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“It Gets Easier. Every Day, It Gets A Little Easier. But You Gotta Do
It Every Day – That’s The Hard Part. But It Does Get Easier.”

Jogging Baboon, in Bojack Horseman
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Abstract

The conceptual design and discussion of multi-agents systems (MAS) typically fo-
cuses on agents and their models, and the elements and effects in the environment
which they perceive. This view, however, leaves out potential pitfalls in the later
implementation of the system that may stem from limitations in data models, inter-
faces, or protocols by which agents and environments exchange information. By
today, the research community agrees that for this, that the environment should
be understood as well as abstraction layer by which agents access, interpret, and
modify elements within the environment. This, however, blurs the the line of the
environment being the sum of interactive elements and phenomena perceivable by
agents, and the underlying technology by which this information and interactions
are offered to agents.

This thesis proposes as remedy to consider as third component of multi agent sys-
tems, besides agents and environments, the digital medium by which the environ-
ment is provided to agents. "Medium" then refers to exactly this technological com-
ponent via which environment data is published interactively towards the agents,
and via which agents perceive, interpret, and finally, modify the underlying envi-
ronment data. Furthermore, this thesis will detail how MAS may use capabilities of
a properly chosen medium to achieve coordinating system behaviors.

A suitable candidate technology for digital agent media comes from the Semantic
Web in form of Linked Data. In addition to conceptual discussions about the notions
of digital agent media, this thesis will provide in detail a specification of a Linked
Data agent medium, and detail on means to implement MAS around Linked Data
media technologies.
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Zusammenfassung

Sowohl der konzeptuelle Entwurf von, als auch die wissenschaftliche Diskussion
über Multi-Agenten-Systeme (MAS) konzentrieren sich für gewöhnlich auf die Agen-
ten selbst, die Agentenmodelle, sowie die Elemente und Effekte, die sie in ihrer
Umgebung wahrnehmen. Diese Betrachtung lässt jedoch mögliche Probleme in
einer späteren Implementierung aus, die von Einschränkungen in Datenmodellen,
Schnittstellen, oder Protokollen herrühren können, über die Agenten und ihre Umge-
bung Informationen miteinander austauschen. Heutzutage ist sich die Forschungs-
gemeinschaft einig, dass die Umgebung als solche als Abstraktionsschicht verstanden
werden sollte, über die Agenten Umgebungseffekte und -elemente
wahrnehmen, interpretieren, und mit ihnen interagieren. Diese Betrachtungsweise
verschleiert jedoch die Trennung zwischen der Umgebung als die Sammlung inter-
aktiver Elemente und wahrnehmbarer Phänomene auf der einen Seite, und der zu-
grundeliegenden Technologie, über die diese Information den Agenten bereitgestellt
wird, auf der anderen.

Diese Dissertation schlägt als Lösung vor, zusätzlich zu Agenten und Umgebung ein
digitales Medium, über das Agenten die Umgebung bereitgestellt wird, als drittes
Element von Multi-Agenten-Systemen zu betrachten. Der Begriff "Medium" bezieht
sich dann genau auf diese technologische Komponente, über die Umgebungsinfor-
mationen Agenten interaktiv bereitgestellt werden, und über die Agenten die zu-
grundeliegenden Daten wahrnehmen, interpretieren, und letztendlich modifizieren.
Desweiteren wird diese Dissertation aufzeigen, wie die Eigenschaften eines sorgfältig
gewählten Mediums ausgenutzt werden können, um ein koordiniertes Systemver-
halten zu erreichen.

Ein geeigneter Kandidat für ein digitales Agentenmedium findet sich im Ökosys-
tem des „Semantic Web”, in Form von „Linked Data”, wörtlich („verknüpfte Daten”).
Zusätzlich zu einer konzeptionellen Diskussion über die Natur digitaler Agenten-
Media, spezifiziert diese Dissertation „Linked Data” als Agentenmedium detailliert
aus, und beschreibt im Detail die Mittel, wie sich MAS um Linked Data Technolo-
gien herum implementieren lassen.





ix

Acknowledgements

The journey to finish this document was a long one, and it would not have been
possible to complete without the kind help and support of all the people along the
way.

First, I would like to express my thankfulness towards my supervisor, Prof. Dr.
Philipp Slusallek, for the opportunity and constant support in my endeavour to pur-
sue a PhD in his group at DFKI.

I moreover owe due gratitude towards René Schubotz for lots of very valuable criti-
cal and constructive input that definitely helped me sharpen my scientific skills over
the years, and whose passion in Semantic Web and Linked Data turned out to be
both contagious and truly inspiring in the long run, which undoubtedly truly paved
the way for most of the scientific contributions discussed in this document.

I would moreover like to warmly thank Hilko Hoffmann, Ingo Zinnikus, and all
other project leads, who through the years happily provided me with the opportu-
nity to both promote and evaluate my research in the scope of the projects under
their supervision.

These mentions also definitely extend to all my colleagues and fellow PhD students
with whom I had the pleasure of not only many fruitful, constructive and inspi-
rational discussions and collaborations, but also great times outside of the office
(special thanks at this place also to Ralph of the Nautilus Bar, who provided the
necessary fuel for not few of said discussions).

Finally, I would love to say a huge "Thank You!!" to my family, who never stopped
believing in me, and my wife, who never got tired of helping me find again my
courage when I was on the brink of losing it.

This journey was an adventure of a lifetime. Thank you all for having been a part of
it!



x

Contents

Abstract v

Acknowledgements ix

Contents x

List of Figures xiv

List of Tables xvi

Listings xviii

Abbreviations xix

1 Introduction 1
1.1 Hypotheses and Research Questions . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Individual Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Thesis Overview and Individual Contributions (per Chapter) . 8

2 Fundamentals 15
2.1 Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Resource Oriented Architectures . . . . . . . . . . . . . . . . . . 16
2.1.2 The RDF Data Model . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Milner’s Calculus of Communicating Systems . . . . . . . . . . . . . . 23
2.3 Stigmergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Related Work 27
3.1 Linked Data Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Triple Stores / Graph Store Protocol . . . . . . . . . . . . . . . . 27
3.1.2 Linked Data Platform . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Linked Data Notifications . . . . . . . . . . . . . . . . . . . . . . 30
3.1.4 The Web of Things . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Linked Data Lifting and Processing . . . . . . . . . . . . . . . . . . . . . 32
3.3 Hyper Media environments for Multi Agent Systems . . . . . . . . . . 34



xi

3.4 Medium-based and decentralized coordination . . . . . . . . . . . . . . 35
3.4.1 Generative Communication and Tuple Spaces . . . . . . . . . . 35
3.4.2 Self-Coordinating and stigmergy-based MAS . . . . . . . . . . . 37

3.5 Related Work: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 MAS Environments in Linked Data Media 41
4.1 The notion of a digital Agent Medium . . . . . . . . . . . . . . . . . . . 41

4.1.1 Medium as indirect interaction Space . . . . . . . . . . . . . . . 42
4.1.2 Medium as Communication Space . . . . . . . . . . . . . . . . . 44
4.1.3 Medium as Coordination Space . . . . . . . . . . . . . . . . . . . 46
4.1.4 Medium: Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Linked Data as Medium for (Stigmergic) Multi Agent Systems . . . . . 48
4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Role of media in Stigmergic Systems . . . . . . . . . . . . . . . . 49
4.2.3 Linked Data as digital stigmergic Medium . . . . . . . . . . . . 50

4.3 Stigmergic Linked Systems: Definition . . . . . . . . . . . . . . . . . . . 54
4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Static Linked Systems . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Dynamic and Stigmergic Linked Systems . . . . . . . . . . . . . 55

5 Implementation of Dynamic Environments in Linked Data Media 59
5.1 stigLD: A dynamic stigmergic Linked Data Environment Server . . . 60

5.1.1 Domain Model for Linked Systems . . . . . . . . . . . . . . . . . 60
5.1.2 stigFN Function Library . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.3 Server Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 ECA2LD: Real-Time RDF lifting of large-scale simulation environments 64
5.2.1 General Architecture: Model-View-Presenter-ViewModel Pat-

tern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 ViewModel: Entity-Component-Attribute Runtime Data Model 69
5.2.3 ECA-Model: Implementation . . . . . . . . . . . . . . . . . . . . 71
5.2.4 Presenter: Linked Data Lifting Algorithm . . . . . . . . . . . . . 75
5.2.5 Network API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.6 The ECA2LD Framework: Implementation . . . . . . . . . . . . 80

5.3 SPARQL API Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.2 Service Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.4 In-Use Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 94

6 Linked Data Media Consuming Agents 97
6.1 Generic Linked Data Agents . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 Definition of a single tropistic agent . . . . . . . . . . . . . . . . 98



xii

6.1.2 Extension to agent swarms . . . . . . . . . . . . . . . . . . . . . 99
6.2 Implementation of Linked Data Agents as SPARQL behavior trees . . . 100

6.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.3 Formal Behavior Tree Model . . . . . . . . . . . . . . . . . . . . 101
6.2.4 Behavior Tree Execution Semantics . . . . . . . . . . . . . . . . . 102
6.2.5 Equivalence of CCS and SPARQL-BT . . . . . . . . . . . . . . . 104
6.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Application and Evaluation 107
7.1 USE CASE 1: Cyber-physical airplane assembly . . . . . . . . . . . . . 108

7.1.1 Wing Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.1.2 Coordination of Cobot supported quality control . . . . . . . . 109
7.1.3 AR support for Cobot supported quality control . . . . . . . . . 110
7.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 USE CASE 2 (Coordination): Shopfloor scheduling . . . . . . . . . . . . 111
7.2.1 Domain Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.2 Agent models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 USE CASE 3: Shopfloor Scheduling II . . . . . . . . . . . . . . . . . . . 119
7.3.1 Agent Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 USE CASE 4 (Coordination): Make to order pickup and delivery . . . . 122
7.4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4.2 Shop Floor Representation in StigLD . . . . . . . . . . . . . . . . 123
7.4.3 Agent Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5 USE CASE 5 (Optimization): Minimize Open Stacks . . . . . . . . . . . 128
7.5.1 The Minimize Number of Open Stacks Problem . . . . . . . . . 128
7.5.2 Domain representation in Linked Data Medium . . . . . . . . . 129
7.5.3 Agent Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.6 USE CASE 6 (Optimization): Trucks World . . . . . . . . . . . . . . . . 134
7.6.1 The trucks world domain problem . . . . . . . . . . . . . . . . . 134
7.6.2 Domain representation in Linked Data Medium . . . . . . . . . 136
7.6.3 Marker Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.6.4 Truck Agent Model . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Conclusion and Future Work 145
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



xiii

8.1.1 Media-centered MAS for recommender systems . . . . . . . . . 149
8.1.2 Transfer to other application domains . . . . . . . . . . . . . . . 150
8.1.3 Transfer to other media . . . . . . . . . . . . . . . . . . . . . . . 150
8.1.4 Extend to different coordination principles and algorithms . . . 152

Bibliography 153
Own Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Publications with Contributions from me . . . . . . . . . . . . . . . . . . . . 171



xiv

List of Figures

1.1 Separation between virtual agent space and physical artifact space for
scenarios from the domain of cyber-physical production [43] . . . . . . 3

1.2 Medium as technological component that provides a well-defined read-
/write access to elements in the environment. . . . . . . . . . . . . . . . 4

2.1 Action-Mark-Cycle of stigmergic sytems . . . . . . . . . . . . . . . . . . 25

3.1 High level structure of the Linked Data Platform. . . . . . . . . . . . . . 29
3.2 Example of how to re-organize and enrich existing data with addi-

tional semantic meaning using LDP containers. . . . . . . . . . . . . . . 30
3.3 Linked Data Notifications Architecture . . . . . . . . . . . . . . . . . . . 30
3.4 Architecture of a Web of Things Servient . . . . . . . . . . . . . . . . . . 32

4.1 Stigmergic system components . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 StigLD domain model for stigmergic Linked Data Applications . . . . 60
5.2 High-level architecture of the StigLD server framework . . . . . . . . . 64
5.3 The Model-View-ViewModel pattern . . . . . . . . . . . . . . . . . . . . 66
5.4 The Model-View-Presenter-ViewModel pattern as by Bill Kratochvil . 67
5.5 Entity-Component-Attribute model based on the example of a com-

ponent that defines a ”Location”. . . . . . . . . . . . . . . . . . . . . . . 70
5.6 Multi-staged access to Attributes via Components on Entities. . . . . . 73
5.7 Example of an augmented domain semantic mapping on top of the

automatic structural mapping from ECA to RDF LDP data. . . . . . . . 78
5.8 Web resources and respective endpoints that are generated for each of

the elements of the runtime application. . . . . . . . . . . . . . . . . . . 79
5.9 Publishing an Entity or Entity Collection from Unity3D to Linked Data 83
5.10 Architecture of the SPARQL API service . . . . . . . . . . . . . . . . . . 87
5.11 Call sequence between the different service components upon a client

request to the API as defined in Sect. 5.3.2. . . . . . . . . . . . . . . . . 89

7.1 High level architecture of applications from the domain of cyber-physical
airplane assembly: The Linked Data medium ("ROA", "Resource Ori-
ented Architecture") serves as integration layer for connected services.
(Image source: [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



xv

7.2 Simulation of raceway installation task by a team of human and robot
workers (originally published in [6]) . . . . . . . . . . . . . . . . . . . . 109

7.3 Simulation of of quality check of rivet sealant application during for-
tification stringer installation (originally published in [7]) . . . . . . . . 110

7.4 AR supported quality check with human-robot collaboration. (Origi-
nally published in [157]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Process of IoT module production used as example. . . . . . . . . . . . 112
7.6 Domain model of the chosen application example. . . . . . . . . . . . . 112
7.7 Hierarchical structure of Linked Data Platform container resources

(blue), the contained entity types (red), and their semantic relations
in terms of RDF links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.8 Behavior trees modelling the processes of the Order Handling agent:
Agent as Sense, Perception, Reaction sequence (a), sensing via QUERY

nodes (b), perception using UPDATE (c), and reaction (d) as either relo-
cation (by re-initiating the agent using MESSAGE), or parallel resource
interaction (e) and spawn action (f). . . . . . . . . . . . . . . . . . . . . 121

7.9 Visualisation of the shopfloor environment of the make to order use-
case with spreading markers to attract transport unit.s . . . . . . . . . . 123

7.10 Minimal stack size found by the different agent models over 10 runs
compared to the verified optimal solution. . . . . . . . . . . . . . . . . . 133

7.11 Arithmetic average of stack sizes out of 10 solutions found by the dif-
ferent agent models compared to the verified optimal solution. . . . . . 133

7.12 Schematic picture of the trucks world problem, and Gantt diagrams
of respective plans satisfying the problem constraints, as originally
presented in ([93]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



xvi

List of Tables

2.1 HTTP operations as permitted by the SPARQL protocol. . . . . . . . . . 23

5.1 Expected parameters for a SPARQL 1.1 Query service call, based on
the original SPARQL 1.1 query protocol specification . . . . . . . . . . 84

7.1 Results of simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Dimensions of orders and products per problem domain . . . . . . . . 132
7.3 Problem sizes of the Trucks World single agent problem instances . . . 142
7.4 Deadlines and times of deliveries per package in the different problem

instances: the truck agent manages to meet all deadlines in all problems.142
7.5 Number of steps and make span taken until the last package was de-

livered by the compared approaches . . . . . . . . . . . . . . . . . . . . 143
7.6 Adapted deadlines and time of completion for package deliveries in

the Trucks World problem after introduced disturbance at time t . . . . 143



xvii

Listings

2.1 Example of statements about a resource encoded in an RDF graph,
using the foaf vocabulary, and written in Turtle Syntax. . . . . . . . . . 20

2.2 Example of a SPARQL UPDATE query that selects the next candidate
for a marker annotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Simple example of a stig:Law that describes a linear decay . . . . . . . 61
5.2 Use of the stigFN:linear_decay SPARQL function to evolve and ag-

gregate concentrations of linearly decaying markers on a topos. . . . . 62
5.3 Use of the stigFN:diffuse_1D SPARQL function to calculate the con-

centration of a diffusing stigma in an affected area.. . . . . . . . . . . . 63
5.4 Example of registering a Component Prototype for spatial data. . . . . 72
5.5 Example of accessing Spatial Components as defined in Lst. 5.2.3 to

write position and orientation Attributes. . . . . . . . . . . . . . . . . . 74
5.6 Example of instantiating a Linked Data Point on an Entity (top), or

Entity Collection (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.7 Implementation of a ECA2LD Unity3D Component. LD Compon-

tents, along with their annotated attributes, will transparently be pub-
lished in the ECA2LD Linked Data Platform format. . . . . . . . . . . . 82

5.8 LDP representation of an instatiated LDPose component with two At-
tributes, Orientation and Position, as defined via Lst. 5.7 . . . . . . . . 82

5.9 Example of a JSON-Schema description of information conveyed by a
free_bike_status.json datagram according to NABSA/GBFS Gen-
eral Bike Feed Specification. . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.10 A SPARQL SELECT query that reads location information for bike
sharing station from a GBFS ervice endpoint . . . . . . . . . . . . . . . 91

5.11 Input provided as example for a simple SELECT query (excerpt; source:
https://gbfs.nextbike.net/maps/gbfs/v1/nextbike_bf/de/station_

information.json) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.12 Query result of the Query in Listing 5.10 against the data in Listing 5.11 92
5.13 Example of a federated SPARQL query . . . . . . . . . . . . . . . . . . . 93
5.14 Query result (excerpt) as returned by the federated SPARQL query

example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.1 Example of a production recipe using schema and steps vocabularies. . 113

https://gbfs.nextbike.net/maps/gbfs/v1/nextbike_bf/de/station_information.json
https://gbfs.nextbike.net/maps/gbfs/v1/nextbike_bf/de/station_information.json


xviii

7.2 Example of a simple description of a workstation that performs a sol-
dering step. The soldering action is executed by calling the respective
referenced URI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Example of an affordance marker resource that advertises a steps:soldering
interaction as relevant for the current order . . . . . . . . . . . . . . . . 114

7.4 Example of two orders in the minimize open stacks domain that share
one common product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5 Example of two orders in the minimize open stacks domain that share
one common product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.6 A location in the trucks world domain, represented in the stigLD do-
main model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



xix

List of Abbreviations

AI Artificial Intelligence
AIS Artificial Immune System
AJAN Accessible Java Agent Nucleus
CPS Cyber Physical Production
CRUD Create Read Update Delete
DAG Directed Acyclic Graph
ECA Entity Component Attribute model
FOAF Friend Of A Friend (RDF ontology)
HTTP Hyper Text Transfer Protocol
HPC High Performance Computing
IoT Internet of Things
IRI Internationalized Resource Identifier
JEA Job Execution Agent
JSA Job Scheduling Agent
JSON Java Script Object Notation
JSON-LD JSON for Linked Data
LD Linked Data
LDP Linked Data Platform
LDP-RS Linked Data Platform RDF Source
LDP-NS Linked Data Platform Non-RDF Source
LuCe Logic Tuple Centers
MAS Multi Agent System
MOSP Minimize number of Open Stacks Problem
MTO Make To Order
MV* Model View * (Design Pattern)
MVVM Model View ViewModel (Design Pattern)
MVPVM Model View Presenter ViewModel (Design Pattern)
OAA Order Assignment Agent
OHA Order Handling Agent
RDF Resource Description Framework
x-RMM Richardson Maturity Model (level-x maturity )
ReSpecT Reaction Specification Tuples
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Chapter 1

Introduction

The problem of coordination of agents, tasks, resources, and more, is an ever pop-
ular and challenging topic in research. The need for coordination by this arises in
most various domains and for as many reasons. The desired effect that is sought
by coordinating a system is thereby most often optimization, under the assumption
that a perfectly coordinated system behaves optimal with respect to utilization of
resources, or time it takes for processes implemented in the system to finish.

Coordination in public transport and traffic may take the shape of properly steering
the red and green light phases of traffic lights according to demands: During rush
hours in morning and evening, traffic may need to be kept flowing from residential
areas to offices and factories, whereas in the evening hours, the most dense traffic
flow may be expected when workers returning home merge with citizens who move
from their homes to leisure areas in the city center. Another dimension can be added
to this by accordingly coordinating public transport routes to support movement of
citizens on this routes at best avail.

In industrial manufacturing, coordination algorithms are used to find an optimal
load distribution over producing entities, with the goal to avoid bottlenecks on one
part of the production while other machines remain unused and idle. Similarly,
transport of materials and supplies needs to be coordinated among mobile units.
Robots with particular skill sets need to be assigned the proper position within pro-
duction to provide their required skills to the production cycle at the right time and
the right place on the shop floor. Finally, all these entities - production machines,
transport, workers - need to work seamlessly hand in hand to ensure a stable and
efficient production process.

The approaches to implement coordination and optimization algorithms are mani-
fold. A popular method to implement such coordination scenarios are Multi agent
systems (MAS) [269, 77]. Multi agent systems, as the name suggests, typically em-
ploy a crowd of agents with varying skillsets to jointly observe, interpret, and act on
the to-be-coordinated system. The expected benefit is that by distributing the work
between a number of agents, the resulting system becomes more flexible, scalable,
robust, and efficient.
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Conceptually, agents are considered to be equipped with sensory capabilities and
actuators by which they perceive phenomena in their surroundings, or may inflict
changes respectively [186]. This surrounding that is sensed by agents, and upon
which the agents act and with which they interact, is commonly referred to as the
agents’ environment [269, 186, 262, 267].

Even though a core feature of agents is autonomy [269], it is commonly agreed
upon that an agent’s behaviour is not independent of its environment, but that
an agent strongly depends on the perceptions and possible interactions offered by
it [186]. Despite the crucial significance within multi agent systems, this pivotal
role of a properly defined environment was for a long time marginalized, or even
overlooked [262]. This leads to an often critical underspecification of how respec-
tive perceptions and interactions within the agents’ environment are finally being
provided to the agents on a technical level. In this respect, Weyns at el. observed
in 2015 as result of several surveys that were conducted in the scope of a series of
workshops [266] on multi agent systems:

"There is a general agreement in the research community that agent environments are essen-
tial for multi-agent systems, yet researchers neglect to integrate the agent environment as a
primary abstraction in their models and tools for multi-agent systems." [265]

They suggest to consider the environment not only as a description and state space
of the world surrounding the agent, but also as a technical abstraction layer that
finally helps design architecture and implementation of a resulting multi-agent sys-
tem.

While it is true that including the provisioning of environmental data to agents is
crucial from an engineering point of view, this consideration, however, blurs the
line between two disjunct roles now attached to environment: First the environment
being all data, and by this, perceptions, conditions, or processes that are generally
observable and accessible to the agent, and by this ultimately define an agents’ be-
havior based on its observations and chosen reactions; and second, the environment
being the technological components that provide this information in a way that is ac-
cessible for the agents and via which agents may interact with the environment. This
observation hints at the necessity to include a third component besides agents and
their environment for a proper understanding of well-defined multi-agent systems.

From the field of cyber-physical systems comes another way to conceptually parti-
tion multi-agent systems by distinguishing between agent space and artifact space [43]
(see also Fig. 1.1): In the agent space resides all information accessible to agents, such
as representational descriptions of processes, plans, or actions that can be taken by
the agent. The artifact space then contains all entities residing in the real world,
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FIGURE 1.1: Separation between virtual agent space and physical ar-
tifact space for scenarios from the domain of cyber-physical produc-

tion [43]

such as for example actual roads in a cities, cars on these, factory machines, or mo-
bile robots. Some of the real world artifacts may provide interfaces to agents to be
read and modified, such as machine states, locations of public transport vehicles,
factory storage inventory lists, worker shift schedules, and similar.

We have established before that agents gain their autonomy from their capability to
sense and interact with their environment. Now considering this model of MAS, it
becomes apparent that it is in no way accurate to consider agents to actually sense
and directly interact with their environment, as "the environment" in terms of relevant
conditions, status, or effects is existing in a space that is strictly separated from the
virtual space in which agents exist, namely the real world. Agents, in fact, rather
sense a representation of the environment that is provided to the agents in a for the
agents accessible and interpretable way, and interact with the environment indirectly
via likewise for the agents accessible and invocable handles.

This observation now gives a clearer picture of the third pillar of MAS that was al-
ready hinted before: What needs to be taken in to consideration during the design
of MAS is a technology component, in terms of data models, serialization, and proto-
cols, that is capable of properly representing the environment to agents, from which
agents actually get the sensory input about the environment that they need to suc-
cessfully complete their tasks, and by which agents gain the capabilities to inflict
changes to the (real-world) environment. This observation thus decouples the envi-
ronment as state space of the real world, from the technological Medium via which
agents interact with their environment. This thesis will therefore motivate the notion
of a digital Medium as exactly this technological component that provides interactive
environment access to agents.

The expectation is the following: While defining agent models in terms of agents’
reactions to perceived phenomena is generally independent of the technical imple-
mentation of the final agent program, vice versa, implementing agent-environment
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FIGURE 1.2: Medium as technological component that provides a
well-defined read/write access to elements in the environment.

interaction is absolutely constraint by technological particularities of the environ-
ment implementation. Implementation of MAS can therefore be separated into two
distinct tasks: modelling agent interaction (the channels by which agents may access
environmental data), and modelling agent behavior in terms of reaction to percep-
tions. The interface between both steps are agents’ perception and actions, by which
agents read data from the environment, or attempt to inflict changes to the envi-
ronment (see also Fig. 1.2). Providing this interface layer in terms of a well-defined
Medium component then allows to take into account perception and action access to
the environment during design of the agent models. It should be stressed that in
this architecture, the medium component only represents the environment, and does
not implement it. By defining how environmental data may be published to it, the
medium component, and by this, agent-environment interaction via the medium, is
independent of the represented environment. The architectural choice of introduc-
ing a Medium component thus is expected to reduce complexity of implementation
of MAS by reducing agent-environment-interaction to the interface provided by the
medium. Agent behavior can then be modeled entirely based on perceptions and ac-
tions via the medium, allowing for more generic, re-usable, and robustly designed
solutions.

When it comes to the application of MAS, a certain class of algorithms have taken
into account already a medium as tangible, interactive part of the environment: The
nature-inspired principle of stigmergy [245, 114] models agents entirely around how
agents react to influences left in the environment by other agents. This indirect com-
munication mechanism between agents based on traces left in the environment ul-
timately leads to a self-coordinating and self-organizing system behavior. The re-
sulting systems are by this considered very resilient towards outer influences. The
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"medium", the part of the environment that is perceived by agents, and which un-
dergoes changes as result of agents’ actions, by this takes such a central role as core
of a stigmergic system, that it is also considered the "true power of stigmergy" [113]. It
can therefore be assumed that a properly defined medium does not only benefit the
design of agent-environment interaction, as established before, but that by impos-
ing onto the medium the role of being the center of (indirect) agent interaction, the
emergence of optimization and coordination effects in the system can be taken into
account early in the design phase of the MAS.

A suitable candidate for a digital agent medium comes from the world of the Se-
mantic Web [12] in the shape of Linked Data (LD) [110, 15]. Linked Data refers to a
set of best practices to publish structured data on the web, and is strongly revolving
around the notions of Web resources ([87, 154]), which are semantically described in
terms of RDF (Resource Description Framework1 [147]) data graphs. With HTTP and
RESTful operations [86] as underlying protocols and communication mechanisms,
Linked Data architectures moreover suggest widely used standards to interact with
the provided data. Given that these design choices contributed to that the Seman-
tic Web is widely promoted as a generic integration layer [145, 97, 138, 120], and in
particular, Multi Agent Systems [225, 36, 50], this thesis will further discuss Linked
Data as suitable base technology for MAS. Based on standardized protocols between
Linked Data servers and Linked Data consuming user-agents, the thesis will define
a generic interaction pattern between agents and Linked-Data-based media.

1.1 Hypotheses and Research Questions

In the context of above considerations, this thesis derives the following hypotheses
and research questions.

1.1.1 Hypotheses

HYPOTHESIS H1. (Main Hypothesis)

Complexity of the implementation of multi-agent systems is reduced tremendously
by a properly defined medium, and respective agent-medium interaction. This is
due to the possibility to reduce the complexity the agents by exploiting the emer-
gence of optimization and coordination effects in the medium, and reduce the im-
plementation of agents to a most simple agent model.

HYPOTHESIS H2.

Linked Data constitutes a suitable digital agent medium.

1RDF 1.1 Primer document (May 2023): https://www.w3.org/TR/rdf11-primer/

https://www.w3.org/TR/rdf11-primer/
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HYPOTHESIS H3.

A well defined interactive digital agent medium, with medium referring to the technol-
ogy, data models, and data access protocols by which an environment is presented to
agents, and properly defined interactions between agents and the medium, allows
for the emergence of coordination and optimization effects within the medium.

HYPOTHESIS H4.

The quality of medium-centric optimization and coordination is competitive to clas-
sic linear and graph-based planning.

1.1.2 Research Questions

The Thesis will verify the Hypotheses H1. – H4 by answering the following research
questions:

R1. What constitutes a suitable digital agent medium?

Judging the quality of a medium w.r.t suitability in multi-agent systems requires an
understanding against which features a medium would need to be evaluated. The
first research question to be answered is therefore which features a digital medium
needs to provide to be considered suitable for MAS.

R2. Is Linked Data a suitable choice for a digital agent medium?

With a set of qualities established by having answered R1., it is now to be shown
that Linked Data media actually constitute a suitable agent medium.

R3. How would Linked Data consuming agents interact with Linked Data Media?

Once it is established that Linked Data constitutes a suitable medium for MAS,
agent-environment interaction via the medium needs to be defined.

R4. What is a suitable and sufficiently simple agent model to interact with Linked
Data Media?

A declared goal of the Thesis is to reduce complexity of agent design by transferring
the complexity of the MAS as such to the medium. With the basic interactions of
agents and Linked Data media defined after having answered R3., the next ques-
tion is thus how to model agents in a Linked Data MAS to make best use of the
capabilities offered by the medium, while keeping the complexity of the agent itself
low.



1.1. Hypotheses and Research Questions 7

R5. How can dynamic multi-agent environments be efficiently published in a
Linked Data medium?

To this point, the thesis has considered Linked Data media and agents only on a
conceptual level. The question remains how to realise the established concepts in
actual implementations of interactive agent environments in Linked Data media. A
particular challenge lies in representing highly dynamic environments via Linked
Data media.

R6. How to implement formally defined agent models in a semantic-preserving
fashion?

After having presented means to implement agent environments in Linked Data
media, it further needs to be shown how a respective implementation of Linked
Data media consuming agents can be realised.

R7. How can continuity of the medium be ensured during link traversal?

Linked Data architectures are decentralized, and make no assumption about where
referred resources are hosted, and in which format the respective server returns the
content of the resource. It may by this happen, that when agents follow links to dis-
cover new resources, the server of a hosting resource ultimately does not provide
enough capabilities for the agent to interact with the resource. An example for this
is when agents that employ SPARQL [232] queries to interact with resources, see
themselves suddenly confronted with a server that does not offer a SPARQL query
interface, or does not emit RDF data at all. This case is particularly likely in scenarios
where access to IoT devices is embedded into an RDF data graph that describes the
overall environment. In these cases, it must be ensured that the agent can still inter-
pret the discovered data in the context of the medium, and ideally, employ Linked
Data technologies to retrieve and process the data.

R8. Which means are suitable to incite the emergence of coordination and coordi-
nation effects in the medium?

Having defined medium behavior, a proper agent model to interact with the medium,
and continuity of the medium during agent interaction, the question remains how
to exploit the capabilities of the medium precisely to achieve goal-directed coordi-
nation and optimization.

R9. Does off-loading agent complexity into the medium come with a trade-off
with respect to solution efficiency?

Just because, by answering R8., it is possible to achieve coordination and optimiza-
tion by properly designing interaction between a rather simple agent model, and
an interactive medium, it does not necessarily mean that it is possible to do it well.
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Consequently, finally, the quality of the found results needs to be evaluated and
compared to state of the art results of established coordination and optimization
approaches.

1.2 Individual Contributions

With respect to the hypotheses and research questions stated above, this thesis makes
the following contributions:

– The thesis strengthens the notion of a Digital Medium as interactive component
in a multi agent system.

– The thesis suggests Read-Write Linked Data as suitable interactive medium for
multi agent systems.

– The thesis formally defines interaction between agents and Linked Data Media

– For the implementation of both passive (reactive) and dynamic Linked Data
Media, the thesis will defines:

– A suitable data meta model from which dynamic environments can pub-
lish their run-time data in real-time in a Linked Data representation

– A (semi-)automatic mapping from the chosen meta model to a Linked
Data representation, along with domain specific semantic annotations

– Semantic description of Web APIs towards the agents as part of the pro-
duced Linked Data representation

– A micro-service based method to access non-Linked Data data sources via
semantic queries

– A medium component server that actively drives the evolution of dy-
namic environments

– For the implementation of Linked Data Media consuming agents, the thesis
will provide:

– A mapping from formal agent program descriptions given in the Mil-
ner Calculus for Communicating Systems [176], to behavior trees as exe-
cutable agent programs.

– The thesis will evaluate the aforementioned contributions by application ex-
amples, and demonstrate how to achieve coordination and optimization by
employing the established methods.

1.2.1 Thesis Overview and Individual Contributions (per Chapter)

This thesis will be structured as follows, and make the following contributions in the
respective chapters:
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Chapter 2 provides an overview over the theoretical and practical background that
provides the foundation of this thesis. First, the concept of Linked Data, under-
lying design principles, the RDF data model, and the SPARQL query language
will be discussed in Section 2.1. Section 2.2 will revisit Milner’s Calculus of
Communicating Systems (CCS) [176] as formal notation for agent-medium in-
teraction. Finally, Section 2.3 will describe the nature-inspired coordination
principles of stigmergy ([116, 117]), which will be employed in this thesis to
achieve coordination effects in the medium.

Chapter 3 provides a thorough literature review to support the background as pre-
sented in Chapter 2, and discusses approaches and results related to the results
presented in this thesis.

Chapter 4 establishes Linked Data as a suitable medium for agent-to-agent and
agent-to-environment interaction, and will establish Linked Data as a medium
of choice for agent-based coordination and optimization. The chapter will
moreover formally specify Linked Data Media servers.

Original Contributions:

– A set of requirements towards digital media to provide a suitable medium
for agent-based self-organization, focused on princples of stigmergy as es-
tablished in Section 2.3

– Discussion that Linked Data provides a suitable medium w.r.t previously
defined requirements

– A formal specification of interactive Linked Data Media servers to host
static and dynamic environments

Contents of this chapter were previously published in:

– Spieldenner, Torsten and Melvin Chelli (2018). Linked Data as Stigmer-
gic Medium for Decentralized Coordination. In: Proceedings of the 16th
International Conference on Software Technologies. International Conference on
Software Technologies (ICSOFT-2021), July 6-8, Virtual, Pages 347-357, ISBN
978-989-758-523-4, SCITEPRESS.

– Schubotz, René, Torsten Spieldenner, and Melvin Chelli (2021). “stigLD:
Stigmergic Coordination of Linked Data Agents”. In: The 6th Interna-
tional Conference on Bio-inspired Computing: Theories and Applications (BIC-
TA 2021). Taiyuan, China

– Schubotz, René, Torsten Spieldenner, and Melvin Chelli (2022). “stigLD:
Stigmergic Coordination in Linked Systems”. In: Mathematics 10.7 (2022),
p. 1041
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Chapter 5 details on the implementation of dynamic Linked Data Media to describe
environments with immanent dynamics, i.e. dynamic behavior that is driven
by the environment itself, not by agent-environment interaction. For this,
Chapter 5 will present two different solutions: First, a reactive server compo-
nent that drives environment evolution by Linked Data principles upon client
requests. Second, real-time publishing of environment data via a transparent
Linked Data lifting approach.

Original Contributions:

– W.r.t transparent real-time lifting of run-time data:

– A formal definition of the established Entity-Component-Attribute
data meta model for run-time data from which Linked Data repre-
sentations of dynamic environments can be generated in real-time.

– Detailed architecture and implementation of an event-based ECA run-
time

– An automatic structural mapping from ECA run-time data to a Linked
Data Platform representation.

– Semi-automatic augmentation of the structural mapping with domain
specific semantics

– W.r.t reactive environment evolution upon client requests:

– Architecture and implementation of a reactive Linked Data media
framework

– W.r.t continuity of the medium during link traversal:

– A SPARQL 1.1 Protocol compliant service that allows to transparently
query non-RDF endpoints using SPARQL

Contents of this chapter were previously published in:

– Spieldenner, Torsten et al. (2017). “FiVES: An Aspect-Oriented Virtual
Environment Server”. In: Proceedings of the 2017 International Conference
on Cyberworlds. International Conference on Cyberworlds (CyberWorlds-2017),
September 20-22, Chester, United Kingdom. IEEE Xplore.

– Spieldenner, Torsten et al. (2018). “FiVES: an aspect-oriented Approach
for shared Virtual Environments in the Web”. In: The Visual Computer 34.9,
pp. 1269–1282

– Spieldenner, Torsten, René Schubotz, and Michael Guldner (2018). “ECA2LD:
FromEntity-Component-Attribute runtimes to Linked Data applications”.
In: Proceedings of the International Workshop on Semantic Web of Things for
Industry 4.0. Extended Semantic Web Conference (ESWC-2018), International
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Workshop on Semantic Web of Things for Industry 4.0, located at 15th ESWC
Conference 2018, June 3-7, Heraklion Crete, Greece. Springer

– Spieldenner, Torsten, René Schubotz, and Michael Guldner (2018). “ECA2LD:
Generating Linked Data from Entity-Component-Attribute runtimes”. In:
2018 Global Internet of Things Summit (GIoTS). IEEE, pp. 1–4

– Schubotz, René , Torsten Spieldenner, and Melvin Chelli (2021). “stigLD:
Stigmergic Coordination of Linked Data Agents”. In: The 6th Interna-
tional Conference on Bio-inspired Computing: Theories and Applications (BIC-
TA 2021), December 17-19, Taiyuan, China

– Schubotz, René, Torsten Spieldenner, and Melvin Chelli (2022). “stigLD:
Stigmergic Coordination in Linked Systems”. In: Mathematics 10.7 (2022),
p. 1041

– Spieldenner, Torsten (2020). “On the Fly SPARQL Execution for Struc-
tured Non-RDF Web APIs”. In: Proceedings of the 16th International Con-
ference on Web InformationSystems and Technologies. International Conference
on Web Information Systems andTechnologies (WEBIST-2020), November 3-5.
SCITEPRESS.ISBN: 978-989-758-478-7

Chapter 6 specifies the interaction between Linked Data Media consuming agents,
and respective Linked Data Media servers, as presented in Chapters 4 and 5.
The chapter then describes the implementation of the formally defined agent
models via a semantic preserving mapping from the formal agent model to an
executable representation in SPARQL behavior trees [6].

Original Contributions:

– A formal specification Linked Data Media consuming agents and agent
swarms

– A semantic preserving translation from formal agent models to behavior
trees as visual programming framework for executable agent programs

Contents of this chapter were previously published in:

– Schubotz, René, Torsten Spieldenner, and Melvin Chelli (2021). “stigLD:
Stigmergic Coordination of Linked Data Agents”. In: The 6th Interna-
tional Conference on Bio-inspired Computing: Theories and Applications (BIC-
TA 2021). Taiyuan, China

– Schubotz, René, Torsten Spieldenner, and Melvin Chelli (2022). “stigLD:
Stigmergic Coordination in Linked Systems”. In: Mathematics 10.7 (2022),
p. 1041

– Spieldenner, Torsten, and André Antakli. “Behavior Trees as executable
representation of Milner Calculus notations”. In: The 21st IEEE/WIC/ACM
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International Conference on Web Intelligence and Intelligent Agent Technology
(WI-AIT), Niagara Falls, Canada. November 2022

Chapter 7 will evaluate the previously defined concepts by application in various
scenarios. The versatility, adaptability, flexibility, and efficiency of the de-
veloped Prosumer concept as agent implementation for Linked Data media
will be demonstrated by use-cases from the fields of classical planning, cyber-
physical production, and human-robot collaboration.

