
Saarland University
Faculty of Mathematics and Computer Science

Department of Computer Science

PhD Thesis

Improving Performance of
Simulations and Heuristic

Optimization on GPUs

Dissertation zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften (Dr.-Ing.)
der Fakultät für Informatik und Mathematik

der Universität des Saarlandes

eingereicht von

Marcel Köster

Saarbrücken, 2023

Date of the Colloquium:
January 30, 2024

Dean:
Prof. Dr. Jürgen Steimle

Members of the Examination Board:
Chair:
Prof. Dr. Bernt Schiele
Reporter:
Prof. Dr. Antonio Krüger
Prof. Dr. Philipp Slusallek
Scientific Assistant:
Dr. Tim Schwartz

Notes on Style
In this thesis, the scientific plural "we" is used instead of "I" to emphasize
that this work includes contributions in the form of feedback and suggestions
from other researchers and engineers. Additionally, support during the actual
realization phases (including implementation and evaluation) of the various re-
search prototypes and production-ready software versions into which the var-
ious algorithms were integrated is acknowledged. References to web resources
(e.g., links to articles) are given as URLs. Longer URLs have been shortened.
It is important to note that most figures, equations, and algorithms in this
thesis were published in one of the referenced papers. Figures, equations, and
algorithms in this thesis have been adapted to the general style and expand-
ed/updated to provide additional insights. This is made explicitly clear by
references to the previously published figures, equations, and algorithms.

II

Acknowledgment

Now, I would like to express my great gratitude to all people involved
supporting me in the preparation and writing of my doctoral thesis. I
would especially like to thank Prof. Dr. Antonio Krüger and Prof. Dr.
Philipp Slusallek for their outstanding supervision and reviewing of my
thesis. In addition, I would like to thank Prof. Dr. Wolfgang Wahlster for
his extensive support, advise, feedback, and hints throughout my studies. On
this occasion, I would also like to thank Prof. Dr. Bernt Schiele, who chaired
my examination board, and Dr. Tim Schwartz, who served as my scientific
assistant during my thesis defense.

Furthermore, I would like to express my gratitude to all colleagues at DFKI
and Saarland University for their support during my doctoral research phase.
In particular, I would like to extend my sincere thanks to Julian Groß for his
invaluable collaboration on experiments, idea generation, and co-authorship
of papers. Beside the professional support from my colleagues, I also received
tremendous encouragement from my friends during my studies.

I am deeply grateful for the unwavering support and encouragement of my
parents throughout my academic journey over many years. Their belief in my
abilities has been an invaluable source of strength and motivation. I would
also like to express my deepest appreciation to my in-laws, whose faith in
me has contributed significantly to my confidence and determination. Above
all, I owe a profound debt of gratitude to my beloved wife, whose exceptional
motivation and belief in me have been the driving force behind my successful
completion of this thesis and my focus on research.

III

For my wife Nurten, my parents Sigrid and Rainer, and my beloved family.

IV

Abstract

Parallelization is a ubiquitous technique for improving runtime performance of
algorithms. Although parallelization is generally challenging and often leads
to programming bugs, it is a leading method for processing growing amounts
of data today. Due to the ongoing trend of exploring the unexplored, known
methods are reaching their limits in terms of scalability and thus applicability.

Particularly challenging is the use of graphics processing units (GPUs)
that require specially optimized algorithms but feature impressive compute
power. Unfortunately, the term "optimized" usually refers to newly developed
algorithms that exploit the peculiarities of the underlying GPUs or at
least follow their specific programming methodologies. The list of tweaked
algorithms available for GPUs is already quite long and touch a wide range of
domains. These include the well-known fields of massively parallel simulations
and solving of optimization problems. Prominent examples in this context
include particle simulations of physical processes (like molecular-dynamics
simulations) and machine-learning based optimizers. However, existing
approaches from these two domains often suffer from severe runtime, memory
consumption, and applicability limitations.

In this thesis, we present new approaches for both domains. Our methods con-
siderably outperform current state of the art in terms of runtime and memory
consumption. We were able to achieve runtime speedups of up to several or-
ders of magnitude while reducing the amount of memory required compared
to existing methods. Regarding applicability, our algorithms are designed to
fit seamlessly into existing simulation programs and optimizers. This makes
them a particularly valuable contribution to real-world applications as well.

V

Zusammenfassung

Parallelisierung ist eine allgegenwärtige Technik zur Verbesserung der
Laufzeitleistung von Algorithmen. Obwohl Parallelisierung im Allgemeinen
eine Herausforderung darstellt und oft zu Programmierfehlern führt, ist sie
heute eine führende Methode zur Verarbeitung wachsender Datenmengen.
Aufgrund des anhaltenden Trends, das Unerforschte zu erforschen, stoßen
die bekannten Methoden an ihre Grenzen der Skalierbarkeit und damit der
Anwendbarkeit.

Eine besondere Herausforderung ist der Einsatz von Grafikprozessoren
(GPUs), die speziell optimierte Algorithmen erfordern, aber eine beeindruck-
ende Rechenleistung aufweisen. Allerdings bedeuted der Begriff "optimiert"
in der Regel neue Algorithmen zu entwickeln, die die Besonderheiten der
zugrundeliegenden GPUs ausnutzen oder zumindest deren spezifischen
Programmiermethodologien folgen. Die Liste der optimierten Algorith-
men, die für GPUs verfügbar sind, ist bereits lang und deckt ein breites
Bereichsspektrum ab. Dazu gehören die bekannten Anwendungsfelder der
massiv parallelen Simulationen und das Lösen von Optimierungsproblemen.
Prominente Beispiele in diesem Zusammenhang sind Partikelsimulationen
physikalischer Prozesse (wie z.B. Molekulardynamiksimulationen) und der
Einsatz von Optimierern auf der Basis des maschinellen Lernens. Bestehende
Ansätze aus diesen beiden Bereichen leiden jedoch oft an schwerwiegenden
Einschränkungen in Bezug auf Laufzeit, Speicherverbrauch und Anwend-
barkeit.

In dieser Arbeit stellen wir neue Ansätze für beide Domänen vor. Sie
übertreffen den aktuellen Stand der Technik in Bezug auf Laufzeit und Spe-
icherverbrauch deutlich. Es konnten signifikante Beschleunigungen von bis zu
mehreren Größenordnungen im Vergleich zu bestehenden Verfahren erreicht
und dabei zugleich den Speicherbedarf deutlich reduziert werden. Hinsichtlich
der Anwendbarkeit sind unsere Algorithmen so konzipiert, dass sie sich naht-
los in bestehende Simulationsprogramme und Optimierer integrieren lassen.
Dies macht sie damit auch zu einem besonders wertvollen Beitrag für reale
Anwendungen aus der Praxis.

VII

List of Publications

Parts of the work presented in this thesis, including concepts, diagrams, mea-
surements, results, formulas, code listings, algorithms and other text fragments
have already been published. The following list summarizes all associated pub-
lications on which this thesis is based on (papers highlighted with ⊛ had been
awarded a Best Paper award):

Conference papers:

[KGK20a] Marcel Köster et al. “High- Performance Simulations on GPUs
Using Adaptive Time Steps.” In: 20th International Confer-
ence on Algorithms and Architectures for Parallel Processing
(ICA3PP-2020). Springer, 2020

[KGK19a]⊛ Marcel Köster et al. “FANG: Fast and Efficient Successor-State
Generation for Heuristic Optimization on GPUs.” In: 19th
International Conference on Algorithms and Architectures for
Parallel Processing (ICA3PP-2019). Springer, 2019

[KGK19c]⊛ Marcel Köster et al. “Parallel Tracking and Reconstruction of
States in Heuristic Optimization Systems on GPUs.” In: Par-
allel and Distributed Computing, Applications and Technolo-
gies (PDCAT-2019). IEEE, 2019

[KK18] Marcel Köster and Antonio Krüger. “Screen Space Particle
Selection.” In: Proceedings of the Conference on Computer
Graphics & Visual Computing (CGCV-2018). The Eurograph-
ics Association, 2018

Journal papers:

[KGK20b] Marcel Köster et al. “Massively Parallel Rule-Based Interpreter
Execution on GPUs Using Thread Compaction.” In: Interna-
tional Journal of Parallel Programming (2020)

[KK16] Marcel Köster and Antonio Krüger. “Adaptive Position-Based
Fluids: Improving Performance of Fluid Simulations for Real-
Time Applications.” In: International Journal of Computer
Graphics & Animation (2016)

IX

Workshop papers:

[KGK19b] Marcel Köster et al. Massively Parallel Rule-Based Interpreter
Execution on GPUs Using Thread Compaction. 12th Interna-
tional Symposium on High-Level Parallel Programming and
Applications (HLPP-2019). 2019

[Kös+15] Marcel Köster et al. “Asterodrome: Force-of-Gravity Simula-
tions in an Interactive Media Theater.” In: Proceedings of the
14th International Conference on Entertainment Computing
(ICEC-2015). Springer, 2015

[KSG15a] Marcel Köster et al. “An Interactive Planetary System for
High-Resolution Media Facades.” In: Proceedings of the In-
ternational Symposium on Pervasive Displays. International
Symposium on Pervasive Displays (PerDis-15), June 10-12,
Saarbrücken, Germany. ACM, 2015

Demo, talk and application papers:

[KGK19b] Marcel Köster et al. Massively Parallel Rule-Based Interpreter
Execution on GPUs Using Thread Compaction. 12th Interna-
tional Symposium on High-Level Parallel Programming and
Applications (HLPP-2019). 2019

[KSG15b] Marcel Köster et al. “Gravity Games - A Framework for In-
teractive Space Physics on Media Facades.” In: Proceedings
of the International Symposium on Pervasive Displays. ACM,
2015

X

In addition to this list, this thesis also refers to several publications that can
be used to extend or adapt the methods presented. They had been created in
collaboration with other researches but do not contribute to this thesis:

[GKK20]⊛ Julian Groß et al. “CLAWS : Computational Load Balanc-
ing for Accelerated Neighbor Processing on GPUs using Warp
Scheduling.” In: Proceedings of the Conference on Computer
Graphics & Visual Computing (CGCV-2020). The Eurograph-
ics Association, 2020

[GKK19] Julian Groß et al. “Fast and Efficient Nearest Neighbor Search
for Particle Simulations.” In: Proceedings of the Conference on
Computer Graphics & Visual Computing (CGCV-2019). The
Eurographics Association, 2019

[LKH15] Roland Leißa et al. “A Graph-Based Higher-Order Intermedi-
ate Representation.” In: Proceedings of the International Sym-
posium on Code Generation and Optimization (CGO). ACM,
2015

[Kös+14a] Marcel Köster et al. “Code Refinement of Stencil Codes.” In:
Parallel Processing Letters (PPL) (2014)

[Kös+14c] Marcel Köster et al. “Platform-Specific Optimization and Map-
ping of Stencil Codes through Refinement.” In: Proceedings of
the 1st International Workshop on High-Performance Stencil
Computations (HiStencils-2014). 2014

[Mem+14] Richard Membarth et al. “Target-Specific Refinement of Multi-
grid Codes.” In: Proceedings of the 4th International Work-
shop on Domain-Specific Languages and High-Level Frame-
works for High Performance Computing (WOLFHPC-2014).
IEEE, 2014

[Dan+14] Piotr Danilewski et al. “Specialization through Dynamic Stag-
ing.” In: Proceedings of the 13th International Conference on
Generative Programming: Concepts & Experiences (GPCE).
ACM, 2014

XI

CONTENTS

1 General Introduction 1
1.1 Preface . 1
1.2 Technical Introduction . 3
1.3 General Research Questions . 5
1.4 Outline of the Thesis . 6

2 GPU Programming Fundamentals 7
2.1 Basic GPU Architecture . 7
2.2 General Terminology . 10
2.3 Programmability and APIs . 12
2.4 Memory Accesses . 14

I Parallel Simulations 17

3 Introduction 19
3.1 Parallel Simulations . 21
3.2 Improving Performance . 23
3.3 Initial Work . 26
3.4 Contributions . 30
3.5 Publications . 31

4 Related Work 33
4.1 Particle-Based Fluid Simulations 33
4.2 Adaptive Particle and Fluid Simulations 36
4.3 Improving Utilization of Generic Parallel Simulations 38
4.4 Adaptive Time Stepping for Generic Simulations 40
4.5 Particle-Based Selection . 41

XIII

5 Improving Performance of Particle-Based Simulation and
Selection Processes 45
5.1 Iteration-Adaptive Position-Based Fluids 46

5.1.1 Density and CL Adjustments 49
5.1.2 Adaptation Models . 52
5.1.3 Algorithm & Implementation Details 53
5.1.4 Visual Evaluation . 55
5.1.5 Performance Evaluation 59

5.2 Screen Space Particle Selection 61
5.2.1 Lasso Selection . 64
5.2.2 Density Estimation and Particle Selection 72
5.2.3 Complexity & Implementation Details 78
5.2.4 Selection Quality and Precision Evaluation 81
5.2.5 Performance Evaluation 85

6 Improving Performance of Generic Massively-Parallel Sim-
ulations 89
6.1 Simulation Basics . 90
6.2 Parallel Simulations of Multiple States using Interpreters . . . 97

6.2.1 Leveraging Thread Compaction and Coalesced Memory
Accesses in the Presence of Multiple States 101

6.2.2 Algorithms . 105
6.2.3 Performance Evaluation 109

6.3 Adaptive Time Stepping for Generic Simulations 115
6.3.1 Cached Interpolation Results and Cache Integration . . 120
6.3.2 Algorithms . 123
6.3.3 Performance Evaluation 125

7 Conclusion 133

II Heuristic Optimization 135

8 Introduction 137
8.1 Contributions . 139
8.2 Publications . 140

9 Related Work 143
9.1 Parallel State Tracking and Neighborhood Exploration 143
9.2 Parallel State Tracking . 146
9.3 Neighborhood Exploration . 147

10 Improving Performance of Heuristic Optimization 149
10.1 Parallel Tracking and Reconstruction of States 150

10.1.1 History and Fill Rate 154

XIV

Contents XV

10.1.2 Algorithms . 158
10.1.3 Performance and Memory Consumption Evaluation . . 161

10.2 Fast and Efficient Successor State Generation 167
10.2.1 Detailed View . 172
10.2.2 Variable Types and Memory Consumption 176
10.2.3 Algorithms . 177
10.2.4 Performance Evaluation 182

11 Conclusion 187

III Engineering & Project Contributions, Conclusion and
Future Work 189

12 Engineering & Project Contributions 191
12.1 Publications . 192
12.2 Generation of Specialized Optimizers 194

12.2.1 DSL Embedding . 196
12.2.2 Memory Layouts and Specialization 198

13 Conclusion 201

14 Limitations & Future Work 203

List of Algorithms 205

List of Figures 207

Bibliography 213

CHAPTER 1
GENERAL INTRODUCTION

1.1 Preface

Recently, general purpose programming on graphics processing units (pro-
gramming on GPUs, referred to as GPGPU) has become increasingly impor-
tant [AMD19; NVI23a]. Parallelizable tasks have been ported to the GPGPU
world to benefit from increasing compute performance and memory through-
put. However, this trend comes at the cost of making algorithms compatible
with these hardware architectures [Kös+14a; KGK19a]. Related to this is
another challenging problem of inventing scalable algorithms that maximize
utilization on such devices (also referred to as accelerators) [Kri01; NVI14;
NVI23a].

Ongoing research regularly proposes new algorithms that improve perfor-
mance in a variety of application domains. Especially important for this work
are the domains of simulation and optimization, which are also often closely
coupled in many use cases [Gel+12; KGK19b; KGK19c]. Although there has
been a significant amount of underlying methods and concepts to improve
performance in both domains on accelerators, there are still larger problems
waiting to be solved. For example, simulations almost always benefit from
improved precision when more elements are simulated [Mül08; KK16]. In this
context, an element may refer to a single particle in 3D space moved by domain-
dependent simulation logic (e.g., particle-based fluid simulations [MCG03;
MM13; Ihm+14]). Growing datasets or the modeling of (more) complex
physical systems automatically lead to a continuously increasing demand for
computational resources [HS13; Mac+14]. This is also true for visualization-
based analyses of such complex systems. Even modern analysis tools are often
unable to scale appropriately to or provide real-time insights into complex
input data that needs to be analyzed in real time [KK18].

1

2 CHAPTER 1. GENERAL INTRODUCTION

Similar effects have been observed in the optimization domain [ACK13;
Cam+14a]. In general, optimization problems are omnipresent in our everyday
life (e.g., scheduling and routing problems [Tal09]). Moreover, they are a fun-
damental building block when using modern artificial-intelligence (AI) based
methods [RT18; KGK19a; KGK19c]. The use of machine learning (ML) made
it possible to overcome limitations in solving extremely challenging problems
that could not have been solved before [Gel+12; Sil+16]. Particularly, ML
based-methods are often combined with other AI approaches to explore the
search space for potentially interesting solutions [Mel+11; Cam+14a; Gel+12;
Sil+16]. In this context, ML is often utilized to guide the search-space explo-
ration process to achieve more promising results [KGK19a; KGK19c]. More
generally, these methods are also used to implement search heuristics around
which other meta-optimization systems are built [Tal09; KGK19c].

In the context of projects we had worked on, we had faced similarly diffi-
cult problems (see also Chapter 12). Specific time constraints for delivering
solutions added another layer of complexity to the results we were looking for.
Even available state-of-the-art methods (at the time of writing) were not able to
satisfy all of our demands [KK18; KGK19a; KGK20b; KGK20a]. In all cases,
the runtime performance was not sufficient to use existing solutions [KK18;
KGK19c].

Consequently, alternative methods and new ways to overcome the limita-
tions of all previous approaches were needed. We contributed to the fields
of parallel simulations and heuristic optimization on GPUs through several
(award-winning) publications. The methods developed by the contributing
author in the course of writing this thesis have significantly improved the state
of the art. Our high-level and low-level algorithms achieved speedups of up
to several orders of magnitude compared to our directly competing methods.
Most importantly, we maintained the same accuracy as related methods and
did not weakened previous guarantees (where applicable). The same is true for
memory consumption. Certain contributions in this work were able to reduce
memory requirements significantly, by up to several gigabytes of data that
would have been required.

The remainder of this chapter is intended to give the reader a more technical
view of our contributions (see Section 1.2). In addition, we present our research
questions in Section 1.3 and show an outline of the thesis including a descrip-
tion of our three parts in Section 1.4. Chapter 2 serves as an introduction to
essential GPGPU programming principles. It also provides a foundation for
understanding the terminology used in this thesis when discussing and describ-
ing GPU programs and our algorithmic concepts.

1.2. TECHNICAL INTRODUCTION 3

1.2 Technical Introduction

This technical introduction section presents the different parts covered in this
thesis, as well as general terms used throughout this work. The whole disser-
tation is divided into two major parts followed by an engineering contribution
section that sum up to a whole: Simulations, Heuristic Optimization and Op-
timizer Generation (see Section 1.4). Part I covers research results from the
domain of parallel simulations on GPUs. Part II presents contributions made
to the field of (heuristic) optimization.

While the first two parts focus on the scientific and algorithmic contributions,
Part III summarizes our engineering contribution. It outlines our compiler-
based approach for generating specialized optimizers to solve simulation- and
heuristics-based optimization problems using the methods presented in this
dissertation. This compiler concept to automatically generate optimizers has
been successfully applied to many different industry-grade optimization prob-
lems that could not be solved by traditional methods considering their time
constraints.. Part III concludes the entire thesis and all parts and gives an
outlook on future work.

Figure 1.1: A high-level simulation workflow with three simulation steps.

Starting with simulations, Figure 1.1 visualizes an high-level abstract sim-
ulation workflow using different states S1 to S4 with three simulation steps.
A state refers to a modeled and instantiated representation of the underly-
ing simulation domain. Applying a simulation-specific function to a state Si

results in a successor state Si+1 that contains all updates performed by the
step function (also referred to as update function). In this case, we start with
an initial state S1 and apply the step function three times in a row using a
fixed time-step size ∆t, where ∆t represents the simulation time that elapses
between two different states. Note that ∆t can refer to both a physically-based
and a logically-based time-step size, depending on the actual simulation prob-
lem. This also means that ∆t can be represented by different data types or
even complex data structures.

The presented simulation methodology can also be used in the scope of
solving optimization problems. In this context, the actual problem description
is represented using a "game-like" simulation logic (similar to the rules of a
chess game, for instance) combined with an exploration and search-based solver
approach. There is a huge variety of different possibilities how to realize such
an exploratory search. We focus on using the concept of search trees in terms
of steps, expansion, pruning and traversal algorithms. However, the work
presented in this thesis divides the notion of a search tree into two distinct
high-level phases: simulation logic and successor generation. Although the

4 CHAPTER 1. GENERAL INTRODUCTION

ideas of pruning and traversal are not explicitly addressed in this thesis, all
work presented here can be combined with any existing approach from these
research fields. Figure 1.2 visualizes our high-level search-tree concept, which
is consistent with all contributions in this thesis.

Figure 1.2: A high-level search tree of a simulation-based optimizer in-
stance [KGK19c].

As before, we start with an initial state S1 (denoted as 1 in the diagram for
simplicity). During successor generation, possibly interesting successor states
will be created (2, 3, 4). We then apply simulation steps an evaluation function
(also referred to as cost function) to each state. This is necessary to select the
potentially interesting/best states that are believed to be most likely to lead to
an optimal solution of the problem, taking all constraints into account. After
selecting several states and progressing a certain number of steps in this phase,
we again reach the successor generation phase.

All contributions in chapters throughout Part I and Part II serve as the
foundation for building a fully functional GPU-accelerated optimizer leverag-
ing heuristics. To achieve high performance on these accelerators, it is essential
to choose appropriate memory layouts for all involved memory buffers (e.g.,
contiguous arrays allocated on a specific device) and to use specialized versions
of the presented algorithms in the first two parts of this thesis (see also Chap-
ter 2). Additionally, various target platforms provide specific low-level features
to further improve performance.

Figure 1.3: Our high-level workflow to generate optimizers.

1.3. GENERAL RESEARCH QUESTIONS 5

Figure 1.3 illustrates our compiler-based approach in this work to generate
specialized optimizers in Part III, representing our engineering contributions.
Our approach relies on a problem-specific domain model, which contains essen-
tial simulation logic, evaluation functions, and heuristics to guide tree-based
search (1, left). The task of the compiler in the second step is to transform
the previously created domain model into a task- and problem-specific opti-
mizer (2, middle). By leveraging this domain model, we can efficiently generate
task- and problem-specific optimizers in the second step. The resulting emitted
optimizer (3, right) can then be launched alongside a problem-specific prob-
lem instance, ensuring compatibility between the input domain model and the
generated optimizer.

1.3 General Research Questions

A single central meta-research question RQM was the main driving force for all
contributions and this thesis. It was derived from the continuously advancing
trend to improve performance and is as follows:

RQM Given next-generation massively parallel hardware accelerators,
how can we improve runtime performance of computationally chal-
lenging tasks?

As mentioned (and briefly discussed) in the abstract and in both the general
and technical introductions, modern architectures require adaptation (or even
rethinking) of the basic algorithms used. The general research direction for this
work focused on novel algorithms and concepts in favor of small and negligible
contributions. Therefore, we decided to split the main question into several
fine-grained sub-questions that describe each topic in more detail:

RQ1 How to improve performance of domain-specific and generic par-
allel simulations by building on current GPU characteristics?

RQ2 How to improve solving performance of optimization problems by
building on current GPU characteristics and leveraging the im-
provements of parallel simulations from RQ1?

In this context, the term performance refers to either runtime performance
or performance in the sense of improved memory consumption. We primar-
ily focus on runtime performance improvements compared to state-of-the-art
approaches in most contributions. However, we have also addressed several
significant memory-consumption issues blocking algorithms from scaling ap-
propriately to larger problems.

Although answering these general research questions is still subject to on-
going research, we focus on contributing to answering these guiding research
questions that formed the basis for our research. The various parts of this
dissertation (see Section 1.4) aim to answer related questions one and two.

6 CHAPTER 1. GENERAL INTRODUCTION

1.4 Outline of the Thesis

As mentioned in the technical introduction, the three parts of the thesis focus
on different topics and contributions. Figure 1.4 shows all three parts and their
individual contribution to our guiding research questions. In the scope of this
thesis, Parts I and II have a similar structure. After introducing each topic, we
present each individual contribution to the associated field of research. Every
paper contributed to each part is explicitly presented, distinguishing between
own and co-authored contributions. We then discuss related work, conceptual
differences, and limitations. Each part has several main chapters introducing
the actual concepts and new algorithms introduced in this thesis.

Figure 1.4: Outline of the thesis with all three parts and their contribution to
answering our research questions.

Parts I and II cover parallel algorithms and solutions, while Part III covers
our main engineering contributions that build on the algorithms in this thesis.
Part III also summarizes all contributions and previews future work.

CHAPTER 2
GPU PROGRAMMING
FUNDAMENTALS

This chapter focusses on introducing key concepts and terms that are essential
for the algorithms and concepts in this thesis. The primary objective is to
familiarize readers with fundamental architectural aspects unique to GPUs we
were targeting at the time of publication of this work. The interested reader
may refer to [AMD19], [NVI23a], and [Kös23] for more information about this
topic in general.

2.1 Basic GPU Architecture

This section gives a high-level introduction into GPU architectures using
NVIDIA’s Ampere architecture as the basis [NVI23a; NVI23b]. At the time of
writing, this GPU architecture was a state-of-the-art architecture for GPGPU.

Figure 2.1 shows an image of a high-level GPU architecture while focusing on
GPGPU capabilities. Taking the general NVIDIA GPU design into account, an
accelerator consists of multiple Graphics Processing Clusters (GPCs) which are
connected to memory controllers and in turn to main GPU memory. Each GPC
consists of several Streaming Multiprocessors (SMs) [NVI23a; Kös23] 1 and has
access to a shared L2 cache, which is mainly automatically managed. Most
recent devices have the ability to manage cache residency, giving developers
control over whether the cache contents should be invalidated between program
runs or kept partially [NVI23a].

1A GPC also contains computer-graphics specific units, which are are not shown here. For
instance, Raster Engines to perform accelerated rasterization of geometry [NVI23a]. Note
that on actual hardware, there is also another hierarchy level between GPCs and SMs
called Texture Processing Clusters (TPCs) featuring specific texture acceleration circuits.
However, since our focus lies on giving an introduction into general purpose computing
on accelerators, we elide this information for the sake of simplicity and focus on SMs.

7

8 CHAPTER 2. GPU PROGRAMMING FUNDAMENTALS

Figure 2.1: High-level GPU architecture while focussing on GPGPU capabili-
ties based on the NVIDIA Ampere architecture [NVI23a; NVI23b].
A set of Graphics Processing Clusters (GPCs) consist of nested
Streaming Multiprocessors (SMs). Each GPC is connected to
shared L2 cache while also having connections to memory con-
trollers in order to access GPU main memory. Note that the num-
ber of actual GPCs on a particular device is architecture, revision,
and even vendor specific.

Figure 2.2 visually represents the core components of SMs, highlighting that
all SMs share the same internal structure in terms of their underlying hardware
capabilities. They are primarily made of Stream Processors (SPs), which are
responsible for performing most of the computational tasks on a GPU, as
they contain the actual compute units and register banks. Moreover, SPs also
contain separate instruction caches, schedulers to distribute workload within a
SP, and compute units (ALUs, FPUs, and specific tensor operation acceleration
units, TPUs) 2. However, SMs are equipped with dedicated L1 cache that can
also be used programmatically to store intermediate values explicitly in fast
on-chip memory [NVI23a; Kös23] (see also Section 2.2). The primary source
of computational power originates from the vast number of compute units per
SP, multiple SPs per SM, and in turn multiple SMs per GPC. This sums up to
an enormous amount of compute units and memory controllers, as well as large
amounts of L1 cache that can be leveraged using massively parallel programs.
Note that the total number of SPs and SMs on a specific device is architecture,
revision, and even vendor specific.

2Individual ALU, FPU and TPU units are not visualized explicitly as they are considered
to be subsumed by the term compute units for the sake of simplicity.

2.1. BASIC GPU ARCHITECTURE 9

Figure 2.2: High-level architecture of Streaming Multiprocessors (SMs) while
focussing on GPGPU capabilities based on the NVIDIA Ampere
architecture [NVI23a; NVI23b]. This visualization does not con-
tain surrounding GPCs, as the SMs can be conceptually seen as
being connected to L2 cache while programming. Moreover, this
is actually the case on other GPUs from different vendors, where
the actual SMs are not logically grouped into GPCs. Referring
to NVIDIA’s architectures, a SM can contain multiple Stream-
ing Processors (SPs) while L1 cache is shared across all SPs in
an SM. Note that the names GPC and SM are also NVIDIA spe-
cific. For instance, AMD uses the more general term Compute Unit
to refer to grouped processing units (similar to SMs) for their de-
vices [AMD19].

To write parallelized programs targeting accelerators, a common way is to
program a single thread of execution that can be run many times concur-
rently to gain advantage of the available compute and memory units [Kös+14a;
NVI23a]. The basic idea is to distribute the work among all processing units
to achieve maximum utilization with respect to the available processing capa-
bilities [Amd67; Kri01; Kös+14c; Kös+14b; NVI23a]. Such a program in the
scope of an accelerator is referred to as a kernel in the scope of this thesis.

Besides parallelization across all SMs (and ultimately all SPs), Streaming
Processors leverage the concept of vectorization on the compute and even on
the memory-controller level [Kös+14b; Dan+14; NVI14]. From an abstract
point of view, vectorization is based on the fundamental idea of SIMD (sin-
gle instruction multiple data). It allows the same operation to be performed
on multiple data elements simultaneously. To be precise, the concept used
in GPUs is SIMT (single instruction, multiple threads) [TCS20; NVI23a]. It
combines the SIMD model with multithreading by utilizing multiple data el-
ements of the SIMD model to represent multiple threads running in parallel.
We refer to single SIMT unit by a warp, which is usually consists of 32 threads
on NVIDIA GPUs and 64 or 32 threads on AMD GPUs depending on the
architecture.

10 CHAPTER 2. GPU PROGRAMMING FUNDAMENTALS

An important detail to be aware of is the fact that using SIMT means all in-
structions in the same warp will execute in lockstep [LSG19; AMD19; NVI23a].
Lockstep in this scope means that the same operation will be executed on all
processing threads inside a warp. This implies that if a program has divergent
control flow (e.g., by using an if-statement with side effects in the input pro-
gram), this will cause the control-flow to be serialized and all statements of
both branches will be executed one after another (see Figure 2.3).

Figure 2.3: Lockstep execution semantics of a program with two blocks A and
B [KGK20b] on an imaginary warp with eight threads (left). Di-
vergent control flow leads to a non-optimal occupancy of a warp by
executing block B in several threads, while the others have to "wait"
(idle) until all threads can continue with the next block (right).

2.2 General Terminology

We follow the naming scheme of the ILGPU framework [Kös23] (see Sec-
tion 2.3). In this context, we refer to a processing thread on a GPU as thread.
When multiple threads are dispatched in the scope of a kernel launch, they
may run concurrently with respect to each other, as mentioned before. Within
a warp, we call a thread a lane. The position of a lane within a warp is referred
to by its lane index. As the warp size depends on the actual hardware (e.g.,
32 for NVIDIA and 64 or 32 for AMD), the size of a warp on a GPU in our
algorithms is referred to by warp size.

Taking GPU architectures into account, a set of threads can be grouped
logically to share information. These groups can also span multiple warps
up to a hardware and vendor-specific maximum size. The number of threads
per group is denoted by the group size. Currently available GPUs typically
have a smaller (or equal) maximum group size compared to the maximum
number of concurrent threads per multiprocessor. This ensures that groups are
always executable on a single multiprocessor, as described in detail in [NVI23a;
Kös23]. Within each group, threads are identified based on their group index,
which represents the current thread’s relative position within that group. The
position of a warp within the current group is referred to by warp index.

2.2. GENERAL TERMINOLOGY 11

As a kernel launch can consist of multiple groups being dispatched at the
same time, all groups executed in a thread grid (or brief grid) [NVI23a; Kös23].
The actual number of groups being dispatched is denoted by the grid size.
Although certain APIs expose multidimensional groups and grids to be dis-
patched, we realize GPGPU operations in 1D thread grids. This also enables
use of our methods and algorithms on a huge variety of target platforms and
APIs.

Memory Types In the scope of this thesis we follow NVIDIA’s classification
of memory types and follow their naming scheme [NVI23a; Kös23]. Therefore,
we differentiate between the following memory types:

• Constant memory
is a small amount of read-only memory (a few KB) that is cached for
fast access times inside a kernel. It can be used to pass information from
the host system (the CPU-based part of the application) to a kernel.
Depending on the architecture and the vendor of the device, only a subset
of the totally available constant memory may be cached upon launching
a kernel [NVI23a].

• Shared memory
is a small, highly efficient and very fast on-chip region of memory that
can be used to store intermediate results and share information between
different threads within a thread group. The amount of shared mem-
ory varies depending on the architecture and the vendor of the device.
Recent NVIDIA GPUs (at the time of writing this thesis) offer up to
164KB shared memory per multiprocessor [NVI23a]. Please note that
the amount of shared memory being used has an implication of the max-
imum number of groups assignable to a multiprocessor [NVI23a; Kös23].
This kind of memory is also referred to as scratchpad or local memory in
the context of specific APIs and vendor specifications [AMD19]. Further-
more, shared memory is considered to be group-specific in terms of that
only threads belonging to the same thread group can share information
between each other through shared memory.

• Local memory
is called local as it is thread local or private to each processing thread.
Despite its name, it resides in global GPU memory and is the default tar-
get location for large local arrays, indexed data structures that cannot be
operated on in register space, and register spilling. Lastly named occurs
when the number of available registers is exceeded [AMD19; NVI23a;
Kös23]. On modern NVIDIA GPUs, local memory is cached in L2
cache [NVI23a].

12 CHAPTER 2. GPU PROGRAMMING FUNDAMENTALS

• Global memory
refers to main GPU memory which can contain up to several GB of data
at the time of writing this thesis [AMD19; NVI23a]. Its access latency
is considerably higher than the latency of shared memory and accesses
to this type of memory should follow specific access patterns for best
performance (see Section 2.4).

2.3 Programmability and APIs

There is a huge variety of different APIs and programming languages available
to target GPUs in general. Shading languages for computer graphics (and
even compute) applications, domain-specific languages to model specific use
cases [Kös+14a; Mem+14], and general purpose GPGPU languages/language
extensions [NVI23a; Kös23].

As our contributions focus on novel algorithms in the GPGPU space while
optimizing for overall runtime performance and scalability, we chose general-
purse GPU programming environments for our tasks. We mainly realized our
GPGPU workloads in either NVIDIA’s CUDA [NVI23a] combined with C++
and C# while using ILGPU [Kös23] for all GPU kernels. We did not leverage
OpenCL [Gro23] as a kernel language directly due to practical limitations and
often reduced performance on our primarily targeted NVIDIA GPUs.

CUDA was primarily chosen for specific conferences to have comprehensive
measurements in comparison to other related papers published in certain do-
mains. In all other cases in which this was not required, we realized all GPU
kernels and the surrounding host applications in C#. This also included ref-
erence implementations we reimplemented from related work for comparison
purposes.

The ILGPU compiler and runtime framework was chosen as it was a state-of-
the-art approach to realize truly portable GPGPU programs. Portable in this
context means that we only had to compile our program once using standard
.Net toolchains and could deploy it on arbitrary machines that supported .Net
and had GPU driver installed. ILGPU acted as just-in-time compiler sitting
on top of the .Net runtime compiling our code to either PTX or OpenCL-
compatible representations. As it also supported multithreaded CPU code
generation, there was always an efficient fallback mode available. This made
ILGPU a perfect tool and environment to realize our implementations and
deploy them seamlessly on arbitrary target systems without recompiling.

2.3. PROGRAMMABILITY AND APIS 13

ILGPU ILGPU itself was started as a hobbyist project by the contribut-
ing author to provide a unified GPGPU experience in the .Net world. Over
time, it has become a popular and enterprise grade compiler written entirely
using .Net languages to be also truly portable to all .Net compatible environ-
ments. Besides extremely convenient debugging capabilities using its build-in
GPU emulator, it offers en-par performance with the CUDA toolchain or other
LLVM-based compilers for GPU computing [Kös23].

General Implementation Details All contributions, in particular all algo-
rithms, do not use local memory explicitly. They are designed in a way that all
intermediate processing data can reside in registers and shared memory for per-
formance reasons. Moreover, we gave additional hints in our implementations
to GPU drivers by passing information about:

• the maximum number of threads per group, and

• the minimum number of groups per multiprocessors.

This helped GPU driver backends to adjust register allocation accordingly to
match our use cases.

Synchronization and Atomic Operations In the scope of this thesis, we
make use of group-wide synchronization primitives and atomic operations in
shared and global memory. Synchronization primitives we use are limited to
group barriers that act as well known thread barriers for all threads in a group.
We assume that these barriers also work as explicit group-wide memory fences
that ensure each thread in the group can see all memory operations from other
threads in the group after all threads have passed the barrier.

Atomic operations give the ability to perform lock-free operations while en-
suring that multiple threads access data in a consistent manner (referred to
as atomics). This prevents race conditions and other synchronization issues
while avoiding locking in all cases [Kös23]. Note that the concept of atomics
is also available on CPUs via specific instructions. We make use of atomic
operations on 32-bit and 64-bit integers and 32-bit floats in shared and global
memory. For performance reasons, we still consider these operations as being
accelerated in hardware on the target devices. In case of missing hardware ca-
pabilities to perform atomic operations on floats, it is also possible to emulate
them in software [Kös23].

The interested reader may refer to [NVI23a; Kös23] for detailed information
about limitations in the context of synchronization and thread-safe resource
accesses.

14 CHAPTER 2. GPU PROGRAMMING FUNDAMENTALS

2.4 Memory Accesses

As mentioned before, global memory is much slower than shared memory in
terms of its latency and throughput. Accesses to this kind of memory should
follow specific coalesced memory-access patterns to achieve maximum perfor-
mance [AMD19; NVI23a; Kös23]. Coalesced in this context refers to the prop-
erty that a thread access "neighboring addresses" in global memory with respect
to neighboring threads (see Figure 2.4).

Figure 2.4: Schematic visualization of eight threads in warp performing mem-
ory accesses. Left: Coalesced global memory accesses to neighbor-
ing cells. Right: Accesses to arbitrary memory locations.

As shown in the diagram (right), random accesses to arbitrary memory ad-
dresses from different threads violate the coalesced memory access pattern.
This can in turn lead to considerably reduced performance [NVI23a]. There
are exceptions to this general rule of thumb in which the memory addresses are
permuted across multiple threads and their general access window is limited to
a certain distance between memory addresses being accessed [NVI23a; Kös23].
Depending on the actual GPU hardware being used, coalesced memory accesses
can be important on the warp and/or the group level [KGK19a; Kös23]. To
make our contributions in this thesis as general as possible, we are not relying
on the assumption of whether coalescing should be applied on warp or group
levels. Instead, all algorithms make excessive use of coalesced memory accesses
on the group and warp level whenever possible.

An example in which we are relying on non-coalesced memory accesses is
using reductions to compute group-wide or device-wide information. Reduc-
tions on the warp-level do not require memory accesses to global and shared
memory in our domain.

Combining this information with SIMT-based control flow, makes things
more challenging to master. Figure 2.5 shows the influence of complex control
on memory access patterns while also taking the overall warp utilization into
account (see also Section 3.1 for a real-world example). Consider a kernel
which consists of nested if statements, as shown in Algorithm 1. For the sake
of simplicity, this simple sample program is meant to be run in a single group
(grid size = 1) and takes four output buffers which are written to by the kernel.
Note that we assume all buffers do not alias and do not overlap. Each thread
can write to all of four memory buffers depending on the evaluation of the if
conditions inside the kernel. The case differentiations cause memory accesses
to be non-coalesced and do not achieve maximum global-memory performance.

2.4. MEMORY ACCESSES 15

Algorithm 1: Memory accesses in the presence of complex control flow
Input: Output buffers output1, output2, output3, and output4
/* Block A */

1 output1[group index] := ...;
2 if ... then

/* Block C */
3 output2[group index] := ...;
4 if ... then

/* Block D */
5 output3[group index] := ...;
6 if ... then

/* Block E */
7 output4[group index] := ...;
8 end
9 end

10 end
11 if ... then

/* Block B */
/* ... */

12 end
/* ... */

Figure 2.5: Thread divergence within a warp (gray) caused by complex control-
flow logic consisting of multiple blocks from Algorithm 1 (A–E,
left) [KGK20a]. Influence of control-flow divergence on the memory
accesses to individual elements in global memory in the scope of
all blocks (right). Different output buffers are denoted by different
shades of green. Light-green arrows highlight schematic accesses in
block A (elements 1–8 in this sample, right), whereas dark-green
accesses (elements 25–32 in this sample, right) indicate memory
accesses in block E. Accesses in blocks B (elements 9–16, right)
and C (elements 17–24) are highlighted with slightly darker green
arrows compared to accesses in block A.

16 CHAPTER 2. GPU PROGRAMMING FUNDAMENTALS

Figure 2.5 visualizes memory access patterns of Algorithm 1 when launching
a single warp only on an imaginary GPU with a warp size of eight. Moreover,
the visualization assumes a single chunk of allocated GPU memory that can
be accessed contiguously (memory addresses 1 to 32 in the diagram). This
sample demonstrates that control-flow divergence does not only influence the
utilization of warp lanes in terms of compute, but also the way previously
designed coalesced memory accesses may not be issued in the optimal way
regarding memory throughput. Although Algorithm 1 does not represent a
real-world example, it clearly presents the complexity involved when optimizing
algorithms for overall utilization in terms of compute and memory efficiency.

Shared Memory Accesses Accesses to shared memory should also follow
certain characteristics to achieve best performance. Focussing on NVIDIA
GPUs, coalesced memory accesses to shared memory can be beneficial. How-
ever, very important performance wise is to avoid bank conflicts when perform-
ing shared-memory operations.

Shared memory on NVIDIA GPUs is separated into banks of either 32-bit or
64-bit depending on the available hardware capabilities that can be program-
matically defined [NVI23a; Kös23]. In case of multiple threads writing to the
same address in shared memory, a bank conflict may occur. This results in
serialized accesses, which in turn cause performance degradation.

Compute and Memory Bound Kernels The term compute bound in
GPGPU refers to kernels that primarily depend on large amounts of compute.
For these kernels, the available computational resources are the main bottle-
neck. Memory-bound kernels are affected by the overall memory performance,
which is the bottleneck in these cases. While a strict categorization of whether
a kernel is compute or memory bound is often possible, many programs show
characteristics of both kinds. In turn, they benefit from compute focused, as
well as, memory focused optimizations.

Nevertheless, using shared memory is often extremely beneficial for memory-
bound problems to improve performance considerably. For instance, pre-
fetching chunks of global memory for further processing is a common pattern.
It is often used to buffer non-coalesced reads from global memory or to cache
intermediate results in terms of compute-driven kernels.

Nearly all of our problems we target in this work are memory bound. There-
fore, we make excessive use of shared memory. This allows us to overcome
global-memory performance limitations, which leads to significantly improved
performance of our algorithms. Reconsidering compute-bound problems in our
space, we also use shared memory to cache intermediate results and propagate
them to all threads in the same group. This way, we can avoid expensive re-
computations and minimize (even avoid in most cases) transfers of intermediate
results to global memory in general.

Part I

Parallel Simulations

CHAPTER 3

INTRODUCTION

Simulations are commonly used in a variety of application domains. In par-
ticular, large-scale simulations have become more and more popular to inves-
tigate specially challenging problems, e.g., in the fields of physics and applied
mathematics. Many simulations in these domains operate on elementary data
elements, often referred to as particles in the case of 3D problem definitions.
To get a better understanding of the structure of such tasks, we consider the
N-Body problem from physics [KSG15b; Ngu07][Chapter 31] as a running ex-
ample that is well known and has been studied for a long time [BH86]. From
a high level point of view, it generally describes the problem to compute the
positions of a set of objects in 3D space interacting with each other via their
gravitational forces. Figure 3.1 shows a visualized N-Body gravity simulation
on a sample dataset.

Figure 3.1: Sample N-Body gravity simulation rendered using the implemen-
tation described in Section 5.2.

19

20 CHAPTER 3. INTRODUCTION

The actual simulation operates on a set of bodies (also referred to as masses)
represented by their position and velocity vectors in 3D and finally their mass
(usually defined in kilograms):

bodyi = (p⃗, v⃗, m), (3.1)

where p⃗ ∈ R3, v⃗ ∈ R3, m ∈ R and i ∈ [0, . . . , N − 1]. Here, i denotes the
ith body in the scope of the simulation and N the number of bodies. 1 The
actual problem is based on the force computation between two bodies based
on Newton’s law of gravity. The following equation defines the vector f⃗ij

representing the force that the jth body applies to the ith body [KSG15b;
Ngu07][Chapter 31]:

f⃗ij = G
mimj

||d⃗ij ||2
d̂ij , (3.2)

where G is the gravitational constant, d⃗ij is the distance vector (p⃗j − p⃗i) be-
tween the two bodies and d̂ij is the normalized distance vector. Based on
Equation (3.2), we can compute the total force vector F⃗i that is applied to a
single body via

F⃗i = Gmi ·
∑

j∈{0,...N−1}\{i}

mjdij

||dij ||3
. (3.3)

A straight forward way to implement a simulation based on Equation (3.3)
is to use a nested loop that computes all forces between all pairs of objects (see
Algorithm 2).

Algorithm 2: Sequential N2 algorithm to perform a single step of an
N-Body gravity simulation based on Equation (3.3)
Input: N bodies, time step size ∆t

/* Iterate over all bodies */
1 for i := 0 to N − 1 do

/* Compute the total force vector F */

2 F⃗i := G · mi;
3 for j := 0 to N − 1 do
4 if i ̸= j then
5 F⃗i := F⃗i + mjdij

||dij ||3 ;
6 end
7 end

/* Update velocity vector */

8 v⃗i = v⃗i + F⃗i · ∆t;
/* Update position */

9 p⃗i = p⃗i + v⃗i · ∆t;
10 end

1We use p⃗i, v⃗i and mi as abbreviations to refer to the individual properties of bodyi.

3.1. PARALLEL SIMULATIONS 21

In this version, we iterate over all bodies and accumulate the total force
vector F⃗ applied to each body by iterating over all other bodies in the dataset.
Note that this simplified pseudo code does not account for collision checks,
which could be used to avoid extremely small denominators. After computing
the total force, we update the velocity and position of each particle accordingly.
Here, ∆t represents the time that elapses between two simulation steps and
is referred to as the time-step size. It describes a fundamental property of
a simulation, which mush be chosen with a focus on precision and runtime
performance depending on the individual requirements.

3.1 Parallel Simulations

As outlined in Algorithm 2, a simply version to implement an N-Body gravity
simulation is to use nested loops. Each body is processed sequentially. This also
means that the position and velocity of each body is automatically updated in
place. In other words, the next body to be processed already sees the updated
position of the previous body and takes these changes into account. At a high
level, all bodies are conceptually updated at the same time (in parallel), using
their original positions (source positions at the beginning of each step).

Figure 3.2: A double-buffering approach (top). The data is read from the
source buffer during a simulation step. The target buffer contains
the updated information after completing the step (top right, b1
center). Afterwards, both buffers will be swapped and the original
source buffer b0 becomes the new target buffer (bottom).

Double buffering can overcome this limitation by using a source buffer (read
only) and a target buffer (write enabled). The source buffer contains all infor-
mation that was "valid" at the beginning of the time step, whereas the target
buffer will be updated during the simulation step 2 (see Figure 3.2). After
completing a single time step, both buffers will be swapped and the previous
target buffer becomes the new source buffer.

2Note that it is not possible to rely on the contents/the integrity of the data stored in the
target buffer while performing a simulation step. If it is necessary to read data from the
target buffer, developers need to be extremely careful to avoid race conditions.

