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All models are wrong; some models are useful.

– George E. P. Box

The digitization of human beings will make
a parody out of ’doctor knows best’.

– Eric Topol
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A B S T R A C T

Personalized medicine and precision dosing aim to tailor drug therapy
to individual needs, improving patient outcomes and reducing health-
care costs. A key component of precision dosing is pharmacogenomics
(PGx) as variants in pharmacogenes are thought to be responsible for
a significant fraction of variability in drug response. PGx guidelines
provide clinicians with recommendations, integrating PGx informa-
tion into clinical decision making processes. These guidelines are
developed based on knowledge generated in dedicated clinical PGx
trials, typically conducted in small, homogeneous patient populations.
However, adverse drug reactions (ADRs) often occur as a result of
complex drug-drug-gene interactions (DDGIs), observed in patients
taking multiple drugs simultaneously.

Here, physiologically based pharmacokinetic (PBPK) modeling
shows great potential in extending the findings from DDGI trials
to real-world patient populations. In this thesis, new whole-body
PBPK models for substrates and inhibitors of the polymorphically
expressed CYP subfamily 2D6 (CYP2D6) enzyme are presented. These
models integrate current knowledge on CYP2D6 drug-gene interac-
tions (DGIs) by incorporating the activity score-dependent metabolism
of CYP2D6 substrates. This thesis showcases the various applications
of DGI PBPK models to facilitate a more personalized drug therapy.
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Z U S A M M E N FA S S U N G

Die Personalisierte Medizin und Präzisionsdosierung verfolgen das Ziel,
die Arzneimitteltherapie an die Bedürfnisse des Patienten anzupassen,
um so den Therapieerfolg zu sichern. Da Varianten in Pharmakogenen
für große interindividuelle Unterschiede in der Pharmakologie von
Arzneistoffen verantwortlich sind, stellt die Pharmakogenomik (PGx)
ein Schlüsselelement der Präzisionsdosierung dar. PGx Leitlinien bie-
ten Handlungsempfehlungen auf Grundlage klinischer Studien, um
PGx Informationen in Entscheidungsprozesse einzubeziehen. Uner-
wünschte Arzneimittelwirkungen treten häufig als Folge komplexer
Arzneimittel-Arzneimittel-Gen Interaktionen (DDGIs) auf, die bei Pati-
enten beobachtet werden, welche oft mehrere Arzneimittel gleichzeitig
einnehmen – Szenarien, die aus ethischen Gründen nicht in klinischen
Studien abgebildet werden können.

Hier bedarf es innovativer Ansätze, wie der Verwendung mathema-
tischer Modelle, um den Effekt von DDGIs vorherzusagen. In dieser
Arbeit werden physiologie-basierte pharmakokinetische (PBPK) Mo-
delle für Substrate und Inhibitoren des CYP2D6 Enzyms vorgestellt.
Die Modelle wurden auf der Grundlage des aktuellen Wissenstands
über CYP2D6 Arzneimittel-Gen Interaktionen (DGIs) entwickelt, in-
dem der Metabolismus in Abhängigkeit vom activity score modelliert
wurde. Außerdem werden mögliche Anwendungen von DGI Mo-
dellen präsentiert und die Notwendigkeit von PBPK Modellen zur
Verbesserung der personalisierten Arzneimitteltherapie verdeutlicht.
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Figure 1: Graphical Abstract. Illustrations of tablets, capsules and people were taken from Servier [7], licensed under CC BY 3.0
(https://creativecommons.org/licenses/by/3.0/). AUCss, area under the plasma concentration-time curve (AUC) during steady state; AS,
activity score; IIV, interindividual variability; CYP2D6, CYP subfamily 2D6; CYP3A4, CYP subfamily 3A4; kcat, catalytic rate constant; P-gp,
P-glycoprotein.

ix

https://creativecommons.org/licenses/by/3.0/




C O N T E N T S

publications & contributions v
abstract vii
zusammenfassung viii
graphical abstract ix
1 introduction 1

1.1 Personalized Medicine and Precision Dosing 1

1.2 CYP2D6 3

1.2.1 Overview 3

1.2.2 The CYP2D6 Gene 4

1.2.3 CYP2D6 Phenotypes 5

1.2.4 Genotype-to-Phenotype Translation 6

1.2.5 Factors affecting CYP2D6 Activity 8

1.2.6 Substrates and Inhibitors of CYP2D6 12

1.3 Physiologically Based Pharmacokinetic Modeling 18

1.3.1 Concept 18

1.3.2 Applications of PBPK Modeling 18

2 objectives 21

2.1 Project I: PBPK Modeling of Metoprolol 21

2.2 Project II: PBPK Modeling of Dextromethorphan 21

2.3 Project III: PBPK Modeling of Paroxetine, Atomoxetine
and Risperidone 21

2.4 Project IV: PBPK Modeling of (E)-Clomiphene 22

2.5 Project V: PBPK Modeling of Quinidine 22

3 methods 23

3.1 Software 23

3.2 Physiologically Based Pharmacokinetic Modeling 23

3.2.1 PBPK Modeling Workflow 23

3.2.2 Clinical Study Data 24

3.2.3 Dataset Assignment 24

3.2.4 PBPK Base Model Building 25

3.2.5 PBPK Base Model Evaluation 25

3.2.6 Local Sensitivity Analysis 26

3.2.7 DGI Model Building 26

3.2.8 DD(G)I Model Network Building 27

3.2.9 Effect Model Evaluation 28

4 results 29

4.1 Project I: PBPK Modeling of Metoprolol 29

4.2 Project II: PBPK Modeling of Dextromethorphan 49

4.3 Project III: PBPK Modeling of Paroxetine, Atomoxetine
and Risperidone 69

4.4 Project IV: PBPK Modeling of (E)-Clomiphene 92

4.5 Project V: PBPK Modeling of Quinidine 114

xi



xii contents

5 discussion and future directions 131

5.1 CYP2D6 Drug-Gene Interactions and the CYP2D6 Activ-
ity Score 131

5.2 CYP2D6 Drug-Gene Interaction Modeling 133

5.3 PBPK DDGI Modeling in MID3 134

5.4 PBPK Modeling in Precision Dosing 136

6 conclusion 139

bibliography 141

a appendix a 1

a.1 Publications 1

a.1.1 Original Research Articles 1

a.1.2 Review Articles 2

b appendix b: supplementary materials 3

b.1 Project I: PBPK Modeling of Metoprolol 4

b.2 Project II: PBPK Modeling of Dextromethorphan 57

b.3 Project III: PBPK Modeling of Paroxetine, Atomoxetine
and Risperidone 289

b.4 Project IV: PBPK Modeling of (E)-Clomiphene 331

b.5 Project V: PBPK Modeling of Quinidine 385



A C R O N Y M S

ADME Absorption, distribution, metabolism and excretion

ADHD Attention deficit hyperactivity disorder

ADR Adverse drug reaction

ADRB1 Adrenoceptor β1

ADRB2 Adrenoceptor β2

AUC Area under the plasma concentration-time curve

AUC
0–24h AUC from 0 to 24 hours

AUClast AUC from the time of the first concentration
measurement to the time of the last concentration
measurement

AUCss AUC during steady state

AS Activity score

BSV Between-subject variability

CAR Constitutive androstane receptor

CDSS Clinical decision support systems

CPIC Clinical Pharmacogenetics Implementation Consortium

CKD Chronic kidney disease

Cmax Maximum plasma concentration

CNV Copy number variation

COMT Catechol-O-methyltransferase

CRediT Contributor roles taxonomy

CYP Cytochrome P450

CYP1A2 CYP subfamily 1A2

CYP2B6 CYP subfamily 2B6

CYP2C19 CYP subfamily 2C19

CYP2C9 CYP subfamily 2C9

CYP2D6 CYP subfamily 2D6

CYP2E1 CYP subfamily 2E1

CYP3A4 CYP subfamily 3A4

CYP3A5 CYP subfamily 3A5

DDI Drug-drug interaction

DDGI Drug-drug-gene interaction

DDGDI Drug-drug-gene-disease interaction

xiii



xiv acronyms

DGI Drug-gene interaction

DPYD Dihydropyrimidine dehydrogenase

DPWG Dutch Pharmacogenetics Working Group

EHR Electronic health record

EMA European Medicines Agency

FSH Follicle-stimulating hormone

indels Insertions or deletions

IIV Interindividual variability

IPV Interpatient variability

iv Intravenous

IVSF In vitro scaling factor

FDA US Food and Drug Administration

GMFE Geometric mean fold error

GnRH Gonadotropin-releasing hormone

GNB3 Guanine nucleotide-binding protein subunit β3

GWAS Genome-wide association studies

HCSC Health Canada (Santé Canada)

kcat Catalytic rate constant

kcat, rel Catalytic rate constant relative to activity score 2

KLF9 Krüppel-like factor 9

KM Michaelis-Menten constant

LH Luteinizing hormone

md Multiple dose

MDMA Methylendioxymethamphetamine

MID3 Model-informed drug discovery and development

MIPD Model-informed precision dosing

mRNA Messenger ribonucleic acid

MRD Mean relative deviation

NDA New drug application

NLME Nonlinear mixed effects

ODE Ordinary differential equation

OLS Ordinary least squares

PBPK Physiologically based pharmacokinetic

PCOS Polycystic ovary syndrome

PD Pharmacodynamics

PDUFA Prescription Drug User Fee Act Reauthorization



acronyms xv

P-gp P-glycoprotein

PGx Pharmacogenomics

PGRN Pharmacogenetics Research Network

PharmGKB Pharmacogenomics Knowledge Base (pharmgkb.org)

PK Pharmacokinetics

PMDA Pharmaceuticals and Medical Device Agency

PopPK Population pharmacokinetic

PXR Pregnane X receptor

QSAR Quantity structure-activity relationship

RUV Residual unexplained variability

SHP Small heterodimer partner

sd Single dose

SD Standard deviation

SERM Selective estrogen receptor modulator

SNP Single nucleotide polymorphism

SSRI Selective serotonin reuptake inhibitor

Swissmedic Swiss Agency for Therapeutic Products

TDM Therapeutic drug monitoring

UGT Uridine 5’-diphospho-glucuronosyltransferase

UGT2B4 UGT subfamily 2B4

UGT2B7 UGT subfamily 2B7

UGT2B15 UGT subfamily 2B15

UGT2B17 UGT subfamily 2B17

Vmax Maximum reaction velocity

http://www.pharmgkb.org




1
I N T R O D U C T I O N

1.1 personalized medicine and precision dosing

Personalized medicine describes the concept of tailoring drug therapy
to the individual’s needs, therefore maximizing treatment efficacy
while minimizing the risk of ADRs and, consequently, reducing overall
health care costs. Precision dosing is a key component of personalized Precision Dosing

vs. "One
Treatment Fits
All"

medicine and is mainly concerned with drug dosing [8]. Contrary
to the prevalent "generalized approach", often referred to as "One
Treatment Fits All", precision dosing explicitly takes individual patient
characteristics, such as genetic predisposition, underlying diseases
and co-medication into account [9] (see Figure 1.1). These influences
are widely recognized to be major contributors to the variability in
the response of patients to drugs and, by extension, in the individual
risk-benefit ratio for the respective therapy [10].

Diagnostics 
and patient 

characteristics

Heterogenous patient cohort

Treatment

Optimize 
treatment

Precision Dosing

“One Treatment Fits All” Optimal
response

No 
response

Variable response

Adverse
reactions

Optimal response
Adverse reactions ↓
Non-responders ↓

Figure 1.1: Precision Dosing vs. "One Treatment Fits All". The "One Treat-
ment Fits All" approach is based on the assumption that all
patients respond to a drug in the same way. In contrast, precision
dosing explicitly takes individual patient characteristics, such as
genetic predisposition, underlying diseases and co-medication
into account and aims to optimize the efficacy and safety of
drug therapy. Illustrations of tablets, capsules, medical equipment,
DNA, arrows and people were taken from Servier [7], licensed un-
der CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/).

ADRs are a considerable threat to patient health as they have been
estimated to account for 2 million hospitalizations per year in the US Implications for

Patient Safety and
Economics

alone, while simultaneously being one of the leading causes of in-

1
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2 introduction

hospital mortality [11]. Annual costs of patient hospitalizations caused
by ADRs have been estimated to exceed $177 billion in the US [10, 12],
placing an enormous financial burden on health care providers. These
costs could be considerably reduced by shifting from the paradigm of
"trial and error" drug prescriptions to a personalized approach, as an
estimated 40% of ADRs resulting in emergency department visits or
hospitalizations are thought to be preventable [13].

Diagnostic tests are important cornerstones of personalized medicine
and precision dosing [12], as they enable adapting drug therapy based
on an individual’s features. The patient’s genotype is estimated to
account for up to 95% of variability in drug response, as indicated by
twin studies [14], highlighting the particular importance of genetic
tests. Hence, studying the role of the genetic makeup of an individualDiagnostic Tests

to optimize drug response is an integral component of personalized
medicine and precision dosing [15]. Here, the terms pharmacogenet-
ics and PGx are regularly used in the context of precision dosing.
While often used interchangeably, pharmacogenetics describes the ef-
fect of genetic polymorphisms on drug response whereas PGx also
encompasses drug development driven by new findings in the field of
genetics [16].

Despite rapidly growing knowledge generated by PGx studies, its
overall impact on clinical practice has been relatively small outside of
some select fields such as oncology and psychiatry. Extensive knowl-Implementation of

PGx in Clinical
Practice

edge of pharmacology is a prerequisite for the interpretation of find-
ings obtained from PGx studies, aggravating the implementation of
PGx into clinical practice [17]. To tackle these issues, several working
groups, such as the Dutch Pharmacogenetics Working Group (DPWG)
and the Clinical Pharmacogenetics Implementation Consortium (CPIC)
have put increasing efforts into developing actionable PGx guidelines.
These guidelines aim to provide evidence-based suggestions for thePGx Guidelines

use of specific drugs and their optimal dosage based on an individ-
ual’s genetic makeup [17]. In 2000, the Pharmacogenetics Research
Network (PGRN) established the Pharmacogenomics Knowledge Base
(pharmgkb.org) (PharmGKB) to provide a publicly accessible platform
condensing the PGx knowledge generated in the past decades [18].
This platform serves as a knowledge repository with curated informa-PharmGKB

tion and annotations tailored towards clinicians on drugs affected by
PGx, drug labels containing PGx information and, importantly, PGx
guidelines [19].

Most PGx data is typically generated in phase I clinical DGI trials,
where subjects are selected and stratified based on their genotype for
one or more genes of interest. Here, the term DGI is used to describe
the effect of variants in pharmacogenes on the pharmacokinetics (PK)
and pharmacodynamics (PD) of a drug [20]. Additionally to theirLimitations of

PGx Trials genotypes for one or multiple pharmacogenes of interest, participants
of DGI trials are generally homogeneous regarding demographic

http://www.pharmgkb.org


1.2 cyp2d6 3

parameters and typically consist of healthy, young and often only
male volunteers. However, the number of study participants is often
too small to detect statistically significant phenotypical differences in
the pharmacology of the studied drug [21]. Overall, these limitations
of PGx trials make it difficult to extrapolate their results to real-world
patients, as these are often elderly, fragile and typically receive co-
medication [20].

Dedicated clinical trials simultaneously investigating the effect of
genetic polymorphisms, co-medication and co-morbidities on drug
response in a sufficiently large study population would not only entail
enormous costs but would also put study participants at a consider-
able risk of experiencing ADRs [22]. Here, PK modeling presents a PK Modeling as a

Tool to Augment
PGx Knowledge

promising approach to augment existing PGx knowledge and provide
predictions for highly complex scenarios, including DDGIs, organ
impairment and involving special populations such as pediatric, geri-
atric, pregnant or obese patients. Finally, these models hold enormous
potential in the context of precision dosing, as they can be used for
dose recommendations, safety monitoring, drug development and
clinical trial design [9].

1.2 cyp2d6

1.2.1 Overview

CYP2D6 is involved in the metabolism of 15–25% of clinically used
drugs, while only making up approximately 1–4% of the hepatic
cytochrome P450 (CYP) pool [23]. This enzyme is mainly expressed
in the liver, and to a lesser extent in lung and heart tissue. Here, it is
involved in the biosynthesis and metabolism of various endogenous
amines, such as serotonin [24]. Exogenous CYP2D6 substrates are Endogenous and

Exogenous
Substrates of
CYP2D6

represented in most therapeutic drug classes, such as antidepressants,
antipsychotics, oncologic drugs and opioid analgesics as well as an-
tiarrhythmic and antihypertensive drugs [23]. Both endogenous and
exogenous substrates bear structural similarities – they typically are
organic bases showing optimal distances of 0.25–0.45 nm from their
positively charged amine function to both the metabolic oxidation
site and the anionic site of the enzyme [25, 26]. Commonly catalyzed
pathways include O-demethylation, N-demethylation and aromatic
hydroxylation [24]. Importantly, CYP2D6 enzymatic activity displays Variability in

CYP2D6 Activityconsiderable interindividual variability (IIV) with up to 40-fold dif-
ferences in drug clearance and substrate plasma concentrations [27].
This variability is primarily attributed to genetic polymorphisms in
the CYP2D6 gene [24]. Interindividual differences in CYP2D6 activ-
ity have first been described in 1977 when a bimodal distribution of
the metabolic ratio of the antihypertensive drug debrisoquine was
observed in a study population of 94 Caucasian volunteers [28]. Two
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years later, similar observations were reported in a study cohort of 360

volunteers, where 5% of participants were found to be non-metabolizers
of the antiarrhythmic drug sparteine. [29]. The authors of both studies
independently identified genetic polymorphisms as the main causeDebrisoquine and

Sparteine
Oxidation

Phenotypes

of debrisoquine- and sparteine metabolizer phenotypes, respectively
[28, 29]. Moreover, higher occurrences of ADRs, such as hypotension
during debrisoquine therapy, had been reported in patients displaying
the sparteine/debrisoquine poor metabolizer phenotype [30]. In 1987,
the identity of the CYP2D6 gene, which encodes a new CYP enzyme,
was confirmed and its link to the sparteine/debrisoquine metabolizer
phenotype was validated [31].

1.2.2 The CYP2D6 Gene

The CYP2D6 gene is located on the long arm of chromosome 22 [31]
and the only gene of the CYP2D family encoding for a functional
protein in humans [23]. Today, more than 140 allelic variants (not
counting various subvariants) have been identified [32], highlighting
the highly polymorphic nature of CYP2D6 and the enormous clinical
interest in his gene.

Allelic variants are typically caused by single nucleotide polymor-
phisms (SNPs) and insertions or deletions (indels) and can have vary-
ing effects on the activity of the encoded enzyme. For instance, allelicAllelic Variants of

CYP2D6 variants can cause a change in the amino acid sequence of the trans-
lated protein which typically reduces either the biochemical activity of
the enzyme or its expression levels compared to the wild type *1 allele
[33]. Conversely, so-called silent polymorphisms occur, when the change
in the nucleic acid sequence of the allele does not infer a change in
the amino acid sequence of the translated protein.

The CYP2D6 gene is prone to structural variants, such as copy
number variations (CNVs) [32]. These structural variants, have been
observed to result in zero to up to 13 copies of a given allele in an
individual and can have a dramatic effect on the activity of CYP2D6

[34]. For instance, homozygous carriers of the CYP2D6*5 gene dele-Structural
Variants of

CYP2D6
tion allele express no functional CYP2D6 enzymes, rendering them
CYP2D6 poor metabolizers [35]. Conversely, CNVs of the *1 allele,
such as CYP2D6*1x2, can lead to increased expression of the encoded
protein, resulting in increased CYP2D6 activity [34].

CYP2D6 alleles are not equally distributed across world populations
[36]. For instance, the loss-of-function *4 allele and the *5 gene deletion
allele are found in >20% of Europeans resulting in more than 5% of
Europeans being categorized as CYP2D6 poor metabolizer phenotype,
whereas less than 1% of East Asian populations were found to be
CYP2D6 poor metabolizers [36]. Conversely, the reduced-function *10Ethnicities and

CYP2D6 Alleles allele occurring in less than 5% of Europeans, has been observed to
be the most frequently expressed allele in East Asians, resulting in an
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overall decrease of CYP2D6 activity compared to other populations [1,
33]. Allele multiplications due to CNVs occur in 2–3% of Europeans,
whereas 40% of Mozabites, an Amazigh population in northern Alge-
ria, were found to be ultrarapid metabolizers, carrying more than 3

active gene copies of CYP2D6 [37].

1.2.3 CYP2D6 Phenotypes

Phenotyping describes the process of quantifying the in vivo activity of
a given enzyme or transporter in an individual [38]. Determination
of the phenotype for a specific enzyme typically involves the admin-
istration of a phenotyping probe, i.e., a substrate that is known to
be metabolized by the enzyme. Subsequently, the parent compound
and one of its metabolites, which is ideally specifically formed via the
enzyme of interest, are quantified in plasma or urine and a metabolic
ratio is calculated (see Figure 1.2).

In
te

n
si

ty

Urine or Plasma 

Sampling and sample analysis

Retention time

Administration of parent 
compound

DEX

DEX (Parent) DOR (Metabolite) DOR-Glu (Metabolite)

CYP
2D6

Hepatic metabolism

DEX

DOR

Figure 1.2: Schematic illustration of the phenotyping process. The CYP2D6

phenotyping probe dextromethorphan (DEX) is typically ad-
ministered as a single oral dose. DEX undergoes extensive
metabolism by CYP2D6 resulting in the formation of dextrorphan
(DOR). Subsequent glucuronidation via uridine 5’-diphospho-
glucuronosyltransferases (UGTs) results in the formation of dex-
trorphan O-glucuronide (DOR-Glu). Plasma or urine samples are
collected at one or multiple time points and the concentrations of
dextromethorphan and total dextrorphan (DOR + DOR-glu) are
quantified. Illustrations of capsules, medical equipment, organs
and people were taken from Servier [7], licensed under CC BY
3.0 (https://creativecommons.org/licenses/by/3.0/).

Overall, urinary metabolic ratios are considered the gold standard
for CYP2D6 phenotyping due to their minimal invasiveness and good
correlation with CYP2D6 activity [27]. Frequently used CYP2D6 phe-

https://creativecommons.org/licenses/by/3.0/
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notyping probes include debrisoquine, sparteine, dextromethorphan,
metoprolol, bufuralol and tramadol [27].

Historically, phenotyping has been predominately used to discrimi-CYP2D6
Phenotyping

Probes and
Urinary Metabolic

Ratios

nate between CYP2D6 poor metabolizers and extensive metabolizers
in a given population. However, since the advent of genotyping and
the subsequent characterization of allelic and structural variants of
CYP2D6, the definition of CYP2D6 phenotypes has been extended to
include additional categories, such as intermediate metabolizers and
ultrarapid metabolizers [39]. More recently, the CPIC has suggestedPhenotype

Categories using the term normal metabolizer instead of extensive metabolizer, to
reflect the determined normal enzyme activity [40].

1.2.4 Genotype-to-Phenotype Translation

CYP2D6 phenotyping may provide the most accurate estimate of
CYP2D6 activity for an individual, however, phenotyping entails rela-
tively high costs, is time-consuming and uncomfortable for the subjects,
as they are required to collect their urine for a given period or have
plasma samples taken [27]. Conversely, costs for PGx testing has been
decreasing steadily over the last decades and these tests are becoming
increasingly available [41]. Thus, increasing efforts have been put into
developing methods for estimating an individual’s phenotype based
on their genotype. Inferring CYP2D6 activity from a given genotypeConcept and

Challenges is highly challenging due to the vast number (> 10,000) of potential
CYP2D6 genotypes and often incomplete data on the in vitro and in
vivo consequences of a given allele [42]. Therefore, translation methods
typically involve categorizing CYP2D6 alleles based on the activity
of the expressed protein as determined through in vitro and in vivo
experiments [43].

Here, Steimer et al. proposed to assign semiquantitative gene doses
for each allele, reflecting no (0), reduced (0.5) and normal (1) activity
based on the observed amitriptyline and nortriptyline exposure in
their clinical study [44]. This concept was later extended and renamed
to the activity score system by Gaedigk et al., which provides an intuitive
system to translate genotype data into traditional CYP2D6 phenotype
categories [43]. Activity values are assigned to both haplotypes ofActivity Score

Assignment an individual. These reflect no (0), reduced (0.25 or 0.5) or normal
(1) CYP2D6 activity compared to the wild-type *1 allele, as well as
multiple copies of a normal activity allele (2). The sum of activity
values represents the activity score, which can be translated into
the CYP2D6 poor metabolizer (0), intermediate metabolizer (0.5–1),
normal metabolizer (1.25–2.25) and ultrarapid metabolizer (>2.25)
categories (see Table 1.1) [45].
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Table 1.1: CYP2D6 activity assignment [45] reproduced according to [1].

Activity Score Projected Phenotype Examples of Relevant CYP2D6 Genotypes

0 Poor Metabolizer *3/*3, *3/*4, *4/*4, *5/*6

0.25 *4/*10, *5/*10

0.5
Intermediate Metabolizer

*4/*41, *5/*17, *10/*10

0.75 *17/*10, *41/*10

1 *1/*4, *2/*5, *17/*17, *17/*41

1.25 *1/*10, *2/*10, *35/*10

1.5
Normal Metabolizer

*1/*41, *2/*17, *35/*41

2 *1/*1, *1/*2, *2/*35

2.25 *1x2/*10, *35x2/*10

> 2.25 Ultrarapid Metabolizer *1/*1x3, *1/*35x2, *2x2/*9

CYP2D6: CYP subfamily 2D6.

Recently, this system has been harmonized between CPIC, DPWG
and major working groups in the field of PGx. This facilitates the inte-
gration of the activity score into existing and future PGx guidelines
and increases comparability of study results and guideline recommen-
dations [45]. The activity score system has been validated in numerous
clinical studies over the past decade and has widely been adapted
in the context of PGx testing. However, the activity score system is
not without limitations. For instance, interindividual differences in Limitations of the

Activity Score
System

CYP2D6 activity in a population sharing the same CYP2D6 phenotype,
activity score or even genotype, have been found to be substantial [42].
Moreover, the activity score system disregards substrate-dependent
differences in CYP2D6 activity for specific alleles observed in vitro [46].
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1.2.5 Factors affecting CYP2D6 Activity

Interindividual differences in populations sharing the same CYP2D6

genotype are thought to be caused by both genetic variation outside
of the CYP2D6 gene locus and environmental factors (see Figure 1.3).
Currently, these factors are not captured by the activity score approach
[42].

CYP2D6 
Genotype

Drug-drug 
interactions

PregnancyInflammation

Alternative 
Pathways

Apparent CYP2D6
Activity

Urinary pHCKD

Other 
Genes

Figure 1.3: Factors affecting apparent CYP2D6 activity and causing in-
terindividual/interpatient variability. CYP2D6 activity is influ-
enced by genetic (green), (patho-)physiological (yellow) and
other factors (blue). CKD: chronic kidney disease. Illustrations of
capsules, tablets, medical equipment, organs, genes and peo-
ple were taken from Servier [7], licensed under CC BY 3.0
(https://creativecommons.org/licenses/by/3.0/).

1.2.5.1 Genetic Factors Affecting CYP2D6 Activity

Although the CYP2D6 gene is the major determinant of CYP2D6 ac-
tivity, it may also be affected by other genes [33, 42]. These genes
typically modulate CYP2D6 activity by altering the transcription of
the CYP2D6 gene to messenger ribonucleic acid (mRNA) and the sub-
sequent translation to CYP2D6 protein, primarily affecting CYP2D6

https://creativecommons.org/licenses/by/3.0/
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expression levels [42]. Here, genome-wide association studies (GWAS) Modulation of
CYP2D6
Expression

have identified 30 SNPs outside of the CYP2D6 gene that may af-
fect the activity of CYP2D6. These SNPs were predominately located
in close proximity (200 kb) to the CYP2D6 gene locus, suggesting
self-regulation of CYP2D6 translation [47].

snps

Studies have found normal CYP2D6 activity in Caucasian individuals
genotyped as CYP2D6*2/*2, whereas African American subjects with
the same genotype showed a considerably decreased CYP2D6 activity
compared to wild-type individuals [43]. Here, a link to the rs5758850 rs5758850 and

CYP2D6*2SNP has been established, which is located in the CYP2D6 enhancer
region and has been observed to amplify gene expression [48]. The
rs5758850 SNP occurs in significantly higher frequency in Caucasian
carriers of the CYP2D6*2 allele compared to African Americans [48–
50]. Although a combined assessment of the CYP2D6 and rs5758850
has been proposed to categorize CYP2D6 activity, a recent study found
only a modest overall effect of rs5758850 SNP on CYP2D6 expression
[51].

transcription factors

Unlike other CYP enzymes such as CYP subfamily 3A4 (CYP3A4),
CYP2D6 is considered essentially non-inducible by activation of the
pregnane X receptor (PXR) and constitutive androstane receptor (CAR)
transcription factors [42]. However, numerous studies have found a CYP2D6

Transcription and
Pregnancy

considerable effect of pregnancy on CYP2D6 activity with up to 4-
fold increases of oral metoprolol clearance and 2-fold decreases of
dextromethorphan/dextrorphan metabolic ratios found in pregnant
women compared to postpartum [52–54]. Here, two transcription fac-
tors, small heterodimer partner (SHP) and Krüppel-like factor 9 (KLF9)
have been identified as a repressor and an activator of CYP2D6 tran-
scription during pregnancy, respectively [55]. Consequently, activation
of these transpription factors due to pregnancy results in an increase
in CYP2D6 activity compared to postpartum.

1.2.5.2 Non-genetic Factors Affecting CYP2D6 Activity

An individual’s CYP2D6 activity is generally considered to be fairly
stable to changes in environmental conditions, even over multiple
years. For instance, smoking, alcohol consumption, intake of oral
contraceptives, sex and age have been known to affect the activity of
various other CYP enzymes, whereas the effect on CYP2D6 activity is
considered negligible [23]. However, other factors have been shown to
affect CYP2D6 activity or impede accurate assessment thereof [42].

drug-drug interactions

Drug-drug interactions (DDIs) occur, when the co-administration of
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a drug alters the PK and PD of another drug. Here, CYP2D6 DDIs
are typically caused by inhibitory processes, as CYP2D6 is considered
non-inducible by prototypical inducers of other CYP enzymes such as
rifampicin and phenobarbital [55]. Most inhibitors of CYP2D6 can be
classified based on the mechanism of inhibition into competitive, non-
competitive and irreversible inhibition. Reversible inhibition of CYP
enzymes is caused by a compound competitively binding to the active
site of an enzyme (competitive inhibition) or allosteric modulation
of enzyme activity by binding to a site different from the active site
of the enzyme (non-competitive inhibition). Irreversible inhibition isMechanisms of

CYP2D6
Inhibition

caused by a compound covalently binding to either its active site
or prosthetic groups integral to the enzyme’s function, consequently
permanently inactivating it (mechanism-based inhibition) [56]. Here,
the new synthesis of CYP2D6 is required to restore baseline enzyme
activity [57].

Overall, CYP2D6 inhibitors can significantly affect the biotransfor-
mation of CYP2D6 substrates, which may either result in increased
exposure to the substrate or decreased exposure to the substrate’s
active metabolite. Here, the US Food and Drug Administration (FDA)Inhibitors of

CYP2D6 lists fluoxetine, quinidine, terbinafine (reversible inhibitors), parox-
etine (irreversible inhibitor) and bupropion as strong inhibitors of
CYP2D6 [58, 59]. Interestingly, bupropion has been found to interact
uniquely with CYP2D6. It acts as a competitive inhibitor of CYP2D6

while simultaneously causing down-regulation of CYP2D6 expression
[60, 61].

Depending on the inherent CYP2D6 activity, concomitant adminis-
tration of CYP2D6 inhibitors can have differing effects on the PK
of a CYP2D6 substrate. For instance, dextromethorphan/dextror-
phan metabolic ratios have been observed to be affected by the co-
administration of quinidine in normal and intermediate metabolizers
of CYP2D6, while there was no effect on the metabolic ratio of poor me-
tabolizers of CYP2D6 [62, 63]. Similarly, pretreatment with paroxetinePhenoconversion

due to CYP2D6
Inhibition

resulted in substantial increases in the dextromethorphan/dextror-
phan metabolic ratio of subjects originally phenotyped as normal or
intermediate metabolizers, rendering a substantial fraction of these
subjects poor metabolizers of CYP2D6 [64]. This phenomenon is typi-Phenotype-

dependent Risk of
Phenoconversion

cally referred to as phenoconversion and its effect is thought to be highly
dependent on the inherent CYP2D6 activity. Taking the initial CYP2D6

activity of an individual into account, poor metabolizers of CYP2D6

are not prone to phenoconversion due to DDIs, whereas intermediate
and normal metabolizers are at an increased risk of being converted
to poor or intermediate metabolizers, respectively [65].

alternative pathways

While CYP2D6 is considered the primary enzyme responsible for the
metabolism of many clinically used drugs, a compound’s biotransfor-
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mation is often mediated by more than one enzyme. Relative contribu-
tions of CYP2D6 to the metabolism of a compound may vary substan-
tially based on both the mass balance of the compound and the inher-
ent CYP2D6 activity of an individual. For instance, CYP2D6 has been
found to mediate >96% of the dextromethorphan N-demethylation,
producing its major metabolite dextrorphan, in normal metabolizers
[62]. Despite no residual CYP2D6 activity, dextrorphan is detectable,
albeit in very small amounts, in the urine of CYP2D6 poor metaboliz-
ers [62, 63]. These observations from in vivo studies are well in line Contributions of

Alternative
Pathways

with findings of in vitro experiments, which have identified CYP sub-
family 2C9 (CYP2C9) and CYP subfamily 2C19 (CYP2C19) as minor
contributors to dextromethorphan N-demethylation [66]. Hence, with
decreasing CYP2D6 activity, the importance of CYP2C9 and CYP2C19

for dextromethorphan N-demethylation increases substantially. As
both CYP2C9 and CYP2C19 are also polymorphically expressed [67],
their activity may also vary between individuals and consequently
affect dextrorphan formation [2, 42].

physiological and pathophysiological factors

Urinary metabolic ratios are typically used to assess an individual’s
CYP2D6 activity and while these are highly accurate in discriminating
poor metabolizers from normal metabolizers, they have been observed
to be highly variable even between subjects within the same activity
score category [43]. Renal excretion of a given compound is depen- Chronic Kidney

Disease and
Urinary pH

dent on the renal function of an individual and can be affected by
pathophysiological conditions such as chronic kidney disease (CKD)
[68]. Moreover, renal excretion may also be affected by urinary pH, as
CYP2D6 substrates are typically basic compounds [27]. Here, approxi-
mately 80% of IIV in urinary metabolic ratios of CYP2D6 phenotyping
probes dextromethorphan and metoprolol have been attributed to
differences in urinary pH within the physiological range [69]. Con-
sequently, urinary metabolic ratios should be interpreted with great
caution and both urinary pH and renal function should be taken into
account [42].

Finally, inflammatory processes have been found to heavily affect
the expression of CYP enzymes. Here, pro-inflammatory cytokines
typically cause down-regulation of CYP mRNA, consequently reduc-
ing enzyme activity [70]. Pathophysiological inflammatory conditions Inflammation

have been shown to affect CYP2D6 activity, for instance in patients
with hepatitis C or HIV [71]. While the body of evidence for cytokine-
induced CYP2D6 down-regulation is still relatively small, especially
compared to other CYP enzymes, cytokine-induced CYP regulation
is likely to affect the metabolism of CYP2D6 substrates by shifting
relative contributions of alternative pathways [42].
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random effects

Pharmacokinetic measurements are typically subject to random fluctu-
ations, which are often referred to as random effects [72]. Random effects
are typically attributed to IIV (often also referred to as interpatient
variability (IPV) or between-subject variability (BSV)) and residual un-
explained variability (RUV). These terms are typically used in a very
technical context, i.e., in nonlinear mixed effects (NLME) modeling,Between Subject

Variability and
Residual

Unexplained
Variability

to describe the variability of PK or PD parameters in a population
(IIV) and the residual variability of the model (RUV) not covered by
the models, its covariates, and the IPV [73]. Apparent variability in
CYP2D6 activity may also be partially attributable to sources of IPV
such as genetic and non-genetic factors or demographic differences,
such as age, weight and height. Moreover, RUV may also contribute
to apparent variability in CYP2D6 activity, as differences in manufac-
turing processes can affect the amount of active compound in a drug
product or its release rate and therefore affect the PK of a phenotyping
probe.

Additionally, differences in clinical trial execution such as time
of drug administration and blood sampling may also contribute to
apparent variability in CYP2D6 activity.

1.2.6 Substrates and Inhibitors of CYP2D6

In 2022, 76 FDA-approved drug labels and 22 drug labels approved
by the European Medicines Agency (EMA) contained CYP2D6 PGx
annotations, either requiring or recommending genetic testing prior
to drug treatment or containing actionable information regarding
treatment adjustments based on CYP2D6 genotypes [74, 75]. The fol-
lowing sections provide information on the CYP2D6 substrates and
inhibitors that were selected to be included in this thesis. The selectionRationale for

Selection of
Substrates and

Inhibitors

of substrates and inhibitors was based on the following criteria: (1)
The compound is a substrate or inhibitor of CYP2D6 according to the
FDA Table of Substrates, Inhibitors and Inducers [58, 59] and/or (2) a
sufficient number of in vivo clinical study data in healthy volunteers
was available from the published literature, including studies that
investigated the effect of genetic variation in CYP2D6 on the pharma-
cokinetics of the compound and/or (3) an adequate amount of in vivo
clinical DDGI study data in healthy volunteers was available from the
published literature. Figure 1.4 provides a network representation of
the seven compounds modeled in this work.
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Figure 1.4: Compounds modeled in this work in a DDGI network repre-
sentation Of the seven compounds modeled in this work, six
compounds (metoprolol, dextromethorphan, atomoxetine, parox-
etine, risperidone and (E)-clomiphene are substrates of CYP2D6

as indicated by the black arrows. Additionally, paroxetine and
quinidine are inhibitors of the CYP2D6 enzyme as indicated by
red blunt arrows. Paroxetine and quinidine are typically used
as perpetrator drugs in CYP2D6 DDI scenarios (although paroxe-
tine can also be a victim drug, as it is metabolized by CYP2D6).
Metoprolol, dextromethorphan, atomoxetine, risperidone and (E)-
clomiphene are considered victim drugs in CYP2D6 DDI scenarios.
Yellow stars indicate that the respective compound PBPK model
was extended to include CYP2D6 DGIs.

metoprolol

Metoprolol is a β1-selective adrenergic receptor blocker that is used
in the treatment of hypertension, angina pectoris and heart failure
[76]. Among the most frequently prescribed drugs in the United
States, metoprolol ranked 6

th in 2020 with more than 60 million to-
tal prescriptions [77]. While metoprolol is administered as a racemic
mixture, the (S)-enantiomer is thought to be predominately respon-
sible for the pharmacological effects of metoprolol [78]. Similar to
many other beta-blockers, such as nebivolol [79], propranolol [80]
and bufuralol [81], metoprolol is extensively metabolized by CYP2D6.
Principal pathways of metoprolol metabolism include α-hydroxylation Metoprolol

Metabolismand O-demethylation [82]. Here, other CYP enzymes such as CYP2C9,
CYP subfamily 2B6 (CYP2B6) and CYP3A4 have been identified to con-
tribute to the metabolism of metoprolol, albeit to a lesser extent [83]. Of
note, CYP2D6 shows enantio-preference towards the (R)-enantiomer of
metoprolol, resulting in a higher ratio of (S)- to (R)-metoprolol plasma
concentrations in ultrarapid, normal and intermediate metabolizers of
CYP2D6, whereas the effect normalizes in CYP2D6 poor metabolizers
[78]. Metoprolol is still used in some phenotyping cocktails to assess
CYP2D6 activity [38]. However, metoprolol α-hydroxylation is gen-
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erally considered a less specific marker reaction for CYP2D6 activity
than dextromethorphan O-demethylation and administration of meto-Metoprolol ADRs

and Use in
Clinical DDI

Trials

prolol may cause ADRs such as bradycardia, fatigue and dizziness [38,
84]. Regardless, the FDA recommends the use of metoprolol in clinical
DDI trials as a moderate sensitive substrate of CYP2D6 activity [59].

While there are currently no explicit dosing recommendations for
metoprolol based on CYP2D6 genotype in drug labels approved by
FDA or EMA, informative PGx information is available in the FDAPGx Information

in Metoprolol
Drug Labels

drug labels and actionable PGx annotations are contained in meto-
prolol drug labels of the Health Canada (Santé Canada) (HCSC) and
Swiss Agency for Therapeutic Products (Swissmedic) [85]. These drug
labels generally denote that the CYP2D6 genotype may have a sig-
nificant impact on the pharmacokinetics of metoprolol, resulting in
several-fold increases in metoprolol exposure in CYP2D6 poor me-
tabolizers compared to extensive metabolizers, reducing metoprolol
cardioselectivity [86]. Response to metoprolol treatment and the risk
of ADRs is presumably not solely determined by the CYP2D6 geno-
type but also other pharmacogenes, such as adrenoceptor β1 (ADRB1),
adrenoceptor β2 (ADRB2) and guanine nucleotide-binding protein subunit
β3 (GNB3) [48, 87, 88].

dextromethorphan

Dextromethorphan has been widely used as an over-the-counter cough
suppressant since the 1950s and is part of many cough-and-cold reme-
dies [89]. In recent years, dextromethorphan has been approved by
the FDA in fixed drug combinations for the treatment of pseudob-
ulbar affect (NUEDEXTA®, dextromethorphan/quinidine) [90] and
major depressive disorder (AUVELITY®, dextromethorphan/bupro-
pion) [91]. While dextromethorphan bears many structural similarities
to opioids, it does not bind to opioid receptors and consequently has
no analgesic properties [92]. Instead, dextromethorphan and its ma-
jor metabolite dextrorphan act as non-selective N-methyl-D-aspartate
receptor antagonists and exhibit strong serotonergic effects [89]. Dex-
tromethorphan is extensively metabolized by CYP2D6 to its major
metabolite dextrorphan with only minor contributions from CYP2C9

and CYP2C19. Alternatively, N-demethylation of dextromethorphanDextromethor-
phan Metabolism results in the formation of 3-methoxymorphinan, mainly catalyzed

by CYP3A4 [62, 66]. Subsequently, 3-hydroxymorphinan is formed
via N-demethylation of dextrorphan and O-demethylation of 3-
methoxymorphinan. Both 3-hydroxymorphinan and dextrorphan are
glucuronidated via UGT isozymes including UGT subfamily 2B15

(UGT2B15), UGT2B7, UGT2B17 and UGT2B4 [93]. As dextromethor-
phan O-demethylation is predominately mediated by CYP2D6 [62]
and dextromethorphan is both readily available and well tolerated, it
has become the standard phenotyping probe for CYP2D6 activity [27]
and is part of many established phenotyping cocktails [38]. Accord-
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ingly, the FDA recommends the use of dextromethorphan both in in Dextromethor-
phan as a Probe
Substrate in
Clinical DDI
Trials

vitro studies of CYP-mediated drug metabolism as well as in clinical
DDI trials as a sensitive substrate of CYP2D6 activity [58, 59].

Various drug labels contain PGx information for dextromethorphan
in fixed combinations, including the FDA labels for NUEDEXTA®

(dextromethorphan/quinidine) and AUVELITY® (dextromethor-
phan/bupropion) [94]. Here, the FDA recommends testing patients
for variants in the CYP2D6 gene prior to the use of NUEDEXTA®

and discourages its use in poor metabolizers of CYP2D6 [95]. For PGx Information
in Dextromethor-
phan Drug Labels

AUVELITY®, the FDA label contains dosing recommendations based
on the CYP2D6 genotype, i.e., dose reduction for poor metabolizers of
CYP2D6 [96].

paroxetine

Paroxetine is a selective serotonin reuptake inhibitor (SSRI) used in the
treatment of major depressive disorder, generalized anxiety disorder,
obsessive-compulsive disorder, panic disorder and social anxiety disor-
der [97]. Paroxetine ranks 82

nd among the most frequently prescribed
drugs in the United States with more than 9 million total prescriptions
in 2020 [77]. The principal pathway of paroxetine is its demethylation Paroxetine

Metabolismto a catechol intermediate, which is rapidly metabolized to various
metabolites by catechol-O-methyltransferase (COMT) and UGTs [97,
98]. CYP2D6 is the major enzyme responsible for the metabolism
of paroxetine to paroxetine-catechol, with minor contributions from
CYP3A4, CYP subfamily 1A2 (CYP1A2), CYP2C19 and CYP subfamily
3A5 (CYP3A5) [99]. Interestingly, paroxetine is a potent mechanism-
based inhibitor of CYP2D6 and consequently inhibits its metabolism.
Analogous to methylendioxymethamphetamine (MDMA) [100], the
methylendioxy moiety of paroxetine has been proposed to form cova-
lent bonds with the heme complex of CYP2D6, either through carbene
intermediates or ortho-quinone intermediates, effectively inactivating
the enzyme [101]. Consequently, multiple administrations of paroxe-
tine may result in pronounced CYP2D6 phenoconversion and signif-
icantly reduce the clearance of paroxetine itself and other CYP2D6

substrates [102]. The FDA recommends the use of paroxetine in clinical
DDI trials as a strong inhibitor of CYP2D6 and as a selective inhibitor Paroxetine as a

Probe Inhibitor in
Clinical DDI
Trials

for CYP2D6-mediated reactions in vitro [58, 59]. PharmGKB lists no
drug labels containing PGx information on paroxetine itself [103].
However, the FDA label for paroxetine notes that paroxetine is both a
substrate and inhibitor of paroxetine and may increase exposure of
other CYP2D6 substrates, such as atomoxetine [104].

atomoxetine

Atomoxetine is a selective norepinephrine reuptake inhibitor used in
the treatment of attention deficit hyperactivity disorder (ADHD) in
children, adolescents and adults [105]. Atomoxetine is a frequently
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prescribed drug with more than 1 million total prescriptions in 2020

in the United States alone [77]. Contrary to most first-line ADHD
medications, such as methylphenidate and amphetamine, atomoxe-Atomoxetine

Metabolism tine shows only little stimulation of the central nervous system and
is therefore considered to be less prone to abuse and is generally
well tolerated [106, 107]. Atomoxetine is primarily metabolized via
4-hydroxylation to its active metabolite 4-hydroxyatomoxetine [108].
This pathway is predominately mediated by CYP2D6 with minor
contributions from CYP1A2, CYP2B6, CYP2C19 and CYP subfamily
2E1 (CYP2E1) [109]. Alternatively, atomoxetine is demethylated to
N-desmethylatomoxetine by CYP2C19, CYP2B6, CYP1A2, CYP3A4

and CYP2C9 [109]. Both metabolites are subsequently metabolized
by UGTs to their respective glucuronide conjugates which are then
excreted via the kidneys [105]. Overall, CYP2D6 activity is the major
determinant of atomoxetine exposure. However, exposure to its activeAtomoxetine as a

Probe Substrate in
Clinical DDI

Trials

metabolite 4-hydroxyatomoxetine may be polygenically determined
and significantly affected by both CYP2D6 and CYP2C19 DDGIs [108,
110]. The FDA recommends the use of atomoxetine in clinical DDI
trials as a sensitive substrate of CYP2D6 [58, 59].PGx Information

in Atomoxetine
Drug Labels

Drug labels approved by FDA, HCSC, the Japanese Pharmaceuticals
and Medical Device Agency (PMDA) and Swissmedic contain action-
able PGx information on atomoxetine [111]. Specifically, the drug
label for STRATTERA® recommends reducing atomoxetine doses in
poor metabolizers of CYP2D6 and patients that are also administered
strong inhibitors of CYP2D6, such as quinidine and paroxetine [112].

risperidone

Risperidone is an atypic antipsychotic used in the treatment of
schizophrenia and bipolar disorder [113]. Its mechanism of action
is based on the antagonism of dopamine D2 and serotonin 5-HT2A
receptors by both the parent compound and its main metabolite 9-
hydroxyrisperidone [113, 114]. Risperidone ranks 138

th among the
most frequently prescribed drugs in the United States with more
than 4 million total prescriptions in 2020 [77]. It is primarily metab-
olized via CYP2D6, CYP3A4 and CYP3A5 to its active metaboliteRisperidone

Metabolism
9-hydroxyrisperidone [115]. This metabolite shows comparable ef-
ficacy and safety to risperidone and, due to its longer half-life, is
marketed as a standalone drug under the name paliperidone [116].
Both risperidone and 9-hydroxyrisperidone AUC are significantly af-
fected by CYP2D6 activity after oral administration of risperidone.
Here, an 8-fold increase in risperidone AUC was observed in CYP2D6

poor metabolizers, whereas 9-hydroxyrisperidone AUC was reduced
by 70% compared to normal metabolizers [117]. Typically, the sum
of risperidone and 9-hydroxyrisperidone (total active moiety) is con-
sidered to be the most relevant pharmacokinetic parameter to assess
the clinical efficacy of risperidone. Consequently, as the AUC of the
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total active moiety differs only slightly between CYP2D6 phenotypes,
the overall effect of CYP2D6 polymorphisms on the pharmacodynam-
ics of risperidone are considered negligible [117]. This is reflected PGx Information

in Risperidone
Drug Labels

in drug labels for risperidone by FDA, HCSC and Swissmedic, all
noting substantial difference in risperidone and 9-hydroxyrisperidone
concentrations but negligible differences in combined concentrations
between different metabolizer phenotypes [118].

(E)-clomiphene

Clomiphene is a selective estrogen receptor modulator (SERM)
used in the treatment of infertility caused by polycystic ovary syn-
drome (PCOS) [119]. It is administered as a racemic mixture of
(E)- and (Z)-clomiphene, with (E)-clomiphene with its metabolites
(E)-4-hydroxyclomiphene and (E)-4-hydroxy-N-desethylclomiphene
being the active compounds [120]. The mechanism of action is
based on the antagonism of estrogen receptors in the arcuate nu-
cleus of the hypothalamus, which results in increased secretion of
gonadotropin-releasing hormone (GnRH) and subsequently increased
secretion of luteinizing hormone (LH) and follicle-stimulating hor-
mone (FSH) [121]. Clomiphene enantiomers are metabolized by a
variety of CYP enzymes. Here, the formation of active metabolites
(E)-4-hydroxyclomiphene and (E)-4-hydroxy-N-desethylclomiphene (E)-Clomiphene

Metabolismhas been observed to be predominantly mediated by CYP2D6 and
CYP3A4 [120]. Consequently, CYP2D6 activity has been suggested to
be predominately responsible for interpatient differences in both the
PK and PD of clomiphene [120].

(E)-clomiphene is not recommended for clinical DDI trials, likely
due to the availability of more affordable, safe and suitable alternatives
[58, 59]. To date, no FDA- or EMA-approved drug labels contain PGx
information for clomiphene [122].

quinidine

Quinidine is a class I antiarrhythmic drug used in the treatment
of atrial fibrillation and ventricular arrhythmias and its mechanism
of action is based on blockage of voltage-gated sodium channels
[123]. Due to its narrow therapeutic index and the availability of safer
and more effective drugs, the use of quinidine has been declining
for several decades [124]. Quinidine is primarily metabolized via
CYP3A4-mediated 3-hydroxylation to 3-hydroxyquinidine [125]. Al-
ternatively, quinidine undergoes N-oxidation to quinidine-N-oxide
via various CYP enzymes with the largest contribution from CYP3A4

[125]. Although quinidine shows high affinity towards the active site
of CYP2D6 and displays many structural characteristics commonly
found in CYP2D6 substrates, it is not a substrate of CYP2D6 [126].
Instead, quinidine is considered a potent inhibitor of CYP2D6 and also
P-glycoprotein (P-gp) [126, 127]. Moreover, quinidine metabolites have
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been shown to contribute to both the pharmacodynamics of quinidine
as well as its inhibitory potential towards CYP2D6 [128, 129]. Con-Quinidine as a

Probe Inhibitor in
Clinical DDI

Trials

sequently, the FDA recommends quinidine as a probe substrate for
P-gp in in vitro DDI studies, as well as a probe inhibitor of P-gp and
CYP2D6 in both in vitro and in vivo DDI studies [58, 59].

Although quinidine is not a substrate of CYP2D6, PGx informa-
tion is contained in various drugs containing quinidine such as
NUEDEXTA® (dextromethorphan/quinidine, see dextromethorphan)PGx Information

in Quinidine
Drug Labels

[95, 130]. Additionally, the FDA-approved label for quinidine glu-
conate products notes that caution should be exercised when prescrib-
ing quinidine together with drugs metabolized by CYP2D6 [131].

1.3 physiologically based pharmacokinetic modeling

1.3.1 Concept

PBPK modeling is a mathematic approach to quantitatively character-
ize the PK of compounds [132]. Compared to data-driven, empirical
model approaches, PBPK modeling represents a more mechanistic
technique, integrating anatomical and physiological parameters of
the organism (system-dependent parameters) as well as biochemical
and physicochemical information on the compound (drug-dependent
parameters) [20]. An organism is typically represented as a set of
compartments, reflecting important organs and tissues of the body.
Here, ordinary differential equations (ODEs) describe mass transfer
based on blood flow to and from a given compartment [133]. Drug-PBPK model input

parameters dependent parameters are necessary to describe important absorption,
distribution, metabolism and excretion (ADME) processes, for in-
stance, to calculate organ permeabilities and partition coefficients or
model processes such as enzymatic metabolism, transport, binding,
and excretion. Finally, information on the study design including dose,
dosing regimen, formulation, route of administration, and food intake,
is incorporated into the model. While the concept of PBPK modelingHistory of PBPK

modeling and
PBPK modeling

frameworks

has first been described in 1937, the application of this technique in
drug development has only gained momentum in the last decades
[134] as PBPK models are highly complex and require substantial
computational resources [132]. Today, a wide range of both commer-
cial and non-commercial software solutions are available, providing
flexible and modular PBPK modeling frameworks [135].

1.3.2 Applications of PBPK Modeling

PBPK modeling has been applied in a wide range of areas through-
out model-informed drug discovery and development (MID3) as well
as in clinical practice. Due to their flexibility and modularity, PBPK
models can be used to address research questions in the area of DDIs,
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DGI, PD, formulation design and scaling to special populations. These Special
Populationsspecial populations include pediatric, newborn, pregnant, obese or

geriatric patient populations as well as patients with organ impair-
ment such as CKD or liver diseases. Regulatory authorities including
the FDA and EMA have recognized the enormous potential of PBPK
modeling and regularly publish guidance documents on the use of
PBPK modeling in drug development [136, 137]. Over recent years,
PBPK modeling has increasingly been applied to investigate DGI
scenarios [20]. Here, PBPK models have been successfully used to Drug-Gene and

Drug-Drug-
(Gene) Interaction
Modeling

integrate findings from in vitro experiments and in vivo studies to
predict the effect of DGIs on the PK and PD of drugs. These PBPK
DGI models can subsequently be applied to answer different research
questions such as the investigation of complex DDGI or drug-drug-
gene-disease interactions (DDGDIs), to perform virtual trials, develop
dose recommendations or answer other "what-if" questions [20]. Fi-
nally, PBPK modeling has successfully been applied to investigate
and characterize IPV in drug pharmacokinetics, a domain that has
been traditionally dominated by classic PK modeling strategies such
as population pharmacokinetic (PopPK) modeling [138, 139].

Overall, PBPK modeling provides a valuable tool to support not
only the decision-making process in MID3 [140] but also to establish a
more personalized approach to drug therapy [9, 141].
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O B J E C T I V E S

The objectives of this thesis were (i) to develop and evaluate whole-
body PBPK models for important CYP2D6 substrates and inhibitors,
(ii) to implement the CYP2D6 activity score-dependent metabolism of
the different substrates in the respective models to describe and predict
the impact of CYP2D6 activity scores on the PK of the substrates, and
(iii) to use the final PBPK models for different DGI and DDGI model
applications.

2.1 project i : pbpk modeling of metoprolol

The objectives of project I were (i) to develop a whole-body PBPK
model of (R)- and (S)-metoprolol as well as the metabolite α-
hydroxymetoprolol (ii) to describe the impact of CYP2D6 activity
scores on the PK of metoprolol and (iii) to apply the final PBPK DGI
model to generate dose adaptations for metoprolol and compare these
adaptations to the current DPWG guideline.

2.2 project ii : pbpk modeling of dextromethorphan

The objectives of project II were (i) to develop a parent-metabolite-
metabolite PBPK model of dextromethorphan and its metabolites
dextrorphan and dextrorphan O-glucuronide, (ii) to implement the
CYP2D6 activity score-dependent metabolism of dextromethorphan to
describe CYP2D6 DGIs and (iii) to investigate the observed IIV in the
CYP2D6-mediated metabolism of dextromethorphan for individual
subjects sharing the same CYP2D6 activity score.

2.3 project iii : pbpk modeling of paroxetine , atomoxe-
tine and risperidone

The objectives of project III were (i) to develop new whole-body
PBPK models of paroxetine and atomoxetine, (ii) implement the scale
of CYP2D6 activity score-dependent metabolism of metoprolol and
dextromethorphan (projects I and II) into the new models of paroxetine
and atomoxetine, as well as an established PBPK model of risperidone
[142] and (iii) to apply the final PBPK DGI models to simulate steady-
state exposure of paroxetine, atomoxetine and risperidone in different
DGI scenarios.
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2.4 project iv : pbpk modeling of (E)-clomiphene

The objectives of project IV were (i) to develop a whole-body parent-
metabolite model of (E)-clomiphene, (Z)-clomiphene and its metabo-
lite (E)-4-hydroxyclomiphene, (E)-N-desethylclomiphene and (E)-4-
hydroxydesethylclomiphene, (ii) to investigate the effect of CYP2D6

DGIs on the pharmacokinetics of clomiphene and its metabolites and
(iii) to predict the effect of CYP2D6 and CYP3A4 DDGIs in scenarios
involving CYP2D6 inhibitor paroxetine and CYP3A4 inhibitor clar-
ithromycin on the pharmacokinetics of clomiphene and its metabolites.

2.5 project v : pbpk modeling of quinidine

The objectives of project V were (i) to develop a comprehensive PBPK
parent-metabolite model of quinidine and its major metabolite 3-
hydroxyquinidine, (ii) to investigate complex CYP3A4 and P-gp DDIs
of the victim drug quinidine within a comprehensive interaction net-
work incorporating perpetrator drugs carbamazepine, cimetidine, flu-
voxamine, itraconazole, omeprazole, rifampicin and verapamil, and
(iii) to investigate P-gp DDIs and CYP2D6 DDGIs with quinidine act-
ing as a perpetrator including victim drugs digoxin (P-gp substrate),
dextromethorphan, mexiletine, metoprolol (CYP2D6 substrates) and
paroxetine (CYP2D6 substrate and inhibitor of CYP2D6 and CYP3A4).



3
M E T H O D S

3.1 software

PBPK models were developed in PK-Sim® and MoBi® (Open
Systems Pharmacology Suite 9 (projects I, II and IV), 10 (project
III) and 11 (project V) www.open-systems-pharmacology.org).
Clinical study data were digitized with GetData Graph
Digitizer®

2.26.0.20 (S. Fedorov, http://www.getdata-graph-
digitizer.com) (projects I–IV) or Engauge Digitizer 10.12 (M. Mitchell,
https://markummitchell.github.io/engauge-digitizer) (project V)
from the published literature according to best practices [143].
Sensitivity analyses and model parameter optimizations (Monte
Carlo algorithm) were performed within PK-Sim®. Calculation
of pharmacokinetic parameters, model performance metrics and
the generation plots were achieved using Python 3.7.4 (project I),
3.9.1 (project II) or 3.10.4 (project III), Python Software Foundation,
Wilmington, DE, USA or the R programming language 3.6.3 (project
IV) or 4.2.1 (project V), The R Foundation for Statistical Computing,
Vienna, Austria. Regression analyses were performed using ordinary
least squares (OLS) regression utilizing the statsmodels package 0.12.2
(project II) or 0.13.2 (project III), https://www.statsmodels.org/stable
in Python [144].

3.2 physiologically based pharmacokinetic modeling

The PBPK models developed in project I (metoprolol), project II (dex-
tromethorphan), project III (paroxetine and atomoxetine), project IV
((E)-clomiphene) and project V (quinidine) were built according to the
workflow described below. For risperidone (project III) PBPK model-
ing, a previously published PBPK model [142] was used and extended
by the DGI modeling approach described in Section 3.2.7.

3.2.1 PBPK Modeling Workflow

The PBPK modeling workflow for projects I–V included (i) the col-
lection of clinical data, (ii) PBPK base model building and (iii) PBPK
base model evaluation. Different approaches were used to (iv) develop
DGI models for projects I–IV (see Section 3.2.7). After (v) DGI model
evaluation (projects I–IV), (vi) the developed PBPK models were used
for different model applications (projects I–V). Figure 3.1 shows the
PBPK DGI modeling workflow for projects I–IV.
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Clinical study parameters
Demographics, dosing regimens, 

drug concentrations

Drug-dependent parameters
ADME processes

System-dependent parameters
Physiology and anatomy

Final DGI model

• Dose adaptations
• Analysis of IIV
• Predictions of steady-state 

exposure
• Drug-drug-gene interactions

DGI model

DGI-dependent parameters
In

 vivo
In

 vitro

Parameter optimization
In vivo PK data

Drug-dependent parameters
CYP2D6-mediated metabolism

System-dependent parameters
CYP2D6 expression

CYP2D6 activity score

CYP2D6 KM, Vmax

CYP2D6 abundance

DGI model applications

Base model

Figure 3.1: CYP2D6 DGI modeling workflow. The base model is developed
with system-dependent, drug-dependent, and clinical study pa-
rameters (green path). Model refinement and implementation
of DGI-relevant input parameters is achieved in a learn-and-
confirm cycle (blue path). DGI-dependent parameter values can
be identified and measured in different systems and used to
describe the activity score dependent metabolism of CYP2D6 sub-
strates. The final DGI models can be used for applications such
as the investigation of DGI effects or dose adaptations (orange
path). ADME: absorption, distribution, metabolism and excretion,
DGI: drug-gene interaction, IIV: interindividual variability, KM:
Michaelis-Menten constant, Vmax: maximum reaction velocity.
Figure adapted from Türk et al. [20].

3.2.2 Clinical Study Data

Clinical data including individual and aggregated plasma
concentration-time profiles were collected from the published liter-
ature. Different routes of administration (intravenous (iv) and oral),
dosing regimen (single dose (sd) and multiple dose (md)) as well as
different formulations (immediate release and extended release) were
considered. Demographic data on study populations or individual par-
ticipants (sex, age, weight and height) were extracted for all modeled
studies. Additionally, data on CYP2D6 activity (phenotype, genotype
or activity score) were collected where available.

3.2.3 Dataset Assignment

Collected clinical data were split into a training dataset (model devel-
opment) and a test dataset (model evaluation). Studies for the training
dataset were predominately selected to cover: (i) different routes of
administration or different formulations, (ii) a wide dose range or
different dosing regimen and (iii) comparisons of the effect of different
CYP2D6 activity levels on the PK of the respective drug.
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3.2.4 PBPK Base Model Building

Physicochemical properties were collected from the published liter-
ature alongside information on important ADME processes. Subse-
quently, PBPK base models were built following a sequential approach
using individual simulations based on typical individuals (mean or me-
dian) for the respective study population. First, appropriate quantity
structure-activity relationship (QSAR) methods for the estimation of
partition coefficients and cellular permeabilities were selected based on
the smallest residual error by fitting simulations after iv administration
of the respective compound to their observed data. Second, simula-
tions of administrations of oral solutions were optimized against their
observed data to inform intestinal permeability. Simulations of poor
metabolizers were fitted to their observed data to inform metabolic
parameters for the CYP2D6-independent pathways of the substrate’s
metabolism. Finally, parameters for CYP2D6-mediated metabolism
were estimated by fitting simulations of extensive metabolizers to
their observed data. Here, the term extensive metabolizer was used to
group individuals and populations that were either phenotyped using
traditional phenotyping methods or not phenotyped.

3.2.5 PBPK Base Model Evaluation

A combination of graphical and statistical methods was used to
evaluate the PBPK base model performance. Predicted plasma
concentration-time profiles (arithmetic mean ± standard deviation
(SD)) were plotted alongside their observed for graphical comparison.
For this, virtual populations of 100 (project I) or 1000 (projects II–V)
individuals were created based on reported demographic data of the
respective study population. Variability in population demographics
(age, weight, height, organ weight, blood flow rates and tissue com-
position) was accounted for by sampling the respective parameters
according to the implemented algorithm in PK-Sim®. Additionally,
variability on relevant transporter and enzyme expression was imple-
mented according to the PK-Sim® ontogeny database [145].

Goodness-of-fit plots were generated by plotting the predicted arith-
metic mean of population predicted plasma concentrations against the
respective observed data. Similarly, predicted compared to observed
AUC from the time of the first concentration measurement to the
time of the last concentration measurement (AUClast) and maximum
plasma concentration (Cmax) values were plotted in goodness-of-fit
plots. Statistical methods to assess model performance included the
calculation of the mean relative deviation (MRD) of predicted plasma
concentrations and the geometric mean fold error (GMFE) of predicted
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AUClast and Cmax values for all simulations according to equations 3.1
and 3.2, respectively.

MRD = 10x;x =

√
∑k

i=1(log10ĉi − log10ci)2

k
(3.1)

where ĉi = i-th predicted plasma concentration and ci = i-th observed
plasma concentration, k = number of observations.

GMFE = 10x;x =
∑m

i=1 |log10

(
ρ̂i
ρi

)
|

m
(3.2)

where ρ̂i = predicted AUClast or Cmax of study i, ρi = observed AUClast
or Cmax of study i, m = total number of studies.

3.2.6 Local Sensitivity Analysis

Local sensitivity analyses were performed to quantify the impact of
individual model parameters on the the predicted AUC from 0 to 24

hours (AUC
0–24h) of the respective compound. Here, simulations of a

single oral standard dose were used to perform sensitivity analyses
using a relative perturbation of 1000% (variation range = 10, maximum
number of steps = 9). Generally, parameters were included if they (i)
had been optimized, (ii) were associated with optimized parameters or
(iii) might have a strong impact due to calculation and QSAR methods
used. Sensitivity to a parameter was calculated according to equation
3.3.

S =
∆AUC0−24h

∆p
× p

AUC0−24h
(3.3)

where S = sensitivity of the AUC
0–24h to the examined model param-

eter, ∆AUC0−24h = relative change of the AUC
0–24h to the respective

parameter, ∆p = relative variation of the parameter, p = parameter
value and AUC0−24h = simulated AUC

0–24h of the respective com-
pound.

Parameters with associated sensitivity values >0.5 were considered
sensitive, reflecting a >50% change in the AUC

0–24h of the respective
compound when the parameter was varied by 100%.

3.2.7 DGI Model Building

CYP2D6-mediated metabolic pathways were modeled using Michaelis-
Menten kinetics according to equation 3.4.

v =
vmax × [S]
KM + [S]

=
kcat × [E]× [S]

KM + [S]
(3.4)
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where v = reaction velocity, vmax = maximum reaction velocity, [S]
= substrate concentration, KM = Michaelis-Menten constant, kcat =
catalytic rate constant, [E] = enzyme concentration.

CYP2D6 Michaelis-Menten constant (KM) values were kept con-
stant over the whole range of modeled CYP2D6 activity. In projects
I–II, CYP2D6 activity was described by optimizing catalytic rate con-
stant (kcat) values for all modeled activity scores, separately. For project
III, CYP2D6 kcat values were optimized for populations with an activ-
ity score of 2. Subsequently, catalytic rate constant relative to activity
score 2 (kcat, rel) values obtained from optimizations for project I–II
were then analyzed using OLS regression with a polynomial of degree
2 and no intercept. Finally, the resulting regression equation was used
to calculate relative kcat values for the remaining activity scores. Gen-
erally, CYP2D6 poor metabolizers (activity score = 0) were assumed
to have no (0%) CYP2D6 activity, whereas normal metabolizers with
an activity score of 2 were assumed to correspond to 100% CYP2D6

activity. For projects I–III, kcat, rel values were then calculated according
to equation 3.5.

kcat, rel,AS=i =
kcat,AS=i

kcat,AS=2
× 100% (3.5)

where kcat, rel,AS=i = relative kcat for population with the investigated
activity score i, kcat,AS=i = kcat for population with the investigated
activity score i, kcat,AS=2 = kcat for populations with an activity score
of 2.

For project IV, CYP2D6 kcat values for the different activity scores
were extrapolated from in vitro data on CYP2D6 activity score-
dependent formation rates of the respective metabolites according
to equation 3.6.

kcat,AS=i = kcat,AS=2 × IVSFi (3.6)

where kcat,AS=i = kcat for population with the investigated activity
score i, kcat,AS=2 = kcat for population with activity score of two, IVSFi

= in vitro scaling factor (IVSF) for population with the investigated
activity score i.

3.2.8 DD(G)I Model Network Building

The performance of (E)-clomiphene (project IV) and quinidine (project
V) models to predict various DDGI scenarios was assessed by link-
ing the respective models to other published PBPK models. The (E)-
clomiphene victim model was linked to the models of the strong
CYP2D6 inhibitor paroxetine (developed in project III) and the strong
CYP3A4 inhibitor clarithromycin [58, 146]. The quinidine model was
assessed as a victim drug for CYP3A4 and P-gp-mediated interac-
tions and linked to perpetrator PBPK models of carbamazepine [147],
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cimetidine [148], fluvoxamine [149], itraconazole [146], omeprazole
[150], rifampicin [146] and verapamil [151]. Additionally, quinidine
model performance as a perpetrator drug inhibiting CYP2D6 and P-gp
was assessed linking the quinidine model to models of dextromethor-
phan (developed in project II), digoxin [146], metoprolol (developed
in project I), mexiletine [150] and paroxetine (developed in project III).

3.2.9 Effect Model Evaluation

To evaluate the effects of DGIs (projects I–IV), DDIs and DDGIs
(projects IV–V), predicted plasma concentration-time profiles were
plotted against their corresponding observed data for populations
with variant CYP2D6 activity scores and/or drug co-administration
(effect) and compared to profiles of populations with normal CYP2D6

activity (corresponding to an activity score of 2 or extensive metab-
olizer phenotype) and/or administrations of the victim drug alone
(reference). Here, reference CYP2D6 activity was defined as an activ-
ity score of 2 or an extensive metabolizer phenotype for DGI, DDI
and DDGI studies where only CYP2D6 phenotypes were reported.
Moreover, predicted effect PK ratios (AUClast and Cmax ratios) were
calculated for DGI, DDI and DDGI scenarios according to equation 3.7
and GMFE values were calculated for PK ratios according to equation
3.2.

EffectPKratio =
PKEffect

PKReference
(3.7)

where EffectPKratio = PK ratio (Cmax or AUClast ratio) for the in-
vestigated effect (variant activity and/or drug co-administration),
PKEffect = PK value of the population with the investigated effect and
PKReference = PK value of the respective reference (normal CYP2D6

activity and/or victim drug alone) population.
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Abstract: The beta-blocker metoprolol (the sixth most commonly prescribed drug in the USA in
2017) is subject to considerable drug–gene interaction (DGI) effects caused by genetic variations
of the CYP2D6 gene. CYP2D6 poor metabolizers (5.7% of US population) show approximately
five-fold higher metoprolol exposure compared to CYP2D6 normal metabolizers. This study aimed
to develop a whole-body physiologically based pharmacokinetic (PBPK) model to predict CYP2D6
DGIs with metoprolol. The metoprolol (R)- and (S)-enantiomers as well as the active metabolite
α-hydroxymetoprolol were implemented as model compounds, employing data of 48 different clinical
studies (dosing range 5–200 mg). To mechanistically describe the effect of CYP2D6 polymorphisms,
two separate metabolic CYP2D6 pathways (α-hydroxylation and O-demethylation) were incorporated
for both metoprolol enantiomers. The good model performance is demonstrated in predicted plasma
concentration–time profiles compared to observed data, goodness-of-fit plots, and low geometric
mean fold errors of the predicted AUClast (1.27) and Cmax values (1.23) over all studies. For DGI
predictions, 18 out of 18 DGI AUClast ratios and 18 out of 18 DGI Cmax ratios were within two-fold of
the observed ratios. The newly developed and carefully validated model was applied to calculate
dose recommendations for CYP2D6 polymorphic patients and will be freely available in the Open
Systems Pharmacology repository.

Keywords: physiologically based pharmacokinetic (PBPK) modeling; metoprolol;
metoprolol enantiomers; α-hydroxymetoprolol; drug-gene interactions (DGIs); cytochrome P450
2D6 (CYP2D6); dose adaptation; model-informed precision dosing
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1. Introduction

Metoprolol is one of the most frequently administered beta-blockers in the U.S. with well over
50 million total prescriptions per year [1]. It is used in the treatment of hypertension, coronary artery
disease, heart failure, and arterial fibrillation [2]. Metoprolol is listed by the U.S. Food and Drug
Administration (FDA) as a moderately sensitive substrate for clinical drug-drug interaction (DDI)
studies as it is predominantly metabolized by cytochrome P450 2D6 (CYP2D6) [3].

CYP2D6 is an important drug metabolizing enzyme which is estimated to contribute to the
metabolism of 15–25% of all clinically used drugs [4,5]. The gene encoding CYP2D6 is subject to
different genetic variations, ranging from null alleles to several-fold amplification [5], resulting in
considerable phenotypical interindividual differences in CYP2D6-dependent drug metabolism [6].
The main purpose of the CYP2D6 activity score (AS) is to translate a patients’ CYP2D6 genotype to
the corresponding phenotype [7]. For this, CYP2D6 alleles are assigned a value indicating no (0),
decreased (0.25 or 0.5), normal function (1), or a copy number variation of a normal function allele (2).
However, as this assignment is based on semiquantitative observations, an activity score of 0.5 does not
necessarily imply a reduction of enzymatic activity by 50% [6,8]. Nevertheless, the activity score has
been shown to correlate well with metoprolol oral clearance in vivo [9]. Yet, considerable interindividual
variability in metoprolol plasma concentrations, caused by genetic components independent of the
CYP2D6 genotype, such as the rs5758550 SNP, has been observed [9,10].

Metoprolol is a BCS Class I drug, characterized by high permeability and high solubility. After its
rapid absorption, metoprolol undergoes extensive first-pass metabolism, reducing its bioavailability
to 40% in CYP2D6 normal metabolizers (NMs), whereas bioavailability approaches 100% in poor
metabolizers (PMs) [11]. Only 12% of metoprolol are bound to plasma proteins, primarily albumin [12].
O-demethylation, α-hydroxylation, and N-dealkylation by CYP2D6 and, to lesser extents, CYP2B6,
CYP2C9, and CYP3A4, are described as the pathways of metoprolol metabolism [13,14]. Of the major
metabolites, α-hydroxymetoprolol is of particular clinical interest, as it is pharmacologically active,
exhibiting 10% of the β1-blocking activity of metoprolol [15], and it is almost exclusively formed via
CYP2D6 [16]. Therefore, α-hydroxymetoprolol/metoprolol urinary metabolic ratios are employed for
CYP2D6 phenotyping [17]. Overall, CYP2D6 is estimated to be responsible for 80% of metoprolol
metabolism in normal metabolizers [14]. Depending on the CYP2D6 phenotype, only 1.5–12% of orally
administered metoprolol are excreted unchanged in urine [18].

Metoprolol is a chiral molecule, marketed as a racemic mixture of (R)- and (S)-metoprolol,
even though its enantiomers differ in their pharmacodynamic and pharmacokinetic properties.
The (S)-enantiomer has been shown to be 33-fold more potent in blocking β1-adrenoceptors in rats
than the (R)-enantiomer [19]. Moreover, in ultrarapid metabolizers (UMs) and normal metabolizers,
but not in poor metabolizers, the (S)-metoprolol area under the plasma concentration–time curve (AUC)
is significantly higher than the AUC of (R)-metoprolol, showing the enantiopreference of CYP2D6
towards the (R)-enantiomer [18,20]. The distribution of CYP2D6 genotypes varies substantially between
ethnicities. For instance, 5.7% of the US and 0.9% of Middle Eastern or Oceanian populations were found
to be poor metabolizers (AS = 0), whereas the prevalence of ultrarapid metabolizers (AS > 2) was 2.2% in
the US and 11.2% in Middle Eastern or Oceanian populations [21,22]. Interestingly, the reduced-function
CYP2D6*10 allele occurs more often in East Asian populations than the CYP2D6*1 allele (42% vs. 34%),
which results in an overall decreased CYP2D6 activity compared to other populations [23].

Previously published metoprolol PBPK models were either based on traditional CYP2D6
phenotypes [24,25] or did not take CYP2D6 DGIs into consideration [26,27]. Moreover, none of the
previously published metoprolol PBPK models incorporated the metoprolol (R)- and (S)-enantiomers
to describe the enantioselective metabolism via CYP2D6.

This study aimed to develop and qualify a novel, whole-body physiologically based
pharmacokinetic (PBPK) model of metoprolol to describe the effects of the different CYP2D6
genotypes and the resulting activity scores on the pharmacokinetics of metoprolol. The resulting
drug–gene interaction (DGI) PBPK model includes (R)- and (S)-metoprolol with their specific CYP2D6
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activity score-dependent metabolism, as well as the metabolite α-hydroxymetoprolol. In addition,
the established model was applied to generate metoprolol dose adaptations for patients with different
CYP2D6 activity scores and these adaptations were compared to a current guideline [28]. The model
was developed as a whole-body PBPK model to allow future model applications such as DDI modeling,
model scaling to special populations or PBPK-PD modeling. The final PBPK model will be publicly
available in the Open Systems Pharmacology (OSP) repository (www.open-systems-pharmacology.
org) [29] as a clinical research tool, and the Supplementary Materials to this article provide a detailed and
transparent evaluation of the model performance to be used as a reference manual and evaluation report.

2. Materials and Methods

2.1. Software

PBPK modeling, model parameter optimization (Monte Carlo algorithm), and local sensitivity
analysis were performed using PK-Sim® and MoBi® (Open Systems Pharmacology Suite 9.1).
Published clinical study data were digitized with GetData Graph Digitizer 2.26.0.20 (© S. Fedorov)
according to best practices [30]. Pharmacokinetic parameters (area under the plasma concentration-time
curve from the time of the first concentration measurement to the time of the last concentration
measurement (AUClast) and maximum plasma concentration (Cmax)) and model performance metrics
(mean relative deviation (MRD), geometric mean fold error (GMFE), DGI AUClast, and Cmax ratios)
were calculated using Python (version 3.7.4, Python Software Foundation, Wilmington, DE, USA)
in Visual Studio Code (version 1.49.1, Microsoft Corporation, Redmond, WA, USA). Plots were also
generated using Python in Visual Studio Code.

2.2. PBPK Model Building

The PBPK model building was initiated with an extensive literature search to gather information
on metoprolol absorption, distribution, metabolism, and excretion (ADME) processes, to obtain
physicochemical data and to collect clinical studies of the intravenous and oral administration of
metoprolol, in single- and multiple-dose regimens, performed in healthy individuals. Subsequently,
plasma concentration-time profiles from the published clinical studies were digitized and split into
a training dataset, for model building, and a test dataset, for model evaluation. Studies for model
training were selected to include different routes of administration (intravenous and oral), a wide
range of administered doses, single- and multiple-dose regimens, as well as stratification for CYP2D6
genotype or activity score. The training dataset was used for estimation of model input parameters
which could not be obtained from literature.

The metoprolol PBPK model was built in a stepwise approach. First, appropriate quantitative
structure-activity relationship (QSAR) methods to estimate the cellular permeabilities and partition
coefficients (e.g., Rodgers & Rowland, Berezhkovskiy) were selected, by fitting simulations of
intravenous metoprolol administration to their observed data. Subsequently, studies of orally
administered metoprolol in poor metabolizers were used to optimize parameters independent of
CYP2D6 metabolism. A single study in which metoprolol was administered as an oral solution
was used to optimize the intestinal permeability for both metoprolol enantiomers [31]. Finally,
(R)- and (S)-enantiomer CYP2D6 catalytic rate constant (kcat) values were optimized for studies
of the training dataset where the volunteers were either normal metabolizers or not phenotyped.
Racemic metoprolol plasma concentration–time profiles were modeled by the administration of
racemic doses of metoprolol (50% (R)- and 50% (S)-metoprolol and the use of a customized “observer”
within PK-Sim®, which adds up the simulated (R)- and (S)-metoprolol plasma concentrations to
directly display the racemic metoprolol plasma concentration–time profiles. Figure 1 provides an
overview of metoprolol metabolic pathways.
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Figure 1. Implemented metoprolol metabolic pathways. (R)- and (S)-metoprolol are both metabolized
via two different CYP2D6-dependent metabolic pathways: α-hydroxylation and O-demethylation,
as well as by an unspecific hepatic clearance process. The four α-hydroxymetoprolol diastereomers
(stereocenters are marked with asterisks) were modeled as one single compound due to lacking
published clinical data. CLhep: hepatic clearance, CYP2D6: cytochrome P450 2D6.

Supplementary Table S2.2.1 contains information concerning all studies included in the training
and test datasets. Supplementary Table S4.0.1 provides system-dependent parameters with technical
details on the implementation of CYP2D6.

2.3. DGI Modeling

The metoprolol clearance processes via CYP2D6 were implemented using Michaelis–Menten
kinetics according to Equation (1) [32]:

v =
vmax · S
Km + S

=
kcat · E · S
Km + S

(1)

where v = reaction velocity, vmax = maximum reaction velocity, S = free substrate concentration,
Km = Michaelis-Menten constant, kcat = catalytic rate constant, and E = enzyme concentration.

CYP2D6 Michaelis–Menten constant (Km) values were kept constant over the whole range of modeled
activity scores. CYP2D6 kcat values were optimized for each activity score separately. CYP2D6 poor
metabolizers (AS = 0) were assumed to show no CYP2D6 activity (0%), whereas populations with
two wildtype alleles (AS = 2) were used as reference (100%) to calculate relative kcat values according
to Equation (2).

kcat, rel, AS=i =
kcat, AS = i

kcat, AS = 2
× 100% (2)

where kcat, rel, AS=i = kcat for the investigated activity score relative to AS = 2, kcat, AS=i = kcat for the
investigated activity score, and kcat, AS = 2 = kcat for AS = 2.

The assignment of activity scores was carried out according to [33] as described in Table 1.
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Table 1. CYP2D6 activity score assignment according to [33].

Activity Score Projected Phenotype Examples of Relevant CYP2D6 Genotypes

0 PM *3/*3, *3/*4, *4/*4, *5/*6

0.25

IM

*4/*10, *5/*10
0.5 *4/*41, *5/*17, *10/*10

0.75 *17/*10, *41/*10
1 *1/*4, *2/*5, *17/*17, *17/*41

1.25

NM

*1/*10, *2/*10, *35/*10
1.5 *1/*41, *2/*17, *35/*41
2 *1/*1, *1/*2, *2/*35

2.25 *1x2/*17, *35x2/*41

>2.25 UM *1/*1x3, *1/*35x2, *2x2/*9

CYP2D6: Cytochrome P450 2D6, IM: intermediate metabolizer, NM: normal metabolizer, PM: poor metabolizer,
UM: ultrarapid metabolizer.

2.4. PBPK Model Evaluation

The performance of the metoprolol PBPK model regarding the prediction of racemic metoprolol,
its enantiomers and α-hydroxymetoprolol was evaluated using graphical and statistical methods. First,
predicted plasma concentration-time profiles were compared graphically with the profiles measured
in the respective clinical studies by plotting model population predictions (arithmetic mean ± SD)
together with observed data points. For this purpose, virtual populations of 100 individuals were
created based on the population characteristics stated in the respective publication. System-dependent
parameters, such as age, weight, height, organ weights, blood flow rates, tissue composition, etc.,
were varied by the implemented algorithm in PK-Sim. A comprehensive description of virtual
populations is given in Supplementary Section S1.1.3. Second, the plasma concentration values of all
studies predicted using the arithmetic mean of the population were plotted against their corresponding
observed values in goodness-of-fit plots.

In addition, model performance was evaluated by a comparison of predicted to observed AUC
values and Cmax values. All AUC values (predicted as well as observed) were calculated from the time
of the first concentration measurement to the time of the last concentration measurement (AUClast).

As quantitative measures of the model performance, the MRD of all predicted plasma
concentrations (Equation (3)) and the GMFE of all predicted AUClast and Cmax values (Equation (4))
were calculated.

MRD = 10x; x =

√ ∑k
i=1 (log 10ĉi − log10ci

)2

k
(3)

where ĉi = predicted plasma concentration that corresponds to the i-th observed concentration,
ci = i-the observed plasma concentration, and k = number of observed values.

GMFE = 10x; x =

∑m
i=1

∣∣∣∣log10

(
ρ̂i
ρi

)∣∣∣∣
m

(4)

where ρ̂i = predicted AUClast or Cmax value of study i, ρi = corresponding observed AUClast or Cmax

value of study i, and m = number of studies.
A detailed description of the local sensitivity analysis is provided in Supplementary Section S1.2.2.

2.5. DGI Modeling Evaluation

The DGI modeling performance was assessed by a comparison of predicted versus observed
plasma concentration–time profiles of racemic metoprolol, its enantiomers, and α-hydroxymetoprolol.
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Furthermore, predicted DGI AUClast ratios (Equation (5)) and DGI Cmax ratios (Equation (6))
were evaluated to assess, if the impact of the observed DGIs was well described by the model.

DGI AUClast ratio =
AUClast, DGI

AUClast, reference
(5)

where AUClast, DGI = AUClast of variant activity score or phenotype, while AUClast, reference = AUClast

of AS = 2 or normal metabolizer phenotype.

DGI Cmax ratio =
Cmax, DGI

Cmax, reference
(6)

where Cmax, DGI = Cmax of variant activity score or phenotype, Cmax, reference = Cmax of AS = 2 or normal
metabolizer phenotype. As a quantitative measure of the prediction accuracy, GMFE values of the
predicted DGI AUClast ratios and DGI Cmax ratios were calculated according to Equation (4).

3. Results

3.1. Metoprolol PBPK Model Development and Evaluation

A total of 48 clinical studies concerning the intravenous or oral administration of metoprolol
were used in the model development process, with doses ranging from 5 to 200 mg metoprolol in
single or multiple dose regimens. Of the 48 studies, nine included measurements of the metabolite
α-hydroxymetoprolol and 16 studies included measurements of the metoprolol enantiomers.

Metoprolol enantiomers were modeled as stand-alone compounds, to allow for the implementation
of enantioselective CYP2D6 metabolism. The four α-hydroxymetoprolol diastereomers were modeled
as one single compound, due to a lack of enantiomeric differentiation in the published clinical data.

For both metoprolol enantiomers, enantioselective metabolism via CYP2D6, an unspecific hepatic
clearance process, as well as passive glomerular filtration were implemented. Each of the metoprolol
enantiomers can be metabolized via CYP2D6 to produce eitherα-hydroxymetoprolol or to generate other
metabolites such as O-demethylmetoprolol which were not included as separately modeled compounds.
The metabolite α-hydroxymetoprolol is eliminated via an unspecific hepatic clearance process.
Figure 1 depicts a schematic overview of the implemented metabolic pathways. The drug-dependent
model input parameters of the metoprolol enantiomers are presented in Table 2. The drug-dependent
parameters of the α-hydroxymetoprolol model are provided in Supplementary Table S2.4.3.

Overall, the PBPK model accurately described and predicted the plasma concentration–time
profiles of metoprolol andα-hydroxymetoprolol after intravenous and oral administration, as illustrated
in Figure 2. This figure presents population predictions of selected clinical studies from the test and
training datasets. Plots documenting the model performance for all 48 clinical studies included in
this analysis are provided in Supplementary Sections S2.5 and S3.2. All simulated plasma profiles
are in good agreement with the observed metoprolol racemate, (R)-, and (S)-metoprolol as well as
α-hydroxymetoprolol plasma concentrations.
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Table 2. (R)- and (S)-metoprolol drug-dependent model parameters.

Parameter Unit
(R)-Metoprolol (S)-Metoprolol

Description
Value Source Literature Reference Value Source Literature Reference

MW g/mol 267.36 Lit. 267.36 [34] 267.36 Lit. 267.36 [34] Molecular weight
pKa (base) - 9.7 Lit. 9.70 [34] 9.7 Lit. 9.70 [34] Acid dissociation constant

Solubility tart. (pH 7.4) g/mL 1.00 Lit. 1.00 [35] 1.00 Lit. 1.00 [35] Solubility
Solubility succ. (pH 5.5) g/mL 0.16 Lit. 0.16 [36] 0.16 Lit. 0.16 [36] Solubility

logP - 1.77 Lit. 1.77 [37] 1.77 Lit. 1.77 [37] Lipophilicity
fu % 88 Lit. 88 [38] 88 Lit. 88 [38] Fraction unbound

CYP2D6 Km → αHM µmol/L 10.08 Lit. 10.08 ‡ [39] 10.75 Lit. 10.75 ‡ [39] Michaelis-Menten constant
CYP2D6 kcat → αHM 1/min 6.02 Optim. † 7.50 [39] 6.55 Optim. † 8.27 [39] Catalytic rate constant
CYP2D6 Km → ODM µmol/L 8.82 Lit. 8.82 ‡ [39] 12.43 Lit. 12.43 ‡ [39] Michaelis-Menten constant
CYP2D6 kcat → ODM 1/min 9.87 Optim. † 12.30 [39] 8.21 Optim. † 10.37 [39] Catalytic rate constant

CLhep., unsp. 1/min 0.08 Optim. - - 0.09 Optim. - - Unspecific hepatic clearance
GFR fraction - 1.00 Asm. - - 1.00 Asm. - - Filtered drug in the urine

EHC continuous fraction - 1.00 Asm. - - 1.00 Asm. - - Bile fraction cont. released
Intestinal permeability cm/min 4.14 × 10−5 Optim. 1.12 × 10−5 Calc. [40] 4.14 × 10−5 Optim. 1.12 × 10−5 Calc. [40] Transcellular intestinal perm.
Cellular permeability cm/min 4.64 × 10−3 Calc. PK-Sim [32] 4.64 × 10−3 Calc. PK-Sim [32] Perm. into the cellular space
Partition coefficients - Diverse Calc. R&R [41,42] Diverse Calc. R&R [41,42] Cell to plasma partitioning

NR Weibull time parameter min 12.31 Optim. - [43,44] 12.31 Optim. - [43,44] Dissolution time (50%)
NR Weibull shape parameter - 0.72 Optim. - [43,44] 0.72 Optim. - [43,44] Dissolution profile shape
CR Weibull time parameter min 331.92 Optim. - [45] 331.92 Optim. - [45] Dissolution time (50%)

CR Weibull shape parameter - 1.53 Optim. - [45] 1.53 Optim. - [45] Dissolution profile shape

-: not available, †: CYP2D6 kcat values were optimized in a fixed ratio (kcat → αHM:kcat → ODM) equivalent to the ratio of reported kcat values [39], ‡: in vitro values corrected
for binding in the assay, using estimated fraction unbound to microsomal protein (fu, mic, estimated = 84%) [46], αHM: α-hydroxymetoprolol, asm.: assumed, calc.: calculated, cont.:
continuously, CR: controlled release, CYP2D6: cytochrome P450 2D6, EHC: enterohepatic circulation, GFR: glomerular filtration rate, hep.: hepatic, lit.: literature, NR: normal release, ODM:
O-demethylmetoprolol, optim.: optimized, perm. permeability, PK-Sim: PK-Sim standard calculation method, R&R: Rodgers and Rowland calculation method, succ.: metoprolol succinate,
tart.: metoprolol tartrate, unsp.: unspecific.
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Figure 2. Metoprolol plasma concentrations. Model predictions of metoprolol and its metabolite
α-hydroxymetoprolol plasma concentration-time profiles of selected (a–c) intravenous and
(d–l) oral studies of the training and test datasets, compared to observed data [43–45,47–50].
Population predictions (n = 100) are shown as lines with ribbons (arithmetic mean ± standard deviation
(SD)), symbols represent the corresponding observed data ± SD. Detailed information on all clinical
studies is listed in Supplementary Table S2.2.1. iv: intravenous, po: oral.

Goodness-of-fit plots showing plasma concentrations, AUClast and Cmax values, respectively,
are presented in Figure 3. Predicted plasma concentrations were predominantly (88.3%) within two-fold
of the corresponding observed concentrations. Furthermore, a total of 72 out of 75 of the predicted
AUClast values (several studies included measurements of multiple analytes) and 64 out of 66 of the
predicted Cmax values were within the two-fold acceptance criterion. The metoprolol model GMFE
values were 1.27 (range 1.01–2.94) for the predicted AUClast values, and 1.23 (range 1.00–2.97) for the
predicted Cmax values. The MRD values and predicted to observed AUClast and Cmax ratios for all
48 clinical studies and all measured analytes are provided in Supplementary Tables S2.6.4–S2.6.7.
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Figure 3. Goodness-of-fit plots of the final metoprolol model. Predicted versus observed (a,b) plasma
concentrations, (c,d) AUClast values and (e,f) Cmax values for the training (left column) and test
(right column) datasets. The solid black line indicates the line of identity, solid grey lines show two-fold
deviation, dashed grey lines indicate 1.25-fold deviation. Detailed information on all clinical studies is
listed in Supplementary Table S2.2.1. AUClast: area under the plasma concentration-time curve from
the time of the first concentration measurement to the time of the last concentration measurement,
Cmax: maximum plasma concentration, vs: versus.
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The local sensitivity analysis of a simulation of 100 mg metoprolol tartrate administered orally
(standard dose) revealed that the model predictions were most sensitive to the values of (R)- and
(S)-metoprolol fraction unbound (fu), which were gathered from literature and used unmodified as
model input parameters. Setting a sensitivity threshold of 0.5 (100% parameter value change = 50%
change of predicted AUC), the only other parameter value that the model predictions were sensitive
to is the CYP2D6 (R)-metoprolol → O-demethylmetoprolol catalytic rate constant (optimized).
A comprehensive visual and quantitative presentation of the sensitivity analysis results can be
found in Supplementary Section S2.6.7.

