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Abstract
The approximate power law dependence of the apparent viscosity of liquids on shear rate is often argued to arise from a 
distribution of energy barriers. However, recent work on the Prandtl model, which consists of a point mass being dragged 
by a damped, harmonic spring past a sinusoidal potential, revealed a similar dependence of the friction on velocity as that 
of many liquids. Here, we demonstrate that this correlation is not only qualitative but can also be made quantitative over a 
broad temperature range using merely three dimensionless parameters, at least for alkanes, in particular n-hexadecane, at 
elevated pressure p. These and other observations made on our all-atom alkane simulations at elevated pressure point to 
the existence of an elementary instability causing shear-thinning. In addition, the equilibrium viscosity shows power law 
dependence on p near the cavitation pressure but an exponential dependence at large p, while the additional parameter(s) in 
the Carreau–Yasuda equation compared to other rheological models turn out justifiable.

1 Introduction

Research on how liquids oppose shear as a function of shear 
stress or shear rate, temperature, and also pressure suppos-
edly started almost exactly a century ago [1], when Schalek 
and Szegvari [2] discovered that the apparent viscosity � 
of iron-oxide colloidal suspension, defined as the ratio of 
shear stress � and shear rate �̇� , became continuously smaller 
with increasing shear rate. Ostwald [3] soon found that this 
shear-thinning, termed “Strukturviskosität” at the time 
(structure or intrinsic viscosity in English), can be approxi-
mated rather well with an 𝜂 ∝ �̇�n−1 power law, where n is 
called the shear-thinning exponent. It is now well established 
that any liquid, even the prototypical Newtonian fluid water 
when supercooled [4], has a shear rate dependent viscosity 
if the shear rate is only sufficiently high so that labeling 
fluids as (approximately) Newtonian or not is not a mat-
ter of chemistry but mostly of shear rate. Liquids obeying 
Ostwald’s empirical law with n > 1 , n = 1 , and n < 1 can 
be labeled shear-thickening, Newtonian, and shear-thin-
ning, respectively. Under certain situations, n < 0 might be 
observable, in which case the friction force decreases with 
velocity, e.g., in computer simulations of poly-�-olefins and 

2,4-dicyclohexyl-2-methylpentane at shear rates exceeding 
1 GHz [5]. However, macroscopic flow could not be Cou-
ette like in such situations, because unavoidable fluctuations 
of the laminar flow profile would instantly grow, thereby 
resulting in a dynamical instability producing narrow zones 
of large slip.

The equilibrium viscosity �0(T , p) generally increases 
with pressure p and decreases with temperature T [6, 7]. 
One central reason for this behavior certainly is that elevat-
ing pressure makes it more difficult for molecules to move 
past each other, mainly because of increased steric repul-
sion, while higher temperature assists molecules to over-
come energy barriers, whereby shear flow is facilitated. 
The functional form of 𝜂(�̇�) , e.g., the exponent n in (post-) 
Ostwald shear-thinning laws, evolves rather smoothly with 
pressure and temperature with potential exceptions occur-
ring in the vicinity of a liquid-liquid phase transformation. 
This has enticed researchers to estimate effective viscosities 
at temperatures, pressures, and shear rates that are difficult to 
access experimentally using time-temperature and pressure 
superposition principles [8], similar to those used for the 
construction of master curves describing the linear viscoe-
lasticity of rubbers or glass-forming liquids [9].

It remains actively debated what shear-thinning model 
describe real-laboratory or in-silico experimental data the 
best [10]. For example, Bair et al. [11] objected to the valid-
ity of the Eyring model [12] to describe rheological data, 
which had been advocated by Spikes and Jie [13, 14]. In a 
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possible retaliation, Spikes [15] dismissed work by Voeltzel, 
Vergne et al. [16, 17] on the rheology of ionic liquids with 
variable shear-thinning exponent, by favoring the Eyring 
model over the originally used Carreau model [18]. (These 
and related models are introduced in Sect. 2). Also the ques-
tion what (simple) theory provides the best microscopic 
explanation for shear-thinning in fluids remains discussed, 
e.g., whether Eyring’s [12] or Prandtl’s [19] approach is 
more appropriate [20], although it seems often unappreci-
ated that Prandtl had already worked out Eyring theory as 
a limiting case of his model and that Eyring admitted his 
results to be similar to Prandtl’s and related prior work.

Another debate evolves around the question what 
time-temperature, or even time-temperature-pressure 
superposition principle is best suited for lubricants. For 
example, Bair [21] objected to the cross-over from a non-
Arrhenius to an Arrhenius dependence of the viscosity 
upon cooling that Jadhao and Robbins had claimed to have 
identified for squalane [22, 23], though it seems that the 
transition from non-Arrhenius to Arrhenius dependencies 
of viscosity and diffusivity, which in some cases is called 
a fragile-to-strong transition, is a generic phenomenon of 
glass-forming melts [24].