22 CHAPTER 3. INTRODUCTION

Reconsider our N-Body gravity example. When porting our simple sequen-
tial algorithm from the beginning (see Algorithm 2) to a parallel target de-
vice, we cannot control the update order of all bodies. This leads to non-
deterministic simulation behavior when the updates are performed in place,
without paying attention to possible data races that might occur and even
lead to invalid simulation data. Using the presented concept of double buffer-
ing circumvents these problems, as all parallel threads can see the same input
at the same time. One possible parallelization model for this simulation is to
process each body in parallel in its own thread. This implies that we do not
need to program two explicit loops any more, since each thread only needs to
iterate over all other bodies.

Algorithm 3: Simple Parallel N2 algorithm for one thread to perform
a single step of an N-Body gravity simulation based on Algorithm 2.
Note that each thread processes exactly ony body.
Input: N body input buffer, N body output buffer, i current body index,

time step size ∆t

/* The current body index i is already an input */
/* Compute the total force vector F by iterating over all

other bodies */

1 F⃗i := 0⃗;
2 for j := 0 to N − 1 do
3 if i ̸= j then

/* Compute force based on the input buffer */

4 F⃗i := F⃗i + mjin(dij)
||in(dij)||3 ;

5 end
6 end
/* Compute updated velocity vector v⃗ */

7 v⃗ = in(v⃗i) + F⃗i

mi
· ∆t;

/* Update velocity vector in output buffer */
8 out(v⃗i) = v⃗;
/* Update position in output buffer */

9 out(p⃗i) = in(p⃗i) + v⃗ · ∆t;

3.2. IMPROVING PERFORMANCE 23

3.2 Improving Performance

Regarding runtime performance, the inner loop (lines 2 to 6 in Algorithm 3)
is the performance critical part of the simulation. This loop involves memory
accesses to the positions of all other bodies in the simulation and an if condi-
tion that often leads to suboptimal occupancy of warp lanes (see Chapter 2).
Moreover, different arithmetic operations take more time (more processing cy-
cles) to complete. A common example is floating point division, which is often
significantly slower than multiplying two values [NVI23a]. Such optimizations
can be left to the compiler to do performance-aware transformations.

To improve performance without relying on program-transformation tech-
niques, it may be possible to restructure the underlying simulation specification
(i.e., the underlying equations). The goal would be to redesign the problem
description in a way that avoids expensive operations and corner cases. In
the case of the running example, we can rewrite the denominator of the force
computation to avoid cases where bodies (really close to each other) get very
large forces, as suggested in [Ngu07][Chapter 31]:

F⃗i = Gmi ·
∑

j∈{0,...N−1}\{i}

mj d̂ij

||dij ||2
(3.4)

= Gmi ·
∑

j∈{0,...N−1}\{i}

mjdij

||dij ||3
(3.5)

≈ Gmi ·
∑

0≤j<N

mjdij

(||dij ||2 + ϵ2)
3
2

. (3.6)

By adding an additional small ϵ softening value allows us to avoid extremely
large forces and makes the innermost if condition i ̸= j (lines 3 to 5) unnec-
essary. Depending on the use case, using an approximate reciprocal function
rcp(x) = 1

x instead of an expensive floating-point division helps to improve
performance (at the cost of simulation precision [Ngu07; Kös13]). The same
method can also be used for the function

√
x, which is usually available in the

form different approximations with different precisions [Ngu07]. The following
code snippet demonstrates the use of approximation methods to implement
Equation (3.6):

1 distanceSquared = dot(r_ij, r_ij);
2 denominator = rsqrtApprox(distanceSquared + epsilonSquared);
3 denominator = denominator * denominator * denominator;

Regarding memory accesses, the access pattern in our running example is
coherent, as all threads load the first body first, then the second, and so on
(see Chapter 2). However, loading bodies from global memory is not optimal,
as multiple threads can load different bodies at the same time while accessing
neighboring bodies in memory. We can also drastically reduce the number of
loads by leveraging a small body cache in shared memory (see Figure 3.3).

24 CHAPTER 3. INTRODUCTION

Figure 3.3: Conceptual functionality of a shared-memory cache based on the
sample of a gravity simulation. First, all neighboring threads load
their associated bodies into shared memory (green arrows). After-
wards, all threads perform the force computation across all bodies
in the group using the data stored in shared memory (blue arrow).
Finally, all threads continue with the next bodies.

Algorithm 4: Conceptual parallel N2 algorithm using shared memory
based on Algorithm 3 [Ngu07; Kös13]
Input: N body input buffer, N body output buffer, i current body index,

time step size ∆t

/* Allocate shared memory for each body */
1 sharedBodies := shared memory (float3, float)[group size];
/* Compute the total force vector F by iterating over all

other bodies */

2 F⃗i := 0⃗;
/* Iterate over all bodies with a stride of the current

group size */
3 for j := 0 to N − 1 step by group size do

/* Load a body into shared memory using coherent
memory accesses */

4 sharedBodies[group index] := in(j + group index);
/* Wait for all threads to complete the load operation

into shared memory */
5 group barrier;

/* Iterate over all cached bodies */
6 for k := 0 to group size − 1 do

/* Update the current force vector F using
sharedBodies here */

7 end
/* Wait for all threads to avoid overwrites from

thread that are still iterating over the
shared-memory contents */

8 group barrier;
9 end
/* Update velocity and position... */

3.2. IMPROVING PERFORMANCE 25

Leveraging shared memory can be achieved by blocking the loop that iterates
over all other bodies. Blocking means that we adjust the step size of the
outermost loop to be incremented by the current group size (the number of
threads in each group). Algorithm 4 shows a sample implementation using
shared memory based on Algorithm 3 and [Ngu07; Kös13]. To do so, we
allocate an array of bodies (storing position and mass) in shared memory such
that each thread can store a single body asynchronously. After loading a single
bunch of all bodies into the group, we can continue processing by iterating
over all bodies stored in shared memory. This process can be repeated until
all bodies have been processed.

Note that this simplified algorithm does not take any edge cases into account
where ((N − 1) mod group size) ̸= 0. In such a case, this algorithm would per-
form out-of-bounds accesses that can be avoided by padding of the input buffer.
There are also a variety of additional performance improvements that can be
applied to this blocked algorithm. Common techniques include loop unrolling
and more memory-access pattern optimizations by implementing grid-stride
loops [KGK19a; KGK20b].

Algorithmic Considerations

Besides improving performance of the parallelized direct O(n2) algorithm, it
is also important to consider conceptual algorithmic improvements. The pre-
sented improvements enable running the n-body simulation efficiently on rea-
sonably sized data sets on a single GPU. If the data set size increases, the
complexity of the algorithm reaches its limits. In such cases, reevaluating the
actual algorithm being used and exploring alternative approaches is the only
way to achieve improved performance.

Sticking with our sample, Barnes and Hut [BH86] introduced a hierarchical
algorithm with complexity of O(n log n). There have been many parallelized
versions of this algorithm, including GPU variants in the past. They consid-
erably outperform the presented (even improved) version of the naive O(n2)
algorithm on larger data sets. This is achieved by a hierarchical decomposi-
tion of the problem domain and propagating temporarily accumulated forces
to regions in simulation space.

Introducing hierarchical space subdivision is a fundamental change to the ini-
tially discussed algorithm. Although the basic idea of computing forces between
all bodies remains unchanged, this innovative algorithmic advantage allowed to
overcome scalability and performance limitations. Our contributions through-
out this thesis adhere to the same high-level principle: We realize performance
improvements by introducing conceptual algorithmic advancements that go
beyond merely leveraging implementation-specific features. These novel algo-
rithms are designed with GPUs in mind, allowing them to utilize all the unique
capabilities of modern GPU architectures.

26 CHAPTER 3. INTRODUCTION

Practical Considerations

For practical reasons, each property in R is usually represented by a fp32
or fp64 (a single/double precision floating point number with 32 or 64 bits)
depending on the simulation requirements. However, floating-point operations
cannot be considered to be commutative on actual hardware [NVI23a]. This
can easily lead to visible artifacts when visualizing the underlying simulation
data or can even make the whole simulation unstable [KK16]. Especially par-
allel implementations need specific care when precision is the primary concern.
An alternative to floating-point numbers can be fixed point numbers based
on integers to overcome the commutativity problems of their floating-point
counterparts.

When performance is the primary concern of the simulation, accuracy is
often less important. A simple and efficient way to improve performance is to
choose large time-step sizes for ∆t in favor of small ones. Stability is also very
important as it expresses the desired high-level property of not causing invalid
states that violate the fundamental constraints of the simulation [Mül+07;
KK16]. In this scope, choosing ∆t can easily become a challenging problem:
An inappropriate value causes visual artifacts in the best case and makes the
simulation unstable in the worst case. However, this varies depending on the
algorithm and the implementation being used (see also Chapter 4).

3.3 Initial Work

One of our initially published projects was a combination of computer graphics,
simulation, and HCI. It is outlined in the paper "Gravity Games - A Framework
for Interactive Space Physics on Media Facades" [KSG15a], which describes a
simulation framework for media facades. The underlying algorithm is based
on an specifically optimized version of Algorithm 3 using several data struc-
tures based on the work by Barnes and Hut [BH86]. The basic idea behind
this framework is to enable users to interactively explore and experiment with
gravitational forces. These forces and their individual influence on each ob-
ject are too complex to be predicted by humans. This becomes even more
challenging in complex situations involving many objects that cannot be easily
counted for observers. Therefore, the framework allows us to simulate thou-
sands of objects in parallel using a GPU-accelerated simulation. It also fea-
tures a specifically designed rendering pipeline based on on-the-fly generated
geometry for displacement mapping and image-based alternatives like parallax
mapping [POC05] (see Figure 3.4). It is especially optimized for large screen
resolutions, multiple rendering devices, and different physical configurations of
the displays/projectors being used.

3.3. INITIAL WORK 27

Figure 3.4: Sample rendering of a visualized asteroid belt that circulates
around a light-emitting gravitational center [Kös13].

Figure 3.5: Media facade at the HBKSaar [KSG15a].

Our primary use case was the media facade at the Academy for Fine Arts
and Design (HBKSaar) (see Figure 3.5): It consisted of five different back-
projection units that were mounted behind the windows and projected onto
a curtain. Due to the physical layout (around the corner of the building), it
allowed observers to perceive a 3D like effect when viewing content from a
specific point and angle. To benefit from this unique feature of the facade, the
virtual camera location had to be adjusted accordingly during rendering (see
Figure 3.6). In addition, the finally rendered images had to be distorted ac-
cording to a displacement mask (also denoted projection mapping, Figure 3.7).

Figure 3.8 shows a photograph of our work deployed to the targeted media
facade. Besides this facade, we have created several applications based on
the same framework. In addition, we used this framework to realize a set
of interactive media installations with different high-resolution projectors and
tracking environments.

28 CHAPTER 3. INTRODUCTION

Figure 3.6: A sample rendering using a proper virtual camera setup to perceive
a 3D like effect on the media facade [KSG15b]. Top: Main region
of the simulation. Bottom: Whole rendering for the media facade
projector setup [Kös13].

Figure 3.7: Sketch of the displacement mask used for projection mapping onto
the facade [KSG15a; KSG15b].

Figure 3.8: Picture of the deployed application [KSG15b].

3.3. INITIAL WORK 29

A sample setup that was also published at an entertainment conference was
the Asterodrome project. This project realized additional gravity simulations
presented in as an interactive installation at the HBKSaar [Kös+15]. Figures
3.9 and 3.10 show exemplary renderings of the projector and the interaction-
space concept. An image of the finally realized application can be seen in
Figure 3.11.

Figure 3.9: Conceptual sample rendering (1) of an interactive installation setup
at the HBKSaar [Kös+15].

Figure 3.10: Conceptual sample rendering (2) of an interactive installation
setup at the HBKSaar [Kös+15].

30 CHAPTER 3. INTRODUCTION

Figure 3.11: Picture of the media theater at the HBKSaar [Kös+15].

3.4 Contributions

After discussing related work in Chapter 4, Part I of this thesis makes the
following major contributions:

• Chapter 5 presents two methods that can be used in scope of particle-
based simulation processes. First, we introduce an adaptive fluid simula-
tion model that can significantly improve runtime performance without
introducing severe visual artifacts when rendering the simulated fluids.
We then introduce a new method enabling users to interactively select
potentially interesting subsets of large particle simulations/datasets in
real time. Both approaches overcome known limitations with respect to
scalability and runtime performance.

• Chapter 6 presents generic concepts and algorithms that are not limited
to particle-based simulations. These key contributions can be applied to
arbitrary GPU-based simulations to either improve runtime performance
in general or to trade precision for performance. These methods have al-
ready been implemented and used excessively in production. See Part III
for more information.

Pseudo-codes, illustrations, and sample code listings explain all methods in
detail. All algorithms are designed to be implemented in any GPU-accelerated
program using one of the programming languages available for this purpose.

3.5. PUBLICATIONS 31

3.5 Publications

The following list summarizes all contribution-relevant publications of this
part of the thesis. Furthermore, contributions of the contributing author (CA)
and all other authors (CoA) are explicitly listed. This helps to clearly separate
own work that may be used in the dissertation from other contributions.

[KGK20a] Marcel Köster et al. “High- Performance Simulations on GPUs
Using Adaptive Time Steps.” In: 20th International Confer-
ence on Algorithms and Architectures for Parallel Processing
(ICA3PP-2020). Springer, 2020

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement, implementation and
benchmarking

[KGK20b] Marcel Köster et al. “Massively Parallel Rule-Based Interpreter
Execution on GPUs Using Thread Compaction.” In: Interna-
tional Journal of Parallel Programming (2020)

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement, implementation and
benchmarking

[KGK19b] Marcel Köster et al. Massively Parallel Rule-Based Interpreter
Execution on GPUs Using Thread Compaction. 12th Interna-
tional Symposium on High-Level Parallel Programming and
Applications (HLPP-2019). 2019

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement, implementation and
benchmarking

32 CHAPTER 3. INTRODUCTION

[KK18] Marcel Köster and Antonio Krüger. “Screen Space Particle
Selection.” In: Proceedings of the Conference on Computer
Graphics & Visual Computing (CGCV-2018). The Eurograph-
ics Association, 2018

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement

[KK16] Marcel Köster and Antonio Krüger. “Adaptive Position-Based
Fluids: Improving Performance of Fluid Simulations for Real-
Time Applications.” In: International Journal of Computer
Graphics & Animation (2016)

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement

CHAPTER 4
RELATED WORK

This chapter summarizes related work from the field of associated simulations,
basic simulation methods from relevant domains, and selection algorithms. It
is meant to provide a high-level overview of related approaches and algorithms
that are most similar to our contributions, as well as their limitations. With
this in mind, we focus only on the limitations that have been relaxed or even
completely removed by our contributions in this work. Each section also in-
cludes paragraphs summarizing key aspects of related work, as well as the main
differences to our approaches.

Please note that this list of publications cannot be exhaustive by definition,
as we have made contributions to fields that touch on a wide range of domains.

4.1 Particle-Based Fluid Simulations

Section 3.1 introduced the basic concepts behind particle-based simulations
on GPUs by using a gravity simulation as a running example. As two meth-
ods presented in this thesis rely on improving performance of fluid simulations
in particular, this section introduces the basics and related work in this area.
Fluid simulations often rely on the method of smoothed-particle hydrodynamics
(SPH) to approximate smoothed quantities over a discrete set of points (par-
ticles) [GM77; Luc77; Mon92; NP94]. In this context a quantity Ai (a scalar
property to be approximated) of the ith particle is defined using a smooth-
ing kernel W (with finite support) around the current particle position via a
convolution using W :

Ai =
∑

j

mj

ρj
AjW (||pi − pj ||, h), (4.1)

where Aj is the property value of the jth neighboring particle, mj is the mass
of the jth neighbor, and ρj is the local density in the current neighborhood

33

34 CHAPTER 4. RELATED WORK

of the neighboring particle. Furthermore, pi and pj are the positions of the
current (the ith) particle and pj is the position of the jth neighbor. The
most important property (besides the choice of W) is h, referred to as the
smoothing length and/or the smoothing radius [Mon00; KK18], as it defines
the length/radius to realize the convolution applied. Our method presented in
Section 5.2 leverages SPH to compute local densities in real time allowing us
to realize highly efficient particle selection processes.

Müller et al. [MCG03] realized an interactive fluid simulation by leveraging
SPH. They used SPH to determine local fluid-density information (see also
Section 5.2) by introducing custom weighting kernels W satisfying their needs.
They built upon work by Desbrun and Gascuel [DG96] to compute densities
using computed pressures. Having this concept at hand, they calculated cor-
rection (force-based acceleration) vectors that adjust particle positions to move
them to their "intended" position. Similar to our gravity simulation example
before, Müller et al. implemented their simulation pipeline so that the SPH-
based quantities, force vectors, and position corrections are calculated in each
simulation time step. Most importantly, this was in a real-time capable way. In
[Mül+05], Müller et al. extended this work to support fluid-fluid interactions.

Unfortunately, their approach suffers from compressibility issues regarding
the fluid(s) being simulated [BT07]. Compressibility refers to the fact parti-
cles are closer together than they should be in order to approximate an in-
compressible fluid. In other words, the simulated fluid volume may appear
"squeezed" or smaller than it should be. This causes visual artifacts and con-
siderable simulation deviations from a ground truth [Pre+03; BT07]. In order
to tackle this problem, it is possible to use approaches like the one by Pre-
moze et al. [Pre+03]. They introduced a method using an iteratively solved
pressure Poisson equation formulation [Pre+03]. However, such methods were
computationally expensive [BT07].

Becker and Teschner [BT07] introduced weakly compressible SPH (WCSPH)
that allowed for small local density deviations in favor of computationally ex-
pensive solver iterations. The main downside of this approach were restricted
simulation time-step sizes, which made more simulation steps necessary com-
pared to other approaches [SP09; Ihm+14]. Solenthaler and Pajarola [SP09]
came up with the concept of predictive-corrective incompressible (PCISPH).
It relaxed previously constrained time-step sizes and achieved excellent results
compared to WCSPH while improving performance significantly [SP09]. More
work in this area was done by Ihmsen et al. [Ihm+14], who improved again
on constrained time-step sizes and runtime performance using their novel ap-
proach called IISPH.

Meanwhile, Müller et al. [Mül+07] continued their work and built real-time
capable physics simulations, not primarily intended to be used for the sim-
ulation of fluids but rigid and soft bodies. They introduced the concept of
position-based dynamics (PBD). The idea behind this method is to simulate
the physical mechanics of objects based on constraint functions, more precisely

4.1. PARTICLE-BASED FLUID SIMULATIONS 35

nonlinear functions. Behind the scenes, these constraints are used to define
an optimization problem that is iteratively solved via constraint projection.
PBD leverages constraints represented by equations and in-equations of the
form [Mül+07; Mül08]:

Ci(p + ∆p) = 0 and Ci(p + ∆p) ≤ 0, (4.2)

where Ci represents the ith constraint. From a theoretical point of a view,
each constraint enforces a certain property and is defined over a vector of all
positions (particles) p. The overall purpose is to find a position-correction
vector ∆p, which can be added to the current positions p to meet the con-
straint. To solve for all position corrections ∆p, we use the following approxi-
mation [Mül+07; Mül08; KK16]:

Ci(p + ∆p) ≈ Ci(p) + ∇pCi(p) · ∆p. (4.3)

Restricting the solution to position corrections lying in the gradient direction
∇Ci and using the particle masses as weights, we get [MM13; KK16]:

∆p = λwi∇pCi(p), (4.4)

with a scaling factor λ and wi being the inverse mass 1
mi

of ith particle in the
simulation domain. With the help of this modeling approach, even sophisti-
cated physical simulations can be realized in a mathematically appealing way
while providing an excellent robustness and stability throughout the simula-
tion [Mül+07; Mül08; MM13; Mac+14; KK16].

In order to model fluids to be used with position-based methods, Macklin
and Müller [MM13] introduced the concept of position-based fluids (PBF) by
leveraging previous work from Bodin et al. [BLS12]. They modeled a fluid
density constraint of the form [MM13]

Ci(p) = ρi

ρ0
− 1 = 0, (4.5)

where ρ0 is the fluid rest density to simulate and ρi the current density in
the surrounding environment of the current particle. In order to realize this
constraint, Macklin and Müller applied it to each particle in the simulation
following again on previous work from Bodin et al. [BLS12]. This results in
an evaluation of the equality constraint at the location of every particle in
the simulation domain. In order to compute ρi, Macklin and Müller used the
default SPH density estimator by Monaghan, described above [BLS12; MM13;
KK16]. One year later, Macklin et al. [Mac+14] published a follow-up work
that fully unified PBF and PBD and improved over previous works [Rob+08;
Aki+12]. We improved on modeling of fluids with PBF by adding adaptive
sampling in order to improve performance in Section 5.1.

36 CHAPTER 4. RELATED WORK

Summary and Main Differences to Our Work Historically, research ef-
forts have primarily focused on fluid simulations that rely on the SPH model.
Various approaches were well researched to model fluids for specific application
domains. The modern method PBF has emerged as an effective solution for
creating realistic fluid simulations within the scope of unified particle-based
physics. PBF offers a balance between robustness, performance, and applica-
bility to various interactive applications. Our approach to improve performance
in this general domain is by introducing an adaptation model to PBF. This
innovative approach allows for improved efficiency without compromising the
visual quality of the fluid simulation which was not possible before in PBF
simulations.

4.2 Adaptive Particle and Fluid Simulations

In order to improve performance of methods discussed in Section 4.1, situation-
aware or adaptive methods have been very popular [KK18]. The basic idea is to
automatically adjust the accuracy required to "successfully" run a particle/fluid
simulation to specific criteria in order to reduce computational effort and thus
performance. Successful here refers to properties such as (numerical) stability,
visual appeal, and runtime. This section covers general adaptation approaches
dedicated to the particle and fluid simulation domain.

An idea by Adams et al. [Ada+07] was to use different particle sizes in
the simulation domain. They built their adaptive simulation model upon this
concept by improving the simulation precision based on whether a visually
important region was affected or not. Visual significance was determined us-
ing distances to rendered geometry in the simulation domain. Their approach
resulted in a decrease in the number of particles required, as coarse-grained
approximations were performed with larger particles, ideally replacing the mo-
tion of multiple smaller particles. Here, they used domain-dependent criteria
on when to split larger particles into smaller ones and when to combine them.
Reasoning about particles with different sizes in the same simulation requires
a considerably more sophisticated solver method. Moreover, it would cause a
fundamental change to commonly used simulation engines [Mac+14; KK18].
Consequently, we did not follow this research direction.

Based on the distance of particles to the surface of the fluid to be simulated,
Hong et al. [HHK08] also used heterogenous particle configurations. In addi-
tion, they used multiple layers (four in their paper) with specific splitting and
merging rules for particles. In their case, the actual grid was added to the
grid-free particle simulation, making this contribution a hybrid approach. In
a follow-up paper, Hong et al. [HHK09] improved on their method via reduc-
ing memory consumption of their layer idea by introducing adaptive grids to
improve scalability. Yet, the overall adaptation methodology stayed the same.
Zhang et al. [ZSP08] used a related method ultimately leading to domain-

4.2. ADAPTIVE PARTICLE AND FLUID SIMULATIONS 37

specific split and merge operations based on certain conditions to improve per-
formance. They also contributed a GPU-friendly realization for their method.
As discussed in the previous paragraph, splitting and merging makes simu-
lation logic more complex. Even worse, some methods of this kind require
additional data structures causing scalability issues during parallelization on
GPUs.

Conceptually different is the approach by Solenthaler and Gross [SG11]. The
authors made the need for split-and-merge operations obsolete by maintaining
two versions of the "same" simulation with different scales. Same means here
that the model with the coarser-grained particles is conceptually the baseline
model. While running the simulation, certain regions are selected which will be
linked to regions of the more fine-grained simulation. As mentioned above, this
eliminates the need for splitting and merging and simplifies the particle size
considerations: Both versions of the simulation consist only of particles of the
same size. An extension of this method improving on the number of detail levels
was published by Horvath and Solenthaler [HS13]. In all of these methods, the
simulation detail was chosen according to properties of the camera. Although
these ideas are very appealing at first sight, they also require an adaptation
of the underlying simulation basics. This would again cause severe changes to
existing simulation engines limiting the applicability of our methods [Mac+14;
KK18].

Goswami and Pajarola [GP11] published a method based on the idea to dis-
tinguish between inactive and active particles. Positions of particles in both
categories were adjusted based on different criteria. The authors made the
decision whether a particle is considered active or not based on the speed of a
particle and whether it was close to the volume boundaries (e.g., the surface).
They further improved on their method by assigning particles in certain regions
while improving WCSPH [GB14]. Different regions were updated with differ-
ent frequencies using adjusted time-step sizes assigned to particles in distinct
regions. Related to that Ihmsen et al. [Ihm+10] extended PCISPH by adding
adaptive time-step sizes. Our method presented in Section 5.1 is built on a sim-
ilar idea to treat particles differently based on their importance. However, we
do not statically differentiate between active and inactive ones in the scope of a
whole simulation step and we do not adapt the time-step sizes. This is because
adjusting time-step sizes requires an complete understanding of the whole sim-
ulation domain which makes interoperability with other solvers considerably
harder. Instead, we perform fine-grained adjustments to the simulation quality
per particle to maintain stability and preserve compatibility with our approach
we approved upon.

Summary and Main Differences to Our Work Most publications fo-
cused on adaptive sampling to improve performance, by either using different
particle sizes within the simulation domain, or choosing time step sizes adap-
tively. Choosing heterogeneous particle sizes to change the actual simulation

38 CHAPTER 4. RELATED WORK

resolution requires adapting the underlying solver equations according to spe-
cific domain requirements. Applying this methodology to PBF would also
require reconsidering all PBF mechanics. Since the idea is to realize an adap-
tation extension that integrates with existing unified PBD solvers, this would
ultimately not be directly possible. It would require changing the represen-
tation of PBF particles and introducing a sophisticated coupling mechanisms
between our adaptive PBF world and the remaining parts of the surrounding
PBD-based solver.

Instead, we followed the general concept of choosing time-step sizes adap-
tively for PBF using visually guided heuristics presented in Section 5.1.2. Using
such heuristics is based on prior work which described adaptation models using
virtual camera properties and physical objects in the simulation domain. In
contrast to these works, we introduced a new method to realize adaptive time
steps for PBF simulations.

4.3 Improving Utilization of Generic Parallel
Simulations

Improving performance of parallel simulations built implicitly or explicitly on
the concept of logical building blocks (like rules, see Section 6.2) is widespread
and well researched over the years. Of particular interest to our research are
publications in the area of parallel computing that exploit certain hardware
properties that apply to generic parallel simulations. Many algorithms dis-
cussed in this section rely on the high-level idea of compaction. Compaction
here always refers to filling "gaps" in a sequence of elements, which may be a
data stream (usually referred to as stream compaction [BOA09]) or a compu-
tation/instruction stream (referred to as thread compaction, see Section 6.2.1
and Figure 6.6 for a detailed explanation of thread compaction). Billeter et
al. [BOA09] published a hardware-aware method based on prefix sums to realize
thread compaction on NVIDIA GPUs. In short, the idea of thread compaction
is to move threads (including their register data) to leverage unutilized pro-
cessing units/circuits on the chip. This particularly includes arithmetic/logic
units.

A good example for that is the work by Fung and Aamodt [FA11] who made
use of thread compaction to overcome performance degradation in the presence
of divergent control flow. Their contribution was an algorithm operating on the
hardware level making software overhead unnecessary. Unfortunately, this al-
gorithm cannot be easily transferred completely to arbitrary hardware, leaving
room for software optimizations. In addition, domain-specific optimization in
software can always be added to improve performance using domain knowledge,
as done in our case.

Similarly, Rhu and Erez [RE13] maximized GPGPU utilization using CUDA
for NVIDIA GPUs by analyzing control-flow graphs. They used permutations

4.3. IMPR. UTILIZATION OF PARALLEL SIMULATIONS 39

to reorder threads in software and discussed certain permutation strategies. Al-
though their method is more generic than our method presented in Section 6.2,
we can take advantage of our domain knowledge to improve performance in our
use cases (e.g., multiple optimizer states). Conceptually, their method is most
similar to our approach if we focus on the compaction contributions. Unlike
them, we also contribute a special memory layout that fits seamlessly into our
compaction approach.

Most similar to our approach are also well-known methods from the fields
of computer graphics and visualization. Hoberock et al. [Hob+09] used thread
compaction to reduce divergence in shaders during rendering in the context of
deferred shading. They relied on prefix-sum computations in global memory
to rearrange the require data before rendering. Highly similar to that is the
contribution by Hughes et al. [Hug+13] to improve performance in the data
visualization domain. However, they did not perform the compaction step com-
pletely in global memory as they used group-wide compaction and synchronized
data accesses across all groups using atomics. Wald [Wal11] also performed
compaction in group-wide accessible shared memory to achieve considerable
performance improvements in the path-tracing domain. Our approach also re-
lies on thread compaction in shared memory. All threads in a group collectively
contribute to the compaction step before beginning the actual work. In con-
trast to these approaches, we target the domain of simulating multiple world
states in parallel that also require specific memory layouts to benefit from such
optimizations.

Summary and Main Differences to Our Work The history of research
on thread compaction to improve utilization of SIMD and SIMT hardware is
extensive. Various generic approaches have been proposed on both the hard-
ware and software levels, focusing on addressing the problem from general
perspective.

In the context of massively parallel simulations, our primary concern is to
also parallelize across multiple states. This can be viewed as running multiple
simultaneous simulations that should fully exploit parallel computation capa-
bilities available on GPUs. By considering this specific target domain, we have
developed an approach based on thread compaction for enhanced performance
in our particular context. Additionally, we have made a significant contribu-
tion by proposing an optimal memory layout that further enhances the overall
performance within our domain setting.

40 CHAPTER 4. RELATED WORK

4.4 Adaptive Time Stepping for Generic Simulations

The general concept of adaptive time stepping itself has also been very well
researched for years in a huge variety of different domains [Kay+10; Car+10;
GH13; PB15] (see also Section 4.2). Prominent examples are from the domain
of solving partial differential equations [GH13; KGK20a] or particle simula-
tions [HS13; KK18]. Many of them also make use of interpolation functions to
approximate (and predict) intermediate values to realize adaptive time step-
ping [Ihm+10]. All presented papers so far made use of domain-specific know-
ledge to overcome time-step (size) restrictions by adding specially designed
data structures or adjusting the underlying simulation mechanics (e.g., the
work by Adams et al. [Ada+07] or by Ihmsen et al. [Ihm+10]). While also
being from the area of fluid-based simulations, a recent work by Mayr et al.
focused on more iterative calculations of time-step sizes [MWG18]. This work
is also worth mentioning because of their proposed generic way to determine
time-step sizes based on error calculations. The time-step sizes are calculated
in a first step and applied to the simulation in a second step.

Our contributions in this area focus on improving performance of generic
parallel simulations in discrete object-oriented simulation domains that exist
in the scope of optimization solvers (see Section 6.3). In this scope, our basic
concept is built on related work to use interpolation functions in order to
approximate intermediate values. The goal is to relax time-step restrictions
of arbitrary simulations following certain design principles. Comparing our
approach to the work by Mayr et al. reveals that we also estimate time-step
sizes for each of our simulation components beforehand. Afterwards, we try to
find a compatible step size that will work for each component in every time step.
However, we are not focused on fluid simulations and focus on optimization
states instead which causes domain-specific considerations from their work to
be non-applicable to our problem space.

Most related to our approach is the method by Garcia et al. [Gar+11]. They
introduced GPU accelerated and CPU managed parts of their application,
while the parts running on the GPU implement the actual simulation logic.
In each simulation step, they performed a time-step estimation phase on the
GPU in parallel first for each of their GPU-accelerated simulation modules
and transferred this value back to the CPU space. Once they had this value
at hand, they could adjust the global time-step size for each module accord-
ingly for the actual simulation step afterwards. Our method is very similar to
the one described here in terms of using an initial time-step estimation phase
across all modules involved. Moreover, we also rely on synchronization of our
determined time-step sizes on the CPU side to share and propagate time-step
information. In contrast to this approach, our method supports dynamic in-
terpolation between intermediate results to relax time-step restrictions. Our
design conceptually improves over related work significantly.

4.5. PARTICLE-BASED SELECTION 41

Summary and Main Differences to Our Work Adaptive sampling and
time-stepping techniques have been widely studied while focusing on partial
differential equations and specific application areas (e.g., fluid simulations). In
contrast, our research targets adaptive time stepping for (agent-like) object-
oriented simulations meant to be used in the scope of optimization processes.
Related work has addressed time-step-size restrictions by interpolating inter-
mediate values using problem-dependent interpolation functions for particu-
lar use cases. Moreover, several papers introduced GPU-based adaptive time
stepping for arbitrary domains, without paying attention to interpolation ca-
pabilities to relax time-step sizes. Our method in this scope combines these
worlds while combining relaxation of time-step restrictions and GPU-driven
acceleration.

4.5 Particle-Based Selection

In the fields of visualization and HCI, prominent tasks are object selections.
This includes selecting multiple objects at the same time or focusing on a single
one [DFK12]. Moreover, much research has been done in the field of object
selection in 3D environments [Min95]. In these settings, common methods are
based on ray casting and/or the use of projected image planes to select objects
in a rendered scene [Min95; Pie+97]. This had been extended to virtual reality
environments [Val+10], as well as touch and pointing based selection methods
using stereoscopic displays [DFK12; Dai+14]. However, all of these methods
focus on the selection on a few objects (often a single one, for example) while
enabling that in either 2D and/or 3D domains.

Since our method targets the domain scientific visualization, we are inter-
ested in analyzing and handling datasets consisting of several hundred thousand
particles (or data points, see Section 5.2). In contrast to previously mentioned
methods, this domain requires selection methods operating on 3D volumes.
Different technologies had been published in this area [KK18]. A prominent
method in this area is the one by Steed and Parker [SP04] who used cone
tracing to realize the actual selection process. In their work, they selected
either all objects intersected by the cone or the object closest to the cone
center. Considerable improvements were made over the years by introducing
structure-aware selection methods [WVH11; Heg+12]. Such approaches rely
on underlying analyses to reveal more information about the dataset being
used. Subsequently, this data is used for the actual selection inference, which
determines which part of the dataset should be selected.

Very sophisticated and precise methods (which are also very similar to our
approach) are those of Yu et al. [Yu+12; Yu+16]. The first methods presented
by the authors were CloudLasso and TeddySelection [Yu+12]. Both selection
algorithms are based on a selection lasso drawn in 2D by a user. We focus
on CloudLasso because of its relation to our method and it was determined to

42 CHAPTER 4. RELATED WORK

have superior selection quality and runtime performance on their evaluation
scenarios. It relies on a density estimation method to determine local particle
densities (similar to SPH-based methods, introduced in Section 4.1).

After having calculated density information, the selection process is realized
using a 3D grid resulting in a 3D selection mesh. During this process, they
used the Marching Cubes [LC87] algorithm to convert their intermediate grid
data structure into meshes (see also Section 5.2). In sum, this concept allowed
them to map a 2D input lasso to a 3D selection volume using their algorithms.

The authors further improved their selection algorithms and invented the
family of CAST algorithms [Yu+16], where CAST refers to context-aware se-
lection techniques [Yu+16]. In analogy to their CloudLasso method, all CAST
algorithms were built on top of a dataset analysis phase for each selection step.
All methods used the same very expensive density-estimation method and are
built around the high-level notion of clusters in the input particle datasets.

As for the clusters, each of them represents a 3D region in space comprising
particles of a certain density. The idea was that a cluster of particles can be
easily visually identified and separated from other parts of the dataset (by hu-
mans), and thus selected by users [Yu+16]. Based on their previous experience,
they focused on different use cases, which they covered with specially adapted
methods. They introduced the following algorithms for their application sce-
narios [Yu+16]:

• SpaceCast selects (sub)clusters considering the shape of the lasso,

• TraceCast selects only whole clusters, but does not require very precise
lassos, as it operates at a very coarse-grained level,

• PointCast selects whole clusters using a single mouse click/touch inter-
action and a selection heuristic.

Unlike PointCast, our approach is inherently lasso-based, which means that
we require the selection lasso shape to infer the intended choice by the user
(Section 5.2). Moreover, we do not reason about clusters at all in the dataset
as we are able to map the selection to (sub)space regions of the dataset without
intermediate data structures.

An essential part of their algorithm was again based on a custom particle-
density estimator. They relied on a modified version of the Breiman density es-
timator approach [B J+11] combined with specifically chosen kernels [Yu+16].
Their choice was also motivated by related work by B. J. Ferdosi et al. [B
J+11] who compared different density estimators for astronomical datasets.
The method is based on a uniform 3D grid containing smoothed density in-
formation and requiring O(m3) memory, where m represents the number of
grid cells of each dimension. Actual density information per particle is then
determined using linear interpolation between neighboring grid cells. Due to
their choice of the density estimator and use of the Marching Cubes algorithm,

4.5. PARTICLE-BASED SELECTION 43

scalability was a limiting factor in terms of memory consumption and runtime
performance.

Similar to the algorithms of the CAST family (and to previous work by
Yu et al. in general), our idea is based on the same high-level concept. We
also start with a 2D selection mask that is drawn by a user and map this
information to the "intended" selection (see Section 5.2 and [KK18]). The
overall aim of our method is to considerably improve runtime performance and
reduce memory consumed. By overcoming these limitations, it is also possible
to use our methods in rapidly changing dataset environments in which data
may even come from a real-time simulation running in the background rather
than a statically loaded dataset.

Particularly related to their methods is our use of a density-estimation based
selection process. We use local density information to realize selection-lasso
mapping to particles. As mentioned above, their choice of the density estima-
tor was already motivated by related work. In order to significantly improve
performance of this expensive step, we propose a density-estimation algorithm
directly based on SPH, which was developed for astrophysical problems [Luc77;
Mon92]. Moreover, SPH methods have been successfully applied to particle-
based real-time applications (like the ones by Macklin and Müller [MM13] and
Köster and Krüger [KK16]). The limiting factor in terms of performance in
this case is the iteration over neighboring particles. However, this allows us
to avoid expensive 3D grids at all using recent work by Groß et al. [GKK19;
GKK20].

Summary and Main Differences to Our Work Besides well known pub-
lications in the HCI space around object and multi-object selection using tra-
ditional input devices (e.g., keyboards and mice), we focus on data sets with
millions of points to be selected. In this context, state-of-the-art selection
methods are the algorithms from the CAST family. The work on point (or
particle-based) data sets using specifically designed deep volume analyses (com-
plex analyses operating on the data set directly) to map user input to intended
selections. Unfortunately, these methods suffer from runtime and memory-
consumption issues, which limit their scalability when dealing with larger data
sets. Our approach overcomes all these limitations by enabling real-time feed-
back and excellent scalability.

CHAPTER 5

IMPROVING PERFORMANCE
OF PARTICLE-BASED
SIMULATION AND SELECTION
PROCESSES

This chapter presents contributions to improve performance of particle-based
simulation and selection processes. The first section introduces general sim-
ulation basics using position-based and SPH-based simulations. Section 5.1
presents an extension to position-based fluid simulations that improves per-
formance without causing significant deviations in terms of the quality of the
rendered simulation. Section 5.2 shows a method built on SPH-based kernels
that allows users to select particle subsets in the scope of large scale datasets
in real time. As a first motivation, Figure 5.1 shows a rendered particle-based
gravity simulation using the tool from Section 5.2.

Figure 5.1: Demo gravity simulation rendered with our selection tool from Sec-
tion 5.2.

45

46 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

5.1 Iteration-Adaptive Position-Based Fluids

PBF is one of the most modern methods, which even fits seamlessly into
the context of globally unified particle physics [Mac+14]. The approach of
unified physics enables developers to rely on a generic, multi-purpose, and
reusable physics-simulation pipeline that can be used in state-of-the-art com-
puter games, for instance. Games in particular (especially open-world games
that use large simulation domains) make PBF integration challenging due to
the computational resources required. The original PBD approach used a
Gauss-Seidel solver to solve the different constraint functions. Gauss-Seidel it-
erations imply a sequential execution in which the position-correction updates
are computed and applied. This way, position updates are directly visible to
all other updates and are affected by additional constraints. The sequential
execution order can be circumvented by using Jacobi-style iterations for solving
the presented density constraint [MM13]. This allows parallel computation and
application of position corrections. Since the corrections in each iteration are
propagated only to the immediate neighbors, the convergence rate decreases
as the number of particles increases: A larger number of iterations causes the
density constraint to be approximated more precisely, which in turn reflects
the degree of the approximated incompressibility.

Therefore, one of the major bottlenecks in the scope of PBD-based simula-
tions are the solver iterations I: The more iterations we need to perform, the
longer a full simulation step will take. The same holds true for PBF simula-
tions that share the same solver concept based on constraints. As outlined in
Chapter 4, there have been approaches trying to experiment with varying par-
ticle sizes and with the underlying simulation algorithms. Unlike all these prior
approaches, we present our method of Simulation Adaptive Position-Based Flu-
ids, or short APBF. Our approach does not weaken fundamental simulation
properties which makes it a perfect choice for interactive applications that rely
on visual quality instead of actual simulation precision. Furthermore, it can
be seamlessly integrated into any PBD based simulation system.

The main idea of APBF is to adjust the solver iterations based on envi-
ronmental conditions and apply constraint effects adaptively [KK16]. This is
possible in general without causing severe simulation issues due to the robust-
ness and stability properties of the underlying PBD method. Our approach
in this scope is to solve the density constraint in such a way that we are still
able to achieve high-quality visual results while improving the performance sig-
nificantly. Figure 5.2 shows a visual comparison of our approach to the PBF
method using a water-like (upper row) and an oil-like (lower row) fluid. In the
presented use cases, APBF performs up 77% faster compared to PBF.

5.1. ITERATION-ADAPTIVE POSITION-BASED FLUIDS 47

Figure 5.2: A visual comparison of a rendered water-like and an oil-like fluid
simulated with PBF (red and yellow) with a fixed number of solver
iterations and APBF (green) that uses an adaptive number of solver
simulations (I ∈ {3, . . . , 6} top and I ∈ {5, . . . , 10} bottom, ex-
tended version of the teaser image published [KK16]).

Since the number of solver iterations directly influences the approximated
incompressibility, we need a fine-grained approach to adjust the number of
iterations on a per-particle basis (see Chapter 4). To do so, we use specially
designed classification (CL) information that is computed per particle. The
CL information allows us to differentiate between more important (interesting
in terms of the visual quality of the simulation) and less important particles.
Moreover, we can directly map this information to the number of iterations
each particle will be affected in. The actual CL of a particle can be formally
defined by [KK16]

cl(pi) : N → {1, . . . Il} ⊂ N, (5.1)

where pi refers to the ith particle and Il to the maximum CL. The purpose
of this definition is to ensure that all particles with a given classification are
processed at the same time during a solver iteration. In addition, all particles
with a CL that is higher than the current CL will also be considered. This
is required to adjust all particle positions in the current iteration and in fur-
ther iterations properly. Otherwise, particles in future iterations would not
be adjusted in previous iterations, and thus, not receive any position correc-
tions. This would lead to incorrect position approximations and ultimately to
instability of the simulation.

In order to reason about considered and not-considered particles, we intro-
duce the notion of active particles. A particle i is called active in the scope
of iteration l ∈ N, if its position has to be adjusted according to its CL (see
Equation (5.1), [KK16]):

active(pi, l) := cl(pi) ≥ l. (5.2)

48 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

Note that according to these definitions, all particles in the first iteration l = 1
are always considered active. The set of all active particles in a certain iteration
l can be defined using our notion of an active particle as [KK16]

Pl := { pi | active(pi, l) }, (5.3)

where the particles that have already exceeded their number of iterations (in
which they were moved) are then given by [KK16]

P̂l :=

∅ l ≤ 1,

P1 \ Pl else.
(5.4)

Figure 5.3 shows a conceptual visualization of three different CL-dependent
iterations to highlight which particles are affected. For simplicity, in this ex-
ample we consider particles with a larger distance to virtual camera at the
top right as less important. Particles with the largest distance will receive a
CL of 1, whereas particles considered to be closest to the camera will receive
a CL of 3. In the first iteration, all particles (CL ≥ 1) will be considered to
be active and moved accordingly. Afterwards, particles with the lowest CL
will not be considered any more since they have already reached their target
position and remain frozen for the rest of the whole simulation step. Conse-
quently, the second iteration will only move particles with a CL of 2 or higher,
which only affects all top-most/right-most particles. In the last iteration, only
particles with the highest CL of 3 will be moved; all other particles are already
considered to be placed properly.

Figure 5.3: Conceptual rendering of three CL-dependent solver itera-
tions [KK16]. First iteration with CL = 1 (left) to third iteration
with CL = 3 (right). Particles in red are considered frozen and will
not be moved in following iterations.

5.1. ITERATION-ADAPTIVE POSITION-BASED FLUIDS 49

5.1.1 Density and CL Adjustments

As in PBF, density fluctuations can occur in APBF due to an inadequately ap-
proximated solution of the density constraint and hence the incompressibility
property we wish to preserve. The previous sample already gave the intuition
behind the underlying principle that particles with a higher CL can compen-
sate density variations that may be caused by particles with a lower CL. In
the worst case, our approximation is only as good as the minimum CL based
on our per-particle information. At best, this is the number of iterations that
would have given us the best results regarding visual quality and/or density.
Figure 5.4 demonstrates how particles with a high CL can compensate coarse
grained density approximations in their neighborhood during the iterative solv-
ing process. As outlined above, particles that have already reached their final
position (based on their CL information) will not be moved anymore. However,
they will still be considered to compute position adjustments for the ones that
remain active: The active particles can still "respond" to all positions of their
neighboring particles and adjust their positions accordingly.

Figure 5.4: Different smoothing radii h around active particles (blue) that can
compensate coarse-grained density approximations caused by par-
ticles with a lower CL (red) in their neighborhood [KK16].

Although we do not use the same CL for all particles, we are still able to
achieve a consistent average density across the whole simulation domain using
this approach (see Section 5.1.4). In order to ensure consistent densities in all
cases, the classification assignment and the mapping to actual solver iterations
have to satisfy certain requirements. First, each scenario/application domain
requires a certain minimum number of iterations of the solver to achieve a rea-
sonable overall fit to the density constraint. Note that this requirement also
applies to PBF, in order to guarantee stability of the underlying simulation
(e.g., a single iteration can lead to instability depending on the scenario). Sec-
ond, the transition between different CLs has to be as smoothly as possible.
Transition in this scope means that we need to smoothly distribute the CL
assignments to avoid regions in which particles from "very different" CLs can
interact with each other within the smoothing radius h. To be precise, the dif-
ference between CLs in the immediate neighborhood around a certain particle

50 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

should be ≤ 1 and is formally given by

∀pi ∈ Sim ∀pj ∈ N(pi, h) : |cl(pi) − cl(pj)| ≤ 1, (5.5)

where h is the smoothing radius, pi the ith particle and N(i, h) the neighbor-
hood function that gets all neighboring particles within the radius h in the
surrounding of pi. This is necessary not only to maintain an average density,
but also to minimize visible artifacts of the simulation. Consider Figure 5.5,
which depicts a scenario in which the CL differences in the immediate neigh-
borhood are significantly greater than 1. In this sample, particles with a high
CL cannot compensate fluctuations caused by already fixed positions from
particles with a low CL anymore without causing significant deviations to a
ground-truth PBF simulation.

Figure 5.5: Example with big CL differences greater than 1 (left). The non-
smooth CL distribution left suffers from much more compression
artifacts compared to a smooth CL distribution on the right, which
allows to compensate these artifacts in future iterations.

