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a b s t r a c t

Bioinspired fibrillar adhesives have been proposed for novel gripping systems with

enhanced scalability and resource efficiency. Here, we propose an in-situ optical moni-

toring system of the contact signatures, coupled with image processing and machine

learning. Visual features were extracted from the contact signature images recorded at

maximum compressive preload and after lifting a glass object. The algorithm was trained

to cope with several degrees of misalignment and with unbalanced weight distributions by

off-center gripping. The system allowed an assessment of the picking process for objects of

various mass (200, 300, and 400 g). Several classifiers showed a high accuracy of about 90 %

for successful prediction of attachment, depending on the mass of the object. The results

promise improved reliability of handling objects, even in difficult situations.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

We are right on the edge of the fourth industrial revolution. As

industries are transitioning towards automation and digitali-

zation of their production lines, the need for smart grippers has

grown rapidly. The goal for this transformation is to increase

efficiency, speed, and quality of objects manipulation [1,2]. For

nearly half a century, robotic grippers have relied on various

technologies, such as suction and vacuum, electrostatic and

magnetic attraction, and, most widespread, mechanical grip-

ping [3]. Since the development of gecko-inspired fibrillar

polymer surfaces [4e12], a new gripping principle is now in the

process of entering themarket [13e19]:manipulation of objects

by microfibrillar elastomer surfaces, whose adhesion can be
titute for New Materials,

by Elsevier B.V. This
switched on and off. Such surfaces achieve, after application of

small compressive preloads, strong adhesion by van der Waals

interaction and allow residue-free and silent handling, effec-

tive in both air and vacuum conditions [20e22]. These proper-

ties promise significant benefits over conventional gripping

technologies, especially in manipulation of delicate and fragile

objects of diverse sizes and geometries.

Object manipulation has to also work under non-ideal

conditions. It has to tolerate loss of the intimate contact

with the target object due to interfacial defects or due to

inevitable alignment inaccuracies [23e25]. As opposed to

previous assumptions, it has been proven by Tinnemann et al.

[26] that the different fibrils behave largely independent from

each other and can have widely distributed individual
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adhesion strengths [26,27]. This variation comes from the

different types of interfacial defects, i.e., manufacturing im-

perfections, surface roughness or dust and contaminations,

which can lead to an unbalanced strength distribution within

the fibrillar array [27]. Moreover, misalignment or uninten-

tional off-center gripping can lead to unreliable gripping of the

target object. Thus, it is crucial tomonitor the correct grasping

to avoid unintended loss of the object.

Microfibrillar grippers are amenable to optical observation

of contact formation and breakage. In previous studies

[14,26,28,29], vision based tactile sensors were used to analyze

the contact of fibrillar adhesives with counter surfaces. Eason

et al. [28] used frustrated total internal reflection to charac-

terize the stress distribution on gecko toes. This technique

was later adopted by Tinnemann et al. [26] to investigate in

detail the detachment behavior of artificial single fibrils and

fibrillar arrays. Pang et al. [14] developed and integrated a

vision-based tactile sensor for a shear-induced gecko gripper

to obtain real-time measurements of contact area and shear

force. In our recent work [30], in-situ observation coupledwith

supervised learning regression models was successfully used

to predict the adhesion force of microfibrillar surfaces from

visual features extracted from contact images (the “contact

signature”). In this first study, we demonstrated that machine

learning offers several benefits for the real-timemonitoring of

micropatterned adhesives, surpassing the limitations of

traditional numerical and analytical models.

In the present paper, we take the concept of machine

learning one step further and propose an in-line monitoring

system to detect the presence and correct grasping of a glass

object using frustrated total internal reflection and supervised

learning classification models. These models will be trained

on data collected directly using a pick-and-place robotic arm.