In this work, we revisit the dependence of the viscosity 
of simple liquids depends on shear rate, temperature, 
pressure and molecular weight. While numerous simulation 
studies  [8, 22, 25–27] have computed 𝜂(�̇�) relations for 
realistic lubricant models in the past, often with the 
attempt to correlate molecular rearrangement with shear-
thinning [27], see Ref. [10] for a recent review, we focus here 
on the question if the similarity of shear-thinning in realistic 
model liquids and that observed in the Prandtl model [19] are 
merely qualitative in nature or if they could be quantitative. 
To this end, we generate a reference relation of 𝜂(�̇�) for 
hexadecane at T = 500 K and a hydrostatic pressure of 
p = 300 MPa and identify a Prandtl model that reproduces 
the 𝜂(�̇�) relationship satisfactorily for that reference. Next, 
either temperature or pressure or the molecular weight of 
the alkane is varied and the changes in equilibrium viscosity 
studied and discussed in the framework of the Prandtl model. 
It had been introduced as a simple model for dislocation 
motion and argued to also explain the velocity dependence 
of solid friction or the shear-thinning of fluids, around 
similar times when shear-thinning was reported for the first 
time [19, 28].

In this investigation, we mean to understand trends rather 
than to produce accurate numbers for specific molecules. 
To this end, we study relatively low-viscosity liquids and 
relatively small compressive stresses, because we would 
not be in a position to compute equilibrium viscosities of 
technologically relevant poly-�-olefins (PAO) at Gigapascal 
(GPa) pressures within the statistical accuracy needed for 
our purposes. In fact, it remains a challenge to accurately 

determine viscosities of PAOs from simulations even at 
ambient conditions and experimentally at P > 5 GPa [29]. 
Nonetheless, we see computer simulation as an ideal 
tool to rationalize trends, because high shear rates can be 
reached while conditions such as shear rate, pressure, and 
temperature can be set to a target precision. Moreover, 
undesired effects like frictional heating can be suppressed 
or at least be quantified. Last but not least, the pressure-
dependence of the viscosity can be investigated even under 
a well-defined isotropic, tensile stress.

We continue this paper with a background section 
on rheological models in Sect. 2. Theory and numerical 
methods are introduced in Sect. 3. Results are presented in 
Sect. 4, while conclusions are drawn in Sect. 5.

2  Background on Rheological Models

The rheology of a broad class of different liquids including 
standard base oils, water, or blood is captured quite well by 
the Carreau-Yasuda (CY) equation,

where �0 is the equilibrium viscosity, �̇�0 is a reference shear 
rate, near which shear-thinning starts or has started to set 
in, while �∞ is a parameter discussed in detail in the next 
paragraph. Two other popular models arise as limiting cases 
of Carreau-Yasuda, namely the Carreau model [18] for a = 2 
and the Cross model [30] for a = 1 − n.

An arguably tricky term in Eq.  (1) is the large-shear 
rate limit of the viscosity, �∞ , even if it is often useful 
to introduce it in practice so that fitting functions extend 
their validity to large shear rates. However, at the point at 
which 𝜂(�̇�) appears to level off, the way in which stress and 
temperature are controlled is likely to matter. For example, 
we find that fitting viscosity data when reported for constant 
(mean) pressure as a function of �̇� does not require �∞ to 
be introduced, while it does at constant-density. These 
observations are in line with classical results by Daivis and 
Evans [25], who found decane to show a finite value of �∞ or 
even to shear thicken at constant-density simulations but not 
at constant pressure. For these reasons, �∞ will be ignored 
in the following, all the more extreme shear-thinning at very 
large �̇� is readily built-in and thus rationalized in the Prandtl 
model, see Sect. 3.1.

Coming back to the discussion of rheological models: 
Carreau [18] had originally attempted to simultaneously 
address the linear-response viscoelasticity and the out-
of-equilibrium shear-thinning by assuming the rates of 
creation and annihilation of molecular junctions to be 
functions of what now would be called the equivalent 
von Mises strain-rate. Carreau suggested two ad-hoc 

(1)𝜂(�̇�) = 𝜂∞ + (𝜂0 − 𝜂∞)
{
1 +

(
�̇�∕�̇�0

)a}(n−1)∕a
,
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functional dependencies for those functions, one of which 
he dismissed as unrealistic, which, ironically is the one 
leading to the equation, which is now popular and carries 
his name, i.e., Eq. (1) for a = 2.

A beneficial aspect of the Carreau model is that the 
leading-order corrections to the linear-response viscosity 
are, as they should be, of order �̇�2 [31]. However, it seems 
that expanding the Carreau equation into (even) powers of 
the shear rate does not accurately reflect the initial but only 
the later deviations of the viscosity from the equilibrium 
viscosity. We base this conclusion on the observation that 
almost any high resolution data that we are aware of, be it 
experimental or simulations, lies below the fits at the point 
where � has decreased to say 80% its equilibrium value.

Another shear rate dependence of the viscosity, which 
can be motivated from Eyring theory, is

where the ideal value for �̇�0 may differ from that of another 
rheological model. This relation makes the shear stress 
increase logarithmically with �̇� at large �̇� while converging 
to the equilibrium viscosity �0 at �̇� → 0 , as is typical for 
elstohydrodynamic lubrication. This is arguably the main 
reason for the use of this and related relations in state-rate 
models of frictional contacts [32]. However, what appears to 
be often overlooked is that Eq. (2) can be seen as a limiting 
case of Eq. (1), because an increase of shear stress or friction 
with a power- law �̇�𝜀 with 0 < 𝜀 ≪ 1 behaves essentially 
logarithmically. Thus, as long as 0 < n ≪ 1 , discrepancies 
between Eyring and the other rheological models can only 
be minor, in which case the dominating advantage of Eyring 
would be to depend on merely two adjustable parameters.

