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ABSTRACT.

Background: The corneal back surface is known to add some astigmatism against-the-rule, which has to be considered in

cataract surgerywith toric lens implantation.Thepurposeof this studywas to setupadeep learningalgorithmwhichpredicts the

total corneal power from keratometry and biometric measures.

Methods: Based on a large data set of measurements with the IOLMaster 700 from two clinical centres, data from

N = 21 108 eyes were included, each record containing valid data for keratometry K, total keratometry TK, axial length

AL, central corneal thickness CCT, anterior chamber depth ACD, lens thickness LT and horizontal corneal diameter

W2W from an individual eye. After a vector decomposition of K and TK into equivalent power (.EQ) and projections of

astigmatism to the 0°/90° (.AST0°) and 45°/135° (.AST45°) axis, a multi-output feedforward shallow neural network was

derived to predict TK from K, AL, CCT, ACD, LT, W2W and patient age.

Results: After some trial and error, the neural network having a Levenberg–Marquardt training function and three hidden

layers (10/8/5 neurons) performed best and showed a fast convergence. The data set was split into training data (70%),

validation data (15%) and test data (15%). The prediction error (predicted corneal power CPpred minus TK) of the network

trained with the training and cross-validated with test data showed systematically narrower distributions for CPEQ-

TKEQ, CPAST0°-TKAST0° and CPAST45°-TKAST45° compared with KEQ-TKEQ, KAST0°-TKAST0° and KAST45°-

TKAST45° . There was no systematic offset in the components between CPpred and TK.

Conclusion: Unlike any fixed correction term, which can compensate only for a static intercept of the astigmatic components

TKEQ,TKAST0°andTKAST45°comparedwithKEQ,KAST0°andKAST45°,ourtrainedneuralnetworkwasabletoreducethe

variance in the prediction error significantly. This neural network could be used to account for the corneal back surface

astigmatism for biometers where the corneal back surface measurement or total keratometry is not available.
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Background

In 1999 with the IOLMaster, the first
optical biometer was launched to the
market (Haigis et al. 2000; Chen et al.
2011). In contrast to ultrasound

biometers which are restricted to a
measurement of distances in the eye
such as axial length (AL), central
corneal thickness (CCT), anterior
chamber depth (ACD) and lens thick-
ness (LT), the IOLMaster was able to

assess AL using partial coherence
interferometry and corneal curvature
of the front surface with an integrated
keratometer. The phakic anterior
chamber depth could be derived using
an integrated Scheimpflug camera, and
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the horizontal corneal diameter (W2W)
was assessed by means of a simple
photo with green light (red-free) (Chen
et al. 2011). Overall, the measurements
from a single instrument were sufficient
to determine the refractive power of
intraocular lenses as performed directly
with the software tools of the IOL-
Master. Compared with ultrasound
techniques, where the measurement of
distances depends on the speed of
sound which varies significantly (e.g.
for different degrees of cataract densi-
ties or silicone oil as replacement for
native vitreous humour), optical biom-
etry shows much less variation since
the refractive index of the media does
not vary that much from the cataract
or vitreous stage.

With the next generations of optical
biometers, mostly based on low coher-
ence reflectometry or optical coherence
tomography (OCT), it was possible to
derive additional measures such as the
CCT and LT, and the ACD (or aqueous
depth as the distance from corneal
endothelium to the lens front vertex) is
also mostly measured with the same
technique,which, togetherwith new lens
calculation formulae and better formula
constant optimization, significantly
improved thepredictabilityof the refrac-
tive outcome after cataract surgery
(Chen et al. 2011; Fisus, Hirnschall &
Findl 2021;Fisus,Hirnschall et al.2021).

