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ZUSAMMENFASSUNG

Im Gegensatz zu traditionellen kryptografischen Aufgaben, bei denen Kryptografie verwendet wird,
um die Sicherheit und Integritit von Kommunikation oder Speicherung zu gewihrleisten und der
Gegner typischerweise ein Auflenstehender ist, der versucht, die Kommunikation zwischen Sender
und Empfinger abzuhdéren, ist die Kryptografie, die in der datenschutzbewahrenden Berechnung
(oder sicheren Berechnung) verwendet wird, darauf ausgelegt, die Privatsphire der Teilnehmer vor-
einander zu schiitzen.

Insbesondere ermdglicht die datenschutzbewahrende Berechnung es mehreren Parteien, gemein-
sam eine Funktion zu berechnen, ohne ihre Eingaben zu offenbaren. Sie findet zahlreiche Anwen-
dungen in verschiedenen Bereichen, einschliefSlich Finanzen, Gesundheitswesen und Datenanalyse.
Sie erméglicht eine Zusammenarbeit und Datenaustausch, ohne die Privatsphire sensibler Daten zu
kompromittieren, was in der heutigen digitalen Araimmer wichtiger wird.

Obwohl datenschutzbewahrende Berechnung aufgrund ihrer starken Sicherheit und zahlreichen
potenziellen Anwendungen in jlingster Zeit erhebliche Aufmerksamkeit erregt hat, bleibt ihre Ef-
fizienzihre Achillesferse. Datenschutzbewahrende Protokolle erfordern deutlich hhere Rechenkosten
und Kommunikationsbandbreite im Vergleich zu Baseline-Protokollen (d.h. unsicheren Protokollen).

Daher bleibt es eine spannende Aufgabe, Mdglichkeiten zu finden, um den Overhead zu min-
imieren (sei es in Bezug auf Rechen- oder Kommunikationsleistung, asymptotisch oder konkret),
wihrend die Sicherheit auf eine angemessene Weise gewihrleistet bleibt.

Diese Arbeit konzentriert sich auf die Verbesserung der Effizienz und Reduzierung der Kosten fiir
Kommunikation und Berechnung fiir gingige datenschutzbewahrende Primitiven, einschliellich pri-
vate Schnittmenge, vergesslicher Transfer und Stealth-Signaturen. Unser Hauptaugenmerk liegt auf
der Optimierung der Leistung dieser Primitiven.
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ABSTRACT

In traditional cryptographic applications, cryptographic mechanisms are employed to ensure the
security and integrity of communication or storage. In these scenarios, the primary threat is usually
an external adversary trying to intercept or tamper with the communication between two parties. On
the other hand, in the context of privacy-preserving computation or secure computation, the crypto-
graphic techniques are developed with a different goal in mind: to protect the privacy of the partici-
pants involved in a computation from each other.

Specifically, privacy-preserving computation allows multiple parties to jointly compute a function
without revealing their inputs and it has numerous applications in various fields, including finance,
healthcare, and data analysis. It allows for collaboration and data sharing without compromising the
privacy of sensitive data, which is becoming increasingly important in today’s digital age.

While privacy-preserving computation has gained significant attention in recent times due to its
strong security and numerous potential applications, its efficiency remains its Achilles” heel. Privacy-
preserving protocols require significantly higher computational overhead and bandwidth when com-
pared to baseline (i.e., insecure) protocols.

Therefore, finding ways to minimize the overhead, whether it be in terms of computation or com-
munication, asymptotically or concretely, while maintaining security in a reasonable manner remains
an exciting problem to work on.

This thesis is centred around enhancing efficiency and reducing the costs of communication and
computation for commonly used privacy-preserving primitives, including private set intersection, obliv-
ious transfer, and stealth signatures. Our primary focus is on optimizing the performance of these
primitives.
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Introduction

PRIVACY-PRESERVING COMPUTATION, Or secure computation, is an extension of traditional cryptog-
raphy to protect users’ sensitive information and metadata during computation.

In contrast to traditional cryptographic tasks, where cryptography is used to ensure the security
and integrity of communication or storage, and the adversary is typically an outsider attempting to
eavesdrop on the communication between sender and receiver, the cryptography used in the privacy-
preserving computation is designed to also safeguard the privacy of the participants from one another.

Specifically, privacy-preserving computation allows multiple parties to jointly compute a function
without revealing their inputs and it has numerous applications in various fields, including finance,
healthcare, and data analysis. It allows for collaboration and data sharing without compromising the
privacy of sensitive data, which is becoming increasingly important in today’s digital age. Fora concrete
example, imagine a medical center that holds a potentially vast database of disease-associated genetic
variants. A patient wants to undergo a DNA screening to check for any issues. However, due to privacy
concerns, the patient is hesitant to provide their DNA in plain form. This is where privacy-preserving
computation comes into play. Both parties (the medical center and the patient) can cooperatively
execute a secure protocol, allowing the patient to learn if they have any genetic markers associated
with diseases without revealing additional confidential information about their DNA.

MoTIVATION

Despite the burgeoning interest and potential applications associated with privacy-preserving compu-
tation, owing to its robust security, the efficiency ot such protocols continues to be a challenge. Privacy-
preserving protocols require significantly higher computational overhead and bandwidth when com-
pared to baseline (i.., insecure) protocols.

As an example, consider the secure computation functionality of the set intersection (i.e., private
set intersection), which is one of the most popular applications of privacy-preserving computation.



In this scenario, Alice possesses a large dataset A, while Bob holds a much smaller dataset B such that
|B| < |A|. Alice wants to determine if there is any intersection between their datasets without learn-
ing anything about Bob’s dataset or revealing any information about her own.

The baseline protocol for set intersection involves Bob sending his dataset in plain text, which Alice
then compares to her own dataset to identify any common elements. Note that this approach entails
O(|B|) communication bandwidth, which is inherent to this method.

In contrast, secure computation protocols usually entail O(|A| + |B|) communication bandwidth.
While it ensures that the privacy of both parties is protected, and no information is revealed to ei-
ther party beyond what is necessary for the set intersection computation, this approach incurs a pro-
hibitively higher communication cost if | A| is super large. For instance, a DNS server holding a 100
GB set with each entry 4 Bytes is a normal case but 100 GB communication bandwidth is highly un-
desired!

It is important to note that the efficiency gap between traditional and secure computation proto-
cols is not just limited to asymptotic measures but is also evident in concrete scenarios. For example,
consider a basic functionality (i.e., oblivious transfer) where a receiver holds a bitb € {0,1} and a
sender holds two bits xg and x1. The goal is for the receiver to learn x;, while remaining ignorant of
X1_p, and the sender must not know anything about the value of b. Baseline insecure protocols only
require a bandwidth of fwo bits, while secure protocols often require two ciphertexts, each with a size
of approximately 51z bits if implemented using the most efficient 256-bit elliptic curves.

Therefore, finding ways to minimize the overhead (whether it be in terms of computation or com-
munication, asymptotically or concretely) while maintaining security in a reasonable manner remains
an exciting problem to work on.

This thesis is centred around enhancing efficiency and reducing the costs of communication and
computation for commonly used privacy-preserving primitives. We tackled several problems in privacy-
preserving computation, the first of which involves multiparty threshold private set intersection (PSI).
For threshold PSI, the parties involved in the protocol learn the output if the size of the intersection
between the input sets of the parties is very large, say larger than 11 — ¢, where 1 is the size of the input
sets and t is some threshold such that t < n; Otherwise, they learn nothing about the intersection.
This is in contrast with standard PSI where the parties always get the intersection, no matter its size.
The main reason for considering this problem (apart from its numerous applications like ride-sharing,
contact discovery etc.) is that the amount of communication needed is much smaller than for standard
PSI: In particular, there are threshold PSI protocols whose communication complexity depends only
on the threshold t and not on the size of the input sets as for standard PSI [GS19a] in two-party setting.
However, non-trivial threshold PSI protocols in the multiparty setting are still an open question to
solve. Because if someone naively extends [ GS19a] to a multiparty setting then the bandwidth for each
participant will depend on the number of parties which is prohibitively expensive.

The second problem we investigated is unbalanced PSI, as briefly mentioned at the outset. In this
scenario, two parties aim to compute the intersection of their respective sets, but one set significantly
outnumbers the other in terms of its size. Solving this problem led us to initiate the study of laconic
PSI: Laconic PSI allows a receiver to send a short digest of its large data set, which in turn can be
used by potentially many different senders to compute a PSI second-round message. We require that



the total communication complexity as well as the sender’s running time be independent of the re-
ceiver’s input size. Though a non-black-box approach is known via general purpose laconic function
evaluation [QWW18], we are interested in providing a black-box solution for efficiency concern. The
black-box solution refers to the construction without using any explicit circuit-level description of
cryptographic primitives. Particularly, we consider constructions which compute cryptographic prim-
itives inside garbled circuits or express statements in terms of NP-complete languages as non-black-box
approaches, which are notably demanding, resulting in either substantial computational costs or sig-
nificant communication overheads.

The third problem we addressed concerns the rate of oblivious transfer (OT). In most applications,
one OT is not enough and it is required to perform many OT operations in parallel. We let 72 denote
the number of parallel executions. Various techniques have been developed to address this task of
batch-OT [IKNPo3, BCG19b, BCG T19a]. For the most part, they involve a preprocessing “offline”
phase where the parties generate random OT correlations. Given such correlations, executing the OT
protocol in the so-called “online phase” is computationally very simple. This approach is very useful
for purposes of computational efficiency since the offline phase can be carried out even before the ac-
tual inputs of the computation are known. However, in terms of communication complexity, there
is an inherent cost, even just in the online phase, of 71 receiver bits and 27 sender bits. In contrast, the
insecure implementation only requires 7 bits to be sent from each party in a two-message protocol:
the receiver sends its input, and the sender returns all of the appropriate x;, values. As always in cryp-
tography, we wish to understand what is the “cost of privacy”, namely how closely can we approach
the information-theoretic minimum without losing privacy.

The final problem we addressed pertains to stealth signatures, which we introduced in the following
manner. In this scenario, the receiver generates a master key pair and disseminates the master public
key. Any sender can then locally re-randomizge this master public key into a one-time public key. For
any external observer, this one-time public key is #nlinkable to the master public key. However, when
the receiver has access to the master secret key, it can /ink this one-time public key to its master public
key, and also generate the corresponding one-time secret key locally, on-the-fly. Utilizing this one-time
secret key, the receiver can sign messages without revealing its metadata, meaning that an external ob-
server will not be able to ascertain which public key matches the signature. It’s important to note
in this mechanism, the receiver only needs to broadcast its master public key, and does not need to
distribute a distinct unlinkable one-time public key for each potential sender. Given that the num-
ber of senders could potentially reach hundreds or thousands, this feature offers significant benefits.
This mechanism is extensively employed in privacy-preserving cryptocurrencies such as Monero, and
also has applications in passwordless authentication as defined in the Fast IDentity Online (FIDO)
standard. However, the current known protocols for this mechanism are either insecure in some rea-
sonable adversarial models or inefficient in practical implementation.

At the end of the introduction, this thesis is organized as follows:



CONTRIBUTIONS AND ROADMAPS

* In Chapter 1, we provide essential preliminaries about basic cryptography primitives, security
definitions or frameworks, well-established assumptions, lattices, polynomials, and some sta-
tistical tools.

* In Chapter 2, we present a protocol of multiparty threshold private set intersection, which
improves communication bandwidth for each party from O(N#?) to O(t?) where N is the
number of parties and t the threshold while retaining the same computational overhead and
security level.

* In Chapter 3, we introduce a new primitive, laconic private set intersection, which solves un-
balanced PSI in a non-interactive way while making communication bandwidth as succinct as
possible. Specifically, after the server publishes a short digest of constant size, any client can
non-interactively send its message of size independent of the server’s dataset.

* In Chapter 4, we present a two-message oblivious transfer protocol which has asymptotically
minimum communicational bandwidth, namely, to transfer 7 bits information, it only re-
quires 77(1 4+ 0(1)) bits bandwidth for each user while retaining computational efficiency. We
also show how to efficiently emulate Z; inside a prime-order group Z, in a function-private
manner.

* In Chapter s, we present a post-quantum privacy-preserving signature called stealth signature
that saves 70% bandwidth compared to the state of the art while achieving the strongest secu-
rity. Additionally, we present a fuzzy variant which protects users’ metadata and improves the

server’s computational work from O(N) to O(v/N) where N is the number of users.

* In Chapter 6, we summarise the thesis in a coherent and concise way.



Preliminary

IN THIS PRELIMINARY CHAPTER, we lay the groundwork for our exploration by introducing essential
concepts, setting the stage for a comprehensive understanding of the subject matter as we delve into
the subsequent chapters.

We denote by A € N the security parameter, by poly(A) any function that is bounded by a poly-
nomial in A, and by negl(A) any function that is negligible in the security parameter. We abbreviate
the computational indistinguishability of two distributions by ~. The set of N elements is always
written as [N]. We also denote as D a distinguisher D access to an oracle O via classical queries and
Al®) via quantum queries. If S is a finite set, then ¥ <% S denotes an element x sampled from S
according to a uniform distribution and |S| denotes the cardinality of S; If D is a distribution, we use
x <=$ D denote an element x sampled according to the distribution D. For two vectors u, v € F”"
over a finite field I, we denote by u ® v their component-wise multiplication. We denote by Supp(u)
the support of u, that is, the set of indices where u is different from 0." For S C [n], ug denotes the
vector (u;);es. Finally, u” denotes the transpose of u and hw(u) denotes the hamming weight of u
(that is, the number of coordinates of u different from 0).

Definition 1.0.1 (Statistical Distance). The statistical distance between two probability distributions

Aand Bis
SD(A,B) = %Z}Pr[A:v] —Pr[B =1]|.

Recall min-entropy of a random variable A is

Hoo(A) = —logz(maax Pr[A = a]),

"If there is only one index different from zero, Supp(u) denotes this index.



then we have the following lemma.

Lemma r.o.1 (Leftover Hash Lemma[ILL89]). Assume a family of functions {Hy : {0,1}" —
{0,1}"}rex is universal: Ya # b € {0,1}", Pryex[Hx(a) = Hy(b)] = 27™. Then, for any
random variable W,

SD((HX(W)7X)7 (umvx)) S &,
whenever m < k — 2log(2) + 2 and k = Hoo (W).

Lemma 1.0.2 (Rank of the Circulant Matrix[Ings6]). The rank of a circulant matrix C of order m is
m — d, where d is the degree of the greatest common divisors of X' — 1 and the associated polynomial

of C.

Here, we present the cryptographic primitives and definitions which are meaningful to this thesis,
as well as their security properties.

1.1 Basic PRIMITIVES

I.I.1 DIGITAL SIGNATURES

A digital signature scheme DS, formally, has a key generation algorithm KGen(A) that takes the secu-
rity parameter A and outputs the verification/signing key pair (vk, sk), a signing algorithm Sign(sk, 1)
inputs a signing key and a message m € {0,1}* and outputs a signature o, and a verification algo-
rithm Vf(vk, m, o) outputs 1 if 0 is a valid signature on 7 under the verification key vk, and outputs
0 otherwise. We require unforgeability, which guarantees that a PPT adversary cannot forge a fresh
signature on a fresh message of its choice under a given verification key while having access to a signing
oracle (that returns valid signatures on the queried messages). Formally the notion can be captured
in an experiment denoted by EUF-CMA. Strong unforgeability refers to the case where the adversary
is required to forge a fresh signature on not necessarily a fresh message. Formally the notion can be
captured in an experiment denoted by sEUF-CMA.

1.1.2 KEY ENCAPSULATION MECHANISM

A key encapsulation mechanism KEM, formally, has a key generation algorithm KGen(A) that takes
the security parameter A and outputs a encaps key ek and a decaps key dk. An encapsulation algorithm
Encaps(ek) inputs an encaps key and outputs a ciphertext C and agreed key K. Finally, we have a
decapsulation algorithm Decaps(dk) inputs a decaps key and a ciphertext and outputs an agreed key
K. Apart from IND-CCA security, we additionally require its anonymous property which can be
formally captured in Definition r.1.5 denoted by ANO-CCA and it means the adversary cannot link
any ciphertext C to its encaps key ek even being able to access a decaps oracle. Concretely, we use
Kyber [SAB20] with the modification shown in Figure 6 of [GMP22].



.3 UCFRAMEWORK

In this thesis, we use the UC framework by Canetti [Canoi] to analyze the security of our protocols.”
Throughout this thesis, we usually consider semi-honest adversaries, unless stated otherwise. Let F
be a functionality, 77 a protocol that implements F and £ be an environment, an entity that oversees
the execution of the protocol in both the real and the ideal worlds. Let IDEAL  sim ¢ be a random
variable that represents the output of £ after the execution of F with adversary Sim. Similarly, let
REAL 4, be a random variable that represents the output of £ after the execution of 7 with adver-
sary A.

Definition r..1. A protocol 7t implements F if for every PPT adversary A there is a PPT simulator
Sim such that for all PPT environments &, the distributions IDEAL 7 sim ¢ and REAL; 4 ¢ are com-
putationally indistinguishable.

LI.4 STRONG EXTRACTORS

Extractors allow the extraction of randomness from sources with a certain min-entropy.

Definition 1.1.2 (Strong Extractor). A (k, )-strong extractor Ext : S x X — Y is a deterministic algo-
rithm with domain X, seed space S and range ) with the following property: For every distribution
X with support X and min-entropy at least k,

(s, Ext(s,x)) =~ (s,y)

where x <—$ Xandy < ).

.5 PuBLiCc-KEY ENCRYPTION

We recall the classical definition of public-key encryption (PKE).

Definition 1.1.3 (Public-Key Encryption). A Public-Key Encryption (PKE) scheme is defined by the
following algorithms:

- KeyGen(1%) takes as input a security parameter. It outputs a public key pk and a secret key
sk.

* Enc(pk, m) takes as input a public key pk and a message m € {0, 1}*. It outputs a ciphertext
ct.

* Dec(sk, ct) takes as input a secret keys sk and a ciphertext ct. It outputs a message 1 or bot
1.

We require the usual correctness and IND-CPA properties for a PKE.

*We refer the reader to [Canot] for a detailed explanation of the framework.



ANO-CCA%e (M) DecapsO(V', C")

(eko, dko) < KEM.Gen(A) K’ := KEM.Decaps(dk/, C’)
(eki, dkq) <+ KEM.Gen(A) return K’
b+« {0,1}

(C*,K*) + KEM.Encaps(eky)
b+ APaPO() (eky, eky, C*, K*)
by = (b="1)

return by

Figure 1.1: Experiment for ANO—CCA“K“E,\,I (A)

* Correctness: We say that a PKE is correct if

Pr [m « Dec(sk, Enc(pk,m)) : (pk,sk) +— KeyGen(1') | =1.

* IND-CPA security: For any PPT adversary A, we require that

(pk, k) < KeyGen(1%); (g, my, st) « A (pk)

Pr b« Alct,st) : b < {0,1}; ct < Enc(pk,m)

< negl(A).

Definition 1.1.4 (Binomial Distribution[SAB*20]). We define the binomial distribution By, as fol-
lows:

(al, R ,a,,,b1,. . .,b,]) <3 {071}2717

and then output 3 a;—b;. If we write some polynomial f < By, then each coefficient of fis sampled
from B,.
n

Definition r.1.5 (Anonymous KEM[GMP22]). A KEM is said to be anonymous under chosen-ciphertext
attacks if there exists a negligible function negl(A) forall A € N, and for all adversaries A the following
holds:

1
Pr [ANO-CCA*(A) = 1] < 5 + negl(d)

where ANO-CCA is defined in Figure 1.1. Similarly, we also define IK-CPA experiment for PKE in Fig-
ure 1.2, which just removes access to the decryption oracle{BBDPor].

Definition 1.1.6 (Uniformly-Ambiguous Encryption[BLMGa1]). Let PKE := (Gen, Enc, Dec) be
a public-key encryption scheme for the message space {0,1}". Forany A € N, uniformly sampled
message m < {0, 1}", we say PKE is UNI-AMB-secure if

AdvONFAMB( ) .— | Pr[UNI-AMBpcg(A) = 0]—

Pr[UNI-AMBA g (A) = 1] < negl(A),



UNI-AMBpye(A) IK-CPA%(A)

(pkg; sky) = PKE.Gen(A) (pky» sky) = PKE.Gen(A)
(pk;,sk,) = PKE.Gen(A) (pk;,sk,) = PKE.Gen(A)
b<+s{0,1} (st 4, m) < A1(pky, pk;)
m < {0,1}" b <+s{0,1}

¢* « PKE.Enc(pk,, m) c* + PKE.Enc(pk,, m)

b' < A(pky, pky, sky, sk, €*) b’ Ay (st 4, pky, pky,c*)

? T
returnb = b returnb = b

Figure 1.2: Experiment for UNI-AMB#Y £ (1) and IK-CPA# ¢ (A)

where the experiment UNI-AMB#y g (A) is defined in Figure 1.2.

1.2 POLYNOMIALS

We first introduce minimal polynomials of a sequence and of a matrix. Then we present how they can
be used to solve linear algebra-related problems.

MINIMAL POLYNOMIAL OF A MATRIX

The minimal polynomial of a sequence a is the least degree polynomial m such that (m) = Ann(a)
where Ann(a) is the annihilator ideal of a (that is, the ideal such that every element f of Ann(a)
satisfies f - a = 0).

Lemmar.2.1(Lemmasin [KMWFo7]). Ler A € F"™" and let mp be the minimal polynomial of ma-
trix A. Foru,v <= F", we bave mp = my with probability at least 1 —2 deg(ma)/|F|, where o’ =
(WTA'V)ieny. Moreover, Mgy can be calculated using a Boolean circuit of size O(nk log n log klog log k)
where k = log |F|

CoMPUTE THE RANK OF A MATRIX AND SOLVE A LINEAR SYSTEM

Lemma 2.2 ([(KDSo1]). Let A € F"™*" of (unknown) rank r. Let U and Z be randomly chosen unit
upper triangular and lower triangular Toeplitz matrices in F"*", and let B = UAZ. Let us denore
the i X i leading principal of B by B;. The probability thar det(B;) # 0 for all 1 < i < r is greater
than 1 — n?/|F|.

Lemma 1.2.3 ((KDSo1]). Ler B € F"*" with leading invertible principals up to B, where v is the
(unknown) rank of B. Let X be a randomly chosen diagonal matrix in F"*"". Then, r = deg(mxg)—1
with probability greater than 1 — n*/|F|.



1.2.1 POLYNOMIALS AND INTERPOLATION

We present a series of results that will be useful to analyze the correctness and security of the protocols
presented in this thesis.

The following lemma shows how we can mask a polynomial of degree less than t using a uniformly
random polynomial.

Lemmar.2.4([KSos]). Let Iy, be a prime order field, P(x), Q(x) be two polynomials over Fy, such that
degP =degQ =d < tand gcd(P,Q) = 1. Let Ry, Ry <3 ), such that deg Ry = deg R, = t.
Then U(x) = P(x)Rq(x) + Q(x)Ra(x) &5 a uniformly random polynomial with deg U < 2t.

Note that this result also applies to multiple polynomials as long as they don’t share a common

factor (referring to Theorem 2 and Theorem 3 of [KSos] for more details).

We say that fis a rational function if f(x) = g((i)) for two polynomials P and Q.

The next two lemmata show that we can recover a rational function via interpolation and that this
function is unique.

Lemma 1.2.5 ((MTZo3]). Let f(x) = P(x)/Q(x) be rational function where degP(x) = m and
deg Q(x) = n. Then f(x) can be uniquely recovered (up to constants) via interpolation from m+n+1
points. In particular, if P(x) and Q(x) are monic, f(x) can be uniguely recovered from m + n points.

Lemma1.2.6 ((MTZo3]). Choose V to be a support sef of cardinality my 4+ my + 1. Then, there is a
unique rational function f(x) = P(x)/Q(x) that can be interpolated from V, and P(x) has degree at
most my and Q(x) bas degree at most mj.

1.3 LATTICES

We now review some basic notions of lattices and Gaussian distributions.

Let B € R¥" beamatrix. We denote the lattice generated by Bby A = A(B) = {xB : x € Zk} .4
The dual lattice A* of a lattice A is defined by A* = {x € R" : Vy € A,x -y € Z}. Itholds that
(A*)* = A. The orthogonal lattice A;‘ is defined by {y € Zj : Ay’ =0 mod g}.

Definition 1.3.1 (Cyclotomic Polynomial). We denote by R the ring Z[X] /(X" 4-1) and by R the ring
Zg[X]/(X™ +1), wherem = 2" =1 such that X" + 1 is the 211-th cyclotomic polynomial @, (X).
Moreover, we have

[[®a(x) =x" 1.

dim

Let p,(x) be the probability distribution of the Gaussian distribution over R” with parameter s
and centred in 0. We define the discrete Gaussian distribution Dg s over S and with parameter s by

the probability distribution p (x)/p(S) forall x € S (where p(S) = > o5 p4(X)).

3A support set is a set of pairs (x, ).
#The matrix B is called a basis of A(B).
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Fore > 0, the smoothing parameter 17_(A) of alattice A is the least real ¢ > 0 such that p; /o (A*\
{0}) < e[MRo4].

Lemma 1.3.1([Bang3]). Foralla € R, ||x|| < av/n forx <% D7, ,, except with negligible probability
inn.

We will make use of the following convolution property of discrete Gaussians.

Lemma 1.3.2 ((GMPW2o0], Corollary 4.8). Ler A1, Ay € R" be lattices, let 01,02 > 0 be such that
1/4/1/0% +1/03 > 1.(A1 N Ay) for some ¢ = negl(A). Then it bolds for all a,b € R" that
DA, +a,0, + Daytb,o, i statistically close to DA1+A2+a+b,\/m'

We just need the following simple corollary of Lemma 1.3.2, which can be obtained by setting A =
Ay =7.

Corollary 1.3.3. Let 01,02, 03 = \/G% + G% be such that 6103 /03 > 1,(Z) for a negligible & and let
a,b € Z. Then Dy 46, + Dz4p.6, and Dy 4y 5, are statistically close.

GADGET MATRIX.  For given parameters 71, € Z, let g be the vector (1,2,22, ..., 2/10891-1) 3nd
G = g® I, where I, is the identity matrix of size . The matrix G is usually called the gadget matrix
[MP12].

Moreover, let G,, = > GieZ™ Mog 91 wwhere G; is the matrix which is zero everywhere but its
i-th row is g.

The function g ™! : Z; — Z™, where m = [log q], receives avalue v € Z, and outputs its binary
decomposition. Note that g - g~ '(v) = v mod g. Following [BAMWi6], we define g, to be
the function that, on input v € Zj, outputs X <$ DAqL(g)Jrg,l(v)vr, wherer = (5(1) It holds that

-1
g 8,4 =v mod g.
1.4 HARDNESS ASSUMPTIONS

We start by introducing some notation. Let Primes(«) denote the set of prime numbers of bit-length
K. Let

RSA(A) = {N: N = PQand P, Q € Primes(1/2) and ged(P —1,Q — 1) = 2}

and

RSA,(A) = {N: e[p(N)}

foranye < 24,
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1.4 PHI-HIDING

Definition 1.4.1 (Phi-Hiding). The phi-hiding assumption, denoted as ¢-hiding, states that for all
e >0and3 < e < 2/47¢ and all PPT adversaries A, we have that

IPr[1 « A(N,e) : N < RSA(A)] — Pr[1 « A(N,e) : N +$ RSA.(A)]| < negl(A).

Let N = PQ where ged(P —1,Q — 1) = 2. Consider the multiplicative group Z3 . where & is
a fixed non-negative integer. Recall that Ziyje+1 can be written as the product of two subgroups Hy x
NRy where Hy = {(1+ N) : i € [N¥]} and NRy = {xN° : x € L1 } (the subgroup of N*-
residues) which has order ¢(N). Given (1 4+ N)™mod N*1, there is a polynomial-time algorithm
that allows to recover m [DJor].

Furthermore, note that NRy can be decomposed into the product of two subgroups cyclic Zj, (of
order P — 1) and Z, (of order Q — 1). Since gcd(P—1,Q — 1) = 2, then there is a cyclic subgroup
T of Zp x Za of order (N) /2. Also, consider the product Jy = Hy x T. Itis easy to show that
the subset membership problem for (Jn, Ty) is still hard if the DCR assumption holds.

The following lemma is straightforwardly adapted from [GVW2o0].

Lemmar.4.1([GVW20)). Assume that the Q-biding assumption bolds. Let Ext be a (k —1, negl(A))-
strong extractor. For every admissible stateful PPT adversary A and for all A, x such that A > 5k, we
have that

N s RSA(A); s « {0, 1}*
e < Primes(x); ¢ < Ty
G < A(N,s,e,g); b+s{0,1}
yo < Ext(s,g5 " mod N*t1); yy <5 Y

Pr b« Aly,) : - % < negl(1)

where an admissible adversary is one that outputs G such that e does not divide G.

1.4.2 DEcisioNaAL COMPOSITE RESIDUOSITY

In this thesis, we also make use of the Decisional Composite Residuosity (DCR) assumption which
we define in the following. We present the DCR assumption as a subgroup indistinguishability as-
sumption [BGio].

Definition 1.4.2 (Decisional Composite Residuosity). Let N = RSA(A) and let & > 0 be a fixed
integer. The decisional composite residuosity (DCR) assumption states that for all PPT adversaries A,

|Pr[1 < A(N,x) : x <8 ZYeir] — Pr(l < A(N,x) : x <$ NRy]| < negl(A).

Lemma 1.4.2 ([CSo2]). N = RSA(A) and ler & > 0 be a fixed integer. Assume that the DCR
assumption bolds. Then for all PPT adversaries A,

IPr[1 <+ A(N,x) :x <+$Jn] — Pr[1 < A(N,x) : x +$ Ty]| < negl(A).

12



Proof (sketch). The proof follows from the following observation: The map x — x*(—1)? where
b < {0,1} sends the uniform distribution on NRy to the uniform distribution on Ty, and the
uniform distribution on Hpy X NRy to the uniform distribution on Hpy x Ty. ]

Corollary 1.4.3. Assume that the DCR assumption holds. Then for all PPT adversaries A,

Pril < A(N,x):x <+sTn| —

x' s Ty < negl(A).
Pr |l < A(N.x) : x = x'(1+ N) mod N&+!

Proof (sketch). In the first experiment, we replace x with a uniform value over Jy using the DCR
assumption. In the second experiment, we replace x’ with a uniform value over Jy (again using the
DCR assumption). We obtain two experiments where x is sampled uniformly over Jx and thus they
are indistinguishable. O

1.4.3 SUBGROUP DECISION

We also use Boneh-Goh-Nissim (BGN) cryptosystem [BGNos] in our range proofs. Thus, its under-
lying Subgroup Decision (SD) assumption is rephrased as follows for completeness.

Let G be an algorithm that takes a security parameter as input and outputs val :=(p, q, G, Gq, e)
such thatp, gare primes, n = pgand G, G are descriptions of groupsof ordernande : GXxG — Gy
is a bilinear map. Let 4G be the subgroup of G of order g.

Definition 1.4.3 (Subgroup Decision [GOSo6]). Let G be an algorithm that takes a security param-
eter as input and outputs val :=(p, q, G, Gq, e) such that p, g are primes, n = pg and G, Gy are
descriptions of groups of order nand e : G x G — Gy is a bilinear map. Let G be the subgroup
of G of order q. The subgroup decision (SD) assumption holds for generator G states that for all PPT
adversaries A,

k _
Pr [1 — A(n,G,Gq,e,G,H) : val <~ G(1%), n=pq ] B

G,H < Ggen
val + G(1%),  n=pq

< negl(A).
G+ Ggen, H<qG\ {1} }

Pr [l +— A(n,G,Gq,e,G,H) :

1.4.4 COMPUTATIONAL DIFFIE-HELLMAN

Definition 1.4.4 (Computational Diffie-Hellman). Let G(A) be an algorithm that outputs (G, p, §)
where G is a group of prime order p and g is a generator of the group. The Computational Diffie-
Hellman (CDH) assumption holds for generator G if for all PPT adversaries A

(G,p,8) < G(A)

Pr|g® « AG.p.g.g"8™): 0 g

< negl(A).
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I.4.5 LEARNING WITH ERRORS

Definition 1.4.5 (Learning with Errors). Letq,k € Nwherek € poly(A), A € Z;‘X" and p € R. For
any 1 = poly(klog q), the Learning with Errors (LWE) assumption holds if for every PPT algorithm
A we have

|IPr[l < A(A,sA +e)] —Pr[l «+ A(A,y)]| < negl(A)

fors = {0,1}*, e < Dz gandy < {0, 1}", where Dz g is some error distribution.
Definition 1.4.6 (Learning with Errors (LWE)[Regos]). For a vector s € Zg called the secret, the

LWE distribution As , over ZZ; X Zg is sampled by choosinga € Z,’; uniformly at random, choosing
e < X, and outputting (a,b = (a,s) +e mod g). Moreover, decisional-LWE;; ;4. is

Advynts (A) = | Prlb = 1|A «s Z)"" t < Z";
b« A(A,t)]
—Prb =1|A « ZZ”",S $Zg,e s X"
b+ A(A,As +e)]|.
Definition1.4.7 (Module Learning With Errors MLWE [BGV12]). Forintegersm, k, and a probability

distribution D : R; — [0, 1], we say that the advantage of algorithm A in solving the decisional
MLWE,, x p problem over the ring Ry is

AdVMRYE(A) = | Pr(b = 1|A < RI™K ¢« R,
b+ A(A,1)]
—Pr[b =1|A + R} sy « Df,s; « D™;

b« A(A, Asq + Sz)”

Definition 1.4.8 (Module Short Integer Solution MSIS[Ajt98]).

Advy 3> (A) =Pr |0 < [lyll.. <y A[I[A]-y=0]

A« RiPKy e AA)]

Definition 1.4.9 (The SelfTargetMSIS Problem in [LDK " 20]). Suppose that H : {0,1}* — B is
a cryptographic hash function. To an algorithm A we associate the advantage function

SelfTargetMSIS o
AdVH,m,k,y (A) =

A+ R
0<llyllc <¥ !

MG AT y) == 1] ) o APOa)
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1.4.6 LEARNING PARITY WITH NOISE

The Learning Parity with Noise (LPN) assumption is closely related to the problem of decoding a
random linear code. Informally, it states that it is hard to find a solution for a noisy system of linear
equations over Z,.

Definition 1.4.10 (Learning Parity with Noise). Letn,m,t € Nsuch thatn € poly(A) and let x,,, ;
be a uniform distribution over the set of error vectors of size m and hamming weight t. The Learning
Pariry with Noise (LPN) assumption LPN(#, m, p) holds if for any PPT adversary A we have that

A {0, 1}mxm
Pr |1+ A(A,sA+e): s<«3{0,1}" —Pr |1+ A(A)y):
€ <_$)(m,if

A 5 {0,1}mxm

<
yesfo, 1y || = el

where p = m /t (p is called the noise rate).

In this thesis, we assume that the noise rate p is ml~¢ for any constante > 0. The LPN assumption
is believed to be hard for that noise rate (see e.g. [BCG " 19a] and references therein).

LPN OVER LARGER FIELDS. Following [BCG 192, JLS21], we define the LPN assumption over
larger fields Zy where g > 2isa prime number. In the following, let x,,, ; , be the uniform distribution
over {v € Zy' : hw(v) = t}. In other words, x,,, 1 , is the uniform distribution over the set of vectors
in Zy which have m — t null coordinates.

Definition 1.4.11 (LPN over larger fields assumption). Letn,m, t,q € Nsuch thatn € poly(A)andg
is a prime number, and let X, ; , be as above. The LPN over larger fields assumption LPN(n,m, p, )
holds if for any PPT adversary A we have that

A s Zy"
A s 7Zm
Pr|l1+ A(A;sA+e): s<«s$Zj —Pr|1«+ A(A)y): s ij < negl(A)
€< Xm,t,q y I

where p = m/t.

1.5 THRESHOLD PUBLIC-KEY ENCRYPTION

We present some ideal functionalities regarding threshold public-key encryption (TPKE) schemes. In
the following, N is the number of parties.

Let FGen be the ideal functionality that distributes a secret share of the secret key and the corre-
sponding public key. That is, on input (sid, P;), Fgen outputs (pk, sk;) to each party party where
(pk,sky,...,sky) < TPKE.Gen(14,N).

Moreover, we define the functionality Fpeczero, Which allows N parties, each of them holding
a secret share sk;, to learn if a ciphertext is an encryption of 0 and nothing else. That is, Fpeczero
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receives as input a ciphertext ¢ and the secret shares of each of the parties. It outputs 0, if 0 <
Dec(sk ...Dec(sky,c)...), and 1 otherwise. Note that these functionalities can be securely real-
ized on various PKE schemes such as El Gamal PKE or Pailler’ PKE [HV17].

We also assume that the underlying TPKE (or plain PKE) is always additively homomorphic unless
stated otherwise.

Definition 1.5.1 (Threshold Public-Key Encryption). A Threshold Public-Key Encryption (TPKE)
scheme is defined by the following algorithms:

* (pk,sky,...,sky) < Gen(1*, N) takes as input a security parameter. It outputs a public key
pk and N secret keys (sky, ..., sky).

* ¢ < Enc(pk,m) takes as input a public key pk and a message m € {0,1}*. It outputs a
ciphertext c.

* ¢/ < Dec(sk;, ) takes as input one of the secret keys sk; and a ciphertext. It outputs a share
decryption ¢’ of c.
CoRRECTNESS. Forany N € Nand any permutation 7t : [N] — [N], we have that
Pr |m < Dec(sk, v, Dec(sk(y_1), - - - Dec(sk, 4y, Enc(pk,m)) . .. ))} =

where (pk, sky, ..., sky) < Gen(1%,N).

IND-CPA securIiTy. Forany N € N, any permutation 7 : [N] — [N] and any adversary A, we
require that

(pk,sky,...,sky) « Gen(11,N)
(mg, my,st) < A (pk7 skn(l), .. 7skn(k))
b<s{0,1}
¢ < Enc(pk, my)

Pr |b + A(c,st) : < negl(A)

forany k < N.

App1rTivE HoMoMoRPHISM.  We also assume that the TPKE (or plain PKE) is homomorphic for
additive operation.% That is, for all (pk, sk, ...,sky) ¢ Gen(1*,N), we can define two groups
(M, @), (C,®) such that, given two ciphertexts c; <— Enc(pk,m1) and ¢ < Enc(pk, my), we
require that

c1 ® ¢ = Enc(pk, m1 & my).

SWe will assume the message space of Paillier’s cryptosystem as a field as also mentioned in [KMWZFo7].
From now on, we always assume that PKE and TPKE used in this thesis fulfill this property, unless stated
otherwise.
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By abuse of notation, we usually denote the operations of M and C as +.

1.6 PROGRAMMABLE PSEUDORANDOM FUNCTIONS

Pseudorandom functions (PRF) are ubiquitous objects in cryptography. We present the definition of
PRF in the following.

Definition 1.6.1 (Pseudorandom Function). A Pseudorandom Function (PRF) is defined by a keyed
function PRF : L x X — Y such that, for any PPT adversary A

|Pr[1 «+ A(y,x):y < PRF(k,x)] = Pr[l + A(y,x) : y < f(x)]| < negl(A)

forany x € X, wheref : X — ) is a uniformly chosen random function and the key k is sampled
uniformly at random from K.

A programmable PRF allows the simulator to program the output of a PRF on several inputs at
key generation time.

Definition 1.6.2 (Programmable PRF [KMP*17]). A programmable PRF (PPRF) is composed of the
following algorithms:

- k= (K, hint) + KeyGen (1%, (x,¥)) takes as input a security parameter and a pair of points
(x,y) € X x Y. Itoutputs a key k’ and a hint hint.

* y < PPRF(k, x) takes asinputakey k € Cand avaluex € X. Itoutputsy € ).

Correctness of the PPREF states that y <— PPRF(k, x) for the programmed point (x, ). Security
roughly states that it is hard for the adversary to guess the point x which was programmed even given
the hint (see [KMP17]).

ANEXAMPLE. Let PRF : Cx X — {0, 1}* and Primes(¥) be the primes of length £. In this thesis,
we use a programmable PRF PPRF : IC x (X x Z) — Primes(¢) in which the key (and the hint) is
of the form K = (k, k' = (ky,...,k;)) € K x {0, 1}% and where the output of an element x € X
is computed as i) Start by initializing i = 1. ii) Compute y = PPRF(k, (x,1)) @ k. iii) Output y, if
itis a prime number; else, seti = 7 + 1 and return to step ii); repeat until i = &. It is easy to see that,
under standard number-theoretic assumptions, the process described above outputs a prime number
after O(log 2%) steps (e.g., [FT14]). If we set & € O((log2%)?), a direct calculation yields that the
probability of not existing any i € [£] such that PPRF(k, (x, 7)) @ k! is not a prime is negligible in £.

In order to program the output of PPRF at some input x, we first sample a prime number p and an
index i from a suitable distribution.” Then, we setk; = p@PPRF(k, (x, 7)). Finally, we choose k]{, for

7The index i is sampled from the distribution of the number of uniform samples we need to perform in
order to find a prime number. Such a distribution can be easily simulated by just running a prime sampler with
true randomness and output i (the number of trials until success) instead of the prime.
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allj < 1, uniformly at random such that PPRF(k, (x,])) & k; is not a prime number. All other k]{, for
j > 1are chosen uniformly at random. Such a procedure will succeed with non-negligible probability.

This is a special case of the PPRF designed in [KMP"17] and it is easy to see that, if the PPRF is
programmed on a pair of points (x,y) € X x Primes(¢) where y <+ Primes(¢), then it is hard for
any PPT adversary A to guess the programmed point x.

A REMARK. We slightly overload the notation and denote k as the PPRF key (which is composed
of a PRF key k” and a hint hint as in Definition 1.6.2). We do this because, in our case, the hint (when
it is a uniformly random value) reveals nothing about the programmed value [KMP"17]. That is, we
will use the notation K +— KeyGen(1%, (x,)) where K = (k,k’ = hint).

1.7 PUNCTURABLE PSEUDORANDOM FUNCTIONS

In this section, we recall another variant of PRF as follows. Puncturable pseudorandom functions
(PPRFs) [BW13, KPTZ13, BGIi4] are a special case of PRFs where a punctured key allows one to eval-
uate the PRF at all points except one.

Definition 1.7.1 (Puncturable PRF). Leta = a(A) and f = B(A) be two polynomials. A puncturable
PRF (PPRF) scheme PPRF, g = PPRF is composed by the following algorithms:

+ KeyGen(11) takes as input a security parameter A. It outputs a key K.
- Eval(K, x) takes as input a key K and x € {0, 1}%. Itroutputsy € {0, 1}P.
* Punct(K, S) takes as inputa key K and a subset S C {0, 1}%. It outputs a punctured key K.

+ EvalPunct(Kg, x) takes as input a punctured key Kg and x € {0,1}%. It outputsy €
{0,1}£.

Definition 1.7.2 (Correctness). A PPRF scheme PPRF is said to be correct if for all A € N, for all
S C ({0,1}*)" (fort = poly(A)), allx ¢ S we have that

A
Pr [EvaI(K,x) = EvalPunct(Kg, x) : K ¢ KeyGen(1") } =1.

Ks < Punct(K, S)

Definition 1.7.3 (Pseudorandomness). A PPRF scheme PPRF is said to be pseudorandom at punc-
tured points if for all A € N, all PPT adversaries A = (Aj, Az) we have that

~ (S,aux) « A;(11); K+ KeyGen(1%) _

Pr [1 +— A2(Ks, S, T, aux) : Ks « Punct(K, S); T « Eval(K,5) el

(S, aux) « A1 (11); K < KeyGen(1*) ] = NegiA)-

o [l = AalKs, 5, T, awx) Ks < Punct(K,S); T «s{0,1}Fl°l
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PPRFs can be built solely based on any length-doubly pseudorandom generators (PRG)® via (a
variant of) the tree-based construction of [GGM86]. Throughout this thesis, we call the term GGM-
PPRF to this scheme and denote it by PPRFggwm.

1.8 DESIGNATED-VERIFIER NON-INTERACTIVE ZERO-KNOWLEDGE

NIZK is a cryptographic primitive that allows a prover to prove that it holds a witness for a certain
NP statement to a verifier in just one message. In the designated-verifier setting, only a designated
party can verify the validity of proofs. This is in contrast with standard NIZK where the verification
algorithm can be run by any party.

Let Z be the set of statements and WV be the set of witnesses. Let £ be a NP language with relation
R such thatz € Lif thereisaw € W such that R(z, w) = 1.

Definition 1.8.1 (DV-NIZK). Let £ be a NP language. A Designated-Verifier Non-Interactive Zero-
Knowledge (DV-NIZK) for language £ is composed by the following algorithms:

» GenCRS.(1%) takes as input a security parameter. It outputs a common reference string crs
together with the corresponding trapdoor td.

* Prove(crs, x, w) takes as input a common reference string crs, a statement x and a witness
w. It outputs a proof 7.

* Verify £ (td, x, 1) takes as input a common reference string crs, a trapdoor td, a statement x
and a proof 7. It outputs a bitb € {0, 1}.

A DV-NIZK should fulfill the following properties: completeness, soundness and honest-verifier
zero-knowledge.

+ Completeness: A DV-NIZK is correct if for all pairs (x, w) such that R(x, w) = 1,

A
Pr [1 <« Verify 0 (td, x, 1) : (crs, td) < GenCRS.(17) ] =1.

7t < Prover (crs, x, w)

* Statistical Reusable Soundness: A DV-NIZK is statistical reusable sound if for all computation-
ally unbounded adversaries A and all x ¢ L,

(crs, td) < GenCRS.(1%)

Pr [1 < Verify(td, x, ) : 7t ¢ AVerfyC (i) (crs, ) ] < negl(A).

Remark that, in the statistical setting, selective soundness is equivalent to adaptive soundness.

8Which in turn, can be based on LWE, DDH or QR assumptions.
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* Zero-knowledge: A DV-NIZK is said to be zero-knowledge if for all adversaries A there is an
simulator Sim such that

A
Pr [1 o Alers,x,7) (crs,td) + GenCRS.(11) ] B

7t <— Prover(crs, x, w)
<
(crs,td) «— GenCRS. (1) ] < negl(4).

Pr [1 « Alers,x,m) : T = Simg (td, x)

When A is computationally bounded, we say that zero knowledge holds computationally.
When A is computationally unbounded, if its advantage is negligible in the security parameter,
we say that zero-knowledge holds statistically while if its advantage is zero, then zero-knowledge

holds perfectly.

RANGE PROOF SysTEMs FOR D] CIPHERTEXTS. In this thesis, we construct a range-proof system
for DJ ciphertexts. That is, we build a DV-NIZK scheme that allows the prover to prove that a given
DJ ciphertext ct encrypts a message m € [—B, B] for some public B € Z.

Such a scheme can be constructed in the random oracle model (ROM) using the Fiat-Shamir trans-
form (e.g., [DJo1, BBC"18, BBB"18, TBM " 20] just to name a few). However, we focus on efficient
range proofs in the standard model in this thesis.

1.9 PRIVATE INFORMATION RETRIEVAL

Private Information Retrieval (PIR) schemes[ CGKS9s] allow a user to retrieve the i-th bit of an n-bit
database, without revealing to the database holder the value of i. Besides, we require an additional
privacy property in our schemes: sender privacy (or data privacy)[DMOoo].

Definition1.9.1(PIR). A private information retrieval (PIR) scheme PIR is composed by the following
algorithms:

* Query(n, i) takes as input an index i € [n]. It outputs a query q and a state st;.

- Send(DB, q) takes as input a database DB € {0, 1}" and a message q. It outputs a response
r.

* Retrieve(r, st;) takes as input a response r and a state st;. It retrieves the entry DB;.

Definition 1.9.2 (Correctness). A PIR scheme PIR s said to be correctif foranyn € N, DB € {0,1}"
and i € [n], we have that

_ Retrieve(et py . (5t @) = Query(ni)
Pr | DB; = Retrieve(sti,r) : " "o, (DB, q)
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Definition 1.9.3 (User privacy). A PIR scheme PIR is said to be user private if for any PPT adversary
A,anyn,A € N,DB € {0,1}" and i,] € [n], we have that

' Pr[1 + A(1*, DB, q;) : (sti, q;) + Query(n,i)]

Pr(1 « A(1*, DB, qj) : (stj, qj) = Query(n,j)] ' < negl(4).

Definition 1.9.4 (Sender privacy). A PIR scheme PIR is said to be sender private if forany A € N, any
n = poly(A),any i € [n] and any two databases DB*, DBY € {0,1}" such that DB¥ = DB we
have that for all PPT adversaries A

Pr [1 — AN i, n, sty ) (st;, i) < Q“erZ(”a i) ] _
1 € Send(DE", 4) < negl(A)
A v, (st ai) < Query(n, i) = .

Pr I:l — A(l 717 Tl, Stp rl) . rz- « Send(DBy, ql)

Black-box constructions for PIR exist LWE, DDH or QR assumptions [DGI " 19].
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Threshold Private Set Intersection

IN THIS CHAPTER, we begin by addressing the first problem in privacy-preserving computation, known
as threshold private set intersection (tPSI) in a multiparty setting. Our investigation focuses on the
communication bandwidth of tPSI, and we present improvements to its asymptotic performance.

To recap, threshold private set intersection enables multiple parties to calculate the intersection of
their input sets, provided that the intersection is larger than 11—, where 71 represents the size of each set
and t is a predetermined threshold. The primary advantage of this primitive is that, unlike standard
private set intersection (PSI), the established upper bounds on communication complexity depend
solely on the threshold t and not on the input sets’ sizes.

Current tPSI protocols are divided into two components: A cardinality testing phase, where par-
ties determine if the intersection is larger than a certain threshold; And a PSI phase, where the actual
intersection is computed. The primary source of inefficiency in threshold PSI lies in the former com-
ponent.

In this chapter, we introduce a new cardinality testing protocol that enables N parties to verify
whether the intersection of their input sets is larger than n — t. The protocol results in a communi-
cation complexity of O(N#?). Consequently, we obtain a threshold PSI scheme for N parties with a
communication complexity of O(N#?).

2.1 OVERVIEW

We first recall the definition of PSI as follows. Suppose Alice holds a set S4 and Bob a set Sp. Private
setintersection is a cryptographic primitive that allows each party to learn the intersection S 4 N Sp and
nothing else. In particular, Alice gets no information about Sg \ S 4 (and vice-versa). The problem has
attracted a lot of attention through the years, with an extended line of work proposing solutions in a
variety of different settings (e.g., [Mea86, FNPo4, KSos, DMRYo9, DKT10, DCW13, PSZ14, PSSZis,

22



KKRT16, RR17a, HVr7, RRi7b, PSWWi18, GN19, GS19a, PRTY19]). Also, numerous applications
have been proposed for PSI such as contact discovery, advertising, etc (see for example [IKN*17] and

references therein). More recently, PSI has also been proposed as a solution for private contact tracing
(e.g., [BBV120]).

TuresHOLD PSI.  In this chapter, we focus on a special set of PSI called Threshold PSI. Here, the
parties involved in the protocol learn the output if the size of the intersection between the input sets
of the parties is very large, say larger than n — t, where 7 is the size of the input sets and ¢ is some
threshold such that t < n; Otherwise, they learn nothing about the intersection. This is in contrast
with standard PSI where the parties always get the intersection, no matter its size.

The main reason for considering this problem (apart from its numerous applications which we
discuss next) is that the amount of communication needed is much smaller than for standard PSI: In
particular, there are threshold PSI protocols whose communication complexity depends only on the
threshold t and not on the size of the input sets as for standard PSI [GS19a].

Despite its theoretical and practical appeal, there are just a few works that consider this problem
[HOS17, GN19, GS19a], and just one of them achieves communication complexity independent of n
[GS19a], in the two-party setting.

2.1.1 APPLICATIONS OF THRESHOLD PSI

A wide number of applications have been suggested for threshold PSI in previous works such as appli-
cations for dating apps or biometric authentication mechanisms [GSi9a].

One of the most interesting applications for threshold PSI is its use in carpooling (or ridesharing)
apps. Suppose two (or more) parties are using a carpooling app, which allows them to share a vehicle
if their routes have a large intersection. However, due to privacy issues, they do not want to make their
itinerary public. Threshold PSI solves this problem in a simple way [HOS17]: The parties can engage
in a threshold PSI protocol, learn the intersection of the routes and, if the intersection is large enough,
share a vehicle. Otherwise, they learn nothing and their privacy is maintained.

PSIusinG THRESHOLD PSI.  As we mentioned before, most of the current protocols for threshold
PSI (including ours) are split into two parts: i) A cardinality testing, where parties decide if the inter-
section is larger than n — t; And ii) secure computation of the intersection of the input sets (which we
refer to as the PSI part). The communication complexity of these two parts should depend only on
the threshold f and not on the input sets’ size 1.

