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ABSTRACT

Polymer solutions in the semi-dilute regime are of considerable industrial importance. The complex rheological properties of such highly
viscoelastic fluids and the complexity of their flow characteristics, especially in curved geometries, necessitate a thorough experimental char-
acterization of the dynamics of such fluid flows. We apply statistical, spectral, and structural analyses to the experimentally obtained velocity
fields of a semi-dilute entangled polymer solution in a serpentine channel to fully characterize the corresponding flow. Our results show that
at high Weissenberg numbers, yet vanishing Reynolds numbers, the flow resistance is significantly increased, which indicates the emergence
of a purely elastic turbulent flow. Spatial flow observations and statistical analysis of temporal flow features show that this purely elastic tur-
bulent flow is non-homogeneous, non-Gaussian, and anisotropic at all scales. Moreover, spectral analysis indicates that compared to elastic
turbulence in the dilute regime, the range of present scales of the excited fluctuations is narrower. This is partly due to the entanglement of
the polymers in this concentration regime, which restricts their movement, and partly due to the mixed flow type inherent in the serpentine
geometry, which can reduce the extent of polymer stretching and, thus, reduce the intensity of the fluctuations in the flow. Furthermore,
proper orthogonal decomposition analysis is applied to directly extract the turbulent flow structure and reveals the activity of the counter-
rotating vortices associated with secondary flow, which significantly contribute to the total kinetic energy of the flow.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0100419

I. INTRODUCTION

Polymer solutions exhibit mechanical properties that are inter-
mediate between viscous liquids and elastic solids due to the elasticity
of the polymer molecules and their stretching and relaxation during
flow.1 Such viscoelastic fluids are ubiquitous in a broad range of indus-
trial applications2–4 and biological settings.5–8 One of the unique fea-
tures of viscoelastic fluid flows, particularly in curved flow pathways, is
the appearance of an unstable state driven by nonlinear elastic stresses,
even in the absence of inertial forces.9 This phenomenon, known as
purely elastic instability or purely elastic turbulence, was first discov-
ered by Giesekus in the Taylor-Couette flow of dilute polymer solu-
tions.10 The occurrence of purely elastic instability can be beneficial
for several industrial applications. For example, the agitation caused
by the unstable flow improves mixing capacity and heat transfer.11,12

Improving the efficiency of capillary entrapment displacement in
porous media has also been proven to be related to the occurrence of

purely elastic instability during polymer flooding.13 However, in multi-
ple processes in the food and cosmetics industries14,15 as well as poly-
mer extrusion,4 the occurrence of purely elastic instability is rather
undesirable. Therefore, the importance of this phenomenon necessi-
tates an understanding of the origin and characterization of purely
elastic turbulent flows.

The origin of the purely elastic instability is related to the
behavior of polymer molecules.16–18 In fact, the counter-reaction of
the elastic stress loading (deformation) and unloading (relaxation)
of the polymers is reflected in the flow, resembling the characteristics
of turbulent flow, such as non-parallel streamlines and chaotic fluctua-
tion of flow properties, accompanied by a significant increase in flow
resistance.19 The polymer behavior and, thus, the induced unstable
flow features strongly depend on the polymer properties such as
molecular weight, size, and concentration, as well as the flow type.20–23

In the dilute regime below the overlap concentration, the individual
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polymer coils are far apart from each other and, hence, do not interact.
The behavior of such polymer solutions is governed solely by the
dynamics of a single polymer and its interaction with solvent mole-
cules.1 Although a considerable amount of research has been devoted
to the numerical and experimental study of the purely elastic turbu-
lence of dilute polymer solutions,17,24–35 there are far fewer studies
focusing on the semi-dilute entangled polymer solutions,17,36–38

despite their industrial importance. The polymer behavior above the
overlap concentration in the semi-dilute entangled regime is more
complicated, as polymers strongly interact with each other and even
become significantly entangled. Numerical modeling of such fluid
flows in a highly turbulent state is extremely challenging due to the
chaotic nature of the expected solution caused by the nonlinear rheo-
logical properties and the corresponding flow equations.39,40

Therefore, understanding and characterizing the purely elastic instabil-
ity in the semi-dilute concentration regime through experimental
research are not only valuable, but essential.

Despite the highly nonlinear and random nature of elastic turbu-
lent flows in general, they are known to be systematic and reproducible
on a statistical level.41–43 A precise and reliable statistical representation
of elastic turbulence, however, requires an extensive description of tem-
poral and spatial fluctuations of flow properties. Improvements in par-
ticle image velocimetry (PIV), both in hardware and data processing
algorithms that allow high temporal and spatial resolution data acquisi-
tion, make this technique one of the most attractive and successful tools
in turbulent fluid flow dynamics.44–46 The acquired time-resolved
velocity fields provide in-depth information on the turbulent flow,
which can be further processed using various statistical and numerical
methods to extract the stochastic turbulent features and structure. A
number of studies restricted to dilute polymer solutions have already
used the PIV technique to characterize the corresponding purely elastic
turbulence in various geometries with curved pathways.18,32,47,48

Most statistical analyses of elastic turbulence are based on the
flow fluctuations at fixed points either in time or in space and rely on
the Taylor frozen turbulence hypothesis to relate the temporal and
spatial characteristics of elastic turbulence.18,49,50 The Taylor hypothe-
sis suggests that in homogeneous flows, turbulent fluctuations travel
downstream without changing their properties.51 However, the global
validity of this hypothesis has been experimentally and numerically
questioned in the elastic turbulence of dilute polymer solutions.27,50 To
avoid the Taylor hypothesis and directly extract the spatial features
and structure of turbulent flow, the proper orthogonal decomposition
(POD) method was developed in the field of fluid dynamics.52 POD is
a robust order reduction method for decomposing the fluctuations in a
flow field into a set of energy modes to represent them as a set of basis
functions. As a result, the highly complex problem can be reduced to a
simpler one by considering only the modes with the highest energy
that contributes the most to the turbulent flow. The application and
practical utility of POD analysis to direct numerical simulation (DNS)
results of elastic turbulence of dilute polymer solutions have been dem-
onstrated in the literature for both high53,54 and vanishing Reynolds
numbers, Re (ratio of inertial to viscous forces).55 However, the appli-
cation of POD in the analysis of experimentally acquired dynamics of
an elastic turbulent flow has not yet been reported.

In this work, we investigate the flow of a semi-dilute entangled
polymer solution in a microfluidic serpentine geometry using the
lPIV technique with the aim of providing a comprehensive

characterization of the purely elastic turbulent flow observed at rela-
tively high Weissenberg numbers (ratio of elastic to viscous forces) yet
at vanishing Reynolds numbers. In our experiments, three different
stages of the flow are considered, namely, below, near, and safely above
the onset of purely elastic instability, to study the evolution of the
purely elastic turbulent flow. Furthermore, to evaluate the homogene-
ity and stream-wise dependence of the flow features at the highly tur-
bulent stage, we compare the velocity profile and spatial flow features
at five different positions in the serpentine channel. Common statisti-
cal analyses, including single-point statistics and two-point correlation,
are employed to characterize purely elastic turbulent flow features of
semi-dilute entangled polymer solutions in the serpentine channel.
Furthermore, we directly extract the structure of purely elastic turbu-
lent flow in the serpentine channel, for the first time to the best of our
knowledge, by applying the PODmethod to the instantaneous velocity
fields captured experimentally using lPIV.

The structure of this paper is as follows: We explain the proper
orthogonal decomposition method in Sec. II and sample preparation
methods, rheological properties of the fluid, and the experimental
setup and procedure in Sec. III. The experimental results are presented
and discussed in Sec. IV and concluded in Sec. V.

II. PROPER ORTHOGONAL DECOMPOSITION

Proper Orthogonal Decomposition (POD) also known as princi-
pal component analysis is a numerical order reduction technique that
decomposes a set of instantaneous velocity fields into a set of deter-
ministic basis functions or modes.52,56,57 In the following, we briefly
present the basic concept of this method, which is necessary to com-
prehend this work. Further mathematical details and application of
this method in fluid dynamics of the turbulent flow can be found in
the literature.52,56,58–60 In the case of an experimentally acquired flow
field with high spatial resolution, the PODmethod is applied using the
“snapshot method.”61 As its name suggests, this method treats each
velocity field obtained from lPIV as a snapshot. In each snapshot, the
velocity vector is defined as u ¼ ðu; vÞ and each velocity component
(scalar) is both a function of position (x, y) and time. The proper
orthogonal decomposition can be applied to either component as well
as to the magnitude of the velocity juj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

. The numerical
analysis begins with constructing a m� n matrix, U, from the velocity
components, e.g., uðx; y; tÞ, where m ¼ Nt and n ¼ Nx � Ny , with Nt

being the number of snapshots and Nx, Ny being the number of spatial
vectors in x- and y-directions. In fact, each entry ðuijÞ of the matrix U
is the measured velocity at a point j in space at time i,

U ¼

u11 ¼ u x1; y1; t1ð Þ � � � u1n ¼ u xNx ; yNy ; t1Þ
� �

u21 ¼ u x1; y1; t2ð Þ � � � u2n ¼ u xNx ; yNy ; t2ð Þ
..
. ..