Due to the nature of the simulation, particles can be accelerated very strongly
and thus reach high velocities. From this follows that it is possible to violate
this constraint from time to time, since particles with a low CL can quickly
move to regions with a high CL and vice versa, which relaxes Equation (5.5)
to

∀pi ∈ Sim ∀pj ∈ N(pi, h) : |cl(pi) − cl(pj)| ≤ 1 + ϵ, (5.6)

where ϵ is a configuration and domain-dependent value. The overall task is
to minimize ϵ with respect to all particles. However, it is important to note
that this inequality represents only a single snapshot. The actual task is to
minimize ϵ across all time steps of the simulation:

∀t ∈ [1, . . . , T] ∀pi ∈ Sim ∀pj ∈ N(pi, h) : |cl(pi) − cl(pj)| ≤ 1 + ϵt. (5.7)

Since ϵt is time and simulation-state dependent, it is not feasible to pre-compute
an optimal CL assignment strategy before the start of the simulation. Instead,
we have to dynamically adjust the CL information to minimize each ϵt sepa-
rately on-the-fly. In order to achieve this, we need to recompute all particle CLs
dynamically in every time step of the simulation using heuristics to minimize
all ϵt in Equation (5.7).

5.1. ITERATION-ADAPTIVE POSITION-BASED FLUIDS 51

Figure 5.6: Two particles (a high-CL one in blue and a low-CL one in red,
left) [KK16]. The velocity vectors (black arrows) of both particles
point into the direction of the obstacles (gray). Due to different
CLs, the coarse-grained approximation of the red particle might
cause the particle to be moved very closely to the obstacle without
adjusting its velocity vector properly. This in turn can cause the
red one to be moved into the obstacle at the beginning of the next
simulation step during the position-prediction step (center). After-
wards, the corrected position within the upcoming simulation step
will adjust its position and the velocity vector (right), which leads
to visible artifacts like jittering.

Macklin et al. outlined that they use the concept of pre-stabilization in their
work to compensate coarsely approximated constraint solutions [Mac+14]. Fig-
ure 5.6 visualizes this concept in a PBD simulation in the context of particles
being moved into obstacles. The basic idea of pre-stabilization is to solve spe-
cific constraints (mostly collision constraints) in a small pre-solver loop to move
particles to positions, in which they will not seriously violate constraint-implied
invariants. In addition, they will be moved to these newly adjusted positions
without affecting their velocity. Otherwise, this could easily lead to particles
getting a very high velocity, which in turn might cause other constraints to be
violated. This can ultimately cause instability and visible artifacts. APBF also
leverages this approach to circumvent such issues. Moreover, it is particularly
important in our method to avoid clashes between particles of different CLs
caused by particles with an extremely high velocity vector.

52 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

5.1.2 Adaptation Models

To compute CL information per particle, we introduce two different on-the-fly
adaptation models: distance to Camera (DTC) and distance to visible Surface
(DTVS). DTC computes the distance of every particle to the current camera
position and gives a higher CL to particles closer to the camera (see Figure 5.7).
DTVS pays more attention to the simulated fluid volume by computing the
distance of each particle to the particle closest to the camera (the visible part
of the volume, see Figure 5.8). As shown in both figures, we use linear inter-
polation to ensure a smooth CL distribution over all particles.

Figure 5.7: Conceptual visualization of the DTC adaptation model based on a
virtual camera at the top right [KK16].

Figure 5.8: Conceptual visualization of the DTVS adaptation model based on
a virtual camera at the top right [KK16].

Figure 5.9 shows the differences between both approaches when using them
on two of our evaluation scenarios. We have chosen rendering-based CL meth-
ods because they have the advantage that they are easily computable using
the rendered depth buffer from the previous rendering iteration. This informa-
tion is usually available for free in most rendering systems and in turn reduces

5.1. ITERATION-ADAPTIVE POSITION-BASED FLUIDS 53

the CL computation overhead. In addition, we are interested in maintaining
a high visual quality which implies that we have to include visual feedback
information in the CL determination process.

Figure 5.9: Both rows present sample CL visualizations of two evaluation sce-
narios to get an impression about the differences between different
CLs. APBF models from left to right: High-CL particles classified
by DTVS, low-CL particles classified by DTVS (without the high-
CL particles), DTC classification (extended version of the image
published in [KK16]).

5.1.3 Algorithm & Implementation Details

Algorithm 5 shows the APBF algorithm while highlighting differences to the
original PBF algorithm from Macklin and Müller [MM13]. The parts that have
been changed compared to the original PBF algorithm are highlighted in red.
Green parts mark extensions to the PBF algorithm that have been added to
the algorithm. Like in PBF, we apply external forces (fext, e.g., gravity) that
apply to all particles and predict all positions using the current velocity. In
the next step, we detect all neighbors using the defined smoothing radius h

for the simulation and determine all contacts based on the values of the signed
distance field. At this point we apply an (optional) user-defined number of pre-
stabilization steps that are included to avoid visual artifacts. The main solver
loop itself is adapted to perform operations on active particles from the set
P̂l (see Equation (5.1)) only. This ensures that we skip inactive particles that
have already reached their target position. Finally, we update all velocities
and positions using the target positions xi.

We implemented our APBF algorithm in C++ AMP [GM12] and realized
collision detection with the environment with the help of signed distance fields
(like in [Mac+14]). Particles were reordered in each simulation step to con-
siderably improve the runtime performance of the neighboring particle discov-
ery (due to improved coherence during memory accesses). We followed the
counting-sort based approach by Hoetzlein [Hoe14] that uses efficient atomic

54 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

functions to reorder all particles. The evaluation of the CL assignments was im-
plemented using depth information retrieved from the rendering module. This
module rendered all particles as splatted spheres that were created using the
geometry and pixel shaders, similar to the work by Laan et al. [LGS09]. After
computing the depth image, we invoked a propagation kernel that computed
CL information for all particles.

Algorithm 5: Simulation Loop based on PBF [KK16]
Input: CL information per particle to compute the sets P̂l

/* Apply forces and predict positions */
1 foreach particle i ∈ P1 do
2 vi := vi + ∆tfext(pi);
3 p⋆

i := pi + ∆tvi;
4 end
5 foreach particle i ∈ P1 do
6 Find neighboring particles N(p⋆

i , h);
7 Find contacts for pre-stabilization;
8 end
9 while iter < stabilizationIterations do

10 Perform contact responses for contact Ci with
Ci ∈ {C | particles(C) ∈ P̂S};

11 end
12 while iter < Il do
13 foreach particle i ∈ Piter do
14 Compute λi;
15 end
16 foreach particle i ∈ Piter do
17 Compute ∆pi;
18 Perform contact responses;
19 end

/* Update future particle positions */
20 foreach particle i ∈ Piter do
21 p⋆

i := p⋆
i + ∆pi;

22 end
23 end

/* Update velocities and positions */
24 foreach particle i ∈ P1 do
25 vi := 1

∆t (p⋆
i − pi);

26 pi := p⋆
i ;

27 end

5.1. ITERATION-ADAPTIVE POSITION-BASED FLUIDS 55

5.1.4 Visual Evaluation

Since APBF relies on choosing the number of solver iterations adaptively, de-
viations in terms of the actual simulation results cannot be avoided. Con-
sequently, we analyzed the visual quality of APBF by visually comparing all
results to a PBF-only version in which all particles have the highest possible
CL. To compare the two simulation methods, we selected several frames and
use semi-transparent particles to have the ability to compare both of them on a
visual basis. Note that we do not need any pre-stabilization steps in the scope
of the evaluation since visual artifacts do not appear in these cases. This is
caused by the fact that we use high-resolution signed distance fields and small
time steps.

We evaluated three scenarios using different fluid configurations for each of
them: A water-like, an oil-like, and a jelly-like fluid. The solver was set up
to use a fixed frame time of 16ms using two sub-steps with 8ms steps each.
Each scenario was pre-configured with a minimum and a default number of
iterations. The minimum number of iterations lead to an acceptable result that
did not suffer from instability but did not yield the best visual results, which
could be determined using the default number of iterations1. Both numbers
have further been determined by analyzing the density distribution across all
particles in the simulated volume. The configuration was then called appealing
if the average density corresponded to the desired density of fluid in more
than 90% of the cases. All evaluation scenarios used variations of widely used
dam-break scenarios in which "block like" volumes of fluids was released at
the beginning of the simulations [KK16]. Detailed information about the fluid
setups are shown in Figure 5.10, which contains the number of particles and
all solver iterations.

Scenario Fluid |Particles| I min. I max. I adap.
Dam Break Water ≈ 216k 3 6 {3, . . . , 6}
Double-Dam Break Oil ≈ 673k 5 10 {5, . . . , 10}
Multi-Dam Break Jelly ≈ 225k 4 8 {4, . . . , 8}

Figure 5.10: Evaluation scenario configurations.

Figure 5.11 visualizes the first evaluation scenario while highlighting the
differences between the high-quality and low-quality PBF versions in compar-
ison to the APBF DTC and DTVS versions. The low-quality PBF simulation
suffered from loosely connected particles with respect to their immediate neigh-
bors, which lead to visible gaps in the visualized fluid surface. In contrast to
this visualization, the high-quality PBF version did not suffer from these vis-
ible issue and had a smooth fluid surface. APBF with DTVS achieved the

1Note that increasing the solver iterations leads to an increase in terms of viscosity that is
an inherit property of PBF simulations.

56 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

most appealing results which came closest to the fluid visualization character-
istics (e.g., no visible holes in the surface) compared to PBF and preserved the
fundamental properties of the flow like the vortex core in the front. However,
using APBF with DTC resulted in visible artifacts in the posterior part of the
simulation caused by particles with a low CL.

Figure 5.11: Evaluation image comparison for the dam-break scenario using a
water-like fluid [KK16]. Color coding: Red: PBF with low quality
(I = 3). Yellow: PBF with high quality (I = 6). Blue and green:
APBF using I ∈ {3, . . . , 6}), DTC left and DTVS right.

Similar results were visible in the second evaluation scenario (see Figure 5.12)
which used high density and inviscid fluid. Two initially spawned fluid volumes
collided in the center of the simulation domain with ≈ 336k particles each.
The low-quality PBF versions showed an coarsely approximated fluid volume
which was caused by the low number of iterations in the presence of a large
number of particles. Further, holes in the surface were clearly visible which
break the illusion of a smooth oil-like fluid with a reasonable surface tension.
This particularly affected the central fluid-intersection area in the middle of the
image and the fluid regions at the boundaries of the simulation domain. APBF
(using either DTC or DTVS) ensured a high-quality simulation compared to
PBF: It was able to preserve the fluid characteristics with respect to surface
tension in general. However, DTVS achieved the best visual results and came
closest to the reference simulation.

5.1. ITERATION-ADAPTIVE POSITION-BASED FLUIDS 57

Figure 5.12: Evaluation image comparison for the double-dam-break scenario
using an oil-like fluid [KK16]. Color coding: Red: PBF with low
quality (I = 5). Yellow: PBF with high quality (I = 10). Blue
and green: APBF using I ∈ {5, . . . , 10}), DTC left, DTVS right.

The third scenario used a medium density, high viscosity fluid based on 4
fluid volumes overlapping in several regions. Each volume contained ≈ 56k

particles which summed up to the total number of ≈ 225k particles. In this
particular case, the visual differences mainly affected the spikes caused by the
colliding fluid volumes. The APBF versions were both able to achieve high
quality results when comparing them the high-quality PBF version. In con-
trast to the low-quality PBF version, APBF performed significantly better by
preserving more fluid characteristics. Again, DTVS performed slightly better
as a higher classification was assigned to all visible particles at the same time.

Figure 5.14 depicts the influence of APBF and PBF on the average den-
sity of the fluid simulation during the performed 1000 steps of each evaluation
simulation. As shown in the different density deviation graphs, APBF had a
most significant deviation of 4% (measured in the first scenario) compared to
the reference PBF simulation in all cases. All other deviations were around
1.5% which can be considered negligible with respect to the performance im-
provements and the high visual quality of the simulation. The APBF graphs
are just slightly shifted and scaled in comparison to the reference PBF graph.
Depending on the scenario, DTVS performed slightly worse compared to DTC
although it looked visually more similar to the high-quality reference simula-
tion. This is due to the fact that the visible parts received a higher CL which in

58 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

turn caused the particle positions to be adjusted more precisely. In sum, APBF
overall achieved competitive average densities with respect to PBF, which also
explains the small visualization variations analyzed above.

Figure 5.13: Evaluation image comparison for the multi-dam-break scenario
using a jelly-like fluid [KK16]. Color coding: Red: PBF with low
quality (I = 4). Yellow: PBF with high quality (I = 8). Blue and
green: APBF using I ∈ {4, . . . , 8}), DTC left and DTVS right.

Figure 5.14: Average density deviations for all evaluation scenarios (reference
PBF in gray) [KK16]. Rest density is highlighted by the black
dotted line. Red: APBF using DTC. Green: APBF using DTVS.

5.1. ITERATION-ADAPTIVE POSITION-BASED FLUIDS 59

5.1.5 Performance Evaluation

In order to evaluate the performance of APBF, we gathered performance
measurements on two different GPUs featuring different architectures: AMD
Radeon HD 7850 and NVIDIA GTX 680 [KK16]2. We then determined the ac-
tual speedup compared to PBF to demonstrate the performance gains possible
with our method.

Figure 5.15: Speedup of APBF compared to PBF on Radeon HD 7850 (higher
is better, based on performance numbers from [KK16]). Color
coding: Blue: DTC; Orange: DTVS.

Figure 5.16: Speedup of APBF compared to PBF on GTX 680 (higher is better,
based on performance numbers from [KK16]). Color coding: Blue:
DTC; Orange: DTVS.

In the scope of the evaluation, a single performance measurement was deter-
mined by computing the median execution steps across 100 applications runs
and 1000 simulation steps. This compensated different OS/driver imposed
overheads and slight deviations between different frames. The overall frame
time was about ≈ 30ms in scenario 1, ≈ 290ms in scenario 2, and ≈ 50ms in

2Note that both GPUs were state-of-the-art at the time of the publication. Therefore, we
retained these measurements to present the original results. However, it is of interest to
reevaluate our method on more recent GPUs in future work (see Chapter 14).

60 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

scenario 3 using our APBF approach. Figures 5.15 and 5.16 show the speedups
comparing our APBF method to the base line PBF model on all three evalua-
tion scenarios using our DTC and DTVS adaptation models (see Section 5.1.2).

Both GPUs behaved similarly regarding their overall runtime behavior on
all scenarios, in which the NVIDIA GPU performs slightly faster on all bench-
marks. We measured speedups of 1.5× to 1.7× compared to the base line
PBF model in the first two scenarios. Scenario 3 yielded considerably smaller
speedup in total since both, camera and all particles are closer to the fluid
volume/the visible surface resulting in less potential to optimize.

In all cases, our distance-to-the-visible-surface adaptation method (DTVS)
yielded slightly better results. It improved the speedup by additional ≈ 0.1×
on both GPUs for scenarios 1 and 2. In scenario 3, the NVIDIA GPU benefits
considerably more from the reduced number of particle adjustments and DTVS
improved our measured speedup by additional ≈ 0.2×.

5.2. SCREEN SPACE PARTICLE SELECTION 61

5.2 Screen Space Particle Selection

Inspired by previous work in fluid simulations, this section covers another chal-
lenging task: Given a certain snapshot of a simulation state, researchers often
seek to gain deeper insights into the dataset [Tuk77]. Data exploration us-
ing 3D visualization techniques is well-suited for this purpose. In addition,
there have been a number of different approaches in recent years that allow
fine-grained interaction with datasets. Most prominent in this domain are 3D
selection techniques that are inherit challenging to realize due to the high num-
ber of (often unstructured) data elements to process and the available degrees
of freedom. Methods going further than the visual UI level are based on 3D
selection volumes, which are challenging to realize efficiently [ONI05]. Effi-
ciency here refers to runtime performance and memory consumption as well
as the actual interaction possibilities exposed to the user, the scientists in this
context (see Figure 5.17).

Figure 5.17: Triple-cluster selection in the context of a large particle gravity-
simulation dataset.

Each data point (also referred to as a particle in this context) is associated
with certain scalar properties (like its physical mass in space). A subset of them
is then usually used during the selection process to either build the selection
volume or guide the selection algorithm [ONI05; Yu+12; KK18]. Two state-of-
the-art methods are named CAST algorithm family, which is an abbreviation
for context-aware selection techniques [Yu+12; Yu+16]. They operate on se-
lection lassos in 2D that are drawn by a user. This data is then used to create a
selection volume by analyzing the contour and overall shape of the user’s lasso.
As outlined in Chapter 4, the CAST family relies on a local density estimator

62 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

combined with the Marching Cubes Algorithm MCC [LC87]. MCC relies on 3D
grid in memory and is applied to the dataset to extract an isosurface, which
is then used to distinguish between selected and unselected particles. Due
to the high processing complexity of the CAST methods, large datasets can
only be processed efficiently if the accuracy of the selection method is reduced;
mainly by reducing the size of the 3D grid(s) for the MCC algorithm and for
the calculation of the local density estimator. This substantially limits their
applicability to real-world datasets.

Figure 5.18: A visualized selection process in SSPS from left to right [KK18].
The user starts by drawing a selection lasso (middle), releases the
mouse and the selected set of particles is visually highlighted for
further processing (right). This task takes up to several minutes
using related approaches. SSPS requires only a few milliseconds
to complete the selection process, consuming one hundredth of the
memory compared to CAST.

This section presents our Screen Space Particle Selection (SSPS) method
that overcomes these limitations by reducing the computational complexity and
drastically decreasing the required amount of memory. Our method is specially
designed for GPU architectures and other massively parallel processing units.
The proposed approach has a runtime complexity of only O(n · k), where n is
the number of particles in the scene and k is the number of average neighbors
per particle [KK18]. This enables us to reduce the execution time to several
milliseconds, even in the scope of datasets containing millions of particles (see
Figure 5.18). Similar to CAST, we also use the basic input via a 2D lasso-based
selection shape drawn by the user. Unlike other work in this field and to the
best of our knowledge, we are the first leveraging the SPH concept to perform
actual particle selection operations. Using SPH allows us to benefit from well
known local density estimation methods [Luc77; Mon92] that can be efficiently
computed using specially designed neighborhood exploration methods [Gre10;
Hoe14; GKK19]. It also removes the need for an explicitly materialized global
3D density grid, to which the CAST methods apply the MCC algorithm to.
Instead, our idea is to use 2D screen-space buffers that can be extracted from
the rendering system and perform our selection analyses mainly in screen space.

5.2. SCREEN SPACE PARTICLE SELECTION 63

This decouples the selection analyses from the underlying complexity of the
input dataset, which in turn are required to distinguish between selected and
unselected particles. Decoupling in combination with GPU acceleration enables
us to finish a particle selection task in the scope of milliseconds (also on real-
world datasets).

Figure 5.19: The SSPS processing pipeline. (1) Particle data is rendered to
build a depth image (2) and the actual visualization of the dataset
(3). The user performs an input operation (4) by drawing a selec-
tion lasso (5) which is then added on-the-fly to the rendered image
in order to give visual feedback (6). Also based on the selection
lasso, we derive the mask image (7) that is combined with infor-
mation from our density estimation pipeline (8) to determine all
selected particles (9). Finally, the selection task is completed and
the selected set of particles is visually highlighted and presented
to the user (10, based on the workflow visualization published
in [KK18]).

Figure 5.19 shows our SSPS processing pipeline consisting of ten steps in
total. As outlined above, most of the analysis to map a user’s selection lasso
to the actually particles to be selected happens in screen space. The initial
visualization pipeline allows us to retrieve the depth image for further analysis
in the 2D space (steps 1 − 3). Note that the depth buffer contains linearized
depth information within the interval [0.0, . . . 1.0], where 0.0 refers to the near
plane and 1.0 to the far plane. A user draws a selection lasso spanning the

64 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

potentially interesting subregions of the rendered volume (step 4 − 6). After-
wards, we use the information that is implicitly contained in the shape of the
lasso (step 7) to build an intention buffer (IB, see Section 5.2.1). This buffer
bridges the gap between the 2D screen space and the 3D dataset, which con-
tains per-pixel information about the mask in the fp32 format. The basic
idea is that the IB maps the selection mask from the screen space to 2D plane
in space that represents a slice through the dataset. Afterwards, we can use a
particle density estimation analysis (step 8) which provides us with crucial in-
formation about the local density around each particle. The 2D slice from the
previous step will be extended to a 2D box in space that allows us to compute
a set of initial particles based on their densities that reflect the user’s intention
best (based on the shape of the lasso). This information is then combined in
step 9 with the information from the IB, which uses a fast and efficient flood-
filling-like algorithm to transitively select particles which match our selection
criteria (specified by the IB).

5.2.1 Lasso Selection

Figure 5.20: A multi-cluster dataset visualization with three smoothed selec-
tion lassos [KK18].

We start by computing the selection mask from a selection lasso. This lasso
is given by the user in the form of a polygon defined by a collection of 2D
points in screen-space coordinates. The input polygon, will be automatically
closed by connecting the last point with the first point if it not closed properly
by the user (also a common technique used by many related methods [Yu+16;
KK18]). We optionally apply an additional Laplacian smoothing [VMM99]
step to denoise the overall shape of the selection lasso. This particularly helps
to remove sharp edges of the polygon which in turn ensures a better mapping
to the desired 3D selection (see Figure 5.20). Better here means more resistant
to outliers, which can be introduced either by the user input itself via the

5.2. SCREEN SPACE PARTICLE SELECTION 65

input device used or by small deviations due to numerical inaccuracy in the
conversion between coordinate spaces.

Figure 5.21: Figure 5.20 with annotated regions of interest in the context of
three selection lassos [KK18]. To distinguish between more im-
portant and less important regions of interest, we can use the
implicit information of the shapes of the lassos. Color coding:
Yellow: Areas which should be included in the selection, as they
are close to the centroid of the lasso. Orange: More important
areas compared to the yellow ones, as they represent the separa-
tion of desired and undesired areas. Red: The most important
areas, as they are farthest from the centroid and have more cur-
vature compared to other areas. This indicates that a user wants
to clearly separate between included and excluded particles.

As mentioned in the introduction to SSPS, there is a lot of implicitly given
information that can be derived from the selection lasso. Figure 5.21 shows
highlighted regions of interest from which we can gather additional insights
regarding a user’s intended selection. For example, a lasso contains sharp
corners to separate regions to be selected from regions that should not be
included. Similarly, large areas that span a decent number of pixels indicate
areas in projected 2D space that should be included in the final selection. We
have evaluated different approaches to infer this kind of information from the
selection lasso. In turns out that applying a weighting kernel to all pixels within
in the lasso works excellently on our evaluation scenarios (see Section 5.2.4).
In order to perform further operations on the input selection lasso, we first
render it to a 2D image (referred to as the mask image). Afterwards, we apply
the mentioned position-dependent weighting kernel to the mask image, This
results in an importance factor ∈ [0.0, . . . , 1.0] for each pixel representing how
important a specific pixel is for the current selection process (a higher value
indicates more importance). Note that while we could also use the selection

66 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

polygon itself, it is more convenient for us to work with this rasterized mask
representation of the selection lasso in the following steps.

Figure 5.22: Two selection lassos with different shapes (left) and their rendered
mask images (right) [KK18]. The more important a pixel in the
mask image is, the higher its value will be. This is encoded in the
image via brightness levels, where a white pixel refers to a high
weight and a black pixel refers to a low weight. In order to com-
pute these values, we use a radial kernel that weights each pixel
based on its distance to the centroid of the polygon (visualized
using black arrows, left).

We use a radial weighting kernel (see Figure 5.22) that allows us to preserve
major characteristics of the selection lasso [KK18]

WM : N × N 7→ [0.0, . . . , 1.0], (5.8)

where the first two arguments of WM are the x and y coordinates of the current
pixel. The distance between each pixel within the lasso and the centroid of the
polygon is used to determine its weight. The farther away a pixel is, the more
important it is:

WM (x, y) = ||(x, y) − CP ||
dmax

, (5.9)

where CP refers to the centroid of the mask polygon and dmax is the maximum
distance between two arbitrary points of the polygon

dmax = max
pi,pj

||pi − pj ||. (5.10)

A straight-forward algorithm to implement mask construction is shown in Al-
gorithm 6 that accepts a list of polygon points and constructs the actual mask
image MI . This pseudo code is straight forward to implement in a desired pro-
gramming language. However, implementing it using a GPU kernel to apply
the weighting kernel WM to each pixel greatly speeds up the processing speed
within the selection pipeline.

5.2. SCREEN SPACE PARTICLE SELECTION 67

Algorithm 6: Straight-Forward Mask Construction Algorithm
Input: implicitly-connected lasso points PL

1 P := Construct 2D polygon from PL;
2 PS := Smooth 2D polygon P ;
3 Compute centroid CP of the polygon;
4 Compute dmax according to Equation (5.10);
5 MI := Construct mask image initialized with 0;
6 foreach mask pixel (x, y) do
7 if (x, y) is inside selection polygon PS then
8 MI(x, y) := Compute WM according to Equation (5.9);
9 end

10 end
11 return MI

Based on the information extracted from the mask image MI , we build the
intention buffer for further processing steps. In this scope, the intention buffer
IB is an intermediate data structure that allows us to map the contents of MI

to a 3D slice in space through the dataset The underlying algorithm uses a
histogram distribution of all depth values. The histogram itself is constructed
using a given set of bins to which the depth values will be assigned and added
to. The fewer bins we use, the less strict the selection becomes in the end on
the one hand. On the other hand, the more bins we use, the finer-grained the
selection becomes, as it pays more attention to the separation into individual
bins based on the mask image MI . However, the amount of histogram bins
SI is a user-defined variable that depends on the scenario and user preferences
in general. We set this number to 16 for all experiments and found out that
this number essentially resulted in the highest precision on all use evaluation
scenarios (see Section 5.2.4).

Figure 5.23: A volume slice through a dataset defined by two planes.

68 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

The 3D slice through the volume is built by computing a near and a far plane
to focus on particles that fall into this slice (see Figure 5.23). To determine
both planes, we use the depth-distribution values stored inside the intention
buffer. Figure 5.24 shows a visualized dataset and its corresponding linearized
depth image. The high-level idea is to use the input mask image and weight
each depth value by its corresponding mask weight in the 2D mask image MI .
Hence, the selection intention given by MI can be mapped via the analogy
that a high-weight value in the mask image means a high intention to include
a particular pixel in the selection process. Figure 5.25 visualizes the difference
between weighted and non-weighted (raw) depth values. As can be seen in
this comparison plot, MI significantly influences the distribution stored in the
intention buffer, which in turn implicitly influences the determination of the
near and far planes of the desired 3D volume slice.

Figure 5.24: A sample visualization of a dataset (top) and the corresponding
linearized depth image (bottom) [KK18].

5.2. SCREEN SPACE PARTICLE SELECTION 69

Figure 5.25: Figure 5.24 with a complex selection mask spanning multiple clus-
ters (top) [KK18]. The X-axis refers to the source index of the
original bin, whereas the Y -axis represents the % of depth samples
in all bins.

Figure 5.25 also indicates that a greedy solution to take the bin with the
largest number of accumulated weights for the volume slice might is not the
perfect solution. In this case, bins 8 and 6 contain the most weights depending
on the depth image and the shape of the mask. However, both the selection
mask and the computed mask image MI are not perfect. This means that the
accuracy of the lasso and all weights are primarily an approximation of the
user’s intent. Mapping this approximation to a greedy solution by taking only
one bin in all cases into account can easily lead to unacceptable imprecision. In
the scope of Figure 5.25, this would result in bin 8 being considered and bin 6
being neglected, even though these are the two most significant bins containing
the largest number of depth samples. Figure 5.26 shows the corresponding bins
from Figure 5.25 sorted by the % of depth samples within each bin. In numbers,
the difference between bin 8 and bin 6 in this sample is about 7%, while the
deviation to the bin 7 is greater than 10%.

For the actual determination of the 3D slice, which concludes the first two
processing steps of the user input (steps 5 and 6 in Figure 5.19), we first sort
all bins in descending order. Next, we make a single pass over all bins from
left to right (see Figure 5.26, the bin with the most samples (left) to the bin
with the least samples (right)). Then, we compute the differences between the
current bin and the next bin (it’s successor bin). We include all bins in the
iteration as long as the calculated difference is below the average difference
computed using all bins. This ability considerably reduces the tendency of our
method to favor selection ranges with similar weights.

70 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

Figure 5.26: Intention buffer bins from Figure 5.25 [KK18] that have been
sorted according the maximum number of depth samples in %.
The X-axis refers to the source index of the original bin, whereas
the Y -axis represents the % of depth samples in the bins. The red
dashed line indicates that our approach uses the first two bins in
this sample, rather than considering only bin 8.

Algorithm 7: Our 3D Volume Slice Algorithm [KK18]
Input: mask image MI , linearized depth image D, intention buffer IB

/* Compute min and max depth values from the area
affected by the mask image */

1 Dmin := 1, Dmax := 0;
2 foreach pixels (x, y) where MI(x, y) > 0 ∧ D(x, y) < 1 do
3 Dmin := min (Dmin, D(x, y));
4 Dmax := max (Dmax, D(x, y));
5 if Dmax < Dmin then
6 return No slice found;
/* Compute sampling interval DS */

7 DS := Dmax−Dmin
number of samples ;

8 Initialize IB with 0;
/* Compute intention buffer buckets IB */

9 foreach pixel (x, y) where MI(x, y) > 0 ∧ D(x, y) < 1 do
10 ib := D(x,y)

DS
· number of bins;

11 IB(ib) := IB(ib) + MI(x, y);
/* Determine itention-buffer based near and far cut-off

planes */
12 Sort IB in descending order of ratings;
13 dI := average difference of IB(i) and IB(i + 1) in IB ;
14 i := 0;
15 while i < number of bins − 1 ∧ IB(i) − IB(i + 1) < dI do
16 i := i + 1;

/* Return a pair containing the near and far planes */
17 return depth(IB(0)), depth(IB(i));

5.2. SCREEN SPACE PARTICLE SELECTION 71

Algorithm 7 represents a ready-to-use pseudo-code algorithm to construct
the 3D volume slice for further processing. It uses a mask image MI , a lin-
earized depth image D from the rendering system, and an allocated intention
buffer IB to read from and write to. To access the depth image, we use the
notation D(x, y) 7→ [0, . . . , 1], where 1 refers to the far and 0 refers to the near
depth plane in the visualization pipeline. Similarly, we access the mask image
MI via MI(x, y) 7→ [0, . . . , 1], where 1 refers to a high weight from our weight-
ing kernel (see Equation (5.9)). First, we iterate over all pixels in 2D screen
space. Afterwards, we test whether they are affected by the mask image and
contain a valid depth sample (D(x, y) < 1, lines 1–6). If we are not able to
find a valid depth interval (Dmax < Dmin), there are no particles contained in
the depth image in presence of the selection mask. If we detect a valid depth
interval, we compute the internally used sampling interval DS , to map depth
values to their appropriate bin inside of IB (line 7).

After initialization of IB to 0 (a memset operation), we fill to intention buffer
data structure by accumulating mask weights from MI (lines 8–11). Note that
IB will not contain any information from pixels which are neither covered by
MI nor contain a particle in D. We sort all bins (as depicted in Figure 5.26) and
compute the number of bins that we want to include in the selection process
(lines 12–16). Finally, we map the actual depth values from the screen-space
depth buffer of the selected bins from IB (line 17).

72 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

5.2.2 Density Estimation and Particle Selection

The actual particle selection step (see Figure 5.19) involves a deep volume
analysis. We follow approaches from related works that use density estima-
tion methods to perform the actual selection of particles within the volume.
As mentioned in the beginning and in contrast to related methods, we use an
efficient SPH-based density estimator [GM77; Luc77; Mon92] (see also Equa-
tion (4.1) and Chapter 4)). Instead of approximating an arbitrary quantity Ai

we want to approximate the density itself via [KK18]

ρi =
∑

j

mj

ρj
ρiW (||pi − pj ||, h) =

∑
j

mjW (||pi − pj ||, h), (5.11)

where mj is the mass of each particle and h the smoothing length for our weight-
ing kernel W . Since we want to focus on the spacial density that should not
contain any particle-specific mass information, we can further rewrite Equa-
tion (5.11) to [KK18]

ρi =
∑

j

mjW (||pi − pj ||, h) =
∑

j

W (||pi − pj ||, h). (5.12)

However, these approximations work out quite well if the underlying particle
distribution is more or less uniform. Otherwise, some particles have more
neighbors that are within the smoothing radius h than others (see Figure 5.27).

Figure 5.27: Different smoothing radii for our density computation that result
in a different number of neighbors influencing the quality of an
approximated smoothed quantity.

To ensure stable computation of SPH-based quantities, h is often adaptively
chosen such that each particle has an appropriate number of particles with
respect to the smoothing kernel W [NP94; KSW99]. This changes equation
Equation (5.12) to

ρi =
∑

j

W (||pi − pj ||, hi), (5.13)

where hi is a context dependent and particle-specific smoothing length [KK18].
Figure 5.28 visualizes the benefit of different smoothing radii in the presence
of different densities in the dataset.

Unfortunately, we cannot determine an appropriate smoothing length before
loading the dataset because we do not have information about the local particle

5.2. SCREEN SPACE PARTICLE SELECTION 73

Figure 5.28: Adaptively chosen smoothing radii on the same dataset.

densities at that time. We again follow related publications that use on-the-
fly methods to approximate the density in the dataset with adaptively chosen
smoothing radii for each particle. The main task of such an algorithm is to
find a high-quality estimation of hi for each particle in the dataset. In the
case of our SPH-based method, we make use of a correlation between the ideal
number of neighbors Nh that is weighting-kernel dependent [WHK16]. Dehnen
and Aly [DA12], for example, have shown important findings about the ideal
number of neighbors in the presence of different weighting kernels. For example,
a well-known kernel in the field of astrophysical simulations is a cubic spline
kernel [KK18], which requires Nh ≈ 42 neighbors per particle [DA12]. Our idea
is to use the high-level concept of Winchenbach et al. [WHK16] based on the
explained number of ideal numbers Nh. As presented by Winchenbach et al., we
also leverage the adaptive volume formula by Solenthaler and Pajarola [SP08]
to determine information about the spatial distribution of all particles in the
dataset, which is given by

Vi = 1∑
j W (||pi − pj ||, hi)

= 1
ρi

, (5.14)

where Vi is referred to as the inverse particle volume and is equivalent to the
inverse of our particle density defined in Equation (5.13). Following Winchen-
bach et al. [WHK16], they relate Vj to the smoothing length hi by

hi = λs · V
1
3

i

(
Nh
4
3π

) 1
3

, (5.15)

where λs is a scalar global scaling factor. The underlying idea of their approach
is to answer the question of how many particles with radius hi intersect with
a sphere based on Vj or neighboring particles j. Figure 5.29 visualizes this
concept by presenting a smoothing radius hi in the context of several spheres
with radius Vi.

74 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

Figure 5.29: A smoothing radius hi of a blue particle. Left: in the context of
other particles. Right: in the context of different particle volumes
Vj of its neighboring particles j (red circles).

To get a global approximation of all smoothing radii hi, we use an iterative
algorithm that starts by choosing an initial smoothing radius hinit = init(hi)
for each particle. To obtain a good initial value for hi (called ha), we assume
that all particles are distributed uniformly within the dataset. ha is linked to
the maximum spacial extent dataset via [KK18]

di = dimi(dataset)
number of particles , (5.16)

where dimi is the ith dimension of the bounding box including all particles in
the dataset. ha is then given by

ha = max (dx, dy, dz) . (5.17)

Having calculated a rough approximation for hi, we consider the neighborhood
of each particle and the weighting kernel W . For our first conjecture, we assume
that a cubic increase in the number of neighboring particles can be achieved
by a linear increase in radius hi [KK18]

init(hi) =
(∑

j WN (||pi − pj ||, ha)
Nh

) 1
3

ha =
(

ρi[hi = ha]
Nh

) 1
3

ha, (5.18)

where WN is a weighting kernel applied each neighbor of the ith particle that
is in radius ha. All other particles with not be considered [KK18]

WN (d, h) =

1 if d < h

0 else.
(5.19)

Note that this weighting kernel is symmetric and has finite support, which is
a common requirement for SPH kernels [Mon92; MCG03]. In our case, the
weighting kernel is not normalized, which is not required because we divide
by the number of neighbors in the approximation algorithm. This results in
the kernel being normalized at the end when being used within the iterative

5.2. SCREEN SPACE PARTICLE SELECTION 75

algorithm. Although there may be edge cases where the normalization does
not work quite smoothly in practice, the impact of these deviations is negligible
since we interpolate hi between multiple iterations. This compensates for small
deviations with respect to the kernel normalization.

Algorithm 8: Our Density Estimation Algorithm [KK18]
Input: particle data, maximum number of iterations imax

1 foreach particle i do
2 hi := init(hi) according to Equation (5.18);
3 end
4 ∆h := 0;
5 i := 0;
6 do
7 foreach particle i do
8 Compute Vi according to Equation (5.14);
9 end

10 ∆ĥ := 0;
11 foreach particle i do
12 Compute ĥi according to Equation (5.15);

/* Update hi by smoothly moving towards ĥi[Mon92] */

13 ∆ĥ := ∆ĥ + ||hi − ĥi||;
14 hi := hi + ĥi−hi

2 ;
15 end
16 ∆ĥ := ∆ĥ

number of particles ;
17 if ||∆h − ∆ĥ|| < ϵ ∨ i ≥ imax then
18 break;
19 end
20 ∆h := ∆ĥ;
21 i := i + 1;
22 while;

Unlike other (iterative) density approximation methods, we do not dynam-
ically adjust hi over the runtime of the program, since we want to analyze a
particular snapshot of the simulation data at the "selection time". Therefore,
we compute a current approximation of hi immediately when we perform a
particle selection task. To do this, we apply several iterations until the average
∆hi between two steps falls below a certain threshold or the maximum number
of iterations is reached. The upper bound on the number of iterations is nec-
essary to ensure deterministic worst-cast execution time, which leads in turn
to an increase in responsiveness. Note that init(hi) does not need to be recom-
puted each time, as we can safely compute this approximation when loading
the dataset. If the dataset changes over time (instead of a static dataset), the
initial value for hi should be recomputed for each selection task to improve the
convergence speed of our method.

76 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

Algorithm 8 gives a detailed pseudo-code description of our density estima-
tion step. First, we determine the initial approximation for hi for all particles
(lines 1–3). As mentioned above, this step can be precomputed upon loading
the dataset in the case of a non-changing dataset. Afterwards, we perform the
iterative density estimation that does at least a single step (do-while loop).
We calculate the particle volume Vi for all particles (lines 7–9) before adjust-
ing the individual smoothing radii hi by interpolation (lines 11–15). Here, the
variable ∆ĥ (line 10) represents the average change over all particles in the
dataset (lines 13 and 16), which is used to determine whether to break the
loop. Alternatively, we also break when the maximum number of iterations
has been exceeded, as described above (lines 17 and 21). If GPU kernels are
used to compute every foreach loop (as in our implementation), the value of
∆ĥ needs to be computed using additional reduction operations/steps, which
is not shown here.

Once we have computed the density information of each particle, we have to
select the desired particles. For this purpose, we utilize a flood-filling algorithm.
Flood-filling itself is based on the implicitly available particle-neighborhood
relationship defined via the densities of all particles: We identify clusters based
on particles that have similar densities in their surrounding. Using the available
density information avoids the construction fo an explicit 3D triangular mesh
that is used in related approaches to perform the selection of clusters [Yu+12;
Yu+16]. Figure 5.30 visualizes our iterative flood-filling method starting with
a pre-selection of several particles in the first step.

Figure 5.30: Conceptual iterative flood-filling based particle-selection process
from left to right. Already marked particles are highlighted in
blue. Newly marked particles (with respect to the previous itera-
tion) are additionally highlighted with a red stroke.

5.2. SCREEN SPACE PARTICLE SELECTION 77

During particle selection, we differentiate between direct and indirect target
particles. Direct target particles are selected in the beginning of this phase:
All particles with depth values that lie in the depth interval computed using
the intention buffer are considered to be selected. Furthermore, they have to
satisfy the constraint that their projection into the screen space falls into the
area covered by the mask image. During this step, we also compute minimum
and maximum densities (max(ρd) and min(ρd)) of all direct target particles:
Having this information at hand allows us to determine a density delta over
all direct target particles.

∆ρd = max(ρd) − min(ρd). (5.20)

Note that ∆ρd ≥ 0 since max(ρd) ≥ 0 and 0 ≤ min(ρd) ≤ max(ρd). Afterwards,
we mark all indirect target particles iteratively by using the density delta ∆ρd

determined using the direct target particles. Here, we iterate over all neighbors
and check if the local density of this particle in comparison to its neighbors is
less than ∆ρd. The set of all indirect target particles to be marked in the next
step around a given particle i is then given by

indirect(i) = {j ∈ N(i, hi) | 0 ≤ ρj − min(ρd) ≤ ∆ρd}, (5.21)

where N(i, hi) is the neighborhood function that returns all neighbors in the
given local smoothing radius hi. We stop the marking process once a fixed point
has been reached and no further particles have been marked in comparison to
the previous iteration. Note that ρd does not change during iterative marking,
since it represents the density threshold given by the direct target particles
which have been determined in the beginning. After marking, all selected
particles based on the initial selection lasso have been detected. These can be
displayed on the screen or output for further analysis, for example.

78 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

5.2.3 Complexity & Implementation Details

Runtime complexity is the limiting factor for approaches from related work. As
mentioned earlier, they must explicitly instantiate certain intermediate data
structures in memory. These include 3D mesh data and uniform 3D grids
for computing intermediate features (e.g., for use with the Marching Cubes
algorithm). Unlike these methods, which can easily take up to several sec-
onds [Yu+12], our method takes up to tens of milliseconds, even for large
datasets. This is mainly because we differentiate between operations in the
screen space and operations running on the dataset itself. Moreover, our al-
gorithms have been developed with GPUs and parallel execution models in
mind. For example, any foreach statement can be efficiently implemented
with GPU kernels in the context of the previously presented algorithms. How-
ever, it is also related to the fact that the runtime complexity of our method
is only [KK18]

O(n · k) = Ctotal, (5.22)
where n is the total number of particles and k the number of average neighbors
per particle [KK18]. In addition, our method consumes only O(n) memory. To
be precise, the overall complexity of our method consists of the complexity of
the density estimation, the selection process, and the mask operations in screen
space, and is given by [KK18]

Cdensity + Cselection + Cscreen_space. (5.23)

Note that this definition includes additional steps that operate in screen space
O
(
Cscreen_space

)
. These parts have a theoretical processing complexity of

O(x · y) (see also Algorithm 6 and Algorithm 7), where x and y represent
the screen resolution. Since x · y is not related to the dataset containing n

particles, x·y does not dominate the runtime complexity while reasoning about
all particles, as these factors are only resolution-dependent and are not directly
affected by the dataset itself. Consequently, x · y can be seen as constant with
respect to a varying number of input particles n. On the implementation side,
the screen-space parts can be efficiently executed in parallel on a GPU, making
this complexity term negligible in the implementation and in practice, unlike
the processing steps on the dataset.

The density estimation (see Algorithm 8) and the iterative flood-filling are
the most expensive operations in our processing pipeline since they operate di-
rectly on all/a subset of the particles. Reconsider the density estimation first.
It loops multiple times over all particles in the dataset to find a good approx-
imation for each hi. In this scope, it iterates over all neighboring particles to
iteratively adjust each smoothing radius [KK18]:

O(n · k + 2 · n · k · imax) = O(n · k · imax) = O(n · k). (5.24)

where i is the number iterations and k the number of neighboring particles. i

is limited by imax and a user-defined constant (usually imax ∈ [1, 3]). More-

5.2. SCREEN SPACE PARTICLE SELECTION 79

over, k (the maximum number of neighbors) is closely related to Nh: We first
start with a rough estimate of hi for each particle. This may result in k being
larger or smaller than Nh. After several iterations, however, we reach approxi-
mately the point where k ≈ Nh, resulting in k << n. Since Nh depends on the
weighting kernel, which in turn can depend on the structure of the underlying
input data, it does not depend on the number of particles n. From a practical
point of view, k is a constant factor that is included in the runtime complex-
ity formula for the sake of completeness since its depends on the application
scenario.

Similar to density estimation, flood filling involves multiple iterations over
adjacent particles. In each step, we mark all neighbors that fall within our
previously determined density interval (see Equation (5.21)). We continue our
marking process until we reach a fixed point: There are no particles that have
been newly marked compared to the previous step. So the worst case occurs
when we have to mark the entire dataset, which is completely unrealistic from
a practical point of view. Consider the case where we start with only a single
direct target particle. We then mark all matching particles in the neighborhood
of this initially marked one (a subset of its k neighbors that fall within the
density interval). Consider further this involves only a single particle, and all
subsequent steps also mark only a single particle. In the worst case, this leads to
a runtime complexity ∈ O(n), since we iterate over all particles. Alternatively,
we could mark all k > 1 neighbors of all newly marked particles in each step,
resulting in a total number of kI particles marked after the Ith iteration. Since
we cannot mark more particles than there are in the dataset itself, we obtain
kI ≤ n, which yields I ≤ logk(n), where k > 1. From this, it follows that we
are still in O(n · k).

Regarding memory consumption, we have to store several values (e.g., the
smoothing radii hi, the density information ρi and the selection state) per
particle. This yields a memory complexity of [KK18]

O(l · n) = O(n) = CM , (5.25)

where l is the number of data elements that we have to store besides the under-
lying information per particle (e.g., the position in 3D space). Note that this
analysis does not take additional memory consumed for screen-space buffers
and specific realizations of particle neighborhood processing methods into ac-
count . This is because our algorithm is not tied to a particular neighborhood-
processing logic that may inherently be based on uniform grids or trees. Com-
pared to other approaches from related work [Yu+12; Yu+16], this is a major
advantage since they are always rely on uniform 3D grids. In other words,
the neighborhood processing logic can be replaced by any suitable algorithm
that provides us with an implementation for N(i, hi) (likes the ones by Groß
et al. [GKK19; GKK20], see below).

80 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

In terms of implementation details, we used C# to implement our particle
selection prototype. Furthermore, we leveraged the ILGPU [Kös23] compiler
for all GPU-accelerated parts of the application and used Direct3D for ren-
dering, which also integrates seamlessly with our GPU processing kernels. As
mentioned above, particularly interesting is the efficient realization of the iter-
ation logic over all neighboring particles. For our prototype we did not store
neighbor lists per particle, but subdivide the simulation into a virtual uniform
grid. We followed the approach by Green and Hoetzlein [Gre10; Hoe14] which
assign a virtual grid index to each particle. Afterwards, we sorted all particles
according to their virtual grid index. This considerably improves performance
when iterating over all neighbors of a certain particle. Unfortunately, at the
time of publishing this work, we had to store several additional 32-bit inte-
gers per grid cell, which is still ∈ Cm since the grid resolution is much smaller
than the number of particles. However, the use of these neighborhood models
weakened our advantages in terms of memory consumption compared to re-
lated methods in general. To overcome these limitations, we later invented two
highly efficient neighborhood processing algorithms [GKK19; GKK20] that sig-
nificantly reduced memory consumption. We were able to reduce the overhead
to a few kilobytes, regardless of the number of particles n in the dataset. This
again highlights the advantages of the SSPS approach in general over related
work.

5.2. SCREEN SPACE PARTICLE SELECTION 81

5.2.4 Selection Quality and Precision Evaluation

Our evaluation consists of two main parts, namely runtime performance and
selection quality. Selection quality is particularly important to compare our
approach to the quality of other methods from related work [Yu+16]. Al-
though it is not possible to compare them directly on the same datasets be-
cause they were not available, we could compare the accuracy of our evaluation
with the accuracy of their methods on their datasets. We further decided to
use selection scenarios that can appear in the context of real-world datasets
to include an evaluation of common and challenging scenarios (in contrast to
related work). However, we followed Yu et al. [Yu+16] to use artificial datasets
in order to focus on specific edge cases possible to occur including scenarios
used by [Yu+16]. Figure 5.31 shows our twelve evaluation scenarios that have
been rendered with the help our desktop application, built for development,
benchmarking and evaluation proposes (see Figure 5.32).