In this way, we bridge the gap from laboratory adhesion ex-

periments to actual manipulation processes using bio-

inspired microstructures with improved reliability. We argue

that the implementation of machine learning in the gripping

process will drastically increase the reliability, even in non-

ideal gripping situations, and may hence accelerate accep-

tance of this novel handling technology.
2. Materials and methods

2.1. Preparation of fibrillar arrays

In the present study, eight specimens (S1eS8) of micro-

patterned polydimethylsiloxane (PDMS, Sylgard 184, Dow,

Midland, MI, USA) with 844 mushroom shaped fibrils were

fabricated using replica molding as described in earlier pub-

lications [26,29]. The fibrils had a length of h ¼ 1600 mm, a stalk

radius or r ¼ 200 mmand amushroom tip radius of az 300 mm.

The center-to-center distance between neighboring fibrils was

d ¼ 800 mm. A polished brass disc was used to seal the bottom

of the mold, which replicated the smooth topography of the

brass to the fibril tips. Blue pigments (PK 5091, Degussa, Essen,

Germany) were added to the transparent PDMS in order to

enhance the optical contrast for the in-situ imaging. Exact

dimensions of the micropatterned specimens are given in

Table 1.
2.2. Robot experimental steps

Experimental data was collected using a pick-and-place ro-

botic arm (CobotUR5, Universal Robots, Odense, Denmark), see

Fig. 1 c. A transparent glass plate was used as the target object.

An aluminum ring was attached on top of the object to achieve

a total mass of 200, 300, and 400 g. For contact observation, the

object holder was equipped with LEDs and a camera in order to

implement the principle of frustrated total internal reflection

as illustrated in Fig. 1 a and c. Light coupled in the transparent

glass object was scattered after contacting the object with the

fibrillar array, strongly improving the contrast between

attached and detached fibrils [26,29]. For each specimen, 50

pick-and-place cycles were performed by picking the object

from the center; in another 50 cycles the object was grasped

off-center with wz3 mm as can be seen in Fig. 1 b. After each

cycle a random rotation of the robotic arm along the x and y

axes was introduced, resulting in the misalignment angles a

and b, which ranged between �2 and 2�. The glass object was

cleaned with isopropanol and/or acetone after each 100 cycles

to remove dust and contamination.

Before each experiment the fibrillar adhesive was mounted

on the robotic armand alignedmanuallywith the target object.

Since the robot is not equippedwith a force sensor, the preload

for the different specimens was chosen manually as the first

full contact (position 0). The position 0 was fixed by estab-

lishing contact through visual inspection, without applying

any additional load. However, a slight variation of the preload

could result from handling errors. Positions 1 and 2 corre-

sponded to lifting by 2 and 20mmabove contact, see Fig. 2 a. At

the start, the robot recorded first two reference images of the

contact signature, Ref-0 and Ref-2 at positions 0 and 2 for

subsequent analysis. The robot arm moved at a velocity of

10 mm=s, and an acceleration of 40 mm=s2. For detachment,

the arm rotated at a rotation velocity of 25 mm=s, and an ac-

celeration of 240 mm=s2. In order to synchronize robot, cam-

era, and image analysis, 1e2 swaiting timewas added between

the essential steps. A successful “pick” event was defined after

a hold time of 10 s after moving into position 2. The robot was

controlled using the UR5 control interface along with a pro-

gram created using MATLAB (MathWorks, MA, USA). Fig. 2 b

presents the flow chart to collect the necessary data.

2.3. Image analysis and features extraction

The images collected at position 0, 1, and 2 were analyzed

using Computer Vision and Image Processing toolboxes from

MATLAB as described in detail in our previous report [30]. Bi-

nary images were created by selecting a threshold gray value.

Pixels with values above the threshold were definedwhite and

were attributed to fibrils in contact, whereas pixels with

smaller values were considered black, indicating non-contact

regions. The mean distance between fibrils centroids, d ¼
800 mm,was used to convert from the pixel to themicrometric

scale. Multiple inputs were extracted from the binarized

contact signature images obtained at positions 0 and 1. The

following features were extracted:

� The contact area A (A0 at position 0 and A1 at position 1)

was obtained by calculating the number of white pixels at
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Fig. 1 e Experimental set-up for data collection. a) Schematic illustration of the micropatterned adhesive attaching to a

smooth glass substrate. Frustrated total internal reflection enhances the contrast for Na attached and Nd detached fibrils.