In the last couple of years, the trends
of optical biometry have been towards
measuring total keratometry consider-
ing corneal front and back surface
measurement. The first instrument cap-
able of measuring both corneal surfaces
was launched in 2013 with the IOL-
Master 700 (Fisus, Hirnschall & Findl
2021; Fisus, Hirnschall et al. 2021;
Langenbucher et al. 2021). In addition
to keratometric measurement of the
corneal front surface curvature at 18
points, a software option provides data
of the corneal thickness profile and the
corneal back surface curvature based on
a 3-dimensional OCT scan. In addition
to the keratometric power, the power of
the corneal back surface (as well as
central corneal thickness) is extracted
from the data of the 3D OCT scan.
From both corneal surfaces and central
corneal thickness data, the total corneal
power is derived using the Gullstrand
formula for toric surfaces and could be
used for lens power calculations.

Artificial intelligence and specifically
machine learning algorithms have

developed significantly in recent years.
Today, they are used in many disci-
plines in medicine (e.g. for diagnosis or
classification of diseases or clustering
purposes) and in other fields. In most
of the tasks supervised, learning strate-
gies are used, involving a large data set
with labels (either categorical data
from a classification or metric data as
target value). The classification or
regression neural network is trained
with this data set to reproduce this
classification or to predict the metric
value based on the input data. To
evaluate the performance of such a
neural network, the data set has to be
split into training data and validation
or test data. The training data are used
to train the network, and the validation
and test data are used to cross-validate
the prediction and to avoid overfitting.

The purpose of this study was to
show, using a large data set from the
IOLMaster 700, whether a shallow
feedforward neural network architec-
ture could predict the vector compo-
nents of total corneal power from the
respective vector components of ker-
atometric power and AL, CCT, ACD,
LT, W2W and patient’s age, and
whether such a prediction could be
used, for example, with optical biome-
ters which do not provide corneal back
surface curvature data.

Methods

Data set for the neural network

In total, a data set with 48 455 mea-
surements from the IOLMaster 700
(Zeiss, Jena, Germany) from 2 clinical
centres (Augenklinik Castrop, Ger-
many and Kepler University, Linz,
Austria) was considered for this retro-
spective study. All biometry measure-
ments were performed prior to cataract
surgery. The data were transferred to
a.csv data table using the data export
and backup module of the software. In
a next step, the tables from both
clinical centres were merged. Duplicate
measurements of eyes were discarded
by selecting the last examination before
cataract surgery. Missing data or data
with a ‘Failed’ or ‘Warning’ in the
quality check for keratometry, AL,
CCT, ACD, LT, W2W, date of birth
or examination date provided by the
IOLMaster 700 software were
excluded, and after checking for ‘Suc-
cessful’ measurement for corneal back

surface power and total corneal power,
a data set containing records of mea-
surements from N = 21 108 eyes was
used for training, validation and test of
our neural network. The data were
transferred to Matlab (Matlab 2019b;
MathWorks, Natick, MA, USA) for
further processing.

Preprocessing of the data

Custom software was written in Mat-
lab to derive the patient age from the
examination date and date of birth.
From the keratometric data (K) of the
corneal front surface curvature mea-
surement (flat radius R1, axis of the flat
radius A1, steep radius R2 and axis of
the steep radius A2), the refractive
power in both cardinal meridians was
derived using a keratometer index of
nK=1.332, and the 3 vector compo-
nents KEQ, KAST0° and KAST45°

were calculated: the equivalent power
KEQ was extracted from the arithmetic
mean of K1 = (1.332-1.0)/R1 and
K2 = (1.332-1.0)/R2. The keratometric
astigmatism KAST = (K2-K1) was
projected to the 0°/90° axis with
KAST0°= KAST�cos(2�A1) and to the
45°/135° axis with KAST45°= KAST�sin
(2�A1) (Alpins et al. 1994). For the total
keratometry (TK) (flat radius TR1, axis
of the flat radius TA1, steep radius TR2
and axis of the steep radius TA2), the
refractive power in both cardinal merid-
ians was derived using a keratometer
index of nK = 1.332, and the three
vector components TKEQ, TKAST0°

and TKAST45° were calculated: the
equivalent power TKEQ was extracted
from the arithmetic mean of TK1 =
(1.332-1.0)/TR1 and TK2 = (1.332-
1.0)/TR2. The total corneal astigmatism
TKAST = (TK2-TK1) was projected to
the 0°/90° axis with TKAST0°=-
TKAST�cos(2�TA1) and to the 45°/
135° axis with TKAST45°= TKAST�sin
(2�TA1) (Alpins et al. 1994). As target
or output variables, we considered the
predicted total corneal power CPpred in
terms of three vector components:
equivalent power (CPEQ), astigmatism
projected to 0°/90° axis (CPAST0°) and
45°/135° axis (CPAST45°) (Alpins et al.
1994).