3.2. Metoprolol CYP2D6 DGI Model Development and Evaluation

The model training dataset included 11 plasma concentration-time profiles from studies that
reported the CYP2D6 activity scores of their study subjects, ranging from 0 (poor metabolizer)
to 3 (ultrarapid metabolizer). These studies were utilized to optimize kcat, rel values for the different
CYP2D6 activity scores. The identified values for both CYP2D6 pathways and both metoprolol
enantiomers are given in Table 3.

Table 3. Optimized kcat, rel values for the different modeled CYP2D6 activity scores.

Activity Score
(R)-Metoprolol (S)-Metoprolol

kcat, rel
kcat → αHM kcat → ODM kcat → αHM kcat → ODM

0 0.00 1/min 0.00 1/min 0.00 1/min 0.00 1/min 0%
0.5 1.65 1/min 2.70 1/min 1.82 1/min 2.27 1/min 19%

1.25 5.73 1/min 9.40 1/min 6.30 1/min 7.89 1/min 64%
1.5 6.38 1/min 10.48 1/min 7.03 1/min 8.81 1/min 72%
2 10.17 1/min 16.69 1/min 11.19 1/min 14.02 1/min 100%
3 19.03 1/min 31.22 1/min 20.93 1/min 26.23 1/min 213%

αHM: α-hydroxymetoprolol, kcat: catalytic rate constant, kcat, rel: catalytic rate constant relative to activity score = 2,
ODM: O-demethylmetoprolol.

Of all 48 analyzed clinical profiles, 15 metoprolol plasma concentration–time profiles belong to
studies that stratified their subjects by CYP2D6 activity score or phenotype. These studies either provided
the activity score for the investigated population (three studies), the CYP2D6 phenotype (two studies),
or comprehensive information on the CYP2D6 genotype of all individuals (10 studies). To simulate
the latter studies, mean activity scores were calculated according to current recommendations [33].
The good performance of the final metoprolol DGI model is demonstrated in Figure 4, showing predicted
metoprolol plasma concentration-time profiles of populations with different CYP2D6 activity scores,
compared with their corresponding observed data. Plots documenting the model performance for all
15 metoprolol DGI profiles found in the literature are provided in Supplementary Section S3.2.
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Figure 4. Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene interaction.
Model predictions of (a–c) (R)-metoprolol and (S)-metoprolol as well as (d–f) metoprolol and
α hydroxymetoprolol plasma concentration-time profiles of selected metoprolol CYP2D6 DGI studies,
compared to observed data [18,51]. Population predictions (n = 100) are shown as lines with ribbons
(arithmetic mean ± standard deviation (SD)), symbols represent the corresponding observed data ± SD.
Detailed information on all clinical studies is listed in Supplementary Table S2.2.1. AS: activity score,
po: oral.

Predicted DGI AUClast and Cmax ratios were in very good agreement with the observed DGI
ratios, demonstrating that the impact of the different CYP2D6 activity scores on the pharmacokinetics
of racemic metoprolol, (R)-, and (S)-metoprolol and the metabolite α-hydroxymetoprolol was well
described by the model. Specifically, 18 out of 18 AUClast and 17 out of 18 Cmax ratios were within the
prediction success limits suggested by Guest et al. adopted for DGI evaluations [52], as visualized in
Figure 5. Predicted DGI AUClast ratios show an overall GMFE of 1.21 (range 1.00–1.69), while predicted
DGI Cmax ratios showed an overall GMFE of 1.21 (range 1.00–1.56). The predicted and observed ratios
and corresponding predicted to observed DGI AUClast and Cmax ratios for all studies are provided in
Supplementary Table S3.3.2.

3.3. Metoprolol Dose Adaptation for CYP2D6 DGIs

The developed metoprolol CYP2D6 DGI model was applied to calculate dose adaptations for
individuals with different CYP2D6 activity scores. Simulated doses for “variant” activity scores were
adapted in a stepwise approach until the AUC during steady-state (AUCss) matched the AUCss (±10%)
of a 100 mg twice daily metoprolol regimen in AS = 2 (wildtype) subjects. Predictions of plasma
concentration-time profiles for individuals with different activity scores, all administered with 100 mg
of metoprolol tartrate twice daily, are shown in Figure 6a. Simulations for different activity scores after
dose adaptation are shown in Figure 6b. The resulting model-based dose adaptations compared to the
Dutch Pharmacogenetics Working Group (DPWG) guideline recommendations for metoprolol [28] are
shown in Figure 6c. The corresponding AUCss values before (Figure 6d) and after (Figure 6e) dose
adaptation are visualized in the lower panel.
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Figure 5. Predicted versus observed metoprolol DGI ratios. Comparison of predicted versus observed
(a) DGI AUClast ratios and (b) DGI Cmax ratios for all analyzed metoprolol CYP2D6 DGI studies.
The straight black line indicates the line of identity, curved black lines show prediction success limits
proposed by Guest et al. including 1.25-fold variability [52]. Solid grey lines indicate two-fold deviation,
dashed grey lines show 1.25-fold deviation. Detailed information on all clinical studies as well as the
plotted values are listed in Tables S2.2.1 and S3.3.2 of the Supplementary Materials. AUClast: area under
the plasma concentration-time curve from the time of the first concentration measurement to the time of
the last concentration measurement, Cmax: maximum plasma concentration, DGI: drug-gene interaction,
vs: versus.

 

5 

 

Figure 6 
Figure 6. Model-based CYP2D6 DGI dose recommendations. (a) Simulations of metoprolol exposure in
individuals with different CYP2D6 activity scores, all administered with 100 mg metoprolol twice daily.
(b) Simulations of metoprolol exposure in individuals with different CYP2D6 activity scores, administered
with the model-based dose recommendations. Doses were adjusted to match the AUC168–180 h of 100 mg
metoprolol twice daily in AS = 2 (wt) individuals. (c) Model-based dose adjustments, compared to
the DPWG guideline recommendations for metoprolol [28]. (d) Metoprolol AUC168–180 h values for
administration of 100 mg twice daily to individuals with different CYP2D6 activity scores. (e) Metoprolol
AUCss values for administration of the model-based dose recommendations to individuals with different
CYP2D6 activity scores. The dotted horizontal line marks the wt AUCss. *: value interpolated due
to a lack of clinical studies with AS = 1, ‡: dose titration or change of medication recommended, AS:
activity score, AUCss: area under the plasma concentration-time curve during steady state (168–180 h),
bid: twice daily, DPWG: Dutch Pharmacogenetics Working Group, IM: intermediate metabolizer, NM:
normal metabolizer, PM: poor metabolizer, po: oral, UM: ultrarapid metabolizer, wt: wild type.
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4. Discussion

In this study, a whole-body PBPK model of metoprolol, including separate representations
of its (R)- and (S)-enantiomers and the metabolite α-hydroxymetoprolol, was built and carefully
evaluated to dynamically predict drug plasma concentrations over a wide dosing range (5–200 mg).
Moreover, the model was extended to describe the impact of different CYP2D6 activity scores on the
pharmacokinetics of racemic metoprolol, (R)-metoprolol, (S)-metoprolol, and α-hydroxymetoprolol.

Previously published metoprolol PBPK models were mostly developed for different applications.
Indeed, two models investigated the effects of pregnancy [24,27] and one model analyzed the effects of
investigational formulations [26]. A fourth published minimal PBPK-PD model of metoprolol was
built to describe the impact of CYP2D6 DGIs on metoprolol plasma concentration profiles and heart
rate. The DGI was implemented for three “traditional” phenotypes (poor, normal and ultrarapid
metabolizers). This model, however, did not further differentiate the CYP2D6 activity between AS = 0
and AS = 2 [25]. Our model is the first to integrate current knowledge on CYP2D6 activity to accurately
predict the impact of CYP2D6 DGIs over a wide range of activity scores. Moreover, this model is
the first PBPK model of metoprolol to include metoprolol enantiomers (and enantiospecific CYP2D6
metabolism), as well as the active metabolite α-hydroxymetoprolol.

The limitations of the presented model are related to the incompleteness of published
knowledge and data. Our model focused on CYP2D6 activity scores as opposed to CYP2D6 genotypes.
Grouping genotypes by activity scores was necessary, due to the limited amount of data available
on the enzyme kinetics of the >100 different CYP2D6 isoforms [53]. Consequently, the model is not
able to further differentiate between different genotypes within the same activity score group (e.g.,
between *1/*1, *1/*2, and *2/*2, which all belong to the AS = 2 group) [7]. The primary aim of this
model, namely the characterization, description, and prediction of metoprolol exposure in individuals
with CYP2D6 polymorphisms to enable model-informed precision dosing, was met [54]. As more
data (in vitro and clinical) regarding the CYP2D6 activity of the different individual genotypes emerge,
the model can be easily extended for an even finer graduation of the CYP2D6 activity, to differentiate
between genotypes within the same activity score group.

In addition, although the different CYP2D6 metabolic reactions (O-demethylation and
α-hydroxylation of both (R)-metoprolol and (S)-metoprolol) were successfully implemented using
Km values from in vitro literature [39], these Km values were assumed to be the same across all
CYP2D6 activity scores. Using metoprolol as the substrate, only three genotype-specific in vitro Km

values (*1, *2 and *17 isoforms), could be obtained from literature (metoprolol α-hydroxylation and
O-demethylation), showing a slightly higher Km for the *17 allele (AS = 0.5) [8]. Other studies reported
no clear trend of Km values using a wide range of CYP2D6 substrates to investigate the enzyme kinetics
of the reduced-function alleles *10 and *17 in comparison to the wildtype *1 allele [55]. Hence, due to
an insufficient amount of data, the same Km values were used in the model across all activity scores.
The final optimized kcat, rel values increased with increasing activity scores, reflecting an apparent
correlation of metoprolol oral clearance with the CYP2D6 activity score [9]. Plasma concentration–time
profiles and DGI AUClast and Cmax ratios of all analyzed clinical studies were well described by the
final model.

The enzymes CYP2B6, CYP2C9 and CYP3A4 have also been found to metabolize metoprolol
in vitro [14]. However, the fractions metabolized by these CYP enzymes in vivo, or which of those
enzymes is the second most relevant enzyme for metoprolol metabolism besides CYP2D6, is not
known (clinical DDI studies with fluconazole, ketoconazole or other strong CYP3A4 inhibitors
could not be found in the literature). In two of the previously published metoprolol PBPK
models, a CYP3A4-dependent clearance process was implemented [24,25]. Yet, the formation of
O-demethylmetoprolol and α-hydroxymetoprolol in human liver microsomes were less impacted
by inhibition of CYP3A4 than by inhibition of CYP2C9 or CYP2B6 [14]. However, as CYP2D6 is
estimated to account for >70% of metoprolol oral clearance [43], the impact of variations in CYP2B6,
CYP2C9 or CYP3A4 enzymatic activity on metoprolol PK was considered negligible. Moreover,
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model input parameters such as CYP2B6, CYP2C9, or CYP3A4 Km and kcat, that would be necessary for
a mechanistic implementation of the respective metabolic pathways, are not available in the literature.
Consequently, the authors decided to incorporate an unspecific hepatic clearance process in addition
to the CYP2D6-dependent pathways.

The final metoprolol PBPK model was applied to generate dose adaptations for populations with
different CYP2D6 activity scores. While it is generally acknowledged that metoprolol exposure is
mainly determined by the CYP2D6 activity score [56,57], there is no consensus in the literature on
whether increased metoprolol plasma concentrations in poor and intermediate metabolizers result in a
higher incidence of adverse drug reactions [58–61].

The model-based dose recommendations calculated for CYP2D6 DGIs were well in line with the
recommendations provided by the DPWG [28], except for the poor metabolizers, where this analysis
suggests even lower doses than the Dutch guidance document. Adapting a patients’ metoprolol dose
based on the CYP2D6 activity score will decrease the occurrence of adverse drug reactions or therapy
failure [56,59] and consequently help to provide more safe and efficient personalized dosing regimens.
Future possible applications of the newly developed PBPK model include the prediction of CYP2D6
DDI effects on metoprolol pharmacokinetics or scaling of the metoprolol model to special populations
such as pediatric patients, geriatric patients, or patients with renal or hepatic impairment.

5. Conclusions

A whole-body parent-metabolite PBPK model of metoprolol and its enantiomers was developed
to predict racemic metoprolol, (R)-metoprolol, (S)-metoprolol, and α-hydroxymetoprolol plasma
concentration–time profiles. The model focused on CYP2D6 activity score-dependent metabolism
and has been utilized to calculate dose adaptations in populations with various CYP2D6 activities
and genotypes. The Supplementary Materials of this manuscript provide an in-depth documentation
and evaluation of the final model and the PBPK model file will be made publicly available in the
OSP repository. The model can be applied to generate dose adaption for patients with different
CYP2D6 activity scores, to complement and refine the recommendations by existing guidelines and
facilitate personalized medicine. Due to the mechanistic implementation of the human physiology
and important pharmacokinetic pathways, the model allows for knowledge-based scaling to special
populations and can serve as the basis for future investigations of CYP2D6 DDI scenarios.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/12/1200/s1,
Table S2.2.1: Metoprolol study table, Table S2.3.2: (R)-and(S)-metoprolol drug-dependent parameters,
Table S2.4.3: α-hydroxymetoprolol drug-dependent parameters, Figure S2.5.1: Metoprolol plasma concentrations.
Model predictions of metoprolol and its metabolite α-hydroxymetoprolol plasma concentration-time profiles of
intravenous studies of the training and test datasets, compared to observed data (semilogarithmic representation),
Figure S2.5.2: Metoprolol plasma concentrations. Model predictions of metoprolol and its metabolite
α-hydroxymetoprolol plasma concentration-time profiles of oral studies of the training and test datasets,
compared to observed data (semilogarithmic representation), Figure S2.5.3: Metoprolol plasma concentrations,
Figure S2.5.4: Metoprolol enantiomers plasma concentrations. Model predictions of (R)-metoprolol
and (S)-metoprolol plasma concentration-time profiles of oral studies of the trainingand test datasets,
compared to observed data (semilogarithmic representation), Figure S2.5.5: Metoprolol plasma concentrations,
Figure S2.5.6: Metoprolol plasma concentrations, Figure S2.5.7: Metoprolol plasma concentrations, Figure S2.5.8:
Metoprolol enantiomers plasma concentrations, Figure S2.6.9: Plasma concentrations goodness-of-fit plots of
the final metoprolol model, Figure S2.6.10: Plasmaconcentrationsgoodness-of-fitplotsofthefinalmetoprololmodel,
Table S2.6.4: Mean relative deviation of plasma concentration predictions (metoprolol, αhydroxymetoprolol),
Table S2.6.5: Mean relative deviation of plasma concentration predictions ((R)-metoprolol, (S)-metoprolol),
Figure S2.6.11: AUClast values goodness-of-fit plots for the final metoprolol model, Figure S2.6.12:
AUClast goodness-of-fit plots for the final metoprolol model, Figure S2.6.13: Cmax values goodness-of-fit
plots for the final metoprolol model, Figure S2.6.14: AUClast goodness-of-fit plots for the final metoprolol
model, Table S2.6.6: Predicted and observed AUClast and Cmax values (metoprolol, α-hydroxymetoprolol),
Table S2.6.7: Predictedandobserved AUClast and Cmax values ((R)-metoprolol,(S)-metoprolol), Figure S2.6.15:
Sensitivity analysis of the (R)-metoprolol (upper panel) and (S)-metoprolol (lower panel) model, Table S3.1.1:
kcat, rel values for the different CYP2D6 activity scores, Figure S3.2.1: Metoprolol plasma concentrations of the
modeled CYP2D6 drug-gene interaction, Figure S3.2.2: Metoprolol plasma concentrations of the modeled CYP2D6
drug-gene interaction, Figure S3.2.3: Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene
interaction, Figure S3.2.4: Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene interaction,
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Figure S3.2.5: Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene interaction, Figure S3.2.6:
Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene interaction., Figure S3.2.7: Metoprolol plasma
concentrations of the modeled CYP2D6 drug-gene interaction, Figure S3.2.8: Metoprolol plasma concentrations of
the modeled CYP2D6 drug-gene interaction, Figure S3.2.9: Metoprolol plasma concentrations of the modeled
CYP2D6 drug-gene interaction, Figure S3.2.10: Metoprolol plasma concentrations of the modeled CYP2D6
drug-gene interaction, Figure S3.2.11: Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene
interaction, Figure S3.2.12: Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene interaction,
Figure S3.3.13: Predicted versus observed metoprolol DGI ratios. Comparison of predicted versus observed
AUClast ratios (a) and Cmax ratios (b) for metoprolol CYP2D6 DGI-studies, Table S3.3.2: Geometric mean fold
error of predicted metoprolol DGI AUClast andCmax ratios, Table S4.0.1: System-dependent parameters.
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Abstract
This	study	provides	a	whole-	body	physiologically-	based	pharmacokinetic	(PBPK)	
model	 of	 dextromethorphan	 and	 its	 metabolites	 dextrorphan	 and	 dextrorphan	
O-	glucuronide	 for	 predicting	 the	 effects	 of	 cytochrome	 P450	 2D6	 (CYP2D6)	
drug-	gene	 interactions	 (DGIs)	 on	 dextromethorphan	 pharmacokinetics	 (PK).	
Moreover,	 the	effect	of	 interindividual	variability	(IIV)	within	CYP2D6	activity	
score	groups	on	the	PK	of	dextromethorphan	and	its	metabolites	was	investigated.	
A	parent-	metabolite-	metabolite	PBPK	model	of	dextromethorphan,	dextrorphan,	
and	 dextrorphan	 O-	glucuronide	 was	 developed	 in	 PK-	Sim	 and	 MoBi.	 Drug-	
dependent	 parameters	 were	 obtained	 from	 the	 literature	 or	 optimized.	 Plasma	
concentration-	time	profiles	of	all	 three	analytes	were	gathered	 from	published	
studies	and	used	for	model	development	and	model	evaluation.	The	model	was	
evaluated	comparing	simulated	plasma	concentration-	time	profiles,	area	under	
the	concentration-	time	curve	from	the	time	of	the	first	measurement	to	the	time	
of	the	last	measurement	(AUClast)	and	maximum	concentration	(Cmax)	values	to	
observed	study	data.	The	final	PBPK	model	accurately	describes	28	population	
plasma	 concentration-	time	 profiles	 and	 plasma	 concentration-	time	 profiles	 of	
72	individuals	from	four	cocktail	studies.	Moreover,	the	model	predicts	CYP2D6	
DGI	scenarios	with	six	of	seven	DGI	AUClast	and	seven	of	seven	DGI	Cmax	ratios	
within	the	acceptance	criteria.	The	high	IIV	in	plasma	concentrations	was	ana-
lyzed	by	characterizing	 the	distribution	of	 individually	optimized	CYP2D6	kcat	
values	stratified	by	activity	score	group.	Population	simulations	with	sampling	
from	the	resulting	distributions	with	calculated	log-	normal	dispersion	and	mean	
parameters	could	explain	a	large	extent	of	the	observed	IIV.	The	model	is	publicly	
available	alongside	comprehensive	documentation	of	model	building	and	model	
evaluation.
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INTRODUCTION

Dextromethorphan	 is	 a	 widely	 used	 over-	the-	counter	
cough	 suppressant	 and	 a	 common	 ingredient	 of	 cold	
medicines	 marketed	 toward	 children	 and	 adults.1	 The	
mechanisms	of	action	of	dextromethorphan	and	its	major	
metabolite	 dextrorphan	 are	 multifarious	 and	 include	
antagonism	 of	 σ1-		 and	 N-	methyl-	D-	aspartate	 (NMDA)	
receptors	as	well	as	inhibition	of	serotonin	reuptake	trans-
porters	(SERTs)	and	norepinephrine	reuptake	transport-
ers	(NERTs).2	Dextrorphan	has	a	higher	affinity	to	NMDA	
receptors	than	dextromethorphan	and	is	considered	to	be	
mainly	responsible	for	the	psychoactive	and	euphoric	ef-
fects	when	dextromethorphan	 is	 ingested	 in	suprathera-
peutic	doses	as	a	recreational	drug.3

Dextromethorphan	is	typically	administered	as	its	hy-
drobromide	salt,	which	is	considered	a	Biopharmaceutics	
Drug	 Disposition	 Classification	 System	 (BDDCS)	 class	
I	 drug	 with	 high	 solubility	 and	 permeability.4	 After	 oral	
administration,	 dextromethorphan	 is	 rapidly	 absorbed.	
Next,	 dextromethorphan	 undergoes	 an	 extensive	 first-	
pass	 metabolism,	 predominately	 mediated	 by	 CYP2D6,	
reducing	 the	 bioavailability	 to	 1%–	2%	 in	 CYP2D6	 ex-
tensive	 metabolizers	 (EMs)	 and	 80%	 in	 CYP2D6	 poor	
metabolizers	 (PMs).5	 Unbound	 dextromethorphan	 ac-
counts	 for	 35%	 of	 the	 total	 drug	 plasma	 concentration.2	

Dextromethorphan-	O-	demethylation	via	CYP2D6	leads	to	
the	formation	of	the	major	active	metabolite	dextrorphan.	
Dextrorphan	 subsequently	 undergoes	 rapid	 glucuroni-
dation	 via	 uridine	 diphosphate-	glucuronosyltransferases	
2B	 (UGT2Bs),	 namely	 UGT2B15,	 or	 N-	demethylation	
via	 CYP3A4.6	 Alternatively,	 dextromethorphan	 is		
N-	demethylated	 by	 CYP3A4,	 which	 was	 found	 to	 be	
the	 main	 pathway	 of	 dextromethorphan	 metabolism	 in	
CYP2D6	 PMs.2	 Depending	 on	 the	 CYP2D6	 phenotype,	
up	to	50%	of	orally	administered	dextromethorphan	is	ex-
creted	unchanged	 in	urine.5,7	Because	 the	CYP2D6	 gene	
is	 prone	 to	 genetic	 alterations,	 dextromethorphan	 phar-
macokinetics	 (PK)	 is	 subject	 to	 considerable	 drug-	gene	
interaction	(DGI)	effects.	For	instance,	the	dextrometho-
rphan	 area	 under	 the	 plasma	 concentration-	time	 curve	
(AUC)	in	CYP2D6	PMs	was	reported	to	be	26-	fold	higher	
than	that	of	CYP2D6	EMs.8	Hence,	the	US	Food	and	Drug	
Administration	 (FDA)	 lists	 dextromethorphan	 as	 a	 sen-
sitive	substrate	of	CYP2D6	and	recommends	its	usage	in	
clinical	 drug-	drug	 interaction	 studies	 and	 dextrometho-
rphan	O-	demethylation	as	an	in	vitro	marker	reaction	for	
CYP2D6	 metabolism.9	 Furthermore,	 the	 dextrometho-
rphan/dextrorphan	 metabolic	 ratio	 is	 frequently	 used	 to	
determine	the	CYP2D6	phenotype	in	vivo.10,11	Hence,	dex-
tromethorphan	is	frequently	included	in	different	pheno-
typing	cocktails.12,13

Ministry	of	Education	and	Research	
(BMBF,	Horizon	2020	INSPIRATION	
grant	643271),	under	the	frame	of	
ERACoSysMed

StudyHighlights
WHATISTHECURRENTKNOWLEDGEONTHETOPIC?
Dextromethorphan	 is	 a	 substrate	 of	 cytochrome	 P450	 2D6	 (CYP2D6)	 and	 is	
consequently	subject	 to	considerable	drug-	gene	 interaction	(DGI)	effects.	High	
interindividual	variability	 (IIV)	 in	dextromethorphan	plasma	concentrations	 is	
apparent,	even	within	activity	score	groups.
WHATQUESTIONDIDTHISSTUDYADDRESS?
The	objective	of	this	study	was	to	develop	a	physiologically-	based	pharmacoki-
netic	(PBPK)	model	that	can	describe	and	predict	the	effect	of	CYP2D6	DGIs	on	
the	pharmacokinetics	(PK)	of	dextromethorphan	and	its	metabolites	dextrorphan	
and	dextrorphan	O-	glucuronide.
WHATDOESTHISSTUDYADDTOOURKNOWLEDGE?
This	study	presents	a	PBPK	model	of	dextromethorphan	and	its	major	metabo-
lites	that	integrates	current	knowledge	on	relevant	PK	processes	and	DGIs.	The	
model	can	accurately	describe	and	predict	the	impact	of	CYP2D6	DGIs	on	the	PK	
of	the	modeled	analytes	and	was	applied	to	explain	a	large	extent	of	observed	IIV	
in	dextromethorphan	plasma	concentrations.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT,
AND/ORTHERAPEUTICS?
The	developed	PBPK	model	serves	as	a	prototype	for	the	development	of	PBPK	
models	for	other	CYP2D6	substrates.	Modeling	provides	valuable	insights	regard-
ing	the	extent	of	observed	overall	IIV	in	plasma	concentrations	of	CYP2D6	sub-
strates	as	well	as	the	observed	IIV	within	activity	score	groups.
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To	 date,	 more	 than	 140	 alleles	 of	 the	 CYP2D6	 gene	
are	known,	some	of	which	have	only	been	discovered	in	
recent	 years.14	 With	 well	 over	 10,000	 potential	 CYP2D6	
diplotypes,	 investigating	 the	 effect	 of	 every	 genotype	 on	
a	drug’s	PK	is	an	unfeasible	task	for	clinical	researchers.15	
Consequently,	 an	 activity	 score	 system	 is	 in	 place	 to	 fa-
cilitate	 the	 process	 of	 translating	 the	 CYP2D6	 diplotype	
into	 a	 patient’s	 phenotype.15,16	 This	 process	 has	 since	
been	 harmonized	 between	 pharmacogenomics	 labo-
ratories	 and	 between	 clinical	 guidelines	 of	 the	 Dutch	
Pharmacogenomics	 Working	 Group	 (DPWG)	 and	 the	
Clinical	 Pharmacogenetics	 Implementation	 Consortium	
(CPIC).17	Here,	a	patients’	activity	score	is	defined	as	the	
sum	of	activity	values	assigned	to	the	patients’	alleles	with	
values	encoding	 for	no	 (0),	decreased	 (0.25–	0.5),	or	nor-
mal	function	(1),	or	a	copy	number	variation	of	a	normal	
function	allele	(>2).15	The	activity	score	system	is	an	emi-
nently	useful	concept	for	grouping	study	subjects	based	on	
their	genotypes.	However,	a	large	interindividual	variabil-
ity	(IIV)	in	the	PK	of	CYP2D6	substrates	in	subjects	with	
an	 identical	 activity	 score	 remains	 largely	 unexplained	
and	requires	further	research.16

The	 objectives	 of	 this	 study	 were	 (1)	 to	 develop	 and	
evaluate	 a	 physiologically-	based	 pharmacokinetic	 (PBPK)	
parent-	metabolite	DGI	model	of	dextromethorphan,	dextro-
rphan,	and	dextrorphan	O-	glucuronide,	(2)	to	describe	the	
effects	of	different	CYP2D6	activity	scores	on	the	PK	of	dex-
tromethorphan	by	implementing	specific	CYP2D6	activity	
score-	dependent	metabolic	processes,	and	(3)	to	apply	the	
developed	model	to	explain	the	observed	IIV	in	individual	
subjects	sharing	the	same	CYP2D6	activity	score.	The	final	
PBPK	model	will	be	publicly	available	in	the	Open	Systems	
Pharmacology	 (OSP)	 repository	 (www.open-	syste	ms-	
pharm	acolo	gy.org)18	 as	 a	 clinical	 research	 tool.	 Moreover,	
the	 Supplementary	 document	 (Supplementary	 S1)	 to	 this	
article	provides	an	in-	depth	evaluation	of	the	model	perfor-
mance	and	can	be	used	as	a	model	reference	manual.

METHODS

Software

The	dextromethorphan	PBPK	model	was	developed	using	
PK-	Sim	and	MoBi	(Open	Systems	Pharmacology	Suite	9.1,	
www.open-	syste	ms-	pharm	acolo	gy.org).	Model	parameter	
optimizations	 via	 Monte	 Carlo	 algorithm	 and	 local	 sen-
sitivity	 analyses	 were	 conducted	 in	 PK-	Sim.	 Published	
clinical	 study	 data	 were	 digitized	 according	 to	 the	 rec-
ommended	 practice19	 using	 GetData	 Graph	 Digitizer	
2.26.0.20	 (©	 S.	 Fedorov).	 PK	 parameters,	 model	 perfor-
mance	metrics,	and	plots	were	calculated	and	generated	
using	Python	(version	3.9.1;	Python	Software	Foundation,	

Wilmington,	 DE).	 Regression	 analyses	 were	 performed	
using	 ordinary	 least	 squares	 utilizing	 the	 statsmodels	
package	(version	0.12.2)	in	Python.20

Clinicalstudydata

Published	clinical	studies	were	obtained	from	the	 litera-
ture,	including	aggregated	plasma	concentration-	time	pro-
files	after	 intravenous	and	oral	administrations	in	single	
and	multiple	dose	regimens	of	dextromethorphan	alone	or	
various	phenotyping	cocktails.	It	was	assumed	that	there	
were	no	relevant	mutual	interactions	between	the	cocktail	
compounds	affecting	dextromethorphan	PK.12,21	The	com-
position	 of	 phenotyping	 cocktails	 used	 in	 the	 respective	
studies	 is	provided	 in	Section	S1.1	of	Supplementary	S1.	
All	 collected	 dextromethorphan	 plasma	 concentration-	
time	profiles	were	split	into	a	training	dataset,	for	model	
building	and	a	test	dataset,	for	model	evaluation.	Studies	
for	model	training	were	selected	to	include	different	routes	
of	administration	(intravenous	and	oral),	a	wide	range	of	
administered	 doses	 as	 well	 as	 data	 covering	 all	 investi-
gated	CYP2D6	genotypes	or	activity	scores.	The	 training	
dataset	 was	 used	 for	 estimation	 of	 model	 input	 param-
eters	 which	 could	 not	 be	 obtained	 from	 the	 literature.	
Studies	 were	 complemented	 by	 individual	 dextrometho-
rphan,	dextrorphan,	and	total	dextrorphan	(dextrorphan	
and	dextrorphan	O-	glucuronide)	plasma	profiles	from	72	
study	 participants.	 The	 respective	 data	 was	 reported	 in	
a	 PhD	 thesis	 by	 Frank	 in	 2009	 as	 a	 compilation	 of	 four	
clinical	cocktail	studies	(studies	A–	E).22	Study	B	was	ex-
cluded	 from	 the	 dataset	 due	 to	 inconsistencies	 between	
the	 reported	 individual	 genotypes	 and	 the	 correspond-
ing	 plasma	 concentrations	 of	 dextromethorphan,	 which	
may	 be	 explained	 by	 the	 limited	 set	 of	 genetic	 CYP2D6	
variants	 assessed	 (see	 Section	 S6.1	 of	 Supplementary	 S1	
for	 a	 detailed	 analysis).	 Sections	 S2.2,	 S4.2,	 and	 S6.3	 of	
Supplementary	 S1	 provide	 comprehensive	 information	
on	 population	 and	 individual	 demographics	 (sex,	 age,	
weight,	 and	 height),	 analyzed	 compounds,	 CYP2D6	 ac-
tivity	 (CYP2D6	 phenotype,	 genotype,	 and	 activity	 score,	
if	available),	drug	dosing	regimens	and	the	assignment	to	
the	 respective	 test	 and	 training	 datasets	 for	 all	 modeled	
studies	and	individual	profiles.

PBPKbasemodelbuilding

The	 dextromethorphan	 PBPK	 model	 building	 process	
started	with	an	extensive	literature	search	to	obtain	phys-
icochemical	 data	 on	 dextromethorphan,	 dextrorphan,	
and	dextrorphan	O-	glucuronide	as	well	as	information	on	
absorption,	distribution,	metabolism,	and	excretion.	The	
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dextromethorphan	PBPK	model	was	developed	using	in-
dividual	 simulations	 based	 on	 typical	 mean	 individuals	
for	the	respective	study	populations	(see	Section	S1.3	of	
Supplementary	S1).	First,	a	combination	of	quantitative	
structure-	activity	 relationship	 methods	 implemented	 in	
PK-	Sim	was	selected	for	the	estimation	of	cellular	perme-
abilities	 and	 organ/plasma	 partition	 coefficients.	 Here,	
the	selection	of	the	optimal	combination	was	based	on	the	
minimum	residual	error	for	parameter	estimations	fitting	
intravenous	 dextromethorphan	 administration	 simula-
tions	 to	 their	 respective	 observed	 data.	 Subsequently,	
studies	of	orally	administered	dextromethorphan	in	PMs	
were	 used	 to	 optimize	 model	 parameters	 independent	
of	CYP2D6	metabolism,	as	 the	CYP2D6	activity	of	poor	
metabolizers	 was	 assumed	 to	 be	 0%	 due	 to	 the	 lack	 of	
expression	 of	 functional	 CYP2D6	 protein	 in	 carriers	 of	
two	CYP2D6	loss-	of-	function	alleles	(e.g.,	CYP2D6*3,	*4,	
and	 *6).10	 Finally,	 CYP2D6	 catalytic	 rate	 constant	 (kcat)	
values	were	optimized	for	EMs	by	fitting	to	EM	plasma	
concentration-	time	profiles	of	the	training	dataset.	Here,	
the	historical	 term	“extensive	metabolizer”	was	used	 to	
describe	populations	which	were	either	not	phenotyped	
or	 phenotyped	 via	 classical	 phenotyping	 methods,	 such	
as	 measurements	 of	 metabolic	 ratios	 or	 screening	 for	
CYP2D6	 null	 alleles.	 Genotyped	 populations	 possessing	
activity	 scores	 ranging	 from	 1.25–	2.25	 were	 considered	
“normal	metabolizers.”17

Overall,	the	minimal	number	of	processes	necessary	
to	 mechanistically	 describe	 the	 PK	 of	 dextrometho-
rphan,	 dextrorphan,	 and	 dextrorphan	 O-	glucuronide	
were	implemented	to	limit	the	number	of	unknown	pa-
rameter	values	 to	be	optimized.	Total	dextrorphan	was	
calculated	 as	 the	 sum	 of	 simulated	 dextrorphan	 and	
dextrorphan	 O-	glucuronide.	 System-	dependent	 param-
eters	 and	 details	 on	 the	 implementation	 of	 CYP2D6,	
CYP3A4,	and	UGT2B15	are	presented	 in	Section	S7	of	
Supplementary	S1.

PBPKmodelevaluation

Performance	of	the	PBPK	model	regarding	the	prediction	
of	dextromethorphan	and	its	metabolites	dextrorphan	and	
dextrorphan	O-	glucuronide	was	evaluated	using	graphical	
and	statistical	methods.

First,	simulated	population	plasma	concentrations	(arith-
metic	mean ± SD)	were	compared	graphically	to	observed	
data	of	the	respective	clinical	studies.	For	this,	virtual	pop-
ulations	of	1000	individuals	were	created	using	the	mode	of	
reported	sex	and	ethnicity	as	well	as	mean	values	 for	age,	
weight,	and	height	from	each	study	protocol.	Sections	S1.3	
and	S1.4	of	Supplementary	S1	provide	a	comprehensive	de-
scription	of	virtual	individuals	and	virtual	populations.

Second,	the	arithmetic	mean	of	population	simulations	
or	 individual	 predictions	 for	 all	 plasma	 concentration-	
time	profiles	were	plotted	against	their	corresponding	ob-
served	values	in	goodness-	of-	fit	plots.

Third,	 predicted	 and	 observed	 AUC	 values	 and	 max-
imum	 plasma	 concentration	 (Cmax)	 values	 were	 graphi-
cally	compared.	Here,	all	AUC	values	(predicted	as	well	as	
observed)	were	calculated	from	the	time	of	the	first	mea-
surement	to	the	time	of	the	last	measurement	(AUClast).

Finally,	as	quantitative	measures	of	the	model	perfor-
mance,	the	mean	relative	deviation	(MRD)	of	all	predicted	
plasma	 concentrations	 (Equation  1)	 and	 the	 geometric	
mean	fold	error	(GMFE)	of	all	predicted	AUClast	and	Cmax	
values	(Equation 2)	were	calculated.

where	̂ci = predicted	plasma	concentration	that	corresponds	
to	the	i-	th	observed	concentration,	ci = i-	th	observed	plasma	
concentration,	k = number	of	observed	values.

where	̂pi = predicted	AUClast	or	Cmax	value	of	study	pi = cor-
responding	 observed	 AUClast	 or	 Cmax	 value	 of	 study	 i,	
m = total	number	of	studies.

Local	sensitivity	of	the	AUC0–	24 h	of	dextromethorphan,	
dextrorphan,	and	dextrorphan	O-	glucuronide	to	single	pa-
rameter	changes	was	analyzed	for	a	simulation	of	30 mg	
orally	 administered	 dextromethorphan	 hydrobromide	 as	
a	single	dose	 (standard	dose).	Parameters	were	 included	
if	they	have	been	optimized	(kcat	values	and	dextrometho-
rphan	intestinal	permeability),	if	they	are	associated	with	
optimized	parameters	(KM	values)	or	if	they	might	have	a	
strong	impact	due	to	calculation	methods	used	(lipophilic-
ity,	fraction	unbound,	and	pKa	values).	A	detailed	descrip-
tion	is	provided	in	Section	S1.6	of	Supplementary	S1	and	a	
list	of	all	parameters	included	in	the	sensitivity	analysis	is	
given	in	Section	S3.6	of	Supplementary	S1.

DGImodelbuilding

The	 principal	 pathway	 of	 dextromethorphan	 metabo-
lism	 is	 the	 CYP2D6-	mediated	 O-	demethylation,	 leading	
to	 the	 formation	 of	 dextrorphan.	 This	 pathway	 was	 im-
plemented	using	Michaelis-	Menten	kinetics	according	to	
Equation	323:

(1)MRD = 10x; x =

�∑k
i=1 (log10ĉi− log10ci)2

k

(2)
GMFE=10x; x =

∑m
i=1

����log10

�
ρ̂i
ρi

�����
m

(3)V =
Vmax ⋅ S
KM + S =

kcat ⋅ E ⋅ S
KM + S
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where	 v  =  reaction	 velocity	 at	 substrate	 concentration	 S,	
Vmax = maximum	reaction	velocity,	KM = Michaelis-	Menten	
constant,	 kcat  =  catalytic	 rate	 constant,	 and	 E  =  enzyme	
concentration.

For	DGI	modeling,	the	CYP2D6	Michaelis-	Menten	con-
stant	(KM)	values	for	the	dextromethorphan	O-	demethylation	
were	kept	constant	over	the	whole	range	of	modeled	activity	
scores.24	CYP2D6	kcat	values	were	optimized	separately	for	
each	activity	score.	CYP2D6	PMs	(activity	score = 0)	were	
assumed	to	show	no	CYP2D6	activity	(0%),	whereas	popula-
tions	with	two	wildtype	alleles	(activity	score = 2)	were	as-
sumed	to	possess	normal	CYP2D6	activity	(100%).	Activity	
scores	were	assigned	according	to	Caudle	et	al.17

DGImodelevaluation

Modeled	DGIs	were	evaluated	by	comparison	of	predicted	
versus	observed	plasma	concentration-	time	profiles	of	dex-
tromethorphan	 and	 its	 metabolites.	 Plasma	 concentration-	
time	profiles	for	populations	displaying	variant	phenotypes	
were	 compared	 to	 those	 of	 the	 EM	 phenotype,	 whereas	
plasma	 concentration-	time	 profiles	 for	 populations	 with	 a	
variant	activity	score	were	compared	to	profiles	of	a	popula-
tion	with	normal	activity	(activity	score = 2)	 in	studies	re-
porting	activity	scores	or	genotypes.	Similarly,	predicted	DGI	
AUClast	ratios	(Equation 4)	and	DGI	Cmax	ratios	(Equation 5)	
were	evaluated	for	study	populations	with	different	CYP2D6	
activity	scores	or	phenotypes.

Here,	 AUClast,	 DGI  =  AUClast	 of	 variant	 activity	 score	 or	
phenotype,	AUClast,	reference = AUClast	of	activity	score = 2	
or	EM	phenotype.

with	Cmax,	DGI = Cmax	of	variant	activity	score	or	phenotype,	
Cmax,	reference = Cmax	of	activity	score	=	2	or	EM	phenotype.

Additionally,	GMFE	values	of	the	predicted	DGI	AUClast	
ratios	 and	 DGI	 Cmax	 ratios	 were	 calculated	 according	 to	
Equation 2	as	a	quantitative	measure	of	prediction	accuracy.

Assessmentofinterindividualvariability
withinactivityscoregroups

To	 assess	 the	 impact	 of	 IIV	 on	 the	 PK	 of	 dextromethor-
phan,	CYP2D6	kcat	values	were	optimized	separately,	using	
their	 respective	 observed	 data,	 for	 all	 individual	 plasma	

concentration-	time	 profiles	 of	 the	 four	 cocktail	 studies.	
Activity	scores	for	all	genotyped	subjects	were	calculated	ac-
cording	to	Caudle	et	al.17	Subjects	with	the	same	activity	scores	
were	grouped	and	geometric	means	and	standard	deviations	
were	calculated	from	the	optimized	individual	CYP2D6	kcat	
values.	Subsequently,	these	values	were	graphically	compared	
to	the	population	kcat	values,	obtained	in	the	model	building	
process.	Finally,	an	ordinary	 least	squares	regression	analy-
sis	was	applied	between	individual	optimized	kcat	and	their	
population	kcat	counterpart	for	the	respective	activity	score.

RESULTS

PBPKbasemodelbuilding

The	dextromethorphan	PBPK	model	was	developed	using	
a	total	of	28	clinical	studies	where	dextromethorphan	was	
administered	as	an	intravenous	infusion	(one	study),	orally	
in	single	(26	studies),	or	multiple	doses	(one	study),	alone	
(17	studies)	or	as	part	of	a	phenotyping	cocktail	(11	stud-
ies).	Doses	 ranged	between	5	and	80 mg	of	administered	
dextromethorphan.	Table 1	provides	an	overview	of	demo-
graphics	and	CYP2D6	activity	for	all	modeled	studies.

For	 dextromethorphan,	 the	 PBPK	 model	 implements	
metabolism	via	CYP2D6	(leading	to	the	formation	of	dex-
trorphan)	 and	 CYP3A4	 as	 well	 as	 excretion	 via	 passive	
glomerular	 filtration.	To	emulate	 the	effect	of	 lysosomal	
trapping	in	the	gastrointestinal	mucosa,25,26	a	binding	pro-
cess	 was	 included	 in	 the	 model	 that	 is	 comprehensively	
described	in	Section	S1.5	of	Supplementary	S1.

The	primary	metabolite	dextrorphan	is	metabolized	via	
CYP3A4	 and	 UGT2B15.	 The	 latter	 serves	 as	 a	 surrogate	
pathway	in	the	model	for	the	glucuronidation	via	multiple	
UGT2B	 enzymes,	 as	 UGT2B15	 was	 reported	 to	 have	 the	
largest	 contribution	 of	 all	 involved	 UGTs.6	 Dextrorphan	
O-	glucuronide	 is	 renally	 eliminated	 via	 passive	 glomeru-
lar	 filtration	 and	 active	 secretion	 to	 the	 urine.	 Other	 dex-
tromethorphan	metabolites,	such	as	3-	methoxymorphinan	
or	3-	hydroxymorphinan,	were	not	included	as	model	com-
pounds	 due	 to	 the	 limited	 number	 of	 published	 plasma	
concentration-	time	profiles	for	these	analytes.

An	 overview	 of	 the	 implemented	 model	 compounds	
and	pathways	 is	provided	 in	Figure 1.	For	dextrometho-
rphan,	dextrorphan,	and	dextrorphan	O-	glucuronide,	the	
drug-	dependent	model	 input	parameters	are	provided	in	
Section	S2.1	of	Supplementary	S1.

PBPKbasemodelevaluation

Overall,	the	PBPK	model	accurately	predicted	dextrometho-
rphan,	dextrorphan,	and	dextrorphan	O-	glucuronide	plasma	

(4)DGI AUClast ratio=
AUClast, DGI

AUClast, reference

(5)DGI Cmax ratio =
Cmax, DGI

Cmax, reference

4.2 project ii : pbpk modeling of dextromethorphan 55
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concentrations	after	intravenous	and	oral	administration	with	
a	selection	of	predicted	compared	to	observed	plasma	concen-
tration	time-	profiles	presented	in	Figure 2.	The	simulations	of	
all	28	modeled	population	studies	are	shown	in	sections	S3.1	
and	S5.1	of	Supplementary	S1.

Goodness-	of-	fit	 plots	 comparing	 predicted	 and	 observed	
plasma	concentrations,	AUClast	and	Cmax	values	are	presented	
in	 Figure  3.	 Overall,	 70.6%	 of	 predicted	 plasma	 concentra-
tions	 were	 within	 the	 two-	fold	 range	 of	 the	 corresponding	
observed	 concentrations.	 Furthermore,	 35	 of	 42	 of	 the	 pre-
dicted	AUClast	values	(several	studies	included	measurements	
of	multiple	analytes)	and	35	of	41	of	the	predicted	Cmax	val-
ues	were	within	two-	fold	range	with	model	GMFE	values	of	
1.53	(range	1.01–	3.45)	for	predicted	AUClast	and	1.46	(range	
1.01–	2.97)	for	predicted	Cmax	values.	MRD	values	of	predicted	
plasma	concentrations	as	well	as	AUClast	and	Cmax	ratios	for	
all	28	clinical	studies	and	all	measured	analytes	are	provided	
in	sections	S3.3,	S3.5,	S5.3,	and	S5.5	of	Supplementary	S1.

A	 simulation	 of	 30  mg	 dextromethorphan	 hydrobro-
mide	administered	orally	(standard	dose)	was	used	for	local	
sensitivity	analysis.	Parameters	with	associated	sensitivity	
values	greater	 than	0.5	 (100%	parameter	value	perturba-
tion	resulting	 in	a	greater	 than	50%	change	of	predicted	
AUC)	 were	 considered	 sensitive.	 Sensitive	 parameters	
were,	 in	 order	 of	 highest	 to	 lowest	 impact,	 fu	 (literature	
value),	CYP2D6	kcat	(optimized	value),	lipophilicity	(liter-
ature	value),	CYP2D6	KM	(literature	value),	and	intestinal	
permeability	(optimized	value).	A	quantitative	and	visual	
representation	of	the	local	sensitivity	analysis	is	provided	
in	Section	S3.6	of	Supplementary	S1.

DGImodelbuilding

The	DGI	model	training	dataset	consisted	of	four	studies	
that	reported	CYP2D6	activity	scores	or	genotypes	of	their	
respective	study	populations.	To	complement	these	stud-
ies,	24	individual	plasma	concentration-	time	profiles	were	
included.	The	assignment	of	 studies	and	 individual	pro-
files	to	the	respective	datasets	is	listed	in	sections	S4.2	and	
S6.3	of	Supplementary	S1.

Overall,	activity	scores	in	the	DGI	model	training	data-
set	ranged	from	0	(PM)	to	3	(ultrarapid	metabolizer)	and	
covered	 a	 total	 of	 eight	 activity	 scores.	This	 dataset	 was	
used	 to	 optimize	 population	 kcat	 values	 for	 the	 activity	
scores	of	the	respective	studies	or	individual	profiles	(see	
Section	S4.1	of	Supplementary	S1).

DGImodelevaluation

The	 DGI	 model	 was	 evaluated	 using	 a	 total	 of	 13	 clini-
cal	population	 studies,	which	 stratified	 their	 subjects	by	
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CYP2D6	activity	score	or	phenotype.	These	studies	either	
provided	 the	 CYP2D6	 phenotype	 (4	 studies)	 or	 compre-
hensive	 information	 on	 the	 CYP2D6	 genotype	 of	 indi-
viduals	(9	studies).	Simulations	were	performed	using	the	
corresponding	 kcat	 values	 with	 respect	 to	 activity	 score	
(Section	S4.1	of	Supplementary	S1)	or	phenotype	(Section	
S2.1	of	Supplementary	S1).

The	good	performance	of	the	final	dextromethorphan	
DGI	model	is	demonstrated	in	Figure 4a–	e	depicting	pre-
dicted	 dextromethorphan	 plasma	 concentration-	time	
profiles	of	populations	with	different	activity	scores	com-
pared	to	their	respective	observed	data.	Plots	documenting	
the	model	performance	of	all	15	DGI	studies	are	provided	
in	Section	S5.1	of	Supplementary	S1.

Predicted	 DGI	 AUClast	 and	 Cmax	 ratios	 were	 in	 good	
agreement	with	observed	DGI	ratios,	demonstrating	that	
the	effect	of	different	CYP2D6	activity	scores	on	the	PK	of	
dextromethorphan	 and	 dextrorphan	 was	 well-	described	
by	the	model.	Specifically,	six	of	seven	AUClast	and	six	of	
six	Cmax	 ratios	were	within	 the	prediction	success	 limits	
suggested	by	Guest	et	al.	adopted	 for	DGI	evaluations,27	
as	 visualized	 in	 Figure  4f,g.	 The	 predicted	 DGI	 AUClast	
ratios	showed	an	overall	GMFE	of	1.45	(range	1.04–	2.84)	
and	 the	overall	GMFE	of	predicted	DGI	Cmax	 ratios	was	
calculated	 as	 1.21	 (range	 1.02–	1.40).	 Predicted	 to	 obser-
ved	 DGI	 AUClast	 and	 Cmax	 ratios	 for	 all	 studies	 are	 pro-
vided	 in	 Section	 S5.5	 of	 Supplementary	 S1.	 Predictions	
of	 dextromethorphan,	 dextrorphan,	 and	 dextrorphan		
O-	glucuronide	 exposure	 in	 individuals	 with	 different	
activity	 scores	 after	 a	 single	 oral	 dose	 of	 30  mg	 dextro-
methorphan	 hydrobromide	 and	 a	 comparison	 of	 the	
	corresponding	AUC	values	are	given	in	Figure 5.

Interindividualvariabilitywithinactivity
scoregroups

The	 individual	 profiles	 from	 four	 cocktail	 studies	 were	
used	 to	 assess	 the	 extent	 of	 IIV	 within	 activity	 score	
groups.	For	66	of	the	72	study	subjects,	the	CYP2D6	geno-
type	was	provided.	Six	 subjects	were	not	genotyped	and	
consequently	excluded	from	this	analysis.

The	 distribution	 of	 activity	 scores	 from	 the	 dataset	
is	 listed	 in	 Section	 S6.2	 of	 Supplementary	 S1.	 Plasma	
concentration-	time	profiles	of	dextromethorphan,	dextror-
phan,	and	total	dextrorphan	were	simulated	using	the	pop-
ulation	kcat	values	given	in	Section	S4.1	of	Supplementary	
S1.	Additionally,	the	profiles	were	simulated	using	individu-
ally	optimized	kcat	values	and	the	geometric	mean	with	geo-
metric	standard	deviation	of	the	individual	kcat	values	were	
calculated	for	all	activity	score	groups	with	n	greater	than	2	
(see	Section	S6.2	of	Supplementary	S1).

A	representative	selection	of	predictions	using	individ-
ual	and	model	CYP2D6	kcat	values	is	visualized	in	Figure 6.	
Furthermore,	Section	S6.4	of	Supplementary	S1	includes	
plots	with	model	and	individual	predictions	for	all	66	gen-
otyped	 individuals	 alongside	 model	 predictions	 for	 the	
six	non-	genotyped	individuals.	The	latter	were	simulated	
using	the	population	kcat	value	for	EMs	(see	Section	S2.1	
of	Supplementary	S1).

The	 predictive	 performance	 using	 model	 kcat	 was	
compared	 to	 using	 the	 individual	 optimized	 kcat	 val-
ues	 by	 calculating	 the	 GMFE	 for	 all	 individual	 plasma	
concentration-	time	profiles	(see	Sections	S6.7,	S6.8,	and	
S8	of	Supplementary	S1).	Generally,	model	performance	
improved	 for	 simulations	 of	 dextromethorphan	 and	

F I G U R E  1  Implemented	dextromethorphan	metabolic	pathways.	Dextromethorphan	is	O-	demethylated	by	CYP2D6	and	N-	
demethylated	by	CYP3A4.	The	metabolite	dextrorphan	is	further	metabolized	via	CYP3A4	(N-	demethylation)	and	UGT2B15	(O-	
glucuronidation).	Dextrorphan	O-	glucuronide	is	excreted	in	the	urine.	Percentages	shown	refer	to	the	fraction	metabolized	by	the	respective	
enzyme,	calculated	for	extensive	metabolizers	of	CYP2D6.	CYP2D6:	cytochrome	P450	2D6,	CYP3A4:	cytochrome	P450	3A4,	UGT2B15:	
Uridine	5'-	diphospho-	glucuronosyltransferase	2B15

Compound Enzyme Metabolism

CYP2D6
96%

Other Metabolites

Dextromethorphan
CYP3A4

4%

UGT2B15
98%

Dextrorphan Dextrorphan O-glucuronide

Other Metabolites

CYP3A4
<2%
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dextrorphan	 plasma	 concentration-	time	 profiles	 using	
the	 individually	 optimized	 kcat	 when	 compared	 to	 sim-
ulations,	where	population	kcat	 values	were	used	across	
all	 activity	 scores	 and	 analyzed	 studies.	 However,	 total	
dextrorphan	AUClast	and	Cmax	values	were	markedly	un-
derpredicted	for	studies	D	and	E	(GMFEs	of	3.93	and	3.28	
for	study	D	and	2.81	and	2.69	for	study	E)	compared	to	

studies	A	and	C	(GMFEs	of	1.30	and	1.44	for	study	A	and	
1.20	and	1.24	for	study	C).	Predicted	to	observed	AUClast	
and	 Cmax	 ratios	 for	 all	 individual	 simulations	 using	 the	
model	 kcat	 and	 the	 individual	 optimized	 kcat	 are	 listed	
in	 Section	 S6.7	 of	 Supplementary	 S1.	 Section	 S6.8	 of	
Supplementary	S1	gives	a	detailed	breakdown	of	AUClast	
and	Cmax	ratios	grouped	by	study	and	activity	score.

F I G U R E  2  Dextromethorphan	and	dextrorphan	plasma	concentrations.	Model	predictions	of	dextromethorphan	and	its	metabolites	
dextrorphan	and	dextrorphan	O-	glucuronide	as	well	as	total	dextrorphan	(dextrorphan	+	dextrorphan	O-	glucuronide)	plasma	
concentration-	time	profiles	of	selected	intravenous	(a)	and	oral	studies	(b–	i)	from	the	training	and	test	datasets,	compared	to	observed	
data.7,8,45–	51	Population	predictions	(n = 1000)	are	shown	as	lines	with	ribbons	(arithmetic	mean ± SD),	symbols	present	the	corresponding	
observed	data	±SD.	Detailed	information	on	all	clinical	studies	is	listed	in	sections	S2.2	and	S4.2	of	Supplementary	S1.	iv,	intravenous;	po,	
oral

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

4.2 project ii : pbpk modeling of dextromethorphan 59



10 |   RÜDESHEIM et al.

Moreover,	the	optimized	individual	kcat	values	for	the	
different	 activity	 score	 groups	 were	 plotted	 against	 their	
activity	 score	 to	 visualize	 the	 distribution	 of	 individual	
kcat	 values	 in	 the	 respective	 activity	 score	 groups	 (see	
Figure  7a).	 A	 regression	 analysis	 of	 model	 kcat	 values	
compared	 to	 the	 geometric	 mean	 of	 optimized	 individ-
ual	kcat	values	revealed	a	high	correlation	(R2 = 0.9988).	
Consequently,	 the	 individual	 profiles	 were	 sufficiently	
well-	described	with	the	model	kcat	values.	The	results	of	
the	regression	analysis	are	illustrated	in	Figure 7b.

Finally,	 population	 simulations	 were	 performed	 with	
sampling	 from	 a	 log-	normal	 distribution	 with	 mean	
and	 dispersion	 parameters	 calculated	 from	 the	 samples	
of	 optimized	 individual	 kcat	 values	 (see	 Section	 S6.2	 of	
Supplementary	S1)	 to	analyze	 the	simulated	coverage	of	
IIV	observed	in	dextromethorphan	plasma	concentrations	
from	the	study	populations.

Subsequently,	 predictions	 were	 compared	 graphi-
cally	in	population	simulations	with	no	variability	of	the	

CYP2D6	population	kcat.	As	expected,	model	predictions	
including	 the	 kcat	 variability	 improved	 describing	 the	
large	 extent	 of	 IIV	 within	 an	 activity	 score	 group	 com-
pared	 to	 predictions	 with	 no	 variability	 on	 the	 CYP2D6	
kcat	(see	Figure 7c–	f).

DISCUSSION

In	this	study,	a	whole-	body	PBPK	model	of	dextrometho-
rphan	 and	 its	 metabolites	 dextrorphan	 and	 dextrorphan	
O-	glucuronide	 was	 developed	 and	 evaluated	 to	 predict	
drug	plasma	concentrations	over	a	wide	dosing	range	(5–	
80 mg).	A	CYP2D6	activity	score-	dependent	metabolism	
of	 dextromethorphan	 was	 implemented	 to	 describe	 the	
effect	 of	 CYP2D6	 DGIs	 on	 the	 PK	 of	 the	 modeled	 com-
pounds.	Moreover,	 the	model	was	applied	 to	 investigate	
the	IIV	of	dextromethorphan	PK	within	different	activity	
score	groups.

F I G U R E  3  Goodness-	of	fit	plots	
for	the	final	dextromethorphan	model.	
Predicted	versus	observed	plasma	
concentrations	(a,	b),	AUClast	values	(c,	d)	
and	Cmax	values	(e,	f)	for	the	training	(left	
column)	and	test	(right	column)	datasets.	
The	solid	black	line	indicates	the	line	of	
identity,	solid	gray	lines	show	two-	fold	
deviation,	dashed	gray	lines	indicate	1.25-	
fold	deviation.	Detailed	information	on	
all	clinical	studies	is	listed	in	sections	S2.2	
and	S4.2	of	Supplementary	S1.	AUClast,	
area	under	the	plasma	concentration-	
time	curve	from	the	time	of	the	first	
concentration	measurement	to	the	time	
of	the	last	concentration	measurement;	
Cmax,	maximum	plasma	concentration,	
dextrorphan-	total:	sum	of	dextrorphan	
and	dextrorphan	O-	glucuronide	
concentrations

(a) (b)

(c) (d)

(e) (f)
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F I G U R E  4  Simulated	dextromethorphan	and	dextrorphan	plasma	concentrations	and	DGI	ratios	for	different	CYP2D6	activity	scores.	
Upper	panel:	Dextromethorphan	(a–	c)	as	well	as	Dextromethorphan	and	dextrorphan	(d,	e)	plasma	concentration-	time	profiles	of	selected	
dextromethorphan	CYP2D6	DGI	studies,	compared	to	observed	data.52,53	Population	predictions	(n = 1000)	are	shown	as	lines	with	ribbons	
(arithmetic	mean ± SD),	symbols	present	the	corresponding	observed	data	±SD.	Lower	panel:	comparison	of	predicted	versus	observed	
DGI	AUClast	ratios	(f)	and	DGI	Cmax	ratios	(g)	for	all	analyzed	dextromethorphan	CYP2D6	DGI	studies.	The	straight	black	line	indicates	
the	line	of	identity,	curved	black	lines	show	prediction	success	limits	proposed	by	Guest	et	al.	including	1.25-	fold	variability.27	Solid	gray	
lines	indicate	two-	fold	deviation,	dashed	gray	lines	show	1.25-	fold	deviation.	Detailed	information	on	all	DGI	studies	as	well	as	the	plotted	
values	are	given	in	section	S4.1	and	S5.4	of	Supplementary	S1,	respectively.	AS,	activity	score;	AUC,	area	under	the	plasma	concentration-	
time	curve;	AUClast,	AUC	from	the	time	of	the	first	concentration	measurement	to	the	time	of	the	last	concentration	measurement;	Cmax,	
maximum	plasma	concentration;	DGI,	drug-	gene	interaction;	po,	oral

(a)

(d) (e)

(f) (g)

(b) (c)
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Three	 previously	 published	 PBPK	 models	 of	 dextro-
methorphan	 were	 found	 in	 the	 literature	 that	 focused	
on	 different	 aspects	 of	 PBPK	 modeling,	 specifically	
cross-	species	 modeling,28	 investigation	 of	 pregnancy	
effects,29	 and	 the	 impact	 of	 formulations	 (and,	 by	 ex-
tension,	 lysosomal	 trapping)26	 on	 dextromethorphan	
pharmacokinetics.	 Two	 studies	 included	 either	 dextror-
phan29	or	dextrorphan	and	dextrorphan	O-	glucuronide26	
as	 model	 compounds.	 These	 studies	 also	 included	 “tra-
ditional”	 phenotypes	 (EMs	 and	 PMs)	 in	 the	 model	 and	
did	 not	 further	 differentiate	 between	 CYP2D6	 activity	
scores.	 Consequently,	 our	 model	 is	 the	 first	 whole-	body	

parent-	metabolite-	metabolite	 PBPK	 model	 of	 dextro-
methorphan,	aiming	to	 investigate	 the	effect	of	CYP2D6	
activity	 scores	 on	 dextromethorphan	 PK,	 with	 a	 total	 of	
eight	different	activity	scores	implemented.

In	 our	 model,	 the	 dextromethorphan	 CYP2D6	 DGIs	
were	 described	 without	 explicitly	 modeling	 distinct	
CYP2D6	 genotypes.	 Although	 a	 wide	 variety	 of	 relevant	
genotype-	specific	in	vitro	parameters,	such	as	KM	and	Vmax	
are	available	in	the	literature,30–	32	implementing	all	possi-
ble	genotypes	using	a	genotype-	specific	approach	would	
be	infeasible	due	to	the	large	(and	still	growing)	amount	
of	 known	 CYP2D6	 alleles.33	 Thus,	 a	 CYP2D6	 activity	

F I G U R E  5  Predicted	dextromethorphan,	dextrorphan	and	dextrorphan	O-	glucuronide	exposure	in	individuals	with	different	activity	
scores.	Simulations	were	performed	for	a	single	oral	dose	of	30 mg	dextromethorphan	hydrobromide	in	healthy	male	individuals.	Top	row:	
dextromethorphan	(a),	dextrorphan	(b)	and	dextrorphan	O-	glucuronide	(c)	plasma	concentrations.	Bottom	row:	Dextromethorphan	(d),	
dextrorphan	(e)	and	dextrorphan	O-	glucuronide	(f)	AUC0–	24 h	values	for	different	activity	scores.	AUC,	area	under	the	plasma	concentration-	
time	curve

(a) (b) (c)

(d) (e) (f)

F I G U R E  6  Dextromethorphan	and	dextrorphan	plasma	concentrations	for	individuals	of	several	activity	score	groups.	Selected	
dextromethorphan,	dextrorphan,	and	total	dextrorphan	(dextrorphan + dextrorphan	O-	glucuronide)	plasma	concentration-	time	profiles	
compared	to	observed	data	reported	by	Frank	2009.22	Predictions	are	shown	as	lines.	Solid	lines	represent	model	predictions,	dotted	lines	
represent	individual	predictions.	Symbols	present	the	corresponding	observed	data.	Detailed	information	on	all	individual	profiles	is	listed	
in	Sections	S6.1,	S6.2,	and	S6.3	of	Supplementary	S1.	AS,	activity	score;	po,	oral
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
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F I G U R E  7  Analysis	of	optimized	
individual	CYP2D6	kcat	values	for	the	
different	activity	scores	and	population	
simulations	for	different	activity	score	
groups.	(a)	Box-		and	scatterplots	for	
optimized	individual	kcat	values	in	the	
respective	activity	score	groups.	Boxes	
represent	interquartile	ranges,	lines	
within	boxes	represent	median	values.	(b)	
Comparison	of	model	kcat	and	optimized	
geometric	mean	kcat	values	and	regression	
analysis.	Colored	circles	represent	
the	geometric	mean	kcat	value	for	an	
activity	score	group	compared	to	the	
population	kcat	value.	Error	bars	represent	
the	geometric	standard	deviation.	
Simulations	were	performed	with	the	
population	kcat	values	using	a	standard	
administration	protocol	(a	single	dose	of	
30 mg	dextromethorphan	hydrobromide)	
for	populations	with	an	CYP2D6	activity	
score	of	1	(c),	1.5	(d),	2	(e),	and	3	(f)	with	
no	variability	and	variability	(calculated	
geometric	standard	deviation)	on	the	
CYP2D6	population	kcat.	Population	
predictions	(n = 1000)	are	represented	as	
lines	with	ribbons	(geometric	mean	with	
geometric	standard	deviation),	symbols	
represent	the	corresponding	observed	data	
(geometric	mean	with	geometric	standard	
deviation)	for	the	population	reported	by	
Frank	2009.22	AS,	activity	score;	CYP2D6,	
cytochrome	p450	2D6;	dxt,	dextrorphan;	
kcat,	catalytic	rate	constant;	R2,	coefficient	
of	determination
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score-	specific	 approach	 was	 developed.	 As	 a	 result,	 this	
PBPK	model	cannot	further	differentiate	between	differ-
ent	 genotypes	 within	 the	 same	 activity	 score	 group,	 for	
instance,	 CYP2D6*1/*1	 and	 CYP2D6*2/*2.	 However,	 the	
model	 could	 be	 readily	 extended	 to	 include	 a	 genotype-	
specific	CYP2D6	metabolism	in	the	future.

Moreover,	 CYP2D6	 metabolism	 for	 different	 activity	
scores	was	implemented	with	a	fixed	KM	literature	value6	
for	 all	 covered	 activity	 scores.	 However,	 in	 vitro	 data	
shows	that	KM	may	vary	between	different	genotypes	and	
activity	 scores.31,32,34	 Nonetheless,	 a	 study	 investigating	
the	 effect	 of	 activity	 scores	 on	 the	 CYP2D6-	dependent	
metabolism	of	dextromethorphan	in	vitro	found	no	sig-
nificant	correlation	between	activity	score	and	CYP2D6	
KM.30	 Most	 studies	 reported	 a	 reduction	 of	 CYP2D6-	
dependent	clearance	(CLint	and	Vmax/KM)	when	compar-
ing	reduced	function	alleles	(*10	and	*17)	to	the	wildtype	
*1	allele.30–	32	Additionally,	analyses	of	CYP2D6	content	
in	 HLMs	 showed	 a	 high	 positive	 correlation	 between	
CYP2D6	 abundances	 and	 activity	 score,	 albeit	 substan-
tial	IIV	in	CYP2D6	content	within	activity	score	groups	
and	even	in	groups	sharing	the	same	CYP2D6	diplotype	
has	been	observed.16	These	trends	in	CYP2D6	content	in	
HLMs	and	CYP2D6	CLint	are	reflected	in	the	final	dextro-
methorphan	 PBPK	 model	 with	 higher	 CYP2D6	 activity	
scores	inferring	higher	population	kcat	values	(see	Section	
S4.1	of	Supplementary	S1).	A	similar	modeling	approach	
was	also	utilized	for	previously	developed	PBPK	models	
of	CYP2D6	substrates.24	The	CYP2D6	kcat	value	for	pop-
ulations	grouped	as	EMs	was	observed	to	be	lower	than	
for	 genotyped	 normal	 metabolizers	 with	 activity	 scores	
ranging	from	1.25–	2.25	(compare	sections	S2.1	and	S4.1	
of	Supplementary	S1).	Typically,	study	subjects	in	the	lit-
erature	were	either	phenotyped	via	measurements	of	uri-
nary	metabolic	ratio,	often	using	arbitrary	cutoff	points	
for	poor	metabolizers,15	or	via	screening	for	null	alleles.35	
Thus,	 there	 is	 only	 a	 limited	 intersection	 between	 the	
broad	EM	phenotype	category	and	the	genetically	deter-
mined	NMs.36	Overall,	the	presented	model	was	able	to	
accurately	describe	DGI	AUClast	and	Cmax	ratios	as	well	
as	the	plasma	concentration-	time	profiles	of	all	analyzed	
clinical	studies.

The	final	dextromethorphan	PBPK	model	was	applied	
to	investigate	the	effect	of	IIV	on	the	PK	of	dextrometho-
rphan	with	a	total	of	72	individual	plasma	concentration-	
time	profiles	of	dextromethorphan,	dextrorphan,	and	total	
dextrorphan.	A	substantial	variability	was	observed	within	
activity	scores	1–	3	(geometric	standard	deviation	range	of	
1.29–	2.52).	For	activity	scores	less	than	1,	the	number	of	
individual	profiles	per	score	(less	than	5)	was	insufficient	
to	 make	 meaningful	 assessments	 of	 the	 IIV.	 The	 large	
extent	of	IIV	in	the	PK	of	CYP2D6	substrates	within	ac-
tivity	score	groups	or	even	within	subjects	possessing	the	

same	CYP2D6	genotype,	is	a	well-	documented	phenome-
non.16	A	twin	study	on	the	heritability	of	metoprolol	PK,	
concluded	 that	 genetic	 components	 independent	 of	 the	
CYP2D6	gene	may	be	responsible	for	the	IIV	in	CYP2D6	
activity.37	 Indeed,	 the	 rs5758550	 single-	nucleotide	 poly-
morphism	(SNP)	was	identified	as	an	enhancer	SNP	and	
may,	 in	 the	 future,	 even	 lead	 to	 a	 reclassification	 of	 ac-
tivity	scores	based	on	CYP2D6	and	rs5758550	genotype.38	
Currently	published	literature	lacks	clinical	in	vivo	studies	
describing	the	effect	of	the	rs5758550	genotype	on	the	PK	
of	dextromethorphan.	Other	genetic	factors,	such	as	reg-
ulation	of	CYP2D6	expression	via	transcription	factors	or	
miRNA,	are	also	likely	to	contribute	to	IIV	and	intraindi-
vidual	variability.16	Additionally,	genetic	and	non-	genetic	
variability	 in	 enzymes	 other	 than	 CYP2D6	 are	 expected	
to	 contribute	 to	 the	 IIV	 in	 dextromethorphan	 PK,	 spe-
cifically	for	CYP2D6	PMs,	as	the	fraction	metabolized	by	
CYP2D6	 decreases	 for	 dextromethorphan	 from	 greater	
than	 95%	 for	 EMs5	 to	 0%	 for	 PMs	 of	 CYP2D6,10	 conse-
quently	increasing	the	fraction	of	dextromethorphan	me-
tabolized	 by	 CYP3A4.	 Additionally,	 IIV	 can	 be	 observed	
in	plasma	concentrations	of	dextrorphan	and	dextrorphan	
O-	glucuronide,	possibly	caused	by	variability	in	CYP3A4	
and	UGT	enzymes.	As	genotypic	data	for	CYP3A	and	UGT	
was	unavailable	for	study	subjects,	the	analysis	of	IIV	was	
performed	 for	dextromethorphan	plasma	concentrations	
purely	 in	 the	 context	 of	 CYP2D6	 activity	 score	 groups.	
However,	 as	 new	 data	 emerges,	 the	 presented	 PBPK	
model	 can	 mechanistically	 be	 adapted	 to	 describe	 these	
genotypic	effects	of	CYP2D6	and	other	pharmacogenes	af-
fecting	the	PK	of	dextromethorphan	and	its	metabolites.	A	
large	extent	of	IIV	in	plasma	concentrations	and	CYP2D6	
activity	was	observed	and	quantified	in	this	study.	To	re-
flect	 this	 in	 the	 model,	 the	 distributions	 of	 CYP2D6	 kcat	
values	for	activity	scores	1,	1.5,	2,	and	3	were	characterized	
from	kcat	optimizations	in	72	individuals	to	improve	pop-
ulation	predictions,	as	demonstrated	 in	Figure 7c–	f,	and	
may	be	used	in	future	PBPK	models	of	CYP2D6	substrates.

To	supplement	the	limited	number	of	studies	in	which	
dextromethorphan	 was	 administered	 alone	 (14	 studies),	
studies	in	which	dextromethorphan	was	administered	as	
part	of	a	phenotyping	cocktail	(11	studies	and	the	studies	
compiled	 by	 Frank	 et	 al.22)	 were	 included	 in	 the	 model	
dataset.	All	modeled	cocktail	studies	administered	either	
the	 “Cologne”	 cocktail,21,39	 the	 “Cooperstown	 5+1”12	
cocktail,	 or	 minor	 variations	 thereof	 (see	 Section	 1.1	 of	
Supplementary	S1).	No	relevant	mutual	interactions	have	
been	observed	for	 these	cocktails,	although	sample	sizes	
for	 these	 assessments	 were	 often	 small.21	 Additionally,	
assessments	 of	 these	 interactions	 are	 generally	 con-
cerned	 with	 the	 effect	 of	 the	 cocktail	 on	 primary	 path-
ways	of	the	cocktail	compounds	(i.e.,	dextromethorphan	
O-	demethylation).40	Here,	additional	in	vitro	experiments	
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are	 needed	 to	 evaluate	 possible	 effects	 of	 phenotyping	
cocktails	on	other	model	pathways,	such	as	dextrorphan	
O-	glucuronidation.	 Overall,	 plasma	 concentration-	time	
profiles	were	well-	predicted	for	all	population	studies	re-
gardless	of	whether	dextromethorphan	was	administered	
alone	 or	 as	 part	 of	 a	 phenotyping	 cocktail	 (see	 Sections	
S3.1–	S3.5	and	Sections	S5.1–	S5.5).

Overall,	 model	 predictions	 were	 considered	 adequate	
for	all	population	studies	regardless	of	whether	the	study	
was	 a	 cocktail	 study	 or	 not	 (see	 Sections	 S3.2–	S3.5	 and	
S5.2–	5.7	of	Supplementary	S1).	For	studies	 reporting	 in-
dividual	 plasma	 concentration-	time	 profiles,	 the	 model	
performed	 comparably	 well	 across	 all	 activity	 scores.	
However,	 a	 large	 interstudy	 variability	 was	 observed	 for	
dextromethorphan	 and	 total	 dextrorphan	 AUClast	 and	
Cmax	 values	 (see	 Section	 S6.8	 of	 Supplementary	 S1).	 For	
instance,	studies	D	and	E	reported	up	to	four-	fold	higher	
AUClast	 and	Cmax	values	 for	 total	dextrorphan	compared	
with	studies	A	and	C.	As	these	studies	were	comparable	
in	study	design,	cocktail	composition,	and	sample	analy-
sis,	as	well	as	dextromethorphan	and	dextrorphan	plasma	
concentrations,	 this	apparent	discrepancy	was	attributed	
to	 relatively	 small	 study	 cohorts	 and	 the	 large	 extent	 of	
IIV	in	CYP2D6	activity	(see	Figure 7a,b)	described	in	the	
published	literature.16

Finally,	 the	 developed	 and	 evaluated	 PBPK	 model	 of	
dextromethorphan	is	a	useful	tool	for	clinicians	to	inves-
tigate	the	effect	of	CYP2D6	DGIs	and	the	associated	IIV	
on	the	PK	of	dextromethorphan	and	its	metabolites.	The	
mechanistical	model	can	be	extended	to	be	used	in	other	
PBPK	modeling	scenarios,	such	as	the	prediction	of	drug-	
drug	interaction	and	DGI	effects41	and	scaling	to	special	
populations,	such	as	pediatrics,42	geriatrics,43	or	patients	
with	renal	or	hepatic	impairment.44	Moreover,	the	model-
ing	approach	presented	in	this	study	can	serve	as	a	blue-
print	to	develop	PBPK	models	of	other	CYP2D6	substrates.
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Physiologically Based Pharmacokinetic Modeling to Describe 

the CYP2D6 Activity Score-Dependent Metabolism of  
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Abstract: The cytochrome P450 2D6 (CYP2D6) genotype is the single most important determinant 

of CYP2D6 activity as well as interindividual and interpopulation variability in CYP2D6 activity. 

Here, the CYP2D6 activity score provides an established tool to categorize the large number of 

CYP2D6 alleles by activity and facilitates the process of genotype-to-phenotype translation. Com-

pared to the broad traditional phenotype categories, the CYP2D6 activity score additionally serves 

as a superior scale of CYP2D6 activity due to its finer graduation. Physiologically based pharmaco-

kinetic (PBPK) models have been successfully used to describe and predict the activity score-de-

pendent metabolism of CYP2D6 substrates. This study aimed to describe CYP2D6 drug–gene inter-

actions (DGIs) of important CYP2D6 substrates paroxetine, atomoxetine and risperidone by devel-

oping a substrate-independent approach to model their activity score-dependent metabolism. The 

models were developed in PK-Sim®, using a total of 57 plasma concentration–time profiles, and 

showed good performance, especially in DGI scenarios where 10/12, 5/5 and 7/7 of DGI AUClast 

ratios and 9/12, 5/5 and 7/7 of DGI Cmax ratios were within the prediction success limits. Finally, the 

models were used to predict their compound’s exposure for different CYP2D6 activity scores during 

steady state. Here, predicted DGI AUCss ratios were 3.4, 13.6 and 2.0 (poor metabolizers; activity 

score = 0) and 0.2, 0.5 and 0.95 (ultrarapid metabolizers; activity score = 3) for paroxetine, atomoxe-

tine and risperidone active moiety (risperidone + 9-hydroxyrisperidone), respectively. 

Keywords: physiologically based pharmacokinetic (PBPK) modeling; paroxetine; atomoxetine; 

risperidone; cytochrome P450 2D6 (CYP2D6) 

 

1. Introduction 

Differences in CYP2D6 activity have been described as early as the 1970s [1,2] and 

have since been a major focus of clinical research, as CYP2D6 is involved in the metabo-

lism of approximately 20% of clinically relevant drugs [3]. Polymorphic expression of the 

CYP2D6 gene has been identified as the single most important determinant of CYP2D6 

activity leading to a substantial interindividual and interpopulation variability observed 

in the pharmacokinetics of CYP2D6 substrates [4]. For instance, homozygous carriers of 

loss-of-function alleles (genetic poor metabolizers) show no detectable CYP2D6 activity 

[3] and are consequently unable to biotransform drugs via CYP2D6 [4]. In contrast, indi-

viduals carrying multiple copies of a normal function allele (genetic ultrarapid metabo-

lizers) generally display increased CYP2D6 activity compared to homozygous carriers of 
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wildtype alleles (genetic normal metabolizers) [5] and show accelerated biotransfor-

mation of CYP2D6 substrates. Both poor and ultrarapid metabolizers are at an increased 

risk for experiencing dose-dependent adverse drug effects or a lack of response, depend-

ing on the CYP2D6 substrate [4]. 

To address this issue, pharmacogenetic testing for variants in CYP2D6 has become 

an important cornerstone for personalized drug therapy [6] with the overall aim to im-

prove efficacy and patient safety while simultaneously reducing costs of drug therapy, for 

example, due to hospitalizations caused by adverse drug reactions (ADRs) [7]. Here, the 

CYP2D6 activity score system serves as an indispensable tool to translate genotype data 

into phenotypes. Moreover, the activity score system can provide more fine-grained esti-

mations of CYP2D6-dependent drug clearance [8], and, by extension, serves as an im-

portant basis for the development of actionable clinical guidelines [9]. Its main benefit is 

the aggregation of the >10,000 possible CYP2D6 [10–13] genotypes into a manageable scor-

ing system by assigning a numeric value ranging from 0 to 1 to CYP2D6 alleles based on 

their in vitro and in vivo CYP2D6 activity [8]. Based on their genetic makeup, an individ-

ual’s activity score can subsequently be translated into one of the following metabolizer 

phenotypes: poor (AS = 0), intermediate (0 < AS ≤ 1), normal (1 < AS ≤ 2.25) or ultrarapid 

metabolizer (AS > 2.25) [5]. Importantly, these phenotype categories are not identical to 

the “traditional” phenotype definitions, determined using phenotyping methods (e.g., 

calculating urinary metabolic ratios or screening for null alleles [8,14,15]). Consequently, 

the “traditional” extensive metabolizer and the normal metabolizer categories only dis-

play a limited intersection in terms of CYP2D6 activity [16]. 

While the activity score system’s main purpose is the facilitation of genotype-to-phe-

notype translation, it has been suggested to provide an even finer graduated scale of 

CYP2D6 activity, allowing to infer a percentage of CYP2D6 activity (relative to activity 

score = 2) compared to the broad categories of traditional phenotypes [5]. Findings ob-

tained from previously published physiologically based pharmacokinetic (PBPK) models 

of important CYP2D6 substrates dextromethorphan and metoprolol demonstrated a pos-

sibility to translate the CYP2D6 activity score into an apparent CYP2D6 clearance, re-

flected in increasing CYP2D6 catalytic rate constant (kcat) values with increasing activity 

scores [15,17]. Here, drug–gene interaction (DGI) PBPK models provide a practical ap-

proach to mechanistically implement the activity score-dependent metabolism of CYP2D6 

substrates [18]. 

The objective of this study was to implement the activity score-dependent metabo-

lism in PBPK models of various important CYP2D6 substrates. For this, new models were 

developed for the selective serotonin reuptake inhibitor (SSRI) and CYP2D6 inhibitor par-

oxetine and the norepinephrine reuptake inhibitor (NRI) atomoxetine. The continuous 

scale of activity score-dependent metabolism derived from PBPK models of CYP2D6 sub-

strates dextromethorphan and metoprolol was additionally implemented in these new 

PBPK models as well as an established PBPK model of the atypical antipsychotic risperi-

done, originally based on traditional phenotype categories. 

2. Materials and Methods 

2.1. Workflow 

The overall workflow for this study included (I) the collection of clinical study data, 

(II) PBPK base model building (paroxetine, atomoxetine) and (III) PBPK base model eval-

uation (paroxetine, atomoxetine. Published PBPK DGI models (metoprolol, dextrome-

thorphan) were used to (IV) derive the scale of their CYP2D6 activity score-dependent 

metabolism and implement it during the (V) DGI model building process (paroxetine, 

atomoxetine, and risperidone). After (VI) DGI model evaluation (paroxetine, atomoxetine, 

and risperidone), the models were applied to (VII) simulate steady-state exposure in dif-

ferent DGI scenarios (paroxetine, atomoxetine, and risperidone). Figure 1 schematically 

depicts the workflow for this study. 
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Figure 1. Workflow of the literature search of clinical study data, PBPK base model building, PBPK 

base model evaluation, DGI model building, DGI model evaluation and DGI model application pro-

cesses for the modeled compounds. 

2.2. Software 

PBPK models were developed in PK-Sim® (Open Systems Pharmacology Suite 10, 

www.open-systems-pharmacology.org, 2021). Clinical study data from the literature 

were digitized with GetData Graph Digitizer 2.26.0.20 (© S. Fedorov, http://www.getdata-

graph-digitizer.com/index.php, 2013) according to best practices [19]. Sensitivity analyses 

and model parameter optimizations (Monte Carlo algorithm) were performed within PK-

Sim®. Pharmacokinetic parameters, model performance metrics and plots were calculated 

and generated using Python (version 3.10.4, Python Software Foundation, Wilmington, 

DE, USA, 2022). Regression analyses were performed using ordinary least squares (OLS) 

regression utilizing the statsmodels package (version 0.13.2, https://github.com/stats-

models/statsmodels, 2021) [20]. 

2.3. Clinical Study Data 

An extensive literature search was conducted to gather individual and aggregated 

plasma concentration–time profiles after intravenous and oral administrations in single 

and multiple-dose regimes of paroxetine, atomoxetine, and risperidone. Additionally, 

population or individual demographics (sex, age, weight, and height) alongside CYP2D6 

activity (phenotype, genotype, or activity score) were extracted from the respective 

4.3 project iii : pbpk modeling of paroxetine , atomoxetine and risperidone 73



Pharmaceutics 2022, 14, 1734 4 of 21 
 

 

studies. The collected plasma concentration–time profiles were split into a training dataset 

for model development, and a test dataset for model performance evaluation. Studies for 

model training were selected to include sufficient data covering different routes of admin-

istration (intravenous and oral), formulations (oral solution or solid dosage forms), a wide 

range of doses as well different CYP2D6 genotypes, activity scores or phenotypes. 

2.4. PBPK Base Model Building 

The paroxetine and atomoxetine PBPK base models were developed using a sequen-

tial approach. First, appropriate quantitative structure–activity relationship (QSAR) meth-

ods to estimate partition coefficients and cellular permeabilities were selected by the 

smallest residual error for fitting simulations of intravenous administrations (paroxetine) 

or all studies of the training dataset (atomoxetine) to their observed data. Second, simula-

tions of administrations of oral solutions were optimized against the respective clinical 

data to estimate intestinal permeability. Third, parameters for CYP2D6-independent me-

tabolism were informed by fitting simulations of single and multiple-dose oral admin-

istrations in poor metabolizers of CYP2D6 to their respective observed data. Finally, pa-

rameters for CYP2D6-mediated metabolism were optimized for studies of the training da-

taset where the volunteers were extensive metabolizers. Here, the term “extensive metab-

olizers” was used to group populations that were either phenotyped via traditional phe-

notyping methods or populations, which were not phenotyped. 

For the risperidone base model, a published PBPK model by Kneller et al. [21] was 

used. 

2.5. PBPK Base Model Evaluation 

The performance of the presented models was evaluated using graphical and statis-

tical methods. First, predicted plasma concentration–time profiles were compared graph-

ically with measured data from the respective clinical studies by plotting model popula-

tion predictions (arithmetic mean ± SD) together with observed data points. For this pur-

pose, virtual populations of 1000 individuals were created based on the population char-

acteristics reported in the respective publication. System-dependent parameters, such as 

age, body weight, height, organ weights, blood flow rates, and tissue composition, were 

varied by the implemented algorithm in PK-Sim®. Second, the plasma concentration val-

ues of all studies using the predicted arithmetic mean of the population were plotted 

against the corresponding observed values in goodness-of-fit plots. In addition, model 

performance was evaluated by a comparison of predicted to observed area under the con-

centration–time curve (AUC) and maximum plasma concentration (Cmax) values. All AUC 

values (predicted as well as observed) were calculated from the time of the first concen-

tration measurement to the time of the last concentration measurement (AUClast). 

Finally, as quantitative measures of the model performance, the mean relative devi-

ation (MRD) of all predicted plasma concentrations (Equation (1)) and the geometric mean 

fold error (GMFE) of all predicted AUClast and Cmax values (Equation (2)) were calculated. 

MRD = 10x;     x = �
∑  (log10ci� - log10ci)

2k
i=1

k
 (1)

where ci� = predicted plasma concentration that corresponds to the i-th observed concen-

tration, ci = i-th observed plasma concentration, and k = number of observed values. 

GMFE = 10x;     x = 
∑  �log��  �

ρ��
ρ�

�� �
���

m
 

(2)

where p�
i
 = predicted AUClast or Cmax value of study, p

i
 = corresponding observed AUClast 

or Cmax value of study, i, and m = total number of studies. 
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2.6. Local Sensitivity Analysis 

Local sensitivity of the AUC0–24 h of paroxetine, atomoxetine, risperidone or 9-hy-

droxyrisperidone to single parameter changes was analyzed for simulations of single 

orally administered standard doses of paroxetine, atomoxetine, and risperidone, respec-

tively. Parameters were included in the analysis if they have been optimized (intestinal 

permeabilities and kcat values), if they are associated with optimized parameters (KM val-

ues) or if they might have a strong impact due to calculation and QSAR methods used 

(lipophilicities, pKa values and fractions unbound (fu)). A detailed description of the 

model sensitivity analysis is provided in Section S1.4 of Supplementary Materials S1. 

Overviews of all varied parameters for the respective compounds are provided in Sections 

S2.2.3, S3.2.3 and S4.2.3 of Supplementary Materials S1. 

2.7. DGI Model Building 

CYP2D6-dependent clearance processes were modeled using Michaelis–Menten ki-

netics according to Equation (3): 

v = 
Vmax · S

KM + S
 = 

kcat · E · S

KM + S
 (3)

where v = reaction velocity at substrate concentration S, Vmax = maximum reaction velocity, 

KM = Michaelis–Menten constant, kcat = catalytic rate constant, and E = enzyme concentra-

tion. 

The CYP2D6 DGI models for paroxetine, atomoxetine, and risperidone were devel-

oped based on two previously published models for the CYP2D6 substrates metoprolol 

[17] and dextromethorphan [15]. Relative kcat values, defined as the ratio of kcat values for 

populations with a variant activity score and the kcat for populations with an activity score 

of 2 (corresponding to 100% of CYP2D6 activity), were calculated according to Equation 

(4): 

kcat, rel, AS=i = 
kcat, AS = i

kcat, AS = 2

× 100% (4)

where kcat, rel, AS = i = kcat for the investigated activity score relative to AS = 2 and kcat, AS = i = 

kcat for activity score i. 

Activity scores were assigned according to the current consensus [5]. CYP2D6 kcat, rel values 

used to describe the activity score-dependent metabolism of metoprolol [17] and dextro-

methorphan [15] in their respective DGI PBPK models, were analyzed using OLS regres-

sion (polynomial of degree 2, no intercept). For the paroxetine, atomoxetine and risperi-

done models, CYP2D6 kcat values were optimized for studies, which reported plasma con-

centration–time profiles of populations with two wildtype alleles (AS = 2) and were set to 

0 for poor metabolizers of CYP2D6 (AS = 0) as they were assumed to show no CYP2D6 

activity [3]. Subsequently, kcat values for all other modeled activity scores were calculated 

using the polynomial equation obtained from the OLS regression of metoprolol and dex-

tromethorphan kcat values. Here, CYP2D6 KM values as well as CYP2D6 reference concen-

trations were kept constant over the whole range of modeled activity scores. 

2.8. DGI Model Evaluation 

To evaluate the performance of the presented DGI models, as well as the imple-

mented scale of CYP2D6 activity score-dependent metabolism derived from the published 

metoprolol and dextromethorphan PBPK DGI models, predicted plasma concentration–

time profiles were plotted alongside their respective observed data. Plasma concentra-

tion–time profiles for populations with variant activity scores were compared to profiles 

of a population with normal activity (AS = 2) in studies reporting activity scores or geno-

types, whereas plasma concentration–time profiles for variant phenotypes were com-

pared to those of the extensive metabolizer phenotype, where only CYP2D6 phenotypes 

were reported. Furthermore, predicted DGI PK ratios (AUClast and Cmax ratios) (Equation 
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(5)) were evaluated for study populations with variant CYP2D6 activity scores or pheno-

types alongside GMFE values (Equation (2)) for the predicted PK ratios. 

DGI PK ratio = 
PKDGI 

PKreference 
 (5)

where PKDGI = AUClast or Cmax of either a variant activity score or a variant phenotype; 

PKreference = AUClast or Cmax of either AS = 2 or the extensive metabolizer phenotype, respec-

tively. 

Additionally, steady-state exposures (AUCss) of model compounds were predicted 

for different CYP2D6 activity scores. Here, simulations were performed for individuals 

with different activity scores after multiple oral doses of 40 mg paroxetine, 40 mg atomox-

etine, or 2 mg risperidone. 

3. Results 

3.1. PBPK Base Model Building 

A total of 57 plasma concentration–time profiles obtained from 29 published clinical 

trials were used for the development and the evaluation of the paroxetine, atomoxetine, 

and risperidone PBPK models and are summarized in Table 1. Clinical study tables 

providing comprehensive information such as individual and population demographics 

(sex, age, weight, and height) and CYP2D6 activity (phenotype, genotype, or activity 

score) as well as the assignment of the study to the respective dataset are presented in 

Sections S2.1.2, S3.1.2 and S4.1.2 of Supplementary Materials S1 for paroxetine, atomoxe-

tine, and risperidone, respectively. 

For the paroxetine PBPK model, a total of 33 plasma concentration–time profiles 

where paroxetine was administered as an intravenous infusion (four profiles) or orally in 

single (16 profiles) or multiple (13 profiles) doses were used to develop the paroxetine 

PBPK model. Here, administered doses ranged from 10 to 70 mg of paroxetine. The par-

oxetine PBPK model incorporates CYP2D6- and CYP3A4-dependent metabolism of par-

oxetine [22] as well as irreversible inhibition of CYP2D6 and CYP3A4 [23]. Additionally, 

an unspecific hepatic clearance process and renal elimination via passive glomerular fil-

tration were included. A schematic overview of implemented paroxetine metabolic path-

ways is provided in Figure 2a. Drug-dependent model parameters for paroxetine are pre-

sented in Section S2.1.1 of Supplementary Materials S1. 

The atomoxetine PBPK model was developed using 12 plasma concentration–time 

profiles after oral administrations of atomoxetine in single (nine profiles) and multiple-

dose administrations (three profiles) with doses of administered atomoxetine ranging be-

tween 20 and 50 mg. The atomoxetine PBPK model includes metabolism via CYP2D6 and 

CYP2C19 [24] as well as a passive glomerular filtration process. Figure 2b depicts the path-

ways implemented in the atomoxetine model. Atomoxetine drug-dependent model pa-

rameters are presented in Section S3.1.1 of Supplementary Materials S1. 

An overview of risperidone model pathways as published by Kneller et al. [21] is 

provided in Figure 2c. Risperidone and 9-hydroxyrisperidone drug-dependent parame-

ters are listed in Section S4.1.1 of Supplementary Materials S1. 
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Table 1. Summary of clinical studies used for model development and evaluation. 