When evaluating the functional form of a given model, 
mostly the viscosity and sometimes the shear stress or fric-
tion are often represented in a double logarithmic plot as 
a function of shear rate or velocity. This way differences 
between different models near the cross-over from Stokes 
friction to “Ostwald scaling” have a low optical resolu-
tion. It can be improved, in particular for shear-thinning 
exponents near “Eyring scaling”, i.e., 0 < n ≪ 1 , when 
multiplying the viscosity with the square-root of the shear 
rate [31, 33]. An example of such a plot, referred to in 
the following as an intermediate scaling plot is shown in 
Fig. 1. It contrasts the regular 𝜂(�̇�) representation for the 
exponent n = 0.2 with an intermediate scaling plot. In this 
example, n was chosen roughly half way between the val-
ues identified in this study and n = 1 − � , 0 < 𝜀 ≪ 1 , at 
which point the algebraic dependence of shear stress on 
shear rate is logarithmic like.

To quantify the goodness of fits to molecular dynamics 
(MD) results, we defined a �2-error as a logarithmic 

(2)
𝜂

𝜂0
=

�̇�0

�̇�
asinh

(
�̇�

�̇�0

)
,

deviation of the viscosity function from the reference 
data, i.e.,

where N enumerates the data points. This way, errors do not 
depend on whether stress or viscosity are targeted. To not 
bias the fits to large or low shear rates, we furthermore used 
�̇�n+1∕�̇�n constant.

3  Theory and Methods

3.1  Inertia‑Free Prandtl Model

In the Prandtl model, a mass point is pulled with a spring 
over a corrugated substrate. In addition to the conservative 
forces, Stokes’ friction terms arise, which are argued to 
reflect lattice vibrations in the substrate. However, this 
explicit damping can also be assumed to occur in the pulling 
spring, in which case the mass point’s equation of motion in 
the presence of thermal noise Γth(t) reads

Here x is the position of the “Prandtl atom”, ẋ its velocity, 
v0 the velocity of the pulling spring, �0 is a damping term 
of unit kg/s, V the amplitude of the sinusoidal potential 

(3)𝜒2 =
1

N

N∑

n=1

{
ln

𝜂model(�̇�n)

𝜂MD(�̇�n)

}2

,

(4)𝛾0(ẋ − v0) = qV0 sin(qx) + k(x − v0t) + Γth(t)
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Fig. 1  Shear rate dependence of the viscosity � as produced by vari-
ous model, (a) in a regular representation and (b) in an alternative 
fasion. All model functions assume the same linear-response viscos-
ity �0 and a similar 𝜂(�̇� = 103) . Carreau-Yasuda (blue line), Carreau 
(red), and Cross (green) employ the same value for n and �̇�0
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through which the atom is dragged, 2�∕q is the period of 
the potential, k the stiffness of the pulling spring, and Γth is 
thermal noise with the expectation values

where kBT  the thermal energy and �(...) is the Dirac delta 
function. We have the liberty to use a unit system of our 
choice, i.e., one in which q, V0 , and � define the units used 
for inverse length, energy, and weight per time. When doing 
so, it becomes clear that this form of the Prandtl model has 
two parameters defining the shape of a F(v) relation, since 
only the reduced stiffness k̃ ≡ k∕(q2V) and the reduced 
temperature T̃ ≡ kBT∕V remain, in which case the dynamical 
equation to be solved, introducing ⟨Γ̃th(t)Γ̃th(t

�)⟩ = 𝛿(t − t�) , 
simplifies to

In this model, only two dimensionless numbers, k̃ and T̃  , 
determine the shape of a 𝜂(�̇�) relation, e.g., the exponents 
n and a that would be obtained when fitting simulation 
data to a Carreau-Yasuda relation. Absolute values, such as 
the equilibrium viscosity �0 or the cross-over shear rate �̇�0 
are then determined by the model parameters defining the 
units in the Prandtl model. For example, given a value of k̃ 
and assuming k̃ and V0 to be temperature-independent, the 
small-temperature dependency of the equilibrium-damping 
constant of the Prandtl model, which is proportional to the 
viscosity, reveals Arrhenius-type dependence [31] with the 
energy activation barrier ΔE whose construction is shown 

(5)⟨Γth(t)⟩ =0

(6)⟨Γth(t)Γth(t
�)⟩ =2�0kBT�(t − t

�),

(7)ẋ − v0 = sin x + k̃(x − v0t) +
√
2T̃Γ̃th(t),

in Fig. 2. Assuming the temperature to be below the liquid’s 
fragile-to-strong transition temperature and ΔE to be know, 
the unit for V0 can then be fixed.

When varying temperature of a large range, it seems clear 
that both V0 and k depend on temperature. Specifically, at 
large T, the all-atom liquid expands, which will reduce V0 
supposedly more than k. To reflect such effects of thermal 
dilation in the model, we allowed k̃ to obey

where Tk is an empirical parameter, which would need to 
get readjusted as a function of pressure and the degree of 
polymerization. The exponential dependence is motivated by 
the Boltzmann distribution without any further justification. 
However, we note that the value used for Tk was only 
T = 90.5 K, is clearly less than the smallest investigated 
temperature of 300 K.