. ..
.

um1 ¼ u x1; y1; tmð Þ � � � umn ¼ u xNx ; yNy ; tmð Þ

2
66664

3
77775
:

A POD decomposition of the matrixU aims to find a set of orthogonal
vectors [Uð1Þðx; yÞ;Uð2Þðx; yÞ;…;UðNtÞðx; yÞ] such that

U x; y; tð Þ ¼ U1 x; y; tð Þ þ
XNt

n¼2
aðnÞ tð Þ �UðnÞ x; yð Þ; (1)

where U1ðx; y; tÞ represents the time averaged velocity over all Nt

snapshots. UðnÞ are the eigenvectors of the auto-covariance matrix
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C ¼ 1=ðm� 1ÞUTU, and aðnÞ are their corresponding temporal coef-
ficients. These eigenvectors, known as proper orthogonal modes of the
velocity fluctuations, can be viewed as the axes of an n-dimensional
ellipsoid enclosing the entire data set (matrix UÞ in an n-dimensional
space.62 Moreover, since the coefficients aðnÞ are uncorrelated, each
one can be interpreted as variations of one independent “mode” of
fluctuation. The energy contribution of each mode, ½i ¼ 1;…;Nt� to
the total kinetic energy (TKE), is calculated as Ei ¼ ki=

PNt
k¼1 kk,

where ki are the corresponding eigenvalues in the descending order.

III. EXPERIMENTAL METHODS
A. Working fluid and its rheological properties

In this study, we used a viscoelastic aqueous solution containing
2000 ppm (0.2 w%) of partially hydrolyzed polyacrylamide (HPAM)
Flopaam 3630 (SNF Floerger) with a molecular weight of (18.76 2.0)
MDa. The polymer solution was diluted following a standard
protocol13,63 from a 5000 ppm stock solution in a “brine” solution
composed of ultrapure water with 1000 ppm NaCl and 100 ppm
CaCl2. Since HPAM polymers are widely used for enhanced oil recov-
ery, where salt is an essential component of the injected polymer solu-
tions, we have included the typical salt type and concentration
considered in the literature.37,38,64 As shown in our previous study,65

the selected salt concentration is in the low salt range and does not
have a significant impact on screening the negative charges of the pol-
ymers’ backbone or causing transient cross-linking network. Using a
pycnometer, the density of the polymer solution was determined as
qP ¼ ð1:006 0:01Þ g/cm3. Because the polymer concentration used
in our microfluidic experiments was about 25 times larger than the
polymer’s overlap concentration of c�3630 � 82 ppm, we can safely
assume it to be in the semi-dilute entangled regime.65 The shear rate,
_c, dependent viscosity, gð _cÞ, and the first normal stress difference,
N1ð _cÞ, of the polymer solution at ð2060:2Þ�C were measured by a
steady shear step test applying a standard protocol in the deformation
rate-controlled mode using a HAAKE MARS 40 rheometer and a

60mm cone plate geometry with an angle of 1�. The rheological data
are plotted in Fig. 1(a). The storage modulus, G0, and loss modulus,
G00, determined from small amplitude frequency sweep tests in the
stress-controlled mode are plotted in Fig. 1(b). The crossover happens
at the frequency of x � ð0:356 0:1Þ Hz; thus, the longest relaxation
time of the polymer solution is determined as kmax ¼ 1=x � ð361Þ s.
The experimental data are fitted to the multi-mode Maxwell model.65

B. Viscoelastic fluid model

To define the relevant dimensionless Weissenberg number and
to evaluate viscoelastic flow, we need to choose a constitutive fluid
model, which best represents the rheological properties of the fluid.
Among all models developed for describing semi-dilute polymer solu-
tions,66 theWhite-Metzner (WM) constitutive model could best repre-
sent the strong shear-thinning and non-quadratic first normal stress
difference of our polymer solution (Fig. 1). It should be noted that the
WM consecutive model assumes that the second normal stress differ-
ence, N2, is zero and does not consider extensional viscosity. In poly-
mer melts and highly entangled polymer solutions, N2 can be
significant and is typically exerted in the opposite direction of N1; thus,
it can dampen elastic instability and suppress secondary flows in
curved ducts. However, since for polymer solutions in the semi-dilute
regime, as used in this work, the magnitude of N2 is typically measured
to be in the range of 1% to a maximum of 10% of N1, we assume that
N2 can be neglected.67 Moreover, the flow in a serpentine channel is
mainly shear dominated; thus, the effect of extensional viscosity can
also be safely excluded. Therefore, the choice of the WM fluid model in
our case is reasonable. The basic concept of the WMmodel is to define
a total stress tensor s ¼ s1 þ s2 and a total viscosity g ¼ g1 þ g2 that
are related to the deformation rate tensor D ¼ 1

2 ðruþruTÞ.
9,40,68

The pure viscous component of the stress tensor s2 is defined as
s2 ¼ 2 g2 D, where g2 is the solvent viscosity. s1 is defined by

s1 þ k _cð Þsr1 ¼ 2 g1 _cð ÞD; (2)

FIG. 1. (a) The (shear) viscosity gð _cÞ (green diamonds) and first normal stress difference N1 (�) measured using a rotational rheometer. The solid and the dashed lines are
(olive green) fit to the Carreau-Yasuda model Eq. (4) and a power law (blue) N1ð _cÞ ¼ ð0:346 0:07Þ _cð1;1960;03Þ, respectively. The inset shows the calculated Wi (purple
squares) based on Eq. (5). The solid line (purple) is a power law fit, Wið _cÞ ¼ ð0:156 0:01Þ _cð0:9160:01Þ. (b) Elastic modulus G0 (blue squares) and loss modulus G00 (”) mea-
sured via small amplitude frequency sweep test. Solid and dashed lines are corresponding fits to the multi-mode Maxwell model with four elements.
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where s
r
1 is the upper convected time derivative and kð _cÞ is the shear

dependent relaxation time calculated as

kð _cÞ ¼ N1=2ðgð _cÞ � g1Þ _c2; (3)

where the shear rate is defined as _c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 trðD2Þ

p
. The shear depen-

dent total viscosity of the polymer solution gð _cÞ is described by the
Carreau–Yasuda model,9,69

gð _cÞ � g1 ¼ ðg0 � g1Þ 1þ ðK _cÞa
� �n�1

a ; (4)

where g0 and g1 are the zero-shear viscosity and the viscosity at infi-
nite shear rates, K is a characteristic time, n is the power law exponent
associated with the degree of shear thinning, and a is a transition con-
trol factor. The Weissenberg number, Wi, which is defined as
Wið _cÞ ¼ kð _cÞ _c, is thus calculated as

Wið _cÞ ¼ N1=2ðgð _cÞ � g1Þ _c: (5)

Since, in our study, the Reynolds number is always safely below one,
inertia forces are negligible, and the observed flow features are merely
related to elastic stresses. Therefore, the Weissenberg number Wi is
the relevant dimensionless number to be considered in this case. The
calculated values of Wi as a function of the shear rate are plotted in
the inset of Fig. 1.

C. Microfluidic geometry

The flow geometry used in all experiments was a microfluidic
serpentine channel consisting of 33 consecutive half-bends with a
total length of l � 26 mm, a width of w � 0:125 mm, a height of
h � 0:04 mm, and an inner bend radius of ri � 0:125 mm, see the
sketch in Fig. 2. The microscale geometry allows us to achieve high
Wi while keeping the Re low. It is worth mentioning that the choice
of the serpentine channel as flow geometry is twofold. On the one
hand, curved channels are significant for industrial and biological
viscoelastic fluid flows. On the other hand, despite its simplicity, the
flow type in the serpentine channel is complex and leads to intrigu-
ing phenomena in polymer dynamics and the structure of the flow.