Study Dose [mg] n Females [%] Age [Years] Weight [kg] CYP2D6 Status References 

Paroxetine     

Belle et al., 2002 20, p.o. (tab) 22 23 38 (20–49) -EM [25] 

Calvo et al., 2004 20, p.o. (tab) 25 64 26 64- [26] 

Chen et al., 2015 25, p.o. (cr) 24 42 26 (18–45) 610.5, 1.0, 1.5, 2 [27] 

Lund et al., 1982 23—28, i.v. (inf.); 45, p.o. (sol) 4 0 (24–28) (66–88)- [28] 

Massaroti et al., 2005 20, p.o. (tab) 28 0 28 (18–42) 72 (57–87)- [29] 

McClelland et al., 1984 70, p.o. (tab) 28 0 31 (22–44) -- [30] 

Mürdter et al., 2016 40, p.o. (tab) 16 100 26 (21–43) 61 (48–74)0, 0.5, 0.75, 1, 2, 3 [31–33] 

Schoedel et al., 2012 20, p.o. (tab) 14 14 34 (19–55) 75- [34] 

Segura et al., 2005 20, p.o. (tab) 7 0 23 65EM [35] 

Sindrup et al., 1992 40, p.o. (tab) 17 0 25 (20–39) 77 (65–95)EM, PM [36] 

van der Lee et al., 2007 20, p.o. (tab) 26 69 44 (18–64) 69 (51–89)EM [37] 

Yasui-Furukori et al., 2006 20, p.o. (tab) 12 25 25 (20–35) 58 (46–75)1.25 [38] 

Yasui-Furukori et al., 2007 20, p.o. (tab) 13 23 24 (21–35) 57 (45–67)EM [39] 

Yoon et al., 2000 40, p.o. (tab) 16 13 22 640, 0.5, 1.25, 2 [40] 

Atomoxetine     

Belle et al., 2002 20, p.o. (tab) 22 23 38 (20–49) -EM [25] 

Byeon et al., 2015 40, p.o. (tab) 62 0 23 660, 1.25, 2 [41] 

Cui et al., 2007 40-80, p.o. (tab) 16 33 (20–29) (53–72)1 [42] 

Kim et al., 2018 20, p.o. (tab) 19 0 (19–25) (49–73)0.5, 2 [43] 

Nakano et al., 2016 50, p.o. (tab, sol) 42 0 23 (20–37) 62 (52–76)EM [44] 

Sauer et al., 2003 20, p.o. (tab) 7 0 41 (19–54) -EM, PM [45] 

Todor et al., 2016 40, p.o. (tab) 30 0 (18–55) -EM, PM [46] 

Risperidone     

Bondolfi et al., 2001 2, p.o. (tab) 11 27 43 (18–63) -EM, PM [47] 

Darwish et al., 2015 2, p.o. (tab) 36 33 32 79- [48] 

Kim et al., 2008 1, p.o. (tab) 10 0 (23–38) (65–80)1.25 [49] 

Markowitz et al., 2002 1, p.o. (tab) 11 21 28 (22–42) -- [50] 

Mahatthanatrakul 2007 4, p.o. (tab) 10 0 31 (55–76)- [51] 

Mahatthanatrakul 2012 2, p.o. (tab) 10 0 33 (23–44) 64 (55–76)- [52] 

Nakagami et al., 2005 1, p.o. (tab) 12 0 24 (20–28) 65 (53–86)1 [53] 

Novalbos et al., 2010 1, p.o. (tab) 71 51 23 (19–34) 66 (43–106)0, 1, 2, 3 [21,54] 

Demographic parameters are given as the mean (range). CYP2D6 status is reported as the mode of the study population phenotype or activity score or the different 

phenotypes and activity scores reported for the respective study sub-populations. -: not given, cr: controlled release tablet, EM: extensive metabolizer, inf: infusion, 

i.v. intravenous, PM: poor metabolizer, p.o.: oral, sol: oral solution, and tab: tablet. 
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Figure 2. Implemented metabolic pathways for the modeled compounds. (a) Paroxetine is metabo-

lized via CYP2D6, CYP3A4, and an unspecific clearance process [22]. Moreover, paroxetine is a 

mechanism-based inhibitor of CYP2D6 and CYP3A4 resulting in an irreversible auto-inhibition of 

paroxetine metabolism [23,55]. Paroxetine metabolites were not included as model compounds. (b) 

Atomoxetine is metabolized via CYP2D6 and CYP2C19 [24]. Atomoxetine metabolites were not in-

cluded as model compounds. (c) Risperidone is metabolized to its active metabolite 9-hy-

droxyrisperidone via CYP2D6 and CYP3A4 [56]. Moreover, other metabolites are formed via 

CYP2D6- and CYP3A4-mediated metabolism [56]. 9-Hydroxyrisperidone is metabolized via an un-

specific hepatic clearance process. Other risperidone metabolites were not included in the model. 

CLhep: unspecific hepatic clearance, and CYP: cytochrome P450. 

3.2. PBPK Base Model Evaluation 

The three presented models could accurately predict the plasma concentrations for 

their respective model compounds. A representative selection of plots displaying pre-

dicted compared to observed plasma concentration–time profiles for paroxetine (a–f), 

atomoxetine (g–i) and risperidone and its metabolite 9-hydroxrisperidone (j–l) is shown 

in Figure 3. 

 

78 results



Pharmaceutics 2022, 14, 1734 9 of 21 
 

 

 

Figure 3. Plasma concentrations of the modeled compounds. (a–f) Model predictions of paroxetine 

of selected (a–c) single-dose administrations of (a) an intravenous infusion, (b) an oral solution, and 

(c) a normal release tablet. (d–f) Multiple-dose administrations of paroxetine as normal release tab-

lets [25,26,28,29,35]. (g–i) Model predictions of atomoxetine as (g,h) single-dose administrations of 

(g) an oral solution, (h) a capsule and (i) multiple-dose administration of atomoxetine [25,44]. (j–l) 

Model predictions of risperidone and 9-hydroxyrisperidone (if available) of (j,k) single-dose admin-

istrations and (l) a multiple-dose administration of risperidone [47,51,52]. Individual predictions are 

shown as lines. Population predictions (n = 1000) are shown as lines with ribbons (arithmetic mean 

± standard deviation (SD)), and symbols present the corresponding observed data ± SD (if available). 

Detailed information on all clinical studies is listed in Sections S2.1.2 [27,30,33,34,36–40], S3.1.2 [41–

43,45,57] and S4.1.2 [48,49,53,54] of the Supplementary Materials S1. iv: intravenous, and po: oral. 

Additionally, plots displaying predicted compared to observed plasma concentra-

tion–time profiles of the three compounds alongside their respective GMFEs for AUClast 

and Cmax values as well as MRD of predicted and observed plasma concentrations are 
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given in Sections S2.2.1, S3.2.1, and S4.2.1 of Supplementary Materials S1. Furthermore, 

goodness-of-fit plots showing predicted compared to observed plasma concentrations, 

AUClast and Cmax values are presented in Sections S2.2.2, S3.2.2, and S4.2.2 of Supplemen-

tary Materials S1. Overall, 82.7%, 88.9% and 89.2% of predicted plasma concentrations 

were within two-fold of their corresponding observed value for paroxetine, atomoxetine, 

and risperidone, respectively. Mean (and range) model GMFEs for paroxetine, atomoxe-

tine and risperidone were 1.51 (1.06–3.02), 1.20 (1.00–1.88) and 1.21 (1.00–1.83) for AUClast 

values, and 1.41 (1.01–3.64), 1.18 (1.02–1.34) and 1.21 (1.01–2.02) for Cmax values. 

3.3. Local Sensitivity Analysis 

Local sensitivity analyses were performed using simulations after oral administra-

tions of the respective standard doses for paroxetine (20 mg), atomoxetine (40 mg) and 

risperidone (2 mg). Parameters with associated sensitivity values >0.5 (100% parameter 

value perturbation resulting in a >50% change of predicted AUC) were considered sensi-

tive. Here, lipophilicity (literature value) and fu (literature value) were sensitive parame-

ters for the paroxetine model. Lipophilicity (optimized value), fu (literature value), 

CYP2D6 kcat (optimized) and CYP2D6 KM (literature value) were sensitive parameters for 

the atomoxetine model. Lipophilicity (literature value), fu (literature value) and intestinal 

permeability (optimized value) were sensitive parameters for the risperidone model. A 

quantitative and visual representation of the local sensitivity analysis is provided in Sec-

tions S2.2.3, S3.2.3 and S4.2.3 of Supplementary Materials S1. 

3.4. DGI Model Building 

An OLS regression of CYP2D6 kcat, rel values was performed for the published 

metoprolol and dextromethorphan models to derive a substrate-independent scale of ac-

tivity score-dependent metabolism for the newly developed models of paroxetine, 

atomoxetine, and risperidone. The results of the OLS regression are displayed in Figure 4. 

 

Figure 4. OLS regression of CYP2D6 kcat, rel values for the published DGI models of metoprolol and 

dextromethorphan [15,17]. The solid line represents the regression curve (degree = 2, intercept = 0), 

and symbols represent kcat, rel values for the different activity scores. AS: activity score, kcat, rel: kcat 

relative to AS = 2, and R2: coefficient of determination. 
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Input values and results of the regression analysis as well as CYP2D6 model kcat val-

ues for the modeled activity scores (calculated using the Equation given in Figure 4) are 

shown in Table 2. Here, paroxetine, atomoxetine, and risperidone CYP2D6 model kcat val-

ues were calculated by multiplying interpolated kcat, rel values with the optimized baseline 

kcat value (activity score 2). 

Table 2. OLS regression input values and interpolated kcat, rel values alongside model CYP2D6 kcat 

values for paroxetine, atomoxetine, and risperidone for different CYP2D6 activity scores. 

CYP2D6 

Activity 

Score 

CYP2D6 kcat, rel [%] CYP2D6 kcat [1/min] a 

MET DEX INTRPL PAR ATO RIS9HR RISother 

0 0 0 0 0.00 0.00 0 0.00 

0.25 - 2 8 0.30 7.63 0.23 0.14 

0.5 19 14 17 0.66 16.79 0.52 0.31 

0.75 - - 27 1.08 27.48 0.84 0.51 

1 - 40 39 1.56 39.70 1.22 0.74 

1.25 64 48 53 2.11 53.44 1.64 1.00 

1.5 72 63 68 2.71 68.70 2.11 1.29 

2 100 100 102 4.09 b 103.82 b 3.19 b 1.94 b 

3 213 170 189 7.58 192.37 5.91 3.60 

-: not available, a: values calculated as the product of the relative kcat value and the optimized kcat for 

populations with an activity score of 2, b: optimized value, ATO: atomoxetine, DEX: dextrome-

thorphan, INTRPL: interpolated values using the polynomial equation of the OLS regression, kcat, rel: 

kcat relative to AS = 2, MET: metoprolol, PAR: paroxetine, RIS9HR: risperidone → 9-hydroxyrisperi-

done, and RISother: risperidone → other metabolites. 

3.5. DGI Model Evaluation 

The newly developed DGI models were evaluated using clinical studies, which strat-

ified their subjects by CYP2D6 activity score or phenotype. These studies either provided 

the activity score for the investigated population, the CYP2D6 phenotype, or CYP2D6 gen-

otypes of all study participants. Simulations were performed using the corresponding kcat 

values with respect to activity score (Table 2) or phenotype (Sections S2.1.1, S3.1.1 and 

S4.1.1 of Supplementary Materials S1). DGI model performance is presented in Figure 5, 

depicting representative predicted compared to observed plasma concentration–time pro-

files of populations with different activity scores for paroxetine (a–f), atomoxetine (g–i) 

and risperidone (j–l). Plots depicting the model performance of all DGI studies are pre-

sented in Sections S2.3.1, S3.3.1 and S4.3.1 of Supplementary Materials S1. 
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Figure 5. Simulated plasma concentrations of the modeled compounds for different CYP2D6 activ-

ity scores. (a–f) Paroxetine [33,40], (g–i) atomoxetine [41] and (j–l) risperidone [54] plasma concen-

tration–time profiles of selected CYP2D6 DGI studies, compared to their observed data [33,40,41,54]. 

Individual predictions are shown as lines. Population predictions (n = 1000) are shown as lines with 

ribbons (arithmetic mean ± standard deviation (SD)), and symbols represent the corresponding ob-

served data ± SD (if available). 
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Overall, predicted DGI AUClast and Cmax ratios were in good agreement with ob-

served DGI ratios, highlighting the good performance of the DGI models predicting the 

activity score-dependent metabolism of paroxetine, atomoxetine, and risperidone, with 

22/24 DGI AUClast and 22/24 Cmax ratios within the prediction success limits proposed by 

Guest et al. [58] as depicted in Figure 6. The predicted DGI AUClast ratios showed mean 

GMFEs of 1.37, 1.25 and 1.11 whereas the overall GMFEs of predicted DGI Cmax ratios were 

1.33, 1.28 and 1.16 for paroxetine, atomoxetine, and risperidone, respectively. Predicted to 

observed DGI AUClast and Cmax ratios for all studies are presented in Sections S2.3.3, S3.3.3, 

and S4.3.3 of Supplementary Materials S1. 

 

Figure 6. Comparison plot of predicted versus observed (a) DGI AUClast ratios and (b) DGI Cmax 

ratios for all analyzed CYP2D6 DGI studies. The straight black line indicates the line of identity, 

curved black lines show prediction success limits proposed by Guest et al., including 1.25-fold var-

iability [58]. Solid gray lines indicate two-fold deviation, dashed gray lines show 1.25-fold deviation. 

AUClast: area under the plasma concentration–time curve from the time of the first concentration 

measurement to the time of the last concentration measurement, Cmax: maximum plasma concentra-

tion, and DGI: drug–gene interaction. 

Simulations of steady-state plasma concentration–time profiles and AUCss values in 

individuals with different activity scores after multiple oral doses of 20 mg paroxetine, 40 

mg atomoxetine or 2 mg risperidone and a comparison of the corresponding AUCss values 

are given in Figure 7. Predicted DGI AUCss ratios were 3.4, 13.6 and 2.0 for poor metabo-

lizers (activity score 0) compared to normal metabolizers (activity score 2) for paroxetine, 

atomoxetine and risperidone active moiety (risperidone + 9-hydroxyrisperidone), respec-

tively. Conversely, predicted DGI AUCss ratios were 0.2, 0.5 and 0.95 for ultrarapid me-

tabolizers (activity score 3). 
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Figure 7. Model-based CYP2D6 DGI predictions. Left panel: simulations of drug exposure in indi-

viduals with different CYP2D6 activity scores after multiple oral doses of 40 mg paroxetine once 

daily (a), 40 mg atomoxetine twice daily (c) or 2 mg risperidone twice daily (e). Right panel: com-

parison of the corresponding AUCss values for the different activity scores for paroxetine (b), 

atomoxetine (d) and risperidone active moiety ((f) risperidone and 9-hydroxyrisperidone concen-

trations). AUCss: area under the plasma concentration–time curve during steady state (calculated 

for days 24–28), bid: twice daily, and qd: once daily. 

4. Discussion 

In this study, whole-body PBPK models of paroxetine, atomoxetine, and risperidone, 

including its active metabolite 9-hydroxyrisperidone, are presented. A total of 57 studies 

were used for model building and evaluation. CYP2D6 DGIs were modeled by imple-

menting CYP2D6 activity score-dependent metabolism of the respective compounds for 

activity scores ranging from 0 to 3. Parameters for the CYP2D6 activity score-dependent 

metabolism for the presented models were derived from previously published models 

[15,17] via interpolation and represent a substrate-independent approach of modeling 

CYP2D6 DGIs. All three models showed good performance as highlighted in the model 

evaluation sections. 

Previously published PBPK models of paroxetine, atomoxetine and risperidone typ-

ically implemented CYP2D6 DGIs by adjusting model parameters such as CLint, KM or kcat 

values based on traditional CYP2D6 phenotypes (extensive and poor metabolizer) [59,60] 

or specific CYP2D6 genotypes such as CYP2D6*1/*1 and CYP2D6*10/*10 [43], whereas the 

presented model can accurately describe both traditional phenotypes as well as CYP2D6 

activity scores, allowing the models to predict compound plasma concentrations for all 

relevant genotypes to provide a finer graduation of CYP2D6 activity [17]. 

84 results



Pharmaceutics 2022, 14, 1734 15 of 21 
 

 

The CYP2D6 activity score-dependent metabolism was modeled by adjusting 

CYP2D6 kcat values based on the activity score of the respective individual or population. 

Hence, the kcat value serves as a surrogate parameter, reflecting changes in both in vivo 

reference concentration [61] and in vitro Vmax [62] that typically occur due to polymor-

phisms in the CYP2D6 gene. Here, KM and CYP2D6 reference concentrations were fixed 

over the whole range of modeled activity scores and phenotypes [18]. Model CYP2D6 kcat 

values for extensive metabolizers were consistently lower compared to normal metabo-

lizers (activity scores 1.25–2, see Table 2 and Sections S2.1.1, S3.1.1 and S4.1.1 of Supple-

mentary Materials S1 for paroxetine, atomox 

etine and risperidone, respectively). Specifically, the CYP2D6 kcat values for extensive 

metabolizers were 35%, 30% and 36% lower compared to activity score 1.25 for paroxetine, 

atomoxetine and risperidone, respectively. This is caused by the limited intersection be-

tween the aforementioned activities, mainly due to the often arbitrary definition of the 

extensive metabolizer phenotype [16]. 

While the presented approach of modeling CYP2D6 DGIs based on the activity score 

categories was a necessary simplification, it also represents one of the limitations of the 

presented study and, by extension, the activity score system itself. As suggested by van 

der Lee et al., CYP2D6 DGIs may be more accurately described using a continuous scale 

approach, reflecting the effect of CYP2D6 allelic variants on the pharmacokinetics of 

CYP2D6 substrates in vivo and in vitro compared to the activity score system [9]. Addi-

tionally, certain CYP2D6 alleles have been described to display substrate-specific effects 

in vitro and in vivo. For instance, the CYP2D6*17 allele, classified as a reduced function 

(activity score 0.5) allele, shows increased activity in risperidone metabolism when com-

pared to the wildtype *1 allele [63]. These effects are not considered in the classification of 

alleles using the activity score system [61]. Regardless, current clinical guidelines by the 

Dutch Pharmacogenetics Working Group (DPWG), the Clinical Pharmacogenetics Imple-

mentation Consortium (CPIC) and other major institutions in this field, are based on the 

activity score system [5]. Moreover, a allele-specific modeling approach would drastically 

increase model complexity and would require an extensive amount of in vitro and in vitro 

model input data [18]. Hence, the approach presented in this study was deemed a more 

practical choice in the context of PBPK modeling. 

The presented paroxetine model includes metabolism via CYP2D6 and CYP3A4 and 

an unspecific hepatic clearance pathway as a surrogate pathway for metabolism via other 

CYP enzymes that were reported to metabolize paroxetine in vitro [22]. Here, additional 

experimental in vitro data such as KM and Vmax values were available for paroxetine me-

tabolism via CYP1A2, CYP2C19 and CYP3A5. However, these enzymes were described 

to have a smaller effect on paroxetine kinetics compared to CYP2D6 and CYP3A4 [22]. 

Furthermore, CYP3A4 was implemented to describe the effect of auto-inhibition via 

CYP3A4 on the pharmacokinetics of paroxetine [23,55], especially in poor metabolizers of 

CYP2D6. No metabolite of paroxetine was implemented in the model due to a lack of 

reported metabolite plasma concentrations in the published literature, presumably due to 

the chemical and metabolic instability of major metabolite paroxetine-catechol [22,35]. 

Furthermore, paroxetine has been suggested as a substrate of P-glycoprotein (P-gp) in the 

published literature [39,64]. However, while a moderate affinity of paroxetine to P-gp was 

observed in in vitro experiments [65], genetic polymorphisms in the ABCB1 gene were 

described to have no significant on paroxetine plasma concentrations in vivo [66]. Hence, 

the authors did not implement active transport via P-gp in the model. Regardless, the 

model was able to describe paroxetine plasma concentrations for all doses (20–70 mg) in 

published clinical studies. 

CYP2D6 has been described to be mainly responsible for atomoxetine metabolism, as 

atomoxetine AUC was found to be increased by 400% in poor metabolizers of CYP2D6 

compared to extensive metabolizers [45]. In the presented PBPK model, atomoxetine me-

tabolism was described by implementing CYP2D6 and CYP2C19. Although 4-hydroxya-

tomoxetine has been reported to be primarily formed via CYP2D6, only a total of four 

4.3 project iii : pbpk modeling of paroxetine , atomoxetine and risperidone 85



Pharmaceutics 2022, 14, 1734 16 of 21 
 

 

plasma concentration–time profiles of 4-hydroxyatomoxetine were reported in the pub-

lished literature [41,67]. Thus, the metabolite was not explicitly modeled. However, as 

more clinical studies reporting 4-hydroxyatomoxetine plasma concentrations become 

available, the presented PBPK model of atomoxetine can be extended to cover the for-

mation of 4-hydroxyatomoxetine. 

While CYP1A2, CYP2B6, CYP2C9 and CYP3A4 were also described to contribute to 

the metabolism of atomoxetine in vitro, their relative contribution to atomoxetine deple-

tion was found to be far smaller compared to CYP2C19 [24]. Hence, CYP2C19 serves as a 

surrogate pathway for multiple CYP enzymes in the presented model. While CYP2C19 is 

also polymorphically expressed, and CYP2C19 DGIs in CYP2C19 have been described in 

the literature [68], they were considered negligible, as CYP2D6 accounts for approxi-

mately 90% of atomoxetine oral clearance in normal metabolizers of CYP2D6 [45] and the 

CYP2C19 kcat value was below the sensitivity threshold for atomoxetine model parameters 

(see Section S3.2.3 of Supplementary Materials S1). 

To describe the activity score-dependent metabolism of risperidone, an established 

parent-metabolite model was used [21] and adapted. The model includes metabolism via 

CYP2D6 and CYP3A4 for risperidone as well as active transport via P-gp for both risper-

idone and its active metabolite 9-hydroxyrisperidone [69]. 

Simulations of steady-state plasma concentrations for the modeled compounds re-

vealed that, although kcat, rel values implemented in the respective DGI models for the dif-

ferent activity scores were the same, AUCss values behaved differently between the three 

compounds. For instance, AUCss DGI ratios for CYP2D6 poor metabolizers (activity score 

0) were 3.4, 13.6 and 2.0, whereas AUCss DGI ratios for ultrarapid metabolizers (activity 

score 3) were 0.2, 0.5 and 0.95 for paroxetine, atomoxetine and risperidone, respectively. 

Here, different model-specific factors might influence predicted AUCss DGI ratios. For 

risperidone, the total active moiety was considered (risperidone + 9-hydroxyrisperidone). 

Here, a decrease in the risperidone AUC with increasing activity scores typically infers an 

increase in 9-hydroxyrisperidone AUC, partially compensating the effect of CYP2D6 DGIs 

on the AUC of the total active moiety, and the overall pharmacodynamic effect of risper-

idone, as 9-hydroxyrisperidone has similar activity compared to risperidone [70]. Con-

versely, the paroxetine model includes auto-inhibition via mechanism-based inhibition of 

CYP2D6 and CYP3A4, reducing the differences between DGI AUCss values for the differ-

ent modeled activity scores. 

5. Conclusions 

This study presents whole-body PBPK models of paroxetine, atomoxetine, and 

risperidone. The models implement CYP2D6 activity score-dependent metabolism in-

formed from previously published PBPK models of CYP2D6 substrates and have been 

successfully used to predict the plasma concentrations of their model compounds both in 

non-DGI and DGI scenarios with various CYP2D6 activity scores. The final PBPK model 

files will be made publicly available in the Clinical Pharmacy Saarland University GitHub 

model repository (http://models.clinicalpharmacy.me/). Due to the mechanistic imple-

mentation of human physiology and important pharmacokinetic pathways, the models 

allow for knowledge-based scaling to special populations and can serve as the basis for 

future investigations of CYP2D6 drug-drug–gene interaction (DDGI) scenarios. 
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www.mdpi.com/article/10.3390/pharmaceutics14081734/s1, Supplementary Materials. Section 1: 
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Abstract: Clomiphene, a selective estrogen receptor modulator (SERM), has been used for the
treatment of anovulation for more than 50 years. However, since (E)-clomiphene ((E)-Clom) and its
metabolites are eliminated primarily via Cytochrome P450 (CYP) 2D6 and CYP3A4, exposure can be
affected by CYP2D6 polymorphisms and concomitant use with CYP inhibitors. Thus, clomiphene
therapy may be susceptible to drug–gene interactions (DGIs), drug–drug interactions (DDIs) and
drug–drug–gene interactions (DDGIs). Physiologically based pharmacokinetic (PBPK) modeling is a
tool to quantify such DGI and DD(G)I scenarios. This study aimed to develop a whole-body PBPK
model of (E)-Clom including three important metabolites to describe and predict DGI and DD(G)I
effects. Model performance was evaluated both graphically and by calculating quantitative measures.
Here, 90% of predicted Cmax and 80% of AUClast values were within two-fold of the corresponding
observed value for DGIs and DD(G)Is with clarithromycin and paroxetine. The model also revealed
quantitative contributions of different CYP enzymes to the involved metabolic pathways of (E)-Clom
and its metabolites. The developed PBPK model can be employed to assess the exposure of (E)-Clom
and its active metabolites in as-yet unexplored DD(G)I scenarios in future studies.

Keywords: clomiphene; pharmacokinetics; cytochrome P450 2D6 (CYP2D6) polymorphisms; drug–drug
interactions (DDIs); drug–drug–gene interactions (DDGIs); drug–gene interactions (DGIs); (E)-clomiphene;
physiologically based pharmacokinetic (PBPK) modeling

1. Introduction

Ovulation disorders resulting in infertility can be caused by polycystic ovary syn-
drome (PCOS), which shows a prevalence of 4–20% in women of reproductive age world-
wide [1,2]. Clomiphene has been used for the treatment of infertility in women with
PCOS since the late 1960s and is administered orally as a racemic mixture of (E)- and
(Z)-clomiphene ((E)-Clom and (Z)-Clom) [1,3]. As a selective estrogen receptor modulator
(SERM), clomiphene—particularly (E)-Clom and its metabolites—inhibits the estrogen
receptor at the hypothalamic arcuate nucleus [4–6]. Here, a rise in gonadotropin-releasing
hormone levels leads to an increase in follicle-stimulating and luteinizing hormones, which
in turn, induces ovulation [7]. In addition, antimicrobial activity of SERMs against different
strains of bacteria has been shown in recent work [8,9].

During clomiphene therapy, 8–54% of women do not respond, while variability in
response is affected by various factors such as hyperandrogenemia and obesity [10–12]. Addi-
tionally, research efforts have identified the importance of the highly polymorphic cytochrome
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P450 (CYP) 2D6 enzyme in the bioactivation of (E)-Clom [6,13]. Here, the two metabo-
lites (E)-4-hydroxyclomiphene ((E)-4-OH-Clom) and (E)-4-hydroxy-N-desethylclomiphene
((E)-4-OH-DE-Clom) were identified to exhibit the highest inhibitory affinity towards the
estrogen receptor with half-maximal inhibitory concentrations of 2.2 and 0.9 nM, respec-
tively [7]. In contrast, the parent drug (E)-Clom as well as (Z)-Clom and its metabolites
showed lower inhibitory effects in in vitro assays [5,6]. Thus, (E)-4-OH-Clom and (E)-4-OH-
DE-Clom are assumed to be key components in the bioactivation process of clomiphene with
their pharmacokinetics (PK) strongly depending on CYP2D6 activity [5].

As a result, treatment with clomiphene can be subject to drug–gene interactions (DGIs)
which has been confirmed in a study with healthy female volunteers [5]. Here, CYP2D6
poor metabolizers (PM) showed approximately ten-fold lower maximum plasma concentra-
tions (Cmax) of (E)-4-OH-Clom and (E)-4-OH-DE-Clom compared with normal metabolizers
(NM) [5]. Furthermore, the in vitro formation rates for both (E)-4-OH-Clom and (E)-4-OH-
DE-Clom increased with CYP2D6 activity [5]. The impact of CYP2D6 polymorphisms has
also been observed in a recent clinical trial, where all CYP2D6 intermediate metaboliz-
ers (IM) responded to clomiphene therapy, while 30% of NM were non-responders [14].
However, this non-classical gene–dose effect points to a more complex metabolic scheme.

As the biotransformation of its active metabolites does not only depend on CYP2D6,
but also on CYP3A4 metabolism, among others, systemic exposure of (E)-Clom and its
metabolites can be altered by drug–drug interactions (DDIs) with CYP2D6 inhibitors and
additionally with CYP3A4 inhibitors/inducers [15,16]. This dependency of (E)-Clom PK
and bioactivation on CYP2D6 and CYP3A4 leads to a complex network of possible DGI, DDI
and drug–drug–gene interaction (DDGI) scenarios that can cause a high variability in the
longitudinal trajectory of plasma concentrations for (E)-Clom and its metabolites. The fact,
that not only the formation, but also the elimination, of the active metabolites depends on
CYP2D6 and CYP3A4 activity, adds to the complexity of the PK. Here, physiologically based
pharmacokinetic (PBPK) modeling can integrate available in vitro and in vivo information
on these processes to quantify and investigate DGI, DDI and DDGI scenarios.

Thus, this study aimed to develop a whole-body parent–metabolite PBPK model of
(E)-Clom and its metabolites (E)-4-OH-Clom, (E)-N-desethylclomiphene ((E)-DE-Clom)
and (E)-4-OH-DE-Clom to support the investigation of CYP2D6 DGI effects on the PK and
bioactivation of (E)-Clom. In addition, the model was applied to predict various DD(G)I
scenarios with the CYP2D6 inhibitor paroxetine and the CYP3A4 inhibitor clarithromycin
and to gain insights into the PK regarding the contribution of different metabolic pathways
to the elimination of (E)-Clom and its metabolites. The supplementary document to
this article serves as a model reference and includes a detailed evaluation of the model
performance. In addition, the model files will be made publicly available (http://models.
clinicalpharmacy.me/).

2. Materials and Methods
2.1. Clinical Study Data

Clinical data from a recently performed pharmacokinetic panel study (EudraCT-Nr.:
2009-014531-20, ClinicalTrails.gov: NCT01289756) were used for PBPK model develop-
ment [6]. The study protocol, patient information sheet and consent form were approved
by the Ethics Committee of the University of Tübingen and the German Federal Institute
for Drugs and Medical Devices (BfArM). All study participants had signed an informed
consent form.

The study was conducted in 20 healthy, Caucasian, premenopausal female volun-
teers that were genotyped for CYP2D6 polymorphisms and subsequently assigned to
predicted phenotypes according to the respective CYP2D6 activity score (AS) as depicted
in Table 1 [17,18]. All subjects received 100 mg clomiphene citrate (two 50 mg tablets
Ratiopharm GmbH, Ulm, Germany, with 62:38 (E)-Clom:(Z)-Clom) as a single dose after
an overnight fast and without any concomitant medication. After a wash-out phase of at
least three weeks, clomiphene was administered concomitantly with the strong CYP3A4
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inhibitor clarithromycin [19]. Here, the participants received 500 mg clarithromycin twice
daily for four days. On day 5, a single dose of clomiphene citrate was administered together
with 500 mg clarithromycin. Finally, in the third period, all subjects received clomiphene
citrate together with the strong CYP2D6 inhibitor paroxetine [19]. Here, 40 mg paroxetine
was administered once daily for two days. On day 3, participants received a single dose of
clomiphene citrate concomitantly with 40 mg paroxetine (Figure 1).

Table 1. Overview of clinical data integrated from the pharmacokinetic panel study.

AS = 0 AS = 0.5 AS = 0.75 AS = 1 AS = 2 AS = 3

n 6 # 4 1 + 2 3 3
CYP2D6

phenotypes PM IM IM IM NM UM

CYP2D6
genotypes

*4/*4
*4/*5
*4/*6

*4/*41
*4/*9 *9/*10 *1/*4 *1/*1 *1/*1 × 3

Demographics

Age [years] 25.2
(22–29)

24.3
(21–30)

22.0
(-)

25.5
(23–28)

32.3
(26–43)

25.7
(22–28)

Weight [kg] 62.3
(50.0–70.0)

59.3
(55.5–64.0)

63.0
(-)

68.8
(63.5–74.0)

56.5
(48.0–63.5)

61.7
(54.0–73.0)

Height [cm] 1.70
(1.53–1.75)

1.68
(1.59–1.72)

1.66
(-)

1.71
(1.68–1.73)

1.63
(1.60–1.67)

1.65
(1.57–1.75)

BMI [kg/m2]
21.6

(20.6–22.9)
21.1

(20.3–22.0)
22.9
(-)

23.6
(22.5–24.7)

21.3
(18.8–24.2)

22.6
(20.3–23.8)

# number of study participants decreased during the DDGI setting due to drop-outs (n = 5 for clarithromycin, n = 4
for paroxetine); + one study participant classified as AS = 0.75 was excluded from the analysis (see Section S1.1 of
the supplementary document); demographic parameters are presented as mean (range); AS, CYP2D6 activity
score; BMI, body mass index; IM, intermediate metabolizers; n, number of subjects; NM, normal metabolizers;
PM, poor metabolizers; UM, ultrarapid metabolizers.

Period 1 Period 2 Period 3

100 mg 
clomiphene citrate

wash-out 
≥ 3 weeks

500 mg 
clarithromycin

twice daily

100 mg clomiphene citrate + 
500 mg clarithromycin

100 mg clomiphene citrate +
40 mg paroxetine

40 mg 
paroxetine
once daily

days0    1  2  3    4 5   6  7 0 1    2 3    4  5  6 7 8 9 10 11 0    1 2    3    4 5    6  7  8

wash-out 
≥ 3 weeks

Figure 1. Drug administration schedule in the pharmacokinetic panel study. In period I, clomiphene
citrate alone; in period II, combined with clarithromycin; and in period III, combined with paroxetine
was administered.

Both plasma concentration–time profiles as well as renal excretion data of (E)-Clom
and its metabolites (E)-4-OH-Clom, (E)-DE-Clom and (E)-4-OH-DE-Clom were obtained by
validated liquid chromatography–tandem mass spectrometry (LC-MS/MS) methods [13,20].
The demographic and clinical characteristics of the study population are shown in Table 1.

Additionally, (E)-Clom plasma concentration–time profiles from two single-dose [21,22]
and two multiple-dose [23,24] studies were identified in a literature search and plasma
profiles were digitized for further model evaluation. In these clinical trials, CYP2D6 geno-
types of study participants were not reported. Additional information including study
populations and the corresponding administration protocols are listed in Table S2 of the
supplementary document.
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2.2. Software

PBPK modeling and simulation was performed in PK-Sim® and MoBi® (version
9.1 part of the Open Systems Pharmacology (OSP) Suite, http://www.open-systems-
pharmacology.org) [25]. Published clinical data of (E)-Clom were digitized with GetData
Graph Digitizer version 2.26.0.20 (S. Fedorov) according to Wojtyniak and coworkers [26].
PK parameter calculations, model performance evaluations and graphics were accom-
plished with the R programming language version 3.6.3 (R Foundation for Statistical Com-
puting, Vienna, Austria) [27]. Model parameter estimation via Monte-Carlo optimization
as well as local sensitivity analysis were performed within PK-Sim®.

2.3. PBPK Model Development

For PBPK model building, information on physicochemical properties, as well as
absorption, distribution, metabolism and excretion (ADME) processes of all investigated
compounds, were gathered from the literature. Clinical data were split into a training and
a test dataset. The training dataset for model development comprised mean plasma and
renal excretion profiles of (E)-Clom and its metabolites from NM and PM study populations
(n = 8 plasma concentration–time profiles and n = 8 renal excretion profiles). This dataset
was selected to inform catalytic rate constant (kcat) parameters associated with CYP2D6-
dependent and -independent metabolic pathways, respectively. Plasma concentration–time
profiles and renal excretion data of IM and ultrarapid metabolizers (UM) in the DGI setting,
data from all phenotypes in the DD(G)I setting as well as digitized clinical study data from
the published literature were utilized as the test dataset for PBPK model evaluation (n = 70
plasma concentration–time profiles and n = 64 renal excretion profiles).

Metabolic pathways of (E)-Clom and its metabolites comprising hydroxylation, N-
de-ethylation and glucuronidation, among others, were implemented via CYP enzymes
(CYP2D6, CYP3A4 and CYP2B6) and unspecific hepatic clearance mechanisms (Figure 2). In
summary, (E)-Clom is primarily metabolized via CYP2D6 to the active metabolite (E)-4-OH-
Clom as well as to (Z)-3-hydroxyclomiphene (implemented as an undefined metabolite) [6].
An additional biotransformation process via CYP2B6 to (E)-4-OH-Clom was implemented
to cover the fraction of CYP2D6-independent metabolism observed in the PM population
and in CYP2D6 DD(G)I scenarios [5,6]. Biotransformation of (E)-Clom to (E)-DE-Clom
was implemented mainly through CYP3A4 with CYP2D6 playing only a minor role in this
metabolic pathway [5,28].

CYP2D6

(E)-Clom

(E)-4-OH-DE-Clom

(E)-4-OH-Clom(E)-DE-Clom
undef. metab.

undef. metab.undef. metab.

undef. metab.

undef. metab.

undef. metab.

CYP2B6

unsp. hep.
CL

unsp. hep.
CL

CYP2D6CYP3A4

CYP2D6

CYP2D6

CYP2D6

CYP2D6

CYP2D6

CYP3A4

CYP3A4

Firefox file:///E:/proofreading/pharmaceutics-2020207/%E9%80%81%E8%BD%AC/pharmaceutics-2...

1 of 1 11/25/2022, 10:13 AM

Figure 2. Overview of implemented metabolic processes in the (E)-Clom PBPK model. CYP, cy-
tochrome P450; (E)-4-OH-Clom, (E)-4-hydroxyclomiphene; (E)-4-OH-DE-Clom, (E)-4-hydroxy-N-
desethylclomiphene; (E)-Clom, (E)-clomiphene; (E)-DE-Clom, (E)-N-desethylclomiphene; undef.
metab., undefined metabolite; unsp. hep. CL, unspecific hepatic clearance.
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(E)-4-OH-Clom is metabolized via CYP2D6 to (Z)-3,4-dihydroxyclomiphene (imple-
mented as an undefined metabolite), via an unspecific hepatic clearance mechanism and via
CYP3A4 to the second active metabolite (E)-4-OH-DE-Clom [5,6,28]. (E)-4-OH-DE-Clom is
also formed via CYP2D6 metabolism of (E)-DE-Clom, which in turn, represents the main
route of elimination of (E)-DE-Clom [5,28]. Furthermore, (E)-DE-Clom is metabolized to
minor extents through CYP2D6 and CYP3A4 to (E)-N,N-didesethylclomiphene (imple-
mented as an undefined metabolite) [5,28]. The metabolism of (E)-4-OH-DE-Clom has not
been extensively investigated, yet. According to work by Kröner [6], (E)-4-OH-DE-Clom is
presumably metabolized through a CYP-mediated pathway to (Z)-3,4-dihydroxydesethyl-
clomiphene. Additionally, glucuronidation, sulfation and potentially further unexplored
pathways play a role in (E)-4-OH-DE-Clom biotransformation [6] and were grouped under
an unspecific hepatic clearance process in the PBPK model (Figure 2).

Renal excretion through glomerular filtration was implemented and potential reab-
sorption or secretion processes were informed via renal excretion data. Model parameters
that could not be informed from experimental reports during model development were
optimized by fitting the model to the observed data of the training dataset. Moreover,
a fraction of (E)-Clom metabolized via CYP3A4 was calculated (see Section S1.5 of the
supplementary document) and used to inform kcat model parameters associated with
(E)-Clom metabolism. For detailed information on PBPK model building, see Section S1 of
the supplementary document.

2.4. DGI and DD(G)I Modeling

Using the training dataset, kcat values for CYP2D6-mediated pathways were estimated
for the NM population, while CYP2D6 kcat values for the PM population were set to zero.
To predict DGIs and plasma concentration–time profiles in the IM and UM populations, IM
and UM kcat values for CYP2D6-dependent pathways were extrapolated from the estimated
NM-kcat value (Equation (1)):

kcat, AS=i = kcat, AS=2 ·IVSFi (1)

Here, kcat, AS=i represents the catalytic rate constant for CYP2D6 AS = i, kcat, AS=2 is
the catalytic rate constant for the NM population and IVSFi is the corresponding in vitro
scaling factor (IVSF). IVSFs were obtained using in vitro information on CYP2D6 AS-
specific formation rates regarding the metabolism of (E)-Clom and its three metabolites
(see Table S8 of the supplementary document) [5]. For predictions of plasma concentrations
from clinical trials that did not report CYP2D6 phenotypes, CYP2D6 kcat parameters were
fitted to the respective plasma concentration–time profiles for each study.

In the DD(G)I setting, study participants in the pharmacokinetic panel study received
clomiphene citrate together with the CYP3A4 inhibitor clarithromycin or the CYP2D6 in-
hibitor paroxetine that additionally acts as a weak inhibitor of CYP3A4 [19,29]. Predictions
for DD(G)I scenarios of (E)-Clom and the investigated metabolites were performed for all
CYP2D6 AS by coupling the developed parent–metabolite PBPK model with previously
published PBPK models of the perpetrator drugs clarithromycin [16] and paroxetine [30].
Inhibition mechanisms of CYP3A4 and CYP2D6 were implemented as described in the
OSP Suite manual [31]. Interaction parameters were used as published in the respective
perpetrator PBPK models [16].

2.5. PBPK DGI and DD(G)I Model Evaluation

The performance of the parent–metabolite PBPK model was evaluated, applying
several graphical and quantitative methods. The predicted plasma concentration–time
profiles of (E)-Clom, (E)-4-OH-Clom, (E)-DE-Clom and (E)-4-OH-DE-Clom were graphically
compared with their respective observed plasma profiles for all investigated CYP2D6 AS
populations. Additionally, goodness-of-fit plots were used to compare predicted and
observed areas under the plasma concentration–time curves from the first to the last time
point of measurements (AUClast), Cmax values and plasma concentrations of all model
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compounds for the DGI and DD(G)I scenarios. As quantitative measures, the mean relative
deviation (MRD) of predicted plasma concentrations and the geometric mean fold error
(GMFE) of predicted AUClast and Cmax were calculated according to Equations (2) and (3),
respectively:

MRD = 10x with x =

√
1
n ∑n

i=1 (log10 ĉi − log10 ci)
2 (2)

Here, ĉi represents the i-th predicted plasma concentration, ci is the corresponding
observed plasma concentration and n equals the number of observed values.

GMFE = 10x with x =
1
n ∑n

i=1

∣∣∣∣log10

(
âi

ai

)∣∣∣∣ (3)

Here, âi represents the i-th predicted AUClast and Cmax value, respectively, ai is the
corresponding observed value and n equals the number of predicted plasma profiles.

For the evaluation of DGI and DD(G)I effects, the predicted AUClast and Cmax effect
ratios were calculated according to Equations (4) and (5) and compared with the corre-
sponding observed values. Here, model performance was assessed using the prediction
acceptance limits proposed by Guest et al. with 1.25-fold variability [32].

AUClast, AS=i ratio =
AUClast, effect, AS=i

AUClast, control
(4)

Cmax, AS=i ratio =
Cmax, effect, AS=i

Cmax, control
(5)

For the calculation of DGI ratios, AUClast, effect, AS=i and Cmax, effect, AS=i represent the
AUClast and Cmax for CYP2D6 AS = i, while AUClast, control and Cmax, control are the AUClast
and Cmax values for the NM (AS = 2) population. For the calculation of DD(G)I ratios,
AUClast, effect, AS=i and Cmax, effect, AS=i represent the AUClast and Cmax for the CYP2D6 AS = i
in the DD(G)I scenario with clarithromycin or paroxetine, while AUClast, control and
Cmax, control are the AUClast and Cmax values for the CYP2D6 AS = i without the concomitant
use of perpetrator drugs.

Moreover, a local sensitivity analysis was performed using PK-Sim®. A detailed descrip-
tion of the analysis and results is provided in Section S4.4 of the supplementary document.

3. Results
3.1. PBPK Model Building and Evaluation

The developed whole-body parent–metabolite PBPK model successfully described
plasma concentration–time profiles and renal excretion profiles in NM and PM populations.
In addition, DGI effects in IM and UM populations as well as DD(G)I scenarios with
clarithromycin and paroxetine in various phenotypes could be successfully predicted.
With that, the PBPK model of (E)-Clom and the three metabolites (E)-4-OH-Clom, (E)-DE-
Clom and (E)-4-OH-DE-Clom was able to capture the complexity of the parent–metabolite
network and was used to characterize the contribution of various elimination pathways.

For model building and evaluation, plasma concentration–time and renal excretion–
time profiles of various CYP2D6 AS from a pharmacokinetic panel study as well as from four
published clinical studies with a dose range from 6.25 mg to 62 mg of orally administered
(E)-Clom citrate were included. In total, 22 plasma concentration–time profiles for (E)-Clom,
16 plasma profiles each for (E)-4-OH-Clom, (E)-DE-Clom and (E)-4-OH-DE-Clom as well
as 64 renal excretion profiles were available. With the observed increase in exposure for
NM during concomitant clarithromycin administration, a fraction metabolized (fm) of
(E)-Clom via CYP3A4 of approximately 13% could be estimated (cf., Section S1.5 of the
supplementary document) and subsequently integrated into the model building process to
inform the contribution of the CYP3A4-dependent pathway. The drug-dependent model
input parameters of (E)-Clom, (E)-4-OH-Clom, (E)-DE-Clom and (E)-4-OH-DE-Clom are
provided in Tables S4–S7 of the supplementary document.
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3.2. DGI Modeling and Evaluation

The final PBPK model precisely captured mean plasma concentration–time profiles of
the NM (AS = 2) population for (E)-Clom and all three integrated metabolites (see Figure 3,
third column). All predicted AUClast and Cmax values were in good agreement with the
observed values: GMFEs for AUClast and Cmax in the NM population were 1.11 and 1.13,
respectively. The overall MRD value for predicted plasma concentrations was 1.37.
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1Figure 3. Predicted and observed plasma concentration–time profiles of (E)-Clom (a–d), (E)-4-OH-
Clom (e–h), (E)-DE-Clom (i–l) and (E)-4-OH-DE-Clom (m–p) in PM (first column), IM (only AS = 0.5
shown; second column), NM (third column) and UM (last column) for DGI scenarios. Solid lines
depict predicted geometric mean concentration–time profiles in the PM, IM (AS = 0.5), NM and
UM populations. Colored ribbons show the corresponding geometric standard deviation of the
population simulations (n = 1000). Mean observed data are shown as symbols with the corresponding
standard deviation. Linear and semilogarithmic predicted and observed plasma concentration–time
profiles of all studies and AS are shown in Section S4.1 of the supplementary document. AS, CYP2D6
activity score; DGI, drug–gene interaction; (E)-4-OH-Clom, (E)-4-hydroxyclomiphene; (E)-4-OH-
DE-Clom, (E)-4-hydroxy-N-desethylclomiphene; (E)-Clom, (E)-clomiphene; (E)-DE-Clom, (E)-N-
desethylclomiphene; IM, intermediate metabolizers; n, number of subjects; NM, normal metabolizers,
PM, poor metabolizers; UM, ultrarapid metabolizers.
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For DGI model predictions, CYP2D6 kcat values were extrapolated from NM to IM
(AS = 0.5, AS = 0.75 and AS = 1) and UM populations. The extrapolation of kcat parameters
based on in vitro scaling factors led to successful predictions of plasma profiles in IM and
UM phenotypes. Plasma profiles in PM volunteers that were part of the training dataset
were also well captured in model simulations (Figure 3).

Since (E)-Clom is primarily metabolized via CYP2D6 (predicted fm = 86%), the PM
population showed the highest AUClast for the parent compound (E)-Clom (AUCPM >
AUCIM > AUCNM > AUCUM), but the lowest AUClast for the two most active metabolites
(E)-4-OH-Clom and (E)-4-OH-DE-Clom. However, since (E)-4-OH-Clom and (E)-4-OH-DE-
Clom were not only formed but also degraded via CYP2D6, their highest AUClast could not
be found in UM, but in IM with AS = 0.5 (AUCIM (AS = 0.5) > AUCNM > AUCUM > AUCPM).
A detailed listing of all predicted and observed AUClast and Cmax values for all phenotypes
in the DGI study setting is depicted in Table S11 of the supplementary document.

Goodness-of-fit plots for all modeled compounds showing predicted compared with
observed plasma concentrations, AUClast and Cmax values in the DGI study setting are
depicted in Figure 4. Here, 90% of Cmax, 80% of AUClast and 78% of the predicted concen-
trations were within the two-fold acceptance criterion. GMFEs for the predicted Cmax and
AUClast values were 1.41 and 1.43, respectively, and the overall MRD value for predicted
plasma concentrations was 1.95.
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1
Figure 4. Predicted versus observed AUClast (a), Cmax (b) and plasma concentrations (c) of (E)-
Clom (circles), (E)-4-OH-Clom (triangles), (E)-DE-Clom (squares) and (E)-4-OH-DE-Clom (dia-
monds) in PM, IM, NM and UM (DGI scenarios). The black solid lines mark the lines of identity.
Black dotted lines indicate 1.25-fold; black dashed lines indicate two-fold deviation. Goodness-
of-fit plots of digitized studies are depicted in Figure S8 of the supplementary document. AS,
CYP2D6 activity score; DGI, drug–gene interaction; (E)-4-OH-Clom, (E)-4-hydroxyclomiphene;
(E)-4-OH-DE-Clom, (E)-4-hydroxy-N-desethylclomiphene; (E)-Clom, (E)-clomiphene; (E)-DE-Clom,
(E)-N-desethylclomiphene; IM, intermediate metabolizers; NM, normal metabolizers; PM, poor
metabolizers; UM, ultrarapid metabolizers.

The predicted impact of CYP2D6 polymorphisms on the PK of (E)-Clom and its three
metabolites (DGI effect ratios) is shown in Figure 5 and is highly consistent with observed
effects. GMFEs for the predicted Cmax and AUClast ratios in the DGI setting were 1.46
and 1.65, respectively. Predicted and observed renal excretion profiles are visualized in
Section S4.1 of the supplementary document. Moreover, complementary prediction results
of concentration–time profiles for the remaining AS and included published clinical studies
are shown in Sections S4.1.3 and S4.1.7, respectively, of the supplementary document.
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Figure 5. Predicted versus observed DGI (a) AUClast and (b) Cmax ratios of (E)-Clom (circles),
(E)-4-OH-Clom (triangles), (E)-DE-Clom (squares) and (E)-4-OH-DE-Clom (diamonds). The straight
black lines mark the lines of identity; the curved solid black lines show the limits of the predictive
measure proposed by Guest et al. with 1.25-fold variability [32]. Black dotted lines indicate 1.25-
fold; black dashed lines indicate two-fold deviation. AS, CYP2D6 activity score; (E)-4-OH-Clom,
(E)-4-hydroxyclomiphene; (E)-4-OH-DE-Clom, (E)-4-hydroxy-N-desethylclomiphene; (E)-Clom,
(E)-clomiphene; (E)-DE-Clom, (E)-N-desethylclomiphene; IM, intermediate metabolizers; NM, nor-
mal metabolizers; PM, poor metabolizers; UM, ultrarapid metabolizers.

3.3. DD(G)I Modeling and Evaluation

In total, 40 plasma concentration–time profiles and 40 renal excretion profiles of
(E)-Clom and its metabolites were used for the investigation of DD(G)I scenarios with
clarithromycin (mechanism-based inhibitor of CYP3A4) and paroxetine (mechanism-based
inhibitor of CYP3A4 and CYP2D6) for various CYP2D6 AS (AS = 0, AS = 0.5, AS = 1, AS = 2
and AS = 3). Here, the impact of clarithromycin- and paroxetine-induced DD(G)I effects on
plasma concentration–time profiles, AUClast and Cmax values of (E)-Clom and its metabo-
lites was assessed. For this, published PBPK model parameters for clarithromycin [16] and
paroxetine [30] were used including the respective competitive inhibition (Ki) and the maxi-
mum inactivation rate (kinact) constants. Plasma and renal excretion profiles were predicted,
compared with observed profiles and served for evaluations of DD(G)I model performance.
DD(G)I model prediction performance is visually demonstrated in the concentration–time
profiles (Figure 6) and the corresponding goodness-of-fit plots (Figure 7). GMFEs for the
predicted AUClast and Cmax values were 1.30 and 1.40, respectively, and the overall MRD
value for predicted plasma concentrations was 1.83.

Since the metabolism of (E)-Clom is predominantly mediated via CYP2D6, the AUClast
of (E)-Clom substantially increased with concomitant administration of the CYP2D6 in-
hibitor paroxetine (2.5–12-fold) for all phenotypes, except PM, which possess no CYP2D6
activity. Furthermore, due to inhibition of CYP2D6, Cmax of the metabolite (E)-4-OH-Clom
decreased in all phenotypes except for PM. However, as (E)-4-OH-Clom is not only formed
but also degraded via CYP2D6, a substantial decrease in AUClast during paroxetine DD(G)I
was only predicted for the IM population in concordance with observed values. The minor
involvement of CYP3A4 in the metabolism of (E)-Clom and (E)-4-OH-Clom is supported by
the slight increase in the respective AUClast during CYP3A4 inhibition in all phenotypes.
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1Figure 6. Predicted and observed plasma concentration–time profiles of (E)-Clom (a–d), (E)-4-OH-
Clom (e–h), (E)-DE-Clom (i–l) and (E)-4-OH-DE-Clom (m–p) for DD(G)I scenarios in PM (first
column), IM (only AS = 0.5 shown; second column), NM (third column) and UM (last column).
Grey dashed lines depict the predicted geometric mean concentration–time profiles in absence of
clarithromycin and paroxetine (control); turquoise solid lines represent the predicted geometric
mean profiles in the presence of paroxetine; and pink solid lines represent the predicted geometric
mean profiles in the presence of clarithromycin (DD(G)I). Colored ribbons show the corresponding
geometric standard deviation of the population simulations (n = 1000). Mean observed data are shown
as symbols with the corresponding standard deviation. Linear and semilogarithmic predicted and
observed plasma concentration–time profiles of all AS are shown in Section S4.2 of the supplementary
document. For better visibility, DD(G)I scenarios were plotted with a time offset with t = 0 at the first
dose of the perpetrator drug. AS, CYP2D6 activity score; Clarit., Clarithromycin; DD(G)I, drug–drug
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and drug–drug–gene interactions; (E)-4-OH-Clom, (E)-4-hydroxyclomiphene; (E)-4-OH-DE-
Clom, (E)-4-hydroxy-N-desethylclomiphene; (E)-Clom, (E)-clomiphene; (E)-DE-Clom, (E)-N-
desethylclomiphene; IM, intermediate metabolizers; n, number of subjects; NM, normal metabolizers;
Parox., Paroxetine; PM, poor metabolizers; UM, ultrarapid metabolizers.
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Figure 7. Predicted versus observed AUClast (a), Cmax (b) and plasma concentrations (c) of (E)-Clom
(circles), (E)-4-OH-Clom (triangles), (E)-DE-Clom (squares) and (E)-4-OH-DE-Clom (diamonds) for
DD(G)I scenarios with clarithromycin and paroxetine, respectively. The black solid lines mark the
lines of identity. Black dotted lines indicate 1.25-fold; black dashed lines indicate two-fold deviation.
AS, CYP2D6 activity score; DD(G)I, drug–drug and drug–drug–gene interactions; (E)-4-OH-Clom,
(E)-4-hydroxyclomiphene; (E)-4-OH-DE-Clom, (E)-4-hydroxy-N-desethylclomiphene; (E)-Clom,
(E)-clomiphene; (E)-DE-Clom, (E)-N-desethylclomiphene; IM, intermediate metabolizers; NM, nor-
mal metabolizers, PM, poor metabolizers; UM, ultrarapid metabolizers.

The AUClast of (E)-DE-Clom is substantially reduced in all phenotypes by values
between ~70% and 80% (NM and IM) and ~34% (PM) during concomitant clarithromycin
administration, demonstrating that CYP3A4 is likely the major enzyme in the forma-
tion of (E)-DE-Clom. During CYP3A4 inhibition, AUClast and Cmax values, as well as
the corresponding DDGI effects for (E)-4-OH-Clom and (E)-4-OH-DE-Clom in PM, were
overpredicted by ~2.5-fold.

Predicted and observed AUClast and Cmax ratios of (E)-Clom, (E)-4-OH-Clom, (E)-DE-
Clom and (E)-4-OH-DE-Clom for the DD(G)I setting are shown in Figure 8. GMFEs for the
predicted Cmax and AUClast ratios in the DD(G)I setting were 1.50 and 1.40, respectively.
All predicted and observed values for AUClast and Cmax, DD(G)I effect ratios as well as
calculated MRDs and GMFEs are listed in Section S4.3 of the supplementary document.
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Figure 8. Predicted versus observed DD(G)I AUClast (a) and Cmax (b) ratios of (E)-Clom (circles),
(E)-4-OH-Clom (triangles), (E)-DE-Clom (squares) and (E)-4-OH-DE-Clom (diamonds). The straight
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black lines mark the lines of identity; the curved black lines show the limits of the predic-
tive measure proposed by Guest et al. with 1.25-fold variability [32]. Black dotted lines in-
dicate 1.25-fold; black dashed lines indicate two-fold deviation. AS, CYP2D6 activity score;
DD(G)I, drug–drug and drug–drug–gene interactions; (E)-4-OH-Clom, (E)-4-hydroxyclomiphene;
(E)-4-OH-DE-Clom, (E)-4-hydroxy-N-desethylclomiphene; (E)-Clom, (E)-clomiphene; (E)-DE-Clom,
(E)-N-desethylclomiphene; IM, intermediate metabolizers; NM, normal metabolizers, PM, poor
metabolizers; UM, ultrarapid metabolizers.

3.4. Contribution of Metabolic Pathways to (E)-Clom and Metabolite Disposition

In the PBPK model simulations, (E)-Clom is fully absorbed from the gastrointestinal
tract (fraction absorbed = 1.0); however, it undergoes a substantial first-pass metabolism
leading to a bioavailability of approximately 9% in UM, 11% in NM, 30% in IM (AS = 0.5)
and 49% in PM. (E)-Clom is metabolized via three pathways to (E)-4-OH-Clom, (E)-DE-
Clom and (Z)-3-hydroxyclomiphene with model-calculated fm for NM of 41%, 17% and
42%, respectively (Figure 9).

(E)-Clom

(E)-4-OH-DE-Clom

(E)-4-OH-Clom

(E)-DE-Clom

First Pass EffectOral Dose
Fa=100%

Systemic Drug

Metabolism

BA=11%

(E)-Clom

(E)-4-OH-DE-Clom

(E)-4-OH-Clom
(E)-DE-Clom

unsp. hep. CL
(6%)

unsp. hep. CL
(8%)

CYP2D6 (42%)

CYP2D6 (28%)

CYP2D6 (14%)

CYP3A4 (1%)
CYP2D6 (1%)

Excretion

0.23‰

0.01‰

0.05‰

0.09‰

undef. metab.

undef. metab.undef. metab.

undef.
metab.

undef.
metab.

undef.
metab.

Firefox file:///E:/proofreading/pharmaceutics-2020207/%E9%80%81%E8%BD%AC/pharmaceutics-2...

1 of 1 11/25/2022, 10:14 AM

Figure 9. Mass balance diagram after oral administration of 62 mg (E)-Clom citrate in CYP2D6 normal
metabolizers (AS = 2) including fraction absorbed, bioavailability and fractions of dose excreted
in urine for (E)-Clom and the three implemented metabolites. Drawings by Servier, licensed un-
der CC BY 3.0 [33]. BA, bioavailability; CL, clearance; CYP, cytochrome P450; (E)-4-OH-Clom,
(E)-4-hydroxyclomiphene; (E)-4-OH-DE-Clom, (E)-4-hydroxy-N-desethylclomiphene; (E)-Clom,
(E)-clomiphene; (E)-DE-Clom, (E)-N-desethylclomiphene; Fa, fraction absorbed; undef. metab.,
undefined metabolite; unsp. hep. CL, unspecific hepatic clearance.

The metabolism of the active metabolite (E)-4-OH-Clom in NM is mediated primarily
via CYP2D6 (69%) and, to a minor extent, via an unspecific hepatic clearance (15%). Only
17% of (E)-4-OH-Clom is degraded to the second active metabolite (E)-4-OH-DE-Clom
via CYP3A4. In addition, (E)-4-OH-DE-Clom is formed of (E)-DE-Clom via CYP2D6 (90%
of (E)-DE-Clom elimination), while 10% of (E)-DE-Clom is metabolized via CYP2D6 and
CYP3A4 to (E)-N,N-didesethylclomiphene. The renal excretion of (E)-Clom and its three
metabolites can be considered negligible (0.01–0.23‰). Calculated contributions for all
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implemented metabolic pathways and fractions of dose excreted in urine of (E)-Clom and
its metabolites in PBPK model simulations for NM as well as fractions of dose excreted in
urine are illustrated in Figure 9.

4. Discussion

Since the approval of clomiphene for the treatment of anovulation in women by
the U.S. Food and Drug Administration (FDA) in the late 1960s, several efforts have
been made to explain the inter-individual variability in clomiphene PK and drug re-
sponse [13,14,34–36]. While early studies identified obesity, hyperandrogenemia and
high levels of serum anti-Müllerian hormone as predictors for non-response [34,35,37–39],
polymorphisms of CYP2D6 were additionally identified to alter drug disposition and
response [5,14,36]. This study presents the first (E)-Clom PBPK model that investigates
and characterizes the impact of CYP2D6 polymorphisms and the concomitant use of
CYP3A4 and CYP2D6 inhibitors on the PK of (E)-Clom and its three important metabolites
(E)-4-OH-Clom, (E)-DE-Clom and (E)-4-OH-DE-Clom.

For this, a whole-body parent–metabolite PBPK model of (E)-Clom has been suc-
cessfully built and evaluated, predicting plasma concentration–time profiles for various
CYP2D6 AS in DGI and DD(G)I scenarios. The predicted DGI and DD(G)I effects on the PK
of (E)-Clom and its active metabolites were in good agreement with the effects observed in
a pharmacokinetic panel study. Despite the complex nature of the disposition of (E)-Clom
and its metabolites, the PBPK model could capture and quantify the contribution of the
different metabolic pathways. The developed model described and predicted plasma
profiles of the training and test dataset for the DGI setting with GMFEs of 1.43 and 1.41
for predictions of AUClast and Cmax, respectively. GMFEs in the DD(G)I settings with
clarithromycin and paroxetine were 1.30 and 1.40 for predictions of AUClast and Cmax,
respectively, highlighting the good descriptive and predictive model performance.

DGI predictions for IM and UM populations were based on in vitro–in vivo extrapola-
tion of CYP2D6 activity. Here, the application of AS-specific kcat values based on estimated
in vivo NM-kcat and published in vitro information on differences in metabolic activity
between CYP2D6 AS led to successful predictions of observed plasma concentrations and
DGI effect ratios. The predicted DGI effects of CYP2D6 polymorphisms on the AUC of the
four modeled compounds ranged from a ~60-fold increase ((E)-DE-Clom in PM vs. NM) to
a ~70% decrease ((E)-4-OH-DE-Clom in PM vs. NM).

The observed DGI AUClast effect ratio for (E)-Clom in IM (AS = 1) was ~1 representing
“no effect”, while the model predicted effect ratio was about 1.7, suggesting a ~70% increase
in AUC from NM to IM (AS = 1), which seems reasonable due to the strong CYP2D6
involvement in (E)-Clom degradation. The corresponding predicted effect on (E)-4-OH-DE-
Clom exposure (~1.9) was also higher than the effect observed (~0.8). Similarly, DGI AUClast
effect ratios for IM (AS = 0.75) were higher than the corresponding effect ratios observed
for (E)-Clom and its metabolites. Several genetic and non-genetic factors in addition to
the CYP2D6 genotype have previously been described to affect CYP2D6 activity in vivo,
resulting in substantial interindividual variability in the PK of CYP2D6 substrates [5,40,41].
Here, the pharmacokinetic panel study might lack the required power to reliably predict the
low observed mean effect ratios for IM (AS =1 and AS = 0.75) individuals (n = 2 and n =1,
respectively). Thus, additional studies with an increased number of CYP2D6 genotyped
individuals would be helpful to further evaluate these prediction scenarios.

The underprediction of (E)-4-OH-Clom AUClast DGI effects in IM (AS = 0.5) and
UM populations based on the in vitro–in vivo extrapolation of CYP2D6 activity could
hint towards a stronger involvement of CYP2D6 in the metabolism of (E)-4-OH-Clom or
indicate lower CYP2D6 kcat values in IM and higher values in UM than was extrapolated
from in vitro. Moreover, the relative importance of other enzymes for pathways mediated
by CYP2D6 increases for lower CYP2D6 AS. Consequently, the impact of variability in
activity for alternative pathways (e.g., due to polymorphisms in CYP2B6) increases [41,42].
Notably, only a small number of participants (n = 3) in the pharmacokinetic panel study
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were assigned to the IM (AS = 0.5) group and were genotyped for CYP2D6 only. Hence, as
a result of the underprediction (IM (AS = 0.5)) and overprediction (UM) of (E)-4-OH-Clom
exposure, respectively, DD(G)I model predictions for this metabolite should be interpreted
carefully in these populations.

Since (E)-Clom is primarily metabolized via CYP2D6 (fm of ~86% according to model
simulations) PM showed the highest exposure for the parent compound (AUClast, (E)-Clom
order: PM > IM > NM > UM). Additionally, as (E)-4-OH-DE-Clom is primarily formed via
CYP2D6-dependent pathways, PM showed the lowest AUClast for the active metabolite.
However, the complex metabolic network with additional involvement of other CYP
enzymes and contribution of multiple CYP2D6-dependent pathways resulted in a different
order for (E)-4-OH-DE-Clom AUC values compared with (E)-Clom. Here, the AUClast of
(E)-4-OH-DE-Clom was highest in IM (AS = 0.5), while it was lowest for PM and second-
lowest for UM, proposing a contribution of CYP2D6 not only in the formation but also in
the degradation of (E)-4-OH-DE-Clom. This is supported by model simulations, where
the integration of a CYP2D6 metabolic route for (E)-4-OH-Clom and (E)-4-OH-DE-Clom
degradation [6,28] was crucial for successful predictions of the respective plasma profiles.
The involvement of CYP2D6 in the degradation of the active metabolites might also explain
findings from a study by Ji et al., where all nine study participants with IM phenotype
responded to clomiphene therapy, whereas 30% of NM were non-responders [14].

For the investigated clarithromycin DD(G)I scenario, (E)-Clom exposure increased
by only ~15% for NM compared with the control scenario without CYP3A4 inhibition. In
contrast, for PM, (E)-Clom exposure increased ~2.4-fold, which was successfully predicted
by the PBPK model. The increase in (E)-Clom AUClast, however, also led to a model-
predicted increase in (E)-4-OH-Clom AUClast (~2.8-fold) and consequently to an increase
in (E)-4-OH-DE-Clom AUClast (~1.6-fold) for PM. This elevation was not observed in the
available clinical data (effect ratio ~1.3-fold and ~0.6-fold, respectively). These differences
between observation and prediction might be attributed to a saturated CYP2B6 metabolism
from (E)-Clom to (E)-4-OH-Clom in vivo that was not reflected in the PBPK model or
to non-implemented alternative metabolic pathways that are active in scenarios of low
CYP3A4 and CYP2D6 activity.

The underprediction of paroxetine DDGI effects on (E)-4-OH-Clom AUClast in the IM
(AS = 0.5) and UM population supports the aforementioned hint towards lower CYP2D6
kcat values in IM and higher values in UM or a stronger involvement of CYP2D6 in the
metabolism of (E)-4-OH-Clom than was extrapolated from in vitro.

Many different CYP enzymes are involved in the metabolic pathways of (E)-Clom
and its metabolites [5,28]; therefore, the implementation of biotransformation generally
focused on main CYP enzymes. However, of note, the implementation of CYP2D6 as an
additional enzyme, complementing CYP3A4 in the formation of (E)-DE-Clom [43], led to a
substantial improvement in the prediction of clarithromycin DD(G)I scenarios, preventing
an underprediction of AUClast values for (E)-DE-Clom. Here, CYP2D6 was incorporated
with a ~20% contribution to the formation of the desethyl metabolite [43].

In contrast, the initial assumption of a CYP3A4-mediated desethylation of (E)-4-OH-
DE-Clom (as for (E)-4-OH-Clom, cf. Figure 9) was rejected, since this implemented process
led to a consistent overprediction of (E)-4-OH-DE-Clom AUClast in the clarithromycin
DD(G)I scenarios for all phenotypes. Instead, the metabolic pathway was replaced by an
unspecific hepatic clearance process representing glucuronidation, sulfation and potential
other metabolic processes of (E)-4-OH-DE-Clom as suggested by Kröner [6].

PBPK modeling was also leveraged to gain insights into the PK of (E)-Clom and to
investigate contributions of the different metabolic pathways for (E)-Clom and its metabo-
lites. According to model simulations in NM, about 22% of the administered (E)-Clom dose
is eventually metabolized to the metabolite with the highest target affinity ((E)-4-OH-DE-
Clom [28]), mainly via the (E)-DE-Clom-pathway (~69%) and ~31% via the (E)-4-OH-Clom
pathway. This is of note, as only ~17% of (E)-Clom is initially metabolized to (E)-DE-Clom,
while ~41% is metabolized to (E)-4-OH-Clom. However, ~90% of (E)-DE-Clom metabolism
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results in (E)-4-OH-DE-Clom formation (vs. only ~17% of (E)-4-OH-Clom metabolism),
eventually representing the main pathway of (E)-4-OH-DE-Clom formation according to
model simulations.

Clomiphene is typically administered as a racemic mixture of (E)- and (Z)-Clom
(62:38) [22]. Both isomers show highly distinct pharmacokinetic characteristics and also
differ in affinity to the target receptor [22,28]. In contrast to (Z)-Clom, (E)-Clom undergoes
an extensive first-pass metabolism resulting in a lower bioavailability [44]. The model
predicted bioavailability for (E)-Clom in NM was ~11%, which is in congruence with the
low bioavailability of ~6.3% for the (E)-isomer calculated from the reported AUC0-24h after
oral [21] and intravenous application of 50 mg clomiphene citrate [45]. While the calculated
value from the literature is based on an intravenous study with a small number of study
participants (n = 2) [45], a low bioavailability can be supported with the developed PBPK
model. The model calculated bioavailabilities in PM, IM (AS = 0.5, AS = 0.75, AS = 1) and
UM were 49%, 30%, 27%, 18% and 9%, respectively.

In the pharmacokinetic panel study, renal excretion of the parent compound (E)-Clom
and the three modeled metabolites was quantified and showed negligible overall contribu-
tion to the respective compound elimination. The PBPK model was able to quantify this
small contribution of renal excretion for the four investigated compounds. The respective
simulated fractions of dose excreted in urine for NM were calculated to be 0.01‰, 0.09‰,
0.05‰ and 0.23‰, for (E)-Clom, (E)-4-OH-Clom, (E)-DE-Clom and (E)-4-OH-DE-Clom,
respectively. This is in concordance with recent studies, where unchanged (E)-Clom and
unconjugated metabolites could only be detected in small amounts, or not at all in urine
samples [46,47].

The pharmacokinetic panel study was conducted in a cross-over design [28]. One limi-
tation of this work is the small number of participants in the panel study (n = 20), with only
one to six individuals per AS group available for model development. Additionally, from
the PM group, one participant dropped out of the clinical trial during the clarithromycin
DDGI scenario and two participants during the paroxetine DDGI scenario. In the case of
the IM (AS = 0.75) group, no data for the DDGI scenarios were available due to drop-out.

When additional pharmacokinetic data become available, the PBPK model can be
further evaluated according to the “learn–confirm–refine” principle [48,49] to be used for
further model applications. Moreover, the presented parent–metabolite PBPK model of
(E)-Clom provides a basis for future investigations of different covariates (e.g., body mass
index), individual CYP2D6 genotypes and the concomitant use of additional perpetrator
drugs influencing the PK of (E)-Clom and its metabolites. The evaluated model can be
leveraged to simulate plasma concentration–time profiles and investigate the exposure
of (E)-Clom and its active metabolites in as-yet unexplored DD(G)I scenarios with the
concomitant administration of moderate and weak CYP enzyme inhibitors as well as CYP
enzyme inducers (e.g., carbamazepine [15]). Here, future clinical investigations of DD(G)I
scenarios with concomitant use of (E)-Clom and CYP enzyme inducers are required for
evaluation of such model predictions with clinically observed data. For the translation
of exposure differences into dose recommendations, studies quantifying the efficacy- and
safety-related contributions of (E)-Clom and its metabolites would be of high interest.

5. Conclusions

A whole-body parent–metabolite PBPK model of (E)-Clom including the metabolites
(E)-4-OH-Clom, (E)-DE-Clom and (E)-4-OH-DE-Clom was successfully developed. The
model predicted plasma concentration–time profiles of (E)-Clom and its metabolites for
CYP2D6 DGI, as well as CYP2D6 and CYP3A4 DDI and DDGI scenarios in six different
CYP2D6 AS groups. For this, an in vitro–in vivo extrapolation approach to obtain CYP2D6
kcat values for different AS was successfully integrated to predict plasma profiles for
IM (AS = 0.5, AS = 0.75, AS = 1) and UM populations. Furthermore, the model was
applied to investigate the contribution of metabolic pathways to the elimination of (E)-Clom
and its metabolites. The developed PBPK model will be made publicly available (http:
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//models.clinicalpharmacy.me/) and can be further leveraged to investigate the PK of
(E)-Clom and its metabolites for various DD(G)I scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14122604/s1, Figure S1: Predicted and observed
plasma concentration-time profiles (linear scale) of (E)-Clom (a–f), (E)-4-OH-Clom (g–l), (E)-DE-Clom
(m–r) and (E)-4-OH-DE-Clom (s–x) for DGI scenarios; Figure S2: Predicted and observed plasma
concentration-time profiles (semilogarithmic scale) of (E)-Clom (a–f), (E)-4-OH-Clom (g–l), (E)-DE-
Clom (m–r) and (E)-4-OH-DE-Clom (s–x) for DGI scenarios; Figure S3: Predicted versus observed
AUClast (a), Cmax (b) and plasma concentrations (c) of (E)-Clom (circles), (E)-4-OH-Clom (triangles),
(E)-DE-Clom (squares) and (E)-4-OH-DE-Clom (diamonds) in PM, IM, NM and UM (DGI scenarios);
Figure S4: Predicted versus observed DGI AUClast (a) and Cmax (b) ratios of (E)-Clom (circles), (E)-4-
OH-Clom (tri-angles), (E)-DE-Clom (squares) and (E)-4-OH-DE-Clom (diamonds) in PM, IM and UM;
Figure S5: Predicted and observed renal excretion profiles (linear scale) of (E)-Clom (a–f), (E)-4-OH-
Clom (g–l), (E)-DE-Clom (m–r) and (E)-4-OH-DE-Clom (s–x) for DGI scenarios; Figure S6: Predicted
and observed plasma concentration-time profiles (linear scale) of digitized studies from literature after
single (a,b) and multiple (c–f) dosing; Figure S7: Predicted and observed plasma concentration-time
profiles (semilogarithmic scale) of digitized studies from literature after single (a,b) and multiple (c–f)
dosing; Figure S8: Predicted versus observed (a) AUClast, (b) Cmax and (c) plasma concentrations
of (E)-Clom; Figure S9: Predicted and observed plasma concentration-time profiles (linear scale) of
(E)-Clom (a–e), (E)-4-OH-Clom (f–j), (E)-DE-Clom (k–o) and (E)-4-OH-DE-Clom (p–t) for DD(G)I
scenarios in PM, IM, NM and UM; Figure S10: Predicted and observed plasma concentration-time
profiles (semilogarithmic scale) of (E)-Clom (a–e), (E)-4-OH-Clom (f–j), (E)-DE-Clom (k–o) and (E)-
4-OH-DE-Clom (p–t) for DD(G)I scenar-ios in PM, IM, NM and UM; Figure S11: Predicted versus
observed AUClast (a), Cmax (b) and plasma concentrations (c) of (E)-Clom (circles), (E)-4-OH-Clom
(triangles), (E)-DE-Clom (squares) and (E)-4-OH-DE-Clom (diamonds) for DD(G)I scenarios with
clarithromycin and paroxetine, respectively in PM, IM, NM and UM; Figure S12: Predicted versus
observed DD(G)I AUClast (a) and Cmax (b) ratios of (E)-Clom (circles), (E)-4-OH-Clom (triangles),
(E)-DE-Clom (squares) and (E)-4-OH-DE-Clom (diamonds) in PM, IM, NM and UM; Figure S13:
Predicted and observed renal excretion profiles (linear scale) of (E)-Clom (a–e), (E)-4-OH-Clom
(f–j), (E)-DE-Clom (k–o) and (E)-4-OH-DE-Clom (p–t) for DD(G)I scenarios in PM, IM, NM and UM;
Figure S14: Sensitivity analysis of the PBPK model for (E)-Clom, (E)-4-OH-Clom, (E)-DE-Clom and
(E)-4-OH-DE-Clom; Figure S15: Molecular structures of (E)-Clom (a) and its metabolites (E)-DE-Clom
(b), (E)-4-OH-Clom (c) and (E)-4-OH-DE-Clom (d); Table S1: Optimized CYP2D6 kcat values for each
study; Table S2: Overview of clinical study data from literature used for model evaluation; Table
S3: System-dependent parameters and expression of relevant enzymes; Table S4: Drug-dependent
parameters for (E)-clomiphene; Table S5: Drug-dependent parameters for (E)-N-desethylclomiphene;
Table S6: Drug-dependent parameters for (E)-4-hydroxyclomiphene; Table S7: Drug-dependent
parameters for (E)-4-hydroxy-N-desethyl-clomiphene; Table S8: Employed in vitro scaling factors
(IVSFs) for individual CYP2D6 activity scores; Table S9: Mean relative deviation (MRD) values of
DGI plasma concentration predictions; Table S10: Mean relative deviation (MRD) values of DD(G)I
plasma concentration predictions; Table S11: Geometric Mean Fold Error (GMFE) of AUClast and
Cmax DGI Predictions; Table S12: Geometric Mean Fold Error (GMFE) of DGI AUClast and Cmax
ratio; Table S13: Geometric Mean Fold Error (GMFE) of AUClast and Cmax DD(G)I Predictions; Table
S14: Geometric Mean Fold Error (GMFE) of DD(G)I AUClast and Cmax ratios. References [50–80] are
cited in the Supplementary Materials.

Author Contributions: Conceptualization, C.K., L.K., R.K., T.E.M., M.S. and T.L.; Data curation, C.K.;
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Abstract
The antiarrhythmic agent quinidine is a potent inhibitor of cytochrome P450 
(CYP) 2D6 and P- glycoprotein (P- gp) and is therefore recommended for use in 
clinical drug– drug interaction (DDI) studies. However, as quinidine is also a 
substrate of CYP3A4 and P- gp, it is susceptible to DDIs involving these proteins. 
Physiologically- based pharmacokinetic (PBPK) modeling can help to mechanis-
tically assess the absorption, distribution, metabolism, and excretion processes 
of a drug and has proven its usefulness in predicting even complex interaction 
scenarios. The objectives of the presented work were to develop a PBPK model 
of quinidine and to integrate the model into a comprehensive drug– drug(– gene) 
interaction (DD(G)I) network with a diverse set of CYP3A4 and P- gp perpe-
trators as well as CYP2D6 and P- gp victims. The quinidine parent- metabolite 
model including 3- hydroxyquinidine was developed using pharmacokinetic pro-
files from clinical studies after intravenous and oral administration covering a 
broad dosing range (0.1– 600 mg). The model covers efflux transport via P- gp and 
metabolic transformation to either 3- hydroxyquinidine or unspecified metabo-
lites via CYP3A4. The 3- hydroxyquinidine model includes further metabolism 
by CYP3A4 as well as an unspecific hepatic clearance. Model performance was 
assessed graphically and quantitatively with greater than 90% of predicted phar-
macokinetic parameters within two- fold of corresponding observed values. The 
model was successfully used to simulate various DD(G)I scenarios with greater 
than 90% of predicted DD(G)I pharmacokinetic parameter ratios within two- fold 
prediction success limits. The presented network will be provided to the research 
community and can be extended to include further perpetrators, victims, and tar-
gets, to support investigations of DD(G)Is.
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INTRODUCTION

Cytochrome P450 (CYP) 2D6 is thought to be involved in 
the metabolism of about 20– 25% of drugs and exhibits a 
highly polymorphic expression.1 Consequently, CYP2D6 
drug– gene interactions (DGIs) adversely affecting drug 
pharmacology frequently occur in clinical practice. 
Additionally, the concomitant administration of drugs 
can also modulate CYP2D6 metabolism, potentially re-
sulting in drug– drug– gene interactions (DDGIs) which 
may further increase the risk of adverse drug reactions 
(ADRs).2 Here, drug- induced CYP2D6 phenoconversion 
(i.e., the conversion from normal to poor metabolizer 
phenotypes due to the co- administration of strong inhibi-
tors), has been described in the literature with varying 
magnitudes of interaction effects in different CYP2D6 
phenotypes.3

Quinidine is a class 1A anti- arrhythmic drug and 
acts by blocking voltage- gated sodium channels. Due 
to its high risk for side effects and interaction potential 
as well as the availability of more advantageous anti- 
arrhythmic treatment options, the clinical relevance of 
quinidine has been in decline with steadily decreasing 
prescription rates over the last decades.4 However, as a 
strong CYP2D6 inhibitor and inhibitor of P- glycoprotein 
(P- gp), quinidine is still used in clinical drug– drug inter-
action (DDI) studies, as recommended by the US Food 
and Drug Administration (FDA).5 Here, the investigation 
of these interactions can provide valuable insights into 

the involved absorption, distribution, metabolism, and 
excretion (ADME) processes of concomitantly adminis-
tered CYP2D6 and P- gp substrates.

Quinidine exhibits extensive hepatic and intestinal 
first- pass metabolism.6 For this, CYP3A4 was found to 
be the most important enzyme in vitro and researchers 
have proposed to utilize quinidine 3- hydroxylation as 
a specific in vitro marker reaction for CYP3A4 activity.7 
Furthermore, quinidine has been identified as a substrate 
of P- gp in vitro,5 making it susceptible to DDIs involving 
CYP3A4 and P- gp. Quinidine displays nonlinear phar-
macokinetics that can be attributed to a saturation of in-
testinal CYP3A4 and P- gp.8 Although quinidine shares 
structural similarities with many CYP2D6 substrates, the 
contribution of CYP2D6 to the metabolism of quinidine 
is negligible.7 However, due to its high affinity to the met-
abolic site of CYP2D6, quinidine is a potent competitive 
inhibitor of CYP2D6.9 Its metabolites have been found to 
contribute to the inhibition of CYP2D6.10

Several DDGI studies have been published investigat-
ing the effect of CYP2D6 polymorphisms and quinidine 
administration on victim drug pharmacokinetics (e.g., 
metoprolol11), resulting in considerable increases in drug 
exposure. Here, innovative tools are required to investigate 
DDGIs, as performing dedicated clinical trials routinely 
in drug development is infeasible due to combinatorical 
complexities and can put study subjects at a considerable 
risk of experiencing ADRs.2 For this, physiologically- 
based pharmacokinetic (PBPK) modeling is a powerful 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Quinidine is an inhibitor of cytochrome P450 (CYP) 2D6 and P- gp as well as a 
substrate of CYP3A4 and P- gp. It is recommended for use in clinical drug– drug 
interaction studies.
WHAT QUESTION DID THIS STUDY ADDRESS?
Quinidine pharmacokinetics were extensively studied applying physiologically- 
based pharmacokinetic (PBPK) modeling. Furthermore, its interaction potential 
was assessed within a comprehensive CYP2D6- CYP3A4- P- gp drug– drug– gene 
interaction (DDGI) network, involving quinidine as both perpetrator and victim 
drug.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The in vivo interaction potential of quinidine could be accurately modeled, em-
phasizing the potential of the PBPK approach to investigate even complex DDGI 
scenarios.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT 
AND/OR THERAPEUTICS?
This work highlights the evaluation of PBPK models in the context of a complex 
interaction network. The quinidine model can assist in future investigations on 
CYP2D6- CYP3A4- P- gp DDGIs during model- informed drug development.
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mechanistic approach to model the pharmacokinetics of a 
drug, taking an individual's physiological and genetic pro-
file into account.2 Thoroughly built and evaluated PBPK 
models can be valuable to describe the underlying ADME 
processes and investigate even complex DD(G)I scenar-
ios.2 Furthermore, these models can assist in generating 
and testing hypotheses regarding, for instance, (patho- )
physiological changes affecting ADME processes where 
in vitro and in vivo data are incomplete or inconclusive.12 
Mechanistic DGI models have shown their usefulness in 
describing and predicting the effect of polymorphisms on 
drug pharmacokinetics (e.g., for the CYP2D6 substrates 
metoprolol and dextromethorphan), demonstrating how 
PBPK models can assist in understanding the underlying 
ADME- related processes and explain observed interindi-
vidual variability.13,14 PBPK DD(G)I networks can have 
enormous potential in this area, as evaluated models can 
support simulating untested DD(G)I scenarios and sup-
port model- informed drug discovery and development.15

Due to the importance of quinidine as DDI probe drug 
for CYP2D6 and P- gp inhibition as well as CYP3A4 and 
P- gp substrate, the main objectives of this work were (i) to 
develop a comprehensive PBPK model of quinidine and 
its major metabolite 3- hydroxyquinidine and (ii) to pre-
dict complex quinidine DD(G)Is within a comprehensive 
PBPK interaction network involving CYP3A4, CYP2D6, 
and P- gp.

METHODS

Software

The development of the quinidine PBPK model, parame-
ter optimizations, and sensitivity analysis, as well as simu-
lation of different DD(G)I scenarios were performed with 
PK- Sim (version 11, Open Systems Pharmacology Suite, 
www.open- syste ms- pharm acolo gy.org). Published plasma 
concentration- time profiles were digitized with Engauge 
Digitizer 10.12 (M. Mitchell, https://marku mmitc hell.
github.io/engau ge- digit izer). Model evaluations (i.e., 
graph generation and calculation of pharmacokinetic pa-
rameters as well as statistics) were accomplished using the 
R programming language version 4.2.1 (The R Foundation 
for Statistical Computing, Vienna, Austria) and Rstudio 
2022.07.0 (Rstudio).

Quinidine PBPK model building

PBPK model building was initialized by collecting phys-
icochemical and ADME- related parameters of quinidine 
and 3- hydroxyquinidine from the literature. Additionally, 

studies reporting quinidine and 3- hydroxyquinidine 
plasma concentrations alongside subject information 
and administration protocols were collected. Studies 
were preferably included if performed in healthy volun-
teers and if concentration- time profiles were reported 
alongside unambiguous dosing and regimen informa-
tion. Gathered concentration- time profiles were split 
into a model training (model development) and a test 
dataset (model evaluation). The model training dataset 
was assembled to (i) maximize the cardinality of the test 
dataset and to cover (ii) intravenous and oral adminis-
tration, (iii) the whole dosing range of published studies, 
and (iv) single and multiple dose administration while 
preferring information- dense as well as (v) additional 
measurements of 3- hydroxyquinidine profiles. Virtual 
individuals (“mean individuals”) were created based on 
the mean and mode of the reported study demograph-
ics if available. By selecting ethnicities according to 
the study cohorts from the PK- Sim database, varying 
organ volumes and perfusion rates were taken into ac-
count. Relevant enzymes and transporters were imple-
mented according to literature reports and the PK- Sim 
expression database (see Tables  S1– S3). Parameter op-
timizations were performed to identify suitable quan-
titative structure– activity relationship methods to 
calculate cellular permeabilities and partition coeffi-
cients. Furthermore, model parameter values that could 
not be informed from literature reports (e.g., quinidine 
intestinal permeability as well as relevant catalytic and 
transport rate constants) were optimized by fitting model 
simulations against all studies of the training dataset ap-
plying Monte Carlo optimization minimizing the least- 
squares objective function.16

Quinidine PBPK model evaluation

Model performance was evaluated graphically by compar-
ison of population simulation predictions and observed 
quinidine and 3- hydroxyquinidine plasma concentration- 
time profiles. For this, virtual populations of 1000 indi-
viduals were generated, based on the study demographics 
listed in the respective publications, such as ethnic back-
ground as well as age and weight range. Additional vari-
ability regarding the expression of metabolizing enzymes 
and transporters was implemented according to the  
PK- Sim ontogeny database (see Table S1).

Furthermore, predicted plasma concentrations for 
mean individuals, area under the plasma concentration- 
time curve calculated between the first and last concen-
tration measurement (AUClast) and maximum plasma 
concentration (Cmax) values were compared to their 
respective observed values in goodness- of- fit plots by 

 21638306, 0, D
ow

nloaded from
 https://ascpt.onlinelibrary.w

iley.com
/doi/10.1002/psp4.12981 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [03/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

118 results



4 |   FEICK et al.

assessing the proportion of predictions within two- fold 
of observed concentration, AUClast and Cmax data. As 
quantitative measures to evaluate the model perfor-
mance, mean relative deviations (MRDs) for all pre-
dicted concentration- time profiles and geometric mean 
fold errors (GMFEs) for all predicted AUClast, Cmax, ap-
parent volume of distribution (Vd) and half- life values 
were calculated as previously described.13,17 Predictions 
with MRDs and GMFEs less than two were considered 
successful.

To assess the influence of single parameter changes 
on model- simulated AUC, a local sensitivity analysis 
was performed using a parameter perturbation of 1000%. 
Parameters were considered sensitive if their sensitiv-
ity value was equal or greater than 0.5. More details on 
the conducted local sensitivity analysis are provided in 
Supplement S1 (Section S2.10).

DD(G)I modeling network building

To assess the performance of the newly developed qui-
nidine model to predict various DD(G)I scenarios, the 
model was linked to previously published PBPK models 
of carbamazepine,18 cimetidine,12 fluvoxamine,19 itra-
conazole,20 R- /S- omeprazole,21 rifampicin,20 and R- /S- 
verapamil22 (here, quinidine is acting as CYP3A4 and 
P- gp victim drug) as well as to models of dextrometho-
rphan,14 digoxin,20 metoprolol,13 mexiletine,21 and par-
oxetine23 (here, quinidine is acting as an inhibitor of 
CYP2D6 and P- gp). Moreover, CYP2D6 DDGI scenarios 
with dextromethorphan, metoprolol, and mexiletine 
were modeled by adjusting CYP2D6 activity related to 
the phenotype (normal and poor metabolizers) accord-
ing to previous modeling work.13,14,21 For all simulated 
interactions, the quinidine inhibitory constant (Ki) val-
ues were kept constant over the whole range of CYP2D6 
activity.

DD(G)I modeling network evaluation

DD(G)I model performances were evaluated by compar-
ing victim drug population predictions with observed 
plasma concentrations alone and during perpetrator co- 
administration. Furthermore, predicted compared to ob-
served DD(G)I pharmacokinetic parameter ratios (ratios 
between AUClast or Cmax during the DD(G)I and of the 
victim drug alone) were plotted in goodness- of- fit plots. 
Here, limits for the assessment of DD(G)I ratios were ap-
plied according to Guest et al.24 including 20% variability. 
Additionally, GMFEs of DD(G)I AUClast and Cmax ratios 
were calculated.

RESULTS

Quinidine PBPK model

A comprehensive quinidine- 3- hydroxyquinidine parent- 
metabolite whole- body PBPK model was built and evalu-
ated using data from 22 clinical studies reporting a total 
of 43 plasma concentration- time profiles for quinidine. 
Additionally, two profiles of unbound quinidine and eight 
plasma concentration- time profiles of 3- hydroxyquinidine 
were included in the model datasets. In these studies, 
plasma concentration- time profiles were reported after 
single intravenous administration of 260.3– 520.6 mg qui-
nidine gluconate (corresponding to 162.2– 324.4 mg qui-
nidine base) and single or multiple oral administrations 
of 0.1– 600 mg quinidine sulfate (corresponding to 0.08– 
497.2 mg quinidine base). The training dataset included 10 
profiles of quinidine in plasma, two profiles of quinidine in 
urine, and five profiles of 3- hydroxyquinidine in plasma. 
Information about all utilized studies, including the demo-
graphics and implemented ethnicities of study subjects, is 
provided in Tables  S4, S13, and S14. Efflux transport of 
quinidine via P- gp was incorporated and metabolism via 
CYP3A4 (saturable Michaelis– Menten kinetics) was im-
plemented for the building of 3- hydroxyquinidine and 
other unspecific metabolites. The 3- hydroxyquinidine 
metabolism was modeled via CYP3A4 and an unspe-
cific hepatic clearance process as a surrogate for further 
unspecified enzymes (both first- order kinetics). Renal 
excretion of both compounds was modeled as passive 
glomerular filtration. Additionally, active tubular secre-
tion via P- gp transport was incorporated in the model for 
quinidine. For oral formulations (quinidine sulfate im-
mediate release), a Weibull dissolution was incorporated. 
All relevant quinidine and 3- hydroxyquinidine drug- 
dependent parameters are listed in Table S5, information 
about the expression and localization of relevant proteins 
is provided in Tables S1– S3.

