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ABSTRACT

Analyzing all features of small non-coding RNA se-
quencing data can be demanding and challenging. To
facilitate this process, we developed miRMaster. Af-
ter the analysis of over 125 000 human samples and
1.5 trillion human small RNA reads over 4 years, we
present miRMaster 2 with a wide range of updates
and new features. We extended our reference data
sets so that miRMaster 2 now supports the analysis
of eight species (e.g. human, mouse, chicken, dog,
cow) and 10 non-coding RNA classes (e.g. microR-
NAs, piRNAs, tRNAs, rRNAs, circRNAs). We also in-
corporated new downstream analysis modules such
as batch effect analysis or sample embeddings us-
ing UMAP, and updated annotation data bases in-
cluded by default (miRBase, Ensembl, GtRNAdb). To
accommodate the increasing popularity of single cell
small-RNA sequencing data, we incorporated a mod-
ule for unique molecular identifier (UMI) processing.
Further, the output tables and graphics have been
improved based on user feedback and new output
formats that emerged in the community are now sup-
ported (e.g. miRGFF3). Finally, we integrated differ-
ential expression analysis with the miRNA enrich-
ment analysis tool miEAA. miRMaster is freely avail-
able at https://www.ccb.uni-saarland.de/mirmaster2.
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INTRODUCTION

The reliable analysis of small non-coding RNA (sncRNAs)
sequencing data can be challenging, time consuming and
varies in many aspects. This includes the primary process-
ing of sequencing data for quality control but also down-
stream analyses. Besides tRNAs and snoRNAs, microR-
NAs are sncRNAs that are extensively studied already for
over two decades. A comprehensive summary on the state-
of-the art in microRNA biology has been published by
Bartel in 2018 (1). In addition to the canonical biology
of microRNAs, more and more non-canonical aspects of
miRNA biology are becoming obvious (2), calling for a
broad variety of analysis aspects. It is thus not surpris-
ing, that many miRNA analysis tools, online and stand-
alone, are available. The current release of Aviator (https:
/Iwww.ccb.uni-saarland.de/aviator), a tool that aims to pro-
vide accessibility statistics of all web servers and data bases
in life sciences, lists 322 web-based resources for microR-
NAs, of which 235 are currently working. By developing
miRMaster (3,4), we provide a tool with a strong focus on
the analysis of all aspects of miRNAs described in a sys-
tematic manner. While the tool became stepwisely broader
in its functionality aspect to cover other sncRNA classes,
microRNAs are still its anchor point. Based on the original
version of miR Master, 1500 runs have been completed, over
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125 000 human samples have been analyzed, and 1.5 trillion
human small RNA reads were processed over four years. To
make further use of the uploaded data, we ask miRMaster
users whether we can re-analyze the aggregated sequencing
reads as further feedback for the development of our tool
and as comparison to our small RNA research projects.

As mentioned before, several other web servers and web-
services for analyzing miRNA sequencing data exist, over-
lapping partially with miR Master’s functionality. We thus
want to put our tool in the context of others and re-
cent developments in the field. A broad tool meta review
has been published by Chen et al., which covers 95 re-
view papers and about 1000 miRNA bioinformatics tools
(5). The variety of tools reaches from rather specialized
tools, e.g. for the detection of isomiRs or miRNA editing
(6) to very broad analysis pipelines. Among the tools with
broader analysis functionality with a particular focus on
miRNAs, we want to mention CBS-miRSeq (7), miRquant
(8), sSRNAbench/sRNAtoolbox (9), Chimira (10), mirPRo
(11), miRge (12) and CPSS2 (13). Among those, sSRNAtool-
box was updated most recently with improvements made to
e.g. the batch processing, library preparation protocols and
differential expression analysis. Moreover, SPAR is a small
RNA-seq portal for analysis of sequencing experiments
(14). GLASSgo for example facilitates automated detection
of SRNA homologs (15). Also, for viruses, SRNA analysis
tools have been developed such as MISIS-2, a tool for the
in-depth analysis of SRNAs and representation of consen-
sus master genomes in viral quasispecies (16). With respect
to non-canonical miRNA biology, such as miRNA sponges
(17), also specialized software tools have been made avail-
able (18). Another aspect is the analysis of miRNA editing
and chemical modifications. Likewise, for this task, special-
ized tools are available such as Prost! (19), DeAnniso (20)
and others. Similarly, for tRNAs and other ncRNA classes,
chemical modifications exist (21) that further complicate
the analysis of ncRNA data sets.

