
Rethinking multiple importance sampling for
general and efficient Monte Carlo rendering

Dissertation zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften (Dr.-Ing.)

der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

vorgelegt von

Pascal Grittmann

Saarbrücken, 2023

Tag des Kolloquiums:

Dienstag, 06. Februar 2024

Dekan:

Prof. Dr. Jürgen Steimle

Vorsitzende:

Prof. Dr. Verena Wolf

Berichterstatter:

Prof. Dr. Philipp Slusallek

Prof. Dr. Hans-Peter Seidel

Prof. Dr. Wenzel Jakob

Akademischer Mitarbeiter:

Dr. Gurprit Singh

Abstract

Computer generated images are essential for many applications from art to engineering.
Unfortunately, rendering such images is costly, with render times easily in the hours, days,
or even weeks. On top of that, the demands regarding complexity and visual fidelity are
ever rising. Consequently, there is an insatiable need for faster rendering.

Efficient render times are often achieved through user intervention. For example, mod-
ifying the scene and removing difficult lighting effects can keep render times below an
acceptable threshold. Also, algorithm parameters can be tuned manually. For instance,
diffuse outdoor scenes are best rendered by unidirectional path tracing, while interiors
featuring caustics benefit greatly from bidirectional sampling. Such manual tuning, how-
ever, is unfortunate as it puts much burden on the user and poses a hurdle for novices.

In this thesis, we pave the way for more universal rendering algorithms with less need
of user intervention. For that, we revisit multiple importance sampling (MIS), an essen-
tial tool to universalize rendering algorithms by combining diverse sampling techniques.
We identify hitherto unknown shortcomings of MIS and propose practical solutions and
improvements. As a tangible result, we achieve adaptive bidirectional rendering with per-
formance never worse than unidirectional path tracing.

Kurzfassung

Computergenerierte Bilder sind essentiell für zahlreiche Anwendungen. Leider ist das
Rendering solcher Bilder extrem teuer, mit Renderzeiten in den Studen, Tagen, oder gar
Wochen. Darüberhinaus steigen die Ansprüche an Komplexität und Qualität stetig und
schier unaufhaltsam. Daher gibt es einen scheinbar niemals endenden Bedarf nach immer
schnelleren Rendering Algorithmen.

Schnelle Renderzeiten werden oft durch Nutzerintervention erreicht. Zum Beispiel kön-
nen Szenen durch das Entfernen von teuren Effekten manuell vereinfacht werden. Auch
die geschickte manuelle Wahl des besten Algorithmus und der zugehörigen Parameter ist
hilfreich. Zum Beispiel werden diffuse Außenumgebungen am effizientesten mit unidirek-
tionalem Path Tracing simuliert, während Innenumgebungen mit komplexen Kaustiken
sehr von bidirektionalenAlgorithmen profitieren. Solchmanuelle Einstellungen sind allerd-
ings unvorteilhaft, da sie viel Last auf den Nutzer packen und eine Hürde für Anfänger
darstellen.

Diese Arbeit zielt darauf ab, den Weg freizuräumen für universellere Rendering Algorith-
men mit geringerem Bedarf nach manueller Kontrolle. Eine essentielle Komponente dafür
ist die Kombination mehrerer Methoden durch Multiple Importance Sampling (MIS). Wir
identifizieren bislang unbekannte Mängel von MIS und beheben diese mit praktischen Lö-
sungen. Als greifbares Ergebnis erzielen wir einen adaptiven bidirektionalen Algorithmus
der stets schneller ist als reines unidirektionales Path Tracing.

Acknowledgements

This thesis reports (a select subset of) the results of multiple years of hard work, fascinating
experiences – and great fun. But both, the quality of this work and the splendid time I had
conducting it, would not have been possible without the support of many great people.

For starters, I would like to thank my advisor, Philipp Slusallek. He first encouraged me
to embark on the insightful journey to obtain a PhD. Without his exceptional support, the
contacts he introduced me to, the opportunities he found or created for me, and the great
freedom he gave me to pursue my own ideas, none of this would have ever happened.

Arguably the most important person that Philipp introduced me to was Jaroslav Křivánek.
Jaroslav, who sadly passed away in 2019, had the strongest influence on the direction and
quality of my scientific career. He taught me most, maybe even all, the skills I needed
to successfully embark on a PhD and beyond, and imparted much great – and, as he jok-
ingly used to call it “fatherly” – advice. I will forever fondly remember the many great
brainstorming sessions and other (not always work-related) amazing moments we shared.

The best part of doing a PhD was the highly collaborative nature of the work. For that,
I want to thank the many wonderful people I got to work with, but also the many other
practitioners in the field with whom it was always fun to exchange thoughts and ideas
at conferences and other meetings. Naming all these amazing people would be all but
impossible, but I would like to highlight two particularly great ones: Iliyan Georgiev, who
I could always count on to refine and perfect an idea (or fix the most annoying LaTeX
bugs); and Sebastian Herholz, who did an exceptional job to identify and help resolve any
and (almost) all flaws in my ideas, writing, or presentations.

Another, often overlooked, invaluable group of people are the heroes without capes that
fight the bureaucratic fight for us. So I would like to take this opportunity to also thank
Sabine Nermerich (Saarland University), Léa Yvonne Basters (DFKI), and Radka Hacklova
(Charles University) who were always eager to help with any and all problems.

Finally, I must thank my amazing wife, Mira Niemann. Not only did she provide unwa-
vering emotional support and endured me during (too) many stressful deadline crunches,
she even directly helped with my research by developing a tool that I have been using
extensively ever since: the figure generator (https://github.com/Mira-13/figure-gen).

https://github.com/Mira-13/figure-gen

Contents

1 Introduction 1

1.1 Contributions . 3
1.2 Outline . 4

2 Monte Carlo Light Transport 5

2.1 Problem formulation . 5
2.1.1 Camera model . 6
2.1.2 Rendering equation . 6
2.1.3 Surface integral . 7
2.1.4 Path integral . 8

2.2 Numerical integration . 8
2.2.1 Deterministic quadrature . 9
2.2.2 Monte Carlo integration . 10
2.2.3 Benefits of Monte Carlo integration 12

2.3 Quantifying the efficiency . 14
2.3.1 Cost . 15
2.3.2 Variance . 16
2.3.3 Second moment . 17
2.3.4 Correlation and covariance . 19

2.4 Improving the efficiency . 24
2.4.1 Importance sampling . 25
2.4.2 Integration by substitution . 27
2.4.3 Control variates . 30
2.4.4 Adaptive sampling . 33

2.5 Rendering algorithms . 34
2.5.1 Forward path tracing . 35
2.5.2 Bidirectional path tracing . 36
2.5.3 Photon mapping . 37

2.6 Summary . 38

3 Multiple Importance Sampling (MIS) 40

3.1 The MIS estimator . 41
3.1.1 Affine combination . 41
3.1.2 Designing an MIS estimator . 42
3.1.3 Integral formulations and MIS . 43

3.2 Efficiency . 44
3.2.1 Variance . 44
3.2.2 Weighting functions . 45
3.2.3 Sample counts . 50
3.2.4 Sampling techniques . 51

3.3 Related methods . 52
3.3.1 Relationship to mixture sampling 52

3.3.2 Relationship to control variates . 53
3.4 Summary . 55

4 MIS in the VCM algorithm 56

4.1 The VCM algorithm . 56
4.1.1 Bidirectional path tracing . 57
4.1.2 Merging . 59

4.2 Challenges and shortcomings of MIS in VCM 63
4.2.1 Low-variance effects . 63
4.2.2 Correlation . 64
4.2.3 Efficiency . 69

4.3 Summary . 70

5 Variance-aware MIS 72

5.1 Variance-aware balance heuristic . 73
5.1.1 Variance-based weighting . 73
5.1.2 Reaping the benefits of both . 73

5.2 Discussion in 1D . 74
5.3 Discussion in rendering applications . 76

5.3.1 Implementation . 76
5.3.2 Results . 77
5.3.3 Comparison to weighting with variance estimates 80
5.3.4 Overhead . 82

5.4 Limitations and future work . 82
5.4.1 Limitations . 82
5.4.2 Other applications . 83

5.5 Conclusion . 84

6 Correlation-aware MIS 85

6.1 The problem: path correlation through splitting 86
6.2 Correlation-aware balance heuristic . 87

6.2.1 Computing a unitless path probability 88
6.2.2 Choosing a radius . 89
6.2.3 Constructing our heuristic . 89

6.3 Evaluation . 90
6.3.1 Vertex connection and merging . 92
6.3.2 Bidirectional path tracing . 93

6.4 Limitations and future work . 94
6.5 Conclusion . 95

7 Efficiency-aware MIS 96

7.1 Problem statement . 98
7.1.1 Efficiency . 98
7.1.2 Per-pixel and per-image efficiency 98
7.1.3 Per-pixel and per-image sample counts 99
7.1.4 Second moment . 100

7.2 Optimization . 100
7.2.1 Objective and algorithm . 100
7.2.2 Convex optimization . 101

7.2.3 Brute-force optimization . 102
7.3 Computing the moments, means, or derivatives 104

7.3.1 Our second moment estimator . 105
7.3.2 Our squared mean estimator . 106
7.3.3 Our derivative estimator . 107

7.4 Application: Direct illumination . 108
7.5 Application: Vertex connection and merging 109

7.5.1 Implementation . 110
7.5.2 Results . 114

7.6 Moments versus variances . 118
7.7 Discussion and future work . 119
7.8 Conclusion . 120
Appendix 7.A Correction factors . 122

8 Conclusion 124

Appendix A A primer on integration by substitution 125

Appendix B Deriving the geometry term 128

Appendix C Jacobian for perspective cameras 130

Chapter 1

Introduction

Can we find the one algorithm to render them all?

A vast range of applications benefit greatly from computer generated images. From ar-
chitecture to video games, from visual effects in movies to medical applications, rendered
images are almost everywhere nowadays. For example, the design process of buildings and
products benefits from replacing slow and expensive physical prototypes by virtual ones.
Another example are machine learning methods, where availability of training data is es-
sential to achieve satisfactory results. There, synthetic training data is used to reduce the
cost or the need to obtain data in the real world. And finally, of course, rendered images
are the heart and soul of movies and video games. Worlds, things, and creatures that do
not exist in reality can be brought to life through rendering.

The demands of these applications vary considerably. For artistic applications such as
movies and games, visual appeal is paramount and accuracy is secondary. Real-time set-
tings like games and interactive visualizations put render time above everything else, sac-
rificing both accuracy and quality if need be. For uses like product design, speed and visual
appeal can be secondary, while accuracy is essential. In a perfect world, we would have a
single renderer that works well for all these applications, exposing only high-level controls
for the user to express the application-specific priorities. Sadly, this appears to be a for-
lorn dream, as the renderers today do not even work perfectly for all types of illumination
encountered in the application they are specialized for.

As the applications are diverse, so is the distribution and scattering of light itself. Some-
times, illumination is diffuse; for example, when rendering distant hills on a cloudy autumn
day. Other times, light is focused strongly, like the caustics at the bottom of a pool. Ideally,
a renderer should capture all those effects accurately and efficiently. In this thesis, we show
how to move further towards that ideal.

Our foundation are Monte Carlo rendering algorithms. These compute the light transport
in a scene by sampling random paths connecting the sensor to a light source. Monte Carlo
methods are pretty much the sole approach taken by offline renderers these days [Fas-
cione et al. 2018] and see increasing use in real-time applications, as hardware capability
increases.

The most basic Monte Carlo algorithm is forward path tracing. It generates paths by sam-
pling a direction from the camera, tracing a ray along that direction, and then sampling a
new direction at the hit point to continue the path. This process is repeated until a termi-

2 | Chapter 1: Introduction

nation criterion is met (e.g., maximum depth, random termination, or full absorption). In
theory, this algorithm can render every scene1. But, in practice, satisfactory performance
is often only achieved in a subset of all possible scenes – namely, ones with reasonably
uniform illumination and predominantly short paths.

More elaborate techniques are required to achieve satisfactory performance in general
scenes. Such methods range from the simplest tricks, like next event estimation, to elab-
orate adaptive sampling schemes. Years of active research have resulted in an enormous
set of techniques and variations of techniques that can be employed to optimize rendering
performance for all sorts of lighting phenomena.

This vast amount of efficiency-increasing methods poses a difficult challenge. For every
scene, and every lighting effect within a scene, only a handful of these techniques perform
well. But this set of the best techniques differs from scene to scene – or even from effect to
effect within the same scene. Efficient rendering requires us to identify and use the best –
and only the best – of these techniques.

One solution to that problem is to ask the user to identify and configure the best tech-
niques. That, however, requires deep understanding on the part of the user, and also a
large amount of trial and error. Expert users can achieve astounding rendering perfor-
mance by navigating the jungle of renderer parameters – or by adjusting their scenes to
eliminate problematic lighting effects. But the required skills take years of hard work to
acquire, and the tedious optimization process also limits artistic freedom.

An alternative is to always utilize as many techniques as possible. This is the philosophy
behind bidirectional rendering algorithms like VCM [Georgiev et al. 2012a]. A combination
of numerous techniques ensures that for every possible scene and every possible effect,
there is at least one technique that can render it in acceptable time. Such a combination
can be achieved through multiple importance sampling (MIS) [Veach and Guibas 1995b],
an essential ingredient to basically every rendering algorithm. Unfortunately, while the
result is a general algorithm that can render anything in acceptable time, the performance
is almost never great, because computation time is wasted on redundant or unnecessary
techniques, and because the combination through MIS does not always perform perfectly.

The overarching goal of this thesis is to solve this problem through automation. Our hy-
pothesis is that an ideal rendering algorithm should adapt itself to the scene at hand, re-
sulting in a general and efficient method that requires little or, preferably, no user control.

The research discussed in this thesis focuses on the essential ingredient: MIS.We reveal and
ameliorate flaws in the common MIS weighting heuristics that can result in severe perfor-
mance reduction. Further, we show how the set of techniques can be adapted automatically
in a practical approach that is applicable even to involved bidirectional approaches.

The motivation of our work originates in our earlier research on efficient caustic render-
ing [Grittmann et al. 2018]. There, the goal was to enhance forward path tracing by the
minimum amount of bidirectional samples required to efficiently capture caustics. That
work showed that automatic adaptation of the techniques is possible and worthwhile, and

1Ignoring some non-physical corner cases like point lights, or lighting effects that cannot be described
by geometric optics.

1.1 Contributions | 3

also practical [Šik and Křivánek 2019]. Despite these very encouraging results, we also
identified problems and challenges. Namely, we observed that MIS weighting can per-
form surprisingly poorly in some cases, and that adaptation of the number of light paths
has a huge impact on performance, but is a nontrivial task. Therefore, in our subsequent
research, that is, the work reported in this thesis, we set out to address these challenges.

1.1 Contributions

This thesis proposes different approaches to improve the efficiency and generality ofMonte
Carlo rendering algorithms through better multiple importance sampling (MIS). Our work
focuses on bidirectional rendering algorithms, which are among the most complex appli-
cations of MIS. But the ideas, and most of the methods, are generic and can be applied
to arbitrary Monte Carlo integration problems. The main contributions in this thesis are
two methods to improve the MIS weights and a method to automatically adapt the set of
sampling techniques and corresponding sample counts.

Variance-aware MIS. The classic balance heuristic [Veach and Guibas 1995b] can per-
form surprisingly poorly for bidirectional algorithms. Our first approach to fixing this
problemwas to incorporate variance estimates into the weights. We discuss it in Chapter 5.
This work has been previously published in our SIGGRAPH Asia 2019 paper [Grittmann
et al. 2019]. I was the main author of that paper, contributing the original idea, the imple-
mentation and evaluation, and the majority of the text in the paper.

Correlation-aware MIS. A major failure case of MIS in bidirectional rendering is path
correlation due to shared prefixes. This occurs in particular with the popular VCM algo-
rithm, where millions of samples are formed by merging a single, possibly high-variance,
camera subpath with millions of photons. We can alleviate the problem with a simple-
to-compute heuristic. The approach is discussed in Chapter 6. It has been published in
our Eurographics 2021 paper [Grittmann et al. 2021]. I was the main author of that paper,
contributing the original idea, the implementation and evaluation, and the majority of the
text in the paper.

Efficiency-aware MIS. A common criticism of bidirectional rendering algorithms, and
most other advanced methods, is that they add a huge overhead when they are not needed.
In Chapter 7, we discuss how to tackle that problem by optimizing the sample counts in
MIS combinations, using a practical method that can be applied to the high-dimensional
sampling techniques that are omnipresent in bidirectional methods. The work has been
published in our SIGGRAPH 2022 paper [Grittmann et al. 2022]. I was the main author
of that paper, contributing the original idea, the initial implementation, some evaluations,
and the majority of the text in the paper.

Source code. Implementations of all three methods are available on GitHub:
• Variance-aware MIS: https://github.com/pgrit/var-aware-mis-pbrt
• Correlation-aware MIS: https://github.com/pgrit/MisForCorrelatedBidir
• Efficiency-aware MIS: https://github.com/pgrit/EfficiencyAwareMIS

The public source code for variance-aware and efficiency-aware MIS are cleaned reim-
plementations that focus on conveying the key concepts of implementing the respective
method. The public code for correlation-aware MIS is the exact code used by the original

https://github.com/pgrit/var-aware-mis-pbrt
https://github.com/pgrit/MisForCorrelatedBidir
https://github.com/pgrit/EfficiencyAwareMIS

4 | Chapter 1: Introduction

paper and allows full reconstruction of all results, as shown in the paper and reprinted in
this thesis.

Since recycling is great for the environment, parts of this thesis (specifically, most of Chap-
ters 5 to 7) reuse figures and passages of text from these three original publications.

1.2 Outline

Chapter 2 reviews the mathematical formulation of rendering, and provides an introduc-
tion to general Monte Carlo integration and its application to light transport simulation.

Chapter 3 introducesmultiple importance sampling (MIS), discusses its properties, strengths,
and weaknesses, reviews previous work on the topic, and outlines open problems.

Chapter 4 defines the sampling techniques used by our prime application, the VCM algo-
rithm [Georgiev et al. 2012a], and provides a discussion of the challenges this algorithm
faces in terms of an effective application of MIS.

The subsequent three chapters present and discuss our three methods. Chapter 5 presents
a practical approach to improve MIS weights in failure cases, by injecting estimates of the
variance into the weights. Chapter 6 introduces an ad-hoc solution for a major shortcom-
ing of MIS weights in the presence of correlated samples. Finally, Chapter 7 introduces a
method to automatically adjust the set of techniques and corresponding sample counts, to
optimize the efficiency of complex MIS combinations.

Lastly, Chapter 8 summarizes our findings and outlines interesting directions for future
work.

Chapter 2

Monte Carlo Light Transport

Images of virtual scenes can be rendered by simulating the propagation of light through
that scene. This light transport is described by an infinite-dimensional integral with many
discontinuities that can only be computed via numerical methods; the numerical method
of choice is Monte Carlo integration.

This chapter introduces the light transport equation, defines Monte Carlo integration and
discusses its properties, provides an overview of essential variance reduction methods,
and concludes by reviewing core rendering algorithms that apply Monte Carlo methods.
A basic knowledge of calculus and probability theory is assumed.

2.1 Problem formulation

Our goal is to render an image of a virtual scene. This process can be made almost arbi-
trarily complex by including, for instance, volumetric scattering, wave optical effects, or
elaborate material models. For the sake of conciseness, we limit the discussions in this
thesis to a basic model of surface light transport without wavelength dependencies. Infor-
mation on more elaborate models and how to implement them can be found in Pharr et al.
[2016].

The value of a pixel is computed by combining a camera model with the rendering equa-
tion [Kajiya 1986]. The former describes how the image sensor responds to light arriving
at the aperture of the lens and the latter models the scattering of light in the scene. This
setup is illustrated in Figure 2.1.

Aperture

Sensor

Sensor

Image

Pixel filter

Sensor response
(black box)

𝜔

𝜔

𝑊 (𝑞, 𝑥1, 𝜔)

𝑞

𝑞

ℎ𝑖 (𝑞)

𝑥5𝑥4

𝑥3
𝑥2𝑥1

𝑥1

Camera model

Figure 2.1: The basic mathematical model of rendering we operate with. The value of the 𝑖th pixel
is computed through a series of integrals over the sensor, aperture, and scene geometry.

6 | Chapter 2: Monte Carlo Light Transport

2.1.1 Camera model

The cameramodel describes how light that reaches the aperture is captured by the camera’s
sensor, and how that sensor’s response is mapped to the rendered image. The former is
modeled by the sensor response𝑊 , and the latter by the pixel filter ℎ𝑖 .

The sensor response𝑊 (𝑞, 𝑥1, 𝜔) describes what fraction of incident light at the aperture
point 𝑥1 from direction 𝜔 reaches a point 𝑞 on the sensor. Similarly, the pixel filter ℎ𝑖 (𝑞)
models how much the sensor position 𝑞 contributes to the 𝑖th pixel. For brevity, we denote
the product of the two as

𝑊𝑖 (𝑞, 𝑥1, 𝜔) = ℎ𝑖 (𝑞)𝑊 (𝑞, 𝑥1, 𝜔). (2.1)

This𝑊𝑖 is often referred to as the importance [Veach 1997], as it measures how ‘important’
light arriving at 𝑥1 from direction 𝜔 is to the image.

With these definitions, the pixel value can be computed by integrating the product of pixel
filter, sensor response, and incident light over the sensor and aperture,

𝐼𝑖 =

∫
S

∫
L
𝑊𝑖 (𝑞, 𝑥1, 𝜔)𝐿i(𝑥1, 𝜔) d𝑥1d𝑞. (2.2)

Here, S denotes the set of all points 𝑞 on the sensor; L similarly denotes the (virtual)
aperture surface. We assume that the direction 𝜔 is uniquely defined by the combination
of sensor and aperture point. Otherwise, an additional integral over all directions arises.

2.1.2 Rendering equation

The incident light 𝐿i is measured in terms of radiance, that is, incident differential power
dΦ per differential solid angle d𝜔 and differential projected surface area d𝑥⊥,

𝐿i(𝑥, 𝜔) =
dΦ

d𝜔d𝑥⊥
. (2.3)

Note that here and throughout, we assume no volumetric scattering occurs and further
simplify by ignoring wavelength dependencies. In an ideal optical system, the incident
radiance 𝐿i(𝑥1, 𝜔) at the aperture equals the outgoing radiance at the visible point 𝑥2 (see
Figure 2.1),

𝐿i(𝑥1, 𝜔) = 𝐿o(𝑥2,−𝜔). (2.4)
The outgoing radiance at any point 𝑥 , in turn, is defined recursively as the sum of the
emitted radiance 𝐿e and the reflected radiance [Kajiya 1986],

𝐿o(𝑥,𝜔o) = 𝐿e(𝑥, 𝜔o) +
∫
Ω
𝜌 (𝜔i, 𝑥, 𝜔o)𝐿i(𝜔i, 𝑥) cos\𝑥d𝜔i. (2.5)

Figure 2.2 visualizes the conventions used to define the directions and angles in this equa-
tion. The reflected radiance is computed by integrating over all directions and computing
the product of the incident radiance and the bidirectional scattering distribution function
(BSDF) 𝜌 . The latter describes the optical properties of the surface, namely how much
light from 𝜔i is scattered in direction 𝜔o at point 𝑥 . The incident radiance 𝐿i(𝜔i, 𝑥) is ob-
tained by recursively applying the same equation. Hence, light transport is described by
an infinite-dimensional recursive integral.

2.1 Problem formulation | 7

𝑛𝑥

𝜔i

𝜔o

\𝑥

\𝑦

𝑥

𝑦

Figure 2.2: The notation used to define the rendering equation.

2.1.3 Surface integral

The fundamental challenge of rendering is to efficiently compute the reflected radiance in-
tegrals. To aid computation, a change of variables can be performed, rewriting the integral
over directions as one over a different domain. An important equivalent formulation is the
surface integral. It is the mathematical foundation for essential techniques like next event
estimation or bidirectional sampling.

Instead of integrating over all directions at the point 𝑥 , we can integrate over all points 𝑦
on other surfaces that are visible from 𝑥 ,

𝐿o(𝑥,𝜔o) = 𝐿e(𝑥, 𝜔o) +
∫
V(𝑥)

𝜌 (𝜔i, 𝑥, 𝜔o)𝐿i(𝜔i, 𝑥) cos\𝑥
cos\𝑦

∥𝑦 − 𝑥 ∥2
d𝑦. (2.6)

V(𝑥) denotes the set of all surface points 𝑦 in the scene that are visible from 𝑥 and

d𝜔i

d𝑦
=

cos\𝑦

∥𝑦 − 𝑥 ∥2
(2.7)

is the Jacobian of the mapping from surface points to directions. It requires the cosine of
the angle \𝑦 between−𝜔i and the surface normal at𝑦, as sketched in Figure 2.2. Appendix B
provides a geometrical derivation of this Jacobian, and Appendix A provides a primer on
integration by substitution in general.

In the literature, the Jacobian is often combined with the cosine term from the rendering
equation, forming the geometry term

𝐺 (𝑥,𝑦) =
cos\𝑦 cos\𝑥

∥𝑥 − 𝑦∥2
= cos\𝑥

d𝜔i

d𝑦
. (2.8)

Also, the integration domain is commonly written as the set A of all surface points in the
scene, using the characteristic function ofV(𝑥), the visibility term

𝑉 (𝑥,𝑦) =
{
1 if 𝑦 is visible from 𝑥

0 else,
(2.9)

to equivalently rewrite the integral

𝐿o(𝑥,𝜔o) = 𝐿e(𝑥, 𝜔o) +
∫
A
𝑉 (𝑥,𝑦)𝐺 (𝑥,𝑦)𝜌 (𝜔i, 𝑥, 𝜔o)𝐿i(𝜔i, 𝑥) d𝑦 (2.10)

as one over all surface points 𝑦 ∈ A in the entire scene.

8 | Chapter 2: Monte Carlo Light Transport

2.1.4 Path integral

The path integral offers a concise and convenient way to express the entire rendering
operation. For that, we use the surface integral formulation for all integrals, including
the ones from the camera. For the latter, we assume that the mapping from sensor position
𝑞 to direction𝜔 at the aperture point 𝑥1 is bijective and hence invertible. Then, the integral
for the camera model can be written as

𝐼𝑖 =

∫
A

∫
A
𝑉 (𝑥1, 𝑥2)𝑊𝑖 (𝑥1, 𝜔i)𝐿i(𝑥1, 𝜔i) |𝐽cam(𝑥2) |d𝑥1d𝑥2. (2.11)

Here, |𝐽cam(𝑥2) | denotes the Jacobian of the mapping from surface points 𝑥2 to image
plane positions 𝑞. The exact definition of that Jacobian differs between camera models;
Appendix C provides a derivation for simple perspective cameras.

With this definition, we can expand the recursive surface integrals into an iterative form,
by summing over all possible path lengths 𝑘 and integrating over all paths of that length,

𝐼𝑖 =

∞∑︁
𝑘=2

∫
A𝑘

𝑓 (x)dx. (2.12)

Here, x denotes a path of length 𝑘 , dx = d𝑥1 · · · d𝑥𝑘 is the product of the surface differen-
tials, and

𝑓𝑖 (x) =𝑊𝑖 (𝑥1→𝑥2) |𝐽cam(𝑥2) |𝑉 (𝑥1, 𝑥2)︸ ︷︷ ︸
pixel response(

𝑘−1∏
𝑗=2

𝑉 (𝑥 𝑗 , 𝑥 𝑗+1)𝜌 (𝑥 𝑗−1, 𝑥 𝑗 , 𝑥 𝑗+1) cos\ (𝑥 𝑗→𝑥 𝑗+1)
cos\ (𝑥 𝑗+1→𝑥 𝑗)
∥𝑥 𝑗 − 𝑥 𝑗+1∥2

)
︸ ︷︷ ︸

throughput

𝐿e(𝑥𝑘→𝑥𝑘−1)︸ ︷︷ ︸
emission

(2.13)
is the path space integrand. We denote the direction from 𝑥𝑎 to 𝑥𝑏

𝑥𝑎→𝑥𝑏 =
𝑥𝑏 − 𝑥𝑎

∥𝑥𝑏 − 𝑥𝑎∥
, (2.14)

and
cos\ (𝑥𝑎→𝑥𝑏) = ⟨𝑥𝑎→𝑥𝑏, 𝑛𝑎⟩ (2.15)

is the cosine of the angle formed by that direction and the surface normal 𝑛𝑎 at point 𝑥𝑎 .
The product of BSDFs, visibilities, and geometry terms is commonly referred to as the
throughput of the path, as it measures the attenuation of the light along the path.

Rendering an image means computing the integral 𝐼𝑖 for every single pixel. Unfortunately,
that integral is infinite-dimensional, has scene-dependent discontinuities, and contains ar-
bitrary black-box functions like the BSDF 𝜌 , the sensor response𝑊 , and the emission pro-
file 𝐿e. Therefore, analytical integration is impossible and numerical methods are required.

2.2 Numerical integration

“Numerical integration” means computing the numerical value of a definite integral. Only
two things are required for it to work: The value of the integral must be finite, and the

2.2 Numerical integration | 9

Δ𝑥

𝑓 (𝑥)

𝑓 (𝑥)
∫
X 𝑓 (𝑥) d𝑥

Δ𝑥𝑓 (𝑥)

Figure 2.3: Numerical integration via a Riemann sum. The integral is the area – or volume – under
the curve of the function 𝑓 (𝑥), as depicted on the left. Its numerical value can be approximated by
fitting a series of simpler shapes to the function, like the rectangles shown on the right. The sum of
areas of these rectangles approximates the area under the curve and hence the integral.

function value must be computable for arbitrary points.

A range of different methods are available. While the details and performance aspects
differ, these methods all utilize the same underlying principle: A series of samples is taken
by evaluating the function at different positions. These positions can be deterministic,
random, or a mix of both. The values of those samples are then used to approximate the
integral. The various methods only differ in where the samples are placed and what basic
shapes are used to approximate the integral.

Careful sample placement is the key to success of any numerical integration method. De-
terministic placement can ensure high accuracy, but can get hampered by the curse of di-
mensionality. In contrast, randomplacement of samples – throughMonte Carlo – sacrifices
some accuracy but gains great flexibility and is much less affected by the dimensionality.

2.2.1 Deterministic quadrature

A straightforward approach to compute integrals is to directly apply their definition: the
Riemann sum. Recall that the integral is the area under the curve – or the volume, for
more than one dimension. A Riemann sum approximates this area or volume through
discretization. The idea is illustrated in Figure 2.3: The domain is partitioned, the function
is evaluated at a point within each part, and the integral over the part is approximated as
a box.

The sum of rectangle areas / box volumes as sketched in Figure 2.3 converges to the integral
as the width / area / volume Δ𝑥 of the rectangle / box diminishes,

lim
Δ𝑥→0

∑︁
𝑖

𝑓 (𝑥𝑖)Δ𝑥 =:

∫
X
𝑓 (𝑥) d𝑥 . (2.16)

This is the well-known definition of the Riemann integral. Numerical integration with
deterministic quadrature simply computes a finite approximation of this sum.

The downside of a deterministic subdivision approach is that sample locations are chosen
in a rigid deterministic pattern. In a 1D example, that is not a problem and Riemann sums
work perfectly. However, as dimensionality increases, distributing the samples regularly
over the domain becomes more involved: The number of required samples to achieve the
same resolution increases exponentially with the number of dimensions (see also Veach

10 | Chapter 2: Monte Carlo Light Transport

Riemann sum Monte Carlo

Figure 2.4: Comparison of Monte Carlo integration to the underlying deterministic Riemann sum.
The sole difference is that the approximating boxes are placed randomly instead of deterministically.
This causes overlap and gaps, but also simplicity and flexibility.

[1997, Section 2.2]). Further, growing dimensionality also hinders adaptive sample place-
ment, where computation is focused on the most important regions, and it complicates
progressive estimation, where early, low-sample estimates can be used, for example, to
preview a rendered image before wasting too much computation time.

2.2.2 Monte Carlo integration

Monte Carlo methods, in general, add randomization to deterministic algorithms to sim-
plify the implementation or facilitate performance improvements. In the context of nu-
merical integration, Monte Carlo can be used to randomize the Riemann sum. This ran-
domization breaks up the rigid structure, avoids the curse of dimensionality, and replaces
alias with noise.

2.2.2.1 Intuition

The idea behind Monte Carlo integration is very simple. Instead of partitioning the do-
main and evaluating the integrand in a regular pattern, the sample positions are chosen
randomly, as illustrated in Figure 2.4. On the one hand, this causes overlap and gaps be-
tween the boxes, increasing the error. On the other hand, samples can be generated and
evaluated independently and in arbitrary numbers, greatly simplifying the implemenation
and enabling a wide range of improvements.

The correctness of this Monte Carlo estimator can be unintuitive at first. How can we
still get a valid approximation of the integral, if the approximating boxes overlap all the
time? The answer is, that the expected error due to the overlap vanishes as the number of
samples grows to infinity. This happens because two conditions are fulfilled: 1) the width
of the approximating boxes vanishes, and 2) no two sample positions will be exactly the
same, since the probability of that is zero. More formally, the correctness follows because
the desired integral is the expected value of the randomized Monte Carlo estimator, and
the law of large numbers guarantees convergence with growing sample counts.

2.2.2.2 Definition and convergence

Monte Carlo integration is based on a key theorem of probability theory: the law of large
numbers. It states that when performing the same stochastic experiment many times, the
average of the results will converge to the expected value [Ross 2014, p. 73]. Figure 2.5

2.2 Numerical integration | 11

sample countsample index 200100 300200100 300

1 1

Figure 2.5: The sample values of multiple independent runs (left) fluctuate around the expected
value. Because of the law of large numbers, the average of many such runs (right) converges to the
expectation as the sample count increases. Monte Carlo integration exploits that property and computes
arbitrary integrals by formulating them as an expected value and simulating many samples.

illustrates this. Individual simulations of a random variable fluctuate around the expected
value; averaging these values converges to the expectation as the sample count increases.

But what does that have to do with integration? The expected value of a continuous ran-
dom variable 𝑋 is the integral over all possible values 𝑥 multiplied by their respective
probability density 𝑝 (𝑥) [Ross 2014, p. 37]:

E[𝑋] =
∫
X
𝑥 𝑝 (𝑥) d𝑥 . (2.17)

The probability density function (PDF) 𝑝 (𝑥) defines the distribution of the realizations 𝑥
of the random variable. It is the continuous analog of a discrete probability.

We can compute this expected value by simulating 𝑛 samples of the random variable and
averaging their values 𝑋𝑖 :

E[𝑋] ≈ 1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖, with 𝑋𝑖 ∼ 𝑝 (𝑥). (2.18)

The law of large numbers states that, with sufficient samples, this estimation yields a close
approximation of the expected value. For example, to determine the expected amount of
money lost when playing a slot machine in a casino, we can simply play very often and
average the outcomes.

But we do not want to compute an expected value. Rather, we strive to compute an arbi-
trary integral

𝐹 =

∫
X
𝑓 (𝑥) d𝑥 (2.19)

of some function 𝑓 (𝑥). Luckily, we can rewrite any integral as an expected value, by simply
multiplying and dividing by a probability density 𝑝 (𝑥):

𝐹 =

∫
X

𝑓 (𝑥)
𝑝 (𝑥) 𝑝 (𝑥) d𝑥 = E

[
𝑓 (𝑥)
𝑝 (𝑥)

]
. (2.20)

Therefore, we can estimate the integral 𝐹 by generating many random points 𝑥 following
a probability density 𝑝 (𝑥) and averaging the ratios of integrand and PDF values:

12 | Chapter 2: Monte Carlo Light Transport

⟨𝐹 ⟩ = 1

𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖)
𝑝 (𝑥𝑖)

. (2.21)

The law of large numbers guarantees that, for large enough 𝑛, this Monte Carlo estimator
will be sufficiently close to its expected value, the desired integral 𝐹 ,

lim
𝑛→∞

⟨𝐹 ⟩ = 𝐹 . (2.22)

2.2.3 Benefits of Monte Carlo integration

AMonte Carlo estimator computes a randomized Riemann sum. This randomization offers
many benefits, chiefly among which are the ease of implementation, the support of arbi-
trary sample counts, and the vast potential for adaptation. Also, the error distribution is
more desirable, as stochastic noise is more amenable to denoising than deterministic alias.

2.2.3.1 Simplicity and flexibility

An important benefit of Monte Carlo integration is its sheer simplicity. Estimation requires
only a random number generator and a means to evaluate the function. Samples can be
generated sequentially in a loop or even in parallel, and the estimate can be accumulated in
a single floating point value such that every intermediate result is a valid – though poten-
tially inaccurate – approximation of the integral. Algorithm 1 shows this in pseudocode.

This simplicity also procures great flexibility. With a determinisic Riemann sum, the num-
ber of samples has to be fixed in advance. A valid approximation is achieved only once all
samples have been computed. This is especially limiting at high dimensionality, where the
number of samples required to achieve the same resolution grows exponentially. Figure 2.6
compares this visually on a 2D domain. Each dot marks a sample location; the rectangles
visualize the approximating boxes. The columns show the first 10, 20, and 30 samples,
respectively, out of a total budget of 100 samples; the top row shows a deterministic ap-
proach, the bottom a Monte Carlo method. The Monte Carlo estimate can be progressively
refined, samples can be added in any number and at any time, and each intermediate result
is a valid approximation of the integral.

The flipside of this flexibility is that sampling tends to be uneven: Samples clump together
and leave wide, unexplored gaps in the domain. These irregularities cause higher esti-
mation error at equal sample count than a determinisitic approach, especially for low-
dimensional integrals.

2.2.3.2 Adaptivity

The flexibility of the Monte Carlo approach is important for adaptive computation. Inte-
grals in rendering typically feature sparse, strong signals such as glossy reflections or small
light sources. It is highly beneficial to adaptively focus computation in the vicinity of such
sparse signals once they have been found.

WithMonte Carlo integration, such adaptivity can be achieved easily. After a batch of sam-

2.2 Numerical integration | 13

Algorithm 1: Pseudocode for a simple Monte Carlo estimator. Samples are added in a streaming
fashion and the estimate is accumulated in a single number. At each update, we multiply by the old
and divide by the new sample count to achieve progressive estimation.

1: functionMonteCarlo(𝑓 , 𝑝 , 𝑛) ← Given an integrand, a PDF, and a number of samples
2: 𝐹 = 0
3: for 𝑖 ∈ 1..𝑛 do

4: 𝑥 = Sample(𝑝) ← Generate a random position with probability density 𝑝 .
5: 𝐹 += 𝑓 (𝑥)

𝑝 (𝑥)
𝑖−1
𝑖

← Correct sample count in each iteration for progressive estimation

6: return 𝐹

Figure 2.6: Sample placement of a deterministic Riemann sum (top row) and aMonte Carlo estimator
(bottom row). The dots mark the positions in the 2D domain where the integrand is evaluated, the
rectangles visualize Δ𝑥 , the base of the approximating box. The columns show the first 10, 20, and
30 samples, respectively, of a total budget of 90 samples. The deterministic approach is very rigid and
initially lacks information on most of the domain, while random placement explores the whole domain
from the start, refining the approximation over time.

ples has been evaluated, the distribution of number of subsequent samples can be adapted.
For example, in the scenario sketched in Figure 2.6, the sparse signal was finally found
after 30 samples. At this point, we can update the sample density to more densely explore
the vicinity of this first high-contribution sample.

Section 2.4.4 provides an overview of how such adaptation is achieved in rendering meth-
ods. The methods presented in Chapters 5 and 7 also fall into this category of adaptive
solutions.

2.2.3.3 Noise

An added bonus is that the error of Monte Carlo integration manifests as noise, not alias.
Figure 2.7 shows this on a simple example, where the integrand in each pixel of an image
is a 1D normal distribution with shifting mean, as illustrated on the right. With determin-
istic quadrature, all pixels use the same sample positions. At low sample counts, this can

14 | Chapter 2: Monte Carlo Light Transport

Fi
lte

re
d

Es
tim

at
es

Riemann sum Monte Carlo Reference

100

200

300

400

100

200

300

400

Pixel integrands0 1

Figure 2.7: Monte Carlo estimators produce noise instead of alias. Here, each pixel is given as the
integral of a narrow 1D normal distribution shifted over the image, as shown for two example pixels
on the right. That is, the value of the pixel marked in orange (top left) is the integral of the orange
function; the value of the blue pixel (bottom right) that of the blue function. For both, the integration
domain is the unit interval [0, 1]. The left two images are the rendered result with a deterministic
Riemann sum and with Monte Carlo. In each case, the top half is the original image, the bottom half
applies simple denoising (Gaussian filter). All images are false-color mapped for better visibility. Error
with the Riemann sum manifests as stripes, due to the shifting integrand. Error in the Monte Carlo
estimate manifests as stochastic noise. Filtering reduces the Monte Carlo error, but can amplify alias
in the Riemann sum.

manifest as severe alias, as shown in the first column. Due to the randomization of the
sample positions, Monte Carlo integration does not suffer from that problem. Instead, the
error manifests as noise.

Such stochastic noise can be more easily distinguished from the signal by a human ob-
server. Further, because neighboring pixels use different sampling positions, their esti-
mates can be blended together – for example, via a simple Gaussian blur as shown in the
bottom halves – increasing the effective sample size in each pixel. Such denoising is ex-
tremely common in rendering applications, especially those that operate on a particularly
tight budget. In contrast, the alias in deterministic quadrature cannot be removed through
filtering, as shown in the bottom left.

2.2.3.4 Quasi-Monte Carlo.

The main limitation of Monte Carlo integration is that the random placement of sample
points can increase the error. Intuitively, this can be observed on the illustration in Fig-
ure 2.4. With pureMonte Carlo, the boxes of the approximation can overlap and leave gaps,
resulting in missing information about the integral in potentially important regions. A vast
body of research on quasi-Monte Carlo methods tackles this problem. Instead of operating
with random samples, these methods utilize deterministic sample sets or sequences [Keller
2013; Keller et al. 2019]. The evaluation positions are deterministic, but ordered such that
the amount of information added by each sample is maximized. Thereby, benefits of both
worlds can be combined.

2.3 Quantifying the efficiency

The challenge in rendering is not to construct anyMonte Carlo estimator that can compute
the pixel values. If that were the case, rendering would be a solved problem for decades

2.3 Quantifying the efficiency | 15

now, since a correct solution has already been introduced in the 1980s [Kajiya 1986], along
with the rendering equation itself. Instead, the goal is to construct an efficient estimator
that computes accurate values within an acceptable time budget.

Efficiency is a pressing concern throughout all applications of Monte Carlo rendering. In
real-time applications (e.g., visualizations and games), higher Monte Carlo efficiency di-
rectly translates to higher frame rates. For offline applications (e.g., movies), more effi-
cient Monte Carlo rendering means lower cost, lower energy consumption, and leftover
resources to invest towards higher fidelity.

Achieving higher efficiency is the goal of a vast body of research work, including the work
reported in this thesis. Mathematically, efficiency can be quantified as the inverse product
of cost C (aka render time) and variance V (aka expected squared error) [Hammersley and
Handscomb 1968; Veach 1997],

𝜖 [⟨𝐹 ⟩] = (C [⟨𝐹 ⟩] V [⟨𝐹 ⟩])−1 . (2.23)

Maximum efficiency is achieved if the denominator is minimal. This product of cost and
variance,

W [⟨𝐹 ⟩] = C [⟨𝐹 ⟩] V [⟨𝐹 ⟩] , (2.24)

is sometimes referred to as thework-normalized variance (e.g., by Glynn andWhitt [1992]).

Methods aiming to improve efficiency can do so by reducing the cost, reducing the variance,
or jointly reducing both. Often, different factors have to be weighed against each other. For
example, more involved sampling methods like bidirectional rendering algorithms incur
higher cost but reduce the variance. In that case, maximum efficiency is achieved by finding
the right trade-off.

2.3.1 Cost

The cost is generally a function of the sample count, C [⟨𝐹 ⟩] = C(𝑛). Often, but not
always, it is a linear function, C(𝑛) = 𝑐𝑛 + 𝑐0, where 𝑐 is the per-sample cost and 𝑐0 a
fixed overhead. Notable exceptions in rendering are sample reuse methods that build and
traverse acceleration structures over samples and hence have 𝑂 (𝑛 log𝑛) cost complexity,
like photon mapping [Jensen 1996].

Minimization of cost is usually done through low-level optimizations; for example, by
reducing the cost of each ray-tracing operation, or the cost of material evaluations and
texture lookups. Such optimizations increase the efficiency, because a higher number of
samples can be created within the same time budget, resulting in a lower final error.

Overall, the cost is governed by many details of the algorithm and its implementation; it
cannot be studied in a generalized fashion. Nevertheless, for specific applications, it is
always important to keep the cost in mind. An elaborate adaptive sampling scheme might
yield incredible variance reduction, but do so at prohibitive cost. Such a seemingly great
algorithm is then easily outperformed by a simpler method.

There are many complex low-variance rendering algorithms, yet production often resorts

16 | Chapter 2: Monte Carlo Light Transport

20 40 60 80

1

5

20 40 60 80

1

5

samples

Error first run
Error second run
Variance

10 20

1

5

10 20

1

5

samples

Figure 2.8: The squared error of a Monte Carlo estimator as a function of sample count. The blue and
orange curves are the actual error of two runs of the estimator, the red line marks the expected error, that
is, the variance. Both plots show the same values, but the right-hand one uses a log-log scale for better
visibility. The logarithmic scale counters the hyperbolic shape and helps to better distinguish different
error curves. Here, we estimate the integral of a 1D Gaussian via uniform Monte Carlo sampling,
though results will be similar for any integral and Monte Carlo estimator.

to simple unidirectional path tracing [Fascione et al. 2018]. Often, this is because the higher
cost of such involved solutions does not pay off in every scene. Chapter 7 tackles this
problem by adapting the algorithm to the scene, avoiding overhead from costly techniques
that are not required for the current scene.