Set up of the neural network

A feedforward shallow multilayer mul-
ti-output neural network was set up for
predicting the total corneal power
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CPpred from the keratometric power K
and distances as well as patient age
(Zell 1994; Schmidhuber 2015). Feed-
forward (in contrast to recurrent) neu-
ral networks are implementations of an
artificial multilayer neural network
where the nodes of a hidden layer only
have connections to the subsequent
hidden layer (i.e. feedforward) and do
not have any feedback connections to
the previous layer. In this context,
‘shallow’ refers to a neural network
structure with only few hidden layers,
and ‘multi-output’ to the fact that more
than one output value is predicted by
the neural network (in our case: three
vector components of CPpred), in con-
trast to a classical neural network with
one output value.

From keratometry K, we used the
vector components KEQ, KAST0° and
KAST45°. For the distances, we
included AL, CCT, ACD, LT and
W2W. Each patient’s age was derived
from the examination date and the date
of birth. In addition, we built up a
smart version of our neural network,
including only AL, ACD, and W2W in
addition to keratometry, as these data
were already available in the first gen-
eration of optical biometers. We
designed our neural network with mul-
tiple outputs to predict CPpred (CPEQ,
CPAST0° and CPAST45°) in one step.
Several training algorithms and several
network architectures with 2, 3 and 4
hidden layers were tested, for example
the simple form of gradient descent
with or without momentum, scaled
conjugate gradient, quasi-Newton,
Bayesian regularization or Levenberg–
Marquardt. Finally, we proved that
with our data set the Levenberg–Mar-
quardt training algorithm with three
hidden layers and 10/8/5 neurons in
layer 1/2/3 performed best for predict-
ing the total corneal power CPpred.
Backpropagation techniques were
applied for computing the gradients
and Jacobian matrices as well as for
defining the weighting functions. The
performance of the network was eval-
uated with the unweighted sum of
mean squared prediction error

The data set with N = 21 108 measure-
mentswas split using a random selection
into a training set (70%, N = 14,776), a
validation set (N = 3166) and a test set
(N = 3166). The neural network was
trained with the training data set and
later validated with the validation data
set. Final proof was performed using the
N = 3166 test data set.

Validation process

Validation of our feedforward neural
network was performed with quality
metrics in terms of mean (MEAN) and
median (MED) prediction error, min-
imum (MIN) and maximum (MAX)
prediction error, together with the
mean absolute (MAE) of all 3 target
variables CPEQ, CPAST0° and
CPAST45°. The 3 vector components
of CPpred were compared with ker-
atometry K (KEQ, KAST0°, KAST45°)
and also to total corneal power pro-
vided by the IOLMaster 700 (TKEQ,
TKAST0° and TKAST45°). The quality
metrics were calculated for the test data
and for the entire data set.

Results

The descriptive statistics of the relevant
variables in our data set with
N = 21 108 measurements is shown in
Table 1 in terms of mean, standard
deviation, median, minimum and max-
imum. After training the neural net-
work, the performance plot provided in
Figure 1 shows the mean squared error
for the training set (N = 14 776), the
validation set (N = 3166) and for
the test set (N = 3166) as a function
of the number of iteration or training
cycles (epochs). The feedforward net-
work shows a fast convergence, reach-
ing the final performance after 9 epochs
of iteration as indicated by the cyan
line. The respective mean squared
errors for the training set, the valida-
tion set and the test set are shown in
the legend of the graph.

