the Lewinnek safe zone in 93.3% (28/30)
and had a mean inclination angle of 43.9◦.

3.1. Gender and Planning Accuracy

Conventional 2D templating accurately predicted the correct implant size in only
21.4% of female patients (n = 3/14) and 31.3% of male patients (n = 5/16), as determined
through Fisher’s exact test (p = 0.689). In contrast, 3D templating demonstrated a higher
rate of correct prediction of implant size, achieving accurate results for 81.3% of the male
patients (n = 13/16) and 50% of the female patients (n = 7/14). Statistical analysis using
Fisher’s test indicated no significant difference between genders in terms of the accuracy of
3D templating (p = 0.122), as shown in Table 3.

3.2. BMI and Planning Accuracy

According to the criteria outlined by the World Health Organization (WHO) [33], the
patients were classified into four groups based on their body mass index (BMI): under-
weight, normal weight, overweight, and obese (Table 2). Using 3D templating, the accurate
size of the acetabular cup was successfully predicted in 3 out of 5 patients classified as
normal weight, 11 out of 15 patients classified as overweight, and 6 out of 10 patients
classified as obese. In contrast, using 2D templating, the accurate size was predicted in 0
out of 5 patients classified as normal weight, 7 out of 15 patients classified as overweight,
and 1 out of 10 patients classified as obese. Statistical analysis using the Mann–Whitney U
test indicated no statistically significant difference in BMI between the correctly and incor-
rectly predicted sizes for both 2D templating and 3D templating (p = 0.765 and p = 0.812,
respectively), as shown in Table 3.

4. Discussion

The main finding of our study is that 3D templating based on computed tomogra-
phy leads to an increased accuracy of predicting the size of acetabular cups in revision
arthroplasty and therefore provides a reliable tool for preoperative planning in revision
hip arthroplasty. Regarding the precision of planning in revision arthroplasty, the current
literature is still limited. Existing studies on preoperative planning in revision arthroplasty
have predominantly centered around the application of 3D printing [29,30]. In the study by
Hughes et al., life-size 3D models were manufactured for three complex cases of acetab-
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ular revision hip arthroplasty from the CT scans. The surgeon’s preoperative planning
with the 3D model resulted in increased surgical precision and a simultaneous reduction
in complications. One advantage of life-size 3D models in revision hip arthroplasty is
certainly the surgeon’s tactile assessment of acetabular bone defects [29]. However, the
tactile sensations that can be achieved through 3D printing cannot be replicated in digital
simulations. Nonetheless, future advances may include the use of optical, see-through
devices that project a holographic rendering of the 3D model onto the surgical site, allowing
simulation of accurate sizing and positioning. Although initial experimental studies have
been performed in this area, they are limited to primary arthroplasty scenarios [34,35].

The prediction of implant sizes in revision hip arthroplasty is particularly challenging
due to the acetabular defect situation and the presence of endoprostheses. Precise templat-
ing based on X-rays and imaging modalities, such as CT scans, is a crucial element in the
preoperative planning of acetabular cup revision. The primary objective is to achieve an
accurate prediction of implant size and optimal positioning and thus enhance the efficiency
and outcome of the surgical procedure. Computed tomography has been widely adopted
in medical investigations [36,37].

Kearney et al. demonstrated a 27% accuracy in acetabular cup size prediction in
primary hip arthroplasty through acetate templating (14/51). Schiffner et al. were able to
accurately predict the size of the acetabular cup by 2D templating in 44.8% of cases and in
58.6% by 3D templating.

Furthermore, in a systematic review conducted by Bishi et al., the reported range for
exact acetabular cup size prediction was between 25% and 85.7% [25]. Using 3D templating
in primary hip arthroplasty, the range of exact size prediction increases significantly from
40% to 98% [25]. These findings are consistent with the results obtained in our study
regarding revision hip arthroplasty. We observed an accuracy of preoperative 3D templating
of 66.7 % (20/30) in comparison with 26.7% (8/30) by preoperative 2D templating.