Misorientation between the adhesive and the glass surface is introduced by robotic actuation: rotation along x and y axes,

resulting in misalignment angles a and b. b) Schematic illustration of the off-center gripping where the glass object was

moved in one direction with wz3 mm. c) Robotic arm equipped with microfibrillar surface adhering to the glass. LEDs are

used for the frustrated total internal reflection. A mirror reflects the contact signature to the camera. d) Image of the

micropatterned specimen that typically consisted of N ¼ 844 fibrils. The inset shows the hexagonal arrangement.

e) Scanning electron micrograph of the mushroom-shaped fibrils.

Table 1 e Dimensions and quality variations of the specimens in terms of the pull-off force, Fp, the pull-off stress, s, the
stiffness of the specimen, k, theWeibull moduli,m, and the reference elongation, u0. Data for the diameter representmean
values and standard deviations of 10 randomly selected fibrils.

Specimen Tip radius,
a (mm)

Total Number
of fibrils, N

Pull-off stress,
s (N/m2)

Pull-off
force, Fp (N)

Contact
stiffness,
k (kN/m)

Weibull
modulus, m

Reference
elongation,
u0 (mm)

S1 284:39 ± 16:74 842 78.4 16.79 68.9 2.8 0.60

S2 278:86 ± 8:53 841 89.5 18.4 105.6 3.6 0.51

S3 263:97 ± 5:46 842 119.4 22.01 78.6 5.4 0.72

S4 264:30 ± 6:86 837 77.4 14.22 79.0 4.7 0.58

S5 257:30 ± 6:12 841 86.4 15.12 87.2 3.7 0.51

S6 249:56 ± 8:05 811 112.1 17.78 94.9 5.0 0.50

S7 247:72 ± 9:18 844 93.8 15.27 86.8 4.0 0.41

S8 256:27 ± 9:86 844 87.4 15.22 81.7 5.9 0.33
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full or partial contact, see Fig. 3 a. This feature will be

sensitive to incomplete gripping due to misalignment or

off-center grasping, and can potentially detect deteriora-

tion in the form of contamination or wear.

� The number of centroids in contact acquired by computer

vision represented the number of attached fibrils, Na, Fig. 3

b. Similarly, this feature will reflect missing or malformed

fibrils or their deterioration over many handling cycles.

� For misaligned grasping, the position of the centroids is

used to procure the misalignment vector j v!j0, i.e. the

vector linking the center of mass, C, of the array in full

contact in Ref-0 to that in partial contact, Fig. 3c.
� The angle q describes the misalignment vector in polar

coordinates by ðj v!j; qÞ; with j v!j its magnitude and q its

angle with respect to the x axis, see Fig. 3 c.

Observations of successful or unsuccessful attachment i.e.,

outputs, were obtained by comparing the captured images at

position 2 with Ref-2.

Since direct use of the captured images or the pixelate

representation of the fibrillar contacts for a deep learning

approach was limited by multiple factors (e.g. insufficient

amount of data or input resolution below the receptive field

size for training convolutional neural networks), the extracted

https://doi.org/10.1016/j.jmrt.2023.09.311
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Fig. 2 e Data collection steps and flow chart. a) Schematic illustration of the three different positions for data collection.

Position 0: Upon contact between array and object, a first set of visual features is extracted from the captured image (Ref-0).

