
Algorithms for
Sparse Convolution and
Sublinear Edit Distance

Nick Fischer

A dissertation submitted towards the degree Doctor of Natural Sci-
ences of the Faculty of Mathematics and Computer Science of Saar-
land University

Saarbrücken, 2023

2

Colloquium

Date 29/08/2023
Dean of the Faculty Univ.-Prof. Dr. Jürgen Steimle

Chair of the Committee Prof. Danupon Nanongkai, Ph.D.
Reporters Prof. Dr. Karl Bringmann

Prof. Dr. Robert Krauthgamer
Prof. Dr. Timothy Chan

Academic Assistant Dr. Karol Węgrzycki

3

4

Abstract

In this PhD thesis on fine-grained algorithm design and complexity, we investigate
output-sensitive and sublinear-time algorithms for two important problems.

1 Sparse Convolution: Computing the convolution of two vectors is a basic algo-
rithmic primitive with applications across all of Computer Science and Engi-
neering. In the sparse convolution problem we assume that the input and out-
put vectors have at most 𝑡 nonzero entries, and the goal is to design algorithms
with running times dependent on 𝑡. For the special case where all entries are
nonnegative, which is particularly important for algorithm design, it is known
since twenty years that sparse convolutions can be computed in near-linear
randomized time 𝑂(𝑡 log2 𝑛).

In this thesis we develop a randomized algorithm with running time
𝑂(𝑡 log 𝑡) which is optimal (under some mild assumptions), and the first near-
linear deterministic algorithm for sparse nonnegative convolution. We also
present an application of these results, leading to seemingly unrelated fine-
grained lower bounds against distance oracles in graphs.

2 Sublinear Edit Distance: The edit distance of two strings is a well-studied sim-
ilarity measure with numerous applications in computational biology. While
computing the edit distance exactly provably requires quadratic time, a long
line of research has lead to a constant-factor approximation algorithm in
almost-linear time. Perhaps surprisingly, it is also possible to approximate the
edit distance 𝑘 within a large factor 𝑂(𝑘) in sublinear time 𝑂(𝑛𝑘 + poly(𝑘)).

We drastically improve the approximation factor of the known sublinear
algorithms from 𝑂(𝑘) to 𝑘𝑜(1) while preserving the 𝑂(𝑛𝑘 + poly(𝑘)) running
time.

5

6

Zusammenfassung

In dieser Doktorarbeit über feinkörnige Algorithmen und Komplexität unter-
suchen wir ausgabesensitive Algorithmen und Algorithmen mit sublinearer Lauf-
zeit für zwei wichtige Probleme.

1 Dünne Faltungen: Die Berechnung der Faltung zweier Vektoren ist ein grundle-
gendes algorithmisches Primitiv, das in allen Bereichen der Informatik und
des Ingenieurwesens Anwendung findet. Für das dünne Faltungsproblem
nehmen wir an, dass die Eingabe- und Ausgabevektoren höchstens 𝑡 Ein-
träge ungleich Null haben, und das Ziel ist, Algorithmen mit Laufzeiten in
Abhängigkeit von 𝑡 zu entwickeln. Für den speziellen Fall, dass alle Einträge
nicht-negativ sind, was insbesondere für den Entwurf von Algorithmen rel-
evant ist, ist seit zwanzig Jahren bekannt, dass dünn besetzte Faltungen in
nahezu linearer randomisierter Zeit 𝑂(𝑡 log2 𝑛) berechnet werden können.

In dieser Arbeit entwickeln wir einen randomisierten Algorithmus mit
Laufzeit 𝑂(𝑡 log 𝑡), der (unter milden Annahmen) optimal ist, und den ersten
nahezu linearen deterministischen Algorithmus für dünne nichtnegative Fal-
tungen. Wir stellen auch eine Anwendung dieser Ergebnisse vor, die zu schein-
bar unverwandten feinkörnigen unteren Schranken gegen Distanzorakel in
Graphen führt.

2 Sublineare Editierdistanz: Die Editierdistanz zweier Zeichenketten ist ein gut
untersuchtes Ähnlichkeitsmaß mit zahlreichen Anwendungen in der Comput-
erbiologie. Während die exakte Berechnung der Editierdistanz nachweislich
quadratische Zeit erfordert, hat eine lange Reihe von Forschungsarbeiten zu
einem Approximationsalgorithmus mit konstantem Faktor in fast-linearer
Zeit geführt. Überraschenderweise ist es auch möglich, die Editierdistanz 𝑘
innerhalb eines großen Faktors 𝑂(𝑘) in sublinearer Zeit 𝑂(𝑛𝑘 + poly(𝑘)) zu
approximieren.

Wir verbessern drastisch den Approximationsfaktor der bekannten sub-
linearen Algorithmen von𝑂(𝑘) auf 𝑘𝑜(1) unter Beibehaltung der𝑂(𝑛𝑘+poly(𝑘))-
Laufzeit.

7

8

Acknowledgements

My deepest thanks go to my advisor Karl Bringmann. He is an excellent teacher,
and keeping up with his speed has spurred me on and made me grow a lot. He
never pressured me, but offered me all the opportunities and help to explore what-
ever I wanted. All in all, I cannot think of a better advisor than Karl!

I would also like to thank my other coauthors, especially Alejandro Cassis,
Marvin Künnemann and Vasileios Nakos. I had a lot of fun, both academically
and non-academically, with Alejandro as my office mate and fellow PhD student.
Marvin and Vasileios have taught me much, for which I am very grateful.

Studies aside, I would like to thank my amazing family and friends for making
these last years a fantastic time, and for reminding me from time to time that
life is not (at all) just about computer science. I especially thank my brother Dan
and my parents Joma and Martin, on whom I can always rely. I would also like
to thank Lennart, Frederik and many more friends for all the fun evenings with
and without discussions on computer science. A very big thank you goes to my
wonderful girlfriend Leo; in general, and in particular for designing together this
style sheet. Finally, special credit goes to my grandfather Alois who already passed
away—he taught 6-year-old me about basic math, which I believe is a main reason
for my passion today.

9

10

Preface

In this thesis I present five publications related to sparse convolutions [58, 61, 60,
2] and sublinear edit distance [56]. During my PhD I have worked on some other
projects besides these five. In [98] we have proved that it is #P-hard to compute
certain mathematical constants called plethysm coefficients; this problem is of im-
portance in algebraic complexity theory. In [59] we have established a fine-grained
classification of a natural class of polynomial-time decision problems, inspired by
Schaefer’s seminal classification theorem. Then, in two follow-up papers [55, 54],
we have generalized this class to optimization problems and have proved several
completeness and classification results. As an extension to our sublinear-time al-
gorithm for edit distance [56], in [57] we have designed an algorithm that first
preprocesses one of the strings (or both strings) in almost-linear time and then ap-
proximates the edit distance in time (𝑛/𝑘 + 𝑘)1+𝑜(1) (or time 𝑘1+𝑜(1) , respectively).

This is a complete list of my publications at the time of submitting this thesis
(including my undergraduate thesis [97]):

2 Amir Abboud, Karl Bringmann, and Nick Fischer. “Stronger 3-SUM lower
bounds for approximate distance oracles via additive combinatorics”. In: 55th
annual ACM symposium on theory of computing (STOC 2023). To appear. ACM,
2023. 10.48550/arXiv.2211.07058.

54 Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann. “A
structural investigation of the approximability of polynomial-time problems”.
In: 49th international colloquium on automata, languages, and programming
(ICALP 2022). Vol. 229. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2022, pages 30:1–30:20. 10.4230/LIPIcs.ICALP.2022.30.

55 Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann.
“Fine-grained completeness for optimization in P”. In: 24th international con-
ference on approximation, randomization, and combinatorial optimization (AP-
PROX/RANDOM 2021). Vol. 207. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, pages 9:1–9:22. 10.4230/LIPIcs.APPROX/RANDOM.2021.9.

56 Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos. “Almost-
optimal sublinear-time edit distance in the low distance regime”. In: 54th
annual ACM symposium on theory of computing (STOC 2022). ACM, 2022,
pages 1102–1115. 10.1145/3519935.3519990.

57 Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos. “Im-
proved sublinear-time edit distance for preprocessed strings”. In: 49th inter-
national colloquium on automata, languages, and programming (ICALP 2022).
Vol. 229. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022,
pages 32:1–32:20. 10.4230/LIPIcs.ICALP.2022.32.

58 Karl Bringmann, Nick Fischer, Danny Hermelin, Dvir Shabtay, and Philip Well-
nitz. “Faster minimization of tardy processing time on a single machine”.
In: 47th international colloquium on automata, languages, and programming
(ICALP 2020). Vol. 168. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020, pages 19:1–19:12. 10.4230/LIPIcs.ICALP.2020.19.

59 Karl Bringmann, Nick Fischer, and Marvin Künnemann. “A fine-grained ana-
logue of schaefer’s theorem in P: dichotomy of∃𝑘∀-quantified first-order graph
properties”. In: 34th computational complexity conference (CCC 2019). Vol. 137.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pages 31:1–
31:27. 10.4230/LIPIcs.CCC.2019.31.

60 Karl Bringmann, Nick Fischer, and Vasileios Nakos. “Deterministic and Las
Vegas algorithms for sparse nonnegative convolution”. In: 33rd annual ACM-
SIAM symposium on discrete algorithms (SODA 2022). SIAM, 2022, pages 3069–
3090. 10.1137/1.9781611977073.119.

11

https://doi.org/10.48550/arXiv.2211.07058
https://doi.org/10.4230/LIPIcs.ICALP.2022.30
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.9
https://doi.org/10.1145/3519935.3519990
https://doi.org/10.4230/LIPIcs.ICALP.2022.32
https://doi.org/10.4230/LIPIcs.ICALP.2020.19
https://doi.org/10.4230/LIPIcs.CCC.2019.31
https://doi.org/10.1137/1.9781611977073.119

61 Karl Bringmann, Nick Fischer, and Vasileios Nakos. “Sparse nonnegative con-
volution is equivalent to dense nonnegative convolution”. In: 53rd annual ACM
symposium on theory of computing (STOC 2021). ACM, 2021, pages 1711–1724.
10.1145/3406325.3451090.

97 Nick Fischer and Rob van Glabbeek. “Axiomatising infinitary probabilistic
weak bisimilarity of finite-state behaviours”. In: J. log. algebraic methods pro-
gram. 102 (2019), pages 64–102. 10.1016/j.jlamp.2018.09.006.

98 Nick Fischer and Christian Ikenmeyer. “The computational complexity of
plethysm coefficients”. In: Comput. complex. 29.2 (2020), pages 8. 10.1007/
s00037-020-00198-4.

12

https://doi.org/10.1145/3406325.3451090
https://doi.org/10.1016/j.jlamp.2018.09.006
https://doi.org/10.1007/s00037-020-00198-4
https://doi.org/10.1007/s00037-020-00198-4

Content

1 Introduction 17
1.1 Output-Sensitive Algorithms 18
1.2 Sublinear-Time Algorithms 19
1.3 Sparse Convolution 20
1.3.1 Machine model 22
1.3.2 Time-Optimal Sparse Nonnegative Convolution 22
1.3.3 Deterministic Sparse Nonnegative Convolution 23
1.3.4 Las Vegas Algorithms for Sparse Nonnegative Convolution 24
1.3.5 Open Problems 25
1.4 Application: 3-SUM Lower Bounds for Approximate Distance Oracles 26
1.4.1 Optimal Short Cycle Removal 27
1.4.2 New Lower Bounds for Distance Oracles 28
1.4.3 A Tight Lower Bound for 4-Cycle Listing 30
1.4.4 Open Problems 30
1.5 Fast Scheduling via Partition-and-Convolve 31
1.5.1 Our Contribution 32
1.5.2 Open Problems 32
1.6 Sublinear Algorithms for Approximate Edit Distance 33
1.6.1 Our Contribution 34
1.6.2 Open Problems 35
1.7 Preliminaries 36

2 Sparse Convolution Toolkit 37
2.1 Dense Convolution 37
2.2 Sparse Convolution via Additive Hashing 39
2.2.1 Collection of Additive Hash Families 39
2.2.2 Sparse Integer Convolution via Additive Hashing 43
2.3 Sparse Convolution via Algebraic Methods 46
2.3.1 Prony’s Method in Detail 46
2.3.2 Algebraic Tools 49
2.4 Sparse Convolution via Sparse Fourier Transform 51
2.5 Verifier using Polynomial Identity Testing 51
2.6 The Scaling Trick 52
2.7 Witness Finding 54

3 Deterministic and Las Vegas Algorithms for Sparse Nonnegative
Convolution 57

3.1 Overview 57
3.1.1 Deterministic Algorithm 57
3.1.2 Simple Las Vegas Algorithm 59
3.2 Accelerated Las Vegas Algorithm 60
3.2.1 Beyond 1-Sparsity? 61
3.3 Deterministic Algorithm 61
3.3.1 Sparse Polynomial Evaluation and Interpolation 61
3.3.2 Finding Large-Order Elements 63
3.3.3 Complete Algorithm 64
3.4 Las Vegas Algorithms 65
3.4.1 Sparsity Testing 65
3.4.2 Simple Algorithm 65
3.4.3 Accelerated Algorithm 69
3.4.4 Las Vegas Length Reduction 71

13

4 An Optimal Algorithm for Sparse Nonnegative Convolution 73
4.1 Overview 73
4.2 Set Queries in a Tiny Universe 78
4.2.1 Derivative Representation 78
4.2.2 The Algorithm 81
4.3 Approximating the Support Set 83
4.4 Universe Reduction from Small to Tiny 86
4.5 Error Correction 88
4.6 Universe Reduction from Large to Small 90
4.7 Estimating the Sparsity 𝑡 92
4.8 Concentration Bounds for Linear Hashing 93
4.8.1 Heights 94
4.8.2 Proof of Theorem 4.3 96
4.8.3 An Almost-Matching Lower Bound for Theorem 4.1 98

5 Fine-Grained Complexity of Approximate Distance Oracles 101
5.1 Overview 101
5.1.1 Hardness Reductions from Triangle Listing Instances with Few Short

Cycles 101
5.1.2 Energy Reduction for 3-SUM 104
5.1.3 3-SUM for Structured Inputs 106
5.1.4 Hashing—Additive and Independent? 107
5.2 Background on Additive Combinatorics 108
5.2.1 Sumsets 108
5.2.2 Additive Energy 108
5.2.3 Fourier Analysis 109
5.2.4 Plünnecke-Ruzsa Inequality 111
5.2.5 Ruzsa’s Covering Lemma 111
5.2.6 Balog-Szemerédi-Gowers Theorem 112
5.3 3-SUM for Structured Inputs 113
5.4 Energy Reduction for 3-SUM 115
5.4.1 Energy Reduction via Additive Combinatorics 116
5.4.2 Amplification via Hashing 116
5.4.3 Putting Both Parts Together 118
5.5 Reducing 3-SUM to Triangle Listing 119
5.5.1 The Construction 119
5.5.2 Counting the Number of 𝑘-Cycles 120
5.5.3 Making the Graph Regular 123
5.5.4 Putting the Pieces Together 125
5.6 Hardness of 4-Cycle Listing 126
5.7 Hardness of Distance Oracles 128
5.7.1 Stretch 𝑘 128
5.7.2 Stretch 2 ≤ 𝛼 < 3 130
5.7.3 Dynamic Distance Oracles 134

6 Fast Minimization of Tardy Processing Time via
Partition-and-Convolve 137

6.1 Overview 137
6.2 Reduction to Skewed Convolutions 138
6.3 Fast Skewed Convolutions 140

7 Sublinear-Time Edit Distance Approximation 143
7.1 Preliminaries 143
7.2 Andoni-Krauthgamer-Onak Algorithm 144
7.2.1 First Ingredient: Tree Distance 144

14

7.2.2 Capped Distances 145
7.2.3 Tree Distance Problem 146
7.2.4 Second Ingredient: Precision Sampling Lemma 146
7.2.5 Third Ingredient: Range Minima 147
7.2.6 Putting the Pieces Together 147
7.3 Going Sublinear—An Overview 149
7.3.1 Structural Insights 150
7.3.2 Pruning Rules 150
7.3.3 String Property Testers 151
7.3.4 Putting the Pieces Together 152
7.4 Going Sublinear—In Detail 154
7.4.1 Facts about Periodicity 155
7.4.2 Edit Distances between Periodic and Random-Like Strings 155
7.4.3 Some String Property Testers 156
7.4.4 Putting The Pieces Together 159
7.4.5 Main Theorems 163
7.5 Equivalence of Edit Distance and Tree Distance 164
7.6 Precision Sampling Lemma 166
7.7 Range Minima 168
7.8 2-Approximating Edit Distance for Many Shifts 168

15

16

1 Note that these hardness
results leave room for sub-
polynomial 𝑛𝑜(1) algorithmic
improvements. And indeed,
for many central fine-grained
problems it is known how to
achieve substantial savings up
to 2
√

log 𝑛 = 𝑛𝑜(1) [201, 72].

1 Introduction

The overarching goal of the theory of computation is to classify each problem as
either easy or hard—in terms of running time, space complexity or other resource
requirements. Our strategies to prove easiness and hardness differ: On the one
hand, algorithm design sets out to prove upper bounds by finding better and better
algorithms. On the other hand, the goal of complexity theory is to prove hardness
of problems either unconditionally or, more commonly, by means of reductions.
Algorithm design and complexity theory often work hand-in-hand—for instance,
it is not uncommon that a failed attempt for a hardness reduction turns into a
surprising algorithm.

Historically, the most successful notion of easy and hard is polynomial-time
solvability and NP-hardness: A problem is easy if it has a polynomial-time algo-
rithm and hard if a polynomial-time algorithm for the problem would contradict
the important P ≠ NP conjecture by means of a polynomial-time reduction. This
classical view on algorithms and complexity has lead to a rich landscape of easy
and hard problems. A major drawback of this approach is the inherent insensi-
tivity with respect to different polynomial running times. For instance, we can-
not distinguish “easy” problems with best-possible linear running time Θ(𝑛) from
“easy” problems with best-possible running time Θ(𝑛100). However, these running
times differ significantly, both from a theoretical and a practical perspective.

From Coarse-Grained to Fine-Grained. This is the starting point and motivation
of the relatively new field fine-grained complexity theory, with the goal to pinpoint
the exponents of polynomial-time problems. This typically means that a problem
can be solved in time 𝑂(𝑛𝛼) for some exponent 𝛼 (often by a naive algorithm),
but that any algorithm with running time 𝑂(𝑛𝛼−𝜖) with 𝜖 > 0 would contradict a
fine-grained hypothesis.1

Beginning ten years ago, in a couple of landmark results this field has suc-
cessfully determined the best-possible running time of many important problems.
The list includes string problems such as Edit Distance [28] and Longest Common
Subsequence [1, 63], geometric problems such as Collinearity testing [101] and
Fréchet Distance [53], graph problems including computing the graph radius [5]
and approximating the graph diameter [183], and many more. See [202] for a de-
tailed survey. In even more recent times the theory is applied also to dynamic
algorithms, quantum algorithms and cryptography.

Similar to the theory of NP-hardness, these aforementioned hardness results
are conditioned on a small set of believable hypotheses, mostly concerning the
fundamental Satisfiability, 3-SUM and APSP problems. The fine-grained analogue
of polynomial-time reductions are fine-grained reductions that pay particular at-
tention to the running time overhead due to the reduction.

From Fine-Grained to Finer-Grained. This leaves us with an acceptable state of
affairs for most problems. But again, there are “easy” problems that are “easier”
than others. For instance, the established fine-grained view on algorithms does
not distinguish problems solvable in linear time 𝑂(𝑛), in near-linear time 𝑂(𝑛) =
𝑛(log 𝑛)𝑂(1) or in almost-linear time 𝑛1+𝑜(1) . Can we distinguish these running
times, or does the story end here?

The perhaps most obvious way to obtain further speed-ups is to improve the
lower-order factors. In most cases, this means reducing the number of log-factors
which is often called the art of log-shaving [69]. On the complexity side, it is possi-
ble to define analogous finer-grained reductions that preserve the number of log-
factors. These reductions are much less common though—unfortunately, while
there are several well-established hypotheses about the polynomial running times
of problems, we are lacking hypotheses about the exact number of log-factors. One

17

rare exception is the hypothesis that computing the Discrete Fourier Transform re-
quires time Ω(𝑛 log 𝑛), and as one of the main results in this thesis, we present a
finer-grained reduction under this hypothesis (see Theorem 1.2). Another example
of finer-grained reductions in the literature, with a different flavor, is that shaving
a certain number of log-factors from the𝑂(𝑛2) running time of computing the edit
distance between two strings leads to new circuit lower bounds [6].

Putting lower-order factors aside, can we obtain more substantial improve-
ments? It seems that the story indeed ends here, as most problems of size 𝑛 re-
quire time Ω(𝑛) (simply to read the input or to write the output). Therefore, in
most cases an almost-linear time algorithm is optimal (up to lower-order factors).
In this thesis, we focus on two natural situations where designing faster algorithms
is nevertheless possible.

1.1 Output-Sensitive Algorithms

One way to achieve algorithms faster than linear time is to consider cases where
input and output are sufficiently sparse. When the input is sparsely encoded with
size in and the output is sparsely encoded with size out, the former lower bound
becomes Ω(in+ out), which, in many cases, is much faster than Ω(𝑛) for worst-
case input and output-size. Input-sensitive algorithms are omnipresent, and it is
similarly natural to consider output-sensitive algorithms.

Input-Sensitive Algorithms. Representing inputs sparsely is so natural that we
rarely ever explicitly say “input-sensitive” algorithms. For graph problems, for
example, the dense representation by adjacency matrices inherently leads to algo-
rithms with running time Ω(𝑛2), while many graphs in theory and practice have
significantly fewer edges, 𝑚 ≪ 𝑛2. In these numerous cases, the more reasonable
approach is to represent graphs sparsely by adjacency lists which allows many
problems to be solved in almost-linear time 𝑚1+𝑜(1) (such as Single-Source Short-
est Paths using Dijkstra’s algorithm, or Maximum Flow [78], to name some funda-
mental examples).

Other examples of inputs that are commonly represented sparsely are matri-
ces, polynomials, databases and even strings (such as the sparse pattern matching
problem [84]).

Output-Sensitive Algorithms. It is equally natural, but slightly less common, to
consider problems where the output is encoded sparsely. Obviously, for problems
with negligibly small output size (in particular, for decision problems) it does not
make sense to think about output-sensitive algorithms. Instead, think about prob-
lems where the output is at least as large as the input. Typical examples include
listing or enumeration problems, for which it is desirable, especially from a prac-
tical perspective, to achieve running times of the form 𝑂(𝑓 (in) + out).

One example is to list, in a given graph, all subgraphs of a certain pattern. For
instance, we can list all 4-cycles in time 𝑂(𝑚4/3 + out) [130, 7]. (As a side result of
this thesis we prove a matching conditional lower bound in Theorem 1.12.)

Another natural example is (a variant of) the well-studied Subset Sum prob-
lem: Given a set of 𝑛 positive numbers 𝑥0, . . . , 𝑥𝑛−1 and a target 𝜏, list all num-
bers 𝑥 ∈ [0 . . 𝜏] that can be expressed as subset sum 𝑥 =

∑
𝑖∈𝐼 𝑥𝑖 for some 𝐼 ⊆ [𝑛].

This problem requires time Ω(𝜏) just to produce the worst-case output. However,
for instances where the output list is significantly smaller than 𝜏, the problem can
be solved in time 𝑂(𝑛 + out4/3) [66].

The first major part of this thesis is concerned with the fundamental problem
of multiplying two integer polynomials 𝐴, 𝐵 of degree 𝑛. Using the Fast Fourier
Transform, we can compute the product in near-linear time 𝑂(𝑛), and this prob-
lem clearly requires time Ω(𝑛) both for reading the input and writing the out-
put. However, when the input and output polynomials are represented sparsely
(as a list of nonzero coefficients), it is in fact possible to multiply polynomials in

18

3 To obtain this statement,
guess 𝑘 up to a factor 2 and
plug in 𝜆 = 𝑘𝑛𝑜(1)−1 into their
main theorem [23]. For a suf-
ficiently large 𝑜(1) term, the
running time is 𝑂(𝑛/𝑘) and
the approximation factor is
𝜆−𝑜(1) ≤ 𝑛𝑜(1) . Their theorem
requires that 𝜆 = 𝑜(1), so if in-
stead 𝜆 = Ω(1) the algorithm
can simply report “𝑛” which is
an 𝑛𝑜(1) -approximation of the
length of the LIS.

2 The typical view on property
testing is slightly different: A
property testing problem is to
decide whether an input satis-
fies a property or is “far” from
satisfying the property, in the
sense that a significant frac-
tion of input bits must change
to satisfy the property.

time 𝑂(in+ out) [84, 164]. We also call this the sparse (integer) convolution prob-
lem. In the upcoming sections, we will thoroughly treat sparse convolutions in
several nuanced settings.

1.2 Sublinear-Time Algorithms

In the previous section we have surveyed several examples of algorithms run-
ning in better-than-worst-case time for sparse inputs (and outputs). However, even
sparsity-sensitive algorithms can never beat the unconditional barrier Ω(in+ out).
Recall that for exact problems changing a single bit in the input may generally lead
to drastically different outputs, and therefore any correct algorithm necessarily
has to probe all input bits.

For approximations on the other hand, it is a priori not clear whether the same
lower bound applies: Changing a single bit in the input may lead to a different, but
approximately equal output. In some cases, it is therefore possible to read the input
only partially and obtain truly sublinear algorithms. The field investigating what
approximations can be achieved in sublinear time is called property testing [113,
112].2

A toy example is to count the number of 1’s in a bit-vector. Any exact algorithm
requires 𝑛 probes, where 𝑛 is the length of the vector. However, using only a con-
stant number of queries into the vector, we can compute the number of 1’s up to
an additive approximation error 𝜖𝑛, for any constant 𝜖 > 0.

Perhaps surprisingly, property testing can be successfully applied to much
more difficult tasks, say in the context of string problems. Consider for instance
the Longest Increasing Subsequence (LIS) problem: Given a string over an ordered
alphabet, determine the length of the longest increasing subsequence, that is, the
longest (not necessarily consecutive) subsequence with increasing characters. It
is well-known that this problem can be solved in time 𝑂(𝑛 log 𝑛) where 𝑛 is the
length of the given string [156], and any algorithm requires time Ω(𝑛) to read the
input. But is there hope for faster approximation algorithms? The answer depends
on the length 𝑘 of the LIS. Note that 𝑘 = 1 if and only if the given string is monoton-
ically decreasing. Therefore, any better-than-2 approximation must test whether
the input is monotonically decreasing which requires Ω(𝑛) probes. More gener-
ally, computing a constant-factor (or subpolynomial 𝑛𝑜(1) -factor) approximation
requires time Ω(𝑛/𝑘) (up to subpolynomial factors, respectively). We can there-
fore only hope to get sublinear-time algorithms for super-constant 𝑘. And indeed,
as the final result in a series of papers [187, 185, 160, 166, 23], Andoni, Nosatzki,
Sihna and Stein [23]3 recently proved that an 𝑛𝑜(1) -approximation of the LIS can
be computed in almost-optimal time 𝑂(𝑛/𝑘).

As the second direction of this thesis, we study the related problem of ap-
proximating the edit distance of two given strings in sublinear time. We similarly
achieve that an 𝑛𝑜(1) -approximation can be computed in time 𝑂(𝑛/𝑘 + poly(𝑘)),
where 𝑘 is the edit distance of the given strings (see Theorem 1.15). This is sub-
linear for sufficiently small 𝑘 and almost-optimal in this regime by a similar argu-
ment as for LIS.

Organization. In the following sections we describe our results in more detail.
Section 1.3 is concerned with our output-sensitive algorithms for sparse convolu-
tion. In Sections 1.4 and 1.5 we present two applications of fast (sparse) convolu-
tion algorithms in fine-grained complexity and algorithm design. Section 1.6 states
our result for sublinear-time edit distance.

19

5 Simply take the vectors 𝐴, 𝐵
to be the indicator vectors of
the sets 𝑋,𝑌 .

4 In fact, the FFT evaluates
the discrete Fourier transform
(DFT) in near-linear time.
However, it is known that
computing convolutions of
vectors where the entries are
nonnegative integers, integers
and complex numbers, and
the computation of DFTs are
computationally equivalent,
as each one can be reduced to
the other. The nonnegativity
assumption can be removed by
appropriately increasing all
entries. For the equivalence of
computing convolutions and
DFTs we remark that it is stan-
dard to express convolutions
using DFT and inverse DFT,
and the reverse direction is
known as well [49] (assuming
complex exponentials can be
evaluated in constant time).
See also [109, pp. 213–215].

1.3 Sparse Convolution

The first major contribution of this thesis is a collection of algorithms for the sparse
convolution problem. We begin with some context on how computing (dense) con-
volutions finds applications in algorithm design and beyond.

Dense Convolution. The convolution of two integer vectors 𝐴, 𝐵 is the integer vec-
tor 𝐴★ 𝐵which is defined coordinate-wise by (𝐴★𝐵) [𝑘] = ∑

𝑖+ 𝑗=𝑘 𝐴[𝑖] ·𝐵[𝑗]. Com-
puting convolutions of integer vectors 𝐴, 𝐵 is a fundamental computational prim-
itive, which arises in several disciplines of science and engineering. It has been a
vital component in fields like signal processing, deep learning (convolutional neu-
ral networks) and computer vision. As computing convolutions of integer vectors
is in fact the same problem as multiplying two integer polynomials, this is also one
of the most central problems in computer algebra.

In a breakthrough result from 1965, Cooley and Tukey [85] discovered the fun-
damental Fast Fourier Transform (FFT) which solves the convolution problem in
near-linear time 𝑂(𝑛 log 𝑛), where 𝑛 is the length of 𝐴 and 𝐵.4 This algorithm had
revolutionary consequences for all the aforementioned areas, and was praised as
one of the “top-10 algorithms of the 20th century” [88]. Inside algorithm design
the FFT became the algorithmic thrust for various state-of-the-art algorithms. The
list includes many “additive problems” such as 𝑘-SUM [71], Subset Sum [52, 142,
129, 66, 64, 27], but also string problems [96, 10, 124, 84] and many others.

For these applications it often suffices to deal with nonnegative convolution,
where the vectors 𝐴, 𝐵 have nonnegative entries. In fact, for many applications it
suffices to solve the even simpler Boolean convolution problem—here, the vec-
tors 𝐴, 𝐵 have 0–1 entries and the task is to compute the vector 𝐴 ⃝★ 𝐵 with
entries (𝐴 ⃝★ 𝐵) [𝑘] = ∨

𝑖+ 𝑗=𝑘 𝐴[𝑖] ∧ 𝐵[𝑗]. To convey a feeling on how computing
Boolean and nonnegative convolutions can be handy in algorithms design, we
present details on three typical applications.

Application 1: Sumsets. The Boolean convolution problem of length-𝑛 vectors is
equivalent to the computation of the sumset 𝑋 + 𝑌 = {𝑥 + 𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 } of two
given sets 𝑋,𝑌 ⊆ [𝑛].5 This interpretation shows up often in 𝑘-SUM [71, 2, 130] and
Subset Sum [52, 142, 66, 64] algorithms (for instance, the central 3-SUM problem
can be seen as the problem of testing 0 ∈ 𝑋 + 𝑌 + 𝑍 for three given sets 𝑋,𝑌 , 𝑍).

We later present a scenario where an algorithm for structured 3-SUM consti-
tutes the backbone of a series of conditional hardness results against seemingly
unrelated graph problems; see Section 1.4 (with details in Chapter 5).

Application 2: String Algorithms. Another successful application of nonnega-
tive convolution is in the area of string problems, specifically pattern matching
problems. This connection was first discovered by Fischer and Paterson [96]. The
possibly simplest example is the Sliding-Window Hamming Distance problem over
small (say, binary) alphabets [10]. In this problem the task is to compute the Ham-
ming distance (i.e., the number of mismatching characters) from a short pattern
𝑃 ∈ {0, 1}𝑚 to all possible length-𝑚 windows in a longer text 𝑇 ∈ {0, 1}𝑛. By ap-
propriately encoding 𝑃 and 𝑇 into bit-vectors of length 𝑂(𝑛), we can read off the
Hamming distances to all windows from the convolution vector.

Application 3: The Partition-and-Convolve Design Paradigm. As another sys-
tematic application, Boolean and nonnegative convolution form the essential in-
gredients to the partition-and-convolve design paradigm. The typical task for a
problem approachable by a partition-and-convolve algorithm is to check for so-
lutions of all prescribed sizes 𝑘. The standard approach for these problems is to
come up with an appropriate dynamic program. The improved idea behind the
partition-and-convolve paradigm is to partition the search space into (usually) two
parts, each of which is solved recursively. In this way, a size-𝑘 solution to the orig-
inal problem is split into two parts of sizes 𝑖, 𝑗 such that 𝑖 + 𝑗 = 𝑘. Therefore, to

20

8 Formally, Prony’s method
allows to recover a 𝑡-sparse
polynomial from 2𝑡 given eval-
uations at carefully chosen
evaluation points. We give
a quick overview of Prony’s
method in Section 2.3.

7 It seems that in the standard
word RAM model with word
size Θ(log 𝑛) their algorithm
would run in randomized time
𝑂(𝑡 log5 𝑡 polyloglog 𝑛).

6 In this setting we have to be
careful how to represent the
vectors: For dense convolu-
tions we could simply write
down the vectors as arrays of
length 𝑛. For sparse convolu-
tions we will represent the vec-
tors as a list of (index, entry)-
pairs for all nonzero entries.

check whether there exists a size-𝑘 solution to the original problem we recom-
bine the recursive computations by a Boolean convolution. This approach is very
flexible and can also be applied to other convolution-type problems; for instance,
using nonnegative convolutions in place of Boolean convolutions corresponds to
counting solutions of all prescribed sizes.

With an even more flexible adaption of this approach, we may even attempt
to speed-up the computation of more general dynamic programs (DPs). The pro-
cedure is simple: Figure out how we can combine, say, two independent halves
of the DP table in one shot. Hopefully the combination rule looks like a convolu-
tion problem—possibly with operations other than the usual integer addition and
multiplication. If that is the case, it remains to design a nontrivial algorithm for
the new convolution-type problem. In Section 1.5 (with details in Chapter 6) we
give an example where this approach succeeded to design faster algorithms for a
scheduling problem.

Faster Than Fast Fourier Transform? Given these various applications, it is nat-
ural and important to ask whether the 𝑂(𝑛 log 𝑛) running time is necessary or
whether this running time can be improved? The trivial lower bound for dense
vectors is Ω(𝑛), so a logarithmic gap remains. It is widely conjectured that this
log-factor is necessary but the evidence is scarce. For instance, there are lower
bounds in restricted models [12] and there is a connection to the network coding
conjecture [11].

Since progress in terms of lower-order factors seems out of reach, can we nev-
ertheless compute convolutions faster?

Sparse Convolution. Suppose that the input and output vectors 𝐴, 𝐵 and 𝐴★𝐵 are
sparse.6 Can we design output-sensitive algorithms where we analyze the running
time in terms of 𝑡, the combined number of nonzero entries in 𝐴, 𝐵 and 𝐴 ★ 𝐵?
Note that in the Boolean and nonnegative cases, 𝑡 is dominated by the number of
nonzero entries in 𝐴★ 𝐵.

The need for such a primitive appears in many situations, specifically in al-
gorithms for variants of 𝑘-SUM and Subset Sum [71, 66, 65], several string prob-
lems including sparse wildcard matching, geometric pattern matching [67, 84] and
block-mass pattern matching [17] and the fine-grained complexity of some graph
problems [2, 130]. These types of problems have been investigated by different
communities, including not only fine-grained complexity and string algorithms,
but also computer algebra [180] and compressed sensing [118, 100], and they are
very closely related to the famous sparse recovery problem, see e.g. [104, 100].

We start with a review about the most relevant literature on sparse convolu-
tions prior to our work, separated into randomized and deterministic algorithms.

Randomized Algorithms for Sparse Convolution. A large body of work ad-
dresses this problem [163, 84, 179, 161, 121, 25, 71, 180, 164, 108, 61]. As a
first breakthrough result, Cole and Hariharan showed that sparse nonnegative
convolutions can indeed be computed in near-linear time in 𝑡 [84]. Their re-
sult is a randomized Las Vegas algorithm in time 𝑂(𝑡 log2 𝑛). Subsequent work
improved upon this result by removing the nonnegativity assumption: With a
Monte Carlo algorithm in the same running time 𝑂(𝑡 log2 𝑛) [164], or with bit-
complexity 𝑂(𝑡 log 𝑛) [108]7. While Cole and Hariharan’s algorithm uses a mix
of complicated machinery, these algorithms rely on a relatively simple hashing-
based approach.

Another more algebraic approach to sparse convolution algorithms is via poly-
nomial evaluation and interpolation. At the heart of this approach lies an old algo-
rithm called Prony’s method [177] which allows to efficiently interpolate a sparse
polynomial.8 This algorithm involves heavy algebraic computations that can be
implemented in randomized time 𝑂(𝑡 log2 𝑛) [180].

21

This research is closely related to the extensively studied sparse Fourier trans-
form problem, see e.g. [103, 106, 118, 125, 126]. Indeed, one can obtain a sparse
convolution algorithm with running time 𝑂(𝑡 log2 𝑛), albeit with a more compli-
cated algorithm and under the assumption that complex exponentials can be eval-
uated in constant time, by combining the state-of-the-art sparse Fourier transform
with the semi-equispaced Fourier transform, see Section 2.4.

In summary: On the one hand the known upper bounds are 𝑂(𝑡 log2 𝑛) [84,
164] or 𝑂(𝑡 log5 𝑡 polyloglog 𝑛) [108]. On the other hand, the most plausible lower
bound is Ω(𝑡 log 𝑡) which transfers from FFT. It is natural to ask whether this gap
can be closed:

Question 1: Can sparse nonnegative convolutions be computed
in (randomized) time 𝑂(𝑡 log 𝑡)?

Deterministic Algorithms for Sparse Convolution. In terms of deterministic al-
gorithms, the state of affairs is worse. The first nontrivial deterministic result for
sparse nonnegative convolution is a data structure that, after preprocessing one
of the vectors in time Θ(𝑡2), computes the convolution with any given query vec-
tor in near-linear time 𝑂(𝑡 log3 𝑡) [18]. Later, Chan and Lewenstein [71] devised
a deterministic algorithm running in time 𝑡 · 2𝑂(

√
log 𝑡 log log 𝑛) , without preprocess-

ing. Their algorithm is limited in the sense that it expects as an additional input
the support (i.e., the set of nonzero coordinates) of 𝐴★ 𝐵. This assumption can be
removed as shown by Bringmann and Nakos [65]; in Section 2.6 we provide more
details. In summary, the state-of-the-art deterministic algorithms for computing
sparse nonnegative convolutions either require heavy precomputations or fail to
achieve near-linear time 𝑂(𝑡 polylog 𝑛). We therefore ask:

Question 2: Can sparse nonnegative convolutions be computed
in deterministic time 𝑂(𝑡 polylog 𝑛)?

1.3.1 Machine model

In the context of log-factor improvements we have to carefully consider the ma-
chine model of our algorithms. Throughout this thesis we employ the standard
word RAM model where the word size 𝑤 is logarithmic in the input size of the
respective problem. In particular, for the sparse convolution problem we assume
that the words have size 𝑤 = Θ(log 𝑛 + log Δ), where Δ is the largest entry in the
given vectors. In this way we can perform basic arithmetic and operations on en-
tries and indices in constant time.

1.3.2 Time-Optimal Sparse Nonnegative Convolution

In two papers [61, 60] we have answered both questions positively. In [61] we
design the following novel Monte Carlo algorithm for nonnegative sparse convo-
lution.

Theorem 1.1 (Time-Optimal Sparse Nonnegative Convolution). There is a ran-
domized algorithm to compute the convolution of two nonnegative vectors 𝐴, 𝐵 ∈ N𝑛

in time𝑂(𝑡 log 𝑡+polylog(𝑛Δ)) and with error probability 2−
√

log 𝑡 , where 𝑡 = ∥𝐴★𝐵∥0
and Δ = ∥𝐴★ 𝐵∥∞.

This result affirmatively answers Question 1 for 𝑡 ≫ polylog(𝑛Δ), by a ran-
domized algorithm. In fact, our algorithm can be phrased as a reduction from the

22

9 To be precise, we should take
the dependence on Δ (and 𝑛)
into account. Expressing the
running time for the dense
case as 𝐷𝛿 (𝑛, Δ) and for the
sparse case as 𝑆𝛿 (𝑡, 𝑛, Δ), our
reduction actually shows that

𝑆𝛿 (𝑡, 𝑛, Δ)
= 𝑂(𝐷𝛿 (𝑡, poly(𝑛Δ)))
+ 𝑂(𝑡 log2 (log(𝑡)/𝛿))
+ polylog(𝑛Δ).

sparse case to the dense case of nonnegative convolution. In the following, we de-
note by 𝐷𝛿 (𝑛) the running time of a randomized algorithm for dense nonnegative
convolution with failure probability 𝛿 (for any 𝛿 ≥ 0). For convenience this nota-
tion hides the dependence on Δ. In the sparse setting, where we denote the output
size by 𝑡, we will denote by 𝑆𝛿 (𝑡) the running time of a randomized algorithm for
sparse nonnegative convolution with failure probability 𝛿; this hides the depen-
dence on 𝑛 and Δ. In this language, our main result is the following theorem.9

Theorem 1.2 (Sparse and Dense Nonnegative Convolution Are Equivalent). Any
randomized algorithm for dense nonnegative convolution with running time 𝐷𝛿 (𝑛)
and error probability 𝛿 > 0 can be turned into a randomized algorithm for sparse
nonnegative convolution with error probability 𝛿 running in time

𝑆𝛿 (𝑡) = 𝑂
(
𝐷𝛿 (𝑡) + 𝑡 log2 (log(𝑡)/𝛿) + polylog(𝑛Δ)

)
.

Since 𝐷(𝑡) = 𝑂(𝑡 log 𝑡) (by the Fast Fourier Transform), setting 𝛿 = 2−
√

log 𝑡

yields time 𝑂(𝑡 log 𝑡 + polylog(𝑛Δ)), which proves Theorem 1.1. Furthermore,
any future algorithmic improvement for the dense case automatically yields an
improved algorithm for the sparse case by our reduction. In fact, under the
mild conditions that 𝑡 ≫ polylog(𝑛Δ) and that the optimal running time 𝐷1/3 (𝑡)
is Ω(𝑡(log log 𝑡)2), we obtain an asymptotic equivalence with respect to constant-
error randomized algorithms:

𝑆1/3 (𝑡) = 𝑂(𝐷1/3 (𝑡)) holds by Theorem 1.2 and the mild conditions, and
𝐷1/3 (𝑡) = 𝑂(𝑆1/3 (𝑡)) holds since the sparse case trivially is a special case of the
dense one.

We prove Theorems 1.1 and 1.2 in Chapter 4.

1.3.3 Deterministic Sparse Nonnegative Convolution

In [60] we have again studied sparse nonnegative convolution; this time from the
perspective of deterministic algorithms. We answer Question 2 by a near-linear-
time algorithm that improves upon the previously best time 𝑡 · 2𝑂(

√
log 𝑡 log log 𝑛) , ob-

tained by [71, 65].

Theorem 1.3 (Deterministic Sparse Nonnegative Convolution). There is a deter-
ministic algorithm to compute the convolution of two nonnegative vectors 𝐴, 𝐵 ∈ N𝑛

in time 𝑂(𝑡 polylog(𝑛Δ)), where 𝑡 = ∥𝐴★ 𝐵∥0 and Δ = ∥𝐴★ 𝐵∥∞.

As a corollary we can efficiently derandomize known algorithms for several
problems which use sparse nonnegative convolution as a subroutine. For all these
applications, we can simply replace the former randomized algorithms with our
deterministic one in a black-box manner. Of course, for the same derandomiza-
tion we could alternatively use the 𝑡 · 2𝑂(

√
log 𝑡 log log 𝑛) = 𝑡 · 𝑛𝑜(1) -time algorithm

from [71, 65] and therefore our contribution can alternatively be seen as im-
proving the best deterministic time from 𝑇1+𝑜(1) to 𝑂(𝑇). Specifically, we obtain
improvements for the following problems:

Output-Sensitive Subset Sum:
Given a set 𝑋 of integers and a threshold 𝜏, compute the set 𝑆 of all numbers
less than 𝜏 which can be expressed as a subset sum of 𝑋 . The best-known
randomized algorithm runs in time𝑂(|𝑆 |4/3) [66], and it can be derandomized
in same running time.

𝑁 -fold Boolean Convolution:
Given𝑁 Boolean vectors 𝐴1, . . . , 𝐴𝑁 ∈ {0, 1}𝑛, compute their Boolean convolu-
tion 𝐴1⃝★· · ·⃝★𝐴𝑁 (with or without wrap-around) in input- plus output-sensitive
time. It was recently shown that this problem can be solved in randomized
near-linear time 𝑂(𝑡 polylog 𝑛) [65]. Our derandomization achieves the same

23

running time. This yields a new deterministic near-linear-time algorithm for
Modular Subset Sum which is rather different from the known ones [27], as
discussed in [65].

Block-Mass Pattern Matching:
Given a length-𝑛 text 𝑇 and a length-𝑚 pattern 𝑃 over the alphabet N, the
task is to output all possible indices 0 ≤ 𝑘0 ≤ · · · ≤ 𝑘𝑚 ≤ 𝑛 such that
𝑃[𝑖] = ∑

𝑘𝑖≤ 𝑗<𝑘𝑖+1 𝑇 [𝑗] for all positions 𝑖 ∈ [𝑚]. Building on the data structure
from [18], this problem is known to be solvable in deterministic time𝑂(𝑛 +𝑚)
after preprocessing the text in time 𝑂(𝑛2) [17]. The preprocessing time was
later reduced to 𝑂(𝑛1+𝜖), for any 𝜖 > 0 [71]. We entirely remove the necessity
to precompute and thereby reduce the total running time to 𝑂(𝑛 +𝑚).

3-SUM in Special Cases:
In a breakthrough paper, Chan and Lewenstein [71] used sophisticated tech-
niques to obtain randomized and deterministic subquadratic algorithms for
a variety of problems related to 3-SUM, such as bounded monotone two-
dimensional 3-SUM, bounded monotone (min, +)-convolution, clustered inte-
ger 3-SUM, etc. The precise running time of their deterministic algorithm for
these problems is𝑂(𝑛1.864). Here we remove an 𝑜(1) overhead in the exponent
which is invisible due to rounding the constant in the exponent.

We give a detailed proof of Theorem 1.3 in Chapter 3.

1.3.4 Las Vegas Algorithms for Sparse Nonnegative
Convolution

In addition to our new deterministic algorithm, in [60] we also improve the state-
of-the-art Las Vegas algorithms for sparse nonnegative convolution in two re-
gards: simplicity and efficiency. In fact, to the best of our knowledge the only
known Las Vegas algorithm is due to Cole and Hariharan [84]; all randomized al-
gorithms published later have only Monte Carlo guarantees [179, 25, 180, 164, 108,
61]. The expected running time of [84] is 𝑂(𝑡 log2 𝑛) and moreover, they prove the
additional guarantee that their algorithm terminates in time 𝑂(𝑡 log2 𝑛) with high
probability 1 − 1

𝑛 . However, the algorithm is very complicated, involves various
string problems as subtasks and the precomputation of a large prime number.
We provide an accessible alternative with the same theoretical guarantees; the
simplest version can be summarized in 13 lines of pseudocode (Algorithm 3.1 on
Page 59).

Theorem 1.4 (Simple Las Vegas for Sparse Nonnegative Convolution). There is
a Las Vegas randomized algorithm to compute the convolution of two nonnegative
vectors 𝐴, 𝐵 ∈ N𝑛 in expected time 𝑂(𝑡 log2 𝑡), where 𝑡 = ∥𝐴 ★ 𝐵∥0. Moreover, with
probability 1 − 𝛿 the running time is bounded by 𝑂(𝑡 log2 (𝑡/𝛿)).

In comparison to Cole and Hariharan’s algorithm, our algorithm runs slightly
faster in expectation (at least if 𝑡 ≪ 𝑛) and achieves the same high-probability
guarantee (indeed, by setting 𝛿 = 1

𝑛 the running time is bounded by𝑂(𝑡 log2 𝑛)with
probability at least 1 − 1

𝑛). We further show how to reduce the expected running
time, achieving optimality up to a log log factor.

Theorem 1.5 (Fast Las Vegas for Sparse Nonnegative Convolution). There is a
Las Vegas randomized algorithm to compute the convolution of two nonnegative
vectors 𝐴, 𝐵 ∈ N𝑛 in expected time 𝑂(𝑡 log 𝑡 log log 𝑡), where 𝑡 = ∥𝐴★ 𝐵∥0.

Assuming that FFT-time 𝑂(𝑛 log 𝑛) is best-possible for computing dense con-
volutions, the best-possible algorithm for computing sparse convolutions requires
time Ω(𝑡 log 𝑡). Hence, our algorithm is likely optimal up to the log log 𝑡 factor. The
proofs of these theorems are deferred to Chapter 3.

24

10 As an easy example, where
at least one of the vectors 𝐴, 𝐵
is dense, take

𝐴 = (1, . . . , 1),
𝐵 = (1,−1, 0, . . . , 0).

Their convolution 𝐴 ★ 𝐵 has
only two nonzero entries, in
the first and last position re-
spectively.

1.3.5 Open Problems

Our work on sparse convolutions raises a plethora of open problems that we dis-
cuss in the following.

1 Are there better randomized algorithms?
There are at least three interesting directions:
1a Can the error probability of the 𝑂(𝑡 log 𝑡) algorithm be reduced?

Specifically, can Theorem 1.1 be improved from 𝛿 = 2−
√

log 𝑡 to 1/poly(𝑡)
or even 1/poly(𝑛)?

1b Is there a Las Vegas algorithm in expected time 𝑂(𝑡 log 𝑡)?
That is, can we shave the log log 𝑡 factor from Theorem 1.5? While the
tricks from Theorem 1.4 can be worked into parts of our 𝑂(𝑡 log 𝑡) Monte
Carlo algorithm, the algorithm involves some other steps that seem hard
to verify.

1c Can the polylog(𝑛Δ) term in Theorem 1.2 be removed?
This would make the algorithm efficient also for very small 𝑡. We believe
that a quite different approach would be necessary, since already for find-
ing a prime field large enough to store 𝑛 and Δ, or for computing a single
multiplicative inverse in such a prime field, the fastest algorithms that we
are aware of run in time 𝑂(polylog(𝑛Δ)), even for the word RAM model.

2 Are there better deterministic algorithms?
The best deterministic time we achieve is 𝑂(𝑡 log5 (𝑛Δ) polyloglog(𝑛Δ)); is it
possible to reduce the number of log factors, and can we remove the depen-
dence on 𝑛 and Δ?

3 Can any of our algorithms be extended to sparse integer convolution?
The critical difference between integer and nonnegative convolution is that
many terms in the convolution can cancel. As an extreme case, there are
dense integer vectors 𝐴, 𝐵 such that 𝐴 ★ 𝐵 is 2-sparse.10 This renders many
approaches for nonnegative convolution hopeless for the general integer case,
specifically non-algebraic techniques (such as almost-additive hashing and the
scaling trick described in Chapter 2).

4 Are there output-sensitive algorithms for generalized sumsets?
Recall that for integer sets 𝐴, 𝐵 we define 𝐴 + 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}
as the sumset of 𝐴 and 𝐵. It is natural to generalize sumsets to other additive
groups𝐺—but can we similarly hope for output-sensitive algorithms? An easy
case are finite-field vectors 𝐺 = F𝑑𝑝 for which we design efficient algorithms in
Chapter 2.

After a long line of research (which we discuss in more depth in Sec-
tion 2.1), Umans [198] established an algebraic algorithm to compute sumsets
over all finite groups 𝐺 in time 𝑂(|𝐺 |𝜔/2), where 𝜔 < 2.372 is the exponent of
matrix multiplication [14, 91]. Assuming that 𝜔 = 2, this is almost-linear in |𝐺 |
and it remains an interesting question whether we can achieve almost-linear
running time in 𝑡.

5 Can we obtain further improvements by bit tricks, say for Boolean convolution?

6 Can we reduce sparse Fourier transform to dense Fourier transform in a finer-
grained way?
Computing convolutions is intimately connected to the Discrete Fourier Trans-
form (DFT). The sparse case of Fourier transform, where one has oracle access
to some vector 𝐴 and wants to compute its DFT 𝐴 under a 𝑡-sparsity assump-
tion, is also extensively studied [103, 106, 118, 119, 125, 126, 175, 134, 133, 135,
165]. We ask whether a reduction like Theorem 1.2 is similarly possible. The
algorithm in [118] runs time 𝑂(𝑡 log(𝑛Δ)), but the running time is not domi-
nated by the calls to FFT.

25

11 Throughout we assume
that graphs are undirected,
unweighted and have 𝑛 nodes
and 𝑚 edges.

1.4 Application: 3-SUM Lower Bounds for Approximate
Distance Oracles

As a complementary application of sparse convolution, we present the following
result from fine-grained complexity [2]: We prove conditional lower bounds for
the well-studied approximate shortest paths problem. This problem does a priori
not look like a convolution-style problem at all. Nevertheless, our hardness result
relies on an efficient algorithm for 3-SUM, which is powered by efficiently com-
puting sparse nonnegative convolutions besides several other tools from additive
combinatorics.

Distance Oracles. An approximate distance oracle is an algorithm that prepro-
cesses a graph11 efficiently and can then quickly return the distance between any
given pair of nodes, up to a small error. After being implicitly studied for some
time [158, 26, 82, 89, 83], Thorup and Zwick [197] formally introduced the distance
oracle problem in 2001 suggesting that it is perhaps the most natural formulation
of the classical all-pairs shortest paths problem. Distance oracles quickly rose to
prominence and the techniques developed for them found deep connections to
other popular topics such as sublinear algorithms, spanners, labelling schemes,
routing schemes, and metric embeddings.

Distance oracles have been thoroughly investigated with the primary goal of
understanding the best possible trade-off between the four main parameters: the
multiplicative error factor (aka the stretch), the query time, the space usage, and
the preprocessing time; see e.g. [36, 159, 33, 34, 35, 170, 193, 171, 206, 207, 74, 75,
192, 138, 13, 182, 77, 90] and the list is still growing. They have also been studied
from other perspectives, for example more efficient distance oracles for restricted
classes of graphs were sought after (e.g. [73, 155, 150] for planar graphs), and also
their complexity in dynamic graphs is of great interest (e.g. [76, 117, 99, 90]). De-
spite all this, perhaps the first question one might ask remains poorly understood:

Question 3: What is the best stretch 𝑓 (𝑘) we can achieve
with preprocessing time 𝑂(𝑚𝑛1/𝑘) and

almost-constant query time 𝑛𝑜(1)?

The seminal Thorup-Zwick oracle [197] achieves stretch 2𝑘 − 1 after pre-
processing a graph in 𝑂(𝑘𝑚𝑛1/𝑘) time (it also achieves 𝑂(𝑘) query time and
uses 𝑂(𝑛1+1/𝑘) space). Better trade-offs exist in the small-𝑘 regime of stretch be-
low 3 [170, 171, 34, 192, 138, 13, 77]. In dense enough graphs, the results are
even better [36, 33, 35, 206]; in particular if 𝑚 = Ω(𝑛1+𝑐/

√
𝑘) Wulff-Nilsen [206]

obtained linear𝑂(𝑚) preprocessing time. However, in the setting of sparse graphs
and large 𝑘 (where the running time is close to linear), the Thorup-Zwick bound
remains the state of the art.

Most of the existing lower bound techniques are incapable of answering the
above question. Incompressibility arguments [50, 158, 197], typically based on
Erdős’ girth conjecture, can show the optimality of the 𝑛1+1/𝑘 space bound of Tho-
rup and Zwick, but cannot be used to prove any lower bound higher than 𝑚. In
the cell probe model, Sommer, Verbin, and Yu [193] show that 𝑚1+1/𝑘 space (and
therefore time) is required for stretch 𝑓 (𝑘) = 𝑂(𝑘/𝑡) if the query time is 𝑡; this
lower bound is meaningless when the query time is super-constant and is far from
the Thorup-Zwick upper bound even when 𝑡 is a small. Finally, under a conjecture
about the space complexity of Set Intersection, Pătraşcu, Roditty, and Thorup [170,
171] show Ω(𝑚𝑛𝜖) lower bounds on the space complexity, but their techniques
only address stretch 3−𝛿; alas, they cannot prove that the error must grow above 3
in the close-to-linear time regime.

Recently, Abboud, Bringmann, Khoury, and Zamir [4] introduced the short cy-
cle removal technique for hardness of approximation in fine-grained complexity

26

and applied it to prove that the stretch must be 𝑓 (𝑘) > 𝑘/6.3776 ± 𝑂(1), assum-
ing the 3-SUM or APSP conjectures. Thus, 𝑓 (𝑘) must grow with 𝑘 and it is a linear
function. However, there is still a huge gap in our understanding of this basic ques-
tion; e.g. the optimal stretch for 𝑂(𝑚𝑛0.1) preprocessing time could be anything
between 21 and 3. Whether the short cycle removal technique could achieve tight
bounds was left as the main open question [4].

1.4.1 Optimal Short Cycle Removal

Our contribution in [2] is that we take the short cycle removal technique to its limit
and prove much higher and, in some cases, tight lower bounds. Let us begin by
introducing this technique.

Triangle finding problems are a common starting point for fine-grained hard-
ness results. The following all-edge version is particularly interesting, since it
is known to require 𝑛2−𝑜(1) time in Θ(𝑛1/2)-regular graphs assuming either the
3-SUM conjecture [172, 143] or the APSP conjecture [204].

Definition 1.6 (All-Edges Triangle). Given a tripartite graph𝐺 = (𝑉, 𝐸), 𝑉 = 𝑋∪𝑌∪𝑍
determine which edges in 𝐸 ∩ (𝑌 × 𝑍) are in at least one triangle.

Let us recall the popular 3-SUM conjecture that implies the hardness of All-
Edges Triangle.

Conjecture 1.7 (3-SUM). For any 𝜖 > 0, no 𝑂(𝑛2−𝜖)-time algorithm can determine
whether a given set 𝐴 of 𝑛 integers contains 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 + 𝑏 + 𝑐 = 0.

From All-Edges Triangle to Approximate Distance Oracles. It is easy to reduce
from All-Edges Triangle to distance oracles. Construct a distance oracle for a new
graph 𝐺′ that is obtained from 𝐺 by deleting all edges in 𝑌 × 𝑍. To determine if an
edge (𝑦, 𝑧) ∈ 𝐸(𝐺) ∩ (𝑌 × 𝑍) is in a triangle, we query the oracle for the distance
between 𝑦 and 𝑧 in 𝐺′: It must be exactly 2 if (𝑦, 𝑧) is in a triangle in 𝐺, and it is at
least 3 otherwise.

To prove hardness for approximate distance oracles we would want the dis-
tance in 𝐺′ to be much larger than 3 if (𝑦, 𝑧) was not in a triangle in 𝐺. Now, the
key observation is that a path of length 𝑘−1 in𝐺′ implies that (𝑦, 𝑧)was in a 𝑘-cycle
in 𝐺. In other words, if the edge (𝑦, 𝑧) is not in a 𝑘-cycle in 𝐺 then a 𝑘

2 -approxima-
tion to the distance suffices for determining if (𝑦, 𝑧) participates in a triangle.

Short Cycle Removal. The basic idea of the short cycle removal technique is to re-
duce the number of short cycles in a graph without eliminating its triangles. The
goal is that the number of pairs (𝑦, 𝑧) that are in short cycles but not in trian-
gles will be small, since such pairs incur a false positive in the above reduction.
The main tool towards this is to show that in subquadratic time the number of 𝑘-
cycles can be reduced from the worst case𝑂(𝑛𝑘/2+1/2) to only𝑂(𝑛𝑘/2+𝛾) for 𝛾 < 1/2
which is closer to the random case (where 𝛾 = 0). The quality of the lower bounds
obtained by this technique depends directly on the value of 𝛾 for which such a
statement can be proved.

In [4], the authors use the following structure versus randomness argument:
If the graph has many 𝑘-cycles (more than the random case) then it must have a
structure in the form of a dense piece (a subgraph with disproportionately many
edges). They use fast matrix multiplication to check for triangles that use the dense
pieces and then remove them from the graph, reducing its number of 𝑘-cycles
significantly and making it more random.

Theorem (Short Cycle Removal [4]). For any constant 𝜖 > 0, there is no 𝑂(𝑛2−𝜖)-
time algorithm for All-Edge Triangles in a Θ(𝑛1/2)-regular 𝑛-vertex graphs which
contains at most 𝑂(𝑛𝑘/2+𝛾) 𝑘-cycles for all 𝑘 ≥ 3 and for 𝛾 = 0.345 + 𝑜(1), unless the
3-SUM and APSP conjectures fail.

27

14 This is because the additive
error is insignificant in the
sparse regime where we can
subdivide edges.

13 We believe that this part is
of independent interest. See
Theorem 5.4 in Chapter 5.

12 In fact, we design a more
transparent such reduction
that could be of independent
interest.

The value of 𝛾 that [4] achieve depends on the fast matrix multiplication expo-
nent 𝜔 < 2.37188 [14, 91], and even if 𝜔 = 2 they only get 𝛾 = 1/4; going beyond
this seems difficult. The authors suggest an approach for getting 𝛾 → 0 but there
are three major barriers. First, one needs to prove an unproven combinatorial
conjecture about the relationship between the number of cycles and the existence
of dense subgraphs. Second, one has to turn the proof into an efficient algorithm
for finding the dense pieces. And third, it is conceptually impossible to remove the
dense pieces without using fast matrix multiplication, which means that one must
first prove that 𝜔→ 2 before getting 𝛾 → 0.

Optimal Short Cycle Removal. In our paper [2] we take a different approach: We
look at the reduction from 3-SUM to All-Edges Triangle and ask: What structure
in the 3-SUM instance causes the resulting graph to have too many 𝑘-cycles?12 The
answer turns out to be related to the additive energy of the 3-SUM instance, namely
to the number of quadruples 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ 𝐴 such that 𝑎1 +𝑎2 = 𝑎3 +𝑎4. Thus, our
goal changes from “short cycle removal” in graphs to “energy reduction” on a set
of numbers. The latter can be done much more effectively using machinery from
additive combinatorics (overviewed in depth in Section 5.1) such as the celebrated
Balog-Szemerédi-Gowers theorem [30, 114], and the aforementioned use of sparse
convolution.

Our main technical result is an optimal short cycle removal for All-Edges Tri-
angle that is obtained via an optimal energy reduction for 3-SUM. This can be seen
as an algorithm for 3-SUM: If the given instance is very structured, then we can
solve (parts of) it faster using additive combinatorics and sparse convolution,13

until the remaining instance looks random-like. Then we run the reduction to All-
Edges Triangle which produces a random-like graph without many cycles. Notably,
we achieve 𝛾 = 0 even without assuming that 𝜔 = 2.

Theorem 1.8 (Optimal Short Cycle Removal). For any constant 𝜖 > 0, there is no
𝑂(𝑛2−𝜖)-time algorithm for All-Edges Triangle in a Θ(𝑛1/2)-regular 𝑛-vertex graph
which contains at most 𝑂(𝑛𝑘/2) 𝑘-cycles for all 𝑘 ≥ 3, unless the 3-SUM conjecture
fails.

1.4.2 New Lower Bounds for Distance Oracles

Our main corollary is an improvement of the lower bound for distance oracles
with 𝑛𝑜(1) query time and close-to-linear 𝑂(𝑚𝑛1/𝑘) preprocessing time, from
stretch ≥ 𝑘/6.3772 to stretch ≥ 𝑘 ± 𝑂(1). This is only a factor 2 away from
the Thorup-Zwick upper bound. We find it astonishing that the strongest known
lower bound to our basic question about distance oracles involves tools from
additive combinatorics.

Theorem 1.9 (Hardness of Distance Oracles with Stretch 𝒌). For any integer con-
stant 𝑘 ≥ 2, there is no approximate distance oracle for sparse graphs with stretch 𝑘,
preprocessing time 𝑂(𝑚1+𝑝) and query time 𝑂(𝑚𝑞) with 𝑘𝑝 + (𝑘 + 1)𝑞 < 1, unless
the 3-SUM conjecture fails.

Our lower bound is proved for sparse graphs where 𝑚 = 𝑂(𝑛). Consequently,
it cannot be bypassed even by (𝛼, 𝛽)-distance oracles that have an additive error
of 𝛽 = 𝑛𝑜(1) in addition to a multiplicative stretch of 𝛼.14 As in [4], our lower bound
also holds for the offline problem where we are given the queries before prepro-
cessing. We also obtain a trade-off between the query and preprocessing time; e.g.
if the query time is 𝑂(𝑛1/𝑘) rather than 𝑛𝑜(1) then the stretch is 𝑘/2 ± 𝑂(1) rather
than 𝑘 ± 𝑂(1).

Tight Bounds? While being pleased by the dramatic improvement in the lower
bound, we are disappointed that we did not get a tight lower bound despite op-
timizing the short cycle removal technique to its limit. Is the short cycle removal
technique inherently insufficient for proving a tight lower bound?

28

The following three theorems indicate that our technique may well be the
“right” one. This calls for revisiting the 20-year-old upper bounds in the hope of
closing the gap by improving the stretch from 2𝑘 − 1 to 𝑘 ± 𝑂(1). There is ample
evidence that this may be around the corner. Better algorithms already exist in the
regimes of dense graphs or when the stretch is small (some are very recent [13,
77]). For large 𝑘, Roditty and Tov [182] recently improved the 2𝑘− 1 factor slightly
to 2𝑘 − 4 while keeping the same space and query time as Thorup-Zwick (but not
preprocessing time). Moreover, in the closely related setting of graph spanners
where there is a similar trade-off saying that 2𝑘 − 1 stretch can be achieved with
a subgraph on 𝑛1+1/𝑘 edges, it was shown by Parter [169] that the stretch can be
improved to 𝑘 for all pairs of nodes at distance > 1 (see also [93, 43]). Alas, beating
the Thorup-Zwick bound for general 𝑘 has been elusive; perhaps knowing that the
gap from the lower bound is only 2 (following this thesis) will motivate the com-
munity to find better algorithms. Such a result would not only be pleasing, but it
could also be useful in practice (see e.g. [178]).

The Small Stretch Regime. Recall that the smallest stretch attainable by the
Thorup-Zwick oracle is 3 (i.e., 𝑘 = 2), in which case their preprocessing time is
𝑂(𝑚
√
𝑛). Let us focus on the case of sparse graphs where 𝑚 = 𝑂(𝑛) and this time

bound becomes 𝑂(𝑛3/2). Subsequent work [34, 13, 77, 90] showed that interesting
results can also be achieved for smaller stretch factors (if we allow constant addi-
tive error). The best result in this regime is a recent result by Dory, Forster, Nazari
and de Vos [90] designing a distance oracle with stretch exactly 2, constant query
time and preprocessing time 𝑂(𝑚𝑛2/3).

Using our optimal cycle removal, we prove that the Thorup-Zwick oracle is
optimal in the following sense: If we want to improve the stretch to 3 − 𝜖 then
the running time must grow polynomially to 𝑚3/2+Ω (𝜖) . In addition, we prove the
optimality of Dory et al.’s algorithm [90] in the sense that𝑚5/3−𝑜(1) time is required
for stretch 2.

Theorem 1.10 (Hardness of Distance Oracles with Stretch 2 ≤ 𝜶 < 3). For any
2 ≤ 𝛼 < 3 and 𝜖 > 0, in sparse graphs there is no distance oracle with stretch 𝛼,
query time 𝑛𝑜(1) and preprocessing time 𝑂(𝑚1+ 2

1+𝛼 −𝜖), unless the 3-SUM conjecture
fails.

Recall that there are techniques besides short cycle removal that can prove
lower bounds for stretch up to 3. Indeed, the lower bounds of Pătraşcu, Roditty,
and Thorup [170, 171] are similar to ours for stretches 2 + 𝜖 and 3 − 𝜖, except that
they are concerned with space and not just preprocessing time. On the one hand,
this makes their lower bounds stronger. On the other hand, they need to rely on a
strong conjecture about the space versus query time trade-off of Set Intersection,
rather than the 3-SUM conjecture that is simply about the time complexity. While
Set Intersection is a common starting point for data structure lower bounds, the
particular variant they use is not standard and was not used in any other paper
to our knowledge. Basing the same results also on one of the most popular con-
jectures in fine-grained complexity is desirable. In any case, the more important
message of Theorem 1.10 is to show that our techniques can prove tight bounds.

Dynamic Graphs. Extending our basic question to the dynamic setting we seek
the optimal stretch for a distance oracle that achieves 𝑛𝑜(1) query time and𝑂(𝑛1/𝑘)
time for updates that add or remove an edge. In this case, we give a more efficient
reduction from All-Edges Triangle (inspired by the reduction of Abboud and Vas-
silevska Williams [9] to dynamic matching) and prove that the stretch must be
2𝑘 ± 𝑂(1).

Theorem 1.11 (Hardness of Dynamic Distance Oracles). For any integer con-
stant 𝑘 ≥ 2, there is no dynamic approximate distance oracle with stretch 2𝑘 − 1,
update time 𝑂(𝑚𝑢) and query time 𝑂(𝑚𝑞) with 𝑘𝑢 + (𝑘 + 1)𝑞 < 1, unless the 3-SUM
conjecture fails.

29

15 The 𝑂(𝑛2 + 𝑡) upper bound
is simple: Create an array of
size 𝑛2. For each node 𝑥 and
all pairs of neighbors 𝑢, 𝑣 ∈
𝑁 (𝑥) store 𝑥 in the (𝑢, 𝑣) en-
try of the array. If we access
an entry that already contains
nodes 𝑦1, . . . , 𝑦𝑘 we output the
4-cycles (𝑥, 𝑢, 𝑦𝑖 , 𝑣) for all 𝑖.
The time is 𝑛2 plus the num-
ber of 4-cycles because each
time we access an entry (ex-
cept for the first time) we out-
put at least one 4-cycle. The
𝑂(𝑚4/3 + 𝑡) algorithm is more
involved [130, 7].

This lower bound would be tight if the Thorup-Zwick bound extends to the
dynamic setting. This was indeed accomplished by Chechik [76] (see also [117,
90]) in the decremental setting where only edge deletions are allowed, but not yet
in the fully dynamic case (the best bounds appear in [99]).

1.4.3 A Tight Lower Bound for 4-Cycle Listing

Finding 4-cycles in a graph is one of the simplest non-trivial cases of the classical
Subgraph Isomorphism problem. The longstanding upper bound for testing 4-cycle
freeness is 𝑂(min(𝑛2, 𝑚4/3)) [16, 209]. It is conjectured that no 𝑂(𝑛2−𝜖) algorithm
exists; proving this under one of the more popular conjectures of fine-grained
complexity has been a well-known open question. In fact, the 4-cycle problem
is infamous for eluding even any super-linear lower bound via the standard re-
duction techniques; [4] highlight this problem as encapsulating the challenge in
proving hardness of approximation results for distance oracles.

In the listing version we are asked to output all 4-cycles in the graph. Such
problems are well-studied and are closely related to the enumeration of query an-
swers in databases. It is known that all cycles in a graph can be listed in linear
time 𝑂(𝑚 + 𝑡) where 𝑡 is the output size [47]. But for a fixed length 𝑘, the listing 𝑘-
cycles problem is not as easy. In a landmark result in fine-grained complexity, that
implied the aforementioned 3-SUM-hardness for All-Edge Triangle, Pătraşcu [172]
proved an essentially tight lower bound for triangle listing (see [143, 48]). The
first and only super-linear lower bound for 4-cycle listing, however, came only a
decade later via the short cycle removal technique [4]. We improve their lower
bound from (𝑚1.1927 + 𝑡)1−𝑜(1) to a completely tight lower bound matching the
𝑂(min(𝑛2, 𝑚4/3) + 𝑡) upper bound.15

Theorem 1.12 (Hardness of Listing 4-Cycles). For any 𝜖 > 0, there is no algorithm
listing all 4-cycles in time 𝑂(𝑛2−𝜖 + 𝑡) or in time 𝑂(𝑚4/3−𝜖 + 𝑡) (where 𝑡 is the number
of 4-cycles), unless the 3-SUM conjecture fails.

We prove this theorem as well as the previous hardness results for distance
oracles in Chapter 5.

1.4.4 Open Problems

The most important question which remains open is whether the gap between our
lower bound for stretch 𝑘 and the Thorup-Zwick upper bound for stretch 2𝑘 − 1
can be closed:

1 Is there a distance oracle with stretch 𝑘, preprocessing time 𝑂(𝑚𝑛1/𝑘) and
almost-constant query time 𝑛𝑜(1) , or can we rule out distance oracles with
stretch better than 2𝑘 − 1?

Besides that, our work inspires more questions on the nature of 3-SUM and related
problems:

2 Does our machinery for structured 3-SUM find more applications?
In spirit, our result proves that the 3-SUM problem is not quadratic-time hard
for additively structured instances. Instances not covered by this case are
Sidon sets and in particular random instances. Can this insight be leveraged?

3 Are there 3-SUM lower bounds for other subgraph isomorphism problems?
In particular, can we show matching lower bounds for listing (or even detect-
ing) 𝑘-cycles for 𝑘 > 4? The currently fastest algorithms for detecting 𝑘-cycles
in undirected graphs depend on whether 𝑘 is odd or even [209, 16]: For odd 𝑘
the problem behaves “triangle-like” and the best algorithm runs in time𝑂(𝑛𝜔).
For even 𝑘 the problem behaves “4-cycle-like” and can be solved in time𝑂(𝑛2)
(without using fast matrix multiplication). It seems plausible that our lower
bounds could extend to lower bounds against listing 𝑘-cycles for even 𝑘.

30

17 In analogy to standard inte-
ger convolution, the (min, +)-
convolution problem is to com-
pute, given two integer vectors
𝐴, 𝐵, the vector 𝐶 defined by

𝐶 [𝑘] = min
𝑖+ 𝑗=𝑘

𝐴[𝑖] + 𝐵[𝑗] .

See also Section 2.1.

16 The 1 in the first field indi-
cates a single machine model,
the empty second field indi-
cates there are no additional
constraints, and the third
field indicates that the goal is
to minimize

∑
𝑗 𝑝 𝑗𝑈 𝑗 where

𝑈 𝑗 ∈ {0, 1} indicates whether
a job is tardy.

1.5 Fast Scheduling via Partition-and-Convolve

We include yet another application of convolutions in algorithm design in this
thesis, based on [58]. As a proof of concept of the aforementioned partition-and-
convolve design paradigm, we design an algorithm for a seemingly unrelated
scheduling problem in this framework. (In this section we momentarily digress
from the design of output-sensitive and sublinear-time algorithms.)

The Scheduling Problem. Consider the problem of minimizing the total process-
ing times of tardy jobs on a single machine. In this problem we are given 𝑛 jobs,
where each job 𝑗 has a processing time 𝑝 𝑗 ∈ N and a due date 𝑑 𝑗 ∈ N. The goal is
to find a single-machine schedule (i.e., a permutation of the jobs) that minimizes
the processing time of all tardy jobs—that is, of all jobs not completely processed
before their due date. In the standard three field notation for scheduling problems
of Graham [115], this problem is denoted as the 1| |∑ 𝑝 𝑗𝑈 𝑗 problem.16

The 1| |∑ 𝑝 𝑗𝑈 𝑗 problem is arguable one of the simplest natural scheduling
problems, modeling a basic scheduling scenario. As it includes Subset Sum as a
special case (see below), the 1| |∑ 𝑝 𝑗𝑈 𝑗 problem is NP-hard. However, it is only
hard in the weak sense, meaning it admits pseudo-polynomial time algorithms.
Our focus is on developing fast pseudo-polynomial time algorithms for 1| |∑ 𝑝 𝑗𝑈 𝑗 ,
improving in several settings on the best previously known solution from the late
60s. Before we describe our results, we discuss the previously known state of the
art of the problem, and describe how our results fit into this line of research.

State of the Art: The Lawler-Moore Algorithm. 1| |∑ 𝑝 𝑗𝑈 𝑗 is a special case of
the famous 1| |∑𝑤 𝑗𝑈 𝑗 problem. Here, each job 𝑗 also has a weight 𝑤 𝑗 in addi-
tion to its processing time 𝑝 𝑗 and due date 𝑑 𝑗 , and the goal is to minimize the
total weight (as opposed to total processing times) of tardy jobs. This problem
has already been studied in the 60s, and even appeared in Karp’s fundamental
paper from 1972 [136]. The classical dynamic programming algorithm by Lawler
and Moore [149] solves the 1| |∑𝑤 𝑗𝑈 𝑗 problem (and hence also 1| |∑ 𝑝 𝑗𝑈 𝑗) in
time 𝑂(𝑃 · 𝑛), where 𝑃 =

∑
𝑗∈ 𝐽 𝑝 𝑗 denotes the total processing time of all jobs.

This is one of the earliest and most prominent examples of pseudo-polynomial
algorithms, and remains the fastest known algorithm even for the special case of
1| |∑ 𝑝 𝑗𝑈 𝑗 (prior to our work).

As we assume that all processing times are nonnegative integers and as we
can ignore jobs with processing time 0, we have 𝑛 ≤ 𝑃. The Lawler-Moore al-
gorithm therefore runs in time 𝑂(𝑃2). In fact, it makes perfect sense to analyze
the time complexity of a pseudo-polynomial time algorithm for either problems
only in terms of 𝑃, as 𝑃 directly corresponds to the total input length when inte-
gers are encoded in unary. Observe that while the case of 𝑛 = 𝑃 (all jobs have
unit processing times) essentially reduces to sorting, there are several non-trivial
cases where 𝑛 is smaller than 𝑃 yet still quite significant in the𝑂(𝑃 ·𝑛) time. In our
paper [58], we have investigated how the 𝑂(𝑃2)-time algorithm can be improved.

Improvements for 1| |
∑

𝒘 𝒋𝑼 𝒋? For 1| |∑𝑤 𝑗𝑈 𝑗 there is some evidence that the an-
swer to the analogous question should be negative. Karp [136] observed that
the special case of the 1| |∑𝑤 𝑗𝑈 𝑗 problem where all jobs have the same due
date 𝑑 (the 1|𝑑 𝑗 = 𝑑 |∑𝑤 𝑗𝑈 𝑗 problem) is essentially equivalent to the classical
0/1-Knapsack problem. In two independent papers, Cygan, Mucha, Węgrzycki and
Włodarczyk [86] and Künnemann, Paturi and Schneider [146] studied the (min, +)-
Convolution problem17, and conjectured that the (min, +)-convolution between
two vectors of length 𝑛 cannot be computed in 𝑂(𝑛2−𝜖) time, for any 𝜖 > 0. Un-
der this (min, +)-convolution conjecture, they obtained lower bounds for several
Knapsack related problems. In our terms, their result is that the 1|𝑑 𝑗 = 𝑑 |

∑
𝑤 𝑗𝑈 𝑗

problem cannot be solved in subquadratic time 𝑂(𝑃2−𝜖) for any 𝜖 > 0, unless

31

the (min, +)-convolution conjecture is false. In particular, 1| |∑𝑤 𝑗𝑈 𝑗 has no sub-
quadratic algorithm under this conjecture.

Improvements for 1| |
∑

𝒑 𝒋𝑼 𝒋? Analogous to the situation with 1| |∑𝑤 𝑗𝑈 𝑗 , the spe-
cial case of 1| |∑ 𝑝 𝑗𝑈 𝑗 where all jobs have the same due date 𝑑 (the 1|𝑑 𝑗 = 𝑑 |

∑
𝑝 𝑗𝑈 𝑗

problem) is equivalent to the classical Subset Sum problem. Recently, there has
been significant improvements for pseudo-polynomial-time algorithms for Subset
Sum resulting in algorithms with 𝑂(𝑡 + 𝑛) running times [52, 129], where 𝑛 is the
number of integers in the instance and 𝑡 is the target. In our language, this implies
that the 1|𝑑 𝑗 = 𝑑 |

∑
𝑝 𝑗𝑈 𝑗 problem can be solved in near-linear time 𝑂(𝑃).

In contrast, due to the equivalence of 1|𝑑 𝑗 = 𝑑 |∑ 𝑝 𝑗𝑈 𝑗 and Subset Sum, we
also know that this algorithm cannot be significantly improved unless the Strong
Exponential Time Hypothesis (SETH) fails. Specifically, combining a recent reduc-
tion from 𝑘-SAT to Subset Sum [3] with the equivalence of 1|𝑑 𝑗 = 𝑑 |

∑
𝑝 𝑗𝑈 𝑗 and

Subset Sum, yields that there is no𝑂(𝑃1−𝜖)-time algorithm for the 1|𝑑 𝑗 = 𝑑 |
∑
𝑝 𝑗𝑈 𝑗

problem for any 𝜖 > 0, unless SETH fails.

1.5.1 Our Contribution

These known results leave quite a big gap for the true time complexity of 1| |∑ 𝑝 𝑗𝑈 𝑗 ,
as it can potentially be anywhere between the quadratic-time 𝑂(𝑃2) upper bound
and the linear-time 𝑃1−𝑜(1) lower bound. In particular, the 1| |∑ 𝑝 𝑗𝑈 𝑗 and 1| |∑𝑤 𝑗𝑈 𝑗

problems have not been distinguished from an algorithmic perspective so far. Our
contribution is a new pseudo-polynomial time algorithms for the 1| |∑ 𝑝 𝑗𝑈 𝑗 prob-
lem improving on Lawler and Moore’s algorithm.

Theorem 1.13 (Faster Minimization of Tardy Processing Time). The 1| |∑ 𝑝 𝑗𝑈 𝑗

problem can be solved in time 𝑂(𝑃7/4).

Our approach is a prototypical application of the partition-and-convolve de-
sign paradigm: Starting from the dynamic programming algorithm by Lawler and
Moore, we observe that the DP table can be built more efficiently. Specifically, af-
ter partitioning the DP table in two halves and recursively filling the respective
entries, we can obtain the DP entries for the full problem by solving the following
convolution-style problem.

Definition 1.14 (Skewed Convolution). Let 𝐴, 𝐵, 𝑆 ∈ Z𝑛. The (max,min)-skewed
convolution of 𝐴, 𝐵, 𝑆 is defined as the vector 𝐶 ∈ Z2𝑛−1 with entries

𝐶 [𝑘] = max
𝑖, 𝑗∈[𝑛]
𝑖+ 𝑗=𝑘

min{𝐴[𝑖], 𝐵[𝑗] + 𝑆[𝑘]}.

One of our main technical contributions is a faster-than-brute-force algorithm
for computing (max,min)-skewed convolutions.

We give the proof of Theorem 1.13 in Chapter 6. In the paper version [58] we
also give pseudo-polynomial algorithms in terms of different parameters such as
the sum of due dates 𝐷 and the number of distinct due dates 𝐷#.

1.5.2 Open Problems

Our work on the 1| |∑ 𝑝 𝑗𝑈 𝑗 problem leaves open some interesting questions. We
remark that some of these questions have already been tackled by follow-up
work [137, 120, 188].

1 Can the 1| |∑𝑤 𝑗𝑈 𝑗 be solved even faster?
In the meantime, Klein, Polak and Rohwedder [137] and Schieber and Sitara-
man [188] have improved the running time to𝑂(𝑃7/5). The first improvement
is a faster algorithm for (max,min)-skewed convolution [137] and the second

32

improvement is a more efficient reduction to that problem [188]. It is interest-
ing to see whether the time complexity can be improved further, possibly even
to near-linear time. Improving the time complexity of (max,min)-skewed con-
volution beyond 𝑂(𝑃3/2) seems difficult as this would directly imply an im-
provement to the well-studied (max,min)-convolution problem [144].

Conversely, one could try to obtain fine-grained lower bounds for the prob-
lem, possibly in the same vein as [3].

2 Can the algorithm be extended to multiple machines?
That is, can we obtain similar improvements for the 𝑃𝑚 | |

∑
𝑝 𝑗𝑈 𝑗 problem

which allows to schedule the jobs on 𝑚 parallel machines? The baseline run-
ning time for this problem is 𝑂(𝑃𝑚 · 𝑛) = 𝑂(𝑃𝑚+1) (by an easy extension of
Lawler and Moore’s algorithm), but it is entirely possible that this problem
can be solved in time 𝑂(𝑃𝑚), or even faster.

3 Can the techniques in this paper be applied to any other interesting scheduling
problems?
A good place to start might be to look at other problems which directly gen-
eralize Subset Sum. Hermelin, Molter and Shabtay [120], apply similar ideas
to the 1| |∑𝑤 𝑗𝑈 𝑗 problem for a variety of parameters (other than 𝑃, as this
problem is quadratic-time hard for the parameter 𝑃).

1.6 Sublinear Algorithms for Approximate Edit Distance

We finally turn to our second pillar: Property Testing. Specifically, we include
our result on approximating the edit distance of two strings in truly sublinear
time [60].

Edit Distance. The edit distance (also called Levenshtein distance [151]) between
two strings 𝑋 and 𝑌 is the minimum number of character insertions, deletions
and substitutions required to transform 𝑋 into 𝑌 . It constitutes a fundamental
string similarity measure with applications across several disciplines, including
computational biology, text processing and information retrieval.

Computational problems involving the edit distance have been studied ex-
tensively. A textbook dynamic programming algorithm computes the edit dis-
tance of two strings of length 𝑛 in time 𝑂(𝑛2) [199, 200]. It is known that beating
this quadratic time by a polynomial improvement would violate the Strong Ex-
ponential Time Hypothesis [28, 1, 63, 6], one of the cornerstones of fine-grained
complexity theory. For faster algorithms, we therefore have to resort to approxi-
mating the edit distance. A long line of research (starting even before the hard-
ness result emerged) lead to successively improved approximation algorithms:
The first result established that in linear time the edit distance can be 𝑂(

√
𝑛)-ap-

proximated [147]. The approximation ratio was improved to 𝑂(𝑛3/7) in [31] and
to 𝑛1/3+𝑜(1) in [38]. Making use of the Ostrovsky-Rabani technique for embedding
edit distance into the ℓ1-metric [167], Andoni and Onak [24] gave a 2𝑂(

√
log 𝑛) -ap-

proximation algorithm which runs in time 𝑛1+𝑜(1) . Later, Andoni, Krauthgamer
and Onak achieved an algorithm in time𝑂(𝑛1+𝜖) computing a (log 𝑛)𝑂(1/𝜖) -approx-
imation [20]. A breakthrough result by Chakraborty, Das, Goldenberg, Kouckỳ and
Saks showed that it is even possible to compute a constant-factor approximation
in strongly subquadratic time [68]. Subsequent work [51, 145] improved the run-
ning time to close-to-linear for the regime of near-linear edit distance. Very re-
cently, Andoni and Nosatzki [22] extended this to the general case, showing that
in time 𝑂(𝑛1+𝜖) one can compute a 𝑓 (1/𝜖)-approximation for some function 𝑓 de-
pending solely on 𝜖.

Sublinear Algorithms. As outlined before, while for exact algorithms linear-time
algorithms are the gold standard, for approximation algorithms it is not clear

33

18 For the open problems
raised in the conference talk
on [111] see

https: // youtu. be/
WFxk3JAOC84? t= 1104 .

Similarly, for the open prob-
lems raised in the conference
talk on [141] see

https: // youtu. be/
3jfHHEFNRU4? t= 1159 .

whether a𝑂(𝑛1+𝜖) running time is desired, as in fact one might hope for sublinear-
time algorithms. Indeed, another line of research explored the edit distance in
the sublinear setting, where one has random access to the strings 𝑋 and 𝑌 , and
the goal is to compute the edit distance between 𝑋 and 𝑌 without even reading
the whole input. Formally, in the (𝑘, 𝐾)-gap edit distance problem the task is
to distinguish whether the edit distance is at most 𝑘 or at least 𝐾 . The running
time is analyzed in terms of the string length 𝑛 and the gap parameters 𝑘 and
𝐾 . Initiating the study of this problem, Batu, Ergün, Kilian, Magen, Raskhod-
nikova, Rubinfeld and Sami [37] showed how to solve the (𝑘,Ω(𝑛))-gap problem
in time 𝑂(𝑘2/𝑛 +

√
𝑘), assuming 𝑘 ≤ 𝑛1−Ω (1) . The aforementioned algorithm by

Andoni and Onak [24] can be viewed in the sublinear setting and solves the (𝑘, 𝐾)-
gap problem in time 𝑛2+𝑜(1) ·𝑘/𝐾2, assuming 𝐾/𝑘 = 𝑛Ω (1) . In a major contribution,
Goldenberg, Krauthgamer and Saha [111] showed how to solve the (𝑘, 𝐾)-gap
problem in time 𝑂(𝑛𝑘/𝐾 + 𝑘3), assuming 𝐾/𝑘 = 1 + Ω(1). Subsequently, Koci-
umaka and Saha [141] improved the running time to 𝑂(𝑛𝑘/𝐾 + 𝑘2 +

√
𝑛𝑘5/𝐾).

They focus their presentation on the (𝑘, 𝑘2)-gap problem, where they achieve
time 𝑂(𝑛/𝑘 + 𝑘2).

How far from optimal are these algorithms? It is well-known that (𝑘, 𝐾)-gap
edit distance requires time Ω(𝑛/𝐾) (this follows from the same bound for Ham-
ming distance). Batu et al. [37] additionally proved that (𝑘,Ω(𝑛))-gap edit distance
requires time Ω(

√
𝑘). Together, (𝑘, 𝐾)-gap edit distance requires time Ω(𝑛/𝐾+

√
𝑘),

but this leaves a big gap to the known algorithms. In particular, in the low distance
regime (where, say, 𝐾 ≤ 𝑛0.01) the lower bound is Ω(𝑛/𝐾) and the upper bound
is 𝑂(𝑛𝑘/𝐾). Closing this gap has been raised as an open problem by the authors
of the previous sublinear-time algorithms.18 In particular, a natural question is to
determine the smallest possible gap which can be distinguished within the time
budget of the previous algorithms:

Question 4: What is the best approximation factor of edit distance
in sublinear time 𝑂(𝑛/𝑘 + poly(𝑘))?

In particular, is the currently-best (𝑘, 𝑘2)-gap barrier penetrable or can one
prove a lower bound? This quadratic gap appears to be the limit of the techniques
of previous work [111, 141].

1.6.1 Our Contribution

We make significant progress on Question 4 by proving that the gap can be reduced
to subpolynomial 𝑘𝑜(1) . Specifically, we show that (𝑘, 𝑘1+𝑜(1))-gap edit distance can
be solved in time 𝑂(𝑛/𝑘 + 𝑘4+𝑜(1)). In the low distance regime (𝑘 ≤ 𝑛0.19) this runs
in the same time as the previous algorithms for the (𝑘, 𝑘2)-gap problem. Formally,
we obtain the following results.

Theorem 1.15 (Subpolynomial Gap Edit Distance). The (𝑘, 𝑘 · 2𝑂(
√

log 𝑘))-gap edit
distance problem can be solved in time 𝑂(𝑛/𝑘 + 𝑘4+𝑜(1)).

Theorem 1.16 (Polylogarithmic Gap Edit Distance). The (𝑘, 𝑘 · (log 𝑘)𝑂(1/𝜖))-gap
edit distance problem can be solved in time 𝑂(𝑛/𝑘1−𝜖 + 𝑘4+𝑜(1)), for any 𝜖 ∈ (0, 1).

We provide the proofs of Theorems 1.15 and 1.16 in Chapter 7.
Note that one can solve the (𝑘, 𝑘2)-gap edit distance problem by running our

algorithm from Theorem 1.15 for 𝑘 := 𝑘2−𝑜(1) . This runs in time 𝑂(𝑛/𝑘2−𝑜(1) +
poly(𝑘)), which improves the previously best running time of 𝑂(𝑛/𝑘 + poly(𝑘))
for the (𝑘, 𝑘2)-gap edit distance problem [111, 141] by a factor 𝑘1−𝑜(1) in the low
distance regime.

34

https://youtu.be/WFxk3JAOC84?t=1104
https://youtu.be/WFxk3JAOC84?t=1104
https://youtu.be/3jfHHEFNRU4?t=1159
https://youtu.be/3jfHHEFNRU4?t=1159

19 We remark that this sim-
ilarity does not yet follow
from previous sublinear algo-
rithms, since they solve the
(𝑘, 𝑘2)-gap edit distance in
time 𝑂(𝑛/𝑘 + poly(𝑘)) [111,
141], while (𝑘, 𝑘2)-gap Ham-
ming distance can be solved
much faster, namely in time
𝑂(𝑛/𝑘2).

Edit Distance versus Hamming Distance. It is interesting to compare our result
against the best-possible sublinear-time algorithms for approximating the Ham-
ming distance. For Hamming distance, it is well known that the (𝑘, 𝐾)-gap problem
has complexity Θ(𝑛/𝐾), with matching upper and (unconditional) lower bounds,
assuming that 𝐾/𝑘 = 1 + Ω(1). In the large distance regime, Hamming distance
and edit distance have been separated by the Ω(

√
𝑘) lower bound for (𝑘,Ω(𝑛))-

gap edit distance [37], because (𝑘,Ω(𝑛))-gap Hamming distance can be solved in
time 𝑂(1).

Our results show a surprising similarity of Hamming distance and edit dis-
tance: In the low distance regime (𝑘 ≤ 𝑛0.19) the complexity of the (𝑘, 𝑘1+𝑜(1))-gap
problem is 𝑛/𝑘1±𝑜(1) for both Hamming distance and edit distance. Thus, up to
𝑘𝑜(1) -factors in the gap and running time, their complexity is the same in the low
distance regime.19

Our Techniques. To achieve our result, we depart from the framework of sub-
sampling the Landau-Vishkin algorithm [148, 147], which has been developed by
the state-of-the-art algorithms for sublinear edit distance [111, 141]. Instead, we
pick up the thread from the almost-linear-time algorithm by Andoni, Krauthgamer
and Onak [20]: First, we give (what we believe to be) a more accessible view on
that algorithm. Subsequently, we design a sublinear version of it by pruning cer-
tain branches in its recursion tree and thereby avoid spending time on “cheap”
subproblems. To this end, we use a variety of structural insights on the (local and
global) patterns that can emerge during the algorithm and design property testers
to effectively detect these patterns.

Comparison to Goldenberg, Kociumaka, Krauthgamer and Saha [110]. Inde-
pendently from our result, Goldenberg et al. [110] studied the complexity of the
(𝑘, 𝑘2)-gap edit distance problem in terms of non-adaptive algorithms. Their main
result is an 𝑂(𝑛/𝑘3/2)-time algorithm, and a matching query complexity lower
bound. We remark that our results are incomparable: For the (𝑘, 𝑘2)-gap prob-
lem they obtain a non-adaptive algorithm (which is faster for large 𝑘), whereas
we present an adaptive algorithm (which is faster for small 𝑘). Moreover, we can
improve the gap to (𝑘, 𝑘1+𝑜(1)), while still running in sublinear time𝑂(𝑛/𝑘)when 𝑘
is small. Our techniques also differ substantially: Goldenberg et al. build on the
work of Andoni and Onak [24] and Batu et al. [37], whereas our algorithm borrows
from [20].

1.6.2 Open Problems

Our work is the first step towards proving that decent approximations of the edit
distance can be computed in sublinear time. We leave open many questions.

1 Can we obtain almost-optimal algorithms in the high distance regime?
Specifically, can we reduce the poly(𝑘) term in the running time to match the
Ω(𝑛/𝑘 +

√
𝑛) lower bound?

2 Can we reduce the gap to logarithmic or even constant?
In the almost-linear-time setting, Andoni and Nosatzki [22] have established
a constant-factor approximation. It seems very hard to speed up their algo-
rithm to sublinear time. Our take is that this complicated algorithm first has
to undergo serious simplifications before being amenable to improvements.

3 Can we at least obtain improved upper bounds in terms of the query complexity?
While finding algorithms with sublinear running time and constant gap seem
out of reach, it might be easier to find a constant-factor approximation with
unbounded running time, but with a truly sublinear number of queries.

35

1.7 Preliminaries

Machine Model. Throughout this thesis, we work in the word RAM model. This
model is inspired by modern real-world computers and can be informally de-
scribed as follows: The memory consists of words storing bit-strings of fixed
length 𝑤. Given the address of a word (stored itself in a word), we can access
the addressed memory cell in constant time. In addition, basic logical operations
(such as bit-wise “and”, “or” and “not”) and arithmetic operations (such as addi-
tion, subtraction, multiplication and division with remainders) on single words
run in constant time. The word size is typically 𝑤 = Θ(log 𝑛), where 𝑛 is the input
size of the respective problem; in this way the words are large enough to address
the whole input.

For problems like sparse convolution, where the input consists of numbers up
to Δ, we typically assume that the word size is Θ(log 𝑛 + log Δ) so that each input
number can be stored in a single word.

Randomized Algorithms. Following standard terminology, we distinguish be-
tween two types of randomized algorithms: A Monte Carlo algorithm errs with
some probability (returning no output or a wrong output) but has a worst-case
time bound. A Las Vegas algorithm is always correct (with probability 1), but only
has an expected running time bound. Whenever unspecified, by algorithm we
mean a Monte Carlo algorithm with constant failure probability.

Basic Notation. We denote the nonnegative integers by N, the integers by Z, the
rationals by Q, the reals by R, and the complex numbers by C, respectively. For a
prime power 𝑞, we let F𝑞 denote the finite field of order 𝑞.

We write [𝑛] = {0, . . . , 𝑛−1} and define the integer intervals [𝑎 . . 𝑏] = {𝑎, . . . , 𝑏}
and similarly for the (half-)open intervals [𝑎 . . 𝑏), (𝑎 . . 𝑏], (𝑎 . . 𝑏). For intervals of
real numbers, we set [𝑎, 𝑏] = {𝑥 ∈ R : 𝑎 ≤ 𝑥 ≤ 𝑏} and similarly define the
(half-)open intervals [𝑎, 𝑏), (𝑎, 𝑏], (𝑎, 𝑏).

In the running times, we often write poly(𝑛) = 𝑛𝑂(1) , polylog(𝑛) = (log 𝑛)𝑂(1)
and polyloglog(𝑛) = (log log 𝑛)𝑂(1) . Moreover, we write 𝑂(𝑇) = 𝑇 polylog(𝑇).

Finally, we sometimes use the Iverson notation [𝐸] ∈ {0, 1} to denote the truth
value of the expression 𝐸.

Sumsets. Let 𝐺 be an additive group, and consider sets 𝐴, 𝐵 ⊆ 𝐺. We define the
sumset notation 𝐴 + 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} and 𝐴 − 𝐵 = {𝑎 − 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.
We will occasionally apply more general functions 𝑓 : 𝐺 → 𝐺 to sets in the natural
way, 𝑓 (𝐴) = { 𝑓 (𝑎) : 𝑎 ∈ 𝐴}.

Vectors. We typically denote vectors by capital letters 𝐴, 𝐵, 𝐶. Throughout this
thesis, we will index vectors starting at zero (and similarly for all related objects
such as matrices and strings). For a length-𝑛 vector 𝐴 and an index 𝑖 ∈ [𝑛] we
write 𝐴[𝑖] to access the 𝑖-th entry of 𝐴. The support supp(𝐴) of 𝐴 is the set of
nonzero coordinates, supp(𝐴) = {𝑥 ∈ [𝑛] : 𝐴[𝑥] ≠ 0}. We write ∥𝐴∥0 = |supp(𝐴) |
and say that 𝐴 is 𝑠-sparse if ∥𝐴∥0 ≤ 𝑠. For a vector 𝐴with real (or complex) entries,
we additionally define the ℓ𝑝-norms ∥𝐴∥𝑝 = (

∑𝑛−1
𝑖=0 |𝐴[𝑖] |𝑝)1/𝑝 for all 𝑝 ∈ [1,∞) and

the ℓ∞-norm ∥𝐴∥∞ = max𝑛−1
𝑖=0 |𝐴[𝑖] |. Finally, for a function 𝑓 : [𝑛] → [𝑚] and a

length-𝑛 vector 𝐴, we define the vector 𝑓 (𝐴) via

𝑓 (𝐴) [𝑥] =
∑︁
𝑖∈[𝑛]
𝑓 (𝑖)=𝑥

𝐴[𝑖] .