Threshold PSI protocols of this form can be used to efficiently compute the intersection, even when
no threshold on the intersection is known a priori by the parties, by doing an exponential search for
the 7ight threshold. In this case, parties can proceed as follows:

1. Run a cardinality testing for some ¢ (say t = 1).

2. Ifit succeeds, perform the PSI part. Else, run again the cardinality test for t = 2¢.
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3. Repeat Step 2 until the cardinality testing succeeds for some threshold t and the set intersection
is computed.

By following this blueprint, parties are sure that they overshoot the right threshold by a factor of at
most 2. Thatisif the intersection is larger than 11— #', then the cardinality testing will succeed for f such
thatt > ' > t/2. Thus, they can compute the intersection incurring only in a factor of 2 overhead
over the best insecure protocol. In other words, PSI protocols can be computed with communication
complexity depending on the size of the intersection, and not on the size of the sets.

This approach can be useful in scenarios where parties suspect that the intersection is large but they
do not know exactly how large it is.

2.1.2 CONTRIBUTIONS

In the following discussion, N represents the number of parties participating in a multiparty protocol,
while t refers to the threshold in a threshold PSI protocol. Here, we provide a concise overview of our
results.

MULTI-PARTY CARDINALITY TESTING. We develop a new cardinality testing scheme that allows
N parties to check if the intersection of their input sets, each having size 1, is larger than 11 — t for some
threshold t < 71. The protocol needs O(N#?) bits of information to be exchanged.

Along the way, we develop new protocols to securely compute linear algebra-related functions
(such as computing the rank of an encrypted matrix, inverting an encrypted matrix or even solving an
encrypted linear system). Our protocols build on ideas of previous works [NWo6, KMWFo7], except
that our protocols are specially crafted for the multi-party case. Technically, we rely heavily on Thresh-
old Public-Key Encryption schemes which are additively homomorphic (such schemes can be con-
structed from DDH [Elg8s], DCR [Pai99], or from several pairings assumptions [BBSo4, BGNos])
to perform linear operations.

MuLTI-PARTY THRESHOLD PSI.  We then show how our cardinality testing protocol can be used to
build a Threshold PSI protocol in the multi-party setting. Our construction achieves communication

complexity of O(N#?).

CONCURRENT WORK

Recently, Ghosh and Simkin [GS19b] updated their paper with a generalization to the multi-party case
which is similar to the one presented in this paper in Section 2.5. However, they leave as a major open
problem the design of a new Cardinality Testing that extends nicely to multiple parties, a problem on
which we make relevant advances in this work.

In a concurrent work, Badrinarayanan ez al. [BMRR21] also proposed new protocols for threshold
PSI in the multi-party setting. Their results complement ours. In particular, they propose an FHE-
based approach to solve the same problem as we do with a communication complexity of O(Nt),
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where N is the number of parties and ¢ is the threshold. However, we remark that the goal of our
work was to reduce the assumptions needed for threshold PSI. They also propose a TPKE-based
protocol that solves a slightly different problem: the parties learn the intersection if and only if the
difference between the union and the intersection is small, that is, | (UN;S;) \ (NN, S;) | is small’,
which is denoted as Frps|.giff in [BMRR21]. This protocol achieves communication complexity of
O(Nt). They achieve that result using completely different techniques from the ones used in this
work. Namely, they noticed that computing the determinant of a Hankel matrix can be done in sub-
linear time in the size of the matrix. This implies that the cardinality testing of [GS19a] can actually

be realized in time O(Nt).

2.2 TECHNIQUES

We now give a high-level overview of the techniques we use to achieve the results discussed above.

TurEsHOLD PSI: THE PRoTOCOL OF [GS194]

Consider two parties Alice and Bob, with their respective input, sets S4 and Sg of size 1. Suppose that
they want to know the intersection S4 N Spiff [S4 N Sp| > n — ¢ for some threshold t < n. To
compute the intersection, both parties encode their sets into polynomials P4 (x) = [} (x — a;) and
Pg(x) =[]/ (x — b;) over alarge finite field F, where a; € S4 and b; € Sp. The main observation of
Ghosh and Simkin [GS19a] is that set reconciliation techniques (developed by Minsky et al. [MTZo3])
can be applied in this scenario: if [S4 N S| > 1 — ¢, then

Pa(x) _ Parp(x) Pap(x) _ P\p(x)
Pp(x)  Parmp(x) Ppa(x)  Ppa(x)

and, moreover, deg P4\p = deg Pp\4 = t. Hence, Alice and Bob just need to (securely) compute
O(t) evaluation points of the rational function P4(x)/Pg(x) = Pa\p(x)/Pp\a(x) and, after inter-
polating over these points, Bob can recover the denominator (which reveals the intersection).

Of course, Bob should not be able to recover the numerator P 4\ g, otherwise, security is compro-
mised. So, [GS19a] used an Oblivious Linear Evaluation (OLE) scheme to mask the numerator with
arandom polynomial that hides P 4\ p from Bob.

This protocol is only secure if Alice and Bob are absolutely sure that |S4 N Sp| > n — t. Otherwise,
additional information could be leaked about the respective inputs. Consequently, Alice and Bob
should perform a cardinality testing protocol, which reveals if |S4 N Sp| > n — t and nothing else.

LIMITATIONS OF THE PROTOCOL WHEN EXTENDING TO THE MULTI-PARTY SETTING. It turns
out that the main source of inefficiency when extending the Ghosh and Simkin protocol to the multi-

Tt is a slightly different problem from the one we solve in this work. Here, we want to disclosure the inter-
section ﬂ?’zls,‘ if | ﬂfil Si| > n — t, which is denoted as Frps|_int in [BMRR21].
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party setting is the cardinality testing they use. In [GS19a], Alice and Bob encode their sets into poly-
nomials Q4 (X) = S_F 2% and Qp(X) = Y. x%, respectively, where a; € Sa and b; € Sp. Then,
they can check if Q(x) = Qa(x) — Qp(x) is a sparse polynomial. If it is, we conclude that the set
(S4USB)\ (Sa N Sp)issmall. By disposing of O(t) evaluations of the polynomial Q(x) in a Hankel
matrix [GJR10] and securely computing its determinant (via a generic secure linear algebra protocol
from [KMWFo7]), both parties can determine if [Sq N Sp| > n — t. The total communication
complexity of this protocol is O(#?).2

However, if we were to naively extend this approach to the multi-party setting, we would have N
parties computing, say,

Qx) = NQi1(x) = Q2(x) — -+~ — Qn(x)

which is a sparse polynomial only if N is small. Moreover, if we were to compute the sparsity of
this polynomial using the same approach, we would have a protocol with communication complexity

O((Nt).

OUR APPROACH

Given the state of affairs presented in the previous section, it seems we need to take a different approach
from the one of [GS19a] if we want to design an efficient threshold PSI protocol for multiple parties.

INTERLUDE: SECURE LINEAR ALGEBRA. Recall that in the setting of secure linear algebra (as in
[NWo6] and [KMWFo7]), there are two parties, one holding encryption of a matrix Enc(pk, M)
and the other one holding the corresponding secret key sk. Their goal is to compute an encryption
of a (linear algebra-related) function of the matrix M, such as the rank, the determinant of M, or,
most importantly, find a solution X for the linear system Mx = y where both M and y are encrypted.
We can easily extend this problem to the multi-party case: Consider N parties, P1, . .., Py, each one
holding a share of the secret key of a threshold PKE scheme. Additionally, P1 has an encrypted matrix.
The goal of all the parties is to compute an encryption of a (linear algebra-related) function of the
encrypted matrix.

We observe that the protocols for secure linear algebra presented in [KMWFo7] can be extended to
the multiparty setting by replacing the use of an (additively homomorphic) PKE and garbled circuits
for an (additively homomorphic) threshold PKE?. Hence, our protocols allow N parties to solve a
linear system of the form Mx = y under the hood of a threshold PKE scheme.

*Given this, we conclude that the communication complexity of the threshold PSI protocol of [GS19a] is
dominated by this cardinality testing protocol.

*We need a bit-conversion protocol such as [STo6] to convert between binary circuits and algebra opera-
tions.

26



CARDINALITY TESTING viA DEGREE TEST OoF A RaTioNaL FuncTioN.  Consider again the en-

codings Pg, (x) = ]_U (x — a](i)) where a]@ € S;, for N different sets, and the rational function*

Ps +---+Ps,  Psn,s) o+ Ps,s)

Ps, Psi\ s

Note that, if the intersection NS; is larger than n—t, then deg PS]\(m]N:lSj) =...=deg PSN\(ﬂ,N:lSj) <
t.

Thergfore, t}le cardinality testing boils down to th~e following~problem: Given a rational function
f(x) = P1(x)/P>(x), can we securely decide if deg P; = deg P, < f having access to O(t) evalua-
tion points of f(x)?

Our crucial observation is that, if we interpolate two different rational functions fy and fi on

different two support sets V = {v;, f(v;)} and W = {w;, f(w;) } each one of size 2f, then we have:
1. fv :fwifdegP1 = deng <t
2. fv ?éfw ifdegP1 = deng >t

except with negligible probability over the uniform choice of v;, w;.

Moreover, interpolating a rational function can be reduced to solving a linear system of equations.
Hence, by using the Secure Linear Algebra tools developed before, we can perform the degree test
revealing nothing else than the output. In other words, we can decide if the size of the intersection is
smaller than 11 — ¢ while revealing no additional information about the parties’ input sets.

SECURITY OF THE PROTOCOL. W prove the security of our cardinality testing in the UC frame-
work [Canor]. However, there is a subtle issue with our security proof. Namely, our secure linear al-
gebra protocols cannot be proven UC-secure since the inputs are encrypted under a public key which,
in the UC setting, needs to come from somewhere.

We solve this problem by using the Externalized UC framework [CDPWo7]. In this framework,
the secure linear algebra ideal functionalities all share a common setup which, in our case, is the pub-
lic key (and the corresponding secret key shares). We prove the security of our secure linear algebra
protocols in this setting.

Since the secure linear algebra protocols are secure if they all share the same public key, then, on the
cardinality testing, we just need to create this public key and share it over these functionalities. Thus,
we prove the standard UC-security of our cardinality testing.

#We actually need to randomize the polynomials in the numerator to guarantee correctness, that is, we need
to multiply each term in the numerator by a uniformly chosen element. This is in contrast with the two-party
setting where correctness holds even without randomizing the numerator. However, we omit this step for sim-

plicity.
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Badrinarayanan et al. [BMRR21] also encounter the same problem as we did and they opted to
not prove the security of each subprotocol individually, but rather prove security only for their main
protocol (where the public key is created and shared among these smaller protocols).

Murri-pARTY PSI.  Having developed cardinality testing, we can now focus on securely computing
the intersection. In fact, our protocol for computing the intersection can be seen as a generalization of
Gosh and Simkin protocol [GS19a]. Again, by encoding the sets as above (that is, Pg. (x) = [/ (x —

. . ]
u}l)) where a]@ € §jand §; is the set of party P;) and knowing that the intersection is larger than

n — t, parties can securely compute the rational function®(Ps, + - - - + Pg,,)/Ps,. By interpolating
the rational function on any O(t) points, party Py can recover the denominator and compute the
intersection.

The main difference between our protocol and the one in [GS19a] is that we replace the OLE calls
used in [GS19a] with a threshold additively homomorphic PKE scheme (which can be seen as the
multi-party replacement of OLE).

2.2.1 OTHER RELATED WORK

OBLIVIOUS LINEAR ALGEBRA. Cramer and Damgird [CDor] introduced a constant-round pro-
tocol to securely solve linear systems of unknown rank over a finite field. Although their main focus
was on round optimality, their proposal’s communication cost is Q(t3) for an input size of O(t%).
Bouman et al. [BdV18] recently developed a secure linear algebra protocol for multiple parties, with
their focus being on computational complexity.

Other secure linear algebra schemes in the two-party setting have been presented by Nissim and
Weinreb in [NWo6] and Kiltz et al. in [KMWFo7]. In the following, we consider (square) matri-
ces of size t over a field IF. These two works employ different approaches: [NWo6] addresses linear
algebra-related problems obliviously via Gaussian elimination, resulting in an O(#?) communication
complexity for a square matrix of size . However, their approach has an error probability that de-
creases polynomially with £, meaning that the error probability is only sufficiently small when applied
to a linear system with large matrices. On the other hand, [KMWFo7] has an error probability that
decreases polynomially with |F|, making it negligible when [ is of exponential size.®

SAgain, we omit the randomization of the polynomials. Actually, without randomization, these methods
(including [GS19a]) are exactly the same as the technique for the set reconciliation problem in [MTZo3].

®Thisis important to us since, in the threshold PSIsetting, t < 1 where t is the threshold and 71 is the set size.
Kiltz et al. solve linear algebra problems via minimal polynomials, and use adaptors between garbled circuits
and additive homomorphic encryption to reduce round complexity. In this work, we extend Kiltz’s protocol to
the multiparty case without using garbled circuits (otherwise the circuit size would depend on the number of
parties) while preserving the same communication complexity for each party (O(#?)).
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2.3 DEFINITIONS

MurTI-PARTY THRESHOLD PRIVATE SET INTERSECTION.  This ideal functionality implements
the multi-party version of the functionality above. Here, each of the N parties inputs a set and they
learn the intersection if and only if the intersection is large enough.

FmTpsi functionality

PARAMETERS: sid, N, t € Nknown to both parties.

* Upon receiving (sid, P;, S;) from party P;, FimTps stores S; and ignores
future messages from P; with the same sid.

* Once Ftps has stored all inputs S;, for i € [n], it does the following:
If |51\ (ﬂfizsi) | < t, Fmrpsi outputs Sn = ﬂfilsi. Else, it outputs
1.

ExTERNALIZED UC PROTOCOL WITH GLOBAL SETUP

We introduce a notion of protocol emulation from [CDPWo7], called externalized UC emulation
(EUC), which is a simplified version of UC with a global setup (GUC).

Definition 2.3.1 (EUC-Emulation [CDPWo7]). We say that 1 EUC-realizes / with respect to shared
functionality G (or, in shorthand, that 7 G-EUC-emulates (j)_) if for any PPT adversary A there exists
a PPT adversary Sim such that for any shared functionality G, we have:

IDEALY

~ g
F,Sim,Z ™ EXECR,A,Z

Notice that the formalism implies that the shared functionality G exists both in the model for exe-
cuting 7t and also in the model for executing the ideal protocol for F, IDEAL 7.

We remark that the notion of G-EUC-emulation can be naturally extended to protocols that use
several different shared functionalities (instead of only one).

Throughout this work, ¢ will denote the Euler’s totient function.

Let @z g be the distribution that outputs a uniformly chosen value in Z from the interval [—$, f].
We call shifted rectangle to this distribution [AIKix]. The following lemma states that we can drown
(i.e., statistically hide) a value using a sample from a much wider @z g distribution.

Lemma 2.3.1 (Drowning [ATKut]). Let By € N and p € Z and lereg € [—Bo, Bo). Let ey < Dz
IfBo/B = negl(A) then e Rnegi(1) €0 + €1.
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2.4 OBLIVIOUS DEGREE TEST FOR RATIONAL FUNCTIONS

Suppose we have a rational function f(x) = P(x)/Q(x) where P(x) and Q(x) are two polynomials
with the same degree. In this section, we present a protocol that allows several parties to check if
deg P(x) = degQ(x) < f for some threshold t € Z. To this end, and inspired by the works of
[NWo6, KMWEFo7], we present a multi-party protocol to obliviously solve a linear system Mx =y
over a finite field F with communication complexity O(*kAN), where M € F**!, log |F| = k and
N is the number of parties involved in the protocol.

2.4.1 OBLIVIOUS LINEAR ALGEBRA

In this section, we state the Secure Linear Algebra protocols that we need to build our degree test
protocol. For the sake of briefness, the protocols are presented in Appendix A.1. These protocols all
have the following form: There is a public key of a TPKE that encrypts a matrix M and every party
involved in the protocol has a share of the secret key.

Note that if we let parties P; input their encrypted matrix Enc(M), then the ideal functionality F
has to know the secret key (by receiving secret key shares from all parties), otherwise F cannot compute
the corresponding function correctly. However, this will cause an unexpected problem in security
proof as mentioned in our introduction and [BMRR21]: The environment Z will learn the secret key
as well since it can choose inputs for all parties. We fix this by relying on a global UC framework where
exists a shared functionality Gin charge of distributing key pairs (Fgen from Section r.5).

OBLIVIOUS MATRIX MULTIPLICATION
We begin by presenting the ideal functionality for a multi-party protocol to jointly compute the prod-

uct of two matrices, under a TPKE. The protocol is presented in Appendix A.1.1.

IDEAL FUNCTIONALITY. The ideal functionality for oblivious matrix multiplication is presented
below.

Fomm functionality

PARAMETERs: sid, N, q,t € Nand F, where IF is a field of order g, known to
the N parties involved in the protocol.

GLoBALSETUP:  pk public-key of a threshold PKE scheme and sk; distributed
to each party P; via Fgen.

* Upon receiving (sid, P1, Enc(pk, M;), Enc(pk, M;)) from party P4
(where M;, M, € F™?), Fomm outputs Enc(pk, M; - M, ) to P and
(Enc(pk, M), Enc(pk, M,), Enc(pk, M; - M,)) to all other parties P;,
fori=2,...,N.
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SECURELY COMPUTE THE RANK OF A MATRIX

We present the ideal functionality to obliviously compute the rank of an encrypted matrix. The pro-
tocol is presented in Appendix A.r.2.

IpEAL FUNCTIONALITY.  The ideal functionality of oblivious rank computation is defined below.

FORank functionality

PARAMETERs: sid, N, q,t € Nand F, where IF is a field of order g, known to
the N parties involved in the protocol.

GLOBALSETUP:  pk public-key of a threshold PKE scheme and sk; distributed
to each party P; via Fgen.

* Upon receiving (sid, P1,Enc(pk,M)) from party P; (where
M e F™), Forank outputs Enc(pk,rank(M)) to P; and
(Enc(pk, M), Enc(pk,rank(M)) to all other parties P;, for
i=2,...,N.

OBLIVIOUS LINEAR SYSTEM SOLVER

We now show how N parties can securely solve a linear system using the multiplication protocol above.
We follow the ideas from [KMWFo7] to reduce the problem to minimal polynomials, and the only
difference is we focus on multiparty settings.

The protocol is presented in Appendix A.rs. Informally, we evaluate an arithmetic circuit follow-
ing the ideas of [CDNor], and for the unary representation, a binary-conversion protocol [STo6] is
required. All of the above protocols can be based on the Paillier cryptosystem.

IpEAL FUuNcTIONALITY. We give an ideal functionality of oblivious linear system solver for multi-
party as follows.
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FoLs functionality

PARAMETERS: sid, N, q,t € NandF, where F is a field of order g , known to
the N parties involved in the protocol. pk public-key of a threshold PKE scheme.

GLOBALSETUP:  pk public-key of a threshold PKE scheme and sk; distributed
to each party P; via Fgen.

* Upon receiving (sid, P1, Enc(pk, M), Enc(pk,y)) from party P; (as-
suming there is a solution x for Mx = y), Fors outputs Enc(pk, x)
such that Mx = y.

2.4.2  OBLIVIOUS DEGREE TEST

We now present the main protocol of this section and the one that will be used in the construction of
threshold PSI. Given a rational function P(x)/Q(x) (for two polynomials P(x) and Q(x) with the
same degree) and two support sets V1, Vo, the protocol allows us to test if the degree of the polyno-
mials is less than some threshold t. Of course, we can do this using generic approaches like garbled
circuits. However, we are interested in solutions with communication complexity depending on ¢
(even when the degree of P(x) or Q(x) is much larger than ).

IDEAL FUNCTIONALITY. The ideal functionality for the degree test of rational functions is pre-
sented below.

FspT functionality

PARAMETERS: sid,N,q,n,t € N, Fisafield of order g and t is a pre-defined
threshold, known to the N parties involved in the protocol. pk public-key of a
threshold PKE scheme. a1, ..., a412 <3 IF known to the N parties.

GLOBALSETUP:  pk public-key of a threshold PKE scheme and sk; distributed
to each party P; via Fgen.

* Upon receiving (sid, P1, Enc(pk, f1), ..., Enc(pk, far+2)) from party
P1 (where fi = P1(a;)/P2(a;), and P1, P; are two co-prime polyno-
mials with same degree ' (additionally, P; is monic), FspT outputs 0 if

' < t; otherwise it outputs 1.

ProTocoL. We present the Protocol 1 for secure degree test which we denote by secDT. The main
idea of the protocol is to interpolate the rational function on two different support sets and check if
the result is the same in both experiments.
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Recall that interpolating a rational function boils down to solving a linear equation. We can thus
use the secure linear algebra tools developed to allow the parties to securely solve a linear equation.

Also recall that two rational functions Cz(,l) / Cz(,2) = Cz(u1 ) / Cé,z ) are equivalentif Cz(,l) C§U2 ) —C§} ) Cz(,2) =

0. Thus, in the end, parties just need to securely check if Cf,l)cg ) _ C&,l )Cz(,z) is equal to 0.

COMMENTS.  Suppose that, for an interpolation point ¢;, the rational function f(x) = P(x)/Q(x)
is well-defined but Q(a;) = P(a;) = 0 such that we cannot compute f(«;) by division. In this case
¥, the parties evaluate P(x) = P(x)/(x — &;) and Q(x) = Q(x)/(x — @;) on @; and set f(a;) =
P(a;)/Q(a;). These points are called zagged valnes and this strategy is used in [MTZo03]. In more
details, instead of using Enc(pk, f;) for aj, we will use a tagged pair (Enc (pk, S(l)> ,Enc (pk, 552)) )

i

where sl(-l) = %[21) and 552) = I;ZE*‘Z;) Correspondingly, replace each row of Enc(pk, M;) and
Enc(pk, y;) with
2 2 1) t— 1
Enc (pk, [sl( )rlt. sf ) —sf )rf. L —sg )D

and Enc (pk, [sfl)rlf} ), respectively.

Also, note that the protocol easily generalizes to rational functions f(x) = P(x)/Q(x) withdeg P #
deg Q (which isactually what we use in the following sections). We present the version wheredeg P =
deg Q for simplicity. In fact, the case where deg P # deg Q can be reduced to the presented case
by multiplying the least degree polynomial by a uniformly chosen R(x) of degree max{deg P(x) —
deg Q(X), deg Q(x) — deg P(x)}.

Moreover, if ' > t, the linear system for rational interpolation might be unsolvable. In this case,
there is no solution which means we cannot interpolate an appropriate rational function on certain
support set. Therefore, the parties just return 0.

ANaLysis  We analyze correctness, security and communication complexity of the protocol. We
begin the analysis with the following auxiliary lemma.

Lemma 2.4.1. Let F be a field with |F| = (21981). Let V = {(v;, f(v;))|Vi € [1,2t + 1]} and
W = {(wj, lw;))|Vi € [1,2t + 1]} be two support sets each of them with 2t + 1 elements over a field
F, with w; < F, and f(x) := % is some unknown reduced rational function (i.e., P(x), Q(x) are
co-prime), where deg(P) = deg(Q) = t' and t <t where t,t' € poly(A). We also require Q(x)
to be monic (o fit in onr application). Additionally, assume that Q(v;) # 0 and Q(w;) # 0 for every
i€ 2t+1].

7Note that thisis the linear system that we need to solve in order to perform rational interpolation [MTZo3].

¥In the case that only Q(a;) = 0, use a different tagged pair (Enc(pk, Sgl)), Enc(pk,0)), and this can be
noticed by the party who owns polynomial Q(x). In our PSI setting, it is party P1.
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Algorithm 1 Secure Degree Test secDT

Require: Each party has a secret key share sk; for a public key pk of a TPKE =
(Gen, Enc, Dec). The parties have access to the ideal functionalities Forank, FoLs,
Fomm and Fpeczero- The values {ag, ..., aui0} < F4+2 are public, from which also
sampling a random point &’ <= {a1, ..., Qars2}.

Ensure: Party Py inputs { (a1, Enc(pk, f1)), . . ., (@tar2, Enc(pk, far2)) }, where f; = g;gz:g,
where P1(x), Py(x) are two polynomials with degree deg(P;) = deg(P,) = t' =
poly(log |F|) and such that P, (a;) # 0 foralli € [21].

r Py osets  {(aj, Enc(pk,f;)) }epit = {(vj, Enc(pk, foj)) }icpt+1, and

generates an encrypted linear system consisting of

Ti o1 _f”yl . 1"5—1 RN _ﬁ,l
Enc(pk,M,) = Enc | pk, : : :

t f—1
21 - 1 _fr72t+1 "o - _fr,2t+1

and
fra-ni

Enc(pk,y,) = Enc | pk,
froee1 - Toq

forr = {v, w}.”Here M, is a square matrix with dimension 2¢ + 1 and y, a 2f + 1-sized
vector.

2. All parties jointly compute Enc(pk, rank(M,) — rank ([M,|]y]) for r € {v,w}
through two invocations of Forank and mutually decrypt the ciphertext via Fpeczero-
If the result is different from 0, they abort the protocol.

3: All parties mutually solve the two linear systems above using Fos such that each party

1)
gets Enc (pk, (cl(,l)]|cz(,2)>> and Enc (pk, <c$)||c£u2)>>,where M, [sz)
v

v, w}. Besides, cﬁ” and ng) are t + 1- and t-sized vectors, respectively.
P y

4: All parties compute the polynomials CP(x) = Z];o Csj)xt_j ,and CP(x) = «f +

=y,forr €

b ot
> 1€ % forr € {v,w}, then compute

Enc(pk,z) = Enc(pk, C(x) - C?(x) — CW(x) - CP(x))

w

by invoking Fomm.
Here Cgb) (x) are evaluated on a random selected point @’ < {a1, ..., a2}
s: All parties jointly use Fpeczero to check if z = 0. If it is, output 1. Otherwise, output 0.
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If we recover two rational function fy(x), fw(x) by interpolation on V., W, respectively, then
Prify(x) = fw(x)] < negl(1)
over the choice of v;, W;.

Proof. Let fy(x) = A(x)/B(x) the rational function recovered by rational interpolation over the
support set V. and let f(x) = P(x)/Q(x) be the rational function interpolated over any 2t' + 1
interpolation points. We have that fy(v;) = f(v;) foralli € [2¢ + 1] and hence

A(vi) _ P(vi)
B(vi)  Q(v;)

Since ged(P(x), Q(x)) = 1, then the polynomial P(x) = A(x)Q(x) — P(x)B(x) is different from
the null polynomial (as deg(P) = # > t = deg(A)). Moreover, v; is a root of P(x), for all
i € [2t +1],and deg P(x) < t + ' (which means that P(x) has at most  + ' roots).

Analogously, let fyy = C(x)/D(x) be the rational function resulting from interpolating over the
support set Wand let Q(x) = C(x)Q(x) — D(x)P(x). We have that Q(wl) = Oforalli € 2t +1].

Hence, if fy(x) = fv(x), then we have that the points w; are also roots of P(x).
But, since the points w; are chosen uniformly at random from F (which is of exponential size when

< A(vi)Q(vi) = P(vi)B(v;).

compared to t, '), then there is a negligible probability that all w;’s are roots of P(x).

Concretely,
Pr[fy = fw] < Pr [P(wz-) — OVi[2t + 1]}
2t41 ~\ 2t+1
~ deg P
= [T vr[Pwy) =0 < ( |§’ )
i
which is negligible for [F| € w(2!°84). O

Theorem 2.4.2 (Correctness). The protocol secDT is correct.

Proof. The protocol interpolates two polynomials from two different support sets. Then, it checks if
the two interpolated polynomials are the same by computing

M) - @ (x) - () - cP(x))

which should be equal to 0 if CS (x) /C (x) = C (x)/C? (x).

If ' < t, then by Lemma 1.2.6, there is a unique rational function that can be recovered thus the
final output of the algorithm should be 1. On the other hand, if ' > ¢, the linear system can be either
unsolvable or solvable but yield two different solutions with overwhelming probability by Lemma
2.4.1. In this case, the protocol outputs 0. ]
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Theorem 2.4.3. The protocol secDT EUC-securely realizes Fspt with shared ideal functionality Fgen
in the (FoRank, FOMM, FOLS, FDecZero)-Pybrid model against semi-honest adversaries corrupting at
most N — 1 parties, given that TPKE is IND-CPA.

Proof (Sketch). The simulator sends the corrupted parties’ input to the ideal functionality and obtains
the output (either 0 or 1). Then, itsimulates the ideal functionalities (Forank; FOMM, FOLS, FDecZero)
so that the output in the real-world execution is the same as in the ideal-world execution. In particu-
lar, the simulator is able to recover the secret key shares via Forank, FomMm, FoLs and, thus, simulate
FDecZero in the right way.

Indistinguishability of executions holds given that TPKE is IND-CPA. O

COMMUNICATION COMPLEXITY. When we instantiate For s with the protocol from the previous
section, the communication complexity of secDT is O(N#2).

2.5  MULTI-PARTY THRESHOLD PRIVATE SET INTERSECTION

We present our protocol for Threshold PSI in the multi-party setting. Our protocol to privately com-
pute the intersection can be seen as a generalization of Ghosh and Simkin protocol [GS19a] where we
replace the OLE with a TPKE (which fits nicer in a multi-party setting). The main difference between
our protocol and theirs is in the cardinality test protocol used.

We begin by presenting the protocol to securely compute cardinality testing between N sets. Then,
we plug everything together in a PSI protocol.

2.5.1 SECURE CARDINALITY TESTING

IDEAL FUNCTIONALITY. The ideal functionality for Secure Cardinality Testing receives the sets
from all the parties and outputs 1 if and only if the intersection between these sets is larger than some
threshold. Else, no information is disclosed. The ideal functionality for multi-party cardinality testing
is given as follows.

FmpcT functionality

ParRaMETERS: sid, N, n,t € Nknown to both parties.

* Upon receiving (sid, P;, S;) from party P;, FimpcT stores S; and ignores
future messages from P; with the same sid;

* Once FvpcT has stored all inputs S;, for i € [N], it does the following:
If Sn| > n — t, FmpcT outputs 1 to all parties, where |Sn| = mﬁlsi.
Else, it returns 0.
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ProTtocor. Weintroduce our multiparty Protocol 2 (based on degree test protocol). In the follow-
ing, FGen be the ideal functionality defined in Section 1.5 and FspT be the functionality defined in
Section 2.4.2.

Algorithm 2 Private Cardinality Test for Multi-party MPCT

Require: Values ay, ..., a4p4p <3 IF, threshold € N and N parties. Functionalities Fgen
and Fsp, and a IND-CPA TPKE TPKE = (Gen, Enc, Dec).
Ensure: Each party P’ inputsa set S; = {afl), . ,afn)} e F".
. Each party P; sends request (sid, request;) to Fgen and receives a secret key share sk, and

a public key pk, which is known to every party involved in the protocol.

n

2: Each party P; encodes its set as a polynomial P;(x) = [[\_;(x — Lllg )) and evaluates it on

j=1
4t + 2 points. That is, it computes Pi(a1), . . ., Pi(@a12). It encrypts the points, that
is, cl@ < Enc(pk,7; - Pi(a;)) for a uniformly chosen 7; < F. Finally, it broadcasts

{Cz(]) }ieatva)- _

3 Party Py computes d¥) = (32N cl(]))/Pl (a)) for each j € [4t 4 2]. Then, sends
{ai, d }j for every j, and sk, to the ideal functionality Fspr. Each party P;, fori =
2,...,N, send sk; to Fspt to check if the degree of the numerator (and the denomina-
tor) is at most £.

4: Upon receiving b € {0, 1} from the ideal functionality Fspr, every party outputs b.

ANaLysis.  We now proceed to the analysis of the protocol described above. Note that FspT has
shared functionality Fgen.

Lemmaz.s.1. Given 1 characteristic polynomials with same degree from (x|, denoted as P1(x), . .., Pn(x),
we argue that, for any j, P'(x) = Y i_ 1; - Pi(x) and Pj(x) are relatively prime with probability
1 — negl(log |F|) if P1(x), ..., Pu(x) are mutually relatively prime, where r; < F is a uniformly

random element.

Proof. Supposing there is a common divisor of two polynomials P’(x) and P;(x), since P;(x) is a
characteristic polynomial, we denote (x — s) the common divisor. Therefore, we have P'(s) = 0
which can be represented as > ;' ; #; - Pi(s) = 0. However, from the mutually relative primality
of P1(x), ..., Py(x), we know that P;(s) cannot be zero simultaneously which means there exists at
least one i* to make Pj«(s) # 0. Moreover, 7; are all sampled uniformly from FF, the weighted sum
of 7; will not be zero with all but negligible probability. This is a contradiction. Therefore, P’(x) and
Pj(x) will share a common divisor only with negligible probability. O

Theorem 2.5.2 (Correctness). The protocol MPCT described above is correct.
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Proof. Note that the encryption d7) computed by party Py are equal to

N
d(]) = Enc <pk7 (Z ri- PI(O(])> /Pl(a])> .

i=1

Also, observe that

N
Zﬁl T 'pi(a]') o Pm;s,-(a]') ’ Zi Ti 'PSi\(ﬂk;éiSk) (04]')
Py () Prysi(@)) - Ps,\ ()
N
o Zi Ti- PS,‘\(ﬂk#iSk) ((X])

P51\(ﬂk¢15k) (aj)

in this way, we make the numerator and denominator relatively prime except with negligible proba-
bility by Lemma 2.5.1.
N . .
Observe thacdeg D ;" 7 - PSi\(ﬁk¢iSk) (x) < tand deg Psl\(mk;élsk) (x) < tifand onlyif Sn >
n —t. Hence, by the correctness of FspT, the protocol outputs 1if Sy > 1 —t, and 0 otherwise. [

Theorem 2.5.3. The protocol MPCT securely realizes functionality Fupct in the (FGen, FsDT)-
hybrid model against any semi-honest adversaries corrupting up to N — 1 parties, given thar TPKE is
IND-CPA.

Proof. Assume that the adversary is corrupting N — k parties in the protocol, fork =1,...,N — 1.
The simulator creates the secret keys and the public key of a threshold PKE in the setup phase while
simulating Fgen and distributes the secret keys between every party. The simulator Sim takes the
inputs (which are sets of size 1, say S;,, . . ., S, _, ) of the corrupted parties and send them to the ideal
functionality FmpcT. It receives the output b from the ideal functionality. If b = 0, the simulator
chooses k uniformly chosen sets such that | ﬂfi 1 Si| < n — tand proceed the simulation as the
honest parties would do. If b = 1, , the simulator chooses k uniformly chosen random sets such that
| ﬂg\i 1Si| > n—tand proceed the simulation as the honest parties would do. Note that it can simulate
the ideal functionality FspT since it knows all the secret keys of the threshold PKE.
Indistinguishability of executions follows immediately from the IND-CPA property of the under-
lying threshold PKE scheme. O

CoMMUNICATION COMPLEXITY. When we instantiate the FspT with the protocol from the pre-
vious section, each party broadcasts O(#?). Hence, the total communication complexity is O(N#2),
assuming a broadcast channel.

2.5.2 MULTI-PARTY THRESHOLD PRIVATE SET INTERSECTION PROTOCOL

In this section, we extend Ghosh and Simkin protocol [GS19a] to the multi-party setting using TPKE.

We make use of the cardinality testing designed above to get the Protocol 3.
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Algorithm 3 Multi-Party Threshold PSIMTPSI

Require: Given public parameters as follows: Values a1, ..., az41 <$ [, threshold t €

N and N parties. Functionalities Fgen and FupcT, and a threshold additively PKE
TPKE = (Gen, Enc, Dec).

Ensure: Each party P; inputsaset S; = {a(l) e ,115”)} e .

I:

10:
i
2
13:
14:

15:

Each party P; sends its set S; to Fumpcr. If the functionality Fypct outputs 0, then every
party P; outputs L and terminates the protocol.
Each party P; sends request (sid, request;) to Fgen and receives a secret key share sk and
a public key pk, which is known to every party involved in the protocol.
for all Party P; do
It encodes its set as a polynomial P;(x) = H;lzl (x — al(] )) and evaluates it on 3¢ + 1
points. Thatis, it computes P;(a1), . . ., Pi(@3e41).
It samples R;(x) < F[x] such that deg R;(x) = ¢.
It encrypts these points using pk, that is, it computes Cl@ = Enc(pk, Ri(aj) - Pi(a;))
foreveryj € [3t + 1].
It broadcasts {Cz(] ) Yiept+1)-
end for .
Party Py adds the ciphertexts to get dV) = Zf\] Cf’ ) for each j € [3t + 1]. It broadcasts
{dD}jeprray- '
They mutually decrypt {d9}ic341) to learn V) «— Dec(sk, d](\]])) forj € [3t +1].
P1 computes the points V() = V0 /Py (a;) forj € [3t + 1.
P1 interpolates a rational function using the pairs of points (;, Vo).
P recovers the polynomial Pg,\ (~;s,)(x) in the denominator.
P; evaluates Ps,\n,s,(x) on every point of its set {agl), e a%")} to compute (;S;. That
is, whenever P \ns, (a]l) # 0, then El]1 € N;S;.
It broadcasts the output N;S;.
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ANavrysis.  We now proceed to the analysis of the protocol described above. We start by analyzing
the correctness of the protocol and then its security.

Theorem 2.5.4 (Correctness). The protocol MTPSI is correct.
Proof. Assume that |Sq \ (NY,5;) | < #(note that this condition is guaranteed after resorting to the
functionality FmpcT in the first step of the protocol). After the execution of the protocol, party Py
obtains the points V) = SN Pi(a;) - Ri(a;). Then,
70 — v _ SV Pi(a)) - Rilay)
P 1 (Oéj) P 1 (CY]‘)
N
B Prys,(aj) - 325 Ps,.\(mk#sk)(“j) “Ri(a)
Pmisi (a]) ) Psl\(ﬁkﬂsk) (0(])
N
> Psi\(mk#sk)(“j) - Ri(aj)

P51\(ﬂk¢15k) (0(]')

Since P1 has 3t +1 evaluated points of the rational function above, then it can interpolate a rational
function to recover the polynomial P . This is possible because of Lemma 1.2.5 and the fact
S\ (Nk1Sk)

that

N
deg (Z PS,-\(ﬁk;ﬁSk)(aJ') -Ri(a]')> <2t and deg (PS1\(ﬂk¢1Sk)(af)> <t

Having computed the polynomial Py, \( , party P1 can compute the intersection because the

Ni1Sk)
roots of this polynomial are exactly the elements in Sy \ (ﬂkﬂ Sk). O

Theorem 2.5.5. The protocol MTPSI securely realizes functionality Fymres) in the (Fgen, FMPCT)-
bybrid model against any semi-honest adversary corrupting up to N — 1 parties.

Proof. Let Abe an adversary corrupting up to k parties involved in the protocol, forany k € [N —1].
LetP; , ..., P; be the corrupted parties. The simulator Sim works as follows:

1. It sends the inputs of the corrupted parties, S;, ..., S;, to the ideal functionality FyTps).
Sim either receives L or M;S; from the ideal functionality FymTps).

2. Sim waits for A to send the corrupted parties’ inputs to the ideal functionality FpmpcT. If Sim
has received L from FypcT, then Sim leaks 0 to A (and Z) and terminates the protocol. Else,
Sim leaks 1 and continues.

3. Sim waits for A to send a request (sid, req uest,-]_) for each of the corrupted parties (that is,
forj € [k]) to Fgen. Upon receiving such requests, Sim generates (pk,sky, ..., sky) <
Gen(1*,N) and returns (pk, Skij) for each of the requests.
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4. For each party Py such that £ # i; (wherej € [k]), Sim picks a random polynomial Uy(x) of
degree n — | M; Sj| + tand sends Enc(pk, R¢(a;) - Prys; (@) - Up(e;)), where Ry(x) is chosen
uniformly at random such that deg R/(x) = f. From now on, Sim simulates the dummy
parties as in the protocol.

We now argue that both the simulation and the real-world scheme are indistinguishable from the
point-of-view of any environment Z. In the real-world scheme, party P1 obtains the polynomial

( PﬁS ZPS\ mk#lsk R,‘(X)

evaluated in 3t + 1 points. Assume that Py is corrupted by .A. Even in this case, there is an index £ for
which A does not know the polynomial Ry(x). More precisely, we have that

V() = P () | | 30 Py (nens) @) Ri®) |+ Pey sy () Rel®)
i£l

First, note that

deg [ 30 Py (o) (00 Riw) | = deg Py 15 ) - Re)
i
:n—|ﬁiSi|+t§2t.

AesiSe) < t,deg R;(x) = tand ged (P
1 foranyj # i. Hence, by Lemma 1.2.4, we can build a sequence of hybrids where we replace V(x) by
the polynomial V/(x) = Pns.(x) - U(x), where deg U(x) = n — | N; S;| + £, as in the ideal-world

execution. Indistinguishability of executions follows. O]

Moreover, we have foranyi € [N]thatdeg P s (

COMMUNICATION COMPLEXITY. When we instantiate the ideal functlonallty FmpcT with the
protocol from the previous section the scheme has communication complexity O(N#2).
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Laconic Private Set Intersection

IN THIS CHAPTER, we move on to discuss the second PSI-related problem in privacy-preserving com-
putation, concentrating on communication bandwidth in an unbalanced setting. We provide a brief
overview of this problem below.

Consider a server with a large set S of strings {x1,x2 ..., xn} that would like to publish a small
hash /1 of its set S such that any client with a string  can send the server a shorr message allowing it to
learn y if y € S and nothing otherwise. In this chapter, we study this problem of two-round private
set intersection with low (asymptotically optimal) communication cost, or what we call laconic private
set intersection (¢PSI) and its extensions. This problem is inspired by the recent general frameworks
for laconic cryptography [CDG 17, QWWis8].

We start by showing the first feasibility result for realizing /PSI based on the CDH assumption,
or LWE with polynomial noise-to-modulus ratio'. However, these feasibility results use expensive
non-black-box cryptographic techniques leading to significant inefhiciency. Next, with the goal of
avoiding these inefficient techniques, we give a construction of /PSI schemes making only black-box
use of cryptographic functions. Our construction is secure against semi-honest receivers, and mali-
cious senders and reusable in the sense that the receiver’s message can be reused across any number of
executions of the protocol. The scheme is secure under the ¢-hiding, decisional composite residuosity
and subgroup decision assumptions.

At the end of this chapter, we show natural applications of /PSI to realize a semantically-secure
encryption scheme that supports the detection of encrypted messages belonging to a set of “illegal”
messages (e.g., an illegal video) circulating online. Over the past few years, significant effort has gone
into realizing laconic cryptographic protocols. Nonetheless, this thesis provides the first black-box
constructions of such protocols for a natural application setting.

"Refer to Chapter 1 for details about these hardness assumptions.
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3.1 OVERVIEW

Laconic cryptography [CDG *17, QWWis, DGI"19, DGGMi19] is an emerging paradigm which en-
ables realizing cryptographic tasks with asymptotically-optimal communication in just two messages.
In this setting, the receiver has a potentially large input, and the size of her protocol message only de-
pends on the security parameter and not her input size. The second message, sent by the sender, may
grow with the size of the sender’s input but should be independent of the receiver’s input size.

The pioneering work of [CDG "17] introduced the notion of laconic oblivious transfer (laconic
OT), which allows a receiver with a large input D € {0, 1}" to send a short hash digest /1 of her input
D. Next, a sender with an input (i € [n], mg, m7), sends a short message ots to the receiver, enabling
the receiver to learn mpj;), and nothing more. We require (a) the sizes of 7 and ots be poly(log(1), A),
where A is the security parameter; (b) the sender’s computation time be poly(log(r), A) and (c) and
receiver’s second-phase computation time be poly(log (), A).

The notion of laconic OT, and the techniques built around it, have led to breakthrough results in
the last few years, which, among others, include the first construction of identity-based encryption
from CDH [DGiyb, DGr7a, BLSV18, DGHM:i8], and two-round MPC protocols from minimal as-
sumptions [GSr7, GS18, BL18].

LaconisMm BEYOND OT?  Motivated by the developments enabled by laconic OT, it is natural to
ask whether we can push the boundary further, realizing laconism for richer functionalities. Laconic
OT by itself does not seem to be sufficient for this task (at least generically). Specifically, the general
laconic OT+garbled circuit-based approach for a function f(+, -) results in protocols in which the size
of the sender’s protocol message grows with the receiver’s input size.

The work of Quach, Wee and Wichs [QWW18] shows how to realize laconic cryptography for
general functionalities using LWE. However, two significant issues remain. Firstly, it is not clear
whether we can achieve laconism from other assumptions, for functionalities beyond OT. As men-
tioned above, research in laconic OT has led to several breakthrough feasibility results, motivating the
need for developing techniques that can be realized using wider assumptions and for richer function-
alities. Secondly, existing constructions of laconic primitives are non-black-box, leading to inefficient
constructions. Addressing the above shortcomings, our goals are twofold: (1) Feasibility: Can we re-
alize laconic primitives beyond OT from assumptions other than LWE? and (2) Black-boxes: Can we
make the constructions black-box?

Brack-Box TECHNIQUES.  We use the notion of “black-box” techniques in the sense that the con-
struction should not use an explicit circuit-level description of cryptographic primitives. In this sense,
we think of constructions which e.g., compute cryptographic primitives inside garbled circuits (as pre-
vious laconic OT constructions) or use general-purpose NIZK proofs (which express statements in
terms of NP-complete languages) as “non-black-box” techniques.
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Laconic PSI. We make the first progress toward the above two goals with respect to a non-trivial
functionality: Laconic Private Set Intersection (¢PSI) and its family where the private set intersection
is recalled in Chapter 2.

Laconic PSIallows a receiver to send a short digest of its large data set, which in turn can be used by a
sender to compute a PSI second-round message. We require that the total communication complexity
as well as the sender’s running time be independent of the receiver’s input size.

3..1 RESULTS

As our first result, we give a generic construction of laconic PSI from a primitive called anonymous
hash encryption, which in turn can be realized from CDH/LWE [DGi7b, DGi7a, BLSV18]. Our
construction builds on the Merkle-tree garbled circuit-based approach of [DGi7b, DG17a, BLSV18,
GHMR18, GHM T19, GV20], showing how to use garbled circuits to perform binary search on a set of
sorted values. Prior to our work there did not exist any construction of a laconic primitive from CDH
beyond OT. We also obtain an LWE instantiation with polynomial modulus to noise ratio, improving
the subexponential ratio of [QWWi8].

The above construction is a non-black-box caused by the use of garbled circuits. As our second
contribution, we achieve a black-box construction of laconic PSI from the ¢-hiding assumption.

Both constructions above are only semi-honest secure, and can be made malicious (UC) secure by
using Non-Interactive Zero Knowledge (NIZK).”> However, the eventual protocol will be non-black-
box. To enhance applicability, we show how to make our second construction secure against malicious
senders, and semi-honest receivers in the CRS model, by additionally assuming decisional composite
residuosity (DCR) and subgroup decision assumptions. We term this notion reusable malicious la-
conic PSI, meaning the receiver’s message may be re-used.?

ArrricaTIONS. We show an application of laconic PSI in realizing a primitive that we dub self-
detecting encryption. Self-detecting encryption acts like normal public-key encryption with a key dif-
ference in that it is possible to detect whether the underlying message of a given ciphertext belongs to
a database of special (e.g., “illegal”) messages. This can be determined just by knowing the database
values, as opposed to the system’s secret key. Such encryption systems provide a feature for detecting
the presence of illegal content, without compromising the privacy of legal messages. There has only
been a limited number of proposals for this task so far, and all of them use heavy tools (e.g., FHE) for
this purpose (see [Grerg] for more details). We formally define this notion and show how to realize it
using laconic PSI.

*Note that in the laconic setting, we cannot prove malicious security against a receiver since it is information-
theoretically impossible to extract its input. Thus, since the NIZK will only be computed by the sender, the
protocol will remain laconic.

*We use the word reusability only in conjunction with malicious security since in the semi-honest setting,

reusability is satisfied by default.
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In self-detecting encryption, an authority (e.g., a government entity or a delegated NGO) publishes
a small hash value of a (possibly large) database of special messages such that a user can encrypt a
message using the system’s public key and the hash value.

If the message belongs to the database, then the authority can detect it; else, the message remains
hidden from the authority. We require that the size of the hash and the encryption running time be
independent of the database size.

We note that attribute-based encryption does not provide a solution to the above problem, because
either the authority should reveal its database to a master-key generator, or it should be the master-key
generator itself — both of which defeat our security purposes.

ADDITIONAL NEW RESULTS: LABELED LACONIC PST AND maLICIOUS LACcONIC OT (LOT). We
extend our laconic PSI techniques to build a reusable labelled laconic PSI. Labelled PSI [JLio, CHLR18]
is a flavour of PSI, where the sender holds a label ¢; associated with each set element x;, and the receiver
will learn the labels corresponding to the intersection elements. Labelled PSI has several practical ap-
plications (e.g., private web service queries [CHLR18]).

Moreover, we show how to use our techniques to realize the first construction of a reusable LOT
secure against malicious senders and semi-honest receivers.

DV-NIZK RANGE PROOFS FOR DJ CIPHERTEXTS.  Asabuilding block for our laconic PSI protocol,
we propose a Designated-Verifier Non-Interactive Zero-Knowledge (DV-NIZK#) scheme for range
proof with Damgard Jurik (D]) ciphertexts, which may be of independentinterest. Our DV-NIZK has
statistical simulation soundness and computational zero-knowledge given that the subgroup decision
(subgroup decision) assumption holds [BGNos, GOSo6].

Such range proofs can also be constructed in the random oracle model (ROM) via the Fiat-Shamir
transform (e.g., [DJor, BBCT18, BBB"18, TBM "20]), which might yield the best efficiency. As our
LPSI construction is modular, this can be done independently of the remaining results in the paper.
The goal of our DV-NIZK is to provide an efficient standard model construction which we see as a
reasonable middle ground between feasibility from the weakest assumption (at the cost of unrealistic
efficiency) and practical efficiency (at the cost of relying on strong heuristic assumptions such as the

ROM).

3..2  PrEvViOUs WoORK

Laconic PSI can be seen as a particular case of unbalanced PSI. Protocols for unbalanced PSI were pre-
sented in [ADT11, RA18, CLR17, CHLR18]. The protocol of [RA18] achieves linear communication
complexity on the receiver’s set size in the pre-processing model. The protocols of [ CLR17, CHLR18]
rely on somewhathomomorphicencryption (SWHE) and proceed in two rounds. However, the com-
munication complexity scales with the size of the receiver’ set (and logarithmic with the size of the

+DV-NIZK only allows the designated prover to prove that it holds a witness for a certain NP statement to
a verifier in just one message
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sender’s set), in contrast with our protocol whose communication complexity scales with the sender’s
set size.

ComrarisoN wWITH [ADTu].  Ateniese et al. in [ADT11] proposed a semi-honest size-hiding PSI
protocol® inspired by RSA accumulators that achieve communication complexity independent of the
receiver’s set size. However, we emphasize that their scheme does not fit the framework of laconic
cryptography since it requires the sender to know the factorization of a CRS modulus N. Thus, either
it requires pre-processing (giving a designated secret key to the sender), or it requires three rounds in
the CRS model. In contrast, laconic cryptography requires (a) two rounds and (b) no pre-processing
(i.e., neither party receives a secret key correlated with the CRS). Both (a) and (b) are crucially used
in applications of laconic cryptography. Specifically, these restrictions prevent the use of [ADT11] in
settings with multiple senders, an aspect that has been critical for laconic cryptography applications.
Finally, we remark that the security of [ADT11] relies on random oracles, whereas we prove security
in the standard model and achieve a substantially stronger security notion without resorting to heavy
generic tools.

All of the above constructions are just secure against semi-honest adversaries, except for [CHLR18]
which achieves security against a malicious receiver.

3..3 OPEN PROBLEMS

The main open question is to realize laconic cryptography for functionalities richer than PSI. A second
question is to build laconic PSI in a black-box way from assumptions not involving ¢-hiding (e.g.,
pairings alone).

In this chapter, we build DV-NIZK for proving the equality of plaintexts across different encryp-
tion schemes, namely between the DJ [DJor] and the BGN [BGNos, GOSo6] encryption schemes.
This scheme opens the door to new applications since it allows us to extend the capabilities of GS/GOS
proof systems [GOSo06, GSo8] to non-pairing-based primitives with additional properties (in our case
to the DJ cryptosystem). We believe that these ideas will have applications beyond range proofs, e.g.,
one can think of further uses of structure-preserving cryptography, so we leave this as an open problem
for future works.

3.2 TECHNIQUES

3.2.1  SEMI-HoNEsT PSI rRom CDH/LWE

Our protocol uses hash encryption and garbled circuits, building on [DG17b, BLSV18, GHMR18],
while introducing new techniques. A hash-encryption scheme allows one to encrypt a message 11 to
the output /1 of a hash function by specifying an index/bit (i, b) (denoted HEnc(h, m, (i, b))), so that
knowledge of a consistent pre-image value z allows for decryption (Hash(z) = hand z; = b) while

SSuch schemes were also studied in [[Po7, LNOi13, HWis].
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having semantic security against inconsistent pre-image values (i.e., against z where Hash(z) = h but
Zj = b)6
In all discussion below we assume the sender’s and receiver’s elements are in {0, 1}* and that the

output of Hash also has A bits.