Contents of this chapter were previously published in:

– André Antakli; Torsten Spieldenner; Marcel Köster; Julian Groß; Erik
Herrmann; Dmitri Rubinstein; Daniel Spieldenner; Ingo Zinnikus “Op-
timized Coordination and Simulation for Industrial Human Robot Col-
laborations”. In: Alessandro Bozzon; Jose Francisco and Dominguez Mayo;
Joaquim and Filipe. Web Information Systems and Technologies. Pages 44-68,
ISBN 978-3-030-61750-9, Springer International Publishing, 2020.

– Andreas Luxenburger; Jonas Mohr; Torsten Spieldenner; Dieter Merkel;
Fabio Espinosa; Florian Reinicke; Julian Ahlers; Markus Stoyke; Tim Schwartz
Augmented Reality for Human-Robot Cooperation in Aircraft Assembly.
In: 2019 EEE International Conference on Artificial Intelligence and Virtual
Reality (AIVR-2019), December 9-11, San Diego, CA, USA, Pages 263-266,
ISBN 978-1-7281-5604-0, DOI 10.1109/AIVR.2019.00061, IEEE, New Jer-
sey, 12/2019.

– Spieldenner, Torsten and Melvin Chelli (2018). Linked Data as Stigmer-
gic Medium for Decentralized Coordination. In: Proceedings of the 16th
International Conference on Software Technologies. International Conference on
Software Technologies (ICSOFT-2021), July 6-8, Virtual, Pages 347-357, ISBN
978-989-758-523-4, SCITEPRESS.

– Spieldenner, Torsten and Melvin Chelli. “Linked Data as Medium for
Stigmergy-based Optimization and Coordination”. Software Technologies:
16th International Conference, ICSOFT 2021, Virtual Event, July 6–8, 2021,
Revised Selected Papers. Springer. 2022, pp. 1–23

– Schubotz, René , Torsten Spieldenner, and Melvin Chelli (2021). “stigLD:
Stigmergic Coordination of Linked Data Agents”. In: The 6th Interna-
tional Conference on Bio-inspired Computing: Theories and Applications (BIC-
TA 2021), December 17-19, Taiyuan, China

– Schubotz, René, Torsten Spieldenner, and Melvin Chelli (2022). “stigLD:
Stigmergic Coordination in Linked Systems”. In: Mathematics 10.7 (2022),
p. 1041
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– Spieldenner, Torsten, and André Antakli. “Behavior Trees as executable
representation of Milner Calculus notations”. In: Web Intelligence and In-
telligent Agent Technology (WI-IAT-2022), November 17-20, Ontario, Canada.
Nov. 2022

Chapter 8 will summarize the findings of the thesis, provide a conclusion derived
from the individual findings, and close with an outlook over future work.
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Chapter 2

Fundamentals

This chapter will revisit core concepts that are elementary for the contributions of
this thesis. Section 2.1 will summarize the design principles of Linked Data architec-
tures, as Linked Data is the digital medium chosen in this thesis to represent virtual
agent environments. The section will moreover give an overview over the RDF (Re-
source Description Framework) data model as established resource representation
format in Linked Data architectures, and finally, summarize core concepts of the
SPARQL query language as one of the main interaction methods between Linked
Data clients (such as agents) and Linked Data media. Section 2.2 will revisit Milner’s
Calculus of Communicating Systems (CCS) which will be used in the remainder of
the thesis to formally define the communication between agents and environment
via the medium. Section 2.3 will briefly introduce the coordination principle of stig-
mergy, on which medium-based coordination and optimization will be realized in
this thesis.

2.1 Linked Data

Linked Data [14, 15] was coined as a term by Tim Berners Lee, and refers to a set of de-
sign principles that lay basis for the Semantic Web [12]. In its core, Linked Data can
be considered as a publication method for structured data, in which related pieces
of information are connected by explicitly modelled links. User agents that consume
Linked Data are capable to follow these links, and by this, to autonomously explore
Linked Data sets. Apart from links between related data sets, data itself is published
in machine readable representations, typically semantically annotated to make data
moreover machine understandable. The standard format to publish Linked Data and
its semantics is the Resource Description Framework (RDF)2 [35], with SPARQL [194]
being the standard query language to interact with RDF data.

Loosely based on Berners Lee’s design notes3, implementations of Linked Data ser-
vices should follow the following core principles:

2https://www.w3.org/TR/rdf11-primer/ (Visited May 2023)
3https://www.w3.org/DesignIssues/LinkedData.html (Visited May 2023)

https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/DesignIssues/LinkedData.html
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1. Linked Data services should be considered components of a Resource Oriented
Architecture (ROA), in which "things" (sic) described by the Linked Data ser-
vice should be referenced by a unique identifier, specifically, a unique resource
identifier (URI).

2. Identifiers should be resolvable, in the meaning that users and user-agents may
follow an identifier as link to find more information about the identified re-
source.

3. Resources should provide their content to users and user-agents in a "mean-
ingful" way, following standards like RDF or SPARQL.

4. Finally, resources should provide links to resources with additional informa-
tion that may be helpful to interpret the current resource’s content.

Linked Data by this builds a network of hypermedia [27], i.e., a network of pieces of
media (data), which are interconnected with related media contents using hyperlinks.

2.1.1 Resource Oriented Architectures

In [237], we wrote:

A Resource Oriented Architecture (ROA) is built around the notion of a Resource
as common representation for and kind of virtual or real-world entities. [87, 154]. A
resource is typically characterized by a name (identifier), its representation and links
between resource representations [154]. As defined by Fielding, a representation
is a sequence of bytes and metadata to describe those bytes. A resource may be
described by more than one representation at any given time i.e., provide the same
content for example in different serializations formats. More detailed considerations
of this architecture can be found in [87].

Resource oriented architectures are typically implemented around RESTful [209] in-
terfaces for CRUD (Create, Read, Update, Delete) operations to read and modify the
contents of resources, or publish new resources to an existing ROA. Richardson [89]
suggested a model to evaluate the maturity of a RESTful architectures with respect
to their suitability as hypermedia environment. The following sections will detail
more on the respective design principles.

REST

REST (Representational State Transfer) refers to an architecture principle for distributed
Web applications [86]. In its core, REST describes principles of how servers manage
data and client access to the data in resource oriented architectures. Following REST
principles aims at guaranteeing scalability on Internet-scale while providing a uni-
fied, well-defined interface across the components.
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In „RESTful“ Web applications (Web applications built around REST principles), re-
sources are entirely governed by the server, and in particular, the state of the re-
sources as communicated by the server towards any client is independent of the
clients‘ state. The communication between server and clients in RESTful applica-
tions is therefore moreover considered stateless.

The resource-oriented nature of RESTful architectures allows for decoupled appli-
cation components that can be developed and evolve independently of each other.
Access to the single components is defined by a unified interface as follows:

– The underlying architectural concept is that of a resource oriented architecture,
i.e., any component, object, or entity is represented by an individual resource.

– The respective resources are unambiguously identfiable by URIs (universal re-
source identifiers).

– Clients may retrieve a representation of the resource, e.g., a JSON or XML se-
rialization of the maintained data. The representation delivered to a client is
generally not considered the same as the representation in which the server
maintains the resource internally. However, the representations communi-
cated to clients are semantically equivalent to the representation maintained
by the server.

CRUD (create, read, update, delete) access on resources is typically implemented via
HTTP, with the client specifying the method with which it intends to interact with
the resource:

GET : Returns a representation of the requested resource’s state, as maintained by
the server.

PUT : Create a new resource, or replace a resource state according to the state sub-
mitted by the client.

POST : Let the resource handle the submitted data to update the state of the re-
source according to the logic implemented by the server.

DELETE : Delete the respective resource.

HTTP defines moreover as methods to interact with resources beyond CRUD oper-
ations:

HEAD : Similar to GET, but returns only the header of the response object, e.g. for
clients to check the expected size of the body object before downloading po-
tentially large objects.

OPTIONS : Provides the client with a list of permitted communication objects.

PATCH : Updates the state of a resource partially with the data submitted by the
client.
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CONNECT : Requests to open a two-way communication tunnel between client
and resource, e.g. a TCP or WebSocket connection.

HATEOAS

HATEOAS [193], short for Hyper Media as the Engine of Application State, is a
design principle and constraint for RESTful architectures and Web applications. The
declared goal of HATEOAS constrained Web applications is that clients understand
and are able to interact with the API without any prior knowledge. All information
required for clients to interact with the API are provided by the API itself.

This is typically achieved by providing clients with information about available state
transitions on a resource, when requesting the current state of the resource. These
state change options usually provide callable endpoints that trigger the respective
state changes, and a machine-interpretable description of which resource is affected
in what way by the state change.

Possible implementations of HATEOAS hypermedia have, for example, been de-
fined in the RFC 5988 Web Linking specification [184], the JSON Hypermedia API
Language (HAL) [135], and others [165].

Richardson Maturity Model

The Richardson Maturity Model [89] (RMM) measures the maturity of a Web API
with respect to its suitability as hypermedia endpoints. The RMM defines four lev-
els:

Level 0 : The application does not organize its data in resources. Web access mostly
reflects remote procedure calls on methods provided by the API. By this, data
access is completely proprietary, requiring clients to implement the specific
interaction methods as provided by the server. Level 0 is also refered to as the
"POX" (Plain Old XML) level, as communication is often implemented using
XML encoded messages.

Level 1 : Data is organized in resources, but the operations on the individual re-
sources are encoded within the resource URL via method names and parame-
ters. While Level 1 already achieves a certain level of decoupling application
components, access is still defined via proprietary interactions which clients
have to implement specifically.

Level 2 : Employs a RESTful architecture, with interaction with resources imple-
mented via HTTP verbs.

Level 3 : Like level 2, but uses hypermedia to inform the client about possible state
transitions by providing (semantically annotated) links, and a description of
the expected state change, if the client decides to follow the link.
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For applications to fulfill the principle of ”Hypermedia As The Engine Of Applica-
tion State” (HATEOAS, [193]), they need to reach in particular Level 3 of Richardson
Maturity Model (3-RMM).

In short, a 3-RMM compliant application provides its data as Web Resources, unam-
biguously identified by resolvable URIs, over which the application state is read and
changed using HTTP operations GET, PUT, POST, DELETE. Clients can follow links
from resources to others to explore data self-driven. Using HTTP operations HEAD or
OPTIONS, clients can learn all necessary information about the state of the resource,
and the provided methods to interact with it.

3-RMM compliance is considered a crucial requirement for the design of decoupled
Linked Data applications [254, 191].

2.1.2 The RDF Data Model

The Resource Description Framework (RDF) is a W3C Standard to describe resources,
and the relation between them, in the Semantic Web [35, 206]. The description for-
mat is built around the notion of triples of resources which together span RDF Graphs.
An RDF triple is typically described of a form (s, p, o), with the individual elements
being referred to as subject, predicate, and object position respectively. An element
within a triple is also commonly referred to as node.

An RDF triple encodes a single statement about a resource s in subject position by
putting it into relation of a resource o in object position, with the relation further
specified by the linking predicate p.

RDF defines three node types: IRIs (Internationalized Resource Identifiers) [80] unam-
biguously identify specific resources by the respective IRI. As known from Web site
addresses in the World Wide Web, IRIs may be resolvable by Web clients, such that
Web clients may visit the resource and retrieve additional data from the resource
identified by the respective IRI. However, IRIs in an RDF Graph do not necessarily
need to be resolvable.

Literal nodes directly encode a value within the RDF graph. Literal nodes typically
specify the value itself, and may further specify a datatype as which the value is to
be interpreted.

And last, Blank Nodes indicate the existence of a resource, the content of which is di-
rectly explicitly specified within the same graph, but without assigning an identifier
to the resource.

Listing 2.1 shows a simple example of an RDF Graph, written in Turtle syntax4 [55]:

4https://www.w3.org/TR/turtle/ (Visited May 2023)

https://www.w3.org/TR/turtle/
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1 @prefix foaf: <http :// xmlns.com/foaf /0.1/>

2 @prefix rdf:

<http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

3

4 <> rdf:type foaf:Person ;

5 foaf:knows [

6 rdf:type foaf:Person ;

7 foaf:name "Alice "^^xsd:string .

8 ] .

LISTING 2.1: Example of statements about a resource
encoded in an RDF graph, using the foaf vocabulary, and

written in Turtle Syntax.

The example describes the resource that emits the presented RDF graph (denoted as
"<>") as information about a Person, in the semantic meaning as defined by the FOAF
(Friend of a Friend) ontology5. rdf:type and foaf:Person are both IRIs, abbreviated
using a respective prefix as defined in the beginning of the example. The exam-
ple continues to express that the person described by the resource knows another
person, using as predicate foaf:knows to define this relationship. The resource de-
scribing the other person is not referenced by name, but directly described in terms
of a blank node (encapsulated in "[]" in Turtle syntax). The blank node specifies
the other person’s name, "Alice", in terms of a Literal node. The type annotation
"xsd:string" specifies the value "Alice" to be interpreted as string.

Formal Notation of the RDF Data Model

The remainder of the thesis will employ the following formal notation to refer to
data described in terms of RDF Graphs as also described in [234]:

I, L and B define pairwise disjoint infinite sets of IRIs (Internationalized Resource
Identifiers), literals and blank nodes, respectively. We will refer to elements in the
union set in I ∪ L ∪ B as RDF terms. The subset T = I ∪ L of RDF terms denotes
resources in some universe of discourse.

The infinite set of all RDF triples is T = (I ∪ B) × I × (T ∪ B). Asserting an RDF
triple (s, p, o) expresses that some resource, denoted by p, establishes a binary rela-
tionship between the resources denoted by s and o.

An RDF graph G ⊂ T is then a finite set of RDF triples of the form (s, p, o).

5http://xmlns.com/foaf/spec/ (Visited May 2023)

http://xmlns.com/foaf/spec/
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2.1.3 SPARQL

The SPARQL Query Language (SPARQL) W3C recommendation is the quasi stan-
dard to read and modify RDF datasets6 [194]. SPARQL queries are built around a
graph pattern matching facility, i.e. triple patterns, which form the core of the lan-
guage. Triples in triple patterns may consist of IRIs, blank nodes, and literal values,
as for RDF graphs, and additional variables that during query evaluation are bound
to actual values from the RDF graph against which the triple pattern is matched.

SPARQL defines several types of queries for different purposes: SELECT queries
match supplied triple patterns against an RDF graph and return the set of all valid
variable bindings. CONSTRUCT queries are additionally supplied with a graph template
into which variable bindings as result of the pattern matching operation are inserted
to return a new RDF graph. ASK queries return as results a boolean value true, if
any valid variable mapping was matched against a selected graph, and false oth-
erwise. All three types of queries leave the graph against which they were executed
untouched.

SPARQL UPDATE7 moreover defines operations to directly modify the graph against
which the query is evaluated: INSERT queries, like CONSTRUCT, are supplied with a
graph template from which a new RDF graph is formed using the resulting variable
mappings, but merge the resulting graph with the graph against which the query
was evaluated. Conversely, SPARQL DELETE operations remove all triples that result
from inserting mapped variable bindings into a supplied RDF Graph triple. List-
ing 2.2 shows the example of a SPARQL UPDATE query, that updates some local
agent knowledge for the agent to select some resource to annotate with a marker,
out of a selection of previously collected candidate resources.

1 DELETE { <http ://me > :next ?last . }

2 INSERT { <http ://me > :next ?candidate .}

3 WHERE {

4 <http ://me > :next ?last.

5 <http ://me > :candidates ?candidate .

6 FILTER NOT EXISTS {

7 <http ://me > :marked ?candidate .

8 }

9 }

LISTING 2.2: Example of a SPARQL UPDATE query
that selects the next candidate for a marker annotation.

6W3C SPARQL 1.1 Query Language Recommendation: https://www.w3.org/TR/

sparql11-query/ (Visited May 2023)
7W3C SPARQL 1.1 Update Language Recommendation: https://www.w3.org/TR/

sparql11-update/ (Visited May 2023)

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/sparql11-update/
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Interaction between Linked Data clients and Linked Data sets using SPARQL via
HTTP are defined by in the SPARQL Protocol recommendation.8 In the following,
we briefly re-visit the SPARQL syntax and evaluation semantics, and the SPARQL
1.1 HTTP protocol.

SPARQL Syntax and Evaluation Semantics

Let V denote an inifinte set of variable nodes that is disjoint from I ∪ L ∪ B, with I,
L, B identifier, literal, and blank nodes, as defined in Section 2.1.2. Let E define a
SPARQL expression, then we denote the set of variables in E as var(E).

A triple pattern is then a tuple of the form (T∪V)× (I∪V)× (T∪V)9. Triple pattern
components may be bound, i.e. from set T, or unbound, i.e. from set of variable
nodes V.

From triple patterns, SPARQL graph patterns are defined recursively using binary
operators AND, UNION, OPT, FILTER, SERVICE and GRAPH as follows:

1. A triple pattern (T ∪ V)× (I ∪ V)× (T ∪ V) is a graph pattern.

2. If P1 and P2 are graph patterns, then the expressions (P1 ◦ P2) with
◦ ∈ {UNION, AND, OPT} are graph patterns.

3. If P is a graph pattern and a ∈ (I ∪ V), then the expressions (a GRAPH P) and
(a SERVICE P) are graph patterns.

The semantics of SPARQL graph patterns is defined in terms of an evaluation func-
tion J·KDG that returns a set of mappings for a given SPARQL graph pattern expres-
sion, a fixed and active dataset D = {G0, ⟨u1, G1⟩, . . . , ⟨un, Gn⟩} and an active graph G
within D. A mapping from V to (T ∪ B) is a partial function µ : V → (T ∪ B). The
domain dom(µ) of a mapping is the subset of V on which µ is defined.

The notion of the SPARQL evaluation function J·KDG will be used in Section 5.3 to
define the evaluation semantics of the service presented in the respective section.

For a detailed formal definition of the evaluation semantics of the different types of
SPARQL queries, as well as the keywords UNION, AND, OPT, GRAPH, and SERVICE,
we would like to refer to the original specification, and literature [28].

8W3C SPARQL 1.1 Protocol Recommendation: https://www.w3.org/TR/sparql11-protocol/

(Visited May 2023)
9This Triple Pattern recommendation allows literal nodes as subjects. Even though literal nodes

are not allowed as subject in RDF graphs, the option to support them in triple patterns was discussed
by the RDF-core working group, and therefore included in the SPARQL recommendation: https:

//www.w3.org/2000/03/rdf-tracking/#rdfms-literalsubjects (Visited May 2023)

https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/2000/03/rdf-tracking/#rdfms-literalsubjects
https://www.w3.org/2000/03/rdf-tracking/#rdfms-literalsubjects
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Query via GET Query via POST (URL enc.) Query via POST (direct)
Method GET POST POST

Query Param.
query (exactly 1)
default-graph-uri (≥ 0)
named-graph-uri (≥ 0)

None
default-graph-uri (≥ 0)
named-graph-uri (≥ 0)

Content Type None
application/

x-www-form-urlencoded
application/sparql-query

Body None

URL-enc, &-sep.:
query (exactly 1)
default-graph-uri (≥ 0)
named-graph-uri (≥ 0)

Unenc. SPARQL query string

TABLE 2.1: HTTP operations as permitted by the SPARQL protocol:
Clients may execute SPARQL queries against remote SPARQL pro-

cessors via HTTP GET or POST operations11

SPARQL Protocol

The SPARQL Protocol W3C recommendation specifies how Linked Data clients may
access and modify datasets by supplying SPARQL and SPARQL UPDATE queries in
HTTP requests.10

For this, clients may send requests via HTTP GET or HTTP POST against the endpoint
of the respective SPARQL processor, which is usually using the URI of the dataset
against which the query is to be executed.

Depending on the type of request the clients send, they specify the query which
is to be executed, and, optionally, URIs of a specific graph within the data set, as
query parameters. The set of allowed operations, respective HTTP headers, and
content as expected by the SPARQL processor according to the SPARQL 1.1. protocol
specification, is shown in Table 2.1.

The SPARQL 1.1 protocol specification will be referred to in Section 5.3 to define a
SPARQL 1.1 compliant HTTP interface for the service presented in the respective
Chapter.

2.2 Milner’s Calculus of Communicating Systems

The Milner Calculus of Communicating Systems (CCS) is one of many formal cal-
culi to define and describe the behavior of concurrent processes [177]. It describes
process in terms of (named) actions and process identifiers, as well as connecting
operators. Expressing system behavior in calculus notations like CCS is shown to
be beneficial as it allows to evaluate the qualitative correctness of system properties,
such as deadlock or live-lock.[78, 26].

10W3C SPARQL 1.1 Protocol Recommendation: https://www.w3.org/TR/sparql11-protocol/

(Visited May 2023).
11Source: https://www.w3.org/TR/sparql11-protocol/, (Visited May 2023)

https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/sparql11-protocol/
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In the scope of this thesis, CCS will be used to formally define the interactions offered
by the Linked Data medium (see Sections 4.3.2 and 4.3.2), as well as the interaction
between Linked Data consuming agents and the medium (see Chapter 6).

CCS operators used to describe processes in the thesis are defined as follows:

Action:

α.P α→ P

P α→ P′ (K = P)

K α→ P′
(2.1)

Let α denote a single action, P a process, and K a process label. Then a Process α.P
denotes a process that first executes action α, and then continues as process P. If a
process P can continue as a process P’ by executing an action α, and P is assigned the
label K, then the process K may continue in the same way as process P.

Choice:
P α→ P′

(P + Q)
α→ P′

Q α→ Q′

(P + Q)
α→ Q′

(2.2)

Let P, Q be processes that by executing an action α continue as processes P’, Q’, re-
spectively, then P+ Q denotes a process that may, by executing an action α, continue
either as process P’ or process Q’. The choice as which process to continue is usually
assumed to be non-deterministic.

Parallel Composition:

P α→ P′

(P | Q)
α→ (P′ | Q)

Q α→ Q′

(P | Q)
α→ (P | Q′)

P a→ P′ Q ā→ Q′

(P | Q)
τ→ (P′ | Q′)

(2.3)

Let P, Q be processes which may continue as P’, Q’ after executing an action α re-
spectively. Then P | Q denotes a process that executes P and Q simultaneously, or
subsequently. However, contrary to P + Q, executing either P or Q does not termi-
nate the execution of the second process.

For an exhaustive description of the calculus operators and their semantics, we refer
the reader to [177].

We moreover use as action names in this paper: reqi for requests sent by an agent
via some channel i, resi for request responses received by an agent via channel i, η(i)
as function that resolves a resource identifier i to its callable endpoint, ans for query
answering initiated by the agent, and qres for query results received by the agent.
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2.3 Stigmergy

Stigmergy originally refers to a coordination principle in nature, mainly found as
underlying coordination principle in insect swarms [245], which has also been thor-
oughly researched for application in AI multi agent systems [250, 251, 105, 59].

In collective stigmergic systems, groups of agents perform work by executing ac-
tions within their environment [114, 116, 117]. An action is considered a causal pro-
cess that produces a change in the environment. Agents choose actions based on
condition-action rules, and perform an action as soon as its condition is found to
be met. Conditions are typically based on environmental states as perceived by the
agent. Examples from nature are the presence of specific (food) resources, semio-
chemical traces, progress in building nest structures, etc. Which actions an agent
can perform, how the agent will perform them, and which condition-action rules an
agent will follow, is considered the agent’s competence [118]. The part of the envi-
ronment that undergoes changes as a result of executing an action, and the state of
which is perceived to incite further actions, is called the medium.

produces

Action

stimulates
inhibits

Stigma

executes perceives

Agent

FIGURE 2.1: Action-Mark-Cycle of stigmergic systems, as originally
published in [220, 219].

Each action produces, either as byproduct of an action, or the deliberate goal of the
action itself, a stigma in the medium. Consequently, the behaviour of agents in a
collective stigmergic system can be understood as a cycle of executing actions based
on existing stigmata, and as result, leaving stigmata that stimulate or inhibit future
actions (see Fig. 2.1). In essence, stigmata work as indirect communication mecha-
nism between agents [247], potentially leading to coordination between agents, and,
ideally, a self-organising behaviour of the entire system [114, 116, 117]. Based on
these core concepts, i.e. action, medium and stigma, stigmergic systems can be fur-
ther classified [116]. In sematectonic stigmergy, a stigma is a perceivable modification
of the environment as result of work that was carried out by the agent, e.g. giv-
ing some new shape to a working material, or re-arranging order of objects in the
world. In marker-based stigmergy, stigmata are markers, e.g. semiochemicals, that
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are specifically added to the environment as means for indirect communication be-
tween agents. When perceiving stigmata, agents may choose their actions based on
the mere existence of a stigma in the medium (qualitative stigmergy), or also take into
account quantities, like semiochemcial concentration levels, number of stigmata left,
etc (quantitative stigmergy). Moreover, stigmata present in the medium may stay until
actively being removed by an agent (persistent stigmata) or until dissipated over time
due to agent-less processes (transient stigmata).

Since the concept of stigmergy was coined as inherent underlying principle of coor-
dination found in nature, it has faced a history of thorough research [245]. There is
a profound understanding of the many variations of stigmergic systems, and how
these are suited to model and implement efficient, flexible, and scalable algorithms
for AI-based coordination and optimization [68, 116, 117]. Stigmergy is recog-
nized as suitable underlying principle for multi-agent systems [106, 105, 250, 247]
and is applied in a variety of practical domains, e.g. digital manufacturing [252],
robotics [142, 126], or public transport [129, 4].

Stigmergic systems can be considered a variation of situated agent systems, in which
the interaction of agents with their environment is reduced to direct reaction based
on perception, rather than complex knowledge processing and inference [263, 262,
267]. Principles in these systems were also developed around an indirect, influence-
based interaction mechanism between agents and their environment as chosen for
our proposed stigmergic system [82].

Web technologies have been found a suitable basis for implementation of multi agent
systems [52, 51, 121, 127]. Meanwhile, it came to attention that stigmergic principles
are the underlying concept of many applications in the World Wide Web [70] includ-
ing coordination in Web-based IoT systems [201].
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Chapter 3

Related Work

This chapter will review literature and existing systems and solutions relevant to the
contents of this thesis. Section 3.1 will thoroughly review existing approaches and
frameworks to provide data in terms of Linked Data media. Section 3.3 will provide
an overview about existing works about hyper-media based multi agent systems.
Section 3.2 will present technologies to lift existing data to Linked Data, and by this,
allow to provision environment data via Linked Data media. Finally, Section 3.4 will
highlight on the concept of medium-based coordination and optimization, putting
the focus on the nature-inspired coordination principle of stigmergy.

3.1 Linked Data Media

This section reviews existing solutions and technologies to publish contents to a
read-write Linked Data medium.

3.1.1 Triple Stores / Graph Store Protocol

Triple store or graph store databases are the default technology to publish Linked
Data to the Web. They allow to store potentially large data sets in triple representa-
tion, which can be modified by clients either by HTTP operations, or using SPARQL
queries to explore and modify the data.

Popular triple store solutions come either as standalone solutions, such as Apache
Fuseki12, Eclipse RDF4j13, Open Link Virtuoso14, or as non-persistent in-memory
graph store as part of established RDF programming frameworks, as for example
Python’s RDF Lib15, dotNetRDF16, or as in-memory solution of the previously men-
tioned RDF4j for Java.

12https://jena.apache.org/documentation/fuseki2/(Visited May 2023)
13https://rdf4j.org/(Visited May 2023)
14https://virtuoso.openlinksw.com/(Visited May 2023)
15https://github.com/RDFLib(Visited May 2023)
16https://dotnetrdf.org/(Visited May 2023)

https://jena.apache.org/documentation/fuseki2/
https://rdf4j.org/
https://virtuoso.openlinksw.com/
https://github.com/RDFLib
https://dotnetrdf.org/
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Access to data in triple stores is defined by both the quasi standard of the SPARQL
Protocol W3C Recommendation17, which allows to modify data by submitting re-
spective queries (see also Section 2.1.3), or using the HTTP Graph Store Protocol18,
another W3C Recommendation that allows to access and modify contents in the
triple store using the following HTTP Operations:

GET : Returns an RDF serializiation of an entire RDF graph within the requested
RDF dataset. The URI of the graph that is to be returned is specified as query
parameter.

PUT : Used to send an RDF payload to the server. The server creates a graph within
the dataset according to a graph-uri parameter submitted as parameter of the
query. If a graph with the same URI already exists in the data set, it is replaced
by the payload of the latest request.

POST : Merges the payload of the query with the content of the graph which is
specified via a graph-uri parameter. If no graph exists under the requested
URI, the graph store returns a 404 error code (not found).

DELETE Deletes the graph which is specified via a graph-uri parameter. If no
graph exists under the requested URI, the graph store returns a 404 error code
(not found).

Graph stores provide a simple, but versatile tool to publish Linked Data, and by
this, may be considered an important building block for distributed Linked Data
media. However, limitations in the scope of multi agent systems come from that
graph stores are a completely passive medium, meaning that data is entered into the
stores, and modified, exclusively from external services, such as agents.

3.1.2 Linked Data Platform

The W3C Linked Data Platform (LDP) recommendation19 defines a model to publish
distributed data on the Web. This model is based on a data meta model, developed
around a minimal set of RDF resources, a set of rules how to access those, and the
format, in which the content is to be delivered.

LDP applications follow a resource oriented architecture (see also Section 2.1.1): LDP
applications are organized in terms of containers that contain resources, with the dis-
tinction between LDP RDF Resources (LDP-RS) and LDP Non-RDF Resources (LDP-
NS) (see also Fig. 3.1). While the first, LDP-RS, are required to provide their contents
in terms of an RDF graph, LDP-NS may provide any type of content, including bi-
nary data, such as images or videos.

17https://www.w3.org/TR/sparql11-protocol/(Visited May 2023)
18https://www.w3.org/TR/sparql11-http-rdf-update/(Visited May 2023)
19https://www.w3.org/TR/ldp/(Visited May 2023)

https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/sparql11-http-rdf-update/
https://www.w3.org/TR/ldp/
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A LDP server hosting LDP resources needs to provide at least HTTP/1.1 access to
its hosted resources. For LDP-NS, the server is required to at least allow HTTP GET

requests, and return the content of the resource, whereas for LDP-RS, the server
is required to also support data modification using PUT, POST, DELETE request, the
semantics of which are very much aligned with the graph store protocol as presented
above.

FIGURE 3.1: High level structure of the Linked Data Platform.20

LDP Containers are a specific type of LDP-RS that specifiy their content in terms of
an RDF graph, which in turn contains links to the managed resources, and, depend-
ing on the container type, specifies the containment relation between container and
resources.

By the defined concepts and interaction patterns, data structured in terms of Linked
Data Platform containers allows clients to autonomously explore data, based on the
containment relations of the resulting LDP graph. Containers may moreover be used
to group subsets of data from larger data sets, and give them additional semantic
meaning (see also Fig. 3.2): The LDP container architecture serves as overlay over
existing (potentially distrubuted) RDF graphs to group and encapsulate resources
with similar roles and semantics. The well-defined relations between containers,
their contents, and as result, container hierarchies, enables clients to explore and
LDP architectures autonomously to gather the information they are looking for.

A variety of implementations of both LDP servers and clients exist21, among them
the LDP server Solid, which has become popular as approach to "decentralize the
social Web" [214, 161].

Altogether, the Linked Data Platform is a prime example of how to organize data
in a Linked Data medium while fulfilling HATEOAS principles. For this reason, in
the scope of this thesis, LDP will be used as underlying technology in some of the

20Image source: https://www.w3.org/TR/ldp/#fig-ldpc-types (Visted May 2023)
21https://www.w3.org/wiki/LDP_Implementations (Visited May 2023)

https://www.w3.org/TR/ldp/#fig-ldpc-types
https://www.w3.org/wiki/LDP_Implementations
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FIGURE 3.2: Example of how to re-organize and enrich existing data
with additional semantic meaning using LDP containers.22

use cases presented in Chapter 7, and moreover is chosen as target format to publish
real-time simulations as Linked Data media in Section 5.2.

3.1.3 Linked Data Notifications

FIGURE 3.3: Linked Data Notifications Architecture.23

Linked Data Notifications (LDN) is a W3C recommendation for a protocol for message-
based communication between Linked Data applications24 [38, 29]. The design goal
of LDN is to provide messaging capabilities between applications without the com-
munication being tied to specific application technology. LDN are designed around
Linked Data Platform principles: Resources in a LDN network provide at least HTTP
GET endpoints (with Inbox resources supporting moreover HTTP POST to receive no-
tifications), and provide their contents, which include a self-description of the re-
source, in JSON-LD 25 format.

22Image source: https://www.w3.org/TR/ldp-primer/ (Visited May 2023)
23Image Source: https://www.w3.org/TR/ldn/ (Visited May 2023)
24Linked Data Notification recommendation: https://www.w3.org/TR/ldn/ (Visited May 2023)
25JSON-LD project website: https://json-ld.org/ (Visited May 2023)

https://www.w3.org/TR/ldp-primer/
https://www.w3.org/TR/ldn/
https://www.w3.org/TR/ldn/
https://json-ld.org/
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The LDN protocol defines a push-pull mechanism for notifications, based on the
roles of a notification sender, a target that provides links to message receivers, and a
consumer (see also Fig. 3.3). Target resources advertise message receivers, i.e., inboxes
with a managed set of messages, within the HTTP Link header in the response to any
HTTP GET request. Senders may use the advertised endpoint to send a LDN notifi-
cation object to the respective inbox via HTTP POST, whereas consumers retrieve the
collection of previously posted notifications via HTTP GET. Inboxes do not provide
capabilities to sort or filter messages. Filtering and sorting is left to the consumer
clients, allowing them to implement custom filter and sorting algorithms, based on
the particular clients’ purposes.

Linked Data Notifications have moreover been extended with streaming capabili-
ties [29], and to support different Linked Data serialization formats, such as NGSI-
LD [212]. LDN have moreover been studied as a protocol for agent-to-agent com-
munication in multi-agent systems [30].

A number of LDN implementations exists, such as dokieli [37], and the Solid-based
In-box [132].

Linked Data Notifications demonstrate how indirect communication in Linked Data
media can be implemented.

3.1.4 The Web of Things

The "Web of Things" (WoT) is a W3C26[101], originally recommended by the Web of
Things working group to employ Semantic Web technologies as a remedy for the
fragmentation of the IoT (Internet of Things) [260, 151] market. The observed frag-
mentation stemmed from the large number of different protocols, APIs, and data
formats that are nowadays present in the zoo of IoT devices [5], a situation that
some see to change only slowly, if at all, until 2023 [124]. For this, the WoT work-
ing group suggests to use the Semantic Web as integration layer for semantically
enriched, interconnected WoT devices [17, 228, 139]. For this, numerous architec-
tures frameworks have been proposed to simplify the publishing of WoT data to the
Web of things [190, 160, 11, 13, 139], or for searching for WoT devices in the Web of
Things [203, 222].

A standardized data and interaction model for WoT devices ist the Web of Things
Servient27 [123] (see also Fig. 3.4).

26W3C Web of Things Architecture Specification: https://www.w3.org/TR/wot-architecture/

(Visited May 2023)
27https://www.w3.org/TR/wot-architecture/#sec-servient-implementation (Visited May

2023)

https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-architecture/#sec-servient-implementation
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FIGURE 3.4: Architecture of a Web of Things servient28:

The word „Servient” is portmanteau and stems from the words „server” and „client”,
indicating that the respective software element takes the role of both a server, pro-
viding WoT thing descriptions to other Servients, and a client, reading data as client
from WoT Devices, and server, providing WoT thing descriptions to other Servients.

Servients consume as input WoT Thing descriptions that are emitted by other Servients.
Based on the received input, the WoT Servient runs its internal behavior, imple-
mented on top of the WoT protocol stack and scripting API, and as a result, emits a
WoT Things Description of its own state, capabilities, and intentions.

The Web of Things demonstrates how to implement device interaction via a shared
Linked Data medium, following HATEOAS principles: The object self description
of WoT objects helps user agents to understand purpose and usage of the respective
thing. However, the respective approach is limited to resources describing actual
Web Things, whereas this thesis searches a more general approach to employ Linked
Data for an agent-understandable representation of MAS environments.

3.2 Linked Data Lifting and Processing

From the beginning of the Semantic Web, the mapping of existing structural data to
RDF is an active research area. The so called lifting and lowering of data is required
to access and modify any non RDF datasource from Linked Data applications. In
addition to lifting non-RDF data to an RDF representation, research also investigated
means to translate semantic queries into non-semantic ones to allow Linked Data-
like interaction with traditional query APIs, such as SQL databases. In the scope
of this thesis, related technologies are surveyed as underlying principles to publish
environment data to Linked Data media, and to define interaction with Linked Data

28Image source: https://www.w3.org/TR/wot-architecture/#sec-servient-implementation

(Visited May 2023)
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media. The following literature review has previously been published in similar
fashion in [234].

RDF-Lifting approaches

A typical approach to publish static data via Linked Data media is the lifting from
relational data base contents to a Linked Data representation.

A prominent example for lifting relational databases to RDF is R2RML [58]. R2RML
specifies mappings from database schemas to RDF graphs in RDF turtle syntax. A
respective mapping file describes table structure and content, and where to inject the
data from these tables into a target RDF graph.

Several extensions to R2RML have been presented: The tool Karma by Gupta et
al. [103] is a visual tool to define R2RML mappings by annotating relational data.
Karma supports the user by inference of suitable target mappings from previously
annotated data. The resulting mappings can be published as service with REST API
for online data conversion. Dimou et al. extended R2RML to RML [65, 67, 66], a
superset of the R2RML mapping language, that also allows for mapping of struc-
tural datasources that are not stored in relational databases. Source formats for RML
include CSV, TSV, XML, and JSON.

Slepicka et al. present KR2RML [229], a different approach to extending R2RML
to support heterogeneous sources, that keeps in mind extendability and scalabil-
ity with respect to changes in the source data; aspects in which Slepicka et al. see
shortcomings in RML. Finally, the implementation CARML29, an extension to RML,
allows dynamic input streams as input to an RML mapping, instead of specifying
the to be mapped source directly in the mapping file. This is a crucial feature for
re-using mappings for a variety of different structurally equivalent source files.

The presented approaches cover the translation of legacy data to Linked Data data
dumps. Most of them take offline approaches to lift data to RDF, a way we found
impractical for live data. The presented approaches fail in particular to publish dy-
namic environments to a Linked Data medium. The thesis presents as remedy an
online lifting approach in Section 5.2.

SPARQL query interfaces to non-RDF datasources

Instead of creating Linked Data copies from non-Linked Data sources, resarch also
investigated technologies to evaluate semantic queries directly on legacy data sources.
Respective considerations are relevant in the scope of this thesis to ensure continuity
of the medium during link traversal.

In 2004, Bizer et al. presented D2RQ [16]. D2RQ provides a mapping language from
relational database schemata to RDF, similar to R2RML. Clients may send requests

29CARML GitHub Repository: https://github.com/carml/carml (Visited May 2023)

https://github.com/carml/carml
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to the platform to perform SPARQL queries against a database, or explore a database
as Linked Data, while the D2RQ platform performs the lifting of the database to RDF
transparently, based on a previously defined mapping.

