
Nucleic Acids Research , 2024, 52 , D1089–D1096 
https://doi.org/10.1093/nar/gkad990 
Advance access publication date: 6 November 2023 
Database issue 

ZEBRA: a hier ar c hically int egr at ed g ene expression atlas of 

the murine and human brain at single-cell resolution 

Matthias Flotho 

1 , 2 ,† , Jérémy Amand 

1 , 2 ,† , Pascal Hirsch 

2 , Fr ieder ik e Grandk e 

2 , 

Tony Wyss-Cor a y 

3 , 4 , Andreas Keller 1 , 2 and F abian Ker n 

1 , 2 , * 

1 Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 
66123 Saarbrücken, Germany 
2 Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany 
3 Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA 

4 The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA 

* To whom correspondence should be addressed. Tel: +49 681 30268610; Fax: +49 681 30268616; Email: fabianmichael.kern@helmholtz-hips.de 
† The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors. 

Abstract 

The molecular causes and mechanisms of neurodegenerative diseases remain poorly understood. A growing number of single-cell studies 
ha v e implicated various neural, glial, and immune cell subtypes to affect the mammalian central nervous system in many age-related disorders. 
Integrating this body of transcriptomic evidence into a comprehensive and reproducible frame w ork poses se v eral computational challenges. 
Here, we introduce ZEBRA, a large single-cell and single-nucleus RNA-seq database. ZEBRA integrates and normalizes gene expression and 
met adat a from 33 studies, encompassing 4.2 million human and mouse brain cells sampled from 39 brain regions. It incorporates samples 
from patients with neurodegenerative diseases like Alzheimer’ s disease, Parkinson’ s disease, and Multiple sclerosis, as well as samples from 

rele v ant mouse models. We emplo y ed scVI, a deep probabilistic auto-encoder model, to integrate the samples and curated both cell and sample 
met adat a f or do wnstream analy sis. ZEBRA allo ws f or cell-type and disease-specific markers to be explored and compared between sample 
conditions and brain regions, a cell composition analysis, and gene-wise feature mappings. Our comprehensive molecular database facilitates 
the generation of data-driven hypotheses, enhancing our understanding of mammalian brain function during aging and disease. The data sets, 
along with an interactive database are freely available at https:// www.ccb.uni-saarland.de/ zebra . 
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ith demographic changes leading to a growing elderly pop-
lation in Western societies, neurodegenerative diseases have
eceived increased attention due to their direct association
ith aging processes, often becoming more severe in ad-

anced age. The progression of these diseases has been linked
o various genetic origins, single-nucleotide polymorphisms
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(SNPs), and perturbed cell-type populations ( 1 ,2 ). However,
despite considerable progress and findings, the major molecu-
lar mechanisms underlying disease progression remain largely
unknown ( 3 ). Even if it is possible to profile and classify cell-
types on a fine-grained expression level, it remains difficult to
interpret mechanisms and dependencies on a patient level in a
comprehensive way. 
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Advancements in single-cell RNA-sequencing (scRNA-seq)
and single-nucleus RNA-sequencing (snRNA-seq) technolo-
gies have enabled capturing of gene expression profiles at the
cellular and nuclear level, respectively. This provides great in-
sight into underlying cellular and molecular pathways linked
to various pathophysiological conditions and aging processes.
Although there is an exponentially growing number of freely
available data sets and studies ( 4 ), the absence of a standard-
ized nomenclature for annotation and cell labeling poses a
challenge ( 5 ,6 ). In more detail, the data sets generated so far
are still biased in two aspects. First, the choice of sample re-
gion, as mainly the cortical regions were sampled from mouse
and human donors so far. Only a few studies cover multiple
brain regions from the same donor. Second, the choice of se-
quencing technique, for human mostly single-nucleus, and in
mouse samples single-cell sequencing is used. To reflect this
trend, we created a scRNA-seq for the mouse and snRNA-seq
atlas for the human brain accordingly. 

