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Abstract 
Motivation: Compared to eukaryotes, prokaryote genomes are more diverse through different mechanisms, including a higher mutation rate 
and horizontal gene transfer. Therefore, using a linear representative reference can cause a reference bias. Graph-based pangenome methods 
have been developed to tackle this problem. However, comparisons in DNA space are still challenging due to this high diversity. In contrast, 
amino acid sequences have higher similarity due to evolutionary constraints, whereby a single amino acid may be encoded by several synony
mous codons. Coding regions cover the majority of the genome in prokaryotes. Thus, panproteomes present an attractive alternative leveraging 
the higher sequence similarity while not losing much of the genome in non-coding regions.
Results: We present PanPA, a method that takes a set of multiple sequence alignments of protein sequences, indexes them, and builds a 
graph for each multiple sequence alignment. In the querying step, it can align DNA or amino acid sequences back to these graphs. We first 
showcase that PanPA generates correct alignments on a panproteome from 1350 Escherichia coli. To demonstrate that panproteomes allow 
comparisons at longer phylogenetic distances, we compare DNA and protein alignments from 1073 Salmonella enterica assemblies against E. 
coli reference genome, pangenome, and panproteome using BWA, GraphAligner, and PanPA, respectively; with PanPA aligning around 22% 
more sequences. We also aligned a DNA short-reads whole genome sequencing (WGS) sample from S.enterica against the E.coli reference 
with BWA and the panproteome with PanPA, where PanPA was able to find alignment for 68% of the reads compared to 5% with BWA.
Availalability and implementation: PanPA is available at https://github.com/fawaz-dabbaghieh/PanPA.

1 Introduction 
Prokaryotes have been living on Earth for billions of years, 
during which they continued to evolve rapidly. With the geo
chemical changes on the planet, bacteria needed to adapt in or
der to survive these environmental and habitat changes, which 
led to their vast genetic diversity (Dunlap 2001). Looking at 
stable environments like garden soil, lakes, or coastal seawater 
that do not experience extreme environmental changes, we ob
serve a large diversity of prokaryotic organisms; and it is 
expected that not more than 1% of the bacteria in these sam
ples can be cultivated in the lab (Amann et al. 1995), which 
suggests that the true diversity is even larger. It has been esti
mated that the total number of prokaryotic cells on Earth is 
around 4−6� 1030 and their cellular carbon amount is 
3:5−5:5� 1014 kg (Whitman et al. 1998).

With the fast development of sequencing technologies, 
and, as a consequence, the fast production of large amounts 
of sequences, diversity and variability of prokaryotic 

genomes has become even more apparent (Perna et al. 2001). 
One way to understand new genomes and their diversity is by 
comparing their DNA to some well-studied reference 
genomes of the same species. Therefore, sequence alignment 
has been a cornerstone in bioinformatics for many years: it is 
extremely useful for finding homology between genes and 
proteins, identifying conserved regions, understanding evolu
tionary relationships between organisms, and many other im
portant tasks (Higgins 2001).

In many cases, sequencing reads of a new sample are di
rectly analyzed by comparing them to a reference genome, 
i.e. to one genome representative of the species. However, the 
linearity of a reference genome can lead to biases, e.g. if the 
query sequence contains a non-reference allele, which leads 
to incorrect or missing alignments (Chen et al. 2021). These 
effects are more pronounced in highly variable organisms like 
bacteria. To describe this genomic variability, the terms 
“core” and “accessory” genes were first coined by Tettelin 
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et al. (2005), where the “core” genes refer to essential genes 
(e.g. housekeeping genes) that are found in all or nearly all 
isolates, and the “accessory” genes (sometimes called 
“dispensible” genes) refers to the genes that are not present in 
every genome or isolate sequenced. The term “pangenome” 
was first introduced by Sigaux (2000) describing a database 
of tumor genome and transcriptome alterations, as well as 
relevant normal cells. In bacteria, pangenome refers to all 
core and accessory genes observed in a species.

In recent years, graph representations of pangenomes have 
become more widespread, providing a more complete picture 
of pangenomes than a simple distinction into core and acces
sory genes. In graph-based models of pangenomes, one repre
sents the genomic variability of a population using a graph 
data structure where nodes are labeled with sequences and 
edges connect nodes representing sequences that are adjacent 
to each other in one or more genomes in a population 
(Eizenga et al. 2020). One can then use these graph data 
structures as a reference instead of using a linear reference to 
reduce reference biases (Paten et al. 2017), which entails the 
need to align sequences to a graph.

Sequence alignment and pattern matching to a string graph 
is not a new problem; it has been described almost three deca
des ago. Pioneering studies include Manber and Wu (1993), 
where pattern matching on hypertext was described and 
Akutsu (1993), where an algorithm for exact pattern match
ing to a hypertext in a tree structure was developed. In 1995, 
Park and Kim (1995) described regular pattern matching on 
a directed acyclic graph (DAG). Later on, an algorithm that 
does pattern matching on “any” hypertext was developed by 
Amir et al. (2000), then Navarro (2000) improved both time 
complexity and space complexity.

In 2002, these algorithms were adopted for biological data 
by Lee et al. (2002), where the Partial-Order Alignment algo
rithm was used for generating an MSA in a graph representa
tion, the algorithm allows the alignment of a sequence 
against this graph representation. In essence, it is a modified 
version of the common sequence alignment with dynamic 
programming (DP) algorithms, where all the incoming edges 
connecting a certain node in the graph to other nodes are 
considered while calculating the cell’s score to find the best 
path of the sequence through the graph. In recent years, sev
eral tools have been introduced to perform sequence-to- 
graph alignments with better speeds and accuracy (Ivanov 
et al. 2020, Rautiainen and Marschall 2020, Sir�en 
et al. 2021).