Considering the tolerance range encompassing one size above or below the definitive
implant size (±1), Kearney et al. demonstrated a greater accuracy of 75% (38/51), accom-
panied by a calculated mean difference of 1.29 sizes and a standard deviation of 2.56 [38].
In the study by Schiffner et al., an accuracy of 83.6% in 2D templating and of 86.2% in 3D
templating was achieved for the prediction of acetabular cup size (±1). These findings
align with the results obtained in our study. In 90% (27/30), we were able to predict the
size accurately (+/− 1 size) through 3D templating.

Kearney et al. described a range discrepancy of −2 to +4 [38]. In our study with 3D
templating for revision hip arthroplasty, we achieved a higher accuracy level ranging from
−2 to +2. Nevertheless, these findings show that, on average, the template size determined
through 3D templating for the acetabulum exhibited an overestimation of 1.3 sizes with a
standard deviation of 0.67 from the implanted cup size. However, we observed a calculated
mean difference of 1.68 sizes with a standard deviation of 0.93 for 2D templating.

Despite the fact that the radiation exposure associated with 3D templating using CT
scans is approximately five times higher than that of 2D templating using radiographs,
the dose of 11–12 mSv utilized in the former is well below the reported threshold for
an increased risk of cancer (200–5000 mSv) [24,39,40]. In the context of revision arthro-
plasty, pelvic CT is commonly conducted as part of the standard protocol to provide a
comprehensive evaluation of the acetabular bone condition. Consequently, in the specific
context of revision arthroplasty, where CT scans are routinely performed, the utilization of
CT does not result in an elevated radiation exposure beyond what is already customary
and expected. Furthermore, Kaiser et al. reported the utilization of a novel tin-filtered
ultra-low-dose CT technique for the hip, resulting in a radiation dose of 0.58 mSv, which is
comparable to conventional radiographs [5].

Regarding BMI, the impact of the accuracy of both 2D and 3D templating did not yield
statistically significant findings. These results align with the studies conducted by Holzer
et al. [41]. In Holzer et al.’s research, no significant correlation was observed between
BMI and the accuracy of acetabular templating. However, a significant difference was
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noted in femoral component planning accuracy between patients of normal weight and
those who were overweight [41]. Furthermore, no significant disparities were observed
in our study between the planning accuracy of both 2D and 3D templating with regards
to gender. Therefore, the reliability of preoperative 3D templating can be presumed to
be consistent for both male and female patients. These findings are again in agreement
with the study conducted by Holzer et al., which also indicated the absence of statistically
significant gender-specific differences in planning accuracy and calibration deviations of
X-rays between men and women [41].

It is important to acknowledge certain limitations of our study, including the absence
of calculations for intra- and interobserver reliability. Second, we studied only a small
cohort of patients. Additionally, our investigation focused on seven acetabular cup sys-
tems. A wide range of other revision acetabular cups are available on the market, which
were not considered in this study. Although the increased accuracy observed with 3D
templating is promising, further analysis is needed to determine the potential impact on
clinical outcomes.

5. Conclusions

This study shows an increased accuracy of predicting the size of acetabular cups in
revision hip arthroplasty by using 3D templating compared to 2D templating. Nevertheless,
the implant size determined through 3D templating for the acetabulum exhibited an over-
estimation of 1.3 sizes. Until now, evaluation of the accuracy of 3D and 2D templating has
primarily focused on primary arthroplasty, while the potential of personalized 3D planning
in the context of revision arthroplasty remains largely unexplored. An additional advan-
tage of 3D templating is that it allows effective preoperative planning of acetabular wedge
augments, thereby facilitating intraoperative positioning and providing improved implant
stability. Further prospective studies are expected to provide a deeper understanding on
the crucial aspects of patients’ clinical outcome and a reduction in surgical time by using
personalized 3D templating in revision arthroplasty.
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