The positive master of the microfluidic device was fabricated
via standard photo lithographic protocols.70 A negative mold was
fabricated from that using Sylgard 184 (Dow Corning). In a second
molding step, the final microfluidic device was made using the stiff, oil
resistant, photo-reactive resin NOA 83H (Norland optical adhesives)
sealed with a microscopy glass slide and sandwiched with an addi-
tional coverslip to enhance the stability and avoid deformation of the
channel at higher pressures.

D. Experimental protocol and lPIV setup

The microfluidic channel described in Sec. IIIC was used as the
flow geometry in this work. The inlet of the microfluidic device was
connected to a microfluidic pressure pump (MFCS-EZ, Fluigent) that
enabled fluid injection at a controlled pressure. The outlet was con-
nected to a liquid reservoir at the same height as the microfluidic
device to avoid gravitational counterpressure. The microfluidic device
was placed on an epifluorescent inverted microscope (Axio observer
Z1, Zeiss) equipped with a 20� air objective (Plan-Apochromat,
Zeiss) with numerical aperture NA ¼ 0.8. Fluorescent polystyrene
microspheres ðkext ¼ 542 nm =kemt ¼ 612 nm; FlouroMax, Thermo
Fisher) with a diameter of 1lm were added to the polymer solution.
The size of these particles was large enough to achieve an acceptable
signal-to-noise ratio but small enough to ensure that they followed the
flow with minimal delay without affecting it. The flow in the serpen-
tine channel was illuminated with a triggered Continuous Wave (CW)
laser (k ¼ 532nm, LaVision), and the light from the fluorescent par-
ticles was captured via a sCMOS camera (Imager pro HS, PCO) with a
resolution of � 3 pixel/lm after passing through a cutoff filter to iso-
late the emission signal and reduce the background noise. A sketch of
the lPIV setup is shown in Fig. 2(a).

To ensure that the recorded images correspond to the steady state
flow and not to the transient regime, the recording was started at least
20min after applying the pressure at the inlet. Double-frame images
were captured with small-time delay dt in the range of 0.1–0.8ms,
depending on the flow velocity, to achieve a particle shift of no more
than five pixels between consecutive double-frames. The imaging

FIG. 2. (a) Sketch of the experimental setup including lPIV. (b) Sketch of the microfluidic geometry with dimensions of w � 0:125 mm, height of h � 0:04 mm, and an inner
bend radius of ri � 0:125 mm. The center corresponds to a point 13 mm downstream of the inlet and D x ¼ 1mm.
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frequency, based on each pair of double-frames, was set to 42Hz for
all experiments, and a sequence of 2100 double-frames, equivalent to a
duration of 50 s, �17 times longer than the polymer’s longest relaxa-
tion time, was recorded at multiple locations in the channel, i.e., at dif-
ferent locations along the channel by focusing on the mid-height plane
of the channel [Fig. 2(b)]. The depth of correlation,71 dz, based on the
optical properties of the objective, laser wavelength, and particle size
used in our experiments, is computed as dz � 5lm for our setup.
This corresponds to roughly 12% of the channel height. All experi-
ments were conducted at a room temperature of ð2061Þ�C.

To compute the velocity fields from the lPIV images using a
cross-correlation algorithm, the individual images of the double-frames
were first divided into square areas called “interrogation windows.” A
multi-pass processing approach with an initial interrogation window
size of (64� 64) pixel, and 50% overlap to a final interrogation window
size of (24� 24) pixel with 75% overlap was considered to improve the
accuracy of the fast Fourier transform (FFT) cross-correlation algo-
rithm.72 The experimental setup and the processing routine were tested
with a 50 w% aqueous glycerin solution. The difference between the
lPIV results of the test experiments and the corresponding computa-
tional fluid dynamic (CFD) simulation was less than 5%.

IV. RESULTS AND DISCUSSION

In the following, we present and discuss the experimental results.
First, we study the transition from laminar to elastic turbulent flow
and identify the onset of purely elastic instability. Then, we investigate
the spatial dependence of the velocity profile on the position in the

laminar and turbulent stages of the flow. Thereafter, the purely elastic
turbulent flow is characterized at different probing positions using
single-point statistics in the time domain and two-point correlation
analyses. Finally, we extract the flow structure at the highest turbulent
stage of our system using the PODmethod.

A. Evolution of the purely elastic turbulent flow
and flow features

1. Onset of purely elastic instability

To study the flow evolution from the laminar to turbulent state,
the pressure applied at the inlet was stepwise increased, and instanta-
neous velocity fields were captured at the center of the serpentine
channel, approximately 13mm downstream of the channel inlet
[Fig. 2(b)]. In all experiments, the microscope focus was set at the
mid-height of the channel. Examples of the time-averaged velocity
fields and their corresponding root-mean-square distribution at two
stages of the flow, corresponding to the lowest and the highest applied
inlet pressures, are shown in Fig. 3. At lower applied inlet pressure, the
velocity field is laterally symmetric [Fig. 3(a)] with negligible rms
values [Fig. 3(b)], indicating a laminar flow. However, the velocity field
corresponding to the highest applied inlet pressure is clearly asymmet-
ric [Fig. 3(c)], with a significant rms distribution [Fig. 3(d)].

The time averaged velocity as a function of the applied inlet pres-
sure, respectively, Weissenberg number, at a normalized vertical position
of e ¼ 0 at the center of the channel is plotted in Fig. 4(a). The shear
rate in the serpentine channel is approximated by _c ¼ 4hjuji=r,65,73

FIG. 3. (a) Time averaged velocity field at the mid-height of the channel at the central half-bend for an inlet pressure of 3.47 kPa (Wi � 5 < Wicrit), e ¼ ð0:5w � yÞ=w is the
normalized vertical position across the channel width; (b) the corresponding time averaged root mean square values of the velocity field; (c) time averaged velocity fields at the
center of the serpentine channel for an inlet pressure of 56.39 kPa (Wi � 45 > Wicrit). Points (A), ðA1Þ, and ðA2Þ along the central vertical line at e ¼ �0:3; e ¼ 0:0, and
e ¼ þ0:3, respectively, and points (B) and (C) at the lateral ends of the half-bend are probing positions. Point (A) represents the region with the highest average velocity, and
points (B) and (C) represent the regions with the highest rms value; and (d) the corresponding time averaged root mean square values of the velocity field.
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with hjuji and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwhÞ=p

p
being the time-averaged velocity and the

equivalent radius, respectively. The corresponding Weissenberg num-
ber is then calculated based on Eq. (5) for the approximated in situ
shear rates.

Above a critical inlet pressure, corresponding to Wicrit � 15, as
shown in Fig. 4(a), the measured time averaged velocities determined
at the center of the channel fall significantly below numerical values.
The numerical values are predicted based on CFD simulations of an
imaginary shear thinning fluid with similar Carreau–Yasuda fitting
parameters but no elasticity component, using a generalized
Newtonian fluid model. Moreover, the experimental root-mean-
square (rms) values of the corresponding time-averaged velocities,
shown in Fig. 4(b), exhibit a dramatic increase above Wicrit � 15 as
well. These observations indicate an increased flow resistance and large
velocity fluctuations, which are characteristics of an unstable flow. To
ensure that inertia is negligible throughout the geometry and does not
contribute to this unstable flow, we estimate the relevant Reynolds
numbers. The used serpentine geometry with the rectangular cross
section requires the consideration of two Reynolds numbers. For chan-
nel flows, the Reynolds number is usually defined as Rec ¼ . hjuji r=g,

where the equivalent radius, r, is employed as the characteristic length.
To account for centrifugal inertia in the curvilinear flow, the radius of
the curvature of the serpentine channel, ri, is used as the characteristic
length, and the corresponding Re number can be, thus, expressed as
Res ¼ . hjuji ri=g. The maximum Reynolds numbers in our experi-
ments are Rec � 0:05 and Res � 0:16, respectively, and we can con-
clude that the contribution of inertia to the flow is negligible, and the
observed unstable flow is a purely elastic turbulent flow related solely
to the anisotropic elastic stresses associated with the highly viscoelastic
polymer solution.