RECEIVER’S SET SIZEIS2.  We first assume the receiver has only two elements Sg = {id1, id»} and

the sender has a single element id. The receiver sends hryoor := Hash(idy, id). Consider a circuit
Fid], with id hardwired, which on input (id’, id") outputs id if id € {id’,id"}; else, L. The sender

garbles Flid] to get (Co, {Ib; » })7and sends psi, := (Cg, {ctip}), wherect;j, := HEnc(hrroot, Ibj p, (i,0))).

The receiver who has the pre-image z := (idy, id») can retrieve only the labels Ib; ., and the rest will

be hidden. Thus, by garbled circuit security, the receiver will only learn the output of F[id](id1, id2),

as desired.

MovING BEYOND |Sg| = 2. Suppose the receiver has four elements Sg = {idy, idy, ids, id4 }
in ascending order. The receiver Merkle-hashes all these values and sends hryoot, the root hash. Let
hy and h; be the two hash values at level one (i.e., i1 = Hash(idy, idy)). If the sender knows the
value of, say, h1, he may hash-encrypt {Ib; ; } (defined in the previous paragraph) under k1, so that
the receiver can only open the labels that correspond to the bits of z = (idy, idy), revealing the value
of Flid](idy, id2). However, hy is statistically hidden given hryoot. Thus, we use the idea of deferred
evaluation [DG17b, CDG *17, DGr7a, BLSV18], delegating the task of hash-encrypting {Ib; 5 } to the
receiver herself, via garbled circuits.

In essence, we want the receiver to be able to compute the hash encryption of {Ib; ; } wrt either
or h (depending on whether id < id> or not), but not both; because obtaining both hash encryp-
tions will allow the receiver to open both labels Ib; g and Ib; 1 for some indices i (because (idy, id2) #
(id3, id4)), destroying garbled circuit security. Thus, the sender has to make sure that the receiver will
be able to obtain only either of the above hash encryptions, the one whose sub-tree contains id. To
enable this, we perform a binary search.

PERFORMING BINARY SEARCH.  We handle the above difficulty by performing binary search using
ideas developed in the context of registration-based encryption [GHMR18]. The hash of each node
is now computed as the hash of the concatenation of its left child’s hash, right child’s hash, and the
largest identity under its left child. For example, the hash root is hryoot = Hash(hy, hy, idy), where
h1 and hy are the hash values of the two nodes in the first level, and in turn, i1 = Hash(idy, idp, id1).
Now let id be the sender’s element, and change F[id] to be a circuit that on input (id’,id”, x) out-
puts id if id € {id’,id"}, else L. Letting (Co, {lb;}}) be the garbling of Flid], consider a circuit
Glid, {Ib; 5 }] which on input (i, #’,id") outputs a hash-encryption of Ib;, either under i or under
I, depending on whether id < id’ orid > id’. Let (C, {Ib'}; ) be the garbling of G[id, {Ib; ; }], let

SEnc also takes as input a public parameter p, which we ignore here.
7Cy stands for the garbled circuit and {Ib; j, }; are the corresponding labels of inputs.
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{ctip} be the hash encryption of {Ib}, } wrt hrreot, and return psi, := (Co, C, {ctip}). Using the
pre-image z := (hy, hp,id2) of hryoet, the receiver can retrieve the labels {Ibazm }, allowing to com-
pute Glid, {Ib;  }](71, h2, id2), which will produce a hash encryption {ct;, } of {Ib;; } under either
hy or hy, depending on whether id < idy, or not. For concreteness, suppose id < idy, meaning that
{ct],} are formed under f11, and so the pre-image z’ = (idy, id2, id1 ) of by willlead to {Ib; 21}, which

along with Co will reveal the value of F[id](id1, idp, id1 ). Of course, the receiver « priori does not
know whether {ct! ») are encryptions under fi1 or hy, so the receiver should try decrypting wrt both,
and see which one succeeds.

ARE WE DONE?  Unfortunately, when arguing about security, a subtle issue emerges. Suppose a
hash-encryption ciphertext reveals its hash value (e.g., the hash is appended to the ciphertext). Then,
the ciphertexts {Ctg,b} will reveal whether they were encrypted under hi1 or hp; equivalently, whether
id < idp orid > idy. We cannot allow this information to be leaked if id ¢ Sg. To fix this issue we
assume the hash-encryption scheme is anonymous, meaning that, roughly, a random ciphertext leaks
no information about the underlying hash value. This property was defined in [BLSV18] for achieving
anonymous IBE. The use of anonymous hash encryption does not resolve the issue completely yet. For
concreteness, suppose id < idy. This means that {ct;’b} is encrypted under /11, and so by decrypting
{ct],} using 2’ = (idy, idy, idy), the receiver will obtain meaningful labels, evaluating the garbled

circuit Co to L (rightly so, becauseid ¢ Sg). On the other hand, if the receiver tries decrypting {Ct;,b}
using 2" = (id3, id4, id3) which is not a pre-image of h1, then the resulting labels will be meaningless,
evaluating Coto junk. This leaks which path is the right binary search path, giving information about
id. To fix this issue, we change the circuit F so that if id ¢ Sg, then decryption along any path will
result in a random value. Specifically, sample two random values 7 and 7/, let F[id, 7, #'](id’, id"”, *)
returnrifid ¢ {id’,id”} and ¥’ otherwise. We will also include  in the clear in psi,. Now the receiver
can check decryption along which path (if any) yields 7; in which case, the receiver can determine the
intersection identity. To argue security, if we use anonymous garbled circuits [BLSV18], then we can
argue ifid ¢ Sg, then psi, is pseudorandom to the receiver. Arguing this formally (especially for the
general case) is non-trivial, requiring a delicate formulation of hybrids.

RECEIVER’S SECURITY?  The receiver’s hash hryoot is computed deterministically from Sg, so it can-
not be secure. But this is easy to fix: On the leaf level we append the identities with random values
and only then will perform the Merkle hash.

3.2.2  REUSABLE Laconic PSI

We now outline our techniques for obtaining laconic PSI in a black-box way, for both semi-honest

and malicious cases.

A SEMI-HONESTLY SECURE PROTOCOL  Our starting point is a recent construction of a one-way
[function with encryption from the ¢-hiding assumption due to Goyal, Vusirikala and Waters [GVW20],
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and we remark that similar accumulator-style ideas were used before to construct PSI [ADT11]. Since
the protocol of [GVW20] is “almost” a PSI protocol, we will directly describe the underlying semi-
honestly secure PSI based. Assume for a moment that both the receiver’s input Sg and the sender’s
input Sg are subsets of a polynomially-sized universe i/ = {1,. .., £}. We will later remove this size
restriction on . We have a common reference string crs which is composed of an RSA modulus
N = PQ, a uniformly random generator ¢ € Zy; and pairwise distinct primes p1, . . ., py.

For the sake of simplicity, we will assume in this outline that the sender’s input set Sg is a singleton
set {w} C U. The actual protocol will be obtained by running the protocol we will now sketch for
every element in the sender’s input set. The protocol commences as follows: The receiver first bashes
its input set into

h= ng"esR P mod N,

where 7 is chosen a uniformly chosen random from [N] (and thus rmod ¢(N) is statistically close to
uniform). The receiver then sends 4 to the sender.

The sender, whose input is Ss = {w}, chooses a uniformly random value p <—g [N] and a uni-
formly random seed s for a suitable randomness extractor Ext, and computes the values f <— gPP* and
R « Ext(s, ). Itsendss, fand R to the receiver.

The receiver, upon receiving f and R, will check for all elements i € Sgr whether it holds that

R; L R, for R; Ext(s,f'ersR\“} PI). If it finds such an i, it outputs {i} as the intersection of Sg
and Ss. Correctness of this protocol follows routinely®. by noting thatif w € Sg then

f*'ersR\{w} i — gp'”nfesa Pi — pp.

Also, note that this scheme is laconic, as the size of the messages exchanged by the parties is indepen-
dent of the size of the set Sg.

Arguing security against a semi-honest sender is also routine, as / is in fact statistically close to a
uniformly random group element in Zy;. Proving security against a semi-honest receiver is a bit more
involved and proceeds via the following hybrid modifications. Let Ss = {w} be the sender’s input
such thatw ¢ Sg. In the first hybrid, we will choose the modulus N such that py, divides (N ); under
the ¢-hiding assumption, this change will go unnoticed. Now, via a standard lossiness-argument, we
have that f = gPP* loses information about g”, i.e., g has high min-entropy given f. This means
thath? = gpr.HiESR P! has also high min-entropy as w ¢ Sg and thus p;, does not divide 7 - [Lics, i
(w.0.p). Consequently, as h” has high min-entropy conditioned on f, in the next hybrid change we can
replace R = Ext(s, h”) with a uniformly random value, incurring only a negligible statistical distance
via the extraction property of Ext. In the next hybrid change, we can switch the modulus N back
to normal mode, i.e., such that p;, does not divide ¢(N). But now f = gPPv is statistically close to
uniform in ZY;. Thus, in the last hybrid change, we can replace f with a uniformly random value in
Z3; and get that the view of the receiver is independent of w, as required.

8We will not further discuss the small correctness-error of this protocol as our final protocol will not suffer
from this defect
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For the case that the sender’s input Sg contains more than a single element, we mount a hybrid
argument repeating the above modifications for each element of Ss, not in the receiver’s set Sg.

LARGE UNIVERSES The above protocol has the drawback that the size of the common reference
string crs depends linearly on the size of the universe I/, which is highly undesirable. There is a stan-
dard way of overcoming this issue: Instead of explicitly listing all the primes p; in crs, we will describe
them implicitly via a pseudorandom function (PRF).? For this purpose, we need a PRF which maps
into the set of primes of a certain size. This can e.g. be achieved by using rejection sampling: we first
sample y < Fy(x|7) (starting with 7 = 1) and check if i is a prime number. If it is, we output y; else,
we increment i until a prime is hit. Under standard number-theoretic assumptions, this process finds
a prime after a logarithmic number of steps. One small issue is that, in the above security proof, we
need to replace one of the primes with a prime provided by the ¢-hiding experiment. We resolve this
issue by making the PRF programmable in one point, e.g., by setting Fi i/ (x|i) = F}(x[i) @ k; fora
PRFF', k' = (ki, ..., ks) and a suitable choice of &.

A FIRST ATTEMPT AT MALICIOUS SENDER SECURITY  Our protocol thus far, however, offers no
security against a malicious sender. The main issue is that a corrupted sender may choose the values
fand R arbitrarily, and further, there is no mechanism for a simulator against a malicious sender to
extract the senders input w. Of course, this protocol can be made secure against malicious senders by
letting the sender prove via a general-purpose NIZK proof that it follows the semi-honest protocol
correctly. This however would necessitate making a non-black-box use of our semi-honest laconic PSI
protocol, contrary to our goal of achieving a fully black-box protocol.

Re-inspecting the above protocol, we have not made full use of the fact that the extracted string R is
uniformly random. Our first idea to make the sender extractable is to make better use of R. Instead of
sending R in the plain, we will use R as random coins for a public key encryption (PKE) scheme to en-
crypt the sender’s input w. More concretely, we will modify the above protocol as follows. We include
apublic key pk of a PKE scheme in the common reference string crs and, instead of having the sender
include R in the plain in its message to the receiver, it will include a ciphertext ct < Enc(pk, i; R).
We also need to modify the procedure of the receiver. The receiver will recover R; as before, but will
now use R; to re-encrypt the index i, that is, for each i € Sg it will compute ct; < Enc(pk, i; R;).

First notice that, as a side bonus, this modification makes our laconic PSI scheme perfectly correct,
given that the PKE scheme is perfectly correct, as now ct; uniquely specifies the element i.

In terms of security, we first observe that this modification does not harm security against a semi-
honest receiver given that the PKE scheme is IND-CPA secure. In the above sketch of a security proof,
we have argued that, if w is not in the set Sg, then R is uniformly random from the view of the receiver.
This means now that ct is a freshly encrypted ciphertext, using fresh random coins (independent of
p). Moreover, we can use IND-CPA security of the PKE to replace ct with encryption of 0, and then
continue as above to argue security against a semi-honest receiver.

9We remark that we use a PRF, not because we want uniform outputs, but to implicitly define the set of
primes. A similar trick was used in [BGI16].

50



To establish security against a malicious sender, we would like to argue as follows. The simulator
can now generate the public key pk in crs together with a secret key sk. Given a message (s, f, ct) by
a malicious sender, the simulator can recover the set element w by decrypting the ciphertext ct using
sk. At a first glance, this seems to provide us with security against malicious senders. And indeed, the
simulator will recover all elements for which the receiver would have declared to be in the intersection.
There is a grave issue, however: The simulator has no means of detecting whether the honest receiver
would actually have succeeded in re-encrypting the index i. In other words, the malicious sender can
make the simulator false positives, such that the simulator declares an element i to be in the intersection,
whereas an honest receiver would not have.

SWITCH GROUPS, EXTRACT EVERYTHING!  We briefly recall some facts about the Damgard-Jurik
cryptosystem [DJor]. The group Z3,; contains a cyclic subgroup NRy of order ¢»(N)*°. Now let
8o € NRy be a generator of NRy. Then we can generate the entire group Zy,,, by goand 1 + N,
i.e. we can write every i € Zy.,; ash = g - (1 4+ N)" for some t € Zgny and m € Zyg.
Furthermore, we can efficiently compute discrete logarithms relative to 1 + N, i.e. if h = (1 + N)™
foranm € Zyz, then we can efficiently compute 7 from h. Finally, the decisional composite residue
(DCR) assumption in Zj ., states thata random elementin NRy is indistinguishable from a random

element in Z3 ;. It follows that g1 = g(t)l and g = géz - (1 + N) (for uniformly random t1, tp <—¢
Zg(ny) are computationally indistinguishable. Moreover, ifh = g5 forat < N ¢=1 we can efficiently
compute t from /1 using ¢(N) as a trapdoor by first computing

BOWN) — g;-¢>(N) — gg?(N) (1 4+ NN = (1 4 N)OON) mod N&HL
N——

=1

from which we can efficiently compute ¢ - ¢(N) (as t - p(N) < N¢) and thus .

Given this, we will now make the following additional modification to our PSI protocol. Instead
of choosing the element ¢ in the common reference string crs to be a random generator of Zy;, we
choose g to be a random generator of NRy;, where NRy is the subgroup of order ¢(N) in Z3,,, (for
a sufficiently large but constant &). Our first observation is that this does not affect the security proof
in the case of a semi-honest receiver, since NRy is still a cyclic group of order ¢p(N) and the above
argument using the ¢-hiding assumption works analogously in this group.

Assume for a moment we had a mechanism which ensures that the group element fin the sender’s
message is of the form f = ¢/ forana < N ¢~1 We can then argue security against a malicious sender
as follows: First, we make a hybrid change and choose the element g in the common reference string
like g» above, i.e. we choose g = g6 (14 N); under the DCR assumption, this change goes unnoticed.

Note that NRy is not a cyclic group and we only assume this here for simplicity. Actually, if we choose
N as a product of two safe primes, then we could find a cyclic subgroup Jy which is the group of elements
with Jacobi symbol 1, and its subgroup Ty composing of N°-th powers of Jy has order ¢»(N) /2. Namely, just
replace the group pair (Z31,, NRy) with (Jn, Tn) to fix this issue. Please refer to Section 1.4 and Section 3.6
for details.
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Now, given that f = ¢ for ana < N¢~! and using ¢(N) as a trapdoor, the simulator can efficiently
compute 4 from f as described above. Since it can also recover the index w from the ciphertext ct as
described above, it can now check if a is of the form a = p - py,. If so, it recovers p and performs
the same re-encryption test for ct which the real receiver would perform. This makes the simulation
indistinguishable from the real experiment.

3.2.3 DV-NIZK RANGE PROOFS FOR D] CIPHERTEXTS

The final component which is missing to make the above argument succeed is a mechanism which
ensures that the group element f is true of the form f = ¢ for a small a. For the sake of generality,
we will make the following discussion for general DJ-ciphertexts, that is, ciphertexts of the form ¢ =
h'- (14 N)* (where h = g% is the public key). If we can show that such a ciphertext encrypts a small
value a, proving that f = ¢” and ¢ = h' - (1 + N)“ for the same a can be efficiently proven via a
standard hash-proof system (HPS) [CSo2].

First, we observe that, to show thatc = h! - (1 4 N)“ encrypts a value a < 2* for some parameter
k, it suffices to prove that some ciphertexts ¢, . . ., cx_1 encrypt bits by, . . ., by_1. Assume for now
we had a DV-NIZK protocol IT to prove that the ciphertexts co, . . ., cx—1 all just encrypt bits. The
prover can convince the verifier as follows ¢ encrypts a value a < 2% First the prover encrypts bit b; in
aciphertext ¢; and sets ¢’ = Hf;ol Cizl (itis not hard to see that ¢’ encrypts a). Now, the prover uses I'T
to convince the verifier that ¢y, . . ., cx_1 indeed encrypt bits. Furthermore, it can use a standard HPS
to prove that ¢ and ¢’ indeed encrypt the same value. Zero-knowledge follows routinely. To see that
this protocol is sound, observe that if the ¢; indeed encrypt bits, then ¢’ must encrypt a value bounded

by 2F.

ADV-NIZK PROOF SYSTEM FOR CIPHERTEXT EQUALITY ACROSS DIFFERENT ENCRYPTION SCHEMES
Alas, we do not know of a black-box DV-NIZK which proves that DJ ciphertexts encrypt bits. How-
ever, for the pairing-based Boneh-Goh-Nissim (BGN) cryptosystem [BGNos], such a proof system
was constructed by Groth, Ostrovsky and Sahai [GOSo6]. Consequently, if we could prove in a black
box way that a BGN ciphertext encrypts the same value as a DJ ciphertext we would be done.

Recall that, in the BGN cryptosystem, public keys are of the form (G, H), where G and H genera-
tors of subgroups of a composite-order pairing group G. BGN ciphertexts are of the form C = G"H’,
where m is the encrypted message and 7 are random coins.

Our final contribution is a DV-NIZK proof system which allows us to prove that a DJ ciphertext
and a BGN ciphertext encrypt the same value.

To simplify the description of our prove system, assume we have BGN publickeys (G, Hy), . . ., (G, Hy),
i.e. each key sharing the same G but having fresh and random Hj;, and an element Hy. Furthermore, as-
sume that we have D] publickeys i1, . . ., hy, and an element hg. We will assume that both sequences
of keys are in a public setup, together with the elements Hy, h.

Suppose further that we have BGN ciphertexts Cy, . . ., Cy, where C; = G™ Hj, i.e., all ciphertexts
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use the same random coins r but encrypt possibly different bits 77;.™ As mentioned above, using the
NIZK scheme from [GOSo6], we can prove that the ciphertexts C; = G™ H] are indeed well-formed
and that m; € {0,1}. Moreover, we have Co = HJ,, which can be proven well-formed using a
standard hash proof system (HPS) [CSo2].

Assume further that we are given D] ciphertexts ¢1, . . ., ¢p, where ¢; = hf -(1+N )mz/', i.e., again
the ciphertexts share the same random coins . Moreover, assume that we have a value hjj exactly as
above. We want to prove that it holds for all i € [¢] that m; = m;. Our DV-NIZK proof system for
equality of BGN and D] ciphertexts now proceeds roughly as follows:

» The verifier starts by sampling a uniformly random binary string o ¢ {0, 1} and computes
F=H{T[H! € Gandf=ha[[h € Z3e41, for uniformly random values A, a. Tt sends
crs = (F, f) to the prover and keeps o as the designated verifier key.

* The prover is given ciphertexts Cy, ...,Cyand cq, . .., ¢, with C; = Gm’le» and ¢; = hf(l +
N)™i, and the values Co = H}j and ¢y = h{. It computes K = F'G" and k = f(1 + N)*
where 7 is sampled according to a distribution which is wide enough to drown the m;, but
short enough such that it is bounded by N. The proof 7 is consists of (K, k).

* The verifier, given the proof m = (K, k), computes the discrete log y (in base (1 + N)) of
k¢4 [Tiz; ¢ and checks if GY = K-1C4 ¢, CY.

For completeness, note that

e TTe = (s TTn) @+ Ny~ ()" TT (ia + M)y

= (1+N)Z o,

from which the verifier can recover y = ) 0;m; — T. Moreover
L=k T = (B [TH) 6 () T eHiGm) = GEom

and thus GY = L.

The zero-knowledge property can be established by noting that the term 7 statistically drowns
Zi o;m;.

We argue as follows to prove reusable statistical soundness (or simulation soundness). First note that
0 is statistically hidden, given F = Hj [[ H{" and f = hd [[ h{", by the uniform values A, . We need
to show that if there is an index i for which m; # m;, then the verifier will reject with high probability,
irrespective of the (adversarial) choices of 7, T’ (which are not necessarily short)®. It follows from the

"Via a standard rerandomization argument we can show that reusing the same random coins across different
keys does not harm CPA security.

2Same as above.

We assume that the verifier rejects if it fails to compute the discrete logarithm of k=1 ] d}".
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above description that the verifier accepts proof of the condition
Zai’jmi — 17 modn= <Z oj,jm; — ’c]’- mod N‘S> mod n

is satisfied, where 1 is the order of the subgroup of G generated by G. In the main body we will show
that, given thatn > N < this condition will be violated with probability &~ 1/2 if there exists an index
i for which m; # m.. By repeating the protocol A times, we achieve negligible soundness error.

3.2.4 LABELED LAconic PSI anD Laconic OT

Our laconic PSI construction can be easily extended into a labelled laconic PSI, in which the receiver
also learns labels associated with set elements in the intersection. To achieve this, we simply use an
extractor with an output size twice as large: the first half is used as above to perform the re-encryption
step; the other half is used as a one-time pad to encrypt the corresponding label. It is easy to see that
the receiver can only recover the labels for the elements within the intersection since the security proof
follows the same blueprint as before.

We also build a LOT using the same ideas as above. The receiver commits toa database D € {0, 1}!

r .
by computing h = ggnizl “Pi mod N&*1 where each prime e; ; is the output of a PRF (just as

pjeL,j

71 i . .
before). The sender computes f; = gg] o Fj =g, (14 N)"i™ foreach j € {0, 1}, together with
a range proof. Moreover, he encrypts each message as ctj = kj & m; where k; < Ext(s;, 7). Again,
security follows the same reasoning as above. Our LOT protocol is the first one to provide security
against a malicious sender while incurring communication complexity independent of the size of D.

3.3 DEFINITIONS

Laconic Private Set Intersection. An {PSIis a two-round protocol that implements a PSI functionality
and has special compactness properties.

Definition 3.3.1. A ¢PSI scheme LPSI = (GenCRS, Ry, S, Ry) is defined as follows:

- GenCRS(1"): Takes as input a security parameter 11, and outputs a common reference string
crs.

* Ry(crs, Sg): Takes as inputa crs and a set Sg. It outputs a first PSI message psi; and a state st.

* S(crs, Sg, psiy): Takes as inputa crs, a set Sg and a first PST message psi;. It outputs a second
PSI message psi,.

* Ro(crs, st, psiy ): Takes as input a crs, a state st and a second message psi,. It outputs a set Z.
We require the following properties.

* Correctness: The protocol satisfies PSI correctness in the standard sense.
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* Efficiency Requirements. There exists a fixed polynomial poly such that the length of psi; and
the running time of S are at most poly(A, log |Sg|).

For malicious security, we work in the standard UC-framework [Cano1] that allows us to prove the
security of protocols under arbitrary composition with other protocols.
We present the (reusable) PSI ideal functionality.

ReusaBLE PSI FUNcTIONALITY. The functionality F,ps) is parametrized by a universe I/ and
works as follows:

* Setup phase. R sends (sid, Sr) to Fyps) where Sg C U. It ignores future messages from R
with the same sid.

* Send phase. S sends (sid, i, Ss C U) to Frpsi. Frps sends (sid, i, Sg N Ss) to R. It ignores

future messages from S with the same sid and i € N.

3.4 SEMI-HoONEST LacoNic PRIVATE SET INTERSECTION FROM CDH/LWE

In this section, we show how to realize semi-honest /PSI from CDH/LWE. Our construction is non-
black-box, making use of garbled circuits. This leads to the first feasibility result based on CDH, and
an alternative LWE construction to that of [QWW18].

Our construction makes use of hash encryption schemes in conjunction with garbled circuits, which
we review below.

Definition 3.4.1 (Hash Encryption [DG17b, BLSV18]). A hash encryption scheme HE = (HGen, Hash, HEnc, HDec)
is defined as follows.

* HGen(1*, n): Takes as input a security parameter 1! and an input size 1 and outputs a hash
key p.

* Hash(p, z): Takes as input a hash key pand z € {0,1}", and deterministically outputs i €
{0,134

* HEnc(p,h, {m;p}icim peto1y; {rip}): Takes as input a hash key p, a hash output 1, mes-
sages {m;} and randomness {7;}, and outputs {cth;, }ic(n peqo,13- We write it shortly as
{cth;p}. Overloading notation, each ciphertext cth; , iscomputed ascth; , = HEnc(p, ki, m;, (i,b);7;p).

* HDec(z, {cth;}): Takesasinputahashinputzand {cth;; } and outputs 7 messages (7, . . ., m,).

We require correctness meaning that for the variables above, (11, ..., my) = (M ;1) -« - s My 2 1))
We define two notions of security.
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* Semantic Security: Given z € {0,1}", no adversary can distinguish between encryptions of
messages made to indices (7, z;). Forany PPT A, sampling p <—g HGen (14, n), if (z, {mip}, {mg,b}) —3
A(p) andifm; ;) = m;’z[i] foralli € [n], then A cannot distinguish between HEnc(p, i, {m;;,})
and HEnc(p, v, {m;ﬁh}), where hi :== Hash(p, z).

* Anonymous Semantic Security: For a random {m;;} with equal rows (i.e., m;o = m;1),
the output of HEnc(p, i, {m;}}) is pseudorandom even in the presence of the hash input.
Formally, for any z € {0, 1}, sampling p <—g HGen(1*, 1), h := Hash(p, z), and sampling
{m;p} uniformly at random with the same rows, then v := (p,z, HEnc(p,h, {m;}})) is
indistinguishable from another tuple in which we replace the hash-encryption component of
v with a random string.

We have the following results from [BLSV18, GGHio].

Lemma 3.4.1. Assuming CDH/LWE there exists anonymous hash encryption schemes, where n = 3\
(e, Hash(p,-): {0,1}3" — {0,134 )* Moreover, the bash function Hash satisfies robustness in the

Jfollowing sense: for any input distribution on z which samples at least 2A bits of z uniformly at random,
(p, Hash(p, z)) and (p,u) are statistically close, where p +—g HGen(1*,31) and u < {0, 1}".

We also review the notion of garbled circuits and the anonymous property, as defined in [BLSV18].

Definition 3.4.2 (Garbled Circuits). A garbling scheme foraclass of circuits {C: {0,1}" — {0,1}"}
consists of (Garb, Eval, Sim) satisfying the following.

+ Correctness: for all C € C, msg € {0,1}", Pr[Eval(C, {Ib; msg(i]}) = C(msg)] = 1, where
(67 {Ibi,b}) 3 Garb(lAv C)

+ Simulation Security: Forany C € Candmsg € {0,1}": (C, {Ib; msgli }) = Sim(1%4, C(msg)),
where (C, {Ib;}}) < Garb(1%, C).

* Anonymous Security [BLSV18]: For any C € C, choosingy g {0,1}", the output of
Sim (14, y) is pseudorandom.

Lemma 3.4.2 ([BLSV18]). Anonymous garbled circuits can be built from one-way functions (OWFs).

NoTaTtioN oN HasH ENcryPTION.  Throughout this section we assume Hash(p, -): {0,1}" —
{0,1}4, where n = 3A. We use {Ib; ;} to define a sequence of pairs of labels, where (throughout this
section) 7 € [n] and b € {0,1}. Forr := {r;}} welet HEnc(p, h, {lIb; 4 }; 7) denote the ciphertexts
{cth;p}, where cth;;, = HEnc(p,h,Ib;p, (i,b);7:}). We further overload the notation as follows.
We use {Ib; } to denote a sequence of 3A elements. Forr := {r;; } weletHEnc(p, h, {Ib;}; r) denotea
hash encryption where both plaintext rows are {Ib; }; namely, the ciphertexts {cth; ;, }, where cth; , =
HEnc(p, h, {m;p}:7ip), where m; g = m;1 = Ib;, for all i.

“#We note that the CDH construction of [BLSV18] satisfies a weaker notion of anonymity, in which only
some part of the ciphertext is pseudorandom. But for ease of presentation we keep the notion as is, and remark
that our /PSI construction works also with respect to that weaker notion.
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TREE TERMINOLOGY. Throughout this section we work with full binary trees. The depth of a tree
is the length of a root-leaf path. We call the leaf level o, the level above it level one, and so on. We order
the root-leaf paths from left to right; namely, the path from the root to the leftmost leaf node is the first
root-leaf path, and the path from the root to the rightmost leaf node is the 2%th root-leaf path, where
d is the depth. Each node has an associated hash value, computed based on values associated with
its children. Thus, when representing a root-leaf path, we include both children of each branching
intermediate node.

SENDER’S SET S1zE 1s ONE.  We assume without loss of generality that the sender holds a single
element. For the general case where the sender may have multiple elements, we reuse the first message
of the receiver for each element in the sender’s set. The overall running time of the sender will only
scale with its own set size, and not with the receiver’s set size.

Construction 3.4.1 (¢PSI Construction). We require the following ingredients in our £ PSI Construction.

1. A hash encryption scheme HE = (HGen, Hash, HEnc, HDec), where Hash(p, -) : {0,1}34
{0, 1}

2. A garbling scheme GS = (Garb, Eval, Sim).
3. Circuits F and V, as well as procedure DecPath, defined in Table 3.1.

We assume the elements of the receiver and the sender are strings in {0, 1}*. We refer to each element

as an identity. Build (GenCRS, Ry, S, Ry) as follows.
GenCRS(11):  Return crs <—g HGen(1%4,31).

Ri(crs,SRr):  Assume |Sg| = 24, (With small tweaks the same construction works if SR s not a
power of two.)
« Parse crs := p. Letn := 2%, and sort Sg := {idy, ..., id,}, where id; < idiyq for all i.
Populate the leaf node values as follows. For each id; € Sg, sample x;,x' < {0, 1}, and let
1 .= Hash(p, id;, x;, x)). Set H[o"] := ") 4nd ID[0")] := id;.

i
1. Forw € [d], populate the values for the nodes at level w as follows. Informally, the bash

value for each node is the bash of the concatenation of its left child, and right child, and
the largest identity value under its leff child. Formally, noting we have 24~ yodes on

level w, forj € [Zd_‘f’], set h](w) = Hash(p,.(hé;uil),hg?)fl), id[j?w]')), ?u/oc‘re id[j_,w}
denotes the larges leaf identity under the left child of the current node (i.c., idjj ;) = idp,

where f = (2 — 1)241) Set H[o\*)] = 1) and ID[o{")] = id ;.

2. Set psiy := (d, hreoot), where hrpoor 1= hgd) (i.e., the root bash value). Set st :=
(Sr, {xi}, {xf}, {0}) for all values of i € [n], w € {0, ..., d} and j € 2],
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Circuit F[id, 7, 7](id, x, x'):

Circuit V[p, Id, {lbi’b}, 1’} (hl, hz, Id/)

* Hardwired: target identity id and ran-
domness values 7 and 7.

* Operation: Return

] id =id
y= ' else

* Hardwired: Hash public parameter p,
targetidentity id, labels {Ib; ; }, random-
ness 7.

* Operation: Return

ct =
HEnc(p, b1, {lbip};7) id <id’
HEnc(p, ho, {Ibip};7) else

Procedure DecPath(pth, psi,):

20

wG{d,...,l}:

Table 3.1: Circuits F, V and procedure DecPath

S(crs, id, psiy ):

* Input: A leaf-root Path pth and ciphertext psi, := (Co, ..., Ca, {cthfj}}).

* Operation: Parse pth := ((id, x,x), (ho, h, ido), . . ., (ha—1, 1)_y,ida—1), hrroot). For
N—— N e’ N ~ J

1. Let {Ib} := HDec(z,, {cthf,”é)})-
2. Set {Cthg_l)} = Eval(aw, {leW)})'

Let {Ib{”} := HDec(zo, {cth'} }). Return Eval(Co, {Ib{"}).

21 Z4

» Parse psiy := (d, hryoot) and crs := p. Sample 1,7 <g {0,1}" and ler Cy := Flid, r,7’]
(Table 3.1). Garble (Co, {Ib\)}) <5 Garb(Co). For1 <w < d

1. Sample ry, at random, and ler C, := V|p, id, {lb%—l)}, Tw).

2. Garble (Cop, {Ib{}})}) +5 Garb(Cy).

* Ler{cth;} <= HEnc(p, hrroot, {Ibf?}). Return psiy := (Eo, . ,Ed, {cthip}, 7).
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Ro(crs, st, psiy):

+ Parsest == (Sg, {x:}, {x]}, {0/)}), psiy := (Co, ..., Cy, {cthip}, ) and S 1= {idh, ... idy }.
Fori € [n] let pth; := ((idi, x4, X)), .. ., hrroot) be the i’th leaf-root path in the tree, and let

r; := DecPath(pth;, Co, ..., Cy, {cthip}).

If for a unique index i € [n], ri =1, then output id;. Otherwise, ontput 1.

Theorem 3.4.3. Assuming the hash encryption HE is anonymous and robust (robustness defined in
Lemma 3.4.1), and that the garbling scheme GS is anonymous, the {PSI protocol of Construction 3.4.1
provides statistical security for the receiver and semi-honest security for the sender. As a result, such
UPSI protocols can be realized from CDH/LWE.

RoADMAP FOR THE PROOF OF THEOREM 3.4.3.  The fact that the protocol provides statistical secu-
0)

rity for the receiver follows from the robustness of HE. In particular, robustness implies that the h;
values statistically hide Sg. We can continue this to argue that all the first-level hash values (i.e., hfl))
also hide Sr, and hence, continuing like this, the root hash value hroot statistically hides Sg.

We now prove that the protocol provides sender security against semi-honest receivers. Letid be the
sender’s input message, and Sg := {id, ..., id, } be the receiver’s set, where id; < id;1 1. Assuming
id ¢ Sg we will show that the sender’s protocol message is pseudorandom in the receiver’s point of
view. For simplicity suppose id < idy; the general case follows via simple changes, which we will

illustrate in Remark 3.4.2. Let

pth = ((id17x17x/1)7 (hOa h67 ido)’ B (hd—lvhéfla idd—l)a hrroot) (31)
N’ N—— D e ——
20 21 Z4

be theleaf-root path from leafid; to the root. Note that hryoor = Hash(p, z;),and h; = Hash(p, z;)
foralli € {0,...,d — 1}. Noting that hryoet is the receiver’s first-round message, we define the fol-
lowing hybrids for the sender’s response message.

Hyb,: The sender’s response message psi, is formed as in the protocol.

Hyb,: Sampler,# < {0,1}}. Let (Co, {Ib\”)} < Sim(F, 7). For1 < w < d
1. Sample {cth{y "} <5 HEnc(p, -1, {16 }).
2. Let (Co, {I6[}) 45 Sim(V, {cth{y "}

Let {cth;;} <—¢ HEnc(p, hryoot, {Ibl(d)}). Return psi, := (Eo, ..., Cy, {cthip}, 7).

Lemma 3.4.4. Hybrids Hyb, and Hyb, are indistinguishable.
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Hyb,: Sample psi, at random.
Lemma 3.4.5. Hybrids Hyb, and Hyb, are indistinguishable.
The above two lemmas establish the sender’s security; namely — if id ¢ Sg, then the sender’s mes
sage psi, is pseudorandom for the receiver. We prove Lemma 3.4.4 in Section 3.4.1 and Lemma 3.4.5

Hyb' to express

C

in Section 3.4.2.

3.4.1 PROOF OF LEMMA 3.4.4
In the following, given two hybrids Hyb and Hyb’, we use the notation Hyb
that the hybrids are computationally indistinguishable.
We define d + 1 hybrids between Hyb, and Hyb,, and prove their indistinguishability.
Forp € {0,...,d} we define Hyb;7 as follows. Under Hyb;,, we form the first p + 1 garbled
circuits (Nfo, . (pr and their corresponding labels honestly as in the real game, and we simulate the

Let pth be as in Equation 3.1, and recall that we are assuming id < idj. Sample 7,7’ <

rest.
/
Hybp: d
{0,1}* andlet Co := Flid, 7, '). Garble (Co, {Ib{} }) ¢~5 Garb(Co). Let {Ib"'} := {Ib; i1 }. Do

the following:
*Forl<w<yp
1. Sample 1y, at random, and let C, := V[p, id, {Ib% 1)}, Tw)

2. Garble (Cy, {Ib{'}) ¢ Garb(Cy).
3. Ifw = p (i.e., last step), let {lbgw)} = {Ibf? [1]}

* Forp+1<w<d
(w—1) (w—1)
1. Sample {cth; = "'} <—¢ HEnc(p, hy_1, {Ib; b.

2. Let (Cy, {Ib\}) =5 Sim(V, {cth!¥~"}).
Let {cth;;} <—¢ HEnc(p, hryoot, {Ibfd)}). Return psi, := (EO, ...,Ca {cth;p}, 7).

Lemma 3.4.6. Hyb, = Hyb/, and Hyb, = Hyby,
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Proof. We first show Hyb, = Hyb,,. Notice that either hybrid may be simulated just by knowing
the value of 7 and the pair (Co, {lbl@) }). We let (C, {Ib;}) and (C, {Ib}}) denote the distribution of
this pair in Hyb, and Hyby), respectively. We have (C,{Ib;}) <=5 Sim(F, 7). As for the other pair,
letting Co := F[id, ,7’] for random , 7/

(C, {Ibip}) +g Garb(Cp) (3.2)
{Ibi} = {Ibj 2[5}, (3.3)
where zg = (idy, x1, x}). By simulation security of garbled circuits
(C', {Ibf}) = Sim(F, Co(20)) (3-4)
= Sim(F, 7). (3.5)

Thus, (7, C, {Ib;})com(r, C', {Ib}), proving Hyb, = Hyb),.

To prove Hyb, = Hyb/,, their only difference lies in how {cth; } is sampled: under Hyb,:
{cthi} s HEnc(p, hrrocr, {Ib} }), while under Hyb/: {cth;}} <5 HENC(p, hrroot, {Ib{"'}),
where recall that{lbl@} = {Ibfzm}. Since hrroot = Hash(p, z4), by security of the hash encryption

HEnc(p, hrroot, {Ibfd)}) = HEnc(p, hrroot, {Ibf?}) and the proof is now complete. O

Lemma3.4.7. Forallp € {0,...,d —1}, Hyb;j = Hyb;H.

Proof. We will show that the distribution of (Co, . . ., @H, {Ibl(pﬂ)}) is computationally indistin-
guishable in the two worlds. This will imply the result because the rest of either hybrid may be formed
based solely on the above tuple. To argue the above tuple is indistinguishable across the two hybrids,
first notice that the distribution of

(Co. {6}, Cp {16}

is formed exactly the same in Hybllg and Hyb; 11 The only difference between these two hybrids lies

in the way in which the pair (6P+17 {lbl(p+1)}) is sampled. To ease notation, we let (C,{Ib;}) and

(C’, {Ib}}) denote the distribution of this pair in Hyb;7 and Hybll9 1> respectively. Formally

1. Under Hyb;: We form

{cth} <5 HEnc(p, Iy, {Ib"}) (3.6)
(C, {Ibi}) < Sim(V, {cth}). (3.7)
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2. Under Hyb; 41: We form

(C', {Ibjp}) < Garb(Cpy1)
{lb;} = {Ibi,Zp+1[i]}7

where Cyy1 := V[p,id, {Ib}7'}, 7ys1] and 241 = (y, 11, idy).

By simulation security of garbled circuits

(T {Ibf}) = Sim(V, Cpy1(zp41)) (3-8)

Sim(V, HEnc(p, hy, {Ib%)}: 7p11)). (3.9)

C
C

Notice that in Equation 3.9 we use the fact id < idp, and so by definition of Cp 1, its hardwired
labels {lb%)} will be encrypted under 1,.% Now, Equation 3.9 is identical to the right-hand side of
Equation 3.7, and thus (C, {Ib;}) = (C, {Ib;}). The proof is now complete. O

3.4.2 PROOF OF LEMMA 3.4.5

We need to show that psi, := (Eo, A Ed, {cth%)}, r) is pseudorandom, where everything is sam-
pled as in Hyb,. Since (Co, {lbgo)}) < Sim(F,7’") by simulation security of the garbled circuit
and Lemma 3.4.2 the distribution of (Co, {Ibfo)}) is pseudorandom. Recall thatforl < w < d
we have {cth(y "'} <5 HEnc(p, iy, {Ib{* " }) and (Cu, {Ib{"}) <=5 Sim(V, {cth(y"}). By
Lemma 3.4.1 {cthff;jfl)} is pseudorandom, and thus by Lemma 3.4.2 (Ew, {|b§w)} is also pseudoran-
dom, forall 0 < w < d — 1. Finally, since we have {cthl(i)} s HEnc(p, hrroot, {Ibl@}), by
Lemma3.4.1, { cthfi)} is pseudorandom. The proof is now complete.

Remark. In the proof of security, we assumed id < idy. For the general case, we just need ro change

the active path from that in Equation 3.1 ending in idy to the path that will end in id]', where | is the
largest index such that id lies between idj and idj 1. In caseid > idy, thenj = n.

3.5 REUSABLE DV-NIZK RANGE PROOFS FOR D] CIPHERTEXTS

In this section, we construct a DV-NIZK scheme for ranges of D] ciphertexts. The main idea of our
construction is the following: the prover proves that a BGN ciphertext [BGNos] is within a certain
range (this can be done via the protocol of [GOS06]). Then it proves that the D] and BGN ciphertexts
encrypt the same value.

“This is the place where we use the fact that id is less than all values in Sg. In the general case, we should
change the above distributions accordingly.
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We first recall the required cryptosystems used in this section.

BGN cryrTOSYSTEM. Recall that the BGN cryptosystem [BGNos] is defined over a group G of
order n = pq for primes p, q. The public key is composed by (G, 1, G, H) where G is a generator of
G and H is an element of order p (let pG be the subgroup of order p). The public key is composed of
(G, n, G, H) and a ciphertext for a message m € {0, 1} is of the form C = G"H' for t < [n].

DAMGARD-JURIK CRYPTOSYSTEM.  The Damgérd-Jurik (D]) cryptosystem'® [DJo1] is defined over
Zye+1 where N <= RSA(A). The public key is formed by (N, &, 8, 1) where ¢ <= Ty and h = ¢*
for x <% [N]. A ciphertext has the form (c1, cz) where c; = ¢'mod N¢*!and ¢; = h'(1 + N)™
mod N¢*! fort < [N]and m € [N¢].

3.5.0  DV-NIZK SCHEMES FOR LINEAR LANGUAGES AND FOR BGN CIPHERTEXTS

We review some basic notions of the hash proof systems framework from [CSo2].

Let X, L, TT be finite abelian groups where LL is a proper subgroup of X. Let Hom (X, I'T) denote
the group of all homomorphisms ¢ : X — ITand let H be a subgroup of Hom(X, IT). We call
& = (H,X, L, IT) a group system.

We additionally assume that distinguishing uniformly chosen elements of I from uniformly chosen
elements X\ Lisa NP problem (i.e., distinguishing elements of L and X is an instance of a hard subset
membership problem [CSo2]). We denote by w the witness that states that a given element x is in I
and R(x, w) the corresponding NP relation.

A group system & = (H, X, L, IT) is said to be diverse if for all x € X'\ LL there exists ¢p € H such
that (L) = 0and ¢(x) # 0.

Lemma 3.5.1 (Adapted from [CSoz], Theorem 2). Ler & = (H, X, L, I1) be a diverse group system.
Then, there exists a reusable DV-NIZK

NIZKA = (NIZK.GenCRSx, NIZK.Provey, NIZK. Verify, )

for the language
L={xeX:Twst R(x,w) =1}

where R is the NP relation that states that x € L. The scheme fulfills statistical reusable soundness
and perfect zero-knowledge.

Itis easy to see that if X is the product of cyclic groups then, for any proper subgroup L, the group
system & = (H, X, IL, IT) is diverse. Thus, there exists a black-box DV-NIZK for the language £.7

®Here, we present a slightly different variant of the scheme in [DJo1].
7To establish that & = (#,X,L,IT) is a diverse group system we can combine the arguments used in
Examples 1 and 2 from Sections 7.4.1and 7.4.2 in [CSo2].
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We now review some specific languages which are of the form described above and for which we
can obtain efficient black-box DV-NIZK schemes.

In the following, let N, n <= RSA(A), & € Nand G be a group of order 71 (that is, a BGN group).

DV-NIZK FOR SUBGROUP MEMBERSHIP.  First, consider the following language for subgroup mem-
bership, which is parametrized by (N, &, h)

SMa = (I € Ty 36 € NIse I = I mod NE¥ )

where A = (N, &, h) and h € Ty. The language allows proving that /' is in the same subgroup as h.
In [CSo2], a reusable DV-NIZK for discrete log languages with statistical soundness is presented.
We additionally consider the language parametrized by (G, n, H)

SMy ={H € G:3X € [n]se. H =H* mod N**! }
where A’ = (G, 1, H) and H € pG.
Lemma 3.5.2 ([CS02] ). There exist rensable DV-NIZK;s
NIZK st = (NIZK.GenCRS s 1o, NIZK Proves v, NIZK Verifys v,)

for the language SMe for ® € {A, A"} where A = (N, &, h) and N' = (G, n,H). The scheme
[fulfills statistical reusable soundness and perfect zero-knowledge.

DV-NIZK For D] c1PHERTEXTS.  First, consider the following language for DJ ciphertexts, which
is parametrized by ({gi, hi}i, N, &)

ot 41
- * 2¢ 041 c1; =g mod N
DI = {{Cl,z’aCZ,i}i € {ZRen 20 3t {mi}i) € [N s 6 = I(1 NY™ mod NéH }

fori € [¢] where A = ({gi,hi}i, N, &) and gi, h; € Ty. The language allows proving that /1 is in
the same subgroup as g. In [CSoz2], a reusable DV-NIZK for discrete log languages with statistically
reusable soundness is presented.
Lemma 3.5.3 ([CSo2] ). There exists a reusable DV-NIZK

NIZKpz, = (NIZK.GenCRSp7,, NIZK.Provep 7, , NIZK Verifyp 7, )

for language DT p where A = ({gi, hi}ti, N, &). The scheme fulfills statistical reusable soundness and
perfect zero-knowledge.
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DV-NIZK FOREQUALITY OF DISCRETELOG.  Consider also the following language for the equality
of discrete logs.

b= £+1
EDLA = {(h()’hl) € Ly = 3t € [Ng] s, S07 ho mod N }

¢} =h mod N¢*1

parametrized by A = (0,81, N, &) where 80,81 € Z,:- for the equality of discrete logs. Again,
the framework of [CSo2] can be adapted to obtain an efficient reusable DV-NIZK for this language
with statistical reusable soundness.

Lemma 3.5.4 ([CSo2] ). There exists a reusable DV-NIZK
NIZKepe, = (NIZK.GenCRSepr,, NIZK.Provesp, , NIZK. Verifyep . )

where A = (80,81, N, &). The scheme fulfills statistical reusable soundness and perfect zero-knowledge.

DV-NIZK FOR EQUALITY OF PLAINTEXTS.  Consider the language for the equality of plaintexts in
two different DJ ciphertexts

c1 = g} mod N+

¢y = h (14 N)™ mod Né+!
d; = g mod N*+!

dy = h?(1+ N)"™ mod N¢*1

EPDIn =} {civdi}i € {Zhern}* - I({ti}i,m) € [N*] s

fori = 1,2, parametrized by A = ((g1,h1), (§2,h2), N, &) where g1,h1,82,hy € Ty for the
equality of plaintexts.

Lemma 3.5.5 ([CSo2] ). There exists a reusable DV-NIZK
N|ZKg7>DjA = (NIZK.GenCRSngjA, NIZK.Provegpij, NIZK.VerifyngjA)

where A = ((g1,M), (§2,h2), N, &). The scheme fulfills statistical reusable soundness and perfect

zero-knowledge.

RANGE PrROOFs FOR BGN  Finally, we consider the language of well-formed BGN ciphertexts en-
crypting a bit.

i 07 1
BIN s = {{ci}i e 6L 3t fmi}) € s jém;t }

fori e [E], where A = (G, n, G, {Hi}ie[é]) and G, {Hi}ie[é] eG.
This is not a linear language and, thus, it cannot be instantiated using the framework of [CSo2].
Fortunately, the work of [GOSo6] presents an efficient scheme for this language.
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Lemma 3.5.6 ((GOSo06]). There exists a reusable DV-NIZK scheme®
NIZKsgrr, = (NIZK.GenCRSpgnr, , NIZK.Provesgar, , NIZK. Verify 5657, )

for the langunage BGN. The protocol bas perfect reusable soundness and computational zero-knowledge

under the subgroup decision assumption.

3.5.2  EQUALITY OF PLAINTEXTS IN D] AND BGN CIPHERTEXTS.

We now show how to prove that a BGN and a D] ciphertexts encrypt the same value. Consider the
following language

m; € {0, 1} )
Dy = HB eG
D; = G"H! ¢ G
EQn = { Do, ho, {Dj,c1; c2,i}iciq = 3(rs t, {mi}) s.t. Col — i e 7

NE+H
a=g¢€ Ly
€= hf(l +N)™ e Z;‘WH )

where A = (G, n,G,Ho, {H,}ic, N, &, 8, ho, {hi}icjq), such that G, Ho, {H;}icjg € G and
8 ho, {hi}ticjg € Tn-

Construction 3.5.1. Ler £ € Z. Ler A = (G,n,G, Ho, {H;}ic[g, N, &, &, hos {i}ieje)) be as above,
such thatn > N1 Let B € N such that A /B = negl(A), and N¢ /2 > (B. We require the following

ingredients:

1. The scheme of Lemmaj.s.6, NIZKpgy, = (NIZK.GenCRSsgnr, , NIZK Provesgy, , NIZK.Verifysgy, )
forsome A = (Gﬂ%Ga {Hi}ie[z])-

2. Tbe;cbemE#LEMMﬂ3.5.3, NlZKD,jA2 = (NIZK'GenCRSDJsz NIZK.Proveijz, NIZK'VerifyDJAZ)
for some Ay = ({g,hi}i, N, &).

3. The scheme of Lemma 3.5.3,
NIZKsme = (NIZK.GenCRSs A, NIZK.Proves atg, NIZK. Verify g 4, )
for language SMe for ® € {Az, Ay} where A3 = (N, &, h) and Ay = (G, n, H).

We present the scheme in full detail.

®The scheme presented in [GOSo06] is a NIZK scheme and not a DV-NIZK. However, we can view a NIZK
asa DV-NIZK wheretd =_1..
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GenCRSgQA(lA) :
* Compute (crs1, td1) = NIZK.GenCRSggr,, (11) where A; = (G, {G, Hi}igjn)-
. Computc’ (CrSZ,tdz) — N|ZK.GeI‘1CRSD\7A2 (1A) where Ny = ({gvhi}ie[f]vNa E)

* Compute (crsz, tds), (crsh, tdy) < NIZK.GenCRSsq (1Y) where ©® € {A, A"} where
A= (N,&R) and N = (G, n, H).

* Forallj € [A], do the following:
— Sample aj < [N/4] and A; < [n]. Foralli € [l], sample 0;; <3 {0,1}. Compute
= hy TI. b "mod N&+1 and F; = Hy TTC, HJ
. Outputcrs = ({F],]‘}}]GM], Crsi, Crsp, CI’Sg) andtd = ({Oé]', A]', {Gm’}iem }jE[/\]7td17 td,, td3)

Provegg, (crs, x = (Do, ho{Dj, c1,i, C2,iticlq), w = (75, {micpq })) :
« Parse crs as ({Fj,fj}jew,crsl, crsy, cr53).
* Compute 111 NIZK.ProveBgNAl (crs1, x1,wy) wherexy = {D;}igp andwy = (r, {m;}ic)-

: Compute Ty <— NIZK.Proveijz(crsz,xz,w2) where Xy = {Cl,iaCZ,i}iE[ﬂ] and wy =

(t, {mi}ici)-

* Compute T3 — NIZK.F’roveSMA3 (crs3, x3,w3), where x3 = co and w3 = t, and 15
/ / /
NIZK.ProveSMAé (crsg, x5, wy) where x3 = Dy and wy = 7.

* Forallj € [A], dothe following: Sample Tj < @z, g and compute a; :f}t(l—FN)Tfmod N&H,
Compute K; = GTfF;.