Before discussing some important asymptotic limits of 
the Prandtl model, we wish to justify why we damp the 
spring motion rather than the velocity of an atom or rather 
a material point relative to the substrate. First, the kinetic 
energy of monolayers sliding across a substrate was shown 
to be related to the (anharmonic) coupling of vibrations in 
the monolayer [34] and we see a Prandtl spring to reflect 
the coupling of a central atom to its in-plane neighbors of 
a lamella during laminar flow. Second, damping relative to 
the substrate would yield a high-velocity damping, which 
would produce a finite �∞ . However, as discussed in Sect. 2, 
we see no evidence for the existence of �∞ , when evaluating 
𝜂(�̇�) such that volumes are adjusted for each run to yield the 
target pressure on average.

A few properties of the Prandtl model are worth reciting, 
most of which can be found in [35]. First, instabilities and 
thus (athermal) static friction and Coulomb-like friction at 
low temperatures can only occur when k̃ < 1 . Second, the 
athermal low-velocity limit of the friction-velocity relation 
reads Fk − Fs ∝ v2∕3 . Thus, for k̃ being in the immediate 
vicinity of unity, a shear-thinning exponent of n = 2∕3 is 
obtained. This value thereby constitutes an upper bound for 
what shear-thinning exponent n can be reproduced with the 
Prandtl model. Third, in the limit 0 < k̃ ≪ 1 , the material 
point is effectively moved with a constant force, which is 
the limit at which the Prandtl model corresponds to situ-
ation described by himself and later again by Eyring. In 
that limit, the effective damping at small but finite tem-
perature can be described with Eq. (2). Thus, the Prandtl 
model can reproduce any shear-thinning exponent between 
0 < n ≤ 2∕3 , where a small exponent would imply small k̃ 
and/or finite temperature, while n = 2∕3 would suggest ther-
mal fluctuations to be minor and/or k̃ to be relatively close 
to unity. In fact, the Prandtl model reproduces the general 

(8)k̃ = k̃∞ exp(−T
k
∕T),

-2π -π 0 π 2πq x
-1

0
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0

full potential
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∆E

Fig. 2  Substrate and total potential energy for k̃ = 0.7 , which is 
used at the reference state (300  MPa, 500  K, which corresponds to 
t̃ = 0.076 ). The energy barrier ΔE = 0.14 is defined at the moment of 
time when the position of the driving spring coincides with the maxi-
mum of the substrate potential
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trend of real lubricants [10] that n decreases with decreasing 
temperature [31].

The fourth asymptotic limit to be discussed is the 
high-velocity limit. In this case, the atom moves at 
constant velocity of v0 plus small fluctuations, which can 
be described using perturbation theory, The first-order 
perturbation is a time-dependent force qV sin(�t) with 
� = qv0 . For � → ∞ , the response function x̃1(𝜔) ∝ 1∕𝜔 
so that the dissipated power P ∝ |𝜔x̃1|2 is independent of 
� . This scaling means that the friction force is proportional 
to 1∕� or 1/v, which, when applied to laminar flow would 
translate to n = −1 . Couette flow would no longer be 
possible, as discussed in the introduction. Adding inertia 
to the model would further impede Couette flow at large 
�̇� as x̃1 would then be proportional to 1∕�2 at large � , 
which decreases n to n = −3 . Irrespective of the choice of 
the mass, extreme shear-thinning at very high shear rate 
occurs in the Prandtl model, when the spring head moves 
so fast that the energy released during an instability can no 
longer be transferred into heat before the atom undergoes 
the next instability. We would argue that similar statements 
can be made for any other systems and degrees of freedom 
showing decreasing friction with increasing velocity.

3.2  Molecular‑Dynamics Alkane Simulations

Non-equil ibr ium molecular  dynamics (NEMD) 
simulations are carried out on a bulk liquid consisting 
of approximately 5,000 atoms using the open-source 
code–LAMMPS [36]. Interatomic interactions are modeled 
with the all-atom L-OPLS-AA force field [37, 38], which 
describes bond-stretching, bending, and torsional in 
addition to non-bonded interactions. The shear viscosity is 
calculated through Couette flow simulations, where shear 
flow is applied using the SLLOD algorithm [39] and ‘fix 
deform’ command, equivalent to the Lees-Edwards [40] 
periodic boundary conditions. The system temperature, 
320 K ≤ T ≤ 550 K was maintained with a Nosé-Hoover 
thermostat [41, 42]. To this end, the LAMMPS command 
temp/deform was used that removes the effect of a mean 
velocity profile from the determination of kinetic energy 
and thus temperature.

Results are reported for a fixed normal pressure, which 
was achieved as follows: In a first set of short simulations 
at fixed volumes and shear rates, an equation of state 
for the give shear rate was ascertained and the volume 
determined by interpolation (never extrapolation!) at 
which the target pressure was expected to occur. This 
volume was then used in a longer run during which the 
effective viscosity was calculated. The average normal 
stress in those long runs always turned out within 1% at 
finite stress and ±1 MPa at zero stress, where small relative 

errors are somewhat difficult to achieve. In the case of 
moderate, mean tensile stresses, the same average value �33 
value can be reached with two different densities.

4  Results

4.1  Temperature Dependence

We first investigate the dependence of the viscosity of 
hexadecane as a function of temperature at a pressure of 
p33 = 300 MPa, where p33 ≡ −�33 . The latter value was cho-
sen such that it is high enough to almost represent boundary-
lubrication conditions but small enough so that the equilib-
rium viscosity could be calculated down to a temperature 
of T = 320 K, which would be at the cold end of engine 
oil after warming up. Figure 3 shows the raw data obtained 
from MD simulations and fits based on the Carreau-Yasuda 
equation.