2. Spatial features of purely elastic turbulent flow

After analyzing the global flow behavior for shear rates below
and above the critical shear rate, we additionally aim at the analyzing
dependence of the flow profile on the location in the channel, and the
spatial homogeneity of the flow. To this end, we repeated the lPIV
recordings at four additional positions [Fig. 2(b)], with 6Dx;62D
being the distance from the center, (Dx ¼ 1mm; based on the peri-
odicity of our serpentine channel) at two different stages, i.e., at
Wi <Wicrit and Wi >Wicrit . The velocity profiles across the channel

FIG. 4. (a) Time averaged velocity and (b) the corresponding root-mean-square values at e ¼ 0 at the center of the serpentine channel as the function of applied inlet pressure
(bottom axis) and corresponding Weissenberg number (Wi, top axis). (c) Time averaged velocity profiles for an inlet pressure of 3.47 kPa (Wi � 5 < Wicrit), and (d) for the inlet
pressure of 56.39 kPa (Wi � 45 > Wicrit) at five different positions with respect to the center ((Dx ¼ 1mm) of the serpentine channel.
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width along a vertical centerline in each half-bend are plotted in
Figs. 4(c) and 4(d), for Wi � 5 < Wicrit and for Wi � 45 > Wicrit,
respectively. AtWi <Wicrit , the polymer flow in the serpentine chan-
nel is laminar, i.e., the flow lines follow the curvature of the channel.
The velocity profile at this stage is similar to that of a Newtonian fluid,
which means it is skewed toward the wall with the highest curvature,
i.e., at e ¼ ð0:5w� yÞ=w > 0, where the shear rate is higher.
Furthermore, velocity profiles at different locations have an identical
shape, with negligible difference within the experimental error. In con-
trast, the velocity profiles corresponding to Wi >Wicrit [Fig. 4(d)]
show reversed skewness and are rather shifted to the opposite wall, i.e.,
e < 0. This deviation from a laminar flow behavior clearly points
toward the presence of flow structures other than the primary stream-
wise flow. The structure of the flow will be discussed in Sec. IVC. The
shape of the velocity profiles is rather irregular and exhibits spatial
dependence, which means that the mean flow is not essentially invari-
ant and, thus, the flow is spatially non-homogeneous.

3. Flow topology and its impact on polymer behavior
and flow features

The explanation for the observed unstable, non-homogeneous
flow of a semi-dilute entangled polymer solution is multifaceted due to
the interdependence of fluid and flow properties. Therefore, we first
require a lucid insight into the origin of the observed unstable flow,
determined by the molecular behavior of the polymers, with respect to
the flow geometry. As discussed in the literature,16–18,74 the purely
elastic instability in polymer solutions is driven by the dynamics of the
polymers’ deformation, which, in turn, is highly dependent on the
flow type. In fact, Shaqfeh argues that the ratio between the vorticity
and rate of deformation, i.e., the flow type in the flow geometry is a
decisive factor for polymer behavior.22 A practical dimensionless num-
ber to define the flow type is the topology factor defined as
n ¼ ðjDj � jXjÞ=ðjDj þ jXjÞ, where jDj is the magnitude of the
deformation rate tensor and jXj is the magnitude of the vorticity ten-
sor. Polymers exposed to different flow types deform intrinsically dif-
ferent. When subjected to low to moderate shear, the polymers remain
in their coiled configuration and align with the flow direction at high
shear rates. Extensional flow stretches the polymers, while rotational
flow tends to restore them to their coiled shape.22 The topology factor
distribution calculated from experimental values at Wi � 5 < Wicrit
and Wi � 45 > Wicrit is shown in Fig. 5. Below the onset of purely
elastic instability, three distinguished regions of shear (green), exten-
sional (red), and rotational (blue) are visible, alternating orderly
between successive half-bends. The corresponding histogram of the
topology factor distribution indicates that the flow is mainly shear
dominated with defined extensional regions. This suggests that poly-
mers remain mainly in their coiled configuration, and thus, the flow is
predominantly laminar. For Wi >Wicrit , these well-defined regions
are no longer distinguishable, and the flow types are rather randomly
distributed. The corresponding probability distribution indicates that
the fraction of rotational (vortical) flow has increased. This random
distribution of flow types combined with their impact on polymer
behavior results in spatial non-homogeneity of the flow. Furthermore,
the significant contribution of randomly distributed rotational flow
type suggests that the purely elastic turbulent flow is anisotropic.
However, as Haward et al. noted, the topology factor can be dubious

because it does not necessarily contain information about the strength
of the flow types, which is very important for the polymer behavior.75

To this aim, the extensional flow strength is quantified in terms of the
principal strain rate parameter k1, which is the eigenvector of the defor-

mation rate tensor and is expressed as k1 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD11 � D22Þ2 þ 4D2

12

q
.

The normalized value of k1=_c is plotted in Figs. 5(c) and 5(d). As can
be seen, even though distinct extensional regions are visible in the
topology-factor distribution [Fig. 5(a)], the strength of the extension is
quite weak [Fig. 5(c)] and even weaker at the higher Weissenberg
number [Fig. 5(d)]. Thus, the flow remains shear dominated across the
range of the consideredWeissenberg number.

In the semi-dilute entangled regime, the complexity of the rheologi-
cal properties of the fluid plays an important role in the flow properties
as well. Shear thinning, for example, causes a non-parabolic velocity pro-
file and, thus, strong transversal variation of the shear rate in the chan-
nel. This leads to different velocities and relaxation times and to different
degrees of deformation and relaxation of the polymer at different points
in the channel. Moreover, the deformation exerted on the polymers at a
given shear rate is stored in them, due to their significant memory effect,
before they relax or deform at a different shear rate. This further affects
the spatial distribution of rheological properties.

As a result, the mixed and random distribution of the flow types
in a serpentine channel in combination with the highly complex rheo-
logical behavior of semi-dilute entangled polymer solutions leads to a
non-homogeneous and anisotropic purely elastic turbulent flow.

FIG. 5. Local distribution of the topology factor n along the serpentine channel n (top)
and their corresponding probability distribution (bottom) at Wi � 5 < Wicrit (a) and at
Wi � 45 > Wicrit (b). The value n ¼ �1:0 (blue) indicates a pure rotational flow,
n ¼ 0:0 (green) a pure shear flow, and n ¼ 1:0 (red) a pure extensional flow. The
normalized principal strain rate (k1= _c) at Wi � 5 < Wicrit (c) and Wi � 45 > Wicrit
(d). The red color in the legend (k1= _c ¼ 1) indicates strong extension.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 073112 (2022); doi: 10.1063/5.0100419 34, 073112-7

VC Author(s) 2022

 15 N
ovem

ber 2023 08:25:14

https://scitation.org/journal/phf


B. Temporal features of purely elastic turbulent flow

To characterize the temporal features of the observed purely elas-
tic turbulent flow, we conduct point-wise analysis of the velocity fluc-
tuations. The velocity fluctuations, u0ðx; y; tÞ, are the Reynolds
decomposition of the velocity in the form of u0ðx; y; tÞ ¼ uðx; y; tÞ
�huðx; yÞi, where uðx; y; tÞ is the instantaneous velocity and huðx; yÞi
is the time averaged velocity at any point in the 2D domain. We
extract time series of velocity fluctuations at three locations along the
centerline of the channel, shown as the dashed line in Fig. 3(c),
namely, (A) near the outer wall with the largest radius of curvature
(e ¼ �0:30), ðA1Þ in the middle of the channel (e ¼ 0:0), and ðA2Þ
near the inner wall with the smallest radius of the curvature
(e ¼ þ0:30). It should be noted that these points are chosen at the ver-
tical centerline for convenience, since here the x and y directions corre-
spond to the azimuthal (streamwise) and radial (transversal)
directions, respectively.

1. Single-point statistics

The corresponding vertical and horizontal components of the
velocity fluctuations, u0x and u0y , as a function of time, are shown in
Figs. 6(a) and 6(b). The fluctuations in the streamwise direction, u0x ,
are significantly stronger than the fluctuations in the transversal direc-
tion, u0y . This observation, which indicates that the temporal velocity
fluctuations are anisotropic, is further evident in the statistical
moments of the velocity fluctuations at these points, shown in Table I.

The values of skewness, Sx and Sy, and kurtosis, Kx and Ky, at different
locations suggest that the velocity fluctuations are slightly non-
Gaussian. It is worth noting that the higher value of the kurtosis of the
streamwise velocity fluctuations near the walls indicates that the fluc-
tuations at these regions are intermittent, i.e., the velocity fluctuations
contain a random sequence of violent bursts also known as rare
events.32 The normalized (auto)-correlation function of total velocity
fluctuations at points (A), (A1Þ and ðA2Þ computed as rijðsÞ
¼ hu0iðt þ sÞu0jðtÞi=hu0i � u0jðtÞi, and i¼ j, is plotted in Fig. 6(c). The
corresponding characteristic time T ¼

Ð1
0 riiðsÞds is on the order of

the polymer’s longest relaxation time and depends on the position of
the probing point. This variation in characteristic time can be
explained in view of the shear dependency of the polymer relaxation
time in the semi-dilute entangled regime. Near the walls, where the
shear rate is highest, the characteristic timescale is smaller than at the
center where the shear rate is lower.