2.3.2 Variance

Monte Carlo integration is a random process. Hence, its variance is a natural way to quan-
tify the error. The variance is the expected value of the squared error,

V [⟨𝐹 ⟩] = E
[
(⟨𝐹 ⟩ − 𝐹)2

]
. (2.25)

If the 𝑛 samples of a Monte Carlo estimator are mutually independent and identically dis-
tributed, the variance

V [⟨𝐹 ⟩] = V

[
1

𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖)
𝑝 (𝑥𝑖)

]
=
1

𝑛
V

[
𝑓 (𝑥)
𝑝 (𝑥)

]
(2.26)

is 1/𝑛 times that of an estimate with just a single sample. This provides us with the conver-
gence rate of a basic Monte Carlo estimator. Figure 2.8 visualizes this convergence rate on
an example. The blue and orange lines denote the acutal squared error of two independent
runs of the same Monte Carlo estimator. Each run computes an estimate from the same
number of samples, but seeds the (pseudo) random number generator differently. We com-
pute and plot the error after each added sample. The red line marks the expected error,
that is, the variance. This example plot provides two important insights. First, care has
to be taken when evaluating the performance of different Monte Carlo estimators based
on the error they achieved after a single run. Such evaluation is common in rendering,
where repeatedly running the same algorithm can be expensive. Especially at low sample
counts, this error value can be misleading. Second, the hyperbolic shape of the error can
be cumbersome to interpret. Visualization on a logarithmic scale is helpful for that.

2.3 Quantifying the efficiency | 17

Convergence can be faster or slower than this baseline if the samples are correlated. With
correlated samples, the variance can still be written in terms of the single-sample variance,
but an additional covariance term arises,

V [⟨𝐹 ⟩] = 1

𝑛
V

[
𝑓 (𝑥)
𝑝 (𝑥)

]
+ 1

𝑛2

∑︁
𝑖≠ 𝑗

Cov

(
𝑓 (𝑥𝑖)
𝑝 (𝑥𝑖)

,
𝑓 (𝑥 𝑗)
𝑝 (𝑥 𝑗)

)
, (2.27)

where the covariance

Cov

(
𝑓 (𝑥𝑖)
𝑝 (𝑥𝑖)

,
𝑓 (𝑥 𝑗)
𝑝 (𝑥 𝑗)

)
= E

[
𝑓 (𝑥𝑖)
𝑝 (𝑥𝑖)

𝑓 (𝑥 𝑗)
𝑝 (𝑥 𝑗)

]
− E

[
𝑓 (𝑥𝑖)
𝑝 (𝑥𝑖)

]
E

[
𝑓 (𝑥 𝑗)
𝑝 (𝑥 𝑗)

]
(2.28)

is the difference between the expectation of the product and the product of expectations.
The exact form of this covariance depends on the nature of the correlation (see Section 2.3.4).

Overall, the variance comprises three terms: the second moment, the squared mean, and
the covariance,

V [⟨𝐹 ⟩] = 1

𝑛

∫
X

𝑓 2(𝑥)
𝑝 (𝑥) d𝑥︸ ︷︷ ︸

second moment

− 1

𝑛
𝐹 2︸︷︷︸

squared mean

+ 1

𝑛2

∑︁
𝑖≠ 𝑗

Cov

(
𝑓 (𝑥𝑖)
𝑝 (𝑥𝑖)

,
𝑓 (𝑥 𝑗)
𝑝 (𝑥 𝑗)

)
︸ ︷︷ ︸

covariance

. (2.29)

Among these three terms, the second moment is generally easiest to compute, while the
covariance can be particularly difficult, especially for high-dimensional problems.

2.3.3 Second moment

The first term in the variance, the second moment, is often used as an approximation of
the full variance. It is straightforward to compute through Monte Carlo estimation, as it is
itself an integral.

Definition. The second moment (about zero) of a single-sample Monte Carlo estimator
(aka a primary estimator) is the expectation of its squared value,

M[⟨𝐹 ⟩1] = E[⟨𝐹 ⟩21] =
∫
X

𝑓 2(𝑥)
𝑝 (𝑥) d𝑥 . (2.30)

In most of the rendering research literature, the term “second moment” for 𝑛-sample esti-
mators refers to this primary second moment divided by the sample count,

M[⟨𝐹 ⟩𝑛] :=
1

𝑛
M[⟨𝐹 ⟩1] =

∫
X

𝑓 2(𝑥)
𝑛𝑝 (𝑥) d𝑥 , (2.31)

because the actual second moment about zero of an 𝑛-sample estimator,

E[⟨𝐹 ⟩2𝑛] = M[⟨𝐹 ⟩𝑛] +
1

𝑛2

∑︁
𝑖≠ 𝑗

Cov

(
𝑓 (𝑥𝑖)
𝑝 (𝑥𝑖)

,
𝑓 (𝑥 𝑗)
𝑝 (𝑥 𝑗)

)
+

(
1 − 1

𝑛

)
𝐹 2, (2.32)

is not typically a quantity of interest, as it involves the same terms as the full variance. We
follow this nomenclature.

18 | Chapter 2: Monte Carlo Light Transport

n = 0

n = 614k

Reference Moment ratio Variance ratio

Average ratio 3.27 2.26 (1.44×)

n = 0

n = 614k

Average ratio 7.48 6.97 (1.07×)

n = 0

n = 614k

Average ratio 4.98 4.16 (1.20×)

Figure 2.9: Approximation error when operating with second moments in lieu of the full variances.
The false color images show the ratio between second moments and variances of two different Monte
Carlo samplers. Ideally, the center and right images should be identical, indicating that the approx-
imation is perfect. The numbers below each image provide the average ratio. The second moment
approximation can be rather poor for simple scenes like the one in the first row, where the overall vari-
ance is low. In more realistic scenes, like the one in the second row, the approximation works well almost
everywhere.

Approximation. The second moment can be used as an approximation of the variance,

V[⟨𝐹 ⟩𝑛] ≈ M[⟨𝐹 ⟩𝑛]. (2.33)

The approximation error is governed by the remaining two terms in the full variance (2.29):
the squared mean and any covariance between the samples,

V[⟨𝐹 ⟩𝑛] −M[⟨𝐹 ⟩𝑛] = −1
𝑛
𝐹 2 + Cov. (2.34)

This approximation assumes that the covariance is low. Then, the accuracy is highest, if
the overall variance is much larger than the squared mean,

V[⟨𝐹 ⟩𝑛] ≫
1

𝑛
𝐹 2. (2.35)

In other words, the second moment is well suited to approximate the error of bad, that is,
high-variance, estimators. It is an unfortunate fact that most Monte Carlo estimators in
rendering have high variance. The silver lining is that these can be effectively optimized
based solely on the second moment. Figure 2.9 demonstrates the effectiveness – and lim-
itations – of this approximation on rendering examples. The false-color images show the
ratio of second moments and variances, respectively, for two different Monte Carlo estima-
tors. Ideally, the two images should be identical. In the first example, of a simple diffuse box
with a single large light source, the variance is low. The approximation through the second
moment fares badly in this case. In more realistic scenes, like the second example, variance
will typically be high almost everywhere. There, the approximation works well except for
a small region in the bottom left. Chapter 5 shows how understanding this approximation
error can help improve methods that rely on the second moment approximation.

Use-cases. The second moment approximation has been successfully applied to optimize
the efficiency of Monte Carlo rendering algorithms. A ubiquitious example is the classic

2.3 Quantifying the efficiency | 19

balance heuristic for multiple importance sampling [Veach and Guibas 1995b]. It arises as
the analytic solution when optimizing the second moment (see Section 3.2.2.1). Another
example is the method presented in Chapter 7: It uses numerical optimization, estimating
the second moment of different algorithm configurations on-the-fly to adapt to the scene.

2.3.4 Correlation and covariance

The samples of a Monte Carlo estimator do not have to be statistically independent. In fact,
there are many good reasons why they might be correlated. Sometimes, such correlation
is introduced deliberately. Other times, it is a byproduct of another efficiency-enhancing
technique.

Correlation can be positive, which means it increases the variance, or negative, which
means the variance is reduced. But, when used wisely, even positive correlation can in-
crease the efficiency. For example, sample reuse introduces positive correlation but simul-
taneously reduces the sampling cost.

Mathematically, correlation can be quantified via the Pearson correlation coefficient

𝜌 (𝑋𝑖, 𝑋 𝑗) =
Cov(𝑋𝑖, 𝑋 𝑗)√︁
V[𝑋𝑖]V[𝑋 𝑗]

∈ [−1, 1], (2.36)

namely, the covariance divided by the product of standard deviations. A non-zero corre-
lation means that the variance of an 𝑛-sample estimator (2.29) has a non-zero covariance
term. If correlation is positive, the variance is higher than with independent samples. If it
is negative, the variance is lower.

In rendering applications, there are two main types of correlations: correlation between
pixels and correlation between samples of the same pixel. Understanding the sources,
magnitudes, and associated trade-offs of these correlations helps design more efficient al-
gorithms. An example is the method presented in Chapter 6: It uses an understanding
of the covariance in the photon mapping technique to rectify an unnecessary increase in
variance.

2.3.4.1 Sample correlation

Samples used for the same estimator ⟨𝐹 ⟩ can be correlated. Negative correlation is com-
monly introduced deliberately as a variance reduction strategy, while positive correlation
is a common side-effect of methods that amortize cost to increase efficiency. Both types
of correlations are ubiquitious in rendering algorithms. For example, variance reduction
techniques like stratified sampling and antithetic variates introduce negative correlation
to reduce the variance, while splitting and the closely related sample reuse techniques are
common examples for positive correlation as a byproduct of cost amortization.

Intuitively, correlation measures how much the samples cluster together. If the values of
two samples 𝑋𝑖 and 𝑋 𝑗 are always very similar, then they are positively correlated. Con-
versely, if the sample values are always far apart, then they are negatively correlated. If
the values are sometimes similar and sometimes far apart, then there is no correlation.

20 | Chapter 2: Monte Carlo Light Transport

-1 10 positive correlationnegative correlation

Figure 2.10: Visual interpretation of sample correlation for 1D integration. Each plot shows possible
sample locations and values with different levels of correlation. With maximum negative correlation
(left) sample values (i.e., rectangle heights) are far apart from each other. With maximum positive
correlation (right) sample values are identical.

Monte Carlo estimators with negatively correlated samples converge faster than estimators
with independent samples. Intuitively, this can be understood by recalling a main draw-
back of Monte Carlo integration: The approximating boxes can overlap and leave gaps.
With high positive correlation, these boxes are almost identical – the worst case approxi-
mation. But if the samples are negatively correlated, then the boxes have minimal overlap.
Figure 2.10 illustrates this on a simple example.

Effective sample size. Correlation has a direct impact on the convergence rate. This
effect can be quantified through the notion of effective sample size. It measures the number
of independent samples required to achieve the same variance,

V[⟨𝐹 ⟩] = 1

𝑛eff
V

[
𝑓 (𝑥)
𝑝 (𝑥)

]
⇔ 𝑛eff =

V
[
𝑓 (𝑥)
𝑝 (𝑥)

]
V[⟨𝐹 ⟩] . (2.37)

With independent samples, the effective sample size is simply the number of samples, 𝑛 =

𝑛eff . If the samples are positively correlated, then the effective sample size diminishes,

𝜌

(
𝑓 (𝑥𝑖)
𝑝 (𝑥𝑖)

,
𝑓 (𝑥 𝑗)
𝑝 (𝑥 𝑗)

)
> 0 ⇒ 𝑛eff < 𝑛. (2.38)

In the worst case, if 𝜌 = 1, the effective sample size will be 𝑛eff = 1. Conversely, if the
correlation is negative, the effective sample size increases. In theory, if 𝜌 = −1, then the
variance will be zero, and the effective sample size will be infinite. Variance reduction
techniques like stratification and antithetic sampling increase the effective sample size,
while cost amortization methods such as splitting and reuse reduce it to simultaneously
reduce cost.

Stratification. Stratification is a common variance reduction technique that produces
negative sample correlation. It operates by first partitioning the domain into so-called
strata. Then, a fixed number of samples is taken from each stratum, as illustrated in Fig-
ure 2.11. Forcing samples to lie in different strata causes negative covariance and results
in a convergence rate faster than that of independent samples, as plotted on the right.
Unfortunately, much like deterministic quadrature, stratification suffers from the curse of
dimensionality. Nevertheless, it can prove useful for low-dimensional integrals or when
applied only along a subset of all dimensions.

Antithetic sampling. Antithetic variates are another variance reduction technique, es-
pecially suited for symmetric integrands. The idea is illustrated in Figure 2.12. Whenever a

2.3 Quantifying the efficiency | 21

1

1 10 100

0.1

0.01

Independent samples Negative correlation (stratified) Convergence comparison

stratified

independent

Figure 2.11: Stratified sampling yields negatively correlated samples and thus a faster convergence
rate. Independent samples, shown on the left, tend to clump together and leave gaps. Stratification
improves that by partitioning the domain and taking exactly one sample in each part. The resulting
negative correlation yields a convergence rate faster than the 1/𝑛 of independent sampling, as shown
on the right.

0 1

1

-1

-1 -x x

Figure 2.12: Antithetic sampling takes one sample 𝑥 and also evaluates its antithetic position −𝑥 .
In this idealized example of a point-symmectric integrand, the result is a zero-variance estimator due
to maximum negative correlation. This holds no matter what density the points 𝑥 have.

sample 𝑥 is taken, its antithetic value −𝑥 is also evaluated. The variance of this sample pair
contains a negative covariance term, hence it is lower than the variance of two independent
samples. In fact, in our example here, the integrand is point symmetric, 𝑓 (−𝑥) = −𝑓 (𝑥),
and the variance with just two antithetic samples is zero. This is because the covariance

Cov

(
𝑓 (𝑥)
𝑝 (𝑥) ,

𝑓 (−𝑥)
𝑝 (𝑥)

)
= −E

[(
𝑓 (𝑥)
𝑝 (𝑥)

)2]
+ 𝐹 2 = −V

[
𝑓 (𝑥)
𝑝 (𝑥)

]
(2.39)

is minus the variance. Hence, the samples in this example have maximum negative cor-
relation. Intuitively, this can be explained by observing that the integral here is zero, and
that the two samples in each pair always cancel each other out, so the estimate computed
from every possible pair is always exactly zero. Unfortunately, antithetic sampling is not
easily applied to arbitrary integration problems, as it relies on exploiting symmetry in the
integrand. In rendering it is scarcely applied. One example is the computation of signed
integrals in differentiable rendering [Zeltner et al. 2021; Zhang et al. 2021].

Splitting. Splitting increases variance through positive correlation, but trades this for re-
duced computation cost. In rendering applications – and other Monte Carlo simulations
– it can be beneficial to continue a prefix subpath with multiple suffixes [J. R. Arvo and
Kirk 1990; Rath et al. 2022; Vorba and Křivánek 2016]. This process is known as splitting
and illustrated in Figure 2.13. A prefix y is continued with 𝑛 suffixes z𝑖 to form 𝑛 full paths
yz𝑖 . These full samples are positively correlated, because they all share the same prefix
y. Therefore, the variance of an estimator with these 𝑛 samples will be higher than if 𝑛
independent samples had been used. However, because only a portion of the full path is

22 | Chapter 2: Monte Carlo Light Transport

3 independent paths 3 correlated paths via splitting

x1

x2

x3

z1

z2

z3

y

Figure 2.13: Splitting generates multiple (here three) full paths x by continuing a single prefix y
with multiple suffixes z. The resulting full samples are correlated, because they all share the same
prefix. Splitting is beneficial if the prefix y is costly to sample but has low variance.

y1

y2

z1,1

z1,2

z1,3

z2,1

z2,2z2,3

y1

y2

z1

z2

z3

2D Integral Path integral

𝑦1 𝑦1𝑦2 𝑦2

𝑧1,3

𝑧2,1

𝑧2,2

𝑧1,1

𝑧1,2

𝑧2,3

𝑧1

𝑧2

𝑧3

Splitting Reuse Splitting Reuse

Figure 2.14: The cost of splitting is often amortized through reuse. Here we compare pure splitting
and splitting with reuse on a 2D domain (left) and in path space (right). Splitting continues each prefix
with a new set of suffixes, reuse additionally shares the suffixes across all prefixes.

sampled 𝑛 times, the cost of the correlated samples is lower than the cost of independent
ones. Thus, if done well, splitting can increase efficiency. Unfortunately, it is not a trivial
task to perform splitting efficiently [Bolin and Meyer 1997; Rath et al. 2022; Vorba and
Křivánek 2016].

Reuse and resampling. Sample reuse combines many different prefixes y with the same
suffixes z. This is illustrated in Figure 2.14. A simple splitting estimator would generate
a new set of suffixes for each prefix sample. In contrast, a reuse estimator uses the same
set of suffixes for all prefixes. This introduces positive correlation between the full paths x
since they now all share the same suffixes. This correlation can be small, if the set of suf-
fixes is vast and only a small portion is chosen randomly to continue each prefix. This is
typically the case in practical applications, because sample reuse estimators typically gen-
erate thousands to millions of suffix paths and use filtering (e.g., photon mapping [Jensen
1996] or path caching [Keller et al. 2014; West et al. 2020]) or resampling (e.g., light path
resampling for virtual point lights [Georgiev et al. 2012b] or bidirectional path tracing [Su
et al. 2022], or ReSTIR [Bitterli et al. 2020] where (sub)paths in nearby pixels are resam-
pled spatio-temporally) to select a subset of those. The benefit of such reuse is that the
cost is ammortized over all prefix samples, resulting in a lower variance than a single in-
dependent path without increasing the cost. These suffix samples are usually also shared
between multiple pixels, hence sample reuse can also introduce pixel correlation.

2.3.4.2 Pixel correlation

Pixel correlation can be a great asset or a major problem. But why is it relevant? After all,
our goal is to compute the individual pixel integrals, and the variance of those is unaffected

2.3 Quantifying the efficiency | 23

Figure 2.15: Example for positive correlation between pixels. The path resampling method of Popov
et al. [2015] shares a small set of light subpaths across all pixels. Further, nearby pixels share the same
resampling probability distribution. The result is positive pixel correlation, manifesting as splotches.

by correlations between pixels. The answer is twofold: human perception and denoising.

Denoising is a post-processing step that reduces the variance by blurring the image. There
are many different methods [Zwicker et al. 2015] that differ in many details. However, the
core principle is always the same: Pixel estimates are filtered with a low-pass kernel. The
simplest form of denoising would be a blur with constant radius applied over the entire
image. Blurring reduces the noise in each pixel by sharing samples between neighboring
pixels.

Denoising is more effective if nearby pixels have more information to share. In one ex-
treme, if nearby pixels all generated the same samples, there is no information to share
and denoising cannot improve the estimates. In the other extreme, if the samples of nearby
pixels are as far apart as possible, they each add valuable information that denoising can
exploit. The first case arises if the pixel value estimates are positively correlated, the second
if they are negatively correlated.

Noisy images with negative pixel correlation are also better suited for human perception.
Human perception of noisy images can be modelled via a low-pass filter [Chizhov et al.
2022]. Hence, when viewed directly, noisy images with negative correlation are percieved
as less noisy than equal-error images with no – or positive – correlation.

Positive correlation. Positive correlation occurs if two pixels share some of their sam-
pling information. Popular examples in rendering are bidirectional algorithms like photon
mapping [Jensen 1996], virtual point light methods [Keller 1997], and Markov chain Monte
Carlo methods [Šik and Křivánek 2018; Veach and Guibas 1997]. Photon mapping and vir-
tual point lights use the same samples in neighboring pixels, and Markov chain Monte
Carlo methods use slightly mutated versions of the same samples. As a consequence, the
pixel estimates are always similar, resulting in splotchy artifacts, as shown in Figure 2.15.
This is akin to the alias with deterministic quadrature (see Figure 2.7): Naïve deterministic
sampling uses the exact same sample positions in all pixels, resulting in maximum posi-
tive correlation. Positive correlation between pixels is best avoided. The splotchy artifacts
are unappealing to human observers, and reconstruction through filtering is impossible,
since neighboring pixels do not havemutually-beneficial information they could sharewith
each other. Still, algorithms with positive pixel correlation might converge more rapidly
and can hence be beneficial for long-running render tasks. Often, it is possible to reduce

24 | Chapter 2: Monte Carlo Light Transport

positive pixel correlation through additional randomization while keeping some of the per-
formance benefits. For example, Estevez and Kulla [2020] use only a random subset of all
nearby photons for photon mapping. This randomization removes the splotchy artifacts
and gives control to the denoiser to decide what amount of blur is acceptable.

Negative correlation. Negative correlation between pixels is a great asset for reconstruc-
tion. If the samples of nearby pixels are as different as possible, the total amount of infor-
mation obtained by the estimates of these pixels is maximized. Unfortunately, achieving
such negative correlation is not a trivial task. There are multiple approaches, and finding
the best solution is still an open research problem. One option is to utilize precomputed
blue noise patterns [Georgiev and Fajardo 2016; Heitz et al. 2019; Wolfe et al. 2022] or
to modify a quasi-Monte Carlo sample sequence [Ahmed and Wonka 2020]. Another ap-
proach is to adapt the sample positions based on previous iterations [Heitz and Belcour
2019], or to perform error distribution in a post-process [Chizhov et al. 2022]. Negative
pixel correlation is especially useful for low sample count renderings, such as real-time or
interactive applications, where strong filtering is required for acceptable image quality.

Quantifying pixel correlation. Mathematically, correlation between pixels can be quan-
tified by looking at the error of the reconstructed image. Image reconstruction applies a
(low-pass) kernel 𝑘 (𝑖, 𝑗) and reconstructs the value of the 𝑖th pixel as the weighted sum of
all pixels within the kernel footprint,

𝐹𝑖 =
∑︁
𝑗

𝑘 (𝑖, 𝑗)⟨𝐹 𝑗 ⟩. (2.40)

The variance of this reconstruction is the weighted sum of variances and covariances,

V[𝐹𝑖] =
∑︁
𝑗

𝑘2(𝑖, 𝑗)V[⟨𝐹 𝑗 ⟩] + 2
∑︁
𝑗≠𝑘

𝑘 (𝑖, 𝑗)𝑘 (𝑖, 𝑘)Cov(⟨𝐹 𝑗 ⟩, ⟨𝐹𝑘⟩). (2.41)

If the covariance is negative, the reconstruction has a lower variance than a reconstruc-
tion with independent samples. If the covariance is postive, reconstruction will be worse.
Previous work has optimized this reconstructed error by, for example, imposing a kernel
and optimizing the sampling pattern for that kernel [Chizhov et al. 2022].

2.4 Improving the efficiency

Much work has been done on improving the efficiency of rendering algorithms. In this
thesis, we focus on high-level algorithmic tools that either reduce the variance or achieve
a better trade-off between variance and cost. Importance sampling and control variates
are examples for the former; adaptive sample counts an example for the latter. These tech-
niques are made possible through the flexibility procured by Monte Carlo integration.

Importance sampling (Section 2.4.1) is maybe the best-known technique to reduce variance.
It operates by using a well-chosen sample distribution rather than a uniform one. From
a calculus perspective, importance sampling can be seen as an application of integration
by substitution. Consequently, importance sampling is deeply tied to the various integral
formulations that are used for rendering applications, such as surface or direction integrals.

The method of control variates (Section 2.4.3) is another variance reduction technique with
uses in rendering applications. Instead of computing the full integral, we can subtract a

2.4 Improving the efficiency | 25

Regular quadrature Adaptive quadrature

Figure 2.16: Comparison of regular and adaptive quadrature on the example of a deterministic Rie-
mann sum. Sampling the integrand more densely in important regions, as done on the right, produces
more accurate estimates with the same computation budget.

known integral and compute the difference. If that difference is small, then it is easier to
compute than the original integral, hence variance will be lower. In rendering, this has,
for example, been used for relighting applications [Rousselle et al. 2016], where the same
image is rendered again under different illumination, so the previous illumination can be
used as a control variate.

The integrals computed in rendering applications are far too diverse and complex to find
a single a-priori method that achieves perfect efficiency. Therefore, a lot of work has been
done on adaptive methods (Section 2.4.4). These aim to improve the sampling distributions,
control variates, or sample counts on-the-fly during rendering.

2.4.1 Importance sampling

Adaptive computation is paramount for efficient numerical integration. Uniform sampling
of the integration domain leads to wasted effort in unimportant regions or insufficient
precision in important ones. This is illustrated in Figure 2.16, which compares quadra-
ture approximations of the same function using uniform sampling on the left and adaptive
sampling on the right. The integration error is reduced by sampling important regions –
namely, those with high integrand values – more densely. In the context of Monte Carlo
integration, such adaptation is achieved by using a non-uniform PDF 𝑝 (𝑥). This is known
as importance sampling.

Optimal importance sampling can, in theory, provide a perfect result with just a single sam-
ple. But for that, it requires prior knowledge of the desired integral, so optimal sampling
is generally impossible. Nevertheless, it is insightful to understand the optimal density, as
it can inform the choice of good approximations for variance reduction in practice.

Given a reasonable importance sampling PDF, the final step is to synthesize the samples.
To that end, uniform random numbers in primary sample space are transformed to the
integration domain with specially designed sample transformations. This step can be very
involved and expensive.

2.4.1.1 Optimal importance sampling

Intuitively, a good importance sampling PDF should be high where the integrand is large,
and low where the integrand is small. So it is not surprising that the ideal importance

26 | Chapter 2: Monte Carlo Light Transport

sampling density is proportional to the integrand, 𝑝 (𝑥) ∝ 𝑓 (𝑥). The following provides a
formal derivation of this optimum.

The best importance sampling PDF is the one that minimizes the variance of the estimator,

𝑝 (𝑥) = argmin
𝑝 (𝑥)

(
V

[
𝑓 (𝑥)
𝑝 (𝑥)

]
+ _

(∫
X
𝑝 (𝑥) d𝑥 − 1

))
subject to 𝑝 (𝑥) > 0, (2.42)

where a Lagrange multiplier is used to ensure the equality constraint∫
X
𝑝 (𝑥) d𝑥 = 1, (2.43)

that is, that 𝑝 is a valid probability density. This is a convex optimization problem, so the
minimizer can be easily found by setting the functional derivatives w.r.t. 𝑝 (𝑥) to zero,

− 𝑓 2(𝑥)
𝑝2(𝑥)

+ _ = 0 (2.44)∫
X
𝑝 (𝑥) d𝑥 − 1 = 0. (2.45)

The first equation tells us that the lowest variance is achieved if the PDF is proportional to
the absolute value of the integrand,

𝑝 (𝑥) = |𝑓 (𝑥) |
√
_

∝ |𝑓 (𝑥) |. (2.46)

The normalization factor
√
_ is found by substituting this result into the second equation,

√
_ =

∫
X
|𝑓 (𝑥) | d𝑥 . (2.47)

For positive integrands,
√
_ = 𝐹 is the integral we strive to compute. Therefore, the optimal

𝑝 (𝑥) = |𝑓 (𝑥) |∫
X |𝑓 (𝑥) | d𝑥

, (2.48)

can only be computed if we already know the desired integral. So importance sampling
with the optimal PDF is not possible in practice. However, substituting approximations
of 𝑓 with known integral has proven effective: Even crude approximations can provide
notable variance reduction compared to uniform sampling.

2.4.1.2 Transforming samples

Our goal is to importance sample with some density 𝑝 (𝑥). But how can we achieve that?
Typical (pseudo-) random number generators only produce numbers between zero and one
that follow a uniform distribution. That is, we can easily generate primary samples

𝑢 ∈ U = [0, 1]𝑑 , 𝑝 (𝑢) = 1, (2.49)

2.4 Improving the efficiency | 27

t(u)

t(u)

t(u)0
0

1

1

𝑢 ∈ U 𝜔 ∈ Ω

Figure 2.17: In practice, importance sampling is achieved by transforming uniform samples 𝑢 ∈
U from the unit hypercube to the integration domain, using a transformation 𝑡 (𝑢). Here, directions
𝜔 = 𝑡 (𝑢) are sampled by transforming uniform samples from the 2D unit square (0, 1) × (0, 1) to the
surface of the unit hemisphere Ω, where they implicitly define directions in 3D space.

by using one uniform random value for each of 𝑑 dimensions. This unit hypercube U
is called the primary sample space [Kelemen et al. 2002]. For importance sampling, the
primary samples must be transformed to the integration domainX such that they have the
desired density. Figure 2.17 visualizes this on the example of sampling a cosine-weighted
direction from the hemisphere.

To obtain samples from the target domainX, we must design a transformation 𝑡 : U → X.
This transformation must ensure that uniformly distributed points in 𝑢 yield points in X
that are distributed according to the importance sampling density 𝑝 (𝑥).

There are multiple methods to find such a transformation; the preferred method in render-
ing is inversion sampling. Inversion sampling constructs a transformation 𝑥 = 𝑡 (𝑢) by in-
verting the cumulative distribution function (CDF) of the importance sampling PDF [Pharr
et al. 2016, Chapter 13.3]. This inversion is not always a trivial task [Heitz 2020], but offers
important benefits compared to alternatives such as rejection sampling or tabulated den-
sities: It has low memory requirements, does not waste primary samples, and preserves
stratification. Inversion sampling can be derived through integration by substitution.

2.4.2 Integration by substitution

Integration by substitution (aka change of variables) uses an injective mapping 𝑡 : U → X
to write an integral over X as one over U,∫

X
𝑓 (𝑥) d𝑥 =

∫
U
𝑓 (𝑡 (𝑢))d𝑥

d𝑢
d𝑢, (2.50)

where the integrand is scaled by the Jacobian

|𝐽𝑡 (𝑢) | =
d𝑥

d𝑢
(2.51)

of the mapping. Appendix A provides a primer on the topic.

In the context of Monte Carlo rendering, substitution is applied for two main purposes.
First, the rendering integral can be written as one over directions, surfaces, or spherical
coordinates, and each formulation motivates different algorithms [Kajiya 1986] (see Sec-
tion 2.1.2). Second, importance sampling via sample transformation is achieved through

28 | Chapter 2: Monte Carlo Light Transport

substitution. Understanding the calculus foundations of these operations allows us to unify
and combine them, which is essential for multiple importance sampling (discussed in Sec-
tion 3.1.3).

2.4.2.1 Deriving sample transformations

How can sample transformations achieve a desired PDF? Assume we aim for a target PDF
𝑝 (𝑥) and transform uniform samples, that is, 𝑝 (𝑢) = 1, from primary space via a mapping
𝑥 = 𝑡 (𝑢). How do we need to design this mapping such that the target PDF is attained?

This can be answered by observing the effect that a given 𝑡 (𝑢) has on the PDF. A sample
transformation scales the density by the reciprocal Jacobian,

𝑝 (𝑥) = 𝑝 (𝑢) |𝐽𝑡 (𝑢) |−1. (2.52)

Intuitively speaking, this relationship holds because the Jacobian measures how the map-
ping 𝑡 locally affects the size of the domain. If 𝑡 maps a large portion ofU to a small subset
ofX, then the density is high, as many primary points are compacted into this small region.
Conversely, the density is low if a small portion ofU maps to a large subset of X.

More formally, we can derive this relationship through integration by substitution. For
that, we assume that 𝑡 is an injective mapping. Then, the probability that 𝑥 = 𝑡 (𝑢) lies in
some subset 𝑆 ⊂ X is, by construction, equal to the probability that the corresponding 𝑢
lies in the inverse image 𝑆−1 ⊂ U of that subset,

𝑃 (𝑥 ∈ 𝑆) = 𝑃 (𝑢 ∈ 𝑆−1), (2.53)

for any subset 𝑆 of any size. By definition of the PDF, this implies that∫
𝑆

𝑝 (𝑥) d𝑥 =

∫
𝑆−1

𝑝 (𝑢) d𝑢. (2.54)

The left hand integral can be written as one over primary space by substituting 𝑥 = 𝑡 (𝑢):∫
𝑆−1

𝑝 (𝑡 (𝑢)) |𝐽𝑡 (𝑢) | d𝑢 =

∫
𝑆−1

𝑝 (𝑢) d𝑢. (2.55)

Since this must hold for any subset of any size, the relationship must also hold point-wise,
showing that

𝑝 (𝑡 (𝑢)) |𝐽𝑡 (𝑢) | = 𝑝 (𝑢) (2.56)
and proving the above relationship of the two PDFs. This equation is absolutely essential
for (multiple) importance sampling in rendering.

With knowledge of this relationship, we also obtain a general recipe for finding such a
transformation 𝑡 . Specifically, Equation (2.52) defines a differential equation that we can
solve for 𝑡 . One solution is given by the inverse of the CDF, 𝑡 (𝑢) = 𝑃−1(𝑢), since (1) the
Jacobian of an inverse function is the reciprocal of the Jacobian of the original function,

|𝐽𝑡−1 (𝑥) | = |𝐽𝑡 (𝑢) |−1 (2.57)

and (2) the CDF is the antiderivative of the PDF,

𝑃 (𝑢) =
∫ 𝑢

0
𝑝 (𝑢′)d𝑢′. (2.58)

Unfortunately, it is not always easy – or even possible – to invert 𝑃 (𝑢) [Heitz 2020].

2.4 Improving the efficiency | 29

0
0 1

10

20

0
0 1

10

20

0

1

2

3

4

10
0

1

2

3

4

10

t(u) t(u)

Importance sampling via transformation Integration by substitution and uniform sampling⇔

𝑓 (𝑢) = 𝑓 (𝑥) d𝑢d𝑥

𝑝 (𝑢) 𝑝 (𝑢)

𝑝 (𝑥) = 𝑝 (𝑢) d𝑥d𝑢

𝑓 (𝑥) 𝑓 (𝑥)

Figure 2.18: Importance sampling is integration by substitution. In this 1D example, a narrow,
vertically-shifted, and truncated Gaussian (depicted in blue) is integrated via Monte Carlo. For that,
an approximate PDF (orange) is used that increases density around the peak. The plot in the top left
shows this setup, and the plot below shows how uniform samples in primary space are mapped to
the integration domain to achieve this importance sampling. The plots on the right instead show how
integration by substitution maps the integration domain to primary space – through the same mapping
– and integrates the distorted integrand there. While derived differently, both formulations yield the
same estimator that performs the same operations to compute the same result.

2.4.2.2 Importance sampling is integration by substitution

Importance sampling via sample transformation defines a change of variables 𝑥 = 𝑡 (𝑢) and
thereby an equivalent integral over primary sample space,∫

X
𝑓 (𝑥) d𝑥 =

∫
U
𝑓 (𝑡 (𝑢)) |𝐽𝑡 (𝑢) | d𝑢. (2.59)

By construction, the Jacobian

|𝐽𝑡 (𝑢) | =
𝑝 (𝑢)
𝑝 (𝑥) =

1

𝑝 (𝑥) (2.60)

is the reciprocal of the importance sampling PDF. So the integral can be written as∫
U
𝑓 (𝑡 (𝑢)) |𝐽𝑡 (𝑢) | d𝑢 =

∫
U

𝑓 (𝑡 (𝑢))
𝑝 (𝑡 (𝑢)) d𝑢. (2.61)

Therefore, importance sampling can also be interpreted as computing this primary space
integral via uniform sampling.

Figure 2.18 shows this on a simple 1D example. The left plot shows the integrand and
importance sampling PDF. A non-uniform density is achieved through a sample transfor-
mation from primary sample space. The right plot shows the equivalent interpretation
where the integrand is instead mapped to primary space, using the same transformation,
and estimation proceeds there with uniform sampling.

30 | Chapter 2: Monte Carlo Light Transport

1

0

1

0
-1

1

0
f(x) - g(x)

f(x)

g(x)
f(x)

Figure 2.19: The idea behind control variates, illustrated on a simple 1D integral. Instead of directly
computing 𝐹 , a function 𝑔(𝑥) with known integral𝐺 , depicted in blue, is used as a starting point. Then,
the difference, shown in orange, is estimated and added to the known 𝐺 to obtain 𝐹 . Low variance is
achieved if the difference is easier to integrate than the original function. This is the case here, where
𝑓 (𝑥) − 𝑔(𝑥), plotted on the right, is a much flatter function.

Importance sampling and the equivalent change of variables achieve the same goal via
the same math operations. Only the justification of these operations differs. On the one
hand, importance sampling generates a random 𝑥 by first sampling a uniform 𝑢 and then
computing the corresponding 𝑥 = 𝑡 (𝑢). The integral is then estimated as

⟨𝐹 ⟩ = 𝑓 (𝑥)
𝑝 (𝑥) =

𝑓 (𝑡 (𝑢))
𝑝 (𝑢) 1

|𝐽𝑡 (𝑢) |
. (2.62)

On the other hand, the change of variables mindset also starts by sampling a random 𝑢,
but then uses that 𝑢 to estimate the primary space integral,

⟨𝐹 ⟩ = 𝑓 (𝑡 (𝑢)) |𝐽𝑡 (𝑢) |
𝑝 (𝑢) . (2.63)

That is, both estimators are equivalent, and differ only in whether the Jacobian arises from
the definition of the PDF or the definition of the integrand.

The converse of this observation is also true: every valid change of variables also defines
an importance sampling estimator. This connection allows us to interpret algorithms op-
erating with different integral formulations as different importance sampling schemes of
the same formulation. That, in turn, enables combinations of these methods through, for
example, multiple importance sampling (see Chapter 3).

2.4.3 Control variates

Control variates are another powerful variance reduction technique. They can be used
on their own, or combined with importance sampling. The idea is fairly simple: A known
integral𝐺 is subtracted from the desired 𝐹 , and Monte Carlo integration is used to estimate
the difference between the two.

Control variates have received less attention in rendering than importance sampling, but
there are successful applications. A promising approach seems to be to learn a suitable
control variate from initial samples and use it in conjunction with (learned or fixed) im-
portance sampling [Crespo et al. 2021; Müller et al. 2020; Salaün et al. 2022; Vévoda et al.
2018]. Control variates can also further reduce the variance of multiple importance sam-
pling estimators [Kondapaneni et al. 2019; Owen and Zhou 2000], as we will discuss in
Section 3.3.2.

2.4 Improving the efficiency | 31

2.4.3.1 Definition

A control variate can be formed if we know a function 𝑔(𝑥) ≈ 𝑓 (𝑥) that approximates the
integrand, and if we can easily compute the integral of this approximation,

𝐺 =

∫
X
𝑔(𝑥) d𝑥 . (2.64)

Then, we can write the integral 𝐹 as the sum of the known 𝐺 and the difference integral,

𝐹 = 𝐺 + 𝐹 −𝐺 (2.65)

= 𝐺 +
∫
X
𝑓 (𝑥) d𝑥 −

∫
X
𝑔(𝑥) d𝑥 (2.66)

= 𝐺 +
∫
X
(𝑓 (𝑥) − 𝑔(𝑥)) d𝑥 . (2.67)

Figure 2.19 illustrates this idea. The area under the curve of 𝑓 (𝑥) is computed by computing
the area between 𝑔(𝑥) and 𝑓 (𝑥), marked in orange, and adding it to the known area under
the curve of 𝑔(𝑥), marked in blue. If the area between the curves, that is, the difference
integral, is easier to compute than the original integral, then the resulting estimator will
be more efficient.

The difference integral can be computed viaMonte Carlo integration, leading to the control
variate estimator:

⟨𝐹 ⟩CV = 𝐺 +
𝑛∑︁
𝑖=1

𝑓 (𝑥) − 𝑔(𝑥)
𝑝 (𝑥) . (2.68)

This estimator can be improved via importance sampling, by finding a PDF 𝑝 (𝑥) that ap-
proximates the difference 𝑓 (𝑥) − 𝑔(𝑥). Therefore, control variates can, at the same time,
act as a replacement for and an orthogonal improvement to importance sampling.

2.4.3.2 Comparison to importance sampling

An optimal control variate estimator is achieved if 𝑔(𝑥) = 𝑓 (𝑥) exactly matches the inte-
gral1. This is conceptually similar to optimal importance sampling. As is the case there,
the optimum has a purely theoretical value, since it requires knowledge of the solution to
the original integration problem.

Using 𝑔(𝑥) as a control variate, rather than for importance sampling, offers two key ben-
efits: First, importance sampling 𝑝 (𝑥) = 𝑔(𝑥)𝐺−1 requires a sample transformation from
primary space. This transformation is the solution of a differential equation that may be
non-trivial, prohibitively expensive, or simply impossible to find. Second, 𝑔(𝑥) can be real-
valued, that is, it is not constrained to be positive.

While most integrands in rendering are non-negative, there are cases where a signed func-
tion needs to be integrated. For example in differentiable rendering [Zeltner et al. 2021] or
for the simulation of wave-optical effects like interferences. A simple example is shown in

1There are infinitely many optimal control variates. Namely, if 𝑔(𝑥) is optimal, so is every shifted 𝑔′ (𝑥) =
𝑔(𝑥) + 𝐶𝑝 (𝑥) for any constant 𝐶 [Hua et al. 2023, Section 3.2]. Here, we consider the most intuitive choice
of 𝑔(𝑥) = 𝑓 (𝑥).

32 | Chapter 2: Monte Carlo Light Transport

1

10

-1

-1 -0.5 0.5

1

10

-1

-1 -0.5 0.5

Optimal PDF

Optimal control variate Residual integrand

10-1 -0.5

-0.5

0.5

0.5

10-1 -0.5

-0.5

0.5

0.5

Primary space integrand

Figure 2.20: Comparison of optimal control variates and optimal importance sampling on a signed
integrand. The blue line and area on the left plot the integrand and integral, respectively. The orange
line at the top is the optimal PDF, the orange line at the bottom is an optimal control variate. The green
lines on the right plot the corresponding effective integrand that is estimated with uniform samples.
Importance sampling will always retain the sign-related variance – due to the discontinuity in the pri-
mary space integrand – while control variates can achieve zero variance – due to the constant residual
integrand.

Figure 2.20. There, the integrand is a sine function, 𝑓 (𝑥) = sin(2𝜋𝑥), with a trivial analyt-
ical integral 𝐹 = 0. Importance sampling cannot achieve a zero-variance estimator for this
integral (without additional tricks [Owen and Zhou 2000]) but control variates can.

The optimal importance sampling PDF is proportional to the absolute value of the inte-
grand (2.48),

𝑝 (𝑥) = | sin(2𝜋𝑥) |
2
∫ 0.5

0
sin(2𝜋𝑥) d𝑥

. (2.69)

Unlike with positive integrands, however, the variance with such optimal sampling is not
zero. This can be easily seen by observing that the value of a single sample is not constant,

sin(2𝜋𝑥)
𝑝 (𝑥) = sgn (sin(2𝜋𝑥)) 2

∫ 0.5

0
sin(2𝜋𝑥) d𝑥 , (2.70)

as it depends on the sign of the integrand at the sampled position.

In comparison, the optimal control variate, 𝑔(𝑥) = sin(2𝜋𝑥), in combination with uniform
sampling, does produce a zero-variance estimator, since 𝐺 = 𝐹 . The key to success is,
that control variates can be arbitrary (integrable) functions and are not constrained to be
positive.

There are, however, also techniques to reduce this sign-related variance in importance
sampling. Positivization [Owen and Zhou 2000] separates the integral into two parts, the
positive and the negative regions, and computes those independently. However, doing
so requires knowledge of the roots of the integrand, a sampling density that is defined

2.4 Improving the efficiency | 33

only over each region, and at least two samples. Especially the latter constraint, requiring
more than one sample, is problematic when applied to high-dimensional problems, where
it would cause exponential growth. Antithetic sampling (see Section 2.3.4.1) can be used
as a special case of positivization, additionally introducing negative correlation to reduce
the variance further.

2.4.4 Adaptive sampling

The efficiency of a Monte Carlo estimator can be greatly increased by automatically adapt-
ing it to the problem at hand. The design space for such adaptation is huge, and is still
actively explored by a vast body of research. Existing methods can be loosely grouped into
three categories: adaptive sample counts, adaptive PDFs or control variates, and sample
mutation and resampling.

The methods presented in Chapters 5 and 7 also fall into this category of adaptive methods:
The former adapts the MIS weighting function based on the variance, the latter adapts the
sample allocation for combined algorithms.

2.4.4.1 Adaptive sample counts

Rendering applications compute an integral in every pixel. The corresponding estimation
errors can differ greatly between pixels. For example, some pixels may feature a complex
reflected caustic, while others show only simple direct illumination. If the same number of
samples is used in all pixels, the result would be either residual noise in difficult pixels or
a waste of computation time on simpler ones. Therefore, a very common type of adaptive
sampling in rendering aims to allocate samples to each pixel such that a uniform error
distribution is achieved [Hasselgren et al. 2020; Kuznetsov et al. 2018; Zwicker et al. 2015].
Similarly, path splitting factors can be optimized on-the-fly [Bolin and Meyer 1997; Rath
et al. 2022; Vorba and Křivánek 2016]. The method presented in Chapter 7 applies this idea
to determine the number of samples to allocate to different techniques.

2.4.4.2 Adaptive importance sampling or control variates

Importance sampling and control variates both use approximations of the integrand to re-
duce variance. Such an approximation can be generated or adapted on-the-fly during the
integration process. To that end, an initial batch of samples can be used to construct an
approximation of the integrand. This approximation can then be used as an importance
sampling density or a control variate for subsequent samples. A popular example for adap-
tive PDFs in rendering are path guiding methods [Bashford-Rogers et al. 2012; Grittmann
et al. 2018; Herholz et al. 2016, 2019; Hey and Purgathofer 2002; Jensen 1995; Müller et al.
2017, 2019; Rath et al. 2020; Reibold et al. 2018; Ruppert et al. 2020; Schüßler et al. 2022;
Vorba et al. 2014] or learned discrete distributions for light source selection [Donikian et al.
2006; Vévoda et al. 2018; Wang et al. 2021]. Similarly, selection of virtual point lights or bidi-
rectional connections can be improved by constructing an adaptive distribution [Georgiev
et al. 2012b; Popov et al. 2015; Su et al. 2022]. Adaptive construction of control variates
is also possible [Crespo et al. 2021; Fan et al. 2006; Müller et al. 2020; Salaün et al. 2022;
Vévoda et al. 2018].