The robot lifts the object to position 1 and a second set of features is extracted. The object is then moved to position 2 where

image capture after a hold time of 10 s decides upon a successful pick event. b) Flow chart of the experimental steps to

collect data using the robot. The home position is the starting position of the robotic arm.
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visual features A0, Na;0 , j v!j0, and q0 at position 0, and A1, Na;1,

j v!j1, and q1 at position 1 were used to train supervised

learning models as will be presented in the next section.
2.4. Machine learning

For creating predictive models, we utilized supervised

learning algorithms from the Statistics and Machine Learning

toolbox in MATLAB (ver. R2019b). From the visual features

obtained, various models were trained using MATLAB's clas-

sification learner toolbox. We focused on three models: linear

Logistic Regression (LR), non-linear models Support Vector

Machines (SVM), and K-Nearest Neighbors (KNN). The exper-

imental data for the three different classifiers was

divided randomly into training and testing data at a ratio of 75

to 25 (6 specimens for training and 2 for testing). In addition, a

six-fold cross-validation was used to optimize the
performance of the models and to avoid overfitting during

training; for each iteration, 5 specimenswere used for training

and one for validation. Amin-max normalization was used on

the extracted features A0, Na;0 , j v!j0, A1, Na;1,and j v!j1, as fol-

lows: A0 ¼ ðA � minðAÞÞ =ðmaxðAÞ � minðAÞÞ. The features q0

and q1 were normalized by 2p such as: q0i ¼ q=2p.

For each of the chosen models, 3 classifiers were created.

The first was trained using features extracted only from po-

sition 0 (A0
0, N

0
a;0 , j v!j00, q00), the second using the features from

the image at position 1 (A0
1, N

0
a;1, j v!j01, q01), and the final one

using all the features.

The trained classifiers were evaluated by the validation

accuracy calculated by (Tp þ Tn)/(Tp þ Tn þ Fp þ Fn), and by

plotting the confusion matrices for the test data, which

included the values for true-positive, Tp (True predicted

attachment), true-negative, Tn (True predicted detachment),

false-positive, Fp (False predicted attachment), and false-

https://doi.org/10.1016/j.jmrt.2023.09.311
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Fig. 3 e Capture of visual features corresponding to contacting fibrillar arrays. a) Full (left)/partial (right) contact of individual

fibrils. The sum of the contact areas of all attached fibrils provides the total contact area, A. b) Full (left)/partial (right) contact

of the array, where green corresponds to Na attached, red to Nd non-attached fibrils. c) Misalignment vector (black arrow), v!,

pointing from the centroid of complete contact to that of partial contact, and q its angle with respect to the x axis.
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negative, Fn (False predicted detachment). For these values,

the precision, P, recall, R ,and score, F1; can be calculated by

P ¼ Tp=ðTp þFpÞ, R ¼ Tp=ðTp þFnÞ and F1 ¼ 2 PR=ðPþRÞ.

2.5. Adhesion properties of the specimens

To characterize the quality of the 8 specimens, pull-off forces

and statistical properties of the fibrillar adhesives were

measured using a customized tensile tester (Inspekt table

BLUE, Hegewald & Peschke, Nossen, Germany) equipped with

a 50 N load cell, a camera, and the frustrated-TIR system for

in-situ observation. The array was brought into contact with

the target object (a smooth glass substrate), at a velocity of

1 mm/min until a prescribed compressive load of 1 N, was

reached. The array was then instantly retracted at the same

velocity. The highest tensile force was reported as the pull-off

force, Fp. The stiffness, k, of the fibrillar surface was obtained

from force-displacement curves in the compressive regime

after deducing the load cell stiffness: k50 ¼ 134:6 Nmm�1

(from 1=k ¼ 1 =kslope � 1 =k50Þ. Videos of the tests were recorded

and correlated with the force-displacement measurement. To

characterize the spread of the distribution of individual fibril

pull-off forces, a cumulative Weibull distribution was fitted

(Equation 1 in the supporting information, see also [31,32]. The

Weibull moduli, m; and the reference elongations, u0; of the

arrays are reported in Table 1.
3. Results and discussion

3.1. Distributions of fibril and of array strengths

The pull-off force measured for the different specimens

ranged between 14 N for the weakest array S4 and 22 N for the
strongest array S3, see Table 1. As the glass surface was free of

contaminants, the likely reason for this distribution lies in the

limitations of the replicamolding process: surface defects and

deviations in fibril radius induced a spread in pull-off strength

across each array. These variations were quantified by fitting

Weibull distributions (equation 1 in SI) and extracting char-

acteristic values as explained in previous reports [27,31,32],

and presented in Table 1.