2. Two-point correlation

The total temporal velocity fluctuations at points (A), (B), and
(C) are extracted, and two-point correlation and spectral analysis are
applied to obtain further statistical information about the flow. Point
(A) represents the region with the highest average velocity, and points
(B) and (C) represent the regions with the highest rms value
[Fig. 3(c)]. The normalized velocity fluctuations at these points are
shown in Figs. 7(a)–7(c). The presence of random “bursts,” an

FIG. 6. Temporal fluctuations of (a) streamwise velocity component, (b) transversal velocity component, and (c) autocorrelation function of total velocity fluctuations at points (A),
ðA1Þ, and ðA2Þ marked in Fig. 3(b). The colored rectangle indicates the confident band.

TABLE I. First to fourth moments of velocity fluctuations at Wi � 45 above the onset of purely elastic instability at three different points (A), ðA1Þ, and ðA2Þ located along the
central vertical line [Fig. 3(c)]. hu0xi; hu0yi first moment (mean), rx, ry second moment (standard deviation), Sx,Sy third moment (skewness), and Kx, Ky fourth moment (kurtosis)
of, respectively, x and y components of velocity fluctuations.

Sampling location hu0xi (m/s) rx (m/s) Sx Kx hu0yi (m/s) ry (m/s) Sy Ky

A 3.2040 � 10�6 0.0052 �0.4822 0.8367 3.3270 � 10�10 7.4540 � 10�4 �0.07308 0.43032
A1 �4.780 � 10�8 0.0049 0.2763 �0.2681 �1.534 � 10�10 6.712 � 10�4 0.1995 0.8450
A2 �9.2708 � 10�7 0.0027 0.8538 1.2531 7.3841 � 10�11 4.1440 � 10�4 �0.3780 0.4673
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indication of the intermittency of the purely elastic turbulent flow, is
clearly visible in the velocity fluctuations at all positions [marked in
black in Figs. 7(a)–7(c)]. The temporal fluctuations at points (B) and
(C) look very similar but differ significantly from point (A). This is
further evident in the cross-correlation between time series shown in
Fig. 7(d). The significant correlation between points (B) and (C) with a
peak at zero lag time implies that fluctuations at these points are highly
correlated and synchronized. This indicates the presence of a flow
structure, which will be explained in detail in the context of the POD
analysis in Sec. IVC.

3. Spectral features

The power spectral densities (PSD) of velocity fluctuations at
points (A), (B), and (C) are plotted in Fig. 7(e). A power decay, 	f �b,
with an exponent of b � 2 describes the power spectral density of the
velocity fluctuations in the range of 1 to 10Hz. Similar exponents have
also been reported for the PSD of velocity fluctuations (b � 2:3),42

stress fluctuations (b � 2:0),76 and pressure fluctuations (b � 2:2)38

of semi-dilute entangled polymer solutions in curved geometries.
However, at lower frequencies, the exponent is smaller than b � 2.
The presence of two different exponents in the PSD curve of velocity
fluctuations has been also reported by various researchers, but no clear
reasoning for this observation has been provided so far.38,47 We believe
that in our case, the reason for the lower exponent at lower frequencies

is the presence of a large turbulent structure that is associated with the
secondary flow. This is further supported by the fact that at point (B)
and (C), the power corresponding to the low frequencies is larger than
in point (A).

It should be noted that the observed exponent of b � 2 for semi-
dilute polymer solutions is smaller than the corresponding exponents
of b > 3 commonly reported for purely elastic turbulent flow of dilute
polymer solutions.24,42 The value of b � 3 is theoretically predicted
for dilute polymer solutions based on the assumption of homogeneous
flow, linear elasticity, and linear relaxation of the polymers, which do
not apply to the semi-dilute entangled regime.24,25,47,77 In fact, as dis-
cussed in Sec. IIIA, the rheological properties of polymer solutions in
the semi-dilute entangled regime are shear dependent and, thus, highly
nonlinear. Therefore, it is not unexpected that the exponent of the
power spectral density of the velocity fluctuations appears to be differ-
ent from the value for dilute polymer solutions. However, there is so
far no theoretical work on the spectral features of purely elastic turbu-
lent flow of semi-dilute entangled polymer solutions and the expected
exponents for this concentration regime.

As proposed by de Gennes78 in “Reptation Theory” and as exper-
imentally demonstrated by Perkins et al.,20 the motion of the entangled
polymers is strongly restricted by the neighboring polymers as if they
were confined in a tube. Therefore, due to the restricted deformation
and freedom of individual polymers, their corresponding back
reaction to the flow is also restricted. Furthermore, as shown in Fig. 5,

FIG. 7. Normalized total velocity fluctuations at (a) point (A), (b) point (B), and (c) point (C) marked in Fig. 3(b). U is the time averaged velocity at the corresponding point.
Examples of bursts (rare events) are marked in black. (d) Cross-correlation of normalized velocity fluctuations at points (A), (B), and (C). The colored rectangle indicates the
confident band. (e) Power spectral density of velocity fluctuations at points (A), (B), and (C).
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the rotational component of the flow in the serpentine channel intensi-
fies at high Weissenberg numbers while the extensional component is
weakened. This can reduce the extent of polymer stretching and, thus,
dampen the corresponding velocity fluctuations.16

The damping and limiting of the flow fluctuations are reflected
in the smaller exponent of the power decay of the velocity fluctuations,
indicating that the range of excited scales in the flow is also limited.

C. Proper orthogonal decomposition of the purely
elastic turbulent flow

The cross correlation of velocity fluctuations at points (B) and
(C) in conjunction with the PSD analysis points toward an underlying
flow structure. In fact, an interesting feature of viscoelastic flow in
bend channels is the presence of a secondary flow due to hoop stress
caused by the gradient of the first normal stress difference.13,79,80

However, experimental studies have so far only been able to implicitly
indicate the presence of secondary flows based on the bent streamlines
in the mean flow direction.79 As we discussed extensively so far, the
turbulent flow of a semi-dilute entangled polymer solution in a serpen-
tine channel is non-homogeneous and anisotropic on any scale. This
rejects the assumption of Taylor’s hypothesis, and one cannot explain
spatial flow properties based on temporal statistics. Therefore, in this
section, we will directly extract the secondary turbulent structure using
the PODmethod. As discussed in Sec. II, the aim of proper orthogonal
decomposition is to find a hierarchy of spatial modes, UðnÞ, that best
describes the original stochastic flow. The energy spectrum of spatial
eigenmodes, Ei, calculated at three different Weissenberg numbers
above the onset of purely elastic instability is plotted in Fig. 8(a). The
first mode in all cases contains the highest energy content, which at
the highest stage of the turbulent flow at Wi � 45 contains almost
50% of the total kinetic energy (TKE) of the system. The first mode, in
fact, represents the time averaged mean flow, and all the other modes
describe the deviations from the mean flow. The energy content of the
modes decays and is less than 1% of TKE for modes larger than 6. As
can be seen from the cumulative energy plot in Fig. 8(b), the energy
content of the lower modes is higher at higher Weissenberg numbers,
i.e., where the elastic stresses are more significant. In fact, at Wi � 45,

the first 375 eigenmodes represent 90% of the TKE, while for
Wi � 17, the number of eigenmodes representing 90% of the TKE is
700. This indicates that at higher Weissenberg numbers, the lower
modes representing the larger scale structures gain more energy at the
expense of the higher modes, which correspond to the finer structures.
It can be concluded that, at higher Weissenberg numbers, only a few
early modes are sufficient to describe the existing dominant flow struc-
tures in the system. Moreover, an exponent of approximately (�11/9)
can be fitted to the energy decay spectrum in the range of 2–40, indi-
cated by a dashed line in Fig. 8(a). The exponent of (�11/9) has been
proposed by Knight and Sirovich based on dimensional arguments for
the Kolmogorov inertial range in non-homogeneous turbulent flows.81

Since, in our case, the exponent of b � 2 for the PSD curve of velocity
fluctuations is close to the Kolmogorov scale of (5/3), the exponent of
about (�11/9) is not unexpected.