So far, all tools for pangenomes have mostly been imple
mented to be used for different samples or strains in a single 
species: in bacteria, e.g. for Escherichia coli (Colquhoun et al. 
2021), in plants, for Cucumis sativus (Li et al. 2022), and in 
humans (Eizenga et al. 2020, Li et al. 2020), including the 
work of the Human Pangenome Reference Consortium (Liao 
et al. 2023). Due to the high diversity in bacteria, these tools 
typically cannot be used for inter-species comparisons at the 
DNA level, as the diversity is too high to make meaningful 
alignments. This problem is even more exacerbated in highly 
diverse and less-studied clades, e.g. Actinomycetes or 
Myxobacteria, which are an important source of natural 
products that can be used in drug discovery (Gerth et al. 
2003). The diversity in these clades is much higher than what 
is already described due to limitations in cultivation and in- 
lab growth (Mohr 2018).

In these cases, however, one can still trace the sequence 
similarity by switching to amino acid alignments, i.e. looking 
only into coding regions, as these alignments will have a 
higher quality compared to DNA sequence alignments, due 
to several reasons. First, amino acid sequences are evolution
ary more conserved compared to the total genome DNA se
quence, as proteins have a specific biological function. 
Moreover, as the amino acid alphabet is larger, the “signal- 
to-noise ratio” is better (Wernersson and Pedersen 2003). 
The same amino acid can be encoded by several codons, 
hence, a part of mutations in DNA are not visible on the 
amino acid level. Second, some of the errors introduced dur
ing sequencing can cause a frameshift during alignments, 
which can be avoided when using amino acids (Sheetlin et al. 
2014). Third, in amino acid sequence alignment, we usually 
use a substitution matrix instead of just edit distance in DNA 
sequence alignment, better capturing biological reality 
(Bininda-Emonds 2005). In prokaryotes, the fraction of non- 
coding regions in the genome can range from 5% to 50%. 
However, for the vast majority, the fraction is <18% 
(Rogozin et al. 2002), further motivating a focus on cod
ing sequences.

Here, we propose a new tool PanPA to conduct pange
nomic analyses that considers amino acid, or protein sequen
ces. PanPA allows building DAGs for each individual protein 
or protein cluster in order to represent a pangenome. 
Computing alignments in amino acid space can give a big ad
vantage in terms of finding more sequence similarity and be
ing able to align more phylogenetically distant organisms 
against each other while losing relatively little genome infor
mation. Westbrook et al. (2017) showcased how aligning in 
protein space introduces significant improvements in align
ment accuracy and functional profiling in a metagenome sce
nario. The idea of having many graphs representing a 
pangenome instead of one large graph was presented in 
Colquhoun et al. (2021); in their tool Pandora, the authors 
define a pangenome as a collection of “local graphs” where 
each local graph represents some locations in the genome 
that can be pre-defined by the user. PanPA combines the two 
ideas of (i) having a pangenome consisting of many smaller 
graphs, where each graph represents a protein or a protein 
cluster, and (ii) working in amino acid space rather than nu
cleotide sequences to support pangenomic analyses over 
larger evolutionary distances. We call such a collection of 
graphs a “panproteome.” We showcase the utility of PanPA 
by performing alignments of proteins and raw short reads 
from Salmonella enterica assemblies against a E.coli 
panproteome.

2 Methods
The idea behind PanPA is that we aim to build a panpro
teome of a collection of protein sequences or protein clusters. 
In this definition of a panproteome, each protein or protein 
cluster is represented as a separate graph. Therefore, our 
pipeline starts from multiple sequence alignments (MSAs) 
provided as input, where each MSA represents one protein or 
cluster, and the pipeline goes through three major steps:

1) Building an index from the input MSAs. 
2) Constructing a directed graph from each MSA. 
3) Aligning query sequences to these constructed graphs 

with the help of the index constructed from these MSAs. 
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2.1 Building index from MSAs
For each sequence N of length m, we define a substring 
s ¼ N½i; j�, where 0 � i � j � m−1, as a substring of N start
ing at position i and ending at position j with the length of 
j−iþ1. A k-mer from a string N is then defined as a substring 
of length k. We also define a function minðSÞ that takes the 
set S ¼ fs1; s2; . . . ; swg of size w containing w equally 
lengthed strings and returns the lexicographically smallest 
string in this set; we call this function a “minimizer.”

To construct a “k-mer based index,” for every string N, 
the seeds extracted from that string form a set Sseeds compris
ing every consecutive k-mer from N. Sseeds ¼ fN½0; 0þk−1�;
N½1;1þk−1�; . . . ;N½i; iþk−1�g; 8i 2 f0; . . . ; ðm−kÞg, where 
each string N of length m will contain ðm−kþ1Þ k-mers. A 
“minimizer-based index” was originally developed by 
Schleimer et al. (2003) and was first used in bioinformatics to 
reduce storage requirements for sequencing data by Roberts 
et al. (2004). In this approach, for each sequence N, instead 
of taking the set of all consecutive k-mers as seeds, we take 
the set Sseeds that contains the minimizer of every consecutive 
window of w k-mers, i.e. we take the smallest seed in a set of 
seeds for each consecutive window of seeds. Sseeds ¼

fminðS0;wÞ;minðS1;wÞ; . . . ;minðSi;wÞg; 8i 2 f0; . . . ;

ðm−w−kþ1Þg, where Si;w is a set of w consecutive k-mers 
starting at position i in the string N.

In PanPA, both a k-mer-based and a minimizer-based index 
are implemented and can be used alternatively. In both cases, 
the index stores a key-value map, where the keys are a set of all 
k-mers or ðw;kÞ-minimizers extracted from each sequence in 
the input MSAs, and the values are ordered lists of MSAs 
where that key was found, the ordering of the values is based 
on the number of times that key showed up in that certain 
MSA. More on the indexing detail is described in Section 3.