The number of available tools, web-based and stan-
dalone, reflects the continuous interest of the research com-
munity in non-coding RNAs. At the same time, it pinpoints
that a more integrative analysis of different ncRNA classes
is required. Recently, a ‘changing of the guards’ model has
been proposed, where microRNA levels decreased but small
transfer RNA fragments increased in blood of patients (22).

Although a direct comparison in terms of scope, func-
tionality, ease of use and other parameters is challenging
and partially subjective, we aimed to provide at least an
overview on a selection of commonly used broader analy-
sis tools that are available as web-service. We thus evaluated
the number of analyses, the number of supported organ-
isms, the number of supported ncRNA classes and other
parameters for 10 tools and present the result sorted by the
publication date (Figure 1). The analysis reveals an expected
pattern, the more recent tools have a broader scope of func-
tionality as compared to the early tools. The recently up-
dated sSRNABench for example excels in basically all cate-
gories, e.g. offers more organisms as compared to miR Mas-
ter 2. miRMaster 2 offers in contrast more output options
and covers more ncRNA classes. Figure 1 allows to com-
pare the functionality of the 10 selected tools and supports
users in their decision to select one tool.

MATERIALS AND METHODS
Reference data bases

miR Master relies on public annotation data sets of several
well-known and widely used reference data bases. These in-
clude for the different RNAs miRBase (version 22.1 (23)),
Ensembl ncRNA (version 100 (24)), RNACentral (for piR-
NAs) (version 15 (25)), GtRNAdb (version 18.1 (26)), cir-
cBase (accessed 25.10.20 (27)), NONCODE (version 5 (28))
and NCBI RefSeq for the reference genomes as well as
viruses and bacteria.

Supported sequencing protocols

miR Master 2 directly supports the most common sequenc-
ing protocols. This includes Illumina Truseq, Bioo Scientific
Nextflex, MGISeq and Diagenodes D-Plex and CATS tech-
nology.

Implementation and graphical representation of the web ser-
vice

The miRMaster 2 web service was implemented using
Python 3.7.6 with Django 2.2.10, Postgres 11.1 and Redis
5.0. All services are encapsulated in docker containers and
bundled with docker compose. The job queue is handled
with Celery 4.4.7 and Redis, and the jobs are executed via
Snakemake 5.31.1 (29). The frontend was styled with Boot-
strap 4.5.3 and the interactive features are based on the An-
gular JS1.5.11 and jQuery 3.4.1 libraries. Plots are rendered
with Highcharts 8.2.2 and Clustergrammer-GL 0.22.0 (30).
RNA secondary structures are rendered with fornac 1.1.10
and interactive tables with DataTables 1.10.23.

Compression and quality control data

miRMaster accepts raw FASTQ and gzip compressed
FASTQ files as input. At first and before the data is sent to
our server, we perform three pre-processing steps encom-
passing adapter trimming, quality filtering and read col-
lapsing via JavaScript on the upload page. The collapsed
reads are transmitted to the servers as soon as possible but
in chunks of ~16MB, thereby ensuring a low RAM con-
sumption. The quality scores of the reads are collected on
the user side and only aggregated metrics are sent to the
server. Multiple annotations can be provided for the up-
loaded samples, which can then be highlighted in the result-
ing reports. In particular, a group annotation for differential
expression downstream can be selected, in which case miR-
Master will perform additional analyses.

Data pre-processing

While most of the analysis parameters in the pre-processing
view are conveniently set to reasonable default values, the
expert mode allows full control and maximal flexibility. In
the pre-processing view, the 5’ barcode length, an adapter
barcode length and the length of the unique molecular iden-
tifier (UMI) can be determined. Further, after activation
of the expert mode, minimum read length and maximum
adapter edit distance can be modified as well as the min-
imum read/adapter overlap. Finally, leading and trailing
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Figure 1. Tool comparison. Comparison of features provided by tools analyzing sncRNA-seq data. Improvements of miRMaster 2 in comparison to its

original release are marked in green.

N’s can be trimmed, or reads containing N’s can be fully
omitted. For quality trimming, the sliding window size and
quality can be selected. To maximize the processing capa-
bilities of the user’s CPU, the number of threads that can
be used on the client side for the pre-processing can be
configured.