A selection of population predictions of quinidine and 
3- hydroxyquinidine compared to their respective observed 
data after intravenous and oral administration is shown in 
Figure 1a– f. Semilogarithmic and linear plots of all mod-
eled studies are shown in Figures S1– S14. The good de-
scriptive and predictive model performance is displayed in 
goodness- of- fit plots (Figures 1g– i, S15, S16), where 94%, 
100%, and 100% of quinidine training dataset, 90%, 97%, 
and 91% of quinidine test dataset, 79%, 100%, and 80% of 
3- hydroxyquinidine training dataset and 89%, 100%, and 
100% of 3- hydroxyquinidine test dataset predicted plasma 
concentrations, AUClast and Cmax values were within two- 
fold of the corresponding observed values, respectively. 
Moreover, nine of 10 quinidine training dataset, 30 of 
33 quinidine test dataset, five of five 3- hydroxyquinidine 
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training dataset, and three of three 3- hydroxyquinidine 
test dataset predicted plasma concentration profile MRDs 
were less than two. For quinidine, 10 of 10 (training data-
set) and 32 of 33 (test dataset) AUClast GMFEs, and eight 

of eight (training dataset) and 30 of 33 (test dataset) Cmax 
GMFEs were below two. For 3- hydroxyquinidine, five 
of five (training dataset) and three of three (test dataset) 
AUClast GMFEs, and four of five (training dataset) and 

F I G U R E  1  Quinidine physiologically- based pharmacokinetic modeling performance evaluation. (a– f) Predicted compared to observed 
plasma concentration- time profiles of quinidine and 3- hydroxyquinidine after (a) intravenous and (b– f) oral administration. Population 
geometric means are shown as lines, geometric standard deviations are shown as shaded areas, and observed data are shown as dots 
(training dataset) and triangles (test dataset) (±standard deviation, if reported).8,25– 29 (g– i) Goodness- of- fit plots comparing predicted and 
observed (g) plasma concentrations, (h) area under the plasma concentration- time curve calculated between first and last concentration 
measurement (AUClast) and (i) maximum plasma concentration (Cmax) values. The solid line represents the line of identity, whereas 1.25- 
fold and two- fold prediction limits are shown as dotted and dashed lines, respectively. Doses indicate (a) quinidine gluconate and (b– f) 
quinidine sulfate administration. Respective doses of quinidine base were calculated and incorporated in simulations. iv, intravenous;  
n, number of study participants; po, oral, q.i.d., four times daily; s.d., single dose.
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three of three (test dataset) Cmax GMFEs values were 
within the two- fold threshold. For quinidine, all predicted 
Vd and half- life values are within twofold of observed val-
ues. The calculated MRD and GMFE values for all studies 
are listed and summarized in Tables S6– S9.

A local sensitivity analysis using a multiple dose 
simulation of 200 mg quinidine sulfate (protocol ac-
cording to Ochs et al.25) revealed that the quinidine 
model is sensitive to the quinidine fraction unbound in 
plasma and lipophilicity (both implemented as fixed lit-
erature values). The 3- hydroxyquinidine model is sen-
sitive to 3- hydroxyquinidine fraction unbound, the 
Michaelis– Menten (both fixed values from the litera-
ture) and catalytic- rate constants (optimized) describ-
ing the CYP3A4- dependent metabolism of quinidine to 
3- hydroxyquinidine and the optimized unspecific hepatic 
clearance process. Parameters evaluated during sensitiv-
ity analysis are provided in Table S10, results of the local 
sensitivity analyses are visualized in Figures S17 and S18.

DD(G)I modeling network

The quinidine model was evaluated within a comprehen-
sive CYP2D6- CYP3A4- P- gp DD(G)I network (Figure  2). 
Information about published perpetrator and victim mod-
els’ relevant interaction constants and model parameters 
are provided in Tables S11 and S12. A total of nine quini-
dine and four 3- hydroxyquinidine profiles obtained from 
eight DDI studies were utilized to assess the quinidine- 
3- hydroxyquinidine model performance in DDI scenarios 
affected by CYP3A4 and P- gp perpetrator drugs. Here, one 
study described the carbamazepine- quinidine DDI, two 
studies the cimetidine- quinidine DDI, and one study each 
the fluvoxamine- quinidine, itraconazole- quinidine, and 
omeprazole- quinidine DDIs, one study the rifampicin- 
quinidine DDI, and one study the verapamil- quinidine 
DDI. Interaction parameters for the various modes of in-
teraction (see Figure 2) were gathered from literature re-
ports, if not already defined in the respective model files. 
To inform the relative contributions of CYP3A4 and P- gp 
to quinidine metabolism and transport during quinidine 
model building, data from the carbamazepine- quinidine 
DDI (i.e., the extent of 3- hydroxyquinidine formed) was 
included in the training dataset. Data from the remain-
ing DDIs were used for the evaluation of model predictive 
performance.

Moreover, eight studies were utilized to model DD(G)
I scenarios where quinidine and 3- hydroxyquinidine 
act as inhibitors of CYP2D6 and P- gp. One study was 
available to assess the effect of CYP2D6 inhibition via 
quinidine and 3- hydroxyquinidine for the quinidine- 
metoprolol interaction and one study on the effect of the 

quinidine- paroxetine- dextromethorphan interactions. 
Additionally, several DDGI studies in subpopulations 
with different CYP2D6 activities were available for the 
victim drugs dextromethorphan (two studies), metop-
rolol (one study), and mexiletine (one study). Finally, 
two studies reported data on the quinidine- digoxin DDI 
(P- gp inhibition). Multiple studies included plasma 
concentration- time profiles of multiple compounds, in-
cluding parent victim drugs, respective enantiomers, 
and metabolites. For competitive inhibition of CYP2D6, 
Ki values of 0.017 μmol/L (quinidine30) and 2.30 μmol/L 
(3- hydroxyquinidine10) were incorporated from the liter-
ature as well as a Ki value of 0.10 μmol/L to describe com-
petitive inhibition of P- gp by quinidine.31 Information 
about all utilized studies covering perpetrator and victim 
drug regimens and subject demographics are provided in 
Tables S13 and S14.

Population predictions of victim plasma concentration- 
time profiles alone or with perpetrator co- administration 
compared to observed data demonstrated a good DD(G)I 
model performance (Figures 3 and 4). Semilogarithmic and 
linear plots of all studies are shown in Figures S19– S28.

Graphical comparisons of predicted and observed 
DD(G)I AUClast and Cmax ratios of all investigated DD(G)
Is are shown in Figures 5, S29, and S30, revealing adequate 
model performance of quinidine either as a victim or per-
petrator drug. For quinidine as CYP3A4 and P- gp victim, 
12 of 13 and 12 of 13 of DDI AUClast and Cmax ratios were 
within two- fold of observed values and 12 of 13 and 11 
of 13 within the prediction success limits proposed by 
Guest et al.24 with mean GMFEs of 1.29 and 1.34, respec-
tively. Overall, DD(G)Is with quinidine as a perpetrator 
of CYP2D6 and P- gp and the victim drugs dextrometho-
rphan, digoxin, metoprolol, mexiletine, and paroxetine 
were accurately predicted with 15 of 17 DD(G)I AUClast 
ratios and 13 of 15 DD(G)I Cmax ratios within two- fold of 
the corresponding observed ratios. All AUClast and Cmax 
ratios grouped by the respective victim drugs and their 
metabolites are listed in Tables S15 and S16.

DISCUSSION

In this study, we present a newly developed whole- body 
parent- metabolite PBPK model of quinidine and its major 
metabolite 3- hydroxyquinidine. The good predictive per-
formance simulating quinidine and 3- hydroxyquinidine 
plasma concentration- time profiles was evaluated by es-
tablished graphical and quantitative measures. The model 
was further evaluated by simulating various modes of 
interactions in a comprehensive DD(G)I network. Here, 
the final model could be successfully linked with a diverse 
set of previously published CYP3A4 and P- gp perpetrator 
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models (quinidine acting as victim) as well as CYP2D6 
and P- gp victim models (quinidine acting as perpetrator) 
to predict various DD(G)I scenarios.

Quinidine ADME processes include efflux via P- gp5  
(e.g., located at the intestinal barrier and, therefore,  
affecting oral bioavailability). Furthermore, quinidine 
is described as a substrate of CYP3A4 in vitro7 and this 
enzyme can be attributed to the extensive first- pass me-
tabolism of quinidine.6 The reported quinidine average 
oral bioavailability of 70%6 is in good agreement with 
our model simulations of oral bioavailabilities ranging 

from 37% (0.1 mg single dose) to 79% (600 mg single dose) 
and is in line with the proposed P- gp saturation as one 
cause for its nonlinear pharmacokinetics.8 Total fractions 
of dose metabolized via CYP3A4 vary between very low 
(17%) and high doses (65%) of quinidine. This might be a 
result of varying fraction absorbed due to P- gp activity at 
the intestinal barrier and therefore a different impact of 
first- pass metabolism in the intestinal mucosa and in the 
liver. Another site of the body where P- gp contributes to 
quinidine pharmacokinetics is in tubule cells, where P- gp 
is responsible for the active tubular secretion of quinidine. 

F I G U R E  2  Quinidine drug– drug(– gene) interaction (DD(G)I) modeling network. (Upper panel) With quinidine acting as cytochrome 
P450 (CYP) 3A4 and P- glycoprotein (P- gp) victim drug, interactions with carbamazepine, cimetidine, fluvoxamine, itraconazole,  
R- /S- omeprazole, rifampicin, and R- /S- verapamil were modeled, taking different modes of interaction into account. (Lower panel) With 
quinidine acting as CYP2D6 and P- gp perpetrator drug, interactions were modeled with dextromethorphan, mexiletine, R- /S- metoprolol, 
and paroxetine in subjects with varying CYP2D6 activity (depending on data availability) and with digoxin (P- gp substrate).
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Profiles of the amount of quinidine excreted in urine over 
time have been included in parameter optimizations to 
inform this process. However, urinary excretion of qui-
nidine has been described to be pH dependent,32 which 
might explain challenging the description and prediction 
of urine data.

Metabolism via CYP3A4 shows the largest contribution 
in vitro compared to other CYP enzymes.7 However, in vivo 
metabolism via CYP3A4 was not easily assessable from liter-
ature reports, because competitive inhibitors of CYP3A4 in 
clinical DDI studies showed only a small effect on quinidine 
plasma concentrations.26,33 Therefore, plasma concentration- 
time profiles of quinidine and 3- hydroxyquinidine during 
interaction with carbamazepine, a CYP3A4 inducer, were 
consulted to serve as a surrogate for lacking in vitro and in 
vivo data to estimate the relative contribution of CYP3A4 
to quinidine metabolism. This approach has been success-
fully applied before, to estimate the previously unknown 

contribution of CYP3A4 and tubular secretion (also medi-
ated via P- gp) in a PBPK model of trimethoprim.17 Here, a 
DDI study with rifampicin, a CYP3A4 and P- gp competitive 
inhibitor and inducer, was included in the training dataset 
during the model building process, leading to a favorable 
description of trimethoprim concentrations in plasma and 
fractions excreted in urine.17

The co- administration of quinidine and various perpe-
trator and victim drugs covering different modes of inter-
action on several targets has been investigated in this work. 
To cover relevant interaction mechanisms and targets, the 
main metabolite of quinidine, 3- hydroxyquinidine, was 
included, (i) to adequately assess the impact of CYP3A4 
perpetrator drugs and (ii) to incorporate its interaction po-
tential, as inhibition of CYP2D6 has also been reported for 
the metabolite.10

Cimetidine is classified as a weak clinical inhibitor of 
CYP3A4 by the FDA.5 In the model, inhibition of CYP3A4 

F I G U R E  3  Modeled drug– drug interactions (DDIs) involving quinidine as cytochrome P450 (CYP) 3A4 and P- glycoprotein (P- gp) 
victim. (a– f) Predicted compared to observed plasma concentration- time profiles of quinidine and 3- hydroxyquinidine alone and after 
pretreatment with and/or concomitant administration of (a) carbamazepine, (b) fluvoxamine, (c) itraconazole, (d) R- /S- omeprazole, (e) 
rifampicin, and (f) R- /S- verapamil (low verapamil dose regimen). Population geometric means are shown as lines (solid: quinidine and 
3- hydroxyquinidinde alone, dashed: quinidine and 3- hydroxyquinidinde during DDI), geometric standard deviations are shown as shaded 
areas and observed data are shown as dots (control) and squares (DDI) (±standard deviation, if reported).26,32– 36 Quinidine doses indicate 
quinidine sulfate administration. Respective doses of quinidine base were calculated and incorporated in simulations. b.i.d., twice daily;  
n, number of study participants; po, oral; q.d., once daily; s.d., single dose; t.i.d, three times daily.
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by cimetidine is incorporated, and the model has been 
evaluated in DDI predictions with the CYP3A4 index sub-
strate midazolam.5,12 Linking the cimetidine model to the 

newly developed quinidine model, no interaction effect 
could be observed via simulation. However, as a small in-
teraction effect could be observed in clinical studies,43,44 

F I G U R E  4  Modeled drug– drug(– gene) interactions (DD(G)Is) involving quinidine as cytochrome P450 (CYP) 2D6 and P- glycoprotein 
(P- gp) perpetrator. (a– i) Predicted compared to observed plasma concentration- time profiles of (a) dextromethorphan (+ metabolites) 
in CYP2D6 normal metabolizers (NMs), (b, c) digoxin, (d) R- /S- metoprolol, (e, f) racemic metoprolol (low quinidine dose regimen), 
(g, h) mexiletine, and (i) paroxetine (in combination with dextromethorphan) alone and after pretreatment with and/or concomitant 
administration of quinidine. Population geometric means are shown as lines (solid: victim alone, dashed: victim during drug- drug 
interaction [DDI]), geometric standard deviations are shown as shaded areas and observed data are shown as dots (control) and squares 
(DDI) (± standard deviation, if reported).11,37– 42 Quinidine doses indicate quinidine sulfate administration. Respective doses of quinidine 
base were calculated and incorporated in simulations. b.i.d., twice daily; iv, intravenous; n, number of study participants; norm, dose- 
normalized; PM, CYP2D6 poor metabolizer; po, oral; q.d., once daily; q.i.d., four times daily; s.d., single dose.
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F I G U R E  5  Quinidine drug– drug(– gene) interaction (DD(G)I) model performance evaluation. (a, b) For quinidine acting as a 
cytochrome P450 (CYP) 3A4 and P- glycoprotein (P- gp) victim, predicted drug−drug interaction (DDI) (a) area under the plasma 
concentration- time curve calculated between the first and last concentration measurement (AUClast) and (b) maximum plasma 
concentration (Cmax) ratios of quinidine and 3- hydroxyquinidine are plotted against their respective observed values after pretreatment with 
and/or concomitant administration of carbamazepine, cimetidine, fluvoxamine, itraconazole, R- /S- omeprazole, rifampicin, and  
R- /S- verapamil.26,32– 36,43,44 (c, d) For quinidine acting as a CYP2D6 and P- gp perpetrator, predicted DD(G)I (c) AUClast and (d) Cmax ratios 
of dextromethorphan (DEX), dextrorphan- O- glucuronide (DXG), total dextrorphan (DTT), digoxin (DIG), metoprolol (MET), S- metoprolol 
(SME), and R- metoprolol (RME), mexiletine (MEX) and paroxetine (PAR) are plotted against their respective observed values after 
pretreatment with and/or concomitant administration of quinidine.11,37– 42,45 The solid line represents the line of identity, whereas 1.25- fold 
and two- fold prediction limits are shown as dotted and dashed lines, respectively. Prediction success limits proposed by Guest et al.24 are 
shown as curved lines (including 20% variability).
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this effect might be attributed to interaction processes 
which could not be attributed to incorporated processes. 
For instance, cimetidine is a known inhibitor of several 
other proteins (e.g., transporters and other metabolic en-
zymes),12 and further transport mechanisms have been 
discussed for quinidine but not incorporated due to lim-
ited information.

Quinidine has been described as P- gp substrate and 
inhibitior,5 and mutual interactions with other drugs that 
can also be classified as P- gp substrate and inhibitor or 
inducer are plausible. This was considered for the mod-
eled interaction between quinidine and verapamil by in-
corporating interaction parameters for both quinidine and 
verapamil. However, in the analyzed verapamil- quinidine 
interaction study by Edwards et al.,34 only quinidine 
plasma concentrations were reported with no profiles of 
verapamil. Therefore, the effect of quinidine on verapamil 
pharmacokinetics could not be evaluated.

Regarding the rifampicin- quinidine DDI, which in-
volves induction and inhibition of CYP3A4 (metabolism 
of quinidine and 3- hydroxyquinidine) and P- gp (transport 
of quinidine), plasma concentration- time profiles, DDI 
AUClast and Cmax ratios are well- predicted for the parent 
drug quinidine. However, for the metabolite, AUClast and 
Cmax are underpredicted during the DDI. This might be 
attributed to CYP3A4 involved in the formation as well 
as the metabolism of 3- hydroxyquinidine with an un-
known extent of contribution for the latter process. In 
addition, other enzymes that might be involved in the me-
tabolism could be the subject of induction by rifampicin.  
Additionally, P- gp may play a role in the active transport 
of 3- hydroxyquinidine. This could account for the un-
derestimation of 3- hydroxyquinidine levels in urine, al-
though this process was not included in the model due 
to insufficient data. Conducting in vitro studies to deter-
mine the extent of inducible CYP enzymes involved in 
3- hydroxyquinidine metabolism, as well as the potential 
contribution of P- gp, may enhance our understanding of 
DDI mechanisms. This information could then be incor-
porated into the model as it becomes available.

The investigated DDIs with CYP2D6 victim drugs 
could be satisfactorily predicted with the model. For the 
modeled DDGIs with dextromethorphan (two studies)37,45 
and metoprolol (one study)11 as victim drugs, CYP2D6- 
dependent metabolism was estimated from the control 
studies without an interaction partner to cover the exten-
sive unexplained interindividual variability in CYP2D6 
activity (Table S14). Subsequently, these adjustments were 
carried over to the DDI simulations. These studies solely 
provided CYP2D6 phenotypes, however, applying a finer- 
scaled activity score- based system to classify polymorphic 
CYP2D6 activity has been shown to lead to accurate DGI 
modeling results.13,14,23 Here, no quinidine DDGI studies 

reporting CYP2D6 genotypes or activity scores could be 
obtained from published literature. Hence, the quinidine 
DDGI model performance of such scenarios remained 
unassessed, but the model could be extended in the fu-
ture as far as such studies come available. For mexiletine, 
plasma- concentration- time profiles are slightly under-
predicted, especially in CYP2D6 normal metabolizers. 
However, the profiles reported in the study by Abolfathi 
et al.38 show representative profiles rather than mean pro-
files. Additionally, the variability in CYP2D6 activity and 
also other metabolic processes, such as CYP1A2- mediated 
metabolism, might contribute to interindividual variabil-
ity of mexiletine pharmacokinetics. Of note, the model 
has a tendency to underpredict mexiletine clearance in 
normal metabolizers, as mentioned by the authors of the 
model publication,21 likely resulting in a slight mispre-
diction of mexiletine in both control and DDI scenarios. 
Nonetheless, DDI AUClast and Cmax ratios were within 
the prediction success limits proposed by Guest et al.,24 
indicating good performance of the quinidine model in 
CYP2D6 DDI scenarios.

Several PBPK model analyses have been published for 
quinidine. These focused on DDI predictions with quini-
dine as either a perpetrator drug with, for example, tra-
madol,46 nifedipine and metoprolol47 or as a victim drug, 
in DDI scenarios with rifampicin48 or itraconazole and 
verapamil.49 Furthermore, one article presented a PBPK/
pharmacodynamic model of quinidine to investigate its ef-
fect on the length of QT- interval.50 In contrast to previous 
work, our whole- body PBPK model covers the formation 
of the main quinidine metabolite, 3- hydroxyquinidine 
(mainly via CYP3A4) for correct interaction predictions 
considering CYP3A4 and CYP2D6 as well as the mecha-
nistic implementation of ADME processes for both com-
pounds (e.g., quinidine transport via P- gp). Furthermore, 
several DD(G)I scenarios could be successfully described 
and predicted within a comprehensive interaction net-
work, evaluating quinidine as a perpetrator (CYP2D6 and 
P- gp) and as a victim drug (CYP3A4 and P- gp). Moreover, 
the presented quinidine PBPK model was developed 
using a variety of quinidine and 3- hydroxyquinidine 
concentration- time profiles covering two routes of admin-
istration (intravenous and oral administration), a large 
dosing range (0.1– 600 mg) and both single and multiple 
administrations. The presented quinidine model focuses 
on quinidine sulfate formulations for oral administra-
tion, but implementation of further formulations (e.g., 
extended- release), could be performed with the model 
once required data (e.g., in vitro dissolution profiles), be-
come available.

To conclude, this work presents a comprehen-
sive quinidine whole- body PBPK model that de-
scribes and predicts quinidine and 3- hydroxyquinidine 
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pharmacokinetics administered alone or in combination 
with CYP3A4 and P- gp inhibitors or inducers. Moreover, 
the model has demonstrated its predictive performance 
in interaction scenarios with a diverse set of CYP2D6 
and P- gp victim drugs— also in subjects with altered 
CYP2D6 activity due to genetic polymorphisms. The 
presented network can be extended in the future by inte-
grating more interaction studies on further perpetrator 
and victim drugs. The PBPK model files are provided to 
the modeling community (http://models.clini calph ar-
macy.me/) to assist model- informed drug development 
through further investigations on DD(G)Is involving 
quinidine.
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5
D I S C U S S I O N A N D F U T U R E D I R E C T I O N S

This thesis outlines comprehensive approaches for the development of
whole-body PBPK models to describe and predict the PK of various
drugs in CYP2D6 DGI and DDGI scenarios. New PBPK models have
been carefully developed and evaluated for the important CYP2D6

substrates metoprolol, dextromethorphan, paroxetine, atomoxetine,
risperidone and (E)-clomiphene as well as for the strong CYP2D6 in-
hibitor quinidine. Subsequently, these models were employed in differ-
ent applications, including: (i) developing metoprolol dose adaptations
based on the CYP2D6 activity score, (ii) investigating the observed IIV
in the CYP2D6-mediated metabolism of dextromethorphan for individ-
ual subjects sharing the same CYP2D6 activity score, (iii) simulating
steady-state exposure of paroxetine, atomoxetine and risperidone in
various DGI scenarios and (iv) predicting various DDGI scenarios
involving the CYP2D6 and CYP3A4 substrate (E)-clomiphene as well
as the CYP3A4 and P-gp substrate and CYP2D6 and P-gp inhibitor
quinidine.

Furthermore, this thesis presents a blueprint for the development
of PBPK models for CYP2D6 substrates and a novel approach to
describing the CYP2D6 activity score-dependent metabolism in these
models, based on established PBPK DGI models of CYP2D6 substrates.
The models and applications presented demonstrate the vast potential
of PBPK modeling when incorporating the CYP2D6 activity score
system to model CYP2D6 substrates and complex DGI and DDGI
scenarios.

5.1 cyp2d6 drug-gene interactions and the cyp2d6 ac-
tivity score

CYP2D6 is arguably one of the most important pharmacogenes, as the
CYP2D6 enzyme is involved in the metabolism of 15–25% of clinically
used drugs. Simultaneously, its activity is highly susceptible to genetic
variants in the CYP2D6 gene [24]. With more than 140 CYP2D6 alleles
having been identified to date [32] and the resulting combinatorial
complexity of CYP2D6 genotypes, CYP2D6 genotype-to-phenotype
translation represents a challenging task [43]. Here, the CYP2D6 ac-
tivity score system aims to provide an easy-to-use approach to trans-
late CYP2D6 genotype information into a semiquantitative measure
of CYP2D6 phenotype [43]. As such, the activity score system has
proven its raison d’être as it has since been adopted by major in-
stitutions and working groups concerned with the investigation of

131



132 discussion and future directions

PGx [45]. Moreover, the activity score system has been adapted forGenotype-to-
Phenotype

Translation
genotype-to-phenotype translations of other pharmacogenes such as
the dihydropyrimidine dehydrogenase (DPYD) [152] and CYP2C9 [153]
genes, underlining the general usefulness of this approach. However,
while phenotype categories inferred from genotype data are widely
used in PGx guidelines and clinical practice, they may not grasp the
full complexity of the relationship between CYP2D6 genotypes and
phenotypes. This is highlighted by extensive inter-category variability
in CYP2D6 activity and substantial overlap between the phenotype cat-
egories [42]. For instance, twin studies in monozygotic and dizygoticVariability in

CYP2D6 Activity
Within Phenotype

Categories

twins revealed that phenotypes inferred from the CYP2D6 activity
score system were only able to predict 39% of the variability in meto-
prolol AUC even though 91% of variability could be attributed to
genetic factors with only 9% of variability attributable to environmen-
tal factors [154]. While genetic factors outside of the CYP2D6 gene [47]
and rare, uncategorized variants of the CYP2D6 gene [155, 156] may
contribute to this variability, the categorization into phenotype cate-
gories and the resulting loss of information may explain a substantial
proportion of this large variability [157, 158].

The activity score system has itself been suggested to provide a
more fine-grained estimate of CYP2D6 activity compared to the more
broad traditional phenotype categories. For instance, Caudle et al.
proposed a percent activity system assigning a percentage of CYP2D6

activity based on an individuals CYP2D6 activity score [45]. Here,Continuous Scales
of CYP2D6

Activity
an activity score of zero corresponds to 0% CYP2D6 activity, an ac-
tivity score of two (corresponding to the wild-type *1/*1 genotype)
corresponds to 100% CYP2D6 activity whereas, for instance, an ac-
tivity score of one could correspond to 40%–60% CYP2D6 activity
[45]. Other studies have also expanded on the concept of the activity
score system to assign activity values to CYP2D6 alleles instead of
the fixed categories to better reflect differences in CYP2D6 activity
between individual alleles within the same activity score category
(i.e., 0, 0.25, 0.5, 1) and provide a continuous scale of CYP2D6 activity.
Here, van der Lee et al. demonstrated for a cohort of 561 European
patients treated with tamoxifen, that while the established CYP2D6

activity score system outperformed traditional phenotype categories
in predicting endoxifen/desmethyltamoxifen metabolic ratios (R2 =
0.66 vs. 0.54), the adjusted continuous activity scale presented by the
authors was an even better predictor of endoxifen/desmethyltamox-
ifen metabolic ratios (R2 = 0.79), and was able to explain 79% of IIV
in endoxifen/desmethyltamoxifen metabolic ratios [158]. Similarly,The Future of the

CYP2D6 Activity
Score System

other studies have suggested moving away from fixed activity score
categories to allele-specific activity values to better reflect differences
between alleles within the same activity score category [159–161].

Hence, the activity score system itself is not only a useful tool for
genotype-to-phenotype translation and may in itself be an accurate
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predictor of CYP2D6 activity. The system may be further improved
upon in the future by moving from phenotype or activity score cate-
gories to a the continuous scale of CYP2D6 activity and even include
additional effects such as co-medication, other genetic and non-genetic
factors as well as mixed effects observed for certain allele-substrate
combinations [42, 46, 158].

5.2 cyp2d6 drug-gene interaction modeling

DGI models provide useful tools to investigate the impact of genetic
variants on the PK of drugs [20]. Most published CYP2D6 DGI mod-
els are developed based on traditional CYP2D6 phenotype categories
[162–170]. This is likely due to the fact, that especially mechanistic
implementations of CYP2D6 DGIs, i.e., adapting CYP2D6 substrate
affinity (KM) and activity (maximum reaction velocity (Vmax) and/or
enzyme abundance) based on genotype data, would require an exten-
sive amount of experimental data to be collected and analyzed [20].
Consequently, CYP2D6 DGI models based on mechanistic implemen- The CYP2D6

Activity Score
System in DGI
Modeling

tations of genotype effects can typically only describe a small number
of specific CYP2D6 genotypes (e.g., *1/*1 and *10/*10) [171–173]. Here,
DGI models based on the activity score system may provide a useful
alternative, as they provide a more fine-grained estimate of CYP2D6

activity compared to the more broad traditional phenotype categories
without requiring an extensive amount of experimental data [1, 174].
So far, the use of the activity score system in DGI modeling has been
limited to a handful of studies in recent years [159, 175–177].

The models of metoprolol and dextromethorphan presented in this
thesis (projects I and II) highlight the potential of an activity score-
dependent approach to assess CYP2D6 DGI effects in PBPK models,
supplementing incomplete or missing experimental in vitro data by
estimating CYP2D6 activity for various activity scores based on in vivo
data [1, 2]. In accordance with the concept of continuous scales of
CYP2D6 activity [45], metoprolol and dextromethorphan CYP2D6 kcat

values obtained from parameter optimizations revealed generally in-
creasing CYP2D6 activity with increasing activity score and only slight
differences in kcat, rel for the modeled activity score categories between
the two drugs. For instance, estimated kcat, rel were 19% and 14% activ- Continuous and

Substrate-
Independent
CYP2D6 Activity

ity compared to the wild-type (activity score = 2) activity for activity
score 0.5, 64% and 48% for activity score 1.25 and 72% and 63% for
activity score 1.5 for metoprolol and dextromethorphan, respectively
[3]. As a consequence, project III features a substrate-independent
approach to model CYP2D6 DGI effects in PBPK models with the
help of the activity score system by applying a continuous scale of
CYP2D6 activity derived from the metoprolol and dextromethorphan
CYP2D6 DGI models [3]. Here, model CYP2D6 kcat values for parox-
etine, atomoxetine and risperidone for variant activity scores were
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calculated based on OLS regression analyses of CYP2D6 kcat, rel values
for metoprolol and dextromethorphan and the CYP2D6 kcat value for
the wild-type (activity score of two) [3]. Overall, good model perfor-
mance was achieved in various CYP2D6 DGI scenarios, highlighting
the usefulness of the presented approach approximating CYP2D6 kcat

value estimates based on the generated empirical equation for the
whole range of modeled activity scores.

Alternatively, the CYP2D6 activity score-dependent metabolism
parameters of a specific substrate may be informed by scaling CYP2D6

activity from in vitro data as highlighted in project IV. Here, IVSFsSemi-Mechanistic
Implementation of
CYP2D6 Activity

in PBPK Models

were scaled from optimized kcat values for the wild-type (activity score
= 2) to the activity score of interest individually for each of the four
CYP2D6-dependent pathways of the (E)-clomiphene parent-metabolite
model [4]. These IVSFs were informed from parameters obtained from
in vitro experiments on the respective pathways [120].

DGI models can be applied in a variety of scenarios, ranging from
the investigation of DGI effects, such as predicting drug exposure in
relevant tissues, designing virtual clinical trials to investigate com-
plex DDGI scenarios. Moreover, DGI models can be used to generateApplications of

DGI Models dose recommendations for patients with specific genetic variants [20].
Project I showcased this approach by calculating optimal doses for
populations with specific CYP2D6 activity scores based on the de-
veloped metoprolol CYP2D6 DGI model. Interestingly, model dose
recommendations were in good agreement with the dose recommen-
dations provided by the DPWG for phenotype categories. For instance,Metoprolol Dose

Recommendations the DPWG guideline recommends <25% and <50% of the normal dose
for poor metabolizers and intermediate metabolizers, whereas the
model calculated doses were 12.5% and 25–50% of the normal dose,
respectively [1, 178]. Patients may benefit from model-derived dose
adaptations based on CYP2D6 activity scores, as the activity score
provides a more fine-grained estimate of CYP2D6 activity compared
to the traditional phenotype categories [48]. Finally, the metoprolol
PBPK model may be extended to incorporate the impact of other ge-
netic variants, namely in the ADRB1 and ADRB2 genes, as variants in
these pharmacogenes have been shown to significantly impact the PD
of metoprolol [87, 88].

5.3 pbpk ddgi modeling in mid3

Over the past two decades, PBPK modeling has moved from being
predominately used in academic research to also being an established
tool in the context of MID3 and is now widely used in the pharma-
ceutical industry and regulatory agencies [179]. With the introduction
of the Prescription Drug User Fee Act Reauthorization (PDUFA) VI
in 2018, MID3 has been codified as a routine part of the drug devel-
opment process, with the FDA requiring the use of PK modeling for
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many new drug application (NDA) submissions [180] and the EMA
and other regulatory agencies following suit [181]. This is reflected in
NDA submissions to the FDA, where in 2008, only one NDA submis-
sion included PBPK modeling, whereas this number increased to 27 in
2017 [182] and 293 between 2018–2021 [183]. The main application of PBPK in

Regulatory
Submissions

PBPK models in MID3 is the prediction of DDI scenarios, making up
for approximately 60% of PBPK modeling applications in NDAs be-
tween 2018–2019, followed by pediatric scaling (9%), modeling of drug
absorption and food effects (9%), hepatic and renal impairment (8%),
PGx (3%) and others (11%) [184]. Here, prospective DDI assessment
presents a particularly useful application of PBPK models, where the
impact of DDI scenarios on the PK of a drug can be extrapolated to
untested DDI scenarios, consequently reducing the need for costly
clinical trials [185, 186]. For instance, the FDA has recently waived DDI Modeling in

NDA Submissions
and DDI
Networks

the need for clinical trials assessing the impact of various CYP3A4

inhibitors on the PK of the CYP3A4 substrate finerenone, based on
PBPK model simulations [187]. The underlying concept of DDI model-
ing in MID3 is based on the idea of DDI networks, where the impact
of a drug on the PK of other drugs and vice versa is investigated in
a network of PBPK models, enabled by the modular nature of PBPK
models developed within the same framework [146, 149, 150, 188].
While DDI modeling is a well-established field in the realm of PBPK
modeling and one of the most common applications of PBPK mod-
els, especially in the context of MID3 [134], real-world interactions
between drugs are often more complex than the isolated interaction
between two drugs in a controlled clinical trial setting [22]. Instead, DDGI as Clinical

Realitythey typically occur in fragile populations such as the elderly, often
taking five or more drugs and possessing genetic variants in important
pharmacogenes. Due to their mechanistic nature, PBPK DGI models
are well suited for the investigation of such complex DDGI scenarios
and modeling results can be scaled to such fragile populations [20].
Although PBPK DDGI networks have been developed for a variety
of drugs and pharmacogenes [22, 188] and for even more complex
DDGDI scenarios [148], their application in the context of MID3 is still
in its infancy as compared to the application of PBPK models in the
context of DDI assessment.

Project IV of this thesis features a comprehensive PBPK DDGI model
of (E)-clomiphene and its metabolites, investigating the simultane-
ous impact of CYP2D6 genetic variants and co-administration of the
CYP2D6 inhibitor paroxetine and the CYP3A4 inhibitor clarithromycin
on the PK of (E)-clomiphene and its metabolites [4]. Similarly, project DDGI Networks

V showcases a complex DDGI network developed around the CYP3A4

and P-gp substrate as well as CYP2D6 and P-gp inhibitor, quinidine [5].
This network incorporated a total of 13 drugs, either acting as CYP3A4

or P-gp perpetrator drugs or as substrates of P-gp and CYP2D6, in-
cluding also DDGI scenarios where study participants possessed a
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variant phenotype. Among other previously published models, the net-
work also incorporated three PBPK models developed in projects I–III
of this thesis, namely metoprolol, dextromethorphan and paroxetine.
This aspect underlines the modular nature of thoroughly developed
PBPK models, as they can be seamlessly integrated into complex
DDGI networks. Moreover, the networks presented in projects IV and
V may serve as an extension of the existing DDI networks [146, 149,
150, 188] and the openly accessible PBPK model library on GitHub,
and may be used to investigate the impact of DDGI scenarios on the
PK of drugs in the context of MID3 in the future.

5.4 pbpk modeling in precision dosing

While the idea of using computational approaches to individualize
dosing has been around for several decades [189], the field has been
gaining momentum in recent years. This is highlighted by the former
US President Barack Obama calling for personalized medicine initia-
tives in his 2015 State of the Union address [190]. Increasing scientific
efforts as well as steadily increasing computational power have en-
abled the idea of applying PK models to optimize treatment based on
individual patient characteristics to improve treatment outcomes – a
concept termed model-informed precision dosing (MIPD) [191]. MIPDModel-Informed

Precision Dosing is typically applied for the optimization of drug dosing regimens,
especially for drugs with a narrow therapeutic window, and/or highly
variable PK. Here, dose optimizations are often performed for an indi-
vidual patient based on model covariates, i.e., patient characteristics,
such as weight, sex or genetic make-up as well as a defined PK or PD
target, in a probabilistic approach. Additionally, Bayesian forecasting
can be integrated to update PK and PD model predictions after feeding
in observed data (typically measurements of drug concentrations or
PD markers) and subsequent identification of an individual parameter
estimate from the posterior distribution [72], a concept also used in
therapeutic drug monitoring (TDM) [192].

These MIPD approaches are typically based on PopPK models, due
to the computationally demanding nature of PBPK model frameworks.
However, PBPK models hold enormous potential in this field, due
to the ability of modern PBPK modeling frameworks to seamlessly
link multiple compound models to describe complex DDI and DDGI
scenarios. Additionally, whole-body PBPK models typically allow for a
more detailed representation of the individual in the model, so-called
virtual twins, mechanistically reflecting interpatient differences based
on patient characteristics as opposed to mostly empirical relationships
established in PopPK models [193, 194].Virtual Twins

Similarly, project II of this thesis showcased an approach, where
virtual twins were created for 72 study participants of four different
studies, where phenotyping cocktails containing dextromethorphan

https://github.com/Open-Systems-Pharmacology
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were administered. Subsequently, individual PK parameter estimates
for the highly variable CYP2D6 kcat value were identified based on
the individual dextromethorphan plasma concentrations. Resulting
distributions of the CYP2D6 kcat values highlighted the extensive
IIV in CYP2D6 activity, even within activity score groups [2]. The
presented modeling approach can serve as a blueprint for generating
posterior distributions of highly variable PK parameters based on
individual patient data and stratified by the patients’ activity score,
which can then be used to optimize dosing regimens for individual
patients in MIPD or TDM applications.

While clinicians, regulators and pharmaceutical companies have
recognized the need for MIPD, the implementation of such approaches
in clinical practice is still in its infancy [192]. Clinical decision support Implementation of

MIPD in Clinical
Practice

systems (CDSS) are important tools to communicate the results and
recommendations of MIPD approaches to prescribers. As stand-alone
CDSS applications would require the prescriber to input all relevant
patient characteristics manually, CDSS should ideally be directly inte-
grated into electronic health records (EHRs) and electronic prescribing
systems [191, 192]. Here, CDSS require careful evaluation prior to
their clinical application in regards to their performance and safety, as
they typically fall under medical device regulation [20, 192]. Finally, Clinical Decision

Support Systemsclinical evidence on the clinical benefits of MIPD approaches needs to
be generated to support acceptance by prescribers – a task requiring
interdisciplinary efforts between academic researchers, pharmaceutical
companies, health care providers and regulators [192].





6
C O N C L U S I O N

CYP2D6 is a major drug-metabolizing enzyme in the human body
and its activity is influenced by many factors, such as CYP2D6 DGIs
and DDIs. Both personalized medicine and pharmaceutical drug de-
velopment and discovery processes are increasingly dependent on
PK modeling, as many complex interaction scenarios are impossible
to assess in dedicated clinical trials. These scenarios include DDGIs,
which can adversely affect the efficacy and safety of pharmacotherapy
and are therefore of great interest to clinicians and researchers. The
PBPK DGI models presented in this thesis have been developed to
support the investigation of DDGIs and to predict the effect of DGIs
on CYP2D6 activity. Here, the activity score has been observed to be
a suitable measure to quantify the effect of DGIs on CYP2D6 activity
and the resulting DGI models have been used (i) to generate dose
recommendations for patients with different CYP2D6 activity scores,
(ii) to analyze the extent and impact of IIV on CYP2D6 activity, (iii) to
develop an empirical scale of CYP2D6 activity transferable to other
CYP2D6 substrates, and (iv) to investigate the impact of CYP2D6

DDGIs on CYP2D6 activity. As such, the presented models may serve
as promising tools to support investigations of DDIs and DDGIs dur-
ing MID3 or to generate dose recommendations in the context of
MIPD.
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S1 Physiologically based pharmacokinetic
(PBPK) modeling

S1.1 PBPK model building

S1.1.1 PBPK model building

Physiologically based pharmacokinetic (PBPK) modeling and model parameter opti-
mization (Monte Carlo algorithm) were performed using PK-Sim® and MoBi® (Open
Systems Pharmacology Suite 9.1). Published clinical study data were digitized with
GetData Graph Digitizer 2.26.0.20 (©S. Fedorov) according to best practices [56]. For
calculation of pharmacokinetic parameters and model performance metrics as well as
generation of figures Python (version 3.7.4, Python Software Foundation, Wilmington,
DE, USA) and Visual Studio Code (version 1.49.1, Microsoft Corporation, Redmond,
WA, USA) were used. PBPK model building was initiated with an extensive litera-
ture search to gather information on metoprolol absorption, distribution, metabolism
and excretion (ADME) processes, to obtain physicochemical data and to collect clinical
studies of intravenous and oral administration of metoprolol, in single- and multiple-
dose regimens, performed in healthy individuals. Subsequently, plasma concentration-
time profiles from the published clinical studies were digitized and split into a training
dataset, for model building and a test dataset, for model evaluation (see Table S2.2.1
for information on all studies). Studies for model training were selected to include dif-
ferent routes of administration (intravenous and oral), a wide range of administered
doses, single- and multiple-dose regimens as well as stratification for cytochrome P450
2D6 (CYP2D6) genotype or activity score. The training dataset was used for estima-
tion of model input parameters which could not be obtained from literature. The final
model parameters for metoprolol enantiomers and α-hydroxymetoprolol are provided
in Tables S2.3.2 and S2.4.3, respectively. The metoprolol enantiomer PBPK model was
built in a stepwise approach; first, appropriate quantitative structure-activity relation-
ship (QSAR) methods to estimate the cellular permeabilities and partition coefficients
were selected by minimizing the residual sum of squares of simulations of intravenous
metoprolol administration and their observed data. Subsequently, studies of orally ad-
ministered metoprolol in poor metabolizers (PMs) were used to optimize parameters
independent of CYP2D6 metabolism. Finally, (R)- and (S)-enantiomer CYP2D6 catalytic
rate constant (kcat) values were optimized for studies of the training dataset where the
volunteers were either normal metabolizers (NMs) or not phenotyped.
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S1.1.2 Metoprolol formulations

The weibull function was implemented according to Equations S1 and S2 [28] to de-
scribe the dissolution process for different solid metoprolol formulations.

m = 1− exp

(
−(t− Tlag)

β

α

)
(S1)

α = (Td)
β (S2)

where m = fraction of dissolved drug at time t, Tlag = lag time before the onset of disso-
lution, α = scale parameter, β = shape parameter, Td = time needed to dissolve 63% of
the formulation.

The final Weibull shape parameters and Weibull time parameters (50% dissolved) for
all solid formulations used in the metoprolol PBPK-model are given in Table S2.3.2.

S1.1.3 Virtual individuals

The PBPK model was built based on data from healthy individuals, using the reported
sex, ethnicity and mean values for age, weight and height from each study protocol.
If no demographic information was provided, the following default values were sub-
stituted: male, European, 30 years of age, 73 kg body weight and 176 cm body height
(characteristics from the PK-Sim® population database ([35, 49, 52]). CYP2D6 was im-
plemented in accordance with literature, using the PK-Sim® expression database to
define their relative expression in the different organs of the body [38]. Details on the
implementation of CYP2D6 are summarized in Section S4.

S1.1.4 Virtual populations

For population simulations, virtual populations of 100 individuals were created based
on the population characteristics stated in the respective publication. If no informa-
tion was provided in the publication, populations based on european male individu-
als aged 20–50 years were assumed. Metrics were generated (depending on ethnicity)
from one of the following databases; American: Third National Health and Nutrition
Examination Survey (NHANES) [35] database, Asian: Tanaka model [49], European:
International Commission on Radiological Protection (ICRP) database [52]. In the gen-
erated virtual populations, system-dependent parameters such as weight, height, organ
volumes, blood flow rates, tissue compositions, etc. were varied by the implemented
algorithm in PK-Sim® within the limits of the databases listed above [35, 49, 52]. Since
study populations were grouped by their CYP2D6 activity score or phenotype, no vari-
ability in CYP2D6 reference concentrations was assumed for population simulations.
Reference concentrations of implemented proteins as well as their relative expression
are provided in Section S4.
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S1.2 PBPK model evaluation

S1.2.1 PBPK model evaluation

Model evaluation was carried out with different methods based on the clinical data
of the test dataset. The population predicted plasma concentration-time profiles were
compared to the data observed in the clinical studies. Furthermore, predicted plasma
concentration values of all studies were compared to the observed plasma concen-
trations in goodness-of-fit plots. In addition, the model performance was evaluated
by comparison of predicted to observed area under the plasma concentration-time
curve (AUC) from the time of the first concentration measurement to the last time point
of concentration measurement (AUClast) and peak plasma concentration (Cmax) values.
As quantitative performance measures, a mean relative deviation (MRD) of the pre-
dicted plasma concentrations for all observed and the corresponding predicted plasma
concentrations as well as geometric mean fold errors (GMFEs) of the AUClast and Cmax
values were calculated according to Equation S3 and Equation S4, respectively.

MRD = 10x; x =

√
∑k

i=1(log10 ĉi − log10 ci)2

k
(S3)

where ĉi = ith predicted plasma concentration, ci = ith observed plasma concentration
and k = number of observed values.

GMFE = 10x; x =
∑m

i=1

∣∣∣log10

(
ρ̂i
ρi

)∣∣∣
m

(S4)

where ρ̂i = ith predicted plasma AUClast or Cmax value, ρi = ith observed plasma AUClast
or Cmax value and m = number of studies.

S1.2.2 PBPK model sensitivity analysis

Sensitivity of the final models to single parameter changes (local sensitivity analysis)
was calculated as relative change of the AUC0–24. Sensitivity analysis was carried out
using a relative perturbation of 1000% (variation range 10.0, maximum number of 9
steps). Parameters were included into the analysis if they have been optimized, if they
are associated with optimized parameters or if they might have a strong impact due to
calculation methods used in the model. Sensitivity to a parameter was calculated as the
ratio of the relative change of the simulated AUC0–24 h to the relative variation of the
parameter according to Equation S5:

S =
∆AUC0−24 h

∆p
× p

AUC0−24 h
(S5)

where S = sensitivity of the AUC to the examined model parameter, ∆AUC0−24 h =
change of the AUC0–24 h, AUC0−24 h = simulated AUC0–24 h with the original parameter
value, ∆p = change of the examined parameter value, p = original parameter value.
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A sensitivity of +1.0 signifies that a 10% increase of the examined parameter value
causes a 10% increase of the simulated AUC0–24 h. The results of the sensitivity anal-
ysis are provided in Section S2.6.7

S1.3 CYP2D6 DGI Modeling

S1.3.1 Implementation of CYP2D6 DGI

The model training dataset included 11 plasma concentration-time profiles from studies
that reported the CYP2D6 activity scores of their study subjects, ranging from 0 (PM)
to 3 (ultrarapid metabolizer (UM)). These studies were utilized to optimize catalytic
rate constant relative to CYP2D6 activity score (AS)=2 (kcat, rel) values for the different
CYP2D6 activity scores. CYP2D6 poor metabolizers (AS=0) were assumed to show
no CYP2D6 activity (0%), whereas populations with two wildtype alleles (AS=2) were
used as reference (100%) to calculate relative kcat values according to Equation S6:

kcat, rel, AS=i =
kcat, AS=i

kcat, AS=2
· 100% (S6)

where kcat, rel = kcat relative to AS=2 for the investigated AS, kcat, AS=i = kcat for the
investigated AS and kcat, AS=2 = kcat for AS = 2.

The identified values for both CYP2D6 pathways and both metoprolol enantiomers
are listed in Table S3.1.1. CYP2D6 Michaelis-Menten constant (Km) values were kept
constant over the whole range of modeled activity scores. Since study populations
were grouped by their CYP2D6 activity score or phenotype, no variability in CYP2D6
reference concentrations was implemented for population simulations (see Section S4
for details on the implementation of CYP2D6).

S1.3.2 DGI Model Evaluation

The drug-gene interaction (DGI) modeling performance was assessed by comparison
of predicted versus observed plasma concentration-time profiles of racemic metoprolol,
its enantiomers and α-hydroxymetoprolol (see Chapter S3). Furthermore, predicted
DGI AUClast ratios (Equation S7) and DGI Cmax ratios (Equation S8) were evaluated.

DGI AUClast ratio =
AUClast, DGI

AUClast, re f erence
(S7)

where AUClast, DGI = AUClast of variant activity score or phenotype, AUClast, re f erence =
AUClast of AS=2 or normal metabolizer phenotype.

DGI Cmax ratio =
Cmax, DGI

Cmax, re f erence
(S8)
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where Cmax, DGI = Cmax of variant activity score or phenotype, Cmax, re f erence = Cmax of
AS=2 or normal metabolizer phenotype. As a quantitative measure of the prediction
accuracy, GMFE values of the predicted DGI AUClast ratios and DGI Cmax ratios were
calculated according to Equation S4 and are given in Table S3.3.2.
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S2 PBPK modeling of metoprolol

S2.1 Metoprolol model development

Metoprolol is the most frequently administered beta-blocker in the U.S. with well over
50 million total prescriptions per year [10]. It is used in the treatment of hypertension,
angina pectoris, heart failure, arterial fibrillation as well as acute myocardial infarction
[36]. Metoprolol is listed by the U. S. Food and Drug Administration (FDA) as a mod-
erately sensitive substrate for clinical drug-drug interaction (DDI) studies as it is pre-
dominantly metabolized by CYP2D6 [51]. Metoprolol is a Biopharmaceutics Classifica-
tion System (BCS) Class I drug, characterized by high permeability and high solubility.
After its rapid absorption, metoprolol undergoes extensive first-pass metabolism, re-
ducing its bioavailability (BA) to 40% in CYP2D6 NMs, whereas BA approaches 100%
in PMs [25]. Only 12% of metoprolol are bound to plasma proteins, primarily albu-
min [40]. O-demethylation, α-hydroxylation and N-dealkylation by CYP2D6 and, to
lesser extents CYP2B6, CYP2C9, CYP3A4 are described as the pathways of metopro-
lol metabolism [5, 42]. Of the major metabolites, α-hydroxymetoprolol is of particular
clinical interest, as it is pharmacologically active, exhibiting 10% of the β1-blocking ac-
tivity of metoprolol [8], and it is almost exclusively formed via CYP2D6 [29]. Therefore,
α-hydroxymetoprolol/metoprolol urinary metabolic ratios are employed for CYP2D6
phenotyping [7]. Overall, CYP2D6 is estimated to be responsible for 80% of metoprolol
metabolism in normal metabolizers [5]. Depending on the CYP2D6 phenotype, only
1.5–12% of orally administered metoprolol are excreted unchanged in urine [46]. Meto-
prolol is a chiral molecule, marketed as racemic mixture of (R)- and (S)-metoprolol,
even though its enantiomers differ in their pharmacodynamic and pharmacokinetic
properties. The (S)-enantiomer has been shown to be 33-fold more potent in block-
ing β1-adrenoceptors in rats than the (R)-enantiomer [34]. Moreover, in UMs and NMs
but not in PMs, the (S)-metoprolol AUC is significantly higher than the AUC of (R)-
metoprolol, showing the enantiopreference of CYP2D6 towards the (R)-enantiomer
[46].

A total of 48 clinical studies of intravenous or oral administration of metoprolol were
used in the model development process, with doses ranging from 5–200 mg metoprolol
in single or multiple dose regimens. Of the 48 studies, nine included measurements
of the metabolite α-hydroxymetoprolol and 16 studies included measurements of the
metoprolol enantiomers. Details on all studies used for PBPK modeling are given in
Table S2.2.1. The four α-hydroxymetoprolol diastereomers were modeled as one sin-
gle compound, due to a lack of enantiomeric differentiation in the published clinical
data. For both metoprolol enantiomers, enantioselective metabolism via CYP2D6, an
unspecific hepatic clearance (CL) process as well as passive glomerular filtration were
implemented. Each of the metoprolol enantiomers can be metabolized via CYP2D6
to either produce α-hydroxymetoprolol or to generate other metabolites such as O-
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demethylmetoprolol which were not included as separately modeled compounds. The
metabolite α-hydroxymetoprolol is eliminated via an unspecific hepatic CL process.
The drug-dependent model input parameters of the metoprolol enantiomers are pre-
sented in Table S2.3.2; the drug-dependent parameters of the α-hydroxymetoprolol
model are given in S2.4.3.

The performance of the metoprolol model is demonstrated in semilogarithmic (Section
S2.5.1) and linear plots (Section S2.5.2) of population simulations compared to observed
plasma concentration-time profiles of all clinical studies. Furthermore, goodness-of-fit
plots comparing all predicted to their corresponding observed plasma concentrations of
metoprolol enantiomers, racemic metoprolol and α-hydroxymetoprolol (Figures S2.6.9
and S2.6.10) as well as MRD values for each study (see Tables S2.6.4 and S2.6.5) are
presented. Moreover, correlation plots of predicted versus observed AUClast (Figures
S2.6.11 and S2.6.12) and Cmax (Figures S2.6.13 and S2.6.14) values are shown, including
calculated model GMFE values (Tables S2.6.6 and S2.6.7). Finally, a sensitivity analysis
of a simulation of a single oral dose of 100 mg metoprolol tartrate, administered as a
tablet in the fasted state was performed. The results of the sensitivity analysis are given
in Section S2.6.7.
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S2.2 Clinical studies

Table S2.2.1: Metoprolol study table

Route Dose n Females Age Weight Metabolite Enantiomers CYP2D6 Dataset Reference
[mg] [%] [years] [kg] measured measured activity

iv (inf, 150 min, sd) 88.7 6 17 (23–29) - yes no - test Godbillon et al. 1985 [12]
iv (inf, 10 min, sd) 50 12 0 (19–26) (60–98) no no - training Kelly et al. 1985 [23]
iv (inf, 10 min, sd) 20 5 0 (23–28) (62–70) no no - test Johnsson et al. 1975 [22]
iv (inf, 10 min, sd) 15 5 0 (23–28) (62–70) no no - test Johnsson et al. 1975 [22]
iv (inf, 10 min, sd) 10 5 0 (23–28) (62–70) no no - test Johnsson et al. 1975 [22]
iv (inf, 5 min, sd) 10 6 0 (23–28) - no no - test Regårdh et al. 1980 [42]
iv (inf, 10 min, sd) 5 5 0 (23–28) (62–70) no no - training Regårdh et al. 1974 [41]
iv (inf, 10 min, sd) 5 5 0 (23–28) (62–70) no no - test Johnsson et al. 1975 [22]

po (tab, CR, daily) 200 15 27 (21–45) - no no - training Damy et al. 2004 [11]
po (tab, sd) 200 10 0 29 (24–40) 85 no yes p-NM training Johnson et al. 1996 a [20]
po (tab, sd) 200 10 0 29 (24–36) 82 no yes p-NM training Johnson et al. 1996 b [20]
po (tab, CR, sd) 200 15 27 (21–45) - no yes AS=1.5* test Parker et al. 2011 [39]
po (tab, sd) 100 4 0 - - yes no AS=2.0* test Bae et al. 2014 [3]
po (tab, sd) 100 3 0 - - yes no AS=0.5* test Bae et al. 2014 [3]
po (-, sd) 100 12 0 28 (21–35) 71 (62–82) no no - test Bennett et al. 1982 [4]
po (tab, sd) 100 12 50 (22–34) - no no - test Chellingsworth et al. 1988 [9]
po (tab, bid) 100 12 0 (23–32) - no no - test Chellingsworth et al. 1988 [9]
po (tab, sd) 100 10 0 26 (20–36) 73 (59–96) no no p-NM test Hamelin et al. 2000 [14]
po (tab, sd) 100 6 0 26 (20–36) 73 (59–96) no no p-PM test Hamelin et al. 2000 [14]
po (tab, sd) 100 8 0 (20–29) - no yes g-NM test Hemeryck et al. 2000 [15]
po (tab, sd) 100 7 43 52 (29–68) - no no - test Houtzagers et al. 1982 [16]
po (tab, sd) 100 15 0 (19–23) - no no - test Jack et al. 1982 [18]

*: AS calculated from genotype provided in publication, AS: CYP2D6 activity score, bid: twice daily, CR: controlled release, g-: genotyped, inf: infusion,
iv: intravenous, NM: normal metabolizer, p-: phenotyped, PM: poor metabolizer, po: oral, sd: single dose, sol: oral solution, tab: tablet
Values are given as arithmetic means, the range of values are given in parentheses
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Table S2.2.1: Metoprolol study table (continued)

Route Dose n Females Age Weight Metabolite Enantiomers CYP2D6 Dataset Reference
[mg] [%] [years] [kg] measured measured activity

po (tab, sd) 100 5 0 (23–28) (62–70) no no - test Johnsson et al. 1975 [22]
po (tab, sd) 100 16 0 25 65 no yes AS=2* training Huang et al. 1999 [17]
po (tab, sd) 100 12 0 24 65 no yes AS=1.25* training Huang et al. 1999 [17]
po (tab, sd) 100 12 0 24 63 no yes AS=0.5* training Huang et al. 1999 [17]
po (tab, sd) 100 6 22 23 67 yes no AS=2* training Jin et al. 2008 [19]
po (tab, sd) 100 7 22 23 67 yes no AS=1.25* training Jin et al. 2008 [19]
po (tab, sd) 100 15 22 23 67 yes no AS=0.5* training Jin et al. 2008 [19]
po (-, sd) 100 12 0 (19–26) (60–98) no no - training Kelly et al. 1985 [23]
po (-, bid) 100 12 0 (19–26) (60–98) no no - training Kelly et al. 1985 [23]
po (tab, sd) 100 18 0 29 (18–39) 79 (62–100) yes no g-NM test Krösser et al. 2006 [27]
po (-, sd) 100 12 0 33 (19–55) - yes no g-NM test Krauwinkel et al. 2013 [26]
po (tab, bid) 100 10 0 26 (20–36) 84 (66–97) no yes p-NM test Luzier et al. 1999 a [30]
po (tab, bid) 100 10 100 25 (21–35) 62 (54–77) no yes p-NM test Luzier et al. 1999 b [30]
po (tab, bid) 100 15 27 (21–45) - no yes AS=1.5* test Parker et al. 2011 [39]
po (tab, CR, sd) 100 15 27 (21–45) - no yes AS=1.5* test Parker et al. 2011 [39]
po (tab, sd) 100 12 8 28 (25–37) 76 (70–80) no yes AS=3 training Seeringer et al. 2008 [25, 46]
po (tab, sd) 100 13 0 28 (23–34) 77 (69–81) no yes AS=2 training Seeringer et al. 2008 [25, 46]
po (tab, sd) 100 4 0 38 (29–40) 90 (77–101) no yes AS=0 training Seeringer et al. 2008 [25, 46]
po (tab, sd) 100 16 100 27 (18–40) 60 (49–100) no yes AS=1.5* training Sharma et al. 2005 [47]
po (-, sd) 100 4 100 27 (18–40) 60 (49–100) no yes AS=0 training Sharma et al. 2005 [47]
po (tab, sd) 50 5 0 (23–28) (62–70) no no - test Johnsson et al. 1975 [22]
po (-, sd) 50 10 0 28 (18–45) 82 (63–94) no no - test Stout et al. 2011 [48]
po (tab, CR, sd) 50 10 0 28 (18–45) 82 (63–94) no no - test Stout et al. 2011 [48]
po (tab, sd) 50 12 0 31 78 yes no AS=1.5* test Werner et al. 2003 [54]
po (tab, sd) 20 5 0 (23–28) (62–70) no no - test Johnsson et al. 1975 [22]
po (sol, sd) 5 5 0 (23–28) (62–70) no no - training Regårdh et al. 1974 [41]

*: AS calculated from genotype provided in publication, AS: CYP2D6 activity score, bid: twice daily, CR: controlled release, g-: genotyped, inf: infusion,
iv: intravenous, NM: normal metabolizer, p-: phenotyped, PM: poor metabolizer, po: oral, sd: single dose, sol: oral solution, tab: tablet
Values are given as arithmetic means, the range of values are given in parentheses
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S2.3 Drug-dependent parameters: (R)- and (S)-metoprolol

Table S2.3.2: (R)- and (S)-metoprolol drug-dependent parameters

(R)-Metoprolol (S)-Metoprolol

Parameter Unit Value Source Literature Reference Value Source Literature Reference Description

MW g/mol 267.36 Lit. 267.36 [24] 267.36 Lit. 267.36 [24] Molecular weight
pKa (base) - 9.70 Lit. 9.70 [24] 9.70 Lit. 9.70 [24] Acid dissociation constant
Solubility tart. (pH 7.4) g/ml 1.00 Lit. 1.00 [2] 1.00 Lit. 1.00 [2] Solubility
Solubility succ. (pH 5.5) g/ml 0.16 Lit. 0.16 [6] 0.16 Lit. 0.16 [6] Solubility
logP - 1.77 Lit. 1.77 [57] 1.77 Lit. 1.77 [57] Lipophilicity
fu % 88 Lit. 88 [32] 88 Lit. 88 [32] Fraction unbound
CYP2D6 Km → αHM µmol/l 10.08 Lit. 10.08‡ [33] 10.75 Lit. 10.75‡ [33] Michaelis-Menten constant
CYP2D6 kcat

NM → αHM 1/min 6.02 Optim.† 7.50 [33] 6.55 Optim.† 8.27 [33] Catalytic rate constant
CYP2D6 kcat

AS=2 → αHM 1/min 10.17 Optim.† - - 11.19 Optim.† - - Catalytic rate constant
CYP2D6 Km → ODM µmol/l 8.82 Lit. 8.82‡ [33] 12.43 Lit. 12.43‡ [33] Michaelis-Menten constant
CYP2D6 kcat

NM → ODM 1/min 9.87 Optim.† 12.30 [33] 8.21 Optim.† 10.37 [33] Catalytic rate constant
CYP2D6 kcat

AS=2 → ODM 1/min 16.69 Optim.† - - 14.02 Optim.† - - Catalytic rate constant
CLhep, unsp. 1/min 0.08 Optim. - - 0.09 Optim. - - Unspecific hepatic clearance
GFR fraction - 1.00 Asm. - - 1.00 Asm. - - Filtered drug in the urine
EHC continuous fraction - 1.00 Asm. - - 1.00 Asm. - - Bile fraction cont. released
NR Weibull time parameter min 12.31 Optim. - [20, 23] 12.31 Optim. - [20, 23] Dissolution profile time
NR Weibull shape parameter - 0.72 Optim. - [20, 23] 0.72 Optim. - [20, 23] Dissolution profile shape
CR Weibull time parameter min 331.92 Optim. - [11] 331.92 Optim. - [11] Dissolution profile time
CR Weibull shape parameter - 1.53 Optim. - [11] 1.53 Optim. - [11] Dissolution profile shape
Partition coefficients - Diverse Calc. R&R [43, 44] Diverse Calc. R&R [43, 44] Cell to plasma partitioning
Cellular permeability cm/min 4.64E-03 Calc. PK-Sim [37] 4.64E-03 Calc. PK-Sim [37] Perm. into cellular space
Intestinal permeability cm/min 4.14E-05 Optim. 1.12E-05 Calc. [50] 4.14E-05 Optim. 1.12E-05 Calc. [50] Transcellular intestinal perm.

-: not available, †: all CYP2D6 kcat values were optimized in a fixed ratio (kcat → αHM:kcat → ODM) equivalent to the ratio of reported vmax values [33].
‡: in vitro values corrected for binding in the assay using estimated fraction unbound to microsomal protein (fumic, estimated = 84%) [1], αHM: α-hydroxylation,
asm.: assumed, CR: controlled release release tablet, calc.: calculated, cont.: continously, CYP2D6: cytochrome P450 2D6, EHC: enterohepatic circulation, lit.: literature,
GFR: glomerular filtration rate, NR: normal release tablet, NM: normal metabolizer, ODM: O-demethylation, optim.: optimized, PK-Sim: PK-Sim calculation method,
R&R: Rodgers and Rowland calculation method, succ.: metoprolol succinate, tart.: metoprolol tartrate, unsp.: unspecific
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S2.4 Drug-dependent parameters: α-hydroxymetoprolol

Table S2.4.3: α-hydroxymetoprolol drug-dependent parameters

Parameter Unit Value Source Literature Reference Description

MW g/mol 283.36 Lit. 283.36 [24] Molecular weight
pKa (strongest basic) - 9.67 Lit. 9.67 [55] Acid dissociation constant
pKa (strongest acidic) - 13.55 Lit. 13.55 [55] Acid dissociation constant
Solubility g/ml 1.43 Lit. 1.43 [55] Solubility
logP - 0.87 Optim. 0.84 [55] Lipophilicity
fu % 63 Calc. 63 [53] Fraction unbound
CLhep, unsp. 1/min 0.34 Optim. - - Unspecific hepatic clearance
GFR fraction - 1.00 Asm. - - Filtered drug in the urine
EHC continuous fraction - 1.00 Asm. - - Bile fraction cont. released
Partition coefficients - Diverse Calc. R&R [43, 44] Cell to plasma partitioning
Cellular permeability cm/min 4.08E-04 Calc. PK-Sim [37] Perm. into the cellular space
Intestinal permeability cm/min 1.08E-06 Calc. 1.08E-06 Calc. [50] Transcellular intestinal perm.

-: not available, calc.: calculated, cont.: continuously, EHC: enterohepatic circulation, intest.: intestinal,
GFR: glomerular filtration rate, perm.: permeability, PK-Sim: PK-Sim calculation method,
R&R: Rodgers and Rowland calculation method, unsp.: unspecific
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S2.5 Plasma profiles

S2.5.1 Semilogarithmic plots
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Figure S2.5.1: Metoprolol plasma concentrations. Model predictions of metoprolol and
its metabolite α-hydroxymetoprolol plasma concentration-time profiles of intravenous
studies of the training and test datasets, compared to observed data (semilogarithmic
representation). Population predictions (n=100) are shown as lines with ribbons (arith-
metic mean± standard deviation (SD)), symbols represent the corresponding observed
data ± SD. iv: intravenous
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Figure S2.5.2: Metoprolol plasma concentrations. Model predictions of metoprolol and
its metabolite α-hydroxymetoprolol plasma concentration-time profiles of oral studies
of the training and test datasets, compared to observed data (semilogarithmic repre-
sentation). Population predictions (n=100) are shown as lines with ribbons (arithmetic
mean ± standard deviation (SD)), symbols represent the corresponding observed data
± SD. NM: normal metabolizer, po: oral
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Figure S2.5.3: Metoprolol plasma concentrations. Model predictions of metoprolol and
its metabolite α-hydroxymetoprolol plasma concentration-time profiles of oral studies
of the training and test datasets, compared to observed data (semilogarithmic repre-
sentation). Population predictions (n=100) are shown as lines with ribbons (arithmetic
mean ± standard deviation (SD)), symbols represent the corresponding observed data
± SD. NM: normal metabolizer, po: oral
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Figure S2.5.4: Metoprolol enantiomers plasma concentrations. Model predictions of
(R)-metoprolol and (S)-metoprolol plasma concentration-time profiles of oral studies of
the training and test datasets, compared to observed data (semilogarithmic representa-
tion). Population predictions (n=100) are shown as lines with ribbons (arithmetic mean
± standard deviation (SD)), symbols represent the corresponding observed data ± SD.
NM: normal metabolizer, po: oral
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S2.5.2 Linear plots
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Figure S2.5.5: Metoprolol plasma concentrations. Model predictions of metoprolol and
its metabolite α-hydroxymetoprolol plasma concentration-time profiles of intravenous
studies of the training and test datasets, compared to observed data (linear representa-
tion). Population predictions (n=100) are shown as lines with ribbons (arithmetic mean
± standard deviation (SD)), symbols represent the corresponding observed data ± SD.
iv: intravenous
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Figure S2.5.6: Metoprolol plasma concentrations. Model predictions of metoprolol and
its metabolite α-hydroxymetoprolol plasma concentration-time profiles of oral studies
of the training and test datasets, compared to observed data (linear representation).
Population predictions (n=100) are shown as lines with ribbons (arithmetic mean ±
standard deviation (SD)), symbols represent the corresponding observed data ± SD.
NM: normal metabolizer, po: oral
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Figure S2.5.7: Metoprolol plasma concentrations. Model predictions of metoprolol and
its metabolite α-hydroxymetoprolol plasma concentration-time profiles of oral studies
of the training and test datasets, compared to observed data (linear representation).
Population predictions (n=100) are shown as lines with ribbons (arithmetic mean ±
standard deviation (SD)), symbols represent the corresponding observed data ± SD.
NM: normal metabolizer, po: oral
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Figure S2.5.8: Metoprolol enantiomers plasma concentrations. Model predictions of
(R)-metoprolol and (S)-metoprolol plasma concentration-time profiles of oral studies
of the training and test datasets, compared to observed data (linear representation).
Population predictions (n=100) are shown as lines with ribbons (arithmetic mean ±
standard deviation (SD)), symbols represent the corresponding observed data ± SD.
NM: normal metabolizer, po: oral
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S2.6 Model evaluation

S2.6.1 Plasma concentrations goodness-of-fit plots
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Figure S2.6.9: Plasma concentrations goodness-of-fit plots of the final metoprolol
model. Predicted versus observed plasma concentrations for (a) metoprolol and (b)
α-hydroxymetoprolol for all studies. The solid black line indicates the line of identity,
solid grey lines show 2-fold deviation, dashed grey lines indicate 1.25-fold deviation.
AS: CYP2D6 activity score, gof: goodness-of-fit, NM: normal metabolizer, PM: poor
metabolizer, vs: versus
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Figure S2.6.10: Plasma concentrations goodness-of-fit plots of the final metoprolol
model. Predicted versus observed plasma concentrations for (a) (R)-metoprolol and
(b) (S)-metoprolol for all studies. The solid black line indicates the line of identity, solid
grey lines show 2-fold deviation, dashed grey lines indicate 1.25-fold deviation. AS:
CYP2D6 activity score, gof: goodness-of-fit, NM: normal metabolizer, vs: versus
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S2.6.2 Mean relative deviation of plasma concentration predictions
(metoprolol, α-hydroxymetoprolol)

Table S2.6.4: Mean relative deviation of plasma concentration predictions (metoprolol, α-
hydroxymetoprolol)

CYP2D6
Dosing Molecule status MRD Reference

iv, inf, 88.7 mg α-hydroxymetoprolol - 3.12 Godbillon et al. 1985 [12]
po, tab, 100 mg α-hydroxymetoprolol AS=2.0 1.99 Bae et al. 2014 [3]
po, tab, 100 mg α-hydroxymetoprolol AS=0.5 3.25 Bae et al. 2014 [3]
po, tab, 100 mg α-hydroxymetoprolol AS=2.0 1.79 Jin et al. 2008 [19]
po, tab, 100 mg α-hydroxymetoprolol AS=1.25 1.85 Jin et al. 2008 [19]
po, tab, 100 mg α-hydroxymetoprolol AS=0.5 2.02 Jin et al. 2008 [19]
po, -, 100 mg α-hydroxymetoprolol NM 1.62 Krauwinkel et al. 2013 [26]
po, tab, 100 mg α-hydroxymetoprolol NM 1.54 Kroesser et al. 2006 [27]
po, tab, 50 mg α-hydroxymetoprolol AS=1.5 1.46 Werner et al. 2003 [54]
iv, inf, 88.7 mg metoprolol - 1.11 Godbillon et al. 1985 [12]
iv, inf, 50 mg metoprolol - 1.51 Kelly et al. 1985 [23]
iv, inf, 20 mg metoprolol - 1.11 Johnsson et al. 1975 [22]
iv, inf, 15 mg metoprolol - 1.11 Johnsson et al. 1975 [22]
iv, inf, 10 mg metoprolol - 1.13 Johnsson et al. 1975 [22]
iv, inf, 10 mg metoprolol - 1.31 Regardh et al. 1980 [42]
iv, inf, 5 mg metoprolol - 1.23 Johnsson et al. 1975 [22]
iv, inf, 5 mg metoprolol - 1.20 Regardh et al. 1974 [41]
po, CR, tab, 200 mg, daily metoprolol NM 1.25 Damy et al. 2004 [11]
po, tab, 100 mg metoprolol AS=2.0 1.53 Bae et al. 2014 [3]
po, tab, 100 mg metoprolol AS=0.5 1.77 Bae et al. 2014 [3]
po, -, 100 mg metoprolol - 1.29 Bennett et al. 1982 [4]
po, tab, 100 mg metoprolol - 1.67 Chellingsworth et al. 1988 [9]
po, tab, 100 mg, bid metoprolol - 1.99 Chellingsworth et al. 1988 [9]
po, tab, 100 mg metoprolol NM 1.95 Hamelin et al. 2000 [14]
po, tab, 100 mg metoprolol PM 1.90 Hamelin et al. 2000 [14]
po, tab, 100 mg metoprolol - 1.09 Houtzagers et al. 1982 [16]
po, tab, 100 mg metoprolol - 1.51 Jack et al. 1982 [18]
po, tab, 100 mg metoprolol AS=2.0 1.24 Jin et al. 2008 [19]
po, tab, 100 mg metoprolol AS=1.25 1.24 Jin et al. 2008 [19]
po, tab, 100 mg metoprolol AS=0.5 1.34 Jin et al. 2008 [19]
po, tab, 100 mg metoprolol - 1.50 Johnsson et al. 1975 [22]
po, -, 100 mg, bid metoprolol - 1.33 Kelly et al. 1985 [23]
po, -, 100 mg metoprolol - 2.13 Kelly et al. 1985 [23]
po, -, 100 mg metoprolol NM 2.06 Krauwinkel et al. 2013 [26]
po, tab, 100 mg metoprolol NM 1.68 Kroesser et al. 2006 [27]
po, -, 100 mg metoprolol AS=1.5 1.26 Sharma et al. 2005 [47]
po, -, 100 mg metoprolol AS=0.0 1.67 Sharma et al. 2005 [47]
po, CR, tab, 100 mg metoprolol NM 1.66 Stout et al. 2011 [48]

-: not available, AS: CYP2D6 activity score, bid: twice daily, CR: controlled release, inf: infusion, iv: intravenous
NM: normal metabolizer, PM: poor metabolizer, po: oral,sol: oral solution, tab: tablet
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Table S2.6.4: Mean relative deviation of plasma concentration predictions (metoprolol, α-
hydroxymetoprolol)

CYP2D6
Dosing Molecule status MRD Reference

po, tab, 50 mg metoprolol - 1.37 Johnsson et al. 1975 [22]
po, tab, 50 mg metoprolol NM 1.52 Stout et al. 2011 [48]
po, tab, 50 mg metoprolol AS=1.5 2.06 Werner et al. 2003 [54]
po, tab, 20 mg metoprolol - 1.55 Johnsson et al. 1975 [22]
po, sol, 5 mg metoprolol - 1.29 Regardh et al. 1974 [41]

MRD 1.61 (1.09–3.25)
37/43 with MRD ≤ 2

-: not available, AS: CYP2D6 activity score, bid: twice daily, CR: controlled release, inf: infusion, iv: intravenous
NM: normal metabolizer, PM: poor metabolizer, po: oral,sol: oral solution, tab: tablet
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S2.6.3 Mean relative deviation of plasma concentration predictions
((R)-metoprolol, (S)-metoprolol)

Table S2.6.5: Mean relative deviation of plasma concentration predictions ((R)-
metoprolol, (S)-metoprolol)

CYP2D6
Dosing Molecule status MRD Reference

po, tab, 200 mg (R)-metoprolol NM 1.13 Johnson et al. 1996 a [20]
po, tab, 200 mg (R)-metoprolol NM 1.13 Johnson et al. 1996 b [21]
po, CR, tab, 200 mg (R)-metoprolol NM 1.50 Parker et al. 2011 [39]
po, tab, 100 mg (R)-metoprolol NM 1.93 Hemeryck et al. 2000 [15]
po, tab, 100 mg (R)-metoprolol AS=2.0 1.34 Huang et al. 1999 [17]
po, tab, 100 mg (R)-metoprolol AS=1.25 1.39 Huang et al. 1999 [17]
po, tab, 100 mg (R)-metoprolol AS=0.5 1.24 Huang et al. 1999 [17]
po, tab, 100 mg, bid (R)-metoprolol NM 1.36 Luzier et al. 1999 a [30]
po, tab, 100 mg, bid (R)-metoprolol NM 1.55 Luzier et al. 1999 b [31]
po, tab, 100 mg, bid (R)-metoprolol NM 1.52 Parker et al. 2011 [39]
po, CR, tab, 100 mg (R)-metoprolol NM 1.24 Parker et al. 2011 [39]
po, tab, 100 mg (R)-metoprolol AS=3.0 1.41 Seeringer et al. 2008 [46]
po, tab, 100 mg (R)-metoprolol AS=2.0 1.62 Seeringer et al. 2008 [46]
po, tab, 100 mg (R)-metoprolol AS=0.0 1.37 Seeringer et al. 2008 [46]
po, -, 100 mg (R)-metoprolol AS=1.5 1.28 Sharma et al. 2005 [47]
po, -, 100 mg (R)-metoprolol AS=0.0 1.55 Sharma et al. 2005 [47]
po, tab, 200 mg (S)-metoprolol NM 1.14 Johnson et al. 1996 a [20]
po, tab, 200 mg (S)-metoprolol NM 1.09 Johnson et al. 1996 b [21]
po, CR, tab, 200 mg (S)-metoprolol NM 1.42 Parker et al. 2011 [39]
po, tab, 100 mg (S)-metoprolol NM 1.56 Hemeryck et al. 2000 [15]
po, tab, 100 mg (S)-metoprolol AS=2.0 1.20 Huang et al. 1999 [17]
po, tab, 100 mg (S)-metoprolol AS=1.25 1.20 Huang et al. 1999 [17]
po, tab, 100 mg (S)-metoprolol AS=0.5 1.17 Huang et al. 1999 [17]
po, tab, 100 mg, bid (S)-metoprolol NM 1.35 Luzier et al. 1999 a [30]
po, tab, 100 mg, bid (S)-metoprolol NM 1.44 Luzier et al. 1999 b [31]
po, tab, 100 mg, bid (S)-metoprolol NM 1.46 Parker et al. 2011 [39]
po, CR, tab, 100 mg (S)-metoprolol NM 1.29 Parker et al. 2011 [39]
po, tab, 100 mg (S)-metoprolol AS=3.0 1.31 Seeringer et al. 2008 [46]
po, tab, 100 mg (S)-metoprolol AS=2.0 1.29 Seeringer et al. 2008 [46]
po, tab, 100 mg (S)-metoprolol AS=0.0 1.43 Seeringer et al. 2008 [46]
po, -, 100 mg (S)-metoprolol AS=1.5 1.31 Sharma et al. 2005 [47]
po, -, 100 mg (S)-metoprolol AS=0.0 1.64 Sharma et al. 2005 [47]

MRD 1.37 (1.09–1.93)
32/32 with MRD ≤ 2

Overall MRD (all four compounds) 1.51 (1.09–3.25)
69/75 with MRD ≤ 2

-: not available, AS: CYP2D6 activity score, bid: twice daily, CR: controlled release, po: oral, tab: tablet.
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S2.6.4 AUClast and Cmax values goodness-of-fit plots
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Figure S2.6.11: AUClast values goodness-of-fit plots for the final metoprolol model.
Predicted versus observed AUClast values for racemic (a) metoprolol and (b) α-
hydroxymetoprolol for all studies. The solid black line marks the line of identity, the
dotted grey lines mark the 0.8- to 1.25-fold range, the dashed black lines indicate the
0.5- to 2-fold range. AS: CYP2D6 activity score, gof: goodness-of-fit, NM: normal me-
tabolizer, PM: poor metabolizer, vs: versus

B.1 project i : pbpk modeling of metoprolol 195



Pharmaceutics 2020, 12, 1200; doi.org/10.3390/pharmaceutics12121200 29 of 53

102 103

Observed AUClast [ng h/ml]

102

103

Pr
ed

ict
ed

 A
UC

la
st

 [n
g

h/
m

l]
(a) GOF plot - AUClast 

 (R)-metoprolol
Huang 1999, 100 mg, AS=2.0
Huang 1999, 100 mg, AS=1.25
Huang 1999, 100 mg, AS=0.5
Seeringer 2008, 100 mg, AS=2.0
Seeringer 2008, 100 mg, AS=0.0
Seeringer 2008, 100 mg, AS=3.0
Hemeryck 2000, 100 mg, NM
Sharma 2005, 100 mg, AS=1.5

Sharma 2005, 100 mg, AS=0.0
Parker 2011, 100 mg, NM
Parker 2011, 200 mg, NM
Johnson 1996a, 200 mg, NM
Johnson 1996b, 200 mg, NM
Luzier 1999a, 100 mg, NM
Luzier 1999b, 100 mg, NM
Parker 2011, 100 mg, NM

102 103

Observed AUClast [ng h/ml]

102

103

Pr
ed

ict
ed

 A
UC

la
st

 [n
g

h/
m

l]

(b) GOF plot - AUClast 
 (S)-metoprolol

Huang 1999, 100 mg, AS=2.0
Huang 1999, 100 mg, AS=1.25
Huang 1999, 100 mg, AS=0.5
Seeringer 2008, 100 mg, AS=2.0
Seeringer 2008, 100 mg, AS=0.0
Seeringer 2008, 100 mg, AS=3.0
Hemeryck 2000, 100 mg, NM
Sharma 2005, 100 mg, AS=1.5

Sharma 2005, 100 mg, AS=0.0
Parker 2011, 100 mg, NM
Parker 2011, 200 mg, NM
Johnson 1996a, 200 mg, NM
Johnson 1996b, 200 mg, NM
Luzier 1999a, 100 mg, NM
Luzier 1999b, 100 mg, NM
Parker 2011, 100 mg, NM

Figure S2.6.12: AUClast goodness-of-fit plots for the final metoprolol model. Predicted
versus observed AUClast values for (a) (S)-metoprolol and (b) (R)-metoprolol for all
studies. The solid black line marks the line of identity, the dotted grey lines mark the
0.8- to 1.25-fold range, the dashed black lines indicate the 0.5- to 2-fold range. AS:
CYP2D6 activity score, gof: goodness-of-fit, NM: normal metabolizer, vs: versus
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Figure S2.6.13: Cmax values goodness-of-fit plots for the final metoprolol model.
Predicted versus observed Cmax values for racemic (a) metoprolol and (b) α-
hydroxymetoprolol for all studies. The solid black line marks the line of identity, the
dotted grey lines mark the 0.8- to 1.25-fold range, the dashed black lines indicate the
0.5- to 2-fold range. AS: CYP2D6 activity score, gof: goodness-of-fit, NM: normal me-
tabolizer, PM: poor metabolizer, vs: versus
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Figure S2.6.14: AUClast goodness-of-fit plots for the final metoprolol model. Predicted
versus observed AUClast values for (a) (S)-metoprolol and (b) (R)-metoprolol for all
studies. The solid black line marks the line of identity, the dotted grey lines mark the
0.8- to 1.25-fold range, the dashed black lines indicate the 0.5- to 2-fold range. AS:
CYP2D6 activity score, gof: goodness-of-fit, NM: normal metabolizer, vs: versus
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S2.6.5 Geometric mean fold error of predicted AUClast and Cmax values (metoprolol, α-hydroxymetoprolol)

Table S2.6.6: Predicted and observed AUClast and Cmax values (metoprolol, α-hydroxymetoprolol)

CYP2D6 AUClast Cmax
Dosing Molecule status Pred [h·ng/ml] Obs [h·ng/ml] Pred/Obs Pred [ng/ml] Obs [ng/ml] Pred/Obs Reference

iv, inf, 88.7 mg α-hydroxymetoprolol - 617.20 265.13 2.33 - - - Godbillon et al. 1985 [12]
po, tab, 100 mg α-hydroxymetoprolol AS=2.0 1028.84 501.89 2.05 152.15 80.13 1.90 Bae et al. 2014 [3]
po, tab, 100 mg α-hydroxymetoprolol AS=0.5 607.99 206.78 2.94 55.34 18.64 2.97 Bae et al. 2014 [3]
po, tab, 100 mg α-hydroxymetoprolol AS=2.0 886.17 1131.93 0.78 148.83 149.04 1.00 Jin et al. 2008 [19]
po, tab, 100 mg α-hydroxymetoprolol AS=1.25 843.16 1212.70 0.70 123.06 108.88 1.13 Jin et al. 2008 [19]
po, tab, 100 mg α-hydroxymetoprolol AS=0.5 542.62 662.97 0.82 54.84 51.41 1.07 Jin et al. 2008 [19]
po, -, 100 mg α-hydroxymetoprolol NM 775.17 564.03 1.37 100.67 78.25 1.29 Krauwinkel et al. 2013 [26]
po, tab, 100 mg α-hydroxymetoprolol NM 765.96 534.92 1.43 96.50 65.12 1.48 Kroesser et al. 2006 [27]
po, tab, 50 mg α-hydroxymetoprolol AS=1.5 421.10 429.62 0.98 56.25 46.25 1.22 Werner et al. 2003 [54]
iv, inf, 88.7 mg metoprolol - 1251.70 1310.03 0.96 - - - Godbillon et al. 1985 [12]
iv, inf, 50 mg metoprolol - 692.12 501.71 1.38 - - - Kelly et al. 1985 [23]
iv, inf, 20 mg metoprolol - 179.84 192.31 0.94 - - - Johnsson et al. 1975 [22]
iv, inf, 15 mg metoprolol - 136.42 145.74 0.94 - - - Johnsson et al. 1975 [22]
iv, inf, 10 mg metoprolol - 90.64 100.45 0.90 - - - Johnsson et al. 1975 [22]
iv, inf, 10 mg metoprolol - 109.25 82.28 1.33 - - - Regardh et al. 1980 [42]
iv, inf, 5 mg metoprolol - 44.91 38.63 1.16 - - - Johnsson et al. 1975 [22]
iv, inf, 5 mg metoprolol - 63.61 59.56 1.07 - - - Regardh et al. 1974 [41]
po, CR, tab, 200 mg, daily metoprolol NM 10470.95 10087.41 1.04 104.92 130.54 0.80 Damy et al. 2004 [11]
po, tab, 100 mg metoprolol AS=2.0 580.39 535.59 1.08 126.63 179.95 0.70 Bae et al. 2014 [3]
po, tab, 100 mg metoprolol AS=0.5 2410.05 3570.91 0.67 259.49 499.36 0.52 Bae et al. 2014 [3]
po, -, 100 mg metoprolol - 682.28 580.40 1.18 133.15 130.30 1.02 Bennett et al. 1982 [4]
po, tab, 100 mg bid metoprolol - 936.86 1401.85 0.67 166.91 221.75 0.75 Chellingsworth et al. 1988 [9]
po, tab, 100 mg metoprolol - 792.38 1250.28 0.63 171.58 157.08 1.09 Chellingsworth et al. 1988 [9]
po, tab, 100 mg metoprolol NM 812.74 798.21 1.02 132.33 134.26 0.99 Hamelin et al. 2000 [14]
po, tab, 100 mg metoprolol PM 4569.86 3861.13 1.18 266.39 384.09 0.69 Hamelin et al. 2000 [14]
po, tab, 100 mg metoprolol - 620.28 640.42 0.97 145.05 154.54 0.94 Houtzagers et al. 1982 [16]
po, tab, 100 mg metoprolol - 968.18 1213.24 0.80 161.20 163.49 0.99 Jack et al. 1982 [18]
po, tab, 100 mg metoprolol AS=2.0 514.07 423.56 1.21 122.15 104.49 1.17 Jin et al. 2008 [19]
po, tab, 100 mg metoprolol AS=1.25 934.51 1009.15 0.93 164.11 177.83 0.92 Jin et al. 2008 [19]
po, tab, 100 mg metoprolol AS=0.5 2095.14 2367.57 0.88 254.16 332.72 0.76 Jin et al. 2008 [19]
po, tab, 100 mg metoprolol - 444.47 437.96 1.01 121.90 117.92 1.03 Johnsson et al. 1975 [22]
po, -, 100 mg bid metoprolol - 980.20 1208.41 0.81 174.50 207.73 0.84 Kelly et al. 1985 [23]
po, -, 100 mg metoprolol - 737.05 416.18 1.77 146.25 69.54 2.10 Kelly et al. 1985 [23]
po, -, 100 mg metoprolol NM 681.74 408.75 1.67 129.35 121.20 1.07 Krauwinkel et al. 2013 [26]
po, tab, 100 mg metoprolol NM 835.96 594.21 1.41 126.23 121.97 1.03 Kroesser et al. 2006 [27]
po, -, 100 mg metoprolol AS=1.5 795.72 965.96 0.82 177.69 183.30 0.97 Sharma et al. 2005 [47]
po, -, 100 mg metoprolol AS=0.0 5585.63 4612.83 1.21 368.73 447.28 0.82 Sharma et al. 2005 [47]
po, CR, tab, 100 mg metoprolol NM 439.65 323.13 1.36 25.96 17.62 1.47 Stout et al. 2011 [48]
po, tab, 50 mg metoprolol - 323.70 289.99 1.12 59.99 49.54 1.21 Johnsson et al. 1975 [22]
po, tab, 50 mg metoprolol NM 319.14 225.06 1.42 65.57 52.93 1.24 Stout et al. 2011 [48]
po, tab, 50 mg metoprolol AS=1.5 421.32 240.97 1.75 66.95 47.34 1.41 Werner et al. 2003 [54]
po, tab, 20 mg metoprolol - 87.44 56.33 1.55 23.74 15.96 1.49 Johnsson et al. 1975 [22]
po, sol, 5 mg metoprolol - 28.19 24.18 1.17 7.23 7.35 0.98 Regardh et al. 1974 [41]

Overall GMFE 1.31 (1.01–2.94) 1.27 (1.00–2.97)
-: not available, AUClast : AUC from the time of the first concentration measurement to the last time point of concentration measurement, bid: twice daily, CR: controlled release, GMFE: geometric mean fold error,
inf: infusion, iv: intravenous, po: oral, Pred: predicted, Obs: observed, sol: oral solution, tab: tablet
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Table S2.6.6: Predicted and observed AUClast and Cmax values (metoprolol, α-hydroxymetoprolol) (continued)

CYP2D6 AUClast Cmax
Dosing Molecule status Pred [h·ng/ml] Obs [h·ng/ml] Pred/Obs Pred [ng/ml] Obs [ng/ml] Pred/Obs Reference

40/43 with GMFE ≤ 2 32/34 with GMFE ≤ 2

-: not available, AUClast : AUC from the time of the first concentration measurement to the last time point of concentration measurement, bid: twice daily, CR: controlled release, GMFE: geometric mean fold error,
inf: infusion, iv: intravenous, po: oral, Pred: predicted, Obs: observed, sol: oral solution, tab: tablet
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S2.6.6 Geometric mean fold error of predicted AUClast and Cmax values ((R)-metoprolol, (S)-metoprolol)

Table S2.6.7: Predicted and observed AUClast and Cmax values ((R)-metoprolol, (S)-metoprolol)

CYP2D6 AUClast Cmax
Dosing Molecule status Pred [h·ng/ml] Obs [h·ng/ml] Pred/Obs Pred [ng/ml] Obs [ng/ml] Pred/Obs Reference

po, tab, 200 mg (R)-metoprolol NM 598.16 669.28 0.89 113.26 130.14 0.87 Johnson et al. 1996 a [20]
po, tab, 200 mg (R)-metoprolol NM 610.43 569.08 1.07 120.72 113.42 1.06 Johnson et al. 1996 b [21]
po, CR, tab, 200 mg (R)-metoprolol NM 584.15 378.38 1.54 34.06 20.67 1.65 Parker et al. 2011 [39]
po, tab, 100 mg (R)-metoprolol NM 230.19 124.91 1.84 76.01 46.90 1.62 Hemeryck et al. 2000 [15]
po, tab, 100 mg (R)-metoprolol AS=2.0 232.98 210.57 1.11 52.48 44.64 1.18 Huang et al. 1999 [17]
po, tab, 100 mg (R)-metoprolol AS=1.25 385.55 286.63 1.35 79.93 53.02 1.51 Huang et al. 1999 [17]
po, tab, 100 mg (R)-metoprolol AS=0.5 656.06 593.93 1.10 101.14 98.46 1.03 Huang et al. 1999 [17]
po, tab, 100 mg, bid (R)-metoprolol NM 461.34 366.57 1.26 72.56 64.46 1.13 Luzier et al. 1999 a [30]
po, tab, 100 mg, bid (R)-metoprolol NM 557.74 865.88 0.64 92.11 112.25 0.82 Luzier et al. 1999 b [31]
po, tab, 100 mg, bid (R)-metoprolol NM 418.97 453.99 0.92 79.58 67.56 1.18 Parker et al. 2011 [39]
po, CR, tab, 100 mg (R)-metoprolol NM 284.50 256.35 1.11 16.90 14.36 1.18 Parker et al. 2011 [39]
po, tab, 100 mg (R)-metoprolol AS=3.0 68.78 63.90 1.08 27.15 21.16 1.28 Seeringer et al. 2008 [46]
po, tab, 100 mg (R)-metoprolol AS=2.0 167.96 162.85 1.03 41.22 40.60 1.02 Seeringer et al. 2008 [46]
po, tab, 100 mg (R)-metoprolol AS=0.0 1471.47 1248.95 1.18 115.72 136.60 0.85 Seeringer et al. 2008 [46]
po, -, 100 mg (R)-metoprolol AS=1.5 360.85 385.76 0.94 82.29 72.24 1.14 Sharma et al. 2005 [47]
po, -, 100 mg (R)-metoprolol AS=0.0 2701.57 2291.56 1.18 182.75 215.01 0.85 Sharma et al. 2005 [47]
po, tab, 200 mg (S)-metoprolol NM 742.75 832.00 0.89 131.15 156.19 0.84 Johnson et al. 1996 a [20]
po, tab, 200 mg (S)-metoprolol NM 758.90 730.46 1.04 139.53 142.40 0.98 Johnson et al. 1996 b [21]
po, CR, tab, 200 mg (S)-metoprolol NM 739.36 512.79 1.44 42.03 28.11 1.50 Parker et al. 2011 [39]
po, tab, 100 mg (S)-metoprolol NM 280.28 191.91 1.46 87.63 76.15 1.15 Hemeryck et al. 2000 [15]
po, tab, 100 mg (S)-metoprolol AS=2.0 309.70 328.25 0.94 65.03 64.97 1.00 Huang et al. 1999 [17]
po, tab, 100 mg (S)-metoprolol AS=1.25 476.96 416.56 1.14 92.01 68.17 1.35 Huang et al. 1999 [17]
po, tab, 100 mg (S)-metoprolol AS=0.5 749.80 712.83 1.05 108.67 111.98 0.97 Huang et al. 1999 [17]
po, tab, 100 mg, bid (S)-metoprolol NM 602.11 446.50 1.35 86.88 81.12 1.07 Luzier et al. 1999 a[30]
po, tab, 100 mg, bid (S)-metoprolol NM 727.77 991.69 0.73 109.92 130.35 0.84 Luzier et al. 1999 b[31]
po, tab, 100 mg, bid (S)-metoprolol NM 541.62 581.77 1.29 93.65 79.62 1.34 Parker et al. 2011 [39]
po, CR, tab, 100 mg (S)-metoprolol NM 360.97 279.26 0.93 20.88 15.58 1.18 Parker et al. 2011 [39]
po, tab, 100 mg (S)-metoprolol AS=3.0 89.57 101.02 0.89 33.56 36.43 0.92 Seeringer et al. 2008 [46]
po, tab, 100 mg (S)-metoprolol AS=2.0 232.74 245.02 0.95 51.27 61.24 0.84 Seeringer et al. 2008 [46]
po, tab, 100 mg (S)-metoprolol AS=0.0 1552.77 1280.16 1.21 117.90 142.52 0.83 Seeringer et al. 2008 [46]
po, -, 100 mg (S)-metoprolol AS=1.5 452.28 580.03 0.78 95.42 97.80 0.98 Sharma et al. 2005 [47]
po, -, 100 mg (S)-metoprolol AS=0.0 2885.08 2387.00 1.21 186.00 232.43 0.80 Sharma et al. 2005 [47]