We formally define the convolution 𝐴★𝐵 of two vectors at the beginning of Chap-
ter 2.

36

20 Interpret the vectors 𝐴, 𝐵 as
vectors of length 2𝑛. Then
the cyclic convolution 𝐴 ★𝑛 𝐵
equals the non-cyclic convolu-
tion 𝐴★𝐵 (up to trailing zeros).

2 Sparse Convolution Toolkit

In this chapter we introduce the known techniques for computing sparse convo-
lutions. This chapter is not based on a publication, but rather summarizes the di-
verse approaches and the rich toolkit that I have learned (and helped to develop)
while working on sparse convolutions. As a bonus we design simple algorithms
for sparse integer convolution and for sparse nonnegative convolution over finite-
field vector spaces, that have not appeared in the literature before. This chapter
also serves as preliminaries to the upcoming Chapters 3 and 4 both of which spe-
cialize on improved sparse convolution algorithms.

Organization. We start with a recap about the dense convolution problem in Sec-
tion 2.1. In the following three Sections 2.2 to 2.4 we describe three approaches to
computing sparse convolutions and highlight their respective benefits and draw-
backs. In Sections 2.5 to 2.7 we equip ourselves with some more tools that will be
handy later on.

2.1 Dense Convolution

The convolution of two integer vectors 𝐴, 𝐵 (of length 𝑛) is defined as the integer
vector 𝐴★ 𝐵 (of length 2𝑛 − 1) with entries

(𝐴★ 𝐵) [𝑘] =
∑︁

𝑖, 𝑗∈[𝑛]
𝑖+ 𝑗=𝑘

𝐴[𝑖] · 𝐵[𝑗] .

Many researchers prefer to equivalently view the convolution of two vectors of
length 𝑛 as the multiplication of two (univariate) polynomials of degree 𝑛 − 1. In
this thesis we will stick to vectors, mainly for two reasons: First, while the polyno-
mial view point often plays nicer with algebraic operations, it is at times awkward
to use combinatorial tricks (such as hashing). Second, we will soon introduce gen-
eralizations of the standard integer convolution which no longer admit equivalent
views in terms of polynomials.

We also define the cyclic convolution

(𝐴★𝑛 𝐵) [𝑘] =
∑︁

𝑖, 𝑗∈[𝑛]
𝑖+ 𝑗=𝑘 (mod 𝑛)

𝐴[𝑖] · 𝐵[𝑗] .

It is easy to see that computing cyclic and computing non-cyclic convolutions have
the same asymptotic running time,20 but in many situations it is more convenient
to compute cyclic convolutions. Both can be computed by the Fast Fourier Trans-
form (FFT) in near-linear time:

Theorem 2.1 (Fast Fourier Transform, [85]). Given integer vectors 𝐴, 𝐵 of length 𝑛,
we can compute 𝐴★ 𝐵 in time 𝑂(𝑛 log 𝑛).

Boolean and Nonnegative Convolution. Our study particularly focuses on two
special cases of integer convolution. The Boolean convolution of two Boolean vec-
tors 𝐴, 𝐵 ∈ {0, 1}𝑛 is the Boolean vector 𝐴 ⃝★ 𝐵 ∈ {0, 1}2𝑛−1 defined by

(𝐴 ⃝★ 𝐵) [𝑘] =
∨

𝑖, 𝑗∈[𝑛]
𝑖+ 𝑗=𝑘

𝐴[𝑖] ∧ 𝐵[𝑗] .

Equivalently, note that 𝐴⃝★𝐵 is the vector obtained from 𝐴★𝐵 by replacing positive
entries by 1. In particular, note that computing Boolean convolutions is a special

37

23 Recall that a semiring is a
ring that does not necessarily
have additive inverses.

22 An arithmetic circuit is a
directed acyclic graph where
each source node is labeled
with an input, each sink node
is labeled with an output and
each internal node is labeled
with an operation + or ×. The
outputs are computed by prop-
agating the inputs through the
graph while applying the re-
spective operations. See [102]
for a formal definition.

21 In more algebraic terms,
the set 𝑅𝐺 equipped with
coordinate-wise addition and
convolution as multiplication
is often referred to as the
group algebra of𝐺 over 𝑅 and
often denoted by 𝑅[𝐺].

case of computing integer convolutions. Recall that the Boolean convolution prob-
lem is equivalent to the computation of sumsets 𝑋 + 𝑌 = {𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 } for two
given sets 𝑋,𝑌 ⊆ [𝑛]. An interesting result due to Indyk [124] is how to leverage
bit tricks to obtain a different kind of algorithm: In linear time we can compute an
approximation of 𝐴★𝐵 that is correct on a constant fraction of entries. Specifically:

Theorem 2.2 (Approximate Sumsets, [124]). There exists a randomized algorithm
which, given two sets 𝑋,𝑌 ⊆ [𝑛] computes in time 𝑂(𝑛) a set 𝑍 ⊆ 𝑋 + 𝑌 , such that
for all 𝑧 ∈ 𝑋 + 𝑌 we have P(𝑥 ∈ 𝑍) ≥ 2

3 .

In the slightly more general nonnegative convolution problem we require the
vectors 𝐴, 𝐵 to have with nonnegative entries. We will simply say that an integer
vector 𝐴 is nonnegative whenever all of its entries are nonnegative. In the sumset
analogy, computing the nonnegative convolution of the indicator vectors results
not only in computing 𝑋 +𝑌 but also the multiplicities of the sums 𝑥+ 𝑦. In this the-
sis we focus algorithms for sparse nonnegative convolution, due to the numerous
algorithmic applications.

General Convolution. We will occasionally consider convolutions in a more gen-
eral context. Let (𝑅, ⊕, ⊗) be a ring and let (𝐺, +) be a group. Consider vec-
tors 𝐴, 𝐵 ∈ 𝑅𝐺 (that is, we view 𝐴 and 𝐵 as functions 𝐺 → 𝑅). Then we define the
convolution 𝐴★ 𝐵 ∈ 𝑅𝐺 via21

(𝐴★ 𝐵) [𝑘] =
⊕
𝑖, 𝑗∈𝐺
𝑖+ 𝑗=𝑘

𝐴[𝑖] ⊗ 𝐵[𝑗] .

This is indeed a generalization, as by taking 𝐺 = 𝐶𝑛 to be the cyclic group of size 𝑛
and by taking 𝑅 = Z to be the integer ring we exactly recover cyclic convolutions.
It is however not clear that an FFT algorithm exists for this more general prob-
lem. A long line of research [85, 46, 39, 81, 40, 41, 181, 198] starting with Cooley
and Tukeys seminal result [85] has lead to successively more and more general
(in terms of 𝐺) convolution algorithms culminating in the following two state-of-
the-art results. Both results are stated in terms of arithmetic circuits22 which is a
natural model of computation in this context. Here, 2 ≤ 𝜔 < 2.372 is the exponent
of matrix multiplication [14, 91].

Theorem 2.3 (Fast Fourier Transform for Abelian Groups, [41]). Let 𝐺 be a finite
Abelian group. There is an arithmetic circuit to compute the convolution of given
vectors 𝐴, 𝐵 ∈ C𝐺 in 𝑂(|𝐺 | log |𝐺 |) arithmetic operations.

Theorem 2.4 (Fast Fourier Transform for Arbitrary Groups, [198]). Let 𝐺 be an
arbitrary finite group. There is an arithmetic circuit to compute the convolution of
given vectors 𝐴, 𝐵 ∈ C𝐺 in |𝐺 |𝜔/2+𝑜(1) arithmetic operations.

To be applicable in our context, we need to turn these results into word RAM
algorithms. It is possible to compute general convolutions of integer vectors in the
word RAM model by simulating the arithmetic circuits from Theorems 2.3 and 2.4
(either using complex arithmetic with bounded precision or by substituting Cwith
an appropriate finite field). Here, however, the representation of the group𝐺 mat-
ters critically. For instance, each finite Abelian group can be represented as the
product of cyclic groups of prime power order, and given this representation the
arithmetic circuit from Theorem 2.3 leads to a word RAM algorithm running in
time 𝑂(|𝐺 | log |𝐺 |). For more complicated groups it is a priori not clear how to
turn Theorem 2.4 into an efficient algorithm.

Even More General Convolution. While throughout this thesis we mostly focus
on the case 𝑅 = Z, it is possible to define convolutions when 𝑅 is only a semiring23.
For nice rings 𝑅 it is often possible to compute convolutions in near-linear time in
the same vein as the previous two theorems. In contrast, computing convolutions

38

26 Given two 𝑛 × 𝑛 integer
matrices 𝐴, 𝐵, compute the
integer matrix 𝐶 defined by
𝐶 [𝑖, 𝑗] = min𝑘 𝐴[𝑖, 𝑘]+𝐵[𝑘, 𝑗].

25 The convolution over the
semiring (Z ∪ {−∞,∞},min,
max). At times this is called
the subtropical semiring.

24 The convolution over the
semiring (Z∪ {∞},min, +). At
times this is called the tropical
semiring.

over semirings leads to significant changes in the complexity. Note that we can
always compute 𝐴★𝐵 naively in time𝑂(𝑛2), and it is an interesting question from
fine-grained complexity for which semirings there are better algorithms.

For example, a popular hypothesis in fine-grained complexity states that com-
puting the (min, +)-convolution24 indeed requires quadratic time (up to lower-
order factors) [86, 146]:

Conjecture 2.5 ((min, +)-Convolution). For any 𝜖 > 0, there is no algorithm to
compute the (min, +)-convolution of two given length-𝑛 vectors in time 𝑂(𝑛2−𝜖).

In fact, in the course of the last decade the fine-grained study of generalized
convolution problems has lead to a whole landscape of complexities from near-
linear to almost-quadratic time [86, 146, 153, 58, 137]. One interesting intermedi-
ate problem with conjectured running time 𝑛3/2±𝑜(1) is (min,max)-convolution25.

We remark that the landscape of semiring-convolution problems is mirrored
by matrix products over semirings. For example, the matrix analogue of (min, +)-
convolution is the (min, +)-product problem26, which is fine-grained equivalent
to the famous All-Pairs Shortest Paths problem in graphs [95, 203]. Correspond-
ing convolution and matrix problems often behave very similarly in terms of
their algorithmic and lower bound techniques, and sometimes there are even
fine-grained reductions from semiring-convolution problems to their respective
matrix problems.

Sparse Convolution. From now on we focus on the sparse convolution problem,
where the goal is to design algorithms sensitive to the input plus output size

𝑡 = ∥𝐴∥0 + ∥𝐵∥0 + ∥𝐴★ 𝐵∥0.

In the following three Sections 2.2 to 2.4 we describe three approaches to comput-
ing sparse convolutions and highlight their respective benefits and drawbacks. In
the following Sections 2.5 to 2.7 we establish more tools which we need in the later
Chapters 3 and 4.

2.2 Sparse Convolution via Additive Hashing

The simplest approach to sparse convolutions is via hashing. Specifically, via hash-
ing with hash functions ℎ : [𝑛] → [𝑚] satisfying the additiveness (or linearity)
property that ℎ(𝑥) + ℎ(𝑦) = ℎ(𝑥 + 𝑦) (mod𝑚). We start with a brief exposition in
Section 2.2.1 about known additive hash functions all which will later play impor-
tant roles. Later, in Section 2.2.2 we design a simple algorithm for sparse integer
convolution based on one of these hash functions.

2.2.1 Collection of Additive Hash Families

In this section, we introduce four families of hash functions each satisfying an
additiveness(-like) property.

Family 1: Hashing Modulo a Random Prime. The most basic additive hash family
is the family of functions ℎ(𝑥) = 𝑥 mod 𝑝 where 𝑝 is a random prime. (In more
mathy terms, this is a projection to a random subgroup of Z.)

Lemma 2.6 (Random Prime Hashing). Let 𝑛 ≥ 𝑚 be arbitrary. The family of hash
functions ℎ(𝑥) = 𝑥 mod 𝑝 where 𝑝 ∈ [𝑚 . . 2𝑚] is a random prime satisfies the fol-
lowing three properties.

1 Efficiency: Sampling ℎ takes time polylog𝑚 and evaluating takes constant time.
2 𝑂(log 𝑛)-Universality: For distinct keys 𝑥, 𝑦 ∈ [𝑛]: P(ℎ(𝑥) = ℎ(𝑦)) ≤ 2 log 𝑛

𝑚 .
3 Additiveness: For all keys 𝑥, 𝑦 ∈ [𝑛]: ℎ(𝑥) + ℎ(𝑦) ≡ ℎ(𝑥 + 𝑦) (mod 𝑝).

39

Proof. The additiveness property is obvious, so focus on universality and fix two
distinct keys 𝑥, 𝑦 ∈ [𝑈]. It holds that ℎ(𝑥) = ℎ(𝑦) if and only if 𝑝 divides the
difference 𝑥 − 𝑦. Since |𝑥 − 𝑦 | ≤ 𝑛, 𝑥 − 𝑦 has at most log𝑚 (𝑛) distinct prime
factors in the range [𝑚 . . 2𝑚]. On the other hand, by a quantitative version of the
Prime Number Theorem [184, Corollary 3], there are at least 3𝑚

5 ln𝑚 primes in the
range [𝑚 . . 2𝑚] (for sufficiently large𝑚). Hence, the probability that 𝑝divides 𝑥− 𝑦
is at most 5 log𝑚 (𝑛) ln(𝑚)/(3𝑚) ≤ 2 log(𝑛)/𝑚.

The main selling point of this hash function is that it is truly additive and very
simple. Unfortunately, it is not perfectly uniform. The next families 2 and 3 will
perform better in this regard, but come with a weaker additiveness-like property.

Family 2: Linear Hashing. Linear hashing is one of the classic textbook hash func-
tions ℎ : [𝑛] → [𝑚] defined as follows:

ℎ(𝑥) = ((𝜎𝑥 + 𝜏)mod 𝑝)mod𝑚.

Here, 𝑝 ≥ 𝑛 is some fixed prime, 𝑚 ≤ 𝑝 is the fixed number of buckets and 𝜎 and 𝜏
are chosen uniformly and independently at random from [𝑝]. We say that ℎ is
a linear hash function with parameters 𝑝 and 𝑚. Linear hashing is particularly
powerful as this family is𝑂(1)-universal (even (1+ 𝑜(1))-universal, to be precise).

Lemma 2.7 (Linear Hashing). Let ℎ be a linear hash function with parameters 𝑝
and 𝑚 drawn uniformly at random. Then the following properties hold:

1 Efficiency: Sampling and evaluating ℎ takes constant time (assuming that 𝑝 is
fixed).

2 Almost-Additiveness: For all keys 𝑥, 𝑦 ∈ [𝑛] there is an offset 𝑜 ∈ {−𝑝, 0, 𝑝}
such that ℎ(𝑥) + ℎ(𝑦) = ℎ(0) + ℎ(𝑥 + 𝑦) + 𝑜 (mod 𝑚).

3 𝑂(1)-Universality: For distinct keys 𝑥, 𝑦 ∈ [𝑛]: P(ℎ(𝑥) = ℎ(𝑦)) ≤ 𝑂(1
𝑚).

4 Pairwise Independence: For distinct keys 𝑥, 𝑦 ∈ [𝑛] and buckets 𝑎, 𝑏 ∈ [𝑚]:
| P(ℎ(𝑥) = 𝑎 ∧ ℎ(𝑦) = 𝑏) − 1

𝑚2 | ≤ 3
𝑚𝑝 ≤

3
𝑚2 .

We include a proof for completeness.

Proof. Universality follows directly from pairwise independence, so we start
proving the pairwise independence property. We rewrite ℎ as ℎ(𝑥) = 𝑔 (𝑥)mod𝑚,
where 𝑔 (𝑥) = (𝜎𝑥 + 𝜏)mod 𝑝 for uniformly random 𝜎, 𝜏 ∈ [𝑝]. The first step is
to prove that P(𝑔 (𝑥) = 𝑎′ ∧ 𝑔 (𝑦) = 𝑏′) = 1/𝑝2 for distinct keys 𝑥, 𝑦 and arbitrary
buckets 𝑎′, 𝑏′ ∈ [𝑝]. Note that the event 𝑔 (𝑥) = 𝑎′ and 𝑔 (𝑦) = 𝑏′ can be rewritten
as 𝑔 (𝑥) = 𝑎′ and 𝑔 (𝑦) − 𝑔 (𝑥) = 𝑏′ − 𝑎′ (mod 𝑝) and the claim follows immediately
by observing that the random variables 𝑔 (𝑥) and 𝑔 (𝑦) − 𝑔 (𝑥) = 𝑔 (𝑦 − 𝑥) (mod 𝑝)
are independent.

We get back to ℎ. Clearly,

P(ℎ(𝑥) = 𝑎 ∧ ℎ(𝑦) = 𝑏) =
∑︁
𝑎′ ,𝑏′

𝑎=𝑎′mod𝑚
𝑏=𝑏′mod𝑚

P(𝑔 (𝑥) = 𝑎′ ∧ 𝑔 (𝑦) = 𝑏′) =
∑︁
𝑎′ ,𝑏′

𝑎=𝑎′mod𝑚
𝑏=𝑏′mod𝑚

1
𝑝2 ,

There are at least ⌊𝑝/𝑚⌋ and at most ⌈𝑝/𝑚⌉ such values 𝑎′ and 𝑏′, respectively, and
we conclude that the desired probability is at least ⌊𝑝/𝑚⌋2/𝑝2 ≥ (𝑝/𝑚 − 1)2/𝑝2 ≥

1
𝑚2 − 2

𝑚𝑝 and at most ⌈𝑝/𝑚⌉2/𝑝2 ≤ (𝑝/𝑚 + 1)2/𝑝2 ≤ 1
𝑚2 + 3

𝑚𝑝 .
Finally, we prove that ℎ is almost-additive. For the inner function 𝑔 it is clear

that 𝑔 (𝑥) + 𝑔 (𝑦) = 𝑔 (0) + 𝑔 (𝑥 + 𝑦) (mod 𝑝). As each side of the equation is a
nonnegative integer less than 2𝑝, it follows that 𝑔 (𝑥) + 𝑔 (𝑦) = 𝑔 (0) + 𝑔 (𝑥 + 𝑦) + 𝑜,
where 𝑜 ∈ {−𝑝, 0, 𝑝}. By taking residues modulo 𝑚, the claim follows.

We remark that linear hashing is closely related to another family of hash
functions, which satisfy the same properties as in Lemma 2.7:

ℎ(𝑥) =
⌊
𝑚 · ((𝜎𝑥 + 𝜏)mod 𝑝)

𝑝

⌋
.

40

(Here, as before 𝑝 and 𝑚 are fixed and 𝜎, 𝜏 ∈ [𝑝] are uniformly random.) While
most of our algorithms relying on linear hashing would also work with this hash
function, for simplicity we will stick to linear hashing throughout.

Family 3: Linear Hashing without Primes. Linear hashing comes with the draw-
back that we have to precompute a (possibly large) prime number 𝑝 in polyloga-
rithmic time. For most applications this overhead is negligible—but in some cases
it critically incurs an additive polylog 𝑛 term to the running time which is other-
wise independent of 𝑛. One can remove this overhead and perform linear hash-
ing without prime numbers as proven e.g. in [87]. We provide a different self-
contained proof.

Lemma 2.8 (Linear Hashing without Primes). Let 𝑛 ≥ 𝑚 be arbitrary. There is a
family of hash functions ℎ : [𝑛] → [𝑚] with the following three properties.

1 Efficiency: Sampling and evaluating ℎ takes constant time.
2 Uniform Differences: For any distinct keys 𝑥, 𝑦 ∈ [𝑛] and for any 𝑞 ∈ [𝑚], the

probability that ℎ(𝑥) − ℎ(𝑦) ≡ 𝑞 (mod 𝑚) is at most 𝑂(1
𝑚).

3 Almost-Additiveness: There exists a constant-size set Φ ⊆ [𝑚] such that for all
keys 𝑥, 𝑦 ∈ [𝑛] it holds that ℎ(𝑥) +ℎ(𝑦) ≡ ℎ(𝑥 + 𝑦) +𝜙 (mod𝑚) for some 𝜙 ∈ Φ.

For the proof we need the following lemma. A set 𝐴 = {𝑟 + 𝑖𝑎 : 𝑖 ∈ [|𝐴|]} ⊆ Z
is called an arithmetic progression with step-width 𝑎. The following lemma proves
that two arithmetic progressions with coprime step-widths are as uncorrelated as
possible.

Lemma 2.9 (Coprime Step-Widths). Let 𝐴 and 𝐵 be arithmetic progressions with
coprime step-widths 𝑎 and 𝑏, respectively. Then |𝐴 ∩ 𝐵| ≤ min{ |𝐴 |−1

𝑏 , |𝐵 |−1
𝑎 } + 1.

Proof. We may assume that 𝐴 = {0, 𝑎, . . . , (|𝐴| −1)𝑎} and 𝐵 = {0, 𝑏, . . . , (|𝐵| −1)𝑏}
(remove all points before the first common element of 𝐴 and 𝐵 and shift such that
the first common element becomes zero). Since 𝑎 and 𝑏 are coprime, the intersec-
tion 𝐴 ∩ 𝐵 consists only of multiples of 𝑎𝑏 and thus |𝐴 ∩ 𝐵| ≤ ⌊ (|𝐴 |−1)𝑎

𝑎𝑏 ⌋ + 1. The
same bound holds symmetrically for 𝐵.

Proof of Lemma 2.8. First, assume that 𝑚 is odd. Let 𝑁 be the smallest power of
two larger than 𝑛 · 𝑚. We then define the family of hash functions as

ℎ(𝑥) = (𝜎𝑥 mod𝑁)mod𝑚,

where 𝜎 ∈ [𝑁] is a random odd number. We will now prove the three claimed
properties for this family.

1 Efficiency: Sampling ℎ only involves constructing 𝑁 and sampling a random
odd number. Both operations take constant time in the word RAM model. Eval-
uating ℎ is also in constant time.

3 Almost-Additiveness: Fix any keys 𝑥, 𝑦 ∈ [𝑛]. Then for one of the two choices
𝜙 ∈ {0, 𝑁} it holds that (𝜎𝑥 mod𝑁) + (𝜎 𝑦mod𝑁) = (𝜎(𝑥 + 𝑦)mod𝑁) + 𝜙.
By reducing this equation modulo 𝑚, it follows that Φ = {0, 𝑁 mod𝑚} is a
suitable choice.

2 Uniform Differences: To prove that ℎ satisfies the uniform difference property,
it suffices to prove thatℎ is𝑂(1)-uniform, i.e., to prove thatP(ℎ(𝑧) = 𝑎) ≤ 𝑂(1

𝑚)
for all keys 𝑧 ∈ [𝑛] and all buckets 𝑎 ∈ [𝑚]. Indeed, from the previous para-
graph we learn that ℎ(𝑥) −ℎ(𝑦) ≡ 𝑞 (mod𝑚) only if ℎ(𝑥− 𝑦) ≡ 𝑞−𝜙 (mod𝑚)
for some𝜙 ∈ Φ. Taking a union bound over the constant number of elements𝜙
then yields the claim.

To check that ℎ is 𝑂(1)-uniform, we write 𝑧 = 2𝑘 · 𝑤 where 𝑤 is odd.
Then 𝜎𝑧mod𝑁 is uniformly distributed in 𝐴 = {2𝑘 · 𝑖 : 𝑖 ∈ [2−𝑘 · 𝑁]}.

41

Indeed, by identifying [𝑁] with the finite ring Z/𝑁Z, 𝐴 is the smallest addi-
tive subgroup of Z/𝑁Z which contains 𝑧, and thus multiplying with a random
unit 𝜎 ∈ (Z/𝑁Z)× randomly permutes 𝑧 within that subgroup. It follows that

P(ℎ(𝑧) = 𝑎) = 2𝑘 · |𝐴 ∩ 𝐵|
𝑁

,

where 𝐵 ⊆ [𝑁] consists of all numbers equal to 𝑎 modulo 𝑚. Observe that
𝐴 and 𝐵 are both arithmetic progressions with step-widths 2𝑘 and 𝑚, respec-
tively. Recall that 𝑚 is odd, therefore 2𝑘 and 𝑚 are coprime and Lemma 2.9
applies and yields |𝐴 ∩ 𝐵| ≤ 𝑁

2𝑘𝑚 + 1. We finally obtain P(ℎ(𝑧) = 𝑎) ≤ 1
𝑚 +

𝑛
𝑁 ≤

𝑂(1
𝑚).

Finally, we remove the assumption that 𝑚 is odd. If 𝑚 is even, then we simply
apply the previous construction to obtain a linear hash function ℎ : [𝑛] → [𝑚 − 1]
and reinterpret this as a function ℎ : [𝑛] → [𝑚]. It is easy to see that this pre-
serves efficiency and uniform differences, and we claim that is also preserves
almost-additiveness. Indeed, fix arbitrary keys 𝑥, 𝑦. From the construction we
know that ℎ(𝑥) + ℎ(𝑦) ≡ ℎ(𝑥 + 𝑦) + 𝜙 (mod (𝑚 − 1)) for some 𝜙 ∈ Φ. Both
sides of the equation are integers less than 2𝑚 − 2 and hence their images mod-
ulo𝑚−1 and𝑚, respectively, differ by at most 1. Therefore, we have ℎ(𝑥) +ℎ(𝑦) ≡
ℎ(𝑥 + 𝑦) + 𝜙′ (mod 𝑚) for some 𝜙′ ∈ Φ′ = {𝜙 + 𝜓 : 𝜙 ∈ Φ, 𝜓 ∈ {−1, 0, 1}}.

Family 4: Projection to Random Subspaces. As the last example of additive hash-
ing, we consider rings other than the integers, namely finite-field vector spaces F𝑑𝑝.
There is a simple family of hash functions—projections to random subspaces:

Lemma 2.10 (Hashing via Random Linear Maps). Let ℎ : F𝑑𝑝 → F𝑑′𝑝 be a random
linear map (i.e., let 𝐻 ∈ F𝑑′×𝑑𝑝 be a random matrix, and let ℎ(𝑥) = 𝐻𝑥). Then the
following properties are satisfied:

1 Additiveness: ℎ(𝑥 + 𝑦) = ℎ(𝑥) + ℎ(𝑦) for all 𝑥, 𝑦 ∈ F𝑑𝑝.
2 Independence: For any linearly independent vectors 𝑥1, . . . , 𝑥𝑘 ∈ F𝑑𝑝 (in partic-

ular, the 𝑥𝑖 ’s must be nonzero), the random variables ℎ(𝑥1), . . . , ℎ(𝑥𝑘) are inde-
pendent, and for any 𝑎1, . . . , 𝑎𝑘 ∈ F𝑑

′
𝑝 we have

P(ℎ(𝑥1) = 𝑎1 and . . . and ℎ(𝑥𝑘) = 𝑎𝑘) = (𝑝𝑑
′)−𝑘 ,

More generally, for any 𝑥1, . . . , 𝑥𝑘 ∈ F𝑑𝑝 (not necessarily linearly independent)
and any 𝑎1, . . . , 𝑎𝑘 ∈ F𝑑

′
𝑝 we have that

P(ℎ(𝑥1) = 𝑎1 and . . . and ℎ(𝑥𝑘) = 𝑎𝑘) ≤ (𝑝𝑑
′)−𝑠,

where 𝑠 = dim⟨𝑥1, . . . , 𝑥𝑘⟩.

Proof. The additiveness property is obvious. To prove the independence state-
ment, first recall that any set of linearly independent vectors 𝑥1, . . . , 𝑥𝑘 can be writ-
ten as 𝑥𝑖 = 𝑀𝑒𝑖 , where 𝑀 is a full-rank matrix and 𝑒𝑖 is the all-zeros vector with a
single 1 in position 𝑖. Next, observe that the matrix 𝐻𝑀 is uniformly random (in-
deed for any fixed matrix 𝑁 we have that P(𝐻𝑀 = 𝑁) = P(𝐻 = 𝑁𝑀−1) and 𝐻 is
uniformly random). It follows that the hash values ℎ(𝑥𝑖) = 𝐻𝑀𝑒𝑖 are the columns
of a uniformly random matrix and therefore independent. Hence:

P(ℎ(𝑥1) = 𝑎1 and . . . and ℎ(𝑥𝑘) = 𝑎𝑘) = (𝑝𝑑
′)−𝑘 ,

for any 𝑎1, . . . , 𝑎𝑘 ∈ F𝑑
′
𝑝 .

To obtain the more general statement for vectors which are not necessarily
linearly independent, select a subset from {𝑥1, . . . , 𝑥𝑘} of dim⟨𝑥1, . . . , 𝑥𝑘⟩ linearly
independent vectors. For this subset, the hash values behave independently.

42

29 This naming is in analogy
to derivatives of polynomials
which in addition to scaling
also shift the coefficient vec-
tors. While our definition
seems odd at first, this version
leads to cleaner algorithms.

28 Here, we assume for sim-
plicity that 𝑡 = ∥𝐴 ★ 𝐵∥0
is known, but this assumption
is not necessary in the algo-
rithm.

27 More precisely, we essen-
tially follow Nakos’ approach
to integer convolution [164],
but replace the way the sparse
recovery identifiers are cho-
sen by Huang’s derivative
trick [123]. This removes
the need for complex arith-
metic and a tedious precision
analysis.

2.2.2 Sparse Integer Convolution via Additive Hashing

In this section we give a simple algorithm for sparse integer convolution (that is,
for sparse polynomial multiplication). The algorithm is Monte Carlo randomized.
The idea is to find the convolution 𝐴★ 𝐵 via iterative recovery.

While this algorithm has never appeared in the literature, it borrows heavily
from common ideas used in several papers [164, 123, 127, 105].27 It follows three
key ideas:

Key Idea 1: Additive Hashing. Let ℎ : [𝑛] → [𝑚 = Θ̃(𝑡)] be an additive hash
function.28 We lift ℎ to vectors, and define ℎ(𝐴) and ℎ(𝐵) as length-𝑚 vectors via

ℎ(𝐴) [𝑥] =
∑︁
𝑖∈[𝑛]
ℎ(𝑖)=𝑥

𝐴[𝑖], ℎ(𝐵) [𝑦] =
∑︁
𝑗∈[𝑛]
ℎ(𝑗)=𝑦

𝐵[𝑖] .

That is, ℎ(𝐴) is the vector obtained from 𝐴 by hashing each entry 𝐴[𝑖] to the
bucket ℎ(𝑖) and summing all entries falling into the same bucket. We can com-
pute ℎ(𝐴) and ℎ(𝐵) in linear time 𝑂(𝑡), and we can compute their cyclic convolu-
tion ℎ(𝐴)★𝑚 ℎ(𝐵) via FFT in time𝑂(𝑡). The crucial insight is the following lemma:

Lemma 2.11 (Convolutions and Additive Hashing). Let ℎ : [𝑛] → [𝑚] be an ad-
ditive hash function (that is, for all 𝑥, 𝑦 we have ℎ(𝑥) + ℎ(𝑦) = ℎ(𝑥 + 𝑦) (mod 𝑚)).
Then ℎ(𝐴) ★𝑚 ℎ(𝐵) = ℎ(𝐴★ 𝐵).

Proof. Let 𝑧 be arbitrary. The proof is a simple calculation; for simplicity we
denote equality modulo 𝑚 by ≡.

ℎ(𝐴★ 𝐵) [𝑧] =
∑︁
𝑘∈[𝑛]
ℎ(𝑘)=𝑧

(𝐴★ 𝐵) [𝑘] =
∑︁

𝑖, 𝑗∈[𝑛]
ℎ(𝑖+ 𝑗)=𝑧

𝐴[𝑖] · 𝐵[𝑗] =
∑︁

𝑖, 𝑗∈[𝑛]
ℎ(𝑖)+ℎ(𝑗)≡𝑧

𝐴[𝑖] · 𝐵[𝑗]

=
∑︁

𝑥, 𝑦∈[𝑚]
𝑥+𝑦≡𝑧

ℎ(𝐴) [𝑥] · ℎ(𝐵) [𝑦] = (ℎ(𝐴) ★𝑚 ℎ(𝐵)) [𝑧] .

With this lemma in mind, we have access to the vector ℎ(𝐴 ★ 𝐵). With good
probability, many nonzero entries (𝐴★𝐵) [𝑘] are isolated under the hashing (that
is, there is no other nonzero entry (𝐴 ★ 𝐵) [𝑘′] such that ℎ(𝑘) = ℎ(𝑘′)), and our
goal is to recover all of these entries. For each isolated entry 𝑘, we clearly have
that ℎ(𝐴★ 𝐵) [ℎ(𝑘)] = (𝐴★ 𝐵) [𝑘]. This seems helpful but not sufficient, as the al-
gorithm cannot infer 𝑘 by only seeing the entry ℎ(𝐴★ 𝐵) [ℎ(𝑘)].

Key Idea 2: Sparse Recovery and the Derivative Trick. The solution is the
standard idea from sparse recovery: We need to add some sort of identifier to
hashed vector. In our scenario, an elegant solution is the derivative trick used by
Huang [123]: Let 𝜕𝐴 denote the derivative vector with entries (𝜕𝐴) [𝑖] = 𝑖 · 𝐴[𝑖].29

The following familiar lemma applies:

Lemma 2.12 (Product Rule). Let 𝐴, 𝐵 be vectors. Then 𝜕(𝐴★𝐵) = (𝜕𝐴)★𝐵+𝐴★(𝜕𝐵).

Proof. Again, the proof is a simple calculation. Let 𝑘 be arbitrary, then:

𝜕(𝐴★ 𝐵) [𝑘] = 𝑘 · (𝐴★ 𝐵) [𝑘] =
∑︁

𝑖, 𝑗∈[𝑛]
𝑖+ 𝑗=𝑘

(𝑖 + 𝑗) · 𝐴[𝑖] · 𝐵[𝑗]

=
∑︁

𝑖, 𝑗∈[𝑛]
𝑖+ 𝑗=𝑘

𝑖 · 𝐴[𝑖] · 𝐵[𝑗] +
∑︁

𝑖, 𝑗∈[𝑛]
𝑖+ 𝑗=𝑘

𝐴[𝑖] · 𝑗 · 𝐵[𝑗] = (𝜕𝐴★ 𝐵) [𝑘] + (𝐴★ 𝜕𝐵) [𝑘] .

Using this idea, we can compute ℎ(𝜕𝐴★𝐵) and ℎ(𝐴★𝜕𝐵) (as described in Key
Idea 1) and thereby obtain their sum ℎ(𝜕(𝐴 ★ 𝐵)). Coming back to our previous

43

Algorithm 2.1. A simple algorithm for sparse integer convolution (aka polyno-
mial multiplication). Given two vectors 𝐴, 𝐵 ∈ Z𝑛, this algorithm computes their
convolution 𝐴★ 𝐵.

1 𝑡0 ← ∥𝐴∥0 + ∥𝐵∥0
2 for 𝑡 ← 𝑡0, 2𝑡0, 4𝑡0, . . . ,∞ do
3 𝐶 ← (0, . . . , 0)
4 for ℓ← 0, 1, . . . , ⌈log 𝑡⌉ do
5 Sample a random prime 𝑚 ∈ [128

2ℓ · 𝑡 log 𝑛, 256
2ℓ · 𝑡 log 𝑛]

6 Let ℎ(𝑥) = 𝑥 mod𝑚
7 Compute 𝑉 ← ℎ(𝐴) ★𝑚 ℎ(𝐵) − ℎ(𝐶) via FFT
8 Compute𝑊 ← ℎ(𝜕𝐴) ★𝑚 ℎ(𝐵) + ℎ(𝐴) ★𝑚 ℎ(𝜕𝐵) − ℎ(𝜕𝐶) via FFT
9 for each 𝑧 ∈ [𝑚] do
10 𝑘 ←𝑊 [𝑧] /𝑉 [𝑧]
11 if 𝑘 ∈ [2𝑛 − 1] then
12 𝐶 [𝑘] ← 𝐶 [𝑘] +𝑉 [𝑧]
13 if Verify(𝐴, 𝐵, 𝐶) then return 𝐶

problem, assume that 𝑣 = (𝐴 ★ 𝐵) [𝑘] is an isolated entry. Then it is easy to check
that ℎ(𝐴★𝐵) [ℎ(𝑘)] = 𝑣 and ℎ(𝜕(𝐴★𝐵)) [ℎ(𝑘)] = 𝑘 · 𝑣. Taking the quotient of these
two values, we have correctly identified 𝑘.

Consider the following recovery algorithm which uses this idea: We maintain
a vector 𝐶 which is initially all-zeros. For each bucket 𝑧 ∈ [𝑚], we compute the
quotient 𝑘 ← ℎ(𝜕(𝐴 ★ 𝐵)) [𝑧] /ℎ(𝐴 ★ 𝐵) [𝑧]. We test whether 𝑘 is an integer in
the feasible range [2𝑛 − 1], and only in this case update 𝐶 [𝑘] ← (𝐴 ★ 𝐵) [𝑧]. At
this point we exploit a second property about the hash function ℎ: Assuming that
the hash family is 𝑂(1)-universal, at least a constant fraction, say 3

4 , of entries
becomes isolated under ℎ. Therefore, this recovery loop correctly recovers at least
a 3

4 fraction of the entries in 𝐴★𝐵 correctly. Unfortunately, the non-isolated entries
might introduce some errors to the recovery; note that we cannot guarantee that
each index 𝑘 as computed by the algorithm actually corresponds to an isolated
index—non-isolated buckets can coincidentally lead to integers quotients 𝑘.

A standard idea is to repeat this algorithm log 𝑡 times so that with high proba-
bility each index was recovered correctly in the majority of cases. Unfortunately,
this is not as is easy as it looks: The errors in the recovery could, in principle, cor-
rupt the same index 𝑘 in each repetition. We take another approach to fix this
remaining issue.

Key Idea 3: Iterative Recovery. Instead, we will run the algorithm for several
iterations and fix these errors one by one until we have computed 𝐶 = 𝐴★𝐵. That
is, we start from the all-zeros vector 𝐶 and apply the previous two steps to arrive
at an approximation 𝐶 ≈ 𝐴 ★ 𝐵. In the next iteration, our goal is to recover the
residual vector 𝐴 ★ 𝐵 − 𝐶. Again we recover a constant fraction of coordinates
correctly and thereby correct some errors introduced in the first iteration (while
introducing some new errors). After𝑂(log 𝑡) iterations we have removed all errors
with high probability.

This idea can be implemented very efficiently by taking into account that the
sparsity of the residual vector decreases geometrically across the iterations. We
can therefore also use geometrically smaller and smaller bucket sizes and ulti-
mately save a factor log 𝑡 in the running time.

We summarize the complete algorithm in Algorithm 2.1 and include a short
formal analysis. The algorithm does not assume that the sparsity 𝑡 is known, but
instead guesses 𝑡 by exponential search. We also assume access to an algorithm
Verify(𝐴, 𝐵, 𝐶) that tests whether 𝐴★𝐵 = 𝐶 (with high probability); we will design
this algorithm in Section 2.5.

44

Theorem 2.13 (Sparse Integer Convolution). With high probability, Algorithm 2.1
returns the convolution 𝐴★𝐵 of the given vectors 𝐴, 𝐵 ∈ Z𝑛, and it runs in expected
time 𝑂(𝑡 log2 𝑛) where 𝑡 = ∥𝐴∥0 + ∥𝐵∥0 + ∥𝐴★ 𝐵∥0.

Proof. We will ignore the iterations of the outer loop until we have reached the
critical value 𝑡 ≥ ∥𝐴 ★ 𝐵∥0. As the verifier is correct with high probability, the
algorithm will not prematurely stop and return a wrong answer with high prob-
ability. Focus on one iteration after the critical threshold. We claim that with con-
stant probability the inner loop correctly computes 𝐶 = 𝐴 ★ 𝐵 and the algorithm
terminates.

We refer to the iterations of the inner loop as levels ℓ. Let𝐶ℓ denote the vector𝐶
after executing the ℓ-th iteration of the inner loop; i.e., 𝐶0 is the all-zeros vector
and 𝐶𝐿 for 𝐿 = ⌈log 𝑡⌉ hopefully equals 𝐶. We say that the ℓ-th level is successful if
the residual vector 𝐴★𝐵−𝐶 has sparsity ∥𝐴★𝐵−𝐶ℓ∥ ≤ 𝑡/4ℓ. We prove by induction
that, conditioned on the events that the levels 0, 1, . . . , ℓ−1 are successful, also the
ℓ-th level is successful with probability at least 1 − 2−ℓ−1.

For the base case, note that ∥𝐴★𝐵−𝐶0∥ = ∥𝐴★𝐵∥ ≤ 𝑡. So let ℓ > 0 and assume
that all previous levels 0, 1, . . . , ℓ − 1 were successful. Let 𝑚 be the prime sampled
in the ℓ-th level and let ℎ(𝑥) = 𝑥 mod𝑚 as Algorithm 2.1. We say that an index 𝑘 ∈
supp(𝐴 ★ 𝐵 − 𝐶ℓ−1) is isolated if there is no other index 𝑘′ ∈ supp(𝐴 ★ 𝐵 − 𝐶ℓ−1)
with ℎ(𝑘) = ℎ(𝑘′). By the universality of our hash family (see Lemma 2.6), the
event ℎ(𝑘) = ℎ(𝑘′) happens with probability at most

2 log 𝑛
128𝑡
2ℓ · log 𝑛

=
2ℓ

64

for any fixed keys 𝑘, 𝑘′. Taking a union bound over the at most 𝑡/4ℓ−1 options for 𝑘′
(here we use the induction hypothesis), the probability that 𝑘 is non-isolated is at
most 2ℓ

64 ·
𝑡

4ℓ−1 ≤ 1
16·2ℓ . The expected number of non-isolated indices is 𝑡

4ℓ−1 · 1
16·2ℓ ,

and by Markov’s inequality the number of non-isolated indices exceeds 𝑡
2·4ℓ with

probability at most 2−ℓ−1.
We come back to the algorithm and consider the vector 𝐶ℓ as computed in

the ℓ-th level. By the previous two Lemmas 2.11 and 2.12 we have correctly com-
puted the vectors 𝑉 = ℎ(𝐴 ★ 𝐵 − 𝐶ℓ−1) and 𝑊 = ℎ(𝜕(𝐴 ★ 𝐵 − 𝐶ℓ−1)) in Lines 7
and 8. Therefore, for each isolated index 𝑘 we have that𝑉 [𝑧] = (𝐴★ 𝐵 − 𝐶ℓ−1) [𝑘]
and 𝑊 [𝑧] = 𝑘 · 𝑉 [𝑧] for 𝑧 = ℎ(𝑘). It follows that the algorithm eventually iden-
tifies 𝑘 in Line 10 and correctly updates 𝐶ℓ [𝑘] ← 𝐶ℓ−1 [𝑘] + 𝑉 [𝑧] = (𝐴 ★ 𝐵) [𝑘].
This proves that the algorithm correctly recovers all isolated indices, but we also
have to account for the non-isolated indices. There is no hope to recover the non-
isolated indices, and moreover each non-isolated index might lead to one false
recovery in Lines 10 and 12. It follows that ∥𝐴 ★ 𝐵 − 𝐶ℓ∥0 is at most twice the
number of non-isolated indices. In combination with the previous paragraph we
conclude that ∥𝐴★ 𝐵 − 𝐶ℓ∥0 ≤ 𝑡

4ℓ , and thus the ℓ-th level is successful.
By a union bound over all levels ℓ = 0, 1, . . . , 𝐿 = ⌈log 𝑡⌉, we obtain that the

𝐿-th level is successful with probability at least 1 − ∑
ℓ 2−ℓ−1 ≥ 1

2 . In this case we
have that ∥𝐴★ 𝐵 − 𝐶𝐿∥ ≤ 𝑡

4𝐿 < 1 and therefore 𝐴★ 𝐵 = 𝐶𝐿 as claimed.

Finally, it remains to analyze the running time. We prove that each iteration
of the outer loop (with value 𝑡) runs in time 𝑂(𝑡 log2 𝑛). Then, by taking into ac-
count that each iteration after the critical threshold 𝑡 ≥ ∥𝐴★ 𝐵∥0 terminates with
probability at least 1

2 , the expected running time is also bounded by 𝑂(𝑡 log2 𝑛).
We analyze the running time per level ℓ. Sampling the prime 𝑝 takes time

polylog(𝑡 log 𝑛) (which is negligible). It takes time 𝑂(𝑡) to prepare the deriva-
tives and the hashed vectors of 𝐴, 𝐵 and 𝐶. The dominant step is to compute the
three convolutions in FFT time 𝑂(𝑚 log𝑚) = 𝑂(𝑡 log 𝑛

2ℓ log(𝑡 log 𝑛)) = 𝑂(𝑡2ℓ log2 𝑛).

45

30 The problem is that each en-
try 𝐴 ★ 𝐵 is split into a con-
stant number of buckets under
the linear hashing. As a conse-
quence, we can no longer can-
cel out the contribution of the
residual vector and the spar-
sity of 𝐴 ★ 𝐵 − 𝐶 stays large
throughout all levels.

Finally, the recovery loop in Line 9 runs in time 𝑂(𝑚). Summing over all lev-
els ℓ = 0, 1, . . . , ⌈log 𝑡⌉, the running time per outer iteration becomes

⌈log 𝑡⌉∑︁
ℓ=0

𝑂(𝑡 + 𝑡

2ℓ
log2 𝑛) = 𝑂(𝑡 log 𝑡 + 𝑡 log2 𝑛) = 𝑂(𝑡 log2 𝑛)

as claimed.

Advantages and Disadvantages. The hashing approach powers most recent al-
gorithms [164, 108, 61, 60] and has the clear advantages of being simple and flexi-
ble. For instance, while the algorithm we just described is Monte Carlo randomized
(due to the Monte Carlo verifier) and it is possible to work in more tricks to get a
Las Vegas algorithms for nonnegative convolution [60] (see Chapter 3).

In terms of the running time, this algorithm runs in time 𝑂(𝑡 log2 𝑛) which is
one log 𝑛 factor away from the optimal time bound𝑂(𝑡 log 𝑡). One might guess that
a log-factor can be saved by using more efficient hash functions in terms of uni-
versality. For instance, we could use linear hashing (Lemma 2.7). Unfortunately,
since linear hashing is only almost-additive, the iterative recovery loop does no
longer work,30 and the resulting algorithm still runs in time 𝑂(𝑡 log2 𝑛).

The most severe disadvantage is that this approach is inherently randomized.
Derandomizations are known but only at the cost of super-polylogarithmic 𝑡𝑜(1) -
factors.

2.3 Sparse Convolution via Algebraic Methods

A radically different approach to computing sparse convolutions by viewing the
vectors 𝐴 as polynomials 𝐴(𝑋) = ∑

𝑖 𝐴[𝑖] · 𝑋 𝑖 and by exploiting their algebraic
structure. Recall that in this view, the role of convolution is taken by polynomial
multiplication.

One prime example is by a classical algorithm due to Gaspard de Prony from
1796, called Prony’s method [177]. This algorithm was rediscovered several times
since then, for decoding BCH codes [205] and in the context of polynomial in-
terpolation [44]; see also [180]. The statement is that we can recover a 𝑡-sparse
polynomial 𝑃(𝑋) from 2𝑡 evaluations 𝑃(𝑥0), . . . , 𝑃(𝑥2𝑡−1) at strategically chosen
points 𝑥0, . . . , 𝑥2𝑡−1.

For our purposes, we can apply Prony’s method in three steps to compute the
convolution 𝐶 = 𝐴★ 𝐵 of two sparse vectors 𝐴, 𝐵:

1 Evaluate 𝐴(𝑥0), . . . , 𝐴(𝑥2𝑡−1) and 𝐵(𝑥0), . . . , 𝐵(𝑥2𝑡−1).
2 Multiply 𝐶(𝑥0) ← 𝐴(𝑥0) · 𝐵(𝑥0), . . . , 𝐶(𝑥2𝑡−1) ← 𝐴(𝑥2𝑡−1) · 𝐵(𝑥2𝑡−1)
3 Interpolate the 𝑡-sparse polynomial 𝐶 from its evaluations 𝐶(𝑥0), . . . , 𝐶(𝑥2𝑡−1)

using Prony’s method.

This is a promising approach, but steps 3 and 1 (note that even the multipoint eval-
uation of a sparse polynomial is not obvious) require heavy algebraic machinery.
In the remainder of this section we provide some more details on Prony’s method,
and even prove some of its algebraic ingredients.

2.3.1 Prony’s Method in Detail

In this section we attempt to give a detailed overview of Prony’s method. Our aim
is to be more intuitive than formally precise. Recall that our goal is to interpolate
a 𝑡-sparse polynomial 𝑃(𝑋) (with degree 𝑛 ≫ 𝑡) by evaluating the polynomial at 2𝑡
strategically chosen evaluation points. For a more involved discussion see [132,
44] and specifically the survey [180].

46

Which Evaluation Points? We choose as evaluation points the geometric se-
quence 𝜔0, 𝜔1, . . . , 𝜔2𝑡−1. This choice turns out to be convenient for several rea-
sons which will become clear soon. Assume for now that 𝜔 > 1 is an integer and
that all computations are over the integers. (Later we will work over a finite field
and pick 𝜔 more carefully.)

Throughout, we write 𝑃 =
∑𝑡−1
𝑗=0 𝑃[𝑥 𝑗] · 𝑋𝑥 𝑗 and refer to 𝑥0, . . . , 𝑥𝑡−1 as the sup-

port of 𝑃. Initially, neither the support nor the coefficients of 𝑃 are known; we
only have access to the evaluations 𝑃(𝜔0), . . . , 𝑃(𝜔2𝑡−1). The two major phases of
Prony’s method are to first recover the support, and then the coefficients. We start
with the second phase which is conceptually easier.

Phase 2: Recovering the Coefficients. Observe that we can express the evalua-
tion of 𝑃 by means of the following matrix-vector product:

𝑃(𝜔0)
𝑃(𝜔1)
...

𝑃(𝜔𝑡−1)


=


1 1 · · · 1
𝜔𝑥0 𝜔𝑥1 · · · 𝜔𝑥𝑡−1

...
...

. . .
...

𝜔 (𝑡−1)𝑥0𝜔 (𝑡−1)𝑥1 · · ·𝜔 (𝑡−1)𝑥𝑡−1

︸ ︷︷ ︸
𝑊


𝑃[𝑥0]
𝑃[𝑥1]
...

𝑃[𝑥𝑡−1]


. (1)

Here, the matrix𝑊 is a transposed Vandermonde matrix. This matrix has full rank
(as can easily be checked via its determinant det(𝑊) = ∏

𝑖< 𝑗 (𝜔𝑥𝑖 −𝜔𝑥 𝑗)) and there-
fore any polynomial with support 𝑥0, . . . , 𝑥𝑡−1 is uniquely determined by its evalua-
tions 𝑃(𝜔0), . . . , 𝑃(𝜔𝑡−1). In particular, knowing the support 𝑥0, . . . , 𝑥𝑡−1 (which we
can assume was recovered in step 1) we can interpolate 𝑃 by solving this equation
system for the coefficients 𝑃[𝑥0], . . . , 𝑃[𝑥𝑡−1].

Note that for the recovery of the coefficients, it was sufficient to have access to
the 𝑡 evaluations 𝑃(𝜔0), . . . , 𝑃(𝜔𝑡−1). We need the full sequence of 2𝑡 evaluations
only for recovering the support.

Phase 1: Recovering the Support. The more involved task is to recover the sup-
port set 𝑥0, . . . , 𝑥𝑡−1 from the sequence of evaluations 𝑃(𝜔0), . . . , 𝑃(𝜔2𝑡−1). We start
with some background on linear recurrences:

Definition 2.14 (Linear Recurrence). A sequence 𝑆0, 𝑆1, . . . is linearly recurrent
with degree 𝑟 if there is a degree-𝑟 polynomial Λ(𝑋) = ∑𝑟

ℓ=0 𝜆ℓ𝑋
ℓ such that each

term in the sequence is determined by a linear combination of its 𝑟 preceding terms,
weighted with 𝜆0, . . . , 𝜆𝑟:

𝑟∑︁
ℓ=0

𝜆ℓ𝑆𝑖+ℓ = 0 for all 𝑖 ≥ 0.

If Λ is the monic polynomial (i.e., with leading coefficient 1) with smallest-possible
degree satisfying this condition then we call Λ the minimal polynomial of the recur-
rence.

(At first, it seems odd why we view the 𝜆𝑖 ’s as a polynomial, but this viewpoint
hopefully soon starts to make sense.)

It turns out that the sequence of evaluations 𝑃(𝜔0), . . . , 𝑃(𝜔2𝑡−1) is linearly
recurrent with degree exactly 𝑡. And, more importantly, we can read of the support
from the minimal polynomial of this recurrence:

Lemma 2.15. For any 𝑡-sparse polynomial 𝑃, the sequence 𝑃(𝜔0), . . . , 𝑃(𝜔2𝑡−1) is lin-
early recurrent with degree 𝑡. Moreover, the minimal polynomial of this recurrence
is

Λ(𝑋) =
∏

𝑥∈supp(𝑃)
(𝑋 − 𝜔𝑥).

47

Proof. Let 𝑥0, . . . , 𝑥𝑡−1 denote the support of 𝑃 and write 𝑃(𝑋) = ∑𝑡−1
𝑗=0 𝑃[𝑥 𝑗] · 𝑋𝑥 𝑗 .

Assume that the sequence 𝑃(𝜔0), . . . , 𝑃(𝜔2𝑡−1) is linearly recurrent with degree 𝑟
for some polynomial Λ(𝑋) = ∑𝑟

ℓ=0 𝜆ℓ𝑋
ℓ. We can therefore express the recurrence

condition as follows, for any 𝑖 ≥ 0:

0 =

𝑟∑︁
ℓ=0

𝜆ℓ𝑃(𝜔𝑖+ℓ)

=

𝑟∑︁
ℓ=0

𝜆ℓ

𝑡−1∑︁
𝑗=0

𝑃[𝑥 𝑗] · 𝜔 (𝑖+ℓ)𝑥 𝑗

=

𝑡−1∑︁
𝑗=0

𝜔𝑖𝑥 𝑗 · 𝑃[𝑥 𝑗] ·
𝑟∑︁
ℓ=0

𝜆ℓ𝜔
ℓ𝑥 𝑗

=

𝑡−1∑︁
𝑗=0

𝜔𝑖𝑥 𝑗 · 𝑃[𝑥 𝑗] · Λ(𝜔𝑥 𝑗).

We see two consequences: First, picking the polynomial Λ(𝑋) = ∏𝑡−1
𝑗=0 (𝑋 − 𝜔𝑥 𝑗)

with roots at all powers 𝜔𝑥0 , . . . , 𝜔𝑥𝑡−1 satisfies this recurrence condition for all 𝑖.
In particular, the recurrence has degree at most 𝑡.

Second, suppose that the minimal polynomial Λ has degree less than 𝑡. Then
for at least one power 𝜔𝑥0 , . . . , 𝜔𝑥𝑡−1 , Λ does not have a root. Consider the poly-
nomial𝑄 defined by𝑄(𝑋) = ∑𝑡−1

𝑗=0 𝑃[𝑥 𝑗] · Λ(𝜔𝑥 𝑗) · 𝑋𝑥 𝑗 ; note that𝑄 is not identically
zero. We can rewrite the recurrence from before as 𝑄(𝜔𝑖) = 0 for all 𝑖 ∈ [𝑡].
This yields a contradiction: On the one hand 𝑄 is not identically zero, but on the
other hand, 𝑄 is 𝑡-sparse and therefore uniquely determined by its evaluations
𝑄(𝜔0), . . . , 𝑄(𝜔𝑡−1) all of which are zero.

The previous lemma suggests the following algorithm: Compute the minimal
polynomial Λ of the sequence 𝑃(𝜔0), . . . , 𝑃(𝜔2𝑡−1). Knowing that the roots of Λ are
exactly the powers 𝜔𝑥0 , . . . , 𝜔𝑥𝑡−1 , we can extract the support set by computing the
roots of Λ and taking their logarithms (with base 𝜔).

Finite-Field Arithmetic. Before stating the complete algorithm, we point out a se-
rious issue in this approach: The integers involved in the computations are guar-
anteed to become huge—to represent a single power 𝜔𝑥 𝑗 we need at least 𝑛 bits.

We will therefore perform all computations modulo some prime 𝑝. This
leads to another complication: So far we have implicitly assumed that the pow-
ers 𝜔𝑥0 , . . . , 𝜔𝑥𝑡−1 are distinct (and this is in fact the only property about 𝜔 that
we need). To preserve this property, we will pick 𝜔 ∈ F𝑝 in such a way that its
multiplicative order is greater than the degree of 𝑃.

The Complete Algorithm. We finally summarize Prony’s method as an algorithm
with six steps. (Phase 1 consists of steps 3–5 and phase 2 consists of step 6.)

1 Find an element 𝜔 with multiplicative order at least 𝑛:
In most cases, it suffices to pick a random element, but there are also deter-
ministic methods for this task [80, 79].

2 Evaluate 𝑃: Compute 𝑃(𝜔0), . . . , 𝑃(𝜔2𝑡−1).

3 Compute the minimal polynomialΛ of the linear recurrence 𝑃(𝜔0), . . . , 𝑃(𝜔2𝑡−1):
This task can be classically solved in quadratic time using the Berlekamp-
Massey algorithm [45, 157], but it is also known how to solve this task in
near-linear time using a Toeplitz solver [132] (which in this case is essentially
an application of the Extended Euclidian Algorithm).

4 Compute the roots 𝜔𝑥0 , . . . , 𝜔𝑥𝑡−1 of Λ:
(This is indeed the set of roots by Lemma 2.15.) It is known how to implement

48

this step in randomized near-linear time [131], but in terms of deterministic
methods nothing comparable is known.

5 Compute the discrete logarithms 𝑥0, . . . , 𝑥𝑡−1 of the roots to the base 𝜔:
Here we use again that 𝜔 has multiplicative order at least 𝑛 (as otherwise we
could not distinguish two exponents 𝑥, 𝑥′ that are equal modulo 𝑛). The com-
plexity of this step depends on the multiplicative structure of F𝑝, but is typi-
cally expensive.

However, if 𝑃 is an integer polynomial, we can use the following trick [180].
We work over F𝑝 for some carefully chosen prime 𝑝where 𝑝−1 is divisible by
a large power of two. Then we can pick an element 𝜔 whose order is a large
power of two. In this case it is possible to compute discrete logarithms in time
polylog(𝑛).

6 Compute the coefficients 𝑃[𝑥0], . . . , 𝑃[𝑥𝑡−1] by solving a transposed Vander-
monde system in Equation (1):
The magic is that these structured linear systems can be solved in near-linear
time 𝑂(𝑡 log2 𝑡); see the upcoming Theorem 2.18.

Advantages and Disadvantages. Unfortunately, it seems difficult to use this algo-
rithm to answer either of our driving questions: For a deterministic algorithm, the
main obstacle is step 4 which is currently not known to run in deterministic near-
linear time. For optimal algorithms (in terms of the running time), many steps
are prohibitively expensive such as computing discrete logarithms computation
in step 5, but also solving the transposed Vandermonde system in step 6. There are
other techniques for sparse convolution using polynomial interpolation, see [180],
but they do not seem sufficient in going beyond a 𝑂(𝑡 polylog 𝑛)-time algorithm in
any variation of the problem, owing to the usage of a variety of tools from struc-
tured linear algebra which come with additional log-factors.

Our answer to both driving questions nevertheless relies on ideas from Prony’s
method, specifically from the final step 6. In both Chapters 3 and 4 we will compute
the support supp(𝑃) = {𝑥0, . . . , 𝑥𝑡−1} by other means, and then use the efficient
transposed Vandermonde solver to find the coefficients 𝑃[𝑥0], . . . , 𝑃[𝑥𝑡−1]. For this
reason we include a formal proof of the transposed Vandermonde solver in the
next Section 2.3.2.

Prony’s Method and Derivatives. We remark that the recipe behind Prony’s
method as outlined before can be generalized: For instance, we can recover a 𝑡-
sparse given the 2𝑡 evaluations of 𝑃’s derivatives, e.g. given 𝑑0

𝑑𝑥0 𝑃(1), . . . , 𝑑
2𝑡−1

𝑑𝑥2𝑡−1 (1);
see [122] and see [194] for a generalization to even more general operators. This
derivative version saves some algebraic machinery (in particular, we can skip
step 2 and the computationally expensive step 5).

2.3.2 Algebraic Tools

On more than one occasion we need to efficiently perform simple algebraic com-
putations such as computing powers or inverses. The next two lemmas describe
how to easily obtain improved algorithms for the exponentiation and division of
many numbers.

Lemma 2.16 (Bulk Exponentiation). Let 𝑅 be a ring. Given an element 𝑥 ∈ 𝑅, and
a set of nonnegative exponents 𝑘1, . . . , 𝑘𝑛 ≤ 𝑘, we can compute 𝑥𝑘1 , . . . , 𝑥𝑘𝑛 in time
𝑂(𝑛 log𝑛 𝑘) using 𝑂(𝑛 log𝑛 𝑘) multiplications.

The naive way to implement exponentiations is via repeated squaring in time
𝑂(𝑛 log 𝑘). There are methods [208, 173] improving the dependence on 𝑘, but for
our purposes this simple algorithm suffices.

49

Proof. First, compute the base-𝑛 representations of all exponents 𝑒𝑖 =
∑
𝑗 𝑘𝑖, 𝑗𝑛

𝑗 ;
then 𝑘𝑖, 𝑗 ∈ [𝑛] where 𝑗 = 0, . . . , ⌈log𝑛 𝑘⌉. For all 𝑖 = 1, . . . , 𝑛 and 𝑗 = 0, . . . , ⌈log𝑛 𝑘⌉
we precompute the powers 𝑥𝑖𝑛 𝑗 using the rules 𝑥𝑛 𝑗+1

= (𝑥𝑛 𝑗)𝑛 and 𝑥 (𝑖+1)𝑛 𝑗 = 𝑥𝑖𝑛
𝑗
𝑥𝑛

𝑗 .
Finally, each output 𝑥𝑘𝑖 is the product of ⌈log𝑛 𝑘⌉ numbers

∏
𝑗 𝑥

𝑘𝑖, 𝑗𝑛
𝑗 . The correct-

ness is immediate, and it is easy to check that all steps takes time 𝑂(𝑛 log𝑛 𝑘).

Lemma 2.17 (Bulk Division). Let 𝐹 be a field. Given 𝑛 field elements 𝑎1, . . . , 𝑎𝑛 ∈ 𝐹,
we can compute their inverses 𝑎−1

1 , . . . , 𝑎−1
𝑛 ∈ 𝐹 in time 𝑂(𝑛) using 𝑂(𝑛) multiplica-

tions and a single inversion.

Proof. First, we compute the 𝑛 prefix products 𝑏 𝑗 = 𝑎1 · · · 𝑎𝑖 . It takes a single
inversion to compute 𝑏−1

𝑛 . Then, for 𝑖 = 𝑛, 𝑛 − 1, . . . , 2, we compute 𝑎−1
𝑖

= 𝑏−1
𝑖
𝑏𝑖−1

and 𝑏−1
𝑖−1 = 𝑏−1

𝑖
𝑎𝑖 . Finally, 𝑎−1

1 = 𝑏−1
1 . As claimed, this algorithm takes time 𝑂(𝑛)

and it uses 𝑂(𝑛) multiplications and a single inversion.

Finally, a crucial ingredient to our core algorithm is the following theorem
about solving transposed Vandermonde systems.

Theorem 2.18 (Transposed Vandermonde Systems). Let 𝐹 be a field. For distinct
field elements 𝑎1, . . . , 𝑎𝑛 ∈ 𝐹, let

𝑉 = 𝑉 (𝑎) =



1 1 · · · 1
𝑎1 𝑎2 · · · 𝑎𝑛
𝑎2

1 𝑎2
2 · · · 𝑎2

𝑛
...

...
. . .

...

𝑎𝑛−1
1 𝑎𝑛−1

2 · · ·𝑎𝑛−1
𝑛


.

Given 𝑥 ∈ 𝐹𝑛 we can compute 𝑉𝑥 in time 𝑂(𝑛 log2 𝑛) using at most 𝑂(𝑛 log2 𝑛) ring
operations, and we can compute 𝑉−1𝑥 in time 𝑂(𝑛 log2 𝑛) using at most 𝑂(𝑛 log2 𝑛)
ring operations and one division.

Note that the distinctness condition ensures that the matrix𝑉 has full rank (as
the Vandermonde determinant det(𝑉) = ∏

𝑖< 𝑗 (𝑎 𝑗 − 𝑎𝑖) is nonzero). This algorithm
has been discovered several times [132, 152, 168]. Although none of these sources
pays attention to the number of divisions, one can check that applying the bulk
division strategy from Lemma 2.17 suffices to obtain the claimed bound. For the
sake of completeness, we include a full proof.

Throughout, let 𝑊 = 𝑊 (𝑎) = 𝑉 (𝑎)𝑇 denote the transpose of the matrix 𝑉 ,
i.e., 𝑊 is a Vandermonde matrix. The proof of Theorem 2.18 is by the so-called
transposition principle: First, classic algorithms show that 𝑊𝑥 and 𝑊−1𝑥 can be
computed by efficient arithmetic circuits (Lemma 2.19). Second, whenever 𝐴𝑥 can
be computed efficiently by an arithmetic circuit, then also 𝐴𝑇𝑥 can be computed
similarly efficiently (Lemma 2.20). See [102] for a definition of arithmetic circuits.
For our purposes it suffices to only consider addition, subtraction and multiplica-
tion gates.

Lemma 2.19 (Polynomial Evaluation and Interpolation). There are algorithmsA
and A′ which, given 𝑎 ∈ 𝐹𝑛 with pairwise distinct entries 𝑎𝑖 , respectively compute
arithmetic circuits 𝐶 and 𝐶′ such that:

A andA′ run in time 𝑂(𝑛 log2 𝑛),
A and A′ use at most 𝑂(𝑛 log2 𝑛) ring operations and A′ additionally uses at
most 1 division,
On input 𝑥 ∈ 𝐹𝑛, the circuits compute 𝐶′ (𝑥) =𝑊 (𝑎)𝑥 and 𝐶′ (𝑥) =𝑊 (𝑎)−1𝑥.

Proof sketch. For 𝐶, note that evaluating 𝐶(𝑥) =𝑊 (𝑎)𝑥 is exactly the problem of
evaluating the polynomial

∑
𝑖 𝑥𝑖𝑋

𝑖 ∈ 𝐹 [𝑋] at the points 𝑎1, . . . , 𝑎𝑛. Hence, we can
use the classical 𝑂(𝑛 log2 𝑛)-time algorithm for polynomial multi-point evaluation,
see e.g. [102, Algorithm 10.7]. This algorithm can be interpreted to compute the
arithmetic circuit 𝐶 rather than computing the multi-point evaluation directly. As
this algorithm works over rings, it does not use any divisions.

50

For 𝐶′, observe that computing 𝐶′ (𝑥) = 𝑊 (𝑎)−1𝑥 corresponds to polynomial
interpolation, which again has a classical 𝑂(𝑛 log2 𝑛)-time algorithm [102, Algo-
rithm 10.11]. This time however, we have to pay attention to the number of divi-
sions performed in the process. Note that [102, Algorithm 10.11] only computes
divisions in the second step, all of which can be bulked together by Lemma 2.17,
and moreover all inputs to these divisions only depend on 𝑎 and can thus be per-
formed by the algorithmA′, rather than by the arithmetic circuit 𝐶′. This proves
the claim.

Next, we need the following lemma, see [168, Theorem 3.4.1]. It can be proven
in several ways, for instance via the Baur-Strassen Theorem [42, 162].

Lemma 2.20 (Transposition Principle). Let 𝐶 be an arithmetic circuit of size 𝑠 com-
puting some linear function 𝑥 ↦→ 𝐴𝑥 for some 𝐴 ∈ 𝐹𝑛×𝑛. Then there is an arithmetic
circuit 𝐶𝑇 of size 𝑂(𝑠 + 𝑛) computing the function 𝑥 ↦→ 𝐴𝑇𝑥. Moreover, one can
compute 𝐶𝑇 from 𝐶 in time 𝑂(𝑠 + 𝑛).

Proof of Theorem 2.18. For the computation of𝑉𝑥, we first run the algorithmA
from Lemma 2.19 to compute an arithmetic circuits𝐶 of size 𝑠 = 𝑂(𝑛 log2 𝑛). Recall
thatA uses 𝑂(𝑛 log2 𝑛) ring operations. The circuit computes 𝐶(𝑥) =𝑊 (𝑎)𝑥. Sec-
ond, use the transposition principle (Lemma 2.20) to compute the circuits 𝐶𝑇 com-
puting𝐶𝑇 (𝑥) =𝑊 (𝑎)𝑇𝑥 = 𝑉 (𝑎)𝑥. By Lemma 2.20, 𝐶𝑇 has size𝑂(𝑠+𝑛) = 𝑂(𝑛 log2 𝑛),
and it can be computed in the same running time. Finally, we evaluate 𝐶𝑇 at 𝑥,
which again takes time 𝑂(𝑛 log2 𝑛) and uses only ring operations.

The computation of 𝑉−1𝑥 follows exactly the same lines, using the algo-
rithmA′ in place of 𝐴. Recall thatA′ additionally computes one division.

2.4 Sparse Convolution via Sparse Fourier Transform

For completeness, we mention a third approach via sparse Fourier transforms
that also results in a 𝑂(𝑡 log2 (𝑛Δ))-time algorithm. This idea is not explicitly writ-
ten down as far as we know. It has been established in the celebrated work of
Hassanieh, Indyk, Katabi and Price [118] that one can recover a 𝑡-sparse vec-
tor 𝐴 ∈ C𝑛 in time 𝑂(𝑡 log(𝑛Δ)) by only accessing a small subset of its Fourier
transform 𝐴. This alone might not seem sufficient, but spelling out the details
of [118] reveals that the pattern of accesses to 𝐴 is a random arithmetic pro-
gression of length 𝑂(𝑡 log(𝑛Δ)). In light of this, one can additionally leverage
known techniques from so-called semi-equispaced Fourier transforms [92], [126,
Section 12] to obtain a𝑂(𝑡 log2 (𝑛Δ))-time algorithm. The semi-equispaced Fourier
transform is a well-studied subfield of computational Fourier transforms, and re-
sults from that area show that 𝑠 equally spaced Fourier coefficients of a length-𝑛
and 𝑠-sparse vector can be computed in time 𝑂(𝑠 log(𝑛Δ)) [126, Section 12]. Com-
bining this with the algorithm of [118] yields an 𝑂(𝑡 log2 (𝑛Δ))-time algorithm for
sparse integer convolution. The inherent reason for this logarithmic blow-up is
that going back and forth in Fourier and time domain is more costly in the sparse
case than in the dense case.

2.5 Verifier using Polynomial Identity Testing

In this section we prove the following useful tool by again exploiting the algebraic
nature of taking convolutions.

Lemma 2.21 (Sparse Verification). Given three integer vectors 𝐴, 𝐵, 𝐶 ∈ Z𝑛 of spar-
sity at most 𝑡, there is a randomized algorithm testing whether 𝐴★𝐵 = 𝐶. It runs in
time 𝑂(𝑡 log𝑡 𝑛 + polylog(∥𝐴∥∞∥𝐵∥∞)) and fails with probability at most 1/poly(𝑡).

The typical application of this verifier is to boost the success probability of
sparse convolution algorithms: If there is a sparse convolution algorithm with

51

constant success probability, say, then we can construct an algorithm succeeding
with high probability by rerunning the algorithm whenever this verifier fails.

The idea behind the lemma is standard: We view 𝐴, 𝐵 and 𝐶 as polynomials
via 𝐴(𝑋) = ∑

𝑖 𝐴[𝑖] · 𝑋 𝑖 and similarly for 𝐵 and 𝐶. Recall that taking convolutions
is the same as multiplying polynomials in that viewpoint, i.e., it suffices to check
whether 𝐴𝐵 = 𝐶. This is a polynomial identity testing problem which can be clas-
sically solved by the Schwartz-Zippel lemma.

Proof. First check whether ∥𝐶∥∞ > 𝑡∥𝐴∥∞∥𝐵∥∞ and reject in this case. Otherwise
compute a prime 𝑝 > poly(𝑡) · 𝑛+ 𝑡∥𝐴∥∞∥𝐵∥∞. We view 𝐴, 𝐵 and 𝐶 as polynomials
overZ𝑝, by interpreting 𝐴(𝑋) = ∑

𝑖 𝐴[𝑖] ·𝑋 𝑖 and similarly for 𝐵 and𝐶. Next, sample
a random point 𝑥 ∈ Z𝑝. We use the bulk exponentiation algorithm (Lemma 2.16)
to precompute all relevant powers 𝑥𝑖 and then evaluate 𝐴(𝑥), 𝐵(𝑥) and 𝐶(𝑥) at 𝑥.
If 𝐴(𝑥)𝐵(𝑥) = 𝐶(𝑥), then we accept (confirming that 𝐴 ★ 𝐵 = 𝐶), otherwise we
reject.

If 𝐴𝐵 = 𝐶, then this algorithm is always correct. So suppose that 𝐴𝐵 ≠ 𝐶, and
let 𝐷 = 𝐴𝐵 − 𝐶. Over the integers it is clear that 𝐷 is not the zero polynomial,
and since 𝑝 is large enough it also holds that 𝐷 is nonzero over Z𝑝. The algorithm
essentially evaluates𝐷 at a random point 𝑥 ∈ Z𝑝 and accepts if and only if𝐷(𝑥) = 0.
The error event is that 𝐷(𝑥) = 0 despite 𝐷 being nonzero as a polynomial. Recall
that 𝐷 has degree at most 𝑛, so it has at most 𝑛 zeros. Therefore, the probability of
hitting a zero is at most 𝑛/𝑝 < 1/poly(𝑡).

Finally, we analyze the running time. Precomputing the prime 𝑝 takes time
polylog(𝑡∥𝐴∥∞∥𝐵∥∞). Using the bulk exponentiation trick (Lemma 2.16), com-
puting the powers of 𝑥 takes time 𝑂(𝑡 log𝑡 𝑛). Finally, evaluating 𝐴, 𝐵 and 𝐶 at 𝑥
takes time 𝑂(𝑡). Note that all arithmetic operations carried out in these steps are
over Z𝑝 and since a single element of Z𝑝 can be written down using a constant
number of machine words, each ring operation takes constant time. The total time
is 𝑂(𝑡 + polylog(∥𝐴∥∞∥𝐵∥∞)).

2.6 The Scaling Trick

Another handy ingredient to many of our algorithms is the so-called scaling trick;
see the followimg Lemma 2.22. The scaling trick was first applied to the context of
convolutions in [65]; see also [66, 58]. It states that, whenever we want to compute
the sumset 𝑋 + 𝑌 of two given sets 𝑋 + 𝑌 , we can assume that we have access
to a small superset 𝑍 ⊇ 𝑋 + 𝑌 at the cost of worsening the running time by a
factor 𝑂(log 𝑛). Formally:

Lemma 2.22 (Scaling Trick). Assume that there exists an algorithm that, given
sets 𝑋,𝑌 , 𝑍 ⊆ [𝑛] such that 𝑋 + 𝑌 ⊆ 𝑍, computes 𝑋 + 𝑌 in time 𝑇 (|𝑍 |). Then there is
an algorithm that, given sets 𝑋,𝑌 ⊆ [𝑛], computes 𝑋 +𝑌 in time 𝑂(𝑇 (|𝑋 +𝑌 |) log 𝑛).

Proof. Let A be the algorithm to compute the sumset 𝑋 + 𝑌 given a small su-
perset 𝑍 ⊇ 𝑋 + 𝑌 . We design a simple recursive algorithm that computes the sum-
set 𝑋 + 𝑌 without any further assumptions:

1 Let 𝑋 ′ = {⌊ 𝑥2 ⌋ : 𝑥 ∈ 𝑋}, 𝑌 ′ = {⌊ 𝑦2 ⌋ : 𝑦 ∈ 𝑌 } and recursively compute 𝑍′ =
𝑋 ′ + 𝑌 ′.

2 Let 𝑍 = {2𝑧, 2𝑧 + 1, 2𝑧 + 2 : 𝑧 ∈ 𝑍′}. We will prove that this set 𝑍 satisfies the
desired condition 𝑋 + 𝑌 ⊆ 𝑍.

3 Compute 𝑋 + 𝑌 by callingA(𝑋,𝑌 , 𝑍).

For the correctness of this algorithm it suffices to argue that 𝑋 + 𝑌 ⊇ 𝑍. Take any
pair of elements 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 . We clearly have that 𝑧′ = ⌊ 𝑥2 ⌋ + ⌊

𝑦
2 ⌋ ∈ 𝑍

′ and using

52

this we prove that 𝑥 + 𝑦 ∈ 𝑍. By the elementary bounds 𝑎 − 1 ≤ ⌊𝑎⌋ ≤ 𝑎, for any
rational 𝑎 ∈ Q, we have that

𝑥 + 𝑦 =
2𝑥
2
+ 2𝑦

2
≤ 2

⌊𝑥
2

⌋
+ 1 + 2

⌊ 𝑦
2

⌋
+ 1 = 2𝑧′ + 2,

𝑥 + 𝑦 =
2𝑥
2
+ 2𝑦

2
≥ 2

⌊𝑥
2

⌋
+ 2

⌊ 𝑦
2

⌋
= 2𝑧′ .

In summary, 𝑥+ 𝑦 is an integer in the range [2𝑧′ . . 2𝑧′+2]. By construction, 𝑥+ 𝑦 ∈ 𝑍.
From the same argument it follows that 𝑍 ≤ 3|𝑋 +𝑌 | as any element in 𝑋 +𝑌 causes
at most three elements in 𝑍.

It remains to bound the running time. As |𝑍 | ≤ 3|𝑋 + 𝑌 |, calling the algo-
rithm A takes time 𝑇 (3|𝑋 + 𝑌 |) = 𝑂(𝑇 (|𝑋 + 𝑌 |)). The recursive call continues to
compute a sumset 𝑋 ′ + 𝑌 ′ of size |𝑋 ′ + 𝑌 ′ | ≤ |𝑋 + 𝑌 |, and since the recursion tree
reaches depth log 𝑛, the total time is 𝑂(𝑇 (|𝑋 + 𝑌 |) log 𝑛).

We remark that the scaling trick only works for sumsets (or more generally,
nonnegative convolutions), but it cannot be applied to approximate the support
of integer convolutions. Recall that for integer convolutions, there can be can-
cellations leading to unexpectedly small support sets. For instance, consider the
length-𝑛 vectors 𝐴 = (1, . . . , 1) and 𝐵 = (1,−1, 0, . . . , 0). Their convolution is the
vector 𝐴 ★ 𝐵 = (1, 0, . . . , 0,−1, 0, . . . , 0) with sparsity 2. Attempting to apply the
scaling trick to recursively approximate the support supp(𝐴★ 𝐵) leads to failure,
as in this case the vector 𝐵′ would collapse 𝐵 to the zero-vector. It remains an
interesting question to find an appropriate substitute of the scaling trick for inte-
ger convolutions, which would possibly lead to new (in particular, deterministic)
algorithms for computing integer convolutions.

Scaling Trick over F𝒅𝒑 . The scaling trick can however be applied to approximate
the support of nonnegative convolutions over groups other than the integers. We
specifically need the following variant for finite-field vector spaces:

Lemma 2.23 (Scaling Trick over F𝒅𝒑). Assume that there exists an algorithm that,
given sets 𝑋,𝑌 , 𝑍 ⊆ F𝑑𝑝 such that 𝑋 +𝑌 ⊆ 𝑍, computes 𝑋 +𝑌 in time𝑇 (|𝑍 |). Then there
is an algorithm that, given sets 𝑋,𝑌 ⊆ [𝑛], computes 𝑋 +𝑌 in time 𝑂(𝑇 (𝑝|𝑋 +𝑌 |)𝑑).

Proof. This proof is very similar to the proof of Lemma 2.22. We let A be the
algorithm computing the sumset 𝑋+𝑌 provided a small superset𝑍 ⊇ 𝑋 + 𝑌 is given,
and design a recursive algorithm computing the sumset 𝑋 + 𝑌 unconditionally.

1 Let

𝑋 ′ = {(𝑥1, . . . , 𝑥𝑑−1) : (𝑥1, . . . , 𝑥𝑑) ∈ 𝑋},
𝑌 ′ = {(𝑦1, . . . , 𝑦𝑑−1) : (𝑦1, . . . , 𝑦𝑑) ∈ 𝑌 }

and recursively compute 𝑍′ = 𝑋 ′ + 𝑌 ′. Notice that 𝑍′ can be obtained from
𝑋 + 𝑌 by chopping of the last coordinates from all elements.

2 Let

𝑍 = {(𝑧1, . . . , 𝑧𝑑) : (𝑧1, . . . , 𝑧𝑑−1) ∈ 𝑍′, 𝑧𝑑 ∈ F𝑝}.

It is fairly obvious that this set 𝑍 satisfies the desired condition 𝑋 + 𝑌 ⊆ 𝑍.
3 Compute 𝑋 + 𝑌 by callingA(𝑋,𝑌 , 𝑍).

As the correctness should be clear from the previous explanations, it merely re-
mains to bound the running time. Note that |𝑍 | ≤ 𝑝|𝑋 + 𝑌 | as 𝑍 is obtained
from 𝑋 + 𝑌 by replacing in each element 𝑧 ∈ 𝑋 + 𝑌 the last coordinate by an ar-
bitrary field element from F𝑝. It follows that calling A takes time 𝑇 (𝑝|𝑋 + 𝑌 |).

53

Moreover, as before, the recursion tree reaches depth 𝑑 and the size of the recur-
sively computed sumsets 𝑋 ′ +𝑌 ′ does not increase, i.e., |𝑋 ′ +𝑌 ′ | ≤ |𝑋 +𝑌 |. In total,
the algorithm therefore runs in time 𝑂(𝑇 (𝑝|𝑋 + 𝑌 |)𝑑) as claimed.

Exploiting this scaling trick, it is easy to obtain an efficient algorithm to com-
pute nonnegative convolutions over F𝑑𝑝 (whenever both 𝑝 and 𝑑 are small). We
use the hashing approach outlined in Section 2.2.

Theorem 2.24 (Sparse Nonnegative Convolution over F𝒅𝒑). Let 𝐺 = F𝑑𝑝. Given
nonnegative vectors 𝐴, 𝐵 ∈ N𝐺 , we can compute 𝐴 ★ 𝐵 in time 𝑂(𝑡 · poly(𝑝𝑑)) by a
Monte Carlo randomized algorithm, where 𝑡 = ∥𝐴★ 𝐵∥0.

Proof. Let 𝑋 = supp(𝐴), 𝑌 = supp(𝐵). By the previous Lemma 2.23 we can as-
sume that we have access to a superset 𝑍 ⊇ 𝑋 + 𝑌 = supp(𝐴 ★ 𝐵), and it remains
to design an algorithm running in near-linear time with respect to 𝑡 = |𝑍 |.

We apply the hashing approach: Let 𝑑′ = ⌈log𝑝(100𝑡)⌉ and let𝐺′ = F𝑑′𝑝 ; i.e., the
subgroup𝐺′ has size 100𝑡 ≤ |𝐺′ | ≤ 100𝑝 ·𝑡. Let ℎ : 𝐺 → 𝐺′ be a random linear map
(see Lemma 2.10). We claim that for any element 𝑧 ∈ 𝑍, the probability that 𝑧 is
isolated under the hashing (that is, that there is no other 𝑧′ ∈ 𝑍 with ℎ(𝑧) = ℎ(𝑧′))
is at least 9

10 . Indeed, the collision probability is P(ℎ(𝑧) = ℎ(𝑧′)) ≤ |𝐺 |−1 ≤ 1
100𝑡 ,

therefore is suffices to take a union bound over all possible 𝑡 = |𝑍 | elements.
Our goal is to compute 𝐴 ★ 𝐵 on the subset of entries which are isolated un-

der ℎ. To this end, we compute ℎ(𝐴) and ℎ(𝐵), compute their convolution using
Theorem 2.3, and recover (𝐴 ★ 𝐵) [𝑧] = (ℎ(𝐴) ★ ℎ(𝐵)) [ℎ(𝑧)] for all isolated ele-
ments 𝑧. By the isolation property, it is easy to check that this is correct.

As we have argued before, each element is isolated with probability at least 9
10 .

Hence, by repeating the process for 𝑂(log 𝑡) iterations, each element in 𝑍 was iso-
lated at least once with high probability, and at this point we have recovered the
complete vector 𝐴★ 𝐵.

The total running time (ignoring the scaling trick) can be bounded as follows:
Constructing ℎ(𝐴) and ℎ(𝐵) takes time 𝑂(∥𝐴∥0 + ∥𝐵∥0) = 𝑂(𝑡). Computing their
convolution ℎ(𝐴) ★ℎ(𝐵) takes time 𝑂(|𝐺′ | log |𝐺′ |) using Theorem 2.3, and by our
choice of 𝐺′ this becomes 𝑂(𝑡 · 𝑝). In the same time budget we can also test for
each element in 𝑍 whether it is isolated under the hashing. In total the running
time is𝑂(𝑡 · 𝑝) and the repetitions only add a logarithmic overhead of𝑂(log 𝑡). The
scaling trick incurs a factor 𝑝𝑑, thereby worsening the running time to𝑂(𝑡 · 𝑝2𝑑).

2.7 Witness Finding

Specifically in the context of Boolean convolution (aka computing sumsets 𝑋 +𝑌),
it is sometimes desirable to find witnesses. Here, we say that a witness of 𝑧 ∈ 𝑋 +𝑌
is a pair (𝑥, 𝑦) ∈ 𝑋 × 𝑌 such that 𝑥 + 𝑦 = 𝑧; we denote the set of witness of 𝑧 by
𝑊𝑋,𝑌 (𝑧).

Theorem 2.25 (Witness Finding). Assume that, given 𝑋,𝑌 ⊆ 𝐺we can compute 𝑋+𝑌
in time𝑇 (|𝑋 +𝑌 |). Then there is a Monte Carlo randomized algorithm that uniformly
samples, for each 𝑧 ∈ 𝑋 + 𝑌 , a witness from𝑊𝑋,𝑌 (𝑧) = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑥 + 𝑦 = 𝑧}.
The algorithm runs in time 𝑂(𝑇 (|𝑋 + 𝑌 |)).

We remark that in order to list 𝑤 witnesses from 𝑊𝑋,𝑌 (𝑧) for each 𝑧 ∈ 𝑋 + 𝑌
(or all witnesses, if |𝑊𝑋,𝑌 (𝑧) | ≤ 𝑤), it suffices to run this algorithm𝑂(𝑤) times. If 𝑧
has more than𝑤witnesses, then with high probability we have sampled at least𝑤
different witnesses in this way. And if 𝑧 has at most 𝑤 many witnesses, then with
high probability we have sampled all witnesses.

Proof. The algorithm follows a standard recipe. We first apply the isolation tech-
nique to isolate a single witness (for many elements 𝑧). Then, we identify this
unique witness bit-by-bit.

54

Step 1: Isolating a Single Witness. As the first step we repeatedly subsample the
set 𝑋 . The hope is that in this way, for any fixed 𝑧, we isolate a single witness.
Formally, we define a sequence of sets 𝑋0, 𝑋1, · · · ⊆ 𝑋 by letting 𝑋0 = 𝑋 and let-
ting 𝑋𝑖 ⊆ 𝑋𝑖−1 be a random subset that including each element with probability 1

2 .
With high probability, after at most 𝐿 = 𝑂(log |𝑋 |) steps this process has reached
the empty set 𝑋𝐿 = ∅.

Fix any 𝑧 ∈ 𝑋+𝑌 , and consider the sequence𝑊0 =𝑊𝑋0 ,𝑌 (𝑧),𝑊1 =𝑊𝑋1 ,𝑌 (𝑧),
Note that this sequence is equivalently obtained by𝑊0 =𝑊𝑋,𝑌 (𝑧) and by subsam-
pling a random subseteq 𝑊𝑖 ⊆ 𝑊𝑖−1 with rate 1

2 for all 𝑖 > 0. We show that with
constant probability, there is a set𝑊𝑖 in the sequence with size exactly |𝑊𝑖 | = 1. In-
deed, suppose that |𝑊𝑖 | ≥ 2. Then the only error event is the number of witnesses
drops from at least 2 to 0. In case that the number of witnesses stays at least 2, we
simply move on to the next set𝑊𝑖+1. This error event happens with probability at
most

P(|𝑊𝑖+1 | = 0 | |𝑊𝑖+1 | ≤ 1) = P(|𝑊𝑖+1 | = 0)
P(|𝑊𝑖+1 | ≤ 1) =

2−|𝑊𝑖 |

(1 + |𝑊𝑖 |) · 2−|𝑊𝑖 |
=

1
1 + |𝑊𝑖 |

≤ 1
3
.

Moreover, note that by symmetry the only surviving witness is uniformly dis-
tributed.

Step 2: Identifying the Unique Witness. Focus on any set 𝑋𝑖 as constructed in the
previous step, and assume that for the fixed 𝑧 we have isolated a single witness,
i.e., |𝑊𝑖 | = 1. Our goal is to identify that unique witness. Let 𝑋𝑖,0, . . . , 𝑋𝑖,𝑅−1 ⊆ 𝑋𝑖 be
random subsets of 𝑋𝑖 including each element independently with probability 1

2 .
Using the fast sumset algorithm, we compute 𝑍𝑖,0 = 𝑋𝑖,0 + 𝑌, . . . , 𝑍𝑖,𝑅−1 = 𝑋𝑖,𝑅−1 + 𝑌 .
For each element 𝑧 ∈ 𝑋 + 𝑌 , we define its identifier as the length-𝑅 bit-vector in-
dicating which sets 𝑍𝑖,0, . . . , 𝑍𝑖,𝑅−1 contain 𝑧. We similarly define the identifier of
an element 𝑥 ∈ 𝑋 by the length-𝑅 bit-vector indicating which sets 𝑋𝑖,0, . . . , 𝑋0,𝑅−1
contain 𝑥. Note that for each isolated element 𝑧, the unique witness 𝑥 of 𝑧 shares
the same identifier. Moreover, by choosing 𝑅 = Ω(log |𝑋 |) with high probability
the identifiers of all elements in 𝑋 are pairwise distinct. Therefore, by computing
the identifiers of all elements in 𝑋 and 𝑍, and comparing these to each other, we
can identify the unique witnesses of all isolated elements 𝑧.

The running time of this approach is dominated by the 𝑂(log2 |𝑋 |) calls to the
sumset algorithm. Each call is of the form 𝑋𝑖, 𝑗+𝑌 where 𝑋𝑖, 𝑗 ⊆ 𝑌 , hence the running
time can be bounded by 𝑂(𝑇 (|𝑋 + 𝑌 |) log2 |𝑋 |) (assuming that 𝑇 (·) is nondecreas-
ing). Note that this algorithm succeeds for each 𝑧 with constant probability, hence
we have to repeat the whole procedure 𝑂(log |𝑋 |) times.

We remark that finding a single witness can be derandomized at polylogarith-
mic cost using 𝜖-biased sets similar to [15].

55

56

3 Deterministic and Las Vegas Algorithms for
Sparse Nonnegative Convolution

In this chapter we provide technical details on the deterministic and Las Vegas
algorithms for sparse nonnegative convolution in Theorems 1.3 to 1.5. The results
of this chapter are originally based on the same-named paper [60].

60 Karl Bringmann, Nick Fischer, and Vasileios Nakos. “Deterministic and Las
Vegas algorithms for sparse nonnegative convolution”. In: 33rd annual ACM-
SIAM symposium on discrete algorithms (SODA 2022). SIAM, 2022, pages 3069–
3090. 10.1137/1.9781611977073.119.

Organization. We organize this chapter as follows: In Section 3.1 we give a quick
high-level overview of our techniques. Then, in Sections 3.3 and 3.4 we respec-
tively give details. For this chapter we presuppose several tools from the previous
Chapter 2.

3.1 Overview

We start with a technical overview of the ideas behind Theorems 1.3 to 1.5. The
deterministic algorithm uses a radically different approach than the Las Vegas al-
gorithms.

3.1.1 Deterministic Algorithm

Theorem 1.3 (Deterministic Sparse Nonnegative Convolution). There is a deter-
ministic algorithm to compute the convolution of two nonnegative vectors 𝐴, 𝐵 ∈ N𝑛

in time 𝑂(𝑡 polylog(𝑛Δ)), where 𝑡 = ∥𝐴★ 𝐵∥0 and Δ = ∥𝐴★ 𝐵∥∞.

The algorithm is in fact easy to describe, given the tool set we established
in the last section. The main parts of the algorithm are algebraic and we will
view the vectors 𝐴 and 𝐵 as univariate polynomials via the natural correspon-
dence 𝐴(𝑋) = ∑𝑛−1

𝑖=0 𝐴[𝑖] · 𝑋 𝑖 . We follow the approach outlined in Section 2.3 to
compute the product polynomial 𝐶 = 𝐴𝐵:

1 Evaluate 𝐴(𝑥0), . . . , 𝐴(𝑥2𝑡−1) and 𝐵(𝑥0), . . . , 𝐵(𝑥2𝑡−1) at some carefully chosen
points 𝑥0, . . . , 𝑥2𝑡−1.

2 Multiply 𝐶(𝑥0) ← 𝐴(𝑥0) · 𝐵(𝑥0), . . . , 𝐶(𝑥2𝑡−1) ← 𝐴(𝑥2𝑡−1) · 𝐵(𝑥2𝑡−1)
3 Interpolate the 𝑡-sparse polynomial 𝐶 from its evaluations 𝐶(𝑥0), . . . , 𝐶(𝑥2𝑡−1)

using a variant of Prony’s method.

Unfortunately, it is not known how to implement Prony’s method in determin-
istic near-linear time, so we have to improvise. In the following we reiterate our
explanation of Prony’s method from Section 2.3.1 and describe how we implement
each step for our convolution algorithm. Recall that in Prony’s method we evalu-
ate the polynomial at the points of a geometric series 𝜔0, . . . , 𝜔2𝑡−1, for a particu-
larly chosen 𝜔. The remaining algorithm runs in two phases: In the first phase we
recover the support of polynomial and in the second phase we recover its coeffi-
cients. We again start with the second phase which is conceptually simpler.

Phase 2: Recovering the Coefficients. Suppose that we have already solved
phase 1 and have successfully recovered the support supp(𝐶) = {𝑧0, . . . , 𝑧𝑡−1}.
Then, given the evaluations 𝐶(𝜔0), . . . , 𝐶(𝜔𝑡−1), how can we recover the coeffi-

57

https://doi.org/10.1137/1.9781611977073.119

cients 𝐶 [𝑧0], . . . , 𝐶 [𝑧𝑡−1]? The trick is to observe that the evaluation of a sparse
polynomial can be expressed as a nicely structured matrix-vector product:

𝐶(𝜔0)
𝐶(𝜔1)
...

𝐶(𝜔𝑡−1)


=


1 1 · · · 1
𝜔𝑧0 𝜔𝑧1 · · · 𝜔𝑧𝑡−1

...
...

. . .
...

𝜔 (𝑡−1)𝑧0 𝜔 (𝑡−1)𝑧1 · · ·𝜔 (𝑡−1)𝑧𝑡−1



𝐶 [𝑧0]
𝐶 [𝑧1]
...

𝐶 [𝑧𝑡−1]


.

This matrix is the transpose of a Vandermonde matrix. It is known that perform-
ing linear algebra operations (such as computing matrix-vector products, or solv-
ing linear systems) with transposed Vandermonde matrices can be implemented
in 𝑂(𝑡 log2 𝑡) field operations (see Theorem 2.18 [132, 152, 168]). Therefore, to in-
terpolate the coefficients 𝐶 [𝑧0], . . . , 𝐶 [𝑧𝑡−1], we solve this system of linear equa-
tions with indeterminates 𝐶 [𝑧0], . . . , 𝐶 [𝑧𝑡−1]. Note that for this step is necessary
to know the support 𝑧0, . . . , 𝑧𝑡−1 in advance, as otherwise cannot even write down
the equation system.

Another critical condition is that the equation system must be nonsingular in
order to have a unique solution. This condition is equivalent to𝜔𝑧0 , . . . , 𝜔𝑧𝑡−1 being
pairwise distinct. Thus, a reasonable way to achieve the condition is to let 𝜔 be a
field element with multiplicative order at least 𝑛 ≥ deg(𝐶). We soon describe how
to obtain such an element deterministically.

Phase 1: Recovering the Support. In Prony’s method we run involved algebraic
machinery such as solving a linear recurrence, polynomial root finding and com-
puting discrete logarithms to get access to the support 𝑧0, . . . , 𝑧𝑡−1. Unfortunately,
it is not known how to efficiently implement the root-finding step by a determin-
istic algorithm.

We will therefore compute the support differently, exploiting that we only deal
with nonnegative convolution. In fact, it suffices to compute a small superset 𝑍 of
the support. To this end, we use the scaling trick described in Section 2.6. In a
nutshell, the scaling trick is to construct smaller vectors 𝐴′, 𝐵′ of length 𝑛

2 defined
by 𝐴′ [𝑖] = 𝐴[2𝑖] + 𝐴[2𝑖 + 1] and 𝐵′ [𝑗] = 𝐵[2 𝑗] + 𝐵[2 𝑗 + 1], to compute their
convolution 𝐶′ = 𝐴′ ★ 𝐵′ recursively, and to obtain the superset as

𝑍 = {2𝑘, 2𝑘 + 1, 2𝑘 + 2 : 𝑘 ∈ supp(𝐶′)}.

This choice is correct: Clearly |𝑍 | ≤ 3𝑡, and it is easy to verify that 𝑍 is indeed a
superset of supp(𝐴 ★ 𝐵). The recursion only reaches depth log 𝑛, and thus incurs
a logarithmic overhead in the running time.

Which Evaluation Points? Finally, let us revisit how to pick the evaluation points.
We will work over some appropriately large finite field F𝑝 so that we do not suffer
from losses in the running due to large integers. (We remark that this algorithm is
numerically unstable, so using complex arithmetic is not an option.) As outlined
before, it is necessary to pick the evaluation points 𝜔0, . . . , 𝜔𝑥𝑡−1 for some 𝜔 ∈ F𝑝,
but how to pick 𝜔? The only relevant property is that 𝜔 has multiplicative order
at least 𝑛. (In particular, this requires 𝑝 ≥ 𝑛.)

There is a simple randomized algorithm: Pick a random element. Unfortu-
nately, the best-known deterministic algorithms for finding a large-order element
in a given prime field F𝑝 require time polynomial in 𝑝 [80]. Thus, it seems in-
tractable to work over a finite field F𝑝 with 𝑝 ≥ 𝑛 as originally intended.

Fortunately, in a finite field F𝑞 = F𝑝𝑚 with prime power order, it is possi-
ble to find large-order elements in time poly(𝑝, 𝑚) [79, 190, 191]. Specifically,
setting 𝑝, 𝑚 = polylog(𝑛) we can find an element 𝜔 with order at least 𝑛 in
time polylogarithmic time. Working over a finite field with small characteris-
tic 𝑝 ≤ polylog(𝑛) has another drawback though: We cannot recover the entries
of the vector 𝐴 ★ 𝐵 (which can have size up to 𝑛, even if 𝐴 and 𝐵 are bit-vectors

58

Algorithm 3.1. Given two nonnegative vectors 𝐴, 𝐵 ∈ N𝑛, this Las Vegas algo-
rithm correctly computes their convolution 𝐴★ 𝐵.

1 for 𝑚← 1, 2, 4, . . . ,∞ do
2 repeat 2 log𝑚 times
3 Sample a linear hash function ℎ : [𝑛] → [𝑚]
4 Compute 𝑋 ← ℎ(𝐴) ★𝑚 ℎ(𝐵)
5 Compute 𝑌 ← ℎ(𝜕𝐴) ★𝑚 ℎ(𝐵) + ℎ(𝐴) ★𝑚 ℎ(𝜕𝐵)
6 Compute 𝑍 ← ℎ(𝜕2𝐴) ★𝑚 ℎ(𝐵) + 2ℎ(𝜕𝐴) ★𝑚 ℎ(𝜕𝐵) + ℎ(𝐴) ★𝑚 ℎ(𝜕2𝐵)
7 Initialize 𝑅← (0, . . . , 0)
8 for each 𝑘 ∈ [𝑚] do
9 if 𝑋 [𝑘] ≠ 0 and 𝑌 [𝑘]2 = 𝑋 [𝑘] · 𝑍 [𝑘] then
10 𝑧 ← 𝑌 [𝑘] / 𝑋 [𝑘]
11 𝑅[𝑧] ← 𝑅[𝑧] + 𝑋 [𝑘]
12 Let 𝐶 be the coordinate-wise maximum of all vectors 𝑅
13 if ∥𝐶∥1 = ∥𝐴∥1 · ∥𝐵∥1 then return 𝐶

to begin with). We remedy this problem by computing the convolution 𝐴 ★ 𝐵

over several finite fields F𝑞1 , F𝑞2 , . . . , and use the Chinese Remainder Theorem to
identify the correct integer solution afterwards.