2.2 Generating a DAG from a MSA
For this step, we developed a simple algorithm to turn each 
MSA into a graph in the “graphical fragment assembly” 
(GFA) format, where each original sequence from the MSA is 
represented in the GFA file as a path. This algorithm runs in 
Oðn�mÞ time, where n is the number of sequences in the 
MSA and m is the length of the alignment and has two steps: 
(i) generating the graph, and (ii) compacting the graph.

2.2.1 Generating the graph
We define an alphabet A as the amino acid alphabet, and a 
matrix M ¼ ðai;jÞ 2 fA [ −gm�n, each column in matrix M is 
a vector fA [ −gn and each row is a vector fA [ −gm. In a 
nutshell, the algorithm loops through each column vector at 
position j where 0 � j � m−1, and for each of these vectors, 
it constructs a new node nodejðcÞ for each unique character 
c 2 A. Edges are then added between two nodes nodej1ðc1Þ !

nodej2ðc2Þ (where j1 < j2) if and only if the characters c1 and 
c2 were consecutive in one of the rows in matrix M after ig
noring the character f−g.

The algorithm is summarized in Algorithm 1. Consider an 
MSA with three sequences (Fig. 1); in this figure, the columns 
marked yellow are the “current” column in the loop, and the 
column in red is the “previous” column. The algorithm loops 
through the columns of the MSA, and at each column, it goes 
through each character in that column, if the character is new 
then a new node is initialized for this character (Lines 18–22 
in Algorithm 1), otherwise, if the character is not new, i.e. a 
node was already constructed for that letter at that column, 

we assign the character a corresponding node identifier. After 
building nodes for a column j, i.e. the “current” column in 
the loop, we synchronize with column j−1, i.e. the 
“previous” column (if it exists) (Lines 2–10 in Algorithm 1), 
where we go through each row i in both columns, and for ev
ery row i we have three choices: (i) if ci;j; ci;jþ1 2 f−g (e.g. first 
two gaps in the second sequence in Fig. 1), then there is noth
ing to do; (ii) if ci;j; ci;jþ1 2 A, then we need to draw an edge 
between nodejðci;jÞ and nodejþ1ðci;jþ1Þ; (iii) if ci;j 2 A and 
ci;jþ1 2 f−g then we need to keep the character ci;j “saved” 
and continue going through the MSA until we reach a col
umn jþx where ci;jx 2 A and x > 1, then we can draw an 
edge between nodejðci;jÞ and nodejþxðci;jþxÞ. An example of 
this final case in Fig. 1 is the second sequence, where Column 
5 has a gap but Column 4 has a T; we keep track of this until 
we reach the character M in Column 7, where we construct a 
node for the character M in Column 7 and draw an edge be
tween node5ðTÞ and node7ðMÞ. Since we iterate through the 
MSA from left to right and draw edges between consecutive 
nodes, the resulting graph is directed and acyclic.

2.2.2 Compacting the graph
Linear stretches of nodes can arise while generating a graph 
from an MSA. A set of consecutive nodes 
fnodej1ðc1Þ; nodej2ðc2Þ; . . . ;nodejnðcnÞg is a linear stretch, if 
and only if each node in the set has an in-degree and out- 
degree of one, with an exception that the first node 
nodej1ðc1Þ can have a higher in-degree and the last node 
nodejnðcnÞ can have a higher out-degree. Then, we can 

Algorithm 1 Constructing a DAG from MSA

Matrix M fMatrix of dimensions m� ng
Map nodes fA map of node IDs: array of children IDsg
Array previous fEmpty array of length ng
Array current fEmpty array of length ng
Int n fInteger starting with 0g
1: for j 2 f0 . . .mg do

2:  for i 2 f0 . . .ng do

3:   if ðcurrent½i� � NoneÞ&&ðprevious½i� 6¼ NoneÞ then

4:    current½i�  previous½i�
5:   else if ðcurrent½i� 6¼ NoneÞ&&ðprevious½i� 6¼ NoneÞ then

6:    nodes½previous½i��:appendðnodes½current½i��ÞÞ
7:   else

8:    pass
9:   end if

10:  end for

11:  previous current
12:  Array current fEmpty array of length mg
13:  Array column M½j� fcharacters in column jg
14:  Map seen fempty mapg fcharacter: node IDg
15:  for i 2 f0 . . .mg do

16:   if column½i� 2 seen then

17:    current½i�  seen½column½i��
18:   else

19:    n nþ1
20:    nodes½n�  ½�
21:    current½i�  n
22:    seen½column½i��  n
23:   end if

24:  end for

25: end for
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compact these nodes into one node and concatenate their 
sequences. For example, in Fig. 1 at the last step of construct
ing the graph, the stretch of nodes P! T ! P! E can be 
compacted into one node.
PanPA’s final output is the compacted version of the graph 

in GFA format with each original sequence as a path entry in 
the output GFA.

2.3 Aligning query sequences
2.3.1 Amino acid queries
PanPA uses a modified version of the Smith–Waterman algo
rithm for local alignments (Smith and Waterman 1981) 
known as partial-order alignment (Lee et al. 2002). The main 
idea of the modification is that instead of looking at the pre
vious character in the alignment to fill the DP table, we need 
to consider all incoming edges of a node. As each graph con
structed from an MSA is a DAG, the graph can be topologi
cally sorted generating a list of ordered vertices. The 
concatenation of the sequences of the ordered vertices is the 
target sequence to align against (Fig. 2).