While existing databases tailored for brain tissue and neu-
rodegenerative diseases, such as the Allen Brain Map ( 7 ) and
scREAD ( 8 ) offer valuable information based on extensive
sets of scRNA-seq samples, they exhibit certain limitations.
The Allen Brain Map exclusively contains studies published
by the Allen Institute on the associated patient cohorts, while
scREAD lacks integration of data matrices across multiple
studies. In contrast to databases such as DISCO, HUSCH or
HTCA which cover multiple tissues, our database is special-
ized in neurodegeneration and aging in the brain, covering the
less frequently sampled cell-types and brain regions in much
more detail (Supplementary Table S1) ( 9–11 ). Our database
contains sequencing samples from 33 studies in the context
of age-related and neurological disorders (Supplementary Ta-
ble S2) ( 12–44 ). The distinction of brain regions is either ne-
glected in larger databases or coarse-grained in comparison
to our annotation. We recently showed that the functionally
and structurally diverse regions of the mammalian brain ex-
hibit a distinct and age-modulated transcriptome, motivating
our approach to further understand the connection between
molecular and cellular phenotypes in local niches ( 45 ). 

All here-included studies made use of the droplet-based 10x
Chromium protocol for generating libraries, leveraging the
high abundance of publicly available data sets using this par-
ticular technology. By focusing on a single platform, we ex-
pect fewer technical artifacts. Only studies that provide the
raw counts or SoupX-corrected counts were considered here.
As a common baseline, we applied doublet removal and filter-
ing with carefully selected thresholds to ensure the quality of
the included cells and nuclei. To integrate hundreds of samples
effectively and efficiently, we employ the generative and deep
probabilistic auto-encoder model scVI ( 46 ). Using a training
procedure, we generated a latent space representation based
on the posterior distribution of the gene counts. We only use
the resulting latent space representation for clustering and vi-
sualization. 

ZEBRA is the first large-scale database enabling an
overview and gene-wise analysis of scRNA-seq / snRNA-seq
samples across diverse studies while preserving the details
on cell-type and regional annotation. Moreover, ZEBRA is a
valuable resource for easy-to-access gene analysis functional-
ity in the context of aging and neurodegeneration. We enable
robust analysis in cortical as well as non-cortical brain re-
gions. Finally, our human cortex data set is the first of its kind
integrating and providing human brain cell transcriptomes
across almost the entire human age, i.e. from early childhood 

to late adulthood. 

Materials and methods 

Data collection 

The data was collected from Gene Expression Omnibus 
(GEO) ( 47 ), Synapse and the UCSC Cell Browser ( 48 ). Only 
count and SoupX-corrected count matrices ( 49 ) were used for 
our database. The considered samples were exclusively gen- 
erated using the droplet-based 10x Chromium 3 

′ gene ex- 
pression protocol ( 50 ). In particular, we only include human 

single-nucleus and mouse single-cell RNA sequencing studies.
We explicitly exclude studies related to embryonic develop- 
ment and cancer progression due to their nature of inducing 
very high transcriptomic variability. We also exclude studies 
with human data that do not allow unique donor mappings 
from cell to donor ( 51 ). Furthermore, only studies that used 

the GRCh38 human genome or the GRCm38 mouse genome 
as a reference were considered. The metadata was manu- 
ally curated, standardized, and checked. The cell-type anno- 
tation was performed manually, i.e. similar cell-types have 
been mapped onto each other and redundancies have been 

removed. Subsequently, we re-annotated the cell-types to fill 
in missing or to correct annotations. We provide a continuous 
and categorical scale about the age information across human 

samples and categorical information for the mouse samples.
The sexes were summarized into male (M), female (F), unde- 
fined and mixed. ‘Mixed’ describes mouse samples where mul- 
tiple sexes have been pooled together. Finally, we summarized 

the information about medical conditions into super-groups 
merging MS and AD sub-types, respectively. The processed,
re-annotated and integrated data can be downloaded from the 
server. Original raw and normalized counts are also available.
Data sets with access restrictions due to sensitive patient data 
are removed from the downloadable data files ( 16 , 17 , 24 , 31 ). 