Similar approaches realize SPARQL-to-SQL mappings by employing R2RML based
liftings [211, 202, 32]. For non-relational datasources, Michel et al. present an ap-
proach to query the document-based MongoDB by employing xR2RML [175, 170],
an extension for R2RML for non-relational sources.

SPARQL-Generate [148] integrates RDF generation from non-RDF datasources di-
rectly into the SPARQL-query itself. This removes the need of separately provided
mapping files, however, requires that the target SPARQL processor implemenents
SPARQL-generate on top of SPARQL 1.1 .

Finally, SPARQL-Microservice [172, 173] provides a SPARQL query interface to wrap
existing, JSON-based Web APIs.

Of the reviewed technologies, many target relational databases rather than Web
APIs, with D2RQ as one chosen example. However, SPARQL Generate requires an
extended SPARQL implementation beyond the generally used specification. SPARQL
Microservice requires cumbersome configuration during deploy time. It is moreover
limited to JSON-LD as lifting result, which makes it difficult to impossible to use it in
scenarios where the source data are not JSON, or when another result representation
is needed.

To ensure continuity of the medium during link traversal as sought by Research
Question R7., a more generic and flexible approach is required. A respective solution
is presented in Section 5.3.

3.3 Hyper Media environments for Multi Agent Systems

The importance of a properly defined medium and its technical implementation has
been thoroughly described by Weyns et al. as result of the E4MAS Workshop Se-
ries [262, 266, 133].

Soon after the Semantic Web had been envisioned, it has sparked the idea of the Se-
mantic Web being the underlying infrastructure for multi agent systems [112]. How-
ever, the adaption of Semantic Web technologies took its time, with actual concepts
for Linked Data based agents being published more than 10 years later [64], includ-
ing the vision of the "Internet of Agents" [272, 198, 197]. Still to this day, despite its
promising features, the Web and hypermedia enabled Linked Data agents have yet
not been fully embraced to their potential [51, 50].

However, a number of approaches describe Linked Data based agents and multi
agent systems: We presented a Linked Data model for robotic components in MAS
in [221]. Boztepe et al. presented a framework to implement Linked Data MAS
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for mobile devices [22]. Noura et al. describe the implementation of hypermedia
driven autonomous agents that interact with Web of Things devices [185]. Hyper-
media has been employed to define MAS environments in a way that allows agents
to learn new behavior from the provided information [249]. Schraudner et al. pre-
sented an HTTP and RDF based infrastructure for agents in manufacturing environ-
ments [218], along with an application of the infrastructure for stigmergic coordina-
tion [217]. Modelling agent behavior based on Linked Data environment represen-
tations as executable Finite State Machines in the shape of behavior trees has been
thoroughly described by Antakli et. al [6, 7].

Based on these previous results, it is therefore safe to assume that the Web is suitable
to carry information about MAS environments. However, a common understand-
ing of the Semantic Web and Linked Data as a basis for MAS implementations is
still lacking. This thesis tackles this shortcoming by strengthening the notion of a
medium as carrier of environment information, and as an interactive interface to en-
vironment elements, and subsequently, describing Linked Data as a suitable digital
agent medium.

Research has moreover been conducted to model and formally describe the inter-
action between agents and a hypermedia environment. In the domain of robotics,
formal descriptions of autonomous systems have been thoroughly surveyed in [155].
With ActivForms [122, 264] exists a formal model to describe and verify self-adaptive
systems, which very much relates to the description of self-coordinating stigmergic
system behaviors in this thesis. Käfer and Harth proposed a formal model, based
on Abstract State Machines, to define the interaction between Linked Data agents
and Linked Data Platform environments [128]. Similarly, this thesis will provide a
formal model of agent-environment interaction via Linked Data media. A generic,
well-defined interaction model may help to improve modelling MAS behavior, tak-
ing the interactive medium component that provides the environment into account.
Carefully defining the interaction between agents and Linked Data media in partic-
ular may help to further drive research and development of hyper media MAS in
the Semantic Web.

3.4 Medium-based and decentralized coordination

3.4.1 Generative Communication and Tuple Spaces

Generative Communication [56] refers to a paradigm that was first introduced by Gel-
ernter and his colleagues in the scope of a distributed programming language for
the system "LINDA". [91]

The paradigm is born out of the observation that, to this time, distributed program-
ming languages mostly relied on three main mechanisms: shared variables between
processes, direct message passing, and remote procedure calls. Gelernter et al. stated
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that while these mechanisms allowed to decouple processes in space (i.e., distribute
them over physically detached machines), they were still coupled in time, meaning
that remote process invocation happened instantly.

To allow decoupling of processes also in time, they introduced a shared data-space
called "Tuple Space" (TS) for inter-process communication. As the name suggests,
the TS manages a set of (ordered) tuples which are written to or read from the TS
by communicating processes. This concept has later been extended to the use of
unordered multi-sets [24], or logic terms [39].

The inter process communication via TS works as follows: Some process A enters a
Tuple with j typed parameters of the form (N, p2, ..., pj) into the TS via an operation
out(N, p2, ..., pj). The first parameter is always assumed to be of string type and
defines the name of the tuple. Once entered, the tuple is accessible and can be read
by any other process B. Reading from the TS is provided in two ways: processes
may either read() a Tuple with chosen name in the TS and leave the tuple as such
untouched; or processes may withdraw the tuple form the TS and store it internally
by calling in().

A formal description of process interactions via Tuple Spaces, and the respective
operations have been formalized in a CCS like manner by Ciancarini et al [48].

Tuple spaces had soon been adapted also in other systems but LINDA, in the scope
of which TS were originally introduced, and specifically been adapted as indirect
communication mechanism for distributed MAS. For this, Tuple Spaces have been
extended to Tuple Centers which, in addition to just provisioning data, adds logic to
specify behavior based on the logic [187]. Examples are the ReSpecT (Reaction Spec-
ification Tuples) tuple centers [60] that defines a first order logic to describe reactions
on tuples within the tuple space, or the system system LuCe [188] ("Logic Tuple Cen-
ters"), that employs a tuple space for what they call a "coordination medium" (and
in this role, relates closely to how the term "medium" is further coined in the scope
of this thesis). Finally, Tuple Spaces have lately been extended to a Spatiotemporal
Tuple Model [41] to express temporal constraints on validity and context, in which
tuples are to be interpreted, a model that in its core relates to considerations of time-
dependent traces and dynamic environments in Section 4.3.3 of this thesis.

Generative communication, in combination with aspect oriented software design (AOSD)
[137], has moreover generally been found to be a suitable coordination mechanism
for scalable, maintainable, re-usable distributed MAS [143, 23]. Methods of gener-
ative communication around the notion of Tuple Spaces and Tuple Centers are to
this day used to implement reactive and event-driven distributed Multi Agent Sys-
tems [40, 163, 162, 31].

By its originally defined role, Tuple Spaces and Tuple Centers very much take the
role of a generic medium for indirect multi agent communication. Being built around
the notion of a tuple as information element, it is in a way comparable to Linked
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Data provided in terms of RDF graphs and triples. However, TS are not intended to
represent interactive, explorable multi agent environments, a gap this thesis intends
to close by employing hypermedia Linked Data as medium.

This thesis goes beyond the presented approach by limiting the role of the medium
not only to indirect communication, but also as interactive representation for multi-
agent environments.

3.4.2 Self-Coordinating and stigmergy-based MAS

In [237], [220, 219], and [43], we reviewed literature about self-coordinating and
stigmergy-based MAS as follows.

The concept of stigmergy (cf. Section 4.2.2) has been thoroughly analyzed as un-
derlying coordination priniciple in Multi Agent Sytems [273, 208, 59, 49]. Appli-
cations of stigmergic and self-coordinating algorithms include robotics [167, 142,
126] and cyber-physical manufacturing [49, 218]. Inspiration from the concepts of
evaporation and replenishment of pheromones in the ant world have moreover led
researchers to explore ways of managing the dynamic requirements of telecommuni-
cation networks [19]. It has also been shown that aggregated motion data of vehicles
in a city can be used to predict traffic hot-spots and thus plan optimal routes for
navigation [129, 4].

Ant inspired optimization techniques have been a focus of research since the early
1990s, and various variations have been developed ever since [71, 115]. Bio-inspired
algorithms like stigmergy have shown to achieve good performance in decentral-
ized decision making tasks [126]. They also perform well in situations where agents
need to recruit peers and coordinate with them for task accomplishment [142]. High
dimensional numerical optimization has also been approached using stigmergy (us-
ing the Differential Ant-stigmergy Algorithm, DASA) [140]. A distributed variant of
the Hungarian Method for solving the Linear Sum Assignment Problem (LSAP) was
shown by [47], where multiple agents cooperate to find an optimal solution to LSAP
without sharing memory, or a central command structure.

Self-organizing multi agent systems and agent systems that rely on stigmergy as
coordination mechanism have been exhaustively reviewed in [43]. This review con-
cludes that a common understanding of such systems is widely lacking, and sug-
gests a generic domain model to describe self-organizing system. From the review,
we conclude additionally that the interaction between agents and environment is
often described only vaguely, and is generally underspecified. As a solution, this
thesis provides a formal and generic specification of hypermedia driven agents and
the respective agent-medium interaction for stigmergic systems.
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3.5 Related Work: Conclusion

The literature review allows the conclusion that interaction of agents with their envi-
ronment, and between agents, have been to this day an ever present topic of research
to improve the quality, efficiency, and scalability of multi-agent systems. It has by
this come to attention early that a proper description of how the agent programs
utilize the technology that provides information about the environment, and other
agents, takes a central role in the overall design of a multi-agent system (Section 3.3).

Research on agent-to-agent communication shows that considerations similar to those
done for agent-environment interaction, need to be taken account for communi-
cation and interaction between agents as well. Generative communication seems to
be a promising candidate to establish indirect agent-to-agent communication via a
shared medium. It has moreover been shown how, taking inspiration from pro-
cesses in nature, an effective agent-environment interaction, in combination with an
indirect agent-to-agent communication via the environment, may achieve scalable
self-coordination and -optimization effects (Section 3.4).

However, for a concise understanding of how the interaction and communication in
multi-agent systems can be used as leverage to achieve efficient high quality coordi-
nation and optimization effects - after all, the purpose of every multi-agent sytems
-, the considerations of the underlying technology need to be extended from mere
agent-environment interaction to the other aspects of the MAS as well, namely com-
munication between agents, and the opportunity for coordination effects to arise.
These different aspects - environment provisioning, interaction, and communication
- have so far been considered mostly separate from each other, whereas systems
that synthesize these aspects to a working system, leave out the consideration of the
underlying interactive technology that ultimately enables this synthesis in the first
place.

This thesis for this endeavours to take into account this technological component
that in the end needs to be capable of handling environment provisioning, interac-
tion, and agent-to-agent communication, as third core building block of MAS be-
sides agents and the environment. This technological component will be referred to
as the medium of the MAS.

As reviewed in Section 3.1, Linked Data provides a number of promising technolo-
gies that support publication of heterogeneous environments to a Linked Data layer
with well defined interaction patterns, be it in Linked Data Platform container ar-
chitecture, by implementing indirect communication via Linked Data Notifications,
or by lifting legacy data to a Linked Data representation in triple stores with graph
store protocol interaction mechanisms (Section 3.2).

Consequently, the thesis will define the role of a medium for multi-agent systems
based on formal definitions of interaction patterns between agents and the medium.
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Agent-environment as well as agent-agent interaction are then defined on top of the
agent-medium interaction. The thesis moreover discusses Linked Data as suitable
candidate technology for MAS media, and demonstrates how to use Linked Data
technologies to finally implement a working MAS medium component.
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Chapter 4

MAS Environments in Linked Data
Media

Despite the thorough analysis of multi agent systems in literature, and sophisticated
agent models that were derived from the resulting findings, the pivotal role of a
properly implemented, robust, interactive environment is often overlooked.

This chapter will first elaborate on the notion and role of a digital agent medium in
Section 4.1, and then derive a set of requirements that digital media need to fulfill
to provide a solid shared interactive representation of multi agent environments in
Section 4.2. Following, inspired by the concept of stigmergy [245, 115] this thesis will
discuss Linked Data as suitable medium for multi agent systems. Finally, Chapter
4.3 will provide a formal definition of static and dynamic (stigmergic) Linked Data
medium server, as originally published in [220].

4.1 The notion of a digital Agent Medium

The partitioning of a MAS as shown in Figure 1.1 imposes on the medium the role
to represent elements in the environment from the Artifact Space in a virtual form to
agents, such that agents are able to sense, interpret, and act upon artifacts and their
respective individual status.

The medium by this serves as connection point between the purely virtual Agent
Space on the one side, and the physical, and potentially completely non-virtual, Ar-
tifact Space. It builds the bridge via which virtual agents finally get access to the
environment.

The term medium may by this very well be understood the way as it used to refer
to media by which we as humans broadcast and exchange information: We learn
from happenings around us in processed and condensed from from news papers.
We follow current events that are outside our own perception via TV broadcasts, or
hear about them on radio. And we interact with friends or colleagues indirectly by
leaving messages and notes in social networks.
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Transferring these concepts to the world of virtual agents, practical examples for a
digital agent medium could be the variable space of an application run-time, or the
sets of resources in a resource oriented architecture, basically everything from which
virtual agents can read, and to which virtual agents can write information back, or
generally, anything a virtual agent can directly interact with.

For a medium to fulfill such a role, it has to match a number of requirements: it
must be able to properly represent (physical) entities in the environment along with
their features, while providing this information in a time critical fashion, such that
agents gain the ability to sense the situation of the real-world scenario. In order to
influence elements in the Artifact Space by correcting measure during optimization,
the medium must also allow agents to interact with the represented entities. Last,
the medium should allow multiple agents in the same environment to exchange
information and draw agents’ attention to relevant pieces of information within the
medium.

Summarizing the above, the medium is the intersection between the Agent Space and
Artifact Space: Agents read from the Medium and interact with it directly, while the
Medium provides to agents in an interpretable and interactive fashion all informa-
tion about, and access to entities in the Artifact Space. As we will see in the following
sections, the Medium representing the coordination domain further needs to allow
interaction between agents and coordinated entities, allow communication between
agents, and finally, allow coordination effects to emerge, as will be elaborated on in
the remainder of this section.

4.1.1 Medium as indirect interaction Space

The most naive way of interaction between agents and their digital environment is
granting the agents the power to inflict direct changes according to their program:
Agents observe a specific feature in the medium, choose a proper reaction according
to their program, and write their changes back to the medium. On a very technical
level, the inflicted change will most often be implemented by changing respective
variables, objects, or resources from which the medium is built. For simple setups
with only very limited interaction, this approach is totally valid. The well known
simple planner problem of an ape climbing a box to grab a banana, which is typically
used as introduction to STRIPS, is such a simple scenario: when solving the problem
using AI agents, an agent would move the (simulated) ape’s position directly by
setting the respective property to “ape on box”. The agent thus has the total power
over what is happening in the scene

However, it has come to attention early, that such a direct influence of agents causes
problems already for only slightly more complex problems that are solved by more
than one agent at once. Ferber et al. [82] have illustrated the problem at agents
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moving a virtual box. Agents have the power to directly apply changes to the en-
vironment according to the desired outcome. Suppose two agents would like to
move the box in different directions at the same time. Both agents determine a di-
rection in which the box should move, calculate the final position of box, and set
the variables encoding the position of the box accordingly. Now by doing so, the
action of one agent would override the action of the other. As a remedy to this prob-
lem, and more complex alike ones, Ferber et al suggest an indirect, influence-based
interaction mechanism between agents and their environments. Instead of writing
the desired effect of their action directly back into the environment, agents rather
leave influences, and the environment takes care of applying the result of the influ-
ence to the entities within it. Applied to the example of moving a box, agents would
then, instead of moving the box by directly setting the position, the agents would
describe their desired influence onto the box, for example by describing a direction
and intensity of a force the they would like to apply. The environment, at a given,
controlled time would pick up the influence, and evolve the environment and its en-
tities accordingly, e.g. by applying a simulation of force on rigid objects in the given
example.

While in the original paper [82], this approach was suggested to avoid erroneous
simulation states from conflicting agent messages, we can directly transfer the idea
of indirect interaction to the notion of an Indirect Interaction Space that is constituted
by a proper agent space medium: Obviously, virtual agents can not directly inflict
changes from their virtual agent space onto artifacts in the physical artifact space.
This is even true for artifacts that provide access to sensors or actuators via pro-
grammable interfaces, which is also the core principle for devices to span the Inter-
net of Things: It is not the agents that ultimately perform routines on said devices,
but the embedded programs in the devices themselves. The agents only give an in-
fluence to the device by calling a respective interface function. Deciding whether to
accept the call in the first place, and then how to execute it, is entirely depending on
how the device is programmed. Interaction with devices via API calls may for ex-
ample be rejected due to lacking credentials, an improper choice of communication
protocol by the agent, insufficient resources on the device itself, or many more. The
execution, finally, may be part of a bigger program that also adds side effects that
the agent was not aware of, and would not have taken in account, if given the power
to directly change the device’s parameters.

Based on this observation, the understanding of the Medium being not only a Repre-
sentation Space that describes the Artifact Space to agents, but actually an Interaction
Space, from which agents can take influence on the world in the Artifact Space, be-
comes very valid. As Interaction Space, the Medium actually takes two roles:

First, the medium can serve as a layer for indirect interaction between agents in
Agent space and artifacts in Artifact Space. This may be achieved by embedding
artifact’s APIs into the medium, which may take the form of storing callable API



44 Chapter 4. MAS Environments in Linked Data Media

endpoints as Remote Procedure Call (RPC) stubs if the medium is an environment
of runtime variables, or by embedding callable HTTP endpoints into a collection of
resources in a Web-based architecture.

Second, when agents desire to apply changes to the medium itself - attempting to
write variable, add resources, etc. - the medium should be capable of taking the
role of ultimately deciding whether or not to accept change requests to allow for
an influence-reaction based interaction pattern, similar to the model suggested by
Ferber et al. This supports collision resistant collaboration of many agents within
the same medium, a crucial requirement for large scale multi agent systems.

4.1.2 Medium as Communication Space

When considering the medium as a space not only for agent-environment interac-
tion, but also for agent-agent interaction, then it easy to attest the medium not only
the role of representing the environment, and allowing (stable) interaction with it,
but it moreover can take the role of an agent-to-agent Communication Space.

For this, instead of agents directly communicating to each other, they put pieces of
information into the medium, which may be picked up, interpreted, and acted upon
by other agents. This kind of communication is often refered to as generative com-
munication [56], and the method has probably received most attention as underlying
communication principle in the agent system LINDA [91] (see also Section 3.4.1).

The advantage of such an approach lies in its robustness, its flexibility, and its scala-
bility. In direct agent-to-agent communication, agents would typically open a com-
munication channel to other agents in the system. Depending on the system design,
this communication may be implemented by mere procedure calls, if a group of
agents is hosted within the same application or process, it may be handled by some
form of inter-process communication, or, for distributed systems that are run on sev-
eral instances of separate hardware, by network communication channels.

Introducing a new class of agents to such an existing system during design time is
considerably difficult. Not only does this new class need to implement protocols
and API calls to a number of existing agents, it moreover increases the number of
potential communication protocols and APIs that future agents in the system need to
speak and understand for the system to operate most effectively. When the system is
scaled up and the number of agents is increased during run time, every single agent
will have to establish connections to a potentially larger number of other agents,
which leads to an exponential growth of total communication channels within the
system. If during runtime one of the agent program terminates or crashes for un-
expected reasons, the data it received until then is usually lost, which in worst case
may lead to a failure of the system as such, if the information communicated to the
crashed agent was crucial for reaching the goal.



4.1. The notion of a digital Agent Medium 45

Employing a shared medium as Communication Space between agents can provide
a solution to all three of these issues: First, communication with respect to protocols
and APIs is fixed to the set of APIs and protocols as offered by the medium. If
these are well defined, then introducing a new agent class reduces to merely an
effort of properly modeling a new class of communication piece within the medium.
Scaling the system up will put no additional workloads on agents whatsoever, as
their endpoint for interaction remains the same, no matter how many agents exist
besides them, namely the medium itself. This clearly does require the medium to
scale with number of agents that access the medium simultaneously. However, the
increase of complexity is only linear per agent.

Depending on the technology on which the communicating MAS is built, an indi-
rect communication system as described above could be achieved in many ways:
Information could be stored in shared variables and accessed from various agent
processes. Event and messages brokers such as MQTT30 may offer communication
channels to which agents write their information for it to be transmitted to sub-
scribed agents. While originally designed to transmit messages to subscribed enti-
ties in real-time, some of those, MQTT actually being one of them, also offer to retain
the last message sent via a channel and deliver it to newly connecting clients. This
way, agents that join the system later during run-time and sign up for the respective
channel would still be provided by the information left by another agent. If the cho-
sen medium is a database, agents may write their messages to the database, where
they will be persisted until other agents conveniently retrieve the information. If
the database is schema-less, as for example MongoDB or Apache CouchDB, agents
are even completely free in the design and content of the message objects they are
writing to the storage. Finally, if the medium is designed around a resource-oriented
architecture, messages may be written to a dedicated resource container (for exam-
ple a Notification in a dedicated Linked Data Notifications notification inbox), or
modelled as individual resources, with the conveyed information being the content.

While stigmergic systems heavily rely on indirect communication, it should be stressed
that in a system that employs medium-based communication, agents are not limited
to indirect messaging. Take as example a resource-based medium, built around web
technologies: of the communication channels discussed above, message queues, for
example, allow to publish their routes in terms of callable web endpoints. Web re-
sources, generally, may serve as HTTP endpoints for request-response communica-
tion. By this, agents may as well offer routes for direct communication, and advertise
those to other agents using respective artifacts within the medium.

Independent of the chosen implementation, it can be concluded that a properly cho-
sen medium can not only realize the previously discussed agent-to-environment in-
teraction, but it can moreover provide all means for agent-to-agent interaction as

30MQTT Website: https://mqtt.org/ (Visited May 2023)

https://mqtt.org/
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well. It is moreover safe to assume that having agent-environment-interaction en-
coded in the same medium as agent-to-agent interaction simplifies the implementa-
tion of agents communicating about relevant entities or interactions: With messages
residing in the same medium as the topics of interest, agents can refer to relevant en-
tities or interaction endpoints by merely referencing to the respective representation
within the medium: the corresponding variables, database entries, resources, or any
other kind of representation that the medium is using.

4.1.3 Medium as Coordination Space

To this point, above Sections coined the medium as a component of a cyberphysical
system in which the virtual elements of the Agent Space manifest, and by this as
the component that realizes representation of, interaction with, and communication
about the Artifact Space for agents in said cyberphysical system. It now depends on
how the agents interact with the system for coordination to arise.

A prime example of agent-environment interaction that follows exactly this moti-
vation, Stigmergy [115], comes from the field of nature inspired algorithms. Nature
inspired algorithms, as the term would imply, adapt behavior as observed in na-
ture, typically from insect swarms. Stigmergy was coined as a term by Pierre-Paul
Grassé [96], and refers to communication and coordination concepts such swarms.
The core principle can be summarized as that when carrying out work, members
(“agents”) in a swarm react to traces left by previous work by other members of the
swarm. The work then performed by this particular agent again leaves a trace that
subsequently will function as incentive for particular actions of other agents. It can
be observed that from this influence-reaction cycle, a goal directed swarm behav-
ior emerges: Termites, for example, are inclined to build upon structures that were
constructed by their fellows before, which ultimately results in the typical majestic
clay buildings. Ants, when foraging for food, leave traces of pheromones that attract
other ants of the swarm. If by chance one ant finds a food source, more and more
ants of the swarm will follow the same trace to carry food from the source back to
the hive, with each ant increasing the pheromone concentration, and thus attracting
more ants. In the end, the hive will have established roads that lead directly to the
most lucrative food sources. Stigmergic behaviour is by this never goal directed, or
planned. Agents react only to their direct environment, without the capabilities of
keeping memory, or planning, and in particular unaware of any concept of goal [116,
117].

Such behavior has been thoroughly analyzed in computer science, and been trans-
ferred to multi agent systems as a means to achieve coordination in many fields, be it
coordination of robot swarms [167, 142], coordination of cyber-physical production,
storage and supply optimization [43, 218, 237], public transport [129, 4], and many
more. An interesting observation that can be made is that in stigmergic systems – be
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it in nature or in computer science – the actual coordination emerges from the inter-
action of the with the medium [113]: It is the medium where agents leave their trace,
and it is the medium that agents work on. Be it the clay from which the termite hive
is formed, the ground that ants leave their traces and walk on, or the set of variables,
objects, or resources that virtual agents write and modify as “trace” for other agents
to follow. Coordination of the underlying system is then rather a side-effect of the
agents’ mutual interaction, and the agent-medium interaction. This point of view
on stigmergic system may become even clearer when taking into account the afore-
mentioned concept of indirect, influence based agent-environment interaction: In a
stigmergic system, it is not that agents deliberately execute routines on an IoT cir-
cuit with the intention to switch a traffic light from red to green, or move a conveyor
belt of a production line forward. In a system coordinated by stigmergy, agents will
only be led to the interaction endpoint offered by the device in the medium, and, if
incited to interact with it, leave an influence on this endpoint that is finally executed
by the device itself. The result of the interaction can in the following be observed by
other agents that may – intuitively – react to it in a way of which they are totally un-
aware of the result, but that may have a correcting effect on the overall system. For
obvious reasons, systems coordinated by stigmergic principles, are often considered
self-organizing, and have been found to be particularly scalable, adative, and robust
towards changes within the optimization scenario [99, 20, 159, 181, 158].

Obviously, a medium that fulfills the roles discussed before – space for representa-
tion of and interaction with entities of the artifact space, and communication space
for indirect agent-to-agent communication – also fulfills all requirements for a work-
ing self-organizing system based on stigmergic coordination: It allows agents to
observe and interpret their environment, which serves as incentive for actions car-
ried out by the agents. It provides a space for agents to leave pieces of informa-
tion as trace for other agents to interpret and follow. And it provides means for
agents to perform influence on elements in the artifact space via indirect interaction,
which allows coordination effects to transfer from the medium to the actually to-be-
coordinated scenario. By this, given that a medium provides a proper representa-
tion of an artifact space to the agent space, allows (indirect) interaction of the agents
with entities in the artifact space, and allows agents to use the medium for (indirect)
agent-to-agent communication, the originally sought goal, namely coordination, can
be achieved directly in the medium, and therefore the medium can, besides a repre-
sentation, interaction, and communication space, be considered a coordination space
to achieve self-organized coordination.

4.1.4 Medium: Summary

To summarize, research about agent systems almost exclusively revolves around the
concept of agents, underlying agent models, or representation and model of environ-
ments in which agents dwell and with which them interact. However, from above
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discussions, it is valid to assume that the medium that provides data to agents, and
to which agents write data back, deserves at least as much attention as said agents
and environments: While MAS strongly depend on how agent-to-agent and agent-
to-environment interaction can be provided in a fault tolerant, efficient, and scalable
fashion, it is the exactly the medium that enables those features: The environment is
represented to agents by representing the environment within the medium; ideally,
the medium allows interaction with the environment via elements that themselves
are part of the medium; and embedding agent-to-agent interaction into the medium
finally enables coordination effects to emerge.

4.2 Linked Data as Medium for (Stigmergic) Multi Agent Sys-
tems

In the previous sections, it has been established that a properly chosen medium
would be taking the role of an (indirect) interaction and communication space for agents,
and would thus allow for coordination effects to emerge within the medium. This
use of a medium is reflected in systems that employ the nature-inspired coordination
principle of stigmergy, in which an emerging goal-directed swarm behavior of (liv-
ing) agents is observed from the agents’ interaction with their environment, further
driven by indirect communication via traces left in said environment [245, 115].

With stigmergic systems relying on all three desired features for digital agent me-
dia – (indirect) interaction, communication, and by this, lastly, coordination – this
section discusses Linked Data as suitable digital stigmergic medium, and by this, gen-
erally as a suitable medium in multi agent systems.

This section is a revised version of the original publication, "Linked Data as Stigmergic
Medium for Decentralized Coordination". [237]

4.2.1 Motivation

Among research that focuses on improving application of classic AI agent-based
planning and optimization techniques, there is a specific trend that employs nature
inspired algorithms to solve coordination and optimization problems [46, 248]. A
re-occurring element from this class of algorithms is the use of concepts of stig-
mergy [115] (cf. Section 4.1.3). Such nature inspired algorithms have been found
a promising approach for more flexible, fault-tolerant, and scalable coordination of
complex systems in above mentioned domains [142, 208, 126, 59].

However, the majority of stigmergic systems in literature are highly use-case spe-
cific, or even implementation specific. It is in particular noticeable, that while focus-
ing on specific algorithms and their implementations, existing work marginalizes
or ignores the importance of a proper medium. The medium is the environment
in which agents leave traces by performing actions, i.e., where stigmergic effects
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emerge, and it is considered the ”the mediating function that underlies the true power of
stigmergy” [113]. The question of what a proper medium constitutes is particularly
interesting in the world of AI optimization and coordination, where the medium has
no tangible physical manifestation, but where agents operate entirely in an environ-
ment that is completely digital, while having only abstract correspondences to real
world entities.

We believe that both research and application of stigmergic coordination algorithms
can benefit greatly from a concise common understanding of a digital stigmergic
medium. This medium should be provided by employing widely accepted open
standards to be independent of specific use-cases, domains, or technologies that im-
plement the algorithm. It should be based on a well-defined, thoroughly formalized
and established foundation to allow for soundly defined, general, transferable solu-
tions.

Such a set of standardized and well-defined tools comes from the world of the Se-
mantic Web [12]. Based on the notion of Linked Data [14] and typically modeled in
terms of the Resource Description Framework (RDF)31[147] , the Semantic Web is com-
monly promoted as a generic integration layer for applications from various do-
mains.

With the Internet, being the maybe largest digital medium that relies on a wide vari-
ation of stigmergic effects [70], and being built around technologies and principles
closely related to those of the Semantic Web, one may expect that a machine readable
and writable Linked Data layer (read-write Linked Data) in the Semantic Web may as
well provide a widely standardized, established, domain-independent interactive
medium for stigmergy-based coordination [69, 201].

To this end, this chapter makes the following contributions: We derive from relevant
literature a set of requirements towards digital media to serve as proper stigmergic medium;
we establish read-write Linked Data as suitable medium for stigmergic systems; and we
demonstrate the application of read-write Linked data as stigmergic medium with an
example from the domain of virtual manufacturing.

4.2.2 Role of media in Stigmergic Systems

Relevant results of research in the field of stigmergy-based self-organization have
been very concisely summarized by Heylighen [115]. We discuss stigmergy based
on the findings from Heylighen’s article. However, we would like to emphasize
that by this work being a very thorough survey over the topic that covers research
from several decades, we well include findings from many different researchers with
different view on the general topic.

Heylighen derives from his findings his own definition of stigmergy as an:

31RDF 1.1 Primer document: https://www.w3.org/TR/rdf11-primer/ (Visited May 2023)
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”indirect, mediated mechanism of coordination between actions, in which the trace of an
action left on a medium stimulates the performance of a subsequent action” [115, p. 5].

The definitions of the core components of stigmergy as described in [115] are as
follows. An action is considered as a causal process that produces a change in the
world. The medium is the part of the world that undergoes changes because of the
action, and also whose state is sensed to incite further actions. A trace is the perceiv-
able change made in the medium by an action that can trigger subsequent actions.
A trace that stimulates agents to perform a specific action, i.e. affords the action, is
called Affordance. Affordances typically encode condition-action rules that trigger an
agent to perform an action once a certain condition is met. A trace that keeps agents
from performing a particular action, is called Disturbance.

Heylighen further identifies different variations of stigmergy, depending how the
agents interact with the medium (pp. 19 – 27).

This includes the observation that a medium may be worked on by either a single
agent, or crowds (individual vs collective stigmergy), that agents may take into account
either mere existence of certain features in the medium, or quantities of those (quali-
tative vs quantitative stigmergy), that agents may react to direct results of work in their
general environment (sematectonic stigmergy), or to markers that were deliberately
left by other agents (marker-based stigmergy), that traces left by agents in the medium
can stay until actively being removed by other agents (persistent traces) or over time
dissipate and vanish (transient traces), and finally, that traces in the medium may be
observable by every agent working on the medium (Broadcast), or only to a limited
number of specific agents (Narrowcast).

For a very thorough elaboration on the various aspects that we covered here in a
very shortened manner, we refer the reader to the original paper [115].

4.2.3 Linked Data as digital stigmergic Medium

In nature, the notions of agent and medium are determined by nature itself: Ants, for
example, follow traces of pheromones left by other ants towards lucrative sources of
food. Here, ants are the agents, and the ground and food are the medium. Termites
use clay as medium, steered by how the shape of their nest (made of this very clay)
has already formed.

When implementing stigmergy-based algorithms for coordination, ”agents” are usu-
ally considered to be software AI user-agents. These agents operate on a digital rep-
resentation of the to-be-coordinated concepts, which may correspond to real-world
physical artifacts (e.g. physical production machines or robots in manufacturing
scenarios, cars and traffic lights in traffic). This partition between digital and real
world is common in agent-based coordination algorithms [68], with the partitions
lately labeled as Agent Space for the digital, and Artifact Space for the physical repre-
sentation space [43].
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Requirements for (digital) Stigmergic Media

From the notions and variations of stigmergic media in the Section 4.2.2, we derive
the following requirements that a digital medium should fulfill to be suited for use
in stigmergy-based systems:

R1 (Representation): The medium must be able to represent entities of the domain
in which the coordination algorithm performs, and relations between them.
The medium thus serves as Agent Space. If artifacts in Artifact Space are target
of coordination, the medium must be able to provide a representation of the
physical entity in the Agent Space, and allow access to the physical entity via
the mediums, e.g. to switch a real-world traffic light, or start a production
process on a production machine.

R2 (Accessibility): The medium must be accessible to the agent in the meaning
that an agent must be able to enter the medium to perform actions on it. Fur-
thermore, the agent must be able to navigate through the medium to the point
where an action is to be performed.

R3 (Observability): The medium must be observable (readable) for the agent to
recognize conditions of condition-action rules to be fulfilled in the medium.
For this, the agent needs to be able to at least observe the existence of effects (for
qualitative stigmergy). The medium should further be suitable to provide:

R3.1 (Interpretability) of observed effects in the medium w.r.t the domain for the
agent to correctly set the observed effects into relation with each other.

R3.2 (Quantities): The medium must be able to express quantities for coordina-
tion by quantitative stigmergic effects.

R4 (Consistency): For collective stigmergy, the medium must consistently deliver
the same information to different agents at the same point of time. In partic-
ular, if an agent induces a change in the medium, following this change, all
other agents must observe the changed state as actual state of the medium.

R5 (Malleability): Agents must be able to form and change elements in the medium
as result of their action. This includes both changing the state of existing enti-
ties within the medium (comparable to continuing the construction of a begun
nest by a swarm of termites), and add or remove entities from the medium
(comparable to leaving pheromone markers, or dissipating markers over time).
However, changing the medium should happen in a controlled manner, lead-
ing us to the requirement of Stability:

R5.1 Stability: Any change to the medium must be possible without inflicting
unwanted effects to resources outside the scope of a performed action. ”Un-
wanted” is in this case not to be confused with changes that an agent ”un-
intentionally” left as a trace, but to be understood as an effect that changes
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the state of an entity beyond what was intended by the algorithm.

R6 (Scopes): The medium must be able to limit visibility of entities and effects in
terms of scopes to allow Narrowcast of stigmergic effects.

Linked Data as Stigmergic Medium

We in the following show that read-write Linked Data fulfills all requirements to-
wards a digital stigmergic medium.

Representation is achieved by the notion of representation space of resources (see
also Section 2.1): Read-write Linked Data being built around resource oriented ar-
chitectures provides both the tools and best practices of how to represent both real-
world and virtual entities in terms of addressable resources. Connections to physical
artifacts is established by having callable HTTP endpoints represented as resources
within the medium.

Accessibility is achieved by building Linked Data around HATEOAS principles.
Agents can access resources and read information from them by HTTP GET requests.
All information needed to interact with a resource is provided by the server that
manages the resource. Furthermore, Linked Data defines query interfaces as a com-
mon interaction method with linked data graphs. By employing graph query en-
gines like SPARQL32, agents can identify relevant resources as a result of the queries.
Moreover, by following links between related resources, agents may explore Linked
Data graphs autonomously. It is not required to host the medium being hosted on a
single physical server instance to ensure accessibility. In fact, Linked Data principles
state that resolution of URIs should happen transparent, and agents do not need to
make assumptions where the actual data is hosted. This allows the medium to be
hosted on distributed servers. Agents then only need to be pointed to an entry point
(e.g. managing server), and may discover new information autonomously by fol-
lowing links provided in the Linked Data medium. For queries, SPARQL supports
the integration of data from different distributed endpoints via federated queries us-
ing the SERVICE keyword.33 Consequently, despite the distributed nature of the data,
agents do not require previous knowledge about where relevant data may be hosted.

Observability: ”Existence” of an effect is manifested in Linked Data by existence
of a respective triple pattern in the Linked Data graph. By this, the existence of an
effect as precondition for an action can be verified by matching expected triple pat-
terns against the Linked Data graph via SPARQL queries. The statements encoded

32W3C SPARQL 1.1 Query Language Recommendation (Visited May 2023): https://www.w3.org/

TR/sparql11-query/
33SPARQL Federated Queries: (Visited May 2023): https://www.w3.org/TR/

sparql11-federated-query/

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-federated-query/
https://www.w3.org/TR/sparql11-federated-query/


4.2. Linked Data as Medium for (Stigmergic) Multi Agent Systems 53

by triples are moreover semantically interpretable by software agents, as commonly
established for Linked Data graphs.

Quantities can be modelled in Linked Data graphs either by using respective literal
nodes that express a quantity in terms of a fitting datatype directly, or by the number
of triples rendered to a respective resource.

Consistency is achieved by the notion of state and representation of resources in
a Linked Data system as outlined in Sections 2.1 and 2.1.1. Access to resources,
the represented concept, and modes of interaction are managed by the Linked Data
server and provided to clients following HATEOAS principles. By the communica-
tion between clients and server being stateless (by following REST and HATEOAS
principles), the state of the resource as communicated by the server towards clients
is independent of particular clients, and by this, consistent among all clients.

Malleability is achieved by write-capabilites of read-write Linked Data. On resource-
level, agents may change the state of a resource by PUT / POST / DELETE re-
quests. On graph level, linked data provides possibilities to change elements in
the medium using SPARQL UPDATE requests with INSERT and DELETE state-
ments. The WHERE body of these states moreover allows to take into account pre-
conditions that need to be fulfilled when performing the update.

Stability during updates is achieved by unambiguous identification of relevant re-
sources via IRIs. By default, operations on resources do not have side-effects on
other resources, and by this, will not inflict undesired changes to resources other
than those that the action was performed on. On RDF graph level, stability during
write operations is ensured by that adding triple statements to a resource does not
interfere with triples already present: by adding triples, statements about a resource
may only become more specific, but never eliminate statements that were present
before new triples were added.

Scope can be expressed in read-write Linked Data either by specific triple statements
on resources by which agents can filter for specific resources, or by using mechanics
of Linked Data datasets and named graphs.34 Different scopes, i.e. named graphs,
are then accessed by agents for example by using FROM and FROM NAMED clauses in
the respective SPARQL queries.

By finding all requirements R1 – R6 fulfilled by and materialized via concepts of
read-write Linked Data systems, we derive that read-write Linked Data is without
limitations a suitable generic digital medium for stigmergy-based coordination.