Table 2 lists the descriptive perfor-
mance data of the trained network
applied to the test data set (N = 3166)

for cross-validation. In this table, the
mean, standard deviation, median,
minimum and maximum of the predic-
tion error (CPpred-TK) and for com-
parison the difference K-TK are shown
for the equivalent power (CPEQ-
TKEQ and KEQ-TKEQ) as well as
for the projections of the astigmatism
to the 0°/180° axis (CPAST0°-TKAST0°

and KAST0°-TKAST0°) and the 45°/
135° axis (CPAST45°-TKAST45° and
KAST45°-TKAST45°), respectively.

Figure 2A–C shows, using combined
scatterhist plots, the prediction error
CPpred minus total corneal power TK
provided by the IOLMaster 700
together with the distribution of the
respective keratometer measures K
minus TK for the three vector compo-
nents. The scatterhist plots combine a
scatterplot and a graph showing the
distribution function (fit with a kernel
distribution). In Figure 2A, the predic-
tion error for the equivalent power
CPEQ-TKEQ is plotted alongside the
difference between keratometric equiv-
alent power K and total corneal power
TK. The distribution of CPEQ-TKEQ
is much narrower compared with the
distribution of K-TKEQ, meaning that
the neural network shows a good
performance in predicting the total
corneal power equivalent from ker-
atometry and biometric measures. In
Figure 2B, the prediction error for the
astigmatism projected to the 0°/180°
axis (CPAST0°-TKAST0°)is plotted
together with the difference between
keratometric (K) and total corneal
power (TK) astigmatism projected to
the 0°/180° axis (KAST0°-TKAST0°).
The distribution of (KAST0°-
TKAST0°) is systematically shifted to
negative values, meaning that, in gen-
eral, the corneal back surface adds
some astigmatism with a magnitude
of around 0.2 dpt against-the-rule (with
an orientation of around 90°). Again,
the distribution of CPAST0°-TKAST0°

is narrower (see also Table 2) com-
pared with the distribution of KAST0°-
TKAST0°, meaning that the neural
network shows a good performance in
predicting the total corneal power

performance ¼ ∑NðCPEQ� TKEQÞ2 þ∑NðCPAST0∘ � TKAST0∘Þ2 þ∑NðCPAST45∘ � TKAST45∘Þ2
3 �N :
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astigmatic component with/against-
the-rule from keratometry and biomet-
ric measures. In Figure 2C, the predic-
tion error for the astigmatism projected

to the oblique 45°/135° axis
(CPAST45°-TKAST45°)is plotted along-
side with the difference between ker-
atometric (K) and total corneal power

(TK) astigmatism projected to the 45°/
135° axis (KAST45°-TKAST45°). For
the oblique axis, the distribution of
(KAST45°-TKAST45°) is not systemati-
cally shifted. However, the distribution
of CPAST45°-TKAST45° is again nar-
rower (see also Table 2) compared with
the distribution of KAST45°-
TKAST45°, meaning that the neural
network shows a good performance in
predicting the total corneal power
astigmatic component in the oblique
axis from keratometry and biometric
measures

In Table 3, we list the prediction
error of the smart version of our
feedforward shallow neural network,
which considers only AL, ACD and
W2W as input parameters in addition
to keratometry based on corneal front
surface curvature as these measures
have been available since 1999 even
with the initial version of the IOL-
Master as well as by all other optical
biometers on the market. Even though
the distributions of the 3 components
of the prediction error are narrower
compared with the distributions of the
difference of K-TK, the overall perfor-
mance is systematically worse com-
pared with the full version of the
neural network as shown before with
the respective performance metrics

Table 1. Descriptive statistics of the data used for the processing of input and output data. R1 and R2 refer to the corneal front surface radius at the

flat and steep meridian, TR1 and TR2 to the respective data of total keratometry (radius in the flat (TR1) and steep (TR2) meridian), and AL / CCT /