Preprocessing 

We used the Scanpy package (v1.9.2 with Anndata v0.8.0) 
for preprocessing as a wrapper for the expression data. For 
each study, we applied Scrublet (v0.2.3) for detecting and re- 
moving putative doublets. The different data sets were merged 

by mapping equivalent genes onto each other and appending 
the observations to a single joint expression matrix. Gene iso- 
forms were summarized by a single gene label, i.e., the counts 
over all isoforms were summed up to a single gene label. To 

include a gene in the atlas it must be present in at least half 
of the data sets. Based on this gene set, we also create and 

provide the count matrix containing the isoforms but exclude 
it from our downstream analysis. Missing gene entries have 
been treated as NaN and have not been considered for DEG 

computation or integration. Cells were filtered out if they con- 
tained > 5% mitochondrial counts ( 52 ), > 7500 genes per cell,
or < 200 genes. Lastly, genes detected in less than 3 cells have 
been removed from the atlas. We then normalized and scaled 

the single-cell and single-nucleus count matrices according 
to the Scanpy workflow using the sc.pp.normalize_total and 

sc.pp.log1p functions. 

Integration 

ScVI (v0.17.3 with PyTorch v1.12.1) was used for integrating 
the preprocessed counts on a NVIDIA A100 GPU machine. As 



Nucleic Acids Research , 2024, Vol. 52, Database issue D 1091 

i  

a  

f  

w  

m  

t  

t  

o  

a  

t  

d  

a

C

W  

h  

c  

b  

t  

m  

i  

b  

p  

s

D

F  

B  

W  

‘  

b  

t  

e  

o  

v  

m  

p  

e  

t  

c  

p  

w  

v  

b  

(  

m  

H  

A  

s

D

W  

d  

a  

p  

f  

e  

(  

h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/D

1/D
1089/7369788 by Saarlaendische U

niversitaets- u. Landesbibliothek Saarbruecken user on 29 January 2024
nput, the count matrix is reduced to genes that are present in
ll data sets. This allows to compute normalized scVI counts
or the largest possible number of genes in the database. ScVI
as executed using default parameters and 1000 epochs at
ax. An epoch is defined as the cycle in which the model is

rained on the entire training data exactly once. In each epoch
he weights update until the maximum of epochs is reached
r there is no significant change in model performance. For
ll sub-data sets the training converged before reaching 1000
raining epochs. The integration was performed on the sub-
ata sets split both by brain region (cortex and non-cortex)
nd by species. 

urated cell-type annotation 

e summarized existing annotations to a two-level cell-type
ierarchy, harmonizing the cell-type annotations from the
ollected studies. We then re-annotated the cortex cell-types
ased on the integrated representation. Here, we clustered
he cells using the RAPIDS cuGraph Leiden algorithm imple-
entation and the RAPIDS cuml umap (v22.06.01) ( 53 ) to

dentify and define cell-type clusters. The cluster names have
een derived from examining the majority of original cell-type
resent in each cluster and by the marker genes reported in
everal of the included studies ( 12 , 19 , 30 ). 

ifferentially expressed gene (DEG) computation 

or computing DEG statistics we used the edgeR (v3.36.0)
ioconductor package on aggregated pseudo-bulk samples.
e aggregated by summing up the counts of cells split by

donor’, ‘region2’ and ‘sub_cell_type’ labels. The pseudo-
ulk samples were processed and normalized according to
he edgeR tutorial using the glmQLFTest function. When-
ver we computed the DEGs or markers between more than
ne study, we included the ‘study’ information as latent-
ariable in the model design matrix. We provide cell-type
arkers computed for each cluster against all other cells and
utative marker genes for the included diseases. The dis-
ase markers have been computed for each cell-type distinc-
ively, i.e., the conditions were compared within the same
ell-type but not across multiple cell-types. Additionally, we
rovide the pairwise DEGs of all cell-types across regions
ithin the same species in separate views. Cell expression

ectors containing NaN entries for certain genes have not
een used for computing the DEGs. We used the stats R
v4.1.3) package for adjusting the p-values for the condition
arkers, with the p.adjust method set to use the Benjamini-
ochberg adjustment false-discovery rate (‘BH’) procedure.
ll computed markers and DEGs can be downloaded from the

erver. 

