
R E P R E S E N T I N G A N D R E C O N S T R U C T I N G
G E N E R A L N O N - R I G I D O B J E C T S

W I T H N E U R A L M O D E L S

edith tretschk

Dissertation zur Erlangung des Grades der

Doktorin der Ingenieurwissenschaften (Dr.-Ing.)

der Fakultät für Mathematik und Informatik
der Universität des Saarlandes

Saarbrücken, 2023

Date of Colloquium January 29, 2024

Dean of the Faculty Jürgen Steimle

Chair of the Committee Prof. Dr. Philipp Slusallek

Reviewers Prof. Dr. Christian Theobalt

Prof. Dr. Hans-Peter Seidel

Prof. Dr. Lourdes Agapito

Academic Assistant Dr. Rishabh Dabral

iii

To Alma and Ella.

A B S T R A C T

Digitizing the real world is a wide problem area at the intersection of
computer vision and computer graphics and, lately, machine learning.
Despite a lot of effort, creating virtual clones of real-world objects remains
an unsolved scientific challenge. Still, it is of great interest as it enables
interactions with the environment in augmented reality, digital clones
for virtual reality, and consistent visual effects. While human-centered
approaches are already advanced, the handling of general deformable
objects is far less explored and the topic of this thesis.

To digitize an object, it first needs to be reconstructed from sensor
observations and then represented in a suitable manner for downstream
tasks. Many classical methods have explored these closely related areas.
However, these reconstruction methods still fall short of practical applica-
bility, and representing general deformable objects is unduly limited by
hand-crafted priors. Over the past decade, neural techniques have led to
great advancement in both areas. Meshes have become accessible to deep
learning thanks to graph convolutions, graphics representations have
expanded to include coordinate-based neural networks, and the entire
reconstruction field has been revolutionized by neural radiance fields.

This thesis contributes to both areas. In the first part, it focuses on
representing deformations and geometry. In particular, it introduces
a low-dimensional deformation model. Unlike prior work that hand-
crafts these for specific categories, it can be trained for any general non-
rigid object category via mesh auto-encoding using graph convolutions.
Furthermore, by integrating insights from classical deformation modeling,
it avoids artifacts common to prior work, which is purely learning-based.

Next, coordinate-based networks model geometry at infinite resolution
but they do not generalize due to their global representation. This thesis
makes them generalizable, thereby making these new models much easier
to apply to general objects where training data is lacking.

In the second part, this thesis advances the reconstruction side. It
extends neural radiance fields, which were previously restricted to static
scenes, to deformable objects. This approach seeds a new category of
methods for general non-rigid reconstruction from monocular input.

Finally, this thesis extends the previous method to handle large mo-
tions, a non-trivial endeavor due to backwards deformation modeling.
Unlike prior work on general non-rigid reconstruction, it achieves time
consistency even for studio-scale motion.

vii

Z U S A M M E N FA S S U N G

Die echte Welt digital zu klonen, ist ein weites Forschungsfeld an der
Grenze von Computer Vision und Computergrafik und, seit kurzem,
maschinellem Lernen. Trotz vieler Bemühungen ist das Erstellen digitaler
Kopien von echten Objekten nach wie vor ein ungelöstes Problem. Nichts-
destotrotz ist es ein wichtiges Unterfangen, das viele Anwendungen hat:
Interaktionen mit der Umwelt in Augmented Reality, das Erstellen digita-
ler Assets für Videospiele und konsistente visuelle Effekte. Methoden, die
sich auf Menschen konzentrieren, sind bereits weit fortgeschritten. Allge-
meine verformbare Objekte hingegen sind bisher nur wenig untersucht
worden und Gegenstand dieser Arbeit.

Um ein echtes Objekt zu digitalisieren, muss es zunächst aus Sensor-
messungen rekonstruiert werden und dann passend für die eigentlichen
Ziele repräsentiert werden. Viele klassische Methoden haben sich diese
eng verwandten Gebiete angeschaut. Allerdings sind diese Rekonstrukti-
onsmethoden nicht hinreichend praxistauglich und die Repräsentationen
allgemeiner verformbarer Objekte sind übermäßig durch manuelle An-
nahmen eingeschränkt. Im letzten Jahrzehnt haben neuronale Techniken
in beiden Gebieten zu großem Fortschritt geführt. Meshes sind dank
Graph-Faltungen für Deep Learning zugänglich, koordinaten-basierte
neuronale Netze haben Grafikrepräsentationen erweitert, und das ge-
samte Rekonstruktionsgebiet hat durch neuronale Radiance Fields eine
Revolution durchlaufen.

Diese Arbeit bringt beide Gebiete voran. Der erste Teil dreht sich um
das Modellieren von Verformungen und von Geometrie. Konkret wird ein
niedrig-dimensionales Modell für Verformungen vorgestellt. Im Gegen-
satz zu existierenden Arbeiten, die diese Modelle speziell für bestimmte
Objektkategorien entwerfen, kann das vorgestellte Modell für jede be-
liebige allgemeine verformbare Objektkategorie via Auto-Encoding für
Meshes mit Graph-Faltungen trainiert werden. Des Weiteren vermeidet es
ungewünschte Artefakte, die existierende Arbeiten aufgrund ihres reinen
Maschinelles-Lernen-Ansatzes aufweisen, indem es Erkenntnisse aus der
klassischen Computergrafik über das Modellieren von Verformungen
einbindet.

Koordinaten-basierte Netze stellen Geometrie mit unendlicher Auflö-
sung dar, lassen sich aber aufgrund ihrer globalen Repräsentation nicht
auf beliebige Objekte anwenden. Diese Arbeit entfernt diese Beschrän-

ix

kung und vereinfacht damit die Anwendung dieser neuen Modelle auf
allgemeine Objekte, die außerhalb der Trainingsdaten liegen.

Der zweite Teil dieser Arbeit dreht sich um Rekonstruktion. Zunächst
werden neuronale Radiance Fields, die bisher auf unbewegliche Szenen
beschränkt waren, auf verformbare Objekte erweitert. Diese Methoden
begründet eine neue Richtung von Methoden zur Rekonstruktion von
allgemeinen verformbaren Objekten aus monokularen Messungen.

Schließlich erweitert diese Arbeit die vorangegangene Methode, so-
dass diese auch große Bewegungen rekonstruieren kann. Das ist ein
kompliziertes Unterfangen aufgrund der rückwärts gerichteten Verfor-
mungsrepräsentation. Im Gegensatz zu existierenden Arbeiten zur all-
gemeinen verformbaren Rekonstruktion bleibt diese Methode selbst für
Bewegungen durch ein ganzes Studio zeitlich konsistent.

x

A C K N O W L E D G M E N T S

I am very grateful for having been able to spend so many years as
a seminar student, a Hiwi, as part of a research immersion lab, as a
Master student, and finally as a PhD candidate in the Graphics, Vision,
and Video group, which eventually became the Visual Computing and
Artificial Intelligence department during this long journey. It allowed
me to pursue the research of my interest and to satisfy my curiosity in
a great environment. It is a unique place and I hope it remains so for a
long time.

In particular, I want to thank Christian Theobalt for having built this
group (and department) into what it is today and for taking me on as a
PhD candidate. The seminar sparked my interest in pursuing a PhD at
all and I am very grateful for that. The guidance always struck a great
balance between staying on topic while following wherever curiosity led.

I am also thankful for everyone I got to work and interact with. The
fruitful discussions we had were greatly enjoyable. I especially want
to thank everyone who helped me out with the main projects in the
thesis over all the years and who lent an ear whenever I needed a
second opinion: Vladislav Golyanik, Ayush Tewari, Michael Zollhöfer,
Christoph Lassner, Carsten Stoll, and Aljaž Božič. A further thank you
to everyone whose great projects I, in turn, got to be a part of: Soshi
Shimada, Vikramjit Sidhu, Hsiao-yu Chen, Navami Kairanda, Harshil
Bhatia, Maximilian Krahn, Marcel Seelbach Benkner, Lakshika Rathi,
and Viktor Rudnev, as well as Michael Möller and Eddy Ilg. I also
want to thank the competent administrative staff who keep everything
running smoothly: Sabine Budde, Ellen Fries, everyone at IST, and our
main administrator, Gereon Fox. And of course I want to thank my
former and current office mates, Abhimitra Meka and Mohit Mendiratta.
Finally, I want to thank the thesis committee members: Lourdes Agapito,
Hans-Peter Seidel, and Christian Theobalt, and all the proofreaders of
this thesis: Mallikarjun B R, Heming Zhu, Linjie Lyu, Soshi Shimada,
Jian Wang, and Mohit Mendiratta, and Rishabh Dabral for being the
“akademischer Beisitzer”. And, last but not least, my family and friends
for their support.

xi

C O N T E N T S

1 Introduction 1

1.1 Motivation . 1

1.2 Overview . 2

1.3 Structure . 5

1.4 Contributions . 6

1.5 Publications . 7

2 Related Work 9

2.1 Representing General Objects 9

2.1.1 Global Geometry Representations 9

2.1.2 Patch-Based Geometry Representations 10

2.1.3 Classical Mesh Deformations. 10

2.1.4 Auto-Encoding-Based Mesh Deformations. 11

2.2 Reconstructing General Objects 12

2.2.1 Rigid Objects . 12

2.2.2 Static and Dynamic Novel-View Synthesis 13

2.2.3 3D Correspondence Estimation 14

2.2.4 Non-Rigid Objects 14

2.2.5 Dynamic NeRFs . 16

3 Background 17

3.1 Deformation Types and Parametrizations 17

3.1.1 Deformation Types 17

3.1.2 Parametrizing Deformations 18

3.2 Graph Convolutions . 19

3.2.1 Spiral Graph Convolutions 20

3.2.2 Spectral Graph Convolutions 20

3.3 Coordinate-Based Networks 21

3.4 Neural Radiance Fields . 21

I Representing General Non-Rigid Objects 23

4 DEMEA 25

4.1 Introduction . 25

4.2 Method . 27

4.2.1 Mesh Hierarchy . 28

4.2.2 Embedded Deformation Layer (EDL) 29

xiii

xiv contents

4.2.3 Differentiable Space Deformation 30

4.2.4 Training . 31

4.2.5 Reconstructing Meshes from Images/Depth 31

4.2.6 Network Architecture Details 31

4.3 Results . 33

4.3.1 Evaluation Settings 33

4.3.2 Ablation Study . 35

4.3.3 Evaluations of the Autoencoder 36

4.4 Applications . 39

4.4.1 RGB to Mesh . 39

4.4.2 Depth to Mesh . 40

4.4.3 Latent Space Arithmetic 41

4.5 Limitations . 43

4.6 Conclusion . 43

5 PatchNets 45

5.1 Introduction . 45

5.2 Method . 47

5.2.1 Implicit Patch Representation 47

5.2.2 Preliminaries . 48

5.2.3 Loss Functions . 48

5.2.4 Blended Surface Reconstruction 51

5.3 Results . 51

5.3.1 Settings . 51

5.3.2 Surface Reconstruction 52

5.3.3 Object-Level Priors 58

5.3.4 Articulated Deformation 61

5.4 Limitations . 61

5.5 Conclusion . 62

II Reconstructing General Non-Rigid Objects 63

6 Non-Rigid Neural Radiance Fields 65

6.1 Introduction . 66

6.2 Method . 68

6.2.1 Adaptations of NeRF for NR-NeRF 68

6.2.2 Deformation Model 68

6.2.3 Losses . 69

6.3 Results . 72

6.3.1 Data . 72

6.3.2 Qualitative Results 73

6.3.3 Ablation Study . 75

contents xv

6.3.4 Comparisons . 75

6.3.5 Simple Scene Editing 79

6.4 Limitations . 81

6.5 Conclusion . 81

7 SceNeRFlow 83

7.1 Introduction . 83

7.2 Method . 87

7.2.1 Constructing the Canonical Model 87

7.2.2 Optimizing per Timestamp 88

7.2.3 Implementation Details 92

7.3 Results . 93

7.3.1 Qualitative Results 96

7.3.2 Quantitative Results 98

7.3.3 Ablations . 100

7.3.4 Simple Editing . 100

7.4 Limitations . 101

7.5 Conclusion . 102

8 Conclusion 103

8.1 Insights . 103

8.1.1 Domain Knowledge in the Small-Data Regime . . . 103

8.1.2 Classical Optimization with Neural Networks . . . 104

8.1.3 The Unreasonable Effectiveness of Neural Radiance
Fields . 104

8.2 Outlook . 105

8.2.1 Backwards Deformation Modeling 105

8.2.2 More Sophisticated Deformation Models 105

8.2.3 Synergies with Novel-View Synthesis 106

8.2.4 Integrating Vision Models 106

a Appendix for Chapter 4 109

a.1 Artifacts . 109

a.2 Normalization . 109

a.3 Standard Deviations in Tab. 4.4 111

a.4 FCA and CA Results . 111

a.5 Coarse Embedded Graphs 113

b Appendix for Chapter 5 115

b.1 Reduced Test Set . 115

b.2 Object-Level Priors . 115

b.2.1 Surface Reconstruction 115

b.2.2 Ablation Study . 116

xvi contents

b.2.3 Partial Point Cloud Completion 117

b.3 Synthetic Noise . 117

b.4 Preliminary Results on ICL-NUIM 118

c Appendix for Chapter 6 121

c.1 Training Details . 121

c.2 Implementation Details . 122

c.3 Comparisons . 122

c.3.1 Prior Work and Baseline 122

c.3.2 Training/Test Split 123

c.3.3 Additional Results 123

c.4 Extensions . 124

c.4.1 Multi-View Data . 124

c.4.2 View Dependence 125

c.5 Additional Comparisons . 128

d Appendix for Chapter 7 131

d.1 Correspondence Visualization Details 131

d.2 Per-Scene Quantitative Results 131

d.3 More Qualitative Joint-Tracking and Novel-View Results . 131

d.4 Further Architecture and Training Details 131

d.4.1 SceNeRFlow . 132

d.4.2 Variants . 136

d.4.3 NR-NeRF . 137

d.4.4 PREF . 137

d.5 Joint Evaluation Details . 138

d.6 Foreground Masks for Evaluation 138

Bibliography 141

L I S T O F F I G U R E S

Figure 4.1 Pipeline of DEMEA 26

Figure 4.2 Template mesh and embedded graph 28

Figure 4.3 Low-level architecture of DEMEA 32

Figure 4.4 Cloth hierarchy . 34

Figure 4.5 Auto-encoding results 37

Figure 4.6 Artifacts . 38

Figure 4.7 Depth-to-mesh pipeline and cloth reconstruction
results . 40

Figure 4.8 Depth reconstruction 41

Figure 4.9 Latent space arithmetic 42

Figure 5.1 Overview of PatchNets 46

Figure 5.2 Qualitative surface reconstruction results 53

Figure 5.3 Qualitative generalization results 55

Figure 5.4 Single training shape 55

Figure 5.5 Generalization graphs 55

Figure 5.6 Different number of patches 57

Figure 5.7 Different number of patches and network/latent
code sizes . 57

Figure 5.8 Mixture reconstruction loss 58

Figure 5.9 Coarse correspondences 59

Figure 5.10 Interpolation and generative models 60

Figure 5.11 Shape completion 60

Figure 5.12 Articulated motion 62

Figure 6.1 Overview of NR-NeRF 65

Figure 6.2 Pipeline of NR-NeRF 67

Figure 6.3 Visualization of Ldivergence 71

Figure 6.4 Reconstruction and novel views 73

Figure 6.5 Output modalities 74

Figure 6.6 Quantitative ablation results 76

Figure 6.7 Qualitative ablation results 77

Figure 6.8 Qualitative comparisons 78

Figure 6.9 Background stability 79

Figure 6.10 Motion exaggeration and dampening 80

Figure 6.11 Foreground removal 80

Figure 6.12 Limitations . 82

Figure 7.1 SceNeRFlow teaser 84

Figure 7.2 Pipeline of SceNeRFlow 86

xvii

Figure 7.3 Extending the deformation field 89

Figure 7.4 Implementation details 93

Figure 7.5 Novel-view synthesis 95

Figure 7.6 Correspondences 96

Figure 7.7 Time consistency 97

Figure 7.8 Canonical model . 98

Figure 7.9 Qualitative ablation results 100

Figure 7.10 Scene editing . 101

Figure B.1 Preliminary results on ICL-NUIM (Handa et al.,
2014) . 119

Figure C.1 More qualitative comparisons 124

Figure C.2 Multi-view results 126

Figure C.3 View dependence 126

Figure C.4 More background stability results 127

Figure C.5 Comparisons with NSFF (Li et al., 2021b) 129

Figure D.1 Filtering for correspondence visualization 132

Figure D.2 More time consistency results 134

Figure D.3 More novel-view synthesis results 135

Figure D.4 Novel-view synthesis of variants 135

Figure D.5 Foreground masks 140

L I S T O F TA B L E S

Table 4.1 Number of vertices of the mesh hierarchy 33

Table 4.2 Test-set error for different EDL formulations . . . 35

Table 4.3 Comparison of different graph convolutions . . . 36

Table 4.4 Test-set errors for 8 and 32 latent dimensions. . . 37

Table 4.5 Comparison with Neural 3DMM (Bouritsas et al.,
2019) . 39

Table 5.1 Quantitative surface reconstruction results 53

Table 5.2 Quantitative surface reconstruction comparisons . 54

Table 5.3 Quantitative generalization results 56

Table 5.4 Quantitative ablation 56

Table 5.5 Loss ablation . 58

Table 5.6 Partial point cloud completion 61

Table 6.1 Quantitative comparisons 78

Table 7.1 Dataset details . 94

Table 7.2 Quantitative time consistency results 98

xviii

list of tables xix

Table 7.3 Quantitative novel-view synthesis results 99

Table 7.4 More quantitative novel-view synthesis results . . 99

Table 7.5 Quantitative ablation results 101

Table A.1 More artifacts . 110

Table A.2 Artifacts on SynHand5M 111

Table A.3 Test-set errors with standard deviations 111

Table A.4 Qualitative results on FCA 112

Table A.5 Artifacts on FCA 112

Table A.6 Qualitative results on CA 112

Table A.7 Depth-to-mesh results for CA and FCA 113

Table A.8 Coarse embedded graphs 114

Table B.1 Reduced vs. full test set 116

Table B.2 Quantitative results for ObjectNet 116

Table B.3 Ablation for ObjectNet 117

Table B.4 Quantitative results for partial point cloud com-
pletion . 117

Table B.5 Synthetic noise at test time 118

Table C.1 Quantitative comparisons 128

Table D.1 Per-scene novel-view synthesis results 133

1
I N T R O D U C T I O N

1.1 motivation

The world around us consists of countless different entities, many of
which are deformable. The most obvious example are humans, but we are
also surrounded by animals and vegetation, or, more artificially, pieces
of cloth, blankets, plush toys, and many others. When interacting with
all of these, people are greatly aided by a 3D perception of them and
their deformations (Yildirim et al., 2023), which yields a 4D perspective.
As of now, however, computers still lack behind humans in their 4D
understanding of the real world (Tretschk et al., 2023). To get closer to
people’s 4D understanding, computational methods are required that
obtain a 4D analysis of the real world. In other words, it is necessary to
digitize the real world. For the purposes of this thesis, digitization can be
split into two steps: (1) creating (or reconstructing) a digital clone of the
real-world entity that resembles its real counterpart in terms of geometry,
appearance, and deformations, and then (2) modeling (or representing)
these factors in an easy-to-use manner for certain desired goals. 4D
digitization constitutes a fundamental problem at the intersection of
computer vision (using camera measurements as input) and computer
graphics (representing the entity) and is thus an important subject of
study on its own.

In addition, digitization makes the real world accessible as an input to
numerous downstream applications in various domains: Virtual reality,
and telepresence in particular, benefits from high-quality novel-view
synthesis of real-world entities (Lawrence et al., 2021; Orts-Escolano et al.,
2016). Augmented reality and robotics require a 3D/4D model of the
scene geometry for interactions with the real-world environment. Video
game development can become easier if real objects can be cloned into
virtual assets (Chen et al., 2022). VFX and social media might see creative
new ways for visual content creation and editing. Finally, scientific fields
such as physics and biology may analyze an object’s motion given its
reconstruction (Kairanda et al., 2022; Wang et al., 2021).

Many of these applications are centered around humans and thus a
lot of prior work specializes on human bodies (Habermann et al., 2020;
Liu et al., 2021; Zhao et al., 2022), faces (Egger et al., 2020b), or hands
(Corona et al., 2022; Iwase et al., 2023; Qian et al., 2020). These methods

1

2 introduction

already achieve almost photo-realistic results in certain settings. Similarly,
arbitrary static objects can be reconstructed and modeled impressively
well (Mildenhall et al., 2020; Park et al., 2019). However, the reconstruction
of general deformable (or non-rigid) objects have seen significantly less
work over the years and this thesis focuses on them instead. Thus, the
ability to generalize to arbitrary object categories is central to the design
of all methods presented in this thesis.

Two common themes appear again and again in this thesis: neural
techniques and temporal correspondences. Traditionally, reconstructing
and representing general non-rigid objects has been tackled by tracking or
deforming a template mesh across time or by reconstructing a point cloud
for each timestep. However, recent years have witnessed a revolution
in the reconstruction field with the introduction of neural techniques
from machine learning. In particular, geometric deep learning (Bronstein
et al., 2021) enables deep learning on meshes via graph convolutions;
coordinate-based neural networks (Xie et al., 2022) enable an entire
new way of representing geometry and other attributes of an object;
and differentiable volumetric rendering (Tewari et al., 2022) enables
straightforward integration of rendering into gradient-based optimization
schemes, thereby naturally connecting 2D images of the real world with
a virtual 3D reconstruction. The methods presented in this thesis are each
based on at least one of these neural techniques.

Finally, both when reconstructing and representing non-rigid objects,
an ideal handling of them involves factoring out the deformations from
the geometry and appearance. Such a factorization yields correspon-
dences across time and deformations, and thereby a deeper analysis of
the object. Sophisticated downstream applications benefit immensely
from the resulting temporal consistency. For example, editing the appear-
ance of an objects becomes tremendously easier if only a single canonical
model needs to be adapted and the changes are then propagated across
time via the object’s deformations. This thesis encounters temporal cor-
respondences in many different forms: when learning a motion model,
when adding global semantics to local patches across different shapes,
when reconstructing from monocular input, and when reconstructing
large motions.

1.2 overview

To successfully digitize an object, it first needs to be reconstructed from
sensor observations and then represented in an easy-to-use manner,
which in turn enables downstream tasks like editing or novel interactions.
The main organization of this thesis is along this split: The first part

1.2 overview 3

focuses on representing general non-rigid objects and the second part
focuses on reconstructing general non-rigid objects. In the first part, the
two presented methods take 3D data as input and convert it into novel
representations that better achieve a certain goal than the input data
representations. In the second part, the two presented methods take 2D
data as input and reconstruct 4D models from it. Although downstream
applications are not the main focus, editing and novel deformations
will be shortly touched upon by these methods. Next, the four methods
contained in this thesis are motivated shortly.

One core aspect of modeling general non-rigid objects is their defor-
mations. Category-specific parametric models, such as the human-body
model SMPL (Loper et al., 2015), have become an influential paradigm
for reconstructing and modeling deformable entities over the past two
decades (Blanz and Vetter, 1999; Egger et al., 2020b). They represent
the deformations of a certain category via a low-dimensional parameter
space. However, their design is hand-tailored to the specific category they
seek to represent (Loper et al., 2015; Romero et al., 2017; Zuffi et al., 2017).
Is it instead possible to automatically build a low-dimensional motion
model purely from registered 3D meshes, regardless of the object category?
Unlike hand-tailored methods, a category-agnostic method cannot make
strong assumptions about the deformations, for example that they are
merely articulated rather than fully non-rigid. The first method presented
in this thesis (Chapter 4) thus tackles this question by combining a hi-
erarchical, graph-convolutional auto-encoder for meshes with expert
knowledge about modeling general non-rigid deformations in computer
graphics. This leads to a method that learns a low-dimensional motion
representation while avoiding surface artifacts that previous methods,
which do not incorporate graphics knowledge, suffer from. The method’s
general applicability is demonstrated on the categories of human bodies,
faces, and hands, and on cloths.

Another core aspect of an object representation apart from deforma-
tions is geometry. While traditional representations like meshes or point
clouds can easily be applied to arbitrary objects, coordinate-based neural
networks (Park et al., 2019) are restricted to object categories within their
training distribution. This is because they are, in their original form,
global representations that represent an object via a single latent vector
without spatial factorization. However, in other respects, such neural
representations are more flexible than traditional representations. For
example, they provide infinite resolution in principle and they empiri-
cally appear to be easier to optimize. Their inherently neural nature also
promises the potential for novel problem settings that have previously
been intractable. Addressing their shortcomings is thus of high inter-

4 introduction

est. The second method presented in this thesis (Chapter 5) focuses on
making coordinate-based networks generalize. Naïvely training on more
diverse data is difficult in practice since such data is hard to obtain at
scale. The method design thus needs to also allow for object categories
not seen during training and that are far away from the training distri-
bution. This includes generalizing to non-rigid object categories when
training only on rigid objects. To achieve this, it represents geometry in a
spatially factorized manner via local coordinate-based patch networks.
This enables generalization since objects are similar at the local patch
level, even across object categories. In addition, it also enables classical
modeling of articulated deformations (for example, of human bodies)
via modifying the positions and rotations of the patches, which even
preserves correspondences.

The second half of the thesis concerns reconstruction. Early on,
coordinate-based neural networks were only trained from full 3D su-
pervision, like the previous method. However, they were later found
to be trainable from 2D supervision (Mildenhall et al., 2020) as well.
These neural radiance fields (NeRFs) reconstruct general static scenes so
well that they enable photo-realistic novel-view synthesis. However, they
originally could not handle deformations. The third method of this thesis
(Chapter 6) is one of the first works to remedy this shortcoming. Using
a single monocular video as input, a separate coordinate-based defor-
mation network is trained jointly with a static neural radiance field that
represents the scene’s geometry and appearance. It assumes local rigidity,
a widely applicable prior for general deformable objects, and thus gen-
eralizes to many real-world object categories. Furthermore, factorizing
out the deformations leads to temporal consistency. This method thus
establishes a novel category of methods to reconstruct general non-rigid
objects from monocular input, which is important as the existing fields
of Shape from Template (SfT) and Non-Rigid Structure from Motion
(NRSfM) have plateaued in performance over the past years (Tretschk
et al., 2023). That is because the task of reconstructing a general non-rigid
object from monocular input is highly ambiguous and thus challenging.
For example, depth ambiguity, occlusions, and a lack of correspondence
annotations in the input necessitate a careful introduction of generic
priors on the reconstruction. The presented method handles these diffi-
culties via a simple design that, unlike concurrent work, does not use
additional annotations like estimated depth maps, segmentation masks,
optical flow, or 3D static points to work on real data, and, unlike SfT and
NRSfM, reconstructs the background as well. It is thus easy to apply in
practice.

1.3 structure 5

Finally, a major shortcoming of the previous method is addressed: its
inability to handle large motion. This inability stems from the strong
prior assumptions required by the severely underconstrained problem
setting. This also explains why estimating temporal correspondences for
objects that undergo large motions has only been successfully tackled
by category-specific methods that exploit, for example, strong human-
specific priors on the deformations. In contrast, the fourth method pre-
sented in this thesis (Chapter 7) aims for long-term, long-range corre-
spondences for general non-rigid objects. To this end, it optimizes its
deformation and static-NeRF networks in an online manner. To con-
centrate on the main goal of handling large-scale motion, calibrated
multi-view RGB videos captured in a recording studio are used as input
to lessen the impact of occlusions. However, repetitive appearance still
leads to ambiguity and requires a deformation prior to handle. Doing so
naïvely as in prior work is not feasible in a reasonable amount of time
and thus several design choices are made to reduce the optimization time
per timestep. In addition, backwards deformation modeling leads to un-
intuitive difficulties, including issues specific to large motion, which need
to be adressed for the method to work. The effectiveness of the method
is demonstrated on studio-scale motion, which previous methods cannot
handle in a time-consistent manner, and fine non-rigid deformations of
different dresses.

1.3 structure

This thesis is structured as follows.

• Chapter 1 motivates the thesis’ topic of representing and recon-
structing general non-rigid objects and provides an overview of
the methods presented in this thesis. Furthermore, it describes the
structure and contributions of this thesis.

• Chapter 2 discusses the wider literature on representing and recon-
structing general objects, especially non-rigid objects.

• Chapter 3 introduces the narrower technical background on defor-
mation types and neural models used in the thesis.

• Chapter 4 introduces a low-dimensional motion representation that
combines geometric deep learning and classical graphics knowl-
edge, and evaluates it against the state of the art.

• Chapter 5 presents a geometry representation that makes
coordinate-based neural networks generalizable, and demonstrates
this generalizability in extensive experiments.

6 introduction

• Chapter 6 describes a dynamic reconstruction method for monocu-
lar inputs that makes neural radiance fields applicable to non-rigid
objects, and shows its effectiveness in various experiments.

• Chapter 7 introduces a dynamic reconstruction method that can
handle large motion in a time-consistent manner in a studio set-
ting, and evaluates both its novel-view synthesis quality and time
consistency extensively.

• Chapter 8 summarizes the insights of this thesis and discusses
future steps.

1.4 contributions

This thesis makes the following main contributions:

The contributions of Chapter 4 (published as Tretschk et al. (2020b)) are:

• A general-purpose mesh auto-encoder that learns a low-
dimensional motion model purely from mesh datasets of moderate
sizes for any deformable object category, while avoiding artifacts.