ACD / LT / W2W to the axial length / central corneal thickness / phakic anterior chamber depth / crystalline lens thickness / horizontal corneal

diameter. The respective axes of keratometry and total corneal power are not listed in this table

N = 21 108 R1 in mm R2 in mm TR1 in mm TR2 in mm

Age in

years AL in mm CCT in mm ACD in mm LT in mm W2W in mm

Mean 7.7942 7.6284 7.7969 7.6270 68.89 23.6774 0.5520 3.1335 4.6127 11.9787

SD 0.2842 0.2841 0.2869 0.2832 12.21 1.3972 0.0372 0.4186 0.4899 0.4105

Median 7.7846 7.7688 7.7873 7.6265 72.00 23.4908 0.5514 3.1282 4.6405 11.9771

Minimum 6.0368 5.2423 6.0754 5.2717 52.00 14.5852 0.3882 1.1876 3.0048 8.9941

Maximum 9.7572 9.2428 9.8842 9.4453 100.00 37.5372 0.9268 5.3148 6.6412 14.8809

Fig. 1. Performance plot of the shallow feedforward neural network trained for prediction of total

corneal power CPpred from the keratometric power K and several biometric measures. After 9

iteration cycles, the final performance was reached as indicated by the cyan line. The respective

mean squared prediction error is shown in the legend of the graph.

Table 2. Deviation of the predicted total corneal power CPpred from the total corneal power provided by the IOLMaster 700 biometer (left side) and

the deviation of the keratometry measure K from the total corneal power TK (right side) derived from the test dataset in terms of a cross-validation.

(.EQ), (.AST0°), and (.AST45°) refer to the equivalent power and astigmatism projected to the 0°/90° and the 45°/135° axis. With the feedforward

network the prediction of corneal power based on keratometry and some biometric parameters (age, axial length, central corneal thickness, anterior

chamber depth, lens thickness, and horizontal corneal diameter) is much better compared to the keratometry as a measure of corneal front surface

data, especially for the astigmatism projected to the 0°/90° meridian

Mean squared prediction

error Test data (N = 3166)

CPpred-TK in dpt² K-TK in dpt²

CPEQ-TREQ CPAST0°-TRAST0° CPAST45°-TRAST45° KEQ-TREQ KAST0°-TRAST0° KAST45°-TRAST45°

Mean 0.0014 0.0012 −0.0033 0.0028 0.2031 0.0147

Standard deviation 0.0701 0.0686 0.0540 0.1121 0.1071 0.0824

Median 0.0005 0.0012 −0.0048 −0.0011 0.2007 0.0127

Minimum −0.6567 −0.3531 −0.2680 −0.9152 −0.4202 −0.5037
Maximum 0.6192 0.3311 0.3625 1.0078 0.7297 0.6232
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Fig. 2. Combined scatterplot and distribution plot (fitted with a kernel distribution) for the prediction error (predicted corneal power CPpred-total

cornealpowerTKprovidedby the IOLMaster 700)of the feedforwardshallowneuralnetwork trainedwith theN = 14 776 trainingdata set andapplied to

theN = 3166 test data set.As anoverlay, the differencebetweenkeratometryK fromthe corneal front surfacemeasurement and total corneal powerTK is

shown. SubfiguresA, B andC refer to the three vector components: equivalent power, astigmatismprojected to the 0°/90° axis and astigmatismprojected

to the 45°/135° axis. In all subfigures, the distribution of the prediction error is narrower compared with the distribution of K-TK, which proves that the

predictionmodel has a goodperformance.For the astigmatic component inFigure 2B, the distribution is systematically shifted to around−0.2 dpt,which
means that the corneal back surface which is considered in TK but not in K adds some astigmatism against the rule (with an axis around 90°).
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provided in Table 2. For the equivalent
power/astigmatism component in 0°/
90°, and astigmatism component in
45°/135°, the standard deviation is
systematically larger, with 0.0938 dpt/
0.0957 dpt/0.0931 dpt compared with
the full version of the neural network
with 0.0701 dpt/0.0686 dpt/0.0540 dpt.