In order to gain insight into the dominant flow structures, the
vector fields of spatial eigenmodes and their corresponding temporal
coefficients of the three initial highest energy modes at Wi � 45 are
illustrated in Fig. 9. It should be noted that although the 2D distribu-
tion of these modes resembles the shape of a velocity field, they do not
convey the same physical meaning because eigenmodes are, in fact,
dimensionless. Indeed, the instantaneous velocity field associated with
each mode is computed as UðnÞðx; y; tÞ ¼ aðnÞðtÞ �Unðx; yÞ. The spa-
tial eigenmodes of the first mode, i.e., the mean flow, clearly indicate a
strong spiral motion at the lateral sides of the half-bend [Fig. 9(a)].
This points toward the secondary flow governed by the serpentine
geometry due to the change in the curvature at the inflection points,
(B) and (C), affecting the streamwise mean flow.79,82 The temporal
coefficients associated with the first mode exhibit a sudden jump after
a certain time, i.e., the number of snapshots. This sudden jump has
also been observed in numerical simulations for viscoelastic Oldroyd-
B fluids and is related to the onset of the temporal evolution of the
flow.55

The presence of counter-rotating vortices associated with hoop
stress, caused by the gradient of the first normal stress difference13,79,80

in the serpentine channel is further evident in the spatial eigenmodes 2
and 3, which contain 5% and 3% of the TKE, respectively, as can be
seen in Figs. 9(b) and 9(c).

FIG. 8. (a) The energy spectrum of the spatial eigenmodes, the dashed line indicates a spectrum exponent of (�11/9), and (b) the cumulative energy of the spatial eigenmo-
des. The total number of eigenmodes corresponding to 90% TKE is shown as dashed lines.
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To clarify the correlation between modes 2 and 3, the time coeffi-
cients of these modes are plotted against each other in Fig. 10(a). As
evident in the rather compact circular scattering of the temporal coeffi-
cients in the phase portrait, the temporal coefficients are strongly
related, even though both seem to fluctuate rather randomly. The cross
correlation of these temporal coefficients in Fig. 10(b) verifies that
modes 2 and 3 are indeed anti-correlated. These observations confirm
that at high Weissenberg numbers, there is a strong secondary flow in
the form of counter-rotating vortices, which significantly contributes

to the total kinetic energy of the system. Therefore, we can conclude
that the strong increase in the flow resistance during the flow of the
polymer solution in the serpentine channel is indeed related to the
activity of the secondary flow caused by the geometry and the signifi-
cant first normal stress difference at highWeissenberg numbers.

V. CONCLUSION

In this work, we have performed lPIV experiments to extract
spatially and temporally high-resolution velocity fields of a semi-dilute

FIG. 9. The vector fields of spatial eigenmodes (top) and their corresponding temporal coefficients (bottom) at Wi � 45, t is the number of the snapshot or the vector number,
for (a) mode 1, (b) mode 2, and (c) mode 3.

FIG. 10. (a) Phase portrait of temporal coefficients of mode 2 vs mode 3 and (b) cross correlation between temporal coefficients of mode 2 and mode 3. The colored rectangle
indicates the confident band.
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entangled polymer solution flowing in a serpentine channel. The gen-
eral flow inspections and standard single-point statistical analysis
reveal the presence of a highly anisotropic non-homogeneous unstable
flow above a critical Weissenberg number. The power spectral density
plot decays with an exponent relatively smaller than the corresponding
value of a dilute polymer solution. This indicates a limited range of
excited scales in the purely elastic turbulent flow of a semi-dilute
entangled polymer solution compared to the dilute regime, which is
due to the limitation of polymer motion in space and entanglement
above the overlap concentration. In addition, the geometry-induced
mixed flow type and the strong rotation and weak extension of the
flow in the turbulent state further reduce the extent of polymer stretch-
ing and, thus, reduce the range of excited scales in the turbulent flow.

The two-point correlation indicates the strong cross correlation
between the fluctuations at the two lateral ends of a half-bend. This
implies the presence of a strong secondary flow structure. Due to the
absence of a global correlation between the velocity fluctuations, and
non-homogeneity of the flow and thus invalidity of the Taylor hypoth-
esis, we used the proper orthogonal decomposition method to gain
direct insight into the structural properties of the observed purely elas-
tic turbulent flow. The POD analysis, in fact, clearly shows a strong spi-
ral structure in the highest energy mode and counter-rotating vortices
in the two subsequent modes. This confirms the existence of a three-
dimensional secondary flow driven by the geometry and the hoop
stress, which originates from the gradient of the first normal stress dif-
ference in the transversal direction between the inner and outer walls.

With this first experimental characterization of the flow of a semi-
dilute polymer solution, we hope to stimulate a theoretical validation of
the experimentally observed features that will provide a deep insight
into the flow and purely elastic turbulence in this concentration regime.

ACKNOWLEDGMENTS

We acknowledge the generous support of ExploRe program of
BP plc. We would like to thank SNF Floerger, France, for kindly
providing us the Flopaam polymers.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Pegah Shakeri: Conceptualization (equal); Data curation (equal);
Formal analysis (equal); Methodology (equal); Software (equal);
Validation (equal); Visualization (equal); Writing – original draft
(equal); Writing – review and editing (equal). Michael Jung:
Conceptualization (equal); Investigation (equal); Methodology (equal);
Supervision (equal); Validation (equal); Writing – original draft (equal);
Writing – review and editing (equal). Ralf Seemann: Conceptualization
(equal); Funding acquisition (lead); Project administration (lead);
Resources (lead); Supervision (lead); Writing – original draft (equal);
Writing – review and editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1M. Rubinstein, R. H. Colby et al., Polymer Physics (Oxford University Press,
New York, 2003), Vol. 23.

2K. S. Sorbie, Polymer-Improved Oil Recovery (Springer Science & Business
Media, 2013).

3J. M. Dealy and K. F. Wissbrun, Melt Rheology and Its Role in Plastics
Processing: Theory and Applications (Springer Science & Business Media,
2012).

4B. Meulenbroek, C. Storm, V. Bertola, C. Wagner, D. Bonn, and W. van
Saarloos, “Intrinsic route to melt fracture in polymer extrusion: A weakly non-
linear subcritical instability of viscoelastic Poiseuille flow,” Phys. Rev. Lett. 90,
024502 (2003).

5S. E. Spagnolie, Biological and Medical Physics, Biomedical Engineering
(Springer, 2015).

6M. Thi�ebaud, Z. Shen, J. Harting, and C. Misbah, “Prediction of anomalous
blood viscosity in confined shear flow,” Phys. Rev. Lett. 112, 238304 (2014).

7M. Levant and V. Steinberg, “Complex dynamics of compound vesicles in lin-
ear flow,” Phys. Rev. Lett. 112, 138106 (2014).

8S. Gulati, D. Liepmann, and S. J. Muller, “Elastic secondary flows of semidilute
DNA solutions in abrupt 90� microbends,” Phys. Rev. E 78, 036314 (2008).

9R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of
Polymeric Liquids (Wiley-Interscience, 1987), Vol. 2.

10H. Giesekus, “Zur stabilit€at von str€omungen viskoelastischer fl€ussigkeiten,”
Rheol. Acta 5, 239 (1966).

11W. M. Abed, R. D. Whalley, D. J. Dennis, and R. J. Poole, “Experimental investi-
gation of the impact of elastic turbulence on heat transfer in a serpentine
channel,” J. Non-Newtonian Fluid Mech. 231, 68–78 (2016).

12A. Groisman and V. Steinberg, “Efficient mixing at low Reynolds numbers
using polymer additives,” Nature 410, 905 (2001).

13P. Shakeri, M. Jung, and R. Seemann, “Effect of elastic instability on mobiliza-
tion of capillary entrapments,” Phys. Fluids 33, 113102 (2021).

14R. H. Ewoldt, M. T. Johnston, and L. M. Caretta, In Complex Fluids in
Biological Systems (Springer, 2015), pp. 207–241.

15K. Hyun, M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn, S. J. Lee,
R. H. Ewoldt, and G. H. McKinley, “A review of nonlinear oscillatory shear
tests: Analysis and application of large amplitude oscillatory shear (LAOS),”
Prog. Polym. Sci. 36, 1697–1753 (2011).

16E. Balkovsky, A. Fouxon, and V. Lebedev, “Turbulence of polymer solutions,”
Phys. Rev. E 64, 056301 (2001).

17Y. Jun and V. Steinberg, “Polymer concentration and properties of elastic tur-
bulence in a von Karman swirling flow,” Phys. Rev. Fluids 2, 103301 (2017).

18V. Steinberg, “Scaling relations in elastic turbulence,” Phys. Rev. Lett. 123,
234501 (2019).