atabase implementation 

e implemented an online database that allows the user to
ownload the atlas data, explore the data set composition
nd visualize gene expression across cells. The database is im-
lemented using the latest Python (v3.11) and Django (v4.2)
ramework releases in a reproducible Docker setup. The front
nd uses Bootstrap (v5.2), DataTables (v1.13) and the Plotly.js
v2.25) plotting library. The database is freely available at:
ttps:// www.ccb.uni-saarland.de/ zebra/ . 
Results 

Overview 

Our database includes 33 studies with 2 743 355 human and
1 414 605 mouse cells. We use a hierarchical approach to or-
ganize the data based on the sample region (Figure 1 ). The
human data set splits into 1 930 270 cortical and 813 085
non-cortical nuclei. The mouse cortex samples include 1 000
166 cells and 414 439 cells from outside the cortex. Diverse
levels of data integration showed that the best integration re-
sults were achieved when separating cortex and non-cortex
samples. The sampled regions are sometimes only captured in
a single study. Moreover, the overlaps of cell-types across lo-
cations are often small. In general, the collected studies are
heterogeneous on several levels: the sequencing depth is dif-
ferent, the cell-type annotation is inconsistent, and the sample
locations vary. 

Data set description 

We removed redundancies and curated the original cell-types
by merging them into unique labels structured into two levels.
To this end, we re-annotate all cells into coarser super- and
finer sub-cell-types to improve consistency across all studies.
Besides, we unify the annotation of the batches, sampling re-
gion, age, sex, and medical condition. The collected human
samples include donors of a variety of different diseases (Ta-
ble 1 ). For example, our atlas includes samples from 196 dis-
tinct human control donors and 88 donors with Alzheimer’s
disease. We observe slightly more male than female samples
and cells. In the mouse atlas, we report mostly wild-type (WT)
samples with 204 unique donor labels, where 82 labels corre-
spond to mixed sexes, meaning that at least 2 individuals have
been pooled together. The integrated representation has large
overlaps between assigned cell-types and predicted Leiden
clusters. Additionally, we manually curated the cell-type an-
notation of the cortex and non-cortex samples. Our improved
annotation aims to preserve the granularity of the provided
cluster labels while improving cell-type classification. In con-
trast to the favorable integration results in cortex samples, the
model training process across non-cortex regions was chal-
lenging due to certain brain regions being selectively covered
by a single study. To further investigate these region-driven
differences we integrated samples from each super-cell-type
present in multiple regions separately. The subsequent result
shows that the cells indeed cluster according to their expected
sub-cell-types. Therefore, the brain-region-driven effects that
made integrating the cross-region samples hard, could be min-
imized by preselecting populations of similar cells while avoid-
ing the risk to remove valuable biological signals from a com-
bination of transcriptionally distinct brain regions. 

Database functionality 

ZEBRA is an interactive database that provides a comprehen-
sive cross-study overview of the human and mouse brain in
aging and neurodegenerative diseases. It gives access to the
key-findings without downloading the complete data set. Each
view is designed to answer a series of questions based on pre-
calculated analyses. One core functionality of the web page is
to visualize the UMAP embedding of each of the four main
data sets based on metadata like cell-type or the expression
of genes of interest. All plots are interactive, allowing zoom-
ing, downloading, and toggling of the visibility of categories.

https://www.ccb.uni-saarland.de/zebra/
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Figure 1. The ZEBRA brain atlas contains a total of 4.1 million human and mouse brain cells and nuclei. These are split into two larger cortex data sets 
and two smaller non-cortex data sets. For each data set, the cellular and nuclear transcriptomes are preprocessed and embedded into a UMAP, colored 
by cell-type lineage. The main cell populations are glial (greens), neural (reds) and vascular (blues) cells. The number of cells or nuclei per main data set is 
shown in each subplot. 