Figure 5.31: All evaluation scenarios shown to the uses using the same camera
perspective. For training purposes for the users, we used the first
image only [KK18].

Figure 5.32: Screenshot of our desktop application used for benchmarking and
evaluation of the captured selection lassos.

82 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

We used a FullHD screen resolution (1920×1080 pixels), in combination with
a number of 16 bins for the intention buffer (see Section 5.2.1). Regarding the
evaluation scenarios themselves, we used at least ≈ 150, 000 particles for the
smallest and ≈ 450, 000 particles for the largest scenario in order to have a
reasonable workload for our method (see Figure 5.33).

Scenario # Particles # Target # Misc # Noise
1 457K 52K 400K 5K
2 286K 10K 271K 5K
3 286K 5K 276K 5K
4 154K 105K 44K 5K
5 154K 45K 104K 5K
6 252K 82K 165K 5K
7 252K 17K 230K 5K
8 450K 105K 340K 5K
9 450K 340K 105K 5K

10 372K 105K 262K 5K
11 372K 236K 131K 5K
12 372K 315K 52K 5K

Figure 5.33: Evaluation scenario configurations for the scenarios shown in Fig-
ure 5.31 [KK18]. Target refers to particles that should be success-
fully selected using a given selection mask. Misc indicates particles
that should not be selected and Noise refers to noise particles.

We also added noise to the dataset in the form of additional particles that
affect selection accuracy and assigned each scenario to one or more of the
following categories, where each category has some specific key properties that
aim for specific cases as well as individual selection properties [KK18]:

• Whole clusters, applies to scenarios 1, 2, 4, 5, 6, 8, 9, 10 and 11

This category covers the most common scenario [Yu+12; Yu+16], in
which the aim is to select one or more whole particle clusters. Practically,
this task is straight-forward to achieve from a user’s perspective since a
user usually requires a single selection lasso that spans over the desired
target region. Our algorithm has to be able to map dramatically different
selection lassos to the proper particle densities and thus the actually select
particles.
Focus: General mapping of selection lassos to visible areas.

• Partial selection, applies to scenarios 3, 7 and 12

Partial selection is more difficult to realize than whole cluster selection.
Our approach must pay more attention to the shape of the lasso. For
example, sharp boundaries separating desired and undesired particles.

5.2. SCREEN SPACE PARTICLE SELECTION 83

Unlike other structure-aware methods (such as that of Yu et al. [Yu+16]),
we can accomplish these tasks implicitly with our generic SSPS processing
pipeline without further modification. This is because we do not reason
about clusters and operate on particles instead.
Focus: Precise mapping of selection lassos to visible areas.

• Occluded selection, applies to scenarios 2, 3, 4, 7 and 10
Occluded selections are the most difficult selection use cases to achieve, as
users intend to select a particle subset in the dataset that is completely or
partially hidden by others. It is particular challenging for our approach
since we extract information from the depth buffer that does not contain
information about occluded particles.
Focus: General mapping of selection lassos to partially occluded areas.

Precision

The precision evaluation is based on selection lassos we gathered with the
help of an online user study. We preferred this online survey over an on-site
study, to get gather 737 lassos in a short period of time using an interactive
web application. In the scope of this survey, we showed users successively
rendered scenario images (see Figure 5.31) in a counterbalanced way (except
the first scenario). Before we started the actual data collection, we presented all
participants several informational slides to expose them to the field of particle
selection. As mentioned above, they were able to gain initial knowledge based
on the first scenario. Internally, we sent the collected lassos asynchronously via
the websocket protocol to our server hosted in the cloud. All actual processing
tasks were performed in the cloud and the rendered image was transmitted back
to the users’ browsers and displayed to them in real time. The information sent
back to user also included additional information about the number of particles
selected, their accuracy, and average density. Note that we accepted selections
as valid if a user selected at least 1000 particles. If not, we discarded the
selection, displayed a message to users, and they had to try again until they
made a valid selection.

Using this evaluation method, we were able to obtain selection lassos from
72 users, from which we discarded data from 5 users because they did not
finish the study (reasons unknown). Consequently, we obtained data for the
analysis from 67 users, of whom participants were between 20 and 46 years old
(M = 26.4, σ = 5.8), while 58 were male and 9 were female [KK18]. Note that
we also asked for color blindness and their input device, which revealed that
we did not have any colorblind participants and all of them used the mouse
as their input device. Furthermore, all of them where very experienced with
their input method (M = 4.5 out of 5). After completing the online study, we
used all raw selection masks in combination with our evaluation program (see
Figure 5.32).

84 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

In analogy to Yu et al. [Yu+12; Yu+16], we used the MCC (Matthews cor-
relation coefficient) and F1 scores to determine the quality of our selections.
Both methods rely on the computation of true positives (TP, target particles
that were selected), false positives (FP, default particles that were selected),
true negatives (TN, default particles that were not selected) and false negatives
(FN, not selected target particles). We evaluated precision by applying each
lasso to its associated dataset and measuring the average F1 and MCC scores
for each scenario (see Figure 5.34). Overall, we were able to achieve high values
for both the F1 and MCC measurements in all evaluation scenarios. This indi-
cates excellent precision as all scores are above 91% (after normalization). The
worst results where obtained using scenarios 3 and 7, which targeted partial
selections. These scenarios suffered from the issue of having similar densities in
the surrounding neighborhood of the direct target particles. Achieving better
results in these cases would have required further fine tuning of our default
selection parameters (like the number of bins).

Figure 5.34: Average F1 (blue) and MCC scores (orange) for each scenario
(higher is better, numbers published in [KK18]). Note that all
numbers are normalized to the appropriate value intervals.

5.2. SCREEN SPACE PARTICLE SELECTION 85

5.2.5 Performance Evaluation

The performance evaluation of our newly proposed method does not include
a comparison to the methods presented by Yu et al. This is due to the fact
that their system took several seconds in total [Yu+12] (including density es-
timation) with high deviations regarding the overall selection times [Yu+12].
In contrast to their approach, our method completed all tasks in the scope of
milliseconds and was orders of magnitude faster in all cases (see below). Since
our scenarios are chosen in analogy to their scenarios, it was still possible to
compare all runtime measurements directly without having the actual numbers
from Yu et al. Note that Yu et al. assumed that the density estimation step
must be performed only once per dataset to practically reduce the required
selection time to a few hundred milliseconds [Yu+12]. However, we made no
such assumption to ensure that our method would be applicable to changing
datasets (e.g., created by simulations on-the-fly). Even if we were to compare
our selection performance to that using precomputed density data, we would
still be at least an order of magnitude faster, while dramatically reducing mem-
ory consumption.

Our performance evaluation was run on two GPUs from NVIDIA featuring
different compute capabilities [NVI23a]: GeForce GTX 980 Ti and GeForce
GTX 1080 Ti [KK18]3. To compensate for runtime variations and JIT compiler
overhead, we considered one performance measure the mean execution time of
100 selections with the same selection mask randomly chosen from the collected
masks of the user study [KK18]. We used a cubic spline kernel for density
computations by setting Nh ≈ 42 (a common choice for cubic spline kernels)
for all tests [DA12]. The number of density approximation iterations was set to
[0, . . . , 3]. However, we needed up to two iterations for all evaluation scenarios
to achieve a reasonable hi approximation (see Figure 5.35). Note that the first
scenario was excluded since it was used for training purposed during the user
study only.

Scenario 2,3 4,5 6,7 8,9 10,11,12
Density Iterations 1 1 2 2 2
Average Neighbors 42 43 44 47 44

Figure 5.35: Number of density iterations required to approximate hi for
each particle and the average number of neighbors for each sce-
nario [KK18].

3Note that both GPUs were state-of-the-art at the time of the publication. Therefore, we
retained these measurements to present the original results. However, it is of interest to
reevaluate our method on more recent GPUs in future work (see Chapter 14).

86 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

The number of density iterations depends on the number of particles and
their distribution in the input dataset. This usually means that more particles
require more approximation iterations. However, this rule of thumb did not
hold true in all cases. Consider scenarios 2 and 6, where the latter one contains
even less particles than the first. In these scenarios, the particle distributions
were completely different, as there were more densely packed particles in sce-
nario 6, which required a finer-grained adjustment of the smoothing length
hi. Related to that, our hypothesis on how to determine an initial smoothing
length to start the approximation process (see Equation (5.18)) seemed to work
well on all evaluation scenarios. After only two steps, we had reached a con-
figuration that was really close to the intended optimal number of neighbors
(see Figure 5.35).

Figures 5.36 and 5.37 show the runtime in milliseconds for both evaluation
GPUs. The diagrams also show the density and selection proportions of the
runtime via color coding. In contrast to speedup measurements, pure runtime
measurements gave us the ability to to demonstrate our real-time capabilities
for interactive user applications (see also Figure 5.38).

Figure 5.36: Runtime in milliseconds on the GTX 980 Ti (smaller is better,
based on performance numbers published in [KK18]). Blue: Den-
sity approximation. Orange: Selection process.

In most cases, the runtime was dominated by our density approximation
phase (highlighted in blue in our diagrams). However, in some case, the se-
lection phase was more time consuming. An example for this is scenario 4 in
which the density estimation performed a single step only but the selection
phase required more iterations to complete our flood-filling based approach.
In scenarios 11 and 12, the runtime was about evenly distributed between the
selection and density phases, which is related to the large number of target
particles that needed to be selected during flood filling.

5.2. SCREEN SPACE PARTICLE SELECTION 87

Figure 5.37: Runtime in milliseconds on the GTX 1080 Ti (smaller is better,
based on performance numbers published in [KK18]). Blue: Den-
sity approximation. Orange: Selection process.

Comparing both GPUs against each other reveals that the GTX 1080 Ti was
considerably faster in all cases (up to 2.0×) compared to the GTX 980 Ti. This
was due to the fact that the more recent GTX 1080 Ti had improved memory
bandwidth and processing capabilities. Furthermore, this also shows that our
algorithm benefited from more recent GPU advancements by leveraging the
available hardware capabilities in a very efficient way.

Figure 5.38: Runtime in FPS in comparison to a real-time application running
at 30 FPS (higher is better, based on performance numbers pub-
lished in [KK18]).

88 CHAPTER 5. IMPR. PERFORMANCE OF PARTICLE-BASED SIMS.

Looking closer to differences between scenarios reveals that doubling the
number of particles (e.g., scenario 4 compared to scenario 10) results in dou-
bling the runtime (approximately). This is a result of the fact that more
particles in these cases required more density and selection iterations. How-
ever, doubling the memory bandwidth and/or the computational performance
on a GPU results in halving the runtime in the best case.

Figure 5.38 shows all runtime measurements for both GPUs while adding
a 30 frames-per-second (FPS) line to the diagram, which can be considered
real-time for interactive applications accepting user input [KK18]. As shown,
the more recent GTX 1080 Ti was able to perform more than 30 full selection
processes on the datasets without any pre computation. In comparison to these
results, the older GTX 980 Ti was considerably slower and could not perform
30 selections per second on all scenarios. Note that this was only a theoretical
benchmark to show the effectiveness of our approach, since performing multiple
selections per second has not been an intended use case. However, the ability to
complete the selection as quickly as possible provides a high level of convenience
in the selection process for the end user. In sum, all measurements confirm
the real-time capabilities of our method and its well scalability to real-world
datasets by handling thousands of particles in the scope of milliseconds.

CHAPTER 6

IMPROVING PERFORMANCE
OF GENERIC
MASSIVELY-PARALLEL
SIMULATIONS

After presenting innovations from the domain-specific field of particle-based
simulation, this chapter focuses on the extension and generalization of generic
simulations. In contrast to the set of domain-specific problems, we cannot ben-
efit from optimization potential on the algorithmic-mathematical side, since we
do not have access to deep domain knowledge about the underlying problems.
In the following sections, we consider simulations given by a set of components
Ci (see Figure 6.1) that are executed sequentially. Each component Ci repre-
sents a small logical module that must be applied to complete a full simulation
step (denoted by the backedge in Figure 6.1).

Figure 6.1: Generic simulation flow of a single simulation step with multiple
components C0 to C4 [KGK20a]. The purple backedge indicates
that C4 is the last component in a single step and that the next
step starts again with the execution of C0.

We introduce high-level simulation concepts in the first section. Sec-
tion 6.2 presents approaches to improve occupancy and memory throughput
for compute- and memory-bound generic simulations. These concepts can
be further combined and improved using adaptive time-stepping methods for
arbitrary simulations presented in Section 6.3.

89

90 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

6.1 Simulation Basics

Reconsider the APBF algorithm for simulating iteration-adaptive position-
based fluids (see Algorithm 5 of Section 5.1.3). In this case, each loop iterating
over all particles represents a logical processing part (see Figure 6.2). A single
simulation step contains two nested loops, one of which performs multiple pre-
stabilization iterations and the other iteratively solves the density constraint
(blue backedges). After updating all positions p and velocities v, a full step is
completed and we begin the next step by applying all external forces (purple
backedge).

Figure 6.2: High-level simulation workflow of the APBF algorithm (see Algo-
rithm 5) including two nested loops (blue backedges).

As shown in this example, a simulation step may contain nested loops. These
loops can either be considered as standalone logical components or fully un-
rolled to form a loop-free execution flow within a single simulation step. To
simplify all subsequent visualizations, formulas, and algorithms, we will con-
sider a simulation step to be loop-free in the remainder of this chapter. When
unrolling loops or merging them into a single component is not an option, all of
the approaches presented can be applied recursively from the innermost loop
to the outermost loop.

Implementing such a high-level component in a parallel way on the GPU
can be achieved via a grid-stride loop (see Algorithm 9) to avoid unnecessary
dynamic warp/group dispatching overhead. Each component is assumed to
loop over a sequence of elements (like particles) to which we can apply the
component in parallel. The number of elements to iterate over is referred
to as value range. We spawn as many thread groups as possible to achieve
maximum occupancy of the device [NVI]. Each thread computes its globally
unique element index j, initializes the ith component Ci with the element index
of the current element j. Then, each thread applies its uniquely configured
component instance using the current time step size, denoted ∆t without loss of
generality. Note that range(Ci) returns a padded number of elements to iterate
over. The value returned by range(x) is padded to a multiple of the group size
to avoid thread divergence in the body of the grid-stride loop. This is generally
not a strict requirement, but it allows safe use of group-wide synchronization
primitives.

6.1. SIMULATION BASICS 91

Algorithm 9: Grid-stride loop algorithm for a component Ci [KGK20a]
/* Perform a grid-stride loop over the padded value range

of Ci */
1 for j := global index to range(Ci) step by (grid size * group size) do

/* Initialize component by loading elementwise
information and apply component */

2 c := Ci::Init(j);
3 c.Apply(∆t);
4 end

In practice, each component can be implemented as a class (in object ori-
ented programming) that follows a specific interface. We used an abstract
pseudo-code interface definition in Listing 6.1 to present general features that
a component must provide. Here, the type TSourceBuffer is a structure con-
taining required data pointers to all source buffers in global GPU memory. This
enables components to load all necessary information from the global memory
during the initialization phase. Similarly, the TTargetBuffer type contains
all pointers to each target buffer in global memory. In the case of double
buffering (see Chapter 3), data pointers in these structures point to differ-
ent memory buffers to avoid read-write data dependencies between component
executions. Note that this interface is also generic in terms of the datatype
modeling domain-specific values of ∆t.

Listing 6.1: A pseudo C#/C++ version of an interface for a compo-
nent [KGK20a].

1 // A generic component interface that depends on the actual type to
implement a domain-specific time delta per step.

2 // TSourceBuffer and TTargetBuffer refer to user-defined structures that
hold references to read-only/write-enabled sections of GPU memory.

3 // TComponentImplementation will be instantiated with a specific type that
implements this interface.

4 interface IComponent<
5 TTime,
6 TSourceBuffer,
7 TTargetBuffer,
8 TComponentImplementation>
9 where TTime : struct

10 where TSourceBuffer : struct
11 where TTargetBuffer : struct
12 where TComponentImplementation :
13 struct, IComponent<
14 TTime, TSourceBuffer, TTargetBuffer, TComponentImplementation>
15 {
16 // Initializes the internal fields of this component by loading

information from global memory.
17 static TComponentImplementation Init(
18 in TSourceBuffer source,
19 int elementIndex);
20
21 // Applies this component by executing the intended instructions.
22 void Apply(TTargetBuffer target, TTime deltaT) const;
23 }

92 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

As an example, we consider a distance constraint from the field of position-
based dynamics [Mül+07; Mül08]. The purpose of this constraint type is to
ensure a certain distance between two particles in 3D space. For simplicity,
we omit the mathematical definition and the implementation of the position
delta correction to solve a distance constraint instance. Listing 6.2 defines
the required miscellaneous data structures for sources and targets. As men-
tioned previously, the source structure contains pointers to immutable regions
in global memory. This ensures that all density constraint instances can be ini-
tialized in parallel. The target structure contains a single pointer to a region
in global memory that contains all position delta corrections for each particle.
It also defines the DistanceConstraintData structure, which contains all the
information needed to instantiate a constraint.
Listing 6.2: Data structures to implement a distance constraint from a position-

based dynamics framework [Mül+07; Mül08] in pseudo C#/C++
code.

1 // Read-only source buffers.
2 struct SourceBuffers
3 {
4 // All particles in the simulation.
5 public const Particle* Particles;
6
7 // All distance constraints.
8 public const DistanceConstraintData* DistanceConstraints;
9 }

10
11 // Write-enabled target buffers.
12 struct TargetBuffers
13 {
14 // All position deltas that will be accumulated during a solver

iteration.
15 public Vector3* PositionDeltas;
16 }
17
18 // Represents necessary information to instantiate a single distance

constraint.
19 struct DistanceConstraintData
20 {
21 // The index of the left and right particles affected by this distance

constraint.
22 public int LeftParticleIndex;
23 public int RightParticleIndex;
24
25 // The intended distance between the two particles in 3D space.
26 public float Distance;
27 }

Listing 6.3 shows an example implementation of the DistanceConstraint
structure using the data structures from Listing 6.2. It uses seconds for time
stepping and loads particle data from global memory into the highly efficient
register space as part of the Init method. The component application first cal-
culates the position corrections pdLeft and pdRight for the left and right par-
ticle, respectively. It then uses atomic operations to accumulate position-delta
corrections. Atomic operations help us to ensure the integrity of all corrections

6.1. SIMULATION BASICS 93

stored in global memory, since theoretically multiple density constraints can
affect the same particle. At the same time, the parent component-application
algorithm (see Algorithm 9) executes multiple component instances in parallel.

Listing 6.3: A sample component corresponding to the component interface
from Listing 6.1 in pseudo C#/C++ code using the data structures
from Listing 6.2. It implements parts of a distance constraint from
a position-based dynamics framework [Mül+07; Mül08]

1 struct DistanceConstraint : IComponent<
2 float, // Operates on seconds
3 SourceBuffers, // Custom source data structure
4 TargetBuffers, // Custom target data structure
5 DistanceConstraint> // Our constraint structure
6 {
7 // The underlying constraint data.
8 private DistanceConstraintData data;
9

10 // Data of the left and right particles affected by this distance
constraint.

11 private Particle left;
12 private Particle right;
13
14 // Load required particle data from memory.
15 static DistanceConstraint Init(SourceBuffers source, int elementIndex)
16 {
17 // Load the specific constraint-data instance from global memory.
18 var data = source.DistanceConstraints[elementIndex];
19
20 // Create new constraint instance.
21 var constraint = new DistanceConstraint();
22 constraint.data = data;
23
24 // Load particle data for this constraint instance from global memory.
25 constraint.left = source.Particles[data.LeftParticleIndex];
26 constraint.right = source.Particles[data.RightParticleIndex];
27 return constraint;
28 }
29
30 // Applies density-constraint projection while using the given deltaT in

seconds.
31 void Apply(TargetBuffers target, float deltaT) const
32 {
33 // Compute position corrections using data from both particles (left

and right).
34 var pdLeft = ...;
35 var pdRight = ...;
36
37 // Accumulate results for both particles using atomic operations to

avoid race conditions between parallel constraint evaluations.
38 Atomic.Add(
39 ref target.PositionDeltas[data.LeftParticleIndex],
40 pdLeft);
41 Atomic.Add(
42 ref target.PositionDeltas[data.RightParticleIndex],
43 pdRight);
44 }
45 }

94 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

Adaptive Simulations

Similar to particle-based simulations, the concept of adaptive generic simula-
tions exists in generalized forms without reasoning about domain-specific know-
ledge. Figure 6.3 shows a simple way to realize time-step adaptive component-
based simulations relying on our description published in [KGK20a]. It is based
on the idea of using an initial step-size estimation phase. Each component is
logically divided into two parts: One that focuses on the actual component
logic, and one that computes the step size for the upcoming step (referred to
as Si and Ci).

Figure 6.3: Generic simulation flow of a single simulation step using adaptive
time step sizes [KGK20a]. In addition to a set of logical components
(C0 to C4 in this case, see Figure 6.1), this approach uses a set of
step-size components S0 to S4. These components will be executed
first to determine a step size for the actual simulation components.

In practice, this separation is realized by two different methods defined in
the same interface without the need to write logically differentiated compo-
nents. Listing 6.4 presents an abstract component definition that supports the
separation of concerns of Si and Ci shown in Figure 6.3. There are generally
two conceptual ways to realize this approach from an implementation point
of view. The first possibility is to maintain a fixed deltaT for all components
and determine a number of steps (a multiple of deltaT) to perform. This ver-
sion involves a function ComputeNumSteps, which is invoked on an initialized
component instance and returns the number of steps. Furthermore, the Apply
method is adjusted to accept a determined number of steps as a parameter
(numSteps). The second possibility is to adapt deltaT using a method similar
to ComputeDeltaT. However, this version does not require an adaptation of the
Apply method. Note that we need to determine the minimum step size over
all components [KGK20a] to get a safe lower bound for the next step size in
all cases (see Figure 6.4, given in the diagram over the first phase using the Si

components).
This places an additional requirement on the ComputeDeltaT method, since

the actual type of deltaT (TTime) must supply a commutative and associative
min function. This is not a limitation or requirement in the first place, where
we work with 32-bit or 64-bit integer values that support commutative and
associative minimum operations.

6.1. SIMULATION BASICS 95

Figure 6.4: A set of components (C0 . . . C4) and their step sizes visualized via
black arrows [KGK20a]. If all components have the same step size,
all arrows will have the same length (left, 1). In an adaptive sce-
nario, we have to determine a compatible step size (indicated via
the purple line) for all components (right, 2). This leads to the use
of the minimum step size of all components in the next step. It
further avoids constraint violations that can destabilize the simu-
lation and lead to wrong results. Here, the intended step sizes for
all components are visualized using gray arrows.

Listing 6.4: A time-adaptive component interface in pseudo C#/C++ code
based on Listing 6.1 [KGK20a].

1 // Defines a generic time-dependent component.
2 interface IAdaptiveComponent<...>
3 where ...
4 {
5 // Initializes the internal fields of this component by loading

information from global memory.
6 static TComponentImplementation Init(...)
7
8 // --
9 // Possibility 1: Compute a number of steps.

10 // --
11
12 // Computes the number of steps this component can perform in the next

simulation step.
13 int ComputeNumSteps(TTime deltaT) const;
14 // Applies this component by executing the intended instructions.
15 void Apply(TTargetBuffer target, TTime deltaT, int numSteps) const;
16
17 // --
18 // Possibility 2: Compute the step size.
19 // --
20
21 // Computes the step size this component can perform in the next

simulation step.
22 TTime ComputeDeltaT() const;
23 // Applies this component by executing the intended instructions.
24 void Apply(TTargetBuffer target, TTime deltaT) const;
25 }

96 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

Algorithm 10: Our simulation loop using adaptive time steps (based
on work published in [KGK20a])
Input: #steps, #components, inputBuffer, outputBuffer

1 maxStepBuffer := allocate int on GPU;
2 for s := 0 to #steps step by stepSize do

/* Copy required time-step information to the GPU */
3 CopyToGPU(#steps - s, maxStepBuffer);

/* Compute common adaptive step-size for all
components */

4 for i := 0 to #components do
5 Compute minimum step size for Ci using Si;
6 end
7 CopyFromGPU(maxStepBuffer, out stepSize);

/* Apply all components */
8 for i := 0 to #components do
9 Apply Ci using stepSize;

10 end
/* Optional: swap buffers for double-buffering

applications */
11 Swap inputBuffer, outputBuffer;
12 end

Algorithm 10 shows an implemented simulation loop designed for adaptive
time steps. This version explains a high-level simulation loop using the first
approach based on adapting the number of steps with the help of a fixed deltaT.
A memory buffer on the GPU is allocated to transfer data regarding the up-
coming time step size from the GPU to the CPU parts of the application and
vice versa. First, the transfer buffer must be initialized with the remaining
number of steps (the maximum number of steps to reach). Then, all step
size calculation kernels Si are executed to calculate the global minimum step
count. This is achieved by instantiating each component individually, invok-
ing the ComputeNumSteps method from Listing 6.4, and performing a global
min reduction within the same kernel. Next, we need to synchronize these
calculations while fetching the contents of the exchange buffer back into CPU
memory to get the number of steps. Finally, we can apply all components
Ci with the computed step size and proceed with the next simulation step.
Optionally, we swap input and output buffers in the case of double buffering
(see Section 3.1). Note that this algorithm can be automatically specialized
by a compiler to avoid unnecessary nested loops iterating over all components,
further improving performance.

6.2. PARALLEL SIMULATIONS OF MULTIPLE STATES USING
INTERPRETERS 97

6.2 Parallel Simulations of Multiple States using
Interpreters

As outlined earlier, we consider generic simulations based on components that
implement a particular interface. Going a step further than the interfaces from
the basic introduction in Section 6.1, it turns out that a common use case is
to skip certain elements instead of applying each component to every element.
From a developer’s perspective, this conditional check can be implemented di-
rectly in the Apply function of the presented interfaces (see Listing 6.1 and
Listing 6.4). However, if we make the apply check an explicit method, we
can directly distinguish between pieces of code that affect the condition and
other pieces that operate on the application logic. This technique allows pro-
grammers to express additional domain knowledge that is also beneficial when
writing code transformations and compilers that work with the component in-
terfaces described. A straightforward extension of the component interface is
shown in Listing 6.5.

Listing 6.5: Predicated component interface in pseudo C#/C++ code based
on Listing 6.1.

1 // Defines a generic predicated component.
2 interface IPredicatedComponent<...>
3 where ...
4 {
5 // ...
6
7 // Checks whether this component instance can be successfully applied.
8 bool CanApply() const;
9

10 // ...
11 }

Using this domain knowledge allows us to extend Algorithm 9 with an if
condition to skip elements to which the component cannot be applied (see
Algorithm 11). As outlined in this simple algorithm, the actual condition check
is done as part of the surrounding algorithm and not hidden in the component
implementation itself.

Algorithm 11: Component algorithm for Ci using if-guards [KGK20b]
/* Perform a grid-stride loop over value range of Ci */

1 for j := group index to range(Ci) step by (grid size * group size) do
/* Initialize component by loading element info */

2 c := Ci::Init(j);
/* Check component precondition for current element */

3 if c.CanApply(j) then
/* Apply component */

4 c.Apply(∆t);
5 end
6 end

98 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

Furthermore, the condition within the loop causes divergent control flow
with respect to other threads running in the same warp and group. Note
that divergence can in turn cause noticeable performance degradation due to
non-optimal occupancy of the target device (see Chapter 2, [KGK20b]). This
behavior is also illustrated in Figure 6.5, which shows the previously presented
if-guarded execution algorithm in the scope of an imaginary warp with eight
lanes. In this sample, four threads pass the initial CanApply test (block A)
and enter the application part of each component (denoted by block B in the
diagram). However, the pattern presented realizes a separation of concerns
where a component does not have to deal with the issue of how to efficiently
skip a single element with respect to other component instances (running in
different threads, see Chapter 2).

Figure 6.5: Divergent control flow in the scope of a conceptual warp with
eight lanes using the simple if-guarded execution algorithm
(left) [KGK20b]. Intended coalesced memory access pattern with
respect to all threads (right).

In fact, the structure of the described components is related to formal oper-
ational semantics of a program, which are given in the form of inference rules.
In this context, an inference rule Ri is given by [KGK20b]

Ri = Γ ⊢ Pre1 . . . Γ ⊢ Pren

Γ ⊢ Con , (6.1)

where Prej , j ∈ [1, . . . , n] refers to all preconditions that must be satisfied in
the current context Γ [KGK20b]. Furthermore, Con denotes the consequence
that holds after the rule application of Ri [KGK20b]. Successively updating
the context Γ by applying all rules represents a program execution using the
underlying operational semantics represented by all rules. In addition, we get
an updated context Γ′ containing all updates caused by changes/updates of
the rule. When applying all rules until we reach a fix point (there are no rules
that can be applied any more, since their preconditions are not fulfilled), this
yield [KGK20b]:

{R1, . . . , Rn}Γ ⇒ {R1, . . . , Rn}Γ1 ⇒ . . . ⇒ ∗ = {R1, . . . , Rn}Γk . (6.2)

After reaching a fix point, the finally determined context Γk contains by defi-
nition all updates by all rules.

This theoretical basis can actually be formed with the help of if-conditions.
In analogy to Equation (6.1), multiple pre-conditions are mapped to conjunc-
tions of imperative checks. A context Γ in this scope is given by the current

6.2. PARALLEL SIMULATIONS USING INTERPRETERS 99

state of the program including all of its variable-value bindings. In addition,
we consider rules that are tested against different object instance to live within
a single program state. We denote the number of instances to which a rule Ri

applies as the value range of Ri. This range is an interval of integer values in
reality ([0, . . . , value range − 1] [KGK20b]), which will be mapped to specific
object instances in memory.

A simple parallel implementation on a GPU would apply all rules sequen-
tially using separate kernels. Consider a sample implementation of an imagi-
nary rule R1 that is executed on an accelerator (see Algorithm 12). It assumes
the presence of multiple states, in which each thread group processes a single
state on its own (line 1). Afterwards, we leverage the pattern of a group-stride
loop [NVI14] (lines 2–6) to parallelize over R1’s value range. Finally, all pre-
conditions must be checked prior to evaluating the rule (line 4) in the loop
body.

Algorithm 12: Simple parallel rule-execution algorithm using multiple
states [KGK20b]
Input: state information S

/* Load state information for current state s */
1 s := S[grid index];
/* Execute a blocked loop with respect to R1’s value

range */
2 for j := group index to range(R1) step by group size do

/* Test preconditions */
3 if Condition(s, i) then

/* Evaluate on current state */
4 Evaluate(s, i);
5 end
6 end

In practice, Algorithm 12 can be used as a template for specialization pur-
poses in order to improve performance. A further advantage of this approach
is that is implicitly achieves device-wide synchronization. Consequently, this
automatically circumvents race conditions that may arise when executing dif-
ferent rules in parallel.

An alternative to multiple kernels are large combined kernels consisting of
multiple rules to be executed (see Algorithm 13). In analogy to the previously
presented algorithm, it uses group-stride loops to iterate over all values in indi-
vidual value ranges of all rules involved (lines 2–6 and lines 8–12). Important to
mention are the group-wide synchronization barriers after executing each rule
(e.g., R1 in lines 2–6). These barriers cause all state-changing memory opera-
tions to be committed, ensuring that all threads within the thread group have
access to all changes. As in the case of Algorithm 12, Algorithm 13 can also be
used in combination with specialization approaches to improve performance in
practice.

100 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

Although both high-level approaches seem to be generally applicable, they
suffer from occupancy deficiencies on GPUs. Consider a scenario in which
a thread group spans over multiple warps (as explained in Chapter 2). In
this case, thread divergence can occur even at the coarse-grained group level:
If some threads have already completed processing a rule-specific loop, they
would have to wait until the other threads in the group reached the same
barrier (see Chapter 2). Unfortunately, this behavior is implicitly introduced
by rule-specific precondition checks that protect the actual execution logic of
each rule.

Algorithm 13: Simple parallel rule-execution algorithm for multiple
states & rules [KGK20b]
Input: state information S

/* Load state information for current state s */
1 s := S[grid index];
/* Execute a blocked loop with respect to R1’s value

range */
2 for j := group index to range(R1) step by group size do

/* Test R1’s preconditions */
3 if R1.Condition(s, j) then
4 R1.Evaluate(s, j);
5 end
6 end
/* Wait for all changes to be committed */

7 group barrier;
/* Execute a blocked loop with respect to R2’s value

range */
8 for i := group index to range(R2) step by group size do

/* Test R2’s preconditions */
9 if R2.Condition(s, j) then

10 R2.Evaluate(s, j);
11 end
12 end

/* Evaluate additional rules... */

6.2. PARALLEL SIMULATIONS USING INTERPRETERS 101

6.2.1 Leveraging Thread Compaction and Coalesced Memory
Accesses in the Presence of Multiple States

Our approach to increase the overall utilization, and thus, the actual perfor-
mance of an interpreter-based parallel simulation is the use of thread com-
paction. This concept is a well-known method that has been successfully ap-
plied to many domains [FA11; RE13]. The high-level idea is shown in Fig-
ure 6.6. Reconsider the simple example of a rule precondition check in block A

that might cause some of the threads to skip the execution block B. Due to the
nature of the lock-step execution scheme, some of the threads will be idling and
have to wait for all other threads to complete block B (see also Chapter 2). Us-
ing thread compaction allows us to redistribute the workload of different block
B instances among all threads. The goal is to gain free (unused) warps that
can be exchanged by the warp dispatcher engine to swap in previously stalled
warps waiting in the queue. Note that this concept is also similar to stream
compaction [BOA09], in which contiguous streams of elements are compressed
by filling gaps in the stream (see Chapter 4). The main difference with thread
compaction is that it is not sufficient to shuffle individual data items between
members of a thread group. Instead, we have to move all required state and
value bindings to the appropriate lanes in each warp.

Figure 6.6: Comparison between the absence (top) and presence (bottom) of
thread compaction in the context of a thread group consisting of
three warp threads [KGK20b]. All threads execute a program in-
volving thread divergence causing some threads to skip the execu-
tion of block B. Using thread compaction (bottom) allows us to
release a single warp leaving more scheduling flexibility to the dy-
namic warp dispatcher. This helps to improve overall occupancy.

Based on research from related work, it is fairly straight forward to come
up with an implementation of thread compaction operating on a single logical
processing state. For instance, in the case of ray-tracing, a single frame is usu-
ally rendered at once while all scene data is shared with all threads [Wal11].

102 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

Most of the rules we have seen in real-world applications are based on a uni-
fied control flow within the actual execution code. Hence, thread compaction
on the application-algorithm level is sufficient to overcome most conceptual
deficiencies in terms of utilization in our cases.

More important in this scope is to come up with a well-chosen thread-
group configuration, which has a huge influence on the application of thread-
compaction in practice. Since this method implemented in software needs
threads to share information between each other, this approach is limited to
threads in a single thread group. Moreover, each of the group-stride loops it-
erating over the individual value ranges (of each rule) mainly depends on the
number of threads per group, as well as the different value ranges. Consider
the case where there are many threads in each group and the individual ranges
are quite small in comparison to the number of available threads. In this case,
there will be a low workload per thread leading to a suboptimal resource oc-
cupancy in many cases. However, the consideration of multiple states makes
this task even simpler. Consider a large-scale problem involving thousands of
parallel states, which can usually be found in the scope of massively-parallel
optimization problems [KGK19a; KGK19c; KGK20b]. The characteristics of
such problems in general is the fact that a single state also consists of hundreds
to thousands of individual data elements (e.g., object instances and variables)
that must be tracked and updated. Applying the concept of a rule-based inter-
preter to these multi-state domains results in large value ranges over which the
group-stride loops in our algorithms have to iterate. Important to note is that
related work determined that value ranges are usually relatively small (< 4096)
in comparison to the number of states and the total number of elements per
state even in very sophisticated scenarios [KGK20b]. This is due to the fact
that these domains involve many rules which are be applied to different parts
of each state.

Figure 6.7: Multiple possibilities to realize processing of multiple states in the
context of different thread group setups (red regions) [KGK20b].
Top: A straight-forward method to use a single thread group per
state to process including many warps. Middle: A special case of
the version at the top by using a single warp per thread group.
Bottom: Our hybrid approach that combines large thread groups
built from multiple warps, each processing a different state.

6.2. PARALLEL SIMULATIONS USING INTERPRETERS 103

Figure 6.7 visualizes multiple thread-group configurations [KGK20b]. As
discussed before, large thread groups will often cause a waste of resources. The
same holds true for small thread groups (e.g., group sizes equal to the warp size
of the accelerator), which causes additional work for the warp dispatcher and
may also exceeded the number of parallel groups per multiprocessor on many
GPU architectures [NVI23a; AMD19]. We propose a different setup which
uses large thread groups processing multiple states in the scope of each warp.
In contrast to the previously mentioned approaches, we subdivide each thread
group imperatively into multiple "chunks" (sub groups) ourselves. This reduces
the amount of work for the GPU/driver to handle all parallel groups, enhances
our abilities to apply thread compaction (even across state boundaries), and
improves overall efficiency.

Figure 6.8: Access pattern of Algorithm 12 and Algorithm 13 to different ele-
ments in global memory living in different states [KGK20b]. Note
that warps in each group can issue coalesced accesses to succes-
sively stored elements in each state.

Figure 6.9: Access pattern for processing multiple states within the context
of a single thread group using the memory layout shown in Fig-
ure 6.8 [KGK20b]. Since each warp operates on a different state,
loads and stores will not be coalesced on the thread-group level.

104 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

The real challenge to further improve performance is to use our approach to
perform efficient load and store operations in global memory (see Section 3.1).
Consider Figure 6.8, which visualizes the access pattern of using a single large
thread group per state spanning multiple warps. In this case, each thread
group has contiguous memory access to the individual elements in memory to a
single state. It causes accesses from different thread groups to be non-coalesced
with respect to neighboring states. Although these effects can be hidden by
spawning many thread groups, this issue becomes more serious when reducing
the group size in order to avoid thread-utilization issues.

Figure 6.9 also illustrates the memory layout used in Figure 6.8. Here, we
again store per-state information after each other in memory in the presence
of our intended processing scheme. As shown in the diagram, our approach to
process multiple states within large thread groups is not suitable for coherent
memory accesses using this layout. Although the access pattern works well on
the warp level, it is not possible to ensure coherent accesses for each thread on
the group level. Introduced latency can generally be hidden as well, but group
synchronization barriers prevent us from hiding all memory IO costs.

Our approach to achieve a well-suited memory layout is shown in Figure 6.10.
Instead of storing all elements per state after sequentially in global memory, we
apply a specific striding/blocking scheme that is based on the current warp size.
This ensures that each warp within each group can access all state-dependent
element information using coherent memory accesses most of the time. Note
that the overall data stride between the first element and the last element of
the first state is equal to the warp size times the number of total states.

Figure 6.10: Our access pattern using a blocking/striding scheme for state-
dependent element information [KGK20b]. Data is rearranged in
a way that all elements accessed by a single warp are stored next
to each other in global memory. Therefore, all the first "warp-size
many" elements of each state are adjacent to each other, followed
by the next "warp-size many" elements from all other states. This
guarantees coalesced memory accesses for all threads in all groups.
However, our layout requires more expensive address computa-
tions to realize group-wide and state-aware striding.

6.2. PARALLEL SIMULATIONS USING INTERPRETERS 105

6.2.2 Algorithms

A pseudo-code version of our GPU-kernel method is presented in Algorithm 14.
It assumes a single warp per state in the context of multiple warps per thread
group (as presented in Figure 6.7). Moreover, it leverages the principle of prefix
sums to implement thread compaction across all threads in a single group (refer
to Line 19 for more details).

Algorithm 14: Our Execution Algorithm [KGK20b]
Input: state information, #states per group

1 shared := shared memory int[group size];
2 sourceStateIndex := group index * group size /
3 #states per group + thread index / warp size;
/* Apply rule R1 */

4 for nextIndex := (thread index % warp size) to value range of R1 step by
warp size do

5 currentIndex := nextIndex;
6 stateIndex := sourceStateIndex;

/* Check rule condition */
7 enabled = R1.Condition(stateIndex, currentIndex);

/* Compute prefix sum of all enabled threads */
8 (offset, threadOffset) := prefix sum (enabled, shared);

/* Perform thread compaction in shared memory */
9 if enabled then

10 shared[offset−1] := (stateIndex, currentIndex);
11 end
12 group barrier;

/* Check whether we are an active thread */
13 if thread index < threadOffset then

/* Get state and value indices from compacted
shared memory */

14 (stateIndex, currentIndex) := shared[thread index];
/* Evaluate rule with the determined state and

value indices */
15 R1.Evaluate(stateIndex, currentIndex);
16 end
17 group barrier;
18 end

/* Evaluate additional rules . . . */
19 . . .

Initially, we allocate two 16-bit integers per thread to store value and state
indices in shared memory. This results in a single 32-bit allocation per thread
(line 1). Note that this allocation is properly chosen to avoid bank conflicts on
modern GPUs [NVI23a]. Next, we compute the logical source-state index the
current thread is associated with (lines 2–3). This is required since we handle
multiple logical states per thread group.

106 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

The evaluation of all rules is designed to work in a sequential manner. With-
out loss of generality, we start by processing the first rule R1. In this scope, we
iterate over all values in the value range of R1 by performing a blocked loop
using a stride equal to the warp size of the current GPU. Since querying the
value range yields the same value in all states, and thus, for all threads in the
current group, the loop does not introduce thread divergence. This is partic-
ularly important as we use group-wide barriers and warp shuffles in the loop
body. Otherwise, this can result in unintended side effects like kernel freezes.

At this point of the algorithm, all threads are considered to be active and
evaluate the condition of the first rule (line 7). This results in either a value
of 1 (true) or 0 (false) for each thread (stored in the variable enabled). We
call threads that evaluated the condition test to true, enabled threads. To ac-
tually compact all enabled threads, we use the well-known principle of prefix
sums [NVI14], or more precisely, inclusive prefix sums. The prefix-sum algo-
rithm is applied on the group-level while using our shared-memory array from
the beginning, yielding two values: offset and threadOffset. The offset variable
points to the next location in shared memory to which the current state and
value-range indices should be written. The variable threadOffset contains the
total amount of all threads in the group that are considered enabled. Note
that this number can be easily retrieved from the last thread of the group as
a byproduct of the prefix-sum algorithm.

To realize the actual compaction step, we have to store our current state and
value-range indices to the element at offset−1 in shared memory (since we use
inclusive prefix sums, lines 9–11). This is done in each enabled threads, as we
want to skip disabled threads that did not pass the condition test. Afterwards,
we have to wait for all threads to commit their updates to shared memory using
a group-wide barrier (line 12). The final (and main) step of this execution
algorithm is to change the context information of the first threadOffset number
of threads. By checking whether the current group-wide thread index is less
than threadOffset, we separate enabled threads from the others (lines 13–16).
The only operations left are to get the (new) current state and value-range
indices from shared memory and applying rule R1 using this information. The
barrier immediately after this if block is also very important, as it prevents
overrides by other threads that skip the if block and already enter the next
loop iteration. Further rules will be evaluated using the same principle one
after another.

6.2. PARALLEL SIMULATIONS USING INTERPRETERS 107

Implementation Details

This section covers implementation details of our method shown in Section 6.2.1
for evaluation and re-implementation purposes. In addition, Algorithm 15
provides a read-to-use pseudo-code snippet that implements an inclusive prefix-
sum computation designed for Algorithm 14.

Regarding the evaluation, we inlined the prefix-sum implementations into
the main algorithm and used C++ to develop our prototype. All GPGPU
computing tasks had been realized using CUDA and compiled with the CUDA
10 SDK for evaluation purposes (see Section 6.2.3). Due to the constraints of
GPU kernels being limited to shared memory in order to share information as
efficiently as possible among members of a single group, this imposed several
restrictions in practice. On the latest GPU architectures available at the time
of release, the number of states per group were constrained to 32 states on
NVIDIA GPUs, as the warp size was 32 and there could be up to 1024 threads
per group [NVI23a] (see also Chapter 2).

Algorithm 15: Implementation details of the prefix-sum computa-
tion [NVI14; KGK20b]
Input: value, shared
Output: offset, threadOffset

1 offset := warp prefix sum (value);
/* Only the last lane of each warp writes to shared

memory */
2 if lane index + 1 = warp size then
3 shared[lane index] = offset;
4 end
5 group barrier;
/* Use first warp to complete the prefix-sum computation

*/
6 if lane index = 0 then
7 shared[lane index] := warp prefix sum (shared[lane index]);
8 end
9 group barrier;
/* Adjust offsets using updated shared-memory contents */

10 if lane index > 0 then
11 offset := offset + shared[lane index - 1];
12 end
13 threadOffset := shared[warp size - 1];
14 group barrier;

As outlined in the previous paragraph, Algorithm 15 contains information on
how to realize a suitable inclusive prefix-sum implementation for our algorithm.
Here, this algorithm accepts a current thread-local value (used to compute
the prefix-sum information) and a reference to a section in (shared) memory
to store intermediate results. This pseudo-code algorithm is based on related

108 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

work [NVI14; KGK20b] and uses warp-shuffle operations to efficiently solve the
group-wide prefix-sum task on the warp level. Initially, each warp computes
a warp-local prefix sum resulting in thread-local offsets (line 1). Information
about the last (right most) lane in each warp is then propagated to the first
warp in the group via shared memory (line 2–4). A group-wide barrier in line
5 ensures that all warps in the group have written their offset information to
the indicated memory section.

Afterwards, the first warp in the group performs a warp-wide prefix sum
again to update the warp-local offset information (line 6–8). After waiting for
the first warp to complete this step (line 9), we can adjust all offsets in all
warps (except the first one) (lines 10–12). The total number of enabled threads
after performing thread-compaction threadOffset can be directly determined
from the information shared by the last thread in this group (line 13). Note
that the last step needs to be a group-wide barrier (line 14) to avoid reuses
of the given memory section. If this algorithm operates on a distinct section
of memory and other concurrent updates to this section can be avoided, this
barrier will be redundant.

6.2. PARALLEL SIMULATIONS USING INTERPRETERS 109

6.2.3 Performance Evaluation

We evaluated our method using different memory layouts and varying work
loads while running benchmarks on two GPUs from NVIDIA featuring differ-
ent compute capabilities [NVI23a]: GeForce GTX Titan X and GeForce GTX
1080 Ti [KGK20b]1. The core part of the evaluation is based on a compari-
son of our approach to the commonly used and straight-forward version from
Algorithm 13. In order to evaluate different work load configurations for each
rule, we relied on artificially generated rules based on matrix multiplications.
This decision made the results easily understandable and even more important
domain independent and reproducible. Furthermore, the decision was inspired
by the fact that modern heuristically-based simulation/optimization systems
often rely on machine-learning models to guide the decision process [KGK19a;
KGK19b; KGK19c; KGK20a; KGK20b].

Conceptually, an actual evaluation-rule implementation in the scope of our
evaluation was therefore given by the matrix multiplication A × B, where
A ∈ RM×N and B ∈ RN×O [KGK20b]. Matrix multiplications were well
suited in this case since they represent fundamental neural network mechan-
ics [KGK19a]. Following Hunger [Hun07], a single rule then performs 2MNO−
MO floating-point operations. In order to have direct control over the number
of operations, we used a surrounding loop that iterates load-factor of iter-
ations. This made adjustments of the matrix dimensions unnecessary which
would have involved changes of memory allocations/layouts during a single run
of the benchmark suite. Moreover, it allowed us to conveniently analyze the
general scaling behavior when increasing/decreasing the computational load.
The main part of the evaluation used a default load factor of 20 iterations
to create some basic workload. Note that each measurement was determined
computing the median of the execution time over 100 runs to minimize external
influence factors.

All memory layouts used for evaluation purposes where previously presented
in Section 6.2. In the scope of this section, we will refer to the various layouts
as follows:

• A represents the layout from Figure 6.8, which uses coalesced memory
accesses within each state,

• B represents non-coalesced memory accesses by using the transposed
memory version of A (see Figure 6.9), and

• C represents our newly introduced memory layout for realizing coalesced
memory accesses within and across state boundaries (see Figure 6.10).