GMFE 1.21 (1.03–1.84) 1.19 (1.00–1.65)
32/32 with GMFE ≤ 2 32/32 with GMFE ≤ 2

Overall GMFE (all four compounds) 1.27 (1.01–2.94) 1.23 (1.00–2.97)
72/75 with GMFE ≤ 2 64/66 with GMFE ≤ 2

-: not available, AS: CYP2D6 activity score, AUClast : AUC from the time of the first concentration measurement to the last time point of concentration measurement, bid: twice daily, CR: controlled release,
GMFE: geometric mean fold error, NM: normal metabolizer, po: oral, Pred: predicted, Obs: observed, tab: tablet.
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S2.6.7 Sensitivity analysis

Sensitivity of the final metoprolol model to single parameters (local sensitivity anal-
ysis) was calculated as the relative change of the AUC0–24 h of a 100 mg single dose
of metoprolol tartrate administered as tablet in the fasted state. Sensitivity analysis
was carried out using a relative parameter perturbation of 1000% (variation range 10.0,
maximum number of 9 steps). Parameters were included into the analysis if they were
optimized (CYP2D6 kcat, unspecific clearance, weibull shape and dissolution time (50%
dissolved), intestinal permeability), if they were associated with optimized parameters
(CYP2D6 Km) or if they might have had a strong impact due to calculation methods
used in the model (solubility, lipophilicity, fraction unbound).
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Figure S2.6.15: Sensitivity analysis of the (R)-metoprolol (upper panel) and (S)-
metoprolol (lower panel) model. A sensitivity of +1.0 signifies that a 10% increase
of the examined parameter value causes a 10% increase of the simulated AUC0–24 h.
αHM: α-hydroxymetoprolol, CYP2D6: cytochrome P450 2D6, fu: fraction unbound,
GFR: glomerular filtration rate, kcat: catalytic rate constant, Km: Michaelis-Menten con-
stant, ODM: O-desmethylmetoprolol.
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S3 Metoprolol CYP2D6 DGI model

S3.1 Metoprolol kcat values for the modeled activity scores

Table S3.1.1: kcat, rel values for the different CYP2D6 activity scores

(R)-metoprolol (S)-metoprolol

Activity score kcat → αHM kcat → ODM kcat → αHM kcat → ODM kcat, rel

0 0.00 1/min 0.00 1/min 0.00 1/min 0.00 1/min 0%
0.5 1.65 1/min 2.70 1/min 1.82 1/min 2.27 1/min 19%
1.25 5.73 1/min 9.40 1/min 6.30 1/min 7.89 1/min 64%
1.5 6.38 1/min 10.48 1/min 7.03 1/min 8.81 1/min 72%
2 10.17 1/min 16.69 1/min 11.19 1/min 14.02 1/min 100%
3 19.03 1/min 31.22 1/min 20.93 1/min 26.23 1/min 213%

αHM: α-hydroxylation, kcat: catalytic rate constant, kcat, rel: kcat relative to AS=2,
ODM: O-demethylation
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S3.2 Plasma profiles

S3.2.1 Semilogarithmic plots
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Figure S3.2.1: Metoprolol plasma concentrations of the modeled CYP2D6 drug-
gene interaction. Model predictions of metoprolol and α-hydroxymetoprolol plasma
concentration-time profiles of the CYP2D6 DGI study, compared to observed data [3]
(semilogarithmic representation). Population predictions (n=100) are shown as lines
with ribbons (arithmetic mean ± standard deviation (SD)), symbols represent the cor-
responding observed data ± SD. AS: activity score, oral (po): oral
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Figure S3.2.2: Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene
interaction. Model predictions of metoprolol plasma concentration-time profiles of the
CYP2D6 DGI study, compared to observed data [14] (semilogarithmic representation).
Population predictions (n=100) are shown as lines with ribbons (arithmetic mean ±
standard deviation (SD)), symbols represent the corresponding observed data ± SD.
NM: normal metabolizer, PM: poor metabolizer, po: oral
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Figure S3.2.3: Metoprolol plasma concentrations of the modeled CYP2D6 drug-
gene interaction. Model predictions of (S)-metoprolol and (R)-metoprolol plasma
concentration-time profiles of the CYP2D6 DGI study, compared to observed data [17]
(semilogarithmic representation). Population predictions (n=100) are shown as lines
with ribbons (arithmetic mean ± standard deviation (SD)), symbols represent the cor-
responding observed data ± SD. AS: activity score, po: oral
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Figure S3.2.4: Metoprolol plasma concentrations of the modeled CYP2D6 drug-
gene interaction. Model predictions of metoprolol and α-hydroxymetoprolol plasma
concentration-time profiles of the CYP2D6 DGI study, compared to observed data [19]
(semilogarithmic representation). Population predictions (n=100) are shown as lines
with ribbons (arithmetic mean ± standard deviation (SD)), symbols represent the cor-
responding observed data ± SD. AS: activity score, po: oral
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Figure S3.2.5: Metoprolol plasma concentrations of the modeled CYP2D6 drug-
gene interaction. Model predictions of (S)-metoprolol and (R)-metoprolol plasma
concentration-time profiles of the CYP2D6 DGI study, compared to observed data [46]
(semilogarithmic representation). Population predictions (n=100) are shown as lines
with ribbons (arithmetic mean ± standard deviation (SD)), symbols represent the cor-
responding observed data ± SD. AS: activity score, po: oral
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Figure S3.2.6: Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene in-
teraction. Model predictions of metoprolol, (S)-metoprolol and (R)-metoprolol plasma
concentration-time profiles of the CYP2D6 DGI study, compared to observed data [47]
(semilogarithmic representation). Population predictions (n=100) are shown as lines
with ribbons (arithmetic mean ± standard deviation (SD)), symbols represent the cor-
responding observed data ± SD. AS: activity score, po: oral
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S3.2.2 Linear plots
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Figure S3.2.7: Metoprolol plasma concentrations of the modeled CYP2D6 drug-
gene interaction. Model predictions of metoprolol and α-hydroxymetoprolol plasma
concentration-time profiles of the CYP2D6 DGI study, compared to observed data [3]
(linear representation). Population predictions (n=100) are shown as lines with ribbons
(arithmetic mean ± standard deviation (SD)), symbols represent the corresponding ob-
served data ± SD. AS: activity score, po: oral
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Figure S3.2.8: Metoprolol plasma concentrations of the modeled CYP2D6 drug-gene
interaction. Model predictions of metoprolol plasma concentration-time profiles of the
CYP2D6 DGI study, compared to observed data [14] (linear representation). Population
predictions (n=100) are shown as lines with ribbons (arithmetic mean ± standard de-
viation (SD)), symbols represent the corresponding observed data ± SD. NM: normal
metabolizer, PM: poor metabolizer, po: oral
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Figure S3.2.9: Metoprolol plasma concentrations of the modeled CYP2D6 drug-
gene interaction. Model predictions of (S)-metoprolol and (R)-metoprolol plasma
concentration-time profiles of the CYP2D6 DGI study, compared to observed data [17]
(linear representation). Population predictions (n=100) are shown as lines with ribbons
(arithmetic mean ± standard deviation (SD)), symbols represent the corresponding ob-
served data ± SD. AS: activity score, po: oral
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Figure S3.2.10: Metoprolol plasma concentrations of the modeled CYP2D6 drug-
gene interaction. Model predictions of metoprolol and α-hydroxymetoprolol plasma
concentration-time profiles of the CYP2D6 DGI study, compared to observed data [19]
(linear representation). Population predictions (n=100) are shown as lines with ribbons
(arithmetic mean ± standard deviation (SD)), symbols represent the corresponding ob-
served data ± SD. AS: activity score, po: oral
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Figure S3.2.11: Metoprolol plasma concentrations of the modeled CYP2D6 drug-
gene interaction. Model predictions of (S)-metoprolol and (R)-metoprolol plasma
concentration-time profiles of the CYP2D6 DGI study, compared to observed data [46]
(linear representation). Population predictions (n=100) are shown as lines with ribbons
(arithmetic mean ± standard deviation (SD)), symbols represent the corresponding ob-
served data ± SD. AS: activity score, po: oral
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Figure S3.2.12: Metoprolol plasma concentrations of the modeled CYP2D6 drug-
gene interaction. Model predictions of metoprolol, (S)-metoprolol and (R)-metoprolol
plasma concentration-time profiles of the CYP2D6 DGI study, compared to observed
data [47] (linear representation). Population predictions (n=100) are shown as lines
with ribbons (arithmetic mean ± standard deviation (SD)), symbols represent the cor-
responding observed data ± SD. AS: activity score, po: oral
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S3.3 Model evaluation

S3.3.1 Metoprolol CYP2D6 DGI AUClast and Cmax ratio plots
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Figure S3.3.13: Predicted versus observed metoprolol DGI ratios. Comparison of pre-
dicted versus observed AUClast ratios (a) and Cmax ratios (b) for metoprolol CYP2D6
DGI-studies. The straight black line indicates the line of identity, curved black lines
show prediction success limits proposed by Guest et al. including 1.25-fold variability
[13]. Solid light grey lines indicate 2-fold deviation, dashed light grey lines show 1.25-
fold deviation. AUClast: AUC from the time of the first concentration measurement to
the last time point of concentration measurement, Cmax: peak plasma concentration,
DGI: drug-gene interaction
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S3.3.2 Geometric mean fold error of predicted metoprolol DGI AUClast and Cmax ratios

Table S3.3.2: Geometric mean fold error of predicted metoprolol DGI AUClast and Cmax ratios

Activity CYP2D6 CYP2D6 DGI AUClast ratio DGI Cmax ratio
Molecule Dosing score Genotype Phenotype Pred Obs Pred/Obs Pred Obs Pred/Obs Reference

α-hydroxymetoprolol 100 mg, tab, sd 0.5 *10/*10 IM 0.46 0.31 1.46 0.36 0.23 1.56 Bae et al. 2014 [3]
α-hydroxymetoprolol 100 mg, tab, sd 1.25 *1/*10 NM 0.93 1.00 0.92 0.83 0.73 1.14 Jin et al. 2008 [19]
α-hydroxymetoprolol 100 mg, tab, sd 0.5 *10/*10 IM 0.54 0.49 1.09 0.37 0.34 1.06 Jin et al. 2008 [19]
metoprolol 100 mg, tab, sd 0.5 *10/*10 IM 3.30 5.58 1.69 2.08 2.77 0.75 Bae et al. 2014 [3]
metoprolol 100 mg, tab, sd - - PM 3.66 3.36 1.09 2.17 2.86 0.76 Hamelin et al. 2000 [14]
metoprolol 100 mg, tab, sd 1.25 *1/*10 NM 1.50 2.08 0.72 1.33 1.70 0.78 Jin et al. 2008 [19]
metoprolol 100 mg, tab, sd 0.5 *10/*10 IM 3.07 4.49 0.68 2.09 3.18 0.66 Jin et al. 2008 [19]
metoprolol 100 mg, -, sd 0 † PM 3.79 3.12 1.22 2.14 2.44 0.88 Sharma et al. 2005 [47]
(R)-metoprolol 100 mg, tab, sd 1.25 *1/*10 NM 1.65 1.36 1.22 1.52 1.19 1.28 Huang et al. 1999 [17]
(R)-metoprolol 100 mg, tab, sd 0.5 *10/*10 IM 2.82 2.82 1.00 1.95 2.21 0.89 Huang et al. 1999 [17]
(R)-metoprolol 100 mg, tab, sd 3 † UM 0.41 0.39 1.04 0.62 0.52 1.18 Seeringer et al. 2008 [46]
(R)-metoprolol 100 mg, tab, sd 0 † PM 8.76 7.67 1.14 3.37 3.36 1.00 Seeringer et al. 2008 [46]
(R)-metoprolol 100 mg, -, sd 0 † PM 4.09 3.79 1.08 2.33 2.98 0.78 Sharma et al. 2005 [47]
(S)-metoprolol 100 mg, tab, sd 1.25 *1/*10 NM 1.54 1.27 1.21 1.41 1.05 1.34 Huang et al. 1999 [17]
(S)-metoprolol 100 mg, tab, sd 0.5 *10/*10 IM 2.42 2.17 1.11 1.71 1.72 0.99 Huang et al. 1999 [17]
(S)-metoprolol 100 mg, tab, sd 3 † UM 0.38 0.41 0.93 0.61 0.59 1.02 Seeringer et al. 2008 [46]
(S)-metoprolol 100 mg, tab, sd 0 † PM 6.67 5.22 1.28 2.68 2.33 1.15 Seeringer et al. 2008 [46]
(S)-metoprolol 100 mg, -, sd 0 † PM 3.38 2.72 1.25 2.07 2.38 0.87 Sharma et al. 2005 [47]

Overall GMFE 1.21 (1.00–1.69) 1.21 (1.00–1.56)
18/18 with GMFE ≤ 2 18/18 with GMFE ≤ 2

Ratios within the limits of Guest et al. [13] (including 1.25-fold deviation) 18/18 17/18

-: not available, †: mixed genotype (given in publication), AUClast: AUC from the time of the first concentration measurement to the last time point of concentration measurement,
Cmax: peak plasma concentration, CYP2D6: cytochrome P450 2D6, IM: intermediate metabolizer, NM: normal metabolizer, Obs: observed, PM: poor metabolizer, Pred: predicted,
sd: single dose, tab: tablet, UM: ultrarapid metabolizer
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S4 System-dependent parameters
Details on the implementation of CYP2D6 are summarized in Table S4.0.1.

Table S4.0.1: System-dependent parameters

Enyzme Reference concentration Localization Half-life
Meana Relative expressionb Liver [h] Intestine [h]

CYP2D6 0.40 [45] RT-PCR [38] intracellular 51 [38] 23 [38]

EHC fraction: Fraction of biliary secreted compound directly entering the duodenum = 1

a: µmol protein/l in the tissue of highest expression
b: In the different organs (PK-Sim expression database profile)
CYP2D6: cytochrome P450 2D6, EHC: enterohepatic circulation, RT-PCR: reverse transcription-
polymerase chain reaction profile
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S5 Abbreviations
ρi ith observed plasma AUClast or Cmax value

ρ̂i ith predicted plasma AUClast or Cmax value

ADME Absorption, distribution, metabolism and excretion

AS CYP2D6 activity score

AUC Area under the plasma concentration-time curve

AUClast AUC from the time of the first concentration measurement to the last time
point of concentration measurement

BA Bioavailability

bid Twice daily

BCS Biopharmaceutics Classification System

ci ith observed plasma concentration

ĉi ith predicted plasma concentration

CL Clearance

CLhep, unsp. Unspecific hepatic clearance

Cmax Peak plasma concentration

CR Controlled release
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CYP2B6 Cytochrome P450 2B6

CYP2C9 Cytochrome P450 2C9

CYP2D6 Cytochrome P450 2D6

CYP3A4 Cytochrome P450 3A4

DDI Drug-drug interaction

DGI Drug-gene interaction

EHC Enterohepatic circulation

FDA U. S. Food and Drug Administration

fu Fraction unbound

g- Genotyped

GFR Glomerular filtration rate

GMFE Geometric mean fold error

ICRP International Commission on Radiological Protection

IM Intermediate metabolizer

inf Infusion

iv Intravenous

kcat Catalytic rate constant
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kcat, rel Catalytic rate constant relative to AS=2

Km Michaelis-Menten constant

MRD Mean relative deviation

MW Molecular weight

NHANES Third National Health and Nutrition Examination Survey

NM Normal metabolizer

NR Normal release

p- Phenotyped

PBPK Physiologically based pharmacokinetic

pKa Acid dissociation constant

PM Poor metabolizer

po Oral

QSAR Quantitative structure-activity relationship

sd Single dose

sol Oral solution

tab Tablet

UM Ultrarapid metabolizer
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vmax Maximum reaction velocity

Bibliography

1. Austin, R. P., Barton, P., Cockroft, S. L., Wenlock, M. C. & Riley, R. J. The influence
of nonspecific microsomal binding on apparent intrinsic clearance, and its predic-
tion from physicochemical properties. Drug Metabolism and Disposition 30, 1497–
1503 (2002).

2. Avdeef, A. & Berger, C. M. pH-metric solubility.: 3. Dissolution titration template
method for solubility determination. European Journal of Pharmaceutical Sciences 14,
281–291 (2001).

3. Bae, S. H., Lee, J. K., Cho, D.-Y. & Bae, S. K. Simultaneous determination of meto-
prolol and its metabolites, α-hydroxymetoprolol and O-desmethylmetoprolol, in
human plasma by liquid chromatography with tandem mass spectrometry: Appli-
cation to the pharmacokinetics of metoprolol associated with CYP2D6 g. Journal of
separation science 37, 1256–64 (June 2014).

4. Bennett, P. N., John, V. A. & Whitmarsh, V. B. Effect of rifampicin on metopro-
lol and antipyrine kinetics. British journal of clinical pharmacology 13, 387–91 (Mar.
1982).

5. Berger, B., Bachmann, F., Duthaler, U., Krähenbühl, S. & Haschke, M. Cytochrome
P450 enzymes involved in metoprolol metabolism and use of metoprolol as a
CYP2D6 phenotyping probe drug. Frontiers in Pharmacology 9, 1–11 (2018).

6. Boldhane, S. & Kuchekar, B. Development and optimization of metoprolol succi-
nate gastroretentive drug delivery system. Acta Pharmaceutica 60, 415–425 (2010).
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S1 Methods (Addendum)
S1.1 Cocktail Studies

Table S1.1.1: Phenotyping cocktails and respective drug doses

Study Caffeine Dextromethorphan Digoxin Mephenytoin Midazolam Omeprazole Tolbutamide Warfarin

Population studies

Armani 2017 [1] 100 mg 30 mg - - 2 mg 20 mg - -
Dumond 2010 [8] 200 mg 30 mg 0.25 mg (po + iv)a - 5 mg (po)c + 2 mg (iv)c 20 mg - 10 mgb

Ermer 2015 [10] 200 mg 30 mg - - 0.025 mg/kg (iv) 40 mg - -
Kakuda 2014 [18] 15 mg 30 mg 0.5 mg (po) - 1.5 mg (po) 40 mg - 10 mgb

Khalilieh 2018 [21] 20 mg 30 mg - - 1.5 mg (po) 40 mg - 10 mgb

Nyunt 2008 [28] - 30 mg - - 5 mg (po) - - -
Sager 2014 [31] 100 mg 30 mg - - 2 mg (po) 20 mg - -
Stage 2018 [35] 100 mg 30 mg - - 2.5 mg (buccal) 20 mg - -

DGI studies

Gorski 2004 [14] 200 mg 30 mg - - 0.05 mg/kg (iv) - 500 mg -
Gazzaz 2018 [13] 150 mg 30 mg - - 2 mg (po) 20 mg - -

Frank 2009 [12]

Study A 150 mg 30 mg - 50 mg 2 mg (po) + 1 mg (iv)c - 125 mg -
Study Bd 150 mg 30 mg 0.5 mg 50 mg 2 mg (po) + 1 mg (iv)c - 125 mg -
Study C 150 mg 30 mg - 50 mg 2 mg (po) + 1 mg (iv)c - 125 mg -
Study D - 30 mg 0.5 mg 50 mg 1.5 mg (po) + 1 mg (iv)c - - -
Study E - 30 mg 0.5 mg 50 mg 1.5 mg (po) + 1 mg (iv)c - - -

-: not administered, a: doses were administered on the study days following the administration of the phenotyping cocktail, b: Study subjects received 10 mg vitamin K
together with the warfarin dose, b: iv dose administered 240 min after administration of the cocktail, d: study excluded from modeling due to reasons described
in Section S6.1, iv: intravenous, po: oral.
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S1.2 Dextromethorphan Formulations

The Weibull function was implemented according to Eq. 1 and 2 [23] to describe the dissolution
process for studies where dextromethorphan was administered in a cocktail capsule

m = 1− exp
(−(t− Tlag)β

α

)
(1)

α = (Td)
β (2)

wherem = fraction of dissolved drug at time t, Tlag = lag time before the onset of dissolution,α = scale
parameter, β = shape parameter, Td = time needed to dissolve 63% of the formulation.

The final Weibull shape parameters and Weibull time parameters (50% dissolved) for the cocktail
formulation used in the dextromethorphan physiologically based pharmacokinetic (PBPK) model
are given in Table S2.1.1.

S1.3 Virtual Individuals

The PBPK model was built based on data from healthy individuals, using the reported sex, ethnicity
andmean values for age, weight and height from each study protocol. If no demographic information
was provided, the following default values were substituted: male, European, 30 years of age, 73 kg
body weight and 176 cm body height (characteristics from the PK-Sim® population database [27,
38, 41]. Cytochrome P450 2D6 (CYP2D6) was implemented in accordance with literature, using the
PK-Sim® expression database to define their relative expression in the different organs of the body
[29]. Details on the implementation of CYP2D6 are summarized in Section ??.

S1.4 Virtual Populations

For population simulations, virtual populations of 1000 individuals were created based on the popu-
lation characteristics stated in the respective publication. If no information was provided in the pub-
lication, populations based on European male individuals aged 20–50 years were assumed. Metrics
were generated (depending on ethnicity) from one of the following databases; American: Third Na-
tional Health and Nutrition Examination Survey (NHANES) [27] database, Asian: Tanaka model [38],
European: International Commission on Radiological Protection (ICRP) database [41]. In the gen-
erated virtual populations, system-dependent parameters such as weight, height, organ volumes,
blood flow rates, tissue compositions, etc. were varied by the implemented algorithm in PK-Sim®

within the limits of the databases listed above [27, 38, 41]. Since study populations were grouped
by their CYP2D6 activity score or phenotype, no variability in CYP2D6 reference concentrations was
assumed for population simulations. Reference concentrations of implemented proteins as well as
the relative expression are provided in Section ??.

S1.5 Lysosomal Trapping in the Intestinal Mucosa

Although dextromethorphan is rapidly absorbed from the intestine, time to reach peak plasma con-
centration Cmax (tmax) often occurs as late as 4h after oral administration [4]. This phenomenon likely
occurs due to lysosomal trapping of dextromethorphan in the intestinal mucosa [4, 20]. However,
other processes, such as renal excretion may also be affected by lysosomal trapping in the respec-
tive tissue. In short, lipophilic amines (logP > 1, acid dissociation constant (pKa) > 6) accumulate in

4
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lysosomes due to rapid diffusion across the lysosomal membrane in unionized form. Subsequently,
due to the acidic environment in lysosomes (pH 4–5), the amine is then ionized and thus unable to
permeate back into the cytosol [20]. The information necessary to physiologically implement lysoso-
mal trapping (i.e. relative abundances of lysosomes in relevant tissues and diffusion constants for
permeation across lysosomal membranes) are not yet available in the literature. Hence, intestinal
lysosomal trapping was implemented as follows: First, a surrogate protein binding partner was ex-
pressed in high abundances (500 µmol/L) in the relevant tissues (duodenum, upper jejunum, lower
jejunum, upper ileum and lower ileum, each 100% of relative expression). Second, a corresponding
protein binding process was implemented for dextromethorphan. Finally, the relevant parameters
for the binding process - dissociation rate constant (koff) and dissociation constant (KD) - were in-
formed by parameter optimization. For a comprehensive explanation on the process of lysosomal
trapping under physiological circumstances, please refer to [20].

S1.6 PBPK Model Sensitivity Analysis

Sensitivity of the final models to single parameter changes (local sensitivity analysis) was calcu-
lated as relative change of the area under the plasma concentration-time curve (AUC)0–24 h. Sensi-
tivity analysis was carried out using a relative perturbation of 1000% (variation range 10.0, maximum
number of 9 steps). Parameters were included into the analysis if they have been optimized, if they
are associated with optimized parameters or if they might have a strong impact due to calculation
methods used in the model. Sensitivity to a parameter was calculated as the ratio of the relative
change of the simulated AUC0–24 h to the relative variation of the parameter according to Eq. 3:

S =
∆AUC0−24 h

∆p
× p

AUC0−24 h
(3)

where S = sensitivity of the AUC0−24 h to the examined model parameter, ∆AUC0−24 h = change of
the AUC0–24 h, AUC0−24 h = simulated AUC0–24 h with the original parameter value, ∆p = change of
the examined parameter value, p = original parameter value.

A sensitivity of +0.5 signifies that a 100% increase of the examined parameter value causes a 50%
increase of the simulated AUC0–24 h. The results of the sensitivity analysis are provided in Section
S3.6.
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S2 PBPK Base Model Building
S2.1 Drug-Dependent Parameters

Table S2.1.1: Dextromethorphan and dextrorphan drug-dependent parameters drug-dependent parameters

Parameter Unit Value Source Literature Reference Value Source Literature Reference Description

Dextromethorphan Dextrorphan

MW g/mol 271.41 Lit. 271.41 [2] 257.37 Lit. 257.37 [16, 43] Molecular weight
pKa (strongest basic) - 9.10 Lit. 9.10 [34] 9.10 Lit. 9.10 [34] Acid dissociation constant
pKa (strongest acidic) - - Lit. - - 10.10 Lit. 10.10 [34] Acid dissociation constant
Solubility (base) g/L - - - - 0.17 Lit. 0.17 [43] Solubility at pH 7
Solubility (hydrobromide) g/L 15.00 Lit. 15.00 [2] - - - - Solubility at pH 7
logP - 4.10 Lit. 4.10 [34] 2.90 Lit. 2.90 [22] Lipophilicity
fu % 35.00 Lit. 35.00 [25] 42.00 Lit. 42.00 [42] Fraction unbound
CYP2D6 KM→ dxt µmol/L 4.65 Lit. 4.65a [5] - - - - Michaelis-Menten constant
CYP2D6 kcat→ dxt (EM) 1/min 90.89 Optim. 6.60 [5] - - - - Catalytic rate constant
CYP2D6 kcat→ dxt (PM) 1/min 0.00 - - - - - - - Catalytic rate constant
CYP3A4 KM µmol/L 176.80 Lit. 176.80a [25] 910.00 Lit. 910.00a [25] Michaelis-Menten constant
CYP3A4 kcat 1/min 7.94 Lit. 5.65 [25] 7.41 Lit. 7.41 [25] Catalytic rate constant
UGT2B15 KM→ dxt-glu µmol/L - - - - 184.80 Lit. 184.80a [25] Michaelis-Menten constant
UGT2B15 kcat→ dxt-glu 1/min - - - - 1137.98 Optim. 37.04 [25] Catalytic rate constant
Lysosomal trapping KD µmol/L 74.21 - - - - - - - Dissociation constant
Lysosomal trapping koff 1/min 7.10 · 105 - - - - - - - Dissociation rate constant
GFR fraction - 1.00 Asm. - - 1.00 Asm. - - Filtered drug in the urine
EHC continuous fraction - 1.00 Asm. - - 1.00 Asm. - - Bile fraction cont. released
Intestinal perm. cm/min 2.48 · 10-6 Optim. 1.12 · 10-3 Calc. [40] 1.80 · 10-5 Calc. 1.80 · 10-5 Calc. [40] Transcellular intestinal perm.
Cellular permeability cm/min 0.91 Calc. PK-Sim [19] 0.08 Calc. PK-Sim [19] Perm. into the cellular space
Partition coefficients - Diverse Calc. Ber [3] Diverse Calc. Ber [3] Cell to plasma partitioning
Weibull time parameter min 46.05 Optim. [12] - - - - - Dissolution time (50%)
Weibull shape parameter - 1.05 Optim. [12] - - - - - Dissolution shape

-: not available, a: in vitro values corrected for binding in the assay (fumic) as given in the respective publications, asm.: assumed, Ber: Berezhkovskiy calculation method, calc.: calculated,
cont.: continuously, CYP2D6: Cytochrome P450 2D6, CYP3A4: cytochrome P450 3A4, dxt: dextrorphan, dxt-glu: dextrorphan O-glucuronide, EHC: enterohepatic circulation,
GFR: glomerular filtration rate, intest.: intestinal, lit: literature, EM: extensive metabolizer, optim.: optimized, perm.: permeability, PM: poor metabolizer, PK-Sim: PK-Sim standard calculation
method, uridine 5’-diphospho-glucuronosyltransferase family 2 member B15 (UGT2B15): uridine 5’-diphospho-glucuronosyltransferase family 2 member B15.

6

2
2

6
a

p
p

e
n

d
i
x

b:
s

u
p

p
l

e
m

e
n

t
a

r
y

m
a

t
e

r
i
a

l
s



Table S2.1.2: Dextrorphan O-glucuronide drug-dependent parameters

Parameter Unit Value Source Literature Reference Description

MW g/mol 433.50 Lit. 433.50 [17, 43] Molecular weight
pKa (strongest basic) - 9.82 Lit. 9.82 [17, 43] Acid dissociation constant
pKa (strongest acidic) - 2.85 Lit. 2.85 [17, 43] Acid dissociation constant
Solubility g/L 1.20 Lit. 1.20 [17, 43] Solubility
logP - 0.29 Optim. 1.38 [17, 43] Lipophilicity
fu % 37.00 Calc. 37.00 [42] Fraction unbound
GFR fraction - 4.92 Optim. - - Filtered drug in the urine
EHC continuous fraction - 1.00 Asm. - - Bile fraction cont. released
Intestinal permeability cm/min 4.26 · 10-6 Calc. 4.26 · 10-6 Calc. [40] Transcellular intestinal perm.
Cellular permeability cm/min 8.51 · 10-6 Calc. CdS [33] Perm. into the cellular space
Partition coefficients - Diverse Calc. Ber [3] Cell to plasma partitioning

-: not available, asm: assumed, Ber: Berezhkovskiy calculation method, calc.: calculated, CdS: Charge dependent Schmitt,
cont.: continuously, EHC: enterohepatic circulation, GFR: glomerular filtration rate, intest.: intestinal, lit.: literature,
optim: optimized, perm.: permeability.
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S2.2 Clinical Study Data

Table S2.2.3: Dextromethorphan study table

Route Dose n Females Age Weight Height Metabolite CYP2D6 Dataset References
[mg] [%] [years] [kg] [cm] measured P. Phenotype

iv (inf, 30 min, sd) 0.5/kg 24 0 27 (21-35) 79 (55-110) - - EM training Duedahl 2005 [7]

po (cap, sd) 80 36 0 26 73 - dtt EM training Tennezé 1999 [39]
po (-, sd) 60 17 41 67 (49-74) 80 (49-107) 173 (150-187) dtt EM test Feld 2013 [11]
po (cap, bid, 8 days) 60 10 0 - - - dtt EM test Antecip Bioventures [24]
po (cap, sd) 30 20 50 (27-42) 73 - - EM testa Armani 2017 [1]
po (cap, sd) 30 23 30 27 76 174 - EM testa Dumond 2010 [8]
po (cap, sd) 30 48 35 33 76 171 - EM test Edwards 2017 [9]
po (cap, sd) 30 30 40 (18-45) 78 172 dxt EM testa Ermer 2015 [10]
po (-, sd) 30 14 0 (21-49) - - - EM testa Kakuda 2014 [18]
po (-, sd) 30 20 35 40 (22-63) - - - EM testa Khalilieh 2018 [21]
po (tab, sd) 50 24 0 25 (20-33) 64 (50-76) - dxt EM test Nakashima 2007 [26]
po (-, sd) 30 12 25 40 (22-53) - - - EM testa Nyunt 2008 [28]
po (cap, sd) 30 10 50 20 72 172 dxt EM testa Sager 2014 [31]
po (cap, sd) 30 5 80 26 (22-31) - - dxt, dxt-glu EM training Schadel 1995 [32]
po (cap, sd) 30 4 50 33 (22-46) - - - PM training Schadel 1995 [32]
po (cap, sd) 30 12 0 (21-29) - - - EM testa Stage 2018 [35]

Values for age, weight and height are given as mean (range), -: not given, a: cocktail study, AS: CYP2D6 activity score, bid: twice daily, cap: capsule, CYP2D6: Cytochrome P450 2D6,
DGI: drug-gene interaction, dxt: dextrorphan, dxt-glu: dextrorphan O-glucuronide, dtt: total dextrorphan, EM: extensive metabolizer, inf: infusion, iv: intravenous, p.: projected,
PM: poor metabolizer, po: oral, sd: single dose, sol: oral solution.
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S2.3 Dextromethorphan model pathways

Compound Enzyme Metabolism

CYP2D6
96%

Other Metabolites

Dextromethorphan
CYP3A4

4%

UGT2B15
98%

Dextrorphan Dextrorphan O-glucuronide

Other Metabolites

CYP3A4
<2%

Figure S2.3.1: Implemented dextromethorphan metabolic pathways. Dextromethorphan is O-
demethylated by CYP2D6 and N-demethylated by CYP3A4. The metabolite dextrorphan is fur-
ther metabolized via CYP3A4 (N-demethylation) and UGT2B15 (O-glucuronidation). Dextrorphan O-
glucuronide is excreted in the urine. Percentages shown refer to the fraction metabolized by the
respective enzyme, calculated for extensive metabolizers of CYP2D6. CYP2D6: cytochrome P450
2D6, CYP3A4: cytochromeP450 3A4, UGT2B15: Uridine 5’-diphospho-glucuronosyltransferase 2B15.
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S3 PBPK Base Model Evaluation
S3.1 Plasma Concentration-Time Profiles
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Figure S3.1.1: Dextromethorphan plasma concentration-time profile after intravenous administra-
tion of dextromethorphan (semilogarithmic representation). Population predictions (n=1000) are
shown as lines with ribbons (arithmetic mean ± standard deviation (SD)), symbols represent the
corresponding observed data ± SD. EM: extensive metabolizer, iv: intravenous.
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Figure S3.1.2: Dextromethorphan, dextrorphan and total dextrorphan (dextrorphan + dextrorphan
O-glucuronide) plasma concentration-time profiles after oral administration of dextromethorphan
(semilogarithmic representation). Population predictions (n=1000) are shown as lines with ribbons
(arithmetic mean ± standard deviation (SD)), symbols represent the corresponding observed data
± SD. EM: extensive metabolizer, po: oral.
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Figure S3.1.3: Dextromethorphan, dextrorphan, dextrorphan O-glucuronide and total dextrorphan
(dextrorphan + dextrorphan O-glucuronide) plasma concentration-time profiles after oral adminis-
tration of dextromethorphan (semilogarithmic representation). Population predictions (n=1000) are
shown as lines with ribbons (arithmetic mean ± standard deviation (SD)), symbols represent the
corresponding observed data ± SD. EM: extensive metabolizer, PM: poor metabolizer, po: oral.
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S3.2 Goodness-of-Fit Plots: Plasma Concentrations
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Figure S3.2.4: Goodness-of-fit plots. Predicted versus observed plasma concentration values for (a)
dextromethorphan, (b) dextrorphan, (c) total dextrorphan (dextrorphan + dextrorphanO-glucuronide)
and (d) dextrorphanO-glucuronide for all studies of the PBPKmodel building dataset. The solid black
line marks the line of identity, the dashed gray lines mark the 0.8- to 1.25-fold range, the solid gray
lines indicate the 0.5- to 2-fold range. Colored symbols represent the study population given in the
legend. EM: extensive metabolizer, PM: poor metabolizer.
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S3.3 MRD of Plasma Concentration Predictions

Table S3.3.1: Mean relative deviation of plasma concentration predictions

CYP2D6
Dosing Molecule status MRD Reference

iv, inf, 0.5 mg dextromethorphan EM 1.87 Duedahl et al. 2005 [7]
po, cap, 80 mg dextromethorphan EM 1.85 Tenneze et al. 1999 [39]
po, -, 60 mg dextromethorphan EM 3.19 Feld et al. 2013 [11]
po, tab, 60 mg dextromethorphan EM 2.73 Antecip Bioventures [24]
po, cap, 30 mg dextromethorphan EM 1.42 Armani et al. 2017 [1]
po, cap, 30 mg dextromethorphan EM 2.60 Dumond et al. 2010 [8]
po, cap, 30 mg dextromethorphan EM 3.32 Edwards et al. 2017 [9]
po, -, 30 mg dextromethorphan EM 2.96 Ermer et al. 2015 [10]
po, cap, 30 mg dextromethorphan EM 2.63 Kakuda et al. 2014 [18]
po, -, 30 mg dextromethorphan EM 1.46 Khalilieh et al. 2018 [21]
po, tab, 30 mg dextromethorphan EM 1.70 Nakashima et al. 2007 [26]
po, cap, 30 mg dextromethorphan EM 1.94 Nyunt et al. 2008 [28]
po, cap, 30 mg dextromethorphan EM 1.97 Sager et al. 2014 [31]
po, cap, 30 mg dextromethorphan PM 1.44 Schadel et al. 1995 [32]
po, cap, 30 mg dextromethorphan EM 1.74 Stage et al. 2018 [35]

MRD (dextromethorphan) 2.19 (1.42–3.32)
9/15 with MRD ≤ 2

po, -, 30 mg dextrorphan EM 2.05 Ermer et al. 2015 [10]
po, tab, 30 mg dextrorphan EM 1.35 Nakashima et al. 2007 [26]
po, cap, 30 mg dextrorphan EM 3.56 Sager et al. 2014 [31]
po, cap, 30 mg dextrorphan EM 1.73 Schadel et al. 1995 [32]

MRD (dextrorphan) 2.17 (1.35–3.56)
2/4 with MRD ≤ 2

po, cap, 30 mg dextrorphan O-glucuronide EM 2.01 Schadel et al. 1995 [32]

MRD (dextrorphan O-glucuronide) 2.01
0/1 with MRD ≤ 2

po, cap, 80 mg dextrorphan-total EM 1.88 Tenneze et al. 1999 [39]
po, -, 60 mg dextrorphan-total EM 2.04 Feld et al. 2013 [11]
po, tab, 60 mg dextrorphan-total EM 3.40 Antecip Bioventures [24]

MRD (dextrorphan-total) 2.44 (1.88–3.40)
1/3 with MRD ≤ 2

Overall MRD 2.21 (1.35–3.56)
12/23 with MRD ≤ 2

-: not given, cap: capsule, CYP2D6: Cytochrome P450 2D6, EM: extensive metabolizer, inf: infusion,
iv: intravenous, PM: poor metabolizer, po: oral.
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S3.4 AUClast and Cmax Goodness-of-Fit Plots
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Figure S3.4.5: AUC from the time of the first concentration measurement to the last time point of
concentration measurement (AUClast) correlation plots. Predicted versus observed AUClast for (a)
dextromethorphan, (b) dextrorphan, (c) total dextrorphan (dextrorphan + dextrorphanO-glucuronide)
and (d) dextrorphanO-glucuronide for all studies of the PBPKmodel building dataset. The solid black
line marks the line of identity, the dashed gray lines mark the 0.8- to 1.25-fold range, the solid gray
lines indicate the 0.5- to 2-fold range. Colored symbols represent the study population given in the
legend. AUClast: AUC from the time of the first concentration measurement to the last time point of
concentration measurement, EM: extensive metabolizer, PM: poor metabolizer.
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Figure S3.4.6: Cmax correlation plots. Predicted versus observed Cmax for (a) dextromethorphan, (b)
dextrorphan, (c) total dextrorphan (dextrorphan + dextrorphan O-glucuronide) and (d) dextrorphan
O-glucuronide for all studies of the PBPK model building dataset. The solid black line marks the line
of identity, the dashed gray lines mark the 0.8- to 1.25-fold range, the solid gray lines indicate the
0.5- to 2-fold range. Colored symbols represent the study population given in the legend. Cmax: peak
plasma concentration, EM: extensive metabolizer, PM: poor metabolizer.
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S3.5 GMFE of Predicted AUClast and Cmax Values

Table S3.5.2: Predicted and observed AUClast and Cmax values and geometric mean fold errors

CYP2D6 AUClast [ng·h/mL] Cmax [ng/mL]

Dosing Molecule status Pred Obs Pred/Obs Pred Obs Pred/Obs Reference

iv, inf, 0.5mg/kg dextromethorphan EM 80.25 81.20 0.99 - - - Duedahl et al. 2005 [7]
po, cap, 80 mg dextromethorphan EM 65.59 52.78 1.24 12.94 8.33 1.55 Tenneze et al. 1999 [39]
po, -, 60 mg dextromethorphan EM 83.31 148.40 0.56 6.73 12.01 0.56 Feld et al. 2013 [11]
po, tab, 60 mg dextromethorphan EM 95.57 36.14 2.64 10.69 3.60 2.97 Antecip Bioventures 2016 [24]
po, cap, 30 mg dextromethorphan EM 25.66 35.47 0.72 4.33 4.38 0.99 Armani et al. 2017 [1]
po, cap, 30 mg dextromethorphan EM 36.25 36.01 1.01 4.22 3.02 1.39 Dumond et al. 2010 [8]
po, cap, 30 mg dextromethorphan EM 31.61 43.32 0.73 2.95 2.10 1.41 Edwards et al. 2017 [9]
po, -, 30 mg dextromethorphan EM 36.87 126.85 0.29 3.85 8.55 0.45 Ermer et al. 2015 [10]
po, cap, 30 mg dextromethorphan EM 19.51 8.11 2.40 4.35 1.55 2.82 Kakuda et al. 2014 [18]
po, -, 30 mg dextromethorphan EM 36.97 41.89 0.88 4.27 3.63 1.18 Khalilieh et al. 2018 [21]
po, tab, 30 mg dextromethorphan EM 23.03 32.08 0.72 4.26 3.81 1.12 Nakashima et al. 2007 [26]
po, cap, 30 mg dextromethorphan EM 23.77 22.53 1.05 2.45 2.86 0.86 Nyunt et al. 2008 [28]
po, cap, 30 mg dextromethorphan EM 25.79 12.76 2.02 4.42 2.45 1.80 Sager et al. 2014 [31]
po, cap, 30 mg dextromethorphan PM 848.57 981.20 0.86 20.65 32.30 0.64 Schadel et al. 1995 [32]
po, cap, 30 mg dextromethorphan EM 34.17 38.36 0.89 4.48 2.51 1.78 Stage et al. 2018 [35]

GMFE (dextromethorphan) 1.61 (1.01–3.45) 1.70 (1.01–2.97)
10/14 with GMFE≤ 2 10/14 with GMFE≤ 2

po, -, 30 mg dextrorphan EM 29.47 20.71 1.42 3.76 2.96 1.27 Ermer et al. 2015 [10]
po, tab, 30 mg dextrorphan EM 18.53 22.02 0.84 3.35 3.61 0.93 Nakashima et al. 2007 [26]
po, cap, 30 mg dextrorphan EM 23.10 6.70 3.45 3.94 1.63 2.42 Sager et al. 2014 [31]
po, cap, 30 mg dextrorphan EM 18.40 19.56 0.94 4.34 3.85 1.13 Schadel et al. 1995 [32]

GMFE (dextrorphan) 1.78 (1.06–3.45) 1.47 (1.08–2.42)
3/4 with GMFE≤ 2 3/4 with GMFE≤ 2

po, cap, 30 mg dextrorphan O-glucuronide EM 3634.81 3033.65 1.20 536.57 644.52 0.83 Schadel et al. 1995 [32]

GMFE (dextrorphan O-glucuronide) 1.20 1.20

-: not given, AUClast: AUC from the time of the first concentration measurement to the last time point of concentration measurement, cap: capsule, Cmax:
peak plasma concentration, CYP2D6: Cytochrome P450 2D6, EM: extensive metabolizer, inf: infusion, iv: intravenous, obs.: observed, PM: poor metabolizer,
po: oral, pred: predicted.
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Table S3.5.2: Predicted and observed AUClast and Cmax values and geometric mean fold errors (continued)

CYP2D6 AUClast [ng·h/mL] Cmax [ng/mL]

Dosing Molecule status Pred Obs Pred/Obs Pred Obs Pred/Obs Reference

1/1 with GMFE≤ 2 1/1 with GMFE≤ 2

po, tab, 60 mg dextrorphan-total EM 8053.06 5085.21 1.58 465.71 959.10 0.49 Antecip Bioventures 2016 [24]
po, -, 60 mg dextrorphan-total EM 5902.53 5449.79 1.08 474.19 489.35 0.97 Feld et al. 2013 [11]
po, cap, 80 mg dextrorphan-total EM 3658.56 3805.82 0.96 595.96 883.78 0.67 Tenneze et al. 1999 [39]

GMFE (dextrorphan-total) 1.23 (1.04–1.58) 1.52 (1.03–2.04)
3/3 with GMFE≤ 2 2/3 with GMFE≤ 2

Overall GMFE 1.57 (1.01–3.45) 1.61 (1.01–2.97)
18/23 with GMFE≤ 2 17/22 with GMFE≤ 2

-: not given, AUClast: AUC from the time of the first concentration measurement to the last time point of concentration measurement, cap: capsule, Cmax:
peak plasma concentration, CYP2D6: Cytochrome P450 2D6, EM: extensive metabolizer, inf: infusion, iv: intravenous, obs.: observed, PM: poor metabolizer,
po: oral, pred: predicted.
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S3.6 Sensitivity Analysis
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(a) Sensitivity analysis: dextromethorphan
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(b) Sensitivity analysis: dextrorphan

Figure S3.6.7: Sensitivity analysis of the dextromethorphan model. A sensitivity of +1.0 signifies
that a 10% increase of the examined parameter value causes a 10% increase of the simulated
AUC0-24 h. CYP2D6: Cytochrome P450 2D6, CYP3A4: cytochrome P450 3A4, fu: fraction unbound,
GFR: glomerular filtration rate, intest.: intestinal, kcat: catalytic rate constant, KD: dissociation con-
stant, Michaelis-Menten constant (KM): Michaelis-Menten constant, koff: dissociation rate constant,
pKa: acid dissociation constant.
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(c) Sensitivity analysis: dextrorphan O-glucuronide

Figure S3.6.8: Sensitivity analysis of the dextromethorphan model. A sensitivity of +1.0 signifies
that a 10% increase of the examined parameter value causes a 10% increase of the simulated
AUC0-24 h. CYP2D6: Cytochrome P450 2D6, CYP3A4: cytochrome P450 3A4, fu: fraction unbound,
GFR: glomerular filtration rate, intest.: intestinal, kcat: catalytic rate constant, KD: dissociation con-
stant, KM: Michaelis-Menten constant, koff: dissociation rate constant, pKa: acid dissociation con-
stant.
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S4 DGI Model Building
S4.1 Population kcat Values

Table S4.1.1: Dextromethorphan population CYP2D6 kcat values for CYP2D6 ac-
tivity scores (ASs)

Activity Score Projected kcat→ dxt kcat Percentage of
Phenotype [1/min] Reference (AS = 2) [%]

0 PM 0.0 0

0.25 5.3 2
0.5 IM 32.9 14
1 96.6 40

1.25 115.2 48
1.5 NM 151.8 63
2 242.5 100

3 UM 413.2 170

AS: CYP2D6 activity score, CYP2D6: Cytochrome P450 2D6, IM: intermediate
metabolizer, kcat: catalytic rate constant, NM: normal metabolizer, PM:
poor metabolizer, UM: ultrarapid metabolizer.
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S4.2 DGI Clinical Study Data

Table S4.2.2: Dextromethorphan DGI population study table

Route Dose n Females Age Weight Height Metabolite CYP2D6 Dataset References
[mg] [%] [years] [kg] [cm] measured Genotype AS P. Phenotype

po (cap, sd) 30 6 33 22 (20-26) - - dtt - - EM test Capon 1996 [6]
po (cap, sd) 30 6 33 22 (20-26) - - dtt - - PM test Capon 1996 [6]
po (cap, sd) 30 16 50 34 73 175 - † 1.25 NM testa Gazzaz 2018 [13]
po (-, sd) 30 11 55 31 79 - dtt - - EM testa Gorski 2004 [14]
po (-, sd) 30 1 0 31 79 - dtt - - PM testa Gorski 2004 [14]
po (cap, sd) 30 11 0 (18-55) - - - *1/*1 2 NM test Yamazaki 2017 [44]
po (cap, sd) 30 12 0 (18-55) - - - *10/*10 0.5 IM test Yamazaki 2017 [44]
po (tab, sd) 15 6 50 24 (22-26) 60 - - *1/*1 2 NM training Qiu 2016 [30]
po (tab, sd) 15 6 50 24 (22-26) 60 - - *1/*10 1.25 NM training Qiu 2016 [30]
po (tab, sd) 15 6 50 24 (22-26) 60 - - *10/*10 0.5 IM training Qiu 2016 [30]
po (sol, sd) 5 17 53 27 (18-42) - - dxt † 2 NM test Storelli 2018 [36]
po (sol, sd) 5 16 75 24 (21-27) - - dxt † 1 IM test Storelli 2018 [36]
po (cap, sd) 3/kg 6 33 (21-34) - - dxt, dtt *1/*1 2 NM training Zawertailo 2010 [45]

Values for age, weight and height are given as mean (range), -: not given, †: full genotype provided in publication, a: cocktail study, AS: CYP2D6 activity score, bid: twice daily,
cap: capsule, CYP2D6: Cytochrome P450 2D6, DGI: drug-gene interaction, dxt: dextrorphan, dxt-glu: dextrorphan O-glucuronide, dtt: total dextrorphan, IM:
intermediate metabolizer, inf: infusion, iv: intravenous, p.: projected, PM: poor metabolizer, po: oral, sd: single dose, sol: oral solution.
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S5 DGI Model Evaluation
S5.1 Plasma Concentration-Time Profiles
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Figure S5.1.1: Dextromethorphan and total dextrorphan plasma concentrations of the modeled
CYP2D6 drug-gene interaction. Predictions using the population kcat of dextromethorphan and to-
tal dextrorphan (dextrorphan + dextrorphan O-glucuronide) plasma concentration-time profiles of
the CYP2D6 drug-gene interaction (DGI) studies, compared to observed data (semilogarithmic rep-
resentation). Population predictions (n=1000) are shown as lines with ribbons (arithmetic mean ±
standard deviation (SD)), symbols represent the corresponding observed data ± SD. AS: activity
score, EM: extensive metabolizer, PM: poor metabolizer, oral (po): oral.
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Figure S5.1.2: Dextromethorphan, dextrorphan and total dextrorphan plasma concentrations of the
modeled CYP2D6 drug-gene interaction. Predictions using the population kcat of dextromethorphan
and total dextrorphan (dextrorphan + dextrorphanO-glucuronide) plasma concentration-time profiles
of the CYP2D6 DGI studies, compared to observed data (semilogarithmic representation). Popula-
tion predictions (n=1000) are shown as lines with ribbons (arithmetic mean ± standard deviation
(SD)), symbols represent the corresponding observed data ± SD. AS: activity score, po: oral.
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S5.2 Goodness-of-Fit Plots: Plasma Concentrations
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Figure S5.2.3: Goodness-of-fit plots. Predicted versus observed plasma concentration values for
(a) dextromethorphan, (b) dextrorphan and (c) total dextrorphan (dextrorphan + dextrorphan O-
glucuronide) for all studies of the DGI dataset. The solid black line marks the line of identity, the
dashed gray lines mark the 0.8- to 1.25-fold range, the solid gray lines indicate the 0.5- to 2-fold
range. Colored symbols represent the study population given in the legend. AS: CYP2D6 activity
score, EM: extensive metabolizer, PM: poor metabolizer.
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S5.3 MRD of Plasma Concentration Predictions

Table S5.3.1: Mean relative deviation of plasma concentration predictions

CYP2D6
Dosing Molecule status MRD Reference

po, cap, 30 mg dextromethorphan EM 2.00 Capon et al. 1996 [6]
po, cap, 30 mg dextromethorphan PM 1.34 Capon et al. 1996 [6]
po, cap, 30 mg dextromethorphan AS=1.25 1.40 Gazzaz et al. 2018 [13]
po, -, 30 mg dextromethorphan EM 3.68 Gorski et al. 2004 [14]
po, -, 30 mg dextromethorphan PM 3.36 Gorski et al. 2004 [14]
po, cap, 30 mg dextromethorphan AS=2.0 1.96 Yamazaki et al. 2017 [44]
po, cap, 30 mg dextromethorphan AS=0.5 1.46 Yamazaki et al. 2017 [44]
po, tab, 15 mg dextromethorphan AS=2.0 1.59 Qiu et al. 2016 [30]
po, tab, 15 mg dextromethorphan AS=1.25 1.59 Qiu et al. 2016 [30]
po, tab, 15 mg dextromethorphan AS=0.5 1.38 Qiu et al. 2016 [30]
po, sol, 5 mg dextromethorphan AS=2.0 2.68 Storelli et al. 2018 [37]
po, sol, 5 mg dextromethorphan AS=1.0 2.47 Storelli et al. 2018 [37]
po, cap, 3 mg/kg dextromethorphan AS=2.0 2.11 Zawertailo et al. 2010 [45]

MRD (dextromethorphan) 2.08 (1.34–3.68)
8/13 with MRD ≤ 2

po, sol, 5 mg dextrorphan AS=2.0 1.69 Storelli et al. 2018 [37]
po, sol, 5 mg dextrorphan AS=1.0 1.98 Storelli et al. 2018 [37]
po, cap, 3 mg/kg dextrorphan AS=2.0 2.26 Zawertailo et al. 2010 [45]

MRD (dextrorphan) 1.98 (1.69–2.26)
2/3 with MRD ≤ 2

po, -, 30 mg dextrorphan-total EM 4.26 Gorski et al. 2004 [14]
po, cap, 3 mg/kg dextrorphan-total AS=2.0 1.10 Zawertailo et al. 2010 [45]

MRD (dextrorphan-total) 2.68 (1.10–4.26)
1/2 with MRD ≤ 2

Overall MRD 2.13 (1.10–4.26)
11/18 with MRD ≤ 2

-: not given, AS: CYP2D6 activity score, cap: capsule, CYP2D6: Cytochrome P450 2D6, EM: extensive metabolizer,
inf: infusion, iv: intravenous, PM: poor metabolizer, po: oral, sol: oral solution.
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S5.4 AUClast and Cmax Goodness-of-Fit Plots
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Figure S5.4.4: AUC correlation plots. Predicted versus observed AUClast for (a) dextromethorphan,
(b) dextrorphan and (c) total dextrorphan (dextrorphan + dextrorphan O-glucuronide) for all studies
of the DGI dataset. The solid black line marks the line of identity, the dashed gray lines mark the 0.8-
to 1.25-fold range, the solid gray lines indicate the 0.5- to 2-fold range. Colored symbols represent
the study population given in the legend. AS: CYP2D6 activity score, AUClast: AUC from the time
of the first concentration measurement to the last time point of concentration measurement, EM:
extensive metabolizer, PM: poor metabolizer.
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Figure S5.4.5: Cmax correlation plots. Predicted versus observed Cmax for (a) dextromethorphan, (b)
dextrorphan and (c) total dextrorphan (dextrorphan + dextrorphan O-glucuronide) for all studies of
the DGI dataset. The solid black line marks the line of identity, the dashed gray lines mark the 0.8- to
1.25-fold range, the solid gray lines indicate the 0.5- to 2-fold range. Colored symbols represent the
study population given in the legend. AS: CYP2D6 activity score, Cmax: peak plasma concentration,
EM: extensive metabolizer, PM: poor metabolizer.
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S5.5 GMFE of Predicted AUClast and Cmax Values

Table S5.5.2: Predicted and observed AUClast and Cmax values and geometric mean fold errors

CYP2D6 AUClast [ng·h/ml] Cmax [ng/ml]

Dosing Molecule status Pred Obs Pred/Obs Pred Obs Pred/Obs Reference

po, cap, 30 mg dextromethorphan EM 34.02 66.20 0.51 3.50 3.82 0.92 Capon et al. 1996 [6]
po, cap, 30 mg dextromethorphan PM 1840.48 1304.44 1.41 24.92 21.81 1.14 Capon et al. 1996 [6]
po, -, 30 mg dextromethorphan EM 17.77 14.62 1.22 2.98 2.70 1.10 Gorski et al. 2004 [14]
po, -, 30 mg dextromethorphan PM 171.48 208.95 0.82 20.09 21.93 0.92 Gorski et al. 2004 [14]
po, cap, 30 mg dextromethorphan AS=1.25 28.60 23.09 1.24 3.45 2.83 1.22 Gazzaz et al. 2018 [13]
po, cap, 30 mg dextromethorphan AS=2.0 7.34 8.83 0.83 1.13 1.14 0.99 Yamazaki et al. 2017 [44]
po, cap, 30 mg dextromethorphan AS=0.5 85.58 67.73 1.26 8.87 6.65 1.33 Yamazaki et al. 2017 [44]
po, tab, 15 mg dextromethorphan AS=2.0 2.91 2.68 1.08 0.62 0.44 1.41 Qiu et al. 2016 [30]
po, tab, 15 mg dextromethorphan AS=1.25 12.42 10.41 1.19 1.72 1.42 1.22 Qiu et al. 2016 [30]
po, tab, 15 mg dextromethorphan AS=0.5 54.16 39.65 1.37 5.12 5.33 0.96 Qiu et al. 2016 [30]
po, sol, 5 mg dextromethorphan AS=2.0 0.80 1.87 0.43 0.20 0.33 0.62 Storelli et al. 2018 [37]
po, sol, 5 mg dextromethorphan AS=1.0 5.42 10.59 0.51 0.65 1.02 0.63 Storelli et al. 2018 [37]
po, cap, 3 mg/kg dextromethorphan AS=2.0 69.64 107.81 0.65 25.94 27.04 0.96 Zawertailo et al. 2010 [45]

GMFE (dextromethorphan) 1.46 (1.08–2.33) 1.22 (1.01–1.61)
12/13 with GMFE ≤ 2 13/13 with GMFE ≤ 2

po, sol, 5 mg dextrorphan AS=2.0 2.60 4.19 0.62 1.38 1.13 1.22 Storelli et al. 2018 [37]
po, sol, 5 mg dextrorphan AS=1.0 4.37 7.94 0.55 1.06 1.31 0.81 Storelli et al. 2018 [37]
po, cap, 3 mg/kg dextrorphan AS=2.0 109.82 237.65 0.46 30.63 67.77 0.45 Zawertailo et al. 2010 [45]

GMFE (dextrorphan) 1.87 (1.61–2.17) 1.52 (1.08–2.22)
2/3 with GMFE ≤ 2 2/3 with GMFE ≤ 2

po, -, 30 mg dextrorphan-total EM 1307.35 1854.58 0.70 214.79 365.28 0.59 Gorski et al. 2004 [14]

-: not given, AS: CYP2D6 activity score, AUClast: AUC from the time of the first concentration measurement to the last time point of concentration
measurement, cap: capsule, Cmax: peak plasma concentration, CYP2D6: Cytochrome P450 2D6, EM: extensive metabolizer, inf: infusion, iv: intravenous,
obs.: observed, PM: poor metabolizer, po: oral, pred: predicted.
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Table S5.5.2: Predicted and observed AUClast and Cmax values and geometric mean fold errors (continued)

CYP2D6 AUClast [ng·h/ml] Cmax [ng/ml]

Dosing Molecule status Pred Obs Pred/Obs Pred Obs Pred/Obs Reference

cap, 3 mg/kg dextrorphan-total AS=2.0 8998.15 9490.66 0.95 2427.95 2370.93 1.02 Zawertailo et al. 2010 [45]

GMFE (dextrorphan-total) 1.24 (1.05–1.43) 1.36 (1.02–1.69)
2/2 with GMFE ≤ 2 2/2 with GMFE ≤ 2

Overall GMFE 1.50 (1.05–2.33) 1.28 (1.01–2.22)
16/18 with GMFE ≤ 2 17/18 with GMFE ≤ 2

-: not given, AS: CYP2D6 activity score, AUClast: AUC from the time of the first concentration measurement to the last time point of concentration
measurement, cap: capsule, Cmax: peak plasma concentration, CYP2D6: Cytochrome P450 2D6, EM: extensive metabolizer, inf: infusion, iv: intravenous,
obs.: observed, PM: poor metabolizer, po: oral, pred: predicted.30
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S5.6 DGI AUClast and Cmax Ratio Plots
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Figure S5.6.6: Predicted versus observed dextromethorphan DGI ratios. Comparison of predicted
versus observed (a) AUClast ratios and (b) Cmax ratios for dextromethorphan CYP2D6 DGI-studies.
The straight black line indicates the line of identity, curved black lines show prediction success lim-
its proposed by Guest et al. including 1.25-fold variability [15]. Solid light gray lines indicate 2-fold
deviation, dashed light gray lines show 1.25-fold deviation. AUClast: AUC from the time of the first con-
centration measurement to the last time point of concentration measurement, Cmax: peak plasma
concentration, DGI: drug-gene interaction
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S5.7 GMFE of Predicted DGI AUClast and Clast Ratios

Table S5.7.3: Geometric mean fold error of predicted DGI AUClast and Cmax ratios

CYP2D6 AUClast ratio Cmax ratio

Molecule Dosing AS Genotype p. Phenotype Pred Obs Pred/Obs Pred Obs Pred/Obs Reference

dextromethorphan 30 mg, cap, sd - - PM 16.55 5.82 2.84 7.2 5.71 1.26 Capon et al. 1996 [6]
dextromethorphan 30 mg, -, sd - - PM 10.67 14.29 0.75 7.02 8.11 0.87 Gorski et al. 2004 [14]
dextromethorphan 5 mg, sol, sd 1.0 † IM 4.37 3.27 1.34 3.2 3.13 1.02 Storelli et al. 2018 [37]
dextrorphan 5 mg, sol, sd 1.0 † IM 1.07 1.33 0.8 0.92 1.16 0.8 Storelli et al. 2018 [37]
dextromethorphan 15 mg, tab, sd 1.25 *1/*10 NM 2.97 3.1 0.96 2.94 3.23 0.91 Qiu et al. 2016 [30]
dextromethorphan 15 mg, tab, sd 0.5 *10/*10 IM 14.01 11.06 1.27 8.94 12.17 0.73 Qiu et al. 2016 [30]
dextromethorphan 30 mg, cap, sd 0.5 *10/*10 IM 12.07 7.67 1.57 8.17 5.84 1.4 Yamazaki et al. 2017 [44]

Overall GMFE 1.45 (1.04–2.84) 1.21 (1.02–1.40)
6/7 with GMFE≤ 2 7/7 with GMFE≤ 2

Ratios within the limits of Guest et al. [15] (including 1.25-fold deviation) 6/7 7/7

-: not available, †: full genotype provided in publication, AS: CYP2D6 activity score, AUClast: AUC from the time of the first concentration measurement to the last
time point of concentration measurement, cap: capsule, Cmax: peak plasma concentration, CYP2D6: Cytochrome P450 2D6, obs: observed, IM: intermediate
metabolizer, NM: normal metabolizer, p.: projected, PM: poor metabolizer, pred: predicted, sol: oral solution, sd: single dose.
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S6 Interindividual Variability Within Activity Score
Groups

S6.1 Exploratory Analysis of Reported Individual Plasma
Concentration-Time Profiles

In the PhD thesis by Frank [12], plasma concentration-time profiles for dextromethorphan, dextror-
phan and total dextrorphan were reported for five cocktail studies (A–E) for a total of 84 individuals.
To assess the plausibility of the reported individual profiles, AUClast and Cmax values were calcu-
lated for all observed dextromethorphan profiles. The authors assumed that AUClast and Cmax values
would generally decrease with increasing CYP2D6 activity scores. This was true for four (A, C, D and
E) of the five studies, as depicted in Figure S6.1.1. As AUClast and Cmax values clearly violated this
assumption, study B was excluded from the subsequent modeling steps and analyses.
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Figure S6.1.1: Exploratory analysis of dextromethorphan AUClast and Cmax values. Observed AUClast
(left) and Cmax values (right panel) for dextromethorphan for individual profiles. Lines and symbols
represent the observed AUClast and Cmax data points per activity score AUClast: AUC from the time
of the first concentration measurement to the last time point of concentration measurement, Cmax:
peak plasma concentration.
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S6.2 Mean Individual kcat Values

Table S6.2.1:CYP2D6activity scores in theDGI study populationwith population kcat values
and mean individual optimized kcat values.

Activity Score Projected Individuals Population kcat Mean Individual kcat
Phenotype (n) [1/min] [1/min]

0 PM 2 0.0 -

0.25 1 5.3 -
0.5 IM 1 32.9 -
1 25 96.6 106.3 (2.5)

1.25 0 115.2 -
1.5 NM 7 151.8 168.5 (1.9)
2 26 242.5 260.0 (2.1)

3 UM 4 413.2 462 (1.3)

Individual optimized kcat values are given as mean (SD), IM: intermediate metabolizer,
kcat: catalytic rate constant, NM: normal metabolizer, PM: poor metabolizer,
n: number of individuals, UM: ultrarapid metabolizer.
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S6.3 Clinical Study Data

Table S6.3.2: Dextromethorphan cocktail study table [12]

Subject Sex Age Weight Height Ethnicity CYP2D6 Dataset
ID [years] [kg] [cm] genotype AS p. phenotype

A01 male 42 84 188 caucasian *4/*10 0.25 IM training
A02 male 27 65 171 caucasian *1/*41 1.5 NM test
A03 male 34 77 189 caucasian *1/*1 2 NM test
A04 male 24 78 183 caucasian *1/*4 1 IM test
A05 male 27 69 176 caucasian *1/*4 1 IM test
A06 male 24 86 181 caucasian *1/*1 2 NM test
A07 male 27 74 173 caucasian *1/*4 1 IM training
A08 male 23 71 180 caucasian *4/*4 0 PM training
A09 male 27 90 190 caucasian *1/*2 2 NM training
A10 male 38 80 185 caucasian *2/*4 1 IM test
A11 male 34 101 195 caucasian *1/*4 1 IM test
A12 male 34 65 174 caucasian *2/*2x2 3 UM test
A13 male 31 83 189 caucasian *1/*4 1 IM training
A14 male 25 79 180 caucasian *1/*2 2 NM test
A15 male 23 69 175 caucasian *1x2/*2 3 UM test
A16 male 29 86 188 caucasian *1/*4 1 IM test

C01 male 25 80 178 caucasian *1/*1 2 NM test
C02 male 24 71 173 caucasian *1/*1 2 NM training
C03 male 37 66 178 caucasian *1/*1 2 NM training
C04 male 27 92 185 caucasian *2x2/*3 2 NM test
C05 male 21 79 190 caucasian - - - test
C06 male 29 76 176 caucasian *1/*1x2 3 UM training
C07 male 31 84 185 caucasian - - - test
C08 male 26 83 182 caucasian *4/*41 0.5 IM training
C09 male 25 77 184 caucasian - - - test
C10 male 26 69 184 caucasian *2/*9 1.5 NM training
C11 male 33 91 194 caucasian *1/*41 1.5 NM test
C12 male 43 71 177 caucasian *1/*41 1.5 NM test
C13 male 29 79 179 caucasian - - - test
C14 male 30 89 187 caucasian *1/*41 1.5 NM test
C15 male 22 74 176 caucasian *1/*4 1 IM training
C16 male 29 99 189 caucasian - - - test

D01 male 44 60 171 caucasian *1/*2 2 NM test
D02 male 25 75 185 caucasian *2/*41 1.5 NM training
D03 male 23 82 183 caucasian *1/*1 2 NM training
D04 male 18 74 186 caucasian *2/*2 2 NM test
D05 male 46 69 178 caucasian - - - test
D06 male 48 73 179 caucasian *2/*4 1 IM test
D07 male 30 69 173 caucasian *1/*2 2 NM test
D08 male 27 70 180 caucasian *2/*4 1 IM training
D09 male 42 74 173 caucasian *2/*2 2 NM test
D10 male 26 73 184 caucasian *1/*41 1.5 NM test

Studies A, C and D were performed in healthy subjects, whereas participants of study E were HIV-infected patients, which
did not yet receive any antiretroviral treatment.
-: not given, AS: CYP2D6 activity score, CYP2D6: Cytochrome P450 2D6, IM: intermediate metabolizer, NM: normal
metabolizer, p.: projected, PM: poor metabolizer, UM: ultrarapid metabolizer.
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Table S6.3.2: Dextromethorphan cocktail study table [12] (continued)

Subject Sex Age Weight Height Ethnicity CYP2D6 Dataset
ID [years] [kg] [cm] genotype AS p. phenotype

D11 male 26 70 175 caucasian *2/*4 1 IM training
D12 male 27 73 190 caucasian *2/*4x2 1 IM test

E01 male 33 56 185 caucasian *1/*4 1 IM test
E02 male 51 106 170 caucasian *1/*4 1 IM test
E03 male 39 75 175 caucasian *1/*4 1 IM test
E04 male 48 73 173 caucasian *1/*1 2 NM training
E05 male 33 85 190 caucasian *1/*1 2 NM test
E06 male 35 72 175 caucasian *1/*3 1 IM test
E07 female 32 73 164 african american *1/*1 2 NM test
E08 male 43 76 172 african american *1/*1 2 NM test
E09 male 57 62 174 caucasian *1/*1 2 NM test
E10 male 30 49 171 caucasian *1/*5 1 IM training
E11 male 41 86 184 caucasian *1/*4 1 IM test
E12 male 38 69 176 caucasian *1/*1 2 NM training
E13 male 43 66 167 african american *1/*1 2 NM test
E14 male 30 75 180 caucasian *1/*4 1 IM test
E15 female 27 55 164 caucasian *1/*1 2 NM training
E16 male 59 87 183 caucasian *1/*4 1 IM training
E17 female 28 50 167 african american *1/2x*4 1 IM test
E18 female 39 63 178 caucasian *1/*1 2 NM test
E20 male 34 73 176 caucasian *1/*1 2 NM training
E21 female 36 54 156 african american *1/*5 1 IM training
E22 male 42 94 169 caucasian *4/*6 0 PM test
E23 male 60 64 178 caucasian *1x2/*1 3 UM training
E24 male 33 70 180 caucasian *1/*1 2 NM training
E25 female 60 73 180 caucasian *1/*1 2 NM training
E26 male 25 83 166 caucasian *1/*3 1 IM training
E27 male 40 70 176 caucasian *1/*1 2 NM test
E28 male 48 80 172 caucasian *1/*4 1 IM training
E30 female 38 67 173 caucasian *1/*4 1 IM test

Studies A, C and D were performed in healthy subjects, whereas participants of study E were HIV-infected patients, which
did not yet receive any antiretroviral treatment.
-: not given, AS: CYP2D6 activity score, CYP2D6: Cytochrome P450 2D6, IM: intermediate metabolizer, NM: normal
metabolizer, p.: projected, PM: poor metabolizer, UM: ultrarapid metabolizer.
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S6.4 Plasma Concentration-Time Profiles
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Figure S6.4.2: Dextromethorphan plasma concentrations for individuals where no genotype was
provided. The simulations were performed using the model CYP2D6 kcat value for normal metabo-
lizers (see Section S2.1). Predictions of dextromethorphan and dextrorphan profiles, compared to
observed data [12] (semilogarithmic representation). Predictions using the population kcat are shown
as solid lines, individual predictions are shown as dotted lines. Symbols represent the corresponding
observed data. po: oral.
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Figure S6.4.3: Dextromethorphan plasma concentrations for individuals with a CYP2D6 AS = 0 (poor
metabolizer (PM)). Predictions of dextromethorphan plasma concentration-time profiles, compared
to observed data [12] (semilogarithmic representation). Predictions using the population kcat are
shown as solid lines, individual predictions are shown as dotted lines. Symbols represent the corre-
sponding observed data. AS: activity score, po: oral.
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Figure S6.4.4: Dextromethorphan, dextrorphan and total dextrorphan plasma concentrations for in-
dividuals with a CYP2D6 AS = 0.25. Predictions of dextromethorphan plasma concentration-time
profiles, compared to observed data [12] (semilogarithmic representation). Predictions using the
population kcat are shown as solid lines, individual predictions are shown as dotted lines. Symbols
represent the corresponding observed data. AS: activity score, po: oral.
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Figure S6.4.5: Dextromethorphan, dextrorphan and total dextrorphan plasma concentrations for in-
dividuals with a CYP2D6 AS = 0.5. Predictions of dextromethorphan plasma concentration-time
profiles, compared to observed data [12] (semilogarithmic representation). Predictions using the
population kcat are shown as solid lines, individual predictions are shown as dotted lines. Symbols
represent the corresponding observed data. AS: activity score, po: oral.

39

B.2 project ii : pbpk modeling of dextromethorphan 259



0 4 8 12
Time [hours]

10 1

100

101

102

103

Pl
as

m
a 

co
nc

en
tra

tio
n 

[n
g/

m
L]

(a) 30 mg, po
Frank 2009, A04
(test, AS = 1.0)
dextromethorphan
dextrorphan
dextrorphan-total

0 4 8 12
Time [hours]

10 1

100

101

102

103

Pl
as

m
a 

co
nc

en
tra

tio
n 

[n
g/

m
L]

(b) 30 mg, po
Frank 2009, A05
(test, AS = 1.0)
dextromethorphan
dextrorphan
dextrorphan-total

0 4 8 12
Time [hours]

10 1

100

101

102

103

Pl
as

m
a 

co
nc

en
tra

tio
n 

[n
g/

m
L]

(c) 30 mg, po
Frank 2009, A07
(test, AS = 1.0)
dextromethorphan
dextrorphan
dextrorphan-total

0 4 8 12
Time [hours]

10 1

100

101

102

103

Pl
as

m
a 

co
nc

en
tra

tio
n 

[n
g/

m
L]

(d) 30 mg, po
Frank 2009, A10
(test, AS = 1.0)
dextromethorphan
dextrorphan
dextrorphan-total

0 4 8 12
Time [hours]

10 1

100

101

102

103

Pl
as

m
a 

co
nc

en
tra

tio
n 

[n
g/

m
L]

(e) 30 mg, po
Frank 2009, A11
(test, AS = 1.0)
dextromethorphan
dextrorphan
dextrorphan-total

0 4 8 12
Time [hours]

10 1

100

101

102

103

Pl
as

m
a 

co
nc

en
tra

tio
n 

[n
g/

m
L]

(f) 30 mg, po
Frank 2009, A13
(test, AS = 1.0)
dextromethorphan
dextrorphan
dextrorphan-total

0 4 8 12
Time [hours]

10 1

100

101

102

103

104

Pl
as

m
a 

co
nc

en
tra

tio
n 

[n
g/

m
L]

(g) 30 mg, po
Frank 2009, A16
(test, AS = 1.0)
dextromethorphan
dextrorphan
dextrorphan-total

0 4 8 12
Time [hours]

10 1

100

101

102

103

104

Pl
as

m
a 

co
nc

en
tra

tio
n 

[n
g/

m
L]

(h) 30 mg, po
Frank 2009, C15
(test, AS = 1.0)
dextromethorphan
dextrorphan
dextrorphan-total

0 4 8 12
Time [hours]

10 1

100

101

102

103

104
Pl

as
m

a 
co

nc
en

tra
tio

n 
[n

g/
m

L]
(i) 30 mg, po

Frank 2009, D06
(test, AS = 1.0)
dextromethorphan
dextrorphan
dextrorphan-total

0 4 8 12
Time [hours]

100

101

102

103

104

Pl
as

m
a 

co
nc

en
tra

tio
n 

[n
g/

m
L]

(j) 30 mg, po
Frank 2009, D08
(test, AS = 1.0)
dextromethorphan
dextrorphan
dextrorphan-total

0 4 8 12
Time [hours]

100

101

102

103

104

Pl
as

m
a 

co
nc

en
tra

tio
n 

[n
g/

m
L]

(k) 30 mg, po
Frank 2009, D11
(test, AS = 1.0)
dextromethorphan
dextrorphan
dextrorphan-total

0 4 8 12
Time [hours]

100

101

102

103

104

Pl
as

m
a 

co
nc

en
tra

tio
n 

[n
g/

m
L]

(l) 30 mg, po
Frank 2009, D12
(test, AS = 1.0)
dextromethorphan
dextrorphan
dextrorphan-total

Figure S6.4.6:Dextromethorphan, dextrorphan and total dextrorphan plasmaconcentrations for indi-
viduals with a CYP2D6 AS = 1. Predictions of dextromethorphan plasma concentration-time profiles,
compared to observed data [12] (semilogarithmic representation). Predictions using the population
kcat are shown as solid lines, individual predictions are shown as dotted lines. Symbols represent
the corresponding observed data. AS: activity score, po: oral.
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Figure S6.4.7:Dextromethorphan, dextrorphan and total dextrorphan plasma concentrations for indi-
viduals with a CYP2D6 AS = 1. Predictions of dextromethorphan plasma concentration-time profiles,
compared to observed data [12] (semilogarithmic representation). Predictions using the population
kcat are shown as solid lines, individual predictions are shown as dotted lines. Symbols represent
the corresponding observed data. AS: activity score, po: oral.
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(a) 30 mg, po
Frank 2009, E30
(test, AS = 1.0)
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Figure S6.4.8:Dextromethorphan, dextrorphan and total dextrorphan plasmaconcentrations for indi-
viduals with a CYP2D6 AS = 1. Predictions of dextromethorphan plasma concentration-time profiles,
compared to observed data [12] (semilogarithmic representation). Predictions using the population
kcat are shown as solid lines, individual predictions are shown as dotted lines. Symbols represent
the corresponding observed data. AS: activity score, po: oral.
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(test, AS = 1.5)
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Figure S6.4.9: Dextromethorphan, dextrorphan and total dextrorphan plasma concentrations for in-
dividuals with a CYP2D6 AS = 1.5. Predictions of dextromethorphan plasma concentration-time
profiles, compared to observed data [12] (semilogarithmic representation). Predictions using the
population kcat are shown as solid lines, individual predictions are shown as dotted lines. Symbols
represent the corresponding observed data. AS: activity score, po: oral.
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(test, AS = 2.0)
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Figure S6.4.10: Dextromethorphan, dextrorphan and total dextrorphan plasma concentrations for
individuals with a CYP2D6 AS = 2. Predictions of dextromethorphan plasma concentration-time
profiles, compared to observed data [12] (semilogarithmic representation). Predictions using the
population kcat are shown as solid lines, individual predictions are shown as dotted lines. Symbols
represent the corresponding observed data. AS: activity score, po: oral.
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(a) 30 mg, po
Frank 2009, D09
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(l) 30 mg, po
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(test, AS = 2.0)
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Figure S6.4.11: Dextromethorphan, dextrorphan and total dextrorphan plasma concentrations for
individuals with a CYP2D6 AS = 2. Predictions of dextromethorphan plasma concentration-time
profiles, compared to observed data [12] (semilogarithmic representation). Predictions using the
population kcat are shown as solid lines, individual predictions are shown as dotted lines. Symbols
represent the corresponding observed data. AS: activity score, po: oral.
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(a) 30 mg, po
Frank 2009, E25
(test, AS = 2.0)
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(b) 30 mg, po
Frank 2009, E27
(test, AS = 2.0)
dextromethorphan
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Figure S6.4.12: Dextromethorphan, dextrorphan and total dextrorphan plasma concentrations for
individuals with a CYP2D6 AS = 2. Predictions of dextromethorphan plasma concentration-time
profiles, compared to observed data [12] (semilogarithmic representation). Predictions using the
population kcat are shown as solid lines, individual predictions are shown as dotted lines. Symbols
represent the corresponding observed data. AS: activity score, po: oral.
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(a) 30 mg, po
Frank 2009, A12
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(d) 30 mg, po
Frank 2009, E23
(test, AS = 3.0)
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Figure S6.4.13: Dextromethorphan, dextrorphan and total dextrorphan plasma concentrations for
individuals with a CYP2D6 AS = 3. Predictions of dextromethorphan plasma concentration-time
profiles, compared to observed data [12] (semilogarithmic representation). Predictions using the
population kcat are shown as solid lines, individual predictions are shown as dotted lines. Symbols
represent the corresponding observed data. AS: activity score, po: oral.
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S6.5 MRD of Plasma Concentration Predictions

Table S6.5.3: Mean relative deviation of plasma concentration predictions

Dosing Molecule CYP2D6 MRD Subject ID
status population kcat optim. ind. kcat

po, cap, 30 mg dextromethorphan AS=0.25 1.27 1.26 A01
po, cap, 30 mg dextromethorphan AS=1.5 2.59 2.06 A02
po, cap, 30 mg dextromethorphan AS=2.0 5.08 1.21 A03
po, cap, 30 mg dextromethorphan AS=1.0 3.22 1.60 A04
po, cap, 30 mg dextromethorphan AS=1.0 3.19 1.59 A05
po, cap, 30 mg dextromethorphan AS=2.0 2.70 1.20 A06
po, cap, 30 mg dextromethorphan AS=1.0 1.77 1.47 A07
po, cap, 30 mg dextromethorphan AS=0.0 1.50 1.49 A08
po, cap, 30 mg dextromethorphan AS=2.0 1.50 1.43 A09
po, cap, 30 mg dextromethorphan AS=1.0 2.68 1.55 A10
po, cap, 30 mg dextromethorphan AS=1.0 2.26 1.48 A11
po, cap, 30 mg dextromethorphan AS=3.0 2.26 1.97 A12
po, cap, 30 mg dextromethorphan AS=1.0 2.12 1.32 A13
po, cap, 30 mg dextromethorphan AS=2.0 3.19 1.29 A14
po, cap, 30 mg dextromethorphan AS=3.0 1.61 1.43 A15
po, cap, 30 mg dextromethorphan AS=1.0 3.06 1.67 A16
po, cap, 30 mg dextromethorphan AS=2.0 4.73 2.51 C01
po, cap, 30 mg dextromethorphan AS=2.0 3.43 1.76 C02
po, cap, 30 mg dextromethorphan AS=2.0 4.14 1.33 C03
po, cap, 30 mg dextromethorphan AS=2.0 5.65 1.97 C04
po, cap, 30 mg dextromethorphan - 3.75 3.75 C05
po, cap, 30 mg dextromethorphan AS=3.0 1.79 1.15 C06
po, cap, 30 mg dextromethorphan - 10.79 10.79 C07
po, cap, 30 mg dextromethorphan AS=0.5 1.70 1.61 C08
po, cap, 30 mg dextromethorphan - 14.00 14.00 C09
po, cap, 30 mg dextromethorphan AS=1.5 1.61 1.65 C10
po, cap, 30 mg dextromethorphan AS=1.5 4.60 1.46 C11
po, cap, 30 mg dextromethorphan AS=1.5 2.53 1.62 C12
po, cap, 30 mg dextromethorphan - 10.29 10.29 C13
po, cap, 30 mg dextromethorphan AS=1.5 1.91 1.51 C14
po, cap, 30 mg dextromethorphan AS=1.0 2.96 1.46 C15
po, cap, 30 mg dextromethorphan - 3.78 3.78 C16
po, cap, 30 mg dextromethorphan AS=2.0 1.68 1.77 D01
po, cap, 30 mg dextromethorphan AS=1.5 3.64 1.42 D02
po, cap, 30 mg dextromethorphan AS=2.0 4.70 1.10 D03
po, cap, 30 mg dextromethorphan AS=2.0 3.13 1.35 D04
po, cap, 30 mg dextromethorphan - 1.94 1.94 D05
po, cap, 30 mg dextromethorphan AS=1.0 2.31 1.41 D06
po, cap, 30 mg dextromethorphan AS=2.0 1.63 1.56 D07
po, cap, 30 mg dextromethorphan AS=1.0 2.86 1.57 D08
po, cap, 30 mg dextromethorphan AS=2.0 2.97 1.24 D09
po, cap, 30 mg dextromethorphan AS=1.5 1.69 1.60 D10
po, cap, 30 mg dextromethorphan AS=1.0 1.64 1.49 D11
po, cap, 30 mg dextromethorphan AS=1.0 2.20 1.44 D12
po, cap, 30 mg dextromethorphan AS=1.0 1.15 1.20 E01
po, cap, 30 mg dextromethorphan AS=1.0 1.49 1.34 E02
po, cap, 30 mg dextromethorphan AS=1.0 2.23 1.67 E03
po, cap, 30 mg dextromethorphan AS=2.0 1.98 1.75 E04

-: not given, AS: CYP2D6 activity score, cap: capsule, CYP2D6: Cytochrome P450 2D6, ind.:
individual, optim.: optimized, po: oral.
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Table S6.5.3: Mean relative deviation of plasma concentration predictions (continued)

Dosing Molecule CYP2D6 MRD Subject ID
status population kcat optim. ind. kcat

po, cap, 30 mg dextromethorphan AS=2.0 6.49 1.35 E05
po, cap, 30 mg dextromethorphan AS=1.0 1.54 1.51 E06
po, cap, 30 mg dextromethorphan AS=2.0 1.46 1.45 E07
po, cap, 30 mg dextromethorphan AS=2.0 5.64 1.30 E08
po, cap, 30 mg dextromethorphan AS=2.0 2.44 2.37 E09
po, cap, 30 mg dextromethorphan AS=1.0 5.90 1.94 E10
po, cap, 30 mg dextromethorphan AS=1.0 3.07 2.65 E11
po, cap, 30 mg dextromethorphan AS=2.0 1.84 1.51 E12
po, cap, 30 mg dextromethorphan AS=2.0 1.71 1.56 E13
po, cap, 30 mg dextromethorphan AS=1.0 1.64 1.58 E14
po, cap, 30 mg dextromethorphan AS=2.0 3.91 1.63 E15
po, cap, 30 mg dextromethorphan AS=1.0 1.68 1.45 E16
po, cap, 30 mg dextromethorphan AS=1.0 6.78 1.95 E17
po, cap, 30 mg dextromethorphan AS=2.0 4.89 2.89 E18
po, cap, 30 mg dextromethorphan AS=2.0 3.23 1.63 E20
po, cap, 30 mg dextromethorphan AS=1.0 11.61 2.48 E21
po, cap, 30 mg dextromethorphan AS=0.0 2.06 2.00 E22
po, cap, 30 mg dextromethorphan AS=3.0 1.63 1.51 E23
po, cap, 30 mg dextromethorphan AS=2.0 2.96 1.29 E24
po, cap, 30 mg dextromethorphan AS=2.0 2.94 1.65 E25
po, cap, 30 mg dextromethorphan AS=1.0 1.56 1.27 E26
po, cap, 30 mg dextromethorphan AS=2.0 2.31 1.45 E27
po, cap, 30 mg dextromethorphan AS=1.0 3.12 1.90 E28
po, cap, 30 mg dextromethorphan AS=1.0 1.75 1.36 E30

MRD (dextromethorphan) 3.29 (1.15–14.00) 2.09 (1.10–14.00)
26/72 61/72 with MRD ≤ 2

po, cap, 30 mg dextrorphan AS=0.25 1.54 1.62 A01
po, cap, 30 mg dextrorphan AS=1.5 1.65 1.78 A02
po, cap, 30 mg dextrorphan AS=2.0 1.83 1.81 A03
po, cap, 30 mg dextrorphan AS=1.0 1.91 1.73 A04
po, cap, 30 mg dextrorphan AS=1.0 1.90 1.70 A05
po, cap, 30 mg dextrorphan AS=2.0 1.48 1.44 A06
po, cap, 30 mg dextrorphan AS=1.0 1.76 1.66 A07
po, cap, 30 mg dextrorphan AS=2.0 1.73 1.72 A09
po, cap, 30 mg dextrorphan AS=1.0 1.55 1.54 A10
po, cap, 30 mg dextrorphan AS=1.0 1.76 1.64 A11
po, cap, 30 mg dextrorphan AS=3.0 2.09 2.10 A12
po, cap, 30 mg dextrorphan AS=1.0 2.07 1.88 A13
po, cap, 30 mg dextrorphan AS=2.0 1.91 1.88 A14
po, cap, 30 mg dextrorphan AS=3.0 1.52 1.52 A15
po, cap, 30 mg dextrorphan AS=1.0 1.61 1.43 A16
po, cap, 30 mg dextrorphan AS=2.0 2.05 1.97 C01
po, cap, 30 mg dextrorphan AS=2.0 2.02 1.99 C02
po, cap, 30 mg dextrorphan AS=2.0 1.28 1.26 C03
po, cap, 30 mg dextrorphan AS=2.0 1.90 1.85 C04
po, cap, 30 mg dextrorphan - 1.54 1.54 C05
po, cap, 30 mg dextrorphan AS=3.0 1.92 1.90 C06

-: not given, AS: CYP2D6 activity score, cap: capsule, CYP2D6: Cytochrome P450 2D6, ind.:
individual, optim.: optimized, po: oral.
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Table S6.5.3: Mean relative deviation of plasma concentration predictions (continued)

Dosing Molecule CYP2D6 MRD Subject ID
status population kcat optim. ind. kcat

po, cap, 30 mg dextrorphan - 1.66 1.66 C07
po, cap, 30 mg dextrorphan AS=0.5 1.67 1.84 C08
po, cap, 30 mg dextrorphan - 2.00 2.00 C09
po, cap, 30 mg dextrorphan AS=1.5 1.84 1.87 C10
po, cap, 30 mg dextrorphan AS=1.5 1.63 1.51 C11
po, cap, 30 mg dextrorphan AS=1.5 1.99 2.06 C12
po, cap, 30 mg dextrorphan - 1.95 1.95 C13
po, cap, 30 mg dextrorphan AS=1.5 1.61 1.55 C14
po, cap, 30 mg dextrorphan AS=1.0 2.18 1.86 C15
po, cap, 30 mg dextrorphan - 1.84 1.84 C16
po, cap, 30 mg dextrorphan AS=2.0 1.59 1.59 D01
po, cap, 30 mg dextrorphan AS=1.5 3.60 3.91 D02
po, cap, 30 mg dextrorphan AS=2.0 2.37 2.27 D03
po, cap, 30 mg dextrorphan AS=2.0 1.31 1.55 D04
po, cap, 30 mg dextrorphan - 1.89 1.89 D05
po, cap, 30 mg dextrorphan AS=1.0 1.68 1.49 D06
po, cap, 30 mg dextrorphan AS=2.0 1.66 1.72 D07
po, cap, 30 mg dextrorphan AS=1.0 1.43 1.76 D08
po, cap, 30 mg dextrorphan AS=2.0 3.27 3.26 D09
po, cap, 30 mg dextrorphan AS=1.5 2.14 2.11 D10
po, cap, 30 mg dextrorphan AS=1.0 1.72 1.66 D11
po, cap, 30 mg dextrorphan AS=1.0 1.57 1.43 D12
po, cap, 30 mg dextrorphan AS=1.0 1.63 1.69 E01
po, cap, 30 mg dextrorphan AS=1.0 2.00 1.91 E02
po, cap, 30 mg dextrorphan AS=1.0 1.35 1.32 E03
po, cap, 30 mg dextrorphan AS=2.0 1.27 1.25 E04
po, cap, 30 mg dextrorphan AS=2.0 1.41 1.79 E05
po, cap, 30 mg dextrorphan AS=1.0 2.27 2.35 E06
po, cap, 30 mg dextrorphan AS=2.0 1.73 1.74 E07
po, cap, 30 mg dextrorphan AS=2.0 1.43 1.97 E08
po, cap, 30 mg dextrorphan AS=2.0 1.88 1.90 E09
po, cap, 30 mg dextrorphan AS=1.0 2.03 2.19 E10
po, cap, 30 mg dextrorphan AS=1.0 1.77 1.85 E11
po, cap, 30 mg dextrorphan AS=2.0 1.68 1.69 E12
po, cap, 30 mg dextrorphan AS=2.0 1.38 1.35 E13
po, cap, 30 mg dextrorphan AS=1.0 1.26 1.24 E14
po, cap, 30 mg dextrorphan AS=2.0 1.49 1.83 E15
po, cap, 30 mg dextrorphan AS=1.0 1.67 1.57 E16
po, cap, 30 mg dextrorphan AS=1.0 1.38 1.27 E17
po, cap, 30 mg dextrorphan AS=2.0 1.76 1.92 E18
po, cap, 30 mg dextrorphan AS=2.0 5.10 4.55 E20
po, cap, 30 mg dextrorphan AS=1.0 5.33 3.11 E21
po, cap, 30 mg dextrorphan AS=3.0 1.20 1.22 E23
po, cap, 30 mg dextrorphan AS=2.0 1.43 1.62 E24
po, cap, 30 mg dextrorphan AS=2.0 1.29 1.30 E25
po, cap, 30 mg dextrorphan AS=1.0 1.61 1.56 E26
po, cap, 30 mg dextrorphan AS=2.0 1.59 1.59 E27
po, cap, 30 mg dextrorphan AS=1.0 1.10 1.27 E28
po, cap, 30 mg dextrorphan AS=1.0 1.55 1.45 E30

-: not given, AS: CYP2D6 activity score, cap: capsule, CYP2D6: Cytochrome P450 2D6, ind.:
individual, optim.: optimized, po: oral.
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Table S6.5.3: Mean relative deviation of plasma concentration predictions (continued)

Dosing Molecule CYP2D6 MRD Subject ID
status population kcat optim. ind. kcat

MRD (dextrorphan) 1.85 (1.10–5.33) 1.82 (1.22–4.55)
57/72 60/70 with MRD ≤ 2

po, cap, 30 mg dextrorphan-total AS=0.25 2.75 2.99 A01
po, cap, 30 mg dextrorphan-total AS=1.5 1.40 1.35 A02
po, cap, 30 mg dextrorphan-total AS=2.0 1.41 1.50 A03
po, cap, 30 mg dextrorphan-total AS=1.0 1.20 1.22 A04
po, cap, 30 mg dextrorphan-total AS=1.0 1.17 1.09 A05
po, cap, 30 mg dextrorphan-total AS=2.0 1.17 1.20 A06
po, cap, 30 mg dextrorphan-total AS=1.0 5.56 5.48 A07
po, cap, 30 mg dextrorphan-total AS=2.0 1.33 1.33 A09
po, cap, 30 mg dextrorphan-total AS=1.0 1.21 1.25 A10
po, cap, 30 mg dextrorphan-total AS=1.0 1.30 1.27 A11
po, cap, 30 mg dextrorphan-total AS=3.0 1.15 1.15 A12
po, cap, 30 mg dextrorphan-total AS=1.0 1.18 1.17 A13
po, cap, 30 mg dextrorphan-total AS=2.0 1.14 1.14 A14
po, cap, 30 mg dextrorphan-total AS=3.0 1.44 1.42 A15
po, cap, 30 mg dextrorphan-total AS=1.0 1.13 1.14 A16
po, cap, 30 mg dextrorphan-total AS=2.0 1.17 1.23 C01
po, cap, 30 mg dextrorphan-total AS=2.0 1.54 1.63 C02
po, cap, 30 mg dextrorphan-total AS=2.0 1.88 1.90 C03
po, cap, 30 mg dextrorphan-total AS=2.0 1.56 1.48 C04
po, cap, 30 mg dextrorphan-total - 2.33 2.33 C05
po, cap, 30 mg dextrorphan-total AS=3.0 1.88 1.87 C06
po, cap, 30 mg dextrorphan-total - 1.25 1.25 C07
po, cap, 30 mg dextrorphan-total AS=0.5 1.39 1.43 C08
po, cap, 30 mg dextrorphan-total - 1.21 1.21 C09
po, cap, 30 mg dextrorphan-total AS=1.5 1.72 1.70 C10
po, cap, 30 mg dextrorphan-total AS=1.5 1.24 1.36 C11
po, cap, 30 mg dextrorphan-total AS=1.5 1.17 1.25 C12
po, cap, 30 mg dextrorphan-total - 1.08 1.08 C13
po, cap, 30 mg dextrorphan-total AS=1.5 1.22 1.25 C14
po, cap, 30 mg dextrorphan-total AS=1.0 1.11 1.19 C15
po, cap, 30 mg dextrorphan-total - 1.84 1.84 C16
po, cap, 30 mg dextrorphan-total AS=2.0 5.36 5.22 D01
po, cap, 30 mg dextrorphan-total AS=1.5 3.08 2.76 D02
po, cap, 30 mg dextrorphan-total AS=2.0 4.53 4.83 D03
po, cap, 30 mg dextrorphan-total AS=2.0 4.14 3.61 D04
po, cap, 30 mg dextrorphan-total - 2.85 2.85 D05
po, cap, 30 mg dextrorphan-total AS=1.0 3.06 3.21 D06
po, cap, 30 mg dextrorphan-total AS=2.0 5.92 5.56 D07
po, cap, 30 mg dextrorphan-total AS=1.0 2.70 2.60 D08
po, cap, 30 mg dextrorphan-total AS=2.0 3.52 3.70 D09
po, cap, 30 mg dextrorphan-total AS=1.5 5.51 5.60 D10
po, cap, 30 mg dextrorphan-total AS=1.0 4.09 4.19 D11
po, cap, 30 mg dextrorphan-total AS=1.0 4.84 5.20 D12
po, cap, 30 mg dextrorphan-total AS=1.0 1.62 1.55 E01
po, cap, 30 mg dextrorphan-total AS=1.0 1.38 1.38 E02
po, cap, 30 mg dextrorphan-total AS=1.0 2.26 2.38 E03

-: not given, AS: CYP2D6 activity score, cap: capsule, CYP2D6: Cytochrome P450 2D6, ind.:
individual, optim.: optimized, po: oral.
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Table S6.5.3: Mean relative deviation of plasma concentration predictions (continued)

Dosing Molecule CYP2D6 MRD Subject ID
status population kcat optim. ind. kcat

po, cap, 30 mg dextrorphan-total AS=2.0 3.32 3.40 E04
po, cap, 30 mg dextrorphan-total AS=2.0 3.73 3.12 E05
po, cap, 30 mg dextrorphan-total AS=1.0 3.07 3.00 E06
po, cap, 30 mg dextrorphan-total AS=2.0 4.03 3.88 E07
po, cap, 30 mg dextrorphan-total AS=2.0 3.75 3.04 E08
po, cap, 30 mg dextrorphan-total AS=2.0 4.07 4.11 E09
po, cap, 30 mg dextrorphan-total AS=1.0 4.00 3.89 E10
po, cap, 30 mg dextrorphan-total AS=1.0 5.17 5.36 E11
po, cap, 30 mg dextrorphan-total AS=2.0 2.84 2.54 E12
po, cap, 30 mg dextrorphan-total AS=2.0 4.36 3.92 E13
po, cap, 30 mg dextrorphan-total AS=1.0 3.34 3.37 E14
po, cap, 30 mg dextrorphan-total AS=2.0 4.95 3.96 E15
po, cap, 30 mg dextrorphan-total AS=1.0 3.48 3.53 E16
po, cap, 30 mg dextrorphan-total AS=1.0 1.95 1.97 E17
po, cap, 30 mg dextrorphan-total AS=2.0 9.98 10.14 E18
po, cap, 30 mg dextrorphan-total AS=2.0 8.25 6.70 E20
po, cap, 30 mg dextrorphan-total AS=1.0 6.08 3.55 E21
po, cap, 30 mg dextrorphan-total AS=3.0 2.67 2.61 E23
po, cap, 30 mg dextrorphan-total AS=2.0 5.23 4.36 E24
po, cap, 30 mg dextrorphan-total AS=2.0 6.30 6.58 E25
po, cap, 30 mg dextrorphan-total AS=1.0 3.94 4.02 E26
po, cap, 30 mg dextrorphan-total AS=2.0 5.41 5.70 E27
po, cap, 30 mg dextrorphan-total AS=1.0 2.98 3.24 E28
po, cap, 30 mg dextrorphan-total AS=1.0 3.71 3.88 E30

MRD (dextrorphan-total) 2.99 (1.08–9.98) 2.90 (1.08–10.14)
31/70 31/70 with MRD ≤ 2

Overall MRD 2.72 (1.08–14.00) 2.27 (1.08–14.00)
114/212 152/212 with MRD ≤ 2

-: not given, AS: CYP2D6 activity score, cap: capsule, CYP2D6: Cytochrome P450 2D6, ind.:
individual, optim.: optimized, po: oral.
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S6.6 Goodness-of-Fit Plots

10 3 10 2 10 1 100 101 102 103

Observed plasma concentration [ng/mL]

10 3

10 2

10 1

100

101

102

103
Pr

ed
ict

ed
 p

la
sm

a 
co

nc
en

tra
tio

n 
[n

g/
m

L]

(a) GOF plot - plasma concentration 
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(c) GOF plot - AUClast 
 Population predictions
dextrorphan-total
dextromethorphan
dextrorphan

10 1 100 101 102 103 104

Observed AUClast [ng h/mL]

10 1

100

101

102

103

104

Pr
ed

ict
ed

 A
UC

la
st

 [n
g

h/
m

L]

(d) GOF plot - AUClast 
 Individual predictions
dextrorphan-total
dextromethorphan
dextrorphan

10 2 10 1 100 101 102 103

Observed Cmax [ng/mL]

10 2

10 1

100

101

102

103

Pr
ed

ict
ed

 C
m

ax
 [n

g/
m

L]

(e) GOF plot - Cmax 
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Figure S6.6.14:Goodness-of-fit plots for plasma concentrations, AUClast and Cmax values comparing
predictions using the population kcat (left column) to individual predictions (right column). Predicted
versus observed (a, b) plasma concentrations, (c, d) AUClast and (e, f) Cmax values for dextromethor-
phan, dextrorphan and total dextrorphan (dextrorphan + dextrorphan O-glucuronide) for all individ-
uals. The solid black line marks the line of identity, the dashed gray lines mark the 0.8- to 1.25-fold
range, the solid gray lines indicate the 0.5- to 2-fold range. Colored symbols show the predicted
compared to observed values for an individual study participant. AUClast: AUC from the time of the
first concentration measurement to the last time point of concentration measurement, Cmax: peak
plasma concentration.