Table 1. The number of donors varies across different medical conditions 
and co v ariates 

Species Condition #Donors #Cells M / F / mixed / 
unknown 

Human CT 196 1301k 128 / 69 / 0 / 1 
AD 88 529k 48 / 40 / 0 / 0 
ASD 21 148k 17 / 4 / 0 / 0 
COVID-19 8 33k 7 / 1 / 0 / 0 
FTD 27 251k 11 / 16 / 0 / 0 
HD 12 87k 9 / 3 / 0 / 0 
Influenza 1 5k 1 / 0 / 0 / 0 
LBD 4 61k 2 / 2 / 0 / 0 
MS 30 159k 24 / 8 / 0 / 1 
PD 6 123k 4 / 2 / 0 / 0 
Suicide 17 43k 17 / 0 / 0 / 0 

Mouse WT 204 1361k 61 / 48 / 82 / 15 
EAE 3 23k 0 / 0 / 0 / 3 
MCAO 3 26k 0 / 0 / 0 / 3 
MA 2 4k 0 / 2 / 0 / 0 
hGFAP-GFP 1 1k 0 / 0 / 1 / 0 

While the metadata label for the sex is mostly present for the human donors, 
we observe more unlabeled or mixed donors in the mouse models. We col- 
lected samples from Alzheimer’s disease (AD), autism spectrum disorder 
(ASD), S AR S-CoV-2 (COVID-19), frontotemporal dementia (FTD), Hunt- 
ington’s disease (HD), influenza, Lewy body dementia (LBD), Multiple Scle- 
rosis (MS), Parkinson’s disease (PD), and depressive disorder (Suicide) pa- 
tients. Besides, ZEBRA contains samples from wild-type (WT), experimental 
autoimmune encephalomyelitis (EAE), microglia absence (MA), and fluores- 
cent astrocytes (hGFAP-GFP) mice. 
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In addition, the embedding view can be sliced by the available
metadata variables. The user can analyze the data set composi-
tion by comparing experimental factors to each other. For ex-
ample, the proportions of cells from selected conditions across
each cell-type may be plotted to ensure that the data set is bal- 
anced subject to specific downstream analyses. 

Additionally, we provide the results of a differential gene ex- 
pression analysis for each gene in the data set. The database 
allows the visualization of the mean gene expression on the 
single-cell and single-nucleus level grouped by categories such 

as cell-type, original data set, or sex. Both, the embedding and 

the DEG analysis can be used to readily look up marker genes 
for the purpose of annotating new data sets. The DEGs can be 
easily filtered by sample number, e.g. the gene has to be present 
in at least n samples in each condition, as to enforce statistical 
stringency. Moreover, ZEBRA enables an easy way to compare 
homologous genes between human and mouse brain regions.
The integrated data sets can be downloaded as H5AD objects 
for use with Scanpy . Finally , ZEBRA provides pairwise DEGs 
between each cell type both across major brain regions and 

within the same region. This enables a detailed view of how 

similar cell-types differ in their transcriptome across the brain 

but also which DEGs are distinct between related cell-type lin- 
eages. 

Exemplified use-cases 

In Figure 2 , possible use-cases and views of the ZEBRA 

database for the gene LRP10 in the human cortex are shown.
It is a known key-driver for sex-specific networks in AD ( 54 ).
Using ZEBRA we can easily visualize how the expression 

varies in different cell-types using the embedding view, and 

how it is expressed in males versus females by age. In partic- 
ular, due to the age range covered in our human data, it is 
easy to compare changes in gene expression for different con- 
ditions and sexes via the gene map view and across a broad 
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Figure 2. Case study examining the gene LRP10 in human cortex: ZEBRA provides a series of useful and readily accessible views to examine genes of 
interest. From top left to bottom right: the mean expression of selected genes can be plotted in a UMAP projection to detect cell-type specific 
expression patterns (Embedding view). The mean gene expression can also be grouped by factors of interest such as age or sex to find trends of 
association (Gene Map view). ZEBRA provides a view of the DEG analysis for each gene (Diff. Expression view). The Gene Map view finally allows 
combining se v eral categories at once, f or inst ance, all conditions per cell-t ype. 
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ge range. The database tools support independent validation
rocedures or aids in finding other physiological conditions
hat can affect a gene in certain cell-types. Besides, ZEBRA
an in principle be used to train and benchmark new or ex-
sting cell type prediction tools. Automatically labelling cells
ased on their transcriptomic signature is an on-going scien-
ific challenge for which sufficiently sized and broadly covered
eference databases are urgently required ( 55 ). 