In addition we defined a divergence rate d [KGK20b], which allowed us to
control whether every dth thread will have a divergence on average. For each

1Note that both GPUs were state-of-the-art at the time of the publication. Therefore, we
retained these measurements to present the original results. However, it is of interest to
reevaluate our method on more recent GPUs in future work (see Chapter 14).

110 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

state, a value was chosen randomly by drawing a uniform sample from the
integer interval ∈ [0, . . . , d − 1]. Here, each non-zero value (d ̸= 0) caused
a thread to pass the rule-specific precondition checks on the one hand. On
the other hand, a value of d = 0 skipped the actual rule application for the
current thread. In order to mimic real-world experience from practice in terms
of common divergency patterns [KGK20b]2, we set d alternately to 2 and 3. To
refer to different configurations, we used combinations of the memory layouts
and the divergence rate used. For instance, memory layout A combined with
a divergency rate d = 2 is referred to as A2.

We began the actual evaluation by comparing speedups of memory layouts
A and C to B using the two divergence rates d = 2 and d = 3. Figures
6.11 and 6.12 show the speedup comparisons on both evaluation GPUs using
the simple execution method from Algorithm 13. The diagrams show the
speedup behavior across multiple state configurations in terms of the number
of states and different value ranges per rule. This allowed us to clearly analyze
effects on the scaling behavior when introducing more load by either increasing
the number of states, the value ranges, or even both at the same time. We
considered 2048 states to be a small problem to solve [KGK20b] and 16384
states as a slightly more complex problem to deal with. Similarly, we considered
1024 to be a fairly reasonable value range to iterate over per rule (the number
of objects to handle per rule) and 4096 to be slightly more [KGK20b].

Since layout B could already be considered the least optimal one due to
its non-coalesced memory accesses, the results were not surprising. The more
rule applications there were to process, the better the overall speedup was
compared to the B layout. The smallest state configuration (2048 states and
a value range of 1024) was at least twice as fast on the GTX Titan X and at
least four times faster on our GTX 1080 Ti. This even held true for different
divergency rates, which did not impact the overall speedup significantly when
comparing measurements of A2 to A3 and C2 to C3.

Note that we lost a factor of 2.0× in terms of the relative speedup when
going from the GTX Titan X to the GTX 1080 Ti. This was due to the fact
that the more recent GTX 1080 Ti did a much better job hiding non-coalesced
memory accesses introduced by memory layout B. Hence, this resulted in a
considerably better compensation of choosing the "wrong" memory layout for
this job. Our proposed memory layout C did not perform very well against
layout A in all cases. We could see speedups as low as 0.88× on the GTX Titan
X (slowdowns, for d = 2) in the worst case and speedups up to 1.06× in the
best case. The GTX 1080 Ti performed slightly better using memory layout
C resulting in speedups of 1.03× in the worst case and 1.07× in the best case.
This could be seen as negligible improvements in general. It was related to the
fact that the address computation for each chunk of data to read from/write to
global memory was more expensive in the case of layout C than computations

2See also Chapter 12 for more detailed project information.

6.2. PARALLEL SIMULATIONS USING INTERPRETERS 111

using layout A. Thus, the older GTX Titan X was affected more due to its less
powerful processing units.

Figure 6.11: Relative speedup comparison of memory layouts A and C to B
using two value ranges, two state configurations, and the simple
execution algorithm on the GTX Titan X (log2 scaling, higher is
better, based on performance numbers published in [KGK20b]).
An actual performance comparison between the simple and our
algorithm is shown in Figure 6.13.

Figure 6.12: Relative speedup comparison of memory layouts A and C to B
using two value ranges, two state configurations, and the simple
execution algorithm on the GTX 1080 Ti (log2 scaling, higher is
better, based on performance numbers published in [KGK20b]).
An actual performance comparison between the simple and our
algorithm is shown in Figure 6.14.

112 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

Similar to measured speedups on the older GTX Titan X using the simple
approach, we also lost a relative speedup of 2.0× on the more recent GTX 1080
Ti using our method. This is again related to the structure of the problem
to be solved, which does not benefit significantly from additional processing
capabilities. As seen before, changing the divergency rates did not change the
relative speedup compared to memory layout B. However, memory layout C
did result in a slight degradation of performance on the GTX Titan X, whereas
it always caused a reproducible speedup of up to 1.14× on the GTX 1080 Ti
using our algorithm.

Moving on to actual performance comparisons of the simple algorithm and
our approach, unveiled tremendous speedups. Figures 6.13 and 6.14 shows
the speedup comparison of our approach to the simple algorithm using two
value range and two state configurations. On the GTX Titan X, we measured
speedups ranging from 1.9× to 3.3× (see Figure 6.13). Increasing the value
ranges for all rules did not yield any further speedups when used with our
method in combination with any divergency rate d ̸= 0. This was due to the
fact that the GTX Titan X already reached their maximum occupancy very
quickly using our method.

Additionally, the relative speedup using our proposed memory layout C was
considerably better ranging from 1.1× to 1.25× compared to the speedups
achieved with traditional layout A. That was because of the functionality of
our algorithm: Using thread-compaction moved threads closely together, frees
computational resources, and causes increased utilization of the available pro-
cessing units. In addition, we also benefited from evenly distributed address
calculations that compensated the impact of more complex address calculations
in these cases. However, the more states and computational load we created on
the GPU, the more speedup we could see on the GTX Titan X. Increasing the
number of states by 4× resulted in an additional speedup increase of ≈ 1.45×
in the case of d = 2. Increasing our divergency rate to d = 3 caused more rules
to pass precondition checks before applying the actual rule logic still caused
an additional ≈ 1.3× uplift in this case.

The more recent GTX 1080 Ti also benefited from our proposed memory
layout C due to its additional and more capable computing units (see Fig-
ure 6.14) on the one hand. On the other hand, using the A layout only resulted
in speedups ranging from 1.03× to ≈ 1.1×. This was related to the fact that
we maxed out the available utilization on the GPU quickly and caused the per-
formance improvements to be capped at ≈ 3.5×. It also explained the minor
performance improvements comparing scenarios with d = 2 to the ones using
d = 3. Since the maximum load of the device was already almost reached in
most cases, packing more threads together no longer resulted in any significant
increase in speed. Generally speaking, increasing the overall input load by 4×,
resulted in a performance improvement of 2× (comparing A2, 2048 states and
a range of 1024 to A2 using 2048 states and a range of 4096 values). This was
true until the maximum occupancy was reached.

6.2. PARALLEL SIMULATIONS USING INTERPRETERS 113

Figure 6.13: Speedup of our algorithm compared to the simple one on the GTX
Titan X using two value ranges and two state configurations (log2
scaling, higher is better, based on performance numbers published
in [KGK20b]).

Figure 6.14: Speedup of our algorithm compared to the simple one on the GTX
1080 Ti using two value ranges and two state configurations (log2
scaling, higher is better, based on performance numbers published
in [KGK20b]).

Moreover, figures 6.15 and 6.16 show the speedup comparisons of memory
layouts A and C to B on both evaluation GPUs using our algorithm. In
analogy to the previously shown measurements, we also evaluated the same
state configurations in terms of the number of states and the value ranges
being used.

114 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

Figure 6.15: Relative speedup comparison of memory layouts A and C to B
using two value ranges, two state configurations, and our execution
algorithm on the GTX Titan X (log2 scaling, higher is better,
based on performance numbers published in [KGK20b]).

Figure 6.16: Relative speedup comparison of memory layouts A and C to B
using two value ranges, two state configurations, and our execution
algorithm on the GTX 1080 Ti (log2 scaling, higher is better,
based on performance numbers published in [KGK20b]).

6.3. ADAPTIVE TIME STEPPING FOR GENERIC SIMULATIONS 115

6.3 Adaptive Time Stepping for Generic Simulations

The previous sections introduced a way to improve the efficiency of generic
component-based simulations using thread-compaction techniques. An alter-
native, the use of adaptive time steps, was also discussed in the introduction
to this chapter to reduce the computational load of simulations. The main
problem with using adaptive time stepping without domain expertise is that it
can easily lead to slowdowns. This is because the calculation of the time steps
itself requires additional effort compared to simulations with fixed time steps.
Therefore, the adaptive version can only be faster overall if the time steps are
larger on average and the slowdowns caused by the time-step calculation itself
are compensated.

Consider a simulation with a reference step size of 1 (the smallest possible
step size that fulfills all requirements). Assume further, that this imaginary
simulation supports integer-based time steps only. Since we need to calculate
the minimum step size of all simulation components in order to execute an
actual step, we need to reason the probability of a single component returning
the smallest step size. This probability is given by P = 1−pn [KGK20a], where
n is the number of components and p is the probability of a single component
returning a step size > 1 [KGK20a]. In other words, the probability grows
significantly when increasing the number of simulation components, and thus,
can easily lead to performance penalties in general.

Figure 6.17: A visualization of two components C0 and C1 and their associ-
ated source (blue, Bs

0 and Bs
1) and target buffers (orange, Bt

0 and
Bt

1) [KGK20a]. In this scenario, C1 has a read-data dependency
on C0 (purple arrow). Also, C0 can do a large time step (long
black arrow), while C1 can only do a smaller step, relying on the
temporary information provided by C0. In order to allow C0 to
perform its large step and C1 to conceptually perform the same
step, C1 needs to access interpolated information from Bs

0 and
Bt

0. This allows us to perform a single step for C0 and two smaller
steps for C1 using interpolated information at the point in time
indicated via the purple arrow.

Our approach to overcome this conceptual limitation, is visualized in Fig-
ure 6.17. The idea is to conceptually unblock components performing larger
time steps by providing intermediate results to components limited to smaller
time steps. This is achieved via interpolated results using source and target
buffers of each simulation step. Using interpolation eliminates data dependen-

116 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

cies between different components enabling larger time steps in comparison to
the previously presented approach.

In order to reason about the simulation, its behavior and the interpolation
function, we define the following formal specification of a simulation system.
We refer to the current simulation state (containing all required information)
to as S. Here, a single stance instance S is updated by a set of components Ci

(as before), where i ∈ [0, . . . , |Comonents|−1]. Since each component operates
on a subset of all information contained in a state S, we refer to the data
subset touched by component Ci via Si. The state-update equation is then
given by [KGK20a]

Si(T + ∆t) := Ci (Si(T), ∆t) , (6.3)

where T is the current simulation time and ∆t is the upcoming time step size
used for this simulation step [KGK20a]. Our method includes an interpolation
function I (domain specific and user provided) for approximating intermediate
state subsets SI

i (T + ∆u), where ∆u ∈]0, . . . , ∆t[[KGK20a]:

SI
i (T + ∆u) := I∆u (Si(T), Si(T + ∆t)) . (6.4)

Extending the supported input interval of ∆u to [0, . . . , ∆t] yields [KGK20a]

SI
i (T + ∆u) :=

Si(T + ∆u) ∆u = 0 ∧ ∆u = ∆t

I∆u (Si(T), Si(T + ∆t)) else,
(6.5)

which means that all evaluations of SI
i (T +x), where x /∈ {0, ∆t} will introduce

approximation errors depending on/caused by I. Due to the use of I to estimate
a future state, we get [KGK20a]

Si(T + ∆u) ≈ SI
i (T + ∆u) and (6.6)

Si(T + ∆u) ≈ I∆u (Si(T), Si(T + ∆t)) (6.7)

by limiting ∆u to ∆u > 0 ∧ ∆u < ∆t. Reconsider Figure 6.17, in which one of
the components needs to do two steps in time, here ∆l > 0 and ∆o > 0, which
add up to the maximum step size ∆t (given by ∆t = ∆l + ∆o) [KGK20a].
Assuming two arbitrary components Ci and Cj , where i ̸= j and Cj needs to
access state information from Si, this yields [KGK20a]:

Si(T + ∆t) = Ci (Si(T), ∆t) (6.8)
Sj(T + ∆l) = Cj (Si(T), Sj(T), ∆l) , (6.9)
Sj(T + ∆t) = Cj (Si(T + ∆l), Sj(T + ∆l), ∆o) (6.10)

≈ Cj

(
SI

i (T + ∆l), Sj(T + ∆l), ∆o
)

(6.11)

≈ Cj (I∆l (Si(T), Si(T + ∆t)) , Sj(T + ∆l), ∆o) . (6.12)

6.3. ADAPTIVE TIME STEPPING FOR GENERIC SIMULATIONS 117

As formally derived, we need to apply the interpolation function only once
to estimate the current state of Si at time step T + ∆l based on pre-computed
information from Si(T +∆t) by using Ci. However, the introduced approxima-
tion function I can cause simulation deviations. Therefore, the interpolation
function must be carefully chosen depending on the problem- and domain-
specific properties of the simulation [Ada+07; HHK09; Ihm+10; KGK20a].
An alternative to using analytically defined simulations is the trend to replace
or enrich them by using neural networks [LOL19; Lew21]. This also means
that the interpolated intermediate results can be approximated using similar
techniques. Last but not least, the neural-network approaches also take advan-
tage of approximations by definition to compute the outcome of a simulation
step while introducing acceptable deviations [LLK19; Lew21].

In contrast to learned simulation approximations, our method is a generic
approach to add adaptive time-stepping to arbitrary simulation systems by
using an algorithmic method designed for parallel architectures. Particularly
important in this scope is to apply the interpolation function to the appropri-
ate buffers. For this reason we must be able to access the source and target
buffers (see also Figure 6.17) to compute interpolated results. Consequently,
our method relies on double buffering (see Section 3.1) while we have to pay
attention to the fact whether a component is executed an even or odd number
of times. The situation described is shown in Figure 6.18: C1 is executed two
times and its initially used source buffer (blue box) will contain the actual state
updates. As these updates are not written into its target buffer (orange box),
we must copy the data from source to target buffer in an additional step. Af-
ter copying the data into target buffer, the updates are perfectly in sync with
the data of all other components. This also makes it impossible to use the
source buffer after the second step for further interpolation purposes. Hence,
a copy of the original contents of the source buffer is required to ensure valid
interpolation results.

Figure 6.18: Two simulation steps performed by C1 based on the scenario of
Figure 6.17 to C0’s step size [KGK20a]. To begin with, C1 commits
its changes into its target buffer (1, orange box). Next (2), C1 is
reapplied as it reads from the designated target buffer and writes
its changes to the initial source buffer (blue box). Without any
further operation, other components either need to be aware of a
different source buffer in upcoming steps or the source information
will be invalid. To overcome this issue, we decided to integrate
a final commitment phase which copies data into the intended
target buffer in such cases (3).

118 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

The information needed to automatically apply the interpolation functions
to the right places is determined via concepts inspired by static program anal-
ysis [Pie02; NNH10]. The basic idea is to reason about the data-dependency
graph defined by all component memory accesses (see Figure 6.19). Since the
dependency graph naturally contains at least a single cycle, it is usually the
task of a domain expert to reason about the primary cyclic dependency in
order to decide on a first component in a schedule. This makes the differen-
tiation between a default read/write dependency and a backedge dependency
straight forward. An alternative to using a domain expert is to apply topo-
logical sorting to the graph to determine an execution order (see Figure 6.20).
However, this sometimes leads to multiple schedules of which one has to be
selected. This still requires domain knowledge to improve performance and/or
numerical stability.

Figure 6.19: A simulation workflow of four components and their read (blue
arrows) and write (orange arrows) dependencies to four different
buffers (green boxes). The backedge data-dependency is high-
lighted in purple.

Figure 6.20: A different layout of Figure 6.19 that visualizes the dependency
graph without a pre-determined execution schedule [KGK20a].
Topological sorting would also lead to the same component sched-
ule as before C0, C1, C2, C3, C4. Furthermore, the backedge in
purple makes it easy to distinguish between the first and the last
component in the schedule.

The next step after determining the component schedule, is reasoning about
the adaptive time-step size computation (see Figure 6.21). Initially, we query
all components by asking them to compute their maximum compatible time-
step size using the same input state for all components (1). Programmatically,
this is done by calling the ComputeNumSteps method shown earlier (see also List-
ing 6.4). In an ideal world, we could use the maximum time step resulting

6.3. ADAPTIVE TIME STEPPING FOR GENERIC SIMULATIONS 119

from this estimation step. Unfortunately, this will not work, as the component
consuming data via a backedge would also need to get interpolated informa-
tion, which is not available. Therefore, the maximum step size is given by the
maximum step of size of the component reachable via a backedge dependency
in the dependency graph (if there is only one). If this is not the case and there
are multiple components reachable via back edges, the minimum step-size over
all of these components will define the next maximum step size.

Figure 6.21: Our 3-step method to realize adaptive time stepping in arbitrary
domains [KGK20a]. This figure assumes the five components and
their associated dependencies from Figure 6.20, as well as their
individual potential next time-step values (1, black arrows). The
minimum total step size is indicated by the dashed line in pur-
ple. An imaginary schedule (that ignores back edges) is shown in
(2). Here, component C2 defines the maximum step size possible
and implies several interpolation steps for all other components
(orange bars). Due to the backedge data dependency of C0, this
schedule cannot be realized as it requires data from the previous
iteration to be interpolated using data that has not been com-
puted. Consequently, the real schedule (3) uses the maximum
step size of C0 to define all interpolation points.

120 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

6.3.1 Cached Interpolation Results and Cache Integration

A major disadvantage of our method is the need for on-the-fly interpolation-
function evaluations. Depending on the interpolation functionality being used,
the additionally imposed computational overhead of re-applying this function
on every access can cause performance penalties (see Figure 6.22). Even worse,
an increased number of memory accesses (to even fetch target buffer informa-
tion for interpolation purposes) implies further overhead. A commonly used
solution to this kind of problems is the use of shared memory. This solution
is also applicable in this scope when caching results of previously interpolated
data. In our case, we use a few cached values per thread and assume an access
window of threads to be limited to data within a group (see below).

Figure 6.22: Several threads in the scope of a group accessing items in global
memory from a buffer (green, left) [KGK20a]. Two loads from
a source (orange) and a target buffer (blue) are introduced when
using an interpolation function. This requires additional time and
resources to compute the interpolation result (indicated via the
green plus).

However, the access patterns of components vary in general (see Figure 6.23).
This implies that not all accesses can be explicitly cached in shared memory due
to its size restriction [KGK20a; NVI23a]. An often seen access pattern in the
scope of GPU-aware programming are coherent accesses within components
to ensure the highest performance on GPUs anyway (local access window,
see Chapter 2). Consequently, this automatically implies that most memory
accesses to interpolated data will be cache hits with respect to our introduced
caching logic. However, more advanced access patterns cannot be covered with
the presented caching approach if their access leave the cached access window.
In these cases, more advanced static program analyses are required to perform
more sophisticated global program transformations.

6.3. ADAPTIVE TIME STEPPING FOR GENERIC SIMULATIONS 121

Figure 6.23: The most common coalesced access pattern (top left) ensures that
all threads access elements within the cache [KGK20a]. Shifted,
but still coalesced, access pattern (top right) ensures that most
threads access elements within the cache. Accesses that go be-
yond the boundary in purple will required further on-the-fly in-
terpolation. Even such an access pattern (top right) can usually
be covered by our caching concept due to compile-time program
analyses. However, random memory access patterns (below) are
not beneficial in some cases, as they tend to access memory loca-
tions beyond the purple boundary without being able to statically
know this in advance.

An important question in this scope is on how to implement such a caching
concept without touching the component implementations during and after
development. As demonstrated before (see Listings 6.1 and 6.3), it is possible
to define generic component interfaces that do not rely on a specific buffer-
/view implementation. In this way, we can provide a specialized cached view
as a source buffer by hiding its implementation details. Based on the compo-
nent schedule and information we get about memory accesses and interpola-
tion points in this schedule, we use this information to automatically generate
cached views. Listing 6.6 shows such a sample implementation that has been
automatically generated by our code-generation phase. Note that Type0, Type1,
and Type2 are automatically generated types that represent cached information
for two intermediate results of two components. The same applies to the meth-
ods GetValueN that either fall back to an interpolated result, do the interpolation
on-the-fly or just return the non-interpolated value.

122 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

Listing 6.6: Cached data view implementation in pseudo-C#/C++ code
1 struct CachedDataView<TInterpolationFunction> : DataView
2 where TInterpolationFunction : IInterpolationFunction
3 {
4 // Shared-memory pointers.
5 private shared Type0* cachedType0;
6 private shared Type1* cachedType1;
7 private shared Type2* cachedType2;
8 // ...
9

10 private int cacheBaseIndex;
11
12 CachedDataView(
13 BufferData sourceBuffers,
14 BufferData targetBuffers,
15 int index,
16 float interpolationFactor,
17 // Shared-memory pointers.
18 shared Type0* type0Cache,
19 shared Type1* type1Cache,
20 shared Type2* type2Cache,
21 // ...
22 // Initialize the basic DataView type to wire the required buffer

pointers to point to the actual source and target buffers.
23 : base(sourceBuffers, targetBuffers)
24 {
25 // Compute base index of the currently cached data.
26 caseBaseIndex = rangeIndex - Group.Index;
27 // Load interpolated values from source buffer.
28 cachedType0 = TInterpolationFunction.Interpolate(
29 sourceBuffers.GetValue0(index),
30 targetBuffers.GetValue0(index),
31 interpolationFactor);
32 // ...
33 }
34
35 // Returns the interpolated value0 of Type0.
36 Type0 GetValue0(int index)
37 {
38 // Check whether we have already computed an interpolated value.
39 if (index >= cacheBaseIndex & index < cacheBaseIndex + Group.Size)
40 return cachedType0[index - cachedBaseIndex];
41 // Cache miss.. load values from global memory and use interpolation.
42 return TInterpolationFunction.Interpolate(
43 sourceBuffers.GetValue0(index),
44 targetBuffers.GetValue0(index),
45 interpolationFactor);
46 }
47
48 // Returns the interpolated value1 of Type1 without using a cache.
49 Type1 GetValue1(int index) => TInterpolationFunction.Interpolate(
50 sourceBuffers.GetValue0(index),
51 targetBuffers.GetValue0(index),
52 interpolationFactor);
53
54 // Do not apply interpolation mechanisms to not-affected values.
55 Type2 GetValue2(int index) => base.GetValue2(index);
56
57 // ...
58 }

6.3. ADAPTIVE TIME STEPPING FOR GENERIC SIMULATIONS 123

6.3.2 Algorithms

The core part of our approach is the generic algorithm to apply our method to
an arbitrary component Ci in the scope of a simulation (see Algorithm 16). It
was specially developed for GPUs and to be specialized or automatically gen-
erated by a compiler. This can be achieved by either using meta-programming
techniques [Kös+14c] or full-featured code-generation phases in one of the com-
piler backends being used. Specializing or instantiating this algorithm for each
component type allows us to realize zero-cost abstractions without worrying
about potentially introduced overhead.

In terms of the algorithm itself, we start by providing the maximum number
of steps to perform. This number is determined in advance using the concepts
described above. In all cases we begin a component execution by allocating
shared memory for all intermediate values to be cached depending on informa-
tion derived from the dependency graph. The next step is to cover all values
in the range of our component Ci.

However, we have to use the padded value range of Ci (to be a multiple of the
grid-stride step size) to avoid divergent control flow, and thus, unintended side
effects like deadlocks on certain architectures. Then, we enter the important
inner-most loop to do the actual adaptive time stepping and start by initialize
our shared-memory caching view (see Listing 6.6). The following steps realize
the upcoming step-size calculation via hierarchical group-wide reductions to
compute the upcoming step-size minimum (lines 15–25). Finally, we must
check whether we are out-of-range with respect to our actual value range and
evaluate the component Ci using the next time step before we update the
current step information and perform cleanup copy operations to ensure a
valid state for the next component.

Implementation Details

We used C# to realize our adaptive time-stepping method and leveraged the
ILGPU [Kös23] GPGPU-JIT compiler for GPU workloads. Each component
was realized in C# via a generic structure that implements the previously
presented component interface (after translating it into the C# world). Due
to the fact that C# is compiled to an intermediate representation [Lid02], it
was possible to inspect the emitted .Net assembly format. This gave us the
ability to inspect component dependencies in order to resolve the dependency
graph based on meta-data information stored within the assemblies and im-
plemented disassembly utilities [Kös23]. We then generated specialized GPU
kernels (based on Algorithm 16) automatically for each component while also
creating reduction kernels to compute the maximum number of steps per it-
eration. This also involved the emission of specialized shared-memory-based
views (based on Listing 6.6) to speed up interpolated lookups. In order to
implement all reductions, we relied on atomic operations and efficient warp
reductions [NVI14; NVI23a] (see also Algorithm 15).

124 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

Algorithm 16: Our time-step adaptive simulation algorithm for an
arbitrary component Ci [KGK20a]
Input: max#Steps, sourceBuffer, orgSourceBuffer, targetBuffer
/* All intermediate values are cached in shared mem */

1 memCache0 = shared memory Type0[group size];
/* ... */

2 stepSize := shared memory int[1];
/* Iterate over the padded value range of Ci to avoid

divergent control flow wth respect to all other
threads in the group */

3 for j := global index to pad(range(Ci)) step by (grid size * group size)
do

4 tempSource, tempTarget := sourceBuffer, targetBuffer;
5 #iterations := 0;
6 for step := 0 to max#Steps; do
7 view := new CachedDataView<Interpolation Function>(
8 tempSource, tempTarget, orgSourceBuffer, j,
9 max#Steps / (step + 1) as float,

/* All shared memory buffers... */
10 memCache0, . . .);

/* Initialize the step size and wait for all
threads in the group to reach the barrier */

11 if thread index = 0 then
12 stepSize := max#Steps - step;
13 end
14 group barrier;

/* Check whether we have exceeded our value range

*/
15 currentStepSize := max(int);

/* Compute next common step size for all group
threads */

16 if j < range(Ci) then
17 currentStepSize := Ci.ComputeNumSteps(view);

/* Determine the next step size by reduction */
18 reducedStepSize := warp reduce min(currentStepSize);
19 if lane index = 0 then
20 atomic min stepSize, reducedStepSize;
21 end
22 end
23 group barrier;
24 actualStepSize := stepSize;

/* Apply component with next common step size */
25 if j < range(Ci) then
26 Ci.Evaluate(view, actualStepSize);
27 end

/* Increment step index and iteration count */
28 step := step + actualStepSize;
29 #iterations := #iterations + 1;
30 Swap tempSource, tempTarget;
31 group barrier;
32 end
33 if #iterations mod 2 = 0 then
34 Copy all information from the sourceBuffer to the target buffer
35 end
36 end

6.3. ADAPTIVE TIME STEPPING FOR GENERIC SIMULATIONS 125

6.3.3 Performance Evaluation

In order to have a reasonable performance evaluation for our adaptation
method presented above, we designed two application scenarios relying on the
basic principles of particle-based simulations. Both scenarios were modeled
using high-level dependency graphs providing detailed information about the
components being used and their dependencies between them. In analogy
to the evaluation of our thread-compaction based method to model inter-
preters involving multiple states, we also avoided hard-to-understand and
closed-source benchmarks. We also leveraged matrix-matrix multiplications
(see Section 6.2.3) in each component to avoid additional memory accesses
introducing further side effects while making sure to add reasonable workload
per thread and component. However, we did not consider simulation devia-
tions, as these must be investigated separately for each domain and use case,
which ultimately may require custom interpolation functions. We ran our
benchmarks on two GPUs from NVIDIA featuring different compute capabil-
ities [NVI23a]: GeForce GTX 980 Ti and GeForce GTX 1080 Ti [KGK20a]3.
We considered as a single performance measure the mean execution time of
100 simulation runs. In each run, we performed at most 100 simulation steps
which corresponded to running the simulation with a conceptual step size of 1
per step4.

To come up with benchmarks actually reflecting real-world uses cases from
the particle domain, we added specific memory accesses to neighboring items
in memory. When neighborhood accesses were required to model such a use
case, we always simulated neighboring particle accesses by 9 IO operations,
which usually arise in SPH-based simulations [MM13; GKK19; GKK20]. Note
that this number was chosen to cover 2D grid-based access patterns which
access all 8 neighboring cells in addition to their current cell. Although we
did not evaluate numerical deviations, we did evaluate the use of more and less
expensive interpolation functions based on linear and cubic spline interpolation.

The number of particles has a tremendous impact on the runtime of such
simulations and is referred to as the value range (range(Ci) of each component)
in the scope of the evaluation. Hence, we used two value ranges (16384 and
65536) to evaluate scaling behavior and to ensure a reasonable workload for
our evaluation GPUs. Note that the ranges were used for all components to
ensure a proper workload distribution. This avoided focussing on measuring
certain performance characteristics of the underlying simulation model rather
than the adaptation algorithms. In addition, we always accessed all items in
the value range (all particles) using optimized coalesced memory accesses.

3Note that both GPUs were state-of-the-art at the time of the publication. Therefore, we
retained these measurements to present the original results. However, it is of interest to
reevaluate our method on more recent GPUs in future work (see Chapter 14).

4Note that using an adaptation scheme reduces the number of simulation steps intentionally.
This results in less simulation steps for different adaptation schemes.

126 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

As explained before, the number of simulation steps is the most important
bottleneck to be addressed with our adaptive time-stepping concept. We con-
tinuously varied the number of steps per component by drawing a sample from
a uniform random distribution for each component. This ensured that we are
close to actual real-world applications which adjusted the number of steps per
component continuously throughout the run of a simulation to compensate
artifacts and/or to ensure stability [Mül08; MM13; KK18; KGK20a]. To be
inspired by such applications we sampled from the interval [1, . . . , 3]. This
avoided optimistic assumptions about artificially increased potential speedups
that could be achieved with our method. Note that this also mimics common
use cases in which we may do larger steps from time to time.

The performance evaluation compared different methods to each other5:

• The traditional adaptive approach (referred to as Trad. Adaptive. in
all diagrams) using a simple adaptive time-stepping method based on
previous research (see also Section 6.1 and Figure 6.4),

• our adaptive time-stepping method without shared-memory caches (re-
ferred to as HIPnC, HIP no cache), and

• our adaptive time-stepping method using shared-memory caches (referred
to as HIP).

Moreover, we also combined both of our approach configurations (with and
without shared memory) with a linear and a cubic-spline (spline2) interpolation
function. For instance, combining our shared-memory enabled method HIP
with a spline2 function is referred to as HIP Spline2.

The first evaluation scenario was a simulation inspired by N-body gravity
simulations (see Section 3.1) that involved three components (see Figure 6.24).
Different components modeled specific parts and access-pattern characteristics
of such a simulation.

Figure 6.24: Gravity-simulation like workflow that involved three compo-
nents [KGK20a]. From a high-level point of view, C0 computed
location and particle-specific data that was passed to C1 which
computed neighbor-based gravity forces. C2 took this intermedi-
ate information and applied the resulting forces to all particles.

Speedups comparing the different adaptation methods for this evaluation
domain are shown in Figure 6.25 and Figure 6.26. The latter one used 65536
particles to enable the direct comparison of a smaller simulation domain to a
larger one.

5All speedups shown in the diagrams were measured in relation to the non-adaptive simu-
lation that served as the baseline

6.3. ADAPTIVE TIME STEPPING FOR GENERIC SIMULATIONS 127

Figure 6.25: Speedups comparing the non-adaptive gravity-simulation like im-
plementation to the traditional adaptation approach and to our
method using different interpolation kernels (higher is better,
based on performance numbers published in [KGK20a]). Note
that these speedups were measured using 16384 particles as the
value range for our components.

Figure 6.26: Speedups comparing the non-adaptive gravity-simulation like im-
plementation to the traditional adaptation approach and to our
method using different interpolation kernels (higher is better,
based on performance numbers published in [KGK20a]). Note
that these speedups were measured using 65536 particles as the
value range for our components.

128 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

The execution time of 100 non-adaptive simulation steps was ≈ 136ms on
the GTX 980 Ti and ≈ 83ms on the GTX 1080 Ti [KGK20a]. As shown in
the diagrams, the traditional approach did not yield to any significant perfor-
mance improvement when using a value range of 16384 (Figure 6.25). This
changed slightly when the number of particles was increased on both GPUs,
resulting in increased speed between 1.05× on the GTX 980 Ti and 1.07× on
the GTX 1080 Ti. Compared to the traditional method, our adaptation meth-
ods achieved substantial speedups of 1.12× to 1.16× without caches and 1.14×
to 1.17× with caches enabled. The negligible performance improvements us-
ing caching were related to the additional overhead managing the cache that
nearly outperformed its benefit of reducing memory transfers. Related to that
are the performance degradations using the cubic spline kernel which created
more computational overhead on each access that caused these performance
improvements to be less than the ones using linear interpolation.

These effects changed when the value ranges were increased by 4×, which
yielded more substantial speedups on both evaluation GPUs (Figure 6.26).
Overall, we maintained a good speedup compared to the non-adaptive simu-
lation ranging from 1.17× to 1.21×. However, the performance improvement
over the traditional adaptation method decreased to 0.7× in the worst case on
the GTX 1080 Ti (in comparison to the baseline measurements). A combined
speedup comparison of all measurements from the gravity domain is shown in
Figure 6.27. With the exception of one outlier measurement without caching
in combination with the 65536 particles on the GTX 1080 Ti, caching always
improved the performance by additional 0.3×. This is caused by the negligible
overhead of linear interpolation in comparison to the number of global memory
accesses.

Figure 6.27: Combined speedups from Figure 6.25 and Figure 6.26 to directly
compare the achieved speedups using two different value ranges of
16384 and 65536 (higher is better, based on performance numbers
published in [KGK20a]).

6.3. ADAPTIVE TIME STEPPING FOR GENERIC SIMULATIONS 129

The second evaluation scenario was a simulation inspired by position-based
dynamics/fluids simulations (see Section 5.1) that involved seven components
(see Figure 6.28). As before, various components represented specific features
of PDB/PBF simulations, such as iterating over neighboring particles and ag-
gregation of intermediate information required to perform collision detection
and response mechanics, for example. Speedups when comparing the different
adaptation methods for this evaluation scenario are shown in Figure 6.29 and
Figure 6.30.

Figure 6.28: PBD/PBF-simulation like workflow that used seven compo-
nents [KGK20a]. Similar to Figure 6.24, C0 prepared simulation-
and situation-specific information for each particle. This informa-
tion was passed to C1 which accumulated neighbor information for
collision detection/response steps realized in C2. Similar to the ap-
proach shown in Section 5.1.3, C3 and C4 relied on fluid-dynamics
calculations derived from SPH-based neighbor processing. Finally,
C5 implemented further constraint propagation updates for non-
fluid dynamics objects and C6 commited all pending changes in
terms of velocity and position updates.

The execution time of 100 non-adaptive simulation steps was ≈ 327ms on
the GTX 980 Ti and ≈ 200ms on the GTX 1080 Ti [KGK20a]. As shown in
both figures, the traditional approach resulted in speedups ranging from 0.92×
to 0.95× – slowdowns effectively. This was caused by the increased number
of components that often resulted in step sizes of 1 while adding overhead
to determine next step sizes to perform. When using 16384 particles in the
simulation, we measured performance improvements ranging from ≈ 1.1× to
≈ 1.18× on both evaluation GPUs. The older GTX 980 Ti performed slightly
better when caching was enabled, whereas the GTX 1080 Ti did not benefit
from explicit caching. The reason for this was the improved memory through-
put and the considerably improved computing performance of the GTX 1080
Ti compared to the GTX 980 Ti.

130 CHAPTER 6. IMPR. PERFORMANCE OF PARALLEL SIMS

Figure 6.29: Speedups comparing the non-adaptive PDB-simulation like im-
plementation to the traditional adaptation approach and to our
method using different interpolation kernels (higher is better,
based on performance numbers published in [KGK20a]). Note
that these speedups were measured using 16384 particles as the
value range for our components.

Figure 6.30: Speedups comparing the non-adaptive PDB-simulation like im-
plementation to the traditional adaptation approach and to our
method using different interpolation kernels (higher is better,
based on performance numbers published in [KGK20a]). Note
that these speedups were measured using 65536 particles as the
value range for our components.

6.3. ADAPTIVE TIME STEPPING FOR GENERIC SIMULATIONS 131

By increasing the value range to 65536 elements, we were able to reliably
measure speedups from 1.15× (on the GTX 980 Ti) to 1.21× on both GPUs.
This significantly outperformed the traditional adaptation method and the
non-adaptive base-line simulation. However, enabling caching was of little
benefit as the interpolation features were not expensive enough to outweigh
the cache management overhead on both GPUs.

As for the first evaluation scenario, a combined speedup comparison of all
measurements from the current domain is shown in Figure 6.31. Although we
achieved substantial performance improvements using all interpolation func-
tions, using the cubic spline interpolation function always came at a certain
price. This is particularly evident in the PBF-like domain, as more components
require more interpolation operations, which is clearly visible in the graphs.

Figure 6.31: Combined speedups from Figure 6.29 and Figure 6.30 to directly
compare the achieved speedups using two different value ranges of
16384 and 65536 (higher is better, based on performance numbers
published in [KGK20a]).

CHAPTER 7
CONCLUSION

The first two sections, 5.1 and 5.2, covered contributions in the field of particle-
based simulations and selection processes. Our APBF method to adaptively ad-
just the number of solver iterations for PBD/PBF-based simulations achieved
speedups ranging from 1.4× to 1.7×. We introduced two adaptation models to
tweak the number of iterations in a fine-grained way without causing instability
of the underlying simulation. Regarding the rendered quality of the simula-
tions based on our adaptation models, we were able to maintain a high visual
quality that did not suffer from artifacts caused by lower-quality PBF simu-
lations. Moreover, the method seamlessly integrates with common PBD/PBF
solvers, making this contribution directly applicable to real-world applications.

Similarly, our method for realizing particle selections in O(n · k) performed
very well in our evaluation scenarios, where n stands for the number of par-
ticles and k for the maximum number of neighbors a particle can possibly
have [KK18]. This was achieved by decoupling several steps of the volume
analyses from the dataset and performing them in screen space instead. Our
measurements showed that we obtained excellent results in terms of selection
quality and are on par with methods from related work. Also particularly
important is the negligible memory consumption and the impressive runtime
of our method. We were able to perform more than 30 selections per sec-
ond, allowing us to process changing datasets (e.g., based on simulations) in
real time. Most importantly, scalability was greatly improved since our al-
gorithms do not work on uniform grids, and we improved performance by at
least an order of magnitude over the most similar method, which assumed
precomputed information. Disabling precomputed density information for our
competitor increases our speedup to at least two orders of magnitude. Like
APBF, our method can be directly integrated into visualization systems be-
cause our method is self-contained in terms of algorithms and does not require
specific data structures.

133

134 CHAPTER 7. CONCLUSION

Sections 6.2 and 6.3 focused on generic parallel simulations built from multi-
ple components in the context of many optimization states processed in paral-
lel. Each state represents data needed by a higher-level optimization to explore
the search space, while the components process all states (and the data ele-
ments they contain). Our proposed method from Section 6.2, which is based
on thread compaction, leverages domain knowledge about the way components
in such systems are usually constructed according to the concept of inference
rules. To take full advantage of the algorithm, we presented a new, specially-
optimized memory layout for parallel processing of multiple states to ensure
coherent memory accesses. Overall, our evaluation showed that our proposed
memory layout outperformed conventional approaches by a factor of 1.7× to
3.3×. The layout itself outperformed prominent and often-chosen layouts by a
factor or 1.1× to 1.25× when our algorithm was used. Since our algorithm is
a generic execution algorithm for simulations using components, our concept
can be easily integrated into existing optimization systems without the need to
adapt the component logic. In analogy to the algorithm itself, the data layout
can also be taken advantage of without touching the component implementa-
tions. However, this assumes a certain design of such a framework or system,
which allows changing data layouts using view abstractions (see Section 6.1).

In Section 6.3, we contributed a novel method to realize adaptive time step-
ping for generic component-based simulations. We leverage interpolation func-
tions to calculate intermediate values within optimization states, which helps
relax time-step-size restrictions. Depending on the interpolation function used,
it is also possible to use our method with custom-designed caches that seam-
lessly integrate with component designs supporting generic memory layouts.
The general idea of our approach is to assume larger time-step sizes based
on an optimistic assumption, as opposed to pessimistic assumptions typically
made due to domain-specific requirements in certain research fields. However,
since we focus on general-purpose simulations operating on optimization states,
we can benefit from less stringent constraints and solving the actual adaptive
time-stepping problem at a higher level. In benchmarks, we measured speedups
of 1.17× to 1.21× on our conservatively chosen evaluation scenarios compared
to traditional adaptive time-stepping approaches.

Answering RQ1 All presented approaches significantly improved perfor-
mance compared to current state-of-the-art algorithms. We contributed to
domain-specific and domain-independent fields. Here, we mainly targeted in-
teraction methods based on simulations, interactive simulations, and simula-
tions in the scope of optimization systems. In summary, this contributes to
answering RQ1, as we have shown how we can achieve significant speedups over
existing methods through shorter execution times, lower memory consumption,
and better scalability (see also Chapter 13).

Part II

Heuristic Optimization

CHAPTER 8
INTRODUCTION

Part 1 introduced the motivation and fundamentals of modeling massively-
parallel simulations and presented several methods for improving the perfor-
mance of simulations on GPUs. As mentioned in Section 1.2, Part II focuses on
performance improvements of heuristically driven optimization systems. Re-
consider a high-level search tree of a simulation-based optimizer instance from
the preface (see Figure 8.1). Part 1 allows us to benefit from considerable per-
formance improvements in the simulation-logic part of such an optimization
system. This in turn enables us to evolve states in terms of simulating actions
and their behavior on the observed states. Unfortunately, this does not cover
the actual state-generation phase, which is responsible for scheduling actions
to be applied to different states in order to observe their behavior over time.

Figure 8.1: Conceptual search-tree-based method [KGK19c] (see Figure 1.2).

However, this phase is covered in this part along with more general high-
level methods that can be used to efficiently remember certain states without
exploding memory usage. It is particularly important for solving large-scale
problems involving many optimization states per level and a large tree depth
in general. Although there are sophisticated pruning algorithms and concepts

137

138 CHAPTER 8. INTRODUCTION

in the field of large-scale optimization, this is still not sufficient to eliminate
most of states, as they still need to be expanded, explored, and evaluated. In
such cases, our method(s) help to reduce memory consumption by orders of
magnitude (see Chapter 10).

A very related and challenging task in this field is the expansion strategy
of states themselves (see Figure 8.1, Successor Generation). In this context,
the task is to (efficiently) explore the directly reachable successor states of a
given optimization state (see Figure 8.2). This problem has been tackled by
many researchers in the past using complex and domain-specific algorithms.
However, realizing a solution that can be efficiently executed on GPUs is even
more difficult. Although related work also addressed many challenges before
we started our research, it turned out that all methods were problem and/or
domain specific. Solving this problem in a problem-domain independent man-
ner is even harder. In addition, the most important aspect we wanted to ensure
was that data did not leave the GPU device during optimization for perfor-
mance reasons. As far as we know, most of these requirements have not been
fulfilled in previous work. In order to satisfy all the requirements, we invented
a novel method that realizes generic successor-generation on GPUs for heuristic
optimization problems in Section 10.2.

Figure 8.2: Conceptual exploration of successor states in the neighborhood of a
given state [KGK19a]. Conceptually, the neighboring search space
is often tremendously large and often even difficult to explore (1).
The first challenge is to efficiently enumerate potential successor
states that are directly reachable in terms of required simulation
steps (2). Once neighboring states have been identified, they are
prioritized to guide the exploratory search (3).

8.1. CONTRIBUTIONS 139

8.1 Contributions

After discussing related work from the domain of heuristic optimization in
Chapter 9, Part II (see Chapter 10) of this thesis makes the following important
contributions:

• Section 10.1 presents a generic method to maintain optimization states
in accelerator memory and shows how to explore different (heuristically
controlled) paths in the scope of heuristic optimization trees. This ap-
proach specifically focuses on the parallel management of a large number
of states, where the different states can be in different levels (different
exploration tree depths). Moreover, we also handle and solve a special
kind of memory-management problems that usually arise in large-scale
optimization search trees. This allows us to overcome scalability issues
on large-scale problems by significantly reducing the amount of memory
required.

• Section 10.2 describes a domain-independent method for generating
successor states during search-based exploration on GPUs without in-
volving the CPU in any way. This particularly affects evolutionary,
meta-heuristic-based, and genetic optimization systems. All of these
approaches rely on a successor generation function, also known as neigh-
borhood or neighborhood-exploration function. Furthermore, it allows
using priority-sampling based exploration heuristics and can be seam-
lessly integrated into any heuristic optimization system.

Both approaches overcome known limitations of heuristic and exploration-
based optimization systems in terms of memory consumption, runtime per-
formance, and thus scalability and applicability to large-scale problems. In
analogy to Part 1, all algorithms presented in this part have been designed
with GPUs in mind and can be (re-)implemented in any GPGPU-capable pro-
gramming language. Figures, code listing and pseudo-code snippets are dis-
cussed in detail while providing implementation-relevant hints and annotations
to facilitate the integration into real-world applications.

140 CHAPTER 8. INTRODUCTION

8.2 Publications

The following list summarizes all contribution-relevant publications of this
part of the thesis. Furthermore, contributions of the contributing author (CA)
and all other authors (CoA) are explicitly listed. This helps to clearly separate
own work that may be used in the dissertation from other contributions.

[KGK20b] Marcel Köster et al. “Massively Parallel Rule-Based Interpreter
Execution on GPUs Using Thread Compaction.” In: Interna-
tional Journal of Parallel Programming (2020)

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement, implementation and
benchmarking

[KGK19a]⊛ Marcel Köster et al. “FANG: Fast and Efficient Successor-State
Generation for Heuristic Optimization on GPUs.” In: 19th
International Conference on Algorithms and Architectures for
Parallel Processing (ICA3PP-2019). Springer, 2019

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement, implementation and
benchmarking

[KGK19c]⊛ Marcel Köster et al. “Parallel Tracking and Reconstruction of
States in Heuristic Optimization Systems on GPUs.” In: Par-
allel and Distributed Computing, Applications and Technolo-
gies (PDCAT-2019). IEEE, 2019

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement, implementation and
benchmarking

8.2. PUBLICATIONS 141

[KGK19b] Marcel Köster et al. Massively Parallel Rule-Based Interpreter
Execution on GPUs Using Thread Compaction. 12th Interna-
tional Symposium on High-Level Parallel Programming and
Applications (HLPP-2019). 2019

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement, implementation and
benchmarking

[KK16] Marcel Köster and Antonio Krüger. “Adaptive Position-Based
Fluids: Improving Performance of Fluid Simulations for Real-
Time Applications.” In: International Journal of Computer
Graphics & Animation (2016)

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement

CHAPTER 9
RELATED WORK

This chapter summarizes related work in the area of maintaining multiple (in-
termediate) optimization states in memory and exploring the search space via
neighborhood enumeration. It aims to provide a high-level overview of related
approaches and algorithms that are most similar to our contributions, as well as
their limitations. Although concepts for maintaining multiple states on GPUs
are widespread and commonly used, most publications focus on custom use
cases or domain-specific solutions [KGK19a; KGK19c]. Similarly, neighbor-
hood exploration has been well researched in lots of domains while focusing
on parallel GPU processing [KGK19a]. The first section covers publications
related to all our contributions in this part. However, Section 9.2 summarizes
related work that is most similar to our methods from Section 10.1, while the
work discussed in Section 9.3 is related to our successor-state generation from
Section 10.2. Each section also includes paragraphs summarizing key aspects
of related work, as well as the main differences to our approaches.

Please note that this list of publications cannot be exhaustive by definition,
as we have made contributions to fields that touch on a wide range of domains.