34https://www.w3.org/TR/rdf-sparql-query/#rdfDataset (Visited May 2023)

https://www.w3.org/TR/rdf-sparql-query/#rdfDataset
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4.3 Stigmergic Linked Systems: Definition

After having established Linked Data as suitable medium for MAS, this section will
formally define the means by which agents may interact with MAS environments
via LD media.

This chapter recaptures contributions from the article stigLD: Stigmergic Coordina-
tion of Linked Data Agents and stigLD: Stigmergic Coordination in Linked Systems [220,
219]

4.3.1 Motivation

As thoroughly discussed in Sections 4.2.2 and 4.2.2, the concept of stigmergy pro-
vides an indirect and mediated feedback mechanism between agents. By modelling
agents in terms of condition-action rules based solely on perception of the agents’ en-
vironment, it enables complex, coordinated activity without any need for planning
and control, direct communication, simultaneous presence or mutual awareness. In
this context, the medium has been established as the crucial part of a stigmergic sys-
tem, given that "it is its mediating function that underlies the power of stigmergy" [117].

Accounting for the importance of distributed hypermedia environments as first-
class abstractions in hypermedia MASs [267] and the environment’s pivotal role in
stigmergic systems, we examine the use of hypermedia-enabled Linked Data as a
general stigmergic environment. For this, we propose in this Chapter to use a value-
passing fragment of Milner’s Calculus (CCS, see also Section 2.2) to formally specify
generic, hypermedia-driven Linked Data agents and the Web as their embedding
environment. Linked Data agents and their environment will be composed into a
Linked System [108] (or equivalently a hypermedia MAS).

This chapter focuses on the formal definition of Linked Data media servers for static
and dynamic MAS environments. The presented formal medium model will then
serve as basis to define respective Linked Data agent models in Chapter 6.

4.3.2 Static Linked Systems

We first define a Static Linked System using the notation of Milner’s Calculus for
Communicating Systems (CCS). Please refer to Section 2.2 for a description of the
employed notation.

We conceive a Linked Data server SERVERk as a reactive component that maintains
an RDF graph G. It receives requests to perform a CRUD operation op ∈ OPS on a
resource i via channel reqk

SERVERk(G) = reqk(op, i, G′).PROCk(op, i, G′, G)
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where G′ ⊂ T is a (potentially empty) request body. The server employs a con-
strained set of operations to process client-initiated requests for access and manipu-
lation of the server-maintained RDF graph G

PROCk(GET, i, G′, G) = RESPk(OK, (∅, descr(i, G)), G) + RESPk(ERR, (∅, ∅), G)

PROCk(PUT, i, G′, G) = RESPk(OK, (∅, ∅), (G \ descr(i, G)) ∪ G′) + RESPk(ERR, (∅, ∅), G)

PROCk(POST, i, G′, G) = RESPk(OK, ({i′}, ∅), G ∪ G′) + RESPk(ERR, (∅, ∅), G)

PROCk(DEL, i, G′, G) = RESPk(OK, ({i}, ∅), G \ descr(i, G)) + RESPk(ERR, (∅, ∅), G)

where i′ ∈ I is a “fresh" IRI with η(i′) = k. The server responds to requests via
channel resk

RESPk(rc, rval, G) = resk(rc, rval).SERVERk(G)

with return code rc ∈ RET and with a linkset and response graph in rval ∈ (2I × 2T ).

4.3.3 Dynamic and Stigmergic Linked Systems

Dynamic system behavior can be achieved by including the dynamics into a simula-
tion and publish the respective simulation directly as Linked Data. In this case, the
environment evolution is driven by the underlying environment simulation, rather
than the medium. A respective approach is implemented in detail in Section 5.2.

If the evolution of the environment, however, is limited to elements that are created
by agents in the medium, e.g. marker traces in stigmergic systems, the environment
dynamics can be modelled as part of the behavior of Linked Systems. In this case,
environment evolution is governed by the medium and may be driven by queries
that encode the evolution of respective medium elements. This section extends the
notion of Static Linked Systems from the previous section to include such a reac-
tive medium component. We described the extension of static Linked Systems to
dynamic Linked Media in [220, 219] as follows:

A static linked system SERVER as specified previously provides an indirect, mediated
mechanism of coordination between agents. Its static and passive nature enables
the realisation of sematectonic and persistent marker-based stigmergy, as in these
cases, changes in the environment are exclusively inflicted by agents. However,
when considering some of the prime examples of stigmergy, e.g. ant colony opti-
mization [75, 73, 72, 76] and termite colony optimisation methods [111], it becomes
apparent that a purely reactive environment is insufficient for the implementation
of transient marker-based stigmergic mechanisms.

In fact, a stigmergic environment typically demonstrates some immanent dynamics
that may modify the environment’s state independent of any agent’s actions [116,
p. 24]. These endogenous dynamics, e.g. diffusion, evaporation, dissipation, atro-
phy or erosion of stigmata, constitute a crucial component of transient marker-based
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FIGURE 4.1: Stigmergic system components

stigmergic systems ([253], cf. Fig. 4.1), and more importantly, they are not subjected
to agent-driven processes.

We call the part of a stigmergic environment that, in addition to being malleable and
perceivable by all agents under coordination, actively drives the evolution of such
agent-less dynamic processes a stigmergic medium.

Taking into account the notion of a stigmergic medium, we define a stigmergic Linked
System as the parallel composition of the MEDIUM itself, the ENVIRONMENT with its dy-
namics and laws that drives the medium evolution, and the AGENTS that observe the
medium state and influence its evolution:

STIGMERGIC-LINKED-SYSTEM = (AGENTS ∥ (MEDIUM ∥ ENVIRONMENT))

where the stigmergic MEDIUM = MEDIUM1 ∥ · · · ∥ MEDIUMl relates to the parallel com-
position of a collection of extended LD server components.

A MEDIUMk component is a Linked Data server that offers a constrained set of op-
erations to access and manipulate server-provided resource states, but in addition,
generates server-side side-effects 35

MEDIUMk(G) = req(op, i, G′).PROCk(op, i, G′, G))

RESPk(rc, rval, G) = res(rc, rval).MEDIUMk(G)

PROCk(GET, i, G′, G) = EVOLVEk(i, G)

as evolution EVOLVEk(i, G) of the environment during the handling of safe and idem-
potent agent-initiated resource request. The generation of such side-effects is sub-
jected to an internal process

EVOLVEk(i, G) = RESP(OK, (∅, descr(i, G′)), G′′) + RESPk(ERR, (∅, ∅), G) (4.1)

35We emphasise that this conception is not in violation with HTTP semantics [84, sections 4.2.1,
4.2.2][85].
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where the result of executing an evolutional query qEVOk over a given RDF graph G
is given by G′ = ans(qEVOk , G) and the server state after an evolutional state up-
date is G′′ = G \ descr(i, G) ∪ descr(i, G′). Executing an evolutional query drives
the endogenous dynamics of MEDIUMk over time, e.g. diffusion and evaporation of
semiochemicals, irrespectively of agent-initiated requests for resource state change.
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Chapter 5

Implementation of Dynamic
Environments in Linked Data
Media

Providing static, merely passive agent environments via Linked Data media is rather
trivial. These can be hosted by established triple store solutions (cf. Chapter 3.1).
Changes within the environment are driven by requests from client user-agents
against triple store APIs, be it RESTful APIs offered by the server (e.g. Linked
Data Platform), or by clients using SPARQL interfaces to explore and manipulate
the datasets.

Such solutions, however, fail to encode inherent dynamics within the environment,
and thus fail to capture active components, or dynamics of an evolving environment
as defined in Chapter 4.3.3. Following the specification of dynamic and stigmergic
Linked Systems from the previous chapter, this chapter will provide two approaches
of actual implementations of dynamic environments in Linked Data media:

– Section 5.1 presents a server component that employs a reactive evolution
upon receiving, and before handling, client requests as formally defined in
Section 4.3.3.

– Section 5.2 presents an approach for simulation-driven evolution of the envi-
ronment with real-time provisioning of the respective Linked Data representa-
tion.

– Section 5.3 presents an approach that allows to employ semantic SPARQL
queries over legacy endpoints that do not emit RDF data. This approach allows
to include data that was originally not published with Linked Data support in
mind, into the Linked Data medium.
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FIGURE 5.1: The StigLD domain model for stigmergic Linked Data
Applications [220, 219]

5.1 stigLD: A dynamic stigmergic Linked Data Environment
Server

In [220] and [219], we presented an implementation of a reactive Linked Data medium
server to drive medium evolution according to the formal MEDIUM model as defined
in Section 4.2.3.

The design and implementation of the resulting system, stigLD, consists of an RDF
domain model to effectively model dynamic environments in terms of Linked Data
Resources (Section 5.1.1), a set of SPARQL functions implemented as ARQ filter
functions 36 to support evaluation of time-varying decay and diffusion functions
(Section 5.1.2, and finally, a medium server framework that, based on these con-
cepts, transparently drives medium-based evolution before handling client requests,
following the concept of a reactive MEDIUM as defined in Section 4.2.3.

The results in this Chapter were originally published in the scope of [220] and [219].

5.1.1 Domain Model for Linked Systems

The domain model for stigmergic systems is designed around four core concepts
(see also Fig. 5.1): stig:Medium, stig:Topos, stig:Stigma and stig:Law, with the
following semantic meaning:

A resource that classisified as stig:Medium provides an interactive, explorable, and
malleable representation of an environment, or a subset of this environment, to user-
agents. Elements that are maintained by the respective stig:Medium (i.e., Topoi and
Stigma, as will be detailed out in an instance) undergo changes either via direct input

36ARQ Filter Functions Documentation: https://jena.apache.org/documentation/query/

writing_functions.html, accessed May 18th 2022

https://jena.apache.org/documentation/query/writing_functions.html
https://jena.apache.org/documentation/query/writing_functions.html
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from agents, or by the medium’s endogeneous dynamics, for instance, diffusion and
evaporation effects.

1 <> a st:Law , a st:LinearDecay ;

2 st:decay "0.5"^^ xsd:double ;

3 st:query </decay.sparql > .

LISTING 5.1: Simple example of
a stig:Law that describes a linear

decay

A medium may provide a client-readable and -interpretable description of its endo-
geneous dynamics by respective instances of stig:Law resources. Such a stig:Law

description may, for example, include parameters for diffusion or evaporation equa-
tions as employed by the medium (see also example in Lst. 5.1). A stig:Law may link
to an evolutional query which may be used to calculate the evolution of the medium’s
endogenous dynamics.

A medium may, but does not necessarily have to, reflect potential spatio-temporal
characteristics of the represented environment, and declare those in the context of
its self-description.

However, the medium must at least declare topology by interconnected stig:Topos

instances. A stig:Topos is a resource to which a (situated) agent (see also Chapter 6)
may navigate, perceive the state, and with which the agent finally interacts as result
of its (situated) perception. Each stig:Topos instance provides a (potentially empty)
set of outward edges that connect to other stig:Tops instances via the RDF predi-
cate stig:adjacentTo. Agents may follow these edges to navigate to other Topoi in
the current Topos’ neighbourhood, as result of the agent’s situated perception. Fur-
thermore, a stig:Topos may be identified with any domain- or application-specifc
resource using an owl:sameAs link and optionally detail on its spatial characteris-
tics.

Each Topos maintains a (potentially empty) set of stig:Stigma instances. A
stig:Stigma is a perceivable change that results from an agent’s action in the
stig:Medium. The perception of a stig:Stigma may stimulate (or inhibit) the perfor-
mance of a subsequent action, i.e. the presence of a stig:Stigma makes the perfor-
mance of this action more (or less) likely. Hence, actions stimulate (or inhibit) their
own continued execution via the intermediary of stig:Stigma instances.

Thus, the presented domain model introduces all concepts required to implement a
feedback loop of stigmergic systems (cf. Fig. 2.1).

5.1.2 stigFN Function Library

In order to facilitate the implementation of endogeneous dynamics based on physi-
cal diffusion or evaporation process to, for example, support transient marker-based
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stigmergy in the dynamic environment, we supplement our domain model with the
stigFN SPARQL function library. The stigFN SPARQL function library provides fun-
damental operations required to support the computation of spatio-temporal evolu-
tion effects within a SPARQL query, and by this finally enables to drive the medium
state evolution in terms of evolutional queries as motivated in Section 4.2.3. The func-
tion library for this implements:

Handling spatial and temporal values:

Decay and diffusion functions require arithmetic operations on temporal data, e.g.
xsd:duration, xsd:dateTime or xsd:time. Due to lack of built-in support in SPARQL
and XPATH, we provide stigFN:duration_secs and stigFN:duration_msecs for
conversions from a xsd:duration value to (milli)seconds. Additionally,
stigFN:dist_manhattan is provided as a means to find the Manhattan distance be-
tween topoi when the medium is discretised into grids.

Decay functions:

Elements in the environment may be subject to dissipation processes. An example
from stigmergic systems are transient markers, that, once left by an agent in the
medium, reduce in concetration over time until they ultimately vanish. stigFN sup-
ports linear and exponential decay as two standard decay models, implemented as
functions stigFN:linear_decay and stigFN:exponential_decay, respectively (see
also Lst. 5.2) .

1 {SELECT (SUM(?c_i) as ?c) ?topos WHERE {

2 ?topos st:carries [ a ex:NegFeedback;

3 stig:level ?lvl;

4 stig:created ?then;

5 stig:decayRate ?d ].

6 BIND(stigFN:linear_decay (?then , now(), ?d, ?lvl) as

?c_i)

7 } GROUP BY ?topos}

8

LISTING 5.2: Use of the stigFN:linear_decay SPARQL function
to evolve and aggregate concentrations of linearly decaying

markers on a topos.

Diffusion functions:

In diffusion processes, the intensity of elements in the medium, e.g. stigmata, does
not decay over time but rather spreads over a spatial dimension from the point of
its deposition. stigFN implements the 1D diffusion equation as SPARQL function
stigFN:diffuse_1D (see also Lst. 5.3).



5.1. stigLD: A dynamic stigmergic Linked Data Environment Server 63

1 ?source a stig:Topos;

2 pos:xPos ?source_x; pos:yPos ?source_y;

3 stig:carries ?stigma .

4

5 ?stigma a stig:Stigma;

6 stig:created ?then;

7 stig:decayRate ?decay ; stig:level ?srcLevel .

8

9 ?aoe a stig:Topos;

10 pos:xPos ?effect_x; pos:yPos ?effect_y

11

12 BIND(NOW() AS ?now

13 BIND(stigFN:duration_secs (?then , ?now) AS ?duration

14 BIND(abs(?effect_x -? source_x) + abs(?effect_y -? source_y) AS

?dist)

15 BIND(stigFN:diffusion_1D (?stigma , ?dist , ?duration ,

?srcLevel , ?decay) AS ?diffusion)

16

LISTING 5.3: Use of the stigFN:diffuse_1D SPARQL function
to calculate the concentration of a diffusing stigma in an affected

area..

stigFN was implemented using SPARQL user-defined functions in Apache Jena.
Documentation and source code is publicly available37:

https://github.com/dfki-asr/StigLD-Demo.

5.1.3 Server Framework

The stigLD server framework consists of a stigFN server component as back end
that provides an Apache Jena Fuseki triple store38 with stigFN function support
to support the RDF representation of the dynamic medium, and a medium server
component that serves as communication endpoint to clients (see Fig. 5.2).

The medium server component populates the stigFN server with the initial state
of the environment in terms of stig:Topos resources. Furthermore, the medium
server defines evolution law parameters, and maintains respective SPARQL queries
to drive medium evolution according to the defined parameters. The medium server
populates information about these laws on in terms of stig:Law resources in the
stigFN Server Fuseki triple store.

The medium server provides an HTTP endpoint via which clients may request to
read the environment state via an HTTP GET request, or request the evaluation of a

37Author of stigFN source code: Melvin Chelli
38Apache Jena Fuseki home page: https://jena.apache.org/documentation/fuseki2/ (Visited

May 2023)

https://github.com/dfki-asr/StigLD-Demo
https://jena.apache.org/documentation/fuseki2/


64 Chapter 5. Implementation of Dynamic Environments in Linked Data Media

FIGURE 5.2: High-level architecture of the StigLD server framework

SPARQL query via HTTP GET or POST, following a subset the SPARQL 1.1 Protocol
specification (see Section 2.1.3).

Upon receiving a client request, the Medium server first sends each of its managed
evolutional queries to the stigFN server to drive the evolution of the environment
model as maintained by the Fuseki triple store. These queries may employ decay
and diffusion functions as defined in the previous section, which are implemented as
SPARQL user-defined function in the stigFN server’s Fuseki triple store. As soon as
the stigFN server has finished evaluation of the evolution query, the medium server
proceeds to finish the original client request by either returning the current medium
state to the client (in case the client requested it via HTTP GET), or by evaluating the
query as supplied by the client on the environment state after evolution.

This protocol implements directly the interaction model as defined for MEDIUM com-
ponents, as defined in Section 4.2.3.

Application and evaluation of systems that employ the concepts and frameworks as
presented above are presented in detail in Sections 7.4 and 7.6.

Documentation and source code of the server framework is publicly available39:
https://github.com/dfki-asr/StigLD-Demo.

5.2 ECA2LD: Real-Time RDF lifting of large-scale simula-
tion environments

The previous approach supports mainly the temporal evolution of elements in the
medium according to specifically provided evolution rules. This approach, however,
does not take into account dynamics within the environment that are not driven by
environmental laws, but by underlying simulations of a complex environment.

While there are numerous works investigating (semi-) automated mappings from
heterogeneous data structures and serializations to the RDF data model [16, 8, 171,
168, 174] for static data, little research has been conducted on the dynamic mapping
of simulation runtime environments to RDF [189, 119]. This chapter presents, as so-
lution, an algorithm that, based on an Entity-Component-Attribute data meta model,

39Authors of stigLD server framework: Melvin Chelli and Torsten Spieldenner

https://github.com/dfki-asr/StigLD-Demo


5.2. ECA2LD: Real-Time RDF lifting of large-scale simulation environments 65

provides a real-time translation of simulation data to an interactive Linked Data
layer.

The contents in this chapter were mainly published at the International Workshop
on Semantic Web of Things for Industry 4.0., co-located with the Extended Semantic
Web Conference 2018 [239], and presented at the Global IoT Summit [240], as well as
the Joint International Semantic Technology Conference [238], in particular contents
of Sections 5.2.2 and 5.2.4.

The event model is formally defined originally in the scope of this thesis. The formal
definition is based on the event model as defined by the FiVES Virtual Environment
Server [242, 241].

5.2.1 General Architecture: Model-View-Presenter-ViewModel Pattern

This section will motivate a design pattern to implement the publication of dy-
namic environment data via Linked Data media. The chosen Model-View-Presenter-
ViewModel pattern achieves to decouple agent logic from the business logic of envi-
ronment simulations by providing access to the simulation via a well defined View
on the simulation data. The View is moreover compiled from a generic ViewModel,
which, again, is defined independently of the data model of the underlying environ-
ment simulation. The connection between simulation business logic, ViewModel,
and Model, is finally established using an independent Presenter component.

The chosen architecture achieves the following: Agent interaction is defined entirely
against the View, making the View the medium via which agents interact with the
environment simulation. With View and ViewModel being defined independently
of a specific business logic data model, the so defined agent models remain opera-
tional even if the underlying data model changes, allowing for versatile, transferable
agent programs.

This section will further detail on the chosen design pattern, and from it, develop
a respective architecture to represent real-time environment simulation in (Linked
Data) media.

Model-View*-Patterns

Model-View-* patterns, originally presented in the 1980’s with the
Model-View-Controller pattern ([141]), describe a class of software design patterns that
originally aim at improving the development of User Interfaces (UI) on application
data.

MV*-patterns decouple a suitable representation of application data (Model) from
the respective User Interface (View), usually introducing another type of component,
generally denoted as ’*’. The exact nature of component ’*’ varies depending on the
version of MV* pattern that is implemented. In any of these versions, ’*’ is ultimately
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responsible for building the View, and keeping the View consistent with the Model
if the Model changes, or transferring user interaction with the View back into the
Model.

Since the introduction of the Model-View-Controller pattern, MV* patterns were ex-
tended continuously to achieve a more flexible decoupling of application modules,
resulting in patterns of Model-View-Presenter ([21]), Model-View-ViewModel ([231]),
and finally, the Model-View-Presenter-ViewModel pattern8 (see also Figure 5.4).

While originally designed to facilitate the connection and communication between
backend, business logic, and graphic user-interface (GUI) for human end users,
the gained benefits also transfer to non-human user-agents interacting with an im-
proved data representation of the original Model:

Instead of an interactive graphic user interface for human-application interaction,
we consider the Semantic Linked Data Integration Layer as View representation of the
environment data towards user-agents. The analogy of it being "like a GUI" towards
user-agents is strikingly fitting: Like comprehensive icons, tooltips, labels help hu-
man users understand the modes of interaction as provided by the respective GUI,
the Semantic Linked Data layer, provided in a machine-readable and -interpretable
representation, helps machine user-agents identify relevant points of interaction,
guides them through the process of using the API most effectively, and tells them
what data the application that offers the API expects, both in terms of structure, and
semantic meaning.

Model-View-*-ViewModel Patterns

Translating the original data model directly to the view is not always trivial, and
moreover couples the view component tightly to the Model.

A couple of variations have therefore been proposed over the time. One of them,
the Model-View-ViewModel Pattern40 [95, 231], introduces as additional component a
ViewModel (see Fig. 5.3).

FIGURE 5.3: The Model-View-ViewModel pattern. (Source: 5)

40MVVM Pattern (Visited May 2023): https://docs.microsoft.com/en-us/previous-versions/

msp-n-p/gg405484(v=pandp.40)

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/gg405484(v=pandp.40)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/gg405484(v=pandp.40)
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The ViewModel is a specific, optimized representation of the original data Model.
The ViewModel moreover is the logic component that builds and manages the View,
allowing the View to define data and command bindings against the ViewModel,
rather than directly to the Model. When users interact with the View, the View for-
wards the input to the ViewModel, which in turn calls respective methods in the
Model. The indirect interaction between View and Model allows to change parts of
the model without directly affecting Logic of the View.

FIGURE 5.4: The Model-View-Presenter-ViewModel pattern as by Bill
Kratochvil6; diagram source: 6.

As for the MVVM pattern, the Model-View-Presenter-ViewModel (MVPVM)41 employs
a ViewModel as optimized representation of the application’s underlying domain ob-
jects for the presenter to render the View. However, compared to the MVVM pattern,
the MVPVM pattern achieves an even higher level of independence between mod-
ules by moving the translation logic from the ViewModel into a separate Presenter
component, and by this, decoupling the ViewModel from the Logic.

In this pattern, simulation Business Logic interacts with data within the ViewModel
via the Presenter, using the Data Access Layer to transparently retrieve data from per-
sistence spaces. View and ViewModel are kept consistent using suitable data bindings
between both representations.

Digital Multi Agent Media as MV* Applications

In the context of publishing real-time environment data, the various components of
the MVPVM pattern can be identified as follows:

Business Logic: The Business Logic implements all logic specific to the simulation do-
main and services as offered by the simulation. The business logic moreover drives
the state of the simulation, and updates the state of entities maintained by the simu-
lation accordingly. As a result of its routine, the Business Logic regularly generates
new data during its lifetime.

Model: The Model is the internal data representation of the environment simulation
on which the Business Logic operates directly. As common for MV* Patterns, the

41MVPVM Pattern (Visited May 2023): https://msdn.microsoft.com/en-us/magazine/hh580734.
aspx

https://msdn.microsoft.com/en-us/magazine/hh580734.aspx
https://msdn.microsoft.com/en-us/magazine/hh580734.aspx
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Model is to be considered different from View or View Model. The choice of the
Model is rather influenced by constraints set by the Business Logic, starting with the
choice of Programming Language, over in-memory backends, employed third party
libraries and frameworks, and many more.

In the context of environments in Linked Data media, we make no assumptions
towards what Model a respective application uses. The goal is rather to abstract
from the Model used in the Business Logic, and provide a shared Linked Data-based
abstraction Layer for read-write interaction that is decoupled from Business Logic
and its Model. We do, in particular, not require the Model to implement concepts of
the RDF graph model of any kind.

View Model: Rendering the View directly from the Model is not necessarily an easy
task, as both are heavily constrained by their individual purpose. And as established
before, this task of translation is instead to be carried out by a ViewModel, which
can be considered an Interlingua used by both Model and View, to easier translate
between their individual translations.

The ViewModel thus is to be chosen that on one hand, it is easy to transfer data from
the Model, i.e., modify the View Model from the Business Logic, and on the other,
transparently render the interactive View from the ViewModel.

In the context of the proposed Linked Data medium architecture, that means that the
ViewModel needs to be based on an underlying (meta-)datamodel that allows for a
transparent lifting to a Linked Data representation, i.e., to a suitable representation
as resource graph in RDF. Moreover, the model should either support to be easily
lowered to from the chosen RDF representation, or be chosen in such a way that both
data structure and contents can be directly derived and indexed from the equivalent
RDF graph.

This thesis will define, establish, and implement a respective ViewModel component
based on an Entity-Component-Attribute (ECA) data meta model that specifically
allows to publish the application Model of the simulation as Linked Data.

View: As outlined before, traditionally, the View component in a MV* Pattern refers
to a human-readable, interactive layer that is rendered transparently from the appli-
cation Model. It serves as interaction layer between user and application, also guid-
ing the user through possible interactions by means like visual elements, tooltips,
and more, to help the user understand the possibility of the actions they can take,
and the expected result which a specific interaction should cause. Similarly, a digital
agent medium does not provide an interaction layer to human users, but to software
user-agents.

This thesis will define as View for interactive Linked Data media a Linked Data
Platform representation (cf. Section 3.1.2) that is Thus, the interaction layer needs to
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be enriched by an equivalent to all the visual aids and tooltips that are provided to
human users in traditional MV* Patterns.

Presenter: The Presenter component is finally the component that connects View and
ViewModel to the Business logic, and takes care of keeping both consistent in state
with the business logic, and with each other.

5.2.2 ViewModel: Entity-Component-Attribute Runtime Data Model

The endeavored decoupled nature of components in the MVPVM pattern reflects
requirements as seen for changeable software architectures [134].

We further derive requirements towards changeable software from the notion of
aspect-oriented software design as presented by Kiczales et. al [137]. According to
this, it is necessary to avoid cross-cutting concerns in the code. As main pitfalls that
break changeability of software, aspect-oriented design distinguishes:

Code scattering: Code that implements a concept or logic is distributed over sev-
eral modules or classes. As a result, adding, changing, or removing logic from an
application requires to change several modules at once. Code scattering is avoided
by modeling software and its data in distinct modules for every task.

Code tangling: While code that implements a certain feature may be entirely con-
tained in its own module, dependencies between modules can still break changeabil-
ity of software. This happens for example if code of one module refers to, or makes
calls to, code in another module. If one module changes its interface to which other
modules make calls, all other modules need to be changed as well. A way to avoid
code tangling is a data-centralistic approach by which separate software modules
operate on a shared data layer, without direct calls between the modules.

Code tangling is then achieved by modules not being required to include code and
dependencies of other modules directly, as it would be necessary if inter-module
communication is, for example, directly implemented in Java Code. Changes in
code and APIs of one module would then require changes of calling code in any
other module, whereas, when communicating via a shared data layer, modules only
depend on the definition of that layer’s API and data objects. Specific code of other
modules is no longer directly referenced, or included.

Entity-Attribute Models

Above requirements are met by Entity-Attribute based software design. The under-
standing of Entity-Attribute models varies in literature. In the following, we sum-
marise available variants and formalize the notation of Entity-Attribute models.

Common for all variations is the notion of an entity as an empty data container
which is closer specified by a set of typed attributes that carry the actual values.
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FIGURE 5.5: Entity-Component-Attribute model based on the exam-
ple of a component that defines a ”Location”.

The IoT Context Broker by Moltchanov et. al [178] keeps to the levels of entities and
attributes.

The systems RealXtend [3, 57] and FiVES [242, 241], as well as popular game en-
gines, such as Unreal Engine42 and Unity3D43, include the notion of components
(Entity-Component-Attribute pattern, ECA; see also Fig. 5.5). Components can be
considered as prototypes of attribute sets that belong to the same concept. When
a component is attached to an entity instance, a new instance of the component and
the respective attribute set is created from this prototype.

Entity-Component-Attribute Model: Definition

In the following, we will give an outline of requirements we see for the design of
changeable large-scale software projects. We give a formal definition of the estab-
lished Entity-Component-Attribute model and discuss how it is suitable to fulfill
the requirements towards changeable software.

RealXtend equips components with application logic that is directly contained as
code in the component implementation. Similarly, components in game engines like
Unreal Engine and Unity3D allow to attach executable scripts as part of the compo-
nent44,45. This allows to equip game objects with scriptable behavior that directly
depends on the attributes of a component. Examples for such behavior may be col-
lider scripts that define a collider volume in the components, a velocity component

42http://www.unrealengine.com (Visited May 2023)
43http://www.unity3d.com (Visited May 2023)
44https://docs.unity3d.com/ScriptReference/Component.html (Visited May 2023)
45https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/

ProgrammingWithCPP/UnrealArchitecture/Actors/Components/ (Visited May 2023)

http://www.unrealengine.com
http://www.unity3d.com
https://docs.unity3d.com/ScriptReference/Component.html
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/UnrealArchitecture/Actors/Components/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/UnrealArchitecture/Actors/Components/


5.2. ECA2LD: Real-Time RDF lifting of large-scale simulation environments 71

that, once attached, automatically moves an object based on the attached attribute
values, or a camera component that defines rendering parameters via the given at-
tributes.

The work by Wiebusch et al. [268] as well as the FiVES server system consider the
Entity-Component-Attribute model as data model only. Logic is implemented in
independent systems (referred to as plugins in FiVES), with a careful design of how
external logic accesses the data.

We adapt the understanding of components as by Wiebusch, and FiVES, with logic
implemented separately to avoid the tight coupling between components and their
specific implementation as in RealXtend or game engines. We derive from this the
following formal definition of the ECA architectural pattern.

Let e denote an entity instance, and PC denote the set of all component prototypes.
Then we define the following sets:

E is the set of all entity instances. An entity instance is defined as e = (ne, Ce),
with ne ∈ Σ+ being the unique identifier for e over alphabet Σ, and Ce being
the set of component instances attached to e.

Ce is the set of all component instances attached to an entity instance e. A com-
ponent instance is defined as c = (nc, pc, Ac,e), with nc ∈ Σ+ being the unique
identifier for c, pc ∈ PC being the prototype that c is an instance of, and Ac,e

being the set of all attribute instances attached to c.

Ac,e the set of all attribute instances attached to a component instance c. An at-
tribute instance is defined as a = (na, v, t), with na ∈ Σ+ being the unique
identifier for a, v denoting the attribute instance’s current value, and t denot-
ing the ECA runtime type of a.

The role of an entity within the application is by this entirely determined by the set
of attached components. Components are implemented and operate independent of
each other. This avoids the issue of code scattering. The composition-over-inheritance
principle of the model also avoids code-tangling, as it eliminates class inheritance
and attribution hierarchies.

5.2.3 ECA-Model: Implementation

The fist version of the implementation of the ECA model was originally published
in the scope of the Virtual Environment server FiVES (Flexibel Virtual Environment
Server) ([242, 241]). However, both the concepts of the model as employed in that
implementation, and the way they were finally implmeneted, had over time been
deemed so useful that they were extracted from the FiVES server framework as
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standalone solution in the form we see it here today 46. The ECA model library
is implemented in C# as programming language due to .Net’s powerful concepts of
Reflection and Delegates, which are very suitable for the dynamic typing of compo-
nent blueprints.

The following section has originally appeared in the publications stated above. The
terminology has slightly changed over time. Respective corrections have been ap-
plied to the following contents, as for general adaptions to the text to fit it into the
form and style of this Thesis.

Data Model

Components are registered as Prototypes in a PrototypeRegistry data structure. A
Component Prototype consists of its name and a list of Prototypes of its Attributes,
again identified by name. These Attribute Prototypes describe the type of the At-
tribute, currently in terms of a C# interface that is passed when defining an At-
tribute, and a default value that is returned when the Attribute is read before any
value was written to it. The library tries to map to an Attribute type when trying
to assign an attribute value from or to another type implementation. At the current
state, this mapping is done by naively mapping field names between types, which
allows for example to use different implementations of a Vector class in two differ-
ent plugins, and still operate on the same Attribute. More sophisticated mapping
strategies, based for instance on semantic descriptions of Attribute types, are under
investigation.

Applications may register new Component Prototypes during run-time. As soon as
a Prototype is registered, its Attributes can directly be accessed on an Entity using
the names of Component and Attribute. The process of evaluating a component
access, and type check of the attribute, is shown in Figure 5.6.

A Component is not instantiated on an Entity until it is requested for the first time
to keep memory foot print in server run-time and during communication low.

1 ComponentPrototype spatial = new ComponentPrototype("spatial");

2 spatial.AddAttribute <Vector >("position");

3 spatial.AddAttribute <Quat >("orientation");

4 ComponentRegistry.Instance.Register(spatial);

LISTING 5.4: Example of registering a Component Prototype for spa-
tial data.

46The standalone library has been published to GitHub: https://github.com/tospie/eca-base-
model
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Component and Attribute Access

Access to components and attributes is provided via their registered names on insta-
tiated entities and components respectively (see also Lst. 5.2.3). Attempted access to
attributes and components is then evaluated in a multi-staged process (cf.Fig 5.6):

First, the PrototypeRegistry data structure is checked for any registered compo-
nent blueprint under the requested name. If no blueprint with the requested name
is present, an exception is thrown. Otherwise, the registered Component Prototype
is checked for an attribute of the requested name, throwing an exception if no ac-
cording attribute was registered.

FIGURE 5.6: Multi-staged access to Attributes via Components on
Entities.

It is then checked if, for read-access, if the type of the attribute value is assignable
to the variable to which it is supposed to be assigned. For write-access, it is checked
if the supplied value is assignable to the type of the attribute. The implementation
attempts to cast values from variable to attribute type, and vice versa, where possi-
ble. If the value is un-assignable, a respective exception is thrown. If the component
has to this point not yet been instantiated on the entity, it will be instantiated now.
In case an attribute is requested for the time during read-access, and thus, freshly
instatiated upon the first read operation, it is initialised with a default value that may
be declared when defining the Attribute.

Read-Write-Access to attributes is provided by properties Value for read-access, and
Set for write access 47 (see also Lst. 5.2.3). While Value returns the current attribute
value directly, Set will invoke an indirect, event-based writing process, as further
detailed in the next section.

47It is apparent that choosing Value for read-access instead of Get is somewhat inconsistent. How-
ever, the decision for this design choice was made a long time ago, and for reasons which are, by today,
unfortunately forgotten.
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1 var e = new Entity ();

2 e["spatial"]["position"].Set(new Vector (1.0, 2.0, 3.0));

3 e["spatial"]["orientation"].Set(new Quat (0.0, 0.0, 1.0, 0.0));

4

5 Vector currentPosition = e["spatial"]["position"]. Value;

LISTING 5.5: Example of accessing Spatial Components as defined in
Lst. 5.2.3 to write position and orientation Attributes.

Event System

Application logic and data managed by the ECA meta data model are loosely cou-
pled by a) an indirect write access to attributes, and b) and event model that informs
application logic over changes in the attributes.

Let a = (na, v, t) be an attribute with name na and value v as defined above, c a com-
ponent with name nc that contains attribute a, and e an entity on which component
c and attribute a are instantiated respectively.

Then operations on attribute a can be formally defined as a CCS process ATTRIBUTE
(cf. Sec. 2.2) as follows:

ATTRIBUTEa = READa + WRITEa(in) (5.1)

READa = geta.reta(v).ATTRIBUTEa (5.2)

WRITEa(in) = seta(in).be f orea(in)

.(HANDLEa(in) + mod(inm).HANDLEa(inm)) (5.3)

HANDLEa(inh) = [v = inh].changede(nc, na, v)∥changeda(v).ATTRIBUTEa (5.4)

Let subscript a denote a channel via which READ and WRITE access to attribute a are
provided. When application logic requests to get the current attribute value via READ,
the process simple returns the current value v of a.

Requests to set the attribute’s value to a provided input in via WRITE is handled in
a two-stage process: As soon as an attribute receives a request to set the attribute
value, it emits an event be f ore via its channel to inform application logic about the
requested attribute change, with the requested input as parameter. Application logic
may inflict modifications on the supplied input, and return a modified input value
inm

48. ATTRIBUTE then proceeds to HANDLE the modified input inm, or, in case no

48The design may lead to multiple modules of the application logic trying to modify a requested
attribute change at the same time, by reacting to the same be f ore event. This conflict was resolved
in the implementation FiVES in a module that allowed to define the order in which application logic
modules apply changes, with subsequent changes being cumulative. This approach, however, exceeds
the scope of this Thesis and will therefore not be handled in detail. Interested readers are invited
to read the documentation of the respective implementation in Google Docs: https://rb.gy/3pwif4
(Visited May 2023)

https://rb.gy/3pwif4
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application logic reacted to the be f ore event, the original input in. HANDLE finally
assigns the supplied value to handle inh (in, or inm, depending on whether applica-
tion logic reacted to the be f ore event) to the attribute value v of a, and subsequently
emits two events changed, with names nc and na of component and attribute respec-
tively, as well as the updated attribute value v via a channel provided by the entity
managing the attribute, and with the updated value v only on the attribute channel
itself.

This two-staged interaction process models the process of indirect environment inter-
action as described in Section 4.1.1, and by this implements the model of environ-
ment evolution based on agent influences as defined in Section 4.3.3: Application
logic in general, and specifically, user-agents, request updates of an attribute as in-
fluence to the environment. This influence, however, does not change the environ-
ment directly, but the actual effect is decided by the application itself. changed events
provide observability of the environment, and achieve a loose coupling between ap-
plication logic and data model. For this, the automatic type mapping simplifies the
use of the attribute value in native code of application logic.

5.2.4 Presenter: Linked Data Lifting Algorithm

In the following, we detail on the automated structural mapping between ECA run-
time environments and W3C LDP compliant Linked Data servers. By repeated ap-
plication of a set of mapping rules (cf. ➀ to ➃), structural interoperability [226] be-
tween ECA runtimes and LDP servers is established.

We assume the existence of functions ν : Σ+ → IRI and ρ : PC → IRI for minting
fresh IRIs from identifiers and component prototypes. Although several guidelines
exist for minting IRIs49, we do not make assumptions on ν or ρ.

➀

(ne, Ce) ∈ E ∀(nc, pc, Ac,e) ∈ Ce

ν(ne) rdf:type ldp:BasicContainer .
ν(ne) dct:identifier “ne”^^xsd:String .
ν(ne) ldp:hasMemberRelation dct:hasPart .
ν(ne) dct:hasPart ν(nc) .

➀ Each entity instance e = (ne, Ce) is mapped to a ldp:BasicContainer with IRI

ν(ne). This entity container maintains a membership triple (ν(ne), dct:hasPart, ν(nc))

49https://www.w3.org/TR/cooluris/ (Visited May 2023)

https://www.w3.org/TR/cooluris/
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for each component instance (nc, pc, Ac,e) attached to e.

➁

(nc, pc, Ac,e) ∈ Ce ∀(na, v, t) ∈ Ac,e

ν(nc) rdf:type ldp:BasicContainer .
ν(nc) dct:identifier “nc”^^xsd:String .
ν(nc) dct:isPartOf ν(ne) .
ν(nc) ldp:hasMemberRelation dct:hasPart .
ν(nc) dct:hasPart ν(na) .
ν(nc) rdfs:isDefinedBy ρ(pc) .