3.2. Contact signatures for misaligned gripping

Fig. 4 a, b, and c show the random distribution of the

misalignment angles a and b chosen during data collection for

different object masses. Fig. 4 d displays contact signatures at

preload for specimens S1 (i and ii) and specimens S2 (iii)

divulging the variation of the number of attached fibrils Na for

similar misalignment angles (a � 0:6� and b � 0:02�). This

variation is a result of the slight preload variation from the

manual definition of position 0 for the different specimens.

Moreover, the robot arm has a repeatability error of 100 mm

when reaching a preset position. This can explain the signif-

icant difference in number of attached fibrils, Na; for a similar

preset values of a and b between different specimens

(Na;S1 ¼ 566 and Na;S2 ¼ 482) and for two cycles of the same

specimen (Na;S1 ðiÞ ¼ 566 and Na;S1 ðiiÞ ¼ 601).

The patterned adhesives were successfully used to train

the pick-and-place handling of glass objects with a mass of

200, 300, and 400 g. The data set obtained comprised 800 data

points for each of the objects. This data included intentional

variations such as the preset degrees of misalignment or

balanced/unbalanced gripping due to variations of the grip-

ping position, and unpremeditated variations attributed to

specimens’ quality variations, inaccuracies in robot arm

movements or slight preload variations.

https://doi.org/10.1016/j.jmrt.2023.09.311
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Fig. 4 e Intentional variation of the misalignment. a-c) Rotation angles of the robotic arm b versus a, both ranging between

¡2 and 2�. Misorientation data for the different objects with mass a) 200 g, b) 300 g, and c) 400 g. d) Exemplary images of the

contact at preload for specimens S1 (i and ii) and S2 (iii) with similar rotation angles, showing a variation in the number of

fibrils in contact, Na.
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3.3. Effect of misalignment and off-center gripping

Fig. 5 shows the combined effect of misaligned contact and

off-center gripping after lifting the object to position 1. The

unbalanced attachment induces a moment, M, leading to a

rotation of the glass object. In Fig. 5 a, the rotation of the glass

is similar to the rotation of the robotic arm (anti-clockwise)

around the x axes, which leads to attachment of additional

fibrils and counters the detachment, as can be seen on the

image (a.1) at position 1. In contrast when the rotation of the

object is in the opposite direction to the robot arm rotation, a

peeling moment is created and fast detachment can be

observed, see Fig. 5 b, image (b.1). The aim of the machine

learning process is to anticipate these processes and thereby

increase the reliability of handling.

Fig. 6 depicts themisalignment vector v! (j v!j;q) in the polar

coordinate system, grouped by the output results for the

different object masses. The distance of each dot to the center

corresponds to the length of the vector, j v!j, ranging between

0 and 10 mm. The angle of the misalignment vector, q, is

designated by the position of the dots in the polar plot and

ranges between 0 and 2p. The blue dots represent successful

attachment, while the red dots correspond to detachment

(unsuccessful attachment). Fig. 6 a, c, and e correspond to data

collected at position 0, i.e., at maximum preload. The fraction

of successful attachments decreased with increasing object
mass: for the lighter (200 g) object, 71.4 % of themanipulations

were successfully attached while only 38.1 % of the trials were

successful with the 400 g object. For the 300 g object, the

attachment to detachment ratio was about 1:1, see Table S1 in

SI. Fig. 6 b, d, and f correspond to data collected at position 1.