• A novel differentiable embedded deformation layer that models the
deformable meshes using lower-dimensional deformation graphs
with physically interpretable deformation parameters, thereby de-
coupling the parameterization of object motion from the mesh
resolution and introducing local spatial coherence via vertex skin-
ning.

The contributions of Chapter 5 (published as Tretschk et al. (2020a)) are:

• A novel neural, coordinate-based surface representation that can
generalize to different object categories.

• An optimization scheme for a mid-level, spatially factorized rep-
resentation of surfaces, at the level of patches, that is based on
auto-decoding and can be trained with only few shapes.

The contributions of Chapter 6 (published as Tretschk et al. (2021)) are:

• A free viewpoint rendering method that only requires a monocular
video of the dynamic scene. The spatio-temporal camera trajectory
for test-time novel view synthesis can differ significantly from the
trajectory of the input video. Moreover, dense correspondences
relating arbitrary (input or novel) frames can be extracted.

1.5 publications 7

• A rigidity network which can segment the scene into non-rigid
foreground and rigid background without direct supervision.

• Regularizers on the estimated deformations which constrain the
problem by encouraging small, volume-preserving deformations.

• Several extensions for handling of view dependence and multi-view
data, and applications for simple scene editing.

The contributions of Chapter 7 (published as Tretschk et al. (2024)):

• An end-to-end differentiable, time-consistent 4D reconstruction
method for general dynamic scenes undergoing large motions cap-
tured with static, multi-view RGB cameras.

• A general approach to make backward deformation models work
for larger motion via frame-by-frame tracking and “extending the
deformation field”.

1.5 publications

The methods presented in this thesis are also publicly available in the
following self-contained works:

• Edith Tretschk et al. (2020b). “DEMEA: Deep Mesh Autoencoders
for Non-Rigidly Deforming Objects.” In: European Conference on
Computer Vision (ECCV)

• Edith Tretschk et al. (2020a). “PatchNets: Patch-Based Generalizable
Deep Implicit 3D Shape Representations.” In: European Conference
on Computer Vision (ECCV)

• Edith Tretschk et al. (2021). “Non-Rigid Neural Radiance Fields:
Reconstruction and Novel View Synthesis of a Dynamic Scene From
Monocular Video.” In: International Conference on Computer Vision
(ICCV)

• Edith Tretschk et al. (2024). “SceNeRFlow: Time-Consistent Recon-
struction of General Dynamic Scenes.” In: International Conference
on 3D Vision (3DV)

Further significant contributions were made to the following works,
which are not part of this thesis:

• Soshi Shimada et al. (2019). “DispVoxNets: Non-Rigid Point Set
Alignment with Supervised Learning Proxies.” In: International
Conference on 3D Vision (3DV)

8 introduction

• Vikramjit Sidhu et al. (2020). “Neural Dense Non-Rigid Structure
from Motion with Latent Space Constraints.” In: European Conference
on Computer Vision (ECCV)

• Ayush Tewari et al. (2022). “Advances in Neural Rendering.” In:
Computer Graphics Forum (Eurographics State of the Art Reports)

• Hsiao yu Chen et al. (2022). “Virtual Elastic Objects.” In: Computer
Vision and Pattern Recognition (CVPR)

• Navami Kairanda et al. (2022). “ϕ-SfT: Shape-from-Template with a
Physics-Based Deformation Model.” In: Computer Vision and Pattern
Recognition (CVPR)

• Marcel Seelbach Benkner et al. (2023). “QuAnt: Quantum Annealing
with Learnt Couplings.” In: International Conference on Learning
Representations (ICLR)

• Edith Tretschk et al. (2023). “State of the Art in Dense Monocu-
lar Non-Rigid 3D Reconstruction.” In: Computer Graphics Forum
(Eurographics State of the Art Reports)

• Harshil Bhatia et al. (2023). “CCuantuMM: Cycle-Consistent
Quantum-Hybrid Matching of Multiple Shapes.” In: Computer Vi-
sion and Pattern Recognition (CVPR)

2
R E L AT E D W O R K

This chapter discusses the wider literature on representing and recon-
structing general objects and scenes, with a focus on non-rigidity. Next,
Chapter 3 focuses on the specific technical background needed for this
thesis.

2.1 representing general objects

The first part of the thesis is about representing general objects and
scenes: Chapter 4 introduces a deformation model for general non-rigid
objects, and Chapter 5 introduces a patch-based geometry representation
for general objects and scenes. This section thus discusses prior work on
geometry and deformation modeling of general objects.

2.1.1 Global Geometry Representations

Widely-used classical data structures can be adapted for geometric deep
learning such as voxel grids (Choy et al., 2016), point clouds (Qi et al.,
2017), and meshes (Wang et al., 2018). To alleviate the memory limitations
and speed-up training, improved versions of voxel grids with hierarchi-
cal space partitioning (Riegler et al., 2017) and tri-linear interpolation
(Shimada et al., 2019) were recently proposed. All these data structures
enable a limited level of detail given a constant memory size. In con-
trast, other representations such as sign distance functions (SDF) (Curless
and Levoy, 1996) represent surfaces implicitly as the zero-crossing of a
volumetric level set function.

Recently, neural counterparts of implicit representations and ap-
proaches operating on them were proposed in the literature (Chen and
Zhang, 2019; Mescheder et al., 2019; Michalkiewicz et al., 2019; Park et al.,
2019). Similarly to SDFs, these methods extract surfaces as zero level sets
or decision boundaries, while differing in the type of the learned function.
Thus, DeepSDF is a learnable variant of SDFs (Park et al., 2019), whereas
Mescheder et al. (2019) train a spatial classifier (indicator function) for
regions inside and outside of the scene. In theory, both methods allow
for surface extraction at unlimited resolution. Neural implicit functions
have already demonstrated their effectiveness and robustness in many
follow-up works and applications such as single-view 3D reconstruction

9

10 related work

(Liu et al., 2019a; Saito et al., 2019) as well as static (Sitzmann et al., 2019b)
and dynamic (Niemeyer et al., 2019) object representation. SAL (Atzmon
and Lipman, 2020) performs shape completion from noisy full raw scans.

Unlike the aforementioned global approaches, the method presented
in Chapter 5 is based on local patches and hence generalizes much better,
for example to new categories.

2.1.2 Patch-Based Geometry Representations

Ohtake et al. (2003) use a combination of implicit functions for versatile
shape representation and editing. Several neural techniques use mixtures
of geometric primitives as well (Deng et al., 2019; Deprelle et al., 2019;
Genova et al., 2019; Lombardi et al., 2021; Tulsiani et al., 2017; Williams
et al., 2020). The latter have been shown to be helpful abstractions in such
tasks as shape segmentation, interpolation, classification and recognition,
as well as 3D reconstruction. Tulsiani et al. (2017) learn to assemble
shapes of various categories from explicit 3D geometric primitives (e.g.,
cubes and cuboids). Their method discovers a consistent structure and
allows to establish semantic correspondences between the samples. Atlas-
Net (Groueix et al., 2018) stitches local patches, which can lead to artifacts.
Genova et al. (2019) further develop the idea and learn a general template
from data which is composed of implicit functions with local support.
Due to the function choice, i.e., scaled axis-aligned anisotropic 3D Gaus-
sians, shapes with sharp edges and thin structures are challenging for
their method. In CVXNets (Deng et al., 2019), solid objects are assembled
in a piecewise manner from convex elements. This results in a differ-
entiable form which is directly usable in physics and graphics engines.
Deprelle et al. (2019) decompose shapes into learnable combinations of
deformable elementary 3D structures. VoronoiNet (Williams et al., 2020)
is a deep generative network which operates on a differentiable version
of Voronoi diagrams. NASA (Deng et al., 2020) focuses on articulated
deformations.

In contrast to other patch-based approaches, Chapter 5 presents a
method whose learned patches are not limited to hand-crafted priors but
instead are more flexible and expressive.

2.1.3 Classical Mesh Deformations.

Chapter 4 introduces an embedded deformation layer. It is inspired by
as-rigid-as-possible modeling (Sorkine and Alexa, 2007) and the method
of Sumner et al. (2007) for mesh editing and manipulation. Deformation
cages (Nieto and Susín, 2012) are another widespread paradigm for

2.1 representing general objects 11

deforming general non-rigid objects. While these methods have been
shown to be very useful for mesh manipulation in computer graphics,
Chapter 4 is the first time a model-based regularizer is used in a mesh
auto-encoder.

2.1.4 Auto-Encoding-Based Mesh Deformations.

Chapter 4 proposes a mesh auto-encoder. Previously, several mesh auto-
encoders with various applications were introduced. A new hierarchical
variational mesh auto-encoder with fully connected layers for facial
geometry parameterization learns an accurate face model from small
databases and accomplishes depth-to-mesh fitting tasks (Bagautdinov et
al., 2018). Tan et al. (2018a) introduce a mesh auto-encoder with a rotation-
invariant mesh representation as a generative model. Their network can
generate new meshes by sampling in the latent space and can perform
mesh interpolation. To cope with meshes of arbitrary connectivity, they
use fully-connected layers and do not explicitly encode neighbor relations.

2.1.4.1 Graph Convolutions

Graph convolutions generalize image convolutions from the image grid
to arbitrary graphs. They allow for intuitive learned computation on
meshes. This enables learning of correspondences between shapes, shape
retrieval (Boscaini et al., 2016; Masci et al., 2015; Monti et al., 2017),
and segmentation (Yi et al., 2017). Masci et al. (2015) proposed geodesic
CNNs operating on Riemannian manifolds for shape description, re-
trieval, and correspondence estimation. Boscaini et al. (2016) introduce
spatial weighting functions based on simulated heat propagation and
projected anisotropic convolutions. Monti et al. (2017) extend graph con-
volutions to variable patches through Gaussian mixture model CNNs. In
FeaSTNet (Verma et al., 2018), the correspondences between filter weights
and graph neighborhoods with arbitrary connectivities are established
dynamically from the learned features. The localized spectral interpreta-
tion of Defferrard et al. (2016) is based on recursive feature learning with
Chebyshev polynomials and has linear evaluation complexity.

In particular, graph convolutions can be used for mesh auto-encoding,
thereby learning a deformation model. Tan et al. (2018b) train a network
with graph convolutions to extract sparse localized deformation compo-
nents from meshes. Their method is suitable for large-scale deformations
and meshes with irregular connectivity. Gao et al. (2018) transfer mesh
deformations by training a generative adversarial network with a cycle
consistency loss to map shapes in the latent space, while a variational

12 related work

mesh auto-encoder encodes deformations. The Convolutional facial Mesh
Auto-encoder (CoMA) of Ranjan et al. (2018) allows to model and sam-
ple stronger deformations compared to previous methods and supports
asymmetric facial expressions. The Neural 3DMM of Bouritsas et al.
(2019) exploits the fixed ordering of neighboring vertices in its graph
convolution. It improves quantitatively over CoMA due to better training
parameters and task-specific graph convolutions.

Unlike prior mesh-auto-encoding approaches, Chapter 4 adds a model-
based regularizer inspired by classical graphics knowledge, thereby re-
ducing artifacts.

2.2 reconstructing general objects

The second part of the thesis deals with reconstruction and its related
work is described next. Before discussing the reconstruction of non-
rigid objects, adjacent areas are first touched upon. In particular, an
overview of the reconstruction of rigid objects (which cannot handle
deformations), novel-view synthesis (which neglects 3D consistency), and
temporal correspondence estimation (which neglects the geometry and
appearance) is provided. Then, approaches for non-rigid reconstruction
without and with neural radiance fields (NeRF (Mildenhall et al., 2020))
are discussed. Chapter 6 and Chapter 7 introduce NeRF-based methods
for non-rigid reconstruction. A recent survey (Tretschk et al., 2023) offers
an introduction to the fundamentals of reconstruction.

2.2.1 Rigid Objects

Several algorithms use variants of shape-from-silhouette to approximate
real scene geometry, such as visual hull reconstruction or visual hulls
improved via multi-view photo-consistency in Kutulakos and Seitz (2000)
and Starck et al. (2006). While reconstruction is fast and feasible with
fewer cameras, the coarse approximate geometry introduces rendering
artifacts, and the reconstruction is usually limited to the separable fore-
ground.

An emerging algorithm class uses neural networks to augment or re-
place established graphics and vision concepts for reconstruction and
novel-view rendering. Given a depth image, the network of Sinha et al.
(2017) reconstructs rigid objects from single images. Similarly, Groueix et
al. (2018) reconstruct object surfaces from a point cloud or single monoc-
ular image with an atlas parameterization. Meshes can be reconstructed
via differentiable mesh rendering (Kato et al., 2018). The approaches of
Kurenkov et al. (2018) and Jack et al. (2018) modify the identity of a

2.2 reconstructing general objects 13

predefined object-class template to match the observed object appearance
in an image. The Pixel2Mesh approach of Wang et al. (2018) reconstructs
an accurate mesh of an object in a segmented image. Initializing the 3D
reconstruction with an ellipsoid, their method gradually deforms it until
the appearance matches the observation. The template-based approaches
(Jack et al., 2018; Kurenkov et al., 2018), as well as Pixel2Mesh (Wang
et al., 2018), produce complete 3D meshes. These have spawned a wide
field of follow-up works on reconstructing static scenes (Eslami et al.,
2018; Flynn et al., 2019; Hedman et al., 2018; Meshry et al., 2019; Milden-
hall et al., 2020; Nguyen-Phuoc et al., 2018; Riegler and Koltun, 2020;
Sitzmann et al., 2019a,b).

2.2.2 Static and Dynamic Novel-View Synthesis

Novel-view synthesis is closely related to 3D reconstruction. It differs
in its focus on 2D view synthesis, thereby foregoing 3D/multi-view
consistency.

Early methods for image-based novel and free-viewpoint rendering
combined traditional concepts of multi-view camera geometry, explicit
vision-based 3D shape and appearance reconstruction, and classical com-
puter graphics or image-based rendering. These methods are based on
light fields (Buehler et al., 2001; Gortler et al., 1996; Levoy and Hanra-
han, 1996), multi-view stereo to capture dense depth maps (Zhang et al.,
2003), layered depth images (Shade et al., 1998), or representations using
3D point clouds (Agarwal et al., 2011; Liu et al., 2010; Schönberger and
Frahm, 2016), meshes (Matsuyama et al., 2004; Tung et al., 2009) or surfels
(Carceroni and Kutulakos, 2002; Pfister et al., 2000; Waschbüsch et al.,
2005) for dynamic scenes. Some approaches use 3D templates and com-
bine vision-based reconstruction with appearance modeling to enable
free-viewpoint video relighting, e.g., by estimating reflectance models
under general lighting or under controlled light stage illumination (Guo
et al., 2019; Li et al., 2013; Nagano et al., 2015; Theobalt et al., 2007).

2.2.2.1 Neural Approaches

Thies et al. (2019) combine neural textures with the classical graphics
pipeline for novel view synthesis of static objects and monocular video
re-rendering. Other methods combine explicit dynamic scene reconstruc-
tion and traditional graphics rendering with neural re-rendering (Kim
et al., 2019, 2018; Martin Brualla et al., 2018; Yoon et al., 2020). Several
approaches address generating images of humans in new poses (Balakr-
ishnan et al., 2018; Ma et al., 2018; Neverova et al., 2018; Sarkar et al.,

14 related work

2020) or body reenactment from monocular videos (Chan et al., 2019).
Shysheya et al. (2019) propose a neural rendering approach for human
avatars with texture warping. Zhu et al. (2018) leverage geometric con-
straints and optical flow for synthesizing novel views of humans from
a single image. Although some of these methods use an underlying 3D
feature parametrization, all of them ultimately forego spatial consistency,
in contrast to full 3D reconstruction.

2.2.3 3D Correspondence Estimation

For temporal data, the seminal work by Vedula et al. (1999) introduced
scene flow as the 3D equivalent of optical flow, which led to many ap-
proaches tackling the problem (Basha et al., 2013; Huguet and Devernay,
2007; Quiroga et al., 2014; Teed and Deng, 2021; Vogel et al., 2015; Yoon
et al., 2018), as a recent survey by Zhai et al. (2021) summarizes. Lately,
learning-based methods (Gu et al., 2019; Li et al., 2021a; Liu et al., 2019b;
Mittal et al., 2020) focus on 3D point clouds as input. More generally,
non-rigid 3D point-cloud registration (Deng et al., 2022) estimates cor-
respondences of provided 3D point clouds. Unlike full reconstruction,
correspondence estimation neglects the geometry and appearance aspect
and solely focuses on the deformations.

2.2.4 Non-Rigid Objects

Multiple lines of research target 4D reconstruction without relying on neu-
ral radiance fields (Mildenhall et al., 2020). As the recent survey Tretschk
et al. (2023) discusses, monocular RGB input has traditionally been tack-
led by Non-Rigid Structure-from-Motion (Garg et al., 2013; Graßhof and
Brandt, 2022; Kumar et al., 2018; Parashar et al., 2020; Russell et al., 2012)
and Shape-from-Template methods (Bartoli et al., 2015; Casillas-Perez
et al., 2021; Kairanda et al., 2022; Ngo et al., 2015; Salzmann et al., 2007).
Dense non-rigid structure from motion requires dense point tracks over
input images, which are then factorized into camera poses and non-rigid
3D states per view (Garg et al., 2013; Kumar et al., 2018; Sidhu et al.,
2020). The correspondences are usually obtained with dense optical flow
methods, which makes them prone to occlusions and inaccuracies, and
which can have a detrimental effect on the reconstructions. Monocular
template-based methods do not assume dense matches and rely on a
known 3D state of a deformable object (a 3D template), which is then
tracked across time (Ngo et al., 2015; Perriollat et al., 2011; Xu et al., 2018;
Yu et al., 2015), or a training dataset with multiple object states (Golyanik
et al., 2018). Obtaining templates for complex objects and scenes is often

2.2 reconstructing general objects 15

non-trivial and requires specialized setups. Due to the restrictive input
setting, these methods either only handle small motions or lack time
consistency.

Slightly larger motions are possible with a single RGB-D camera (Zoll-
höfer et al., 2018), although these methods (Bozic et al., 2020a,b; Cai
et al., 2022; Guo et al., 2015, 2017; Innmann et al., 2016; Lin et al., 2022;
Newcombe et al., 2015; Slavcheva et al., 2017, 2018; Zollhöfer et al., 2014)
all update (Curless and Levoy, 1996) both previously unseen and pre-
viously seen parts of the canonical model over time during their online
optimization, thereby losing time consistency (except for the template-
based Zollhöfer et al. (2014)).

Multi-view input has seen comparatively less work over the
years (Goldluecke and Magnor, 2004; Larsen et al., 2007; Tung et al.,
2009; Zhang et al., 2003). Fusion4D (Dou et al., 2016; Orts-Escolano et al.,
2016) operates in real time but also modifies the canonical model over
time. Mustafa et al. (2016) track a mesh through a temporal sequence
according to optical flow and refine its topology for each timestamp, but
do not reconstruct the appearance. Unlike such multi-view mesh-tracking
approaches (Cagniart et al., 2010; Zhao et al., 2022), the method presented
in Chapter 7 is end-to-end differentiable and can easily integrate recent
advances in neural scene representations (Tewari et al., 2022). Bansal et al.
(2020) obtain impressive but time-inconsistent novel-view results.

2.2.4.1 Neural Approaches

Only a few supervised neural learning approaches for 3D reconstruction
from monocular images tackle the deformable nature of non-rigid objects.
Several methods (Golyanik et al., 2018; Pumarola et al., 2018; Shimada et
al., 2019) train networks for deformation models with synthetic thin plates
datasets. These approaches can infer non-rigid states of the observed
surfaces such as paper sheets or membranes. Still, their accuracy and
robustness on real images are limited. Bednařík et al. (2018) propose an
encoder-decoder network for texture-less surfaces relying on shading
cues. They train on a real dataset and show an enhanced reconstruction
accuracy on real images, but support only trained object classes. Fuentes-
Jimenez et al. (2018) train a network to deform an object template for
depth map recovery. They achieve impressive results on real image
sequences but require an accurate 3D model of every object in the scene,
which restricts the method’s practicality.

Beyond these early works, weakly supervised learning-based ap-
proaches (Kanazawa et al., 2018; Kokkinos and Kokkinos, 2021; Li et
al., 2020; Wu et al., 2021; Yang et al., 2022; Yoon et al., 2020) have grown
in popularity over the last years.

16 related work

2.2.5 Dynamic NeRFs

2D neural rendering (Tewari et al., 2020) and 3D neural scene representa-
tions (Tewari et al., 2022) based on NeRF (Mildenhall et al., 2020) have
seen great success in recent years. Neural Volumes (Lombardi et al., 2019)
is an early neural scene representation that learns object models which
can be animated and rendered from novel views, given multi-view video
data. Apart from it, current methods (Du et al., 2021; Gao et al., 2021; Li
et al., 2021b; Menapace et al., 2022; Park et al., 2021a,b; Pumarola et al.,
2021; Xian et al., 2021) for dynamic scene reconstruction with neural rep-
resentations build on NeRF. The method in Chapter 6 is among the first
to extend NeRF to deformable reconstruction. Some approaches focus
on surface (Johnson et al., 2022), fast (Fang et al., 2022; Guo et al., 2022),
generalizable (Wang et al., 2022), or depth-supported (Attal et al., 2021)
reconstruction. The methods in Chapter 6 and Chapter 7 are most related
to this field of work but differ in their goal: they do not primarily aim
for novel-view synthesis but rather for a time-consistent reconstruction.
A few prior methods (Liu et al., 2022; Pumarola et al., 2021) do obtain
time consistency but either only in synthetic (Pumarola et al., 2021) or
small-motion (Liu et al., 2022) settings, including the method presented
in Chapter 6. Furthermore, most works use monocular input (Gao et al.,
2022) and only a few (Li et al., 2022; Liu et al., 2022; Song et al., 2022;
Wang et al., 2022) explore multi-view input, where the latter forego long-
term time consistency or only handle small motion (Liu et al., 2022).
Unlike these approaches, Chapter 7 achieves time consistency even for
large motion.

3
B A C K G R O U N D

After discussing the broader literature in the previous chapter, this chap-
ter focuses on the specific technical background of the thesis. In particular,
this chapter first discusses deformation types and how to model them
(Sec. 3.1), and then introduces the neural techniques used by the methods
presented in this thesis, as mentioned in Chapter 1: graph convolutions
(Sec. 3.2), coordinate-based neural networks (Sec. 3.3), and volumetric
neural rendering (Sec. 3.4).

3.1 deformation types and parametrizations

As this thesis focuses on non-rigid objects and scenes, handling their
deformations is crucial throughout. This section discusses mathematical
deformation types and then presents practical parametrizations for them.
It is based on the Fundamentals section in Tretschk et al. (2023).

3.1.1 Deformation Types

There are different types of deformations that can be applied to an object.
This section focuses on the deformation itself and thus abstracts away
the specific geometry. Therefore, deformations may be described by a
space warping d: x′ = d(x), where x ∈ R3 and x′ ∈ R3 are canonical and
deformed points in space, respectively. In the following, each deformation
type generalizes the previous type.
Static objects do not move locally or globally, with the deformation
trivially defined as x′ = x.
Rigid objects may move around globally, without changing their shape
and size. Specifically, the object can change its orientation and position,
but cannot scale or shear. Mathematically, the deformation allows for a
rotation and translation: x′ = Rx + t, for a 3D rotation matrix R ∈ SO(3)
and a 3D translation t ∈ R3. If det R = −1 is also allowed, it is a reflection.
If det R = ±1 and a scaling s ∈ R is allowed, it is a similarity transform:
x′ = sRx + t.
Affine deformations are also global like rigid deformations, except that
now shearing and scaling are allowed: x = Ax + t, where A ∈ R3×3 is an
invertible linear mapping.

17

18 background

Articulated deformations generalize the previous classes to (piece-wise)
ensembles of N local rigid/affine deformations {di}N

i=1, where di(x) =
Rix + ti in the rigid case:

x′ = di(x) if x ∈ Ui, (3.1)

where {Ui ⊂ R3}N
i=1 is a partition of R3. Ui is a local part and deforms

according to its own associated deformation di. Thus, the deformed ob-
ject is obtained by deforming each local part Ui of the canonical object
according to its own rigid/affine transform di. Humans or animals are
sometimes modeled with articulated deformations. There, each large
bone (e. g.an upper arm) would be a local part. Chapter 5 shows an appli-
cation where a deep implicit surface representation undergoes articulated
deformations.
Non-Rigid objects undergo arbitrary deformations as they respond nat-
urally to applied forces, constraints and contacts with themselves or
obstacles. This most generic formulation describes the behavior of most
real, physical objects and deformation d is any (in general non-linear)
mapping that displaces an undeformed point to a deformed one:

x′ = d(x), where d : R3 → R3. (3.2)

For instance, cloths deform freely and often form fine local surface
deformations such as folds and wrinkles. Chapter 4, Chapter 6, and
Chapter 7 model non-rigid deformations of general objects.

3.1.2 Parametrizing Deformations

There are several commonly used possibilities for parametrizing the
deformations described in the previous section.
Physics Simulation. The most accurate way to model deformations is
by imposing the true physical laws that govern an object’s behavior.
Despite being ideal in principle, physics simulation is difficult to model
completely and to implement, and is computationally expensive. Thus,
the vast majority of 3D reconstruction works may take inspiration from
physics but ultimately apply approximations, as discussed next.
Template Offsets. A simple deformation model consists of per-vertex
offsets of a template, which is particularly popular due to recent methods
trained on general image-collections (Kanazawa et al., 2018). As per-
vertex offsets are severely underconstrained, they allow for fully non-rigid
deformations. However, for stable optimization, they are often combined
with additional priors to constrain them.
Skinning. As deformations tend to be spatially smooth, it is common
to skin a detailed template mesh to a coarser graph embedded in 3D

3.2 graph convolutions 19

(whose parameters are thus the deformation parameters) by specifying
skinning weights. When deforming the coarse graph, its deformations are
transferred to the detailed template by interpolating according to these
weights. Embedded graphs (Sumner et al., 2007) are common for general
objects and skeleton skinning (itself based on a kinematic chain) is com-
mon for category-specific models (Loper et al., 2015). Skeleton skinning
induces an articulated deformation on the mesh, while high-resolution
embedded graphs approximate non-rigid behavior well. Chapter 4 uses
embedded graphs to model non-rigid deformations.
Linear Subspace Models. Instead of deforming a single template, linear
subspace models linearly combine a limited number of basis deforma-
tions to obtain the deformed surface. The coefficients of this combination
are often globally constant across space. This kind of parametrization
is common in non-rigid structure from motion (Chapter 2). Linear sub-
spaces are sometimes used for the underlying skeletons in skinned mod-
els (Loper et al., 2015). Models that parametrize a low-dimensional space,
especially by linear combinations of some (usually fixed) basis, are called
parametric models. Chapter 4 learns a low-dimensional space of the
deformation parameters of an embedded graph.
Neural Volumetric Deformations. Implicit parametrizations tend to use
volumetric backward deformation models to avoid the need for directly
accessing the surface. Rather than taking, for example, a vertex from
a mesh and deforming it (forward) in space, backwards models take
any point in space and deform it backwards into the canonical space,
where the geometry and appearance lie (e.g. in the form of a mesh or
a neural radiance field, as discussed below). The earlier work Neural
Volumes (Lombardi et al., 2019) uses an explicit mixture of affine warps,
while recent neural-rendering methods use an MLP parametrization. In
the fully non-rigid case, such an MLP can output an offset per point in
3D space, while more articulated deformations benefit from an SE(3)
output (Park et al., 2021a). Chapter 6 uses volumetric backwards models
to parametrize deformations, and Chapter 7 makes them work for large
deformations.

3.2 graph convolutions

Deep convolutional neural networks (CNNs) allow to effectively capture
contextual information of input data modalities and can be trained for
various tasks. Lately, image convolutions operating on regular grids have
been generalized to more general topologically connected structures such
as meshes and two-dimensional manifolds (Bruna et al., 2013; Niepert et
al., 2016). Their design space is much larger and thus less straightforward

20 background

than convolutions on regular image or voxel grids. In general, graph
convolutions are designed to preserve image convolutions’ main proper-
ties: locality and an inductive bias of translation invariance. They thus
aggregate information over a local graph neighborhood with the filter
weights being constant across the graph. Next, two specific realizations
are presented that are employed in Chapter 4.

3.2.1 Spiral Graph Convolutions

Given an Fin-channel feature tensor x ∈ RN×Fin , where the features
are defined at the N graph nodes, let x∗,i ∈ RN denote the i-th input
graph feature map. The complete output feature tensor, that stacks all
Fout feature maps, is denoted as y ∈ RN×Fout . The graph convolutions
act without stride, i.e., the input graph resolution equals the output
resolution.

Chapter 4 mainly works with spiral graph convolutions (Bouritsas et al.,
2019). Let xT

n,∗ ∈ RFin denote the feature vector of graph node n. Assuming
a fixed topology of the graph, some ordering of the neighboring nodes
of graph node n can be determined: n0, . . . , ns, . . . , nS−1. Bouritsas et al.
(2019) pick a spiral ordering that starts with n0 = n and proceeds along
the 1-ring (n1

0, n1
1, . . .), then the 2-ring (n2

0, n2
1, . . .), and so on. The spiral

ordering is thus given by: n, n1
0, n1

1, . . . , n2
0, n2

1, . . . All the spirals of the
graph are ultimately cut to a fixed length S and zero-padded if necessary.
The output of the spiral convolution is then defined as:

yT
j,∗ =

S−1

∑
s=0

Gs · xT
ns,∗ , (3.3)

where Gs ∈ Fout × Fin is a trainable matrix.