The DP matrix is defined as H ¼ ðai;jÞ 2 Rðnþ1Þ�ðmþ1Þ, 
where m is the size of the query sequence M, and n is the size 
of the concatenated sequences N from the ordered vertices. 
We add one extra row and column filled with 0 as the initial
izing row and column. Similar to the Smith–Waterman algo
rithm, we need to fill cells of the DP table using the 
information from previous cells, considering the previous 
character. However, as some columns correspond to the first 
character of a node in the graph, we need to calculate the 
score of that cell based on all possible previous characters fol
lowing all incoming edges to that node: for calculating the 
score of cell i, j, we take the max of all scores calculated con
sidering all characters from the incoming edges pl, where pl is 
the column index pointing to the previous character after fol
lowing the incoming edge (1). To calculate a single score, we 
have three possible choices: a match/mismatch, an insertion, 
or a deletion (2). 

Hi;j ¼ max
8l:pl2Pin

ðscoreði; j; plÞÞ: (1) 

scoreði; j; plÞ ¼ max

Hi−1;plþsubðN½pl−1�;M½i−1�Þ
Hi−1;jþD

Hi;plþD

0

;

8
>><

>>:

(2) 

where d is the gap score, and subðc1; c2Þ is a function that 
takes two characters and returns the score based on a substi
tution matrix, e.g. Blosum62 (Henikoff and Henikoff 1992). 
Since our graphs are compacted, one node can have several 
characters. Therefore, if we are calculating the score for some 
Hi;j and the column j does not correspond to the first charac
ter in the node, we can simply then use (2) with pl being sim
ply j−1.
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Figure 1. MSA to GFA: turning an MSA into a graph. The MSA in this example contains three sequences, - MEPTPEQ, - - - T—MA, and MSETQSTQ; and 
the step-by-step graph construction is shown on the panels from top to bottom. At every step, the yellow column is the current position and the red 
column is the previous one.

Figure 2. Alignment of a sequence to a protein graph. Top: example 
protein graph; bottom: the corresponding DP table. The ordered graph 
vertices are in the columns, and the query sequence is in the rows. 
Arrows between columns correspond to the graph edges. Arrows in the 
DP table correspond to potential previous cells in the DP process.
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For tracing back the alignment, we use the same approach 
as in the classical Smith–Waterman algorithm, checking 
where the score of the cell came from to know which path 
our query sequence aligns to. For example, in Fig. 2, the last 
column corresponds to the character Q. When tracing back 
from it, we see two incoming edges: one leading to the char
acter E and the other to the character T. The score is then cal
culated for each previous character and the maximum score 
is chosen, which corresponds to E at j ¼ 9. Hence, we con
tinue the traceback from this cell. On the other hand, for j ¼
9 there are no incoming edges, so we only need to look at 
j ¼ 8, and so on.

2.3.2 Frameshift-aware DNA alignment
To align DNA sequences directly to amino acid graphs, while 
also accounting for insertion or deletion that could cause fra
meshifts, we used a method similar to Sheetlin et al. (2014), 
which considers frameshift-aware alignments of sequences, 
and adapted it to aligning to graphs. In our method, when 
filling the DP table, for each nucleotide in the query DNA se
quence, we assume it is the third codon position nucleotide 
and consider it together with the previous two to form a co
don. Supplementary Table S3 contains an example of a DP 
table for the frameshift-aware alignment. When filling a cell, 
we always look for the next (potential) amino acid to start 
three positions downstream in the DNA sequence and always 
make jumps across three rows.

To make this formulation frameshift-aware, we introduce 
two new types of diagonal jumps when calculating the score 
for a certain cell at ði; jÞ:

1) i−4; j−1 jump, which describes an insertion frameshift, 
when the DNA sequence has an extra nucleotide that in
troduced a frameshift, which moves the current align
ment to the previous frame; 

2) i−2; j−1 jump, which describes a deletion frameshift, 
where the DNA sequence has one nucleotide deleted, 
which moves the current alignment to the next frame. 

For the i−4; j−1 and i−2; j−1 jumps, we introduce a frame
shift penalty r.

Finally, the score for a cell in the DP table is calculated as: 

scoreði; jÞ ¼ max

Hi−3;j−1þsubðtransðN½i−2; i�Þ;M½j−1�Þ
Hi−3;jþD

Hi;j−1þD

Hi−4;j−1þr

Hi−2;j−1þr

0

;

8
>>>>>><

>>>>>>:

(3) 

where N is the DNA sequence and M is the amino acid se
quence, and the function transðÞ takes a codon and returns 
the equivalent amino acid, and the function subðÞ takes two 
amino acids and returns the substitution score between them.

3 Implementation
PanPA was built using Cython without any extra dependen
cies, where Cython was used mainly to optimize the core 
alignment algorithm. To facilitate the user, each step is imple
mented as a separate subcommand, which can be 

instrumental in finding optimal parameters for a certain data
set. The subcommands are build index, build gfa, 
and “align.”
PanPA’s workflow proceeds in three key steps (Fig. 3). It 

starts with MSA files, where each MSA represents one pro
tein or a protein cluster. This input is accepted by both 
build_index and build_gfa modules. The subcommand 
align takes a FASTA file with query sequences, the graphs, 
and the index file produced from the build_index step. 
PanPA then outputs the alignment in Graph Alignment 
Format files.

3.1 Indexing
In the indexing step, PanPA goes through each sequence in 
each MSA given and extracts the seeds from that sequence, 
be it k-mers or minimizers, depending on the user’s choice. 
Each seed is a key in a key-value map, and the value is a list 
of the MSA identifiers where that seed was found. In our im
plementation, the value vector is ordered based on the num
ber of times that seed showed up in an MSA normalized for 
the number of sequences in that MSA. Therefore, the user 
can choose a cutoff limit on how many MSAs (equivalently, 
graphs) one seed can belong to, as some seeds can be promis
cuous, especially a small value for k is used. Because the vec
tor of hits is ordered, if the limit is an integer n, only the n 
top MSAs will be kept in the index.