34 | Chapter 2: Monte Carlo Light Transport

Adaptive importance sampling can be a powerful tool for rendering difficult scenes. There-
fore, it has found many uses in the industry [Vorba et al. 2019]. Despite these successes,
there is still much more to be done. For example, finding the best representations, data
structures, or subdivision rules still warrants much exploration.

2.4.4.3 Markov chains and resampling

Explicitly adapting or constructing a PDF or control variate from sample data can incur a
hefty memory cost and computation overhead. This is a main reason why path guiding
has been proposed decades ago [Hey and Purgathofer 2002; Jensen 1995] but only became
popular relatively recently [Vorba et al. 2019]. Markov chain methods and resampling offer
more memory-friendly alternatives.

Markov chainMonte Carlo (MCMC) [Šik and Křivánek 2018; Veach andGuibas 1997]meth-
ods mutate samples and randomly accept or reject these mutations. The acceptance proba-
bility is designed such that the expected sample density, after infinitly many mutations, is
the desired PDF. Markov chain methods often exhibit strong correlation artifacts, making
them less popular in rendering practice. Still, successful applications exist, especially for
bidirectional methods [Šik and Křivánek 2019; Šik et al. 2016].

Resampling methods [Talbot et al. 2005] are based on the same idea but apply it differently.
An initial set of samples is generated, and a subset of these samples is selected. That is,
they also utilize acceptance and rejection, but make do without mutations. Rendering
applications typically employ resampling in combination with path reuse, such that the
cost of the additional samples is amortized [Bitterli et al. 2020; Georgiev et al. 2012b; Su
et al. 2022]. The sampling quality of such resampling approaches is generally lower than
explicitly modeled densities2. However, the much lower overhead can be attractive for
low-budget applications such as real-time rendering [Bitterli et al. 2020].

2.5 Rendering algorithms

Modern rendering algorithms use Monte Carlo integration to compute the rendering equa-
tion. That is, images are rendered by sampling random paths that connect the camera to a
light source.

The prevalent algorithm, forward path tracing, extends paths from the camera to the lights.
For scenes with difficult transport, this does not always perform well. There, bidirectional
methods can help. These additionally trace paths from the lights and combine them with
the camera paths.

2The variance of resampling 1 out of 𝑀 samples is lower-bounded by the variance of an ordinary 𝑀-
sample estimator. In contrast, the variance of a PDF-learning-based method has no such bound – in theory,
a single training sample could recover the zero-variance density.

2.5 Rendering algorithms | 35

Figure 2.21: Some scenes are easy to render with unidirectional path tracing, others almost impos-
sible. An outdoor environment on a cloudy day (left) works well, while focused indirect illumination
(right) remains difficult. Here, green ticks mark the paths that have found the light, and red crosses the
ones that did not.

2.5.1 Forward path tracing

The default method of most production renderers is unidirectional forward path trac-
ing [Fascione et al. 2018]. Paths are formed by first tracing a ray from the camera into
the scene. The path is then continued by repeatedly sampling directions from the inter-
sected surfaces. Path construction is terminated if the path is fully absorbed, leaves the
scene, is terminated randomly with Russian roulette [J. R. Arvo and Kirk 1990; Rath et al.
2022; Vorba and Křivánek 2016], or reaches a fixed maximum depth. Typically, the ver-
tices along the path are also directly connected to points on the light sources (“next event
estimation”), to boost the probability of forming a path with non-zero contribution.

The appeal of the unidirectional method is twofold. First, by starting paths from the cam-
era, the exact number of samples per pixel can be controlled easily. This provides noise
reduction through stratification and enables great flexibility for adaptive sampling. Sec-
ond, the process is trivial to parallelize and only a small constant amount of memory is
required for sample storage. In other words, forward path tracing is easy to adapt and
trivial to implement efficiently.

Unidirectional path construction works best if the illumination in the scene is diffuse. That,
of course, is often not the case. Consequently, many scenes will require a vast number of
samples to converge to an acceptable error level. Figure 2.21 sketches two example cases,
one where forward path tracing works well, and one where it does not. In a cloudy outdoor
setting, shown on the left, most, if not all, paths yield a non-zero contribution, because
similar levels of light are coming from all directions. But results are less rosy in an interior
setting with focused indirect illumination, as depicted on the right. There, forward path
tracing must randomly sample a direction that finds the small, brightly illuminated spot
around the lamp. This is unlikely to happen, so most paths do not connect to the light.

Forward path tracing can be enhanced by sophisticated adaptive sampling schemes to han-
dle such more difficult cases; for example, through path guiding [Vorba et al. 2019]. Un-
fortunately, these methods sacrifice some of the benefits of forward path tracing: They
introduce significant overhead, require synchronisation, and greatly increase the imple-
mentation difficulty. Also, such solutions can be wasteful in simpler scenes where they are

36 | Chapter 2: Monte Carlo Light Transport

Figure 2.22: Bidirectional sampling techniques excel at focused indirect illumination in small scenes.
The sketch on the right illustrates one such example. There, connecting a short camera path to a light
path is almost guaranteed to yield a valid sample connecting the camera to the (difficult to find uni-
directionally) light source. On the flipside, bidirectional sampling fares poorly in large scenes or for
uniform illumination, as sketched on the left. There, most light paths will never find the visible region.

not required. Furthermore, learning-based methods such as guiding frequently encounter
a chicken-and-egg problem: We cannot learn how to sample difficult paths without having
found at least one similar path through pure forward path tracing. Adaptation can be slow
if these initial samples are unlikely to be found. Therefore, guided forward path tracing
still struggles with effects such as complex caustics.

2.5.2 Bidirectional path tracing

Bidirectional sampling offers a way to efficiently find some paths that are extremely hard
for forward path tracing. In addition to tracing paths from the camera, these methods also
trace paths from the light sources. The two sets of paths are then combined to form full
paths.

There are many ways how that combination can be done. For example, the classic bidirec-
tional path tracing algorithm [Veach and Guibas 1995a] traces pairs of camera and light
paths and connects each vertex of one to every vertex of the other. Another option is to
trace a bunch of light paths and connect every camera path vertex to all of them [Keller
1997]. These shared light paths vertices are commonly called virtual point lights (VPLs).
Instead of connecting each camera vertex to all VPLs, resampling can be used to improve
efficiency [Georgiev et al. 2012b; Popov et al. 2015; Su et al. 2022].

Bidirectional sampling nicely complements forward path tracing. This is illustrated on
Figure 2.22, using the same representative examples as before. The figure sketches one
bidirectional technique: tracing a camera prefix of just one edge, and connecting it to many
light paths. In large scenes, such as the cloudy exterior, bidirectional sampling is not great,
because most light paths will never find the visible region. However, interior scenes with
focused indirect illumination are handled exceptionally well. Because the illumination is
focused, the light subpaths easily find the visible region.

The poor performance of bidirectional methods in large scenes can be remedied via adap-

2.5 Rendering algorithms | 37

Photon mapping: Still unlikely,
but many amortized samples

Unidirectional:
Unlikely to find the light

Bidirectional: Unlikely to
find compatible pair

Figure 2.23: Photon mapping can efficienctly render caustics, because it effectively uses millions of
samples in each pixel, while ammortizing the cost over all pixels.

tive methods [Grittmann et al. 2018; Šik et al. 2016]. However, these incur additional over-
head and are thus unlikely to perform on-par with simple forward path tracing in diffusely
lit scenes such as a cloudy exterior.

2.5.3 Photon mapping

Between unidirectional and bidirectional path tracing, many lighting effects can be cap-
tured efficiently. There is, however, one important exception: reflected caustics. Caustics
are the focused patterns of light due to interaction with dielectrics such as glass or water.
In the real world, they are present almost everywhere. When viewed directly, bidirectional
methods can capture such caustics efficiently, but reflections of caustics remain difficult.
Unfortunately, whenever there is a caustic in the real world, there usually is also a reflec-
tion or refraction of that caustic visible somewhere.

A popular example are the caustics at the bottom of a pool when viewed from above the
water surface. Figure 2.23 sketches such a setup. Neither bidirectional nor unidirectional
methods can easily find a path that connects the camera to the light through both inter-
actions with the water surface. From both directions, it is equally unlikely to sample a
direction that intersects the water surface at precisely the right angle to find the light or
the camera. This is sketched in the first two pictures of Figure 2.23, where neither forward
nor bidirectional sampling produced a single non-zero path.

Again, one remedy for this problem is adaptation. For instance, path guiding methods can
gradually learn to sample such caustics reasonably well. However, because caustics can be
extremely difficult to find in the first place, even state-of-the-art path guiding approaches
can only render a few simple caustic effects efficiently.

The bestmethod known to date to handle such reflected caustics is photonmapping [Jensen
1996]. Photon mapping is also a bidirectional technique. It starts by tracing a large number
of light subpaths through the scene and recording their vertices in a so-called photon map.
Then, the camera subpaths are traced, and each camera path vertex is merged with the
nearby vertices in the photon map. This is achieved by running a nearest neighbor search
and then pretending that the camera and light vertices where exactly identical.

Of course, it is statistically impossible that any nearby pair of camera and light vertices is
actually identical. Therefore, photon mapping is a biased algorithm; it does not converge
to the correct image. This bias manifests as blurring, splotchy artifacts, or light leaks,

38 | Chapter 2: Monte Carlo Light Transport

which can be very unappealing and difficult to remove in a post-process. Luckily, it is pos-
sible to reduce this bias by reducing the radius of the nearest neighbor search. Gradually
reducing the radius over time provides a consistent estimator that converges to the refer-
ence [Hachisuka et al. 2008], and locally adapting the radius can achieve better trade-offs
between noise and bias [Kaplanyan and Dachsbacher 2013a; Lin et al. 2020].

Because photon mapping is still just a bidirectional sampling technique at heart, it does not
actually increase the likelihood of finding a difficult reflected caustic path. This is sketched
on the right of Figure 2.23. Instead, the advantage of photonmapping stems frompath reuse
with ammortized cost. Millions of light paths are traced throughout the scene, and each
individual camera path is combined with all of those through the nearest neighbor search.
But the same set of light paths is used for all pixels in the image, so the cost is ammortized.
Photon mapping effectively uses millions of bidirectional samples in each pixel, but only
pays for a single one.

Photon mapping is a particularly expensive technique, due to the nearest neighbor search
that is run at every hit point. Because of that and the bias artifacts from the merging oper-
ation, it is best used sparingly only where absolutely necessary [Grittmann et al. 2018; Šik
and Křivánek 2019]. Path guiding can sometimes replace photon mapping for very simple
caustics, and there are also elaborate sampling schemes based on manifold walks [Hanika
et al. 2015; Jakob and Marschner 2012; Zeltner et al. 2020]. The latter strike a different
trade-off than photon mapping, as they can be even more expensive and less general, but
do not (necessarily) introduce bias and can handle caustics on highly-glossy surfaces bet-
ter [Zeltner et al. 2020].

2.6 Summary

Monte Carlo rendering algorithms compute images of virtual scenes by sampling random
paths between the camera and the light sources. This path sampling can be done unidirec-
tionally or bidirectionally. Further, many techniques are available to increase efficiency,
such as (adaptive) importance sampling. Therefore, the design space for possible algo-
rithms is vast, and the best algorithm has yet to be found.

For every lighting effect, there is a path sampling technique that captures it best. For
instance, if we are rendering a field on a cloudy day, forward path tracing is our best
bet. For an interior illuminated by artificial light sources, bidirectional path tracing is an
excellent choice. For caustics, there is often no way around photon mapping. Therefore,
efficient rendering in practice requires us to identify the optimal subset (and variations of)
the best techniques from this vast amount of candidates. And we have not even touched
upon the rendering of volumetric effects [Křivánek et al. 2014], which further add to this
pool of techniques.

A general, albeit inefficient, algorithm can be achieved by simply combining as many of
these methods as possible [Georgiev et al. 2012a; Hachisuka et al. 2012; Křivánek et al.
2014; Veach 1997]. Thereby, any lighting effect can be rendered in acceptable time without
manual parameter tuning. Such a combination can be achieved through multiple impor-
tance sampling (MIS) [Veach and Guibas 1995b] (see Chapter 3), an essential ingredient
in any rendering algorithm. However, such an exhaustive combination will not be very

2.6 Summary | 39

efficient: In most scenes, a lot of the techniques are either underperforming or redundant,
and the computation time invested in them is wasted.

In the following chapters, we first introduce MIS, show how it is used to combine for-
ward path tracing, bidirectional sampling, and photon mapping, identify the challenges
and problems in that combination, and propose practical solutions.

Chapter 3

Multiple Importance Sampling (MIS)

Estimated with technique 2

Original integral Subdivided into an affine combination

Estimated with technique 1

𝑓 (𝑥)

𝑝1 (𝑥) 𝑝2 (𝑥)

𝑤1 (𝑥) 𝑓 (𝑥)
𝑤2 (𝑥) 𝑓 (𝑥)

Figure 3.1: MIS is a divide and conquer approach. An integral with difficult to sample shape (shown
in gray in the top left) is divided into a sum of integrals (plotted as stacked areas in the top right).
The gray area (i.e., integral) is equal to the sum of the blue and orange areas (i.e., integrals). This
subdivision is achieved by multiplying the integrand 𝑓 (𝑥) by a weighting function 𝑤𝑖 (𝑥), one per
technique. The component integrals are then estimated via Monte Carlo integration (bottom) using a
different, sampling technique for each. Here, the PDFs are plotted as a blue and orange line, respectively.

The integrals we compute have a complicated shape influenced by many factors. Specifi-
cally, the light transport equation integrates over a high-dimensional product of emission
profiles and scattering distributions with discontinuities due to object boundaries. Finding
a single sampling technique that can form an efficient Monte Carlo estimator for such an
integral is definitely difficult and possibly impossible.

In computer science, such difficult problems are often efficiently solved by divide and con-
quer methods. Instead of attempting to solve the entire problem at once, it is divided into
multiple sub-problems. When done well, the sub-problems are easier to solve and their
solutions can be efficiently combined into a solution for the whole problem.

Multiple importance sampling (MIS) [Veach andGuibas 1995b] is such a divide and conquer
method, applied to Monte Carlo integration. The concept is illustrated on a 1D integral in
Figure 3.1. Instead of trying to find a good importance sampling PDF that works well for
the entire integral, MIS first divides the integral into a sum of integrals. Then, a Monte
Carlo estimator with a specialized sampling density for each part is used to estimate each
sub-integral. The sum of those sub-estimators is an unbiased estimate of the full integral.

The remainder of this chapter reviews the mathematical formulation of the MIS estimator,
provides a variance analysis, and reviews weighting functions and other enhancements
proposed in previous work. We conclude by summarizing the open research questions.

3.1 The MIS estimator | 41

3.1 The MIS estimator

MIS was introduced decades ago [Veach and Guibas 1995b] and has been used widely ever
since. In a nutshell, it combines a set of sampling techniques 𝑡 ∈ T by taking 𝑛𝑡 samples
with probability density 𝑝𝑡 (𝑥) from each technique 𝑡 . An unbiased estimator is achieved by
summing over all these samples andmultiplying additionally by anMISweighting function
𝑤𝑡 (𝑥):

⟨𝐹 ⟩MIS =
∑︁
𝑡∈T

1

𝑛𝑡

𝑛𝑡∑︁
𝑖=1

𝑤𝑡 (𝑥𝑖,𝑡) 𝑓 (𝑥𝑖,𝑡)
𝑝𝑡 (𝑥𝑖,𝑡)

. (3.1)

Here, 𝑥𝑖,𝑡 is the 𝑖th sample generated by technique 𝑡 . Unbiasedness is achieved as long as
the weights sum to one,

∀𝑥 :
∑︁
𝑡∈T

𝑤𝑡 (𝑥) = 1, (3.2)

and are zero whenever a technique does not sample a point,

∀𝑥 : 𝑝𝑡 (𝑥) = 0 ⇒ 𝑤𝑡 (𝑥) = 0. (3.3)

The remainder of this section provides a more detailed explanation of how and why this
estimator works. Section 3.2 discusses how choosing the right weights, techniques, and
sample counts can improve efficiency.

3.1.1 Affine combination

MIS writes the integrand 𝑓 (𝑥) as an affine combination of weighted integrands,

𝑓 (𝑥) =
∑︁
𝑡∈T

𝑤𝑡 (𝑥) 𝑓 (𝑥), (3.4)

thus replacing the original integral 𝐹 by a sum of weighted integrals,

𝐹 =

∫
X
𝑓 (𝑥) d𝑥 =

∑︁
𝑡∈T

∫
X
𝑤𝑡 (𝑥) 𝑓 (𝑥) d𝑥 . (3.5)

The weighting functions 𝑤𝑡 (𝑥) can be chosen arbitrarily. The only condition is that they
must sum to one so they form an affine combination. Most weighting schemes, like the
popular balance heuristic, use positive weights, hence forming a convex combination. But
positivity is not required, and allowing negative weights can yield further variance reduc-
tion [Kondapaneni et al. 2019].

Figure 3.1 shows how this can be interpreted visually. In 1D, the integral is the area under
the curve of 𝑓 (𝑥) (gray line / area). This area can be divided into multiple parts via an
affine combination, as shown in the top right. MIS computes each sub-area individually
and then sums them up to obtain the full area.

MIS estimates each weighted integral via ordinary Monte Carlo integration, using 𝑛𝑡 sam-
ples from only the corresponding technique 𝑡 :∫

X
𝑤𝑡 (𝑥) 𝑓 (𝑥) d𝑥 ≈ 1

𝑛𝑡

𝑛𝑡∑︁
𝑖=1

𝑤𝑡 (𝑥𝑖,𝑡) 𝑓 (𝑥𝑖,𝑡)
𝑝𝑡 (𝑥𝑖,𝑡)

. (3.6)

42 | Chapter 3: Multiple Importance Sampling (MIS)

Algorithm 2: Pseudocode for a simple MIS estimator. Given a generic Monte Carlo estimator imple-
mentation (Algorithm 1), MIS can be implemented by simply invoking that estimator for each technique
to compute the weighted integrals.

1: functionMIS(𝑓 , T) ← Given an integrand and a set of techniques
2: estimate = 0
3: for 𝑡 ∈ T do

4: estimate += MonteCarlo(𝑤𝑡 𝑓 , 𝑝𝑡 , 𝑛𝑡) ← Estimate the weighted integral of this technique
5: return estimate

The sum of these individual estimators then yields the full MIS estimator (3.1).

The key to success is that the sampling densities 𝑝𝑡 (𝑥) are better importance sampling
distributions for their weighted integrand 𝑤𝑡 (𝑥) 𝑓 (𝑥) than they are for the full 𝑓 (𝑥). This
is the case in the example depicted in Figure 3.1. Neither the orange nor the blue density
perform well on the full integration problem. On their respective sub-problems, however,
they each perform almost perfectly.

An idealized example of how an MIS estimator can be implemented is shown in Algo-
rithm 2. Given a generic Monte Carlo estimator (see Algorithm 1), MIS can be implemented
by repeatedly invoking this estimator, once for each technique. Unfortunately, implemen-
tations of MIS in rendering applications are rarely this simple. Often, the computations
for different sampling techniques are heavily intertwined with each other and scattered
throughout a large code base.

3.1.2 Designing an MIS estimator

How can we design an effective MIS estimator? Sadly, there is no definite answer to that
question. The performance of an MIS estimator is controlled by three parameters: the set
of sampling techniques 𝑡 with their PDFs 𝑝𝑡 (𝑥), the weighting functions 𝑤𝑡 (𝑥), and the
sample counts 𝑛𝑡 . A perfect estimator is one that uses an optimal combination of all three.

A common approach is to decide the PDFs and the sample counts in advance. Then, the
weights 𝑤𝑡 (𝑥) are chosen conditionally on those, such that they produce low variance
estimates. Intuitively speaking, this allows us to shape the integrals computed with each
technique such that its (given and fixed) PDF is a good match to the weighted integral.

For that, a provably good, albeit not optimal, choice for the weighting function is the bal-
ance heuristic [Veach and Guibas 1995b],

𝑤bal
𝑡 (𝑥) = 𝑛𝑡𝑝𝑡 (𝑥)∑

𝑡 ′ 𝑛𝑡 ′𝑝𝑡 ′ (𝑥)
, (3.7)

where the weights are set to be proportional to the effective sampling densities 𝑛𝑡𝑝𝑡 (𝑥) of
each technique. Intuitively, the balance heuristic bounds the variance by ensuring that
low-density PDFs are not used to sample high-value regions:

𝑝𝑡 (𝑥) ≈ 0 ⇒ 𝑤bal
𝑡 (𝑥) 𝑓 (𝑥) ≈ 0. (3.8)

Provided, of course, there is a better technique 𝑡 ′ that samples this point 𝑥 with higher
density. The next section discusses these variance guarantees – and their limitations – in
more detail.

3.1 The MIS estimator | 43

For computation, it is often convenient to write the balance heuristic as the reciprocal of
the sum of PDF ratios,

𝑤bal
𝑡 (𝑥) =

(
1 +

∑︁
𝑡 ′≠𝑡

𝑛𝑡 ′𝑝𝑡 ′ (𝑥)
𝑛𝑡𝑝𝑡 (𝑥)

)−1
, (3.9)

by dividing the numerator and denominator in (3.7) by 𝑛𝑡𝑝𝑡 (𝑥). This benefits numerical
stability and affords efficient computation if the number of techniques is large.

3.1.3 Integral formulations and MIS

Not all sampling techniques in rendering are based on the same integral formulation. For
example, consider the simple application of direct illumination computation. Most render-
ers estimate direct illumination through an MIS combination of BSDF sampling and light
source sampling. The former is defined via the direction integral; the latter via the sur-
face integral (see Section 2.1.3). But for MIS to work, all techniques must be defined with
respect to the same integral formulation.

In the direct illumination example, we can pick either of the two formulations – directions
or surfaces – as the common ground for MIS. The choice is actually irrelevant, since the
resulting computations will be the same either way. For instance, BSDF importance sam-
pling can be reformulated based on the surface integral by mapping the directions 𝜔i to
surface points (via ray tracing). This mapping results in a surface PDF

𝑝𝜌 (𝑦) = 𝑝𝜌 (𝜔i)
d𝜔i

d𝑦
= 𝑝𝜌 (𝜔i)

cos\ (𝑦→𝑥)
∥𝑥 − 𝑦∥2

(3.10)

that is scaled by the Jacobian of the mapping from surface points to directions, as derived
in Appendix B.

This reformulation has no effect on the actual estimator of the technique. BSDF importance
sampling, in its original formulation, estimates the direction integral as

⟨𝐿r⟩ =
𝜌𝐿e cos\i
𝑝𝜌 (𝜔i)

. (3.11)

After mapping the sampled directions to surface points – via the ray tracing operator𝑦 (𝜔i)
– the estimator,

𝜌𝐿e cos\i
cos\ (𝑦→𝑥)
∥𝑥−𝑦∥2

𝑝𝜌 (𝜔i) cos\ (𝑦→𝑥)
∥𝑥−𝑦∥2

=
𝜌𝐿e cos\i
𝑝𝜌 (𝜔i)

, (3.12)

is still the same, because the Jacobian in the integrand cancels out with the one in the PDF.

If the MIS weights are defined in the surface domain, the BSDF sampling technique esti-
mates the weighted surface integral∫

V(𝑥)
𝑤𝜌 (𝑦)𝜌𝐿e cos\i

cos\ (𝑦→𝑥)
∥𝑥 − 𝑦∥2

d𝑦 = E

[
𝑤𝜌 (𝑦)

𝜌𝐿e cos\i
𝑝𝜌 (𝜔i)

]
. (3.13)

Since the Jacobian cancels out with the one in the PDF, the resulting MIS weighted esti-
mator is simply the original estimator, as derived from the direction integral fromulation,

44 | Chapter 3: Multiple Importance Sampling (MIS)

but multiplied by the surface-domain MIS weights. For instance, if the balance heuristic is
used, the weight for BSDF sampling in our example is

𝑤𝜌 (𝑦) =
(
1 +

𝑝𝐿e (𝑦)
𝑝𝜌 (𝑦)

)−1
=

©«1 + 𝑝𝐿e (𝑦)
𝑝𝜌 (𝜔i) cos\ (𝑦→𝑥)

∥𝑥−𝑦∥2

ª®¬
−1

. (3.14)

So, as long as theMISweights are computed based on PDFs defined in the same domain, the
combination is valid. And these PDFs can be computed by simply multiplying the original
per-technique PDF with the corresponding Jacobian.

3.2 Efficiency

Section 2.3 defined the efficiency of a simple Monte Carlo estimator as the inverse of the
product of variance and cost. As MIS is merely a sum of multiple Monte Carlo estimators,
the same definition can be applied,

𝜖 [⟨𝐹 ⟩MIS] = (V [⟨𝐹 ⟩MIS] C [⟨𝐹 ⟩MIS])−1 . (3.15)

The cost of an MIS estimator is simply the sum of the costs of the individual techniques,

C [⟨𝐹 ⟩MIS] =
∑︁
𝑡∈T

C [⟨𝐹 ⟩𝑡] , (3.16)

possibly increased by the cost of the MIS weight computations, if that cost is significant.
This cost is therefore highly application-specific. The variance, however, can be reasoned
about in an application-agnostic way. In the following, we first discuss the variance of an
MIS estimator and then review existing methods that improve efficiency by optimizing the
weights, sample counts, or PDFs.

3.2.1 Variance

The variance of an MIS estimator can be derived from the variances of the individual tech-
nique estimators. If the techniques are statistically independent from each other, the full
variance is the sum of the technique variances:

V[⟨𝐹 ⟩MIS] = 𝑉

[∑︁
𝑡∈T

𝑛𝑡∑︁
𝑖=1

𝑤𝑡 (𝑥𝑖,𝑡) 𝑓 (𝑥𝑖,𝑡)
𝑛𝑡𝑝𝑡 (𝑥𝑖,𝑡)

]
by definition (3.17)

=
∑︁
𝑡∈T

𝑉

[
𝑛𝑡∑︁
𝑖=1

𝑤𝑡 (𝑥𝑖,𝑡) 𝑓 (𝑥𝑖,𝑡)
𝑛𝑡𝑝𝑡 (𝑥𝑖,𝑡)

]
with independent techniques (3.18)

=
∑︁
𝑡∈T

1

𝑛𝑡
𝑉

[
𝑤𝑡 (𝑥) 𝑓 (𝑥)

𝑝𝑡 (𝑥)

]
with independent samples. (3.19)

If the samples are correlated within techniques or between techniques, an additional co-
variance term arises (see Section 2.3.2),

V[⟨𝐹 ⟩MIS] =
∑︁
𝑡∈T

1

𝑛𝑡
𝑉

[
𝑤𝑡 (𝑥) 𝑓 (𝑥)

𝑝𝑡 (𝑥)

]
+ Cov. (3.20)

3.2 Efficiency | 45

As with a basic Monte Carlo estimator, the expanded form of the variance comprises three
terms: the second moment, the sum of squared means, and the covariance,

V[⟨𝐹 ⟩MIS] =
∑︁
𝑡∈T

1

𝑛𝑡

∫
X

𝑤2
𝑡 (𝑥) 𝑓 2(𝑥)
𝑝𝑡 (𝑥)

d𝑥 −
∑︁
𝑡∈T

1

𝑛𝑡

(∫
X
𝑤𝑡 (𝑥) 𝑓 (𝑥) d𝑥

)2
+ Cov. (3.21)

Also as with single-technique estimators, the term “second moment” is commonly used
to refer to the first term in this equation; that is, the sum of the second moments of the
single-sample per-technique estimators, divided by their respective sample counts,

M[⟨𝐹 ⟩MIS] :=
∑︁
𝑡∈T

1

𝑛𝑡

∫
X

𝑤2
𝑡 (𝑥) 𝑓 2(𝑥)
𝑝𝑡 (𝑥)

d𝑥 . (3.22)

This second moment can be used as an approximation of the variance,

V[⟨𝐹 ⟩MIS] ≈ M[⟨𝐹 ⟩MIS], (3.23)

as discussed in Section 2.3.3. The approximation error,

V[⟨𝐹 ⟩MIS] −M[⟨𝐹 ⟩MIS] = −
∑︁
𝑡∈T

1

𝑛𝑡

(∫
X
𝑤𝑡 (𝑥) 𝑓 (𝑥) d𝑥

)2
+ Cov, (3.24)

depends on the residual terms; that is, the sum of squared means and the covariance. It is
most accurate if the variances are high and the correlation is low.

The second moment approximation to the variance has proven especially helpful for MIS.
The second moment is a convex functional of the MIS weighting function 𝑤𝑡 with a well-
known optimum – the balance heuristic [Veach and Guibas 1995b]. If the balance heuristic
is used for the weighting function, the second moment is also a convex functional of the
PDFs 𝑝𝑡 and a convex function of the sample counts 𝑛𝑡 . The former has been exploited for
MIS compensation [Karlík et al. 2019] and the latter for sample count optimization [Lu et al.
2013; Sbert et al. 2019]. Further, the second moment is also easily computable; for example,
by simply squaring all sample values,

M[⟨𝐹 ⟩MIS] ≈
∑︁
𝑡∈T

𝑛𝑡∑︁
𝑖=1

(
𝑤𝑡 (𝑥𝑖) 𝑓 (𝑥𝑖)
𝑛𝑡𝑝𝑡 (𝑥𝑖)

)2
. (3.25)

This ease of computation is exploited by our method to optimize the sample counts, pre-
sented in Chapter 7.

3.2.2 Weighting functions

Oneway to increase the efficiency of anMIS estimator is by optimizing the weighting func-
tions𝑤𝑡 (𝑥). Given a fixed set of sampling techniques with fixed PDFs and sample counts,
previous work has derived heuristic weighting functions with provable error bounds and
the optimal weights for techniques with independent samples.

46 | Chapter 3: Multiple Importance Sampling (MIS)

3.2.2.1 The balance heuristic

The balance heuristic is a provably good, although not optimal, choice for the weighting
function. It sets the weight of technique 𝑡 proportional to the product of sample count and
density [Veach and Guibas 1995b]:

𝑤bal
𝑡 (𝑥) ∝ 𝑛𝑡𝑝𝑡 (𝑥). (3.26)

That is, the normalized weight is:

𝑤bal
𝑡 (𝑥) = 𝑛𝑡𝑝𝑡 (𝑥)∑

𝑡 ′ 𝑛𝑡 ′𝑝𝑡 ′ (𝑥)
. (3.27)

The balance heuristic approximately minimizes the variance by minimizing the second
moment. More precisely, it solves a constrained optimization problem,

𝑤bal
𝑡 = argmin

𝑤𝑡

[∑︁
𝑡∈T

∫
X

(𝑤𝑡 (𝑥𝑖) 𝑓 (𝑥𝑖))2
𝑛𝑡𝑝𝑡 (𝑥𝑖)

d𝑥 +
∫
X
_(𝑥)

(∑︁
𝑡∈T

𝑤𝑡 (𝑥) − 1

)
d𝑥

]
, (3.28)

where a Lagrangemultiplier (second integral) is used to ensure normalization of theweights.

Intuitively, the balance heuristic performs well when the approximation error in Equa-
tion (3.24) is small; that is, when all techniques have high variance and little or no co-
variance. Veach and Guibas [1995b] originally proved that the variance with the balance
heuristic is never much worse than that of any other weighting function. Specifically, they
derived that

V[⟨𝐹 ⟩bal] − V[⟨𝐹 ⟩MIS] ≤
(

1

min𝑡 𝑛𝑡
− 1∑

𝑡 𝑛𝑡

)
𝐹 2, (3.29)

whereV[⟨𝐹 ⟩MIS] denotes the variance of anMIS estimator with any other weighting func-
tion. However, these bounds assume that the weighting functions must be positive, which
is not required to form a valid estimator. Further, they also assumed that the covariance is
zero. Unfortunately, there are applications in rendering where the covariance can be arbi-
trarily high, resulting in arbitrarily poor performance of the balance heuristic, as discussed
in Chapter 6.

3.2.2.2 The power, maximum, and cut-off heuristics

Veach and Guibas [1995b] have proposed alternative weighting heuristics for cases where
techniques can have low variance. Or, in other words, for cases where the second moment
is a poor approximation of the full variance. The power, maximum, and cut-off heuristic
amplify the weighting of the balance heuristic by further increasing the weights of tech-
niques that have high weight. For example, the power heuristic with exponent 2 reads:

𝑤
pow
𝑡 (𝑥) ∝ (𝑛𝑡𝑝𝑡 (𝑥))2 . (3.30)

Such amplification may or may not reduce variance when combining low-variance sam-
pling techniques. Success is not guaranteed and, on average, the power, maximum, and
cut-off heuristics perform worse than the balance heuristic [Veach and Guibas 1995b].

Figure 3.2 shows two examples for cases where the balance heuristic performs poorly due
to low variance. In the first case, the power heuristic can improve the result by increasing

3.2 Efficiency | 47

𝑓 (𝑥)
𝑝1 (𝑥)
𝑝2 (𝑥)

𝑤1 (𝑥) 𝑓 (𝑥)
𝑤2 (𝑥) 𝑓 (𝑥)

Balance heuristic
Variance: 0.05

Balance heuristic
Variance: 0.17

Power heuristic
Variance: 0.3

Power heuristic
Variance: 0.023

Figure 3.2: Two simple failure cases of the balance heuristic. The plots on the left show the integrand
(gray) and PDFs (blue and orange). The second and third column show the stacked area plots of the
weighted contributions assigned to the orange and blue techniques. Both rows integrate a normal
distribution, and the blue PDF is proportional to the integrand, 𝑝1 ∝ 𝑓 . In the first row, the orange
PDF is a smoothly varying polynomial, in the second row it is uniform. In both examples, the balance
heuristic performs poorly, assigning a non-zero weight to the orange technique. In the first case, the
power heuristic improves matters, in the second case it makes them worse – it is not a reliable solution
to the problem.

theweight of the better technique. However, in the second case, the power heuristic further
amplifies the poor weighting, making matters even worse. In rendering, the first case is
common when computing direct illumination on glossy surfaces – the original motivation
behind the power heuristic – while the second case can occur, for example, with bidirec-
tional sampling. Chapter 5 proposes an alternative solution, injecting variance estimates
into the balance heuristic to remedy the problem in both scenarios.

In the context of importance sampling for virtual point light selection, Georgiev et al.
[2012b] suggest to sidestep the low-varianceweighting issue by incorporating prior knowl-
edge. Specifically, they alter the maximum heuristic

𝑤max
𝑡 (𝑥) =

{
1 if ∀𝑡 ′ : 𝑛𝑡𝑝𝑡 (𝑥) > 𝑛𝑡𝑝𝑡 ′ (𝑥)
0 else,

(3.31)

which assigns unit weight to the technique with highest density, by including a scaling
factor 𝛼𝑡 ,

𝑤max
𝑡 (𝑥) =

{
1 if ∀𝑡 ′ : 𝛼𝑡𝑛𝑡𝑝𝑡 (𝑥) > 𝛼𝑡 ′𝑛𝑡 ′𝑝𝑡 ′ (𝑥)
0 else.

(3.32)

This scaling factor is chosen to be large if our prior knowledge indicates that the technique
often has low variance. This adaptation greatly benefits defensive sampling scenarios,
where a close approximation is combined with regularizing densities to avoid overfitting
and unbounded variance in corner cases. There, we know that the close approximation
most of the time achieves low variance and hence can safely distort weighting in its favor.

3.2.2.3 Optimal MIS weights

It is possible to derive the optimalMISweighting functions for cases involving independent
samples, that is, zero covariance [Kondapaneni et al. 2019]. In the following, we review the

48 | Chapter 3: Multiple Importance Sampling (MIS)

core aspects of these optimal MIS weights. More details and insights can be found in our
original paper [Kondapaneni et al. 2019] and our follow-up work [Hua et al. 2023].

Idea. As discussed above (Section 3.2.2.1), the balance heuristic is the MIS weighting func-
tion that minimizes the second moment of the MIS estimator. Hence, it is approximately
optimal as it minimizes an upper bound of the variance. Truly optimal MIS weights can
be found by instead minimizing the full variance V[⟨𝐹 ⟩MIS] (see Section 3.2.1). That is,
optimal MIS weights are the solution to this constrained minimization problem:

𝑤
opt
𝑡 (𝑥) = argmin

𝑤𝑡

[
V[⟨𝐹 ⟩MIS] +

∫
X
_(𝑥)

(∑︁
𝑡∈T

𝑤𝑡 (𝑥) − 1

)
d𝑥

]
︸ ︷︷ ︸

L

. (3.33)

Again, a Lagrange multiplier is used to guarantee unbiasedness. Luckily, this is a convex
optimization problem, so a direct solution can be found.

Theoretical solution. Kondapaneni et al. [2019] find the solution to the above minimiza-
tion problem by computing derivatives, setting them to zero, and applying a substitution
to turn the optimization into a simple linear system that can be solved. For that, we first
compute the partial derivatives. Assuming zero covariance, these are [Kondapaneni et al.
2019, Appendix B]:

d

d𝑤𝑡 (𝑥)
L = 2

𝑤𝑡 (𝑥) 𝑓 2(𝑥)
𝑛𝑡𝑝𝑡 (𝑥)

− 2
𝑓 (𝑥)
𝑛𝑡

∫
X
𝑤𝑡 (𝑥′) 𝑓 (𝑥′) d𝑥′ − _(𝑥), and (3.34)

d

d_(𝑥) L =
∑︁
𝑡∈T

𝑤𝑡 (𝑥) − 1. (3.35)

Then, we must set the above expressions equal to zero and solve the resulting linear sys-
tem for the weighting functions 𝑤𝑡 (𝑥). To facilitate that, Kondapaneni et al. [2019] first
eliminate the integral by substituting

𝛼𝑡 =

∫
X
𝑤𝑡 (𝑥) 𝑓 (𝑥) d𝑥 . (3.36)

With that, the first set of equations can be simplified to

d

d𝑤𝑡 (𝑥)
L = 0 ⇔ 𝑤𝑡 (𝑥) = 𝛼𝑡

𝑝𝑡 (𝑥)
𝑓 (𝑥) + 𝑛𝑡𝑝𝑡 (𝑥)

2𝑓 2(𝑥)
_(𝑥). (3.37)

Substituting that into the constraint derivative gives an expression for _(𝑥),

d

d_(𝑥) L = 0 ⇒ _(𝑥) = 2
𝑓 2(𝑥) − 𝑓 (𝑥)∑𝑡∈T 𝛼𝑡𝑝𝑡 (𝑥)∑

𝑡∈T 𝑛𝑡𝑝𝑡 (𝑥)
(3.38)

The final solution can now be found by first substituting (3.38) into (3.37), and then substi-
tuting the result into (3.36) (see Kondapaneni et al. [2019, Appendix B]). This can then be
rewritten as a linear system

∀𝑡 :
∑︁
𝑡 ′

𝛼𝑡 ′

∫
X𝑡

𝑤bal
𝑡 (𝑥)𝑝𝑡 ′ (𝑥) d𝑥 =

∫
X
𝑤bal
𝑡 (𝑥) 𝑓 (𝑥) d𝑥 , (3.39)

3.2 Efficiency | 49

00

-0.5

0.5

1

1

0 1

2

0

1

𝑓 (𝑥)
𝑝1 (𝑥)
𝑝2 (𝑥)

𝑤1 (𝑥) 𝑓 (𝑥)
𝑤2 (𝑥) 𝑓 (𝑥)

0 1

2

0

1

0 1

2

0

1

0 1

2

0

1

0 1

2

0

1

0 1

2

0

1

Balance heuristic Optimal weights

Overestimates the integral

Compensates overestimation

Combined integrals

1st technique

2nd technique

Figure 3.3: Optimal MIS weights on a simple 1D example. Negative weights allow more expressive
affine instead of convex combinations. The optimal MIS estimator has a ten times lower variance.

that can be solved for the 𝛼𝑡 . Here, X𝑡 denotes the domain of 𝑝𝑡 (𝑥), that is,

X𝑡 = {𝑥 | 𝑝𝑡 (𝑥) ≠ 0}. (3.40)

It is important to note that the first integral above is over this domain of 𝑝𝑡 , and not over
X, that is, the domain of the original integrand 𝑓 . In practice, this means that computing
the optimal MIS weights requires tracking samples that would otherwise be ignored be-
cause their image contribution is zero. The system comprises one such equation for each
techniqe 𝑡 , leading to a unique solution. Note also that the coefficients of the system are
themselves integrals that need to be computed; namely, the balance heuristic weighted in-
tegrals of the PDFs 𝑝𝑡 and of the integrand 𝑓 . As a final step, the optimal MIS weighting
function [Kondapaneni et al. 2019]

𝑤
opt
𝑡 (𝑥) = 𝛼𝑡

𝑝𝑡 (𝑥)
𝑓 (𝑥) + 𝑛𝑡𝑝𝑡 (𝑥)∑

𝑡 ′∈T 𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

(
1 −

∑
𝑡 ′∈T 𝑎𝑡 ′𝑝𝑡 ′ (𝑥)

𝑓 (𝑥)

)
(3.41)

is obtained by substituting the found 𝛼𝑡 into (3.37). This solution has a subtle caveat: the
𝑓 (𝑥) in the denominator requires special care. In dividing by 𝑓 (𝑥), the implicit assumption
was made that 𝑓 (𝑥) ≠ 0 for all 𝑥 sampled by any technique t. This is usually not true in
rendering practice.

Negative weights. An interesting insight provided by Kondapaneni et al. [2019] is that
better MIS weights can improve upon the balance heuristic almost arbitrarily much. This
is because MIS weights do not have to be constrained to be positive. The variance re-
duction potential through negative weights can be understood visually. Recall that MIS
operates by subdividing an integral into an affine combination of technique integrals. An
effective weighting function𝑤𝑡 produces an affine combination where each technique has
low variance. The chances to find the best such configuration are considerably higher if

50 | Chapter 3: Multiple Importance Sampling (MIS)

we do not constrain ourselves to positive weights. Figure 3.3 illustrates this on a simple
example. The integrand is estimated with an MIS combination of a crude approximation
(blue technique) and a defensive uniform technique (orange). The optimal weights yield
ten times lower variance because they allow negative signs. With the optimal weights, the
blue technique overestimates the integral, and the orange one compensates for this over-
estimation. Each has a much lower variance than the corresponding technique estimator
with the balance heuristic. The result is an unbiased estimate with ten times lower error.

Practical application. Kondapaneni et al. [2019] demonstrate two ways to leverage op-
timal MIS weights in practice: An unbiased progressive estimator, and a biased direct es-
timator. The progressive estimator starts by rendering an initial iteration with the classic
balance heuristic. In each pixel, the required integrals for the linear system (3.39) are esti-
mated and stored. Then, a solver is run to obtain initial approximations of the optimal 𝛼𝑡 .
Subsequent iterations then use these approximate 𝛼𝑡 to compute the weighting function
(3.41). The linear system is continuously updated and solved. Thus, the MIS weighting
converges to the optimal weights over time. Correct use hinges on careful handling of
samples where 𝑓 (𝑥) = 0. The integrals in the linear system in (3.39) require these samples,
but also the MIS estimator. This can be seen by substituting the optimal MIS weights into
the definition of the MIS estimator,∑︁

𝑡

𝑛𝑡∑︁
𝑖=1

𝑤
opt
𝑡 (𝑥𝑡,𝑖) 𝑓 (𝑥𝑡,𝑖)
𝑛𝑡𝑝𝑡 (𝑥𝑡,𝑖)

=
∑︁
𝑡

𝛼𝑡 +
∑︁
𝑡

𝑛𝑡∑︁
𝑖=1

𝑓 (𝑥𝑡,𝑖) −
∑

𝑡 ′ 𝛼𝑡 ′𝑝𝑡 ′ (𝑥𝑡,𝑖)∑
𝑡 ′ 𝑛𝑡 ′𝑝𝑡 ′ (𝑥𝑡,𝑖)

, (3.42)

which shows how that a non-zero contribution must now be computed for samples where
𝑓 (𝑥) = 0. The direct estimator is a simpler but biased alternative. It also starts by com-
puting Monte Carlo estimates of the coefficients in the linear system (3.39) and solving
the system. But, instead of computing the optimal weights, the direct estimator directly
computes a biased approximation of the optimally weighted estimate simply as the sum
𝐹 ≈ ∑

𝑡∈T 𝛼𝑡 . This works, since the 𝛼𝑡 are defined as the optimal-MIS-weighted integrals
(c.f., Equation (3.36)). For both, the progressive and the direct variant, practical applicabil-
ity is very limited. Asides from the added overhead and the careful handling of zero-valued
samples, the formulation assumes that each pixel computes only a single integral using a set
of independent sampling techniques. Even for direct illumination, this is already violated
if anti-aliasing is enabled or lens effects are sampled. However, practical use in full global
illumination path tracing is possible by exploiting an analogy with control variates [Hua
et al. 2023], further discussed in Section 3.3.2.

3.2.3 Sample counts

There have been a few attempts at improving the sample allocation for MIS combinations.
Efficiency can be improved by adapting the number of samples that are invested in each
technique. For that, three types of methods have been proposed: Domain-specific heuris-
tics, approximate solutions based on variance estimates, and convex optimizationmethods.