3.2.2 Spectral Graph Convolutions

The second type of graph convolutions is based on fast localized spectral
filtering (Defferrard et al., 2016), used in CoMA (Ranjan et al., 2018). The
j-th output graph feature map y∗,j ∈ RN is computed as follows:

y∗,j =
Fin

∑
i=1

gθi,j(L) · x∗,i . (3.4)

Here, L is the normalized Laplacian matrix of the graph and the filters
gθi,j(L) are parameterized using Chebyshev polynomials of order K. More
specifically,

gθi,j(L) =
K−1

∑
k=0

θi,j,k · Tk(L̃), (3.5)

3.3 coordinate-based networks 21

where θi,j,k ∈ R and L̃ = 2L/λmax − I, with λmax = 2 being an upper
bound on the spectrum of L. The Chebychev polynomial Tk is defined as
Tk(x) = 2x · Tk−1(x)− Tk−2(x), T1(x) = x, and T0(x) = 1.

This leads to K-localized filters that operate on the K-neighborhoods
of the nodes. Each filter gθi,j(L) is parameterized by K coefficients, which
in total leads to Fin × Fout × K trainable parameters for each graph convo-
lution layer.

3.3 coordinate-based networks

Several works (Mescheder et al., 2019; Park et al., 2019) concurrently
introduced coordinate-based neural networks. A coordinate-based net-
work f represents the volume enclosing a scene implicitly rather than,
for example, by regressing a mesh. Volumetric representations are par-
ticularly suitable because they allow for flexibility in the optimization
whereas surface representations like meshes are in practice difficult to
optimize. Furthermore, coordinate-based networks avoid discretization
and, in principle, represent the scene at infinite resolution.

Specifically, an object can be represented by encoding its signed dis-
tance field in a neural network: f (x) = s(x), where x ∈ R3 is any 3D point
in space and s(x) is its signed distance to the object surface. Therefore,
the networks need to be queried for each point that is to be evaluated,
which makes them (in their original form) much more computationally
expensive than classical representations.

The first works required full 3D supervision for training, with several at-
tempts (Niemeyer et al., 2020; Sitzmann et al., 2019a,b) at 2D supervision
showing insufficient performance for wide adaption. Coordinate-based
networks have grown tremendously in popularity over the last years and
are now also known as neural fields, as a recent survey (Xie et al., 2022)
discusses in detail.

Chapter 5 replaces the global network with local patch networks to
improve the generalization capabilities of coordinate-based networks.

3.4 neural radiance fields

NeRF (Mildenhall et al., 2020) enables coordinate-based neural networks
to be trained from 2D image supervision via volumetric rendering. In
contrast to previous attempts at 2D supervision, it makes two crucial
design choices: (1) the use of a density rather than an SDF representation,
and (2) backpropagating gradients into all points sampled along a ray
rather than only into points directly on the surface. Both of these relax the
optimization problem to the right degree. A more technical design choice

22 background

that enables sufficient spatial resolution beyond the natural smoothness
induced by an MLP is positional encoding. Positional encoding makes the
fine-grained high-frequency components of the coordinate input easily
accessible to the network. To this end, it applies sinusoidal functions with
different frequencies to the input and feeds the concatenation of all of
them into the MLP. NeRFs have seen quick and widespread adaptation to
numerous related fields, as a recent survey (Tewari et al., 2022) discusses.
Chapter 6 and Chapter 7 extend NeRF to deformable scenes.

NeRF renders a 3D volume into an image by accumulating color,
weighted by accumulated transmittance and density, along camera rays.
The 3D volume is parametrized by an MLP v(x, d) = (c, o) that regresses
an RGB color c = c(x, d) ∈ [0, 1]3 and an opacity o = o(x) ∈ [0, 1] for a
point x ∈ R3 on a ray with direction d ∈ R3.

Consider a pixel (u, v) of an image ĉi. For a pinhole camera, the
associated ray ru,v(j) = o + jd(u, v) can be calculated using Ri, ti, and
Ki, which yield the ray origin o ∈ R3 and ray direction d(u, v) ∈ R3.
Integrating along the ray from the near plane jn to the far plane j f of the
camera frustum yields the final color c at (u, v):

c(ru,v) =
∫ j f

jn
V(j) · o(ru,v(j)) · c(ru,v(j), d(u, v)) dj , (3.6)

with V(j) = exp(−
∫ j

jn
o(ru,v(s)) ds) being the accumulated transmittance

along the ray from jn up to j. In practice, the integrals are approximated
by discrete samples x along the ray. NeRF employs a coarse volume vc

with network weights θc and a fine volume v f with network weights
θ f . Both volumes have the same architecture, but do not share weights:
θ = θc ∪̇ θ f . When rendering a ray, vc is accessed first at uniformly
distributed samples along the ray. These coarse samples are used to
estimate the transmittance distribution, from which fine samples are
sampled. v f is then evaluated at the combined set of coarse and fine
sample points.

Part I

Representing General
Non-Rigid Objects

23

4
D E M E A : D E E P M E S H AU T O E N C O D E R S F O R
N O N - R I G I D LY D E F O R M I N G O B J E C T S

The first part of this thesis is about representing general non-rigid objects.
Three aspects need to be accounted for when representing an object in
computer graphics: its geometry, its appearance, and its deformations.
This chapter looks at the third aspect. How can neural techniques be
used to model deformations for general non-rigid objects, in particular
in a low-dimensional manner?

Mesh autoencoders are commonly used for dimensionality reduction,
sampling and mesh modeling. This chapter proposes a general-purpose
DEep MEsh Autoencoder (DEMEA) which adds a novel embedded defor-
mation layer to a graph-convolutional mesh autoencoder (also published
as Tretschk et al. (2020b)). The embedded deformation layer (EDL) is
a differentiable deformable geometric proxy which explicitly models
point displacements of non-rigid deformations in a lower dimensional
space and serves as a local rigidity regularizer. DEMEA decouples the
parameterization of the deformation from the final mesh resolution since
the deformation is defined over a lower dimensional embedded deforma-
tion graph. A large-scale study on four different datasets of deformable
objects confirms the effectiveness of the proposed method. Reasoning
about the local rigidity of meshes using EDL allows DEMEA to achieve
higher-quality results for highly deformable objects, compared to directly
regressing vertex positions. Finally, this chapter demonstrates multiple ap-
plications of DEMEA, including non-rigid 3D reconstruction from depth
and shading cues, non-rigid surface tracking, as well as the transfer of
deformations over different meshes.

4.1 introduction

With the increasing volume of datasets of deforming objects enabled
by modern 3D acquisition technology, the demand for compact data
representations and compression grows. Dimensionality reduction of
mesh data has multiple applications in computer graphics and vision,
including shape retrieval, generation, interpolation, and completion. Cru-
cially, when focusing on registered meshes (as this chapter does), di-
mensionality reduction becomes low-dimensional deformation modeling.
Apart from earlier classical methods discussed in Chapter 2, recent deep

25

26 demea

Figure 4.1: Pipeline: DEMEA encodes a mesh using graph convolutions on a
mesh hierarchy. The graph decoder first maps the latent vector to node features
of the coarsest graph level. A number of upsampling and graph convolution
modules infer the node translations and rotations of the embedded graph. An
embedded deformation layer applies the node translations to a template graph,
against which a template mesh is skinned. With the node rotations and the
skinning, this deformed graph allows reconstructing a deformed mesh.

convolutional autoencoder networks can learn highly compact mesh rep-
resentations (Bagautdinov et al., 2018; Bouritsas et al., 2019; Ranjan et al.,
2018; Tan et al., 2018b).

Dynamic real-world objects do not deform arbitrarily. While deform-
ing, they preserve topology, and nearby points are more likely to deform
similarly compared to more distant points. Current convolutional mesh
autoencoders exploit this coherence by learning the deformation prop-
erties of objects directly from data and are already suitable for mesh
compression and representation learning. On the other hand, they do
not explicitly reason about the deformation field in terms of local rota-
tions and translations. This chapter shows that explicitly reasoning about
the local rigidity of meshes enables higher-quality results for highly
deformable objects, compared to directly regressing vertex positions.

At the other end of the spectrum, mesh manipulation techniques
such as As-Rigid-As-Possible Deformation (Sorkine and Alexa, 2007)
and Embedded Deformation (Sumner et al., 2007) only require a single
mesh and enforce deformation properties, such as smoothness and local
rigidity, based on a set of hand-crafted priors. These hand-crafted priors
are effective and work surprisingly well, but since they do not model the
real-world deformation behavior of the physical object, they often lead to
unrealistic deformations and artifacts in the reconstructions.

This chapter proposes a general-purpose mesh autoencoder with a
model-based deformation layer, combining the best of both worlds, i.e.
supervised learning with deformable meshes and a novel differentiable
embedded deformation layer that models the deformable meshes using

4.2 method 27

lower-dimensional deformation graphs with physically interpretable
deformation parameters. While the core of DEep MEsh Autoencoder
(DEMEA) learns the deformation model of objects from data using the
state-of-the-art convolutional mesh autoencoder (CoMA) (Ranjan et al.,
2018), the novel embedded deformation layer decouples the parameteri-
zation of object motion from the mesh resolution and introduces local
spatial coherence via vertex skinning. DEMEA is trained on mesh datasets
of moderate sizes that have recently become available (Bednařík et al.,
2018; Bogo et al., 2017; Loper et al., 2014; Malik et al., 2018). DEMEA
is a general mesh autoencoding approach that can be trained for any
deformable object class. DEMEA is evaluated on datasets of three objects
with large deformations like articulated deformations (body, hand) and
large non-linear deformations (cloth), and one object with small localized
deformations (face). Quantitatively, DEMEA outperforms standard con-
volutional mesh autoencoder architectures in terms of vertex-to-vertex
distance error. Qualitatively, DEMEA produces visually higher fidelity
results due to the physically based embedded deformation layer. DE-
MEA enables several applications in computer vision and graphics. Once
trained, the decoder of the autoencoder can be used for shape compres-
sion, high-quality depth-to-mesh reconstruction of human bodies and
hands, and even poorly textured RGB-image-to-mesh reconstruction for
deforming cloth.

The low-dimensional latent space learned by DEMEA is meaningful
and well-behaved, as different applications of latent space arithmetic
demonstrate. Thus, DEMEA provides a well-behaved general-purpose
category-specific generative model of highly deformable objects.

4.2 method

This section describes the architecture of the proposed DEMEA, which
learns a low-dimensional deformation model from large datasets of
registered meshes.

To start, its auto-encoder architecture is based on spiral graph convolu-
tions (Bouritsas et al., 2019) that are defined on a multi-resolution mesh
hierarchy (Sec. 4.2.1). Importantly, at the end of the decoder, it uses an
embedded deformation layer to decouple the complexity of the learned
deformation field from the actual mesh resolution (Sec. 4.2.2). The de-
formation is represented relative to a canonical mesh M = (V, E) with
Nv vertices V = {vi}Nv

i=1, and edges E. To this end, the encoder-decoder
uses a coarse deformation graph and the embedded deformation layer to
drive the deformation of the final high-resolution mesh, see Fig. 4.1. This
architecture is trained with a simple reconstruction loss (Sec. 4.2.4), and,

28 demea

Figure 4.2: Template mesh and the corresponding embedded deformation graph
pairs automatically generated using Cignoni et al. (2008).

given paired data, can be extended to image input (Sec. 4.2.5). Finally,
this section concludes with low-level architecture details (Sec. 4.2.6).

4.2.1 Mesh Hierarchy

DEMEA is a convolutional mesh autoencoder. Similar to image autoen-
coders up- and downsampling the feature grids they act on, DEMEA’s
up- and downsampling is defined over a multi-resolution mesh hierarchy,
inspired by the CoMA (Ranjan et al., 2018) architecture. DEMEA employs
a hierarchy with five resolution levels, where the finest level is the mesh.
The mesh hierarchy is generated using the CoMA code (Ranjan et al.,
2018).

Given the multi-resolution mesh hierarchy, up- and downsampling
operations (Ranjan et al., 2018) for feature maps defined on the graph
are applied. To enable this, during downsampling, the nodes of the
coarser level need to be a subset of the nodes of the next finer level.
A feature map can be transferred to the next coarser level by a similar
naïve subsampling operation. The inverse operation, i.e., feature map
upsampling, is implemented based on a barycentric interpolation of close
features. During edge collapse, each collapsed node gets projected onto
the closest triangle of the coarser level. The barycentric coordinates of this
closest point with respect to the triangle’s vertices then allow to define
the interpolation weights.
Embedded Graphs in the Hierarchy. The design so far follows Ranjan et
al. (2018). However, DEMEA requires additional steps. Given a canonical
mesh, a corresponding coarse embedded deformation graph needs to
be picked. In practice, the first or the second level of the automatically
generated mesh hierarchy can be used as the embedded graph. Instead,
this chapter proposes to use more uniform embedded graphs, see Fig. 4.2.

To this end, the embedded graph can be computed fully automatically
based on quadric edge collapses (Garland and Heckbert, 1997) of the
canonical mesh. Using MeshLab’s (Cignoni et al., 2008) implementation of

4.2 method 29

quadric edge collapse decimation with default settings works well. (Note
that the embedded graph uses the same number of graph nodes as used
by Ranjan et al. (2018).) Experiments with different ways of obtaining
better embedded graphs, including hand-crafting them, yielded no major
differences, except that graphs generated by Ranjan et al. (2018) were too
non-uniform. Among the tested methods, MeshLab constitutes the least
involved method of obtaining a uniform graph.

The deformation graph is used as one of the two levels immediately
below the mesh in the mesh hierarchy (depending on the resolution of
the graph) of the autoencoder. When generating the mesh hierarchy, the
subset relationship between levels needs to be preserved. However, the
quadric edge collapse algorithm of Ranjan et al. (2018) might delete nodes
of the embedded graph when computing intermediate levels between
the mesh and the embedded graph. To ensure that those nodes are not
removed, the cost of removing them from levels that are at least as fine as
the embedded graph is set to infinity. Furthermore, since the embedded
graph needs to be a subset of the mesh, graph nodes obtained this way
need to be projected to their closest vertices. This may lead to multiple
nodes projecting to the same vertex. A greedy assignment from nodes
to vertices resolves this issue: looping over all nodes, the current node
is assigned to its closest vertex that is not yet taken by another node.
This enables a fully automatic generation of the mesh hierarchy for this
embedded graph.

4.2.2 Embedded Deformation Layer (EDL)

The embedded deformation layer models a space deformation that maps
the vertices of the canonical template mesh V to a deformed version V̂.
Suppose G = (N, E) is the embedded deformation graph (Sumner et al.,
2007) with L canonical nodes N = {gl}L

i=1 and K edges E, with gl ∈ R3.
The global space deformation is defined by a set of local, rigid, per-graph
node transformations. Each local rigid space transformation is defined
by a tuple Tl = (Rl , tl), with Rl ∈ SO(3) being a rotation matrix and
tl ∈ R3 being a translation vector. Parameterizing the rotation matrices
based on three Euler angles enforces that RT

l = R−1
l and det(Rl) = 1.

Each Tl is anchored at the canonical node position gl and maps every
point p ∈ R3 to a new position in the following manner (Sumner et al.,
2007):

Tl(p) = Rl [p− gl] + gl + tl . (4.1)

30 demea

To obtain the final global space deformation G, the local per-node trans-
formations are linearly combined:

G(p) = ∑
l∈Np

wl(p) · Tl(p) . (4.2)

Here, Np is the set of approximate closest deformation nodes. The linear
blending weights wl(p) for each position are based on the distance to the
respective deformation node (Sumner et al., 2007):

wl(p) = exp
(
−∥gl − p∥2

2 · σ2

)
, (4.3)

where σ ∈ R is determined heuristically as follows:

σ = σ0 · dmax ·
1√
L

, (4.4)

where σ0 = 2
3 and dmax is the maximum Euclidean distance between any

two mesh vertices, a proxy for the absolute scale of the mesh. Note that
Np, wl and σ are pre-computed on the template mesh and graph and
are kept fixed within each dataset. DEMEA uses |Np| = 6 for embedded
graphs on the first level and |Np| = 12 for embedded graphs on the
second level.

Finally, the deformed mesh V̂ = G(V) is obtained by applying the
global space deformation to the canonical template mesh V. The free
parameters are the local per-node rotations Rl and translations tl , i.e., 6L
parameters with L being the number of nodes in the graph. These param-
eters are input to the embedded deformation layer and are regressed by
the graph convolutional decoder.

4.2.3 Differentiable Space Deformation

The novel EDL is fully differentiable and can be used during network
training to decouple the parameterization of the space deformation from
the resolution of the final high-resolution output mesh. The reconstruc-
tion loss can thus be defined on the final high-resolution output mesh,
while still enabling backpropagating the errors via the skinning transform
to the coarse parameterization of the space deformation. Thus, DEMEA
enables finding the best space deformation by only supervising the final
output mesh.

4.2 method 31

4.2.4 Training

DEMEA is trained end-to-end in Tensorflow (Abadi et al., 2015) using
Adam (Kingma and Ba, 2015). Its loss is a dense geometric per-vertex
ℓ1-loss with respect to the ground-truth mesh:

Lvertex =
1

Nv

Nv

∑
i=1

∥v̂i − v∗
i ∥1, (4.5)

where v̂i is the i-th deformed vertex and v∗
i is the i-th ground-truth

vertex. The loss is averaged across the batch. The deformed vertex can be
either directly regressed (CA, MCA, FCA) or it can be computed via EDL
(DEMEA, FCED). For the latter case, Eq. 4.2 is used. DEMEA is trained
with Tensorflow 1.5.0 (Abadi et al., 2015) on Debian with an Nvidia V100

GPU.
All experiments use a learning rate of 10−4 and default parameters

β1 = 0.9, β2 = 0.999, ϵ = 10−8 for Adam. The training takes 50 epochs
for Dynamic Faust, 30 epochs for SynHand5M, 50 epochs for the CoMA
dataset and 300 epochs for the Cloth dataset. The batch size is 8.

4.2.5 Reconstructing Meshes from Images/Depth

DEMEA can be adapted to take images as input. This image/depth-
to-mesh network consists of an image encoder and a mesh decoder,
see Fig. 4.7a. The mesh decoder is initialized from the corresponding
mesh auto-encoder, the image/depth encoder is based on a ResNet-50

(He et al., 2016) architecture, and the latent code is shared between the
encoder and decoder. The ResNet-50 component is initialized using pre-
trained weights from ImageNet (Deng et al., 2009). To obtain training
data, the meshes are rendered into synthetic depth maps. For RGB input,
paired data is necessary. The training uses the same settings as for mesh
auto-encoding.

4.2.6 Network Architecture Details

In the following, more details of the encoder-decoder architectures are
provided. Fig. 4.3 contains the low-level architecture.
Encoding Meshes. Input to the first layer of the mesh encoder is an Nv × 3
tensor that stacks the coordinates of all Nv vertices. DEMEA applies four
downsampling modules. Each module applies a graph convolution and
is followed by a downsampling to the next coarser level of the mesh
hierarchy. DEMEA uses spiral graph convolutions (Bouritsas et al., 2019)

32 demea

Figure 4.3: The low-level architecture of DEMEA (orange path) and the depth-
to-mesh network (blue path). Note that the two paths are not trained simul-
taneously. GC(f) is a graph-convolutional layer with f output features. DS is
a downsampling layer and US is an upsampling layer. Conv2D(f,k,s) is a 2D
convolution with f output features, kernel size k × k, and stride s.

and similarly applies an ELU non-linearity after each convolution. Finally,
the output of the final module is fed into a fully connected layer followed
by an ELU non-linearity to obtain a latent space embedding.
Encoding Images/Depth. To encode images/depth, a 2D convolutional
network maps color/depth input to a latent space embedding. Input to
this encoder are images of resolution 256 × 256 pixels. Removing the
first convolutional layer of the ResNet-50 (He et al., 2016) architecture
enables it to take a single or three-channel input image. (The first 2D
convolutional layer in the depth encoder has no activation function.)
Furthermore, its final non-convolutional layers are removed and two
additional convolution layers added at the end instead, which are fol-
lowed by global average pooling. Finally, a fully connected layer with a
subsequent ELU non-linearity maps the activations to the latent space.
Decoding Graphs. The task of the graph decoder is to map from the
latent space back to the embedded deformation graph. First, a fully con-
nected layer in combination with reshaping yields the input to the graph
convolutional upsampling modules. DEMEA uses a sequence of three or
four upsampling modules until the resolution level of the embedded
graph is reached. The fourth upsampling module (i.e. upsampling layer
followed by a graph convolution) is only used for higher-resolution em-
bedded graphs. Each upsampling module first up-samples the features
to the next finer graph resolution and then performs a graph convolu-
tion, which is then followed by an ELU non-linearity. Then, two graph

4.3 results 33

Mesh 1st 2nd 3rd 4th

DFaust (Bogo et al., 2017) 6890 1723 431 108 27

CoMA (Ranjan et al., 2018) 5023 1256 314 79 20

SynHand5M (Malik et al., 2018) 1193 299 75 19 5

Cloth (Bednařík et al., 2018) 961 256 100 36 16

Table 4.1: Number of vertices on each level of the mesh hierarchy. Bold levels
denote the embedded graph. Note that except for Cloth these values were
computed automatically based on Ranjan et al. (2018).

convolutions with ELUs refine the features, followed by a final convo-
lution without an activation function. The resulting tensor is passed to
the embedded deformation layer. The spiral graph convolutions use the
default settings of Bouritsas et al. (2019) to determine the length of the
spirals. The spectral graph convolutions always use K = 6, except for the
last two layers, which use K = 2 for local refinement.

4.3 results

In this section, DEMEA is evaluated quantitatively and qualitatively
on several challenging datasets. First, the baselines and datasets are
introduced in Sec. 4.3.1. Then, Sec. 4.3.2 conducts an ablation study of the
embedded deformation layer. Finally, Sec. 4.3.3 shows that the proposed
method achieves state-of-the-art results for mesh auto-encoding. The next
section (Sec. 4.4) then shows applications, namely reconstruction from
RGB images and depth maps and that the learned latent space enables
well-behaved latent arithmetic.

4.3.1 Evaluation Settings

Metric. Since registered meshes are available, the reconstructions are
quantitatively evaluated via average per-vertex Euclidean errors.
Datasets. Experiments with body (Dynamic Faust, DFaust (Bogo et al.,
2017)), hand (SynHand5M (Malik et al., 2018)), textureless cloth (Cloth
(Bednařík et al., 2018)), and face (CoMA (Ranjan et al., 2018)) datasets
demonstrate DEMEA’s generality. Tab. 4.1 gives the number of graph
nodes used on each level of the hierarchical architecture. All meshes live
in metric space.
DFaust (Bogo et al., 2017). The training set consists of 28,294 meshes.
The test set splits off two identities (female 50004, male 50002) and two
dynamic performances, i.e., one-leg jump and chicken wings. Overall, this

34 demea

Figure 4.4: The Cloth hierarchy.

results in a test set with 12, 926 elements. For the depth-to-mesh results,
the synthetic depth maps from the DFaust training set are insufficient
for generalization, i.e., the test error is high. Thus, more pose variety is
necessary for DFaust for the depth-to-mesh experiments. To this end, 28k
randomly sampled poses from the CMU Mocap1 dataset are added to
the training data, where the identities are randomly sampled from the
SMPL (Loper et al., 2015) model (14k female, 14k male). Similarly, 12k
such samples are added to the test set (6k female, 6k male).
Textureless Cloth (Bednařík et al., 2018). The textureless cloth data set of
Bednařík et al. (2018) allows to evaluate DEMEA on general non-rigidly
deforming surfaces. It contains real depth maps and images of a white
deformable sheet — observed in different states and differently shaded —
as well as ground-truth meshes. In total, pre-filtering yields 3, 861 meshes
with consistent edge lengths. 3, 167 meshes are used for training and
700 meshes are reserved for evaluation. Since the canonical mesh is a
perfectly flat sheet, it lacks geometric features, which causes downsam-
pling methods like Garland and Heckbert (1997), Ranjan et al. (2018),
and Cignoni et al. (2008) to introduce severe artifacts. Hence, the entire
mesh hierarchy for this dataset is generated procedurally, see Fig. 4.4.
This hierarchy is also used to train the other methods in this section.
SynHand5M (Malik et al., 2018). For the experiments with hands, 100k ran-
dom meshes from the synthetic SynHand5M dataset of Malik et al. (2018)
are used and additionally rendered to obtain the corresponding depth
maps. The training set is comprised of 90k meshes, and the remaining
10k meshes are used for evaluation.
CoMA (Ranjan et al., 2018). The training set contains 17, 794 meshes of
the human face in various expressions (Ranjan et al., 2018). The test set
contains two challenging expressions, i.e., high smile and mouth extreme.
This gives 2, 671 test meshes in total.
Baseline Architectures. DEMEA is compared to a number of strong
baselines.
Convolutional Baseline. The convolutional ablation (CA) is a version of
DEMEA where the ED layer is replaced by learned upsampling modules

1 mocap.cs.cmu.edu

mocap.cs.cmu.edu

4.3 results 35

DFaust SynHand5M Cloth CoMA

8 32 8 32 8 32 8 32

w/ GL 8.92 2.75 9.02 2.95 11.26 6.45 1.38 0.99

w/ LP 7.71 2.22 8.00 2.52 11.46 7.96 1.25 0.79

DEMEA 6.69 2.23 8.12 2.51 11.28 6.40 1.23 0.81

Table 4.2: EDL integration ablation. Average per-vertex errors on the test sets of
DFaust (cm), SynHand5M (mm), textureless cloth (mm) and CoMA (mm) for 8

and 32 latent dimensions are reported.

that upsample to the mesh resolution. In this case, the extra refinement
convolutions occur on the level of the embedded graph. Modified CA
(MCA) is an architecture where the refinement convolutions are moved
to the end of the network, such that they operate on mesh resolution.
Fully-Connected Baseline. FC ablation (FCA) is an an almost-linear baseline.
The input is given to a fully-connected layer, after which an ELU is
applied. The resulting latent vector is decoded using another FC layer
that maps to the output space. Finally, the FCED is variant where the fully-
connected decoder maps to the deformation graph, which the embedded
deformation layer (EDL) in turn maps to the full-resolution mesh.

4.3.2 Ablation Study

The first question is the exact manner of integrating the EDL into the
training. DEMEA regresses node positions and rotations and then uses
the EDL to obtain the deformed mesh, on which the reconstruction loss
is applied.

As an alternative, the graph loss (GL) encourages the regressed graph
nodes positions to be close to the ground-truth vertex positions. It is an ℓ1

reconstruction loss directly on the graph node positions where the vertex
positions of the input mesh that correspond to the graph nodes are used
as ground truth. The graph nodes N are a subset of the mesh vertices V,
and the vertex index corresponding to a graph node l is denoted as il .
Then, the graph loss is:

Lgraph =
1
L

L

∑
l=1

∥tl − v∗
il
∥1. (4.6)

The GL setting uses the EDL only at test time to map to the full mesh,
but not for training. Although the trained network predicts graph node
positions tl at test time, it does not regress graph node rotations Rl
which are necessary for the EDL. It computes the missing rotation for

36 demea

DFaust SynHand5M Cloth CoMA

8 32 8 32 8 32 8 32

Spiral 6.69 2.23 8.12 2.51 11.28 6.40 1.23 0.81

Spectral 6.56 2.40 8.74 3.83 11.76 6.52 1.40 0.98

Table 4.3: Comparison of DEMEA with spiral and spectral graph convolutions.
Average per-vertex errors on the test sets of DFaust (in cm), SynHand5M (in
mm), textureless cloth (in cm) and CoMA (in mm) are reported.

each graph node l as follows: Assuming that each node’s neighborhood
transforms roughly rigidly, it solves a small Procrustes problem that
computes the rigid rotation between the 1-ring neighborhoods of l in the
template graph and in the regressed network output. It then directly uses
this rotation as Rl .

An alternative is to estimate the local Procrustes rotation inside the
network during training (LP). The same loss (Eq. 4.5) makes DEMEA learn
to regress the translation parameters, tl . However, instead of also learning
to regress the rotation parameters of EDL, Rl , as in DEMEA, they can
alternatively be obtained via local Procrustes as described in the previous
paragraph. Here, backpropagation through the rotation computation is
turned off to avoid training instabilities.

Tab. 4.2 shows the quantitative results using the average per-vertex Eu-
clidean error. Using the EDL during training leads to better quantitative
results, as the network is aware of the skinning function and can move
the graph nodes accordingly. In addition to being an order of magnitude
faster than LP, regressing rotations either gives the best results or is
close to the best. DEMEA therefore uses the EDL with regressed rotation
parameters during training in all further experiments.

DEMEA uses spiral graph convolutions (Bouritsas et al., 2019), but
spectral graph convolutions (Defferrard et al., 2016) also give similar
results, as Tab. 4.3 shows. Except for DFaust on latent dimension 8, spiral
graph convolutions always perform at least slightly better than spectral
graph convolutions. These results show that EDL obtains similar accuracy
with both graph convolutions, which further validates its robustness.

4.3.3 Evaluations of the Autoencoder

Qualitative Evaluations. DEMEA significantly outperforms the baselines
qualitatively on the DFaust and SynHand5M datasets, as seen in Figs. 4.6
and 4.5. Convolutional architectures without an embedded graph produce
strong artifacts in the hand, feet, and face regions in the presence of large

4.3 results 37

Figure 4.5: Auto-encoding results on all four datasets. From left to right: ground-
truth, DEMEA with latent dimension 32, DEMEA with latent dimension 8.