The misalignment vector data collected at position 0 ap-

pears to be condensed around the center. After lifting the

object to position 1 some of the data signifying detachment

(red dots) expand in the y direction as the misalignment

vector elongates. This can be related to the off-center gripping

shown in Fig. 5 b, where the peeling moment leads to the

detachment of some fibrils after lifting and causes detach-

ment of the object. The blue dots (attachments) on the other

hand congregate around the center because in some cases the

off-center gripping improves the contact during lifting as can

be seen in Fig. 5 a. The effect of off-center gripping on the

misalignment vector after lifting increases as the mass of the

glass object increases (the expansion and congregation of the

data for the 400 g object is more pronounced than for the

200 g).

3.4. Supervised machine learning

The normalized features, collected from the contact images at

position 0 (A0
0, N

0
a;0 , j v!j00, q00), and position 1 (A0

1, N
0
a;1, j v!j01, q01),

were implemented into supervised machine learning models

https://doi.org/10.1016/j.jmrt.2023.09.311
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Fig. 5 e Rotation of the object during off-center attachment. a) The object rotates anti-clockwise similar to the rotation of the

robotic arm; this reduces the initial misalignment and leads to attachment of previously detached fibrils (upper moon-

shaped area in a.1). b) The object rotates oppositely to the rotation of the robotic arm, which increases misalignment,

reduces the contact area, and leads to peeling.
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to train and compare multiple classifiers. The classification

models enable the prediction of attachment/detachment

depending on the mass of the object. Fig. 7 a depicts the ac-

curacy of the training data as a function of the object mass for

three different classifiers: support vector machines (SVM),

logistic regression (LR), and the k-nearest neighbor (KNN). For

all trained classifiers the accuracies obtained were always

higher than 90%, with KNN exhibiting an 100 % validation

accuracy and LR showing the lowest accuracy (~90%). How-

ever, this trend changes when testing the models with the

remaining testing data. Fig. 7 b shows the score of the testing

data for the different trained classifiers. LR scores highest for

the 200 g object at 95 % and for the 300 g object at 90 %. SVM

has the highest score for the 400 g and comes in second for the

other classifiers. The testing of KNN reveals the incapability of

the model to adapt to new data as the score of the KNN comes

in the third position for the three different object masses.

The confusion matrices in Fig. 8 and the column graphics

in Fig. 9 depict the comparison of LR trained first with features

extracted at position 0, P0 (A0
0, N

0
a;0 , j v!j00, q00) (Fig. 8 a), at posi-

tion 1, P1 (A0
1,N

0
a;1, j v!j01, q01) (Fig. 8 b), and the combined features

from position 0 and 1, P0;1 (Fig. 8 c). The number of false pos-

itives, Fp, and false negative, Fn, diminished when features

obtained at lifting position were included in the training. For

the 200 g object for example, 21 data points out of 40 true

detachments were falsely predicted as attached when using

only features from position 0, 16 when using features from

position 1, and only 4 when using all features. The effect of the

unbalance distribution of the two result groups in the

collected data is shown in the confusion matrices for the 200

and 400 g objects by the large variation between the true

positives and true negatives.
As can be seen in Fig. 9, the classifier P0 has the lowest

score with a maximum of ~90 % for the 200 g object and only

71 % for the 400 g object. This drop can be explained by the

lack of information in the data at position 0 about the off-

center gripping, where the influence is more pronounced for

the heavier objects. The score for the 400 g increases to 84 %

for the classifier P1, as more information is included.

Combining the features in both positions (position 0 and 1)

resulted in an increase of the accuracy and score for all the

classifiers P0;1 to more than 90 %. The remaining 5e9% for

perfect prediction could be attributed to the unbalanced dis-

tribution of the two result groups (attached/detached) in the

collected data, see Table S1 in SI, and to the undesirable var-

iations that are not fully shown in the obtained features,

which may induce wrong classification. The confusion

matrices and classifiers comparisons of the SVM, and KNN

models are shown in Figs. S2 and S3 in the SI. The accuracy,

precision, recall, and score of all the models are presented in

Tables S2eS10 in SI.