For example, if we have three MSAs m1, m2, and m3 con
taining 10, 7, and 3 sequences respectively, a seed s1 is pre
sent in m1 two times, in m2 four times, and m3 three times 
(with normalized counts being 0.2, 0.57, and 1, respectively), 
and the user cutoff is set to two, then in the resulting index, 
the seed s1 points to a list ½m3;m2�.

In order to make extracting the minimizers from the con
secutive windows faster, we used the Sliding Window 
Minimum algorithm (Carruthers-Smith 2011), which has a 
time complexity OðnÞ, where n is the size of the in
put sequence.

3.2 Generating graphs
PanPA generates one DAG for each MSA and stores it in the 
GFA format. Therefore, when a seed in the index points to 
one MSA, we can align the query sequence to the graph that 
corresponds to that MSA. Moreover, because the original 
sequences in the MSA are encoded as paths with the path line 
in GFA, we cannot compact two adjacent nodes connected 
by one edge if not the same set of sequences pass through 

Figure 3. The general PanPA pipeline and its subcommands (in blue). 
Each subcommand can be also run separately or more than once with 
different parameters.
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both these nodes. For example, consider an MSA with three 
sequences MTQT, - - QT, and MT - -. The corresponding 
graph has a linear stretch of four vertices (M, T, Q, and T) 
with one edge between every two consecutive vertices. 
However, if we compact all four vertices into one, we cannot 
write a path for Sequences 2 and 3 in the GFA file, because 
now they are contained inside this compacted node. 
Therefore, we can only compact nodes M and T together and 
nodes Q and T together; this way Sequence 3 is contained in 
the first node and Sequence 2 in the second (Supplementary 
Fig. S3).

3.3 Aligning
Given a query sequence, we count all the seed hits from the 
query to the MSAs using the index and generate a list of 
MSAs (equivalently, graphs) to align against. This list is 
sorted based on the number of hits: e.g. if the query sequence 
had five seeds, where four of them pointed to m1, and one 
pointed to m3, our list of matches will be ½m1;m3�. The user 
can also specify to how many potential MSAs/graphs can one 
query be aligned against, or choose to align to all matches. If, 
e.g. the limit of matches was set to one, our query sequence 
will only be aligned to m1. Moreover, the user can specify a 
minimum acceptable alignment identity score, and only the 
alignments with scores equal or larger to this minimum 
threshold are returned. PanPA also uses a linear gap penalty 
and the user can choose one of many substitution matri
ces available.

4 Results
4.1 Validating PanPA on a panproteome of E.coli
We first wanted to validate that PanPA is able to find correct 
alignments. Therefore, we built a panproteome of E.coli and 
then realigned all sequences to it. To that end, we first down
loaded 1351 E.coli assemblies that were marked as 
“Complete Genome” from RefSeq (O’Leary et al. 2016). We 
extracted every amino acid sequence corresponding to a cod
ing region from the annotations provided in RefSeq and clus
tered them using mmseq2 (Hauser et al. 2016) with default 
parameters, resulting in 44 204 protein clusters. The distribu
tion of the number of strains per cluster (Supplementary Fig. 
S1) has the characteristic U-like shape, which evidences the 
presence of the core genes that are present in nearly all assem
blies (right part of the plot) and accessory genes that are 
mostly unique to one assembly or present in only a few (left 
side of the plot). Now that we had similar proteins clustered 
together, mafft (Katoh and Standley 2013) was used on 
each cluster to produce a corresponding MSA.

We then proceeded with PanPA to produce a DAG in GFA 
format from each MSA. We randomly selected 32 289 pro
tein sequences from our MSAs collection. The random selec
tion was done by, first, randomly selecting 10% of all the 
MSAs representing the protein clusters, then for each MSA 
chosen, we randomly selected 5% of sequences in that MSA. 
Therefore, we had a ground truth as to where each sequence 
comes from and to which graph it should align; and we 
expected that PanPA should align each of these sequences to 
the correct corresponding graph. We constructed a pipeline 
using Snakemake (M€older et al. 2021) to run the indexing 
and alignments steps with a combination of several parame
ters to demonstrate the effect of different parameters on the 
correctness of the alignments.

We define a “wrong alignment” here when the highest- 
scoring alignment produced by PanPA corresponds to an 
alignment against a different graph/MSA than that where the 
sequence originated from. For k ¼ 3, we get a relatively high 
number of wrongly aligned sequences, unless the index stores 
all the seed hits (the value 0 in the figure, with the red marks), 
whereas higher k values produce very few wrong alignments 
regardless which cutoff was used for the index (Fig. 4). 
Moreover, using indexes with small k and w values also 
results in higher alignment time as more seeds need to be 
extracted, the seeds have more matches, and more look-ups 
need to be done to find the top potential graphs to align to. 
For example, in this experiment, aligning with k ¼ 3 requires 
a maximum of around 20 000 s in CPU time, whereas it 
takes a few hundred seconds of CPU time using k ¼ 9 (see 
Supplementary Fig. S2 for all combinations of parameters).

From these results, we can recommend that k larger than 3 
should be used for alignments against closely related species, 
and a cutoff of five on the index can be used without losing 
too many alignments. For full sensitivity, we recommend us
ing a small k and not limiting the index to keep all seed hits. 
However, this will result in a longer alignment time. 
Supplementary Section S3 contains another experiment for 
validating the correctness of PanPA.