DFaust SynHand5M Cloth CoMA

8 32 8 32 8 32 8 32

FCA 6.51 2.17 15.10 2.95 15.63 5.99 1.77 0.67

FCED 6.26 2.14 14.61 2.75 15.87 5.94 1.81 0.73

CA 6.35 2.07 8.12 2.60 11.21 6.50 1.17 0.72

MCA 6.21 2.13 8.11 2.67 11.64 6.59 1.20 0.71

DEMEA 6.69 2.23 8.12 2.51 11.28 6.40 1.23 0.81

Table 4.4: Architecture baselines. Average per-vertex errors on the test sets of
DFaust (cm), SynHand5M (mm), textureless cloth (mm) and CoMA (mm) for 8

and 32 latent dimensions are reported.

38 demea

Figure 4.6: In contrast to graph-convolutional networks that directly regress
vertex positions, the embedded graph layer does not show artifacts. These results
use a latent dimension of 32.

deformations. Since EDL explicitly models deformations, it preserves
fine details of the template under strong non-linear deformations and
articulations of extremities.
Quantitative Evaluations. Tab. 4.4 compares the proposed DEMEA to
the baselines on the autoencoding task.

While the fully-connected baselines are competitive for larger dimen-
sions of the latent space, their memory demand increases drastically. On
the other hand, they perform significantly worse for low dimensions
on all datasets, except for DFaust. This chapter aims for low latent di-
mensions, e.g. less than 32, as the goal is to learn mesh representations
that are as compact as possible. Adding EDL to the fully-connected base-
lines maintains their performance. Furthermore, the lower test errors of
FCED on Cloth indicate that network capacity (and not EDL) limits the
quantitative results.

On SynHand5M, Cloth, and CoMA, the convolutional baselines per-
form on par with DEMEA. On DFaust, DEMEA is slightly worse, perhaps
because other architectures can also fit to the high-frequency details and
noise. EDL regularizes deformations to avoid artifacts, which also pre-
vents fitting to high-frequency or small details. Thus, explicitly modelling
deformations via the EDL and thereby avoiding artifacts has no negative
impact on the quantitative performance. Since CoMA mainly contains
small and local deformations, DEMEA does not lead to any quantitative
improvement. This is more evident in the case of latent dimension 32,

4.4 applications 39

DFaust SynHand5M Cloth CoMA

8 32 8 32 8 32 8 32

N. 3DMM 7.09 1.99 8.50 2.58 12.64 6.49 1.34 0.71

DEMEA 6.69 2.23 8.12 2.51 11.28 6.40 1.23 0.81

Table 4.5: Comparison with Neural 3DMM (Bouritsas et al., 2019). Average per-
vertex errors on the test sets of DFaust (in cm), SynHand5M (in mm), textureless
cloth (in mm) and CoMA (in mm) for 8 and 32 latent dimensions are reported.

as the baselines can better reproduce noise and other high-frequency
deformations.
Comparisons. Extensive comparisons with several competitive baselines
demonstrate the usefulness of DEMEA for autoencoding strong non-
linear deformations and articulated motion. Next, DEMEA is compared
to the existing state-of-the-art CoMA approach (Ranjan et al., 2018).
Their architecture is applied to all mentioned datasets with a latent
dimension of 8, which is also used in Ranjan et al. (2018). DEMEA
outperforms their method quantitatively on DFaust (6.7cm vs. 8.4cm), on
SynHand5M (8.12mm vs. 8.93mm), on Cloth (1.13cm vs. 1.44cm), and even
on CoMA (1.23mm vs. 1.42mm), where the deformations are not large.
Finally, Tab. 4.5 compares DEMEA to Neural 3DMM (Bouritsas et al.,
2019) on latent dimensions 8 and 32, similarly to Ranjan et al. (2018) on
their proposed hierarchy. DEMEA performs better than Neural 3DMM in
almost all cases. Fig. 4.6 shows that DEMEA avoids many of the artifacts
present in the case of Ranjan et al. (2018), Bouritsas et al. (2019), and
other baselines.

4.4 applications

This section shows that DEMEA can be used for mesh reconstruction
from RGB or depth input, and that its learned latent space is surprisingly
structured.

4.4.1 RGB to Mesh

On the Cloth (Bednařík et al., 2018) dataset, DEMEA can reconstruct
meshes from RGB images. See Fig. 4.7b for qualitative examples with a
latent dimension of 32.

On the test set, DEMEA achieves RGB-to-mesh reconstruction errors of
16.1mm and 14.5mm for latent dimensions 8 and 32, respectively. Bednařík
et al. (2018), who use a different split, report an error of 21.48mm. The

40 demea

(a) To train an image/depth-to-mesh reconstruction network, a convolutional
image encoder is combined with a decoder that is initialized to a pre-trained
graph decoder.

(b) From left to right: real RGB image, DEMEA’s reconstruction, ground truth.

Figure 4.7: (Top) Image/depth-to-mesh pipeline. (Bottom) RGB-to-mesh results
on the test set.

authors of IsMo-GAN (Shimada et al., 2019) report results on their own
split for IsMo-GAN and the Hybrid Deformation Model Network (HDM-
net) (Golyanik et al., 2018). On their split, HDM-Net achieves an error of
17.65mm after training for 100 epochs using a batch size of 4. IsMo-GAN
obtains an error of 15.79mm. Re-training DEMEA under the same settings
as HDM-Net, without pre-training the mesh decoder, gives test errors of
16.6mm and 13.8mm using latent dimensions of 8 and 32, respectively.

4.4.2 Depth to Mesh

Bodies. DEMEA uses a latent space dimension of 32. Quantitatively, this
yields an error of 2.3cm on un-augmented synthetic data. Fig. 4.8a shows
results on real data. To this end, it is necessary to augment the depth
images with artificial noise to lessen the domain gap.
Hands. DEMEA can reconstruct hands from depth as well, see Fig. 4.8b.
It achieves a reconstruction error of 6.73mm for a latent dimension of 32.
Malik et al. (2018) report an error of 11.8 mm. The test set in this chapter
is composed of a random sample of fully randomly generated hands
from the dataset, which is very challenging. Furthermore, this chapter
uses 256 × 256, whereas Malik et al. (2018) use images of size 96 × 96.

4.4 applications 41

(a) DEMEA (right) on real Kinect depth images (left) with
latent dimension 32.

(b) Reconstruction results from synthetic depth images of hands using
a latent dimension of 32. From left to right: depth, DEMEA’s recon-
struction, ground truth.

Figure 4.8: Reconstruction from a single depth image.

4.4.3 Latent Space Arithmetic

Although DEMEA does not employ any regularization on the latent
space, it empirically learns a well-behaved latent space.
Latent Interpolation. DEMEA allows to linearly interpolate the latent
vectors S and T of a source and a target mesh: I(α) = (1 − α)S + αT .
Even for highly different poses and identities, these I(α) yield plausible
in-between meshes, see Fig. 4.9a.
Smooth Tracking. DEMEA can temporally smooth tracked meshes from
a depth stream. Specifically, temporal smoothing of the reconstruction
of a sequence of real depth images {Di}i is achieved by decoding a
running (causal) exponential average of the latent vectors of this sequence.
First, the sequence is encoded into latent vectors {Di}i. The smoothed
sequence of latent vectors {D′

i}i is defined as follows: Let D′
0 = D0 and

set D′
i = α · Di + (1− α) · D′

i−1 for i > 0 for some α ∈ [0, 1]. The smoothed
sequence of meshes {Mi}i is obtained by decoding {D′

i}i.
Deformation Transfer. The learned latent space allows to transfer poses
between different identities on DFaust. Let a sequence of source meshes
S = {Mi}i of person A and a target mesh M′

0 of person B be given, where
w.l.o.g. M0 and M′

0 correspond to the same pose. The goal is to obtain
sequence of target meshes S′ = {M′

i}i of person B performing the same
poses as person A in S. To this end, S and M′

0 are encoded into the latent
space of the mesh auto-encoder, yielding the corresponding latent vectors
{Mi}i and M′

0. The identity difference is given by d = M′
0 −M0, which

42 demea

(a) Interpolation results, from left to right: source mesh, α = 0.2, α = 0.4,
α = 0.6, α = 0.8, target mesh.

(b) Deformation transfer from a source sequence to a target identity.
The first column shows M0 and M′

0.

Figure 4.9: Latent space arithmetic.

4.5 limitations 43

allows to set M′
i = Mi + d for i > 0. Decoding {M′

i}i using the mesh
decoder than yields S′. See Fig. 4.9b for qualitative results.

4.5 limitations

While the embedded deformation graph excels on highly articulated, non-
rigid motions, it has difficulties accounting for very subtle actions. Since
the faces in the CoMA (Ranjan et al., 2018) dataset do not undergo large
deformations, the EDL-based architecture does not offer a significant
advantage. Similar to all other 3D deep learning techniques, DEMEA also
requires reasonably sized mesh datasets for supervised training, which
might be difficult to capture or model. DEMEA is trained in an object-
specific manner. Generalizing DEMEA across different object categories
is an interesting direction for future work.

4.6 conclusion

This chapter proposes DEMEA — the first deep mesh autoencoder for
highly deformable and articulated scenes, such as human bodies, hands,
and deformable surfaces, that builds on a new differentiable embedded
deformation layer. The deformation layer reasons about local rigidity of
the mesh and achieves higher quality autoencoding results compared to
several baselines and existing approaches. It enables multiple applica-
tions, including non-rigid reconstruction from real depth maps and 3D
reconstruction of textureless surfaces from images.

Next, this thesis turns from modeling deformations for general non-
rigid objects to modeling geometry for general non-rigid objects, again
with neural techniques.

5
PAT C H N E T S : PAT C H - B A S E D G E N E R A L I Z A B L E D E E P
I M P L I C I T 3 D S H A P E R E P R E S E N TAT I O N S

This chapter concerns itself with the geometry aspect of general non-
rigid objects. Implicit surface representations, such as signed-distance
functions, combined with deep learning have led to impressive models
which can represent detailed shapes of objects with arbitrary topology.
Since a continuous function is learned, the reconstructions can also be
extracted at any arbitrary resolution. However, even when training on
large datasets such as ShapeNet (Chang et al., 2015), these models only
generalize to similar test sets.

This chapter presents a new mid-level patch-based surface represen-
tation (also published as Tretschk et al. (2020a)). At the level of patches,
objects across different categories share similarities, which leads to more
generalizable models. This chapter introduces a novel method to learn
this patch-based representation in a canonical space, such that it is as
object-agnostic as possible. Experiments show that this representation,
when trained on one category of objects from ShapeNet, can also well
represent detailed shapes from any other category. In particular, it allows
to represent shapes of general non-rigid object categories (e.g., humans)
despite only having been trained on shapes of static object categories
(e.g., chairs). In addition, it can be trained using much fewer shapes, com-
pared to existing approaches. This chapter shows several applications of
this new representation, including shape interpolation and partial point
cloud completion. Due to explicit control over positions, orientations and
scales of patches, this representation is also more controllable compared
to object-level representations, which allows to deform encoded shapes
non-rigidly.

5.1 introduction

Several 3D shape representations exist in the computer vision and com-
puter graphics communities, such as point clouds, meshes, voxel grids,
and implicit functions. Learning-based approaches have mostly focused
on voxel grids due to their regular structure, suited for convolutions.
However, such methods (Choy et al., 2016) ultimately have limited out-
put resolution due to the finite resolution of the voxel grid. Point cloud
based approaches have also been explored (Qi et al., 2017). While most

45

46 patchnets

approaches assume a fixed number of points, recent methods also al-
low for variable resolution outputs (Mescheder et al., 2019; Sitzmann
et al., 2019b). Point clouds only offer a sparse representation of the sur-
face. Meshes with fixed topology are commonly used in constrained
settings with known object categories (Wang et al., 2018). However, they
are not suitable for representing objects with varying topology. Very
recently, implicit function-based representations were introduced (Chen
and Zhang, 2019; Mescheder et al., 2019; Park et al., 2019). DeepSDF (Park
et al., 2019) learns a network which represents the continuous signed
distance functions for a class of objects. The surface is represented as
the 0-isosurface. Similar approaches (Chen and Zhang, 2019; Mescheder
et al., 2019) use occupancy networks, where only the occupancy values
are learned (similar to voxel grid-based approaches), but in a continuous
representation. Implicit functions allow for representing (closed) shapes
of arbitrary topology. The reconstructed surface can be extracted at any
resolution, since a continuous function is learned.

Figure 5.1: In contrast to a
global approach, the proposed
patch-based method gener-
alizes to non-rigid human
shapes after being trained on
rigid ShapeNet objects.

All existing implicit function-based meth-
ods rely on large datasets of 3D shapes for
training. This chapter aims to build a gen-
eralizable surface representation which can
be trained with much fewer shapes, and can
also generalize to different object categories.
Instead of learning an object-level represen-
tation, PatchNet learns a mid-level represen-
tation of surfaces, at the level of patches.
At the level of patches, objects across differ-
ent categories share similarities. PatchNet
learns these patches in a canonical space
to further abstract from object-specific de-
tails. Patch extrinsics (position, scale, and
orientation of a patch) allow each patch to
be translated, rotated, and scaled. Multiple
patches can be combined in order to repre-
sent the full surface of an object. Experiments show that the patches can
be learned using very few shapes, and can generalize across different
object categories, see Fig. 5.1. This representation also allows to build
object-level models, ObjectNets, which is useful for applications which
require an object-level prior.

The trained models enable several applications, including partial point
cloud completion from depth maps, shape interpolation, and a gener-
ative model for objects. While implicit function-based approaches can
reconstruct high-quality and detailed shapes, they lack controllability.

5.2 method 47

The proposed patch-based implicit representation natively allows for con-
trollability due to the explicit control over patch extrinsics. User-guided
rigging of the patches to the surface allows for articulated deformation of
humans without re-encoding the deformed shapes. In addition to the gen-
eralization and editing capabilities, the PatchNet representation includes
all advantages of implicit surface modeling. The patches can represent
shapes of any arbitrary topology, and the reconstructions can be extracted
at any arbitrary resolution using Marching Cubes (Lorensen and Cline,
1987). Similar to DeepSDF (Park et al., 2019), the network in PatchNet
uses an auto-decoder architecture, combining classical optimization with
learning, resulting in high-quality geometry.

5.2 method

The proposed method represents the surface of any object as a combi-
nation of several surface patches. The patches form a mid-level repre-
sentation, where each patch represents the surface within a specified
radius from its center. This representation is generalizable across object
categories, as most objects share similar geometry at the patch level.
This section explains how the patches are represented using artificial
neural networks, the losses required to train such networks, as well as the
algorithm to combine multiple patches for smooth surface reconstruction.

5.2.1 Implicit Patch Representation

PatchNets represents a full object i as a collection of NP = 30 patches. A
patch p represents a surface within a sphere of radius ri,p ∈ R, centered
at ci,p ∈ R3. Each patch can be oriented by a rotation about a canonical
frame, parametrized by Euler angles ϕi,p ∈ R3. Let ei,p = (ri,p, ci,p, ϕi,p) ∈
R7 denote all extrinsic patch parameters. Representing the patch surface
in a canonical frame of reference allows to normalize the query 3D point,
leading to more object-agnostic and generalizable patches.

The patch surface is represented as an implicit signed-distance function
(SDF), which maps 3D points to their signed distance from the closest
surface. This offers several advantages, as these functions are a continuous
representation of the surface, unlike point clouds or meshes. In addition,
the surface can be extracted at any resolution without a large memory
requirement, unlike for voxel grids. In contrast to prior work (Genova
et al., 2019; Williams et al., 2020), which uses simple patch primitives, the
proposed approach parametrizes the patch surface as a neural network
(PatchNet). Its network architecture is based on the auto-decoder of
DeepSDF (Park et al., 2019). The input to the network is a patch latent

48 patchnets

code z ∈ RNz of length Nz = 128, which describes the patch surface,
and a 3D query point x ∈ R3. The output is the scalar SDF value of the
surface at x. Similar to DeepSDF, its architecture consists of eight weight-
normalized (Salimans and Kingma, 2016) fully-connected layers with 128

output dimensions and ReLU activations, with z and x concatenated to
the input of the fifth layer. The last fully-connected layer outputs a single
scalar to which tanh is applied to obtain the SDF value.

5.2.2 Preliminaries

preprocessing : A given watertight mesh is first preprocessed to
obtain SDF values for 3D point samples. First, each mesh is centered and
fit tightly into the unit sphere. This is followed by sampling points, mostly
close to the surface, and computing their truncated signed distance to the
object surface, with truncation at 0.1. For more details on the sampling
strategy, please refer to Park et al. (2019).

auto-decoding : Unlike the usual setting, PatchNets do not use
an encoder that regresses patch latent codes and extrinsics. Instead,
following DeepSDF (Park et al., 2019), shapes are auto-decoded: the patch
latent codes and extrinsics of each object are treated as free variables to
be optimized for during training. I.e., instead of back-propagating into
an encoder, the proposed method employs the gradients to learn these
parameters directly during training.

initialization : Due to auto-decoding, the patch latent codes and
extrinsics are treated as free variables, similar to classical optimization.
Therefore, they can be directly initialized. All patch latent codes are
initially set to zero, and the patch positions are initialized by greedy
farthest point sampling of point samples of the object surface. Each patch
radius is set to the minimum such that each surface point sample is
covered by its closest patch. The patch orientation aligns the z-axis of the
patch coordinate system with the surface normal.

5.2.3 Loss Functions

PatchNet is trained by auto-decoding N full objects. The patch la-
tent codes of an object i are zi = [zi,0, zi,1, . . . , zi,NP−1], with each
patch latent code of length Nz. Patch extrinsics are represented as

5.2 method 49

ei = [ei,0, ei,1, . . . , ei,NP−1]. Let θ denote the trainable weights of PatchNet.
PatchNets employ the following loss function:

L(zi, ei, θ) = Lrecon(zi, ei, θ) + Lext(ei) + Lreg(zi). (5.1)

Here, Lrecon is the surface reconstruction loss, Lext is the extrinsic loss
guiding the extrinsics for each patch, and Lreg is a regularizer on the
patch latent codes.

reconstruction loss : The reconstruction loss minimizes the SDF
values between the predictions and the ground truth for each patch:

Lrecon(zi, ei, θ) =
1

NP

NP−1

∑
p=0

1
|S(ei,p)| ∑

x∈S(ei,p)

∥∥ f (x, zi,p, θ)− s(x)
∥∥

1, (5.2)

where f (·) and s(x) denote a forward pass of the network and the ground
truth truncated SDF values at point x, respectively; S(ei,p) is the set of all
(normalized) point samples that lie within the bounds of patch p with
extrinsics ei,p.

extrinsic loss : The composite extrinsic loss ensures all patches
contribute to the surface and are placed such that the surfaces are learned
in a canonical space:

Lext(ei) = Lsur(ei) + Lcov(ei) + Lrot(ei) + Lscl(ei) + Lvar(ei). (5.3)

Lsur ensures that every patch stays close to the surface:

Lsur(ei) = ωsur ·
1

NP

NP−1

∑
p=0

max(min
x∈Oi

∥∥ci,p − x
∥∥2

2, t). (5.4)

Here, Oi is the set of surface points of object i. This term is only applied
when the distance between a patch and the surface is greater than a
threshold t = 0.06.

A symmetric coverage loss Lcov encourages each point on the surface
to be covered by at least one patch:

Lcov(ei) = ωcov ·
1

|Ui| ∑
x∈Ui

wi,p,x

∑p wi,p,x
(
∥∥ci,p − x

∥∥
2 − ri,p), (5.5)

where Ui ⊆ Oi are all surface points that are not covered by any patch,
i.e., outside the bounds of all patches. wi,p,x weighs the patches based on
their distance from x, with wi,p,x = exp (−0.5 · ((

∥∥ci,p − x
∥∥

2 − ri,p)/σ)2)

where σ = 0.05.

50 patchnets

An additional loss aligns the patches with the surface normals. This
encourages the patch surface to be learned in a canonical frame of
reference:

Lrot(ei) = ωrot ·
1

NP

NP−1

∑
p=0

(1 − ⟨ϕi,p · [0, 0, 1]T, ni,p⟩)2. (5.6)

Here, ni,p is the surface normal at the point oi,p closest to the patch center,
i.e., oi,p = argmin

x∈Oi

∥∥x − ci,p
∥∥

2.

Finally, two losses regularize the extent of the patches. The first loss
encourages the patches to be reasonably small. This prevents significant
overlap between different patches:

Lscl(ei) = ωscl ·
1

NP

NP−1

∑
p=0

r2
i,p. (5.7)

The second loss encourages all patches to be of similar sizes. This prevents
the surface to be reconstructed only using very few large patches:

Lvar(ei) = ωvar ·
1

NP

NP−1

∑
p=0

(ri,p − mi)
2, (5.8)

where mi is the mean patch radius of object i.

regularizer : Similar to DeepSDF, an ℓ2-regularizer on the latent
codes encourages a Gaussian prior distribution:

Lreg(zi) = ωreg ·
1

NP

NP−1

∑
p=0

∥∥zi,p
∥∥2

2. (5.9)

optimization : During training, the following problem is optimized:

argmin
θ,{zi}i ,{ei}i

N−1

∑
i=0

L(zi, ei, θ). (5.10)

At test time, any surface can be reconstructed using the learned patch-
based representation. Using the same initialization of extrinsics and
patch latent codes, and given point samples with their SDF values, the
patch latent codes and the patches extrinsics are optimized for with fixed
network weights.

5.3 results 51

5.2.4 Blended Surface Reconstruction

For a smooth surface reconstruction of object i, e.g. for Marching Cubes,
the blended SDF prediction gi(x) is obtained by blending between dif-
ferent patches in the overlapping regions. Specifically, gi(x) is computed
as a weighted linear combination of the SDF values f (x, zi,p, θ) of the
overlapping patches:

gi(x) = ∑
p∈Pi,x

wi,p,x

∑p∈Pi,x
wi,p,x

f (x, zi,p, θ), (5.11)

with Pi,x denoting the patches which overlap at point x. For empty Pi,x,
gi(x) = 1. The blending weights are defined as:

wi,p,x = exp
(
− 1

2

(∥∥ci,p − x
∥∥

2
σ

)2)
− exp

(
− 1

2

(
ri,p

σ

)2)
, (5.12)

with σ = ri,p/3. The offset ensures that the weight is zero at the patch
boundary, to avoid stitching artifacts.

5.3 results

In the following, experiments show the effectiveness of the proposed
patch-based representation on several different problems.

5.3.1 Settings

Datasets. Most experiments employ ShapeNet (Chang et al., 2015). Prepro-
cessing is performed using the code of Stutz and Geiger (2018), similar
to Genova et al. (2020) and Mescheder et al. (2019), to make the meshes
watertight and normalize them within a unit cube. The training and test
splits follow Choy et al. (2016). The results in Tab. 5.1 and 5.2 use the full
test set. Other results refer to a reduced test set, where 50 objects from
each of the 13 categories are randomly picked. Sec. B.1 shows that results
on the reduced test set are representative of the full test set. In addition,
Dynamic FAUST (Bogo et al., 2017) is used for testing. There, the test set
from Chapter 4 is subsampled by concatenating all test sequences and
taking every 20th mesh. Preprocessing generates 200k SDF point samples
per shape.
Metrics. Three error metrics are used to quantitatively assess the results:
IoU, Chamfer distance, and F-score, similar to Genova et al. (2020). The
mean values across different test sets are reported.

IoU: For a given watertight ground-truth mesh, marching cubes ex-
tracts the reconstructed mesh at 1283 resolution. Then, 100k points are

52 patchnets

uniformly sampled in the bounding box of the ground truth. Then, each
point lies inside or outside of the generated mesh and of the ground
truth. The final value is the fraction of intersection over union, multiplied
by a factor of 100. Higher is better.

Chamfer Distance: Here, 100k points are sampled on the surface of
both the ground truth and the reconstructed mesh. A kD-tree is used
to compute the closest points from the reconstructed to the ground-
truth mesh and vice-versa. The square of these distances (L2 Chamfer) is
averaged for each of the two directions and the two resulting numbers
are summed. For better readability, the numbers are finally multiplied by
100. Lower is better.

F-score: For each shape, the point-wise distances computed before are
thresholded at 0.01 (all meshes are normalized to a unit cube). Then,
separately for each direction, the fraction of distances below the thresh-
old is determined. Finally, the harmonic mean of both these values is
multiplied by 100 to yield the final result. Higher is better.

In cases where a network does not produce any surface, the value of
IoU is set to 0, the Chamfer distance to 100, and the F-score to 0.
Training Details. PatchNets is trained using PyTorch (Paszke et al., 2019).
The number of epochs is 1000, the learning rate for the network is initially
5 · 10−4, and for the patch latent codes and extrinsics 10−3. Both learning
rates are halved every 200 epochs. The optimization uses Adam (Kingma
and Ba, 2015) and a batch size of 64. For each object in the batch, 3k
SDF point samples are randomly sampled. The weights for the losses are:
ωscl = 0.01, ωvar = 0.01, ωsur = 5, ωrot = 1, ωsur = 200. ωreg is linearly
increased from 0 to 10−4 for 400 epochs and then kept constant.
Baseline. For fairer comparisons, the experiments compare against a
“global-patch" baseline similar to DeepSDF, which only uses a single patch
without extrinsics. The patch latent size is 4050, matching PatchNets’.
The learning rate scheme is the same as for the proposed method.

5.3.2 Surface Reconstruction

First, the surface reconstruction of the test set, in challenging generaliza-
tion settings, and under ablations is evaluated.

5.3.2.1 Results

The proposed approach is trained on a subset of the training data, with
100 randomly picked shapes from each category. In addition to a compari-
son with the global baseline, PatchNets is compared with DeepSDF (Park

5.3 results 53

Figure 5.2: Surface Reconstruction. From left to right: DeepSDF, baseline, Patch-
Nets, ground truth.

IoU Chamfer F-score

Category DeepSDF Baseline PatchNets DeepSDF Baseline PatchNets DeepSDF Baseline PatchNets

airplane 84.9 65.3 91.1 0.012 0.077 0.004 83.0 72.9 97.8

bench 78.3 68.0 85.4 0.021 0.065 0.006 91.2 80.6 95.7

cabinet 92.2 88.8 92.9 0.033 0.055 0.110 91.6 86.4 91.2

car 87.9 83.6 91.7 0.049 0.070 0.049 82.2 74.5 87.7

chair 81.8 72.9 90.0 0.042 0.110 0.018 86.6 75.5 94.3

display 91.6 86.5 95.2 0.030 0.061 0.039 93.7 87.0 97.0

lamp 74.9 63.0 89.6 0.566 0.438 0.055 82.5 69.4 94.9

rifle 79.0 68.5 93.3 0.013 0.039 0.002 90.9 82.3 99.3

sofa 92.5 85.4 95.0 0.054 0.226 0.014 92.1 84.2 95.3

speaker 91.9 86.7 92.7 0.050 0.094 0.243 87.6 79.4 88.5

table 84.2 71.9 89.4 0.074 0.156 0.018 91.1 79.2 95.0

telephone 96.2 95.0 98.1 0.008 0.016 0.003 97.7 96.2 99.4

watercraft 85.2 79.1 93.2 0.026 0.041 0.009 87.8 80.2 96.4

mean 77.4 76.5 92.1 0.075 0.111 0.044 89.9 80.6 94.8

Table 5.1: Surface Reconstruction. PatchNets significantly outperform
DeepSDF (Park et al., 2019) and the global baseline on all categories of ShapeNet
almost everywhere.

et al., 2019) as setup in their paper. Both DeepSDF and the global baseline
use the subset. Qualitative results are shown in Fig. 5.2 and 5.3.

Tab. 5.1 shows the quantitative results for surface reconstruction. Patch-
Nets significantly outperform DeepSDF and the global baseline almost
everywhere, demonstrating the higher-quality afforded by its patch-based
representation.

Next, experiments compare PatchNets with several state-of-the-
art approaches on implicit surface reconstruction, OccupancyNet-
works (Mescheder et al., 2019), Structured Implicit Functions (Genova
et al., 2019) and Deep Structured Implicit Functions (Genova et al., 2020)1.
While they are trained on the full ShapeNet shapes, the proposed method
is trained only on a small subset. Even in this disadvantageous and
challenging setting, PatchNets outperform these approaches on most
categories, see Tab. 5.2. Note that the metrics are computed consistently
with Genova et al. (2020) and thus are directly comparable to numbers
reported in their paper.

1 DSIF is also known as Local Deep Implicit Functions for 3D Shape.

54 patchnets

IoU Chamfer F-score

Category OccNet SIF DSIF PatchNets OccNet SIF DSIF PatchNets OccNet SIF DSIF PatchNets

airplane 77.0 66.2 91.2 91.1 0.016 0.044 0.010 0.004 87.8 71.4 96.9 97.8

bench 71.3 53.3 85.6 85.4 0.024 0.082 0.017 0.006 87.5 58.4 94.8 95.7

cabinet 86.2 78.3 93.2 92.9 0.041 0.110 0.033 0.110 86.0 59.3 92.0 91.2

car 83.9 77.2 90.2 91.7 0.061 0.108 0.028 0.049 77.5 56.6 87.2 87.7

chair 73.9 57.2 87.5 90.0 0.044 0.154 0.034 0.018 77.2 42.4 90.9 94.3

display 81.8 69.3 94.2 95.2 0.034 0.097 0.028 0.039 82.1 56.3 94.8 97.0

lamp 56.5 41.7 77.9 89.6 0.167 0.342 0.180 0.055 62.7 35.0 83.5 94.9

rifle 69.5 60.4 89.9 93.3 0.019 0.042 0.009 0.002 86.2 70.0 97.3 99.3

sofa 87.2 76.0 94.1 95.0 0.030 0.080 0.035 0.014 85.9 55.2 92.8 95.3

speaker 82.4 74.2 90.3 92.7 0.101 0.199 0.068 0.243 74.7 47.4 84.3 88.5

table 75.6 57.2 88.2 89.4 0.044 0.157 0.056 0.018 84.9 55.7 92.4 95.0

telephone 90.9 83.1 97.6 98.1 0.013 0.039 0.008 0.003 94.8 81.8 98.1 99.4

watercraft 74.7 64.3 90.1 93.2 0.041 0.078 0.020 0.009 77.3 54.2 93.2 96.4

mean 77.8 66.0 90.0 92.1 0.049 0.118 0.040 0.044 81.9 59.0 92.2 94.8

Table 5.2: Surface Reconstruction. PatchNets outperform OccupancyNetworks
(OccNet, Mescheder et al. (2019)), Structured Implicit Functions (SIF, Genova
et al. (2019)), and Deep Structured Implicit Functions (DSIF, Genova et al. (2020))
almost everywhere.