Mapping

The read mapping process in miRMaster 2 is carried out
using Bowtie 1.2.3 (31) as the standard option. For the up-

date we added STAR 2.7.5a (32) as alternative mapper. In
the standard mode, up to five hits in the reference genome
are allowed for each read, where the mapping seed length
is set to 18 nt and no mismatches in the seed region are al-
lowed. In the expert mode, the user is free to change these
parameters. For quantifying miRNAs, reads are mapped
against miRNA precursors while allowing per default one
mismatch. The resulting mappings are then filtered to count
only reads mapping to the annotated miRNAs with at most
two nucleotides differences at the 5’ end and five nucleotides
at the 3’ end. For isomiR quantification, the mapping is
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performed with one additional mismatch and then subse-
quently filtered, such that non-templated nucleotide addi-
tions are not counted as mismatches. Other ncRNAs are per
default quantified without any mismatches and all multi-
mapping reads with the lowest number of mismatches are
considered. To generate the miRGFF3 isoform format, mir-
top 0.4.23 (33) is run on the aligned files and subsequently
filtered to accommodate the user selected number of al-
lowed mismatches.

Detection filtering

Before applying analysis methods to the expression matrices
of the different ncRNA types, these matrices are filtered per
default, such that only those RNAs that are expressed in at
least 50% of all the samples are kept, or in case a differential
expression annotation variable is provided (e.g. Diagnosis),
in at least 50% of the samples of one of the variable lev-
els (e.g. Dementia or Control). For this filtering procedure,
only RNAs that are expressed with at least three reads are
considered detected. In addition to normalizing the reads
by the sequencing depth (RPM) we log, transform the ex-
pression data and add a pseudo count of one.

Embedding

miRMaster 2 is equipped with two common dimension re-
duction approaches, namely Principal Component Analy-
sis (PCA) and Uniform Manifold Approximation and Pro-
jection (UMAP). The user can first select the embedding
from a drop down followed by the response variable. This re-
sponse variable is extracted from the annotation file and the
data points are colored according to the respective group-
ing. As representation, 2D-scatter plots are provided to the
user.

Clustering

Hierarchical clustering with Euclidean distance and com-
plete linkage is performed on the sample Spearman corre-
lation, which is determined based on the reads per million
(RPM) normalized expression matrix for each ncRNA type
separately, as well as for all sncRNAs. In addition, hierar-
chical clustering is also performed on the RPM log; nor-
malized expression matrix for each ncRNA type, as well as
on subsets of the top RNAs with the largest variance.

Batch effect analysis

To detect the influence of technical batches or attribute vari-
ance to biologically relevant parameters, a Principal Vari-
ance Component Analysis (PVCA) is performed. PVCA
combines the strengths of two data analysis techniques,
principal component analysis (PCA), which reduces the fea-
ture dimensions while maintaining the largest fraction of
the variability in the data, and variance components analy-
sis (VCA), which fits a mixed linear model using factors of
interest as random effects. In more detail, all variables pro-
vided in the annotation file are fit as random effects includ-
ing two-way interaction terms in the mixed model. Thereby,
principal components obtained from the original data ex-
pression matrix are selected. As a result, the proportion of

variance that is attributed to the variables from the annota-
tion file is reported.

Differential gene expression analysis

The groupings for differential expression analysis are ex-
tracted from the annotation file provided by the user. If
more than two groups are given, all pair-wise differential
expression analyses are performed automatically. miRMas-
ter first computes whether the features are normally dis-
tributed by applying the Shapiro Wilk test. As hypothesis
test for assessing the degree of differential expression, #-
test (for normally distributed data) and Wilcoxon Mann—
Whitney test otherwise, are calculated. For multiple groups,
also analysis of variance (ANOVA) as well as the non-
parametric Kruskal-Wallis test are computed. The P-values
are adjusted for multiple testing by controlling the false dis-
covery rate using the Benjamini-Hochberg procedure. Fur-
ther measures representing effect sizes are fold changes, the
area under the receiver operator characteristics curve (AUC
value) and Cohen’s d. In addition to tabular output, volcano
plots (log, fold change versus negative decade logarithm of
P-values) are displayed and boxplots per RNA are shown.