9.1 Parallel State Tracking and Neighborhood
Exploration

Directly related to our methods is work on a variety of different frameworks
for realizing parallel constraint solving on GPUs. In this domain, it is always
required to remember and keep track of different partial solution states before
continuing the expansion process into a certain direction. Prominent foun-
dations had been built by Campeotto et al. [Cam+14b]. The authors used
a hybrid approach to maintain most of the information about the intermedi-
ate optimization state in CPU. To realize accelerated propagation steps, they
transferred this data to the accelerator. Here, the CPU part of their system

143

144 CHAPTER 9. RELATED WORK

made the decision which variable (sub)sets and assignments to explore further.
The GPU accelerated parts then processed various possibilities and made the
results of this phase accessible to the CPU-side of the application via memory
copies. Hence, their actual solver ran on the CPU and used the GPU for ac-
celerated evaluation of different potentially interesting variable combinations
while using transfers between CPU and GPU all time time. This also means
that their neighborhood exploration used the GPU for rating different possibil-
ities, whereas the actual successor-state generation happened on the CPU. In
contrast to them, we track objects exclusively on the GPU and do not perform
copy operations between the different phases to minimize transfer overhead
(see Section 10.1 and Section 10.2). We also store densely packed information
on the CPU side when needed, for instance, running out of GPU memory dur-
ing optimization. However, the size of the memory buffers to be transferred is
orders of magnitude smaller than the buffers used by related work. This is due
to the fact that we used highly compressed information from which states can
be reconstructed if needed (see Section 9.2 and Section 10.1).

Campeotto et al. [Cam+14a] published a follow up paper that revealed
more detailed information about the internals of their neighborhood explo-
ration method. As mentioned before, they still focused on the CPU when
it came to the set of variables to explore. However, they used so called local
search strategies [Cam+14a] to determine these sets. Although the authors also
proposed certain approaches that worked well in their domain, the high-level
method of using local search-space exploration is highly similar to our idea
(see Section 10.2). However, we realize the whole neighborhood exploration
functionality on the GPU with our newly presented approach. The interested
reader may refer to work by Focacci et al. [FLL04] for more information about
theory and application of constraint satisfaction and local search-space explo-
ration in this domain.

Munawar et al. [Mun+09] published an efficient GPU-based algorithm in-
cluding local neighborhood search for MAX-SAT problems. They introduced
the concept of a virtual 4D grid designed for their genetic algorithm. The un-
derlying idea is that two dimensions are used for different neighbor assignment
possibilities for each individual element inside a genetic algorithm population
and two dimensions for each population itself. While it is not as important to
understand the detailed mechanics of their proposal, it is important to know
that their 4D grid, which includes two 2D exploration dimensions, can be rep-
resented directly on the GPU for parallel processing. This is closely related
to our approach as we also realize neighborhood exploration efficiently on the
GPU without CPU-based data transfers. However, our algorithm is not bound
to such a MAX-SAT optimization problem and is not restricted to such an
encoding of different possibilities. Instead, we can work with arbitrary local
heuristics, which may also be given in the form of neural networks (see Sec-
tion 10.2).

9.1. PAR. STATE TRACKING AND NEIGHBORHOOD EXPL. 145

A related approach that implicitly borrows from the concepts presented ear-
lier is the paper published by Abdelkafi et al. [ACK13]. They maintained
states on the CPU and copied necessary information to the accelerator for
improved parallel processing performance during exploration phases. The au-
thors used OpenCL to process individual variable assignments in parallel on the
GPU but evaluated each neighbor rating sequentially afterwards on the CPU
side. To make their OpenCL-based approach work for their evaluation domains
(the knapsack and the traveling salesman (TSP) problems), they used domain-
specific data structures to realize neighborhood exploration. Comparing their
contributions to ours, Abdelkafi et al. were very limited in the sophisticated
way they had to add support for different variable assignment strategies. They
also suffered again from the state tracking problem by keeping most data on
both the CPU and GPU.

Also a very prominent search algorithm is tabu search which was also in-
vestigated by Luong et al. [Luo+10]. This is a meta-heuristic search method
that they parallelized on the GPU, which specifically involved exploring local
neighborhoods. The contributing author also published more generic papers on
local search-space exploration [LMT10a; LMT10b]. They ere interested in the
influences of certain decisions within the optimization problem to be solved.
Talking about the problem domain itself, the authors aimed at binary deci-
sion problems while leveraging Hamming distances [Luo+10]. Unfortunately,
these approaches are not immediately applicable to arbitrary domains because
all methods make several simplifying assumptions. Solving this problem from
a general standpoint, a much more sophisticated approach to neighborhood
exploration is needed, as opposed to the method(s) they used.

Lam et al. [LTL13] used a related idea while shifting their focus to simulated
annealing. They purely focused on multi-core architectures in their paper. As
Abdelkafi et al., Lam et al. chose TSPs and contributed possibilities to use
CPUs and GPUs in their setting. Regrettably, they also leveraged specific
mathematical properties of their optimization problem they wanted to solve
without generalizing their methods.

Summary and Main Differences to Our Work Related work proposed
hybrid approaches to balance CPU and GPU workloads while leveraging com-
putational aspects of both. However, most related work ran the actual solver
on the CPU while using GPU acceleration for immediate neighborhood explo-
ration in terms of rating states. Alternatively, they maintained copies in CPU
and GPU memory while benefiting from domain knowledge about the shape
and type of the optimization problem to solve. This allowed them to integrate
domain-specific concepts about neighborhood exploration or rating of states to
exploit parallelism and enable state tracking. However, addressing this prob-
lem generically for arbitrary domains in a massively parallel and highly efficient
way remained unsolved and is being addresses by our methods.

146 CHAPTER 9. RELATED WORK

Key difference to related work is that we exclusively materialize states in
GPU memory while using densely compressed information to remember states
from previous solver iterations. In case we need to fetch information back to the
CPU, we only need to transfer tiny amounts of compressed state information
as we do not need to materialize any states on CPUs for processing. Further-
more, our approaches works completely domain independent as it does not rely
on domain knowledge of the optimization problem being solved. This also in-
cludes our method to accelerate neighborhood exploration on GPUs allowing
the integration of arbitrary heuristics.

9.2 Parallel State Tracking

A commonly researched and comprehensive method for optimization is Monte
Carlo tree search (MCTS) [Bro+12]. Performance of this approach has been
continuously improved over the past years while also porting it to a huge variety
of different architectures [CWH08; RS10; XMM18]. Powley et al. [PCW17] had
shown a concept around MCTS that allowed them to reuse already allocated
states in memory that are not required anymore during the search process. In
order to realize that, they used graph-based data structures using pointers to
different memory addresses, which is in no way designed for GPUs [NVI23a].
The method presented by Zhou and Zeng [ZZ15] made a similar contribution
while improving algorithms such as A⋆-based path finding. Reusing pieces of
memory is also part of our strategy. However, we rely on pre-allocated memory
buffers and reconstruct states on-the-fly when needed, which is far superior to
their approach.

In sum, most publications maintain their intermediate data structures (state
information) in CPU memory. When they use GPUs to improve the perfor-
mance of certain tasks, they copy the necessary bits and pieces to the device,
perform the computationally intensive operations, and fetch the result back
to CPU memory. However, compared to our method, they must keep the ac-
tual state information in memory. We use the concept of reconstructing states
on-the-fly when needed from densely packed and highly compressed history
information of visited states. This allows us to scale significantly better than
the other methods discussed in this section.

Rashid and Tao [RT17; RT18] mainly influenced our conceptual idea of
state reconstruction. They introduced the idea of a neighborhood fitness struc-
ture [RT18] information exchange between the GPU and CPU parts of their
solver. The authors used this data structure to swap neighborhood information
based on variable assignments and state-dependent values. The main differ-
ence to our method is that we do not need to transfer detailed information to
the GPU for our on-demand state reconstruction. In contrast to them, we just
need to transfer a few bytes per state while performing the actually expensive
reconstruction in a highly efficient way on the GPU.

9.3. NEIGHBORHOOD EXPLORATION 147

Summary and Main Differences to Our Work Focusing solely on the
aspect of state tracking, related work addressed this problem in the scope of
several methods (like MCTS). Reducing memory consumption was also actively
researched in the past. In this scope, related papers mainly targeted reusing
already allocated memory buffers during optimization while using domain-
specific information about the problem or the solver method being used. How-
ever, most publications keep state information in CPU memory and use copy
necessary state information to GPU memory for enabling massively parallel
processing. This general technique requires large amounts of memory for large-
scale problems, which limits their scalability.

The method most similar to our approach uses a fine-grained data structure
to exchange information between CPU and GPU to reduce the amount of data
being copied. Our approach is conceptually based on their idea, but uses a novel
way to compress states and reconstruct them when needed on-the-fly on the
GPU. Using our reconstruction technique, we can reduce memory consumption
to a few bytes per optimization state in general on arbitrary problems.

9.3 Neighborhood Exploration

Especially relevant for us is the parallelized search-based optimization by Novoa
et al. [NQC15] for solving quadratic assignment problems using GPU accel-
eration. In their GPU kernels, which implemented the actual search space
exploration, they permuted various variable assignment possibilities based on
thread indices within the scheduled thread grid. In order to generate mean-
ingful assignments, they leveraged a binary decision structure helping them
to map different possibility indices to variable assignments. Naturally, they
differentiated between two values for each variable in their domain, namely 0
and 1. This restriction allowed them to considerably simplify their assignment
process. Compared to our contributing, we are not conceptually constrained
by an arbitrary number of variable assignment possibilities (see Section 10.2).
Moreover, we also do not make use of any domain-specific knowledge or as-
sumptions. In order to make our approach scalable and applicable to arbitrary
domains, we propose an entirely new way of creating successors on the GPU.

There had been different follow up works based on publications by Luong
et al. [LMT10a] that are related to our method. For instance, Ghorpade and
Kamalapur [GK14] proposed a method based on Luong et al.’s concept of
addressing specific TSP problems via iterating over all neighbors in parallel.
They introduced custom data structures and assignment strategies to generate
successors based on the possible assignment candidates. Similarly, Melab et
al. [Mel+11] presented a whole framework to realize parallel exploration of
neighbor states on GPUs. However, the conceptual mechanics of Luong et al.’s
method remained the same in terms of the need to transfer information to the
CPU side of the application.

148 CHAPTER 9. RELATED WORK

Rashid and Tao [RT18] discussed different concepts of neighborhood search,
as well as their potentials and challenges in terms of realization and adaptivity.
In addition, they presented GPU-based algorithms to implement an optimiza-
tion system using different kinds of meta heuristics. Unfortunately, they did
not go into detail in terms of their actual neighborhood exploration because
they assumed an already existing neighborhood exploration function (N(x),
see Section 10.2). In contrast to them, we actually contribute a generic real-
ization of an arbitrary neighborhood exploration function without leveraging
domain knowledge of a particular domain.

For detailed information about different meta heuristics and meta-heuristic
driven concepts, the interested reader may refer to the work by Talbi [Tal09].

Summary and Main Differences to Our Work Recently published pa-
pers have utilized GPUs for neighborhood exploration, with the CPU handling
general state information maintenance. Related work often assumes domain
knowledge about specific problem types or incorporates a given neighbor ex-
ploration function into their methods. However, these assumptions limit the
applicability of finding a general solution to build GPU-driven optimizers min-
imizing or even avoiding the need for CPU intervention. Assuming an existing
neighborhood rating function simplifies matters significantly and places the
burden of parallelizing local assignment heuristics properly on researchers and
users.

In contrast to these considerations, our approach provides a generic foun-
dation that allows for seamless integration of arbitrary local heuristics within
a GPU-first algorithmic environment. With our method, there is no need for
CPU involvement during optimization processes and we do not assume specific
characteristics of the heuristics being employed. Furthermore, our approach
can significantly improve performance over CPU-GPU methods that rely on
data exchange.

CHAPTER 10

IMPROVING PERFORMANCE
OF HEURISTIC OPTIMIZATION

This chapter presents contributions to considerably improve performance and
to reduce the memory footprint of heuristic optimization algorithms on GPUs.
The most important conceptual building block in this scope is internal search
trees, which are built either implicitly or explicitly during the optimization/-
exploration process (see Figure 10.1). A higher-level algorithm determines an
expansion and search strategy to decide which state to expand and which state
to select next for further exploration. The chapter starts with the concept of
parallel tracking and reconstruction of states by using compressed trace in-
formation (see Section 10.1). We continue by presenting our award-winning
method for efficiently generating successor states (expanding possible succes-
sors for a given state) on GPUs without using the CPU in any way (see Sec-
tion 10.2).

Figure 10.1: Four levels of an exploratory search tree using a form of expansion
and exploration strategy [KGK19c].

149

150 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

10.1 Parallel Tracking and Reconstruction of States

Figure 10.2 shows an imaginary and ideal 4-step expansion of a search tree
visually separated into its four expansion/exploration steps. In the scope of
this figure, different colors indicate different depth levels of nodes. For instance,
nodes in purple are the results of an expansion of a root node in blue.

Figure 10.2: Four iterations of an imaginary optimizer using a custom expan-
sion/exploration strategy [KGK19c].

As described in the introduction sections (see Chapter 3 and Chapter 8),
the starting point of each arrow refers to a successor-state generation that
clones state information and updates variable assignments. The transition
to a fully expanded successor state (e.g., from 1 to 3) is achieved afterwards
using simulation logic discussed in Part 1 of this thesis. Note that the number
of simulation steps performed can also be domain and even state dependent.
After performing a certain amount of simulation steps for each state (e.g., a
single one for simple board-based games), the state is evaluated, and a heuristic
decides whether to explore this state further or to delete it, provided that the
target state was not found in this step (see Figure 10.3).

In reality, the actual search trees are usually not expanded in a breadth-first-
search manner (see also [CWH08; KGK19c]). This means that the expansion
level may not match the depth level of all nodes (the depth of a node in the
search tree). As a result, each iteration of the expansion works on nodes that
generally do not share much information with each other. A sample for such
a case is visualized in Figure 10.4. The heuristic decided that state 11 will
be expanded only once instead of twice yielding state 15. After this decision,
the domain-specific solver approach also decided to further expand state 4 to
a new state 16 in this sample. However, state 16 has search tree depth three,
although it was expanded in the fourth step.

Particularly challenging here are scenarios involving backtracking (e.g., dis-
carding state 16 from Figure 10.2 and building a new 16th state from state 4).
In such a case, the optimizer "undoes" certain steps by rewinding to an earlier
state which may have a higher probability to lead to a potentially better solu-
tion compared to the current best known solution. This also means that states
must be stored to enable backtracking.

10.1. PARALLEL TRACKING AND RECONSTR. OF STATES 151

Figure 10.3: Visualized simulation steps in a search tree that has been ex-
panded twice. The simulation logic iteratively changes the orig-
inally formed states 2, 3, and 4. After reaching a defined termi-
nation condition, the expanded states are evaluated. In this case,
the decision was made to unwind several simulation steps of state
2.

Figure 10.4: Four iterations of an imaginary optimizer using an irregular expan-
sion strategy also potentially involving backtracking [KGK19a].

Figure 10.5: Multiple ways of expanding states into the next buffer [KGK19c].
A simple and straight-forward expansion strategy for each state
resulting in two successors per state (top) and an irregular state-
dependent expansion strategy (bottom). After emitting the up-
coming successor states into the Next buffer, both buffers are
swapped and the Current buffer is considered empty again.

152 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

In order to make efficient use of available memory and processing resources
on the GPU, we conceptually rely on double buffering in our approach and
distinguish between a Current and a Next buffer. For practical reasons, we
therefore work with 1D buffers residing in GPU memory. Figure 10.5 visual-
izes two sample expansion strategies consuming input states from the Current
buffer and writing their emitted successor states into the Next buffer. Fig-
ure 10.6 presents a detailed view on an expansion phase followed by multiple
simulation iterations.

Figure 10.6: Detailed view of multiple iteration steps that are applied to ex-
panded states [KGK19c]. Note that both buffers are continuously
swapped between different iterations. This ensures that no infor-
mation is overwritten and simplifies parallelization. Furthermore,
this allows to seamlessly integrate the methods presented in Sec-
tion 6.2 and Section 6.3.

We present an overview in Figure 10.7 to provide a better understanding
of the high-level method we introduced. First, we perform all the necessary
memory allocation steps on the CPU and GPU, including page-locked memory
transfer buffers. Next, we copy all initial states into the Current buffer on the
GPU device. Steps 2, 3, and 4 realize the actual optimization loop starting
with an initial evaluation step, which in turn begins with an expansion step, as
described above. The expansion strategy in this scope is domain and problem
specific. However, our method is not constrained by that, since it can work with
arbitrarily given heuristics. After performing several evaluation steps to deter-
mine the most beneficial states, step 3 involves pruning and history generation.
Here, the history-generation and leveraging concept (improving memory con-
sumption) is our key contribution in combination with the related and fully
integrated processing pipeline together with improved state-evaluation con-
cepts (e.g., improving occupancy). The idea of our history buffers is to store
recovery information in a highly compressed format to avoid maintaining each
state in memory. The final step is the reconstruction (or recovery) of states
that can be explored next, using the previously identified history information.
At this stage, there are two possibilities to continue processing: Either the
intended best state has been found or we continue processing.

10.1. PARALLEL TRACKING AND RECONSTR. OF STATES 153

Figure 10.7: High-level workflow of our approach to realize parallel tracking
and on-the-fly state reconstruction on GPUs involving 5 general
stages [KGK19c]. Our method relies on the concept of double-
buffering involving Current and Next buffers. In addition, we use
a method-specific history buffer and a recovery cache.

154 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

10.1.1 History and Fill Rate

As outlined above, one of the key components of our method is the maintenance
of a state history in an efficient way to reduce memory consumption. For this
reason, we introduced the concept of a History buffer along with a separate
Recovery phase to reconstruct states from information stored in the history (see
Figure 10.8). Practically speaking, it consists of a single 32-bit and two 16-bit
integers per state (sums up to 64 bits) and resides in CPU host memory to be
managed by the operating system in the scope of OS-managed virtual memory.
The main motivation for using CPU-hosted buffers is the significantly reduced
memory pressure on GPUs for large-scale problems. The 32-bit value stores
the actual evaluation results (the rating) of each state to determine how good
the stored state actually is. This information is required to realize a state-
selection step based on history information in order to generate new successors
from the most promising states (see step 4, Figure 10.7). The remaining two
16-bit integers are used to store the original state index (the source index of
the parent state) the current state was generated from and a relative successor
index.

Figure 10.8: Recovery information stored for a certain trace in a search tree
(left) consisting of four states (right) [KGK19c]. The trace on the
right represents the path from state 1 to 9 including information
about the nth successor index per state. The successor informa-
tion can then be used to reconstruct states from a predecessor
state. In this sample, the relative successor indices are 1, 3, and
2. However, the initial source state is required to start the recon-
struction process.

During recovery, we can replay a certain path of performed actions using
the original state indices and information about the relative successor indices.
However, this assumes an efficient method for generating successors based on
successor indices. This in turn is a hard problem when it comes to high-
performance throughput and efficiency on GPUs. We have addressed this prob-
lem in a separate paper, which is described in section Section 10.2 [KGK19a].
The recovery process itself requires a specific source state which which the
process begins. From there on, we replay all the decisions made to reconstruct
the same state that was previously discarded to reduce consumed memory. It

10.1. PARALLEL TRACKING AND RECONSTR. OF STATES 155

is worth mentioning that the recovery phase does not cause a large overhead
during runtime. This is due to the fact that the number of reconstructed states
is usually considerably less than the maximum number of states used during
the exploratory expansion phase. Therefore, it is more expensive to keep all
the states in memory and move them around than to compress all states and
restore a small set of them that survived the pruning step.

Precise information about memory consumption being saved when using
our method is discussed and analyzed in the following paragraphs. First, it
is important to understand how much memory we will need if we store all
states that potentially need to be considered during an optimization run. We
denote the maximum number of parallel states during optimization as |Sm|
and the maximum number of required states for backtracking in iteration i as
|Sb(i). The total amount of memory required for other approaches Mother(i)
in iteration i is given by [KGK19c]:

Mother(i) = 2 · |Sm| · m +
i−1∑
j=1

|Sb(j)| · m, (10.1)

where m is memory size in bytes of a single state. In the case of Mother(i), we
need memory to perform double-buffering and a series of memory allocations
to realize backtracking across multiple iterations. This particularly involves
storing all backtracking states for all previous iterations due to the fact that
we could backtrack to any state from the past in general. However, we have
to assume that |Sb(i)| ≈ |Sm| to jump to an arbitrary state. In general, this
results in all expanded states residing in memory, as in common Monte Carlo
Tree Search (MCTS) applications [CWH08; Gel+12]. Specifically for MCTS,
there are specific algorithmic extensions (such as the work done by Xiao et
al. [XMM18]) to reduce memory requirements. This must still be considered
a special case of a search-based method. Without loss of generality, this does
not hold for an arbitrary method and we still must assume the worst case of
|Sb(i)| ≈ |Sm|.

In contrast to these worst-case memory requirements of other methods, our
approach lowers this bar considerably [KGK19c]:

Mwe(i) = 3 · |Sm| · m + |Sm| · i · mh, (10.2)

where mh is the size of a single history entry; 8 bytes in our evaluation imple-
mentation. Since we can safely assume that mh is substantially smaller than
m in practice, we can conclude that Mwe < Mother for a given number of iter-
ations i. However, we optionally add an additional recovery cache that keeps
full copies of all states from a specified previous iteration. It covers the most
common case where backtracking starts more often from a certain depth level
in the tree. Therefore, we require three buffers if the cache is enabled instead
of two in comparison to other methods (see Section 10.1.3).

156 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

A particular challenge using state-reconstruction is the additional overhead
caused by the recovery phase itself. Since all states to be restored must are sub-
ject to a repetitive reconstruction that increases in terms of its reconstruction
depth, the computational effort increases with the number of iterations. As dis-
cussed in the previous paragraph, the number of states to be reconstructed can
be considered much smaller than amount evaluated/explored states in parallel.
This should already limit the computational overhead, which can be decreased
further by using the recovery cache mentioned above.

Nevertheless, maintaining a high occupancy across all states to be recovered
is a difficult problem. Mainly because there is repeated switching between
the evaluation and variable-assignment steps throughout the recovery phase.
Note that this behavior also occurs during state exploration (see Section 10.1
and Figure 10.3). However, depending on the number of look-ahead steps,
this may be negligible in comparison to the recovery phase and the current
tree depth. Applying kernels to all states that are currently being actively
processed leaves certain units unused in all cases due to logically divergent
control flow. We have already discussed countermeasures in Section 6.2 using
a specially designed algorithm based on thread compaction. However, the
same behavior can be observed at higher levels when continuing state-level
evaluations or attempting to assign variables in states that are already fully
assigned and/or do not require further assignments.

Figure 10.9: Visualization of the fill rate in the presence of 6 traces with a
maximum of 7 steps (from left to right) [KGK19c]. Note that this
visualization affects both the recovery and evaluation steps. The
dotted lines indicate steps after which an assignment step hap-
pens. This interrupts the evaluation process to take a different
execution path that generates assignments. The longer the recov-
ery phase or look-ahead phase during evaluation, the higher the
probability of arriving at the state shown here: Some states will
need significantly more steps to be performed than others (similar
to thread divergence in GPU programming). The F ∈ [0, . . . , 1]
values refer to an imaginary fill rate in percent to determine how
many states finished processing.

10.1. PARALLEL TRACKING AND RECONSTR. OF STATES 157

It can be safely assumed that an execution/simulation step is significantly
less expensive than an assignment step [KGK19a; KGK19c]. This is due to
the fact that (multiple) heuristics will be used in this scope to assign variables
according to the current characteristics of the state being processed. The
probability of interrupting the simulation step to make variable assignments for
all states increases as we have more states in general (see Section 10.1.2 for more
information on optimization logic). Even worse, the higher the probability
that a single outlier will block further processing, the more states there will be
that skip either or both simulation and assignment steps, resulting in unused
resources. Consider Figure 10.9, which visualizes this circumstance in the
presence of multiple states living in an imaginary buffer. It describes the high
level concept of the fill rate F ∈ [0, . . . , 1] in percent. The larger the fill rate,
the longer we will have to wait until states will be scheduled to do assignment
steps. Delaying this phase adds additional overhead during simulation, which
in turn can be reduced using the presented methods in Part 1. F enables
us to have explicit control when an assignment step should happen by taking
the number of states waiting for assignments into account. This significantly
improves performance throughout our evaluation scenarios (see Section 10.1.3
for more information).

158 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

10.1.2 Algorithms

The actual iteration logic to realize an occupancy-oriented iteration loop is
shown in Algorithm 17. The inputs to the algorithm are both processing
buffers, the current BC and the next buffer BN , to realize double buffering.
Furthermore, the algorithm also needs access to the active accelerator stream
to asynchronously enqueue all operations into the GPU driver worker queue,
as well as the maximum number of simulation steps. The first task is to
ensure valid variable assignments by performing an initial assignment step
in line 1. Afterwards, we enter the main iteration loop that consists of a
multiple reset, simulation, and assignment steps. In order to realize a fill rate
F implementation, we use a bit set to track per-state activity. Note that this
bit set can be efficiently realized using shared memory and a small staging
buffer in global memory (with a page-locked counterpart on the CPU side) for
global aggregation and data transfer purposes. In the case where this set is
not materialized in memory, the reset step in line 4 is no longer required. If
materialized, this step must reset the bit set so that it semantically contains no
elements. The innermost loop in lines 5–10 is required to implement the actual
fill-rate logic: As long as the fill rate is not reached, we continue simulating
to minimize expensive assignment steps. We then perform another variable
assignment step in order to make sure that all states are in a valid and well-
defined state (line 11). These steps are reiterated until we reach the user-
defined maximum number of steps (number of recovery steps or look-ahead
steps in case of evaluation).

Algorithm 17: Our logic for a single optimizer step [KGK19c]
Input: buffer BC and BN , GPU stream, max#Steps

1 AssignVariables(stream, BC);
2 iter := 0;
3 do
4 ResetProcessingSet(stream);
5 do
6 iter := iter + 1;

/* Note that the simulation logic performs
double-buffering and will swap buffers
accordingly such that the current buffer BC will
also contain the final simulation results */

7 #finished := Simulate(stream, BC , BN);
8 if #finished

|BC | ≥ F then
9 break;

10 while iter < max#Steps;
11 AssignVariables(stream, BC);
12 while iter < max#Steps;

10.1. PARALLEL TRACKING AND RECONSTR. OF STATES 159

Algorithm 18 shows the high level optimization loop that leverages the pre-
viously shown Algorithm 17 to implement evaluation and recovery steps. In
this scope, the number of evaluation steps is usually greater than the num-
ber of recovery steps to implement a buttoned-down way thats avoids easily
running into local minima. The inputs to this algorithm are the initial states
(often just one) stored in a buffer on the CPU side, referred to as CI . In addi-
tion, the algorithm receives the current GPU accelerator stream, the number
of optimization iterations (the maximum tree depth), the maximum number of
parallel states, the (bounded) history size, and the number of steps for evalua-
tion and recovery. To begin with, all buffers on the GPU and the CPU side are
allocated (lines 1–3) before entering the actual optimization loop (lines 4–20).
Within the loop, we first store all recovery states and perform an evaluation
step to get the actual state ratings (lines 5–7). The next step is pruning of all

Algorithm 18: Our algorithm for state tracking and reconstruction on
GPUs [KGK19c]
Input: CPU input buffer CI , GPU stream, #iterations, max#States,

max#HistoryEntries, #evalSteps, #recoverySteps
Output: output states on CPU

1 BC , BN , R := Allocate<GPU>(max#States);
2 BH := Allocate<CPU>(max#HistoryEntries);
3 CopyTo<GPU>(stream, CI , BC);
4 for iter := 1 to #iterations do

/* Prepare fast recovery and evaluate states */
5 Copy(stream, BC , R);
6 Evaluate(stream, BC , BN , #evalSteps);
7 Swap(&BC , &BN);

/* Prune the current states */
8 Prune(stream, BC , BN);
9 Swap(&BC , &BN);

10 Synchronize(stream);
11 AddToHistory(BH , BC);
12 recoveryIndices := ResolveRecovery(BH);

/* Recover states from the beginning */
13 recovery := recoveryIndices \ GetStateIndices(R);
14 ScatteredCopy(stream, CI , BC , recovery);
15 if |recovery| ≠ 0 then
16 Recover(stream, BC , #recoverySteps * (iter − 1));
17 end

/* Recover states from fast recovery cache */
18 ScatteredCopy(stream, R, BC , recoveryIndices ∩ indices(R));

/* Perform recovery of current iteration */
19 Recover(stream, BC , #recoverySteps);
20 end
21 result := CopyTo<CPU>(stream, BC);
22 Synchronize(stream);

160 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

states based on their determined rating, after which we insert the surviving
states into the history buffers on the CPU side (lines 8–11). Depending on
the decision of which states to recover, the states must either be reconstructed
(lines 12–17) or are fetched from the fast cache (line 18). In the first case, we
must perform a number of iter-1 recovery steps to ensure that they represent
a comparable state in relation to those stored in the cache. Before proceeding to
the next optimizer iteration, we perform the specified number of recovery steps
on all states. This again makes sure that all states, whether fully reconstructed
or copied from the cache, are prepared for the next iteration. The last step of
the algorithm is to issue a copy command to fetch all remaining "best" states
from the GPU device.

Note that this algorithm requires two synchronization points between CPU
and GPU (lines 10 and 22). In these cases, we need to retrieve information
from the GPU and transfer it to the CPU. This is not required in the case of
a CPU to GPU transfer of CPU buffer contents CI in line 14, since this buffer
is considered to reside in read-only page-locked memory.

Implementation Details

The following section summarizes implementation details that are important
when reimplementing our method. These insights described here help to re-
produce the benchmarks and measurements shown in Section 10.1.3.

We used the ILGPU [Kös23] compiler in combination with C# to develop our
prototype and all GPU kernels. Loading history entries back into CPU mem-
ory leverages page-locked allocations to enable direct-memory accesses from the
GPU side to improve performance. State data is represented via SOA-based
(structure-of-array) memory allocations to improve memory-transfer efficiency
on the GPU in all kernels. In addition, the ScatteredCopy function is real-
ized via explicitly specialized kernels that efficiently perform scattered copies
using reordering masks. Note that the pruning step happens on the CPU in
our implementation, as this allows using conveniently modeled high-level state
comparisons without considering GPU-programming constraints.

10.1. PARALLEL TRACKING AND RECONSTR. OF STATES 161

10.1.3 Performance and Memory Consumption Evaluation

We followed a similar evaluation approach as in previous work, using artificially
generated workloads to avoid difficult-to-understand and non-reproducible
benchmarks [KGK19c]. As current state-of-the-art optimization systems1

leveraged the power of neural networks to guide optimizers by rating assign-
ment possibilities, we followed this high-level concept. Consequently, we made
use of matrix-matrix multiplications to model our assignment steps (see Sec-
tion 6.2.3 for details of how many operations our matrix-matrix multiplications
involved) [KGK19c]. Due to the fact that these multiplications allowed for
side-effect-free realization of computational workloads, we also implemented
the interpreter steps by reusing the same concept.

Typically, the workload of an assignment step is significantly larger than that
of an interpreter step [KGK19c]. A well known example of this setting is the
evaluation of a large-scale neural network to perform assignments [Gel+12]. To
be able to represent and emulate such scenarios, we introduced two load factors
l1 and l2 that control the interpreter and assignment workloads, respectively. In
order to follow known optimization systems, we always assumed that l2 >> l1,
and thus introduced the following load relation by treating l2 as the additional
overhead that an assignment step has over an interpreter step. Hence, the
actual computational load factor of an assignment step is referred to as Load =
l1 · l2. We further set the assignment load factor l to be at least 10 to achieve
a reasonable workload per step [KGK19c].

There were some additional peculiarities of optimization systems from prac-
tice to consider: While they tracking multiple states in parallel, they did not
always break the interpreter loop at the same point in time to ask for assign-
ments (see also Figure 10.9). Without modeling these details in the context of
our benchmarks, all states would either always break for assignments at every
step or once every few steps. Since this behavior is completely unintended,
we introduced varying probabilities for each state. These probabilities allowed
us to implement common domain-dependent characteristics that required an
assignment from time to time (referred to as P). The larger P was, the more
likely that state would need an assignment step during a run of our evaluation
scenarios.

We evaluated our concept of parallel tracking and reconstruction using
two GPUs from NVIDIA featuring different compute capabilities [NVI23a]:
GeForce GTX Titan X and GeForce GTX 1080 Ti [KGK19c]2. Here, each
performance number was determined by taking the median execution time of
100 runs to compensate for overhead from the surrounding benchmark envi-
ronment. The fill rate F was set to values ∈ [0, 30, 60, 100], where a value

1At the time of writing this thesis.
2Note that both GPUs were state-of-the-art at the time of the publication. Therefore, we

retained these measurements to present the original results. However, it is of interest to
reevaluate our method on more recent GPUs in future work (see Chapter 14).

162 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

of F = 0 means that our model immediately pauses for assignments when a
state requested a variable assignment. This automatically served as a baseline
against which we could compare our improvements: Increasing F should even-
tually lead to significant performance improvements. In this context, a value
of F = 100 meant that we were lazily waiting until we reached a point in time
where all states were waiting for allocations.

The actual evaluation of our approach is divided into two parts: The first
part focuses on runtime improvements using our state-tracking (fill-rate based
optimizer loop) and the second part compares memory consumption and run-
time overhead using our state reconstruction method.

State Tracking Performance

In this part, we considered evaluating parallel tracking runtime performance
within an optimizer iteration. This was sufficient and representative, since
all necessary simulation and assignment steps take place within a higher-level
optimizer step (see also Algorithm 17). In general, increasing the number of
optimization iterations lead to a linear increase in runtime, since all iterations
of the optimizer were performed sequentially one after the other. Consequently,
we focused on parts of the optimizer covered by our proposed method.

A single optimization step was configured to use a Runge-Kutta scheme to
simulate multiple steps to explore the search space, determine the path to track,
and ultimately "move forward" with a smaller number of steps than the steps
previously used for exploration. We did 8 evaluation steps for exploration in
each step and one step to "more forward" (our recovery step) [KGK19c]. Fig-
ure 10.10 shows speedups achieved with our tracking approach while the load
factor was set to 10 while using 16384 and 65536 states in parallel [KGK19c].
These state configurations were chosen to realize reasonable workloads on the
devices. Using a smaller number of states usually makes GPU acceleration
unnecessary because of the overhead of maintaining GPU buffers and imple-
menting and maintaining GPU-aware implementations in general. The speedup
compared to an optimization loop without fill-rate optimizations ranged from
2.4× to 2.7× on both GPUs, while a significant 4× increase in the number of
states did not yield further speedups when F was set to 30%.

By setting F to 60%, we were able to achieve speedups in the range of
2.95× to 3.7× on both GPUs, depending on the benchmark configuration.
This picture did not change significantly when F was set to 100%. This was
due to the fact that the majority of the 16384 states were already pausing in
each step even when P = 30% (the worst case in general), since they were
waiting for assignments. Therefore, setting P to 70% did not result in any
further noticeable improvements for our method. Interesting to mention is the
very similar scaling behavior on both GPUs although they differed in many
properties. This could give the false impression that there were no performance
differences between both GPUs.

10.1. PARALLEL TRACKING AND RECONSTR. OF STATES 163

Figure 10.10: Speedups for different assignment probabilities P , number of
states, and fill rates F on both evaluation GPUs (log2 scal-
ing, higher is better, based on performance numbers published
in [KGK19c]). Note that the computational load was set to 10×
for all measurements. The speedups were calculated by com-
paring the gathered performance measurements to breaking the
interpreter loop for assignments after each step (F = 0%).

Figure 10.11: Speedups achieved by using the GTX 1080 Ti compared to per-
formance numbers measured on the GTX Titan X in the presence
of different number of states and value P (higher is better, based
on performance numbers published in [KGK19c]).

164 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

In fact, there were significant runtime differences between the two evaluation
GPUs. Figure 10.11 shows speedups measured using the GTX 1080 Ti com-
pared to the older GTX Titan X. The newer GTX 1080 Ti outperformed its
predecessor generation GPU by at least 1.45× using 16384 states. Increasing
the workload by using 65536 states resulted in a huge speed increase, ranging
from 1.85× to 1.97×. When looking at the overall acceleration measured on
both GPUs, it was found that varying the computational load provided further
speed increases of 2× (max) compared to a non-optimized step implementation.

Figure 10.12 presents the effect of varying the computational loads while
fixing our assignment probability to P = 70% using 16384 and 65536 states in
parallel. Overall, we measured speedups of 3.3× up to 3.7× using F = 30×
and 5.2× to 7.2× using F ≥ 60% on both GPUs. However, the overall relative
scaling behavior remained the same when varying the computational load. Note
that this was not true for the overall runtime which behaved highly similarly
to the comparison shown in Figure 10.11 [KGK19c].

Figure 10.12: Speedups for different computational loads (100× and 1000×)
and fill rates F while setting P = 70% on both evaluation GPUs
(log2 scaling, higher is better, based on performance numbers
published in [KGK19c]). The speedups were calculated by com-
paring the gathered performance measurements to the breaking
the interpreter loop for assignments after each step (F = 0%).

10.1. PARALLEL TRACKING AND RECONSTR. OF STATES 165

State Reconstruction Performance

The second part of the evaluation starts with changing the benchmark setting
and considering a situation where the optimizer is in iteration 16. We further
consider the case where we had to backtrack to iteration 15. Moreover, we
assumed that we must remember all visited states which is a common use case
(see also Section 10.1.1) [KGK19c].

As described in Section 10.1.1, a single history entry required 8 bytes to
store all recovery information necessary to reconstruct a state. In addition,
we had to keep all states in memory that were requires for parallel processing.
This means that we had to maintain at least two buffers storing all state
information (for double-buffering purposes) and another copy when using the
fast recovery cache. Figure 10.13 shows the total memory consumption in GB
of our method with and without caching compared to a method maintaining all
states in memory for backtracking purposes. As indicated in the diagram, our
method consumed several orders of magnitude less memory than traditional
methods. This was already a huge improvement when only 16384 states were
used in parallel.

Figure 10.13: Total memory consumption in GB for different state sizes (32KB,
64KB, and 128KB per state) while using different tracking ap-
proaches in iteration 16 (log2 scaling, lower is better, based on
performance numbers published in [KGK19c]). This figure com-
pares storing all states in memory to using our method with and
without iteration caching enabled.

Unfortunately, on-the-fly state reconstruction is not free, as it can require
many replay steps that block our processing pipelines before we proceed to
the next step. Figure 10.14 presents speedups and slowdowns of our method in
comparison to keeping all backtracking states either in CPU or directly in GPU
memory. Our method was approximately 3.5× slower than storing all states in

166 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

memory when caching is disabled and the state size is set to 32KB. Increasing
the state size immediately exceeded available GPU memory on our GTX 1080
Ti and caused us to fall back to a CPU-based buffer. Comparing our recon-
struction performance to the CPU-based buffers yielded huge speedups of 6.2×
to 7.2× [KGK19c]. We were able to achieve these improvements because our
reconstruction buffers fit easily into GPU memory. It is also worth mentioning
that the number of states can be increased by several orders of magnitude until
we hit memory capacity limits on modern GPUs [NVI23a; KGK19c].

Figure 10.14: Performance comparison of our state reconstruction to storing
all states in CPU memory and copying them over to the GPU
for processing (speedups, higher is better, highlighted in blue)
and keeping all states in GPU memory in iteration 16 (slow-
downs, lower is better, highlighted in orange). The diagram also
shows comparisons between different state sizes (32KB, 64KB,
and 128KB per state) to be tracked (log2 scaling, based on per-
formance numbers published in [KGK19c]). Note that we used
the GTX 1080 Ti for this evaluation which is limited to 11GB of
vram [KGK19c; NVI23a].

10.2. FAST AND EFFICIENT SUCCESSOR STATE GENERATION 167

10.2 Fast and Efficient Successor State Generation

As discussed earlier, successor-state generation is an essential task in the con-
text of heuristically driven optimization systems (see also Section 1.2 and Chap-
ter 10). Such a function for successor generation or neighborhood exploration
is denoted N(x), where x represents an optimization state for which successors
are to be generated [KGK19a]. The conceptual idea of using such a function
is illustrated in Figure 10.15.

Figure 10.15: Visualization of N(x) that conceptually generates ten potential
successors or neighbors for a particular optimization state.

Formally, a state x is composed of state and domain dependent variables λi,
where i ∈ {1, . . . , |λ|} and λ is the set of all variables that can be assigned in
a single state. We assume that all states have the same number of variables
during the solution of the optimization problem. Without loss of generality,
we define the solution of an optimization problem we wish to solve as finding
an optimal assignment of all variables λi to values Vj , where j ∈ {1, . . . , |V |}
and V is the set of all possible values that can be assigned to a variable. We
further assume that all variables have the same set of values. Consider the
following example, where we encounter two variables with different value sets
in their original problem definition to assign these variables to

• λ1, which can only be assigned to {1, 2}, and
• λ2, which can only be assigned to {2, 3, 4}.

A simple, straightforward and theoretically sound solution would be to set
V = {1, 2, 3, 4} in order to represent all values of the initial problem definition.
However, this would result in a large number of non-possible assignments of
variables to values that must to be discarded in practice. Consequently, we
assume that all values Vj represent an index that in turn points to their jth
assignment possibility. This assumes an input mapping Y [KGK19a],

Y (λi, Vj) 7→ jth value which can be assigned to λi,

which in turn causes Vj to become an alias for index j (Vj ≡ j). In this sample,
this results in V = {1, 2, 3} and a mapping Y defined as

Y (λ1, 1) := 1, Y (λ1, 2) := 2, Y (λ1, 3) := ⊥,

Y (λ2, 1) := 2, Y (λ2, 2) := 3, Y (λ2, 3) := 4,

where ⊥ refers to an illegal assignment. Further, the assignment of λ1 7→ 3

168 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

would be considered invalid, as there is no such assignment possibility since
Y (λ1, 3) = ⊥. Hence, to reject invalid assignments by definition (without pay-
ing attention to additional constraints), a simple boundary check is sufficient in
all cases. We refer to the number of valid assignment possibilities for a given
variable λi by |Y (λi)| [KGK19a]. Note that depending on domain/scenario
specific constraints, not all of these variables may be free to assign at all times.

The goal is to solve large-scale problems consisting of thousands of states,
which in turn are composed of thousands of variables in total. Therefore, it is
not feasible to enumerate all states in the immediate neighborhood of a given
state x and materialize them in memory. After several expansion steps, the
number of assignment possibilities grows exponentially, making such a solution
infeasible in practice. Instead, the idea is to explore more promising states in
favor of all possible successors. This refers to the fact that the probability of
such state leading to the optimal solution is considered to be higher than the
probability of other possible successors. We follow related work from Munawar
et al. [Mun+09] and Campeotto et al. [Cam+14b] to explore the neighborhood
of each variable locally. Unlike other work, we do not randomly choose variables
and their possible assignments, but rely on a local rating concept for possible
variable assignments. We call this "guided by local heuristics" to narrow the
exploration space while guiding the neighborhood investigation process in a
promising direction. Local means that each variable assignment rating is per-
formed independently per variable without taking other assignments to other
values in the same state at the same time into account. This works by inter-
preting local rating evaluations for each assignment possibility per variable as
a weighted importance-sampling problem (see also Figure 10.17). This requires
summing up all local ratings per variable given by a heuristic-based evaluation
function H [KGK19a]:

RS
λi

(x) :=
∑

Vj∈V

H(x, λi 7→ Vj), (10.3)

where RS
λi

(x) represents the sum of all local assignment ratings of the variable
λi in the scope of state x. To select a value assignment, we first choose a
uniformly distributed random value rk ∈ [0, . . . , RS

λi
]. We then remodel the

presented sum as an inclusive prefix-sum to retrieve offsets based on the relative
importance of all local ratings in relation to all others [KGK19a]:

OS
λi

(x, k) :=
k−1∑
j=1

H(x, λi 7→ Vj), (10.4)

where k is the index of the current value Vk for which we want to compute the
offset [KGK19a]. Finally, we pick a matching value Vk for which

OS
λi

(x, k − 1) ≤ ri < OS
λi

(x, k) (10.5)

holds. This enables us to parallelize the rating process for a variable λi by
rating all possible mappings to values in V in parallel. Unfortunately, it is

10.2. FAST AND EFFICIENT SUCCESSOR STATE GENERATION 169

also possible that the assignment of λi 7→ Vj and λk 7→ Vl, where i ̸= k, leads
to a violation of given constraints. To avoid such cases in general, we do not
assign different variables in parallel. On the one hand, this solves the described
problem. On the other hand. it also allows using sophisticated heuristics
that take all other variable assignments into account when computing local
ratings,. Note that this is not a restriction, as the order in which variables are
assigned can be either random or based on some other meta-heuristic decision
process. This avoids the appearance of biased optimization results and enables
the optimization system to recover from local minima in certain situations and
domains.

Figure 10.16: High-level view of our approach on a conceptual level involving
eight steps [KGK19a].

Figure 10.16 shows our high level workflow in a non-parallel and conceptual
way. In the first step, we detect active variables that require an assignment.
From now on, we differentiate between active and inactive variables. The latter
are assumed to keep their current assignment and do not need to be reassigned.
The decision whether a variable is considered active is usually made by the
parent optimization process. An example would be a chess engine requesting

170 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

new assignments for all chess pieces that can be moved. Therefore, we assume
that this step has already been completed and the remaining task in this scope
is to find these variables.

After identifying all active variables, we determine an order in which we
plan to assign them. This can either be done in a random order or based
on an even higher-level heuristic. In the diagram shown, variable 3 had been
selected first (to be assigned). No matter in which order all active variables
are assigned, the next step is always to resolve the number of possibilities.
We have already discussed the possibility that the value set may contain too
many values, and we use boundary checks to immediately skip values that are
trivially not assignable. Depending on the current state, more values may not
be assignable. For this reason, we resolve the number of assignment possibilities
based on the current state and the optimization model.

We evaluate each possibility with a local heuristic function H as described
previously in step 3. This results in a set of rating values R of a user-defined
type. For the algorithm itself, the type of rating values is not important and
is considered opaque. A common choice in practice are 32-bit or 16-bit float
or 16-bit float values [KGK19a].

Figure 10.17: This figure demonstrates a sophisticated mapping process.
A set of eight determined ratings with values between −20
and 40 based on imaginary user-defined rating specification
(top) [KGK19a]. Before converting these ratings to our
algorithm-internal mapping space M , we apply two provided ag-
gregators which resolves the minimum (−17, Agg1) and maxi-
mum value (38, Agg2). In this sample, positive ratings are con-
sidered less important than their negative counterparts. There-
fore, the mapping process uses the minium and maximum infor-
mation to mirror the negative values from the rating level to the
right-hand value range of all M values (middle). The remaining
two steps are the sum computation and the selection process of
the random decision variable (bottom). Color coding of different
intervals refers to the relative importance of all mapped ratings,
with red being the most important one.

10.2. FAST AND EFFICIENT SUCCESSOR STATE GENERATION 171

In order to reason about the individual ratings R, we convert all ratings to
values M ∈ N (step 5). If a mapped rating M is 0, this possibility is con-
sidered impossible or not allowed and therefore ignored during the assignment
process. The mapping process itself allows domain experts to model custom
activation-function like behavior for variables, taking aggregated information
into account (step 4). All remaining steps (6 to 8) use the formally defined
importance-sampling procedure. Once all mapped values have been deter-
mined, we compute the so called decision space, which is the sum of locally
determined mapped ratings (formally defined in Equation (10.3)). Based on
this sum, we pick a random value and select the corresponding importance
interval based on all M values (see also Equation (10.4) and Equation (10.5)).
A practical algorithm and implementation-aware visualization is shown in Fig-
ure 10.17.

Figure 10.18: Our three step successor generation process [KGK19a].