* Ouipur v = ({ajaKj}je[A]aﬂlﬂh,m).
Verifygg, (td, x, 1) :
* Parse 0 as ({a;, Kj}icp), 1, 2, 713) and td as ({oy, Aj, {0i}ieiq ey tdh, tda, td3)
+ If0 = NIZK Verifyggyy, (td1,x1,71) where x1 = {Di}ieyy), ontput 0.
* If0 < NIZK.VerifyDJA2 (tda, x2, Tt2) where xo = {c1, C2.i}iefy, ontput 0.

« If0 + NIZK.VerifySMA3 (tds, x3, 713) where x3 = cp orif 0 < NIZK.VerifySMA/ (td3,x’3, 7'(’3)
where x3 = Dy, output 0. ’

* Forallj € [A], do the following:



- Foralli € [{], compute z; = aj_lcgj Hle C;i;jmod NEFL [f there is a z; which is not

of the form (1 + N)¥i, output 0. Else, recover y;.
~ Compute Lj = Kj_ngj IL D?i’j inG.
* Ifthereisaj € [A] such that GY # L; in G, outpur 0. Else, outpur 1.
Lemma 3.5.7. The scheme presented in Construction 3.5.1 is complete.

Proof. Assumex € EQ. Fixaj € [A]. Then,

¢
14 i E+1
zj=4a; ¢ chﬂ. mod N
i=1
t

14 - L
= <hg‘f 1T hf"’f> (1+N) iy [ 1" (1 + N)"™ mod N&+!
i=1 i=1
= (14 N)Z=m9i=5 mod NEH

from which the verifier can recover y; = Zle m;o;; — Tj. Moreover, |y;| < (B < N¢/2 < n/2.
That is, y; does not wrap around modulo N ¢ nor modulo 7.
In addition, we have

l
— 14 0jj
Lj=K'Dy [ [ D"
i=1

¢

— (Hg‘f HH(;”> -r G_THSAO H(mei)gi’j
i=1

— GXimivii~T _ GV

in G. Thus, the proof is accepted as valid because Y mod N¢ = Y mod n.
O

Lemma 3.5.8. The scheme presented in Construction 3.5.1 has zero knowledge under the subgroup deci-
sion assumption.

Proof. To prove zero knowledge, we construct a simulator Simzy that creates transcripts which are
indistinguishable from the ones outputted by the protocol.

Let Simy, Simy, Simz and Sim} be the zero-knowledge simulators of the schemes NlZKBgNA1>
N IZKDJA2 ,N IZKSMAS and N IZKSMAg srespectively (which exist by Lemma 3.5.6, Lemma 3.5.3 and

Lemma 3.5.2) The simulator Simzk works as follows:
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* CRS generation. Itcreatesa crs exactly asin thereal protocol and keepstd = ({0 }iciq jela)s td1, tda, td3, td3)
to itself.

* Upon receivingan instance (Do, ho{ D;, ¢1i, c2,i }ie[e] )» Simzk first simulates 711 <~ Simy (tdq, x1),
Ty — Simy(tda, x2), 13 < Sims(tds, x3) and 4 <— Simz(tds, x%). Then, it repeats the
following for every j € [A]: It samples 7; <$ @7z g and computes a; = (1 + N)c, I CU"

mod NéH1 and K = GTJHAJ II DU”
* Iroutputs @ = ({4}, Kj}jep), 71, T2, T3)-
We now argue that the distributions of the proofs outputted by Provegg, and Simzk are indistin-

guishable. By the zero-knowledge property of N |ZKBQNA1 , NIZKDJAz ,N IZKSMA3 and NIZKs
3

the proofs 711, 71, 13 and 71} are indistinguishable from the real ones (71 is computationally indis-
tinguishable given that the subgroup decision assumption holds). So, we just need to analyze the
distributions of 4; and K.

We start by analyzing the distribution of a;. First note that,

¢ ¢
Oij _ 7Y —0ij —1; % Oij E+1
c0 Hc =, HCZ,i (1+N) e, HCZJ. mod N
i=1 i=1

= (14 N)~% mod N&*!

To see that a;is indistinguishable from one created in the real-world, note that by Lemma 2.3.1, we

have that Zf:l Mi0jj — Tj Rnegl(A) Tj> for Tj < CDZ,[S and m;, Oij € {0, 1}, since /\/ﬁ = negl(/\).
Hence,

(1 4+ N)ZH= 05 gy (14 N)Y

and therefore

HCU” 1+ N) Aopeginy f1(1 + N) i 40557

An identical argument can be used to show that K]' is indistinguishable from the one created in the
real protocol. ]

Lemma 3.5.9. The scheme presented in Construction 3.5.1 bas statistical reusable soundness.

Proof. We first show how the simulator Simg,,g simulates the Verify¢o (td, -, -) oracle to the adver-
sary. Since we are proving statistical reusable soundness, our simulator is allowed to run in exponential
time.

Simgpq works as follows:

* CRS generation. It generates crs by sampling f; < Ty and F; <= pG.
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* Upon receivinga query to the oracle Verify consisting of a statementx = (Do, ho, {D;; ¢1,i, ¢2,i }ie[e])
together with a proof 7 from the adversary, it does the following:

1. It brute-forces the statement (Do, {D; }ic[g) to recover the witness (7, {; }ic[s), and
(co, {€1,i 2,i}iefq) to recover (£, {mi}ic(q))-

2. Ttparses 7t as ({aj, K;}ie[a), 701, 02, 3). It brute-forces a; to recover {#;, T]’.}, and K; to
recover (7}, T;).

3. If there is an index i such that (1,4, ¢z ;) are not of the form ¢1; = g'imod Né+ and
e = hi(l+ N)mz{mod N&+1 or D; is not of the form D; = G™H! in G where
m; € {0, 1}, it outputs 0.

4. If there is an index i such that g; is not of the form fi(1 + N))mod N**! (meaning
that t; # 1), it outputs 0. Moreover, if K is not of the form GT/'F;- in G (meaning that
7; # r), output 0.

5. If cg is not of the form h'mod N**1 orif Dy is not of the form HY,, it outputs 0.

6. Ifthereisi € [{] orj € [A] such thatm; # mj or T} # T, it outputs 0. Else, it outputs
1

» Upon receiving the challenge proof (x*, 7*), it performs the same checks as in steps 3, 4 and .
If the tests pass, it samples 0;; <= {0, 1} and checks if

L
GZi:l Uiyjmz{_T]/' mod N* — GZle 0i,jMmi—Tj
forevery j € [A]. It outputs O if the test fails, 1 otherwise.

Hyb: This s the real reusable soundness game.

Hyb,: This game is identical to the previous one except that Simgng brute-forces the pairs state-
ment/proof (x, 1t), to recover the witness (7, {m;}iciq), (t, {m}}icj), and the values (7;,7;) and
{fj, T]’} from the proof. Finally, it performs the checks in steps 3 and 4.

Claim 3.5.1. Hybrids Hyb, and Hyb, are indistinguishable.
The statistical reusable soundness of the schemes N |ZKBQNA1 ,NIZ K’DJAZ ,N IZKSMA3 and NIZKs um,,,
3
guarantees that Dy, co, Dj and (c1 4, €2,;) are of the prescribed form, except with negligible probability.
Now fixj € [A] and assume thata; = jjj (14+N)Y. Then, since aj_l Hle ngf must be of the form
(14 N)Yi, we must have

4 J4
—Ej (01]' + Z wiGi,]) +t (a]' + Z wiai7j> =0 mod ¢(N)/4

i=1 i=1
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where hg = h?”. Thus fj =t
An identical reasoning can be applied to argue that Kj must be of the form G F;.

Hyb,. This hybrid is identical to the previous one, except that Simgng performs the checks in step
6.

Claim 3.5.2. Hybrids Hyb, and Hyb, are indistinguishable.

The adversary A is able to distinguish both hybrids if there is a proof which is accepted in hybrid
Hyb, but rejected Hyb, (or vice-versa). That is, suppose that A outputs ({m;, m;}, {1;, T]/}) Fix j.
Then the proof'is accepted in Hyby if

¢ ¢
Zo,‘,jmi — 1y mod n = (Z ajjm; — ’L’; mod N5+1> mod . (3.10)
i=1 i=1

Letej = Zle o;jm;and d; = Zle 0;j(m; — m;). Then, equation 3.10 can be rewritten as

¢j mod n = (¢j +d; — 7; mod Nt — 7, mod n.

Consider the function I';(z) defined as T'j(z) = (z — T]/.mod N&*1) — 1jmod n. itis easy to see that
['j(z) is injective in Zye+1. Let 21, zp be such that

Tj(z1) = Tj(z2)
(z1 — 7} mod N**1) — 75 mod n = (z2 — 7} mod N**') — 7; mod
(z1 — 7j mod N = (2, — 7; mod N+

z; mod N1 =z, — 7/ mod N¢*!

where the second equivalence holds because 1 > N e+l
Since I'; is injective, then we must have

¢; mod NéH = ej + d;j mod NEH

¢ ¢
Z o;jm; mod N**! = Z 0 jm; + 0;j(m; — m;) mod N°*1
i=1 i=1

¢ ¢
Zaiﬂmi mod N¢1 = Z o;jm; mod N**!
i=1 i=1

Assume that there is an index 7 such that m; # m.. Then the test will fail with at most 1/2 probability,
fora fixed j. Repeating the process for j € [A], we get that m; = m, except with negligible probability.
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[ .
Thus T = Tj.

Hysrip Hyb,.  This hybrid is identical to the previous one, except that f; is chosen uniformly from
T and H is chosen uniformly from pG.
Claim 3.5.3. Hybrids Hyb, and Hyb, are indistinguishable.

Since @j <$ Zy, we can build a hybrid where @; is sampled from Zj;, incurring a difference only

in the statistical distance. Moreover, since Hy is a generator of pG, Hg " is uniform in pG. The claim
follows.

Claim 3.5.4. Let A be any adversary. For hybrid Hyb,, A bas a negligible advantage.

Assume that A outputs (x*, 71*) where x* ¢ £Qa. Since 0 <$ {0, 1}, then the proof gets
accepted if equation 3.10 is fulfilled. As we have seen before, this happens only with negligible proba-
bility.

O

3.5.3 DV-NIZK FOR RANGE PrROOFS OF DJ CIPHERTEXTS WITH EQUAL D1sCcRETE LoG

Let N <~ RSA(A) and & > 0 be a fixed integer. Consider the following language of ranges:

. , t € [-B,B]
REDT A = {C] S {ZN6+1}2 :dt e {’V—Né/2,,Né/2-‘}St ol :gt mod Né&+1 }

which is parametrized by A = (g, B, N, &) where g € Tn, B € Z, N and &.

In the following, we present a DV-NIZK scheme for the language above. The main idea is quite
simple: The prover outputs BGN ciphertexts D; encrypting bits 71; and D] ciphertexts (cy 4, ¢2 ;) that
encrypt the same values as D; (we can prove this using the scheme from the previous section). Then,

the prover proves that (c1, ¢2) encrypts the same value as (Hf:o ., 1, c%li> . Since DJ is linearly-
homomorphic, we conclude that (c1, ¢2) encrypts m = Zfzo 2im; < 2671,

Construction 3.5.2. Let ¢ € N and B =21 Ler

* NIZKgg,, = (NIZK.GenCRSgQAl, NIZK.Provegg, NIZK.VerifngAl) be the scheme in
Construction 3.5.1, for some Ay = (G, n,G, Ho, {H;}ic[q, N, €, &, ho, {hi}i);

° N|ZK57DDJA2 = (NlZK.GenCRSngjAZ,NlZK.PI’OVGngjAZ, NIZK.VerifyngJAz) be
the scheme of Lemma 3.5.5, for some Ny = ((g1,h1), (32, h2), N, &);

. NIZKgDEA3 = (NIZK.GenCRSgDLAs, NIZK.ProvegDEAB, NIZK.VerifygD£A3) be the scheme
of Lemma 3.5.4, for some A3 = (g, h,N, &).

We now present the scheme in full detail.
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GenCRSRngA(l/‘) :
: Compute (crsl,tdl) — NlZK.GeI‘ICRSgQAl (1/\) where A1 = (G, n, G, Hy, {Hi}ie[£]7N7 é,g, ho, {hi}ie[é])-

: Compute (Cr5271',td27i) — NIZK.GenCRSngjAZ (1)\) where Az’i = ((g, h), (g, hi),N, é)
foralli e [£].

* Compute (CI’5270, tdz’()) — NIZK.GenCRSgpijZ (1)\) where Az}o = ((g, h), (g, ]’l), N, 5)
* Compute (crs3, td3) < NIZK.GenCRS¢pp, (11) where Ay = (g,h(1 + N), N, ).

* Output crs = (crsy, crsy 0, Crs3, {crsy i }ic(q) and td = (tdy, td o, tds, {tda,; }ic(g))-

Provereps,(crs,x =cj,w =1t):

* Parse crs as (Crs1,Crsp o, Crs3, {Crsy i ticp). Sample v <8 Ly and s < Zy. Compute the
ciphertexts D; = G'H!, Dy = Hp, dy = himod Nt and (d1,i,dp;) wheredy; = &°
mod Nt and dy; = BS(1 + N)imod N1, 4dditionally, compute c; = h'(1 + N)".
Compm‘e tbeproofnl <— NlZK.PFOVGgQAl (CI’Sl, X1, wl) w/aerexl = (Do, do, {DZ‘, dl,i, dZ,i}ie[E])
and w1 = (7’, S, {ti}ie[é})-

* Fori € [{], sample s; < 7. Compute the ciphertexts (1 i, Ca,;) where c1; = g"imod Netl
andCz,l' = hsi(l—l-N)timOd Né&H, Compute the proofs T ProvengjAz .(CT’SZJ, X2 is w27i)
f07‘i S [f] where X2 = (CL,‘, €2, dl,ia d27i) and Wy = (S,', 7, ti).

* Compute new ciphertexts (C1, ¢2) and (c1, ¢5) where¢y = Hle (cl,,-)zH, G = Hle (Czj)zifl

and CIZ = Cz(l —i—N)B/z. Compute tbeproofﬂlo — N|ZK.PI’OV€57)DJAZ 0 (CrSQ,O, X2.0, ’(/02,0)

where x30 = ((c1,¢}), (€1,C2)) and wa g = (¢,5,t + B/2) withs = 3 i, 5,2,
* Compute the proof T3 < NIZK.ProvegpgAs (crs3, x3, w3) where x3 = (¢1,¢2) and w3 = t.

* Output 1 = (Do, do, c2, {Dj, d1 i, da i, €13, C2,i5 T2,i Yiele] 015 02,0, TT3)-

Verifng'DjA (td, X, TC) :
* Parsemtas (Do, do, c2, {Dj, d1 i, do i, €14, €, T2 i i), 1, 02,0, T3) and td as (tdq, tda o, tds, {tda i }iciq)

i—1

* Compute El = Hle (CLZ')Z 5 52 = Hf:l (Czji)?_l and C/2 = C2(1 -+ N)B/z.
. [fO “— N|ZK.Vel’ifngA1 (tdl,xl, 7'(1) where X1 = (Do, do, {Di, C1,is C2,i}ie[e]): output 0.
© If0 « NIZK Verifyeppy, (tda %2 ma), for alli € {0, 0}, output 0.

© If0 NIZK.Verify(gDEAl (tds, x3, 713) where x3 = (c1,C2), output 0. Else, output 1.
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Lemma 3.5.10. The scheme presented in Construction 3.5.2 is complete.

Proof. Letcy € REDJ a. Then, by the completeness of NIZK¢p,, , the proof 13 is accepted. Now,
the ciphertexts (c1 4, c2 ) encrypt bits ¢; by the completeness of NIZK¢g A This means that the ci-
phertext (1, C2) encrypts = Zle 2=1t;. Hence, t € [0, B]. By the completeness of NIZKgpp 7 Ay’
(c1,¢h) encrypts € [0, B] and, thus, (c1,c2 = c5(1 4 N)~B/2) encrypts t € [~B/2, B/2]. We con-
clude that the proof is accepted as valid.

O

Lemma 3.5.11. The scheme presented in Construction 3.5.2 bas zero knowledge under the subgroup de-
cision assumption.

Proof. The proof follows from the fact that the schemes NIZK¢g o A NIZKgpp s Ay and NIZKgp, As
are zero-knowledge (here NIZK¢ g, has computational zero-knowledge under the subgroup decision
assumption).

O]

Lemma 3.5.12. The scheme presented in Construction 3.5.2 is statistically simulation sound.

Proof. The proof follows readily from the fact that the schemes NIZK¢ o A NIZKepp s Ay and NIZKgp A
are statistically simulation sound and that the DJ scheme is linear homomorphi;. Thatis, if (1 4, ¢2 1)

. - - -1 -1, .
all encrypt bits, then (¢1, ¢2) where ¢ = Hle (c1,)* andcy = Hle (c2.)% isan encryption of
a value smaller than 261, O

3.6 REUSABLE LACONIC PRIVATE SET INTERSECTION

In this section, we present a protocol that implements ¢PSI in a black-box fashion. We then prove
that the protocol guarantees security against a semi-honest receiver and againsta malicious sender. The
input sets are subsets of a universe U of exponential size.

ProTocorL. We now present the construction for reusable PSI.

Construction 3.6.1. Let U be a universe which contains the input sets of the parties. Let k¥ € 7 such
that 5k < A and & € N.

We require the following ingredients in this construction:
1. A PPRFPPRF : K x U — Primes(k) which outputs a prime number.”®

2. ADV-N[ZKNlZKRngA = (NIZK.GenCRSRngA, N|ZK.PI’OV€R€DJA, NIZKVerifyReDJA)
for the language REDJ p which is defined in Section 3.5, for some A = (g0, B,N, &).

“We remark that we use a PPRF, not because we want uniform outputs, but to implicitly define the set of
primes. A similar trick was used in [BGI16].
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3. An IND-CPA PKE scheme PKE = (PKE.KeyGen, PKE.Enc, PKE.Dec)
4 A (x — 1,negl(A))-strong extractor Ext : S x Zye+1 — {0,134,

We assume that the receiver’s set is of size M and the sender’s set is of size m, where M > m. The
protocol is composed by the following algorithms:

GenCRS(1%) :

* Sample N < RSA(A), that is, N = PQ where P, Q are safe prime numbers. Choose B such
that N*~1/2 > B > N2,

« Sample a pair of public and secret keys (pk, sk) < PKE.KeyGen(1%). Additionally, sample
a PPRF key k <= K. Set A = (g0, B,N, &) where go <3 Tn.

* Outpur crs = (N, pk, g0, B, k, A).

Ri(crs, Sg) :
* Parse crs == (N, pk, g0, B, k, A), and Sg := {id; }icppy S U
* Compute the prime numbers p; <— PPRF(k,id;), for alli € [M].
« Sample r < [N /4] and compute h = gSHiE[M] Pmod N&+1,
* Run (crsy, tdy) < NIZK.GenCRSgep 7, (17).

* Output st = (r,td1) and psi; = (h, crsy).

S(crs, Ss, psiy) :
* Parse crs := (N, pk, 8o, B,k, A), psiy := (h, crs1) and Ss := {id}}icm € U.

* Fori € [m] do the following:

Sample p; < [N /4]. Compute the prime numbers p; <— PPRF(k, id}).
Sample an extractor seed s; +$ S and compute R; < Ext(s;, h’imod N¢*1)
Compute f; = gb"'mod N**1 and ct; < PKE.Enc(pk, id}; R;).

Compute 1 < NIZK.Proverepz, (crsi, x;, w;) where x; = f; and w; = p,p;.

* Output psiy = {f;, cti, si, ni}ie[m]'
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Ro(crs, st, psiy) :
* Parse st := (r,tdq) and psiy := {f;, ct;, s;, ni}ie[m]‘ SetT =10
* Forallj € [m] do the following:

- If0 < NIZK.Verifygep 7, (td1, X}, ;) where xj = f;, abort the protocol.
- Ifthereis ai € [M] such that

ctj = PKE.Enc(pk, id;; R})

M
where R. < Ext(sj,j;/-imod NtV andr; = r H P, then add the element id; ro
(=104
T.

* Outpur T.

COMMUNICATION COST.  Here, we analyze the communication cost of the protocol as a function of
the input set sizes |Ss| = m and |Sr| = M and we omit polynomial factors in the security parameter
A. The first message outputted by Ry has size O(1). The second message outputted by S has size
O(m). The overall communication cost is O(m), that is, it is independent of M.

ANaLysis.  We now analyze the correctness and security of the protocol.

Theorem 3.6.1. The protocol presented in Construction 3.6.1 15 correct given that NIZKregpz,, 5 com-
plete and PKE is correct.

Proof. Let (h, crsy) be the message sent by Ry created using the set Sg as input.

Fix an index j such that b; € Ss N Sr. Upon receiving (f;, ctj, s;, nR‘SDJ) from Sg (i.e., the part

]
of psi, with respect to b;).

Since |p;p;| < 2N < B, then 1 < NIZK.Verifyrep 7, (td1, xj, 71;) where x; = f; except with
negligible probability by the completeness of NIZKrep 7,

Additionally, let 7 = rHi:q,»;ﬁp,» q; where q; <= PPRF(k, id;) forid; € Sg and p; < PPRF(k, b;).
Then

pjpfr Hi:qi;tpj qi
0

£, mod N+ = ¢ mod N&*!

= 8ng 9 od NET
= h"i mod N¢*1.

Hence, R]’- = R; and thus, ct; = PKE.Enc(pk, b;; R]’) Therefore, bj is added to Z.
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Theorem 3.6.2. The protocol presented in Construction 3.6.1 securely UC-realizes functionality Fps
in the Gcrs-hybrid model against:

* asemi-honest receiver given that the ¢-hiding assumption hold and NIZKrgp 7, is zero-knowledge;
* a malicious sender, given that the DCR assumption holds and NIZKgep 7, i reusable sound.

Proof. We start by proving that the protocol is secure against semi-honest adversaries corrupting the
receiver.

Lemma 3.6.3. The protocol is secure against a semi-honest receiver.

We first show how the simulator Simg works. In the following, let Simyjzk be the zero-knowledge
simulator from Lemma 3.5.11 for the NIZKR¢ep 7, scheme.

1. Simg takes the input Sg of R and sends it to the ideal functionality Fps;.
2. CRS generation. To generate the CRS, Sim behaves as the honest algorithm would do.

3. The simulator creates the semi-honest receiver’s view exactly as in the real protocol and keeps
st = (7, tdy) to itself.

4. Upon receiving a message psi; = (h, crsy) from R and a message Z (of size 1/, that is, |Z| =
m'’) from the ideal functionality Fyps, the simulator does the following:
* Sample a subset X of size m — m' from the universe I and sets Ss = Z U X.
+ Foralli € Z, Simg computes (f;, ct;, S;, 77;) as in the real protocol.
* Foralli € Ss \ Z, Simg simulates proofs 11; <— Simyzk (td1, x) for x = f; where
fi < Tn. Then, itencrypts ct; <— PKE.Enc(pk, 0; R;) where R; < {0, 1

To prove indistinguishability between the real protocol and the simulated one, we consider the
following sequence of hybrids:

Hyb,: Theis the real protocol.

Hyb,: This hybrid is identical to the previous one, except that, for i € Ss \ Z, Simg simulates the
proofs T(; < SimN|ZK(td1, x) for x; Zfi.

Claim 3.6.1. Hybrids Hyby and Hyb, are statistically indistinguishable.

The claim above follows directly from the statistical zero-knowledge of the scheme NIZKzep 7, .
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Hyb27 s+ This hybrid is identical to the previous one, except that the simulator samples f;,, < Tn
and computes
1M
R,, + Ext <s, lZZ” U od N5+1>
where q,, < PPRF(k,x,,) forallu, € {i : x; € S5\ I} and p; < PPRF(k,y;) forally; € Sr.
The hybrid is defined for ¢ = 1,...,m —m'.

Claim 3.6.2. Hybrids Hyb, and Hyb, ,, ., are indistinguishable.

We prove that hybrids Hyb, , ; and Hyb, , are indistinguishable for £ = 1,...,m — m’ and
where Hyb, , = Hyb,. ’ 7

First, remark that the distribution of p,, is the uniform distribution over [N/4]. Hence, we can
build a statistically indistinguishable sequence of hybrids Hyb/, where we sample Py, <3 [P(N)/4]

incurring difference only in the statistical distance.

. NI PugPue . . . :
Now, since go and gg”‘ are generators of Ty, then the distribution of g, " is identical to f; <

Ty, for p,,, < [H(N) /4]
For p; sampled using PPRF (for a uniform input x,, <% U), we know that p,,, does not divide

¢(N)andp, € [p(N)/4]ifp,, < [N/4], except with negligible probability. We conclude that

T 1 ~ pu pl'g 1
fue mod N*T! i1y &0~ mod N+

where f,,, < Tn, g0 < Tn, p,,, <5 [@(N) /4] and py,, < Primes(x).

Using a similar argument, we have that for any G

(fw mod N¥*1,£, %% mod N‘EH) Rnegl() (88”’%Z mod N¥*1, go?“ mod N‘S“) :

Hyb; ,:  This hybrid is identical to the previous one except that Simg computes Ry, < {0, 1A
foralluy € {i: x; € Ss \ Z}. The hybrid is defined for ¢ =1,...,m —m'.

Claim 3.6.3. Assume that Ext is a (k — 1, negl(A))-strong extractor and that the O-biding assumption
holds. Then bybrids Hyb, .. and Hybs ., are indistinguishable.

We prove that hybrids Hyb, ,_; and Hyb, , are indistinguishable by constructing a reduction
that contradicts Lemma 1.4.1, for £ = 1, ..., m — m’ and where Hyb, ,,_,» = Hyb; .

Suppose that there is an adversary A that distinguishes hybrids Hyb, ,_; and Hyb, ,. We build
an adversary BB that breaks Lemma 1.4.1. 7 ,

BB receives as input (N, 5, q, §). It behaves as the simulator in Hybrid Hyb, ,_; except that it sets
the modulus in the crs to be N. Additionally, it programs the PPRF such that g < PPRF (k, x, ) (this
step is done while creating the PPRF key). Upon receiving a message from A (together with its view),
it computes G = r wa pi where p; <= PPRF(k, x;) for x; € Sgr. It sends G to the challenger and
receives Z. This value Z is either equal to Ext(s, QG/ Imod N¢*1)ify = 0, oritis uniformly chosen,
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if y = 1, where ) is the challenge bit. Now B sets f,,, = g, ct <— Enc(pk, x4,; Ry, ) and sends psi,
as in Hybrid H3 ¢_1 except that the uy-th coordinate is (fy, , Cty,, Su,, Ty, ). The adversary outputs a
bit b and B sets b as its guess. Itis easy to see thatif = 0, then B’s message is indistinguishable from

the message of hybrid Hyb3’ s—1 and if y = 1, then it is indistinguishable from the message sent in
hybrid Hyb3’ ¢

Hyb, ,;  Thishybridisidentical to the previous one except that Simg encrypts ctyy < PKE.Enc(pk, 0; Ry, )
forallforalluy € {i: x; € Ss\Z}. Thehybridisdefinedfor¢ =1,...,m—m’. Hybrid Hyb

is identical to the simulation.

Claim 3.6.4. Assume that PKE is an IND-CPA PKE. Then hybrids Hyb, . and Hyb
are indistinguishable.

4 m—m'

4 m—m'

The claim follows directly from the IND-CPA property of the underlying PKE. That is, given an
adversary A that distinguishes both hybrids, we can easily build an adversary B against the IND-CPA
property of PKE. This adversary B3 simply chooses as messages 119 = x,,, (where x,,, € Ss \ Z) and
my = 0. It outputs whatever A outputs.

Lemma 3.6.4. The protocol is secure against malicious senders.
We first show how the simulator Simg extracts the sender’s input:
1. CRS generation. Simgs generates the crs following the algorithm GenCRS, except that it sets

g0 = §6(14+N) for g, < Tn. Itkeeps @(N) toitself (which can be computed using the prime
numbers P, Q) and the secret key sk corresponding to pk. It outputs crs = (pk, go, B, k, A)

2. Simg samples i <$ Ty and computes (crsy, td1) < NIZK.GenCRSrep 7, (11). It sends
psi; = (h, crsy) to the malicious sender.

3. Whenever Simg receives a message psi, = {f;, ct, s;, 7t} ] from the sender, the simulator

ie[m
initially sets Ss and does the following for all i € [m]:

* Ttchecksif 1 < NIZK.Verifygep 7, (td1, xj, ;) where x; = f;, and aborts otherwise.

- Itcomputes id; «+— PKE.Dec(sk, ct;) and p; < PPRF(k, id}). Additionally, it extracts
C; by recovering C} from (1 + N)& = fj’ ™ and computing C = C'/¢p(N) over the
integers. It computes p; = (;/p; over the integers. If ct; = PKE.Enc(pk,id}; R;)
where R; = Ext(s;, i’imod N**1), then it adds id’ to Ss.

4. Itsends Sg to Fps) and halts.

We now show that the simulation is indistinguishable from the real protocol via the following se-

quence of hybrids.

Hyb:  This hybrid is the real protocol.
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Hyb,: This hybrid is identical to the previous one except that the simulator computes the first
message (sent by the receiver) as h < Tx.

Claim 3.6.5. Hybrids Hyb and Hyb, are statistically indistinguishable.

Since go is a generator of Ty, the distributions of g* and i <= Ty are identical. It follows that the
hybrids are indistinguishable.

Hyb,: This hybrid is identical to the previous one, except that go = g((1 + N) for g «=+ Ty
(instead of choosing go < T'). Additionally, Simg keeps (¢p(NN), sk) while creating crs.

Claim 3.6.6. Assume that the DCR assumption holds. Then hybrids Hyb, and Hyb, are indistin-
guishable.

The claim follows directly from Corollary 1.4.3.

Hyb,:  This hybrid is identical to the previous one except that the simulator, instead of checking if
there is an index i for which
ct; = PKE.Enc(pk, id;; R))
M
where R} = Ext(sj,f;") andr; = r H pe (as in the real protocol), it does the checks as in the
(=104
simulation. That is, it computes id; «+ P#KE.Dec(sk, ct;) and p; + PPRF(k,id}). Additionally,
it extracts {; by recovering C; from (1 + N )G = ij ™) and computing { = C'/¢(N). It computes
pl = C;/pj over the integers. Then, it checks if ct; = PKE.Enc(pk, id}; R;) where R; = Ext(s;, 7).

Claim3.6.7. HybridsHyb, and Hyb, are indistinguishable given that PKE is correct and NIZKrep 7,

15 simulation sound.

By the simulation soundness of NIZKgep7,, C; < N°71/2. Hence, ; < N¢/2 and thus
mod N¢ is equal to Cj as an integer. Computing C = (/¢ (N) yields p,p; over Z. Thus p; = (;/p;
over Z.

Thus, performing the checks in this hybrid has the same outcome as in the real protocol.

O]

SETTING THE PARAMETERS. The value B is such that N1 /2 > B > N2 for 5k < A. Then, it
is enough to set & = 3, so that we can find a B that fulfills the condition.
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ACHIEVING STATISTICAL SECURITY AGAINST THE SENDER.  The protocol presented in Construc-
tion 3.6.1 achieves computational security against a malicious sender given that the DCR assumption
holds (recall that NIZKzep 7, achieves statistical reusable soundness).

The only place where we use the DCR assumption in the proof of security against a malicious
sender is when we replace go < T by g0 = §((1+ N). Hence, consider the following modification
of the protocol presented in Construction 3.6.1: In GenCRS, the element g is chosen as g((1 + N)
for g This simple modification of the protocol yields a new one which is statistically secure against a
malicious sender. On the other hand, security against a semi-honest receiver now relies on the hardness

of ¢-hiding (as before) and the DCR assumption.

3.7 LABELED Laconic PSI anD Laconic OT

In this section, we show how we can extend the techniques developed in Section 3.6 to construct LPSI
to obtain new constructions of labelled LPSI and LOT. Both constructions are reusable and secure
against malicious senders.

3.7.1 REUSABLE LABELED LAcoONIC PSI SECURE AGAINST A MALICIOUS SENDER

REUSABLE LABELED PSIFUNCTIONALITY.  The functionality F{ ps) is parametrized by a universe
U and by a universe of labels £ and works as follows:

* Setup phase. R sends (sid, Sr) to Fypsi where Sg C U. It ignores future messages from R
with the same sid.

* Send phase. Ssends (sid, 7, Ss jab € U x L) from S to Fyi psi. FrLpsi sends (sid, i, Srnss,ab)
to R, where Srnsg lab = {(¥,¢) € Ss,iab : ¥ € Sr}. Itignores future messages from S with
the same sidand i € N,

ProTocorL. We now present the construction for labeled reusable PSI.

Construction 3.7.1. Let U be a universe which contains the input sets of the parties. Let ¥ € 7 such
that 5k < A. Let

* PRF : K x U — Primes(k) be a PRF which outputs prime numbers

* REDI a be the language defined in Section 3.5 and NIZKrep7, =
(NIZK.GenCRSRrep 7, ; NIZK.Proverep s, , NIZKVerifypep 7, ) be a DV-NIZK for the
language REDJ p, for some A = ((0,81), B, N, &).

+ PKE = (PKE.KeyGen, PKE.Enc, PKE.Dec) be an IND-CPA PKE scheme
« Ext:S X Zye+1 — {0,134 be a (x — 1, negl(A))-strong extractor.
We assume that the receiver’s set is of size M and the sender’s set is of size m, where M > m. The

protocol is composed of the following algorithms:
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GenCRS :  This algorithm is identical to the one described in Construction 3.6.1.
Ri(crs,Sr) :  This algorithm is identical to the one described in Construction 3.6.1.

S(crs, Ss, psiy) : This algorithm is identical to the one described in Construction 3.6.1, except that
(Ri||T;) + Ext(s, h*imod N**1). The string R; is used to encrypt the set element (as in Construction
3.0.1) Additionally, compute ct; = T; @ lab;, where lab; is the corresponding label.

Ro(crs,st, psiy) = This algorithm is identical to the one described in Construction 3.6.1, except that
whenever a; € I, compute lab; = T; & ctj. Outpur (L, {lab;}icT).

Anarysis. We state the theorems that guarantee the required properties for our scheme. We omit
the proofs since they are identical to the proofs of Theorems 3.6.1and 3.6.2

Theorem 3.7.1. The protocol presented in Construction 3.7.1 is correct.

Theorem 3.7.2. The protocol presented in Construction 3.7.1 securely UC-realizes functionality F ps
in the Gcrs-hybrid model against:

* a semi-honest receiver given that the ¢-hiding and the DCR assumptions hold;

* a malicious sender, where security holds statistically.

3.7.2  LAcoNIC OBLIVIOUS TRANSFER WITH MALICIOUS SENDER SECURITY

In this section, we present a new laconic oblivious transfer (LOT) scheme which is secure against the
malicious sender. Besides, it only needs a small CRS and succinct messages for both rounds (as in
[GVW2o0]).

LACONIC OBLIVIOUS TRANSFER IDEAL FUNCTIONALITY. LetI’ =I'(A) € N. The functionality
FroT works as follows: It receives a database D € {0, 1} from R. Upon receiving a message (i €
N, mg,mq,L € [I']) from the sender S, FyoT sends (i, mp, ) to R and ignores future messages with
the same i from S.

ProTocorL. We now present the construction for sender-malicious LOT.
Construction 3.7.2. Let I' = T'(A) be a polynomial in A. Let Let « € 7 such that 5x < A. Let
* PRF : K x U — Primes(k) be a PRF which outputs prime numbers

* REDI p be the language defined in Section 3.5 and NIZKrepy, =
(NIZK.GenCRSrep 7, NIZK.Proverep 7, , NIZKVerify g ep 7, ) be a DV-NIZK for the
language REDJ p, for some A = ((0,81), B, N, &).

« Ext: S X Znet1 — {0,132 be a (x — 1, negl(A))-strong extractor.
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GenCRS(1Y) : This algorithm is identical to the one described in Construction 3.6.1, except that it

does not create a public key pk. It outputs crs = (N, (0,81), B, k, A) where A = ((80,81), B, N, &).
r ..

Hash(crs,D € {0,1}') : It computes h = ggn’:l “P mod NEHL, where r s [N/4] and

ey < PPRF(k,2i+b) fori € [T andb € {0, 1}, and computes (crs1, td1) < NIZK.GenCRSgrp 7, (11).

It outputs lot; = (h, crsy).

Send(crs, loty, mo,m1,L) : It computes f; = g/ ", Fj = g0 (1 + N))i™i for j € {0,1}

where p; s [N/4] and ey j < PPRF (k,2L + j), computes ct; = k; & m;, where kj < Ext(sj, h"7),

computes Uy — NlZK.PrOVGgRDjA (crs,x]-,w]-) where Xj = (f}',F]') and w; = (p].eLJ-) It outputs

lota = ({f}, Fj, ctj, 7j, 51 }jego,1} L)-

Receive(crs, loty,st) : It aborts if 0 <= NIZK.Verifyerp 7, (td, xj, 7)) where x; = (fi, F;). It

; e D.
computes kp, < Ext(sDL,fg}# P mod N5+1) , and outputs mp, = ctp, @ kp,.

Anarysis. We state the theorems that guarantee the required properties for our scheme.
Theorem 3.7.3. The protocol presented in Construction 3.7.2 is correct.
The proof of correctness essentially follows the same lines as the proof of Theorem 3.6.1.

Theorem 3.7.4. The protocol presented in Construction 3.7.2 securely UC-realizes functionality FooT
in the Gcrs-hybrid model against:

* a semi-honest receiver given that the -hiding and the DCR assumptions hold;
* a malicious sender, where security holds statistically.

Proof. The proof of security against a semi-honest receiver is identical to the proof of Lemma 3.6.3.

We now sketch how to prove security against a malicious sender. The simulator works analogously
to the simulator of Lemma 3.6.4, except that, in this case, the simulator knows the prime ey ; for both
i € {0,1}. Thus, the re-encryption step is not needed anymore since the simulator can easily extract
p;» fori € {0,1} by decrypting (f;, F;) using ¢p(N) (which is well-formed and encrypting a value
smaller than N2 by the soundness of NIZKgrp 7, ) to recover a value C: From this value, it can com-
pute p; = C;/(er,i@(N)). After recoreving p;, it can compute the keys k; and extract the messages
m;.

Indistinguishability between the simulated version and the real protocol follows the same blueprint
as the proof of Lemma 3.6.4. O
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3.8 SELF-DETECTING ENCRYPTION

In this section, we define self-detecting encryption and show how to build it from laconic PSI. We first
give a semi-honest definition and will present the malicious definition in the full paper [ABD " 21b].

Definition 3.8.1. A Self-Detecting Encryption (SDE) scheme is a tuple of (randomized) algorithms
SDE = (Prm, Gen, Hash, Enc, Dec, Detect) such that:

» Prm(11): Takes as input a security parameter 11, and outputs a public parameter p.
* Gen(p): Takes as input a public parameter p, and outputs a pair of keys (pk, sk).

+ Hash(p, DB): Takes as input a public parameter p and a database DB, and outputs a hash
value h and a private state st. We require |h| < poly(A), for a fixed polynomial poly.

* Enc(pk, h, msg): Takes as input a public key pk, a hash value h, and a message msg, and out-
puts a ciphertext ct.

+ Dec(sk, ct): Takes as input a secret key sk and a ciphertext ct, and outputs a message msg or
1.

- Detect(st, ct): Takes asinput a private state st and a ciphertext ct, and outputs a message msg
or L.

We require the following properties:

+ Correctness. Forany message msg, letting p <—g Prm(1%) and (pk, sk) <—g Gen(p): Pr[Dec(sk, Enc(pk, msg)) #
msg] < negl(A).

* Detection. Forany p € Prm, any (pk, sk) € Gen(1"), any database of strings DB, and any
message msg, letting (h, st) <—¢ Hash(p, DB) and ct <—g Enc(pk, h, msg), if msg € DB
then Detect(st, ct) = msg.

* Efficiency. The size of h and running time of Enc are independent of the database size. There
exists a polynomial poly s.t. forall n := n(A),any DB € {0, 1}", lettingh <—g Hash(p, DB)
and p, pk be as above, then || < poly(A) and also the running time of Enc(pk, h, msg) is
upper bounded by poly(|msg|, A).

* Database Hiding. Forany two databases (DBy, DB1) of equal size, if (hg, *) <—g Hash(p, DBy)

and (hy, *) <—¢ Hash(p, DB) then hq and hy are indistinguishable where p <—g Gen(1%).
* Semantic Security. Forany database of strings DB and any two messages (msgg, msgy ): (pk, h, Enc(pk, h, m1)) =
(pk, h, Enc(pk, h, m1)), where all the variables are sampled as above.
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* Security Against the Authority. For any two messages (msg, msg;), if msg, ¢ DB and
msg; ¢ DB then

C

(pk, (h, st), Enc(pk, h, myg)) (pk,(h,st),Enc(pk,h,ml)),

where p <—g Prm(1%), (pk, sk) <—¢ Gen(p), and (h, st) <—¢ Hash(p, DB).

We now show how to realize self-detecting encryption from semi-honest laconic PSI. Informally,
the SDE hash is the receiver’s first-round laconic PSI message, and the encryption of a message m con-
sists of a PKE encryption of m as well as a second-round PSI message based on m1.

Construction 3.8.1. Let PKE = (KeyGen’, Enc’, Dec’) be 2 CPA-secure PKE scheme* and LPS| =
(GenCRS, Ry, S, Ry) 4 laconic PSI.

* Prm(11): Sample crs <—g LPSI.GenCRS(1%), and let p := cts.
* Gen(p): Run PKE.Gen'(11) to generate a pair of keys (pk, sk).

* Hash(p, DB): Ler h be the output of the receiver on DB and p, i.e., h <—g LPSL.R1(p, DB).
In addition, let st be the private state of the receiver.

* Enc(pk, h, msg): Output (cty, cty), wherect; +—g PKE.Enc'(pk, msg) and cty <—g LPSL.S(p, {msg}, h).
- Dec(sk, ct = (cty, ctp)): Output PKE.Dec'(sk, cty).
» Detect(st, ct = (cty, ctp)): Outpur Ry(st, ctp).
Correctness and efficiency follow immediately.
+ Statistical database hiding follows from PSI-receiver statistical security.

* Semantic security and security against the authority property of the scheme follows from the
CPA security of PKE scheme IT and the sender’s security. Observe that if msg ¢ DB then
both cty and cty computationally hide the message even in the presence of the private state
st of PSI. Specifically, one can argue that cty computationally hides msg because of the CPA
security of PKE schemeIl, and cty computationally hides msg because of the sender’s security
of laconic PSI. The arguments above can be made formal via a routine hybrid argument, and
we omit the details.

**We proceed with an independent PKE scheme for the sake of simplicity.
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3.8.1 MALICIOUSLY SECURE SELF-DETECTING ENCRYPTION

Next, we provide a definition of self-detecting encryption in the malicious setting. In this setting,
the algorithm Prm provides a trapdoor which allows a server to ensure that the ciphertexts sent on the
channel can be verified while ensuring the privacy of users. We remark that the trapdoor is only known
for the server (and is not included in the user’ secret key).* Clearly, as in the semi-honest setting, the
authority would only be able to detect illegal content by looking at the ciphertexts communicated
through the channel, and no information will be leaked about normal/legal messages.

Specifically, a maliciously secure self-detecting encryption is a tuple of seven (randomized) algo-
rithms SDE = (Prm, Gen, Hash, Enc, Dec, Detect, Verify) such that Prm outputs a trapdoor td
(along with p) such that the verification algorithm Verify checks well-formedness of ciphertext using
td as follows:

* Verify(td, ct): Takes a trapdoor td and a ciphertext ct and it outputs 1 or o.

The other five algorithms, namely (Gen, Hash, Enc, Dec, Detect), have the same functionality as
in the semi-honest setting. We require that SDE should satisty all the properties of a semi-honest en-
cryption scheme (correctness, efficiency, database hiding, semantic security, and security against the
authority), along with the following well-formedness property: for any PPT adversary A and database
DB, if (p, td) <—g Prm(1%), (pk, *) =g Gen(p), (h, *) <—g Hash(p, DB) then the following holds
for any adversarially generated ciphertext ct «—g AVe®(td)(p, pk; h) with overwhelming probabil-
ity (where A has oracle access to the verification algorithm):

+ If Verify(td, ct) = 1 and Dec(sk, ct) € DB then Dec(sk, ct) = Detect(st, ct).

« If Verify(td, ct) = 1 and Dec(sk, ct) ¢ DB then Detect(st, ct) = L.

Given a maliciously secure laconic PSI and a DV-NIZK for a specific language, one can construct a
maliciously secure SDE following the same blueprint that we provided in the semi-honest setting.

Construction 3.8.2. Let PKE = (Gen', Enc’, Dec’) be a CPA-secure public-key encryption scheme,
and lerNIZK = (NIZK.GenCRS, NIZK.Prove, NIZK Verify) be 2 DV-NIZK for “message-equality”
langnage (described below).

« Prm(1%): Sample (crsy,td) <—g NIZK.GenCRS(1*) and crs; <—g LPSI.GenCRS(11),
and let p = (crsy, crsg).

« Gen(p): Sample a pair of keys (pK', sk') <—g PKE.Gen'(11). Serpk = (pK’, crsy;, crsp) and
sk = sk’.

* Hash(p, DB): Parse p = (crsn;, crs,). Output (h,st) <—g LPSI.R;(crsg, DB).

*Notice that in the malicious setting, there are three entities (user, server, and the authority) with their own
secret key/state.
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* Enc(pk, h,msg): Parse pk = (pk’,crsp,crs). Let cty <g PKE.Enc'(pk/, msg) and
ctp <—g LPSI.S(crsp, {msg}, h).

Compute proof for the statement that the messages underlying cty and cty are equal. Specifically,
consider the following language L (parameterized by N ):

Lp = {(cty,cty) : I(msg, r,7') s.t. cty = PKE.Enc’(pk’, msg; ') Acty = LPSL.S(crsy, {msg}, h;7)},

where A = (pk', crsp, h). In addition, v and v’ are the random coins used by PKE.Enc’ and
LPSLS, respectively. Generate a proof v <—g NIZK Verify(crsy, cty, cta), and set ct3 := .
Finally, publish ct = (cty, cty, ct3) as the ciphertext.

» Verify(td, ct) : Run NIZK.Verify on td and ct, and output the resulting bit.
- Dec(sk, ct = (cty, cto, ct3)): Ontput PKE.Dec'(sk', cty).
* Detect(st, ct = (cty, ctp, ctz)): Outpur LPSI.Ry(st, cty).

Correctness, efficiency, database hiding, semantic security, and security against the authority of the
scheme can be argued in a similar fashion to the semi-honest setting. The additional requirement,
namely the well-formedness property of the scheme essentially follows from the security of DV-NIZK.
Observe that for a maliciously generated ciphertext ct = (cty, ctp, ct3), the messages hidden by ct;
and ctp are not equal, and hence the ciphertext ct will be rejected by the verification algorithm of DV-
NIZK. We leave a black-box construction of DV-NIZK (for the message-equality language above)
from concrete cryptographic assumptions to future work.
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Rate-1 Oblivious Transfer

IN THIS CHAPTER, we start by addressing the third problem related to privacy-preserving computa-
tion, which involves the communication bandwidth of a fundamental cryptographic primitive known
as oblivious transfer (OT) which we will recall in Section 4.1.

In particular, we show that it is possible to perform # independent copies of 1-out-of-2 oblivious
transfer in two messages, where the communication complexity of the receiver and sender (each) is
n(1 4 o(1)) for sufficiently large 1. Note that this matches the information-theoretic lower bound.
Prior to this thesis, this was only achievable by using the heavy machinery of rate-1 fully homomorphic
encryption (Rate-1 FHE[BDGMio]).

To achieve rate-1 both on the receiver’s and sender’s end, we use the LPN assumption, with slightly
sub-constant noise rate 1 /m® forany &€ > 0 together with either the DDH, QR or LWE assumptions'.
In terms of efficiency, our protocols only rely on linear homomorphism, as opposed to the FHE-based
solution which inherently requires an expensive “bootstrapping” operation. We believe that in terms
of efficiency, we compare favourably to existing batch-OT protocols while achieving superior commu-
nication complexity. We show similar results for Oblivious Linear Evaluation (OLE).

For our DDH-based solution, we develop a new technique that may be of independent interest.
We show that it is possible to “emulate” the binary group Z; (or any other small-order group) inside
a prime-order group Z, in a function-private manner. That is, Zy operations are mapped to Z, op-
erations such that the outcome of the latter does not reveal additional information beyond the Z,
outcome. Our encoding technique uses the discrete Gaussian distribution, which to our knowledge
was not done before in the context of DDH.

'Similar as before, these hardness assumptions are recalled in Chapter 1.
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41 OVERVIEW

Oblivious Transfer (OT) [Rabos, EGL82] is one of the most basic cryptographic primitives. In the
simple 1-out-of-2 OT, a receiver holds a bit b € {0,1} and a sender holds two bits xg, x1. At the
end of the protocol, the receiver should learn xp, but nothing about x1_y, and the sender should learn
nothing about the value of b. In most applications, a single OT is not enough and people need to
perform many OT operations in parallel. We let 7 denote the number of parallel executions. Various
techniques have been developed to address this task of batch-OT [IKNPo3, BCG19b, BCG " 19a].

For the most part, they involve a preprocessing “offline” phase where the parties generate random
OT correlations.” Given such correlations, executing the OT protocol in the so-called “online phase”
is computationally very simple. This approach is very useful for purposes of computational efficiency
since the offline phase can be carried out even before the actual inputs of the computation are known.
However, in terms of communication complexity, there is an inherent cost, even just in the online
phase, of 7 receiver bits and 21 sender bits. In contrast, the insecure implementation only requires
n bits to be sent from each party in a two-message protocol: the receiver sends its input, and the
sender returns all of the appropriate x;, values. As always in cryptography, we wish to understand
what is the “cost of privacy”, namely can we approach the information-theoretic minimum without
losing privacy. Note that we can only hope to achieve this for a sufficiently large 71, due to the security
parameter overhead.?

In prior work, Déttling et al. [DGI'19] showed that if the same receiver bit is used for multiple
OT instances, then the sender’s response can be compressed to 1(1 + 0(1)), achieving an optimal
amortized rate. This was shown under a variety of computational assumptions: Decisional Diffie-
Hellman (DDH), Quadratic Residuosity (QR), or Learning with Errors (LWE). It was also shown by
Brakerski et al. [BDGMi9] and by Gentry and Halevi [GH19] that fully homomorphic encryption
(FHE) can achieve optimal communication complexity, which in particular implies that under the
LWE assumption, optimal rate batch-OT is achievable. However, the FHE-based protocol inherently
requires the use of a computationally exorbitant “bootstrapping” mechanism in order to compress the
receiver’s message.

*That is, a protocol in which the receiver obtains b, x}, and the sender obtains xg, X1, where b, xg, x1 are all
(pseudo-)randomly sampled.

*In more detail, since 2-message OT implies a public-key encryption scheme, the messages must have a
length that relates to the security parameter of the underlying computation assumption. This is the case even
for single-bit OT.
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411  OUR CONTRIBUTION

We show that optimal-rate* batch-OT can be achieved from various computational assumptions, and
without giving up on computational efficiency. In particular, we require the LPN assumption with a
small-inverse-polynomial noise’, in addition to one of the assumptions DDH, QR or LWE. In terms
of computational cost, our protocol does not require heavy operations such as bootstrapping and
relies on linear homomorphism only. We believe that in terms of overall cost, it compares favourably
even with random-OT-based methods. All of our results are in the semi-honest (honest-but-curious)
setting.

We further extend our results to the task of Oblivious Linear Evaluation (OLE) [IPSo9, CDI " 19,
GNNI17, BDM22], where the sender holds a linear function over a ring and the receiver holds an input
for the function, and we wish for the receiver to learn the output on its input and nothing more, and
the sender learns nothing as usual. OLE has been shown to be useful in various settings [GM W19,
CDI19].

Our techniques rely primarily on linear homomorphism, namely on the ability to evaluate linear
functions on encrypted data (see Section 4.2 below). We require a linearly homomorphic scheme
over Zp (more generally Z, for OLE) where the evaluation is function-private. Namely, the output
ciphertext should not reveal any information about the linear function that was evaluated. This was
not known to be achievable from DDH prior to this thesis, and we introduce a new technique that
we believe may be of independent interest. The reason for this is that DDH works “natively” over
the group Z;, where p is a super-polynomially large prime. Furthermore, we only have access to the
Zy elements in the exponent of a group generator g. Indeed, one can encode 0 — ¢°,1 — ¢', and
linear Z» homomorphism will follow in the sense that after applying a linear function in the exponent,
we obtain g*, where x (mod 2) is the desired Z; output. This creates two obstacles: first, we need
to be able to efficiently map g* — x, which means that x must come from a polynomially-bounded
domain, and second that recovering x reveals more information than just x (mod 2). We develop
a new method to resolve this issue using discrete Gaussian variables. A technique that was used in
the context of the LWE assumption but to the best of our knowledge not for DDH. We view this as
an additional contribution to this thesis, which may find additional applications. In particular, we
show that it can be used to enhance the key-dependent-message security properties of the well-known
encryption scheme [BHHOo08].