This completes the description of the deterministic algorithm. We provide the
details in Section 3.3.

3.1.2 Simple Las Vegas Algorithm

Next, we state our simple Las Vegas algorithm and outline the idea behind the
proof.

Theorem 1.4 (Simple Las Vegas for Sparse Nonnegative Convolution). There is
a Las Vegas randomized algorithm to compute the convolution of two nonnegative
vectors 𝐴, 𝐵 ∈ N𝑛 in expected time 𝑂(𝑡 log2 𝑡), where 𝑡 = ∥𝐴 ★ 𝐵∥0. Moreover, with
probability 1 − 𝛿 the running time is bounded by 𝑂(𝑡 log2 (𝑡/𝛿)).

The proof of Theorem 1.4 is essentially given by Algorithm 3.1—this is a sim-
ple Las Vegas algorithm with expected running time 𝑂(𝑡 log2 𝑡) as claimed in The-
orem 1.4; however, to obtain the tail bound on the running time one has to slightly
refine Algorithm 3.1. We provide this refinement along with a detailed analysis
in Section 3.4; for the rest of the overview we will analyze the simple version in
Algorithm 3.1.

To understand the pseudocode, we first recall some notation: For a vector 𝐴,
we denote by 𝜕𝐴 its derivative defined coordinate-wise as (𝜕𝐴) [𝑖] = 𝑖 · 𝐴[𝑖]. More
generally, we denote by 𝜕𝑑𝐴 its 𝑑-th derivative with (𝜕𝑑𝐴) [𝑖] = 𝑖𝑑 ·𝐴[𝑖]. This defini-
tion is in slight dissonance with the analogous definition for polynomials (which
would require the derivative vector to be scaled and shifted), but we prefer this
version as it leads to a slightly simpler algorithm.

We also define hashing for vectors: For a hash function ℎ : [𝑛] → [𝑚] and a
length-𝑛 vector 𝐴, define the length-𝑚 vector ℎ(𝐴) via ℎ(𝐴) [𝑗] = ∑

𝑖:ℎ(𝑖)= 𝑗 𝐴[𝑖]. The
operator★𝑚 denotes convolution with wrap-around (see Section 2.1 for details).

Let us outline the high-level idea of Algorithm 3.1. The outer loop (Line 1)
guesses the correct sparsity, i.e., as soon as the outer loop reaches a value𝑚 ≥ Ω(𝑡)
we expect the algorithm to terminate. Each iteration of the repeat-loop (Line 2) is
supposed to produce a vector 𝑅 which closely approximates 𝐴 ★ 𝐵. More specifi-
cally, we prove that 𝑅 satisfies the following two properties:

1 It always holds that 𝑅 ≤ 𝐴★ 𝐵 (coordinate-wise).
2 Equality is achieved at any coordinate with constant probability (provided

that the outer loop has reached a sufficiently large value 𝑚 ≥ Ω(𝑡)).

59

31 Strictly speaking, that con-
dition is not sufficient because
linear hashing is only “almost”
additive. We ignore this tech-
nical issue in the overview and
give the full analysis in Sec-
tion 3.4.

It follows that 𝐶, the coordinate-wise maximum of several vectors 𝑅, also always
satisfies 𝐶 ≤ 𝐴 ★ 𝐵. Hence, the algorithm never outputs an incorrect solution.
Indeed, since 𝐶 and 𝐴★𝐵 are nonnegative vectors, the vector 𝐶 = 𝐴★𝐵 is the only
one simultaneously satisfying 𝐶 ≤ 𝐴 ★ 𝐵 and ∥𝐶∥1 = ∥𝐴 ★ 𝐵∥1 = ∥𝐴∥1 · ∥𝐵∥1. To
see that Algorithm 3.1 terminates fast, note that the repeat-loop runs for Ω(log𝑚)
iterations and thus, using the second claim we correctly assign all coordinates with
high probability.

The crucial part is to prove that𝑅 satisfies the claims 1 and 2. Intuitively,𝑅 con-
sists of all nonzero entries from 𝐴 ★ 𝐵 which did not suffer from a collision with
another nonzero entry. For a more formal argument, we analyze the inner-most
loop (Line 8). For starters, focus on an iteration 𝑘 ∈ [𝑚] and suppose that there is
only a single nonzero entry in 𝐴★𝐵, say at 𝑧, which is hashed to the bucket 𝑘.31 In
this case we have the three identities 𝑋 [𝑘] = (𝐴★ 𝐵) [𝑧], 𝑌 [𝑘] = 𝑧 · (𝐴★ 𝐵) [𝑧]
and 𝑍 [𝑘] = 𝑧2 · (𝐴★ 𝐵) [𝑧]. As a consequence, the conditions “𝑋 [𝑘] ≠ 0” and
“𝑌 [𝑘]2 = 𝑋 [𝑘] · 𝑍 [𝑘]” in Line 9 are satisfied. The algorithm then correctly identi-
fies 𝑧 in Line 10 and updates “𝑅[𝑧] ← 𝑅[𝑧] + (𝐴★ 𝐵) [𝑧]” as intended.

However, to prove claim 1 (which is ultimately responsible for the Las Vegas
guarantee), we have to be certain that Lines 10 and 11 are only executed if there is a
single entry hashed to the 𝑘-th bucket (otherwise, the index 𝑧 computed in Line 10
is likely to be nonsense). The key insight is that the simple test “𝑌 [𝑘]2 = 𝑋 [𝑘] ·𝑍 [𝑘]”
in Line 9 suffices, as can be proven by the following lemma (see Section 3.4 for a
proof).

Lemma 3.1 (Testing 1-Sparsity). Let𝑉 be a nonnegative vector. Then ∥𝜕𝑉 ∥21 ≤ ∥𝑉 ∥1 ·
∥𝜕2𝑉 ∥1. This inequality is tight if and only if ∥𝑉 ∥0 ≤ 1.

This new tester is one of the reasons why we can achieve the claimed Las Ve-
gas running time simplifying (and slightly improving) upon Cole and Hariharan’s
algorithm. This concludes the overview of our simple Las Vegas algorithm (Theo-
rem 1.4).

3.2 Accelerated Las Vegas Algorithm

We continue with an exposition of our accelerated Las Vegas algorithm:

Theorem 1.5 (Fast Las Vegas for Sparse Nonnegative Convolution). There is a
Las Vegas randomized algorithm to compute the convolution of two nonnegative
vectors 𝐴, 𝐵 ∈ N𝑛 in expected time 𝑂(𝑡 log 𝑡 log log 𝑡), where 𝑡 = ∥𝐴★ 𝐵∥0.

The insight behind this result is that Algorithm 3.1 already reaches a very
good approximation after much less than 𝑂(log𝑚) iterations of the inner loop.
Indeed, after only 𝑂(log log 𝑛) iterations we expect that algorithm has already re-
covered 𝐴 ★ 𝐵 correctly up to a (log 𝑛)−Ω (1) fraction of the entries. At this point
it becomes more efficient to switch to another recovery approach which exploits
that 𝐴 ★ 𝐵 − 𝐶 is already quite sparse, as in [61]. In particular, since 𝐴 ★ 𝐵 − 𝐶 is
a nonnegative vector and its sparsity is at most 𝑡/log 𝑛, say, we can use the hash
function ℎ(𝑥) = 𝑥 mod 𝑝 for 𝑝 being a random prime in [𝑡, 2𝑡]. This family of hash
functions (1) satisfies that ℎ(𝐴)★𝑚 ℎ(𝐵) −ℎ(𝐶) = ℎ(𝐴★𝐵−𝐶) (and thus preserves
all cancellations) and (2) isolates a constant fraction of elements in 𝐴★𝐵 − 𝐶 with
constant probability to clear up the rest of the elements. Note that it is impor-
tant that 𝐴 ★ 𝐵 − 𝐶 is 𝑡/log 𝑛 sparse instead of 𝑡 sparse for (2) to hold, because ℎ
is only 𝑂(log 𝑛)-universal. Choosing 𝑂(log 𝑡) different random primes and using
the 1-sparsity testing we arrive at our desired algorithm. For the sparsity test we
require that the vector 𝐴★ 𝐵 − 𝐶 is nonnegative.

One catch is that this approach only gives a 𝑂(𝑡 log 𝑡 · log log 𝑛)-time algo-
rithm (instead of the desired time with log log 𝑡 in place of log log 𝑛) due to the fact
that ℎ(𝑥) is 𝑂(log 𝑛)-universal and hence the random prime must be chosen in an
interval that is also dependent on 𝑛 rather than solely on 𝑡. To address this issue
we apply the following precomputation: We hash to a poly(𝑡)-size universe and

60

verify that this hashing was successful in Las Vegas randomized time, again using
our 1-sparsity tester. The details of this step appear in Section 3.4.4.

3.2.1 Beyond 1-Sparsity?

An interesting technical open question is whether our sparsity-testing technique
can be extended? Specifically, can the technique be adapted to obtain the optimal
running time 𝑂(𝑡 log 𝑡)? Recall that the key step in the analysis is the application
of Lemma 3.1. This lemma can be generalized as follows: A nonnegative vector 𝑉
is at most 𝑠-sparse if and only if the following positive-semidefinite matrix is non-
singular:


∥𝜕0𝑉 ∥1 ∥𝜕1𝑉 ∥1 · · · ∥𝜕𝑠𝑉 ∥1
∥𝜕1𝑉 ∥1 ∥𝜕2𝑉 ∥1 · · ·∥𝜕𝑠+1𝑉 ∥1

...
...

. . .
...

∥𝜕𝑠𝑉 ∥1 ∥𝜕𝑠+1𝑉 ∥1· · · ∥𝜕2𝑠𝑉 ∥1


;

see for instance [154, Theorem 3A] for a proof. One approach for an improved
Las Vegas algorithm would be to hash to 𝑡/log 𝑡 buckets using a linear hash func-
tion, recover each bucket as in [61] in 𝑂(𝑡 log 𝑡) time and, using the generalized
sparsity-testing technique, verify that most buckets indeed have sparsity 𝑂(log 𝑡),
which in turn means that all but a 1/log 𝑡-fraction of 𝐴 ★ 𝐵 has been successfully
recovered; then one can continue and recover the rest with ℎ(𝑥) = 𝑥 mod 𝑝. Al-
though promising, this approach suffers from precision issues (when implement-
ing the 𝑂(log 𝑡)-tester the numbers get too large) and hence does not lead to the
desired 𝑂(𝑡 log 𝑡) time. It would be very interesting to find a way to circumvent
this obstacle and obtain the ideal 𝑂(𝑡 log 𝑡) Las Vegas running time.

3.3 Deterministic Algorithm

In this section we prove Theorem 1.3. We proceed in three steps, as outlined be-
fore. We start with some preliminaries on finite field arithmetic.

Finite Field Arithmetic. Let 𝑞 = 𝑝𝑚 be a prime power. Recall that the prime
field F𝑝 can be represented as Z/𝑝Z, the integers modulo 𝑝. The field F𝑞 can be
represented as F𝑝 [𝑋]/⟨ 𝑓 ⟩ where 𝑓 ∈ F𝑝 [𝑋] is an arbitrary irreducible degree-𝑚
polynomial. There is a deterministic algorithm to precompute such an irreducible
polynomial 𝑓 ∈ F𝑝 in time poly(𝑝, 𝑚) [189]; we will point out this step in our al-
gorithms. Having precomputed 𝑓 , we can perform the basic field operations in F𝑞
using polynomial arithmetic in time 𝑂(log 𝑞) [102].

Let us quickly recall some definitions from field theory. The multiplicative or-
der of an element 𝑥 is the smallest positive integer 𝑖 such that 𝑥𝑖 = 1; we also call 𝑥
an 𝑖-th root of unity. The minimal polynomial of a field element 𝑥 ∈ F is defined as
the smallest-degree monic polynomial (i.e., with leading coefficient 1) overFwhich
vanishes at 𝑥. We say that two field elements 𝑥, 𝑦 are conjugate if their minimal
polynomials coincide.

3.3.1 Sparse Polynomial Evaluation and Interpolation

The key ingredient to our deterministic algorithm is the efficient evaluation and
interpolation of sparse polynomials based on fast linear algebra with transposed
Vandermonde matrices.

Lemma 3.2 (Sparse Evaluation and Interpolation). Let F be a field and let 𝜔 ∈ F
have multiplicative order at least 𝑛. The following two computational problems can
be solved in deterministic time 𝑂(𝑡 log2 𝑡 + 𝑡 log 𝑛):

61

1 Evaluation: Given a 𝑡-sparse degree-𝑛 polynomial 𝐴, output 𝐴(𝜔0), . . . , 𝐴(𝜔𝑡−1).
2 Interpolation: Given 𝑎0, . . . , 𝑎𝑡−1 ∈ F and a size-𝑡 set 𝑋 ⊆ [𝑛], interpolate the

unique polynomial 𝐴 with support supp(𝐴) ⊆ 𝑋 and with evaluations 𝐴(𝜔𝑖) =
𝑎𝑖 for all 𝑖 ∈ [𝑡].

Proof. We build the two algorithms separately.

1 Evaluation: Assume that 𝐴 has the form 𝐴(𝑋) = ∑𝑡−1
𝑖=0 𝐴[𝑥𝑖] · 𝑋𝑥𝑖 . We precom-

pute the powers 𝜔𝑥0 , . . . , 𝜔𝑥𝑡−1 by repeated squaring in time 𝑂(𝑡 log 𝑛). We can
then compute the evaluations 𝐴(𝜔0), . . . , 𝐴(𝜔𝑡−1) by computing the following
transposed Vandermonde matrix-vector product:


𝐴(𝜔0)
𝐴(𝜔1)
...

𝐴(𝜔𝑡−1)


=


1 1 · · · 1
𝜔𝑥0 𝜔𝑥1 · · · 𝜔𝑥𝑡−1

...
...

. . .
...

𝜔 (𝑡−1)𝑥0𝜔 (𝑡−1)𝑥1 · · ·𝜔 (𝑡−1)𝑥𝑡−1



𝐴[𝑥0]
𝐴[𝑥1]
...

𝐴[𝑥𝑡−1]


.

Since 𝜔 has order at least 𝑛, the elements 𝜔𝑥1 , . . . , 𝜔𝑥𝑡 are pairwise distinct.
Therefore, this matrix is nonsingular and we may apply Theorem 2.18 to effi-
ciently evaluate the product in time 𝑂(𝑡 log2 𝑡).

2 Interpolation: Let 𝑥0, . . . , 𝑥𝑡−1 denote the elements in 𝑋 . We similarly prepare
the powers 𝜔𝑥1 , . . . , 𝜔𝑥𝑡 via repeated squaring. To interpolate 𝐴, we use The-
orem 2.18 to solve the following transposed Vandermonde equation system
with indeterminates 𝐴[𝑥1], . . . , 𝐴[𝑥𝑡]:


𝑎0
𝑎1
...

𝑎𝑡−1


=


1 1 · · · 1
𝜔𝑥0 𝜔𝑥1 · · · 𝜔𝑥𝑡−1

...
...

. . .
...

𝜔 (𝑡−1)𝑥0𝜔 (𝑡−1)𝑥1 · · ·𝜔 (𝑡−1)𝑥𝑡−1



𝐴[𝑥0]
𝐴[𝑥1]
...

𝐴[𝑥𝑡−1]


.

Again, this matrix is nonsingular and thus Theorem 2.18 applies to compute
a solution in time 𝑂(𝑡 log2 𝑡). Setting 𝐴(𝑋) = ∑𝑡−1

𝑖=0 𝐴[𝑥𝑖] · 𝑋𝑥𝑖 , we clearly re-
constructed a polynomial with the correct evaluations 𝐴(𝜔𝑖) = 𝑎𝑖 and sup-
port supp(𝐴) ⊆ 𝑋 . Moreover, 𝐴 is the only polynomial satisfying these con-
ditions, since the equation system is nonsingular and therefore 𝐴 is uniquely
determined.

Using Lemma 3.2 we the deterministic algorithm is immediate, knowing a su-
perset of the support and an appropriate element 𝜔.

Lemma 3.3 (Sparse Convolution over a Large Field). Let F be a field. Given vec-
tors 𝐴, 𝐵 ∈ F𝑛, a set 𝑍 ⊇ supp(𝐴 ★ 𝐵) and an element 𝜔 ∈ F with multiplicative
order at least 𝑛, we can compute 𝐴 ★ 𝐵 in deterministic time 𝑂(𝑡 log2 𝑡 + 𝑡 log 𝑛)
using 𝑂(𝑡 log2 𝑡 + 𝑡 log 𝑛) field operations. Here, 𝑡 = ∥𝐴∥0 + ∥𝐵∥0 + |𝑍 |.

Proof. We follow an evaluation–interpolation approach. Let us identify vectors
with polynomials via 𝐴(𝑋) = ∑𝑛−1

𝑖=0 𝐴[𝑖] ·𝑋 𝑖 . In this correspondence, taking convo-
lutions 𝐴★ 𝐵 corresponds to multiplying polynomials 𝐴(𝑋) · 𝐵(𝑋).

We first evaluate 𝐴(𝜔0), . . . , 𝐴(𝜔𝑡−1) and 𝐵(𝜔0), . . . , 𝐵(𝜔𝑡−1) using Lemma 3.2.
We then apply Lemma 3.2 again to interpolate a polynomial 𝐶(𝑋) with support
supp(𝐶) ⊆ 𝑍 and evaluations 𝐶(𝜔𝑖) = 𝐴(𝜔𝑖) · 𝐵(𝜔𝑖) for all 𝑖 ∈ [𝑡]. One solution is
the correct polynomial 𝐶(𝑋) = 𝐴(𝑋) · 𝐵(𝑋), and Lemma 3.2 guarantees that this is
the unique solution. The running time is 𝑂(𝑡 log2 𝑡 + 𝑡 log 𝑛) as claimed.

It remains to construct 𝜔 (see Section 3.3.2) and to find a superset of the sup-
port (see the complete algorithm in Section 3.3.3).

62

3.3.2 Finding Large-Order Elements

We next solve the sparse convolution problem for integer vectors 𝐴, 𝐵 assuming
that we know the support of 𝐴★𝐵, using what we have established in the last sec-
tion. We start with the following two lemmas due to Cheng [79]; for completeness
we include short proofs.

Lemma 3.4 ([79]). Let 𝛽 ∈ F𝑝 be primitive. Then 𝑋 𝑝−1 − 𝛽 ∈ F𝑝 [𝑋] is irreducible.

Proof. Let 𝑓 = 𝑋 𝑝−1 − 𝛽 and let 𝑓 = 𝑓1 . . . 𝑓𝑚 denote its factorization into monic
irreducibles. We first prove that all factors have the same degree. Let 𝛼 be a root
of 𝑓 (in a field extension). Then {𝑥𝛼 : 𝑥 ∈ F×𝑝 } must be the full set of roots of 𝑓 .
Indeed, (𝑥𝛼)𝑝−1 − 𝛽 = 𝑥𝑝−1𝛽 − 𝛽 = 0 by Fermat’s Little Theorem, and there cannot
be other roots since 𝑓 has degree 𝑝−1. Pick arbitrary distinct indices 1 ≤ 𝑖, 𝑗 ≤ 𝑚;
we prove that deg(𝑓𝑖) ≤ deg(𝑓 𝑗). Let 𝑥, 𝑦 ∈ F×𝑝 be such that 𝑥𝛼 is a root of 𝑓𝑖
and 𝑦𝛼 is a root of 𝑓 𝑗 . We can construct a polynomial 𝑓 ′

𝑗
(𝑋) = 𝑓 𝑗 (𝑦𝑥−1𝑋), which

by construction has degree deg(𝑓 𝑗) and has 𝑥𝛼 as a root. But recall that 𝑓𝑖 is irre-
ducible (and monic) and therefore the minimal polynomial of 𝑥𝛼. It follows that
deg(𝑓𝑖) ≤ deg(𝑓 ′

𝑗
) = deg(𝑓 𝑗). Since 𝑖, 𝑗 were arbitrary we conclude that all polyno-

mials 𝑓1, . . . , 𝑓𝑚 must have common degree 𝑑 =
𝑝−1
𝑚 .

Next, we prove that𝑚 = 1. Let𝛼1, . . . , 𝛼𝑑 denote the roots of 𝑓1 (in a field exten-
sion). As observed before, we have that 𝛼𝑖𝛼−1

𝑗
∈ F𝑝 for all 𝑖, 𝑗. Moreover,

∏
𝑖 𝛼𝑖 is

the constant coefficient of 𝑓1 and thus
∏

𝑖 𝛼𝑖 ∈ F𝑝. It follows that𝛼𝑑1 =
∏𝑑

𝑖=1 𝛼1𝛼
−1
𝑖
𝛼𝑖

is an element of F𝑝. Recall that 𝛼1 is a root of 𝑓 and hence 𝛼𝑝−1
1 = (𝛼𝑑1)𝑚 = 𝛽. Fi-

nally, any value 𝑚 > 1 would contradict the primitivity of 𝛽.

Lemma 3.5 ([79]). Let 𝑓 = 𝑋 𝑝−1 − 𝛽 ∈ F𝑝 [𝑋] be an irreducible polynomial. Then
𝑋 + 1 has multiplicative order at least 2𝑝 in F𝑝 [𝑋]/⟨ 𝑓 ⟩ provided that 𝑝 ≥ 7.

Proof. Let F𝑝𝑝−1 denote the field F𝑝 [𝑋]/⟨ 𝑓 ⟩. Let 𝑠 denote the order of 𝑋 +1 ∈ F𝑝𝑝−1

and let 𝑆 denote the set of 𝑠-th roots of unity in F𝑝𝑝−1 (that is, 𝑆 is the set of all
polynomials 𝑔 ∈ F𝑝 [𝑋]/⟨ 𝑓 ⟩ such that 𝑔𝑠 = 1 (mod 𝑓)). We show that 𝑆 must
be large. We clearly have 𝑋 + 1 ∈ 𝑆. More generally, for any 𝑖 ∈ F×𝑝 we also
have 𝑖𝑋 + 1 ∈ 𝑆 since 𝑋 + 1 and 𝑖𝑋 + 1 are conjugate over F𝑝. Furthermore, 𝑆 is
closed under multiplication.

Let 𝐸 ⊆ N𝑝−1 be the set of all sequences 𝑒 = (𝑒1, . . . , 𝑒𝑝−1) with entry sum∑
𝑖 𝑒𝑖 = 𝑝−2. For any such sequence 𝑒 ∈ 𝐸, we define𝜙(𝑒) = ∏𝑝−1

𝑖=1 (𝑖𝑋 + 1)𝑒𝑖 ∈ F𝑝𝑝−1 .
By the previous paragraph, 𝜙 is a map 𝜙 : 𝐸 → 𝑆. We claim that 𝜙 is injective.
If 𝜙(𝑒) = 𝜙(𝑒′) for distinct 𝑒, 𝑒′ ∈ 𝐸, then by definition

𝑝−1∏
𝑖=1
(𝑖𝑋 + 1)𝑒𝑖 =

𝑝−1∏
𝑖=1
(𝑖𝑋 + 1)𝑒′𝑖 (mod 𝑓).

Recall that 𝑓 has degree 𝑝−1, but
∑
𝑖 𝑒𝑖 =

∑
𝑖 𝑒
′
𝑖
< 𝑝−1. It follows that the equation

remains true even without computing modulo 𝑓 :

𝑝−1∏
𝑖=1
(𝑖𝑋 + 1)𝑒𝑖 =

𝑝−1∏
𝑖=1
(𝑖𝑋 + 1)𝑒′𝑖 .

However, this identity contradicts unique factorization in F𝑝 [𝑋]. It follows that 𝜙
is injective and therefore 𝑠 ≥ |𝑆 | ≥ |𝐸 |. Finally, by a simple counting argument
one can show that |𝐸 | =

(2𝑝−4
𝑝−2

)
≥ 2𝑝, for all 𝑝 ≥ 7.

For the rest of this section, we will analyze Algorithm 3.2.

Lemma 3.6 (Correctness of Algorithm 3.2). Given integer vectors 𝐴, 𝐵 and an ar-
bitrary set 𝑍 ⊇ supp(𝐴★ 𝐵), Algorithm 3.2 correctly returns 𝐶 = 𝐴★ 𝐵.

Proof. First, focus on an arbitrary iteration 𝑖 of the loop in Lines 3 to 8. We prove
that the algorithm correctly computes the vector 𝐶𝑖 ∈ F𝑝𝑖 which is obtained from

63

Algorithm 3.2. Given vectors 𝐴, 𝐵 ∈ Z𝑛 and a set 𝑍 ⊇ supp(𝐴 ★ 𝐵), this deter-
ministic algorithm computes the convolution 𝐶 = 𝐴★ 𝐵.

1 Let 𝑘 = ⌈log(𝑛∥𝐴∥∞∥𝐵∥∞)⌉
2 Compute the smallest 𝑘 primes 𝑝1, . . . , 𝑝𝑘 larger than ⌈log 𝑛⌉
3 for 𝑖 ← 1, . . . , 𝑘 do
4 Find a primitive element 𝛽 ∈ F𝑝𝑖 by brute-force
5 Let 𝑞𝑖 = 𝑝

𝑝𝑖−1
𝑖

and represent F𝑞𝑖 as F𝑝𝑖 [𝑋]/⟨𝑋 𝑝𝑖−1 − 𝛽⟩
6 Let 𝜔 = 𝑋 + 1 ∈ F𝑞𝑖
7 Reduce the coefficients of 𝐴, 𝐵 modulo 𝑝𝑖 to obtain 𝐴𝑖 , 𝐵𝑖 ∈ F𝑛𝑝𝑖 ⊆ F𝑛𝑞𝑖
8 Compute 𝐶𝑖 ← 𝐴𝑖 ★ 𝐵𝑖 over F𝑞𝑖 using Lemma 3.3 with 𝑍 and 𝜔
9 for each 𝑥 ∈ 𝑍 do
10 Recover 𝐶 [𝑥] ∈ Z from 𝐶1 [𝑥] ∈ F𝑝1 , . . . , 𝐶𝑘 [𝑥] ∈ F𝑝𝑘 using Chinese

Remaindering
11 return 𝐶 with entries 𝐶 [𝑥] for 𝑥 ∈ 𝑍 and zeros elsewhere

𝐶 = 𝐴 ★ 𝐵 by reducing all coefficients modulo 𝑝𝑖 . The polynomial 𝑋 𝑝𝑖−1 − 𝛽 com-
puted in Lines 4 and 5 is indeed irreducible by Lemma 3.4, so we can represent F𝑞𝑖
as F𝑝𝑖/⟨𝑋 𝑝𝑖−1 − 𝛽⟩ as claimed. Moreover, the element 𝜔 ∈ F𝑞𝑖 constructed in Line 6
has multiplicative order at least 2𝑝𝑖 ≥ 𝑛 by Lemma 3.5. The preconditions of
Lemma 3.3 are satisfied (𝑍 ⊇ supp(𝐴 ★ 𝐵) ⊇ supp(𝐴𝑖 ★ 𝐵𝑖) and 𝜔 has order at
least 𝑛), hence we correctly compute 𝐶𝑖 = 𝐴𝑖 ★𝐵𝑖 in Line 8. Note that although we
carry out the computations over the extension field F𝑞𝑖 , the vector 𝐶𝑖 is guaranteed
to have coefficients in F𝑝𝑖 .

We finally use the Chinese Remainder Theorem to recover 𝐶 from its images
modulo 𝑝1, . . . , 𝑝𝑘 . As

∏𝑘
𝑖=1 𝑝𝑖 ≥ 2𝑘 ≥ 𝑛∥𝐴∥∞∥𝐵∥∞ exceeds the maximum coeffi-

cient in 𝐶, this recovery step correctly identifies 𝐶 = 𝐴★ 𝐵.

Lemma 3.7 (Running Time of Algorithm 3.2). The running time of Algorithm 3.2
is bounded by 𝑂(𝑡 log4 𝑛 polyloglog 𝑛) where 𝑡 = ∥𝐴∥0 + ∥𝐵∥0 + |𝑍 |, assuming that
∥𝐴∥∞, ∥𝐵∥∞ ≤ poly(𝑛).

Proof. Assuming that ∥𝐴∥∞, ∥𝐵∥∞ ≤ poly(𝑛), we have 𝑘 = ⌈log(𝑛∥𝐴∥∞∥𝐵∥∞)⌉ ≤
𝑂(log 𝑛). Note that 𝑝1, . . . , 𝑝𝑘 ≤ 𝑂(log 𝑛) by the Prime Number Theorem, and
therefore computing these primes in Line 2 takes time 𝑂(log 𝑛), using for in-
stance Eratosthenes’ sieve. Finding a primitive element 𝛽 ∈ F𝑝𝑖 in Line 4 takes
time 𝑂(log 𝑛) as well and Lines 5 to 7 have negligible costs. Per iteration, running
the convolution algorithm in Line 8 takes time 𝑂(𝑡 log2 𝑡 + 𝑡 log 𝑛) = 𝑂(𝑡 log2 𝑛)
and requires the computation of at most 𝑂(𝑡 log2 𝑛) field operations in F𝑞𝑖 , thus
amounting for time 𝑂(𝑡 log3 𝑛 polyloglog 𝑛). In total the loop in Line 3 takes time
𝑂(𝑡 log4 𝑛 polyloglog 𝑛). Finally, each call to the algorithmic Chinese Remainder
Theorem in Line 10 takes time 𝑂(log2 (∏𝑘

𝑖=1 𝑝𝑖)) = 𝑂(log2 𝑛 polyloglog 𝑛) [102].

We remark that our algorithm can be somewhat simplified by exploiting the
following result: For any finite field F𝑝𝑚 , one can construct in time poly(𝑝, 𝑚) a
(simple-structured) set which is guaranteed to contain a primitive element [190,
191]. The drawback is that the running time worsens by a couple of log factors.

3.3.3 Complete Algorithm

We finally remove the assumption that the support of 𝐴★𝐵 is given as part of the
input by applying Lemma 2.22. The following lemma is immediate:

Lemma 3.8 (Deterministic Sparse Nonnegative Convolution). There is a deter-
ministic algorithm to compute the convolution of two nonnegative vectors 𝐴, 𝐵 ∈ N𝑛

in time 𝑂(𝑡 log5 𝑛 polyloglog 𝑛) where 𝑡 = ∥𝐴 ★ 𝐵∥0, assuming that ∥𝐴∥∞, ∥𝐵∥∞ ≤
poly(𝑛).

64

Algorithm 3.3. This algorithm takes two nonnegative vectors 𝐴, 𝐵 ∈ N𝑛 and a
parameter 𝑚 and computes a vector 𝑅 ≤ 𝐴★𝐵. For details see Lemma 3.10. The
algorithm works as well when ℎ is sampled from Lemma 2.8, and in this case the
algorithm avoids computing a prime number.

1 Sample a linear hash function ℎ : [𝑛] → [𝑚]
2 Compute 𝑋 ← ℎ(𝐴) ★𝑚 ℎ(𝐵)
3 Compute 𝑌 ← ℎ(𝜕𝐴) ★𝑚 ℎ(𝐵) + ℎ(𝐴) ★𝑚 ℎ(𝜕𝐵)
4 Compute 𝑍 ← ℎ(𝜕2𝐴) ★𝑚 ℎ(𝐵) + 2ℎ(𝜕𝐴) ★𝑚 ℎ(𝜕𝐵) + ℎ(𝐴) ★𝑚 ℎ(𝜕2𝐵)
5 Initialize 𝑅← (0, . . . , 0)
6 for each 𝑘 ∈ [𝑚] do
7 if 𝑋 [𝑘] ≠ 0 and 𝑌 [𝑘]2 = 𝑋 [𝑘] · 𝑍 [𝑘] then
8 𝑧 ← 𝑌 [𝑘]/𝑋 [𝑘]
9 𝑅[𝑧] ← 𝑅[𝑧] + 𝑋 [𝑘]
10 return 𝑅

This lemma yields the proof of Theorem 1.3; to analyze the algorithm for vec-
tors with entries of size Δ, simply view the vectors as having length 𝑛′ = max{𝑛, Δ}.

3.4 Las Vegas Algorithms

The goal of this section is to prove Theorems 1.4 and 1.5. We first prove the sparsity
testing lemma (in Section 3.4.1). Then we prove Theorem 1.4 (in Section 3.4.2) and
Theorem 1.5 (in Sections 3.4.3 and 3.4.4).

3.4.1 Sparsity Testing

Recall that we define the derivative 𝜕𝐴 coordinate-wise by (𝜕𝐴) [𝑖] = 𝑖 · 𝐴[𝑖], and
we define the 𝑑-th derivative 𝜕𝑑𝐴 by (𝜕𝑑𝐴) [𝑖] = 𝑖𝑑 · 𝐴[𝑖]. The crucial ingredient
for the Las Vegas guarantee is the following lemma about testing 1-sparsity of a
vector, having access to its first and second derivatives.

Lemma 3.1 (Testing 1-Sparsity). Let𝑉 be a nonnegative vector. Then ∥𝜕𝑉 ∥21 ≤ ∥𝑉 ∥1 ·
∥𝜕2𝑉 ∥1. This inequality is tight if and only if ∥𝑉 ∥0 ≤ 1.

Proof. Note that since𝑉 is nonnegative, we can rewrite𝑉 [𝑖] =
√︁
𝑉 [𝑖] ·

√︁
𝑉 [𝑖]. The

proof is a straightforward application of the Cauchy-Schwartz inequality:

∥𝜕𝑉 ∥21 =

(∑︁
𝑖

𝑖𝑉 [𝑖]
)2

=

(∑︁
𝑖

√︁
𝑉 [𝑖] · 𝑖

√︁
𝑉 [𝑖]

)2

≤
(∑︁

𝑖

𝑉 [𝑖]
) (∑︁

𝑖

𝑖2𝑉 [𝑖]
)
= ∥𝑉 ∥1 · ∥𝜕2𝑉 ∥1.

Recall that the Cauchy-Schwartz inequality is tight if and only if the involved vec-
tors𝑉 and 𝜕2𝑉 are scalar multiples of each other. In our case this is possible if and
only if ∥𝑉 ∥0 ≤ 1.

3.4.2 Simple Algorithm

We are finally ready to analyze Algorithm 3.1. For the ease of presentation, we
have extracted the core part of Algorithm 3.1 (Lines 3 to 11) as Algorithm 3.3, and
our first goal is a detailed analysis of that core part.

To increase clarity we shall adopt the following naming convention for the
rest of this section: The indices 𝑥, 𝑦, 𝑧 ∈ [𝑛] exclusively denote coordinates of
large vectors, whereas 𝑖, 𝑗, 𝑘 ∈ [𝑚] denote coordinates of the hashed vectors, or

65

equivalently, buckets of a hash function ℎ. The first lemma analyzes the vectors
𝑋,𝑌 , 𝑍 computed by the algorithm.

Lemma 3.9. Let ℎ, 𝑋,𝑌 , 𝑍 be as in Algorithm 3.3. Moreover, for a bucket 𝑘 ∈ [𝑚]
define the nonnegative vector 𝑉𝑘 ∈ N𝑛 by

𝑉𝑘 [𝑧] =
∑︁
𝑥+𝑦=𝑧

ℎ(𝑥)+ℎ(𝑦)≡𝑘 (mod 𝑚)

𝐴[𝑥] · 𝐵[𝑦] .

Then 𝑋 [𝑘] = ∥𝑉𝑘 ∥1, 𝑌 [𝑘] = ∥𝜕𝑉𝑘 ∥1 and 𝑍 [𝑘] = ∥𝜕2𝑉𝑘 ∥1.

Note that 𝐴 ★ 𝐵 =
∑
𝑘 𝑉𝑘 . Intuitively, the vector 𝑉𝑘 is that part of 𝐴 ★ 𝐵 which is

hashed into the 𝑘-th bucket.

Proof. We merely showcase that𝑌 [𝑘] = ∥𝜕𝑉𝑘 ∥1; the other proofs are very similar.
For convenience, let us denote equality modulo 𝑚 by ≡. It holds that:

𝑌 [𝑘] = (ℎ(𝜕𝐴) ★𝑚 ℎ(𝐵) + ℎ(𝐴) ★𝑚 ℎ(𝜕𝐵)) [𝑘]
=

∑︁
𝑖, 𝑗∈[𝑚]
𝑖+ 𝑗≡𝑘

ℎ(𝜕𝐴) [𝑖] · ℎ(𝐵) [𝑗] + ℎ(𝐴) [𝑖] · ℎ(𝜕𝐵) [𝑗]

=
∑︁

𝑥, 𝑦∈[𝑛]
ℎ(𝑥)+ℎ(𝑦)≡𝑘

(𝜕𝐴) [𝑥] · 𝐵[𝑦] + 𝐴[𝑥] · (𝜕𝐵) [𝑦]

=
∑︁

𝑥, 𝑦∈[𝑛]
ℎ(𝑥)+ℎ(𝑦)≡𝑘

(𝑥 + 𝑦) · 𝐴[𝑥] · 𝐵[𝑦]

=
∑︁
𝑧∈[𝑛]

𝑧 ·
∑︁

𝑥, 𝑦∈[𝑛]
𝑥+𝑦=𝑧

ℎ(𝑥)+ℎ(𝑦)≡𝑘

𝐴[𝑥] · 𝐵[𝑦]

=
∑︁
𝑧∈[𝑛]

𝑧 · 𝑉𝑘 [𝑧]

= ∥𝜕𝑉𝑘 ∥1.

Next, we will prove that in every iteration the algorithm computes a feasible
approximation 𝑅 to the target vector 𝐴★ 𝐵.

Lemma 3.10 (Correctness and Running Time of Algorithm 3.3). Given nonnega-
tive vectors 𝐴, 𝐵 and any parameter 𝑚, Algorithm 3.3 runs in time 𝑂(𝑚 log𝑚) and
computes a vector 𝑅 such that for every 𝑧 ∈ [𝑛]:

𝑅[𝑧] ≤ (𝐴★ 𝐵) [𝑧] (always), and
𝑅[𝑧] < (𝐴★𝐵) [𝑧] with probability at most 𝑐 · ∥𝐴★𝐵∥0/𝑚 for some constant 𝑐.

Proof. Fix an iteration 𝑘 ∈ [𝑚] of the loop (Line 6) and suppose that the condition
in Line 7 is satisfied. Defining 𝑉𝑘 as in the previous lemma, we claim that 𝑉𝑘 is
exactly 1-sparse. Indeed, on the one hand,𝑉𝑘 is not the all-zeros vector as ∥𝑉𝑘 ∥1 =

𝑋 [𝑘] > 0. On the other hand, since ∥𝑉𝑘 ∥1 · ∥𝜕2𝑉𝑘 ∥1 = 𝑋 [𝑘] · 𝑍 [𝑘] = 𝑌 [𝑘]2 = ∥𝜕𝑉𝑘 ∥21
we have that ∥𝑉𝑘 ∥0 ≤ 1 by Lemma 3.1. Given that 𝑉𝑘 is 1-sparse, it is easy to
check that the value 𝑧 := 𝑌 [𝑘]/𝑋 [𝑘] as computed in Line 8 is the unique nonzero
coordinate in 𝑉𝑘 , i.e., supp(𝑉𝑘) = {𝑧}. It follows that the update in Line 9 is in fact
an update of the form “𝑅 ← 𝑅 + 𝑉𝑘”. Recall that

∑
𝑘 𝑉𝑘 = 𝐴 ★ 𝐵, and thus the first

item follows directly.
Next, we focus on the second item. We can assume that 𝑧 ∈ supp(𝐴 ★ 𝐵)

as otherwise the statement is trivial given the previous paragraph. Let Φ ⊆ [𝑚]
be the set from Lemma 2.8. We say that 𝑧 collides with another index 𝑧′ if there
are 𝜙, 𝜙′ ∈ Φ such that ℎ(𝑧) +𝜙 ≡ ℎ(𝑧′) +𝜙′ (mod𝑚). If 𝑧 does not collide with any
other 𝑧′ ∈ supp(𝐴 ★ 𝐵) then we say that 𝑧 is isolated. The remaining proof splits
into the following two statements:

66

Each index 𝑧 ∈ supp(𝐴★ 𝐵) is isolated with probability 1 − 𝑂(∥𝐴★ 𝐵∥0/𝑚):
If 𝑧 collides with another index 𝑧′ then we have ℎ(𝑧) − ℎ(𝑧′) ≡ 𝑞 (mod𝑚) for
some 𝑞 = 𝜙−𝜙′, 𝜙, 𝜙′ ∈ Φ. For any fixed 𝑞 this event occurs with probability at
most 𝑂(1

𝑚) by the uniform difference property of linear hashing (Lemma 2.8).
Taking a union bound over the constant number of elements 𝑞, we conclude
that 𝑧 collides with 𝑧′with probability at most𝑂(1

𝑚). Hence the expected num-
ber of collisions is 𝑂(∥𝐴★𝐵∥/𝑚). Using Markov’s inequality we finally obtain
that a collision occurs with probability at most 𝑂(∥𝐴★𝐵∥/𝑚) and only in that
case 𝑧 fails to be isolated.

Whenever 𝑧 is isolated we have 𝑅[𝑧] = (𝐴★ 𝐵) [𝑧]:
To see this, it suffices to argue that for all 𝑘 of the form 𝑘 ≡ ℎ(𝑧)+𝜙 (mod𝑚), for
some𝜙 ∈ Φ, the vectors𝑉𝑘 are at most 1-sparse. In that case the corresponding
iterations 𝑘 each perform the update “𝑅 ← 𝑅 + 𝑉𝑘” in Line 9 and the claim
follows since 𝑅[𝑧] = ∑

𝑘 𝑉𝑘 [𝑧] = (𝐴★ 𝐵) [𝑧]. So suppose that some vector𝑉𝑘 is
at least 2-sparse. In this case there exist 𝑥, 𝑥′ ∈ supp(𝐴) and 𝑦, 𝑦′ ∈ supp(𝐵)
such that ℎ(𝑥) + ℎ(𝑦) ≡ ℎ(𝑥′) + ℎ(𝑦′) ≡ 𝑘 (mod 𝑚) and 𝑥 + 𝑦 ≠ 𝑥′ + 𝑦′. Then
either 𝑧′ := 𝑥 + 𝑦 or 𝑧′ := 𝑥′ + 𝑦′ differs from 𝑧, and we have witnessed a
collision between 𝑧 and 𝑧′. This contradicts the assumption that 𝑧 is isolated.

Finally, note that the running time is dominated by the six calls to FFT in Lines 2
to 4 taking time 𝑂(𝑚 log𝑚). The loop (Line 6) only takes linear time.

Recall that Algorithm 3.1 simply calls Algorithm 3.3 repeatedly and returns
the coordinate-wise maximum 𝐶 of all vectors 𝑅 as soon as ∥𝐶∥1 = ∥𝐴∥1 · ∥𝐵∥1.
The bucket size 𝑚 increases from iteration to iteration. Given the analysis of Al-
gorithm 3.3, it remains to prove that Algorithm 3.1 is correct and fast, thereby
proving Theorem 1.4.

Lemma 3.11 (Correctness of Algorithm 3.1). Whenever Algorithm 3.1 outputs a
vector 𝐶, then 𝐶 = 𝐴★ 𝐵 (with error probability 0).

Proof. In Line 11, 𝐶 is computed as the coordinate-wise maximum of several
vectors 𝑅 computed by Algorithm 3.3. The previous lemma asserts that 𝑅 ≤ 𝐴★ 𝐵
(coordinate-wise) and therefore also 𝐶 ≤ 𝐴 ★ 𝐵. Moreover, since 𝐶 was returned
by the algorithm we must have ∥𝐶∥1 = ∥𝐴∥1 · ∥𝐵∥1 (Line 13). In conjunction, these
facts imply that 𝐶 = 𝐴★ 𝐵, since both 𝐶 and 𝐴★ 𝐵 are nonnegative vectors.

Lemma 3.12 (Running Time of Algorithm 3.1). The expected running time of Algo-
rithm 3.1 is 𝑂(𝑡 log2 𝑡), where 𝑡 = ∥𝐴★ 𝐵∥0.

Proof. We first prove that the algorithm terminates with high probability as
soon as the outer loop (Line 1) reaches a sufficiently large value. More precisely,
let 𝑐 be the constant from Lemma 3.10 and fix any iteration of the outer loop
with value 𝑚 ≥ 2𝑐𝑡. We claim that the algorithm terminates within this iteration
with probability at least 1 − 𝑡−1. To this end we analyze the probability of the
event 𝐶 [𝑧] = (𝐴 ★ 𝐵) [𝑧], for any fixed index 𝑧. Recall that 𝐶 is the coordinate-
wise maximum of 2 log𝑚 ≥ 2 log 𝑡 vectors 𝑅 computed by Algorithm 3.3. For
any such vector 𝑅, Lemma 3.10 guarantees that 𝑅[𝑧] = (𝐴 ★ 𝐵) [𝑧] with proba-
bility at least 1 − 𝑐𝑡/𝑚 ≥ 1

2 . Hence, the probability that 𝐶 [𝑧] = (𝐴 ★ 𝐵) [𝑧] is at
least 1 − 2−2 log 𝑡 = 1 − 𝑡−2. By a union bound over the 𝑡 nonzero entries 𝑧, the
probability that algorithm correctly computes 𝐶 = 𝐴 ★ 𝐵 in this iteration is at
least 1 − 𝑡−1.

The running time of a single iteration with value𝑚 is dominated by the 2 log𝑚
calls to Algorithm 3.3 taking time 𝑂(𝑚 log𝑚). Sampling the hash functions ℎ has
negligible cost (by Lemma 2.8) and so does running the inner-most loop (Line 8).
The previous paragraph in particular shows that the algorithm terminates before
the 𝜂-th iteration after crossing the critical threshold 𝑚 ≥ 2𝑐𝑡, with probability at
least 1−𝑡−𝜂 ≥ 1−4−𝜂. Hence, we can bound the expected running time by the total

67

Algorithm 3.4. A more careful implementation of Algorithm 3.1. The running
time of this algorithm can be bounded sharper than only in expectation, see
Lemma 3.13. In the pseudocode, 𝜖 > 0 is a parameter.

1 𝐶 ← (0, . . . , 0)
2 for 𝜇 ← 0, 1, 2, . . . ,∞ do
3 for 𝜈← 0, 1, 2, . . . , 𝜇 do
4 repeat 𝜇 · 2𝜈/(1+𝜖) times
5 Compute 𝑅 by Algorithm 3.3 with parameter 𝑚 = 2𝜇−𝜈
6 Update 𝐶 ← max{𝐶, 𝑅} (coordinate-wise)
7 if ∥𝐶∥1 = ∥𝐴∥1 · ∥𝐵∥1 then return 𝐶

time before this threshold (𝑚 < 2𝑐𝑡) plus the expected time after (𝑚 = 2𝜂 · 2𝑐𝑡)
which can be bounded by a geometric series:

log(2𝑐𝑡)∑︁
𝜇=0

𝑂(2𝜇 log2 (2𝜇)) +
∞∑︁
𝜂=0

4−𝜂 · 𝑂((2𝜂 · 𝑡) · log2 (2𝜂 · 𝑡)) = 𝑂(𝑡 log2 𝑡).

This finishes the analysis of Algorithm 3.1, but not yet the proof of Theorem 1.4
which additionally claims a tail bound on the running time. To get this additional
guarantee, we can modify Algorithm 3.1 to increase 𝑚 more carefully; see the
pseudocode in Algorithm 3.4.

Lemma 3.13 (Correctness and Running Time of Algorithm 3.4). Given nonnega-
tive vectors 𝐴, 𝐵 ∈ N𝑛 and any parameter 𝜖 > 0, Algorithm 3.4 correctly computes
their convolution 𝐴★ 𝐵 in expected time 𝑂(𝑡 log2 𝑡), where 𝑡 = ∥𝐴★ 𝐵∥0. Moreover,
with probability 1 − 𝛿 it terminates in time

𝑂

(
𝑡 log2 (𝑡) ·

(
log(𝑡/𝛿)

log 𝑡

)1+𝜖+𝑜(1)
)
.

Proof. The correctness proof is exactly as in Lemma 3.11 and can therefore be
omitted. We prove the improved running time bound. Let 𝑐 be the constant from
Lemma 3.10 and focus on the iterations of the outer loops (Lines 2 and 3) with
values 𝜇 = 𝑀 and 𝜈 = 𝑁 , where

𝑁 =

⌈
(1 + 𝜖) log

(
log(𝑡/𝛿)

log 𝑡

)⌉
and 𝑀 = ⌈log(2𝑐𝑡)⌉ + 𝑁.

In this case we have 𝑚 = 2𝜇−𝜈 ≥ 2𝑐𝑡. We claim that the algorithm terminates in
this iteration with probability at least 1 − 𝛿. To prove this, we again analyze the
probability of the event 𝐶 [𝑧] = (𝐴 ★ 𝐵) [𝑧] for any fixed index 𝑧. The vector 𝐶 is
the coordinate-wise maximum of all vectors 𝑅 computed in the inner loop (Line 2)
and Lemma 3.10 proves that the event 𝑅[𝑧] = (𝐴★ 𝐵) [𝑧] happens with probabil-
ity at least 1 − 𝑐𝑡/𝑚 ≥ 1

2 . Since the inner loop is repeated 𝜇 · 2𝜈/(1+𝜖) times, the
event 𝐶 [𝑧] = (𝐴★ 𝐵) [𝑧] happens with probability at least

1 − 2−𝜇 ·2
𝜈/(1+𝜖) ≥ 1 − 2− log(𝑡) ·log(𝑡/𝛿)/log(𝑡) = 1 − 𝛿

𝑡
.

By a union bound over the 𝑡 nonzero coordinates 𝑧, the algorithm computes 𝐶 =

𝐴★ 𝐵 (and consequently terminates) with probability at least 1 − 𝛿.
Now, to analyze the running time, we have to bound the running time until

the algorithm reaches the required values 𝜇 = 𝑀 and 𝜈 = 𝑁 . The running time of
a single execution of the inner-most loop is dominated by the call to Algorithm 3.3

68

which takes time 𝑂(𝑚 log𝑚) by Lemma 3.10. Thus, with probability 1−𝛿 the total
running time is bounded by

𝑀∑︁
𝜇=0

𝜇∑︁
𝜈=0

𝜇·2𝜈/(1+𝜖) ·𝑂(2𝜇−𝜈 log(2𝜇−𝜈)) ≤ 𝑂
(
𝑀2

𝑀∑︁
𝜇=0

2𝜇
𝜇∑︁
𝜈=0

2−𝜖𝜈/(1+𝜖)
)
≤ 𝑂(2𝑀 ·𝑀2).

Plugging in the definition of 𝑀 this becomes

𝑂(2𝑀 ·𝑀2) = 𝑂
(
𝑡 ·

(
log(𝑡/𝛿)

log 𝑡

)1+𝜖
·𝑀2

)
= 𝑂

(
𝑡 log2 (𝑡) ·

(
log(𝑡/𝛿)

log 𝑡

)1+𝜖+𝑜(1)
)
.

Finally, we derive from the previous paragraph that expected running time is
bounded by𝑂(𝑡 log2 𝑡). Indeed, the total running time exceeds ℓ ·𝑡 log2 𝑡 with prob-
ability≪ 𝑂(ℓ−3), and thus the expected running time is 𝑡 log2 𝑡 ·∑∞ℓ=1 ℓ · 𝑂(ℓ−3) ≤
𝑂(𝑡 log2 𝑡).

This completes the proof of Theorem 1.4: Plugging in any constant 0 < 𝜖 < 1
into Lemma 3.13 yields running time 𝑂(𝑡 log2 (𝑡/𝛿)).

3.4.3 Accelerated Algorithm

We now speed up Algorithm 3.4 in expectation. The crucial subroutine in that
algorithm is Algorithm 3.3 which computes a good approximation 𝑅 of 𝐴★ 𝐵. For
the improvement we design a similar subroutine which instead computes a good
approximation of 𝐴★ 𝐵 − 𝐶; see Algorithm 3.5.

Lemma 3.14 (Correctness and Running Time of Algorithm 3.5). Given vectors
𝐴, 𝐵, 𝐶 ∈ Z𝑛 such that 𝐴★𝐵−𝐶 is nonnegative, and any parameter𝑚, Algorithm 3.5
runs in time 𝑂(𝑚 log𝑚) and computes a vector 𝑅 such that for every 𝑧 ∈ [𝑛]:

𝑅[𝑧] ≤ (𝐴★ 𝐵 − 𝐶) [𝑧] (always), and
𝑅[𝑧] < (𝐴★𝐵−𝐶) [𝑧] with probability at most 𝑐 log 𝑛 · ∥𝐴★𝐵−𝐶∥0/𝑚 for some
constant 𝑐.

Proof. Recall that by Lemma 2.6 the family of hash functions ℎ(𝑥) = 𝑥 mod 𝑝
is truly additive, i.e., satisfies ℎ(𝑥) + ℎ(𝑦) ≡ ℎ(𝑥 + 𝑦) (mod 𝑝) for all keys 𝑥, 𝑦.
As a consequence, it holds that 𝑋 = ℎ(𝐴) ★𝑝 ℎ(𝐵) − ℎ(𝐶) = ℎ(𝐴 ★ 𝐵 − 𝐶) and
similarly 𝑌 = ℎ(𝜕(𝐴 ★ 𝐵 − 𝐶)) and 𝑍 = ℎ(𝜕2 (𝐴 ★ 𝐵 − 𝐶)); the proofs of these
statements are straightforward calculations.

The rest of the proof is very similar to Lemma 3.10 and we merely sketch
the differences. We analogously define vectors 𝑉𝑘 by 𝑉𝑘 [𝑧] = (𝐴 ★ 𝐵 − 𝐶) [𝑧]
if 𝑧 ≡ 𝑘mod 𝑝 and𝑉𝑘 [𝑧] = 0 otherwise. Then, by the previous paragraph we have
𝑋 [𝑘] = ∥𝑉𝑘 ∥1, 𝑌 [𝑘] = ∥𝜕𝑉𝑘 ∥1 and 𝑍 [𝑘] = ∥𝜕2𝑉𝑘 ∥1. It follows by the same argu-
ment, using the sparsity tester (Lemma 3.1), that the recovered vector 𝑅 is exactly
𝑅 =

∑
𝑘 𝑉𝑘 , where the sum is over all vectors 𝑉𝑘 which are at most 1-sparse. The

first item is immediate since
∑
𝑘∈[𝑝] 𝑉𝑘 = 𝐴★ 𝐵 − 𝐶.

To prove the second item, it suffices to argue that with good probability each
nonzero entry 𝑧 does not collide with any other nonzero entry 𝑧′ under ℎ. In
that case, the vector 𝑉𝑘 for 𝑘 = ℎ(𝑧) is 1-sparse and the algorithm correctly com-
putes 𝑅[𝑧] = (𝐴★ 𝐵 − 𝐶) [𝑧]. To see that each index 𝑧 is likely isolated, we apply
the 𝑂(log 𝑛)-universality of ℎ (Lemma 2.6): The probability that 𝑧 collides with
some fixed index 𝑧′ is at most 𝑂(log(𝑛)/𝑝) ≤ 𝑂(log(𝑛)/𝑚). Taking a union bound
over the ∥𝐴★ 𝐵 − 𝐶∥0 nonzero entries 𝑧′ yields the claimed bound.

Finally, observe that the running time is again dominated by the six calls to
FFT in Lines 2 to 4, which take time𝑂(𝑚 log𝑚). Sampling ℎ takes time polylog(𝑚)
and the loop in Line 6 takes linear time.

69

Algorithm 3.5. Given integer vectors 𝐴, 𝐵, 𝐶 ∈ Z𝑛 such that 𝐴 ★ 𝐵 − 𝐶 is non-
negative and a parameter 𝑚, this algorithm computes a nonnegative vector
𝑅 ≤ 𝐴★ 𝐵 − 𝐶. For details see Lemma 3.14.

1 Sample a random prime 𝑝 ∈ [𝑚, 2𝑚] and let ℎ(𝑥) = 𝑥 mod 𝑝
2 Compute 𝑋 ← ℎ(𝐴) ★𝑝 ℎ(𝐵) − ℎ(𝐶)
3 Compute 𝑌 ← ℎ(𝜕𝐴) ★𝑝 ℎ(𝐵) + ℎ(𝐴) ★𝑝 ℎ(𝜕𝐵) − ℎ(𝜕𝐶)
4 Compute 𝑍 ← ℎ(𝜕2𝐴) ★𝑝 ℎ(𝐵) + 2ℎ(𝜕𝐴) ★𝑝 ℎ(𝜕𝐵) + ℎ(𝐴) ★𝑝 ℎ(𝜕2𝐵) − ℎ(𝜕2𝐶)
5 Initialize 𝑅← (0, . . . , 0)
6 for each 𝑘 ∈ [𝑝] do
7 if 𝑋 [𝑘] ≠ 0 and 𝑌 [𝑘]2 = 𝑋 [𝑘] · 𝑍 [𝑘] then
8 𝑧 ← 𝑌 [𝑘]/𝑋 [𝑘]
9 𝑅[𝑧] ← 𝑅[𝑧] + 𝑋 [𝑘]
10 return 𝑅

Algorithm 3.6. Given two nonnegative vectors 𝐴, 𝐵 ∈ N𝑛, this Las Vegas algo-
rithm correctly computes their convolution 𝐴★𝐵. This is the accelerated version
of Algorithm 3.1; see Lemmas 3.15 and 3.16.

1 𝐶 ← (0, . . . , 0)
2 for 𝑚← 1, 2, 4, . . . ,∞ do
3 repeat 3 log log 𝑛 times
4 Compute 𝑅 by Algorithm 3.3 with inputs 𝐴, 𝐵 and parameter 𝑚
5 Update 𝐶 ← max{𝐶, 𝑅} (coordinate-wise)
6 repeat 2 log𝑚 times
7 Compute 𝑅 by Algorithm 3.5 with inputs 𝐴, 𝐵, 𝐶, 𝑚′ = ⌈ 𝑚

log 𝑛 ⌉
8 Update 𝐶 ← 𝐶 + 𝑅
9 if ∥𝐶∥1 = ∥𝐴∥1 · ∥𝐵∥1 then return 𝐶

Next, to obtain the speed-up over Algorithm 3.4, we combine Algorithms 3.3
and 3.5. The idea is that Algorithm 3.4 reaches a good (but imperfect) approxi-
mation 𝐶 of 𝐴 ★ 𝐵 after only log log 𝑛 iterations of the inner-most loop; after that
point 𝐴 ★ 𝐵 − 𝐶 is sufficiently sparse so that a few iterations with Algorithm 3.5
can correct the remaining errors. The resulting algorithm is summarized in Algo-
rithm 3.6.

Lemma 3.15 (Correctness of Algorithm 3.6). Whenever Algorithm 3.6 outputs a
vector 𝐶, then 𝐶 = 𝐴★ 𝐵 (with error probability 0).

Proof. We first prove that the algorithm maintains the invariant 0 ≤ 𝐶 ≤ 𝐴★ 𝐵.
There are two types of updates. First, for a vector 𝑅 computed by Algorithm 3.3,
the algorithm updates “𝐶 ← max{𝐶, 𝑅}”. Since 𝑅 satisfies 0 ≤ 𝑅 ≤ 𝐴 ★ 𝐵 by
Lemma 3.10, this update maintains the invariant. Second, for a vector 𝑅 computed
by Algorithm 3.5, the algorithm update “𝐶 ← 𝐶 + 𝑅”. Since 𝑅 satisfies 0 ≤ 𝑅 ≤
𝐴★ 𝐵 − 𝐶 by Lemma 3.14, this update also upholds the invariant.

It is easy to conclude that the algorithm outputs the correct solution 𝐶 = 𝐴★𝐵,
as this is the only vector 0 ≤ 𝐶 ≤ 𝐴★ 𝐵 which also satisfies ∥𝐶∥1 = ∥𝐴∥1 · ∥𝐵∥1.

Lemma 3.16 (Running Time of Algorithm 3.6). The expected running time of Algo-
rithm 3.6 is 𝑂(𝑡 log 𝑡 log log 𝑛), where 𝑡 = ∥𝐴★ 𝐵∥0.

Proof. For the analysis, we split the execution of the algorithm into two phases:
The first and initial phase ends as soon as ∥𝐴★𝐵 − 𝐶∥0 ≤ 𝑡/log2 𝑛, and the second
phase ends when the algorithm terminates. To analyze the expected running times
of both phases, we assume that the outer loop (Line 2) has reached a value𝑚 ≥ 2𝑐𝑡,
where 𝑐 is the maximum of the constants in Lemmas 3.10 and 3.14. In this case
we claim that a single execution of the loop body terminates both phases with
probability at least 3

4 .

70

1 For the first phase we analyze the pseudocode in Lines 3 to 5. Fix an arbi-
trary index 𝑧 ∈ supp(𝐴 ★ 𝐵). For a vector 𝑅 computed by Algorithm 3.3 we
have 𝑅[𝑧] = (𝐴★𝐵) [𝑧] with probability at least 1− 𝑐𝑡/𝑚 ≥ 1

2 , by Lemma 3.10.
If any of the vectors 𝑅 computed in Lines 3 to 5 satisfies 𝑅[𝑧] = (𝐴 ★ 𝐵) [𝑧],
then we correctly assign “𝐶 [𝑧] ← max{𝐶 [𝑧], 𝑅[𝑧]}” in Line 5 (and we never
change that entry for the remaining execution of the algorithm). Since the
loop runs for 3 log log 𝑛 iterations, the probability that 𝐶 [𝑧] remains incorrect
is at most 2−3 log log 𝑛 = (log 𝑛)−3. Therefore, the expected number of incor-
rectly assigned coordinates is at most 𝑡/log3 𝑛 and by Markov’s inequality that
number exceeds 𝑡/log2 𝑛 with probability at most 1/log 𝑛. This is less than 1

8
for sufficiently large 𝑛.

2 For the second phase we analyze the pseudocode in Lines 6 to 8. Assuming
that the first phase is finished, we have ∥𝐴 ★ 𝐵 − 𝐶∥0 ≤ 𝑡/log2 𝑛. The ar-
gument is similar to the first phase: A vector 𝑅 computed by Algorithm 3.5
satisfies with probability at least 1 − 𝑐 log 𝑛 · ∥𝐴★ 𝐵 − 𝐶∥0/𝑚′ ≥ 1 − 𝑐𝑡/𝑚 ≥ 1

2
that 𝑅[𝑧] = (𝐴 ★ 𝐵 − 𝐶) [𝑧], for any fixed 𝑧. Moreover, if any of the vectors 𝑅
computed in Lines 6 to 8 satisfies 𝑅[𝑧] = (𝐴 ★ 𝐵 − 𝐶) [𝑧] then we correctly
update “𝐶 [𝑧] ← 𝐶 [𝑧] + 𝑅[𝑧]” (and this entry is unchanged for the remaining
execution). The probability that 𝐶 [𝑧] is still incorrect after 2 log𝑚 ≥ 2 log 𝑡
iterations is 2−2 log 𝑡 = 𝑡−2. By a union bound over the 𝑡 nonzero entries 𝑧, we
have correctly computed 𝐶 = 𝐴★𝐵 after finishing the loop with probability at
least 1 − 𝑡−1. For sufficiently large 𝑡, this is at least 7

8 .

In combination, with probability 3
4 both phases finish and therefore the algorithm

terminates within a single iteration of the outer loop. Each iteration takes time
𝑂(𝑚 log𝑚 · log log 𝑛) (Lemma 3.10) plus 𝑂(𝑚′ log𝑚′ · log𝑚) = 𝑂(𝑚 log2 𝑚/log 𝑛)
(Lemma 3.14). To bound the total running time, we use that only with proba-
bility 4−𝜂 the algorithm continues for another 𝜂 iterations of the outer loop af-
ter crossing the critical threshold 𝑚 ≥ 2𝑐𝑡. Hence, the expected running time is
bounded by 𝑂(𝑡 log 𝑡 log log 𝑛) before that threshold and by

∞∑︁
𝜂=1

4−𝜂 ·𝑂
(
(2𝜂 · 𝑡) log(2𝜂 · 𝑡) log log 𝑛 + (2𝜂 · 𝑡) log2 (2𝜂 · 𝑡)

log 𝑛

)
= 𝑂(𝑡 log 𝑡 log log 𝑛)

after. In total, the expected time is 𝑂(𝑡 log 𝑡 log log 𝑛) as claimed.

3.4.4 Las Vegas Length Reduction

As the final step, we can reduce the running time of Lemma 3.16 by replacing
the log log 𝑛 factor with log log 𝑡. To this end, we implement a length reduction
which reduces the convolution of arbitrary-length vectors to a small number of
convolutions of length-poly(𝑡) vectors. The pseudocode is given in Algorithm 3.7.
The proof of the following Lemma 3.17 completes the proof of Theorem 1.5.

Lemma 3.17 (Correctness and Running Time of Algorithm 3.7). Given nonneg-
ative vectors 𝐴, 𝐵, Algorithm 3.7 correctly computes their convolution 𝐴 ★ 𝐵. The
expected running time is 𝑂(𝑡 log 𝑡 log log 𝑡), where 𝑡 = ∥𝐴★ 𝐵∥.

Proof. We skip the correctness part since the proof is exactly like the correctness
argument of Algorithm 3.1; the only difference here is that 𝑋,𝑌 , 𝑍 are computed
by Algorithm 3.6 instead of FFT, however, Algorithm 3.6 is a Las Vegas algorithm
and therefore also always correct.

To analyze the running, we start by lower bounding the probability that any
iteration terminates the algorithm. We say that a linear hash functionℎ as sampled
in Line 3 is good if for all distinct 𝑧, 𝑧′ ∈ supp(𝐴 ★ 𝐵) and all 𝜙, 𝜙′ ∈ Φ it holds
that ℎ(𝑧) + 𝜙 . ℎ(𝑧′) + 𝜙′ (mod 𝑚); here Φ is the set in Lemma 2.8. Following the
same arguments as in Section 3.4.2 one can prove that Algorithm 3.7 terminates
as soon as a good hash function is sampled. Therefore, we now lower bound the

71

Algorithm 3.7. Given two nonnegative vectors 𝐴, 𝐵 ∈ N𝑛, this Las Vegas al-
gorithm correctly computes their convolution 𝐴 ★ 𝐵. This algorithm improves
the running time of Algorithm 3.6 by replacing the dependence on log log 𝑛 by
log log 𝑡.

1 repeat
2 Let 𝑚 = ∥𝐴∥30 · ∥𝐵∥30
3 Sample a linear hash function ℎ : [𝑛] → [𝑚]
4 Compute 𝑋 ← ℎ(𝐴) ★𝑚 ℎ(𝐵) by Algorithm 3.6
5 Compute 𝑌 ← ℎ(𝜕𝐴) ★𝑚 ℎ(𝐵) + ℎ(𝐴) ★𝑚 ℎ(𝜕𝐵) by Algorithm 3.6
6 Compute 𝑍 ← ℎ(𝜕2𝐴) ★𝑚 ℎ(𝐵) + 2ℎ(𝜕𝐴) ★𝑚 ℎ(𝜕𝐵) + ℎ(𝐴) ★𝑚 ℎ(𝜕2𝐵)

by Algorithm 3.6
7 Initialize 𝐶 ← (0, . . . , 0)
8 for each 𝑘 ∈ [𝑚] do
9 if 𝑋 [𝑘] ≠ 0 and 𝑌 [𝑘]2 = 𝑋 [𝑘] · 𝑍 [𝑘] then
10 𝑧 ← 𝑌 [𝑘]/𝑋 [𝑘]
11 𝐶 [𝑧] ← 𝐶 [𝑧] + 𝑋 [𝑘]
12 if ∥𝐶∥1 = ∥𝐴∥1 · ∥𝐵∥1 then return 𝐶

probability that a random linear hash function ℎ is good. For fixed 𝑧, 𝑧′, 𝜙, 𝜙′, the
probability that ℎ(𝑧) + 𝜙 ≡ ℎ(𝑧′) + 𝜙′ (mod 𝑚) is at most 𝑂(1

𝑚). We take a union
bound over the 𝑂(𝑡2) choices of 𝑧, 𝑧′, 𝜙, 𝜙′ and conclude that a random function ℎ
is good with probability at least 1 − 𝑂(𝑡2/𝑚). Observe that ∥𝐴∥0 + ∥𝐵∥0 − 1 ≤ 𝑡 ≤
∥𝐴∥0 · ∥𝐵∥0, and thus 𝑡3 ≤ 𝑚 ≤ 𝑡6. Therefore, for sufficiently large 𝑡 each iteration
of the loop terminates the algorithm with probability at least 1

2 .
The running time of each iteration 𝑖 is dominated by the six convolutions com-

puted by Algorithm 3.6. Let 𝑇𝑖,1, . . . , 𝑇𝑖,6 denote the running times of these calls, re-
spectively. Moreover, let 𝑆𝑖 denote the random variable which indicates whether
the 𝑖-th iteration takes place (or whether the algorithm has terminated before). By
the previous paragraph we have that P(𝑆𝑖 = 1) ≤ 2−𝑖 . The total running time is
bounded by

∞∑︁
𝑖=1

𝑆𝑖 ·
6∑︁
𝑗=1
𝑇𝑖, 𝑗 .

Hence, by linearity of expectation and since the random variables 𝑆𝑖 and 𝑇𝑖, 𝑗 are
independent, the expected running time is at most

∞∑︁
𝑖=1

E(𝑆𝑖) ·
6∑︁
𝑗=1

E(𝑇𝑖, 𝑗) ≤
∞∑︁
𝑖=1

2−𝑖 · 𝑂(𝑡 log 𝑡 log log𝑚) = 𝑂(𝑡 log 𝑡 log log 𝑡).

Here, we used the expected time bound from Lemma 3.16 to bound E(𝑇𝑖, 𝑗).

72

4 An Optimal Algorithm for Sparse
Nonnegative Convolution

In this chapter we present details on our optimal algorithm for sparse nonnegative
convolution. This is based on the paper [61].

61 Karl Bringmann, Nick Fischer, and Vasileios Nakos. “Sparse nonnegative con-
volution is equivalent to dense nonnegative convolution”. In: 53rd annual ACM
symposium on theory of computing (STOC 2021). ACM, 2021, pages 1711–1724.
10.1145/3406325.3451090.

Organization. This chapter is organized as follows. In Section 4.1 we sketch our
algorithm and describe some technical difficulties and highlights. The reduction is
split across several sections starting from Sections 4.2 to 4.6; we give an outline for
these sections in Section 4.1. Finally, in Section 4.8, we show an improved concen-
tration bound for linear hashing, which we used as an essential ingredient in our
reduction, as well as an almost tight lower bound against a theorem from [139].

4.1 Overview

Our goal is to prove the following theorems, where, as argued before, Theorem 1.1
follows immediately from Theorem 1.2 by setting 𝛿 = 2

√
log 𝑡 .

Theorem 1.1 (Time-Optimal Sparse Nonnegative Convolution). There is a ran-
domized algorithm to compute the convolution of two nonnegative vectors 𝐴, 𝐵 ∈ N𝑛

in time𝑂(𝑡 log 𝑡+polylog(𝑛Δ)) and with error probability 2−
√

log 𝑡 , where 𝑡 = ∥𝐴★𝐵∥0
and Δ = ∥𝐴★ 𝐵∥∞.

Theorem 1.2 (Sparse and Dense Nonnegative Convolution Are Equivalent). Any
randomized algorithm for dense nonnegative convolution with running time 𝐷𝛿 (𝑛)
and error probability 𝛿 > 0 can be turned into a randomized algorithm for sparse
nonnegative convolution with error probability 𝛿 running in time

𝑆𝛿 (𝑡) = 𝑂
(
𝐷𝛿 (𝑡) + 𝑡 log2 (log(𝑡)/𝛿) + polylog(𝑛Δ)

)
.

As we will deal with a sequence of increasingly more and more specialized
problems, let us formally introduce the convolution problem we are trying to
solve:

Problem (SparseConv).
Input: Nonnegative vectors 𝐴, 𝐵 ∈ N𝑛.
Task: Compute 𝐴★ 𝐵.

In what follows, we assume that we are given a number 𝑡 so that ∥𝐴★ 𝐵∥0 ≤ 𝑡,
and we want to recover 𝐴★ 𝐵 in time 𝑂(𝑡 log 𝑡). This assumption will be removed
in Section 4.7 using standard techniques. For the sake of simplicity, we will focus
on how to obtain a constant-error randomized algorithm for sparse convolution
from a deterministic algorithm for dense convolution.

Step 1: Universe Reduction from Large to Small. The first step is to reduce our
problem to vectors of length 𝑛 = poly(𝑡). We will occasionally refer to 𝑛 as the
universe size and we refer to this regime of 𝑛 as a small universe. We say that the
universe is large if there is no bound on 𝑛. Formally, we introduce the following
problem.

Problem (SmallUniv-SparseConv).
Input: An integer 𝑡 and nonnegative vectors 𝐴, 𝐵 ∈ Npoly(𝑡) so that ∥𝐴★ 𝐵∥0 ≤ 𝑡.
Task: Compute 𝐴★ 𝐵.

73

https://doi.org/10.1145/3406325.3451090

We show in Section 4.6 how to reduce the general problem of computing 𝐴★𝐵
in a large universe to three instances in a small universe 𝑛. This step is very similar
to the algorithm in Section 3.4.4.

The idea is that in this parameter regime the linear hash function ℎ is perfect
with probability 1 − 1/poly(𝑡). In combination with the derivative operator 𝜕, it
suffices to compute three convolutions ℎ(𝐴)★𝑛 ℎ(𝐵), ℎ(𝜕𝐴)★𝑛 ℎ(𝐵), ℎ(𝐴)★𝑛 ℎ(𝜕𝐵).
Note that the cyclic convolution★𝑛 can be reduced in the nonnegative case to the
non-cyclic convolution at the cost of doubling the sparsity of the underlying vector,
i.e., ∥ℎ(𝐴)★ℎ(𝐵)∥0 ≤ 2∥ℎ(𝐴)★𝑛 ℎ(𝐵)∥0 ≤ 2∥𝐴★𝐵∥0 ≤ 2𝑡. This yields the claimed
reduction.

This universe reduction ensures that from now on that hashing via the hash
family ℎ(𝑥) = 𝑥 mod 𝑝 (for a random prime 𝑝) is 𝑂(log 𝑡)-universal, i.e., we have
removed its undesired dependence on 𝑛, which will be important for the next step.
We stress as a subtle detail that this step crucially relies on the fact that we are
dealing with nonnegative convolution.

Step 2: Error Correction. In the next step, we show that it suffices to compute the
convolution 𝐴 ★ 𝐵 up to 𝑡/polylog 𝑡 errors, since we can correct these errors by
iterative recovery with an additive hash function ℎ. More precisely assume that
we can can efficiently solve the following problem for an appropriate parame-
ter 𝜖 = 1/polylog 𝑡.

Problem (SmallUniv-Approx-SparseConv).
Input: An integer 𝑡 and nonnegative vectors 𝐴, 𝐵 ∈ Npoly(𝑡) so that ∥𝐴★ 𝐵∥0 ≤ 𝑡.
Task: Compute 𝐶 such that ∥𝐴★ 𝐵 − 𝐶∥0 ≤ 𝜖𝑡.

If we are able to solve this problem, then the remaining goal is to correct
the error between 𝐴★ 𝐵 and 𝐶. Let ℎ : [𝑛 = poly(𝑡)] → [𝑚 = 𝑂(𝑡)] be a
truly additive hash function. We can access the residual vector 𝐴 ★ 𝐵 − 𝐶 via
ℎ(𝐴)★𝑚 ℎ(𝐵) − ℎ(𝐶) = ℎ(𝐴★𝐵− 𝐶). Thus, since the new universe size is a polylog
factor larger than the sparsity of the residual vector, it is possible to continue in
an iterative fashion using ℎ and still be within the 𝑂(𝑡 log 𝑡) time bound. Note that
(i) it is crucial that we have recovered a (1 − 1/log 𝑡)-fraction of the coordinates
of 𝐶 rather than only a constant fraction, and (ii) it can (and will) be the case that
supp(𝐶) \ supp(𝐴★ 𝐵) ≠ ∅, i.e., there are spurious elements, but those spurious
elements will be removed upon iterating.

There is one catch: Iterative recovery creates a sequence of successive approx-
imations 𝐶1, 𝐶2, . . . to 𝐴★𝐵, and the time to hash each such vector, i.e., to perform
the subtraction ℎ1 (𝐴)★𝑚 ℎ1 (𝐵) − ℎ1 (𝐶ℓ), is 𝑂(𝑡). Since there are 𝑂(log 𝑡) such sub-
tractions, the total cost spent on subtractions is 𝑂(𝑡 log 𝑡), which suffices for The-
orem 1.1 but not for Theorem 1.2. The natural solution is to reduce the number
of successive approximations (iterations), which is closely related to the column
sparsity of linear sketches that allow iterative recovery. More sophisticated itera-
tive loop invariants exist [127, 176, 107], but these all get Ω(log 𝑡) column sparsity.
What we observe is that, surprisingly, a small modification of the iterative loop
in [105] finishes in 𝑂(log log 𝑡) iterations, rather than 𝑂(log 𝑡). In the ℓ-th iteration
we hash to 𝑂(𝑡/ℓ2) buckets, and let 𝑡ℓ = ∥𝐴 ★ 𝐵 − 𝐶ℓ∥0. An easy argument yields
that with probability 1 − 1/ℓ2 we have 𝑡ℓ+1 ≤ 1/10 · 𝑡2ℓ/𝑡 · ℓ

4, which yields 𝑡𝐿 < 1
for 𝐿 = 𝑂(log log 𝑡). This means that the subtraction is performed 𝑂(log log 𝑡)
times, so the running time overhead is only 𝑂(𝑡 log log 𝑡). A more involved im-
plementation of this idea (due to the fact that we are interested in 𝑜(1) failure
probability) appears in Section 4.5.

An Attempt Inspired by Prony’s Method. So far we have reduced to small uni-
verse and established that we can afford 𝑡/polylog 𝑡 errors. In the following we
want to recover a (1 − 1/log 𝑡)-fraction of the coordinates “in one shot”. Consider
the following line of attack. Fix a parameter𝑤 ≪ 𝑡 and sample a linear hash func-
tion ℎ : [𝑛 = poly(𝑡)] → [𝑚 = 𝑡/𝑤] (see Lemma 2.7). We aim to recover, for each

74

34 We are referring to the
FOCS 2016 proceedings ver-
sion, which differs in an
important way from the arXiv
version.

33 Classically, Prony’s method
accesses specific evaluations
of the respective vector, rather
than its derivatives (see the
overview in Section 2.3.1).
That version comes with some
complications though: For
instance, it requires access to
an element 𝜔 with large multi-
plicative order. The derivative
version, while a little less
intuitive, circumvents these
computational difficulties. In
the conference version of our
paper [61] we stick to the clas-
sical version and thus obtain
a slightly weaker result.

32 Here and in the following
for ease of exposition we ig-
nore the issue that entries of
𝐴 ★ 𝐵 can be split up, due to ℎ
being only almost-affine.

bucket 𝑧 ∈ [𝑚], all entries of the convolution 𝐴★ 𝐵 that are hashed to bucket 𝑧.32

This corresponds to hashing 𝐶 = 𝐴 ★ 𝐵 to 𝑚 = 𝑡/𝑤 buckets; we expect to have 𝑤
elements per bucket and thus most buckets contain at most 2𝑤 elements, say. Note
that we no longer expect isolated buckets, so we cannot simply use the first deriva-
tive ℎ(𝜕𝐶) to identify the contribution to the bucket as in Section 2.2. Instead, we
compute the first 2𝑤 derivatives ℎ(𝜕1𝐶), . . . , ℎ(𝜕2𝑤𝐶) in the following way. Here, as
before, 𝜕𝑑𝐴 denotes the vector with entries (𝜕𝑑𝐴) [𝑖] = 𝑖𝑑 · 𝐴[𝑖]. By the product
rule we have that

𝜕𝑐𝐶 = 𝜕𝑐 (𝐴★ 𝐵) =
∑︁
𝑎+𝑏=𝑐

(
𝑐

𝑎

)
· 𝜕𝑎𝐴★ 𝜕𝑏𝐵,

or equivalently,

1
𝑐!
𝜕𝑐𝐶 =

∑︁
𝑎+𝑏=𝑐

(
1
𝑎!
𝜕𝑎𝐴

)
★

(
1
𝑏!
𝜕𝑏𝐵

)
.

Using this identity we can encode the computation of ℎ(𝜕1𝐶), . . . , ℎ(𝜕2𝑤𝐶) as a sin-
gle (dense) convolution of size 𝑂(𝑤𝑚) = 𝑂(𝑡). Inspired by Prony’s method we will
recover 𝐶 from the precomputed vectors ℎ(𝜕1𝐶), . . . , ℎ(𝜕2𝑤𝐶).33

Two problems remain: First, Prony’s method requires heavy algebraic ma-
chinery which is too expensive for our needs. We will therefore only use the trans-
posed Vandermonde solver (Theorem 2.18) that itself requires access to the sup-
port supp(𝐶) (this is very similar to our deterministic algorithm in Section 3.3). We
will deal with this obstacle later in Step 4.

The second problem is more severe. Since we want to successfully recover a
(1 − 1/log 𝑡)-fraction of elements in 𝐴 ★ 𝐵, for a (1 − 1/log 𝑡)-fraction of support
elements 𝑘 ∈ supp(𝐴★ 𝐵) it must be the case that |ℎ−1 (ℎ(𝑖)) | ≤ 2𝑤. This is a neces-
sary condition in order to recover (𝐴★𝐵) [ℎ−1 (ℎ(𝑖))] using the derivatives. If ℎwas
three-wise independent, a standard argument using Chebyshev’s inequality would
show the desired concentration bound. However, since the linear hash function ℎ
is only pairwise independent, we need to take a closer look at concentration of
linear hashing.

Intermezzo on Linear Hashing. A beautiful paper by Knudsen [139] shows that
the linear hash function ℎ, despite being only pairwise independent, satisfies re-
fined concentration bounds.

Theorem 4.1 (Almost Three-Wise Independence [139, Theorem 5]). Let 𝑋 ⊆ [𝑈]
be a set of 𝑡 keys. Randomly pick a linear hash function ℎ with parameters 𝑝 > 4𝑛2

and 𝑚 ≤ 𝑛, fix a key 𝑥 ∉ 𝑋 and buckets 𝑎, 𝑏 ∈ [𝑚]. Moreover, let 𝑦, 𝑧 ∈ 𝑋 be chosen
independently and uniformly at random. Then:

P(ℎ(𝑦) = ℎ(𝑧) = 𝑏 | ℎ(𝑥) = 𝑎) ≤ 1
𝑚2 +

2𝑂(
√

log 𝑡 log log 𝑡)

𝑚𝑡
. (2)

Using the above theorem and Chebyshev’s inequality, Knudsen arrives at a
concentration bound on the number of elements falling in a fixed bucket, see [139,
Theorem 2].34 Up to the factor 2𝑂(

√
log 𝑡 log log 𝑡) = 𝑡𝑜(1) , this would indeed be the con-

centration bound satisfied by three-wise independent hash functions. However,
this additional 𝑡𝑜(1) factor is crucial for our application. Moreover, as we show in
Section 4.8, the analysis in [139] is nearly tight. In particular, we show the exis-
tence of a set 𝑋 such that the 𝑡𝑜(1) factor is necessary.

Theorem 4.2 ([139, Theorem 5] is Almost Optimal). Let 𝑡 and 𝑛 be arbitrary pa-
rameters with 𝑛 ≥ 𝑡1+𝜖 for some constant 𝜖 > 0, and let ℎ be a random linear hash

75

function which hashes to 𝑚 buckets. Then there exists a set 𝑋 ⊆ [𝑛] of 𝑡 keys, a fixed
key 𝑥 ∉ 𝑋 and buckets 𝑎, 𝑏 ∈ [𝑚] such that for uniformly random 𝑦, 𝑧 ∈ 𝑋 we have

P(ℎ(𝑦) = ℎ(𝑧) = 𝑏 | ℎ(𝑥) = 𝑎) ≥ 1
𝑚𝑡

exp

(
Ω

(√︂
min

(
log 𝑡

log log 𝑡 ,
log 𝑛

log2 log 𝑛

)))
.

This brings us to an unclear situation. The structured linear algebra machin-
ery of Prony’s method seems inadequate for our purposes and the state-of-the-art
concentration bounds of linear hashing do not seem to be sufficiently strong. We
show how to remedy this state of affairs, using the following new concentration
bound for linear hashing:

Theorem 4.3 (Closer to Three-Wise Independence in Tiny Universes). Let𝑋 ⊆ [𝑛]
be a set of 𝑡 keys. Randomly pick a linear hash function ℎ with parameters 𝑝 > 4𝑛2

and 𝑚 ≤ 𝑛, fix a key 𝑥 ∉ 𝑋 and buckets 𝑎, 𝑏 ∈ [𝑚]. Moreover, let 𝑦, 𝑧 be chosen
independently and uniformly at random. Then:

P(ℎ(𝑦) = ℎ(𝑧) = 𝑏 | ℎ(𝑥) = 𝑎) ≤ 1
𝑚2 + 𝑂

(
𝑛 log 𝑛
𝑚𝑡2

)
.

Note that this theorem does not contradict our lower bound in Theorem 4.2.
This result can be proved using the machinery established in [139] as well as some
elementary number theory, and is actually simpler than the complete analysis
of [139]. We state the relevant parts in Section 4.8.

Keeping this new concentration bound in mind, our next trick (Step 3) is to re-
duce to a tiny universe of size 𝑡 polylog 𝑡. In tiny universes, Theorem 4.3 shows that
linear hashing is almost 3-wise independent up to polylogarithmic factors—a ma-
jor improvement in comparison to the original 𝑡𝑜(1) -overhead. Another technical
step is to approximate the support of 𝐴★𝐵 (Step 4), which can be done efficiently
when the universe is tiny. This replaces the computationally expensive part of
Prony’s method. After that, we are ready to make the attempt work (Step 5). These
steps are described in the following.

Step 3: Universe Reduction from Small to Tiny. We further reduce the universe
size to 𝑡 polylog 𝑡; let us call this regime tiny. This is the smallest universe we can
hash to while ensuring that with constant probability a (1 − 1/log 𝑡)-fraction of
coordinates is isolated under the hashing. Apart from this difference the reduction
is very similar to Step 0. It remains to solve the following computational problem
(again, think of 𝜖 = 1/polylog 𝑡). This is done in Section 4.4.

Problem (TinyUniv-Approx-SparseConv).
Input: An integer 𝑡 and nonnegative vectors 𝐴, 𝐵 ∈ N𝜖−2𝑡 such that ∥𝐴★ 𝐵∥0 ≤ 𝑡.
Task: Compute 𝐶 such that ∥𝐴★ 𝐵 − 𝐶∥0 ≤ 𝜖𝑡.

Step 4: Approximating the Support. Next we want to approximate the support
set supp(𝐴 ★ 𝐵). Specifically, we want to recover a set 𝑍 of size |𝑍 | = 𝑂(𝑡) such
that | supp(𝐴 ★ 𝐵) \ 𝑍 | ≤ 𝑡/polylog 𝑡. Since supp(𝐴 ★ 𝐵) = supp(𝐴) + supp(𝐵) (in
the sumset notation), for 𝑋 = supp(𝐴), 𝑌 = supp(𝐵) we formally want to solve the
following problem.

Problem (TinyUniv-ApproxSupp).
Input: An integer 𝑡 and sets 𝑋,𝑌 ⊆ [𝜖−2𝑡], such that |𝑋 + 𝑌 | ≤ 𝑡.
Task: Compute a set 𝑍 of size 𝑂(𝑡) such that | (𝑋 + 𝑌) \ 𝑍 | ≤ 𝜖𝑡.

Note that this problem is merely the restriction to Boolean convolutions in the
previous problem TinyUniv-Approx-SparseConv. To solve this problem, we create
a sequence of successive approximations to 𝑋 + 𝑌 . This approach is inspired by
the scaling trick from Section 2.6. Specifically, consider the sets

𝑋ℓ =
{⌊ 𝑥

2ℓ
⌋

: 𝑥 ∈ 𝑋
}
, 𝑌ℓ =

{⌊ 𝑦
2ℓ

⌋
: 𝑦 ∈ 𝑌

}
,

76

for 0 ≤ ℓ ≤ log(𝑛/𝑡) (where 𝑛 = 𝜖2𝑡 is the tiny universe size). For ℓ = log(𝑛/𝑡),
we have 𝑋ℓ, 𝑌ℓ ⊆ [𝑡], and thus we can compute 𝑍ℓ := 𝑋ℓ + 𝑌ℓ by one Boolean con-
volution in FFT time 𝑂(𝑡 log 𝑡). Since the universe size 𝑛 is tiny, the number of
levels is just log(𝑛/𝑡) = 𝑂(𝜖−1) = 𝑂(log log 𝑡). It remains to argue how to go from
level ℓ + 1 to ℓ, to finally approximate 𝑋0 + 𝑌0 = 𝑋 + 𝑌 . We say that a set 𝑍ℓ closely
approximates 𝑋ℓ +𝑌ℓ if |𝑍ℓ | = 𝑂(𝑡), and | (𝑋ℓ +𝑌ℓ) \ 𝑍ℓ | ≤ 𝜖𝑡. Given a set 𝑍ℓ+1 which
closely approximates 𝑋ℓ+1 + 𝑌ℓ+1, we want to find a set 𝑍ℓ which closely approxi-
mates 𝑋ℓ +𝑌ℓ. It is not hard to see that a candidate for 𝑍ℓ is 2𝑍ℓ+1 + {0, 1, 2}. Hence
the main problem is keeping the size of 𝑍ℓ small by filtering out false positives.
One way to do so would be to compute ℎ(𝑋ℓ) + ℎ(𝑌ℓ), for a random linear hash
function ℎ : [𝑛] → [𝑂(𝑡)]. We then throw away all coordinates 𝑖 ∈ 2𝑍ℓ+1 + {0, 1, 2}
for which the bucket ℎ(𝑖) is empty. Naively computing the convolution would lead
to time Ω(𝑡 log 𝑡 log log 𝑡). To improve this, we apply Indyk’s algorithm for Boolean
convolution:

Theorem 2.2 (Approximate Sumsets, [124]). There exists a randomized algorithm
which, given two sets 𝑋,𝑌 ⊆ [𝑛] computes in time 𝑂(𝑛) a set 𝑍 ⊆ 𝑋 + 𝑌 , such that
for all 𝑧 ∈ 𝑋 + 𝑌 we have P(𝑥 ∈ 𝑍) ≥ 2

3 .

Since Indyk’s algorithm has a small probability of not reporting an element in
the sumset, this leads to losing some elements in supp(𝐴)+supp(𝐵), but we are fine
with 𝑡/polylog 𝑡 errors. On the positive side, compared to standard Boolean convo-
lution this reduces the running time by a factor log 𝑡. Putting everything together
carefully, we show that supp(𝐴★𝐵) can be approximated in time 𝑂(𝑡(log log 𝑡)2).
For the complete proof we refer to Section 4.3.

Step 5: Approximate Set Query. With all reductions and preparations discussed
so far, it remains to solve the following problem to finish our algorithm, for details
see Section 4.2.

Problem (TinyUniv-Approx-SetQuery).
Input: An integer 𝑡, nonnegative vectors 𝐴, 𝐵 ∈ N𝜖−2𝑡 and a set 𝑍 with |𝑍 | = 𝑂(𝑡)
and | supp(𝐴★ 𝐵) \ 𝑍 | ≤ 𝜖3𝑡.
Task: Compute 𝐶 such that ∥𝐴★ 𝐵 − 𝐶∥0 ≤ 𝜖𝑡.

This is the last step of the algorithm. As in the approach using Prony’s method
that we discussed above, we pick a parameter 𝑤, hash to 𝑚 = 𝑡/𝑤 buckets, and
get access to ℎ(𝜕1𝐶), . . . , ℎ(𝜕2𝑤𝐶). Recall that in a tiny universe, the surprising ob-
servation is that the lower bound on the concentration of linear hashing does not
apply, and we obtain the much stronger concentration bound from Corollary 4.27.

Furthermore, we can now circumvent the computationally expensive part of
Prony’s method, since we have knowledge of most of the support supp(𝐴 ★ 𝐵). It
turns out that we only need to solve 𝑂(𝑡/𝑤) transposed Vandermonde systems of
size𝑂(𝑤)×𝑂(𝑤) (over some finite fieldZ𝑞). The part of the support we do not know
might mess up some the estimates due to collisions, but it is such a small fraction
that cannot make us fail on more than a 1/polylog 𝑡-fraction of the coordinates
in 𝑍 (and the errors that will be introduced due to misestimation will be cleaned
up by the iterative recovery loop in Step 2). Using the improved concentration
bound for linear hashing, a fast transposed Vandermonde solver (Theorem 2.18),
and some additional tricks to compute all vectors ℎ(𝜕1𝐶), . . . , ℎ(𝜕2𝑤𝐶) simultane-
ously, we can pick 𝑤 = polylog 𝑡 and arrive at a 𝑂(𝑡 log 𝑡)-time algorithm, that is
also a reduction from sparse to dense convolution.

One last detail is that Vandermonde system solvers compute multiplicative
inverses, which cost time Ω(log 𝑞) = Ω(log(𝑛Δ)) each, and thus account for
time Ω(𝑡 log(𝑛Δ)) in total. We observe that, since we are solving several (in par-
ticular, 𝑡/𝑤) Vandermonde systems, we can run all of them in parallel and batch
the inversions across calls. We can then simulate 𝑡/𝑤 inversions using 𝑂(𝑡/𝑤)
multiplications and just one division, see Lemma 2.17. This yields 𝑂(𝑡 log 𝑡) run-

77

ning time and, as claimed in Theorem 1.2, an additive polylog(𝑛Δ) term (which is
anyways already present, only for choosing the prime 𝑞).

4.2 Set Queries in a Tiny Universe

As the first step in our chain of reductions, the goal of this section is to give an
efficient algorithm for the TinyUniv-Approx-SetQuery problem:

Problem (TinyUniv-Approx-SetQuery).
Input: An integer 𝑡, nonnegative vectors 𝐴, 𝐵 ∈ N𝜖−2𝑡 and a set 𝑍 with |𝑍 | = 𝑂(𝑡)
and | supp(𝐴★ 𝐵) \ 𝑍 | ≤ 𝜖3𝑡.
Task: Compute 𝐶 such that ∥𝐴★ 𝐵 − 𝐶∥0 ≤ 𝜖𝑡.

Lemma 4.4 (TinyUniv-Approx-SetQuery). Let 𝜖, 𝛿 > 0. The TinyUniv-Approx-Set-
Query problem is in time 𝑂(𝐷𝛿 (𝑡) + 𝑡 log2 (𝜖−1) + 𝑡 log(𝛿−1) + polylog(∥𝐴∥∞, ∥𝐵∥∞))
with error probability 𝛿, provided that log 𝑡 ≤ 𝜖−1, 𝛿−1 ≤ poly(𝑡).

We show the lemma in two steps. In Section 4.2.1 we give two important pre-
liminary lemmas, and in Section 4.2.2 we then present and analyze the algorithm
which proves Lemma 4.4.

4.2.1 Derivative Representation

Let 𝑚,𝑤 be parameters and let 𝑓 (𝑥) = 𝑥 mod𝑚. As in the previous chapter, we
will represent 𝐴 by its derivatives. Specifically, in this section we will show that
we can efficiently evaluate, and under certain restrictions also invert, the follow-
ing map 𝐴 → 𝑓 (𝜕0𝐴), . . . , 𝑓 (𝜕𝑤−1𝐴). We will refer to 𝑓 (𝜕0𝐴), . . . , 𝑓 (𝜕𝑤−1𝐴) as the
derivative representation of 𝐴.

For the inversion a crucial assumption is that we are given a close approxi-
mation 𝑋 of supp(𝐴). The quality of the recovery is controlled by the following
measure 𝐹𝑚 (𝑋). We say that a bucket 𝑖 ∈ [𝑚] is overfull for 𝑋 if there are more
than 2 |𝑋 |

𝑚 elements 𝑥 ∈ 𝑋 with 𝑖 = 𝑥 mod𝑚 = 𝑓 (𝑥). We define 𝐹𝑚 (𝑋) as the number
of elements in 𝑋 falling into overfull buckets. In other words, we define

𝐹𝑚 (𝑋) =
∑︁
𝑥∈𝑋

[∑︁
𝑥′∈𝑋
[𝑥 ≡ 𝑥′ (mod 𝑚)] > 2|𝑋 |

𝑚

]
,

where we use the Iverson notation [𝑃] ∈ {0, 1} to denote the truth value of 𝑃.
For the remainder of this subsection we assume as before that 𝐴 is an arbi-

trary length-𝑛 vector with sparsity at most 𝑡. We further assume that 𝐴 is over
some finite field F𝑞 in order avoid precision issues in the underlying algebraic ma-
chinery.

Lemma 4.5 (Transform to and from the Derivative Representation). Let 𝐴 ∈ F𝑛𝑞
be a 𝑡-sparse vector, let 𝑚 be a parameter, let 𝑓 (𝑥) = 𝑥 mod𝑚 and let 𝑤 = ⌈2𝑡/𝑚⌉.
Then:

1 Given 𝐴, we can compute 𝑓 (𝜕0𝐴), . . . , 𝑓 (𝜕𝑤−1𝐴) in deterministic time𝑂(𝑡 log2 𝑤).
2 Given 𝑓 (𝜕0𝐴), . . . , 𝑓 (𝜕𝑤−1𝐴) and a size-𝑡 set 𝑋 , we can compute a vector 𝐴 in

deterministic time 𝑂(𝑡 log2 𝑤). The vector 𝐴 satisfies

∥𝐴 − 𝐴∥0 ≤ 𝑤 · | supp(𝐴) \ 𝑋 | + 𝐹𝑚 (𝑋).

Proof. 1 We start with the first item. Let 𝑋 = supp(𝐴) (note that |𝑋 | ≤ 𝑡). We
first partition 𝑋 into several chunks 𝑋𝑖, 𝑗 . Start with 𝑋𝑖 = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 𝑖} and
then subdivide each part 𝑋𝑖 into chunks 𝑋𝑖,1, 𝑋𝑖,2, . . . of size |𝑋𝑖, 𝑗 | = 𝑤 (except
for one chunk of size ≤ 𝑤). We claim that in this way we have constructed at
most 𝑂(𝑚) chunks: On the one hand, there can be at most 𝑚 chunks of size

78

exactly 𝑤 since 𝐴 has sparsity 𝑡 ≤ 𝑚𝑤. On the other hand, there can be at
most 𝑚 chunks of size less than 𝑤 by the way the greedy algorithm works.

Now focus on an arbitrary chunk 𝑋𝑖, 𝑗 ; for simplicity assume that |𝑋𝑖, 𝑗 | = 𝑤.
Let 𝑥1, . . . , 𝑥𝑤 denote the elements of 𝑋𝑖, 𝑗 in an arbitrary order. We compute
the vector 𝑆𝑖, 𝑗 ∈ Z𝑤𝑞 as the following transposed Vandermonde matrix-vector
product:

𝑆𝑖, 𝑗 =



1 1 · · · 1
𝑥1 𝑥2 · · · 𝑥𝑤
𝑥2

1 𝑥2
2 · · · 𝑥2

𝑤
...

...
. . .

...

𝑥𝑤−1
1 𝑥𝑤−1

2 · · ·𝑥𝑤−1
𝑤



𝐴[𝑥1]
𝐴[𝑥2]
...

𝐴[𝑥𝑤]


.