4.2 Aligning unseen sequences from E.coli
Using the same panproteome constructed in the previous ex
periment, we further downloaded 80 E.coli assemblies from 
RefSeq that were not used in building the panproteome as 
they were not marked as complete assemblies, and extracted 
the protein sequences from the corresponding annotation 
files. After removing redundant sequences, we were left with 
92 196 sequences. We used the same Snakemake pipeline 
as in the previous experiment to align these sequences against 
the panproteome with the same different parameter combina
tions. To consider an alignment correct, we require that its 
sequence identity is above 90%, however, the average align
ment score was about 0.998%. We observe again that for 
small values of k, the majority of sequences (between 50% 
for k ¼ 3 and w ¼ 6 to 99% for k ¼ 3 and w ¼ 1) did not 
produce an alignment (Fig. 5). These results emphasize the 
conclusion from the previous experiment, that choosing a 
very small size for the seeds (e.g. k ¼ 3) and limiting the in
dex hits size will result in a high number of false positive in
dex hits that; in turn; will result in alignments with a low 
identity that will be filtered out. When the index hits size is 
unlimited, PanPA is able to find the correct graphs. 
However, an unlimited index will result in a much longer 
alignment time as there is a need to align to more sequences. 
For example, for k ¼ 3;w ¼ 1, and unlimited index, it takes 
PanPA over 80 000 s of CPU time to finish alignments com
pared to slightly over 1000 s with k ¼ 9 and w ¼ 1 
(Supplementary Fig. S3).

4.3 Comparison of PanPA with BWA and 
GraphAligner using S.enterica sequences
One of the major advantages of moving to the amino acid 
space is the ability to have better alignments between more 
distant organisms. To test this, we downloaded 1077 S.enter
ica annotated assemblies from RefSeq, extracted all coding 
regions, and aligned them to the E.coli assemblies and graphs 
that we have already. Both E.coli and S.enterica belong to the 
same family Enterobacteriaceae, but are from different 
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Figure 5. Effect of the different parameters on the number of unaligned sequences when aligning 92 196 unseen E.coli sequences. For small k values, 
the majority of sequences were not aligned unless a limit for the index hits size is set (the red marks); if the index hits size is not limited, over 99% of 
sequences produce an alignment.

Figure 4. Effect of the different parameters on the fraction of wrongly aligned sequences, where a “wrong alignment” is a sequence being aligned to a 
different graph than the one it originated from. Each point is colored with respect to the seed hits limit (the limit of how many hits can each seed point 
to), and shapes correspond to the aligned hits limit (the limit of how many graphs can one sequence align to). For small k values, a high number of wrong 
alignments is produced, unless the index size is limited. The align seed limit has a relatively small effect on the percentage of wrong alignments.
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genera, and hence are expected to be far apart from each 
other evolutionary to make a good test case for our tool 
PanPA. In order to compare DNA and protein alignments, 
we extracted all DNA sequences of coding regions and their 
corresponding amino acid sequences from the S.enterica 
annotations, obtaining 4 839 981 sequences, which we 
used to align to the E.coli panproteome.

We compared three kinds of alignments here: (i) DNA se
quence alignments against the E.coli linear reference genome 
(strain K-12 substrain MG1655) using BWA (Li and Durbin 
2010); (ii) DNA sequence alignments using GraphAligner 
(Rautiainen and Marschall 2020) against the E.coli pange
nome graph from all 1351 assemblies that we constructed 
with minigraph (Li et al. 2020); and (iii) amino acid se
quence alignments using PanPA against the E.coli panpro
teome constructed in the first experiments. Both BWA and 
GraphAligner were run with default parameters, and 
PanPA was given an index with k ¼ 5, w ¼ 5, an index limit 
of 10, and only aligning each sequence to the top 10 graph 
hits. The alignments were then filtered based on alignment 
length and alignment identity, and only alignments with a 
length of over 50% of the original sequence length and align
ment identity of at least 50% were kept.

Out of the 4 839 981 sequences, 1 638 936 were 
successfully aligned by all three aligners, while 1 694 181 
could only be aligned by the graph-based methods 
GraphAligner and PanPA. Strikingly, PanPA could align 
744 033 unique sequences that were not aligned by any of 
the other two aligners (Fig. 6 and Supplementary Table S1). 
PanPA alignments have higher identity scores, which is to be 
expected as in the amino acid space the sequence identity is 
higher for the same two sequences as in the DNA space 
(Fig. 7). This confirms the advantages of aligning using the 
amino acid alphabet, which PanPA now enables leveraging 
for sequence-to-graph alignments. To perform the calcula
tions, PanPA needed around 17 min to build the index, and 
about 5 h to align the sequences, using 2.3 Gb memory (CPU 
time 375 515 s), BWA only took around 6 min to run 
and needed around 900 Mb of memory (CPU time 6818 s), 
and GraphAligner needed around 20 min to run and used 

around 700 Mb of memory (CPU time 22 908 s), all of the 
tools were run with 20 cores.
PanPA did take more time to perform the alignment com

pared to the other tools. However, PanPA was able to align 
more sequences, and due to the use of a substitution matrix 
instead of edit distance in the alignment algorithm, certain al
gorithmic speeding tricks cannot be used by PanPA. We elab
orated more on this point in Section 5.

4.4 Aligning S.enterica Illumina short reads to the  
E.coli genome, pangenome, and panproteome
PanPA is also able to align DNA sequences to protein graphs 
by translating each DNA sequence into six different reading 
frames (three forward and three reverse-complement). This 
feature can be very helpful for aligning sequencing reads 
from organisms that do not have a reference genome of the 
same species or a close enough species to align to.