19C. A. Browne and S. S. Datta, “Elastic turbulence generates anomalous flow
resistance in porous media,” Sci. Adv. 7, eabj2619 (2021).

20T. T. Perkins, D. E. Smith, and S. Chu, “Direct observation of tube-like motion
of a single polymer chain,” Science 264, 819 (1994).

21N. Tyagi and B. J. Cherayil, “The relaxation dynamics of single flow-stretched
polymers in semidilute to concentrated solutions,” J. Chem. Phys. 154, 024907
(2021).

22E. S. Shaqfeh, “The dynamics of single-molecule DNA in flow,” J. Non-
Newtonian Fluid Mech. 130, 1 (2005).

23P. LeDuc, C. Haber, G. Bao, and D. Wirtz, “Dynamics of individual flexible
polymers in a shear flow,” Nature 399, 564 (1999).

24A. Fouxon and V. Lebedev, “Spectra of turbulence in dilute polymer solutions,”
Phys. Fluids 15, 2060 (2003).

25S. Berti, A. Bistagnino, G. Boffetta, A. Celani, and S. Musacchio, “Two-
dimensional elastic turbulence,” Phys. Rev. E 77, 055306 (2008).

26F. Cruz, R. Poole, A. Afonso, F. Pinho, P. Oliveira, and M. Alves, “Influence of
channel aspect ratio on the onset of purely-elastic flow instabilities in three-
dimensional planar cross-slots,” J. Non-Newtonian Fluid Mech. 227, 65
(2016).

27H. Garg, E. Calzavarini, and S. Berti, “Statistical properties of two-dimensional
elastic turbulence,” Phys. Rev. E 104, 035103 (2021).

28E. S. Shaqfeh, “Purely elastic instabilities in viscometric flows,” Annu. Rev.
Fluid Mech. 28, 129 (1996).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 073112 (2022); doi: 10.1063/5.0100419 34, 073112-12

VC Author(s) 2022

 15 N
ovem

ber 2023 08:25:14

https://doi.org/10.1103/PhysRevLett.90.024502
https://doi.org/10.1103/PhysRevLett.112.238304
https://doi.org/10.1103/PhysRevLett.112.138106
https://doi.org/10.1103/PhysRevE.78.036314
https://doi.org/10.1007/BF01982435
https://doi.org/10.1016/j.jnnfm.2016.03.003
https://doi.org/10.1038/35073524
https://doi.org/10.1063/5.0071556
https://doi.org/10.1016/j.progpolymsci.2011.02.002
https://doi.org/10.1103/PhysRevE.64.056301
https://doi.org/10.1103/PhysRevFluids.2.103301
https://doi.org/10.1103/PhysRevLett.123.234501
https://doi.org/10.1126/sciadv.abj2619
https://doi.org/10.1126/science.8171335
https://doi.org/10.1063/5.0037513
https://doi.org/10.1016/j.jnnfm.2005.05.011
https://doi.org/10.1016/j.jnnfm.2005.05.011
https://doi.org/10.1038/21148
https://doi.org/10.1063/1.1577563
https://doi.org/10.1103/PhysRevE.77.055306
https://doi.org/10.1016/j.jnnfm.2015.11.008
https://doi.org/10.1103/PhysRevE.104.035103
https://doi.org/10.1146/annurev.fl.28.010196.001021
https://doi.org/10.1146/annurev.fl.28.010196.001021
https://scitation.org/journal/phf


29T. Burghelea, E. Segre, and V. Steinberg, “Elastic turbulence in von Karman
swirling flow between two disks,” Phys. Fluids 19, 053104 (2007).

30S. J. Haward, G. H. McKinley, and A. Q. Shen, “Elastic instabilities in planar
elongational flow of monodisperse polymer solutions,” Sci. Rep. 6, 33029
(2016).

31X. Shi and G. F. Christopher, “Growth of viscoelastic instabilities around linear
cylinder arrays,” Phys. Fluids 28, 124102 (2016).

32A. Soulies, J. Aubril, C. Castelain, and T. Burghelea, “Characterisation of elastic
turbulence in a serpentine micro-channel,” Phys. Fluids 29, 083102 (2017).

33G. Yao, J. Zhao, H. Yang, M. A. Haruna, and D. Wen, “Reynolds number effect
on drag control via spanwise wall oscillation in turbulent channel flows,” Phys.
Fluids 31, 085108 (2019).

34S. S. Datta, A. M. Ardekani, P. E. Arratia, A. N. Beris, I. Bischofberger, J. G.
Eggers, J. E. L�opez-Aguilar, S. M. Fielding, A. Frishman, M. D. Graham, J. S.
Guasto, S. J. Haward, S. Hormozi, G. H. McKinley, R. J. Poole, A. Morozov, V.
Shankar, E. S. G. Shaqfeh, A. Q. Shen, H. Stark, V. Steinberg, G. Subramanian,
and H. A. Stone, “Perspectives on viscoelastic flow instabilities and elastic
turbulence,” arXiv:2108.09841 [physics.flu-dyn] (2021).

35R. van Buel and H. Stark, “Characterizing elastic turbulence in the three-
dimensional von K�arm�an swirling flow using the Oldroyd-B model,” Phys.
Fluids 34, 043112 (2022).

36L. Casanellas, M. A. Alves, R. J. Poole, S. Lerouge, and A. Lindner, “The stabi-
lizing effect of shear thinning on the onset of purely elastic instabilities in ser-
pentine microflows,” Soft Matter 12, 6167–6175 (2016).

37A. M. Howe, A. Clarke, and D. Giernalczyk, “ Flow of concentrated viscoelastic
polymer solutions in porous media: Effect of M W and concentration on elastic
turbulence onset in various geometries,” Soft Matter 11, 6419–6431 (2015).

38D. Kawale, E. Marques, P. L. Zitha, M. T. Kreutzer, W. R. Rossen, and P. E.
Boukany, “Elastic instabilities during the flow of hydrolyzed polyacrylamide
solution in porous media: Effect of pore-shape and salt,” Soft Matter 13, 765
(2017).

39X. Chen, H. Marschall, M. Sch€afer, and D. Bothe, “A comparison of stabilisa-
tion approaches for finite-volume simulation of viscoelastic fluid flow,” Int. J.
Comput. Fluid Dyn. 27, 229 (2013).

40H.-C. Tseng, “A revisitation of White�Metzner viscoelastic fluids,” Phys.
Fluids 33, 057115 (2021).

41K. Tatsumi, Y. Takeda, K. Suga, and K. Nakabe, “Turbulence characteristics
and mixing performances of viscoelastic fluid flow in a serpentine micro-
channel,” J. Phys.: Conf. Ser. 318(9), 092020 (2011).

42Y. Jun and V. Steinberg, “Power and pressure fluctuations in elastic turbulence
over a wide range of polymer concentrations,” Phys. Rev. Lett. 102, 124503
(2009).

43A. Malm and T. Waigh, “Elastic turbulence in entangled semi-dilute DNA sol-
utions measured with optical coherence tomography velocimetry,” Sci. Rep. 7,
1186 (2017).

44R. Lindken, M. Rossi, S. Große, and J. Westerweel, “Micro-particle image
velocimetry (lPIV): Recent developments, applications, and guidelines,” Lab
Chip 9, 2551 (2009).

45S. J. Beresh, “Time-resolved particle image velocimetry,” Meas. Sci. Technol.
32, 102003 (2021).

46A. Schr€oder and C. E. Willert, Particle Image Velocimetry: New
Developments and Recent Applications (Springer Science & Business
Media, 2008), Vol. 112.

47A. Groisman and V. Steinberg, “Elastic turbulence in curvilinear flows of poly-
mer solutions,” New J. Phys. 6, 29 (2004).

48B. Qin and P. E. Arratia, “Characterizing elastic turbulence in channel flows at
low Reynolds number,” Phys. Rev. Fluids 2, 083302 (2017).

49S. J. Muller, R. G. Larson, and E. S. Shaqfeh, “A purely elastic transition in
Taylor-Couette flow,” Rheol. Acta 28, 499 (1989).

50T. Burghelea, E. Segre, and V. Steinberg, “Validity of the Taylor hypothesis in a
random spatially smooth flow,” Phys. Fluids 17, 103101 (2005).

51G. I. Taylor, “The spectrum of turbulence,” Proc. Roy. Soc. London, Ser. A 164,
476 (1938).

52G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decom-
position in the analysis of turbulent flows,” Annu. Rev. Fluid Mech. 25,
539 (1993).