Since 𝑛 < 𝑞 the elements 𝑥1, . . . , 𝑥𝑤 ∈ [𝑛] are distinct modulo 𝑞 and there-
fore the matrix is nonsingular over F𝑞. We can therefore apply Theorem 2.18
to compute 𝑆𝑖, 𝑗 . It remains to return the vectors 𝑓 (𝜕ℓ𝐴) for all ℓ ∈ [𝑤],
which we compute as 𝑓 (𝜕ℓ𝐴) [𝑖] = ∑

𝑗 𝑆𝑖, 𝑗 [ℓ]. It is easy to check that 𝑆𝑖, 𝑗 [ℓ]
equals 𝑓 (𝜕ℓ𝐴′) [𝑖] where 𝐴′ is the vector obtained from 𝐴 by restricting the
support to 𝑋𝑖, 𝑗 . The correctness of the whole algorithm follows immediately.

Finally, we analyze the running time. The construction of the chunks
takes time 𝑂(𝑚𝑤) = 𝑂(𝑡), and also writing down all vectors 𝑓 (𝜕ℓ𝐴) takes
time 𝑂(𝑡) given the vectors 𝑆𝑖, 𝑗 . The dominant step is to compute transposed
Vandermonde matrix-vector product for each chunk. Since there are 𝑂(𝑚)
chunks in total and the running time for solving a single system is bounded
by 𝑂(𝑤 log2 𝑤) (by Theorem 2.18), the total running time is 𝑂(𝑚𝑤 log2 𝑤)
plus 𝑂(𝑚𝑤 log2 𝑤) ring operations running in constant time each. Therefore,
the total running time is 𝑂(𝑡 log2 𝑤).

2 Next, we prove the second item. Assume we have access to 𝑓 (𝜕0), . . . , 𝑓 (𝜕𝑤−1).
Our goal is to recover a good approximation 𝐴 of 𝐴, provided that an approx-
imation 𝑋 of supp(𝐴) is given. As before, the first step is to partition 𝑋 into
buckets 𝑋𝑖 = {𝑥 ∈ 𝑋 : 𝑥 mod𝑚 = 𝑖}. We say that the bucket 𝑋𝑖 is overfull if
|𝑋𝑖 | > 𝑤. In contrast to before, we can afford to ignore all overfull buckets
here, so focus on an arbitrary bucket 𝑋𝑖 with |𝑋𝑖 | ≤ 𝑤. Letting 𝑥1, . . . , 𝑥𝑤 de-
note the elements in 𝑋𝑖 in an arbitrary order (and assuming for the sake of
simplicity that there are exactly 𝑤 of these), it suffices to solve the following
transposed Vandermonde system with indeterminates 𝐴[𝑥1], . . . , 𝐴[𝑥𝑤]:


𝑓 (𝜕0𝐴) [𝑖]
𝑓 (𝜕1𝐴) [𝑖]

...

𝑓 (𝜕𝑤−1𝐴) [𝑖]


=



1 1 · · · 1
𝑥1 𝑥2 · · · 𝑥𝑤
𝑥2

1 𝑥2
2 · · · 𝑥2

𝑤
...

...
. . .

...

𝑥𝑤−1
1 𝑥𝑤−1

2 · · ·𝑥𝑤−1
𝑤



𝐴[𝑥1]
𝐴[𝑥2]
...

𝐴[𝑥𝑤]


.

We prove that ∥𝐴−𝐴∥0 is small. A bucket 𝑋𝑖 is successful if (i) it is not overfull,
and if (ii) there exists no support element 𝑥 ∈ supp(𝐴) \ 𝑋 with 𝑥 mod𝑚 = 𝑖.
The claim is that whenever 𝑋𝑖 is successful, then 𝐴[𝑥] = 𝐴[𝑥] for all 𝑥 ∈ 𝑋𝑖 .
Indeed, for any successful bucket one can verify that the equation system is
valid for 𝐴 in place of 𝐴, and as the Vandermonde matrix has full rank this is
the unique solution.

Therefore, it suffices to bound the total size of all non-successful buckets:
On the one hand, the number of elements in buckets for which condition (i)
holds but (ii) fails is at most 𝑤 · | supp(𝐴) \ 𝑋 |. On the other hand, the contri-
bution of elements in buckets for which condition (i) fails is exactly 𝐹𝑚 (𝑋) by
definition. Together, these yield the claimed bound on ∥𝐴 − 𝐴∥0.

The running time can be analyzed in the same way as before: Forming the
buckets takes time 𝑂(𝑚𝑤) = 𝑂(𝑡) and solving the transposed Vandermonde

79

systems takes𝑂(𝑚𝑤 log2 𝑤) = 𝑂(𝑡 log2 𝑤) arithmetic operations. However, we
have to be careful: Theorem 2.18 states that we need 𝑂(𝑚𝑤 log2 𝑤) ring op-
erations (each running in constant time in the RAM model) plus one division.
Divisions over F𝑞 can be implemented in time 𝑂(log 𝑞) using the Euclidian al-
gorithm, but it would be too costly to run the Euclidian algorithm 𝑚 times. In-
stead, we use the bulk division lemma (Lemma 2.17) which states that we can
simulate 𝑚 parallel divisions by a single division and 𝑂(𝑚) multiplications.
The running time overhead due to the Euclidian algorithm becomes 𝑂(log 𝑞)
in total.

The previous lemma shows that we can efficiently transition from 𝐴 to its
derivative representation. The next lemma shows that in the derivative repre-
sentation we can efficiently simulate the convolution of two vectors.

Lemma 4.6 (Convolution in the Derivative Representation). Let 𝐴, 𝐵 ∈ F𝑛𝑞 . Given
their derivative representations 𝑓 (𝜕0𝐴), . . . , 𝑓 (𝜕𝑤−1𝐴) and 𝑓 (𝜕0𝐵), . . . , 𝑓 (𝜕𝑤−1𝐵),
we can compute the derivative representation 𝑓 (𝜕0𝐶), . . . , 𝑓 (𝜕𝑤−1𝐶) of 𝐶 = 𝐴★ 𝐵 in
time 𝑂(𝐷𝛿 (𝑚𝑤) + log 𝑞) with error probability 𝛿 ≥ 0.

Proof. Let 𝑋 be the integer vector of length 2𝑚𝑤 with entries defined as follows:
Initialize 𝑋 to be all-zeros and then set 𝑋 [𝑖 + 2𝑎𝑚] = 1

𝑎! · ℎ(𝜕
𝑎𝐴) [𝑖] for all 𝑖 ∈ [𝑚]

and 𝑗 ∈ [𝑤]. Similarly construct𝑌 from 𝐵. We compute the convolution 𝑍 := 𝑋★𝑌
using the dense convolution algorithm and extract the derivative representation
of 𝐶 via

𝑓 (𝜕𝑐𝐶) [𝑘] = 𝑐! · (𝑍 [𝑘 + 2𝑐𝑚] + 𝑍 [𝑘 + (2𝑐 + 1)𝑚]).

We start with the running time analysis. The factorials 0!, 1!, . . . , (𝑤 − 1)! can
be computed in time 𝑂(𝑤). Using the bulk division algorithm (Lemma 2.17) we
can reduce the computation of 1

0! ,
1
1! , . . . ,

1
(𝑤−1)! to 𝑂(𝑤) multiplications running

in constant time each plus one division running in time 𝑂(log 𝑞) using Euclid’s
algorithm. The rest of the algorithm runs in time 𝑂(𝑚𝑤 + 𝐷(𝑚𝑤)) = 𝑂(𝐷(𝑚𝑤)),
using a possibly randomized dense convolution algorithm with error probability
𝛿 ≥ 0.

The correctness is by the following calculation. On the one hand, we have:

1
𝑐!
· 𝑓 (𝜕𝑐𝐶) [𝑘]

=
1
𝑐!
·

∑︁
𝑧∈[𝑛]

𝑧mod𝑚=𝑘

𝑧𝑐 · 𝐶 [𝑧]

=
1
𝑐!
·

∑︁
𝑥, 𝑦∈[𝑛]

(𝑥+𝑦)mod𝑚=𝑘

(𝑥 + 𝑦)𝑐 · 𝐴[𝑥] · 𝐵[𝑦]

80

We now apply the binomial theorem (𝑥 + 𝑦)𝑐 = ∑
𝑎+𝑏=𝑐

(𝑐
𝑎

)
𝑥𝑎 · 𝑦𝑏 and use that the

binomial coefficient can be expressed as
(𝑎
𝑐

)
= 𝑐!

𝑎!(𝑐−𝑎)! .

=
∑︁

𝑥, 𝑦∈[𝑛]
(𝑥+𝑦)mod𝑚=𝑘

∑︁
𝑎,𝑏∈[𝑤]
𝑎+𝑏=𝑐

(𝑐
𝑎

)
𝑐!
· 𝑥𝑎 · 𝑦𝑏 · 𝐴[𝑥] · 𝐵[𝑦]

=
∑︁

𝑥, 𝑦∈[𝑛]
(𝑥+𝑦)mod𝑚=𝑘

∑︁
𝑎,𝑏∈[𝑤]
𝑎+𝑏=𝑐

𝑥𝑎 · 𝐴[𝑥]
𝑎!

· 𝑦
𝑏 · 𝐵[𝑦]
𝑏!

=
∑︁

𝑖, 𝑗∈[𝑚]
(𝑖+ 𝑗) (mod 𝑚)=𝑘

∑︁
𝑎,𝑏∈[𝑤]
𝑎+𝑏=𝑐

©­­­«
∑︁
𝑥∈[𝑛]

𝑥 mod𝑚=𝑖

𝑥𝑎 · 𝐴[𝑥]
𝑎!

ª®®®¬ ·
©­­­«

∑︁
𝑦∈[𝑛]

𝑦mod𝑚= 𝑗

𝑦𝑏 · 𝐵[𝑦]
𝑏!

ª®®®¬
=

∑︁
𝑖, 𝑗∈[𝑚]

(𝑖+ 𝑗) (mod 𝑚)=𝑘

∑︁
𝑎,𝑏∈[𝑤]
𝑎+𝑏=𝑐

𝑓 (𝜕𝑎𝐴) [𝑖]
𝑎!

· 𝑓 (𝜕
𝑏𝐵) [𝑗]
𝑏!

=
∑︁

𝑖, 𝑗∈[𝑚]
(𝑖+ 𝑗) (mod 𝑚)=𝑘

∑︁
𝑎,𝑏∈[𝑤]
𝑎+𝑏=𝑐

𝑋 [𝑖 + 2𝑎𝑚] · 𝑌 [𝑗 + 2𝑏𝑚]

On the other hand we have

𝑍 [𝑘 + 2𝑐𝑚] =
∑︁

𝑖, 𝑗∈[𝑚], 𝑎,𝑏∈[𝑤]
𝑖+2𝑎𝑚+ 𝑗+2𝑏𝑚=𝑘+2𝑐𝑚

𝑋 [𝑖 + 2𝑎𝑚] · 𝑌 [𝑗 + 2𝑏𝑚]

We claim that the condition 𝑖 + 2𝑎𝑚 + 𝑗 + 2𝑏𝑚 = 𝑘 + 2𝑐𝑚 is equivalent to 𝑖 + 𝑗 = 𝑘
and 𝑎+𝑏+ 𝑐. Indeed, note that 𝑎+𝑏 = 𝑐 is implied since |𝑖 + 𝑗−𝑘 | < 2𝑚. Therefore:

𝑍 [𝑘 + 2𝑐𝑚] =
∑︁

𝑖, 𝑗∈[𝑚]
𝑖+ 𝑗=𝑘

∑︁
𝑎,𝑏∈[𝑤]
𝑎+𝑏=𝑐

𝑋 [𝑖 + 2𝑎𝑚] · 𝑌 [𝑗 + 2𝑏𝑚],

and similarly

𝑍 [𝑘 + (2𝑐 + 1)𝑚] =
∑︁

𝑖, 𝑗∈[𝑚]
𝑖+ 𝑗=𝑘+𝑚

∑︁
𝑎,𝑏∈[𝑤]
𝑎+𝑏=𝑐

𝑋 [𝑖 + 2𝑎𝑚] · 𝑌 [𝑗 + 2𝑏𝑚]

In combination we have ℎ(𝐴★ 𝐵) [𝑘, 𝑐] = 𝑘! · (𝑍 [𝑘 + 2𝑐𝑚] + 𝑍 [𝑘 + (2𝑐 + 1)𝑚]) and
the correctness of the whole algorithm follows.

4.2.2 The Algorithm

We are ready to prove Lemma 4.4 by analyzing the pseudocode given in Algo-
rithm 4.1. We start with the running time analysis.

Lemma 4.7 (Running Time of Algorithm 4.1). With probability 1− 𝛿
2 , Algorithm 4.1

terminates in time 𝑂(𝐷𝛿 (𝑡) + 𝑡 log2 (𝜖−1) + 𝑡 log(𝛿−1) + polylog(𝑡, ∥𝐴∥∞, ∥𝐵∥∞)), pro-
vided that log 𝑡 ≤ 𝜖−1 ≤ poly(𝑡).

Proof. We start analyzing the loop in Lines 4 and 8, and prove that a single itera-
tion succeeds with constant probability. Having established that fact, it is clear that
the loop is left after at most 𝑂(log(1/𝛿)) independent iterations with probability
at least 1 − 𝛿

4 . Recall that the loop ends as soon as 𝐹𝑚 (𝑍) ≤ 𝜖𝑡
2 , that is,

𝐹𝑚 (𝑋) =
∑︁
𝑧∈𝑍


∑︁
𝑧′∈𝑍

[𝑧 ≡ 𝑧′ (mod 𝑚)] > 2|𝑍 |
𝑚

 ≤
𝜖𝑡

2
. (3)

81

Algorithm 4.1. Solves the TinyUniv-Approx-SetQuery problem: Given integer
vectors 𝐴, 𝐵 ∈ Z𝑛 where 𝑛 = 𝜖−2𝑡 and a set 𝑍 ≈ supp(𝐴 ★ 𝐵), this algorithm
computes an approximation 𝐶 of 𝐶 = 𝐴★ 𝐵 with ∥𝐶 − 𝐶∥0 ≤ 𝜖𝑡.

1 procedure TinyUniv-Approx-SetQuery(𝐴, 𝐵, 𝑍, 𝑡, 𝜖)
2 Let 𝑞 > 𝑛 · ∥𝐴∥∞ · ∥𝐵∥∞ be a prime and cast 𝐴, 𝐵 to vectors over F𝑞
3 Let 𝑝 > 4𝑛2 be a prime, let 𝑚 = Θ(𝜖𝑡) and let 𝑤 = ⌈2𝑡/𝑚⌉
4 repeat
5 Pick 𝜎, 𝜏 ∈ [𝑝] uniformly at random
6 Let 𝑓 (𝑥) = 𝑥 mod𝑚, 𝑔 (𝑥) = (𝜎𝑥 + 𝜏)mod 𝑝 and ℎ(𝑥) = 𝑓 (𝑔 (𝑥))
7 𝑍 ← 𝑔 (𝑍) + {0, 𝑝}
8 until 𝐹𝑚 (𝑍) ≤ 𝜖𝑡

2
9 Compute 𝐴0 ← 𝑓 (𝜕0𝑔 (𝐴)), . . . , 𝐴𝑤−1 ← 𝑓 (𝜕𝑤−1𝑔 (𝐴)) using Lemma 4.5
10 Compute 𝐵0 ← 𝑓 (𝜕0𝑔 (𝐵)), . . . , 𝐵𝑤−1 ← 𝑓 (𝜕𝑤−1𝑔 (𝐵)) using Lemma 4.5
11 Compute 𝑅0 ← 𝑓 (𝜕0 (𝑔 (𝐴) ★ 𝑔 (𝐵))), . . . , 𝑅𝑤−1 ← 𝑓 (𝜕𝑤−1 (𝑔 (𝐴) ★ 𝑔 (𝐵)))

using Lemma 4.6
12 Recover 𝑅 from 𝑅0, . . . , 𝑅𝑤−1 and 𝑍 using Lemma 4.5
13 return 𝐶 = 𝑔−1 (𝑅) (cast back to an integer vector)

Since by definition 𝑍 = 𝑔 (𝑋) + {0, 𝑝}, we may fix offsets 𝑜, 𝑜′ ∈ {0, 𝑝} and instead
bound

∑︁
𝑧∈𝑍

[∑︁
𝑧′∈𝑍
[ℎ(𝑧) + 𝑜 = ℎ(𝑧′) + 𝑜′ (mod 𝑚)] > 2|𝑍 |

𝑚

]
≤ 𝜖𝑡

4
, (4)

where ℎ(𝑥) = 𝑔 (𝑥)mod𝑚 is a linear hash function with parameters 𝑝 and 𝑚.
Indeed, if the latter event happens, then also the former event happens. Fix 𝑜, 𝑜′
and fix any 𝑥 ∈ 𝑋 . Then:

P

(∑︁
𝑥′∈𝑋
[ℎ(𝑥) + 𝑜 = ℎ(𝑥′) + 𝑜′ (mod 𝑚)] > 2|𝑋 |

𝑚

)
=

∑︁
𝑎∈[𝑚]

P(ℎ(𝑥) = 𝑎) ·P
(∑︁
𝑥′∈𝑋
[ℎ(𝑥′) = (𝑎 + 𝑜 − 𝑜′)mod𝑚] > 2|𝑋 |

𝑚

����� ℎ(𝑥) = 𝑎
)

This is where our concentration bounds come into play: This conditional proba-
bility can be bounded by Corollary 4.27 with buckets 𝑎 and 𝑏 = (𝑎+ 𝑜− 𝑜′)mod𝑚.
Let 𝐹 =

∑
𝑥′∈𝑋 [ℎ(𝑥′) = 𝑏], then E(𝐹) = |𝑋 |𝑚 + 𝑂(1). It follows that:

=
∑︁
𝑎∈[𝑚]

P(ℎ(𝑥) = 𝑎) · P
(
𝐹 >

2|𝑋 |
𝑚

���� ℎ(𝑥) = 𝑎) ,
=

∑︁
𝑎∈[𝑚]

P(ℎ(𝑥) = 𝑎) · P
(
𝐹 − E(𝐹) > |𝑋 |

𝑚
− 𝑂(1)

���� ℎ(𝑥) = 𝑎) ,
≤

∑︁
𝑎∈[𝑚]

P(ℎ(𝑥) = 𝑎) · 𝑂
(
𝑚𝑛 log 𝑛
|𝑋 |2

)
= 𝑂

(
𝑚𝑛 log 𝑛
|𝑋 |2

)
where for the inequality we applied Corollary 4.27 with 𝜆 =

√︁
|𝑋 |/𝑚 − 𝑂(1). We

choose 𝑚 = 𝑐 · 𝜖𝑡 for some small constant 𝑐 > 0, then:

= 𝑂

(
𝑐 · 𝜖𝑡𝑛 log 𝑛

𝑡2

)
= 𝑂

(
𝑐 · 𝜖𝑡𝜖−2𝑡 log(𝜖−2𝑡)

𝑡2

)
= 𝑂(𝑐 · 𝜖−1 log 𝑡) = 𝑂(𝑐).

82

Here we used the assumption log 𝑡 ≤ 𝜖−1 ≤ poly(𝑡). By setting 𝑐 small enough,
this probability becomes less than 1

12 . Then, by a union bound over the three pos-
sible values of 𝑜 − 𝑜′ and by Markov’s inequality, we conclude that the event in
Equation (4) (and thereby the event in Equation (3)) happens with probability at
least 1

2 .
We are ready to analyze the running time of Algorithm 4.1. Precomputing

the primes 𝑝, 𝑞 runs in time polylog(𝑡, ∥𝐴∥∞, ∥𝐵∥∞). As we just proved in the
previous paragraph, with probability 1 − 𝛿

4 the loop in Lines 4 and 8 runs for at
most 𝑂(log(𝛿−1)) iterations. Each execution of the loop body takes time 𝑂(𝑡), and
thus the loop terminates in time 𝑂(𝑡 log(𝛿−1)). Finally, we apply Lemma 4.5 three
times running in time 𝑂(𝑡 log2 𝑤) = 𝑂(𝑡 log2 (𝜖−1)) and apply Lemma 4.6 running
in time 𝑂(𝐷𝛿/4 (𝑡) + log 𝑞) with error probability 𝛿

4 . By boosting the 𝐷𝛿 algorithm a
constant number of times, we obtain that𝑂(𝐷𝛿/4 (𝑡)) = 𝑂(𝐷𝛿 (𝑡)). Summing over all
contributions yields the bound from the lemma statement, with error probability
at most 𝛿

4 +
𝛿
4 ≤

𝛿
2 .

Lemma 4.8 (Correctness of Algorithm 4.1). With probability 1 − 1/poly(𝑡), Algo-
rithm 4.1 correctly outputs a vector 𝐶 with ∥𝐴★ 𝐵 − 𝐶∥0 ≤ 𝜖𝑡.

Proof. After the loop in Lines 4 and 8 has terminated, we have selected a hash
function 𝑔 (𝑥) = (𝑎𝑥+𝑏)mod 𝑝 and a set 𝑍 = 𝑔 (𝑍) +{0, 𝑝} such that 𝐹𝑚 (𝑍) ≤ 𝜖𝑡

2 . We
correctly compute derivative representations 𝑓 (𝜕0𝑔 (𝐴)), . . . , 𝑓 (𝜕𝑤−1𝑔 (𝐴)) of 𝑔 (𝐴)
and 𝑓 (𝜕0𝑔 (𝐵)), . . . , 𝑓 (𝜕𝑤−1𝑔 (𝐵)) of 𝑔 (𝐵) by Lemma 4.5. Writing 𝑅 = 𝑔 (𝐴) ★ 𝑔 (𝐵),
we compute the derivative representation 𝑅0 = 𝑓 (𝜕0𝑅), . . . , 𝑅𝑤−1 = 𝑓 (𝜕𝑤−1𝑅) of 𝑅
using Lemma 4.6. Finally, we recover an approximation 𝑅 of 𝑅 using Lemma 4.5
with the guarantee that

∥𝑅 − 𝑅∥0 ≤ 𝑤 · | supp(𝑅) \ 𝑍 | + 𝐹𝑚 (𝑍) ≤ 𝑤 · | supp(𝑅) \ 𝑍 | + 𝜖𝑡
2
.

To bound 𝑤 · | supp(𝑅) \ 𝑍 |, note that since supp(𝑅) ⊆ 𝑔 (supp(𝐴 ★ 𝐵)) + {0, 𝑝}
and 𝑍 = 𝑍 + {0, 𝑝}, we must have that | supp(𝑅) \𝑍 | ≤ 2| supp(𝐴★𝐵) \𝑍 |. It follows
that

𝑤 · | supp(𝑅) \ 𝑍 | ≤ 2𝑤 · | supp(𝐴★ 𝐵) \ 𝑍 | ≤ 2𝑤 · 𝜖3𝑡 ≤ 𝑂(𝜖2𝑡),

which becomes 𝜖𝑡
2 for sufficiently large 𝑡. All in all, this shows that ∥𝑅 − 𝑅∥0 ≤ 𝜖𝑡

as claimed.
The remaining steps are easy to analyze: The function 𝑔 (𝑥) = (𝜎𝑥 + 𝜏)mod 𝑝

is invertible on [𝑝] (assuming that 𝜎 ≠ 0, which happens with high probability).
As 𝑔 (𝐴★𝐵) = 𝑅mod 𝑝 and as 𝐴★𝐵 has length 2𝑛 < 𝑝 it follows that 𝐴★𝐵 = 𝑔−1 (𝑅).
In the same way, we obtain for 𝐶 = 𝑔−1 (𝑅) that ∥𝐴★𝐵 − 𝐶∥0 ≤ 𝜖𝑡. In the final step
we use that 𝑞 is large enough (larger than any entry in the convolution 𝐴★ 𝐵), so
we can safely cast 𝐶 back to an integer vector.

In combination, Lemmas 4.7 and 4.8 show that Algorithm 4.1 is correct and
runs in the claimed running time with probability at least 1− 𝛿

2 −1/poly(𝑡) ≥ 1−𝛿.
This finishes the proof of Lemma 4.4.

4.3 Approximating the Support Set

This section is devoted to finding a set 𝑍 which closely approximates supp(𝐴★ 𝐵).
To that end, our goal is to solve the following problem, which is later applied
with 𝑋 = supp(𝐴) and 𝑌 = supp(𝐵).

Problem (TinyUniv-ApproxSupp).
Input: An integer 𝑡 and sets 𝑋,𝑌 ⊆ [𝜖−2𝑡], such that |𝑋 + 𝑌 | ≤ 𝑡.
Task: Compute a set 𝑍 of size 𝑂(𝑡) such that | (𝑋 + 𝑌) \ 𝑍 | ≤ 𝜖𝑡.

83

Algorithm 4.2. Solves the TinyUniv-ApproxSupp problem. That is, given an inte-
ger 𝑡 and sets 𝑋,𝑌 ⊆ [𝑛 = 𝜖−2𝑡] such that |𝑋+𝑌 | ≤ 𝑡, this algorithm approximates
their sumset 𝑍 ≈ 𝑋 + 𝑌 .

1 procedure TinyUniv-ApproxSupp(𝑋,𝑌 , 𝑡)
2 Let 𝑚 = 40𝑡 and pick a prime 𝑝 ≥ 𝑛
3 Let 𝐿 = ⌈log(𝜖−1)⌉
4 𝑍𝐿 ← {0, 1, . . . , ⌈𝑛/2ℓ⌉}
5 for ℓ← 𝐿 − 1, . . . , 1, 0 do
6 𝑋ℓ ← 𝑌 div 2ℓ
7 𝑌ℓ ← 𝑍 div 2ℓ
8 𝑀ℓ ← 2𝑍ℓ+1 + {0, 1, 2}
9 repeat 𝑅 = Θ(log(𝜖−1) + log(𝛿−1)) times
10 Randomly pick a linear hash function ℎ with parameters 𝑝 and 𝑚
11 Compute 𝑆ℓ ≈ ℎ(𝑋ℓ) + ℎ(𝑌ℓ) using Indyk’s algorithm (Theorem 2.2)

with error probability 0.01
12 for 𝑥 ∈ 𝑀ℓ do
13 if ∃𝑜 ∈ {−𝑝, 0, 𝑝} s.t. (ℎ(0) + ℎ(𝑥) + 𝑜)mod𝑚 ∈ (𝑆ℓ mod𝑚) then
14 Give a vote to 𝑥
15 𝑍ℓ ← all elements in 𝑀 that have gathered at least 3𝑅

4 votes
16 return 𝑍 = 𝑍0

Lemma 4.9 (TinyUniv-ApproxSupp). Let 𝜖, 𝛿 > 0. The TinyUniv-ApproxSupp prob-
lem can be solved with error probability 𝛿 in time 𝑂(𝑘 log(𝜖−1) log(𝜖−1𝛿−1)).

The algorithm claimed in Lemma 4.9 is given in Algorithm 4.2. For the re-
mainder of this section, we will analyze this algorithm in several steps. We shall
call the iterations of the outer loop levels and call an element 𝑧 a witness at level ℓ
if 𝑧 ∈ 𝑋ℓ + 𝑌ℓ. Otherwise, we say that 𝑧 is a non-witness. Fix a level ℓ and con-
sider a single iteration of the inner loop (Lines 9 and 14). The voting probability
of 𝑧 at level ℓ is the probability that 𝑧 is given a vote in Line 14. Recall that in ev-
ery such iteration, we pick a random linear hash function ℎ : [𝑛] → [𝑚] using
fresh randomness. The following lemmas prove that witnesses have large voting
probability and non-witnesses have small voting probability.

Lemma 4.10 (Witnesses have Large Voting Probability). At any level ℓ, the voting
probability of a witness 𝑧 is at least 0.99.

Proof. Recall that if 𝑧 is a witness at level ℓ, then 𝑧 = 𝑥 + 𝑦 for some 𝑥 ∈ 𝑋ℓ
and 𝑦 ∈ 𝑌ℓ. By the almost-additiveness of linear hashing (Lemma 2.7), it holds
that ℎ(𝑥) +ℎ(𝑦) = ℎ(𝑧) +ℎ(0) + 𝑜 (mod𝑚) for some offset 𝑜 ∈ {−𝑝, 0, 𝑝}. It follows
that (ℎ(𝑧) + ℎ(0) + 𝑜)mod𝑚 is an element of the sumset (ℎ(𝑋ℓ) + ℎ(𝑌ℓ))mod𝑚.
However, in order for 𝑧 to gain a vote, this condition must be true for the set 𝑆ℓ
returned by Indyk’s algorithm. By the guarantee of Theorem 2.2 (boosted to error
probability 0.01), 𝑆ℓ contains every element of ℎ(𝑌ℓ) + ℎ(𝑍ℓ) with probability at
least 0.99, which yields the claim.

Lemma 4.11 (Non-Witnesses have Small Voting Probability). At any level ℓ, the
voting probability of a non-witness 𝑧 is at most 1

2 .

Proof. Given the fact that Indyk’s algorithm never returns a false positive, it suf-
fices to prove that none of the three values (ℎ(0) + ℎ(𝑧) + {−𝑝, 0, 𝑝})mod𝑚 is con-
tained in the sumset (ℎ(𝑋ℓ) + ℎ(𝑌ℓ))mod𝑚, with sufficiently large probability. By
the almost-additiveness of ℎ, we have

ℎ(𝑋ℓ) + ℎ(𝑌ℓ)mod𝑚 ⊆ (ℎ(0) + ℎ(𝑋ℓ + 𝑌ℓ) + {−𝑝, 0, 𝑝})mod𝑚.

84

So fix some offsets 𝑜, 𝑜′ ∈ {−𝑝, 0, 𝑝} and some witness 𝑧′ ∈ 𝑋ℓ + 𝑌ℓ. As 𝑧 is not a
witness, we must have 𝑧 ≠ 𝑧′. It suffices to bound the following probability:

P(ℎ(0) + ℎ(𝑧) + 𝑜 = ℎ(0) + ℎ(𝑧′) + 𝑜′mod𝑚)

= P(ℎ(𝑧) = (ℎ(𝑧′) + 𝑜′ − 𝑜)mod𝑚) ≤ 4
𝑚
,

where in the last step we applied the universality of ℎ (Lemma 2.7). By a union
bound over the five possible values of 𝑜′−𝑜 and over all witnesses 𝑥′, we conclude
that the voting probability of 𝑥 is at most 20|𝑋ℓ + 𝑌ℓ |/𝑚 ≤ 20𝑡/𝑚 ≤ 1

2 .

We are now ready to prove Lemma 4.9. We proceed in two steps: First we
bound the running time and the number of false positives (i.e., |𝑍 \ (𝑋 + 𝑌) |), and
second the number of false negatives (i.e., | (𝑋 + 𝑌) \ 𝑍 |).

Lemma 4.12 (Running Time of Algorithm 4.2). With probability 1 − 𝛿
2 , Algo-

rithm 4.2 outputs a set 𝑍 of size 𝑂(𝑡), and it runs in time 𝑂(𝑡 log(𝜖−1) log(𝜖−1𝛿−1)).

Proof. Fix any level ℓ. By Lemma 4.11 we know that the voting probability of any
non-witness 𝑧 is at most 1

2 . Thus, by an application of Chernoff’s bound, the proba-
bility that 𝑧 receives more than 3𝑅

4 votes over all 𝑅 = Ω(log 𝐿 + log(1/𝛿)) rounds is
at most 2−Ω (𝑅) ≤ 𝛿/(12𝐿) by appropriately choosing the constant in the definition
of 𝑅 (in the upcoming Lemma 4.13 we will see why 𝑅 is even slightly larger). By
Markov’s inequality, we obtain that with probability 1 − 𝛿

2𝐿 the number of non-
witness elements in 𝑀ℓ which will be inserted in 𝑋ℓ is at most 1

6 |𝑀ℓ | ≤ 1
2 |𝑋ℓ+1 |. By

a union bound over all levels, with probability 1 − 𝛿
2 we get that

|𝑋ℓ | ≤ 𝑘 +
1
2
|𝑋ℓ+1 |,

for all ℓ ∈ [𝐿]. As initially |𝑋𝐿 | ≤ 𝑘 it follows by induction that |𝑋ℓ | ≤
∑∞
𝑖=0

𝑘
2𝑖 = 2𝑘.

In particular we have that |𝑋 | = |𝑋0 | = 𝑂(𝑘), as claimed.
The total running time of the algorithm can be split into two parts—the time

spent on running Indyk’s algorithm in Line 11, and the time needed to iterate over
all elements 𝑥 ∈ 𝑀ℓ across all levels and assign them votes (Line 14). The for-
mer is 𝑂(𝑚𝐿𝑅) = 𝑂(𝑡𝐿𝑅) (recall that Indyk’s algorithm runs for sets over the uni-
verse [𝑚]) and also the latter is∑︁

ℓ∈[𝐿]
𝑂(|𝑋ℓ |𝑅) =

∑︁
ℓ∈[𝐿]

𝑂(𝑡𝑅) = 𝑂(𝑡𝐿𝑅).

All in all, the time is bounded by 𝑂(𝑡𝐿𝑅) = 𝑂(𝑡 log(𝜖−1) log(𝜖−1𝛿−1)).

Lemma 4.13 (Correctness of Algorithm 4.2). With probability 1− 𝛿
2 , Algorithm 4.2

correctly outputs a set 𝑍 with | (𝑋 + 𝑌) \ 𝑍 | ≤ 𝜖𝑡.

Proof. Fix any 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 and define 𝑥ℓ = ⌊ 𝑥2ℓ ⌋, 𝑦ℓ = ⌊
𝑦

2ℓ ⌋ and 𝑧ℓ = 𝑥ℓ + 𝑦ℓ. The
first step is to prove that 𝑦ℓ ∈ 2{ 𝑦ℓ+1}+{0, 1, 2}. Indeed, from the basic inequalities
2⌊𝑎⌋ ≤ ⌊2𝑎⌋ ≤ 2⌊𝑎⌋ + 1, for all rationals 𝑎, it follows directly that

𝑧ℓ − 2𝑧ℓ+1 =

⌊ 𝑥
2ℓ

⌋
+

⌊ 𝑦
2ℓ

⌋
− 2

⌊ 𝑥

2ℓ+1

⌋
− 2

⌊ 𝑦

2ℓ+1

⌋
≤ 2,

and in the same way 𝑧ℓ − 2𝑧ℓ+1 ≥ 0.
Coming back to the algorithm, we claim that with probability 1 − 𝜖𝛿

2 , 𝑧 = 𝑥 + 𝑦
will participate in 𝑍. It suffices to show that with the claimed probability, for
all levels ℓ the element 𝑧ℓ belongs to 𝑍ℓ. Note that trivially 𝑧𝐿 ∈ 𝑍𝐿. Fix a spe-
cific level ℓ. Conditioning on 𝑧ℓ+1 ∈ 𝑍ℓ+1, it will be the case that 𝑧ℓ is inserted
into 𝑀ℓ = 2𝑍ℓ+1 + {0, 1, 2} in Line 8, by the fact that 𝑧ℓ ∈ 2{𝑧ℓ+1} + {0, 1, 2}. More-
over, recall that 𝑧ℓ is a witness at level ℓ and thus, by Lemma 4.10, its voting prob-
ability is at least 0.99. Therefore it receives more than 3𝑅

4 votes and is inserted

85

Algorithm 4.3. Solves the SmallUniv-Approx-SparseConv problem. Given an
integer 𝑡 and nonnegative vectors 𝐴, 𝐵 of length 𝑛 ≤ poly(𝑡) such that ∥𝐴★𝐵∥0 ≤
𝑡, this algorithm approximates the vector 𝐴★𝐵 by 𝐶 such that ∥𝐴★𝐵−𝐶∥0 ≤ 𝜖𝑘.

1 procedure SmallUniv-Approx-SparseConv(𝐴, 𝐵, 𝑡, 𝜖, 𝛿)
2 Let 𝑝 > 𝑈 be a prime and let 𝑚 = ⌈320𝜖−1𝛿−1𝑡⌉
3 Randomly pick a linear hash function with parameters 𝑝 and 𝑚

(Approximate 𝑉 = ℎ(𝐴) ★𝑚 ℎ(𝐵))
4 𝑉1 ← TinyUniv-Approx-SparseConv(ℎ(𝐴), ℎ(𝐵), 𝑡, 𝜖6 ,

𝛿
6)

5 𝑉 ← 𝑉1 mod𝑚
(Approximate𝑊 = ℎ(𝜕𝐴) ★𝑚 ℎ(𝐵) + ℎ(𝐴) ★𝑚 ℎ(𝜕𝐵))

6 𝑊̃1 ← TinyUniv-Approx-SparseConv(ℎ(𝜕𝐴), ℎ(𝐵), 𝑡, 𝜖6 ,
𝛿
6)

7 𝑊̃2 ← TinyUniv-Approx-SparseConv(ℎ(𝐴), ℎ(𝜕𝐵), 𝑡, 𝜖6 ,
𝛿
6)

8 𝑊̃ ← (𝑊̃1 + 𝑊̃2)mod𝑚

9 𝐶 ← (0, . . . , 0)
10 for 𝑖 ∈ supp(𝑉) do
11 𝑧 ← 𝑊̃ [𝑖] /𝑉 [𝑖]
12 if 𝑧 ∈ [2𝑛 − 1] then
13 𝐶 [𝑧] ← 𝐶 [𝑧] +𝑉 [𝑖]
14 return 𝐶

into 𝑍ℓ with probability at least 1 − 2−Ω (𝑅) ≥ 1 − 𝜖𝛿
2𝐿 . Taking a union bound over

all levels we obtain that 𝑧 is contained in 𝑍 with probability 1 − 𝜖𝛿
2 , and hence we

can apply Markov’s inequality to conclude that with probability 1− 𝛿
2 it is the case

that | (𝑋 + 𝑌) \ 𝑍 | ≤ 𝜖𝑡.

This finishes the proof of Lemma 4.9. Putting together the results from the
previous section (Lemma 4.4) and this section (Lemma 4.9 with 𝜖′ = 𝜖3), we have
established an efficient algorithm to approximate convolutions in a tiny universe:

Lemma 4.14 (TinyUniv-Approx-SparseConv). Let 𝜖, 𝛿 > 0. Then TinyUniv-Approx-
SparseConv is in time𝑂(𝐷𝛿 (𝑡) + 𝑡 log(𝜖−1) log(𝜖−1𝛿−1) +polylog(∥𝐴∥∞, ∥𝐵∥∞)) with
error probability 𝛿, provided that log 𝑡 ≤ 𝜖−1, 𝛿−1 ≤ poly(𝑡).

4.4 Universe Reduction from Small to Tiny

The goal of this section is to prove that approximating convolutions in a small
universe (that is, a universe of size 𝑛 = poly(𝑡)) reduces to approximating convo-
lutions in a tiny universe.

Problem (SmallUniv-Approx-SparseConv).
Input: An integer 𝑡 and nonnegative vectors 𝐴, 𝐵 ∈ Npoly(𝑡) so that ∥𝐴★ 𝐵∥0 ≤ 𝑡.
Task: Compute 𝐶 such that ∥𝐴★ 𝐵 − 𝐶∥0 ≤ 𝜖𝑡.

Lemma 4.15 (SmallUniv-Approx-SparseConv). Let 𝜖, 𝛿 > 0. Then SmallUniv-Ap-
prox-SparseConv is in time𝑂(𝐷𝛿 (𝑡)+𝑡 log(𝜖−1) log(𝜖−1𝛿−1)+polylog(∥𝐴∥∞, ∥𝐵∥∞))
with error probability 𝛿, provided that log 𝑡 ≤ 𝜖−1, 𝛿−1 ≤ poly(𝑡).

Our goal is to drastically reduce the universe size from poly(𝑡) to 𝜖−2𝑡, while
being granted to introduce up to 𝜖𝑡 errors in the output. The idea is to use again to
use linear hashing to reduce the universe size, as well as the derivative trick.

For the remainder of this section we analyze the procedure in Algorithm 4.3.
Let ℎ be a random linear hash function with parameters 𝑝 and 𝑚. We say that an
index 𝑧 ∈ supp(𝐴★ 𝐵) is isolated if there is no other index 𝑧′ ∈ supp(𝐴★ 𝐵) with
hash value ℎ(𝑧′) ∈ (ℎ(𝑧) + {−2𝑝,−𝑝, 0, 𝑝, 2𝑝})mod𝑚.

Lemma 4.16 (Most Indices are Isolated). With probability 1 − 𝛿
2 , the number of

non-isolated indices 𝑧 ∈ supp(𝐴★ 𝐵) is at most 𝛿𝑡
8 .

86

Proof. For any fixed integers 𝑧′, 𝑜, the probability that ℎ(𝑧′) = ℎ(𝑧) + 𝑜 (mod𝑚)
is at most 4/𝑚 by the universality of linear hashing (Lemma 2.7). By taking a union
bound over the five values 𝑜 ∈ {−2𝑝,−𝑝, 0, 𝑝, 2𝑝} and the | supp(𝐴★𝐵) | ≤ 𝑡 values
of 𝑧′, the probability that 𝑧 is isolated is at least 1 − 20𝑡

𝑚 . As 𝑚 = 320𝜖−1𝛿−1𝑡, any
index 𝑧 ∈ supp(𝐴★ 𝐵) is isolated with probability at least 1 − 𝜖𝛿

16 . The statement
follows by an application of Markov’s inequality.

Recall that 𝑉 = ℎ(𝐴) ★𝑚 ℎ(𝐵) and𝑊 = ℎ(𝜕𝐴) ★𝑚 ℎ(𝐵) + ℎ(𝐴) ★𝑚 ℎ(𝜕𝐵).

Lemma 4.17 (Isolated Indices are Recovered). For any isolated index 𝑧 we have∑
𝑖 𝑉 [𝑖] = (𝐴★𝐵) [𝑧] where 𝑖 runs over (ℎ(0)+ℎ(𝑧)+{−𝑝, 0, 𝑝})mod𝑚. Furthermore,

for any such 𝑖 it holds that𝑊 [𝑖] = 𝑧 · 𝑉 [𝑖].

Proof. Let 𝑧 ∈ supp(𝐴 ★ 𝐵) be isolated and let 𝑥 ∈ supp(𝐴) and 𝑦 ∈ supp(𝐵)
be such that 𝑧 ≠ 𝑥 + 𝑦. We claim that ℎ(𝑥) + ℎ(𝑦) ≠ ℎ(0) + ℎ(𝑧) + 𝑜 (mod 𝑚) for
all 𝑜 ∈ {−𝑝, 0, 𝑝}. Assume the contrary, then by almost-additiveness (Lemma 2.7)
we have that ℎ(𝑥)+ℎ(𝑦) = ℎ(0)+ℎ(𝑥+ 𝑦)+𝑜′ (mod𝑚) for some 𝑜′ ∈ {−𝑝, 0, 𝑝} and
thus ℎ(𝑥+ 𝑦) = ℎ(𝑧) +𝑜−𝑜′ (mod𝑚). This is a contradiction as 𝑥+ 𝑦 ∈ supp(𝐴★𝐵)
and 𝑜 − 𝑜′ ∈ {−2𝑝,−𝑝, 0, 𝑝, 2𝑝} but 𝑧 is assumed to be isolated.

Recall that 𝑉 = ℎ(𝐴) ★𝑚 ℎ(𝐵), and let 𝑖 ∈ (ℎ(0) + ℎ(𝑥) + {−𝑝, 0, 𝑝})mod𝑚.
For convenience, we write ≡ to denote equality modulo 𝑚. From the previous
paragraph it follows that

𝑉 [𝑖] =
∑︁
𝑥, 𝑦

ℎ(𝑥)+ℎ(𝑦)≡𝑖

𝐴[𝑥] · 𝐵[𝑦] =
∑︁
𝑥+𝑦=𝑧

ℎ(𝑥)+ℎ(𝑦)≡𝑖

𝐴[𝑥] · 𝐵[𝑦] .

By another application of almost-affinity it is immediate that
∑
𝑖 𝑉 [𝑖] = (𝐴★𝐵) [𝑧].

Moreover, we can express𝑊 [𝑖] in a similar way: By repeating the previous argu-
ment twice, once with 𝜕𝐴 in place of 𝐴 and once with 𝜕𝐵 in place of 𝐵, we obtain
that

𝑊 [𝑖] =
∑︁
𝑥+𝑦=𝑧

ℎ(𝑥)+ℎ(𝑦)≡𝑖

(𝜕𝐴) [𝑥] · 𝐵[𝑦] +
∑︁
𝑥+𝑦=𝑧

ℎ(𝑥)+ℎ(𝑦)≡𝑖

𝐴[𝑥] · (𝜕𝐵) [𝑦]

=
∑︁
𝑥+𝑦=𝑧

ℎ(𝑥)+ℎ(𝑦)≡𝑖

(𝑥 + 𝑦) · 𝐴[𝑥] · 𝐵[𝑧] = 𝑧 · 𝑉 [𝑖] .

Lemma 4.18 (Correctness of Algorithm 4.3). With probability 1− 𝛿, Algorithm 4.3
correctly outputs a vector 𝐶 with ∥𝐴★ 𝐵 − 𝐶∥0 ≤ 𝜖𝑡.

Proof. We call an iteration 𝑖 ∈ supp(𝑉) good if the following three conditions
hold: (i) 𝑉𝑖 = 𝑉𝑖 , (ii)𝑊𝑖 = 𝑊̃𝑖 , and (iii) there is an isolated index 𝑧 ∈ supp(𝐴★ 𝐵) it
holds that 𝑖 ∈ (ℎ(0) + ℎ(𝑧) + {−𝑝, 0, 𝑝})mod𝑚. Otherwise, 𝑖 is bad. We start ana-
lyzing the algorithm with the unrealistic assumption that all iterations are good.

Focus on an arbitrary iteration 𝑖. By assumption (iii) there exists some isolated
element 𝑧 ∈ supp(𝐴 ★ 𝐵) such that 𝑖 ∈ (ℎ(0) + ℎ(𝑧) + {−𝑝, 0, 𝑝})mod𝑚. More-
over, by Lemma 4.17 and assumptions (i) and (ii) the algorithm correctly identi-
fies 𝑧 = 𝑊̃ [𝑖]/𝑉 [𝑖] =𝑊 [𝑖]/𝑉 [𝑖], and hence, over the course of the at most three
iterations with 𝑖 ∈ (ℎ(0) +ℎ(𝑧) + {−𝑝, 0, 𝑝})mod𝑚 the algorithm correctly assigns
𝐶 [𝑧] ← ∑

𝑖 𝑉 [𝑖] = (𝐴 ★ 𝐵) [𝑧] in Line 13. Under the unrealistic assumption it
follows that 𝐶 = 𝐴★ 𝐵 after all iterations.

We will now remove the unrealistic assumption. Clearly there is no hope of
recovering the non-isolated elements, but Lemma 4.16 proves that there are at
most 𝜖𝑡

8 non-isolated elements with probability 1− 𝛿
2 . Any isolated element will be

recovered if it happens to show up in a good iteration as shown in the previous
paragraph. It suffices to prove that the number of bad iterations is at most 7𝜖𝑡

8 . It
then follows that ∥𝐴 ★ 𝐵 − 𝐶∥0 ≤ 𝜖𝑡, as any iteration modifies 𝐶 in at most one
position.

87

Algorithm 4.4. Solves the SmallUniv-SparseConv problem. Given an integer 𝑡
and nonnegative vectors 𝐴, 𝐵 of length 𝑛 ≤ poly(𝑡) such that ∥𝐴 ★ 𝐵∥0 ≤ 𝑡, this
algorithm computes their convolution 𝐶 = 𝐴★ 𝐵.

1 procedure SmallUniv-SparseConv(𝐴, 𝐵, 𝑡, 𝛿)
2 Let 𝑚 = 8𝑡 log−2 (𝑡) log(𝑛)
3 𝐶0 ← SmallUniv-Approx-SparseConv(𝐴, 𝐵, 𝑡, 𝛿2 ,

𝛿
2)

4 for ℓ← 1, . . . , 𝐿 = 𝑂(log log 𝑡) do
5 repeat ⌈2 log(2𝐿

𝛿) / 1.5ℓ−1⌉ times
6 Randomly pick a prime 𝑝 ∈ [𝑚, 2𝑚] and let ℎ(𝑥) = 𝑥 mod 𝑝
7 𝑉 ← ℎ(𝐴) ★𝑝 ℎ(𝐵) − ℎ(𝐶ℓ−1) using FFT
8 𝑊 ← ℎ(𝜕𝐴) ★𝑝 ℎ(𝐵) + ℎ(𝐴) ★𝑝 ℎ(𝜕𝐵) − ℎ(𝜕𝐶ℓ−1) using FFT
9 Keep ℎ,𝑉,𝑊 for which ∥𝑉 ∥0 is maximized
10 𝐶ℓ ← 𝐶ℓ−1
11 for 𝑖 ∈ supp(𝑉) do
12 𝑧 ←𝑊 [𝑖] /𝑉 [𝑖]
13 if 𝑧 ∈ [2𝑛 − 1] then
14 𝐶ℓ [𝑥] ← 𝐶ℓ−1 [𝑥] +𝑉 [𝑖]
15 return 𝐶 = 𝐶𝐿

On the one hand, with probability 1− 𝛿
2 , all three calls to the TinyUniv-Approx-

SparseConv algorithm succeed and we have ∥𝑉 −𝑉 ∥0 ≤ 𝜖𝑡
6 and ∥𝑊 − 𝑊̃ ∥0 ≤ 𝜖𝑡

3 . So
there can be at most 𝜖𝑡

2 iterations for which either assumption (i) or (ii) fails. On
the other hand, with probability 1 − 𝛿

2 there are at most 𝜖𝑡
8 non-isolated indices

and any non-isolated index leads to at most three iterations for which (iii) fails. It
follows that in total there are at most 𝜖𝑡

2 +
3𝜖
8 = 7𝜖

8 bad iterations.

It is easy to see that the running time of Algorithm 4.3 is dominated by the
calls to TinyUniv-Approx-SparseConv and thus bounded as in Lemma 4.14. This
completes the proof of Lemma 4.15.

4.5 Error Correction

In the previous sections, the goal was design algorithms to approximate convolu-
tions. In this step, we show how to clean up the errors and turn the approximations
into exact convolutions. Formally, we give an algorithm for the following problem:

Problem (SmallUniv-SparseConv).
Input: An integer 𝑡 and nonnegative vectors 𝐴, 𝐵 ∈ Npoly(𝑡) so that ∥𝐴★ 𝐵∥0 ≤ 𝑡.
Task: Compute 𝐴★ 𝐵.

Lemma 4.19 (SmallUniv-SparseConv). Let 𝛿 > 0. The SmallUniv-SparseConv
problem is in time 𝑂(𝐷𝛿 (𝑡) + 𝑡 log2 (𝛿−1) + polylog(∥𝐴∥∞, ∥𝐵∥∞)) with error prob-
ability 𝛿, provided that log2 𝑡 ≤ 𝛿−1 ≤ poly(𝑡).

This is the only part of the reduction for which we cannot use linear hashing,
as the recovery loop crucially relies on certain cancellations to take place. The
problem is that linear hashing is only almost—not truly—additive. Instead, we
use the simpler hash function ℎ(𝑥) = 𝑥 mod 𝑝, where 𝑝 is a random prime in some
specified range (see Lemma 2.6).

We analyze Algorithm 4.4. For the analysis, we refer to iterations of the outer
loop as levels ℓ. We say that an element 𝑧 ∈ supp(𝐴★𝐵−𝐶ℓ−1) is isolated at level ℓ
if there exists no 𝑧′ ∈ supp(𝐴★ 𝐵 − 𝐶ℓ−1) with 𝑧 ≠ 𝑧′ and ℎ(𝑥) = ℎ(𝑥′), where ℎ is
the function picked at the ℓ-th level.

Lemma 4.20 (Most Indices are Isolated). Let ℓ be any level. If

∥𝐴★ 𝐵 − 𝐶ℓ−1∥0 ≤
2−1.5ℓ−1

𝑡

log2 (𝑡)
,

88

then with probability 1 − 𝛿
2𝐿 , there will be at most

2−1.5ℓ 𝑡

2 log2 (𝑡)

non-isolated elements at level ℓ.

Proof. We will prove the statement in three steps.

1 A random hash function ℎ achieves that there are at most 2−1.5ℓ 𝑡 log−2 (𝑡)/4 non-
isolated elements with probability at least 1 −

√
2−1.5ℓ−1 :

For any fixed index 𝑧 ∈ supp(𝐴★ 𝐵 − 𝐶ℓ−1) there are at most ∥𝐴★ 𝐵 − 𝐶ℓ−1∥0
other indices 𝑧′ that 𝑧 could collide with. And for any distinct 𝑧, 𝑧′ the collision
probability is at most

P(ℎ(𝑧) = ℎ(𝑧′)) ≤ 2 log(𝑛)
𝑚

≤ 2 log(𝑛) log2 (𝑡)
8𝑡 log(𝑛) =

log2 (𝑡)
4𝑡

by𝑂(log 𝑛)-universality, see Lemma 2.6. Taking a union bound over 𝑧′, we ob-
tain that 𝑧 is non-isolated with probability at most ∥𝐴★ 𝐵 − 𝐶ℓ−1∥0 · log2 (𝑡)

4𝑡 and
we expect at most ∥𝐴★ 𝐵 − 𝐶ℓ−1∥20 ·

log2 (𝑡)
4𝑡 non-isolated elements. By Markov’s

inequality, the probability that there are more than 2−1.5ℓ · 𝑡
4 log2 (𝑡) non-isolated

elements is at most

∥𝐴★ 𝐵 − 𝐶ℓ−1∥20 ·
log2 (𝑡)

4𝑡

2−1.5ℓ · 𝑡
4 log2 (𝑡)

≤ (2
−1.5ℓ−1)2

2−1.5ℓ
=

√︁
2−1.5ℓ−1

.

2 With probability 1 − 𝛿
2𝐿 , running ⌈2 log(2𝐿

𝛿) / 1.5ℓ−1⌉ independent trials will re-
sult in at least one function ℎ under which there are at most 2−1.5ℓ 𝑡 log−2 (𝑡)/4
non-isolated elements:
I.e., at some time during the execution of the inner loop in Lines 5 and 8 we
find a good hash function ℎ. Indeed, the failure probability is at most(√︁

2−1.5ℓ−1
)2 log(2𝐿

𝛿) / 1.5ℓ−1

=
𝛿

2𝐿
.

3 If there are at most 𝑟 non-isolated elements then ∥𝑉 ∥0 ≥ ∥𝐴 ★ 𝐵 − 𝐶ℓ−1∥0 − 𝑟
and conversely, if ∥𝑉 ∥0 ≥ ∥𝐴★ 𝐵 − 𝐶ℓ−1∥0 − 𝑟 then there can be at most 2𝑟 non-
isolated elements:
By additiveness (Lemma 2.6) the algorithm computes 𝑉 = ℎ(𝐴★ 𝐵 − 𝐶ℓ−1). As
every isolated element 𝑧 is the unique element in its bucket 𝑖 = ℎ(𝑧) it follows
directly that ∥𝑉 ∥0 ≥ ∥𝐴★𝐵−𝐶ℓ−1∥0−𝑟without accounting for the non-isolated
elements. For the converse direction we note that there is a way of “ignoring”
𝑟 elements 𝑧 ∈ supp(𝐴★𝐵−𝐶ℓ−1) such that all other elements become isolated.
The number of non-isolated elements is thus at most 𝑟 (the ignored elements)
plus 𝑟 (the number elements colliding with one of the ignored elements).

The lemma statement follows by combining the second and third intermediate
claims: By the second claim, the inner loop (Lines 5 and 8) will eventually discover
some hash function ℎ under which we have at most 2−1.5ℓ 𝑡 log−2 (𝑡)/4 non-isolated
elements and thus, by the third claim, ∥𝑉 ∥0 ≥ ∥𝐴★𝐵−𝐶ℓ−1∥0−2−1.5ℓ 𝑡 log−2 (𝑡)/4. As
the algorithm selects the function which maximizes ∥𝑉 ∥0, the third claim proves
that whatever function is kept in Line 9 leads to at most 2−1.5ℓ 𝑡 log−2 (𝑡)/2 non-
isolated elements.

Lemma 4.21 (Isolated Indices are Recovered). Denoting the umber of non-isolated
elements at level ℓ by 𝑟, we have ∥𝐴★ 𝐵 − 𝐶ℓ∥0 ≤ 2𝑟.

Proof. Focus on arbitrary ℓ, and assume that we already picked a hash function ℎ
in Lines 5 and 9. By the additiveness of ℎ it holds that𝑉 = ℎ(𝐴★ 𝐵 − 𝐶ℓ−1) and, by
additionally using the product rule (Lemma 2.12),𝑊 = ℎ(𝜕(𝐴★ 𝐵 − 𝐶ℓ−1)).

89

Now focus on an arbitrary iteration 𝑖 ∈ supp(𝑉) of the second inner loop in
Lines 11 and 14. There must exist some 𝑧 ∈ supp(𝐴★ 𝐵 − 𝐶ℓ−1) with 𝑔 (𝑧) = 𝑖. If 𝑧
is isolated then we will correctly set 𝐶ℓ [𝑧] = (𝐴★𝐵) [𝑧]. Indeed, since 𝑧 is isolated
it follows that𝑉 [𝑖] = (𝐴★𝐵 − 𝐶ℓ−1) [𝑧] and𝑊 [𝑖] = (𝜕(𝐴★𝐵 − 𝐶ℓ−1)) [𝑧] = 𝑧 ·𝑉 [𝑖].
Thus 𝑧 is correctly detected in Line 12 and in Line 14 we correctly assign 𝐶ℓ [𝑧] ←
𝐶ℓ−1 [𝑧] +𝑉 [𝑖] = (𝐴★ 𝐵) [𝑧].

The previous paragraph shows that if at level ℓ all elements were isolated, we
would compute 𝐶ℓ = 𝐴★ 𝐵. We analyze how this guarantee is affected by the bad
iterations 𝑖 for which there exist non-isolated elements 𝑧 ∈ supp(𝐴 ★ 𝐵 − 𝐶ℓ−1)
with ℎ(𝑥) = 𝑖. Clearly we cannot hope to correctly assign the 𝑟 entries 𝐶ℓ [𝑧] for
which 𝑧 is non-isolated. Additionally, there are at most 𝑟 bad iterations, each of
which possibly modifies 𝐶ℓ in at most one position. All in all, we conclude that
∥𝐴★ 𝐵 − 𝐶ℓ∥0 ≤ 2𝑟.

Lemma 4.22 (Correctness of Algorithm 4.4). With probability 1− 𝛿, Algorithm 4.4
correctly outputs 𝐶 = 𝐴★ 𝐵.

Proof. We show that with probability 1 − 𝛿 it holds that

∥𝐴★ 𝐵 − 𝐶ℓ∥0 ≤ 2−1.5ℓ 𝑡 log−2 (𝑡)

for all levels ℓ. In particular, at the final level 𝐿 = log1.5 log 𝑘 = 𝑂(log log 𝑘) we
must have ∥𝐴 ★ 𝐵 − 𝐶𝐿∥0 = 0 and thus 𝐴 ★ 𝐵 = 𝐶𝐿 = 𝐶. The proof is by induction
on 0 ≤ ℓ ≤ 𝐿.

For ℓ = 0, the statement is true assuming that the SmallUniv-Approx-Sparse-
Conv algorithm with parameter 𝛿

2 ≤
1
2 log−2 (𝑡) succeeds.

For ℓ ≥ 1, we appeal to the previous lemmas: By the induction hypothesis
we assume that ∥𝐴 ★ 𝐵 − 𝐶ℓ−1∥0 ≤ 2−1.5ℓ−1

𝑡 log−2 (𝑡). Hence, by Lemma 4.20,
the algorithm picks a hash function ℎ under which only 2−1.5ℓ 𝑡 log−2 (𝑡)/2 ele-
ments are non-isolated at level ℓ. It follows that ∥𝐴★ 𝐵 − 𝐶ℓ∥0 ≤ 2−1.5ℓ 𝑡 log−2 (𝑡)
by Lemma 4.21, which is exactly what we intended to show.

Let us analyze the error probability: For ℓ = 0, the error probability is 𝛿
2 .

For any other level (there are at most 𝐿 such), the error probability is 𝛿
2𝐿 by

Lemma 4.20. Taking a union bound over these contributions yields the claimed
error probability of 1 − 𝛿.

Lemma 4.23 (Running Time of Algorithm 4.4). The running time of Algorithm 4.4
is 𝑂(𝐷𝛿 (𝑡) + 𝑡 log2 (𝛿−1) + polylog(∥𝐴∥∞, ∥𝐵∥∞)).

Proof. We invoke SmallUniv-Approx-SparseConv once with parameter 𝛿
2 which

takes time exactly as claimed, see Lemma 4.15. After that, the running is bounded
by𝑂(𝑡 log(𝛿−1))mostly due to the inner loop in Lines 5 and 8: A single execution of
the loop body takes time 𝑂(𝑡) for hashing the six vectors 𝐴, 𝜕𝐴, 𝐵, 𝜕𝐵, 𝐶ℓ−1, 𝜕𝐶ℓ−1
and for computing three convolutions of vectors of length 𝑚 = 𝑂(𝑡/log 𝑡) using
FFT. It remains to bound the number of iterations:

𝐿∑︁
ℓ=1

⌈
2 log(2𝐿

𝛿)
1.5ℓ−1

⌉
≤ 𝐿 +

𝐿∑︁
ℓ=1

2 log(2𝐿
𝛿)

1.5ℓ−1 = 𝑂(𝐿 + log(𝐿𝛿)) = 𝑂(log(𝛿−1)).

This finishes the proof of Lemma 4.19.

4.6 Universe Reduction from Large to Small

The final step in our chain of reductions is to reduce from an arbitrarily large
universe to a small universe (that is, a universe of size 𝑛 = poly(𝑡)). We thereby
solve the SparseConv problem and almost complete the proof of Theorem 1.2—up
to the assumption that the sparsity 𝑡 is known which we will remove in the next
section.

90

Algorithm 4.5. Solves the SparseConv problem by computing the convolution
𝐴★ 𝐵 of two given vectors 𝐴, 𝐵 without any restriction on their length.

1 procedure SparseConv(𝐴, 𝐵)
2 Let 𝑚 = poly(𝑡) and let 𝑝 > 𝑛𝑚 be a prime
3 Randomly pick a linear hash function with parameters 𝑝 and 𝑚

(Compute 𝑉 = ℎ(𝐴) ★𝑚 ℎ(𝐵))
4 𝑉1 ← SparseUniv-SparseConv(ℎ(𝐴), ℎ(𝐵), 𝛿6)
5 𝑉 ← 𝑉1 mod𝑚

(Compute𝑊 = ℎ(𝜕𝐴) ★𝑚 ℎ(𝐵) + ℎ(𝐴) ★𝑚 ℎ(𝜕𝐵))
6 𝑊1 ← SmallUniv-SparseConv(ℎ(𝜕𝐴), ℎ(𝐵), 𝛿6)
7 𝑊2 ← SmallUniv-SparseConv(ℎ(𝐴), ℎ(𝜕𝐵), 𝛿6)
8 𝑊 ← (𝑊1 +𝑊2)mod𝑚
9 𝐶 ← (0, . . . , 0)
10 for 𝑖 ∈ supp(𝑉) do
11 𝑧 ←𝑊 [𝑖] /𝑉 [𝑖]
12 if 𝑧 ∈ [2𝑛 − 1] then
13 𝐶 [𝑧] ← 𝐶 [𝑧] +𝑉 [𝑖]
14 return 𝐶

Problem (SparseConv).
Input: Nonnegative vectors 𝐴, 𝐵 ∈ N𝑛.
Task: Compute 𝐴★ 𝐵.

Lemma 4.24 (SparseConv). Let 𝛿 > 0. The SparseConv problem can be solved in
time 𝑂(𝐷𝛿 (𝑡) + 𝑡 log2 (𝛿−1) + polylog(𝑛, ∥𝐴∥∞, ∥𝐵∥∞)) with error probability 𝛿, pro-
vided that log2 𝑡 ≤ 𝛿−1 ≤ poly(𝑡).

We will prove Lemma 4.24 by analyzing Algorithm 4.5, which in essence is a
simpler version of Algorithm 4.3. For that reason, we will be brief in this section.

As in Section 4.4, we call an index 𝑧 ∈ supp(𝐴 ★ 𝐵) isolated if there exists no
other index 𝑧′ ∈ supp(𝐴★ 𝐵) with ℎ(𝑧′) ∈ (ℎ(𝑧) + {−2𝑝,−𝑝, 0, 𝑝, 2𝑝})mod𝑚.

Lemma 4.25 (All Indices are Isolated). With probability 1 − 1/poly(𝑡), all indices
𝑧 ∈ supp(𝐴★ 𝐵) are isolated.

Proof. The probability that ℎ(𝑧′) = ℎ(𝑧) + 𝑜 (mod 𝑚) is at most 4
𝑚 , for any

distinct keys 𝑧, 𝑧′ and any fixed integer 𝑜, by the universality of linear hashing
(Lemma 2.7). By taking a union bound over the five values 𝑜 ∈ {−2𝑝,−𝑝, 0, 𝑝, 2𝑝}
and the 𝑡2 values of (𝑧, 𝑧′), the probability that all indices 𝑧 are isolated is at
least 1 − 20𝑡2

𝑚 . The statement follows since 𝑚 = poly(∥𝐴∥0 · ∥𝐵∥0) ≥ poly(𝑡).

Proof of Lemma 4.24. To use the SmallUniv-SparseConv algorithm, we only
have to guarantee that the hashed vectors have length at most poly(𝑡), which is
true by 𝑚 = poly(∥𝐴∥0 · ∥𝐵∥0) ≤ poly(𝑡). Therefore, with probability 1 − 𝛿

2 it
holds that 𝑉 and𝑊 are correctly computed. And, by Lemma 4.25, with probabil-
ity 1− 1/poly(𝑡) we have that all indices 𝑧 are isolated. Both events happen simul-
taneously with probability at least 1 − 𝛿, so for the rest for the proof we condition
on both these events. By exactly the same proof as Lemma 4.17 we get that

(𝐴★ 𝐵) [𝑧] =
∑︁
𝑖

𝑉 [𝑖],

where 𝑖 runs over (ℎ(0) + ℎ(𝑧) + {−𝑝, 0, 𝑝})mod𝑚, and, for any such 𝑖 it holds
that𝑊 [𝑖] = 𝑧 · 𝑉 [𝑖]. In particular, in Line 11 we correctly identify 𝑧 =𝑊 [𝑖] /𝑉 [𝑖]
and thus correctly assign 𝐶 [𝑧] = ∑

𝑖 𝑉 [𝑖] over the course of the at most three iter-
ations 𝑖.

The recovery loop in Lines 10 and 13 takes time𝑂(𝑡). The running time is domi-
nated by the sparse convolutions in a small universe that, as shown in Lemma 4.19,

91

35 The technical assumption is∑𝑘
ℓ=0 𝐷𝛿 (2

ℓ) = 𝑂(𝐷𝛿 (2𝑘)). In-
deed, this assumption is neces-
sary to bound the running time
of the iterations before guess-
ing a good estimate 𝑡∗. This is
a rather mild assumption, but
we managed to remove the as-
sumption entirely in this write-
up.

Algorithm 4.6. For given sets 𝑋,𝑌 ⊆ [𝑛], this algorithm estimates the size of
their sumset 𝑍 = 𝑋 + 𝑌 up to a constant factor.

1 procedure EstimateSumsetSize(𝑋,𝑌 , 𝛿)
2 Compute a prime 𝑝 > 𝑛

3 for 𝑡∗ ← 2, 4, 8, . . . do
4 𝑚← 0
5 repeat 𝑂(log(𝛿−1 log(𝑡∗))) times
6 Sample a linear hash function ℎ with parameters 𝑝 and 𝑚 = 𝑡

7 Compute ℎ(𝑋) and ℎ(𝑌)
8 Compute 𝑍 ≈ ℎ(𝑋) + ℎ(𝑌) using Indyk’s algorithm (Theorem 2.2)
9 𝑚← max{𝑚, |𝑍 |}
10 if 𝑚 ≤ 𝑡∗

600 then
11 return 𝑡∗

run in time 𝑂(𝐷𝛿 (𝑡) + 𝑡 log2 (𝛿−1) + polylog(𝑛, ∥𝐴∥∞, ∥𝐵∥∞)). Here, in contrast to
before, we cannot replace 𝑛 by 𝑡 in the additive term polylog(𝑛, ∥𝐴∥∞, ∥𝐵∥∞), since
the entries of 𝜕𝐴 are as large as 𝑛∥𝐴∥∞.

4.7 Estimating the Sparsity 𝒕

In this section we remove the assumption that an estimate 𝑡 ≥ ∥𝐴 ★ 𝐵∥0 is given
as part of the input. Let us redefine the meaning of 𝑡 as 𝑡 = ∥𝐴★ 𝐵∥0 and refer to
the estimate as 𝑡∗ ≥ 𝑡.

There are two natural approaches: The first and easier approach is to run the
algorithm from the previous sections and guess the sparsity 𝑡∗ ← 1, 2, 4, . . . via
exponential search. Eventually we will reach the correct estimate 𝑡∗ ≤ 𝑡 ≤ 2𝑡
and the algorithm will return the correct output with good probability. In order to
not be fooled by the first iterations, we can use the verifier from Lemma 2.21. We
take this approach in the paper version of this work, but it comes with annoying
technical assumptions.35

We instead take another more direct approach here, and prove that we can
estimate 𝑡 in advance. Consider the following lemma, applied with 𝑋 = supp(𝐴)
and 𝑌 = supp(𝐵).

Lemma 4.26 (Estimating Sumset Size). Let 𝛿 > 0. There is an algorithm that, given
two sets 𝑋,𝑌 ⊆ [𝑛] computes a constant-factor approximation 𝑡∗ of 𝑡 = |𝑋 + 𝑌 | in
time 𝑂(𝑡 log(𝛿−1) + 𝑡 log log 𝑡) with error probability 𝛿.

The algorithm is given in Algorithm 4.6. The idea is to use linear hashing and
Indyk’s algorithm—similar to the algorithm in Section 4.3.

Proof. For the correctness of the algorithm, we argue that as soon as 𝑡∗ > 600𝑡,
then the algorithm certainly terminates and returns 𝑡∗. Indeed, recall that by the
almost-additiveness of linear hashing we have that |ℎ(𝑋) + ℎ(𝑌) | ≤ 3|𝑋 + 𝑌 | = 3𝑡.
Since Indyk’s algorithm always returns a subset 𝑍 ⊆ 𝑋 +𝑌 , in each iteration of the
inner loop we have that |𝑍 | ≤ 3𝑡 ≤ 𝑡∗

600 .
It remains to argue that the algorithm does not terminate prematurely, with

probability at least 1 − 𝛿. Consider an iteration 𝑡∗ ≤ 𝑡, and let 𝑍′ ⊆ 𝑍 = 𝑋 + 𝑌
be an arbitrary subset of size 𝑡∗

20 . For any fixed elements 𝑧, 𝑧′ ∈ 𝑍′ = 𝑋 + 𝑌 , the
eventℎ(𝑧) = ℎ(𝑧′) happens with probability at most 4

𝑡∗ by the universality of linear
hashing (Lemma 2.7). It follows that the expected number of collisions in 𝑍′ is at
most |𝑍′ |2 · 4

𝑡∗ =
𝑡∗

100 . By Markov’s inequality, with probability at least 3
4 , the number

of collisions is at most 𝑡∗

25 . In this case the set ℎ(𝑍) has size at least 𝑡∗

20 −
𝑡∗

25 ≥
𝑡∗

100 .
Moreover, |ℎ(𝑋) + ℎ(𝑌) | ≥ |ℎ(𝑍) | ≥ 𝑡∗

100 . Now let 𝑍 be a set as computed by Indyk’s
algorithm. Recall that each element 𝑧 ∈ ℎ(𝑋) + ℎ(𝑌) has probability at most 1

3
of not being included into 𝑍. By another application of Markov’s inequality, with

92

probability 1
2 at most half of the elements are missing in 𝑍. In this case it holds

that |𝑍 | ≥ 𝑡∗

200 .
In summary, with error probability at most 1

4 +
1
2 ≤

3
4 , each iteration produces

a set 𝑍 of size at least 𝑡∗

200 . In particular, the probability that the algorithm stops
prematurely in the 𝑡∗-th iteration is bounded by

(1 − 3
4)
𝑂(log(𝛿−1 log(𝑡∗))) ≤ 𝛿

2 log2 (𝑡∗)
,

by choosing appropriate constants in the 𝑂-notation. Therefore, the total error
probability across all iterations can be bounded as follows; let 𝑡∗ = 2ℓ:

⌈log 𝑡⌉∑︁
ℓ=1

𝛿

2 log2 (2ℓ)
≤ 𝛿 ·

∞∑︁
ℓ=1

1
2ℓ2 ≤ 𝛿 ·

𝜋2

12
≤ 𝛿.

To analyze the running time, we observe that each iteration 𝑡∗ of the outer loop
runs in time 𝑂(𝑡∗ log(𝛿−1 log(𝑡∗))). Summing over all iterations until 𝑡∗ > 600𝑡
yields total time

⌈log(600𝑡) ⌉∑︁
ℓ=1

𝑂(2ℓ log(𝛿−1 log 𝑡)) = 𝑂(𝑡 log(𝛿−1) + 𝑡 log log 𝑡).

Using Lemma 4.26, we can remove the implicit assumption that a constant-
factor approximation of 𝑡 = ∥𝐴★𝐵∥0 is given as part of the input from the previous
sections. The running time overhead 𝑂(𝑡 log(𝛿−1) + 𝑡 log log 𝑡) is negligible in the
running time from Lemma 4.24. All in all, this completes the proof Theorem 1.2.

4.8 Concentration Bounds for Linear Hashing

In this section we sharpen the best-known concentration bounds for the most clas-
sic textbook hash function

ℎ(𝑥) = ((𝜎𝑥 + 𝜏)mod 𝑝)mod𝑚,

for a certain range of parameters. Here, 𝑝 is some (fixed) prime, 𝑚 ≤ 𝑝 is the
(fixed) number of buckets and 𝜎, 𝜏 ∈ [𝑝] are chosen uniformly and independently
at random. We say that ℎ is a linear hash function with parameters 𝑝 and 𝑚.

Our main goal is to prove the following Theorem 4.3, which is essential for
the analysis of our sparse convolution algorithm and which we believe to be of
independent interest. The result is based on the machinery established by Knud-
sen [139]. In that work [139], Knudsen gives the following improved concentra-
tion bounds for ℎ, similarly (but also crucially different from) the ones achieved
by three-wise independent hash functions. For completeness, we repeat some of
Knudsen’s proofs.

Theorem 4.1 (Almost Three-Wise Independence [139, Theorem 5]). Let 𝑋 ⊆ [𝑈]
be a set of 𝑡 keys. Randomly pick a linear hash function ℎ with parameters 𝑝 > 4𝑛2

and 𝑚 ≤ 𝑛, fix a key 𝑥 ∉ 𝑋 and buckets 𝑎, 𝑏 ∈ [𝑚]. Moreover, let 𝑦, 𝑧 ∈ 𝑋 be chosen
independently and uniformly at random. Then:

P(ℎ(𝑦) = ℎ(𝑧) = 𝑏 | ℎ(𝑥) = 𝑎) ≤ 1
𝑚2 +

2𝑂(
√

log 𝑡 log log 𝑡)

𝑚𝑡
. (2)

Unfortunately, as we will prove soon, there is no hope of improving the over-
head 2𝑂(

√
log 𝑡 log log 𝑡) by much in general. Fortunately though, we prove that there

is a loophole: In universes of small size tighter bounds are possible:

93

Theorem 4.3 (Closer to Three-Wise Independence in Tiny Universes). Let𝑋 ⊆ [𝑛]
be a set of 𝑡 keys. Randomly pick a linear hash function ℎ with parameters 𝑝 > 4𝑛2

and 𝑚 ≤ 𝑛, fix a key 𝑥 ∉ 𝑋 and buckets 𝑎, 𝑏 ∈ [𝑚]. Moreover, let 𝑦, 𝑧 be chosen
independently and uniformly at random. Then:

P(ℎ(𝑦) = ℎ(𝑧) = 𝑏 | ℎ(𝑥) = 𝑎) ≤ 1
𝑚2 + 𝑂

(
𝑛 log 𝑛
𝑚𝑡2

)
.

Our result improves upon Theorem 4.1 when 𝑛 ≤ 𝑡 · 2𝑜(
√

log 𝑡 log log 𝑡) . For 𝑛 ≤
𝑡 polylog 𝑡 and 𝑚 ≈ 𝑡 (which is the relevant case for us), Theorem 4.3 provides a
bound which is worse only by a polylogarithmic factor in comparison to a truly
three-wise independent hash function. (Indeed, for a truly three-wise indepen-
dent hash function, the above probability is exactly 1/𝑚2.) We apply Theorem 4.3
by means of the following corollary.

Corollary 4.27 (Overfull Buckets). Let 𝑋 ⊆ [𝑛] be a set of 𝑡 keys. Randomly pick
a linear hash function ℎ with parameters 𝑝 > 4𝑛2 and 𝑚 ≤ 𝑛, fix a key 𝑥 ∉ 𝑋 and
buckets 𝑎, 𝑏 ∈ [𝑚]. Moreover, let 𝐹 =

∑
𝑦∈𝑋 [ℎ(𝑦) = 𝑏]. Then:

E(𝐹 | ℎ(𝑥) = 𝑎) = E(𝐹) = 𝑡

𝑚
± Θ(1),

and, for any 𝜆 > 0,

P(|𝐹 − E(𝐹) | ≥ 𝜆
√︁
E(𝐹) | ℎ(𝑥) = 𝑎) ≤ 𝑂

(
𝑛 log 𝑛
𝜆2𝑡

)
.

We remark that the same concentration bounds can be obtained for the related
family of hash functions 𝑥 ↦→

⌊ ((𝜎𝑥+𝜏)mod 𝑝)𝑚
𝑝

⌋
.

The remainder of this section is structured as follows: In Section 4.8.1 we recap
some basic definitions from [139] and prove—as the key step—a certain number-
theoretic bound. In Section 4.8.2 we then give proofs of Theorem 4.3 and Corol-
lary 4.27 closely following Knudsen’s proof outline. Finally, in Section 4.8.3 we
prove that the concentration bound in Theorem 4.1 is almost optimal by giving an
almost matching lower bound.

4.8.1 Heights

We start with some definitions. Let 𝑝 be a prime. There is a natural way to embedZ
into F𝑝 via 𝜄(𝑥) = 𝑥 mod 𝑝. As we often switch from Z to F𝑝, we introduce some
shorthand notation: For 𝑥 ∈ Z, we write 𝑥 = 𝜄(𝑥).

The central concept of this proof is an arithmetic measure called the height
𝐻 (𝑥) of a nonzero rational number 𝑥 ∈ Q, which is defined as max(|𝑎|, |𝑏|) if 𝑥 can
be written as 𝑎

𝑏 for coprime integers 𝑎, 𝑏. We also define a similar height measure
for F𝑝: The height 𝐻𝑝(𝑥) of 𝑥 ∈ F×𝑝 is defined as

𝐻𝑝(𝑥) = min
{

max(|𝑎|, |𝑏|) : 𝑎, 𝑏 ∈ Z, 𝑥 = 𝑎𝑏−1}.
Lemma 4.28 (Equivalence of Heights [139, Lemma 2]).

Let 𝑥, 𝑦 be nonzero integers with |𝑥 |, | 𝑦 | <
√︁
𝑝/2. Then 𝐻 (𝑥𝑦) = 𝐻𝑝(𝑥 𝑦̄−1).

For all nonzero integers 𝑥, 𝐻𝑝(𝑥) <
√
𝑝.

Proof. We start with the first item. It is clear that 𝐻𝑝(𝑥 𝑦̄−1) ≤ 𝐻 (𝑥𝑦) as whenever
we can write 𝑥

𝑦 = 𝑎
𝑏 for integers 𝑎, 𝑏, then we also have 𝑥 𝑦̄−1 = 𝑎𝑏−1. It remains to

prove that 𝐻 (𝑥𝑦) ≤ 𝐻𝑝(𝑥 𝑦̄−1). Recall that we have

𝐻𝑝(𝑥 𝑦̄−1) ≤ max(|𝑥 |, | 𝑦 |) <
√︁
𝑝/2.

94

Take the pair 𝑎, 𝑏 ∈ F×𝑝 with 𝑥 𝑦̄−1 = 𝑎𝑏−1 which minimizes max(|𝑎|, |𝑏|) and thus
satisfies that max(|𝑎|, |𝑏|) = 𝐻𝑝(𝑥 𝑦̄−1) <

√︁
𝑝/2. Then, on the one hand 𝑥𝑏 − 𝑦𝑎

must be an integer divisible by 𝑝. On the other hand, since |𝑎|, |𝑏|, |𝑥 |, | 𝑦 | <
√︁
𝑝/2

it follows that |𝑥𝑏 − 𝑦𝑎| < 𝑝. In combination, we have that 𝑥𝑏 − 𝑦𝑎 = 0. Finally,
observe that 𝑥

𝑦 = 𝑎
𝑏 and thus 𝐻 (𝑥𝑦) ≤ max(|𝑎|, |𝑏|) = 𝐻𝑝(𝑥 𝑦̄−1).

It remains to prove the second item. Fix any nonzero integer 𝑥, let 𝑟 = ⌊√𝑝⌋
and let

𝑆 = { 𝑗𝑥 : 𝑗 ∈ [0 . . 𝑟]}.

Observe that 𝑆 contains 𝑟 + 1 distinct elements. Let 0 = 𝑠0 < · · · < 𝑠𝑟 < 𝑝 denote
the unique integers such that 𝑆 = {𝑠0, . . . , 𝑠𝑟}, and let 𝑠𝑟+1 = 𝑝. Then we have

𝑟∑︁
𝑖=0

𝑠𝑖+1 − 𝑠𝑖 = 𝑝,

and thus there exists some index 𝑖 with 𝑠𝑖+1 − 𝑠𝑖 ≤ 𝑝
𝑟+1 <

√
𝑝. By the definition

of 𝑆 we can write 𝑥 = (𝑠𝑖+1 − 𝑠𝑖) 𝑗−1 for some 𝑗 ∈ {1, . . . , 𝑟} and hence 𝐻𝑝(𝑥) ≤
max(𝑠𝑖+1 − 𝑠𝑖 , 𝑟) <

√
𝑝.

The next lemma constitutes the heart of our concentration bound. Knud-
sen [139, Corollary 4] shows that for any set 𝑋 of size 𝑡, the sum

∑
𝑥, 𝑦∈𝑋 1/𝐻 (𝑥𝑦)

can be bounded by 𝑡 · 2𝑂(
√

log 𝑡 log log 𝑡) regardless of the universe size 𝑛; in our
setting (where 𝑛 is as small as 𝑡 polylog 𝑡) the following bound is significantly
sharper.

Lemma 4.29 (Sum of Inverse Heights). Let 𝑋 ⊆ [−𝑛 . . 𝑛] be a set of nonzero inte-
gers. Then:∑︁

𝑥, 𝑦∈𝑋

1
𝐻 (𝑥𝑦)

≤ 𝑂(𝑛 log 𝑛).

Proof. Let us assume that 𝑋 contains only positive integers; in the general
case the sum can be at most four times larger since 𝐻 (𝑥𝑦) = 𝐻 (− 𝑥𝑦). We start
with the following simple observation: If 𝑥, 𝑦 are positive integers, then 𝐻 (𝑥𝑦) =
max(𝑥, 𝑦)/gcd(𝑥, 𝑦). Therefore, the goal is to bound∑︁

𝑥, 𝑦∈𝑋

1
𝐻 (𝑥𝑦)

=
∑︁
𝑥, 𝑦∈𝑋

gcd(𝑥, 𝑦)
max(𝑥, 𝑦) ≤ 2

∑︁
𝑥∈𝑋

1
𝑥

∑︁
𝑦∈𝑋
𝑥≥ 𝑦

gcd(𝑥, 𝑦).

Fix 𝑥 and focus on the sum
∑
𝑦 gcd(𝑥, 𝑦). Let 𝑔 be a divisor of 𝑥. Then there can

be at most 𝑥/𝑔 values 𝑦 ≤ 𝑥 which are divisible by 𝑔 . It follows that |{ 𝑦 ≤ 𝑥 :
gcd(𝑥, 𝑦) = 𝑔}| ≤ 𝑥/𝑔 . Thus:∑︁

𝑦∈𝑋
𝑥≥ 𝑦

gcd(𝑥, 𝑦) ≤
∑︁
𝑔 |𝑥

𝑔 · 𝑥
𝑔
= 𝑥 · 𝑑 (𝑥),

where 𝑑 (𝑥) denotes the number of divisors of 𝑥. Combining these previous equa-
tions, we obtain∑︁

𝑥, 𝑦∈𝑋

1
𝐻 (𝑥𝑦)

≤ 2
∑︁
𝑥∈𝑋

𝑑 (𝑥) ≤ 2
𝑛∑︁
𝑥=1

𝑑 (𝑥).

To bound the right-hand side by 𝑂(𝑛 log 𝑛), it suffices to check that the average
number in [𝑛] has 𝑂(log 𝑛) divisors. More precisely: Any integer 𝑔 ∈ [𝑛] divides
at most 𝑛/𝑔 elements in [𝑛] and therefore

∑
𝑥 𝑑 (𝑥) ≤

∑
𝑔 𝑛/𝑔 = 𝑂(𝑛 log 𝑛).

95

4.8.2 Proof of Theorem 4.3

We need some technical lemmas proved in [139]; for the sake of completeness we
also give short proofs. Let us call a set 𝐼 = {𝑎 + 𝑖̄𝑏 : 𝑖 ∈ [𝑟]} ⊆ F𝑝 an arithmetic
progression, and if 𝑏 = 1̄ then we call 𝐼 an interval. For a set 𝑋̄ ⊆ F𝑝, we define the
discrepancy as

disc(𝑋̄) = max
𝐼 interval

���� |𝑋̄ ∩ 𝐼 | − |𝑋̄ | |𝐼 |𝑝

���� .
Lemma 4.30 ([139, Lemma 3]). Let 𝑥, 𝑦 be coprime integers with |𝑥 |, | 𝑦 | < √𝑝 and
let 𝑋̄ be an interval of length |𝑥 |. Then disc(𝑦̄𝑥−1𝑋̄) ≤ 2.

Proof. For simplicity assume that 𝑥, 𝑦 are positive (the other cases are symmet-
ric) and also assume that 𝑋̄ = {𝑖̄ : 𝑖 ∈ [𝑥]} (which is enough, since the discrepancy
is invariant under shifts). We first show that 𝑥−1𝑋̄ is evenly distributed in the fol-
lowing strong sense: 𝑥−1𝑋̄ = 𝑌 , where 𝑌 = {⌈ 𝑗𝑝/𝑥⌉ : 𝑗 ∈ [𝑥]}. Since 𝑥−1𝑋̄ and 𝑌
are finite sets of the same size, it suffices to prove the inclusion 𝑥−1𝑋̄ ⊆ 𝑌 . So fix
any 𝑖 ∈ [𝑥]; we show that 𝑖̄𝑥−1 ∈ 𝑌 . Let 𝑗 ∈ [𝑥] be the unique integer such that 𝑥
divides 𝑗𝑝 + 𝑖. Then (𝑗𝑝 + 𝑖)/𝑥 = 𝑖̄𝑥−1 and ⌈ 𝑗𝑝/𝑥⌉ = (𝑗𝑝 + 𝑖)/𝑥 and hence 𝑖̄𝑥−1 ∈ 𝑌 .

The next step is to show that also 𝑦̄𝑥−1𝑋̄ is distributed evenly. From the pre-
vious paragraph we know that 𝑦̄𝑥−1𝑋̄ = { 𝑗𝑝 𝑦/𝑥 + 𝜖 𝑗 𝑦 : 𝑗 ∈ [𝑥]} for some ra-
tional values 𝜖 𝑗 = ⌈ 𝑗𝑝/𝑥⌉ − 𝑗𝑝/𝑥 < 1. The key insight is that since 𝑥 and 𝑦

are coprime integers, the set [𝑥] is invariant under the dilation with 𝑦, that is,
{ 𝑗 𝑦mod 𝑥 : 𝑗 ∈ [𝑥]} = [𝑥]. It follows that 𝑦̄𝑥−1𝑋̄ = { 𝑗𝑝/𝑥 + 𝛿 𝑗 : 𝑗 ∈ [𝑥]} for some
rationals 𝛿 𝑗 with 0 ≤ 𝛿 𝑗 < 𝑦 < 𝑝/𝑥.

We point out how to conclude that disc(𝑦̄𝑥−1𝑋̄) ≤ 2. First, it is obvious that
all intervals of the form {𝑖̄ : ⌈ 𝑗𝑝/𝑥⌉ ≤ 𝑖 < ⌈(𝑗 + 1)𝑝/𝑥⌉} intersect 𝑦̄𝑥−1𝑋̄ in exactly
one point. As every interval 𝐼 can be decomposed into several such segments plus
two smaller parts of size less than 𝑝/𝑥 at the beginning and the end, respectively,
a simple calculation confirms that disc(𝑦̄𝑥−1𝑋̄) ≤ 2.

Lemma 4.31 ([139, Lemma 4]). Let 𝑥, 𝑦̄ ∈ F𝑝 and let 𝐼 ⊆ F𝑝 be an arithmetic pro-
gression. Then, for 𝜎̄ ∈ F𝑝 chosen uniformly at random:

P((𝜎̄𝑥, 𝜎̄ 𝑦̄) ∈ 𝐼2) ≤ |𝐼 |
2

𝑝2 + 𝑂
(

1
𝐻𝑝(𝑥 𝑦̄−1) ·

|𝐼 |
𝑝
+ 1
𝑝

)
,

Proof. First, observe that 𝐼 = 𝑧𝐽 for some interval 𝐽 ⊆ F𝑝 and some nonzero
scalar 𝑧. As (𝜎̄𝑥, 𝜎̄ 𝑦̄) ∈ 𝐼2 holds if and only if (𝜎̄𝑥𝑧−1, 𝜎̄ 𝑦̄𝑧−1) ∈ 𝐽2, we may re-
place 𝑥, 𝑦̄ by 𝑥𝑧−1, 𝑦̄𝑧−1 and assume that 𝐼 is an interval. Note that 𝐻𝑝(𝑥 𝑦̄−1) is
invariant under this exchange. We may further scale and possibly swap 𝑥 and 𝑦̄

to ensure that 𝐻𝑝(𝑥 𝑦̄−1) = 𝑥 ≥ | 𝑦 |, where 𝑥, 𝑦 are integers such that 𝜄(𝑥) = 𝑥

and 𝜄(𝑦) = 𝑦̄ with 𝑥 positive and 𝑥, 𝑦 coprime.
Pick 𝜎̄ ∈ F𝑝 uniformly at random, and let 𝑆 = {𝜎̄ + 𝑖̄𝑥−1 : 𝑖 ∈ [𝑥]}. Instead of

bounding the probability P((𝜎̄𝑥, 𝜎̄ 𝑦̄) ∈ 𝐼2) directly, by linearity of expectation we
may instead bound

P((𝜎̄𝑥, 𝜎̄ 𝑦̄) ∈ 𝐼2)

=
1
𝑥
E ©­«

∑︁
𝑠∈𝑆

[(𝑠𝑥, 𝑠 𝑦̄) ∈ 𝐼2]ª®¬
≤ 1
𝑥
E(min(|𝐼 ∩ 𝑥𝑆 |, |𝐼 ∩ 𝑦̄𝑆 |))

96

Recall that 𝐼 is an interval and note that 𝑦̄𝑆 is exactly of the form 𝑦̄𝑥−1𝑋̄ for coprime
integers 𝑥, 𝑦 and an interval 𝑋̄ of size 𝑥. Therefore, it follows from the previous
Lemma 4.30 that |𝐼 ∩ 𝑦̄𝑆 | ≤ |𝐼 | · | 𝑦̄𝑆 |𝑝 + 2 =

𝑥 |𝐼 |
𝑝 + 2:

≤ 1
𝑥
E

(
min

(
|𝐼 ∩ 𝑥𝑆 |, 𝑥 |𝐼 |

𝑝
+ 2

))
Next, since both 𝐼 and 𝑥𝑆 are intervals, there are less than |𝑥𝑆 | + |𝐼 | = 𝑥+ |𝐼 | choices
of 𝜎̄ such that 𝐼 ∩ 𝑥𝑆 is non-empty. We conclude that:

≤ 𝑥 + |𝐼 |
𝑝𝑥

(
|𝐼 | 𝑥
𝑝
+ 2

)
≤ |𝐼 |

2

𝑝2 +
3|𝐼 |
𝑝𝑥
+ 2
𝑝
,

recalling that 𝑥 = 𝐻𝑝(𝑥 𝑦̄−1) < √𝑝 (by Lemma 4.28). The claim follows.

We are finally ready to prove Theorem 4.3 and Corollary 4.27. The proofs are
analogous to [139, Theorems 5 and 6].

Proof of Theorem 4.3. Fix 𝑦, 𝑧 ∈ 𝑋 . We will later unfix 𝑦 and 𝑧 and consider
them to be random variables. Let 𝐼 = {𝑖 ∈ [𝑝] : 𝑖 mod𝑚 = 𝑎} and define 𝐽

similarly with 𝑏 in place of 𝑎; clearly 𝐼 and 𝐽 are arithmetic progressions in F𝑝.
Let ℎ̄(𝑥) = 𝜎̄𝑥 + 𝜏 be a random linear function on F𝑝. Then:

P(ℎ(𝑦) = ℎ(𝑧) = 𝑏 | ℎ(𝑥) = 𝑎)
= P((ℎ̄(𝑦̄), ℎ̄(𝑧)) ∈ 𝐽2 | ℎ̄(𝑥) ∈ 𝐼)

=
1
|𝐼 |

∑︁
𝑢̄∈𝐼

P((ℎ̄(𝑦̄), ℎ̄(𝑧)) ∈ 𝐽2 | ℎ̄(𝑥) = 𝑢̄).

The last equality is by conditioning on ℎ̄(𝑥) taking some fixed value 𝑢̄. As the ran-
dom variables ℎ̄(𝑥) and ℎ̄(𝑦̄) − ℎ̄(𝑥) = 𝜎̄(𝑦̄ − 𝑥) are independent, we can omit the
condition and apply Lemma 4.31:

P((ℎ̄(𝑦̄), ℎ̄(𝑧)) ∈ 𝐽2 | ℎ̄(𝑥) = 𝑢̄)
= P((𝜎̄(𝑦̄ − 𝑥), 𝜎̄(𝑧 − 𝑥)) ∈ (𝐽 − 𝑢̄)2)

≤ | 𝐽 |
2

𝑝2 + 𝑂
©­­«

1

𝐻𝑝

(
𝑦̄−𝑥
𝑧−𝑥

) · | 𝐽 |
𝑝
+ 1
𝑝

ª®®¬
By the definition of 𝐽 we have | 𝐽 | ≤ ⌈ 𝑝𝑚 ⌉ ≤

𝑝
𝑚 + 1 and thus:

≤ 1
𝑚2 + 𝑂

©­­«
1

𝐻𝑝

(
𝑦̄−𝑥
𝑧−𝑥

) · 1
𝑚
+ 1
𝑝

ª®®¬.
Now we unfix 𝑦, 𝑧 and consider 𝑦, 𝑧 ∈ 𝑋 to be chosen uniformly at random. By
averaging over the previous inequalities we get:

P(ℎ(𝑦) = ℎ(𝑧) = 𝑏 | ℎ(𝑥) = 𝑎) = 1
𝑚2 + 𝑂

©­­«
1

𝑘2𝑚

∑︁
𝑦,𝑧∈𝑋

1

𝐻𝑝

(
𝑦̄−𝑥
𝑧−𝑥

) + 1
𝑝

ª®®¬.
97

Finally, as 𝑦 − 𝑥 and 𝑧 − 𝑥 are nonzero integers of magnitude at most 𝑛 <
√︁
𝑝/2,

we can apply Lemma 4.28 to replace 𝐻𝑝 by 𝐻 . The remaining sum can be bounded
using Lemma 4.29:∑︁

𝑦,𝑧∈𝑋

1

𝐻𝑝

(
𝑦̄−𝑥
𝑧−𝑥

) =
∑︁
𝑦,𝑧∈𝑋

1
𝐻 (𝑦−𝑥𝑧−𝑥)

= 𝑂(𝑛 log 𝑛),

and the claim follows. (The + 1
𝑝 term can be omitted assuming that 𝑝 = Ω(𝑛2).)

Proof of Corollary 4.27. Fix buckets 𝑎, 𝑏 ∈ [𝑚], and let 𝐹 denote the number of
keys in 𝑋 hashed to 𝑏. By the pairwise independence of ℎ (see Lemma 2.7), we have
that

E(𝐹 | ℎ(𝑥) = 𝑎) = E(𝐹) = 𝑡

𝑚
± Θ

(
𝑡

𝑝

)
=
𝑡

𝑚
± Θ(1).

In particular, since 𝑝 > 𝑚2 it holds that E(𝐹) ≥ 𝑡/𝑚 − 𝑂(𝑡/𝑝) ≥ Ω(𝑡/𝑚). By
Theorem 4.3, we additionally have

E(𝐹2 | ℎ(𝑥) = 𝑎) = 𝑡2

𝑚2 + 𝑂
(
𝑛 log 𝑛
𝑚

)
.

It follows that

Var(𝐹 | ℎ(𝑥) = 𝑎) = 𝑂
(
𝑛 log 𝑛
𝑚

)
,

and finally, by an application of Chebyshev’s inequality we have

P(|𝐹 − E(𝐹) | ≥ 𝜆
√︁
E(𝐹) | ℎ(𝑥) = 𝑎) ≤ Var(𝐹 | ℎ(𝑥) = 𝑎)

𝜆2 E(𝐹) = 𝑂

(
𝑛 log 𝑛
𝜆2𝑡

)
,

for all 𝜆 > 0.

4.8.3 An Almost-Matching Lower Bound for Theorem 4.1

In this section we prove the following statement which shows that Theorem 4.1
(Theorem 5 in [139]) is almost optimal in the case where 𝑛 is polynomial in 𝑡.

Theorem 4.2 ([139, Theorem 5] is Almost Optimal). Let 𝑡 and 𝑛 be arbitrary pa-
rameters with 𝑛 ≥ 𝑡1+𝜖 for some constant 𝜖 > 0, and let ℎ be a random linear hash
function which hashes to 𝑚 buckets. Then there exists a set 𝑋 ⊆ [𝑛] of 𝑡 keys, a fixed
key 𝑥 ∉ 𝑋 and buckets 𝑎, 𝑏 ∈ [𝑚] such that for uniformly random 𝑦, 𝑧 ∈ 𝑋 we have

P(ℎ(𝑦) = ℎ(𝑧) = 𝑏 | ℎ(𝑥) = 𝑎) ≥ 1
𝑚𝑡

exp

(
Ω

(√︂
min

(
log 𝑡

log log 𝑡 ,
log 𝑛

log2 log 𝑛

)))
.

We first describe the construction of 𝑋 . By the Prime Number Theorem, for
any 𝑁 ∈ N, there are 𝑁 primes 𝑝0, . . . , 𝑝𝑁−1 in the range [𝑁 log𝑁 . . 𝐶𝑁 log𝑁) for
some absolute constant 𝐶 > 1. Let

𝑁 = min
(

𝜖 log 𝑛
(1 + 𝜖)𝐶 log log 𝑛

, log 𝑡 − 1
)
,

and define

𝑋 ′ =

{
𝑠
∏
𝑖∈𝐼

𝑝𝑖 : 𝐼 ⊆ [𝑁], |𝐼 | = 𝑁

2
, 1 ≤ 𝑠 ≤ 𝑆

}
,

where 1 ≤ 𝑆 ≤ 𝑡 is chosen in such a way that 𝑡/2 ≤ |𝑋 ′ | ≤ 𝑡. There exists indeed
such a value of 𝑆, as we can repeatedly increment 𝑆 (starting from 𝑆 ← 1) until the

98

condition is satisfied; in each step the set grows by at most 2𝑁 ≤ 𝑡/2 elements. We
then construct 𝑋 ⊇ 𝑋 ′ by adding arbitrary (small) elements to 𝑋 until |𝑋 | = 𝑡. One
can check that 𝑋 ⊆ [𝑛] as the largest number in 𝑋 ′ has magnitude less than

𝑆(𝐶𝑁 log𝑁)𝑁 ≤ 𝑡(log 𝑛)
𝜖 log 𝑛

(1+𝜖) log log 𝑛 = 𝑡𝑛
𝜖

1+𝜖 ≤ 𝑛 1
1+𝜖 𝑛

𝜖
1+𝜖 = 𝑛.