We downloaded one S.enterica Illumina whole genome se
quencing short-reads sample (SRR22756191) from NCBI 
SRA database (Leinonen et al. 2011) containing 
1 110 471 sequences, the sample is part of PulseNet USA 
surveillance for food-borne diseases. We aligned the sequen
ces using BWA against the linear reference of E.coli that we 
used in the previous experiment and against the E.coli pan
proteome using PanPA, using the index with k ¼ 5, w ¼ 3, 
and no cutoff. In the alignment step, we allowed each se
quence to align to up to 20 graphs. We filtered the output 
retaining alignments with >50% alignment sequence identity 
and 50% alignment length. BWA was used with default 
parameters. For PanPA, we chose a relatively small k, be
cause we sought higher sensitivity. To match the DNA 
sequences, it needed to be first translated into six different 
reading frames and seeds extracted from all frames to find 
the hits, which can elevate the false positive rate. However, 
increasing the number of allowed graphs only affected the 
number of alignments done and the overall run time: align
ments that did not pass the identity threshold were not 
returned. Similar to the experiments above, we advise choos
ing a smaller seed size with an unlimited index when the user 
wants higher sensitivity, e.g. in the case of aligning to a more 
distant organism.

Figure 6. Upset plot of the unique alignments of 4 839 981 sequences 
from the coding regions of 1074 S.enterica assemblies from RefSeq. 
Alignments with BWA and GraphAligner (DNA), and PanPA (amino 
acids) against their corresponding E.coli counterparts were constructed 
using the parameters in Supplementary Section S2.

Figure 7. Distribution of identity scores between BWA, GraphAligner, 
and PanPA from aligning the S.enterica sequences. The pique for PanPA 
is shifted to the right, meaning higher sequence identity, as amino acid 
sequences align with higher identity compared to nucleotide sequences.
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As expected, using a distant linear reference has a major 
disadvantage: around 65% of the reads could not be aligned 
with BWA with identity over 50%; and after additional filter
ing requiring alignment length to be over 50%, only 4.4% 
were reported retained (Table 1). On the other hand, PanPA 
was able to produce alignments for 72% of the reads with 
identity over 50%, and 68% of reads could be aligned over 
more than 50% of their length. Three lakh fifty-five thousand 
four hundred and sixty-two sequences were not aligned by ei
ther aligner. In this experiment, PanPA needed about 6 h to 
align the DNA sequences using 10 threads (CPU time 
169 004 s), and used about 1.8 Gb of memory. BWA only 
took 17 s to run with 10 threads (CPU time 162 s).

In conclusion, PanPA required over two orders of magni
tudes more time compared to bwa. However, looking at the 
alignment result difference, PanPA was able to align over an 
order of magnitude more sequences with alignment identity 
over 50% than bwa.

4.5 Using PanPA to display phenotypic traits: a case 
of antimicrobial resistance in E.coli
Certain mutations are associated with bacteria being resistant 
or susceptible to antibiotics, and this has been a main focus 
of many researchers, as resistance against antibiotics presents 
a major threat to public health. We explored the applicability 
of our tool PanPA to identify such mutations. To this end, 
we used the Pathosystems Resource Integration Center 
(Davis et al. 2020) database, which contains assemblies and 
annotations for many antibiotic-resistant and susceptible bac
teria. We downloaded ciprofloxacin-resistant and susceptible 
strains from E.coli, which comprised 556 resistant and 1295 
susceptible genomes. We extracted two genes, parC and 
gyrA, which encode for quinolone, and particularly cipro
floxacin, targets and can carry resistance-associated muta
tions in E.coli (Bagel et al. 1999) and translated them to 
proteins. For each of these two proteins, we were able to ex
tract 1236 susceptible and 309 resistant sequences. We ran
domly split the sequences into two sets, one containing 10% 
of the sequences and the other 90% of the sequences. We 
mixed the 90% sample of both susceptible and resistant to
gether, generated an MSA using mafft, and then a graph for 
each protein using PanPA().

In this way, we obtained a graph for each protein contain
ing resistant and susceptible sequences. The variance between 
the sequences creates bubbles in the graph. Resistance- 
associated mutations [S83L, D87N in GyrA (Webber et al. 
2017, Yu et al. 2020, Rakici et al. 2021), S80I in ParC 
(Nawaz et al. 2015)] are clearly visible in them (Fig. 8). 
Besides these canonical resistance-associated variants, we ob
served other potential variants that are present predomi
nantly in resistant strains: alanine, leucine, and valine at 
Position 83 and alanine, tyrosine, and asparagine at Position 
87 of GyrA, as well as arginine at Position 80 of ParC. We 
aligned the 10% sequence set aside to the graphs using 
PanPA. Visualizing the corresponding paths (Fig. 8) one can 
see that the vast majority of the sequences extracted from 

resistant strains are aligned to the nodes that represent var
iants associated with resistance, and susceptible sequences 
aligned to mostly nodes associated with susceptible variants.

4.6 Comparing against HMMER
HMMER is a widely used tool for searching for remote homo
logs in protein databases (Finn et al. 2011). HMMER has a high 
sensitivity, which makes it useful for aligning sequences that 
have lower similarity due to their large phylogenetic distance 
from the target. HMMER builds a hidden Markov model for 
each MSA given, which is then used for aligning a new se
quence against the profile.

To compare PanPA’s performance with HMMER, we con
sider each protein cluster as a separate profile. HMMER can be 
then used to align new sequences against these profiles and 
choose the best hits. More formally, we performed two com
parative steps between HMMER and PanPA:

1) Building HMM profiles in HMMER, and generating 
graphs and an index in PanPA, as both are preprocess
ing steps before doing alignments; 

2) HMMER search step and PanPA’s alignment step, as 
HMMER search also produces alignments. 

Again, we used the 44 204 protein clusters of the E.coli 
sample we have from previous experiments. For PanPA, 

Figure 8. Visualization of parts of the protein graphs for (a) GyrA and (b) 
ParC using Bandage (Wick et al. 2015). Nodes are colored according to 
the number of resistant/susceptible strains that pass through them, with 
blue color representing resistance, and with red representing 
susceptibility; the color intensity corresponds to the number of strains. 
Additional colored lines show the paths of the aligned 10% sequence that 
were set aside (45 resistant and 117 susceptible sequences), the color 
representing the type, and the thickness representing the number of 
sequences taking that path. A thick blue line of resistant sequences took 
the blue path passing through the blue nodes, and vice versa, a thick red 
line for susceptible sequences took the red path passing through the 
red nodes.