53E. De Angelis, C. M. Casciola, V. S. L’vov, R. Piva, and I. Procaccia, “Drag
reduction by polymers in turbulent channel flows: Energy redistribution
between invariant empirical modes,” Phys. Rev. E 67, 056312 (2003).

54K. D. Housiadas, A. N. Beris, and R. A. Handler, “Viscoelastic effects on higher
order statistics and on coherent structures in turbulent channel flow,” Phys.
Fluids 17, 035106 (2005).

55P. Gutierrez-Castillo and B. Thomases, “Proper orthogonal decomposition
(POD) of the flow dynamics for a viscoelastic fluid in a four-roll mill
geometry at the Stokes limit,” J. Non-Newtonian Fluid Mech. 264, 48
(2019).

56P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, Turbulence, Coherent
Structures, Dynamical Systems and Symmetry (Cambridge University Press,
2012).

57J. L. Lumley, Transition and Turbulence (Elsevier, 1981), pp. 215–242.
58B. Podvin and Y. Fraigneau, “A few thoughts on proper orthogonal decomposi-
tion in turbulence,” Phys. Fluids 29, 020709 (2017).

59K. Taira, S. L. Brunton, S. T. Dawson, C. W. Rowley, T. Colonius, B.
J. McKeon, O. T. Schmidt, S. Gordeyev, V. Theofilis, and L. S. Ukeiley, “Modal
analysis of fluid flows: An overview,” AIAA J. 55, 4013 (2017).

60P. J. Schmid, D. S. Henningson, and D. Jankowski, “Stability and Transition in
Shear Flows. Applied Mathematical Sciences, Vol. 142,” Appl. Mech. Rev 55,
B57 (2002).

61L. Sirovich, “Turbulence and the dynamics of coherent structures. I. Coherent
structures,” Q. Appl. Math. 45, 561 (1987).

62A. Chatterjee, Curr. Sci. 78, 808 (2000), available at https://www.jstor.org/sta-
ble/24103957.

63API, API Recommended Practice 63 (RP63) (API, 1990).
64A. Clarke, A. M. Howe, J. Mitchell, J. Staniland, and L. A. Hawkes, “How
viscoelastic-polymer flooding enhances displacement efficiency,” SPE J. 21,
0675 (2016).

65P. Shakeri, M. Jung, and R. Seemann, “Scaling purely elastic instability of
strongly shear thinning polymer solutions,” Phys. Rev. E 105, L052501
(2022).

66H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology
(Elsevier, 1989), Vol. 3.

67O. Maklad and R. Poole, “A review of the second normal-stress difference; its
importance in various flows, measurement techniques, results for various com-
plex fluids and theoretical predictions,” J. Non-Newtonian Fluid Mech. 292,
104522 (2021).

68J. L. White and A. B. Metzner, “Development of constitutive equations
for polymeric melts and solutions,” J. Appl. Polym. Sci. 7, 1867–1889 (1963).

69T. Burghelea and V. Bertola, Transport Phenomena in Complex Fluids
(Springer, 2020), Vol. 598.

70Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28,
153–184 (1998).

71M. Olsen and R. Adrian, “Out-of-focus effects on particle image visibility and
correlation in microscopic particle image velocimetry,” Exp. Fluids 29, S166
(2000).

72J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci.
Technol. 8, 1379 (1997).

73Y. Son, “Determination of shear viscosity and shear rate from pressure drop
and flow rate relationship in a rectangular channel,” Polymer 48, 632–637
(2007).

74P. D. Gennes, “Coil-stretch transition of dilute flexible polymers under ultra-
high velocity gradients,” J. Chem. Phys. 60, 5030 (1974).

75S. J. Haward, C. C. Hopkins, and A. Q. Shen, “Stagnation points control chaotic
fluctuations in viscoelastic porous media flow,” Proc. Natl. Acad. Sci. 118,
e2111651118 (2021).

76J. Beaumont, N. Louvet, T. Divoux, M.-A. Fardin, H. Bodiguel, S. Lerouge, S.
Manneville, and A. Colin, “Turbulent flows in highly elastic wormlike
micelles,” Soft Matter 9, 735 (2013).

77M. Grilli, A. V�azquez-Quesada, and M. Ellero, “Transition to turbulence and
mixing in a viscoelastic fluid flowing inside a channel with a periodic array of
cylindrical obstacles,” Phys. Rev. Lett. 110, 174501 (2013).

78P.-G. D. Gennes, “Reptation of a polymer chain in the presence of fixed
obstacles,” J. Chem. Phys. 55, 572 (1971).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 073112 (2022); doi: 10.1063/5.0100419 34, 073112-13

VC Author(s) 2022

 15 N
ovem

ber 2023 08:25:14

https://doi.org/10.1063/1.2732234
https://doi.org/10.1038/srep33029
https://doi.org/10.1063/1.4968221
https://doi.org/10.1063/1.4996356
https://doi.org/10.1063/1.5111651
https://doi.org/10.1063/1.5111651
http://arxiv.org/abs/2108.09841 [physics.flu-dyn]
https://doi.org/10.1063/5.0079655
https://doi.org/10.1063/5.0079655
https://doi.org/10.1039/C6SM00326E
https://doi.org/10.1039/C5SM01042J
https://doi.org/10.1039/C6SM02199A
https://doi.org/10.1080/10618562.2013.829916
https://doi.org/10.1080/10618562.2013.829916
https://doi.org/10.1063/5.0049132
https://doi.org/10.1063/5.0049132
https://doi.org/10.1088/1742-6596/318/9/092020
https://doi.org/10.1103/PhysRevLett.102.124503
https://doi.org/10.1038/s41598-017-01303-4
https://doi.org/10.1039/b906558j
https://doi.org/10.1039/b906558j
https://doi.org/10.1088/1361-6501/ac08c5
https://doi.org/10.1088/1367-2630/6/1/029
https://doi.org/10.1103/PhysRevFluids.2.083302
https://doi.org/10.1007/BF01332920
https://doi.org/10.1063/1.2077367
https://doi.org/10.1098/rspa.1938.0032
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1103/PhysRevE.67.056312
https://doi.org/10.1063/1.1850920
https://doi.org/10.1063/1.1850920
https://doi.org/10.1016/j.jnnfm.2018.12.009
https://doi.org/10.1063/1.4974330
https://doi.org/10.2514/1.J056060
https://doi.org/10.1115/1.1470687
https://doi.org/10.1090/qam/910462
https://www.jstor.org/stable/24103957
https://www.jstor.org/stable/24103957
https://doi.org/10.2118/174654-PA
https://doi.org/10.1103/PhysRevE.105.L052501
https://doi.org/10.1016/j.jnnfm.2021.104522
https://doi.org/10.1002/app.1963.070070524
https://doi.org/10.1146/annurev.matsci.28.1.153
https://doi.org/10.1007/s003480070018
https://doi.org/10.1088/0957-0233/8/12/002
https://doi.org/10.1088/0957-0233/8/12/002
https://doi.org/10.1016/j.polymer.2006.11.048
https://doi.org/10.1063/1.1681018
https://doi.org/10.1073/pnas.2111651118
https://doi.org/10.1039/C2SM26760H
https://doi.org/10.1103/PhysRevLett.110.174501
https://doi.org/10.1063/1.1675789
https://scitation.org/journal/phf


79L. Duclou�e, L. Casanellas, S. J. Haward, R. J. Poole, M. A. Alves, S. Lerouge, A.
Q. Shen, and A. Lindner, “Secondary flows of viscoelastic fluids in serpentine
microchannels,” Microfluid. Nanofluid. 23, 33 (2019).

80R. Poole, A. Lindner, and M. Alves, “Viscoelastic secondary flows in serpentine
channels,” J. Non-Newtonian Fluid Mech. 201, 10 (2013).

81B. Knight and L. Sirovich, “Kolmogorov inertial range for inhomogeneous tur-
bulent flows,” Phys. Rev. Lett. 65, 1356 (1990).

82L. Guglielmini, R. Rusconi, S. Lecuyer, and H. A. Stone, “Three-dimensional
features in low-Reynolds-number confined corner flows,” J. Fluid Mech. 668,
33–57 (2011).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 073112 (2022); doi: 10.1063/5.0100419 34, 073112-14

VC Author(s) 2022

 15 N
ovem

ber 2023 08:25:14

https://doi.org/10.1007/s10404-019-2195-0
https://doi.org/10.1016/j.jnnfm.2013.07.001
https://doi.org/10.1103/PhysRevLett.65.1356
https://doi.org/10.1017/S0022112010004519
https://scitation.org/journal/phf