Discussion

It is well known from the literature that,
especially for calculation of toric lenses,
the total astigmatism of the cornea
including the axis cannot be predicted
properly by a keratometer (Jaffe &
Clayman 1975; Elliott et al. 1994). For
eyeswithkeratometric astigmatismwith-
the-rule, total corneal astigmatism is
decreased, for eyes with keratometric
astigmatism, against-the-rule total cor-
neal astigmatism is increased, and with
oblique keratometric astigmatism, the
axis of the keratometric astigmatism
does not coincide with the axis of the
total corneal astigmatism. As a conse-
quence, in cases with with-the-rule ker-
atometric astigmatism the cylinder
power of toric lenses is normally
decreased, and in cases with against-
the-rule astigmatism, the cylinder power
of toric lenses is increased. In the last
decade, several statistical correction
strategies or nomograms (LaHood et al.
2017, 2018) have been proposed which
estimate the total corneal astigmatism
from the keratometric astigmatism
(Goggin 2013; Hoffmann et al. 2014;
Abulafia et al. 2016; Goggin et al. 2016;
Mohammadi et al. 2019; Langenbucher
et al. 2021). Most of these strategies are
based on a regression analysis (Abulafia
et al. 2016; Savini et al. 2017) and an

evaluation of keratometric astigmatism
before cataract surgery as well as refrac-
tion after cataract surgery with implan-
tation of rotationally symmetric lenses.
For example, the Abulafia-Koch regres-
sion is derived from spectacle refraction
converted from the spectacle plane to the
corneal plane and keratometry. Both
keratometry and postoperative refrac-
tion at corneal planewere transformed to
vector components (to the 0°/90° and the
45°/135° meridians; Alpins 1994; Alpins
et al. 2004), and the difference of refrac-
tive cylinder and corneal astigmatism
was quoted as corneal back surface
astigmatism. Most of these correction
algorithms for the corneal back surface
astigmatism add some astigmatic vector
in a range 0.1 to 0.3 dpt with an axis
against-the-rule (90°) to the cornea
(Abulafia et al. 2016; Langenbucher
et al. 2021). In some of these correction
strategies, the correction depends on the
absolute value and/or orientation of the
corneal astigmatism before cataract sur-
gery (LaHood et al. 2017, 2018). To
overcome a subdivision into with-the-
rule, against-the-rule, or oblique astig-
matism, and to eliminate potential
annealing effects (mostly in the vector
component 45°/135°) when mixing left
and right eyes, we decided to set up a
multi-output neural network which pre-
dicts the three output parameters
(CPEQ, CPAST0° and CPAST45°) in
one step from the input parameters
KEQ, KAST0° KAST45°, AL, CCT,
ACD, LT, W2W and the patient’s age.
Overall, this correction is an estimate
from a statistical evaluation of a set of
clinical data, and in the individual case, it
could be appropriate or result in an over-
or under-correction of the real corneal

back surface astigmatism (Reitblat et al.
2016; Savini et al. 2017;Olsen&Jeppesen
2018; Mohammedi et al. 2019; Tutch-
enko et al. 2020; Nakano et al. 2021).

With the IOLMaster 700, we have
the option to measure both corneal
surfaces using keratometry and OCT
tomography, and with the newer soft-
ware version, in addition to corneal
front and back surface curvature, we
can directly read out the composite
value TK, which refers to the total
keratometry (LaHood et al. 2018; Fisus,
Hirnschall & Findl 2021; Fisus, Hirn-
schall et al. 2021). This total keratom-
etry value is most likely composed from
the corneal front and back surface data
in addition to the central corneal thick-
ness using some upgraded version of the
Gullstrand formula for spherocylindri-
cal surfaces. The first studies on the
total keratometry value provided by the
IOLMaster 700 show that these data
seem to be a good indicator for calcu-
lation of toric intraocular lenses (Lev-
ron et al. 2021), but further studies with
a larger study population have to proof
the potential of total keratometry espe-
cially for toric lens power calculations.