Heuristics. Pajot et al. [2010] were the first to attack the problem of optimal sample allo-
cation for estimating reflected radiance. They designed per-technique heuristics that can
measure how “relevant” a technique is for a given configuration. For example, their heuris-
tics for path guiding [Jensen 1995] assess whether the learned incident radiance distribu-
tion or the BSDF are more relevant at each point in the scene. However, this formulation

3.2 Efficiency | 51

cannot easily be generalized to other applications. A conceptually somewhat similar ap-
proach was used by Grittmann et al. [2018], where we determined an appropriate number
of light paths for photon mapping based on the number of pixels that have a signficiant
contribution from photon mapping.

Variance estimates. As an alternative to a heuristic approach, it is possible to set the
sample counts based on variance estimates. For instance, Havran and Sbert [2014], Sbert
and Havran [2017], and Sbert et al. [2018a,b] suggest to set the number of samples pro-
portional to the inverse efficiency of the sampling techniques. While that can sometimes
work, it is not guaranteed to perform better than uniform sample allocation [Sbert et al.
2018a]. Similarly, Sbert et al. [2016] set the sample counts proportional to the variance
divided by sample cost, but modify the MIS weights to ignore these sample counts. They
prove that this produces higher efficiency than using equal sample counts, but the margin
of improvement they achieve in their tests is small. The same authors have later shown
that a direct optimization of the combined MIS variance yields better results [Sbert et al.
2019].

Convex optimization. When the balance heuristic is used, the second moment is a con-
vex function of the sample counts [Sbert et al. 2019]. Previous work has exploited that
to approximately optimize efficiency, additionally assuming that all techniques have equal
cost. Then, second order approximation [Lu et al. 2013], iterative Newton-Raphson opti-
mization [Murray et al. 2020; Sbert et al. 2019], or a gradient descent [Müller 2019] can be
used to find approximately optimal sample counts. In Chapter 7 we introduce a method
that extends this approach to settings with uneven cost, weighting functions other than
the balance heuristic, binary decisions, and optimizations considering the full variance.

3.2.4 Sampling techniques

Finally, the third option to improve the efficiency of an MIS estimator is to adapt the sam-
pling techniques. In previous work, this has been used for learning-based importance sam-
pling, Markov chain Monte Carlo, and environment map sampling.

In the context of tabulated densities – for example, environment map sampling – Karlík
et al. [2019] show that a simple contrast enhancement can produce significant performance
improvements. They propose to combine BSDF sampling with a modified light sampling
technique that covers only the brightest parts of the environmentmap. Doing sominimizes
redundancy between the sampling techniques and increases the odds that a beneficial affine
combination can be formed.

In the context of photon mapping, Grittmann et al. [2018] apply an ad-hoc heuristic to
focus photon sampling on caustic effects. The reasoning behind that is similar to that of
Karlík et al. [2019]: to focus each technique on the effects it is best at.

Similarly, work on path guiding has shown that it is beneficial if the learned PDF has
minimal redundancywith the BSDF or next event techniques that it is combinedwith [Rath
et al. 2020; Ruppert et al. 2020]. And for learned light selection, Vévoda et al. [2018] have
reported that selection probabilities that heed the MIS weights of the combination with
BSDF sampling perform better.

52 | Chapter 3: Multiple Importance Sampling (MIS)

These findings in previous work demonstrate, that it is very beneficial if the techniques in
an MIS combination have minimal redundancy and complement each other well. Unfortu-
nately, there is not yet a general solution how to accomplish this goal.

3.3 Related methods

Multiple importance sampling has strong similarities to two other variance reductionmeth-
ods: mixture densities and control variates. MIS with the balance heuristic can be re-
garded as stratified sampling of an equivalentmixture density, and the optimalMISweights
yield an estimator identical to an optimal control variate formed from the sampling densi-
ties [Kondapaneni et al. 2019].

3.3.1 Relationship to mixture sampling

Mixture sampling constructs a probability density

𝑝mix(𝑥) =
∑︁
𝑡∈T

𝑐𝑡𝑝𝑡 (𝑥) (3.43)

as a convex combination of other densities 𝑝𝑡 (𝑥). For example, Gaussian mixture models
combine multiple normal distributions with different means and variances. Importance
sampling such a mixture density is trivial, provided the individual components can be
sampled: First, a component is selected with probability proportionally to its weight 𝑐𝑡 .
Then, a sample is generated from the component.

Mixture sampling is quite common in rendering. The ubiquitious use-case is importance
sampling of material models composed of multiple BSDFs. Since these models are them-
selves constructed as mixtures, the most intuitive approach to sampling them is to sample
from a mixture where each component is (approximately) proportional to one component
of the BSDF [Pharr et al. 2016, Chapter 14.1.6].

Mixture sampling is similar to multiple importance sampling in that both approaches com-
bine multiple densities 𝑝𝑡 (𝑥). But where MIS divides the integral into subproblems, each
estimatedwith a different density, mixture sampling constructs only a single sampling den-
sity. The advantage of mixture sampling is that it can be used recursively without incurring
exponential growth. The disadvantage is that it has lower variance reduction potential.

In terms of variance mixture sampling is always worse than a similar MIS estimator with
the balance heuristic. This is illustrated in Figure 3.4. The example is modelled after a
common use case of mixture sampling: path guiding. The integrand is a product of two
functions. Each factor is importance sampled perfectly by the blue and orange densities,
respectively. In rendering, these would correspond to the incident radiance 𝐿i and the
BSDF 𝜌 . A naïve mixture with equal weights, 𝑐1 = 𝑐2 = 0.5 performs badly: The tail on
the right is drastically oversampled because the orange density is high there. MIS with
the balance heuristic, using the same total number of samples, achieves a two times lower
error, as shown in the second column. MIS divides the integral, uses the blue density
for almost everything, and only estimates a small residual with the other density. With
optimal weights, shown on the right, the error can be reduced even further, by only using

3.3 Related methods | 53

MIS

Optimal
Variance: 0.0025

Balance heuristic
Variance: 0.05

Mixture sampling
Variance: 0.1

Integrand and densities

𝑓 (𝑥)
𝑝1 (𝑥)
𝑝2 (𝑥)

0.5(𝑝1 (𝑥) + 𝑝2 (𝑥)) 𝑤1 (𝑥) 𝑓 (𝑥)
𝑤2 (𝑥) 𝑓 (𝑥)

Figure 3.4: Comparison of mixture sampling and MIS on a simple example. All estimators use
exactly two samples in total. The integrand (gray) is a product of two functions. Each factor can be
importance sampled (blue and orange). In this extreme case, one factor dominates. Constructing a
mixture of both factors performs two times worse than MIS with the balance heuristic (center) and four
times worse than MIS with optimal weights (right).

the orange density for the tiny region where it has a noticable effect on the integral. When
done well, MIS can guarantee never to be worse than any of the individual techniques
alone. This is not the case with mixture sampling, which can be almost arbitrarily worse
by mixing in very bad techniques.

On the flipside, MIS requires us to take at least one sample from every technique. This
can be wasteful if only one technique performs well. In the example from Figure 3.4, ef-
ficiency could be doubled by simply not using the orange density. Chapter 7 proposes a
method to automatically adjust the sample counts as a remedy. The methodology used for
this adaptation is closely related to optimization of the mixture coefficients 𝑐𝑡 for mixture
sampling.

Veach and Guibas [1995b] discussed the connection between mixture sampling and MIS by
constructing a hypothetical one-sample model of MIS. Like mixture sampling, this model
does not take a fixed number of samples from each technique but rather picks techniques
at random. Veach and Guibas [1995b] showed that the balance heuristic is the optimal MIS
weight for such a hypothetical one-sample estimator, meaning that it is identical to mixture
sampling. Further, they showed that the variance of this mixture sampling estimator is an
upper bound to the variance of an MIS estimator with the balance heuristic.

3.3.2 Relationship to control variates

Control variates are an alternative variance reduction technique to importance sampling,
as discussed in Section 2.4.3. The idea behind MIS, of combining multiple integrand ap-
proximations, can also be applied to control variates. Instead of forming a control variate
with a single function 𝑔(𝑥), a mixture of functions,

𝑔(𝑥) =
∑︁
𝑡

𝛼𝑡𝑔𝑡 (𝑥), (3.44)

54 | Chapter 3: Multiple Importance Sampling (MIS)

Control variate from PDFs
Difference estimator

with balance heuristic MIS

𝑓 (𝑥)
𝑝1 (𝑥)
𝑝2 (𝑥)

𝑔(𝑥)

𝑤2 (𝑥) (𝑓 (𝑥) − 𝑔(𝑥))
𝑤1 (𝑥) (𝑓 (𝑥) − 𝑔(𝑥))

0

0

0

0

0

1

1

1

1

1

-0.5

-0.5

-0.5

Figure 3.5: The control variate estimator that is equivalent to an optimal MIS estimator. A linear
combination of the sampling techniques is used as the control variate (shown in red). The difference
integral is estimated using the same set of techniques with a balance heuristic estimator.

can be used.

One possible choice for the individual functions 𝑔𝑡 is to use sampling densities [Owen and
Zhou 2000],

𝑔𝑡 (𝑥) = 𝑝𝑡 (𝑥). (3.45)

This has the advantage that the integral is not only known, it is simply one,

𝐺𝑡 =

∫
X
𝑔𝑡 (𝑥) d𝑥 = 1. (3.46)

Resulting in a control variate estimator of the form

⟨𝐹 ⟩CV =
∑︁
𝑡

𝛼𝑡 +
〈∫

X
(𝑓 (𝑥) − ∑

𝑡 𝛼𝑡𝑝𝑡 (𝑥)) d𝑥
〉
. (3.47)

How well this estimator performs depends on how the residual term is estimated. One
option is to use the same set of sampling techniques and estimate the residual using MIS
with the balance heuristic:

⟨𝐹 ⟩CV =
∑︁
𝑡

𝛼𝑡 +
∑︁
𝑡

𝑛𝑡∑︁
𝑖=1

𝑓 (𝑥𝑡,𝑖) −
∑

𝑡 ′ 𝛼𝑡 ′𝑝𝑡 ′ (𝑥)∑
𝑡 ′ 𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

. (3.48)

This formulation has been suggested by Owen and Zhou [2000]. Recently, Kondapaneni
et al. [2019] have shown that the above control variate estimator is identical to an MIS
estimator using the optimal MIS weighting functions, shown in Equation (3.42).

Figure 3.5 visualizes this equivalent control variate for the same example used in Figure 3.3.
Since the two estimators are equivalent, they have the same variance. But the intuitive
reason why the variance is low differs between the two formulations. Interpreted as MIS

3.4 Summary | 55

weights (see Section 3.2.2.3, Figure 3.3), the variance is low because one technique can
easily compute an overestimation of the integral, and the other technique can easily com-
pensate for that. Interpreted as control variates, the variance is low because the difference
integral is small.

We have used this equivalence between optimal MIS and optimized, PDF-based control
variates to find a (somewhat) practical method that simultaneously achieves optimal MIS
and reduced variance of mixture sampling [Hua et al. 2023]. For that, we optimized coeffi-
cients for Equation (3.48) and showed that the result is optimal for both, MIS and mixture
sampling, even when used concurrently.

3.4 Summary

MIS is a divide and conquer scheme to reduce variance in a Monte Carlo estimator. It sep-
arates an integral into a sum of easier to compute integrals, estimates each with a different
importance sampling density, and yields an unbiased estimate of the original integral as
the sum of all sub-integral estimators.

MIS is an essential building block in modern rendering algorithms. Virtually every single
algorithm makes use of it to combine multiple sampling techniques. But, while conceptu-
ally simple, MIS is not always easy to apply effectively. Finding the right set of sampling
techniques, the best possible weights, or the most efficient sample count allocations are
still open research questions.

The work in the following chapters constitutes one step forward towards a perfect MIS
algorithm that can achieve (close to) maximum efficiency at all times. To that end, Chap-
ters 5 and 6 identify and rectify robustness problems caused by the balance heuristic and
Chapter 7 proposes a practical method to enable or disable techniques on-demand and to
automatically adapt their sample counts. Our applications focus on bidirectional rendering
algorithms, but the underlying ideas are general and readily applicable to arbitrary Monte
Carlo integration problems.

Chapter 4

MIS in the VCM algorithm

The VCM algorithm [Georgiev et al. 2012a; Hachisuka et al. 2012] uses MIS to combine all
major surface rendering techniques into a single algorithm. The motivation behind such
a holistic combination is robustness: By including pretty much every known sampling
technique, we ensure that no scene is rendered extremely slowly. Unfortunately, this ro-
bustness comes at a price. For starters, the complexity of the algorithm makes it difficult
to implement; especially the correct computation of MIS weights is challenging. But af-
ter one has mastered the implementation, bigger problems arise: First, MIS with the classic
balance heuristic can perform very badly for VCM, for example because of significant sam-
ple correlation. Second, the majority of sampling techniques will be useless for some or
all parts of any given scene. Therefore, efficiently using VCM without manual parameter
tuning by an expert user is a major challenge.

This chapter defines the sampling techniques that constitute the VCM algorithm, sketches
how the MIS weights of these techniques can be computed in practice, and reviews the key
challenges for robustness and efficiency.

To keep our discussions to the point, we ignore volumetric scattering and specialized tech-
niques for volumes [Křivánek et al. 2014], assume only area light sources are used, and
ignore shading normals and BSDFs with delta distributions, which require special case
handling [Veach 1997, Chapter 5]. Further implementation details, such as sample storage
or acceleration structures, can be found in the literature [Davidovič et al. 2014; Georgiev
2012; Georgiev et al. 2012a; Veach and Guibas 1995a] and in public implementations [Davi-
dovič and Georgiev 2012; Grittmann 2020].

4.1 The VCM algorithm

VCM is an iterative algorithm. Each iteration first traces a set of light paths1 and stores
them. An acceleration structure for nearest neighbor search is built over the vertices of
those paths. Then, a set of camera paths is traced; for example, one per pixel. The camera
paths are combined with the light paths to form full path samples. Multiple sampling
techniques are used to achieve these combinations; namely,

• unidirectional path tracing,
• next event estimation,
• light tracing,

1It is also possible to invert the process, tracing and storing a set of camera paths first.

4.1 The VCM algorithm | 57

ConnectionsForward path tracing

Light tracing

Merging

Unidirectional

Next event

𝑥1

𝑥1 𝑥1 𝑥1

𝑥1

𝑥1𝑥1

𝑥1

𝑥5

𝑥5 𝑥5 𝑥5

𝑥5

𝑥5𝑥5

𝑥5
𝑥2

𝑥2 𝑥2 𝑥2

𝑥2

𝑥2𝑥2

𝑥2

𝑥3

𝑥3 𝑥3 𝑥3

𝑥3

𝑥3𝑥3

𝑥3
𝑥4

𝑥4 𝑥4
𝑥4

𝑥4

𝑥4𝑥4

𝑥4

𝑧1

𝑧1

𝑧2

𝑧2

𝑧3

𝑧3

𝑧4

𝑧4

𝑦1 𝑦1 𝑦1

𝑦1

𝑦1

𝑦2 𝑦2 𝑦2

𝑦2

𝑦2

𝑦3

𝑦3

𝑦3

𝑦4

𝑦1

𝑦1

𝑦2

𝑦2

𝑦3

𝑦3

𝑦4

𝑦4

𝑦5 𝑧1

𝑧1

𝑧1𝑧1

𝑧2

𝑧2

𝑧2
𝑧2

𝑧3

𝑧3

Figure 4.1: The sampling techniques used by the VCM algorithm. Arrows represent sampled direc-
tions, dashed lines are connections, and dashed circles merging (aka photon mapping) operations.

• connections, and
• merging.

Figure 4.1 illustrates these techniques for paths of length 𝑘 = 5. All techniques generate
full paths

x = 𝑥1𝑥2 . . . 𝑥𝑘 (4.1)

comprising a series of vertices 𝑥𝑖 on surfaces in the scene, where 𝑥1 lies on the aperture of
the camera and 𝑥𝑘 on an emitter. These paths are a composition x = yz of a camera prefix

y = 𝑦1𝑦2 . . . 𝑦𝑡 (4.2)

of length 𝑡 , where 𝑦1 lies on the aperture, and a light suffix

z = 𝑧𝑠𝑧𝑠−1 . . . 𝑧1 (4.3)

of length 𝑠 , where 𝑧1 lies on the surface of an emitter. Path construction is based on three
primitive operations: sampling a direction to continue the path (arrows), connecting two
subpaths via a visibility test (dashed lines), and merging two subpaths via a nearest neigh-
bor search (dashed circles). Additionally, the origin points𝑦1 and 𝑧1 are sampled according
to the camera and light source model, respectively.

4.1.1 Bidirectional path tracing

VCM is composed of two sets of techniques: the classic bidirectional path tracing tech-
niques [Veach and Guibas 1995a] and the merging techniques. The former – namely, unidi-
rectional path tracing, next event, light tracing, and connections – are unbiased estimators
of the path integral. As such, they can be defined via their path PDFs.

Unidirectional path tracing. Unidirectional path tracing generates a path by sampling a
position𝑞 on the image plane (see Section 2.1) and a position 𝑥1 on the aperture. From these
two, the camera model then determines the direction 𝑥1→ 𝑥2. The vertex 𝑥2 is therefore
found by tracing a ray in that direction, starting at 𝑥1. From there, the path is extended by

58 | Chapter 4: MIS in the VCM algorithm

repeatedly sampling directions and tracing rays to find the next vertex in that direction.
The path space PDF is the product of these local densities, multiplied by their respective
Jacobians (see Section 2.1.4 and Section 2.4.2.2):

𝑝unidir(x) = 𝑝 (𝑥1)𝑝 (𝑞) |𝐽cam |
𝑘−1∏
𝑖=2

𝑝 (𝑥𝑖→𝑥𝑖+1)
cos\ (𝑥𝑖+𝑖→𝑥𝑖)
∥𝑥𝑖 − 𝑥𝑖+1∥2

. (4.4)

The correctness of this PDF can be verified by plugging it into the path integral estimator,

⟨𝐹 ⟩unidir =
𝑓 (x)

𝑝unidir(x)
(4.5)

=

𝑊𝑖 (𝑥1→𝑥2)
(∏𝑘−1

𝑗=2 𝜌 (𝑥 𝑗−1, 𝑥 𝑗 , 𝑥 𝑗+1) cos\ (𝑥 𝑗→𝑥 𝑗+1)
)
𝐿e(𝑥𝑘→𝑥𝑘−1)

𝑝 (𝑥1)𝑝 (𝑞)
∏𝑘−1

𝑖=2 𝑝 (𝑥𝑖→𝑥𝑖+1)
. (4.6)

The Jacobians in the PDF cancel out with the identical Jacobians in the integrand, and the
visibility terms are always one, since direction sampling cannot sample occluded points.
This leaves us with the exact same estimator that plain forward path tracing computes, in-
dicating that we have indeed used the correct Jacobian factors inside the PDF computation
(see also Section 3.1.3).

Next event. Next event estimation also generates paths via forward tracing from the cam-
era. Only the last vertex 𝑥𝑘 differs from unidirectional path tracing: It is sampled directly
on the surface of a light source. The full PDF in path space is hence almost identical,

𝑝next(x) = 𝑝 (𝑥1)𝑝 (𝑞) |𝐽cam |
(
𝑘−2∏
𝑖=2

𝑝 (𝑥𝑖→𝑥𝑖+1)
cos\ (𝑥𝑖+𝑖→𝑥𝑖)
∥𝑥𝑖 − 𝑥𝑖+1∥2

)
𝑝 (𝑥𝑘), (4.7)

except that the PDF of the last vertex, 𝑝 (𝑥𝑘), is already a surface area density in its natural
definition.

Light tracing. Light tracing is just like next event estimation, but in reverse. Path sam-
pling starts by sampling a point 𝑥𝑘 = 𝑧1 on the surface of a light source. From there, the
path is constructed in reverse by sampling a direction and tracing a ray, analogously to
forward path tracing. The full PDF, in path space, is again computed by multiplying each
directional PDF with the respective Jacobian,

𝑝light(x) = 𝑝 (𝑥𝑘)
(

𝑘∏
𝑖=2

𝑝 (𝑥𝑖→𝑥𝑖−1)
cos\ (𝑥𝑖−𝑖→𝑥𝑖)
∥𝑥𝑖 − 𝑥𝑖−1∥2

)
𝑝 (𝑥1) (4.8)

The vertex 𝑥1 on the aperture is sampled explicitly, but the image position 𝑞 is implicitly
given by the combination of 𝑥1 and 𝑥2, according to the camera model. Note that the
Jacobians use the opposite cosine compared to forward path tracing. In the corresponding
estimator, this cosine will therefore cancel out2 with the cosine in the integrand,

⟨𝐹 ⟩light =
𝑓 (x)

𝑝light(x)
(4.9)

=

𝑊𝑖 (𝑥1→𝑥2) |𝐽cam |𝑉 (𝑥1, 𝑥2)
(∏𝑘−1

𝑗=2 𝜌 (𝑥 𝑗−1, 𝑥 𝑗 , 𝑥 𝑗+1) cos\ (𝑥 𝑗+1→𝑥 𝑗)
)
𝐿e(𝑥𝑘→𝑥𝑘−1)

𝑝 (𝑥1)
(∏𝑘

𝑖=2 𝑝 (𝑥𝑖→𝑥𝑖−1)
)
𝑝 (𝑥𝑘)

,

(4.10)
2Unless shading normals are used, as discussed by Veach [1997, Section 5.3].

4.1 The VCM algorithm | 59

which is why, when sampling light subpaths, the opposite cosine is multiplied on the in-
tegrand compared to forward sampling.

Connections. Connections combine a camera prefix y of length 𝑡 with a light suffix z of
length 𝑠 = 𝑘 − 𝑡 to form a full path of length 𝑘 . The two subpaths are traced indepen-
dently, analogously to forward path tracing and light tracing. The endpoints 𝑦𝑡 and 𝑧𝑠 are
connected via a shadow ray, to evaluate the visibility term in the integrand. The resulting
path space PDFs are computed following the same steps as unidirectional path tracing and
light tracing on the respective subpaths:

𝑝c,𝑡 (x) = 𝑝 (y𝑡)𝑝 (z𝑠) (4.11)

𝑝 (y𝑡) = 𝑝 (𝑦1)𝑝 (𝑞) |𝐽cam |
(
𝑡−1∏
𝑖=2

𝑝 (𝑦𝑖→𝑦𝑖+1)
cos\ (𝑦𝑖+𝑖→𝑦𝑖)
∥𝑦𝑖 − 𝑦𝑖+1∥2

)
(4.12)

𝑝 (z𝑠) = 𝑝 (𝑧1)
(
𝑠−1∏
𝑖=1

𝑝 (𝑧𝑖→𝑧𝑖+1)
cos\ (𝑧𝑖+1→𝑧𝑖)
∥𝑧𝑖 − 𝑧𝑖+1∥2

)
. (4.13)

For paths of length 𝑘 (in terms of vertices), there are 𝑘 −3 such connection techniques, one
for every possible value of 𝑡 ∈ [2, 𝑘 − 2].

4.1.2 Merging

The second set of techniques – namely, the merging techniques – are based on photon
mapping [Jensen 2001]. These differ from the classic bidirectional path tracing techniques
in one crucial aspect: They are biased. To be precise, merging techniques compute an
approximation of a higher-dimensional integral that, in turn, is an approximation of the
rendering equation [Georgiev et al. 2012a; Hachisuka et al. 2012]. These differences make
it harder, but fortunately not impossible, to define a meaningful MIS estimator.

In the following, for the sake of brevity, we introduce the mathematical formulation of the
merging technique on the simple example of direct illumination. Extension to the full path
integral is straightforward.

4.1.2.1 Merge integral

Merging computes the average reflected radiance on a disk of radius 𝑟 around the shading
point 𝑥 . This averaging enables caching and reuse of samples, which is the key benefit of
merging. Figure 4.2 sketches the approximation. Instead of evaluating the incident light
at 𝑥 from sample points 𝑦, merging evaluates the incident light at other points 𝑥′ and then
averages these estimates to obtain an approximation of the reflected radiance at 𝑥 .

Concretely, merging integrates the reflected radiance over the disk D𝑟 (𝑥), multiplying by
a kernel 𝑘 (𝑥′, 𝑥) for normalization,

𝐿r(𝑥, 𝜔o) ≈
∫
D𝑟 (𝑥)

𝑘 (𝑥′, 𝑥)𝐿r(𝑥′, 𝜔o) d𝑥′. (4.14)

60 | Chapter 4: MIS in the VCM algorithm

𝑥 ′ 𝑥𝑥

𝑟

𝑦 𝑦

≈

Figure 4.2: Comparison of the surface integral, on the left, and the merge integral, on the right. The
former integrates over all points 𝑦 visible from 𝑥 . The latter additionally integrates over all points 𝑥 ′

within the disk of radius 𝑟 around 𝑥 . The two formulations are identical if 𝑟 = 0.

The choice of kernel function is of secondary importance. Indeed, even a simple box filter,

𝑘 (𝑥′, 𝑥) =
{

1
𝜋𝑟2

if 𝑥′ ∈ D𝑟 (𝑥)
0 else

(4.15)

can work well.

The approximation error can be considerably reduced by evaluating the BSDF and cosine
at the actual surface point 𝑥 . That is, merging typically computes

𝐿r(𝑥, 𝜔o) ≈
∫
D𝑟 (𝑥)

𝑘 (𝑥′, 𝑥)
∫
A
𝐿i(𝑥′, 𝑦)𝜌 (𝜔o, 𝑥,𝑦) cos\ (𝑥→𝑦) cos\ (𝑦→𝑥′)

∥𝑥′ − 𝑦∥2
d𝑦d𝑥′. (4.16)

Naturally, this approximation will be more accurate the smaller D𝑟 is. However, a too
small radius will result in an inefficient estimator. A good trade-off can be found by lo-
cally adapting the radius based on sample statistics [Kaplanyan and Dachsbacher 2013b;
Lin et al. 2020]. Further, consistent estimates can be computed by progessively reducing
the radius [Hachisuka et al. 2008], starting with a large radius to obtain an efficient but
inaccurate approximation and then iterating with smaller and smaller radii to gradually
eliminate the approximation error without sacrificing too much efficiency.

4.1.2.2 Merge estimator

The first step in the merge estimator is to precompute a set of 𝑛 pairs (𝑦, 𝑥′). Analogously
to classic bidirectional techniques, these are generated by first sampling a point 𝑦 on the
light and then sampling a direction to find 𝑥′ through ray tracing. The corresponding PDF,

𝑝 (𝑦, 𝑥′) = 𝑝 (𝑦)𝑝 (𝑦→𝑥′) cos\ (𝑥
′→𝑦)

∥𝑥′ − 𝑦∥2
, (4.17)

is hence identical to that of the bidirectional path tracing techniques.

The reflected radiances at many shading points 𝑥 are then approximated using the same
set of precomputed merge samples for all of them. This computation is facilitated through
an additional approximation: In general, the merge disk is a hypothetical construct that
does not exist as actual scene geometry. To sidestep this, the points 𝑥′ are gathered from
the spherical neighborhood in 3D and projected onto the merge disk through rotation.
Figure 4.3 illustrates this. The actual sample positions 𝑥′, marked in blue, are rotated such

4.1 The VCM algorithm | 61

𝑟

𝑥

merge disk

sphere neighborhood

scene geometry

Actual photon position

Assumed photon position

Shading point

Figure 4.3: The merge diskD𝑟 generally does not exist as actual scene geometry. Therefore, an addi-
tional approximation is employed, projecting the nearby points onto the hypothetical disk to compute
the kernel value. This introduces additional approximation error, the magnitude of which depends on
the amount variation in the scene geometry within the merge radius.

that they lie on the merge disk, as marked in red. In other words, for the sake of the kernel
evaluation, the distance between 𝑥 and 𝑥′ is computed in 3D space, and we simply pretend
that 𝑥′ lies on the merge disk at this distance. Hence, the kernel 𝑘 (∥𝑥′ − 𝑥 ∥) is a function
of the distance only.

The result is the merge estimator for direct illumination,

⟨𝐿r⟩ ≈
1

𝑛

𝑛∑︁
𝑖=1

𝑘 (∥𝑥′ − 𝑥 ∥)𝜌 (𝜔o, 𝑥,𝑦𝑖)
cos\ (𝑥→𝑦𝑖)
cos\ (𝑥′

𝑖
→𝑦𝑖)

𝐿e(𝑦𝑖→𝑥′𝑖) cos\ (𝑦𝑖→𝑥′𝑖)
𝑝 (𝑦𝑖)𝑝 (𝑦𝑖→𝑥′

𝑖
)︸ ︷︷ ︸

cached

. (4.18)

Here, the ratio of cosines arises because the cosine at the neighbor point, cos\ (𝑥′→𝑦), is
part of the PDF of the cached sample. We multiply by the ratio of cosines to ensure that
the estimate contains the cosine at the shading point3. This reduces the error under strong
normal variation.

4.1.2.3 Approximation error

The merge estimator employs two approximations to facilitate efficient computation: First,
the reflected radiance is averaged over the disk neighborhood, and, second, all points
within the sphere of radius 𝑟 are assumed to lie on that disk.

The resulting approximation error is more severe in some cases than in others. While the
overall approximation error vanishes as the radius reduces, the exact error, with the same
radius, can vary hugely depending on the scene geometry. Figure 4.4 sketches example
scenarios for common sources of error.

The averaging over the disk neighborhood, of course, performs poorly if the lighting
varies within the radius. For example, shadow boundaries are blurred, and light can “leak”
through thin surfaces. This is sketched in the first three examples in Figure 4.4.

The error due to the planar assumption can be less obvious at first. The key problem is
3If shading normals are used, it is important to keep in mind that cosines that are part of Jacobians, such

as cos\ (𝑥 ′→𝑦), are with respect to the actual normal of the geometry, while the desired cos\ (𝑥→𝑦𝑖) is with
respect to the shading normal.

62 | Chapter 4: MIS in the VCM algorithm

Light leaksIllumination changes Non-planar surfaceBoundaries

𝑥 𝑥 𝑥 𝑥 𝑥

Figure 4.4: Sources of approximation error in merging techniques. Shadow boundaries and light
leaks are prominent examples where visible artifacts arise because themerge integral only approximates
the rendering equation. On top of that, geometric boundaries and non-planar surfaces are scenarios
where the hypothetical domain of the merge kernel is not present as actual geometry.

that the kernel is no longer normalized. For example, if 𝑥 is close to a boundary, the actual
area from which samples are gathered is much smaller than the disk assumed for kernel
normalization. The result is an underestimation that can manifest as darkening close to
boundaries, because the kernel value is smaller than it should be. Conversely, on non-
planar surfaces away from boundaries, the actual area can be much larger than that of the
hypothetical disk. There, the result will be overly bright.

4.1.2.4 Surrogate PDF for MIS weighting

Compared to the classic bidirectional techniques, the merge integral computes a different,
higher-dimensional, integral. Light scattering along a path of length 𝑘 is approximated
with 𝑘 + 1 iterated surface integrals, due to the additional integration over the merge disk.
So how canwe define ameaningfulMIS combination that involves bothmerging and classic
techniques?

Previous work has shown that this can be done by computing a surrogate path space PDF
that approximates the sampling density of the merging technique [Georgiev et al. 2012a].
For that, merging is interpreted as a resampling technique. Specifically, merging at depth
𝑡 is treated like a connection at that depth, except that it uses 𝑛 samples – with 𝑛 being the
number of light paths – and samples are stochastically rejected if the additional vertex 𝑧𝑠+1
does not lie on the merge disk around 𝑦𝑡 .

To compute this surrogate PDF, another approximation is needed: The probability that 𝑧𝑠+1
lies in the merge disk,

𝑃 (𝑧𝑠+1 ∈ D𝑟 (𝑦𝑡)) =
∫
D𝑟 (𝑦𝑡)

𝑝 (𝑧∗ |z𝑠)d𝑧∗ (4.19)

is itself an integral that cannot be computed easily. Luckily, Georgiev et al. [2012a] have
shown that, for the sake of MIS weighting, a sufficiently close approximation can be com-
puted by assuming uniformity over the disk. Then, the probability is simply the product
of the PDF of any 𝑧𝑠+1 in the merge disk, multiplied by the area of the disk,∫

D𝑟 (𝑦𝑡)
𝑝 (𝑧∗ |z𝑠)d𝑧∗ ≈ 𝑝 (𝑧𝑠+1 |z𝑠)

∫
D𝑟 (𝑦𝑡)

1d𝑧∗ = 𝑝 (𝑧𝑠+1 |z𝑠)𝜋𝑟2. (4.20)

The full surrogate PDF of the merging technique is then the PDF of the corresponding
connection technique, as defined above, multiplied with the approximate acceptance prob-

4.2 Challenges and shortcomings of MIS in VCM | 63

ability, and the number 𝑛 of light paths,

𝑝merge,𝑡 (x) = 𝑝 (y𝑡)𝑝 (z𝑠)𝑝 (𝑧𝑠+1 |z𝑠)𝜋𝑟2𝑛. (4.21)

This surrogate can be used to compute, for instance, balance heuristic MIS weights. Since
the surrogate is defined in path space, this weighting will be valid and the combination
will be unbiased. Except, of course, for the bias due to the merging technique itself.

4.2 Challenges and shortcomings of MIS in VCM

The VCM algorithm is a powerful method to efficiently render certain types of scenes;
namely, interior scenes with focused indirect illumination or caustics. Nevertheless, it has
seen only little adoption in production. The key obstacle is that VCM is only efficient on
some scenes. Often, it is greatly outperformed by forward path tracing.

The most apparent flaw of a huge combination like VCM is that samples are wasted on un-
derperforming or redundant techniques. But also MIS weighting with the balance heuristic
can be far from ideal in the context of VCM. First, effects sampled by forward path tracing
with low variance are weighted poorly. Consequently, the combined result can be worse
than only the forward path tracing samples that are part of the combination. Second, sam-
ple correlation in the merging technique is problematic. Heeding that correlation during
MIS weight computation can boost performance tenfold.

The following sections elaborate these problems and challenges. The work presented in
Chapters 5 and 6 tackles the weighting issues encountered with the classic balance heuris-
tic, and Chapter 7 shows how to adapt the set of techniques to reduce redundancy and the
wasting of samples on underperforming techniques.

4.2.1 Low-variance effects

The first problem of MIS in VCM is closely related to the “low-variance” problem already
discussed by Veach and Guibas [1995b] (see Section 3.2.2). Since the balance heuristic is
based on a minimization of the second moment, rather than the full variance, it is known
to perform poorly when the variance of some technique(s) is low.

We observed that this low-variance problem can be particularly severe for bidirectional
algorithms [Grittmann et al. 2019] (Chapter 5). There, effects that are sampled by forward
path tracing with low variance are often weighted poorly by the balance heuristic. An
example is shown in Figure 4.5. The illumination in the canonical Cornell box scene is quite
simple for forward path tracing to capture. There, adding bidirectional samples increases
the variance, due to poor MIS weighting by the balance heuristic. Scenes dominated by
such effects will therefore be rendered worse in equal-iteration count by VCM than by
forward path tracing. Combined with the much higher cost of VCM, the consequence is a
far slower rendering than with plain forward path tracing.

In our earlier work on efficient caustic rendering [Grittmann et al. 2018], we countered this
problem through artificially reducing the weights of the light tracing and photon map-
ping techniques that are most affected by this problem. This was done by replacing the

64 | Chapter 4: MIS in the VCM algorithm

Reference
relMSE

Path tracing
0.13(1.00×)

Path tracing + light tracing
0.17(1.25×)

Figure 4.5: Low-variance problem in VCM. The center image is rendered with only forward path
tracing. The image on the right uses these exact same samples and combines them with the light
tracing technique using balance heuristic MIS. Adding these extra samples increases the average image
error by 25%, as measured by the relative mean squared error (relMSE) below each image.

actual number of light paths by an arbitrary lower one, inspired by the alpha-max heuris-
tic [Georgiev et al. 2012b] and the approximation of Popov et al. [2015]. However, that
ad-hoc workaround only helped identify difficult paths but did not yield a robust weight-
ing heuristic.

In the original work, Veach and Guibas [1995b] proposed the alternative power, maximum,
and cut-off heuristics to try and combat such low-variance problems (see Section 3.2.2).
Unfortunately, we found that, in bidirectional applications, these heuristics actuallyworsen
the problem more often than not. As an alternative, we devised a scheme to incorporate
variance estimates into the MIS weights. This method is described in Chapter 5.

Of course, in a perfect world, we could solve the problem of weighting low-variance tech-
niques by “simply” using the optimal MIS weights [Kondapaneni et al. 2019] (see Sec-
tion 3.2.2.3). Unfortunately, since the number of techniques in VCM is huge, these would
be extremely costly to apply. Further, approximations have to bemade to compute the opti-
mal weights in the first place, and its implementation is greatly complicated by necessities
such as handling of zero-valued samples.

4.2.2 Correlation

The second problem encountered by MIS in the VCM algorithm is that of correlations.
There are three general types of correlation in the algorithm; namely, pixel correlation,
intra-technique sample correlation and inter-technique sample correlation. None of the

4.2 Challenges and shortcomings of MIS in VCM | 65

three have been discussed extensively by previous work.

The problem with correlation is that few previous methods account for it. The original
weighting heuristics [Veach and Guibas 1995b] operate on the second moment alone and
the optimal weights [Kondapaneni et al. 2019] operate on the variance of independent sam-
ples. Popov et al. [2015, supplemental document] derived the optimalMISweights for cases
with intra-technique correlation. The result is an even more complex – and hence more
expensive and difficult to compute – expression than the optimal weights for independent
samples. Hence, it has not been directly used in rendering so far. Popov et al. [2015] used it
to motivate a heuristic for their use case, for which we propose an alternative in Chapter 6
that also supports the VCM algorithm.

4.2.2.1 Pixel correlation

Many bidirectional methods share one set of light paths across all pixels in the image.
Doing so enables efficient implementation [Davidovič et al. 2014] and variance reduction
through resampling [Nabata et al. 2020; Popov et al. 2015; Su et al. 2022]. Due to this
sharing, the pixel estimates are positively correlated (see Section 2.3.4). The magnitude of
that correlation is governed chiefly by two factors: (1) the number of light paths and (2)
how these paths are allocated to each pixel.

One source of pixel correlation are the merging techniques. For nearby pixels, merging at
the primary hit point 𝑥2 computes an average of the same set of light paths. Therefore, it
yields correlated estimates, manifesting as low-frequency splotches in the image.

Noticable pixel correlations can also arise from the connection techniques. That happens
only if the implementation combines each camera prefix with a randomly selected light
subpath [Davidovič et al. 2014; Popov et al. 2015; Su et al. 2022], rather than always paring
two unique paths [Veach and Guibas 1995a]. In that case, it is possible for nearby pixels
to select the same subpaths for connection. The amount of correlation depends on the
probability with which neighboring pixels pick the same light subpath. For example, if
path selection is done uniformly, and the number of light paths is the same as the number
of pixels, then the probability for any two pixels selecting the same light path is very low.
Consequently, pixel correlation will be low. However, as the number of light paths reduces,
the probability to use the same path grows, and so does the pixel correlation. Similarly,
if two pixels use the same non-uniform probability distribution to select light paths, they
will also have high positive correlation.

An extreme case is the method of Popov et al. [2015]. First, they use a very small number
of light paths – only a few thousand – to bound the overhead of their resampling method.
Second, they build probability distributions over light paths that are stored in spatial caches
and interpolated between nearby points. Consequently, nearby pixels will use the same
distribution. The combination of both design decisions can yield huge pixel correlation.
For example, the connections at the primary hit point 𝑥2 of nearby pixels will generate
almost identical samples most of the time. This positive correlation manifests as artifacts
in the form of splotches in the image.

Figure 4.6 demonstrates both the effect of pixel correlations and their cause. Here, we use
the method of Popov et al. [2015] as an example, and vary the two key parameters: the

66 | Chapter 4: MIS in the VCM algorithm

100
paths

1000
paths

10% uniform 50% uniform 80% uniform 100% uniform

Figure 4.6: Positive pixel correlation manifests as low-frequency artifacts. Here, we render single-
bounce indirect illumination with the method of Popov et al. [2015], using only a single sample per
pixel and a single technique (connection at 𝑥2). Thereby, we isolate the effect of pixel correlation.
The zoom-ins from left to right show how correlation evolves when interpolating between importance
resampling and uniform sampling. The first row uses only 100 light paths, the second ten times as
many. Correlation is reduced by reducing the probability that nearby pixels generate the same path.
Here, this can be achieved by either using a more uniform probability, or by using more light paths.
Unfortunately, the former increases the per-pixel error and the latter increases the cost.

number of light paths and the selection probability. In the first row of zoom-ins, only 100
light paths are used. The second row uses ten times as many. Similarly, the first column
uses mostly the learned selection weights, while the last uses only uniform selection. Uni-
form selection from a large number of light paths has no noticable correlation artifacts,
while learned selection from a small number of paths has severe problems.

Such splotchy artifacts are problematic, because they are impossible for a denoiser to re-
move. Denoisers are, at their core, low-pass filters, and applying a low-pass filter on a
low-frequency artifact has no effect. Also, adaptive sampling in the presence of positive
pixel correlation is challenging, because the positive correlation might be mistaken for low
variance, depending on the approximations used by the adaptive sampler.

In their method, Popov et al. [2015] suggest to ameliorate the problem by artificially re-
ducing the MIS weights of the connection techniques. That, of course, is only a heuristic
workaround to the problem. A more rigorous option to reduce pixel correlation is to ran-
domize the estimate. The amount of correlation depends on the probability of two pixels to
generate the same sample. Hence, if we add additional randomization, like mixing in a uni-
form distribution, this probability will be reduced. This trick has been used, for example,
in the context of photon mapping to aid with denoising and adaptive sampling [Estevez
and Kulla 2020].

An ideal solution to the problem of pixel correlations is yet to be found.

4.2.2.2 Technique correlation

Correlations also frequently arise within the same pixel. One example is inter-technique
correlation, that is, correlation between the samples used by different techniques. In bidi-
rectional algorithms that correlation is ubiquitious. For example, in classic bidirectional

4.2 Challenges and shortcomings of MIS in VCM | 67

Correlated techniques
4 samples, 8 rays

Independent techniques
4 samples, 16 rays

Figure 4.7: The sampling techniques in VCM are typically correlated to avoid quadratic growth
in sampling cost. The illustration on the right shows how path samples of length four would be con-
structed independently in a perfect world. The illustration on the left shows how correlating them – as
is commonly done – reduces the sampling cost.

path tracing [Veach and Guibas 1995a], all connection techniques operate on the same
light and camera subpaths. Therefore, they are positively correlated. So far, this correla-
tion has not been identified as a major problem. However, we are also not aware of any
thorough analysis proving that these correlations are definitely never a problem.

Figure 4.7 visualizes this correlation by sketching how independent connection techniques
would construct paths, compared to how typical implementations actually operate. In
a perfect, correlation-free world, each connection would use its own camera prefix and
light suffix. Unfortunately, the number of connection techniques grows linearly with the
path length, so the total number of ray tracing operations would grow quadratically if we
wanted to enforce independent samples. Therefore, connections typically share the same
underlying paths. This reuse of subpaths allows us to use a large number of techniques at
little extra cost. The resulting correlation does not seem to be a problem. At least, no one
has of yet shown it to be.

In our experiments, we found one case where correlation between techniques is problem-
atic; namely, the combination of light tracing and merging at the primary hit point. These
two techniques operate on the exact same set of samples and compute almost identical
estimates. The main difference is that merging additionally blurs these estimates across
pixels. This is sketched in Figure 4.8. The figure shows, from left to right, the images of
just the light tracing technique, just the merging technique, VCM including both, VCM
without merging, and VCM without light tracing. There is no extra value from using both
techniques, since they are essentially the same. On the contrary, using both techniques
only serves to distort the MIS weights, effectively doubling the weight that these samples
should be assigned. In the example in Figure 4.8, this further amplifies the low-variance
weighting problem because the already too high balance heuristic weight is effectively
doubled.

In our experiments, we always disable merging at the primary hit point, to minimize the
bias. Alternatively, we could also disable the light tracing technique. The choice which
technique to keep depends on the application and the code base of the renderer. Merging
introduces bias and positive pixel correlation, but allows for a more streamlined camera
sampling implementation, since all paths of all techniques start by sampling a direction
from the camera. Further, light tracing is the only technique that requires random access
writes to pixels in the image, which may be problematic for some applications. Šik and
Křivánek [2019] therefore decided to disable light tracing instead. Since the two techniques
are virtually identical in terms of their computed estimates and corresponding error, the

68 | Chapter 4: MIS in the VCM algorithm

Reference
relMSE

Light tracing
1.79(1.00×)

Merging
1.91(1.07×)

VCM
0.23(0.13×)

VCM w/o merging
0.17(0.09×)

VCM w/o LT
0.21(0.11×)

Figure 4.8: Merging at the first hit point, 𝑥2, is almost perfectly correlated with the light tracing
technique. The first two images compare the renderings of the individual techniques. In the zoomed-in
region, the two produce exactly the same noise pattern except for the blur introduced by the merging
kernel. Having both enabled in the same algorithm offers no advantage and only distorts the MIS
weights. Therefore, as shown on the right, results are improved by disabling either of the two.

choice depends solely on such implementation aspects.

4.2.2.3 Sample correlation

Themost problematic type of correlations we found in VCM are sample correlations within
the same technique. Specifically, correlations in the merging technique that arise because
the same camera prefix is continued with many suffixes. Photon mapping is a splitting
estimator: each camera prefix subpath branches out into multiple (photon) suffix subpaths.
The difference to the classical splitting estimator is that the suffixes are sampled from the
emitters, cached in the scene, and reused over multiple prefixes.