The first step towards proving that 𝑋 is an extreme instance is to give the following
lower bound:

Lemma 4.32. It holds that

∑︁
𝑥, 𝑦∈𝑋

1
𝐻 (𝑥𝑦)

= 𝑡 exp

(
Ω

(√︂
min

(
log 𝑡

log log 𝑡 ,
log 𝑛

log2 log 𝑛

)))
.

Proof. We only need a lower bound, so we will ignore all elements in 𝑋 \ 𝑋 ′. Fix
any element 𝑥 = 𝑠

∏
𝑖∈𝐼 𝑝𝑖 ∈ 𝑋 ′; we prove a lower bound against

∑
𝑦∈𝑋 ′ 1/𝐻 (𝑥𝑦).

We call an element 𝑦 good if it has the form 𝑦 = 𝑠
∏

𝑖∈ 𝐽 𝑝𝑖 , where both 𝑥 and 𝑦

have the same factor 𝑠 and the symmetric difference of 𝐼 and 𝐽 has size exactly 2𝑟
(i.e., |𝐼 \ 𝐽 | = | 𝐽 \ 𝐼 | = 𝑟) for some parameter 𝑟 to be specified soon. In the fraction 𝑥

𝑦

only the factors 𝑠 and
∏

𝑖∈𝐼∩𝐽 𝑝𝑖 cancel and therefore 𝐻 (𝑥𝑦) = Θ(𝑁 log𝑁)𝑟 . More-
over, the number of good elements 𝑦 is exactly

(𝑁/2
𝑟

)2, and thus

∑︁
𝑦∈𝑋 ′

1
𝐻 (𝑥𝑦)

≥
(𝑁/2
𝑟

)2

𝑂(𝑁 log𝑁)𝑟 ≥
(𝑁2𝑟)

2𝑟

𝑂(𝑁 log𝑁)𝑟 = Ω

(
𝑁

𝑟2 log𝑁

)𝑟
.

Choosing 𝑟 = Θ(
√︁
𝑁/log𝑁) yields

∑︁
𝑦∈𝑋 ′

1
𝐻 (𝑥𝑦)

≥ exp(Ω(𝑟)) = exp

(
Ω

(√︂
min

(
log 𝑡

log log 𝑡 ,
log 𝑛

log2 log 𝑛

)))
.

The claim follows by summing over all 𝑥 ∈ 𝑋 ′.

Proof of Theorem 4.2. Let 𝑋 be as before, choose 𝑥 = 0 and choose 𝑎 = 𝑏 = 0. For
now we also fix 𝑦, 𝑧 ∈ 𝑋 but we will later in the proof unfix 𝑦, 𝑧 and treat them
as random variables. The first steps are quite similar to the proof of Theorem 4.3.
Let 𝐼 = {𝑖 ∈ [𝑝] : 𝑖 mod𝑚 = 0}. Then 𝐼 is an arithmetic progression in F𝑝. Sample
a random linear function on F𝑝, ℎ̄(𝑥) = 𝜎̄𝑥 + 𝜏. Then:

P(ℎ(𝑦) = ℎ(𝑧) = 𝑏 | ℎ(𝑥) = 𝑎)
= P((ℎ̄(𝑦̄), ℎ̄(𝑧)) ∈ 𝐼2 | ℎ̄(𝑥) ∈ 𝐼)

=
1
|𝐼 |

∑︁
𝑢̄∈𝐼

P((ℎ̄(𝑦), ℎ̄(𝑧)) ∈ 𝐼2 | ℎ̄(𝑥) = 𝑢̄).

We continue to bound every term in the sum from below, so fix some value 𝑢̄ ∈ 𝐼 .
As ℎ̄(𝑥) = 𝜏 and ℎ̄(𝑦̄) − ℎ̄(𝑥) = 𝜎̄ 𝑦̄ are independent, we can omit the condition and
it suffices to bound

P((ℎ̄(𝑦̄), ℎ̄(𝑧)) ∈ 𝐼2 | ℎ̄(𝑥) = 𝑢̄)
= P((𝜎̄ 𝑦̄, 𝜎̄𝑧) ∈ (𝐼 − 𝑢̄)2)

99

Let 𝑇 = ⌊ 𝑝
2𝑚 ⌋ and observe that either 𝐽 = {𝑖̄𝑚̄ : 𝑖 ∈ [𝑇]} or {−𝑖̄𝑚̄ : 𝑖 ∈ [𝑇]} is

contained in 𝐼 − 𝑢̄. In both cases we may replace 𝐼 − 𝑢̄ by 𝐽 (in the latter case we
replace also 𝜎̄ by −𝜎̄ which does not change the probability):

≥ P((𝜎̄ 𝑦̄, 𝜎̄𝑧) ∈ 𝐽2)

=
| 𝑦̄−1 𝐽 ∩ 𝑧−1 𝐽 |

𝑝

=
1
𝑝

∑︁
𝑖, 𝑗∈[𝑇]

[
𝑖̄ 𝑦̄−1𝑚̄ = 𝑗𝑧−1𝑚̄

]
=

1
𝑝

∑︁
𝑖, 𝑗∈[𝑇]

[
𝑖̄ 𝑗−1 = 𝑦̄𝑧−1

]
We claim that there are at least Ω(𝑇/𝐻 (𝑦𝑧)) solutions 𝑖, 𝑗 ∈ [𝑇] to the modular
equation 𝑖̄ 𝑗−1 = 𝑦̄𝑧−1. Indeed, consider the reduced fraction 𝑦′

𝑧′ =
𝑦
𝑧 (i.e., 𝑦′ and 𝑧′

are coprime and 0 < 𝑦′, 𝑧′ ≤ 𝐻 (𝑦𝑧) by definition). For any 𝑡 < 𝑇/𝐻 (𝑦𝑧) we may
pick 𝑖 = 𝑡 𝑦′ and 𝑗 = 𝑡𝑧′. On the one hand, we have that 𝑖 and 𝑗 have the correct size
since 𝑖 = 𝑡 𝑦′ < (𝑇/𝐻 (𝑦𝑧)) · 𝐻 (

𝑦
𝑧) = 𝑇 . On the other hand, the equation is satisfied

by 𝑖̄ 𝑗−1 = 𝑡 𝑦′𝑡−1𝑧′−1 = 𝑦̄𝑧−1. Hence:

≥ Ω

(
𝑇

𝑝𝐻 (𝑦𝑧)

)
= Ω

(
1

𝑚𝐻 (𝑦𝑧)

)
.

We now unfix 𝑦, 𝑧 and consider them as random variables. By averaging over the
previous inequality and by applying Lemma 4.32 we finally obtain:

P(ℎ(𝑦) = ℎ(𝑧) = 𝑏 | ℎ(𝑥) = 𝑎)

≥ Ω

(
1
𝑚𝑡2

∑︁
𝑦,𝑧∈𝑋

1
𝐻 (𝑦𝑧)

)
≥ 1
𝑚𝑡

exp

(
Ω

(√︂
min

(
log 𝑡

log log 𝑡 ,
log 𝑛

log2 log 𝑛

)))
.

100

5 Fine-Grained Complexity of Approximate
Distance Oracles

This chapter is devoted to proving fine-grained lower bounds against distance or-
acles in graphs that are ultimately based on sparse convolution algorithms. The
work presented in this chapter is based on the paper [2]. At the same time, Jin and
Xu [130] have independently discovered the same main result. (Our papers differ
in their focus points: While we focus in depth on the hardness of distance oracles
in several regimes, Jin and Xu have more broadly focused on other fine-grained
results such as the hardness of 4-variate linear degeneracy testing.)

2 Amir Abboud, Karl Bringmann, and Nick Fischer. “Stronger 3-SUM lower
bounds for approximate distance oracles via additive combinatorics”. In: 55th
annual ACM symposium on theory of computing (STOC 2023). To appear. ACM,
2023. 10.48550/arXiv.2211.07058.

Acknowledgements. We would like to thank Merav Parter and Sebastian Forster
for helpful discussions on the distance oracle upper bounds. We would also like
to thank Seri Khoury and Or Zamir for collaboration on short cycle removal in
graphs, and Marvin Künnemann and Karol Węgrzycki for collaboration on an-
other related project, both of which inspired us to work on short cycle removal on
numbers.

Organization. We start with a technical overview of our results in Section 5.1,
explaining in detail how distance oracles connect to 3-SUM. We then give some
necessary background on additive combinatorics in Section 5.2 and successively
develop our reduction in Sections 5.3 to 5.7.

5.1 Overview

In this section, we give a high-level overview of our results. We start with some
quick preliminaries about the 3-SUM problem and graphs.

3-SUM. The monochromatic 3-SUM problem is to determine whether in a given
set 𝐴, there are 𝑎, 𝑏, 𝑐 ∈ 𝐴 (not necessarily distinct) such that 𝑎 + 𝑏 + 𝑐 = 0. We
say that the instance has size 𝑛 = |𝐴|. The trichromatic 3-SUM problem is to de-
termine whether in three given sets 𝐴, 𝐵, 𝐶, there are 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 such
that 𝑎 + 𝑏 + 𝑐 = 0. We say that the instance has size 𝑛 = |𝐴| + |𝐵| + |𝐶 |. Both variants
are equivalent in terms of subquadratic algorithms. We typically work under the
well-established assumption that 3-SUM requires quadratic time [101].

Graphs. In this chapter all graphs are undirected and unweighted. The distance
𝑑 (𝑢, 𝑣) of two vertices is the length of the shortest path from 𝑢 to 𝑣. We say that a
graph is Θ(𝑟)-regular if there are constants 0 < 𝑐1 < 𝑐2 such that every vertex has
degree deg(𝑣) satisfying 𝑐1𝑟 ≤ deg(𝑣) ≤ 𝑐2𝑟.

5.1.1 Hardness Reductions from Triangle Listing Instances with
Few Short Cycles

Our motivation is the observation that, if we could assume hardness of triangle
listing in random-like graphs, we could rather easily conclude tight hardness of 4-
cycle listing. Under the same assumption and with some more work, we can also
show the promised hardness of distance oracles. More specifically, assume that it
is 𝑛2−𝑜(1) -hard to list𝑂(𝑛3/2) triangles in a Θ(𝑛1/2)-regular graph which contains at
most 𝑂(𝑛2) 4-cycles—this is indeed the number of 4-cycles we expect in a random
Θ(𝑛1/2)-regular graph.

101

https://doi.org/10.48550/arXiv.2211.07058

Hardness of Listing 4-Cycles. It is easy to conclude the fine-grained hardness of
listing all 4-cycles in a given graph

Theorem 1.12 (Hardness of Listing 4-Cycles). For any 𝜖 > 0, there is no algorithm
listing all 4-cycles in time 𝑂(𝑛2−𝜖 + 𝑡) or in time 𝑂(𝑚4/3−𝜖 + 𝑡) (where 𝑡 is the number
of 4-cycles), unless the 3-SUM conjecture fails.

First, by a simple subsampling trick we can reduce the number of 4-cycles in
the given triangle instance a tiny bit further: We randomly split the vertex set
into 𝑛𝛿 many groups and list all triangles in each triple of groups. In this way we
incur an overhead of 𝑛3𝛿 to the running time. However, we have reduced the total
number of 4-cycles (across all triples of groups) to 𝑂(𝑛2−𝛿). Indeed, each 4-cycle
falls into a fixed triple of groups only with probability 𝑛−4𝛿, and thus the total
number of 4-cycles is 𝑛3𝛿 · 𝑂(𝑛2−4𝛿) = 𝑂(𝑛2−𝛿).

We follow a natural approach on the smaller instances 𝐺 = (𝑉, 𝐸) (i.e., for
each triple of groups): We create a new graph consisting of four copies𝑉1, 𝑉2, 𝑉3, 𝑉4
of 𝑉 (i.e., each vertex 𝑣 ∈ 𝑉 now has four copies 𝑣1, 𝑣2, 𝑣3, 𝑣4). We add all edges
from 𝐸 between the parts 𝑉1 and 𝑉2, between 𝑉2 and 𝑉3 and between 𝑉3 and 𝑉4.
Finally, we connect all matching vertices in𝑉1 and𝑉4 (i.e., for all 𝑣 ∈ 𝑉 we add the
edge (𝑣1, 𝑣4)).

With this construction, each triangle (𝑢, 𝑣, 𝑤) in the original graph can now be
found as a 4-cycle (𝑢1, 𝑣2, 𝑤3, 𝑢4). However: There might be many more 4-cycles
which do not correspond to triangles in the original instance, e.g., 4-cycles which
only zigzag between the vertex parts 𝑉1 and 𝑉2. These 4-cycles must be part of
the original graph though, and thus the total number of 4-cycles in the instance is
bounded by 𝑂(𝑛2−4𝛿). It follows that if there is an algorithm listing all 𝑡 4-cycles in
a graph in time 𝑂(𝑛2−𝜖 + 𝑡), then we could list all triangles in time 𝑂(𝑛2−𝜖 + 𝑛2−4𝛿).
The total time across all triples of groups is bounded by 𝑂(𝑛2−𝜖+3𝛿 + 𝑛2−𝛿), which
is subquadratic by setting 𝛿 > 0 small enough.

Hardness of Approximate Distance Oracles. In a similar spirit we derive hard-
ness results for distance oracles. We achieve results for several settings (see Theo-
rems 1.9 to 1.11), but in this overview we will only focus on the simplest version to
get the idea across. We demonstrate how to rule out distance oracles with stretch 𝑘,
constant query time and preprocessing time𝑂(𝑚1+ 1

2𝑘+1 −𝜖). (This is a weaker bound
than in Theorem 1.9, where we even rule distance oracles with preprocessing time
𝑂(𝑚1+ 1

𝑘 −𝜖)).
We again start from an instance 𝐺 of listing 𝑂(𝑛3/2) in a Θ(𝑛1/2)-regular

𝑛-vertex graph, and assume that the graph contains at most 𝑂(𝑛𝑘/2) 𝑘-cycles,
for all 𝑘. Without loss of generality assume that the instance is a tripartite
graph 𝐺 = (𝑋,𝑌 , 𝑍, 𝐸) with vertex parts 𝑋,𝑌 , 𝑍. We will uniformly subsample
all vertex parts with sampling rate 𝜌 (which we determine later) to obtain a
smaller graph 𝐺′ with vertices 𝑋 ′ ⊆ 𝑋,𝑌 ′ ⊆ 𝑌, 𝑍′ ⊆ 𝑍. This graph is Θ(𝜌𝑛1/2)-reg-
ular, has 𝑂(𝜌𝑛) vertices and has 𝑂(𝜌2𝑛3/2) edges. Most interestingly though, the
number of 𝑘-cycles in 𝐺′ is at most 𝑂(𝜌𝑘𝑛𝑘/2), as every 𝑘-cycle survives the sub-
sampling only with probability 𝜌𝑘 .

We will now use the distance oracle to efficiently list all triangles in 𝐺′. To
this end, let 𝐺′′ be a duplicate of 𝐺′ where we delete the edges between 𝑋 ′

and 𝑍′; any pair of vertices (𝑥, 𝑧) ∈ 𝑋 ′ × 𝑍′ which was part of a triangle has dis-
tance 𝑑 (𝑥, 𝑧) ≤ 2 in𝐺′′. We preprocess𝐺′′ with the distance oracle and query each
pair (𝑥, 𝑧) ∈ (𝑋 ′ × 𝑍′) ∩ 𝐸 to get distance estimates 𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥, 𝑧) ≤ 𝑘 · 𝑑 (𝑥, 𝑧).
We say that a pair (𝑥, 𝑧) is a candidate if its distance estimate is 𝑑 (𝑥, 𝑧) ≤ 2𝑘.
The idea is that only the candidate pairs can possibly be part of a triangle—as all
other pairs must have distance more than 2 in 𝐺′′. However, note that among the
candidate pairs there may be many pairs which do not form a triangle. Our listing
algorithm now enumerates all candidate pairs (𝑥, 𝑧) and all neighbors 𝑦 ∈ 𝑌 ′ of 𝑥
and tests whether (𝑥, 𝑦, 𝑧) forms a triangle. It should be clear that the algorithm
cannot miss any triangle in 𝐺′. And by repeating the subsampling 𝑂(𝜌−3) times,

102

with good probability every triangle in 𝐺 occurs in at least one instance 𝐺′ and
will therefore eventually be detected.

The running time is dominated by two major contributions: The preprocessing
time of the distance oracle and the enumeration step (for this setting of parameters
the query time can be ignored). The total preprocessing time across all 𝑂(𝜌−3)
repetitions is bounded by

𝑂(𝜌−3 · (𝜌2𝑛3/2)1+ 1
2𝑘+1 −𝜖). (5)

Next we deal with the contribution of the enumeration step. The key in the
analysis is to get a good bound on the number of candidate pairs (𝑥, 𝑧). Observe
that as any candidate pair (𝑥, 𝑧) has distance 𝑑 (𝑥, 𝑧) ≤ 2𝑘 in 𝐺′′, it must be part
of a cycle of length at most 2𝑘 + 1 in 𝐺′. We can thus control the number of candi-
date pairs by controlling the number of cycles in 𝐺′—as argued before, there are
at most 𝑂(𝜌2𝑘+1𝑛

2𝑘+1
2) cycles of length at most 2𝑘 + 1. Dealing with a single candi-

date pair takes time 𝑂(𝜌𝑛1/2) (to list all neighbors 𝑦 of 𝑥), and therefore the total
running time of the enumeration step is bounded by

𝑂(𝜌−3 · 𝜌2𝑘+1𝑛
2𝑘+1

2 · 𝜌𝑛1/2) = 𝑂(𝜌2𝑘−1𝑛𝑘+1) (6)

By optimizing 𝜌 in Equations (5) and (6), we find that the running is indeed
subquadratic (for 𝜌 = 𝑛−

𝑘−1
2𝑘−1 −𝛿 and some tiny 𝛿 > 0). This completes the proof

outline of the weaker lower bound. For the improved lower bound from Theo-
rem 1.9, we find better trade-off between the size of the preprocessed graph and
the number of queries to the distance oracle.

Revisiting Hardness of Listing Triangles. The main message is that if miracu-
lously the given triangle instance contains few 4-cycles, then we would obtain
interesting hardness results. We therefore investigated whether this variant of
triangle listing is conditionally hard, and managed to prove the desired result:

Theorem 5.1 (Hardness of Triangle Listing). For any constant 𝜖 > 0, there is
no 𝑂(𝑛2−𝜖)-time algorithm listing all triangles in a Θ(𝑛1/2)-regular 𝑛-vertex graph
which contains at most 𝑂(𝑛𝑘/2) 𝑘-cycles for all 𝑘 ≥ 3, unless the 3-SUM conjecture
fails.

There are known lower bounds against listing 𝑂(𝑛3/2) triangles in Θ(𝑛1/2)-
regular graphs (without the assumption that the graph has few short cycles) under
the 3-SUM conjecture by Pătraşcu [172] with refinements by Kopelowitz, Pettie
and Porat [143] and under the All-Pairs Shortest Paths conjecture by Vassilevska
Williams and Xu [204]. We specifically focused on the 3-SUM hardness and as a
first step significantly simplified the known reduction (see Section 5.5). We then
raised the question: In this reduction from 3-SUM to triangle listing, what makes
the constructed triangle instance have many 4-cycles?

It turns out that the number of 4-cycles in the triangle instance is controlled by
the number of solutions to the equation 𝑎1 + 𝑎2 = 𝑎3 + 𝑎4, where 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ 𝐴,
in the 3-SUM instance 𝐴. In the additive combinatorics literature this quantity
is commonly referred to as the additive energy 𝐸(𝐴) of 𝐴. Note that 𝐸(𝐴) ranges
from 𝑛2 (as there are at least 𝑛2 trivial solutions with 𝑎1 = 𝑎3 and 𝑎2 = 𝑎4) to 𝑛3

(as any fixed values 𝑎1, 𝑎2, 𝑎3 uniquely determine 𝑎4). A set with additive energy
close to 𝑛2 is considered unstructured—for instance a random set has expected
energy 𝑂(𝑛2). A set with energy close to 𝑛3 is considered structured—examples
include intervals and arithmetic progressions.

In summary: To obtain a triangle listing instance containing few 4-cycles, we
have to start from a 3-SUM instance with very small additive energy 𝐸(𝐴) (in Sec-
tion 5.5 we prove this statement in detail).

103

5.1.2 Energy Reduction for 3-SUM

We manage to show a self-reduction for 3-SUM which reduces the energy down
to 𝑂(𝑛2). We will refer to this type of reduction as an energy reduction for 3-SUM.
Our outline for the energy reduction is as follows: First, we reduce the additive
energy by a tiny bit, say to 𝑛2.9999, using several tools from additive combinatorics.
Second, we apply a randomized 3-SUM self-reduction (which can be seen as an
efficient way of subsampling the instance) to amplify the tiny improvement to an
arbitrarily large improvement. We will now describe both steps in more detail.

First Step: Energy Reduction via Additive Combinatorics. The precise result we
obtain in this step is as follows. Here, and in fact throughout the whole paper,
we will set 𝐾 = 𝑛0.0001. Moreover, throughout let the group 𝐺 be either 𝐺 = Z or
𝐺 = F𝑑𝑝.

Lemma 5.2 (Energy Reduction via Additive Combinatorics). Let 𝐾 ≥ 1. There is
a fine-grained reduction from a 3-SUM instance 𝐴 of size 𝑛 to an equivalent 3-SUM
instance 𝐴∗ ⊆ 𝐴, where 𝐸(𝐴∗) ≤ |𝐴∗ |3/𝐾 . The reduction runs in time 𝑂(𝐾314𝑛7/4).

A key ingredient for this step is the seminal Balog-Szemerédi-Gowers theorem
(in short: the BSG theorem). Intuitively, the theorem states that every set 𝐴 with
large additive energy 𝐸(𝐴) must contain a large subset 𝐴′ which behaves like an
interval or an arithmetic progression in the sense that its sumset 𝐴+𝐴 = {𝑎1 + 𝑎2 :
𝑎1, 𝑎2 ∈ 𝐴} has very small size (we also say that 𝐴has small doubling). The theorem
can be formally stated as follows:

Theorem 5.3 (Balog-Szemerédi-Gowers). Let 𝐴 ⊆ 𝐺. If 𝐸(𝐴) ≥ |𝐴|3/𝐾 , then there
is a subset 𝐴′ ⊆ 𝐴 such that

|𝐴′ | ≥ Ω(𝐾−2 |𝐴|), and
|𝐴′ + 𝐴′ | ≤ 𝑂(𝐾24 |𝐴|).

Moreover, we can compute 𝐴′ in time 𝑂(𝐾12 |𝐴|) by a randomized algorithm.

The existential part of the theorem (without the claimed running time bounds)
was originally proved by Balog and Szemerédi [30] and Gowers [114]. The efficient
algorithm to compute 𝐴′ was later devised by Chan and Lewenstein [71] based on
a proof of the BSG theorem which was independently discovered by Balog [29] and
Sudakov, Szemerédi and Vu [195].

The BSG theorem suggests the following algorithmic idea: As long as 𝐴 has
large additive energy, apply the BSG theorem to extract a highly structured
subset 𝐴′ ⊆ 𝐴, and efficiently solve 3-SUM on that set. More specifically, we
have to solve the trichromatic 3-SUM instance (𝐴′, 𝐴, 𝐴), where we can assume
that |𝐴′ + 𝐴′ | ≤ 𝑂(𝐾24 |𝐴|) ≤ 𝑂(𝐾26 |𝐴′ |). Indeed, either there exists a solution con-
tained in 𝐴 \ 𝐴′ in which case we can simply discard 𝐴′, or part of the 3-SUM
solution is contained in 𝐴′ in which case this will be a valid solution in (𝐴′, 𝐴, 𝐴).
One can prove that after at most 𝑂(𝐾) extractions, we have either found a 3-SUM
solution or the remaining set has small additive energy as required.

It remains to solve the 3-SUM instances (𝐴′, 𝐴, 𝐴). There are some known re-
sults about structured 3-SUM instances: For instance, using sparse convolution
algorithms we can solve 3-SUM instances (𝐴, 𝐵, 𝐶) in subquadratic time when-
ever 𝐴 + 𝐵 has subquadratic size. Another result by Chan and Lewenstein [71]
is that 3-SUM admits subquadratic-time algorithms whenever one of the sets is
clustered, that is, if it can be covered by a subquadratic number of size-𝑛 intervals.
Unfortunately, neither of these algorithms can be applied in our context and to the
best of our knowledge no algorithm is known for the case when one of the input
sets has small doubling. It is one of our key technical contributions to design an
algorithm for this problem:

104

Theorem 5.4 (3-SUM for Structured Inputs). Let (𝐴, 𝐵, 𝐶) be a 3-SUM instance of
size 𝑛 with 𝐴, 𝐵, 𝐶 ⊆ 𝐺 and |𝐴 + 𝐴| ≤ 𝐾 |𝐴|. Then we can solve (𝐴, 𝐵, 𝐶) in time
𝑂(𝐾12𝑛7/4).

We omit the description of this algorithm for now and continue with the en-
ergy reduction. Later in the overview, in Section 5.1.3, we give the main ideas and
in Section 5.3 we provide the detailed proof of Theorem 5.4.

Second Step: Amplification via Hashing. In the previous step we have reduced
a worst-case 3-SUM instance to another instance with a tiny improvement in ad-
ditive energy. In this step, we will amplify this improvement by means of the fol-
lowing reduction:

Lemma 5.5 (Energy Reduction via Hashing). Let 𝐾 ≥ 1. There is a fine-grained
reduction from a 3-SUM instance 𝐴 with 𝐸(𝐴) ≤ |𝐴|3/𝐾 to 𝑔 = 𝑂(|𝐴|2/𝐾2) 3-SUM
instances 𝐴1, . . . , 𝐴𝑔 of size 𝑂(𝐾) and with expected energy E(𝐸(𝐴𝑖)) ≤ 𝑂(𝐾2). The
reduction runs in time 𝑂(|𝐴|2/𝐾).

The rough idea behind Lemma 5.5 is to create many randomly subsampled
instances from 𝐴. An efficient way to implement such a self-reduction is to not
subsample 𝐴 uniformly, but instead make use of linear hashing. This general idea
is not new and has appeared several times before in the context of 3-SUM [32, 172,
143, 70], but we have to pay closer attention than usual in order to analyze the
additive energy.

We describe the simplified idea, glimpsing over several problems: Sample a
linear hash ℎ to 𝑚 buckets and create the instance 𝐵 = {𝑎 ∈ 𝐴∗ : ℎ(𝑎) = 0}. Here,
linear means that ℎ satisfies the condition ℎ(𝑎) + ℎ(𝑏) = ℎ(𝑎 + 𝑏) for all inputs 𝑎, 𝑏.
What is the probability that a fixed 3-SUM solution 𝑎 + 𝑏 + 𝑐 = 0 survives? The
probability is at least 1/𝑚2, since 1/𝑚2 is the probability that ℎ(𝑎) = ℎ(𝑏) = 0,
which entails that also ℎ(𝑐) = 0 by the linearity of the hash function. This means
that we have to repeat this reduction Ω̃(𝑚2) times until a 3-SUM solution survives.

In contrast, what is the probability that a 4-tuple satisfying 𝑎1 + 𝑎2 = 𝑎3 + 𝑎4
survives? By the same linearity argument, we can only use the randomness for
three of the four variables as the hash value of the remaining variable is fixed. We
therefore expect each solution to survive with probability 1/𝑚3. Since this proba-
bility is smaller by a factor𝑚 compared to the survival probability of a 3-SUM solu-
tion, only a 1/𝑚-fraction of solutions 𝑎1 + 𝑎2 = 𝑎3 + 𝑎4 survives and appears in one
the small instances. In particular, by setting𝑚 = 𝑛/𝐾 we create 𝑛2/𝐾2 instances of
size 𝑛/𝑚 = 𝐾 and with additive energy bounded by 𝐸(𝐴)/𝑚3 ≤ (𝑛/𝑚)3/𝐾 = 𝐾2.

However, there is a serious issue with this approach: In order to argue that
each solution to the equation 𝑎1 + 𝑎2 = 𝑎3 + 𝑎4 survives with probability at
most 1/𝑚3 we have assumed that three elements, say, 𝑎1, 𝑎2 and 𝑎3, are hashed
independently. Unfortunately there are no hash functions which are linear and 3-
wise independent at the same time. We will ignore this issue for now, and explain
later in Section 5.1.4 how to overcome this challenge.

By combining both steps of the energy reduction, we obtain the following the-
orem:

Theorem 5.6 (Energy Reduction). For any 𝜖, 𝛿 > 0, there is no 𝑂(𝑛2−𝜖)-time algo-
rithm solving the 3-SUM problem on instances 𝐴 with size 𝑛 and additive energy
𝐸(𝐴) ≤ 𝑂(|𝐴|2+𝛿), unless the 3-SUM conjecture fails.

Comparison to Abboud, Bringmann, Khoury and Zamir [4]. We remark that our
approach for an energy reduction is conceptually similar to the work of Abboud,
Bringmann, Khoury and Zamir [4]: Their goal was also to reduce the number of
4-cycles in a triangle instance. They achieved this by first reducing the number
of 4-cycles by a little bit (by identifying and removing dense pieces in the graph,
which contain many 4-cycles), and then subsample the remaining instance to am-
plify the 4-cycle reduction. In contrast to our setting, working on the triangle in-

105

stances directly has the disadvantage that sparse triangle problems are not known
to admit efficient self-reductions. As a result, their subsampling step is lossy and
leads to non-matching lower bounds.

This completes the description of the energy reduction. In the following sub-
sections we describe what we left out in the previous overview—how to efficiently
solve 3-SUM for structured inputs and how to deal with the hashing issue.

5.1.3 3-SUM for Structured Inputs

In this section we describe a subquadratic-time algorithm for 3-SUM instances
(𝐴, 𝐵, 𝐶) in which the set 𝐴 has doubling |𝐴+𝐴| ≤ 𝐾 |𝐴|. We first describe a simple
toy algorithm to build some intuition.

Warm-Up: 𝑨 Is Contained in an Interval. We give a simple algorithm that works
whenever 𝐴 is contained in a small interval, say 𝐼 = [10𝑛] (this is indeed an exam-
ple of a set with small doubling). Our approach is to cover 𝐵 and 𝐶 by translates
of 𝐼 . That is, we split 𝐵 into a collection of disjoint subsets 𝐵1, . . . , 𝐵ℓ each of which
is obtained by intersecting 𝐵 with a translate of 𝐼 . Note that we need at most |𝐵|
translates to cover the full set 𝐵. We similarly cover𝐶 by disjoint subsets𝐶1, . . . , 𝐶𝑚.
The insight is that 𝐴 + 𝐵𝑖 is contained in an interval of size 20𝑛. Therefore if there
is a 3-SUM solution (𝑎, 𝑏, 𝑐) ∈ 𝐴 × 𝐵 × 𝐶 with 𝑏 ∈ 𝐵𝑖 , there are at most three sets 𝐶 𝑗
which could possibly contain 𝑐. Calling a pair (𝑖, 𝑗) relevant if there could possibly
be a 3-SUM solution in 𝐴 × 𝐵𝑖 × 𝐶 𝑗 , we have argued that the number of relevant
pairs is at most 𝑂(𝑛).

We iterate over all relevant pairs (𝑖, 𝑗), and use a heavy-light approach: If both
sets 𝐵𝑖 and 𝐶 𝑗 have size at most 𝑛1/3, then we brute-force over all (𝑏, 𝑐) ∈ 𝐵𝑖 × 𝐶 𝑗
and test whether they constitute a 3-SUM solution. Otherwise, we compute 𝐵𝑖 +𝐶 𝑗
using FFT, and test for each element in the sumset whether it is part of a 3-SUM
solution with 𝐴. The total time of the light case is bounded by 𝑂(𝑛) (the number
of relevant pairs) times 𝑂(𝑛2/3) (the number of pairs (𝑏, 𝑐) we explicitly test). The
total time of the heavy case is bounded by𝑂(𝑛2/3) (there can be at most that many
relevant pairs 𝑖, 𝑗 for which either 𝐵𝑖 or 𝐶 𝑗 has size larger than 𝑛1/3) times 𝑂(𝑛)
(running FFT on sets of universe size 20𝑛). The total time is 𝑂(𝑛5/3), which is sub-
quadratic.

The take-away message is that when we know that 𝐴 is contained in a small
interval, we can benefit from the structure by pruning the search space in 𝐵 × 𝐶
(i.e., we do not compare every element in 𝐵 to every element in 𝐶). The question
is: What is the appropriate generalization of an interval?

Full Algorithm: 𝑨 Is Contained in an Approximate Group. For us, the appro-
priate generalization are approximate groups. A set 𝐻 is a 𝐾-approximate group
if (i) 𝐻 = −𝐻 and (ii) 𝐻 + 𝐻 can be covered by at most 𝐾 translates of 𝐻 . The
key ingredient to our algorithm is yet another result from additive combinatorics:
Ruzsa’s covering lemma. More specifically, we exploit the following consequence
of Ruzsa’s covering lemma which states that any set with small doubling can be
covered by a small approximate group.

Lemma 5.7 (Covering by Approximate Groups). Let 𝐴 ⊆ 𝐺 be a set with |𝐴 + 𝐴| ≤
𝐾 |𝐴|. Then there is a set 𝐻 ⊆ 𝐺 with the following properties:

|𝐻 | ≤ 𝐾2 |𝐴|,
𝐻 is a 𝐾5-approximate group, that is, there is some set 𝑋 ⊆ 𝐺 of size |𝑋 | ≤ 𝐾5

such that 𝐻 = −𝐻 and 𝐻 + 𝐻 ⊆ 𝐻 + 𝑋 , and
there is some 𝑎0 ∈ 𝐴 such that 𝐴 − 𝑎0 ⊆ 𝐻 .

Moreover, we can compute 𝐻 , 𝑋 and 𝑎0 in time 𝑂(𝐾12 |𝐴|).

106

The existential result is well-known in additive combinatorics (see for instance
the book by Tao and Vu [196]), but for our purposes it is also important to have
an efficient algorithm to compute 𝐻 . We derive an algorithm based on computing
sparse convolutions, see the proof in Section 5.2.

For our 3-SUM algorithm, thanks to Lemma 5.7 we can assume that 𝐴 is con-
tained in (a translate of) a small approximate group 𝐻 . We mimic the warm-up
algorithm with the same idea: Cover 𝐵 and 𝐶 by translates of 𝐻 , say 𝐵1, . . . , 𝐵ℓ
and 𝐶1, . . . , 𝐶𝑚. For each set 𝐵𝑖 , there are only few sets 𝐶 𝑗 which are candidates
to contain a 3-SUM solution, namely at most 𝐾5 many. Therefore, we can apply
a similar heavy-light approach as outlined before, and either enumerate all pairs
in 𝐵𝑖×𝐶 𝑗 if both sets are sparse, or efficiently compute 𝐵𝑖+𝐶 𝑗 using a sparse sumset
algorithm (in place of FFT) if one of the sets is dense.

An additional difficulty is that we cannot simply cover 𝐵 and 𝐶 by translates
of 𝐻 in linear time. (For intervals this is easy, but we have no information about 𝐻
other than that is an approximate group.) We therefore sample a set 𝑆 of random
shifts and attempt to cover 𝐵 by the sets 𝐵 ∩ (𝐻 + 𝑠) for 𝑠 ∈ 𝑆 (similarly for 𝐶).
However, computing the sets 𝐵∩(𝐻+𝑠) is not easy (in fact, this is again an instance
of 3-SUM). We deal with this new obstacle by combining the above algorithm with
a universe reduction to a universe of subquadratic size. The detailed proof can be
found in Section 5.3.

We remark that we have not attempted to improve the dependence on 𝐾 as
it is immaterial for our reduction. It is likely possible to drastically reduce the 𝐾
term in the running time of Theorem 5.4.

5.1.4 Hashing—Additive and Independent?

A major technical issue that we are facing in the energy reduction (and in fact also
in the reduction from 3-SUM to listing triangles) is that we need hash functions
which are both additive and sufficiently independent. More specifically, recall that
we hash a given 3-SUM instance 𝐴 to a smaller instance 𝐵 = {𝑎 ∈ 𝐴 : ℎ(𝑎) = 0}
hoping that thereby the number of solutions to the equation 𝑎1 + 𝑎2 = 𝑎3 + 𝑎4
reduces by a factor of 1/𝑚3, where 𝑚 is the number of buckets ℎ hashes to. By the
reasons outlined before, the hash function must be additive.

Recall from the collection of (almost-)additive hash functions in Section 2.2.1
that there is no family of hash functions satisfying both properties simultaneously—
in fact, this it is simply impossible that ℎ(𝑎1), ℎ(𝑎2), ℎ(𝑎3) are always independent
for an additive hash function. For example, ℎ(1), ℎ(2) and ℎ(5) cannot be inde-
pendent, since the latter can be expressed as ℎ(1 + 2 + 2) = ℎ(1) + ℎ(2) + ℎ(2).
This is similarly true for almost-additive hash functions such as “linear hashing”.
As outlined in Section 4.8, Knudsen proved that linear hashing is almost 3-wise
independent [139] but the independence guarantees are not strong enough for
our purposes here.

We propose the following solution: Instead of working over the integers,
we instead work over the group 𝐺 = F𝑑𝑝 for some constant (or slightly super-
constant) 𝑝. All the tools from additive combinatorics mentioned before work just
as well over F𝑑𝑝, we can compute sparse convolutions over F𝑑𝑝 (see Theorem 2.24)
and also from the perspective of fine-grained complexity, the 3-SUM problem over
the integers reduces to the 3-SUM problem over F𝑑𝑝:

Lemma 5.8 (Integer 3-SUM to Vector 3-SUM, [8]). For any 𝜖 > 0, there is some
prime 𝑝 such there is no 𝑂(𝑛2−𝜖)-time algorithm for 3-SUM over F𝑑𝑝 (with 𝑑 =

𝑂(log 𝑛)), unless the 3-SUM conjecture fails.

Working over finite field vector spaces F𝑑𝑝 has the advantage that we have
access to a nicer family of hash functions: Projections to random subspaces via
random linear maps ℎ : F𝑑𝑝 → F𝑑′𝑝 . For this family of hash functions, we can eas-
ily characterize the degree of independence: The hash values ℎ(𝑎1), ℎ(𝑎2), ℎ(𝑎3)

107

36 A Sidon set is a set with
maximum possible additive
energy, that is, a set without
any nontrivial solution to the
equation 𝑎1 + 𝑎2 = 𝑎3 + 𝑎4.

are independent if and only if 𝑎1, 𝑎2, 𝑎3 are linearly independent vectors. Of
course the same counterexamples as above still apply, however, the number
of bad triples 𝑎1, 𝑎2, 𝑎3 ∈ 𝐴 is now very small: For each 𝑎1 ∈ 𝐴, there are
only 𝑝 = 𝑂(1) vectors 𝑎2 which are linearly dependent on 𝑎1, and similarly
there are only 𝑝2 = 𝑂(1) vectors 𝑎3 which are linearly dependent on 𝑎1, 𝑎2. This
kind of reasoning is a recurring theme in several of our proofs (see Lemma 5.5
and Theorem 5.1).

5.2 Background on Additive Combinatorics

Additive combinatorics is the theory of additive structure in sets. In this section
we summarize the basics from additive combinatorics which are needed through-
out the paper. For a more thorough treatment, we refer to the book by Tao and
Vu [196]. In contrast to the classical theory, however, we need many of the tools to
work as efficient algorithms.

5.2.1 Sumsets

Let𝐺 be an additive group, and let 𝐴, 𝐵 ⊆ 𝐺. Recall that the sumset 𝐴+𝐵 is defined
as {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. We write 𝑟𝐴,𝐵 (𝑥) = #{(𝑎, 𝑏) ∈ 𝐴 × 𝐵 : 𝑎 + 𝑏 = 𝑥} to denote
the multiplicities in the sumset. In Chapter 2 we have proven that we can compute
sumsets 𝐴+𝐵 along with the multiplicities 𝑟𝐴,𝐵 in input- plus output-sensitive time
over the integers 𝐺 = Z (Theorem 2.13) or over finite-field vector spaces 𝐺 = F𝑑𝑝
(Theorem 2.24).

5.2.2 Additive Energy

An important definition for us is the additive energy 𝐸(𝐴), defined as the number
of solutions (𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ 𝐴4 to the equation 𝑎1 + 𝑎2 = 𝑎3 + 𝑎4. An equivalent
definition is that 𝐸(𝐴) = ∑

𝑥∈𝐺 𝑟𝐴,𝐴 (𝑥)2. Intuitively, the additive energy measures
how structured a set 𝐴 behaves with respect to addition. Consider two extremes:
For very structured sets 𝐴 such as intervals or arithmetic progressions, we expect
small additive energy 𝐸(𝐴) ≈ |𝐴|2, whereas for very unstructured sets such as
(pseudo-)random sets or Sidon36 sets we expect additive energy 𝐸(𝐴) ≈ |𝐴|3. The
following lemma proves these quantitative bounds:

Lemma 5.9 (Basic Bounds for Additive Energy). Let 𝐴, 𝐵 ⊆ 𝐺. Then:

|𝐴|2 ≤ |𝐴|4
|𝐴 + 𝐴| ≤ 𝐸(𝐴) ≤ |𝐴|

3.

Proof. The first inequality is obvious, and the last inequality is also easy seeing
that any choice of 𝑎1, 𝑎2, 𝑎3 uniquely determines 𝑎4. For the second inequality,
note that by the Cauchy-Schwartz inequality we have

|𝐴|2 =
∑︁

𝑥∈𝐴+𝐴
𝑟𝐴,𝐴 (𝑥) ≤

√︄ ∑︁
𝑥∈𝐴+𝐴

1
√︄ ∑︁
𝑥∈𝐴+𝐴

𝑟𝐴,𝐴 (𝑥)2 =
√︁
|𝐴 + 𝐴| · 𝐸(𝐴).

From a computational perspective we often need to compute the additive en-
ergy. Using the identity 𝐸(𝐴) = ∑

𝑥∈𝐺 𝑟𝐴,𝐴 (𝑥)2, and using the efficient algorithms to
compute 𝑟𝐴,𝐴 (𝑥) in Theorems 2.13 and 2.24 we can compute 𝐸(𝐴) in time𝑂(|𝐴+𝐴|).
However, for unstructured sets this becomes quadratic in the size of 𝐴 which is
prohibitive in most cases. Therefore, we typically settle for the following approx-
imation algorithm for 𝐸(𝐴).

Lemma 5.10 (Approximating Additive Energy). Let 𝐴 ⊆ 𝐺. For any constant 𝜖 > 0,
we can compute a (1 + 𝜖)-approximation of 𝐸(𝐴) in time 𝑂(|𝐴|) by a randomized
algorithm.

108

Proof. Sample 𝑅 = 100𝜖−2 |𝐴| log |𝐴| triples 𝑎1, 𝑎2, 𝑎3 ∈ 𝐴, and test for each triple
whether 𝑎1 + 𝑎2 − 𝑎3 ∈ 𝐴. Return as an estimate |𝐴|3/𝑅 times the number of
successful tests.

For the analysis, let 𝑋𝑖 be the random variable indicating whether the 𝑖-th test
was successful, and let 𝑋 =

∑𝑅
𝑖=1 𝑋𝑖 . We have that P(𝑋𝑖 = 1) = 𝐸(𝐴)/|𝐴|3, and

therefore E(𝑋) = 𝑅 · 𝐸(𝐴)/|𝐴|3. In other words, our estimator is indeed unbiased.
To prove that it returns an accurate estimate with high probability, we apply Cher-
noff’s bound:

P
(����𝑋 · |𝐴|3𝑅 − 𝐸(𝐴)

���� ≥ 𝜖𝐸(𝐴)) = P
(����𝑋 − 𝑅 · 𝐸(𝐴)|𝐴|3

���� ≥ 𝜖𝑅 · 𝐸(𝐴)|𝐴|3

)
≤ 2 exp

(
−𝜖2 𝑅 · 𝐸(𝐴)

3|𝐴|3

)
≤ 2 exp

(
−𝜖2 100𝜖−2 |𝐴| log |𝐴| · |𝐴|2

3|𝐴|3

)
≤ |𝐴|−10.

Most of the time we will apply Lemma 5.10 and pretend that the output
is perfect without paying too much attention to the approximation error. In
all occurrences in this chapter, one can easily replace the bound by, say, a 1.1-
approximation and still get the correct algorithms.

5.2.3 Fourier Analysis

A useful application of additive energy is that it offers some control over the num-
ber of solutions to any linear equation (not only 𝑎1 + 𝑎2 = 𝑎3 + 𝑎4):

Lemma 5.11 (Low Energy Means Few Solutions to Linear Equations). Let 𝐴 ⊆ F𝑑𝑝.
For any 𝑘 ≥ 4 and 𝛼1, . . . , 𝛼𝑘 ∈ F𝑝 with 𝛼1, . . . , 𝛼𝑘 ≠ 0 we have that:

#{(𝑎1, . . . , 𝑎𝑘) ∈ 𝐴𝑘 : 𝛼1𝑎1 + · · · + 𝛼𝑘𝑎𝑘 = 𝛽} ≤ 𝐸(𝐴) · |𝐴|𝑘−4.

We remark that this lemma implies the same statement over the integers by
setting 𝑑 = 1 and setting 𝑝 to be a sufficiently large prime 𝑝. For the proof of this
lemma we need some more background on Fourier analysis.

Definition 5.12 (Fourier Transform). For any complex-valued function 𝑓 : F𝑑𝑝 → C,
we define its Fourier transform 𝑓̂ : F𝑑𝑝 → C via

𝑓̂ (𝜉) =
∑︁
𝑥∈𝐺

𝑓 (𝑥) · 𝑒(𝑥, 𝜉),

where

𝑒(𝑥, 𝜉) = exp

(
2𝜋𝑖
𝑝
·

𝑑∑︁
𝑖=1

𝑥𝑖 · 𝜉𝑖

)
.

For a set 𝐴 ⊆ F𝑑𝑝, let 1𝐴 : F𝑑𝑝 → {0, 1} denote the indicator function of 𝐴. We
need the following lemma:

Lemma 5.13 (Counting Solutions to Linear Equations). Let 𝐴 ⊆ F𝑑𝑝. For any 𝑘 ≥ 1
and 𝛼1, . . . , 𝛼𝑘 ∈ F𝑝 we have that:

#{(𝑎1, . . . , 𝑎𝑘) ∈ 𝐴𝑘 : 𝛼1𝑎1 + · · · + 𝛼𝑘𝑎𝑘 = 0} = 1
𝑝𝑑

∑︁
𝜉∈F𝑑𝑝

1̂𝐴 (𝛼1𝜉) · . . . · 1̂𝐴 (𝛼𝑘𝜉).

Proof. The proof is a simple calculation. We express the number of solutions
(𝑎1, . . . , 𝑎𝑘) ∈ 𝐴𝑘 satisfying 𝛼1𝑎1 + · · · + 𝛼𝑘𝑎𝑘 = 0 as∑︁

𝑎1 ,...,𝑎𝑘∈F𝑑𝑝

1𝐴 (𝑎1) · . . . · 1𝐴 (𝑎𝑘) · I(𝛼1𝑎𝑘 + · · · + 𝛼𝑘𝑎𝑘 = 0),

109

where I(·) ∈ {0, 1} denotes the truth value of the parenthesized expression. We
use the following simple claim:

∑
𝜉∈F𝑑𝑝 𝑒(𝑥, 𝜉) = 𝑝𝑑 · I(𝑥 = 0), for any fixed 𝑥 ∈ F𝑑𝑝.

Therefore:

=
∑︁

𝑎1 ,...,𝑎𝑘∈F𝑑𝑝

1𝐴 (𝑎1) · . . . · 1𝐴 (𝑎𝑘) ·
1
𝑝𝑑

∑︁
𝜉∈F𝑑𝑝

𝑒(𝛼1𝑎𝑘 + · · · + 𝛼𝑘𝑎𝑘 , 𝜉)

=
1
𝑝𝑑

∑︁
𝜉∈F𝑑𝑝

(∑︁
𝑎1∈𝐴

1𝐴 (𝑎1) · 𝑒(𝛼1𝑎1, 𝜉)
)
· . . . ·

(∑︁
𝑎𝑘∈𝐴

1𝐴 (𝑎𝑘) · 𝑒(𝛼𝑘𝑎𝑘 , 𝜉)
)

=
1
𝑝𝑑

∑︁
𝜉∈F𝑑𝑝

(∑︁
𝑎1∈𝐴

1𝐴 (𝑎1) · 𝑒(𝑎1, 𝛼1𝜉)
)
· . . . ·

(∑︁
𝑎𝑘∈𝐴

1𝐴 (𝑎𝑘) · 𝑒(𝑎𝑘 , 𝛼𝑘𝜉)
)

=
1
𝑝𝑑

∑︁
𝜉∈F𝑑𝑝

1̂𝐴 (𝛼1𝜉) · . . . · 1̂𝐴 (𝛼𝑘𝜉).

Proof of Lemma 5.11. By the previous Lemma 5.13, we can express the additive
energy as

𝐸(𝐴) = 1
𝑝𝑑

∑︁
𝜉∈F𝑑𝑝

1̂𝐴 (𝜉) · 1̂𝐴 (𝜉) · 1̂𝐴 (−𝜉) · 1̂𝐴 (−𝜉)

=
1
𝑝𝑑

∑︁
𝜉∈F𝑑𝑝

1̂𝐴 (𝜉)2 · 1̂𝐴 (𝜉)
2
=

1
𝑝𝑑

∑︁
𝜉∈F𝑑𝑝

|̂1𝐴 (𝜉) |4.

By another application of Lemma 5.13, the number of solutions (𝑎1, . . . , 𝑎𝑘) ∈ 𝐴𝑘
satisfying 𝛼1𝑎1 + · · · + 𝛼𝑘𝑎𝑘 = 0 is

1
𝑝𝑑

∑︁
𝜉∈F𝑑𝑝

1̂𝐴 (𝛼1𝜉) · . . . · 1̂𝐴 (𝛼𝑘𝜉),

which, by repeated applications of the Cauchy-Schwartz inequality can be upper
bounded by

≤ 1
𝑝𝑑
·
©­­«
∑︁
𝜉∈F𝑑𝑝

|̂1𝐴 (𝛼1𝜉) |2 · |̂1𝐴 (𝛼2𝜉) |2
ª®®¬

1/2

·
©­­«
∑︁
𝜉∈F𝑑𝑝

|̂1𝐴 (𝛼3𝜉) |2 · . . . · |̂1𝐴 (𝛼𝑘𝜉) |2
ª®®¬

1/2

≤ |𝐴|
𝑘−4

𝑝𝑑
·
©­­«
∑︁
𝜉∈F𝑑𝑝

|̂1𝐴 (𝛼1𝜉) |2 · |̂1𝐴 (𝛼2𝜉) |2
ª®®¬

1/2

·
©­­«
∑︁
𝜉∈F𝑑𝑝

|̂1𝐴 (𝛼3𝜉) |2 · |̂1𝐴 (𝛼4𝜉) |2
ª®®¬

1/2

≤ |𝐴|
𝑘−4

𝑝𝑑
·
©­­«
∑︁
𝜉∈F𝑑𝑝

|̂1𝐴 (𝛼1𝜉) |4
ª®®¬

1/4

·
©­­«
∑︁
𝜉∈F𝑑𝑝

|̂1𝐴 (𝛼2𝜉) |4
ª®®¬

1/4

·
©­­«
∑︁
𝜉∈F𝑑𝑝

|̂1𝐴 (𝛼3𝜉) |4
ª®®¬

1/4

·
©­­«
∑︁
𝜉∈F𝑑𝑝

|̂1𝐴 (𝛼4𝜉) |4
ª®®¬

1/4

Since 𝛼1, 𝛼2, 𝛼3, 𝛼4 ≠ 0, this becomes:

≤ |𝐴|
𝑘−4

𝑝𝑑
·
∑︁
𝜉∈F𝑑𝑝

|̂1𝐴 (𝜉) |4

≤ |𝐴|𝑘−4 · 𝐸(𝐴),

using the previously proved identity for the additive energy 𝐸(𝐴).

110

5.2.4 Plünnecke-Ruzsa Inequality

We often rely on the following inequality due to Plünnecke [174] and Ruzsa [186] to
control the size of iterated sum- and difference sets (see also [196, Corollary 6.29]).
Here, we abbreviate 𝑛𝐵 = 𝐵 + · · · + 𝐵 with 𝑛 terms in the sum.

Lemma 5.14 (Plünnecke-Ruzsa Inequality). Let 𝐴, 𝐵 ⊆ 𝐺. If |𝐴 + 𝐵| ≤ 𝐾 |𝐴|, then
|𝑛𝐵 −𝑚𝐵| ≤ 𝐾𝑛+𝑚 |𝐴| for all nonnegative integers 𝑛, 𝑚.

Most of the time we will apply this lemma with 𝐴 = 𝐵,in which case the in-
equality is more commonly known as just Plünnecke’s inequality.

5.2.5 Ruzsa’s Covering Lemma

Next, we present Ruzsa’s covering lemma [186] and the relevant consequence that
sets with small doubling can be covered by small approximate groups. We provide
proofs because—even though the existential results are well-known—there has
been no work on turning the results into efficient algorithms, to the best of our
knowledge. As before, let 𝐺 = Z or 𝐺 = F𝑑𝑝 with polylogarithmic 𝑝, 𝑑.

Lemma 5.15 (Ruzsa’s Covering Lemma). Let 𝐴, 𝐵 ⊆ 𝐺. Then there is a subset 𝑋 ⊆ 𝐵
with the following properties:

𝐵 ⊆ 𝐴 − 𝐴 + 𝑋 ,
|𝑋 | ≤ |𝐴+𝐵 ||𝐴 | .

Moreover, we can compute 𝑋 in time 𝑂(|𝐴−𝐴+𝐵 | · |𝐴+𝐵 ||𝐴 |) ≤ 𝑂(|𝐴−𝐴+𝐵 |
2

|𝐴 |).

Proof. We start with a recap of the well-known existential proof. The proof is
already algorithmic: We initialize the set 𝑋 ← ∅. While there exists some 𝑏 ∈ 𝐵
such that 𝐴 + 𝑏 is disjoint from 𝐴 + 𝑋 , add 𝑏 to 𝑋 .

We prove that after the algorithm has terminated, 𝑋 is as desired. Indeed,
after the algorithm has terminated, the sets 𝐴+𝑏 and 𝐴+𝑋 are not disjoint for any
𝑏 ∈ 𝐵. Or equivalently, 𝑏 ∈ 𝐴−𝐴+𝑋 . Moreover, note that the size of 𝐴+𝑋 increases
by |𝐴| with every step of the algorithm and that ultimately |𝐴 + 𝑋 | ≤ |𝐴 + 𝐵|. It
follows that the algorithm runs for at most |𝐴+𝐵 ||𝐴 | iterations. Since each iteration
adds exactly one element to 𝑋 , we obtain the claimed size bound |𝑋 | ≤ |𝐴+𝐵 ||𝐴 | .

While this proof is already algorithmic, it is a priori not clear how to efficiently
find 𝑏. Our approach is as follows: Compute the sets𝐶 ← (𝐴+𝐵)\ (𝐴+𝑋) and𝐶−𝐴,
and additionally compute the multiplicities 𝑟𝐶,−𝐴 (𝑥) for all 𝑥 ∈ 𝐶 − 𝐴. We now
take any 𝑏 ∈ 𝐵 satisfying 𝑟𝐶,−𝐴 (𝑏) = |𝐴|, and if no such 𝑏 exists we terminate the
algorithm. Recall that 𝑟𝐶,−𝐴 (𝑏) is equal to the number of witnesses (𝑐, 𝑎) ∈ 𝐶 × 𝐴
with 𝑎 + 𝑏 = 𝑐. There are |𝐴| such witnesses (the maximum number) if and only
if 𝐴 + 𝑏 ⊆ 𝐶. By the way we assigned 𝐶, this in turn is equivalent to the desired
condition that 𝐴 + 𝑏 is disjoint from 𝐴 + 𝑋 .

It remains to analyze the running time of this algorithm. Finding a single 𝑏
amounts to computing the sets𝐶 ⊆ 𝐴+𝐵 and𝐶−𝐴 ⊆ 𝐴−𝐴+𝐵. Using Theorems 2.13
and 2.24 we can compute both sets in output-sensitive time𝑂(|𝐴−𝐴+𝐵|) along with
the multiplicities 𝑟𝐶,−𝐴. Finally, recall that the algorithm runs for a total of |𝐴+𝐵 ||𝐴 |
iterations. The claimed time bound follows.

Lemma 5.7 (Covering by Approximate Groups). Let 𝐴 ⊆ 𝐺 be a set with |𝐴 + 𝐴| ≤
𝐾 |𝐴|. Then there is a set 𝐻 ⊆ 𝐺 with the following properties:

|𝐻 | ≤ 𝐾2 |𝐴|,
𝐻 is a 𝐾5-approximate group, that is, there is some set 𝑋 ⊆ 𝐺 of size |𝑋 | ≤ 𝐾5

such that 𝐻 = −𝐻 and 𝐻 + 𝐻 ⊆ 𝐻 + 𝑋 , and
there is some 𝑎0 ∈ 𝐴 such that 𝐴 − 𝑎0 ⊆ 𝐻 .

Moreover, we can compute 𝐻 , 𝑋 and 𝑎0 in time 𝑂(𝐾12 |𝐴|).

111

Proof. We first apply Ruzsa’s covering lemma with 𝐴 and 𝐵 = 2𝐴−2𝐴. We thereby
obtain a subset 𝑋 ⊆ 2𝐴 − 2𝐴 which satisfies that 𝐵 ⊆ 𝐴 − 𝐴 + 𝑋 . By choosing 𝐻 =

𝐴−𝐴, we have that 𝐻 +𝐻 = 𝐵 ⊆ 𝐴−𝐴+𝑋 = 𝐻 +𝑋 . Ruzsa’ covering lemma further
guarantees that

|𝑋 | ≤ |𝐴 + 𝐵||𝐴| =
|3𝐴 − 2𝐴|
|𝐴| ≤ 𝐾5 |𝐴|

|𝐴| = 𝐾5,

where for the latter inequality we have applied Plünnecke’s inequality. Therefore,
𝐻 satisfies the second property. The first property is easy by another application
of Plünnecke’s inequality. For the third property take an arbitrary 𝑎0 ∈ 𝐴. Then
by definition 𝐴 − 𝑎0 ⊆ 𝐴 − 𝐴 = 𝐻 .

The running time to compute 𝐻 and 𝑋 is dominated by the call to Ruzsa’s cov-
ering lemma, which runs in time

𝑂

(
|𝐴 − 𝐴 + 𝐵|2
|𝐴|

)
= 𝑂

(
|3𝐴 − 3𝐴|2
|𝐴|

)
≤ 𝑂(𝐾12 |𝐴|),

where have again used Plünnecke’s inequality.

5.2.6 Balog-Szemerédi-Gowers Theorem

In this subsection we summarize two important results in additive combinatorics
which are crucial ingredients to our algorithms. First, we recall the BSG theorem:

Theorem 5.3 (Balog-Szemerédi-Gowers). Let 𝐴 ⊆ 𝐺. If 𝐸(𝐴) ≥ |𝐴|3/𝐾 , then there
is a subset 𝐴′ ⊆ 𝐴 such that

|𝐴′ | ≥ Ω(𝐾−2 |𝐴|), and
|𝐴′ + 𝐴′ | ≤ 𝑂(𝐾24 |𝐴|).

Moreover, we can compute 𝐴′ in time 𝑂(𝐾12 |𝐴|) by a randomized algorithm.

For an existential proof see for instance [29, Theorem 5]. An efficient algorithm
was later devised by Chan and Lewenstein [71], however, they designed their al-
gorithm for the following two-set version of the theorem:

Theorem 5.16 (Theorem 2.1 and Lemma 7.2 in [71]). Let 𝐴, 𝐵 ⊆ 𝐺 and 𝐸 ⊆ 𝐴 × 𝐵.
Suppose that |𝐴| · |𝐵| = Θ(𝑛)2, |{𝑎 + 𝑏 | (𝑎, 𝑏) ∈ 𝐸}| ≤ 𝑡𝑛, and |𝐸 | ≥ 𝛼𝑛2. Then there
exist subsets 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵 such that:

|𝐴′ + 𝐵′ | ≤ 𝑂((1/𝛼)5𝑡3𝑛) and
|𝐸 ∩ (𝐴′ × 𝐵′) | ≥ Ω(𝛼|𝐴′ | |𝐵|) ≥ Ω(𝛼2𝑛2).

Given 𝐴, 𝐵 and query access to 𝐸, such sets 𝐴′, 𝐵′ can be computed by a randomized
algorithm in time 𝑂((1/𝛼)6 (|𝐴| + |𝐵|)).

Proof of Theorem 5.3. We quickly prove how to derive our version of the BSG
from Chan and Lewenstein’s algorithm. Let 𝐶 ⊆ 𝐴 + 𝐴 be the subset containing all
elements 𝑥 with multiplicity 𝑟𝐴,𝐴 (𝑥) ≥ |𝐴 |2𝐾 . We claim that |𝐶 | has size at least |𝐴 |2𝐾 as
otherwise we would have

𝐸(𝐴) =
∑︁
𝑥∈𝐺

𝑟𝐴,𝐴 (𝑥)2 =
∑︁
𝑥∈𝐺

𝑟𝐴,𝐴 (𝑥)≤ |𝐴 |/2𝐾

𝑟𝐴,𝐴 (𝑥)2 +
∑︁
𝑥∈𝐺

𝑟𝐴,𝐴 (𝑥)> |𝐴 |/2𝐾

𝑟𝐴,𝐴 (𝑥)2

<
|𝐴|
2𝐾
·

∑︁
𝑥∈𝐺

𝑟𝐴,𝐴 (𝑥)≤ |𝐴 |/2𝐾

𝑟𝐴,𝐴 (𝑥) +
|𝐴|
2𝐾
· |𝐴|2 =

|𝐴|3
𝐾

.

Let 𝐶0 ⊆ 𝐶 be an arbitrary subset of size exactly |𝐴 |2𝐾 . We will apply Theorem 5.16
with the bipartite graph with vertex parts 𝐴 and 𝐵 = 𝐴 and edges

𝐸 = {(𝑎, 𝑏) ∈ 𝐴2 : 𝑎 + 𝑏 ∈ 𝐶0}.

112

Since |𝐶0 | = |𝐴 |
2𝐾 and since each element in 𝐶0 contributes at least |𝐴 |2𝐾 edges to the

graph, we conclude that |𝐸 | ≥ |𝐴 |
2

4𝐾2 . We can therefore apply Theorem 5.16 with
parameters 𝑛 = |𝐴| = |𝐵|, 𝛼 = 1

4𝐾2 and 𝑡 = 1. In this way we obtain 𝐴′, 𝐵′ ⊆ 𝐴, and
we claim that the set 𝐴′ is as desired.

We first check that 𝐴′ and 𝐵′ are sufficiently large. Theorem 5.16 immediately
implies that |𝐴′ | · |𝐵′ | ≥ Ω(𝛼|𝐴′ |𝑛) ≥ Ω(𝛼2𝑛2). In particular, it follows that |𝐴′ | ≥
Ω(𝛼𝑛) = Ω(𝐾−2𝑛) and |𝐵′ | ≥ Ω(𝛼𝑛) ≥ Ω(𝐾−2𝑛).

To see that the sumset |𝐴′ + 𝐴′ | is sufficiently small, we first note that the the-
orem implies that |𝐴′ + 𝐵′ | ≤ 𝑂(𝛼−5𝑡3𝑛) = 𝑂(𝐾10𝑛) = 𝑂(𝐾12 |𝐵′ |). We apply the
Plünnecke-Ruzsa inequality (Lemma 5.14 with inputs 𝐴← 𝐵′ and 𝐵← 𝐴′) to con-
clude that |𝐴′ + 𝐴′ | ≤ 𝑂(𝐾24 |𝐵′ |) ≤ 𝑂(𝐾24𝑛). Finally, the running is bounded
by 𝑂(𝐾12 |𝐴|) as claimed.

5.3 3-SUM for Structured Inputs

The purpose of this section is to prove the following theorem. We focus on the
group 𝐺 = F𝑑𝑝, but the theorem holds for 𝐺 = Z as well, using the same proof with
minor modifications (such as substituting an appropriate linear hash function for
integers).

Theorem 5.4 (3-SUM for Structured Inputs). Let (𝐴, 𝐵, 𝐶) be a 3-SUM instance of
size 𝑛 with 𝐴, 𝐵, 𝐶 ⊆ 𝐺 and |𝐴 + 𝐴| ≤ 𝐾 |𝐴|. Then we can solve (𝐴, 𝐵, 𝐶) in time
𝑂(𝐾12𝑛7/4).

Universe Reduction. As the first step, we will hash all sets to a smaller group𝐺′ of
size≪ 𝑛2 via some hash function ℎ : 𝐺 → 𝐺′. Under the hashing we are bound to
introduce several false positives, that is, triples 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶where 𝑎+𝑏+𝑐 ≠ 0
but ℎ(𝑎) +ℎ(𝑏) +ℎ(𝑐) = 0. To deal with these false positives, we have to list several
3-SUM solutions in the smaller group instead of merely determining the existence
of one solution. The following problem definition and lemma make this precise.

Definition 5.17 (3-SUM Listing). Given sets 𝐴, 𝐵, 𝐶 ⊆ 𝐺 and a parameter 𝑡, compute
for each 𝑎 ∈ 𝐴 a list of 𝑡 distinct pairs (𝑏, 𝑐) ∈ 𝐵 × 𝐶 with 𝑎 + 𝑏 + 𝑐 = 0 (or if there
are less than 𝑡 solutions, a list containing all of them).

Lemma 5.18 (Reduction to 3-SUM Listing in Small Groups). Let 𝐺 = F𝑑𝑝, 𝐺′ = F𝑑′𝑝 ,
and let ℎ : 𝐺 → 𝐺′ be a random linear map. There is a fine-grained reduction from
a 3-SUM instance 𝐴, 𝐵, 𝐶 ⊆ 𝐺 to one 3-SUM listing instance ℎ(𝐴), ℎ(𝐵), ℎ(𝐶) ⊆ 𝐺′

(where ℎ(𝐴) = {ℎ(𝑎) : 𝑎 ∈ 𝐴}) with parameter 𝑡 = 𝑂(𝑛2/|𝐺′ |). The reduction runs
in time 𝑂(𝑛𝑡2) and succeeds with constant probability 8

10 .

Proof. Let 𝑡 = 10𝑛2 |𝐺′ |−1. We may assume that |𝐺′ | ≥ 10𝑛, since otherwise we can
simply solve the given instance in time 𝑂(𝑛2) = 𝑂(𝑛𝑡). We precompute a lookup
table to find, given a hash value 𝑎′ ∈ ℎ(𝐴), all 𝑎 ∈ 𝐴 with ℎ(𝑎) = 𝑥 (and similarly
for 𝐵 and 𝐶). Then we run the listing algorithm with parameter 𝑡 on the instance
(ℎ(𝐴), ℎ(𝐵), ℎ(𝐶)), and for every reported solution 𝑎′, 𝑏′, 𝑐′we use the lookup table
to check whether these correspond to some 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 with 𝑎 + 𝑏 + 𝑐 = 0.

It is clear that the reduction cannot report “yes” unless the given 3-SUM in-
stance (𝐴, 𝐵, 𝐶) is a “yes” instance. We argue that the reduction misses a “yes”
instance with probability at most 1

10 . To this end we fix any 𝑎 ∈ 𝐴 which is part
of a 3-SUM solution and prove that with probability at least 9

10 , there are less
than 𝑡 many false positives (𝑏∗, 𝑐∗) ∈ 𝐵 × 𝐶 with ℎ(𝑎) + ℎ(𝑏∗) + ℎ(𝑐∗) = 0. In
this case it follows that the listing algorithm will return at least one proper solu-
tion (ℎ(𝑎), ℎ(𝑏), ℎ(𝑐)) where 𝑎 + 𝑏 + 𝑐 = 0, and we will recover (𝑎, 𝑏, 𝑐) using the
lookup table. And indeed, for any fixed pair (𝑏∗, 𝑐∗) ∈ 𝐵 × 𝐶 with 𝑎 + 𝑏∗ + 𝑐∗ ≠ 0,
we have that ℎ(𝑎) + ℎ(𝑏∗) + ℎ(𝑐∗) = 0 with probability at most |𝐺′ |−1. Hence the
expected number of false positives is |𝐵| · |𝐶 | · |𝐺′ |−1 ≤ 𝑛2 |𝐺′ |−1. By Markov’s in-
equality the number of false positives exceeds 𝑡 = 10𝑛2 |𝐺′ |−1 with probability at
most 1

10 . This completes the correctness argument.

113

Algorithm 5.1. Lists 𝑡 3-SUM solutions for a given instance 𝐴, 𝐵, 𝐶 ⊆ 𝐺 where
|𝐺 | ≤ 𝑂(𝑛2/𝑡) and |𝐴 + 𝐴| ≤ 𝐾 |𝐴| in subquadratic time.

1 Apply Lemma 5.7 on 𝐴 to compute 𝐻 , 𝑋 and 𝑎0
2 Subsample a set 𝑆 ⊆ 𝐺 with rate 100 log 𝑛

|𝐻 |
3 for each 𝑠 ∈ 𝑆, 𝑥 ∈ 𝑋 do
4 Compute the sets 𝐵𝑠 = 𝐵 ∩ (𝐻 + 𝑠) and 𝐶𝑠,𝑥 = 𝐶 ∩ (𝐻 − 𝑠 − 𝑥 − 𝑎0)
5 for each 𝑠 ∈ 𝑆, 𝑥 ∈ 𝑋 do
6 if |𝐵𝑠 | ≤ Δ and |𝐶𝑠,𝑥 | ≤ Δ then
7 List all pairs (𝑏, 𝑐) ∈ 𝐵𝑠 × 𝐶𝑠,𝑥 and whenever 𝑏 + 𝑐 ∈ −𝐴, report the

corresponding 3-SUM solution (−(𝑏 + 𝑐), 𝑏, 𝑐)
8 else
9 Compute the sumset 𝐵𝑠 + 𝐶𝑠,𝑥 using Theorems 2.13 and 2.24 and list 𝑡

witnesses (𝑏, 𝑐) for each 𝑎 ∈ 𝐵𝑠 + 𝐶𝑠,𝑥 using Theorem 2.25
10 for each 𝑎 ∈ (𝐵𝑠 + 𝐶𝑠,𝑥) ∩ −𝐴 do
11 Report the solution (−𝑎, 𝑏, 𝑐) for each witness (𝑏, 𝑐) of 𝑎

Before analyzing the running time, we first analyze the maximum bucket
load 𝐿 of the hashing, i.e., the maximum number of elements in 𝐴 (or similarly
in 𝐵 or 𝐶) hashing to the same value under ℎ. Note that

(𝐿
2
)

is at most the num-
ber of collisions of the hash function (i.e., the number of distinct pairs 𝑎, 𝑎′ ∈ 𝐴
with ℎ(𝑎) = ℎ(𝑎′)), as any two elements in the same bucket cause a collision. For
any fixed 𝑎, 𝑎′ ∈ 𝐴, the collision probability is at most |𝐺′ |−1 and thus the expected
number of collisions is at most 𝑛2 |𝐺′ |−1. Using again Markov’s inequality, the
hashing causes at most 𝑡 = 10𝑛2 |𝐺′ |−1 collisions with probability 9

10 , and in that
case we can bound 𝐿 = 𝑂(𝑡1/2).

We are finally ready to bound the running time. Constructing ℎ(𝐴), ℎ(𝐵), ℎ(𝐶),
the hashing and the lookup table takes linear time. After that, we check all
the 𝑛𝑡 listed solutions. For each solution (𝑥, 𝑦, 𝑧) we have to enumerate all pairs
(𝑎, 𝑏) ∈ 𝐴 × 𝐵 with ℎ(𝑎) = 𝑥 and ℎ(𝑏) = 𝑦 which takes time 𝑂(𝐿2). Hence, the total
time is 𝑂(𝑛𝑡2).

The Algorithm. Using Lemma 5.18, we may assume that 𝐴, 𝐵, 𝐶 ⊆ 𝐺 where 𝐺 has
size 𝑂(𝑛2/𝑡), and we have to list 𝑡 solutions for each 𝑎 ∈ 𝐴. Moreover, by the
assumption in Theorem 5.4 we can assume that |𝐴 + 𝐴| ≤ 𝐾 |𝐴| (this property is
preserved under the linear hashing in Lemma 5.18).

The 3-SUM algorithm is given in Algorithm 5.1. First cover 𝐴 by a translate
of an approximate group 𝐻 (that is, a small set 𝐻 satisfying 𝐻 + 𝐻 ⊆ 𝐻 + 𝑋
where 𝑋 is small) using Lemma 5.7. Then sample a set 𝑆 ⊆ 𝐺 (with rate 10 log 𝑛

|𝐻 |) such
that 𝐻 + 𝑆 covers the whole universe 𝐺. We precompute the sets 𝐵𝑠 = 𝐵 ∩ (𝐻 + 𝑠)
and 𝐶𝑠,𝑥 = 𝐶 ∩ (𝐻 − 𝑠 − 𝑥) for all shifts 𝑠 ∈ 𝑆 and 𝑥 ∈ 𝑋 . The crucial insight is that
we only have to look for 3-SUM solutions in 𝐴 × 𝐵𝑠 × 𝐶𝑠,𝑥 . For each such group we
apply a heavy-light approach: Either the sets 𝐵𝑠, 𝐶𝑠,𝑥 are sparse (with size smaller
than some parameter Δ to be determined later), and we can afford to enumerate all
pairs. Or the sets are dense, in which case we compute 𝐵𝑠 +𝐶𝑠,𝑥 in linear time, but
this case cannot happen too often. We analyze these steps in more detail, starting
with the proof that 𝐻 + 𝑆 indeed covers the whole universe 𝐺:

Lemma 5.19 (Random Cover). With high probability, for any 𝑧 ∈ 𝐺 there areΘ(log 𝑛)
shifts 𝑠 ∈ 𝑆 such that 𝑧 ∈ 𝐻 + 𝑠 (in short: 𝑟𝐻,𝑆 (𝑧) = Θ(log 𝑛)).

Proof. In expectation, each element 𝑧 ∈ 𝐺 is contained in |𝐻 | · 100 log 𝑛
|𝐻 | = 100 log 𝑛

sets of the form 𝐻 + 𝑠, 𝑠 ∈ 𝑆. By Chernoff’s bound, the probability that we hit
less than 50 log 𝑛 sets or more than 150 log 𝑛 sets is at most 2 exp(− 100 log 𝑛

12) ≤ 𝑛−8.
Taking a union bound over the |𝐺 | ≤ 𝑛2 elements 𝑧, the statement is correct with
probability at least 1 − 𝑛−6.

114

Lemma 5.20 (Correctness of Algorithm 5.1). Algorithm 5.1 is correct, that is, it
reports a list of 𝑡 witnesses for each 𝑎 ∈ 𝐴 (or a list of all witnesses if there are less
than 𝑡 many).

Proof. Focus on any 3-SUM solution 𝑎+𝑏+𝑐 = 0. The key is to prove that there are
shifts 𝑠 ∈ 𝑆, 𝑥 ∈ 𝑋 such that (𝑎, 𝑏, 𝑐) ∈ 𝐴 × 𝐵𝑠 × 𝐶𝑠,𝑥 . In this case it is easy to check
that the algorithm will either report (𝑎, 𝑏, 𝑐) (in Line 7 or Line 11) or it already
reported 𝑡 other witnesses for 𝑎 (if the list of 𝑡 witnesses computed in Line 9 does
not contain the particular witness (𝑏, 𝑐)).

To see that 𝑠, 𝑥 exist as claimed, invoke the previous lemma to find some 𝑠 ∈ 𝑆
such that 𝑏 ∈ 𝐻 + 𝑠, that is, there is some 𝑣 ∈ 𝐻 such that 𝑏 = 𝑣 + 𝑠. Then,
since 𝑎 ∈ 𝐴 ⊆ 𝐻 + 𝑎0 by Lemma 5.7 we have that 𝑎 + 𝑣 ∈ 𝐻 + 𝐻 + 𝑎0 ⊆ 𝐻 + 𝑋 + 𝑎0.
Thus, there is some 𝑤 ∈ 𝐻 and 𝑥 ∈ 𝑋 such that 𝑎 + 𝑣 = 𝑤 + 𝑥 + 𝑎0. It follows
that 𝑐 = −(𝑎 + 𝑏) = −(𝑤 + 𝑠 + 𝑥 + 𝑎0) ∈ −𝐻 − 𝑠 − 𝑥 − 𝑎0 = 𝐻 − 𝑠 − 𝑥 − 𝑎0. Using the
definitions of 𝐵𝑠 and 𝐶𝑠,𝑥 , we conclude that 𝑏 ∈ 𝐵𝑠 and 𝑐 ∈ 𝐶𝑠,𝑥 as stated.

Lemma 5.21 (Running Time of Algorithm 5.1). Algorithm 5.1 runs in time

𝑂

(
𝐾12

(
𝑛2

𝑡
+ 𝑛Δ

2

𝑡
+ 𝑛

2𝑡

Δ

))
.

Proof. Computing 𝐻 and 𝑋 in Line 1 takes time 𝑂(𝐾12𝑛) by Lemma 5.7, and
the same lemma guarantees that |𝐻 | ≤ 𝐾2𝑛 and |𝑋 | ≤ 𝐾5. Sampling 𝑆 in a
naive way in Line 2 takes time 𝑂(|𝐺 |) = 𝑂(𝑛2/𝑡) and with high probability, 𝑆 has
size𝑂(|𝐺 ||𝐻 |) = 𝑂(𝑛/𝑡). In Line 4, it takes linear time to compute each set 𝐵𝑠 and 𝐶𝑠,𝑥 ,
so the total time is 𝑂(𝑛|𝑆 | |𝑋 |) ≤ 𝑂(𝐾5𝑛2/𝑡).

For the loop over pairs 𝑠 ∈ 𝑆, 𝑥 ∈ 𝑋 (in Line 5) we split the analysis into two
cases: The light pairs 𝑠, 𝑥 with |𝐵𝑠 |, |𝐶𝑠,𝑥 | ≤ Δ and the remaining heavy pairs. There
are up to |𝑆 |·|𝑋 | ≤ 𝑂(𝐾5𝑛/𝑡) light pairs, and for each such pair we spend time𝑂(Δ2)
in Line 7. The total time spent on light pairs is thus 𝑂(𝐾5𝑛Δ2/𝑡).

The number of heavy pairs is bounded by 𝑂(𝐾5𝑛/Δ). Indeed, recall that
each element 𝑏 occurs in at most 𝑂(log 𝑛) sets 𝐵𝑠 by Lemma 5.19. Hence, there
are at most 𝑂(𝑛/Δ) heavy sets 𝐵𝑠. Similarly, each element 𝑐 occurs in at most
𝑂(|𝑋 | log 𝑛) = 𝑂(𝐾5 log 𝑛) sets 𝐶𝑠,𝑥 and therefore the number of heavy sets 𝐶𝑠,𝑥
is at most 𝑂(𝐾5𝑛/Δ). For each heavy pair, we spend time 𝑂(𝑡 · |𝐵𝑠 + 𝐶𝑠,𝑥 |) to list 𝑡
witnesses for each element in the sumset 𝐵𝑠 + 𝐶𝑠,𝑥 by Theorem 2.25. Recall that
𝐵𝑠 + 𝐶𝑠,𝑥 ⊆ 𝐻 + 𝐻 − 𝑥 − 𝑎0 ⊆ 𝐻 + 𝑋 − 𝑥 − 𝑎0, and thus |𝐵𝑠 + 𝐶𝑠,𝑥 | ≤ |𝐻 | · |𝑋 | ≤ 𝐾7𝑛.
Hence, the heavy pairs amount to time 𝑂((𝐾5𝑛/Δ) · (𝑡𝐾7𝑛)) = 𝑂(𝐾12𝑛2𝑡/Δ). Sum-
ming over all these contributions gives the claimed time bound.

Proof of Theorem 5.4. We proceed as outlined before: First apply Lemma 5.18
to reduce the given 3-SUM instance to a 3-SUM listing instance with parameter 𝑡
in a universe of size |𝐺′ | = 𝑂(𝑛2/𝑡) and then run Algorithm 5.1 on that instance.
This algorithm is correct by Lemma 5.20, and runs in the claimed running time
by setting 𝑡 = 𝑛1/4 and Δ = 𝑛1/2. Since the universe reduction succeeds only with
constant probability 8

10 , we need to repeat this whole process 𝑂(log 𝑛) times to
achieve high success probability.

5.4 Energy Reduction for 3-SUM

In this section we prove the self-reduction for 3-SUM to instances with small ad-
ditive energy. As outlined before, the proof consists of two key lemmas, see Lem-
mas 5.2 and 5.5.

115

Algorithm 5.2. The energy reduction via additive combinatorics. Given a 3-SUM
instance 𝐴 ⊆ 𝐺, this algorithm either detects a 3-SUM solution or constructs an
equivalent instance 𝐴∗ ⊆ 𝐴 with additive energy 𝐸(𝐴∗) ≤ |𝐴∗ |3/𝐾 .

1 repeat
2 Estimate 𝐸(𝐴) using Lemma 5.10
3 if 𝐸(𝐴) ≤ |𝐴|3/𝐾 then
4 return 𝐴∗ ← 𝐴

5 else
6 Apply the Balog-Szemerédi-Gowers theorem on 𝐴 to obtain 𝐴′ ⊆ 𝐴
7 Solve the 3-SUM instance (𝐴′, 𝐴, 𝐴) using Theorem 5.4
8 if (𝐴′, 𝐴, 𝐴) is a “yes” instance then return “yes”
9 𝐴← 𝐴 \ 𝐴′

5.4.1 Energy Reduction via Additive Combinatorics

Lemma 5.2 (Energy Reduction via Additive Combinatorics). Let 𝐾 ≥ 1. There is
a fine-grained reduction from a 3-SUM instance 𝐴 of size 𝑛 to an equivalent 3-SUM
instance 𝐴∗ ⊆ 𝐴, where 𝐸(𝐴∗) ≤ |𝐴∗ |3/𝐾 . The reduction runs in time 𝑂(𝐾314𝑛7/4).

Proof. The reduction is given in Algorithm 5.2. We repeatedly estimate the
additive energy of 𝐴 using Lemma 5.10 and as long as 𝐸(𝐴) ≥ |𝐴|3/𝐾 , we ap-
ply the BSG theorem to obtain a structured subset 𝐴′ ⊆ 𝐴. This set has large
size |𝐴′ | ≥ Ω(𝐾−2 |𝐴|) and small doubling |𝐴′ + 𝐴′ | ≤ 𝑂(𝐾24 |𝐴|) = 𝑂(𝐾26 |𝐴′ |). We
solve the 3-SUM instance (𝐴′, 𝐴, 𝐴) using Theorem 5.4; if a solution is found in this
step we report “yes”. Otherwise continue the process with 𝐴 \ 𝐴′ in place of 𝐴.
As soon as the additive energy of 𝐴 drops below the desired threshold |𝐴|3/𝐾 , we
stop and return 𝐴∗ ← 𝐴.

The correctness is easy to prove: In each step we split off a subset 𝐴′. If there
is a 3-SUM solution involving an element from 𝐴′, we detect the solution by calling
Theorem 5.4 and correctly report “yes”. Otherwise it is safe to discard 𝐴′.

To analyze the running time, first observe that in every step the size of 𝐴 re-
duces by at least Ω(𝐾−2 |𝐴|). Therefore, after at most 𝑂(𝐾2) steps the size of 𝐴
must have halved and thus the total number of steps is bounded by 𝑂(𝐾2 log 𝑛).
In each step, computing 𝐴′ via the BSG theorem takes time 𝑂(𝐾12 |𝐴|) and solving
the structured 3-SUM instance (𝐴′, 𝐴, 𝐴) takes time 𝑂((𝐾26)12𝑛7/4) = 𝑂(𝐾312𝑛7/4).
In total we spend time 𝑂(𝐾314𝑛7/4) as claimed.

5.4.2 Amplification via Hashing

Lemma 5.5 (Energy Reduction via Hashing). Let 𝐾 ≥ 1. There is a fine-grained
reduction from a 3-SUM instance 𝐴 with 𝐸(𝐴) ≤ |𝐴|3/𝐾 to 𝑔 = 𝑂(|𝐴|2/𝐾2) 3-SUM
instances 𝐴1, . . . , 𝐴𝑔 of size 𝑂(𝐾) and with expected energy E(𝐸(𝐴𝑖)) ≤ 𝑂(𝐾2). The
reduction runs in time 𝑂(|𝐴|2/𝐾).

The reduction is summarized in Algorithm 5.3. We sample a linear hash func-
tionℎ : 𝐺 → 𝐺′ and construct the instances 𝐴𝑥, 𝑦 = {𝑎 ∈ 𝐴 : ℎ(𝑎) ∈ {𝑥, 𝑦,−(𝑥+ 𝑦)}},
for all 𝑥, 𝑦 ∈ 𝐺′. We solve all instances by brute-force which exceed their expected
size by a constant factor, and pass the other instance to the reduction. If we find a
3-SUM solution in one of the constructed instances, we report “yes”.

The analysis involves several steps, but the correctness argument is simple:
Since all sets 𝐴𝑥, 𝑦 are subsets of 𝐴, we can never return “yes” unless 𝐴 is a “yes”
instance. On the other hand, whenever there is a 3-SUM solution 𝑎+ 𝑏+ 𝑐 = 0 in 𝐴,
we can pick 𝑥 = ℎ(𝑎) and 𝑦 = ℎ(𝑏) so that 𝐴𝑥, 𝑦 is a “yes” instance (by the linearity
of the hash function).

116

Algorithm 5.3. The energy reduction via subsampling. Given a 3-SUM instance
𝐴 ⊆ 𝐺 = F𝑑𝑝 with bounded additive energy 𝐸(𝐴) ≤ |𝐴|3/𝐾 , this algorithm con-
structs 𝑂(|𝐴|2/𝐾2) smaller 3-SUM instances of size 𝑂(𝐾) and with expected ad-
ditive energy 𝑂(𝐾2).

1 Let 𝑑′ = ⌈log𝑝(|𝐴|/𝐾)⌉ and let 𝐺′ = F𝑑′𝑝
2 Sample a linear hash function ℎ : 𝐺 → 𝐺′

3 for each 𝑥, 𝑦 ∈ 𝐺′ do
4 Construct the 3-SUM instance 𝐴𝑥, 𝑦 = {𝑎 ∈ 𝐴 : ℎ(𝑎) ∈ {𝑥, 𝑦,−(𝑥 + 𝑦)}}
5 if |𝐴𝑥, 𝑦 | ≤ 6𝐾 then
6 Solve the 3-SUM instance 𝐴𝑥, 𝑦 by means of the reduction
7 else
8 Solve the 3-SUM instance 𝐴𝑥, 𝑦 by brute-force
9 return “yes” if and only if one of the instances 𝐴𝑥, 𝑦 is a “yes” instance

We continue with the analysis of the running time of the reduction, which
mainly involves proving that most instances have size 𝑂(𝐾) and therefore do not
have to be brute-forced.

Lemma 5.22 (Running Time of Algorithm 5.3). Algorithm 5.3 runs in expected time
𝑂(𝑛2/𝐾).

Proof. For most steps of the algorithm it is easy to bound the running time. In
particular, we can construct the instances 𝐴𝑥, 𝑦 in time 𝑂(𝑛2/𝐾) by first precom-
puting the hash values ℎ(𝑎) for all 𝑎 ∈ 𝐴. The interesting part is to bound the
running time of the brute-force step in Line 8. To this end, we analyze the sizes of
the constructed instances 𝐴𝑥, 𝑦 .

Fix any 𝑥, 𝑦 ∈ 𝐺′. We compute the expectation and variance of |𝐴𝑥, 𝑦 | as fol-
lows. For ease of notation, write 𝑋 = {𝑥, 𝑦,−(𝑥 + 𝑦)}:

E(|𝐴𝑥, 𝑦 |) =
∑︁
𝑎∈𝐴

P(ℎ(𝑎) ∈ 𝑋) ≤
∑︁
𝑎∈𝐴

3
|𝐺′ | =

3𝑛
|𝐺′ | ≤ 3𝐾.

Next, we compute the variance:

Var(|𝐴𝑥, 𝑦 |)
= −E(|𝐴𝑥, 𝑦 |)2 + E(|𝐴𝑥, 𝑦 |2)

= −
(∑︁
𝑎∈𝐴

P(ℎ(𝑎) ∈ 𝑋)
)2

+
∑︁
𝑎,𝑏∈𝐴

P(ℎ(𝑎), ℎ(𝑏) ∈ 𝑋)

Here, we distinguish two cases for 𝑎, 𝑏: If 𝑎 and 𝑏 are linearly independent, then
the random variables ℎ(𝑎) and ℎ(𝑏) are independent. If 𝑎, 𝑏 are linearly depen-
dent, then there are at most 𝑛𝑝 = 𝑂(𝑛) choices for 𝑎, 𝑏 (fix 𝑎 arbitrarily, then there
are at most 𝑝 choices for 𝑏 in the span ⟨𝑎⟩). It follows that the above expression
can be bounded as follows:

≤ −
(∑︁
𝑎∈𝐴

P(ℎ(𝑎) ∈ 𝑋)
)2

+
(∑︁
𝑎,𝑏∈𝐴

P(ℎ(𝑎) ∈ 𝑋) · P(ℎ(𝑏) ∈ 𝑋)
)
+ 𝑂

(
𝑛

|𝐺′ |

)
≤ 𝑂

(
𝑛

|𝐺′ |

)
≤ 𝑂(𝐾).

117

We are now ready to bound the expected running time of Line 8 using Cheby-
shev’s inequality:

∑︁
𝑥, 𝑦∈𝐺′

log 𝑛∑︁
𝑖=0

P(|𝐴𝑥, 𝑦 | ≥ 2𝑖 · 6𝐾) · 𝑂((2𝑖𝐾)2)

≤
∑︁

𝑥, 𝑦∈𝐺′

log 𝑛∑︁
𝑖=0

P
(
|𝐴𝑥, 𝑦 | − E(|𝐴𝑥, 𝑦 |) ≥ Ω(2𝑖 Var(|𝐴𝑥, 𝑦 |))

)
· 𝑂(22𝑖𝐾2)

≤
∑︁

𝑥, 𝑦∈𝐺′

log 𝑛∑︁
𝑖=0

𝑂

(
1

22𝑖𝐾
· 22𝑖𝐾2

)
≤ 𝑂(𝑛2/𝐾).

This completes the running time analysis.

Lemma 5.23 (Bounded Energy). Fix 𝑥, 𝑦 ∈ 𝐺′ and let 𝐴𝑥, 𝑦 be as in Algorithm 5.3.
Then E(𝐸(𝐴𝑥, 𝑦)) ≤ 𝑂(𝐾).

Proof. We bound the expected energy as follows:

E(𝐸(𝐴𝑥, 𝑦))
=

∑︁
𝑎1 ,𝑎2 ,𝑎3 ,𝑎4∈𝐴
𝑎1+𝑎2=𝑎3+𝑎4

P(ℎ(𝑎1), ℎ(𝑎2), ℎ(𝑎3), ℎ(𝑎4) ∈ {𝑥, 𝑦,−(𝑥 − 𝑦)})

=

3∑︁
𝑠=0

∑︁
𝑎1 ,𝑎2 ,𝑎3 ,𝑎4∈𝐴
𝑎1+𝑎2=𝑎3+𝑎4

dim⟨𝑎1 ,𝑎2 ,𝑎3 ,𝑎4 ⟩=𝑠

P(ℎ(𝑎1), ℎ(𝑎2), ℎ(𝑎3), ℎ(𝑎4) ∈ {𝑥, 𝑦,−(𝑥 − 𝑦)})

For fixed elements 𝑎1, 𝑎2, 𝑎3, 𝑎4 spanning a subspace of dimension 𝑠, there are at
least 𝑠 hash values in ℎ(𝑎1), ℎ(𝑎2), ℎ(𝑎3), ℎ(𝑎4) which are independent and there-
fore the probability can be upper bounded by 1/|𝐺′ |𝑠.

≤
3∑︁
𝑠=0

1
|𝐺′ |𝑠 ·

∑︁
𝑎1 ,𝑎2 ,𝑎3 ,𝑎4∈𝐴
𝑎1+𝑎2=𝑎3+𝑎4

dim⟨𝑎1 ,𝑎2 ,𝑎3 ,𝑎4 ⟩=𝑠

1

We now distinguish two cases: For 𝑠 = 3 we use that the inner sum is at most 𝐸(𝐴)
by definition. For 𝑠 ≤ 2 we bound the inner sum by the weaker bound𝑂(|𝐴|𝑠). (In-
deed, any tuple 𝑎1, 𝑎2, 𝑎3, 𝑎4 spanning a subspace of dimension 𝑠 can be obtained
by first picking 𝑠 arbitrary elements from 𝐴 and expressing the others as one out
of 𝑝4 = 𝑂(1) possible linear combinations.)

≤
2∑︁
𝑠=0

𝑂

(
|𝐴|𝑠
|𝐺′ |𝑠

)
+ 𝑂

(
𝐸(𝐴)
|𝐺′ |3

)
≤ 𝑂

(
|𝐴|2
|𝐺′ |2 +

𝐸(𝐴)
|𝐺′ |3

)
≤ 𝑂(𝐾2).

In the final step we have used that |𝐺′ | ≥ |𝐴|/𝐾 and that 𝐸(𝐴) ≤ |𝐴|3/𝐾 .

5.4.3 Putting Both Parts Together

By concatenating both energy reductions we obtain the following result.

Theorem 5.6 (Energy Reduction). For any 𝜖, 𝛿 > 0, there is no 𝑂(𝑛2−𝜖)-time algo-
rithm solving the 3-SUM problem on instances 𝐴 with size 𝑛 and additive energy
𝐸(𝐴) ≤ 𝑂(|𝐴|2+𝛿), unless the 3-SUM conjecture fails.

118

Proof. Suppose that there are 𝜖, 𝛿 > 0 and an algorithm A solving 3-SUM on
instances 𝐴 of size 𝑛 with additive energy 𝑂(|𝐴|2+𝛿) in time 𝑂(𝑛2−𝜖).

We reduce a given 3-SUM instance 𝐴 to this problem. Let 𝐾 = |𝐴|0.0001. We first
apply Lemma 5.2 with parameter 𝐾 to either detect a 3-SUM solution in 𝐴 or to find
an equivalent instance 𝐴∗ ⊆ 𝐴 with additive energy bounded by |𝐴∗ |3/𝐾 . Next,
apply the reduction from Lemma 5.5 to obtain 𝑔 = 𝑂(|𝐴|2/𝐾2) instances 𝐴1, . . . , 𝐴𝑔
of size 𝑂(𝐾) with expected additive energy 𝑂(𝐾2). By Markov’s bound, each such
instance has additive energy more than 𝐾2+𝛿 with probability at most𝑂(𝐾−𝛿). We
may therefore use Lemma 5.10 to estimate the additive energies of the constructed
instances, and brute-force all instances with energy exceeding 𝐾2+𝛿. We solve the
remaining instances using the efficient algorithmA.

It remains to analyze the running time. Lemma 5.2 runs in time𝑂(𝐾314𝑛7/4) =
𝑂(𝑛1.7814) and Lemma 5.5 runs in time 𝑂(𝑛2/𝐾) = 𝑂(𝑛1.9999). Since we only
solve a 𝐾−𝜖-fraction of the instances by brute-force, the total expected running
time of brute-forcing instances with exceptionally large additive energy takes
time 𝑂(𝐾−𝜖𝑛2/𝐾2 · 𝐾2) = 𝑂(𝑛2−0.0001𝜖). Finally, solving the remaining instances
usingA amounts for time 𝑂(𝑛2/𝐾2 · 𝐾2−2𝛿) = 𝑂(𝑛2−0.0001𝛿). All in all, the running
time is subquadratic as claimed.

5.5 Reducing 3-SUM to Triangle Listing

The first reduction from 3-SUM to triangle listing is by Pătraşcu [172], and this
reduction was later generalized by Kopelowitz, Pettie and Porat [143]. It is also
known how to adapt the reduction to 3-XOR [128] (i.e., the 𝐺 = F𝑑2 version of 3-
SUM).

In this section we revisit this reduction. We present a modified (and arguably
simplified) version of the known constructions. As before, we consider 3-SUM in-
stances over the group 𝐺 = F𝑑𝑝, where 𝑝 is a constant prime and 𝑑 = 𝑂(log 𝑛). Our
goal is to prove the following theorem:

Theorem 5.1 (Hardness of Triangle Listing). For any constant 𝜖 > 0, there is
no 𝑂(𝑛2−𝜖)-time algorithm listing all triangles in a Θ(𝑛1/2)-regular 𝑛-vertex graph
which contains at most 𝑂(𝑛𝑘/2) 𝑘-cycles for all 𝑘 ≥ 3, unless the 3-SUM conjecture
fails.

For the remainder of this subsection, we will prove Theorem 5.1. We start
with the construction in Section 5.5.1. In Section 5.5.2 we analyze the number of
𝑘-cycles and in Section 5.5.3 we justify the assumption that the graph is Θ(𝑛1/2)-
regular. We summarize the proof of Theorem 5.1 in Section 5.5.4. Throughout, let 𝐴
be the given 3-SUM instance. By the energy reduction in Theorem 5.6 (applied with
𝛿 = 1

2 , say) we can assume that 𝐸(𝐴) ≤ 𝑂(|𝐴|5/2).

5.5.1 The Construction

We start with the construction of the triangle listing instance. Let 𝐺′ = F𝑑′𝑝 be
a subspace of 𝐺 with prescribed size |𝐺′ | ≤ 𝑛 which we will set later. We ran-
domly sample linear maps ℎ1, ℎ2, ℎ3 : 𝐺 → 𝐺′, and let ℎ : 𝐺 → (𝐺′)3 be defined
by ℎ(𝑎) = (ℎ1 (𝑎), ℎ2 (𝑎), ℎ3 (𝑎)). Let

𝑋 = 𝐺′ × 𝐺′ × {0}
𝑌 = 𝐺′ × {0} × 𝐺′

𝑍 = {0} × 𝐺′ × 𝐺′

be the vertex parts in the constructed tripartite graph. Observe that each set 𝑋,𝑌 , 𝑍
is a subgroup of (𝐺′)3. We now add edges to the graph: For each 𝑎 ∈ 𝐴, add
an edge between 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 whenever 𝑦 = 𝑥 + ℎ(𝑎). We say that this
edge (𝑥, 𝑦) is labeled with 𝑎. Similarly, add an edge between 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑍 when-
ever 𝑧 = 𝑦 + ℎ(𝑎) and add an edge between 𝑧 ∈ 𝑍 and 𝑥 ∈ 𝑋 whenever 𝑥 = 𝑧+ℎ(𝑎).

119

We remark that for the analysis we view the instance as a labeled (multi-)graph
with labels as just described, but for the actual reduction we forget about the edge
labels (and multiple edges) and treat the constructed instance as a simple graph;
this notation is purely for convenience.

We introduce some more notation. As before, we say that (𝑎, 𝑏, 𝑐) ∈ 𝐴3 is a
solution if 𝑎 + 𝑏 + 𝑐 = 0. We say that (𝑎, 𝑏, 𝑐) ∈ 𝐴3 is a pseudo-solution if ℎ(𝑎) +
ℎ(𝑏) +ℎ(𝑐) = 0. As a first step, we argue that there is a one-to-one correspondence
between triangles in the constructed instance and pseudo-solutions.

Lemma 5.24 (Pseudo-Solutions Are Triangles). The labels 𝑎, 𝑏, 𝑐 of any triangle
in the constructed instance form a pseudo-solution. Moreover, for every pseudo-
solution 𝑎, 𝑏, 𝑐 there are at most six triangles in the instance labeled with 𝑎, 𝑏, 𝑐.

Proof. The first claim is easy: By construction, the edge labels 𝑎, 𝑏, 𝑐 of any trian-
gle (𝑥, 𝑦, 𝑧) (in fact, of any closed walk) must satisfy that ℎ(𝑎) + ℎ(𝑏) + ℎ(𝑐) = 0. By
definition, 𝑎, 𝑏, 𝑐 constitutes a pseudo-solution.