The range of shear rates presented in Fig. 3 and others 
presented in this work is certainly beyond any practical 
relevance, which should be roughly �̇� = 1 GHz, obtained 
when two surfaces moving at a relative velocity of 2 m/s 
have a local separation of 2 nm. However, owing to time-
temperature and time-pressure superposition principles, 
similar rheology (except for prefactors) can occur at 
“reasonable” shear rates when the temperature is lowered 
and/or the pressure increased. Nonetheless, using shear rates 
clearly above 1012 Hz would not be meaningful, because 
these rates exceed local librational frequencies.

Although it has been a matter of ongoing debates what 
functional form describes data as that presented in Fig. 3 
best, we feel that an intermediate scaling plot allows 

107 108 109 1010 1011 1012

γ. (s-1)

10-1

100

101

η
(c

P)

320 K
350 K
400 K
450 K
500 K
550 K

Fig. 3  Shear viscosity � of n-hexadecane as a function of shear rate 
�̇� at various temperatures (320–550 K) and fixed volumes yielding a 
mean normal pressure of 300 MPa for each data point. Symbols show 
NEMD data and dashed lines fits to the data using the Carreau-Yas-
uda equation
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differences between fit and data to be much better resolved 
than traditional representations of 𝜂(�̇�) . For the data in ques-
tion, our results for viscosity spanning two decades in a reg-
ular 𝜂(�̇�) representation as in Fig. 3 vary merely by a factor 
of about three in the cross-over domain, as can be seen in 
Fig. 4. This improves the resolution of the graph substan-
tially, whereby both small deficiencies of rheological model 
or stochastic errors are relentlessly revealed.

Figure 4 compares three rheological models for the vis-
cosity of hexadecane at three different temperatures. It can 
be seen by the naked eye that the Eyring model produces the 
data in the least satisfactory manner. Carreau is a substantial 

improvement to Eyring, however, Carreau overestimates the 
viscosity at shear rates slightly lower than the maximum. We 
invite readers to check for this deviation to occur in other 
published data and invite them to remember our assessment 
that this short-coming of Carreau shows up in the early 
shear-thinning regime the more clearly the less noisy the 
real-laboratory or in-silico data.

Relative standard-deviations converted in percentages, 
�% ≡ 100 ⋅ �  , are listed in Table  1 for all rheological 
models introduced in this paper so far and all MD-based 
𝜂(�̇�) reference data. The latter includes data obtained by 
varying the pressure or the molecular weight rather than the 
temperature from their default values.

Since Carreau (Ca) and Cross (Cr) are exact limits of 
Carreau-Yasuda (CY), they cannot outperform CY. It is 
similarly clear that Eyring (E) should be the least accurate 
of the four models, because it arises as an approximate 
asymptotic limit from the other models. However, the 
interesting question is to what degree increasing the 
number of fit parameters from 2 (E) to 3 (Ca, Cr) to 4 (CY) 
improves the goodness of the fits. Our personal view is that 
the dividing line between justified and unjustified additional 
parameter is a reduction of � by a factor that should be 
clearly smaller than k∕(k + 1) when k is the number of 
originally adjustable coefficients.

Table 1 reveals quite clear trends. Errors associated with 
Eyring exceed 10% in all but three out of 15 sets of simu-
lations. The Cross model reduces the errors compared to 
Eyring by a factor always exceeding 1.9 and in the clear 
majority of cases by a factor greater than 2.5. Thus, the 
additional adjustable parameter seems justified. Carreau 
further reduces the error compared to Cross quite substan-
tially, except at the highest temperature and the lowest pres-
sure reported in Table 1. Carreau-Yasuda is again a clear 
improvement on Carreau. Improvements scatter between 
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Fig. 4  A comparison of phenomenological models fitted to a repre-
sentative case of n-hexadecane at T = 350, 400, and 500 K and p33 
= 300 MPa with normalized ̂̇𝛾 = �̇�∕�̇�CY

0
 and �̂� = 𝜂∕𝜂CY

0
 , where the 

upper index CY indicates that the Carreau-Yasuda values at the given 
values were taken as units for viscosity and frequency. Results from 
T = 400 K and 500 K are shifted in y direction by 0.5 and 1.0, respec-
tively

Table 1  Results for Carreau-
Yasuda (CY) fits to MD data. 
P stands for the number of 
backbone carbons. Relative 
standard-deviations are also 
included for fits to Carreau (C), 
Cross (Cr), and Eyring (E)

P T/K p
3
/MPa �

0
/cP �̇�

0
/GHz n a �%

CY
�%

C
�%

Cr
�%

E

16 320 300 26.76 0.71 0.310 1.28 4.12 5.45 6.46 17.77
350 13.25 1.67 0.327 1.17 1.93 4.11 4.56 15.78
400 5.24 4.50 0.376 1.42 1.86 2.79 5.41 13.73
450 2.96 9.65 0.391 1.34 1.25 2.67 4.53 11.53
500 2.00 16.37 0.406 1.25 1.65 3.00 3.71 10.64
550 1.46 22.35 0.441 1.36 0.97 2.06 3.51 9.96