It only takes a simple scene to demonstrate the catastrophic failure of MIS with correlated
samples. Figure 4.9 shows a diffuse box illuminated by a small area light source at two
different positions: near the floor (top row) and near the ceiling (bottom row). We consider
length-4 paths x = 𝑥1𝑥2𝑥3𝑥4 (that is, one-bounce indirect illumination) and vertex merging
techniques only. For each path there are thus two possible techniques: merging at 𝑥2 and
𝑥3, respectively. We compare three variants of the balance heuristic for combining these
two techniques: classical [Veach andGuibas 1995b], variance-aware [Grittmann et al. 2019]
(Chapter 5), and correlation-aware [Grittmann et al. 2021] (Chapter 6). As the light source
moves closer to the ceiling, the variance of merging at 𝑥3 explodes as the camera subpath
is less likely to find the shrinking, brightly illuminated spot on the ceiling. However, this
is not reflected in the weights of the classical balance heuristic, which ends up producing
an extremely noisy image.

The two techniques differ only in the direction in which the edge 𝑥2𝑥3 is sampled. And
the corresponding path densities are equal when the vertices 𝑥2 and 𝑥3 are both diffuse,
since in that case 𝑝 (𝑥2 → 𝑥3) = 𝑝 (𝑥3 → 𝑥2) = 𝐺 (𝑥2 ↔ 𝑥3)/𝜋 , where 𝐺 is the geometry
term, which is symmetric w.r.t. 𝑥2 and 𝑥3. The classical balance heuristic thus assigns equal
weights to the techniques, regardless of the geometry of the actual path.

While the variance-aware weights (Chapter 5) can solve this problem in this simple case,
they are not practical. They require computing variance estimates of every single merging

4.2 Challenges and shortcomings of MIS in VCM | 69

(a) Scene layout

relMSE: 0.31

Merge at x1

0.83 (2.68×)

Merge at x2

(b) Individual techniques

0.126

[GGSK19]

0.132

Classical

0.130

Ours
(c) MIS combinations

avg.: 0.27

[GGSK19]

0.50

Classical

0.16

Ours
(d) MIS weights

relMSE: 0.22 358.71 (1621.95×) 0.122 45.631 0.119 avg.: 0.02 0.50 0.01

x1

x2

x1

x2

m
er

ge
at

x 1
m

er
ge

at
x 2

m
er

ge
at

x 1
m

er
ge

at
x 2

𝑥2

𝑥2

𝑥
2

𝑥
2

𝑥2

𝑥3

𝑥3

𝑥3

𝑥
3

𝑥
3

Chapter 5 Chapter 5Chapter 6 Chapter 6

Figure 4.9: A box with diffuse materials and a small area light (shining upwards) positioned far
from the ceiling (top) and close to it (bottom). We render length-4 paths and consider vertex merging
techniques only. The variance ofmerging at𝑥3 increases as the lightmoves closer to the ceiling, resulting
in a dark image with all energy focused in a few outliers. The classical balance heuristic does not
capture that increased variance and assigns equal weights to the two merging techniques in both scene
configurations, producing a poor combination in the latter.

technique, for every path length. Crucially, these estimates need to be accurate, which
is expensive for techniques that produce nothing but outliers. (We have used 128 sam-
ples/pixel for the experiment in Figure 4.9, yet the image appears black as all energy is
focused in just a few severe outliers.) Hence, variance-aware weighting is not efficient in
this setting.

The approach of Popov et al. [Popov et al. 2015], which sets 𝑛 = 1 in the classical heuristic,
would not work. For one, 𝑛 cancels out when onlymerging techniques are being combined.
Worse, when vertex connection techniques are included, setting 𝑛 = 1 effectively disables
all merging techniques, reverting VCM to bidirectional path tracing. The heuristics of
Jendersie et al. [Jendersie 2019; Jendersie and Grosch 2018] address this specific failure
case but use unintuitive parameters and can sometimes perform worse than the classical
balance heuristic.

In Chapter 6 we introduce a heuristic remedy for this problem. Our correlation-aware
balance heuristic yields consistently better estimates than the classic balance heuristic,
while being simple and cheap to compute. All scenes with light sources close to surfaces
benefit tremendously from this method.

4.2.3 Efficiency

Asides from the original MIS heuristics performing poorly, there is another major obstacle
towards making VCM a practical and general rendering solution: the wastefulness of the
method. In any given scene – or, in fact, in any given part of a scene – most of the samples
taken by the vast amount of techniques that constitute VCM are utterly wasted. Each
technique in the mix only performs well for a narrow subset of all possible effects.

70 | Chapter 4: MIS in the VCM algorithm

An extreme case occurs in most outdoor scenes. There, the majority of light paths will
never find the visible region. Consequently, a lot of computation time is wasted on tracing
those irrelevant paths. For those cases, one solution is to adapt the sample density of the
light paths to increase the probability of finding the visible region [Grittmann et al. 2018;
Šik et al. 2016]. Another option is to disable bidirectional techniques altogether. The latter
is preferrable if, even with better importance sampling, the bidirectional techniques add
little value over forward path tracing.

The wastefulness of the method is amplified by the fact that the individual techniques
in VCM are quite expensive. For example, enabling the merging techniques can easily
double the render time, depending on the implementation specifics of the nearest neighbor
search and associated material evaluations. Therefore, it should be used sparingly. At the
same time, merging only benefits small parts of a scene; specifically, caustics and reflected
caustics. Everywhere else, merging is wasted and its contribution either weighted down by
MIS, or incorrectly assigned a high weight due to the correlation issues mentioned above.

To achieve efficient rendering in any scene, the set of techniques must be adapted to the
scene. For example, when rendering a vast outdoor environment without caustics, only
forward path tracing should be used. Conversely, when rendering an indoor scene with
caustics and focused indirect illumination, almost all techniques in VCM should be enabled,
possibly with an increased sample count. Of course, such adaptation can be donemanually,
but that would require the user to posess extensive knowledge of rendering algorithms and
their properties. Further, adaptation on a more local scale, for example, on a per-pixel level,
would be difficult to achieve manually, and finding exact sample counts will always require
some amount of trial and error, even from an expert user. To overcome these challenges,
Chapter 7 shows how to automatically decide the set of techniques and associated sample
counts on-the-fly during rendering.

4.3 Summary

Realistic scenes – even if constrained to just basic surface scattering – exhibit a wide range
of illumination effects. Robust rendering of those is a problem to which the VCM algorithm
offers a solution. By combining as many sampling techniques as possible, a rendering
algorithm is achieved that can render any scene in acceptable time.

Mathematically, this combination is achieved throughmultiple importance sampling (MIS).
For that, the individual techniques are formulated in a common domain, the path space.
For the unbiased bidirectional techniques, this is done by a simple change of variables. The
path space probability densities are computed by multiplying the original densities of the
technique’s natural domain by the appropriate Jacobians. Matters are less simple for the
merging technique. Merging computes a higher-dimensional approximation of the path
integral and therefore requires special case handling. For that, surrogate path-space PDFs
can be defined, treating the additional dimension as a discrete resampling step.

The resulting algorithm in its basic form is far from perfect. Asides from the fact that
implementation is non-trivial, the performance can be subpar in many scenes. We identify
threemain causes for this unsatisfactory performance. First, MISweightingwith the classic
balance heuristic can perform poorly when forward path tracing has low variance. Second,

4.3 Summary | 71

when merging samples are highly correlated, MIS with the balance heuristic simply fails
altogether. Third, because only a subset of techniques is beneficial for any given lighting
effect, performance is severely encumbered by the superfluous techniques. The following
three chapters each propose a practical solution for one of these three problems.

Chapter 5

Variance-aware MIS

G
lo
ba
lI
llu
m
. a) Reference

Error (relMSE)

Error (relMSE)

D
ir
ec
t
Ill
um

.

b) Path tracing

0.467 (x1.3)

0.170 (x0.5)

c) BPT (balance)

0.371 (x1, base)

0.332 (x1, base)

d) BPT (power)

0.366 (x1)

0.315 (x0.9)

e) BPT (our)

0.304 (x0.8)

0.184 (x0.6)

Figure 5.1: A scene rendered with bidirectional path tracing where the balance heuristic performs
poorly. For the low-variance direct illumination effects, the unidirectional samples alone produce better
results than the exact same samples combined with additional bidirectional ones, due to poor MIS
weighting via the balance heuristic. Our variance-aware balance heuristic provides a practical solution
to this problem.

Robustness is an important goal for MIS estimators. Ideally, an MIS combination should
never be worse than using only the samples of the best technique. That way, the overall
efficiency is, in the worst case, only reduced by the computation time wasted on under-
performing techniques. Unfortunately, this robustness is not always achieved when using
the balance heuristic.

Figure 5.1 shows a practical example. It compares a rendering with bidirectional path trac-
ing to the result of using just the unidirectional samples that are part of that MIS combina-
tion. The direct illumination component is visibly more noisy with the full MIS combina-
tion than with just the forward path tracing subset. The balance heuristic does not achieve
a robust estimator in this example.

Our method enhances the balance heuristic with variance estimates. The resulting weights
increase the robustness in failure cases, as shown in Figure 5.1, without any negative im-
pact in other cases. In this chapter, we introduce our variance-aware balance heuristic. We
discuss how our method can improve robustness in failure cases via illustrative 1D exam-
ples and in a rendering application. The method has been previously published [Grittmann
et al. 2019], I was the main author of that paper. The source code of our implementation
in the PBRT renderer [Pharr et al. 2016] is available on GitHub1.

1https://github.com/pgrit/var-aware-mis-pbrt

https://github.com/pgrit/var-aware-mis-pbrt

5.1 Variance-aware balance heuristic | 73

5.1 Variance-aware balance heuristic

MIS is not the only means of combining multiple Monte Carlo estimators. An alternative
is to weight each estimator by its (estimated) reciprocal variance. In the following, we first
review this alternative approach and then show how its benefits can be combined with
those of the balance heuristic.

5.1.1 Variance-based weighting

Robust combinations can also be achieved by weighting a set of estimators by their (esti-
mated or approximated) reciprocal variances 𝜎−2

𝑡 [Hammersley and Handscomb 1968],

⟨𝐹 ⟩const =
∑︁
𝑡

(𝜎𝑡)−2∑
𝑡 ′ (𝜎𝑡 ′)−2

⟨𝐹 ⟩𝑡 . (5.1)

The resulting estimator is consistent, that is, it will converge to 𝐹 as the sample count grows
to infinity. It is, however, only unbiased if the samples used to estimate the variances are
statistically independent of those used by the “actual” estimators [Kirk and J. Arvo 1991].

Variance-based weighting has two main drawbacks when compared to MIS. First, it re-
lies on the generally unknown variances of the sampling techniques. But it is possible to
estimate these on the fly and still achieve unbiased, or at least consistent, combined esti-
mates. Second, while MIS can divide a challenging integral into multiple easier ones (see
Section 3.1.1), variance-based weighting only works on a global scale. Hence, it has a lower
potential for variance reduction.

There is, however, one major advantage of variance-based weighting. As discussed in
Section 3.2.2.1, the balance heuristic only minimizes a portion of the variance – the second
moment – and can hence perform poorly. For example, if there is significant covariance.
Variance-based weighting, in contrast, guarantees that the result will always be at least as
good as the best sampling technique alone. Provided, of course, the variances are estimated
or approximated with sufficient accuracy.

5.1.2 Reaping the benefits of both

Our idea is simple: We combine variance-based weighting and the balance heuristic, to
reap the benefits of both approaches. For that, we inject additional variance factors into the
balance heuristic, accounting for the mismatch between second moment and full variance.

Recall that the balance heuristic is the MIS weighting function that minimizes the second
moment of the combined estimator (see Section 3.2.2.1). Intuitively, the balance heuristic
therefore performs well when the second moment is a good approximation of the variance,
that is, when

V[⟨𝐹 ⟩MIS] ≈
∑︁
𝑡∈T

∫
X

(𝑤𝑡 (𝑥) 𝑓 (𝑥))2

𝑛𝑡𝑝𝑡 (𝑥)
d𝑥 . (5.2)

Conversely, when the remaining terms of the variance, namely the covariance and the sum
of squared means, have a significant impact, the balance heuristic estimator will perform
poorly.

74 | Chapter 5: Variance-aware MIS

The ratio between the second moment and the full variance of a technique, referred to as
the variance factor in the following,

𝑣𝑡 := 𝜎−2
𝑡

∫
X

𝑓 2(𝑥)
𝑛𝑡𝑝𝑡 (𝑥)

d𝑥, (5.3)

is an indicator of how well the balance heuristic will perform for combinations involving
this technique 𝑡 . If 𝑣𝑡 ≈ 1, the technique’s variance is dominated by its second moment and
the balance heuristic will handle it well. If 𝑣𝑡 > 1, the second moment of this technique is
much higher than the full variance. The balance heuristic will assign it a too low weight.
For example, a zero-variance technique will have an infinitely higher second moment,

𝜎2
𝑡 → 0 ⇒ 𝑣𝑡 → ∞, (5.4)

and should receive an MIS weight 𝑤𝑡 (𝑥) = 1, while the balance heuristic will generally
produce 𝑤𝑡 (𝑥) < 1 for such zero-variance techniques. If 𝑣𝑡 < 1, the second moment is
smaller than the variance. This happens only if the samples are positively correlated. In
that case, the balance heuristic will assign a too high weight.

Our heuristic simply multiplies the balance heuristic weights by these variance factors:

𝑤var
𝑡 (𝑥) ∝ 𝑣𝑡𝑛𝑡𝑝𝑡 (𝑥). (5.5)

So, when the balance heuristic works well, that is, when 𝑣𝑡 ≈ 1, the weights remain un-
changed. But, when the balance heuristic does not perform well, we increase (or decrease)
its weight proportionally to the ratio between second moment and full variance.

Section 5.2 analyses the performance of this heuristic in an idealized 1D setting where
variances are known. Section 5.3 proposes a practical implementation in bidirectional path
tracing that achieves consistent performance improvements over the balance heuristic.

5.2 Discussion in 1D

This section provides an empirical evaluation of our heuristic on low-dimensional inte-
gration problems. These are modeled to mimic scenarios commonly encountered in ren-
dering, while being simpler to visualize and reason about. We discuss high-variance and
low-variance combinations, stratification, and sample reuse. Figure 5.2 shows the integra-
tion problems and compares the performances of the different weighting schemes.

Product sampling. The first example (first row in Figure 5.2) is the common setting
where the integrand is a product of two factors, and the sampling techniques are each
(almost) proportional to one of them. In rendering, this corresponds, for example, to com-
bining BSDF sampling and light sampling for direct illumination. The balance heuristic (c)
is almost identical to the optimal weights (e). Variance-based weighting (b) relies almost
exclusively on one technique and performs far worse than the balance heuristic. Never-
theless, the result with our variance-aware heuristic (d) is almost the same as the balance
heuristic. That is because the variances of both techniques are high and thus well approx-
imated by the second moment. The power heuristic (with power 2) (d), in comparison,
doubles the error of the balance heuristic.

5.3 Discussion in 1D | 75

11 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
(1
)P

ro
du

ct

Variance: 0.1800 Variance: 0.0023 Variance: 0.0052 Variance: 0.0025 Variance: 0.0022

11 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(2
)D

ef
en
siv

e

Variance: 0.0281 Variance: 0.0733 Variance: 0.0796 Variance: 0.0249 Variance: 0.0103

11 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

−1

1

1

−1

1

(3
)S

tra
tifi

ed

Variance: 0.0199 Variance: 0.0372 Variance: 0.0372 Variance: 0.0199 Variance: 0.0118

(a) Integrand and
densities (b) Variance-based (c) Balance heuristic (d) Power heuristic (d) Variance-aware (e) Optimal MIS

Figure 5.2: Different MIS weighting schemes applied to 1D integration problems. The first column
shows the integrand (red) and the two sampling densities (orange and blue). The following columns
are the weights and resulting variances used by different combinations. Our method combines the
robustness of variance-based weighting with the variance reduction potential of the balance heuristic.

Defensive sampling. Another common example (second row in Figure 5.2) is combin-
ing an almost perfect importance sampling technique with a defensive one. For example,
learned distributions for path guiding are combined with BSDF sampling to avoid bias and
severe noise from learning errors. In this scenario, the blue technique has very little vari-
ance. The balance heuristic, however, assigns high weight to the poorly performing orange
technique, with the power heuristic amplifying the problem even further. Variance-based
weighting performs much better, and our heuristic yields results that are better still. Opti-
mal MIS weighting [Kondapaneni et al. 2019] (see Section 3.2.2.3) could, in theory, cut this
variance in half again, but remains difficult to apply in practice.

Stratification. Lastly, we inspect the setting that originallymotivated our variance-aware
heuristic: combining stratified and unstratified sampling techniques. The setup is shown
in the last row of Figure 5.2. Both sampling techniques use a uniform density and take four
samples from it. While the blue technique distributes the samples uniformly over thewhole
domain, the orange one employs stratification. That is, it subdivides the domain into four
bins and samples uniformly within each one. This configuration occurs in bidirectional
path tracing, where light tracing splats contributions over the whole image, while camera
paths are stratified, tracing exactly one path per pixel.

It is a well known fact that such stratification reduces the variance (see, for example, Veach
[1997], pp. 50-52). However, it does not have any impact on the balance heuristic. The
unstratified technique takes 𝑛𝑢 = 4 samples with density 𝑝𝑢 (𝑥) = 1, while the stratified
one takes 𝑛𝑠 = 1 sample in each bin with density 𝑝𝑠 (𝑥) = 4. Therefore, in this example, the
balance heuristic assigns equal weight to both techniques. Our variance-aware heuristic,
by design, is equivalent to variance-based weighting in this case.

76 | Chapter 5: Variance-aware MIS

5.3 Discussion in rendering applications

In this section we evaluate the performance of our method in two rendering applications:
bidirectional path tracing and defensive sampling for light source selection. The full-size
images of all results can be found in the supplemental material of the original publica-
tion [Grittmann et al. 2019], along with the source code and scripts to reproduce them.
The latter are also available on GitHub: https://github.com/pgrit/var-aware-mis-pbrt. The
tests were performed on a workstation with an Intel i7-4790 processor and 32GB of RAM.

We compare our method to the optimal MIS weights of Kondapaneni et al. [2019] (see
Section 3.2.2.3) only for the simpler defensive sampling application. Incorporating these
weights into a bidirectional path tracer is a non-trivial task. Aside from the cost of main-
taining multiple large matrices for every pixel, the optimal weights also have to consider
paths with zero contribution, which requires major incisions into the light transport and
material logic. We therefore do not attempt to compare this method to ours on the full
bidirectional path tracer. Such a comparison would be interesting to assess the margin for
further improvements, but it is beyond the scope of this work.

5.3.1 Implementation

To show its suitability to light transport problems, we have implemented our proposed
weighting heuristic in two MIS applications: bidirectional path tracing, which combines
techniques with and without image plane stratification, and a defensive sampling appli-
cation for direct illumination. Both have been implemented in PBRT [Pharr et al. 2016],
sharing the code for estimating and utilizing the variance factors 𝑣𝑡 . The source code can be
found on GitHub or in the supplemental materials of the original publication [Grittmann
et al. 2019].

Procedure. Ourmethod is easily implemented on top of progressive rendering algorithms.
To utilize variance estimates, rendering is split into two main stages. In the first stage, we
estimate the image with a few samples per pixel (spp), using the standard balance or power
heuristics in all MIS calculations. Our implementation takes 1 spp in this stage. Based on
these samples, we estimate the variance of each technique and compute 𝑣𝑡 . In the second
stage, any further rendering iterations use our variance-aware heuristic. By estimating the
𝑣𝑡 factors in the first stage, and only using them in the second stage, we ensure that the
result is unbiased [Kirk and J. Arvo 1991].

Handling initial samples. Samples from the first stage are not wasted. There are three
options to proceed with the rendering result of the first stage: Simply average with the
second stage (noisy if the balance heuristic performs poorly), average but weigh based on
the 𝑣𝑡 factors (biased [Kirk and J. Arvo 1991]), or keep only those pixels where no technique
has a variance factor above a certain threshold (unbiased). We chose the last approach, with
a threshold of max𝑡 𝑣𝑡 < 2.

Estimating 𝑣𝑡 . Theoretically, we would like to compute a 𝑣𝑡 factor per technique in every
pixel. To allow our method to work with a small number of samples, even just one per
pixel, we instead divide the image into equal-sized tiles (8 × 8 in our tests). For each tile,
we compute the sample variance and samplemean of each technique. The result are per-tile

https://github.com/pgrit/var-aware-mis-pbrt

5.3 Discussion in rendering applications | 77

𝑣𝑡 factors that are used for all pixels within the tile. This approach is simpler and cheaper
than approximating 𝑣𝑡 for every pixel. Its downside is that the sample variance increases if
the tile contains a discontinuity, effectively reverting to the balance heuristic for such tiles.

5.3.2 Results

To compare results numerically, we use the relative mean squared error (relMSE) metric.
The relMSE of an image is computed by dividing the squared error of each pixel by the ref-
erence pixel value, then taking the average of the result among all pixels. This avoids error
values being dominated by bright pixels, which the commonly used (root) mean squared
error metric is susceptible to.

5.3.2.1 Bidirectional path tracing

Most techniques in bidirectional path tracing are stratified over the image plane, with one
exception – light tracing, which connects light paths to the camera via shadow rays. Not
being restricted to sampling within a given pixel is the very reason why light tracing is
efficient at rendering caustics, focused indirect illumination, and even some types of direct
illumination (e.g., lights close to surfaces, inside volumes, orwith peaked emission profiles).
As we observed before, however, the classical MIS heuristics cannot capture the variance
reduction due to stratification in the other techniques, in this case over the image plane.
Figure 5.1 shows how this can result in excessive noise due to the unstratified light tracer
in image regions where the variance of the stratified techniques is low.

Figure 5.3 compares our heuristic to the balance and power heuristics on three scenes. We
show results for full global illumination and for direct illumination alone. The numbers
under each row provide the relMSE and the ratio of that error to the balance-heuristic
error (in parentheses), across both the entire image and the corresponding zoom-in. Note
that the comparisons are not only equal-time but also equal-sample, since our method
does not introduce measurable computational overhead. The ‘path tracing’ images have
been produced from the subset of next-event estimation samples in BPT (without the need
to apply MIS). Therefore, ideally, the noise in the full MIS combinations should never be
higher than those samples alone.

The first row in Figure 5.3 shows an extreme case: The error with the balance heuristic is
four times larger than the path-tracing samples alone. The MIS-weight comparison in Fig-
ure 5.4 shows the reason for this behavior: The figure compares the variance of the three
techniques (a) for direct illumination (BSDF samples, next-event estimation, and light trac-
ing) to the per-pixel average MIS weights of the three heuristics. Next-event estimation
(middle row) has close to zero variance on the wall behind the light sources. This low
variance is partially due to the stratification on the image plane, which is ignored by the
balance and power heuristics when combining with the unstratified light tracer. Therefore,
the balance heuristic assigns an excessive weight to the light tracer. The power heuristic
amplifies the issue further. Our approach accounts for the variance reduction due to strat-
ification and maintains the lower error of path tracing.

The second scene in Figure 5.3, the Bathroom, is a case where no sampling technique has
particularly low variance. We achieve small local improvements, as seen in the zoom-ins,

78 | Chapter 5: Variance-aware MIS

8.85 (base)
0.126 (base)

0.143 (base)
0.0959 (base)

8.85 (x1)
0.114 (x0.9)

0.145 (x1)
0.086 (x0.9)

8.85 (x1)
0.15 (x1.2)

0.15 (x1)
0.111 (x1.2)

0.61 (x4.2)
0.39 (x4)

5.61 (x0.6)
0.169 (x1.3)

D
ir
ec
t
ill
um

.
G
lo
ba
li
llu
m
.

Balance Power OurPath tracing

Entire image:
Zoom-in:

Entire image:
Zoom-in:

0.0172 (base)
0.0377 (base)

0.0211 (base)
0.0365 (base)

0.0159 (x0.9)
0.0391 (x1)

0.0209 (x1)
0.0378 (x1)

0.0206 (x1.2)
0.0413 (x1.1)

0.0244 (x1.2)
0.0388 (x1)

0.494 (x23)
1.1 (x30)

0.0366 (x2.1)
0.214 (x5.7)

D
ir
ec
t
ill
um

.
G
lo
ba
li
llu
m
.

Entire image:
Zoom-in:

Entire image:
Zoom-in:

0.177 (x1.1)
0.119 (x1.4)

0.167 (base)
0.0872 (base)

0.137 (x0.8)
0.0216 (x0.3)

0.24 (x1.4)
0.0253 (x0.3)

Entire image:
Zoom-in:

D
ir
ec
t
ill
um

.

Reference
eq. sample equal time & equal sample

relMSE

relMSE

relMSE

relMSE

relMSE

Figure 5.3: Equal-time (and also equal-sample) comparisons of BPT using three different MIS heuris-
tics. Our heuristic improves low-variance cases while, in contrast to the power heuristic, never being
significantly worse than the balance heuristic overall.

5.3 Discussion in rendering applications | 79

PT
:N

EE
PT

:B
SD

F

a) Variance

LT

b) Balance c) Power d) Our
0

2 1

0

Figure 5.4: Comparison of the average per-pixel MIS weights (b-d) to the relative variance of three
techniques (a): path tracing with BSDF sampling (PT: BSDF), with next-event estimation (PT: NEE), and
light tracing (LT).

while the power heuristic again worsens the results. Importantly, our overall error is not
(significantly) worse than that of the balance heuristic.

Finally, the Living room scene shows a case where the unstratified light tracer performs
best. Here, ourmethod also achieves small local improvementswhile not performingworse
than the balance heuristic overall. In contrast, the power heuristic produces 20% larger
error than the balance heuristic.

Even with coarse 1 spp variance estimates (without any filtering, denoising, or regulariza-
tion), our method has never performed significantly worse than the balance heuristic in
our experiments. The shape of the 𝑣𝑡 factors, which quickly fall off to one (i.e., yielding
the balance heuristic) as the variance increases, plays an important role in achieving this
robustness.

5.3.2.2 Low-variance direct illumination

Kondapaneni et al. [2019] illustrated their optimal weights on a simple defensive sampling
example: They combine two techniques for light selection in direct illumination compu-
tation: selecting the light based on estimates of the unoccluded contribution cached in a
regular grid (the ‘almost proportional’ one) [Pharr et al. 2016], and uniformly (the defen-
sive technique). We implemented our heuristic for the same application so as to compare
it to the optimal weights.

The results for the Staircase scene are shown in Figure 5.5; the supplemental materials of
the original paper [Grittmann et al. 2019] contain additional results. The structure of the
figure is the same as in Figure 5.3, where again the error numbers in the parentheses are
relative to the balance heuristic.

For the comparison to the approach by Kondapaneni et al., we used their favored ‘direct’
estimator, which has lower variance and less overhead but also a small amount of bias.
The comparisons in this case are equal-sample, using just eight samples per technique

80 | Chapter 5: Variance-aware MIS

0.0122 (x0.4)
0.00165 (x0.2)
0.00302 (x0.1)

0.0342 (x1)
0.00196 (x0.2)
0.0248 (x1)

0.0342 (base)
0.00803 (base)
0.0249 (base)

0.0333 (x1)
0.00388 (x0.5)
0.0247 (x1)

Entire image:
Top zoom-in:

Bottom zoom-in:

Balance Power Our OptimalReference

Figure 5.5: Equal-sample comparison (8 per technique) for defensive sampling. Our results are close
to optimal MIS weights [Kondapaneni et al. 2019] whenever one technique is significantly better than
the rest (top zoom-in).

(and per pixel). For our heuristic, the comparison is also equal-time to the balance and
power heuristics. The approach by Kondapaneni et al. is 5−10% slower per sample on our
test scenes.

The Staircase scene contains two different cases where significant improvements over
the balance and power heuristics are possible: A low-variance problem (top row) and an
example where the negativity of the optimal weights can reduce the error, despite all tech-
niques having high variance (bottom row). For the low-variance problem, our result is
close to that of Kondapaneni et al.’s direct estimator. However, our heuristic cannot be
negative and therefore cannot improve on the balance heuristic in the second case (where
the optimal weights are negative).

In conclusion, our method and the approach of Kondapaneni et al. complement each other.
Their method is provably optimal, yet challenging to apply in practice. Our method is
simpler to implement, but only ensures that the combined estimator is never worse than
the best technique alone, in an equal-sample comparison.

5.3.3 Comparison to weighting with variance estimates

Figure 5.6 compares our variance-aware MIS weights (top row) to classical variance-based
weighting (bottom row) on zoom-ins from various scenes. In some cases, especially the
simpler defensive sampling application, using variance estimates alone can produce results
similar to our weights. Noise in the variance estimates, however, will then manifest as
visible artifacts in the image. Our method prevents these artifacts due to the injection into
the balance heuristic and the lower bound of one (i.e., 𝑣𝑡 ≥ 1). While the variance estimates
are far too noisy to be usable on their own, incorporating them into the balance heuristic,
as we propose, yields improvements without any visible artifacts.

5.3 Discussion in rendering applications | 81

O
ur

Va
ri
an

ce
on

ly

Bidirectional path tracer Defensive sampling

Figure 5.6: Incorporating the variance estimates into the balance heuristic (top row), as we propose,
greatly improves the robustness compared to using these same estimates on their own (bottom row).

8.85 (base)
0.126 (base)
0.0566 (base)

8.85 (x1)
0.114 (x0.9)
0.0316 (x0.6)

D
ir
ec

t
ill

um
in

at
io

n

Entire image:
Top zoom-in:

Bottom zoom-in:

Balance Our
Our

(converged)
Variance only
(converged)

8.84 (x1)
0.0953 (x0.8)
0.0275 (x0.5)

8.9 (x1)
0.107 (x0.9)
0.0741 (x1.3)

(converged)
= 2048 samples variance estimate

Figure 5.7: Comparison to using variance estimates computed with 2048 samples per pixel. Com-
puting more accurate 𝑣𝑡 factors can improve the results further, but at higher cost. Even the converged
variances alone perform worse than our approach with coarse estimates.

Direct illumination:

One-bounce indirect illumination:

Light tracing Next event BSDF samples

Connections Next event BSDF samplesLight tracing

Scene

Figure 5.8: The estimated 𝑣𝑡 factors for the bidirectional path tracer techniques in the Bathroom
scene. The majority of pixels receive a factor close to one.

82 | Chapter 5: Variance-aware MIS

We also compare the performance when using accurate variance estimates (computed from
2048 samples). The results for direct illumination on the Bathroom scene are shown in
Figure 5.7. Using the accurate variance estimates alone performs worse than using those
same estimates with our approach.

5.3.4 Overhead

Computation-wise, the overhead of our method is negligible. However, storing the 𝑣𝑡 fac-
tors can require a significant amount of memory if the number of combined techniques is
very large.

In the bidirectional path tracer, our implementation computes the 𝑣𝑡 factors for path lengths
up to five – a total of 25 techniques. Sincewe store 𝑣𝑡 every 8×8 pixels, this requires roughly
two bytes per pixel on average – not much in the context of a typical renderer.

The memory footprint can be reduced further. Figure 5.8 shows the 𝑣𝑡 factors for the direct
and one-bounce indirect illumination in the Bathroom scene. A large fraction of these
𝑣𝑡 factors are almost one. Therefore, applying compression would significantly reduce the
memory requirements. We leave such optimizations for future work as in our benchmarks
the overhead has been insignificant.

5.4 Limitations and future work

In addition to the downside of relying on estimated quantities, some care has to be taken
when applying our heuristic to biased techniques. In this section, we discuss such limi-
tations and outline possible improvements. Lastly, we introduce other promising applica-
tions for our heuristic.

5.4.1 Limitations

Error in variance estimates. Weighting using estimated quantities can worsen the re-
sults when these estimates are highly inaccurate. We have not encountered any such issues
in our experiments, despite basing our estimates on a single sample per pixel. There could,
however, be applications or particularly challenging scenes where errors in the 𝑣𝑡 estimates
cause issues.

There are several options to ameliorate such potential issues. The images storing the 𝑣𝑡
factors can be filtered or denoised and potential outliers could be clamped. Another ap-
proach, naturally, is to increase the number of 𝑣𝑡 estimation samples, or to accumulate
better estimates progressively.

Narrow-support sampling pdfs. So far we have only considered the case where the pdf
of each individual technique is non-zero over the entire integration domain. If this is not
the case, weighting based on the variance no longer makes sense. In that case, the problem
can be made recursive: A set of techniques, whose pdfs together cover the entire domain,
can be combined via the regular balance heuristic, which is equivalent to sampling from

5.4 Limitations and future work | 83

Reference
relMSE

Path tracer
0.135

PSSMLT
0.122

Balance
0.170

Power
0.175

Our
0.153

Reference (relMSE) Path tracer (0.051)
(2 samples)

PSSMLT (0.054)
(2 mutations)

Balance (0.069) Power (0.123)
(1 sample + 1 mutation) (1 sample + 1 mutation)(1 sample + 1 mutation)

Our (0.060)

Figure 5.9: Equal-sample comparison for the proof-of-concept Metropolis combination. The combi-
nation with our heuristic is the most robust: it retains the lower variance of both the Metropolis and
the MC approach.

the mixture of these pdfs [Veach 1997]. This mixture can then be combined with other
sampling techniques using our variance-aware heuristic. An alternative is to simply set
the variance factors to one for all narrow-support techniques.

5.4.2 Other applications

Efficiency. OurMIS weights help achieve robustness by preventing the noise from poorly
performing techniques deteriorate the quality that could be achieved by using only the
samples from the better techniques. However, for an algorithm to be truly efficient, better
MIS weights are only the first step: Ideally, we also want to ensure that most samples
are taken from the best-performing techniques. There have been attempts to improve the
sample allocation based on the MIS-weighted contribution of previously taken samples
[Grittmann et al. 2018; Hachisuka et al. 2014; Šik et al. 2016]. In combination with such
approaches, our MIS weights could achieve a considerable increase in the efficiency of
algorithms like vertex connection and merging (VCM) [Georgiev et al. 2012a].

VCM. Bidirectional path tracing, on top of which we apply our method, is a subset of the
more powerful VCM algorithm [Georgiev et al. 2012a; Hachisuka et al. 2012]. Therefore,
we can expect that the full VCM algorithm will benefit from similar improvements. Specif-
ically, since photon mapping and light tracing for direct illumination are almost identical
techniques, the direct-illumination results with VCM will be identical to those of BPT. It is

84 | Chapter 5: Variance-aware MIS

possible, that our approach will improve on the VCM algorithm even further: Recent work
[Jendersie 2019; Jendersie and Grosch 2018] has shown that the MIS weights for the vertex
merging technique in VCM can perform poorly in some cases. Our method could also help
there.

Metropolis light transport. Our observation that existing MIS heuristics neglect
stratification has inspired us to experiment with a novel MIS combination: Combining
a Metropolized path tracer with a regular Monte Carlo path tracer. Rendering methods
based on the Metropolis algorithm are often criticized for their lack of image plane
stratification [Cline et al. 2005; Šik and Křivánek 2018]. In a proof-of-concept experiment,
we therefore tried combining a primary sample space Metropolis path tracer (PSSMLT)
[Kelemen et al. 2002] with a stratified MC path tracer, using MIS.

An equal-time comparison is shown in Figure 5.9. The MC path tracer, thanks to the strat-
ification, can easily handle the direct illumination in that scene, but struggles with the
indirectly lit car interior. PSSMLT easily resolves that more challenging interior, but due
to the lack of stratification exhibits much stronger noise in the direct illumination (e.g., on
the car exterior and the floor). While the balance- and power-heuristic combinations retain
the better performance on the car interior, their unawareness of image plane stratification
results in higher levels of noise in the simpler direct illumination. Our approach retains
the better performance of both techniques, achieving a more efficient combination.

The optimal weights [Kondapaneni et al. 2019] are not applicable to such a combination.
With Metropolis methods, the exact sampling densities are unknown and require approx-
imations for use in MIS [Kelemen et al. 2002; Šik et al. 2016]. Therefore, computing the
optimal MIS weights is impossible – a heuristic like ours is needed for such a combination
to perform well.

5.5 Conclusion

We propose a novel weighting heuristic for multiple importance sampling that incorpo-
rates variance estimates. We show that existing MIS heuristics neglect the impact of strat-
ification, correlation, and other effects on the variance – a shortcoming that can be ad-
dressed by incorporating variance estimates. We apply our theory to bidirectional path
tracing, defensive sampling, and a proof-of-concept combination involving Metropolis
sampling. Throughout all our tests, even coarse estimates of the variance have been suffi-
cient to achieve significant improvements over the balance heuristic in some cases, while
– most importantly – never performing worse.

Chapter 6

Correlation-aware MIS

0.76 (1.00×) 0.47 (0.6×) relMSE

7.05 (1.00×) 0.44 (0.1×) relMSE

(a) Balance heuristic (b) Ours (c) Reference
B

D
PT

w
/s

pl
itt

in
g

V
C

M

Figure 6.1: A scene featuring complex indirect illumination (lamp shade) and caustics (glass) – a
prime use-case of bidirectional algorithms. We show two such methods: bidirectional path tracing with
splitting (top row), and vertex connection and merging (bottom row). (a) Both exhibit problems with
MIS in this scenario, due to correlation by shared path prefixes. (b) Our simple heuristic solves these
problems.

Some rendering algorithms achieve efficiency by generating correlated paths. They re-
duce the sampling cost by constructing paths that share a common prefix. This is the
overarching idea behind photon mapping [Jensen 1996], path splitting [J. R. Arvo and Kirk
1990; Rath et al. 2022] or distribution ray tracing [Cook et al. 1984], and path reuse meth-
ods [Keller et al. 2014; West et al. 2020]. Many of these approaches also make use of MIS to
increase robustness, for example, vertex connection and merging (VCM) [Georgiev et al.
2012a; Hachisuka et al. 2012], or the method of Popov et al. [2015] which utilizes splitting
in bidirectional path tracing (BDPT) [Veach and Guibas 1995a] by tracing multiple shadow
rays from the same point. However, MIS and the popular balance heuristic operate un-
der the assumption of independent sampling, that is, no correlation between individual
paths. Lacking a practical alternative, the aforementioned algorithms still rely on the bal-
ance heuristic. This is problematic as illustrated in Figure 6.1: The heuristic produces poor
combination weights, creating an overly dark image with strong outliers. Given a split-
ting technique that concatenates a single prefix with 𝑛 suffix paths, the balance heuristic
treats these as 𝑛 mutually independent full paths; it is oblivious to the increased variance
resulting from using a shared prefix.

The impact of correlation on MIS has received little attention in prior work. Even the
recently derived optimal weights [Kondapaneni et al. 2019] (see Section 3.2.2.3) assume
mutually independent paths and samples. For the two examples in Figure 6.1, ad-hoc so-
lutions have been proposed [Jendersie 2019; Jendersie and Grosch 2018; Popov et al. 2015].

86 | Chapter 6: Correlation-aware MIS

zx1

x2
x3

x4

y x1

x2
x3

x4

(a) A single path x (b) One of 3 paths formed via splitting

Figure 6.2: Without splitting (a), we trace independent full paths. Splitting (b) generates multiple
full paths x𝑖 = yz𝑖 that share a prefix y (in blue) and have mutually independent suffixes z𝑖 (in orange).

Besides being specific to one of the two cases, these approaches can produce unsatisfactory
results or rely on unintuitive parameters. A more general and effective solution would be
to incorporate variance estimates (see Chapter 5), but as wewill discuss later, that approach
is neither robust nor efficient enough to be practical in the two cases of Figure 6.1.

In this chapter, we propose a simple and effective heuristic as a remedy that is based solely
on sampling densities. Even without proof of optimality, the empirical evaluation of our
heuristic shows consistent improvement over the balance heuristic and prior work across
all our test scenes. Implementing our heuristic is straightforward as it relies on the same
quantities as the balance heuristic. It also adds no noteworthy computation or memory
overhead.

The method has been previously published [Grittmann et al. 2021], I was the main author
of that paper. The source code can be found on GitHub1. It allows exact reproduction of
the figures throughout this chapter.

6.1 The problem: path correlation through splitting

The sampling techniques in bidirectional algorithms each generate full paths. Specifically,
for the path integral of length 𝑘 , each technique 𝑡 samples 𝑛𝑡 paths x = 𝑥1 . . . 𝑥𝑘 distributed
according to 𝑝𝑡 (x). As discussed in Section 4.2.2, these full paths are generally not sampled
independently of each other. In this chapter, we focus on ameliorating the adverse effects
of one particularly strong kind of correlation: the correlation due to splitting and path
reuse.

Splitting, and the conceptually identical reuse andmerging operations, forms𝑛 full samples
x by combining a single prefix y with 𝑛 suffixes z, as illustrated in Figure 6.2. Splitting
estimators take the form

⟨𝐹 ⟩split =
𝑛∑︁
𝑖=1

𝑓 (yz𝑖)
𝑛𝑝 (yz𝑖)

. (6.1)

Due to the shared prefix y, the paths x𝑖 are no longer mutually independent – they are
correlated.

The variance V[⟨𝐹 ⟩split] of the splitting estimator can be expressed as a weighted sum of
the variance 𝑉y due to the prefix and the variance 𝑉z due to the suffix [Bolin and Meyer
1997]. The prefix variance,

𝑉y := V

[
𝐹z(y)
𝑝 (y)

]
=

∫
X

𝐹 2
z
(y)

𝑝 (y) dy − 𝐹 2, (6.2)

1https://github.com/pgrit/MisForCorrelatedBidir

https://github.com/pgrit/MisForCorrelatedBidir

6.2 Correlation-aware balance heuristic | 87

is the variance of a hypothetical estimator that knows the exact integral

𝐹z(y) =
∫
X
𝑓 (yz) dz (6.3)

over all suffix paths. The suffix variance is the expectation of the variance of a primary
estimator ⟨𝐹 ⟩1 over all possible prefixes y:

𝑉z := E [V [⟨𝐹 ⟩1 | y]] =
∫
X

𝑓 2(x)
𝑝 (x) dx −

∫
X

𝐹 2
z
(y)

𝑝 (y) dy. (6.4)

While with independent sampling the total variance is inversely proportional to the sample
count, that is, V[⟨𝐹 ⟩𝑛] = 1

𝑛

(
𝑉y +𝑉z

)
, splitting reduces only the suffix variance,

V[⟨𝐹 ⟩split] = 𝑉y +
1

𝑛
𝑉z. (6.5)

Splitting can still be an efficient strategy, particularly when 𝑉y is low, for example, due to
highly glossy bounces in the prefix y, or if the cost of sampling the prefix is high [Bolin
and Meyer 1997; Rath et al. 2022].

Expanding the terms in Equation (6.5), we can write the variance in a form similar to that
of independent sampling (see Section 2.3.2):

𝑉 [⟨𝐹 ⟩split] =
∫
X

𝑓 2(x)
𝑛𝑝 (x) dx +

𝑛 − 1

𝑛

∫
X

𝐹 2
z
(y)

𝑝 (y) dy − 𝐹 2. (6.6)

Compared to the variance of independent sampling, the value is increased by the second
integral term – the covariance. Intuitively, the impact of the correlation depends on the
value of 𝑝 (y) compared to the full-path density 𝑝 (x). This insight is a key motivation
behind our heuristic.

6.2 Correlation-aware balance heuristic

The core idea of our heuristic is the same as the variance-aware weights: We modify the
balance heuristic by multiplying each term with an extra correction factor 𝑐𝑡 ,

𝑤correl,𝑡 (x) =
𝑐𝑡𝑛𝑡𝑝𝑡 (x)∑
𝑡 ′ 𝑐𝑡 ′𝑛𝑡 ′𝑝𝑡 ′ (x)

. (6.7)

This correction factor is constructed such that 𝑐𝑡 ≈ 1 in all caseswhere the balance heuristic
performs satisfactorily.

Mathematically, our goal is to correct the actual sample count 𝑛𝑡 to the effective sample
count 𝑛eff,𝑡 (see Section 2.3.4.1),

𝑐𝑡 =
𝑛eff,𝑡

𝑛𝑡
=

1

𝑛𝑡

𝑉y +𝑉z
𝑉y + 1

𝑛𝑡
𝑉z

. (6.8)

The variance factors from the previous chapter would satisfy this objective, since

𝑣𝑡 =

∫
𝑓 (𝑥)

𝑛𝑡𝑝 (𝑥) d𝑥

𝑉y + 1
𝑛
𝑉z

≈ 1

𝑛𝑡

𝑉y +𝑉z
𝑉y + 1

𝑛𝑡
𝑉z

. (6.9)

88 | Chapter 6: Correlation-aware MIS

y0

y1

y2

z0

z1

y3=z2y′1

y′2

y′3

z′1

z′2

z′0

Figure 6.3: Given a path x = yz (in black), we want to compute the probability of sampling a
similar path, i.e., one falling within the shaded region. We compute the probability that each edge
would produce a vertex x′𝑖 that falls within a disc around the actual vertex x𝑖 . The blue and orange
lines visualize how these are computed for the camera prefix and the light suffix, respectively.

However, unlike the low-variance examples discussed in the previous chapter, these ratios
no longer have the convenient lower bound of one. Therefore, they need to be computed
for all (correlated) techniques at all path lengths. At unbounded path lengths, this would
not even be possible at all, but even for moderate maximum lengths such as 𝑘 < 10, the
memory cost would be severe, as the number of techniques is quadratic in the path length.

Our solution is to construct a heuristic that approximates the above ratio without resorting
to auxiliary storage. For that, we compare the sampling densities of the prefix 𝑝 (y) and
the suffix 𝑝 (z). While this may sound simple, such a comparison has to be done with great
care, as the two densities are generally with respect to two different measures, as the prefix
and suffix paths do not have the same number of vertices. A direct comparison would not
be meaningful, so we have to first compute a representative unitless quantity for each.