miRNA prediction

The prediction of new miRNAs follows the same principles
as described in miR Deep (34) and our previous publications
(3,4). Similarly, the expert mode allows maximal flexibil-
ity. As a first step, after the reads have been mapped to the
genome, miRNA precursor candidates are determined. To
this end local maximum read stacks, which are assumed to
stem from potential miRNAs, are searched in downstream
windows of per default 70 nucleotides and two precursors
are excised from each stack. For this step, the required min-
imum read stack can be increased in order to improve the
specificity of miRNA precursor predictions. Also, minimal
and maximal length of the mature miRNA(s) can be set.
Moreover, the mapping fraction consistent with Dicer pro-
cessing can be increased or decreased. miR Master groups
new miRNA candidates into several categories, depending
on their overlap with known miRNAs or known miRNA
precursors. Precursor miRNA candidates belonging to the
‘novel’ category are not overlapping any known miRNAs
and none of their annotated miRNAs have a similarity to
any known miRNA of the same species. Details on the dif-
ferent categories are provided in the software tutorial page.
To further rank and prioritize the predicted precursors,
NovoMiRank (35) is subsequently applied and the scores
are presented in the results table.

API to miEAA

Following our ambition to develop a fully integrated knowl-
edge base on miRNAs (36), we started to integrate our tools
such as miEAA (37,38) and miRSwitch (39) with APIs. For
miR Master we continued this process in the reverse direc-
tion. miRNAs can be sorted by their expression level, or
if case—control studies are evaluated, also with respect to
their differential expression. From the miRMaster results
page, the miEAA APIs for over-/underrepresentation and

€202 1990}00 £Z UO JaSN %9U10I|qIGSPUET Pun -SJ9BYISISAIUN BYISIpUSElEeS AQ 60Y8EZ9/L6EM/ L/GF/3I0IUE/IeU/WO0d"dNO"0lWLSPED.//:Sd)lY WOl Papeojumod



miRNA set enrichment analyses can be queried such that
functional pathway enrichment analyses are feasible within
minutes. Moreover, miRNAs are linked to target genes and
target gene networks using miRTargetLink 2 (40), when ap-
plicable.

RESULTS

In this section, we aim for a complete and self-containing
description of miRMaster 2, partially sketching features
that have already been available in the original version such
as the miRNA prediction module. The improvements are
highlighted, summarized in the conclusion and also marked
in green in Figure 1.

Data input

miRMaster relies on FASTQ files (optionally gzip com-
pressed) as main input. Additionally, an annotation file
can be provided by users to facilitate downstream analyses.
While the annotation file is typically small, represented by
few kilobytes of data, the FASTQ files can encompass sev-
eral gigabytes per sample. Therefore, the data transfer for
large studies could become a time-consuming task. We thus
implemented an algorithm, exploiting the fact that miRNA-
seq libraries are often of lower read complexity, that com-
presses the data typically by over 90%. This happens at the
client side and only the compressed data are then trans-
ferred. Similarly, selected quality statistics are computed at
the client side and only the relevant compressed information
is transmitted. The server-side processing of the data starts
immediately, i.e., while the data are transferred the process-
ing is already initiated. We optimized these procedures in a
way that studies with several hundred samples can be pro-
cessed by miR Master. The time-consuming analyses carried
out at the server side afterwards are mostly implemented in
efficient C++, such that even large-scale studies exceeding
hundreds of samples are processed within a few hours.

Supported organisms and RINA classes

While the original version of miRMaster was centered
around the analysis of human microRNA data, support-
ing only a few other small RNA data analyses, we now pro-
vide full support for several other common organisms and
more ncRNA classes. Importantly, the analysis of the RNA
classes is not only restricted to small non-coding RNAs but
also to longer RNAs such as circRNAs. With respect to the
organisms, miRMaster 2 supports, besides Homo sapiens,
Mus musculus, Rattus norvegicus, Monodelphis domestica,
Macaca mulatta, Gallus gallus, Bos taurus and Canis famil-
iaris.

Pre-processing functionality and mapping

In the pre-processing step, adapters are trimmed and only
sequences exceeding the selected minimum length are ex-
tracted. Furthermore the GC content is calculated. The re-
sults of this step are available as table and displayed as box-
plots (Figure 2A). If the user provided several groups, as for
instance cases and controls, or grades of severity for a dis-
ease, the information is displayed per group. In addition to
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the aggregated statistics, detailed per-sample statistics also
are available. All tables can be downloaded in excel and csv
format. All graphics are available as jpg, pdf, png and svg
files. The underlying data for each graphic panel can also
be downloaded in case users want to make figures on their
own.