For the other direction, let 𝑎, 𝑏, 𝑐 be a pseudo-solution. There are six ways to
assign the edge labels to the edge parts; we will focus on one case and prove that
there is a unique triangle (𝑥, 𝑦, 𝑧) ∈ 𝑋 ×𝑌 ×𝑍 where (𝑥, 𝑦) is labeled with 𝑎, (𝑦, 𝑧)
is labeled with 𝑏, and (𝑧, 𝑥) is labeled with 𝑐. Writing 𝑥 = (𝑥1, 𝑥2, 0), 𝑦 = (𝑦1, 0, 𝑦3)
and 𝑧 = (0, 𝑧2, 𝑧3), we obtain the following constraints:

𝑦1 = 𝑥1 + ℎ1 (𝑎) 0 = 𝑥2 + ℎ2 (𝑎) 𝑦3 = ℎ3 (𝑎)
0 = 𝑦1 + ℎ1 (𝑏) 𝑧2 = ℎ2 (𝑏) 𝑧3 = 𝑦3 + ℎ3 (𝑏)
𝑥1 = ℎ1 (𝑐) 𝑥2 = 𝑧2 + ℎ2 (𝑐) 0 = 𝑧3 + ℎ3 (𝑐)

This equation system (with indeterminates 𝑥1, 𝑥2, 𝑦1, 𝑦3, 𝑧2, 𝑧3) is uniquely solv-
able by 𝑥1 = ℎ1 (𝑐), 𝑥2 = −ℎ2 (𝑎), 𝑦1 = −ℎ1 (𝑏), 𝑦3 = ℎ3 (𝑎), 𝑧2 = ℎ2 (𝑏), 𝑧3 = −ℎ3 (𝑐).

By this characterization it is easy to complete the reduction: By listing all tri-
angles in the constructed instance, in particular we list all pseudo-solutions of the
3-SUM instance. We check whether one of these pseudo-solutions forms a proper
solution and return “yes” in this and only this case. Moreover, we obtain the fol-
lowing bound on the number of triangles in the constructed instance:

Lemma 5.25 (Number of Triangles). Either we can find a 3-SUM solution in time
𝑂(|𝐺′ |3/𝑛), or the expected number of triangles in the constructed instance is
𝑂(𝑛3 |𝐺′ |−3).

Proof. By the previous lemma, the number of triangles is bounded by six times
the number of pseudo-solutions. First, focus on a pseudo-solution 𝑎, 𝑏, 𝑐 that is not
a proper solution (i.e., 𝑎 + 𝑏 + 𝑐 ≠ 0). The probability that ℎ(𝑎) + ℎ(𝑏) + ℎ(𝑐) = 0, or
equivalently that ℎ(𝑎 + 𝑏 + 𝑐) = 0, is at most |𝐺′ |−3. It follows that the expected
number of non-proper pseudo-solutions is at most 𝑛3 |𝐺′ |−3.

Next, focus on the proper solutions. We distinguish two cases: On the one
hand, if there are at most 𝑛3 |𝐺′ |−3 proper solutions, then the total number of
pseudo-solutions and therefore the total number of triangles is 𝑂(𝑛3 |𝐺′ |−3), as
claimed. On the other hand, if there are at least 𝑛3 |𝐺′ |−3 solutions, then it suf-
fices to sample 𝑂(𝑛2/(𝑛3 |𝐺′ |−3)) = 𝑂(|𝐺′ |3/𝑛) pairs (𝑎, 𝑏) ∈ 𝐴2 to detect at least
one 3-SUM solution (𝑎, 𝑏,−(𝑎 + 𝑏)) ∈ 𝐴3 with high probability.

Finally, the instance can be constructed in time 𝑂(𝑛|𝐺′ |) as follows: We pre-
compute the hash values ℎ1 (𝑎), ℎ2 (𝑎), ℎ3 (𝑎) for all 𝑎 ∈ 𝐴. For each vertex in the
instance, say, 𝑥 = (𝑥1, 𝑥2, 0), we then check only those 𝑎’s with hash values satisfy-
ing 𝑥2 + ℎ2 (𝑎) = 0 (or 𝑥1 − ℎ1 (𝑎) = 0) and add the respective edges.

5.5.2 Counting the Number of 𝒌-Cycles

The most interesting part in our setting is to bound the number of 𝑘-cycles in the
constructed instance (for 𝑘 ≥ 4). To this end, we introduce some notation. We say

120

37 More generally, we should
use pairs (𝑠𝑖 , 𝑎𝑖) with 𝑠𝑖 = ±1
and 𝑎𝑖 ∈ 𝐴 to label paths, but
we stick to the simpler version
described in the text.

that a length-𝑘 walk is labeled by 𝑎1, . . . , 𝑎𝑘 whenever the edges in the walk are
labeled with ±𝑎1, . . . ,±𝑎𝑘 . More specifically, we fix an order of the vertex parts
(say the clockwise order is 𝑋,𝑌 , 𝑍) and require that the edge in the 𝑖-th step is la-
beled with 𝑎𝑖 if the walk takes a step in clockwise direction (that is, from 𝑋 to 𝑌 ,
from𝑌 to 𝑍 or from 𝑍 to 𝑋) and labeled with−𝑎𝑖 if the walk takes a step in counter-
clockwise direction (that is, from 𝑌 to 𝑋 , 𝑋 to 𝑍 or from 𝑍 to 𝑌). For example, the
walk 𝑎1,−𝑎2, 𝑎3, 𝑎4 for elements 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ 𝐴 takes one step in clockwise di-
rection, takes one step in counter-clockwise direction (to the same part where it
started from) and takes two more steps in clockwise direction. Here we assume
for simplicity that 𝐴 and −𝐴 are disjoint, so that the label of a walk uniquely de-
termines its directions.37

We distinguish between two types of 𝑘-cycles: A 𝑘-cycle labeled with 𝑎1, . . . , 𝑎𝑘
is called a pseudo-𝑘-cycle if 𝑎1+ · · ·+𝑎𝑘 ≠ 0, and a zero-𝑘-cycle otherwise. The anal-
ysis differs for these two types of cycles: For pseudo-𝑘-cycles we can exploit more
randomness since all labels 𝑎1, . . . , 𝑎𝑘 can be expected to produce independent
hash values ℎ(𝑎1), . . . , ℎ(𝑎𝑘). For zero-𝑘-cycles, one of the hash values is deter-
mined by the others and we therefore have a smaller degree of independence.
But we have the advantage that the 3-SUM instance has small additive energy, and
therefore the number of solutions to 𝑎1 + · · · + 𝑎𝑘 = 0 is small.

Lemma 5.26 (Rate of Zero-𝒌-Cycles). Fix a vertex 𝑣 and labels 𝑎1, . . . , 𝑎𝑘 ∈ ±𝐴 sat-
isfying 𝑎1 + · · · + 𝑎𝑘 = 0. Then there is a cycle starting from and ending at 𝑣 labeled
with 𝑎1, . . . , 𝑎𝑘 with probability at most |𝐺′ |−𝑠, where 𝑠 = dim⟨𝑎1, . . . , 𝑎𝑘⟩.

Proof. First observe that any walk with labels 𝑎1 + · · · +𝑎𝑘 = 0 that starts at 𝑣 also
ends at 𝑣. We therefore bound the probability that there is a walk starting from 𝑣

which is labeled with 𝑎1, . . . , 𝑎𝑘 by |𝐺′ |−𝑠. The proof is by induction on 𝑘. For the
base 𝑘 = 0 we have 𝑠 = 0 and can trivially bound the probability by 1.

For the inductive case assume that 𝑘 ≥ 1. By induction, there is a walk
of length 𝑘 − 1 with probability at most |𝐺′ |𝑠′ where 𝑠′ = dim⟨𝑎1, . . . , 𝑎𝑘−1⟩.
We distinguish two cases: If 𝑠′ = 𝑠, then we are done. If 𝑠′ = 𝑠 − 1 (which
is indeed the only other case), then the vector 𝑎𝑘 is linearly independent from
𝑎1, . . . , 𝑎𝑘−1 and thus the random variable ℎ(𝑎𝑘) is independent from the other
random variables ℎ(𝑎1), . . . , ℎ(𝑎𝑘−1). Now suppose that the walk after 𝑘 − 1 steps
has reached some vertex, say, 𝑥 = (𝑥1, 𝑥2, 0) and we move in clockwise direction.
Then the target vertex 𝑦 = (𝑦1, 0, 𝑦3) is uniquely determined by 𝑦1 = 𝑥1 + ℎ1 (𝑎𝑘)
and 𝑦3 = ℎ3 (𝑎𝑘). In addition, we induce the constraint 0 = 𝑥2 + ℎ2 (𝑎𝑘) which is
satisfied with probability at most |𝐺′ |−1. By the aforementioned independence,
the total probability is at most |𝐺′ |−𝑠′ |𝐺′ |−1 = |𝐺′ |−𝑠.

Lemma 5.27 (Rate of Pseudo-𝒌-Cycles). Fix a vertex 𝑣 and labels 𝑎1, . . . , 𝑎𝑘 ∈ ±𝐴
satisfying 𝑎1+· · ·+𝑎𝑘 ≠ 0. Then there is a cycle starting from and ending at 𝑣 labeled
with 𝑎1, . . . , 𝑎𝑘 with probability at most |𝐺′ |−𝑠−2, where 𝑠 = dim⟨𝑎1, . . . , 𝑎𝑘⟩.

The proof of this lemma is a bit more involved than the previous one. Our
strategy is to prove the following more technical generalization (see Lemma 5.28).
The proof of Lemma 5.27 then follows by setting 𝑎0 = 𝑎1 + · · · + 𝑎𝑘 . Indeed, any
cycle labeled with 𝑎1, . . . , 𝑎𝑘 is in particular a walk and because it is closed we
must have ℎ(𝑎1) + · · · + ℎ(𝑎𝑘) = 0.

Lemma 5.28. Fix a vertex 𝑣 and labels 𝑎1, . . . , 𝑎𝑘 ∈ ±𝐴 and any non-zero 𝑎0 ∈ 𝐺.
Then the probability of the combined events (i) there is a walk starting from 𝑣 labeled
with 𝑎1, . . . , 𝑎𝑘 and (ii) ℎ(𝑎0) = 0, is at most |𝐺′ |−𝑠−2, where 𝑠 = dim⟨𝑎0, 𝑎1, . . . , 𝑎𝑘⟩.

Proof. The proof is by induction on 𝑘. We start with the base case 𝑘 = 0. Since
we assume that 𝑎0 ≠ 0, we have that 𝑠 = ⟨𝑎0⟩ = 1. Moreover, the probability that
ℎ(𝑎0) = 0 is exactly |𝐺′ |−3.

Next consider the inductive case 𝑘 ≥ 1, and let 𝑠′ = dim⟨𝑎0, . . . , 𝑎𝑘−1⟩. If 𝑠′ = 𝑠,
then we are done by induction. Otherwise, we have 𝑠′ = 𝑠 − 1 and 𝑎𝑘 is linearly
independent from the other vectors 𝑎0, . . . , 𝑎𝑘−1. Suppose that after 𝑘−1 steps the

121

walk has reached some vertex, say 𝑧 = (0, 𝑧2, 𝑧3), and we are moving in counter-
clockwise direction. Then the target vertex 𝑦 = (𝑦1, 0, 𝑦3) is uniquely determined
by 𝑦1 = ℎ1 (𝑎𝑘) and 𝑦3 = 𝑧3 + ℎ3 (𝑎𝑘), but moving to 𝑦 is only possible if the new
constraint 0 = 𝑧2 + ℎ2 (𝑎𝑘) is satisfied. This constraint is satisfied with probabil-
ity |𝐺′ |−1 and since ℎ(𝑎𝑘) is independent from the randomness in previous steps,
the overall probability is at most |𝐺′ |−𝑠−1 · |𝐺′ |−1 ≤ |𝐺′ |−𝑠−2.

Lemma 5.29 (Number of 𝒌-Cycles). For any constant 𝑘 ≥ 4, the expected number of
𝑘-cycles in the constructed instance is𝑂(𝐸(𝐴)·𝑛𝑘−4 |𝐺′ |−𝑘+3+𝑛𝑘−2 |𝐺′ |−𝑘+4+𝑛𝑘 |𝐺′ |−𝑘).

Proof. We first compute the expected number of pseudo-𝑘-cycles:∑︁
𝑎1 ,...,𝑎𝑘∈±𝐴
𝑎1+···+𝑎𝑘≠0

∑︁
𝑣∈𝑉

P(∃cycle starting from and ending at 𝑣 labeled with 𝑎1, . . . , 𝑎𝑘)

≤
𝑘∑︁
𝑠=0

∑︁
𝑎1 ,...,𝑎𝑘∈±𝐴
𝑎1+···+𝑎𝑘≠0

dim⟨𝑎1 ,...,𝑎𝑘 ⟩=𝑠

∑︁
𝑣∈𝑉
|𝐺′ |−𝑠−2

≤
𝑘∑︁
𝑠=0

𝑂(𝑛𝑠 · |𝐺′ |2 · |𝐺′ |−𝑠−2)

= 𝑂(𝑛𝑘 |𝐺′ |−𝑘).

Here, for the first inequality we have applied Lemma 5.27 and we have bounded
the number of tuples (𝑎1, . . . , 𝑎𝑘) with dim⟨𝑎1, . . . , 𝑎𝑘⟩ = 𝑠 by 𝑂(𝑛𝑠) (indeed, af-
ter fixing 𝑠 linearly independent vectors from ±𝐴, each remaining vector can be
expressed as one out of 𝑝𝑘 ≤ 𝑂(1) possible linear combinations).

Next, we compute the number of zero-𝑘-cycles:∑︁
𝑎1 ,...,𝑎𝑘∈±𝐴
𝑎1+···+𝑎𝑘=0

∑︁
𝑣∈𝑉

P(∃cycle starting from and ending at 𝑣 labeled with 𝑎1, . . . , 𝑎𝑘)

≤
𝑘−1∑︁
𝑠=0

∑︁
𝑎1 ,...,𝑎𝑘∈±𝐴
𝑎1+···+𝑎𝑘=0

dim⟨𝑎1 ,...,𝑎𝑘 ⟩=𝑠

∑︁
𝑣∈𝑉
|𝐺′ |−𝑠

=
∑︁

𝑎1 ,...,𝑎𝑘∈±𝐴
𝑎1+···+𝑎𝑘=0

dim⟨𝑎1 ,...,𝑎𝑘 ⟩=𝑘−1

∑︁
𝑣∈𝑉
|𝐺′ |−𝑘+1 +

𝑘−2∑︁
𝑠=0

∑︁
𝑎1 ,...,𝑎𝑘∈±𝐴
𝑎1+···+𝑎𝑘=0

dim⟨𝑎1 ,...,𝑎𝑘 ⟩=𝑠

∑︁
𝑣∈𝑉
|𝐺′ |−𝑠

≤ 𝑂(𝐸(𝐴) · 𝑛𝑘−4 · |𝐺′ |2 · |𝐺′ |−𝑘+1) +
𝑘−2∑︁
𝑠=0

𝑂(𝑛𝑠 · |𝐺′ |2 · |𝐺′ |−𝑠)

= 𝑂(𝐸(𝐴) · 𝑛𝑘−4 |𝐺′ |−𝑘+3 + 𝑛𝑘−2 |𝐺′ |−𝑘+4).

For the first inequality we applied Lemma 5.26. For the second inequality, we have
bounded the number of tuples 𝑎1, . . . , 𝑎𝑘 with dim⟨𝑎1, . . . , 𝑎𝑘⟩ = 𝑠 by 𝑂(𝑛𝑠) as be-
fore. In addition, we have bounded the number of solutions 𝑎1, . . . , 𝑎𝑘 ∈ ±𝐴 to the
linear equation 𝑎1 + · · · + 𝑎𝑘 = 0 using Lemma 5.11 by 𝐸(𝐴) · |𝐴|𝑘−4.

We can use the previous lemmas to bound the number of 𝑘-cycles for any con-
stant 𝑘 (but simultaneously for all 𝑘 ≥ 4). Using the following trick by [130] which
states that the number of 𝑘-cycles is determined by the number of 4-cycles, we can
obtain this stronger claim.

Lemma 5.30 (Relation of 𝒌-Cycles and 4-Cycles, [130]). Let 𝐺 be an undirected
graph with maximum degree 𝑑. For any 𝑘 ≥ 4, it holds that 𝐶𝑘 (𝐺) ≤ 𝑑𝑘−4 · 𝐶4 (𝐺),
where 𝐶𝑘 (𝐺) is the number of length-𝑘 closed walks in 𝐺.

122

Proof. Let 𝐴 be the adjacency matrix of 𝐺. As 𝐺 is undirected, the matrix 𝐴 is
symmetric and its eigenvalues 𝜆1, . . . , 𝜆𝑛 are real. By the Gershgorin circle theo-
rem, all eigenvalues are equal to some diagonal entry 𝐴[𝑖, 𝑖] = 0 up to additive
error

∑
𝑗≠𝑖 |𝐴[𝑖, 𝑗] | ≤ 𝑑. In particular, all eigenvalues have magnitude at most 𝑑.

Observe that 𝐶𝑘 (𝐺) = tr(𝐴𝑘) = ∑𝑛
𝑖=1 𝜆

𝑘
𝑖
. It follows that

𝐶𝑘 (𝐺) =
𝑛∑︁
𝑖=1

𝜆𝑘𝑖 ≤ 𝑑
𝑘−4 ·

𝑛∑︁
𝑖=1
|𝜆 |4 = 𝑑𝑘−4 ·

𝑛∑︁
𝑖=1

𝜆4 = 𝑑𝑘−4 · 𝐶4 (𝐺).

5.5.3 Making the Graph Regular

The next step is to enforce the assumption that the constructed is Θ(𝑟)-regular,
where 𝑟 = 2𝑛/|𝐺′ |. To this end, we first analyze the expected degrees in the instance
constructed in the previous Section 5.5.1.

Lemma 5.31. Fix a vertex 𝑣. Then E(deg(𝑣)) = 𝑟 ± 𝑂(1) and Var(deg(𝑣)) ≤ 𝑂(𝑟).

Proof. Focus on an arbitrary vertex, say, 𝑥 = (𝑥1, 𝑥2, 0) ∈ 𝑋 (the proof is similar
for vertices in 𝑌 and 𝑍). We write deg(𝑥) = deg𝑌 (𝑥) + deg𝑍 (𝑥), where deg𝑌 (𝑥)
denotes the number of edges from 𝑥 to𝑌 , and deg𝑍 (𝑥) denotes the number of edges
from 𝑥 to 𝑍. We focus on the analysis of deg𝑌 (𝑥), the same treatment applies to
deg𝑍 (𝑥). For each edge label 𝑎, there is only a unique candidate 𝑦 = (𝑦1, 0, 𝑦3) ∈ 𝑌
which is reachable by an edge from 𝑥 (indeed, 𝑦1 and 𝑦3 are determined by 𝑥1
and 𝑎). There is an edge to that unique candidate 𝑦 if and only if 𝑥2 + ℎ2 (𝑎) = 0.
Therefore, the expected degree is:

E(deg𝑌 (𝑥)) =
∑︁
𝑎∈𝐴

P(𝑥2 + ℎ2 (𝑎) = 0) = 𝑛|𝐺′ |−1 ± 𝑂(1).

(The ±𝑂(1) term stems from the element 0 which may or may not be present in 𝐴

but always hashes to 0 under a linear hash function.) To bound the variance, we
compute

Var(deg𝑌 (𝑥))
= E(deg𝑌 (𝑥)2) − E(deg𝑌 (𝑥))2

≤
(∑︁
𝑎,𝑏∈𝐴

P(𝑥2 + ℎ2 (𝑎) = 𝑥2 + ℎ2 (𝑏) = 0)
)
−

(∑︁
𝑎∈𝐴

P(𝑥2 + ℎ2 (𝑎) = 0)
)2

To bound the first sum, we consider two cases: Either 𝑎 and 𝑏 are linearly inde-
pendent, in which case the random variables ℎ2 (𝑎) and ℎ2 (𝑏) are independent.
Or 𝑎 and 𝑏 are linearly dependent, in which case there are at most 𝑝𝑛 = 𝑂(𝑛) such
pairs (we can pick 𝑎 arbitrarily and there are only 𝑝 choices for 𝑏 in the span ⟨𝑎⟩).
It follows that:

≤ 𝑂(𝑛|𝐺′ |−1) +
(∑︁
𝑎,𝑏∈𝐴

P(𝑥2 + ℎ2 (𝑎) = 0) · P(𝑥2 + ℎ2 (𝑏) = 0)
)

−
(∑︁
𝑎∈𝐴

P(𝑥2 + ℎ2 (𝑎) = 0)
)2

= 𝑂(𝑛|𝐺′ |−1).

Recall that deg(𝑥) = deg𝑌 (𝑥) + deg𝑍 (𝑥). Since the random variables deg𝑌 (𝑥)
and deg𝑍 (𝑥) depend on the independent hash functions ℎ2 and ℎ1, the random
variables deg𝑌 (𝑥) and deg𝑍 (𝑥) are independent. It follows that E(deg(𝑥)) and
Var(deg(𝑥)) are as claimed.

123

Algorithm 5.4. Turns the triangle listing instance from Section 5.5.1 into a
Θ(𝑛/|𝐺 |)-regular graph (by removing some vertices, and listing all triangles in-
volving at least one of the removed vertices).

1 Let (𝑉0, 𝐸0) be the instance constructed in Section 5.5.1
2 Let 𝑉 ← 𝑉0, 𝐸 ← 𝐸0 and let 𝑟 ← 2𝑛/|𝐺′ |
3 while there is a vertex 𝑣 in (𝑉, 𝐸) with degree < 1

4𝑟 or > 2𝑟 do
4 Enumerate all pairs of neighbors 𝑢, 𝑤 ∈ 𝑉 of 𝑣 and report (𝑢, 𝑣, 𝑤) if it is

a triangle
5 Remove 𝑣 from 𝑉 and its incident edges from 𝐸

6 return (𝑉, 𝐸)

Given the previous lemma, most vertices in the constructed instance have de-
gree Θ(𝑟). However, we want that every vertex has degree Θ(𝑟). We will there-
fore select an (induced) subgraph of the constructed instance, in which the degree
bound is satisfied. Note that by selecting a subgraph, we cannot increase the num-
ber of 𝑘-cycles, and the analysis from the previous Section 5.5.2 remains intact.

We use the algorithm described in Algorithm 5.4. It is easiest to describe using
some terminology: We call a vertex 𝑣 high-degree if it has degree more than 2𝑟,
low-degree if it has degree less than 1

2𝑟 and tiny-degree if it has degree less than 1
8𝑟.

As long as there is a high-degree or tiny-degree vertex 𝑣 in the graph, we remove 𝑣
and all its incident edges. In order to not miss the triangles involving the removed
vertices 𝑣, we list all pairs of neighbors 𝑢, 𝑤 of 𝑣 and report all triangles (𝑢, 𝑣, 𝑤)
found in this way. It is obvious that the remaining graph is Θ(𝑟)-regular, and more-
over we have not missed any triangle by pruning the graph in this way. It remains
to analyze the running time of Algorithm 5.4.

Lemma 5.32 (Running Time of Algorithm 5.4). Algorithm 5.4 runs in expected time
𝑂(𝑛|𝐺′ |).

Proof. As in Algorithm 5.4, we denote by (𝑉0, 𝐸0) the graph constructed in Sec-
tion 5.5.1. We split the analysis in two parts: First, we bound the time spend in
iterations removing a high-degree vertex and second, we bound the time spend in
iterations removing tiny-degree vertices. Since the running time per iteration is
dominated by enumerating all pairs of neighbors of the vertex 𝑣 to be removed,
we can bound the expected time to remove all high-degree vertices as follows:∑︁

𝑣∈𝑉0

deg(𝑣)2 · P(deg(𝑣) ≥ 2𝑟)

≤
∑︁
𝑣∈𝑉0

log |𝑉0 |∑︁
𝑖=1

22𝑖+2𝑟2 · P(deg(𝑣) ≥ 2𝑖𝑟)

≤
∑︁
𝑣∈𝑉0

log |𝑉0 |∑︁
𝑖=1

22𝑖+2𝑟2 · P(| deg(𝑣) − E(deg(𝑣)) | ≥ Ω(2𝑖 · Var(deg(𝑣))))

≤
∑︁
𝑣∈𝑉0

log |𝑉0 |∑︁
𝑖=1

22𝑖+2𝑟2 · 𝑂
(

1
22𝑖𝑟

)
≤

∑︁
𝑣∈𝑉0

log |𝑉0 |∑︁
𝑖=1

𝑂(𝑟)

≤ 𝑂(𝑛|𝐺′ |).

We now focus on the time spent on iterations removing tiny-degree vertices.
Each such iteration runs in time 𝑂(𝑟2), and we therefore aim to bound the num-
ber of iterations. The first step is to show that in the original graph (𝑉0, 𝐸0), the
expected number of edges incident to high-degree or low-degree vertices is at

124

most 𝑂(𝑛). Indeed, by Chebyshev’s inequality and again using the previously ob-
tained bounds, the expected number of edges incident to high-degree vertices is
at most∑︁

𝑣∈𝑉0

deg(𝑣) · P (deg(𝑣) ≥ 2𝑟)

≤
∑︁
𝑣∈𝑉0

∞∑︁
𝑖=1

2𝑖+1𝑟 · P(deg(𝑣) ≥ 2𝑖𝑟)

≤
∑︁
𝑣∈𝑉0

∞∑︁
𝑖=1

2𝑖+1𝑟 · P(| deg(𝑣) − E(deg(𝑣)) | ≥ Ω(2𝑖 · Var(deg(𝑣))))

≤
∑︁
𝑣∈𝑉0

∞∑︁
𝑖=1

2𝑖+1𝑟 · 𝑂
(

1
22𝑖𝑟

)
≤

∑︁
𝑣∈𝑉0

𝑂(1)

= 𝑂(|𝐺′ |2).

Using the same idea we can bound the number of edges incident to low-degree
vertices by 𝑂(|𝐺′ |2), too. Moreover, we can bound the numbers 𝐿 and 𝐻 of low-
degree and high-degree vertices in the original graph by 𝐿, 𝐻 = 𝑂(|𝐺′ |2/𝑟).

We now again turn to Algorithm 5.4 and bound the number of iterations. There
are up to 𝐻 iterations removing the high-degree vertices, and the remaining itera-
tions remove tiny-degree vertices. However, observe after removing 𝑒 edges from
the original graph, we can create at most 𝐿+6𝑒/𝑟 tiny-degree vertices: Up to 𝐿 ver-
tices which are low-degree in the original graph plus at most 2𝑒/(1

2𝑟 −
1
8𝑟) ≤ 6𝑒/𝑟

vertices which were not low-degree in the original graph but which turned tiny-
degree by losing edges. Since every iteration removing a tiny-degree vertex re-
moves at most 1

4𝑟 edges, the total number of edges removed after 𝑖 iterations is at
most 𝑂(|𝐺′ |2) + 𝑖

4𝑟. Consequently, if the algorithm reaches the 𝑖-th iteration, it has
witnessed at least 𝑖 − 𝐻 tiny-degree vertices and we therefore have

𝑖 − 𝐻 ≤ 𝐿 +
6 · (𝑂(|𝐺′ |2) + 𝑖

8𝑟)
𝑟

≤ 𝐿 + 𝑂(|𝐺′ |2/𝑟) + 3𝑖
4
.

It follows that 𝑖 ≤ 𝑂(𝐿+𝐻+ |𝐺′ |2/𝑟) = 𝑂(|𝐺′ |2/𝑟), and therefore Algorithm 5.4 runs
for at most𝑂(|𝐺′ |2/𝑟) iterations. Recall that each iteration removing a tiny-degree
vertex takes time 𝑂(𝑟2), and therefore the total time of all iterations removing
tiny-degree vertices is 𝑂(|𝐺′ |2/𝑟 · 𝑟2) = 𝑂(𝑛|𝐺′ |).

5.5.4 Putting the Pieces Together

We are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Recall that we start from a 3-SUM instance with addi-
tive energy 𝐸(𝐴) ≤ 𝑂(𝑛5/2), by the energy reduction in Theorem 5.6 applied
with 𝛿 = 1

2 . We set |𝐺′ | = 𝑛1/2 (that is, we set 𝑑′ = ⌈ 1
2 log𝑝(𝑛)⌉ and 𝐺′ = F𝑑′𝑝) and

construct the triangle listing instance (𝑉0, 𝐸0) as described in Section 5.5.1. This
step takes time 𝑂(𝑛|𝐺′ |) = 𝑂(𝑛3/2). We then run Algorithm 5.4 as described in
Section 5.5.3 to obtain an induced subgraph (𝑉1, 𝐸1) which is regular with de-
gree Θ(𝑛/|𝐺′ |) = Θ(𝑛1/2). This step again takes time 𝑂(𝑛|𝐺′ |) = 𝑂(𝑛3/2) in expec-
tation, see Lemma 5.32.

We next bound the (expected) number of 𝑘-cycles for all 𝑘 ≥ 3. By Lemma 5.25,
the expected number of triangles in (𝑉0, 𝐸0) is at most 𝑂(𝑛3 |𝐺′ |−3) (alternatively,
we can immediately find a 3-SUM solution in time𝑂(|𝐺′ |3/𝑛) = 𝑂(𝑛1/2)). For 𝑘 = 4,
by Lemma 5.29 the expected number of 4-cycles in (𝑉0, 𝐸0) is at most

𝑂(𝐸(𝐴) · 𝑛4−4 |𝐺′ |−4+3 + 𝑛4−2 |𝐺′ |−4+4 + 𝑛4 |𝐺′ |−4) = 𝑂(𝑛2).

125

Using Markov’s bound, this number is at most ten times its expected value with
probability at least 9

10 . In this case, for any constant 𝑘 > 4, the number of 𝑘-cycles
is at most 𝑂(𝑛1/2)𝑘−4 · 𝑂(𝑛2) = 𝑂(𝑛𝑘/2) by Lemma 5.30.

Now suppose that we can list all triangles in (𝑉1, 𝐸1) in time 𝑂(𝑛2−𝜖). Adding
the triangles detected by Algorithm 5.4, we can compute a list of all triangles
in (𝑉0, 𝐸0). Recall that by Lemma 5.24, every triangle corresponds to a pseudo-
solution in the 3-SUM instance. Therefore, it suffices to test whether there exists a
proper solution among the pseudo-solutions and to return “yes” in this case. The
total expected running time is 𝑂(𝑛3/2 + 𝑛2−𝜖) and we succeed with constant error
probability.

Listing Hardness in Graphs with Smaller Degrees. For one of our corollaries of
the reduction we need denser graphs than the Θ(𝑛1/2)-regular graphs constructed
before. It is easy to obtain the following generalization of our reduction to graphs
which are Θ(𝑟)-regular.

Lemma 5.33 (Hardness of Listing Triangles in 𝚯(𝒓)-Regular Graphs). For any 𝜖 >
0 and any parameter 𝑁1/2 ≤ 𝑟 ≤ 𝑁1−Ω (1) , there is no 𝑂((𝑁𝑟2)1−𝜖)-time algorithm
listing all triangles in a Θ(𝑟)-regular 𝑁 -vertex graph which contains as most 𝑂(𝑟𝑘)
𝑘-cycles for all 3 ≤ 𝑘 ≤ 𝑂(1), unless the 3-SUM conjecture fails.

Proof. We redo the proof of Theorem 5.1 with a different choice of the group
size 𝐺′. Specifically, start from a 3-SUM instance of size 𝑛 = 𝑁1/2𝑟 and with addi-
tive energy 𝐸(𝐴) ≤ 𝑂(𝑛5/2) and set |𝐺′ | = 𝑁1/2. The constructions in Sections 5.5.1
and 5.5.3 construct a graph with at most |𝐺′ |2 = 𝑁 vertices, and the degree of
every vertex is Θ(𝑛/|𝐺′ |) = Θ(𝑟). The running time of these steps is bounded
by 𝑂(𝑛|𝐺′ | + |𝐺′ |3/𝑛) (by Lemmas 5.25 and 5.32). By Lemma 5.25 the expected
number of triangles is𝑂(𝑛3 |𝐺′ |−3) = 𝑂(𝑟3) and by Lemma 5.29, the expected num-
ber of 4-cycles is bounded

𝑂(𝐸(𝐴) · 𝑛4−4 |𝐺′ |−4+3 + 𝑛4−2 |𝐺′ |−4+4 + 𝑛4 |𝐺′ |−4)
= 𝑂(𝑁3/4𝑟5/2 + 𝑁𝑟2 + 𝑟4) = 𝑂(𝑟4).

For last step we have used the assumption 𝑁1/2 ≤ 𝑟. By Lemma 5.30 it fol-
lows that the number of 𝑘-cycles is bounded by 𝑂(𝑟𝑘). Finally, an algorithm in
time 𝑂((𝑁𝑟2)1−𝜖) would imply an algorithm in time 𝑂(𝑛2−2𝜖 + 𝑛|𝐺′ | + |𝐺′ |3/𝑛) for
the 3-SUM instance we started from. As 𝑛1/2 ≤ |𝐺′ | ≤ 𝑛1−Ω (1) , this is subquadratic
and contradicts the 3-SUM conjecture.

All-Edges Triangle. Many reductions starting from triangle listing can be phrased
in a nicer way by starting instead from the All-Edges Triangle problem: Given a
graph, determine for each edge whether it is part of a triangle. Using our reduc-
tion and in addition some known tricks to turn detection algorithms into witness-
finding algorithms, we also obtain the following conditional lower bound:

Lemma 5.34 (Hardness of All-Edges Triangle). For any constant 𝜖 > 0, there is
no 𝑂(𝑛2−𝜖)-time algorithm for the All-Edges Triangle problem in Θ(𝑛1/2)-regular 𝑛-
vertex graphs which contain at most𝑂(𝑛𝑘/2) 𝑘-cycles for all 𝑘 ≥ 3, unless the 3-SUM
conjecture fails.

5.6 Hardness of 4-Cycle Listing

This section is devoted to proving the following Theorem 1.12.

Theorem 1.12 (Hardness of Listing 4-Cycles). For any 𝜖 > 0, there is no algorithm
listing all 4-cycles in time 𝑂(𝑛2−𝜖 + 𝑡) or in time 𝑂(𝑚4/3−𝜖 + 𝑡) (where 𝑡 is the number
of 4-cycles), unless the 3-SUM conjecture fails.

126

Algorithm 5.5. The reduction from listing triangles in a Θ(𝑛1/2)-regular tripar-
tite graph 𝐺 = (𝑉, 𝐸) to listing 4-cycles.

1 Randomly split 𝑉 into 𝑉1, . . . , 𝑉𝑠
2 for each (𝑖, 𝑗, ℓ) ∈ [𝑠]3 do
3 Let 𝑉𝑖, 𝑗,ℓ = 𝑉𝑖 ∪𝑉 𝑗 ∪𝑉ℓ
4 Let 𝐺𝑖, 𝑗,ℓ be the graph with vertices {𝑥1, 𝑥2, 𝑥3, 𝑥4 : 𝑥 ∈ 𝑉𝑖, 𝑗,ℓ} and edges

{(𝑥1, 𝑦2), (𝑥2, 𝑦3), (𝑥3, 𝑦4) : (𝑥, 𝑦) ∈ 𝐸}
5 Run the fast 4-cycle listing algorithm on 𝐺𝑖, 𝑗,ℓ, and for each 4-cycle of the

form (𝑥1, 𝑦2, 𝑧3, 𝑥4) report the triangle (𝑥, 𝑦, 𝑧) (unless already
reported)

Suppose that for some 𝜖 > 0, there is an algorithm listing all 4-cycles in a
graph in time 𝑂(𝑛2−𝜖 + 𝑡). We give a reduction from listing triangles as described
in Theorem 5.1 to listing 4-cycles. That is, we are given an Θ(𝑛1/2)-regular 𝑛-
vertex graph 𝐺 = (𝑉, 𝐸) which contains at most 𝑂(𝑛2) 4-cycles, and the goal is
to list 𝑂(𝑛3/2) triangles in subquadratic time. The reduction is summarized in Al-
gorithm 5.5.

The algorithm randomly splits the vertex set into 𝑠 groups, and for each
triple (𝑖, 𝑗, ℓ) ∈ [𝑠]3 of groups, constructs a new graph 𝐺𝑖, 𝑗,ℓ. This graph is
obtained from 𝐺 by copying each vertex 𝑥 four times 𝑥1, 𝑥2, 𝑥3, 𝑥4, and we add
edges (𝑥1, 𝑦2), (𝑥2, 𝑦3), (𝑥3, 𝑦4) as in the original graph, and additionally add all
edges (𝑥1, 𝑥4). We list all 4-cycles in the graph 𝐺𝑖, 𝑗,ℓ and for each 4-cycle of the
form (𝑥1, 𝑦2, 𝑧3, 𝑥4) we report the triangle (𝑥, 𝑦, 𝑧). Our first claim is that the
algorithm correctly reports all triangles in 𝐺.

Lemma 5.35 (Correctness of Algorithm 5.5). Algorithm 5.5 correctly lists all trian-
gles in 𝐺.

Proof. First, observe that by the construction of 𝐺𝑖, 𝑗,ℓ every triple (𝑥, 𝑦, 𝑧) re-
ported by the algorithm indeed forms a triangle in 𝐺. Moreover, each trian-
gle (𝑥, 𝑦, 𝑧) in 𝐺 can be found as the 4-cycle (𝑥1, 𝑦2, 𝑧3, 𝑥4) in a graph 𝐺𝑖, 𝑗,ℓ,
where 𝑥 ∈ 𝑉𝑖 , 𝑦 ∈ 𝑉 𝑗 , 𝑧 ∈ 𝑍ℓ. (In addition, there are five other 4-cycles which cor-
respond to (𝑥, 𝑦, 𝑧).)

Lemma 5.36 (Number of 4-Cycles). The expected total number of 4-cycles across
all graphs 𝐺𝑖, 𝑗,ℓ is at most 𝑂(𝑛2/𝑠 + 𝑛3/2).

Proof. Each 4-cycle using an edge (𝑥1, 𝑥4) must take the form (𝑥1, 𝑦2, 𝑧3, 𝑥4). In
this case, (𝑥, 𝑦, 𝑧) is a triangle in the original graph 𝐺. As each triangle appears as
a four cycle in all six possible permutations, the contribution from 4-cycles using
an edge (𝑥1, 𝑥4) is therefore bounded by six times the number of triangles in 𝐺. By
Theorem 5.1, 𝐺 contains at most 𝑂(𝑛3/2) many triangles.

In each graph𝐺𝑖, 𝑗,ℓ there are five types of 4-cycles which do not use edges of the
form (𝑥1, 𝑥4), namely (𝑥1, 𝑦2, 𝑧1, 𝑤2), (𝑥2, 𝑦3, 𝑧2, 𝑤3), (𝑥3, 𝑦4, 𝑧3, 𝑤4), (𝑥1, 𝑦2, 𝑧3, 𝑤2)
and (𝑥2, 𝑦3, 𝑧4, 𝑤3). In all five cases, (𝑥, 𝑦, 𝑧, 𝑤) forms a 4-cycle in the original
graph—more specifically, in the subgraph induced by 𝑉𝑖, 𝑗,ℓ. In particular, the
contribution of these 4-cycles is five times the number of 4-cycles in 𝐺[𝑉𝑖, 𝑗,ℓ]. Re-
call that in 𝐺 there are only 𝑂(𝑛2) 4-cycles, and each 4-cycle survives only if all
of its four vertices are sampled into some set 𝑉𝑖, 𝑗,ℓ. This happens with prob-
ability 𝑠3 · 𝑠−4 = 𝑠−1. Hence, the expected total number of surviving 4-cycles
is 𝑂(𝑛2/𝑠).

Lemma 5.37 (Running Time of Algorithm 5.5). For 𝑠 = 𝑛𝜖/4, Algorithm 5.5 runs in
expected time 𝑂(𝑛2−𝜖/4).

Proof. The total running time is dominated by the running time of the fast 4-cycle
listing algorithm. Assume that this algorithm runs in time𝑂(𝑛2−𝜖+𝑡𝑖, 𝑗,ℓ)where 𝑡𝑖, 𝑗,ℓ
is the number of 4-cycles in the respective instance. By the previous Lemma 5.36

127

Algorithm 5.6. The reduction from listing triangles in a Θ(𝑛1/2)-regular tripar-
tite graph 𝐺 = (𝑋,𝑌 , 𝑍, 𝐸) to approximate distance oracles with stretch 𝑘.

1 Randomly split 𝑋,𝑌 , 𝑍 into 𝑋1, . . . , 𝑋𝑠, 𝑌1, . . . , 𝑌𝑡 , 𝑍1, . . . , 𝑍𝑠
2 for each (𝑖, 𝑗, ℓ) ∈ [𝑠] × [𝑡] × [𝑠] do
3 Let 𝐺𝑖, 𝑗,ℓ be the subgraph of 𝐺 induced by 𝑋𝑖 , 𝑌𝑗 , 𝑍ℓ where all edges

between 𝑋𝑖 and 𝑍ℓ are deleted
4 Preprocess 𝐺𝑖, 𝑗,ℓ with the approximate distance oracle
5 for each (𝑥, 𝑧) ∈ (𝑋𝑖 × 𝑍ℓ) ∩ 𝐸 do
6 Query the distance oracle to get an estimate 𝑑 (𝑥, 𝑧) satisfying

𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥, 𝑧) ≤ 𝑘 · 𝑑 (𝑥, 𝑧)
7 if 𝑑 (𝑥, 𝑧) ≤ 2𝑘 then
8 for each 𝑦 ∈ 𝑌𝑗 with (𝑥, 𝑦) ∈ 𝐸 do
9 if (𝑦, 𝑧) ∈ 𝐸 then
10 Report the triangle (𝑥, 𝑦, 𝑧)

we have that
∑
𝑖, 𝑗,ℓ 𝑡𝑖, 𝑗,ℓ ≤ 𝑂(𝑛2/𝑠) = 𝑂(𝑛2−𝜖/4). Hence, the total running time of

Algorithm 5.5 is∑︁
𝑖, 𝑗,ℓ∈[𝑠]

𝑂(𝑛2−𝜖 + 𝑡𝑖, 𝑗,ℓ) ≤ 𝑂(𝑛3𝜖/4 · 𝑛2−𝜖) + 𝑂(𝑛2−𝜖/4) = 𝑂(𝑛2−𝜖/4).

Similarly, if the fast 4-cycle listing algorithm runs in time 𝑂(𝑚4/3−𝜖 + 𝑡𝑖, 𝑗,ℓ), then
the running time becomes∑︁

𝑖, 𝑗,ℓ∈[𝑠]
𝑂((𝑛3/2)4/3−𝜖 + 𝑡𝑖, 𝑗,ℓ) ≤ 𝑂(𝑛3𝜖/4 · 𝑛2−𝜖) + 𝑂(𝑛2−𝜖/4) = 𝑂(𝑛2−𝜖/4).

The proof of Theorem 1.12 is complete by Lemmas 5.35 and 5.37. If necessary
we can further let the algorithm terminate with high probability in time𝑂(𝑛2−𝜖/4)
by repeating the reduction 𝑂(log 𝑛) times and interrupting each execution which
takes too long.

5.7 Hardness of Distance Oracles

In this section we prove our conditional hardness results for approximate dis-
tance oracles. We start with the stretch-𝑘 regime (in Section 5.7.1), followed by
the stretch-𝛼 regime for 2 ≤ 𝛼 < 3 (in Section 5.7.2), and the improved hardness
for dynamic approximate distance oracles (in Section 5.7.3).

5.7.1 Stretch 𝒌

The goal of this section is to prove the following theorem:

Theorem 1.9 (Hardness of Distance Oracles with Stretch 𝒌). For any integer con-
stant 𝑘 ≥ 2, there is no approximate distance oracle for sparse graphs with stretch 𝑘,
preprocessing time 𝑂(𝑚1+𝑝) and query time 𝑂(𝑚𝑞) with 𝑘𝑝 + (𝑘 + 1)𝑞 < 1, unless
the 3-SUM conjecture fails.

Assume that we have access to an approximate distance oracle with stretch 𝑘,
preprocessing time 𝑂(𝑚1+𝑝) and query time 𝑂(𝑚𝑞). We prove hardness starting
from an instance of listing𝑂(𝑛3/2) triangles in a Θ(𝑛1/2)-regular tripartite 𝑛-vertex
graph 𝐺 = (𝑋,𝑌 , 𝑍, 𝐸) which contains at most 𝑂(𝑛𝑘′/2) 𝑘′-cycles for all 𝑘′ ≥ 4 (that
is, we apply Theorem 5.1, and the additional assumption that 𝐺 be tripartite is
without loss of generality). We let 𝑠, 𝑡 ≤ 𝑛1/2−Ω (1) be two parameters to be set later
and give the reduction in Algorithm 5.6.

128

We first arbitrarily split the vertex parts𝑋,𝑌 , 𝑍 into 𝑠, 𝑡, 𝑠many groups𝑋𝑖 , 𝑌𝑗 , 𝑍ℓ,
respectively. Then consider all graphs 𝐺𝑖, 𝑗,ℓ induced by 𝑋𝑖 ∪ 𝑌𝑗 ∪ 𝑍ℓ, where we
have deleted all edges between 𝑋𝑖 and 𝑍ℓ. We preprocess 𝐺𝑖, 𝑗,ℓ with the distance
oracle, and query the oracle for estimates 𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥, 𝑧) ≤ 𝑘 · 𝑑 (𝑥, 𝑧) for all
pairs (𝑥, 𝑧) ∈ (𝑋𝑖 × 𝑍ℓ) ∩ 𝐸. We call a pair (𝑥, 𝑧) with estimate 𝑑 (𝑥, 𝑧) ≤ 2𝑘 a candi-
date pair. The algorithm enumerates all candidate pairs (𝑥, 𝑧) and all neighbors 𝑦
of 𝑥, tests whether (𝑥, 𝑦, 𝑧) forms a triangle (in the original graph) and reports the
triangle in the positive case. It is easy to see that the reduction is correct:

Lemma 5.38 (Correctness of Algorithm 5.6). The reduction in Algorithm 5.6 cor-
rectly lists all triangles in the given graph 𝐺 = (𝑋,𝑌 , 𝑍, 𝐸).

Proof. First note that whenever the algorithm reports a triangle (𝑥, 𝑦, 𝑧), we have
verified in Lines 5, 8 and 9 that all edges (𝑥, 𝑦), (𝑦, 𝑧), (𝑥, 𝑧) are present.

Next, focus on any triangle (𝑥, 𝑦, 𝑧) in 𝐺; we prove that it is reported by the
algorithm. Clearly there exist 𝑖 ∈ [𝑠], 𝑗 ∈ [𝑡], ℓ ∈ [𝑠] such that 𝑥 ∈ 𝑋𝑖 , 𝑦 ∈ 𝑌𝑗 , 𝑧 ∈ 𝑍ℓ.
Focus on the iteration of the loop in Line 2 with (𝑖, 𝑗, ℓ) and on the iteration of the
inner loop in Line 5 with (𝑥, 𝑧). The distance oracle is queried to obtain a distance
estimate 𝑑 (𝑥, 𝑧) ≤ 𝑘 · 𝑑 (𝑥, 𝑧) for the distance of 𝑥 and 𝑧 in 𝐺𝑖, 𝑗,ℓ. Note that 𝑥 and 𝑧
are connected by a 2-path via 𝑦, hence the distance estimate satisfies 𝑑 (𝑥, 𝑧) ≤ 2𝑘
(that is, (𝑥, 𝑧) is indeed a candidate pair). It follows that we enter the loop in Line 8
and report (𝑥, 𝑦, 𝑧) in Line 10.

The more interesting part of the proof is to bound the running time of the re-
duction. For the analysis, we first analyze the sizes and degrees of the graphs𝐺𝑖, 𝑗,ℓ.
It is easy to see that all bounds are true in expectation, and the high probability
bounds follow from Chernoff’s bound.

Lemma 5.39 (Size of 𝑮𝒊, 𝒋,ℓ). With high probability the following bounds hold for all
(𝑖, 𝑗, ℓ) ∈ [𝑠] × [𝑡] × [𝑠]:

|𝑋𝑖 |, |𝑍ℓ | ≤ 𝑂(𝑛/𝑠) and |𝑌𝑗 | ≤ 𝑂(𝑛/𝑡).
| (𝑋𝑖 × 𝑌𝑗) ∩ 𝐸 |, | (𝑌𝑗 × 𝑍ℓ) ∩ 𝐸 | ≤ 𝑂(𝑛3/2/𝑠𝑡) and | (𝑋𝑖 × 𝑍ℓ) ∩ 𝐸 | ≤ 𝑂(𝑛3/2/𝑠2).
The degree of any vertex 𝑥 ∈ 𝑋𝑖 in 𝐺𝑖, 𝑗,ℓ is 𝑂(𝑛1/2/𝑡).

Lemma 5.40 (Few Candidates). Fix 𝑖, 𝑗, ℓ ∈ [𝑠]×[𝑡]×[𝑠]. In expectation, the number
of candidate pairs (𝑥, 𝑧) ∈ (𝑋𝑖 × 𝑍ℓ) ∩ 𝐸 is at most

𝑂

(
𝑛𝑘+1/2

𝑠𝑘+1𝑡𝑘

)
.

Proof. Since each candidate pair (𝑥, 𝑧) has distance 𝑑 (𝑥, 𝑧) ≤ 2𝑘 in 𝐺𝑖, 𝑗,ℓ, 𝑥 and 𝑧
must be connected by a path of length 2𝑘′ ≤ 2𝑘 in 𝐺𝑖, 𝑗,ℓ. It follows that (𝑥, 𝑧) is
part of a cycle of (odd) length 2𝑘′ + 1 in the induced subgraph 𝐺[𝑋𝑖 ∪ 𝑌𝑗 ∪ 𝑍ℓ].
So fix any cycle in 𝐺 of length 2𝑘′ + 1 which uses exactly one edge between 𝑋

and 𝑍. In this case the cycle has exactly 𝑘′ + 1 vertices in 𝑋 ∪ 𝑍 and exactly 𝑘′
vertices in 𝑌 . The probability that this cycle is also contained in 𝐺[𝑋𝑖 ∪ 𝑌𝑗 ∪ 𝑍ℓ]
is therefore at most (1/𝑠)𝑘′+1 (1/𝑡)𝑘′ . Since the total number of (2𝑘′ + 1)-cycles
in 𝐺 is at most 𝑂(𝑛𝑘′+1/2), we obtain the claimed bound on the expected number
of candidate pairs (𝑥, 𝑧):

𝑘∑︁
𝑘′=1

𝑂

(
𝑛𝑘
′+1/2

𝑠𝑘
′+1𝑡𝑘

′

)
≤ 𝑂

(
𝑛𝑘+1/2

𝑠𝑘+1𝑡𝑘

)
,

where the last inequality holds by 𝑠, 𝑡 ≤ 𝑛1/2.

Lemma 5.41 (Running Time of Algorithm 5.6). With high probability, Algorithm 5.6
runs in expected time

𝑂

(
𝑠2𝑡 ·

((
𝑛3/2

𝑠𝑡

)1+𝑝
+ 𝑛

3/2

𝑠2 ·
(
𝑛3/2

𝑠𝑡

)𝑞
+ 𝑛𝑘+1

𝑠𝑘+1𝑡𝑘+1

))
.

129

Moreover, if 𝑘𝑝+ (𝑘 + 1)𝑞 < 1 then we can optimize 𝑠 and 𝑡 such that the time bound
becomes truly subquadratic.

Proof. We can construct the partitions 𝑋1, . . . , 𝑋𝑠,𝑌1, . . . , 𝑌𝑡 and 𝑍1, . . . , 𝑍𝑠 in time
𝑂(𝑛) and prepare the graphs 𝐺𝑖, 𝑗,ℓ in time𝑂(𝑛3/2𝑠+𝑛3/2𝑡) by a single pass over the
edge set.

The algorithm runs for 𝑠2𝑡 iterations of the outer loop; focus on one such itera-
tion 𝑖, 𝑗, ℓ. Preprocessing 𝐺𝑖, 𝑗,ℓ with the distance oracle takes time 𝑂((𝑛3/2/𝑠𝑡)1+𝑝).
Then we issue 𝑂(𝑛3/2/𝑠2) queries, each running in time 𝑂((𝑛3/2/𝑠𝑡)𝑞). There are
at most𝑂(𝑛𝑘+1/2𝑠−𝑘−1𝑡−𝑘) candidate pairs in expectation by Lemma 5.40, and only
for those we pass the condition Line 7. Executing the inner-most loop in Lines 8
to 10 takes time proportional to the degre of 𝑥 in𝐺𝑖, 𝑗,ℓ, that is, time𝑂(𝑛1/2/𝑡). Sum-
ming all contributions, the expected running time becomes:

𝑂

(
𝑠2𝑡 ·

((
𝑛3/2

𝑠𝑡

)1+𝑝
+ 𝑛

3/2

𝑠2 ·
(
𝑛3/2

𝑠𝑡

)𝑞
+ 𝑛𝑘+1

𝑠𝑘+1𝑡𝑘+1

))
.

We now prove that if 𝑘𝑝 + (𝑘 + 1)𝑞 < 1, then the running time becomes sub-
quadratic for some appropriate choice of 𝑠 and 𝑡. Let 𝜖 > 0 be a small constant to
be specified later, and set

𝑠 = 𝑛1/2− 𝑝
2−2𝑝−2𝑞 −𝜖,

𝑡 = 𝑛1/2− 𝑞
2−2𝑝−2𝑞 −𝜖.

We analyze the three contributions of the running time in isolation. The first term
(i.e., the contribution of the preprocessing time) is

𝑂(𝑛2− 𝑝
2−2𝑝−2𝑞 −𝜖+𝑝(1/2+

𝑝+𝑞
2−2𝑝−2𝑞+𝜖)) = 𝑂(𝑛2− 𝑝

2−2𝑝−2𝑞 −𝜖+𝑝(
1

2−2𝑝−2𝑞+𝜖)) = 𝑂(𝑛2−𝜖(1−𝑝)).

This is subquadratic for any choice of 𝜖 > 0 as we assume that 𝑝 < 1. The second
term (i.e., the contribution of the query time) similarly becomes subquadratic:

𝑂(𝑛2− 𝑞
2−2𝑝−2𝑞 −𝜖+𝑞(1/2+

𝑝+𝑞
2−2𝑝−2𝑞+𝜖)) = 𝑂(𝑛2− 𝑞

2−2𝑝−2𝑞 −𝜖+𝑞(
1

2−2𝑝−2𝑞+𝜖)) = 𝑂(𝑛2−𝜖(1−𝑞)).

For the third term (i.e., the contribution of testing all candidate pairs) we obtain
the following bound:

𝑂(𝑛3/2+ 𝑝(𝑘−1)
2−2𝑝−2𝑞+

𝑞𝑘
2−2𝑝−2𝑞+𝜖(2𝑘−1)) = 𝑂(𝑛3/2+ 𝑘𝑝+(𝑘−1)𝑞−𝑝−𝑞

2−2𝑝−2𝑞 +𝜖(2𝑘−1)).

By the same assumption that 𝑘𝑝 + (𝑘 + 1)𝑞 < 1, the exponent becomes strictly
smaller than 2 when ignoring the contribution of 𝜖. Therefore, a sufficiently small
choice of 𝜖 > 0 achieves truly subquadratic running time.

5.7.2 Stretch 2 ≤ 𝜶 < 3

In this section we prove the following theorem:

Theorem 1.10 (Hardness of Distance Oracles with Stretch 2 ≤ 𝜶 < 3). For any
2 ≤ 𝛼 < 3 and 𝜖 > 0, in sparse graphs there is no distance oracle with stretch 𝛼,
query time 𝑛𝑜(1) and preprocessing time 𝑂(𝑚1+ 2

1+𝛼 −𝜖), unless the 3-SUM conjecture
fails.

We use a powerful gadget which was already used in the conditional space
lower bounds by Pătraşcu, Roditti and Thorup [171]: Butterfly graphs. We first
define the butterfly graph and then give quick proofs for the properties relevant
for our reduction.

130

Algorithm 5.7. The reduction from listing triangles in a Θ(𝑟)-regular tripartite
graph 𝐺 = (𝑋,𝑌 , 𝑍, 𝐸) to approximate distance oracles with stretch 𝛼.

1 Randomly split 𝑌 into 𝑌1, . . . , 𝑌𝑡
2 for each 𝑗 ∈ [𝑡] do
3 Let 𝐺 𝑗 be the following graph: Add the vertices 𝑋𝑖 and 𝑍ℓ, and add a copy

of the butterfly graph with alphabet 𝜎 and dimension 𝑑 for each vertex
in 𝑌𝑗 . For each (𝑥, 𝑦) ∈ (𝑋 × 𝑌𝑗) ∩ 𝐸, add an edge from 𝑥 to a random
vertex in the left layer of the butterfly graph corresponding to 𝑦, and
similarly for each (𝑦, 𝑧) ∈ (𝑌𝑗 ×𝑍) ∩𝐸, add an edge from 𝑧 to a random
vertex in the right layer of the butterfly graph corresponding to 𝑦

4 Preprocess 𝐺 𝑗 with the approximate distance oracle
5 for each (𝑥, 𝑧) ∈ (𝑋 × 𝑍) ∩ 𝐸 do
6 Query the distance oracle to get an estimate 𝑑 (𝑥, 𝑧) satisfying

𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥, 𝑧) ≤ 𝛼 · 𝑑 (𝑥, 𝑧)
7 if 𝑑 (𝑥, 𝑧) ≤ 𝛼 · (𝑑 + 2) then
8 for each 𝑦 ∈ 𝑌𝑗 with (𝑥, 𝑦) ∈ 𝐸 do
9 if (𝑦, 𝑧) ∈ 𝐸 then
10 Report the triangle (𝑥, 𝑦, 𝑧)

Definition 5.42 (Butterfly Graph). The butterfly graph with alphabet 𝜎 and dimen-
sion 𝑑 is the (𝑑 + 1)-partite graph with vertex sets [𝜎]𝑑 × [𝑑 + 1], and edges{

((𝑠, 𝑖), (𝑠′, 𝑖 + 1)) : 𝑠[𝑗] = 𝑠′ [𝑗] for all 𝑗 ∈ [𝑑], 𝑗 ≠ 𝑖
}
.

That is, two vertices (𝑠, 𝑖) and (𝑠′, 𝑖 + 1) are connected by an edge if and only if the
length-𝑑 string 𝑠 equals 𝑠′ in all positions except 𝑖 (where it might be or might not
be equal). We call the vertices (𝑠, 𝑖) the 𝑖-th layer, and we occasionally call the 1-st
layer the left layer and the (𝑑 + 1)-st layer the right layer.

In particular, we remark that the butterfly graph with alphabet 𝜎 and dimen-
sion 𝑑 has (𝑑 + 1)𝜎𝑑 vertices and 𝑑𝜎𝑑+1 edges.

Lemma 5.43 (Butterfly Graph). Focus on the butterfly graph with alphabet 𝜎 and
dimension 𝑑. Then:

Left to right: The distance from any vertex in the left layer to any vertex in the
right layer is exactly 𝑑.
Left to left: The probability that two random vertices in the left layer have dis-
tance at most 2𝑑 − 2ℓ is at most 𝜎−ℓ.

Proof. Observe that in the butterfly graph, exactly the edges from the 𝑖-th to the
(𝑖 + 1)-st layer can change the 𝑖-th position of the strings. This makes the first
property obvious: For any two vertices (𝑠, 1) and (𝑠′, 𝑑 + 1), follow the unique
path which corrects the mismatches between 𝑠 and 𝑠′ in positions 1, 2, . . . , 𝑑.

For the second property, let (𝑠, 1) and (𝑠′, 1) be two random vertices in the
left layer, i.e., let 𝑠 and 𝑠′ be random strings in [𝜎]𝑑 . The distance between (𝑠, 1)
and (𝑠′, 1) is exactly two times the largest 𝑖 for which 𝑠[𝑖] ≠ 𝑠′ [𝑖], as we have to
reach the 𝑖-th layer in the butterfly in order to change 𝑠[𝑖] into 𝑠′ [𝑖]. Hence, they
have distance at most 2𝑑−2ℓ only if 𝑠 equals 𝑠′ in the last ℓ positions. Since 𝑠 and 𝑠′
are random strings, this happens with probability at most 𝜎−ℓ.

With this gadget in mind, we are ready to state the reduction, see Algo-
rithm 5.7. Let 𝑑 = ⌈max(32/𝜖, 4

3−𝛼)⌉. Using Lemma 5.33 we start from a Θ(𝑟)-
regular 𝑛-vertex graph (for some parameter 𝑟 ≥ 𝑛1/2 to be fixed later) which
contains at most 𝑂(𝑛𝑘/2) 𝑘-cycles, for all 𝑘 ≥ 4, and will list 𝑂(𝑛𝑟) triangles in
time 𝑂(𝑛𝑟2−𝛿). Let 𝑡 ≤ 𝑟1−Ω (1) be another parameter, and let 𝜎 = 𝑟1/𝑑 .

The reduction is very similar to the one in the previous section, except that we
only split the vertex set 𝑌 (in the language of the previous section we have 𝑠 = 1)

131

and that we construct the graphs 𝐺 𝑗 differently: The difference is that we replace
every vertex in 𝑌𝑗 by a copy of the butterfly gadget. The edges from 𝑋 are con-
nected to a random vertex in the left layer, and the edges from 𝑍 are connected to
a random vertex in the right layer. Notice that thereby two vertices 𝑥, 𝑧 which are
connected by a 2-path via some vertex 𝑦 in the original graph, are now connected
via a (𝑑 + 2)-path which traverses the butterfly gadget from left to right.

We preprocess each graph 𝐺 𝑗 with the distance oracle, and then query all
edges (𝑥, 𝑧) ∈ (𝑋 × 𝑍) ∩ 𝐸 to get a distance estimate 𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥, 𝑧) ≤ 𝛼𝑑 (𝑥, 𝑧).
We say that a pair (𝑥, 𝑧) is a candidate pair if the 𝑑 (𝑥, 𝑧) ≤ 𝛼(𝑑 + 2). Note that only
candidate pairs can be part of a triangle, and we therefore enumerate all candi-
date pairs (𝑥, 𝑧) and all neighbors 𝑦 ∈ 𝑌𝑗 of 𝑥 and test whether (𝑥, 𝑦, 𝑧) forms a
triangle.

We start to analyze the size of the graphs 𝐺 𝑗 . Note that we have to take care of
the additional vertices and edges added by the butterfly gadgets.

Lemma 5.44 (Size of 𝑮 𝒋). With high probability, the following bounds hold for
all 𝑗 ∈ [𝑡]: The graph 𝐺 𝑗 has 𝑂(𝑛 + 𝑛𝑟/𝑡) vertices and 𝑂(𝑛𝑟1+1/𝑑/𝑡) edges, and the
degree of any vertex 𝑥 ∈ 𝑋 is bounded by 𝑂(𝑟/𝑡).

Proof. For the degree bound the butterfly gadgets play no role and the proof is the
same as in the last section using Chernoff’s bound. For the number of vertices, first
recall that with high probability there are 𝑂(𝑛/𝑡) vertices in 𝑌𝑗 . Since each vertex
in 𝑌𝑗 is replaced by a butterfly graph of size 𝑂(𝑑𝜎𝑑) = 𝑂(𝑟), the bound on the
vertices is correct. Moreover, each butterfly graph contributes 𝑑𝜎𝑑+1 = 𝑂(𝑟1+1/𝑑)
additional edges and therefore also the bound on the edges is as claimed.

Lemma 5.45 (Few Candidates). Fix 𝑗 ∈ [𝑡]. In expectation, the expected number of
candidate pairs (𝑥, 𝑧) ∈ (𝑋 × 𝑍) ∩ 𝐸 is at most

𝑂

(
𝑟3𝑑+ 3+𝛼

2 +
4
𝑑

𝑡3𝑑

)
.

Proof. First note that there is a natural correspondence between paths from 𝑥

to 𝑧 in the original graph (which we will call original paths) and paths in the
constructed graph 𝐺 𝑗 which take the shortest route through the butterfly gadgets
(which we will call inflated paths).

Observe that any inflated path from 𝑥 to 𝑧 of length at most 𝛼 · (𝑑 + 2) must be
separable into a path which zigzags between 𝑋 and the butterfly gadgets, followed
by a path which zigzags between the butterfly gadgets and 𝑍. Any other inflated
path would pass through at least three butterfly gadgets (once by traveling from 𝑋

to 𝑍, once by traveling back to 𝑋 and once more by traveling to 𝑍 to reach the final
destination 𝑧) which would require length 3𝑑 + 2. Since we set 𝑑 > 4

3−𝛼 , we have
the inequality 𝛼 · (𝑑 + 2) < 3𝑑 + 2 which leads to a contradiction.

Any such inflated path originates from a 2𝑘-path in the original graph 𝐺 (for
some 𝑘 ≤ 3𝑑) that first zigzags between 𝑋 and 𝑌𝑗 , and then zigzags between 𝑌𝑗
and 𝑍. (In particular, for exactly 𝑘 − 1 times the path reaches the vertex part 𝑌𝑗
without crossing to the other side from 𝑋 to 𝑍 or vice versa.) Since the edge from 𝑥

to 𝑧 is also present by assumption, this closes a cycle of length 2𝑘+1 in the original
graph.

As we have a good bound on the number of such cycles (namely, 𝑂(𝑟2𝑘+1)
many), our strategy is to prove that each cycle becomes a short inflated path only
with small probability. First of all, any original 2𝑘-path as the one described sur-
vives only with probability at most 𝑡−𝑘 in the induced graph 𝐺[𝑋 ∪ 𝑌𝑗 ∪ 𝑍]. But
even if a path survives, we claim that it leads to a short inflated path only with
small probability. Since the path has to traverse 𝑘 − 1 butterfly gadgets from left
to left (or right to right), we expect the path to have length 2𝑘 + 𝑑 + (𝑘 − 1) · 2𝑑
(2𝑘 steps in the original path plus 𝑑 steps to cross through one butterfly gadget
plus (𝑘 − 1) · 2𝑑 because of the remaining butterfly gadgets). Using Lemma 5.43,

132

the probability that it has length at most 2𝑘 + 𝑑 + (𝑘 − 1) · 2𝑑 − 2ℓ is therefore at
most ∑︁

ℓ1 ,...,ℓ𝑘−1∈Z
ℓ1+···+ℓ𝑘−1=ℓ

𝜎−ℓ1 · . . . · 𝜎−ℓ𝑘−1 =
∑︁

ℓ1 ,...,ℓ𝑘−1∈Z
ℓ1+···+ℓ𝑘−1=ℓ

𝜎−ℓ = 𝑂(𝜎−ℓ).

Here we hide in the 𝑂-notation a constant which only depends on 𝑘 and ℓ, both of
which are functions of 𝑑 and thereby constants for us.

Hence, for ℓ = ⌊𝑘 + 𝑑
2 + (𝑘− 1)𝑑 − 𝛼· (𝑑+2)

2 ⌋ the probability that the inflated path
has length at most 𝛼 · (𝑑 + 2) ≤ 2𝑘 + 𝑑 + (𝑘 − 1) · 2𝑑 − 2ℓ is at most

𝑂(𝜎−ℓ)

≤ 𝑂(𝜎−𝑘− 𝑑2 −(𝑘−1)𝑑+ 𝛼· (𝑑+2)
2 +1)

≤ 𝑂(𝜎−𝑑 (1
2+𝑘−1− 𝛼2)+4)

≤ 𝑂(𝜎−𝑑 (𝑘− 𝛼+1
2)+4)

≤ 𝑂(𝑟−𝑘+ 𝛼+1
2 +

4
𝑑).

By combining the arguments from the previous paragraphs, we obtain that
each 2𝑘 + 1 cycle survives only with probability 𝑡−𝑘 and (independently) becomes
a short inflated path with probability at most𝑂(𝑟−𝑘+ 𝛼+1

2 +
4
𝑑). Since the total number

of (2𝑘 + 1)-cycles in the original graph is 𝑂(𝑟2𝑘+1/2), we obtain the claimed bound
on the expected number of candidate pairs:

𝑂

(
3𝑑∑︁
𝑘=2

𝑟2𝑘+1𝑟−𝑘+
𝛼+1

2 +
4
𝑑

𝑡𝑘

)
= 𝑂

(
3𝑑∑︁
𝑘=2

𝑟𝑘+
3+𝛼

2 +
4
𝑑

𝑡𝑘

)
≤ 𝑂

(
𝑟3𝑑+ 3+𝛼

2 +
4
𝑑

𝑡3𝑑

)
.

For the last inequality we have used that 𝑡 ≤ 𝑟.

Proof of Theorem 1.10. We pick 𝑟 = 𝑛
2

1+𝛼 · (1−𝛿) and 𝑡 = 𝑟1−𝛾 , for some 𝛾, 𝛿 > 0 to
be picked later. Recall that we set 𝑑 = ⌈max(32/𝜖, 4

3−𝛼)⌉ and 𝜎 = 𝑟1/𝑑 . The correct-
ness proof should be clear from the in-text explanations. It remains to analyze the
running time with respect to this choice of parameters. Recall that we aim for a
running time of the form (𝑛𝑟2)1−Ω (1) .

First, consider the contribution of querying the distance oracle: Issuing𝑂(𝑡𝑛𝑟)
queries, each running in subpolynomial time, takes time 𝑂(𝑛𝑟2−𝛾+𝑜(1)). Next, con-
sider the contribution of explicitly testing whether an edge (𝑥, 𝑧) is part of a trian-
gle, that is, the running time of the inner-most loop Line 8. By the previous lemma
we pass the condition in Line 7 at most

𝑡 · 𝑂
(
𝑟3𝑑+ 3+𝛼

2 +
4
𝑑

𝑡3𝑑

)
times and each call runs in time 𝑂(𝑟/𝑡). Therefore, the total time for this step
becomes

𝑡 · 𝑂
(
𝑟3𝑑+ 3+𝛼

2 +
4
𝑑

𝑡3𝑑
· 𝑟
𝑡

)
= 𝑂

(
𝑟

1+𝛼
2 · 𝑟2+3𝑑𝛾+ 4

𝑑

)
= 𝑂

(
𝑛1−𝛿𝑟2+3𝑑𝛾+ 4

𝑑

)
= 𝑂

(
𝑛𝑟2+3𝑑𝛾+ 4

𝑑 −𝛿
)
.

Finally, we need to consider the preprocessing time of the distance oracles. Recall
that each graph 𝐺 𝑗 has𝑂(𝑛𝑟/𝑡) vertices and𝑂(𝑛𝑟1+1/𝑑/𝑡) edges. Assuming that the

133

Algorithm 5.8. The reduction from listing triangles in a Θ(𝑛1/2)-regular tripar-
tite graph 𝐺 = (𝑋,𝑌 , 𝑍, 𝐸) to dynamic approximate distance oracles with stretch
2𝑘 − 1.

1 Randomly split 𝑌 , 𝑍 into 𝑌1, . . . , 𝑌𝑡 , 𝑍1, . . . , 𝑍𝑠
2 for each (𝑗, ℓ) ∈ [𝑡] × [𝑠] do
3 Let𝐺 𝑗,ℓ be the subgraph of𝐺 induced by𝑌𝑗∪𝑍ℓ, where we subdivide each

edge into a path of length 10𝑘 (equivalently, think of this path as an
edge of weight 10𝑘), and add an isolated vertex 𝑣

4 Preprocess 𝐺 𝑗,ℓ with the dynamic approximate distance oracle (i.e., add
the edges one by one)

5 for each 𝑥 ∈ 𝑋 do
6 Add an edge (𝑣, 𝑦) for each neighbor 𝑦 ∈ 𝑌𝑗 of 𝑥
7 for each 𝑧 ∈ 𝑍ℓ with (𝑥, 𝑧) ∈ 𝐸 do
8 Query the distance 𝑑 (𝑣, 𝑧) ≤ 𝑑 (𝑣, 𝑧) ≤ (2𝑘 − 1) · 𝑑 (𝑣, 𝑧)
9 if 𝑑 (𝑣, 𝑧) ≤ (2𝑘 − 1) · (10𝑘 + 1) then
10 for each 𝑦 ∈ 𝑌𝑗 with (𝑥, 𝑦) ∈ 𝐸 do
11 if (𝑦, 𝑧) ∈ 𝐸 then
12 Report the triangle (𝑥, 𝑦, 𝑧)
13 Delete all edges incident to 𝑣

preprocesing time of the distance oracle is 𝑂(𝑚1+ 2
1+𝛼 −𝜖) as in the theorem state-

ment, the total preprocessing time is bounded by

𝑡 · 𝑂
((
𝑛𝑟1+1/𝑑

𝑡

)1+ 2
1+𝛼 −𝜖

)
≤ 𝑂(𝑟(𝑛𝑟1/𝑑+𝛾)1+ 2

1+𝛼 −𝜖)
≤ 𝑂(𝑟1+(1

𝑑 +𝛾) · (1+
2

1+𝛼 −𝜖)𝑛1+ 2
1+𝛼 −𝜖)

≤ 𝑂(𝑟1+ 2
𝑑 +2𝛾𝑟

1
1−𝛿 𝑛1−𝜖)

≤ 𝑂(𝑟2+ 2
𝑑 +2𝛾+2𝛿−𝜖𝑛).

We pick 𝛿 = 𝜖/4, 𝑑 = ⌈max(32/𝜖, 4
3−𝛼)⌉ (as announced before), and let 𝛾 > 0 be

tiny enough. Then both contributions to the running time become 𝑂(𝑛𝑟2−Ω (1)).
This contradicts the 3-SUM hypothesis by Lemma 5.33.

5.7.3 Dynamic Distance Oracles

In contrast to the previous sections, we now consider dynamic distance oracles.
That is, we expect the distance oracle to compute distance estimates while the
graph undergoes edge insertions and deletions.

Theorem 1.11 (Hardness of Dynamic Distance Oracles). For any integer con-
stant 𝑘 ≥ 2, there is no dynamic approximate distance oracle with stretch 2𝑘 − 1,
update time 𝑂(𝑚𝑢) and query time 𝑂(𝑚𝑞) with 𝑘𝑢 + (𝑘 + 1)𝑞 < 1, unless the 3-SUM
conjecture fails.

We again prove the theorem by a reduction from listing 𝑂(𝑛3/2) triangles in a
Θ(𝑛1/2)-regular 𝑛-vertex graph 𝐺 = (𝑋,𝑌 , 𝑍, 𝐸) which contains at most 𝑂(𝑛𝑘′/2)
𝑘′-cycles for all 𝑘′ ≥ 4 (that is, we use the conditional hardness result from Theo-
rem 5.1).

Let 𝑠, 𝑡 ≤ 𝑛1/2−Ω (1) be two parameters. The reduction is given in Algorithm 5.8.
Our analysis is very similar to the analysis in the previous two sections, and we
will therefore omit some details. It is easy to prove that the algorithm reports all
triangles in 𝐺 and is therefore correct. The critical part is to analyze the running
time. To this end, we first check the size of the graphs 𝐺 𝑗,ℓ. Note that the number

134

of vertices in 𝐺 𝑗,ℓ is dominated by the vertices edges added to the graph by the
subdivision of edges into paths.

Lemma 5.46 (Size of 𝑮𝒊, 𝒋). With high probability the following bounds hold for all
(𝑗, ℓ) ∈ [𝑡] × [𝑠]:

The graph 𝐺 𝑗,ℓ has 𝑂(𝑛3/2/𝑠𝑡) vertices and edges.
The degree of any vertex 𝑧 ∈ 𝑍ℓ in 𝐺 𝑗,ℓ is 𝑂(𝑛1/2/𝑡).

We call a pair (𝑥, 𝑧) a candidate pair if, in the 𝑥-iteration of the loop in Line 5,
the distance estimate 𝑑 (𝑣, 𝑧) satisfies 𝑑 (𝑣, 𝑧) ≤ (2𝑘 − 1) (10𝑘 + 1). That is, the
condition in Line 9 is satisfied only for candidate pairs.

Lemma 5.47 (Few Candidates). Fix 𝑗, ℓ ∈ [𝑡] × [𝑠]. In expectation, the number of
candidate pairs (𝑥, 𝑧) ∈ (𝑋 × 𝑍ℓ) ∩ 𝐸 is at most

𝑂

(
𝑛𝑘+1/2

𝑠𝑘𝑡𝑘

)
.

Proof. Focus on a candidate pair (𝑥, 𝑧). There must be a neighbor 𝑦 ∈ 𝑌𝑗 of 𝑋 (in
the original graph) such that 𝑦 and 𝑧 have distance 𝑑 (𝑦, 𝑧) ≤ (2𝑘 − 1) (10𝑘 + 1) − 1
in 𝐺 𝑗,ℓ. A shortest 𝑦-𝑧-path can therefore zigzag at most 2𝑘 − 1 times between 𝑌𝑗
and 𝑍ℓ, as otherwise it would have length at least 2𝑘 · 10𝑘 > (2𝑘 − 1) (10𝑘 + 1) − 1.

Therefore, any candidate pair (𝑥, 𝑧) is part of a cycle of length at most 2𝑘′+1 ≤
2𝑘 +1 in the original graph 𝐺. For fixed 𝑗, ℓ, the probability that any (2𝑘′ +1)-cycle
survives in the induced subgraph 𝐺[𝑋 ∪ 𝑌𝑗 ∪ 𝑍ℓ] is at most 𝑠−𝑘′ 𝑡−𝑘′ . Therefore,
using that in 𝐺 there are at most 𝑂(𝑛𝑘′+1/2) cycles of length 2𝑘′ + 1, we obtain the
claimed bound on the number of candidate pairs:

𝑘∑︁
𝑘′=1

𝑂

(
𝑛𝑘
′+1/2

𝑠𝑘
′
𝑡𝑘
′

)
≤ 𝑂

(
𝑛𝑘+1/2

𝑠𝑘𝑡𝑘

)
,

where the last inequality holds by 𝑠, 𝑡 ≤ 𝑛1/2.

Proof of Theorem 1.11. We run the reduction in Algorithm 5.8. We omit the cor-
rectness proof which is similar to the previous sections, and focus on the running
time. We set

𝑠 = 𝑛
1
2 −

𝑢
2−2𝑢−2𝑞 −𝛾 ,

𝑡 = 𝑛1/2− 𝑞
2−2𝑢−2𝑞 −𝛾 ,

for some small 𝛾 > 0 to be determined later. There are three major contributions
to the running time.

First, the time to preprocess the graphs𝐺 𝑗,ℓ (via adding all edges one by one) is
bounded by𝑂(𝑠𝑡 ·𝑛3/2/𝑠𝑡) times the time to perform a single update and therefore
negligible. The time to perform the edge insertions and deletions in Lines 6 and 13
is bounded by

𝑂

(
𝑠𝑡 · 𝑛 · 𝑛

1/2

𝑡
·
(
𝑛3/2

𝑠𝑡

)𝑢)
= 𝑂(𝑛2− 𝑢

2−2𝑢−2𝑞 −𝛾+𝑢· (
1
2+

𝑢+𝑞
2−2𝑢−2𝑞)+𝑢𝛾)

= 𝑂(𝑛2+ −𝑢+𝑢−𝑢
2−𝑢𝑞+𝑢2+𝑢𝑞

2−2𝑢−2𝑞 −𝛾 (1−𝑢))
= 𝑂(𝑛2−𝛾 (1−𝑢)),

which is subquadratic for an arbitrarily small 𝛾 > 0. Similarly, the total query
time can be bounded by

𝑂

(
𝑠𝑡 · 𝑛 · 𝑛

1/2

𝑠
·
(
𝑛3/2

𝑠𝑡

)𝑞)
= 𝑂(𝑛2−𝛾 (1−𝑞)).

135

It remains to bound the time spend in the inner-most loop in Line 10. By the pre-
vious lemma we pass the condition in Line 9 at most

𝑠𝑡 · 𝑂
(
𝑛𝑘+1/2

𝑠𝑘𝑡𝑘

)
times, and each execution of the loop body takes time 𝑂(𝑛1/2/𝑡). Therefore, the
total time spent in the loop is

𝑠𝑡 · 𝑂
(
𝑛𝑘+1

𝑠𝑘𝑡𝑘+1

)
= 𝑂(𝑛3/2+ (𝑘−1)𝑢+𝑘𝑞

2−2𝑢−2𝑞 +(2𝑘−1)𝛾)

≤ 𝑂(𝑛3/2+ 𝑘𝑢+(𝑘+1)𝑞−𝑢−𝑞
2−2𝑢−2𝑞 +(2𝑘−1)𝛾).

By the assumption that 𝑘𝑢 + (𝑘 + 1)𝑞 < 1, the first terms in the exponent is strictly
less than 2, and therefore we can set 𝛾 > 0 sufficiently small to achieve sub-
quadratic running time.

136

6 Fast Minimization of Tardy Processing Time
via Partition-and-Convolve

In this comparably small chapter we apply the partition-and-convolve design
paradigm to design faster-than-brute-force algorithms for a scheduling problem,
summarizing the results from the paper [58].

58 Karl Bringmann, Nick Fischer, Danny Hermelin, Dvir Shabtay, and Philip Well-
nitz. “Faster minimization of tardy processing time on a single machine”.
In: 47th international colloquium on automata, languages, and programming
(ICALP 2020). Vol. 168. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020, pages 19:1–19:12. 10.4230/LIPIcs.ICALP.2020.19.

Organization. We start with an overview in Section 6.1. Our algorithm is split into
two parts which we present in Sections 6.2 and 6.3.

6.1 Overview

We study the 1| |∑ 𝑝 𝑗𝑈 𝑗 problem: In this problem we are given 𝑛 jobs with pro-
cessing times 𝑝 𝑗 ∈ N and due dates 𝑑 𝑗 ∈ N. A (single-machine) schedule 𝜎 is a
permutation 𝜎 : {0, . . . , 𝑛 − 1} → {0, . . . , 𝑛 − 1}, where the completion time 𝐶 𝑗 of a
job 𝑗 under 𝜎 is given by 𝐶 𝑗 =

∑
𝜎 (𝑖)≤𝜎 (𝑗) 𝑝𝑖 , that is, the total processing time of

jobs preceding 𝑗 in 𝜎 (including 𝑗 itself). Job 𝑗 is tardy in 𝜎 if 𝐶 𝑗 > 𝑑 𝑗 , and early
otherwise. Our goal is to find a schedule with minimum total processing time of
tardy jobs. If we assign a binary indicator variable𝑈 𝑗 to each job 𝑗, where𝑈 𝑗 = 1
if 𝑗 is tardy and otherwise𝑈 𝑗 = 0, our objective function can be written as

∑
𝑝 𝑗𝑈 𝑗 .

The main result of this chapter is the following theorem. Here we set 𝑃 =
∑
𝑗 𝑝 𝑗

as the total processing time of all jobs and assume that 𝑛 ≤ 𝑃 (as we can ignore all
jobs with processing time 0).

Theorem 1.13 (Faster Minimization of Tardy Processing Time). The 1| |∑ 𝑝 𝑗𝑈 𝑗

problem can be solved in time 𝑂(𝑃7/4).

To this end, we employ the partition-and-convolve paradigm: We first prove
that there is a divide-and-conquer algorithm for 1| |∑ 𝑝 𝑗𝑈 𝑗 that partitions the prob-
lem into smaller subtasks and recombines the recursive solutions via the following
convolution-style problem:

Definition 1.14 (Skewed Convolution). Let 𝐴, 𝐵, 𝑆 ∈ Z𝑛. The (max,min)-skewed
convolution of 𝐴, 𝐵, 𝑆 is defined as the vector 𝐶 ∈ Z2𝑛−1 with entries

𝐶 [𝑘] = max
𝑖, 𝑗∈[𝑛]
𝑖+ 𝑗=𝑘

min{𝐴[𝑖], 𝐵[𝑗] + 𝑆[𝑘]}.

Note that in contrast to the more classical (max,min)-convolution, we skew
the right side of the minimum by adding a value 𝑆[𝑘] depending on 𝑘. This prop-
erty is crucially necessary for us to obtain the following fine-grained reduction:

Lemma 6.1 (Reduction to Skewed Convolutions). If the (max,min)-skewed con-
volution of length-𝑛 vectors with maximum entry Δ can be computed in time𝑇 (𝑛, Δ),
then the 1| |∑ 𝑝 𝑗𝑈 𝑗 problem can be solved in time 𝑂(𝑇 (𝑃, 𝑃) log 𝑛).

As the second step, we design an efficient algorithm for computing (max,min)-
skewed convolutions. We remark that the follow-up work by Klein, Polak and Ro-
hwedder directly improves this result to time 𝑂(𝑛5/3) [137].

Lemma 6.2 (Fast Skewed Convolutions). The (max,min)-skewed convolution of
length-𝑛 vectors with maximum entry Δ can be computed in time 𝑂(𝑛7/4 log Δ).

We prove the Lemmas 6.1 and 6.2 in the next Sections 6.2 and 6.3.

137

https://doi.org/10.4230/LIPIcs.ICALP.2020.19

6.2 Reduction to Skewed Convolutions

In this section we prove Lemma 6.1. We start with a key observation about
the 1| |∑ 𝑝 𝑗𝑈 𝑗 problem, used already by Lawler and Moore. Any instance of the
problem always has an optimal schedule of a specific type, namely an Earliest Due
Date (EDD) schedule. An Earliest Due Date schedule is a schedule such that

any early job precedes all tardy jobs, and
any early job precedes all early jobs with later due dates.

In other words, in an EDD schedule all early jobs are scheduled before all tardy
jobs, and all early jobs are scheduled in non-decreasing order of due dates. The
first step in the algorithm is therefore to sort the jobs according to their due dates
so that we can assume 𝑑1 ≤ · · · ≤ 𝑑𝑛 in the following.

Let 𝐽 ⊆ [𝑛] be a subset of jobs. Write 𝑃(𝐽) = ∑
𝑗∈ 𝐽 𝑃 𝑗 . We define a vector 𝑀 (𝐽),

where 𝑀 (𝐽) [𝑥] equals the latest (that is, maximum) time point 𝑥0 for which there
is a subset of jobs in 𝐽 with total processing time equal to 𝑥 that can be sched-
uled early in an EDD schedule starting at 𝑥0. If no such subset of jobs exists, we
define 𝑀 (𝐽) [𝑥] = −∞. Here we assume that 𝑥 ranges from 0 to 𝑃(𝐽). In order to
solve the whole problem, it suffices to compute the length-𝑃 vector 𝑀 ([𝑛]). We
can read off the maximum processing time of early jobs (and thereby the mini-
mum processing time of tardy jobs) as largest 𝑥 for which 𝑀 ([𝑛]) [𝑥] ≥ 0.

We use a divide-and-conquer approach to compute 𝑀 (𝐽). As the base case it
is easy to compute 𝑀 (𝐽) for singleton sets 𝐽 = { 𝑗}: We have 𝑀 ({ 𝑗}) [𝑥] = 𝑑 𝑗 − 𝑝 𝑗
if 𝑥 = 𝑝 𝑗 , and 𝑀 ({ 𝑗}) [𝑥] = −∞ otherwise. For larger sets 𝐽 , we have the following
lemma.

Lemma 6.3 (Divide-and-Conquer Rule). Let 𝐽 ⊆ [𝑛] be an interval, with a partition
into subintervals 𝐽 = 𝐽1 ∪ 𝐽2. Then, for each 𝑥 we have

𝑀 (𝐽1 ∪ 𝐽2) [𝑥] = max
𝑥1+𝑥2=𝑥

min{𝑀 (𝐽1) [𝑥1], 𝑀 (𝐽2) [𝑥2] − 𝑥1}.

Proof. 𝑀 (𝐽) [𝑥] is the latest time point after which a subset of jobs 𝐽∗ ⊆ 𝐽

of total processing time 𝑥 can be scheduled early in an EDD schedule. Let 𝑥1
and 𝑥2 be the total processing times of jobs in 𝐽∗1 = 𝐽∗ ∩ 𝐽1 and 𝐽∗2 = 𝐽∗ ∩ 𝐽2, re-
spectively. Then 𝑥 = 𝑥1 + 𝑥2. Clearly, 𝑀 (𝐽) [𝑥] ≤ 𝑀 (𝐽1) [𝑥1], since we have to
start scheduling the jobs in 𝐽∗1 at time 𝑀 (𝐽1) [𝑥1] by latest. Similarly, it holds
that𝑀 (𝐽) [𝑥] ≤ 𝑀 (𝐽2) [𝑥2] − 𝑥1 since the jobs in 𝐽∗2 are scheduled at time𝑀 (𝐼2) [𝑥2]
by latest and the jobs in 𝐽∗1 have to be processed before that time point in an EDD
schedule. In combination, we have shown that LHS ≤ RHS in the equation of the
lemma.

To prove that LHS ≥ RHS, we construct a feasible schedule for jobs in 𝐽 start-
ing at RHS. Let 𝑥1 and 𝑥2 be the two values with 𝑥1 + 𝑥2 = 𝑥 that maximize RHS.
Then there is a schedule which schedules some jobs 𝐽∗1 ⊆ 𝐽1 of total process-
ing time 𝑥1 beginning at time min{𝑀 (𝐽1) [𝑥1], 𝑀 (𝐽2) [𝑥2] − 𝑥1} ≤ 𝑀 (𝐽1) [𝑥1], fol-
lowed by another subset of jobs 𝐽∗2 ⊆ 𝐽2 of total processing time 𝑥2 starting at time
min{𝑀 (𝐽1) [𝑥1], 𝑀 (𝐽2) [𝑥2] − 𝑥1} + 𝑥1 ≤ 𝑀 (𝐽2) [𝑥2]. This is a feasible schedule start-
ing at time RHS for a subset of jobs in 𝐽 which has total processing time 𝑥.

Note that the equation given in Lemma 6.3 is close but not precisely the equa-
tion defined in Definition 1.14 for the (min,max)-Skewed-Convolution problem.
Nevertheless, the next lemma shows that we can easily translate between these
two concepts.

Lemma 6.4. Assume that we can compute the (max,min)-skewed convolution of
length-𝑛 vectors with maximum entry Δ in time 𝑇 (𝑛, Δ). Let 𝐽 = 𝐽1 ∪ 𝐽2 be as in
Lemma 6.3. Given𝑀 (𝐽1) and𝑀 (𝐽2), we can compute𝑀 (𝐽) in time𝑂(𝑇 (𝑃(𝐽), 𝑃(𝐽))).

138

Algorithm 6.1. Computes the vector 𝑀 (𝐽) for a given interval 𝐽 ⊆ [𝑛].

1 if 𝐽 = { 𝑗} then
2 return the vector with 𝑀 ({ 𝑗}) with

𝑀 ({ 𝑗}) [𝑥] =
{
𝑑 𝑗 − 𝑝 𝑗 if 𝑥 = 𝑝 𝑗 ,
−∞ otherwise.

3 else
4 Partition 𝐽 = 𝐽1 ∪ 𝐽2 into subintervals of equal size (up to ±1)
5 Recursively compute 𝑀 (𝐽1) and 𝑀 (𝐽2)
6 return 𝑀 (𝐽) as computed by Lemma 6.4

Proof. We construct auxiliary vectors 𝐴, 𝐵 and 𝑆 defined by 𝐴[𝑥] = 𝑀 (𝐽2) [𝑥] + 𝑥
and 𝐵[𝑥] = 𝑀 (𝐽1) [𝑥] and 𝑆[𝑥] = 𝑥 for each entry 𝑥. Compute the (max,min)-
skewed convolution of 𝐴, 𝐵, 𝑆, and let 𝐶 denote the resulting vector. We return the
vector 𝑀 (𝐽) [𝑥] = 𝐶 [𝑥] − 𝑥 and claim that this is correct. Indeed, we have

𝐶 [𝑥] − 𝑥
= max
𝑥1+𝑥2=𝑥

min{𝐴[𝑥1], 𝐵[𝑥2] + 𝑆[𝑥]} − 𝑥

= max
𝑥1+𝑥2=𝑥

min{𝑀 (𝐽2) [𝑥1] + 𝑥1, 𝑀 (𝐽1) [𝑥2] + 𝑥} − 𝑥

= max
𝑥1+𝑥2=𝑥

min{𝑀 (𝐽2) [𝑥1] − 𝑥2, 𝑀 (𝐽1) [𝑥2]}

= max
𝑥1+𝑥2=𝑥

min{𝑀 (𝐽1) [𝑥1], 𝑀 (𝐽2) [𝑥2] − 𝑥1}

= 𝑀 (𝐽1 ∪ 𝐽2) [𝑥],

where in the second step we expanded the definition of 𝐴, 𝐵, 𝑆, in the second-to-
last step we used the symmetry of 𝑥1 and 𝑥2, and in the last step we have applied
Lemma 6.3.

For the running time, observe that the vectors 𝐴, 𝐵, 𝑆 have entries 0, . . . , 𝑃(𝐽)
or −∞. We can replace −∞ be a sufficiently negative number of magnitude 𝑂(𝑃),
without changing the relevant outputs. The computation of 𝐶 therefore amounts
to computing the (max,min)-skewed convolution of length-𝑃(𝐽) vectors with max-
imum entry 𝑂(𝑃(𝐽)), which runs in time 𝑂(𝑇 (𝑃(𝐽), 𝑃(𝐽))).

Proof of Lemma 6.1. We compute the vector 𝑀 ([𝑛]) as outlined before. For sin-
gleton sets, we can prepare 𝑀 ({ 𝑗}) in one shot. For larger intervals 𝐽 , we parti-
tion 𝐽 into equal-sized intervals 𝐽 = 𝐽1∪ 𝐽2, recur to compute 𝑀 (𝐽1) and 𝑀 (𝐽2) and
recombine these vectors into 𝑀 (𝐽) using Lemma 6.4. The pseudocode is given in
Algorithm 6.1. After computing 𝑀 ([𝑛]), we return the largest value 0 ≤ 𝑥 ≤ 𝑃

such that 𝑀 ([𝑛]) [𝑥] ≥ 0. The correctness of this algorithm is immediate.
The running time is dominated by Algorithm 6.1. We argue that this algorithm

runs in time 𝑂(𝑇 (𝑃, 𝑃) log 𝑛). Indeed, the recursion tree reaches depth 𝑂(log 𝑛),
and on each level of the recursion the running time is dominated by the calls to
Lemma 6.4. Indeed, as each level induces as a partition [𝑛] = 𝐽1 ∪ · · · ∪ 𝐽𝑘 , the total
running time is

∑𝑘
𝑖=1 𝑂(𝑇 (𝑃(𝐽𝑖), 𝑃(𝐽𝑖))) ≤ 𝑂(𝑇 (𝑃, 𝑃)).

We remark that this reduction from 1| |∑ 𝑝 𝑗𝑈 𝑗 to computing (max,min)-
skewed convolutions was improved by Schieber and Sitaraman in a recent arXiv
preprint [188]. They prove that if the latter problem can be solved in time 𝑂(𝑛𝛼),
the former problem can be solved in time 𝑂(𝑃2−1/𝛼).

139

6.3 Fast Skewed Convolutions

In the following section we present our algorithm for (max,min)-skewed convo-
lution, and provide a proof of 6.2. Throughout, let 𝐴, 𝐵, 𝑆 denote the input vectors
of length 𝑛. Recall we wish to compute the vector 𝐶 defined by

𝐶 [𝑘] = max
𝑖+ 𝑗=𝑘

min{𝐴[𝑖], 𝐵[𝑗] + 𝑆[𝑘]}.

We present a version of our algorithm that slightly differs from conference
version, but for which it is easier to see how Klein, Polak and Rohwedder obtained
their improved algorithm.

Step 0: Ensure Distinct Entries. As a preliminary step, we will ensure that the vec-
tors 𝐴 and 𝐵 do not contain duplicate entries. We can achieve this by replacing the
three vectors by 𝐴0 [𝑖] = 𝑛·𝐴[𝑖]+𝑖, 𝐵0 [𝑗] = 𝑛·𝐵[𝑗]+ 𝑗 and 𝑆0 [𝑘] = 𝑛·𝑆[𝑘]. Clearly 𝐴′
and 𝐵′ have distinct entries, and moreover we can read off the (max,min)-skewed
convolution of 𝐴, 𝐵, 𝑆 from the (max,min)-skewed convolution of 𝐴0, 𝐵0, 𝐶0 by di-
viding each coordinate by 𝑛 (without remainders).

Step 1: Rank-Approximation. Let 𝑎0 < · · · < 𝑎𝑛−1 denote the entries of 𝐴0 in
sorted order. For an integer 𝑥, we fix the rank rank(𝑥) as the smallest index ℓ such
that 𝑥 ≤ 𝑎ℓ. Moreover, let 𝑟 be a parameter and let 𝑝0 = 𝑎0, 𝑝1 = 𝑎𝑟 , 𝑝2 = 𝑎2𝑟 , . . . ;
we call these elements the pivot elements.

The idea is to compute the vector 𝐴1 obtained from 𝐴0 by replacing each en-
try 𝐴0 [𝑖] by the smallest pivot larger than 𝐴0 [𝑖]. This results in a vector where for
each coordinate 𝑖, 𝐴0 [𝑖] and 𝐴1 [𝑖] have distance at most 𝑟 in terms of their ranks,
and 𝐴1 has at most ⌈𝑛/𝑟⌉ distinct entries. We compute the (max,min)-skewed con-
volution of 𝐴1, 𝐵0, 𝐶0, and argue in the following lemma that is possible to recover
from the errors introduced in this way.

Lemma 6.5 (Correcting the Rank-Approximation). Given the (max,min)-skewed
convolution 𝐶1 of 𝐴1, 𝐵0, 𝑆0, we can compute the (max,min)-skewed convolution 𝐶0
of 𝐴0, 𝐵0, 𝑆0 in time 𝑂(𝑛𝑟).

Proof. We compute each coordinate 𝐶0 [𝑘] separately in time 𝑂(𝑟). There are
two cases: If the value 𝐶0 [𝑘] = max𝑖+ 𝑗=𝑘 min{𝐴0 [𝑖], 𝐵0 [𝑗] + 𝑆0 [𝑘]} is attained as
the RHS of the minimum, then we have 𝐶0 [𝑘] = 𝐶1 [𝑘] (as 𝐴0 [𝑖] ≤ 𝐴1 [𝑖] for all
coordinates 𝑖). So assume that 𝐶0 [𝑘] is attained as the LHS of the minimum. In
this case, we claim that rank(𝐶1 [𝑘]) − rank(𝐶0 [𝑘]) ≤ 𝑟. Indeed, recall that for
each fixed 𝑖, 𝑗 going from min{𝐴0 [𝑖], 𝐵0 [𝑗] + 𝑆0 [𝑘]} to min{𝐴1 [𝑖], 𝐵0 [𝑗] + 𝑆0 [𝑘]}
can increase the rank by at most rank(𝐴1 [𝑖]) − rank(𝐴0 [𝑖]) ≤ 𝑟. Therefore, it
suffices to compute 𝐶0 [𝑘] via:

𝐶0 [𝑘] = max
𝐶1 [𝑘], max

𝑖∈[𝑛]
| rank(𝐴0 [𝑖])−rank(𝐶1 [𝑘]) |≤𝑟

min{𝐴0 [𝑖], 𝐵[𝑘 − 𝑖] + 𝑆[𝑘]}
 .

After precomputing the ranks for all entries of 𝐴 in linear time, evaluating this
term takes time 𝑂(𝑟).

Step 2: Reduction to (max,min)-convolution. The final step of our algorithm is
to reduce the computation of the (max,min)-skewed convolution of 𝐴1, 𝐵0, 𝐶0 to
few computations of (max,min)-convolutions (unskewed). Here we exploit that 𝐴
contains only few distinct entries.

Lemma 6.6 (Reduction to (max,min)-Convolution). The (max,min)-skewed con-
volution 𝐶1 of 𝐴1, 𝐵0, 𝐶0 can be computed in time 𝑂(𝑛5/2/𝑟).

140

Proof. We iterate over all pivots 𝑝. Let 𝑋𝑝 denote the lenght-𝑛 indicator-like vec-
tor satisfying 𝑋𝑝 [𝑖] = ∞ if 𝐴[𝑖] = 𝑝 and 𝑋𝑝 [𝑖] = −∞ otherwise. We compute the
(max,min)-convolution 𝑌𝑝 of 𝑋𝑝 and 𝐵, that is,

𝑌𝑝 [𝑘] = max
𝑖+ 𝑗=𝑘

min{𝑋𝑝 [𝑖], 𝐵[𝑗]} = max
𝑗∈[𝑛]

𝐴[𝑘− 𝑗]=𝑝

𝐵[𝑗] .