6.2.1 Computing a unitless path probability

The idea is illustrated in Figure 6.3. The figure depicts a full path x, composed of a prefix y
and a suffix z. We approximate the probability that another prefix y′ or suffix z′, sampled
from the same PDF, would wind up within the shaded blue / orange region. For that, we
approximate the probability that each vertex 𝑦′𝑖 lands within some disc of radius 𝑟 around
the current 𝑦𝑖 .

Let 𝑃 (𝑦𝑖−1→𝑦′𝑖 ∈ 𝐷𝑟 (𝑦𝑖)) denote the probability that another vertex 𝑦′𝑖 , sampled from 𝑦𝑖−1,
lands within the disc neighborhood 𝐷𝑟 (𝑦𝑖) around the current vertex 𝑦𝑖 . Then, we define
our unitless probability measure to be the product of these probabilities, for all edges along
the prefix:

𝑃 (y) =
∏
𝑖

𝑃 (𝑦𝑖−1→𝑦′𝑖 ∈ 𝐷𝑟 (𝑦𝑖)) (6.10)

Similarly, we define the suffix probability,

𝑃 (z) = 𝑃 (𝑧′0 ∈ 𝐷𝑟 (𝑧0))
∏
𝑖

𝑃 (𝑧𝑖−1→𝑧′𝑖 ∈ 𝐷𝑟 (𝑧𝑖)), (6.11)

with the only difference that we also consider the probability of sampling an initial vertex
on the light source within the disc neighborhood. We did not consider the initial vertex
along the camera prefix, assuming that sampling the lens of the camera does not add sig-
nificant correlation. For complex lens systems, that might have to be adapted.

Computing the exact values for 𝑃 (y) or 𝑃 (z) above would require costly integration and
defeat the purpose of our heuristic. Instead, we use the cheap approximation used to define

6.2 Correlation-aware balance heuristic | 89

the surrogate PDF for the merging technique during MIS weighting [Georgiev et al. 2012a]
(see Section 4.1.2.4):

𝑃 (𝑦𝑖−1→𝑦′𝑖 ∈ 𝐷𝑟 (𝑦𝑖)) =
∫
𝐷𝑟

𝑝 (𝑦𝑖−1→𝑦′𝑖) d𝑦′𝑖 (6.12)

≈ min
{
𝑝 (𝑦𝑖−1→𝑦𝑖)𝜋𝑟2, 1

}
(6.13)

Where equality holds if the PDF 𝑝 (𝑦𝑖−1→𝑦𝑖) is constant within the disc neighborhood 𝐷𝑟 .
Clamping the result to one ensures that we obtain a valid discrete probability 𝑃 (𝑦𝑖−1→𝑦′𝑖 ∈
𝐷𝑟 (𝑦𝑖)) ∈ [0, 1]. The clamping is required whenever the majority of the mass of the PDF
is focused on a smaller region than the disc 𝐷𝑟 . For example, for near-specular scattering
with BSDF importance sampling. Such clamping was not needed for the MIS weighting
surrogate, as the merging radius is typically much smaller than the radius we use for our
path probability approximation.

In essence, we compute a unitless path probability by multiplying each edge’s sampling
PDF by 𝜋𝑟2 and clamping to one. The product of these is then the full sub-path probability.

6.2.2 Choosing a radius

What remains is setting the radius 𝑟 in Equation (6.12). The problem is similar to choosing
a good radius for photon mapping: Finding the best possible value is difficult, but simple
heuristics can go a long way. While in photon mapping the radius trades bias for variance,
we have different considerations to make. If the radius is too large, the probabilities will all
be close to one. This would make 𝑃 (y) ≈ 𝑃 (z) ≈ 1, and we revert to the balance heuristic.
If, on the other hand, the radius is too small, we penalize glossy bounces too much.

We could set the radius as a fraction of the scene extent; however, this approach is not
robust, for example, when the camera sees only a small part of a large scene. An alternative
is to use pixel footprints [Šik et al. 2016]. The resulting radius then depends on the image
resolution and the camera field of view. But increasing the image resolution should not
alter 𝑃 (x) as it has little effect on the path sampling variance. Therefore, we replace the
pixel footprint by a related quantity independent of the resolution or field of view – the
footprint of a one-degree viewing angle:

𝑟 := 𝑑 tan
𝜋

180
≈ 0.0175𝑑, (6.14)

d

r1◦

y0 y1

where 𝑑 = ∥y1 − y0∥ is the distance to the hit point along the camera ray, as sketched on
the right above.

6.2.3 Constructing our heuristic

With the definitions above, we can now construct our final heuristic. Again, the goal is to
reduce the weight, whenever the density of the prefix is much lower than the density of
the full path. To achieve that goal, we compute

90 | Chapter 6: Correlation-aware MIS

𝑐𝑡 (x) = max

{
𝑃 (y𝑡)

𝑃 (y𝑡) + 𝑃 (z𝑡) − 𝑃 (y𝑡)𝑃 (z𝑡)
,
1

𝑛𝑡

}
. (6.15)

That is, we compare the probability of sampling a similar prefix to the union probability of
sampling either a similar prefix or a similar suffix. We clamp the result to the known lower
bound of 1/𝑛𝑡 to increase accuracy for cases with small sample counts. For the merging
technique, where 𝑛𝑡 is in the millions, this clamping has no noticable effect, but it avoids
overshooting in the application to multiple connections, where 𝑛𝑡 is relatively small.

This ratio of probabilities was carefully chosen to satisfy the limiting behaviours of the
correction factor that we desire. First, if the prefix probability is high, then correlation is
likely small and the weight should not be changed, no matter what the suffix probability
is. Indeed, in that case the limit

lim
𝑃 (y𝑡)→1

𝑐𝑡 (x) = 1, (6.16)

andwe retain the balance heuristic weight. Second, if the prefix probability is low, then cor-
relation is likely strong and the weight should be reduced. There, our heuristic approaches
zero, which will be clamped to the known lower bound of 1/𝑛𝑡

lim
𝑃 (y𝑡)→0

𝑐𝑡 (x) =
1

𝑛𝑡
, (6.17)

unless the third scenario occurs, where both subpaths have low probability. This is an
indicator that the overall variance is high, but not dominated by the covariance. Then,

lim
𝑃 (y𝑡)→0
𝑃 (z𝑡)→0

𝑐𝑡 (x) = 1 (6.18)

and the balance heuristic weighting is still retained.

The second limit is required to achieve the desired improvements, while the first and last
limits ensure that the balance heuristic is not adversely affected in cases where correlation
is low. Other combinations of these probabilities are possible, like the much more aggres-
sive 𝑐𝑡 = 𝑃 (y𝑡) that only fulfills the first two limits. These alternatives achieve similar
speed-ups in the failure cases, but can result in poorer weighting when correlation is low
and hence did not yield consistent improvements over the balance heuristic in our tests.

6.3 Evaluation

We have applied our correlation-aware balance heuristic (6.7) to two rendering algorithms
that sample correlated paths: vertex connection and merging (VCM) and bidirectional path
tracing (BDPT) with splitting. In both methods, evaluating the correction factor (6.15) is
straightforward as it relies only on densities that the classical balance heuristic already
requires. We implemented the methods using the SeeSharp rendering framework. The
source code of our experiments is available on GitHub.

Our heuristic does not add any measurable overhead over the balance heuristic. In the
results presented below, we use the same set of path samples when comparing the various
MIS combinations on each scene. Thus, any differences between the images are solely due
to differences in the weighting.

https://github.com/pgrit/SeeSharp
https://github.com/pgrit/MisForCorrelatedBidir

6.3 Evaluation | 91

ROUGH GLASSES

relMSE (crop)relMSE (crop) 1.40 (1.00×)1.40 (1.00×) 0.27 (0.19×)0.27 (0.19×) 0.67 (0.48×)0.67 (0.48×) 0.38 (0.27×)0.38 (0.27×)

relMSE (crop)relMSE (crop) 0.48 (1.00×)0.48 (1.00×) 1.15 (2.37×)1.15 (2.37×) 0.45 (0.93×)0.45 (0.93×) 0.44 (0.91×)0.44 (0.91×)
relMSE, time

Reference

2.62 (1.00×), 84s

(a) Balance heuristic

0.60 (0.23×), 84s

(b) [Jen19]

1.76 (0.67×), 400s

(c) [GGSK19]

0.24 (0.09×), 84s

(d) Ours

MINIMALIST ROOM

relMSE (crop)relMSE (crop) 3.92 (1.00×)3.92 (1.00×) 0.35 (0.09×)0.35 (0.09×) 1.32 (0.34×)1.32 (0.34×) 0.51 (0.13×)0.51 (0.13×)

relMSE (crop)relMSE (crop) 5.14 (1.00×)5.14 (1.00×) 0.29 (0.06×)0.29 (0.06×) 2.40 (0.47×)2.40 (0.47×) 0.28 (0.05×)0.28 (0.05×)
relMSE, time 4.62 (1.00×), 44s 0.16 (0.04×), 44s 3.10 (0.67×), 56s 0.16 (0.04×), 44s

HOME OFFICE (a.k.a. The New Normal)

relMSE (crop)relMSE (crop) 0.48 (1.00×)0.48 (1.00×) 0.52 (1.09×)0.52 (1.09×) 0.45 (0.94×)0.45 (0.94×) 0.41 (0.86×)0.41 (0.86×)

relMSE (crop)relMSE (crop) 0.15 (1.00×)0.15 (1.00×) 0.16 (1.06×)0.16 (1.06×) 0.15 (0.98×)0.15 (0.98×) 0.14 (0.91×)0.14 (0.91×)
relMSE, time 0.44 (1.00×), 52s 0.47 (1.07×), 52s 0.42 (0.96×), 70s 0.40 (0.91×), 52s

Figure 6.4: Equal-sample comparison of different MIS heuristics for VCM (ours in bold). We provide
error values (relMSE) per crop and over the entire image. The values in parentheses are relative to the
balance heuristic (lower is better). In contrast to previous work, our heuristic is consistently better than
the balance heuristic, providing significant error reduction in failure cases and slight improvement
otherwise.

0.01 0.1 0.5 1 2 10

0.5

1

0.01 0.1 0.5 1 2 10

0.5

1

Radius scale

E
rr

or

MODERN HALL TARGET PRACTICE HOME OFFICE

MINIMALIST ROOM INDIRECT ROOM ROUGH GLASSES

Figure 6.5: Error relative to the balance heuristic (lower is better) when using different radii for our
heuristic. Each line corresponds to one scene. The values on the x-axis are scaling factors applied to the
radius computed using Equation (6.14). Our default choice (dashed line) is close to the optimal for all
scenes except Target Practice. That scene features uniform illumination where diffuse bounces from
the camera add little variance. A larger radius penalizes such bounces less and improves that specific
result, but performs notably worse on all other scenes.

92 | Chapter 6: Correlation-aware MIS

6.3.1 Vertex connection and merging

Our VCM implementation follows the original formulation [Georgiev et al. 2012a;
Hachisuka et al. 2012], with the exception that we forego merging at the second camera
vertex, y1. This technique produces an image identical to light tracing but with added
bias due to blurring. We compare our heuristic (6.7) to the classical balance heuristic, the
variance-aware balance heuristic [Grittmann et al. 2019] (see Chapter 5), as well as the
approach of Jendersie [2019] (which supersedes that of Jendersie and Grosch [2018]).

We show results on three scenes in Figure 6.4. On Rough Glasses andMinimalist Room,
the balance heuristic (a) suffers from the same failure as in Figure 4.9; namely, merging on
the surface close to the light receives far too high weight. On the Home Office scene, it
works well despite the indirect illumination around the walls close to the ceiling: the light
source is large, so the variance is high, the density is low, and merging on the ceiling is
beneficial.

The weighting scheme of Jendersie [2019] (b) eliminates the outliers in the top two scenes.
Unfortunately, on the Rough Glasses scene, which features surfaces with varying rough-
ness, it also deteriorates the quality of glossy reflections compared to the balance heuristic
(bottom zoom-ins). This limits the utility of that weighting scheme, since glossy reflections
of caustics are a key strength of VCM. The scheme also performs somewhat worse than
the balance heuristic on the Home Office scene.

More consistent improvements over the balance heuristic can be achieved with variance-
aware weighting (c) [Grittmann et al. 2019]. However, the variance estimates this method
uses are inaccurate, so it struggles at removing outliers completely, as seen in the Mini-
malist Room scene. Additionally, the high computational overhead of variance estimation
becomes a concern at larger path lengths. For the Minimalist Room and Home Office
scenes we cap the path length to five, which is somewhat expensive but still manageable
for the variance-aware scheme. However, highly glossy scenes require simulating much
longer paths. With up to ten bounces on theRoughGlasses scene, variance-awareweight-
ing takes roughly 4.7× longer to render than the balance heuristic or our approach.

Our heuristic (d) successfully eliminates outliers and retains glossy reflections at all rough-
ness levels. It never performs worse than the balance heuristic in any of our test scenes.
The only case where it does not deliver the best variance reduction is in the region shown
in the top zoom-ins of the Minimalist Room scene. There, the distances and angles be-
tween the wall, lamp shade, and light source are similar, and they are all diffuse. The path
density does not fully capture the differences in variance.

In Figure 6.5 we explore different choices for the radius parameter in our heuristic. We have
found our default choice (6.14) to be close to optimal on most scenes. In very uniformly
lit scenes, e.g. Target Practice, a larger radius produces slightly better results. There,
diffuse bounces from the camera add little variance and should be penalized less. This is
a limitation of our heuristic as in those cases a low prefix density does not indicate high
variance.

6.3 Evaluation | 93

LIVING ROOM

relMSE (crop)relMSE (crop) 0.06 (1.00×)0.06 (1.00×) 0.09 (1.56×)0.09 (1.56×) 0.06 (1.02×)0.06 (1.02×) 0.07 (1.12×)0.07 (1.12×)

relMSE (crop)relMSE (crop) 0.28 (1.00×)0.28 (1.00×) 0.07 (0.25×)0.07 (0.25×) 0.20 (0.72×)0.20 (0.72×) 0.07 (0.25×)0.07 (0.25×)
relMSE, time

Reference

19.01 (1.00×), 195s

(a) Balance heuristic

4.78 (0.25×), 195s

(b) [PRDD15]

7.24 (0.38×), 220s

(c) [GGSK19]

11.93 (0.63×), 195s

(d) Ours

MODERN HALL

relMSE (crop)relMSE (crop) 0.06 (1.00×)0.06 (1.00×) 0.09 (1.45×)0.09 (1.45×) 0.05 (0.86×)0.05 (0.86×) 0.08 (1.21×)0.08 (1.21×)

relMSE (crop)relMSE (crop) 0.20 (1.00×)0.20 (1.00×) 0.46 (2.25×)0.46 (2.25×) 0.21 (1.03×)0.21 (1.03×) 0.27 (1.29×)0.27 (1.29×)
relMSE, time 0.08 (1.00×), 155s 0.10 (1.31×), 155s 0.07 (0.93×), 210s 0.08 (1.09×), 155s

Figure 6.6: Equal-sample comparison of different MIS heuristics for BDPT with 100 shadow rays for
next-event estimation. Although the improvement is smaller in this case compared to VCM in Figure 6.4,
our heuristic still performs best on average.

OursOurs
relMSE:relMSE: 0.250.25

relMSE:relMSE: 0.380.38
Balance heur.Balance heur.

OursOurs
relMSE:relMSE: 0.250.25

relMSE:relMSE: 1.011.01
Balance heur.Balance heur.

OursOurs
relMSE:relMSE: 0.250.25

relMSE:relMSE: 1.541.54
Balance heur.Balance heur.

10 shadow rays 50 shadow rays 100 shadow rays

Figure 6.7: Zoom-ins of the Indirect Room scene from Figure 6.1 rendered with different shadow-
ray counts. With the balance heuristic, variance increases when more rays are used.

6.3.2 Bidirectional path tracing

For our second application, we reproduce the correlation problem of BDPT with mul-
tiple connections per camera vertex [Popov et al. 2015] in a simple setting: we use
multiple shadow rays for next-event estimation. In Figure 6.6 we compare our heuristic
against setting 𝑛 = 1 in the balance heuristic [Popov et al. 2015] and the variance-aware
weights [Grittmann et al. 2019]. Again, we feed the same set of path samples to all
methods. To highlight the problem and make noise more visible, we use 100 shadow
rays per camera vertex. Lower counts produce similar results, only less pronounced.
Figure 6.1 shows an example with 10 shadow rays, and Figure 6.7 compares different
splitting factors. All full-size images are included in the supplemental materials of the
original paper [Grittmann et al. 2021].

The balance heuristic produces outliers in the Living Room scene due to paths splitting on
the lamp shade after bouncing off the diffuse wall (bottom zoom-ins). To eliminate these
outliers, Popov et al. [Popov et al. 2015] set 𝑛 = 1 in the balance heuristic. Unfortunately,
doing so introduces new outliers in the mirror reflection (top zoom-ins). Camera prefixes
that bounce off the highly glossy mirror do not increase variance, hence the weight of
such paths should not be reduced. The presence of outliers makes the variance estimates
in the variance-aware weighting unreliable, preventing it from improving noticeably over
the balance heuristic. Our method consistently improves on the balance heuristic across

94 | Chapter 6: Correlation-aware MIS

the entire image.

The Modern Hall scene poses an interesting challenge. Illuminated by numerous light
sources from various directions, the variance in the camera prefix is low despite the diffuse
interactions. Our heuristic captures most, though not all of that effect. This is the only
scene where our heuristic is outperformed by the balance heuristic. Our result is still closer
to the balance heuristic than the overly conservative approach of Popov et al. In this scene,
the only method that manages to outperform the balance-heuristic are the more costly
variance-aware weights.

6.4 Limitations and future work

The BDPT application shows the limitations of our simple heuristic. If a scene is dominated
by uniform and diffuse illumination, as is the case in the Modern Hall, the sampling
density is a poor indicator of the variance, as zero variance would be achieved with a rather
uniform density. In other words, a low density can sometimes still yield low variance. By
design, our heuristic does not reflect that. Nevertheless, it performs consistently better
than the more aggressive solution of Popov et al., while remaining cheap to evaluate.

We have restricted our discussion to surface scattering from finite light sources; however,
extending our heuristic to infinite lights or volumetric scattering [Křivánek et al. 2014]
should be straightforward. All that is needed is an analogy of the disc approximation used
to make the sampling densities unitless and comparable. Applying our ideas to integration
problems beyond rendering could also be interesting. However, due to the complex ways
correlation affects variance, it is questionable whether a general and practical solution is
possible.

We do not have hard proofs about the optimality of our heuristic. The result is bounded
by the upper bound of Popov et al. [2015], and we only deviate from that if we have reason
to believe the correlation does not increase variance. While our empirical results might be
sufficient evidence to warrant the use in practice, it is still worthwhile to look for additional
guarantees, or alternative heuristics based on a more rigorous mathematical derivation.

Multiple importance sampling in the context of VCM also ignores another important as-
pect: the bias due tomerging. Accounting for this bias in theMISweights could help reduce
artifacts. In that direction, it would be interesting to augment the variance-aware weights
by bias estimates [Hachisuka et al. 2010], or to make our simpler heuristic bias-aware.

Lastly, having more robust MIS weights opens up possibilities for more creative correlated
rendering algorithms. Some prior work has avoided correlation, to also avoid issues with
MIS [Nabata et al. 2020]. Allowing correlation and utilizing our heuristic could provide ad-
ditional improvements to such methods. Furthermore, there has been some work on guid-
ing photons based onMIS-weighted contributions [Grittmann et al. 2018; Šik and Křivánek
2019]. The efficiency and/or robustness of such applications could also benefit from our
heuristic. The results in the next chapter are encouraging for that: There, we show that
using correlation-aware MIS weights helps to optimize the number of light paths based
solely on the far cheaper second moment rather than the full variance (see Section 7.5.1.3).

6.5 Conclusion | 95

6.5 Conclusion

We propose a simple heuristic to account for correlation due to path splitting in multiple
importance sampling for light transport simulation. Our heuristic is efficient and relies on
quantities that are already required by the balance heuristic. In contrast to prior work, our
approach has no overly harmful effects on the technique combination in cases where the
correlation has little or no impact on the variance. Implementing our heuristic takes little
effort and introduces negligible overhead.

Chapter 7

Efficiency-aware MIS

OursOursPath tracingPath tracing Full VCMFull VCM

Merge maskMerge mask

Fish

153k light paths
8 connections

10.89× faster than PT
2.71× faster than VCM

1

0

OursOursPath tracingPath tracing Full VCMFull VCM

Merge maskMerge mask

Target Practice

153k light paths
0 connections

1.72× faster than PT
3.54× faster than VCM

1

0

OursOursPath tracingPath tracing Full VCMFull VCM

Merge maskMerge mask

Fish

153k light paths
8 connections

10.89× faster than PT
2.71× faster than VCM

1

0

OursOursPath tracingPath tracing Full VCMFull VCM

Merge maskMerge mask

Target Practice

153k light paths
0 connections

1.72× faster than PT
3.54× faster than VCM

1

0

Figure 7.1: Two scenes that are challenging to render efficiently without user guidance: The caustics
and strong indirect illumination in the Fish scene (left) resolve much faster with a bidirectional method
such as VCM. But the simpler Target Practice scene (right) renders 2× slower with VCM than with
forward path tracing. Our method renders both scenes efficiently by automatically setting the number
of light subpaths to trace, the number of bidirectional connections to make, and in which pixels to
perform photon density estimation (the ‘merge mask’ specifies a probability for performing a photon
lookup in a pixel).

7.1 | 97

Comprehensive MIS combinations like the VCM algorithm [Georgiev et al. 2012a;
Hachisuka et al. 2012] are robust but not efficient. They are robust, because they can
render almost any scene in acceptable time. But they are not efficient, because the render
time for any specific scene is not always the lowest it could be.

Robustness is achieved if every effect potentially present in a scene can be sampled well
by at least one technique. The easiest way to achieve this robustness is by combining as
many sampling techniques as possible. The VCM algorithm, for example, is robust because
it combines all basic Monte Carlo path tracing techniques. Thus, for every illumination
effect there is at least one technique in VCM that can sample it reasonably well.

However, typical scenes usually do not contain every possible illumination effect. For
example, the Fish scene in Figure 7.1 is dominated by indirect illumination and features
some reflected caustics, while the Target Practice scene is mostly directly illuminated.
In both cases, many of the sampling techniques that comprise VCM are wasted. The Fish,
on the one hand, only benefits from merging in some regions of the image and requires
many bidirectional connections but fewer light subpaths or unidirectional samples. The
Target Practice scene, on the other hand, only benefits from bidirectional samples in a
small region around a light close to a surface. The most robust algorithms are often not
the most efficient when tasked with one specific scene.

How can we achieve a combination that is both robust and efficient? Our approach is to
adaptively select the set of sampling techniques and corresponding sample counts based
on statistics of the scene at hand. We start rendering a scene in a pilot iteration with the
cheapest strategy we have at our disposal: unidirectional path tracing. With the samples
from this pilot iteration, we can estimate the efficiency of differentMIS strategies and select
the best one.

In this chapter, we present an efficient and numerically robust estimation scheme to com-
pute the variances, second moments, or derivatives required to optimize the technique
selection and sample allocation in an MIS combination. Further, we introduce a simple
brute-force optimization scheme that can find good strategies even for complex algorithms
such as VCM. The work presented in this chapter has been published before [Grittmann
et al. 2022] and some text in the following is based on that paper, of which I am the main
author. Source code of our implementation is available on GitHub1.

Previous methods tackling the problem of sample allocation in MIS are discussed in Sec-
tion 3.2.3. These fall short in the context of VCM, because they either cannot incorporate
the vast cost differences or do not allow for weighting functions other than the balance
heuristic. Further, numerically robust and efficient computation of the required terms for
optimization remains challenging.

In the following, we first formulate the optimization objective in Section 7.1 and, in Sec-
tion 7.3, show how to estimate the required terms. Then, Section 7.2.3 introduces our
brute-force scheme. We conclude by discussing the results in a simple direct illumination
context (Section 7.4) and for the VCM algorithm (Section 7.5).

1https://github.com/pgrit/EfficiencyAwareMIS

https://github.com/pgrit/EfficiencyAwareMIS

98 | Chapter 7: Efficiency-aware MIS

7.1 Problem statement

The discussion in the following focuses on multi-sample MIS estimators (see Chapter 3)
that combine 𝑇 sampling techniques:

⟨𝐹 ⟩n =

𝑇∑︁
𝑡=1

𝑛𝑡∑︁
𝑖=1

𝑤𝑡 (𝑥𝑡,𝑖)
𝑓 (𝑥𝑡,𝑖)

𝑛𝑡𝑝𝑡 (𝑥𝑡,𝑖)
. (7.1)

Here, 𝑥𝑡,𝑖 is the 𝑖th sample from technique 𝑡 . We assume that the MIS weights are given by
the extended balance heuristic (see Chapters 5 and 6),

𝑤𝑡 (𝑥) =
𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥)∑
𝑡 ′ 𝑐𝑡 ′ (𝑥)𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

, (7.2)

of which the classic balance, power, maximum, and cut-off heuristics [Veach and Guibas
1995b] are special cases. The vector of sample counts

n = (𝑛1, . . . , 𝑛𝑇) (7.3)

is called the sample-allocation strategy, or strategy for short.

Our goal is to find the best such strategy. First, we quantify this based on the notion of effi-
ciency and discuss the differences between optimizing per-pixel and per-image efficiency.
Then, we derive the optimization objective, as well as a simplified version that replaces
variances by second moments.

7.1.1 Efficiency

The efficiency 𝜖 of a multi-sample MIS estimator ⟨𝐹 ⟩n for an integral 𝐹 is the reciprocal
product of expected error and expected cost:

𝜖 (n) = (V[⟨𝐹 ⟩n]C(n))−1 . (7.4)

Here, we assume unbiasedness, so the error is given by the variance V[⟨𝐹 ⟩n]. The cost is
typically a random variable, since it depends on, for example, the length of the sampled
path. That is, C(n) denotes the expected value of the cost of all samples consumed by
strategy n. Its exact definition is application specific, but in many common cases the cost
is a linear function of the sample counts,

C(n) =
𝑇∑︁
𝑡=1

𝛾𝑡𝑛𝑡 , (7.5)

where 𝛾𝑡 is the expected cost of a single sample from technique 𝑡 compared to all other
techniques. Note that for our purposes, the absolute value of the cost is irrelevant and
C(n) can be modelled by a heuristic that is (approximately) proportional to the actual cost.

7.1.2 Per-pixel and per-image efficiency

Rendering applications estimate many integrals at the same time. The value of each pixel
𝑗 is given by an integral 𝐹 𝑗 and the rendered image is a set of 𝑃 such integrals, with 𝑃 being

7.1 Problem statement | 99

the number of pixels. The efficiency in that case can be quantified in two different ways.
One is the sum of per-pixel efficiencies,

𝜖pixel(n) =
𝑃∑︁
𝑗=1

(
V[⟨𝐹 𝑗 ⟩n𝑗

]
𝐹 2
𝑗

C 𝑗 (n 𝑗)
)−1

, (7.6)

where n 𝑗 is the sample-allocation strategy used by the 𝑗th pixel. Dividing the pixel variance
by the squared ground truth 𝐹 𝑗 is optional; the resulting relative variance accounts for the
varying magnitudes of the individual integrals (i.e., bright and dark pixels). The alternative
is the efficiency of the sum,

𝜖image(n) =
(

𝑃∑︁
𝑗=1

V[⟨𝐹 𝑗 ⟩n𝑗
]

𝐹 2
𝑗

𝑃∑︁
𝑗=1

C 𝑗 (n 𝑗)
)−1

, (7.7)

which is the same as the expected relative mean-squared error (relMSE) multiplied by the
expected render time of the entire image. The latter is generally the more desirable objec-
tive as it is the metric typically used when evaluating rendering algorithms. The former,
however, can be a better choice if an orthogonal method, like image space adaptive sam-
pling, is already optimizing the distribution of error.

Maximizing the per-pixel efficiency 𝜖pixel is an easier objective, as the optimization can
be done independently per-pixel. There is, however, no guarantee that the error will be
uniformly distributed over the image. This can be problematic when used without an adap-
tive sampler in image space. Maximizing the per-image efficiency 𝜖image ensures a more
uniform convergence of the image as a whole and does not rely on an adaptive sampler.

7.1.3 Per-pixel and per-image sample counts

The granularity at which the sample counts can be set differs between rendering algo-
rithms. For instance, the number of light subpaths in bidirectional algorithms is necessar-
ily a global constant over the whole image, while the number of shadow rays can be tuned
on a per-pixel basis, or even spatially, depending on the position within the scene. In our
application, we consider combinations of per-pixel and per-image sample counts.

We express the sample strategy n 𝑗 in pixel 𝑗 as the concatenation of two vectors: the per-
pixel sample counts p 𝑗 and the per-image counts i:

n 𝑗 = (p 𝑗 , i). (7.8)

Consequently, the per-pixel cost

C 𝑗 (n 𝑗) = C 𝑗 (p 𝑗) +
1

𝑃
C 𝑗 (i) (7.9)

is the sum of the cost of all per-pixel samples,C 𝑗 (p 𝑗), and the cost of the per-image samples
C 𝑗 (i). The latter is divided by the number of pixels 𝑃 to account for the amortization of
the cost across all pixels.

100 | Chapter 7: Efficiency-aware MIS

7.1.4 Second moment

All previousmethods have simplified the problem by replacing the varianceV[⟨𝐹 ⟩n] by the
second moment M[⟨𝐹 ⟩n]. While our brute-force optimization supports the full variance,
the second moment is much cheaper to estimate.

The variance of a multi-sample MIS estimator has the form

V[⟨𝐹 ⟩n] = M[⟨𝐹 ⟩n] − 𝑟n, (7.10)

where 𝑟n is a residual term (see Section 2.3.3). The second moment, when using the ex-
tended balance heuristic is:

M[⟨𝐹 ⟩n] =
∫
X

𝑓 2(𝑥)∑𝑡 𝑤n,𝑡 (𝑥)𝑐𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥)

d𝑥 . (7.11)

As discussed in Section 2.3.3, the second moment is a close approximation of the variance
in many cases, with sample correlation causing an important exception. We found that
restricting ourselves to the second moment produces good results even with correlated
techniques like photon mapping, as long as the correlation-aware or variance-aware MIS
weights are used at the same time. Our brute-force optimizer, introduced in the next sec-
tion, can trivially support covariance or full variance, but finding an efficient estimation or
approximation scheme for the required terms remains an open problem.

7.2 Optimization

The strategy n that maximizes the efficiency can be found in two ways: via convex opti-
mization, as done by previous work, or via an (exhaustive) search. In the following, we first
formulate the optimization objective and discuss how to handle combinations of per-pixel
and per-image sample counts. Based on this formulation, we then show how to extend
previous convex optimization approaches to support diverse sample cost and per-image
sample counts. Lastly, we introduce our brute-force search scheme that supports the ex-
tended balance heuristic (7.2), full variance, and arbitrary cost functions.

7.2.1 Objective and algorithm

In general terms, we set out to find the sample allocation strategy nminimizing the work-
normalized second moment,

n = argmin
n

M[⟨𝐹 ⟩n]C(n) ≈ argmax
n

𝜖 (n), (7.12)

which approximately maximizes the efficiency. The approximation error depends on how
closely the second moment𝑀 approximates the variance.

We handle per-pixel and per-image techniques by a two-step approach. First, per-pixel
counts p 𝑗 are found for each pixel, by approximately maximizing the sum of efficiencies

p 𝑗 = argmin
p𝑗

M[⟨𝐹 ⟩(p𝑗 ,i)]C(p 𝑗 , i) ≈ argmax
p𝑗

𝜖pixel(n 𝑗), (7.13)

7.2 Optimization | 101

which can be done independently on a pixel-by-pixel basis. The per-image counts i are
left as a free variable, that is, each pixel picks an optimal combination of per-pixel and
per-image counts, but the per-image values are ignored.

With the per-pixel counts fixed, the second step is to find the per-image counts by approx-
imately maximizing the efficiency of the sum

i = argmin
i

𝑃∑︁
𝑗=1

M[⟨𝐹 𝑗 ⟩n𝑗
]

𝐹 2
𝑗

𝑃∑︁
𝑗=1

C 𝑗 (n 𝑗) ≈ argmax
i

𝜖image(n). (7.14)

The second step heeds the per-pixel counts p 𝑗 determined by the first step.

In principle, it is possible to directly maximize 𝜖image and find the optimal per-pixel and
per-image counts. By separating the problem into two steps, we reduce the size of the
search space and make the optimization more efficient. However, the local optimum that
is found by this approach is not necessarily a global optimum. In practice, this can be
compensated by combining our method with image-space adaptive sampling.

In the following two sections, we show how the individual optimization problems in Equa-
tions (7.13) and (7.14) can be solved via convex optimization or searching.

7.2.2 Convex optimization

Convex optimization is only possible if we impose additional assumptions. Naturally, the
objective has to be convex, which only holds for linear cost functions and the classic bal-
ance heuristic. Furthermore, the range of possible values for the individual sample counts
has to be large enough such that quantization error is negligible. In the following, we
explain the procedure on the example of Equation (7.14), the per-image sample count op-
timization.

If the cost is linear in the sample counts, C(n) =
∑

𝑡 𝛾𝑡𝑛𝑡 , we can perform a change of
variables to turn the generally non-convex objective (7.14) into a convex one. To that end,
we define the relative computation time invested in technique 𝑡

𝑟𝑡 =
𝛾𝑡𝑛𝑡∑
𝑡 ′ 𝛾𝑡 ′𝑛𝑡 ′

∈ [0, 1] (7.15)

and substitute it into (7.14), together with our assumption of a linear cost and the classic
balance heuristic, to obtain a convex objective:

𝑃∑︁
𝑗=1

M[⟨𝐹 𝑗 ⟩n]
𝐹 2
𝑗

𝑃∑︁
𝑗=1

C 𝑗 (n) =
𝑃∑︁
𝑗=1

∑
𝑡 𝛾𝑡𝑛𝑡

𝐹 2
𝑗

∫
X

𝑓 2(𝑥)∑
𝑡 𝑛𝑡 𝑝𝑡 (𝑥)

d𝑥 (7.16a)

=

𝑃∑︁
𝑗=1

1

𝐹 2
𝑗

∫
X

𝑓 2(𝑥)∑
𝑡 𝑟𝑡

𝑝𝑡 (𝑥)
𝛾𝑡

d𝑥 =:𝑊 (r). (7.16b)

For simplicity, but without loss of generality, we assume that all sample counts are per-
image. The per-pixel counts would appear as additional constants that do not change the
structure of the problem.

102 | Chapter 7: Efficiency-aware MIS

The resulting𝑊 (r) is a convex function of the sampling ratio vector r = (𝑟1, . . . , 𝑟𝑇) over
the domain [0, 1]𝑇 [Sbert et al. 2019]. The constraint that the ratios must sum to one,∑

𝑡 𝑟𝑡 = 1, can be easily incorporated by replacing the last ratio 𝑟𝑇 = 1 − ∑
𝑡<𝑇−1 𝑟𝑡 by

one minus the sum of all others [Murray et al. 2020; Sbert et al. 2019]. Then, the partial
derivatives are:

d

d𝑟𝑡
𝑊 (r) =

𝑃∑︁
𝑗=1

1

𝐹 2
𝑗

∫
X

𝑓 2(𝑥)(∑
𝑡 𝑟𝑡

𝑝𝑡 (𝑥)
𝛾𝑡

)2 (
𝑝𝑇 (𝑥)
𝛾𝑇

− 𝑝𝑡 (𝑥)
𝛾𝑡

)
d𝑥 (7.17a)

d2

d𝑟𝑡2
𝑊 (r) = 2

𝑃∑︁
𝑗=1

1

𝐹 2
𝑗

∫
X

𝑓 2(𝑥)(∑
𝑡 𝑟𝑡

𝑝𝑡 (𝑥)
𝛾𝑡

)3 (
𝑝𝑇 (𝑥)
𝛾𝑇

− 𝑝𝑡 (𝑥)
𝛾𝑡

)2
d𝑥 . (7.17b)

We can apply the same Newton-Raphson root-finding used by previous work [Murray et
al. 2020; Sbert et al. 2019] and find the optimal r by iteratively updating

r𝑛 = r𝑛−1 −H−1
𝑟 [𝑊] (r𝑛−1)∇r𝑊 (r𝑛−1), (7.18)

where H−1
r [𝑊] and ∇r𝑊 are the inverse Hessian and the gradient, respectively. Alter-

natively, we can also use a slower but simpler first-order gradient descent [Müller 2019;
Rath et al. 2020], or use a diagonal approximation of the Hessian to avoid costly matrix
inversion and reduce the number of required integrals.

Given the optimized sampling rates 𝑟𝑡 , the last step is to find corresponding 𝑛𝑡 . This can
be achieved by first substituting the optimized 𝑟𝑡 into Equation (7.15) and solving for 𝑛𝑡 :

𝑟𝑡 =
𝛾𝑡𝑛𝑡∑
𝑡 ′ 𝛾𝑡 ′𝑛𝑡 ′

⇔ 𝑛𝑡 =
𝑟𝑡

𝛾𝑡

(
𝛾𝑡𝑛𝑡 +

∑︁
𝑡 ′≠𝑡

𝛾𝑡 ′𝑛𝑡 ′

)
⇔ 𝑛𝑡 − 𝑟𝑡𝑛𝑡 =

∑︁
𝑡 ′≠𝑡

𝛾𝑡 ′𝑛𝑡 ′ (7.19a)

⇔ 𝑛𝑡 =

∑
𝑡 ′≠𝑡 𝛾𝑡 ′𝑛𝑡 ′

1 − 𝑟𝑡
. (7.19b)

The resulting system of equations has infinitely many solutions. This is by construction,
as the 𝑟𝑡 only define a ratio between the different sample counts. If n = (𝑛1, . . . , 𝑛𝑇) is a
solution, then so is anymultiple like (10𝑛1, . . . , 10𝑛𝑇). Consequently, additional constraints
have to be imposed to find an exact solution. Either by imposing a total budget 𝐵 =

∑
𝑡 𝑛𝑡

or by fixing the sample count of one technique to a constant, for example 𝑛1 = 1. In the
context of bidirectional algorithms, the latter is a good choice as it can enforce stratification
by fixing the number of camera subpaths per pixel.

Section 7.3 shows how the required partial derivatives can be efficiently estimated from
arbitrary MIS strategies. Thereby, the initial guess of the Newton-Raphson optimizer can
be completely decoupled from the actual sample allocation strategy used to gather the
statistics.

7.2.3 Brute-force optimization

Convex optimization is not possible if MIS weights other than the classic balance heuristic
are used. As an alternative, we employ a simple brute-force search, illustrated in Figure 7.2.

7.2 Optimization | 103

Es
ti
m
at
ed

m
om

en
ts

Per-pixel sample counts

Optimize per-pixel

Optimize per-image

Result

light paths

W
or
k-
no

rm
al
iz
ed

m
om

en
t
(lo

g)denoise

R
en

de
re
d
im

ag
e

n=154k, c=0

n=614k, c=16

Per-image count

1

2

0 154k 307k 614k

n=614k

c=

Figure 7.2: Our optimization applied to a subset of bidirectional path tracing. In this example, we
control the number of connections per pixel, while the number of light paths is set per image. Decisions
are based on cheaply estimated second moments (shown in false color in the top left) and the denoised
rendering (bottom left). The per-pixel counts are determined first (1), then we pick the best per-image
counts (2) conditionally on those. The false color images in the bottom right depict the gathered relative
moments for different numbers of light paths, given the fixed numbers of connections.

First, we render an image and estimate the second moments of different candidate sample
allocation strategies. We then pick the best per-pixel counts (1) via a simple search. Based
on these decisions, we pick the conditionally best per-image sample counts (2). In the
following, we describe these steps in more detail.

We start by identifying a set of 𝑁 candidate sample-allocation strategies {n1, . . . n𝑁 }. This
can be done either by (regularly) sampling the range of allowed sample counts, or by ap-
plying prior knowledge and domain-specific assumptions to identify the most promising
candidates. During rendering, we estimate the second moments 𝑀 [⟨𝐹 ⟩n] of all candidate
strategies n ∈ {n1, . . . n𝑁 } and simply pick the best one.

There are two essential tricks to make this approach practical. First, an efficient estimation
scheme for the second moments is needed, that does not require samples from all candi-
dates n. The next section shows how to accomplish that. Second, careful filtering should
be applied to the second moment estimates, such that robust decisions can be made even
with very few samples.

The pseudocode in Algorithm 3 provides an overview. Given a set of candidate strategies n,
a cost function 𝐶 , and a pilot strategy m = (𝑚1, . . . ,𝑚𝑇), the FindBestStrategy function
(lines 1 - 5) determines the best per-pixel and per-image sample counts.

First, we render an image I = {⟨𝐼1⟩, . . . , ⟨𝐼𝑃 ⟩}with one set of samples from the pilot strategy.
The per-pixel second moments of all candidates are estimated on-the-fly and accumulated
in a moment image M = {⟨𝑀1⟩1, . . . , ⟨𝑀𝑃 ⟩𝑁 } storing one second moment per pixel and
candidate.

104 | Chapter 7: Efficiency-aware MIS

Algorithm3: Pseudo-code for our optimization. Given a pilot strategym, a set of candidate strategies
n1, . . . , n𝑁 , and a cost function 𝐶 , we render an image and estimate the second moments. Then, we
first optimize all per-pixel sample counts p𝑗 , followed by all per-image sample counts i.

1: function FindBestStrategy(m, n1, . . . , n𝑁 , 𝐶)
2: M, I = EstimateMomentsImage(m, n1, . . . , n𝑁)
3: {p𝑗 } = OptPerPixel(M, n1, ... , n𝑁 , 𝐶)
4: i = OptPerImage(M, I, n1, ... , n𝑁, 𝐶 , {p𝑗 })
5: return {p𝑗 }, i ← Set of per-pixel sample counts, per-image sample counts

6: function OptPerPixel(M, n1, . . . , n𝑁 , 𝐶)
7: {𝑀1,1, . . . , 𝑀𝑃,𝑁 } = FilterImage({⟨𝑀1⟩1 . . . ⟨𝑀𝑃 ⟩𝑁 }) ← Reduce noise in moments
8: for pixel index 𝑗 = 1..𝑃 do

9: (p𝑗 , _) = argmin𝑀 𝑗,n𝐶 𝑗 (n) ← Via linear search
10: return FilterImage({p1, . . . , p𝑃 }) ← Avoid abrupt changes in sample counts

11: function OptPerImage(M, I, n1, . . . , n𝑁, 𝐶 , {p𝑗 })
12: {𝐼1, . . . , 𝐼𝑃 } = DenoiseImage(⟨𝐼1⟩, . . . , ⟨𝐼𝑃 ⟩)
13: {𝑅i} = {0, . . . , 0} ← Initialize total relative moment per image-level candidate
14: {𝐶i} = {0, . . . , 0} ← Initialize total cost per image-level candidate
15: for pixel index 𝑗 = 1..𝑃 do

16: for all candidate strategy index 𝑘 = 1..𝑁 do

17: if p𝑗 ≠ p𝑘 then

18: continue ← Skip candidates with different local counts
19: 𝑅i𝑘 += ⟨𝑀 𝑗 ⟩𝑘 · 𝐼−2𝑗 ← Accumulate relative moments
20: 𝐶i𝑘 += 𝐶 𝑗 (n𝑘) ← Accumulate cost
21: return argmin{𝑅i ·𝐶i} ← Pick best per-image counts via simple search

Second, the per-pixel decisions (7.13) are made with a simple search. First, the second
moment image M is filtered (line 7) to reduce noise. Then, in a loop over all pixels (line
8) the best per-pixel sample values are found by a simple linear search for the smallest
work-normalized second moment (line 9). We also filter the resulting “image” of per-pixel
sample counts to increase robustness (line 10). To that end, we found that a combination of
dilation (to fill gaps) and blur (to avoid abrupt changes) effectively prevents visible artifacts.

Finally, the per-image decisions (7.14) are made. Since the ground truth pixel values are
unknown, we run a denoiser on the rendered image I from the pilot iteration (line 12). For
each per-image candidate i, we compute the marginalized relative second moment and the
total cost in a loop over all pixels (lines 13 - 20). In each pixel, we iterate over all candidates,
and disregard those that have different per-pixel settings (lines 17, 18). The best per-image
sample counts are then again found via a simple linear search over the accumulated relative
work-normalized second moments (line 21).

7.3 Computing the moments, means, or derivatives

Convex optimization and brute-force search both require estimates of the second moments
or their derivatives. In simple low-dimensional applications such as direct illumination,
these can be easily obtained via direct Monte Carlo estimation [Sbert et al. 2019]. However,
for high-dimensional cases like bidirectional path tracing, numerical robustness is an issue.

7.3 Computing the moments, means, or derivatives | 105

In the following, we present a numerically robust estimation scheme to compute second
moments, MIS weighted means, or derivatives of arbitrary strategies n given the samples
of a different strategy m.