➁ Each component instance c = (nc, pc, Ac,e) is mapped to a ldp:BasicContainer

with IRI ν(nc). This component container uses dct:isPartOf to indicate its contain-
ing entity container ν(ne) and maintains a membership triple (ν(nc), dct:hasPart,
ν(na)) for each attribute instance (na, v, t) attached to c. In addition, we use
rdfs:isDefinedBy to indicate an authoritative resource ρ(pc) semantically defining
the component container ν(nc). We detail on ρ(pc) in the next section.

➂

(na, v, t) ∈ Ac,e

ν(na) rdf:type ldp:RDFResource .
ν(na) dct:identifier “na”^^xsd:String .
ν(na) dct:isPartOf ν(nc) .
ν(na) rdf:value ν(nv

a) .

➂ Each attribute instance (na, v, t) ∈ Ac,e is represented by a ldp:RDFResource

with IRI ν(na). This attribute resource uses dct:isPartOf to indicate its contain-
ing component container ν(nc). The triple (ν(na), rdf:value, ν(nv

a) encodes the at-
tribute’s publishes the attribute’s value in an additional resource with URI ν(nv

a).
This allows the server to specify further interaction methods on Attribute values, as
described in Sections 5.2.5 and 5.2.5.

➃ Since the RDF datatype abstraction is compatible with XML Schema, we rely
on the data type support between an ECA runtime enviroment and XML Schema
Types for datatype conversion. Given an attribute (na, v, t) ∈ Ac,e, we denote by
ν(t) the datatype IRI of the RDF-compatible XSD type corresponding to t. The lex-
ical form µ(v) may be any lexical form, ie. a Unicode string in Normal Form C,
from ν(t)’s lexical space that represents the same value as v. Extensions that handle
domain-specific or user-defined datatypes beyond the RDF-compatible XSD types
are expected to behave as outlined here.

Finally, a collection of entities is published in terms of a resource with URI ν(nne). We
for this assume an entity collection E to be assigned a unique name nE.
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➄

∀(ne, Ce) ∈ E

ν(nE) rdf:type ldp:BasicContainer .
ν(nE) ldp:contains ν(nne) .

The respective Entity collection resource then serves as entry point for client appli-
cations to explore the server data.

The resulting RDF modeled Linked Data Platform representation allows to further
augment the resources with domain semantic information. For this, the RDF de-
scription of the data structure serves as input for RDF mapping vocabularies like
SPIN SPARQL50, RIF in RDF51, the LDIF framework52 or the R2R framework53. For
a detailed explanation of domain semantic augmentation, we refer to the original
paper [239]. In the context of our approach, additional domain semantic informa-
tion on top of the structural description allows clients to identify relevant resources
based on domain semantic information.

Figure 5.7 shows an example of how additional domain semantic information can
be added to the automatic structural mapping using an R2R mapping file:

Whereas the original structural mapping identifies created resources only in terms
of their respective LDP classes. The domain semantic information that is implicitly
included in terms of component and attribute names is at this stage not accessible to
machine clients in an interpretable way, but subject to proper explicit interpretation
by domain experts.

This explicit domain knowledge is in a second step supplied in terms of an R2R
mapping. In the given example, the mapping file describes that any resource that is
created for a component the prototype of which defines "latitude" and "longitude"
values is to be interpreted as a geo:SpatialThing RDF class, with the attributes
being correctly classified as latitude and longitude as defined in the Basic Geo vo-
cabulary54.

By running the mapping file by a R2R compiler engine, the initially pure structural
representation of ECA data in terms of LDP resources can be leveraged to an expres-
sive semantic interpretation that is fully interpretable by user agents.

50https://www.w3.org/Submission/2011/SUBM-spin-sparql-20110222/ (Visited May 2023)
51https://www.w3.org/TR/rif-in-rdf/ (Visited May 2023)
52http://ldif.wbsg.de/ (Visited May 2023) (Visited May 2023)
53http://wbsg.informatik.uni-mannheim.de/bizer/r2r/spec/ (Visited May 2023)
54https://www.w3.org/2003/01/geo/ (Visited May 2023)

https://www.w3.org/Submission/2011/SUBM-spin-sparql-20110222/
https://www.w3.org/TR/rif-in-rdf/
http://ldif.wbsg.de/
http://wbsg.informatik.uni-mannheim.de/bizer/r2r/spec/
https://www.w3.org/2003/01/geo/
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FIGURE 5.7: Example of an augmented domain semantic mapping on
top of the automatic structural mapping from ECA to RDF LDP data.

5.2.5 Network API

The Linked Data View that is generated by the Presenter from the ECA ViewModel
provides mainly two means of interactions: First, it supports HTTP CRUD oper-
ations in a request-response manner. Second, each generated resources provides
subscription endpoints via which connected clients are informed about changes in
the underlying simulation data in real-time.

Interactive View: RESTful operations on runtime data:

Each of the resources generated according to the rules in the previous section pro-
vide an HTTP REST compliant endpoint that is maintained within the ECA2LD li-
brary. The route to the resource is determined by the minting functions ν : Σ+ → IRI

and ρ : PC → IRI.

HTTP operations GET, POST, PUT, DELETE allow to retrieve, (re)place, amend, or
delete the triple sets as produced by ➀ – ➃ respectively, and also to read and update
Attribute values on the respective Attribute value endpoints. Information about
further interaction possibilities with the resource can be obtained by using the HTTP

OPTIONS55 operation.

Respective functionality is already implemented in the ECA2LD library on Entity,
Component, and Attribute level. We extended the implementation to support re-
spective operations on Entity Collection and Attribute value level.

55https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/OPTIONS (Visited May 2023)

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/OPTIONS
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FIGURE 5.8: Web resources and respective endpoints that are gener-
ated for each of the elements of the runtime application.

Realtime subscription Pub/Sub:

The mapped structure from steps ➀ – ➃ remains mostly static during execution of
an application. Realtime run-time data is aggregated in Attribute resources as pro-
vided by ➂, and can be retrieved using the respective resource indicated by the At-
tribute’s rdf:value:

➅

∀Attribute na

ν(na) rdf:value ν(va)

We extend the modes of interaction beyond the HTTP operations as described in
Section 5.2.5 by providing as part of the returned RDF datagram a description of
provided real-time subscription endpoints according to the following rule:

➆

∀Attribute Values va, Protocolp

ν(na
v) sub:endpoint σs(va) .

σs(va) sub:protocol p.
σs(va) rdf:format f .

➆: For each AttributeValue va of Attribute a, a resource with resolvable URI ν(na
v)

is created that contains a forward link to a resolvable resource σs(va). The predicate
sub:endpoint describes the resource with URI σs(va) as endpoint for clients to open
a subscription channel with protocol p, p a suitable RDF predicate to refer to p, for
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realtime updates of attribute value va of attribute a. rdf:format points to a descrip-
tion f of the message serialization format emitted by subscription resource σs(va).
Defining suitable representations f of the message format beyond xsd compatible
atomic types is subject to future work.

We extended the ECA2LD library such that the respective subscription endpoint is
wired to the respective Attribute value in the ECA model by an observer pattern.
In our specific implementation, we use the Event mechanisms in C#56. By this, sub-
scribing to a subscription resource σs(va) by its URI as offered by the RDF descrip-
tion in ➄, clients can keep their local model consistent with the server data.

Figure 5.8 shows the set of created resources, their relation to each other, and exam-
ples of further interaction methods that can be retrieved by clients after performing
the steps outlined in Section 5.2.2.

5.2.6 The ECA2LD Framework: Implementation

The ECA2LD framework is finally implemented in terms of three modules: The ECA
base model implementation that implements Entity Collections, Entities, Compo-
nents and their Prototypes, as well as Attributes, and the Event model, as detailed in
Section 5.2.3 ; Linked Data Points, a library that transparently creates the Network API
with HTTP and streaming capabilities as defined Section 5.2.5. Linked Data Points
is extensible in the sense that developers may easily define new request-response
or streaming protocols to be supported on the endpoints of Entities, Components,
Attributes, or Collections respectively. And finally, the ECA2LD lifting library pub-
lishes an RDF description of Entitites, Components, and Attributes according to the
production rules defined in Section 5.2.4, and publishes the resulting RDF graphs
via the endpoints generated by the Linked Data Points library.

The different modules are coupled to the underlying ECA model via its event sys-
tem as presented in Section 5.2.3. Developers who wish to use the ECA2LD lifting
library only need to instantiate a Linked Data Point instance on an entity they wish
to publish via ECA2LD, or, alternatively, instantiate a Linked Data Point on an En-
tity Collection. Listing 5.6 shows an example of how to instantiate a Linked Data
Point on an Entity, or an Entity Collection, respectively.

The ECA2LD framework is fully published on Github: https://github.com/dfki-asr/
eca2ld (accessed May 19th, 2022).

56https://docs.microsoft.com/en-us/dotnet/standard/events/ (Visited May 2023)

https://github.com/dfki-asr/eca2ld
https://github.com/dfki-asr/eca2ld
https://docs.microsoft.com/en-us/dotnet/standard/events/
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1 // Instantiating a new Linked Data Point on an Entity

during runtime

2 var bp = new Entity ();

3 bp["blueprint"]["about"].Set("cpu:product");

4 bp["blueprint"]["step"].Set("steps:dispense");

5 new EntityDatapoint(bp, basePath + "blueprint");

6

7 // Instantiating a new Linked Data Point on an Entity

Collection during runtime

8 var worldDatapoint = new

EntityCollectionDatapoint(CEC.Instance , basePath);

LISTING 5.6: Example of instantiating a Linked Data Point on an
Entity (top), or Entity Collection (bottom).

Unity 3D Extension

ECA2LD was moreover implemented as extension to the Unity3D game engine57.
Unity3D manages contents in a ECA-like fashion, using the term "Game Object" to
refer to the equivalent of entities. ECA2LD is implemented in a set of C# Unity
Scripts that reflect the feature set of the Linked Data Points and ECA2LD standalone
implementations.

However, as Unity3D couples application logic with Component definitions, a com-
mon approach to implement the ECA model, and moreover, Unity3D does not im-
plement attributes in a distinct class, but defines attributes as C# properties of the re-
spective component implementation, publishing the Unity3D ECA model to Linked
Data requires a couple of additional steps.

It defines a script class LDComponent, which extends MonoBehavior, the base class for
Unit3D component scripts. It further defines a property annotation IsLD to annotate
C# properties of LDComponent scripts which should be published as Linked Data
Platform Resources.

Finally, attaching an LDEntity script to a Unity game object publishes the respec-
tive game object, its attached LDComponent scripts, and the IsLD annotated attributes
of the component, to a Linked Data Platform representation according to the pro-
duction rules in Section 5.2.4. Listing 5.7 displays the definition of a LDComponent

that publishes the game object’s pose to the Linked Data layer, further specified by
two attributes, Position and Orientation, which are annotated to be published to the
Linked Data representaion with the IsLD annotation. The resulting LDP resource
RDF graph is shown in Listing 5.8.

57Official Unity3D website: https://unity.com/ (Visited May 2023)

https://unity.com/


82 Chapter 5. Implementation of Dynamic Environments in Linked Data Media

1 namespace Assets.Scripts.eca2ld_unity.ld_components

2 {

3 public class LDPose : LDComponent

4 {

5 [IsLD]

6 public LDVector Position = new LDVector ();

7

8 [IsLD]

9 public LDQuat Orientation = new LDQuat ();

10

11 public void Update ()

12 {

13 Position.Set(gameObject.transform.position);

14 Orientation.Set(gameObject.transform.rotation);

15 }

16 }

17 }

LISTING 5.7: Implementation of a ECA2LD Unity3D Component.
LD Compontents, along with their annotated attributes, will
transparently be published in the ECA2LD Linked Data Platform

format.

1 <> dct:hasPart </Orientation/>, </Position/>;

2 dct:identifier "LDPose "^^<xsd:string >;

3 dct:isPartOf <http :// localhost :8080/ example/>;

4 a ldp:DirectContainer;

5 rdfs:isDefinedBy <http :// localhost :8080/ prototypes/LDPose/>;

6 ldp:hasMemberRelation dct:hasPart.

LISTING 5.8: LDP representation of an instatiated LDPose component
with two Attributes, Orientation and Position, as defined via Lst. 5.7

Figure 5.9 displays ECA2LD scripts attached to a game object in the Unity3D edi-
tor: It is sufficient to supply the game object with the LDEntity script, and specify
endpoint and entity name under which the entity is to be published. Any attached
LDComponent script, in the example, LDPose, publishes its annotated attributes auto-
matically.

The ECA2LD Unity extension is published on Github: https://github.com/dfki-asr/
eca2ld-unity (Last accessed Jul 2022). An example of the application of the ECA2LD
Unity exception is given in Section 7.1.

5.3 SPARQL API Wrapper

The previous Section described how to publish simulation runtimes to an interac-
tive Linked Data representation. However, in real world applications, it is often

https://github.com/dfki-asr/eca2ld-unity
https://github.com/dfki-asr/eca2ld-unity
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FIGURE 5.9: Publishing an Entity to Linked Data via the ECA2LD
Unity3D extension.

required to include components for which the presented approach is not applica-
ble, as the software components are not under governance of the system designer.
Linking to such resources as is directly from the medium may lead to non-Linked-
Data-conform resources being exposed to Linked Data conforming clients. From this
problem arises Research Question R7: How can continuity of the medium be ensured
during link traversal? (cf. Section 1.1.2)

A remedy is proposed in this Section. By the presented technology, non-RDF emit-
ting resources may be queried by Linked Data clients via SPARQL queries.

5.3.1 Motivation

To this day, there is still a tremendous number of resources being published as struc-
tured data that does not yet follow Linked Data principles. For many text-based
structured resource representations like XML, JSON or CSV, generic approaches
have been developed to map them to RDF ([58, 216, 65, 175]). These approaches,
however, are commonly used to create a copy of the original data as Linked Data
data dump. This is not practical for data that is changing fast, such as live feeds or
streams. For these, data dumps may soon become inconsistent with the original live
data when freshness of the data would be crucial.

The problem of integrating live data that is not yet provided in a semantic Linked
Data representation into a Linked Data application is mostly untackled.

As a remedy, we present in this paper a system, implemented as microservice, that
provides a SPARQL 1.1 Query58 service behind an API that is fully compliant to
the SPARQL 1.1 protocol interface.59 It allows to specify remote sources, perform a

58W3C SPARQL 1.1 Query Language Recommendation (Visited May 2023): https://www.w3.org/

TR/2013/REC-sparql11-query-20130321/
59W3C SPARQL 1.1 Protocol Recommendation (Visited May 2023): https://www.w3.org/TR/2013/

REC-sparql11-protocol-20130321/

https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
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TABLE 5.1: Expected parameters for a SPARQL 1.1 Query service call,
based on the original SPARQL 1.1 query protocol specification. The
structured datagram γ takes the role of both Dataset D and (default)

graph G.

Method Query Parameters Content-Type Message Body

GET
query=P (exactly 1),
source=γ (ex. 1)

None None

POST

(URL enc.
Parameters)

None
application/
x-www-form-urlencoded

URL-enc., &-separated:
query=P (exactly 1),
source=γ (exactly 1)

POST

(direct)
source=γ (ex. 1)

application/
sparql-query

Unencoded SPARQL
query string

provided query against them, and return as result a SPARQL query result in RDF
representation.

The contents of this section have been originally published in the paper „On the fly
SPARQL Execution for Structured non-RDF Web APIs” ([234]). For the contents in
this chapter, the original paper has been slightly adapted, where appropriate.

5.3.2 Service Definition

From the notions of the previous section, we will now derive a formal definition of
the service in terms of RDF liftings and SPARQL query execution. We first define
the query execution as function on a (mapped) data source. Second, we define a
SPARQL 1.1 query interface with the notions of the defined formal query approach.

Formal Definition

With the notions from Sect.2.1, we define moreover the following concepts:

We define
Q = (T ∪ V)× (I ∪ V)× (T ∪ V) (5.5)

as a shortcut for the set of all Triple Patterns.

Let Σ denote a machine readable alphabet, Σ∗ the set of all words over alphabet Σ, and
Γ ⊂ Σ∗ a set of datagrams in a given structured data format encoded in alphabet Σ.
Such structured data formats could for example be comma separated value (CSV),
JSON, or XML documents, as emitted by a Web resource, but also binary streams
following a deterministic structure or protocol.

A datagram γ ∈ Γ is then a valid structured piece of data that is encoded in a ma-
chine readable alphabet Σ.
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We then define a mapping function

m : (Γ ⊂ Σ∗) → (G ⊂ T ), T = (I ∪ B)× I × (T ∪ B) (5.6)

as a function that translates a given structured datagram γ into an RDF Graph g ∈ G.

Let ΩQ denote the set of result mappings of a triple pattern P ∈ Q according to
([28]). A service call s is then a function s with the following properties:

s : (Γ ×Q) → ΩQ (5.7)

s(γ, P) = JPKDm(γ), m : (Γ ⊂ Σ∗) → (G ⊂ T ) (5.8)

Means, a service accepts as call parameters a tuple that consists of a datagram γ from
a datagram syntax Γ, and a triple Pattern P ∈ Q in some SPARQL syntax.

The result of the service call is an evaluation of the triple pattern P against the result
of a lifting operation m on datagram γ.

Service SPARQL Query API

Following, we define the API to the SPARQL Wrapping Service as superset on the
W3C SPARQL 1.1 Protocol60 specification. We define parameters to specify a SPARQL
query that is to be evaluated, as well as structured legacy data on which to evaluate
the query, or URIs that point to endpoints from where to retrieve the data respec-
tively. The subset of parameters that provides necessary information for the execu-
tion of the SPARQL query should completely comply with the SPARQL 1.1 Protocol
specification.

Requests:

The SPARQL 1.1 Protocol Recommendation specifies three modes of query requests:
Query by HTTP GET request with Query String parameters, by query via HTTP POST

request, either with message body included as URL encoded query parameters, or
as direct POST operation with all information contained in the message payload. Ac-
cordingly, a service call s is performed by an HTTP request with the following meth-
ods and parameters (see also Table 5.1):

Query via GET: The request is sent by the client via HTTP GET request to the service
endpoint with no Content-Type header set, as request body is empty. The endpoint
accepts as parameters query and source, with query being the properly serialized and
URL encoded triple pattern P according to SPARQL 1.1. protocol specification, and

60https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/ (Visited May 2023)
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source a reference to a resource from which the datagram γ can be retrieved, or a
datagram γ as url-encoded string respectively.

Query via POST with URL encoded parameters: The request is sent by clients via
HTTP POST to the service endpoint with Content-Type header set to application/

x-www-form-urlencoded. The service accepts as parameters query and source. Pa-
rameters are URL-encoded and ampersand-separated. query contains the SPARQL
triple pattern P, and source the datagram γ (or an URI from which γ can be re-
trieved).

Query via direct POST: Clients send HTTP POST requests with Content-Type header
set to application/sparql-query. The source datagram γ is provided as encoded
URL parameter, either inline, or as URI from which γ can be retrieved. The SPARQL
query P is provided as unescaped string within the message payload.

Obviously, the above definition satisfies the SPARQL 1.1 protocol specification with
respect to necessary parameters. Our API does not yet consider specification of an
RDF dataset D against which the query should be executed in terms of a
default-graph-uri or named-graph-uri. However, according to the SPARQL 1.1
protocol recommendation, these parameters are optional, and the specification states
that, ”if an RDF Dataset is not specified in either the protocol request or the SPARQL query
string, then implementations may execute the query against an implementation-defined de-
fault RDF dataset”.61 This default dataset is in our case the result of the mapping
operation m(γ).

Responses:

Following the SPARQL 1.1 protocol specification, a query request to a service s re-
turns the SPARQL query result with a success status code (2xx).

The service moreover returns codes 400 (Bad Request) and 500 (Internal Server Error)
in case of a malformed query, or a failure to execute the query respectively, in accor-
dance with the SPARQL 1.1 Protocol specification. The service moreover returns a
400 error code if the supplied datagram γ is syntactically incorrect. The service may
moreover return:

422 (Unprocessable Entity), if γ, either provided directly via HTTP POST, or as URI
reference for download, is syntactically correct, but the mapping m returns an error
for some reason, or any parameter specifying γ is missing.

502 (Bad Gateway), if γ is provided by URI reference, and the service under source-uri
returns an error.

61https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#dataset (Visited May 2023)

https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#dataset
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5.3.3 Implementation

This section will describe in detail the actual implementation of the previously de-
fined service as a microservice. The overall architecture, and the components it is
composed from, is provided in Section 5.3.3. 5.3.3 details out the service API be-
yond the SPARQL interface. We will give an overview of employed frameworks
and libraries in our prototype implementation in Section 5.3.3.

Service Architecture

FIGURE 5.10: Architecture of the SPARQL API service

We build the query service around the components as shown in Figure 5.10. Client
requests are received by an HTTP API endpoint. This API accepts HTTP GET and
POST Requests with parameters for query and source according to the specification
in Section 5.3.2. Upon receiving a client request, an HTTP Client component sends
HTTP GET request to the endpoint as specified by the source parameter. If this
request returns an error, this error is forwarded to the requesting client according to
the error handling routine as described in Section 5.3.2.

In case the remote source returns valid data, it is used as input for an RML Mapping
component. The respective mapping is provided (for example in terms of an RML
mapping file) by the service itself, and can be inspected by clients via an HTTP GET
request to the respective resource according to Section 5.3.3.

The result of the mapping is stored in an in-memory RDF Triple Store that provides
a SPARQL query API to the service application. If the mapping was successful, the
query as provided by the client as parameter is executed against the triple store that
contains the mapping result. Otherwise, an error according to Sec. 5.3.2 is returned.

Finally, the result of the query is returned to the client as result of its request (or an
error, if execution of the query was not successful).



88 Chapter 5. Implementation of Dynamic Environments in Linked Data Media

Service self information

1 { "definitions ": {

2 "Bike": {

3 "type": [" object"],

4 "properties ": {

5 "bike_id ": {"type": "string"},

6 "lat": {"type": "number"},

7 "lon": {"type": "number"},

8 "is_reserved ": {"type": "integer"},

9 "is_disabled ": {"type": "integer "}

10 }},

11

12 "BikeData ": {

13 "type": "object",

14 "properties ": {

15 "bikes ": {

16 "type": "array",

17 "items ": {"$ref":

18 "#/ definitions/Bike"}

19 }}} # end of BikeData

20

21 }, # end of definitions

22

23 "type": "object",

24 "properties ": {

25 "data": {"$ref":

26 "#/ definitions/BikeData "}

27 },

28 "required ": ["data"]

29 }

LISTING 5.9: Example of a JSON-Schema description
of information conveyed by a free_bike_status.json

datagram according to NABSA/GBFS General Bike
Feed Specification.

In the current version, the service provides, listed as result of an HTTP OPTIONS

request, routes to the following resources:

Under the route /sourceformat/, clients may retrieve the expected structure of source
data. The source format is specified in JSON- or XML-Schema format, depending on
the format that the service maps (see also Listing 5.9). The provided description may
be used by clients to validate whether the service is capable of querying the intended
legacy API according to JSON-/XML-Schema documentation.62

62https://json-schema.org/, https://www.w3.org/XML/Schema (Visited May 2023)

https://json-schema.org/
https://www.w3.org/XML/Schema
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FIGURE 5.11: Call sequence between the different service compo-
nents upon a client request to the API as defined in Sect. 5.3.2.

Moreover, the employed RML mapping file is provided under the route /mapping/

for reasons of documentation. From the mapping file, client developers may learn
employed ontologies or vocabularies in the resulting RDF SPARQL response, as re-
turned by the service.

For future versions, we moreover plan to provide a definition of the output RDF
format, for example in SHACL63, to help clients to validate their local RDF represen-
tation automatically against the output that is generated by the service.

Prototype Implementation

Our prototype implementation is based on the Java Spring Framework64 for the Web
Service HTTP interface (”SERVICE API” in Fig. 5.10). RDF features are provided by
the RDF4j65 RDF library, using the RDF4j Repository API66 for SPARQL Queries. The
RDF4j Sail API67 serves as temporal in-memory triple store to contain RDF mapping
results against which the SPARQL Queries are executed (”SPARQL API” and ”RDF
Triple Store” in Fig. 5.10 respectively). The mappings are performed by the CARML68

mapping framework. CARML extends RML mapping routines by the capability of
defining a dynamic input stream as input the mapping, unlike RML, which expects
a route to a fixed source.

Figure 5.11 shows the function call sequence between components of the service as
chosen for our implementation: The HTTP interface provided by the Java Spring
application server API receives a client request that specifies parameters source and

63https://www.w3.org/TR/shacl/ (Visited May 2023)
64Spring Framework Website (Visited May 2023): ttps://spring.io/
65RDF4j Website (Visited May 2023): https://rdf4j.org/
66RDF4j Repo. API (May 2023): https://rdf4j.org/documentation/programming/repository/
67RDF4j Sail API (Visited May 2023): https://rdf4j.org/documentation/sail/
68CARML GitHub Repository: https://github.com/carml/carml (Visited May 2023)

https://www.w3.org/TR/shacl/
ttps://spring.io/
https://rdf4j.org/
https://rdf4j.org/documentation/programming/repository/
https://rdf4j.org/documentation/sail/
https://github.com/carml/carml
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query as either URL parameters or payload of a HTTP POST query. A DataBuilder

class checks whether the supplied source argument is an URI, or already the data-
gram γ itself. In case of a it being an URI, a WebAPIProxy is used to retrieve γ from
the provided API. γ then serves as Structured Data input for the mapping process.

The (CA)RML Mapping file is provided by the service itself. It is fed to a CARML

Mapper class that, after some preprocessing steps, uses the CARML mapping library to
translate γ to a mappedModel, which will be in RDF Graph form.

The mappedModel, and the query as provided by the client, are used as input for an
QueryExecutor. The QueryExecutor first opens a connection to a temporary RDF4j

Repo, loads the mappedModel into it, and executes the query via the RDF4j Sail API.

The queryResult of this operation is finally returned to the client as result of the
client’s initial query request.

5.3.4 In-Use Examples

Following, we demonstrate the usage of the service using examples from public
transport and bike rental domain, the main application domain of the funding project
SmartMaaS.

Second, we show how the presented service can be used to infer additional infor-
mation from distributed data sets by employing distributed SPARQL queries over
several SPARQL Wrapper services with the SERVICE keyword.

SELECT query on JSON data

The following example demonstrates a simple SELECT query against a JSON data
endpoint. The query as shown in Listing 5.10 is sent as query parameter to the
service endpoint, using the JSON data as shown in Listing 5.11 as input. The RDF
result is shown in Listing 5.12.

The overall execution time of the query in the example was about 180ms (millisec-
onds) for a dataset of 63 bike sharing station items. Of these 180ms, 30ms were spent
on the CARML lifting process, and 10ms on the SPARQL query execution (measured
on a Intel Core i7-4770k, 3.5GHz). The remaining time was spent to retrieve the
source data from the provided URI as source parameter.
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1 SELECT ?name ?lat ?lon WHERE {

2 ?station a gbfs:Station ;

3 gbfs:name ?name ;

4 wgs84_pos:lat ?lat ;

5 wgs84_pos:long ?lon .

6 }

LISTING 5.10: A SPARQL SELECT query that reads
location information for bike sharing station from a

GBFS ervice endpoint

1 {" last_updated ": 1595835393 ,

2 "ttl": 60,

3 "data": {

4 "stations ": [

5 {

6 "station_id ": "10044279" ,

7 "name": "Bahnhof Beuel",

8 "short_name ": "4741" ,

9 "lat": 50.739211 ,

10 "lon": 7.126598 ,

11 "region_id ": "547"

12 },

13 {

14 "station_id ": "10044287" ,

15 "name": "Haltepunkt Bonn -West",

16 "short_name ": "4742" ,

17 "lat": 50.7367675 ,

18 "lon": 7.0809567 ,

19 "region_id ": "547"

20 }, ... ]

21 }}

LISTING 5.11: Input provided as example for a simple
SELECT query (excerpt;
source: https://gbfs.nextbike.net/maps/gbfs/v1/

nextbike_bf/de/station_information.json)

https://gbfs.nextbike.net/maps/gbfs/v1/nextbike_bf/de/station_information.json
https://gbfs.nextbike.net/maps/gbfs/v1/nextbike_bf/de/station_information.json
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1 <results >

2 <result >

3 <binding name='name '>

4 <literal >Bahnhof Beuel </literal >

5 </binding >

6 <binding name='lon '>

7 <literal datatype='xsd:double '>

8 7.126598

9 </literal >

10 </binding >

11 <binding name='lat '>

12 <literal datatype='xsd:double '>

13 50.739211

14 </literal >

15 </binding >

16 </result >

17 <result >

18 ....

19 </results >

LISTING 5.12: Query result of the Query in Listing 5.10
against the data in Listing 5.11

Federated queries

The design of the Service API over parameterized, SPARQL 1.1 compliant request
URLs also allows for federated SPARQL queries using the SERVICE keyword, as de-
scribed in the respective W3C recommendation document.69

In the formal W3C SPARQL 1.1 Grammar Recommendation,70 a ServiceGraphPattern
(entry 59 in the respective grammar document71) is defined as

ServiceGraphPattern := 'SERVICE' 'SILENT'? VarOrIri GroupGraphPattern

Accordingly, a federated query against a SPARQL Wrapper Service endpoint can
be performed by employing as VarOrIri a valid URI against the SPARQL Wrapper
Service API according to Section 5.3.2, and as ServiceGraphPattern the query that is to
be executed against the dataset γ that is referred to as source (acc. to API definition
in Section 5.3.2), employing the mapping m(γ) that is provided by the service under
the URI that is provided as VarOrIri element in the query. The parameter query can
be omitted in this case, as the Triple Pattern P that describes the query is already

69W3C SPARQL 1.1 Federated Query recommendation: https://www.w3.org/TR/

sparql11-federated-query/
70SPARQL 1.1 Grammar: https://www.w3.org/TR/2013/REC-sparql11-query-20130321/

#grammar
71As at current date, June 2020

https://www.w3.org/TR/sparql11-federated-query/
https://www.w3.org/TR/sparql11-federated-query/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#grammar
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#grammar
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provided in terms of the GroupGraphPattern that follows the VarOrIri element of
the federated query.

Listing 5.13 shows an example of a federated query. For brevity, the complete route
to the service endpoint, as well source datagram γ are omitted, and given as #srvpath
and #srcpath respectively.72

1 CONSTRUCT {

2 ?station a gbfs:Station ,

3 wgs84_pos:SpatialThing;

4 gbfs:name ?station_name ;

5 wgs84_pos:lat_lon ?lat_lon_pos.

6

7 ?bike_id a gbfs:Bike ;

8 wgs84_pos:location ?station .

9 }

10 WHERE {

11 ?bike wgs84_pos:lat ?lat ;

12 wgs84_pos:long ?lon .

13

14 SERVICE <#srvpath /? source =#srcpath > {

15 ?station gbfs:name ?name ;

16 wgs84_pos:lat ?station_lat;

17 wgs84_pos:long ?station_lon .

18 }

19 FILTER (

20 ABS(?lat -? station_lat) <0.001 &&

21 ABS(?lon -? station_lon) <0.001)

22 BIND

23 (CONCAT(str(?lat) ,",",str(?lon))

24 as ?lat_lon_pos)

25 }

LISTING 5.13: Example of a federated SPARQL query

72The complete URI used for the given example was http://sparql-wrapper.service/?source=

https://gbfs.nextbike.net/maps/gbfs/v1/nextbike_bf/de/station_information.json

http://sparql-wrapper.service/?source=https://gbfs.nextbike.net/maps/gbfs/v1/nextbike_bf/de/station_information.json
http://sparql-wrapper.service/?source=https://gbfs.nextbike.net/maps/gbfs/v1/nextbike_bf/de/station_information.json
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1 <http ://foo.bar/stations /10044540 >

2 a gbfs:Station ,

3 wgs84_pos:SpatialThing;

4 gbfs:name "Juridicum ";

5 wgs84_pos:lat_lon "50.73009232899485 ,

6 7.108277678489685" .

7

8 <http ://foo.bar/bikes /44608 > a gbfs:Bike;

9 wgs84_pos:location

10 <http ://foo.bar/stations /10044540 > .

11

12 <http ://foo.bar/bikes /45448 > a gbfs:Bike;

13 wgs84_pos:location

14 <http ://foo.bar/stations /10044540 > .

15

16 <http ://foo.bar/bikes /45337 > a gbfs:Bike;

17 wgs84_pos:location

18 <http ://foo.bar/stations /10044540 > .

LISTING 5.14: Query result (excerpt) as returned by the
federated SPARQL query example

In our evaluation, the query given in Listing 5.13 was performed against an endpoint
that emits information about the location of rentable bikes in GBFS JSON format.
The GraphGroupPattern in the SERVICE clause merges that information with infor-
mation about the location of rental bike stations of the same provider. The respective
query response is shown in Listing 5.14. Note that the displayed information (Which
bike is currently parked at which station?), is originally not provided by how the GBFS
datamodel is defined. Deriving this information via semantic queries over the orig-
inally not semantically enriched GBFS data is a direct benefit from lifting queries
against the GBFS data to a semantic representation.

The total execution time of the construct query was 560ms for a dataset of 63 bike
station entries, and 649 items for free bikes respectively. Of these 560ms, approx.
10ms each were spent for the lifting process of both the datasets, and another 30ms
to perform the query against the station information data in the SERVICE clause.
The remaining times were spent to retrieve the source data from the provided URIs.

5.3.5 Conclusion and Future Work

In this paper, we have presented a novel service that allows to perform SPARQL
queries against non-RDF datasets. Unlike existing solutions, the presented service
is not limited to a certain source format, as long as the source to be queried is struc-
tured. The service offers a SPARQL 1.1 protocol HTTP query API, that is also suitable
to be used as endpoint for federated SPARQL queries.

Based on the original SPARQL 1.1 Protocol, we have derived a formal query API, and
provided a formal design of the presented solution. We have moreover presented a
proposal for an actual service architecture, based on the CARML non-RDF-to-RDF
mapping engine.
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Finally, we outlined our protocol implementation, and concluded with an evaluation
of the prototype implementation. We moreover demonstrated the applicability of
the service in the scope of federated SPARQL queries.

The presented implementation is published on Github under https://github.com/
SmartMaaS/sparql-api-wrapper.

The current design and implementation so far neglect named graphs. How to in-
clude this concept in the presented service design is subject to future work.

So far, the service supports SPARQL SELECT, ASK and CONSTRUCT queries. As
future work, we also plan to investigate how SPARQL UPDATE queries against a
non-RDF endpoint may be used to modify a remote non-RDF dataset, given that the
remote endpoint allows data modification.

We have discussed our solution with respect to use-cases from the domain of traffic
and public transport. We see however, and plan to evaluate, a clear applicability
in use-cases from industrial domains, as well as Smart City, Smart Grid, and Smart
Living scenarios.

In the context of this thesis, the presented technology allows agents to interact with
resources as if they were published via Linked Data media, even though the original
resource may not emit RDF data.

This allows agents to semantically interpret data in the context of the information
given in the Linked Data medium, even though a semantic (RDF) representation of
the data was originally not available. This may occur in particular when encounter-
ing external (remote) data endpoints which are not under the control of the system
designer. By providing the capabilities of service via an interface that follows the
SPARQL 1.1 protocol specification, the provisioning of the originally non-semantic
structural data is, for the agent, transparent.

The presented service was applied in Use Cases 7.2 and 7.3 with exactly this pur-
pose.

https://github.com/SmartMaaS/sparql-api-wrapper
https://github.com/SmartMaaS/sparql-api-wrapper
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Chapter 6

Linked Data Media Consuming
Agents

After the detailed description of possible implementations of dynamic environments
in Linked Data media in the previous chapter, this chapter will provide a formal
framework to define the behavior Linked Data Media consuming agents. The def-
inition of Linked Data agents will be formulated using the MCC Calculus (cf. Sec-
tion 2.2). The chapter will then proceed with a detailed translation between MCC
behavior notations, and a semantically equivalent notation as (SPARQL) behavior
trees [125, 6, 7].

To this end, this chapter makes the following contributions to facilitate the imple-
mentation of Linked Data consuming agents:

Section 6.1 builds upon the formal definition of interactive Linked Data Media in
Section 4.3 to define the interaction between agents and the medium. This behav-
ior model will be formal and generic, and by this abstract from technical details of
the implementation. The models will rely on basic interaction patterns as specified
for RESTful resource oriented architectures, and will follow HATEOAS principles
to fulfill Richardson maturity as described in Chapter Background. Contents of this
chapter are a revised versions of the original publications stigLD: Stigmergic Coordi-
nation of Linked Data Agents [220].

Section 6.2 provides a detailed formal model of behavior trees, and describes a se-
mantic preserving mapping between formal agent definitions in MCC, and behavior
trees representations. With behavior trees being not only a formal model, but ac-
tual executable programs with powerful parallel semantics, this Section by that lays
foundation to directly transfer formal agent models to provable correct executable
agent programs. Contents of this section have been original published in Behavior
Trees as executable representation of Milner Calculus notations [235].
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6.1 Generic Linked Data Agents

6.1.1 Definition of a single tropistic agent

We specify a tropistic [92, section 13.1] Linked Data agent AGENTk as an active compo-
nent

AGENTk = PERCk(i ∈ R, G = ∅, L = {i})

being initially situated at a resource i ∈ R without a-priori agent knowledge (G = ∅)
and a linkset L = {i} restricted to i. Our specification of AGENTk puts emphasis on a
direct response to its perceptions and favours to employ situated perceptions [230] of
the environment as the basis for deciding which action to perform next. We model
situated perception in CCS-style as

PERCk(i, G, L) =reqη(j)(GET, j, ∅).resη(j)(rc, (L′, G′)).(
PERCk(i, G′′, L′′) + REACTk(i, G′′, L′′)

) (6.1)

where AGENTk - while being situated at i - will at first issue a GET request for a resource
j in its current linkset L via channel reqη(j) and then awaits the server’s response via
channel resη(j) with return code rc ∈ RET, response linkset L′ ⊂ I and response graph
in G′ ∈ T . Subsequently, the agent executes (i) a perceptional query qPERCk over G′ in
order to update its situational knowledge to

G′′ = G ∪ ans(qPERCk , G′)

as well as (ii) a navigational query qNAVk over its updated knowledge graph in order to
update its linkset to

L′′ = L ∪ L′ ∪ sel(qNAVk , G′′))

On the basis of G′′ and L′′, AGENTk chooses to either recurse into its situated per-
ception process PERCk(i, G′′, L′′) or to enter the process REACTk(i, G′′, L′′) in order to
select an action on the basis of a local, short-time view of its environment. An action
selected only on the basis of a situated perception is called a reaction.

We model the process of selecting reactions in the following way

REACTk(i, G, L) = PERCk(j ∈ L, ∅, {j}) +

∑
m∈OPS\{GET}

(
if ask(q̂mk , G, L) then mk(i, G, L) else REACTk(i, G, L)

)
(6.2)

In essence, an agent may choose to either

1. re-situate and perform situated perception of resource j ∈ L, j ̸= i with the im-
plication that its situational knowledge and linkset will be reset; hence it does
neither maintain a long-term internal model of its environment nor pursues
explicit goals;

2. request the execution of operation m ∈ OPS \ {GET} against resource i given
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that the conditional query q̂mk over its knowledge graph G holds; possible in-
stantiations of mk(i, , L) are given by

PUTk(i, G, L) = reqη(i)(PUT, i, ans(qPUTk , G)).resη(i)(rc, (∅, ∅)).REACTk(i, G, L)

POSTk(i, G, L) = reqη(i)(POST, i, ans(qPOSTk , G)).resη(i)(rc, (L′, ∅)).REACTk(i, G, L ∪ L′)

DELk(i, G, L) = reqη(i)(DEL, i, ∅).resη(i)(rc, (L′, ∅)).REACTk(j ∈ L \ L′, G, L \ L′)

where ans(qmk , G) is the result graph of executing an effectual query qmk over the
agent’s knowledge graph G with m ∈ {PUT, POST}.