In analogy to our method of parallel state-tracking (see Section 10.1), we
also use double buffering to realize successor generation. It works in three
steps (see Figure 10.18), beginning with an initial cloning of all source states
into the next buffer. In practice, a single source state is cloned into the target
buffer multiple times [KGK19a]. In this way, users have full control over the
state-expansion or growth rate in the context of one iteration. The second step
involves the generation of successor values for variable-assignment, tracking
and recovery (see also Section 10.1.1). A successor value acts as a random
seed for variable assignments in general. Storing this value together with the
origin-state information allows us to always recover the same state based on the
stored history entries. Generating these values can be realized via a parallelized
algorithm using an random-number generator to determine different values for
all states. The final step in the actual successor creation, which uses our
presented high-level algorithm Figure 10.16 and swaps the current and next
buffers.

172 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

10.2.1 Detailed View

For efficiency reasons, the successor-generation functionality is designed to be
realized as a single GPU kernel that incorporates all local heuristic evaluation
functions and mapping aggregators within it. By integrating all necessary
functions within the same kernel, we can ensure seamless and efficient execution
of our algorithms on modern GPU architectures. As shown in Figure 10.19, our
warp-focused (or wavefront-like) workflow provides an in-depth view of every
step involved inside our kernel. This visualization helps differentiate between
parallel processing steps, with group-wide operations running independently
on each thread or being subdivided into warp-sized chunks.

In practice, this can be achieved by meta-programming techniques like
template/generic specialization, or partial evaluation [Kös+14a; Kös+14c].
Methodologically, we use a single thread group with N threads per optimiza-
tion state that assigns all variables, making heavy use of thread-group-wide
cross-thread communication. Step 1 involves the use of bit sets that can be
realized with densely packed 64-bit long values to improve memory efficiency.
Determining all active variables means parallelized bit-set-based aggregations
across all threads in the group. Depending on the scenario, it may be more
advantageous to use only threads in the first warp. This leaves more free
space for other concurrently running groups in the scope of the warp scheduler
on the device. Afterwards, we iteratively assign each free variable one after
another via group-wide broadcasts (see above). Note that this step is highly
dependent on the optimizer implementation, as these systems usually already
keep track of variables that need to be assigned.

In step 2, we determine the number of possibilities in parallel for each
thread in the group, since this can be considered a cheap pre-variable op-
eration [KGK19a]. Therefore, it is usually not necessary to involve group-wide
value broadcasts that force synchronization. If determining the number of pos-
sibilities turns out to be more expensive, it can also be parallelized in this step
and propagated to all other threads in the group. However, this step is not
considered the bottleneck of the algorithm.

Rating (step 3) of each possibility is performed by all threads in parallel using
group-stride loops. The rating storage holds all computed individual ratings Ri

determined using the local heuristics introduced earlier. In general, the storage
is set up in global memory if a recomputation of all heuristic values is more
expensive than loading values asynchronously from memory. Moreover, using
vectorized load/store operations gives an excellent memory throughput due to
coalesced memory accessed by the design of the kernel structure. This also
allows us to hide memory latency when solving large-scale problems, making
the overhead of storing values in global memory at this stage negligible in
context of the whole processing pipeline. Step 3 also allows caching of heuristic-
related values in shared memory, since we do not use any shared memory at
this stage without our approach.

10.2. FAST AND EFFICIENT SUCCESSOR STATE GENERATION 173

Figure 10.19: Detailed view of our method involving ten different steps and
cross-thread interaction via shared memory and warp-wide re-
ductions [KGK19a]. Multiple conceptual phases enable us to
make efficient use of all available hardware processing resources.
Blue arrows refer to data dependencies and data flow, whereas
orange arrows refer to memory accesses. Areas surrounded with
dashed lines represent temporary information stores available to
each thread in the group. Purple boxes are thread-local contents
in register space, yellow boxes represent data stored in shared
memory, and red boxes is data stored in global device memory.

174 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

Individual aggregator instances (in purple) are kept in register space (step
3) until aggregation (upcoming step 4). To map all stored ratings, we need
accumulated aggregation information, which is achieved in step 4. It works by
aggregating all intermediates at the warp and then at the group level using
broadcasting via shared memory.

The actual mapping step of all ratings is done by splitting the process into
chunks of the size of a warp while accessing the previously computed rating
and aggregator information. Each chunk processed by a warp (referred to as a
segment) converts ratings into mappings in an iterative group-stride manner.
Note that the way in which values are loaded from the rating storage still hap-
pens in a coalesced way to improve memory efficiency. Every warp computes
a segment-wide offset table (see also Equation (10.4) and Figure 10.17) over a
prefix sum and saves all relative offsets of each element in the global prefix-sum
storage, which does not fit into shared memory. At the same time, the first
lane of each warp stores the already computed rightmost prefix-sum offset in
shared memory. These offsets represent an acceleration structure in shared
memory that is then used to determine the selected assignment possibility in
the end (steps 6, 7, and 8). This avoids the use of expensive global memory IO
for segment offsets while providing fast and efficiency random-access lookups
of mapped rating values.

In our case, we use a single 64-bit integer variable per warp (per segment)
to store the rightmost upper bound. We recommend using 64 bits per entry
to avoid overflows on large-scale problems and problems with larger mapping
values that can cause their sums to overflow 32-bit integers [KGK19a]. It also
leaves room for further case-by-case differentiations or compile/runtime special-
izations of our method to increase the number of segments cached. Conserva-
tively, we can assume about 48 to 80kb per group on a current state-of-the-art
NVIDIA accelerator [NVI23a] with group sizes of 1024 threads each (2 groups
per multiprocessor to achieve maximum thread occupancy). This yields about

48 · 1024
8 · 32 = 196608 using a GPU with compute capability 7.0 and

80 · 1024
8 · 32 = 327680 using a GPU with compute capability 8.0

supported assignment possibilities per variable, which covers even large-scale
problems.

Using the segment lookup, we can easily determine in step 6 whether an
assignment is possible or not. If the right-most value in the segment lookup is
non-zero, an assignment is possible since there is at least one solution. If this
is the case, we proceed with step 7 by choosing a random decision variable r

which is smaller than the right-most boundary stored in the segment prefix-sum
lookup (see Figure 10.17). If we cannot assign the variable, we continue with
step 9 in which the parent optimization system is notified that no assignment
was possible. Depending on the domain, this can also mean that no solution

10.2. FAST AND EFFICIENT SUCCESSOR STATE GENERATION 175

could be found due to conflicting constraints. Should this be not the case, we
can deactivate the variable and continue with the next active one.

If the rightmost value in the segment lookup is non-zero, an assignment is
possible because there is at least one solution. If this is the case, we proceed to
step 7 by choosing a random decision variable r that is less than the rightmost
boundary stored in the segment prefix sum lookup (see Figure 10.17). If we
cannot match the variable, we proceed to step 9, which informs the higher-
level optimization system that a match was not possible. Depending on the
domain, this may also mean that no solution could be found due to conflicting
constraints. If this is not the case, we can deactivate the variable and continue
with the next active variable. At this stage, we can cache the heuristic data in
shared memory since it will not become a problem.

The 7th step uses all threads in the group to determine the warp index to
which the decision (the random value drawn) belongs. The group performs
a stride loop, accessing our previously built shared-memory-based lookup for
segments offsets. Due to the nature of shared memory, we benefit greatly from
the memory-access times in this step. From there on, we send information of
the selected segment index to the first warp in the group, freeing up processing
resources at this stage (step 8). All lanes in the first warp then iteratively load
the selected subsection of prefix-sum values from global memory. By definition,
one of these lanes will sooner or later find the matching decision interval in step
8. At this point, there is only one step left: applying the decision in step 10
and conceptually deactivating the current variable being processed. After that,
the processing of the next variable considered active in the queue continues.

It is important to also consider duplicate states that can theoretically arise
from this process. There are several reasons for this, one of which is randomized
successor generation with generated seeds. The other is the fully parallelized
state generation with no communication between states. Hence, it can be
argued that this is the major drawback of the presented method. In general, the
probability that a duplicate occurs depends on the constraints, the variables (as
well as their assignment possibilities), and the definition of the local heuristics.
In fact, the probability that two states are identical after n expansion steps
is pn, where p ∈ [0, . . . , 1] is the probability for the occurrence of a duplicate
state [KGK19a]. Therefore, this fact can be safely neglected for practical large-
scale applications [KGK19a].

176 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

10.2.2 Variable Types and Memory Consumption

To provide more flexibility to the users, we distinguish between different
types of variables called λT . This allows them to use different heuristics in
a convenient and efficient way by specialized the proposed method accord-
ingly [KGK19a]. Furthermore, this also allows the use of different rating types
R, aggregators, and even mapping types M (see Section 10.2.1). This decision
could also be made in the scope of a single provided heuristic. However, this
would again lead to diverging code paths within this code and increase main-
tenance overhead due to the strong coupling of separable modules [Kös+14a].

In terms of memory required to use our method, we need intermediate buffers
to store all prefix-sum and rating values. This results in a single 64-bit integer
value to store prefix-sum offsets, and it also depends on the size of each custom
rating entry. As outlined in the section above, we support multiple variable
types, which in turn may depend on their rating type. We want to minimize the
memory footprint and therefore reuse the intermediate buffers for the valuation.
Hence, the size of each rating entry to allocate is the maximum size of all rating
types being used [KGK19a]:

size(R entry) := max
(
size(R1), . . . , size(R|λT |)

)
, (10.6)

where |λT | is the number of different heuristics λT being used. Since we require
a single rating entry per variable assignment possibility, the overall memory
consumption in bytes for all intermediate data structures per state x is given
by [KGK19a]:

|Ymax| := max
(
|Y (λ1)| , . . . ,

∣∣∣Y (λ|λ|
)∣∣∣) (10.7)

intermediate(x) := |Ymax| · (size(R entry) + 8 bytes) , (10.8)

assuming that we assign all variables sequentially (see Section 10.2) and can
reuse the buffer if it supports assigning the variable with the most possibil-
ities (|Ymax|). If this is not intended and all variables should be assigned
concurrently, the memory consumption will increase to

intermediate(x) :=
|λ|∑
i=1

|Y (λi)| · (size(R entry) + 8 bytes). (10.9)

10.2. FAST AND EFFICIENT SUCCESSOR STATE GENERATION 177

10.2.3 Algorithms

Algorithm 19 shows the actual successor generation GPU kernel designed for
specialization [KGK19a]. The algorithm is our main contribution and realizes
all the explained concepts earlier (see also Section 10.2.1). It takes a current
state x, a given variable type λT , and a compatible heuristic H designed for
the specified variable type. Note that λT is a meta-programming input, not
an actual dynamic input variable [Kös+14c]. Its intended use case is to inline
all H-related functions into the kernel, thus creating one kernel variant per
variable type. This also affects selection of active variables from the parent
optimization system, this algorithm would be used in (line 3).

The first steps in the algorithm are to perform shared-memory allocations
(line 1). This includes space for sharing aggregator values and storing segment
lookup information. In practice, the amount of shared memory required is
usually determined at solve runtime and is therefore, realized via dynamic
shared memory [NVI23a].

The next steps involve interpreting the successor value (see Figure 10.18) as
a random seed used to drive the successor generation (line 2). Next, we enter
the sequential variable-assignment loop that starts by resolving the number of
possible assignments for the variable being assigned (line 4). The following
steps (lines 5–7) involve the computation of all ratings, aggregating high-level
information across all ratings, and mapping all the ratings. Note that each
thread in the group will participate in these operations to exploit maximum
parallelism and ensure high occupancy of all processing units. Details of these
operations are shown in Algorithm 20 and Algorithm 21.

Lines 8–15 handle the case where no assignment could be determined. This
is the case when the accumulated prefix sum does not result in a sum greater
than zero. In this case, only the first thread of the group executes the required
optimizer notification in terms of deactivating the variable. In any case, all
threads in the group wait until the first thread has committed its changes
(line 13) before continuing with the next variable assignment. Depending on
the domain, a slight modification of the algorithm may be required at this
point to potentially break the assignment loop if the optimizer has entered an
unrecoverable state (see Section 10.2).

If an assignment is possible (lines 16–30), the initially required step is choos-
ing a random value in the appropriate range (see Figure 10.16 and Equa-
tion (10.5)). This makes use of the loaded seed of the random-number genera-
tor and provides an updated seed for the next iteration. Based on Figure 10.17,
we look for the matching segment using Algorithm 22 in line 17.

As discussed before, only the first warp is used to determine the actual
variable assignment by testing all values in the segment interval (lines 18–26).
Each lane of the warp tests a single offset of the determined segment using the
cached prefix sums. It is sufficient to use the first warp, since the size of a
segment is equal to the warp size.

178 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

Algorithm 19: Our fast successor generation on GPUs [KGK19a]
Input: State x, current variable type λT , heuristic H for the current type λT

/* Shared memory allocations here */
1 ...;
2 randomSeed := x.SuccessorValue;
3 foreach λi ∈ active variables of type λT do
4 |Y (λi)| := x.GetNumberOfPossibilities(H, λi);

/* Algorithm 20 */
5 a := RateAllPossibilities(x, H, λi);

/* Algorithm 21 */
6 MapAllRatings(x, H, λi, a);

/* Check for a possible assignment */
7 rating := x.PrefixSumStorage[last segment];
8 if rating < 1 then
9 if group index = 0 then

/* There is no possible assignment */
10 x.CouldNotAssign(λi);
11 Deactivate(λi);
12 end

/* Wait for all threads to continue processing with
the next variable */

13 group barrier;
14 continue;
15 end

/* Get random decision value v */
16 v, randomSeed := DrawRandom(randomSeed, [0, . . . , rating − 1]);

/* Algorithm 22 */
17 segment := FindMatchingSegment(x, λi, v);

/* Select possibility based on v */
18 if warp index = 0 then
19 k := segment * warp size + group index;
20 leftSum := x.PrefixSumStorage[k - 1];
21 rightSum := x.PrefixSumStorage[k];
22 if leftSum ≤ v ∧ rightSum < v then
23 x.Assign(λi, possibility given by v);
24 Deactivate(λi);
25 end
26 end
27 group barrier;
28 end

/* Update successor value */
29 if group index = 0 then
30 x.SuccessorValue := randomSeed;
31 end

10.2. FAST AND EFFICIENT SUCCESSOR STATE GENERATION 179

All remaining threads immediately encounter the following barrier (line 27)
and wait for the assignment process to complete. By analogy to the case where
no assignment is possible, the design guarantees that only a single thread in the
first warp performs the assignment step (lines 23–24). The required operations
are to assign the variable to the determined possibility and to disable the
variable to skip further assignments. Finally, after all active variables of this
kind have been assigned, we update the successor value in global memory to
commit the state of the random number generator.

Algorithm 20: RateAllPossibilities for Algorithm 19 [KGK19a]
Input: State x, local heuristic H, variable λi

1 a := H.CreateAggregator();
/* Loop over all assignment possibilities, rate them, and

store all ratings and use the aggregator */
2 for j := group index to |Y (λi)| step by group size do
3 Ri := H.ComputeRating(x, λi, j);
4 x.RatingStorage[j] := Ri;
5 a.Aggregate(Ri);
6 end
/* Wait for group threads to reach this point */

7 group barrier;
/* Reduce all register-based aggregators and broadcast

results to all threads in the group */
8 return group reduce (a);

Algorithm 21: MapAllRatings for Algorithm 19 [KGK19a]
Input: State x, heuristic H, variable λi, reduced aggregator a

1 leftBoundary := 0;
/* Loop over all ratings in the variable range */

2 for j := group index to |Y (λi)| step by group size do
/* Fetch rating from storage and map rating */

3 storedRating := x.RatingStorage[j];
4 Mi := h.MapRating(storedRating, a);

/* Compute lower prefix offset and update storage */
5 prefixOffset := leftBoundary + group prefix sum (Mi);
6 x.PrefixSumStorage[j] := prefixOffset;
7 leftBoundary := group broadcast (prefixOffset, group size - 1);
8 if lane index = 0 then
9 SegmentLookup

[
j

warp size

]
:= leftBoundary;

10 end
11 end

/* Wait for group threads to reach this point */
12 group barrier;

180 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

Both, Algorithm 20 and Algorithm 21 use group-stride loops to iterate over
the number of assignment possibilities |Y (λi)| of the current variable to assign
λi (see also the Implementation Details section below). In the first case, we
create a heuristic-specific (user defined) aggregator instance (line 1) and com-
pute all rating values for each assignment possibility (line 3). The next step is
to store ratings in the method-specific storage (line 4) and perform a thread-
local aggregation (line 5), followed by a group wide reduction of all aggregator
results in shared memory (line 8).

Algorithm 21 starts by loading previously computed ratings from our storage
(line 3) and maps them to our intermediate rating format of type M (line 4).
The idea is to continuously update the left boundary of the entire prefix-sum
computation by performing group-wide prefix sums (line 5). To improve per-
formance, we store the newly computed prefix offset in our temporary storage
buffer (line 6) and update the left boundary for all threads via group-wide
broadcasts from the last participating thread in the group (line 7). Then, each
first lane in each participating warp stores the right boundary value (given by
the last thread in the group) in the segment lookup (lines 8–10). Finally, we
wait until all threads in the group have committed their changes.

Algorithm 22: FindMatchingSegment for Algorithm 19 [KGK19a]
Input: State x, variable λi, value v

1 matchingSegmentIdx := −1;
/* Iterate over segment lookup in shared memory */

2 for j := group index + 1 to
⌈ |Y (λi)|

warp size
⌉

step by group size do
/* Load boundaries from shared memory segment cache */

3 leftBoundary := SegmentLookup[j − 1];
4 rightBoundary = SegmentLookup[j];

/* Check whether we have found a match (see
Equation (10.5)) */

5 match := leftBoundary ≤ v ∧ rightBoundary < v;
6 matchingSegmentIdx := group reduce (match ? j : −1);
7 if target segment matches then
8 return matchingSegmentIdx;
9 end

10 end

The last piece of our main algorithm is described by Algorithm 22. It is used
to find a matching segment in our fast segment lookup table stored in shared
memory that belongs to a drawn random decision value (Equation (10.5)).
Since each segment represents a range of warp-size many outcomes, we perform
a group-stride loop over all possibility segments (line 2, see also the Implemen-
tation Details section below). By loading the left and the right boundaries from
the segment lookup (lines 3–4), we can immediately check if the segment is a
match (line 5). Based on a group-wide reduction using a custom logic, keeping
only positive values during reduction, we either get a single positive value or

10.2. FAST AND EFFICIENT SUCCESSOR STATE GENERATION 181

no match at all. Once we find a matching segment, we can immediately break
the loop for all threads (the group-wide reduction is assumed to return the
same value for all threads). Note that a match is guaranteed by construction
and that no further group barriers are required, since the group-wide reduction
already requires synchronization between all threads.

Implementation Details

For the implementation of our main contribution, we chose C++ and CUDA for
the entire implementation. The reason for that was to get an actual comparison
between our C++ CPU version with automatic vectorization by the C++
compiler used for benchmarking purposes during the evaluation, while allowing
code generation for the SSE and AVX instruction sets. In this way, it was
possible to share parts of the code between the two worlds. Free variables were
tracked by self-designed bit sets, using hardware instructions to jump from an
active bit to the next [NVI23a].

Instantiating specialized kernels (see Algorithm 19) was realized using C++
meta-programming techniques via templates [AG04]. We also enforced inlining
of all heuristic methods to avoid nested calls within loops, which would impose
a significant overhead. Moreover, we used warp shuffles, optimized prefix-sum,
and reduction implementations [NVI14; KGK19a] to improve efficiency of our
implementation. Kernel specialization yielded highly optimized code instances
with significantly reduced divergence in terms of the code paths being taking.

As for random-number generation, we used XorShift⋆-based algorithms in
practical applications of this method [KGK19a]. The advantage of these algo-
rithms is that they are fast to execute, have a small memory footprint, and
have sufficient graduation in terms of value distributions. Note that we ini-
tialize all of these generators with seeds from the CPU side which had been
emitted by more complex number generators.

Algorithm 21 and Algorithm 22 suffer from thread divergence, since their
loop-trip counts is not the same for all threads in the loop. This can lead
to deadlocks or undefined behavior on GPUs since we leverage group-wide
operations within these loops. We conservatively adjusted the loop boundaries
in our implementation to perform the same number of iterations for all threads.
In a similar way, we adjusted potential out-of-bounds shared-memory accesses
by padding the shared-memory segments.

182 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

10.2.4 Performance Evaluation

In analogy to previously presented evaluations in this theses, we did not eval-
uate our newly introduced algorithm to compute N(x) using external bench-
marks, which may affect the reproducibility and the significance of the evalua-
tion (see also Section 10.1.3). Therefore, we focused on the successor-generation
processor itself, using a well established heuristic: The Manhattan distance,
which is often used for path-finding problems [KGK19a]. This conceptually
results in a 2D grid on which we tried to find a best path using the heuristic
mentioned before given by [KGK19a]:

d(p, q) =
n∑

i=1
|pi − qi|, (10.10)

were p and q are two points on our imaginary grid to compute the distance
heuristic d for. The overall objective was to move a point p until we reached a
target position on the grid. To do this, we moved our point p to a neighboring
cell guided by our Manhattan-based distance heuristic d. In this setting, all
neighboring cells of a single cell were candidate successor locations for a given
point. They essentially acted as successor optimization states that could be
explored in each heuristic optimization step.

In order to create reasonable workloads, we planned to move multiple points
for which we intended to compute the shortest path to a set of given target
positions. Each point was seen as a single variable λi that needed an assign-
ment in each step. A step in this framework meant that each point is moved
once to a different adjacent location on our evaluation grid. For evaluation
purposes, we also chose |λ| ∈ {8, 32} to analyze the impact of a relatively
small number of variables on our runtime behavior [KGK19a]. To evaluate
the impact of a small number of variables on our runtime behavior, we chose
|λ| ∈ {8, 32} [KGK19a]. Although the intended application scenarios were
large-scale optimization problems involving thousands of variables, using a few
variables gave us excellent insights about potential performance gains: This
settings represented the worst case of our method, as we added a certain over-
head to compute successor information per state. Theoretically, the worst case
would be a single variable which just needed to differentiate between two pos-
sible options. However, we considered such a setting to be out of scope for
our method since such a theoretical example was beyond our intended target
application scenarios.

The number of possible assignments per variable λi per step (|Vi|) is given
by the number of neighboring cells per point [KGK19a]:

|Vi| = j · j − 1, (10.11)

where j is the number of adjacent cells in a single dimension. To create dif-
ferently challenging scenarios, we set j to be ≥ 35, even though the previously
presented 2D problem required only 8 neighboring cells. However, this gave us

10.2. FAST AND EFFICIENT SUCCESSOR STATE GENERATION 183

the opportunity to simulate larger workloads while computing the Manhattan
distance separately for each assignment possibility Vi. We chose j ∈ {35, 67, 99}
to create workloads inspired by practical applications we encountered in several
projects [KGK19a] (see also Part III). Before the actual variable assignment,
the different selection possibilities Vi were mapped to a value ∈ [0, . . . , 8] in all
cases to move our points to an existing neighboring cell. To have even more
control over the computational load during heuristic evaluation, a load factor
l was introduced. It controlled the number of repetitive Manhattan-distance
computations in a loop that combined all results to make sure that the com-
piler cannot fold/eliminate the loops. The baseline value for all benchmarks
performed was chosen to be l = 1. This again represented the worst-case
in the scope of our evaluation scenario, as the computational load per pos-
sibility was extremely low. Since other common application scenarios of our
method lie in the field of AI-driven heuristics involving chained matrix multi-
plications [Gel+12; KGK19a], we varied the computational load to investigate
the scaling behavior of our method.

Similarly, we chose |X| (the number of states) to be either 1024 or 4096, since
extremely small workloads were out of scope of our application [KGK19a]. It
reflected certain real-world characteristics of use cases we encountered, in which
the number of assignment possibilities per variable was significantly smaller
than the number of states (|Vi| << |X|) [KGK19a]. This usually avoided
emerging of duplicate states during optimization (see also Section 10.2).

For the evaluation systems, we used two CPUs and two GPUs to com-
pare our GPU-based implementation with an optimized CPU implementation.
The CPUs used were the Intel Core i9 7940X (14 cores supporting 28 par-
allel threads) and the more recent AMD Ryzen 2700X (8 cores supporting
16 parallel threads)3. The GPUs used were two NVIDIA GPUs with differ-
ent compute capabilities [NVI23a]: GeForce GTX Titan X and GeForce GTX
1080 Ti [KGK19a]4. Since AMD’s CPU was significantly slower than all other
benchmark systems used, we present all benchmarks as speedups compared to
the Ryzen 2700X (making the AMD system the baseline).

Figure 10.20 shows the first evaluation scenario involving 8 variables per state
in the presence of 1024 states. As long as the problem was small (considering
only 1224 assignment possibilities per variable), Intel’s CPU was still pretty
close. The speedup possible to achieve on our evaluation GPUs ranged from
1.6× on the GTX Titan X and 2.1× on the GTX 1080 Ti compared to the
AMD CPU. In relation to the Intel CPU, we could only achieve a speedup of
1.5× on the GTX 1080 Ti.

3Note that both CPUs were well-known at the time of the publication. Therefore, we
retained these measurements to present the original results. However, it may be of interest
to reevaluate our method on more recent CPUs in future work (see Chapter 14).

4Note that both GPUs were state-of-the-art at the time of the publication. Therefore, we
retained these measurements to present the original results. However, it is of interest to
reevaluate our method on more recent GPUs in future work (see Chapter 14).

184 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

Figure 10.20: Performance comparison of our successor-generation algorithm
using 8 variables and 1024 states while involving three value-
assignment ranges Vj ∈ {1224, 4488, 9800} (log2 scaling, higher is
better, based on performance numbers published in [KGK19a]).
Note that each variable is assigned sequentially one after the
other.

Figure 10.21: Performance comparison of our successor-generation algorithm
using 32 variables and 4096 states while involving three value-
assignment ranges Vj ∈ {1224, 4488, 9800} (log2 scaling, higher is
better, based on performance numbers published in [KGK19a]).
Note that each variable is assigned sequentially one after the
other.

10.2. FAST AND EFFICIENT SUCCESSOR STATE GENERATION 185

This is due to the fact that the problem size is too small to exploit the parallel
processing capabilities of our algorithm. Therefore, it is not possible to fully
compensate for the additional overhead we introduced. Increasing the number
of assignment possibilities in this scenario showed that the Intel CPU did not
gain any speedup in comparison to the AMD CPU. We observed this behavior
because the Intel CPU already reached their maximum utilization and could
not scale to additional assignment possibilities. Fortunately, our algorithm
scales very well on both GPUs and achieved speedups of 3.2× to 4× on the
GTX Titan X and 4.5× to 6.1× on the GTX 1080 Ti [KGK19c]. However, we
did not observe linear scaling as all variables were still sequentially assigned,
which limited our full parallelization potential. The measured total execution
times using 9800 assignment possibilities in this scenario where 31ms on the
Ryzen 2700X, 21.3ms on the Core i9 7940X, 7.7ms on the GTX Titan X, and
5ms on the GTX 1080 Ti.

Increasing the number of sequentially assigned variables from 8 to 32 (see
Figure 10.21) slightly improved speedups measured on the GTX 1080 Ti rang-
ing from 2.6× (few assignment possibilities) to 7.1× (more assignment possi-
bilities) [KGK19c]. Although we achieved a good overall scaling behavior by
increasing the workload, our algorithm still suffered from linear variable as-
signments, which turned out to be a more serious problem on the GTX Titan
X when combined with 1224 assignment possibilities. Here, the GTX Titan X
was even slower than our Intel CPU. However, Intel’s CPU did not scale at all.

Figure 10.22: Performance comparison of our successor-generation algorithm
using 4 groups of 16 variables each and 4096 states while involv-
ing three value-assignment ranges Vj ∈ {1224, 4488, 9800} (log2
scaling, higher is better). Note that each variable within a group
assigned sequentially one after the other. Variables in different
groups are assigned in parallel since they do not depend on vari-
ables from another group.

186 CHAPTER 10. IMPR. PERFORMANCE OF HEUR. OPTIMIZATION

To model common scenarios in which not all variables depend on each other,
our algorithm also supports parallel assignment of variables. Figure 10.22
shows speedups measured by grouping 32 variables int 4 groups of 16 variables
each. Internally, each variable group is assigned in parallel, while variables
within each group are assigned sequentially5.

More parallelization potential gave us a tremendous advantage in terms of
scaling behavior and speedup in these benchmarks. Our measured speedups
ranged from 4.6× to 11.9× on the GTX Titan X and from 8.3× to 23.7× on the
GTX 1080 Ti compared to our base line. As before, the Core i9 did not scale
when increasing the problem size. Note that the performance increased be-
tween 4488 assignment possibilities and 9800 was considerably less than before
as we reached the maximum occupancy of both GPUs.

Increasing the number of states to 16384 revealed further huge speedups (see
Figure 10.23). The speedups ranged from 11.6× to 30× on the GTX Titan
X and from 24× to 68× on the GTX 1080 Ti compared to our base line.
Again, the Intel processor did not scale at all when increasing the problem
size. In analogy to the previous measurements, we did not see a considerable
performance improvement when increasing the number of possibilities from
4488 to 9800.

Figure 10.23: Performance comparison of our successor-generation algorithm
using 4 groups of 16 variables each and 16384 states while in-
volving three value-assignment ranges Vj ∈ {1224, 4488, 9800}
(log2 scaling, higher is better). Note that each variable within
a group assigned sequentially one after the other. Variables in
different groups are assigned in parallel since they do not depend
on variables from another group.

5We slightly modified our surrounding optimizer implementation to support these use cases
for this benchmark. Note that the Algorithm 19 we presented is designed to support
parallel variable assignments, but custom grouping of variables was not shown.

CHAPTER 11

CONCLUSION

In 10.1 and 10.2, we presented contributions to the field of heuristics-based
optimization systems. Here, we tackled two challenging problems from this
domain: maintaining optimization states across multiple optimizer iterations
and generating successor states. Section 10.1 described our high-level architec-
tural solution to the state-maintenance problem (referred to as tracking and
reconstruction in the context of our method). Using an on-the-fly reconstruc-
tion process based on highly compressed historical information, we were able
to reduce memory consumption by orders of magnitude during an optimiza-
tion process. Although reconstruction adds an overhead compared to keeping
states in GPU memory (slowdowns of 3.5×), the actually measured slowdown
was nonexistent compared to copying entire states from host CPU memory
to the GPU for processing (speedups of 6.2× to 7.2×). Due to more limited
memory sizes on GPUs these days [NVI23a], it is still often necessary to fetch
data back to the CPU before running out of memory on an accelerator. As for
the actual performance of state tracking during the optimization process, we
conceptually differentiated between evaluation and recovery phases. The eval-
uation phase relies on a GPU-friendly form of generating successor states inside
an optimization system, which should be explored afterwards using simulation
logic (e.g., approaches from Part 1). Our fill-rate concept helped significantly
to improve the overall GPU utilization and achieved speedups of 1.85× to 7.2×,
depending on the evaluation scenario.

The most important contribution in the scope this thesis, is our approach,
presented in Section 10.2, to efficiently generate successor states in a scalable
manner solely the GPU. In contrast to domain-specific approaches from re-
lated work that used GPUs for local neighborhood exploration, our method is
completely domain independent. Since it was designed with parallel process-
ing (specifically GPU hardware) in mind, it uses specially designed temporary
data structures materialized in both shared and global memory to make it as

187

188 CHAPTER 11. CONCLUSION

efficient as possible. The multi-staged processing concept allows generic rating
functions of different variable assignments, reasoning about aggregated rat-
ing information, and importance-based assignment sampling. Data stored in
shared memory is primarily used to realize lookup tables to improve sampling
performance, while data stored in global memory is used to cache computed
ratings. As accesses are coherent and massively parallel, recomputing of differ-
ent possibilities is often too expensive compared to storing and loading data.
This is especially true for large-scale neighborhood searches involving expensive
neural-network-based heuristics to realize the rating processes. Comparing our
generic successor-generation algorithm to optimized CPU implementations, we
measured speedups of 4.6× to 23.7× on smaller problem instances with just
4096 states in total. Increasing the number of states to more realistic problems
resulted speedups ranging of 24× to 68×.

Answering RQ2 Our high-level solution for efficiently realizing tracking
and reconstruction of states on the GPU enables optimizers to reduce memory
consumption, improve the utilization of available resources, and achieve signif-
icant speedups over existing methods. Our method for efficiently generating
successor states for arbitrary domains on the GPU greatly relaxes previous
constraints on the size of the local neighborhood search space to be explored.
This contributes to answering RQ2, as we have shown how our approach can
achieve significant speedups over existing methods through shorter execution
time, lower memory consumption, and better scalability (see also 13).

Part III

Engineering & Project
Contributions, Conclusion

and Future Work

CHAPTER 12

ENGINEERING & PROJECT
CONTRIBUTIONS

Parts I and II focused on answering the central research questions of the thesis.
At the same time, significant contributions were made to research and indus-
try projects at the German Research Center for Artificial Intelligence, which
include engineering contributions in particular. The theories, algorithms, and
implementation details presented were used in the context of four major re-
search projects (e.g, [Kon16; Kon19]) and four large industry projects at the
time of publishing the individual papers 1. A major goal within these projects
was the real-time solution of large-scale optimization problems from the field
of Industrie 4.0. Real-time here referred to a time horizon of just 40 millisec-
onds up to 30 seconds, depending on the problem size and application scenario.
Besides these large projects, a set of smaller research projects from the fields
of Industrie 4.0 -related and scientific visualization-based domains were also
completed using methods presented in this thesis.

To solve these real-world optimization problems using the acceleration meth-
ods from this thesis, we 2 built a completely new optimization framework, called
Any-Time Component Solver (ATCS). The term any-time solver refers to the
fact that the optimizer is able to stop at an arbitrary time and return the best
solution found up to that time. This feature was essential to made it useful for
practical problems: Depending on the optimization problem and the domain
in which the system was used, the time horizon in which a solution had to
be delivered varied depending on external and unpredictable influences. Such
external influences refer to varying resource available, like machine-related in-
terruptions, resource shortages, and customer order updates.

1The name of the industry projects are elided to not refer to any particular company.
2The thesis author’s research development team that was founded to leverage the theory

and algorithms presented in this thesis in practice.

191

192 CHAPTER 12. ENGINEERING & PROJECT CONTRIBUTIONS

12.1 Publications

The following list summarizes all contribution-relevant publications of this
part of the thesis. Furthermore, contributions of the contributing author (CA)
and all other authors (CoA) are explicitly listed. This helps to clearly separate
own work that may be used in the dissertation from other contributions.

[KGK20a] Marcel Köster et al. “High- Performance Simulations on GPUs
Using Adaptive Time Steps.” In: 20th International Confer-
ence on Algorithms and Architectures for Parallel Processing
(ICA3PP-2020). Springer, 2020

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement, implementation and
benchmarking

[KGK20b] Marcel Köster et al. “Massively Parallel Rule-Based Interpreter
Execution on GPUs Using Thread Compaction.” In: Interna-
tional Journal of Parallel Programming (2020)

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement, implementation and
benchmarking

[KGK19a]⋆ Marcel Köster et al. “FANG: Fast and Efficient Successor-State
Generation for Heuristic Optimization on GPUs.” In: 19th
International Conference on Algorithms and Architectures for
Parallel Processing (ICA3PP-2019). Springer, 2019

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement, implementation and
benchmarking

12.1. PUBLICATIONS 193

[KGK19c] Marcel Köster et al. “Parallel Tracking and Reconstruction of
States in Heuristic Optimization Systems on GPUs.” In: Par-
allel and Distributed Computing, Applications and Technolo-
gies (PDCAT-2019). IEEE, 2019

CA Idea generation, algorithm design, conceptual work on the
paper, the diagrams and the use cases, implementation and
benchmarking

CoA Feedback on the paper, paper refinement

194 CHAPTER 12. ENGINEERING & PROJECT CONTRIBUTIONS

12.2 Generation of Specialized Optimizers

As mentioned in Parts I and II, we often leveraged specialization techniques
for realizing our benchmarks. Specialization can be achieved through meta
programming techniques and/or compiler support to generate code [Kös+14a;
Kös+14c; Mem+14; KGK20a]. We have primarily used meta-programming
and jit-based specialization at runtime, which is also specifically supported in
ILGPU [Kös23] via so called dynamically specialized kernels. The latter concept
allows us to leverage partial evaluation [Kös+14a] to aggressively optimize GPU
kernels during runtime of the program [KGK19b; KGK20a]. This, in turn, is
especially important for eliminating boundary checks, fully unrolling loops,
and removing temporary local memory allocations that would otherwise have
been required. As part of our engineering contributions to satisfy all of our
partners’ and customers’ requirements, we built the ATCS framework on the
.Net platform using the concept of domain-specific language embedding (DSL
embedding, Section 12.2.1). Furthermore, we realized GPU acceleration using
the ILGPU [Kös23] compiler, which has the ability to just-in-time compile .Net
bytecode into GPU code while providing high- and low-level bindings to operate
GPUs. This allowed us to target arbitrary platforms (e.g., Linux and Windows)
by avoiding any kind of platform-dependent libraries while supporting a wide
variety of different GPUs. Additionally, we could leverage existing language
frontends (e.g, the C# compiler) to handle compilation of user-defined input
code, while making use of the convenient development tools available for .Net.

Figure 12.1: ATCS compilation workflow to generate specialized optimizers.
First, the domain model is developed by a user of our framework
in a .Net-compatible programming language (1). After compiling
the model with its appropriate frontend compilers, we receive a set
of compiled assemblies (or just a singe assembly in the most sim-
plistic case possible, 2). Afterwards, we use our ATCS compiler
that loads the pre-compiled domain model, disassembles it, and
converts it into its own intermediate representation for analysis,
optimization, and code-generation purposes (3). Finally, the out-
put is a specialized optimizer assembly that contains all required
kernels and search strategies to solve optimization problems com-
patible with the input domain (4).

12.2. GENERATION OF SPECIALIZED OPTIMIZERS 195

The ability to integrate with existing development tools, combined with our
ability to run the entire custom optimization model in a provided debug mode,
allowed users to conveniently run through their components and heuristics
using a CPU emulation layer. This greatly improved the development of op-
timization models in terms of required development time. Integrating our op-
timization system with cloud-hosted services was also straight forward, since
ASP.Net services run using .Net libraries.

The entire system was built around a specially designed (yet generic) op-
timization library (written in C#) that contains interfaces to integrate with
our internal optimization engine (see Figure 12.1). This engine used all the
concepts presented in this thesis to provide better scalability and performance
compared to other competitors (at the time of writing this thesis) [KGK19a;
KGK19b; KGK19c; KGK20a; KGK20b]. In addition, the general idea was to
automatically generate the entire optimizer using a compiler to benefit from
domain knowledge to improve runtime performance (see below). In particular,
this allowed us to determine optimal memory layouts, schedule components,
and completely remove the overhead introduced by our software-defined ab-
stractions. Furthermore, the real problem solved by our compiler was also to
understand variable dependencies and their impact on certain data blocks of
each state to enable proper parallelization.

In our context, developers define a domain model that contains an abstract
description of all information required for each optimization state, as well as
information that is shared by all states during optimization (referred to as
uniform information). This model is implemented programmatically by pro-
viding an abstract interface definition, usually written in C# code. Moreover,
the model contains an imperatively defined set of components operating on
each state to realize domain-specific simulation logic (e.g., game rules). Each
component follows the design principle of a time-adaptive generic component
presented in Listing 6.4 that is generic with respect to the actual data struc-
tures used by leveraging view abstractions (see Chapter 6).

To create a working domain model, we also rely on provided evaluation
metrics to evaluate states within out optimization system with respect to the
optimization goal. These metrics are also provided by imperative interface
implementations, ultimately in the form of .Net-compatible byte code. The
last piece of information we need is a set of heuristics defining the strategy of
how to explore the search space of our states using local heuristics (see also
Section 10.2). In our real-world applications, such heuristics were either defined
manually based on domain-expert knowledge or determined automatically by
machine learning. Finally, it is important to note that a generated optimizer
is able to optimize its own performance by monitoring execution times and
utilization based on problem instances being solved. It uses the profile-based
insights to dynamically specialize kernels and functions, while relying on just-
in-time compilation to further improve runtime performance.

196 CHAPTER 12. ENGINEERING & PROJECT CONTRIBUTIONS

12.2.1 DSL Embedding

The term DSL refers to domain-specific language and indicates that it focuses
on a specific domain or a set of domains, unlike general-purpose programming
languages (like C#, C++, etc.) [Dan+14; Mem+14; Kös+14a]. This allows
developers to benefit from expressing domain-specific knowledge directly with-
out the need to model all specifics first in a general purpose programming
language.

There are different ways on how to realize a DSL like defining a new language
or embed a DSL into another (often called host) language [Kös+14a]. We used
the general approach of DSL embedding, by choosing the .Net ecosystem as
our host environment. This decision gave us the advantage that ATCS built
upon an existing ecosystem of tools and runtimes for a huge variety of different
platforms 3. We also benefited from extremely fast compile times and GPU
hardware support (via ILGPU). In addition, we could exploit runtime special-
ization via the .Net JIT and ILGPU to create optimized code at runtime 4.
This was extremely valuable as optimization problem instances tend to vary
from invocation to invocation of the optimization system.

Applying similar techniques at compile time would have required fine-grained
information about the actual problem instances. Consequently, we would have
had to recompile the domain model for each problem instance or generate
a considerable amount of pre-specialized instances to chose from at runtime.
Similarly, GPU kernels would have had to be precompiled for all potential
target platforms. Because we relied on runtime specialization and JIT compi-
lation, we were able to avoid excessive pre-specialization and pre-compilation
in general. However, the ATCS compiler could also incorporate profiling based
performance information into its code-generation pipeline. This allowed to
pre-optimize generated code in terms of general memory layouts in addition to
runtime specialization, which happens in all cases.

Embedding into .Net DSL embedding into .Net was realized leveraging ab-
stract interfaces. Interfaces were used to define the actual optimization domain
in terms of the information that needs to be tracked per state. Listing 12.1
shows a simplified version of our provided state interface. It describes the
basic properties of each optimization state and depends on a generic parame-
ter TEvaluationType. This type parameter allows developers to specify which
data type to use when evaluating states with respect to other states during
evaluation (see also Section 10.1 and Section 10.2). We used the suffix View

3As mentioned before, this also included Azure- and self-hosted web services, desktop ap-
plications, background services, mobile applications, and even web browsers via web-
assembly compilation.

4Using ILGPU also allowed us to benefit from CPU-based GPU emulation. This in turn
enabled debugging of the whole optimizer, the user-defined heuristics and simulation com-
ponents conveniently on the CPU. Note that debugging could be realized using standard
.Net debugging tools.

12.2. GENERATION OF SPECIALIZED OPTIMIZERS 197

to indicate that it is an abstraction to access data stored somewhere in some
format to be determined by ATCS. This terminology was influenced by the
ILGPU naming scheme to access GPU memory via ArrayViews [Kös23].

Listing 12.1: Simplified state interface in C# code
1 interface IStateView<TEvaluationType>
2 where TEvaluationType : struct, IComparable<TEvaluationType>
3 {
4 /// <summary>
5 /// Returns the unique state id to differentiate between individual

states.
6 /// </summary>
7 long StateId { get; }
8
9 /// <summary>

10 /// Returns the current evaluation result of this state (if any).
11 /// </summary>
12 TEvaluationType? EvaluationResult { get; }
13
14 /// ...
15 }

To define a custom state representation, developers specify their own ab-
stract state interface while inheriting from our IStateView interface. List-
ing 12.2 shows a simplistic state representation storing a 1D "array" of agents
(to be simulated) in this sample. Note that the type IView1D is an ATCS
provided abstraction to avoid direct accesses to memory in the domain model.
Actual views implementations are provided by ATCS when compiling the do-
main model (see Section 12.2.2). The actual length of this view per state
will be determined at optimizer runtime as soon as an optimization problem
instance is loaded. Moreover, this sample also specifies a static readonly prop-
erty Obstacles returning a readonly 1D view. This static property tells ATCS
that there is static information in form of uniforms accessible by all states.
Uniforms are constants with respect to the optimization process in ATCS land
but can be defined before solving an optimization problem.

Listing 12.2: Sample domain using several Agent instances per state
1 interface ICustomStateView : IStateView<Float32Domain>
2 {
3 /// <summary>
4 /// Defines a uniform read-only view accessible by all states.
5 /// </summary>
6 static IReadOnlyView1D<Obstacle> Obstacles { get; }
7
8 /// <summary>
9 /// Returns a view to access multiple agents in 1D.

10 /// </summary>
11 IView1D<Agent> Agents { get; }
12 }

198 CHAPTER 12. ENGINEERING & PROJECT CONTRIBUTIONS

12.2.2 Memory Layouts and Specialization

As outlined in the previous section, state descriptions, components, and heuris-
tics were based on interfaces. Once the user-defined model is realized via
our provided optimization-domain-specific abstractions, ATCS can analyze all
parts of the input model5. Note that some performance optimizations will
delayed to be performed at optimizer runtime as soon as the optimization
problem instance is known (see paragraph Specialization).

Memory Layouts A very important step to utilize memory controllers of
GPUs properly (see also Section 2.4) is determining an optimal memory layout.
The idea was to layout data in memory in such a way that memory accesses
will be coalesced automatically. This is an optimization problem on its own,
focussing on the placement and alignment of data in memory buffers.

Consider the user-defined structure shown in Listing 12.3 and an abstract
view interface shown in Listing 12.4. The idea is that all components and
heuristics provided by the user operate on such abstract interfaces. This con-
cept allows us to provide specialized implementations automatically that are
optimized for the problem being solved while taking the hardware abilities into
account.

Listing 12.3: Sample structure of a simple agent supporting simple movement
from current 2D positions to 2D goal positions while taking a
remaining amount of time in milliseconds into account.

1 struct Agent
2 {
3 Vector2D CurrentPosition;
4 Vector2D GoalPosition;
5 int RemainingTime;
6 }

Listing 12.4: Abstract view to access Agent structures from Listing 12.3.
1 interface IAgentView
2 {
3 /// <summary>
4 /// Gets or sets the ith Agent structure instance.
5 /// </summary>
6 Agent this[int index] { get; set; }
7 }

Based on guidelines to optimize memory layouts, there are several potential
candidate solutions (see Section 6.2 and [NVI23a; Kös23]). Assume that fields
of this data structure will be accessed in parallel and by multiple components.
Having this information at hand, a structure-of-array (SOA) memory layout
may be well suited given the fact that memory access happen in parallel. This
allows us to create a specialized IAgentView implementation splitting all fields
into 32-bit chunks shown in Listing 12.5.

5After the user model has been compiled into .Net bytecode using standard toolchains.

12.2. GENERATION OF SPECIALIZED OPTIMIZERS 199

Listing 12.5: SOA layout for Listing 12.3 while implementing Listing 12.4.
1 struct SOAAgentView : IAgentView
2 {
3 private View1D<float> current_x;
4 private View1D<float> current_y;
5
6 private View1D<float> goal_x;
7 private View1D<float> goal_y;
8
9 private View1D<int> remainingTime;

10
11 public Agent this[int index]
12 {
13 get
14 {
15 // Load individual elements from our buffers and assemble the
16 // agent data structure on the fly
17 Vector2D current = new(current_x[index], current_y[index]);
18 Vector2D goal = new(goal_x[index], goal_y[index]);
19 return new Agent(current, goal, remainingTime[index]);
20 }
21
22 // The setter is omitted here
23 }
24 }

Although the getter looks promising at first sight, we may encounter different
uses of this property in our input domain model. Consider the case where some
parts read the full data structure while others read only parts of it. Performing
all five loads naively every time will degrade performance in cases where we
only partially access loaded data. Since we built upon ILGPU, it was able to
perform dead-load optimizations aggressively at kernel compile time, removing
not required loads. However, this might still not eliminate all unnecessary loads
due to potential read-write dependencies within a single generated kernel (see
paragraph Specialization). Even worse, generating generic setters that write
all fields into memory will not leave any room for further optimizations. This
is because ILGPU was not be able to proof that deleting writes into main
memory may not violate the semantics of the input program.