Consider the second moment of an MIS estimator using the candidate strategy n:

M[⟨𝐹 ⟩n] =
∫
X

𝑓 2(𝑥)∑𝑡 𝑤n,𝑡 (𝑥)𝑐𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥)

d𝑥 . (7.20)

In theory, it is trivial to construct a naive MIS estimator using a pilot strategy m:

⟨M[⟨𝐹 ⟩n]⟩m =

𝑇∑︁
𝑡=1

𝑚𝑡∑︁
𝑖=1

𝑤m,𝑡 (𝑥𝑡,𝑖)
𝑚𝑡𝑝𝑡 (𝑥𝑡,𝑖)

𝑓 2(𝑥𝑡,𝑖)
∑

𝑡 𝑤n,𝑡 (𝑥𝑡,𝑖)𝑐𝑡 (𝑥𝑡,𝑖)∑
𝑡 𝑐𝑡 (𝑥𝑡,𝑖)𝑛𝑡𝑝𝑡 (𝑥𝑡,𝑖)

. (7.21)

Like any other MIS estimator, we take some samples 𝑥𝑡,𝑖 , evaluate the integrand, divide by
the PDF 𝑝𝑡 (𝑥𝑡,𝑖) and sample count 𝑚𝑡 , and multiply by the MIS weight 𝑤m,𝑡 (𝑥𝑡,𝑖). How-
ever, there is a problem with this formulation: The sum in the denominator contains the
PDFs 𝑝𝑡 (𝑥). While that is not problematic for simple low-dimensional cases, it is a ma-
jor problem for bidirectional algorithms. There, the PDF is a high-dimensional product of
many local sampling densities, each of which can be arbitrarily high. The full product can
frequently not be represented by floating point arithmetic, especially if it involves highly
glossy surfaces or even Dirac deltas. On top of that, the summation can cause catastrophic
cancellation due to vastly different magnitudes.

A numerically stable but impractical alternative is to estimate the second moment of n by
using samples from this exact strategy. In that case, a numerically stable estimator is trivial
to obtain, by simply squaring the sample weights:

⟨M[⟨𝐹 ⟩n]⟩n =

𝑇∑︁
𝑡=1

𝑛𝑡∑︁
𝑖=1

(
𝑤n,𝑡 (𝑥𝑡,𝑖) 𝑓 (𝑥𝑡,𝑖)

𝑛𝑡𝑝𝑡 (𝑥𝑡,𝑖)

)2
. (7.22)

That, however, would defeat the purpose of our optimization, as wewould have to generate
a full rendering iteration with every possible sample allocation strategy.

7.3.1 Our second moment estimator

Our solution is to square the samples of the pilot strategy, and multiply them by a correc-
tion factor 𝛿 to obtain the desired second moment:

⟨M[⟨𝐹 ⟩n]⟩m =

𝑇∑︁
𝑡=1

𝑚𝑡∑︁
𝑖=1

(
𝑤m,𝑡 (𝑥𝑡,𝑖) 𝑓 (𝑥𝑡,𝑖)

𝑚𝑡𝑝𝑡 (𝑥𝑡,𝑖)

)2
𝛿n,m(𝑥𝑡,𝑖). (7.23)

The correction factor is derived in Section 7.A. It is a ratio of the weighted sums of MIS
weights𝑤a of a proxy strategy a:

𝛿n,m(𝑥) =
(∑

𝑡
𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)

)2 ∑
𝑡 𝑐𝑡 (𝑥) 𝑛𝑡𝑎𝑡𝑤a,𝑡 (𝑥)(∑

𝑡
𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)

)2 ∑
𝑡 𝑐𝑡 (𝑥)𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)

. (7.24)

The proxy strategy a = (a1, . . . , a𝑇) can be chosen arbitrarily. It serves two practical pur-
poses: (1) it enables numerically stable computation and (2) it separates out terms not

106 | Chapter 7: Efficiency-aware MIS

Algorithm 4: Pseudo-code for our second moment estimation. Given a pilot strategy and a set of
candidate strategies, we render an image and compute the per-pixel second moments of all candidates
on-the-fly in the inner loop.

1: function EstimateMomentsImage(m, n1, . . . , n𝑁)
2: I = {⟨𝐼1⟩, . . . , ⟨𝐼𝑃 ⟩} = {0, . . . , 0} ← Initialize pixel estimates
3: M = {⟨𝑀1⟩1, . . . , ⟨𝑀𝑃 ⟩𝑁 } = {0, . . . , 0} ← 𝑁 moments per pixel
4: a = {∑𝑁

𝑘=1
𝑛1
𝑘/𝑁 , . . . ,

∑𝑁
𝑘=1

𝑛𝑇
𝑘/𝑁 } ← Set proxy strategy (arbitrary)

5: for pixel index 𝑗 = 1..𝑃 do

6: for technique index 𝑡 = 1..𝑇 do

7: for sample index 𝑖 = 1..𝑚𝑡 do

8: 𝑦 =
𝑤m,𝑡 (𝑥𝑡,𝑖) 𝑓𝑗 (𝑥𝑡,𝑖)

𝑚𝑡𝑝𝑡 (𝑥𝑡,𝑖) ← MIS-weighted pixel 𝑗 estimate
9: ⟨𝐼 𝑗 ⟩ += 𝑦 Æ Precompute terms in 𝛿n,m(𝑥𝑡,𝑖) independent of n
10: Precompute

((∑𝑡
𝑚𝑡
𝑎𝑡

𝑤a,𝑡 (𝑥𝑡,𝑖))2∑
𝑡𝑐𝑡 (𝑥𝑡,𝑖)

𝑚𝑡
𝑎𝑡

𝑤a,𝑡 (𝑥𝑡,𝑖)
,
𝑤a,1 (𝑥𝑡,𝑖)

𝑎1
, . . . ,

𝑤a,𝑇 (𝑥𝑡,𝑖)
𝑎𝑇

)
11: for candidate strategy index 𝑘 = 1..𝑁 do

12: ⟨𝑀 𝑗 ⟩𝑘 += 𝑦2 · 𝛿n𝑘 ,m(𝑥𝑡,𝑖) ← Moment estimate (7.23)
13: return M, I

involving 𝑛𝑡 so that they can be pre-computed and reused for all candidate moments. For
numerical stability, it is beneficial for 𝑛𝑡 and 𝑎𝑡 to have similar orders. Thus, we set each
𝑎𝑡 to the average of 𝑛𝑡 across all candidates.

For the classical balance heuristic (i.e., 𝑐𝑡 (𝑥) = 1) the correction factor simplifies to

𝛿baln,m(𝑥) =
∑

𝑡
𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡
𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)

. (7.25)

The process is outlined in Algorithm 4. As usual, we render an image by iterating over
all pixels and taking samples from all techniques. The number of samples is determined
by the pilot strategy m. Each sample is added to the image (lines 8 and 9). Additionally,
we compute the MIS weights of the proxy strategy (line 10). With that per-sample data,
we iterate over all candidates and accumulate the second moment estimates using our
correction factor (lines 11 and 12).

7.3.2 Our squared mean estimator

The moment estimation can be easily extended to full variance computations of uncorre-
lated techniques2. In that case, we additionally need the squared MIS weighted means:

`2n,𝑡 =

(∫
X
𝑤n,𝑡 (𝑥) 𝑓 (𝑥) d𝑥

)2
. (7.26)

Due to the squaring, these integrals have to be estimated individually. Hence, operating
with full variances is not feasible for involved combinations like bidirectional path tracing.

We can adopt the same approach as for the secondmoments and estimate theMISweighted
means via samples from the pilot strategy m. Therefor, we replace the MIS weight of the

2Estimating the correlation is more challenging and requires some form of splitting or merging to happen
also in the pilot strategy.

7.3 Computing the moments, means, or derivatives | 107

candidate strategy n by a ratio of MIS weights involving the proxy strategy a (7.40d):

∫
X
𝑤n,𝑡 (𝑥) 𝑓 (𝑥) d𝑥 =

∫
X

𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡 ′
𝑛𝑡 ′
𝑎𝑡 ′
𝑤a,𝑡 ′ (𝑥)

𝑓 (𝑥) d𝑥 . (7.27)

The corresponding multi-sample MIS estimator using the pilot strategy m,

⟨`n,𝑡 ⟩m =

𝑇∑︁
𝑡=1

𝑚𝑡∑︁
𝑖=1

(
𝑤m,𝑡 (𝑥𝑡,𝑖) 𝑓 (𝑥𝑡,𝑖)

𝑚𝑡𝑝𝑡 (𝑥𝑡,𝑖)

) 𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡 ′
𝑛𝑡 ′
𝑎𝑡 ′
𝑤a,𝑡 ′ (𝑥)

, (7.28)

again simply multiplies a correction factor on the sample weights, but this time without
squaring them.

7.3.3 Our derivative estimator

The derivatives of the convex objective, Equations (7.17a) and (7.17b), can be estimated in
the same way. To demonstrate, we rewrite the integral in the first derivative as follows:

∫
X

𝑓 2(𝑥)(∑
𝑡 ′ 𝑟𝑡 ′

𝑝𝑡 ′ (𝑥)
𝛾𝑡 ′

)2 (
𝑝𝑇 (𝑥)
𝛾𝑇

− 𝑝𝑡 (𝑥)
𝛾𝑡

)
d𝑥 (7.29a)

= 𝐶 (n)2
∫
X

𝑓 2(𝑥)
(∑𝑡 ′ 𝑛𝑡 ′𝑝𝑡 ′ (𝑥))2

(
𝑝𝑇 (𝑥)
𝛾𝑇

− 𝑝𝑡 (𝑥)
𝛾𝑡

)
d𝑥 (7.29b)

= 𝐶 (n)2
∫
X

𝑓 2(𝑥)∑
𝑡 ′ 𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

(
𝑤n,𝑇 (𝑥)
𝑛𝑇𝛾𝑇

− 𝑤n,𝑡 (𝑥)
𝑛𝑡𝛾𝑡

)
d𝑥 =: 𝐶 (n)2𝐷n,𝑡 (7.29c)

That is, we first re-introduce the cost function, by computing an n that corresponds to
the ratio r. Then, we split the squared sum in the denominator and use it to replace the
difference of PDFs by a difference of MIS weights.

The correspondingMIS estimator, using the pilot strategym, is then obtained by combining
the two correction factors used for the second moment and the mean,

⟨𝐷n,𝑡 ⟩m =

𝑇∑︁
𝑡=1

𝑚𝑡∑︁
𝑖=1

(
𝑤m,𝑡 (𝑥𝑡,𝑖) 𝑓 (𝑥𝑡,𝑖)

𝑚𝑡𝑝𝑡 (𝑥𝑡,𝑖)

)2
𝛿n,m(𝑥𝑡,𝑖)

1
𝑎𝑇𝛾𝑇

𝑤a,𝑇 (𝑥) − 1
𝑎𝑡𝛾𝑡

𝑤a,𝑡 (𝑥)∑
𝑡 ′

𝑛𝑡 ′
𝑎𝑡 ′
𝑤a,𝑡 ′ (𝑥)

, (7.30)

and multiplying them on the squared sample weights, as done for the second moments.

The second derivative can be computed in the samemanner, applying a binomial expansion

108 | Chapter 7: Efficiency-aware MIS

to convert the squared difference of PDFs into MIS weights:∫
X

𝑓 2(𝑥)(∑
𝑡 ′ 𝑟𝑡 ′

𝑝𝑡 ′ (𝑥)
𝛾𝑡 ′

)3 (
𝑝𝑇 (𝑥)
𝛾𝑇

− 𝑝𝑡 (𝑥)
𝛾𝑡

)2
d𝑥 (7.31a)

= 𝐶 (n)3
∫
X

𝑓 2(𝑥)
(∑𝑡 ′ 𝑛𝑡 ′𝑝𝑡 ′ (𝑥))3

(
𝑝𝑇 (𝑥)
𝛾𝑇

− 𝑝𝑡 (𝑥)
𝛾𝑡

)2
d𝑥 (7.31b)

= 𝐶 (n)3
∫
X

𝑓 2(𝑥)
(∑𝑡 ′ 𝑛𝑡 ′𝑝𝑡 ′ (𝑥))3

(
𝑝2
𝑇
(𝑥)
𝛾2
𝑇

+
𝑝2𝑡 (𝑥)
𝛾2𝑡

− 2
𝑝𝑇 (𝑥)𝑝𝑡 (𝑥)

𝛾𝑇𝛾𝑡

)
d𝑥 (7.31c)

= 𝐶 (n)3
∫
X

𝑓 2(𝑥)∑
𝑡 ′ 𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

(
𝑤2
n,𝑇 (𝑥)
𝑛2
𝑇
𝛾2
𝑇

+
𝑤2
n,𝑡 (𝑥)
𝑛2𝑡 𝛾

2
𝑡

− 2
𝑤n,𝑇 (𝑥)𝑤n,𝑡 (𝑥)

𝑛𝑇𝑛𝑡𝛾𝑇𝛾𝑡

)
d𝑥 (7.31d)

=: 𝐶 (n)3𝐷2
n,𝑡 (7.31e)

The correction factor for the corresponding MIS estimator is:

𝛿n,m(𝑥𝑡,𝑖) =

(
1

𝑎𝑇𝛾𝑇
𝑤a,𝑇 (𝑥)

)2
+

(
1

𝑎𝑡𝛾𝑡
𝑤a,𝑡 (𝑥)

)2
− 2 1

𝑎𝑇𝛾𝑇
𝑤a,𝑇 (𝑥) 1

𝑎𝑡𝛾𝑡
𝑤a,𝑡 (𝑥)(∑

𝑡 ′
𝑛𝑡 ′
𝑎𝑡 ′
𝑤a,𝑡 ′ (𝑥)

)2 . (7.32)

Derivatives, second moments, and variances can be computed by accumulating the same
basic per-sample quantities: the sample weights of the pilot and the MIS weights of the
proxy strategy. Hence, more elaborate optimization schemes are easily facilitated by com-
bining, for example, moments and derivatives.

7.4 Application: Direct illumination

One possible application of our theory is ray-traced direct illumination. There, BSDF im-
portance sampling and light source sampling (aka next event estimation) are combined via
MIS. In our application, rendering is done in iterations; each iteration traces a single pri-
mary ray per pixel and then estimates direct illumination with a fixed budget of 32 samples,
distributed across the two techniques. The goal is to determine the optimal percentage of
BSDF samples per pixel.

We chose this application not because it is of high practical relevance, but because it is a
context where a comparison to previous work is possible. There is little potential for im-
provement in this application: There are just two techniques, the sampling costs of which,
while not identical, are at least on the same order of magnitude, and the problem is low-
dimensional, i.e., PDFs can be computed directly. Unsurprisingly, the results, summarized
in Figure 7.3, show only marginal improvement from our method over previous work.

The figure depicts the BSDF sampling percentages as false-color images, and provides
equal-sample error comparisons (in terms of relMSE), and equal-time speedups. The equal-
time speed-ups where computed by multiplying the equal-sample errors with the respec-
tive render times.

7.5 Application: Vertex connection and merging | 109

+ filter+ filter

G
ar
ag

e

(a) Uniform (b) Ground truth (c) Ground truth (no cost) (d) Sbert et al. 2019 (e) Our convex (f) Our 5 candidates

relMSE: 0.46 (baseline) 0.44 (1.36×) 0.43 (1.27×) 0.45 (1.21×) 0.44 (1.22×) 0.45 (1.27×) 0.44 (1.28×)

1

0

+ filter+ filter

Fo
ot
pr
in
t

relMSE: 0.10 (baseline) 0.10 (1.09×) 0.10 (1.05×) 0.14 (0.70×) 0.10 (1.05×) 0.10 (1.07×) 0.10 (1.07×)

1

0

Figure 7.3: Results in a very simple direct illumination application. The false color images show the
ratio of BSDF samples per pixel. The numbers below compare the equal-sample error (relMSE, lower
is better) and the speed-up (w.r.t. uniform allocation, higher is better). The speed-ups are computed
by multiplying the equal-sample errors with the respective render times. We compute ground-truth
ratios with (b) and without (c) accounting for sampling cost. The convex optimization of Sbert et al.
[2019] (d) converges to the ground truth without sampling cost. Applying our insights produces minor
speed-ups by accounting for the cost in convex optimization (e). Lastly, our brute-force search with just
5 candidates (e) provides results on par with the iteratively refined convex optimization.

The baseline is uniform allocation, i.e., 16 samples are taken from each technique. The
ground truth (b) has been computed by running our brute-force approach with all pos-
sible allocations as candidates in a pre-pass. We also computed the same ground truth
but assuming equal sampling cost (c). In our implementation, BSDF samples are, on aver-
age, 60% more expensive than light samples. Not accounting for this cost produces lower
equal-sample error, but worse equal-time results. However, since the cost difference is
rather small, the achievable speed-up is only about 5% on average.

We compare the results to the method of Sbert et al. [2019] (d). We found that applying a
low-pass filter in image space to the estimated derivatives significantly improves results.
With the additional filtering, their method converges nicely to the ground truth without
cost shown in (c). With some residual noise from sub-optimal early iterations.

Applying the convex variant of our more general objective (e) produces consistent, albeit
marginal, improvements by accounting for the cost differences. Finally, the brute-force
approach (f) works surprisingly well here. With just 5 candidates (0.1, 0.25, 0.5, 0.75, and
0.9) and the moments estimated from a single iteration, it provides results on par with the
iteratively refined convex optimization (e).

7.5 Application: Vertex connection and merging

Our main application is the vertex connection and merging (VCM) algorithm [Georgiev et
al. 2012a; Hachisuka et al. 2012]. It combines bidirectional path tracing (BDPT) [Lafortune
and Willems 1993; Veach and Guibas 1995a] with photon mapping [Jensen 1996]. Paths
are traced from the camera and the lights. Each ray along these paths might hit a light (or
the camera), and next event estimation is done at every vertex to connect to a light (or the
lens). On top of that, each vertex on a camera subpath is connected to some number of
light-subpath vertices. Lastly, merging (a.k.a. photon density estimation) is performed at
each camera-subpath vertex, except the first on the lens and the directly visible point.

110 | Chapter 7: Efficiency-aware MIS

Optimizing all parameters of VCM involves, e.g., setting the number of connections for
each pixel, point in space, and camera-subpath length, which is prohibitively expensive.
To keep the problem feasible, we reduce the degrees of freedom by only controlling

1. 𝑛, the number of light paths traced,
2. 𝑐 , the number of connections as a global constant, and
3. 𝜒 𝑗 , whether to perform merging in each pixel 𝑗 .

For the set of candidate strategies, we consider all possible combinations of (with 𝑃 being
the number of pixels)

𝑛 ∈
{
1

4
𝑃,

1

2
𝑃,

3

4
𝑃, 𝑃, 2𝑃

}
, 𝑐 ∈ {0, 1, 2, 4, 8, 16}, 𝜒 𝑗 ∈ {0, 1}, (7.33)

as well as the special case (𝑛 = 0, 𝑐 = 0, 𝜒 𝑗 = 0∀𝑗), i.e., unidirectional path tracing. Note
that the number of light paths 𝑛 is only allowed to be zero if all other bidirectional tech-
niques are disabled.

7.5.1 Implementation

We have implemented our method on top of the public code of Grittmann et al. [2021]. All
experiments were run on a 16-core AMD Ryzen 9 3950X processor with 64GB of memory.
The results shown in the following, unless stated otherwise, are equal-time renderings
after 60s at a resolution of 640 × 480 (we also rendered some scenes for 25min at 4K
resolution, with similar results). We use the relative mean squared error (relMSE) as an
error metric, which is an estimate of our optimization objective. Since the (rel)MSE is not
robust to outliers, we ignore the 0.01% of pixels (i.e., 30 in total at our typical resolution)
with highest error.

The optimization is done in up to two iterations, each rendering one sample per pixel. We
start with unidirectional path tracing as the pilot strategy. If the outcome is to switch to a
bidirectional technique, we optimize one more time with the samples of the bidirectional
technique, which gives higher-quality second-moment estimates. If the pilot decides not
to enable bidirectional sampling, no further optimization is done.

7.5.1.1 Cost heuristic

The cost of a strategy n is the expected time it takes to render one iteration with that
strategy. We approximate that cost with a heuristic that roughly corresponds to the number
of ray-tracing and shading operations:

𝐶 (𝑛, 𝑐, 𝜒) = 𝐶light𝑛l𝑛 + 𝑃𝑛c
(
𝐶cam +𝐶con𝑐 +𝐶m𝑛l𝑛𝑛m

∑
𝑗 𝜒 𝑗

)
, (7.34)

which is the sum of the cost (incl. next-event estimation) of tracing 𝑛 light paths of average
length 𝑛l, and the cost of tracing 𝑃 camera paths (i.e., one per pixel) of average length 𝑛c
performing at each vertex next-event, connections, and merges. Here, 𝑛m is the average
number of photons found by each density estimation, as a fraction of the total number of
photons 𝑛l𝑛 in the scene.

The relative costs of the different techniques are controlled by four hyperparameters. 𝐶light

and 𝐶cam are the combined costs of continuing the respective path at each vertex and

7.5 Application: Vertex connection and merging | 111

relMSE: 0.032relMSE: 0.032 relMSE: 0.021relMSE: 0.021 relMSE: 0.021relMSE: 0.021 relMSE: 0.018relMSE: 0.018 relMSE: 0.018relMSE: 0.018Z
oo

m
-i
n

M
as
k

No filtering (1) + blur moment + tiled + dilate + mask blur (2)

1

0

ReferenceReference No filtering (1)No filtering (1) Final mask (2)Final mask (2)

O
ve
rl
ay

Figure 7.4: When optimizing the pixel-level merging decisions 𝜒 𝑗 , we apply a simple filtering scheme
to increase robustness. The top row shows the effect of the different operations on the merge mask and
the equal-time error. The bottom row shows an overlay of the mask over the reference image, without
filtering and after applying our filtering.

performing next-event estimation. 𝐶con is the cost of a single connection and 𝐶m is the
cost of a single merge operation. We determined the best values for our implementation
by fitting the cost heuristic to brute-force measured render times across 25 test scenes:
𝐶cam = 𝐶light = 1, 𝐶con = 0.4, and 𝐶m = 0.5. These numbers are implementation-specific
and likely differ between renderers. The average path lengths are determined on-the-fly
from rendering statistics. When using a unidirectional pilot strategy, only𝑛c is available, in
which case we initialize the remaining statistics with an initial guess: 𝑛l = 𝑛c, 𝑛m = 10−7.

The supplemental document shows that the above simple cost heuristic closely matches
the actual render time in our tests. It also provides empirical evidence indicating that the
accuracy of the cost heuristic is secondary compared to the other sources of error – using
moments instead of variance and noise in the estimates.

7.5.1.2 Merge mask

Merging only benefits a specific type of effect, reflected or refracted caustics, that is often
limited to small regions in the image. Hence, a global decision is apt to neglect these small
regions to increase efficiency everywhere else. Therefore, we control the binary decision
whether to perform merging on the pixel-level, by computing a merge mask.

Care has to be taken to avoid visible artifacts, since we only have a single sample per pixel.
We apply a simple filtering scheme, shown in Figure 7.4. First, the second-moment images
are blurred (Gaussian filter, radius 8) to reduce noise and downsampled (averaged into 8×8-
pixel tiles) to reduce overhead. Then, we run our pixel-level optimization. The resulting
mask can still contain gaps frommissing data, where merging in important regions may be
incorrectly disabled. To combat that, we dilate the mask (box, radius 4). Finally, to remove
discontinuties in the noise pattern from abruptly changing sample counts, which could
cause visible artifacts, we blur the dilated mask (Gaussian, radius 4). The resulting mask
after the blur contains floating point values between zero and one, which we take as the

112 | Chapter 7: Efficiency-aware MIS

La
m
p
C
au

st
ic

Reference Merge mask
1

0
1

0

Speed-up: 0.75×Speed-up: 0.75×

Speed-up: 1.22×Speed-up: 1.22×

C
lassical

C
orrel-aw

are

Zoom-in

La
m
p
C
au

st
ic
N
o
Sh

ad
e 1

0
1

0

Speed-up: 1.26×Speed-up: 1.26×

Speed-up: 1.47×Speed-up: 1.47×

C
lassical

C
orrel-aw

are

Figure 7.5: A scene rendered with and without a lamp shade. We show the merge masks and the
rendering speed-up due to our optimization when using the classical balance heuristic and Grittmann
et al.’s correlation-aware weights. The lamp shade causes severe covariance in the merging techniques,
and our optimization can further worsen the already poor performance of the classical balance heuristic.
Using the correlation-aware weights avoids this problem by assigning low MIS weights to the problem-
atic samples. Hence our optimization does not enable merges because they would not contribute to the
combined estimate.

probability to perform merging at each vertex.

This simple filtering can be improved further with adaptive kernels and other ideas com-
monly used by denoising methods. The supplemental document discusses the impact of
the different filters and their parameters.

7.5.1.3 Sample correlation

Sample correlation in the merging techniques can be a problem in VCM [Grittmann et al.
2021]. The second moments can grossly underestimate the actual variance of merging.
Hence, optimizing the sample counts based on second moments can produce suboptimal
results. To circumnavigate this, we utilize the correlation-aware MIS weights of Grittmann
et al. [2021] (see Chapter 6). The effect of optimizing the sample allocation w.r.t. these
weights is shown in Figure 7.5. It shows the merge masks and renderings with and without
correlation-aware weights. We report speed-ups over vanilla VCM (i.e., 𝑛 = 𝑃 , 𝑐 = 1, 𝜒 𝑗 =
1) using both the classical balance heuristic and the correlation-aware weights. Applying
our moment-based optimization further amplifies the correlation problem when using the
balance heuristic which already struggles with poor approximation from second moments.
Applying it w.r.t. the correlation-aware weights produces consistent speed-ups. All results
in the following use the correlation-aware weights for both the baseline and our method.

7.5 Application: Vertex connection and merging | 113

Home Office

Reference VCM Ours abs. Ours rel.

relMSE
MSE
n, c

0.19 (1.00×)
0.11 (1.00×)
307k, 1

0.15 (1.30×)
0.13 (0.83×)
614k, 0

0.05 (4.09×)
0.29 (0.38×)
614k, 16

Figure 7.6: In this scene, light tracing is the sole technique that can render the bright strip around
the ceiling (top row, reduced exposure of all methods other than the reference). Optimizing for absolute
moments overfits on this bright region and disables all other techniques for the entire image. Using
relative moments resolves the problem. Note that “Ours rel.” yields lower relMSE but higher MSE than
vanilla VCM.

7.5.1.4 Relative error

We found that using the relativemoments (rather than absolutemoments, see Section 7.1.2)
is essential when optimizing the number of light paths 𝑛 and global number of connections
𝑐 . Figure 7.6 shows an example where the scene is dominated by indirect illumination from
a bright strip of light along the ceiling. The direct illumination in the strip is best handled
by light tracing. But all other illumination in the scene is best handled by bidirectional
connections. Optimizing the absolute moments (i.e., omitting the pixel-value normaliza-
tion) results in overfitting on the bright direct illumination and disables all connections.
Optimizing with relative moments instead yields 𝑐 = 16 connections and four times faster
rendering. The caveat is that this approach requires good estimates/approximations of
the ground-truth pixel values. To obtain those from a one-sample-per-pixel rendering, we
denoise the image using Intel’s Open Image Denoise [Áfra 2019].

7.5.1.5 Choosing the pilot strategy

We consider two options for the pilot strategy: forward path tracing (PT) or vanilla VCM
(𝑛 = 𝑃 , 𝑐 = 1, 𝜒 𝑗 = 1). Figure 7.7 compares these options on two extreme cases, rendered
for only 10s. In simple scenes that are best rendered unidirectionally, such as Modern
Living Room, using vanilla VCM as the pilot reduces performance for shorter render times,
due to the wasted bidirectional samples in the first iteration. With PT as the pilot, the
overhead is limited to that of the optimization. For scenes like Sponge, which is illuminated
solely by a caustic, starting with VCM provides the best performance because there the
unidirectional samples from a PT pilot are wasted. However, these unidirectional samples
are much cheaper than bidirectional ones, and they provide sufficient information for our
optimization.

An advantage of a vanilla VCM pilot is the lower noise in the second moment estimates
used by our optimization. We found that PT and VCM pilots produce very similar results
when optimizing image-level parameters, e.g., number of light paths 𝑛 and number of con-
nections 𝑐 . However, for pixel-level optimization, a single sample per pixel from a PT pilot
is insufficient.

114 | Chapter 7: Efficiency-aware MIS

M
od

er
n
Li
vi
ng

Reference

relMSE
time, spp

PT pilot VCM pilot VCM PT

0.06 (0.98×)
55spp

0.06 (0.95×)
53spp

0.10 (0.61×)
24spp

0.06 (1.00×)
56spp

Sp
on

ge

relMSE
time, spp

0.08 (1.30×)
23spp

0.07 (1.41×)
24spp

0.10 (1.00×)
25spp

6.18 (0.02×)
87spp

Figure 7.7: Impact of the pilot strategy in short renderings. We show the relMSE after 10s (lower is
better) and the speed-up in parentheses compared to the baseline (higher is better). Modern Living
Room does not benefit from bidirectional methods. Using forward path tracing (PT) as the pilot limits
the overhead to that of the optimizer (2%). Starting with VCM incurs additional overhead from (wasted)
bidirectional samples. The solely caustic illumination in the Sponge scene is difficult to render with PT.
Nevertheless, using PT as a pilot gives enough information to update the sampling strategy and still
achieve faster rendering than vanilla VCM.

Our solution is to optimize in two stages. We start with a PT pilot and only image-level
optimization. If that optimization enables bidirectional sampling, we render one iteration
with the optimized bidirectional strategy. The second moments estimated from that iter-
ation are then used to perform a full optimization, including the pixel-level merge mask.
This hybrid pilot minimizes overhead in simple scenes and produces the same optimization
as a VCM pilot in difficult scenes.

The rendered image of the pilot can be averaged into the final result. However, the PT pilot
may have excessive noise that will not vanish quickly. Thus, if bidirectional sampling is
enabled by the PT pilot, we discard both the rendered image and the second moments from
the PT pilot, and start from scratch with our optimized VCM pilot. The rendered image of
the VCM pilot is averaged with the subsequent iterations, as it has a similar level of noise.

7.5.2 Results

We tested our method on bidirectional path tracing (BDPT) and full VCM. An overview of
the results across our 25 test scenes (22 for BDPT) is shown in Table 7.1. Our optimized
BDPT achieves 18% faster rendering on average than vanilla BDPT (𝑛 = 𝑃 , 𝑐 = 1). Our
optimized VCM achieves consistent speed-ups of up to 5× over vanilla VCM (𝑛 = 𝑃 , 𝑐 = 1,
𝜒 𝑗 = 1) across all scenes; the worst case is still 12% faster. This is because merging is
expensive and often not beneficial. In both variants, our method performs consistently
faster than unidirectional path tracing (PT), with a worst-case slowdown of 2% and a best-
case speed-up of 600×.

7.5 Application: Vertex connection and merging | 115

Table 7.1: Statistics of the speed-up (higher is better) of our method across the 25 test scenes of the
VCM application and the 22 scenes of the BDPT application. Computed after 60s rendering, averaged
across 5 runs, using the relMSE error metric with outlier removal.

Speed-up

vs. path tracing vs. vanilla

BDPT VCM BDPT VCM
Average 3.14× 5.00× 1.18× 1.68×
Worst 0.99× 0.98× 0.95× 1.12 ×
Best 97.09× 600.77× 1.60× 5.32×

1×

10×

100×

PT Guided PTOur VCMVCMOur BDPTBDPT

TargetPractice

Staircase

Sponza

Sponge

R.G
lassesInd.

R.G
lasses

Pool
M
.Living

R.

M
odern

H
all

Living
Room

Lam
p
Caustic

H
ouse

Fish

H
om

e
O
ffi
ce

Kitchen

Bathroom

Veach
Bidir

Veach
A
jar

Figure 7.8: Speed-up in terms of relMSE of different methods over unidirectional path tracing.
‘Guided PT’ is the path guiding method of Ruppert et al. [2020]. Our method consistently outper-
forms unidirectional PT and vanilla VCM.

Home Office

Reference PT BDPT Our BDPT

relMSE
n, c, spp

0.33 (1.00×)
0, 0, 430

0.057 (5.87×)
307k, 1, 227

0.034 (9.79×)
153k, 8, 129

0 307k0 307k n

w
or
k
no

rm
.
er
ro
r

Our BDPT
Ground-truth

0 2 4 8 160 2 4 8 16 c

w
or
k
no

rm
.
er
ro
r

Candidates for n Candidates for c

5 10 305 10 30 s

lo
g
re
lM

SE

relMSE over time

Modern Hall relMSE
n, c, spp

0.0067 (1.00×)
0, 0, 474

0.0057 (1.19×)
307k, 1, 254

0.0053 (1.27×)
76k, 1, 338

0 307k0 307k n

w
or
k
no

rm
.
er
ro
r

0 2 4 8 160 2 4 8 16 c

w
or
k
no

rm
.
er
ro
r

5 10 305 10 30 s

lo
g
re
lM

SE PT
BDPT
Our BDPT

Figure 7.9: Equal-time (60s) comparison between our optimized BDPT and two baselines. 𝑛 and 𝑐 are
the number of light subpaths and bidirectional connections, respectively. The numbers in parentheses
are the speed-ups (higher is better) over forward path tracing (PT). The plots compare our estimated
work-normalized moments to ground truth work-normalized variances for different choices of 𝑛 and
𝑐 . The dashed red line marks the sample count chosen by our optimization. Basing our optimization
on the second moments produces similar sample counts as the much more expensive full variances and
yields consistent equal-time speed-ups compared to both baselines.

116 | Chapter 7: Efficiency-aware MIS

Figure 7.8 plots the speed-ups over PT of all methods for multiple test scenes. It also com-
pares the performance to that of guided forward path tracing [Ruppert et al. 2020]. The
supplemental materials of the original paper [Grittmann et al. 2022] provide an interactive
viewer with all rendered images.

7.5.2.1 Bidirectional path tracing

Figure 7.9 shows two scenes rendered with forward path tracing, vanilla BDPT, and our
adaptive BDPT. Home Office is dominated by diffuse indirect illumination and benefits
from many bidirectional connections. Modern Hall is overall well-handled by forward
path tracing. By reducing the number of light paths, our method finds a sweet-spot pro-
viding a minor increase in performance. In both scenes, the overhead due to the unidirec-
tional pilot iteration reduces performance initially, but for longer renderings our method
performs consistently better than both baselines.

The first two columns of plots in Figure 7.9 compare our estimatedwork-normalized second
moments to ground-truth work-normalized variances. The ground-truth is obtained by
brute-force rendering with different sample counts and computing the product of relMSE
and render time. Error values are plotted for different 𝑛 given our decision for 𝑐 (first
column) and for different 𝑐 , given our decision for 𝑛 (second column). Our estimates do
not perfectly match the ground truth, though they yield the same or very similar minima,
which suffices for our optimization.

7.5.2.2 Full VCM

Adding merging into the mix of techniques enables robust rendering of reflected and
refracted caustics. In Figure 7.10 we compare the performance of our optimized VCM
to different baselines. In both VCM variants we use correlation-aware MIS weight-
ing [Grittmann et al. 2021] (see Chapter 6).

The exterior, environment-map lit Pool scene contains a caustic that is very challenging for
unidirectional path tracing to sample. VCM performs much better but also struggles with
the very low photon density. Our optimization improves efficiency by using the maximum
allowed number of light paths, disabling connections, and limiting merges to the region
containing refracted caustics.

The Veach Bidir scene [Veach and Guibas 1995a] was originally modelled to showcase
BDPT. Naturally, it benefits from many light paths and connections, but also features a
caustic that benefits frommerging. The merge mask generated by our method restricts the
costly merges to the caustic image region. The error over time (last column) in this scene
reveals the impact of starting with a PT pilot. This first unidirectional iteration is wasted.
Hence, our method performs worse than vanilla VCM for short renderings of less than
three seconds. Note that our optimized VCM has a numerically higher error than vanilla
BDPT, but produces a qualitatively better image. The reason is that the reflected caustic
in the glass egg manifests in BDPT as two outlier pixels that are ignored by our error
metric. Our VCM captures this caustic almost perfectly, at the cost of slightly increased
error elsewhere.

7.5 Application: Vertex connection and merging | 117

Pool

Reference PT BDPT VCM Our VCM

relMSE
n, c, spp

2.9 (1.00×)
0, 0, 428

2.8 (1.1×)
307k, 1, 329

0.27 (11×)
307k, 1, 312

0.18 (16×)
614k, 0, 330

Our merge mask
1

0
5 10 305 10 30 s

lo
g
re
lM

SE

relMSE over time

Veach Bidir relMSE
n, c, spp

0.088 (1.00×)
0, 0, 972

0.0049 (18×)
307k, 1, 345

0.013 (6.8×)
307k, 1, 118

0.0057 (15×)
614k, 8, 94

1

0
5 10 305 10 30 s

lo
g
re
lM

SE

House relMSE
n, c, spp

0.0013 (1.00×)
0, 0, 903

0.0018 (0.7×)
307k, 1, 608

0.0023 (0.57×)
307k, 1, 500

0.0013 (1.0×)
0, 0, 900

1

0
5 10 305 10 30 s

lo
g
re
lM

SE PT
BDPT
VCM
Our VCM

Figure 7.10: Equal-time (60s) comparison between our optimized VCM and three baselines. The
numbers in parentheses are the speed-up (higher is better) over forward path tracing (PT). The false-
color image visualizes our per-pixel decision whether to performmerging. The Pool scene is dominated
by caustics and benefits mostly from merging and light tracing. Veach Bidir is mostly indirectly
illuminated and features a small glass egg, benefiting from bidirectional connections and local merging.
House is best rendered unidirectionally, and our method sticks to PT, incurring less than 1% overhead
due to the optimization.

Lastly, the diffuse exterior House scene is a case where bidirectional sampling is wasteful.
Vanilla VCM and BDPT are much slower than forward path tracing in this case. Our opti-
mized VCM completely avoids tracing paths from the lights and only incurs a tiny (< 1%)
overhead from the optimization. The result is visually indistinguishable from the PT image.

7.5.2.3 Merge masks

Obtaining a reliable merge mask from a few (or even one) samples per pixel requires filter-
ing that noisy data. Figure 7.11 compares our masks to ones obtained from ground-truth
second moments computed from 4096 iterations of vanilla VCM. Our filtered 1-spp mask
covers all crucial regions but can, of course, be improved further. An interesting insight

R
ef
er
en
ce

C
on

ve
rg
ed

O
ur
s

Figure 7.11: Comparison of our aggressively filtered merge masks against ground-truth masks. Our
masks are computed from 1-spp VCM with image-level optimization. The converged masks are based
on second-moment estimates obtained from 4096 iterations of vanilla VCM.

118 | Chapter 7: Efficiency-aware MIS

is that merges are mostly (though not always) useful in pixels that see highly glossy sur-
faces. A heuristic that limits merging to such pixels, based directly on material properties,
could eliminate the overhead of our merge-mask computation. Such a heuristic would
be reflected in the MIS weights, as part of the effective density 𝑛𝑝 (𝑥), hence it trivially
integrates into our optimization.

7.5.2.4 Overhead

The main computational cost in our approach is the large number of moments that are
estimated and processed. The VCM application computes 61 second moments per pixel
(one for each candidate from Equation (7.33)), which requires ∼500MB of memory at full-
HD image resolution. This cost can be reduced by computing per-tile instead of per-pixel
moments (an 8 × 8 tiling reduces the full-HD memory consumption to ∼8MB).

The overhead of our method also depends on the outcome of the optimization after the
initial path-tracing (PT) pilot run. If the decision is to stick to PT, the overhead of our
implementation is on average 82% (∼141ms) of the cost of tracing one path per pixel. This
comprises the cost of denoising the image (the main bottleneck) and accumulating and
processing the per-pixel moments for the image-level decisions.

If the decision after the PT pilot is to discard the rendering and switch to VCM, the overhead
increases by the cost of the discarded PT iteration and the cost of constructing the merge
mask. In our VCM implementation it amounts on average to 3.3× (∼1.3 s) the cost of a
single iteration of our optimized VCM. Most of that overhead is due to the filtering applied
when constructing the merge mask. Hence, in our BDPT implementation, the overhead is
only 1.5× (∼498ms) the cost of a single iteration of our optimized BDPT.

Note that we have not spent much effort on optimizing our code. The overhead can poten-
tially be reduced significantly: Our optimization consists solely of trivially parallelizable
image processing operations that could, e.g., be run on a GPU. We leave such engineering
to future work, since the results are already consistently faster than unidirectional path
tracing, despite the overhead.

7.6 Moments versus variances

Our practical application benefits greatly from approximating the costly variances by the
much more tractable second moments. To understand the adverse effect of that approx-
imation, we performed tests with pre-computed moments and full variances from long
renderings.

Figure 7.12 compares the result of our optimization when using secondmoments and when
using full variances. In both cases, we pre-compute the required estimates. We use 128 it-
erations of VCM with our estimation scheme for the second moments, and a brute-force
approach with 128 iterations of each candidate strategy to estimate the variances. The
brute-force computation for the full variance is necessary because we did not find an effi-
cient estimation scheme for the covariance, which is the dominant factor in the variance
as we discuss below. Because 128 iterations is still far from enough for converged variance

7.7 Discussion and future work | 119

Reference Moment Variance

n, c
speed-up

76800, 2
1.37×

76800, 2
1.51×

n, c
speed-up

76800, 8
2.62×

76800, 4
2.45×

n, c
speed-up

230400, 0
1.07×

230400, 2
0.83×

Figure 7.12: Sample counts and resulting speed-ups compared to vanilla VCM when using pre-
computed estimates of second moments or full variances. Speed-ups have to be taken with a grain
of salt due to residual noise, especially for the full variance.

estimates, we denoise the variance and moment images using OIDN [Áfra 2019].

Optimizing with the full variance improves results with high correlation. Examples can
be seen in the Kitchen and Fish scenes, where the merge mask computed from the full
variances is much sparser. Optimization based on second moments tends to overvalue the
merit of merging. In the Fish scene, the number of connections is also lower (4 instead
of 8) when using the full variance, again because of the covariance. In scenes with little
correlation, like the Lamp Caustic, the results are almost identical. Note that even after
3 hours of rendering the full variances are still far from converged in this scene, so the
speed-ups have to be taken with a grain of salt.

7.7 Discussion and future work

The three main limitations of our method are the overhead, error due to noisy estimates,
and error due to approximations. Also, the quality of the results and the range of possible
applications can be further improved by making the decisions more local, accounting for
the effect of changing sampling densities (e.g., guiding), or even jointly optimizing the
MIS weights [Kondapaneni et al. 2019], sampling densities [Karlík et al. 2019], and sample
allocations.

Divide-and-conquer optimization. The overhead of our optimization can be reduced
by reducing the number of candidate sample-allocation strategies. Additionally, the set
of candidates could be altered between iterations. For example, a divide and conquer ap-
proach could start with just two candidates in the first iteration. The second iteration
would then generate new candidates, e.g. by perturbing the better of the initial two. Iter-
atively refining the decision in this way drastically reduces the overhead, but it can also
take longer to find the best strategy.

120 | Chapter 7: Efficiency-aware MIS

Noisy estimates. Optimizing the per-pixel merging decisions requires careful filtering,
since the optimization is based on the samples of a single iteration. The estimation noise
has been the biggest problem in our evaluation, with the filtering having a significant
impact on the result quality. Very noisy input samples can lead to poor pixel-level de-
cisions, which in turn could produce visible artifacts. This problem is similar to that in
adaptive sampling methods, which decide on the number of samples per pixel based on
variance estimates [Zwicker et al. 2015]. Future work could make our method more robust
by transferring advances from adaptive sampling and reconstruction to our context. An
interesting idea would be to replace our simple filtering pipeline by a learning approach,
i.e., training a specialized denoising network to construct a merge mask. A simpler option
is to use multiple pilot iterations to estimate the second moments before optimizing the
sample counts, potentially driving that process by adaptive sampling too.

Approximation error. A key reason why our brute-force scheme works well in practice
is that the full variance is approximated by the second moments. However, that is also
the main source of approximation error, as we detail in the supplemental document. Only
considering the second moments can lead to suboptimal sample allocations, e.g., in the
presence of sample correlation. More accurate approximations, or even unbiased estimates
of the full variance are apt to improve the results further. Also, we have ignored the fact
that vertexmerging (i.e., photonmapping) is biased. Estimating that bias and incorporating
it into our objective, ideally without having to perform merging, may also improve results.

Optimization granularity. Our sample-allocation optimization is carried out in screen
space, but it is possible to consider a finer granularity. For example, the number of bidirec-
tional connections could be optimized within spatial regions in a scene. While increasing
the accuracy, making decisions more localized also hazards the robustness, as fewer sam-
ples are available to compute the required quantities.

Unknown sampling densities. Optimizing the MIS sample allocation requires knowl-
edge of the sampling densities of the different techniques. However, these densities might
themselves be subject to change, or completely unknown. For example, photon emission
guiding [Grittmann et al. 2018; Vorba et al. 2014] produces densities that change over time,
while Markov chain Monte Carlo approaches [Šik and Křivánek 2019, 2018; Šik et al. 2016;
Veach and Guibas 1997] are unable to compute the exact densities in the first place. Future
work could look into approximations that predict the densities of such techniques. For
example, by pretending that they are proportional to the target function [Kelemen et al.
2002].

7.8 Conclusion

We propose a method to automatically adapt the set of sampling techniques in MIS, and
their sample counts, to a given input. Our application focuses on bidirectional rendering
algorithms, but our method is general and applicable to any MIS combination. The key
ingredient is a numerically robust and computationally efficient scheme for estimating the
second moments of different sample-allocation strategies.

In practice, our adaptive VCM implementation never performs significantly worse than
plain unidirectional path tracing, even on simple scenes. At the same time, complex

7.8 Conclusion | 121

scenes with strong indirect lighting and reflected caustics are rendered more efficiently
than vanilla VCM with fixed parameters.

Rendering efficiency often relies on manual per-scene parameter tuning. The consistent
speed-ups achieved by our method show that it is possible, and beneficial, to automate this
tedious process.