Table 1. Number of S.enterica DNA short reads aligned against E.coli’s 
linear reference with BWA and against its panproteome using PanPA.

Identity >50% Identity and length >50%

BWA 391 041 (35.2%) 48 937 (4.4%)
PanPA 801 389 (72.2%) 755 009 (68%)
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we built a w, k-minimizer index for the clusters with k ¼ 5 
and w ¼ 3. This step required 17 min and 50 s, and about 
1.4 Gb of memory. For building graphs in GFA format for 
each cluster, PanPA needed 6 min and 37 s using 10 threads. 
Building HMM profiles from the same alignments with 
hmmbuild command of HMMER took 2 h, 46 min, and 18 s 
(using one thread) for all 44 204 clusters. As HMMER runs 
separately on each MSA, only one thread was used. 
However, one can use a bash script of Snakemake, e.g. to 
run several MSAs at the same time on different threads.

For aligning, we extracted a random sample of 10 000 
protein sequences from the S.enterica sample we used in the 
previous experiments, and aligned these sequences to graphs 
or HMMs, respectively. PanPA took 20 min and 57 s (CPU 
time 959 s) to align all 10 000 sequences back with a mini
mum alignment identity threshold of 10%. Using 10 threads 
brought the time down to 7 min and 25 s. PanPA always 
spends about 5 min loading all the graphs into memory be
fore alignments, which means the more sequence are aligned, 
the smaller this overhead relative to the total runtime. PanPA 
used 2.2 Gb of memory, and the number of query sequences 
does not affect the memory consumption. Therefore, such an 
example can easily run on any conventional laptop or desk
top computer. HMMER took 19 min and 29 s (CPU time 
3341 s) to align all 10 000 sequences against the database 
of HMM profiles constructed previously with the hmmalign 
command using about 1 Gb of memory and 10 cores. 
Comparing the results, we found that 9813 query sequences 
were aligned to the same target cluster by both tools. One 
hundred and eighty-seven query sequences were aligned by 
PanPA, but not by HMMER. However, these 187 sequences 
had very low alignment sequence identity averaging at 25%, 
which could simply point to random hits, as PanPA was set 
to report all alignments back even at very low align
ment identity.

The major reason for PanPA to be faster than HMMER is the 
use of the index that guides PanPA on where to align and 
thus reduces the search space considerably. HMMER aligns 
each profile to each query sequence, which makes the runtime 
linear in the number of clusters. PanPA’s ability to run in 
multiple threads also reduced the alignment time consider
ably. For example, in this alignment experiment, the actual 
alignment time for PanPA was 15 min and 47 s using one 
thread, but only 2 min and 13 s when using 10 threads.

In conclusion, for the preparation step, PanPA needed, in 
total, around 24 min to generate the index and the graphs, 
HMMER on the other hand needed around 2 h. For the aligning 
step, PanPA needed around 7 min (CPU time 117 s) with 10 
threads, to align all sequences and HMMER needed around 
19 min (CPU time 3341 s) and missed 187 sequences out of 
the 10 000 query sequences, and both tools reported similar 
results. More details about time and memory requirements 
for this experiment are in Supplementary Section S4.

5 Discussion
In this article, we present PanPA, a software tool to build 
and index panproteome graphs, and align sequences to them. 
In our method, instead of building one big graph that repre
sents all samples of a population, we build many local 
graphs, where each local graph represents one protein or a 
group of related proteins.

We demonstrate that PanPA produces correct alignments 
when aligning a sample of E.coli protein sequences back to 
an E.coli panproteome produced from assemblies from a 
public database.

We also show that moving into amino acid space can in
crease both the number of aligned sequences and the align
ment identity score when comparing phylogenetically distant 
organisms as exemplified by aligning S.enterica proteins 
against the panproteome constructed from E.coli assemblies. 
PanPA can also capture a much higher number of hits that 
would have been otherwise lost when using a distant refer
ence. We argue that aligning over longer phylogenetic distan
ces is important, especially when trying to study organisms 
that are not well-researched, do not have a standard refer
ence, and where a particular clade is only scarcely sequenced. 
In these cases, one can use a distant organism panproteome 
to produce better alignments and comparison, maybe ad
vancing one step toward annotation using a remote reference.

Additionally, we demonstrate the utility of PanPA for the 
discovery of genetic mechanisms of phenotypic traits, such as 
antimicrobial drug resistance.

We also show that PanPA’s computational resources are 
reasonable, especially in terms of memory consumption. It 
can easily be used on any modern laptop or desktop machine 
without the need of accessing a high-performance computa
tional cluster. Moreover, as PanPA can be parallelized, if the 
user has access to a computational node with more CPUs, 
this can make the alignment much faster. However, PanPA is 
still slower than other linear aligners (e.g. BWA) or graph 
aligners (e.g. GraphAligner). This stems from the fact that 
PanPA builds a complete DP table for the alignments and fills 
all the cells, and it uses different substitution matrices for 
scoring and not edit distance, which prevents PanPA from 
applying tricks like bounded edit distance (Ukkonen 1985) or 
the fast bit-vector algorithm for string matching (Myers 
1999). The latter algorithm was also extended to graphs 
(Rautiainen et al. 2019). Therefore, PanPA’s performance 
bottleneck is not the number of graphs in the panproteome, 
but how big these graphs are or how sparse their correspond
ing MSAs are. In Supplementary Section S5, we show that 
PanPA can still handle very sparse MSA, albeit slower. 
Therefore, PanPA does still perform well on real datasets, 
and with its low memory usage, it can run on local machines 
or small computational nodes, where more CPUs can be used 
to speed up the alignment step.
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