We compute and return 𝐶1 via

𝐶1 [𝑘] = max
pivot 𝑝

min{𝑝,𝑌𝑝 [𝑘] + 𝑆[𝑘]}.

The correctness of the algorithm follows from a simple calculation:

𝐶1 [𝑘] = max
𝑖, 𝑗∈[𝑛]
𝑖+ 𝑗=𝑘

min{𝐴[𝑖], 𝐵[𝑗] + 𝑆[𝑘]}

= max
pivot 𝑝

max
𝑗∈[𝑛]

𝐴[𝑘− 𝑗]=𝑝

min{𝑝, 𝐵[𝑗] + 𝑆[𝑘]}

= max
pivot 𝑝

min{𝑝, max
𝑗∈[𝑛]

𝐴[𝑘− 𝑗]=𝑝

𝐵[𝑗] + 𝑆[𝑘]}

= max
pivot 𝑝

min{𝑝,𝑌𝑝 [𝑘] + 𝑆[𝑘]}.

For the running time analysis, recall that the (max,min)-convolution of length-𝑛
vectors can be computed in time 𝑂(𝑛3/2) [144]. Hence, the running time to com-
pute the vectors 𝑌𝑝 is bounded by 𝑂(𝑛/𝑝 · 𝑛3/2) = 𝑂(𝑛5/2/𝑟) (as there are ⌈𝑛/𝑟⌉
pivots 𝑝), and the time to compute 𝐶1 is bounded by 𝑂(𝑛 · 𝑛/𝑟) = 𝑂(𝑛2/𝑟).

The proof of Lemma 6.2 is now immediate by combining the previous two
lemmas, and by choosing 𝑟 = 𝑛3/4.

We remark that Klein, Polak and Rohwedder [137] obtain their improvement
essentially by also approximating the vector 𝐵 by pivots. In their version we
have to enumerate all pairs of pivots, but instead of computing a (max,min)-
convolution it suffices to compute a Boolean convolution running in near-linear
time.

141

142

7 Sublinear-Time Edit Distance
Approximation

In this chapter we present an algorithm to approximate the edit distance of two
strings in sublinear time. The work presented in this chapter is based on the pa-
per [56]. I have contributed an equal share of work compared to the other authors,
and 50% of the write-up.

56 Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos. “Almost-
optimal sublinear-time edit distance in the low distance regime”. In: 54th
annual ACM symposium on theory of computing (STOC 2022). ACM, 2022,
pages 1102–1115. 10.1145/3519935.3519990.

Organization. This chapter is structured as follows. In Section 7.1 we introduce
the necessary preliminaries on strings. We then start with an overview of the
Andoni-Krauthgamer-Onak algorithm in Section 7.2 from which we borrow in our
sublinear-time algorithm. We give a high-level overview of our result in Section 7.3
and provide a detailed proof in Section 7.4. In the remaining Sections 7.5 to 7.8 we
provide some missing proofs.

7.1 Preliminaries

For integers 𝑖, 𝑗we write [𝑖 . . 𝑗] = {𝑖, 𝑖+1, . . . , 𝑗} and similarly define the (half-)open
intervals [𝑖 . . 𝑗), (𝑖 . . 𝑗], (𝑖 . . 𝑗). As before, we set [𝑗] = [0 . . 𝑗).

Strings. Let Σ be an alphabet. A string 𝑋 is a sequence of characters from Σ. The
length of 𝑋 is denoted by |𝑋 | and we write 𝑋 ◦ 𝑌 to denote the concatenation of 𝑋
and𝑌 . For a nonnegative integer 𝑖, we denote by 𝑋 [𝑖] the 𝑖-th character in 𝑋 (start-
ing with index zero). For integers 𝑖, 𝑗 we denote by 𝑋 [𝑖 . . 𝑗] the substring of 𝑋
with indices in [𝑖 . . 𝑗]. In particular, if the indices are out-of-bounds, then we set
𝑋 [𝑖 . . 𝑗] = 𝑋 [max(𝑖, 0) . . min(𝑗, |𝑋 | − 1)]. For (half-)open intervals, we similarly
define 𝑋 [𝑖 . . 𝑗), 𝑋 (𝑖 . . 𝑗], 𝑋 (𝑖 . . 𝑗).

For two strings 𝑋,𝑌 with equal length, we say that 𝑋 is a rotation of𝑌 if 𝑋 [𝑖] =
𝑌 [(𝑖 + 𝑠)mod |𝑌 |] for some integer shift 𝑠. We say that 𝑋 is primitive if all of the
nontrivial rotations of 𝑋 are not equal to 𝑋 . For a string 𝑃, we denote by 𝑃∗ the
infinite-length string obtained by repeating 𝑃. We say that 𝑋 is periodic with pe-
riod 𝑃 if 𝑋 = 𝑃∗ [0 . . |𝑋 |). We also say that 𝑋 is 𝑝-periodic if it is periodic with some
period of length at most 𝑝.

Hamming and Edit Distance. For two strings 𝑋,𝑌 with equal length, we define
their Hamming distance HD(𝑋,𝑌) as the number of non-equal characters—in
other words, HD(𝑋,𝑌) = |{𝑖 : 𝑋 [𝑖] ≠ 𝑌 [𝑖]}|. For two strings 𝑋,𝑌 (with possibly
different lengths), we define their edit distance ED(𝑋,𝑌) as the smallest number
of edit operations necessary to transform 𝑋 into 𝑌 ; here, an edit operation means
inserting, deleting or substituting a character.

We also define an optimal alignment, which is a basic object in several of the
forthcoming proofs. For two strings 𝑋,𝑌 , an alignment between 𝑋 and𝑌 is a mono-
tonically non-decreasing function 𝐴 : [0 . . |𝑋 |] → [0 . . |𝑌 |] such that 𝐴(0) = 0
and 𝐴(|𝑋 |) = |𝑌 |. We say that 𝐴 is an optimal alignment if additionally

ED(𝑋,𝑌) =
|𝑋 |−1∑︁
𝑖=0

ED(𝑋 [𝑖], 𝑌 [𝐴(𝑖) . . 𝐴(𝑖 + 1))).

143

https://doi.org/10.1145/3519935.3519990

38 In fact, Andoni et al. [20] call
the measure the E-distance.
However, in a talk by Robert
Krauthgamer he recoined the
name to tree distance, and we
decided to stick to this more
descriptive name.

This definition is slightly non-standard (compare for instance to the definition
in [116]), but more convenient for our purposes. Note that the alignments be-
tween 𝑋 and 𝑌 correspond to the paths through the standard edit distance dy-
namic program. In that correspondence, an optimal alignment corresponds to a
minimum-cost path.

The (𝑘, 𝐾)-gap edit distance problem is formally defined as follows, for two
given length-𝑛 strings 𝑋,𝑌 : The task is to return Close if ED(𝑋,𝑌) ≤ 𝑘, to return
Far if ED(𝑋,𝑌) > 𝐾 and to return either answer if 𝑘 < ED(𝑋,𝑌) ≤ 𝐾 .

Trees. In the following we will implicitly refer to trees 𝑇 where each node has an
ordered list of children. A node is a leaf if it has no children and otherwise an
internal node. The depth of a node 𝑣 is defined as the number of ancestors of 𝑣,
and the depth of a tree 𝑇 is the length of the longest root-leaf path. We refer to the
subset of nodes with depth 𝑖 as the 𝑖-th level in 𝑇 .

7.2 Andoni-Krauthgamer-Onak Algorithm

In this section we reinterpret the algorithm of Andoni, Krauthgamer and Onak [20]
as a framework consisting of a few fundamental ingredients. In the next Section 7.3
we line out our results and how to improve their algorithm to sublinear time, with
details provided in Section 7.4.

7.2.1 First Ingredient: Tree Distance

The first crucial ingredient for the framework is a way to split the computation of
the edit distance into smaller, independent subtasks. A natural approach would
be to divide the two strings into equally sized blocks, compute the edit distances
of the smaller blocks recursively, and combine the results. The difficulty in doing
this is that the edit distance might depend on a global alignment, which determines
how the blocks should align and therefore the subproblems are not independent
(e.g. the optimal alignment of one block might affect the optimal alignment of the
next block). However, this can be overcome by computing the edit distances of
one block in one string with several shifts of its corresponding block in the other
string, and combining the results smartly. This type of hierarchical decomposi-
tion appeared in previous algorithms for approximating edit distance [24, 20, 37,
167]. In particular, Andoni, Krauthgamer and Onak [20] define a string similarity
measure called the tree distance38 which gives a good approximation of the edit
distance and cleanly splits the computation into independent subproblems.

We will define the tree distance for an underlying tree 𝑇 which we sometimes
refer to as the partition tree.

Definition 7.1 (Partition Tree). Let 𝑇 be a tree where each node 𝑣 is labeled with a
non-empty interval 𝐼𝑣. We call 𝑇 a partition tree if

for the root node 𝑣 we have 𝐼𝑣 = [𝑛], and
for any node 𝑣with children 𝑣0, . . . , 𝑣𝐵−1, 𝐼𝑣 is the concatenation of 𝐼𝑣0 , . . . , 𝐼𝑣𝐵−1 .

For the original Andoni-Krauthgamer-Onak algorithm, we will use a complete
𝐵-ary partition tree 𝑇 with 𝑛 leaves. In particular, the depth of 𝑇 is bounded by
log𝐵 (𝑛). There is a unique way to label 𝑇 with intervals 𝐼𝑣: For the 𝑖-th leaf (or-
dered from left to right) we set 𝐼𝑣 = {𝑖}; this choice determines the intervals for all
internal nodes. For our algorithm we will later focus on the subtree of𝑇 with depth
bounded by 𝑂(log𝐵 (𝑘)) (this is again a partition tree, as can easily be checked).

The purpose of the partition tree is that it determines a decomposition of two
length-𝑛 strings 𝑋 and 𝑌 . For a node 𝑣 labeled with interval 𝐼𝑣 = [𝑖 . . 𝑗] we define
the following three substrings:

𝑋 [𝑣] := 𝑋 [𝑖 . . 𝑗] (the substring of 𝑋 relevant at 𝑣),

144

https://slidetodoc.com/polylogarithmic-approximation-for-edit-distance-and-the-asymmetric/

𝑌 [𝑣, 𝑠] := 𝑌 [𝑖 + 𝑠 . . 𝑗 + 𝑠] (the substring of 𝑌 relevant at 𝑣 for a specific shift 𝑠),
𝑌 [𝑣] := 𝑌 [𝑖 − 𝐾 . . 𝑗 + 𝐾] (the entire substring of 𝑌 relevant at 𝑣).

In particular, the leaf labels in the partition tree determine a partition into consec-
utive substrings. With this definition in hand, we can define the tree distance:

Definition 7.2 (Tree Distance). Let 𝑋,𝑌 be length-𝑛 strings and let 𝑇 be a partition
tree. For any node 𝑣 in 𝑇 and any shift 𝑠 ∈ Z, we set:

If 𝑣 is a leaf, then TD𝑇 (𝑋,𝑌 , 𝑣, 𝑠) = ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠]).
If 𝑣 is an internal node with children 𝑣0, . . . , 𝑣𝐵−1, then

TD𝑇 (𝑋,𝑌 , 𝑣, 𝑠) =
∑︁
𝑖∈[𝐵]

min
𝑠′∈Z
(TD𝑇 (𝑋,𝑌 , 𝑣𝑖 , 𝑠′) + 2 · |𝑠 − 𝑠′ |). (7)

We write TD𝑇 (𝑋,𝑌) = TD𝑇 (𝑋,𝑌 , 𝑟, 0) where 𝑟 is the root node in𝑇 , and we may omit
the subscript 𝑇 when it is clear from the context.

The following lemma (which slightly generalizes the analogous result by [20])
shows that the tree distance is a useful measure to approximate the edit distance
of two strings. We repeat the proof in Section 7.5.

Lemma 7.3 (Equivalence of Edit Distance and Tree Distance). Let 𝑋,𝑌 be strings
and let 𝑇 be a partition tree with degree at most 𝐵 and depth at most 𝐷. Then
ED(𝑋,𝑌) ≤ TD𝑇 (𝑋,𝑌) ≤ 2𝐵𝐷 · ED(𝑋,𝑌).

In light of this lemma, we now focus on approximating the tree distance of two
strings. The idea behind the Andoni-Krauthgamer-Onak algorithm is to approxi-
mately evaluate Definition 7.2 for all nodes 𝑣 in the partition tree: For the leaves we
directly evaluate the edit distance and for the internal nodes we use Equation (7)
to combine the recursive computations. However, notice that in Equation (7) we
minimize over an infinite number of shifts 𝑠′ ∈ Z.

7.2.2 Capped Distances

To remedy this situation, recall that we anyways only want to solve a gap problem:
Whenever the tree distance exceeds some value 𝐾 we will immediately report far.
We therefore restrict our attention to approximating the capped distances.

Definition 7.4 (Capped Edit Distance). For strings 𝑋,𝑌 and 𝐾 ≥ 0, we define the
𝐾-capped edit distance ED≤𝐾 (𝑋,𝑌) = min(ED(𝑋,𝑌), 𝐾).

Definition 7.5 (Capped Tree Distance). Let 𝑋,𝑌 be strings, let 𝐾 ≥ 0 and let 𝑇 be a
partition tree. For any node 𝑣 in𝑇 and any shift 𝑠 ∈ [−𝐾 . . 𝐾], we define the 𝐾-capped
tree distance TD≤𝐾𝑇 (𝑋,𝑌 , 𝑣, 𝑠) as follows:

If 𝑣 is a leaf, then TD≤𝐾𝑇 (𝑋,𝑌 , 𝑣, 𝑠) = ED≤𝐾 (𝑋 [𝑣], 𝑌 [𝑣, 𝑠]).
If 𝑣 is an internal node with children 𝑣0, . . . , 𝑣𝐵−1, then

TD≤𝐾𝑇 (𝑋,𝑌 , 𝑣, 𝑠) = min ©­«
∑︁
𝑖∈[𝐵]

min
−𝐾≤𝑠′≤𝐾

(TD≤𝐾𝑇 (𝑋,𝑌 , 𝑣𝑖 , 𝑠
′) + 2 · |𝑠 − 𝑠′ |), 𝐾ª®¬.

(8)

We write TD≤𝐾𝑇 (𝑋,𝑌) = TD≤𝐾𝑇 (𝑋,𝑌 , 𝑟, 0) where 𝑟 is the root node in 𝑇 , and we omit
the subscript 𝑇 when it is clear from the context.

It is easy to prove that for computing the 𝐾-capped tree distance TD≤𝐾 (𝑋,𝑌)
can be expressed as min(TD(𝑋,𝑌), 𝐾), see the following lemma. (The same state-
ment does not apply to TD(𝑋,𝑌 , 𝑣, 𝑠) for all nodes in the tree.) We provide a formal
proof in Section 7.5.

Lemma 7.6 (Equivalence of Capped Distances). TD≤𝐾 (𝑋,𝑌) = min(TD(𝑋,𝑌), 𝐾).

145

7.2.3 Tree Distance Problem

At this point we are ready to define precisely what we want to compute. We will
associate a computational problem to each node in the partition tree 𝑇 . Roughly
speaking, the goal for a node 𝑣 is to approximate the tree distance TD≤𝐾𝑇 (𝑋,𝑌 , 𝑣, 𝑠)
for all shifts 𝑠. We now make the details of this approximation precise: To each
node 𝑣, we associate a multiplicative accuracy 𝛼𝑣 ≥ 1 and an additive accu-
racy 𝛽𝑣 ≥ 0. We define the Tree Distance Problem as the dynamic-programming
task defined as follows:

Definition 7.7 (Tree Distance Problem). For any node 𝑣 in the partition tree𝑇 , com-
pute an array of integers 𝐷[𝑣,−𝐾 . . 𝐾] such that for all 𝑠 ∈ [−𝐾 . . 𝐾]:

1
𝛼𝑣

ED≤𝐾 (𝑋 [𝑣], 𝑌 [𝑣, 𝑠]) − 𝛽𝑣 ≤ 𝐷[𝑣, 𝑠] ≤ 𝛼𝑣 TD≤𝐾 (𝑋,𝑌 , 𝑣, 𝑠) + 𝛽𝑣. (9)

Given a node 𝑣 of the partition tree, we will sometimes refer to computing the
array 𝐷[𝑣, ·] as simply solving 𝑣. As a sanity check, let us confirm that an algorithm
for the Tree Distance Problem can distinguish edit distances with a polylogarith-
mic gap:

Lemma 7.8 (Reduction to the Tree Distance Problem). Let 𝑇 be a partition tree
with degree 𝐵, depth 𝐷 and root node 𝑟. Given a solution 𝐷[𝑟, 0] to the tree distance
problem with root accuracies 𝛼𝑟 ≤ 10 and 𝛽𝑟 ≤ 0.001𝐾 , we can infer the correct
answer to (𝑘, 𝐾)-gap edit distance for 𝑘 = 𝐾/(1000𝐵𝐷).

Proof. The algorithm is simple: We report Close if 𝐷[𝑟, 0] ≤ 0.05𝐾 and Far other-
wise. To prove that this answer is correct, we first observe that by Equation (9) we
have 0.1 · ED≤𝐾 (𝑋,𝑌) − 0.001𝐾 ≤ 𝐷[𝑟, 0] ≤ 10 · TD≤𝐾 (𝑋,𝑌) + 0.001𝐾 . Hence, we
can easily distinguish the Close and Far cases: On the one hand, if ED(𝑋,𝑌) ≤ 𝑘
then Lemmas 7.3 and 7.6 imply that 𝐷[𝑟, 0] ≤ 0.02𝐾 + 0.001𝐾 = 0.021𝐾 . On the
other hand, if ED(𝑋,𝑌) ≥ 𝐾 then 𝐷[𝑟, 0] ≥ 0.1𝐾 − 0.001𝐾 = 0.099𝐾 .

7.2.4 Second Ingredient: Precision Sampling Lemma

The next step is to assign appropriate accuracies 𝛼𝑣, 𝛽𝑣 to all nodes in the partition
tree. Intuitively, the additive accuracy 𝛽𝑣 should govern the number of characters
accessed in the computation of the subtree below 𝑣. Indeed, in the analogous ap-
proximation of Hamming distances we can afford to sample with rate ≈ 1/𝛽𝑣 to
obtain an additive 𝛽𝑣-approximation. We aim for a similar dependence, and there-
fore set 𝛽𝑟 = 0.001𝐾 at the root 𝑟, so that we read 𝑂(𝑛/𝐾) characters in total.

But how to assign the other accuracies 𝛽𝑣? Starting at the root, the challenge
is the following: We want to assign rates to the 𝐵 children 𝑣1, . . . , 𝑣𝐵 of the current
node 𝑣 in such a way that we can obtain a good approximation of the tree distance
at 𝑣 after combining the results from the children. Naively assigning the same rate
to all children incurs an additive error of up to 𝛽𝑣1 + · · · + 𝛽𝑣𝐵 . We would therefore
have to set 𝛽𝑣1 = · · · = 𝛽𝑣𝐵 = 𝛽𝑣/𝐵, which is too large as we would be reading more
than the |𝑋 [𝑣] |/𝛽𝑣 characters we are aiming for. A more sophisticated approach
to assign the parameters 𝛽𝑣 is needed.

Precision Sampling. Roughly speaking we have an instance of the following
problem: There are unknown numbers 𝐴1, . . . , 𝐴𝑛 ∈ R. We can specify preci-
sions 𝑢1, . . . , 𝑢𝑛 and obtain estimates 𝐴𝑖 such that |𝐴𝑖 − 𝐴𝑖 | ≤ 𝑢𝑖 , where the cost
of each estimate is 1/𝑢𝑖 (in our setting the cost corresponds to the number of
characters we read). The goal is to set the precisions appropriately to be able
to distinguish whether

∑
𝑖 𝐴𝑖 < 0.1 or

∑
𝑖 𝐴𝑖 > 10, say, and minimize the total

cost
∑
𝑖 1/𝑢𝑖 . If we set the precisions equally, we would need to have 𝑢𝑖 < 10/𝑛

(otherwise we cannot distinguish the case where 𝐴𝑖 = 10/𝑛 for all 𝑖 from the
case 𝐴𝑖 = 0 for all 𝑖), which incurs in total cost Ω(𝑛2). Andoni, Krauthgamer

146

and Onak [20] give a very elegant randomized solution to this problem with total
cost 𝑂(𝑛) and good error probability, called the Precision Sampling Lemma (see
Lemma 7.9). This lemma was first shown in [20] and later refined and simplified
in [21, 19]. For completeness, we give a full proof in Section 7.6. In the statement,
we say that 𝑥̃ is an (𝛼, 𝛽)-approximation of 𝑥 if 𝛼−1𝑥 − 𝛽 ≤ 𝑥̃ ≤ 𝛼𝑥 + 𝛽.

Lemma 7.9 (Precision Sampling). Let 𝜖, 𝛿 > 0. There is a distribution D = D(𝜖, 𝛿)
supported over the real interval (0, 1] and an algorithm Recover with the following
guarantees:

1 Accuracy: Fix reals 𝐴0, . . . , 𝐴𝑛−1 and independently sample 𝑢0, . . . , 𝑢𝑛−1 ∼ D.
Then, given (𝛼, 𝛽 ·𝑢𝑖)-approximations 𝐴𝑖 of 𝐴𝑖 , the algorithm Recover computes
an ((1 + 𝜖) · 𝛼, 𝛽)-approximation of

∑
𝑖 𝐴𝑖 with success probability 1− 𝛿, for any

parameters 𝛼 ≥ 1 and 𝛽 ≥ 0.
2 Running Time: Recover runs in time 𝑂(𝑛 · 𝜖−2 log(𝛿−1)).
3 Efficiency: Sample 𝑢 ∼ D. Then, for any 𝑁 ≥ 1 there is an event 𝐸 = 𝐸(𝑢) such

that:
𝐸 happens with probability at least 1 − 1/𝑁 , and
E𝑢∼D (1/𝑢 | 𝐸) ≤ 𝑂(𝜖−2 log(𝛿−1) log𝑁).

7.2.5 Third Ingredient: Range Minima

The final ingredient is an efficient algorithm to combine the recursively computed
tree distances. Specifically, the following subproblem can be solved efficiently:

Lemma 7.10 (Range Minima). There is an 𝑂(𝐾)-time algorithm that, given an inte-
ger array 𝐴[−𝐾 . . 𝐾], computes the integer array 𝐵[−𝐾 . . 𝐾] specified by:

𝐵[𝑠] = min
−𝐾≤𝑠′≤𝐾

𝐴[𝑠′] + 2 · |𝑠 − 𝑠′ |.

In [20], the authors use efficient Range Minimum queries (for instance imple-
mented by segment trees) to approximately solve this problem with a polylogarith-
mic overhead. We present a simpler, faster and exact algorithm; see Section 7.7 for
the pseudocode and proof.

7.2.6 Putting the Pieces Together

We are ready to assemble the three ingredients; see Algorithm 7.1 for the pseu-
docode. The algorithm fills the dynamic programming table 𝐷[𝑣, 𝑠] for nodes 𝑣
from leafs to root.

In Lines 1 and 2 we test whether the node 𝑣 can be solved trivially: If 𝑣 is
a leaf, then we have reached the base case of Definition 7.2 and computing the
tree distances boils down to computing the edit distance. In Lines 3 and 4 we
solve the instance by another base case: If |𝑋 [𝑣] | ≤ 𝛽𝑣, then the edit distance
ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠]) is also upper-bounded by |𝑋 [𝑣] | ≤ 𝛽𝑣. We can therefore safely
return 0 which is an additive 𝛽𝑣-approximation to the correct edit distance.

The interesting case happens in Lines 5 to 13 we use the approximations recur-
sively computed by 𝑣’s children to solve 𝑣. The idea is to approximately evaluate
the following expression for the tree distance (which is equivalent to Equation (8)):

TD≤𝐾 (𝑋,𝑌 , 𝑣, 𝑠) = min ©­«
∑︁
𝑖∈[𝐵]

𝐴[𝑖, 𝑠], 𝐾ª®¬ ,
where

𝐴[𝑖, 𝑠] = min
𝑠′∈[−𝐾 . . 𝐾]

(TD≤𝐾 (𝑋,𝑌 , 𝑣𝑖 , 𝑠′) + 2 · |𝑠 − 𝑠′ |).

147

Algorithm 7.1. The Andoni-Krauthgamer-Onak algorithm, reinterpreted in our
language. That is, for a node 𝑣 in the partition tree 𝑇 , this algorithm solves the
Tree Distance Problem by computing the array 𝐷[𝑣,−𝐾 . . 𝐾] as in Equation (9).

1 if 𝑣 is a leaf then
2 return 𝐷[𝑣, 𝑠] = ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠]) for all 𝑠 ∈ [−𝐾 . . 𝐾]

3 if |𝑋 [𝑣] | ≤ 𝛽𝑣 then
4 return 𝐷[𝑣, 𝑠] = 0 for all 𝑠 ∈ [−𝐾 . . 𝐾]

5 Initialize a two-dimensional array 𝐴[0 . . 𝐵 − 1, −𝐾 . . 𝐾]
6 for each 𝑖 ∈ [𝐵] do
7 Let 𝑣𝑖 be the 𝑖-th child of 𝑣
8 Sample 𝑢𝑣𝑖 ∼ D(1

2 log 𝑛 ,
1

100𝐾𝑛) and let 𝛼𝑣𝑖 = 𝛼𝑣(1 − 1
2 log 𝑛), 𝛽𝑣𝑖 = 𝛽𝑣 · 𝑢𝑣𝑖

9 Recursively compute 𝐷[𝑣𝑖 ,−𝐾 . . 𝐾] with accuracies 𝛼𝑣𝑖 , 𝛽𝑣𝑖
10 Compute 𝐴[𝑖, 𝑠] = min𝑠′∈[−𝐾 . . 𝐾] 𝐷[𝑣𝑖 , 𝑠′] + 2 · |𝑠 − 𝑠′ | using Lemma 7.10
11 for each 𝑠 ∈ [−𝐾 . . 𝐾] do
12 Let 𝐷[𝑣, 𝑠] be the result of the recovery algorithm (Lemma 7.9) applied

to 𝐴[0, 𝑠], . . . , 𝐴[𝐵 − 1, 𝑠] with precisions 𝑢𝑣0 , . . . , 𝑢𝑣𝐵−1

13 return min(𝐷[𝑣, 𝑠], 𝐾) for all 𝑠 ∈ [−𝐾 . . 𝐾]

For each child 𝑣𝑖 of 𝑣 the algorithm first recursively solves the tree distance prob-
lem and computes an approximation 𝐷[𝑣𝑖 , 𝑠′] in Line 9. Then, in Line 10, we ex-
actly evaluate

𝐴[𝑖, 𝑠] = min
𝑠′∈[−𝐾 . . 𝐾]

𝐷[𝑣𝑖 , 𝑠′] + 2 · |𝑠 − 𝑠′ |

for all 𝑠 using Lemma 7.10. In the next step, the Precision Sampling Lemma comes
into play. The recursive call returns approximations 𝐷[𝑣𝑖 , 𝑠′] with multiplicative
error 𝛼𝑣𝑖 = 𝛼𝑣 and additive error 𝛽𝑣𝑖 . Hence, 𝐴[𝑖, 𝑠] is also an approximation
of 𝐴[𝑖, 𝑠] with multiplicative error 𝛼𝑣𝑖 and additive error 𝛽𝑣𝑖 . We pick the param-
eters 𝛼𝑣𝑖 = 𝛼𝑣(1 − 1

2 log 𝑛) and 𝛽𝑣𝑖 = 𝛽𝑣 · 𝑢𝑣𝑖 where 𝑢𝑣𝑖 ∼ D(1
2 log 𝑛 ,

1
100𝐾𝑛). In this

situation, the Precision Sampling Lemma (Lemma 7.9) allows to approximate the
sum

∑
𝑖 𝐴[𝑖, 𝑠] (for some fixed 𝑠) with multiplicative error (1 + 1

2 log 𝑛) · 𝛼𝑣𝑖 ≤ 𝛼𝑣
and additive error 𝛽𝑣—just as required. Hence, the values 𝐷[𝑣, 𝑠] computed in
Line 12 are as claimed (up to taking the minimum with 𝐾 in order to obtain esti-
mates for the capped tree distance, see Line 13). Moreover, as the recursion depth
reaches≪ log 𝑛, the multiplicative approximation factors 𝛼𝑣 remain at least 1.

In terms of the error probability, note that the only source of randomness in
the algorithm is the Precision Sampling Lemma, which, by our choice of parame-
ters, errs with probability 1

100𝐾𝑛 per execution. As we execute this lemma 2𝐾 + 1
times per node in the computation tree, by a union bound all executions succeed
with probability at least 1 − (2𝐾+1)𝑛

100𝐾𝑛 ≥ 0.9. In summary, we obtain the following
correctness lemma:

Lemma 7.11 (Correctness of Algorithm 7.1). Let 𝑋,𝑌 be length-𝑛 strings. Given any
node 𝑣 in a partition tree, Algorithm 7.1 correctly solves the Tree Distance Problem
at 𝑣, with constant probability 0.9.

Running Time. It remains to check that the algorithm runs in almost-linear time.
In this regard the analysis differs quite substantially from our new sublinear-time
algorithm. A single execution of Algorithm 7.1 (ignoring the recursive calls and
lower-order factors such as 𝐵) takes roughly time 𝑂(𝐾). However, note that the
recursive calls do not necessarily reach every node in the partition tree: Some
nodes 𝑣 are trivially solved by the base case in Lines 3 and 4 and thus their chil-
dren are never explored. Let us call a node 𝑣 active if the recursive computation
reaches 𝑣. One can bound the number of active nodes by roughly 𝑛/𝐾 as described
in the following lemma:

148

Lemma 7.12 (Number of Active Nodes). Set 𝛽𝑟 = 0.001𝐾 to be the additive accu-
racy at the root 𝑟, and generate the remaining accuracies 𝛽𝑣 as in Algorithm 7.1.
Then the number of nodes 𝑣 with |𝑋 [𝑣] | > 𝛽𝑟 is at most 𝑛

𝐾 · (log 𝑛)𝑂(log𝐵 (𝑛)) with
probability at least 0.9.

Proof. We first analyze the additive accuracy 𝛽𝑣 at a node 𝑣. More specifically
we apply Lemma 7.9 with 𝑁 = 100𝑛 to obtain that: For any sample 𝑢𝑣 from the
distributionD(𝜖 = 1

2 log 𝑛 , 𝛿 = 1
100𝐾𝑛), there exists an event 𝐸𝑣 with P(𝐸𝑣) ≥ 1− 1

100𝑛
and

E(1/𝑢𝑣 | 𝐸𝑣) ≤ 𝑂(𝜖−2 log(𝛿−1) log 𝑛) = polylog(𝑛).

Using a union bound over all nodes 𝑣 in the tree, we can assume that all events
𝐸𝑣 simultaneously happen with probability at least 0.99. Hence, from now on we
condition on 𝐸 =

∧
𝑣 𝐸𝑣. Recall that 𝛽𝑣 = 0.001𝐾 ·𝑢𝑣1 · . . .·𝑢𝑣𝑑 where 𝑣0, 𝑣1, . . . , 𝑣𝑑 = 𝑣

is the root-to-node path leading to 𝑣. Therefore, and using that the 𝑢𝑣’s are sampled
independently:

E(1/𝛽𝑣 | 𝐸) =
1000
𝐾
·

𝑑∏
𝑖=1

E(1/𝑢𝑣𝑖 | 𝐸𝑣𝑖) ≤
1
𝐾
· (log 𝑛)𝑂(𝑑) .

Recall that a node 𝑣 is active only if |𝑋 [𝑣] | > 𝛽𝑣, or equivalently 1/𝛽𝑣 > 1/|𝑋 [𝑣] |.
Using Markov’s inequality we obtain that

P(𝑣 is active | 𝐸) = P(1/𝛽𝑣 > 1/|𝑋𝑣 | | 𝐸) ≤ |𝑋𝑣 | ·E(1/𝛽𝑣 | 𝐸) ≤
|𝑋𝑣 |
𝐾
· (log 𝑛)𝑂(𝑑) .

Therefore, the number of active nodes at depth 𝑑 is
∑
𝑣 |𝑋𝑣 |/𝐾 · (log 𝑛)𝑂(𝑑) = 𝑛/𝐾 ·

(log 𝑛)𝑂(𝑑) (where the sum is over all nodes 𝑣 at depth 𝑑, hence
∑
𝑣 |𝑋𝑣 | = |𝑋 | = 𝑛).

We apply this bound at the deepest level 𝑑 = log𝐵 (𝑛), and obtain by another ap-
plication of Markov’s inequality that the total number of active nodes is bounded
by 100𝑛/𝐾 · (log 𝑛)𝑂(log𝐵 (𝑛)) with probability at least 0.99. The total success proba-
bility is 0.98 ≥ 0.9.

It is now easy to conclude that the algorithm runs in almost-linear time. Com-
bining the previous lemma with the observation that each active node runs in
time 𝑂(𝐾𝐵 polylog(𝑛)), we obtain:

Lemma 7.13 (Running Time of Algorithm 7.1). Algorithm 7.1 runs in time 𝑛𝐵 ·
(log 𝑛)𝑂(log𝐵 (𝑛)) with constant probability 0.9.

It remains to pick the parameter 𝐵. By setting 𝐵 = (log 𝑛)𝑂(1/𝜖) for some 𝜖 > 0,
the running time becomes 𝑂(𝑛1+𝜖) (by Lemma 7.13) and the approximation factor
becomes (log 𝑛)𝑂(1/𝜖) (by Lemmas 7.8 and 7.11).

7.3 Going Sublinear—An Overview

We are finally ready to describe the pruning rules leading to our sublinear-time
algorithm. In contrast to the previous section, our pruning rules will allow us
to bound the number of active nodes by poly(𝐾). We will however spend more
time for each active node: In the Andoni-Krauthgamer-Onak algorithm the run-
ning time per node is essentially 𝐾 , whereas in our version we run some more
elaborate tests per node spending time proportional to |𝑋𝑣 |/𝛽𝑣 + poly(𝐾). We will
now progressively develop the pruning rules; the pseudocode is given at the end
of this section.

149

7.3.1 Structural Insights

First Insight: Matching Substrings. The first insight is that if ED(𝑋,𝑌) ≤ 𝐾 , then
we can assume that for almost all nodes 𝑣 there exists a shift 𝑠∗ ∈ [−𝐾 . . 𝐾] for
which 𝑋 [𝑣] = 𝑌 [𝑣, 𝑠∗]. In this case, we say that the node 𝑣 is matched. The benefit
is that if we know that 𝑣 is matched with shift 𝑠∗, then instead of approximating the
edit distances between 𝑋 [𝑣] and all shifts𝑌 [𝑣, 𝑠], we can instead approximate the
edit distance between 𝑌 [𝑣, 𝑠∗] and all shifts 𝑌 [𝑣, 𝑠]. That is, it suffices to compute
the edit distances between a string and a shift of itself.

To see that almost all nodes are matched, consider an optimal alignment be-
tween 𝑋 and 𝑌 and recall that each level of the partition tree induces a parti-
tion of 𝑋 into substrings 𝑋 [𝑣]. The number of misaligned characters is bounded
by ED(𝑋,𝑌), thus there are at most ED(𝑋,𝑌) parts 𝑋 [𝑣] containing a misalign-
ment. For all other parts, the complete part 𝑋 [𝑣] is perfectly matched to some
substring 𝑌 [𝑣, 𝑠]. We prove the claim formally in Lemma 7.26. In light of this in-
sight, we can assume that there are only 𝐾 unmatched nodes—otherwise, the edit
distance and thereby also the tree distance between 𝑋 and 𝑌 exceeds 𝐾 and we
can stop the algorithm. In the following we will therefore focus on matched nodes
only.

For now we assume that we can efficiently test whether a node is matched.
We justify this assumption soon (see the Matching Test in Lemma 7.19) by giving
a property tester for this problem in sublinear time.

Second Insight: Structure versus Randomness. The second idea is to exploit a
structure versus randomness dichotomy on strings: As the two extreme cases, a
string is either periodic or random-like. The hope is that whenever 𝑌 [𝑣] falls into
one of these extreme categories, then we can approximate ED(𝑌 [𝑣, 𝑠∗], 𝑌 [𝑣, 𝑠]) di-
rectly, without expanding 𝑣’s children. Concretely, we use the following measure
to interpolate between periodic and random-like:

Definition 7.14 (Block Periodicity). Let 𝑌 be a string. The 𝐾-block periodicity
BP𝐾 (𝑌) of𝑌 is the smallest integer 𝐿 such that𝑌 can be partitioned into𝑌 = ⃝𝐿

ℓ=1𝑌ℓ,
where each substring 𝑌ℓ is 𝐾-periodic (i.e., 𝑌ℓ is periodic with period length at
most 𝐾).

Suppose for the moment that we could efficiently compute the block period-
icity of a string 𝑌 . Under this assumption, we first compute BP4𝐾 (𝑌 [𝑣]) for each
matched node 𝑣 in the tree and distinguish three regimes depending on whether
the block periodicity is small, large or intermediate. In the following section we
discuss the pruning rules that we apply in these regimes.

7.3.2 Pruning Rules

The Periodic Regime: BP4𝑲 (𝒀 [𝒗]) = 1. For this case, we can approximate the edit
distances via the following lemma (think of 𝑌 = 𝑌 [𝑣] and 𝑌𝑠 = 𝑌 [𝑣, 𝑠]).

Lemma 7.15 (Periodic Rule). For a string 𝑌 , write 𝑌𝑠 = 𝑌 [𝐾 + 𝑠 . . |𝑌 | − 𝐾 + 𝑠). If 𝑌
is periodic with primitive period 𝑃 and |𝑌 | ≥ |𝑃 |2 + 2𝐾 , then for all 𝑠, 𝑠′ ∈ [−𝐾 . . 𝐾]:

ED(𝑌𝑠, 𝑌𝑠′) = 2 ·min
𝑗∈Z

�� 𝑠 − 𝑠′ + 𝑗 |𝑃 | ��.
Note that if some node 𝑣 that is matched and we know that 𝑌 [𝑣] is periodic,

then Lemma 7.15 allows us to return 𝐷[𝑣, 𝑠] = 2·min 𝑗∈Z | 𝑠−𝑠∗+ 𝑗 |𝑃 | | as the desired
estimates for each shift 𝑠. In this way we do not recur on 𝑣’s children and thereby
prune the entire subtree below 𝑣.

To get some intuition for why Lemma 7.15 holds, note that 2 ·min 𝑗∈Z | 𝑠 − 𝑠∗ +
𝑗 |𝑃 | | is exactly the cost of aligning both𝑌𝑠 and𝑌𝑠′ in such a way that all occurrences
of the period 𝑃 match (i.e., we shift both strings to the closest-possible occurrence

150

of 𝑃). The interesting part is to prove that this alignment is best-possible. We give
the complete proof in Section 7.4.2.

The Random-Like Regime: BP4𝑲 (𝒀 [𝒗]) > 10𝑲 . Next, we give the analogous prun-
ing rule for the case when the block periodicity of 𝑌 [𝑣] is large. We show that in
this case, the best possible way to align any two shifts 𝑌 [𝑣, 𝑠] and 𝑌 [𝑣, 𝑠′] is to in-
sert and delete |𝑠 − 𝑠′ | many characters. In this sense, 𝑌 [𝑣] behaves like a random
string.

Lemma 7.16 (Random-Like Rule). For a string 𝑌 , write 𝑌𝑠 = 𝑌 [𝐾 + 𝑠 . . |𝑌 | − 𝐾 + 𝑠).
If BP4𝐾 (𝑌) > 10𝐾 , then for all 𝑠, 𝑠′ ∈ [−𝐾 . . 𝐾]:

ED(𝑌𝑠, 𝑌𝑠′) = 2 · |𝑠 − 𝑠′ |.

Again, this rule can be used to solve a matched node 𝑣 directly, pruning the
subtree below 𝑣. We give the proof in Section 7.4.2.

The Intermediate Regime: 1 < BP4𝑲 (𝒀 [𝒗]) ≤ 10𝑲 . We cannot directly approx-
imate the edit distance ED(𝑌 [𝑣, 𝑠∗], 𝑌 [𝑣, 𝑠]) in this case. Instead, we exploit the
following lemma to argue that the branching procedure below 𝑣 is computation-
ally cheap:

Lemma 7.17 (Intermediate). Let 𝑣 be a node in the partition tree. Then, in any level
in the subtree below 𝑣, for all but at most 2 BP4𝐾 (𝑌 [𝑣]) nodes 𝑤 the string 𝑌 [𝑤] is
4𝐾-periodic.

Indeed, since any node 𝑣 for which 𝑌 [𝑤] is 4𝐾-periodic can be solved by the
Periodic Rule, this lemma implies that there are at most 20𝐾 active nodes on any
level in the partition subtree below any matched node 𝑣.

7.3.3 String Property Testers

Next, we describe how to remove the assumptions that we can efficiently test
whether a node is matched and that we can compute block periodicities. We start
with the second task.

Computing Block Periodicities? The most obvious approach would be to show
how to compute (or appropriately approximate) the block periodicity. This is in-
deed possible, but leads to a more complicated and slower algorithm (in terms of
poly(𝐾)).

Instead, we twist the previous argument: We first show how to detect whether
a string is periodic (in the straightforward way, see the following Lemma 7.18). For
any matched node 𝑣 we then run the following procedure: If 𝑌 [𝑣] is 4𝐾-periodic,
then we solve 𝑣 according to Lemma 7.15. Otherwise, we continue to explore 𝑣’s
children—with the following constraint: If at some point there are more than 20𝐾
active nodes which are not 4𝐾-periodic on any level in the recursion tree below 𝑣,
then we interrupt the computation of this subtree and immediately solve 𝑣 ac-
cording to Lemma 7.16. This approach is correct, since by Lemma 7.17 witnessing
more than 20𝐾 active nodes which are not 4𝐾-periodic on any level serves as a
certificate that BP4𝐾 (𝑌 [𝑣]) is large. To test whether𝑌 [𝑣] is 4𝐾-periodic, we use the
following tester.

Lemma 7.18 (Periodicity Test). Let 𝑋 be a string, and let 𝛽, 𝛿 > 0. There is an
algorithm which returns one of the following two outputs:

Close(𝑃), where 𝑃 is a primitive string with |𝑃 | ≤ 𝐾 and HD(𝑋, 𝑃∗ [0 . . |𝑋 |)) ≤ 𝛽.
Far, in which case 𝑋 is not 𝐾-periodic.

The algorithm runs in time 𝑂(𝛽−1 |𝑋 | log(𝛿−1) + 𝐾) and errs with probability 𝛿.

151

Recall that as we are shooting for a sublinear-time algorithm we have to resort
to a property tester which can only distinguish between close and far properties
(in this case: periodic or far from periodic). The proof of Lemma 7.18 is simple, see
Section 7.4.3 for details.

Testing for Matched Nodes. We need another property tester to test whether a
node is matched. Again, since our goal is to design a sublinear-time algorithm, we
settle for the following algorithm which distinguishes whether 𝑣 is matched or far
from matched.

Lemma 7.19 (Matching Test). Let 𝑋,𝑌 be strings such that |𝑌 | = |𝑋 | + 2𝐾 , and
let 𝛽, 𝛿 > 0. There is an algorithm which returns one of the following two outputs:

Close(𝑠∗), where 𝑠∗ ∈ [−𝐾 . . 𝐾] satisfies HD(𝑋,𝑌 [𝐾 + 𝑠∗ . . |𝑋 | + 𝐾 + 𝑠∗)) ≤ 𝛽.
Far, in which case there is no 𝑠∗ ∈ [−𝐾 . . 𝐾] with 𝑋 = 𝑌 [𝐾 + 𝑠∗ . . |𝑋 | + 𝐾 + 𝑠∗).

The algorithm runs time 𝑂(𝛽−1 |𝑋 | log(𝛿−1) + 𝐾 log |𝑋 |) and errs with probability 𝛿.

The proof of Lemma 7.19 is non-trivial. It involves checking whether 𝑋 and 𝑌
follow a common period—in this case we can simply return any shift respecting
the periodic pattern. If instead we witness errors to the periodic pattern, then we
try to identify a shift under which also the errors align. See Section 7.4.3 for the
details.

7.3.4 Putting the Pieces Together

We finally assemble our complete algorithm. The pseudocode is given in Algo-
rithm 7.2. In this section we will sketch that Algorithm 7.2 correctly and efficiently
solves the Tree Distance Problem. The formal analysis is deferred to Section 7.4.

Correctness. We first sketch the correctness of Algorithm 7.2. The recursive
calls in Lines 10 to 18 are essentially copied from Algorithm 7.1 (except for dif-
ferences in the parameters which are not important here) and correct by the
same argument as before (using the Precision Sampling Lemma as the main in-
gredient). The interesting part happens in Lines 1 to 9. In Lines 1 and 2 we test
whether the strings are short enough so that we can afford to compute the edit
distances ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠]) by brute-force. If not, we continue to run the Matching
Test for 𝑋 [𝑣] and 𝑌 [𝑣] and the Periodicity Test for 𝑌 [𝑣].

There are two interesting cases—both assume that the Matching Test reports
Close(𝑠∗) and therefore 𝑋 [𝑣] ≈ 𝑌 [𝑣, 𝑠∗] where≈ denotes equality up to 𝛽𝑣/3 Ham-
ming errors. If also the Periodicity Test returns Close(𝑃) then we are in the situ-
ation that 𝑋 [𝑣] ≈ 𝑌 [𝑣, 𝑠∗] ≈ 𝑃∗. Moreover, 𝑌𝑣,𝑠 is ≈-approximately equal to a shift
of 𝑃∗. Lemma 7.15 implies that the edit distance between 𝑋 [𝑣] and 𝑌 [𝑣, 𝑠] is ap-
proximately 2 ·min 𝑗∈Z | 𝑠 − 𝑠∗ + 𝑗 |𝑃 | |. We lose an additive error of 𝛽𝑣/3 for each of
the three ≈ relations, hence the total additive error is 𝛽𝑣 as hoped, and we do not
introduce any multiplicative error.

Next, assume that the Periodicity Test reports Far. Then, as stated in Line 9 we
continue the recursive computation, but with an exception: If at some point during
the recursive computation there are more than 20𝐾 active nodes on any level for
which the Periodicity Test reports Far, then we interrupt the computation and re-
turn 𝐷[𝑣, 𝑠] = 2 · |𝑠−𝑠∗ |. Suppose that indeed this exception occurs. Then there are
more than 20𝐾 nodes 𝑤 on one level of the partition tree below 𝑣 for which 𝑌 [𝑤]
is not 4𝐾-periodic. Using Lemma 7.17 we conclude that BP4𝐾 (𝑌 [𝑣]) > 10𝐾 , and
therefore returning 𝐷[𝑣, 𝑠] = 2 · |𝑠 − 𝑠∗ | is correct by Lemma 7.16.

Running Time. We will first think of running Algorithm 7.2 with 𝑇 being a bal-
anced 𝐵-ary partition tree with 𝑛 leaves, just as as in the Andoni-Krauthgamer-
Onak algorithm (we will soon explain why we need to modify this). To bound
the running time of Algorithm 7.2 we first prove that the number of active nodes

152

Algorithm 7.2. Solves the tree distance problem for two given strings 𝑋,𝑌 . I.e.,
given a node in the partition tree, this algorithm computes an array𝐷[𝑣,−𝐾 . . 𝐾]
as specified by Equation (9).

1 if 𝑣 is a leaf or |𝑋𝑣 | ≤ 100𝐾2 then
2 return 𝐷[𝑣, 𝑠] = ED≤𝐾 (𝑋 [𝑣], 𝑌 [𝑣, 𝑠]) for all 𝑠 ∈ [−𝐾 . . 𝐾]

(alternatively compute 2-approximations using Theorem 7.20)

3 Run the Matching Test (Lemma 7.19) for 𝑋𝑣, 𝑌𝑣 (with 𝛽 = 𝛽𝑣/3, 𝛿 = 1
100𝐾100)

4 Run the 4𝐾-Periodicity Test (Lemma 7.18) for 𝑌𝑣 (with 𝛽 = 𝛽𝑣/3, 𝛿 = 1
100𝐾100)

5 if the Matching Test returns Close(𝑠∗) then
6 if the Periodicity Test returns Close(𝑃) then
7 return 𝐷[𝑣, 𝑠] = 2 ·min 𝑗∈Z | 𝑠 − 𝑠∗ + 𝑗 |𝑃 | |
8 else
9 Continue in Line 11 with the following exception: If at some point

during the recursive computation there is some level containing more
than 20𝐾 active nodes below 𝑣 for which the Periodicity Test (in Line 4)
reports Far, then interrupt and return 𝐷[𝑣, 𝑠] = 2 · |𝑠 − 𝑠∗ |

10 Initialize a two-dimensional array 𝐴[0 . . 𝐵 − 1, −𝐾 . . 𝐾]
11 for each 𝑖 ∈ [𝐵] do
12 Let 𝑣𝑖 be the 𝑖-th child of 𝑣
13 Sample 𝑢𝑣𝑖 ∼ D(1

200 log 𝐾 ,
1

100𝐾101), let 𝛼𝑣𝑖 = 𝛼𝑣(1 − 1
200 log 𝐾), 𝛽𝑣𝑖 = 𝛽𝑣 · 𝑢𝑣𝑖

14 Recursively compute 𝐷[𝑣𝑖 ,−𝐾 . . 𝐾] with accuracies 𝛼𝑣𝑖 , 𝛽𝑣𝑖
15 Compute 𝐴[𝑖, 𝑠] = min𝑠′∈[−𝐾 . . 𝐾] 𝐷[𝑣𝑖 , 𝑠′] + 2 · |𝑠 − 𝑠′ | using Lemma 7.10
16 for each 𝑠 ∈ [−𝐾 . . 𝐾] do
17 Let 𝐷[𝑣, 𝑠] be the result of the recovery algorithm (Lemma 7.9) applied

to 𝐴[0, 𝑠], . . . , 𝐴[𝐵 − 1, 𝑠] with precisions 𝑢𝑣0 , . . . , 𝑢𝑣𝐵−1

18 return min(𝐷[𝑣, 𝑠], 𝐾) for all 𝑠 ∈ [−𝐾 . . 𝐾]

in the partition tree is bounded by poly(𝐾). One can show that there are only
poly(𝐾) unmatched nodes in the tree (see Lemma 7.26), so we may only focus
on the matched nodes. Each matched node, however, is either solved directly (in
Line 2 or in Line 7) or continues the recursive computation with at most poly(𝐾)
active nodes (in Line 9). In Section 7.4 we give more details.

Knowing that the number of active nodes is small, we continue to bound
the total expected running time of Algorithm 7.2. It is easy to check that a sin-
gle execution of Algorithm 7.2 (ignoring the cost of recursive calls) is roughly in
time |𝑋𝑣 |/𝛽𝑣 + poly(𝐾). Using the Precision Sampling Lemma, we first bound 1/𝛽𝑣
by 1/𝐾 · (log 𝑛)𝑂(log𝐵 (𝑛)) in expectation, for any node 𝑣. Therefore, the total run-
ning time can be bounded by∑︁

𝑣 active
(|𝑋𝑣 |/𝛽𝑣 + poly(𝐾)) ≤ 1

𝐾
· (log 𝑛)𝑂(log𝐵 (𝑛)) ·

∑︁
𝑣

|𝑋𝑣 | + poly(𝐾)

≤ 𝑛

𝐾
· (log 𝑛)𝑂(log𝐵 (𝑛)) + poly(𝐾).

Here we used that
∑
𝑤 |𝑋 [𝑤] | = 𝑛 where the sum is over all nodes 𝑤 on any fixed

level in the partition tree. It follows that
∑
𝑣 |𝑋 [𝑣] | ≤ 𝑛 log 𝑛, summing over all

nodes 𝑣.

Optimizing the Lower-Order Terms. This running time bound does not match
the claimed bound in Theorem 7.29: The overhead (log 𝑛)𝑂(log𝐵 (𝑛)) should rather
be (log 𝐾)𝑂(log𝐵 (𝐾)) and not depend on 𝑛. If 𝑛 ≤ 𝐾100, say, then both terms match.
But we can also reduce the running time in the general case by “cutting” the
partition tree at depth log𝐵 (𝐾100). That is, we delete all nodes below that depth
from the partition tree and treat the nodes at depth log𝐵 (𝐾100) as leaves in the

153

algorithm. The remaining tree is still a partition tree, according to Definition 7.1.
The correctness argument remains valid, but we have to prove that the run-
ning time of Line 2 does not explode. For each leaf at depth log𝐵 (𝐾100) we have
that |𝑋 [𝑣] | ≤ 𝑛/𝐾100 and for that reason computing ED≤𝐾 (𝑋 [𝑣], 𝑌 [𝑣, 𝑠]) for all
shifts 𝑠 (say with the Landau-Vishkin algorithm) takes time 𝑂(𝑛/𝐾99 + 𝐾3). Since
there are much less than 𝐾99 active nodes, the total contribution can again be
bounded by 𝑂(𝑛/𝐾 + poly(𝐾)).

Optimizing the Polynomial Dependence on 𝑲 . Finally, let us pinpoint the expo-
nent of the polynomial dependence on 𝐾 . In the current algorithm we can bound
the number of active nodes by roughly 𝐾2 (there are at most 𝐾 nodes per level
for which the matching test fails, and the subtrees rooted at these nodes contain
at most 𝐾 active nodes per level). The most expensive step in Algorithm 7.2 turns
out to be the previously mentioned edit distance computation in Line 2. Using
the Landau-Vishkin algorithm (with cap 𝐾) for 𝑂(𝐾) shifts 𝑠, the running time of
Line 2 incurs a cubic dependence on 𝐾 , and therefore the total dependence on 𝐾

becomes roughly 𝐾5.
We give a simple improvement to lower the dependence to 𝐾4 and leave fur-

ther optimizations of the poly(𝐾) dependence as future work. The idea is to use
the following result on approximating the edit distances for many shifts 𝑠:

Theorem 7.20 (Edit Distance Approximations for Many Shifts). Let 𝑋,𝑌 be strings
with |𝑌 | = |𝑋 | + 2𝐾 . We can 2-approximate ED≤𝐾 (𝑋,𝑌 [𝐾 + 𝑠 . . |𝑋 | + 𝐾 + 𝑠)), for all
shifts 𝑠 ∈ [−𝐾 . . 𝐾], in time 𝑂(|𝑋 | + 𝐾2).

This result can be proven by a modification of the Landau-Vishkin algo-
rithm [148]; we provide the details in Section 7.8. It remains to argue that com-
puting a 2-approximation in Line 2 does not mess up the correctness proof. This
involves the multiplicative approximation guarantee of our algorithm which we
entirely skipped in this overview, and for this reason we defer the details to Sec-
tion 7.4.

Implementation Details. We finally describe how to implement the interrupt
condition in Line 9. Note that the order of the recursive calls in Line 14 is irrele-
vant. In the current form the algorithm explores the partition tree in a depth-first
search manner, but we might as well use breadth-first search. For any node 𝑣
which reaches Line 9 we may therefore continue to compute all recursive compu-
tations using breadth-first search. If at some point we encounter one search level
containing more than 200𝐾 active nodes for which the Periodicity Test reports
Far, we stop the breadth-first search and jump back to Line 9. With this modifica-
tion the algorithm maintains one additional counter which does not increase the
asymptotic time complexity.

7.4 Going Sublinear—In Detail

In this section we give the formal analysis of Algorithm 7.2. We split the proof into
the following parts: In Section 7.4.1 we prove some lemmas about periodic and
block-periodic strings. In Section 7.4.2 we give the structural lemmas about edit
distances in special cases. In Section 7.4.3 we prove the correctness of the string
property testers (the “Matching Test” and “Periodicity Test”). In Section 7.4.4 we
finally carry out the correctness and running time analyses for Algorithm 7.2, and
in Section 7.4.5 we give a formal proof of our main theorem.

In the following proofs we will often use the following simple proposition.

Proposition 7.21 (Alignments Have Small Stretch). Let 𝑋,𝑌 be strings of equal
length. If 𝐴 is an optimal alignment between 𝑋 and 𝑌 , then |𝑖 − 𝐴(𝑖) | ≤ 1

2 ED(𝑋,𝑌)
for all 0 ≤ 𝑖 ≤ |𝑋 |.

154

Proof. Since 𝐴 is an optimal alignment between 𝑋 and 𝑌 , we can write the edit
distance ED(𝑋,𝑌) as ED(𝑋 [0 . . 𝑖), 𝑌 [0 . . 𝐴(𝑖))) +ED(𝑋 [𝑖 . . |𝑋 |), 𝑌 [𝐴(𝑖) . . |𝑌 |)). Both
edit distances are at least |𝑖 − 𝐴(𝑖) | which is the length difference of these strings,
respectively. It follows that ED(𝑋,𝑌) ≥ 2 · |𝑖 − 𝐴(𝑖) |, as claimed.

7.4.1 Facts about Periodicity

We prove the following two lemmas, both stating roughly that if a string 𝑋 closely
matches a shift of itself, then 𝑋 is close to periodic. The first lemma is easy and
well-known. The second lemma is new.

Lemma 7.22 (Self-Alignment Implies Periodicity). Let 𝑋 be a string. For any
shift 𝑠 > 0, if 𝑋 [0 . . |𝑋 | − 𝑠) = 𝑋 [𝑠 . . |𝑋 |) then 𝑋 is 𝑠-periodic (with period 𝑋 [0 . . 𝑠)).

Proof. By assumption we have that 𝑋 [𝑗] = 𝑋 [𝑠 + 𝑗] for each 𝑗 ∈ [|𝑋 | − 𝑠]. It
follows that for 𝑃 = 𝑋 [0 . . 𝑠) we have 𝑋 [𝑗] = 𝑃[𝑗 mod 𝑠] for all indices 𝑗 ∈ [|𝑋 |]
and thus 𝑋 = 𝑃∗ [0 . . |𝑋 |).

Lemma 7.23 (Self-Alignment Implies Small Block Periodicity). Let 𝑋 be a string.
For any shift 𝑠 > 0, if ED(𝑋 [0 . . |𝑋 | − 𝑠), 𝑋 [𝑠 . . |𝑋 |)) < 2𝑠 then BP2𝑠 (𝑋) ≤ 4𝑠.

Proof. Let 𝑌 = 𝑋 [0 . . |𝑋 | − 𝑠), 𝑍 = 𝑋 [𝑠 . . |𝑋 |) and let 𝐴 denote an optimal align-
ment between 𝑌 and 𝑍. We greedily construct a sequence 0 = 𝑖0 < · · · < 𝑖𝐿 = |𝑌 |
as follows: Start with 𝑖0 = 0. Then, having assigned 𝑖ℓ we next pick the smallest in-
dex 𝑖ℓ+1 > 𝑖ℓ for which 𝑌 [𝑖ℓ . . 𝑖ℓ+1) ≠ 𝑍 [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1)). Using that 𝐴 is an optimal
alignment, we have constructed a sequence of 𝐿 < 2𝑠 indices, since

2𝑠 > ED(𝑌, 𝑍) =
𝐿−1∑︁
ℓ=0

ED(𝑌 [𝑖ℓ . . 𝑖ℓ+1), 𝑍 [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1))) ≥ 𝐿.

Moreover, by Proposition 7.21 we have that |𝑖 − 𝐴(𝑖) | < 𝑠 for all 𝑖. The greedy
construction guarantees that𝑌 [𝑖ℓ . . 𝑖ℓ+1−1) = 𝑍 [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1−1)). Therefore, and
since𝑌, 𝑍 are substrings of 𝑋 , we have 𝑋 [𝑖ℓ . . 𝑖ℓ+1−1) = 𝑋 [𝑠+𝐴(𝑖ℓ) . . 𝑠+𝐴(𝑖ℓ+1−1)).
We will now apply Lemma 7.22 to these substrings of 𝑋 with shift 𝑠′ = 𝑠+𝐴(𝑖ℓ) − 𝑖ℓ.
Note that 0 < 𝑠′ < 2𝑠 (which satisfies the precondition of Lemma 7.22) and thus
𝑋 [𝑖ℓ . . 𝑖ℓ+1 − 1) is 2𝑠-periodic.

Finally, consider the following partition of 𝑋 into 2𝐿 + 1 substrings

𝑋 =

(
⃝𝐿−1
ℓ=0 𝑋 [𝑖ℓ . . 𝑖ℓ+1 − 1) ◦ 𝑋 [𝑖ℓ+1 − 1]

)
◦ 𝑋 [|𝑋 | − 𝑠 . . |𝑋 |).

We claim that each of these substrings is 2𝑠-periodic: For 𝑋 [𝑖ℓ . . 𝑖ℓ+1 − 1) we have
proved this in the previous paragraph, and the remaining strings 𝑋 [𝑖ℓ+1 − 1]
and 𝑋 [|𝑋 | − 𝑠 . . |𝑋 |) have length less than 2𝑠 and are thus trivially 2𝑠-periodic.
This decomposition certifies that BP2𝑠 (𝑋) ≤ 2𝐿 + 1 ≤ 4𝑠.

7.4.2 Edit Distances between Periodic and Random-Like Strings

The goal of this section is to prove the structural Lemmas 7.15 and 7.16 which
determine the edit distance between certain structured strings.

Lemma 7.15 (Periodic Rule). For a string 𝑌 , write 𝑌𝑠 = 𝑌 [𝐾 + 𝑠 . . |𝑌 | − 𝐾 + 𝑠). If 𝑌
is periodic with primitive period 𝑃 and |𝑌 | ≥ |𝑃 |2 + 2𝐾 , then for all 𝑠, 𝑠′ ∈ [−𝐾 . . 𝐾]:

ED(𝑌𝑠, 𝑌𝑠′) = 2 ·min
𝑗∈Z

�� 𝑠 − 𝑠′ + 𝑗 |𝑃 | ��.
Proof. For simplicity set 𝐷 = 2 ·min 𝑗∈Z | 𝑠 − 𝑠′ + 𝑗 |𝑃 | | and 𝑝 = |𝑃 |. We will argue
that 𝐷 is both an upper bound and lower bound for ED(𝑌𝑠, 𝑌𝑠′). The upper bound
is simple: Note that due to the periodicity of 𝑌 , we can transform 𝑌𝑠′ into 𝑌𝑠 by
deleting and inserting min 𝑗∈Z | 𝑠−𝑠′+ 𝑗 |𝑃 | |many characters. Thus, ED(𝑌𝑠, 𝑌𝑠′) ≤ 𝐷.

155

Next, we prove the lower bound. Suppose that ED(𝑌𝑠, 𝑌𝑠′) < 𝐷. We assumed
that |𝑌𝑠 | = |𝑌 | − 2𝐾 ≥ 𝑝2, and we can therefore split𝑌𝑠 into 𝑝 parts of length 𝑝 plus
some rest. Let 𝑖ℓ = ℓ · 𝑝 for all 𝑖 ∈ [0 . . 𝑝) and let 𝑖𝑝+1 = |𝑌𝑠 |; we treat 𝑌𝑠 [𝑖ℓ . . 𝑖ℓ+1) as
the ℓ-th part. Let 𝐴 denote an optimal alignment between 𝑌𝑠 and 𝑌𝑠′ ; we have

ED(𝑌𝑠, 𝑌𝑠′) =
𝑝∑︁
ℓ=0

ED(𝑌𝑠 [𝑖ℓ . . 𝑖ℓ+1), 𝑌𝑠′ [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1))).

We assumed that ED(𝑌𝑠, 𝑌𝑠′) < 𝐷 ≤ |𝑃 | (the latter inequality is by the definition
of 𝐷) and therefore at least one of the first 𝑝 terms in the sum must be zero, say the
ℓ-th one, ℓ < 𝑝. It follows that the two strings 𝑌𝑠 [𝑖ℓ . . 𝑖ℓ+1) and 𝑌𝑠′ [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1))
are equal. Both are length-𝑝 substrings of 𝑌 and thus rotations of the global pe-
riod 𝑃. We assumed that 𝑃 is primitive (i.e., 𝑃 is not equal to any of its non-trivial
rotations) and therefore 𝑠+ 𝑖ℓ ≡ 𝑠′ + 𝐴(𝑖ℓ) (mod 𝑝). By the definition of 𝐷 we must
have that |𝐴(𝑖ℓ) − 𝑖ℓ | ≥ 𝐷/2. But this contradicts Proposition 7.21 which states
that |𝐴(𝑖ℓ) − 𝑖ℓ | ≤ ED(𝑌𝑠, 𝑌𝑠′)/2 < 𝐷/2.

Lemma 7.16 (Random-Like Rule). For a string 𝑌 , write 𝑌𝑠 = 𝑌 [𝐾 + 𝑠 . . |𝑌 | − 𝐾 + 𝑠).
If BP4𝐾 (𝑌) > 10𝐾 , then for all 𝑠, 𝑠′ ∈ [−𝐾 . . 𝐾]:

ED(𝑌𝑠, 𝑌𝑠′) = 2 · |𝑠 − 𝑠′ |.

Proof. Let 𝐷 = 2 · |𝑠 − 𝑠′ |. First note that ED(𝑌𝑠, 𝑌𝑠′) ≤ 𝐷 since we can trans-
form 𝑌𝑠 into 𝑌𝑠′ by simply inserting and deleting |𝑠 − 𝑠′ | symbols. For the lower
bound, suppose that ED(𝑌𝑠, 𝑌𝑠′) < 𝐷. Therefore, we can apply Lemma 7.23 for
an appropriate substring of 𝑌 : Assume without loss of generality that 𝑠 ≤ 𝑠′

and let 𝑍 = 𝑌 [𝐾 + 𝑠 . . |𝑌 | − 𝐾 + 𝑠′). Then we clearly have 𝑌𝑠 = 𝑍 [0 . . |𝑍 | − 𝑠′ + 𝑠)
and 𝑌𝑠′ = 𝑍 [𝑠′ − 𝑠 . . |𝑍 |), so Lemma 7.23 applied to 𝑍 with shift 𝑠′ − 𝑠 yields the
bound BP2(𝑠′−𝑠) (𝑌 ′) ≤ 4 · (𝑠′ − 𝑠). We conclude that BP4𝐾 (𝑌 ′) ≤ 8𝐾 , using the triv-
ial bound 𝑠′ − 𝑠 ≤ 2𝐾 . We can obtain𝑌 by adding at most 𝐾 characters to the start
and end of 𝑍. It follows that BP4𝐾 (𝑌) ≤ BP4𝐾 (𝑍) + 2 ≤ 10𝐾 . This contradicts the
assumption in the lemma statement, and therefore ED(𝑌𝑠, 𝑌𝑠′) ≥ 𝐷.

Lemma 7.17 (Intermediate). Let 𝑣 be a node in the partition tree. Then, in any level
in the subtree below 𝑣, for all but at most 2 BP4𝐾 (𝑌 [𝑣]) nodes 𝑤 the string 𝑌 [𝑤] is
4𝐾-periodic.

Proof. Focus on some level of the computation subtree below 𝑣. We will bound
the number of nodes 𝑤 in this level for which 𝑌 [𝑤] is not 4𝐾-periodic. Note that
if 𝑌 [𝑣] was partitioned into 𝑌 [𝑣] = ⃝𝑤𝑌 [𝑤], then by the definition of block peri-
odicity we would immediately conclude that at most BP4𝐾 (𝑌 [𝑣]) many parts𝑌 [𝑤]
are not 4𝐾-periodic. However, recall that for a node 𝑤 with associated inter-
val 𝐼𝑤 = [𝑖 . . 𝑗], we defined 𝑌 [𝑤] as 𝑌 [𝑤] = 𝑌 [𝑖 − 𝐾 . . 𝑗 + 𝐾]. This means that the
substrings 𝑌 [𝑤] overlap with each other and therefore do not partition 𝑌 [𝑣].

To deal with this, note that we can assume that |𝑌 [𝑤] | > 4𝐾 , since other-
wise𝑌 [𝑤] is trivially 4𝐾-periodic. Hence, each𝑌 [𝑤] can overlap with at most two
neighboring nodes (since the intervals 𝐼𝑤 are disjoint). Therefore, we can divide
the 𝑤’s in two groups such that the 𝑌 [𝑤]’s in each group do not overlap with each
other. For each group, we apply the argument from above to derive that there
are at most BP4𝐾 (𝑌 [𝑣]) many 𝑌 [𝑤]’s which are not 4𝐾-periodic. In this way, we
conclude that there are at most 2 BP4𝐾 (𝑌 [𝑣]) nodes in the level which are not 4𝐾-
periodic, as desired.

7.4.3 Some String Property Testers

The main goal of this section is to formally prove Lemmas 7.18 and 7.19, that is, the
Matching Test and Periodicity Test. As a first step, we need the following simple
lemma about testing equality of strings.

156

Lemma 7.24 (Equality Test). Let 𝑋,𝑌 be strings of the same length, and let 𝛽, 𝛿 > 0.
There is an algorithm which returns one of the following two outputs:

Close, in which case HD(𝑋,𝑌) ≤ 𝛽.
Far(𝑖), in which case 𝑋 [𝑖] ≠ 𝑌 [𝑖].

The algorithm runs in time 𝑂(𝛽−1 |𝑋 | log(𝛿−1)) and errs with probability 𝛿.

Proof. The idea is standard: For 𝛽−1 |𝑋 | ln(𝛿−1)many random positions 𝑖 ∈ [|𝑋 |],
test whether 𝑋 [𝑖] = 𝑌 [𝑖]. If no error is found, then we report Close. This equal-
ity test is clearly sound: If 𝑋 = 𝑌 , then it will never fail. It remains to argue that
if HD(𝑋,𝑌) > 𝛽 then the test fails with probability at least 1 − 𝛿. Indeed, each in-
dividual sample finds a Hamming error with probability 𝛽/|𝑋 |. Hence, the proba-
bility of not finding any Hamming error across all samples is at most(

1 − 𝛽

|𝑋 |

) 𝛽−1 |𝑋 | ln(𝛿−1)
< exp(− ln(𝛿−1)) = 𝛿.

The running time is bounded by 𝑂(𝛽−1 |𝑋 | log(𝛿−1)).

Lemma 7.18 (Periodicity Test). Let 𝑋 be a string, and let 𝛽, 𝛿 > 0. There is an
algorithm which returns one of the following two outputs:

Close(𝑃), where 𝑃 is a primitive string with |𝑃 | ≤ 𝐾 and HD(𝑋, 𝑃∗ [0 . . |𝑋 |)) ≤ 𝛽.
Far, in which case 𝑋 is not 𝐾-periodic.

The algorithm runs in time 𝑂(𝛽−1 |𝑋 | log(𝛿−1) + 𝐾) and errs with probability 𝛿.

Proof. We start analyzing the length-2𝐾 prefix 𝑌 = 𝑋 [0 . . 2𝐾). In time 𝑂(𝐾) we
can compute the smallest period 𝑃 such that 𝑌 = 𝑃∗ [0 . . |𝑌 |) by searching for the
first match of 𝑌 in 𝑌 ◦ 𝑌 , e.g. using the Knuth-Morris-Pratt pattern matching algo-
rithm [140]. If no such match exists, we can immediately report Far. So suppose
that we find a period 𝑃. It must be primitive (since it is the smallest such period)
and it remains to test whether 𝑋 globally follows the period. For this task we use
the Equality Test (Lemma 7.24) with inputs 𝑋 and 𝑃∗ (of course, we cannot write
down the infinite-length string 𝑃∗, but we provide oracle access to 𝑃∗which is suffi-
cient here). On the one hand, if 𝑋 is indeed periodic with period 𝑃, then the Equal-
ity Test reports Close. On the other hand, if 𝑋 is 𝛽-far from any periodic string,
then in particular HD(𝑋, 𝑃∗) > 𝛽 and therefore the Equality Test reports Far. The
only randomized step is the Equality Test. We therefore set the error probability
of the Equality Test to 𝛿 and achieve total running time 𝑂(𝛽−1 |𝑋 | log(𝛿−1) + 𝐾).

Lemma 7.19 (Matching Test). Let 𝑋,𝑌 be strings such that |𝑌 | = |𝑋 | + 2𝐾 , and
let 𝛽, 𝛿 > 0. There is an algorithm which returns one of the following two outputs:

Close(𝑠∗), where 𝑠∗ ∈ [−𝐾 . . 𝐾] satisfies HD(𝑋,𝑌 [𝐾 + 𝑠∗ . . |𝑋 | + 𝐾 + 𝑠∗)) ≤ 𝛽.
Far, in which case there is no 𝑠∗ ∈ [−𝐾 . . 𝐾] with 𝑋 = 𝑌 [𝐾 + 𝑠∗ . . |𝑋 | + 𝐾 + 𝑠∗).

The algorithm runs time 𝑂(𝛽−1 |𝑋 | log(𝛿−1) + 𝐾 log |𝑋 |) and errs with probability 𝛿.

Proof. For convenience, we write 𝑌𝑠 = 𝑌 [𝐾 + 𝑠 . . |𝑋 | + 𝐾 + 𝑠). Our goal is to ob-
tain a single candidate shift 𝑠∗ (that is, knowing 𝑠∗ we can exclude all other shifts
from consideration). Having obtained a candidate shift, we can use the Equal-
ity Test (Lemma 7.24 with parameters 𝛽 and 𝛿/3) to verify whether we indeed
have 𝑋 = 𝑌𝑠∗ . In the positive case, Lemma 7.24 implies that HD(𝑋,𝑌𝑠∗) ≤ 𝛽, hence
returning 𝑠∗ is valid. The difficulty lies in obtaining the candidate shift. Our algo-
rithm proceeds in three steps:

1 Aligning the Prefixes: We start by computing the set 𝑆 consisting of all shifts 𝑠
for which 𝑋 [0 . . 2𝐾) = 𝑌𝑠 [0 . . 2𝐾). One way to compute this set in linear
time 𝑂(𝐾) is by using a pattern matching algorithm with pattern 𝑋 [0 . . 2𝐾)
and text 𝑌 [0 . . 4𝐾) (like the Knuth-Morris-Pratt algorithm [140]). It is clear
that 𝑆 must contain any shift 𝑠 for which globally 𝑋 = 𝑌𝑠. For that reason we

157

can stop if |𝑆 | = 0 (in which case we return Far) or if |𝑆 | = 1 (in which case we
test the unique candidate shift 𝑠∗ ∈ 𝑆 and report accordingly).

2 Testing for Periodicity: After the previous step we can assume that |𝑆 | ≥ 2. Take
any pair 𝑠 < 𝑠′ from 𝑆; we have that 𝑋 [0 . . 2𝐾) = 𝑌𝑠 [0 . . 2𝐾) = 𝑌𝑠′ [0 . . 2𝐾). It
follows that 𝑋 [0 . . 2𝐾 − 𝑠′ + 𝑠) = 𝑋 [𝑠′ − 𝑠 . . 2𝐾), and thus by Lemma 7.22
we conclude that 𝑋 [0 . . 2𝐾) is periodic with period 𝑃 = 𝑋 [0 . . 𝑠′ − 𝑠); the
period length is |𝑃 | = 𝑠′ − 𝑠 ≤ 2𝐾 . Obviously the same holds for 𝑌𝑠 [0 . . 2𝐾)
and 𝑌𝑠′ [0 . . 2𝐾).

We will now test whether 𝑋 and 𝑌𝑠 are also globally periodic with this
period 𝑃. To this end, we apply the Equality Test two times (each time with pa-
rameters 𝛽/2 and 𝛿/3) to check whether 𝑋 = 𝑃∗ [0 . . |𝑋 |) and 𝑌𝑠 = 𝑃∗ [0 . . |𝑌𝑠 |).
If both tests returnClose, then Lemma 7.24 yields that HD(𝑋, 𝑃∗ [0 . . |𝑋 |)) ≤ 𝛽/2
and HD(𝑌𝑠, 𝑃∗ [0 . . |𝑌𝑠 |)) ≤ 𝛽/2. We conclude that HD(𝑋,𝑌𝑠) ≤ 𝛽 by the trian-
gle inequality. Note that we have witnessed a matching shift 𝑠∗ = 𝑠.

3 Aligning the Leading Mismatches: Assuming that the previous step did not suc-
ceed, one of the Equality Tests returned Far(𝑖0) for some position 𝑖0 > 2𝐾
with 𝑋 [𝑖0] ≠ 𝑃∗ [𝑖0] or 𝑌𝑠 [𝑖0] ≠ 𝑃∗ [𝑖0]. Let us refer to these indices as mis-
matches. Moreover, we call a mismatch 𝑖 a leading mismatch if the 2𝐾 positions
to the left of 𝑖 are not mismatches. We continue in two steps: First, we find a
leading mismatch. Second, we turn this leading mismatch into a candidate
shift.

3a Finding a Leading Mismatch: To find a leading mismatch, we use the fol-
lowing binary search-style algorithm: Initialize 𝐿 ← 0 and 𝑅 ← 𝑖0. We
maintain the following two invariants: (i) All positions in [𝐿 . . 𝐿 + 2𝐾) are
not mismatches, and (ii) 𝑅 is a mismatch. Both properties are initially true.
We will now iterate as follows: Let 𝑀 ← ⌈(𝐿 + 𝑅)/2⌉ and test whether
there is a mismatch 𝑖 ∈ [𝑀 . . 𝑀 + 2𝐾). If there is such a mismatch 𝑖, we
update 𝑅← 𝑖. Otherwise, we update 𝐿← 𝑀 . It is easy to see that in both
cases both invariants are maintained. Moreover, this procedure is guar-
anteed to make progress as long as 𝐿+4𝐾 < 𝑅. If at some point 𝑅 ≤ 𝐿+4𝐾 ,
then we can simply check all positions in [𝐿 . . 𝑅]—one of these positions
must be a leading mismatch 𝑖.

3b Finding a Candidate Shift: Assume that the previous step succeeded in find-
ing a leading mismatch 𝑖. Then we can produce a single candidate shift as
follows: Assume without loss of generality that 𝑋 [𝑖] ≠ 𝑃∗ [𝑖], and let 𝑖 ≤ 𝑗

be the smallest position such that 𝑌𝑠 [𝑗] ≠ 𝑃∗ [𝑗]. Then 𝑠∗ = 𝑠 + 𝑗 − 𝑖 is the
only candidate shift (if it happens to fall into the range [−𝐾 . . 𝐾]).

Indeed, for any 𝑠′′ > 𝑠∗ we can find a position where 𝑋 and 𝑌𝑠′′ differ.
To see this, assume that 𝑠′′ respects the period (i.e., 𝑃∗ = 𝑃∗ [𝐾 + 𝑠′′ . .∞)),
since otherwise we find a mismatch in the length-2𝐾 prefix. But then

𝑌𝑠′′ [𝑗 + 𝑠 − 𝑠′′] = 𝑌𝑠 [𝑗] (10)
≠ 𝑃∗ [𝑗] (11)
= 𝑃∗ [𝑗 + 𝑠 − 𝑠′′] (12)
= 𝑋 [𝑗 + 𝑠 − 𝑠′′], (13)

which proves that 𝑋 ≠ 𝑌𝑠′′ and thereby disqualifies 𝑠′′ as a feasible shift.
Here we used (10) the definition of 𝑌𝑠, (11) the assumption that 𝑌𝑠 [𝑗] ≠
𝑃∗ [𝑗], (12) the fact that both 𝑠 and 𝑠′′ respect the period 𝑃 and (13) the
assumption that 𝑖was a leading mismatch which implies that𝑋 matches 𝑃∗
at the position 𝑗 + 𝑠 − 𝑠′′ < 𝑖.

A similar argument works for any shift 𝑠′′ < 𝑠∗. In this case one can
show that 𝑋 [𝑖] ≠ 𝑃∗ [𝑖] = 𝑌𝑠′′ [𝑖] which also disqualifies 𝑠′′ as a candidate
shift.

158

We finally bound the error probability and running time of this algorithm. We only
use randomness when calling the Equality Test which runs at most three times.
Since each time we set the error parameter to 𝛿/3, the total error probability is 𝛿 as
claimed. The running time of the Equality Tests is bounded by 𝑂(𝛽−1 |𝑋 | log(𝛿−1))
by Lemma 7.24. In addition, steps 1 and 2 take time 𝑂(𝐾). Step 3 iterates at
most log |𝑋 | times and each iteration takes time𝑂(𝐾). Thus, the total running time
is 𝑂(𝛽−1 |𝑋 | log(𝛿−1) + 𝐾 log |𝑋 |).

7.4.4 Putting The Pieces Together

In this section we give a formal analysis of Algorithm 7.2.

Setting the Parameters. Throughout this section we assume that 𝑇 is a balanced
𝐵-ary partition tree with min(𝑛, 𝐾100) leaves, where each leaf 𝑣 is labeled with an
interval 𝐼𝑣 of length |𝐼𝑣 | ≈ max(1, 𝑛/𝐾100). In particular there are at most 2 · 𝐾100

nodes in the tree and its depth is bounded by ⌈log𝐵 min(𝑛, 𝐾100)⌉.
We also specify the root accuracies 𝛼𝑟 = 10 and 𝛽𝑣 = 0.001𝐾 . Note that the

algorithm assigns the smallest multiplicative accuracy to 𝛼𝑣 = 10 · (1 − 1
200 log 𝐾)

𝑑 ,
where 𝑑 is the depth of the partition tree. It follows that 𝛼𝑣 ≥ 5.

Correctness. We start with the correctness proof.

Lemma 7.25 (Correctness of Algorithm 7.2). Let 𝑋,𝑌 be strings. Given any node 𝑣
in the partition tree, Algorithm 7.2 correctly solves the Tree Distance Problem at 𝑣,
with constant probability 0.9.

Proof. The analysis of Lines 11 to 18 (that is, combining the recursive computa-
tions) is precisely as in Lemma 7.11. We therefore omit the details an assume that
these steps succeed. In this proof we show that Lines 1 to 9 are correct as well.
(We postpone the error analysis to the end of the proof.) There are three possible
cases:

The Strings are Short: First assume that |𝑋 [𝑣] | ≤ 100𝐾2 or that 𝑣 is a leaf
node, in which case the condition in Line 1 triggers. The algorithm computes
and returns a multiplicative 2-approximation 𝐷[𝑣, 𝑠] of ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠]) for
all shifts 𝑠 using Theorem 7.20. We need to justify that 2 ≤ 𝛼𝑣 so that 𝐷[𝑣, 𝑠]
is a valid approximation in the sense of Equation (9), but recall that using the
parameter setting in the previous paragraph we have 𝛼𝑣 ≥ 5.

If the algorithm does not terminate in this first case, we may assume from now on
that |𝑋 [𝑣] | ≥ 100𝐾2. The algorithm continues running and applies the Matching
Test (Lemma 7.19) to 𝑋 [𝑣], 𝑌 [𝑣] and the 4𝐾-Periodicity Test (Lemma 7.18) to 𝑌 [𝑣],
both with rate parameter 𝛽 = 𝛽𝑣/3 and error parameter 𝛿 = 1

100𝐾100 . We again
postpone the error analysis and assume that both tests returned a correct answer.
We continue analyzing the remaining two cases:

The Strings are Periodic: Assume that the Matching Test reports Close(𝑠∗) and
that the 4𝐾-Periodicity Test reports Close(𝑃), where 𝑃 is a primitive string
with length |𝑃 | ≤ 4𝐾 . The algorithm reaches Line 7 and returns 𝐷[𝑣, 𝑠] =

2 · min 𝑗∈Z | 𝑠 − 𝑠∗ − 𝑗 |𝑃 | |. We argue that this approximation is valid using
Lemma 7.15 and by applying the triangle inequality three times. To this end
we define 𝑍 = 𝑃∗ [0 . . |𝑌𝑣 |) (that is, 𝑍 is equal to 𝑌𝑣 after “correcting” the peri-
odicity errors) and 𝑍𝑠 = 𝑍 [𝐾 + 𝑠 . . |𝑍 | − 𝐾 + 𝑠). By Lemma 7.15 we have that

ED(𝑍𝑠∗ , 𝑍𝑠) = 2 ·min
𝑗∈Z

�� 𝑠 − 𝑠∗ − 𝑗 |𝑃 | �� = 𝐷[𝑣, 𝑠],
for all shifts 𝑠. Here we use the assumption that |𝑋 [𝑣] | ≥ 100𝐾2 ≥ |𝑃 |2 and its
consequence |𝑍 | = |𝑌 [𝑣] | ≥ |𝑃 |2+2𝐾 to satisfy the precondition of Lemma 7.15.
Since the Periodicity Test reported Close(𝑃), we get HD(𝑌 [𝑣, 𝑠], 𝑍𝑠) ≤ 𝛽𝑣/3 for

159

all shifts 𝑠, and using that the Matching Test reported Close(𝑠∗) we obtain
HD(𝑋 [𝑣], 𝑌 [𝑣, 𝑠∗]) ≤ 𝛽𝑣/3. By applying the triangle inequality three times we
conclude that

𝐷[𝑣, 𝑠] = ED(𝑍𝑠∗ , 𝑍𝑠)
≤ ED(𝑍𝑠∗ , 𝑌 [𝑣, 𝑠∗]) + ED(𝑌 [𝑣, 𝑠∗], 𝑋 [𝑣])

+ ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠]) + ED(𝑌 [𝑣, 𝑠], 𝑍𝑠)
≤ ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠]) + 𝛽𝑣,

and similarly 𝐷[𝑣, 𝑠] ≥ ED(𝑋𝑣, 𝑌𝑣,𝑠) − 𝛽𝑣. It follows that 𝐷[𝑣, 𝑠] is an additive
𝛽𝑣-approximation of ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠]), as required in Equation (9). (Here, we
do not suffer any multiplicative error.)
The Strings are Random-Like: Finally assume that the Matching Test reports
Close(𝑠∗), but the 4𝐾-Periodicity Test reports Far. In this case the algorithm
reaches Line 9 and continues with the recursive computation (in Line 11).
However, if at any level in the computation subtree rooted at 𝑣 there are more
than 20𝐾 active nodes for which the Periodicity Test (in Line 4) reports Far,
then the recursive computation is interrupted and we return 𝐷[𝑣, 𝑠] = 2 ·
|𝑠 − 𝑠∗ |. We have already argued that the unrestricted recursive computation
is correct, but it remains to justify why interrupting the computation makes
sense.

So suppose that the recursive computation is interrupted, i.e., assume that
there are more than 20𝐾 descendants 𝑤 of 𝑣 at some level for which the Peri-
odicity Test reported Far. Assuming that all Periodicity Tests computed correct
outputs, we conclude that for all these descendants𝑤 the strings𝑌𝑣 are not 4𝐾-
periodic. From Lemma 7.17 we learn that necessarily BP4𝐾 (𝑌𝑣) > 10𝐾 . Hence
Lemma 7.16 applies and yields that

ED(𝑌 [𝑣, 𝑠∗], 𝑌 [𝑣, 𝑠]) = 2 · |𝑠 − 𝑠∗ | = 𝐷[𝑣, 𝑠] .

Using again the triangle inequality and the assumption that ED(𝑌 [𝑣, 𝑠∗], 𝑋 [𝑣]) ≤
𝛽𝑣 (by the Matching Test), we derive that

𝐷[𝑣, 𝑠] = ED(𝑌 [𝑣, 𝑠∗], 𝑌 [𝑣, 𝑠])
≤ ED(𝑌 [𝑣, 𝑠∗], 𝑋 [𝑣]) + ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠])
≤ ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠]) + 𝛽𝑣.

The lower bound can be proved similarly and therefore 𝐷[𝑣, 𝑠] is an additive
𝛽𝑣-approximation of ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠]).

We finally analyze the error probability of Algorithm 7.2. There are three sources
of randomness in the algorithm: The Matching and Periodicity Tests in Lines 3
and 4 and the application of the Precision Sampling Lemma. For each node, there-
fore have three error events: With probability at most 2𝛿 = 2

100𝐾−100 one of the
property tests fails. We apply the Precision Sampling Lemma with 𝛿 = 1

100𝐾101

for 2𝐾 + 1 shifts in every node, hence the error probability is 2𝐾+1
100𝐾101 ≤ 3

100𝐾100 . In
total, the error probability per node is 5

100𝐾100 . Recall that there are at most 2𝐾100

nodes in the partition tree, and thus the total error probability is bounded by 0.1.

Running Time. This concludes the correctness part of the analysis and we con-
tinue bounding the running time of Algorithm 7.2. We proceed in two steps: First,
we give an upper bound on the number of active nodes in the partition tree (see
Lemmas 7.26 and 7.27). Second, we bound the expected running time of a sin-
gle execution of Algorithm 7.2 (ignoring the cost of recursive calls). The expected
running time is bounded by their product.

160

Recall that call a node 𝑣 matched if there is some shift 𝑠∗ ∈ [−𝐾 . . 𝐾] such
that 𝑋 [𝑣] = 𝑌 [𝑣, 𝑠∗]. Moreover, we say that 𝑣 is active if the recursive computation
of Algorithm 7.2 reaches 𝑣.

Lemma 7.26 (Number of Unmatched Nodes). Assume that ED(𝑋,𝑌) ≤ 𝐾 . If the
partition tree has depth 𝐷, then there are at most 𝐾𝐷 nodes which are not matched.

Proof. Focus on any level in the partition tree and let 0 = 𝑖0 < · · · < 𝑖𝑤 = 𝑛 denote
the partition induced by that level, i.e., let [𝑖ℓ . . 𝑖ℓ+1) = 𝐼𝑣 where 𝑣 is the ℓ-th node
in the level (from left to right). Let 𝐴 be an optimal alignment between 𝑋 and 𝑌 ,
then:

ED(𝑋,𝑌) =
𝑤−1∑︁
ℓ=0

ED(𝑋 [𝑖ℓ . . 𝑖ℓ+1), 𝑌 [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1))).

Since we assumed that ED(𝑋,𝑌) ≤ 𝐾 , there can be at most 𝐾 nonzero terms in
the sum. For any zero term we have that 𝑋 [𝑖ℓ . . 𝑖ℓ+1) = 𝑌 [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1)) and
therefore the ℓ-th node in the current level is matched with shift 𝐴(𝑖ℓ) − 𝑖ℓ. By
Proposition 7.21 we have that |𝐴(𝑖ℓ) − 𝑖ℓ | ≤ ED(𝑋,𝑌) ≤ 𝐾 . This completes the
proof.

Lemma 7.27 (Number of Active Nodes). Assume that ED(𝑋,𝑌) ≤ 𝐾 . If the parti-
tion tree has depth 𝐷, then there are at most 𝑂((𝐾𝐷𝐵)2) active nodes, with proba-
bility 0.98.

Proof. Recall that (unconditionally) there are at most 2𝐾100 nodes in the partition
tree. Hence, by a union bound, all Matching Tests in Line 3 succeed with probabil-
ity at least 1 − 0.02 = 0.98. We will condition on this event throughout the proof.
We distinguish between three kinds of nodes 𝑣:

1 𝑣 itself and all of 𝑣’s ancestors are not matched,
2 𝑣 itself is matched, but all of 𝑣’s ancestors are not matched,
3 some ancestor of 𝑣 (and therefore also 𝑣 itself) is matched.

By the previous lemma we know that there are at most 𝐾𝐷 nodes which are
not matched. It follows that there are at most 𝐾𝐷 nodes of the first kind.

It is also easy to bound the number of nodes 𝑣 of the second kind: Observe
that 𝑣’s parent is a node of the first kind. Hence, there can be at most 𝐾𝐷 · 𝐵 nodes
of the second kind.

Finally, we bound the number of nodes of the third kind. Any such node 𝑣
has a unique ancestor 𝑤 of the second kind. There are two cases for 𝑤: Either
the condition in Line 6 succeeds and the algorithm directly solves 𝑤. This is a
contradiction since we assumed that 𝑣 (a descendant of 𝑤) is active. Or this con-
dition fails, and the algorithm continues branching with the exception that if in
the subtree below 𝑤 there are more than 20𝐾 active nodes per level for which
the Periodicity Test in Line 4 reports Far, then we interrupt the recursive com-
putation. We claim that consequently in the subtree below 𝑤 (consisting only of
nodes of the third kind), there are at most 20𝐾𝐵 active nodes per level. Indeed,
suppose there were more than 20𝐾𝐵 active nodes on some level. Then consider
their parent nodes; there must be more than 20𝐾 parents. For each such parent 𝑢
the Matching Test reported Close (since 𝑢 is a matched node, and we assumed that
all Matching Tests succeed) and the Periodicity Test reported Far (since otherwise
the condition in Line 4 triggers and solves 𝑢 directly, but we assumed that 𝑢 is the
parent of some other active node). Note that we have witnessed more than 20𝐾
nodes on one level below 𝑤 for which the Periodicity Test reported Far. This is a
contradiction.

In total the number of active nodes below 𝑤 is bounded by 20𝐾𝐵 · 𝐷. Recall
that there are at most 𝐾𝐷 · 𝐵 nodes 𝑤 of the second kind, hence the total number
of active nodes of the third kind is 20(𝐾𝐷𝐵)2. Summing over all three kinds, we
obtain the claimed bound.

161

We are ready to bound the total running time. In the following lemma we
prove that the algorithm is efficient assuming that the edit distance between 𝑋 and
𝑌 is small. This assumption can be justified by applying Algorithm 7.2 with the
following modification: We run Algorithm 7.2 with a time budget and interrupt
the computation as soon as the budget is depleted. In this case we can immediately
infer that the edit distance between 𝑋 and 𝑌 must be large.

Lemma 7.28 (Running Time of Algorithm 7.2). Let 𝑋,𝑌 be length-𝑛 strings with
ED(𝑋,𝑌) ≤ 𝐾 . Then Algorithm 7.2 runs in time

𝑛

𝐾
· (log 𝐾)𝑂(log𝐵 (𝐾)) + 𝑂(𝐾4𝐵2),

with constant probability 0.9.

Proof. We first bound the expected running time of a single execution of Algo-
rithm 7.2 where we ignore the cost of recursive calls. Let 𝐷 denote the depth of
the partition tree. We proceed in the order of the pseudocode:

Lines 1 and 2: If the test in Line 1 succeeds, then Line 2 takes time𝑂(|𝑋 [𝑣] |+𝐾2)
by Theorem 7.20, where |𝑋 [𝑣] | ≤ 100𝐾2 or |𝑋 [𝑣] | ≤ 𝑂(𝑛/𝐾100). The total time
of this step is therefore bounded by 𝑂(𝐾2 + 𝑛/𝐾100).
Lines 3 and 4: Running the Matching and Periodicity Tests (Lemmas 7.18
and 7.19) takes time 𝑂(𝛽−1

𝑣 |𝑋 [𝑣] | log 𝐾 + 𝐾 log |𝑋 [𝑣] |). To match the claimed
time bound, we want to replace the log |𝑋 [𝑣] | by log 𝐾 here. So assume that
the second term dominates, i.e., 𝛽−1

𝑣 |𝑋 [𝑣] | log 𝐾 ≤ 𝐾 log |𝑋 [𝑣] |. At any node 𝑣
the additive accuracy 𝛽𝑣 is always at most 0.001𝐾 (since at the root we exactly
have accuracy 0.001𝐾 and below the root the additive error never increases),
hence |𝑋 [𝑣] |/log |𝑋 [𝑣] | ≤ poly(𝐾). It follows that we can bound the total time
of this step indeed by 𝑂(𝛽−1

𝑣 |𝑋 [𝑣] | log 𝐾 + 𝐾 log 𝐾).
Lines 5 to 9: Here we merely produce the output according to some fixed rules.
The time of this step is bounded by 𝑂(𝐾).
Lines 11 to 18: It is easy to check that these steps run in time 𝑂(𝐾𝐵). This
analysis is exactly as in Lemma 7.13.

In total, the time of a single execution is 𝑂(𝛽−1
𝑣 |𝑋 [𝑣] | log 𝐾 + 𝐾2 + 𝑛/𝐾100). We will

simplify this term by plugging in the (expected) value 1/𝛽𝑣 for any node 𝑣 (in a
way similar to Lemma 7.13).

Recall that 𝛽𝑣 = 0.001𝐾 · 𝑢𝑣1 · . . . · 𝑢𝑣𝑑 where 𝑣0, 𝑣1, . . . , 𝑣𝑑 = 𝑣 is the root-
to-node path leading to 𝑣 and each 𝑢𝑖 is sampled from D(𝜖 = 1

200 log 𝐾 , 𝛿 = 1
100𝐾101),

independently. Using Lemma 7.9 there are events 𝐸𝑤 happening each with prob-
ability 1 − 1/𝑁 such that

E(1/𝑢𝑤 | 𝐸𝑤) ≤ 𝑂(𝜖−2 log(𝛿−1) log𝑁) ≤ polylog(𝐾).

In the last step we set 𝑁 = 100𝐾100. Taking a union bound over all active nodes 𝑤
(there are at most 2𝐾100 many), the event 𝐸 =

∧
𝑤 𝐸𝑤 happens with probability at

least 0.98, and we will condition on 𝐸 from now on. Under this condition we have:

E(1/𝛽𝑣 | 𝐸) =
1000
𝐾

𝑑∏
𝑖=1

E(1/𝑢𝑣𝑖 | 𝐸𝑣𝑖) ≤
(log 𝐾)𝑂(𝑑)

𝐾
≤ (log 𝐾)𝑂(log𝐵 (𝐾))

𝐾
.

Finally, we can bound the total expected running time (conditioned on 𝐸) as
follows, summing over all active nodes 𝑣:∑︁

𝑣

𝑂

(
|𝑋 [𝑣] | · (log 𝐾)𝑂(log𝐵 (𝐾))

𝑘
+ 𝐾2 + 𝑛

𝐾100

)
.

Using that
∑
𝑤 |𝑋 [𝑤] | = 𝑛 whenever 𝑤 ranges over all nodes on a fixed level in

the partition tree, and thus
∑
𝑣 |𝑋 [𝑣] | ≤ 𝑛 · 𝐷 where 𝑣 ranges over all nodes, we

162

can bound the first term in the sum by 𝑛/𝐾 · (log 𝐾)𝑂(log𝐵 (𝐾)) . The second term
can be bounded by 𝐾2 times the number of active nodes. By Lemma 7.27 this
becomes𝑂(𝐾4𝐷2𝐵2) = 𝑂(𝐾4𝐵2). By the same argument the third term becomes at
most 𝑛/𝐾90 and is therefore negligible.

We conditioned on two events: The event 𝐸 and the event that the number of
active nodes is bounded by𝑂(𝐾2𝐷2𝐵2) (Lemma 7.27). Both happen with probabil-
ity at least 0.98, thus the total success probability is 0.96 ≥ 0.9.

7.4.5 Main Theorems

We finally recap and formally prove our two main results on sublinear edit dis-
tance. We start with the most general statement we obtain:

Theorem 7.29 (Sublinear-Time Gap Edit Distance). Let 2 ≤ 𝐵 ≤ 𝑘 be a parameter.
The (𝑘,Θ(𝑘𝐵 log𝐵 (𝑘)))-gap edit distance problem can be solved in time

𝑛

𝑘
· (log 𝑘)𝑂(log𝐵 (𝑘)) + 𝑂(𝑘4 poly(𝐵)).

Proof. Let 𝑘, 𝐾̄ be parameters to be set later. By Lemma 7.8, a solution of the tree
distance problem with root accuracies 𝛼𝑟 ≤ 10 and 𝛽𝑟 ≤ 0.001𝐾̄ translates to an
answer of the (𝑘, 𝐾̄)-gap edit problem for 𝑘 = 𝐾̄/(1000𝐵𝐷), where 𝐵 and 𝐷 are the
degree and depth of the partition tree, respectively. By Lemma 7.25, Algorithm 7.2
correclty solves the tree distance problem and thereby (𝑘, 𝐾̄)-gap edit distance. To
bound the running time by

𝑛

𝐾̄
· (log 𝐾̄)𝑂(log𝐵 (𝐾̄)) + 𝑂(𝐾̄4 · poly(𝐵)),

we interrupt the algorithm after it exceeds this time budget and return Far. In-
deed, by Lemma 7.28 the algorithm runs in this time budget whenever the edit
distance of the given strings 𝑋,𝑌 is ED(𝑋,𝑌) ≤ 𝐾̄ .