6.1.2 Extension to agent swarms

Following, we model extend the notion of tropistic Linked Data agents from the pre-
vious chapter, and in [220] to hysteretic [82] agent swarms.73. Unlike tropistic agents,
hysteretic agents possess the capability to maintain memory, which we exploit to
supply newly spawned agents with an initial knowledge K (whereas, for tropistic
agents, the initial knowledge is assumed to be empty).

Following [220], with R defining the set of all resources, G the knowledge of the
agent represented as RDF graph, and L a link set of known resources, a hysteretic
agent of a class c can then defined by a process AGENT in CCS as:

AGENTc(i ∈ R, K) = SENSEc(i, G = K, L = {i}).PERCc(G′, L′).REACTc(i, G′′, L′′) (6.3)

SENSEc(i, G, L) = reqη(i)(GET, i).resη(i)(L′, G′) (6.4)

PERCc(G′, L′) = ans(qPERC, G).qres(G′′, L′′) (6.5)

with SENSE and PERC processes by which the agent receives sensory input from re-
source i, and perceives (i.e. filters) the input respectively. G′′ and L′′ refer to updated
knowledge and link sets as result of executing perception and navigational queries
respectively [220, p.5]. The class c of an agent determines the exact set of queries by
which the agent will perceive, interact with, and navigate between resources, with
agents of the same class always using the exact same queries. As REACTion, the agent
either navigates to another resource in its updated link set L” and continue percep-
tion there, or it may ACT on its current resource and SPAWN a number of new agents
of a chosen class with some initial knowledge Ki:

REACTc(i, G′′, L′′) = AGENTc(j ∈ L′′, K, {j})

+(ACTc(i, G′′, L′′)||SPAWNc(c, K, Ls)) (6.6)

SPAWNc(c, K, Ls) =
∣∣∣∣∣∣

j∈Ls
AGENTc(j ∈ Ls, Ki) , (6.7)

Ls denotes an updated link set that is determined by evaluating a spawn query qSPWN
on the updated Graph G′′ after perception: Ls = ans(qc

SPWN(G′′)).

73The respective extension of the tropistic agent model was originally published in [235]
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6.2 Implementation of Linked Data Agents as SPARQL be-
havior trees

Having formally defined Linked Data agents, this section will now present a possi-
ble agent implementation, based on the visual programming paradigm of "Behavior
Trees" (BT) [125]. We will see that behavior trees will allow a semantic preserving,
one-to-one mapping from agent models in CCS to actually executable agent pro-
grams. This mapping in particular preserves the generic nature of the presented
agent models. By building the implemention on a BT implementation that is op-
timized towards Linked Data, SPARQL Behavior Trees [6, 7], the established con-
cepts for Linked Data agents directly transform to concepts inherent to the behav-
ior trees: While (labeled) processes have a one to one correspondence to (named)
behavior trees, specialised queries, such as perception or navigational queries, are
conveniently supplied as leaf nodes within the behavior tree.

The following contents have originally been published at the "21st IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology" (WI-
IAT’22), under the title "Behavior Trees as executable representation of Milner Cal-
culus notations". [235]

6.2.1 Motivation

Behavior Trees (BT) [125] are a popular tool to model agent behaviors. Behavior trees
constitute an executable visual programming paradigm that is comparable to Finite
State Machines (FSM) or Hierarchical Task Networks (HTN). BTs have recently been
extended to specifically implement the behavior of distributed agents in hyperme-
dia MAS [50] by supporting SPARQL queries74 against RDF75 knowledge bases [6].
Given that, likewise, the execution semantics of process notations in established cal-
culi can be broken down to a tree structure [215], and both calculus expressions
and BTs have representations as FSMs [183, 130, 156], we see strong opportunities
in investigating the similarities between formal notations of agent programs in the
Milner Calculus, and equivalent executable agent programs, encoded as BTs.

In this context, this Section makes the following contributions: A formal model of
BTs for hypermedia driven Multi-Agent Systems; a formal notation of SPARQL Be-
havior Tree (SPARQL-BT) nodes for hypermedia MAS in Milner Calculus notation;
a formal proof for a semantic preserving mapping of agent behavior descriptions
from process calculus notation to executable BTs; and an example of how to prac-
tically apply the results to model agent swarms in an Industrie 4.0 cyber-physical
production scenario.

74SPARQL 1.1 Specification: https://www.w3.org/TR/sparql11-query/ Visited May 2023
75RDF 1.1 Primer: https://www.w3.org/TR/rdf11-primer/ Visited May 2023

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/rdf11-primer/
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6.2.2 Related Work

Behavior Trees originate from the game industry and were first mentioned in 2005
in [125]. BTs were primarily developed to intuitively model Non-Player Charac-
ter (NPC) behavior in a modular and reusable way. Nowadays they are used more
frequently in industry, e.g. for robot control [166, 182]. This paradigm with loops, se-
quences, parallels, and an implicit knowledge base is often described as a combina-
tion of Decision Trees (DT) with FSMs [164]. Generally there is no clearly recognized
definition respectively version of this paradigm [164], but [54] provides a formal de-
scription of BTs in order to synthesize them and to guarantee their correct execution.
Formal representation of agent behavior for the sake of verifying the correct behav-
ior of MAS is a topic in research to this day [1]. Such representations include generic
labeled transition systems [42], or in situation calculus [10], the pi-calculus [79, 261,
149, 215], or Milner Calculus [220].

Analogies between Milner Calculus and FSMs are known already for several decades
[130]. Luttik et al. have shown that executable behaviors, which can generally be
mapped to finite Turing Machines, always have a representation in the π-Calculus
(while the converse does not generally hold) [156]. This inspired us to investigate
for similar analogies between BTs and calculus expressions. π-calculus expressions
have been translated into executable Java code [150], to assembly language [53], and
to executable code in specialised frameworks [244, 104]. The programming language
pseuCo76, strongly based on CCS, allows to display executable programs in terms of
Milner Calculus processes [90].

Our research on the topics concluded that while both formal calculi for concurrent
software systems and BTs as powerful tool to efficiently model MAS have strong
research communities, both fields have to this point been considered more or less
independently. In particular, the transferability of provable and verifiable calculus
expressions to directly executable BTs has so far hardly a been topic of research.
We thus endeavor with this paper to motivate BTs as executable representation of
calculus notations.

6.2.3 Formal Behavior Tree Model

Let K ⊆ 2T denote the set of Knowledge Bases maintained by an agent, B denote the
set of all BTs, N = I ∪L the set of Nodes, itself composed from inner nodes i ∈ I and
leaf nodes l ∈ L, and E a set of (directed) edges connecting nodes in a BT respectively.

We can then describe a BT b ∈ B as a directed (acyclic) graph via a tuple

b =
(

N ⊆ (N ∪∅), E ⊆ E
)

(6.8)

76https://pseuco.com/ Visited May 2023

https://pseuco.com/
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that contains of a set of nodes N which are connected by a set of (directed) edges E.
∅ denotes the root node of the BT.

An edge e ∈ E can be expressed as a tuple linking a single node to another node in
the BT:

e = (l ∈ {∅} ∪N , r ∈ N ) (6.9)

In this notation, l refers to the source of the directed edge, r to the sink. l and r are
chosen as names, as in the SPARQL-BT editor of our choice, AJAN77 [6], sources
usually appear at the left end of the edge, whereas sinks appear on the right end.

If there are two edges ei, eo ∈ E with ei = (nl , n), eo = (n, nr) (ei for incoming edge, eo

for outgoing), we can moreover express a node n ∈ N of a BT in terms of the node’s
left-hand side nl and right-hand side nr:

n =
(

nl ∈ I ∪ {∅}, nr ∈ 2(N×N ) ∪ ∅
)

(6.10)

A node can thus connect any parent with a number of tuples of the form (i ∈ N, r ∈
N ). We refer to nl ∈ I as left-hand side (LHS) of the node, and to nr ∈ 2(N×N ) as
right-hand side (RHS) of the node. In case of a leaf node, the RHS is empty as denoted
via ∅. i ∈ N determines the evaluation order of RHS elements, i.e., for two elements
ri, rj with orders i and j, it holds that if i < j, node ri is evaluated before node rj.

6.2.4 Behavior Tree Execution Semantics

We denote as ◦l(ϕ, κ) : (2P × 2K) → {SUCCESS, FAIL} the execution of a leaf node
l ∈ L with ϕ ⊆ P a set of node specific parameters, and ≤ ⊆ K a set of knowl-
edge bases as targets of the node execution. We further define for execution of
a composite node c ∈ C a function ◦c(R, ϕ) : (2(NxN ) × 2P ) → {SUCCESS, FAIL},
with R RHS elements as defined above, and ϕ a set of parameters analogue to the
leaf node case. Finally, decorator nodes modify the result of a single child node, i.e.
◦d(r, ϕ) : (N , 2P ) → {SUCCESS, FAIL}. By this, we can describe the execution se-
mantics of particular BT nodes as follows:

Sequence: A sequence composite node seq executes each of its RHS nodes in execu-
tion order until the first node fails. seq returns SUCCESS only if each of its children
return SUCCESS, and FAIL otherwise:78

◦c = seq(R, ∅) ≡
minj[(j,rj)∈R]|nj(Rj,ϕj)=FAIL∧

k=0

nk(Rk, ϕk) (6.11)

77https://github.com/aantakli/AJAN-service Visited May 2023
78For the chosen notation, we interpret SUCCESS and FAIL as boolean values, i.e SUCCESS ∧ FAIL ⇒

FAIL , SUCCESS∨ FAIL ⇒ SUCCESS

https://github.com/aantakli/AJAN-service
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Priority: A priority composite node prio returns SUCCESS as soon as the first of its
children return SUCCESS, and FAIL, if none of the children return SUCCESS

◦c = prio(R, ∅) ≡
minj[(j,rj)∈R]|nj(Rj,ϕj)=SUCCESS∨

k=0

nk(Rk, ϕk) (6.12)

Parallel: A parallel composite node par executes all of its RHS children independent
of the return status of the individual child node, and returns SUCCESS only if all
children returned SUCCESS:

◦c = par(R, ∅) ≡
|R|∧
k=0

nk(Rk, ϕk) (6.13)

Parallel Priority: A parallel priority composite node parprio executes all of its RHS
children, and returns SUCCESS if any of the children returned SUCCESS:

◦c = parprio(R, ∅) ≡
|R|∨
k=0

nk(Rk, ϕk) (6.14)

Executor: A executor composite node exec picks a single one out of any RHS child
nodes, and execute it, while discarding any other node. In SPARQL-BT, executor
nodes execute the nth child node, with parameter n either supplied directly, or by
determining the parameter as result of a SPARQL SELECT query.

◦c = exec(R, k ∈ N) = nk(Rk, ϕk) , 0 ≤ k < |R| (6.15)

Condition: A condition leaf node cond evaluates a supplied condition (in SPARQL-
BT, encoded as SPARQL ASK query) against any of the knowledge bases of the agent
to a parameter b ∈ B. It returns SUCCESS, if the condition holds, and FAIL otherwise:

◦l = cond(b ∈ B, K ∈ K) ≡ if b = true then SUCCESS else FAIL (6.16)

SPARQL-BTs and the implementation AJAN6 moreover define a series of leaf nodes
to communicate with hypermedia environments, and update and manipulate the
knowledge bases of an agent: QUERY nodes to retrieve information from a remote
resource, MESSAGE nodes to send requests to remote endpoints, WRITE nodes to write
information from one local knowledge base into another, and UPDATE nodes to mod-
ify the content of a single knowledge base.

With Q the set of all queries, a query qX a SPARQL query of type
X ∈ {SEL, CON, ASK, UPD}, op ∈ {GET, PUT, POST, DELETE} HTTP operators, and rc some
return code as returned by a server upon request, we can describe these nodes in
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CCS as:

QUERY({qSEL} ⊂ Q, {K, L} ⊂ K) (6.17)

= reqη(j)(GET, j, ∅).res(rc, (·, G)).[K = K ∪ G]

MESSAGE({qSEL, pCON} ⊆ Q, {K, L} ⊂ K) (6.18)

= ans(pCON, K).qres(G).reqη(j)(op, j, G).res(rc, ·, ·)
WRITE({qCON} ⊂ Q, {K, L} ⊂ K) (6.19)

= ans(qCON, K).qres(G).[L = L ∪ G]

UPDATE({qUPD} ⊂ Q, K ∈ K) = ans(qUPD, K).qres(K′).[K = K′] (6.20)

QUERY and MESSAGE nodes return SUCCESS, if the remote end returns a OK return code,
and FAIL otherwise. WRITE and UPDATE return SUCCESS, if the respective queries were
executed against the supplied knowledge base successfully, and FAIL otherwise.

6.2.5 Equivalence of CCS and SPARQL-BT

We now show equivalence between CCS operators as summarized in Section 2.2,
and BT evaluation semantics:

Action ( α.P α−→ P): We show that sequential node execution complies with the se-
mantics of action execution in CCS. Consider a sequence composite node seqc with
|R| = m executed right hand side elements. We can then chose a 0 ≤ l < m to
decompose Eqn. 6.11 as seqc(R, ∅) =

∧l
i=0 ni(·) ∧

∧m
j=l nj(·). For l = 0 we get:

seqc(R, ∅) =
0∧

i=0

ni(·) ∧
m∧

j=1

nj(·) = n0(·) ∧
m∧

j=1

nj(·)

= n0(·) ∧ seqc(R \ {0, n0})

With action α := n0 and remaining process P := seqc(R \ {0, n0}), it thus holds that
by executing node n0 as action α : seqc(R, ∅) ≡ α.P α−→ P.

The same holds for Priority nodes as can be shown by equivalent proof. Values
are passed between actions resp. processes indirectly, by each action reading values
from the specified knowledge bases. Process execution scope can be preserved by
using the same shared knowledge base for each action in a process.

Parallel Composition in CCS relates to parallel and parallel priority nodes, as can be
derived directly from Eqns.6.13 and 6.14, as both execute all children independently
from each other, i.e. for a node prio({(0, P), (1, Q)}) with P and Q child processes
or actions encoded as composite nodes or leaf nodes, it holds that both P and Q are
evaluated, and thus par/parprio({(0, P), (1, Q)}) ≡ P|Q
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Choice (by executor): Let B a BT, P, Q be two processes resp. BTs in the right-hand
side of an executor node ne ∈ B, with P being first in execution sequence, and with np

and nq root nodes of P and Q respectively, i.e. ne = exec
(

R = {(0, np), (1, nq)}, k ∈
{0, 1}

)
.

exec
(

R = {(0, np), (1, nq)}, k ∈ {0, 1}
)
=

np(Rp, ϕp) , k = 0

nq(Rq, ϕq) , k = 1
≡ P + Q

i.e. the process B continues as process P or process Q, depending on the choice of
parameter k. As shown for Action and Parallel execution, the nodes np and nq may
encode single actions in case of them being leaf nodes, or processes, in case of np and
nq being composite nodes.

Choice (by priority and conditioned sequence):

Consider a priority node prio
(
{(0, p), (1, q)}, ∅

)
, with p a sequence node

seq
(
{(0, ncond)} ∪ P ⊆ 2(N xN), ∅

)
, i.e., with a condition node preceding a set of

right-hand side nodes as first element of the sequence. Let us first assume that ncond

evaluates as false. It holds by Eqn. 6.11 that nseq returns FAIL directly after execut-
ing ncond, i.e., the remaining process P is discarded.

Moreover, by Eqn. 6.12, it holds that nprio evaluates its children until the first child
node returns SUCCESS, i.e., nprio will continue evaluating the process encoded by
node q. Conversely, if ncond evaluates as true, process P of node p will be executed
entirely, whereas the process encoded by q will be skipped due to early exit of the
priority node. By this it holds that

prio
[{(

0, seq
[
{(0, cond), (1, P)}, ∅

]
), (1, Q)

)}
, ∅
]
≡ P + Q

Process labelling in CCS translates to naming behavior trees, which follows directly
from that by all of the above, any Process P in CCS notation can be transferred to an
equivalent BT B ∈ B, and thus any name K assigned to BT B can be considered a pro-
cess identifier K for the equivalent process P. Referring to P via K then corresponds
to calling BT B from a parent process using a respective BT node.

6.2.6 Conclusion

In this Section, we demonstrated how to formally transfer notations of agent pro-
grams in Milner Calculus (CCS) [176] into executable Behavior Trees (BT) [125, 6].
For this, we first provided a formal notation for BTs that takes into account the topo-
logical relation between BT nodes within the tree. We then continued to formalize
BT node execution semantics in Milner Calculus. Consequently, we could prove
that there exists a semantic preserving mapping between BTs and CCS process no-
tations. This finding allows to transfer formally specified Multi-Agent Systems into
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executable equivalents, while ensuring to maintain execution semantics as notated
in the formal calculus. For future work, we plan to investigate means to automati-
cally compile SPARQL-BT from formal CCS notations. Conversely, we are interested
to examine possibilities of automated model checking of agent behavior described
as BTs, by transferring respective approaches for CCS processes to BTs, while ex-
ploiting the semantic preserving mapping as presented in this Section.

The application of the concepts will be demonstrated in Section 7.3 in the scope of
a cyber-phyiscal production scenario in an Industry 4.0 setting. The definition and
implementation of that use-case was as well published in the scope of "Behavior
Trees as executable representation of Milner Calculus notations". [235]
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Chapter 7

Application and Evaluation

This chapter will demonstrate the application of the previously presented solutions
in actual use case scenarios. The scenarios are chosen to show how a proper agent-
environment interaction via Linked Data media achieve both coordination of a crowd
of agents, as well as optimization of agent behavior.

All of the presented scenarios intend to provide examples of how to employ the con-
cepts of reactive Linked Data agents, and (dynamic) Linked Data media, to achieve
the desired results. Sections 7.2, 7.3 and 7.4 will for this cover scenarios that require
multi agent coordination in the domain of cyber physical production.

Among the coordination scenarios, Section 7.2 employs a dynamically lifted simu-
lation using ECA2LD (cf. Section 5.2), as underlying technology to implement the
dynamic Linked Data environment, specifically the Unity 3D implementation as de-
scribed in Section 5.2.6. The use case in Section 7.3 employs a Linked Data Platform
server (see also 3.1.2 as medium to provide the environment, and implements hys-
teretic agent swarms using AJAN behavior trees as presented in Section 6.2. The
use case presented in Section 7.4 is implemented against the reactive stigLD server
component, as presented in Section 5.1.

The optimization scenario in Section 7.5 does not require environment dynamics,
and is therefore implemented using Apache Fuseki79 as Linked Data endpoint. Sec-
tion 7.6 uses the stigLD server component for dynamic environment evolution, as
presented in Section 5.1.

Each of the individual Sections will first outline the chosen scenario, and give a de-
tailed description of how the respective scenario is modelled and published in a
Linked Data medium. Each scenario will moreover provide a detailed definition
of the agent models, and their interaction with the environment. Finally, each Sec-
tion will define evaluation metrics for the presented scenario, and show efficacy and
performance of the demonstrated solutions by evaluating them against the chosen
metrics.

79https://jena.apache.org/documentation/fuseki2/ Visited May 2023

https://jena.apache.org/documentation/fuseki2/
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7.1 USE CASE 1: Cyber-physical airplane assembly

Linked Data as medium, provided from real-time simulations using ECA2LD in
both its standalone and Unity3D implementation (cf. Section 5.2), in conjunction
with hyper-media agents modelled by AJAN behavior trees (cf. Section 6.2), have
been successfully applied to implement a series of applications from the domain of
cyber-physical airplane assembly [157, 6, 7].

FIGURE 7.1: High level architecture of applications from the do-
main of cyber-physical airplane assembly: The Linked Data medium
("ROA", "Resource Oriented Architecture") serves as integration layer

for connected services. (Image source: [6]

The general architecture of the use-cases is reflected in Figure 7.1 (originally pub-
lished in [6]). The Linked Data medium ("ROA" in the diagram, for "Resource Ori-
ented Architecture") serves as representation and interaction point for a variety of
connected applications. The selection of applications varied depending on the im-
plemented scenario, with Fig. 7.1 showing the selection of tools of the wing assembly
scenario (see [6], and Section 7.1.1).

Within the domain, use-cases from different scenarios were implemented: human-
robot collaboration for wing assembly [6] (see Fig. 7.2), and coordination (Fig. 7.3) [7]
and execution [157] (Fig. 7.4) of Cobot [195] supported quality control during the
process of hull construction.

7.1.1 Wing Assembly

The first use-case implemented coordination of robots to support human workers in
ergonomically challenging over-head tasks during the installation of cable raceways
in airplane wings [6] (see Fig. 7.2).

The system employed a number of established robotic programming, simulation,
and visualization tools, such as the ROS robotic operation system, and Gazebo robotic
simulation, with the goal that designers of robotic systems with knowledge of the
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respective systems could use the resulting framework to evaluate worker tasks and
possible support by robotic units with respect to ergonomics of the specific tasks.

FIGURE 7.2: Simulation of raceway installation task by a team of hu-
man and robot workers (originally published in [6])

In the context of the different roles of the Linked Data medium as elaborated on in
Section 4.1, the medium served as representation and (indirect) interaction space for
the connected software systems, whereas environments artifacts were managed by
Unity3D and ROS instances.

The Real-time access to entities in the environment simulations was established via
the HTTP and publish-/subscribe protocol as presented in Section 5.2.5.

7.1.2 Coordination of Cobot supported quality control

The second use-case covered installation of fortification stringers in the airplane hull,
particularly the installation and quality inspection of fixation rivets before applying
sealant, and performing the sealing as final step.

In the implemented scenario in [7], crucial steps are carried out by human worker
who are supported by Cobot units, with the Cobot units performing a first quality
check of installed rivets after the human worker finished his work (see Figure 7.3).
Detected faults are then reported to a second worker for a closer inspection. As
soon as closer inspection is finished, the second worker marks the respective rivets
as "OK", which serves as signal to a second Cobot to apply the sealant and finish
installation of the particular rivet.

The system presented in [7] covered the coordination of the Cobots using a high
performance optimizer to align the Cobot programs with the steps being carried out
by the worker. Autonomy of the human workers to keep full control of the scenario
was a key challenge.

The environment was simulated using Unity3D as game engine. Entities simulated
by Unity3D were published to the Linked Data layer using the Unity3D ECA2LD ex-
tension (cf. Section 5.2.6). The planner operated on the environment representation
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FIGURE 7.3: Simulation of of quality check of rivet sealant application
during fortification stringer installation (originally published in [7])

as served by the Linked Data medium, while interaction with simulated workers and
Cobots was provided via the medium by the protocols as described in Section 5.2.5.

The resulting scenario simulation allowed to evaluate various criteria, e.g. time to
fulfill a specific task sequence, reachability of positions and objects, or ergonomic
assessment of poses based on visual appearance with respect to different body sizes.

7.1.3 AR support for Cobot supported quality control

FIGURE 7.4: AR supported quality check with human-robot collabo-
ration. (Originally published in [157])

The third demonstrator focused on the interaction between human workers and
Cobots. In the presented scenario, the initial quality check by the Cobot unit was
visualized towards the human worker using a Holo Lens AR device (see Fig. 7.4).
Once the worker checked the state of highlighted rivet units, they marked them as
ready for sealing via the AR via hand gestures [157].
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The scenario employed the same Linked Data based architecture as the previous two
use-cases. The rivets were organized in several levels of detail, ranging from hull,
over hull segment, to fortification stringer, and finally the single rivets. The LoD
areas and rivets were in this scenario hosted using an ECA2LD based standalone
server (cf. Section 5.2.6).

The Linked Data medium, provided as ECA2LD standalone solution, handled 45
stringer frames in 3 hull regions with 810 rivet instances in total, resulting in a num-
ber of 3964 resources, encoded in a total of more than 23.000 RDF triples. SPARQL
query response times were in the range of 200ms to up to 800ms.

7.1.4 Summary

The presented use-cases demonstrated the use of a Linked Data medium as interac-
tive representation and interaction space for various connected heterogeneous simu-
lations and AI systems. While the presented scenarios did not yet cover multi-agent
based coordination and optimization, the suitability of Linked Data as real-time
medium for interactive environment representation could be convincingly shown,
showcasing the technologies presented in the scope of this thesis.

7.2 USE CASE 2 (Coordination): Shopfloor scheduling

The following application scenario was originally published in [237]. It demon-
strates how to employ a read-write Linked Data layer as stigmergic medium in the
agent space by an application example from the domain of digital manufacturing.
The example is loosely based on the use case presented in [218]: A (simulated) fac-
tory receives orders for simple IoT modules on a "batch size 1" production line as
commonly envisioned in Industry 4.0 [146, 180]. Once an order is received, it is car-
ried out by employing machines that provide the capabilities to perform manufac-
turing steps necessary for particular steps during the production process, e.g. pro-
viding plastic casts for casings, soldering electric circuits, or fixing the final model
(see Figure 7.5).

Orders are executed by AI agents. The need for coordination arises as machines are
shared between simultaneously executed orders.

The purpose of the presented coordination algorithm is to find a suitable distribution
of machines between agents working on different orders with the goal to complete
each order in the shortest possible time.
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FIGURE 7.5: Process of IoT module production used as example.

FIGURE 7.6: Domain model of the chosen application example.

7.2.1 Domain Model

The domain model for our application example is shown in Figure 7.6: An order
requests a certain product to be produced. How a product can be assembled is de-
scribed in recipes. These recipes specify what other products are needed as prereq-
uisite, and which manufacturing step is necessary to assemble supply products to a
higher level product. Manufacturing steps are provided by units on the shop floor,
and can be executed by network interaction endpoints. As common in models for
automated production, and also assumed in ([43]) and ([218]), we assume produc-
tion units to have callable network endpoints by which their particular production
step can be executed. Affordance- and disturbance markers are used to encourage
or discourage the use of a certain interaction endpoint.
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1 recipes:main -module rdf:type schema:HowTo ;

2 schema:about mainboard:product ;

3 schema:step steps:solder ;

4 schema:supply [

5 rdf:type schema:HowToSupply ;

6 schema:item cpu:product ] ,

7 [ rdf:type schema:HowToSupply ;

8 schema:item ram:product ] .

LISTING 7.1: Example of a production recipe using
schema and steps vocabularies.

A recipe specifies the produced artifact by the schema:about predicate, the required
supply from which the product is created (indicated the schema:supply predicate),
and the production step that needs to be performed to combine the specified sup-
plies to the resulting product via the schema:step predicate (see Listing 7.1). schema:
denotes the namespace of the schema.org ontology 80. We assume a set of supply
materials to be provided to the factory without the need for specific production.
These supply materials will be provided by dispenser units, and do not require any
additional supplies.

Products are described in terms of an RDF class, e.g. (<#product>, rdf:type,

cpu:product).

Dispenser and production units specify their (callable) execution endpoint
as td:InteractionPattern in a set of triples that is referenced
via td:providesInteractionPattern. The Interaction Pattern specifies the step car-
ried out by the respective unit (see also Listing 7.2). Dispensers refer to the class of
dispensed products via a triple (<#unit>, schema:yield, <#productClass>), with
<#productClass> referring to the RDF class of the produced product. Dispenser
units can dispense more than one class of products. Production units do not spec-
ify particular products that are produced at the unit to allow for various products
that are produced with the same step to be produced at the same machine. Instead,
they provide information about the type of provided production step via a triple
(<#unit>, schema:step, steps:<type>). An example of a simple soldering unit is
shown in Listing 7.2.

Interaction Patterns on machines describe particular actions that agents may perform
by to trigger the execution of the respective production step on the physical machine.
This is done by resolving the URI that is provided by the respective resource, and
that is identified by the property path td:isAccessibleThrough/td:href, with td:

denoting the namespace of the Web Thing Description ontology 81.

80https://schema.org/ Visited May 2023
81https://www.w3.org/2019/wot/td Visited May 2023

https://schema.org/
https://www.w3.org/2019/wot/td
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1 sol:station -1 a td:Thing ;

2 td:thingName "Soldering Station 1"^^ xsd:string ;

3 td:providesInteractionPattern sol:soldering .

4

5 sol:soldering a td:InteractionPattern ;

6 td:interactionName "solder "^^xsd:string ;

7 schema:step steps:solder ;

8 td:isAccessibleThrough [

9 td:href <http ://10.2.100.17/ solder/>

10 ] .

LISTING 7.2: Example of a simple description of
a workstation that performs a soldering step. The
soldering action is executed by calling the respective

referenced URI.

Affordances and Disturbances

1 <urn:uuid:a526 >

2 a stigmergy:marker ;

3 stigmergy:marked sol:soldering ;

4 stigmergy:scope order:module ;

5 schema:supply cpu:product ,

6 ram:product ;

7 schema:yield mm:product .

LISTING 7.3: Example of an affordance marker
resource that advertises a steps:soldering interaction

as relevant for the current order

Affordances will advertise td:InteractionPattern resources as callable endpoint
to some executing agent. Affordances are markers that are left on a
td:InteractionPattern.

Listing 7.3 shows an example of such a marker: The marker gives information about
which Interaction Pattern it marked (via stigmergy:marked), for which order the re-
spective pattern needs to be executed (via stigmergy:scope), whether or not the re-
spective step needs particular supplies to be present to be executed (schema:supply),
and finally, which product will be the result of calling the respective InteractionPat-
tern resource (schema:yield). A marker can link to one or more interaction pat-
terns. If more than one interaction pattern is marked, it is up to an executing agent
to choose which of the endpoints to call.

Disturbance markers will discourage agents from visiting a marked resource. If an af-
fordance marker links to several resource endpoints, an executing agent will decide
for an endpoint that is the least influenced by disturbance markers.
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7.2.2 Agent models

We now show how to realize a stigmergy-based coordination algorithm based on
the definition of the Linked Data layer from the previous section.

Marker agents will employ affordance markers to advertise and encourage interaction
with an endpoint in the Linked Data layer to agents. When interacting with af-
forded resources, builder agents will leave disturbance markers to discourage agents
from further interaction with the marked endpoint to avoid the same resources be-
ing called by agents disproportionally often. By the employed stigmergic principles,
the approach is intended to find a balanced, correct production in an online fashion,
during execution.

The algorithm to execute a coordinated production process for multiple orders is im-
plemented in two steps by two classes of agents. We divide agents into marker agents
and builder agents. Marker agents traverse graphs in the agent space and generate
production markers as affordances on resources in the Artifact space as shown in List-
ing 7.3. Builder agents are attracted towards the respective endpoints by the affor-
dances left by the marker agents and execute those production endpoints that were
marked in the scope of the current order, given that the production requirements
(supplies) are met.

Marker Agents

The goal of a marker agent to identify all suitable production units that will be in-
volved in the process of producing a particular order. For this, marker agents will
traverse recipe resources and leave affordance markers on resources as follows:

The agent maintains a list unvisited of nodes it would like to visit, but has not yet.

1. Check for order resources that have not yet been handled, i.e., do not carry a
mark. Follow the link via the schema:orderedItem property to the resource
that represents the class of the ordered product and add it to unvisited. Mark
the order as handled.

2. From a resource r in unvisited, find a respective recipe blueprint b that con-
tains a triple (b, schema:about, r), i.e., the recipe for the respective product.

3. Check for a schema:step link, and visit all interaction patterns i matching the
schema:step; if the step is steps:dispense, find the respective interaction pat-
terns of dispenser units that schema:yield r .

4. Leave an affordance marker on each visited i (for both production and dispenser,
cf. Listing 7.3).

5. For each resource s in schema:supplies of b, add s to unvisited. If no
schema:supply is specified, or resource points to an empty set (rdf:nil), do
nothing. Remove the current resource r from unvisited.
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6. If unvisited is empty, terminate; else, go to 2.

The mark which is left by the agent in Step 4. follows the structure of the example
shown in Listing 7.3. It includes information about the order in the scope of which
it was placed, and will moreover specify the required supplies s for this step. Mark-
ers may be scoped by order, using a triple (marker, stig:scope, order) on the marker
resource (Narrowcast), or unscoped and by this visible for every other agent (Broad-
cast). Following the given algorithm, a marker agent is solely driven by the structure
of the knowledge graph that is formed between product and blueprint descriptions.
Each subsequent step is solely decided by the state of the currently visited resource.
Its behavior can by this be classified as a sematectonic stigmergic agent (cf. Section 2.3,
[117]).

Builder Agents

Builder agents are attracted to markers left by marker agents and call the respective
InteractionPattern endpoints. A Builder agent for this proceeds in the following
manner:

1. Scan for all markers m left by marker agents. If the builder agent is bound to
a specific scope (i.e. fulfilling a particular order), it will only follow markers in
its scope (i.e., with a matching (m, stig:scope, order) triple present.

2. For each m, the checks, e.g. via a fitting SPARQL query, if for each supply s
specified by the marker via (m, schema:supply, s), there exists a product p that
is a product of class s, as encoded by a triple (p, rdf:type, s).

3. For each m for which supplies are fulfilled, visit the InteractionPattern re-
source i that is marked via (m, stig:marked, i) and that carries the least amount
of disturbance markers. Execute the action endpoint that is identified via
td:isAccessibleThrough/td:href.

4. Leave a disturbance marker on the interaction pattern resource and removes
the affordance marker.

7.2.3 Discussion

In the scope of the original publication [237], the use-case was intended to demon-
strate the proper materialization of stigmergic self-coordinating principles. The al-
gorithm was therefore against two criteria: first, does it implement stigmergic prin-
ciples, as defined in the original publication. Second, does the algorithm ultimately
lead to a correct result.

Correctness of the Algorithm

An order specificies the expected result of one instance of the algorithm, namely the
specific product that is to be produced in the end. By marker agents starting from
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the expected goal (the ordered product), and following links backwards through the
needed supplies, it is ensured that over the total production process, all needed sup-
plies will be available eventually. Marker agents do not need to keep memory of the
goal they are following, but are guided entirely by the structure of the Linked Data
medium. It can be easily shown that the marker agent’s algorithm will terminate as
soon as all dispensable supplies (leaf nodes in the graph in Figure 7.5) are provided
with a marker. The builder agent’s algorithm will terminate when the last marker is
consumed. Builder agents are not restricted to follow only markers of a specific or-
der. Consuming a marker and triggering the respective action will always result in a
product that was previously found to be a requirement by some marker agent. Even-
tually, by builder agents executing endpoints for products with rising complexity as
supplies are more and more met, the ordered product will be produced.

If several orders are executed in parallel, production units (and dispensers) will sim-
ply receive several independent markers. By having separate markers per order, and
having builder agents removing the marker they followed after executing the pro-
duction step, it is ensured that for every order, every production step is executed
exactly once. The concept may be extended for products to require more than one
instance of a supply product. In this case, a marker agent would leave a marker per
required instance of a supply.

The opportunity for coordination arises in Step 3. of the builder agent algorithm:
For every recipe, markers are left on every machine that is capable of carrying out
the needed production step. When following the marker trace, builder agents have a
choice which of the marked machines they actually execute. The decision for which
machine to call for to execute the step is based on the number of disturbance markers
left on the resource: The more agents visit, means, the busier the machine already
is with executing orders, the more disturbance markers are left on the machine, and
agents will be more likely to divert to other machines to complete their order.

The algorithm could further be extended to take into account failures of production
units. Builder agents that observe a failure, for example by requests to an executable
endpoint timing out, receiving error responses from the endpoint, or by not observ-
ing the expected result of their actions for a while, would leave a respective infor-
mation on the faulty resource which inhibits other agents to consider the endpoint
entirely, and highlight the unit represented by the marked resource for troubleshoot-
ing to maintenance staff.

The algorithm at this point ignores transport of products on the shop floor. A more
sophisticated heuristic may take into account also transport times between machines
between the different steps.
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Implementation of Stigmergic Principles

In the presented algorithm, several agents with different competences (marker and
builder agents) jointly solve the given problem. These agents react both to mark-
ers left by other agents, as well as to direct results of their own work: the supply
products that become avaialble in the process of production.

The present approach by this implements collective stigmergy in a stigmergic system
with marker-based and sematectonic elements.

In the following, we analyse the use of Linked Data as stigmergic medium based
on findings from the algorithm w.r.t. benefits of stigmergic systems (see also ([115,
pp.13-14])):

In the presented scenario, agents do not plan or anticipate, but only follow links be-
tween resources in the Linked Data medium. The condition-action-rules that deter-
mine which resources to visit are generic. Agents do not need to make per-resource
decision whether following the rule is beneficial for the goal, or not. The ”goal”
(production of a specific order) is, in particular, not known to an agent, and reaching
any goal is no condition for termination of the algorithm.

Memory-less agents are sufficient by storing all relevant information that arises during
execution in terms of resources in the medium. Same goes for communication between
agents, which is eliminated by limiting interaction to following markers left by other
agents. Agents are moreover not aware of each other, as their interaction is limited
entirely to the Linked Data medium. This also implies that agents do not need to be
simultaneously present.

The correct sequence of steps arises naturally by including information about re-
quired supplies, both when a marker agent decides which recipe resources to visit
next, and when a builder agent decides which marked production resource to visit
next. There is no requirement to explicitly model (and by this, impose) sequences
during execution of a particular production in a form like ”after you have success-
fully visited this resource, continue with that specific resource over there”. Instead, se-
quence arises implicitly from the condition-action rules encoded in the Linked Data
medium.

Non-necessity for commitment is achieved by having no explicit assignment of tasks to
agents, but have agents decide which resource to visit, and how to interact with it
(e.g., perform their competent action), solely on the state of resources in the medium.
Any agent can pick up any task at any point in time according to the agents’ compe-
tence.

Finally, as it is obvious from the algorithms of both marker and builder agents, that
there is no centralized coordination or control authority that agents need to consult, or
by which they are controlled. Coordination arises solely from resource states and
markers left in the medium, as discussed above.
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7.2.4 Implementation

We implemented the example using the Unity 3D game engine to simulate the fac-
tory, a Fuseki triple store to host the read-write Linked Data medium, and the AJAN
agent platform82,83 ([6, 7]) to implement the behaviors of both marker and builder
agents. All related resources will be published on GitHub:
https://github.com/dfki-asr/stigmergy-demo

7.3 USE CASE 3: Shopfloor Scheduling II

In the scope of [235], the previous use-case (Section 7.2) was adapted to demonstrate
the formal definition of agent models in terms of Milner CCS expressions and their
respective implementation in semantically equivalent behavior trees, as described
in Section 6.2. The contents of this section have originally been published as parts
of the paper "Behavior Trees as executable representation of Milner Calculus nota-
tions" [235].

The use-case defines and implements different agents for a self-coordinating shop
floor scenario: A virtual factory shop floor provides production units to produce
certain products. Each type of production unit is capable of producing one or more
different product kinds. Products assembled from two or more products, also being
produced within the same factory, or dispensed by dispenser stations in the fac-
tory. The assembly instructions of higher level products are provided in terms of
blueprints that specify which products need to be provided as supply to assemble
the higher level product.

The shop floor, manufacturing units, product blueprints, and products available on
the shop floor are represented as Web resources, following the Linked Data Plat-
form84 specification (see also Fig. 7.7). Each resource provides an RDF description
of its represented entity. For Workstations, this description includes a reference to a
callable endpoint by which the workstation can be triggered to produce a product
according to its capabilities.