5.3.2.2 Generalization

The proposed patch-based representation is more generalizable compared
to existing representations. Several experiments with different training
data demonstrate this in the following. In each case, the learning rate
schemes are modified to equalize the number of network weight updates.
For each experiment, PatchNets is compared with the baseline approaches
described above. The experiments use a reduced ShapeNet test set, which
consists of 50 shapes from each category. Fig. 5.3 shows qualitative
results and comparisons. Evaluations on 647 meshes from the Dynamic
FAUST (Bogo et al., 2017) test set show cross-dataset generalization. In
the first experiment, PatchNets is trained on shapes from the Cabinet
category and attempts to reconstruct shapes from every other category. It
significantly outperforms the baselines almost everywhere, see Tab. 5.3.
The improvement is even more noticeable for cross dataset generalization
with around 70% improvement in the F-score compared to the global-
patch baseline.

The second experiment evaluates the amount of training data required
to train PatchNets. PatchNets as well as the baselines are trained on 30,
10, 3, and 1 shape(s) per category of ShapeNet. An additional experiment
trains the networks on a single randomly picked shape from ShapeNet,
which is visualized in Fig. 5.4. Fig. 5.5 shows the errors for ShapeNet
(mean across categories) and Dynamic FAUST. The performance of the
proposed approach degrades only slightly with a decreasing number of
training shapes. However, the baseline approach of DeepSDF degrades
much more severely. This is even more evident for cross dataset gener-
alization on Dynamic FAUST, where the baseline cannot perform well

5.3 results 55

Figure 5.3: Generalization. From left to right: DeepSDF, baseline, PatchNets
on one category, PatchNets on one shape, PatchNets on 1 shape per category,
PatchNets on 3 per category, PatchNets on 10 per category, PatchNets on 30 per
category, PatchNets on 100 per category, and ground truth.

Figure 5.4: Single Shape. In one of the generalization experiments, the networks
are trained on this randomly chosen ground-truth shape.

even with a larger number of training shapes, while PatchNets perform
similarly across datasets.

5.3.2.3 Ablation Experiments

Several ablative analysis experiments in this section evaluate PatchNets
deeper. The mean error metrics on the reduced ShapeNet test set are
reported when training on the reduced ShapeNet training set, which
consists of 100 shapes per ShapeNet category.
Number of Patches. First, the number of patches required to reconstruct
surfaces is evaluated. Tab. 5.4 contains summary results, while Fig. 5.7

Figure 5.5: Generalization. PatchNet (green), the global-patch baseline (orange),
and DeepSDF (blue) are trained on different numbers of shapes (x-axis). Results
on different metrics on the reduced test sets are shown on the y-axis. For IoU
and F-score, higher is better. For Chamfer distance, lower is better.

56 patchnets

IoU Chamfer F-score

Category BL DSDF PatchNets BL DSDF PatchNets BL DSDF PatchNets

airplane 33.5 56.9 88.2 0.668 0.583 0.005 33.5 61.7 96.3

bench 49.1 58.8 80.4 0.169 0.093 0.006 63.6 76.3 93.3

cabinet 86.0 91.1 91.4 0.045 0.025 0.121 86.4 92.6 91.7

car 78.4 83.7 92.0 0.101 0.074 0.050 62.7 73.9 87.2

chair 50.7 61.8 86.9 0.473 0.287 0.012 49.1 65.2 92.5

display 83.2 87.6 94.4 0.111 0.065 0.052 83.9 89.6 96.9

lamp 49.7 59.3 86.6 0.689 2.645 0.082 50.4 64.5 93.4

rifle 56.4 56.1 91.8 0.114 2.669 0.002 71.0 54.7 99.1

sofa 81.1 87.3 94.8 0.245 0.193 0.010 74.2 84.6 95.2

speaker 83.2 88.3 90.5 0.163 0.080 0.232 71.8 80.1 84.9

table 55.0 73.6 88.4 0.469 0.222 0.020 61.8 82.8 95.0

telephone 90.4 94.7 97.3 0.051 0.015 0.004 90.8 96.1 99.2

watercraft 66.5 73.5 91.8 0.115 0.157 0.006 63.0 74.2 96.2

mean 66.4 74.8 90.3 0.263 0.547 0.046 66.3 76.6 93.9

DFAUST 57.8 71.2 94.4 0.751 0.389 0.012 25.0 45.4 94.0

Table 5.3: Generalization. Networks trained on the Cabinet category, but evalu-
ated on every category of ShapeNet, as well as on Dynamic FAUST. PatchNets
significantly outperform the baseline (BL) and DeepSDF (DSDF) almost every-
where.

IoU Chamfer F-score Time

NP = 3 73.8 0.15 72.9 1h

NP = 10 85.2 0.049 88.0 1.5h

size 32 82.8 0.066 84.7 1.5h

size 512 95.3 0.048 97.2 8h

full dataset 92.2 0.050 94.8 156h

PatchNets 91.6 0.045 94.5 2h

Table 5.4: Ablation evaluating the performance using different numbers of
patches, as well as using variable sizes of the patch latent code/hidden dimen-
sions, and the training data. The training time is measured on an Nvidia V100

GPU.

5.3 results 57

Figure 5.6: Per-category error metrics on the reduced ShapeNet test set for
different numbers of patches.

Figure 5.7: Mean error metrics on the reduced ShapeNet test set for different
numbers of patches and network/latent code sizes.

contains detailed results. As expected, the performance becomes better
with a larger number of patches, since this would lead to smaller patches
which can capture more details and generalize better. Fig. 5.6 shows the
per-category error metrics. Apart from the outlier categories cabinet, car,
and speaker, the error metrics behave very similar across categories. They
improve strongly when going from 3 to 10 and from 10 to 30 patches,
and they improve at most slightly when going from 30 to 100 patches.
Neural Sizes. Next, the impact of different sizes of the latent codes
and hidden dimensions used for the patch network is evaluated. Size
refers to both the dimensions of the patch latent vector and the hidden
dimensions of PatchNet. Again, Tab. 5.4 contains summary results, while
Fig. 5.7 contains detailed results. The gap between size 128 and 512 is
much smaller than between 32 and 128. Larger latent codes and hidden
dimensions lead to higher quality results. Similarly, training on the full
training dataset, consisting of 33k shapes leads to higher quality. However,
all design choices with better performance come at the cost of longer
training times, see Tab. 5.4.
Losses. Finally, each of the extrinsics losses is ablated as well as the need
for guiding the rotation via initialization and a loss function. Tab. 5.5
contains the results. Due to the initialization, as described in Sec. 5.2.2,
the extrinsics losses are not necessary in this setting. However, as shown

58 patchnets

IoU Chamfer F-score

no Lsur 92.0 0.049 94.8

no Lcov 90.7 0.051 93.6

no Lrot 92.5 0.043 95.4

no Lscl 91.2 0.031 94.3

no Lvar 91.6 0.045 94.4

random rotation initialization and no Lrot 89.0 0.048 93.1

PatchNets 91.6 0.045 94.5

PatchNets with Lrecon on mixture 94.0 0.026 96.8

Table 5.5: Ablation Study of PatchNet. Each of the extrinsics losses is removed.
Also, the reconstruction loss is imposed on the mixture (using gi(x) from Eq. 11

instead of f (x, zi,p, θ)).

mixture patches

Lrecon on mixture

PatchNets

Figure 5.8: Mixture Reconstruction Loss. Imposing the reconstruction loss on
the mixture instead of directly on the patches leads to individual patches not
matching the surface.

in Sec. B.2, they are necessary when the extrinsics are regressed instead of
free. Initializing and encouraging the rotation towards normal alignment
helps. Using Lrecon on the mixture does not sufficiently constrain the
patches to individually reconstruct the surface, as Fig. 5.8 shows.

5.3.3 Object-Level Priors

While PatchNet benefits from its local representation, certain tasks need
a global prior. Thus, the following experiments concern category-specific
object priors. To this end, ObjectNet (four FC layers with hidden dimen-
sion 1024 and ReLU activations) is added in front of PatchNet and the
baselines. From object latent codes of size 256, ObjectNet regresses patch
latent codes and extrinsics as an intermediate representation usable with

5.3 results 59

Figure 5.9: Coarse Correspondences. Note the consistent coloring of the patches.

PatchNet. ObjectNet effectively increases the network capacity of the
baselines.
Training. All object latents are initialized with zeros and the weights of
ObjectNet’s last layer with very small numbers. The bias of ObjectNet’s
last layer is initialized with zeros for patch latent codes and with the
extrinsics of an arbitrary object from the category as computed by the
initialization in Sec. 5.2.2. PatchNet is pretrained on ShapeNet. For the
proposed method, the PatchNet is kept fixed from this point on. The
full training split of the ShapeNet category considered in the respective
experiment is used for training. Removing Lrot completely significantly
improves quality. The L2 regularization is only applied to the object latent
codes. The training uses ωvar = 5. ObjectNet is trained in three phases,
each lasting 1000 epochs. The same initial learning rates as when training
PatchNet are used, except in the last phase, where they are reduced by a
factor of 5. The batch size is 128.

Phase I: Pretraining ObjectNet ensures good patch extrinsics. For this,
the extrinsic loss, Lext in Eq. 5.3, and the regularizer are used, with
ωscl = 2.

Phase II: Next, ObjectNet learns to regress patch latent codes. First,
before training, a layer that multiplies the regressed scales by 1.3 is added.
Then, these extrinsics are stored. Afterwards, ObjectNet is trained using
Lrecon and two L2 losses that keep the regressed position and scale close
to the stored extrinsics, with respective weights 1, 3, and 30.

Phase III: The complete loss L in Eq. 5.1, with ωscl = 0.02, yields final
refinements.
Coarse Correspondences. Fig. 5.9 shows that the learned patch distri-
bution is consistent across objects, establishing coarse correspondences
between objects.
Interpolation. Due to the implicitly learned coarse correspondences,
test objects can be encoded into object latent codes and then be linearly
interpolated. Fig. 5.10 shows that interpolation of the latent codes leads
to a smooth morph between the decoded shapes in 3D space.
Generative Model. The learned object latent space allows to turn Ob-
jectNet into a generative model. Since auto-decoding does not yield an
encoder that inputs a known distribution, the unknown input distribu-
tion needs to be estimated. Therefore, a multivariate Gaussian is fit to
the object latent codes obtained at training time. New object latent codes

60 patchnets

Figure 5.10: Interpolation (top). The left and right end points are encoded test
objects. Generative Models (bottom). Object latents are sampled from ObjectNet’s
fitted prior.

Figure 5.11: Shape Completion. (Sofa) from left to right: Baseline, DeepSDF,
proposed unrefined, proposed refined. (Airplane) from left to right: Proposed
unrefined, proposed refined.

can the be sampled from the fitted Gaussian and used to generate new
objects, see Fig. 5.10.
Partial Point Cloud Completion. Given a partial point cloud, ObjectNet
allows to optimize for the object latent code which best explains the
visible region. ObjectNet acts as a prior which completes the missing
parts of the shape. For the proposed method, PatchNet is pretrained on
a different object category and then kept fixed, and then ObjectNet is
trained on the target category, which makes this task more challenging
for the proposed method. In contrast, for the baselines, the eight final
layers are pretrained on all categories and finetuned on the target shape
category. Evaluations of several other settings revealed this one to be the
most competitive. See Sec. B.2 for more on surface reconstruction with
object-level priors.

Optimization: The object latent code is initialized to the average of the
object latent codes obtained at training time. Then, optimization runs for
600 iterations, starting with a learning rate of 0.01 and halving every 200
iterations. Since ObjectNet regresses the patch latent codes and extrinsics
as an intermediate step, the result can be further refined by treating this
intermediate patch-level representation as free variables. Specifically, the
patch latent code is refined for the last 100 iterations with a learning
rate of 0.001, while keeping the extrinsics fixed. This allows to integrate
details not captured by the object-level prior. Fig. 5.11 demonstrates this
effect. Optimization uses the reconstruction loss, the L2 regularizer, and
the coverage loss. The other extrinsics losses have a detrimental effect on

5.4 limitations 61

sofas fixed sofas random airplanes fixed airplanes random

acc. F-score acc. F-score acc. F-score acc. F-score

baseline 0.094 43.0 0.092 42.7 0.069 58.1 0.066 58.7

DeepSDF-based baseline 0.106 33.6 0.101 39.5 0.066 56.9 0.065 55.5

proposed 0.091 48.1 0.077 49.2 0.058 60.5 0.056 59.4

proposed+refined 0.052 53.6 0.053 52.4 0.041 67.7 0.043 65.8

Table 5.6: Partial Point Cloud Completion from Depth Maps. Depth maps
are completed from a fixed camera viewpoint and from per-scene random
viewpoints.

patches that are outside the partial point cloud. Each iteration uses 8k
samples.

The partial point clouds are obtained from depth maps, similar to Park
et al. (2019). The proposed method also employs their free-space loss,
which encourages the network to regress positive values for samples
between the surface and the camera, using 30% free-space samples. The
depth maps can be from a fixed or from a per-scene random viewpoint.
For shape completion, the F-score between the full ground-truth mesh
and the reconstructed mesh is reported. Similar to Park et al. (2019), the
mesh accuracy measures shape completion. It is the 90th percentile of
shortest distances from the surface samples of the reconstructed shape
to surface samples of the full ground truth. Tab. 5.6 shows how, due to
local refinement on the patch level, ObjectNet outperforms the baselines
everywhere.

5.3.4 Articulated Deformation

The proposed patch-level representation can model some articulated
deformations by only modifying the patch extrinsics, without needing
to adapt the patch latent codes. Given a template surface and patch
extrinsics for this template, it first needs to be encoded into patch latent
codes. After manipulating the patch extrinsics, an articulated surface
can be obtained with the smooth blending from Eq. 5.11, as Fig. 5.12

demonstrates.

5.4 limitations

The SDF is sampled using DeepSDF’s sampling strategy, which might
limit the level of detail. Generalizability at test time requires optimizing
patch latent codes and extrinsics, a problem shared with other auto-

62 patchnets

Figure 5.12: Articulated Motion. A template shape is encoded into patch latent
codes (first pair). Then, the patch extrinsics are modified, while keeping the
patch latent codes fixed, leading to non-rigid deformations (middle two pairs).
The last pair shows a failure case due to large non-rigid deformations away from
the template. Note that the colored patches move rigidly across poses while the
mixture deforms non-rigidly.

decoders. Auto-encoding is slow at test time: Fitting the reduced test set
takes 71 min due to batching, one object takes 10 min.

5.5 conclusion

This chapter presents a mid-level geometry representation based on
patches. This representation leverages the similarities of objects at patch
level, leading to a highly generalizable neural shape representation. For
example, the proposed representation, trained on one object category,
can also represent other categories. PatchNets enable a large variety of
downstream applications that go far beyond shape interpolation and
point cloud completion.

This concludes the first half of the thesis, which is about representations.
Two methods were introduced: DEMEA models the deformations and
PatchNets models the geometry of general non-rigid objects with neural
techniques. Next, this thesis turns from representing general non-rigid
objects to the other part of 4D digitization: reconstruction.

Part II

Reconstructing General
Non-Rigid Objects

63

6
N O N - R I G I D N E U R A L R A D I A N C E F I E L D S :
R E C O N S T R U C T I O N A N D N O V E L V I E W S Y N T H E S I S O F
A D Y N A M I C S C E N E F R O M M O N O C U L A R V I D E O

The second half of this thesis is concerned with reconstruction from
image data rather than representing general non-rigid objects. As before,
neural techniques, in particular neural radiance fields, are used to this
end.

This chapter presents Non-Rigid Neural Radiance Fields (NR-NeRF), a
reconstruction and novel view synthesis approach for general non-rigid
dynamic scenes (also published as Tretschk et al. (2021)). The proposed
approach takes RGB images of a dynamic scene as input (e.g., from a
monocular video recording), and creates a high-quality space-time ge-
ometry and appearance representation. Experiments show that a single
handheld consumer-grade camera is sufficient to synthesize sophisticated
renderings of a dynamic scene from novel virtual camera views, e.g. a
‘bullet-time’ video effect. Further experiments examine the quality limit
of the method via a straightforward (optional) extension to multi-view
input. NR-NeRF disentangles the dynamic scene into a canonical volume
and its deformation. Scene deformation is implemented as ray bending,
where straight rays are deformed non-rigidly. This chapter also proposes
a novel rigidity network to better constrain rigid regions of the scene,
leading to more stable results. The ray bending and rigidity network are
trained without explicit supervision. The proposed formulation enables
dense correspondence estimation across views and time, and compelling
video editing applications such as motion exaggeration. Overall, the
approach proposed in this chapter enables free-viewpoint rendering of
general deformable scenes with multiple objects and complex deforma-
tions with high visual fidelity, and yet does not rely on templates, 2D
correspondences, and multi-view setups. Fig. 6.1 provides an overview
of the results.

65

66 non-rigid neural radiance fields

Figure 6.1: Given a monocular image sequence, NR-NeRF reconstructs a single
canonical neural radiance field to represent geometry and appearance, and a
per-time-step deformation field. The scene can be rendered into a novel spatio-
temporal camera trajectory that significantly differs from the input trajectory.
NR-NeRF also learns rigidity scores and correspondences without direct super-
vision on either. The rigidity scores can be used to remove the foreground, to
supersample along the time dimension, and to exaggerate or dampen motion.

6.1 introduction

Free viewpoint rendering is a well-studied problem due to its wide range
of applications in movies and virtual/augmented reality (Collet et al.,
2015; Miller et al., 2005; Smolic et al., 2006). This chapter focuses on
dynamic scenes, which change over time, from novel user-controlled
viewpoints. Traditionally, multi-view recordings are required for free
viewpoint rendering of dynamic scenes (Oswald et al., 2014; Tung et
al., 2009; Zhang et al., 2003). However, such multi-view captures are
expensive and cumbersome. The goal of this chapter is to enable the
setting in which a casual user records a dynamic scene with a single,
moving consumer-grade camera. Access to only a monocular video of
the deforming scene leads to a severely under-constrained problem. Most
existing approaches thus limit themselves to a single object category, such
as the human body (Habermann et al., 2019; Kocabas et al., 2020; Xiang
et al., 2019) or face (Egger et al., 2020a). Some approaches allow for the
reconstruction of general non-rigid objects (Garg et al., 2013; Kumar et al.,
2018; Sidhu et al., 2020; Zollhöfer et al., 2018), but most methods only
reconstruct the geometry without the appearance of the objects in the
scene. In contrast, this chapter aims to reconstruct a general dynamic
scene, including its appearance, such that it can be rendered from novel
spatio-temporal viewpoints. Recent neural rendering approaches have
shown impressive novel-view synthesis of general static scenes from
multi-view input (Tewari et al., 2020). These approaches represent scenes
using trained neural networks and rely on fewer constraints about the
type of scene, compared to traditional approaches. The closest prior
work to the proposed method is NeRF (Mildenhall et al., 2020), which
learns a continuous volume of the scene encoded in a neural network
using multiple camera views. However, NeRF assumes the scene to be
static. Neural Volumes (Lombardi et al., 2019) is another closely related
approach that uses multiple views of a deforming scene to enable free-
viewpoint rendering. However, it uses a fixed-size voxel grid to represent
the reconstruction of the scene, restricting the resolution. In addition, it
requires multi-view input for training, which limits the applicability to
in-the-wild outdoor settings or existing monocular footage. The proposed

6.1 introduction 67

Figure 6.2: NR-NeRF bends straight rays r̄ from the deformed volume using a
deformation-dependent ray-bending network b′ and a deformation-independent
rigidity network w into a single static canonical neural radiance field volume v.

neural rendering approach instead targets the more challenging setting of
using just a monocular video of a general dynamic scene. Due to the non-
rigidity, each image of the video records a different, deformed state of the
scene, violating the constraints of standard neural rendering approaches.
The approach disentangles the observations in any image into a canonical
scene and its deformations, without direct supervision on either. Several
innovations are necessary to tackle this problem. The non-rigid scene
is represented by two components, see Fig. 6.2: (1) a canonical neural
radiance field for capturing geometry and appearance and (2) the scene
deformation field. The canonical volume is a static representation of the
scene encoded as a Multi-Layered Perceptron (MLP), which is not directly
supervised. This volume is deformed into each individual image using
the estimated scene deformation. Specifically, the scene deformation is
implemented as ray bending, where straight camera rays can deform
non-rigidly. The ray bending is modeled using an MLP that takes point
samples on the ray as well as a latent code for each image as input. Both
the ray bending and the canonical scene MLPs are jointly trained using
monocular observations. Since the ray bending MLP deforms the entire
space independent of camera parameters, the deforming volume can be
rendered from static or time-varying novel viewpoints after training.

The ray bending MLP disentangles the geometry of the scene from
the scene deformations. The disentanglement is an underconstrained
problem, which is tackled with further innovations. The proposed method
assigns a rigidity score to every point in the canonical volume, which
allows for the deformations to not affect the static regions in the scene.
This rigidity component is jointly learned without any direct supervision.
Multiple regularizers act as additional soft-constraints: A regularizer
on the deformation magnitude of the visible deformations encourages
only sparse deformations of the volume, and thus helps to constrain the
canonical volume. An additional divergence regularizer preserves the

68 non-rigid neural radiance fields

local shape, thereby constraining the representation of hidden (partially
occluded) regions that are not visible throughout the full video.

Results in Sec. 6.3 show high-fidelity reconstruction and novel view
synthesis for a wide range of non-rigid scenes. These experiments also
compare NR-NeRF to several methods for neural novel view rendering.
Sec. 6.4 discusses the limitations.

6.2 method

This chapter proposes Non-Rigid Neural Radiance Field (NR-NeRF). It
takes as input a set of N RGB images {ĉi}N−1

i=0 of a non-rigid scene and
their extrinsics {Ri, ti}N−1

i=0 and intrinsics {Ki}N−1
i=0 . NF-NeRF then finds

a single canonical neural radiance volume that can be deformed via ray
bending to correctly render each ĉi. Specifically, appearance and geometry
information is collected in the static canonical volume v parametrized
by weights θ. Deformations are modeled by bending the straight rays
sent out by a camera to obtain a deformed rendering of v. This ray
bending is implemented as a ray bending MLP b with weights ψ. It maps,
conditioned on the current deformation, 3D points (e.g., sampled from
the straight rays) to 3D positions in v. The deformation conditioning
takes the form of auto-decoded latent codes {li}N−1

i=0 for each image i.

6.2.1 Adaptations of NeRF for NR-NeRF

This chapter assumes Lambertian materials and thus removes the view-
dependent layers of rigid NeRF, i.e., c = c(x). Since each image corre-
sponds to a different deformation of the volume in the non-rigid setting,
a latent code is learned for each time step, which is then used as input
for the ray bending network which parameterizes scene deformations.
The weights of this network and the latent codes are shared between the
coarse NeRF model vc and the fine NeRF model v f (see Sec. 3.4).

6.2.2 Deformation Model

The original NeRF method (Mildenhall et al., 2020) assumes rigidity
and cannot handle non-rigid scenes. A naïve approach to modeling
deformations in the NeRF framework would be to condition the volume
on the deformation (e.g., by conditioning it on time or a deformation
latent code). Sec. 6.3.4 explores the latter option experimentally. As is
shown there, apart from not providing hard correspondences, this naïve
approach only leads to satisfying results when reconstructing the input

6.2 method 69

camera path, but gives implausible results for novel view synthesis.
Instead, NR-NeRF explicitly models the consistency of geometry and
appearance across time by disentangling them from the deformation.

The proposed method accumulates geometry and appearance from
all frames into a single, non-deforming canonical volume. General space
warping (or ray bending) on top of the static canonical volume allows to
model non-rigid deformations.

For an input image ĉi at training time, the goal is to render the canonical
volume such that the image is reproduced. Thus, the deformation of the
specific time step i needs to be un-done by mapping the camera rays to
the deformation-independent canonical volume. To this end, straight rays
are sent from the input camera. To account for the deformation, they are
then bent such that sampling and subsequently rendering the canonical
volume along the bent rays yields ĉi. NR-NeRF uses a very unrestricted
parametrization of the ray bending, namely an MLP.

Specifically, ray bending is implemented as a ray bending network
b(x, li) ∈ R3. For a point x, for example lying on a straight ray, the
network regresses an offset under a deformation represented by li. The
offset is then added to x, thereby bending the ray. Finally, the new, bent
ray point is passed to the canonical volume, that is: (c, o) = v(x+b(x, li)).
Note that v is not conditioned on li, which leads to the disentanglement
of deformation (b and li) from geometry and appearance (v). The bent
version of the straight ray r̄ is denoted as r̃li(j) = r̄(j) + b(r̄(j), li).
Rigidity Network. However, rigid parts of the scene are insufficiently
constrained by this formulation. NR-NeRF thus reformulates b(x, li) ∈
R3 as the product of a raw offset b′(x, li) and a rigidity mask w(x) ∈ [0, 1],
i.e., b(x, li) = w(x)b′(x, li). For rigid objects, deformations need to be
prevented and hence w(x) = 0 is desired, while for non-rigid objects,
w(x) > 0. This makes it easier for b′ to focus on the non-rigid parts of the
scene, which change over time, since rigid parts can get masked out by the
rigidity network w, which is jointly trained. Because the rigidity network
is not conditioned on the latent code li, it is forced to share knowledge
about the rigidity of regions in the scene across time steps, which also
ensures that parts of the rigid background that can be unregularized at
certain time steps are nonetheless reconstructed at all time steps without
any deformation.

6.2.3 Losses

With the architecture specified, all parameters (θ, ψ, {li}i) are next opti-
mized jointly. The network weights are treated as usual but the latent

70 non-rigid neural radiance fields

codes li are auto-decoded (Park et al., 2019; Tan and Mayrovouniotis,
1995).
Notation. For ease of presentation, this section considers a single time
step i and a single straight ray r̄ with coarse ray points C̄ = {r̄(j)}j∈C for
a set C of uniformly sampled j ∈ [jn, j f] and fine ray points F̄ = {r̄(j)}j∈F
for a set F of importance-sampled j. For a latent code l, the bent ray r̃l
gives C̃ = {r̃l(j)}j∈C and F̃ = {r̃l(j)}j∈F. The actual training uses a batch
of randomly chosen rays from the training images.
Reconstruction Loss. NR-NeRF adapts the data term from NeRF to the
non-rigid setting as follows:

Ldata = ∥cc(C̃)− ĉ(r)∥2
2 + ∥c f (C̃ ∪̇ F̃)− ĉ(r)∥2

2 , (6.1)

where ĉ(r) is the ground-truth color of the pixel and c(S) is the estimated
ray color on the set S of discrete ray points.

While this reconstruction loss yields satisfactory results along the
space-time camera trajectory of the input recording, Sec. 6.3.3 will later
show that it leads to undesirable renderings for novel views. It is thus
necessary to regularize the bending of rays with further priors.
Offsets Loss. The offsets are regularized with a loss on their magnitude.
Since the goal is for visually unoccupied space (i.e., air) to be compressible
and not hinder the optimization, the loss at each point is weighted by
its opacity. However, this would still apply a high weight to completely
occluded points along the ray, which leads to artifacts when rendering
novel views. Thus, the loss is additionally weighted by transmittance:

Lnaïve offsets =
1
|C| ∑

j∈C
αj · ∥b(r̄(j), l)∥2−w(r̃(j))

2 , (6.2)

where each point is weighted by transmittance and occupancy αj = V(j) ·
o(r̃(j)). Gradients are not back-propagated into αj to avoid undesirable
local minima.

However, as Sec. 6.3 shows, applying the offsets loss to the masked
offsets leads to an unstable background in novel views. Presumably, this
is due to the multiplicative ambiguity between unmasked offsets and
rigidity mask. Applying the loss to the regressed rigidity mask and raw
offsets separately works better:

Loffsets =
1
|C| ∑

j∈C
αj ·
(
∥b′(r̄(j), l)∥2−w(r̃(j))

2 + ωrigidityw(r̄(j))
)
, (6.3)

where b′ is penalized instead of b. The exponent of the first term is a
tweak to get two desirable properties that neither an ℓ1 nor an ℓ2 loss
fulfills: For non-rigid objects (w closer to 1), it becomes an ℓ1 loss, which

6.2 method 71

has two advantages: (1) the gradient is independent of the magnitude of
the offset, so unlike with an ℓ2 loss, small and large offsets/motions are
treated equally, and (2) relative to an ℓ2 loss, it encourages sparsity in
the offsets field, which fits the scenes considered in the experiments. For
rigid objects (w closer to 0), it becomes an ℓ2 loss, which tampers off in
its gradient magnitude as the offset magnitude approaches 0, preventing
noisy gradients that an ℓ1 loss has for the tiny offsets of rigid objects.
Divergence Loss. Since the offsets loss only constrains visible areas,
additional regularization of hidden areas is required. Inspired by local,
isometric shape preservation from computer graphics, like as-rigid-as-
possible regularization for surfaces (Igarashi et al., 2005; Sorkine and
Alexa, 2007) or volume preservation for volumes (Slavcheva et al., 2017),
the regularization seeks to preserve the local shape after deformation.
To this end, this chapter proposes to regularize the absolute value of the
divergence of the offsets field, which Fig. 6.3 visualizes. The Helmholtz
decomposition (Bhatia et al., 2012) allows to split any twice-differentiable
3D vector field on a bounded domain into a sum of a rotation-free and
a divergence-free vector field. Thus, by penalizing the divergence, the
vector field is encouraged to be composed primarily of translations and
rotations, effectively preserving volume. The divergence loss is:

Ldivergence =
1
|C| ∑

j∈C
w′

j · |div(b(r̄(j), l))|2 , (6.4)

where no gradients are back-propagated into w′
j = o(r̃(j)), and the

divergence div of b is taken w.r.t. the position r̄(j).