For more details on all of our contributions, see the technical overview in Section 4.2.

*Achieving optimal rate (or any rate above 1/2) seems to involve a “phase-transition” and should be viewed
as more than a “constant factor” improvement. For example, OT beyond this threshold implies the existence of
lossy trapdoor functions (see discussion in [DGI"19], Section 6.3). Therefore one could expect such a protocol
to inherently be heavier on public-key operations.

SThis is still a regime where LPN alone is not known to imply public-key encryption.
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4.1.2 RELATED WORK

The communication complexity of OT has been extensively studied throughout the decades. Here
we present a brief overlook of previous works.

OT rroM PSEUDORANDOM CORRELATIONS. A recent line of research studies the feasibility of
efficiently extending OTS in a silent manner [BCG*19b, BCG'19a]. In these works, a setup phase
is performed to distribute some shares between the parties. These shares can later be expanded into
random OT correlations. In the most efficient scheme [BCG "19a] the setup phase can be performed
in just two rounds assuming just a pseudorandom generator and an OT scheme. Using this scheme for
performing the setup together with the standard transformations from random OT to chosen-input
OT, [BCG"19a] shows that 1 independent instances of OT for s-bit strings can be performed with
communication complexity (25 4+ 1)n 4 o(n). For bit OT, this yields a communication complexity
3n + o(n) bits.

DowNLOAD RATE-1OT.  Wesay thatan OT protocol hasa download rate-1if the rate of the sender’s
message is asymptotically close to 1. OT protocols with download rate 1 were presented in [DGI 19,
GHO20, CGH " 21].However, these protocols do not achieve an upload rate-1, that is, the rate of the
receiver’s message is far from being 1. Moreover, it is not clear how we can extend these protocols to
achieve upload rate 1.

UsiNG RATE-IFHE.  Asmentioned before, optimal-rate OT can be achieved using the recent scheme
for rate-1 fully homomorphic encryption (FHE) of [BDGMi9, GHi9] together with (semi-honest)
circuit-privacy techniques for FHE (e.g. [BAMW16]). However, this can only be instantiated using
LWE.

Laconic OT.  Laconic OT [CDG 17, QWW18, GV W20, ABD " 21a] is a flavour of two-round OT
where the first message sent by the receiver is sublinear (ideally polylogarithmically) in the size of its
input. However, by a simple information-theoretical argument, the sender’s message has a size at least
as large as the size of the sender’ input. Note that, if this is not the case, then we would have an OT
protocol with asymptotically better communication than an insecure OT protocol.

4.2 TECHNIQUES

421  OBLIVIOUS TRANSFER FROM HOMOMORPHIC ENCRYPTION

Our starting point is a textbook construction of oblivious transfer from simple homomorphic en-
cryption schemes, such as ElGamal. For a cryptographic group G = (g) of prime order p, recall
that an ElGamal public key is of the form pk = (g,7 = g*) € G? where x < Z, is the se-
cret key. Ciphertexts are of the form ¢ = (c1,¢2) = (g, 1" - §%), where r <5 Z, is uniformly
random and b € {0,1} is the encrypted message. Given such a ciphertext ¢, the public key pk
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and two bits mg,mq € {0,1}, anyone can homomorphically compute a new ciphertext ¢ which
is distributed identically to fresh encryption of my, by homomorphically evaluating the linear func-
tion f(x) = (1 —x) - mo +x - my = (my — mg) - x + mp on the ciphertext ¢ and rerandomizing the
resulting ciphertext. Note thatifb € {0, 1} isabit, then it holds that f(b) = m1,. This homomorphic
evaluation can be achieved by computing
g e

—myg o

¢y h" -t -g",

where r* <—g Z; is chosen uniformly random. Note that it holds that
— gr*‘*‘r'(ml—mo)
h

r*4r-(my—mg) 'g(mlfmo)-bero _ hr*Jrr-(ml*mo) . gmb'

Since r* <—g Zy is chosen uniformly random, it holds that ' = #* + - (m1 — my) is distributed uni-
formly random and we can conclude that ¢’ = (c}, c}) is distributed identical to a fresh encryption of
. Since ¢’ does not reveal more than the function value f(b) = 11, we call the above homomorphic
evaluation procedure to function private.

This immediately implies an OT protocol: An OT-receiver holding a choice-bit b € {0,1} gen-
erates a pair (pk, sk) of ElGamal public and secret keys, encrypts the bit b under pk and sends the
resulting ciphertext to the OT-sender. The OT-sender, holding messages g, 711, homomorphically
computes a ciphertext ¢’ encrypting 11y, and sends ¢’ back to the OT-receiver, who decrypts ¢’ to m;,.
Security against semi-honest senders follows from the IND-CPA security of EIGamal, whereas security
against semi-honest receivers follows from the function privacy property established above.

4.2.2 DOwNLOAD-RATE OrTiMAL STRING OT

While the above OT protocol is simple and efficient, it suffers from a very poor communication rate.
While the receiver’s message encrypts just a single bit, he needs to send 4 group elements, whereas the
sender sends 2 group elements, each of size poly(A).

Déttlingetal. [DGI*19] proposed a compression technique for batched ElGamal ciphertexts based
on the share-conversion technique of [BGI16]. A batched ElGamal ciphertext is of the form ¢ =
(co,c1,---,c0) = (8", 1] -gbl, R -gbf), where pk = (g,h1, ..., hy) is the corresponding public
key and sk = (s1,...,S¢) with h; = ¢ is the secret key. The compression technique of [DGI"19]
keeps cp and compresses each of the ¢y, . . . , ¢/ into just a single bit. The idea is instead of sending each
c; € G (fori > 1) in full, to first compute the distance d to the next pseudorandom break-point in
G, and then only send its parity d mod 2. The break points P C G are the set of all pointsh € G
satisfying PRFg(h) = 0f, where PRF : G — {0, 1}! is a pseudorandom function with a range of
size 2! = poly(A). Thus, the distance d = d(c;) of a group element ¢; to the nearest breakpoint is
the smallest non-negative d such that¢; - gd € P. Given that neither ¢; nor ¢; - g_l is a breakpoint,
we can recover the bit b; from cp = g, f_d(c;) mod 2 and the secret key component s;. It was
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shownin [BBD"20] that foragiven ciphertextc = (co, ¢1, . . . , ¢¢), the PRF-key K can be (efficiently)
chosen such thatall ¢; are good, in the sense that neither ¢; nor ¢;- g_l isabreakpoint. This ensures that
a receiver can recover the by, ..., by from ¢’ = (K, co, By, ..., B,), where ; = d(c;) mod 2. Since
all the B3, are bits, such a compressed ciphertext only has additive size-overhead consisting of K, ¢q. For
a sufficiently large /, this fixed overhead becomes insignificant and the ciphertext rate approaches 1.

The compressed batched EIGamal we’ve outlined leads to a batch bit-oblivious transfer protocol
with download-rate 1: The receiver generates a key-pair pk, sk for batched ElGamal, and encrypts his
choice-bits b1, . . ., by into

C = Encpk(bl, 0, . ,0), e, Cp = Encpk(O, ey O, bz),

ie. c® encrypts a vector which is b; in index i and O everywhere else. The OT-receiver now sends

pk, c1, . . ., ¢ to the OT-sender, whose input are messages (1110, 11.1), - . ., (4,0, My 1). Using cir-
cuit private homomorphicevaluation, the sender computes ciphertexts ¢}, . . . , ¢ encrypting (111 5,, 0, . . .

., (0,...,0,myp,). Homomorphically computing the sum of the ciphertexts ¢}, . . . , ¢j, we ob-
tain a ciphertext ¢ encrypting (111 p, , . . . , My p, ). Finally, compressing ¢’ with the compression tech-
nique outlined above we obtain a compressed ciphertext ¢ = (K, co,f;,...,p,) which the OT-
sender sends back to the OT-receiver, who can decrypt (11 ,, . .., Mgy, ).

Note that the size of the sender’s message € in this batch OT-protocol is poly(A) + ¢, which means
that the amortized communication cost per bit-OT approaches 1 bit, and is therefore asymptotically
optimal. Even in terms of concrete complexity, this seems hard to beat, as the only additional infor-
mation sent by the sender are the PRF key K and the ciphertext header cp.

However, in terms of the upload rate, i.e. in terms of the size of the receiver’s message, this proto-
col performs poorly. Specifically, to encrypt £ bits by, . . ., by, the receiver needs to send ciphertexts
C1,. .., ¢ of total size £2 - poly(A), which has a worse dependence on £ than just repeating the simple
protocol from the last paragraph ¢ times.

Clearly, we need a mechanism to compress the receiver’s message. Applying the same ElGamal com-
pression technique for the sender’s message quickly runs into problems: Once an EIGamal ciphertext
is compressed, the scheme loses its homomorphic capabilities, i.e. we cannot perform any further ho-
momorphic operations on compressed ciphertexts and currently we don’t know if it is possible to
publicly decompress such ciphertexts into “regular” ElGamal ciphertexts.

4.2.3 OUR APPROACH: RECRYPTING THE RECEIVER’S MESSAGE

Instead, our approach will be to encrypt the receiver’s message under a different encryption scheme,
specifically one which achieves a ciphertext rate approaching 1 but at the same time can be decrypted
by the homomorphic capabilities of batched ElGamal. Specifically, the decryption procedure of this
encryption scheme should be a linear function in the secret key. We can get an encryption scheme
which almost fulfills these requirements from the Learning Parity with Noise (LPN) assumption. The
LPN assumption states that for a random m X 1 matrix A <—g Z,"*", arandom vector s <—g Z} and
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a p-Bernoulli distributed ¢ e € ZY', it holds that
(A,As +e) ~; (A, u),

where u <—¢ Z7' is chosen uniformly at random. This gives rise to the following simple symmetric-
key encryption scheme with approximate correctness: Assume that A is a fixed public parameter, the
secret key is a uniformly random s <—g Zj3. To encrypt a message m € Zj', we compute a ciphertext
d < As+e+m,wheree € Z7 ischosen viaa p-Bernoulli distribution. To decrypt such a ciphertext,
we computem’ <~ d — A - s.

Note that this scheme is only approximately correct in the sense that it holds that m =m-+e,ie.
in most coordinates m’ is identical to m, but only in few coordinates m’ and m differ. Furthermore,
the one-time security of this encryption scheme follows from the LPN assumption.

The high-level strategy to use this symmetric key encryption scheme is now as follows: Assume the
matrix A € Z5'*" is known to both the sender and the receiver. In the actual protocol this matrix
will be chosen by the receiver, and the communication cost of sending A will be amortized by reusing
A many times.

The OT-receiver chooses a symmetric key 8 <—¢ Z5 uniformly at random and encrypts his vector
of choice bits b = (by,...,b;) tod = As + e + b (where again, e € Z$ is p-Bernoulli dis-
tributed). Furthermore, the receiver will encrypt the LPN secret under EIGamal, i.e. he encrypts s to
¢ = Enc(pk, s). For the moment, assume that s is encrypted bit-wise with standard ElGamal rather
than batched EIGamal. The OT-receiver now sends the EIGamal public key pk and the ciphertexts ¢
and d to the OT-sender.

Now, given these values, the sender can homomorphically decrypt the d into ElGamal, effectively
key-switching from the ciphertext d into an ElGamal ciphertext. Concretely: The sender homomor-
phically evaluates the linear function f(x) = d — Ax on the ElGamal ciphertext ¢ = Enc(pk, s).
This produces an ElGamal encryption ¢’ encrypting f(s) = d — As = b + e = b’. In other words,
the OT-sender has now obtained an ElGamal encryption of a vector b’ which agrees with b in most
locations.

The high-level idea is now to let the OT-sender use this ciphertext ¢’ as the encryption of the re-
ceiver’s choice bits and proceed as in the EIGamal-based OT protocol above. If we were to naively use
¢’ in this way, the receiver would obtain the correct output m1; j, in locations where b and b’ agree but
would get the wrong output 11; 1 _p, in locations where b and b’ disagree. While there certainly are
applications in which a small number of faulty locations are tolerable, in general, this leads to insecure
protocols.

There is, however, another issue with this approach. In this paragraph, we have implicitly assumed
that ElGamal ishomomorphic for linear functions modulo 2. However, since the group we implement
ElGamal over is of large prime order p, when we evaluate linear functions such as f(x) = d — Ax over
a ciphertext encryptingas € {0,1}", the result of this evaluation is 7ot reduced modulo 2, and the
resulting ciphertext in fact encrypts f(s) as an integer. This does not cause major problems in terms

%i.e. every component of ¢; of e is independently 0 with probability 1 — p and 1 with probability p
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of correctness, as this integer will still be small (at most of the size m1), and hence decryption will still
be efficient.

However, this does cause major problems in terms of sender privacy, as we can only guarantee
sender privacy for receiver messages that are guaranteed to encrypta bitb € {0,1}.

For now, we will bypass this problem by relying on a homomorphic encryption scheme which is
in fact homomorphic over Z (rather than Zy), offers function privacy for linear functions modulo 2
and is compatible with ciphertext compression. Such encryption can in fact be constructed from the
Quadratic Residuosity assumption [DGI"19].

Another small issue we haven’t addressed here is that the compression mechanisms for the sender
and the receiver are somewhat orthogonal, in the sense that the sender’s message is compressed by
compressing a batched ElGamal ciphertext (which generally does not allow homomorphic evaluation
across different components), whereas the receiver’s compression strategy requires the homomorphic
evaluation of linear functions with multiple (i.e. vector-valued) inputs. In the main body (Section 4.7)
we will show a tradeoft which allows us to reconcile these requirements, leading to a batch OT protocol
with an overall rate-1.

We will first discuss how to deal with the issue of errors in the key-switched ciphertext and then
return to the issue of implementing our approach with EIGamal instead of QR-based encryption.

4.2.4 DEALING WITH LPN ERRORS

To deal with the LPN errors in the key-switched ciphertext ¢/, we will pursue the following high-level
strategy: The sender will introduce additional masking on the receiver’s output, which can only be
removed in error-free locations. This masking effectively erases the receiver’s output in locations in
which the receiver’s output is corrupted.

To communicate the correct outputs in the locations with errors, the parties will rely on an addi-
tional protocol which is run in parallel. Given that the number of errors is sufficiently small, the com-
munication cost of this additional protocol will be insubstantial and not affect the overall asymptotic
rate.

We will first address the problem of erasing the receiver’s output in corrupted locations. First, ob-
serve that the receiver knows the locations with errors (i.e. the support of the error vector e). Assume
that the LPN error vector e has a fixed hamming weight ¢ ~ pm, and note that hardness of fixed-
weight LPN follows routinely from the hardness of Bernoulli LPN7. A t-puncturable pseudorandom
function [BGIi4, BCG " 19b] is a pseudorandom function [GGMS84] which supports punctured keys.

That is, given a PRF key K and t inputs x1, . . ., X, we can efficiently compute a punctured key K’ of
size t - poly(A) which allows evaluating the PRF on all inputs excepr x1, . . ., X;. Furthermore, the key
K’ does not reveal the function values at x1, . . . , X4, i.e. PRF(K, x1), ..., PRF(K, x;) are pseudoran-

dom given the punctured key K.
The approach to erase the receiver’s outputs in erroneous locations is now as follows. The sender
chooses a PRF key K and masks both m1; ¢ and m; 1 with PRF(K, 1), i.e. instead of using (m1; o, m; 1)

7See e.g. [Dotis, BCG T 19b]
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as OT-inputs, he uses m:o = m; ® PRF(K, 1) and m:l = m;1 @ PRF(K,i). Assuming that the
sender can somehow communicate a punctured key K’ which is punctured at the locations i1, . . . , i
of the errors (i.e. e, =1 and eiso everywhere else), the receiver will be able to remove the mask from
error-free locat1ons by computing m;,, = m; in @ PRF(K’, 7). In the erroneous locations, however,
m; 1—p, will be hidden from the view of the receiver as PRF(K, i) is pseudorandom even given the
punctured key K.

How can we communicate the punctured key K’ to the receiver with a small communication cost in
such a way that the sender does not learn the error locations 71, . . . , i;? This could be achieved gener-
ically by relying on the punctured PRF construction of [BGI14] and transferring keys using a sublin-
ear private information retrieval (PIR) scheme [CGKS9s, DGI*19]. However, recently [BCG19b]
provided a protocol to achieve this task very efficiently via a two-round protocol communicating only
tpoly(A) bits. In the main body (Section 4.6), we will refer to this primitive as co-PIR, since effectively
it allows to communicate of a large pseudorandom database to a receiver except in a few locations cho-
sen by the receiver.

Finally, to communicate the correct outputs to the receiver in the locations with errors, we will
in fact rely on a two-message PIR scheme with polylogarithmic communication. Such schemes are
knowne.g. from LWE [BV11] and were recently constructed from a wide variety of assumptions [DGI *19],
such as DDH and QR. The idea is as follows: For each error location i; the receiver sends an additional
OT message OT1(b;) using an off-the-shelf low-rate OT protocol (e.g. the basic ElGamal-based pro-
tocol sketched above) as well as a PR message PIR1 (i;). The sender speculatively completes this OT
protocol for each index i (since the index 7; is not known to the sender), collects his OT responses in a
database of size £, runs the PIR sender algorithm on this database, and sends the response back to the
receiver. The receiver will now be able to recover the correct OT, message via PIR, complete the OT
and recover mi]-,b,-]. . We remark that for this protocol to be secure against semi-honest senders, we need

a PIR protocol with sender privacy. However, e.g. the protocols provided in [DGI " 19] readily have
this feature.

Carefully putting all these components together, we obtain a batch bit-OT protocol with rate-1, for
both the sender and the receiver.

4.2.5 EMULATING SMALL SUBGROUPS

We now return to the issue that EIGamal does not provide function privacy for linear functions mod-
ulo 2. Recall that the issue essentially boils down to the fact that the plaintext space of ElGamal is
natively Zy, and when we encode messages in the least significant bits, i.e. encoding a bit b as gb, then
for all practical purposes homomorphic evaluations of linear functions with {0, 1} coefficients are
over Zy, i.e. the resulting ciphertext encodes the result of the function evaluation without reduction
modulo 2.

From an algebraic perspective, this problem is rooted in the fact that since p is prime, Zj, has no
non-trivial subgroup, i.e. it just does not support modular reductions with respect to anything else

than p.
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To approach this problem, we will take inspiration from the domain of lattice cryptography [Regos .
There, messages are typically encoded in the high order bits of group elements, i.e. to encode b in Ly,
we would like to encodeitas b - g However, since p is odd, first have to round % to the nearest integer
in order to get a proper Z;, element, i.e. we encode bviab - [g-‘ . If we could encode b with respect to
5 & Zy, we would get a subgroup of order 2, i.e. for bits b, b’ € {0,1} it holds that

Py, E) _ ! P
(b 5 +0b 2 modp = (b+ b’ mod 2) 7
However, once we round ’% to the next integer, we get essentially the same problem as before: If we per-
form group operations on b (g and b’ (%—‘ , then the rounding errors start to accumulate information
about b and b’ which is cannot be obtained from b + b’ mod 2. Specifically
b {q + b [q modp =b Py L + v E+1 mod p
2 2 2 2 2 2

=b+V mod2)§ + (b —|—b')% mod p.

Thus, now the least significantbicof b [ 5] +b [5] mod pe.g. leaksifb = b’ = 1, something which
cannot be learned from b + b’ mod 2.

Consequently, at first glance the idea of encoding a bit b in the “high-order” bits of a Zyp element
seems ineffective. However, the lattice toolkit still has more to offer. In particular, in the context of
sampling discrete Gaussians from lattices, Peikert [Peiro] considered a technique called randomized
rounding. The basicideais, to give a real number r € R to notalways round to the same valuee.g. [7],
but to sample an integer z close to 7. In [Peiro], this distribution is a discrete gaussian Z on Z centered
atr, i.e. the expectation of Z is r. Such a discrete gaussian is parametrized by a gaussian parameter o,
which essentially controls the standard deviation of the discrete gaussian. We denote Z by [7],.

Now, givenany twor,r’ € Rand oy, 02 > w(y/1og(A)) (more generally the smoothing parameter
of Z), Peikert [Peiro] shows that

[0y + 7], ~s [1 + ”IJw/oﬂog'

In other words, while [ |4, + [1']5, and [r + 7| o753 arenot the same, they are statistically close.

This means that anything that can be learned from [7|s, + [#']|s, could have as well been learned
ything 1 2

from [r + 1’| ,=—=! While this comes at the expense of an increase “error” term with parameter
\/ 07+035

\ /G% + G%, this additive error is very small (of size approx o) controlling the growth of this error
term can be handled by standard techniques.

Returning to our goal of emulating small subgroups in Zj, our approach follows almost instantly:
Instead of encoding a bitb € Zy asb - [5], we will encode it as [b - § | , (forao > w(y/log(A))).

97



For b, b’ € {0, 1} this ensures that

b-Pl [0 2| modp s [(b+ 0 mod2)- P
o8+ |5 modp |

5 > ZJ\@O mod p.

p

Thus, we have ensured that [b- 5] + [b'- 2 , mod p does not leak more information than b +
b mod 2.

FUNCTION-PRIVATE EVALUATION FOR ELGAMAL ~ We will now briefly discuss how this idea leads
to a modulo 2 function private homomorphic evaluation procedure for ElIGamal. Say we have two
ElGamal ciphertexts c; = (¢",h" - ¢") and ¢ = (g'2, "> - g*) for a public key pk = (g, /) and
we want to homomorphically evaluate the function f(x1,x2) = a1x1 + a2x2 mod 2 (foray,ay €
{0, 1}) on this pair of ciphertexts. In the first step, we randomly encode the function f as

flarx) =x - [mb| +@=x)- 10l + 2 [af| +1-x)- 10,
noting that this is still a linear function (chosen from a distribution). Homomorphically evaluating f
on the ciphertexts ¢ ¢, we obtain a ciphertext ¢’ encrypting

forb) =br- |mE] 41 =b)- o), +bi- (@] +@-v)-T0l,

- o] ],
p

S8 [(blal + b1ap; mod Z)ZJ iy
In other words, this ciphertext could have been simulated knowing only the function resultf(by, b1) =
bia; + byap mod 2, establishing that this homomorphic evaluation procedure is a function private.

One aspect to note is that while the messages by, by are encoded in ¢, ¢3 in the “low-order-bits”
via g™ and g%, the function result f(by, by) encrypted in ¢’ is encoded in the high order bits, i.e. it is
encoded as &~ ¢f(t12) 3. This makes it necessary to change the decryption procedure: Let ¢’ = (¢}, c})
and s be the secret key. To decrypt ¢’ we compute f = ¢} - (¢})~° ~ g[f(51,52)~’2—’J , we test if f is close
t0 g0 = 1 or glP/?]. This recovers f(s1, s2), as the error introduced by the rounding operation is of
size at most poly(A) via standard gaussian tail bounds.

Finally, we remark this “high-order-bit” encoding is still compatible with EIGamal ciphertext com-
pression, i.e. we can still compresshomomorphically evaluated batch EIGamal ciphertexts down asymp-
totically optimal size, using a slightly different compression mechanism. This mechanism is discussed
in Section 4.5. We expect this technique to have additional applications. As one immediate appli-
cation, it allows to upgrade of the key-dependent message secure encryption scheme of Boneh et
al. [BHHOo08] to support arbitrary linear functions modulo 2.
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4.3 DEFINITIONS

In this chapter, we consider the two-message oblivious transfer (OT) with an overall (almost) optimal
rate; where the sender has input (mg, m;) € {0, 1}? and the receiver a choice bitb € {0,1}. In the
end, the receiver learns the bit 71, and nothing else; the sender learns nothing about b. We define the
OT in the plain model as follows.

Definition 4.3.1 (Two-message OT). A two-message OT protocol between a sender and a receiver
can be defined as a tuple of three PPT algorithms OT = (OTR,OTS,0TD). Let A be the se-
curity parameter and k = poly(A). The receiver computes (oty,st) < OTR(1*,b) with his
inputb = (by,...,bx) € {0,1}* and sends ot; to the sender. The sender computes oty ¢
OTS(l/\, otq, (mo, m1)) where (mo, ml) = ((m071, ce ,mka)(WllJ, e ,mLk) € ({0, 1}k)2 and
sends to the receiver otp. At theend, the receiver decodes the message to getmy, = (11, 1, . . ., My, k) =
OTD(oty, st).

In terms of security, OT should implement the following functionality.

OT FUNCTIONALITY. The functionality FoT is parametrized by a integer k = poly(A) and works
as follows:

* Receiver phase. R sends b to Fo1 where b € {0, 1}*.

+ Sender phase. S sends (mg, my) to For where mg, m; € {0, 1}¥. Fo sends {my, ;bie to
R.

4.31 DisTRIBUTED GGM-PPRF CORRELATION

Let PPRFgem = (KeyGen, Eval, Puncture, EvalPunct) be the GGM-PPRF scheme based on
[GGMS6]. The distributed GGM-PPRF correlation functionality [BCG 19a] considers two par-
ties: A receiver with input @ € {0,1}* and a sender with input f € F, and a GGM-PPRF key K.
The functionality outputs a punctured key K, and a hardwired value § — PPRF.Eval(K, a) to the
receiver. We now present the formal definition of the functionality.

D1sTRIBUTED GGM-PPRF CORRELATION FUNCTIONALITY. The functionality Fpprr-gom is
parametrized by integers £, p, v € N. Moreover, let PPRFggm = (KeyGen, Eval, Puncture, EvalPunct)
be the GGM PPRF scheme with input space {0, 1}* and output space F,r. The functionality works

as follows:
* Receiver phase. R sends a to Fpprr-gom where v € {0, 1}6.

* Sender phase. S sends (B, K) to Fpprr-gom where f € Fyr and K <— PPRF.KeyGen(1%).
]:PPRF—GGM sends Ka — PPRF.Puncture(K, 0() andy — ﬁ — PPRF.EV3|(K, 0() toR.
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A protocol that implements the functionality Fpprr-gGM is presented in [BCGT19a]. The pro-
tocol uses a pseudorandom generator (PRG) and an oblivious transfer (OT)?® protocol in a black-box
way. Moreover, security is proven against semi-honest adversaries. Finally, the protocol presented
runs in two rounds (assuming that the OT runs in two rounds) and achieves communication com-
plexity of poly(A, £).
For convenience, we will denote such a protocol by PPRF-GGM = (PPRF-GGM.R;, PPRF-GGM.S, PPRF-GGM.R;)

where:

* PPRF-GGM.R; (a) receives asinputa € {0, 1}*. It outputs a message pprf-ggm; and a state
st.

* PPRF-GGM.S(B, K, pprf-ggm; ) receives as input f € Fyr, akey K PPRF.KeyGen(1%)
and a message pprf-ggm;y. It outputs pprf-ggm,.

* PPRF-GGM.Ry(st, pprf-ggm; ) receives as input a state st and a message pprf-ggms. It out-
puts a punctured key K, and a value y € Fr.

Using the two-round OT scheme of [PV'Wo8], we can obtain a black-box construction for dis-
tributed GGM-PPREF correlation scheme under the LWE, DDH or QR assumptions.

4.4 COMPRESSION-FRIENDLY SUBGROUP EMULATION vIA GAUSSIAN ROUNDING

We will now provide our new subgroup emulation technique. We first define the gaussian rounding
functionality.

Definition 4.4.1. Letd > 0. For any x € R, the gaussian rounding [x] , is a random variable sup-
ported on Z defined by

DCJG =X+ DZ*X,G-

In other words, [x] ; is a discrete gaussian centred on x € R but supported on Z.
We will use the following convolution lemma which provides a simulation property for gaussian
rounding.

Lemma 4.4.1. Let € > 0 be bounded by a sufficiently small constant and let 61,02 > 1,(Z). Then it
bolds for all x,y € R that

[xjal + (ngz s [x"‘?/J\/m-

It immediately follows from Lemma 4.4.1 that it holds for every integer p > 2 that

[xjol + ﬁ/ng mod p ~5 [x +]/J\/G%+76% mod p.

8The OT protocol is not required to have overall rate 1.
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Proof. The lemma follows routinely from Corollary 1.3.3, by definition of [ ; it holds that

(fofl + WJ(;Z =x+y+ DZ—x,Ul + DZ—y,@
Rs X + Y + DZ—x—y,o3
= ’Vx +yJa3 *

O

Lemma 4.4.2. Letp > q > 2 be integers with q < 25, and let 6 > 1,(Z) for a negligible €.
Letf : Zi§ — Zq be given by f(x1,...,Xy) = i q@iXi + Cforay,...,a,,¢ € Ly Define the
randomized _ﬁmctionf: {0, 1} — Ly via

f11, . Xg) = izk: (xi,j : P : pﬂiJa + (1 —xij) [Oj(j) + PJCL.

Then it bolds for all x1 1, . .., X € {0,1} thar

k
f(xl,la-- xnk |V (le,] an]2]>‘ .
=1 2k lo

Proof. Itholds routinely that

n

frr, o) =3 <xi,j : [2]' : ZaiJg + (1 —xiy) [OJ(;) - chJa

i=1 j=1

=

=1 =1 4 V2nk+1o

B

=1 \2nk+1o

where in equations (4.1) and (4.2) we have used Lemma 4.4.1. O
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4.5  RATE-1 CIRCUIT-PRIVATE LINEARLY HOMOMORPHIC ENCRYPTION

In this section, we define circuit-private LHE and present constructions based on LWE, DDH or QR.
All constructions achieve rate 1.

Definition 4.5.1. A (packed) linearly homomorphic encryption (LHE) scheme LHE over a finite group
G is composed by a tuple of algorithms (Keygen, Enc, Eval, Shrink, DecShrink) such that:

- KeyGen(1, k) takes as input a security parameter A and k € N. It outputs a pair of public
and secret keys (pk, sk).

* Enc(pk,m = (my, ..., my))takesasinputa publickey pkand amessagem = (my,...,my) €
GF. It outpurs a ciphertext ct.

- Eval(pk, f, (cti, . . ., cty)) takes as input a public key pk, a linear function f : (G¥)¢ — GF
and / ciphertexts (cty, . . ., cty). It outputs a new ciphertext ct.

» Shrink(pk, ct) takes as input a public key pk and a ciphertext ct. It outputs a new shrunken
ciphertext ct’.

- DecShrink(sk, ct) takes as input a secret key sk and a shrunken ciphertext ct. It outputs a
message m.

For simplicity, we define the algorithm Eval&Shrink(pk, f, (ct; . .., cty)) which outputs a cipher-
text ct and is defined as

Eval&Shrink(pk, f, (cty . .., cty)) = Shrink(pk, Eval(pk, f, (ct1, . .., ctr)))

for any linear function f.
We require the following properties from a (circuit-private) packed LHE: Correctness, semantic
security, compactness and circuit privacy.

Definition 4.5.2 (Correctness). A packed LHE scheme LHE is said to be correct if for any £ € N, any
messages my, . . ., my and any linear function f : (G¥)* — G* we have that

(pk, sk) < KeyGen(1%,k)
Pr |m < DecShrink(sk,ct) : ct; + Enc(pk, m;) fori € [/] =1
ct < Eval&Shrink(pk,, f, (cty ..., ctp))

wherem <« f(my, ..., my).
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Definition 4.5.3 (Semantic Security). A packed LHE scheme LHE is said to be semantically secure if
forall A € N, all k = poly(A) and all adversaries A = (\Ag, A1) we have that

(pk, sk) < KeyGen(1%,k)
. (mOa my, St) — AO(pk) _ 1
Pr |b < Aj(st,ct) : bes 0,1} 5 < negl(A).

ct «+ Enc(pk, my)

Definition 4.5.4 (Compactness). We require that a packed LHE scheme LHE has the following com-
pactness properties:

* For (pk, sk) < KeyGen(1*, k), the size of the public key |pk| is bounded by k - poly(A).

* For any linear function f : (GF)! — G and any (my, ..., my) € (GF)¢ we have that

lim inf fimy, ..., my)|

1
A—oco  |Eval&Shrink(pk, ,f, (ct1 ..., cty))] -

for sufficiently large k, where (pk, sk) <— KeyGen (14, k) and ct; «— Enc(pk, m;) fori € [£].
In this case, we say that the scheme has a rate-1.

We also need that the packed LHE scheme fulfills circuit privacy (in the semi-honest case).

Definition 4.5.5 (Circuit Privacy). A packed LHE scheme LHE is said to be circuit-private if for all
messages (my, ..., my) € (G¥)* and all linear functions f : (G¥)¢ — GF, there exists a simulator
Sim such that for all adversaries A we have that

(pk, sk) < KeyGen(1%,k)
Pr |1+ A(pk,sk,ct) : ct; + Enc(pk, m;) fori € [/] -
ct < Eval&Shrink(pk,, f, (cty ..., ctp)) < negl(A)
- (pk,sk) < KeyGen(1% k)
Pr [1 + A(pk, sk, ct) : &t < Sim(pk, i)
wherem <« f(my, ..., my).

In other words, since Sim does not use f to compute ct, no information about it is leaked from ct

(apart from what is trivially leaked by f).

ENCRYPTION OF MATRICES. Above, we defined LHE that supports encryption of vectors m €
GK. We can easily extend the definition to support encryption of matrices M € G for any @ =
poly(A): Given a public key pk, encryption Enc(pk, M) of M is defined as

| \
Enc(pk,M) = Enc(pk,m(l)) Enc(pk,m(“))

103



where m( is the i-th column of M.

4.5.1 CONSTRUCTION FROM LWE
Before sketching the scheme, we present the LWE assumption [Regos].

Definition 4.5.6 (Learning with Errors). Let1n,q € Z. The LWE assumption holds if for any PPT
adversary A
IPr[1 < A(A,sA +e)] — Pr[l < A(A,u)]| < negl(A)

forall m = poly(n), where A < ngm, S < Zg, e < DnZ1,a and u < Z;”.

When we consider 0 = Cq > 21/n, the LWE problem is at least as hard as solving the approximate
shortest independent vector problem to within a factor of O(n/C) [Regos].

SHRINKING CIPHERTEXTS

The work of [BDGM19] shows how to shrink LWE-based ciphertexts of the form (Ar, b1r+[q/2 |m;,
[9/2]my) (where A < Z"*™, b; are LWE samples and r is a short vector). The resulting shrunken
ciphertext is composed by (Ar, by, ..., by) where by, ..., b € {0,1} and thus the rate tends to 1
when we consider large k.

Before presenting the result of [BDGMi19], we first need to define relaxed correctness for a standard
LHE (asin [BDGM19]). A standard LHE is an LHE where the algorithms Shrink and DecShrink are
replaced by a decryption algorithm m <— Dec(sk, ct), and it is not required to have rate 1.

Definition 4.5.7 (Relaxed correctness). Let LHE = (KeyGen, Enc, Eval, Dec) be a (standard) LHE.
We say that LHE is correct with B-noise if

Tm + e < Dec(sk, Eval(pk, f, (Enc(pk,my), ..., Enc(pk, my)))

where T is an encoding matrix and ||e|| < B.

Lemma 4.5.1 ((BDGMi9]). Ler LHE = (KeyGen, Enc, Eval, Dec) be a (standard) LHE that is
correct with B-noise. Additionally, assume that the ciphertexts of the scheme are of the form (c1, ),
the secret key is of the form S € Z],;X” and noisy decryption works by computing ¢ — Scy. Ifq > 4kB
then there exist a correct shrinking algorithm (Shrinkywe, DecShrinkywe ) for the packed LW E-based
LHE scheme.

CircuiT-PRIVATE LHE rFroM LWE.

We now present the circuit-private LHE from LWE. The scheme is a hybrid between the packed Regev
PKE [GPVo8] and GSW PKE [GSW13], together with the circuit-privacy technique of [BAMW16].

We present a scheme supporting plaintext space {0, 1}¥. We later briefly explain how we can extend
the scheme to any g = poly(A).
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We will need the following ingredients: Let (Shrinkpwe, DecShrinkwe ) be the pair of algorithms
from Lemma 4.5.1. Let 0, &, B, q, m, n, t, k be polynomials in A. Let g;}j be the (randomized) func-

tion defined in Section 1 that receives v € Zy as input and outputs x = D 1 , for some
q bl

8)+8 '(0)
Yy = O(1). As defined in Section 1, let G; be the matrix with k rows which is zero everywhere except
for the i-th row which is equal to g = (1,2,22,...,2"), and let G; be the matrix with j rows and
where every row is equal to g.

KeyGen (14, k) :

* Sample A <= Z;*™, S < ZSX” and E < Dlggm. Compute B = SA + E.
* Output pk = (A, B) and sk = S.

Enc(pk,m = (my,...,my) € {0,1}5):
* Parse pkas (A, B).
+ Sample R < D!, Compute C; = AR and C; = BR + Y}, m;G:.
* Outputct = (Cy, Cp).

Eval(pk,f, (ct1, ..., cty))

* Parse pk as, fas f(xq,...,X¢) = Zle a;x; + b, wherea = (ay,...,a;) € 75,
b € {0,1}*and ct; as (C1,i, Ca).

+ Compute
¢ q T _
¢t = Cij gk (30) + (G Cu) 8ob(0) + Ay]
j=1
and
¢ T _
Q=) (Cz,j gl (ga]-) + (Gr — Cay) - gy (0)T + By]-T> + gb
j=1

wherey; < DY .
+ Outputct = (c1, ).
Shrink(pk, ct) : Outputct « Shrinkpwe (pk, ct).
DecShrink(sk, ct) : Output m < DecShrinkpwe (sk, ct).

We now analyze the construction presented above. We start by showing that the scheme is correct.
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Lemma 4.5.2 (Correctness). Letq = 24 > 4k (2ayt + B) Lomv/k forsome q' € Z. Then the scheme

presented above is correct.

Proof. Let (pk,sk) < KeyGen(1%,k) and ct; = (C1,i,C2,i) < Enc(pk, m;) be well-formed ci-
phertexts for all i € [¢]. We have to show that

m < DecShrink(sk, Shrink(pk, Eval(pk,f, (ct1,...,cty))))

where m = Zle am; + b %f(ml, ce mg).
Let (c1, ¢2) < Eval(pk,f, (ct1, ..., cty)). A routine calculation shows that

l
a=A (DR (g (%ﬁ) - 8;5(0))T +y;
j=1
and
¢ ¢
=B Y R (g (1a) - gr‘nb(O))T v |+ 3 (Y ami+b
=1 P

where the last equality holds because 2|g.
We first show that the scheme meets the conditions of Lemma 4.5.1. After computing ¢; — S¢q we
obtain

l 12

q -1(4 -1 Toor

2 Za]m] +b | +E Z Rf <grnd (511]) ~ 8nd (0)) + Yi

j=1 j=1
T

Lece! = E <Zf:1 R; (g;}i (%a]-) - g;&i (0)) + y]T) By Lemma 1.3.1, each row of R; has

norm at most av/t, the vectors g;a (%aj) , g;a (0) have norm at most /1, y; has norm at most
B+/m and each row of E has norm at most 0/m. Hence

|e'l| < (ayt + p) tomV/k.

Sinceq > 4k (2ayt + B) Lom/k then we are in the conditions of Lemma 4.5.1. Thus, we conclude
that
m < DecShrink(sk, Shrink(pk, (c1, ¢2)))

wherem = Zle aim; + b < f(my, ..., my) and the scheme is correct. O

Semantic security can be established by relying on the smoothing lemma together with the LWE
assumption [Regos, MRo4].

Lemma 4.5.3 (Semantic security). Assume that the LWE assumption bolds for 0 = Cq > 2y/n
Jor some C € R and m = poly((n+k)logq). Alo, let a« > w(\/logm). Then the scheme is
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semantically secure.

Proof (Sketch). In the first hybrid, we replace the publickey (A, B) by (A, U) for a uniformly chosen
U and this change goes unnoticed by the LWE assumption. Next, we can use the smoothing lemma
[Regos, MRo4, GPVo8] to replace (A, U, AR, UR) by (A, U, Vy, V) where V1, V3 are uniformly
chosen. Finally, we can conclude that the encrypted message is statistically hidden and the result fol-

lows. O

Before presenting the proof that the scheme is circuit private, we present alemma that we will need.

Lemma 4.5.4 ([BAMW16, AR16]). Foranya € Z, and any matrixE € <M, lerr = é)(maxiHe,‘H\/X)
(where e; are the rows of E). Then

E-g @) +y ~f

wherey < D%,r fs D%,r’ and v =ry/1+ maxi||ei||2,

Lemma 4.5.5 (Circuit-privacy). Ler f = ( 2At). Then the scheme presented above is circuit
private.

Proof. To prove circuit-private, we show how we can simulate evaluated ciphertexts. We first present
the simulator Sim(pk, m):

Sim(pk, m) :

* Sampler < D7 . Computec; = AtTandc; = Bt/ +Imwherey = ‘B\/ﬁ <1 + (a\/f)z)
andm = f(my, ..., my).

- Output ct + Shrinkywe (pk, (c1, 2)).

We now prove that the simulated ciphertext is indistinguishable from a evaluated ciphertext.
First, note that evaluated ciphertexts are of the form

Z Clv] grnd ( )T - (c” - Cl,j) : g;&i(o)T + Ay]T

and
VA

T _
Q=) <C2,j  Brnd (gﬂJ) + (Gr — Ca) - grog(0)" + Bij> " gb'
=1
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Writing in matrix form, each term of the sum is of the form
Cij\ -1 /9.\" G,\ (Ci 1T, (AT
<C2,j> 8rnd (2(1]) + Gk C2,j 8ind (O) + B Y]
AR; T G AR; A
_ ] -1 (9 n ] —1 /T T
= = + = | — 0)" + -
(BR]' + 3 mj,iGi> Bmd <2a> ((Gk> (BR]' + 3 mj,iGi>) Bna(0) <B> Vi

(A (N 5 o—1nT T 0
“(3) (m s () - mosor o) (5

where m] = (m]'71, ... ,m]'J).
It follows that

2
/ / / /
foryjp < DZ,ﬁ/ﬁ’ 1, Tjp ¢ Dg,r’/\/i and 1, D7, wherer’ = /1 + (av/t)". The first
and the last steps follow from the fact that the sum of two independent discrete gaussians is statistically
close to a discrete gaussian (that is, Vi s ¥Yi1 T Y2 and 1‘]{ RS 1‘]{71 + r]'-72). The second step follows
from Lemma 4.5.4.

Hence,

A\ (o o1 (AN o o1 mT L oT 0\ __ (A1 0
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From this, we conclude that

<C1> B f: ( Lj grnd (%a]) ( CL]) grnd(O)T * ijr) + <‘70 >
@ =1 \“2j 8 (30 ) + (G — Cy)) 8md(0)T+Bij 2b
¢

~3(5) 7 (g (zlegjmﬁb))

7 ()

where ¥ +$ D% v The last step follows from the fact that the sum of ¢ independent discrete gaus-

= P

sians with parameter v’ (where ¥’ = /1 + (oc\/f)z) is statistically indistinguishable from a discrete

gaussian with parameter Vir'. O

CIPHERTEXT RATE. It is easy to see that the rate of the ciphertext tends to 1 for large enough k by
relying on Lemma 4.5.1. It is also easy to see that the size of the publickey pk = (A,B = SA+E) €
Zg=™ x Z";X’” is bounded by k - poly(A).

LARGER PLAINTEXT SPACE. In the construction presented above, the plaintext space is Zl?f. The
construction can be extended to support plaintext space Z’; for any p = poly(A) by choosing the
LWE modulus g of the form g = pp’ where p,p’ are co-prime and encoding the encrypted message

by q/p.
4.5.2 ConNsTRUCTION FROM DDH

In the following, let G be a (prime-order) group generator, that is, G is an algorithm that takes as an
input a security parameter 1 and outputs (G, p, g), where G is the description of a multiplicative
cyclic group, p is the order of the group which is always a prime number unless differently specified,
and gisa generator of the group. In the following, we state the decisional version of the Diffie-Hellman
(DDH) assumption.

Definition 4.5.8 (Decisional Diffie-Hellman Assumption). Let (G, p, g) +$ G(11). We say that the
DDH assumption holds (with respect to G) if for any PPT adversary A

Pr(l < A((G,p,g), (§",8",8™))] = Pr[l « A((G,p,8), (88", 8°))]| < negl(A)

where a,b, ¢ <$ Z.
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SHRINKING CIPHERTEXTS.

We first present how we can shrink DDH-based ciphertexts to achieve rate 1. The shrinking mechanism
presented below is a modification of the one presented in [BBD " 20] (which is itself based on previous
works [BGI16, DGI19]).

Let (G, p,g) <$G(1")andk € Z. Consider an El Gamal publickey of the form pk = (g, (h1, ..., hx)

(g, (g1, ...,8%) € G forxy, ... xp < Zy (here,x = (X1, ..., xx) is the secret key). Consider
the following modified El Gamal encryption algorithm where a ciphertext form = (my,...,my) €
{0,1}* is of the form ct = (c1, (21, - - -, C24)) € Gl wherec; = ¢"and ¢p; = hig™ilP/2)]s 0
We now show how to compress ciphertexts of this form.

We will need the following ingredients: Let B,T € poly(A) and PRF = (KeyGen, Eval) be a
PRF that maps ¢ € G to {0, 1}* for some T € Z. We also define the function LEq_ : G*> — {0,1}
which receives two group elements o, g1 and outputs 1 if go < g1 and 0 otherwise, for some order
relation < (e.g. the lexicographic order).

Shrinkppn (pk, ct) :

* Parse pk = (g, (I, ..., k) and ct = (c1, (c2,1,- .-, Co)). Letw = gWZJ.

+ Sample a PRF key K <% PRF.KeyGen(1%) such that the following conditions are si-
multaneously satisfied:

1. Foreveryi € [k]andj € {—B, ..., B} we have that
PRF.Eval(K,cy; - ¢/) # 0and PRF.Eval(K, ;- w - g/) # 0.
2. Foralli € [k] thereexists £ € {B 4 1,..., T} such that
PRF.Eval(K, c;; - g*) = 0 and PRF.Eval(K, ¢y - w - g*) = 0.
* Foreveryi € [k],let g ;,61,; > 0 be the smallest integer such that
PRF.Eval(K, ¢y, - §%°%) = 0 and PRF.Eval(K, cp; - w - g°) = 0.

Let Qi = C- géo!i and Q1 =0Cpi-W- gél!i. IfLEq<(a07i, 0(1,1') =0, thensetb; = 0.
Else, setb; = 1.

. Output ct = (Cl, K, (b1, cee ,bk)).
DecShrinkppp (sk, ct) :

*+ Parsesk = x = (x1,...,xx) and ct = (c1, K, (b1,...by)). Letw = gWZJ.

» Foreveryi € [k], compute f,; = ¢;' and By ; = ¢}’ - w.

Note that [-]  is defined in section 4.4.
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* Foreveryi € [k], find the smallest integers y ;, 1 ; > 0 such that
PRF.Eval(K, B, ; - %) = 0and PRF.Eval(K, B, ; - /) = 0.

Letag; = By - glviand @y ; = By /i IFLEq (@, a1 ;) = b, seem; = 0. Else,
setm; = 1.

* Outputm = (my, ..., ny).

Lemma 4.5.6 (Correctness). Let B = poly(A) be such that B > Aco+1. Then the shrinking procedure
presented above is correct.

Proof. Wehave to show thatm <— DecShrinkppn (sk, Shrink(pk, ct)) forct = (c1, (2,1, .-, C2k))
where c1 = ¢" and ¢a; = higl™i#P/2)s fori € [K].
For that, we will first show that

(@0 =i N ;= aq ;)
V
(@i =a1i AN = ap;)

We have that ao,i 7& aq .

The first observation is that 0 € {zg — (B —1),...,2z0+ (B — 1)} where zg = [0/, except with
negligible probability. Thisis because B > Ao +1and |zp| < Ao except with negligible probability.”
ThusO € {zo — B,...,z0 + B}

Likewise, p/2 € [Zp/z —(B=1),zp2 + (B — 1)] where zp;2 = [p/2], and thus [p/2] €
{Zp/z —B,... 1 Zpj2 + B}.

We divide the proof in two cases: Either m; = 0 or m; = 1. We start by analyzing the case where
m; = 0.

Casem; = 0. Assume that m; = 0. We first note that dp; = B ;- 870 = ¢’ - g/0i = hf - g0,
and ag; = hf - g% i+00i where z0; = [m;i(p/2)], = [0],We prove that &g ; = ag ;. To prove this,
it is enough to show that Yo = 20+ 00,i- Observe that, if this is not the case, then one of the two
cases must be true:

(i) yo; < [mi(p/2)], + 60 = [0], + 6o, If this happens then one of the three cases must
hold:

(a) 7o, < z0,i — B: This case cannot hold since 0 € {20 — B,...,z0;+ B} (except with
neghglble probability) and Yo.i > 0. This implies that Yo.i 2 z,; — B, except with
negligible probability.

°Recall that for a gaussian random variable X centered on 0 and with parameter o, the probability that

|X| > Ao is negligible in A.
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(b) zo; — B <7y, < zo,; + B: This case cannot hold since it violates condition 1.
(c) zo,i+B < yy; < 2o,i+00,: This case violates condition 2 since 69 ; > B is the smallest
integer that fulfills PRF.Eval(K, 1} - g70it00i),

(ii) Yoi > 20i+ 00,i: This case cannot happen as Vo, is the smallest integer (greater than 0) such
that PRF.Eval(K, K - g'0i) = 0.

Showing that, if m; = 0, then &1; = ay; follows an identical reasoning. We conclude that, if

m; = 0,thenag; = ag; AN a1; = ay ;.

CasEm; = 1. Now assume that m; = 1. In this case, we show that a1 ; = ap;and ag; = ay ;.

First, note that @1 ; = h - gWZJ”U and ag; = N - g/ where zppi = [mi(p/2)], =
[p/2] ;- We prove that &1 ; = ap ;. To show this, we have to prove that [p/2] + V1= Zpj2i+ 0,
Assume that this is not true, then one of the two cases must happen:

(i) |p/2] + V1.0 < Zpj2,i + 0o it If this is the case, then one of the three cases must happen:

(a) [p/2] +y1; < zpj2i — B: This case cannot happen because |p/2] € {z,,; —
B,....zppi+ B} except with negligible probability and V1> 0.

(b) zppi — B < lp/2| + V1i < Zps2,i + B: This case violates 1 since fqr any valuej €
{zpj2i = B, ..., 2y, + B}, we have that PRF.Eval(K, h - g%/21 - ¢l) 5 0.

(©) zpp2itB < [p/2]+Y1; < 2p2,i+00,i: This caseis also impossible since, by condition
2, 8o ; is the smallest integer (greater than 0) such that PRF.Eval (K, K- g/2i.g%.) = 0.

(i) [p/2] +¥1,; > 2zps2,i+ ot Assume that this is the case. Then ), ; is not the smallest integer
greater than 0 such that PRF.Eval(K, hlg p/21+710y = 0.

If m; = 1, showing that g ; = a1 ; follows an identical reasoning as above.

WraPPING UP.  We proved that if m; = 0 then ag; = & and a1 ; = @1 ;. On the other hand, if
m; = 1,then g ; = a1 ;and a1 ; = &g ;. Thus, if the encrypted value is m; = 0

b; = LEq_ (a0, a1,;) = LEq (a0, 1)
and the value output by DecShrinkppy is 0. Else if 7; = 0
bi = LEq (a0, a1,i) # LEq(@0,i, a1,)
and the value output by DecShrinkppy is 1. O

Lemma 4.5.7 (Runtime). Lezr PRF be a PRF, T = log(8Bk) and T = 2"Alog, (k) + B(1 + 4k).
Then, the shrinking algorithm Shrinkppn described above terminates in polynomial time, except with
negligible probability.

112



Proof. The analysis of the runtime follows the same reasoning as the analysis of the runtime of the
shrinking procedure from [BBD*20].

We have to show that the algorithm Shrinkppp is able to find a PRF key K that fulfills both condi-
tions in expected polynomial time, since all other subroutines run in polynomial time. Here, we treat
PRF.Eval as a truly random function. The same analysis is true for the case where PRF.Evalis a PRF
except with negligible probability.

We first lower-bound the probability that a certain PRF key K +— PRF.KeyGen(1%) satisfies con-
dition 1. That s,

PRF.Eval(K,c; - ¢/) #0 1 4Bk
Pr |Vie [k],Vj € {-B,...,B}, A ‘ > <1—T>
PRF.Eval(K,co;-w-gl) #0

4Bk
>1-

1 1
:1—7:—,

2 2

Here, the first inequality comes from the fact that the outputs of PRF.Eval(K, -) are uniform and
independent over {0, 1} and the second inequality is simply Bernoulli’s inequality.