16 500 100 0.66 59.25 0.300 1.16 1.61 3.29 2.41 4.66
200 1.20 26.37 0.404 1.35 1.67 2.58 3.69 8.03
300 2.00 16.37 0.406 1.25 1.65 3.00 3.71 10.64
400 2.97 9.66 0.425 1.45 1.74 2.44 5.00 12.63
500 4.36 7.61 0.398 1.26 1.84 3.16 4.38 13.47
600 5.90 5.31 0.404 1.45 1.07 2.14 5.45 14.46

16 500 300 2.00 16.37 0.406 1.25 1.65 3.00 3.71 10.64
20 2.81 8.54 0.421 1.32 1.77 2.88 4.61 13.62
24 3.83 5.26 0.418 1.19 1.97 3.53 4.51 16.26
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reduction factors of 1.3 and 2.2, however, the median 
improvement in the reported data lies at about 1.8. For this 
reason, we judge the extra parameter a in Carreau-Yasuda 
as significant, in particular as the Carreau-Yasuda errors are 
often only marginally larger than the statistical uncertainty 
of the produced data. Unfortunately, it is beyond our cur-
rent resources to substantially reduce the thermal/statistical 
errors, because halving statistical errors implies quadrupling 
the numerical effort.

While all investigated model functions, even that based on 
Eyring, matches the MD data in the representation of Fig. 4 
substantially better than an “arbitrary fitting function"—such 
as a skewed Gaussian, which, like Carreau-Yasuda, has four 
adjustable parameters—Cross, Carreau, and Carreau-Yasuda 
are purely heuristic functions with built-in linear-response at 
small shear rates and power law dependence at large shear 
rates. However, unlike Eyring and even more so Prandtl, 
they lack a clear microscopic justification. The Prandtl 
model is a physics-based model, in which linear-response 
at small velocities arises naturally while quasi-power law 
behavior occurs at large shear rates [28, 31].

The just-mentioned feature of the Prandtl model 
motivated us to explore to what extent the two dimensionless 
parameters of the Prandtl model can be tuned to match 
experimental or realistic, in-silico data. The interesting 
aspect of such an analysis is that the model parameters can 
be fixed at one temperature and changes in 𝜂(�̇�) be estimated 
without requiring adjustment of the parameters beyond 
including a smooth temperature dependence of k̃.

Figure 5 reveals that three dimensionless parameters and 
thus a total of five parameters is sufficient to reproduce the 
full-scale NEMD results at different temperatures. Interest-
ingly, it also reproduces the observation that the exponent 
n decreases thereby approaching Eyring-like behavior with 

decreasing temperature. Specifically, the full simulations 
show n = 0.391 at T = 450 K and n = 0.327 at T = 350 K, 
while the Prandtl model finds n = 0.366 and 0.321 at those 
two temperatures, respectively. Thus, the Prandtl model does 
not perfectly reproduce the reduction in the shear-thinning 
exponent but supposedly much better than expected from a 
simple model.

Figure 6 further reveals the large degree of correlation 
between the results of all-atom simulations and those of the 
Prandtl model. Both data sets have the same inverse correla-
tion of �0 and �̇�0 , as would be expected from the equilibrium 
dynamics of an activated process.

The final analysis in this section is concerned with the 
temperature dependence of hexadecane’s viscosity at the rel-
atively large, constant compressive stress of p33 = 300 MPa. 
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Fig. 5  Comparison of results obtained from the Prandtl 
model to Carreau-Yasuda fits to the hexadecane MD results at 
p33 = 300 MPa (dashed curves). The Prandtl model was chosen with 
k̃ = 0.84 ⋅ (1 − 90.5 K∕T) and t̃ = 1.52 ⋅ 10−4 T/K
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Fig. 6  Relation between equilibrium viscosity �0 and cross-over shear 
rate �̇�0 as obtained in full NEMD simulations and the Prandtl model. 
The dashed line reflects a slightly sublinear, inverse power law, i.e., 
𝜂0 ∝ 1∕�̇�0.84 , which is drawn to guide the eye
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Fig. 7  Newtonian viscosity �0 from all-atom simulations (full, red 
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Figure 7 hints to a cross-over from a non-Arrhenius to an 
Arrhenius-like dependence in the all-atom MD data. Unfor-
tunately, some doubt on the robustness of the Arrhenius-
type dependence at small-temperature remains, as we have 
not yet managed to compute an equilibrium viscosity below 
320 K within our statistical error margin of about 1% from 
the full MD simulations. However, the Prandtl model, which 
accounts for the cross-over reasonably well, while clearly 
having a constant energy barrier supports an extension 
of an Arrhenius dependence to smaller temperature. The 
model thereby also reveals that the deviation from Arrhenius 
at large T might not be caused by temperature-dependent 
energy barriers but could be owing to the ratio ΔE∕kBT  not 
being a large number, at which point the exponential fac-
tor exp(ΔE∕kBT) no longer dominates other temperature 
dependencies.