Figure 6.3: Ldivergence encourages the offsets field to (b) preserve local volume
rather than (c) losing it while deforming.

NR-NeRF employs FFJORD’s (Grathwohl et al., 2018) fast, unbiased di-
vergence estimation, which is three times less computationally expensive
than an exact computation. The divergence is defined as:

div(b(x)) = Tr
(

db(x)
dx

)
=

∂b(x)x

∂x
+

∂b(x)y

∂y
+

∂b(x)z

∂z
, (6.5)

72 non-rigid neural radiance fields

where b(x)k ∈ R is the k-th component of b(x), Tr(·) is the trace operator,
and db(x)

dx is the 3 × 3 Jacobian matrix. Naïvely computing the divergence
with PyTorch’s automatic differentiation requires three backward passes,
one for each term of the sum. Instead, the authors of FFJORD (Grathwohl
et al., 2018) use Hutchinson’s trace estimator (Hutchinson, 1989):

Tr(A) = Ee[eTAe]. (6.6)

Here, e is Gaussian-distributed. The single-sample Monte-Carlo estimator
implied by this expectation can be computed with a single backward
pass.
Full Loss. All losses are combined to obtain the full loss:

L = Ldata + ωoffsetsLoffsets + ωdivergenceLdivergence, (6.7)

where the weights ωrigidity, ωoffsets, and ωoffsets are scene-specific since NR-
NeRF is applied to a variety of non-rigid scene types. The implementation
uses the structure-from-motion method COLMAP (Schönberger and
Frahm, 2016) to estimate the camera parameters. Sec. C.1 and Sec. C.2
contain further training and implementation details.

6.3 results

This section experimentally evaluates NR-NeRF. First, Sec. 6.3.1 provides
information on data capture. Sec. 6.3.2 then presents qualitative results
of the proposed method, including rigidity scores and correspondences,
by rendering into input and novel spatio-temporal views. Turning to
the inner workings, Sec. 6.3.3 investigates the crucial design choices
made to improve novel view quality. Sec. 6.3.4 concludes the evaluation
of NR-NeRF by comparing to prior work and a baseline approach. Fi-
nally, Sec. 6.3.5 shows simple scene-editing results. The appendix shows
extensions to multi-view data and view-dependent effects (Sec. C.4).

6.3.1 Data

NR-NeRF is evaluated on a variety of scenes recorded with three different
cameras: the Kinect Azure, a Blackmagic, and a phone camera. Since the
RGB camera of the Kinect Azure exhibits strong radial distortions along
the image border, the recorded RGB images are undistorted beforehand
using the manufacturer-provided intrinsics and distortion parameters.
Frames are extracted at 5 fps from the recordings, such that scenes usually
consist of 80 to 300 images, at resolutions of 480 × 270 (Blackmagic, and
Sony XZ2) or 512 × 384 (Kinect Azure).

6.3 results 73

Figure 6.4: The input (left) is reconstructed by NR-NeRF (middle) and rendered
into a novel view (right).

6.3.2 Qualitative Results

This section presents qualitative results of NR-NeRF by rendering the
scene from input and novel spatio-temporal views. The additional outputs
of the proposed approach are also visualized.
Input Reconstruction and Novel View Synthesis. Fig. 6.4 shows exam-
ples of input reconstruction and novel view synthesis with NR-NeRF.
As the center column shows, the input is reconstructed faithfully. This
enables high-quality novel view synthesis, example results can be found
in the third column. The camera can be moved around freely in areas
around the original camera paths, at any specific time step.
Rigidity. NR-NeRF estimates rigidity scores without supervision to im-
prove background stability in novel-view renderings. In order to visualize
the estimated rigidity, the rigidity of the ray associated with a pixel needs
to be determined. Here, the rigidity of such a ray is defined as the rigidity
of the point j closest to an accumulated weight ∑

j−1
k=0 αk of 0.5, i.e., clos-

est to the median. In practice, this usually gives the rigidity at the first
visible surface along the ray. Fig. 6.5 shows examples. The background
is consistently scored as highly rigid, while the foreground is correctly
estimated to be rather non-rigid.
Correspondences. Another side effect of the proposed approach is the
ability to estimate consistent dense 3D correspondences into the canon-
ical model across different camera views and time steps. To visualize
correspondences, the canonical volume is treated as an RGB cube, i.e.,
the xyz coordinate in canonical space is interpreted as an RGB color.
Since this would result in very smooth colors, the canonical volume is
split into a voxel grid of 1003 RGB cubes beforehand. The ray point that
determines the pixel color is picked similar to the rigidity visualization.
Fig. 6.5 shows examples.

74 non-rigid neural radiance fields

In
pu

t
C

ol
or

R
ig

id
it

y
C

or
re

sp
on

de
nc

es
C

an
on

ic
al

Vo
lu

m
e

.

Figure 6.5: NR-NeRF can render a deformed state captured at a certain time
step into a novel view. This is visualized here as novel-view rendering and
additional output modalities as seen from the novel view, namely rigidity scores,
correspondences, and the canonical volume. The canonical volume is a plausible
state of the scene and does not show baked-in deformations.

6.3 results 75

Canonical Volume. Since the canonical volume is not supervised directly,
it is conceivable that it could have baked-in deformations. The last row
of Fig. 6.5 contains renderings of the canonical volume without any ray
bending applied. The canonical volume is a plausible state of the scene
and does not show baked-in deformations. It is thus sufficient to bias the
optimization towards a desirable canonical volume by initializing the ray
bending network to an identity map and by the regularization losses.

6.3.3 Ablation Study

After this look at the outputs of NR-NeRF, this section analyzes its inter-
nal workings further. Specifically, since the goal is convincing novel-view
renderings, the impact of some of the design choices on the foreground
and background stability of the novel-view results is investigated.
Setup. Removing each regularization loss individually and all of them
at once assesses their necessity. Next, removing the rigidity network
reveals its impact on background stability. Finally, the difference between
applying the offsets loss separately on both the regressed rigidity and
the unmasked offsets, i.e., Loffsets in NR-NeRF, or directly on the masked
offsets, Lnaïve offsets, is investigated.
Results. Fig. 6.6 shows that Ldivergence is crucial for stable deformations of
the non-rigid objects in the foreground. On the other side, the interplay
of all of the remaining design choices is necessary to stabilize the rigid
background, as Fig. 6.7 shows.

6.3.4 Comparisons

Having only considered NR-NeRF in isolation so far, it is next compared
to prior work and a baseline. In this section, the images are split into
training and test sets by partitioning the temporally-ordered images into
consecutive blocks of length 16 each, with the first twelve for the training
set and the remaining four for the test set.
Prior Work and Baseline. The first baseline is the trivial baseline of rigid
NeRF (Mildenhall et al., 2020), which cannot handle dynamic scenes.
The experiments consider two variants: view-dependent rigid NeRF, as
in the original method (Mildenhall et al., 2020), and view-independent
rigid NeRF, where the view-direction conditioning is removed. Next,
naïve NR-NeRF adds naïve support for dynamic scenes to rigid NeRF: It
conditions the neural radiance fields volume on the latent code li, i.e.,
(c, o) = v(x, li). For test images i, gradients are back-propagated into
the corresponding latent code li. NR-NeRF does the same in order to
optimize for the test latent codes. Note that test images solely influence

76 non-rigid neural radiance fields

Without Ldivergence No regularization NR-NeRF

Figure 6.6: Ablation Study. The scene is rendered into novel views to determine
the stability of the non-rigid part after removing the divergence loss, all regular-
ization losses, and none of the losses.

test latent codes, as is typical for auto-decoding (Park et al., 2019). The
final baseline is Neural Volumes (Lombardi et al., 2019), using the official
code release. Two variants are considered: (1) as in Lombardi et al. (2019),
the geometry and appearance template is conditioned on the latent code
(NV), and (2) the geometry and appearance template are independent of
the latent code (modified NV).
Input Reconstruction. Input reconstruction quality on the training set
verifies the plausibility of the learned representations. See Fig. 6.8. Naïve
NR-NeRF and both variants of Neural Volumes perform very well on
this task, similar to the proposed method. However, rigid NeRF’s not
accounting for deformations leads to blur.
Novel View Synthesis. Next, the novel-view performance is evaluated
qualitatively and quantitatively on the test sets. Fig. 6.8 contains novel-
view results of all methods. Both versions of Neural Volumes give im-
plausible results that are in some cases only barely recognizable. The
two rigid NeRF variants show blurry, static results similar to the train-
ing reconstruction results earlier. While the still images in Fig. 6.8 show
some undesirable artifacts like blurrier or less stable results compared to
NR-NeRF, naïve NeRFs also exhibit temporal inconsistencies, especially
on spatio-temporal trajectories different from the input.

After the qualitative overview, this section next quantitatively evaluates
the novel-view results of the methods considered. The same three metrics

6.3 results 77

a)

Left scene Right scene
b)

NR-NeRF
.

No first term of offsets loss Loffsets No second term of offsets loss Loffsets
.

Without divergence loss Ldivergence Without any regularization loss
.

Without rigidity network w With Lnaïve offsets
.

Figure 6.7: Ablation Study. The impact of the main design choices on background
stability is quantified. To that end, the entire input sequence is rendered into a
fixed novel view for all time steps. Then, the standard deviation of each pixel’s
color across time is computed to measure color changes and hence background
stability. a) Cumulative plots across all pixels, where NR-NeRF (left-most curve)
has the most stable background. b) The distribution of those instabilities in the
scene. The results of NR-NeRF show the least instability in the background.

78 non-rigid neural radiance fields

Input NR-NeRF Naïve Rigid NeRF Rigid NeRF Neural NV
NR-NeRF (view-dep.) (not v.-dep.) Volumes (NV) (modified)

Figure 6.8: Comparison of input reconstruction quality (first row) and novel
view synthesis quality (second row). Only NR-NeRF synthesizes sharp novel
views.

NR-NeRF Naïve Rigid Rigid NV NV

(cond.) (no cond.) (mod.)

PSNR ↑ 24.70 25.83 22.24 21.88 14.13 14.10

SSIM ↑ 0.758 0.738 0.662 0.659 0.259 0.263

LPIPS ↓ 0.197 0.226 0.309 0.313 0.580 0.583

Table 6.1: Quantitative Results Averaged Across Scenes. NR-NeRF, naïve NR-
NeRF, rigid NeRF (Mildenhall et al., 2020) (1) with view conditioning and (2)
without view conditioning, and Neural Volumes (Lombardi et al., 2019) (1)
without and (2) with modifications are compared. For PSNR and SSIM (Wang
et al., 2004), higher is better. For LPIPS (Zhang et al., 2018), lower is better.

as in NeRF (Mildenhall et al., 2020) are used: PSNR and SSIM (Wang
et al., 2004) as conventional metrics for image similarity, where higher
is better, and a learned perceptual metric, LPIPS (Zhang et al., 2018),
where lower is better. Tab. 6.1 contains the quantitative results. NR-NeRF
obtains the best SSIM and LPIPS scores, and the second-best PSNR after
naïve NR-NeRF. As in the input reconstruction results, naïve NR-NeRF
is competitive for settings that are close to the input spatio-temporal
trajectory, as is the case for the test sets. Therefore, more challenging
novel view scenarios are evaluated with a spatio-temporal trajectory
significantly different from the input. Since there is no access to ground-
truth novel view data, the evaluation focuses on background stability for
a spatially fixed camera.
Background Stability. While a moving camera during rendering can ob-
fuscate background instability, stabilizing the background for fixed novel-
view renderings empirically matters for perceptual fidelity but is difficult
to achieve. This section thus quantitatively evaluates this challenging task.
Fig. 6.9 compares the background stability of NR-NeRF, naïve NR-NeRF,
and the Neural Volumes variants. Rigid NeRF is excluded since it is

6.3 results 79

NR-NeRF Naïve NR-NeRF

Neural Volumes Neural Volumes (modified)

Figure 6.9: Background Stability. See Fig. 6.7 for an explanation. All test time
steps are used here. The results of NR-NeRF show the least instability.

static by design. The proposed method leads to significantly more stable
background synthesis than the other methods, and Sec. C.3 contains
further results.

6.3.5 Simple Scene Editing

The learned model can be manipulated in several simple ways: fore-
ground removal, temporal super-sampling, deformation exaggeration
and dampening, and forced background stabilization.
Foreground Removal. The learned representation allows to remove a
potentially occluding non-rigid object from the foreground, leaving only
the unoccluded background. Assuming the rigidity network assigns
higher scores to non-rigid objects than to rigid (background) objects, the
scores can be thresholded at test time to segment the canonical volume
into rigid and non-rigid parts. The non-rigid part can then be made
transparent, see Fig. 6.11.
Time Interpolation. NR-NeRF can linearly interpolate between consecu-
tive time steps to enable temporal super-resolution since it optimizes a
latent code li for every time step i.
Deformation Exaggeration/Dampening. The deformation can be manip-
ulated even further. Specifically, it is possible to exaggerate or dampen
deformations relative to the canonical model by scaling all offsets with a
constant m ∈ R: (c, o) = v(x + mb(x, li)). Fig. 6.10 contains examples.
Forced Background Stabilization. Since NR-NeRF does not require any
pre-computed foreground-background segmentation, it has to assign
rigidity scores without supervision. Occasionally, this insufficiently con-
strains the background and leads to small motion. This can be fixed in
some cases by enforcing a stable background at test time: the regressed

80 non-rigid neural radiance fields

Canonical Dampening 0.3× Normal 1× Exaggeration 2× Exaggeration 3× Exaggeration 5×

Canonical Dampening 0.2× Dampening 0.5× Normal 1× Exaggeration 1.15× Exaggeration 2×

Figure 6.10: NR-NeRF allows to exaggerate or dampen the motion relative to
the canonical model, and to render the result into a novel view.

Figure 6.11: (Left) the ground-truth input image and (right) a rendering without
non-rigid foreground.

6.4 limitations 81

score can be set to 0 if it is below some threshold rmin. If the rigid back-
ground has sufficiently small scores assigned to it relative to the non-rigid
part of the scene, this forces the background to remain static for all time
steps and views.

6.4 limitations

For simplicity, the discrete integration along the bent ray uses the interval
lengths given by the straight ray. As NR-NeRF builds on NeRF, it is
similarly slow. All else being equal, ray bending increases runtime by
about 20%. However, due to fewer rays and points sampled, training takes
6 hours. It is thus feasible to train multiple NR-NeRFs (to find appropriate
loss weights) in a time similar to other NeRF-based methods (Mildenhall
et al., 2020). Neural Sparse Voxel Fields (Liu et al., 2020) are a promising
direction to speed up NeRF-like methods. The background needs to be
fairly close to the foreground, an issue NR-NeRF “inherits” from NeRF
and which could be addressed similarly to NeRF++ (Zhang et al., 2020).
Since the proposed method uses a deformation model that does not go
from the canonical space to the deformed space, it is not possible to obtain
exact correspondences between images captured at different time steps,
but instead a nearest neighbor approximation is necessary. NR-NeRF
does not account for appearance changes that are due to deformation or
lighting changes. For example, temporally changing shadowing in the
input images is an issue, as Fig. 6.12 demonstrates. Foreground removal
can fail if a part of the foreground is entirely static (e.g., the foot in
Fig. 6.11). Rendering parts of the scene barely or not at all observed in
the training data would not lead to realistic results. Motion blur in input
images is not modeled and would lead to artifacts. The background needs
to be static and dominant enough for structure from motion (Schönberger
and Frahm, 2016) to estimate correct extrinsics. Since the problem setting
is severely under-constrained, NR-NeRF employs strong regularization,
which leads to a trade-off between sharpness and stability on some
scenes.

6.5 conclusion

This chapter presents a method for free viewpoint rendering of a dynamic
scene using just a monocular video as input. Several high-quality recon-
struction and novel view synthesis results of general dynamic scenes,
as well as unsupervised, yet plausible rigidity scores and dense 3D
correspondences demonstrate the capabilities of the proposed method.
The results suggest that space warping in the form of ray bending is a

82 non-rigid neural radiance fields

Figure 6.12: The input (left) is reconstructed by NR-NeRF (middle). The bottom
of the image exhibits local shadowing absent at other time steps, which leads to
a high reconstruction error (right).

promising deformation model for volumetric representations like NeRF.
Furthermore, experiments demonstrate that background instability, a
problem also noted by concurrent work (Park et al., 2021a), can be mit-
igated in an unsupervised fashion by learning a rigidity mask. The
extensions to multi-view data and view dependence invite future work
on more constrained settings for higher quality. Although rather rudimen-
tary, this chapter also shows that NR-NeRF enables several scene-editing
tasks, and may enable further work in the direction of editable neural
representations.

The experimental results show that NR-NeRF is a promising step
for reconstructing and encoding dynamic scenes in a neural manner.
Still, several limitations remain, as discussed earlier. The next chapter
addresses one particular shortcoming of NR-NeRF: It cannot reconstruct
large motion.

7
S C E N E R F L O W : T I M E - C O N S I S T E N T
R E C O N S T R U C T I O N O F G E N E R A L D Y N A M I C S C E N E S

The fourth and last method proposed in this thesis builds on the previous
chapter and extends it to also handle large motion. Existing methods for
the 4D reconstruction of general, non-rigidly deforming objects focus
on novel-view synthesis and neglect correspondences. However, time
consistency enables advanced downstream tasks like 3D editing, motion
analysis, or virtual-asset creation. This chapter proposes SceNeRFlow to
reconstruct a general, non-rigid scene in a time-consistent manner (also
published as Tretschk et al. (2024)). This dynamic-NeRF method takes
multi-view RGB videos and background images from static cameras with
known camera parameters as input. It then reconstructs the deforma-
tions of an estimated canonical model of the geometry and appearance
in an online fashion. Since this canonical model is time-invariant, cor-
respondences are preserved even for long-term, long-range motions.
SceNeRFlow employs neural scene representations for its components.
Like prior dynamic-NeRF methods, including the previous chapter, it
uses a backwards deformation model. However, non-trivial adaptations
of this model are necessary to handle larger motions: The deformations
are decomposed into a strongly regularized coarse component and a
weakly regularized fine component, where the coarse component also ex-
tends the deformation field into the space surrounding the object, which
enables tracking over time. Experiments show that, unlike prior work that
only handles small motion (at the order of at most dozens of centimeters),
the proposed method enables the reconstruction of studio-scale motions
(at the order of multiple meters).

7.1 introduction

One criterion for the proper reconstruction of a deforming scene is time
consistency, i.e. correspondences across time. Reconstructing general dy-
namic objects from RGB input in a time-consistent manner is a scarcely
explored (Cagniart et al., 2010; Mustafa et al., 2016), but challenging and
highly relevant research direction. Establishing correspondences is equiv-
alent to factorizing the reconstruction into time-varying deformations
and a time-invariant geometry model. High-level tasks that go beyond
novel-view synthesis benefit immensely from such a deeper analysis of

83

84 scenerflow

Figure 7.1: SceNeRFlow. The proposed NeRF-based method reconstructs a
general non-rigid scene from multi-view videos with time consistency. Here, a
person with a plush dog rotates 180◦ from time t=1 until t=T. Novel view 1 at
t=1 is consistent with novel view 2 at t=T (placed opposite of novel view 1) for
SceNeRFlow, but not for NR-NeRF. This enables, e.g., time- and view-consistent
re-coloring. The correspondences are visualized by coloring them according to
3D positions in static canonical space, which differs between both methods.

7.1 introduction 85

the scene, namely a reconstruction with long-range, long-term dense 3D
correspondences. For example, having access to such a virtual dynamic
3D object is a crucial step towards sophisticated 3D editing, estimating a
motion model for virtual-asset creation (Chen et al., 2022), or 4D scene
understanding such as motion analysis. Almost all existing work on re-
constructing general dynamic objects either only obtains time consistency
for small motion or relaxes it to very small time windows. This chapter
explores the setting of time consistency for large motions.

Prior work (Du et al., 2021; Gao et al., 2021; Li et al., 2021b; Park
et al., 2021a,b; Pumarola et al., 2021; Tretschk et al., 2021; Xian et al.,
2021) for non-rigid 3D reconstruction based on NeRF (Mildenhall et al.,
2020) focuses on novel-view synthesis and does not aim for long-range
correspondences. Almost all dynamic-NeRF papers (except for Liu et al.
(2022), Pumarola et al. (2021), and Tretschk et al. (2021), which only handle
small motions) weaken the long-term consistency of the reconstruction
by design by having a time-varying geometry and/or appearance model.
Thus, only rather simple tasks like replaying the input scene under novel
views are straightforward. Furthermore, as experiments will show, this
time dependency improves the novel-view rendering quality but loosens
long-term correspondences. In contrast, this chapter explores the other
extreme, where only deformations are time-variant.

Classical, non-NeRF-based prior work on 4D reconstruction either
only handles small motion (Bartoli et al., 2015; Kairanda et al., 2022;
Kumar et al., 2018; Russell et al., 2012; Salzmann et al., 2007) or is not
time-consistent (Bansal et al., 2020; Dou et al., 2016; Newcombe et al.,
2015; Yoon et al., 2020). Similarly, scene-flow methods (Zhai et al., 2021)
focus on the deformations and not a full reconstruction, and exhibit drift
in their correspondences in the long run (Hung et al., 2013), similar to
optical flow.

This chapter proposes SceNeRFlow (Scene Flow + NeRF) to tackle
time-consistent reconstruction of a general, non-rigidly deforming scene;
see Fig. 7.1. It is NeRF-based, trained per scene, and by design esti-
mates each timestamp’s deformation of a time-invariant canonical model,
thereby counteracting correspondence drift. As is common for dynamic
NeRFs (Park et al., 2021a; Pumarola et al., 2021; Tretschk et al., 2021), it em-
ploys a backward deformation model. Standard reconstruction techniques
like online optimization, coarse-and-fine deformation decomposition, and
rigidity regularization turn out to be insufficient for large motion. While
category-specific priors like an articulated human skeleton would help
by normalizing out large motion, this thesis tackles the general setting,
where such prior knowledge is not available. Instead, carefully “extend-

86 scenerflow

Figure 7.2: SceNeRFlow Overview. Input: SceNeRFlow takes as input a multi-
view RGB video {Ic,t}c,t of a general dynamic scene from C cameras with
background images {Bc}c and known camera parameters. Output: From this, it
builds a NeRF-based (Mildenhall et al., 2020), time-consistent 4D reconstruction.
Model: To render a ray r from camera c, discrete points {r(si)}i along the straight
ray (with background color cback at the end) are first sampled. Then, the ray is
coarsely bent with the coarse deformations dc, and then finely bent with the fine
deformations d f . The canonical model m is then queried at the resulting positions.
m represents geometry (opacity σ) and appearance (color c) volumetrically
for any 3D point, in a time-invariant manner. Finally, NeRF-style volumetric
rendering yields the ray’s color C. All three components are parametrized with
HashMLPs (Müller et al., 2022). Training: m is constructed from time t=1 using
a reconstruction loss (Lrec w.r.t. the ground-truth color Ic,t(r)) and geometric
regularizers (Lback and Lhard). Then, m’s parameters θm are kept fixed for future
timestamps, which leads to time consistency. For t>1, the deformations are
split into a strongly regularized coarse component ∆c and a weakly regularized
fine component ∆ f . An online optimization performs frame-wise tracking to
handle large motion and the deformation parameters θt

c and θt
f at time t are thus

initialized with θt−1
c and θt−1

f . To handle a peculiarity of backward deformation
models in this tracking setting, ∆c is regularized to “extend the deformation
field” (Lnorm,w).

ing the deformation field” is the minimally necessary change to make
backwards deformation modeling work for large non-rigid motion.

Since this is the first NeRF-based work with time consistency for large
motion, it focuses on the core problem of long-term correspondences. It
therefore uses multi-view input to avoid the need for correctly modeling
the deformations of occluded geometry that arises in the monocular
setting. Importantly, the recorded scenes exhibit significantly larger mo-
tion than any prior time-consistent general reconstruction method could
handle. Experiments show how SceNeRFlow enables the time-consistent
reconstruction even of studio-scale motion without any category-specific
priorsj, e.g. without a human skeleton.

7.2 method 87

7.2 method

SceNeRFlow takes as input multi-view RGB images of size h×w over
T consecutive timestamps from C static cameras with known extrinsics
and intrinsics, i.e. {Ic,t ∈ [0, 1]h×w×3}C,T

c=1,t=1, and associated background
images {Bc}c. In a time-consistent manner, it then reconstructs the gen-
eral dynamic scene as a time-invariant, NeRF-style canonical model of
the geometry and appearance, with time-dependent deformations. The
optimization proceeds in an online manner: After building a canonical
model from the first timestamp (Sec. 7.2.1), it tracks it frame-by-frame
through the temporal input sequence (Sec. 7.2.2). Fig. 7.2 provides an
overview of the pipeline.

7.2.1 Constructing the Canonical Model

Canonical Model. The canonical model m encodes the geometry and ap-
pearance in a time-independent manner. Specifically, a HashMLP (Müller
et al., 2022) represents opacity σ and RGB color c ∈ [0, 1]3 for any 3D
point x: (σ, c) = m(x). A HashMLP combines a hash grid v with a sub-
sequent shallow MLP M: m(x) = M(v(x)), which is significantly faster
than NeRF’s (Mildenhall et al., 2020) pure MLP. A hash grid consists of
about a dozen voxel grids of increasing resolution, each containing learn-
able features. To evaluate, each grid is queried via trilinear interpolation
and the resulting features from all grids are concatenated. Crucially, each
voxel grid is implemented via hashed indexing into an array of feature
vectors rather than as a dense voxel grid.
Rendering. Since SceNeRFlow takes 2D images as input, it is necessary
to render m into 2D. To this end, SceNeRFlow follows the quadrature
discretization of volumetric rendering from NeRF (Mildenhall et al., 2020)
for a ray r(s) = o + sd with origin o ∈ R3 and direction d ∈ R3:

C(r) =
S

∑
i=1

wici, with wi = exp

(
−

i−1

∑
j=1

σjδj

)
(1 − exp(−σiδi)), (7.1)

where i indexes S discrete samples {r(si)}i along the ray; (σi,ci) =

m(r(si)) are the opacity and color of the i-th sample, respectively; and
δi = si+1 − si. Like NeRF (Mildenhall et al., 2020), SceNeRFlow uses
stratified sampling of S evenly sized intervals between the near plane
and far plane, yielding {si}i.

When a background color cback is provided (e.g. from Bc), it can be
composited at the end of the ray:

C(r, cback) = C(r) +
(

1 − ∑
i

wi

)
cback. (7.2)

88 scenerflow

Losses. To obtain the canonical model, SceNeRFlow iteratively optimizes
it on images {Ic,1}c from t=1 for 20k iterations. Each iteration uses a
batch of R rays with an ℓ1 reconstruction loss w.r.t. the ground-truth
color Ic,1(rr):

Lrec =
1
R

R

∑
r=1

∥C(rr, cback,r)− Ic,1(rr)∥1. (7.3)

However, using only Lrec leads to a canonical model with floating
geometry artifacts. They are removed by steering the model to commit to
foreground or background by encouraging ∑i wi to be 1 or 0 via the beta
distribution (Lombardi et al., 2019):

Lback =
1
R ∑

r
log
(

∑
i

wr,i

)
+ log

(
1 − ∑

i
wr,i

)
, (7.4)

where wr,i is wi of ray r. Furthermore, transparent geometry is discour-
aged by encouraging each wi to be 0 or 1 via a mixture of two Laplacian
distributions (Rebain et al., 2022):

Lhard = − 1
RS ∑

r
∑

i
log
(

e−wr,i + e−(1−wr,i)
)

. (7.5)

Note that these losses do not use foreground masks; the canonical model
needs to learn on its own whether it can be transparent and use the
background image B or not.

The total loss for the canonical model is thus:

Lcanon = Lrec + λbackLback + λhardLhard, (7.6)

where λback, λhard ∈ R are loss weights. Since the canonical model is
meant to be time-consistent, its parameters are kept fixed after construct-
ing it from the first timestamp.