In order to generate efficient views using optimized data accesses, ATCS
leveraged domain information from the input domain model. The ATCS com-
piler generated specialized view implementations for each involved component
while minimizing loads and stores. Furthermore, it also addressed a differ-
ent performance issue: Depending on the internal structure and complexity
of individual components, processing all agents per state in parallel may not
lead to optimal occupancy (in this sample). This is because users optimize
many states in parallel and focus on the overall efficiency of investigating and
evaluating all states in parallel.

To tackle this problem, ATCS supported profile-guided optimization to allow
integration of benchmark results into the code-generation process. This ac-
tively influenced the decisions about the underlying memory layout and could
lead to fusion of data views. We provided a greedy bin-packing algorithm

200 CHAPTER 12. ENGINEERING & PROJECT CONTRIBUTIONS

and a considerably more expensive constraint-based optimization algorithm to
perform fusing of data structures in these cases. The general process always
started by assuming a fine-grained SOA layout and fused views into combined
densely-packed partial data structures one after another. In the case of our
agent view interface, an implementation may store the CurrentPosition as an
actual Vector2D while separating the goal fields as shown before.

Specialization We applied specialization in multiple stages and achieved op-
timization via generic types, custom generated types/methods, and inlining.
Generic types allowed us to define an implementation type at a later stage
by binding the generic type parameters to generated types. This also realized
a separation of concerns that domain developers were not exposed to opti-
mizer and implementation internals. This enabled us to use aggressively inline
methods after type specialization to completely remove the overhead of our
high-level abstractions.

Specialization in our case happened at domain-model compile time within
ATCS and at runtime of the generated optimizer. Compile-time specialization
involved creating specialized structures, methods, and whole kernels to link the
ATCS optimizer algorithms with the user-domain model code. This process
included generating memory-access views (as mentioned in the paragraph on
Memory Layouts), all GPU kernels, as well as wrapper code to initialize all
memory buffers structures and load all kernels at optimizer runtime.

At optimizer runtime, the .Net JIT performed actual type specializations
that glued the input-domain model with the generated data structures of
ATCS. It was achieved by binding generic type parameters to implementation
types provided in the generated code. Moreover, even the ATCS optimizer
runtime depended on generic type parameters to enforce specialization (to re-
move abstraction overhead). We also leveraged specific method-implementation
attributes (the MethodImplAttribute [Lid02]) on most methods to trigger ag-
gressive inlining behavior or forced enabling aggressive optimizations in the
.NET JIT compiler.

In addition, we made use of ILGPU’s dynamic specialization feature to spe-
cialize GPU kernels dynamically at program runtime. This feature allowed
passing values to selected kernel parameters and enforced partial evaluation-
like behavior of kernels by embedding the given values as compile-time-known
constants. By doing so, we automatically triggered additional optimization
passes of ILGPU and created optimized kernels. For instance, this allowed us
to fold if-conditions and unroll loops based on actual problem instances being
solved by the optimizer.

CHAPTER 13
CONCLUSION

This chapter concisely summarizes the whole thesis while focusing on the aim
of this thesis. The aim was primarily given by answering our two main research
questions (see Section 1.3). As mentioned in Section 1.3, neither question can
be answered exhaustively. Both questions were meant to guide our research
in terms of contributions intended to be made. As mentioned in Section 1.3,
neither question can be answered exhaustively. Both questions should guide
our research in terms of contributions to be made.

Part 1 focused on answering RQ1 and contributed several domain-specific
and domain-independent methods (Part 1 Conclusion, Chapter 7). Our meth-
ods leveraged currently available GPU capabilities to overcome runtime per-
formance, memory consumption, and scalability limitations in the parallel sim-
ulation domain. Considering our contributions, we achieved our research goal
of contributing to the answer of RQ1.

The answer to RQ2 was tackled by Part 2. We presented a high-level concept
to realize GPU-aware state tracking and a game-changing scalable solution for
generating successor states on the GPU for optimizers. Our contributions
are compatible with arbitrary domains, as they do not rely on any domain
knowledge. Most importantly, as in Part 1, we were able to overcome existing
limitations in terms of scalability, memory consumption, and runtime behavior
(Part 2 Conclusion, Chapter 11). In summary, our contributions in Part 2 also
achieved our goal of answering RQ2.

Beyond answering the main research questions, our approaches were incor-
porated into a new optimization system, which in turn was used in multiple
research and industry projects (Chapter 12). This led to engineering contri-
butions that were also achieved in collaboration with other research engineers.
As part of various projects, other engineers gathered actual requirements and
built optimization models based on our framework (Section 12.2).

To summarize, we achieved substantial performance enhancements compared
to existing solution within our primary areas of focus.

201

CHAPTER 14

LIMITATIONS & FUTURE WORK

Naturally, our methods presented in this thesis have certain limitations. Start-
ing with our iteration-adaptive fluid simulations, there are some implicit as-
sumptions to ensure stability. Reconsider our adaptation models that assign
different CL-information to each particle. Currently, the two proposed models
rely on linear degradation of CL information. Introducing adaptation models
that adjust CL in a non-linear way could lead to unstable simulations and po-
tentially violate average-density information. An interesting idea for the future
is to extend our adaptation method to whole PBD solvers instead of adaptively
solving only a part of them (although this is the most expensive part).

In addition, discussing our newly introduced selection method for particle-
based domains, we would like to analyze more datasets from various domains.
Extending our investigations to more input scenarios will allow us to refine our
mask-mapping approach. A potential drawback of our current approach is that
certain parameters may need adjustment (e.g., the initially guessed smooth-
ing length) when operating on arbitrary datasets. This limitation could be
addressed by implementing an automated parameter-tuning algorithm, which
might or might not utilize machine-learning methods. Moreover, enhancing
precision using machine-learning based matching approaches trained on given
selection masks may also prove beneficial.

Moving on to our contributions to generic simulations, the main drawback
of our suggested memory layout is the overhead of our address-computations:
Several additional arithmetic operations are necessary compared to simpler
layouts. Although we did not see any considerable performance impacts, it
is possible that memory-bound rules that rely on multiple IO instructions are
negatively affected. However, the latest trend in the GPU space indicates
an improvement in computational power, so these concerns may also become
obsolete [NVI23a; KGK20a]. One conceptual enhancement is to avoid assign-
ing a single warp to a particular state. Rethinking this design decision by

203

204 CHAPTER 14. LIMITATIONS & FUTURE WORK

allowing arbitrary threads to operate on different states can further improve
performance. However, this will also increase the overall complexity of our
compaction logic and our memory-address computations.

Also in the simulation domain, adaptive time stepping may lead to deviations
based on the choice interpolation function used. Simulation deviations refer
to errors compared to non-adaptive simulation implementations. Parameters
controlling the actual time-step maxima and those of interpolation functions
must be fine-tuned depending on the domain to which they are applied in all
cases. Since this is also a limitation of all related methods, especially generic
ones, we argue that this is not a serious drawback of our method. In the future,
it is a promising idea to explore more comprehensive (statically executed) com-
ponent analyses, which could potentially lead to the development of advanced
caching concepts that can be generated automatically.

Limitations also apply to the methods presented in the second part of this
thesis. Our tracking and reconstruction approaches do not currently use ad-
vanced recovery methods. By advanced here, we refer to predictive methods
that can anticipate specific recovery steps to improve overall utilization in cases
where even our fill rate-based methods cannot guarantee maximum utiliza-
tion. On the one hand, our recovery method can reduce memory consumption
by orders of magnitude. On the other hand, the main disadvantage of our
successor-generation algorithm is probably its high memory consumption. The
method requires a few bytes per assignment possibility in each state processed
in parallel to avoid caching already computed ratings.

In general, this is again not a severe limitation, since mappings can be re-
computed to reduce memory requirements.. However, we have not yet seen an
practical limitation on individual use cases. Given the ongoing trend to increase
GPU computing performance, recalculations may even become cheaper in the
future and making caching obsolete (see above). In addition, an automatically
determined caching configuration (or even the introduction of partial caching)
can be beneficial. This may be based on static or automatically trained heuris-
tics. Also, since there is a trend to increase the size of fast on-chip shared
memory, more excessive caching may also utilize additional space in shared
memory by loading precomputed rating values.

The general direction for future research is to apply our findings to char-
acteristic machine learning problems. Although we focused on heuristic opti-
mization in general and implicitly included ML-driven optimization systems,
we did not directly contribute to foundations of ML-based approaches. This
domain in particular can benefit even more from our conceptual contributions
in the future. Consequently, this is also a direction we intend to take in the
future.

LIST OF ALGORITHMS

1 Memory Access Patterns: Complex control flow. 15

2 Introduction Part 1: Sequential N-Body gravity algorithm. . . . 20
3 Introduction Part 1: Simple Parallel N-Body gravity simulation. 22
4 Introduction Part 1: Parallel N-Body gravity simulation using

shared memory . 24

5 Adaptive Position-Based Fluids: Our simulation algorithm. . . . 54
6 Screen-Space Particle Selection: Our straight-forward mask con-

struction algorithm. 67
7 Screen-Space Particle Selection: Our 3D volume slice selection

algorithm. 70
8 Screen-Space Particle Selection: Our density estimation algorithm. 75

9 Parallel Simulations: Grid-stride loop algorithm for a single com-
ponent. 91

10 Adaptive Simulations: Our simulation algorithm using adaptive
time steps. 96

11 Parallel Simulations using Interpreters: Kernel algorithm for a
single component. 97

12 Parallel Simulations using Interpreters: Simple parallel rule-
execution algorithm. 99

13 Parallel Simulations using Interpreters: Simple parallel rule-
execution algorithm for multiple states. 100

14 Parallel Simulations using Interpreters: Our execution algorithm. 105
15 Parallel Simulations using Interpreters: Prefix-sum computation

used by our execution algorithm. 107
16 Adaptive Time Stepping: Time-step adaptive simulation algorithm.124

17 Parallel Tracking: Our algorithm to realize a single optimizer step.158

205

206 LIST OF ALGORITHMS

18 Parallel Tracking: Our method to realize state tracking and state
reconstruction on GPUs. 159

19 Fast and Efficient Successor Generation: Our main algorithm to
realize fast successor generation. 178

20 Fast and Efficient Successor Generation: RateAllPossibilities
helper algorithm. 179

21 Fast and Efficient Successor Generation: MapAllRatings helper
algorithm. 179

22 Fast and Efficient Successor Generation: FindMatchingSegment
helper algorithm. 180

LIST OF FIGURES

1.1 Technical Introduction: A high-level simulation workflow. . . . 3
1.2 Technical Introduction: A high-level search tree. 4
1.3 Technical Introduction: Our high-level workflow. 4
1.4 Introduction: Outline of the thesis. 6

2.1 GPU Fundamentals: High Level GPU Architecture. 8
2.2 GPU Fundamentals: GPU Streaming Multiprocessor Architec-

ture. 9
2.3 GPU Fundamentals: Lockstep executing of a sample program. 10
2.4 GPU Fundamentals: Memory accesses in the scope of a warp. . 14
2.5 GPU Fundamentals: Thread divergence within a warp in the

presence of complex control flow. 15

3.1 Introduction Part 1: Sample N-Body gravity simulation. 19
3.2 Introduction Part 1: Double-buffer during a simulation step. . . 21
3.3 Introduction Part 1: A shared-memory cache for a gravity sim-

ulation. 24
3.4 Introduction Part 1: Sample rendering of an asteroid belt. . . . 27
3.5 Introduction Part 1: Media facade at the HBKSaar. 27
3.6 Introduction Part 1: Virtual camera setup for a media facade. . 28
3.7 Introduction Part 1: Displacement mask used for projection

mapping. 28
3.8 Introduction Part 1: Picture of our deployed media facade ren-

dering. 28
3.9 Introduction Part 1: Conceptual rendering of an interactive in-

stallation (view 1). 29
3.10 Introduction Part 1: Conceptual rendering of an interaction ap-

plication (view 2). 29
3.11 Introduction Part 1: Picture of the media theater at the HBKSaar. 30

207

208 LIST OF FIGURES

5.1 Impr. Performance of Particle-Based Sims: Demo rendering of
a gravity simulation. 45

5.2 Adaptive Position-Based Fluids: Visual comparison of different
CLs and sample fluids. 47

5.3 Adaptive Position-Based Fluids: Conceptual rendering of differ-
ent CLs. 48

5.4 Adaptive Position-Based Fluids: Different smoothing radii. . . 49
5.5 Adaptive Position-Based Fluids: Big CL differences. 50
5.6 Adaptive Position-Based Fluids: Two particles with different CLs. 51
5.7 Adaptive Position-Based Fluids: Conceptual visualization of our

DTC adaptation model. 52
5.8 Adaptive Position-Based Fluids: Conceptual visualization of the

DTVS adaptation model. 52
5.9 Adaptive Position-Based Fluids: CL visualizations of two eval-

uation scenarios. 53
5.10 Adaptive Position-Based Fluids: Evaluation scenario configura-

tions. 55
5.11 Adaptive Position-Based Fluids: Evaluation scenario 1. 56
5.12 Adaptive Position-Based Fluids: Evaluation scenario 2. 57
5.13 Adaptive Position-Based Fluids: Evaluation scenario 3. 58
5.14 Adaptive Position-Based Fluids: Average density deviations

(APBF) . 58
5.15 Speedup of APBF compared to PBF (AMD) 59
5.16 Speedup of APBF compared to PBF (NVIDIA) 59
5.17 Screen-Space Particle Selection: Triple-cluster selection process. 61
5.18 Screen-Space Particle Selection: Visualized user-centric selec-

tion process. 62
5.19 Screen-Space Particle Selection: Our processing pipeline. 63
5.20 Screen-Space Particle Selection: A multi-cluster dataset. 64
5.21 Screen-Space Particle Selection: A multi-cluster dat set with

highlighted regions of interest. 65
5.22 Screen-Space Particle Selection: Two selection masks and their

rendered mask images. 66
5.23 Screen-Space Particle Selection: A volume slice through a dataset. 67
5.24 Screen-Space Particle Selection: Sample visualization of a

dataset with its corresponding depth image. 68
5.25 Screen-Space Particle Selection: Intention buffers of a sample

dataset. 69
5.26 Screen-Space Particle Selection: Intention buffer bins of a sam-

ple selection. 70
5.27 Screen-Space Particle Selection: Visualization of different smooth-

ing radii. 72
5.28 Screen-Space Particle Selection: Visualization of adaptively cho-

sen smoothing radii. 73

LIST OF FIGURES 209

5.29 Screen-Space Particle Selection: Visualization of different smooth-
ing radii. 74

5.30 Screen-Space Particle Selection: Flood filling. 76
5.31 Screen-Space Particle Selection: Different evaluation scenarios. 81
5.32 Screen-Space Particle Selection: Screenshot of our desktop ap-

plication. 81
5.33 Screen-Space Particle Selection: Evaluation scenario configura-

tions. 82
5.34 Screen-Space Particle Selection: Precision evaluation. 84
5.35 Screen-Space Particle Selection: Table of density iterations. . . 85
5.36 Screen-Space Particle Selection: Runtime on the GTX 980 Ti. . 86
5.37 Screen-Space Particle Selection: Runtime on the GTX 1080 Ti. 87
5.38 Screen-Space Particle Selection: Evaluation based on frames per

second. 87

6.1 Parallel Simulations: Generic simulation using multiple compo-
nents. 89

6.2 Parallel Simulations: High-level simulation workflow of the
APBF algorithm. 90

6.3 Adaptive Simulations: Generic simulation flow of a single step
using adaptive time steps. 94

6.4 Adaptive Simulations: Several components and their time-step
sizes. 95

6.5 Parallel Simulations using Interpreters: Divergent control flow
in a warp. 98

6.6 Parallel Simulations using Interpreters: Divergent control flow
with thread compaction disabled/enabled. 101

6.7 Parallel Simulations using Interpreters: Multiple grouping con-
cepts in the context of multiple states. 102

6.8 Parallel Simulations using Interpreters: Coalesced memory ac-
cesses in each state. 103

6.9 Parallel Simulations using Interpreters: Non-coalesced memory
accesses. 103

6.10 Parallel Simulations using Interpreters: Memory accesses using
our memory layout. 104

6.11 Parallel Simulations using Interpreters: Speedup comparison of
memory layouts on the GTX Titan X using the simple algorithm.111

6.12 Parallel Simulations using Interpreters: Speedup comparison of
memory layouts on the GTX 1080 Ti using the simple algorithm.111

6.13 Parallel Simulations using Interpreters: Speedup using our al-
gorithm on the GTX Titan X. 113

6.14 Parallel Simulations using Interpreters: Speedup using our al-
gorithm on the GTX 1080 Ti. 113

210 LIST OF FIGURES

6.15 Parallel Simulations using Interpreters: Speedup comparison of
memory layouts on the GTX Titan X using our algorithm. . . . 114

6.16 Parallel Simulations using Interpreters: Speedup comparison of
memory layouts on the GTX 1080 Ti using our algorithm. . . . 114

6.17 Adaptive Time Stepping: Two components and their source
buffers during interpolation. 115

6.18 Adaptive Time Stepping: Two simulation steps and the involved
interpolation steps. 117

6.19 Adaptive Time Stepping: Simulation workflow involving four
components and their dependencies. 118

6.20 Adaptive Time Stepping: Linear layout of Figure 6.19 improving
human readability and understanding. 118

6.21 Adaptive Time Stepping: Our high-level 3-step method. 119
6.22 Adaptive Time Stepping: Threads accessing interpolated infor-

mation with and without caches. 120
6.23 Adaptive Time Stepping: Access patterns benefiting from ex-

plicit caches. 121
6.24 Adaptive Time Stepping: Gravity-simulation like evaluation

workflow. 126
6.25 Adaptive Time Stepping: Gravity-simulation like evaluation

workflow using value range of 16384. 127
6.26 Adaptive Time Stepping: Gravity-simulation like evaluation

workflow using a value range of 65536. 127
6.27 Adaptive Time Stepping: Combined gravity-simulation like

workflow speedups. 128
6.28 Adaptive Time Stepping: PBD/PBF-simulation like evaluation

workflow. 129
6.29 Adaptive Time Stepping: PDB-simulation like evaluation work-

flow using value range of 16384. 130
6.30 Adaptive Time Stepping: Gravity-simulation like evaluation

workflow using a value range of 65536. 130
6.31 Adaptive Time Stepping: Combined PDB-simulation like work-

flow speedups. 131

8.1 Introduction Part 2: Sample tree-based methods. 137
8.2 Introduction Part 2: Conceptual exploration of successor states. 138

10.1 Impr. Performance of Heur. Optimization: Exploratory tree
search. 149

10.2 Parallel Tracking: Four iterations of an imaginary optimizer. . 150
10.3 Parallel Tracking: Visualized simulation steps in a search tree. 151
10.4 Parallel Tracking: Four iterations of an imaginary optimizer us-

ing an irregular expansion strategy. 151
10.5 Parallel Tracking: Multiple ways of expanding states. 151

LIST OF FIGURES 211

10.6 Parallel Tracking: Detailed view of multiple iteration steps. . . 152
10.7 Parallel Tracking: High-level workflow our our method. 153
10.8 Parallel Tracking: Visualization of recovery information stored. 154
10.9 Parallel Tracking: Visualization of the fill-rate feature. 156
10.10Parallel Tracking: Speedups for different assignment probabili-

ties, number of states, and fill rates on the GTX Titan X and
the GTX 1080 Ti. 163

10.11Parallel Tracking: Speedups achieved by using the GTX 1080
Ti compared to the GTX Titan X. 163

10.12Parallel Tracking: Speedups for different computational loads
and fill rates on the GTX Titan X and the GTX 1080 Ti. . . . 164

10.13Parallel Tracking: Memory consumption evaluation. 165
10.14Parallel Tracking: State reconstruction overhead evaluation on

the GTX 1080 Ti. 166
10.15Fast and Efficient Successor Generation: Visualization of a high-

level neighborhood generation function. 167
10.16Fast and Efficient Successor Generation: High-level view of our

method. 169
10.17Fast and Efficient Successor Generation: Mapping process in-

volving a complex user-defined rating function. 170
10.18Fast and Efficient Successor Generation: Our three step succes-

sor generation process. 171
10.19Fast and Efficient Successor Generation: Detailed view of our

method. 173
10.20Fast and Efficient Successor Generation: Speedup of our algo-

rithm using 8 variables and 1024 states. 184
10.21Fast and Efficient Successor Generation: Speedup of our algo-

rithm using 32 variables and 4096 states. 184
10.22Fast and Efficient Successor Generation: Speedup of our algo-

rithm using 4 groups of 16 variables each and 4096 states. . . . 185
10.23Fast and Efficient Successor Generation: Speedup of our algo-

rithm using 4 groups of 16 variables each and 16384 states. . . 186

12.1 Generation of Specialized Optimizers: Compilation workflow. . 194

BIBLIOGRAPHY

[ACK13] Omar Abdelkafi, Khalil Chebil, and Mahdi Khemakhem. “Paral-
lel local search on GPU and CPU with OpenCL Language.” In:
Proceedings of the first international conference on Reasoning
and Optimization in Information Systems. Sept. 2013.

[AG04] David Abrahams and Aleksey Gurtovoy. C++ Template Metapro-
gramming: Concepts, Tools, and Techniques from Boost and
Beyond (C++ in Depth Series). Addison-Wesley Professional,
2004.

[Ada+07] Bart Adams et al. “Adaptively Sampled Particle Fluids.” In: ACM
Transactions on Graphics (2007).

[Aki+12] Nadir Akinci et al. “Versatile Rigid-Fluid Coupling for Incom-
pressible SPH.” In: ACM Transactions on Graphics (2012).

[AMD19] AMD. AMD Vega Instruction Set Architecture. 2019.
[Amd67] Gene M. Amdahl. “Validity of the Single Processor Approach

to Achieving Large Scale Computing Capabilities.” In: Proceed-
ings of the April 18-20, 1967, Spring Joint Computer Conference.
1967.

[B J+11] B. J. Ferdosi et al. “Comparison of density estimation methods
for astronomical datasets.” In: A&A (2011).

[BH86] Josh Barnes and Piet Hut. “A hierarchical O(N log N) force-
calculation algorithm.” In: Nature (1986).

[BT07] Markus Becker and Matthias Teschner. “Weakly compressible
SPH for free surface flows.” In: Symposium on Computer Ani-
mation. 2007.

[BOA09] Markus Billeter, Ola Olsson, and Ulf Assarsson. “Efficient Stream
Compaction on Wide SIMD Many-Core Architectures.” In: As-
sociation for Computing Machinery, 2009.

[BLS12] Kenneth Bodin, Claude Lacoursiere, and Martin Servin. “Con-
straint Fluids.” In: IEEE Transactions on Visualization and Com-
puter Graphics (2012).

213

214 Bibliography

[Bro+12] Cameron Browne et al. “A survey of Monte Carlo tree search
methods.” In: IEEE TRANSACTIONS ON COMPUTATIONAL
INTELLIGENCE AND AI (2012).

[Cam+14a] Federico Campeotto et al. “A GPU Implementation of Large
Neighborhood Search for Solving Constraint Optimization Prob-
lems.” In: Proceedings of the Twenty-first European Conference
on Artificial Intelligence. 2014.

[Cam+14b] Federico Campeotto et al. “Exploring the Use of GPUs in Con-
straint Solving.” In: Practical Aspects of Declarative Languages.
ACM, 2014.

[Car+10] Varis Carey et al. “Blockwise Adaptivity for Time Dependent
Problems Based on Coarse Scale Adjoint Solutions.” In: SIAM
Journal on Scientific Computing (2010).

[CWH08] Guillaume M. J. -B. Chaslot, Mark H. M. Winands, and H. Jaap
van den Herik. “Parallel Monte-Carlo Tree Search.” In: Comput-
ers and Games. 2008.

[DFK12] Florian Daiber, Eric Falk, and Antonio Krüger. “Balloon Selec-
tion revisited - Multi-touch Selection Techniques for Stereoscopic
Data.” In: Proceedings of the International Conference on Ad-
vanced Visual Interfaces. 2012.

[Dai+14] Florian Daiber et al. “Interacting with 3D Content on Stereo-
scopic Displays.” In: PerDis. 2014.

[Dan+14] Piotr Danilewski et al. “Specialization through Dynamic Stag-
ing.” In: Proceedings of the 13th International Conference on
Generative Programming: Concepts & Experiences (GPCE).
ACM, 2014.

[DA12] Walter Dehnen and Hossam Aly. “Improving convergence in
smoothed particle hydrodynamics simulations without pairing
instability.” In: (2012).

[DG96] Mathieu Desbrun and Marie-Paule Gascuel. “Smoothed Parti-
cles: A new paradigm for animating highly deformable bodies.”
In: Proceedings of EG Workshop on Animation and Simulation.
1996.

[FLL04] Filippo Focacci, Francois Laburthe, and Andrea Lodi. “Local
Search and Constraint Programming.” In: Constraint and Integer
Programming: Toward a Unified Methodology. 2004.

[FA11] W. W. L. Fung and T. M. Aamodt. “Thread block compaction
for efficient SIMT control flow.” In: 2011 IEEE 17th International
Symposium on High Performance Computer Architecture. 2011.

Bibliography 215

[GH13] Martin Gander and Laurence Halpern. “Techniques for Locally
Adaptive Time Stepping Developed over the Last Two Decades.”
In: Lecture Notes in Computational Science and Engineering
(2013).

[Gar+11] V. M. Garcia et al. “An adaptive step size GPU ODE solver for
simulating the electric cardiac activity.” In: 2011 Computing in
Cardiology. 2011.

[Gel+12] Sylvain Gelly et al. “The Grand Challenge of Computer Go:
Monte Carlo Tree Search and Extensions.” In: Communications
of the ACM (2012).

[GK14] Shreekant Ghorpade and Snehal Kamalapur. “Solution Level
Parallelization of Local Search Metaheuristic Algorithm on
GPU.” In: 2014.

[GM77] Robert A. Gingold and Joe J. Monaghan. “Smoothed Particle
Hydrodynamics-Theory and application to nonspherical stars.”
In: Notices of the Royal Astronomical Society (1977).

[GB14] Prashant Goswami and Christopher Batty. “Regional Time Step-
ping for SPH.” In: Eurographics 2014 - Short Papers. The Euro-
graphics Association, 2014.

[GP11] Prashant Goswami and Renato Pajarola. “Time Adaptive Ap-
proximate SPH.” In: Workshop in Virtual Reality Interactions
and Physical Simulation. 2011.

[Gre10] Simon Green. Particle Simulation using CUDA – Parallel Radix
Sort. 2010.

[GM12] Kate Gregory and Ade Miller. C++ AMP: Accelerated Massive
Parallelism with Microsoft Visual C++. Microsoft Press, 2012.

[GKK19] Julian Groß, Marcel Köster, and Antonio Krüger. “Fast and Effi-
cient Nearest Neighbor Search for Particle Simulations.” In: Pro-
ceedings of the Conference on Computer Graphics & Visual Com-
puting (CGCV-2019). The Eurographics Association, 2019.

[GKK20] Julian Groß, Marcel Köster, and Antonio Krüger. “CLAWS :
Computational Load Balancing for Accelerated Neighbor Pro-
cessing on GPUs using Warp Scheduling.” In: Proceedings of the
Conference on Computer Graphics & Visual Computing (CGCV-
2020). The Eurographics Association, 2020.

[Gro23] The Khronos Group. Open Standard For Parallel Program-
ming Of Heterogeneous Systems. 2023. url: https://www.
khronos.org/opencl/ (visited on 05/06/2023).

[Heg+12] Hans-Christian Hege et al. “WYSIWYP: What You See Is What
You Pick.” In: IEEE Transactions on Visualization and Computer
Graphics (2012).

https://www.khronos.org/opencl/
https://www.khronos.org/opencl/

216 Bibliography

[Hob+09] Jared Hoberock et al. “Stream Compaction for Deferred Shad-
ing.” In: 2009.

[Hoe14] Rama Hoetzlein. Fast Fixed-Radius Nearest Neighbors: Interac-
tive Million-Particle Fluids. GPU Technology Conference. 2014.

[HHK08] Woosuck Hong, Donald H. House, and John Keyser. “Adaptive
Particles for Incompressible Fluid Simulation.” In: The Visual
Computer (2008).

[HHK09] Woosuck Hong, Donald H. House, and John Keyser. “An Adap-
tive Sampling Approach to Incompressible Particle-Based Fluid.”
In: Theory and Practice of Computer Graphics. 2009.

[HS13] Christopher J. Horvath and Barbara Solenthaler. Mass Preserv-
ing Multi-Scale SPH. Pixar Technical Memo 13-04, Pixar Ani-
mation Studios. 2013.

[Hug+13] D. M. Hughes et al. “InK-Compact: In-Kernel Stream Com-
paction and Its Application to Multi-Kernel Data Visualization
on General-Purpose GPUs.” In: (2013).

[Hun07] Raphael Hunger. Floating Point Operations in Matrix-Vector
Calculus. Tech. rep. Technische Universität München, 2007.

[Ihm+10] Markus Ihmsen et al. “Boundary Handling and Adaptive Time-
stepping for PCISPH.” In: VRIPHYS. 2010.

[Ihm+14] Markus Ihmsen et al. “Implicit Incompressible SPH.” In: Visual-
ization and Computer Graphics, IEEE Transactions on (2014).

[Kay+10] David Kay et al. “Adaptive Time-Stepping for Incompressible
Flow Part II: Navier–Stokes Equations.” In: SIAM Journal on
Scientific Computing (2010).

[KSW99] Jin Koda, Yoshiaki Sofue, and Keiichi Wada. “How to Determine
the Smoothing Length in Sph?” In: Astrophysics and Space Sci-
ence Library. 1999.

[Kon19] BaSys4.0 Konsortium. BaSys 4.0 - Basissystem Industrie 4.0, Ab-
schlussbericht: Berichtszeitraum: 1.7.2016-30.06.2019. Tech. rep.
Robert Bosch GmbH, 2019. url: https://www.tib.eu/de/
suchen/id/TIBKAT%3A1690357495.

[Kon16] SmartF-IT Konsortium. BMBF-Verbundprojekt SmartF-IT -
cyber-physische IT-Systeme zur Komplexitätsbeherrschung einer
neuen Generation multiadaptiver Fabriken : Schlussbericht Kon-
sortialleitung : 01.06.2013 − 31.08.2016. 2016. url: https :
//www.tib.eu/de/suchen/id/TIBKAT%3A883941694.

[Kös13] Marcel Köster. “An Interactive Space Simulation For Media Fa-
cades.” Bachelor’s Thesis. Saarland University, 2013.

https://www.tib.eu/de/suchen/id/TIBKAT%3A1690357495
https://www.tib.eu/de/suchen/id/TIBKAT%3A1690357495
https://www.tib.eu/de/suchen/id/TIBKAT%3A883941694
https://www.tib.eu/de/suchen/id/TIBKAT%3A883941694

Bibliography 217

[Kös23] Marcel Köster. ILGPU JIT Compiler. 2023. url: https://
www.ilpug.net/ (visited on 05/06/2023).

[KGK19a] Marcel Köster, Julian Groß, and Antonio Krüger. “FANG: Fast
and Efficient Successor-State Generation for Heuristic Opti-
mization on GPUs.” In: 19th International Conference on Algo-
rithms and Architectures for Parallel Processing (ICA3PP-2019).
Springer, 2019.

[KGK19b] Marcel Köster, Julian Groß, and Antonio Krüger. Massively Par-
allel Rule-Based Interpreter Execution on GPUs Using Thread
Compaction. 12th International Symposium on High-Level Par-
allel Programming and Applications (HLPP-2019). 2019.

[KGK19c] Marcel Köster, Julian Groß, and Antonio Krüger. “Parallel Track-
ing and Reconstruction of States in Heuristic Optimization Sys-
tems on GPUs.” In: Parallel and Distributed Computing, Appli-
cations and Technologies (PDCAT-2019). IEEE, 2019.

[KGK20a] Marcel Köster, Julian Groß, and Antonio Krüger. “High- Per-
formance Simulations on GPUs Using Adaptive Time Steps.” In:
20th International Conference on Algorithms and Architectures
for Parallel Processing (ICA3PP-2020). Springer, 2020.

[KGK20b] Marcel Köster, Julian Groß, and Antonio Krüger. “Massively Par-
allel Rule-Based Interpreter Execution on GPUs Using Thread
Compaction.” In: International Journal of Parallel Programming
(2020).

[KK16] Marcel Köster and Antonio Krüger. “Adaptive Position-Based
Fluids: Improving Performance of Fluid Simulations for Real-
Time Applications.” In: International Journal of Computer
Graphics & Animation (2016).

[KK18] Marcel Köster and Antonio Krüger. “Screen Space Particle Selec-
tion.” In: Proceedings of the Conference on Computer Graphics &
Visual Computing (CGCV-2018). The Eurographics Association,
2018.

[KSG15a] Marcel Köster, Michael Schmitz, and Sven Gehring. “An Inter-
active Planetary System for High-Resolution Media Facades.” In:
Proceedings of the International Symposium on Pervasive Dis-
plays. International Symposium on Pervasive Displays (PerDis-
15), June 10-12, Saarbrücken, Germany. ACM, 2015.

[KSG15b] Marcel Köster, Michael Schmitz, and Sven Gehring. “Gravity
Games - A Framework for Interactive Space Physics on Media
Facades.” In: Proceedings of the International Symposium on Per-
vasive Displays. ACM, 2015.

https://www.ilpug.net/
https://www.ilpug.net/

218 Bibliography

[Kös+14a] Marcel Köster et al. “Code Refinement of Stencil Codes.” In: Par-
allel Processing Letters (PPL) (2014).

[Kös+14b] Marcel Köster et al. “High-Performance Domain-Specific Lan-
guages for GPU Computing.” In: GPU Technology Conference
(GTC-14) (2014).

[Kös+14c] Marcel Köster et al. “Platform-Specific Optimization and Map-
ping of Stencil Codes through Refinement.” In: Proceedings of the
1st International Workshop on High-Performance Stencil Compu-
tations (HiStencils-2014). 2014.

[Kös+15] Marcel Köster et al. “Asterodrome: Force-of-Gravity Simulations
in an Interactive Media Theater.” In: Proceedings of the 14th
International Conference on Entertainment Computing (ICEC-
2015). Springer, 2015.

[Kri01] S. Krishnaprasad. “Uses and Abuses of Amdahl’s Law.” In: J.
Comput. Sci. Coll. (2001).

[LGS09] Wladimir van der Laan, Simon Green, and Miguel Sainz. “Screen
Space Fluid Rendering with Curvature Flow.” In: Proceedings of
the Symposium on Interactive 3D Graphics and Games. 2009.

[LTL13] Yuet Lam, Kuen Tsoi, and Wayne Luk. “Parallel neighbourhood
search on many-core platforms.” In: International Journal of
Computational Science and Engineering (2013).

[LOL19] Tae Min Lee, Young Jin Oh, and In-Kwon Lee. Efficient Cloth
Simulation using Miniature Cloth and Upscaling Deep Neural
Networks. 2019.

[LKH15] Roland Leißa, Marcel Köster, and Sebastian Hack. “A Graph-
Based Higher-Order Intermediate Representation.” In: Proceed-
ings of the International Symposium on Code Generation and
Optimization (CGO). ACM, 2015.

[Lew21] Christopher Lewin. “Swish: Neural Network Cloth Simulation on
Madden NFL 21.” In: ACM SIGGRAPH 2021 Talks. ACM, 2021.

[LLK19] Junbang Liang, Ming C. Lin, and Vladlen Koltun. “Differentiable
Cloth Simulation for Inverse Problems.” In: Proceedings of the
33rd International Conference on Neural Information Processing
Systems. Curran Associates Inc., 2019.

[Lid02] Serge Lidin. Inside Microsoft .NET IL Assembler. Microsoft
Press, 2002.

[LC87] William E. Lorensen and Harvey E. Cline. “Marching cubes: A
high resolution 3D surface construction algorithm.” In: Computer
Graphics (1987).

Bibliography 219

[Luc77] Leon B. Lucy. “A numerical approach to the testing of the fission
hypothesis.” In: Astronomy Journal (1977).

[Luo+10] T. V. Luong et al. “A GPU-based iterated tabu search for solving
the quadratic 3-dimensional assignment problem.” In: ACS/IEEE
International Conference on Computer Systems and Applications
(AICCSA). 2010.

[LMT10a] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. “Large
Neighborhood Local Search Optimization on Graphics Processing
Units.” In: Workshop on Large-Scale Parallel Processing (LSPP)
in Conjunction with the International Parallel & Distributed Pro-
cessing Symposium (IPDPS). 2010.

[LMT10b] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. “Neigh-
borhood Structures for GPU-based Local Search Algorithms.” In:
Parallel Processing Letters (2010).

[LSG19] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. “A
Formal Analysis of the NVIDIA PTX Memory Consistency
Model.” In: Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems. 2019.

[MM13] Miles Macklin and Matthias Müller. “Position Based Fluids.” In:
ACM Trans. Graph. (2013).

[Mac+14] Miles Macklin et al. “Unified Particle Physics for Real-time Ap-
plications.” In: ACM Trans. Graph. (2014).

[MWG18] Matthias Mayr, Wolfgang Wall, and Michael Gee. “Adaptive time
stepping for fluid-structure interaction solvers.” In: Finite Ele-
ments in Analysis and Design (2018).

[Mel+11] Nouredine Melab et al. “ParadisEO-MO-GPU: a framework for
parallel GPU-based local search metaheuristics.” In: 11th Inter-
national Work-Conference on Artificial Neural Networks. 2011.

[Mem+14] Richard Membarth et al. “Target-Specific Refinement of Multi-
grid Codes.” In: Proceedings of the 4th International Workshop
on Domain-Specific Languages and High-Level Frameworks for
High Performance Computing (WOLFHPC-2014). IEEE, 2014.

[Min95] Mark R. Mine. Virtual Environment Interaction Techniques.
Tech. rep. 1995.

[Mon92] Joe J. Monaghan. “Smoothed particle hydrodynamics.” In: An-
nual Review of Astronomy and Astrophysics. 1992.

[Mon00] Joe J. Monaghan. “SPH without a Tensile Instability.” In: Jour-
nal of Computational Physics (2000).

220 Bibliography

[Mül08] Matthias Müller. “Hierarchical Position Based Dynamics.” In:
VRIPHYS. Eurographics Association, 2008.

[MCG03] Matthias Müller, David Charypar, and Markus Gross. “Particle-
based Fluid Simulation for Interactive Applications.” In: Sympo-
sium on Computer Animation. 2003.

[Mül+05] Matthias Müller et al. “Particle-Based Fluid-Fluid Interaction.”
In: Symposium on Computer Animation. 2005.

[Mül+07] Matthias Müller et al. “Position Based Dynamics.” In: J. Vis.
Comun. Image Represent. (2007).

[Mun+09] Asim Munawar et al. “Hybrid of genetic algorithm and local
search to solve MAX-SAT problem using nVidia CUDA frame-
work.” In: Genetic Programming and Evolvable Machines (2009).

[NP94] Richard. P. Nelson and John C. B. Papaloizou. “Variable Smooth-
ing Lengths and Energy Conservation in Smoothed Particle Hy-
drodynamics.” In: Monthly Notices of the Royal Astronomical
Society (1994).

[Ngu07] Hubert Nguyen. GPU Gems 3. Addison-Wesley Professional,
2007.

[NNH10] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Princi-
ples of Program Analysis. Springer Publishing Company, Incor-
porated, 2010.

[NQC15] Clara Novoa, Apan Qasem, and Abhilash Chaparala. “A SIMD
Tabu Search Implementation for Solving the Quadratic Assign-
ment Problem with GPU Acceleration.” In: Proceedings of the
2015 XSEDE Conference: Scientific Advancements Enabled by
Enhanced Cyberinfrastructure. 2015.

[NVI14] NVIDIA. Faster Parallel Reductions on Kepler. 2014.
[NVI23a] NVIDIA. CUDA C Programming Guide v11.8. 2023. url:

https://docs.nvidia.com/cuda/cuda-c-programming-
guide/ (visited on 05/06/2023).

[NVI23b] NVIDIA. NVIDIA Ampere Architecture. 2023. url: https :
//www.nvidia.com/en- us/data- center/ampere-
architecture/ (visited on 05/06/2023).

[NVI] NVIDIA. Write Flexible Kernels with Grid-Stride Loops. url:
https://developer.nvidia.com/blog/cuda- pro-
tip-write-flexible-kernels-grid-stride-loops/
(visited on 11/22/2021).

[ONI05] Shigeru Owada, Frank Nielsen, and Takeo Igarashi. “Volume
Catcher.” In: Proceedings of the 2005 Symposium on Interactive
3D Graphics and Games. 2005.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/

Bibliography 221

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The
MIT Press, 2002.

[Pie+97] Jeffrey S. Pierce et al. “Image Plane Interaction Techniques in
3D Immersive Environments.” In: Proceedings of the 1997 Sym-
posium on Interactive 3D Graphics. 1997.

[POC05] Fábio Policarpo, Manuel M. Oliveira, and João L. D. Comba.
“Real-time relief mapping on arbitrary polygonal surfaces.” In:
Proceedings of the 2005 symposium on Interactive 3D graphics
and games. ACM, 2005.

[PB15] Justin Pounders and Joseph Boffie. “Analysis Of An Adaptive
Time Step Scheme For the Transient Diffusion Equation.” In:
2015.

[PCW17] Edward Powley, Peter Cowling, and Daniel Whitehouse. Memory
Bounded Monte Carlo Tree Search. 2017.

[Pre+03] Simon Premoze et al. “Particle-Based Simulation of Fluids.” In:
Proceedings of Eurographics, Computer Graphics Forum. 2003.

[RT17] Mohammad Harun Rashid and Lixin Tao. “Parallel Combinato-
rial Optimization Heuristics with GPUs.” In: International Sym-
posium on Computer Science and Intelligent Controls (ISCSIC).
2017.

[RT18] Mohammad Harun Rashid and Lixin Tao. “Parallel Combinato-
rial Optimization Heuristics with GPUs.” In: Advances in Science,
Technology and Engineering Systems Journal (2018).

[RE13] Minsoo Rhu and Mattan Erez. “Maximizing SIMD Resource Uti-
lization in GPGPUs with SIMD Lane Permutation.” In: (2013).

[Rob+08] Avi Robinson-Mosher et al. “Two-way Coupling of Fluids to Rigid
and Deformable Solids and Shells.” In: ACM Transactions on
Graphics (2008).

[RS10] Kamil Rocki and Reiji Suda. “Massively Parallel Monte Carlo
Tree Search.” In: Proceedings of the 9th International Meeting
High Performance Computing for Computational Science (2010).

[Sil+16] David Silver et al. “Mastering the Game of Go with Deep Neural
Networks and Tree Search.” In: Nature (2016).

[SG11] Barbara Solenthaler and Markus Gross. “Two-Scale Particle Sim-
ulation.” In: ACM Siggraph. 2011.

[SP08] Barbara Solenthaler and Renato Pajarola. “Density Contrast
SPH Interfaces.” In: Eurographics/SIGGRAPH Symposium on
Computer Animation. 2008.

[SP09] Barbara Solenthaler and Renato Pajarola. “Predictive-Corrective
Incompressible SPH.” In: ACM Siggraph. 2009.

222 Bibliography

[SP04] Anthony Steed and Chris Parker. “3D Selection Strategies for
Head Tracked and Non-Head Tracked Operation of Spatially Im-
mersive Displays.” In: 8th International Immersive Projection
Technology Workshop. 2004.

[Tal09] El-Ghazali Talbi. Metaheuristics: From Design to Implementa-
tion. Wiley Publishing, 2009.

[TCS20] Anita Tino, Caroline Collange, and André Seznec. “SIMT-X:
Extending Single-Instruction Multi-Threading to Out-of-Order
Cores.” In: ACM Transactions on Architecture and Code Opti-
mization 17 (2020).

[Tuk77] John W. Tukey. Exploratory Data Analysis. 1977.
[Val+10] Dimitar Valkov et al. “Touching Floating Objects in Projection-

based Virtual Reality Environments.” In: Joint Virtual Reality
Conference of EGVE - EuroVR - VEC. 2010.

[VMM99] J. Vollmer, R. Mencl, and H. Müller. “Improved Laplacian
smoothing of noisy surface meshes.” In: Computer Graphics
Forum. 1999.

[Wal11] Ingo Wald. “Active Thread Compaction for GPU Path Tracing.”
In: Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics. Association for Computing Machinery,
2011.

[WVH11] Alexander Wiebel, Frans M. Vos, and Hans-Christian Hege.
Perception-Oriented Picking of Structures in Direct Volumetric
Renderings. Tech. rep. ZIB, 2011.

[WHK16] R Winchenbach, H. Hochstetter, and A. Kolb. “Constrained
Neighbor Lists for SPH-based Fluid Simulations.” In: Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 2016.

[XMM18] Chenjun Xiao, Jincheng Mei, and Martin Müller. Memory-
Augmented Monte Carlo Tree Search. 2018.

[Yu+12] Lingyun Yu et al. “Efficient Structure-Aware Selection Tech-
niques for 3D Point Cloud Visualizations with 2DOF Input.”
In: IEEE Transactions on Visualization and Computer Graphics
(2012).

[Yu+16] Lingyun Yu et al. “CAST: Effective and Efficient User Interaction
for Context-Aware Selection in 3D Particle Clouds.” In: IEEE
Transactions on Visualization and Computer Graphics (2016).

[ZSP08] Yanci Zhang, Barbara Solenthaler, and Renato Pajarola. “Adap-
tive Sampling and Rendering of Fluids on the GPU.” In: Proceed-
ings of Eurographics / IEEE VGTC Conference on Point-Based
Graphics. 2008.

Bibliography 223

[ZZ15] Yichao Zhou and Jianyang Zeng. Massively Parallel A* Search
on a GPU. 2015.

	General Introduction
	Preface
	Technical Introduction
	General Research Questions
	Outline of the Thesis

	GPU Programming Fundamentals
	Basic GPU Architecture
	General Terminology
	Programmability and APIs
	Memory Accesses

	Parallel Simulations
	Introduction
	Parallel Simulations
	Improving Performance
	Initial Work
	Contributions
	Publications

	Related Work
	Particle-Based Fluid Simulations
	Adaptive Particle and Fluid Simulations
	Improving Utilization of Generic Parallel Simulations
	Adaptive Time Stepping for Generic Simulations
	Particle-Based Selection

	Improving Performance of Particle-Based Simulation and Selection Processes
	Iteration-Adaptive Position-Based Fluids
	Density and CL Adjustments
	Adaptation Models
	Algorithm & Implementation Details
	Visual Evaluation
	Performance Evaluation

	Screen Space Particle Selection
	Lasso Selection
	Density Estimation and Particle Selection
	Complexity & Implementation Details
	Selection Quality and Precision Evaluation
	Performance Evaluation

	Improving Performance of Generic Massively-Parallel Simulations
	Simulation Basics
	Parallel Simulations of Multiple States using Interpreters
	Leveraging Thread Compaction and Coalesced Memory Accesses in the Presence of Multiple States
	Algorithms
	Performance Evaluation

	Adaptive Time Stepping for Generic Simulations
	Cached Interpolation Results and Cache Integration
	Algorithms
	Performance Evaluation

	Conclusion

	Heuristic Optimization
	Introduction
	Contributions
	Publications

	Related Work
	Parallel State Tracking and Neighborhood Exploration
	Parallel State Tracking
	Neighborhood Exploration

	Improving Performance of Heuristic Optimization
	Parallel Tracking and Reconstruction of States
	History and Fill Rate
	Algorithms
	Performance and Memory Consumption Evaluation

	Fast and Efficient Successor State Generation
	Detailed View
	Variable Types and Memory Consumption
	Algorithms
	Performance Evaluation

	Conclusion

	Engineering & Project Contributions, Conclusion and Future Work
	Engineering & Project Contributions
	Publications
	Generation of Specialized Optimizers
	DSL Embedding
	Memory Layouts and Specialization

	Conclusion
	Limitations & Future Work
	List of Algorithms
	List of Figures
	Bibliography