52

272 appendix b : supplementary materials



S6.7 GMFE of Predicted AUClast and Cmax Values

Table S6.7.4: Predicted and observed AUClast and Cmax values and geometric mean fold errors

AUClast [ng·h/mL] Cmax [ng/mL]

Molecule CYP2D6 Pred Obs Pred/Obs Pred Obs Pred/Obs Subject
status population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat ID

dextromethorphan AS=0.25 131.51 138.87 146.34 0.90 0.95 11.92 12.59 14.33 0.83 0.88 A01
dextromethorphan AS=1.5 7.84 14.67 17.31 0.45 0.85 1.30 2.07 4.53 0.29 0.46 A02
dextromethorphan AS=2.0 * * * * * 0.52 0.09 0.08 6.80 1.21 A03
dextromethorphan AS=1.0 15.04 5.75 4.87 3.09 1.18 2.30 0.85 0.94 2.46 0.90 A04
dextromethorphan AS=1.0 11.94 4.62 3.72 3.21 1.24 2.33 0.93 1.30 1.79 0.72 A05
dextromethorphan AS=2.0 1.33 0.34 0.28 4.67 1.20 0.58 0.20 0.20 2.92 1.03 A06
dextromethorphan AS=1.0 13.19 8.83 6.68 1.97 1.05 2.28 1.43 1.62 1.41 0.89 A07
dextromethorphan AS=0.0 156.79 146.08 162.42 0.97 0.90 15.85 14.08 16.37 0.97 0.86 A08
dextromethorphan AS=2.0 1.75 1.60 1.24 1.41 1.29 0.52 0.48 0.53 0.98 0.90 A09
dextromethorphan AS=1.0 13.16 6.41 5.34 2.46 1.20 1.99 0.92 0.87 2.29 1.06 A10
dextromethorphan AS=1.0 12.28 6.40 5.99 2.05 1.07 1.73 0.85 0.83 2.08 1.03 A11
dextromethorphan AS=3.0 0.52 0.25 0.30 1.72 0.88 0.24 0.15 0.16 1.52 0.94 A12
dextromethorphan AS=1.0 13.27 7.01 6.49 2.04 1.08 1.95 0.96 0.74 2.62 1.29 A13
dextromethorphan AS=2.0 1.32 0.45 0.38 3.47 1.18 0.58 0.19 0.21 2.75 0.91 A14
dextromethorphan AS=3.0 0.89 0.56 0.56 1.61 1.12 0.28 0.20 0.18 1.59 1.10 A15
dextromethorphan AS=1.0 13.05 5.18 4.92 2.65 1.05 1.94 0.73 0.86 2.24 0.84 A16
dextromethorphan AS=2.0 1.83 0.56 0.53 3.45 1.06 0.58 0.15 0.24 2.45 0.64 C01
dextromethorphan AS=2.0 1.95 0.73 0.63 3.09 1.16 0.64 0.21 0.27 2.36 0.78 C02
dextromethorphan AS=2.0 1.26 0.32 0.31 4.07 1.03 0.57 0.13 0.13 4.41 1.04 C03
dextromethorphan AS=2.0 1.68 0.38 0.31 5.37 1.20 0.52 0.10 0.15 3.54 0.66 C04
dextromethorphan - 15.57 15.57 48.37 0.32 0.32 2.58 2.58 10.31 0.25 0.25 C05
dextromethorphan AS=3.0 0.13 0.08 0.07 1.79 1.15 0.21 0.13 0.11 1.93 1.18 C06
dextromethorphan - 7.47 7.47 0.69 10.74 10.74 2.08 2.08 0.24 8.53 8.53 C07
dextromethorphan AS=0.5 49.56 63.17 62.68 0.79 1.01 6.45 7.53 10.39 0.62 0.72 C08
dextromethorphan - 12.79 12.79 0.87 14.70 14.70 2.41 2.41 0.29 8.23 8.23 C09
dextromethorphan AS=1.5 7.15 8.02 6.61 1.08 1.21 1.28 1.36 1.78 0.72 0.77 C10
dextromethorphan AS=1.5 5.10 1.38 1.06 4.80 1.30 0.99 0.21 0.21 4.74 1.02 C11
dextromethorphan AS=1.5 6.59 3.64 2.91 2.27 1.25 1.16 0.59 0.56 2.09 1.07 C12
dextromethorphan - 7.90 7.90 0.73 10.77 10.77 2.22 2.22 0.26 8.51 8.51 C13
dextromethorphan AS=1.5 6.07 4.27 3.38 1.79 1.26 1.01 0.68 0.74 1.36 0.92 C14
dextromethorphan AS=1.0 14.86 6.01 5.05 2.94 1.19 2.53 1.03 1.09 2.33 0.95 C15
dextromethorphan - 12.49 12.49 3.41 3.66 3.66 1.93 1.93 0.87 2.23 2.23 C16

*: no AUClast calculated due to insufficient amount of observed data points, -: not available, †: AUClast and Cmax values as well as corresponding ratios were calculated based on a small number of
observed data points (n = 3 for studies A and B, n = 2 for studies D and E) and should be interpreted with caution, AS: CYP2D6 activity score, AUC: area under the plasma
concentration-time curve, AUClast: AUC from the time of the first concentration measurement to the last time of concentration measurement, Cmax: peak plasma concentration,
CYP2D6: Cytochrome P450 2D6, obs: observed, po: oral, ind.: individual, optim.: optimized, pred: predicted.
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Table S6.7.4: Predicted and observed AUClast and Cmax values and geometric mean fold errors (continued)

AUClast [ng·h/mL] Cmax [ng/mL]

Molecule CYP2D6 Pred Obs Pred/Obs Pred Obs Pred/Obs Subject
status population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat ID

dextromethorphan AS=2.0 3.66 4.46 3.63 1.01 1.23 0.61 0.77 0.72 0.84 1.07 D01
dextromethorphan AS=1.5 7.04 22.06 27.89 0.25 0.79 1.25 3.46 5.48 0.23 0.63 D02
dextromethorphan AS=2.0 1.00 0.22 0.21 4.73 1.02 0.61 0.13 0.13 4.58 0.95 D03
dextromethorphan AS=2.0 4.27 14.10 12.89 0.33 1.09 0.72 2.31 2.11 0.34 1.09 D04
dextromethorphan - 14.27 14.27 8.66 1.65 1.65 2.40 2.40 2.44 0.98 0.98 D05
dextromethorphan AS=1.0 12.76 6.27 5.56 2.30 1.13 2.15 1.05 1.13 1.90 0.93 D06
dextromethorphan AS=2.0 3.36 5.41 4.11 0.82 1.32 0.55 0.94 0.80 0.68 1.17 D07
dextromethorphan AS=1.0 13.28 28.47 37.31 0.36 0.76 2.31 4.29 5.16 0.45 0.83 D08
dextromethorphan AS=2.0 1.20 0.43 0.39 3.09 1.12 0.54 0.19 0.21 2.56 0.90 D09
dextromethorphan AS=1.5 6.90 6.15 4.96 1.39 1.24 1.23 1.06 1.19 1.03 0.89 D10
dextromethorphan AS=1.0 13.70 11.47 9.73 1.41 1.18 2.38 1.89 2.31 1.03 0.82 D11
dextromethorphan AS=1.0 12.84 7.53 5.80 2.21 1.30 2.21 1.27 1.10 2.01 1.16 D12
dextromethorphan AS=1.0 11.15 14.17 11.92 0.94 1.19 2.07 2.44 1.83 1.13 1.33 E01
dextromethorphan AS=1.0 12.49 9.83 9.76 1.28 1.01 1.81 1.42 1.53 1.19 0.93 E02
dextromethorphan AS=1.0 12.37 8.14 6.28 1.97 1.30 2.09 1.30 1.62 1.29 0.80 E03
dextromethorphan AS=2.0 3.48 2.66 2.03 1.72 1.31 0.55 0.39 0.38 1.45 1.01 E04
dextromethorphan AS=2.0 3.16 20.19 20.65 0.15 0.98 0.49 3.04 4.02 0.12 0.76 E05
dextromethorphan AS=1.0 12.47 14.99 14.40 0.87 1.04 2.14 2.45 2.82 0.76 0.87 E06
dextromethorphan AS=2.0 3.90 5.44 4.37 0.89 1.25 0.59 0.86 0.87 0.68 0.99 E07
dextromethorphan AS=2.0 3.38 19.53 18.81 0.18 1.04 0.53 3.04 3.26 0.16 0.93 E08
dextromethorphan AS=2.0 3.80 3.46 3.25 1.17 1.06 0.61 0.54 0.77 0.79 0.70 E09
dextromethorphan AS=1.0 11.23 39.11 71.91 0.16 0.54 2.09 5.50 9.74 0.21 0.56 E10
dextromethorphan AS=1.0 11.70 8.43 7.14 1.64 1.18 1.91 1.30 1.18 1.63 1.11 E11
dextromethorphan AS=2.0 3.40 7.48 5.98 0.57 1.25 0.56 1.27 0.83 0.67 1.53 E12
dextromethorphan AS=2.0 3.48 7.37 5.61 0.62 1.31 0.57 1.26 0.84 0.68 1.49 E13
dextromethorphan AS=1.0 12.15 11.29 9.66 1.26 1.17 2.07 1.83 1.19 1.73 1.54 E14
dextromethorphan AS=2.0 4.16 16.56 14.35 0.29 1.15 0.70 2.80 3.96 0.18 0.71 E15
dextromethorphan AS=1.0 12.90 9.78 8.47 1.52 1.15 2.00 1.47 1.48 1.35 1.00 E16
dextromethorphan AS=1.0 16.05 63.43 121.81 0.13 0.52 2.91 8.47 14.57 0.20 0.58 E17
dextromethorphan AS=2.0 3.51 11.55 17.93 0.20 0.64 0.62 2.02 13.60 0.05 0.15 E18
dextromethorphan AS=2.0 2.45 11.75 7.90 0.31 1.49 0.54 2.56 1.29 0.42 1.98 E20
dextromethorphan AS=1.0 15.78 105.27 189.37 0.08 0.56 2.79 12.25 23.61 0.12 0.52 E21
dextromethorphan AS=0.0 124.38 98.69 97.59 1.27 1.01 15.80 10.94 10.67 1.48 1.03 E22
dextromethorphan AS=3.0 1.97 2.79 2.30 0.85 1.21 0.24 0.39 0.35 0.67 1.10 E23
dextromethorphan AS=2.0 3.36 11.76 9.91 0.34 1.19 0.55 1.93 1.97 0.28 0.98 E24

*: no AUClast calculated due to insufficient amount of observed data points, -: not available, †: AUClast and Cmax values as well as corresponding ratios were calculated based on a small number of
observed data points (n = 3 for studies A and B, n = 2 for studies D and E) and should be interpreted with caution, AS: CYP2D6 activity score, AUC: area under the plasma
concentration-time curve, AUClast: AUC from the time of the first concentration measurement to the last time of concentration measurement, Cmax: peak plasma concentration,
CYP2D6: Cytochrome P450 2D6, obs: observed, po: oral, ind.: individual, optim.: optimized, pred: predicted.
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Table S6.7.4: Predicted and observed AUClast and Cmax values and geometric mean fold errors (continued)

AUClast [ng·h/mL] Cmax [ng/mL]

Molecule CYP2D6 Pred Obs Pred/Obs Pred Obs Pred/Obs Subject
status population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat ID

dextromethorphan AS=2.0 4.11 1.78 1.56 2.63 1.14 0.61 0.19 0.23 2.62 0.84 E25
dextromethorphan AS=1.0 14.14 11.00 9.18 1.54 1.20 2.29 1.74 1.60 1.43 1.09 E26
dextromethorphan AS=2.0 3.38 1.44 1.20 2.82 1.20 0.55 0.22 0.20 2.73 1.12 E27
dextromethorphan AS=1.0 12.84 6.00 5.22 2.46 1.15 2.09 0.97 0.69 3.01 1.39 E28
dextromethorphan AS=1.0 14.37 10.44 8.06 1.78 1.30 2.39 1.63 1.48 1.62 1.11 E30

GMFE (dextromethorphan) population kcat 3.14 (1.01–14.70) 3.04 (1.02–20.00)
31/71 with GMFE≤ 2 33/72 with GMFE≤ 2

ind. optim. kcat 1.75 (1.01–14.70) 1.67 (1.00–8.53)
66/71 with GMFE≤ 2 65/72 with GMFE≤ 2

dextrorphan AS=0.25 3.80 3.05 3.20 1.19 0.95 0.34 0.27 0.38 0.90 0.71 A01
dextrorphan AS=1.5 15.45 15.23 23.58 0.66 0.65 3.59 2.73 6.20 0.58 0.44 A02
dextrorphan AS=2.0 13.63 13.54 12.74 1.07 1.06 3.24 3.42 3.76 0.86 0.91 A03
dextrorphan AS=1.0 14.70 15.01 23.58 0.62 0.64 2.67 3.27 6.07 0.44 0.54 A04
dextrorphan AS=1.0 15.18 15.39 20.28 0.75 0.76 2.92 3.50 8.57 0.34 0.41 A05
dextrorphan AS=2.0 14.62 14.61 19.99 0.73 0.73 3.22 3.39 5.77 0.56 0.59 A06
dextrorphan AS=1.0 14.91 15.08 18.44 0.81 0.82 2.79 2.91 5.10 0.55 0.57 A07
dextrorphan AS=2.0 13.28 13.28 18.38 0.72 0.72 2.95 2.97 5.97 0.49 0.50 A09
dextrorphan AS=1.0 13.31 13.66 17.41 0.76 0.78 2.51 2.89 2.75 0.91 1.05 A10
dextrorphan AS=1.0 11.58 11.85 18.45 0.63 0.64 2.03 2.30 3.63 0.56 0.63 A11
dextrorphan AS=3.0 14.86 12.17 24.21 0.61 0.52 4.21 4.20 4.22 1.00 1.00 A12
dextrorphan AS=1.0 13.19 13.71 24.45 0.54 0.56 2.40 2.71 5.30 0.45 0.51 A13
dextrorphan AS=2.0 14.82 14.78 25.10 0.59 0.59 3.39 3.56 7.03 0.48 0.51 A14
dextrorphan AS=3.0 16.86 16.83 13.25 1.27 1.27 4.30 4.27 3.47 1.24 1.23 A15
dextrorphan AS=1.0 12.84 13.11 14.73 0.87 0.89 2.34 2.83 4.32 0.54 0.65 A16
dextrorphan AS=2.0 13.95 13.88 9.57 1.46 1.45 3.37 3.56 5.38 0.63 0.66 C01
dextrorphan AS=2.0 15.21 15.12 10.55 1.44 1.43 3.81 4.00 4.20 0.91 0.95 C02
dextrorphan AS=2.0 15.28 15.08 11.83 1.29 1.28 3.80 4.00 3.01 1.26 1.33 C03
dextrorphan AS=2.0 12.47 12.42 8.22 1.52 1.51 2.93 3.11 3.09 0.95 1.01 C04
dextrorphan - 13.91 13.91 18.28 0.76 0.76 2.59 2.59 4.07 0.64 0.64 C05
dextrorphan AS=3.0 13.53 13.49 10.29 1.31 1.31 3.61 3.61 4.63 0.78 0.78 C06
dextrorphan - 12.14 12.41 14.67 0.83 0.83 2.34 2.34 3.89 0.60 0.60 C07

*: no AUClast calculated due to insufficient amount of observed data points, -: not available, †: AUClast and Cmax values as well as corresponding ratios were calculated based on a small number of
observed data points (n = 3 for studies A and B, n = 2 for studies D and E) and should be interpreted with caution, AS: CYP2D6 activity score, AUC: area under the plasma
concentration-time curve, AUClast: AUC from the time of the first concentration measurement to the last time of concentration measurement, Cmax: peak plasma concentration,
CYP2D6: Cytochrome P450 2D6, obs: observed, po: oral, ind.: individual, optim.: optimized, pred: predicted.
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Table S6.7.4: Predicted and observed AUClast and Cmax values and geometric mean fold errors (continued)

AUClast [ng·h/mL] Cmax [ng/mL]

Molecule CYP2D6 Pred Obs Pred/Obs Pred Obs Pred/Obs Subject
status population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat ID

dextrorphan AS=0.5 10.52 9.41 12.19 0.86 0.77 1.48 1.20 4.14 0.36 0.29 C08
dextrorphan - 13.49 13.49 9.56 1.41 1.41 2.58 2.58 3.68 0.70 0.70 C09
dextrorphan AS=1.5 14.54 14.50 21.27 0.68 0.68 3.36 3.15 7.57 0.44 0.42 C10
dextrorphan AS=1.5 11.63 11.67 16.35 0.71 0.71 2.55 2.93 4.25 0.60 0.69 C11
dextrorphan AS=1.5 14.11 14.13 7.32 1.93 1.93 3.30 3.59 1.28 2.58 2.80 C12
dextrorphan - 12.88 12.88 10.47 1.23 1.23 2.50 2.50 3.55 0.70 0.70 C13
dextrorphan AS=1.5 11.98 12.03 16.33 0.73 0.74 2.65 2.76 4.38 0.60 0.63 C14
dextrorphan AS=1.0 14.89 15.25 24.67 0.60 0.62 2.85 3.44 8.85 0.32 0.39 C15
dextrorphan - 11.09 11.09 12.72 0.87 0.87 2.03 2.03 4.12 0.49 0.49 C16
dextrorphan AS=2.0 15.91 15.93 23.63 0.67 0.67 4.28 4.15 5.46 0.78 0.76 D01
dextrorphan AS=1.5 13.31 12.96 50.92 0.26 0.25 3.17 2.29 11.43 0.28 0.20 D02
dextrorphan AS=2.0 13.33 13.40 8.58 1.55 1.56 3.35 3.17 4.20 0.80 0.76 D03
dextrorphan AS=2.0 15.79 15.44 18.62 0.85 0.83 3.77 2.78 4.74 0.80 0.59 D04
dextrorphan - 14.40 14.40 13.21 1.09 1.09 2.89 2.89 6.20 0.47 0.47 D05
dextrorphan AS=1.0 13.87 14.10 12.29 1.13 1.15 2.81 3.19 4.38 0.64 0.73 D06
dextrorphan AS=2.0 14.10 14.11 10.13 1.39 1.39 3.67 3.36 3.86 0.95 0.87 D07
dextrorphan AS=1.0 14.11 13.25 13.82 1.02 0.96 2.86 2.19 3.73 0.77 0.59 D08
dextrorphan AS=2.0 13.91 12.80 3.47 4.00 3.68 3.55 3.72 1.39 2.56 2.68 D09
dextrorphan AS=1.5 14.03 14.04 28.51 0.49 0.49 3.21 3.19 7.54 0.43 0.42 D10
dextrorphan AS=1.0 14.49 14.59 21.95 0.66 0.66 2.91 2.80 5.30 0.55 0.53 D11
dextrorphan AS=1.0 13.43 13.63 18.50 0.73 0.74 2.71 2.94 4.74 0.57 0.62 D12
dextrorphan AS=1.0 12.86 12.76 17.56 0.73 0.73 2.85 2.57 3.91 0.73 0.66 E01
dextrorphan AS=1.0 11.89 12.08 22.24 0.53 0.54 2.16 2.15 5.02 0.43 0.43 E02
dextrorphan AS=1.0 9.00 8.60 8.75 1.03 0.98 2.70 2.63 3.68 0.73 0.71 E03
dextrorphan AS=2.0 14.42 14.40 12.37 1.17 1.16 3.69 3.78 3.71 0.99 1.02 E04
dextrorphan AS=2.0 12.22 11.43 10.42 1.17 1.10 2.99 1.93 3.32 0.90 0.58 E05
dextrorphan AS=1.0 13.61 13.49 25.24 0.54 0.53 2.77 2.53 7.80 0.36 0.32 E06
dextrorphan AS=2.0 15.58 15.56 27.20 0.57 0.57 3.87 3.66 7.16 0.54 0.51 E07
dextrorphan AS=2.0 13.86 13.23 19.02 0.73 0.70 3.51 2.33 5.12 0.69 0.45 E08
dextrorphan AS=2.0 16.43 16.42 23.77 0.69 0.69 4.26 4.29 7.10 0.60 0.60 E09
dextrorphan AS=1.0 12.90 11.48 22.31 0.58 0.51 2.86 1.79 3.40 0.84 0.53 E10
dextrorphan AS=1.0 12.05 12.20 19.52 0.62 0.63 2.35 2.39 4.17 0.56 0.57 E11
dextrorphan AS=2.0 14.21 14.20 9.07 1.57 1.56 3.70 3.12 2.16 1.71 1.44 E12
dextrorphan AS=2.0 15.01 15.01 18.21 0.82 0.82 3.96 3.36 3.50 1.13 0.96 E13
dextrorphan AS=1.0 13.05 13.09 13.44 0.97 0.97 2.64 2.51 3.24 0.81 0.77 E14

*: no AUClast calculated due to insufficient amount of observed data points, -: not available, †: AUClast and Cmax values as well as corresponding ratios were calculated based on a small number of
observed data points (n = 3 for studies A and B, n = 2 for studies D and E) and should be interpreted with caution, AS: CYP2D6 activity score, AUC: area under the plasma
concentration-time curve, AUClast: AUC from the time of the first concentration measurement to the last time of concentration measurement, Cmax: peak plasma concentration,
CYP2D6: Cytochrome P450 2D6, obs: observed, po: oral, ind.: individual, optim.: optimized, pred: predicted.

56

2
7

6
a

p
p

e
n

d
i
x

b:
s

u
p

p
l

e
m

e
n

t
a

r
y

m
a

t
e

r
i
a

l
s



Table S6.7.4: Predicted and observed AUClast and Cmax values and geometric mean fold errors (continued)

AUClast [ng·h/mL] Cmax [ng/mL]

Molecule CYP2D6 Pred Obs Pred/Obs Pred Obs Pred/Obs Subject
status population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat ID

dextrorphan AS=2.0 17.65 17.41 19.88 0.89 0.88 4.75 3.33 6.59 0.72 0.51 E15
dextrorphan AS=1.0 13.17 13.35 15.34 0.86 0.87 2.47 2.47 4.27 0.58 0.58 E16
dextrorphan AS=1.0 18.06 15.15 15.19 1.19 1.00 3.87 2.14 2.54 1.52 0.84 E17
dextrorphan AS=2.0 13.33 13.67 10.96 1.22 1.25 4.21 3.15 4.68 0.90 0.67 E18
dextrorphan AS=2.0 7.91 9.23 40.37 0.20 0.23 3.51 2.48 9.09 0.39 0.27 E20
dextrorphan AS=1.0 18.07 10.95 3.25 5.56 3.37 3.79 1.24 0.61 6.19 2.03 E21
dextrorphan AS=3.0 16.36 16.40 18.37 0.89 0.89 4.32 4.24 5.02 0.86 0.84 E23
dextrorphan AS=2.0 13.86 13.71 20.35 0.68 0.67 3.59 2.66 5.74 0.63 0.46 E24
dextrorphan AS=2.0 15.06 15.15 19.11 0.79 0.79 3.76 3.51 3.83 0.98 0.91 E25
dextrorphan AS=1.0 13.99 14.16 12.58 1.11 1.13 2.59 2.58 2.75 0.94 0.94 E26
dextrorphan AS=2.0 14.10 14.03 9.45 1.49 1.48 3.65 3.81 2.67 1.37 1.43 E27
dextrorphan AS=1.0 13.59 13.87 13.29 1.02 1.04 2.67 3.10 2.57 1.04 1.20 E28
dextrorphan AS=1.0 15.52 15.70 15.96 0.97 0.98 3.11 3.21 4.68 0.66 0.69 E30

GMFE (dextrorphan) population kcat 1.56 (1.02–5.56) 1.74 (1.02–6.19)
65/71 with GMFE≤ 2 52/70 with GMFE≤ 2

ind. optim. kcat 1.52 (1.00–4.35) 1.77 (1.00–5.00)
65/71 with GMFE≤ 2 53/70 with GMFE≤ 2

dextrorphan-total† AS=0.25 74.20 58.21 161.67 0.46 0.36 29.23 23.13 150.57 0.19 0.15 A01
dextrorphan-total† AS=1.5 454.99 475.88 601.15 0.76 0.79 279.59 240.73 357.76 0.78 0.67 A02
dextrorphan-total† AS=2.0 183.04 169.66 244.59 0.75 0.69 254.27 131.90 165.50 1.54 0.80 A03
dextrorphan-total† AS=1.0 424.62 402.80 412.90 1.03 0.98 209.12 227.79 246.57 0.85 0.92 A04
dextrorphan-total† AS=1.0 454.50 424.97 394.40 1.15 1.08 231.55 248.29 236.53 0.98 1.05 A05
dextrorphan-total† AS=2.0 392.52 374.71 408.72 0.96 0.92 249.29 213.58 243.48 1.02 0.88 A06
dextrorphan-total† AS=1.0 456.59 450.25 165.81 2.75 2.72 226.94 240.80 251.20 0.90 0.96 A07
dextrorphan-total† AS=2.0 364.60 362.66 275.97 1.32 1.31 235.26 205.83 203.07 1.16 1.01 A09
dextrorphan-total† AS=1.0 402.03 385.18 409.90 0.98 0.94 204.39 218.86 248.89 0.82 0.88 A10
dextrorphan-total† AS=1.0 355.67 351.09 273.45 1.30 1.28 173.18 188.07 150.82 1.15 1.25 A11
dextrorphan-total† AS=3.0 391.50 385.54 384.82 1.02 1.00 322.96 241.70 298.56 1.08 0.81 A12
dextrorphan-total† AS=1.0 394.78 382.08 393.84 1.00 0.97 199.11 213.38 245.03 0.81 0.87 A13
dextrorphan-total† AS=2.0 396.92 376.71 373.92 1.06 1.01 262.34 220.25 259.95 1.01 0.85 A14

*: no AUClast calculated due to insufficient amount of observed data points, -: not available, †: AUClast and Cmax values as well as corresponding ratios were calculated based on a small number of
observed data points (n = 3 for studies A and B, n = 2 for studies D and E) and should be interpreted with caution, AS: CYP2D6 activity score, AUC: area under the plasma
concentration-time curve, AUClast: AUC from the time of the first concentration measurement to the last time of concentration measurement, Cmax: peak plasma concentration,
CYP2D6: Cytochrome P450 2D6, obs: observed, po: oral, ind.: individual, optim.: optimized, pred: predicted.
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Table S6.7.4: Predicted and observed AUClast and Cmax values and geometric mean fold errors (continued)

AUClast [ng·h/mL] Cmax [ng/mL]

Molecule CYP2D6 Pred Obs Pred/Obs Pred Obs Pred/Obs Subject
status population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat ID

dextrorphan-total† AS=3.0 412.59 408.01 282.20 1.46 1.45 314.56 244.64 189.69 1.66 1.29 A15
dextrorphan-total† AS=1.0 217.90 196.43 197.95 1.10 0.99 195.69 150.81 135.38 1.45 1.11 A16
dextrorphan-total† AS=2.0 401.27 182.30 227.89 1.76 0.80 262.48 220.11 249.92 1.05 0.88 C01
dextrorphan-total† AS=2.0 424.15 400.81 658.17 0.64 0.61 288.64 238.43 332.02 0.87 0.72 C02
dextrorphan-total† AS=2.0 390.84 363.31 409.76 0.95 0.89 289.88 227.44 429.82 0.67 0.53 C03
dextrorphan-total† AS=2.0 373.50 351.28 249.66 1.50 1.41 236.62 200.55 207.19 1.14 0.97 C04
dextrorphan-total† - 407.26 407.26 211.28 1.93 1.93 195.02 195.02 94.97 2.05 2.05 C05
dextrorphan-total† AS=3.0 381.95 376.42 374.65 1.02 1.00 288.07 225.95 177.33 1.62 1.27 C06
dextrorphan-total† - 401.92 401.92 369.49 1.09 1.09 196.93 196.93 207.71 0.95 0.95 C07
dextrorphan-total† AS=0.5 298.66 257.64 361.64 0.83 0.71 123.96 100.89 161.12 0.77 0.63 C08
dextrorphan-total† - 419.51 419.51 495.73 0.85 0.85 203.83 203.83 253.26 0.80 0.80 C09
dextrorphan-total† AS=1.5 417.32 421.64 736.42 0.57 0.57 255.36 235.39 380.92 0.67 0.62 C10
dextrorphan-total† AS=1.5 362.15 331.47 429.22 0.84 0.77 210.39 193.95 199.73 1.05 0.97 C11
dextrorphan-total† AS=1.5 432.92 408.08 486.83 0.89 0.84 263.30 243.68 234.47 1.12 1.04 C12
dextrorphan-total† - 427.02 427.02 444.12 0.96 0.96 208.64 208.64 237.05 0.88 0.88 C13
dextrorphan-total† AS=1.5 384.85 374.74 459.39 0.84 0.82 221.79 210.97 246.57 0.90 0.86 C14
dextrorphan-total† AS=1.0 453.27 434.50 501.42 0.90 0.87 220.11 241.79 247.34 0.89 0.98 C15
dextrorphan-total† - 373.44 373.44 565.76 0.66 0.66 175.74 175.74 486.45 0.36 0.36 C16
dextrorphan-total† AS=2.0 216.72 222.34 1118.88 0.19 0.20 322.59 178.02 715.52 0.45 0.25 D01
dextrorphan-total† AS=1.5 215.92 235.93 643.82 0.34 0.37 243.57 166.09 409.23 0.60 0.41 D02
dextrorphan-total† AS=2.0 206.22 192.90 916.72 0.22 0.21 253.66 145.40 604.84 0.42 0.24 D03
dextrorphan-total† AS=2.0 210.91 239.27 843.28 0.25 0.28 263.27 175.27 514.76 0.51 0.34 D04
dextrorphan-total† - 266.16 266.16 733.43 0.36 0.36 236.55 236.55 442.69 0.53 0.53 D05
dextrorphan-total† AS=1.0 * * * * * 232.19 182.19 584.25 0.40 0.31 D06
dextrorphan-total† AS=2.0 206.70 220.21 1175.42 0.18 0.19 294.37 174.40 725.81 0.41 0.24 D07
dextrorphan-total† AS=1.0 240.53 242.27 621.04 0.39 0.39 225.72 166.26 373.20 0.60 0.45 D08
dextrorphan-total† AS=2.0 209.00 197.10 671.12 0.31 0.29 284.35 153.37 422.10 0.67 0.36 D09
dextrorphan-total† AS=1.5 215.12 211.81 1132.72 0.19 0.19 247.51 164.62 656.32 0.38 0.25 D10
dextrorphan-total† AS=1.0 250.64 245.81 997.96 0.25 0.25 230.56 186.75 615.14 0.37 0.30 D11
dextrorphan-total† AS=1.0 222.69 208.61 1069.74 0.21 0.20 210.41 161.69 748.98 0.28 0.22 D12
dextrorphan-total† AS=1.0 226.73 233.80 319.11 0.71 0.73 231.23 178.23 183.51 1.26 0.97 E01
dextrorphan-total† AS=1.0 258.72 257.99 355.20 0.73 0.73 199.71 181.42 241.42 0.83 0.75 E02
dextrorphan-total† AS=1.0 237.66 225.35 355.60 0.67 0.63 221.17 174.50 290.84 0.76 0.60 E03
dextrorphan-total† AS=2.0 230.12 224.43 736.33 0.31 0.30 299.18 173.57 463.28 0.65 0.37 E04

*: no AUClast calculated due to insufficient amount of observed data points, -: not available, †: AUClast and Cmax values as well as corresponding ratios were calculated based on a small number of
observed data points (n = 3 for studies A and B, n = 2 for studies D and E) and should be interpreted with caution, AS: CYP2D6 activity score, AUC: area under the plasma
concentration-time curve, AUClast: AUC from the time of the first concentration measurement to the last time of concentration measurement, Cmax: peak plasma concentration,
CYP2D6: Cytochrome P450 2D6, obs: observed, po: oral, ind.: individual, optim.: optimized, pred: predicted.
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Table S6.7.4: Predicted and observed AUClast and Cmax values and geometric mean fold errors (continued)

AUClast [ng·h/mL] Cmax [ng/mL]

Molecule CYP2D6 Pred Obs Pred/Obs Pred Obs Pred/Obs Subject
status population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat ID

dextrorphan-total† AS=2.0 183.00 213.64 657.99 0.28 0.32 241.17 149.52 411.81 0.59 0.36 E05
dextrorphan-total† AS=1.0 239.50 243.56 698.13 0.34 0.35 225.90 181.06 401.51 0.56 0.45 E06
dextrorphan-total† AS=2.0 226.27 235.11 889.13 0.25 0.26 297.46 180.96 576.53 0.52 0.31 E07
dextrorphan-total† AS=2.0 213.98 256.04 749.94 0.29 0.34 284.10 181.68 442.69 0.64 0.41 E08
dextrorphan-total† AS=2.0 267.65 265.21 1026.95 0.26 0.26 346.78 205.39 599.70 0.58 0.34 E09
dextrorphan-total† AS=1.0 227.56 222.95 858.04 0.27 0.26 232.09 146.24 491.60 0.47 0.30 E10
dextrorphan-total† AS=1.0 223.13 216.46 1138.83 0.20 0.19 200.12 163.28 746.40 0.27 0.22 E11
dextrorphan-total† AS=2.0 198.39 221.73 548.05 0.36 0.40 287.50 174.66 373.20 0.77 0.47 E12
dextrorphan-total† AS=2.0 220.02 244.75 942.32 0.23 0.26 312.94 192.70 664.04 0.47 0.29 E13
dextrorphan-total† AS=1.0 234.15 232.37 776.34 0.30 0.30 218.61 175.89 545.65 0.40 0.32 E14
dextrorphan-total† AS=2.0 228.09 282.61 1038.21 0.22 0.27 344.89 215.69 661.47 0.52 0.33 E15
dextrorphan-total† AS=1.0 278.20 275.00 962.07 0.29 0.29 225.93 198.00 630.58 0.36 0.31 E16
dextrorphan-total† AS=1.0 273.00 252.19 496.73 0.55 0.51 278.85 160.19 306.28 0.91 0.52 E17
dextrorphan-total† AS=2.0 211.63 249.18 405.37 0.52 0.61 304.65 191.00 452.99 0.67 0.42 E18
dextrorphan-total† AS=2.0 199.98 243.32 1614.43 0.12 0.15 280.19 179.57 1091.29 0.26 0.16 E20
dextrorphan-total† AS=1.0 299.53 178.71 161.92 1.85 1.10 288.46 102.34 166.78 1.73 0.61 E21
dextrorphan-total† AS=3.0 257.95 263.62 677.83 0.38 0.39 352.78 201.86 710.37 0.50 0.28 E23
dextrorphan-total† AS=2.0 194.69 231.92 994.10 0.20 0.23 280.43 177.47 674.34 0.42 0.26 E24
dextrorphan-total† AS=2.0 277.88 264.65 1646.27 0.17 0.16 313.71 195.66 1263.74 0.25 0.15 E25
dextrorphan-total† AS=1.0 260.20 256.00 1015.63 0.26 0.25 216.48 187.46 666.61 0.32 0.28 E26
dextrorphan-total† AS=2.0 198.01 187.34 1035.70 0.19 0.18 284.61 147.60 664.04 0.43 0.22 E27
dextrorphan-total† AS=1.0 266.46 246.65 787.91 0.34 0.31 229.73 187.15 540.50 0.43 0.35 E28
dextrorphan-total† AS=1.0 258.77 249.21 930.94 0.28 0.27 240.65 191.07 568.81 0.42 0.34 E30

GMFE (dextrorphan-total†) population kcat 2.63 (1.00–8.33) 1.84 (1.01–5.26)
35/69 with GMFE≤ 2 48/70 with GMFE≤ 2

ind. optim. kcat 2.58 (1.00–6.67) 2.41 (1.01–6.67)
35/69 with GMFE≤ 2 34/70 with GMFE≤ 2

Overall GMFE population kcat 2.45 (1.00–14.70) 2.21 (1.00–20.00)
131/210 with GMFE≤ 2 133/212 with GMFE≤ 2

*: no AUClast calculated due to insufficient amount of observed data points, -: not available, †: AUClast and Cmax values as well as corresponding ratios were calculated based on a small number of
observed data points (n = 3 for studies A and B, n = 2 for studies D and E) and should be interpreted with caution, AS: CYP2D6 activity score, AUC: area under the plasma
concentration-time curve, AUClast: AUC from the time of the first concentration measurement to the last time of concentration measurement, Cmax: peak plasma concentration,
CYP2D6: Cytochrome P450 2D6, obs: observed, po: oral, ind.: individual, optim.: optimized, pred: predicted.
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Table S6.7.4: Predicted and observed AUClast and Cmax values and geometric mean fold errors (continued)

AUClast [ng·h/mL] Cmax [ng/mL]

Molecule CYP2D6 Pred Obs Pred/Obs Pred Obs Pred/Obs Subject
status population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat ID

ind. optim. kcat 1.94 (1.00–14.70) 1.94 (1.00–8.53)
166/210 with GMFE≤ 2 152/212 with GMFE≤ 2

*: no AUClast calculated due to insufficient amount of observed data points, -: not available, †: AUClast and Cmax values as well as corresponding ratios were calculated based on a small number of
observed data points (n = 3 for studies A and B, n = 2 for studies D and E) and should be interpreted with caution, AS: CYP2D6 activity score, AUC: area under the plasma
concentration-time curve, AUClast: AUC from the time of the first concentration measurement to the last time of concentration measurement, Cmax: peak plasma concentration,
CYP2D6: Cytochrome P450 2D6, obs: observed, po: oral, ind.: individual, optim.: optimized, pred: predicted.
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S6.8 GMFE of Predicted AUClast and Cmax Values Grouped by Study and Activity Score

Table S6.8.5: Predicted and observed AUClast and Cmax values and geometric mean fold errors grouped by study and activity score

CYP2D6 AUClast [ng·h/mL] Cmax [ng/mL]

Study Molecule Activity n Pred Obs Pred/Obs Pred Obs Pred/Obs

Score population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat

A dextromethorphan

0 1 156.79 146.08 162.42 0.97 0.9 15.85 14.08 16.37 0.97 0.86
0.25 1 131.51 138.87 146.34 0.90 0.95 14.33 11.92 12.59 0.83 0.88
1 7 13.15 (0.99) 6.32 (1.37) 5.68 (1.50) 2.44 (0.59) 1.12 (0.08) 1.02 (0.32) 2.07 (0.23) 0.95 (0.23) 2.13 (0.41) 0.96 (0.18)
1.5 1 7.84 14.67 17.31 0.45 0.85 4.53 1.30 2.07 0.29 0.46
2 3 1.34 (0.40) 0.79 (0.70) 0.64 (0.53) 2.74 (1.16) 1.22 (0.06) 0.25 (0.19) 0.55 (0.03) 0.24 (0.16) 3.36 (2.45) 1.01 (0.15)
3 2 0.54 (0.24) 0.40 (0.22) 0.39 (0.15) 1.37 (0.11) 1 (0.17) 0.17 (0.01) 0.26 (0.03) 0.17 (0.03) 1.55 (0.05) 1.02 (0.12)

GMFE dextromethorphan, study A 2.16 1.13 2.32 1.17

A dextrorphan

0.25 1 3.80 3.05 3.20 1.19 0.95 0.38 0.34 0.27 0.90 0.71
1 7 13.67 (1.31) 13.97 (1.27) 19.62 (3.44) 0.71 (0.12) 0.73 (0.12) 5.11 (1.88) 2.52 (0.3) 2.92 (0.39) 0.54 (0.18) 0.62 (0.20)
1.5 1 15.45 15.23 23.58 0.66 0.65 6.20 3.59 2.73 0.58 0.44
2 4 14.09 (0.75) 14.05 (0.75) 19.05 (5.09) 0.78 (0.2) 0.78 (0.2) 5.63 (1.37) 3.2 (0.18) 3.33 (0.26) 0.6 (0.18) 0.63 (0.19)
3 2 14.57 (3.25) 14.5 (3.29) 18.26 (7.09) 0.9 (0.53) 0.9 (0.53) 3.85 (0.53) 4.25 (0.06) 4.24 (0.05) 1.12 (0.17) 1.11 (0.17)

GMFE dextrorphan, study A 1.33 1.31 1.64 1.57

A dextrorphan-total†

0.25 1 74.20 58.21 161.67 0.46 0.36 150.57 29.23 23.13 0.19 0.15
1 7 386.58 (82.34) 370.4 (83.06) 321.18 (106.87) 1.33 (0.64) 1.28 (0.64) 216.35 (50.44) 205.71 (19.72) 212.57 (33.57) 0.99 (0.23) 1.01 (0.14)
1.5 1 454.99 475.88 601.15 0.76 0.79 357.76 279.59 240.73 0.78 0.67
2 4 334.27 (101.83) 320.94 (101.04) 325.8 (78.04) 1.02 (0.24) 0.98 (0.26) 218 (42.38) 250.29 (11.37) 192.89 (41.08) 1.18 (0.25) 0.88 (0.09)
3 2 402.05 (14.91) 396.78 (15.89) 333.51 (72.56) 1.24 (0.31) 1.22 (0.31) 244.12 (76.98) 318.76 (5.94) 243.17 (2.08) 1.37 (0.41) 1.05 (0.34)

GMFE dextrorphan-total, study A 1.29 1.30 1.40 1.44

Overall GMFE, study A 1.59 1.24 1.80 1.31

C dextromethorphan

0.5 1 49.56 63.17 62.68 0.79 1.01 10.39 6.45 7.53 0.62 0.72
1 1 14.86 6.01 5.05 2.94 1.19 1.09 2.53 1.03 2.33 0.95
1.5 4 6.23 (0.87) 4.33 (2.75) 3.49 (2.31) 2.49 (1.62) 1.26 (0.04) 0.82 (0.67) 1.11 (0.14) 0.71 (0.48) 2.23 (1.76) 0.94 (0.13)
2 4 1.68 (0.30) 0.50 (0.19) 0.45 (0.16) 3.99 (1.00) 1.11 (0.08) 0.2 (0.07) 0.58 (0.05) 0.15 (0.05) 3.19 (0.97) 0.78 (0.18)
3 1 0.13 0.08 0.07 1.79 1.15 0.11 0.21 0.13 1.93 1.18

GMFE dextromethorphan, study C 2.90 1.17 2.50 1.18

C dextrorphan

0.5 1 10.52 9.41 12.19 0.86 0.77 4.14 1.48 1.20 0.36 0.29
1 1 14.89 15.25 24.67 0.6 0.62 8.85 2.85 3.44 0.32 0.39
1.5 4 13.07 (1.47) 13.08 (1.44) 15.32 (5.82) 1.01 (0.61) 1.02 (0.61) 4.37 (2.57) 2.97 (0.43) 3.11 (0.36) 1.06 (1.02) 1.14 (1.12)
2 4 14.23 (1.32) 14.13 (1.27) 10.04 (1.53) 1.43 (0.1) 1.42 (0.1) 3.92 (1.11) 3.48 (0.42) 3.66 (0.43) 0.94 (0.26) 0.99 (0.27)
3 1 13.53 13.49 10.29 1.31 1.31 4.63 3.61 3.61 0.78 0.78

All values are given as mean (SD). † : AUClast and Cmax values as well as corresponding ratios were calculated based on a small number of observed data points (n = 3 for studies A and B, n = 3 for studies D and E) and should be interpreted with caution,
AUC: area under the plasma concentration-time curve, AUClast : AUC from the time of the first concentration measurement to the last time of concentration measurement, Cmax : peak plasma concentration, CYP2D6: Cytochrome P450 2D6
obs: observed, po: oral, ind.: individual, optim.: optimized, pred: predicted.
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Table S6.8.5: Predicted and observed AUClast and Cmax values and geometric mean fold errors (continued)

CYP2D6 AUClast [ng·h/mL] Cmax [ng/mL]

Study Molecule Activity n Pred Obs Pred/Obs Pred Obs Pred/Obs

Score population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat

GMFE dextrorphan, study C 1.26 1.27 1.43 1.45

C dextrorphan-total†

0.5 1 298.66 257.64 361.64 0.83 0.71 161.12 123.96 100.89 0.77 0.63
1 1 453.27 434.5 501.42 0.9 0.87 247.34 220.11 241.79 0.89 0.98
1.5 4 399.31 (31.86) 383.98 (40.17) 527.97 (140.95) 0.78 (0.15) 0.75 (0.12) 265.42 (79.52) 237.71 (25.6) 221 (22.76) 0.94 (0.20) 0.87 (0.18)
2 4 345.18 (104.11) 324.43 (97.07) 386.37 (198.52) 0.98 (0.36) 0.93 (0.34) 304.74 (98.17) 269.41 (25.24) 221.63 (15.94) 0.93 (0.21) 0.77 (0.19)
3 1 381.95 376.42 374.65 1.02 1.00 177.33 288.07 225.95 1.62 1.27

GMFE dextrorphan-total, study C 1.14 1.20 1.15 1.24

Overall GMFE, study C 1.77 1.21 1.69 1.29

D dextromethorphan
1 4 13.15 (0.44) 13.44 (10.27) 14.60 (15.26) 1.57 (0.90) 1.09 (0.23) 2.42 (1.91) 2.26 (0.10) 2.12 (1.49) 1.35 (0.74) 0.93 (0.16)
1.5 2 6.97 (0.10) 14.11 (11.25) 16.43 (16.21) 0.82 (0.80) 1.02 (0.32) 3.34 (3.03) 1.24 (0.02) 2.26 (1.7) 0.63 (0.57) 0.76 (0.18)
2 5 2.70 (1.50) 4.92 (5.63) 4.25 (5.15) 1.99 (1.86) 1.15 (0.12) 0.8 (0.79) 0.6 (0.07) 0.87 (0.88) 1.8 (1.78) 1.04 (0.11)

GMFE dextromethorphan, study D 1.70 1.11 1.60 1.10

D dextrorphan
1 4 13.98 (0.44) 13.89 (0.58) 16.64 (4.42) 0.88 (0.23) 0.88 (0.22) 4.54 (0.66) 2.82 (0.08) 2.78 (0.43) 0.63 (0.10) 0.62 (0.09)
1.5 2 13.67 (0.50) 13.50 (0.76) 39.71 (15.84) 0.38 (0.16) 0.37 (0.17) 9.48 (2.75) 3.19 (0.03) 2.74 (0.64) 0.35 (0.10) 0.31 (0.16)
2 5 14.40 (1.39) 14.34 (1.33) 12.89 (8.11) 1.63 (1.21) 1.63 (1.21) 3.93 (1.54) 3.72 (0.35) 3.43 (0.52) 1.18 (0.77) 1.13 (0.87)

GMFE dextrorphan, study D 1.64 1.64 1.63 1.69

D dextrorphan-total†
1 3 237.95 (14.15) 232.23 (20.53) 896.25 (241.03) 0.28 (0.09) 0.28 (0.10) 580.39 (155.53) 224.72 (9.93) 174.22 (12.12) 0.41 (0.14) 0.32 (0.09)
1.5 2 215.52 (0.56) 223.87 (17.05) 888.27 (345.7) 0.26 (0.1) 0.28 (0.13) 532.78 (174.72) 245.54 (2.79) 165.35 (1.04) 0.49 (0.15) 0.33 (0.11)
2 5 209.91 (4.25) 214.36 (19.22) 945.08 (205.84) 0.23 (0.05) 0.23 (0.05) 596.61 (130.43) 283.65 (27.14) 165.29 (14.85) 0.49 (0.11) 0.29 (0.06)

GMFE dextrorphan-total, study D 3.99 3.93 2.17 3.28

Overall GMFE, study D 2.39 2.17 1.80 2.02

E dextromethorphan

0 1 124.38 98.69 97.59 1.27 1.01 10.67 15.8 10.94 1.48 1.03
1 13 13.05 (1.58) 23.99 (29.30) 36.4 (57.39) 1.2 (0.74) 1.02 (0.29) 4.87 (6.97) 2.2 (0.32) 3.29 (3.43) 1.21 (0.78) 0.99 (0.32)
2 13 3.46 (0.48) 9.31 (6.53) 8.73 (6.96) 0.88 (0.84) 1.16 (0.20) 2.48 (3.61) 0.58 (0.05) 1.55 (1.08) 0.83 (0.9) 1.01 (0.45)
3 1 1.97 2.79 2.30 0.85 1.21 0.35 0.24 0.39 0.67 1.10

GMFE dextromethorphan, study E 1.18 1.09 1.23 1.02

E dextrorphan
1 13 13.67 (2.44) 12.84 (1.86) 15.74 (5.92) 1.21 (1.33) 1.02 (0.74) 3.74 (1.67) 2.83 (0.5) 2.41 (0.51) 1.18 (1.53) 0.79 (0.44)
2 13 14.13 (2.32) 14.11 (2.09) 18.48 (8.75) 0.92 (0.38) 0.92 (0.38) 4.97 (2.05) 3.8 (0.43) 3.19 (0.67) 0.89 (0.36) 0.76 (0.37)

All values are given as mean (SD). † : AUClast and Cmax values as well as corresponding ratios were calculated based on a small number of observed data points (n = 3 for studies A and B, n = 3 for studies D and E) and should be interpreted with caution,
AUC: area under the plasma concentration-time curve, AUClast : AUC from the time of the first concentration measurement to the last time of concentration measurement, Cmax : peak plasma concentration, CYP2D6: Cytochrome P450 2D6
obs: observed, po: oral, ind.: individual, optim.: optimized, pred: predicted.
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Table S6.8.5: Predicted and observed AUClast and Cmax values and geometric mean fold errors (continued)

CYP2D6 AUClast [ng·h/mL] Cmax [ng/mL]

Study Molecule Activity n Pred Obs Pred/Obs Pred Obs Pred/Obs

Score population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat population kcat ind. optim. kcat

3 1 16.36 16.40 18.37 0.89 0.89 5.02 4.32 4.24 0.86 0.84

GMFE dextrorphan, study E 1.15 1.06 1.56 1.29

E dextrorphan-total†
1 13 252.59 (23.27) 237.71 (24.05) 681.27 (311.13) 0.52 (0.44) 0.46 (0.27) 444.65 (192.2) 231.46 (26.03) 171.3 (24.94) 0.67 (0.43) 0.46 (0.22)
2 13 219.21 (27.82) 239.99 (25.11) 944.98 (363.07) 0.26 (0.10) 0.29 (0.12) 641.47 (262.92) 298.28 (28.04) 181.96 (19.27) 0.52 (0.16) 0.32 (0.1)
3 1 257.95 263.62 677.83 0.38 0.39 710.37 352.78 201.86 0.50 0.28

GMFE dextrorphan-total, study E 2.86 2.81 1.72 2.69

Overall GMFE, study E 1.72 1.65 1.36 1.66

All values are given as mean (SD). † : AUClast and Cmax values as well as corresponding ratios were calculated based on a small number of observed data points (n = 3 for studies A and B, n = 3 for studies D and E) and should be interpreted with caution,
AUC: area under the plasma concentration-time curve, AUClast : AUC from the time of the first concentration measurement to the last time of concentration measurement, Cmax : peak plasma concentration, CYP2D6: Cytochrome P450 2D6
obs: observed, po: oral, ind.: individual, optim.: optimized, pred: predicted.
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S7 Summary
In this supplementary file, the development process of a whole-body PBPK model of dextromethor-
phan and its metabolites dextrorphan and dextrorphan O-glucuronide is documented. The model
has been thoroughly evaluated to predict the pharmacokinetics of the modeled analytes including a
wide range of CYP2D6 DGI scenarios. Moreover, the model was applied to predict individual plasma
concentration-time profiles using the model kcat values obtained during the DGI model building pro-
cess. These were then compared to predictions using individual optimized kcat values. For a tabular
summary of model geometric mean fold error (GMFE) and mean relative deviation (MRD) values,
refer to Table S7.0.1.

Table S7.0.1: Summary of quantitative performance metrics for the different model subsets

AUClast Cmax MRD (range) MRD≤ 2

GMFE (range) GMFE≤ 2 GMFE (range) GMFE≤ 2

Population studies
PBPK base model 1.57 (1.01–3.45) 18/23 1.61 (1.01–2.97) 17/22 2.21 (1.35–3.56) 12/23
DGI model 1.50 (1.05–2.33) 16/18 1.28 (1.01–2.22) 17/18 2.13 (1.10–4.26) 11/18
Overall (populations) 1.54 (1.01–3.45) 34/41 1.47 (1.01–2.97) 34/40 2.17 (1.10–4.26) 23/41

Individual profiles
Population predictions 2.45 (1.00–14.70) 131/210 2.21 (1.00–20.00) 133/212 2.72 (1.08–14.00) 114/212
Individual predictions 1.94 (1.00–14.70) 166/210 1.94 (1.00–8.53) 152/212 1.94 (1.08–14.00) 152/212

AUClast: AUC from the time of the first concentration measurement to the last time point of concentration measurement,
Cmax: peak plasma concentration, DGI: drug-gene interaction, GMFE: geometric mean fold error,
MRD: mean relative deviation, PBPK: physiologically based pharmacokinetic.
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S8 Abbreviations
AS CYP2D6 activity score
AUC Area under the plasma concentration-time curve
AUClast AUC from the time of the first concentration measurement to the last time point of

concentration measurement
cap Capsule
Cmax Peak plasma concentration
CYP2D6 Cytochrome P450 2D6
CYP3A4 Cytochrome P450 3A4
DGI Drug-gene interaction
EHC Enterohepatic circulation
EM Extensive metabolizer
fu Fraction unbound
GFR Glomerular filtration rate
GMFE Geometric mean fold error
ICRP International Commission on Radiological Protection
IM Intermediate metabolizer
inf Infusion
iv Intravenous
KD Dissociation constant
kcat Catalytic rate constant
KM Michaelis-Menten constant
koff Dissociation rate constant
MRD Mean relative deviation
MW Molecular weight
NHANES Third National Health and Nutrition Examination Survey
NM Normal metabolizer
PBPK Physiologically based pharmacokinetic
pKa Acid dissociation constant
PM Poor metabolizer
po Oral
sd Single dose
sol Oral solution
tab Tablet
tmax Time to reach Peak plasma concentration
UM Ultrarapid metabolizer
UGT2B15 Uridine 5’-diphospho-glucuronosyltransferase family 2 member B15
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S1 Methods (Addendum)

S1.1 Virtual Individuals

The PBPK model was built based on data from healthy individuals, using the reported sex, ethnicity
and mean values for age, weight and height from each study protocol. If no demographic information
was provided, the following default values were substituted: male, European, 30 years of age, 73 kg
body weight and 176 cm body height (characteristics from the PK-Sim® population database [34,
48, 50]. CYP2D6 was implemented in accordance with literature, using the PK-Sim® expression
database to define their relative expression in the different organs of the body [37]. Details on the
implementation of CYP2D6 are summarized in Section S1.3.

S1.2 Virtual Populations

For population simulations, virtual populations of 1000 individuals were created based on the pop-
ulation characteristics stated in the respective publication. If no information was provided in the
publication, populations based on European male individuals aged 20–50 years were assumed. Met-
rics were generated (depending on ethnicity) from one of the following databases; American: NHANES
[34] database, Asian: Tanaka model [48], European: ICRP database [50]. In the generated virtual
populations, system-dependent parameters such as weight, height, organ volumes, blood flow rates,
tissue compositions, etc. were varied by the implemented algorithm in PK-Sim® within the limits
of the databases listed above [34, 48, 50]. Since study populations were grouped by their AS or phe-
notype, no variability in CYP2D6 reference concentrations was assumed for population simulations.
Reference concentrations of implemented proteins as well as the relative expression are provided in
Section S1.3.
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S1.3 System-Dependent Parameters

Table S1.3.1: System-dependent parameters

Reference concentration Localization Half-life

Mean† GSD* Relative expressiona Liver [h] Intestine [h]

Enzymes
CYP2C19 0.76 [41] 1.79 [37] RT-PCR [37] Intracellular 26 [37] 23 [37]
CYP2D6 0.40 [41] 0b RT-PCR [37] Intracellular 51 [37] 23 [37]
CYP3A4 4.32 [41] 1.18 [37] RT-PCR [37] Intracellular 36 [42] 23 [13]

Transporters
P-gp 1.41[15] 1.60 [38] RT-PCR [35] Apical (Efflux) 36 [37] 23 [37]

†: µmol protein/l in the tissue of highest expression, *: Geometric standard deviation of the
reference concentration, a: In the different organs (PK-Sim expression database profile),
b: Variability for Cytochrome P450 2D6 (CYP2D6) was set to 0, as study populations were
stratified by CYP2D6 activity,

S1.4 PBPK Model Sensitivity Analysis

Sensitivity of the final models to s ingle parameter changes ( local sensitivity analysis) was calculated 
as relative change of the AUC0–24 h. Sensitivity analysis was carried out using a relative perturbation 
of 1000% (variation range 10.0, maximum number of 9 steps). Parameters were included into the 
analysis if they have been optimized, if they are associated with optimized parameters or if they might 
have a strong impact due to calculation methods used in the model. Sensitivity to a parameter was 
calculated as the ratio of the relative change of the simulated area under the plasma concentration-
time curve (AUC) from the time of the drug administration extrapolated to infinity (AUC0–inf) to 
the relative variation of the parameter according to Eq. S1:

S =
∆AUC0−−inf

∆p
× p

AUC0−−inf
(S1)

where S = sensitivity of the AUC0−24 h to the examined model parameter, ∆AUC0−−inf = change
of the AUC0–inf, AUC0−24 h = simulated AUC0–inf with the original parameter value, ∆p = change
of the examined parameter value, p = original parameter value.

A sensitivity of +0.5 signifies that a 100% increase of the examined parameter value causes a 50%
increase of the simulated AUC0–24 h.

4
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S2 Paroxetine

S2.1 Paroxetine PBPK Base Model Building

S2.1.1 Paroxetine Drug-Dependent Parameters

Table S2.1.1: Drug-dependent parameters for the final paroxetine PBPK model

Parameter Unit Value Source Literature Reference

MW g/mol 329.37 Literature 329.37 [57]
pKa (base) - 9.90 Literature 9.90 [1]
Solubility (pH 4.5) mg/mL 7.31 Literature 7.31 [20]
logP - 3.95 Literature 3.95 [1]
fu % 5.00 Literature 5.00 [19]
CYP3A4 KM µmol/L 4.70 Literature 4.70† [17]
CYP3A4 kcat 1/min 1.01 Optimized 5.32 [17]
CYP2D6 KM µmol/L 0.03 Literature 0.03† [17]
CYP2D6 kcat

EM 1/min 1.37 Optimized 9.70 [17]
CYP2D6 kcat

PM 1/min 0.00 Assumed - [17]
Unspecific CLhep 1/min 1.37 Optimized - [17]
CYP2D6 Ki µmol/L 0.17 Optimized 0.32 [52]
CYP2D6 kinact 1/min 0.17 Literature 0.17 [52]
CYP3A4 Ki µmol/L 4.48 Literature 4.48† [5]
CYP3A4 kinact 1/min 0.01 Literature 0.01 [5]
GFR fraction - 1.00 Assumed - -
CR Weibull shape - 7.17 Optimized - -
CR Weibull time min 276.35 Optimized - [9, 21]
Partition coefficients - Diverse Calculated R&R [40]
Cellular permeabilities cm/min 0.28 Calculated PK-Sim [18]
Specific intestinal perm. cm/min 3.93E-05 Calculated 4.89E-04 [18]

-: not given, †: in vitro values corrected for binding in the assay fumic calculated according to [2].
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S2.1.2 Paroxetine Clinical Studies

Table S2.1.2: Paroxetine study table

Route Dose n Females Age Weight CYP2D6 Dataset References
[mg] [%] [years] [kg] activity

PBPK base model building and evaluation
iv (inf, sd) 28 1 0 28 75 - training Lund 1982 [25]
iv (inf, sd) 28 1 0 24 66 - training Lund 1982 [25]
iv (inf, sd) 28 1 0 26 88 - training Lund 1982 [25]
iv (inf, sd) 23 1 0 29 72 - training Lund 1982 [25]

po (tab, qd) 20 22 23 38 (20-49) - g-EM training Belle 2002 [3]
po (-, qd) 20 25 64 26 64 - test Calvo 2004 [8]
po (po, sd) 45 1 0 28 75 - training Lund 1982 [25]
po (po, sd) 45 1 0 24 66 - training Lund 1982 [25]
po (po, sd) 45 1 0 26 88 - training Lund 1982 [25]
po (po, sd) 45 1 0 29 72 - training Lund 1982 [25]
po (tab, sd) 20 28 0 28 (18-42) 72 (57-87) - training Massaroti 2005 [29]
po (-, sd) 70 5 0 31 (22-44) - - test McClelland 1984 [30]
po (-, qd) 20 14 14 34 (19-55) 75 - test Schoedel 2012 [44]
po (tab, qd) 20 7 0 23 65 p-EM test Segura 2005 [45]
po (tab, qd) 20 26 69 44 (18-64) 69 (51-89) g-EM test van der Lee 2007 [51]
po (-, sd) 20 12 25 25 (20-35) 58 (46-75) AS = 1.25* test Yasui-Furukori 2006 [54]
po (-, sd) 20 13 23 24 (21-35) 57 (45-67) - test Yasui-Furukori 2007 [53]

DGI model building and evaluation
po (CR, sd) 25 4 25 26 (19–45) 64 AS = 0.5* test Chen 2015 [9]
po (CR, sd) 25 11 45 26 (19–45) 61 AS = 1.0* test Chen 2015 [9]
po (CR, sd) 25 5 60 22 (19–45) 58 AS = 1.5* test Chen 2015 [9]
po (CR, sd) 25 4 25 28 (19–45) 61 AS = 2* test Chen 2015 [9]
po (tab, sd) 40 3 100 25 (22–26) 62 (50–70) AS = 0* test Mürdter 2016 [12, 16, 31]
po (tab, sd) 40 4 100 24 (21–20) 59 (56–64) AS = 0.5* test Mürdter 2016 [12, 16, 31]
po (tab, sd) 40 1 100 25 68 AS = 0.75* test Mürdter 2016 [12, 16, 31]
po (tab, sd) 40 2 100 26 (23–28) 67 (64–74) AS = 1* test Mürdter 2016 [12, 16, 31]
po (tab, sd) 40 3 100 32 (26–43) 57 (48–64) AS = 2* training Mürdter 2016 [12, 16, 31]
po (tab, sd) 40 3 100 26 (22–28) 62 (54–73) AS = 3* test Mürdter 2016 [12, 16, 31]
po (tab, qd) 30 8 0 27 (23–39) 82 (68–95) p-PM training Sindrup 1992 [46]
po (tab, qd) 30 9 0 24 (20–30) 73 (65–81) p-EM training Sindrup 1992 [46]
po (tab, sd) 40 1 100 21 58 AS = 0* test Yoon 2000 [55]
po (tab, sd) 40 3 0 22 68 AS = 0.5* test Yoon 2000 [55]
po (tab, sd) 40 6 0 22 67 AS = 1.25* test Yoon 2000 [55]
po (tab, sd) 40 6 17 23 59 AS = 2* training Yoon 2000 [55]

-: not given, *: full genotype provided in publication.
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S2.2 Paroxetine PBPK Base Model Evaluation

S2.2.1 Plasma Concentration-Time Profiles
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Lund  1982, n = 1, EM
paroxetine

0 20 40 60
Time [hours]

0

5

10

15

20

Pl
as

m
a 

co
nc

en
tra

tio
n 

[n
g/

m
L]

(i) Paroxetine 45 mg, po
Lund  1982, n = 1, EM
paroxetine

 GMFE(AUClast): 1.44
 GMFE(Cmax): 1.19
MRD: 1.57

 GMFE(AUClast): 1.25
 GMFE(Cmax): 2.18
MRD: 1.62

 GMFE(AUClast): 1.37
 GMFE(Cmax): 1.06
MRD: 1.52

Figure S2.2.1: Paroxetine plasma concentration-time profiles. Population predictions (n=1000) are
shown as lines with ribbons (arithmetic mean ± SD). Individual predictions (n=1) are shown as lines.
Symbols represent the corresponding observed data ± SD if provided.
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(a) Paroxetine 45 mg, po
Lund  1982, n = 1, EM
paroxetine
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(b) Paroxetine 20 mg, po
Massaroti  2005, n = 28, EM
paroxetine
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(c) Paroxetine 70 mg, po
McClelland  1984, n = 5, EM
paroxetine

 GMFE(AUClast): 1.23
 GMFE(Cmax): 1.6
MRD: 1.41

 GMFE(AUClast): 1.16
 GMFE(Cmax): 1.02
MRD: 1.51

 GMFE(AUClast): 2.12
 GMFE(Cmax): 1.14
MRD: 2.26
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(d) Paroxetine 20 mg, po
Schoedel  2012, n = 14, EM
paroxetine
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(e) Paroxetine 20 mg, po
Segura  2005, n = 7, EM
paroxetine
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(f) Paroxetine 20 mg, po
van der Lee  2007, n = 26, EM
paroxetine

 GMFE(AUClast): 1.21
 GMFE(Cmax): 1.02
MRD: 1.24

 GMFE(AUClast): 1.36
 GMFE(Cmax): 1.28
MRD: 1.6

 GMFE(AUClast): 1.42
 GMFE(Cmax): 1.23
MRD: 1.58
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(g) Paroxetine 20 mg, po
Yasui-Furukori  2006, n = 12, AS=1.25
paroxetine

0 20 40 60
Time [hours]

0

2

4

6

8

10

Pl
as

m
a 

co
nc

en
tra

tio
n 

[n
g/

m
L]

(h) Paroxetine 20 mg, po
Yasui-Furukori  2007, n = 13, EM
paroxetine

 GMFE(AUClast): 1.18
 GMFE(Cmax): 1.14
MRD: 2.27

 GMFE(AUClast): 1.14
 GMFE(Cmax): 1.16
MRD: 1.73

Figure S2.2.2: Paroxetine plasma concentration-time profiles. Population predictions (n=1000) are
shown as lines with ribbons (arithmetic mean ± SD). Individual predictions (n=1) are shown as lines.
Symbols represent the corresponding observed data ± SD if provided.

8

296 appendix b : supplementary materials



Pharmaceutics 2022, 14, 1734. https://doi.org/10.3390/pharmaceutics14081734 9 of 42

S2.2.2 Goodness-of-Fit Plots
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(a) GOF plot - AUClast
 paroxetine

Lund 1982, 28 mg, EM
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Lund 1982, 23 mg, EM
McClelland 1984, 70 mg, EM
Lund 1982, 45 mg, EM
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Lund 1982, 45 mg, EM
Belle 2002, 20 mg, EM
Calvo 2004, 20 mg, EM
Massaroti 2005, 20 mg, EM
Schoedel 2012, 20 mg, EM
Segura 2005, 20 mg, EM
van der Lee 2007, 20 mg, EM
Yasui-Furukori 2006, 20 mg, AS=1.25
Yasui-Furukori 2007, 20 mg, EM
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(b) GOF plot - Cmax
paroxetine

Lund 1982, 28 mg, EM
Lund 1982, 28 mg, EM
Lund 1982, 28 mg, EM
Lund 1982, 23 mg, EM
McClelland 1984, 70 mg, EM
Lund 1982, 45 mg, EM
Lund 1982, 45 mg, EM
Lund 1982, 45 mg, EM

Lund 1982, 45 mg, EM
Belle 2002, 20 mg, EM
Calvo 2004, 20 mg, EM
Massaroti 2005, 20 mg, EM
Schoedel 2012, 20 mg, EM
Segura 2005, 20 mg, EM
van der Lee 2007, 20 mg, EM
Yasui-Furukori 2006, 20 mg, AS=1.25
Yasui-Furukori 2007, 20 mg, EM
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(c) GOF plot - plasma concentrations
 paroxetine

Lund 1982, 28 mg, EM
Lund 1982, 28 mg, EM
Lund 1982, 28 mg, EM
Lund 1982, 23 mg, EM
McClelland 1984, 70 mg, EM
Lund 1982, 45 mg, EM
Lund 1982, 45 mg, EM
Lund 1982, 45 mg, EM

Lund 1982, 45 mg, EM
Belle 2002, 20 mg, EM
Calvo 2004, 20 mg, EM
Massaroti 2005, 20 mg, EM
Schoedel 2012, 20 mg, EM
Segura 2005, 20 mg, EM
van der Lee 2007, 20 mg, EM
Yasui-Furukori 2006, 20 mg, AS=1.25
Yasui-Furukori 2007, 20 mg, EM

Figure S2.2.3: Goodness of fit plots. Predicted versus observed (a) AUClast, (b) Cmax and (c) plasma
concentration values for all studies. The solid black line marks the line of identity, the dashed grey
lines mark the 0.8- to 1.25-fold range, the solid grey lines indicate the 0.5- to 2-fold range. Colored
symbols represent the study population given in the legend.
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S2.2.3 Sensitivity Analysis

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Sensitivity, ranked by absolute value

Lipophilicity (paroxetine)
fu (paroxetine)

CYP2D6 kinact (paroxetine)
CYP2D6 kcat (paroxetine)

Unspecific hepatic clearance (paroxetine)
CYP3A4 KM (paroxetine)
CYP2D6 Ki (paroxetine)
pKa (paroxetine, basic)

CYP3A4 kcat (paroxetine)
Intestinal permeability (paroxetine)

GFR fraction (paroxetine)
CYP3A4 Ki (paroxetine)

CYP3A4 kinact (paroxetine)
Solubility at reference pH (paroxetine)

3.49
3.34

0.39
0.38

0.32
0.29
0.27

0.23
0.15
0.15

0.01
0.01
0.00
0.00

(a) Sensitivity analysis: paroxetine

Figure S2.2.4: Sensitivity analysis of the paroxetine model. Sensitivity of the model to single
parameters, determined as change of the simulated AUC from time of the administration extrapolated
to infinity of a single oral administration of 20 mg paroxetine hydrochloride.
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S2.3 Paroxetine DGI Model Evaluation

S2.3.1 Plasma Concentration-Time Profiles
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(a) Paroxetine 25 mg, po
Chen  2015, n = 4, AS=0.5
paroxetine
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(b) Paroxetine 25 mg, po
Chen  2015, n = 11, AS=1.0
paroxetine
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(c) Paroxetine 25 mg, po
Chen  2015, n = 5, AS=1.5
paroxetine

 GMFE(AUClast): 2.03
 GMFE(Cmax): 1.31
MRD: 2.4

 GMFE(AUClast): 2.62
 GMFE(Cmax): 1.76
MRD: 2.78

 GMFE(AUClast): 3.02
 GMFE(Cmax): 3.64
MRD: 4.59
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(d) Paroxetine 25 mg, po
Chen  2015, n = 4, AS=2.0
paroxetine

 GMFE(AUClast): 2.8
 GMFE(Cmax): 2.64
MRD: 2.8

Figure S2.3.5: Paroxetine plasma concentration-time profiles [9]. Population predictions (n=1000)
are shown as lines with ribbons (arithmetic mean ± SD). Symbols represent the corresponding
observed data ± SD if provided.
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(a) Paroxetine 40 mg, po
Mürdter  2016, n = 3, AS=0.0
paroxetine
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(b) Paroxetine 40 mg, po
Mürdter  2016, n = 4, AS=0.5
paroxetine
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(c) Paroxetine 40 mg, po
Mürdter  2016, n = 1, AS=0.75
paroxetine

  GMFE(AUClast): 1.18
  GMFE(Cmax): 1.01

MRD: 1.26

  GMFE(AUClast): 1.24
  GMFE(Cmax): 1.04

MRD: 1.3

  GMFE(AUClast): 1.26
  GMFE(Cmax): 1.12

MRD: 1.3
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(d) Paroxetine 40 mg, po
Mürdter  2016, n = 2, AS=1.0
paroxetine
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(e) Paroxetine 40 mg, po

Mürdter  2016, n = 3, AS=2.0
paroxetine
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(f) Paroxetine 40 mg, po
Mürdter  2016, n = 3, AS=3.0
paroxetine

  GMFE(AUClast): 1.65
  GMFE(Cmax): 1.34

MRD: 1.82

  GMFE(AUClast): 1.55
  GMFE(Cmax): 1.09

MRD: 1.79

  GMFE(AUClast): 1.37
  GMFE(Cmax): 1.21

MRD: 1.57

Figure S2.3.6: Paroxetine plasma concentration-time profiles [12]. Population predictions (n=1000)
are shown as lines with ribbons (arithmetic mean ± SD). Individual predictions (n=1) are shown as
lines. Symbols represent the corresponding observed data ± SD if provided.
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(a) Paroxetine 30 mg, po
Sindrup  1992, n = 8, PM
paroxetine
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(b) Paroxetine 30 mg, po
Sindrup  1992, n = 9, EM
paroxetine

  GMFE(AUClast): 1.06
  GMFE(Cmax): 1.12

MRD: 1.22

  GMFE(AUClast): 1.17
  GMFE(Cmax): 1.04

MRD: 1.66

Figure S2.3.7: Paroxetine plasma concentration-time profiles [46]. Population predictions (n=1000)
are shown as lines with ribbons (arithmetic mean ± SD). Symbols represent the corresponding
observed data ± SD if provided.
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(a) Paroxetine 40 mg, po
Yoon  2000, n = 1, AS=0.0
paroxetine
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(b) Paroxetine 40 mg, po
Yoon  2000, n = 3, AS=0.5
paroxetine
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(c) Paroxetine 40 mg, po
Yoon  2000, n = 6, AS=1.25
paroxetine

 GMFE(AUClast): 1.59
 GMFE(Cmax): 1.3
MRD: 1.78

 GMFE(AUClast): 1.77
 GMFE(Cmax): 1.92
MRD: 1.86

 GMFE(AUClast): 1.24
 GMFE(Cmax): 1.43
MRD: 1.74
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(d) Paroxetine 40 mg, po
Yoon  2000, n = 6, AS=2.0
paroxetine

 GMFE(AUClast): 1.74
 GMFE(Cmax): 1.34
MRD: 1.76

Figure S2.3.8: Paroxetine plasma concentration-time profiles [55]. Population predictions (n=1000)
are shown as lines with ribbons (arithmetic mean ± SD). Individual predictions (n=1) are shown as
lines. Symbols represent the corresponding observed data ± SD if provided.
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S2.3.2 Goodness-of-Fit Plots
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(a) GOF plot - AUClast
 paroxetine

Mürdter 2016, 40 mg, AS=3.0
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Yoon 2000, 40 mg, AS=1.25

Yoon 2000, 40 mg, AS=0.5
Yoon 2000, 40 mg, AS=0.0
Sindrup 1992, 30 mg, EM
Sindrup 1992, 30 mg, PM
Chen 2015, 25 mg, AS=2.0
Chen 2015, 25 mg, AS=1.5
Chen 2015, 25 mg, AS=1.0
Chen 2015, 25 mg, AS=0.5
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(b) GOF plot - Cmax
paroxetine

Mürdter 2016, 40 mg, AS=3.0
Mürdter 2016, 40 mg, AS=2.0
Mürdter 2016, 40 mg, AS=1.0
Mürdter 2016, 40 mg, AS=0.75
Mürdter 2016, 40 mg, AS=0.5
Mürdter 2016, 40 mg, AS=0.0
Yoon 2000, 40 mg, AS=2.0
Yoon 2000, 40 mg, AS=1.25

Yoon 2000, 40 mg, AS=0.5
Yoon 2000, 40 mg, AS=0.0
Sindrup 1992, 30 mg, EM
Sindrup 1992, 30 mg, PM
Chen 2015, 25 mg, AS=2.0
Chen 2015, 25 mg, AS=1.5
Chen 2015, 25 mg, AS=1.0
Chen 2015, 25 mg, AS=0.5
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(c) GOF plot - plasma concentrations
 paroxetine

Mürdter 2016, 40 mg, AS=3.0
Mürdter 2016, 40 mg, AS=2.0
Mürdter 2016, 40 mg, AS=1.0
Mürdter 2016, 40 mg, AS=0.75
Mürdter 2016, 40 mg, AS=0.5
Mürdter 2016, 40 mg, AS=0.0
Yoon 2000, 40 mg, AS=2.0
Yoon 2000, 40 mg, AS=1.25

Yoon 2000, 40 mg, AS=0.5
Yoon 2000, 40 mg, AS=0.0
Sindrup 1992, 30 mg, EM
Sindrup 1992, 30 mg, PM
Chen 2015, 25 mg, AS=2.0
Chen 2015, 25 mg, AS=1.5
Chen 2015, 25 mg, AS=1.0
Chen 2015, 25 mg, AS=0.5

Figure S2.3.9: Goodness of fit plots. Predicted versus observed (a) AUClast, (b) Cmax and (c)
plasma concentration values for all DGI studies. The solid black line marks the line of identity, the
dashed grey lines mark the 0.8- to 1.25-fold range, the solid grey lines indicate the 0.5- to 2-fold range.
Colored symbols represent the study population given in the legend.
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S2.3.3 DGI Ratios
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(a) DGI AUClast ratios
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(b) DGI Cmax ratios
Chen 2015 - AS = 1.5 vs AS = 2.0, Paroxetine
Chen 2015 - AS = 1.0 vs AS = 2.0, Paroxetine
Chen 2015 - AS = 0.5 vs AS = 2.0, Paroxetine
Ganchev 2014 - AS = 3.0 vs AS = 2.0, Paroxetine
Ganchev 2014 - AS = 1.0 vs AS = 2.0, Paroxetine
Ganchev 2014 - AS = 0.75 vs AS = 2.0, Paroxetine
Ganchev 2014 - AS = 0.5 vs AS = 2.0, Paroxetine
Ganchev 2014 - AS = 0.0 vs AS = 2.0, Paroxetine
Sindrup 1992 - PM vs EM, Paroxetine
Yoon 2000 - AS = 1.25 vs AS = 2.0, Paroxetine
Yoon 2000 - AS = 0.5 vs AS = 2.0, Paroxetine
Yoon 2000 - AS = 0.0 vs AS = 2.0, Paroxetine

 AUClast ratios within Guest et al.  criteria: 10/12
 GMFE(AUClast ratios): 1.37

       Cmax ratios within Guest et al.  criteria: 9/12
 GMFE(Cmax ratios): 1.33

Figure S2.3.10: DGI ratio plot. Predicted versus observed (a) DGI AUClast and (b) Cmax ratios for
all DGI studies. The solid straight black line marks the line of identity, the solid curved black line
shows the prediction success limits proposed by Guest et al. [14], the dashed grey lines mark the 0.8-
to 1.25-fold range, the solid grey lines indicate the 0.5- to 2-fold range. Colored symbols represent
the study population given in the legend.
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S3 Atomoxetine

S3.1 Atomoxetine PBPK Base Model Building

S3.1.1 Drug-dependent Parameters

Table S3.1.1: Drug-dependent parameters for the final atomoxetine PBPK model

Parameter Unit Value Source Literature Reference

MW g/mol 255.35 Literature 255.35 [57]
pKa (base) - 9.80 Literature 9.80 [47]
Solubility (pH 7.4) mg/mL 10.29 Literature 10.29 [47]
logP - 3.49 Optimized 3.81 [47]
fu % 1.30 Literature 1.30 [56]
CYP2C19 KM µmol/L 83.00 Literature 83.00 [39]
CYP2C19 kcat 1/min 165.23 Optimized 5.11 [39]
CYP2D6 KM µmol/L 2.30 Literature 2.30 [39]
CYP2D6 kcat

EM 1/min 37.44 Optimized 11.50 [39]
CYP2D6 kcat

PM 1/min 0.00 Assumed - [39]
GFR fraction - 1.00 Assumed - -
EHC continuous fraction - 1.00 Assumed - -
Partition coefficients - Diverse Calculated Be [4]
Cellular permeabilities - 0.32 Calculated PK-Sim [18]
Specific intestinal perm. cm/min 5.23E-5 Optimized 7.23E-04 [18]

-: not given, perm.: permeability.
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S3.1.2 Clinical studies

Table S3.1.2: Atomoxetine study table

Route Dose n Females Age Weight CYP2D6 Dataset References
[mg] [%] [years] [kg] activity

PBPK base model building and evaluation
po (tab, qd) 20 22 23 38 (20-49) - g-EM test Belle 2002 [3]
po (cap, sd) 40 16 33 (20-29) (53-72) AS = 1* test Cui 2007 [10]
po (cap, qd) 80 16 33 (20-29) (53-72) AS = 1* test Cui 2007 [10]
po (sol, sd) 50 42 0 23 (20-37) 62 (52-76) g-EM training Nakano 2016 [33]
po (cap, sd) 50 42 0 23 (20-37) 62 (52-76) g-EM training Nakano 2016 [33]

DGI model building and evaluation
po (cap, sd) 40 18 0 23 68 AS = 0.5* test Byeon 2015 [7]
po (cap, sd) 40 22 0 23 65 AS = 1.25* test Byeon 2015 [7]
po (cap, sd) 40 22 0 23 67 AS = 2* training Byeon 2015 [7]
po (cap, sd) 20 8 0 (19-25) (52-72) AS = 0.5* test Kim 2018 [23]
po (cap, sd) 20 11 0 (19-25) (49-73) AS = 2* training Kim 2018 [23]
po (cap, qd) 20 3 0 35 (19-49) - g-PM training Sauer 2003 [43]
po (cap, qd) 20 4 0 45 (38-54) - g-EM training Sauer 2003 [43]
po (cap, sd) 40 12 0 (18-55) - g-PM test Todor 2016 [49]
po (cap, sd) 40 18 0 (18-55) - g-EM test Todor 2016 [49]

-: not given, *: full genotype provided in publication.
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S3.2 Atomoxetine PBPK Base Model Evaluation

S3.2.1 Plasma Concentration-Time Profiles
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(b) Atomoxetine 40 mg, po
Cui  2007, n = 16, AS=1.0
atomoxetine
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(c) Atomoxetine 80 mg, po
Cui  2007, n = 16, AS=1.0
atomoxetine

 GMFE(AUClast): 2.26
 GMFE(Cmax): 1.27
MRD: 3.58

 GMFE(AUClast): 1.17
 GMFE(Cmax): 1.18
MRD: 1.48

 GMFE(AUClast): 1.1
 GMFE(Cmax): 1.1
MRD: 1.23
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(d) Atomoxetine 50 mg, po
Nakano  2016, n = 42, EM
atomoxetine
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(e) Atomoxetine 50 mg, po
Nakano  2016, n = 42, EM
atomoxetine

 GMFE(AUClast): 1.15
 GMFE(Cmax): 1.29
MRD: 1.35

 GMFE(AUClast): 1.15
 GMFE(Cmax): 1.02
MRD: 1.42

Figure S3.2.1: Atomoxetine plasma concentration-time profiles. Population predictions (n=1000)
are shown as lines with ribbons (arithmetic mean ± standard deviation (SD)). Symbols represent the
corresponding observed data ± SD if provided.
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S3.2.2 Goodness-of-Fit Plots
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(a) GOF plot - AUClast
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(b) GOF plot - Cmax
atomoxetine

Cui 2007, 80 mg, AS=1.0
Nakano 2016, 50 mg, EM
Nakano 2016, 50 mg, EM
Cui 2007, 40 mg, AS=1.0
Belle 2002, 20 mg, EM
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(c) GOF plot - plasma concentrations
 atomoxetine

Cui 2007, 80 mg, AS=1.0
Nakano 2016, 50 mg, EM
Nakano 2016, 50 mg, EM
Cui 2007, 40 mg, AS=1.0
Belle 2002, 20 mg, EM

Figure S3.2.2: Goodness of fit plots. Predicted versus observed (a) AUClast, (b) Cmax and (c) plasma
concentration values for all studies. The solid black line marks the line of identity, the dashed grey
lines mark the 0.8- to 1.25-fold range, the solid grey lines indicate the 0.5- to 2-fold range. Colored
symbols represent the study population given in the legend.
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S3.2.3 Sensitivity Analysis

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Sensitivity, ranked by absolute value

fu (atomoxetine)
CYP2D6 kcat (atomoxetine)
Lipophilicity (atomoxetine)
CYP2D6 KM (atomoxetine)

CYP2C19 KM (atomoxetine)
Intestinal permeability (atomoxetine)

CYP2C19 kcat (atomoxetine)
pKa (atomoxetine, basic)

GFR fraction (atomoxetine)
Dissolution time (80%, atomoxetine)

Solubility at reference pH (atomoxetine)
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0.36
0.22

0.20
0.02
0.01
0.00
0.00

(a) Sensitivity analysis: atomoxetine

Figure S3.2.3: Sensitivity analysis of the atomoxetine model. Sensitivity of the model to single
parameters, determined as change of the simulated AUC from time of the drug administration ex-
trapolated to infinity of a single oral administration of 20 mg atomoxetine.