We now upper-bound the probability that condition 2 is not met given that condition 1 happens.
Let S be the set of PRF keys for which condition 1 is satisfied. Then

PRF.Eval(K,cp; - ¢/) #0
Pr({JielkVie{B+1,...,T}: Y . KeS
PRF.Eval(K,co;-w-g/) #0

k PRF.Eval(K, ¢, - g/) # 0
<Y Pr|vje{B+1,...,T}: vV ' KeSs
i=1 PRF.Eval(K, c2i~w-g]) #0

k

1P : —(T—B—4Bk) /2 —Al
1 —_ > S ! e Oge =

Here, the firstinequality is a simple consequence of the union bound and the second inequality follows
from observing that K fixes PRF.Eval(K;, -) on at most 4Bk points.

We conclude that, after A iterations of the protocol, the probability that all the keys do not fulfill
both conditions is negligible in A. O

CIPHERTEXT RATE.  Afterapplying Shrinkppn we obtain a ciphertext composed by ct = (e, K, (by, . ..

G x K x {0,1}*. Hence,

letl _ Jeal + Kl + by, b _ 24 +k 22
im| k -k k
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which tends to 1 for large enough k.

FuncTion-privaTE LHE FROM DDH.
We now present our circuit-private LHE over Z, based on DDH.
KeyGen(1%,k) :

* (G.p.g) $6(1Y)

* Samplexy, ..., x; <$ Z,. Compute h; = g*i.

* Output pk = (G,p, g, h1,... , hx) andsk = x = (x1,...,xg).
Enc(pk,m = (mq,...,my)) :

* Parse pkas (G,p,g,h, ..., hy).

* Sample 7 < Z,. Compute ¢; = ¢"and 3 ; = hjg"™ fori € [k].

* Outputct = (c1, (c2,1,---,Cok))

Eval(pk,f, (ct1, ..., cty))

* Parsepkas(G,p, g, I, ..., ), fasf(x,...,x¢) = Zle a;x;+bfora = (ay,...

Zg andb € ZS and ct;jas (¢4, €2 ;) where ¢ j = (21,45 -- -, Coi)) fori € [£].
. Compute ct = (51, (5271, ce ,62,1)) where
_ a;§ _
€1 = H <C1Fi i, (& CLil)mJ”) -8
i=1
and
= - [a:5], ~1y[0] [0:15 ] (b5 | t
= O (0 gy o (L L) o 1
=1

for t < Z;, and where ® denotes the component-wise multiplication.

* Output ct.
Shrink(pk, ct) :  Output ct < Shrinkppn (pk, ct).

DecShrink(sk, ct) : Output m <— DecShrinkppn sk, ct).
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Correctness and expected polynomial runtime of the LHE described above is guaranteed by Lemma
4.5.6 and Lemma 4.5.7 by setting B > Ao(v/2€ 4 1)). Semantic security of the scheme can be
established by a simple reduction to the DDH assumption in a similar way as in many previous works
(the reduction is similar to the one that proves that El Gamal is semantically secure). It is also easy to
see that the scheme has rate-1 for large enough k.

We now show that the scheme is circuit private. Essentially, circuit privacy can be established by
resorting to Lemma 4.4.2.

Lemma 4.5.8 (Circuit-privacy). The scheme presented above is circuit private.

Proof. We need to show that we can simulate evaluated ciphertexts. We first present the simulator
that receives m <— f(my, ..., my).

Sim(pk, m)
* Sample t <% Zgand a; = [ﬁll%J NTasTR

» Compute ct = (€1, (C2,1,...,C2,1)) where &1 = g'and &; = hig%. Outputct’ <
ShrinkDDH(pk, C~t)

We now show that simulated ciphertexts are statistically indistinguishable from the ones output by
Eval.
Letct; = (g, (hy g™, ... ,hzfgmkvf). The output of Eval is (1, (C2,1, - - -, €2.¢)) where

& = ng(r,- [ﬂing—ﬁ'fng)H

and

= i (rifaig | =ril0l )+ | G35 (myafaik | +(=my [0, )+[bi5 ],

€2,

8
By Lemma 4.4.2 we have that
l
; (mjj lrﬂigJ . + (1 —mj;) (OJG) + {bing R~ {n}]gJ e

where 11} is the j-th coordinate of f(my, . .., my). Hence,

ngzl(ﬂ’lm‘ lyaigjg""(l_mj,i)'—ojg)'i"(bigjg ~ g(f(ml,,mg)gJ Neizsrl

Moreover, since t <$ Zj, then
(& ) =~ (¢, h")
forany z € Z,. We conclude that

(Elv (EZ,L ) EZ,k)) s (gt7 (hiigalv s 7hltcgak)
where a; = [ﬁing Ao O
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LARGER PLAINTEXT SPACE.  Asin the LWE case, in the construction presented above, the plaintext
space is Zg. Both the shrinking algorithm and the function-private LHE schemes can be extended to
support plaintext space Zz where g = poly(A) and g = 2" for some v € Z (the constrain of g being
a power of 2 comes from Lemma 4.4.2)

4.5.3 CONSTRUCTION FROM QR

The scheme presented in this section is the packed version of the scheme from [BGio] together with
the shrinking technique from [DGI19].

In the following, let N is a Blum integer if N = p- g for some primes p and q such thatp (mod 4) =
g (mod 4) = 3. Moreover, we say p and g are safe primes if p = 2p’ + 1 and g = 24’ + 1 for some
prime numbers p’, . We denote by Jy the multiplicative group of the elements in Z}; with Jacobi
symbol +1 and by QRy the multiplicative group of quadratic residues modulo N with generator g.
Note that QRy is a subgroup of Jn and they have order @ and @, respectively, where @ (-) is
Euler’s totient function. It is useful to write Jy >~ H x QRy;, where H is the multiplicative group

(£1, ) of order 2. Note that if N is a Blum integer then gcd (2, @) =1land -1 € Jy \ QRy.
We recall the quadratic residuosity (QR) assumption [GM382].

Definition 4.5.9 (Quadratic Residuosity Assumption). Let N be a uniformly sampled Blum integer
and let QR be the multiplicative group of quadratic residues modulo N with generator g. We say
the QR assumption holds with respect to QR if for any PPT adversary A

IPr[1 + A(N, g,a)] — Pr[1 < A(N,g, (—1) - )]| < negl(7)

where a <3 QRy.

SHRINKING CIPHERTEXTS.

We recall the shrinking mechanism of [DGI*19]. Leta (packed) ciphertextct = (g, (—1)71h7, ..., (—1)%h!) =
(c1,02,15- -, €2 k) and let < be an order over Jy (e.g., the lexicographic order). The shrinking mech-
anism of [DGI"19] simply outputs 0 if ¢; ; < —cp; and outputs 1 otherwise.

Lemma 4.5.9 ((DGI " 19]). There exists a correct shrinking procedure Shrinkqr, DecShrinkqr for the
packed QR-based PKE.

Circurt-prIvATE LHE FrROM QR.

We now present the scheme which is essentially the same as the one from [BGro] together with the
shrinking technique of Lemma 4.5.9.
In the following, let (Shrinkqr, DecShrinkqr) be the pair of algorithms from Lemma 4.5.9.

KeyGen(1%,k) :
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* Choose two safe primesp = 2p’ + 1and g = 24’ + 1 where p’, ¢’ are primes and
compute N = pgq. Choose a generator g of QRy;.

* Sample s <4 Z];)(N) /> and compute h = g°.

* Output pk = (N, g,h) and sk = s.
Enc(pk,m = (mq,...,myg)) :

* Parse pkas (N,g, h = (hy,... ).
* Sample 7 < Z_1/2. Computec; = " and ¢ ; = (—1)™h] fori € [k].

. Output ct = (Cl, C = (C271, cee ,CZ,k))-
Eval(pk, f, (ct1, ..., cty))

* Parse pkas (N,g,h = (hy,...,h)), fas f(x1,...,X¢) = Zle a;xj + b, where
ai,...,qp € Z, b e ZS and Ctj as (Cl,]', Cj = (C2717]', ceey C27k7]‘)).

~ ~ ~ ~ ~ ~ a; ~
» Compute ct = (&1,6 = (€21,...,C24)) where & = g' Hle Cl]]- and Gp; = ht-

(—1)bi . Hle C;ji]- where t <= Zy_1) 2. Output ct.

Shrink(pk, ct) : Outputct + Shrinkqr(pk, ct).

DecShrink(sk, ct) : Output m <— DecShrinkqgr(sk, ct).

It is easy to see that correctness and compactness hold due to Lemma 4.5.9. Semantic security also
follows easily from the QR assumption.
(Z] I’jﬂj)—‘rt %5

To see that the scheme is circuit private, note that g ¢! for a uniformly chosen t <

Z(N-1),2 (this holds since the uniform distribution over Z(n_1) 2 is statistically indistinguishable
fzj )t ~s h. Thus,

(5, P ) o, 521

and, thus, the distributions of an evaluated ciphertext and a fresh ciphertext are statistically indistin-

from the uniform distribution over Zy () 2). Similarly, we have that h

guishable.

4.6 Co-PRIVATE INFORMATION RETRIEVAL

In this section, we present a new cryptographic primitive that we call co-PIR. In a co-PIR scheme, a
receiver (with input a set of indices S) and a sender (with no input) interact such that, in the end, the
sender obtains a stringy € Zg' and the receiver obtains y_g (all positions of i except for the indices

in S).
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In terms of security, we require that the sender learns nothing about S, whereas the string y s looks
pseudorandom to the receiver. In terms of efficiency, we require that the total communication of the
protocol scales only with |S|poly(A)polylog(m) (that is, it scales only poly-logarithmically with ).

4.6.1 DEFINITION

We start by defining Co-PIR and presenting its security properties.

Definition 4.6.1 (Co-PIR). A (two-round) Co-PIR scheme CoPIR over Z is parametrized by an inte-
ger m where m = poly[A], and is composed by a tuple of algorithms (Query, Send, Retrieve) such
that

* Query(1%, S) takes asinputa set of indices S C [m]. It outputs a message copir; and a private
state st.

+ Send(copiry) takes as input a first message copiry. It outputs a second message copir, and a
stringy € Zg'.
* Dec(copiry, st) takes as input a second message copir, and a state st. It outputs a string y €
Zm
g
Definition 4.6.2 (Correctness). A Co-PIR scheme CoPIR is said to be correct if for any m = poly(A)
and S C [m] we have that

(copiry, st) < Query(1*,S)

Pr | yYimp\s = Ypm)\s : (copirp,y) < Send(copiry) | = 1.
y < Retrieve(copir,, st)

In other words, the strings y and y match for every coordinate i € [m] \ S.
In terms of security, we require two properties: receiver security and sender security.

Definition 4.6.3 (Receiver security). A Co-PIR scheme CoPIR is said to be receiver secure if for all
m = poly(A), any subsets S1, So C [m] we have that for any adversary A

) Pr [1 + A(k, copiry) : (copiry,st) « Query(1*,51)] —

Pr [1 < A(k, copiry) : (copiry, st) < Query(14,S,)] ‘ < negl(A).

Definition 4.6.4 (Sender security). A Co-PIR scheme CoPIR is said to be sender secure if for any
m = poly(A), any subset S C [m] we have that for all adversaries .A

. ~ (copirq, st) + Query(14,S) -
Pr [1 ¢ Alk,st, copiry, ys) : (copiry, y) + Send(copiry, x)

(copiry, st) < Query(1%,S) < negl(A).
Pr |1« A(k,st,copiry,ys) : (copiry,y) < Send(copiry, x)
s
Y < Z‘q |
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Definition 4.6.5 (Compactness). A Co-PIR scheme CoPIR s said to be compactif |copir; |, [copir,| =
|S| - polylog(m) - poly(A) forany S C [m] where (copiry, st) < Query(1*, S) and (copir,, y) <
Send(copiry). In other words, the communication complexity depends only on poly-logarithmically
inm.

4.6.2  Co-PIR FroM DisTRIBUTED GGM-PPRF CORRELATION

We now present a scheme for Co-PIR from the distributed GGM-PPRF correlation which is pro-
posed by Boyle et al. [BCG'19a]. For the sake of simplicity, we present the scheme for ¢ = 2. Let
PPRFgem = (KeyGen, Eval, Punct, EvalPunct) be a GGM puncturable PRF which maps from
[m] to {0,1} and let PPRF-GGM = (Ry, S, Ry) be a distributed GGM-PPRF correlation scheme.

Query(14,S) :
* Parse S = {ay,...,a4;} C [m]' wheret = |S|.
* Forj € [t] compute (pprf—ggmL]-,statej) < PPRF-GGM.Ry ().
* Output copiry = {pprf-ggmy ;}jc(y and st = {statej}je[t].
Send(copir; ) :
* Parse copiry = {pprf-ggmy j}ic(-
. Forj € [t] compute K] — PPRFGGM.KeyGen(l/\) andzj — PPRFGGM.EvaI(Kj, *)
* Forj € [t] compute pprf-ggm, ; <~ PPRF-GGM.S(0, K;, pprf-ggm; ).
* Output copir, = {pprf-ggm, ;}jciandy = > i_; 2
Dec(copiry, st) :
* Parse copir, = {pprf-ggmy j}c(y and st = {state].}]-em.
* Forj € [t] compute R]- — PPRF-GGM.Rz(statej, pprf-ggsz-).

* Fori € [m]\ S, sety; = Zle PPRFGGM.EvaIPunct(R]-,i). Fori € S, sety; = 0.
Outputy = (Y1 .-, VYm)-

We now analyze the scheme presented above starting with correctness.

Lemma 4.6.1 (Correctness). Assume that PPRF-GGM and PPRF are correct. Then the scheme pre-
sented above is correct

Proof. We have to prove that yj,\s = Yjmps- Lety = (Y1, -, ¥m) € {0,1}". Note thaty; =

> i—1 PPRF.Eval(K;, i).
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First, by the correctness of the underlying distributed GGM-PPRF correlation scheme, K; <
PPRF.Punct(g;) forallj € [t] and a; € S. Also,

t
7 = Z PPRFem.EvalPunct(K;, 1)
j=1

foralli € [m]\S. BythecorrectnessofthePPRF,PPRFGGM.EvaIPunct(R]-,i) = PPRFggm.EvalPunct(K;, i)
foralli € [m]\ S. Theny; = y;foralli € [m] \ S. O

Lemma 4.6.2 (Receiver security). Assume that PPRF-GGM implements Fpprr-com. Then the
scheme presented above is receiver secure.

The proof follows directly from the receiver security of PPRF-GGM.

Lemma 4.6.3 (Sender security). Assume that PPRF-GGM implements Fpprr-com and PPRF is a
pseudorandom PPRFE. Then the scheme presented above is sender secure.

Proof. Let Simpprp-GGM be the simulator of PPRF-GGM for sender security. The proof of security
follows the following sequence of hybrids.

Hybrid Ho. This is the real protocol.
Forallj € [t] consider the following sub-hybrids.

Hybrid H1 j. In this hybrid, we replace pprf—ggsz by the message generated by Simpprp-GGM.
Indistinguishability of hybrids follows from the sender security of PPRF-GGM.

Hybrid H . In this hybrid, we replace PRFgem.Eval(K;, 4;) by a uniform bit u; < {0, 1}. Indis-
tinguishability of hybrids follows from the pseudorandomness of PPRF.

Hybrid H3 ;. In this hybrid, we replace y, by v; <= {0, 1}. Statistical indistinguishability follows

because

t t
Yo = > PPRFgem.Eval(Ki,a) = > PPRFgem.Eval(K;,a)) + u; = ;.
i=1 i=1,i#]

Finally, note that in hybrid H3 ; the string ys is uniformly random to the receiver and we conclude

the proof O

CoMPACTNESS.  To conclude, we analyze compactness of the scheme. Assuming that the distributed
GGM-PPREF correlation scheme has polynomial communication complexity in |a;| = logmandin A,
and |S| = t, we conclude that the receiver’s and the sender’s message are of size t- poly (1) - polylog ().
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EXTENDING TO Co-PIR OVER ANY Z;.  The scheme can be easily extended to any g by taking a
PPRF that maps x € [m] to Z. Itis easy to see that the resulting scheme has total communication
complexity of f - poly(A) - polylog(m, ).

HARDNESs AssuMPTIONS FOR Co-PIR.  Since the distributed GGM-PPRF correlation scheme
and the GGM-PPRF can be based on LWE, DDH or QR assumptions (using only black-box tech-
niques), then the Co-PIR scheme presented above can also be based on these assumptions. Moreover,
the resulting scheme uses only black-box techniques.

4.6.3 Co-PIR rroM PPRF anD PIR

The construction for Co-PIR from Section 4.6 uses a distributed GGM-PPRF correlation scheme
which can be built from a GGM-PPRF and an OT. In this section, we present a construction for Co-
PIR from any PPRF (not necessarily the GGM-PPRF) and a PIR in a black-box way.

Tue ProTOCOL

For the sake of simplicity, we present the scheme for g = 2.

For our Co-PIR construction, we will need the following ingredients: Let PIR = (Query, Send, Retrieve)
be a PIR scheme with poly-logarithmic communication complexity and sender privacy and let PPRF =
(KeyGen, Eval, Punct, EvalPunct) be a puncturable PRF which maps from [m] to {0,1}. We use
the notation PPRF.Eval(K, %) to denote the vector (PPRF.Eval(K, 1), ..., PPRF.Eval(K,m)) €
{0,1}™.

Query(14,5) :
* Parse S = {ay,...,a;} where t = |S].
* Forj € [t] compute (q, statej) < PIR.Query(a;).
* Output copiry = {q;}c|g and st = {statej}]-em.
Send(copir;) :
* Parse copir; = {qj}je[g-
» Forj € [t] compute K; - PPRF.KeyGen(1") and z; - PPRF.Eval(K;, *).
+ Fori € [jland £ € [m], set K, <~ PPRF.Punct(K;, £).
* Forj € [t] set DB; = (Kﬁl, - K]',m). Compute r; <— PIR.Send(DB;, q;).
* Output copir, = {rj}je[t] andy = Zle z;

Dec(copiry, st) :
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* Parse copiry = {r}jc[ and st = {statej}je[t].
+ Forj € [t] compute K; < PIR.Retrieve(r;, statej).
+ Fori € [k]\ S,sety; = 3_i_; PPRF.EvalPunct(K;,i). Fori € S, setij; = 0. Output
y=W1- s Ym)
ANALYSIS

We now analyze the scheme presented above starting with correctness.

Lemma 4.6.4 (Correctness). Assume that PIR and PPRF are correct. Then the scheme presented
above 15 correct

Proof. We have to prove that y\s = yp\s- Lety = (Y1,---,ym) € {0,1}". Note thaty; =
>i—1 PPRF.Eval(K, 7).
First, by the correctness of the underlying PIR scheme, Rj = ija]. forallj € [t]and a; € S. Also,

t t
ji = »  PPRF.EvalPunct(K;,i) = » | PPRF.EvalPunct(K;, i)
=1 i=1

foralli € [k]\S. By the correctness of the PPRF, PPRF.EvalPunct(K; ;,, i) = PPRF.EvalPunct(K;, i)
foralli € [k] \ S. Theny; = y;foralli € [k] \ S. O

Lemma 4.6.5 (Receiver security). Assume that PIR is user secure. Then the scheme presented above is
receiver secure.

The proof follows from a simple reduction from the receiver security of CoPIR to user security of
PIR.

Lemma 4.6.6 (Sender security). Assume that PIR is sender secure and PPRF is a pseudorandom PPRF.
Then the scheme presented above is sender secure.

Proof. The proof of security follows the following sequence of hybrids.
Hybrid Ho. This is the real protocol.
Forallj € [t] consider the following sub-hybrids.

Hybrid #1 j. In this hybrid, we replace DB, by ﬁj which is 0 everywhere but its 4;-th coordinate is
equal to DB]',a],. Indistinguishability of hybrids follows from the sender security of PIR.

Hybrid Hs ;. In this hybrid, we replace PRF.Eval(K;, 4;) by a uniform bit #; <= {0, 1}. The indis-
tinguishability of hybrids follows from the pseudorandomness of PPRF.
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Hybrid H3 ;. In this hybrid, we replace y,; by v; <= {0,1}. Statistical indistinguishability follows

because

t t
Ya; = E PPRF.EVBKK,‘,HJ') = E PPRF.EvaI(Ki,aj) + Uj =5 0.
i=1 i=1,i#]

Finally, note that in hybrid H3 ; the string ys is uniformly random to the receiver and we conclude

the proof O
ComracTNESs.  To conclude, we analyze the compactness of the scheme. Assuming that the PIR

scheme has poly-logarithmic communication complexity and |S| = t, we conclude that the receiver’s
and the sender’s message are of size f - poly(A) - polylog(m).

4.7 OBLIVIOUS TRANSFER WITH OVERALL RATE 1

We will now provide our construction of an oblivious transfer protocol with an overall rate-1.

INGREDIENTS.  We will make use of the following ingredients.

* A packedlinearly homomorphicencryption scheme LHE = (KeyGen, Enc, Eval, Shrink, DecShrink)

with plaintext space {0, 1}¢ and a post homomorphism shrinking procedure Shrink which
converts ciphertexts into a rate 1 representation.”

* Thebinary LPN(n, m, p) problem with dimension n = poly(A),m = n-£-poly(A) samples
and slightly sub-constant noise-rate p = m!~¢.

* A 2-round PIR scheme PIR = (Query, Send, Retrieve) with poly-logarithmic communica-
tion complexity and sender privacy.

* A 2-round Co-PIR scheme CoPIR = (Query, Send, Retrieve) over Zj parametrized by m1.

AppiTioNAL NoTATION.  Furthermore, to declutter notation we define the following embedding
functions.

RowMatrix(¢, 1, vy, ..., vp): Takes row-vectors vq,..., v, € {0,1}" and outputs a matrix

i.e. foreveryi € [{] the i-th row of V is the row-vector v;.

"Recall that we use the notation Eval&Shrink to denote the composition of algorithms Eval and Shrink.
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SingleRowMatrix (¢, n,i,v): Takes a row-vector v € {0, 1}" and outputs a matrix

0 0
0 0
V=|— v —|,
0 0
0 0

i.e. the i-th row of V is v, but V is o everywhere else.

Diag(n, v): Takesavectorv = (v1,...,v,) € {0,1}" and outputs a matrix
U1 0
D= t- ;
0 Uy

ie. D € {0,1}"*" is a diagonal matrix with the components of v on its diagonal.
We observe the following:
* Foranyvy,..., v, € {0,1}" it holds that

¢
RowMatrix(¢,n,vy,...,vy) = Z SingleRowMatrix (¢, n, i, v;).
i=1

* Forx,y € {0,1}" it holds that
X Diag(”a Y) =X0Yy,

where ® denotes component-wise multiplication.

4.7.1 THE PROTOCOL

The protocol OT = (OTR, OTS, OTD) is given as follows.
OTR(b € {0,1}™) :
* Parseb = (by,...,by), where the b; € {0, 1}" are blocks of size m.

* Choose A <= {0, 1} uniformly at random and compute a pair of public and secret

key (pk, sk) + LHE.KeyGen(1%, 7).
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* Foralli € [f], chooses; <% {0,1}", and e; <% X, compute ¢; < S;A + e; +
b;, and set S; < SingleRowMatrix(¢, n,1,s;). Compute a matrix-ciphertext ct; <
LHE.Enc(pk, S).

* Foralli € [{] set]; = Supp(e;) to be the support of ;. Compute (copiry ;,st;) <
CoPIR.Query(J;). Additionally, for j € [t] compute (qu-,sAti’]-) = PIR.Query(J;[j]).
. Output0t1 = (pk, A, {Cti, G, COpirl,i}iE[ﬁ]: {Qi,j}ie[ELje[t]) andst = (Sk, {Stia]i}ie[é]7 {gti,j}i€[€]7je[t]])'
OTS((m07 ml) € ({07 1}1116)27 Otl) :

* Parsemgy = (mgq,...,mgy) and m; = (myq,...,my ), where each my; =
(Mpigs - Mpim) € {0,1}". Parseot; = (pk, A, {ct;, ¢;, copiry ; }icjq, {diHieqg jers)-
* Fori € [{] (yi, copiry;) < CoPIR.Send(copiry ;) where y; = (Yi1,- -, Yim). Set
zZ; =mg;+Yij.
* Set Z = RowMatrix(¢,m, z1, . .., zy).
* Foralli € [{] set C; = SingleRowMatrix(¢,m, i, ¢;) and D; = Diag(m, my ; —my ;).
* Define the Zy-linear function f : ({0, 1}**")¢ — {0, 1} via

¢

fXa, .. Xe) = (Z(—XIA +C) - Di> +Z.
i=1

- Compute ct < LHE.Eval&Shrink(pk, f, cty, . . ., cty).

« Fori e w] set DB; = (yi,l + (mlym — m07i71), v Yim + (ml’i’m — mO’l‘,m)). For all
j S [t] compute r; j <— PIR.Send(DBi, qi,]').

* Output oty = (ct, {copiry ;}icpe), {¥i }icig jein)-
OTD(otp, st):

* Parseoty = (ct, {copiry ;}ic(y, {Fij}icir jen) andst = (sk, {st;, Ji}icq, {st; el jel))-
* Foralli € [¢] computey; = (Yi1,---,Yim) < CoPIR.Retrieve(copir, ;, st;).
* Fori € [(]and] € [t] computeZ;; PIR.Retrieve(riJ-,§ti7j).
* Fori € [{]setz; = (zi1,...,Zim) where

_ {2,‘7]‘ ifl = ]1[/]

Z,‘,l = ~ . .
Yie otherwise

+ Set Z = RowMatrix(¢,m, z1, . .., zy).
+ Compute W < LHE.DecShrink(sk, ct) and W = W — Z.

* Letwr, ..., wy be the rows of W. Outputw = (w1 ... ||w,) € {0,1}".
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CorRECTNESS.  We will first show that OT is correct, given that LHE, CoPIR and PIR are correct.

Theorem 4.7.1. Assume that LHE, CoPIR and PIR are correct. Then the scheme presented above is
correct.

Proof. First, note that by linear-homomorphic correctness of LHE it holds that

W = LHE.DecShrink(sk, LHE.Eval&Shrink(pk, f, LHE.Enc(pk, S1), . .., LHE.Enc(pk, S¢))
=f(S1,...,S¢)

k
— (Z(—SiAJrCi)-Di) +Z

i=1

Let W; be the i-th row of W. It holds by definition S;, C; and Z; that

(=siA +¢;)D; + z;
(—siA +s;A; + e+ b;)D; + my; + ;i
b; ® (my; —mg;) + mp, + e ® (my; — mg;) + i

Wi

where y; = (Vi1,- -, Yim) is part of the output of CoPIR.Send.

Let J; be the support of €; and let y; = (¥i1,- - -, ¥im) < CoPIR.Retrieve(copir, ;, st;). By the
correctness of the Co-PIR scheme CoPIR we have thaty; j = y; ; forallj ¢ J;. On the other hand, by
the correctness of the PIR scheme PIR it holds that

zij = Yij + (M, — moij)
forallj € J;. Consequently, we have that

B {yi,j + (my;j—mo;j) it =Jij]
Zz',]' =

Yij otherwise

In other words, the term (m1,;; — 1o ;) only appears in the coordinates where e; is equal to one.
Then, it holds that
zi=e;® (my; —mgy;) +y;.

We conclude that
W=W,—2,=b;® (ml,i - mo,i) +mg ;.

Since w = (Wq]| . .. ||wy) it follows that
w=Db® (m; — mp) + my,

i.e. OT is correct. O
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COoMMUNICATION COMPLEXITY.  We will now analyze the communication complexity of OT and
show which choice of parameters leads to an overall rate approaching 1.

The bit-size of the message ot; = (pk, A, {ct;, ¢;, copiry ; }iees 19i, biel) 7]'€[f]) can be bounded
as follows.

* |pk| = £+ poly(A)

‘|Al=n-m

* {ctitieg = € - n - poly(A)

* Heitigl =€-m

* [{copiry i}icg| = £ - t - polylog(m) - poly(A)
* {aij}icpg e = £ -t - polylog(m) - poly(A).

Consequently, the overall upload-rate p,, can be bounded by

_ [Pk 4 |A] 4 [(cti)iejg | + |(eiepg| + [{copiryitiegq| + [(aij)iera jeln]

up Im
<14 poly(A) Lr bn poly(A) LB polylog(m) - poly(A)
m l m m
<14 n n ¢-n-poly(A) N t - polylog(m) - poly(/\)‘
l m m

We getan overall upload rate of p,, = 1+ O(1/A) by choosing ¢ = A - nand m = n? - poly(A) for

a sufficiently large poly(A) depending on € (where t = m1~¢).
The bit-size of the message oty = (ct, {copiry ; }iefq, {rij}ic[e,jejy) can be bounded as follows.

* |ct] = m(1 4 p, g), where 1 + p| g is the ciphertext rate of LHE.
* [{copiry}ierq| = € - t - polylog(m) - poly(4)
* [{ri }icpe jepyg| = £ - t - polylog(m) - poly(A)

Thus, the download-rate p, = can be bounded by

et + [{copiry i }icigl + {rij}ic jein] <14+ ¢ - polylog(m) - poly()

down Im m

By the above choice of m this comes downto py . < 14 p, e + O(1/A).
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4.7.2  SECURITY

RECEIVER SECURITY ~ We now focus on the security of the scheme. We start by proving that the
scheme is secure against semi-honest senders.

Theorem 4.7.2. Assume that LHE is a semantic secure LHE scheme, PIR is a user-private PIR scheme,
CoPIR is a receiver secure Co-PIR scheme and that the LPN(n, m, p) assumption holds for p = m~—¢
fore > 0. Then the scheme presented in Section 4.7.1 is receiver secure against semi-honest adversaries.

Recall that the receiver’s message is composed of LHE ciphertexts, LPN samples, Co-PIR and PIR
first messages. In a nutshell, receiver security follows from the fact that the ciphertexts hide the LPN
secret, the LPN samples hide the receiver’s input b and finally the Co-PIR and PIR first messages hide
the indices J;.

Proof. We first present the simulator for the semi-honest sender. The simulator Sim receives the
sender’s input and sends it to the ideal functionality. Then it simulates the receiver as follows:

Sim(1%):

» Choose A ¢ {0, 1} and compute (pk, sk) +— LHE.KeyGen(1%,¢).

* Foralli € [£], choose ¢; < {0,1}" and compute ct; <— LHE.Enc(pk, 0).

* Foralli € [¢],let]; C [m]bearandom subset of size . Compute copiry ; <~ CoPIR(J;).
Additionally, for j € [t] compute (q; j, Sftl-,]-) = PIR.Query(a; ;) where a; ; < [m].

* Outputoty = (pk, A, {ct;, ¢, copir }ie (g, {qij }ier jern) -

We now show that the ideal world and real-world executions are indistinguishable. The proof fol-
lows from the following sequence of hybrids.

Hybrid Hg. This hybrid is the real experiment.
Fori € [{], consider the following sub-hybrids.

Hybrid H1 ;. Let H19 = Ho. This hybrid is identical to the previous one, except that the receiver
computes ct; <— LHE.Enc(pk, 0).

Indistinguishability of hybrids H1 ;1 and H; ; are indistinguishable, for7 = 1,...,¢ and
where H1 0 = Ho. follows from the semantic security of LHE.

Hybrid H; ;. Let Hp 0 = H1,. This hybrid is identical to the previous one, except that the receiver
computes (copiry ;,st;) = CoPIR.Query(J[j]) where J/ is a uniform subset of [m] of size .

Indistinguishability of hybrids Hs ;1 and Hy;, fori = 1,...,¢ and where Hop = Hi1,
follows directly from the receiver security of the underlying CoPIR.
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Let ¢ : [(t] — [€] x [t] be a bijective function. For i’ € [¢t] consider the following hybrids.

Hybrid H3 . Let Hzo = Hays. Let @(i') = (i,j). This hybrid is identical to the previous one,
except that the receiver computes (q; j, SAtij) = PIR.Query(a; ;) where a; ; < [m].

Indistinguishability of hybrids H3 ;1 and Ha;, fori = 1,..., ¢t and where Hz g = Ha,

follows directly from the receiver security of the underlying PIR.

Finally for i € [¢] consider the following sub-hybrids.
Hybrid Hy ;. Let Ha o = Hsz,¢. This hybrid is identical to the previous one, except that the receiver
samples ¢; < {0,1}".
Indistinguishability of hybrids Hy ;1 and Hy;, fori = 1,...,¢ and where Hy g = H3z 41,

follows directly from the LPN assumption.

Finally, note that hybrid H4 ¢ is identical to the ideal-world execution. This concludes the proof of
receiver security. O

SENDER SECURITY

Theorem 4.7.3. Assume that LHE is a statistically function-private LHE scheme, PIR is a sender-
private PIR scheme and CoPIR is a sender-private Co-PIR scheme. Then the scheme presented in
Section 4.7.1 is sender secure.

Proof. We begin by presenting the simulator Sim against a semi-honest receiver. Recall that, in the
semi-honest case, the simulator has access to the receiver’s internal state. The simulator sends b =
(b1, ..., bye) to theideal functionality and receives m = (1711, . . . , Hlyyp).

Sim(14, 1 € {0,1}", e € {0,1}" oty) :

* Parse oty = (pk, A, {ct;, ¢;, copir }ic (g, {dij}ier jery) -
* Itsets my,; = m; and my_p,; = 0. Finally, it sets mg = (mo1, ..., Mg ue) and
mp = (le, ey mng).

* Fori € [{],let]; = Supp(e;) := {Ji[1], ..., Ji[t]}. Compute (copir, ;, y;) +— CoPIR(copiry ;)

wherey; = (Vi1, .- Yim)-
* Fori € [(] an(ie [t], choose ;1 <= {0, 1} restricted coy i = i 1.5 — (71,15 —
mO,i,]im)- Set DBi’]' = (0, c ,y: AT ,0). Compute ;< PIR.Send(DBi’]-, qi’j).
+ Compute ct < LHE.Sim(pk, w*) where w* := (Wj,...,w}) and w; = b; ®
(mLi - 1‘1‘1071') +mgy; + Z;. Here, Z; = (Zi,h - 7Zi,m) such that
ziy = {y;’i if /" = Jill]

iy .
! Yij  otherwise
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. Output ot) = (C~t, {COpirzyi}ie[g], {I’w’}iem J'em).

We will establish security via the following sequence of hybrids to show that the ideal-world exper-
iment and the real-world one are indistinguishable.

Hybrid Hg. This is the real experiment.
Fori" € [(t] consider the following sub-hybrid. Let ¢ : [¢t] — [¢] x [t].

Hybrid #1 #. Let H19 = Ho. Let ¢(i') = (i,7). This hybrid is identical to the previous one
except that we set DB; j = (0, ... sYig — (Mg — mo,ig)s - - - 0)s e DB, jisset to 0
everywhere except for position J;[j] where it assumes the value y; 1. — (m1,i5,5) — Mo,ij[j]) 3
in the previous hybrid. Additionally, we compute r;; <— PIR.Send (ﬁi’j, dij)-

Indistinguishability of hybrids H1 i1 and Hy ;7 follows from the sender security of PIR.
Fori € [{] consider the following hybrid.
Hybrid Hy ;. Let Ha g = H1 ¢+ This hybrid is identical to the previous one except that forallj € [t],
choose y;Ji[i] + {0,1} such that Yijil = ngi[/'] — (ml,i,]i[i] — mU,iJi[ﬂ)'
Indistinguishability of hybrids H; ;1 and H; ; follows from the sender security of CoPIR.
Note that, in this hybrid DB;; is of the form

ﬁh] - (O, P 7y;7]i[i]7 P 7O)

Furthermore, note that we can write z; as z; = z;—e®(my j—my;), wherez; = (z/,...,z )

o Zim
is defined by

Zi,j’ =

/ yg,j ifj/ = ]z[]]
Yij  otherwise

where y; j = y; ; forj ¢ J; by the correctness of CoPIR.
Finally, consider the remaining sub-hybrids.

Hybrid 3. In this hybrid we compute ct as follows: Set W* <— f(S1,...,S/) and compute ct <
LHE.Sim(pk, W*), where LHE.Sim is the function-privacy simulator for LHE. Statistical
indistinguishability between H» » and H3 follows from the statistical function privacy of LHE.

*

Hybrid H4. In this hybrid, we compute W* = (w7, ..., w},) via

W;k =b;® (ml’i — mo’l’) +mg; + Z;.
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Finally, note that

W* =f£(S1,...,Sq)

k
— (Z(—SiA +GC)- Di> +Z.

i=1
Let w} be the i-th row of W*. It holds by definition S;, C; and Z; that

W;k = (—SZ‘A + Ci)Di +z;
= (—siA +s;A; + e +b;)D; + mg; +z
=b;®(my; —mg;) + my; +e O (my; —mg;)+z
=b; ®(my; —myg;)+mg; +e © (my; —mg;)+ (z; — & © (my; —my;))
=b; © (my; —mg;) + mg; + z;

Consequently, Hy is identical to the ideal experiment. O

HARDNESS ASSUMPTIONS FOR OPTIMAL-RATE OT. When we instantiate the LHE with one of
the schemes from Section 4.5, the Co-PIR with the construction from Section 4.6 and the PIR with
a known black-box construction based on LWE, DDH or QR [DGI*19], we obtain the following
corollary

Corollary 4.7.4. Assuming the LWE, DDH or QR assumptions rogether with the LPN(n, m, p), there
is a black-box construction for optimal-rate OT.

4.8  OBLIVIOUS MATRIX-VECTOR PRODUCT AND OBLIVIOUS LINEAR EVALUATION

In this section, we show how we can extend the techniques from the previous section to build proto-
cols for OMV and OLE that achieve optimal rates.

4.81 OMYV ProTOCOL

We start by presenting a secure protocol for oblivious matrix-vector products (OMV). In an OMV
functionality, there is a sender, with input a matrix M € Z"*™ and a vector v € qu, and a receiver
with input b € Zj'. In the end, the receiver gets the value bM + v but learns nothing about M and
v whereas the sender learns nothing about b.

We start by defining the functionality:

OMYV FUNCTIONALITY.  The functionality Fomy is parametrized by integers m = poly(A) and q
and works as follows:
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* Receiver phase. R sends b to Fomy where b € Z?.

* Sender phase. S sends (M, v) to Fomy where M € Zg™™ and v € {0,1}". Fomy sends
bM +v e Z o R

Below, we present a protocol for OMV that supports a sublinear number of multiplications in the
size of the matrix. That is, all columns and rows of the matrix M should have bounded (sublinear in
m) hamming weight.”

THE PROTOCOL

We start by presenting the ingredients that we need for our OMV protocol.

INGREDIENTS. Letg = poly(A). We will need the following ingredients.

* A packed linearly homomorphicencryption scheme LHE = (KeyGen, Enc, Eval, Shrink, DecShrink)
with plaintext space Zs and a post-homomorphism shrinking procedure Shrink which con-
verts ciphertexts into a rate 1 representation.

* The binary LPN(n,m, p, q) problem with dimension n = poly(A), m = n - £ - poly(A)
samples and slightly sub-constant noise-rate p = mi—¢.

* A 2-round PIR scheme PIR = (Query, Send, Retrieve) with poly-logarithmic communica-
tion complexity and sender privacy.

* Az-round Co-PIR scheme CoPIR = (Query, Send, Retrieve) over Z; parametrized by m(q—
1).

We define the hamming weight of amatrix D' € Z§""™ to be the value hw(D) = max;{hw(d;)}, hw(d®)}

foralli € [m], where d; and d¥) are the i-th row and column of D respectively. In addition to the
notation presented in Section 4.7, we present the following algorithm:

AffineDecomp(D € Zi*™) : Takes a matrix D such that hw(D) < p foralli € [m]. It outputs
Ty,..., Ty € Z7"™ such thachw(T;) < 1foralli € [p]and D =Ty + -+ + Ty
ProTocoL. The protocol OMV = (OMVR, OMVS, OMVD) is presented below.
ANN
OMVR(b € Z") :
* Parseb = (by,...,by), where the b; € Zy' are blocks of size 1.

» Choose A < Zy™™ uniformly at random and compute a pair of public and secret key

pk, sk) .KeyGen(1+, 7).
(pk, sk) + LHE.KeyGen(1%, ¢)

“Recall that hamming weight is used to count non-zero elements.
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* Foralli € [{], choose s; < Zy, and €; <% X, ., compute ¢; < S;A + e +
b;, and set S; < SingleRowMatrix(¢, n,1,s;). Compute a matrix-ciphertext ct; <
LHE.Enc(pk, S).

* Foralli € [{] set J; = Supp(e;) to be the support of e;.
* Foralli € [{]and k € [u] compute (copiry jx,st; ;) <= CoPIR.Query(];). Addition-
ally, for all j € [t] compute (i, sAtl-J{’]») = PIR.Query((q — D)(Ji[jl = 1) +eiy)-

* Outputomvy = (pk, A, {ct;, ¢i}icjg, {coPiry ; k Ficjg kelu)> {9k, iel kelu] jer) and
st = (5k7 {]i}ie[é]a {Sti7k}i€[€},k€[;¢}’ {gti,k,j}ie[Z},ke[m,je[t]) .

OMVS((D,v) € ZZ”’”K X Zg’w,omvl) :

* Parse D = (Dy,...,Dy) and v = (vy,...,vy). If hw(D) > p abort the protocol.
Parse omvy = (pk, A, {ct;, ¢;}icjg, {COPir1 ; k Yicle) kefu]> {Qiky Hiela kelul,jcl) -

* Fori € [{Jandk € [u] (yix,copiry;x) ¢ CoPIR.Send(copiry ;) where y; =
(Yik1s - Yikm)-

* Foralli € [(]setz; = v+ > |, Vik-

* Set Z = RowMatrix(¢,m, z1, . .., z¢).

* Foralli € [{] set C; = SingleRowMatrix(¢,m, i, ¢;).

* Define the Z-linear function f : (stn)é — ngm via

¢
fX1,..., X)) = (Z(—xizu Ci)-Di> +Z.

i=1

- Compute ct < LHE.Eval&Shrink(pk, f, ct1, . . ., cty).

* Forall€ [{],set(T;1, ..., Tiy) < AffineDecomp(D;). Moreover, forall k € [u] and
alll € [m], lett; ;; be the only non-zero element in the I-th row of T ;. If its [-th row is
a zero vector, set t; ;. ; = 0.

* Foralli € [¢] and k € [u] set

DBix = (Yik1+tik1, Vi1 +2:tixts - Yika+(@=1) tix1, - Yikm+(G=1)tikm),
where DB, yisa (q—1)m-sized vector. Forallj € [t]computer; ; +— PIR.Send(DB;, ;).
* Outputomvy = (ct, {copiry ;i bie[e kefu)s {Fiktiele kelul jeln)-

OMVD(omvsy, st):
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*+ Parse omvp = (C~t, {CopirZ,i,k}ie[Z],ke[y]a {ri,k,j}ie[ﬁ],ke[y},je[t]) and
st = (Sk, {]i}ie[z]a {Sti,k}ie[é},ke[pb {§ti,k,j}ie[Z},ke[y},je[t]) .
» Foralli € [{]andk € [u]computey;x = (Yik1,-- -+ Yikm) < CoPIR.Retrieve(copiry ., st; ).
* Fori € [{],k € [u]andj € [f] compute Z; ; < PIR.Retrieve(ri7k,]',sAtiyk’j).
* Foralli € [¢]andk € [u] setzix = (Zik1, - - -+ Zikm) Where

Zikl = {Zi’k’j = ]im .

Vikg otherwise

* Foralli € [(]setz; = 3%, Zix
+ Set Z = RowMatrix(¢,m, z1, ..., zy).
+ Compute W < LHE.DecShrink(sk, ct) and W = W — Z.

* Letwi, ..., Wy be the rows of W. Outputw = (wq| ... ||wy) € Zgw.

CoRRECTNESS. W first show that the scheme presented above is correct.

Theorem 4.8.1 (Correctness). Assume that LHE, CoPIR and PIR are correct. Then the scheme pre-
sented above is correct.

The proof follows the same reasoning as the proof of Theorem 4.7.1.

COMMUNICATION COMPLEXITY. We now analyze the communication complexity of OMV and
show which choice of parameters leads to an overall rate approaching 1.

The bit-size of the messageomvy = (pk, A, {ct;, ¢i}icfe], {copiry; x tici kel {dikj}icig kelu jeln)
can be bounded as follows:

* g =poly(A)

* |pk| =€ poly(2)

* |Al=n-m-logg

* {ctitieyg| = €2 - n - poly(A)

* Heitiepgl = ¢-m-logq

* {copiry ;i }ieig| = p - £ - t - polylog(m, g) - poly(A)

* Haikjticiajeml =q- - £-t- polylog(m) - poly(A).
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Thus, the overall upload-rate p,, can be bounded by

o <1+ nlogq n ¢-n-poly(A) L t - polylog(m) - poly(A)'
up ! m m

We getan overall upload rate of p,,, = 1+ O(1/A) by choosing £ = A -nlog g, u = m'~¢ (for some

C > Osuchthat ( + ¢ > 1)and m = n? - log g - poly(A) for a sufficiently large poly(A) depending
on & (where t = m!~¢).

The bit-size of the message omvy = (ct, {copiry ; i }icje ke s Lrik,Yie g kel jel ) can be bounded
as follows:

* g =poly(A)
* |ct| = ém(1 4 p ye), where 1 + p| g is the ciphertext rate of LHE
* [{copiry i ticigl = w - £t - polylog(m) - poly(A)
* [{rikjticgjegl = q- - £t polylog(m) - poly(A).
Thus, the download-rate p,__can be bounded by

p- £ t-polylog(m) - poly(A)
<1 .
Paown = 1+ PLpe + -

By the above choice of m and p this comes down to py . <1+ p| g + O(1/A).

SEcurITY. Finally, we state the result that guarantees security of the scheme.
Theorem 4.8.2 (Security). The scheme presented above is:

* Receiver secure if LHE is a semantic secure LHE scheme, PIR is a user-private PIR scheme,
CoPIR is a receiver secure Co-PIR scheme and that the LPN(n,m, p, q) assumption bolds for
p=m"¢fore > 0.

* Sender secure if LHE is a statistically function-private LHE scheme, PIR is a sender-private PIR
scheme and CoPIR is a sender-private Co-PIR scheme.

The proof of the theorem follows the same reasoning as the proof of Theorem 4.7.2 and Theorem
4.7.3.

Again, instantiating the ingredients used in OMV with the constructions from this chapter, we
obtain the following corollary.

Corollary 4.8.3. There exists a black-box construction for OMV over Zg assuming:
* LWE and LPN(n,m, p,q) for q = poly(A)
* DDH and LPN(n,m, p,q) for g = 2% = poly(A).
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4.8.2 OLEProTOCOL

An oblivious linear evaluation (OLE) is a protocol between a sender, with input an affine function f,
and a receiver, with input a point b. It allows for the receiver to obliviously learn f(b). We now show
how we can obtain an OLE using the OMV protocol presented in Section 4.8.1.

We start by defining the functionality:

OLE FUNCTIONALITY. The functionality Fo|g is parametrized by integers k = poly(A) and q
and works as follows:

* Receiver phase. R sends b to FoLg whereb € Zg.

* Sender phase. S sends (ug, uy) to FoLg where ug, u; € Zs. FoLe sendsb ® uy +u; € Zg
to R.

ProTOCOL FOR SMALL FIELDS

We briefly sketch how we can construct an OLE scheme over Zg where g = poly(A). The protocol
follows as a particular case of the protocol of Section 4.8.1. We give a brief overview of the scheme
below.

Let Using the notation of Section 4.8.1, letb = (by,...,b/) € quz be the receiver’s input and
let (up = (ug1,...,upe), w1 = (U 1,...,u1y)) € (ZZM)Z be the sender’s input. To achieve OLE,
the sender constructs the matrices D; = Diag(m, ug ;) and sets v; = uy ; forall i € [¢]. Then they
run the OMV protocol where the receiver inputs b and the sender inputs D = (Dy, ..., Dy) and
v = (vq1,...,Vp). Itiseasy to see that the output of the receiverisy = (y1, . .., yr) where

yi=bDi+vi=b;Ouy; +uy;

be the correctness of the OMV protocol.

Moreover, hw(D;) =1 < m1=C for some { > Osuch that C+¢ > 1. Thus the resulting protocol
achieves overall rate 1. Finally, in terms of hardness assumptions, the OLE protocol inherits the same
security.

ExTENDING OLE TO LARGER RINGS

Following [DGI*19], we briefly explain how we can achieve OLE over larger rings (which can poten-
tially have a super-polynomial size in A).

OLEOVERZN = Zg X =+ X ZLg;. LetN = H?:l gi be an integer (which might be superpolyno-
mial in A) such that forall i € [8] g; = poly(A) are different prime numbers. Then, via the Chinese
Remainder Theorem, Zy is isomorphic to Zg, X - - - X Zg,. Thus, performing an OLE over Zy boils
down to performing 6 OLEs over each one of the smaller fields Zj,. It is easy to see that, if each OLE
over Zg; has an overall rate-1, then the resulting OLE over Zy also achieves an overall rate-1.
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OLE OVER EXTENSION FIELDS. We now show how these techniques can be adapted to perform
OLE over an extension field I of order g for a prime q. Here, we rely on the fact that multiplication
over Fyr can be expressed as a linear function over the field Z;. That is, suppose that an element
X € ]Fqk isof theformx = x1 + x2a0 + -+ - + xkak_l where each x; € Z; and a is a symbol. Then,
for elements a,x € [Fy« the product
xa = fia() +faal)at -+ fial)at"

where each f; , is a Z-linear function which depends solely on a.

Given this, we briefly describe how we can perform several OLEs over Fqk while preserving overall

rate 1. The receiver has input b = (by,...,b;) € F!, such that kt = mf and k|m (using the same
q

notation as in Section 4.8.1). It parses each b; as a k-dimensional vectors b; € Zs. Then, it organizes
all t vectors b; in blocks ¢; € Z;” of size m. Itinputs ¢ = (cy, . .., ¢¢) into the OMV protocol.

The sender, with input u,v € IF jx rearranges u, v in the same way as the receiver and obtains
W = (W1,...,W¢),Z = (21,...,2) respectively. Then, for each w; = (Wi, ..., Wi k), it
computes the functions fjw,  foreachj € [k],i € [{Jandr € [m/k]. Let f;, be the vector
composed by the coefficients of f; w, ,. The sender computes the matrices

Di, = fl,Wi,r fkvwi,r

and then sets

D; i /k
Itinputs D = (Dy, ..., Dy) and z into the OMV protocol.

It is easy to see that the receiver’s output will be b © u + v where © denotes component-wise
multiplication over F«. Moreover, hw(D;) = k. By choosing k such thatk < y = m1~¢ we achieve
a protocol with overall rate 1. In particular, we can set the parameters such that k = A and we achieve
an OLE over the field ]Fq/t of exponential size.
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Privacy Preserving Signatures

IN THIS CHAPTER, we initiate our discussion on the final problem in privacy-preserving computation
that we address, which is related to the communication bandwidth and computational overhead of
a privacy-preserving signature scheme, referred to as stealth signatures. In contrast to previous chap-
ters, our primary focus here is on enhancing the concrete efficiency and bandwidth of the underlying
scheme.

Existing stealth signature mechanisms either (1) exhibit security vulnerabilities in certain reasonable
adversarial models or (2) demonstrate inefficiency in practical scenarios. In this chapter, we provide a
formalization of stealth signatures through game-based definitions. We then introduce SPIRIT, the first
efficient post-quantum secure stealth signature construction based on NIST standardized signature
and key-encapsulation schemes, Dilithium and Kyber. The basic form of SPIRIT is secure only in a
weak security model; however, we provide an efficiency-preserving and generic transform that boosts
the security of SPIRIT to ensure the strongest security notion defined in this chapter. Compared to
the state-of-the-art, our approach offers a ~ 3.37x improvement in signature size while maintaining
signing and verification efficiency at around 0.2 ms.

We enhance SPIRIT by incorporating a fuzzy tracking functionality, allowing recipients to dele-
gate the task of monitoring incoming transactions to a tracking server while upholding an anonymity
notion similar to fuzzy message detection (FMD), which was recently introduced in [BLMGai]. Ad-
ditionally, we extend SPIRIT with a novel fuzzy tracking framework called scalable fuzzy tracking, in-
troduced in this chapter. This framework can be viewed as a counterpart to FMD, as it reduces the
tracking server’s computational workload to sublinear levels in the number of users, in contrast to
FMD’s linear workload. Experimental results demonstrate that, for millions of users, the server only
requires 3.4 ms to filter each incoming message, representing at least a ~ 76, 000x improvement over
existing methods.
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5.1 OVERVIEW

Cryptocurrency payments have revolutionized payment infrastructures by overcoming the need for a
central authority and allowing for public verifiability.

On a very high level, cryptocurrency payments are made from a sender to a receiver, by posting a
transaction onto a public ledger called blockchain. In the most basic form, the sender and receiver are
identified by respective public keys (or addresses), and a transaction is authorized by the sender via a
digital signature on the transaction wrt. the public key of the sender.