122 | Chapter 7: Efficiency-aware MIS

7.A Correction factors

We are interested in estimating the secondmoment𝑀 [⟨𝐼 ⟩n] of a candidate strategy n using
the samples of another strategy m. Simply squaring and summing up the contributions of
those samples yields an unbiased estimate of the second moment of m:∑︁

𝑡

𝑚𝑡∑︁
𝑖=1

(
𝑤m,𝑡 (𝑥𝑡,𝑖) 𝑓 (𝑥𝑡,𝑖)

𝑚𝑡𝑝𝑡 (𝑥𝑡,𝑖)

)2
≈

∫
X

𝑓 2(𝑥)∑𝑡 𝑐𝑡 (𝑥)𝑤m,𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑚𝑡𝑝𝑡 (𝑥)

d𝑥 = 𝑀 [⟨𝐼 ⟩m] . (7.35)

To arrive at an estimator for the desired second moment 𝑀 [⟨𝐼 ⟩n], we write 𝑀 [⟨𝐼 ⟩n] in
terms of the above integral but with an additional correction factor:

𝑀 [⟨𝐼 ⟩n] =
∫
X

𝑓 2(𝑥)∑𝑡 𝑐𝑡 (𝑥)𝑤m,𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑚𝑡𝑝𝑡 (𝑥)

𝛿n,m(𝑥) d𝑥, (7.36)

where
𝛿n,m(𝑥) =

∑
𝑡 𝑐𝑡 (𝑥)𝑚𝑡𝑝𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥)

∑
𝑡 𝑐𝑡 (𝑥)𝑤n,𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑤m,𝑡 (𝑥)

(7.37)

simply replaces the sums in the numerator and the denominator with the desired ones.
To obtain the desired estimator, we only need to additionally multiply each squared sam-
ple contribution by 𝛿n,m(𝑥𝑡,𝑖), as we do in Equation (7.23). Unfortunately, severe loss of
numerical precision can be incurred when computing the involved sums of PDFs whose
magnitudes can varywildly. To that end, we can rewrite these sums in terms ofMISweights
which can be evaluated in a numerically robust manner:∑

𝑡 𝑐𝑡 (𝑥)𝑚𝑡𝑝𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥)

=
∑︁
𝑡

𝑚𝑡

𝑛𝑡

𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥)∑
𝑡 ′ 𝑐𝑡 ′ (𝑥)𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

=
∑︁
𝑡

𝑚𝑡

𝑛𝑡
𝑤n,𝑡 (𝑥). (7.38)

Substituting this result into Equation (7.37) yields a numerically robust expression for the
correction factor:

𝛿n,m(𝑥) =
(∑︁

𝑡

𝑚𝑡

𝑛𝑡
𝑤n,𝑡 (𝑥)

) ∑
𝑡 𝑐𝑡 (𝑥)𝑤n,𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑤m,𝑡 (𝑥)

. (7.39)

However, the evaluation of this expression can be inefficient: It would require computing
(and storing) the weights 𝑤n,𝑡 and 𝑤m,𝑡 for every sample 𝑥𝑡,𝑖 , technique 𝑡 , and candidate
strategy n. For complex applications like bidirectional path tracing, this will quickly be-
come expensive as each weight computation requires a full sweep over the vertices of the
path represented by 𝑥𝑡,𝑖 . To that end, we express the MIS weights of any strategy in terms
of the weights of hypothetical strategy a = (𝑎1, . . . , 𝑎𝑇), with 𝑎𝑡 > 1∀𝑡 , using similar
manipulations as above:

𝑤n,𝑡 (𝑥) =
𝑐𝑡 (𝑥)𝑛𝑡𝑝𝑡 (𝑥)∑
𝑡 ′ 𝑐𝑡 ′ (𝑥)𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

(7.40a)

=
𝑛𝑡

𝑎𝑡

𝑐𝑡 (𝑥)𝑎𝑡𝑝𝑡 (𝑥)∑
𝑡 ′ 𝑐𝑡 ′ (𝑥)𝑎𝑡 ′𝑝𝑡 ′ (𝑥)

∑
𝑡 ′ 𝑐𝑡 ′ (𝑥)𝑎𝑡 ′𝑝𝑡 ′ (𝑥)∑
𝑡 ′ 𝑐𝑡 ′ (𝑥)𝑛𝑡 ′𝑝𝑡 ′ (𝑥)

(7.40b)

=
𝑛𝑡

𝑎𝑡

𝑐𝑡 (𝑥)𝑎𝑡𝑝𝑡 (𝑥)∑
𝑡 ′ 𝑐𝑡 ′ (𝑥)𝑎𝑡 ′𝑝𝑡 ′ (𝑥)

(∑︁
𝑡 ′

𝑐𝑡 ′ (𝑥)𝑛𝑡 ′𝑝𝑡 ′ (𝑥)∑
𝑘 𝑐𝑘 (𝑥)𝑎𝑘𝑝𝑘 (𝑥)

)−1
(7.40c)

=

𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡 ′
𝑛𝑡 ′
𝑎𝑡 ′
𝑤a,𝑡 ′ (𝑥)

. (7.40d)

7.1 Correction factors | 123

We substitute this result three times into Equation (7.39) to obtain

𝛿n,m(𝑥) =
(∑︁

𝑡

𝑚𝑡

𝑛𝑡

𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡 ′
𝑛𝑡 ′
𝑎𝑡 ′
𝑤a,𝑡 ′ (𝑥)

) ∑
𝑡 𝑐𝑡 (𝑥)𝑤n,𝑡 (𝑥)∑
𝑡 𝑐𝑡 (𝑥)𝑤m,𝑡 (𝑥)

(7.41a)

=

∑
𝑡
𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡
𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)

∑
𝑡 𝑐𝑡 (𝑥)𝑤n,𝑡 (𝑥)

1

1∑
𝑡 𝑐𝑡 (𝑥)𝑤m,𝑡 (𝑥)

(7.41b)

=

∑
𝑡
𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡
𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)

∑
𝑡 𝑐𝑡 (𝑥) 𝑛𝑡𝑎𝑡𝑤a,𝑡 (𝑥)∑

𝑡
𝑛𝑡
𝑎𝑡
𝑤a,𝑡 (𝑥)

∑
𝑡
𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)∑

𝑡 𝑐𝑡 (𝑥)𝑚𝑡

𝑎𝑡
𝑤a,𝑡 (𝑥)

, (7.41c)

which is identical to the expression in Equation (7.24).

Chapter 8

Conclusion

Light interacts with matter in fascinating ways. These interactions cause all sorts of inter-
esting visual phenomena, and realistic scenes contain a diverse set of many such effects.
Devising a rendering algorithm that can render them all is not an easy task.

A great rendering algorithm should be efficient and general. It should be able to render
any scene and any illumination effect at the highest possible performance. Preferably,
such general efficiency should be attained without user intervention.

We have found that the most promising route to such an ideal rendering algorithm requires
combination and adaptation. To ensure generality, it seems necessary to combine many
sampling techniques; for instance, via MIS. But such a naive combination will almost never
be efficient. Adaptation is paramount for efficiency. The sampling PDFs, sample counts,
and even the MIS weighting functions must be adapted automatically to the scene at hand
– using statistics from initial rendering samples – to achieve high efficiency.

In this thesis, we have focused on resolving issues in theMIS combination, and on adapting
the sample counts. Through improved combination and adaptation, our prime application
– the vertex connection and merging algorithm – achieves consistently more efficient ren-
dering results than the current default choice, forward path tracing.

While these results are promising, there is still much to be done to find the one algorithm
to render them all. Many interesting questions are yet to be answered, such as: How to
best apply path guiding to a bidirectional algorithm? How to best adapt the PDFs such
that they complement each other well when combined through MIS? How to decide if
adaptation itself is worthwhile or too expensive? How to ensure robustness?

Appendix A

A primer on integration by substitution

0.45 0.55
0
0 1

10

20

0

1

2

3

4

10

𝑓 (𝑢) = 𝑓 (𝑥) d𝑢d𝑥

𝑓 (𝑥)

0.2

0.2

0.8

0.8

Δ𝑥

Δ𝑢

Figure A.1: A change of variables can ease numerical integration. The top plot shows the original
function, the bottom plot shows a function with identical integral but simpler shape. The change of
variables distorts the domain, expanding high-value regions and compressing low-value ones. The
result is a more uniform function that is significantly easier to compute numerically.

Integration by substitution is absolutely essential for Monte Carlo rendering. It is used to
define different integral formulations that motivate different types of rendering algorithms,
forms the mathematical foundation of importance sampling, and is essential for multiple
importance sampling.

Numerical integration is more efficient if the integrand is flat. Recall that numerical in-
tegration, be it through a deterministic Riemann sum or via randomized Monte Carlo,
operates by approximating the integral through a set of boxes (rectangles in 1D). Thus,
the closer the integral is to having a box shape itself, the fewer boxes are required for an
accurate approximation.

A change of variables can be used to achieve a flat integrand by expanding and compressing
the domain. Figure A.1 illustrates the idea on a simple example. Numerically integrating
the narrow normal distribution, shown at the top, requires a large number of samples to
accurately capture the peak. A change of variables can be used to expand the peak over
a wider range, while compressing the tails into smaller regions. For that, the interval Δ𝑥

126 | Appendix A: A primer on integration by substitution

containing the peak is stretched to a much wider interval Δ𝑢, while the tail intervals are
compressed to narrower ones. The result is a function with the same integral value, but
without the difficult peak, as depicted at the bottom.

In this simplified example, the change of variables is achieved by partitioning the domain
and scaling the parts based on the integrand value within. This is equivalent to importance
sampling with tabulated densities, as it is used for environment map sampling [Pharr et al.
2016, Chapter 14.2.4] or path guiding [Müller et al. 2017]. But a change of variables does
not have to be such a discrete partitioning. The expansion and compression of the domain
can be done on a per-point basis, by growing and shrinking the differentials.

Transformation. A change of variables is defined via a transformation 𝑡 : U → X. It
maps the points in the new, distorted domain U to points in the original domain. For
example, the transformation used in Figure A.1 is a piecewise constant scaling,

𝑡 (𝑢) =

0.45
0.2 𝑢 if 𝑢 ∈ [0, 0.2]
0.45 + 0.1

0.6 (𝑢 − 0.2) if 𝑢 ∈ (0.2, 0.8)
0.55 + 0.45

0.2 (𝑢 − 0.8) if 𝑢 ∈ [0.8, 1]
, (A.1)

where the numbers reflect the change in proportions: 0.45
0.2 is the scaling factor applied to

the interval containing the tails and 0.1
0.6 the scaling applied to the interval with the peak.

Preserving the area. The key to a correct change of variables is to retain the same integral
value. The naïve transformation,∫

U
𝑓 (𝑡 (𝑢)) d𝑢 ≠

∫
X
𝑓 (𝑥) d𝑥 , (A.2)

would not achieve that. Figure A.2 visualizes why on a simple constant function. There, the
intervalU = [0, 2] is mapped to the half as wide intervalX = [0, 1] via the transformation
𝑡 (𝑢) = 0.5𝑦. Without altering the integrand, the area under the curve is doubled. This holds
for any function 𝑓 (𝑥), not just the simple constant depicted here. Fortunately, the solution
is quite simple: To retain the same integral value, wemust shrink the height proportionally,
as shown on the right. This is achieved by multiplying the integrand by the scaling applied
to the domain, ∫ 2

0
𝑓

(𝑢
2

) 1
2
d𝑢 =

∫ 1

0
𝑓 (𝑥) d𝑥 . (A.3)

Note that this scaling is independent of the function shape and holds for non-constant
functions, too.

Non-uniform transformations. Naturally, a change of variables that meerly stretches
the whole domain uniformly is not very useful1. But the reasoning to retain the integral
value can be extended to arbitrary distortions. As a first step, we can look at scaling applied
to some interval Δ𝑥 . If this interval is mapped to another interval Δ𝑢 through a uniform
scale within this portion of the domain – like in the example in Figure A.1 – then the
integrand over that interval must be scaled by the ratio Δ𝑥

Δ𝑢 . In our simple example, this

1Although it is encountered frequently in rendering; for example, when mapping uniform random num-
bers from primary space to a uniform distribution in another domain.

Appendix A: A primer on integration by substitution | 127

𝑓
(
𝑢
2

)
1
2

𝑓 (𝑥) 𝑓
(
𝑢
2

)
𝐹 𝐹

𝐹

0 0 01 1 12 2

Figure A.2: Why the integrand must be scaled if a change of variables is performed. In this simple
example, a constant function is integrated, and the change of variables maps a twice as wide interval
to the original domain. Without altering the integrand, the area under the curve, shown in blue, would
be doubled. Scaling the integrand by the Jacobian (here, 0.5) retains the correct area, that is, the same
integral value.

means we must scale by

Δ𝑥

Δ𝑢
=

0.45
0.2 if 𝑢 ∈ [0, 0.2]
0.1
0.6 if 𝑢 ∈ (0.2, 0.8)
0.45
0.2 if 𝑢 ∈ [0.8, 1]

, (A.4)

that is, we compute ∫
U
𝑓 (𝑡 (𝑢))Δ𝑥

Δ𝑢
d𝑢 =

∫
X
𝑓 (𝑥) d𝑥 (A.5)

This logic can be extended to continuous scaling by considering an infinitely small Δ𝑥 ;
namely, a differential d𝑥 . Following the same argument, the integrand at every point must
be scaled by the ratio of differentials∫

U
𝑓 (𝑡 (𝑢))d𝑥

d𝑢
d𝑢 =

∫
X
𝑓 (𝑥) d𝑥 . (A.6)

Intuitively, this makes sense because we must “cancel out” the d𝑢 and replace it by the
original d𝑥 to obtain the same integral.

Jacobian. For a 1D function, the ratio of differentials

d𝑥

d𝑢
= 𝑡 ′(𝑢) (A.7)

is simply the derivative of the mapping. In the general multivariate setting, the ratio is
given by the determinant of the Jacobian matrix (aka the Jacobian),

d𝑥

d𝑢
= |𝐽𝑡 (𝑢) |. (A.8)

Appendix B

Deriving the geometry term

An essential transformation in rendering algorithms is the change of variables from sur-
faces to directions, or vice versa. For example, forward path tracing makes extensive use of
this change of variables to facilitate next event estimation. Further, transforming between
directions and surface points is the very foundation of bidirectional algorithms. Therefore,
the corresponding Jacobian,

d𝜔

d𝑦
=

cos\𝑦

∥𝑦 − 𝑥 ∥2
, (B.1)

can be found in countless places. At the same time, it is surprisingly hard to find a deriva-
tion of this crucial term in the literature.

Figure B.1 shows how this Jacobian can be derived geometrically. The image on the left de-
picts the setup. A point 𝑦 ∈ A is given on a surface in the scene. This point is transformed
to a direction 𝜔 =

𝑦−𝑥
∥𝑥−𝑦∥ at a reference point 𝑥 . For a change of variables – or importance

sampling – we need to know how the corresponding differentials d𝑦 and d𝜔 relate to each
other. That is, how much a small change in the position 𝑦 changes the direction 𝜔 . Ge-
ometrically, this can be viewed as computing the ratio between the area of an infinitely
small rectangle d𝑦 around 𝑦, and the area of its projection d𝜔 onto the tangent plane on
the sphere of directions. Note that the differentials can be viewed as rectangles because
the surface A and the sphere of directions are manifolds; that is, they are locally planar.

The first step is to project the tangent plane (shown in orange), of which d𝑦 is an infinitely
small subset, onto the plane perpendicular to the direction 𝜔 (shown in blue). The area
of the projection can be derived with some basic trigonometry, as sketched in the center

𝑟

Overview Parallel projection Projection onto the sphere

d𝜔

d𝑦
d𝑦

d𝑦⊥
d𝑦⊥

\𝑦

\𝑦

𝑛𝑦

d𝑦⊥

d𝑦 = cos\𝑦

⇔ d𝑦⊥ = cos\𝑦d𝑦

𝑎

𝑏

𝑎
𝑏
= 𝑟

1

⇒ d𝜔 =
d𝑦⊥

𝑟2

𝑏

𝑎

𝑟

1

⇒ 𝑏2 = 𝑎2

𝑟2

Figure B.1: Derivation of the geometry term. The surface differential d𝑦 is defined on the tangent
plane of the scene geometry (orange). First, we project it to the plane perpendicular to the ray direction
(blue). Then, we project that down to the unit sphere (red).

Appendix B: Deriving the geometry term | 129

of Figure B.1. For that, we compute the angle \𝑦 between the surface normal 𝑛𝑦 and the
direction 𝜔 . The projected differential area is then scaled by the cosine of that angle,

d𝑦⊥ = cos\𝑦d𝑦. (B.2)

Next, the corresponding area of the differential on the sphere of directions can be com-
puted. The perpendicular plane is parallel to the tangent plane on the sphere of direc-
tions at 𝜔 . Therefore, the projection of d𝑦⊥ onto the sphere can also be found with basic
trigonometry, as sketched on the right of Figure B.1. To compute the change in size, we
can identify the similar triangles sketched on the very right of the figure. These show that
the width and height of the two rectangles are each scaled by the distance 𝑟 = ∥𝑥 − 𝑦∥
between 𝑥 and 𝑦. Therefore, the differential solid angle is the differential perpendicular
area divided by the squared distance,

d𝜔 =
1

∥𝑥 − 𝑦∥2
d𝑦⊥. (B.3)

Finally, combining both equations, we see that the differentials relate as

d𝜔 =
1

∥𝑥 − 𝑦∥2
cos\𝑦d𝑦, (B.4)

providing us with the desired ratio, that is, the Jacobian of the projection.

Appendix C

Jacobian for perspective cameras

The light tracing technique connects light paths directly to the camera. For that, it requires
an additional quantity: the Jacobian of the mapping from surface positions to image plane
positions. Here, we look at an example of how this Jacobian can be derived for the simple
pinhole camera model.

The pinhole camera model is illustrated on the left of Figure C.1. The model assumes an
extreme case of a camera obscura where the hole that receives light is an infinitely small
point – the aperture position 𝑥1 in our notation. The light traveling through that hole is
received by a rectangular image positioned behind the hole.

This camera model can be parameterized through the (horizontal and vertical) opening
angle 𝛾 and the focal length 𝑓 , that is, the distance between the image and the hole. This
is illustrated on a cross-section in the center of the figure. The size of the image plane in
this parameterization is then computed via the tangent of the opening angle, tan𝛾 .

The value of each pixel in the rendered image is generally defined through some response
function over this image plane. For example, each pixel could measure the light received
by a corresponding small rectangle on the image plane, as sketched in Figure C.1. This is a
common model used in rendering. Note that this is quite far away from an actual camera
sensor in the real world, where different colors are measured at different positions and
combined to form the values of individual pixels through elaborate post-processing.

Forward path tracing starts a path by first sampling a position 𝑞 on the image plane that
contributes to the current pixel; for example, by importance sampling the pixel filter. Then,
a position 𝑥1 is sampled on the aperture. For the ideal pinhole camera, this position is

q

q

x1

Image plane

\

\

𝑛𝑞

f
x2

x1
ω

Image plane

𝛾

tan𝛾

FigureC.1: Schematic of the pinhole cameramodel, showing all quantities and relationships required
to compute the Jacobian.

Appendix C: Jacobian for perspective cameras | 131

deterministic and always the same. Together, the image position and aperture position
define a direction 𝜔 from 𝑥1 into the scene. With the pinhole camera, this direction is
simply

𝜔 =
𝑥1 − 𝑞

∥𝑥1 − 𝑞∥ . (C.1)

The visible surface point 𝑥2 is found by tracing a ray from 𝑥1 in direction 𝜔 .

Given an image position 𝑞 with probability density 𝑝 (𝑞), our goal is to find the correspond-
ing surface density 𝑝 (𝑥2) due to the above mapping. The corresponding Jacobian, that is,
the ratio of differentials, can be written as

d𝑞

d𝑥2
=

d𝑞

d𝜔

d𝜔

d𝑥2
, (C.2)

that is, the product of the Jacobian for the mapping from image position to direction, and
the Jacobian for the mapping from directions to surface points.

The former can be computed from the quantities and relations depicted on the right of
Figure C.1. For that, we denote the surface normal of the image plane, also known as the
view direction of the camera, as 𝑛𝑞 . The angle between that normal and the direction 𝜔

is denoted as \ . Then, the Jacobian is simply a special case of the surface-to-direction
Jacobian derived in Appendix B,

d𝑞

d𝜔
=

cos\

∥𝑞 − 𝑥1∥2
. (C.3)

We can specialize this equation further by noting that

cos\ =
𝑓

∥𝑞 − 𝑥1∥
⇔ ∥𝑞 − 𝑥1∥ =

𝑓

cos\
, (C.4)

since 𝑓 is the length of the adjacent edge and ∥𝑞 − 𝑥1∥ that of the hypotenuse in the right
triangle shown in Figure C.1. Substituting (C.4) into (C.3), we can simplify this to:

d𝑞

d𝜔
=
cos3 \

𝑓
. (C.5)

Therefore, the full Jacobian is

|𝐽cam | = cos3 \

𝑓

∥𝑥2 − 𝑥1∥2
cos\ (𝑥2→𝑥1)

. (C.6)

Bibliography

Attila T. Áfra. 2019. Intel® Open Image Denoise. (2019). https://www.openimagedenoise.org/.
Abdalla GM Ahmed and Peter Wonka. 2020. “Screen-space blue-noise diffusion of Monte

Carlo sampling error via hierarchical ordering of pixels”. ACM Trans. Graph. (SIG-
GRAPH Asia 2020), 39, 6, Article 244, 15 pages.

James Richard Arvo and David Kirk. 1990. “Particle Transport and Image Synthesis”. Com-
puter Graphics (SIGGRAPH 1990), 24, 4, 63–66.

Thomas Bashford-Rogers, Kurt Debattista, and Alan Chalmers. 2012. “A significance cache
for accelerating global illumination”. Comput. Graph. Forum, 31, 6, 1837–1851.

Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech
Jarosz. 2020. “Spatiotemporal reservoir resampling for real-time ray tracing with dy-
namic direct lighting”.ACMTrans. Graph. (SIGGRAPH 2020), 39, 4, Article 148, 17 pages.

Mark R Bolin and Gary W Meyer. 1997. “An error metric for Monte Carlo ray tracing”. In:
Rendering Techniques (Eurographics Workshop on Rendering). Springer, 57–68.

Vassillen Chizhov, Iliyan Georgiev, Karol Myszkowski, and Gurprit Singh. 2022. “Percep-
tual error optimization for Monte Carlo rendering”. ACM Trans. Graph., 41, 3, Article
26, 17 pages.

David Cline, Justin Talbot, and Parris Egbert. 2005. “Energy redistribution path tracing”.
ACM Trans. Graph. (SIGGRAPH 2005), 24, 3, 1186–1195.

Robert L Cook, Thomas Porter, and Loren Carpenter. 1984. “Distributed ray tracing”. 18,
3, 137–145.

Miguel Crespo, Adrian Jarabo, and Adolfo Muñoz. 2021. “Primary-space adaptive control
variates using piecewise-polynomial approximations”.ACMTrans. Graph., 40, 3, Article
25, 15 pages.

Tomáš Davidovič and Iliyan Georgiev. 2012. SmallVCM. GitHub. (2012). https://github.co
m/SmallVCM/SmallVCM.

Tomáš Davidovič, Jaroslav Křivánek,Miloš Hašan, and Philipp Slusallek. 2014. “Progressive
light transport simulation on the GPU: Survey and improvements”. ACM Trans. Graph.,
33, 3, Article 29, 19 pages.

Michael Donikian, Bruce Walter, Kavita Bala, Sebastian Fernandez, and Donald P Green-
berg. 2006. “Accurate direct illumination using iterative adaptive sampling”. IEEE Trans.
Vis. Comput. Graph, 12, 3, 353–364.

Alejandro Conty Estevez and Christopher Kulla. 2020. “Practical Caustics Rendering with
Adaptive Photon Guiding”. In: SIGGRAPH 2020 Talks Article 17, 2 pages.

Shaohua Fan, Stephen Chenney, Bo Hu, Kam-Wah Tsui, and Yu-chi Lai. 2006. “Optimizing
control variate estimators for rendering”. In: Comput. Graph. Forum 3. Vol. 25. Wiley
Online Library, 351–357.

Luca Fascione, Johannes Hanika, Rob Pieké, Ryusuke Villemin, Christophe Hery, Manuel
Gamito, Luke Emrose, and André Mazzone. 2018. “Path Tracing in Production”. In: SIG-
GRAPH 2018 Courses (SIGGRAPH ’18) Article 15. ACM, Vancouver, British Columbia,
Canada, 79 pages.

https://www.openimagedenoise.org/
https://github.com/SmallVCM/SmallVCM
https://github.com/SmallVCM/SmallVCM

Iliyan Georgiev. 2012. Implementing Vertex Connection and Merging. Tech. rep. Saarland
University. http://www.iliyan.com/publications/ImplementingVCM.

Iliyan Georgiev and Marcos Fajardo. 2016. “Blue-noise Dithered Sampling”. ACM SIG-
GRAPH 2016 Talks, Article 35, 1 pages.

Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012a. “Light
transport simulation with vertex connection and merging.” ACM Trans. Graph. (SIG-
GRAPH Asia 2012), 31, 6, Article 192, 10 pages.

Iliyan Georgiev, Jaroslav Křivánek, Stefan Popov, and Philipp Slusallek. 2012b. “Importance
caching for complex illumination”. Comput. Graph. Forum (EG 2012), 31, 2pt3, 701–710.

PeterWGlynn andWardWhitt. 1992. “The asymptotic efficiency of simulation estimators”.
Operations research, 40, 3, 505–520.

Pascal Grittmann. 2020. SeeSharp. GitHub. (2020). https://github.com/pgrit/SeeSharp.
Pascal Grittmann, Iliyan Georgiev, and Philipp Slusallek. 2021. “Correlation-Aware Mul-

tiple Importance Sampling for Bidirectional Rendering Algorithms”. Comput. Graph.
Forum (EG 2021), 40, 2, 231–238.

Pascal Grittmann, Iliyan Georgiev, Philipp Slusallek, and Jaroslav Křivánek. 2019.
“Variance-Aware Multiple Importance Sampling”. ACM Trans. Graph. (SIGGRAPH
Asia 2019), 38, 6, Article 152, 9 pages.

Pascal Grittmann, Arsène Pérard-Gayot, Philipp Slusallek, and Jaroslav Křivánek. 2018. “Ef-
ficient Caustic Rendering with Lightweight Photon Mapping”. Comput. Graph. Forum
(EGSR ’18), 37, 4, 133–142.

Pascal Grittmann, Ömercan Yazici, Iliyan Georgiev, and Philipp Slusallek. 2022. “Efficiency-
Aware Multiple Importance Sampling for Bidirectional Rendering Algorithms”. ACM
Trans. Graph. (SIGGRAPH 2022), 41, 4, Article 80, 12 pages.

Toshiya Hachisuka, Wojciech Jarosz, and Henrik Wann Jensen. 2010. “A progressive error
estimation framework for photon density estimation”. ACM Trans. Graph. (SIGGRAPH
2010), 29, 6, Article 144, 12 pages.

Toshiya Hachisuka, Anton S Kaplanyan, and Carsten Dachsbacher. 2014. “Multiplexed
metropolis light transport”. ACM Trans. Graph. (SIGGRAPH 2014), 33, 4, Article 100,
10 pages.

Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. 2008. “Progressive photon
mapping”. In: ACM Trans. Graph. (SIGGRAPH Asia 2008) 5, Article 130. Vol. 27. ACM, 8
pages.

Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. “A path space ex-
tension for robust light transport simulation”. ACM Trans. Graph. (SIGGRAPH Asia
2012), 31, 6, Article 191, 10 pages.

J.M. Hammersley and D.C. Handscomb. 1968. Monte Carlo Methods. Springer.
Johannes Hanika, Marc Droske, and Luca Fascione. 2015. “Manifold next event estimation”.

34, 4, 87–97.
JonHasselgren, JacobMunkberg,Marco Salvi, Anjul Patney, andAaron Lefohn. 2020. “Neu-

ral temporal adaptive sampling and denoising”. In: Comput. Graph. Forum (EG 2020) 2.
Vol. 39. Wiley Online Library, 147–155.

Vlastimil Havran and Mateu Sbert. 2014. “Optimal Combination of Techniques in Multiple
Importance Sampling”. In: Proc. VRCAI ’14. ACM, Shenzhen, China, 141–150.

Eric Heitz. 2020. “Can’t Invert the CDF? The Triangle-Cut Parameterization of the Region
under the Curve”. Comput. Graph. Forum (EGSR 2020), 39, 4, 121–132.

http://www.iliyan.com/publications/ImplementingVCM
https://github.com/pgrit/SeeSharp

Eric Heitz and Laurent Belcour. 2019. “Distributing monte carlo errors as a blue noise in
screen space by permuting pixel seeds between frames”. Comput. Graph. Forum (EGSR
2019), 38, 4, 149–158.

Eric Heitz, Laurent Belcour, Victor Ostromoukhov, David Coeurjolly, and Jean-Claude Iehl.
2019. “A low-discrepancy sampler that distributes Monte Carlo errors as a blue noise
in screen space”. In: ACM SIGGRAPH 2019 Talks, 1–2.

Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik P. A. Lensch, and Jaroslav Křivánek.
2016. “Product Importance Sampling for Light Transport Path Guiding”. Comput.
Graph. Forum (EGSR 2016), 35, 67–77.

Sebastian Herholz, Yangyang Zhao, Oskar Elek, Derek Nowrouzezahrai, Hendrik P. A.
Lensch, and Jaroslav Křivánek. 2019. “Volume Path Guiding Based on Zero-Variance
Random Walk Theory”. ACM Trans. Graph., 38, 3, Article 25, 19 pages.

Heinrich Hey and Werner Purgathofer. 2002. “Importance Sampling with Hemispherical
Particle Footprints”. In: Proceedings of the 18th Spring Conference on Computer Graphics
(SCCG ’02). ACM, Budmerice, Slovakia, 107–114.

QingqinHua, Pascal Grittmann, and Philipp Slusallek. 2023. “Revisiting ControlledMixture
Sampling for Rendering Applications”. ACM Trans. Graph. (SIGGRAPH 2023), 42, 4.

Wenzel Jakob and Steve Marschner. 2012. “Manifold exploration: a Markov Chain Monte
Carlo technique for rendering scenes with difficult specular transport”. ACM Trans.
Graph. (SIGGRAPH 2012), 31, 4, Article 58, 13 pages.

Johannes Jendersie. 2019. “Variance Reduction via Footprint Estimation in the Presence of
Path Reuse”. In: Ray Tracing Gems. Springer, 557–569.

Johannes Jendersie and Thorsten Grosch. 2018. “An Improved Multiple Importance Sam-
pling Heuristic for Density Estimates in Light Transport Simulations.” In: EGSR 2018
(EI&I), 65–72.

Henrik Wann Jensen. 1996. “Global illumination using photon maps”. In: Rendering Tech-
niques (Eurographics Workshop on Rendering). Springer, 21–30.

Henrik Wann Jensen. 1995. “Importance Driven Path Tracing using the Photon Map”. In:
Rendering Techniques (Eurographics Workshop on Rendering), 326–335.

Henrik Wann Jensen. 2001. Realistic image synthesis using photon mapping. Ak Peters Nat-
ick.

James T. Kajiya. 1986. “The Rendering Equation”. Computer Graphics (SIGGRAPH 1986), 20,
4, 143–150.

Anton S Kaplanyan and Carsten Dachsbacher. 2013a. “Adaptive progressive photon map-
ping”. ACM Trans. Graph., 32, 2, Article 16, 13 pages.

Anton S Kaplanyan and Carsten Dachsbacher. 2013b. “Path space regularization for holistic
and robust light transport”. In: Comput. Graph. Forum (EG 2013) 2pt1. Vol. 32. Wiley
Online Library, 63–72.

Ondřej Karlík, Martin Šik, Petr Vévoda, Tomáš Skřivan, and Jaroslav Křivánek. 2019. “MIS
Compensation: Optimizing Sampling Techniques in Multiple Importance Sampling”.
ACM Trans. Graph. (SIGGRAPH Asia 2019), 38, 6, Article 151, 12 pages.

Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. “A simple
and robust mutation strategy for the metropolis light transport algorithm”. In: Comput.
Graph. Forum (EG 2002) 3. Vol. 21. Wiley Online Library, 531–540.

Alexander Keller. 1997. “Instant radiosity”. In: Annual Conference Series (SIGGRAPH 1997),
49–56.

Alexander Keller. 2013. “Quasi-Monte Carlo image synthesis in a nutshell”. In:Monte Carlo
and Quasi-Monte Carlo Methods 2012. Springer, 213–249.

Alexander Keller, Ken Dahm, and Nikolaus Binder. 2014. “Path space filtering”. In: ACM
SIGGRAPH 2014 Talks, 1 pages.

Alexander Keller, Iliyan Georgiev, Abdalla Ahmed, Per Christensen, and Matt Pharr. 2019.
“My Favorite Samples”. In: ACM SIGGRAPH 2019 Courses. ACM, Los Angeles, Califor-
nia, USA.

David Kirk and James Arvo. 1991. “Unbiased Sampling Techniques for Image Synthesis”.
ACM Trans. Graph. (SIGGRAPH 1991), 25, 4, 153–156.

Ivo Kondapaneni, Petr Vévoda, Pascal Grittmann, Tomáš Skřivan, Philipp Slusallek, and
Jaroslav Křivánek. 2019. “Optimal Multiple Importance Sampling”. ACM Trans. Graph.
(SIGGRAPH 2019), 38, 4, Article 37, 14 pages.

Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek
Nowrouzezahrai, and Wojciech Jarosz. 2014. “Unifying Points, Beams, and Paths in
Volumetric Light Transport Simulation”. ACM Trans. Graph. (SIGGRAPH 2014), 33, 4,
Article 103.

Alexandr Kuznetsov, Nima Khademi Kalantari, and Ravi Ramamoorthi. 2018. “Deep adap-
tive sampling for low sample count rendering”. Comput. Graph. Forum (EGSR 2018), 37,
4, 35–44.

Eric P. Lafortune and Yves D. Willems. 1993. “Bi-Directional Path Tracing”. 93, 145–153.
Zehui Lin, Sheng Li, Xinlu Zeng, Congyi Zhang, Jinzhu Jia, Guoping Wang, and Dinesh

Manocha. 2020. “CPPM: chi-squared progressive photon mapping”. ACM Trans. Graph.
(SIGGRAPH Asia 2020), 39, 6, Article 240, 12 pages.

Heqi Lu, Romain Pacanowski, and Xavier Granier. 2013. “Second-Order Approximation for
Variance Reduction in Multiple Importance Sampling”. Comput. Graph. Forum (Pacific
Graphics 2013), 32, 7, 131–136.

Thomas Müller. 2019. ““Practical Path Guiding” in Production”. In: ACM SIGGRAPH
Courses: Path Guiding in Production, Chapter 10. ACM, Los Angeles, California, 18:35–
18:48.

ThomasMüller, MarkusH. Gross, and JanNovák. 2017. “Practical Path Guiding for Efficient
Light-Transport Simulation”. Comput. Graph. Forum (EGSR 2017), 36, 91–100.

Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. 2019.
“Neural Importance Sampling”. ACM Trans. Graph., 38, 5, Article 145, 19 pages.

Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. “Neural control
variates”. ACM Trans. Graph., 39, 6, Article 243, 19 pages.

David Murray, Sofiane Benzait, Romain Pacanowski, and Xavier Granier. 2020. “On Learn-
ing the Best Balancing Strategy”. In: Eurographics 2020. Vol. 20, 4 pages.

Kosuke Nabata, Kei Iwasaki, and Yoshinori Dobashi. 2020. “Resampling-aware Weighting
Functions for Bidirectional Path Tracing Using Multiple Light Sub-Paths”. ACM Trans.
Graph., 39, 2, Article 15, 11 pages.

Art Owen and Yi Zhou. 2000. “Safe and Effective Importance Sampling”. Journal of the
American Statistical Association, 95, 449, 135–143.

Anthony Pajot, Loic Barthe, Mathias Paulin, and Pierre Poulin. 2010. “Representativity for
robust and adaptive multiple importance sampling”. IEEE Trans. Vis. Comput. Graph,
17, 8, 1108–1121.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From
theory to implementation. Morgan Kaufmann. https://www.pbr-book.org/3ed-2018/.

Stefan Popov, Ravi Ramamoorthi, Fredo Durand, and George Drettakis. 2015. “Probabilistic
connections for bidirectional path tracing”. In: Comput. Graph. Forum (EGSR 2015) 4.
Vol. 34. Wiley Online Library, 75–86.

https://www.pbr-book.org/3ed-2018/

Alexander Rath, Pascal Grittmann, Sebastian Herholz, Petr Vévoda, Philipp Slusallek,
and Jaroslav Křivánek. 2020. “Variance-Aware Path Guiding”. ACM Trans. Graph.
(SIGGRAPH 2020), 39, 4, Article 151, 12 pages.

Alexander Rath, Pascal Grittmann, Sebastian Herholz, Philippe Weier, and Philipp
Slusallek. 2022. “EARS: Efficiency-Aware Russian Roulette and Splitting”. ACM Trans.
Graph. (SIGGRAPH 2022), 41, 4, Article 81, 14 pages.

Florian Reibold, Johannes Hanika, Alisa Jung, and Carsten Dachsbacher. 2018. “Selective
guided sampling with complete light transport paths”. ACM Trans. Graph. (SIGGRAPH
Asia 2018), 37, 6, Article 223, 14 pages.

Sheldon M Ross. 2014. Introduction to probability models. Academic press.
Fabrice Rousselle, Wojciech Jarosz, and Jan Novák. 2016. “Image-space control variates for

rendering”. ACM Trans. Graph. (SIGGRAPH Asia 2016), 35, 6, Article 169, 12 pages.
Lukas Ruppert, Sebastian Herholz, and Hendrik PA Lensch. 2020. “Robust fitting of

parallax-aware mixtures for path guiding”. ACM Trans. Graph. (SIGGRAPH 2020), 39,
4, Article 147, 15 pages.

Corentin Salaün, Adrien Gruson, Binh-Son Hua, Toshiya Hachisuka, and Gurprit Singh.
2022. “Regression-based Monte Carlo integration”. ACM Trans. Graph. (SIGGRAPH
2022), 41, 4, Article 79, 14 pages.

Mateu Sbert and Vlastimil Havran. 2017. “Adaptive multiple importance sampling for gen-
eral functions”. The Visual Computer, 33, 6, 845–855.

Mateu Sbert, Vlastimil Havran, and László Szirmay-Kalos. 2019. “Optimal Deterministic
Mixture Sampling.” In: Eurographics (Short Papers), 73–76.

Mateu Sbert, Vlastimil Havran, and László Szirmay-Kalos. 2016. “Variance Analysis of
Multi-sample and One-sample Multiple Importance Sampling”. In: Comput. Graph.
Forum 7. Vol. 35. Wiley Online Library, 451–460.

Mateu Sbert, Vlastimil Havran, and Laszlo Szirmay-Kalos. 2018a. “Multiple importance
sampling revisited: breaking the bounds”. EURASIP Journal on Advances in Signal Pro-
cessing, 2018, 1, 1–15.

Mateu Sbert, Vlastimil Havran, László Szirmay-Kalos, and Víctor Elvira. 2018b. “Multiple
importance sampling characterization by weighted mean invariance”. The Visual Com-
puter, 34, 6, 843–852.

Vincent Schüßler, Johannes Hanika, Alisa Jung, and Carsten Dachsbacher. 2022. “Path
Guiding with Vertex Triplet Distributions”. Comput. Graph. Forum (EGSR 2022), 41, 4,
1–15.

Martin Šik and Jaroslav Křivánek. 2019. “Implementing One-Click Caustics in Corona Ren-
derer”. In: EGSR 2019 Industry Papers. The Eurographics Association.

Martin Šik and Jaroslav Křivánek. 2018. “Survey of Markov Chain Monte Carlo Methods
in Light Transport Simulation”. IEEE Trans. Vis. Comput. Graph, 26, 4, 1821–1840.

Martin Šik, Hisanari Otsu, Toshiya Hachisuka, and Jaroslav Křivánek. 2016. “Robust light
transport simulation via metropolised bidirectional estimators”. ACM Trans. Graph.
(SIGGRAPH Asia 2016), 35, 6, Article 245, 12 pages.

Fujia Su, Sheng Li, and Guoping Wang. 2022. “SPCBPT: subspace-based probabilistic con-
nections for bidirectional path tracing”. ACM Trans. Graph. (SIGGRAPH 2022), 41, 4,
Article 77, 14 pages.

Justin F. Talbot, David Cline, and Parris Egbert. 2005. “Importance Resampling for Global
Illumination”. In: Rendering Techniques (EGSR ’05). Eurographics Association, 139–146.

Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Stanford Uni-
versity PhD thesis.

Eric Veach and Leonidas Guibas. 1995a. “Bidirectional estimators for light transport”. In:
Photorealistic Rendering Techniques. Springer, 145–167.

Eric Veach and Leonidas Guibas. 1997. “Metropolis light transport”. In: SIGGRAPH 1997.
ACM, 65–76.

Eric Veach and Leonidas Guibas. 1995b. “Optimally Combining Sampling Techniques for
Monte Carlo Rendering”. In: SIGGRAPH 1995. ACM, 419–428.

Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. 2018. “Bayesian online regression
for adaptive direct illumination sampling”. ACM Trans. Graph. (SIGGRAPH 2028), 37, 4,
Article 125, 12 pages.

Jiří Vorba, Johannes Hanika, Sebastian Herholz, Thomas Müller, Jaroslav Křivánek, and
Alexander Keller. 2019. “Path Guiding in Production”. In: ACM SIGGRAPH 2019 Courses
(SIGGRAPH 2019) Article 18. ACM, Los Angeles, California, 77 pages.

Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. “On-line
Learning of Parametric Mixture Models for Light Transport Simulation”. ACM Trans.
Graph. (SIGGRAPH 2014), 33, 4, Article 101, 11 pages.

Jiří Vorba and Jaroslav Křivánek. 2016. “Adjoint-driven Russian Roulette and Splitting in
Light Transport Simulation”. ACM Trans. Graph., 35, 4, Article 42, 11 pages.

Yu-Chen Wang, Yu-Ting Wu, Tzu-Mao Li, and Yung-Yu Chuang. 2021. “Learning to clus-
ter for rendering with many lights”. ACM Trans. Graph. (SIGGRAPH Asia 2021), 40, 6,
Article 277, 10 pages.

RexWest, Iliyan Georgiev, Adrien Gruson, and Toshiya Hachisuka. 2020. “Continuousmul-
tiple importance sampling”. ACM Trans. Graph. (SIGGRAPH 2020), 39, 4, Article 136, 12
pages.

Alan Wolfe, Nathan Morrical, Tomas Akenine-Möller, and Ravi Ramamoorthi. 2022. “Spa-
tiotemporal Blue Noise Masks”. In: EGSR 2022 Conference.

Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob. 2020. “Specular manifold sampling for
rendering high-frequency caustics and glints”. ACM Trans. Graph. (SIGGRAPH 2020),
39, 4, Article 149, 15 pages.

Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel Jakob. 2021. “Monte Carlo
estimators for differential light transport”. ACM Trans. Graph. (SIGGRAPH 2021), 40, 4,
Article 78, 16 pages.

Cheng Zhang, Zhao Dong, Michael Doggett, and Shuang Zhao. 2021. “Antithetic sampling
for Monte Carlo differentiable rendering”. ACM Trans. Graph. (SIGGRAPH 2021), 40, 4,
Article 77, 12 pages.

Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ramamoorthi,
Fabrice Rousselle, Pradeep Sen, Cyril Soler, and S-E Yoon. 2015. “Recent advances in
adaptive sampling and reconstruction for Monte Carlo rendering”. In: Comput. Graph.
Forum 2. Vol. 34. Wiley Online Library, 667–681.

	Introduction
	Contributions
	Outline

	Monte Carlo Light Transport
	Problem formulation
	Camera model
	Rendering equation
	Surface integral
	Path integral

	Numerical integration
	Deterministic quadrature
	Monte Carlo integration
	Benefits of Monte Carlo integration

	Quantifying the efficiency
	Cost
	Variance
	Second moment
	Correlation and covariance

	Improving the efficiency
	Importance sampling
	Integration by substitution
	Control variates
	Adaptive sampling

	Rendering algorithms
	Forward path tracing
	Bidirectional path tracing
	Photon mapping

	Summary

	Multiple Importance Sampling (MIS)
	The MIS estimator
	Affine combination
	Designing an MIS estimator
	Integral formulations and MIS

	Efficiency
	Variance
	Weighting functions
	Sample counts
	Sampling techniques

	Related methods
	Relationship to mixture sampling
	Relationship to control variates

	Summary

	MIS in the VCM algorithm
	The VCM algorithm
	Bidirectional path tracing
	Merging

	Challenges and shortcomings of MIS in VCM
	Low-variance effects
	Correlation
	Efficiency

	Summary

	Variance-aware MIS
	Variance-aware balance heuristic
	Variance-based weighting
	Reaping the benefits of both

	Discussion in 1D
	Discussion in rendering applications
	Implementation
	Results
	Comparison to weighting with variance estimates
	Overhead

	Limitations and future work
	Limitations
	Other applications

	Conclusion

	Correlation-aware MIS
	The problem: path correlation through splitting
	Correlation-aware balance heuristic
	Computing a unitless path probability
	Choosing a radius
	Constructing our heuristic

	Evaluation
	Vertex connection and merging
	Bidirectional path tracing

	Limitations and future work
	Conclusion

	Efficiency-aware MIS
	Problem statement
	Efficiency
	Per-pixel and per-image efficiency
	Per-pixel and per-image sample counts
	Second moment

	Optimization
	Objective and algorithm
	Convex optimization
	Brute-force optimization

	Computing the moments, means, or derivatives
	Our second moment estimator
	Our squared mean estimator
	Our derivative estimator

	Application: Direct illumination
	Application: Vertex connection and merging
	Implementation
	Results

	Moments versus variances
	Discussion and future work
	Conclusion
	Appendix Correction factors

	Conclusion
	Appendix A primer on integration by substitution
	Appendix Deriving the geometry term
	Appendix Jacobian for perspective cameras