The second analysis step is genome and non-coding RNA
mapping. First, the mapping to the reference genome is per-
formed using the user specified input parameters and map-
per. Mapping to the following 10 RNA classes is also per-
formed: microRNA (Figure 2B), tRNA, piRNA, rRNA,
scaRNA, IncRNA, snoRNA, snRNA, miscRNA and cir-
cRNA (Figure 2C). Additionally, mapping against viruses
and bacteria from RefSeq is carried out for each sam-
ple, based on reads that did not map against the reference
genome. As for the adapter trimming, all available informa-
tion can be downloaded in excel and csv format and for each
sample detailed mapping statistics are presented.

Sample embedding, clustering, batch effect analysis

After completing the pre-processing and mapping, differ-
ent aggregated analyses on the sample and RNA class level
are carried out. First, an embedding using UMAP or al-
ternatively PCA is available. The embedded graphics as 2D
scatter plot can be colored with respect to arbitrary input
variables extracted from the annotation file. For each RNA
class, a distinct embedding is available (miRNA Figure 2D,
tRNA Figure 2E). This allows users for example to visually
compare whether for one RNA class a better clustering with
respect to a disease phenotype is observed as compared to
another.

Next, a sample correlation analysis is performed. Here,
the correlation of the RNA expression between all pairs of
samples is computed and shown as heatmap. The ordering
of rows and columns can be modified and colored repre-
sentations on top of the heatmaps show for each provided
variable a color code (Figure 2F). Per default, hierarchi-
cal clustering with Euclidean distance and complete linkage
is shown. In addition to the sample-to-sample correlation
clustering, also the clustering of the expression values for
each of the 10 RNA classes is computed, with the possibil-
ity to focus on the subset of RNAs with the largest variance.
For both, rows (features) and columns (samples), clusters
are defined and automatically adjusted. If a cluster is se-
lected, the distribution of representatives within the cluster
is displayed and P-values for enrichments are provided.

As last consideration of this functionality aspect, miR-
Master 2 estimates the proportion of variance that can be
attributed to variables provided in the annotation file. This
can be biologically relevant metadata (again, case or con-
trol, or different severity grade of a disease, sex and many
others) or it can be technical batches (e.g. the information
which samples have been sequenced together or come from
the same site in a multi-centric study). To this end, miR Mas-
ter 2 performs a PVCA, that combines aspects of principal
component analysis as well as variance components analy-
sis. The results are provided as bar charts, again for each of
the RNA classes separately (Figure 2G for miRNA and Fig-
ure 2H for tRNAs). While miR Master 2 highlights potential
experimental batches it currently does not provide function-
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Figure 2. Selected result for the data pre-processing. The presented data are taken from the online demo data set on Alzheimer’s Disease (AD). (A) Number
of reads in the data set. Each dot represents a single sample. No difference between AD and controls exists. (B) Mapping to microRNAs. One point is
highlighted. This feature can be used to identify outliers. (C) Mapping to tRNAs. In the overall distribution we observe here differences between the two
classes. (D) Embedding of the samples using UMAP, colored by the disease phenotype using miRNAs. A clustering in the two groups can be recognized in
this embedding. (E) The same embedding for tRNAs. In the case of this RNA class, no clear clustering is present. (F) Color-coded clustering for the sex and
disease phenotype for microRNAs (top) and tRNAs (bottom). The two classes don’t show clustering with respect to sex but for microRNAs a clustering
of AD samples can be observed. (G) Results of the PVCA for miRNAs. Around 15% of the total variance can be explained by the disease phenotype. (H)
The same results for the tRNAs. Here, a lower percentage of variance is explained by the disease phenotype.
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ality to correct for batch effects. If experimental batches ex-
ist, a batch correction by the user is therefore recommended.