In order to explore if there is a FST, we computed the 
diffusion coefficient D of carbon atoms from their time-
dependent root-mean-square displacement (see also Sect. 4.4 
for a more detailed discussion) to see if the temperature 
dependence of the diffusion coefficient starts to decouple 
from that of the viscosity, as it happens at the FST of glass-
forming melts. Figure 7 provides some evidence for this 
to happen, which, however is relatively weak, because 
accurate diffusion coefficients at small-temperatures are 
difficult to determine. Thus, more research, which is 
currently outside the scope of our computational feasibility, 
is required to see if (a) the viscosity is really Arrhenius-like 
at small-temperature and (b) if the cross-over can already 
be rationalized within the Prandtl model or is in need of a 
more elaborate explanation like the FST. The difficulty is 
that statistical error bars are small at relatively small times, 
at which point the functional form used to fit the time-
dependent root-mean-square displacement affect the value 
for D, while stochastic errors are large at large times. Thus, 
values for 1/D reported at the lowest temperatures must be 
taken with a grain of salt and might increase by roughly 20% 
with different fitting procedures than those that we assumed.

4.2  Pressure‑Dependence

Besides the temperature dependence of the viscosity � at 
fixed pressure p33 , we also analyzed �(p) at fixed tempera-
ture. This time, however, we present the results in the form 
of shear stress � as a function of shear rate �̇� , see Fig. 8. 
Results are also reported for simulations at a negative nor-
mal pressure. They reflect meta-stable conditions, because 
a thermally or shear-induced void in the liquid would una-
voidably grow indefinitely under a tensile load once the 
void surpasses a critical nucleation size. However, includ-
ing tensile stresses into the analysis allows us to explore the 
pressure-dependence on viscosity at values of p33 , where this 
dependence is particularly steep.

Analysis of the equilibrium viscosity, see Fig. 9, reveals 
that �0 might disappear as a power law at a negative pressure 
of p∗ = −10.5 MPa. This value is close to the pressure at 
which the volume of a meta-stable liquid, having been 
“stress-quenched” to a negative pressure, is expected to 
diverge. However, at large pressure, �(p) crosses over to 
an exponential-like dependence of pressure. A simple 
functional form reflecting this behavior is

where the parameters �1 , �2 , � , and V∗ are phenomenological 
adjustable parameter and � = 1∕kBT V∗ can be interpreted as 

(9)�(p) = �1(p∕p
∗ − 1)

� + �2
(
e�pV

∗

− e�p
∗V∗)

,
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Fig. 8  Shear stress � of n-hexadecane at various pressures (− 9–600 
MPa) and a constant temperature of 500  K. Symbols show NEMD 
data and dashed lines fits to it using the Carreau-Yasuda equation. At 
high shear rates, the system can be either in the liquid or in the gas-
phase. Open symbols refer to the gas phase as well as data for the 
liquid phase, if some configurations exhibited shear localization
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V∗ ≈ �ΔE∕�p at intermediate pressures and be called “free 
volume”, even if it is not clear how to define or identify 
points belonging to free volume given atomic coordinates 
of a bulk liquid. The inset of Fig. 9 shows the viscosity as 
a function of volume. No extended domain of a linear ln �0 
versus volume can be detected.

A few more words on the decrease of viscosity at p ≳ p∗ 
may be in place. The line represented in Fig. 9 is based on an 
exponent � ≈ 2∕9 . However, the uncertainty of the exponent 
is rather large, as the value changes quite substantially 
depending on what data are included during the fitting. 
(We excluded the point at the lowest pressure.) Here, we 
would only want to state a rough upper bound of 1/2 for 
the exponent. Moreover, we would argue that the decrease 
in viscosity arises from a much reduced steric repulsion as 
molecules slide past each other under a tensile hydrostatic 
stress.

We do not intend to claim that the functional form of 
�(p) proposed in Eq. (9) is superior to other descriptions, 
in particular generalizations of the McEwen equation [43], 
for example that by Bair [44] or others discussed recently 
by Kondratyuk, Pisarev, and Ewen [45]. While our analysis 
is suggestive of a quasi-exponential pressure-dependence at 
large compression might be an appropriate description, at 
least at low shear rates, such extrapolations are risky. Indeed, 
there is much evidence for super-exponential viscosity 
increase at very high pressure [46].

In fact, we find the McEwen �(p) dependence, which 
can be cast as the �2 = 0 limiting case of Eq. (9) to hold 
extremely well at compressive stress and fixed, large shear 
rates, as is demonstrated in the main part of Fig. 10. Here 
�neq is the effective viscosity at a high shear rate and zero 
normal stress, the exponent � is set to � = 1∕2 , and �0 a 
hypothetical tensile stress at which the McEwen formula 

would predict the viscosity to disappear. (Using � = 1∕2 
substantially worsened the agreement between fit and data.) 
However, without further modification, the McEwen equa-
tion makes poor predictions once the stress becomes tensile, 
as can be seen in the inset of Fig. 10.

4.3  Chain‑Length Dependence

In addition to changing pressure and temperature, we also 
altered the degree of polymerization, P, however, only in 
a relatively narrow range in which molecules are much 
too short to entangle. From the results reported in Table 1, 
it can be seen that �0 and �̇�0 scale roughly with P2 and 
1∕P2 , respectively. Changes in the exponents n and a are 
rather small, which points once more to the existence of 
an elementary instability. This result does not necessarily 
contradict findings by Sivabeak and Persson (SP)  [26], 
who suggested a more noticeable n(P) dependence, where 
their symbol n corresponded to our 1 − n . Further, more 
substantial difference between their and our study are that 
SP simulated the boundary-lubrication regime rather than 
bulk viscosities. Moreover, they explored a relatively small 
normal pressure of 10 MPa while altering P by a factor 
of 70, which covers the range from oligomer to entangled 
polymers.