S3.3 Atomoxetine DGI Model Evaluation

S3.3.1 Plasma Concentration-Time Profiles
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(a) Atomoxetine 40 mg, po
Byeon  2015, n = 18, AS=0.5
atomoxetine
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(b) Atomoxetine 40 mg, po
Byeon  2015, n = 22, AS=1.25
atomoxetine
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(c) Atomoxetine 40 mg, po
Byeon  2015, n = 22, AS=2.0
atomoxetine

 GMFE(AUClast): 1.03
 GMFE(Cmax): 1.24
MRD: 1.44

 GMFE(AUClast): 1.04
 GMFE(Cmax): 1.07
MRD: 1.22

 GMFE(AUClast): 1.31
 GMFE(Cmax): 1.25
MRD: 1.32

Figure S3.3.4: Atomoxetine plasma concentration-time profiles. Population predictions (n=1000)
are shown as lines with ribbons (arithmetic mean ± SD). Symbols represent the corresponding
observed data ± SD if provided.
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(a) Atomoxetine 20 mg, po
Kim  2018, n = 8, AS=0.5
atomoxetine
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(b) Atomoxetine 20 mg, po
Kim  2018, n = 11, AS=2.0
atomoxetine

  GMFE(AUClast): 1.6
  GMFE(Cmax): 1.12

MRD: 1.84

  GMFE(AUClast): 1.18
  GMFE(Cmax): 1.1

MRD: 1.32

Figure S3.3.5: Atomoxetine plasma concentration-time profiles. Population predictions (n=1000)
are shown as lines with ribbons (arithmetic mean ± SD). Symbols represent the corresponding
observed data ± SD if provided.
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(a) Atomoxetine 20 mg, po
Sauer  2003, n = 3, PM
atomoxetine
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(b) Atomoxetine 20 mg, po
Sauer  2003, n = 4, EM
atomoxetine

  GMFE(AUClast): 1.01
  GMFE(Cmax): 1.34

MRD: 2.03

  GMFE(AUClast): 1.12
  GMFE(Cmax): 1.26

MRD: 1.21

Figure S3.3.6: Atomoxetine plasma concentration-time profiles. Population predictions (n=1000)
are shown as lines with ribbons (arithmetic mean ± SD). Symbols represent the corresponding
observed data ± SD if provided.
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(a) Atomoxetine 25 mg, po
Todor  2016, n = 2, PM
atomoxetine
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(b) Atomoxetine 25 mg, po
Todor  2016, n = 18, EM
atomoxetine

  GMFE(AUClast): 1.0
  GMFE(Cmax): 1.18

MRD: 1.63

  GMFE(AUClast): 1.0
  GMFE(Cmax): 1.14

MRD: 1.14

Figure S3.3.7: Atomoxetine plasma concentration-time profiles. Population predictions (n=1000)
are shown as lines with ribbons (arithmetic mean ± SD). Symbols represent the corresponding
observed data ± SD if provided.
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S3.3.2 Goodness-of-Fit Plots
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(a) GOF plot - AUClast
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(b) GOF plot - Cmax
atomoxetine

Byeon 2015, 40 mg, AS=2.0
Byeon 2015, 40 mg, AS=1.25
Byeon 2015, 40 mg, AS=0.5
Todor 2016, 25 mg, EM

Todor 2016, 25 mg, PM
Kim 2018, 20 mg, AS=2.0
Kim 2018, 20 mg, AS=0.5
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Sauer 2003, 20 mg, PM

100 101 102 103

Observed plasma concentrations [ng/mL]

100

101

102

103

Pr
ed

ict
ed

 p
la

sm
a 

co
nc

en
tra

tio
ns

 [n
g/

m
L]

(c) GOF plot - plasma concentrations
 atomoxetine

Byeon 2015, 40 mg, AS=2.0
Byeon 2015, 40 mg, AS=1.25
Byeon 2015, 40 mg, AS=0.5
Todor 2016, 25 mg, EM

Todor 2016, 25 mg, PM
Kim 2018, 20 mg, AS=2.0
Kim 2018, 20 mg, AS=0.5
Sauer 2003, 20 mg, EM
Sauer 2003, 20 mg, PM

Figure S3.3.8: Goodness of fit plots. Predicted versus observed (a) AUClast, (b) Cmax and (c)
plasma concentration values for all DGI studies. The solid black line marks the line of identity, the
dashed grey lines mark the 0.8- to 1.25-fold range, the solid grey lines indicate the 0.5- to 2-fold range.
Colored symbols represent the study population given in the legend.
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S3.3.3 DGI ratios
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(b) DGI Cmax ratios
Byeon 2015 - AS = 1.25 vs AS = 2.0, Atomoxetine
Byeon 2015 - AS = 0.5 vs AS = 2.0, Atomoxetine
Kim 2018 - AS = 0.5 vs AS = 2.0, Atomoxetine
Sauer 2002 - PM vs EM, Atomoxetine
Todor 2016 - PM vs EM, Atomoxetine

 AUClast ratios within Guest et al.  criteria: 5/5
 GMFE(AUClast ratios): 1.25

   Cmax ratios within Guest et al.  criteria: 5/5
 GMFE(Cmax ratios): 1.28

Figure S3.3.9: DGI ratio plot. Predicted versus observed DGI (a) AUClast and (b) Cmax ratios for
all DGI studies. The solid straight black line marks the line of identity, the solid curved black line
shows the prediction success limits proposed by Guest et al. [14], the dashed grey lines mark the 0.8-
to 1.25-fold range, the solid grey lines indicate the 0.5- to 2-fold range. Colored symbols represent
the study population given in the legend.
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S4 Risperidone
For the risperidone PBPK model, a published model by Kneller et al. [24] was used. Here, most

model parameters were used unchanged from the initial model. However, as the intestinal permeability
for risperidone as well as system-dependent parameters were not reported in the article, and the model
could not be reproduced entirely from the reported values, minor refinements were made.

S4.1 Risperidone PBPK Base Model Building

S4.1.1 Drug-dependent parameters

Table S4.1.1: Drug-dependent parameters for the final risperidone PBPK model

Parameter Unit Value Source Literature Reference

Risperidone
MW g/mol 410.48 Literature 410.48 [24]
pKa (base) - 8.76 Literature 8.76 [24]
pKa (acid) - 3.11 Literature 3.11 [24]
Solubility (pH 7.3) mg/mL 0.17 Literature 0.17 [24]
logP - 2.40 Literature 2.40 [24]
fu % 17.50 Literature 17.50 [24]
CYP3A4 KM → 9-HR µmol/L 61.00 Literature 61.00 [24]
CYP3A4 kcat → 9-HR 1/min 0.70 Literature 0.70 [24]
CYP3A4 KM → sink µmol/L 61.00 Literature 61.00 [24]
CYP3A4 kcat → sink 1/min 0.15 Literature 0.15 [24]
CYP2D6 KM → 9-HR µmol/L 1.10 Literature 1.10 [24]
CYP2D6 kcat

EM → 9-HR 1/min 1.07 Optimized 2.30 [24]
CYP2D6 kcat

PM → 9-HR 1/min 0.00 Literature 0.00 [24]
CYP2D6 KM → sink µmol/L 1.10 Literature 1.10 [24]
CYP2D6 kcat

EM → sink 1/min 0.67 Optimized 1.40 [24]
CYP2D6 kcat

PM → sink 1/min 0.00 Literature 0.00 [24]
P-gp KM µmol/L 26.30 Literature 26.30 [24]
P-gp kcat 1/min 12.72 Optimized 0.20 [24]
GFR fraction - 1.00 Assumed - -
Partition coefficients - Diverse Calculated R&R [40]
Cell permeabilities cm/min 1.95E-03 Calculated PK-Sim [18]
Specific intestinal perm. cm/min 8.04E-06 Optimized - [18]

9-Hydroxyrisperidone
MW g/mol 426.48 Literature 426.48 [24]
pKa (base) - 8.76 Literature 8.76 [24]
pKa (acid) - 3.11 Literature 3.11 [24]
Solubility (pH 6.5) mg/mL 0.17 Literature 0.17 [24]

-: not available, 9-HR: 9-hydroxyrisperidone, perm.: permeabilities.
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Table S4.1.1: Drug-dependent parameters for the final risperidone PBPK model

Parameter Unit Value Source Literature Reference

logP - 2.10 Literature 2.10 [24]
fu % 29.00 Literature 29.00 [24]
Unspecific CLhep 1/min 0.08 Optimized 0.04 [24]
P-gp KM µmol/L 26.30 Literature 26.30 [24]
P-gp kcat 1/min 5.70E-03 Optimized 9.64E-03 [24]
GFR fraction - 1.00 Assumed - -
Partition coefficients - Diverse Calculated R&R [40]
Cell permeabilities cm/min 7.69E-04 Calculated PK-Sim [18]
Specific intestinal perm. cm/min 3.53E-06 Calculated 3.53E-06 [18]

-: not available, 9-HR: 9-hydroxyrisperidone, perm.: permeabilities.
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S4.1.2 Clinical studies

Table S4.1.2: Risperidone study table

Route Dose n Females Age Weight CYP2D6 Metabolite Dataset References
[mg] [%] [years] [kg] activity measured

PBPK base model building and evaluation
po (tab sd) 2 36 33 32 79 - no training Darwish 2015 [11]
po (tab, sd) 1 10 0 (23-38) (65-80) AS = 1.25* yes test Kim 2008 [22]
po (tab, sd) 1 11 21 28 (22-42) - - no training Markowitz 2002 [28]
po (tab, sd) 2 10 0 33 (23-44) 64 (55-76) - yes training Mahatthanatrakul 2012 [27]
po (tab, sd) 4 10 0 31 (55-76) - no test Mahatthanatrakul 2007 [26]
po (tab, sd) 1 12 0 24 (20-28) 65 (53-86) AS = 1* yes test Nakagami 2005 [32]

DGI model building and evaluation
po (tab, qd) 2 8 27 43 (18-63) - g-EM no training Bondolfi 2001 [6]
po (tab, qd) 2 3 27 43 (18-63) - g-PM no training Bondolfi 2001 [6]
po (tab, sd) 1 6 33 24 (19-27) 67 (51-86) AS = 0* yes test Novalbos 2010 [36]
po (tab, sd) 1 26 58 23 (19-27) 65 (43-106) AS = 1* yes test Novalbos 2010 [36]
po (tab, sd) 1 33 55 23 (19-27) 66 (46-89) AS = 2* yes training Novalbos 2010 [36]
po (tab, sd) 1 6 17 23 (19-34) 73 (56-81) AS = 3* yes test Novalbos 2010 [36]

-: not given, *: full genotype provided in publication.

27

B.3 project iii : pbpk modeling of paroxetine , atomoxetine and risperidone 315



28 of 42Pharmaceutics 2022, 14, 1734. https://doi.org/10.3390/pharmaceutics14081734

S4.2 Risperidone PBPK Base Model Evaluation
S4.2.1 Plasma Concentration-Time Profiles
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(a) Risperidone 2 mg, po
Darwish  2015, n = 36, EM
risperidone
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(b) Risperidone 1 mg, po
Kim  2008, n = 10, AS=1.25
risperidone
9-hydroxyrisperidone
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(c) Risperidone 4 mg, po
Mahatthanatrakul  2007, n = 10, EM
risperidone

 GMFE(AUClast): 1.08
 GMFE(Cmax): 1.29
MRD: 1.35

 GMFE(AUClast): 1.42
 GMFE(Cmax): 1.43
MRD: 1.89

 GMFE(AUClast): 1.31
 GMFE(Cmax): 1.01
MRD: 1.49
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(d) Risperidone 2 mg, po
Mahatthanatrakul  2012, n = 10, EM
risperidone
9-hydroxyrisperidone
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(e) Risperidone 1 mg, po
Markowitz  2002, n = 11, EM
risperidone
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(f) Risperidone 1 mg, po
Nakagami  2005, n = 12, AS=1.0
risperidone
9-hydroxyrisperidone

 GMFE(AUClast): 1.58
 GMFE(Cmax): 1.55
MRD: 1.85

 GMFE(AUClast): 1.09
 GMFE(Cmax): 1.19
MRD: 1.39

 GMFE(AUClast): 1.22
 GMFE(Cmax): 1.36
MRD: 1.51

Figure S4.2.1: Risperidone and 9-hydroxyrisperidone plasma concentration-time profiles. Popu-
lation predictions (n=1000) are shown as lines with ribbons (arithmetic mean ± SD) Individual
predictions (n=1) are shown as lines. Symbols represent the corresponding observed data ± SD if
provided.
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S4.2.2 Goodness-of-Fit Plots
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(a) GOF plot - AUClast
 risperidone

Mahatthanatrakul 2007, 4 mg, EM
Darwish 2015, 2 mg, EM
Mahatthanatrakul 2012, 2 mg, EM
Kim 2008, 1 mg, AS=1.25
Markowitz 2002, 1 mg, EM
Nakagami 2005, 1 mg, AS=1.0
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(b) GOF plot - Cmax
risperidone

Mahatthanatrakul 2007, 4 mg, EM
Darwish 2015, 2 mg, EM
Mahatthanatrakul 2012, 2 mg, EM
Kim 2008, 1 mg, AS=1.25
Markowitz 2002, 1 mg, EM
Nakagami 2005, 1 mg, AS=1.0
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(c) GOF plot - plasma concentrations
 risperidone

Mahatthanatrakul 2007, 4 mg, EM
Darwish 2015, 2 mg, EM
Mahatthanatrakul 2012, 2 mg, EM
Kim 2008, 1 mg, AS=1.25
Markowitz 2002, 1 mg, EM
Nakagami 2005, 1 mg, AS=1.0

Figure S4.2.2: Goodness of fit plots. Predicted versus observed (a) AUClast, (b) Cmax and (c) plasma
concentration values for all studies. The solid black line marks the line of identity, the dashed grey
lines mark the 0.8- to 1.25-fold range, the solid grey lines indicate the 0.5- to 2-fold range. Colored
symbols represent the study population given in the legend.
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(a) GOF plot - AUClast
9-hydroxyrisperidone

Mahatthanatrakul 2012, 2 mg, EM
Kim 2008, 1 mg, AS=1.25
Nakagami 2005, 1 mg, AS=1.0
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(b) GOF plot - Cmax
9-hydroxyrisperidone

Mahatthanatrakul 2012, 2 mg, EM
Kim 2008, 1 mg, AS=1.25
Nakagami 2005, 1 mg, AS=1.0
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(c) GOF plot - plasma concentrations
9-hydroxyrisperidone

Mahatthanatrakul 2012, 2 mg, EM
Kim 2008, 1 mg, AS=1.25
Nakagami 2005, 1 mg, AS=1.0

Figure S4.2.3: Goodness of fit plots. Predicted versus observed (a) AUClast, (b) Cmax and (c) plasma
concentration values for all studies. The solid black line marks the line of identity, the dashed grey
lines mark the 0.8- to 1.25-fold range, the solid grey lines indicate the 0.5- to 2-fold range. Colored
symbols represent the study population given in the legend.
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S4.2.3 Sensitivity Analysis
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(b) Sensitivity analysis: 9-hydroxyrisperidone

Figure S4.2.4: Sensitivity analysis of the risperidone (a) and 9-hydroxyrisperidone (b) model. Sen-
sitivity of the model to single parameters, determined as change of the simulated AUC from time of
the drug adminstration extrapolated to infinity of a single oral administration of 2 mg risperidone.
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S4.3 Risperidone DGI Model Evaluation

S4.3.1 Plasma Concentration-Time Profiles
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(a) Risperidone 2 mg, po
Bondolfi  2001, n = 2, PM
risperidone
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(b) Risperidone 2 mg, po
Bondolfi  2001, n = 8, EM
risperidone

  GMFE(AUClast): 1.08
  GMFE(Cmax): 1.09

MRD: 1.13

  GMFE(AUClast): 1.03
  GMFE(Cmax): 1.07

MRD: 1.21

Figure S4.3.5: Risperidone plasma concentration-time profiles [9]. Population predictions (n=1000)
are shown as lines with ribbons (arithmetic mean ± SD) Symbols represent the corresponding observed
data ± SD if provided.
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(a) Risperidone 1 mg, po
Novalbos  2010, n = 6, AS=0.0
risperidone
9-hydroxyrisperidone
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(b) Risperidone 1 mg, po
Novalbos  2010, n = 26, AS=1.0
risperidone
9-hydroxyrisperidone
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(c) Risperidone 1 mg, po
Novalbos  2010, n = 33, AS=2.0
risperidone
9-hydroxyrisperidone

  GMFE(AUClast): 1.29
  GMFE(Cmax): 1.1

MRD: 1.41

  GMFE(AUClast): 1.12
  GMFE(Cmax): 1.13

MRD: 1.24

  GMFE(AUClast): 1.04
  GMFE(Cmax): 1.08

MRD: 1.2
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(d) Risperidone 1 mg, po
Novalbos  2010, n = 6, AS=3.0
risperidone
9-hydroxyrisperidone

  GMFE(AUClast): 1.03
  GMFE(Cmax): 1.06

MRD: 1.34

Figure S4.3.6: Risperidone plasma concentration-time profiles [12]. Population predictions (n=1000)
are shown as lines with ribbons (arithmetic mean ± SD) Individual predictions (n=1) are shown as
lines. Symbols represent the corresponding observed data ± SD if provided.
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S4.3.2 Goodness-of-Fit Plots
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(a) GOF plot - AUClast
 risperidone

Bondolfi 2001, 2 mg, EM
Bondolfi 2001, 2 mg, PM
Novalbos 2010, 1 mg, AS=2.0
Novalbos 2010, 1 mg, AS=1.0
Novalbos 2010, 1 mg, AS=0.0
Novalbos 2010, 1 mg, AS=3.0
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(b) GOF plot - Cmax
risperidone

Bondolfi 2001, 2 mg, EM
Bondolfi 2001, 2 mg, PM
Novalbos 2010, 1 mg, AS=2.0
Novalbos 2010, 1 mg, AS=1.0
Novalbos 2010, 1 mg, AS=0.0
Novalbos 2010, 1 mg, AS=3.0
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(c) GOF plot - plasma concentrations
 risperidone

Bondolfi 2001, 2 mg, EM
Bondolfi 2001, 2 mg, PM
Novalbos 2010, 1 mg, AS=2.0
Novalbos 2010, 1 mg, AS=1.0
Novalbos 2010, 1 mg, AS=0.0
Novalbos 2010, 1 mg, AS=3.0

Figure S4.3.7: Goodness of fit plots. Predicted versus observed (a) AUClast, (b) Cmax and (c)
plasma concentration values for all DGI studies. The solid black line marks the line of identity, the
dashed grey lines mark the 0.8- to 1.25-fold range, the solid grey lines indicate the 0.5- to 2-fold range.
Colored symbols represent the study population given in the legend.
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(a) GOF plot - AUClast
9-hydroxyrisperidone

Novalbos 2010, 1 mg, AS=2.0
Novalbos 2010, 1 mg, AS=1.0
Novalbos 2010, 1 mg, AS=0.0
Novalbos 2010, 1 mg, AS=3.0
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(b) GOF plot - Cmax
9-hydroxyrisperidone

Novalbos 2010, 1 mg, AS=2.0
Novalbos 2010, 1 mg, AS=1.0
Novalbos 2010, 1 mg, AS=0.0
Novalbos 2010, 1 mg, AS=3.0
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(c) GOF plot - plasma concentrations
9-hydroxyrisperidone

Novalbos 2010, 1 mg, AS=2.0
Novalbos 2010, 1 mg, AS=1.0
Novalbos 2010, 1 mg, AS=0.0
Novalbos 2010, 1 mg, AS=3.0

Figure S4.3.8: Goodness of fit plots. Predicted versus observed (a) AUClast, (b) Cmax and (c)
plasma concentration values for all DGI studies. The solid black line marks the line of identity, the
dashed grey lines mark the 0.8- to 1.25-fold range, the solid grey lines indicate the 0.5- to 2-fold range.
Colored symbols represent the study population given in the legend.
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S4.3.3 DGI Ratios

10 1 100 101

Observed DGI AUClast ratio

10 1

100

101

Pr
ed

ict
ed

 D
GI

 A
UC

la
st

 ra
tio

(a) DGI AUClast ratios

10 1 100 101

Observed DGI Cmax ratio

10 1

100

101

Pr
ed

ict
ed

 D
GI

 C
m

ax
 ra

tio

(b) DGI Cmax ratios
Bondolfi 2001 - PM vs EM, Risperidone
Novalbos 2010 - AS = 3.0 vs AS = 2.0, Risperidone
Novalbos 2010 - AS = 3.0 vs AS = 2.0, 9-Hydroxyrisperidone
Novalbos 2010 - AS = 1.0 vs AS = 2.0, Risperidone
Novalbos 2010 - AS = 1.0 vs AS = 2.0, 9-Hydroxyrisperidone
Novalbos 2010 - AS = 0.0 vs AS = 2.0, Risperidone
Novalbos 2010 - AS = 0.0 vs AS = 2.0, 9-Hydroxyrisperidone

  AUClast ratios within Guest et al.  criteria: 7/7
  GMFE(AUClast ratios): 1.11

   Cmax ratios within Guest et al.  criteria: 7/7
  GMFE(Cmax ratios): 1.16

Figure S4.3.9: DGI ratio plot. Predicted versus observed (a) AUClast and (b) Cmax DGI ratios for
all DGI studies. The solid straight black line marks the line of identity, the solid curved black line
shows the prediction success limits proposed by Guest et al. [14], the dashed grey lines mark the 0.8-
to 1.25-fold range, the solid grey lines indicate the 0.5- to 2-fold range. Colored symbols represent
the study population given in the legend.
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S5 Abbreviations
AS CYP2D6 activity score

AUC Area under the plasma concentration-time curve

AUClast AUC from the time of the first concentration measurement to the last time point of
concentration measurement

Be Berezhkovskiy calculation method [4]

cap Capsule

CLhep Hepatic clearance

Cmax Peak plasma concentration

CR Controlled release

CYP2C19 Cytochrome P450 2C19

CYP2D6 Cytochrome P450 2D6

CYP3A4 Cytochrome P450 3A4

DGI Drug-gene interaction

EHC Enterohepatic circulation

EM Extensive metabolizer

fumic Free fraction of compound in microsomal incubation

fu Fraction unbound

g- Genotyped

GFR Glomerular filtration rate

ICRP International Commission on Radiological Protection

inf Infusion

iv Intravenous

kcat Catalytic rate constant

Ki Dissociation constant of the inhibitor-enzyme complex

kinact Maximum inactivation rate constant

KM Michaelis-Menten constant

logP Partition coefficient

MW Molecular weight

NHANES Third National Health and Nutrition Examination Survey

p- Phenotyped

P-gp P-glycoprotein

PBPK Physiologically based pharmacokinetic

pKa Acid dissociation constant

perm. Permeability

PM Poor metabolizer

po Oral
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qd Once daily

R&R Rodgers and Rowland calculation method [40]

RT-PCR Reverse transcription polymerase chain reaction

sd Single dose

SD Standard deviation

sol Oral solution

tab Tablet
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S1. PBPK Model Building
S1.1. Clinical Studies
Plasma and renal excretion profiles of (E)-clomiphene ((E)-Clom) and its metabolites from a pharma-
cokinetic panel study with 20 healthy female volunteers, that were assigned to six different cytochrome 
P450 (CYP) 2D6 activity scores (AS), were available for model building and evaluation (see Table 1 
in the main manuscript for demographic information). The pharmacokinetic panel study was com-
plemented with digitized data from published clinical studies (study search criteria were (a) studies 
with intravenous or oral (E)-Clom administration and (b) reported pharmacokinetic data of (E)-
Clom and/or its metabolites (E)-4-hydroxyclomiphene ((E)-4-OH-Clom), (E)-N-desethylclomiphene 
((E)-DE-Clom) and (E)-4-hydroxy-N-desethylclomiphene ((E)-4-OH-DE-Clom). Data originating 
from two single dose and two multiple dose studies with oral (E)-Clom administration could be 
integrated. To the best of our knowledge, plasma profiles o f  ( E )-Clom a n d i t s m e tabolites after 
intravenous administration were not publicly available. Information on the identified a nd integrated 
published clinical studies are listed in Table S2. As CYP2D6 AS and phenotype of corresponding 
study participants were not reported, CYP2D6 catalytic rate constants (kcat) values in the PBPK 
model were estimated (see Table S1).

Table S1. Optimized CYP2D6 kcat values for each study.
CYP2D6 kcat values Mikkelson et al.

1986 [1]
Study Ratioph.
1991 [2]

Wiehle et al.
2013 (a) [3]

Wiehle et al.
2013 (b)[3]

Wiehle et al.
2013 (c) [3]

Miller et al.
2018 [4]

(E)-Clom → (E)-4-OH-Clom 213.0 283.1 87.7 124.1 43.3 18.1
(E)-Clom → undef. 90.6 120.5 37.3 52.8 18.4 7.7
(E)-Clom → (E)-DE-Clom 84.4 112.1 34.8 49.1 17.1 7.2

CYP: cytochrome P450, (E)-4-OH-Clom: (E)-4-hydroxyclomiphene, (E)-Clom: (E)-clomiphene, (E)-DE-Clom: (E)-N-desethylclomiphene,
kcat: catalytic rate constant, Ratioph.: Ratiopharm® GmbH, undef.: undefined metabolite

Of note, in the pharmacokinetic panel study, two study participants with the CYP2D6 genotypes
*9/*10 and *9/*41 had been classified as AS=0.75. Here, a high interindividual variability in the
plasma profiles could be observed. The study participant genotyped as *9/*41 showed unexpectedly
high (E)-Clom plasma concentrations for an AS=0.75 individual with (E)-Clom levels comparable
with those of poor metabolizers (PM). Since the allele haplotype *41 has shown a high dispersion in
CYP2D6 enzyme activity, the respective individual was excluded from the dataset [5].
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Table S2. Overview of clinical study data from literature used for model evaluation.
Clinical study Route Dose

[mg]a
E/Z
ratio

n Females
[%]

Age
[years]b

Weight
[kg]b

BMI
[kg/m2]b

Metabolites
measured

CYP2D6
genotyped

Mikkelson et al. 1986 [1] po, tab, s.d. 50 -c 23 100 32 62.4 - no no
Study Ratioph. 1991 [2] po, tab, s.d. 50 62/38 18 - - - - no no
Wiehle et al. 2013 (a) [3] po, caps, m.d. 6.25 100/0 16 0 53.3±10.2 - 34.7±7.2 no no
Wiehle et al. 2013 (b) [3] po, caps, m.d. 12.5 100/0 14 0 53.3±10.2 - 34.7±7.2 no no
Wiehle et al. 2013 (c) [3] po, caps, m.d. 25 100/0 16 0 53.3±10.2 - 34.7±7.2 no no
Miller et al. 2018 [4] po, tab, m.d. 50 62/38 12 0 31.5±3.6 77.9±8.2 24.4±2.4 no no

BMI: body mass index, caps: capsule, CYP: cytochrome P450, E/Z : (E)-/(Z)-clomiphene, m.d.: multiple dose, n: number of subjects, po: per oral,
Ratioph.: Ratiopharm® GmbH, s.d.: single dose, tab: tablet
a (E)-/(Z)-clomiphene citrate
b mean (±SD) if applicable
c E/Z-ratio of 62/38 was assumed
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S1.2. System-dependent Parameters and Virtual Populations
Virtual individuals were created in PK-Sim®, using the published information on the respective study 
population, including mode of ethnicity and gender as well as mean values of age, weight and height. 
For the study population in the study from Ratiopharm® GmbH [2], demographic information were 
not provided. Here, the default values of a 30-year-old male European individual with body weight 
of 73 kg and height of 176 cm according to the International Commission on Radiological Protection 
(ICRP) reference values were used [6]. Distribution and abundance of enzymes in the different 
tissues was implemented according to the PK-Sim® expression database [7]. For the generation 
of virtual populations, 1000 individuals were created according to the respective study population 
demographics. Demographic characteristics of virtual individuals were varied within the ICRP [6] and 
the third National Health and Nutrition Examination Survey (NHANES) [8] limits by an implemented 
algorithm in PK-Sim®. The corresponding algorithms for the generation of virtual populations have 
been reported by Willmann and coworkers [9]. For the study by Mikkelson et al. [1] and the study 
from Ratiopharm® GmbH [2] an age range of 20 to 50 years was assumed.
Variabilities for CYP2B6 and CYP3A4 enzyme abundances in the virtual populations were integrated 
and variability in CYP2D6 abundance was allowed for study populations that were not genotyped 
and thus not stratified by CYP2D6 AS. For the pharmacokinetic panel s tudy, CYP2D6 k cat values 
differ across CYP2D6 AS groups, already accounting for varying CYP2D6 abundance and/or activity. 
Thus, CYP2D6 expression variability was set to 0 for the respective population simulations. 
System-dependent parameters including reference concentrations and enzyme expression variabilities 
are listed in Table S3.

5
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Table S3. System-dependent parameters and expression of relevant enzymes.
Enzyme /
Processes

Mean reference
concentration [µmol/L]a

GeoSD of the reference
concentration

Relative expression
in different organsb

Half-life
liver [hours]

Half-life
intestine [hours]

Enzymes
CYP2B6 1.56 [10] 1.40c RT-PCR [11] 32 23
CYP2D6 0.40 [10] 0d RT-PCR [11] 51 23
CYP3A4 4.32 [10] 1.18 (liver)[7]

1.45 (duodenum)[7]
RT-PCR [11] 36 [12] 23 [13]

Processes
Unspec. hep. CL of (E)-4-OH-Clom - 1.40c

Unspec. hep. CL of (E)-4-OH-DE-Clom - 1.40c

CYP: cytochrome P450, (E)-4-OH-Clom: (E)-4-hydroxyclomiphene, (E)-4-OH-DE-Clom: (E)-4-hydroxy-N-desethylclomiphene, GeoSD: geometric standard deviation,
RT-PCR: reverse transcription polymerase chain reaction, unspec. hep. CL: unspecific hepatic clearance
a [µmol protein/L] in the tissue of the highest expression
b PK-Sim® expression database profile
c geometric standard deviation with coefficient of variation (CV) of 35 % assumed
d as described in Section 1.26
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S1.3. Supplementary Information on (E)-clomiphene PBPK Model Building
The parent-metabolite PBPK model of (E)-Clom was developed using a middle-out approach, com-
bining information on drug- and system-specific parameters from literature with a parameter estima-
tion step based on clinical trial data [14]. In vitro, in silico and clinical in vivo data were combined 
to inform model input parameters [14]. Information about absorption, distribution, metabolism and 
excretion (ADME) processes were used to incorporate relevant enzymes.
Metabolism via CYP enzymes was implemented as Michaelis-Menten kinetic processes. To account 
for nonspecific binding in in vitro assays, apparent Michaelis-Menten constant (Km) values informed 
from literature were adjusted by the free fraction of drug compound as suggested by Obach and 
Austin et al. [15, 16]. Km and vmax values were available only for composite metabolic pathway 
reactions, while parameters for each specific C YP e nzyme i nvolved i n t he r espective p athway were 
not reported. When multiple CYP enzymes were incorporated in one metabolic pathway (see Fig-
ure 2 in the main manuscript), identical Km values were allocated to each CYP enzyme and the 
corresponding kcat estimated with a fixed r atio b ased o n i n v itro r esults o n t he m etabolic enzyme 
activities [17, 18].
In the PBPK model, three metabolic pathways were implemented for the parent compound (E)-
Clom: metabolism to (E)-DE-Clom, metabolism to (E)-4-OH-Clom and metabolism to
(Z )-3-hydroxyclomiphene (implemented as an undefined m etabolite). The latter enzymatic pathway, 
mediated via CYP2D6, was estimated with a 1.8-fold higher intrinsic clearance compared to the 
formation of (E)-4-OH-Clom in the PBPK model according to literature [19]. Further, the forma-
tion of (E)-DE-Clom is primarily catalyzed by CYP3A4 and to some extent by CYP2D6 [17, 18]. 
This was integrated by accounting for the 80:20 metabolic ratio of CYP3A4 to CYP2D6 reported by 
Mazzarino and coworkers [20]. (E)-DE-CLOM itself is also metabolized via CYP3A4 and CYP2D6 
to (E)-N,N-didesethylclomiphene (implemented as an undefined metabolite) [ 17, 1 8]. As previously 
described, the ratio of the corresponding measured in vitro metabolic enzyme activities was used dur-
ing the parameter estimation step for optimization of kcat values (kcat, CYP3A4 = 0.13 * kcat, CYP2D6)
[17, 18].
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S1.4. Drug-dependent Parameter Tables

Table S4. Drug-dependent parameters for (E )-clomiphene.
Parameter Value Unit Source Literature Reference Description

MW 405.96 g/mol Literature 405.96 [22] Molecular weight
pKa (base) 9.31 - Literature 9.31 [23] Acid dissociation constant
Solubility (pH 6.8) 0.0138 mg/ml Literature 0.0138 [24] Solubility
logP 5.67 - Optimized 5.18, 6.08, 6.48, 6.65 [23, 25–27] Lipophilicity
fu 0.08 % Optimized 1.42a [21] Fraction unbound
CYP2D6 Km → (E)-4-OH-Clom 0.13 µmol/l Literature 0.13b [19] Michaelis-Menten constant
CYP2D6 kcat → (E)-4-OH-Clom 306.4c 1/min Optimized - - Catalytic rate constant
CYP2D6 Km → undef. 0.03 µmol/l Literature 0.03b [19] Michaelis-Menten constant
CYP2D6 kcat → undef. 130.4c 1/min Optimized - - Catalytic rate constant
CYP2B6 Km → (E)-4-OH-Clom 0.60 µmol/l Literature 0.60b [17, 18] Michaelis-Menten constant
CYP2B6 kcat → (E)-4-OH-Clom 7.5 1/min Optimized - - Catalytic rate constant
CYP2D6 Km → (E)-DE-Clom 0.78 µmol/l Literature 0.78b [17, 18] Michaelis-Menten constant
CYP2D6 kcat → (E)-DE-Clom 121.4c 1/min Optimized - - Catalytic rate constant
CYP3A4 Km → (E)-DE-Clom 0.78 µmol/l Literature 0.78b [17, 18] Michaelis-Menten constant
CYP3A4 kcat → (E)-DE-Clom 45.0 1/min Optimized - - Catalytic rate constant
GFR fraction 0.92 - Optimized - - Fraction of filtered drug in the urine
EHC continuous fraction 1.00 - Assumed - - Fraction of bile continually released
Partition coefficients Diversed - Calculated Schmitt [28] Cell to plasma partition coefficients
Cellular permeability Diversed cm/min Calculated Ch. dep. Schmitt [29] Permeability into the cellular space
Intestinal permeability 0.08 cm/min Optimized - - Transcellular intestinal permeability
Tablet Weibull time 6.80 min Assumed - e Dissolution time (50 % dissolved)
Tablet Weibull shape 0.47 - Assumed - e Dissolution profile shape

Ch. dep. Schmitt: Charge dependent Schmitt calculation method, CYP: cytochrome P450, (E)-4-OH-Clom: (E)-4-hydroxyclomiphene,
(E)-DE-Clom: (E)-N-desethylclomiphene, EHC: enterohepatic circulation, GFR: glomerular filtration rate, IM: intermediate metabolizers,
IVSF: in vitro scaling factor, NM: normal metabolizers, UM: ultrarapid metabolizers, undef.: undefined metabolite
a fu was estimated with the classification model by Watanabe et al. [21]
b Km values from literature were adapted with the calculated fu,inc=0.024, considering nonspecific binding in in vitro assays according to [15, 16]
c Only CYP2D6 kcat values of NM are shown while IM- and UM-kcat values were extrapolated according to Equation 1 in the main manuscript
(IVSFs represented in Table S8)
d values differ across the organs
e see Section 1.6
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Table S5. Drug-dependent parameters for (E )-N-desethylclomiphene.
Parameter Value Unit Source Literature Reference Description

MW 377.91 g/mol Literature 377.91 [30] Molecular weight
pKa (base) 8.14 - Optimized 9.59 [30] Acid dissociation constant
Solubility (pH 6.5) 0.46 mg/ml Literature 0.46 [30] Solubility
logP 4.17 - Optimized 5.74, 6.4 [30, 31] Lipophilicity
fu 0.86 % Optimized 1.37a [21] Fraction unbound
CYP2D6 Km → (E)-4-OH-DE-Clom 0.49 µmol/l Literature 0.49b [17, 18] Michaelis-Menten constant
CYP2D6 kcat → (E)-4-OH-DE-Clom 64.5c 1/min Optimized - - Catalytic rate conbstant
CYP2D6 Km → undef. 0.97 µmol/l Literature 0.97b [17, 18] Michaelis-Menten constant
CYP2D6 kcat → undef. 5.8c 1/min Optimized - - Catalytic rate constant
CYP3A4 Km → undef. 0.97 µmol/l Literature 0.97b [17, 18] Michaelis-Menten constant
CYP3A4 kcat → undef. 0.8 1/min Optimized - - Catalytic rate constant
GFR fraction 0.10 - Optimized - - Fraction of filtered drug in the urine
EHC continuous fraction 1.00 - Assumed - - Fraction of bile continually released
Partition coefficients Diversed - Calculated R&R [32, 33] Cell to plasma partition coefficients
Cellular permeability Diversed cm/min Calculated Ch. dep. Schmitt [29] Permeability into the cellular space

Ch. dep. Schmitt: Charge dependent Schmitt caclulation method, CYP: cytochrome P450,
(E)-4-OH-DE-Clom: (E)-4-hydroxy-N-desethylclomiphene, EHC: enterohepatic circulation, GFR: glomerular filtration rate,
IM: intermediate metabolizers, IVSF: in vitro scaling factor, NM: normal metabolizers, R&R: Rodgers and Rowland calculation method,
UM: ultrarapid metabolizers, undef.: undefined metabolite
a fu was estimated with the classification model by Watanabe et al. [21]
b Km values from literature were adapted with the calculated fu,inc=0.059, considering nonspecific binding in in vitro assays according to [15, 16]
c Only CYP2D6 kcat values of NM are shown while IM- and UM-kcat values were extrapolated according to Equation 1 in the main manuscript
(IVSFs represented in Table S8)
d values differ across the organs
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Table S6. Drug-dependent parameters for (E )-4-hydroxyclomiphene.
Parameter Value Unit Source Literature Reference Description

MW 421.97 g/mol Literature 421.97 [34] Molecular weight
pKa (acid) 8.64 - Literature 8.64 [34] Acid dissociation constant
pKa (base) 7.90 - Optimized 9.41 [34] Acid dissociation constant
Solubility (pH 6.5) 0.06 mg/ml Literature 0.06 [34] Solubility
logP 5.50 - Optimized 5.31, 5.64 [25, 34] Lipophilicity
fu 0.45 % Optimized 0.6, 1.33a [21, 35] Fraction unbound
CYP2D6 Km → undef. 3.60 µmol/l Literature 3.60b [19] Michaelis-Menten constant
CYP2D6 kcat → undef. 855.2c 1/min Optimized - - Catalytic rate constant
CYP3A4 Km → (E)-4-OH-DE-Clom 3.40 µmol/l Literature 3.40b [17, 18] Michaelis-Menten constant
CYP3A4 kcat → (E)-4-OH-DE-Clom 19.5 1/min Optimized - - Catalytic rate constant
Unspec. hep. CL → undef. 23.78 1/min Optimized - - Elimination from plasma

(first-order process in the liver)
GFR fraction 0.24 - Optimized - - Fraction of filtered drug in the urine
EHC continuous fraction 1.00 - Assumed - - Fraction of bile continually released
Partition coefficients Diversed - Calculated Berez. [36] Cell to plasma partition coefficients
Cellular permeability 2.23 cm/min Calculated PK-Sim [37] Permeability into the cellular space

Berez.: Berezhkovskiy calculation method, CYP: cytochrome P450, (E)-4-OH-DE-Clom: (E)-4-hydroxy-N-desethylclomiphene,
EHC: enterohepatic circulation, GFR: glomerular filtration rate, IM: intermediate metabolizers, IVSF: in vitro scaling factor,
NM: normal metabolizers, PK-Sim: PK-Sim standard calculation method, UM: ultrarapid metabolizers, undef.: undefined metabolite,
unspec. hep. CL: unspecific hepatic clearance
a fu was estimated with the classification model by Watanabe et al. [21]
b Km values from literature were adapted with the calculated fu,inc=0.099, considering nonspecific binding in in vitro assays according to [15, 16]
c Only CYP2D6 kcat values of NM are shown while IM- and UM-kcat values were extrapolated according to Equation 1 in the main manuscript
(IVSFs represented in Table S8)
d values differ across the organs
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Table S7. Drug-dependent parameters for (E )-4-hydroxy-N-desethyl-clomiphene.
Parameter Value Unit Source Literature Reference Description

MW 393.91 g/mol Literature 393.91 [38] Molecular weight
pKa (acid) 8.69 - Literature 8.69 [38] Acid dissociation constant
pKa (base) 9.65 - Literature 9.65 [38] Acid dissociation constant
Solubility (pH 6.5) 0.17 mg/ml Literature 0.17 [38] Solubility
logP 3.71 - Optimized 4.47 [38] Lipophilicity
fu 1.32 % Calculated 1.32a [21] Fraction unbound
CYP2D6 Km → undef. 8.86 µmol/l Assumed 8.86b,c - Michaelis-Menten constant
CYP2D6 kcat → undef. 211.7d 1/min Optimized - - Catalytic rate constant
Unsp. hep. CL → undef. 8.50 1/min Optimized - - Elimination from plasma

(first-order process in the liver)
GFR fraction 0.13 - Optimized - - Fraction of filtered drug in the urine
EHC continuous fraction 1.00 - Assumed - - Fraction of bile continually released
Partition coefficients Diversee - Calculated Schmitt [28] Cell to plasma partition coefficients
Cellular permeability Diversee cm/min Calculated Ch. dep. Schmitt [29] Permeability into the cellular space

Ch. dep. Schmitt: Charge dependent Schmitt calculation method, CYP: cytochrome P450, (E)-4-OH-Clom: (E)-4-hydroxyclomiphene,
(E)-4-OH-DE-Clom: (E)-4-hydroxy-N-desethylclomiphene, EHC: enterohepatic circulation, GFR: glomerular filtration rate,
IM: intermediate metabolizers, IVSF: in vitro scaling factor, NM: normal metabolizers, UM: ultrarapid metabolizers,
undef.: undefined metabolite, unsp. hep. CL: unspecific hepatic clearance
a fu was estimated with the classification model by Watanabe et al. [21]
b Km values from literature were adapted with the calculated fu,inc=0.243, considering nonspecific binding in in vitro assays according to [15, 16]
c Km value for CYP2D6-mediated hydroxylation of (E)-4-OH-DE-Clom was assumed to be equal to Km value of the CYP2D6-mediated hydroxylation
of (E)-4-OH-Clom
d Only CYP2D6 kcat values of NM are shown while IM- and UM-kcat values were extrapolated according to Equation 1 in the main manuscript
(IVSFs represented in Table S8)
e values differ across the organs

S1.5. Calculation of Fractions Metabolized
The fraction metabolized (fm) of (E)-Clom via CYP2D6 was calculated according to Equation S1, 
using the observed relative AUClast increase between the PM population and the control group
(normal metabolizers (NM)) [39]. Calculation yielded a CYP2D6 fm of ˜90%. In addition, data from 
the CYP2D6 NM population in the clarithromycin DDI scenario (CYP3A4 inhibition) was used to
estimate fm of (E)-Clom via CYP3A4 to inform model development regarding CYP3A4-dependent 
(E)-Clom degradation. For this, the observed relative AUClast increase in the NM population between 
the DDI scenario with CYP3A4 inhibition and the control scenario without inhibition was used, 
yielding a CYP3A4 fm of about 13%. Of note, a complete CYP3A4 inhibition through clarithromycin 
was assumed, given the strong and mechanism-based inhibition through clarithromycin, which was 
administered twice a day for four days before the victim drug, (E)-Clom, was administered.

1
1 − fm

= AUClast,effect, AS=i
AUClast,control

(S1)

In case of CYP2D6 fm calculation, AUClast, effect represents the AUClast of (E)-Clom for the PM
population, while AUClast, control represents the AUClast of (E)-Clom for the NM population. For
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calculation of the CYP3A4 fm, AUClast, effect represents the A UClast of (E)-Clom for the NM popula-
tion in the DDI scenario with clarithromycin, while AUClast, control represents the AUClast of (E)-Clom 
for the NM population without concomitant clarithromycin administration.

S1.6. Formulations
Dissolution profiles f or c lomiphene c itrate t ablets a nd ( E)-Clom c itrate c apsules were n ot publicly 
available. However, according to the U.S. pharmacopoeia, the dissolution rate within the first 30 
minutes of clomiphene citrate tablets is required to be at least 75% [40]. This information was used 
to inform the dissolution shape and time (50% dissolved) parameters of a Weibull function, which 
was employed as the formulation in PK-Sim® (mathematical implementation see Equation S2 and 
Equation S3). The respective parameter values are represented in Table S4.

m = 1 − exp
⎛⎝−(t − Tlag)β

α

⎞⎠ (S2)

with α = (Td)β (S3)

Here, m represents the fraction of dissolved drug at time t, Tlag is the lag time before onset of 
dissolution, α is the scaling parameter, β the shape parameter and Td the time needed to dissolve 
63% of the formulation [37].

S1.7. Handling Data Below the Lower Limit of Quantification (LLOQ)
In the pharmacokinetic panel study used for model building and evaluation, 9% of measured concen-
trations fell below the lower limit of quantification (LLOQ). For handling lower limit of quantification 
(LLOQ) data, a combination of the M5 and M6 method [41] was used. Below limit of quantification 
(BLQ) individual plasma concentrations were substituted by LLOQ/2. Subsequently, mean concen-
trations were calculated for each CYP2D6 activity score (AS) and only the first BLQ data was used 
for model building and evaluation, while subsequent concentrations were excluded. During the initial 
period of metabolite formation, BLQ data also appeared in the ascending branch of the plasma pro-
files. I n t his c ase, t he l ast B LQ c oncentration was i ncluded i n t he d ata, w hile B LQ concentrations 
before this time point were discarded.

12
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S2. Drug-Gene-Interaction (DGI) Modeling
S2.1. CYP2D6 in vitro Scaling Factors
The estimated CYP2D6 kcat values for the NM population were extrapolated to the intermediate 
metabolizers (IM) (AS=0.5, AS=0.75 and AS=1) and ultrarapid metabolizers (UM) populations 
according to Equation 1 in the main manuscript, using in vitro scaling factors (IVSFs). Determination 
of IVSFs were based on AS-specific in v itro metabolite formation rates relative to the corresponding 
formation rate in NM as a reference. The respective IVSFs for each CYP2D6-dependent pathway 
are depicted in Table S8. Measured in vitro data for (E)-4-OH-Clom and (E)-4-OH-DE-Clom AS-
specific formation rates were available, while mean values were assumed for the remaining CYP2D6-
dependent metabolic pathways [17].

Table S8. Employed in vitro scaling factors (IVSFs) for individual CYP2D6 activity scores.
CYP2D6-mediated metabolic pathways AS=0 AS=0.5 AS=0.75 AS=1 AS=2 AS=3

(E)-Clom → (E)-4-OH-Clom 0 0.19 0.27 0.57 1 1.52
(E)-Clom → (E)-DE-Clom 0 0.17 0.23 0.51 1 1.41
(E)-Clom → undef. 0 0.17 0.23 0.51 1 1.41
(E)-4-OH-Clom → undef. 0 0.17 0.23 0.51 1 1.41
(E)-4-OH-DE-Clom → undef. 0 0.17 0.23 0.51 1 1.41
(E)-DE-Clom → (E)-4-OH-DE-Clom 0 0.16 0.19 0.44 1 1.30
(E)-DE-Clom → undef. 0 0.17 0.23 0.51 1 1.41

AS: CYP2D6 activity score, CYP: cytochrome P450, (E)-4-OH-Clom: (E)-4-hydroxyclomiphene,
(E)-4-OH-DE-Clom: (E)-4-hydroxy-N-desethylclomiphene, (E)-Clom: (E)-clomiphene,
(E)-DE-Clom: (E)-N-desethylclomiphene, undef.: undefined metabolite

S3. Drug-Drug-(Gene)-Interaction (DD(G)I) Modeling
S3.1. Clarithromycin and Paroxetine
Clarithromycin acts as a mechanism-based inhibitor of CYP3A4, while paroxetine inhibits CYP2D6 
and to a minor extent CYP3A4 [42]. Inhibition mechanisms of CYP3A4 and CYP2D6 were imple-
mented according to the PK-Sim® manual [37]. Two previously published PBPK models of clar-
ithromycin [43] and paroxetine [44] were applied and coupled with the developed parent-metabolite 
PBPK model of (E)-Clom to assess the model prediction performance in the DD(G)I setting. Inter-
action parameters were used as published in the respective perpetrator PBPK models.
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S4. PBPK Model Evaluation
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Figure S1. Predicted and observed plasma concentration-time profiles (linear scale) of (E)-Clom (a–f), (E)-4-OH-Clom (g–l), 
(E)-DE-Clom (m–r) and (E)-4-OH-DE-Clom (s–x) for DGI scenarios. Solid lines de-pict predicted geometric mean 
concentration-time profiles in PM, IM, NM and UM. The respective semitranspar-ent areas show the geometric standard 
deviation of the population simulations (n=1000). Mean observed data are shown as symbols with the corresponding standard 
deviation. AS, CYP2D6 activity score; DGI, drug-gene inter-action; (E)-4-OH-Clom, (E )-4-hydroxyclomiphene; (E)-4-OH-
DE-Clom, (E )-4-hydroxy-N-desethylclomiphene;(E)-Clom, (E )-clomiphene; (E)-DE-Clom, (E )-N-desethylclomiphene; IM, 
intermediate metabolizers; n, num-ber of subjects; NM, normal metabolizers; PM, poor metabolizers; UM, ultrarapid 
metabolizers.
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S4.1.2. Plasma Profiles (Semilogarithmic Scale)
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Figure S2. Predicted and observed plasma concentration-time profiles (semilogarithmic scale) of (E)-Clom (a–f), 
(E)-4-OH-Clom (g–l), (E)-DE-Clom (m–r) and (E)-4-OH-DE-Clom (s–x) for DGI scenarios. Solid lines depict 
predicted geometric mean concentration-time profiles in the PM, IM, NM and UM populations. The respective 
semitransparent areas show the geometric standard deviation of the population simulations (n=1000). Mean observed data 
are shown as symbols with the corresponding standard deviation. AS, CYP2D6 activity score; DGI, drug-gene interaction; 
(E)-4-OH-Clom, (E )-4-hydroxyclomiphene; (E)-4-OH-DE-Clom, (E )-4-hydroxy-N-desethylclomiphene; (E)-Clom, (E )-
clomiphene; (E)-DE-Clom, (E )-N-desethylclomiphene; IM, intermediate metabolizers; n, number of subjects; NM, normal 
metabolizers; PM, poor metabolizers; UM, ultrarapid metab-olizers.
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S4.1.3. Goodness-of-Fit Plots 
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Figure S3. Predicted versus observed AUClast (a), Cmax (b) and plasma concentrations (c) of (E)-Clom (circles), (E)-4-
OH-Clom (triangles), (E)-DE-Clom (squares) and (E)-4-OH-DE-Clom (diamonds) in PM, IM, NM and UM (DGI 
scenarios). The black solid lines mark the lines of identity. Black dotted lines indicate 1.25-fold, black dashed lines 
indicate 2-fold deviation. AS, CYP2D6 activity score; DGI, drug-gene interaction;(E)-4-OH-Clom, (E )-4-
hydroxyclomiphene; (E)-4-OH-DE-Clom, (E )-4-hydroxy-N-desethylclomiphene; (E)-Clom, (E )-clomiphene; (E)-DE-
Clom, (E )-N-desethylclomiphene; IM, intermediate metabolizers; NM, normal metabolizers; PM, poor metabolizers; UM, 
ultrarapid metabolizers.
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Figure S4. Predicted versus observed DGI AUClast (a) and Cmax (b) ratios of (E)-Clom (circles), (E)-4-OH-
Clom (tri-angles), (E)-DE-Clom (squares) and (E)-4-OH-DE-Clom (diamonds) in PM, IM and UM. The straight 
black lines mark the lines of identity, the curved solid black lines show the limits of the predictive measure proposed 
by Guest et al. with 1.25-fold variability [46]. Black dotted lines indicate 1.25-fold, black dashed lines indicate 2-fold 
deviation. AS, CYP2D6 activity score; (E)-4-OH-Clom, (E )-4-hydroxyclomiphene; (E)-4-OH-DE-Clom, 
(E )-4-hydroxy-N-desethylclomiphene; (E)-Clom, (E)-clomiphene; (E)-DE-Clom, (E)-N-desethylclomiphene; IM, 
intermediate metabolizers; PM, poor metabolizers; UM, ultrarapid metabolizers.
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Figure S5. Predicted and observed renal excretion profiles (linear scale) of (E)-Clom (a–f), (E)-4-OH-Clom (g–l), (E)-DE-
Clom (m–r) and (E)-4-OH-DE-Clom (s–x) for DGI scenarios. Solid lines depict predicted geometric mean profiles in 
PM, IM, NM and UM. The respective semitransparent areas show the geometric standard deviation of the population 
simulations (n=1000). Mean observed data are shown as symbols with the corresponding standard deviation. AS, 
CYP2D6 activity score; DGI, drug-gene interaction; (E)-4-OH-Clom, (E )-4-hydroxyclomiphene; (E)-4-OH-DE-Clom, 
(E )-4-hydroxy-N-desethylclomiphene; (E)-Clom, (E )-clomiphene; (E)-DE-Clom, (E )-N-desethylclomiphene; IM, 
intermediate metabolizers; n, number of subjects; NM, normal metabolizers, PM, poor metabolizers; UM, ultrarapid 
metabolizers.
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S4.1.5. Plasma Profiles from Literature (Linear Scale)
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Figure S6. Predicted and observed plasma concentration-time profiles (linear scale) of digitized studies from 
literature after single (a,b) and multiple (c–f) dosing. Solid lines depict predicted geometric mean concentration-
time profiles of (E )-Clom. The respective semitransparent areas show the geometric standard deviation of the population 
simulations (n=1000). Mean observed data are shown as symbols with the corresponding standard deviation. (E)-Clom, 
(E )-clomiphene; n, number of subjects; Ratioph., Ratiopharm® GmbH.
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S4.1.6. Plasma Profiles from Literature (Semilogarithmic Scale)
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Figure S7. Predicted and observed plasma concentration-time profiles (semilogarithmic scale) of digitized studies 
from literature after single (a,b) and multiple (c–f) dosing. Solid lines depict predicted geometric mean 
concentration-time profiles o f (E ) -Clom. T he r espective s emitransparent a reas s how t he g eometric standard 
deviation of the population simulations (n=1000). Mean observed data are shown as symbols with the corre-
sponding standard deviation. (E)-Clom, (E )-clomiphene; n, number of subjects; Ratioph., Ratiopharm® GmbH.
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S4.1.7. Goodness-of-Fit Plots (from Literature)
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Figure S8. Predicted versus observed (a) AUClast, (b) Cmax and (c) plasma concentrations of (E)-Clom. The black

solid lines mark the lines of identity. Black dotted lines indicate 1.25-fold, black dashed lines indicate 2-fold 
deviation. Ratioph., Ratiopharm® GmbH.
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Figure S9. Predicted and observed plasma concentration-time profiles (linear scale) of (E)-Clom (a–e),

(E)-4-OH-Clom (f–j), (E)-DE-Clom (k–o) and (E)-4-OH-DE-Clom (p–t) for DD(G)I scenarios in PM, 
IM, NM and UM. Grey dashed lines depict the predicted geometric mean concentration-time profiles without 
clarithromycin and paroxetine (control), turquoise lines represent the predicted geometric mean profiles in presence 
of paroxetine and pink lines the predicted geometric mean profiles i n presence o f c larithromycin ( DD(G)I). The 
respective semitransparent areas show the geometric standard deviation of the population simulations (n=1000). 
Mean observed data are shown as symbols with the corresponding standard deviation. For a better visibility, 
DD(G)I scenarios were plotted with a time offset w ith t =0 a t t he fi rst do se of  th e pe rpetrator dr ug. AS, 
CYP2D6 activity score; Clarit., clarithromycin; DD(G)I, drug-drug and drug-drug-gene interactions; (E)-4-OH-
Clom, (E )-4-hydroxyclomiphene; (E)-4-OH-DE-Clom, (E )-4-hydroxy-N-desethylclomiphene; (E)-Clom, (E )-
clomiphene; (E)-DE-Clom, (E )-N-desethylclomiphene; IM, intermediate metabolizers; n, number of subjects; 
NM, normal metabolizers; Parox., paroxetine; PM, poor metabolizers; UM, ultrarapid metabolizers.
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Figure S10. Predicted and observed plasma concentration-time profiles (semilogarithmic scale) of (E)-

Clom (a–e), (E)-4-OH-Clom (f–j), (E)-DE-Clom (k–o) and (E)-4-OH-DE-Clom (p–t) for DD(G)I scenar-
ios in PM, IM, NM and UM. Grey dashed lines depict the predicted geometric mean concentration-time profiles 
without clarithromycin and paroxetine (control), turquoise lines represent the predicted geometric mean profiles 
in presence of paroxetine and pink lines the predicted geometric mean profiles in presence of c larithromycin. The 
respective semitransparent areas show the geometric standard deviation of the population simulations (n=1000). 
Mean observed data are shown as symbols with the corresponding standard deviation. For a better visibility, 
DD(G)I scenarios were plotted with a time offset w ith t =0 a t t he fi rst do se of  th e pe rpetrator dr ug. AS, 
CYP2D6 activity score; Clarit., clarithromycin; DD(G)I, drug-drug and drug-drug-gene interactions; (E)-4-
OH-Clom, (E )-4-hydroxyclomiphene; (E)-4-OH-DE-Clom, (E )-4-hydroxy-N-desethylclomiphene; (E)-Clom,
(E )-clomiphene; (E)-DE-Clom, (E )-N-desethylclomiphene; IM, intermediate metabolizers; n, number of sub-
jects; NM, normal metabolizers; Parox., paroxetine; PM, poor metabolizers; UM, ultrarapid metabolizers.
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S4.2.3. Goodness-of-Fit Plots 
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Figure S11. Predicted versus observed AUClast (a), Cmax (b) and plasma concentrations (c) of (E)-Clom (circles), (E)-

4-OH-Clom (triangles), (E)-DE-Clom (squares) and (E)-4-OH-DE-Clom (diamonds) for DD(G)I scenarios with 
clarithromycin and paroxetine, respectively in PM, IM, NM and UM. The black solid lines mark the lines of identity. 
Black dotted lines indicate 1.25-fold, black dashed lines indicate 2-fold deviation. AS, CYP2D6 activity score; DD(G)I, drug-
drug and drug-drug-gene interactions; (E)-4-OH-Clom, (E )-4-hydroxyclomiphene;(E)-4-OH-DE-Clom, (E )-4-hydroxy-N-
desethylclomiphene; (E)-Clom, (E )-clomiphene; (E)-DE-Clom, (E )-N-desethylclomiphene; IM, intermediate 
metabolizers; NM, normal metabolizers, PM, poor metabolizers; UM, ultrarapid metabolizers.

34

364 appendix b : supplementary materials



( a ) AUC

Observed AUC ratios

P
re

di
ct

ed
 A

U
C

 ra
tio

s

10−1 100 101 102

10−1

100

101

102

●

●

●

●

●

●

●

●

●

●

●

●

UM (AS = 3)
UM (AS = 3)
UM (AS = 3)
UM (AS = 3)
IM (AS = 1)
IM (AS = 1)
IM (AS = 1)
IM (AS = 1)

●

●

●

NM (AS = 2)
NM (AS = 2)
NM (AS = 2)
NM (AS = 2)
PM (AS = 0)
PM (AS = 0)
PM (AS = 0)
PM (AS = 0)
IM (AS = 0.5)
IM (AS = 0.5)
IM (AS = 0.5)
IM (AS = 0.5)

( b ) Cmax

Observed Cmax ratios

P
re

di
ct

ed
 C

m
ax

 ra
tio

s

10−2 10−1 100 101 102

10−2

10−1

100

101

102

●

●
●

● ●
●

●

●

●

●

●

●

UM (AS = 3)
UM (AS = 3)
UM (AS = 3)
UM (AS = 3)
IM (AS = 1)
IM (AS = 1)
IM (AS = 1)
IM (AS = 1)

●

●

●

NM (AS = 2)
NM (AS = 2)
NM (AS = 2)
NM (AS = 2)
PM (AS = 0)
PM (AS = 0)
PM (AS = 0)
PM (AS = 0)
IM (AS = 0.5)
IM (AS = 0.5)
IM (AS = 0.5)
IM (AS = 0.5)

Figure S12. Predicted versus observed DD(G)I AUClast (a) and Cmax (b) ratios of (E)-Clom (circles), (E)-4-OH-Clom
(triangles), (E)-DE-Clom (squares) and (E)-4-OH-DE-Clom (diamonds) in PM, IM, NM and UM. The straight 
black lines mark the lines of identity, the curved black lines show the limits of the predictive measure proposed by Guest 
et al. with 1.25-fold variability [46]. Black dotted lines indicate 1.25-fold, black dashed lines indicate 2-fold deviation. AS, 
CYP2D6 activity score; DD(G)I, drug-drug and drug-drug-gene interactions;(E)-4-OH-Clom, (E )-4-hydroxyclomiphene; 
(E)-4-OH-DE-Clom, (E )-4-hydroxy-N-desethylclomiphene; (E)-Clom, (E )-clomiphene; (E)-DE-Clom, (E )-N-
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Figure S13. Predicted and observed renal excretion profiles (linear scale) of (E)-Clom (a–e), (E)-4-OH-
Clom (f–j), (E)-DE-Clom (k–o) and (E)-4-OH-DE-Clom (p–t) for DD(G)I scenarios in PM, IM, NM 
and UM. Grey dashed lines depict the predicted geometric mean profiles i n a bsence o f c larithromycin and 
paroxetine (control), yellow solid lines represent the predicted geometric mean profiles in presence of paroxetine 
and orange solid lines represent the predicted geometric mean profiles i n presence o f c larithromycin (DD(G)I). 
The respective semitransparent areas show the geometric standard deviation of the population simulations 
(n=1000). Mean observed data are shown as symbols with the corresponding standard deviation. For a 
better visibility, DD(G)I scenarios were plotted with a time offset with t=0 at the first dose of  the perpetrator 
drug. AS, CYP2D6 activity score; Clarit., clarithromycin; DD(G)I, drug-drug and drug-drug-gene interactions;
(E)-4-OH-Clom, (E )-4-hydroxyclomiphene; (E)-4-OH-DE-Clom, (E )-4-hydroxy-N-desethylclomiphene; (E)-
Clom, (E )-clomiphene; (E)-DE-Clom, (E )-N-desethylclomiphene; IM, intermediate metabolizers; n, number of 
subjects; NM, normal metabolizers; Parox., paroxetine; PM, poor metabolizers; UM, ultrarapid metabolizers.
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S4.3. Quantitative PBPK Model Evaluation 

S4.3.1. Mean Relative Deviation (MRD)

Table S9. Mean relative deviation (MRD) values of DGI plasma concentration predictions.
Study Compound MRD Reference

PK Panel Study, PM (AS = 0) (E)-4-OH-Clom 1.49 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-DE-Clom 1.20 [19]
PK Panel Study, PM (AS = 0) (E)-Clom 1.42 [19]
PK Panel Study, PM (AS = 0) (E)-DE-Clom 1.38 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-Clom 2.00 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-DE-Clom 1.44 [19]
PK Panel Study, IM (AS = 0.5) (E)-Clom 1.31 [19]
PK Panel Study, IM (AS = 0.5) (E)-DE-Clom 2.04 [19]
PK Panel Study, IM (AS = 0.75) (E)-4-OH-Clom 2.45 [19]
PK Panel Study, IM (AS = 0.75) (E)-4-OH-DE-Clom 3.04 [19]
PK Panel Study, IM (AS = 0.75) (E)-Clom 3.24 [19]
PK Panel Study, IM (AS = 0.75) (E)-DE-Clom 5.42 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-Clom 1.96 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-DE-Clom 2.38 [19]
PK Panel Study, IM (AS = 1) (E)-Clom 1.99 [19]
PK Panel Study, IM (AS = 1) (E)-DE-Clom 2.52 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-Clom 1.40 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-DE-Clom 1.30 [19]
PK Panel Study, NM (AS = 2) (E)-Clom 1.39 [19]
PK Panel Study, NM (AS = 2) (E)-DE-Clom 1.38 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-Clom 2.26 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-DE-Clom 1.81 [19]
PK Panel Study, UM (AS = 3) (E)-Clom 1.30 [19]
PK Panel Study, UM (AS = 3) (E)-DE-Clom 1.50 [19]
Mikkelson et al. 1986 (E)-Clom 1.43 [1]
Miller et al. 2018 (E)-Clom 2.01 [4]
Study Ratioph. 1991 (E)-Clom 1.61 [2]
Wiehle et al. 2013 (a) (E)-Clom 1.14 [3]
Wiehle et al. 2013 (b) (E)-Clom 1.13 [3]
Wiehle et al. 2013 (c) (E)-Clom 1.33 [3]

Overall MRD: 1.95 (1.13–5.42)
21/30 MRD ≤ 2

AS: CYP2D6 acitivity score, DGI: drug-gene interaction, (E)-4-OH-Clom:
(E)-4-hydroxyclomiphene, (E)-4-OH-DE-Clom: (E)-4-hydroxy-N-desethylclomiphene,
(E)-Clom: (E)-clomiphene, (E)-DE-Clom: (E)-N-desethylclomiphene,
IM: intermediate metabolizers, NM: normal metabolizers, PK: pharmacokinetic,
PM: poor metabolizers, UM: ultrarapid metabolizers, Ratioph.: Ratiopharm® GmbH
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Table S10. Mean relative deviation (MRD) values of DD(G)I plasma concentration predictions.
Study Compound Perpetrator MRD Reference

PK Panel Study, PM (AS = 0) (E)-4-OH-Clom Clarithromycin 1.80 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-Clom Paroxetine 1.50 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-DE-Clom Clarithromycin 2.04 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-DE-Clom Paroxetine 2.18 [19]
PK Panel Study, PM (AS = 0) (E)-Clom Clarithromycin 1.72 [19]
PK Panel Study, PM (AS = 0) (E)-Clom Paroxetine 1.41 [19]
PK Panel Study, PM (AS = 0) (E)-DE-Clom Clarithromycin 4.87 [19]
PK Panel Study, PM (AS = 0) (E)-DE-Clom Paroxetine 2.04 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-Clom Clarithromycin 2.18 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-Clom Paroxetine 1.38 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-DE-Clom Clarithromycin 2.11 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-DE-Clom Paroxetine 1.73 [19]
PK Panel Study, IM (AS = 0.5) (E)-Clom Clarithromycin 1.55 [19]
PK Panel Study, IM (AS = 0.5) (E)-Clom Paroxetine 1.43 [19]
PK Panel Study, IM (AS = 0.5) (E)-DE-Clom Clarithromycin 1.92 [19]
PK Panel Study, IM (AS = 0.5) (E)-DE-Clom Paroxetine 1.53 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-Clom Clarithromycin 1.79 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-Clom Paroxetine 2.01 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-DE-Clom Clarithromycin 2.03 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-DE-Clom Paroxetine 1.38 [19]
PK Panel Study, IM (AS = 1) (E)-Clom Clarithromycin 1.30 [19]
PK Panel Study, IM (AS = 1) (E)-Clom Paroxetine 1.25 [19]
PK Panel Study, IM (AS = 1) (E)-DE-Clom Clarithromycin 1.53 [19]
PK Panel Study, IM (AS = 1) (E)-DE-Clom Paroxetine 1.29 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-Clom Clarithromycin 1.38 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-Clom Paroxetine 2.23 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-DE-Clom Clarithromycin 1.67 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-DE-Clom Paroxetine 1.52 [19]
PK Panel Study, NM (AS = 2) (E)-Clom Clarithromycin 1.44 [19]
PK Panel Study, NM (AS = 2) (E)-Clom Paroxetine 1.51 [19]
PK Panel Study, NM (AS = 2) (E)-DE-Clom Clarithromycin 1.62 [19]
PK Panel Study, NM (AS = 2) (E)-DE-Clom Paroxetine 2.19 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-Clom Clarithromycin 1.42 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-Clom Paroxetine 2.28 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-DE-Clom Clarithromycin 1.72 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-DE-Clom Paroxetine 1.71 [19]
PK Panel Study, UM (AS = 3) (E)-Clom Clarithromycin 1.46 [19]
PK Panel Study, UM (AS = 3) (E)-Clom Paroxetine 1.74 [19]
PK Panel Study, UM (AS = 3) (E)-DE-Clom Clarithromycin 1.47 [19]
PK Panel Study, UM (AS = 3) (E)-DE-Clom Paroxetine 2.38 [19]

Overall MRD: 1.83 (1.25–4.87)
28/40 MRD ≤ 2

AS: CYP2D6 acitivity score, DD(G)I: drug-drug and drug-drug-gene interactions, (E)-4-OH-Clom:
(E)-4-hydroxyclomiphene, (E)-4-OH-DE-Clom: (E)-4-hydroxy-N-desethylclomiphene, (E)-Clom: (E)-clomiphene,
(E)-DE-Clom: (E)-N-desethylclomiphene, IM: intermediate metabolizers, NM: normal metabolizers,
PK: pharmacokinetic, PM: poor metabolizers, UM: ultrarapid metabolizers
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S4.3.2. Geometric Mean Fold Error (GMFE)

Table S11. Geometric Mean Fold Error (GMFE) of AUClast and Cmax DGI Predictions.
AUClast Cmax

Study Compound Pred [ng⋅h
ml ] Obs [ng⋅h

ml ] Pred/Obs Pred [ ng
ml ] Obs [ ng

ml ] Pred/Obs Reference

PK Panel Study, PM (AS = 0) (E)-Clom 919.01 1095.56 0.84 27.00 44.53 0.61 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-Clom 102.28 93.66 1.09 0.98 1.23 0.79 [19]
PK Panel Study, PM (AS = 0) (E)-DE-Clom 3389.54 3473.88 0.98 29.59 27.34 1.08 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-DE-Clom 61.68 62.33 0.99 0.47 0.44 1.09 [19]
PK Panel Study, IM (AS = 0.5) (E)-Clom 401.77 422.50 0.95 20.81 26.89 0.77 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-Clom 330.20 513.99 0.64 5.61 14.50 0.39 [19]
PK Panel Study, IM (AS = 0.5) (E)-DE-Clom 741.34 446.69 1.66 14.89 14.86 1.00 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-DE-Clom 610.91 562.68 1.09 8.39 7.63 1.10 [19]
PK Panel Study, IM (AS = 0.75) (E)-Clom 344.04 136.73 2.52 19.30 9.96 1.94 [19]
PK Panel Study, IM (AS = 0.75) (E)-4-OH-Clom 349.10 246.20 1.42 5.89 13.33 0.44 [19]
PK Panel Study, IM (AS = 0.75) (E)-DE-Clom 575.65 102.23 5.63 12.62 6.39 1.98 [19]
PK Panel Study, IM (AS = 0.75) (E)-4-OH-DE-Clom 556.31 226.19 2.46 7.89 8.01 0.98 [19]
PK Panel Study, IM (AS = 1) (E)-Clom 168.98 89.54 1.89 14.93 8.53 1.75 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-Clom 306.54 214.87 1.43 7.69 9.29 0.83 [19]
PK Panel Study, IM (AS = 1) (E)-DE-Clom 187.42 79.09 2.37 6.88 2.59 2.66 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-DE-Clom 348.35 161.70 2.15 7.62 4.92 1.55 [19]
PK Panel Study, NM (AS = 2) (E)-Clom 101.66 82.93 1.23 12.20 10.82 1.13 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-Clom 236.46 218.30 1.08 12.59 15.72 0.80 [19]
PK Panel Study, NM (AS = 2) (E)-DE-Clom 53.16 58.47 0.91 4.09 4.50 0.91 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-DE-Clom 185.45 193.74 0.96 7.81 7.49 1.04 [19]
PK Panel Study, UM (AS = 3) (E)-Clom 75.53 66.21 1.14 10.74 7.72 1.39 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-Clom 205.20 94.52 2.17 12.76 9.26 1.38 [19]
PK Panel Study, UM (AS = 3) (E)-DE-Clom 32.98 23.91 1.38 3.05 1.93 1.58 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-DE-Clom 120.44 74.07 1.63 6.01 4.21 1.43 [19]
Mikkelson et al. 1986 (E)-Clom 35.20 35.70 0.99 5.86 4.27 1.37 [1]
Miller et al. 2018 (E)-Clom 7484.01 5121.29 1.46 17.89 10.51 1.70 [4]
Study Ratioph. 1991 (E)-Clom 39.73 33.60 1.18 5.55 2.96 1.88 [2]
Wiehle et al. 2013 (a) (E)-Clom 22.34 21.59 1.03 1.76 1.69 1.04 [3]
Wiehle et al. 2013 (b) (E)-Clom 36.73 36.53 1.01 3.16 2.93 1.08 [3]
Wiehle et al. 2013 (c) (E)-Clom 161.63 158.86 1.02 10.49 14.72 0.71 [3]

GMFE: 1.43 (1.01–5.63) GMFE: 1.41 (1.00–2.66)

(continued)
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Table S11. continued
Study Compound Pred [ng⋅h

ml ] Obs [ng⋅h
ml ] Pred/Obs Pred [ ng

ml ] Obs [ ng
ml ] Pred/Obs Reference

GMFE ≤ 2: 24/30 GMFE ≤ 2: 27/30

AS: CYP2D6 acitivity score, DGI: drug-gene interaction, (E)-4-OH-Clom: (E)-4-hydroxyclomiphene, (E)-4-OH-DE-Clom: (E)-4-hydroxy-N-desethylclomiphene,
(E)-Clom: (E)-clomiphene, (E)-DE-Clom: (E)-N-desethylclomiphene, IM: intermediate metabolizers, NM: normal metabolizers, Obs: observed,
PK: pharmacokinetic, PM: poor metabolizers, Pred: predicted, UM: ultrarapid metabolizers, Ratioph.: Ratiopharm® GmbH
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Table S12. Geometric Mean Fold Error (GMFE) of DGI AUClast and Cmax ratios.
AUClast Ratio Cmax Ratio

Study Compound Pred [1] Obs [1] Pred/Obs Pred [1] Obs [1] Pred/Obs Reference

PK Panel Study, PM (AS = 0) (E)-Clom 9.04 13.21 0.68 2.21 4.12 0.54 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-Clom 0.43 0.43 1.01 0.08 0.08 0.99 [19]
PK Panel Study, PM (AS = 0) (E)-DE-Clom 63.77 59.41 1.07 7.23 6.07 1.19 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-DE-Clom 0.33 0.32 1.03 0.06 0.06 1.04 [19]
PK Panel Study, IM (AS = 0.5) (E)-Clom 3.95 5.09 0.78 1.71 2.49 0.69 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-Clom 1.40 2.35 0.59 0.45 0.92 0.48 [19]
PK Panel Study, IM (AS = 0.5) (E)-DE-Clom 13.95 7.64 1.83 3.64 3.30 1.10 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-DE-Clom 3.29 2.90 1.13 1.07 1.02 1.05 [19]
PK Panel Study, IM (AS = 0.75) (E)-Clom 3.38 1.65 2.05 1.58 0.92 1.72 [19]
PK Panel Study, IM (AS = 0.75) (E)-4-OH-Clom 1.48 1.13 1.31 0.47 0.85 0.55 [19]
PK Panel Study, IM (AS = 0.75) (E)-DE-Clom 10.83 1.75 6.19 3.08 1.42 2.17 [19]
PK Panel Study, IM (AS = 0.75) (E)-4-OH-DE-Clom 3.00 1.17 2.57 1.01 1.07 0.94 [19]
PK Panel Study, IM (AS = 1) (E)-Clom 1.66 1.08 1.54 1.22 0.79 1.55 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-Clom 1.30 0.98 1.32 0.61 0.59 1.03 [19]
PK Panel Study, IM (AS = 1) (E)-DE-Clom 3.53 1.35 2.61 1.68 0.57 2.92 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-DE-Clom 1.88 0.83 2.25 0.98 0.66 1.49 [19]
PK Panel Study, UM (AS = 3) (E)-Clom 0.74 0.80 0.93 0.88 0.71 1.23 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-Clom 0.87 0.43 2.00 1.01 0.59 1.72 [19]
PK Panel Study, UM (AS = 3) (E)-DE-Clom 0.62 0.41 1.52 0.75 0.43 1.74 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-DE-Clom 0.65 0.38 1.70 0.77 0.56 1.37 [19]

GMFE: 1.65 (1.00–6.19) GMFE: 1.46 (1.00–2.95)
GMFE ≤ 2: 14/20 GMFE ≤ 2: 17/20

Guest limits: 12/20 Guest limits: 10/20

AS: CYP2D6 acitivity score, DGI: drug-gene interaction, (E)-4-OH-Clom: (E)-4-hydroxyclomiphene, (E)-4-OH-DE-Clom: (E)-4-hydroxy-N-desethylclomiphene,
(E)-Clom: (E)-clomiphene, (E)-DE-Clom: (E)-N-desethylclomiphene, IM: intermediate metabolizers, NM: normal metabolizers, Obs: observed,
PK: pharmacokinetic, PM: poor metabolizers, Pred: predicted, UM: ultrarapid metabolizers
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Table S13. Geometric Mean Fold Error (GMFE) of AUClast and Cmax DD(G)I Predictions.
AUClast Cmax

Study Compound Perpetrator Pred [ng⋅h
ml ] Obs [ng⋅h

ml ] Pred/Obs Pred [ ng
ml ] Obs [ ng

ml ] Pred/Obs Reference

PK Panel Study, PM (AS = 0) (E)-Clom Clarithromycin 2211.99 2332.83 0.95 41.25 69.18 0.60 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-Clom Clarithromycin 287.69 119.75 2.40 2.38 1.24 1.91 [19]
PK Panel Study, PM (AS = 0) (E)-DE-Clom Clarithromycin 2592.38 2282.03 1.14 18.17 14.69 1.24 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-DE-Clom Clarithromycin 100.11 36.96 2.71 0.82 0.29 2.81 [19]
PK Panel Study, IM (AS = 0.5) (E)-Clom Clarithromycin 585.91 769.47 0.76 24.64 42.67 0.58 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-Clom Clarithromycin 578.95 885.93 0.65 7.88 20.35 0.39 [19]
PK Panel Study, IM (AS = 0.5) (E)-DE-Clom Clarithromycin 219.84 135.87 1.62 2.58 2.79 0.92 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-DE-Clom Clarithromycin 272.46 201.78 1.35 2.06 1.93 1.07 [19]
PK Panel Study, IM (AS = 1) (E)-Clom Clarithromycin 207.03 176.77 1.17 16.37 14.74 1.11 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-Clom Clarithromycin 427.82 356.60 1.20 9.05 15.53 0.58 [19]
PK Panel Study, IM (AS = 1) (E)-DE-Clom Clarithromycin 35.98 26.96 1.33 1.33 1.22 1.09 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-DE-Clom Clarithromycin 132.72 71.32 1.86 1.62 1.91 0.85 [19]
PK Panel Study, NM (AS = 2) (E)-Clom Clarithromycin 117.25 100.98 1.16 13.07 17.22 0.76 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-Clom Clarithromycin 304.50 266.53 1.14 14.21 16.36 0.87 [19]
PK Panel Study, NM (AS = 2) (E)-DE-Clom Clarithromycin 15.33 12.85 1.19 1.05 0.85 1.23 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-DE-Clom Clarithromycin 50.59 42.79 1.18 1.98 2.19 0.91 [19]
PK Panel Study, UM (AS = 3) (E)-Clom Clarithromycin 84.09 88.29 0.95 11.34 13.87 0.82 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-Clom Clarithromycin 248.86 172.19 1.45 13.96 11.16 1.25 [19]
PK Panel Study, UM (AS = 3) (E)-DE-Clom Clarithromycin 11.10 9.79 1.13 0.96 0.45 2.11 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-DE-Clom Clarithromycin 35.43 30.40 1.17 1.76 1.61 1.09 [19]
PK Panel Study, PM (AS = 0) (E)-Clom Paroxetine 1035.07 1204.78 0.86 28.75 40.39 0.71 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-Clom Paroxetine 117.15 95.18 1.23 1.11 1.47 0.76 [19]
PK Panel Study, PM (AS = 0) (E)-DE-Clom Paroxetine 3405.95 4195.92 0.81 27.95 37.12 0.75 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-DE-Clom Paroxetine 69.53 63.01 1.10 0.54 0.41 1.31 [19]
PK Panel Study, IM (AS = 0.5) (E)-Clom Paroxetine 993.64 1053.60 0.94 28.98 35.05 0.83 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-Clom Paroxetine 139.64 119.04 1.17 1.32 1.30 1.01 [19]
PK Panel Study, IM (AS = 0.5) (E)-DE-Clom Paroxetine 3094.26 2384.31 1.30 27.70 19.23 1.44 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-DE-Clom Paroxetine 232.51 173.56 1.34 2.05 1.70 1.20 [19]
PK Panel Study, IM (AS = 1) (E)-Clom Paroxetine 858.97 855.99 1.00 26.24 34.32 0.76 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-Clom Paroxetine 153.97 204.03 0.75 1.30 2.62 0.49 [19]
PK Panel Study, IM (AS = 1) (E)-DE-Clom Paroxetine 2288.71 2104.81 1.09 23.38 23.47 1.00 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-DE-Clom Paroxetine 428.74 349.83 1.23 3.51 2.47 1.42 [19]
PK Panel Study, NM (AS = 2) (E)-Clom Paroxetine 731.17 828.75 0.88 26.03 41.65 0.63 [19]

(continued)
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Table S13. continued
Study Compound Perpetrator Pred [ng⋅h

ml ] Obs [ng⋅h
ml ] Pred/Obs Pred [ ng

ml ] Obs [ ng
ml ] Pred/Obs Reference

PK Panel Study, NM (AS = 2) (E)-4-OH-Clom Paroxetine 199.16 346.58 0.57 2.41 4.27 0.57 [19]
PK Panel Study, NM (AS = 2) (E)-DE-Clom Paroxetine 1421.08 1170.81 1.21 23.33 20.66 1.13 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-DE-Clom Paroxetine 664.56 511.87 1.30 5.53 5.50 1.01 [19]
PK Panel Study, UM (AS = 3) (E)-Clom Paroxetine 550.74 806.88 0.68 22.29 54.63 0.41 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-Clom Paroxetine 212.08 345.90 0.61 3.00 6.46 0.46 [19]
PK Panel Study, UM (AS = 3) (E)-DE-Clom Paroxetine 722.15 739.59 0.98 16.09 23.37 0.69 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-DE-Clom Paroxetine 545.59 400.60 1.36 6.51 6.49 1.00 [19]

GMFE: 1.30 (1.00–2.71) GMFE: 1.40 (1.00–2.83)
GMFE ≤ 2: 38/40 GMFE ≤ 2: 34/40

AS: CYP2D6 acitivity score, DD(G)I: drug-drug and drug-drug-gene interactions, (E)-4-OH-Clom: (E)-4-hydroxyclomiphene, (E)-4-OH-DE-Clom:
(E)-4-hydroxy-N-desethylclomiphene, (E)-Clom: (E)-clomiphene, (E)-DE-Clom: (E)-N-desethylclomiphene, IM: intermediate metabolizers,
NM: normal metabolizers, Obs: observed, PK: pharmacokinetic, PM: poor metabolizers, Pred: predicted, UM: ultrarapid metabolizers
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Table S14. Geometric Mean Fold Error (GMFE) of DD(G)I AUClast and Cmax ratios.
AUClast Ratio Cmax Ratio

Study Compound Perpetrator Pred [1] Obs [1] Pred/Obs Pred [1] Obs [1] Pred/Obs Reference

PK Panel Study, PM (AS = 0) (E)-Clom Clarithromycin 2.41 2.13 1.13 1.53 1.55 0.98 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-Clom Clarithromycin 2.81 1.28 2.20 2.44 1.01 2.41 [19]
PK Panel Study, PM (AS = 0) (E)-DE-Clom Clarithromycin 0.76 0.66 1.16 0.61 0.54 1.14 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-DE-Clom Clarithromycin 1.62 0.59 2.74 1.74 0.67 2.59 [19]
PK Panel Study, IM (AS = 0.5) (E)-Clom Clarithromycin 1.46 1.82 0.80 1.18 1.59 0.75 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-Clom Clarithromycin 1.75 1.72 1.02 1.41 1.40 1.00 [19]
PK Panel Study, IM (AS = 0.5) (E)-DE-Clom Clarithromycin 0.30 0.30 0.97 0.17 0.19 0.92 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-DE-Clom Clarithromycin 0.45 0.36 1.24 0.25 0.25 0.97 [19]
PK Panel Study, IM (AS = 1) (E)-Clom Clarithromycin 1.23 1.97 0.62 1.10 1.73 0.63 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-Clom Clarithromycin 1.40 1.66 0.84 1.18 1.67 0.70 [19]
PK Panel Study, IM (AS = 1) (E)-DE-Clom Clarithromycin 0.19 0.34 0.56 0.19 0.47 0.41 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-DE-Clom Clarithromycin 0.38 0.44 0.86 0.21 0.39 0.55 [19]
PK Panel Study, NM (AS = 2) (E)-Clom Clarithromycin 1.15 1.22 0.95 1.07 1.59 0.67 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-Clom Clarithromycin 1.29 1.22 1.05 1.13 1.04 1.08 [19]
PK Panel Study, NM (AS = 2) (E)-DE-Clom Clarithromycin 0.29 0.22 1.31 0.26 0.19 1.36 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-DE-Clom Clarithromycin 0.27 0.22 1.24 0.25 0.29 0.87 [19]
PK Panel Study, UM (AS = 3) (E)-Clom Clarithromycin 1.11 1.33 0.84 1.06 1.80 0.59 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-Clom Clarithromycin 1.21 1.82 0.67 1.09 1.20 0.91 [19]
PK Panel Study, UM (AS = 3) (E)-DE-Clom Clarithromycin 0.34 0.41 0.82 0.31 0.23 1.33 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-DE-Clom Clarithromycin 0.33 0.46 0.72 0.29 0.38 0.77 [19]
PK Panel Study, PM (AS = 0) (E)-Clom Paroxetine 1.13 1.10 1.02 1.07 0.91 1.17 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-Clom Paroxetine 1.15 1.02 1.13 1.13 1.19 0.95 [19]
PK Panel Study, PM (AS = 0) (E)-DE-Clom Paroxetine 1.00 1.21 0.83 0.94 1.36 0.70 [19]
PK Panel Study, PM (AS = 0) (E)-4-OH-DE-Clom Paroxetine 1.13 1.01 1.12 1.13 0.94 1.21 [19]
PK Panel Study, IM (AS = 0.5) (E)-Clom Paroxetine 2.47 2.49 0.99 1.39 1.30 1.07 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-Clom Paroxetine 0.42 0.23 1.83 0.24 0.09 2.62 [19]
PK Panel Study, IM (AS = 0.5) (E)-DE-Clom Paroxetine 4.17 5.34 0.78 1.86 1.29 1.44 [19]
PK Panel Study, IM (AS = 0.5) (E)-4-OH-DE-Clom Paroxetine 0.38 0.31 1.23 0.24 0.22 1.10 [19]
PK Panel Study, IM (AS = 1) (E)-Clom Paroxetine 5.08 9.56 0.53 1.76 4.02 0.44 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-Clom Paroxetine 0.50 0.95 0.53 0.17 0.28 0.60 [19]
PK Panel Study, IM (AS = 1) (E)-DE-Clom Paroxetine 12.21 26.61 0.46 3.40 9.07 0.37 [19]
PK Panel Study, IM (AS = 1) (E)-4-OH-DE-Clom Paroxetine 1.23 2.16 0.57 0.46 0.50 0.92 [19]
PK Panel Study, NM (AS = 2) (E)-Clom Paroxetine 7.19 9.99 0.72 2.13 3.85 0.55 [19]

(continued)
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Table S14. continued
Study Compound Perpetrator Pred [1] Obs [1] Pred/Obs Pred [1] Obs [1] Pred/Obs Reference

PK Panel Study, NM (AS = 2) (E)-4-OH-Clom Paroxetine 0.84 1.59 0.53 0.19 0.27 0.71 [19]
PK Panel Study, NM (AS = 2) (E)-DE-Clom Paroxetine 26.73 20.02 1.34 5.70 4.59 1.24 [19]
PK Panel Study, NM (AS = 2) (E)-4-OH-DE-Clom Paroxetine 3.58 2.64 1.36 0.71 0.74 0.96 [19]
PK Panel Study, UM (AS = 3) (E)-Clom Paroxetine 7.29 12.19 0.60 2.08 7.08 0.29 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-Clom Paroxetine 1.03 3.66 0.28 0.24 0.70 0.34 [19]
PK Panel Study, UM (AS = 3) (E)-DE-Clom Paroxetine 21.90 30.93 0.71 5.27 12.14 0.43 [19]
PK Panel Study, UM (AS = 3) (E)-4-OH-DE-Clom Paroxetine 5.08 6.07 0.84 1.08 1.54 0.70 [19]

GMFE: 1.40 (1.00–3.55) GMFE: 1.50 (1.00–3.40)
GMFE ≤ 2: 36/40 GMFE ≤ 2: 31/40

Guest limits: 29/40 Guest limits: 23/40

AS: CYP2D6 acitivity score, DD(G)I: drug-drug and drug-drug-gene interactions, (E)-4-OH-Clom: (E)-4-hydroxyclomiphene, (E)-4-OH-DE-Clom:
(E)-4-hydroxy-N-desethylclomiphene, (E)-Clom: (E)-clomiphene, (E)-DE-Clom: (E)-N-desethylclomiphene, IM: intermediate metabolizers,
NM: normal metabolizers, Obs: observed, PK: pharmacokinetic, PM: poor metabolizers, Pred: predicted, UM: ultrarapid metabolizers
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S4.4. Local Sensitivity Analysis
S4.4.1. Mathematical Implementation

A sensitivity analysis of the developed model was conducted to explore the impact of single param-
eter changes (local sensitivity analysis) on the predicted AUCinf. According to Equation S4, the 
relative change of AUCinf after oral application of a single dose of 100 mg clomiphene citrate to the 
relative variation of model input parameters was calculated. All optimized parameters as well as 
parameters that might have a strong impact because of calculation methods employed in the model 
(e.g., lipophilicity) were integrated in the sensitivity analysis and a relative perturbation of 10% was 
used.

S = ∆AUCinf

∆p
⋅ p

AUCinf
(S4)

S is the sensitivity of the AUCinf to the examined model parameter, ∆AUCinf is the change of the
AUCinf, AUCinf represents the simulated AUCinf with the original parameter value, p is the original
model parameter value and ∆p the variation of the model parameter value. A sensitivity value of
+1.0 signifies that a 10% increase of the examined parameter causes a 10% increase of the simulated
AUCinf.
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S4.4.2. Results of the Sensitivity Analysis 

( a ) Sensitivity Analysis (E)-Clom

Solubility
GFR fraction

CYP2B6 Km −> (E)−4−OH−Clom
CYP2B6 kcat −> (E)−4−OH−Clom

CYP2D6 Km −> (E)−DE−Clom
CYP2D6 kcat −> (E)−DE−Clom

Dissolution shape
Dissolution time

CYP3A4 Km −> (E)−DE−Clom
CYP3A4 kcat −> (E)−DE−Clom

CYP2D6 Km −> undef. 
CYP2D6 Km −> (E)−4−OH−Clom

CYP2D6 kcat −> undef. 
CYP2D6 kcat −> (E)−4−OH−Clom

Fraction unbound
Intestinal permeability

pKa (base)
Lipophilicity

0 2 4 6 8 10 12

0.00

0.00

0.01

−0.01

0.04

−0.04

−0.04

−0.05

0.12

−0.14

0.23

0.25

−0.40

−0.41

−0.70

  0.70

−6.38

−11.35

Sensitivity, ranked by absolute value

( b ) Sensitivity Analysis (E)-4-OH-Clom

GFR fraction

pKa (acid)

pKa (base)

Unspecific hepatic clearance

Lipophilicity

CYP3A4 kcat −> (E)−4−OH−Clom

CYP3A4 Km −> (E)−4−OH−Clom

CYP2D6 Km −> undef. 

CYP2D6 kcat −> undef. 

Fraction unbound

0.0 0.2 0.4 0.6 0.8 1.0 1.2

 0.00

 0.00

 0.00

−0.15

−0.16

−0.16

 0.17

 0.65

−0.65

−0.99

Sensitivity, ranked by absolute value

( c ) Sensitivity Analysis (E)-Clom

GFR fraction

CYP2D6 Km −> undef. 

CYP2D6 kcat −> undef. 

CYP3A4 Km −> undef. 

CYP3A4 kcat −> undef. 

Fraction unbound

CYP2D6 Km −> (E)−4−OH−DE−Clom

CYP2D6 kcat −> (E)−4−OH−DE−Clom

Lipophilicity

pKa (base)

0 1 2 3 4

 0.00

 0.05

−0.05

 0.06

−0.07

−0.74

 0.91

−1.04

 2.50

−4.12

Sensitivity, ranked by absolute value

( d ) Sensitivity Analysis (E)-4-OH-Clom

GFR fraction

pKa (base)

Unspecific hepatic clearance

Lipophilicity

CYP2D6 Km −> undef. 

CYP2D6 kcat −> undef. 