Differential expression, downstream analysis and APIs to
other tools

The previous analyses are based on sets of non-coding
RNAs without focusing on single feature expression or dif-
ferential expression, one of the key features of miRMas-
ter 2. First, the expression of each miRNA is computed
and shown in an aggregated and per-sample manner. The
miRNAs can be sorted according to expression levels and
pathway analyses using miEAA (all miRNAs) or miR-
TargetLink (single miRNA-gene interactions) are available.
The results table can be downloaded as excel file or in csv
format. If an annotation file was specified and a differen-
tial expression variable defined, volcano plots are gener-
ated. These show the negative decade logarithm of the P-
value (adjusted Wilcoxon Mann—Whitney test) versus the
log; fold change (Figure 3A). From the interactive results
table, miRNAs can be selected and boxplots detailing the
expression of each sample are computed (Figure 3B/C).
This table contains the raw and adjusted P-values of the
Wilcoxon Mann—Whitney test as well as the results for a
Shapiro Wilk normality test and #-test. If the data are nor-
mally distributed, t-test P-values can be used instead of the
Wilcoxon Mann—Whitney test P-values. In addition, the ta-
ble lists ANOVA and Kruskal-Wallis test P-values in case
of more than two categories need to be compared per vari-
able. As measure for the effect size, in addition to the fold
change, the area under the receiver operator characteristics
curve (AUC) is computed, as well as Cohen’s d. For the
de-regulated miRNAs, miRNA set enrichment analysis as
well as over-representation analysis is facilitated through
miEAA. The same metrics on differential expression are
computed for each feature and all other RNA classes. In
the case of other ncRNAs, however, no pathway enrichment
analysis is available currently. This limitation might how-
ever be solved in the future by adding enrichment analyses
for target genes or by integrating future data bases on path-
ways for other ncRNA classes that are developed.

A key question for researchers is to select the most valid
de-regulated candidates and to exclude likely false positives.
From our experience, several factors contribute to the suc-
cess in validating de-regulated miRNAs (41). The miRNA
has to show sufficient expression, relevant effect sizes be-
tween cases and control and at best a statistically significant
difference. To allow users filtering for the best candidates,
the results table offers the option to add several filter crite-
ria that are connected by a logical ‘and’. Authors can filter
for those miRNAs present with at least | RPM, having an
effect size of at least 0.7 and a P-value <0.05. By adapting
the parameters, users can balance for rather specific results
or rather sensitive results, depending on the underlying bi-
ological question.

Remarkably, miR Master 2 supports the analysis of multi-
ple comparisons at the same time. If the annotation column
that is selected by the user has for example four groups, all
pair-wise comparisons (4 x 3/2 = 6) are carried out and
presented to the user. Currently, however, only one annota-
tion column can be used at a time for an analysis to avoid
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too many computations and complicated result representa-
tions.

The last analysis module comprises the prediction of new
miRNAs. Again, the same information on expression and
de-regulation as for the 10 RNA classes is calculated and
presented to the user. Here, novel precursor miRNAs found
in the data can be selected. An example is a precursor
miRNA where the 5 mature form is annotated while the 3’
that is expressed in the user’s data is not yet annotated. For
each miRNA candidate, the secondary structure and free
energy is computed and presented (Figure 3D). Finally, the
expression of reads on the 5" and 3’ mature form (Figure 3E)
is provided as bar-plot along the precursor. Here, users can
verify the read stacks manually and in principle observe po-
tential 3" heterogeneity. Next, all the mapping reads are pre-
sented, containing potential isomiRs or other RNA frag-
ments (Figure 3F). This module offers full-download capa-
bilities as enumerated for the other analysis modules.

We clearly consider the respective potentially new miR-
NAs as candidates only. It is frequently hard to distin-
guish between molecules of the different ncRNA classes
(e.g. miRNAs that are actually tRNA fragments) or to ex-
clude artifacts. The candidates call for an in-depth experi-
mental validation before they should be considered as miR-
NAs (42). The validation rate is tightly coupled with the
quality of the pre-selected precursors. In our previous study
we reached a validation of almost 20%.

In the following sections we provide three use cases, first
the analysis of a sncRNA-seq data set from Mus muscu-
lus, second, human sncRNA data from dementia patients
and finally the analysis of single-cell small non-coding RNA
data using unique molecular identifiers. All use cases are
available on the miR Master homepage.