This paradigm allows users to make payments to any other user in the system without having to
rely on banks, international money transfers- or exchange services. E-commerce [Webb], donation
platforms [ Webj, Webd, Webg], gaming platforms [ Webc], etc., are just some of the popular use cases
that are enabled by cryptocurrencies and their trustless payments. For example, donation platforms
accept donations in the form of cryptocurrency payments, and to do this, a donation platform an-
nounces its addresses and users can make transactions paying to these addresses without requiring
permission from any authority.

For transactions that want some level of anonymity, a critical weakness of the above paradigm is that
itlacks reliable anonymity guarantees in its basic form. Several de-anonymization techniques [OKHis,
SO13, RHi3, RS13, MSH " 17] have been demonstrated that link addresses on the blockchain to the real-
world entities that own them. While de-anonymization of transactions may be beneficial in cases of
preventing crimes such as money laundering, it has also led to questionable forms of censorship [ Webe].
Combined with the public nature of blockchains, this also raises concerns about user privacy in gen-
eral.

A mechanism known as stealth addresses [Webi, vS, Tod, CM17] was developed to address these
anonymity issues. In the donation platform example above, the platform publishes a single master
address, a so-called stealth address, and any user can send payments to the platform, by using a locally
re-randomized version of the stealth address called one-time address. On one hand, such a one-time
address is unlinkable to the stealth address for any outside observer, consequently, transactions to
such a stealth address look as if they are going to random recipients (and not necessarily the donation
platform). On the other hand, with access to its master secret, the donation platform can link such a
one-time address to its stealth address and further generate the corresponding one-time secret locally,
on the fly. Using this one-time secret, the coins associated with the one-time address can be spent.

The stealth address mechanism proposed in [vS] has in fact been deployed in many of the major
currencies like Bitcoin [Webi], Ethereum [Webh], and Monero [vS]. The mechanism has further
found direct application in privacy enhancement of payment protocols like Blitz [AMKMa1].

As [vS] implements stealth addresses via signature schemes, we will refer to the cryptographic ab-
straction of the mechanism from [vS] as stealth signatures. Thus we will henceforth use the terms
addresses and public keys interchangeably.

Notice that in the mechanism described above, the recipient only needs to publish its master ad-
dress, and does not need to give out fresh unlinkable addresses for each potential sender. As the num-
ber of senders could well be in the hundreds or thousands (as is the case with e-commerce, donations,
etc.), stealth signatures lead to a scalable solution.
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Table 5.1: Comparison with Prior Works about Stealth Signatures

Works  w/KE* Security Post-quantum  opk Size Signature Size

Monero’s SS[vS] o sEUF-CMA o 64B 64B

Paring-based SS[LYW* 19] . EUF-CMA o 231 B 115 B

ABB1o-based SS[LLN20] . EUF-CMA . 3.35 GB 3.26 MB

[LLN"20] + NTRU (potential optimization) . EUF-CMA . 13.82 KB 13.82 KB
Section A.2 o> sEUF-CMA o 96 B 64B

Section 5.5.1 o EUF-CMA ° 2.08 KB 2.54 KB

Section 5.5.1+Dilithium (compiler from Section 5.4) ° sEUF-CMA . 2.08 KB 6.40KB
Section s5.5.1+Falcon (compiler from Section 5.4) ° sEUF-CMA . 2.08 KB 4.09 KB

! Secure against key-exposures. Our construction presented in Section s.5.1 can be upgraded to w/KE according to Section s.4.
2 Secure against bounded key-exposures.

Recent academic works [LYW 19, LLN20] initiated the formal treatment of stealth signatures
with cryptographic security guarantees. They observed that the construction of [vS] does not satisfy
security under so-called key-exposures. Roughly, this means that if an adversary learns the correspond-
ing one-time secret key for the one-time public keys that he generated, then he can potentially learn
all one-time secret keys of all one-time public keys that he generates for this particular master address.

More recent proposals of stealth signature schemes [LYW 19, LLN"20] were designed to be se-
cure against such key-exposure attacks, with the downside that their schemes use heavy tools such
as pairings [BFor] or lattice basis delegation [ABBio]. These are currently not compatible with any
of the major cryptocurrencies that exist today. Furthermore, with the threat of quantum comput-
ers looming large, cryptocurrency payments including the pre-guantum stealth signature mechanisms
of [vS, LYW 19] remain vulnerable. While a lattice-based (and thus plausibly post-quantum) con-
struction of stealth signatures was proposed in [LLN"20], this construction relies on the aforemen-
tioned lattice basis delegation. Consequently, their scheme is most likely too inefficient for practical
use’. We compare our constructions and related works in Table s.1. Please refer to Section 5.6 for more
discussion.

this chapter is motivated by the following two questions:

* Can we have an efficient stealth signature scheme with security against unbounded key-exposures, that
is compatible with Schnorr, ECDSA and other group-based signature schemes predominantly used
in currencies today?

* Can we have an efficient stealth signature scheme secure with unbounded key exposure that is post-
quantum secure?

A caveat of the stealth address mechanism described above is that a recipient (online or offline) has

'As the authors of [LLN " 20] point out in Section 1.1, their “public key and signature sizes are too large for
practical use”.
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Table 5.2: Comparison with Prior Works about Fuzzy/Private Tracking

Works Privacy Assumptions Post-quantum  Server’s Work ~ Latency/msg® Receiver’s Time
FMD,[BLMG21]  pN-anonymity' Random Oracle o O(N) 933 sec 37.5 ms
ITrge[MSST22] Full Privacy Trusted Execute Environment o O(N) 228 sec 12 ms
Igc[MSS*t22]  Full Privacy Two Non-colluding Servers e O(N) 81.1 hour 1 ms
OMR;[LT22]  Full Privacy  Fully Homomorphic Encryption . O(N) 43.1 hour 63 ms
Section 5.5.2  pN-anonymity Standard Model . O(N) 11.70 sec 37.5 ms
Section 5.5.3  pN-anonymity Random Oracle ° O(pN) 3.42 ms 37.5 ms

' p denotes the false-positive rate and N the number of clients.

* Calculated in a setting with N = 220 users and M = 500, 000 messages based on the numbers from their papers.
Latency per message induced by the server. See more discussion in Section 5.6.

to parse through a large number (hundreds of thousands per day) of transactions to identify those
that send coins to one-time addresses corresponding to his master address.

A workaround was proposed in [vS], where a recipient can delegate identification of incoming
payments to a semi-trusted third-party server called the rracking server. To do so, the recipient can
generate a so-called rracking key from his secret key and provide it to the tracking server. The track-
ing key allows the tracking server to identify or z7ack all incoming payments to the recipient using the
tracking key, and later notify the recipient of these exact payments. On the other hand, such a track-
ing key should not enable the tracking server to generate one-time secrets for the concerned one-time
addresses. Prior works [LYW 19, LLN20] omit this tracking functionality in their formalization of
stealth signatures.

A downside of the above tracking method is that the tracking server learns exactly which payments
are addressed to the recipient, thus providing a tracking key to a server amounts to fully giving up
on anonymity/unlinkability with respect to the tracking server. While there is a natural and obvious
tension between the anonymity goal of unlinkability and the functional goal of trackability, a recent
work by Beck et al. [BLMGz1] attempts to strike a balance between these notions. They introduce
the concept of fuzzy message detection (FAMD), where a tracking server can approximately detect mes-
sages meant for a recipient with an adjustable degree of uncertainty. More specifically, their notion
of detection is fuzzy in the sense that messages meant for the recipient are always correctly identified,
but there is a recipient-controlled false positive rate (baked into the fuzzy tracking key) which causes
messages meant for other users to be misclassified as being meant for the recipient.

Thus, the tracking server cannot decide with certainty if a detected message is actually intended
for the recipient or not. This mechanism makes it necessary for the sender of the message to include
additional fuzzy tracking information and the tracking server possesses a fuzzy tracking key. Together,
fuzzy tracking information and fuzzy tracking key enable fuzzy tracking. In principle, applying their
technique to enable fuzzy tracking of one-time addresses in stealth signatures is fairly straightforward.
However, relying on their schemes comes with considerable drawbacks. While their first scheme
(FMD3) is efficient, it relies on the pre-quantum DDH assumption. Their second scheme (FMDg,c)
relies on garbled circuits as an additional component and is hence plausibly post-quantum. But the
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garbled circuits included in the ciphertext lead to an unacceptable size blowup of the sender’s message.
On the other hand, there are signalling detection or retrieval schemes [MSS ™ 22, LT22] for fully private
tracking instead of fuzzy tracking, but all of them require linear work at the server side which doesn’t
scale to thousands or millions of users. We discuss their schemes and ours in Section 5.6 and present a
comparison about this in Table 5.2.

This leads us to the following question:

* Can we have a stealth signature scheme with efficient fuzzy tracking in the post-quantum setting and
scalable to hundreds of thousands (or even millions) of users?

5..1 OUR CONTRIBUTIONS

We summarize our contributions below.

Clear Constructions. Weintroduce SPIRIT (in Section s.5.1), the first practically efficient post-quantum
secure stealth signature scheme secure without key exposure. Towards this goal, we consider the
Dilithium [LDK"20] signature scheme which is lattice-based and a winner of the NIST competi-
tion. Without changing the signature scheme in any way, we augment Dilithium with additional al-
gorithms to obtain SPIRIT so that it now supports one-time key derivations and tracking. One of the
main motivations for considering Dilithium is that we believe it is one of the most popular and most
likely post-quantum signature schemes to be adopted into cryptocurrencies for the authentication of
payments.

Next, we show how one can generically transform (in Section s.4) a stealth signature scheme that s
secure without key-exposure into a scheme that is secure with unbounded key-exposure.

Thus we can transform SPIRIT into one that is practically efficient and secure with an unbounded
key exposure. Both SPIRIT and the transformed construction are compatible with cryptocurrencies
that would support Dilithium signature verification. Moreover, we do not require any additional
support from the scripting language of cryptocurrency.

Furthermore, we construct a stealth signature scheme (in Section A.2) that is compatible with
group-based schemes like Schnorr and ECDSA which are used in most of the currencies today. How-
ever, it only guarantees security with bounded key-exposure: It tolerates a-priori number of one-time
secret key leakage.

Fuzzy Constructions. We then present two fuzzy stealth signature schemes (using SPIrIT), both of
which are the first efficient and post-quantum candidates.

In the first construction (in Section s.5.2), we take a similar approach as FMD from [BLMGa1].
But we reduce its overhead from O(A) to 1 bit per signal by making novel use of ciphertext compres-
sion techniques [BDGM19]. Additionally, we show how to allow finer false-positive rates without
requiring garbled circuits as in [BLM Ga1].

We then present a new scalable framework for fuzzy tracking (in Section s.3.4) followed by an efhi-
cient construction (in Section s.5.3) in the random oracle model. This framework can be viewed as a
‘dual’ version of the FMD mechanism from [BLMGai].
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Intuitively, it is a trade-oft between efficiency and usability: By limiting the users’ ability to choose
false-positive rates, we are able to reduce the tracking server’s computational work to sublinear in the
total number of users. This compares very favourably with prior works, where the server needs to take
alinear scan of each user’s tracking key [BLM Ga1, MSS 22, LT22].

Implementation. We implemented SPIRIT, post-quantum FMD, and scalable fuzzy tracking based
on Dilithium, Kyber, and Falcon with anonymized open-source code [Weba]. We test them with
different parameter sets on an ordinary laptop as presented in Table 5.3 and Table 5.4 (in Section 5.6).
Experiment results show that our stealth signature with the strongest security only yields a 4.09 KB
signature (~ 797x improvement), meanwhile, the verification time is less than 0.2 ms. Similarly,
our scalable fuzzy tracking mechanism only takes 3.42 ms (~ 76, 000x improvement) to filter each
incoming message with millions of users in the setting.

5.2 TECHNIQUES

Let us first recall the group-based stealth signature scheme of [vS]: Given a cryptographic group G =
(g) of prime order p, the master public key is mpk := (g, hg := g%, h1 := ") € G®, where msk :=
(a <= Zp,b < Zy) is the master secret key, and mtk := a is the tracking key. To re-randomize mpk
to a one-time address (i.e., one-time public key), the sender samples a uniformly random 7 < Z;, and
computes opk = gH(hS) ~h1 € GwhereH : G — Z, is a hash function modelled as a random
oracle. Additionally, the sender attaches tracking information tki := ¢" € G to the opk. To derive
the corresponding one-time secret key osk from msk, the receiver computes osk := H(tki") +b € Z,
with the help of tki. Now, the receiver can sign (for e.g., Schnorr or ECDSA) any message with osk to
output a signature which can be verified with corresponding opk because of the discrete-log relation
opk = ¢°°K. An additional mechanism is that mtk := a can be given to a tracking server for tracking:

By comparing whether opk ~ gH(tkimtk)

the issuer of mtk.

- h1, the tracking server can determine whether opk links to

Taking a closer look, this approach to build a stealth signature apparently can be generically decom-
posed to a linearly homomorphic one-way function f : D +— M where f(x +y) = f(x) +f(y), and
a key-exchange protocol (KEy, KE;, KE3), where KE; denotes the i-th message function:

cty € C1 <—KE1(1’1),
(Ctz €(C,Ke ’C) <—KE2(1’2, Ctl),
KeK %KEg(I’l, Ctz),

where 71, 77 are two user’s secrets, and K is the agreed-upon key. Here C1, C; and K are the first mes-
sage, the second message and the key space, respectively. Now, let mpk := (ct1 := KEq(r1),B :=
f(b)) and msk := (ry,b), mtk := r1. To publish a one-time address, the sender can just compute
(ctp, K) <= KE;(r2, ctq) and publish

opk := B + f(H(K)), tki := ct,
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where H : L — D. Correspondingly,
osk:=b+H (KE3(1’1, tkl))

Since they obey the relation f(osk) = opk, we can leverage this to sign and verify. The tracking
mechanism still works by checking if

opk = f(H(KEs(mtk, tki)) ) + B.

We will now adopt this blueprint to construct a stealth signature in the lattice setting.

5.2.1  SPIRIT: LATTICE-BASED STEALTH SIGNATURE

To make our protocol both efficient and practical, we would like to use optimized NIST winners as our
building blocks. In this chapter, we choose Dilithium as the underlying digital signature considering
that it is one of the most popular signature schemes in NIST [LDK "20]. We call the resulting stealth
signature scheme SPIRIT. Basically, it follows the above approach: In Dilithium, the public key is a
Module Learning With Errors (MLWE) [BGV12] sample t := As; + s, where its secret-error pair
(s1,82) (both chosen from a suitable shorr distribution) acts as the secret key. Since MLWE involves
only linear operations, we have that

t+t =A(s; +5s]) + 52+ 8.

Yet, even though adding samples is approximately linearly homomorphic, this addition will increase
error rates or lengths for both s; and sp. Typically, the s1 and s; are generated by sampling their
coefficients uniformly with absolute value at most 7 (for some small parameter 17). The increased
norm of the new secrets (s1 + 87,8 + s5) will incur additional running time during signing due
to the so-called “Fiat-Shamir with Abort” mechanism of Dilithium. To alleviate this issue, we only
prove SPIRIT to be existential unforgeable. This will give us better parameters to balance security and
efficiency. Looking ahead, we point out that SPIRIT can be transformed to an strongly existentially
unforgeable scheme using a generic compiler which we will introduce later.

Apart from linearly homomorphic one-way functions, we still need a key-exchange protocol. How-
ever, this key exchange needs some additional properties. Specifically, we need a non-interactive key
exchange (NIKE) protocol which is substantially stronger than KE we depicted above. The starting
point is that it needs to be anonymons under chosen plaintext attacks (CPA), which means giving the
message Ctp, the adversary cannot link it to the ctq used to generate ctp. This is for stealth signatures as
we don’t want our one-time address to be linkable to the original master public address. This security
notion is formalized as unlinkability.

But anonymity under chosen plaintext attacks will not even suffice yet for our applications. We
will require a stronger notion of anonymity under plaintext checking attacks (PCA). Here, the adver-
sary is given an additional oracle which allows him to check whether a ciphertext-plaintext pair is valid
or not. To see why this is necessary, consider an adversary who is trying to link some (opk, tki) to
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mpk. Such an adversary will be able to sample cty % C, K < K to generate (opk’, tki’), which
can then be published to see if the tracking check passes. It turns out that anonymity under plain-
text checking attacks is sufficient for this setting. However, we currently don’t have a simple con-
struction satisfying anonymity under plaintext checking attacks. As a consequence, we use an even
stronger key-exchange protocol which is anonymous under chosen ciphertext attacks (CCA), namely,
it is ANO-CCA-secure (formalized in Definition 1.1.5). Fortunately, the recent standardized KEM by
NIST, Kyber [SAB"20], can be slightly modified to be ANO-CCA-secure [GMP22] and we use Ky-
ber in the concrete instantiation. There are multiple technical details not covered in this outline, for
instance, besides tki, the one-time address opk itself also needs to be anonymous. We refer to Sec-
tion s.5.1 for detailed construction and analysis.

So far, we briefly mentioned two important security notions for stealth signatures, namely unforge-
ability and unlinkability (Section 5.3 for formalization). However, we note that we only formalize
these two notions as unforgeability without key-exposure and unlinkability without key-exposure, re-
spectively. It turns out the above approach to build stealth signatures (as well as in SPIRIT) is no longer
secure it a one-time secret key osk leaks: Suppose the sender learns osk somehow, he can instantly re-
cover msk as

b := osk — H(KEg(Tl,tki)),

if he knows r1 which is used to generate corresponding opk.

§.2.2 GENERIC TRANSFORMATION: SECURITY WITH KEY-EXPOSURE

As mentioned above and noticed in prior works[LYW 19, NMRL16], leaking one-time secret keys is
almost as bad as leaking the master secret key. This is a potential issue in current practical stealth sig-
nature schemes [vS] and it is costly to avoid. For instance, if we are willing to use techniques implying
hierarchical identity-based encryption (HIBE), we could have a stealth signature scheme secure with
key-exposure attacks by using pairing[BFo1, LYW *19], lattice basis delegation[ ABB1o, LLN"20], or
non-black box tools| DG17b]. All of above techniques are several orders of magnitude slower in com-
putational time, or orders of magnitude larger in the signature or one-time public key size.

The reason we don’t have a simple solution to this issue is that one-time secret keys are usually a lin-
ear function of the msk as mentioned in [LRR "19]. Apparently, we can achieve security with bounded
key-exposure by adding more secrets in msk where bounded key-exposure means msk remains secure
if the number of leaked osk is smaller than some ‘a priori bound’ and we show a candidate construction
in Section A.2. However, any generic-group-based techniques to prevent unbounded key exposure
should imply IBE which is known to be impossible using only black-box techniques [PR V12, SGSa1].

In this chapter, we provide a conceptually simple, generic, and powerful black-box compiler to
tackle this problem in the context of stealth signatures (in Section 5.4): We use a short chain of signatures[ Mergo]
to compile any stealth signature SS,, /, secure without key-exposure into a strong stealth signature SS,,
secure with unbounded key-exposure. The high-level idea is to break this ‘linear’ relation between osk
and msk. Specifically, instead of generating osk directly, with the help of an additional digital signa-
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ture DS, we generate
osk := (o1, sk, vk),

where gy <SS, /5.Sign(osk’, vk) and (vk, sk) <— DS.Gen(A). Note that osk’ is the one-time secret
key in the scheme SS,,, /. Intuitively, since osk has a non-linear relation with msk, the adversary can-
not recover msk from osk as SS,, /, is unforgeable. To sign a message m, it runs o2 < DS.Sign (sk,m)
and outputs the final signature 0 := (071, 02, vk). Similarly, to verify o just use opk to verify the sig-
nature 01 on vk and use vk to verify the signature 0 on m. Compared to the original stealth signature
SS,, /o> OUr compiled one SS,, incurs a slightly larger signature size and longer verification time, but
in turn, is far more efficient than the above HIBE-related techniques.

Additionally, we show this compiler can also leverage SS,, /, with existential unforgeability to SS,,
with strong unforgeability via a small tweak: Instead of signing on m, we signas o, <— DS.Sign(sk, m||o1).
This prevents strong unforgeability attacks of SS,, because: Assuming vk in 0 is notaltered, a different
o # o1 willlead to a forgery (m||0’, 02) of DS in SS,,. Therefore, SPIRIT can also be leveraged in
this way to be strongly unforgeable with a key exposure. This gives us the first practical post-quantum
SSw secure with a key exposure.

5.2.3 Fuzzy TRACKING

We will now turn to the issue that in the above constructions, the tracking mechanism will leak the
users’ metadata to the tracking servers, i.e., the tracking server will know exactly which mtk belongs to
which specific (opk, tki). As discussed above, to address this problem, Beck et al. [BLM G21] proposed
a mechanism named fuzzy message detection (FMD): The server is given a fuzzy tracking key ftk
instead of mtk to filter incoming fuzzy tracking information ftki for its users. Here, ftki is attached
with (opk, tki). Specifically, for unmatched ftki and ftk, they will be linked with probability roughly
p.

Transforming their scheme to a post-quantum world is non-trivial as there are still two potential
obstacles in the lattice setting: First, it is not practically efficient since its ftki is as large as O(n - |ct|)-
bit where |ct| = poly(A). This is highly undesirable in practice as our expectation is something like
O(A) + n. The other problem is the uniformly-ambiguous (recalled in Chapter 1) encryption, as it is
unclear how to extend the random oracle-based approach in [BLMGz1], to the lattice setting due to
the presence of noise. We show that these two obstacles are related and can be resolved simultaneously.
For simplicity, assume 7 = 1 for the moment. Recall that in Regev encryption with modulus g, the
ciphertext is composed of two parts, a vector ¢1 € Zg and a scalar ¢ € Z;. The secretkeyiss € Zf]
and decryption consists of rounding after a linear operation:

[sTcl — C2J2 = [g -m +€J2,

wheree < B < % is a bounded error. This is not just bad for efficiency (as we need additional nnlog g
bits to encrypt 1 more bits), but also for security: With the correct secretkey s, sT¢y — ¢y is distributed
as a Gaussian around % or 0; With a wrong key s, slc; — ¢y is distributed uniformly random over
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the entire domain Z;. These two cases are clearly distinguishable by an adversary.

Our solution will be to compress ¢, into a single bit, which doesn’t convey enough information
about the distribution. Hence this idea will solve both of the above problems simultaneously. Brak-
erski et al. [BDGMi9] introduced 7are-1 packed Regev encryption which can compress each ¢; to just
one bit but require an additional offset scalar z € Z; in the header. Thus to to encrypt 1 bits, the ci-
phertext after compression s (¢1,z, w1, . . ., wy) wherew; € {0, 1}. To make the offset z statistically
close to uniformly random (in our setting pseudorandom doesn’t suffice because the adversary gets the
secret key), we require super-polynomial noise-modulus ratio of Learning With Errors (LWE)[Regos ]
which makes the scheme slightly less efficient. This gives us a lattice-based fuzzy tracking scheme (and
ambiguous encryption), and surprisingly, it doesn’t rely on heuristic assumptions like random oracles
which are necessary in [BLM Gai].

5.2.4 SCALABLE Fuzzy TRACKING

We observe that in the above FMD style tracking, the server’s computational work is O(N) with N
users and is not scalable when thousands (or millions) of users are using the service of the server. We
provide a framework for scalable fuzzy tracking which we view as a dual version of FMD [BLMGa1],
where the server’s work is sublinear. In this framework, we weaken the requirement that the false-
positive rate can be adaptively changed by users. Instead, it is fixed in advance in this setting. This
weakening is reasonable as it was shown in [SPB21] that an adversary can mount statistical attacks if
users have varying false positive rates. To circumvent such attacks it was suggested that all users have
high enough false positivity rates as even a small subset of low-rate users can affect unlinkability for
the entire pool of users. Therefore we can fix the false positivity rate to be a high enough value for
everyone. For example, as calculated in [SPB21], the false-positive rate p is better to be as large as ﬁ

In this case, we can make the server’s overhead O(pN) for each incoming message which was at least
O(N) in prior works [BLMGz1, MSST22, LT22].

We let the tracking server run FTKGen in the beginning to publish fuzzy public key fpk and secretly
hold the fuzzy tracking key ftk. For each ftki received from senders, the tracking server will expand
ftki to a list of size t composed of potential users’ master public keys to which ftki may belong. The
tracking server can then store (opk, tki) in the mailbox of each candidate in this list. Crucially, the
master public keys of other potential candidates should remain uncontrollable to either the sender or
the server. Otherwise, the sender might manipulate the chance of each key appearing in the list. This
additional property is named u#nbiasedness. This rules out the trivial solution, where for instance the
sender just sends directly a range of master public keys including the targeted mpk.

Since mpk of each user can be large, in our construction we hash mpk € K to some small hint € 7
(while making |7 > N) and use the hint to locate each user’s mailbox. Our scheme is based on the
underlying IND-CPA encryption of Kyber, except that we use a non-prime modulus. For instance,
assuming the hint contains # = [log N bits, i.e.,, b := hint € {0, 1}", to generate ftki, the sender
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modifies the Kybers2’s ciphertext ct := (¢1, ¢2) to ct’ := (¢}, ¢5) as follows:

¢ =c+ g fg] ¢ =c+ gyi,

where ct (and ct’) encrypts hint; as the plaintext, x; < encodeg, (x;) is a polynomial mapped from
the vector X;, and x;, y; € {0, 1} <— H(0, 1) are outputs of a hash function H with the seed 6. Here
i € [t] denotes the i-th target mpk as the intended recipient.

For ftki := ct’, the tracking server decrypts ct’ using the key sk = s as follows: for Vj € [t],

hintj « decodeRq((sT(cll - g [Jg}) — )2 @y)),

to get t potential hints. To argue privacy, intuitively, since s remains random to the sender, the de-
crypted hint for j # i would also be random to the sender as

hint; = hint; & (y; ® y;) ® decodeR[,([gST [Jg] J2).

However, to prove the unbiasedness we mentioned above, we need to be careful because the standard
regularity lemma seems hard to apply with such a small noise parameter and modulus in ideal lattices.
Our solution is to rely on the specific structure of the corresponding cyclotomic polynomial and shows
T %)

0

hint; uniformly random over {0, 1}" as long as 7 is much smaller than the degree of the polynomial.

thatevens is not close to a uniformly random polynomial but there’s enough entropy to make

5.3 DEFINITIONS

In this section we first present our formal definitions for a stealth signature scheme, followed by
how we can add-on fuzziness to the scheme. Note that stealth signatures were formalized in prior
works [LYW 19, LLN " 20], however our formalization of security is strictly stronger than theirs, and
moreover we are the first to formalize tracking and fuzzy tracking for a stealth signature scheme. We
will point out the exact differences in the formalism as we introduce the security notions formally.
Below we present the definition of stealth signatures, that formalizes the tracking of keys which was
absent in prior works. This formalization allows for tracking to be outsourced to third-party servers.

Definition 5.3.1. A stealth signature (SS) scheme consists of the PPT algorithms (MKGen, OPKGen,
OSKGen, Track, Sign, Vf) that are defined as follows.

(mpk, msk, mtk) <~ MKGen(A): the master key generation algorithm takes as input the security pa-
rameter A and outputs the master public key mpk, the master secret key msk, and the master tracking
key mtk.
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(opk, tki) «— OPKGen(mpk): the one-time public key generation algorithm takes as input the mas-
ter public key mpk and outputs the one-time public key opk and a tracking information tki.

osk/ L« OSKGen(msk, opk, tki): the one-time secret key generation algorithm takes as input the

master secret key msk, the one-time public key opk, and the tracking information tki, and outputs a
one-time secret key osk or a special symbol L.

true/false <— Track(mtk, opk, tki): the tracking algorithm takes as input the master tracking key
mtk, the one-time public key opk, and the tracking information tki, and outputs true or false.

o/ L« Sign(osk, m): the signing algorithm takes as input the one-time secret key osk, and a message
m, and outputs a signature o or a special symbol L.

true/false < Vf(opk, m,0): the verification algorithm takes as input the one-time public key opk,
a message 11, and a signature 0, and outputs true or false.

The notion of correctness if formalized below.

Definition s5.3.2 (Correctness). A SS scheme (MKGen, OPKGen, OSKGen, Track, Sign, Vf) is said
to be correctif forall A € N, all (mpk, msk, mtk) <— MKGen(A), all (opk, tki) <— OPKGen(mpk),
all osk «— OSKGen(msk, opk, tki), we have the following that hold simultaneously:

* we have Pr[Track(mtk, opk, tki) = true] =1
* we have Pr[Vf(opk, m, Sign(osk,m)) = true] = 1,

note that sometimes we don’t require perfect correctness and having correctness probability 1—negl(A)
instead would suffice.

5.3.1 SECURITY OF S§ WiTHOUT KEY EXPOSURE

In terms of security, we first want unforgeability, which guarantees that it is infeasible for an adversary
to forge a signature on a (fresh) message wrt. some one-time public key opk™ for a master public key
mpk. The adversary is given access to a one-time secret key generation oracle OSKGenO using which
the adversary can generate a fresh one-time secret key. However, the adversary does not get to learn the
generated one-time secret keys, therefore the notion is said to be without key exposure. The adversary
also has access to a signing oracle, to which it can query a signature on any message of its choice wrt.
any one-time secret key that has been generated with a query to OSKGenQ. The formal definition is
presented below.

Definition s5.3.3 (Unforgeability without key-exposure). A SS scheme (MKGen, OPKGen, OSKGen,
Track, Sign, V) is said to be unforgeable without key exposure if there exists a negligible function negl
forall A € N, and for all PPT adversaries A the following holds:

Pr [sEUF-CMA;j‘ oke(A) = 1] < negl(A)
where SEUF-CMA,, /,_e is defined in Figure 5.1.
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EUF-CMA}, o i(A) OSKGenO(opk, tki)

(mpk, msk, mtk) < MKGen(A) osk <= OSKGen(msk, opk, tki)
OK:=[,Q:=0 OK := OK||(opk, osk)
(m*, ¥, i*) return 1
— AOSKGenO,SignO (mpk, mtk)
(opk*, osk*) := OK([i*] SignO(i,m)
bo = (m",,i") € Q (opk, osk) + OK([i]
I(m*,0",i") ¢ Qfor SEUF-CMAy jo—ke g Sign(osk, m)
by := Vf(opk®, m*,0*) = true Q= QU (m,a,i)
return by A by return o

Figure 5.1: Experiment for unforgeability without key exposure.

We then want unlinkability, which guarantees that it is infeasible for an adversary to associate a
one-time public key to the master public key wrt. which it was generated. The adversary is given two
master public keys mpky and mpk;, while also given a challenge one-time public key opk;, and the
corresponding tracking information tki, (for b € {0,1}) generated wrt. mpk;,. The adversary is
given access to the OSKGenQ as before, and a signing oracle. The adversary is not given access to any
of the one-time secret keys and therefore the notion is said to be without key exposure. The formal
definition is presented below.

Definition s5.3.4 (Unlinkability without key-exposure). A SS scheme (MKGen, OPKGen, OSKGen,
Track, Sign, Vf) is said to be unlinkability without key exposure if there exists a negligible function
negl forall A € N, and for all PPT adversaries A the following holds:

1
Pr[UNLNK#, | (1) = 1] < 5 -+ negl()

w/o—ke

where UNLNK,, /o is defined in Figure s.2.

5.3.2 SECURITY OF SS WiTH KEY EXPOSURE

Prior works [LYW 19, LLN " 20] formalized security with additionally giving adversary the one-time
secret keys, i.e., the OSKGenO returns the generated osk to the adversary.

The unforgeability notion with key exposure is formalized below. Notice that our formalization
exposes the one-time secret keys osk to the adversary except the key wrt. which the adversary forges
the signature.

Definition s5.3.5 (Unforgeability with key-exposure). A SS scheme (MKGen, OPKGen, OSKGen,
Track, Sign, Vf) is said to be unforgeable with key exposure if there exists a negligible function negl



UNLNK;, , i (A) OSKGenO(b*, opk, tki)

(mpkg, mskg, mtkg) <— MKGen(A) osk < OSKGen(msky«, opk, tki)
(mpky, msky, mtky) < MKGen(A) OKp« := OKyx [|(opk, osk)

OKp := OKj := ] return 1
b+ {0,1}
(opky, tkiy) <~ OPKGen(mpk;) Slgn(’)(b*, i, m)

osk, <— OSKGen(msk;, opk,, tkip)

b o AOSKGenO,SignO (X,opkb,tkil,)
Jwhere X := (mpk, mpk;)

bo = (b=1")

return by

ifi = —1 then
o < Sign(osky, m)
else
(opk, osk) <= OKpx [i]
o < Sign(osk, m)

return o

Figure 5.2: Experiment for unlinkability without key exposure.

SEUF-CMAZ ,.(A) OSKGenO(i, opk, tki, flag)
(mpk, msk, mtk) <— MKGen(A) if OK[i] = (opk, -, -) A flag = true
OK:=[,Q:=0 return OK{[i].osk
(m*,0%,1*) osk +— OSKGen(msk, opk, tki)
+— AOSKGenO.Sign0O (15 mtk) OK := OK||(opk, osk, flag)
(opk*, osk*, -) := OK[i*] if flag = true then return osk
bo == (m*,0%,i*) ¢ Q else return 1
by := Vf(opk™,m*,0%) =1
by := (OK[i*] # (-, -, true)) SignO(i, m)

turn by A b1 A D
return o A5 A2 (opk, osk, flag) < OK([i]

o < Sign(osk, m)
Q = QU (m7(77i)

return o

Figure 5.3: Experiment for unforgeability with key exposure.

forall A € N, and for all PPT adversaries A the following holds:

Pr[sEUF-CMA; (1) = 1] < negl(A)

w—ke
where SEUF-CMA,, /o is defined in Figure 5.3.

The notion of unlinkability with key exposure is formalized below. Similar to the case above, the
OSKGenO returns the generated osk. Our formalization apart from the tracking functionality is
stronger than prior works in that the adversary is even given the challenge one-time secret key osky.
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UNLNKA |, (A)

w—ke

OSKGenO(b*, opk, tki)

(mpkg, msko, mtkg) <— MKGen(A)
(mpky, msky, mtky) < MKGen(A)

osk < OSKGen(mskjx, opk, tki)
OKp+ := OKpx||(opk, osk)

OKp := OKj := ] return osk
b+ {0,1}
(opky, tkiy) < OPKGen(mpk;)
osk, <— OSKGen(msky, opk,,, tkip)
b AOSKGenO (X opk,, tkiy, osky)
/where X := (mpkgy, mpk; )
by :=(b=1V")

return by

Figure 5.4: Experiment for unlinkability with key exposure.

Definition s5.3.6 (Unlinkability with key-exposure). A SS scheme (MKGen, OPKGen, OSKGen, Track,
Sign, V) is said to be unlinkability with key exposure if there exists a negligible function negl for all
A € N, and for all PPT adversaries .A the following holds:

Pr[UNLNK; (A) = 1] < = + negl(A)

N =

where UNLNK,, /o e is defined in Figure 5.4.

5.3.3 Fuzzy STEALTH SIGNATURES

We now formally incorporate the fuzzy tracking functionality into the definition of stealth signing.

Definition s.3.7 (Fuzzy Stealth Signatures). A fuzzy stealth signatures (F-SS) scheme is a SS scheme
(MKGen, OPKGen, OSKGen, Track, Sign, Vf) with additional interfaces (FTKGen, FTrack) de-
fined below.

(opk, tki, ftki) <— OPKGen(mpk): overloading the interface OPKGen to output the fuzzy tracking
information ftki.

ftk <~ FTKGen(mtk, p): the fuzzy tracking key generation algorithm takes as input the master track-
ing key mtk, and a false positivity rate p, and outputs a fuzzy tracking key ftk.

true/false <— FTrack(ftk, ftki): the fuzzy tracking algorithm takes as input the fuzzy tracking key
ftk, the fuzzy tracking information ftki, and outputs true or false.

We define the notion of correctness below. We borrow the notion of fuzziness from [BLMGai]|
and adapt the same for the stealth signature setting. Intuitively, the correctness of fuzzy tracking says
that with a probability p, the fuzzy tracking algorithm returns true for a mismatched fuzzy tracking
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key and a one-time public key. For a correctly matched fuzzy tracking key and a one-time public key,
the tracking algorithm always returns true.

Definition s5.3.8 (Correctness for fuzzy tracking). An F-SS scheme (MKGen, OPKGen, OSKGen,
Track, Sign, Vf, FTKGen, FTrack) is said to be correct if the original SS scheme is correct and if for all
A e Nyallp € (0,1], all (mpk, msk, mtk) <— MKGen(A), all (opk, tki, ftki) <— OPKGen(mpk),
all osk <— OSKGen(msk, opk, tki), all ftk <= FTKGen(mtk, p), we have the following that holds

simultaneously:
* Pr[FTrack(ftk, ftki) = true] =1
+ and for any ftki’ ¢ SUPP(OPKGen(mpk)), we have

Pr[FTrack(ftk, ftki') = true] = p.

The unforgeability notion is the same as in Figure 5.3 as the adversary in the notion is given the
master tracking key already.

Unlinkability with fuzzy tracking guarantees that it is infeasible for an adversary given two fuzzy
tracking keys, both of which return a true or a false when tracking a challenge one-time public key
(opky, ftkip) simultaneously, to associate (opky, ftki,) with the correct tracking key, i.e., either ftko or
ftki. The adversary is said to violate the notion if it can guess correctly the association non-negligibly
more than 1/2.

Definition 5.3.9 (Unlinkability with key-exposure and fuzzy tracking). A F-SSscheme (MKGen, OPKGen,
OSKGen, Track, Sign, Vf, FTKGen, FTrack) is said to be unlinkable with key-exposure and fuzzy
tracking if there exists a negligible function negl forall A € N, all p € (0, 1], and for all PPT adver-
saries A the following holds:

Pr[UNLNKf, (4, p) = 1] < = + negl(A)

N —

where UNLNKj¢,, ke is defined in Figure s.5.

5.3.4 SCALABLE Fuzzy TRACKING

We now formalize the functionality, correctness, and security of fuzzy scalable stealth signatures as
follows.

Definition s.3.10 (Fuzzy Scalable Stealth Signatures). A fuzzy scalable stealth signature (F-SSS) is a SS
scheme (MKGen, OPKGen, OSKGen, Track, Sign, Vf) with additional interfaces (FTKGen, FTrack)
and a modified OPKGen defined below.

(fpk, ftk) <= FTKGen(p, N): the fuzzy tracking key generation algorithm takes as input a false pos-
itivity rate p, and the number of total users N, and outputs a fuzzy tracking key ftk and fuzzy public
key fpk. The algorithm is run by the tracking server ahead of time.
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UNLNKy—ke(A) OSKGenO(b*, opk, tki)

OKp := OK;j := ] osk <~ OSKGen(msky«, opk, tki)
(mpkg, mskg, mtkg) < MKGen(A) OKpx := OKpx || (opk, osk)
(mpky, msky, mtky) <~ MKGen(A) return osk

b+ {0,1}

(opky, tkip, ftkiy) <= OPKGen(mpk;)
osk; <— OSKGen(msky, opk,,, tkip)
(st 4, p) + A1(mpkg, mpkq, opky,
tkiy, ftkiy, oskp)
ftkg <— FTKGen(mtko, p)
ftk; + FTKGen(mtkq, p)
b1 < FTrack(ftko, ftki,)
by < FTrack(ftky, ftki,)
ifby = b
b AFIKCO (st ftk, ftky)
else
b «s{0,1}
return (b = b')

Figure 5.5: Experiment for unlinkability of F-SS with key-exposure.

(opk, tki, ftki) <— OPKGen(mpk, fpk): overloading the interface OPKGen to additionally take in-
put fpk and output fuzzy tracking information ftki.

list <— FTrack(ftk, ftki): the fuzzy tracking algorithm takes as input the fuzzy tracking key ftk, the
fuzzy tracking information ftki, and outputs a list consisting of master public keys.

Definition s.3.11 (Correctness for fuzzy scalable stealth signatures). AnF-SSSscheme (MKGen, OPKGen,
OSKGen, Track, Sign, Vf, FTKGen, FTrack) is said to be correct if the original SS scheme is correct
andif forall A € N, all p € (0,1], all (mpk, msk, mtk) < MKGen(A), all (opk, tki, ftki) <
OPKGen(mpk, fpk), all osk < OSKGen(msk, opk, tki), all (fpk, ftk) <= FTKGen(p, N), we

have the following that holds simultaneously:
* Pr[mpk € FTrack(ftk, ftki)] =1
+ and for any mpk’ # mpk, we have

Pr[mpk’ € FTrack(ftk, ftki)] =~ p.

Crucially, we omit opk in FTrack as ftki is already associated with opk and we still have the regu-
lar Track algorithm that works with tk, opk and tki for tracking. The correctness definition above
"ties’ together the keys ftk, mpk and mtk, and (opk, tki, ftki) «<— OPKGen(mpk) by requiring that
FTrack(ftk, ftki) always returns 1.
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UNLNKgsy_e(A, p,N)  UNI-UBSg(A, p, N)

OKg := OK; := ] (fpk, ftk) < FTKGen(p, N)
(mpkg, mskg, mtkg) <— MKGen(A) (st 4, ftki, 7, j, mpk) < A1 (fpk)
(mpky, msky, mtky) < MKGen(A) list < FTrack(ftk, ftki)
(fpk, ftk) < FTKGen(p, N) b«s{0,1}
b+« {0,1} if list[i] # mpk Vi=jV mpk # K
(opky, tkip, ftkiy) < OPKGen(mpk,, b «s${0,1}

fpk) else
osk, <— OSKGen(msk;, opk,, tkiy) W= Iist[]’],v] s K

list < FTrack(ftk, ftki,)
if mpkg € list A mpk; € list
b« .AE)SKGe"(/)(Ftk7 mpkg, mpky,
opky, tkip, ftkiy, osky)

b Ap(st 4, V')

?
returnb = b

else OSKGenO(b*, Opk,tki)

b s {0,1} osk «— OSKGen(msk« , opk, tki)
by :=(b=1V) OKp+ := OKp«||(opk, osk)
return by return osk

Figure 5.6: Experiments for unlinkability and uniformly unbiasedness of F-SSS with Key-Exposure.

Definition s.3.12 (Unlinkability with key-exposure and fuzzy scalable tracking). A F-SSS scheme (MKGen,
OPKGen, OSKGen, Track, Sign, Vf, FTKGen, FTrack) is said to be unlinkable with key-exposure
and fuzzy scalable tracking if there exists a negligible function negl forall A € N, all p € (0,1], and
for all PPT adversaries .4 the following holds:

+ negl(A)

N =

Pr[UNLNK#, (A, p,N) =1] <

where UNLNK¢sy, e is defined in Figure 5.6. Note that, similar to prior works, we only consider the
semi-honest server in the definition.

Definition 5.3.13 (Unbiasedness for fuzzy scalable tracking). A F-SSS scheme (MKGen, OPKGen,
OSKGen, Track, Sign, Vf, FTKGen, FTrack) is said to be unbiased by senders if there exists a negli-
gible function negl, forall A € N, and for all PPT adversaries .A the following holds:

+ negl(A),

N —

Pr[UNI-UBS# (4, p,N) = 1] <

where the experiment UNI-UBS¢s is defined in Figure 5.6 where list[i] denotes the i-th item of the list
and K denotes the master public key space.
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MKGen(A) OPKGen(mpk)

return SS,, /,.MKGen(A) return SS,, /,.OPKGen(mpk)
OSKGen(msk, opk, tki) Sign(osk, m)
(vk, sk) <— DS.Gen(A) return | ifosk =L
epk < SS,, /,.OSKGen(msk, opk, tki) (01, k, vk) < osk
return | ifepk =1 0p < DS.Sign(Sk7 mHUl)
01 < SSy /o-Sign(epk, vk) return 0 := (01, 02, vk)
return osk := (071, sk, vk)

Vf(opk, o, m)
Track(mtk, opk, tki) (01,00, vK) 1= 0
return SS,, /. Track(mtk, opk, tki) if SS,, /6. Vf(opk, o1, vk)A

DS.Vf(vk, o2, m||o1)
return 1

else return 0

Figure 5.7: A generic transformation to lift SS,, /o to SSy,.

5.4 GENERIC TRANSFORMATION OF STEALTH SIGNATURES

We provide our black-box compiler below to upgrade an SS,, /, without key-exposure to an SSy, with
key-exposure.

Suppose we have a digital signature scheme DS which is strongly unforgeable SEUF-CMA. Then
we have a black-box compiler leveraging SS to stronger version as shown in Figure 5.7. Basically, the
compiler transforms any SS,, /o with EUF-CMA,,, /6_ke and UNLNK,, /o security (without key-
exposure) into an SS,, with SEUF-CMA,, ke and UNLNK,, _. security (with key-exposure).

It is easy to see that correctness always holds as long as SS,, /, and DS are correct. The security
of unforgeability and unlinkability for SS,, are captured informally in the following theorem. The
formal theorem and security proofs are deferred to Section s.7.

Theoremss.4.1(informal). The stealth signature SS,, constructed in Section 5.4 is secure in SEUF-CMA e
and UNLNK,, e experiments if SS,, /o is EUF-CMA\, /oy secre, UNLNK,, jo_ye secure, and
DS is sSEUF-CMA secure.

5.5 SPIRIT: LATTICE-BASED (FUZZY) STEALTH SIGNATURE

We first describe SPIRIT and later show we can make it fuzzy.
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MKGen(A) OPKGen(mpk)

(t,ek) := mpk
A <+ Dil.ExpandA(crs)
(C,K) «+ KEM.Encaps(ek)

A € R{** « Dil.ExpandA(crs)

(s1,852) < 5§ x S

t:=A
ste (s/,sb) € S x S5 « Dil.ExpandS(K)

(ek, dk) < KEM.Gen(A) D2l =
mpk 1= (t, ek), t' :=t+ As| + s}
msk = (s1, 52, dk, £) (t],-) « Dil.power2Round(t', d)
mtk := (dk, ) return (opk := t}, tki := C)
return (mpk, msk, mtk)

Sign(osk, m

Y
OSKGen(mSk7 Opka tkl) return | ifosk =L
(s1, 82, dk, t) := msk return o := Dil.Sign(osk, m)
if false < Track((dk, t), opk, tki)
return L Track(mtk, opk, tki)

K <~ KEM.Decaps(dk, tki)

(dk, t) := mtk

(s1,sh) < Dil.ExpandS(K)

, , A + Dil.ExpandA(crs)
return osk := (s; + 87,82 + ;)

K +— KEM.Decaps(dk, tki)
(s],s5) < Dil.ExpandS(K)
Vf(opk,o,m) t:=t+ As] +5)

return Dil.Vf(opk, g, m) (t1,-) + Dil.power2Round(t, d)

return opk = §;

Figure 5.8: Construction of Spirit with EUF-CMA,, /5 ke and UNLNK,, /o ke security

5.5.1 LATTICE-BASED STEALTH SIGNATURE

We use an ANO-CCA-secure key exchange KEM (Kyber) [SABT20] and an EUF-CM A-secure signa-
ture (Dilithium) to construct an SS scheme with existential unforgeability without key-exposure and
unlinkability without key-exposure in random oracle model. We require a common reference string
crs < {0, 1}?%, but for conciseness, we omit the explicit mention of crs in interfaces. We provide
the detailed construction in Figure 5.8.

Intuitively, we use KEM to re-randomize the underlying master secret key msk to obtain osk each
time and it needs to be actively anonymous which can be instantiated by Kyber with slight modifica-
tion as shown in [GMP22]. Also, we only require Dilithium to be EUF-CMA secure which gives us a
larger space to choose parameters. We recall Dilithium as follows.

Definition s.5.1 (Dilithium [LDK20]). Dilithium denoted by Dil is a post-quantum digital signa-
ture DS scheme based on the “Fiat-Shamir with Aborts” approach [Lyuo9, Lyur2]. It is based on
MLWE, MSIS and SelfTargetMSIS assumptions with ring R, := Z,[X]/(X™ + 1). Moreover, for

secrets S <—$ Sf;, each coefficient of the vector is an element of R; with small coefficients of size at most
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7. In its optimized construction, there are some useful supporting algorithms which we described as
follows:

+ ExpandA(crs) : The function maps a uniform seed crs to a matrix A € R’;M.

* ExpandS(K) : The function used for generating the secret vectors in key generation, maps a seed K
to (s1,82) € Sf] x S’,‘I.

* power2Round(r,d) : The function is the straightforward bit-wise way to break up an element
r:=r11 -2 4 rgwhererg = r mod 2¢andry = (r — r9)/2%.

* HighBits, (7, @) : The function select an a that is a divisor of § — 1 and write r = 71 - a +rg in the
same way as before then returns 1.

* MakeHint,(z, 7, a) : The function runs 1 < HighBits(r, a) and v; < HighBits(r+z, @), then
returns 1 # U1.

Correctness. Since
t' =t+ As] +s,=A(s] +5s1)+ (s2 +85),

it is easy to see we have 1 — negl(A) correctness as long as underlying KEM and Dil have 1 — negl(A)
correctness.

Notably, 8] + s1 and sy + s}, have roughly doubled the norm thus doubling f in signatures.
This will incur additional iterations in Sign as the number of repetitions is roughly p 0F (%Jri)
where y; & 2)y,[LDK"20]. However, besides having doubled f, we can increase y; and y, to
2y, and 2y,, respectively. This tweak just slightly lowers the SelfTargetMSIS hardness but won’t
harm the running time. To see this, in Dil’s proof, the reduction’s advantage mainly dominated by
MSISk ¢4y, for SEUF-CMA security, but SelfTargetMSISy 1 5, for EUF-CMA security. Without
using the forking lemma (since it is not tight and not possible in a quantum setting), the hardness of
SelfTargetMSIS is mainly from finding some sort (||-|| ., < 2),) vectorsz, u’ such that Az+u’ = t/
and amounts to MSIS problem (referring to Section 6.2.1and Appendix C.3 in [LDK 20] for details).
Therefore, doubled y, in our SPIRIT construction gives the reduction of EUF-CMA,, /e roughly

the same advantage as that of SEUF-CMA in Dil. We present the concrete security level in Table .3.

Security Analysis. We prove the construction of SPIRIT in Figure .8 is existential unforgeable and
unlinkable without key exposure, and is secure in EUF-CMA,, /e and UNLNK,, /, _ ke experiment,
respectively. For the security of EUF-CMA,, /o_ke, We prove this in two steps. First, we show it is
unforgeable without key exposure under no-message attacks (NMA), i.e., the adversary cannot query
SignO(-), and we refer the corresponding experiment to UF-NMA,, /o _e; Next, we show a reduction
from UF-NMA,, /o_ke t0 EUF-CMA,, /g_je. Since Dil does not rely on the lower parts of the public
key to to be secret, so for simplicity, we assume the one-time public key opk is t’ instead of ]. Also,
we assume crs := A directly and is publicly known.

Lemma s.s.1 (informal). Spirir in Figure 5.8 is unforgeable without key exposure under no-message

attacks if Self TargetMSIS and MLWE assumptions hold.
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MKGen(A, n)

OPKGen(mpk)

mpk’, mtk’, msk’ < SS.MKGen(1)
(pk, sk) < pRgv.Gen(A, n)
mpk := (mpk’, pk), msk := msk’

parse (mpk’, pk) := mpk
ftki <+ pRgv.Enc(pk, 1)
return (SS.OPKGen(mpk'), ftki)

mtk := (mtk’, sk)
return (mpk, mtk, msk)

FTrack(ftk, ftki)

-y Mg|] < pRev.Dec(ftk, ftki)

FTKGen(mtk, p) b,

parse (mtk’, sk) := mtk

parse (sq,...,8u) := sk )
returnb =1

e logy ()]
Track(mtk, opk, tki)

return ftk := (s1,...,st)

parse (mtk’, sk) := mtk

Sign(osk, m
g ( ! ) return SS. Track(mtk’, opk, tki)

return SS.Sign(osk, m)
OSKGen(msk, opk, tki)

return SS.OSKGen(msk, opk, tki)

Vf(opk, o, m)

return SS.Vf(opk, g, m)

Figure 5.9: Post-quantum FMD fuzzy tracking

Then we have the following theorems to show the construction is unforgeable and unlinkable.
The formal statement and analysis of the above lemma and the following theorem is deferred to Sec-
tion §.7.1.

Theorem s.5.2 (informal). Sririr in Figure 5.8 is existential unforgeable and unlinkable without key
exposures if it is UF-NMA\, jo_ye and the KEM used is ANO-CCA secure.

5.5.2 LATTICE-BASED FUZZY STEALTH SIGNATURE

We provide a lattice-based construction for fuzzy tracking in a standard model. Basically, it is packed
Regevencryption with ciphertext compression [BDGMi9]. And this gives us the first post-quantumly
ambiguous encryption without relying on random oracles.

Packed Regev (compressed). We first recall the construction of packed Regev with ciphertext com-
pression [BDGMi9] in Figure s.13 of Section s5.7.2, where x is the error distribution and B is the error
bound between z + ¢ ; and z + sl-Tcl.

Note thatapart from the header (¢1, z), the payload (w;) are just 1 bits which is almost as succinct as
DLog-based fuzzy message detection scheme FMD, in [BLMGa1]. Specifically, the entire ciphertext
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is (¢ + 1) log q + n-bit large.