Fraction unbound

pKa (acid)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

 0.00

−0.23

−0.43

 0.53

 0.61

−0.62

−0.99

−1.26

Sensitivity, ranked by absolute value

Figure S14. Sensitivity analysis of the PBPK model for (E)-Clom, (E)-4-OH-Clom, (E)-DE-Clom and (E)-4-OH-
DE-Clom. CYP, cytochrome P450; (E)-4-OH-Clom, (E )-4-hydroxyclomiphene; (E)-4-OH-DE-Clom, (E )-
4-hydroxy-N-desethylclomiphene; (E)-Clom, (E )-clomiphene; (E)-DE-Clom, (E )-N-desethylclomiphene; GFR, 
glomerular filtration r ate; k cat, catalytic r ate c onstant; K m, Michaelis Menten c onstant; p Ka, acid dissociation 
constant; undef., undefined metabolite.
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S5. Molecular Structures

 

 

 

  

 

 

  

  

 

 

  

(E)-Clom

 

 

 

  

  

(E)-4-OH-DE-Clom(E)-4-OH-Clom

(E)-DE-Clom

(a) (b)

(c) (d)

Figure S15. Molecular structures of (E)-Clom (a) and its metabolites (E)-DE-Clom (b), (E)-4-OH-Clom (c) and 
(E)-4-OH-DE-Clom (d). (E)-4-OH-Clom, (E )-4-hydroxyclomiphene; (E)-4-OH-DE-Clom, (E )-4-hydroxy-
N-desethylclomiphene; (E)-Clom, (E)-clomiphene; (E)-DE-Clom, (E)-N-desethylclomiphene.
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S1 PBPK Model Building

S1.1 System-Dependent Parameters

Table S1: Relevant enzymes, transporters and binding proteins

Reference concentration [µmol/L]

Protein Relevant model Highest expression Meana GSD

Enzymes
AADAC Rifampicin Liver [1] 1.00b [2] 1.40c

CYP1A2 Fluvoxamine, Mexiletine Liver [3] 1.80 [4] 1.63 [5]
CYP2B6 Carbamazepine Liver [1] 1.56 [4] 1.56 [5]
CYP2C8 Carbamazepine Liver [3] 2.56 [4] 2.05 [5]
CYP2C19 R-/S-Omeprazole Liver [3] 0.76 [4] 1.80 [5]
CYP2D6 Dextromethorphan, Liver [3] 0.40 [4] 2.49 [5]

Fluvoxamine,
R-/S-Metoprolol,
Mexiletine,
Paroxetine

CYP3A4 Carbamazepine, Liver [3] 4.32 [4] 1.18 liver, 1.46 int. [5]
Dextromethorphan, Dextrorphan,
Itraconazole (+ metabolites),
R-/S-Omeprazole,
Paroxetine,
Quinidine, 3-Hydroxyquinidine,
R-/S-Verapamil (+ metabolites)

EPHX1 Carbamazepine 10,11-epoxide Liver [1] 1.00b [2] 1.40c

UGT2B7 Carbamazepine Kidney [6] 2.78 [7] 1.60 [5]
UGT2B15 Dextrorphan Liver [1] 2.48d [8, 9] 1.26 [8]

Transporters
MATE1 Cimetidine Kidney [10, 11] 0.13e [9, 12] 1.53 [12]
OAT3 Cimetidine Kidney [13] 0.09e [9, 12] 1.53 [12]
OATP1B1 Rifampicin Liver [13] 0.07f [14] 1.54 [14]
OCT1 Cimetidine Liver [15] 0.16f [14, 16] 1.50 [16]
P-gp Digoxin, Duodenum mucusa, 1.41g [17] 1.60 [14]

Quinidine, Upper jejunum mucosa,
Rifampicin, Lower jejunum mucosa,
R-/S-Verapamil (+ metabolites) Upper ileum mucosa

Lower ileum mucosa [13]

Binding proteins
ATP1A2 Digoxin Brain [15] 0.48g [17] 1.40c

AADAC: arylacetamide deacetylase, ATP1A2: ATPase Na+/K+ transporting subunit alpha 2, CYP: cytochrome P450, EPHX: epoxide
hydrolase, GSD: geometric standard deviation, int: intestine, MATE: multidrug and toxin extrusion protein, OAT: organic anion
transporter, OATP: organic anion transporting polypeptide, OCT: organic cation transporter, P-gp: P-glycoprotein, UGT: uridine
5’-diphospho-glucuronosyltransferase. a In the tissue of highest expression. b If no information was available, the mean reference
concentration was set to 1.00 µmol/L and the catalytic rate constant was optimized according to [2]. c If no information was available,
a moderate variability of 35% CV was assumed (= 1.40 GSD). d Calculated from protein per mg microsomal protein x 40 mg
microsomal protein per g liver [9]. e Calculated from transporter per mg membrane protein x 26.2 mg human kidney microsomal
protein per g kidney [9]. f Calculated from transporter per mg membrane protein x 37.0 mg membrane protein per g liver [14]. g

Previously optimized by Hanke et al [17].
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Table S2: Expression data of relevant enzymes

AADAC CYP1A2 CYP2B6 CYP2C8 CYP2C19 CYP2D6 CYP3A4 EPHX1 UGT2B7 UGT2B15

Properties
Localization Intracellular Intracellular Intracellular Intracellular Intracellular Intracellular Intracellular Intracellular Intracellular Intracellular
Half-life liver/intestine [h]a 36/23 39/23 32/23 23/23 26/23 51/23 36/23 [18, 19] 36/23 36/23 36/23

Relative expression in various organs and tissues [%]
Data source RT-PCR [1] RT-PCR [3] RT-PCR [1] RT-PCR [3] RT-PCR [3, 20] RT-PCR [3] RT-PCR [3] RT-PCR [1] EST [6] RT-PCR [1]
Blood Cells 0 0 0 0 0 0 0 1 0 0
Plasma 0 0 0 0 0 0 0 1 0 0
Bone 0 0 0 0 0 0 0 2 0 0
Brain 0 0 0 0 0 1 0 4 8 0
Fat 0 0 0 0 0 0 0 0 0 0
Gonads 0 0 1 1 0 77 0 18 13 0
Heart 0 0 0 0 0 0 0 12 0 0
Kidney 0 0 10 0 0 2 1 15 100 0
Liver Periportal 100 100 100 100 100 100 100 100 23 100
Liver Pericentral 100 100 100 100 100 100 100 100 23 100
Lung 3 0 60 0 0 2 0 14 0 0
Muscle 0 0 0 0 0 0 0 36 0 0
Pancreas 15 0 0 0 0 0 0 10 0 2
Skin 0 0 0 0 0 0 0 0 3 0
Spleen 0 0 0 0 0 0 0 6 0 0
Duodenum mucosa 25 0 7 0 2 9 7 6 4 0
Upper jejunum musoca 25 0 7 0 1 9 7 6 4 0
Lower jejunum mucosa 25 0 7 0 1 9 7 6 4 0
Upper ileum mucosa 25 0 7 0 1 9 7 6 4 0
Lower ileum mucosa 25 0 7 0 1 9 7 6 4 0
Colon ascendens mucosa 0 0 0 0 0 0 0 4 0 0
Colon transversum mucosa 0 0 0 0 0 0 0 4 0 0
Colon descendens mucosa 0 0 0 0 0 0 0 4 0 0
Colon sigmoid mucosa 0 0 0 0 0 0 0 4 0 0
Stomach non-muc. tissue 8 0 0 0 0 0 0 5 13 3
Small intestine non-muc. tissue 25 0 7 0 1 9 7 6 4 0
Large intestine non-muc. tissue 0 0 0 0 0 0 0 4 0 0

AADAC: arylacetamide deacetylase, CYP: cytochrome P450, EPHX: epoxide hydrolase, EST: expressed sequence tag, non-muc.: non-mucosal, RT-PCR: reverse transcription-polymerase chain
reaction measured expression profile, UGT: uridine 5’-diphospho-glucuronosyltransferase. a Information from PK-Sim® expression database.
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Table S3: Expression data of relevant transporters and binding proteins

MATE1 OAT3 OATP1B1 OCT1 P-gp ATP1A2

Properties
Localization Cell membrane Cell membrane Cell membrane Cell membrane Cell membrane Interstitial
Direction Efflux Influx Influx Influx Efflux n.a.
Half-life liver/intestine [h]a n.a./n.a. n.a./n.a. 36/23 36/23 36/23 36/23

Relative expression in various organs and tissues [%]
Data source [10, 11] RT-PCR [13] RT-PCR [13] Array [15] RT-PCR [13, 17] Array [15]
Blood Cells 0 0 0 0 0 0
Plasma 0 0 0 0 0 0
Bone 0 0 0 2 2 1
Brain 0 0 0 1 (blood-brain barrier) 8 (blood-brain barrier) 100
Fat 0 0 0 0 0 0
Gonads 0 0 1 0 2 5
Heart 0 0 0 1 4 32
Kidney 100 (apical) 100 (basolateral) 0 3 (basolateral) 71 (apical) 2
Liver Periportal 0 0 100 (basolateral) 100 (basolateral) 19 (apical) 2
Liver Pericentral 0 0 100 (basolateral) 100 (basolateral) 19 (apical) 2
Lung 0 0 0 1 7 3
Muscle 0 0 0 4 1 70
Pancreas 0 0 0 1 1 1
Skin 0 0 0 1 0 4
Spleen 0 0 0 0 7 1
Duodenum mucosa 0 0 0 2 (apical) 100 (apical) 5
Upper jejunum musoca 0 0 0 2 (apical) 100 (apical) 5
Lower jejunum mucosa 0 0 0 2 (apical) 100 (apical) 5
Upper ileum mucosa 0 0 0 2 (apical) 100 (apical) 5
Lower ileum mucosa 0 0 0 2 (apical) 100 (apical) 5
Colon ascendens mucosa 0 0 0 0 40 (apical) 8
Colon transversum mucosa 0 0 0 0 40 (apical) 8
Colon descendens mucosa 0 0 0 0 40 (apical) 8
Colon sigmoid mucosa 0 0 0 0 40 (apical) 8
Stomach non-mucosal tissue 0 0 0 1 3 3
Small intestine non-mucosal tissue 0 0 0 2 28 5
Large intestine non-mucosal tissue 0 0 0 3 11 8

Array: microarray expression profile, ATP1A2: ATPase Na+/K+ transporting subunit alpha 2, MATE: multidrug and toxin extrusion, protein, n.a.: not applicable, OAT: organic anion
transporter, OATP: organic anion transporting polypeptide, OCT: organic cation transporter, P-gp: P-glycoprotein, RT-PCR: reverse transcription-polymerase chain reaction measured
expression profile. a Information from PK-Sim® expression database.
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S1.2 Michaelis-Menten Kinetics

v =
vmax ∗ [S]
KM +[S]

=
kcat ∗ [E]∗ [S]

KM +[S]
(S1)

v = reaction velocity, vmax = maximum reaction velocity, [S] = free substrate concentration, KM = Michaelis-Menten
constant, kcat = catalytic or transporter rate constant and [E] = enzyme concentration.
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S1.3 Quinidine – Clinical studies

Table S4: Clinical study data used for quinidine model development

Quinidine administration

Dose salt [mg] Dose base [mg] Route n Populationa Fem. [%] Age [years] Weight [kg] BMI [kg/m²] Molecule Dataset Reference

260.3b 162.2 s.d. iv 60 min inf 7 European [21] - - - - QUI te Fremstad 1979 [22]
300b 187.5 s.d. iv 30 min inf 9 American [23] 0 28.6 (22-37) 68.4 - QUI te Darbar 1997c [24]
300b 187.5 s.d. iv 30 min inf 9 American [23] 0 28.6 (22-37) 71.5 - QUI te Darbar 1997d [24]
6/kgb 3.74/kg s.d. iv 25 min inf 1 American [23] 0 32 82 - QUI te Guentert 1979 [25]
6/kgb 3.74/kg s.d. iv 25 min inf 1 American [23] 0 23 70.4 - QUI te Guentert 1979 [25]
6/kgb 3.74/kg s.d. iv 25 min inf 1 American [23] 0 23 72.2 - QUI te Guentert 1979 [25]

6.42/kgb 4.00/kg s.d. iv 20 min inf 12 Asian [26] 0 22.1 66.5 - QUI te Shin 2007 [27]
6.42/kgb 4.00/kg s.d. iv 20 min inf 7 American [23] 0 26.2 69.8 - QUI te Shin 2007 [27]
6.42/kgb 4.00/kg s.d. iv 20 min inf 12 Asian [26] 100 22.7 53.4 - QUI te Shin 2007 [27]
6.42/kgb 4.00/kg s.d. iv 20 min inf 6 American [23] 100 27.7 60.7 - QUI te Shin 2007 [27]

481.4b 300 s.d. iv 15 min inf 1 European [21] 0 27 60 - QUI, QUB tr Ochs 1980 [28]
481.4b 300 s.d. iv 15 min inf 1 European [21] 0 23 80 - QUI, QUB tr Ochs 1980 [28]
520.6b 324.4 s.d. iv 60 min inf 6 European [21] - - - - QUI te Fremstad 1979 [22]

0.1e 0.08 s.d. po sol 7 Japanese [29] 0 27 - 21.8 QUI, OHQ tr Maeda 2011 [30]
1e 0.83 s.d. po sol 7 Japanese [29] 0 27 - 21.8 QUI, OHQ tr Maeda 2011 [30]

10e 8.29 s.d. po sol 7 Japanese [29] 0 27 - 21.8 QUI, OHQ tr Maeda 2011 [30]
100e 82.87 s.d. po sol 7 Japanese [29] 0 27 - 21.8 QUI, OHQ tr Maeda 2011 [30]
100e 82.87 s.d. po tab 9 European [21] 56 25 (21-32) 64 (41-80) - QUI te Kaukonen 1997 [31]
200e 165.7 s.d. po cap 10 European [21] 0 (21-26) (62-85) (19-26) QUI, OHQ tr Andreasen 2007 [32]
200e 165.7 s.d. po tab 6 European [21] 0 - - - QUI, OHQ te Damkier 1999 [33]
200e 165.7 s.d. po tab 6 European [21] 0 - - - QUI, OHQ te Damkier 1999a [34]
200e 165.7 s.d. po tab 12 European [21] 0 24 (19-37) 75 (65-101) - QUI te Laganière 1996 [35]
200e 165.7 s.d. po sol 13 American [23] 11 (22-40) - - QUI te Mason 1976 [36]
200e 165.7 s.d. po cap 13 American [23] 11 (22-40) - - QUI te Mason 1976 [36]
200e 165.7 s.d. po tab 13 American [23] 11 (22-40) - - QUI te Mason 1976 [36]
250e 207.2 s.d. po cap 8 European [21] 0 (18-26) (48-62) (162.5-180)f QUI te Rao 1995 [37]
400e 331.5 s.d. po tab 8 European [21] 0 (22-34) - - QUI te Bleske 1990 [38]
400e 331.5 s.d. po tab 8 European [21] 0 (22-29) (60-94) - QUI, OHQ te Ching 1991 [39]
400e 331.5 s.d. po tab 6 European [21] 0 (23-34) - - QUI te Edwards 1987 [40]
400e 331.5 s.d. po tab 6 American [23] 0 (25-38) - - QUI te Hardy 1983 [41]
400e 331.5 s.d. po tab 9 American [23] 0 (21-35) - - QUI te Kolb 1984 [42]
400e 331.5 s.d. po tab 7 European [21] 43 28.9 (27-31) 68.4 (57.7-79.5) - QUI te Ochs 1978 [43]
400e 331.5 s.d. po tab 11 American [23] 0 (20-37) - - - te Strum 1977g [44]
600e 497.2 s.d. po tab 9 American [23] 0 28.6 (22-27) 68.4 - QUI tr/te Darbar 1997c [24]
600e 497.2 s.d. po tab 9 American [23] 0 28.6 (22-37) 71.5 - QUI te Darbar 1997d [24]
600e 497.2 s.d. po tab 8 European [21] 0 26.4 (23-37)) 67.1 (60-76) 1.74 (1.60-1.83)f QUI te Frigo 1977 [45]

BMI: body mass index, calc: calculated, cap: capsule, fem: females, inf: infusion, iv: intravenous, n: number of study participants, OHQ: 3-hydroxyquinidine, po: oral, q.i.d.: four times daily, QUB: quinidine
unbound, QUI: quinidine, s.d.: single dose, sol: solution, tab: tablet, te: test dataset, t.i.d.: three times daily, tr: training dataset, -: not available. Values are given as mean (range). Respective doses of
quinidine base were calculated and incorporated in simulations. a Population used in simulations. b Quinidine glucunate dose. c Low-salt diet. d High-salt diet. e Quinidine sulfate dose. f Height of subjects
[cm]. g Administration of four immediate-release formulations (Treatment A-D).
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Table S4: Clinical study data used for quinidine model development (continued)

Quinidine administration

Dose salt [mg] Dose base [mg] Route n Populationa Fem. [%] Age [years] Weight [kg] BMI [kg/m²] Molecule Dataset Reference
200e 165.7 t.i.d. po tab 5 European [21] 0 (26-33) 73.4 (62-90) QUI te Bolme 1977 [46]
300e 248.6 t.i.d. po tab 5 European [21] 0 (26-33) 73.4 (62-90) - QUI te Bolme 1977 [46]
400e 331.5 t.i.d. po tab 3 European [21] 0 (26-33) 68 (62-75) - QUI te Bolme 1977 [46]

400 + 200e 331.5 +165.7 s.d. + q.i.d. po tab 7 European [21] 43 28.9 (27-31) 68.4 (57.7-79.5) - QUI tr Ochs 1978 [43]
BMI: body mass index, calc: calculated, cap: capsule, fem: females, inf: infusion, iv: intravenous, n: number of study participants, OHQ: 3-hydroxyquinidine, po: oral, q.i.d.: four times daily, QUB: quinidine
unbound, QUI: quinidine, s.d.: single dose, sol: solution, tab: tablet, te: test dataset, t.i.d.: three times daily, tr: training dataset, -: not available. Values are given as mean (range). Respective doses of
quinidine base were calculated and incorporated in simulations. a Population used in simulations. b Quinidine glucunate dose. c Low-salt diet. d High-salt diet. e Quinidine sulfate dose. f Height of subjects
[cm]. g Administration of four immediate-release formulations (Treatment A-D).
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S1.4 Quinidine – Drug-dependent parameters

Table S5: Drug-dependent parameters of the quinidine model

Quinidine 3-Hydoxyquinidine

Parameter Value or 95% CIa Source Literature Value or 95% CIa Source Literature Description
MW [g/mol] 324.42 Lit. 324.42 [47, 48] 340.42 Lit. 340.42 [47, 49] Molecular weight of quinidine base
pKa (base 1) 4.02 Lit. 4.02 [50] 4.03 Lit. 4.03 [51] Acid dissociation constant
pKa (base 2) 9.05 Lit. 9.05 [47, 48] 8.63 Lit. 8.63 [47, 49] Acid dissociation constant
pKa (acid) 13.89 Lit. 13.89 [47, 48] 13.55 Lit. 13.55 [47, 49] Acid dissociation constant
Solubility (pH 7.0) [g/L] 11.11 Lit. 11.11 (quinidine sulfate) [52] 12.57 Lit. 12.57 [51] Solubility
Lipophilicity 2.51 Lit. 2.51 (logP) [47, 48] 1.66 Lit. 1.66 (logP) [51] Lipophilicity
fu,p [%] 21 Lit. 21b [53] 31 Lit. 31b [53] Fraction unbound plasma
P-gp KM [µmol/L] 0.23 Lit. 0.23 [54] - - - Michaelis-Menten constant
P-gp kcat [1/min] 0.77 ± 0.08 Opt. - - - - Transport rate constant
CYP3A4 (QUI → OHQ) KM [µmol/L] 51.8 Lit. 74.0 × 0.70c [55, 56] - - - Michaelis-Menten constant
CYP3A4 (QUI → OHQ) kcat [1/min] 2.21 ± 1.02 Opt. - - - - Catalytic rate constant
CYP3A4 (QUI → sink) KM [µmol/L] 65.03 Lit. 92.9 × 0.70c [55, 56] - - - Michaelis-Menten constant
CYP3A4 (QUI → sink) kcat [1/min] 3.84 ± 1.39 Opt. - - - - Catalytic rate constant
CYP3A4 CL [1/min] - - - 0.08 ± 0.06 Opt. - First-order clearance
CLhep [1/min] - - - 0.45 ± 0.39 Opt. - Hepatic metabolic clearance
GFR fraction 1 Asm. - 1 Asm. - Fraction of filtered drug in the urine
EHC continuous fraction 1 Asm. - 1 Asm. - Fraction of bile continually released
P-gp Ki [µmol/L] 0.10 Lit. 0.10 [57] - - - Conc. for 50% inhibition (comp.)
CYP2D6 Ki [µmol/L] 0.017 Lit. 0.017d [58] 2.30 Lit. 2.30 [59] Conc. for 50% inhibition (comp.)
Partition coefficients Diverse Calc. Berezhkovskiy [60] Diverse Calc. Berezhkovskiy [60] Cell to plasma partition coefficients
Cell. perm. [cm/min] 7.99 · 10-3 Calc. PK-Sim [61] 8.45 · 10-4 Calc. PK-Sim [61] Permeability into the cellular space
Intest. perm. [cm/min] 6.47 · 10-6 ± 5.78 · 10-7 Opt. 2.59 · 10-5 (calc.) 2.94 · 10-6 Calc 2.94 · 10-6 Transcellular intestinal permeability
Formulation Weibulle Lit. [62, 63] - - - Formulation used in predictions
asm.: assumed, Berezhkovskiy: Berezhkovskiy calculation method, calc.: calculated, cell.: cellular, CI: confidence interval, CL: clearance, comp.: competitive, conc.: concentration, CYP: cytochrome P450,
EHC: enterohepatic circulation, GFR: glomerular filtration rate, intest.: intestinal, lit.: literature, OHQ: 3-hydroxyquinidine, opt.: optimized, P-gp: P-glycoprotein, PK-Sim: PK-Sim standard calculation method,
QUI: quinidine, -: not implemented/not available. a 95% confidence interval calculated for optimized parameters, b Calculated with fu,p predictor [53]. c Reported KM values adjusted for fraction unbound in the
incubation (fuinc) = 70% (calculated) [56]. d Estimated in vivo Ki value reported [58]. e Weibull function [64] with a dissolution time of 8.76 min (50% dissolved) and a dissolution shape of 0.42 for immediate
release quinidine sulfate formulations (calculated with DDSolver) [62, 63].
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S2 Quinidine – PBPK Model Evaluation

S2.1 Plasma concentration-time profiles (semilogarithmic representation)
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(f)
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(i)

Quinidine − iv, 4 mg/kg, s.d.
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Figure S1: Quinidine plasma concentration-time profiles (semilogarithmic representation). Population predicted geometric
means and individual predictions are shown as lines, corresponding geometric standard deviations are shown as shaded
areas and observed data are shown as dots (training dataset) and triangles (test dataset) (± standard deviation, if
reported). Doses indicate quinidine gluconate administration. Respective doses of quinidine base were calculated and
incorporated in simulations. iv: intravenous, n: number of study participants,s.d.: single dose.
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(a)
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(b)

Quinidine − iv, 481.4 mg, s.d.
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(d)

Quinidine − iv, 520.6 mg, s.d.
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(e)
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(f)
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(g)
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(h)

Quinidine − po, 100 mg, s.d.
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(i)

Quinidine − po, 100 mg, s.d.
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Figure S2: Quinidine plasma concentration-time profiles (semilogarithmic representation). Population predicted geometric
means and individual predictions are shown as lines, corresponding geometric standard deviations are shown as shaded
areas and observed data are shown as dots (training dataset) and triangles (test dataset) (± standard deviation, if
reported). Doses indicate (a–d) quinidine gluconate and (e–i) quinidine sulfate administration. Respective doses of
quinidine base were calculated and incorporated in simulations. iv: intravenous, n: number of study participants, po: oral,
s.d.: single dose.
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(e)
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(f)
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(h)

Quinidine − po, 250 mg, s.d.
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(i)

Quinidine − po, 400 mg, s.d.
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Figure S3: Quinidine plasma concentration-time profiles (semilogarithmic representation). Population predicted geometric
means are shown as lines, corresponding geometric standard deviations are shown as shaded areas and observed
data are shown as dots (training dataset) and triangles (test dataset) (± standard deviation, if reported). Doses indicate
quinidine sulfate administration. Respective doses of quinidine base were calculated and incorporated in simulations. n:
number of study participants, po: oral, s.d.: single dose.
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(e)
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(f)
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(g)
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(i)

Quinidine − po, 400 mg, s.d.
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Figure S4: Quinidine plasma concentration-time profiles (semilogarithmic representation). Population predicted geometric
means are shown as lines, corresponding geometric standard deviations are shown as shaded areas and observed
data are shown as dots (training dataset) and triangles (test dataset) (± standard deviation, if reported). Doses indicate
quinidine sulfate administration. Respective doses of quinidine base were calculated and incorporated in simulations. n:
number of study participants, po: oral, s.d.: single dose.
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Figure S5: Quinidine plasma concentration-time profiles (semilogarithmic representation). Population predicted geometric
means are shown as lines, corresponding geometric standard deviations are shown as shaded areas and observed
data are shown as dots (training dataset) and triangles (test dataset) (± standard deviation, if reported). Doses indicate
quinidine sulfate administration. Respective doses of quinidine base were calculated and incorporated in simulations. n:
number of study participants, po: oral, q.i.d.: four times daily, s.d.: single dose, t.i.d.: three times daily.
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S2.2 Amount excreted unchanged in urine profiles (semilogarithmic representation)
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Figure S6: Quinidine amount excreted unchanged in urine profiles (semilogarithmic representation). Population predicted
geometric means are shown as lines, corresponding geometric standard deviations are shown as shaded areas and
observed data are shown as dots (training dataset) and triangles (test dataset). Doses indicate (a–b) quinidine gluconate
and (c–i) quinidine sulfate administration. Respective doses of quinidine base were calculated and incorporated in
simulations. iv: intravenous, n: number of study participants, po: oral, s.d.: single dose.
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Figure S7: Quinidine amount excreted unchanged in urine profiles (semilogarithmic representation). Population predicted
geometric means are shown as lines, corresponding geometric standard deviations are shown as shaded areas and
observed data are shown as dots (training dataset) and triangles (test dataset) (± standard deviation, if reported).
Doses indicate quinidine sulfate administration. Respective doses of quinidine base were calculated and incorporated in
simulations. n: number of study participants, po: oral, q.i.d.: four times daily, s.d.: single dose.

15

400 appendix b : supplementary materials



S2.3 Plasma concentration-time profiles (linear representation)
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Figure S8: Quinidine plasma concentration-time profiles (linear representation). Population predicted geometric means
and individual predictions are shown as lines, corresponding geometric standard deviations are shown as shaded areas
and observed data are shown as dots (training dataset) and triangles (test dataset) (± standard deviation, if reported).
Doses indicate quinidine gluconate administration. Respective doses of quinidine base were calculated and incorporated
in simulations. iv: intravenous, n: number of study participants, s.d.: single dose.
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Figure S9: Quinidine plasma concentration-time profiles (linear representation). Population predicted geometric means
and individual predictions are shown as lines, corresponding geometric standard deviations are shown as shaded areas
and observed data are shown as dots (training dataset) and triangles (test dataset) (± standard deviation, if reported).
Doses indicate (a–d) quinidine gluconate and (e–i) quinidine sulfate administration. Respective doses of quinidine base
were calculated and incorporated in simulations. iv: intravenous, n: number of study participants, po: oral, s.d.: single
dose.
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Figure S10: Quinidine plasma concentration-time profiles (linear representation). Population predicted geometric means
are shown as lines, corresponding geometric standard deviations are shown as shaded areas and observed data are
shown as dots (training dataset) and triangles (test dataset) (± standard deviation, if reported). Respective doses of
quinidine base were calculated and incorporated in simulations. n: number of study participants, po: oral, s.d.: single
dose.
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Figure S11: Quinidine plasma concentration-time profiles (linear representation). Population predicted geometric means
are shown as lines, corresponding geometric standard deviations are shown as shaded areas and observed data are
shown as dots (training dataset) and triangles (test dataset) (± standard deviation, if reported). Respective doses of
quinidine base were calculated and incorporated in simulations. n: number of study participants, po: oral, s.d.: single
dose.
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Figure S12: Quinidine plasma concentration-time profiles (linear representation). Population predicted geometric means
are shown as lines, corresponding geometric standard deviations are shown as shaded areas and observed data are
shown as dots (training dataset) and triangles (test dataset) (± standard deviation, if reported). Respective doses of
quinidine base were calculated and incorporated in simulations. n: number of study participants, po: oral, q.i.d.: four
times daily, s.d.: single dose.
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S2.4 Amount excreted unchanged in urine profiles (linear representation)
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Figure S13: Quinidine amount excreted unchanged in urine profiles (linear representation). Population predicted
geometric means are shown as lines, corresponding geometric standard deviations are shown as shaded areas and
observed data are shown as dots (training dataset) and triangles (test dataset). Doses indicate (a–b) quinidine gluconate
and (c–i) quinidine sulfate administration. Respective doses of quinidine base were calculated and incorporated in
simulations. iv: intravenous, n: number of study participants, po: oral, s.d.: single dose.
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Figure S14: Quinidine amount excreted unchanged in urine profiles (linear representation). Population predicted
geometric means are shown as lines, corresponding geometric standard deviations are shown as shaded areas and
observed data are shown as dots (training dataset) and triangles (test dataset) (± standard deviation, if reported).
Doses indicate quinidine sulfate administration. Respective doses of quinidine base were calculated and incorporated in
simulations. n: number of study participants, po: oral, q.i.d.: four times daily, s.d.: single dose.
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S2.5 Predicted compared to observed concentrations

(a) Plasma concentrations training dataset
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(b) Plasma concentrations test dataset
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Figure S15: Goodness-of-fit plots comparing predicted and observed plasma concentration values. The solid line marks
the line of identity. Dotted lines indicate 1.25-fold, dashed lines indicate 2-fold deviation.
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S2.6 Mean relative deviation of plasma concentration predictions

Table S6: MRD values of quinidine plasma concentration predictions

Quinidine administration

Dose salt [mg] Dose base [mg] Route Molecule Dataset MRD Reference

Quinidine
260.3a 162.2 s.d. iv 60 min inf QUI te 1.48 Fremstad 1979 [22]

300a 187.5 s.d. iv 30 min inf QUI te 2.05 Darbar 1997b [24]
300a 187.5 s.d. iv 30 min inf QUI te 1.83 Darbar 1997c [24]
6/kga 3.74/kg s.d. iv 25 min inf QUI te 1.37 Guentert 1979 [25]
6/kga 3.74/kg s.d. iv 25 min inf QUI te 1.32 Guentert 1979 [25]
6/kga 3.74/kg s.d. iv 25 min inf QUI te 1.81 Guentert 1979 [25]

6.42/kga 4.00/kg s.d. iv 20 min inf QUI te 1.42 Shin 2007 [27]
6.42/kga 4.00/kg s.d. iv 20 min inf QUI te 1.24 Shin 2007 [27]
6.42/kga 4.00/kg s.d. iv 20 min inf QUI te 1.56 Shin 2007 [27]
6.42/kga 4.00/kg s.d. iv 20 min inf QUI te 1.38 Shin 2007 [27]

481.4a 300 s.d. iv 15 min inf QUI tr 1.40 Ochs 1980 [28]
481.4a 300 s.d. iv 15 min inf QUI tr 1.59 Ochs 1980 [28]
520.6a 324.4 s.d. iv 60 min inf QUI te 1.42 Fremstad 1979 [22]

0.1d 0.08 s.d. po sol QUI tr 2.33 Maeda 2011 [30]
1d 0.83 s.d. po sol QUI tr 1.79 Maeda 2011 [30]

10d 8.29 s.d. po sol QUI tr 1.56 Maeda 2011 [30]
100d 82.87 s.d. po sol QUI tr 1.49 Maeda 2011 [30]
100d 82.87 s.d. po tab QUI te 1.28 Kaukonen 1997 [31]
200d 165.7 s.d. po cap QUI tr 1.21 Andreasen 2007 [32]
200d 165.7 s.d. po tab QUI te 1.27 Damkier 1999 [33]
200d 165.7 s.d. po tab QUI te 1.18 Damkier 1999a [34]
200d 165.7 s.d. po tab QUI te 1.49 Laganière 1996 [35]
200d 165.7 s.d. po sol QUI te 1.30 Mason 1976 [36]
200d 165.7 s.d. po cap QUI te 1.43 Mason 1976 [36]
200d 165.7 s.d. po tab QUI te 1.85 Mason 1976 [36]
250d 207.2 s.d. po cap QUI te 2.29 Rao 1995 [37]
400d 331.5 s.d. po tab QUI te 1.44 Bleske 1990 [38]
400d 331.5 s.d. po tab QUI te 1.49 Ching 1991 [39]
400d 331.5 s.d. po tab QUI te 1.73 Edwards 1987 [40]
400d 331.5 s.d. po tab QUI te 1.86 Hardy 1983 [41]
400d 331.5 s.d. po tab QUI te 2.12 Kolb 1984 [42]
400d 331.5 s.d. po tab QUI te 1.47 Ochs 1978 [43]
400d 331.5 s.d. po tab QUI tr 1.33 Strum 1977 (A) [44]
400d 331.5 s.d. po tab QUI tr 1.28 Strum 1977 (B) [44]
400d 331.5 s.d. po tab QUI te 1.33 Strum 1977 (C) [44]
400d 331.5 s.d. po tab QUI te 1.29 Strum 1977 (D) [44]
600d 497.2 s.d. po tab QUI te 1.90 Darbar 1997b [24]
600d 497.2 s.d. po tab QUI te 1.50 Darbar 1997c [24]
600d 497.2 s.d. po tab QUI te 1.28 Frigo 1977 [45]
200d 165.7 t.i.d. po tab QUI te 1.07 Bolme 1977 [46]
300d 248.6 t.i.d. po tab QUI te 1.12 Bolme 1977 [46]
400d 331.5 t.i.d. po tab QUI te 1.09 Bolme 1977 [46]

400 + 200d 331.5 + 165.7 s.d. + q.i.d. po tab QUI tr 1.28 Ochs 1978 [43]
Mean QUI MRD training dataset (range): 1.53 (1.21 – 2.33), 9/10 with MRD ≤ 2
Mean QUI MRD test dataset (range): 1.51 (1.07 – 2.29), 30/33 with MRD ≤ 2
Overall QUI MRD (range): 1.51 (1.07 – 2.33), 39/43 with MRD ≤ 2
cap: capsule, inf: infusion, iv: intravenous, MRD: mean relative deviation, OHQ: 3-hydroxyquinidine, po: oral, q.i.d.:
four times daily, QUB: quinidine unbound, QUI: quinidine, s.d.: single dose, sol: solution, tab: tablet, te: test dataset,
t.i.d.: three times daily, tr: training dataset. Respective doses of quinidine base were calculated and incorporated in
simulations. a Quinidine gluconate dose. b Low-salt diet. c High-salt diet. d Quinidine sulfate dose.
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Table S6: MRD values of quinidine plasma concentration predictions (continued)

Quinidine administration

Dose salt [mg] Dose base [mg] Route Molecule Dataset MRD Reference

Quinidine (unbound)
481.4a 300 s.d. iv 15 min inf QUB tr Ochs 1980 [28]
481.4a 300 s.d. iv 15 min inf QUB tr Ochs 1980 [28]

Mean QUB MRD (range): 1.27 (1.12 – 1.41), 2/2 with MRD ≤ 2

3-Hydroxyquinidine
0.1b 0.08 s.d. po sol OHQ tr 1.76 Maeda 2011 [30]

1d 0.83 s.d. po sol OHQ tr 1.65 Maeda 2011 [30]
10d 8.29 s.d. po sol OHQ tr 1.65 Maeda 2011 [30]

100d 82.87 s.d. po sol OHQ tr 1.65 Maeda 2011 [30]
200d 82.87 s.d. po cap OHQ tr 1.50 Andreasen 2007 [32]
200d 82.87 s.d. po tab OHQ te 1.75 Damkier 1999 [33]
200d 82.87 s.d. po tab OHQ te 1.55 Damkier 1999a [34]
400d 331.5 s.d. po tab OHQ te 1.75 Ching 1991 [39]

Mean OHQ MRD training dataset (range): 1.62 (1.50 – 1.76), 5/5 with MRD ≤ 2
Mean OHQ MRD test dataset (range): 1.68 (1.55 – 1.75), 3/3 with MRD ≤ 2
Overall OHQ MRD (range): 1.64 (1.50 – 1.76), 8/8 with MRD ≤ 2
Overall MRD training dataset (range): 1.52 (1.12 – 2.33), 16/17 with MRD ≤ 2
Overall MRD test dataset (range): 1.52 (1.07 – 2.29), 33/36 with MRD ≤ 2
Overall MRD (range): 1.52 (1.07 – 2.33), 49/53 with MRD ≤ 2
cap: capsule, inf: infusion, iv: intravenous, MRD: mean relative deviation, OHQ: 3-hydroxyquinidine, po: oral, q.i.d.:
four times daily, QUB: quinidine unbound, QUI: quinidine, s.d.: single dose, sol: solution, tab: tablet, te: test dataset,
t.i.d.: three times daily, tr: training dataset. Respective doses of quinidine base were calculated and incorporated in
simulations. a Quinidine gluconate dose. b Low-salt diet. c High-salt diet. d Quinidine sulfate dose.
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S2.7 Predicted compared to observed AUClast and Cmax values

(a) AUClast training dataset
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(b) AUClast test dataset
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(c) Cmax training dataset
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(d) Cmax test dataset
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Figure S16: Goodness-of-fit plots comparing predicted and observed AUClast and Cmax values. The solid line marks the
line of identity. Dotted lines indicate 1.25-fold, dashed lines indicate 2-fold deviation. AUClast: area under the plasma
concentration-time curve calculated between the first and last concentration measurement, Cmax: maximum plasma
concentration.
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S2.8 Geometric mean fold errors of predicted AUClast and Cmax values

Table S7: Predicted and observed quinidine AUClast and Cmax values

Quinidine administration AUClast Cmax

Dose salt [mg] Dose base [mg] Route tlast [h] Pred [ng*h/mL] Obs [ng*h/mL] Pred/Obs Pred [ng/mL] Obs [ng/mL] Pred/Obs Molecule Dataset Reference

Quinidine
260.3a 162.2 s.d. iv 60 min inf 24 6554.71 9263.44 0.71 1626.43 1116.94 1.46 QUI te Fremstad 1979 [22]

300a 187.5 s.d. iv 30 min inf 28 8445.88 13853.58 0.61 2892.69 1909.17 1.52 QUI te Darbar 1997b [24]
300a 187.5 s.d. iv 30 min inf 28 8265.50 11985.68 0.96 2794.84 1493.54 1.87 QUI te Darbar 1997c [24]
6/kga 3.74/kg s.d. iv 25 min inf 24 13513.46 18270.86 0.74 4613.41 3940.06 1.17 QUI te Guentert 1979 [25]
6/kga 3.74/kg s.d. iv 25 min inf 24 13502.09 16073.67 0.84 4447.58 4601.00 0.97 QUI te Guentert 1979 [25]
6/kga 3.74/kg s.d. iv 25 min inf 24 13715.93 23533.78 0.58 4470.83 4461.40 1.00 QUI te Guentert 1979 [25]

6.42/kga 4.00/kg s.d. iv 20 min inf 12 11820.90 10039.30 1.18 5497.46 2512.40 2.19 QUI te Shin 2007 [27]
6.42/kga 4.00/kg s.d. iv 20 min inf 12 11235.57 12146.47 0.93 5384.97 3399.50 1.58 QUI te Shin 2007 [27]
6.42/kga 4.00/kg s.d. iv 20 min inf 12 10488.80 10356.78 1.01 5302.10 2315.80 2.29 QUI te Shin 2007 [27]
6.42/kga 4.00/kg s.d. iv 20 min inf 12 10277.00 10002.75 1.03 5245.17 2564.50 2.05 QUI te Shin 2007 [27]

481.4a 300 s.d. iv 15 min inf 38 14741.64 21152.33 0.70 - - - QUI tr Ochs 1980 [28]
481.4a 300 s.d. iv 15 min inf 36 15818.56 21417.30 0.74 - - - QUI tr Ochs 1980 [28]
520.6a 324.4 s.d. iv 60 min inf 24 15437.76 20807.88 0.74 3340.12 2108.70 1.58 QUI te Fremstad 1979 [22]

0.1d 0.08 s.d. po sol 12 0.48 0.60 0.81 0.07 0.08 0.89 QUI tr Maeda 2011 [30]
1d 0.83 s.d. po sol 12 6.14 7.01 0.88 1.07 0.91 1.18 QUI tr Maeda 2011 [30]

10d 8.29 s.d. po sol 12 131.72 118.68 1.11 30.29 16.75 1.81 QUI tr Maeda 2011 [30]
100d 82.87 s.d. po sol 12 2090.94 1488.69 1.40 433.41 235.06 1.84 QUI tr Maeda 2011 [30]
100d 82.87 s.d. po tab 24 2201.88 1994.05 1.10 152.36 161.66 0.94 QUI te Kaukonen 1997 [31]
200d 165.7 s.d. po cap 24 5360.72 6367.26 0.84 625.51 891.66 0.70 QUI tr Andreasen 2007 [32]
200d 165.7 s.d. po tab 24 4991.73 5248.11 0.95 618.73 561.00 1.10 QUI te Damkier 1999 [33]
200d 165.7 s.d. po tab 24 4991.74 5814.42 0.86 618.73 616.40 1.00 QUI te Damkier 1999a [34]
200d 165.7 s.d. po tab 26 5529.71 6884.07 0.80 615.87 736.73 0.84 QUI te Laganière 1996 [35]
200d 165.7 s.d. po sol 24 5057.62 5002.61 1.01 743.71 650.10 1.14 QUI te Mason 1976 [36]
200d 165.7 s.d. po cap 24 4755.30 6002.45 0.79 566.99 616.57 0.92 QUI te Mason 1976 [36]
200d 165.7 s.d. po tab 24 4774.21 5002.61 0.95 566.99 650.10 0.87 QUI te Mason 1976 [36]
250d 207.2 s.d. po cap 30 9063.63 20629.28 0.48 1076.40 2061.28 0.52 QUI te Rao 1995 [37]
400d 331.5 s.d. po tab 24 12181.74 14392.00 0.85 1372.09 1398.30 0.98 QUI te Bleske 1990 [38]
400d 331.5 s.d. po tab 48 13381.59 15453.90 0.87 1271.53 1486.31 0.86 QUI te Ching 1991 [39]
400d 331.5 s.d. po tab 12 8759.10 13634.29 0.64 1359.68 2046.99 0.66 QUI te Edwards 1987 [40]
400d 331.5 s.d. po tab 12 7831.41 10096.53 0.78 1214.62 1343.16 0.90 QUI te Hardy 1983 [41]
400d 331.5 s.d. po tab 9 6486.18 9100.55 0.71 1214.56 1629.89 0.75 QUI te Kolb 1984 [42]
400d 331.5 s.d. po tab 30 13958.36 16286.56 0.86 1676.78 1679.06 1.00 QUI te Ochs 1978 [43]
400d 331.5 s.d. po tab 32 12395.93 13954.84 0.89 1234.30 1317.65 0.94 QUI tr Strum 1977 (A) [44]
400d 331.5 s.d. po tab 32 12395.93 15040.31 0.82 1234.30 1383.33 0.89 QUI tr Strum 1977 (B) [44]
400d 331.5 s.d. po tab 32 12395.93 14253.64 0.87 1234.30 1386.25 0.89 QUI te Strum 1977 (C) [44]
400d 331.5 s.d. po tab 32 12395.93 13617.59 0.91 1234.30 1322.02 0.93 QUI te Strum 1977 (D) [44]
600d 497.2 s.d. po tab 28 21298.05 27000.85 0.79 2190.62 2297.91 0.95 QUI te Darbar 1997b [24]
600d 497.2 s.d. po tab 28 20762.60 23458.79 0.89 2099.90 1802.24 1.17 QUI te Darbar 1997c [24]
600d 497.2 s.d. po tab 24 21174.82 26466.89 0.80 2243.14 2193.19 1.02 QUI te Frigo 1977 [45]
200d 165.7 t.i.d. po tab 8 7608.27 7615.63 1.00 1292.21 1345.63 0.96 QUI te Bolme 1977 [46]
300d 248.6 t.i.d. po tab 8 12648.11 14391.95 0.88 2103.04 2354.96 0.89 QUI te Bolme 1977 [46]
400d 331.5 t.i.d. po tab 8 18276.65 19912.52 0.92 3033.61 3301.62 0.92 QUI te Bolme 1977 [46]

400 + 200d 331.5 + 165.7 s.d. + q.i.d. po tab 72 20002.91 19396.58 1.03 1650.11 1714.69 0.96 QUI tr Ochs 1978 [43]
Mean QUI GMFE training dataset (range): 1.22 (1.03 – 1.43), 10/10 with GMFE ≤ 2 1.33 (1.04 – 1.84), 8/8 with GMFE ≤ 2
Mean QUI GMFE test dataset (range): 1.26 (1.00 – 2.28), 32/33 with GMFE ≤ 2 1.31 (1.00 – 2.29), 30/33 with GMFE ≤ 2
Overall QUI GMFE (range): 1.25 (1.00 – 2.28), 42/43 with GMFE ≤ 2 1.31 (1.00 – 2.29), 38/41 with GMFE ≤ 2
AUClast: area under the plasma concentration-time curve calculated between the first and last concentration measurement, cap: capsule, Cmax: maximum plasma concentration, GMFE: geometric mean fold error, inf: infusion, iv:
intravenous, obs: observed, OHQ: 3-hydroxyquinidine, po: oral, q.i.d.: four times daily, QUB: quinidine unbound, QUI: quinidine, s.d.: single dose, tab: tablet, te: test dataset, t.i.d.: three times daily, tlast: time of the last concentration
measurement, tr: training dataset, -: not available. Respective doses of quinidine base were calculated and incorporated in simulations. a Quinidine gluconate dose. b Low-salt diet. c High-salt diet. d Quinidine sulfate dose.
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Table S7: Predicted and observed quinidine AUClast and Cmax values (continued)

Quinidine administration AUClast Cmax

Dose salt [mg] Dose base [mg] Route tlast [h] Pred [ng*h/mL] Obs [ng*h/mL] Pred/Obs Pred [ng/mL] Obs [ng/mL] Pred/Obs Molecule Dataset Reference

Quinidine (unbound)
481.4a 300 s.d. iv 15 min inf 24 2853.55 3956.09 0.72 - - - QUB tr Ochs 1980 [28]
481.4a 300 s.d. iv 15 min inf 12 2577.23 2748.57 0.94 - - - QUB tr Ochs 1980 [28]

Mean QUB GMFE (range): 1.23 (1.07 – 1.39), 2/2 with GMFE ≤ 2 -

3-Hydroxyquinidine
0.1d 0.08 s.d. po sol 12 0.09 0.11 0.83 0.01 0.01 1.00 OHQ tr Maeda 2011 [30]

1d 0.83 s.d. po sol 12 1.25 1.38 0.90 0.19 0.14 1.35 OHQ tr Maeda 2011 [30]
10d 8.29 s.d. po sol 12 27.66 21.42 1.29 5.19 2.58 2.01 OHQ tr Maeda 2011 [30]

100d 82.87 s.d. po sol 12 379.09 393.81 0.96 59.94 56.77 1.06 OHQ tr Maeda 2011 [30]
200d 165.7 s.d. po cap 24 948.78 1074.81 0.88 82.29 98.72 0.83 OHQ tr Andreasen 2007 [32]
200d 165.7 s.d. po tab 24 898.21 862.40 1.04 85.22 87.51 0.97 OHQ te Damkier 1999 [33]
200d 165.7 s.d. po tab 24 898.21 878.23 1.02 85.22 91.91 0.93 OHQ te Damkier 1999a [34]
400d 331.5 s.d. po tab 48 2385.10 3397.45 0.70 157.86 225.59 0.70 OHQ te Ching 1991 [39]

Mean OHQ GMFE training dataset (range): 1.15 (1.04 – 1.29), 5/5 with GMFE ≤ 2 1.32 (1.00 – 2.01), 4/5 with GMFE ≤ 2
Mean OHQ GMFE test dataset (range): 1.16 (1.02 – 1.42), 3/3 with GMFE ≤ 2 1.18 (1.03 – 1.43), 3/3 with GMFE ≤ 2
Overall OHQ GMFE (range): 1.16 (1.02 – 1.42), 8/8 with GMFE ≤ 2 1.27 (1.00 – 2.07), 7/8 with GMFE ≤ 2
Mean GMFE training dataset (range): 1.20 (1.03 – 1.43), 17/17 with GMFE ≤ 2 1.32 (1.00 – 2.01), 12/13 with GMFE ≤ 2
Mean GMFE test dataset (range): 1.25 (1.00 – 2.28), 35/36 with GMFE ≤ 2 1.30 (1.00 – 2.29), 33/36 with GMFE ≤ 2
Overall GMFE (range): 1.23 (1.00 – 2.28), 52/53 with GMFE ≤ 2 1.31 (1.00 – 2.29), 45/49 with GMFE ≤ 2
AUClast: area under the plasma concentration-time curve calculated between the first and last concentration measurement, cap: capsule, Cmax: maximum plasma concentration, GMFE: geometric mean fold error, inf: infusion, iv:
intravenous, obs: observed, OHQ: 3-hydroxyquinidine, po: oral, q.i.d.: four times daily, QUB: quinidine unbound, QUI: quinidine, s.d.: single dose, tab: tablet, te: test dataset, t.i.d.: three times daily, tlast: time of the last concentration
measurement, tr: training dataset, -: not available. Respective doses of quinidine base were calculated and incorporated in simulations. a Quinidine gluconate dose. b Low-salt diet. c High-salt diet. d Quinidine sulfate dose.
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S2.9 Geometric mean fold errors of predicted Vd and half-life values

Table S8: Predicted and observed quinidine Vd values

Quinidine administration Vd

Dose salt [mg] Dose base [mg] Route Pred [L/kg] Obs [L/kg] Pred/Obs Molecule Dataset Reference

Quinidine
260.3a 162.2 s.d. iv 60 min inf 3.03 2.27 1.33 QUI te Fremstad 1979 [22]

6/kga 3.74/kg s.d. iv 25 min inf 2.72 2.04 1.33 QUI te Guentert 1979 [25]
6/kga 3.74/kg s.d. iv 25 min inf 2.44 1.6 1.39 QUI te Guentert 1979 [25]
6/kga 3.74/kg s.d. iv 25 min inf 2.46 1.27 1.94 QUI te Guentert 1979 [25]

6.42/kga 4.00/kg s.d. iv 20 min inf 2.36b 2.85b 0.83 QUI te Shin 2007 [27]
6.42/kga 4.00/kg s.d. iv 20 min inf 2.20b 2.18b 1.01 QUI te Shin 2007 [27]
6.42/kga 4.00/kg s.d. iv 20 min inf 2.44b 2.70b 0.91 QUI te Shin 2007 [27]
6.42/kga 4.00/kg s.d. iv 20 min inf 2.36b 2.66b 0.89 QUI te Shin 2007 [27]

481.4a 300 s.d. iv 15 min inf 2.65 1.84 1.44 QUI tr Ochs 1980 [28]
481.4a 300 s.d. iv 15 min inf 2.97 2.55 1.16 QUI tr Ochs 1980 [28]
520.6a 324.4 s.d. iv 60 min inf 2.64 2.27 1.16 QUI te Fremstad 1979 [22]

Mean QUI GMFE training dataset (range): 1.30 (1.16 – 1.44), 2/2 with GMFE ≤ 2
Mean QUI GMFE test dataset (range): 1.27 (1.01 – 1.94), 9/9 with GMFE ≤ 2
Overall QUI GMFE (range): 1.27 (1.01 – 1.94), 11/11 with GMFE ≤ 2
GMFE: geometric mean fold error, inf: infusion, iv: intravenous, obs: observed, pred: predicted, QUI: quinidine, s.d.: single dose, te: test dataset, tr: training
dataset, Vd: apparent volume of distribution. Respective doses of quinidine base were calculated and incorporated in simulations. a Quinidine gluconate
dose. b volume of distribution at steady state (Vss).

29

414 appendix b : supplementary materials



Table S9: Predicted and observed quinidine half-life values

Quinidine administration Half-life

Dose salt [mg] Dose base [mg] Route Pred [h] Obs [h] Pred/Obs Molecule Dataset Reference

Quinidine
260.3a 162.2 s.d. iv 60 min inf 6.84 6.42 1.07 QUI te Fremstad 1979 [22]

300a 187.5 s.d. iv 30 min inf 6.92 10.20 0.68 QUI te Darbar 1997b [24]
300a 187.5 s.d. iv 30 min inf 7.11 9.67 0.74 QUI te Darbar 1997c [24]

481.4a 300 s.d. iv 15 min inf 8.04 7.52 1.07 QUI tr Ochs 1980 [28]
481.4a 300 s.d. iv 15 min inf 7.10 7.88 0.90 QUI tr Ochs 1980 [28]
520.6a 324.4 s.d. iv 60 min inf 6.80 6.42 1.06 QUI te Fremstad 1979 [22]

0.1d 0.08 s.d. po sol 7.29 5.07 1.44 QUI tr Maeda 2011 [30]
1d 0.83 s.d. po sol 6.82 5.73 1.19 QUI tr Maeda 2011 [30]

10d 8.29 s.d. po sol 5.79 5.24 1.10 QUI tr Maeda 2011 [30]
100d 82.87 s.d. po sol 6.06 5.59 1.08 QUI tr Maeda 2011 [30]
100d 82.87 s.d. po tab 11.38 7.40 1.54 QUI te Kaukonen 1997 [31]
200d 165.7 s.d. po cap 7.92 6.88 1.15 QUI tr Andreasen 2007 [32]
200d 165.7 s.d. po tab 8.03 7.90 1.02 QUI te Damkier 1999 [33]
200d 165.7 s.d. po tab 8.03 8.10 0.99 QUI te Damkier 1999a [34]
200d 165.7 s.d. po tab 8.19 6.80 1.20 QUI te Laganière 1996 [35]
200d 165.7 s.d. po sol 8.23 5.68 1.45 QUI te Mason 1976 [36]
200d 165.7 s.d. po cap 8.84 5.74 1.54 QUI te Mason 1976 [36]
200d 165.7 s.d. po tab 8.84 7.35 1.20 QUI te Mason 1976 [36]
250d 207.2 s.d. po cap 6.67 7.00 0.95 QUI te Rao 1995 [37]
400d 331.5 s.d. po tab 7.51 7.90 0.95 QUI te Bleske 1990 [38]
400d 331.5 s.d. po tab 8.71 7.91 1.10 QUI te Ching 1991 [39]
400d 331.5 s.d. po tab 8.72 6.90 1.26 QUI te Edwards 1987 [40]
400d 331.5 s.d. po tab 10.14 5.80 1.75 QUI te Hardy 1983 [41]
400d 331.5 s.d. po tab 9.61 14.91 0.64 QUI te Kolb 1984 [42]
400d 331.5 s.d. po tab 6.38 6.10 1.05 QUI te Ochs 1978 [43]
400d 331.5 s.d. po tab 8.09 5.36 1.51 QUI tr Strum 1977 (A) [44]
400d 331.5 s.d. po tab 8.09 5.36 1.51 QUI tr Strum 1977 (B) [44]
400d 331.5 s.d. po tab 8.09 5.36 1.51 QUI te Strum 1977 (C) [44]
400d 331.5 s.d. po tab 8.09 5.36 1.51 QUI te Strum 1977 (D) [44]
600d 497.2 s.d. po tab 7.08 7.93 0.89 QUI te Darbar 1997b [24]
600d 497.2 s.d. po tab 7.41 8.12 0.91 QUI te Darbar 1997c [24]
600d 497.2 s.d. po tab 7.32 7.87 0.93 QUI te Frigo 1977 [45]

Mean QUI GMFE training dataset (range): 1.23 (1.07 – 1.51), 9/9 with GMFE ≤ 2
Mean QUI GMFE test dataset (range): 1.24 (1.01 – 1.75), 23/23 with GMFE ≤ 2
Overall QUI GMFE (range): 1.24 (1.01 – 1.75), 32/32 with GMFE ≤ 2
cap: capsule, GMFE: geometric mean fold error, inf: infusion, iv: intravenous, obs: observed, po: oral, pred: predicted, q.i.d.: four times daily, QUI: quinidine,
s.d.: single dose, tab: tablet, te: test dataset, t.i.d.: three times daily, tr: training dataset. Respective doses of quinidine base were calculated and incorporated
in simulations. a Quinidine gluconate dose. b Low-salt diet. c High-salt diet. d Quinidine sulfate dose.

30

B.5 project v : pbpk modeling of quinidine 415



S2.10 Sensitivity Analyses

Sensitivity of the quinidine and 3-hydroxyquinidine models to single model parameters was calculated, determined
as relative change of AUC0-6h at steady state in a four-times daily regimen of 200 mg (first dose 400 mg) quinidine
(sulfate) according to Equation S2. A relative perturbation of 1000% (variation range 10.0, maximum number of 2 steps)
was applied. Parameters were included into the analysis if (i) they have been optimized, (ii) they are associated with
optimized parameters or (iii) they could have a strong impact due to their use in the calculation of permeabilities or
partition coefficients (Table S10).

S =
∆AUC
AUC

· p
∆p

(S2)

S = sensitivity of the AUC to the examined model parameter, ∆AUC = change of the AUC, AUC = simulated AUC
with the original parameter value, ∆p = change of the examined parameter value and p = original parameter value.
Parameters were considered sensitive, if their sensitivity value was equal or greater than 0.5.

Table S10: Parameters evaluated during quinidine and 3-hydroxyquinidine sensitivity analyses

Quinidine 3-Hydoxyquinidine

Parameter Value Source Value Source
Solubility (pH 7.0) [g/L] 11.11 Literature 12.57 Literature
Lipophilicity 2.51 Literature 1.66 Literature
fu,p [%] 21 Literature 31 Literature
P-gp KM [µmol/L] 0.23 Literature - -
P-gp kcat [1/min] 0.77 Optimized - -
CYP3A4 (QUI → OHQ) KM [µmol/L] 51.8 Literature - -
CYP3A4 (QUI → OHQ) kcat [1/min] 2.21 Optimized - -
CYP3A4 (QUI → sink) KM [µmol/L] 65.03 Literature - -
CYP3A4 (QUI → sink) kcat [1/min] 3.84 Optimized - -
CYP3A4 CL [1/min] - - 0.08 Optimized
CLhep [1/min] - - 0.45 Optimized
P-gp Ki [µmol/L] 0.10 Literature - -
Intestinal permeability [cm/min] 6.47 · 10-6 Optimized - -
Weibull dissolution time (50% dissolved) [min] 8.76 Literature - -
Weibull dissolution shape 0.42 Literature - -
CL: clearance, CLhep: hepatic metabolic clearance, CYP: cytochrome P450, fu,p: fraction unbound
plasma, kcat: catalytic or transport rate constant, Ki: concentration for 50% inhibition (competitive),
KM: Michaelis-Menten constant, OHQ: 3-hydroxyquinidine, P-gp: P-glycoprotein, QUI: quinidine,
-: not available.
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Figure S17: Local sensitivity analysis results of the quinidine PBPK model (parent quinidine), determined as relative
change of AUC0-6h at steady state in a four-times daily regimen of 200 mg (first dose 400 mg) quinidine (sulfate). CYP:
cytochrome P450, kcat: catalytic or transport rate constant, KM: Michaelis-Menten constant, lit.: literature value, OHQ:
3-hydroxyquinidine, opt.: optimized, P-gp: P-glycoprotein, QUI: quinidine.
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Figure S18: Local sensitivity analysis results of the quinidine PBPK model (metabolite 3-hydroxyquinidine), determined as
relative change of AUC0-6h at steady state in a four-times daily regimen of 200 mg (first dose 400 mg) quinidine (sulfate).
CL: clearance, CLhep: hepatic metabolic clearance, CYP: cytochrome P450, kcat: catalytic or transport rate constant, KM:
Michaelis-Menten constant, lit.: literature value, OHQ: 3-hydroxyquinidine, opt.: optimized, P-gp: P-glycoprotein, QUI:
quinidine.
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S3 DD(G)I Modeling

S3.1 Types of Interaction

S3.1.1 Competitive inhibition

KM,app = KM ∗ (1+ [I]
Ki

) (S3)

v =
vmax ∗ [S]

KM,app +[S]
=

kcat ∗ [E]∗ [S]
KM,app +[S]

(S4)

KM,app = Michaelis-Menten constant in the presence of inhibitor, KM = Michaelis-Menten constant, [I] = free inhibitor
concentration, Ki = dissociation constant of the inhibitor-enzyme/transporter complex, v = reaction velocity, [S] = free
substrate concentration, kcat = catalytic or transport rate constant and [E] = enzyme concentration.

S3.1.2 Non-competitive inhibition

vmax,app =
vmax

1+ [I]
Ki

(S5)

v =
vmax,app · [S]

KM +[S]
(S6)

vmax,app = maximum reaction velocity in the presence of inhibitor, vmax = maximum reaction velocity, [I] = free inhibitor
concentration, Ki = dissociation constant of the inhibitor-enzyme/transporter complex, v = reaction velocity, [S] = free
substrate concentration and KM = Michaelis-Menten constant.

S3.1.3 Mechanism-based inactivation

d[E]
dt

= kdeg ∗E0 −
kdeg + kinact ∗ [I]

KI +[I]
∗ [E] (S7)

d[E]
dt = enzyme turnover, kdeg = degradation rate constant, E0 = enzyme concentration at time 0, [I] = free mechanism-

based inactivator concentration, kinact = maximum inactivation rate constant, KI = concentration for half-maximal
inactivation and [E] = enzyme concentration.

S3.1.4 Induction

d[E]
dt

= kdeg ∗E0 ∗
1+(Emax ∗ [Ind])

EC50+[Ind]
(S8)

d[E]
dt = enzyme turnover, kdeg = degradation rate constant, E0 = enzyme concentration at time 0, Emax = maximal induction

effect in vivo, [Ind] = free inducer concentration and EC50 = concentration for half maximal induction in vivo.
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S3.2 Published PBPK DDI models

Table S11: Published perpetrator models and included relevant interaction constants

Model (PK-Sim® Version) Mechanism Parameter Value Publication Model repository

Carbamazepine (V11) Fuhr et al. 2021 [65] Carbamazepine-Model (OSP, v1.0)a

Carbamazepine Induction CYP3A4 Emax 6.00
Induction CYP3A4 EC50 [µmol/L] 20.00

Carbamazepine-10,11-epoxide - - -

Cimetidine (V11) Hanke et al. 2020 [66] Cimetidine-Model (OSP, v1.1)a

Cimetidine Competitive inhibition CYP3A4 Ki [µmol/L] 268.00

Fluvoxamine (V11) Britz et al. 2019 [67] Fluvoxamine-Model (OSP, v1.2)a

Fluvoxamine Competitive inhibition CYP3A4 Ki [µmol/L] 1.60

Itraconazole (V11) Hanke et al. 2018 [17] Itraconazole-Model (OSP, v1.3)a

Itraconazole Competitive inhibition CYP3A4 Ki [nmol/L] 1.30
Competitive inhibition P-gp Ki [nmol/L] 8.00

Hydroxy-itraconazole Competitive inhibition CYP3A4 Ki [nmol/L] 14.40
Keto-itraconazole Competitive inhibition CYP3A4 Ki [nmol/L] 5.12
N-Desalkyl-itraconazole Competitive inhibition CYP3A4 Ki [nmol/L] 0.32

Omeprazole (V11) Kanacher et al. 2020 [20] Omeprazole-Model (OSP, v1.1)a

R-Omeprazole Competitive inhibiton CYP3A4 Ki [µmol/L] 44.50 [68]
S-Omeprazole Competitive inhibiton CYP3A4 Ki [µmol/L] 46.60 [68]

Rifampicin (V11) Hanke et al. 2018 [17] Rifampicin-Model (OSP, v1.2)a

Rifampicin Induction CYP3A4 Emax 9.00
Induction CYP3A4 EC50 [µmol/L] 0.34
Competitive inhibition CYP3A4 Ki [µmol/L] 18.50
Induction P-gp Emax 2.50
Induction P-gp EC50 [µmol/L] 0.34
Competitive inhibition P-gp Ki [µmol/L] 169.00

Verapamil (V11) Hanke et al. 2020a [69] Verapamil-Norverapamil-Model
R-Verapamil Mechanism-based inactivation CYP3A4 KI 27.63

Mechanism-based inactivation CYP3A4 kinact [µmol/L] 0.038
Non-competitive inhibition P-gp Ki [µmol/L] 0.038

S-Verapamil Mechanism-based inactivation CYP3A4 KI 3.85
Mechanism-based inactivation CYP3A4 kinact [µmol/L] 0.034
Non-competitive inhibition P-gp Ki [µmol/L] 0.038

R-Norverapamil Mechanism-based inactivation CYP3A4 KI 6.10
Mechanism-based inactivation CYP3A4 kinact [µmol/L] 0.048
Non-competitive inhibition P-gp Ki [µmol/L] 0.038

CYP: cytochrome P450, EC50: concentration for half maximal induction, Emax: maximal induction effect, Ki: dissociation constant of the inhibitor-enzyme/transporter (competitive)
and inhibitor-enzyme/transporter(-substrate) complex (non-competitive), KI: concentration for 50% inactivation (mechanism-based inactivation), kinact: maximum inactivation rate
(mechanism-based inactivation), OSP: Open Systems Pharmacology, P-gp: P-glycoprotein. If not otherwise indicated, interaction constants were adopted from the respective
published models. Hyperlinks refer to the respective model repositories. a Open Systems Pharmacology model repository (https://github.com/Open-Systems-Pharmacology).
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Table S11: (continued)

Model (PK-Sim® Version) Mechanism Parameter Value Publication Model repository
S-Norverapamil Mechanism-based inactivation CYP3A4 KI 2.90

Mechanism-based inactivation CYP3A4 kinact [µmol/L] 0.080
Non-competitive inhibition P-gp Ki [µmol/L] 0.038

CYP: cytochrome P450, EC50: concentration for half maximal induction, Emax: maximal induction effect, Ki: dissociation constant of the inhibitor-enzyme/transporter (competitive)
and inhibitor-enzyme/transporter(-substrate) complex (non-competitive), KI: concentration for 50% inactivation (mechanism-based inactivation), kinact: maximum inactivation rate
(mechanism-based inactivation), OSP: Open Systems Pharmacology, P-gp: P-glycoprotein. If not otherwise indicated, interaction constants were adopted from the respective
published models. Hyperlinks refer to the respective model repositories. a Open Systems Pharmacology model repository (https://github.com/Open-Systems-Pharmacology).
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Table S12: Published victim models and affected metabolism and transport pathways

Model (PK-Sim® Version) Mechanism Parameter Value Publication Model repository

Dextromethorphan (V11) Rüdesheim et al. 2022 [70] Dextromethorphan-Model
Dextromethorphan Metabolism to DXT CYP2D6 KM [µmol/L] 4.65

Metabolism to DXT CYP2D6 kkat [1/min] (NM) 90.89
Metabolism to DXT CYP2D6 kkat [1/min] (PM) 0.00

Dextrorphan - - -
Dextrorphan-O-glucuronide - - -

Digoxin (V11) Hanke et al. 2018 [17] Digoxin-Model (OSP)a

Digoxin Transport P-gp KM [µmol/L] 177.00
Transport P-gp kcat [1/min] 71.20

Metoprolol (V11) Rüdesheim et al. 2020 [71] Metoprolol-Model
R-Metoprolol Metabolism to αHM CYP2D6 KM [µmol/L] 10.08

Metabolism to αHM CYP2D6 kcat [1/min] (NM) 6.02
Metabolism to αHM CYP2D6 kcat [1/min] (PM) 0.00
Metabolism (ODM) CYP2D6 KM [µmol/L] 8.82
Metabolism (ODM) CYP2D6 kcat [1/min] (NM) 9.87
Metabolism (ODM) CYP2D6 kcat [1/min] (PM) 0.00

S-Metoprolol Metabolism to αHM CYP2D6 KM [µmol/L] 10.75
Metabolism to αHM CYP2D6 kcat [1/min] (NM) 6.55
Metabolism to αHM CYP2D6 kcat [1/min] (PM) 0.00
Metabolism (ODM) CYP2D6 KM [µmol/L] 12.43
Metabolism (ODM) CYP2D6 kcat [1/min] (NM) 8.21
Metabolism (ODM) CYP2D6 kcat [1/min] (PM) 0.00

α-Hydroxymetoprolol - - -

Mexiletine (V11) Kanacher et al. 2020 [20] Mexiletine-Model (OSP, v1.1)a

Mexiletine Metabolism CYP2D6 clearance [1/min] 0.46

Paroxetine (V11) Rüdesheim et al. 2022 [72] Paroxetine-Model
Paroxetine Metabolism CYP2D6 KM [µmol/L] 0.03

Metabolism CYP2D6 kcat [1/min] (NM) 1.37
αHM: α-hydroxymetoprolol, CYP: cytochrome P450, DXT: dextrorphan, NM: normal metabolizer, ODM: O-demethylation OSP: Open Systems Pharmacology,
P-gp: P-glycoprotein, PM: poor metabolizer. Interaction constants were adopted from the respective published models. Hyperlinks refer to the respective model
repositories. a Open Systems Pharmacology model repository (https://github.com/Open-Systems-Pharmacology).
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S3.3 DD(G)I – Clinical studies

S3.3.1 Quinidine as victim

Table S13: Clinical study data used for DDI model development with quinidine as victim

Drug administration Perpetrator

Perpetrator Quinidine Cmax,u [µmol/L]a n Populationb Fem. [%] Age [years] Weight [kg] BMI [kg/m²] Molecule Dataset Reference

Carbamazepine
200/400 mg b.i.d. po 200 mgc s.d. po 13.88 10 European [21] 0 (21-26) (62-85) (19-26) QUI, OHQ tr Andreasen 2007 [32]

Cimetidine
300 mg q.d. po 400 mgc s.d. po 3.58 9 American [23] 0 (21-35) - - QUI te Kolb 1984 [42]
300 mg q.i.d. po 400 mgc s.d. po 4.52 9 American [23] 0 (21-35) - - QUI te Hardy 1983 [41]

Fluvoxamine
100 mg q.d. po 200 mgc s.d. po 0.06 6 American [23] 0 - - - QUI, OHQ te Damkier 1999a [34]

Itraconazole
200 mg q.d. po 100 mgc s.d. po 3.20 · 10-3 9 European [21] 56 25 (21-32) 64 (41-80) - QUI te Kaukonen 1997 [31]

Omeprazole
40 mg q.d. po 400 mgc s.d. po 0.02 (R-omep) 8 European [21] 0 (22-29) (60-94) - QUI, OHQ te Ching 1991 [39]

0.03 (S-omep) -

Rifampicin
600 mg q.d. po 200 mgc s.d. po 2.13 6 European [21] 0 - - - QUI, OHQ te Damkier 1999 [33]

Verapamil
80 mg t.i.d. po 400 mgc s.d. po 0.01 (R-vera) 6 European [21] 0 (23-34) - - QUI te Edwards 1987 [40]

8.69 · 10-3 (S-vera)
120 mg t.i.d. po 400 mgc s.d. po 0.03 (R-vera) 6 European [21] 0 (23-34) - - QUI te Edwards 1987 [40]

0.02 (S-vera)

b.i.d.: twice daily, BMI: body mass index, cap: capsule, Cmax,u: unbound maximum plasma concentration, DDI: drug-drug interaction, fem: females, inf: infusion, n: number of study participants, OHQ:
3-hydroxyquinidine, omep: omeprazole, po: oral, q.d.: once daily, q.i.d.: four times daily, QUI: quinidine, s.d: single dose, te: test dataset, t.i.d.: three times daily, tr: training dataset, vera: verapamil, -: not available.
Values are given as mean (range). If perpetrator and victim drugs were applied in form of salts, the respective dose of bases were calculated and incorporated in simulations. a Calculated from model-predicted
perpetrator concentrations in the respective DDI simulations. b Population used in simulations. c Quinidine sulfate dose.

37

4
2

2
a

p
p

e
n

d
i
x

b:
s

u
p

p
l

e
m

e
n

t
a

r
y

m
a

t
e

r
i
a

l
s



S3.3.2 Quinidine as perpetrator

Table S14: Clinical study data used for DD(G)I model development with quinidine as perpetrator

Drug administration Quinidine

Quinidine Victim Cmax,u [µmol/L]a n Populationb Fem. [%] Age [years] Weight [kg] BMI [kg/m²] Phenotype Molecule Dataset Reference

Dextromethorphan
50 mgc s.d. po 30 mg s.d. pod 0.09 6 European [21] 33.3 22.4 (20-26) 70 (49-86) - CYP2D6 NM DEX, DTT te Capon 1996 [73]
100 mgc s.d. po 30 mg s.d. po 0.20 5 American [23] 80 26.4 (22-31) - - CYP2D6 NM DEX, DXT, DXG te Schadel 1995 [74]
30 mgc b.i.d. poe 30 mg b.i.d. pof 0.07 13 American [23] 14.3 33.5 (23-50) 73.3 25.1 CYP2D6 NM DEX te Schoedel 2012 [75]

Digoxin
200 mgc b.i.d. po 10 µg/kg s.d. ivg 0.52 6 European [21] 33 (21-28) - - - DIG te Steiness 1980 [76]
200 mgc q.i.d. po 1 mg s.d. iv 1.01 7 European [21] - - - - - DIG te Ochs 1981 [77]

Metoprolol
50 mgc s.d. po 20 mg s.d. iv 0.08 4 European [21] 0 (22-34) (58-80) - CYP2D6 NM MET te Leemann 1993 [78]
50 mgc s.d. po 20 mg s.d. ivh 0.08 3 European [21] 0 (25-38) (65-86) - CYP2D6 PM MET te Leemann 1993 [78]
250 mgc b.i.d. po 20 mg s.d. iv 0.81 4 European [21] 0 (22-34) (58-80) - CYP2D6 NM MET te Leemann 1993 [78]
250 mgc b.i.d. po 20 mg s.d. ivh 0.81 3 European [21] 0 (25-38) (65-86) - CYP2D6 PM MET te Leemann 1993 [78]
100 mgc q.d. po 200 mg s.d. po 0.20 10 American [23] 0 28.9 (24-40) 85.2 - CYP2D6 NM RME, SME te Johnson 1996 [79]
100 mgc q.d. po 200 mg s.d. po 0.20 10 American [23] 0 28.5 (24-36) 82.2 - CYP2D6 NM RME, SME te Johnson 1996 [79]

Mexiletine
50 mgc q.i.d. po 200 mg s.d. po 0.21 6 American [23] 33.3 22.4 (20-26) 71 (49-86) - CYP2D6 NM MEX te Abolfathi 1993 [80]
50 mgc q.i.d. po 200 mg s.d. po 0.21 10 American [23] 7 26 74 - CYP2D6 PM MEX te Abolfathi 1993 [80]

Paroxetine
30 mgc b.i.d. po 20 mg q.d. poi 0.07 14 American [23] 14.3 33.6 (19-55) 75.3 25.3 CYP2D6 NM PAR te Schoedel 2012 [75]

b.i.d.: twice daily, BMI: body mass index, Cmax,u: unbound maximum plasma concentration, DD(G)I: drug-drug(-gene) interaction, DEX: dextromethorphan, DIG: digoxin, DTT: total dextrorphan, DXG: dextrorphan-O-glucuronide, fem:
females, iv: intravenous, MET: metoprolol (racemate), MEX: mexiletine, n: number of study participants, NM: normal metabolizer, PAR: paroxetine, PM: poor metabolizer, po: oral, q.d.: once daily, q.i.d:, four times daily, RME: R-metoprolol,
s.d.: single dose, SME: S-metoprolol, te: test dataset, -: not available. Values are given as mean (range). If perpetrator and victim drugs were applied in form of salts, the respective doses of bases were calculated and incorporated in
simulations. a Calculated from model-predicted quinidine concentrations in the respective DDI simulations. b Population used in simulations. c Quinidine sulfate dose. d CYP2D6 catalytic rate constant estimated for control to account for
unexplained interindividual variability in CYP2D6 activity (57% of original model value). e Plus paroxetine (20 mg q.d. po). f CYP2D6 catalytic rate constant estimated for control to account for unexplained interindividual variability in
CYP2D6 activity (26% of original model value). g Digoxin dose of 15 µg/kg before DDI, normalized to 15 µg/kg for evaluation. h CYP2D6 catalytic rate constant estimated for control to account for unexplained interindividual variability in
CYP2D6 activity (300% for sink metabolism and 200% for formation of α-hydroxymetoprolol of original model value). i Plus dextromethorphan (30 mg b.i.d. po).
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S3.4 Plasma concentration-time profiles (semilogarithmic representation)

S3.4.1 Quinidine as victim
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Figure S19: Predicted compared to observed plasma concentration-time profiles of quinidine alone and after pretreatment
and/or concomitant administration of (a) carbamazepine, (b–c) cimetidine, (d) fluvoxamine, (e) itraconazole, (f) R-/S-
omeprazole, (g) rifampicin and (h–i) R-/S-verapamil (semilogarithmic representation). Population predicted geometric
means are shown as lines, corresponding geometric standard deviations are shown as shaded areas and observed
data are shown as dots (control) and squares (DDI) (± standard deviation, if reported). b.i.d.: twice daily, DDI: drug-drug
interaction, n: number of study participants, po: oral, q.d.: once daily, q.i.d.: four times daily, s.d.: single dose, t.i.d.: three
times daily.
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Figure S20: Predicted compared to observed plasma concentration-time profiles of 3-hydroxyquinidine alone and after
pretreatment and/or concomitant administration of (a) carbamazepine, (b) fluvoxamine, (c) R-/S-omeprazole and (d)
rifampicin (semilogarithmic representation). Population predicted geometric means are shown as lines, corresponding
geometric standard deviations are shown as shaded areas and observed data are shown as dots (control) and squares
(DDI). DDI: drug-drug interaction, n: number of study participants.
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S3.4.2 Quinidine as perpetrator
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Figure S21: Predicted compared to observed plasma concentration-time profiles of (a–c) dextromethorphan (+ metabo-
lites), (d–e) digoxin and (f–i) metoprolol alone and after pretreatment with and/or concomitant administration of quinidine
(semilogarithmic representation). Population predicted geometric means are shown as lines, corresponding geometric
standard deviations are shown as shaded areas and observed data are shown as dots (control) and squares (DDI)
(± standard deviation, if reported). b.i.d.: twice daily, DDI: drug-drug interaction, DDGI: drug-drug-gene interaction, iv:
intravenous, n: number of study participants, NM: CYP2D6 normal metabolizer, norm: dose-normalized, PM: CYP2D6
poor metabolizer, po: oral, q.i.d.: four times daily, s.d.: single dose.
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Figure S22: Predicted compared to observed plasma concentration-time profiles of (a–b) R-/S- metoprolol (comparison
of different ethnic backgrounds), (c–d) mexiletine (observed data of representative subjects) and (e) paroxetine alone
and after pretreatment with and/or concomitant administration of quinidine (semilogarithmic representation). Population
predicted geometric means are shown as lines, corresponding geometric standard deviations are shown as shaded
areas and observed data are shown as dots(control) and squares (DDI). b.i.d.: twice daily, DDI: drug-drug interaction,
DDGI: drug-drug-gene interaction, n: number of study participants, NM: CYP2D6 normal metabolizer, PM: CYP2D6 poor
metabolizer, po: oral, q.d.: once daily, q.i.d.: four times daily.
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S3.5 Amount excreted unchnaged in urine profiles (semilogarithmic representation)

S3.5.1 Quinidine as victim
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Figure S23: Predicted compared to observed plasma amount excreted unchanged in urine profiles of quinidine alone
and after pretreatment and/or concomitant administration of (a) cimetidine, (b) itraconazole and (c–d) R-/S-verapamil
(semilogarithmic representation). Population predicted geometric means are shown as lines, corresponding geometric
standard deviations are shown as shaded areas and observed data are shown as dots (control) and squares (DDI). DDI:
drug-drug interaction, n: number of study participants, po: oral, q.d.: once daily, q.i.d.: four times daily, s.d.: single dose,
t.i.d.: three times daily.
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S3.6 Plasma concentration-time profiles (linear representation)

S3.6.1 Quinidine as victim
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Figure S24: Predicted compared to observed plasma concentration-time profiles of quinidine and 3-hydroxyquinidine
alone and after pretreatment and/or concomitant administration of (a) carbamazepine, (b–c) cimetidine, (d) fluvoxamine,
(e) itraconazole, (f) R-/S-omeprazole, (g) rifampicin and (h–i) R-/S-verapamil (linear representation). Population predicted
geometric means are shown as lines, corresponding geometric standard deviations are shown as shaded areas and
observed data are shown as dots (± standard deviation, if reported). b.i.d.: twice daily, DDI: drug-drug interaction, n:
number of study participants, po: oral, q.d.: once daily, q.i.d.: four times daily, s.d.: single dose, t.i.d.: three times daily.
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Figure S25: Predicted compared to observed plasma concentration-time profiles of 3-hydroxyquinidine alone and after
pretreatment and/or concomitant administration of (a) carbamazepine, (b) fluvoxamine, (c) R-/S-omeprazole and (d)
rifampicin (linear representation). Population predicted geometric means are shown as lines, corresponding geometric
standard deviations are shown as shaded areas and observed data are shown as dots (± standard deviation, if reported).
DDI: drug-drug interaction, n: number of study participants.
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S3.6.2 Quinidine as perpetrator
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Figure S26: Predicted compared to observed plasma concentration-time profiles of (a–c) dextromethorphan (+ metabo-
lites), (d–e) digoxin and (f–i) metoprolol alone and after pretreatment with and/or concomitant administration of quinidine
(linear representation). Population predicted geometric means are shown as lines, corresponding geometric standard
deviations are shown as shaded areas and observed data are shown as dots (± standard deviation, if reported). b.i.d.:
twice daily, DDI: drug-drug interaction, DDGI: drug-drug-gene interaction, iv: intravenous, n: number of study participants,
NM: CYP2D6 normal metabolizer, norm: dose-normalized, PM: CYP2D6 poor metabolizer, po: oral, q.i.d.: four times
daily, s.d.: single dose.
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Figure S27: Predicted compared to observed plasma concentration-time profiles of (a–b) R-/S- metoprolol (comparison
of different ethnic backgrounds), (c–d) mexiletine (observed data of representative subjects) and (e) paroxetine alone
and after pretreatment with and/or concomitant administration of quinidine (linear representation). Population predicted
geometric means are shown as lines, corresponding geometric standard deviations are shown as shaded areas and
observed data are shown as dots (± standard deviation, if reported). b.i.d.: twice daily, DDI: drug-drug interaction,
DDGI: drug-drug-gene interaction, n: number of study participants, NM: CYP2D6 normal metabolizer, PM: CYP2D6 poor
metabolizer, po: oral, q.d.: once daily, q.i.d.: four times daily.
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S3.7 Amount excreted unchnaged in urine profiles (linear representation)

S3.7.1 Quinidine as victim
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Figure S28: Predicted compared to observed plasma amount excreted unchanged in urine profiles of quinidine alone
and after pretreatment and/or concomitant administration of (a) cimetidine, (b) itraconazole and (c–d) R-/S-verapamil
(linear representation). Population predicted geometric means are shown as lines, corresponding geometric standard
deviations are shown as shaded areas and observed data are shown as dots (control) and squares (DDI). DDI: drug-drug
interaction, n: number of study participants, po: oral, q.d.: once daily, q.i.d.: four times daily, s.d.: single dose, t.i.d.: three
times daily.
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S3.8 DDI AUClast and Cmax ratios

S3.8.1 Quinidine as victim

(a) DDI AUClast ratio (b) DDI Cmax ratio

Figure S29: Goodness-of-fit plots comparing predicted and observed DDI AUClast and Cmax ratios. The solid line marks
the line of identity. Dotted lines indicate 1.25-fold, dashed lines indicate 2-fold deviation. Prediction success limits
proposed by Guest et al. [81] are shown as curved lines (including 20% variability). AUClast: area under the plasma
concentration-time curve calculated between the first and last concentration measurement, Cmax: maximum plasma
concentration, DDI: drug-drug interaction.
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S3.8.2 Quinidine as perpetrator

(a) DD(G)I AUClast ratio (b) DD(G)I Cmax ratio

Figure S30: Goodness-of-fit plots comparing predicted and observed DD(G)I AUClast and Cmax ratios. The solid line
marks the line of identity. Dotted lines indicate 1.25-fold, dashed lines indicate 2-fold deviation. Prediction success
limits proposed by Guest et al. [81] are shown as curved lines (including 20% variability). AUClast: area under the
plasma concentration-time curve calculated between first and last concentration measurement, Cmax: maximum plasma
concentration, DD(G)I: drug-drug(-gene) interaction. DEX: dextromethorphan, DXG: dextrorphan-O-glucuronide, DTT:
total dextrorphan, DIG: digoxin, MET: metoprolol, MEX: mexiletine, PAR: paroxetine, RME: R-metoprolol, SME: S-
metoprolol.
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S3.9 Geometric mean fold errors of predicted DD(G)I AUClast and Cmax ratios

S3.9.1 Quinidine as victim

Table S15: Predicted and observed DDI AUClast and Cmax ratios involving quinidine as victim drug

Drug administration DDI AUClast ratio DDI Cmax ratio

Perpetrator Quinidine tlast [h] Pred Obs Pred/Obs Pred Obs Pred/Obs Molecule Dataset Reference

Carbamazepine
200/400 mg b.i.d. po 200 mga s.d. po 24 0.43 0.41 1.07 0.57 0.50 1.14 QUI tr Andreasen 2007 [32]
200/400 mg b.i.d. po 200 mga s.d. po 24 0.77 0.90 0.86 1.24 1.48 0.83 OHQ tr Andreasen 2007 [32]

Mean GMFE (range): 1.11 (1.07 – 1.16), 2/2 with GMFE ≤ 2 1.17 (1.14 – 1.20), 2/2 with GMFE ≤ 2

Cimetidine
300 mg q.d. po 400 mga s.d. po 9 1.00 1.13 0.88 1.00 0.90 1.11 QUI te Kolb 1984 [42]
300 mg q.i.d. po 400 mga s.d. po 12 1.00 1.28 0.79 1.01 1.26 0.80 QUI te Hardy 1983 [41]

Mean GMFE (range): 1.20 (1.14 – 1.27), 2/2 with GMFE ≤ 2 1.18 (1.11 – 1.25), 2/2 with GMFE ≤ 2

Fluvoxamine
100 mg q.d. po 200 mga s.d. po 48 1.21 1.66 0.73 1.01 1.32 0.77 QUI te Damkier 1999a [34]
100 mg q.d. po 200 mga s.d. po 48 1.16 1.23 0.94 0.92 0.96 0.95 OHQ te Damkier 1999a [34]

Mean GMFE (range): 1.22 (1.06 – 1.38), 2/2 with GMFE ≤ 2 1.17 (1.05 – 1.30), 2/2 with GMFE ≤ 2

Itraconazole
200 mg q.d. po 100 mga s.d. po 24 1.71 1.95 0.88 1.41 1.61 0.88 QUI te Kaukonen 1997 [31]

Mean GMFE: 1.14, 1/1 with GMFE ≤ 2 1.14, 1/1 with GMFE ≤ 2

Omeprazole
40 mg q.d. po 400 mga s.d. po 48 1.04 1.15 0.90 0.99 1.12 0.89 QUI te Ching 1991 [39]
40 mg q.d. po 400 mga s.d. po 48 0.98 0.90 1.09 1.00 0.85 1.17 OHQ te Ching 1991 [39]

Mean GMFE (range): 1.10 (1.09 – 1.11), 2/2 with GMFE ≤ 2 1.15 (1.13 – 1.17), 2/2 with GMFE ≤ 2

Rifampicin
600 mg q.d. po 200 mga s.d. po 10 0.18 0.12 1.52 0.40 0.34 1.18 QUI te Damkier 1999 [33]
600 mg q.d. po 200 mga s.d. po 10 0.36 0.78 0.47 0.92 2.90 0.32 OHQ te Damkier 1999 [33]

Mean GMFE (range): 1.83 (1.52 – 2.13), 1/2 with GMFE ≤ 2 2.17 (1.18 – 3.15), 1/2 with GMFE ≤ 2

Verapamil
80 mg t.i.d. po 400 mga s.d. po 12 1.48 1.21 1.22 1.19 0.96 1.25 QUI te Edwards 1987 [40]
120 mg t.i.d. po 400 mga s.d. po 12 1.72 1.25 1.38 1.27 0.96 1.33 QUI te Edwards 1987 [40]

Mean GMFE (range): 1.34 (1.30 – 1.38), 2/2 with GMFE ≤ 2 1.31 (1.29 – 1.33), 2/2 with GMFE ≤ 2
Overall GMFE (range): 1.29 (1.06 – 2.19), 12/13 with GMFE ≤ 2 1.34 (1.05 – 3.15), 12/13 with GMFE ≤ 2
AUClast: area under the plasma concentration-time curve calculated between the first and last concentration measurement, b.i.d.: twice daily, Cmax: maximum plasma concentration, DDI: drug-drug
interaction, GMFE: geometric mean fold error, obs: observed, OHQ: 3-hydroxyquinidine, po: oral, pred: predicted, q.d.: once daily, QUI: quinidine, s.d.: single dose, te: test dataset, t.i.d.: three times
daily, tlast: time of the last concentration measurement, tr: training dataset. Respective doses of quinidine base were calculated and incorporated in simulations. a Quinidine sulfate dose.
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S3.9.2 Quinidine as perpetrator

Table S16: Predicted and observed DD(G)I AUClast and Cmax ratios involving quinidine as perpetrator drug

Drug administration DD(G)I AUClast ratio DD(G)I Cmax ratio

Quinidine Victim tlast [h] Pred Obs Pred/Obs Pred Obs Pred/Obs Phenotype Molecule Dataset Reference

Dextromethorphan
50 mga s.d. po 30 mg s.d. pob 72 3.12 6.84 0.46 2.38 6.07 0.39 CYP2D6 NM DEX te Capon 1996 [73]
50 mga s.d. po 30 mg s.d. po 96 1.19 0.99 1.20 0.41 0.24 1.69 CYP2D6 NM DTT te Capon 1996 [73]
100 mga s.d. po 30 mg s.d. po 48 1.16 0.61 1.92 0.41 0.13 3.11 CYP2D6 NM DXG te Schadel 1995 [74]
30 mga b.i.d. poc 30 mg b.i.d. pod 12 2.92 1.45 2.01 2.71 1.42 1.92 CYP2D6 NM DEX te Schoedel 2012 [75]

Mean GMFE (range): 1.83 (1.20 – 2.19), 2/4 with GMFE ≤ 2 2.32 (1.69 – 3.11), 2/4 with GMFE ≤ 2

Digoxin
200 mga q.i.d. po 10 µg/kg s.d. ive 80 1.62 1.44 1.12 - - - - DIG te Steiness 1980 [76]
200 mga q.i.d. po 1 mg s.d. iv 72 1.74 2.05 0.85 - - - - DIG te Ochs 1981 [77]

Mean GMFE (range): 1.15 (1.12 – 1.18), 2/2 with GMFE ≤ 2 -

Metoprolol
50 mga s.d. po 20 mg s.d. iv 8 1.22 2.00 0.61 1.04 1.35 0.77 CYP2D6 NM MET te Leemann 1993 [78]
50 mga s.d. po 20 mg s.d. ivf 8 1.14 0.95 1.20 1.02 0.98 1.04 CYP2D6 PM MET te Leemann 1993 [78]
250 mga b.i.d. po 20 mg s.d. iv 8 1.92 2.38 0.81 1.09 1.35 0.81 CYP2D6 NM MET te Leemann 1993 [78]
250 mga b.i.d. po 20 mg s.d. ivf 8 1.40 0.97 1.44 1.03 1.09 0.95 CYP2D6 PM MET te Leemann 1993 [78]
100 mga q.d. po 200 mg s.d. po 24 3.61 3.44 1.05 1.94 1.43 1.36 CYP2D6 NM RME te Johnson 1996 [79]
100 mga q.d. po 200 mg s.d. po 24 3.31 2.87 1.16 1.73 1.28 1.35 CYP2D6 NM SME te Johnson 1996 [79]
100 mga q.d. po 200 mg s.d. po 24 3.59 4.35 0.83 1.95 1.87 1.04 CYP2D6 NM RME te Johnson 1996 [79]
100 mga q.d. po 200 mg s.d. po 24 3.30 2.99 1.10 1.74 1.40 1.24 CYP2D6 NM SME te Johnson 1996 [79]

Mean GMFE (range): 1.24 (1.05 – 1.44), 8/8 with GMFE ≤ 2 1.20 (1.04 – 1.36), 8/8 with GMFE ≤ 2

Mexiletine
50 mga q.i.d. po 200 mg s.d. po 48 1.43 1.30 1.10 1.29 1.27 1.01 CYP2D6 NM MEX te Abolfathi 1993 [80]
50 mga q.i.d. po 200 mg s.d. po 48 1.04 0.85 1.23 1.13 0.79 1.42 CYP2D6 PM MEX te Abolfathi 1993 [80]

Mean GMFE (range): 1.17 (1.10 – 1.23), 2/2 with GMFE ≤ 2 1.22 (1.01 – 1.42), 2/2 with GMFE ≤ 2

Paroxetine
30 mga b.i.d. po 20 mg q.d. pog 24 1.04 1.29 0.81 1.04 1.14 0.91 CYP2D6 NM PAR te Schoedel 2012 [75]

Mean GMFE: 1.24, 1/1 with GMFE ≤ 2 1.10, 1/1 with GMFE ≤ 2
Overall GMFE (range): 1.36 (1.05 – 2.19), 15/17 with GMFE ≤ 2 1.49 (1.01 – 3.11), 13/15 with GMFE ≤ 2
AUClast: area under the plasma concentration-time curve calculated between the first and last concentration measurement, b.i.d.: twice daily, Cmax: maximum plasma concentration, DD(G)I: drug-drug(-gene) interaction,
DEX: dextromethorphan, DIG: digoxin, DTT: total dextrorphan, DXG: dextrorphan-O-glucuronide, GMFE: geometric mean fold error, iv: intravenous, MET: metoprolol (racemate), MEX: mexiletine, n: number of individuals
studied, NM: normal metabolizer, PM: poor metabolizer, PAR: paroxetine, po: oral, pred: predicted, q.d.: once daily, q.i.d:, four times daily, RME: R-metoprolol, s.d.: single dose, SME: S-metoprolol, te: test dataset, tlast:
time of the last concentration measurement. If perpetrator and victim drugs were applied in form of salts, the respective doses of bases were calculated and incorporated in simulations. a Quinidine sulfate dose. b

CYP2D6 catalytic rate constant estimated for control to account for unexplained interindividual variability in CYP2D6 activity (57% of original model value). c Plus paroxetine (20 mg q.d. po). d CYP2D6 catalytic rate
constant estimated for control to account for unexplained interindividual variability in CYP2D6 activity (26% of original model value). e Digoxin dose of 15 µg/kg before DDI, normalized to 15 µg/kg for evaluation. f CYP2D6
catalytic rate constant estimated for control to account for unexplained interindividual variability in CYP2D6 activity (300% for sink metabolism and 200% for formation of α-hydroxymetoprolol of original model value). g

Plus dextromethorphan (30 mg b.i.d. po).
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