An interesting feature born out in our data are that 𝜂(�̇�) 
overlaps at very high shear rates for different degree of 
polymerization P, i.e., not only the exponent n but also the 
prefactors are similar at high shear rates for different alkanes 
(Fig. 11).

4.4  Microscopic Analysis

Since the early days of shear-thinning studies, attempts 
were made to rationalize phenomenological relations in 
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terms of microscopic models and to relate shear-thinning 
to structural changes [47]. Early theories of polymers in 
solution [48], “derive” the Carreau equation by considering 
the rate of formation and breaking of contact points. Even if 
the explanation were valid for such systems, it can scarcely 
matter for dense polymer mixtures, when the resistance to 
flow is largely affected by steric repulsion. Yet, non-local 
configurational changes like polymer alignment have been 
held responsible for changes in viscosity [49]. Specifically, 
polymers oriented along the shear flow direction were 
expected to counteract shear in that direction than those with 
quasi-spherical equilibrium shapes.

It might have came as a surprise to many when Jadhao 
and Robbins [49] reported the alignment of polymers to have 
saturated when the viscosity had merely changed by a factor 
of two, which, in their master plot was at the very beginning 
of the shear-thinning regime. We can confirm their finding 
in our work but notice that molecules coil up again at very 
high shear rates when the volume is not kept constant but 
readjusted such that the mean normal pressure equals the 
target value. Thus, Ostwald scaling may occur even if the 
overall molecular shape develops in a non-monotonic fash-
ion (Fig. 12).

For reason of completeness, we also present data 
that we produced to determine the diffusion coefficient 
from equilibrium simulations in Fig.  13. It shows the 
atom averaged mean-square displacement as a function 
of time. Unfortunately, the value for the diffusion coeffi-
cient is sensitive to what functional form is used when fit-
ting to the dependence of the mean-square displacaement 
MSD(t) =

⟨
{x(t) − x(0)}2

⟩
 as a function of time. Assuming 

MSD(t) to be a constant plus Dt at large times yields slightly 

different results than when using the sum of a sub-diffusive 
and a diffusive function.

The calculations shown in Fig. 13 had been conducted 
to check if the cross-over from non-Arrhenius to Arrhenius 
is associated with a (collective) fragile-to-strong transition 
(FST) in a glass-forming melt, the (inverse) diffusion 
coefficient, 1/D, was computed and the data included into 
Fig. 7. Both viscosity and inverse diffusion coefficient 
show rather similar scaling. Therefore, we do not see 
strong evidence that the cross-over from non-Arrhenius is 
associated with an FST. The weak temperature dependence 
of the effective hydrodynamic radius, RH defined through 
the Stokes-Einstein relation, D0 = kBT∕(6��0RH) cannot 
be related to changes of the radius of gyration: while the 
hydrodynamic radius decreases by a factor of two, from 
RH ≈ 1.08  nm at the highest temperature T = 550  K 
to RH ≈ 0.44  nm at the lowest temperature T = 320  K, 
marginal increases were detected for Rg from Rg(550 K) 
≈ 0.475 nm to Rg(320 K) ≈ 0.494 nm upon cooling. Thus, 
for our rather short chains, the ratio X ≡ RH∕RG falls from 
X ≈ 2.3 to X ≈ 0.89 , which is greater than but of similar 
order of magnitude as X = 0.664 , which is theoretically 
predicted for polymers in theta-solvents [50] or the X-ratios 
for various polymers in different solvents in the range of 
0.5 ≲ X ≲ 1 [51]. Interestingly, Prentice et al. [29] found 
a much more dramatic decrease in X for poly-�-olefins 
with increasing pressure than we found with decreasing 
temperature, though the trend of X becoming smaller as 
the ratio of energy barriers and thermal energy increases 
is identical.
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5  Discussion and Conclusions

This work demonstrates that the shear-thinning of alkanes 
at small to medium pressures can be mapped quite well onto 
the Prandtl model. Fixing its two dimensional parameters 
at a given temperature and pressure even allows changes 
in the equilibrium viscosity and the functional form of 
𝜂(�̇�) to be reproduced over a reasonably broad temperature 
range without readjusting parameters. To a large degree, 
the parametrization is even transferable between different 
alkanes. Moreover, the obtained activation barrier of 
ΔE ≈ 0.08 eV that we obtain at a pressure of p = 300 MPa 
is greater but of similar order of magnitude as experimental 
result for the relaxational dynamics in polyethylen melts 
at zero pressure, which are close to 0.05 eV at ambient 
pressure [52]. Despite this success, we do not claim our 
parametrization to be optimal but rather minimal in the sense 
that the smallest number of adjustable parameters needed 
to describe shear-thinning was used. In principle, it could 
be attempted to also target the linear-response frequency 
dependence �(�) by introducing a memory kernel into the 
damping coefficient.

Our simulation data on all-atom alkanes, in particular 
n-hexadecane also indicates that the additional parameter(s) 
used in a Carreau-Yasuda fit are justified, at least at elevated 
pressure. We find a fit to have a median error of roughly 
12%, which reduces to about 6% when using an additional 
parameter in the Cross model. This error is cut once more 
into one half when using Carreau instaed of Cross, and by 
almost another factor of two with Carreau-Yasuda, at which 
point the systematic error is almost on par with the stochastic 
error of the reference data.
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