7.2.2 Optimizing per Timestamp

Given the canonical model from t=1, SceNeRFlow next reconstructs the
deformations for the remaining timestamps t>1.
Space Warping. SceNeRFlow models the deformations at time t like
prior dynamic-NeRF work: It uses backwards space warping dc(x; θt

c) =

x + ∆c(x; θt
c) = x′, where x is a 3D point in deformed world space,

∆c outputs a coarse offset (fine offsets ∆ f will be introduced later), x′

is in undeformed canonical space, and θt
c are the time-dependent pa-

rameters of dc/∆c. ∆c is parametrized by a HashMLP, i.e. there is one
HashMLP per timestamp for coarse deformations. To query the canonical

7.2 method 89

Figure 7.3: Extending the Deformation Field for Tracking. Without smoothness,
the estimated backwards deformations at time t give a bad initialization for t+1.
Smoothness initializes the deformations closer to the ground truth.

model from world space at t>1, SceNeRFlow first undoes the deforma-
tion: (σ(x, t), c(x, t)) = m(dc(x; θt

c)). When rendering, this leads to view-
consistent ray bending: {r(si)}i in world space becomes {dc(r(si); θt

c)}i in
canonical space. Then, Eq. 7.1 or Eq. 7.2 can be applied to the bent ray to
render, which in turn allows to use Lrec to optimize for the deformation
parameters at time t using {Ic,t}c.
Frame-Wise Tracking. However, naïvely reconstructing the entire scene
by optimizing all timestamps at once does not converge to a recognizable
canonical model when the scene contains large motion. Furthermore,
keeping all {Ic,t}c,t in memory at once is expensive in practice. This
chapter thus proposes online, timestamp-by-timestamp tracking. Since
t=1 has, by construction, zero offsets, the last layer of ∆c(·; θ1

c) is set to
zeros (Tretschk et al., 2021) and not optimized at t=1. After reconstructing
time t, θt

c is fixed and SceNeRFlow proceeds with t+1, where θt+1
c is

initialized with θt
c.

Extending the Deformation Field. Unfortunately, naïvely employing a
HashMLP for dc fails to reconstruct the scene for any deformed state
that significantly differs from the canonical model. This is because, at
time t+1, the dynamic object resides in a slightly different place in
world space, part of which was empty space at time t and is hence not
well initialized by dc(·; θt

c). This becomes especially prevalent when the
object has undergone large motion. This chapter proposes to mitigate
this failure of the backward model by extending the deformations into
the area surrounding the dynamic object at time t, as Fig. 7.3 illustrates.

90 scenerflow

To this end, two means help: (1) Reducing the resolution of the coarsest
grid of the deformation hash grid to 323 stabilizes tracking. Presumably,
when the object enters a previously empty voxel in a fine grid, the
uninitialized latent codes of this voxel are too quickly too influential
in the trilinear interpolation of the latent codes. These uninitialized
latent codes thus do not obtain the right values before being relevant
but rather negatively impact the deformations, leading to artifacts and
a lack of large-scale smoothness. (2) However, this structural change
gives an unpredictable, badly-controlled smoothness, similar to an MLP.
SceNeRFlow encourages well-behavedness via a smoothness loss, which
uses the inherent smoothness of the coarse grid to propagate its influence.
Smoothness Loss. To stabilize the tracking, this chapter proposes to
impose a smoothness loss on the deformations. Because the defor-
mation model is continuous and fully differentiable, it is not neces-
sary to discretize the loss. Instead, the local behavior can be directly
influenced via the (spatial) Jacobian J ∈ R3×3 of the deformations:
J = Jx = ∂dc(x;θt)

∂x . As is common for general reconstruction meth-
ods (Tretschk et al., 2023), SceNeRFlow assumes the object to deform
locally in an as-rigid-as-possible manner (Sorkine and Alexa, 2007).
Specifically, SceNeRFlow takes inspiration from Nerfies’s elastic loss
on J (Park et al., 2021a). However, their loss is computationally expen-
sive because it needs to compute all rows of Jrr(si) for each sample
rr(si) (which takes three backward passes during the forward pass of
the loss computation) and then performs an SVD of Jrr(si). Denoting
the identity matrix by I, the SVD can be avoided (allowing for trivial
computation of gradients) by relaxing the constraint from the rotation
group SO(3) = {A ∈ R3×3|A⊤A=I, det A=1} to the orthogonal group
O(3) = {A ∈ R3×3|A⊤A=I}, which additionally allows reflections since
det A=± 1 for A ∈ O(3). It is then possible to encourage rigidity via:

Lrigid =
1

9RS ∑
r

∑
i

∑
j,k

∣∣(J⊤rr(si)
Jrr(si) − I)j,k

∣∣, (7.7)

where Aj,k ∈ R is the entry of matrix A at index (j, k).
This prior can be computed even faster by reducing the need for three

backward passes to just one, lowering overall training time by a factor
of 2−3. To this end, first note that norm preservation is an equivalent
definition of O(3):

A ∈ O(3) ⇐⇒ ∀e ∈ R3 : ∥Ae∥2 = ∥e∥2. (7.8)

Next, SceNeRFlow exploits the fact that automatic differentia-
tion (Griewank and Walther, 2008; Paszke et al., 2017; Speelpenning,
1980) computes Jacobian-vector products J⊤e in a single backward pass,

7.2 method 91

where e is an arbitrary vector. Since J⊤ = J for J ∈ O(3), the norm of Je
can be computed as ∥Je∥2 = ∥J⊤e∥2. SceNeRFlow thus replaces Lrigid
with a norm-preserving loss that only requires one backward pass:

Lnorm =
1

RS ∑
r

∑
i

Ee

[∣∣∥J⊤rr(si)
e∥2 − 1

∣∣], (7.9)

where e is distributed uniformly on the unit sphere and hence ∥e∥2 = 1.
Note that it is sufficient to only consider vectors on the unit sphere due to
linearity. In practice, this expectation is approximated with one random
sample.
Weighting the Smoothness Loss. To extend the deformation field as
discussed earlier, one could naïvely encourage smoothness uniformly
everywhere. However, this restricts empty space too much, leading it to
push back against object deformations. SceNeRFlow thus focuses on the
object by weighting Lnorm by σ̂r,i = exp(−σr,iδ), where σr,i is σi of the
r-th ray and gradients are not backpropagated into the opacity (Tretschk
et al., 2021).

The space around the object needs to be regularized. However, this
space is hard to locate efficiently and SceNeRFlow approximates it by
max-pooling over {σ̂r,i}i along ray r, with a window size of 1% of the ray
length.

This still makes the space around the object too stiff. SceNeRFlow
thus weakens the regularization by dividing the resulting weight by u
if σ̂r,i and the weight after max-pooling differ by at least a factor of u
(empirically set to u=10).

Finally, regularizing very small offsets, which are widespread during
early timestamps, tends to collapse the network. Hence, only defor-
mations that are not very small are regularized. This weighted loss is
denoted as Lnorm,w(θt

c). Sec. D.4 contains a full mathematical description.
Fine Deformations. In addition to enabling tracking by extending the
deformation field, SceNeRFlow also uses the smoothness loss to stabilize
the surface by strongly regularizing its deformations ∆c. However, this
leads to a loss of detail because ∆c can now only represent coarse defor-
mations. To counteract this, the proposed method adds fine deformations
∆ f (·; θt

f) on top, after normalizing out (i.e., applying) the coarse deforma-
tions: x′′ = d f (x′; θt

f) = x′ + ∆ f (x′; θt
f), where x′ = dc(x; θt

c) for any 3D
point x in world space and we query m at x′′. Crucially, details can be
modeled by using a much weaker weight λfine for Lnorm,w(θt

f), where the
Jacobian is w.r.t. x′. ∆ f is parametrized with a HashMLP.
Frame-Wise Tracking Revisited. SceNeRFlow applies tracking to the
coarse and fine deformations as follows: At t=1, the last layers of ∆c

and ∆ f are initialized to zeros and not optimized. At any t>1, θt
c is

92 scenerflow

initialized with the final θt−1
c , and SceNeRFlow optimizes for ∆c(·; θt

c) for
5k iterations while setting ∆ f = 0. Then, θt

c is fixed, θt
f is initialized with

the final θt−1
f , and ∆ f (·; θt

f) are optimized for 5k iterations.
With λcoarse, λfine ∈ R, the total loss for any t>1 is:

Ltime = Lrec + λcoarseLnorm,w(θ
t
c) + λfineLnorm,w(θ

t
f). (7.10)

7.2.3 Implementation Details

This section describes how to speed up the proposed method and how
to correct vignetting effects, and provides optimization details. Fig. 7.4
visualizes some of these methods.
Foreground-Focused Batches. To speed up training, the batches focus
on the foreground. Background subtraction w.r.t. Bc yields a rough fore-
ground mask Fc,t for each Ic,t. Then, 80% of the rays in the batch are
picked from the foreground and the rest from the background.
Pruning. To speed up rendering, any sample r(si) in world space that
does not contain any foreground is pruned. To determine this for time t,
a binary voxel grid gt overlaid over the scene is queried. gt is 1 for voxels
that are potentially in the foreground and 0 otherwise. gt is filled via
space carving (Kutulakos and Seitz, 2000) with {Fc,t}c. To be conservative
and to let the deformation field extend into the surrounding area, both
the foreground masks and the foreground in the resulting voxel grid are
dilated. To clear out geometry artifacts in empty space, pruning is not
used when constructing the canonical model, only when optimizing for
t>1. Pruning removes ∼80% of samples, making SceNeRFlow four times
faster.
Vignetting Correction. Cameras collect less light around the image bor-
der, which leads to darkening in the input images. The proposed method
models this vignetting with a radial model (Bal and Palus, 2023; Stumpfel
et al., 2006):

Cvig(r) = C(r)(1 + k1 p(r) + k2 p(r)2 + k3 p(r)3), (7.11)

where p(r) ∈ R is the squared distance to the camera center in pixel space
(the distance is divided by w for resolution invariance), and k1, k2, k3 ∈ R

are correction parameters. These parameters are initialized to zeros. They
are optimized for when constructing the canonical model, and kept fixed
for t>1. The same set of parameters is used across all cameras and
timestamps. Cvig is used in place of C in Eq. (7.2). The quality improves
since the canonical model no longer needs to use artifacts to account for
vignetting effects.

7.3 results 93

(a) (b) (c) (d)

Figure 7.4: Implementation. (a) Foreground Fc,t. (b) Pruning grid for (a). (c)
Without and (d) with vignetting correction.

Optimizer. The optimization uses AdamW (Loshchilov and Hutter, 2019)
with weight decay of 0.01 to stabilize the training. Auto-decoded parame-
ters like hash grids get sparsely non-zero gradients in any given training
iteration, which degrades the momentum accumulation. SceNeRFlow
thus uses a modified version of AdamW: Rather than treating all parame-
ters {θi ∈ R}i in a tensor the same, it separately keeps track of AdamW’s
parameters θ

opt
i (e.g. the number of iterations) for each individual param-

eter θi. In any given iteration, only θi whose derivative is non-zero have
their AdamW parameters θ

opt
i updated and AdamW applied. Sec. D.4

describes the learning rates in detail.
Hyperparameters. All scenes use the same settings: A batch size of
R=1024, S=3072 samples per ray, and loss weights λback=0.001, λhard=1,
λcoarse=1000, and λfine=30. The architecture uses LeakyReLUs (Maas
et al., 2013) for the deformations and ReLUs for the canonical model.
Code. SceNeRFlow is implemented in PyTorch (Paszke et al., 2019) using
tiny-cuda-nn (Müller, 2021) via its Python wrappers for its fast imple-
mentation of hash grids.

7.3 results

This section evaluates the reconstruction quality and time consistency of
the proposed method, performs ablations, shows simple scene editing,
and discusses limitations and future work.
Prior Work. The experiments compare SceNeRFlow mainly to its clos-
est work, NR-NeRF, which is the main prior time-consistent dynamic-
NeRF method. Comparisons against PREF (Song et al., 2022), a NeRF-
based method to estimate correspondences, allow to evaluate the time
consistency. Further experiments compare with the time-consistent D-
NeRF Pumarola et al., 2021 and DeVRF Liu et al., 2022.
Variants. The reconstruction quality is evaluated by using novel-view
synthesis as a proxy. Unlike most works, this chapter targets time-consistent

94 scenerflow

Name Description Frames

Seq. 1 two people playing with a plush dog 125

Seq. 2 two people holdings hands 125

Seq. 3 one person rotating, one person walking 300

Seq. 4 a person dancing while wearing a dark dress 100

Seq. 5 a person walking like a zombie while wearing a light dress 125

Seq. 6 a person playing with a plush dog 125

Seq. 7 a person standing with a brown dress 125

Seq. 8 a person doing squads (from NR-NeRF) 5

Table 7.1: Dataset Description.

reconstruction and not novel-view synthesis, which leads to a trade-off
with novel-view quality.

Most dynamic-NeRF papers condition the canonical model on time.
Therefore, two variants of SceNeRFlow are additionally evaluated that
do the same and, hence, synthesize better novel views at the cost of
correspondences. The first variant, SNF-A, only makes the appearance
time-varying, while the second variant, SNF-AG, makes the appearance
and canonical geometry time-varying. Sec. D.4 has further details.

This chapter does not aim for these variants to be competitive with
state-of-the-art 4D reconstruction methods that neglect correspondences
and focus solely on novel-view synthesis. Their design is not tailored to
this setting.
Data. For ease of recording, SceNeRFlow is evaluated on real-world
scenes of one or two people. Crucially, the recordings also contain a plush
dog and loose clothing. Furthermore, the proposed method reconstructs
scenes with multiple people without any knowledge that there are multiple
entities in the scene nor that they are human. These aspects demonstrate its
generality. The scenes use a total of C=117 static cameras in a studio,
for a total of six scenes of 4−5sec and one of 12sec at 25fps. For the
test sets, the same two cameras are used for all scenes. Training is done
at an input resolution of h=1504 and w=2056. In addition, the short
multi-view scene from NR-NeRF, which contains 16 camera pairs, is used.
Tab. 7.1 contains a description and the length in frames of each scene.
Runtime. On an Nvidia A100 GPU, the canonical model trains at
8iter/sec, the coarse deformations at 16iter/sec, and the fine deforma-
tions at 14iter/sec. For efficiency, all images are rendered at half the input
resolution, at 10−15sec/image.

7.3 results 95

Ground Truth SceNeRFlow NR-NeRF SNF-A SNF-AG

R
en

de
re

d
R

G
B

R
en

de
re

d
D

ep
th

—

R
en

de
re

d
R

G
B

R
en

de
re

d
D

ep
th

—

Figure 7.5: Novel-View Synthesis. (Top) Seq. 1 at t=T. (Bottom) Seq. 5 at t=38.
The depth color differences between methods are due to normalization.

96 scenerflow

t=1, view 1 t=T, view 2 t=1, view 2 t=T, view 2
O

ur
s

N
R

-N
eR

F

Figure 7.6: Correspondences. (Left) Seq. 2, opposite views. NR-NeRF fails.
(Right) Seq. 4, same view. Only SceNeRFlow’s correspondences follow the 90◦

left turn; see orange at t=1 & T.

7.3.1 Qualitative Results

First the reconstructions are evaluated qualitatively at any one point in
time, and then their consistency over time is examined.

7.3.1.1 Volumetric Scene Reconstruction

Fig. 7.5 shows novel views of the reconstruction and its geometry via
depth maps. While NR-NeRF gives blurry results, the proposed method
yields high-quality reconstructions. Although blurrier, SNF-A matches
the pattern on the dress better than SceNeRFlow. SNF-AG reconstructs
the non-rigid geometry more accurately as it loosens the correspondences.

7.3.1.2 Time Consistency

Correspondence Visualization. Time consistency enables 3D correspon-
dences over time: Fig. 7.6 shows that the estimated correspondences
are temporally stable for SceNeRFlow. However, on scenes with large
motion, NR-NeRF fails to converge to a recognizable model since this re-
quires simultaneous correspondence estimation in this highly challenging
setting.

7.3 results 97

SceNeRFlow PREF NR-NeRF SceNeRFlow PREF NR-NeRF

Figure 7.7: Time Consistency. (Left) Seq. 4. (Right) Seq. 6. The solid skeleton is
the tracking estimate at t=T. The dotted skeleton is the pseudo-ground truth at
t=T.

Comparisons with Prior Work. To compare with prior work, further
evaluation follows PREF (Song et al., 2022), which estimates world-space
3D human joint positions over time: {p̃t

j ∈ R3}t,j, where j indexes the
J=23 joints. Off-the-shelf commercial systems (Captury, 2023) exploit
strong human-specific priors to reliably estimate 3D joints, which makes
for excellent pseudo-ground-truth long-term 3D correspondences {p̂t

j}t,j.
(The joints are used only for evaluation; SceNeRFlow does not use human
priors.)

To track the joints with SceNeRFlow, the estimated positions {p̃1
j }j

are first initialized with the ground-truth joints {p̂1
j }j at t=1, which are

the positions in the canonical model. Then, the backwards deformation
field needs to be inverted for t>1. To this end, for each joint j at time t,
d f (dc(·; θt

c); θt
f) is evaluated on a voxel grid (with a resolution of 1283 and

a side length of 40cm) centered on the estimated position at t−1, p̃t−1
j .

Then, the voxel center that lands closest to the ground-truth joint p̂1
j in

the canonical model is used as the estimated world-space joint position
p̃t

j. Sec. D.5 contains tracking details for NR-NeRF and PREF.
Fig. 7.7 shows results at t=T. The proposed method yields stable

correspondences, while NR-NeRF does not. PREF’s correspondences
drift strongly over time due to error accumulation from chaining frame-
to-frame correspondences.
Variants. Next, the time consistency of the proposed method in con-
trast with its variants is analyzed. To this end, Fig. 7.8 visualizes the
canonical model at two different timestamps. Unlike SceNeRFlow, the
canonical model of the variants changes over time, i.e., they lack inherent
correspondences. However, these additional degrees of freedom improve
the variants’ novel-view synthesis, showing a trade-off between time
consistency and novel-view synthesis.

98 scenerflow

SceNeRFlow SNF-A SNF-A SceNeRFlow SNF-AG SNF-AG

at t1 & t2 at t1 at t2 at t1 & t2 at t1 at t2

Figure 7.8: Canonical Model. SceNeRFlow uses a static canonical model, while
those of SNF-A(G) vary over time.

Sequence 1 2 3 4 5 6 7 Mean

SceNeRFlow 0.9 0.9 1.8 1.8 2.8 0.9 1.4 1.5

PREF 11.0 13.9 47.8 8.9 13.4 12.1 3.9 15.9

NR-NeRF 2.2 46.4 110.9 6.1 8.5 14.8 1.2 27.2

D-NeRF 40.7 46.2 110.1 12.2 81.9 35.3 70.0 56.6

Table 7.2: Time Consistency. The table shows per-scene and mean MPJPE in cm.
Lower is better.

7.3.2 Quantitative Results

Time Consistency. Like PREF (Song et al., 2022), this section measures
time consistency via 3D joint tracking. The mean per-joint position error
(MPJPE) (Sigal et al., 2010) over all timestamps t>1 and the J joints
is reported: MPJPE = 1

(T−1)J ∑T
t=2 ∑J

j=1∥p̂t
j − p̃t

j∥2. Lower is better. For
scenes with two people, the average across both is reported. All scenes
are evaluated, except for the 5-frame Seq. 8 used in NR-NeRF. Tab. 7.2
contains the results. SceNeRFlow has the lowest error with only marginal
drift. PREF’s frame-wise approach leads to large drift. D-NeRF cannot
handle large motion.
Reconstruction. The reconstruction quality is quantified by using novel-
view quality as a proxy. Like NeRF (Mildenhall et al., 2020), the latter
is measured with PSNR and SSIM (Wang et al., 2004) (for both, higher
is better), and the neural perceptual metric LPIPS (Johnson et al., 2016)
(lower is better). To focus on the dynamic scene part, (1) these metrics are
also provided w.r.t. the static background image, and (2) masked scores are
reported where the renderings are masked out with foreground masks
estimated from the ground truth. The results are in Tab. 7.3. SceNeRFlow
outperforms NR-NeRF. The variants have artifacts in empty space and
only outperform the proposed method on the masked scores. Sec. D.2

7.3 results 99

SceNeRFlow NR-NeRF SNF-A SNF-AG Background

U
nm

as
ke

d PSNR ↑ 30.32 28.77 30.88 30.34 21.69

SSIM ↑ 0.939 0.922 0.940 0.929 0.920

LPIPS ↓ 0.054 0.099 0.057 0.089 0.101

M
as

ke
d PSNR ↑ 32.38 30.80 33.31 33.22 —

SSIM ↑ 0.976 0.965 0.978 0.977 —

LPIPS ↓ 0.018 0.041 0.016 0.018 —

Table 7.3: Novel-View Synthesis. Mean PSNR, SSIM, and LPIPS across scenes.
SNF-A(G) are variants of SceNeRFlow.

SceNeRFlow D-NeRF DeVRF

U
nm

as
ke

d PSNR ↑ 29.98 24.89 25.24

SSIM ↑ 0.939 0.913 0.905

LPIPS ↓ 0.054 0.107 0.125

M
as

ke
d PSNR ↑ 32.03 26.13 27.66

SSIM ↑ 0.975 0.951 0.957

LPIPS ↓ 0.017 0.060 0.041

Table 7.4: Novel-View Synthesis. Mean PSNR, SSIM, and LPIPS across scenes,
except for Seq. 8 (due to memory limitations from the high resolution).

100 scenerflow

No Online SceNeRFlow GT No Extend SceNeRFlow GT

No Coarse No Fine SceNeRFlow GT

Figure 7.9: Ablations. (Top left) Online optimization, (top right) extending the
deformations, (bottom) coarse and fine deformations.

has per-scene results. Tab. 7.4 contains further comparisons, without
Seq. 8 due to memory constraints. SceNeRFlow outperforms D-NeRF
and DeVRF, which both fail on large motion.

7.3.3 Ablations

This section analyzes the core components of the proposed method
by ablating them. Specifically, the relevance of (1) optimizing in an
online manner (by optimizing all timestamps at once), (2) “extending
the deformation field” (by using a coarse resolution of 5123 and Lnorm,w

without max-pooling), (3) the coarse deformation model (by setting ∆c=0
at training time), and (4) the fine deformation model (by setting ∆ f=0 at
test time) is investigated. Fig. 7.9 contains qualitative results and Tab. 7.5
confirms these quantitatively: (1) Optimizing online simplifies implicit
correspondence estimation, avoiding ghosting artifacts; (2) extending
the deformation field helps the online optimization by initializing the
deformations for the next timestamp well; (3) the coarse deformations
stabilize the reconstruction; and (4) the fine deformations add details.

7.3.4 Simple Editing

The time consistency enables simple editing of the geometry and appear-
ance. As a proof of concept, Fig. 7.10 shows that SceNeRFlow allows
to re-color scene parts (e.g., of Seq. 3) or make them transparent in a

7.4 limitations 101

SceNeRFlow No Online No Extend No Coarse No Fine
U

nm
as

ke
d PSNR ↑ 30.32 30.36 28.53 30.40 28.95

SSIM ↑ 0.939 0.929 0.927 0.936 0.933

LPIPS ↓ 0.054 0.074 0.067 0.056 0.056

M
as

ke
d PSNR ↑ 32.38 32.61 30.20 32.45 30.45

SSIM ↑ 0.976 0.974 0.966 0.974 0.970

LPIPS ↓ 0.018 0.020 0.027 0.020 0.021

MPJPE ↓ 1.5 33.4 15.6 10.4 1.5

Table 7.5: Ablations. Mean PSNR, SSIM, LPIPS, and MPJPE across scenes.

View 1 View 2

t=1 t=T t=1 t=T

Figure 7.10: Scene Editing. (1) Coloring the left knee of person 1 green, (2)
blending the right shoulder of person 2 with blue, and (3) making the right foot
of person 2 transparent.

straightforward manner—by modifying the static canonical model. The
deformations then consistently propagate these changes to all times-
tamps.

7.4 limitations

While the proposed method design makes a few assumptions (e.g. multi-
view input or having access to background images), they are exploited as
little as possible, e.g. no accurate segmentation masks, depth estimates,
or 3D estimates are used. This makes it easier to extend SceNeRFlow to
other input settings.

Adjacent work offers promising remedies for the assumptions. Most
dynamic-NeRF methods are monocular (but not time-consistent for large
motion) and some static-NeRF works (Tewari et al., 2022; Yu et al., 2021)
use only few cameras. Adapting these ideas might reduce the number
of cameras required by the proposed method. Since the region of in-

102 scenerflow

terest is the dynamic foreground, the background is excluded in a soft
manner. The background could be included via a static NeRF as some
existing dynamic-NeRF approaches do. Naïvely modeling time-varying
appearance loosens correspondences. Sophisticated regularization from
Shape-from-Shading (Barron and Malik, 2014; Zhang and Tsai, 1999;
Zhang et al., 2021) might help. To preserve time consistency, SceNeRFlow
does not update the canonical model with newly visible geometry from
t>1. However, multi-view input mitigates the effect of occlusions at t=1.

7.5 conclusion

SceNeRFlow demonstrates the great potential of modern neural scene
representations for time-consistent reconstruction of general dynamic
objects. In particular, this chapter shows how backwards deformation
models can be adapted to tracking large motion. As a proof of concept,
experiments demonstrate how SceNeRFlow enables simple edits that are
consistent over time. The results also show how conditioning the canon-
ical model on time trades off novel-view and correspondence quality.
As discussed in Sec. 7.4, this chapter makes some simplifying assump-
tions but exploits them as little as possible, paving the way for future
extensions to weaker inputs.

This concludes the second half of the thesis, which focused on recon-
struction. First, the previous chapter extended the seminal NeRF method
to dynamic scenes and then this chapter modified it to enable large
motions.

8
C O N C L U S I O N

This thesis is about neural digitization of general non-rigid objects and
scenes. To this end, it introduced several new methods for representing
and reconstructing general non-rigid objects, each of which benefits im-
mensely from neural techniques: Chapter 4 presents a low-dimensional
model for deformations using graph convolutions, Chapter 5 presents
a generalizable model for geometry using coordinate-based neural net-
works, Chapter 6 presents a reconstruction method for general non-rigid
objects using neural radiance fields, and Chapter 7 presents a recon-
struction method that extends the method from the previous chapter to
also handle large motion. Each chapter already contained some specific
conclusions, but there are also some overarching insights and future steps
that can be extracted from their sum total, as this concluding chapter of
the thesis discusses.

8.1 insights

The main insight that this thesis hints at is the use of coordinate-based
networks as replacements for traditional parametrizations in classical non-
learning-based optimization. Several facets of this point are discussed in
the following.

8.1.1 Domain Knowledge in the Small-Data Regime

Recent foundation models strongly suggest that enough data and com-
pute is sufficient to model language, image, audio, and, soon perhaps,
video tasks, without the need for expert knowledge. However, researchers
working in the 3D domain do not have access to such an internet-scale
abundance of data. In this small-data regime, integrating domain knowl-
edge from graphics into machine-learning pipelines remains beneficial,
as Chapter 4 most explicitly shows. Chapter 5 similarly exploits the
basic idea of local over global representations for generalization from
little data. Furthermore, many tasks in computer graphics like material
editing or deformation control become much more artist-friendly when
factoring out deformations from the geometry and appearance as much
as possible. This basic idea of factoring out the deformations allows the
method in Chapter 6 to move beyond ‘volumetric-video NeRFs’ and to

103

104 conclusion

instead propose a truly ‘deformable NeRF’, thereby enabling much more
challenging novel-view synthesis than concurrent work.

8.1.2 Classical Optimization with Neural Networks

Closely related to the previous point is the usage of deep learning in this
thesis. Only Chapter 4 applies deep learning in its usual sense. In contrast,
Chapter 5, Chapter 6, and Chapter 7 can be thought of as employing
standard optimization for function fitting that uses MLPs to parametrize
certain parts of the problem. Chapter 5 is somewhat in between, as
PatchNets learn a parametrizable function that can represent different
local geometries via a latent code (which acts as parameters). However,
its method design does not lead its MLP to learn any truly high-level
knowledge about geometry, rather its generalizability can be explained
by the local nature of PatchNets. In a more clear-cut manner, Chapter 6

and Chapter 7 by design use their MLPs for scene-specific function
fitting. Why then do these methods perform so well? Because the neural
parametrization has an inductive smoothness bias and great flexibility,
and enables arbitrary resolution, which are the crucial advantages over
classical representations during optimization. Therefore, neural networks
should be considered as strong alternatives to classical parametrizations
(like polynomial ones) in non-deep-learning optimization problems.

8.1.3 The Unreasonable Effectiveness of Neural Radiance Fields

Starting with their surprising performance on static scenes, neural ra-
diance fields remain an unreasonably powerful technique. However,
extending them to general non-rigid objects should violate some of their
core assumptions. In particular, the volumetric rendering acts as a ‘depth
voting’ scheme, where each sample point’s gradient upvotes the ground-
truth pixel color at its position in space. When multiple rays intersect and
agree at a position in space, that color is upvoted strongly, thereby slowly
establishing correspondences. It is natural to integrate dynamics into this
framework by factoring out the deformations and thereby allowing for
accumulation of geometry and appearance information over the entire
sequence. However, this deformation network adds a lot of freedom
and could thereby conceivably hurt the optimization. Yet, it empirically
can handle deformations of several centimeters, which is far larger than
what would be expected from the purely local (pixel-wise) gradients of
the reconstruction loss. This is not only due to the regularization loss
terms but also because the underlying MLP representation lends itself to
easier optimization, e.g., due to higher flexibility, inherent smoothness,

8.2 outlook 105

and its infinite resolution. Related to the previous point, it is noteworthy
that these advantages are not related to deep learning (at least in any
straightforward sense). Overall, since they can handle more challenging
scenes than non-neural shape-from-template and non-rigid strucutre-
from-motion methods, dynamic neural radiance fields are currently the
most promising path towards general non-rigid reconstruction from RGB
input.

8.2 outlook

Beyond the insights and contributions of this thesis, a lot of work remains.
As this thesis deals with general non-rigid objects, the main difficulty
lies with representing their deformations. Several future steps for this
aspect are presented first. Then, the synergies with and integration of 2D
methods for the reconstruction problem are discussed.