We finally pick 𝑘 = 𝑘 and 𝐾̄ = 1000𝐵𝐷𝑘. Noting that the partition tree has
depth 𝐷 = log𝐵 (𝐾̄) = 𝑂(log𝐵 (𝑘)), the claimed statement follows.

Theorem 1.15 (Subpolynomial Gap Edit Distance). The (𝑘, 𝑘 · 2𝑂(
√

log 𝑘))-gap edit
distance problem can be solved in time 𝑂(𝑛/𝑘 + 𝑘4+𝑜(1)).

Proof. Simply plugging 𝐵 = 2
√

log 𝑘 into Theorem 7.29 leads to the correct gap, but
we suffer a factor 𝑘𝑜(1) in the running time. For that reason, let 𝑘 be a parameter
to be specified later and apply Theorem 7.29 with parameter 𝑘 and 𝐵 = 2

√
log 𝑘 . In

that way we can distinguish the gap 𝑘 versus 𝑘 · 2Θ (
√

log 𝑘) in time

𝑛

𝑘
· 𝑓 (𝑘) + 𝑘4+𝑜(1) ,

where

𝑓 (𝑘) = (log 𝑘)𝑂(log𝐵 (𝑘)) = 𝑘𝑜(1) .

We set 𝑘 = 𝑘 · 𝑓 (𝑘)2. For sufficiently large 𝑘, we have that 𝑓 (𝑘) ≤ 𝑓 (𝑘)2 and there-
fore the running time becomes 𝑂(𝑛/𝑘 + 𝑘4+𝑜(1)) as claimed. (For small constant 𝑘,
we can exactly compute the 𝑘-capped edit distance in linear time 𝑂(𝑛) using the
Landau-Vishkin algorithm [148].) Summarizing, our algorithm distinguishes the
gap 𝑘 versus 𝑘 · 2𝑂(

√
log 𝑘) = 𝑘 · 2Θ̃ (

√
log 𝑘) . Since 𝑘 ≤ 𝑘, this is sufficient to prove the

claim.

Theorem 1.16 (Polylogarithmic Gap Edit Distance). The (𝑘, 𝑘 · (log 𝑘)𝑂(1/𝜖))-gap
edit distance problem can be solved in time 𝑂(𝑛/𝑘1−𝜖 + 𝑘4+𝑜(1)), for any 𝜖 ∈ (0, 1).

163

Proof. Let 𝑐 be the constant so that the time bound in Theorem 7.29 becomes

𝑛

𝑘
· (log 𝑘)𝑐 log𝐵 (𝑘) + 𝑂(𝑘4 poly(𝐵)).

We apply Theorem 7.29 with parameter 𝐵 = (log 𝑘)𝑐/𝜖. Then the gap is indeed 𝑘
versus 𝑘 · (log 𝑘)𝑂(1/𝜖) as claimed. Since (log 𝑘)𝑐 log𝐵 (𝑘) = 𝑘𝜖 the running time bound
becomes 𝑂(𝑛/𝑘1−𝜖 + 𝑘4+𝑜(1)).

7.5 Equivalence of Edit Distance and Tree Distance

In this section we prove that the tree distance closely approximates the edit dis-
tance. The proof is an easy generalization of [20, Theorem 3.3]. At the end of the
section, we also provide a proof of Lemma 7.6.

Lemma 7.3 (Equivalence of Edit Distance and Tree Distance). Let 𝑋,𝑌 be strings
and let 𝑇 be a partition tree with degree at most 𝐵 and depth at most 𝐷. Then
ED(𝑋,𝑌) ≤ TD𝑇 (𝑋,𝑌) ≤ 2𝐵𝐷 · ED(𝑋,𝑌).

We prove the lower and upper bounds on TD(𝑋,𝑌) in two separate steps.

Lower Bound. We show that ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠]) ≤ TD(𝑋,𝑌 , 𝑣, 𝑠). The proof is by
induction on the depth of 𝑇 . If 𝑣 is a leaf we have ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠]) = TD(𝑋,𝑌 , 𝑣, 𝑠)
by definition. So focus on an internal node 𝑣with children 𝑣0, . . . , 𝑣𝐵−1. In this case
we have:

ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠]) ≤
𝐵−1∑︁
ℓ=0

ED(𝑋 [𝑣ℓ], 𝑌 [𝑣ℓ, 𝑠]) (14)

≤
𝐵−1∑︁
ℓ=0

min
𝑠′∈Z

ED(𝑋 [𝑣ℓ], 𝑌 [𝑣ℓ, 𝑠′]) + ED(𝑌 [𝑣ℓ, 𝑠′], 𝑌 [𝑣ℓ, 𝑠]) (15)

≤
𝐵−1∑︁
ℓ=0

min
𝑠′∈Z

ED(𝑋 [𝑣ℓ], 𝑌 [𝑣ℓ, 𝑠′]) + 2 · |𝑠 − 𝑠′ | (16)

≤
𝐵−1∑︁
ℓ=0

min
𝑠′∈Z

TD(𝑋,𝑌 , 𝑣ℓ, 𝑠′) + 2 · |𝑠 − 𝑠′ | (17)

= TD(𝑋,𝑌 , 𝑣, 𝑠). (18)

Here we used (14) the facts that 𝑋 [𝑣] = ⃝ℓ𝑋 [𝑣ℓ] and 𝑌 [𝑣, 𝑠] = ⃝ℓ𝑌 [𝑣ℓ, 𝑠], (15)
the triangle inequality, (16) the observation that ED(𝑌 [𝑤, 𝑠], 𝑌 [𝑤, 𝑠′]) ≤ 2 · |𝑠 − 𝑠′ |
for all shifts 𝑠, 𝑠′ ∈ Z (by deleting |𝑠 − 𝑠′ | in the beginning and inserting |𝑠 − 𝑠′ |
characters at the end of the strings), (17) the induction hypothesis, and finally (18)
the definition of the tree distance.

Upper Bound. Because of some technical complications we do not prove the up-
per bound by induction. Instead, we will unfold the definition of tree distance and
prove the upper bound “globally”. Specifically, it is easy to prove (by induction on
the depth of the computation tree) that

TD(𝑋,𝑌) = min
𝑠∈Z𝑇
𝑠𝑟=0

(∑︁
internal
nodes 𝑣

∑︁
children 𝑤

of 𝑣

2 · |𝑠𝑣 − 𝑠𝑤 |
)
+

∑︁
leaves 𝑣

ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠𝑣]),

where we write 𝑟 for the root node. For clarity: Here, we minimize over all
shifts 𝑠𝑣 ∈ Z for all nodes 𝑣 in the computation tree—except for the root node 𝑟 for
which we fix 𝑠𝑟 = 0.

To prove an upper bound on this expression, we first specify the values 𝑠𝑣.
For this purpose, we let 𝐴 denote an optimal alignment between 𝑋 and 𝑌 . Re-
call that the computation tree determines an interval 𝐼𝑣 for each node 𝑣; let us

164

write 𝐼𝑣 = [𝑖𝑣 . . 𝑗𝑣). We can now pick the value 𝑠𝑣 = 𝐴(𝑖𝑣) − 𝑖𝑣. Slightly abusing
notation, we also define the substring 𝑌 ′ [𝑣] = 𝑌 [𝐴(𝑖𝑣) . . 𝐴(𝑗𝑣)). By the way we de-
fined optimal alignments 𝐴, we have that ED(𝑋,𝑌) = ∑

𝑣 ED(𝑋 [𝑣], 𝑌 ′ [𝑣]), where
the sum is over all nodes 𝑣 in a cut through the partition tree (e.g., all leaves or all
nodes at one specific level).

Claim 7.30. ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠𝑣]) ≤ 2 ED(𝑋 [𝑣], 𝑌 ′ [𝑣]).

Proof. By the triangle inequality, we can bound ED(𝑋 [𝑣], 𝑌 [𝑣, 𝑠𝑣]) by the sum of
ED(𝑋 [𝑣], 𝑌 ′ [𝑣]) and ED(𝑌 ′ [𝑣], 𝑌 [𝑣, 𝑠𝑣]). But observe that both strings 𝑌 ′ [𝑣] and
𝑌 [𝑣, 𝑠𝑣] are substrings of 𝑌 starting at the same position 𝐴(𝑖𝑣). Hence, one is a
prefix of the other string and we can bound their edit distance by their differ-
ence in lengths, ED(𝑌 ′ [𝑣], 𝑌 [𝑣, 𝑠𝑣]) ≤ | |𝑌 ′ [𝑣] | − |𝑌 [𝑣, 𝑠𝑣] | | = | |𝑌 ′ [𝑣] | − |𝑋 [𝑣] | | ≤
ED(𝑋 [𝑣], 𝑌 ′ [𝑣]).

Claim 7.31. Let 𝑤 be a child of 𝑣. Then |𝑠𝑣 − 𝑠𝑤 | ≤ ED(𝑋 [𝑣], 𝑌 ′ [𝑣]).

Proof. Recall that 𝑠𝑣 = 𝐴(𝑖𝑣) − 𝑖𝑣 and 𝑠𝑤 = 𝐴(𝑖𝑤) − 𝑖𝑤. Using that the edit dis-
tance of two strings is at least their difference in length, we have that |𝑠𝑣 − 𝑠𝑤 | ≤
ED(𝑋 [𝑖𝑣 . . 𝑖𝑤), 𝑌 [𝐴(𝑖𝑣) . . 𝐴(𝑖𝑤))). Since 𝑤 is a child of 𝑣 we have that 𝑖𝑤 ≤ 𝑗𝑣. Thus
we obtain |𝑠𝑣 − 𝑠𝑤 | ≤ ED(𝑋 [𝑖𝑣 . . 𝑖𝑤), 𝑌 [𝐴(𝑖𝑣) . . 𝐴(𝑖𝑤))) = ED(𝑋 [𝑣], 𝑌 ′ [𝑣]), using
again that 𝐴 is an optimal alignment.

Using the two claims, we can finally give an upper bound on the tree dis-
tance. In the following calculation we will use (19) the tree distance character-
ization from before (plugging in our values 𝑠𝑣), (20) the two claims, (21) the as-
sumption that each node has at most 𝐵 children and the (obvious) fact that each
node is either a leaf or internal, and finally (22) that

∑
𝑣 ED(𝑋 [𝑣], 𝑌 ′ [𝑣]) = ED(𝑋,𝑌)

whenever the sum is over all nodes 𝑣 at one specific level of the computation tree,
hence

∑
𝑣 ED(𝑋 [𝑣], 𝑌 ′ [𝑣]) = 𝐷 · ED(𝑋,𝑌) if the sum is over all nodes 𝑣:

TD(𝑋,𝑌) ≤
(∑︁

internal
nodes 𝑣

∑︁
children 𝑤

of 𝑣

2 · |𝑠𝑣 − 𝑠𝑤 |
)
+

∑︁
leaves 𝑣

ED(𝑋𝑣, 𝑌𝑣,𝑠𝑣) (19)

≤
(∑︁

internal
nodes 𝑣

∑︁
children 𝑤

of 𝑣

2 · ED(𝑋𝑣, 𝑌 ′𝑣)
)
+

∑︁
leaves 𝑣

2 · ED(𝑋𝑣, 𝑌 ′𝑣) (20)

≤ 2𝐵
∑︁
all

nodes 𝑣

ED(𝑋𝑣, 𝑌 ′𝑣) (21)

≤ 2𝐵𝐷 · ED(𝑋,𝑌). (22)

This completes the proof of Lemma 7.3. It remains to prove Lemma 7.6.

Lemma 7.6 (Equivalence of Capped Distances). TD≤𝐾 (𝑋,𝑌) = min(TD(𝑋,𝑌), 𝐾).

Proof. It is easy to prove that TD≤𝐾 (𝑋,𝑌 , 𝑣, 𝑠) ≥ min(TD(𝑋,𝑌 , 𝑣, 𝑠), 𝐾) for all
nodes 𝑣 and all shifts 𝑠, by induction. However, the other direction is not necessar-
ily true for all nodes. For the other direciton, we thus directly prove TD≤𝐾 (𝑋,𝑌) ≤
min(TD(𝑋,𝑌), 𝐾). We may assume that TD(𝑋,𝑌) < 𝐾 as otherwise the statement
is clear. Let 𝑠𝑣 denote the optimal shifts picked at all nodes 𝑣 in the tree distance
definition (7). That is, we have 𝑠𝑟 = 0 for the root node 𝑟 and for all nodes 𝑣 with
children 𝑣1, . . . , 𝑣𝐵 the following equation is satisfied:

TD(𝑋,𝑌 , 𝑣, 𝑠𝑣) =
∑︁
𝑖∈[𝐵]
(TD(𝑋,𝑌 , 𝑣𝑖 , 𝑠𝑣𝑖) + 2 · |𝑠𝑣 − 𝑠𝑣𝑖 |).

By induction one can easily verify that |𝑠𝑣 | ≤ TD(𝑋,𝑌) < 𝐾 for all nodes 𝑣. But
this implies that the same shifts can be picked in the 𝐾-capped tree distance def-
inition (8) to certify that TD≤𝐾 (𝑋,𝑌 , 𝑟, 0) ≤ TD(𝑋,𝑌 , 𝑟, 0), and thus TD≤𝐾 (𝑋,𝑌) ≤
TD(𝑋,𝑌).

165

7.6 Precision Sampling Lemma

In this section, we give a proof of the Precision Sampling Lemma.

Lemma 7.9 (Precision Sampling). Let 𝜖, 𝛿 > 0. There is a distribution D = D(𝜖, 𝛿)
supported over the real interval (0, 1] and an algorithm Recover with the following
guarantees:

1 Accuracy: Fix reals 𝐴0, . . . , 𝐴𝑛−1 and independently sample 𝑢0, . . . , 𝑢𝑛−1 ∼ D.
Then, given (𝛼, 𝛽 ·𝑢𝑖)-approximations 𝐴𝑖 of 𝐴𝑖 , the algorithm Recover computes
an ((1 + 𝜖) · 𝛼, 𝛽)-approximation of

∑
𝑖 𝐴𝑖 with success probability 1− 𝛿, for any

parameters 𝛼 ≥ 1 and 𝛽 ≥ 0.
2 Running Time: Recover runs in time 𝑂(𝑛 · 𝜖−2 log(𝛿−1)).
3 Efficiency: Sample 𝑢 ∼ D. Then, for any 𝑁 ≥ 1 there is an event 𝐸 = 𝐸(𝑢) such

that:
𝐸 happens with probability at least 1 − 1/𝑁 , and
E𝑢∼D (1/𝑢 | 𝐸) ≤ 𝑂(𝜖−2 log(𝛿−1) log𝑁).

Although originally used and stated by Andoni, Krauthgamer and Onak in [20],
our formulation is essentially taken from their follow-up paper [21]. We give a
simpler proof using the exponential distribution, as suggested in a later paper by
Andoni [19].

Recall that the exponential distribution Exp(𝜆) with rate 𝜆 > 0 is a continuous
distribution over the positive reals with probability density function 𝑓 (𝑥) = 𝜆𝑒−𝜆𝑥 .
We will use the following facts:

Fact 7.32 (Properties of the Exponential Distribution). Let 𝜆, 𝜆1, . . . , 𝜆𝑛 > 0.

Scaling: Sample 𝑢 ∼ Exp(𝜆) and let 𝛼 > 0. Then 𝑢/𝛼 is distributed as Exp(𝛼 · 𝜆).
Min-Stability: Independently sample 𝑢1 ∼ Exp(𝜆1), . . . , 𝑢𝑛 ∼ Exp(𝜆𝑛). Then
their minimum min{𝑢1, . . . , 𝑢𝑛} is distributed as Exp(∑𝑖 𝜆𝑖).

Proof of Lemma 7.9. We pick the distribution D = D(𝜖, 𝛿) = Exp(𝜆) for some
integer 𝜆 = 𝜆 (𝜖, 𝛿). Note that by the min-stability property, sampling 𝑢𝑖 ∼ D is
equivalent to sampling 𝜆 values 𝑢𝑖,1, . . . , 𝑢𝑖,𝜆 ∼ Exp(1) and returning their mini-
mum. For simplicity, we assume that we can keep track of these 𝜆 original val-
ues 𝑢𝑖, 𝑗 for each sample 𝑢𝑖 . With this distribution in mind, we prove the three
properties:

1 Accuracy: Fix reals 𝐴1, . . . , 𝐴𝑛 and independently sample𝑢1, . . . , 𝑢𝑛 ∼ D (while
keeping track of the 𝑢𝑖, 𝑗 ’s). Then an adversary provides us with approxima-
tions 𝐴1, . . . , 𝐴𝑛 satisfying that 𝐴𝑖 is an (𝛼, 𝛽 · 𝑢𝑖)-approximation of 𝐴𝑖 . Our
goal is to design an algorithm Recover that (𝛼(1 + 𝜖), 𝛽)-approximates

∑
𝑖 𝐴𝑖 :

The algorithm is simple:
Compute 𝑀 𝑗 = max𝑖∈[𝑛] 𝐴𝑖/𝑢𝑖, 𝑗 for all 𝑗 ∈ [𝜆].
Return ln(2) ·median 𝑗∈[𝜆] 𝑀 𝑗 .

For the analysis, we define the quantities 𝑀 𝑗 = max𝑖∈[𝑛] 𝐴𝑖/𝑢𝑖, 𝑗 . Note that 𝑀 𝑗

is a random variable and does not depend on the adversary’s choice. We argue
in two steps: First, note that 𝑀 𝑗 is an (𝛼, 𝛽)-approximation of 𝑀 𝑗 as

𝑀 𝑗 = max
𝑖∈[𝑛]

𝐴𝑖
𝑢𝑖, 𝑗
≤ max

𝑖∈[𝑛]

𝛼𝐴𝑖 + 𝛽 · 𝑢𝑖, 𝑗
𝑢𝑖, 𝑗

≤ 𝛼
(
max
𝑖∈[𝑛]

𝐴𝑖
𝑢𝑖, 𝑗

)
+ 𝛽 = 𝛼𝑀 𝑗 + 𝛽,

and similarly 𝑀 𝑗 ≥ 𝛼−1𝑀 𝑗 − 𝛽.
Second, we prove that ln(2)·median 𝑗 𝑀 𝑗 is a (1+𝜖)-approximation of

∑
𝑖 𝐴𝑖 ,

with probability at least 1−𝛿. From this statement, the correctness of the algo-
rithm follows immediately. To show that this statement holds, first note that
by the scaling and min-stability properties from Fact 7.32, each random vari-
able 𝑀 𝑗 is distributed like the inverse of an exponentially distributed random

166

variable with rate
∑
𝑖 𝐴𝑖 . And thus, (∑𝑖 𝐴𝑖)/𝑀 𝑗 is distributed as Exp(1). It fol-

lows that

P©­«ln(2) ·𝑀 𝑗 > (1 + 𝜖)
∑︁
𝑖∈[𝑛]

𝐴𝑖
ª®¬

= P
(∑

𝑖∈[𝑛] 𝐴𝑖

𝑀 𝑗
<

ln(2)
1 + 𝜖

)
=

∫ ln(2)
1+𝜖

𝑢=0
𝑒−𝑢 𝑑𝑢

= 1 − 𝑒−
ln(2)
1+𝜖

= 1 − (1
2)

1
1+𝜖

= 1
2 − Θ(𝜖),

and similarly,

P©­«ln(2) ·𝑀 𝑗 > (1 + 𝜖)
∑︁
𝑖∈[𝑛]

𝐴𝑖
ª®¬ = 1

2 − Θ(𝜖).

Using Chernoff’s bound, with probability 1 − exp(−Ω(𝜆𝜖2)), we have that (i)
the number of 𝑗’s with ln(2) · 𝑀 𝑗 > (1 + 𝜖)

∑
𝑖 𝐴𝑖 is less than 𝜆/2 and (ii) the

number of 𝑗’s with ln(2) ·𝑀 𝑗 < (1− 𝜖)
∑
𝑖 𝐴𝑖 is less than 𝜆/2. If both (i) and (ii)

are simultaneously true, then ln(2) ·median 𝑗 𝑀 𝑗 is as claimed. To achieve the
desired success probability 1 − 𝛿, we set 𝜆 (𝜖, 𝛿) = Θ(𝜖−2 log(𝛿−1)).

2 Running Time: The algorithm clearly runs in time 𝑂(𝜆) = 𝑂(𝜖−2 log(𝛿−1)).
3 Efficiency: Now we prove the efficiency property. Fix any 𝑁 ≥ 1 and sam-

ple 𝑢 ∼ D. Let 𝐸 be the event that 𝑢 > 1
𝜆𝑁 . This event happens with probability

P(𝐸) =
∫ ∞

𝑢= 1
𝜆𝑁

𝜆𝑒−𝜆𝑢 𝑑𝑢 = 𝑒−
1
𝑁 > 1 − 1

𝑁
.

Next, we analyze the conditional expectation E(1/𝑢 | 𝐸) where 𝑢 is sampled
fromD = Exp(𝜆). Using that P(𝐸) ≥ 𝑒−1 we have that

E(1/𝑢 | 𝐸) = 1
P(𝐸)

∫ ∞

𝑢= 1
𝜆𝑁

1
𝑢
· 𝜆𝑒−𝜆𝑢 𝑑𝑢

≤ 𝑒
∫ 1

𝑢= 1
𝜆𝑁

1
𝑢
· 𝜆𝑒−𝜆𝑢 𝑑𝑢 + 𝑒

∫ ∞

𝑢=1

1
𝑢
· 𝜆𝑒−𝜆𝑢 𝑑𝑢

≤ 𝑒𝜆
∫ 1

𝑢= 1
𝜆𝑁

1
𝑢
𝑑𝑢 + 𝑒

= 𝑂(𝜆 log(𝜆𝑁))
= 𝑂(𝜆 log𝑁).

Plugging in our choice of 𝜆, we obtain that E(1/𝑢 | 𝐸) = 𝑂(𝜖−2 log(𝛿−1) log𝑁),
as claimed.

Finally, we enforce that the distribution D is supported over (0, 1], as the
lemma states. We can simply transform a sample 𝑢 ∼ D into 𝑢′ ← min(𝑢, 1).
Since the samples 𝑢 only become smaller in this way, the estimates 𝐴𝑖 obtained by
the adversary have only smaller additive error, and we therefore preserve the ac-
curacy property. For the efficiency property, note that E(1/𝑢′ | 𝐸) ≤ E(1/𝑢 | 𝐸) +1,
and therefore the bound on the conditional expectation remains valid asymptoti-
cally.

167

Algorithm 7.3. Given an integer array 𝐴[−𝐾 . . 𝐾], this algorithm computes the
integer array 𝐵[−𝐾 . . 𝐾] specified by 𝐵[𝑠] = min−𝐾≤𝑠′≤𝐾 𝐴[𝑠′] + 2 · |𝑠 − 𝑠′ |.

1 Let 𝐵𝐿 [−𝐾 . . 𝐾] and 𝐵𝑅 [−𝐾 . . 𝐾] be integer arrays
2 Initialize 𝐵𝐿 [−𝐾] ← 𝐴[−𝐾] and 𝐵𝑅 [𝐾] ← 𝐴[𝐾]
3 for 𝑠← −𝐾 + 1, . . . , 𝐾 do
4 𝐵𝐿 [𝑠] ← min(𝐵𝐿 [𝑠 − 1] + 2, 𝐴[𝑠])
5 for 𝑠← 𝐾 − 1, . . . ,−𝐾 do
6 𝐵𝑅 [𝑠] ← min(𝐵𝑅 [𝑠 + 1] − 2, 𝐴[𝑠])
7 return the array 𝐵[−𝐾 . . 𝐾] computed by 𝐵[𝑠] ← min(𝐵𝐿 [𝑠], 𝐵𝑅 [𝑠])

Implementation in the word RAM Model. Throughout we implicitly assumed
that we can sample from the continuous distribution Exp(𝜆). We briefly comment
on how to implement the algorithm in the word RAM model. An easy way is to
discretize the samples to multiples of 1/poly(𝑛). The resulting distribution is a ge-
ometric distribution which we can efficiently sample from [62]. Alternatively, one
can prove the Precision Sampling Lemma directly in terms of a discrete probabil-
ity distribution, see for instance the original paper [20].

7.7 Range Minima

In this section we give a simple algorithm to efficiently combine the recursive re-
sults from the children at every node of the computation tree.

Lemma 7.10 (Range Minima). There is an 𝑂(𝐾)-time algorithm that, given an inte-
ger array 𝐴[−𝐾 . . 𝐾], computes the integer array 𝐵[−𝐾 . . 𝐾] specified by:

𝐵[𝑠] = min
−𝐾≤𝑠′≤𝐾

𝐴[𝑠′] + 2 · |𝑠 − 𝑠′ |.

Proof. We give the pseudocode in Algorithm 7.3. We claim that the algorithm
correctly computes

𝐵𝐿 [𝑠] = min
−𝐾≤𝑠′≤𝑠

𝐴[𝑠′] − 2𝑠′ + 2𝑠,

𝐵𝑅 [𝑠] = min
𝑠≤𝑠′≤𝐾

𝐴[𝑠′] + 2𝑠′ − 2𝑠,

for all 𝑠. This claim implies that we correctly output 𝐵[𝑠] = min(𝐵𝐿 [𝑠], 𝐵𝑅 [𝑠]).
We prove that 𝐵𝐿 [𝑠] is computed correctly; the other statement is symmetric. As
the base case, the algorithm correctly assigns 𝐵𝐿 [−𝐾] = 𝐴[−𝐾]. We may there-
fore inductively assume that 𝐵𝐿 [𝑠 − 1] is assigned correctly, and have to show
that 𝐵𝐿 [𝑠] ← min(𝐵𝐿 [𝑠 − 1] + 2, 𝐴[𝑠]) is a correct assignment. There are two
cases: Either 𝐵𝐿 [𝑠] attains its minimum for 𝑠′ < 𝑠, and thus 𝐵𝐿 [𝑠] = 𝐵𝐿 [𝑠 − 1] + 2.
Or 𝐵𝐿 [𝑠] attains the minimum for 𝑠′ = 𝑠, in which case 𝐵𝐿 [𝑠] = 𝐴[𝑠]. The running
time is bounded by 𝑂(𝐾).

7.8 2-Approximating Edit Distance for Many Shifts

In this section we show how to modify the Landau-Vishkin algorithm [148] to give
a constant-factor approximation of the edit distance of a string 𝑋 and several con-
secutive shifts of another string 𝑌 . We use this routine at the leaves of our algo-
rithm (Line 2 of Algorithm 7.2).

Theorem 7.20 (Edit Distance Approximations for Many Shifts). Let 𝑋,𝑌 be strings
with |𝑌 | = |𝑋 | + 2𝐾 . We can 2-approximate ED≤𝐾 (𝑋,𝑌 [𝐾 + 𝑠 . . |𝑋 | + 𝐾 + 𝑠)), for all
shifts 𝑠 ∈ [−𝐾 . . 𝐾], in time 𝑂(|𝑋 | + 𝐾2).

168

Proof. Let 𝑚 = |𝑋 | and 𝑛 = |𝑌 |. We will write 𝑌𝑠 = 𝑌 [𝐾 + 𝑠 . . 𝑚 + 𝐾 + 𝑠) for short.
Consider the following table 𝑆[𝑖, 𝑗] defined as

𝑆[𝑖, 𝑗] = min
0≤𝑠′≤2𝐾

ED(𝑋 [0 . . 𝑖), 𝑌 [𝑠′ . . 𝑗)), (23)

where 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛]. We prove the statement in two steps: First, we will
demonstrate how to compute the values𝑆[𝑚,𝑚+𝐾+𝑠] in the claimed running time.
Second, we show that these values constitute 2-approximations of ED≤𝐾 (𝑋,𝑌𝑠).

Computing the Values 𝑺[𝒎,𝒎 + 𝑲 + 𝒔]. It is not hard to see that Equation (23)
follows the same recursive formulation as the dynamic program for edit distance,
but with a twist in the base case. That is, we initialize 𝑆[0, 𝑗] = 0 for all 𝑗 ∈ [0 . . 2𝐾]
(which accounts for the possible starting shifts of 𝑌) and the rest of the entries
follow the recurrence

𝑆[𝑖, 𝑗] = min{1 + 𝑆[𝑖 − 1, 𝑗], 1 + 𝑆[𝑖, 𝑗 − 1], 𝑐𝑖, 𝑗 + 𝑆[𝑖 − 1, 𝑗 − 1]},

where 𝑐𝑖, 𝑗 is the cost of matching 𝑋 [𝑖] with𝑌 [𝑗] (that is, 𝑐𝑖, 𝑗 = 1 if 𝑋 [𝑖] ≠ 𝑌 [𝑗], and
otherwise 𝑐𝑖, 𝑗 = 0) and where we set the out-of-bounds entries 𝑆[−1, 𝑗], 𝑆[𝑖,−1]
to∞.

Since we want to approximate capped edit distances, we are only interested
in computing values ≤ 𝐾 in this table. This can be done using the classic Landau-
Vishkin algorithm [148] in time 𝑂(|𝑋 | + 𝐾2). We now briefly sketch how this al-
gorithm works. The idea is to iterate over the edit distance values 𝑑 = 0, . . . , 𝐾 .
For each value 𝑑 and for each upper-left to bottom-right diagonal in the dynamic
programming table, we maintain the furthest position to the right along each di-
agonal which contains the value 𝑑. We call this set of positions the frontier. Since
moving away from a diagonal incurs cost 1 and since we initialize 𝐾 consecutive
diagonals with 𝑑 = 0 in the base case, the frontier consists of𝑂(𝐾) values at any it-
eration of the algorithm (i.e., we only need to keep track of𝑂(𝐾) diagonals). Given
the frontier for some edit distance value 𝑑, we can obtain the frontier for 𝑑 + 1 by
performing a longest common extension query for each diagonal and updating the
corresponding position along each diagonal. Longest common extension queries
can be answered using suffix trees in 𝑂(1) time after preprocessing 𝑋 and 𝑌 in
linear time [148, 94], and updating the position along each diagonal also takes con-
stant time. Thus, each of the 𝐾 iterations takes time 𝑂(𝐾) and the total running
time is 𝑂(|𝑋 | + 𝐾2).

Approximation Quality. We claim that for every 𝑠 ∈ [−𝐾 . . 𝐾], the following
bounds hold:

𝑆[𝑚,𝑚 + 𝐾 + 𝑠] ≤ ED(𝑋,𝑌𝑠) ≤ 2 · 𝑆[𝑚,𝑚 + 𝐾 + 𝑠] .

This claim implies the lemma statement. Indeed, the previous step allows us to
compute the entries 𝑆[𝑚,𝑚 + 𝐾 + 𝑠] which are at most 𝐾 and identify those which
have value larger than 𝐾 . By capping the latter entries at 𝐾 , the claim implies that
we get 2-approximations of the capped distances ED≤𝐾 (𝑋,𝑌𝑠) for every 𝑠.

We now prove the claimed bounds. The lower bound 𝑆[𝑚,𝑚 + 𝐾 + 𝑠] ≤
ED(𝑋,𝑌𝑠) holds by the definition of 𝑆[𝑚,𝑚 + 𝐾 + 𝑠]. For the upper bound, let 𝑠′
be the shift which minimizes the expression for 𝑆[𝑚,𝑚 + 𝐾 + 𝑠] in Equation (23),
i.e., let 𝑠′ be such that 𝑆[𝑚,𝑚 + 𝐾 + 𝑠] = ED(𝑋,𝑌 [𝐾 + 𝑠′ . . 𝑚 + 𝐾 + 𝑠)). We will use
that the edit distance of any two strings 𝐴, 𝐵 is at least their difference in lengths
| |𝐴|−|𝐵| |. In particular, we have 𝑆[𝑚,𝑚+𝐾+𝑠] ≥ |𝑠−𝑠′ |. By the triangle inequality,
we have that

ED(𝑋,𝑌𝑠) ≤ ED(𝑋,𝑌 [𝐾 + 𝑠′ . . 𝑚 + 𝐾 + 𝑠)) + ED(𝑌 [𝐾 + 𝑠′ . . 𝑚 + 𝐾 + 𝑠), 𝑌𝑠)
≤ 𝑆[𝑚,𝑚 + 𝐾 + 𝑠] + |𝑠 − 𝑠′ | ≤ 2 · 𝑆[𝑚,𝑚 + 𝐾 + 𝑠],

169

where the second inequality follows because we can transform𝑌 [𝐾+𝑠′ . . 𝑚+𝐾+𝑠)
into𝑌𝑠 = 𝑌 [𝐾+𝑠 . . 𝑚+𝐾+𝑠) by deleting or inserting |𝑠−𝑠′ | characters. This proves
the claim and thus finishes the proof of Theorem 7.20.

170

References

1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. “Tight hard-
ness results for LCS and other sequence similarity measures”. In: 56th annual
IEEE symposium on foundations of computer science (FOCS 2015). IEEE Com-
puter Society, 2015, pages 59–78. 10.1109/FOCS.2015.14.

2 Amir Abboud, Karl Bringmann, and Nick Fischer. “Stronger 3-SUM lower
bounds for approximate distance oracles via additive combinatorics”. In: 55th
annual ACM symposium on theory of computing (STOC 2023). To appear. ACM,
2023. 10.48550/arXiv.2211.07058.

3 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. “SETH-
based lower bounds for subset sum and bicriteria path”. In: ACM trans. algo-
rithms 18.1 (2022), pages 6:1–6:22. 10.1145/3450524.

4 Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. “Hardness of ap-
proximation in P via short cycle removal: Cycle detection, distance oracles,
and beyond”. In: 54th annual ACM symposium on theory of computing (STOC
2022). ACM, 2022, pages 1487–1500. 10.1145/3519935.3520066.

5 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. “Subcu-
bic equivalences between graph centrality problems, APSP and diameter”. In:
26th annual ACM-SIAM symposium on discrete algorithms (SODA 2015). SIAM,
2015, pages 1681–1697. 10.1137/1.9781611973730.112.

6 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams,
and Ryan Williams. “Simulating branching programs with edit distance and
friends, or: A polylog shaved is a lower bound made”. In: 48th annual ACM
symposium on theory of computing (STOC 2016). ACM, 2016, pages 375–388.
10.1145/2897518.2897653.

7 Amir Abboud, Seri Khoury, Oree Leibowitz, and Ron Safier. “Listing 4-cycles”.
In: Corr (2022). 10.48550/arXiv.2211.10022.

8 Amir Abboud, Kevin Lewi, and Ryan Williams. “Losing weight by gaining
edges”. In: 22th annual european symposium on algorithms (ESA 2014).
Vol. 8737. Lecture Notes in Computer Science. Springer, 2014, pages 1–12.
10.1007/978-3-662-44777-2_1.

9 Amir Abboud and Virginia Vassilevska Williams. “Popular conjectures imply
strong lower bounds for dynamic problems”. In: 55th annual IEEE symposium
on foundations of computer science (FOCS 2014). IEEE Computer Society, 2014,
pages 434–443. 10.1109/FOCS.2014.53.

10 Karl R. Abrahamson. “Generalized string matching”. In: SIAM j. comput. 16.6
(1987), pages 1039–1051. 10.1137/0216067.

11 Peyman Afshani, Casper Benjamin Freksen, Lior Kamma, and Kasper Green
Larsen. “Lower bounds for multiplication via network coding”. In: 46th
international colloquium on automata, languages, and programming (ICALP
2019). Vol. 132. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019, pages 10:1–10:12. 10.4230/LIPIcs.ICALP.2019.10.

12 Nir Ailon. “A lower bound for Fourier transform computation in a linear model
over 2×2 unitary gates using matrix entropy”. In: Chic. j. theor. comput. sci. 2013
(2013). http://cjtcs.cs.uchicago.edu/articles/2013/12/contents.
html.

13 Maor Akav and Liam Roditty. “An almost 2-approximation for all-pairs
of shortest paths in subquadratic time”. In: 31st annual ACM-SIAM sym-
posium on discrete algorithms (SODA 2020). SIAM, 2020, pages 1–11.
10.1137/1.9781611975994.1.

14 Josh Alman and Virginia Vassilevska Williams. “A refined laser method
and faster matrix multiplication”. In: 32nd annual ACM-SIAM sympo-
sium on discrete algorithms (SODA 2021). SIAM, 2021, pages 522–539.
10.1137/1.9781611976465.32.

171

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.48550/arXiv.2211.07058
https://doi.org/10.1145/3450524
https://doi.org/10.1145/3519935.3520066
https://doi.org/10.1137/1.9781611973730.112
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.48550/arXiv.2211.10022
https://doi.org/10.1007/978-3-662-44777-2_1
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/0216067
https://doi.org/10.4230/LIPIcs.ICALP.2019.10
http://cjtcs.cs.uchicago.edu/articles/2013/12/contents.html
http://cjtcs.cs.uchicago.edu/articles/2013/12/contents.html
https://doi.org/10.1137/1.9781611975994.1
https://doi.org/10.1137/1.9781611976465.32

15 Noga Alon, Zvi Galil, Oded Margalit, and Moni Naor. “Witnesses for boolean
matrix multiplication and for shortest paths”. In: 33rd annual IEEE symposium
on foundations of computer science (FOCS 1992). IEEE Computer Society, 1992,
pages 417–426. 10.1109/SFCS.1992.267748.

16 Noga Alon, Raphael Yuster, and Uri Zwick. “Finding and counting given length
cycles”. In: Algorithmica 17.3 (1997), pages 209–223. 10.1007/BF02523189.

17 Amihood Amir, Ayelet Butman, and Ely Porat. “On the relationship between
histogram indexing and block-mass indexing”. In: Philosophical transactions
of the royal society a: Mathematical, physical and engineering sciences 372
(2014). 10.1098/rsta.2013.0132.

18 Amihood Amir, Oren Kapah, and Ely Porat. “Deterministic length reduction:
fast convolution in sparse data and applications”. In: 18th annual symposium
on combinatorial pattern matching (CPM 2007). Vol. 4580. Lecture Notes in
Computer Science. Springer, 2007, pages 183–194. 10.1007/978- 3- 540-
73437-6_20.

19 Alexandr Andoni. “High frequency moments via max-stability”. In: IEEE inter-
national conference on acoustics, speech and signal processing (ICASSP 2017).
IEEE, 2017, pages 6364–6368. 10.1109/ICASSP.2017.7953381.

20 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. “Polylogarithmic
approximation for edit distance and the asymmetric query complexity”. In:
51st annual IEEE symposium on foundations of computer science (FOCS 2010).
IEEE Computer Society, 2010, pages 377–386. 10.1109/FOCS.2010.43.

21 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. “Streaming al-
gorithms via precision sampling”. In: 52nd annual IEEE symposium on founda-
tions of computer science (FOCS 2011). IEEE Computer Society, 2011, pages 363–
372. 10.1109/FOCS.2011.82.

22 Alexandr Andoni and Negev Shekel Nosatzki. “Edit distance in near-
linear time: it’s a constant factor”. In: 61st annual IEEE symposium on
foundations of computer science (FOCS 2020). IEEE, 2020, pages 990–1001.
10.1109/FOCS46700.2020.00096.

23 Alexandr Andoni, Negev Shekel Nosatzki, Sandip Sinha, and Clifford Stein. “Es-
timating the longest increasing subsequence in nearly optimal time”. In: 63rd
annual IEEE symposium on foundations of computer science (FOCS 2022). IEEE,
2022, pages 708–719. 10.1109/FOCS54457.2022.00073.

24 Alexandr Andoni and Krzysztof Onak. “Approximating edit distance
in near-linear time”. In: SIAM j. comput. 41.6 (2012), pages 1635–1648.
10.1137/090767182.

25 Andrew Arnold and Daniel S. Roche. “Output-sensitive algorithms for sumset
and sparse polynomial multiplication”. In: 40th international symposium on
symbolic and algebraic computation (ISSAC 2015). ACM, 2015, pages 29–36. 10.
1145/2755996.2756653.

26 Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. “Near-
linear time construction of sparse neighborhood covers”. In: SIAM j. comput.
28.1 (1998), pages 263–277. 10.1137/S0097539794271898.

27 Kyriakos Axiotis, Arturs Backurs, Karl Bringmann, Ce Jin, Vasileios Nakos,
Christos Tzamos, and Hongxun Wu. “Fast and simple modular subset sum”.
In: 4th symposium on simplicity in algorithms (SOSA 2021). SIAM, 2021,
pages 57–67. 10.1137/1.9781611976496.6.

28 Arturs Backurs and Piotr Indyk. “Edit distance cannot be computed in strongly
subquadratic time (unless SETH is false)”. In: SIAM j. comput. 47.3 (2018),
pages 1087–1097. 10.1137/15M1053128.

29 Antal Balog. “Many additive quadruples”. In: Additive combinatorics. Vol. 43.
CRM Proc. Lecture Notes. Amer. Math. Soc., 2007, pages 39–49. https://doi.
org/10.1090/crmp/043.

30 Antal Balog and Endre Szemerédi. “A statistical theorem of set addition”. In:
Combinatorica 14 (1994), pages 263–268. https : / / doi . org / 10 . 1007 /
BF01212974.

172

https://doi.org/10.1109/SFCS.1992.267748
https://doi.org/10.1007/BF02523189
https://doi.org/10.1098/rsta.2013.0132
https://doi.org/10.1007/978-3-540-73437-6_20
https://doi.org/10.1007/978-3-540-73437-6_20
https://doi.org/10.1109/ICASSP.2017.7953381
https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1109/FOCS.2011.82
https://doi.org/10.1109/FOCS46700.2020.00096
https://doi.org/10.1109/FOCS54457.2022.00073
https://doi.org/10.1137/090767182
https://doi.org/10.1145/2755996.2756653
https://doi.org/10.1145/2755996.2756653
https://doi.org/10.1137/S0097539794271898
https://doi.org/10.1137/1.9781611976496.6
https://doi.org/10.1137/15M1053128
https://doi.org/10.1090/crmp/043
https://doi.org/10.1090/crmp/043
https://doi.org/10.1007/BF01212974
https://doi.org/10.1007/BF01212974

31 Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. “Approxi-
mating edit distance efficiently”. In: 45th annual IEEE symposium on founda-
tions of computer science (FOCS 2004). IEEE Computer Society, 2004, pages 550–
559. 10.1109/FOCS.2004.14.

32 Ilya Baran, Erik D. Demaine, and Mihai Patrascu. “Subquadratic algorithms for
3SUM”. In: Algorithmica 50.4 (2008), pages 584–596. 10.1007/s00453-007-
9036-3.

33 Surender Baswana, Akshay Gaur, Sandeep Sen, and Jayant Upadhyay. “Dis-
tance oracles for unweighted graphs: breaking the quadratic barrier with
constant additive error”. In: 35th international colloquium on automata, lan-
guages, and programming (ICALP 2008). Vol. 5125. Lecture Notes in Computer
Science. Springer, 2008, pages 609–621. 10.1007/978-3-540-70575-8_50.

34 Surender Baswana, Vishrut Goyal, and Sandeep Sen. “All-pairs nearly
2-approximate shortest-paths in𝑂(𝑛2 polylog 𝑛) time”. In: 22nd annual sympo-
sium on theoretical aspects of computer science (STACS 2005). Vol. 3404. Lecture
Notes in Computer Science. Springer, 2005, pages 666–679. 10.1007/978-3-
540-31856-9_55.

35 Surender Baswana and Telikepalli Kavitha. “Faster algorithms for all-pairs
approximate shortest paths in undirected graphs”. In: SIAM j. comput. 39.7
(2010), pages 2865–2896. 10.1137/080737174.

36 Surender Baswana and Sandeep Sen. “Approximate distance oracles for un-
weighted graphs in expected𝑂(𝑛2) time”. In: ACM trans. algorithms 2.4 (2006),
pages 557–577. 10.1145/1198513.1198518.

37 Tugkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova,
Ronitt Rubinfeld, and Rahul Sami. “A sublinear algorithm for weakly approxi-
mating edit distance”. In: 35th annual ACM symposium on theory of computing
(STOC 2003). ACM, 2003, pages 316–324. 10.1145/780542.780590.

38 Tugkan Batu, Funda Ergün, and Süleyman Cenk Sahinalp. “Oblivious string
embeddings and edit distance approximations”. In: 17th annual ACM-SIAM
symposium on discrete algorithms (SODA 2006). ACM Press, 2006, pages 792–
801. http://dl.acm.org/citation.cfm?id=1109557.1109644.

39 Ulrich Baum. “Existence and efficient construction of fast Fourier transforms
on supersolvable groups”. In: Comput. complex. 1 (1991), pages 235–256. 10.
1007/BF01200062.

40 Ulrich Baum and Michael Clausen. “Some lower and upper complexity bounds
for generalized Fourier transforms and their inverses”. In: SIAM j. comput. 20.3
(1991), pages 451–459. 10.1137/0220028.

41 Ulrich Baum, Michael Clausen, and Benno Tietz. “Improved upper complex-
ity bounds for the discrete Fourier transform”. In: Appl. algebra eng. commun.
comput. 2 (1991), pages 35–43. 10.1007/BF01810853.

42 Walter Baur and Volker Strassen. “The complexity of partial derivatives”. In:
Theor. comput. sci. 22 (1983), pages 317–330. 10.1016/0304-3975(83)90110-
X.

43 Uri Ben-Levy and Merav Parter. “New (𝛼, 𝛽) spanners and hopsets”. In: 31st
annual ACM-SIAM symposium on discrete algorithms (SODA 2020). SIAM, 2020,
pages 1695–1714. 10.1137/1.9781611975994.104.

44 Michael Ben-Or and Prasoon Tiwari. “A deterministic algorithm for sparse
multivariate polynominal interpolation”. In: 20th annual ACM symposium on
theory of computing (STOC 1988). ACM, 1988, pages 301–309. 10.1145/62212.
62241.

45 Elwyn R. Berlekamp. “Nonbinary BCH decoding”. In: IEEE trans. inf. theory
14.2 (1968), pages 242. 10.1109/TIT.1968.1054109.

46 Thomas Beth. Verfahren der schnellen Fourier-Transformation: Die allgemeine
diskrete Fourier-Transformation–ihre algebraische Beschreibung, Komplexität
und Implementierung. Leitfäden der angewandten Mathematik und Mechanik.
Teubner, 1984. ISBN: 9783519023630. https://books.google.de/books?
id=hk7vAAAAMAAJ.

173

https://doi.org/10.1109/FOCS.2004.14
https://doi.org/10.1007/s00453-007-9036-3
https://doi.org/10.1007/s00453-007-9036-3
https://doi.org/10.1007/978-3-540-70575-8_50
https://doi.org/10.1007/978-3-540-31856-9_55
https://doi.org/10.1007/978-3-540-31856-9_55
https://doi.org/10.1137/080737174
https://doi.org/10.1145/1198513.1198518
https://doi.org/10.1145/780542.780590
http://dl.acm.org/citation.cfm?id=1109557.1109644
https://doi.org/10.1007/BF01200062
https://doi.org/10.1007/BF01200062
https://doi.org/10.1137/0220028
https://doi.org/10.1007/BF01810853
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1137/1.9781611975994.104
https://doi.org/10.1145/62212.62241
https://doi.org/10.1145/62212.62241
https://doi.org/10.1109/TIT.1968.1054109
https://books.google.de/books?id=hk7vAAAAMAAJ
https://books.google.de/books?id=hk7vAAAAMAAJ

47 Etienne Birmelé, Rui A. Ferreira, Roberto Grossi, Andrea Marino, Nadia
Pisanti, Romeo Rizzi, and Gustavo Sacomoto. “Optimal listing of cycles
and st-paths in undirected graphs”. In: 24th annual ACM-SIAM sympo-
sium on discrete algorithms (SODA 2013). SIAM, 2013, pages 1884–1896.
10.1137/1.9781611973105.134.

48 Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri
Zwick. “Listing triangles”. In: 41st international colloquium on automata, lan-
guages, and programming (ICALP 2014). Vol. 8572. Lecture Notes in Computer
Science. Springer, 2014, pages 223–234. 10.1007/978-3-662-43948-7_19.

49 Leo I. Bluestein. “A linear filtering approach to the computation of discrete
Fourier transform”. In: Ieee transactions on audio and electroacoustics 18.4
(1970), pages 451–455.

50 Jean Bourgain. “On Lipschitz embedding of finite metric spaces in Hilbert
space”. In: Israel journal of mathematics 52.1 (1985), pages 46–52. issn:
1565-8511. 10.1007/BF02776078.

51 Joshua Brakensiek and Aviad Rubinstein. “Constant-factor approximation of
near-linear edit distance in near-linear time”. In: 52nd annual ACM sympo-
sium on theory of computing (STOC 2020). ACM, 2020, pages 685–698. 10.1145/
3357713.3384282.

52 Karl Bringmann. “A near-linear pseudopolynomial time algorithm for sub-
set sum”. In: 28th annual ACM-SIAM symposium on discrete algorithms (SODA
2017). SIAM, 2017, pages 1073–1084. 10.1137/1.9781611974782.69.

53 Karl Bringmann. “Why walking the dog takes time: frechet distance has no
strongly subquadratic algorithms unless SETH fails”. In: 55th annual IEEE sym-
posium on foundations of computer science (FOCS 2014). IEEE Computer Soci-
ety, 2014, pages 661–670. 10.1109/FOCS.2014.76.

54 Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann. “A
structural investigation of the approximability of polynomial-time problems”.
In: 49th international colloquium on automata, languages, and programming
(ICALP 2022). Vol. 229. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2022, pages 30:1–30:20. 10.4230/LIPIcs.ICALP.2022.30.

55 Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann.
“Fine-grained completeness for optimization in P”. In: 24th international con-
ference on approximation, randomization, and combinatorial optimization (AP-
PROX/RANDOM 2021). Vol. 207. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021, pages 9:1–9:22. 10.4230/LIPIcs.APPROX/RANDOM.2021.9.

56 Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos. “Almost-
optimal sublinear-time edit distance in the low distance regime”. In: 54th
annual ACM symposium on theory of computing (STOC 2022). ACM, 2022,
pages 1102–1115. 10.1145/3519935.3519990.

57 Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos. “Im-
proved sublinear-time edit distance for preprocessed strings”. In: 49th
international colloquium on automata, languages, and programming (ICALP
2022). Vol. 229. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022, pages 32:1–32:20. 10.4230/LIPIcs.ICALP.2022.32.

58 Karl Bringmann, Nick Fischer, Danny Hermelin, Dvir Shabtay, and Philip
Wellnitz. “Faster minimization of tardy processing time on a single machine”.
In: 47th international colloquium on automata, languages, and program-
ming (ICALP 2020). Vol. 168. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020, pages 19:1–19:12. 10.4230/LIPIcs.ICALP.2020.19.

59 Karl Bringmann, Nick Fischer, and Marvin Künnemann. “A fine-grained ana-
logue of schaefer’s theorem in P: dichotomy of∃𝑘∀-quantified first-order graph
properties”. In: 34th computational complexity conference (CCC 2019). Vol. 137.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pages 31:1–
31:27. 10.4230/LIPIcs.CCC.2019.31.

60 Karl Bringmann, Nick Fischer, and Vasileios Nakos. “Deterministic and Las
Vegas algorithms for sparse nonnegative convolution”. In: 33rd annual ACM-

174

https://doi.org/10.1137/1.9781611973105.134
https://doi.org/10.1007/978-3-662-43948-7_19
https://doi.org/10.1007/BF02776078
https://doi.org/10.1145/3357713.3384282
https://doi.org/10.1145/3357713.3384282
https://doi.org/10.1137/1.9781611974782.69
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.4230/LIPIcs.ICALP.2022.30
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.9
https://doi.org/10.1145/3519935.3519990
https://doi.org/10.4230/LIPIcs.ICALP.2022.32
https://doi.org/10.4230/LIPIcs.ICALP.2020.19
https://doi.org/10.4230/LIPIcs.CCC.2019.31

SIAM symposium on discrete algorithms (SODA 2022). SIAM, 2022, pages 3069–
3090. 10.1137/1.9781611977073.119.

61 Karl Bringmann, Nick Fischer, and Vasileios Nakos. “Sparse nonnegative con-
volution is equivalent to dense nonnegative convolution”. In: 53rd annual ACM
symposium on theory of computing (STOC 2021). ACM, 2021, pages 1711–1724.
10.1145/3406325.3451090.

62 Karl Bringmann and Tobias Friedrich. “Exact and efficient generation of geo-
metric random variates and random graphs”. In: 40th international colloquium
on automata, languages, and programming (ICALP 2013). Vol. 7965. Lecture
Notes in Computer Science. Springer, 2013, pages 267–278. 10.1007/978-
3-642-39206-1_23.

63 Karl Bringmann and Marvin Künnemann. “Quadratic conditional lower
bounds for string problems and dynamic time warping”. In: 56th annual IEEE
symposium on foundations of computer science (FOCS 2015). IEEE Computer
Society, 2015, pages 79–97. 10.1109/FOCS.2015.15.

64 Karl Bringmann and Vasileios Nakos. “A fine-grained perspective on approx-
imating subset sum and partition”. In: 32nd annual ACM-SIAM symposium on
discrete algorithms (SODA 2021). SIAM, 2021, pages 1797–1815. 10.1137/1.
9781611976465.108.

65 Karl Bringmann and Vasileios Nakos. “Fast 𝑛-fold boolean convolution via
additive combinatorics”. In: 48th international colloquium on automata,
languages, and programming (ICALP 2021). Vol. 198. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021, pages 41:1–41:17. 10.4230/LIPIcs.
ICALP.2021.41.

66 Karl Bringmann and Vasileios Nakos. “Top-𝑘-convolution and the quest
for near-linear output-sensitive subset sum”. In: 52nd annual ACM sym-
posium on theory of computing (STOC 2020). ACM, 2020, pages 982–995.
10.1145/3357713.3384308.

67 David E. Cardoze and Leonard J. Schulman. “Pattern matching for spa-
tial point sets”. In: 39th annual IEEE symposium on foundations of com-
puter science (FOCS 1998). IEEE Computer Society, 1998, pages 156–165.
10.1109/SFCS.1998.743439.

68 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký,
and Michael E. Saks. “Approximating edit distance within constant fac-
tor in truly sub-quadratic time”. In: J. ACM 67.6 (2020), pages 36:1–36:22.
10.1145/3422823.

69 Timothy M. Chan. “The art of shaving logs”. In: 13th algorithms and data struc-
tures symposium (WADS 2013). Vol. 8037. Lecture Notes in Computer Science.
Springer, 2013, pages 231. 10.1007/978-3-642-40104-6_20.

70 Timothy M. Chan and Qizheng He. “Reducing 3SUM to convolution-3SUM”. In:
3rd symposium on simplicity in algorithms (SOSA 2020). SIAM, 2020, pages 1–7.
10.1137/1.9781611976014.1.

71 Timothy M. Chan and Moshe Lewenstein. “Clustered integer 3SUM via additive
combinatorics”. In: 47th annual ACM symposium on theory of computing (STOC
2015). ACM, 2015, pages 31–40. 10.1145/2746539.2746568.

72 Timothy M. Chan and R. Ryan Williams. “Deterministic APSP, orthogonal vec-
tors, and more: Quickly derandomizing Razborov-Smolensky”. In: ACM trans.
algorithms 17.1 (2021), pages 2:1–2:14. 10.1145/3402926.

73 Panagiotis Charalampopoulos, Pawel Gawrychowski, Shay Mozes, and Oren
Weimann. “Almost optimal distance oracles for planar graphs”. In: 51st annual
ACM symposium on theory of computing (STOC 2019). ACM, 2019, pages 138–
151. 10.1145/3313276.3316316.

74 Shiri Chechik. “Approximate distance oracles with constant query time”. In:
46th annual ACM symposium on theory of computing (STOC 2014). ACM, 2014,
pages 654–663. 10.1145/2591796.2591801.

175

https://doi.org/10.1137/1.9781611977073.119
https://doi.org/10.1145/3406325.3451090
https://doi.org/10.1007/978-3-642-39206-1_23
https://doi.org/10.1007/978-3-642-39206-1_23
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1137/1.9781611976465.108
https://doi.org/10.1137/1.9781611976465.108
https://doi.org/10.4230/LIPIcs.ICALP.2021.41
https://doi.org/10.4230/LIPIcs.ICALP.2021.41
https://doi.org/10.1145/3357713.3384308
https://doi.org/10.1109/SFCS.1998.743439
https://doi.org/10.1145/3422823
https://doi.org/10.1007/978-3-642-40104-6_20
https://doi.org/10.1137/1.9781611976014.1
https://doi.org/10.1145/2746539.2746568
https://doi.org/10.1145/3402926
https://doi.org/10.1145/3313276.3316316
https://doi.org/10.1145/2591796.2591801

75 Shiri Chechik. “Approximate distance oracles with improved bounds”. In:
47th annual ACM symposium on theory of computing (STOC 2015). ACM, 2015,
pages 1–10. 10.1145/2746539.2746562.

76 Shiri Chechik. “Near-optimal approximate decremental all pairs shortest
paths”. In: 59th annual IEEE symposium on foundations of computer science
(FOCS 2018). IEEE Computer Society, 2018, pages 170–181. 10.1109/FOCS.
2018.00025.

77 Shiri Chechik and Tianyi Zhang. “Nearly 2-approximate distance oracles in
subquadratic time”. In: 33rd annual ACM-SIAM symposium on discrete algo-
rithms (SODA 2022). SIAM, 2022, pages 551–580. 10.1137/1.9781611977073.
26.

78 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Guten-
berg, and Sushant Sachdeva. “Maximum flow and minimum-cost flow in
almost-linear time”. In: 63rd annual IEEE symposium on foundations of com-
puter science (FOCS 2022). IEEE, 2022, pages 612–623. 10.1109/FOCS54457.
2022.00064.

79 Qi Cheng. “Constructing finite field extensions with large order ele-
ments”. In: SIAM j. discret. math. 21.3 (2007), pages 726–730. 10 . 1137 /
S0895480104445514.

80 Qi Cheng. “On the construction of finite field elements of large order”. In: Fi-
nite fields and their applications 11.3 (2005). Ten Year Anniversary Edition!,
pages 358–366. issn: 1071-5797. https://doi.org/10.1016/j.ffa.2005.
06.001.

81 Michael Clausen. “Fast generalized Fourier transforms”. In: Theor. comput. sci.
67.1 (1989), pages 55–63. 10.1016/0304-3975(89)90021-2.

82 Edith Cohen. “Fast algorithms for constructing 𝑡-spanners and paths with
stretch 𝑡”. In: SIAM j. comput. 28.1 (1998), pages 210–236. 10 . 1137 /
S0097539794261295.

83 Edith Cohen and Uri Zwick. “All-pairs small-stretch paths”. In: J. algorithms
38.2 (2001), pages 335–353. 10.1006/jagm.2000.1117.

84 Richard Cole and Ramesh Hariharan. “Verifying candidate matches in sparse
and wildcard matching”. In: 34th annual ACM symposium on theory of comput-
ing (STOC 2002). ACM, 2002, pages 592–601. 10.1145/509907.509992.

85 James W. Cooley and John W. Tukey. “An algorithm for the machine calcu-
lation of complex Fourier series”. In: Mathematics of computation 19 (1965),
pages 297–301.

86 Marek Cygan, Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk. “On
problems equivalent to (min, +)-convolution”. In: ACM trans. algorithms 15.1
(2019), pages 14:1–14:25. 10.1145/3293465.

87 Martin Dietzfelbinger. “Universal hashing via integer arithmetic without
primes, revisited”. In: Adventures between lower bounds and higher altitudes
– essays dedicated to juraj hromkovič on the occasion of his 60th birthday.
Vol. 11011. Lecture Notes in Computer Science. Springer, 2018, pages 257–279.
10.1007/978-3-319-98355-4_15.

88 Jack J. Dongarra and Francis Sullivan. “Guest editors introduction to the top
10 algorithms”. In: Comput. sci. eng. 2.1 (2000), pages 22–23. 10.1109/MCISE.
2000.814652.

89 Dorit Dor, Shay Halperin, and Uri Zwick. “All-pairs almost shortest paths”. In:
SIAM j. comput. 29.5 (2000), pages 1740–1759. 10.1137/S0097539797327908.

90 Michal Dory, Sebastian Forster, Yasamin Nazari, and Tijn de Vos. “New trade-
offs for decremental approximate all-pairs shortest paths”. In: Corr (2022). 10.
48550/arXiv.2211.01152.

91 Ran Duan, Hongxun Wu, and Renfei Zhou. “Faster matrix multiplication via
asymmetric hashing”. In: Corr (2022). 10.48550/arXiv.2210.10173.

92 Alok Dutt and Vladimir Rokhlin. “Fast Fourier transforms for nonequispaced
data”. In: SIAM j. sci. comput. 14.6 (1993), pages 1368–1393. 10.1137/0914081.

176

https://doi.org/10.1145/2746539.2746562
https://doi.org/10.1109/FOCS.2018.00025
https://doi.org/10.1109/FOCS.2018.00025
https://doi.org/10.1137/1.9781611977073.26
https://doi.org/10.1137/1.9781611977073.26
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1137/S0895480104445514
https://doi.org/10.1137/S0895480104445514
https://doi.org/https://doi.org/10.1016/j.ffa.2005.06.001
https://doi.org/https://doi.org/10.1016/j.ffa.2005.06.001
https://doi.org/10.1016/0304-3975(89)90021-2
https://doi.org/10.1137/S0097539794261295
https://doi.org/10.1137/S0097539794261295
https://doi.org/10.1006/jagm.2000.1117
https://doi.org/10.1145/509907.509992
https://doi.org/10.1145/3293465
https://doi.org/10.1007/978-3-319-98355-4_15
https://doi.org/10.1109/MCISE.2000.814652
https://doi.org/10.1109/MCISE.2000.814652
https://doi.org/10.1137/S0097539797327908
https://doi.org/10.48550/arXiv.2211.01152
https://doi.org/10.48550/arXiv.2211.01152
https://doi.org/10.48550/arXiv.2210.10173
https://doi.org/10.1137/0914081

93 Michael Elkin and David Peleg. “(1 + 𝜖, 𝛽)-spanner constructions for gen-
eral graphs”. In: SIAM j. comput. 33.3 (2004), pages 608–631. 10 . 1137 /
S0097539701393384.

94 Martin Farach. “Optimal suffix tree construction with large alphabets”. In:
38th annual IEEE symposium on foundations of computer science (FOCS 1997).
IEEE Computer Society, 1997, pages 137–143. 10.1109/SFCS.1997.646102.

95 Michael J. Fischer and Albert R. Meyer. “Boolean matrix multiplication and
transitive closure”. In: 12th annual symposium on switching and automata the-
ory (swat 1971). IEEE Computer Society, 1971, pages 129–131. 10.1109/SWAT.
1971.4.

96 Michael J. Fischer and Michael S. Paterson. String-matching and other products.
Tech. rep. USA: Massachusetts Institute of Technology, 1974.

97 Nick Fischer and Rob van Glabbeek. “Axiomatising infinitary probabilistic
weak bisimilarity of finite-state behaviours”. In: J. log. algebraic methods
program. 102 (2019), pages 64–102. 10.1016/j.jlamp.2018.09.006.

98 Nick Fischer and Christian Ikenmeyer. “The computational complex-
ity of plethysm coefficients”. In: Comput. complex. 29.2 (2020), pages 8.
10.1007/s00037-020-00198-4.

99 Sebastian Forster, Gramoz Goranci, and Monika Henzinger. “Dynamic main-
tenance of low-stretch probabilistic tree embeddings with applications”. In:
32nd annual ACM-SIAM symposium on discrete algorithms (SODA 2021). SIAM,
2021, pages 1226–1245. 10.1137/1.9781611976465.75.

100 Simon Foucart and Holger Rauhut. A mathematical introduction to compressive
sensing. Birkhäuser Basel, 2013. ISBN: 9780817649487 0817649484. 10.1007/
978-0-8176-4948-7.

101 Anka Gajentaan and Mark H. Overmars. “On a class of𝑂(𝑛2) problems in com-
putational geometry”. In: Comput. geom. 5 (1995), pages 165–185. 10.1016/
0925-7721(95)00022-2.

102 Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. 3rd.
Cambridge University Press, 2013. 10.1017/CBO9781139856065.

103 Anna C. Gilbert, Sudipto Guha, Piotr Indyk, S. Muthukrishnan, and Martin
Strauss. “Near-optimal sparse Fourier representations via sampling”. In: 34th
annual ACM symposium on theory of computing (STOC 2002). ACM, 2002,
pages 152–161. 10.1145/509907.509933.

104 Anna C. Gilbert and Piotr Indyk. “Sparse recovery using sparse matrices”. In:
Proc. IEEE 98.6 (2010), pages 937–947. 10.1109/JPROC.2010.2045092.

105 Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. “Approximate sparse
recovery: optimizing time and measurements”. In: 42nd annual ACM sympo-
sium on theory of computing (STOC 2010). ACM, 2010, pages 475–484. 10.1145/
1806689.1806755.

106 Anna C. Gilbert, Senthilmurugan Muthukrishnan, and Martin J. Strauss.
“Improved time bounds for near-optimal sparse Fourier representations”. In:
Wavelets xi. Vol. 5914. International Society for Optics and Photonics. SPIE,
2005, pages 59141A. 10.1117/12.615931.

107 Anna C. Gilbert, Hung Q. Ngo, Ely Porat, Atri Rudra, and Martin J. Strauss.
“ℓ2/ℓ2-foreach sparse recovery with low risk”. In: 40th international collo-
quium on automata, languages, and programming (ICALP 2013). Vol. 7965. Lec-
ture Notes in Computer Science. Springer, 2013, pages 461–472. 10.1007/978-
3-642-39206-1_39.

108 Pascal Giorgi, Bruno Grenet, and Armelle Perret du Cray. “Essentially opti-
mal sparse polynomial multiplication”. In: 45th international symposium on
symbolic and algebraic computation (ISSAC 2020). ACM, 2020, pages 202–209.
10.1145/3373207.3404026.

109 Bernard Gold and Charles M. Rader. Digital processing of signals. McGraw-Hill,
1969.

110 Elazar Goldenberg, Tomasz Kociumaka, Robert Krauthgamer, and Barna Saha.
“Gap edit distance via non-adaptive queries: simple and optimal”. In: 63rd an-

177

https://doi.org/10.1137/S0097539701393384
https://doi.org/10.1137/S0097539701393384
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SWAT.1971.4
https://doi.org/10.1109/SWAT.1971.4
https://doi.org/10.1016/j.jlamp.2018.09.006
https://doi.org/10.1007/s00037-020-00198-4
https://doi.org/10.1137/1.9781611976465.75
https://doi.org/10.1007/978-0-8176-4948-7
https://doi.org/10.1007/978-0-8176-4948-7
https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1145/509907.509933
https://doi.org/10.1109/JPROC.2010.2045092
https://doi.org/10.1145/1806689.1806755
https://doi.org/10.1145/1806689.1806755
https://doi.org/10.1117/12.615931
https://doi.org/10.1007/978-3-642-39206-1_39
https://doi.org/10.1007/978-3-642-39206-1_39
https://doi.org/10.1145/3373207.3404026

nual IEEE symposium on foundations of computer science (FOCS 2022). IEEE,
2022, pages 674–685. 10.1109/FOCS54457.2022.00070.

111 Elazar Goldenberg, Robert Krauthgamer, and Barna Saha. “Sublinear algo-
rithms for gap edit distance”. In: 60th annual IEEE symposium on foundations
of computer science (FOCS 2019). IEEE Computer Society, 2019, pages 1101–
1120. 10.1109/FOCS.2019.00070.

112 Oded Goldreich. “Combinatorial property testing (a survey)”. In: Randomiza-
tion methods in algorithm design. Vol. 43. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science. DIMACS/AMS, 1997, pages 45–59.
10.1090/dimacs/043/04.

113 Oded Goldreich, Shafi Goldwasser, and Dana Ron. “Property testing and its
connection to learning and approximation”. In: J. ACM 45.4 (1998), pages 653–
750. 10.1145/285055.285060.

114 Timothy W. Gowers. “A new proof of Szemerédi’s theorem”. In: Gafa geometric
and functional analysis 11 (Aug. 2001), pages 465–588. 10.1007/s00039-001-
0332-9.

115 Ronald L. Graham. “Bounds on multiprocessing timing anomalies”. In: SIAM
journal of applied mathematics 17.2 (1969), pages 416–429. 10.1137/0117039.

116 Dan Gusfield. Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, 1997. ISBN: 0-521-58519-8.
10.1017/cbo9780511574931.

117 Maximilian Probst Gutenberg and Christian Wulff-Nilsen. “Deterministic algo-
rithms for decremental approximate shortest paths: faster and simpler”. In:
31st annual ACM-SIAM symposium on discrete algorithms (SODA 2020). SIAM,
2020, pages 2522–2541. 10.1137/1.9781611975994.154.

118 Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. “Nearly optimal
sparse Fourier transform”. In: 44th annual ACM symposium on theory of com-
puting (STOC 2012). ACM, 2012, pages 563–578. 10.1145/2213977.2214029.

119 Ishay Haviv and Oded Regev. “The restricted isometry property of subsam-
pled Fourier matrices”. In: 27th annual ACM-SIAM symposium on discrete algo-
rithms (SODA 2016). SIAM, 2016, pages 288–297. 10.1137/1.9781611974331.
ch22.

120 Danny Hermelin, Hendrik Molter, and Dvir Shabtay. “Single machine
weighted number of tardy jobs minimization with small weights”. In: Corr
(2022). https://arxiv.org/abs/2202.06841.

121 Joris van der Hoeven and Grégoire Lecerf. “On the complexity of multivari-
ate blockwise polynomial multiplication”. In: 37th international symposium on
symbolic and algebraic computation (ISSAC 2012). ACM, 2012, pages 211–218.
10.1145/2442829.2442861.

122 Qiao-Long Huang. “Sparse polynomial interpolation based on derivatives”. In:
J. symb. comput. 114 (2023), pages 359–375. 10.1016/j.jsc.2022.06.002.

123 Qiao-Long Huang. “Sparse polynomial interpolation over fields with
large or zero characteristic”. In: 44th international symposium on sym-
bolic and algebraic computation (ISSAC 2019). ACM, 2019, pages 219–226.
10.1145/3326229.3326250.

124 Piotr Indyk. “Faster algorithms for string matching problems: Matching the
convolution bound”. In: 39th annual IEEE symposium on foundations of com-
puter science (FOCS 1998). IEEE Computer Society, 1998, pages 166–173. 10.
1109/SFCS.1998.743440.

125 Piotr Indyk and Michael Kapralov. “Sample-optimal Fourier sampling in any
constant dimension”. In: 55th annual IEEE symposium on foundations of com-
puter science (FOCS 2014). IEEE Computer Society, 2014, pages 514–523. 10.
1109/FOCS.2014.61.

126 Piotr Indyk, Michael Kapralov, and Eric Price. “(Nearly) sample-optimal sparse
Fourier transform”. In: 25th annual ACM-SIAM symposium on discrete algo-
rithms (SODA 2014). SIAM, 2014, pages 480–499. 10.1137/1.9781611973402.
36.

178

https://doi.org/10.1109/FOCS54457.2022.00070
https://doi.org/10.1109/FOCS.2019.00070
https://doi.org/10.1090/dimacs/043/04
https://doi.org/10.1145/285055.285060
https://doi.org/10.1007/s00039-001-0332-9
https://doi.org/10.1007/s00039-001-0332-9
https://doi.org/10.1137/0117039
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1137/1.9781611975994.154
https://doi.org/10.1145/2213977.2214029
https://doi.org/10.1137/1.9781611974331.ch22
https://doi.org/10.1137/1.9781611974331.ch22
https://arxiv.org/abs/2202.06841
https://doi.org/10.1145/2442829.2442861
https://doi.org/10.1016/j.jsc.2022.06.002
https://doi.org/10.1145/3326229.3326250
https://doi.org/10.1109/SFCS.1998.743440
https://doi.org/10.1109/SFCS.1998.743440
https://doi.org/10.1109/FOCS.2014.61
https://doi.org/10.1109/FOCS.2014.61
https://doi.org/10.1137/1.9781611973402.36
https://doi.org/10.1137/1.9781611973402.36

127 Piotr Indyk, Eric Price, and David P. Woodruff. “On the power of adaptivity in
sparse recovery”. In: 52nd annual IEEE symposium on foundations of computer
science (FOCS 2011). IEEE Computer Society, 2011, pages 285–294. 10.1109/
FOCS.2011.83.

128 Zahra Jafargholi and Emanuele Viola. “3SUM, 3XOR, triangles”. In: Algorith-
mica 74.1 (2016), pages 326–343. 10.1007/s00453-014-9946-9.

129 Ce Jin and Hongxun Wu. “A simple near-linear pseudopolynomial time ran-
domized algorithm for subset sum”. In: 2nd symposium on simplicity in algo-
rithms (SOSA 2019). Vol. 69. OASIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019, pages 17:1–17:6. 10.4230/OASIcs.SOSA.2019.17.

130 Ce Jin and Yinzhan Xu. “Removing additive structure in 3SUM-based reduc-
tions”. In: 55th annual ACM symposium on theory of computing (STOC 2023).
To appear. ACM, 2023. 10.48550/arXiv.2211.07058.

131 Erich Kaltofen. “Fifteen years after DSC and WLSS2 what parallel computa-
tions I do today: Invited lecture at PASCO 2010”. In: 4th international work-
shop on parallel symbolic computation (PASCO 2010). ACM, 2010, pages 10–17.
10.1145/1837210.1837213.

132 Erich Kaltofen and Yagati N. Lakshman. “Improved sparse multivariate poly-
nomial interpolation algorithms”. In: 13th international symposium on sym-
bolic and algebraic computation (ISSAC 1988). Vol. 358. Lecture Notes in Com-
puter Science. Springer, 1988, pages 467–474. 10.1007/3-540-51084-2_44.

133 Michael Kapralov. “Sample efficient estimation and recovery in sparse FFT
via isolation on average”. In: 58th annual IEEE symposium on foundations of
computer science (FOCS 2017). IEEE Computer Society, 2017, pages 651–662.
10.1109/FOCS.2017.66.

134 Michael Kapralov. “Sparse Fourier transform in any constant dimension with
nearly-optimal sample complexity in sublinear time”. In: 48th annual ACM
symposium on theory of computing (STOC 2016). ACM, 2016, pages 264–277.
10.1145/2897518.2897650.

135 Michael Kapralov, Ameya Velingker, and Amir Zandieh. “Dimension-
independent sparse Fourier transform”. In: 30th annual ACM-SIAM sym-
posium on discrete algorithms (SODA 2019). SIAM, 2019, pages 2709–2728.
10.1137/1.9781611975482.168.

136 Richard M. Karp. “Reducibility among combinatorial problems”. In: Sympo-
sium on the complexity of computer computations at the IBM thomas j. watson
research center. The IBM Research Symposia Series. Plenum Press, New York,
1972, pages 85–103. 10.1007/978-1-4684-2001-2_9.

137 Kim-Manuel Klein, Adam Polak, and Lars Rohwedder. “On minimizing tardy
processing time, max-min skewed convolution, and triangular structured
ilps”. In: 34th annual ACM-SIAM symposium on discrete algorithms (SODA
2023). SIAM, 2023, pages 2947–2960. 10.1137/1.9781611977554.ch112.

138 Mathias Bæk Tejs Knudsen. “Additive spanners and distance oracles in
quadratic time”. In: 44th international colloquium on automata, languages, and
programming (ICALP 2017). Vol. 80. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017, pages 64:1–64:12. 10.4230/LIPIcs.ICALP.2017.64.

139 Mathias Bæk Tejs Knudsen. “Linear hashing is awesome”. In: 57th annual IEEE
symposium on foundations of computer science (FOCS 2016). IEEE Computer
Society, 2016, pages 345–352. 10.1109/FOCS.2016.45.

140 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. “Fast pat-
tern matching in strings”. In: SIAM j. comput. 6.2 (1977), pages 323–350.
10.1137/0206024.

141 Tomasz Kociumaka and Barna Saha. “Sublinear-time algorithms for comput-
ing & embedding gap edit distance”. In: 61st annual IEEE symposium on founda-
tions of computer science (FOCS 2020). IEEE, 2020, pages 1168–1179. 10.1109/
FOCS46700.2020.00112.

179

https://doi.org/10.1109/FOCS.2011.83
https://doi.org/10.1109/FOCS.2011.83
https://doi.org/10.1007/s00453-014-9946-9
https://doi.org/10.4230/OASIcs.SOSA.2019.17
https://doi.org/10.48550/arXiv.2211.07058
https://doi.org/10.1145/1837210.1837213
https://doi.org/10.1007/3-540-51084-2_44
https://doi.org/10.1109/FOCS.2017.66
https://doi.org/10.1145/2897518.2897650
https://doi.org/10.1137/1.9781611975482.168
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/1.9781611977554.ch112
https://doi.org/10.4230/LIPIcs.ICALP.2017.64
https://doi.org/10.1109/FOCS.2016.45
https://doi.org/10.1137/0206024
https://doi.org/10.1109/FOCS46700.2020.00112
https://doi.org/10.1109/FOCS46700.2020.00112

142 Konstantinos Koiliaris and Chao Xu. “Faster pseudopolynomial time algo-
rithms for subset sum”. In: ACM trans. algorithms 15.3 (2019), pages 40:1–
40:20. 10.1145/3329863.

143 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. “Higher lower bounds from
the 3SUM conjecture”. In: 27th annual ACM-SIAM symposium on discrete
algorithms (SODA 2016). SIAM, 2016, pages 1272–1287. 10 . 1137 / 1 .
9781611974331.ch89.

144 S. Rao Kosaraju. “Efficient tree pattern matching”. In: 30th annual IEEE sympo-
sium on foundations of computer science (FOCS 1989). IEEE Computer Society,
1989, pages 178–183. 10.1109/SFCS.1989.63475.

145 Michal Koucký and Michael E. Saks. “Constant factor approximations to edit
distance on far input pairs in nearly linear time”. In: 52nd annual ACM sympo-
sium on theory of computing (STOC 2020). ACM, 2020, pages 699–712. 10.1145/
3357713.3384307.

146 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. “On the
fine-grained complexity of one-dimensional dynamic programming”. In: 44th
international colloquium on automata, languages, and programming (ICALP
2017). Vol. 80. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017, pages 21:1–21:15. 10.4230/LIPIcs.ICALP.2017.21.

147 Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. “Incremen-
tal string comparison”. In: SIAM j. comput. 27.2 (1998), pages 557–582.
10.1137/S0097539794264810.

148 Gad M. Landau and Uzi Vishkin. “Fast string matching with 𝑘 differences”. In: J.
comput. syst. sci. 37.1 (1988), pages 63–78. 10.1016/0022-0000(88)90045-1.

149 Eugene L. Lawler and J. Michael Moore. “A functional equation and its applica-
tion to resource allocation and sequencing problems”. In: Management science
16.1 (1969), pages 77–84. 10.1287/mnsc.16.1.77.

150 Hung Le and Christian Wulff-Nilsen. “Optimal approximate distance oracle for
planar graphs”. In: 62nd annual IEEE symposium on foundations of computer
science (FOCS 2021). IEEE, 2021, pages 363–374. 10.1109/FOCS52979.2021.
00044.

151 Vladimir I. Levenshtein. “Binary codes capable of correcting deletions, inser-
tions and reversals”. In: Soviet physics doklady 10.8 (1966), pages 707–710.

152 Lei Li. “On the arithmetic operational complexity for solving Vandermonde
linear equations”. In: Japan journal of industrial and applied mathematics 17.15
(2000). 10.1007/BF03167332.

153 Andrea Lincoln, Adam Polak, and Virginia Vassilevska Williams. “Monochro-
matic triangles, intermediate matrix products, and convolutions”. In: 11th
innovations in theoretical computer science conference (ITCS 2020). Vol. 151.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pages 53:1–
53:18. 10.4230/LIPIcs.ITCS.2020.53.

154 Bruce G. Lindsay. “On the determinants of moment matrices”. In: The annals
of statistics 17.2 (1989), pages 711–721. 10.1214/aos/1176347137.

155 Yaowei Long and Seth Pettie. “Planar distance oracles with better time-space
tradeoffs”. In: 32nd annual ACM-SIAM symposium on discrete algorithms
(SODA 2021). SIAM, 2021, pages 2517–2537. 10.1137/1.9781611976465.149.

156 Colin L. Mallows. “Patience sorting”. In: SIAM review 4.2 (1962), pages 148–149.
10.1137/1004036.

157 James L. Massey. “Shift-register synthesis and BCH decoding”. In: IEEE trans.
inf. theory 15.1 (1969), pages 122–127. 10.1109/TIT.1969.1054260.

158 Jiří Matoušek. “On the distortion required for embedding finite metric spaces
into normed spaces”. In: Israel journal of mathematics 93.1 (1996), pages 333–
344. issn: 1565-8511. 10.1007/BF02761110.

159 Manor Mendel and Assaf Naor. “Ramsey partitions and proximity data struc-
tures”. In: 47th annual IEEE symposium on foundations of computer science
(FOCS 2006). IEEE Computer Society, 2006, pages 109–118. 10.1109/FOCS.
2006.65.

180

https://doi.org/10.1145/3329863
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1109/SFCS.1989.63475
https://doi.org/10.1145/3357713.3384307
https://doi.org/10.1145/3357713.3384307
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1287/mnsc.16.1.77
https://doi.org/10.1109/FOCS52979.2021.00044
https://doi.org/10.1109/FOCS52979.2021.00044
https://doi.org/10.1007/BF03167332
https://doi.org/10.4230/LIPIcs.ITCS.2020.53
https://doi.org/10.1214/aos/1176347137
https://doi.org/10.1137/1.9781611976465.149
https://doi.org/10.1137/1004036
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1007/BF02761110
https://doi.org/10.1109/FOCS.2006.65
https://doi.org/10.1109/FOCS.2006.65

160 Michael Mitzenmacher and Saeed Seddighin. “Improved sublinear time algo-
rithm for longest increasing subsequence”. In: 32nd annual ACM-SIAM sym-
posium on discrete algorithms (SODA 2021). SIAM, 2021, pages 1934–1947. 10.
1137/1.9781611976465.115.

161 Michael B. Monagan and Roman Pearce. “Parallel sparse polynomial
multiplication using heaps”. In: 34th international symposium on sym-
bolic and algebraic computation (ISSAC 2009). ACM, 2009, pages 263–270.
10.1145/1576702.1576739.

162 Jacques Morgenstern. “How to compute fast a function and all its derivatives:
a variation on the theorem of baur-strassen”. In: SIGACT news 16.4 (1985),
pages 60–62. 10.1145/382242.382836.

163 S. Muthukrishnan. “New results and open problems related to non-standard
stringology”. In: 6th annual symposium on combinatorial pattern matching
(CPM 1995). Vol. 937. Lecture Notes in Computer Science. Springer, 1995,
pages 298–317. 10.1007/3-540-60044-2_50.

164 Vasileios Nakos. “Nearly optimal sparse polynomial multiplication”. In: IEEE
trans. inf. theory 66.11 (2020), pages 7231–7236. 10.1109/TIT.2020.2989385.

165 Vasileios Nakos, Zhao Song, and Zhengyu Wang. “(Nearly) sample-optimal
sparse Fourier transform in any dimension; RIPless and filterless”. In: 60th
annual IEEE symposium on foundations of computer science (FOCS 2019). IEEE
Computer Society, 2019, pages 1568–1577. 10.1109/FOCS.2019.00092.

166 Ilan Newman and Nithin Varma. “New sublinear algorithms and lower bounds
for LIS estimation”. In: 48th international colloquium on automata, languages,
and programming (ICALP 2021). Vol. 198. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021, pages 100:1–100:20. 10.4230/LIPIcs.ICALP.
2021.100.

167 Rafail Ostrovsky and Yuval Rabani. “Low distortion embeddings for edit dis-
tance”. In: J. ACM 54.5 (2007), pages 23. 10.1145/1284320.1284322.

168 Victor Y. Pan. Structured matrices and polynomials: Unified superfast algo-
rithms. Berlin, Heidelberg: Springer-Verlag, 2001. ISBN: 0817642404.

169 Merav Parter. “Bypassing Erdős’ girth conjecture: hybrid stretch and source-
wise spanners”. In: 41st international colloquium on automata, languages, and
programming (ICALP 2014). Vol. 8573. Lecture Notes in Computer Science.
Springer, 2014, pages 608–619. 10.1007/978-3-662-43951-7_49.

170 Mihai Patrascu and Liam Roditty. “Distance oracles beyond the thorup-zwick
bound”. In: SIAM j. comput. 43.1 (2014), pages 300–311. 10.1137/11084128X.

171 Mihai Patrascu, Liam Roditty, and Mikkel Thorup. “A new infinity of distance
oracles for sparse graphs”. In: 53rd annual IEEE symposium on foundations of
computer science (FOCS 2012). IEEE Computer Society, 2012, pages 738–747.
10.1109/FOCS.2012.44.

172 Mihai Pătraşcu. “Towards polynomial lower bounds for dynamic problems”.
In: 42nd annual ACM symposium on theory of computing (STOC 2010). ACM,
2010, pages 603–610. 10.1145/1806689.1806772.

173 Nicholas Pippenger. “On the evaluation of powers and monomials”. In: SIAM
j. comput. 9.2 (1980), pages 230–250. 10.1137/0209022.

174 Helmut Plünnecke. “Eine zahlentheoretische anwendung der graphentheo-
rie”. In: Journal für die reine und angewandte mathematik 1970.243 (1970),
pages 171–183. doi:10.1515/crll.1970.243.171.

175 Eric Price and Zhao Song. “A robust sparse Fourier transform in the contin-
uous setting”. In: 56th annual IEEE symposium on foundations of computer
science (FOCS 2015). IEEE Computer Society, 2015, pages 583–600. 10.1109/
FOCS.2015.42.

176 Eric Price and David P. Woodruff. “Applications of the shannon-hartley theo-
rem to data streams and sparse recovery”. In: 45th IEEE international sympo-
sium on information theory (ISIT 2012). IEEE, 2012, pages 2446–2450. 10.1109/
ISIT.2012.6283954.

181

https://doi.org/10.1137/1.9781611976465.115
https://doi.org/10.1137/1.9781611976465.115
https://doi.org/10.1145/1576702.1576739
https://doi.org/10.1145/382242.382836
https://doi.org/10.1007/3-540-60044-2_50
https://doi.org/10.1109/TIT.2020.2989385
https://doi.org/10.1109/FOCS.2019.00092
https://doi.org/10.4230/LIPIcs.ICALP.2021.100
https://doi.org/10.4230/LIPIcs.ICALP.2021.100
https://doi.org/10.1145/1284320.1284322
https://doi.org/10.1007/978-3-662-43951-7_49
https://doi.org/10.1137/11084128X
https://doi.org/10.1109/FOCS.2012.44
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1137/0209022
https://doi.org/doi:10.1515/crll.1970.243.171
https://doi.org/10.1109/FOCS.2015.42
https://doi.org/10.1109/FOCS.2015.42
https://doi.org/10.1109/ISIT.2012.6283954
https://doi.org/10.1109/ISIT.2012.6283954

177 Gaspard R. de Prony. “Essai éxperimental et analytique: Sur les lois de la di-
latabilité de fluides élastique et sur celles de la force expansive de la vapeur de
l’alkool, à différentes températures”. In: Journal de l’école polytechnique floréal
et plairial 1 (1795), pages 24–76.

178 Zichao Qi, Yanghua Xiao, Bin Shao, and Haixun Wang. “Toward a distance or-
acle for billion-node graphs”. In: Proc. VLDB endow. 7.1 (2013), pages 61–72.
10.14778/2732219.2732225.

179 Daniel S. Roche. “Adaptive polynomial multiplication”. In: Milestones in com-
puter algebra (MICA 2008): A conference in honour of Keith Geddes’ 60th birth-
day (2008), pages 65–72.

180 Daniel S. Roche. “What can (and can’t) we do with sparse polynomials?” In:
43th international symposium on symbolic and algebraic computation (ISSAC
2018). ACM, 2018, pages 25–30. 10.1145/3208976.3209027.

181 Daniel N. Rockmore. “Fast Fourier transforms for wreath products”. In:
Applied and computational harmonic analysis 2.3 (1995), pages 279–292. issn:
1063-5203. https://doi.org/10.1006/acha.1995.1020.

182 Liam Roditty and Roei Tov. “Approximate distance oracles with improved
stretch for sparse graphs”. In: 27th international conference on computing
and combinatorics (COCOON 2021). Vol. 13025. Lecture Notes in Computer
Science. Springer, 2021, pages 89–100. 10.1007/978-3-030-89543-3_8.

183 Liam Roditty and Virginia Vassilevska Williams. “Fast approximation algo-
rithms for the diameter and radius of sparse graphs”. In: 45th annual ACM
symposium on theory of computing (STOC 2013). ACM, 2013, pages 515–524.
10.1145/2488608.2488673.

184 J. Barkley Rosser and Lowell Schoenfeld. “Approximate formulas for some
functions of prime numbers”. In: Illinois journal of mathematics 6.1 (1962),
pages 64–94. 10.1215/ijm/1255631807.

185 Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. “Approxima-
tion algorithms for LCS and LIS with truly improved running times”. In: 60th
annual IEEE symposium on foundations of computer science (FOCS 2019). IEEE
Computer Society, 2019, pages 1121–1145. 10.1109/FOCS.2019.00071.

186 Imre Z. Ruzsa. “An analog of Freiman’s theorem in groups”. In: Structure theory
of set addition. Astérisque 258. Société mathématique de France, 1999. http:
//www.numdam.org/item/AST_1999__258__323_0/.

187 Michael E. Saks and C. Seshadhri. “Estimating the longest increasing sequence
in polylogarithmic time”. In: SIAM j. comput. 46.2 (2017), pages 774–823. 10.
1137/130942152.

188 Baruch Schieber and Pranav Sitaraman. “Quick minimization of tardy pro-
cessing time on a single machine”. In: Corr (2023). 10.48550/arXiv.2301.
05460.

189 Victor Shoup. “New algorithms for finding irreducible polynomials over finite
fields”. In: 29th annual IEEE symposium on foundations of computer science
(FOCS 1988). IEEE Computer Society, 1988, pages 283–290. 10.1109/SFCS.
1988.21944.

190 Victor Shoup. “Searching for primitive roots in finite fields”. In: 22nd annual
ACM symposium on theory of computing (STOC 1990). ACM, 1990, pages 546–
554. 10.1145/100216.100293.

191 Igor E. Shparlinski. “On primitive elements in finite fields and on ellip-
tic curves”. In: Mathematics of the USSR-sbornik 71.1 (1992), pages 41–50.
10.1070/SM1992v071n01ABEH001389.

192 Christian Sommer. “All-pairs approximate shortest paths and distance oracle
preprocessing”. In: 43rd international colloquium on automata, languages, and
programming (ICALP 2016). Vol. 55. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016, pages 55:1–55:13. 10.4230/LIPIcs.ICALP.2016.55.

193 Christian Sommer, Elad Verbin, and Wei Yu. “Distance oracles for sparse
graphs”. In: 50th annual IEEE symposium on foundations of computer science

182

https://doi.org/10.14778/2732219.2732225
https://doi.org/10.1145/3208976.3209027
https://doi.org/https://doi.org/10.1006/acha.1995.1020
https://doi.org/10.1007/978-3-030-89543-3_8
https://doi.org/10.1145/2488608.2488673
https://doi.org/10.1215/ijm/1255631807
https://doi.org/10.1109/FOCS.2019.00071
http://www.numdam.org/item/AST_1999__258__323_0/
http://www.numdam.org/item/AST_1999__258__323_0/
https://doi.org/10.1137/130942152
https://doi.org/10.1137/130942152
https://doi.org/10.48550/arXiv.2301.05460
https://doi.org/10.48550/arXiv.2301.05460
https://doi.org/10.1109/SFCS.1988.21944
https://doi.org/10.1109/SFCS.1988.21944
https://doi.org/10.1145/100216.100293
https://doi.org/10.1070/SM1992v071n01ABEH001389
https://doi.org/10.4230/LIPIcs.ICALP.2016.55

(FOCS 2009). IEEE Computer Society, 2009, pages 703–712. 10.1109/FOCS.
2009.27.

194 Kilian Stampfer and Gerlind Plonka. “The generalized operator based prony
method”. In: Constructive approximation 52.2 (2020), pages 247–282. https:
//doi.org/10.1007/s00365-020-09501-6.

195 Benny Sudakov, Endre Szemerédi, and Van H. Vu. “On a question of Erdős and
Moser”. In: Duke mathematical journal 129.1 (2005), pages 129–155. 10.1215/
S0012-7094-04-12915-X.

196 Terence Tao and Van H. Vu. Additive combinatorics. Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 2006. 10 . 1017 /
CBO9780511755149.

197 Mikkel Thorup and Uri Zwick. “Approximate distance oracles”. In: J. ACM 52.1
(2005), pages 1–24. 10.1145/1044731.1044732.

198 Chris Umans. “Fast generalized DFTs for all finite groups”. In: 60th annual IEEE
symposium on foundations of computer science (FOCS 2019). IEEE Computer
Society, 2019, pages 793–805. 10.1109/FOCS.2019.00052.

199 Taras K. Vintsyuk. “Speech discrimination by dynamic programming”. In: Cy-
bernetics 4.1 (1968), pages 52–57. issn: 1573-8337. 10.1007/BF01074755.

200 Robert A. Wagner and Michael J. Fischer. “The string-to-string correction prob-
lem”. In: J. ACM 21.1 (1974), pages 168–173. 10.1145/321796.321811.

201 R. Ryan Williams. “Faster all-pairs shortest paths via circuit complexity”. In:
SIAM j. comput. 47.5 (2018), pages 1965–1985. 10.1137/15M1024524.

202 Virginia Vassilevska Williams. “On some fine-grained questions in algorithms
and complexity”. In: Proceedings of the international congress of mathemati-
cians (ICM 2018). 2018, pages 3447–3487. 10.1142/9789813272880_0188.

203 Virginia Vassilevska Williams and R. Ryan Williams. “Subcubic equiva-
lences between path, matrix, and triangle problems”. In: J. ACM 65.5 (2018),
pages 27:1–27:38. 10.1145/3186893.

204 Virginia Vassilevska Williams and Yinzhan Xu. “Monochromatic triangles, tri-
angle listing and APSP”. In: 61st annual IEEE symposium on foundations of com-
puter science (FOCS 2020). IEEE, 2020, pages 786–797. 10.1109/FOCS46700.
2020.00078.

205 Jack K. Wolf. “Decoding of Bose-Chaudhuri-Hocquenghem codes and Prony’s
method for curve fitting”. In: IEEE trans. inf. theory 13.4 (1967), pages 608. 10.
1109/TIT.1967.1054056.

206 Christian Wulff-Nilsen. “Approximate distance oracles with improved prepro-
cessing time”. In: 23rd annual ACM-SIAM symposium on discrete algorithms
(SODA 2012). SIAM, 2012, pages 202–208. 10.1137/1.9781611973099.18.

207 Christian Wulff-Nilsen. “Approximate distance oracles with improved query
time”. In: 24th annual ACM-SIAM symposium on discrete algorithms (SODA
2013). SIAM, 2013, pages 539–549. 10.1137/1.9781611973105.39.

208 Andrew Chi-Chih Yao. “On the evaluation of powers”. In: SIAM j. comput. 5.1
(1976), pages 100–103. 10.1137/0205008.

209 Raphael Yuster and Uri Zwick. “Finding even cycles even faster”. In: SIAM j.
discret. math. 10.2 (1997), pages 209–222. 10.1137/S0895480194274133.

183

https://doi.org/10.1109/FOCS.2009.27
https://doi.org/10.1109/FOCS.2009.27
https://doi.org/https://doi.org/10.1007/s00365-020-09501-6
https://doi.org/https://doi.org/10.1007/s00365-020-09501-6
https://doi.org/10.1215/S0012-7094-04-12915-X
https://doi.org/10.1215/S0012-7094-04-12915-X
https://doi.org/10.1017/CBO9780511755149
https://doi.org/10.1017/CBO9780511755149
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1109/FOCS.2019.00052
https://doi.org/10.1007/BF01074755
https://doi.org/10.1145/321796.321811
https://doi.org/10.1137/15M1024524
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1145/3186893
https://doi.org/10.1109/FOCS46700.2020.00078
https://doi.org/10.1109/FOCS46700.2020.00078
https://doi.org/10.1109/TIT.1967.1054056
https://doi.org/10.1109/TIT.1967.1054056
https://doi.org/10.1137/1.9781611973099.18
https://doi.org/10.1137/1.9781611973105.39
https://doi.org/10.1137/0205008
https://doi.org/10.1137/S0895480194274133

	Introduction
	Output-Sensitive Algorithms
	Sublinear-Time Algorithms
	Sparse Convolution
	Machine model
	Time-Optimal Sparse Nonnegative Convolution
	Deterministic Sparse Nonnegative Convolution
	Las Vegas Algorithms for Sparse Nonnegative Convolution
	Open Problems

	Application: 3-SUM Lower Bounds for Approximate Distance Oracles
	Optimal Short Cycle Removal
	New Lower Bounds for Distance Oracles
	A Tight Lower Bound for 4-Cycle Listing
	Open Problems

	Fast Scheduling via Partition-and-Convolve
	Our Contribution
	Open Problems

	Sublinear Algorithms for Approximate Edit Distance
	Our Contribution
	Open Problems

	Preliminaries

	Sparse Convolution Toolkit
	Dense Convolution
	Sparse Convolution via Additive Hashing
	Collection of Additive Hash Families
	Sparse Integer Convolution via Additive Hashing

	Sparse Convolution via Algebraic Methods
	Prony's Method in Detail
	Algebraic Tools

	Sparse Convolution via Sparse Fourier Transform
	Verifier using Polynomial Identity Testing
	The Scaling Trick
	Witness Finding

	Deterministic and Las Vegas Algorithms for Sparse Nonnegative Convolution
	Overview
	Deterministic Algorithm
	Simple Las Vegas Algorithm

	Accelerated Las Vegas Algorithm
	Beyond 1-Sparsity?

	Deterministic Algorithm
	Sparse Polynomial Evaluation and Interpolation
	Finding Large-Order Elements
	Complete Algorithm

	Las Vegas Algorithms
	Sparsity Testing
	Simple Algorithm
	Accelerated Algorithm
	Las Vegas Length Reduction

	An Optimal Algorithm for Sparse Nonnegative Convolution
	Overview
	Set Queries in a Tiny Universe
	Derivative Representation
	The Algorithm

	Approximating the Support Set
	Universe Reduction from Small to Tiny
	Error Correction
	Universe Reduction from Large to Small
	Estimating the Sparsity t
	Concentration Bounds for Linear Hashing
	Heights
	Proof of Theorem 4.3
	An Almost-Matching Lower Bound for Theorem 4.1

	Fine-Grained Complexity of Approximate Distance Oracles
	Overview
	Hardness Reductions from Triangle Listing Instances with Few Short Cycles
	Energy Reduction for 3-SUM
	3-SUM for Structured Inputs
	Hashing—Additive and Independent?

	Background on Additive Combinatorics
	Sumsets
	Additive Energy
	Fourier Analysis
	Plünnecke-Ruzsa Inequality
	Ruzsa's Covering Lemma
	Balog-Szemerédi-Gowers Theorem

	3-SUM for Structured Inputs
	Energy Reduction for 3-SUM
	Energy Reduction via Additive Combinatorics
	Amplification via Hashing
	Putting Both Parts Together

	Reducing 3-SUM to Triangle Listing
	The Construction
	Counting the Number of k-Cycles
	Making the Graph Regular
	Putting the Pieces Together

	Hardness of 4-Cycle Listing
	Hardness of Distance Oracles
	Stretch k
	Stretch 2 < α ≤ 3
	Dynamic Distance Oracles

	Fast Minimization of Tardy Processing Time via Partition-and-Convolve
	Overview
	Reduction to Skewed Convolutions
	Fast Skewed Convolutions

	Sublinear-Time Edit Distance Approximation
	Preliminaries
	Andoni-Krauthgamer-Onak Algorithm
	First Ingredient: Tree Distance
	Capped Distances
	Tree Distance Problem
	Second Ingredient: Precision Sampling Lemma
	Third Ingredient: Range Minima
	Putting the Pieces Together

	Going Sublinear—An Overview
	Structural Insights
	Pruning Rules
	String Property Testers
	Putting the Pieces Together

	Going Sublinear—In Detail
	Facts about Periodicity
	Edit Distances between Periodic and Random-Like Strings
	Some String Property Testers
	Putting The Pieces Together
	Main Theorems

	Equivalence of Edit Distance and Tree Distance
	Precision Sampling Lemma
	Range Minima
	2-Approximating Edit Distance for Many Shifts