Since IND-CPA and IK-CPA security (recalled in Chapter 1) of pRgv are discussed in prior works
already, we focus on its ambiguous security and we show it is actually Uniformly-Ambiguous (recalled
in Chapter 1) with super-poly noise-modulus ratio. The formal statement and proof of the lemma
below are deferred to Section 5.7.2.

Lemma s.5.3. Packed Regev encryption pRgv with ciphertext compression shown in Figure 5.13 satis-
g S . 4Bn

fies Definition 1.1.6 and is uniformly-ambiguons UNI-AMB-secure when i negl(A).

The modulus of Figure s.13. To argue uniformly-ambiguous security, we need a super-polynomial

noise-to-modulus ratio (e.g., 60-bit modulus in our case) which is usually assumed in homomorphic

encryption-related works. Thisis a somewhat stronger assumption since it assumes the lattice problem

BDD or GapSVP is hard to even with super-polynomial approximation factor [Regos].

Construction. We then provide a lattice-based fuzzy stealth signature in Figure 5.9, which is composed
of a standard stealth signature SS and a compressed packed Regev encryption pRgv shown above.
Basically, it uses the same framework as FMD presented in [BLMGax].

Correctness. We provide the correctness analysis in Section 5.7.2.

Now we consider the false-positive rate p when using different fuzzy tracking keys. Since ¢1 looks
uniformly random due to LWE assumption, siTcl is uniformly random over Z; by Leftover Hash
Lemma as the inner product is a strong randomness extractor. This implies [s] ¢; + z] is uniformly
random over {0, 1} and FTrack returns true with probability 2~ ~ p.

Security Analysis. Formal statement and corresponding proof of the following theorem are deferred
to Section §5.7.2

Theorem s.5.4 (informal). The fuzzy stealth signature constructed in Figure 5.9 s unlinkable with
key-exposure and fuzzy tracking if the underlying stealth signature is UNLNK,,_ye and pRgv is
UNI-AMB and IK-CPA secure.

We also provide an approach to extend it to a finer false-positive rate as shown in Section 5.7.2.

5.5.3 SCALABLE LATTICE-BASED Fuzzy TRACKING

As discussed in Section 5.2.4, we limit the user’s ability to choose a false-positive rate and provide a new
framework of fuzzy tracking which is substantially more scalable than prior works|[ BLM Ga., MSSt22,
LT22]. Please refer to Section 5.3.4 for functionality and security definitions.

Construction. We describe the detailed construction in Figure s.10, where {0, 1}2" < H(k € {0, 1}*,
[t]) is a hash function with the seed k and H,, : {0,1}/™PKl — {0,1}" is another hash function
mapping mpk to a hint which is used to locate mpk’s mailbox in server’s storage. Since it is based
on Module-LWE assumption, R, denotes the ring Z,;[X]/(X™ + 1), and encodeg, : {0,1}"
Z4[X]/(X™ 4 1) is a function mapping binary strings to the ring elements with binary coefficients;
Similarly, decodeg, is the reverse operation to map back to a binary string. Basically, it is a variant
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MKGen(A) OPKGen(mpk, fpk)

return SS.MKGen(A)

parse (b € R§7 Hu, t) := fpk
hint € {0,1}" + H,(mpk)

FTKGen(p, N) 25 (0,1}

ni= Dogz N—‘ WT = [hintTHzT}
t:=[p-2"] it

A e R «scrs 6 <5 {0,1}*

(s,e) < (Bf;)2 (r,e1) < (Bf;)z:@z «$ By
b:=As+e (x,y € {0,1}") < H(5,1)

return ftk := (s, £), fok := (b, Hy,f)  %¥»@ € Rg <= encodeg, (x,y, w)
X
1 :=ATr+e + % . M

FTrack(ftk, ftki)

parse (s, t) := ftk, (c1, ¢z, 0) := ftki

e ::bTr+ez+g~(w+y)
ftki := (C],Cz,(s)

Vielt]:
. return SS.OPKGen(mpk), ftki
(X, y)  H(o, i)
i i i .
XY € R = encoder, (x',y') OSKGen(msk, opk, tki)
i q (|«
a=a-5- ( 0 ) return SS.OSKGen(msk, opk, tki)
w = [sTc — ) @y Track(mtk, opk, tki)
hint' := decodeg, (@')[: n] return SS. Track(mtk, opk, tki)
return list := {hint!, ..., hint'} Vf(opk’ o‘,m)
. return SS.Vf(opk, g, m)
Sign(osk, m)

return SS.Sign(osk, m)

Figure 5.10: Scalable lattice-based fuzzy tracking

of the underlying IND-CPA encryption of Kyber with a non-prime modulus. Though we lose the
advantage of NTT multiplications, we can still mitigate this by using Karatsuba and Toom-Cook al-
gorithms.

Correctness. It is clear to see that the targeted mpk must have hint := hint’ = H, (mpk) appears
in list with probability 1: For the targeted index i € [f], we have Cli = ATr + eg which is the same
as standard ciphertext header. The decryption will output hint directly as long as g > 4B. Now we
focus on the other case where mpk’ # mpk. Firstly, considering hint; € list, it is decrypted as

[ —ca2 @y = [¢ + L(w+s1(x = &) +y) 2 &/,

where s1 is the first ring element of s. hint; is uniformly random over {0, 1}" after rounding |- ]2 as
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Table 5.3: Performance Result of Constructions in Section 5.4 and Section 5.5.1

Scheme’ w/KE sec sec,” opk  Signature MKGen OPKGen  Track  OSKGen Sign Vf
SPIRIT, o 114 104 208KB 2.54KB 0.068ms 0.074ms o0.076ms 0.078ms 0.208ms ©0.053 ms
SPIRIT; o 171 155 3.04KB 345KB o.131ms o.137ms 0.136ms o0.138ms 0.377ms 0.089 ms

SPIRITs o 245 223 4.16KB 4.81KB o.191ms 0.198ms ©0.202ms 0.2I5ms 0.443 ms 0.145ms

Dilithium2+SpPIRIT, . 114 104 208KB 6.40KB oc.0yoms 0.076ms 0.078ms 0.358ms 0.222ms ©0.114 ms
Dilithium3+SPIRIT; ° 171 155 3.04KB 885KB o.129ms o0.136ms o0.132ms 0.597ms 0.369ms ©0.182 ms

Dilithiums+SPIRITs . 245 223 4.16KB 122KB 0.186ms o.193ms o.197ms o0.762ms 0.428 ms 0.291 ms

Falcons 12+SPIRIT, . 114 104 208KB 4.09KB o©0.069ms 0.074ms o0.075ms $5.458ms 0.226ms 0.074 ms
Falcon1024+SPIRIT; ° 171 155 3.04KB 6.51KB o0.133ms o0.133ms o0.133ms 17.7ms 0.444ms 0.130ms

Falcon1024+SPIRITs . 245 223 4.16KB 7.88KB o0.194ms o0.198ms o.201ms I17.5ms 0.44Ims 0.185ms

' SPIRIT; builds on Dilithiumz and anonymized Kybersi2, SPIr1T3 builds on Dilithium3 and anonymized Kyber768,

and SPIRIT5 builds on Dilithiums and anonymized Kyberioz4.

* secy indicates the hardness of Quantum Core-SVP whereas sec indicates that of Classical Core-SVP.

y/&y' are outputs of the random oracle H. Then, forany mpk’ # mpk, Pr[H,,(mpk’) = hint;] = 5

since H,, is a random oracle, and

t
Pr[H, (mpk’) € list] = > Pr[H,(mpk’) = hint;]
j=1
t ~
“oaN P

Security Analysis. The formal theorem statements and proof of the following theorems are deferred
to Section 5.7.3.

Theorem s.5.5 (informal). The fuzzy scalable stealth signature constructed in Figure s.10 is unlinkable
with key exposure and fuzzy tracking if the underlying stealth signature is UNLNK,, e and MLWE
holds. It is also unbiased and satisfying UNI-UBS¢s defined in Definition 5.3.13 if n < %5 where m is
a power of 2 and By, is a centered binomial distribution.

5.6 PERFORMANCE ANALYSIS

5.6.1 IMPLEMENTATIONS

We present the performance result in Table 5.3 and Table 5.4. The open source code can be checked
at [Weba].

For SPIRIT in Section s.5.1, similar to Dilithium, we denote the scheme with three security levels
as SPIRIT), SPIRIT3, and SPIRITs. Parameters are the same as Dilithium’s, except that our 8,4, 7,
are doubled. Moreover, we use a variant of Kyber in SPIRIT: Replacing the original FO transform of
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Table 5.4: Performance Result of Constructions in Section 5.5.2 and Section 5.5.3

Scheme sec sec; NClients p  PublicKey Fuzzy TrackingInfo Setup Time OPKGen' FTrack?

Post-quantum FMD 104 94 2% 2710 345.6KB 17.2 KB 108.8 ms 75.13 ms 11.74 sec

Post-quantum FMD 104 94 2% 215 §18.4KB 17.2 KB 124.3 ms 74.64ms  4.772 hour
Scalable Fuzzy Tracking 115 104 220 2-10 800 B 800 B ooIrms 00148 ms  3.424 ms
Scalable Fuzzy Tracking 115 104 2% 2715 800 B 800 B 0.0IImMS 0.0149ms 108.77 ms

' Only consider the fuzzy part, i.e., the time to generate the fuzzy tracking information, ftki.

* The server’s running time for each incoming ftki.
For Post-quantum FMD, we calculate the time to run FTrack for all of clients (recipients).

Kyber with the one suggested in [GMP22] which makes Kyber ANO-CCA-secure. For Post-quantum
FMD in Section s.5.2, to get 104-bit computational security and 40-bit statistical security, we choose
g =2%/¢=2304and y = By, is binomial distribution with parameter 1 = 3. For Scalable Fuzzy
Tracking in Section s.5.3, to get 115-bit security and negligible failure probability, we choose g = 4096,
other parameters are the same as Kybersi2, specifically, we have m = 256, = 3,4 = 2.

We run the implementation on a regular laptop: Macbook Air (M1 2020) with 8GB RAM and 2.1
GHz CPU (Turbo 3.2 Ghz). Note that our implementation is based on the reference implementation
of Dilithium, Kyber, and Falcon, without using AES or AVX optimization. We run each test 10000
times to calculate its average running time. For Post-quantum FMD, we run tests 100 times to average
the running time.

Experimental results show that Falconsi2+SPIRIT, yields the smallest signature size (4.09 KB) for
security against key exposures with a decent hardness level (114-bit security). And Scalable Fuzzy
Tracking yields the smallest communicational cost (8oo Bytes) and server’s computational overhead
(3.4 ms) for millions of clients.

5.6.2  PrRIOR WORKS

We also present tables for comparison with prior works in Table 5.1 and Table s.2.

In Table 5.1 we compare our group-based stealth signature ( Section A.2), SPIRIT; (Section s.5.1),
SpirrT, +Dilithiumz, and SPIrIT) +Falconsia with prior works. We would like to stress that [LLN " 20]
is a theoretical work without giving concrete parameters. We estimate the number as follows: Ac-
cording to Lemma s in Section 2.2, it requires m > 6nlog g, and according to Section 3.4, it re-
quires § = O(m>/?) - superpoly(log m). Concretely, if we choose the security parameter 1 = 210
which is the case in our thesis, a typical choice for [LLN"20] to satisfy all of the above conditions is
n= 210,77’1 — 218,‘7 = 250

If we want to improve their work with recent advancement in NTRU, note that the techniques
used in [LLN20] is from [ABB1o] which implies HIBE. Though combining it with NTRU could
improve its efficiency, however, it is highly likely to have similar parameters as the state of the art about
NTRU-based HIBE [ZMS*21]. Thus we estimate numbers here with parameters from [ZMS*21]
for 8o-bit security since they only have two levels of security (80-bit or 160-bit).
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In Table 5.2 we compare our Post-quantum FMD (Section s.5.2) and Scalable Fuzzy Tracking (Sec-
tion s.5.3) with prior works about message detection or retrieval. All of the works assume the semi-
honest server, except that IITgg also considers the malicious server. Note that for security, p needs to
\}N as calculated in [SPBax]. Also, some prior works consider fuzzy schemes ([BLM Gai]

be as large as
and ours) are pM-anonymity where M is the number of total messages. However, it is not accurate
due to statistical attacks as shown in [SPBz1]: If there is only one message (M = 1), it still has some
extent of anonymity if N is large.

Regarding the server’s work, we compare a single server with a single thread as all of the works (ex-
cept for Ilgc) supporting distributed servers or parallelized threads. [BLMGz21] actually needs to run
their test functionality for each recipient’s detection key for each incoming message. Other schemes
with full privacy inherently require O(N) work for the server otherwise it will leak information.

Latency per message is dominated by the server’s computational time. Assuming thereare N = 22
clients (millions of users is a legit assumption for cryptocurrency [Webf]). Set false-positive rate p =
2710 for [BLMGai] and ours. The numbers of others are taken from their paper directly. Assuming
10 — 20 messages per second (e.g., Bitcoin or Ethereum), only ours is practical with many users. To
compute each recipient’s computational time, we assume there are M = 500, 000 messages in total
(which is roughly the number of transactions of Bitcoin or Ethereum per day). We let fuzzy tracking
schemes run Track (shown in Definition s.3.1) for each message retrieved.

5.7 SECURITY ANALYSIS
Proof of Theorem s.4.1 We restate the theorem here more formally for the case of unforgeability.

Theorem s.7.1. The stealth signature SS., constructed in Section 5.4 is secure in SEUF-CMAy_ke
experiment if SSy, o is EUF-CMA,y jo—ye sectre and DS is SEUF-CMA secure. Specifically, for any
A € N, and for any PPT adversary A, if it succeeds in the experiment SEUF-CM.Ay_ye, then there
are other adversaries By, By running in roughly same time such that

EUF-CMAy /o ke

Advy M () < Adv) (B1) + Adv§EUFCMA(B).

Proof. We prove the theorem by reduction. Suppose there’s an adversary A has a non-negligible
advantage in SEUF-CMA,,_je, then we can construct another adversary B to win the experiment
EUF-CMA,, /o ke 0f SS,, /o or the experiment SEUF-CMA (strong unforgeability) of DS as follows.
BB forwards mpk, mtk from the challenger in EUF-CMA,, /o to A.

To simulate OSKGenO (i, opk’, tki, flag’), if flag' = true, B runs (vk,sk’) < DS.Gen, then
queries 0 SignO(vk') in EUF-CMA,, /o ke and returns osk! 1= (o, vk, sk') to A; If flag' =
false, B asks a challenger C !in SEUF-CMA of DS to send a challenge verification key vk', then queries
o« SignO(vk') in SEUF-CMA,, /o ke of SS, /o and stores ol IFOK[i] = (opk’, -, ) A flag’ =
true, BsignalsC ! to terminal the experiment and asks for its osk' then forwards that to .A. To simulate

SignO(i, m/), B queries aé + SignO(m/||a") and returns o/ := (0¥, oé, vk) to A.
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Once A submits some valid forgery o’ := (0%, 0%, vk'), m’, " as shown in Figure 5.3, 3 behaves in
following cases:

+ If m’ is not appeared in Q (recall that Q is the set to record signing queries), B forwards
oY, m’||o] to '-th challenger in SEUF-CMA of DS;

- Ifvk’isnotappeared in Q, I3 forwards o 1 vk’ to the challenger in EUF-CMA,, Jo—ke O SSyy /03

» If both m’, vk are in Q, then the only case that ¢’ is a valid forgery is either o} or o} not
appeared in Q. In either case, B just forwards 0%, m’||0] to the challenger in SEUF-CMA of
DS.

This completes the proof.

We restate the theorem here for unlinkability.

Theorem s.7.2. The stealth signature SS,, constructed in Section 5.4 is secure in UNLNK,,_ye exper-
iment if SS,, /o 18 UNLNK,, o e secure. Specifically, for any A € N, and for any PPT adversary A,
if it succeeds in the experiment UNLNK,, e, then there are other adversaries B running in roughly

same time such that
UNLNK, /o ke

Adv Mk () < Adv (B).

Proof. Similarly, we can also prove this theorem easily by reduction. Suppose there’s an adversary A
has a non-negligible advantage in UNLNK,, e, then we can construct another adversary B to win
the experiment UNLNK,, /o_ie 0f SS,, /o s follows. B forwards mpkg, mpky, opky, tki, from the
challenger in UNLNK,, /o e to A. To simulate osky, B runs DS.Gen to get (vk, sk), then queries the
signing oracle via SignO(+, —1, vk) from UNLNK,, /o e to learn a signature g1 of vk, then returns
osk, := (01, vk, sk) to A. To simulate OSKGenO, B queries SignO and runs DS.Gen as above to
generate osk. Once A submits b, B simply forwards b’ as its final guess. This completes the proof.
O

5.7.1 SECURITY ANALYSIS OF STEALTH SIGNATURE WiTHOUT Fuzzy TRACKING

Proof of Lemma s.5.1 We restate the lemma formally here.

Lemmas.7.3. SPirITin Figure 5.8 is unforgeable without key exposure under no-message attacks. Specif-
ically, in random oracle model, for any A € N, for any adversary A, if Dil bas parameters B,y1, 7V,
and we denote H' as a random oracle can be accessed by A and By, then the advantage to win the game
UF-NMAy, (M) is

UF-NMA,, /o e

AdV)\VH/%,yMg (A) < AdV]’é{IEI:\{)VE<Bl) _i_AdVSeIfTargetMSIS(BZ).

H’ k,0+1,C
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Proof. Consider the experiment EUF-CMA,, /o in Figure 5.1 where the SignO is forbidden to ac-
cess. Suppose A forges 0, then we have the following claim.

Claim s.7.1. If an adversary A can forge 0* without accessing SignO and assuming MUIWEy ; p as-
sumption holds, then there is another adversary By who solves Self TargetMSISy, i o1 1 ¢ in roughly
same time with non-negligible probability.

Proof. After receiving uniformly random samples (A, t) € R¥* x RF and random oracle access
H'(-) from the challenger in SelfTargetMSISyy . 411 ¢/ 4 g, B2 computes mpk := (A, t, ek), mtk :=
(dk, t) and forwards mpk, mtk, H' to A. As long as the MLWEy 4 p assumption holds, mpk looks
iqdis;inguishable from real public key for A. For i-th query in OSKGenO, B, computes and stores
s}, 85. Once A submits some valid forgery 0* with 7*, meaning it finds some (x, z, c) for opk™ := t*
such that

X

H (wllAle]- 2] | =
C

where ||x||, < 2y, + 1+ 2% 17, ||z||, < y; — 2B and |c||,, = 1[LDK"20]. Then B; can
/
X

retrieve 87, 85 from its storage and instantly returny := |z'| , y to the SelfTargetMSISy ; ;11 ¢
c

challenger, where X' := x + ¢s} and 2’ := z + ¢s}. Note that ||cs} H, |lcs3|| < p. Since we can write

t* :=t + As] + s;, it is easy to check that this is a valid solution

X + cs;
H | wll [Ik|Alt] - |z + st =c
c
where [|y[|, < Cand C := max{y; — ,2y, +1+27"1t 4+ g}. O
This completes the proof to show it is secure in the UF-NMA,, /o expetiment. O

Proof of Theorem s.5.2 We restate the theorem for unforgeable without key exposures formally here.

Theorem s.7.4. SPIRIT in Figure 5.8 is existential unforgeable without key exposures. Specifically, for
any adversary A, if it succeeds in the experiment EUF-CMA,, jo—e, then there is another adversary
B running in roughly same time such that

EUF-CMA,, /o e UF-NMA,, /o e

Ay g g CA) S Advy o,

(B) + negl(4),
where we denote H', H as random oracles can be accessed by By and A, respectively.

Proof. Intuitively, a reduction from CMA to NMA usually needs “patching” random oracles [ KLS18,
AFLT12]. We prove this theorem in a sequence of hybrid games as follows.
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H(W1||[J> EUF-CMAﬁ/o—ke(A)

/in Hyb, and Hybs (mpk, msk, mtk) - MKGen(A)
Retrieve (1t : (CP,W}11> for i OK:=1[,Q:=0
if wy = W‘lll (Wl*,G*, l'*) « ~AOSKGen(’),Sig;nO(mpk7 mtk)

then return ¢ := ¢ (opk™ := t*, 0sk™, -) := OK([i"]
/Hybs block begins
(z*,c*,h*) :==0¢"
B = Gm[|t")
wi < HighBits, (Az* — c"t",2y,)
if H (wi|u") # c*
then return 0
/Hyb3 block ends
=(m",i") ¢Q
b1 := Vf(opk™,m*,c%) =1
by := (OK["] # (-,-, 1))

return by A by A by

else return ¢ := H'(wq||p)

Figure 5.11: Simulated H and EUF-CMAﬁ/oike(/\) in Hybrid, and Hybrid,

Hybrid: This is exactly the standard EUF-CMA,, /o experiment. Thus we have

EUF-CMA,, /o_ke

Pr[Hybridy = 1] = Adv, ;- "

(A).
Hybrid,: We modify Hybrid as follows. In OSKGenO(opki tki'), for i-th query, if true <
Track( mtk, opk, tki') it only stores sl, sz,tZ = A51 + 55 + t, sets osk' := T and returns 1. In
SignO (i, ml), for j-th query, it generates and sets osk’ by msk if osk’ := T, then return a signature
ol by using osk'.

This game only changes the time to generate osk’, thus advantage remains the same:

| Pr[Hybrid, = 1] — Pr[Hybrid, = 1]| = 0.

Hybrid,: We update Hybrid, by modifying SignO(i, ml) in j-th query: Instead of generatlng ol
with osk’ when needed, it just simulates o/ by choosing uniformly random (z,d) € S 251 % B,

and stores a key-value pair (i : (¢, w1)> where @/ « G(m/||t), W1 <+ High Bltsq(Az] —dt,2y,),
and G is a perfect random function. We also use a new random oracle H(wy || 1) to simulate random
oracle H'(w||pt) in above game as shown in left part of Figure s5.11. Now we analyze the advantage.
In our construction, Dil.Sign remains unaltered, thus the resulting signature o is still perfectly zero-
knowledge (where the exact simulation is shown in Sign of Figure 5.12). Therefore the distribution of
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each o is exactly the same as the one in Hybrid,, then we have
| Pr[Hybrid, = 1] — Pr[Hybrid, = 1]| = 0.

Hybrid;: We modify the above game by adding an additional block in EUF-CMA,, /5 e as shown in

the right part of Figure s.11. This game only differs from the Hybrid, if w] = Wéﬁ and ((m*,-,1*) ¢ Q)A
by A by (Hybrid, return 0 and Hybrid, return 1). However, A didn’t query SignO(i*, m*) be-

fore, thus w’f should remain hidden. And from [KLS18], it shows that Dil signature has enough
min-entropy, thus the probability Pr[w] = WH*] is negligible, i.e.,

| Pr[Hybrid, = 1] — Pr[Hybrid, = 1]| < negl(A).

This game can be fully simulated by B against UF-NMA,, /o as follows. By simulates OSKGenO,
SignO oracles without knowing msk, and it patches H' from UF-NMA,, /o to H for generating

a'. Once A submits a valid signature ¢* and if H' works well in 0%, B directly forwards 0 to the
challenger of UF-NMA,, /o_e- Therefore

UF-NMA,

Pr[Hybrid, = 1] = Adv, . 5% (B1)
and we complete the proof. ]
We state the theorem for unlinkable without key exposures formally here.

Theorem §.7.5. SPirIT in Figure 5.8 is unlinkable without key exposures. Specifically, for any adversary
A, if it succeeds in the experiment UNLNK,, o e, then there are other adversaries By, By running
in roughly same time such that

UNLNK,, /o e

Advy o, 5 (A) < AdviNO-CA(By) + Advyy i E(Ba).

where we denote H as a random oracles can be accessed by A and y,,v,,p are parameters of the

underlying Dil scheme.

Proof. We prove the theorem in a sequence of hybrid games.
Hybrid,,: This is the original UNLNK,, _ e experiment, thus we have

UNLNK,, /o—ke

Pr[Hybrid, = 1] = Adv, ;" 7/

(A).

Hybrid,: We modify the above game by changing the function Sign(osk, m/) in UNLNK,, Jo—ke
experiment to the Sign(opk’, m/) without using osk in Figure s.12. Specifically, it samples uniformly
random (2/, ¢f), programs the random oracle such that H(i/||w/)) = ¢ where i/ is determined by m/
and W, := HighBits(Az/ — dt',2),). Thenseto/ := (2/,d/, W) where h/ can be determined by
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Sign(opk’, m/)

/ in Hyb, and Hyb,
parse t' := opk’
o ,
(Z',c') +s Sy, —2p, X Bz
W= GOm[[t)
w) < HighBits, (Az' — c't’,2y,)
Program H s.t. H(w!||p}) := ¢
h' < MakeHint,(—c't), Az' — c't' + c't), 2y,)
/ té are lower bits of t

return ¢’ := (z',¢', h)

Figure 5.12: Simulation of Sign from Hybrid, to Hybrid,

d,t, 2. Because of the perfectly zero-knowledge of o/, the distribution of signatures in this hybrid is
the same as the one in Hybrid), i.e.,

|Pr[Hybrid, = 1] — Pr[Hybrid, = 1]| = 0.

Hybrid,: We modify the above game as follows. Parse mpk := (to, ek o) and mpk; := (t;, ekq 1),
instead of generating to, t; from msk, we sample uniformly random (tg, t1) < R]q‘ X R’;. By MLWEy ¢ p
assumption, we know this hybrid only differs from Hybrid,; by:

|Pr[Hybrid, = 1] — Pr[Hybrid, = 1]| < Adv}} )% (B2).

Besides, this hybrid can be fully simulated by an adversary B; of ANO-CCA experiment. By simu-
lates the random oracle H for A. Upon receiving ekg, ekj and (Cp, Kj,) from ANO-CCA experiment,
B sets mpkg := (to, ekg) and mpk; := (to, ekq ) where (tp, t;) < RS X Rf; are uniformly sampled.
Bj sets tkiy := Cyp, osky, := T, opk;, < Rk and sends (mpkg, mpky, tkiy, opk;) to A of Hybrid,.
For each query of OSKGenO (b, opkl tki* ) By queries K' <~ KEM. DecapsO(b*, tki') to check if
AS1 + 85+t = opk’ where s}, s, < Dil. ExpandS(K?). If the check doesn’t pass, set oskb* =1
Otherwise set oskb* := T. For each query of SignO(b*, i, m/), By simulates the signature ol by us-
ing opk!. if the corresponding oski. = T, otherwise return L. If i = —1, just simulates a signature
using opk,.

Then Hybrid, can be simulated without knowing any msk, mtk or b. Once A returns V', B;
simply forwards b’ to the challenger of ANO-CCA. Thus we have

Pr[Hybrid, = 1] = Advi{No“4(B,),
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pRgv.Gen(A, n) pRgv.Enc(pk, m € {0,1}")

AEZﬁXZ +scrs (r,e1) s (x)%, er s X"
(S, E) s (x**m)? a:=ATr+¢
B:=AS+E cZ::BTr-l-ez-&-g'm

return pk := B, sk := S
2z <4 Zg such that Vi € [n] :

st ¢ []-B 148U
3q 3q

pRgv.Dec(sk, ct)

parse (c1,z,wy, . .., Wy) := ct [Z—B,Z-i-B]
parse (s1,...,st) := sk Vi€ [n],w; == [z 4 c2i)2
Vi [f],m=[slc; +z], ®w; returnct := (¢1,z,wy,..., W)

returnm := [my, ..., my]

Figure 5.13: Packed Regev encryption pRgv with ciphertext compression

and this completes the proof. O

5.7.2  ANALYSIS OF PosT-QuaNnTUM FMD

Correctness. We show the scheme in Figure 5.9 satisfies Definition 5.3.8 as follows. For each i € [t],
we have [SiTcl +z]y ®w; = 1. Sincecp j — siTcl = % + ¢ where e’ € [—B, B] is some short error,
we have ¢y ; — ¢ = squ + % Also, we choose

9 _p 1 39 _p 3
- —~—B,-+B|U[-—-—-B,—+B
C211+Z¢[4 ?4+ ] [4 74+ ]7
thus we have (Czyj +z]p = [Czﬂ‘ +z—¢'|, which implies w; = [SiTcl +z+ %Jz = [SZ-TC1 +z|,@1
Therefore, with correct ftk, FTrack always returns true. Note that for correctness, we require g >

4Bn.

Security Analysis. We show the scheme in Figure 5.9 is unlinkable with key-exposure and fuzzy track-
ing (Definition 5.3.9).
Proof of Lemma s.5.3 and Theorem s.5.4 We restate the formal lemma here.

Lemma s5.7.6. Packed Regev encryption pRgv with ciphertext compression shown in Figure 5.13 satis-
fies Definition 1.1.6 and is uniformly-ambiguous UNI-AMB-secure when 4'% is negl(A). Specifically,
we have
UNI-AMB LWE 4Bn
Adv; (A) < Advgg-(A) + —,
’ q

where B is the bound such that HSTC1 — CZHOO mod g < B.

Proof. To see it is uniformly ambiguous, firstly note that ¢; looks uniformly random due to LWE
assumption, and w; is uniformly random due to m1; being a uniformly random bit in the experiment
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in Figure 1.2. For z, the statistical distance between its distribution and uniformly random distribution
over Zg is % Thusaslongas % < negl(A), we can simulate the entire ciphertext without knowing

b or sk. O
We restate the theorem formally here.

Theorem s.7.7. The fuzzy stealth signature constructed in Figure 5.9 is unlinkable with key exposure
and fuzzy tracking. Specifically, for any A, n,t where n > t, if there is a PPT adversary A bas non-
negligible advantage in experiment defined in Figure 5.5, then there exist other adversaries By, Bo, B3
running in roughly same time such that:

Adv NNt () < 2AdV N (By ) 4
p(A) - (4tAdVINFAME(B)) - (n — £)AVIRCPA(Bs),

where p(A) is some polynomial on security parameter A.

Proof. Combined with Lemma 5.7.6, recall Theorem 11 and Lemma 2 in [BLMGa1] to prove this via
the same approach. O

Extends to finer false-positive rates. We introduce an approach to achieve finer false-positive rates
(p # %) in fuzzy tracking (and also FMD) schemes. As mentioned in [BLMGz1], to achieve finer
rates like %, % is easy via switching the base. However, achieving rates like % is still challenging without
garbled circuits. We show how to achieve a rate like ;—k where 1 < a < 25 — 1 with a small tweak
but &, k needs to be fixed in advance. The sender instead of computing Enc(pk;, 1) foreachi € [n],
it computes ¢; < Enc(pk;, msg;) where msg; is uniformly sampled via msg; <% {0,1,...,a}.
The detector only accepts the ciphertext ¢; if and only if Dec(sk;, c;) < a. Itis easy to see that this
satisfies correctness, fuzziness and security simultaneously and is compatible with FMD1, FMD, in
[BLMGai1] and our fuzzy tracking scheme in Figure 5.9. Essentially, the receiver is able to ‘tune’ the
false-positive rate p via a finer step: Originally, p can only be decreased half by half (i.e., from p to
% each time); Now it can be decreased by a factor 20(7 (i.e., from p to g—f) For example, if we choose

. 2 n
k = 2, & = 3, then we have rates set like {%, 2—2, cee i—n}

5.7.3 ANALYSIS OF SCALABLE Fuzzy TRACKING

Security Analysis. For adversaries without holding secret keys, arguments for security are the same
as standard encryption. We consider the unlinkability defined in Definition s.3.12, then we argue it
also satisfies unbiased fuzziness defined in Definition s.3.13. Intuitively, unlinkability is to make true-
positive and false-positive indistinguishable from the tracking server; And unbiased fuzziness is to
make the hint’ of each potential mpk’ uniformly random for the sender.

Proof of Theorem s.5.5 We restate the theorem for unlinkability formally here.
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Theorem s.7.8. The fuzzy scalable stealth signature constructed in Figure 5.10 is unlinkable with key
exposure and fuzzy tracking. Specifically, for any A, N, p, if there is a PPT adversary A has non-
negligible advantage in experiment defined in Figure 5.6, then there exist other adversaries B running
in roughly same time such that:

Advy T (A) = Adv M (B) 4 AdVYE(C).

Proof. First, consider the two hybrids as follows:

Hybrid,,: This is the standard experiment.

Hybrid,;: This only changes ftkiy, to ftkij_, when hintg € list A hint; € list whereas opk,, tkij,
remain unchanged.

Claim s5.7.2. Hybrid, and Hybrid, are computationally indistinguishable to the adversary if the
decisional MLWE holds.

Proof. Since we map each mpk to hint, we only need to consider the case where hintg € list Ahint; €
list as otherwise b’ < {0,1} and A, will not be invoked. Without loss of generality, we assume
ftki, = ftkip and hinty = list[i] which implies that, for list generated from ftkip and Vj € [[list|],
there is

w)y = [sT| —c2)p @y

= T =) +¢ = Lo +y) 0y
=[5 =) +¢ = L))o & (v &)

= [y +¢ +s1( — ) ay @y

=wo® (' YY) @ [2(s1(x' — &),

N =

where s1 is the first ring element of s and hinty = decodeg, (wp)[: 71]. On the other hand, if hint;
(i.e., w1) appears in the list with index k, i.e., w; = list[k] = w’{), then the list can also be generated
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from ftki; because Vj € [|list|] :

wp=w @ (0 o) o [ - )
—ufe (F oy) e L et - ¥)h
—w @ (@) & [1si (' - 2) )2

o oy) o [ (a6 )

—w® Y oy [g(sl(xi —2))

which means ftkip and ftki; will generate exactly the same list. Particularly, there is

g(wo + yi + slxi) =

> (w1 +yj+slx7).

~ N

Now consider the hybrids. We have ftkig := (c1, ¢2) and ftkij := (], ¢} ), specifically,

cleTr+e1+g- [Jg},cz—b:rr—l—ez—i—g-(wo—l—yi)
c’leTr+e1+g- [Jg},cészr—l—ez—i—g-(wl—l—yj).
Thus, there is
(c1,02) =~ (u+g- [)(C)l] ,sTu+g-(wo+y’)+e’)
~ (u’,sTu’+g (wo+y' —s” [OZ})JFe/)
:(u’,sTu’+g-(w0+yi+51xi)+e’)

i .
where ¢’ = e, + e'r — s’ ey is the small noise term andu’ = u — 7 - {36] . Note that { (+s1x") =
%(—Slxi) mod g. Therefore, we have shown that ftkip and ftkiy are indistinguishable for the adver-
sary. O

Since ftki, and ftki;_, are indistinguishable and exchangeable for A in UNLNK¢s,—ke. Now we
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show that B can fully simulate the UNLNKf#s,y_ ke experiment as follows. Upon receiving mpk,, mpky,
opky, tkiy, osky, from UNLNK,,_ e, B sample ftk, fpk then computes corresponding ftkiy and list
for b «s {0,1}, such thatwy € list A wy € list where H(mpk,) = decodeg (wo)[: 1] and
H(mpk;) = decodeg, (w1)[: n]. Then B forwards all of them to A of UNLNKfs,, ke and A can-
not distinguish between ftkig or ftki; due to Claim 5.7.2. If A has non-negligible advantage #(A) in
UNLNKFsyy— ke, then B has the same non-negligible advantage #(A) in UNLNK}, _je. O

We restate the theorem for UNI-UBS¢s formally here.

Theorem 5.7.9. Ifthere isn < 5 where m is a power of 2, and B, is a centered binomial distribution,
then the scalable fuzzy tracking constructed in Figure s.10 is information theoretically unbiased and
satisfies UNI-UBS¢s defined in Definition s.3.13.

Proof. If Ais able to output valid mpki (i.e., valid hint’ and w'), then for him, there is

w=w oy oy o6 -

N

Note that the coefficients of [1s1 ], are uniformly random over {0,1}" because s1 <+ B, where
By, is a centred binomial distribution. Moreover, since polynomial multiplication can be written as

circular convolution, [#(s1(x' —x/)) |5 can be written as Xs mod 2 where s decodeg, ( [151]2)

and X is the circulant matrix represented by the polynomial x 4~ [ (x' — %) |,. Specifically, the first
column of X is decodeg, (x) and other columns are rotational shifts of the previous column. Since m
is a power of 2, it only has divisors from 2° to 21°8™. According to Lemma 1.0.2 and Definition 1.3.1,
the biggest divisor of X" — 1 is the polynomial @,,(X) = X2 + 1 with degree . Thus the rank of
Xis atleast m — 7 and at least a half of elements in Xs mod 2 are uniformly randomly distributed.

This means hint/ « decodeg, (w)[: n] is uniformly random as long as n < 2. O
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Conclusion

This thesis is centred around enhancing efficiency and reducing the costs of communication and com-
putation for commonly used privacy-preserving primitives, including private set intersection, obliv-
ious transfer, and stealth signatures. Specifically, In Chapter 2, we present a protocol of multiparty
threshold private set intersection, which improves communication bandwidth from O(N?£2) to O(N#?)
where N is the number of parties and ¢ the threshold while retaining the same computational over-
head and security level. In Chapter 3, we introduce a new primitive, laconic private set intersection,
which solves unbalanced PSI in a non-interactive way while making communication bandwidth as
succinct as possible. Specifically, after the server publishes a short digest of constant size, any client
can non-interactively send its message of size independent of the server’s dataset. In Chapter 4, we
present a two-message oblivious transfer protocol which has asymptotically minimum communica-
tional bandwidth, namely, to transfer 1 bits information, it only requires 77(1 4 0(1)) bits bandwidth
for each user while retaining computational efficiency. We also show how to efficiently emulate Z,
inside a prime-order group Z;, in a function-private manner. In Chapter s, we present a post-quantum
privacy-preserving signature called stealth signature that saves 70% bandwidth compared to the state
of the art while achieving the strongest security. Additionally, we present a fuzzy variant which pro-
tects users’ metadata and improves the server’s computational work from O(N) to O(v/N) where N
is the number of users.
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Additional Constructions

A1 TarEsHOLD PSI: OBLIVIOUS LINEAR ALGEBRA

Ai11r OBLIVIOUS MATRIX MULTIPLICATION

ProTocoL. The following Protocol 4 allows several parties to jointly compute the (encrypted)
product of two encrypted matrices. Note that the protocol can also be used to compute the encryption
of the product of two encrypted values in FF.

ANavrysis.  We proceed to the analysis of the protocol described above.
Lemma A.r.1(Correctness). The protocol secMult is correct.
Proof. The correctness is straightforward. O

Lemma A.1.2 (Security). The protocol secMult securely EUC-realizes Fomm with shared ideal func-
tionality FGen against semi-honest adversaries corrupting up to N — 1 parties, given that TPKE is
IND-CPA.

Proof (Sketch). Assume that the adversary corrupts N — k parties. The simulator takes the inputs
from these parties and send them to the ideal functionality. Upon receiving the encrypted value
Enc(pk, M; - M,), it simulates the protocol as the honest parties would do.

We now prove that no set of at most N — 1 colluding parties can extract information about M;, M.
First, observe that any set of N — 1 parties cannot extract any information about encrypted values that
are not decrypted during the protocol (because there is always a missing secret key share) given that
TPKE is IND-CPA. Second, we analyze the matrix M (which is decrypted during the protocol). We

have that Mj = M; + Z]- Rl(j). Hence, there is always at least one matrix Rl(e) which is unknown to
the adversary and that perfectly hides the matrix M (the same happens M. O
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Algorithm 4 Secure Multiplication secMult

Require: Each party P; has a secret share sk; of a secret key for a public key pk of a TPKE
scheme TPKE = (Gen, Enc, Dec).
Ensure: Party Py inputs Enc(pk, M;) and Enc(pk, M, ), where M;, M, € F"*/.
Goal: Every one knows the product Enc(M; - M,).
r: for all party P; do
2:  Itsamples two random matrices Rl(i), R g T,
32 It computes Cl(i) = Enc(pk, Rl(i)), cl(i) = Enc(pk, Rgi)), d" = Enc(pk, M; - Rﬁi)),
dl(i) = Enc(pk, R,(i) -M,).
4 Itbroadcasts {Cl(i), CEi), dl(i), d? }.
s: end for
6: Each party P; computes ¢ = Enc(pk, D i Rl(i) : Rﬁj)) (using ¥ and Rl(i)) and broad-
casts (V).
7: All parties mutually decrype i) Enc(M;) := Enc(pk,M;) + >, Cl(j) (to obtain M €
F'*1),ii) Enc(M;) := Enc(pk,M,) + 3, ¢’ (to obtain M € F'*)
8: for all party P; do
9 It computesfi = Enc(pk, M; - M)).
100 Itoutputse = d— Z]- dl(j) - Z]- 4y — Z]. c)

u: end for
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ComrLEXITY. The communication complexity of the protocol is dominated by the messages car-
rying the (encrypted) matrix. Hence, assuming a broadcast channel between the parties, the protocol
has communication complexity of O(N#?) where t is the size of the input matrices and N the number
of parties involved in the protocol.

A1 COMPUTE THE RANK OF A MATRIX

ProTocorL. Wenow present the Protocol 5 to compute the rank of an encrypted matrix.

Algorithm s Secure Rank secRank

Require: Each party has a secret key share sk; for a public key pk of a TPKE TPKE =
(Gen, Enc, Dec). The parties have access to the oblivious matrix multiplication ideal
functionality Fomm.

Ensure: Party Pq inputs Enc(pk, M) where M € F'*/.

. Each party P; broadcasts an encrypted uniformly chosen at random unit upper and lower
triangular Toeplitz matrices Enc(pk, U;) and Enc(pk, Z;) and a uniformly chosen at ran-
dom diagonal matrix Enc(pk, X;), where U;, Z; € F"™*! and X; € ™.

2: Each party P; computes: i) Enc(pk,X) = > Enc(pk,X;), ii) Enc(pk,U) =
Enc(pk, (3_; Ui) — (N — 1)I), and iii) Enc(pk, Z) = Enc(pk, (3, Z;) — (N — 1)I),
where Iis the identity matrix.

3: All parties mutually compute Enc(pk, N) = Enc(pk, XUMZ) via three invocations of

Fomm-
4 Fach party P; samples u;, v; < " and broadcasts Enc(pk, u;), Enc(pk, v;).
s: Each party P; computes Enc(pk,u) = >’ Enc(pk,u;) and Enc(pk,v) =

>, Enc(pk, vj). Then, it computes the sequence Enc(a) with 2logt invocations of
Fomm,'where a = {ao, ..., ay_1} and Enc(pk,a;) = Enc(pk, ulN/v) for0 < j <
2t —1.

6: All parties mutually compute Enc(pk, r — 1) where r is the degree of 114, the minimal

polynomial of the (encrypted) sequence Enc(a). This can be calculated using a Boolean
circuit with size O(#*k log t) (which can be securely constructed from TPKE [STo6]).

ANavrysis.  We analyze the correctness and security of the protocol.
Lemma A.1.3 (Correctness). The protocol secRank is correct.

Proof. The correctness of the protocol is guaranteed by Lemma 1.2.2 and Lemma 1.2.3. O

"We can perform ¢ multiplications in O(log t) calls to Fomm by performing multiplications in a batched
fashion [KMWFo7].
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Lemma A.1.4 (Security). The protocol secRank securely EUC-realizes FoRrank with shared ideal func-
tionality FGen in the Fomm-hybrid model against semi-honest adversaries corrupting up to N — 1
parties, given that TPKE is IND-CPA.

Proof (Sketch). The simulator takes the corrupted parties input, sends them to the ideal functionality
and simulates the protocol as the honest parties would do. Itis easy to see that, even when the adversary
corrupts N—1 parties, the information is hidden by the TPKE and thus no information on M isleaked
to the adversary by the IND-CPA of the underlying TPKE. ]

ComprLExITY.  Each party broadcasts O(#2k log t) bits of information, where k = log |F|. To see
this, note that the communication of the protocol is dominated by the computation of the circuit
that computes the degree of @ and this can be implemented with communication cost of O(t?k log t)
[KMWFo7]. Assuming a broadcast channel, the communication complexity is O(N#)

A3 INVERT A MATRIX

In this section, we present and analyze a protocol that allows N parties to invert an encrypted matrix.
In this setting, each of the N parties holds a secret share of a public key pk of a TPKE. Given an
encrypted matrix, they want to compute an encryption of the inverse of this matrix.

IpEAL FUNCTIONALITY.  The ideal functionality of oblivious rank computation is defined below.

Folnv functionality

PARAMETERS: sid, N, q,t € Nand I, where IF is a field of order g, known to
the N parties involved in the protocol. pk public-key of a threshold PKE scheme.

» Upon receiving (sid, P1, Enc(pk, M)) from party P1 (where M € F**!
is a non-singular matrix), FoRrank outputs Enc(pk,M~!) to Py and
(Enc(pk, M), Enc(pk, M~1)) to all other parties P;, fori = 2, ..., N.

ProTocorL. Wenow describe the Protocol 6 that allows N parties to jointly compute the encryption
of the inverse of a matrix, given that this matrix is non-singular.

ANaLysis.  The proofs of the following lemmas follow the same lines as the proofs in the analysis
of secMult protocol. We state the lemmas but omit the proofs for briefness.

Lemma A.rs. The protocol seclnv is correct.

Lemma A.1.6. The protocol seclnv securely EUC-realizes Foiny with shared ideal functionality FGen
against semi-honest adversaries corrupting up to N — 1 parties, given that TPKE is IND-CPA.
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Algorithm 6 Secure Matrix Invert seclnv

Require: Each party has a secret key share sk; for a public key pk of a TPKE TPKE =
(Gen, Enc, Dec).
Ensure: Party Py inputs Enc(pk, M) where M € F"*/ is a non-singular matrix.
: Each party P; samples a non-singular matrix R; < F"*/,
Set Enc(pk, M’) := Enc(pk, M).
forifrom1to N do
P; calculates Enc(pk, M’) = Enc(pk, R;M’)
P; broadcasts Enc(pk, M’).
end for
All parties mutually decrypt the final Enc(pk, M’). Then they compute its inverse to
obtain Enc(pk, N’) = Enc(pk, M ! [[,R; ).
forifrom Nto1do
9:  P;computes Enc(pk, N’) = Enc(pk, N'R; ).
10:  P;broadcasts Enc(pk, N')
uw: end for

: Finally, Py outputs Enc(pk, M) = Enc(pk, N').

—

R

% N v Aow

—
0

CompLExITY.  Each party broadcasts O(#?) bits of information. The communication complexity
of the protocol is O(N#?), assuming a broadcast channel.

A4 SECURE UNARY REPRESENTATION

Following [KMWTFo7], we present a protocol that allows to securely compute the unary representa-

tion of a matrix.

IpEAL FUNCTIONALITY.  The ideal functionality for Secure Unary Representation is given below.

Fsur functionality

PARAMETERs: sid, N, q,t € Nand F, where IF is a field of order g, known to
the N parties involved in the protocol. pk public-key of a threshold PKE scheme.

* Upon receiving (sid, P1, Enc(pk,7)) from party Py (where r €
Fand v < f), Fsyr computes (Enc(pk,o1),...,Enc(pk,0¢))
such that ; = 1 ifi < r and 6; = 0 otherwise.
The functionality outputs (Enc(pk,01),...,Enc(pk,d;)) to Py and
(Enc(pk, ), (Enc(pk, 01), ..., Enc(pk, 0¢))) to all other parties P;, for
i=2,...,N.
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ProTOCOL. A protocol for secure unary representation can be implemented with the help of a
binary-conversion protocol [STo6]. Thatis, given Enc(pk, r), all parties jointly compute Enc(pk, 0;),
where 6; = 1,ifi < r,and 6; = 0 otherwise, viaa Boolean circuit (which can be securely implemented
based on Paillier cryptosystem).

COMMUNICATION COMPLEXITY.  We can calculate the result using a Boolean circuit of size O(r log t),
thus the communication complexity is O(Nr log t).

A.1s SOLVE A LINEAR SYSTEM

ProTocorL. Wenow present the Protocol 7 that allows multiple parties to solve an encrypted linear
system. In the following, we assume that the system has at least one solution (note that this can be
guaranteed using the secRank protocol).

Lemma A.1.7 (Correctness). The protocol secLS is correct.
Proof. The proof follows directly from [KDS91, KMWFo7]. O

Lemma A.1.8. The protocol secLS securely EUC-realizes FoLs with shared ideal functionality FGen

in the (FORank, FOlnvs FSUR)-Pybrid model against semi-honest adversaries corrupting up ro N — 1
parties, given that TPKE is IND-CPA.

COMMUNICATION COMPLEXITY.  Each party broadcasts O(#klog t) bits of information where
k = |F|. The total communication complexity is O(#?).

A2 STEALTH SIGNATURE: GROUP-BASED CONSTRUCTION AGAINST BOUNDED LEAK-
AGE

We provide an SS which is unforgeable and unlinkable with bounded key-exposure. The construction
is shown in Figure A.1, where G is a group of primer order p, g is a generator, and H is a random
oracle mapping from G to Z,. Additionally, DS is an efficient group-based signature scheme such as
ECDSA, Schnorr and others whose verification key and signing key has discrete logarithm relation,
ie,vk = gSk.

Correctness. It is clear that opk = gOSk as

n
S
i=1

The tracking mechanism also works since

Ro = opkH) = opkHE™)
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Algorithm 7 Secure Linear Solve secL.S

Require: Each party has a secret key share sk; for a public key pk of a TPKE TPKE =

(Gen, Enc, Dec). The parties have access to the ideal functionalities Forank, Foiny and
FsuRr-

Ensure: Party Py inputs Enc(pk, M) where M € F"*/ is a non-singular matrix.

I:

IO:
II:

I2:

13:

All parties jointly compute an encryption of the rank Enc(pk, r) of M via the ideal func-
tionality FoRrank-
Set Enc(pk, M') := Enc(pk, M) and Enc(pk, y’) := Enc(pk,y).

: forifrom1toNdo
P; samples two non-singular matrices R;, Q; from F™. It calculates
Enc(pk, M’) = Enc(pk, RiM’'Q;) and Enc(pk,y’) = Enc(pk, R;y’). P; broadcasts
Enc(pk, M’), Enc(pk,y’).
end for
All the parties jointly compute Enc(61),. .., Enc(8;) by invoking Fsyr on input
01 ... O
Enc(pk,r). They set Enc(pk,A) := Enc | pk, [ : .. . Finally, they com-
0 ... o

pute Enc(pk, N) := Enc(pk, M’ - A + I; — A), where I; € F"*! is the identity matrix.

: All the parties jointly compute Enc(N 1) by invoking Fojny on input Enc(pk, N).

Each party P’ samples u; < F* and broadcasts (Enc(pk, M'u;), Enc(pk, u;)).
All parties jointly compute Enc(pk,u’) = Enc(pk,N~'y!) by invoking Fomm,
where Enc(pk,y;) = Enc(pk, (y' + >, M'w;j)A). Then they set Enc(pk,x) =
Enc(pk, (3_;uj) — u').
forifrom N to1do
P; calculates Enc(pk, x) = Enc(pk, Qflx). P; broadcasts Enc(pk, x).
end for
P1 outputs Enc(pk, x).
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MKGen(A) OPKGen(mpk)

SamPleG = <g> parse (g, ho, ... 7hﬂ) = mpk
(%0, X1, -+ Xn) <8 Zp T <7

mpk = (8,0 := g, ..., Iy 1= g™") ()

msk := (xg,...,Xn) OPk?:Hhi

mtk := xg N

tki:== (R:=g¢,Rg := opkH(hf])

return mpk, msk, mtk }
return opk, tki

OSKGen(msk, opk, tki)

parse (xo, ..., x;) := msk
parse (R, Ry) := tki
return | if

false < Track(xo, , opk, tki) TraCk(mtka Opk, tkl)

Sign(osk, m)

return o := DS.Sign(osk, m)

n .
osk — in H(RS) parse (R, Rp) := tki
i=1

parse xo := mtk

X ?
return osk return opkH (R Z R,

Vf(opk,a,m)

return DS.Vf(opk, o, m)

Figure A.1: Construction of group-based SS secure with (n — l)-bounded key-exposure

Security Analysis. Now we analyze the security of above construction.

Theorem A.2.1. The construction in Figure A.1 is (strongly) unforgeable and unlinkable with (n — 1)-
bounded key exposures.

Proof. (sketch) For unlinkability, withoutknowing x; or 7, by DDH assumption, the triple §", g%/, ¢
remains uniformly random over G. With random oracle H, H(g"*) is also uniformly random over
Zyp. Therefore, it is clear that opk, R, Ry are uniformly random.
For unforgeability, as long as DS is (strongly) unforgeable, then SS is also (strongly) unforgeable.
Now we consider key-exposures. Since

n
osk = in -H(hY),
i=1

this is an equation with 7 variables (x;) for adversaries. If the adversary learns at most 7 — 1 equations,
then this linear system is undetermined and has at least p solutions which is exponentially large. Thus
msk is hiding when there are at most (1 — 1) key-exposures. O
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