Use Case (1): Mus musculus sncRNA atlas

To demonstrate the analysis scope of miR Master for a non-
human species, we analyzed sncRNA sequencing data from
M. musculus (43). Here, for 11 organs and up to 14 replicates
of both sexes, sncRNA data using [llumina sequencing have
been analyzed. We started miR Master with the 272 FASTQ
files downloaded from SRA, used the tissue and mouse ID
as annotation and configured the sex as differential expres-
sion variable. The complete results were available after 4
hours. The pre-processing page highlights a large span of
sequencing depth, going from a few thousands up to 25 mil-
lion reads, with a median of 1.9 million reads for the male
samples and 5.1 million reads for the female samples. The
mapping statistics show overall similar patterns between
male and female samples for all considered RNA classes.
Interestingly, the miRNA mapping statistics show the high-
est variability, going from less than 5% mapped reads for
some samples, up to over 90% of mapped reads. This vari-
ability can mainly be attributed to the RNA composition of
the different tissues, as shown by the batch analysis, where
73% of the observed variance can be explained by the tis-
sue variable (Figure 4A). We find that for all other RNA
classes, although varying in the proportion of explained
variance, the tissue is the strongest factor, except for cir-
cRNAs, where most of the observed variance is explained
by the sex (Figure 4B). These results are reflected by the
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Figure 3. Downstream analyses for AD and control samples. (A) Volcano plot displaying each microRNA as a dot. Colored dots are statistically significant
(adjusted P-value < 0.05). (B) For one significant marker (hsa-miR-1468-5p) the data are presented as boxplots. Again, single samples can be highlighted
by moving the mouse over. (C) Box-plot for a novel miRNA candidate. (D) Precursor structure of this novel miRNA candidate and the minimum free
energy. Users can switch between the representation of the precursor and the stem-loop. (E) Distribution of reads on the mature -3p miRNA of the same
candidate precursor. Towards the end of the mature miRNA, the —3p heterogeneity that is typical for miRNAs can be recognized. (F) Representation of
isoforms. The green bar denotes the precursor, the yellow bar the —5p mature form, the orange bar the —3p form. Each blue bar shows an isoform. The
number of reads supporting the isoform can be dynamically adjusted by the user (here, at least 2 RPM are required). (G) If users zoom in the representation,
the single base resolution per isoform is displayed (in this example, | RPM coverage is sufficient).
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Figure 4. Downstream analysis results for the use cases. (A) Principal Variance Component Analysis based on the miRNA expression matrix, showing
most of the variance explained by the mouse tissue. (B) Principal Variance Component Analysis based on the circRNA expression matrix, showing most of
the variance explained by the mouse sex. (C) Reads per million (RPM) normalized expression of mmu_circ_0004351. (D) Volcano plot showing significantly
deregulated miRNAs in dementia patients. (E) PCA embedding of the miRNA expression matrix showing a perfect separation between primed and naive

hESCs.

PCA and UMAP embeddings, as well as the sample corre-
lation and expression clustering. The circRNA showing the
most significant change between male and female mice was
mmu_circ_0004351, with a fold change of 17.5 and an FDR
adjusted Wilcoxon Mann-Whitney P-value of 4.6 x 10
(Figure 4C). miRNAs for which only 5% of the observed
variance could be attributed to the mouse sex, were also
partially differentially expressed, and have been previously
reported in literature for single tissues or other species, such
as mmu-miR-27a-3p and miR-27b-3p (44,45) and miR-16-
Sp and miR-21-3p (46).

Use Case (2): Differential sncRNA expression in neurodegen-
eration

We previously analyzed the role of microRNAs in
Alzheimer’s disease (4,47,48). Moreover, the examples
shown above are from Alzheimer’s patients and controls
(Figures 2 and 3). Recently, we published a data set com-

posed of dementia patients, including Alzheimer’s disease
and controls with a new technology, termed CoolMPS
(49). To demonstrate the functionality of miRMaster
for this sequencing assay, we analyzed the 216 case and
control samples. The pre-processing page shows that all
samples have been sequenced with more than 13 million
reads, obtaining a median of 27.5 million for all samples.
The genome mapping statistics show high mapping rates
with a median of 95.5% and only few samples exhibiting
a mapping rate below 90%. Since the RNAs of this data
set were size selected to enrich for miRNAs, we observe
the expected high mapping rates to miRNAs as well, with
a median of 90.0%. The batch effect analysis suggests
that most of the variation cannot be explained by any
of the provided variables, followed by the age group and
condition for most RNA classes. This is reflected by the
sample embeddings as well as sample and expression
clusterings, since no separation according to any of the
provided annotations can be achieved. The differential
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expression results of the RNA classes show a general trend
of over-expression in dementia patients, since most RNAs
are down-regulated in control patients. We find that 695
miRNAs were expressed with at least 3 reads in more than
50% of either control or dementia patients and that 270
miRNAs were significantly de-regulated with an adjusted
Wilcoxon Mann-Whitney P-value below 0.05 (Figure 4D).
Upon triggering an enrichment analysis with miEAA
2.0, we find 1,790 affected categories comprising known
dementia and Alzheimer’s disease related pathways such as
the positive regulation of endoplasmic reticulum unfolded
protein response (FDR adjusted P-value of 0.003, (50))
and Rab GTPase binding (FDR adjusted P-value 0.001,

(51)).