7.3.1 Agent Models

We want to tackle the problem in a self organized approach to find a solution in an
online fashion that is adaptable to changes of scenario during execution, as it has
been discussed for self organized scenarios.

From the generic description for hysteretic agent swarms in Section 6.1.2, we model
three hysteretic agent models, namely Order Handling Agent, Job Scheduling Agent,
and Job Execution Agent, by which the described scenario is handled.85

82https://github.com/aantakli/AJAN-service Visited May 2023
83https://github.com/aantakli/AJAN-editor Visited May 2023
84https://www.w3.org/TR/ldp/ Visited May 2023
85Detailed formal models of JSA and JEA are omitted for sake of brevity.

https://github.com/dfki-asr/stigmergy-demo
https://github.com/aantakli/AJAN-service
https://github.com/aantakli/AJAN-editor
https://www.w3.org/TR/ldp/
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FIGURE 7.7: Hierarchical structure of Linked Data Platform container
resources (blue), the contained entity types (red), and their semantic

relations in terms of RDF links.

Order Handling Agent:

Order Handling Agents (OHA) are initially spawned on the "Orders" collection re-
source. During PERCeption, they update their link set to contain references to any
schema:Order resource in the order collection that is not yet annotated as being pro-
cessed (namespace "schema" abbreviated as 's'), and relocates to one of them:

L′′ = sel(qOHANAV, G′′) ≡ L′′ =
{

?j|(?j , s : orderStatus , s : OrderProcessing) /∈ G′′}
Upon visiting a schema:Order resource j, the agent, as REACTion, marks the order as
in progress (namespace "schema" abbreviated with 's'):

ACTOHA(j, G′′, L′′) = reqη(j)(POST, j, {(?j , s : orderStatus , s : OrderProcessing)}) ,

and spawns a JSA on the blueprint collection resource. The initial knowledge of the
JSA specifies the ProductKind that is assembled by the blueprint j currently visited
by the OHA:

SPAWNOHA = SPAWN(JSA, Ki, Ls), with

Ki = {(_ : self, schema : orderedProduct, ?p)|(?i , schema : about , ?p) ∈ G′′},

Ls = {?j|(?j , a , : BlueprintContainer)}

After acting on an order resource, and spawning the respective JSA, the OHA relocates
back to the order collection resource.

Job Scheduling Agent:

Job Scheduling Agents (JSA) are spawned on the collection of all product blueprints,
with their initial knowledge containing the ProductKind p
for which it is supposed to schedule production, i.e.
K = {(_ : self, schema : orderedProduct, p)}. Upon PERCeption of the blueprint
collection, it will add to its link set the resource within the collection that is described
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FIGURE 7.8: Behavior trees modelling the processes of the Order Han-
dling agent: Agent as Sense, Perception, Reaction sequence (a), sens-
ing via QUERY nodes (b), perception using UPDATE (c), and reaction (d)
as either relocation (by re-initiating the agent using MESSAGE), or par-

allel resource interaction (e) and spawn action (f).

to schema:yield the requested ProductKind86, and relocates to this resource.87

During REACTion, it SPAWNs for every required schema:supply an
offspring of Job Scheduling agents with initial knowledge
Ki = {(_ : self, schema : orderedProduct, s)}, and moreover a JEA (see below) with
initial resource i the container of all Workstation resources, and initial knowledge
K = {(_ : self, schema : orderedProduct, p)}, i.e., the ordered ProductKind for which
the JSA was created.

Job Execution Agent:

Job Execution Agents (JEA) are spawned on the Workstation container resource, with
initial knowledge containing the ProductKind they are supposed to produce, and the
schema:supply that is required to successfully assemble the ordered product. Dur-
ing PERCeption, the JEA will update its link set to contain all Workstation resources
that are described to schema:yield the requested product, of which the specified
schema:supply is fulfilled88, and relocates to one of them. While located on a Work-
station resource, the agent will identify, during PERCeption, the callable workstation
endpoint, and issue a request to produce the required product during ACT.

7.3.2 Implementation

We implemented the above defined agent models as AJAN SPARQL-BTs. Fig. 7.8
shows the set of BTs that we derived from the OHA model. By understanding BTs as

86We make use of the SPARQL SERVICE keyword to include linked resources into the perception of
a local resource via federated queries.

87We at this point assume that for each product, there is only one blueprint that describes assembly
of a product.

88At the current state of the algorithm, we abstract from location information, and assume any
present product of a fitting kind being ready for input as schema:supply
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(labeled) processes, mapping operators to composite nodes, as shown in Sec. 6.2.5,
and mapping request actions to the respective leaf node types for SPARQL-BT as
described in 6.2.3, we could successfully transfer all 3 agent models to semantically
equivalent behaviors. The BTs are published on GitHub, along with all necessary
resources to run the application example89.

7.4 USE CASE 4 (Coordination): Make to order pickup and
delivery

The second evaluation use-case demonstrates how to apply tropistic agents in Linked
Data Media to a Make-to-Order (MTO) fulfilment process from the production do-
main. This use-case was originally published in [220].

As for the algorithm showcased in Section 7.2, the presented approach is applicable
to problems that target a "batch size one" approach [146, 180], this time covering
shop floor logistics, rather than job scheduling.

7.4.1 Problem Definition

Let us consider a shop floor area that is represented by a discrete grid; in each grid
cell is a shop floor location and can accommodate a single production resource (see
also Fig. 7.9. We distinguish between three types of production resources: machines,
output slots assigned to individual machines and transporters.

Machines produce a product of not further specified kind in response to a confirmed
order received for it from a final customer. Whenever a machine finishes production
of a product, the product is placed into an output slot awaiting pickup by a trans-
porter unit. Output slots have limited capacity. If any of the output slots are full, the
associated machine cannot produce any new products until the output slot is emp-
tied by the transporters. Transporters are initially situated in idle locations spread
throughout the grid; they can move to any unoccupied location within their respec-
tive Manhattan distance neighbourhood. Their task is to pick up finished products
from the output slots of machines, so that production can go on without significant
interruptions.

A visualization of the shopfloor model is shown in Figure 7.9. The visualization
displays the 10 by 10 grid, with cells labeled with their respective identifiers in the
range from 1 to 100, machine units labeled as M, and transporter units labeled as
T, respectively. Green colored cells encode the presence of transient and diffusing
semio-chemical markers, with color intensity encoding marker concentration on a
particular grid cell (cf Section 7.4.3).

89https://github.com/dfki-asr/wiait22-demo (Visited May 2023)

https://github.com/dfki-asr/wiait22-demo
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FIGURE 7.9: Visualisation of the shopfloor environment of the make
to order usecase with spreading markers to attract transport unit.s

The shop floor will continuously receive new customer orders. Whenever a new
order is received by the simulation, the order is entered into a queue of one of the
machines of the shop floor. Producing the product in the machine once the order
has moved to the head of the queue takes a fixed amount of time. We aim to coor-
dinate the MTO fulfilment process such that customer orders should be assigned to
machines in such a way that the overall machine work load is balanced, and mean
times to deliver – the time from start of production to delivery of the finished prod-
uct – should be minimized. More specifically, we are interested in improving the
following metrics

– average number of steps moved by the transporters

– average maximum and minimum machine loads

– deviation in maximum load experienced by machines

– average time between start of production of a product until pickup by a trans-
port unit

All material needed to set up and run the example were provided online90 along
with an interactive demo instance91 in the scope of the original publication.

7.4.2 Shop Floor Representation in StigLD

In our example, the stig:Medium represents the overall shop floor area as a 10x10
grid of stig:Topos instances. Neighborhood relations depend on the type of agent
that is exploring the medium (see also Section 7.4.3): For transporter agents that
navigate the shopfloor, each st:Topos links via stig:adjacentTo predicates to the

90https://github.com/BMBF-MOSAIK/StigLD-Demo
91http://mosaik.dfki.de

https://github.com/BMBF-MOSAIK/StigLD-Demo
http://mosaik.dfki.de
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stig:Topos instances in its Manhattan distance neighborhood. Order assignment
agents ignore spatial information, and consider all topoi that carry a machine unit as
mutually connected. Production resources are assigned to their individual stig:Topos
instances using stig:locatedAt link predicates; the Transporters’ idle locations –
the grid cells to which they return after having finished a pickup – are given by
ex:idlePosition link predicates.

7.4.3 Agent Models

We employ marker-based stigmergy with transient semio-chemical marker models to
achieve the desired coordination. For this, we employ two types of agents: one
type assigns open orders to available machines on the shop floor, the other controls
transport units.

Order Assignment Agents: Transient stigmergy based on linear decay

The task of Order Assignment Agents (OAA) is to ensure equal distribution of pro-
duction workloads over machine units on the shopfloor. To this end, order assign-
ment agents will assign newly received orders to machine units, and place a negative
feedback marker on the topos that accommodates the respective machine. If mul-
tiple feedback markers are assigned to a single machine, their concentration will
be added. Consequently, the more products are assigned to a single machine, the
higher the concentration of negative feedback markers will be. For subsequent or-
ders, Order Assignment Agents will prefer machines with the least concentration of
negative feedback markers. By negative feedback markers decaying linearly over
time, machines that received markers will become more attractive again the more
time passes.

Following the original paper [220], using the notion of tropistic stigmergic agents
from the same publication, the behavior of an Order Assignment Agent OAA can be
specified as follows:

For an open order, an order assignment agent OAA = PERC(i, G = ∅, L = ∅) is placed
on a randomly chosen topos i that is accommodating a machine.

During situated perception, the agent will first update its set of perceived topoi by a
perceptional query qPERC (cf. Eqn 6.1). It will then proceed to relocate to one the topos
that, among the perceived topoi, accommodates a machine unit, and has the lowest
concentration of negative feedback markers This situated perception is described in
[220] as:

(G′′ = ans(qPERC, G′)) ≡
(
∀t ∈ G′ ⇒ t ∈ G′′)

(L′′ = sel(qNAV, G′′)) ≡ (L′′ = {j | argmin
j

<j> stig:carries [ stig:level ?val;

a ex:NFMarker ];

�(stig:locatedAt) [ a ex:Machine ].

})
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When selecting its reaction (cf. Eqn. 6.2)

REACT(i, G, L) = if i /∈ L then PERC(j ∈ L, ∅, ∅) else MARK(i, G, L)

the agent OAA will either (i) re-situate to a topos with lower concentration of negative
feedback or (ii) leave a negative feedback marker92 on its current topos:

MARK(i, G, L) = reqη(i)(PUT, i, ans(qPUT, G)).resη(i)(rc, (∅, ∅)).0

ans(qPUT, G) ≡ descr(i, G) ∪ {<i> stig:carries [ a ex:NFMarker; stig:level 1.0].}

Negative feedback markers will decay linearly over time; the system’s endogenous
dynamics with respect to negative feedback markers is given by Eqn. 4.1 with

ans(qEVO,G) ≡

?i stig:carries [ a ex:NFMarker; stig:level ?c; stig:decayRate ?d ].

⇓
?i stig:carries [ stig:level stigFN:linear_decay(∆t, ?d, ?c) ].


Leaving a negative feedback marker inhibits future selection of a machine, and in-
creases the likelihood of balancing machine workloads during the MTO process.

Transporter Agents: Transient stigmergy based on diffusion

Transporter agents TA steer transport units on the shopfloor. Their task is to collect
finished products that are waiting for pickup in machine output slots. Transporters
have to find a trade-off between minimizing mean times to deliver, and minimizing
steps of transporter units on the shopfloor: Picking up products early may result in
a short time to deliver for the particular product. However, performing an individ-
ual pickup run for every product results in high number of transporter steps, and
potential delay when transporters have to start a new pick up run from their idle
positions to the machines for later products. Conversely, waiting for the output slot
to fill up and to collect a number of products at once reduces total move distance
of the transporters, but may result in long delivery times for single products if they
have to wait in the output slot for longer time.

To accommodate for both constraints, TA follow traces of Transportation Markers (TMark-
ers; represented as ex:TMarker in the Linked Data medium), which over time dif-
fuse spatially. TMarkers are generated on machine output slots whenever a finished
product wanders into the respective slot. Following immanent medium updates as
described in Section 4.3, the temporal updates of spatial diffusion are triggered by
client GET requests, and are implemented as evaluation of an evolutional query qEVO,
with ans(qECVO) as:

92– as well as a production task into the respective machine’s task queue –



126 Chapter 7. Application and Evaluation

ans(qEVO,G) ≡



?i stig:carries [ a ex:TMarker; stig:level ?c; ].

⇓
?j stig:carries [ a ex:TMarker;

stig:level stigFN:diffuse1D(

?i, stigFN:dist_manhattan(?i, ?j), ?c, ∆t
) ].


By the chosen marker model, we achieve the aforementioned trade-off between
shorter times and waiting times as follows: The longer a product is waiting in an
output slot, the farther the respective marker will spread over the shop floor, even-
tually attracting a TA for pickup. The more products are waiting in an output slot,
the higher the concentration of the diffusion source, leading to transporters being at-
tracted to output slots with higher number of products. In combination, TA will be at-
tracted to output slots, in which higher amounts of products await pickup, with longer
waiting products attracting potentially more transports, increasing the chance for a
soon pickup.

In [220], we modelled Transporter Agents TA that follow TMarker concentrations as
follows:

Transporter agents are located on grid cells, with a triple (<t> stig:locatedAt

<c>), with (<c> a stig:Topos), encoding the locatedness of a transporter <t> on
a grid cell Topos <c>. Transporter agents perceive grid cell Topoi mutually adjacent,
as additionally expressed by triples (<c1> stig:adjacentTo <c2>).

A transporter agent TA = PERC(s, G = ∅, L = ∅) is initially situated in its idle
location s; the agent performs situated perception as specified in Equation 6.1 with

(G′′ = ans(qPERC, G′)) ≡
(
∀t ∈ G′ ⇒ t ∈ G′′)

(L′′ = sel(qNAV, G′′)) ≡ (L′′ = {l | argmax
l

(
<l> stig:carries [ stig:level ?val;

a ex:TMarker ].

)
})

The Reaction of the agent acc. to Eqn. 6.2 can be described as:

REACT(i, G, L) = if i /∈ L then PERC(j ∈ L, ∅, ∅) else PICKUP(i, G, L)

Transporter Agents thus navigate to the highest concentration of ex:TMarker stig-
mata in its neighbourhood, and by this, climb the increasing gradient until reaching
the source of the diffusion process: the marker on the output slot with the finished
products.

When located at a topos i with highest marker concentration in the neighbourhood,
i.e., the product output slot, TA will perform a PICKUP operation. During PICKUP, the
agent will remove any products from the output slot, and return to its idle position:
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Random walk Stigmergic coordination
Avg. number of updates 85 58
Avg. transporter steps 262 132
Mean time to deliver 112 seconds 67 seconds
Avg. max machine load 13 12
Avg. min machine load 6 8

TABLE 7.1: Results of simulations

PICKUP(i, G, L) = if ∃p : (<p> a ex:Product; stig:locatedAt <i>) ∈ G

then DEL(p, ∅, ∅).MOVE(s, p).PERC(s, ∅, ∅)

else PERC(j ∈ L, ∅, ∅)

7.4.4 Evaluation

We evaluated above scenario with fifty orders for products to be produced and
picked up by the transporters from output slots. The shop floor contains five pro-
duction machines and four transporter artifacts. For the sake of uniformity while
running these simulations, all machines have output slots with a capacity of holding
five finished products.

We employ the agent models as described in the previous section and benchmark
against a simplified transporter agent model that only scans for finished products in
its surroundings to initiate pick up, but otherwise move around randomly, i.e. not
following any marker trace.

We compare the total number of updates required in each instance to complete pro-
ducing fifty orders, as well as emptying them from the output slots. In addition, we
compare the average number of steps moved by the transporters, the deviation in
maximum load experienced by machines in each simulation and the average time
that a finished product spends in an output slot before being picked up by trans-
porters. These results can be seen in Table 7.1. The stigmergic coordination based
shop floor simulation requires around 30% less updates in order to complete the sim-
ulation run of producing fifty orders and transporting them away from the output
slots of machines. Also, it takes half as many movements by transporters compared
to randomly moving transporters. Moreover, the average time it takes from a prod-
uct from beginning of production to pickup by a transporter (mean time to deliver)
is reduced by 40% in the stigmergy based simulation.

Average maximum and minimum machine loads are comparable in both cases, but
slightly worse in the random walk simulations. Ideally, given that we have five
machines and fifty orders, the average number of orders at each machine should
be ten. But, since the randomly moving transporters often take longer to empty
some output slots, the corresponding machines are loaded less relative to the other
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machines. Each update query (which includes the implicit diffusion and linear decay
of stigmergic markers) takes an average of 500 milliseconds to complete.

7.5 USE CASE 5 (Optimization): Minimize Open Stacks

This use case demonstrates how to employ stigmergy in a Linked Data medium to
solve an abstract scheduling problem: the planner domain of the Minimize Num-
ber of Open Stacks problem (MOSP). The following experiments were in its entirety
originally published in the article [236]. This chapter models the problem domain
in terms of a Linked Data representation, and defines three different agent types
with increasing complexity of stigmergic principles applied for evaluation. The ap-
proach will finally be evaluated by comparing the performance with respect to the
commonly employed metric, number of open product stacks created, against the
verified optimal solutions as published in [9].

The experiments in this chapter will show that by proper application of stigmergic
principles, agents will find solutions close to the top ranked planners in the original
benchmark. However, while the planners in the original competition employed of-
fline approaches, the solution presented in this chapter is an online approach, meaning
that a close to optimal, or even optimal solution (depending on the chosen bench-
mark scenario) can be found in just a single run of the agent program, without any
preliminary knowledge or assumption about the optimal solution,

7.5.1 The Minimize Number of Open Stacks Problem

The Minimize Number of Open Stacks Problem (MOSP) is a common scheduling
problem to evaluate planner tools, and was one of the planner domains in the Con-
straint Modelling Challenge 200593 and International Planner Competition 5 [93].
The problem is known to be NP hard [152].

This problem assumes a fictional factory that is capable of producing products of
different kinds. For items of same kind, it can produce batches of arbitrary size.
However, there can always only be one product kind produced at the same time.
Initially, the factory receives a number of orders that demand for one or more kinds
of products. Whenever the factory produced a kind of product that was requested
by one of the orders, a stack is opened for the respective order. Subsequent items
for this order are added to the stack until all items requested by the order have been
added to the stack, which is when the stack of the order will be removed. The goal
is now to find an order in which the factory produces batches of product kinds, such
that the number of open stacks is minimal.

93https://ipg.host.cs.st-andrews.ac.uk/challenge/ (Visited May 2023)

https://ipg.host.cs.st-andrews.ac.uk/challenge/
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7.5.2 Domain representation in Linked Data Medium

We model the scenario in the Linked Data medium as follows: We employ the RDF
namespaces stig: for elements from the domain of stigmergic principles and effects
(i.e., markers and traces), classes from the schema.org Ontology94 with namespace
schema: to refer to elements specific to order processes (e.g. orders and products),
and mosp: as namespace to refer to instances within the minimize open stacks prob-
lem. A class of orderable products can then be described by triples of the form (

mosp:RedBox a schema:Product ).

We employ the notion of situated tropistic agents as described in ([220]), cf. also
Chapter 6, i.e., agents reside on (virtual) locations (or "topoi"), and react based only
on perception of their direct surroundings. As discussed in the original publication,
this model relates closely to stigmergic principles in nature, and is a very suitable
choice to model stigmergic media in Linked Data.

In the presented case, we for this describe orders as instance of schema:Order, as well
as a stigmergic topos, i.e., a resource in the Linked Data medium that can be visited
and inspected by a tropistic stigmergic agent. Orders that share at least one type
of product are perceived as adjacent by the agent (see also Listing 7.4). Adjancency
implies both that an agent can perceive state of the adjacent resource, and move from
a resource to an adjacent one as result of its perception.

1 mosp:order_1 a schema:Order , stig:Topos ;

2 st:adjacentTo mosp:order_2 ;

3 schema:orderedItem mosp:RedBox , mosp:PurpleBox .

4

5 mosp:order_2 a schema:Order , stig:Topos ;

6 st:adjacentTo mosp:order_1 ;

7 schema:orderedItem mosp:BlueBox , mosp:PurpleBox .

LISTING 7.4: Example of two orders in the minimize open
stacks domain that share one common product.

Open stacks for orders are encoded as triples ( <urn> a mosp:Stack ), with <urn> a
unique resource identifier that was randomly created when the stack was opened,
the respective order linked to it via a relation mosp:forOrder, and contained prod-
ucts linked to it via the schema:orderedItem relation (see also Listing 7.5) .

1 <urn:> a mosp:Stack ;

2 mosp:forOrder mosp:order_1 ;

3 schema:orderedItem mosp:PurpleBox .

LISTING 7.5: Example of two orders in the minimize open
stacks domain that share one common product.

94https://schema.org

https://schema.org
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7.5.3 Agent Models

The presented problem can be solved by a single agent. The general algorithm
works as follows: The agent is situated on a schema:Order resource o as indicated
by a triple mosp:agent stig:locatedAt <Order>, where <Order> is an order as de-
scribed above. From here, the agent will perform the following steps:

1. Pick from order o any product p with (<o> schema:orderedItem <p>); (<p>

a schema:Product) that is not yet part of any mosp:Stack, i.e., any type of
product that has not yet been produced .

2. For each schema:Order < oi > that requires this product as indicated by a
triple (< oi > schema:orderedItem <p>), add p to the respective stack si: (<
si > a mosp:Stack ; mosp:forOrder < oi > ; schema:orderedItem <p> )

.

3. For every order that is completed, i.e., for o, s with
(<s> a mosp:Stack ; mosp:forOrder <o>) , ∀pk :
(<o> schema:orderedProduct <pk>)⇒(<s> schema:orderedProduct <pk>), re-
move the stack s, the order o, and their corresponding triples .

4. If there is no order o left, terminate. Otherwise, move to another order o and
restart from 1.

The number of open stacks is counted before step 3, i.e., before finished stacks are
closed.

We will show how the above behavior can be optimized by influencing the agent in
its choice of the subsequent order in step 4. We use stigmergic markers to support the
agent in preferring certain orders over others, such that the number of open stacks
remains minimal. The approach can thus be classified as a hybrid marker-based and
sematectonic stigmergic system (by the agent reacting both to markers, and results of
its own work: the types of products already produced), in an individual stigmergic
system, as there is only one agent that is steered by the results of its own action. For
comparison, we have created three different agent behaviours with increasing selec-
tiveness of subsequent orders as follows:

Random selection: In the simplest case, the agent selects the next order randomly
among those that are labeled as stig:adjacentTo, i.e., the agent selects any open
order that shares at least one kind of product, but neglecting whether the order has
already a stack open. The selection of orders in Step 4 of the algorithm works as
follows:

4.1 If the order that the agent was situated at was removed in step 3, i.e. there is no
triple ( mosp:Agent stig:locatedAt <o> ) , choose any order o at random .

4.2 Otherwise, select an adjacent oa with <o> stig:adjacentTo <oa> .
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4.3 Restart from 1.

Favoring orders with stacks: A simple heuristic is to favor orders for which a stack
is already open. Producing for an order with an already open stack eliminates the
risk that a new stack is created for this specific order. In order to identify orders
with open stacks, the agent marks in step 2 of the algorithm every order for which it
already created a product:

2.1 For each schema:Order oi for which a product was created, create a marker as
indicated by the triple ( <oi> stig:carries [ a stig:Marker ] ).

When moving to another order after step 3, the agent favors orders that carry the
highest amount of markers, i.e., for which it already produced the most products:

4.1 If the order that the agent was situated at was removed in step 3, i.e. there is
no triple ( mosp:Agent stig:locatedAt <o> ) , choose any order o as order
with the highest amount of markers: o = argmax(o)

count(<m>)

(<o> stig:carries <m>)

4.2 Otherwise, select an adjacent oa with <o> stig:adjacentTo <oa> and
oa = argmax(oa)

count(<m>)

(<oa> stig:carries <m>) .

4.3 Restart from 1.

Favoring almost completed orders: The efficiency of the previous heuristic can be
further improved if among those orders with already open stacks, the agent prefers
those that are close to being finished. Preferring almost closed orders increases the
probability that the agent will pick an order of which the stack can be closed in the
next step, while reducing the risk of an agent choosing a product kind that opens
several new stacks from an order with many open products. To identify respective
orders, the agent leaves a marker as follows:

2.1 For each schema:Order oi for which a product was created, create a marker as
indicated by the triple ( <oi> stig:carries [ a stig:Marker ; stig:level

?lvl] ).

?lvl refers to the concentration level of the marker, and is equal to the number of
remaining products in the stack.

In step 4, when selecting an order to continue with, the agent chooses as follows:

4.1 If the order that the agent was situated at was removed in step 3, i.e. there is
no triple ( mosp:Agent stig:locatedAt <o> ) , choose any order o as order
with the lowest concentration of markers:
o = argmin(o)

∑(?lvl)
(<o> stig:carries [ a stig:Marker ; stig:level ?lvl])

4.2 Otherwise, select an adjacent oa with <o> stig:adjacentTo <oa>, and oa carry-
ing the lowest concentration of markers, as given in 4.1.
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Miller NWRS1 NWRS2 NWRS3 NWRS4 NWRS5 NWRS6 NWRS7 NWRS8
Ord. 20 10 10 15 15 20 20 25 25
Prod. 40 20 20 25 25 30 30 60 60

TABLE 7.2: Dimensions of orders and products per problem domain

4.3 Restart from 1.

7.5.4 Evaluation

Implementation of stigmergic principles

The presented algorithm implements a single agent. This agent reacts to both mark-
ers that were deliberately left on resources, and to results of its work in the environ-
ment by checking which kinds of products have already been produced in step 1 of
the algorithm. By this, the presented algorithm implements individual stigmergy in
a marker-based and sematectonic stigmergic system. The agent does neither maintain
memory, nor does it plan or anticipate any future steps, but reacts solely on current
observations of its current environment.

Empirical Results

We evaluate above agent models by having them solve 9 instances of MOSP as given
in the Constraint Programming Challenge 2005. The problems have increasing com-
plexity. Table 7.2 lists the numbers of orders and different product types per prob-
lem.

The sequence that an agent chooses in a single execution of a particular problem is
non-deterministic. Typically, in one step, the agent will face several equally attrac-
tive resources as next candidates for a visit in step 4, in which case it will choose one
at random. As the agent does not plan ahead, while being equally attractive at the
instant, the choice of particular paths may have adverse effects later in the execution.
We have therefore executed the experiment for each test instance 10 times. Figure
7.10 shows the best solution found by the agent out of 10 runs. Figure 7.11 shows
the arithmetic average over the stack sizes as found by a particular agent type over
all runs. Both figures also include the proven optimal solution as given in [9].

The experiments show that with increasingly expressive markers, the results of the
algorithm improve for all problems, up to very noticable improvements in the more
difficult problem instances NWRS 5 to NWRS 8.

In the simpler examples, even the random walk provides results close to the optimal
solution. In these examples, orders have only few products in common, and by this
share only few connections with other orders. This leaves only few choices to all of
the agents which order to visit next, and reliably guides all types of agents over a
close to optimal path.
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FIGURE 7.10: Minimal stack size found by the different agent models
over 10 runs compared to the verified optimal solution.
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In the more complex examples with larger and denser orders, in which orders share
many products with many other orders, the random agent is more likely to pick a
suboptimal path. However, with taking more information about its surrounding into
account, the quality of the solution improves significantly, up to the most complex
agent finding the close to optimal, or even optimal, solution in all cases.

These experiments show that with a sufficiently elaborate interpretation of, and in-
teraction with the environment, stigmergic agents are able to find good quality so-
lutions to complex optimization problems without the need to keep memory, plan
ahead, or know the optimization goal at all, as are known benefits of stigmergic
systems ([115, pp.13-14]).

7.5.5 Implementation

The above agents were entirely implemented in terms of SPARQL queries that en-
code the different actions that agents can take. The respective queries are published
on GitHub, alongside with the application domain model, and a Postman collection
that allows to execute the SPARQL queries against any triple store of choice:
https://github.com/dfki-asr/stigmergy-mosp

For evaluation, we used an Apache Fuseki standalone installation.

7.6 USE CASE 6 (Optimization): Trucks World

The following use case demonstrates how to achieve self-optimizing behavior by ap-
plication of dynamic stigmergic markers, and the stigLD domain model. The trucks
world domain is another problem that was chosen in the Internation Planning Com-
petition [93]. The contents of this chapter have been previously published as part of
the publication "stigLD: Stigmergic Coordination in Linked Systems" [219].

We demonstrate in this chapter that using stigmergy as coordination mechanism, the
problem instances given in the challenge to be solved by linear (offline) planners, can
be solved dynamically by an online approach in a single run. Not only will we show
that a stigmergic online agent will be able to fulfill every constraint defined for each
of the scenarios: moreover, the solution quality will rank among the highest scoring
planners in the original competition. In addition, this chapter will demonstrate that
our approach will adapt to changes of the problem domain during runtime, which is
an extension to the original problem that linear offline planners would not be able
to solve.

7.6.1 The trucks world domain problem

To demonstrate how to achieve self-optimizing behavior by application of dynamic
stigmergic markers, and the stigLD domain model, we implement a stigmergic

https://github.com/dfki-asr/stigmergy-mosp
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agent system to solve the (time constrained) trucks problem as presented in the In-
ternational Planning Competition 5 (IPC-5) [93].

The International Planning Competition is an annual contest to evaluate various
planners on pre-defined sets of problems. Evaluating our stigmergic approach against
problems from these competitions thus allows to compare the performance of our
system against a set of established and publicly available benchmarks.

The chosen trucks world problem consists of a number of mutually connected lo-
cations. Initially, any of the locations may carry a number of packages. Locations
moreover may serve as destination for packages, as determined by a set of orders.

Goal of the problem is for a truck to pick up packages and deliver them to their final
location in shortest amount of time. Travelling from one location to another takes the
truck a certain amount of time, depending on the distance between two locations,
as set by the specific scenario. The space in the truck loading bay is limited, and
divided into a set of areas that can carry one package each. The loading bay needs to
be loaded and unloaded in a last in, first out manner, i.e., packages closer to the end
of the truck block unloading of packages farther inside the truck. Loading packages
to, unloading from, and finally delivering packages at the destination, each take an
action with a fixed time span considerably shorter than the driving times between
locations.

Figure 7.12 ([93]) shows a simple instance of the trucks world problem, and respec-
tive plans for the displayed problem: An optimal plan (upper right) that prioritizes
loading packages over delivering, and a sub-optimal plan that loads only one pack-
age before delivery, and thus requires the truck to return to its initial location to pick
up the second package.

FIGURE 7.12: Schematic picture of the trucks world problem, and
Gantt diagrams of respective plans satisfying the problem con-

straints, as originally presented in ([93])
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The above general trucks world problem comes with a series of variants that each
introduce additional constrains that need to be considered by planner instances. We
evaluated our system against the time constrained trucks world problem. In this vari-
ant, each package delivery instruction comes with a deadline to which a package
has to be delivered latest. If the truck fails to deliver any package within the speci-
fied deadline, the problem is considered as not solved. From the deadlines arises an
implicit order for pickup and delivery tasks of particular packages.

This variant is particularly challenging to solve for self-coordinating systems, as the
presented memory-less tropistic agents have no capabilities to look ahead in time,
trace back sequences of actions to find the most optimal out of a number of explored
solutions, or explore several potential solutions in parallel. The time constrained
trucks world problem moreover allows us to judge the efficacy of our system w.r.t
to self-coordination by solely observing if it manages to keep the given deadlines or
not, without necessarily aiming for the shortest, (self-)optimized time of completion.

All material needed to run the presented scenario, and reproduce the reported re-
sults, is available on Github95.

7.6.2 Domain representation in Linked Data Medium

Let stig: denote the Namespace for classes and predicates from the stigLD domain
model, as defined in Section 5.1.1, and trucks: the namespace for classes and pred-
icates specific to the trucks world domain.

For a trucks world problem instance, we represent locations that serve as pickup and
delivery point for packages as both stig:Topos and trucks:Location . Locations
are mutually linked by the predicate stig:adjacentTo, and moreover specify the
distance to other locations by triples that are linked via the predicate trucks:driveTime
(see also Listing 7.6). Trucks are linked to their current location by the stig:locatedAt
predicate.

1 :loc1 a stig:Topos , trucks:Location ;

2 stig:adjacentTo :loc2 , :loc3;

3 trucks:driveTime [ trucks:destination :loc2;

4 rdf:value

"406.3"^^ xsd:double ];

5 trucks:driveTime [ trucks:destination ex:l3;

6 rdf:value

"73.1"^^ xsd:double ].

LISTING 7.6: A location in the trucks world domain,
represented in the stigLD domain model.

Areas in the truck loading bay are represented as both trucks:Area and stig:Topos,
and denote their position in the truck via the predicate trucks:position, linking

95https://github.com/dfki-asr/stigld-trucks-world (Visited May 2023)

https://github.com/dfki-asr/stigld-trucks-world
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to an integer value. Areas are sorted from the front to the back of the truck by
increasing trucks:position values, as also shown in Figure 7.12.

Packages are represented as both trucks:Package, and, as they may carry stigmer-
gic markers as result of the MEDIUM’s evolution (cf. Section 7.6.3), also as stig:Topos.
Packages are assigned to their current location via the predicate stig:adjacentTo,
i.e., the triple ( <p> stig:adjacentTo <l> ) denotes that a package p is currently
located at a location l. Delivery instructions are represented as entities of a class
trucks:Goal, that further specifies the package that needs to be delivered, the target
location, and potential deadlines, by predicates trucks:payload, trucks:destination,
and trucks:deadline, respectively.

7.6.3 Marker Model

Markers are generated by MEDIUM evolution on Topoi that are moreover classified as
trucks:Pacakage. Markers denote packages that require urgent pickup or delivery,
i.e., for which time runs short to meet the deadline. Packages without deadlines will
not incite the creation of markers. The concentration of an individual marker will
be calculated from the current time t of the simulation, estimated remaining time to
deliver based on distances between pickup and delivery location, and the deadline
d at which a package needs to be delivered.

The simulation time is provided by the environment by a triple (trucks:ClockTime,
rdf:value, t ), with t denoting the current time of simulation. The deadline d of a
particular package is provided by a respective trucks:Goal resource, as described
in the previous section.

The RDF graph G encoding of the problem instance is maintained by the stigmergic
system’s MEDIUM component. As described in Section 4.3.3, any GET request as part
of a TRUCK agent’s situated perception (cf. Eqn. 6.1) will trigger the following server-
side updates

qEVO ≡

 ?i a trucks:Package, stig:Topos .

⇓
?i stig:carries [ a stig:Stigma; stig:level ci(t) ].


and drive the evolution of the system’s package markers.

ans(qEVO) calculates the concentration c of the marker and updates the concentration
of an existing marker, or creates a new marker with concentration c, if the conditions
are met, and there is not yet a marker present.

The concentration ci(t) for a package resource i at time t is calculated as follows: Let
δi

p denote the time that it will take the truck to arrive from its current location at the
pickup location of a package i, δi

d the drive time from the current location of i to its
destination, and γ a configurable confidence parameter, in our evaluations chosen as
γ = 1.5, and t and d current simulation time and deadline respectively.
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The concentration c of a marker for a package i is then calculated as:

δi = (δi
p + δi

d), (minimal total drive time to pickup and deliver)

r = min(0, d − t − δi), (remaining time buffer to deliver)

c =

 1
1−r , r < δi ∗ γ

0, else
, (marker concentration)

A marker is thus assigned a concentration between 0 and 1 as soon as the remain-
ing time left to deliver r falls below the confidently estimated delivery time, with 1
representing most urgent delivery.

7.6.4 Truck Agent Model

A truck agent TRUCK = PERC(u, G = ∅, L = ∅) is initially situated in a location i,
specified by the scenario description. Situatedness of the agent on a resource i is
expressed by a triple (:truck stig:locatedAt <i>). The agent performs situated
perception as specified in Equation 6.1 with

(G′′ = ans(qPERC, G′)) ≡
(
∀t ∈ G′ ⇒ t ∈ G′′)

Let i be the resource the agent is currently situated on, and :trucks denote the re-
source representing the TRUCKS agent. When selecting its reaction (cf. Eqn. 6.2), the
agent may perform a PICKUP, if situated on a resource representing a package, or
DROP and DELIVER a package from its bay, if situated on a location that receives a
package, with:
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REACT(i, G, L) = if i /∈ L then PERC(j ∈ L, ∅, ∅)

elseif (< i > a trucks : Location) ∈ G then DROP(i, G).DELIVER(i, G)

elseif (< i > a trucks : Package) ∈ G then PICKUP(i, G)

DROP(i, G) = if

<p> a trucks:Package ;

stig:adjacentTo <a> .

<a> a trucks:Area .

 ,

<g> a trucks:Goal ;

trucks:payload <p>;
trucks:destination <i> .

 ∈ G

or if


<p> a trucks:Package ;

stig:adjacentTo <i> ;

stig:carries [ a stig:Stigma ;

stig:level ?cp ] .

 ∈ G , ?cp > 0,

and


<q> a trucks:Package ;

stig:adjacentTo [ a trucks:Area ] ;

stig:carries [ a stig:Stigma ;

stig:level ?cq ] .

 ∈ G , ?cq = 0,

and

∣∣∣∣∣
(
<a> a trucks:Area ;

trucks:status :empty .

)
∈ G

∣∣∣∣∣ < |<p>|,

then MOVE(k, i) ; k = argmin<k>
?pos


<k> a truck:Package ;

stig:adjacentTo <a> .

<a> a trucks:Area ;

trucks:position ?pos



DELIVER(i, G) = if

(
<p> a trucks:Package ;

stig:adjacentTo <i> .

)
,

<g> a trucks:Goal ;

trucks:payload <p>;
trucks:destination <i> .

 ∈ G

then DEL(i, ∅, ∅)

PICKUP(i, G) = MOVE(:truck, l) ; (<i> stig:adjacentTo <l>) ∈ G

MOVE(i, a) ; a = argmax<a>
?p

<a> a trucks:Area;
trucks:position ?p ;

trucks:status trucks:empty .



During PICKUP, the truck agent will move the package, on which it is currently sit-
uated, from its current location to the furthest back free loading area in the bay, i.e.,
insert a triple ( <i> stig:adjacentTo <a>), and subsequently relocate the truck to
the location from which it picked up the package.

Conversely, DROP will move the frontmost package from the loading bay to the lo-
cation on which the truck is currently located. The truck will also DROP the front-
most package as long as there are more urgent packages located on i, than the truck
can currently accommodate, but the space in the truck is occupied with non urgent
packages. If the location i on which the truck is situated is destination to any of
the packages located on i, they are DELIVERed, i.e., removed from the scenario, and
the respective delivery goal is marked as completed. Note that whenever the truck
reaches a location to which a package needs to be delivered, the truck prioritizes
unloading and delivering over any pickup action.
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PICKUP, DROP and DELIVER increase the simulation time clock by the duration for
these action as defined by the scenario.96

If none of the conditions above apply, the truck will update its linkset and relocate
to another resource:

Let (L′′ = sel(qNAV, G′′)) ≡ L′′ = n(◦) denote the evaluation of the navigational
query, then as a result of perceiving i, and neighbouring locations j , the agent may
further decide to navigate to another location as follows:

1. If (<p> stig:adjacentTo <i>) ∈ G , i.e, if there is any package on the trucks
current location, then:

n(◦) = argmax<p>
?dist

{argmax<p>|a|
?c

{p |



<i> a trucks:Location ;

trucks:driveTime [ trucks:destination ?q ;

rdf:value ?dist ] .