Overall, the high prediction accuracies demonstrated in

this paper as a result of in-situ observation at two positions

are encouraging as the method can therefore significantly

increase the reliability of object handlingwithmicropatterned

adhesives. In particular, inclusion of data from the lift position

to train the classification models will allow an impending

peeling to be readily anticipated; dramatic detachments and

loss of object could hence be avoided. Also, the reliability of

handling asymmetric objects with various geometries and

forms can profit. More specifically, the data collected directly

using the robotic arm bridge the gap between laboratory

adhesion experiments in displacement-control and the actual

pick and place application under force-controlled loading

[31,33].
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Fig. 6 e Misalignment vector, v! in polar coordinate grouped by the output results successful (blue) and unsuccessful

attachment (red). Upper row (a,c,e) corresponds to contact images collected at preload (position 0), whereas the lower row

(b,d,f) corresponds to contact images collected upon lifting at position 1. Columns correspond to the masses of the object of

200, 300, and 400 g. Each dot represents the length of the vector, j v!j ranging between 0 and 10 mm and the misalignment

angle, q. The asymmetric character of these plots results from the off-center gripping coming from one direction.

Fig. 7 e Classification results of three classifiers. a) The validation accuracy (training) and b) the score (testing) of the support

vector machines (SVM), logistic regression (LR), and k-nearest neighbors (KNN) trained by the three objects.
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Certain limitations of the present approach should be

noted. The trained models are highly related to the relevant

application circumstances, such as object weight, trajectory

of the robot arm, and waiting times between different steps.
Moreover, possible effects of additional parameters such as

velocity and acceleration of the robot arm were not taken

into consideration. Based on our feasibility study, more

extensive coverage of the complex parameter space under

https://doi.org/10.1016/j.jmrt.2023.09.311
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Fig. 8 e Confusion matrices of the different classifiers trained with the logistic regression (LR) model with 1 is the case of

successful attachment and 0 is detachment. Each matrix represents the total number of true negative (Tn), true positive (Tp),

false negative (Fn) and false positive (Fp). Columns correspond to themasses of the object of 200, 300, and 400 g. a) Classifiers

P0 trained using data at preload (position 0). b) Classifiers P1 trained using data upon lifting (position 1). c) Classifiers P0;1

trained using data from positions 0 and 1.

Fig. 9 e Comparing input data for the logistic regression (LR) model. a) The validation accuracy (training) and b) the score

(testing) of three objects with the mass 200, 300, and 400 g when trained by data from position 0 (P0), position 1 (P1), and

position 0 and 1 (P0;1).
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realistic handling conditions can be performed to validate

the technique suggested here. Such optimization of the

experimental training data as well as development of

new optical techniques compatible with opaque and rough

objects will bear great potential to significantly improve in-

line control of handling processes even in demanding

conditions.
4. Conclusions

In this work, we present an in-line monitoring system using

supervised learning classificationmodels, optical observation,

and image processing. Three classification models were

trained and tested using visual features obtained from the
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contact signature at preload and after lifting the glass object.

Successful and unsuccessful attachment of the object was

demonstrated in a pick and place application. The following

conclusions can be drawn:

� The performance of a micropatterned adhesives can be

affected by intentional or unintentional variations,

notably, prescribed misalignment and off-center gripping

or quality of the adhesive and preload/displacement vari-

ations attributed to the limited robot arm accuracy.

� All tested classifiers showed accuracies higher than � 90%

for predicting impending attachment or detachment as a

function of the objects mass. The highest testing score was

obtained for logistic regression.

� Observation of the contact signature at compressive pre-

load alone, i.e. before lifting of the object, resulted in a high

predictive capability (between 70 and 90 %). Including data

from the lifting position significantly increased the accu-

racy and score of the different trained models (to more

than 90 %).

The present machine learning approach is proposed as a

means of enhancing the reliability of handling with micro-

patterned adhesives. Further exploration of the complex

parameter space in handling realistic objects is warranted to

validate the technique proposed here. It is also suggested that

the technique can be used to identify degradation and wear of

the polymeric micropatterns, both of which can impair the

reliability of the handling process.
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