Use Case (3): analysis of data with unique molecular identi-
fiers

Due to the increasing popularity of single cell small non-
coding RNA sequencing, we also demonstrate the capa-
bilities of miRMaster on 168 primed and naive hESCs se-
quenced with a UMI-based protocol presented by Fari-
dani et al. (52). Based on the pre-processing of miRMas-
ter we find that the sequencing depth distribution is sim-
ilar between primed and naive hESCs and ranges from 1
million reads up to 44 million with a median of 4.2 mil-
lion. As expected for small input protocols, and especially
in the context of single cell miRNA-seq, only about 50%
of the reads were kept after adapter trimming and quality
filtering, which can often be attributed to adapter dimeriza-
tion. The genome mapping statistics show a large variabil-
ity going from 4.4% up to 88.3%, where on median 0.9%
of the reads mapped against microRNAs. The most repre-
sented RNA class are rRNAs (median 6.3%) followed by
snoRNAs with a median of 3.8%. The batch effect analysis
shows that most of the variance in miRNA and snoRNA
counts is associated with the cell state (76.3% and 82.9%),
in contrast to the other RNA classes, where most of the
variance cannot be explained by the cell state. This sepa-
ration is clearly displayed by the miRNA PCA embedding,
where the first component almost perfectly splits the primed
from the naive cells (Figure 4E). The miRNA sample corre-
lation matrix shows high similarity (>0.7) between the cells
of each state, while the correlation between the groups is
in the range between 0.2 and —0.2. The correlation clus-
tering shows similar patterns for the snoRNAs, however,
the correlation coefficients inside the same cell state are
higher and in-between cell states vary in the range of 0.7
and 0.85. As highlighted in the publication by Faridani et
al., the most up-regulated miRNA in naive hESCs is hsa-
miR-371a-5p (fold change of 797, FDR adjusted P-value
of 1.11x10727), whereas the most down-regulated miRNA
is hsa-miR-363-3p (fold change of 0.003, FDR adjusted P-
value of 1.07 x 102). It is evident that the current compa-
rably shallow single cell small RNA data sets are not suffi-
cient to detect all the non-coding RNA molecules present
in a single cell. Especially the lower abundant non-coding
RNA classes might not be sufficiently represented given the
current experimental limitations. Nonetheless, miR Master
2 identifies the molecules that are present in the sequencing
data, representing a functional single cell non-coding RNA
analysis pipeline.

CONCLUSION AND FUTURE DIRECTION

One of the most important novel features is certainly the
support for multiple species, with which we expect to largen
our userbase. Furthermore, we added circRNAs as new
RNA class. Moreover, the scope of the analysis modules
has been widened and we offer new data analysis aspects,
such as (i) sample correlation, (ii) expression clustering, (iii)
embedding, (iv) batch effect assessment and (v) differential
expression analyses. Finally, we extended the adapter trim-
ming procedure to support more major sncRNA-seq library
protocols and other custom protocols. In the same context,
we implemented support for UMI based analysis, thereby
making the tool ready for single cell sncRNA data. In addi-
tion to the new features, we performed a major update of the
underlying data bases to their current standards, improved
the user-experience as well as the representation of results
in tables and as interactive plots.

While we incorporated a lot of feedback from researchers
that used miRMaster in this update and therefore imple-
mented new features that were missing also from our own
experience, we still see potential to further develop the us-
ability and scope of miRMaster. One aspect that we plan to
improve is automated quality control. This includes a pre-
diction of the uploaded sample type. By using annotated
data, the solid tissue or body fluid from which the data were
generated can be predicted with over 90% accuracy (43). A
further step is to improve the functional support for viruses
and bacteria. Originally, we implemented this step for de-
tecting contamination or reporting the presence of exoge-
nous species. While we tested this feature only using expres-
sion data from Myxobacteria, we now aim to design a dedi-
cated analysis module for SRNAs from microorganisms. In
our ambition to develop an Al-based quality control we
plan to implement automated outlier detection and propose
users to perform the computational analyses after excluding
flagged outliers.

To further advance the development of miRMaster, we
encourage the community to continue providing us con-
stant feedback as well as to propose new features that are
of broad interest.
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