iscussion 

he landscape of freely available scRNA-seq and snRNA-seq
tudies on the mammalian brain continues to expand. How-
ver, the absence of universal nomenclatures and minimal but
tandardized requirements for published data remains a chal-
enge in the field. Consequently, integrating and comparing all
vailable information proves problematic, necessitating exten-
ive manual curation. Furthermore, the compatibility between
 plethora of existing frameworks for handling and storing
cRNA-seq data (loompy: http: // linnarssonlab.org / loompy,
euratDisk: https: // mojaveazure.github.io / seurat-disk, scvi-
ools ( 56 )) is poor and subject to on-going breaking changes
hat hinder the accessibility for non-computational research
xperts to perform cross-study comparisons or analyses of re-
roducibility. 
In this study, we introduced ZEBRA, a database that pro-

ides access to 33 manually curated and integrated scRNA-seq
nd snRNA-seq studies. To this end, we combined the cellu-
ar and nuclear transcriptomes on several levels to create a
ierarchical design of our database. Recognizing that cross-
pecies integration is difficult due to differing genomic anno-
ations and gene functions as well as the fact that single-cell
equencing is more frequently performed for mouse than for
uman, and vice-versa for single-nucleus sequencing, a split
by species is required to alleviate the need for extensive tech-
nical batch effect correction. Moreover, we observed that for
both human and mouse the number of samples available per
brain-region is heavily biased towards cortex, for which we
can identify multiple reasons. This approach showed best-
performing integration results as it balances statistical power
and sensitivity of picking up pronounced cell-type differences
in gene expression for the well-covered cortex and less covered
non-cortical regions. Consequently, our results suggest that
future endeavors should consider sampling across multiple
regions within a single individual to enhance computational
integration. 

By clustering integrated human and mouse cortex samples,
we observe a substantial overlap between the computation-
ally derived clusters and the original cell-type annotations in
a majority-vote manner. The re-annotated cells in ZEBRA pro-
vide more consistent cell-type labeling. For example, we could
observe inconsistencies in how OPCs and oligodendrocytes
were previously labeled across different studies. ZEBRA of-
fers a reliable reference for human brain marker genes, as we
confirmed most of the annotated cells while relabeling mis-
labeled cells. Additionally, our findings highlight the general
reproducibility of droplet-based scRNA-seq and snRNA-seq
protocols, as we successfully integrated human cortical cells
from 19 distinct studies. The presented data shows the hetero-
geneity across different brain regions, emphasizing the critical
role of the spatial locality as a driving factor in cellular diver-
sity ( 45 ). Distinguishing between batch effects and biological
signals proves challenging, as most studies sample only one
single location of the brain. Here we recognized also the di-
versity of tissue homogenization and cell extraction protocols
currently reported among the single-cell literature, each lead-
ing to individual biases and noise that is challenging to regress
out computationally, especially when sample numbers are low.
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Settling on common and approved standards could certainly
help to improve the overall reproducibility of single-cell re-
search, especially in clinical and drug development contexts. 

Future work for ZEBRA could comprise a complete re-
alignment of all raw reads to further improve the overall data
quality and to better resolve transcriptional isoforms. Still, the
3 

′ gene expression technology used by most studies unevenly
covers gene transcripts, with most reads aligning to a region
close the 3 

′ UTR. This makes a consistent detection of splic-
ing events inherently difficult to measure ( 57 ). Alternative full-
length but more labor-intensive platforms such as Smart-seq2
have already been established but are adopted more slowly
( 58 ). Comprehensively integrating full-length and 3 

′ droplet-
based counts is then another computational challenge to be
resolved should more full-length data become available over
time. Nevertheless we account for this use-case by reporting
also the original isoform counts for each study, where avail-
able. 

The provided database serves as a new reference for forth-
coming experiments and to guide cohort design, facilitating
also complex computational tasks such as cell-type annota-
tion and benchmarking of novel cell-type prediction tools.
Such an extensive compilation of data sets enables a more
robust evaluation of cellular and nuclear transcriptomes at
scale and with ease. We hope that ZEBRA will be a valu-
able resource for neurodegenerative disease and aging re-
search, fostering the rapid development of novel therapeutic
approaches. 

Data availability 

ZEBRA is freely available at https://www.ccb.uni-saarland.
de/zebra . 

Supplementary data 

Supplementary Data are available at NAR Online. 
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