Whatwehave tried to do in the present
study is to predict the total keratometry
value TK which is derived from the
IOLMaster 700 from keratometric mea-
surement of the cornea (also provided
with a classical integrated keratometer)
and several biometric parameters such as
axial length, central corneal thickness,
anterior chamberdepth, central thickness
of the crystalline lens, plus the horizontal
corneal diameter. This means that we did
not consider any refraction after cataract
surgery, which might be biased on the
proper centration and alignment of the
intraocular lens as well as the refraction
technique and lane distance. Instead of
refractometry, we used the measurement
of both corneal surfaces on axis with a
single measurement. From a large data
set which was obtained at two clinical
centres and exported using a custom tool,
we extracted all preop cataract cases
where all relevant measurement parame-
ters including TK were available and
where all measurement showed a ‘Suc-
cessful’ qualitymarker in thedataoutput.
The keratometric (K) and the total ker-
atometry (TK) measures were alge-
braically transformed into vector
components (equivalent power and pro-
jections of astigmatism to the 0°/90° and
to the 45°/135° axis) according to the
Alpins method (Alpins 1994; Alpins &

Table 3. Deviation of the predicted total corneal power CPpred from the total corneal power

provided by the IOLMaster 700 biometer derived from the test data set in terms of a cross-

validation. (.EQ), (.AST0°) and (.AST45°) refer to the equivalent power and astigmatism projected

to the 0°/90° and the 45°/135° axis, respectively. In this smart version of a feedforward network,

while not as good as the results from the full network shown in Table 2, the prediction of corneal

power based on keratometry and a reduced number of biometric parameters (axial length, anterior

chamber depth and horizontal corneal diameter) is still slightly better in terms of standard

deviation compared with the keratometry as a measure of corneal front surface data (especially for

the astigmatism projected to the 0°/90° meridian)

Prediction error Simplified

neural network Test data

(N = 3166)

CPpred-TK in dpt

CPEQ-TKEQ CPAST0°-TKAST0° CPAST45°-TKAST45°

Mean 0.0017 0.0005 −0.0005
Standard deviation 0.09383 0.0957 0.09313

Median −0.0016 0.0013 −.0027
Mean absolute 0.0594 0.0843 0.0454

Minimum −0.6813 −0.6105 −0.2845
Maximum 0.6737 0.6446 0.4625
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Goggin 2004). The keratometric compo-
nents and the biometric measures were
used as input parameters of a shallow
multi-output feedforward neural net-
work, and TK was used as the target. In
total,N = 21 108eyemeasurementswere
considered, and the data set was split
randomly into a training set (70%), a
validation set (15%) and a test set (15%)
for cross-validation to check for overfit-
ting. In a trial and error sequence, we set
up several networks with 2–4 hidden
layers and different options for the num-
ber of neurons in each hidden layer,
together with several training functions.
Finally, the Levenberg–Marquardt train-
ing function performed best in terms of
training speed, number of epochs/itera-
tions and overall performance. In con-
trast, the quasi-Newton training function
did not converge in all cases.

Our results show that the prediction
error has distributions for CPpred-TK
(CPEQ-TKEQ, CPAST0°-TKAST0°

and CPAST45°-TKAST45°) which are
much narrower compared with the
respective distributions of K-TK. This
means that the neural network-based
prediction of total corneal power CPpred
is in our case better than a prediction, for
example, with a constant offset only
which is added to the components of K
to consider for the astigmatic effect of
corneal back surface (Nakano et al.
2021). In addition, we demonstrated that
the systematic shift observed in the
KAST0°-TKAST0° of around −0.2 dpt,
which is in accordance with the results of
all other correction strategies (e.g. the
Goggin correction as shown in Goggin
et al. 2015 andGoggin et al. 2016), could
be addressed appropriately with our
neural network. In addition, if the net-
work is applied to the test data the
performance results as shown in Table 2
are not systematically worse compared
with applying the network to the entire
data set. This means that we do not have
a systematic overfitting in our network.