<p> stig:adjacentTo <i> ;

stig:carries [ a stig:Stigma ;

stig:level ?c ] .

<a> a trucks:Area ;

trucks:status :empty .

<g> a trucks:Goal ;

trucks:destination <d> ;

trucks:payload <p> .



∈ G}}

Consequently, out of the |a| most urgent packages, with |a| being the number
of free loading bay areas in the truck, the truck moves to the package with the
farthest distance to its destination, leading to loading urgent parcels with nearby
delivery destinations last.

2. If above condition is not satisfied, i.e. there are no packages on i or the loading
bay is full, then if for any package p with (<p> stig:adjacentTo [a trucks:Area]) ∈
G there is ( <p> stig:carries a stig:Stigma ; stig:level ?c]) ∈ G with
c > 0, i.e., any package within the truck’s loading bay has exceeded it’s deliv-
ery confidence value:

n(◦) = argmaxl
?c

{l |



<p> a trucks:Package ;

stig:carries [a stig:Stigma ;

stig:level ?c ] .

<g> a stig:Goal ;

trucks:destination <l> ;

trucks:payload <p> .


∈ G, c > 0}}

Consequently, the truck moves to the next location l to which a package needs
to be delivered most urgently.

96In the evaluated use cases, PICKUP, DROP and DELIVER take 1 time step each.
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3. If none of the packages needs to be delivered urgently, then:

n(◦) = argmax<l>
?c

{l |


<l> a stig:Location .

<p> a trucks:Package ;

stig:adjacentTo <l> ;

stig:carries [a stig:Stigma ;

stig:level ?c ] .

 ∈ G, c > 0}

Consequently, the truck moves to the location with the package with the high-
est marker concentration c.

4. If for none of the packages it holds that marker concentration c > 0, move to
the location where the package in the front of the loading bay, i.e., the package
that would be unloaded next, needs to be delivered:

n(◦) = argmin<l>
?pos

{l |



<p> stig:adjacentTo <a> .

<a> a trucks:Area;
trucks:position ?pos .

<g> a trucks:Goal ;

trucks:payload <p> ;

trucks:destination <l> .


∈ G}

5. Finally, if the truck is empty and none of the packages in any location carries a
marker with marker concentration c > 0:

n(◦) = argmax<l>
|p|

{l |

<l> a trucks:Location .

<p> a trucks:Package ;

stig:adjacentTo <l> .



By the behavior as defined above, TRUCK agents react to the stigmata generated and
updated during evolution of the environment, as described in Section 7.6.3, or the
relation between package resources, and other Topoi. With marker concentrations
being calculated before queries by the truck agent are evaluated against the environ-
ment state, as it is defined for environment evolution in Eqn. 4.1, the truck agent
always perceives the accurate marker concentrations, at the relevant topoi, at time
of perception.

7.6.5 Evaluation

We evaluate above agents against Problems 1 through 5 of the time constrained
trucks world challenge of the IPC-597. These problems each provide scenarios with
a single truck agent. An extension of our trucks world model to scenarios with a
number of trucks operating simultaneously is ongoing, and publication of the re-
sults is subject to future work. To show adaptability of the system and chosen agent
model, we use the same agent model and implementation throughout every prob-
lem instance, without further adaption towards individual challenges.

97The original problem definitions are available for download from https://lpg.unibs.it/ipc-5/,
under "Resources"

https://lpg.unibs.it/ipc-5/
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Problem 1 Problem 2 Problem 3 Problem 4 Problem 5
# locations 3 3 3 3 3
# Packages 3 4 5 6 7
# Deadlines 3 1 3 3 3

TABLE 7.3: Problem sizes of the Trucks World single agent problem
instances

Table 7.3 shows the problem dimensions of the different problem instances: Each
of the problems accommodates a set of 3 interconnected locations each, with an in-
creasing number of packages that need to be delivered. In all but the second problem
instance, 3 of the delivery instructions are constrained by a deadline, with the second
problem specifying only one deadline.

The results of the evaluation are shown in Tables 7.4 and 7.5. Table 7.4 shows the
deadlines defined by the individual problem instances, and the time by which the
respective packages were delivered to the defined target destinations. Clearly, the
agent manages to coordinate the pickup and delivery runs in every problem to meet
each given deadline.

Table 7.5 compares the performance of our approach to the two planners that solved
the time constraint trucks world problem in the IPC-598, MIPS-XXL ([81]) and SG-
PLAN ([45]). This comparison shows that our solution does not only find valid
solutions in every problem instance w.r.t. deadlines, but also performs in the range
of efficiency as the reference planners. In all of the problems, we find solutions in at
most as many steps as the reference planners, while delivering all packages in the
same time ranges as the reference planners. Only in Problem 5, our solution takes
one step more than the only other competitor that solved the problem, SGPLAN,
whereas MIPS-XXL did not provide a solution at all.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Pack. 1
Deadline 919.7 842.7 616.7 537.3 992.8

Delivered 432.9 769.1 569.6 491.4 729.2

Pack. 2
Deadline 919.7 N/A 925.1 1026.9 1866.7

Delivered 842.2 N/A 283.3 942.5 292.6

Pack. 3
Deadline 1813.7 N/A 925.1 2878.2 2878.0

Delivered 844.2 N/A 285.3 1737.2 2255.8

TABLE 7.4: Deadlines and times of deliveries per package in the dif-
ferent problem instances: the truck agent manages to meet all dead-

lines in all problems.

98Results are available for download from https://lpg.unibs.it/ipc-5/, under "Resources"

https://lpg.unibs.it/ipc-5/
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MIPS-XXL SGPLAN stigLD

Problem 1
Steps 12 14 12

MakeSpan 845.32 845.23 844.20

Problem 2
Steps 17 17 17

MakeSpan 1714.57 1711.44 1713.4

Problem 3
Steps 19 19 19

MakeSpan 1474.29 1470.14 1473.1

Problem 4
Steps 23 23 23

MakeSpan 2634.63 2629.45 2676.7

Problem 5
Steps N/A 28 29

MakeSpan N/A 1870.06 2255.8

TABLE 7.5: Number of steps and make span taken until the last pack-
age was delivered by the compared approaches

t Pack 1 Pack 2 Pack 3 Pack 4 Pack 5

Problem 3 300
925.1 925.1 1792.58 1744.48 1744.48 Deadline

283.3 285.3 569.6 1136.2 1721.2 Delivered

Problem 4 950
537.3 1026.9 3629.56 4224.76 4224.76 Deadline

491.4 942.5 1737.2 2979.0 4221.8 Delivered

Problem 5 500
1866.7 1877.32 3762.52 1393.42 1393.42 Deadline

292.6 1783.8 2692.4 822.4 1349.2 Delivered

TABLE 7.6: Adapted deadlines and time of completion for packages
after introduced disturbance at time t. Red: Newly added packages
with deadlines, Blue: Deadlines changed from the original problem.

Time constraint trucks world with disturbances

A main feature of stigmergy-based systems is their robustness against disturbances
in the environment ([115]). In order to demonstrate that by employing the methods
and technologies from this paper, a robust, adaptive agent behavior emerges, we fur-
ther extended the original IPC trucks challenge. In our extension, after a fixed time,
new packages are created at a given locations, and with given deadlines. Deadlines
of packages that had not been delivered at the time of disturbance are increased (col-
ored blue in Table 7.6) to keep the problem satisfiable, even if the truck has to pick
up newly created packages before those originally in the problem. We omitted prob-
lems 1 and 2, as the low number of packages in the original problems did not leave
much of a margin to introduce disturbances that would actually disturb the original
problem execution.
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Time of disturbances and new deadlines are chosen such that the disturbance hap-
pens before the plan for the original problem has finished, i.e., the truck agent will
have to react to the newly created package delivery orders before finishing delivery
of the packages that were originally in the problem.

New packages are created on the same location, but are to be delivered to different
destinations. We calculated the new deadlines such that while the truck may take
one connection between locations twice to deliver each of the packages to a different
destination, it is left only one movement to a neighbouring location, leading to that
the truck will have to combine deliveries to make the new deadlines. Remaining
deadlines after the newly introduced deadlines are shifted accordingly.

The results of our experiments with induced disturbances is shown in Table 7.6. De-
spite constraints changing while the simulation is already running, the truck man-
ages to meet any given deadline, old ones as well as new ones. In Problem 5, the new
deadlines were created after the truck has already delivered the first package, thus
deadline and delivery time of that package did not change compared to the original
problem. However, as soon as new deadlines are generated, the truck prefers the
newly created packages with stricter deadlines over the originally placed ones (see
Problem 5). Given that none of the agents maintain memory or plans, we can by
this show that the presented system is able to react dynamically to changes in the
environment, and without (re-)planning, manages to generate valid solutions in dy-
namic environments. This is a significant improvement to the existing planners that
solved the discussed problem, as those create offline results and by this are not able
to alter a plan based on changes in the environment during execution.
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Chapter 8

Conclusion and Future Work

This thesis discussed Linked Data as suitable interactive digital medium for multi-
agent systems. The thesis motivated the presented results by highlighting the im-
portance of taking into account the role of a digital medium as representation, in-
teraction, and communication space, and by this, as third crucial core element in a
multi-agent system (Chapter 1). This particular consideration of the medium as third
element in a multi agent system is a novelty compared to literature which typically
only distinguishes between agents and their environment, whereas the distinction
between the environment as the agent surrounding effects, sensations, and actions,
and how to technically provide these to the agent, is left open, or marginalized.

Consequently, considerations of what constitutes a proper medium are lacking in
literature. With a focus on bio-inspired multi-agent systems that operate by means
of stigmergy, an indirect coordination principle found in nature, Chapter 4 proposed
a set of feature requirements for digital media to be a suitable choice for multi-agent
systems. The focus on stigmergic systems may at first seem arbitrary and limit-
ing the final results, but it is justified, as they employ all three indirect commu-
nication between agents via the medium, (indirect) interaction of agents with the
medium, and by this, finally, coordination and optimization effects emerge within
the medium.

The thesis continued to discuss the suitability of Linked Data Architectures to con-
stitute a suitable digital agent medium. The choice for Linked Data as medium to
be discussed was after all also made due to the fact that Linked Data is based on
a set of well-defined, standardized technologies and interaction patterns, such as
HTTP, HATEOAS principles, and last but not least, the RDF data model that allows
to represent semantic information about resources to agents in a machine-readable
and interpretable way.

Grey is all theory, this is why Chapters 5 and 6 presented in detail possible imple-
mentations of both environment representation in Linked Data media, and Linked
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Data media consuming agents, respectively. For this, the Thesis first provided for-
mal models of both media servers, and agents interacting with those. For environ-
ments in digital media, two approaches were presented that also allow for the rep-
resentation of environments with inherent dynamics.

Finally, the application of the presented concepts and implementations was demon-
strated in the context of practical use-cases and benchmarks from the domains of co-
ordination in cyber-physical production environments, and optimization in abstract
planning challenges.

The research questions posed in Section 1.1.2 were answered, and verified the hy-
potheses stated in Section 1.1 as follows:

– R1. What constitutes a suitable digital agent medium?, was answered in Sec-
tion 4.2.3 by deriving, inspired from stigmergic systems in nature, a set of re-
quirements that a digital medium needs to fulfill to be as suitable medium for
stigmergic multi-agent systems specifically, and by this. These findings nat-
urally transfer automatically to any kind of multi-agent systems that use the
medium for indirect interaction between agents and their environment, as well
as indirect communication between agents.

– R2. Is Linked Data a suitable choice for a digital agent medium?, was an-
swered in Section 4.2 by discussing the found requirements with respect to the
design principles, features, and interfaces to Linked Data architectures, com-
ing to the conclusion that Linked Data provides a suitable medium by fulfilling
all stated requirements.

– R3. How would Linked Data consuming agents interact with Linked Data
Media? Chapters 4.3.2 and 4.3.3 presented a description of interaction chan-
nels of Linked Data media for for both static and dynamic environments, using
Milner’s Calculus of Communicating Systems, as originally published in [220].
The chosen description exhaustively covers typical operations on RDF data
sets using HTTP CRUD operations, and by this provides a formal, well-defined
set of interactions as offered by Linked Data media, by thus answers Research
question R3.

– R4. What is a suitable and sufficiently simple agent model to interact with
Linked Data Media? Chapter 6.1 presented agent models for single tropistic
agents, and hysteretic agent swarms. Both models were based on the formally
defined interaction between agents and Linked Data media. This model keeps
the agent behavior simple by its (mostly) memoryless, purely reactive nature,
while a the same time, exploiting the expressiveness and interactiveness of the
medium to its full extend. The variation of different agent behaviors that can
emerge from these simple base models has been demonstrated in Chapter 7.
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Research questions 1 – 4 jointly validate Hypothesis H2.: By R1. answered, we
gained an understanding about requirements towards a digital agent medium, while
R2. validated that Linked Data is a suitable choice. Agent-Environment interaction
could be well defined in the scope of R3. and R4.

Feasibility of these conceptual considerations on a technical level is furthermore en-
sured by answering research questions 5 – 7:

– R5. How can dynamic multi-agent environments be efficiently published in
a Linked Data Medium? Chapter 5 presented two approaches to provide dy-
namic environments via Linked Data media: First, the stigLD media server as
presented in Section 5.1 (see also [220, 219]), which stores environment data
in a typical graph store (see also Section 3.1), and drives environment evolu-
tion by specific queries. The second approach, as thoroughly described in Sec-
tion 5.2, employs an intermediate meta data model to transparently lift native
application run-time data to a Linked Data Platform representation, thus pro-
viding the possibility to publish real-time simulations as Linked Data medium.
The respective lifting algorithm has been implemented as standalone server
solution, as well as a library for the Unity 3D game engine.

– R6. How would an implementation of the agent model found in R4 look
like? Chapter 6.2 provided a direct translation from the formal agent model
descriptions in Section 6.1 to executable behavior trees as suitable implemen-
tation of the defined models. Specific implementations of specialised, use-case
oriented agents based on the provided approach have been further detailed
out in Chapter 7, specifically in the use-case presented in Section 7.3.

– R7.How can continuity of the medium be ensured during link traversal?
This specific question was answered by presenting the SPARQL API Service
in Section 5.3, which allows agents to evaluate SPARQL queries against non-
RDF endpoints, and thus letting agents perceive non-RDF endpoints as if they
were part of the Linked Data medium. Usability and efficacy of the approach
has moreover been demonstrated in the use-case presented in section 7.3.

Finally, by evaluating the developed approaches in various use-cases in Chapter 7,
the thesis answered:

– R8. Which means are suitable to incite the emergence of coordination and
optimization effects in the medium? Chapter 7 demonstrated how to em-
ploy means of stigmergy (see also Section 4.2.2), a self-coordination principle
inspired by nature, to incite a coordinating and optimizing behaviour of the
system, solely by relying on the mediating function of the medium. It was
specifically shown how to achieve coordination and optimization effects, us-
ing the reactive agent models as defined in Chapter 6, and employing indirect
communication mechanisms based on stigmergic markers. Respective agent
models have been presented in detail in the specific use-cases in Chapter 7.
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– R9. Does off-loading agent complexity into the medium come with a trade-
off with respect to solution quality? The results in Chapter 7 show that off-
loading complexity in the medium, and keeping agent models simple (reac-
tive, memoryless), does not inflict quality of solutions found by the various
coordination and optimization algorithms. Not only do the algorithms pro-
duce provable correct results (Sections 7.2, 7.3) with clearly visible coordina-
tion effects (Section 7.4), but for selected algorithms, the quality of the solution
is comparable to equal to that of reference planners (Sections 7.5, 7.6).

By answering research questions 1–8, this thesis validates Hypothesis H3.: Based
on the definition of both medium and agent-medium interactions (R1. – R3.) , a set
of simple agent models (R4., R8.) allowed for the emergence of coordination and
optimization effects within the medium.

With R9. answered, the thesis moreover validated By this, the thesis validated
Hypothesis H4.. H2. – H4. in conclusion finally validate Hypothesis H1.:

„Complexity of the implementation of multi-agent systems is reduced tremendously by a
properly defined medium, and respective agent-medium interaction. This is due to the pos-
sibility to reduce the complexity the agents by exploiting the emergence of optimization and
coordination effects in the medium, and reduce the implementation of agents to a most simple
agent model.”

8.1 Future Work

The main contribution of this thesis was to strengthen the notion of digital agent me-
dia as third component in Multi Agent Systems. Such MAS were mainly designed
and evaluated in the domain of cyber-physical manufacturing in Industry 4.0 en-
vironments, with the purpose of the systems being coordination or optimization of
production or scheduling processes. The contents of this thesis obviously only touch
a small fraction of a very complex and promising topic, and they hopefully serve as
inspiration for future definitions of MAS and the interaction of agents and environ-
ment via a medium technology.

I see several possible directions to which the topic may be further deepened: Dig-
ital media may be further analyzed with their capability to serve as shared knowl-
edge base in distributed machine learning algorithms [255]. Moreover, digital media
may support the interaction between AI planners and human users in AI driven rec-
ommender systems [207, 153]. The approaches in this thesis were so far applied to
use-cases in cyber-physical production in the Industry 4.0. However, given that the
general efficacy in abstract coordination and optimization algorithms could as well
be shown, it may be worthwhile to evaluate the effectiveness of similarly carefully
designed systems and algorithms in other domains. In this Thesis, Linked Data was
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taken as one of many possible examples for digital agent media. However, a sim-
ilar thorough analysis concerning suitability and possible interaction models may
strongly support the adaption of new, emerging technologies, such as blockchain
technology [63], or directed acyclic graphs (DAG) [200]. Finally, this Thesis fo-
cused on stigmergy as indirect coordination mechanism, and provided a well de-
fined agent-environment interaction via Linked Data media to achieve stigmergic
self-coordination effects, and moreover a couple of derived agent models for specific
use-cases. Similar effort may be taken to investigate other coordination principles.

8.1.1 Media-centered MAS for recommender systems

This thesis primarily described systems in which AI agents brought the underlying
system to a coordinated and / or optimized state without human interaction. Rec-
ommender systems [207, 169, 153, 2], on the other hand, are designed to find, out of a
current state of system, the top candidates of state transitions into a next state, with
leaving the final decision which state is to be taken to a human.

We experience recommender systems every day when online shopping portals, or
video streaming platforms, present us a selection of articles we might be interested in
buying, or a selection of movies or shows we might be interested in watching, based
on our previous watching habits. Recommender systems are moreover topic of re-
search for application in public and professional domains, such as smart homes [205,
94], smart cities [62, 204], or smart factories in the context of industry 4.0 [44, 109].

With the Internet, built around Web and Semantic Web technology, exists a medium
that is equally accessible to both human users, and AI user-agents: While in the
Semantic Web, the Web-contents are "rendered" as Linked Data View towards AI
agents (as also further detailed in Section 5.2.1), in interactive Web pages, the content
is rendered in terms of texts, images, and videos as perceivable, interactive represen-
tation for human users of the Internet. The parallels between user-agent and human
use of Web content go even that far, that the Internet has in the past been shown to
implement stigmergic principles to coordinate and optimize the content provided to
individual human users [70].

Consequently, the idea to extend the concepts presented in this thesis as underly-
ing principles to define and implement recommender systems is evident: The agent
models in this thesis made extensive use of advertising possible options for interac-
tions to other agents in terms of markers carried by the medium (see for example the
application use-cases in Sections 7.2 and 7.3; in Section 7.6, the Trucks optimization
domain, the recommendations which packages to pick up or deliver next were even
generated by dynamic medium itself). Likewise, instead of marker traces they leave
in the environment, agents could render, as results of their observations and percep-
tions, interactive, descriptive Web elements on a Web site that guide human users



150 Chapter 8. Conclusion and Future Work

through complex processes by recommending suitable options at every step of the
process.

8.1.2 Transfer to other application domains

This Thesis presented a generic model of agent-environment interaction via Linked
Data as digital medium. The applicability of this model has been shown by refin-
ing the generic agent models to agents that were further modelled to solve specific
problems, which were, in the scope of this thesis, majorly chosen from the domain
of cyber-physical production.

However, the need for large-scale, distributed coordination and optimization arises
in a variety of topics that impose a real challenge to society in the very near future:

Structural changes in energy supply with focus being shifted to potentially unstable
renewable energy meets an ever increasing demand. Smart Grids [227] have been
proposed as an AI supported architecture to respond to fluctuating demands, lately
also specifically analysed with their role to cope with the fast increasing number
of electric vehicles as consumers [107, 213]. Multi agent systems have moreover
been applied to coordinate navigation of vehicle fleets in autonomous driving sce-
narios [144, 196], with the goal to reduce traffic congestion, and plan vehicle paths
according to economical and ecological constraints [224]. Smart Farming [100, 259,
179] researches AI approaches to help food production adapt better to a fast grow-
ing population, and rapidly changing climate conditions.

Given that the adaptability, scalability, and robustness of self-coordinating and self-
organizing systems in these domains have been investigated previously [99, 20, 159,
181, 158], re-visiting these domains with the medium-based MAS model as pre-
sented in this thesis in mind may be worthwhile to find more applicable, transferable
solutions in the mentioned domains.

8.1.3 Transfer to other media

This thesis analyzed Linked Data as suitable medium for multi-agent systems. In
the scope of the thesis, Linked Data was analyzed and discussed with respect to
suitability in Section 4.2. Subsequently, a suitable agent-medium interaction model
was presented in Sections 4.3.2 and 4.3.3.

A similar analysis for other technologies may be beneficial for the research commu-
nity to get a deeper understanding about both established and emerging technolo-
gies against which MAS are implemented. A comparable discussion of other media
as given in this Thesis for Linked Data could moreover ease the transfer of agent
models, coordination- , and optimization algorithms to other media. Such a discus-
sion is of particular interest for technologies that put constraints on MAS interaction
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by constraints that stem from particularities in design and architecture of the target
technologies.

Take as example block chain technology [63], that has peaked interest in society,
industry, and research tremendously in the last decade. While having come to the
attention of the broad public mainly as underlying technology for the (in)famous
Bitcoin crypto-currency [223], and, to this day, hundreds of currencies that build on
the same technology99, it is also vividly discussed for possible application in other
fields.

It has been suggested for Industry 4.0 architectures [18, 83] as technology for secure,
scalable communication of IoT devices. It is believed that blockchain, together with
Web technologies, to "ensure transparency of supply, immutability of records, and it
ensures the trust of end to end trading organizations." [136].

Blockchains have moreover drawn noticable attention in the research community
around MAS [34]. In this context, blockchains are lately discussed as means to docu-
ment decision processes of MAS, and by this, make AI-based decision-making more
explainable, and by this increase acceptance in public [33]. Moreover, protocols
for MAS have been defined for blockchain-based communication within fleets of
autonomous vehicles [131], for MAS-coordinated asset transfer [192], and even for
blockchain as knowledge representation for MAS in industry 4.0 [199].

A common understanding of blockchain, or other technologies with similar purpose,
like IOTA’s underlying Directed Acyclic Graph [200], as digital medium, along with
a well-defined, generic agent-medium interaction model, may help tremendously to
transfer individual results to new approaches.

Blockchain was discussed in detail only as one of many example of other MAS me-
dia. Other promising candidates are High Performance Computing (HPC) architec-
tures [256, 210], or interaction with container and cloud environments [243].

Given the attention block chains currently receive as underlying technology for MAS,
and the promising results achieved so far, a similar analysis of block chains as agent
medium may be worthwile. Not only could an analysis similar to the one done for
Linked Data in this thesis strengthen the understanding about block chain technolo-
gies as agent medium, but a well-defined interaction pattern between agents and
block chain architectures would further facilitate the design of block chain based
MAS, allow for transferability of results, and by this benefit the uptake of the topic
in research that we can currently observe.

99At the time of writing of this Thesis, one of the largest crypto currency platforms, Binance (https:
//www.binance.com/en), listed more than 600 different tradeable tokens. (May 21st, 2022)

https://www.binance.com/en
https://www.binance.com/en
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8.1.4 Extend to different coordination principles and algorithms

This thesis primarly employed stigmergy as underlying nature-inspired coordina-
tion principle. While commonly following this principles by employing situated
tropistic agents, the individual algorithms were mostly tailored towards the respec-
tive use-case.

Research attempted to solve classic coordination and optimization problems us-
ing stigmergy. Examples for this are works that create solutions for the traveling
salesman problem (TSP) [88] using ant colony optimization [74, 271], or for general
continuous numeric optimization [140]. Analyzing such generic optimization algo-
rithms based on a formal agent-medium interaction model as presented in this thesis
would facilitate transferring these generic results to more specific applications.

The efficacy of medium-based coordination and optimization stems from the fact
that observations on which agents act are direct symptoms of the state of the under-
lying environment, and that the agents’ endeavor to strengthen positive symptoms
while mitigating undesired ones directly affects the underlying environment.

Another nature-inspired algorithm model that is very much designed around the
detection and handling of symptoms are artificial immune systems (AIS) [246, 98]. Ar-
tificial immune systems are used for fault prediction and error handling by repre-
senting the problem domain into a model that resembles the human immune sys-
tem. AIS implement virtual "cells" as agents that detect anomalies in the underlying
system, and send further cells to "heal" the observed anomalies. AIS have been ap-
plied in various domains, such as cyber- security in IoT [270, 25], energy manage-
ment [274, 181], or traffic [158, 61].

The model of tropistic agent swarms as presented in Section 6.1.2 is a suitable ba-
sis from which an AIS-like "cell"-swarm behaviour could be defined, whereas the
formal definition of the medium provides the well-defined interface between cell
agents and problem domain. Extending this model of medium-based agent swarms
to specifically describe a generic AIS model would greatly contribute to an even bet-
ter understanding of AIS, and support transferability of AIS systems.
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[64] Oğuz Dikenelli, Oylum Alatlı, and Rıza Cenk Erdur. “Where are all the se-
mantic web agents: Establishing links between agent and linked data web
through environment abstraction”. In: Agent Environments for Multi-Agent
Systems IV. Springer, 2015, pp. 41–51.

[65] Anastasia Dimou et al. “Extending R2RML to a source-independent mapping
language for RDF”. In: CEUR Workshop Proceedings. Vol. 1035. 2013, pp. 237–
240.

[66] Anastasia Dimou et al. “Mapping Hierarchical Sources into RDF using the
RML Mapping Language”. In: (2014).

[67] Anastasia Dimou et al. “RML: A generic language for integrated RDF map-
pings of heterogeneous data”. In: CEUR Workshop Proceedings. Vol. 1184. 2014.

[68] Aiden Dipple, Kerry Raymond, and Michael Docherty. “General Theory of
Stigmergy: Modelling Stigma Semantics”. In: Elsevier (2014). DOI: 10.1016/
j.cogsys.2014.02.002.

[69] Aiden Dipple, Kerry Raymond, and Michael Docherty. “Stigmergy within
Web Modelling Languages : Positive Feedback Mechanisms”. In: eprints.qut.edu.au
(2013).

[70] Aiden Charles Dipple. “Standing on the Shoulders of Ants: Stigmergy in the
Web”. In: Proceedings of the 20th international conference companion on World
wide web. 2011, pp. 355–360.

[71] Marco Dorigo and Christian Blum. “Ant colony optimization theory: A sur-
vey”. In: Information Sciences (2005).

[72] Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. “Ant algorithms and stig-
mergy”. In: Future Generation Computer Systems 16.8 (2000), pp. 851–871. ISSN:
0167739X. DOI: 10.1016/S0167-739X(00)00042-X.

[73] Marco Dorigo and Gianni Di Caro. “Ant colony optimization: A new meta-
heuristic”. In: Proceedings of the 1999 Congress on Evolutionary Computation,
CEC 1999. Vol. 2. IEEE Computer Society, 1999, pp. 1470–1477. DOI: 10.1109/
CEC.1999.782657.

[74] Marco Dorigo and Luca Maria Gambardella. “Ant colony system: a coopera-
tive learning approach to the traveling salesman problem”. In: IEEE Transac-
tions on evolutionary computation 1.1 (1997), pp. 53–66.

[75] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. “Ant system: Opti-
mization by a colony of cooperating agents”. In: IEEE Transactions on Systems,

https://doi.org/10.1016/j.cogsys.2014.02.002
https://doi.org/10.1016/j.cogsys.2014.02.002
https://doi.org/10.1016/S0167-739X(00)00042-X
https://doi.org/10.1109/CEC.1999.782657
https://doi.org/10.1109/CEC.1999.782657


158 Bibliography

Man, and Cybernetics, Part B: Cybernetics 26.1 (1996), pp. 29–41. ISSN: 10834419.
DOI: 10.1109/3477.484436.

[76] Marco Dorigo and Thomas Stützle. “Ant colony optimization: Overview and
recent advances”. In: International Series in Operations Research and Manage-
ment Science. Vol. 272. Springer New York LLC, 2019, pp. 311–351. DOI: 10.
1007/978-3-319-91086-4_10.

[77] Ali Dorri, Salil S. Kanhere, and Raja Jurdak. “Multi-Agent Systems: A Sur-
vey”. In: IEEE Access 6 (Apr. 2018), pp. 28573–28593. ISSN: 21693536. DOI:
10.1109/ACCESS.2018.2831228.

[78] Laurent Doyen et al. “Verification of Hybrid Systems”. In: Handbook of Model
Checking (May 2018), pp. 1047–1110. DOI: 10.1007/978-3-319-10575-8\_30.

[79] Y Dumond and C. Roche. “Formal specification of a multi-agent system ar-
chitecture for manufacture: the contribution of the π-calculus”. In: Journal
of Materials Processing Technology 107.1-3 (2000), pp. 209–215. ISSN: 09240136.
DOI: 10.1016/S0924-0136(00)00712-3.

[80] Martin Dürst and Michel Suignard. Internationalized resource identifiers (IRIs).
Tech. rep. RFC 3987, January, 2005.

[81] Stefan Edelkamp, Shahid Jabbar, and Mohammed Nazih. “Large-scale opti-
mal PDDL3 planning with MIPS-XXL”. In: 5th International Planning Compe-
tition Booklet (IPC-2006) (2006), pp. 28–30.

[82] Jacques Ferber and Jean-Pierre Miiller. Influences and Reaction : a Model of Sit-
uated Multiagent Systems. Tech. rep. 1996.

[83] Tiago M Fernandez-Carames and Paula Fraga-Lamas. “A review on the ap-
plication of blockchain to the next generation of cybersecure industry 4.0
smart factories”. In: Ieee Access 7 (2019), pp. 45201–45218.

[85] Roy Fielding. Re: draft findings on Unsafe Methods (whenToUseGet-7). Online;
accessed Apr.2021, 2002. URL: https://lists.w3.org/Archives/Public/
www-tag/2002Apr/0207.html (visited on 03/31/2021).

[86] Roy Fielding. “Representational state transfer”. In: Architectural Styles and the
Design of Netowork-based Software Architecture (2000), pp. 76–85.

[87] Roy T Fielding and Richard N Taylor. Architectural styles and the design of
network-based software architectures. Vol. 7. University of California, Irvine Irvine,
2000.

[88] Merrill M Flood. “The traveling-salesman problem”. In: Operations research
4.1 (1956), pp. 61–75.

[89] Martin Fowler. “Richardson Maturity Model: steps toward the glory of REST”.
In: Online at http://martinfowler. com/articles/richardsonMaturityModel. html (2010).

[90] Felix Freiberger and Holger Hermanns. “Concurrent Programming from pseuCo
to Petri”. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11522 LNCS.
2019, pp. 279–297. ISBN: 9783030215705. DOI: 10.1007/978-3-030-21571-
2\_16.

https://doi.org/10.1109/3477.484436
https://doi.org/10.1007/978-3-319-91086-4_10
https://doi.org/10.1007/978-3-319-91086-4_10
https://doi.org/10.1109/ACCESS.2018.2831228
https://doi.org/10.1007/978-3-319-10575-8\_30
https://doi.org/10.1016/S0924-0136(00)00712-3
https://lists.w3.org/Archives/Public/www-tag/2002Apr/0207.html
https://lists.w3.org/Archives/Public/www-tag/2002Apr/0207.html
https://doi.org/10.1007/978-3-030-21571-2\_16
https://doi.org/10.1007/978-3-030-21571-2\_16


Bibliography 159

[92] Michael R Genesereth and Nils J Nilsson. Logical foundations of artificial intel-
ligence. Morgan Kaufmann, 2012.

[93] Alfonso E Gerevini et al. “Deterministic planning in the fifth international
planning competition: PDDL3 and experimental evaluation of the planners”.
In: Artificial Intelligence 173 (2009), pp. 619–668. DOI: 10.1016/j.artint.
2008.10.012.

[94] L Mary Gladence et al. “Recommender system for home automation using
IoT and artificial intelligence”. In: Journal of Ambient Intelligence and Human-
ized Computing (2020), pp. 1–9.

[96] PP Grassé. “Les phénomènes sociaux chez les animaux”. In: Cahiers de l’Institut
de Science économique appliquée (1963), pp. 7–23.

[97] Markus Graube et al. “Linked Data as integrating technology for industrial
data”. In: International Journal of Distributed Systems and Technologies (IJDST)
3.3 (2012), pp. 40–52.

[98] Julie Greensmith, Amanda Whitbrook, and Uwe Aickelin. “Artificial Immune
systems”. In: Natural Computing Series. Vol. 28. 2015, pp. 301–332. DOI: 10.
1007/978-3-662-43631-8_16.

[99] Stefan Grobbelaar and Mihaela Ulieru. “Holonic stigmergy as a mechanism
for engineering self-organizing applications”. In: 3rd International Conference
of Informatics in Control, Automation and Robotics. 2006, pp. 1–5.

[100] Abi Grogan. “Smart farming”. In: Engineering & Technology 7.6 (2012), pp. 38–
40.

[101] Dominique Guinard and Vlad Trifa. “Towards the web of things: Web mashups
for embedded devices”. In: Workshop on Mashups, Enterprise Mashups and Lightweight
Composition on the Web (MEM 2009), in proceedings of WWW (International World
Wide Web Conferences), Madrid, Spain. Vol. 15. 2009.

[103] Shubham Gupta et al. “Karma: A system for mapping structured sources into
the semantic web”. In: Extended Semantic Web Conference. Vol. 7540. Springer,
Berlin, Heidelberg, 2012, pp. 430–434. ISBN: 9783662466407.

[104] Bastiaan Haaksema. “Executable Specifications of Message-based Concur-
rency in Maude”. PhD thesis. University of Groningen, 2021.

[105] Karuna Hadeli et al. “Multi-agent coordination and control using stigmergy”.
In: Computers in Industry 53.1 (2004), pp. 75–96. ISSN: 01663615. DOI: 10.1016/
S0166-3615(03)00123-4.

[106] Karuna Hadeli et al. “Self-organising in multi-agent coordination and control
using stigmergy”. In: International Workshop on Engineering Self-Organising
Applications. Springer. 2003, pp. 105–123.

[107] Ali-Mohammad Hariri, Maryam A Hejazi, and Hamed Hashemi-Dezaki. “In-
vestigation of impacts of plug-in hybrid electric vehicles’ stochastic charac-
teristics modeling on smart grid reliability under different charging scenar-
ios”. In: Journal of Cleaner Production 287 (2021), p. 125500.

https://doi.org/10.1016/j.artint.2008.10.012
https://doi.org/10.1016/j.artint.2008.10.012
https://doi.org/10.1007/978-3-662-43631-8_16
https://doi.org/10.1007/978-3-662-43631-8_16
https://doi.org/10.1016/S0166-3615(03)00123-4
https://doi.org/10.1016/S0166-3615(03)00123-4


160 Bibliography

[108] Andreas Harth and Tobias Käfer. “Towards specification and execution of
linked systems”. In: CEUR Workshop Proceedings. Vol. 1594. 2016, pp. 62–67.

[109] Mark Hawkins et al. “Cyber-physical production networks, internet of things-
enabled sustainability, and smart factory performance in industry 4.0-based
manufacturing systems”. In: Economics, Management, and Financial Markets
16.2 (2021), pp. 73–83.

[110] Tom Heath and Christian Bizer. “Linked data: Evolving the web into a global
data space”. In: Synthesis lectures on the semantic web: theory and technology 1.1
(2011), pp. 1–136.

[111] R. Hedayatzadeh et al. “Termite colony optimization: A novel approach for
optimizing continuous problems”. In: 2010 18th Iranian Conference on Electrical
Engineering. 2010, pp. 553–558. DOI: 10.1109/IRANIANCEE.2010.5507009.

[112] James Hendler. “Agents and the semantic web”. In: IEEE Intelligent systems
16.2 (2001), pp. 30–37.

[113] Francis Heylighen. “Mediator Evolution: a general scenario for the origin of
dynamical hierarchies”. In: Worldviews, Science and Us.(Singapore: World Sci-
entific) 44 (2006), pp. 45–48.

[114] Francis Heylighen. “Stigmergy as a generic mechanism for coordination : def-
inition , varieties and aspects”. In: Cognition (2011), pp. 1–23. ISSN: 13890417.

[115] Francis Heylighen. “Stigmergy as a Universal Coordination Mechanism: com-
ponents, varieties and applications”. In: Human Stigmergy: Theoretical Devel-
opments and New Applications; Springer: New York, NY, USA (2015).

[116] Francis Heylighen. “Stigmergy as a universal coordination mechanism I: Def-
inition and components”. In: Cognitive Systems Research 38 (2016), pp. 4–13.
ISSN: 13890417. DOI: 10.1016/j.cogsys.2015.12.002.

[117] Francis Heylighen. “Stigmergy as a universal coordination mechanism II:
Varieties and evolution”. In: Cognitive Systems Research 38 (2016), pp. 50–59.
ISSN: 13890417. DOI: 10.1016/j.cogsys.2015.12.007.

[118] Francis Heylighen and Clément Vidal. “Getting things done: the science be-
hind stress-free productivity”. In: Long Range Planning 41.6 (2008), pp. 585–
605.

[119] Guillaume Hillairet, Frédéric Bertrand, Jean Yves Lafaye, et al. “Bridging
EMF applications and RDF data sources”. In: Proceedings of the 4th Interna-
tional Workshop on Semantic Web Enabled Software Engineering, SWESE. 2008.

[120] Pascal Hitzler. “A review of the semantic web field”. In: Communications of
the ACM 64.2 (2021), pp. 76–83.

[121] Edmund R. Hunt, Simon Jones, and Sabine Hauert. “Testing the limits of
pheromone stigmergy in high-density robot swarms”. In: Royal Society Open
Science 6.11 (2019). ISSN: 20545703. DOI: 10.1098/rsos.190225.

[122] M Usman Iftikhar and Danny Weyns. “Activforms: Active formal models for
self-adaptation”. In: Proceedings of the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. 2014, pp. 125–134.

https://doi.org/10.1109/IRANIANCEE.2010.5507009
https://doi.org/10.1016/j.cogsys.2015.12.002
https://doi.org/10.1016/j.cogsys.2015.12.007
https://doi.org/10.1098/rsos.190225


Bibliography 161

[123] Markel Iglesias-Urkia et al. “Automatic generation of web of things servients
using thing descriptions”. In: Personal and Ubiquitous Computing (2020), pp. 1–
17.

[124] Internet of Things (IoT) Markets: A Global Outlook. 2019. URL: https://www.
researchandmarkets.com/reports/4768775/internet-of-things-iot-

markets-a-global-outlook.
[125] Damian Isla. GDC 2005 Proceeding: Handling Complexity in the Halo 2 AI. Last

accessed 12 April 2022. 2005. URL: https : / / www . gamedeveloper . com /
programming/gdc-2005-proceeding-handling-complexity-in-the-i-

halo-2-i-ai.
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