In addition,we tried a smart versionof
our feedforward neural network by
restricting the inputs to those data which
aremost commonlyavailable duringpre-
cataract lens power calculation with any
optical biometer. To our knowledge, all
optical biometers starting from the initial
IOLMaster launched in 1999 provide
axial length, anterior chamber depth and
the horizontal corneal diameter.
Together with the patient age and ker-
atometry, the smart neural network was
trained with the same training data. As a

result, the performance is somehow
worse comparedwith the neural network
considering all biometric measures as
outlined above. But in general, the dis-
tributions of the prediction error for all
three output components are slightly
narrower compared with K-TK, and
the offset especially in KAST0°-TKAST0

could be compensated properly. This
means that the performance should be
better compared with a static correction
ofvector components.However,wehave
to be aware that the precision of the
W2W measurement has improved sig-
nificantly from the first to the latest
generation of optical biometers.

In conclusion, this paper shows that
with deep learning techniques, the total
corneal power as provided in the newest
version of the IOLMaster 700 with the
TK module could be properly predicted
from simple keratometry K, patient age,
axial length, anterior chamber depth and
the horizontal corneal diameter, and
even better if additional data available
since the 2nd generation optical biome-
ters such as central corneal thickness or
lens thickness are included. In contrast to

a simple vector offset which could easily
correct for the static offset of TK-K but
does not change the variance of the
distribution, the corneal total power
prediction CPpred using a feedforward
shallowneural networkcould narrow the
distributions of all components of the
prediction error CPpred-TK (equivalent
power and astigmatic vectors projected
to 0°/90° and 45°/135°) and it could
correct for the offset.
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Glossary

Parameter Component [unit] Description

TK TR1 [mm]A Radius of curvature of total keratometry, flat meridian

TA1 [°]A Axis of the flat meridian of total keratometry

TR2 [mm]A Radius of curvature of total keratometry, steep meridian

TA2 [°]A Axis of the steep meridian of total keratometry

TK1 [dpt]B TR1 converted to dioptric power using a keratometer index of 1.332

TK2 [dpt]B TR2 converted to dioptric power using a keratometer index of 1.332

TKAST [dpt]B Total keratometry astigmatism TK2-TK1

TKEQ [dpt]B Equivalent power of total keratometry

TKAST0° [dpt]
B Astigmatism vector component at 0°/90° of total keratometry

TKAST45° [dpt]
B Astigmatism vector component at 45°/135° of total keratometry

CPpred CPEQ [dpt]B Equivalent power of the cornea predicted by the neural network

CPAST0° [dpt]
B Astigmatism vector component at 0°/90° predicted by the neural

network

CPAST45° [dpt]
B Astigmatism vector component at 45°/135° predicted by the neural

network

K R1 [mm]A Radius of curvature of corneal front surface, flat meridian

A1 [°]A Axis of the flat meridian of corneal front surface

R2 [mm]A Radius of curvature of corneal front surface, steep meridian

A2 [°]A Axis of the steep meridian of corneal front surface

K1 [dpt]B R1 converted to dioptric power using a keratometer index of 1.332

K2 [dpt]B R2 converted to dioptric power using a keratometer index of 1.332

KAST [dpt]B Keratometric astigmatism K2-K1

KEQ [dpt]B Keratometric equivalent power based on front surface curvature

KAST0° [dpt]
B Keratometric astigmatism vector component at 0°/90° based on

front surface curvature

KAST45° [dpt]
B Keratometric astigmatism vector component at 45°/135° based

on front surface curvature)

AL [mm]A Axial length of the eye

CCT [mm]A Central corneal thickness

ACD [mm]A Phakic anterior chamber depth

LT [mm]A Thickness of the crystalline lens

W2W [mm]A Horizontal diameter of the cornea

Glossary with a description of the abbreviations.
A
Data directly used from the export file of the IOLMaster 700.

B
Data calculated as described in theMethods section.
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