8.2.1 Backwards Deformation Modeling

Backwards deformation models are the natural choice for explicitly mod-
eling deformations with volumetric representations like the density field
of neural radiance fields. However, they suffer not only from violating
standard intuition from forward models but also from being impractical
for downstream tasks like editing. Searching for alternative deforma-
tion models for NeRF-style representations thus seems like a worth-
while endeavor. Ideally, future work would find a way to apply forward
models, which is highly non-trivial at the time of this writing. Perhaps
differentiable iso-surface extraction methods can be used to combine a
NeRF-style canonical model with neural forward deformations applied
to an extracted mesh, preserving the best of geometry and deformation
modeling from both worlds.

8.2.2 More Sophisticated Deformation Models

Orthogonal to the previous point, current deformation models used
for general non-rigid objects can be extended in the future to include
even more desirable properties. For example, Chapter 4 learns a low-
dimensional latent space but this space lacks semantics. Intuitive control
thus remains difficult for general objects, in stark contrast to category-
specific models for faces or bodies. On a different note, Chapter 7 shows
that hierarchical deformation models have a place in the general dynamic
NeRF field. Integrating semantic knowledge from 2D vision (without

106 conclusion

over-committing) into more hierarchical, perhaps skeleton-driven, models
might allow for more standard editing and motion analysis. Ultimately,
physics-based models would be desirable for certain tasks relying on
simulation (like high-end video games, visual effects, or visualization
in engineering), but they still remain too restricted and computationally
expensive for easy and useful adaptation in NeRF-style methods.

8.2.3 Synergies with Novel-View Synthesis

Novel-view synthesis has many useful applications, especially in the
areas of virtual and augmented reality as well as visual effects. However,
many methods (e.g., image-based ones or those using features on a 3D
scaffold) focus solely on the novel-view synthesis task and forego the
reconstruction aspect, i.e. 3D coherency is no longer available. While this
makes for an easier problem to tackle, with many inspiring results, it
unfortunately neglects more sophisticated downstream tasks like virtual-
asset creation or robotics, which require 3D coherency. Thus, leveraging
the countless insights from these kinds of novel-view synthesis meth-
ods for 3D reconstruction is a promising avenue for future work. For
example, perhaps novel-view synthesis with 2D neural rendering on 3D
feature volumes can be annealed back into a 3D-coherent neural scene
representation of the standard graphics components of geometry and
appearance. This might allow to tackle even harder reconstruction tasks
by starting with an optimization problem that is even more relaxed than
NeRF (which, for example, is so robust because it uses density even
for surfaces) and then slowly tightening the relaxation to arrive at a
3D-coherent representation.

8.2.4 Integrating Vision Models

The methods in Chapter 6 and Chapter 7 are intentionally designed to not
rely on additional, automatically extracted inputs annotations in order
to avoid issues with general objects outside the training distribution of
automatic annotation methods. However, the recent progress in depth
estimation, optical-flow estimation, semantic segmentation, and other
vision tasks promises that these tasks can now be relied upon for general
dynamic objects without too many outliers and mistakes. The near future
might see even more robustness in this regard, enabling reconstruction
methods to exploit these rich 2D annotations without much effort. Simi-
larly, self-supervised features learned by vision foundation models could
perhaps soon allow for powerful annotations that effectively act like
object coordinates. This would make it easier for reconstruction methods

8.2 outlook 107

to find long-range correspondences for general non-rigid objects, which
has not been feasible so far. Finally, diffusion models could be used
for pseudo-multi-view supervision thanks to their novel-view synthesis
capabilities, thereby stabilizing the optimization.

Since the field of representing and reconstructing general non-rigid
objects is far from solved, many other avenues for future work exist.
For example, time-varying appearance has barely been touched upon.
Hopefully, researchers in the field will tackle this and the many other
challenges successfully in the future.

A
A P P E N D I X F O R C H A P T E R 4

This appendix expands on several points from Chapter 4. Sec. A.1 shows
more examples of the artifacts seen in purely convolutional architectures.
Sec. A.2 describes the normalization of depth maps and meshes (for
reconstruction from real depth data). An expanded version of Tab. 4.4
is in Sec. A.3. Sec. A.4 contains more results of FCA and CA. Sec. A.5
shows artifacts due to coarse embedded graphs.

a.1 artifacts

Tab. A.1 and A.2 show additional examples of artifacts that occur when
not integrating the embedded graph into the network. Even the most
competitive network (i.e. the ablation) suffers from visually unpleasant
artifacts due to large non-rigid deformations, which most visibly occur
on the hands and feet of DFaust. However, due to the localized nature of
the artifacts, they do not have a large impact on the quantitative errors.

a.2 normalization

depth All depth-to-mesh networks rescale the depth values of the
input depth map from between 0.3m and 7m to [−1, 1].

bodies : depth For the depth-to-mesh network on bodies, a num-
ber of additional normalization steps are helpful to focus on non-rigid
reconstruction. First, a segmentation mask is used to filter out the back-
ground. The depth value of background pixels is set to 2. The foreground
is cropped tightly and bilinearly sampled, to isotropically rescale the
crop to 256 × 256. Given such a depth crop, the average (foreground)
depth value is subtracted from the input. Such normalization necessitates
normalizing the network output, which is described next.

bodies : meshes Subtracting from each mesh vertex the average ver-
tex position normalizes out the global translation from the meshes. Since
scale information is also lost, the scale of the meshes is fixed by normal-
izing their approximate spine length. To that end, the approximate spine
length of the template mesh and of each mesh in the dataset is first com-
puted. Then all the meshes are isotropically rescaled to the same spine

109

110 appendix for chapter 4

Convolutional Ablation DEMEA

Table A.1: Artifacts. The top rows use 32 latent dimensions, the last two rows
are for 8.

A.3 standard deviations in tab . 4 .4 111

Convolutional Ablation 8 DEMEA 8 Convolutional Ablation 32 DEMEA 32

Table A.2: Artifacts on SynHand5M. In contrast to CA, DEMEA yields a smooth
index finger in the examples shown above.

DFaust SynHand5M Cloth CoMA

8 32 8 32 8 32 8 32

FCA 6.51 ± 2.45 2.17 ± 0.82 15.10 ± 4.06 2.95 ± 0.69 15.63 ± 7.18 5.99 ± 1.86 1.77 ± 0.57 0.67 ± 0.22

FCED 6.26 ± 2.35 2.14 ± 0.86 14.61 ± 3.95 2.75 ± 0.63 15.87 ± 7.73 5.94 ± 1.81 1.81 ± 0.71 0.73 ± 0.20

CA 6.35 ± 2.40 2.07 ± 0.73 8.12 ± 1.77 2.60 ± 0.60 11.21 ± 4.58 6.50 ± 1.85 1.17 ± 0.47 0.72 ± 0.22

MCA 6.21 ± 2.48 2.13 ± 0.79 8.11 ± 1.77 2.67 ± 0.60 11.64 ± 4.58 6.59 ± 1.96 1.20 ± 0.46 0.71 ± 0.21

DEMEA 6.69 ± 2.76 2.23 ± 0.99 8.12 ± 1.73 2.51 ± 0.59 11.28 ± 4.65 6.40 ± 1.96 1.23 ± 0.41 0.81 ± 0.22

Table A.3: Average per-vertex errors on the test sets of DFaust (in cm), Syn-
Hand5M (in mm), textureless cloth (in mm) and CoMA (in mm) for 8 and 32

latent dimensions, including standard deviations across the test sets.

length as the template mesh. The depth-to-mesh body reconstruction
errors in Chapter 4 are reported for these normalized meshes.

a.3 standard deviations in tab . 4 .4

Tab. A.3 contains an expanded version of Tab. 4.4 that also has standard
deviations.

a.4 fca and ca results

Tab. A.4 contains qualitative results for FCA and Tab. A.5 shows artifacts
when using FCA. Tab. A.6 contains qualitative results for CA. Tab. A.7
shows depth-to-mesh results.

112 appendix for chapter 4

Ground Truth FCA 32 DEMEA 32 FCA 8 DEMEA 8

Table A.4: Qualitative results on FCA.

Ground Truth FCA 32 DEMEA 32

Table A.5: Artifacts on FCA. While the reconstruction by DEMEA only matches
the ground truth as well as FCA, it is a significantly more plausible shape.

Ground Truth CA 32 DEMEA 32 CA 8 DEMEA 8

Table A.6: Qualitative results on CA.

A.5 coarse embedded graphs 113

Depth DEMEA CA FCA

Table A.7: Depth-to-mesh results for CA and FCA. The bottom row shows
artifacts that DEMEA avoids.

a.5 coarse embedded graphs

Tab. A.8 shows how an embedded graph can lead to over-smoothing and
a loss of detail.

114 appendix for chapter 4

Second Level Ground Truth First Level

Table A.8: Coarse embedded graphs. Note the lips. An embedded graph on
the second level of the mesh hierarchy instead of the first level can lead to
over-smoothing.

B
A P P E N D I X F O R C H A P T E R 5

This appendix expands on several points from Chapter 5. Sec. B.1 com-
pares error measures on the reduced and full test sets. Sec. B.2 contains
more experiments using object-level priors. Next, Sec. B.3 measures the
performance under synthetic noise. Sec. B.4 shows preliminary results
on a large scene.

b.1 reduced test set

The reduced test set on ShapeNet consists of 50 randomly chosen test
shapes per category. Tab. B.1 shows how well the error measures on this
reduced test set approximate the error measures on the full test set.

b.2 object-level priors

b.2.1 Surface Reconstruction

This section reports surface reconstruction errors using object-level priors
(see Sec. 5.3.3). Note that the experiments in Sec. 5.3.3 use the most
competitive setting of the global-patch baseline (i.e., pretrained on all
categories and then refined) and the least competitve setting of PatchNet
(i.e., pretrained on one category and not refined). This demonstrates how
well the proposed PatchNet generalizes. For consistency, for the DeepSDF-
based baseline, the same setting as for the global-patch baseline are used.
Note that that setting is virtually on par with the most competitive
DeepSDF setting (i.e., pretrained on one category and then refined).

b.2.1.1 Settings

Both PatchNets and the baselines consist of a four-layer ObjectNet and
the standard final eight FC layers. The final eight FC layers are pretrained
either on the reduced training set of all categories or on all shapes from
the Cabinets category training set. Then, those pretrained weights are
either kept fixed fixed while training ObjectNet or they are allowed to
change for further refinement. While at training time, each phase lasts
1000 epochs, this is reduced to 800 epochs at test time.

115

116 appendix for chapter 5

IoU Chamfer F-score

Category DeepSDF Baseline PatchNets DeepSDF Baseline PatchNets DeepSDF Baseline PatchNets

full red. full red. full red. full red. full red. full red. full red. full red. full red.

airplane 84.9 84.0 65.3 64.2 91.1 90.7 0.012 0.023 0.077 0.084 0.004 0.006 93.0 92.3 72.9 71.6 97.8 97.5

bench 78.3 77.1 68.0 65.7 85.4 83.7 0.021 0.015 0.065 0.043 0.006 0.006 91.2 90.4 80.6 80.1 95.7 94.9

cabinet 92.2 89.1 88.8 84.8 92.9 91.6 0.033 0.027 0.055 0.047 0.110 0.119 91.6 90.3 86.4 84.3 91.2 91.8

car 87.9 88.4 83.6 84.3 91.7 92.6 0.049 0.057 0.070 0.074 0.049 0.050 82.2 82.1 74.5 74.4 87.7 87.8

chair 81.8 80.1 72.9 70.3 90.0 88.6 0.042 0.041 0.110 0.118 0.018 0.013 86.6 86.0 75.5 74.8 94.3 93.5

display 91.6 92.9 86.5 89.1 95.2 95.5 0.030 0.010 0.061 0.034 0.039 0.049 93.7 95.1 87.0 89.8 97.0 97.3

lamp 74.9 72.3 63.0 63.4 89.6 88.0 0.566 2.121 0.438 0.257 0.055 0.063 82.5 79.9 69.4 70.1 94.9 94.0

rifle 79.0 78.0 68.5 66.0 93.3 93.1 0.013 0.012 0.039 0.046 0.002 0.001 90.9 90.7 82.3 80.4 99.3 99.3

sofa 92.5 92.2 85.4 84.5 95.0 95.1 0.054 0.075 0.226 0.236 0.014 0.012 92.1 91.3 84.2 83.0 95.3 95.3

speaker 91.9 90.5 86.7 84.9 92.7 90.8 0.050 0.060 0.094 0.121 0.243 0.242 87.6 84.7 79.4 75.7 88.5 85.1

table 84.2 83.4 71.9 69.5 89.4 90.3 0.074 0.043 0.156 0.169 0.018 0.017 91.1 91.5 79.2 79.1 95.0 96.1

telephone 96.2 96.0 95.0 94.1 98.1 98.0 0.008 0.010 0.016 0.016 0.003 0.004 97.7 97.3 96.2 94.7 99.4 99.3

watercraft 85.2 84.9 79.1 78.5 93.2 93.1 0.026 0.019 0.041 0.031 0.009 0.006 87.8 88.2 90.2 80.6 96.4 96.6

mean 86.2 85.3 78.1 76.9 92.1 91.6 0.075 0.193 0.111 0.098 0.044 0.045 89.9 89.2 80.6 79.9 94.8 94.5

Table B.1: Reduced Test Set vs. Full Test Set. The computed metrics on the
reduced test set of ShapeNet are a good approximation of the computed metrics
on the full test set. This is an extended version of Tab. 5.1.

baseline DeepSDF-based PatchNets

one all one all one all

fix. ref. fix. ref. fix. ref. fix. ref. fix. ref. fix. ref.

ai
rp

la
ne

s IoU 35.9 70.9 60.2 73.3 47.0 75.6 69.9 74.1 67.5 68.5 71.9 74.2

Chamfer 0.710 0.146 0.218 0.147 0.546 0.049 0.127 0.050 0.203 0.182 0.179 0.170

F-score 37.5 76.0 63.6 78.3 49.1 82.5 76.4 81.6 71.7 74.1 77.9 79.7

so
fa

s

IoU 76.1 81.8 76.3 84.3 76.4 79.7 82.4 76.6 85.3 86.2 84.9 86.0

Chamfer 0.416 0.159 0.398 0.171 0.467 0.178 0.282 0.406 0.118 0.139 0.236 0.082

F-score 69.0 75.2 71.8 77.9 70.1 72.3 77.5 71.8 79.0 80.7 79.5 79.9

Table B.2: Surface Reconstruction with ObjectNet. The final eight layers are
pretrained either on one category (one) or on all categories (all). Then, they are
either kept fixed (fix.) or are refined (ref.).

b.2.1.2 Results

Tab. B.2 contains the quantitative results. The baselines do not generalize
well if they are kept fixed. Refinement improves error measures.

b.2.2 Ablation Study

Next, the extrinsics losses are ablated in the context of surface recon-
struction with object-level priors. PatchNets is pretrained on the Cabinets
category and was not refined. The ablation study is performed on the
Sofas category.

B.3 synthetic noise 117

IoU Chamfer F-score

no Lsur 87.6 0.076 82.6

no Lscl 75.5 0.154 54.2

no Lvar 71.8 0.269 47.3

PatchNets 85.3 0.118 79.0

PatchNets with Lrecon on mixture 84.9 0.116 78.1

Table B.3: Ablation Study with Object-level Priors. Each of the extrinsics losses
is removed.

sofas fixed sofas random airplanes fixed airplanes random

acc. F-score acc. F-score acc. F-score acc. F-score

baseline 0.094 43.0 0.092 42.7 0.069 58.1 0.066 58.7

DeepSDF-based baseline 0.106 33.6 0.101 39.5 0.066 56.9 0.065 55.5

proposed (Chapter 5) 0.091 48.1 0.077 49.2 0.058 60.5 0.056 59.4

proposed+refined (Chapter 5) 0.052 53.6 0.053 52.4 0.041 67.7 0.043 65.8

proposed (baseline-matched) 0.088 47.5 0.074 50.0 0.052 64.8 0.050 64.3

proposed+refined (baseline-matched) 0.061 54.7 0.056 53.5 0.045 70.3 0.044 69.9

Table B.4: Partial Point Cloud Completion from Depth Maps. Depth maps
are completed from a fixed camera viewpoint and from per-scene random
viewpoints.

The quantitative results are in Tab. B.3. The network failed to recon-
struct without Lcov.

b.2.3 Partial Point Cloud Completion

This section reports additional depth-map completion results using the
same settings for PatchNets that were used for the baselines in Chapter 5

(pretrained on all categories and refined). Note that Chapter 5 reports
the shape-completion results of the most disadvantageous version of the
proposed method (according to Tab. B.2). Tab. B.4 contains the quantita-
tive results. In all cases, PatchNets after local refinement yields the best
results.

b.3 synthetic noise

Finally, the robustness of PatchNet to noise is investigated by adding
Gaussian noise to the ground-truth SDF values of the reduced test set.
PatchNet is trained with default settings, which also means that it has
only seen unperturbed SDF data during training. The Gaussian noise has
zero mean and different standard deviations σ. For reference, the mesh

118 appendix for chapter 5

IoU Chamfer F-score

σ = 0.1 81.2 0.037 85.3

σ = 0.01 90.3 0.045 94.3

σ = 0.001 91.5 0.047 94.4

σ = 0 (proposed) 91.6 0.045 94.5

Table B.5: Synthetic Noise at Test Time.

fits tightly into the unit sphere, as mentioned in Sec. 5.2.2. The results
are in Tab. B.5.

b.4 preliminary results on icl-nuim

Once trained, a PatchNet can be used for any number of patches at
test time. Here, some preliminary results on the large living room from
ICL-NUIM (Handa et al., 2014) are presented.

Since the scene is already watertight, the depth fusion step of the
preprocessing method can be skipped. The standard deviation used to
generate SDF samples is reduced by a factor of 100 to account for scaling
differences. Overall, 50 million SDF samples are sampled.

PatchNet uses 800 patches. The extrinsics are kept fixed at their initial
values to improve the reconstruction. The optimization lasts for 10k itera-
tions, halving the learning rate every 2k iterations. During optimization,
25k SDF samples are used per iteration. The baselines are trained with
the same modified settings.

The results are in Fig. B.1. Note that due to our extrinsics initialization
(Sec. 5.2.2) and Lvar, all patches have similar sizes, which leads to a
wasteful distribution.

B.4 preliminary results on icl-nuim 119

Ground Truth

Mixture (Proposed) Patches (Proposed)

DeepSDF Global Baseline

Figure B.1: Preliminary Results on ICL-NUIM.

C
A P P E N D I X F O R C H A P T E R 6

This appendix expands on several points from Chapter 6. Sec. C.1 dis-
cusses a number of training details. Next, Sec. C.2 provides some imple-
mentation details. Sec. C.3 provides more details on the experimental
settings of the comparisons and some additional results. Sec. C.4 presents
the extensions to multi-view data and view-dependent effects. Finally,
Sec. C.5 contains some preliminary qualitative comparisons to a concur-
rent, non-peer-reviewed work.

c.1 training details

While the network weights are optimized as usual, the latent codes li
are auto-decoded, i.e., they are treated as free variables that are directly
optimized for, similar to network weights, instead of being regressed.
This is based on the auto-decoding framework used in DeepSDF and
earlier works (Park et al., 2019; Tan and Mayrovouniotis, 1995).

The latent codes {li}i are initialized to zero vectors. The radiance field
is implemented with the same architecture as in NeRF (Mildenhall et al.,
2020). The ray bending network is a 5-layer MLP with 64 hidden dimen-
sions and ReLU activations, the last layer of which is initialized with
all weights set to zero. The rigidity network is a 3-layer MLP with 32
hidden dimensions and ReLU activations, with the last layer initialized
to zeros. The output of the last layer of the rigidity network is passed
though a tanh activation function and then shifted and rescaled to lie
in [0, 1]. Training usually takes 200k iterations with a batch of 1k ran-
domly sampled rays. At training and at test time, rendering uses 64
coarse and 64 fine samples per ray in most cases. The optimization uses
Adam (Kingma and Ba, 2015) and exponentially decays the learning
rate to 10% from the initial 5 · 10−4 over 250k iterations. For dark scenes,
it is empirically necessary to introduce a warm-up phase that linearly
increases the learning rate starting from 1

20 th of its original value over
1000 iterations. The latent codes are of the dimension 32. Training lasts
between six and seven hours on a single Quadro RTX 8000 GPU.

NR-NeRF needs scene-specific weights for each loss term due to the
variety of types of non-rigid objects/scenes and deformations. The fol-
lowing ranges are sufficient for a wide range of scenarios: ωrigidity lies
in [0.01, 0.001] and typically is 0.003, ωoffsets lies in [60, 600] and typically

121

122 appendix for chapter 6

is 600, and ωdivergence lies in [1, 30] and typically is 3 or 10. NR-NeRF is
empirically fairly insensitive to ωoffsets. Rather rigid objects benefit from
higher ωdivergence, while fairly non-rigid objects need lower ωdivergence.
Finally, ωrigidity should be increased whenever the background is unsta-
ble. The training starts with each weight set to 1

100 th of its value, and
then exponentially increases it until it reaches its full value at the end of
training.

c.2 implementation details

The code is based on a faithful PyTorch (Paszke et al., 2019) port (Yen-
Chen, 2020) of the official Tensorflow NeRF code (Mildenhall et al., 2020).
Eq. 6.6 is estimated using the official FFJORD implementation (Grathwohl
et al., 2018). If the camera extrinsics and intrinsics are not given, they
are estimated using the Structure-from-Motion (SfM) implementation
of COLMAP (Schönberger and Frahm, 2016; Schönberger et al., 2016).
COLMAP is quite robust to non-rigid ‘outliers’. Since NR-NeRF aims for
smooth deformations, positional encoding is only applied to the input of
the canonical NeRF volume, not to the input of the ray bending network.

c.3 comparisons

This section provides more details on the experimental settings of the
comparisons.

c.3.1 Prior Work and Baseline

The starting point is the trivial baseline of rigid NeRF (Mildenhall et al.,
2020), which cannot handle dynamic scenes. Two variants are considered:
view-dependent rigid NeRF, as in the original method (Mildenhall et
al., 2020), and view-independent rigid NeRF, where the view-direction
conditioning is removed.

Next, naïve NR-NeRF adds naïve support for dynamic scenes to rigid
NeRF: It conditions the neural radiance fields volume on the latent
code. Thus, for latent code li, it computes (c, o) = v(x, li). This allows
the neural radiance fields volume to output time-varying color and
occupancy. Unlike NR-NeRF’s ray bending, naïve NR-NeRF does not
have an explicit, separate deformation model. Instead, the volume needs
to account for appearance, geometry, and deformation at once. Note that
for test images i, gradients are backpropagated into the corresponding
latent code li.

C.3 comparisons 123

Neural Volumes (Lombardi et al., 2019) is the final baseline, which
uses the official code release. The standard settings are used as a starting
point. However, the number of training iterations is set to 100k, which
leads to a training time of about two days on an RTX 8000 GPU. Neural
Volumes uses an image encoder to regress a latent code that conditions
the geometry, appearance, and deformation regression on the current
time step. Since this design assumes a multi-view setup, it needs to be
adapted to the monocular setting. Instead of picking three fixed camera
views that are always input into the encoder, the single image of the
current time step is used as input. In particular, at test time, the test image
is used as input. Since there is no access to a background image, the
estimated background image is set to an all-black image. Two variations
are considered: (1) following the original Neural Volumes method, the
geometry and appearance template is conditioned on the latent code
(NV), and (2) the geometry and appearance template is independent
of the latent code (modified NV). In the latter case, the latent code only
conditions the warp field, which is similar to the proposed method.

c.3.2 Training/Test Split

Quantitative evaluation requires a test set. In the comparison section,
the images are split into training and test images by partitioning the
temporally-ordered images into consecutive blocks, each of length 16.
The first twelve images of each block are used as training data, while
the remaining four are used for testing. In the monocular setting, test
images still require corresponding latent codes to represent the deforma-
tions. Therefore, test images are treated like training images except that
gradients are not backpropagated into the canonical volume or the ray
bending network. However, the gradients from test images do optimize
the corresponding latent codes. (Note that test images solely influence test
latent codes, as is typical for auto-decoding (Park et al., 2019). 1) All other
results, outside of the comparisons, treat all images as training images
since the reconstruction are achieved by training scene-specific networks.

c.3.3 Additional Results

See Fig. C.1 for more qualitative results and Fig. C.4 for quantitative
results on background stability under novel views.

1 The only tweak NR-NeRF adds is to align the optimization landscapes of the training and
test latent codes by optimizing the test latent codes jointly with the training latent codes
during training. This does not lead to any information leakage from the test images to
any component except for the test latent codes.

124 appendix for chapter 6

Input NR-NeRF Naïve Rigid NeRF Rigid NeRF Neural NV
NR-NeRF (view-dep.) (not v.-dep.) Volumes (NV) (modified)

Figure C.1: Visualization of one time step each from each sequence, for input
reconstruction quality (first row) and novel view synthesis quality (second row).

c.4 extensions

As mentioned in Sec. 6.3, NR-NeRF can be extended easily to work with
multi-view data and view-dependent effects.

c.4.1 Multi-View Data

The proposed approach naturally handles multi-view data. Although
the experiments mainly consider monocular data, multi-view data is
useful to investigate the upper quality bound of NR-NeRF under ideal
real-world conditions.

method Instead of each image having its own time step and hence
latent code, images taken at the same time step share the same latent
code. This ensures that the canonical volume deforms consistently within
each time step.

data and settings The multi-view dataset has 16 camera pairs
evenly distributed around the scene, which sufficiently constrains the
optimization such that the training does not need any regularization
losses. Training happens at the original resolution of 5120 × 3840 for 2
million training iterations with 4096 rays per batch and 256 coarse and
128 fine samples. These highest-quality settings lead to a training time of
11 days on 4 RTX 8000 GPUs, and a rendering time of about 10 minutes
per frame on the same hardware.

C.4 extensions 125

results Fig. C.2 shows results on five consecutive time steps.

c.4.2 View Dependence

NR-NeRF can optionally handle view-dependent effects, like speculari-
ties.

method Determining the view direction or ray direction is not as
trivial as for the straight rays. Instead, the direction in which the bent ray
passes through a point in the canonical volume is required. NR-NeRF
considers two options of doing so: exact and slower, or approximate and
faster.

Exact: The direction of the bent ray r̃ at a point r̃(j) is obtained via the
chain rule as ∇j r̃(j) = ∂r̃(j)

∂r̄(j) ·
∂r̄(j)

∂j = J · d, where J is the 3 × 3 Jacobian
and d is the direction of the straight ray. J takes three backward passes
to compute (one for each output dimension), which is computationally
expensive.

Approximate: To reduce computation, the direction at the ray sample
can be approximated via finite differences as the normalized difference
vector between the current point r̃(j) and the previous point r̃(j − 1)
along the bent ray (which is closer to the camera).

results On multi-view data, conditioning on the viewing direction
reduces the presence of subtle, smoke-like artifacts, which the canonical
volume typically employs to model view-dependent effects without view
conditioning. This is especially visible for the specularities on the face
and the handle of the kettlebell. Without view-dependent effects, the
reconstructed face still appears to exhibit specularities, but these are
incorrectly modeled via smoke-like artifacts in the surrounding air. See
Fig. C.2 for results.

For quantitative results on monocular sequences, see Tab. C.4.2. How-
ever, as Fig. C.3 shows, the proposed formulation leads to artifacts in
some cases. Presumably, the combination of both significant motion and
novel views significantly different from input views is too undercon-
strained for view-dependent effects. For example, non-rigid NeRF might
incorrectly overfit to subtle correlations between deformation and camera
position at training time. However, better formulations and regulariza-
tion in future work may make view-dependent effects work in these
challenging scenarios.

126 appendix for chapter 6

Figure C.2: A highly controlled multi-view setting allows to explore the upper
quality bound of the proposed method. NR-NeRF can be extended to handle
view-dependent effects. Results on the left are without view dependence, while
those on the right are with view dependence. A full rendering by NR-NeRF (first
row), zoom-ins thereof (second row), and input images from the two closest
input cameras.

no (default) approximate exact

Figure C.3: While NR-NeRF extended with view-dependent effects (approximate
or exact) gives similar results to the default NR-NeRF for many monocular
scenes, it sometimes leads to artifacts for difficult novel views.

C.4 extensions 127

a)

Left Scene Right Scene
b)

NR-NeRF NR-NeRF (approx. view)
.

NR-NeRF (exact view) Naïve NR-NeRF
.

Neural Volumes Neural Volumes (modified)

Figure C.4: Background Stability. This figure quantifies the difference in back-
ground stability between the proposed method, its variants with view depen-
dence, naïve NR-NeRF, and Neural Volumes. To that end, all test time steps of
the input sequence are rendered into a fixed novel view. Then, the standard
deviation of each pixel’s color across time is computed to measure color changes
and hence background stability. a) Cumulative plots across all pixels, where
NR-NeRF and its variants (left-most curves) have the most stable background.
b) Distribution of those instabilities in the scene. The results of NR-NeRF and
its variants show the least instability in the background.

128 appendix for chapter 6

NR-NeRF NR-NeRF NR-NeRF Naïve Rigid Rigid NV NV

(appx.) (exact) (cond.) (no cond.) (mod.)

PSNR 24.70 25.15 25.07 25.83 22.24 21.88 14.13 14.10

SSIM 0.758 0.766 0.765 0.738 0.662 0.659 0.259 0.263

LPIPS 0.197 0.191 0.190 0.226 0.309 0.313 0.580 0.583

Table C.1: Quantitative Results Averaged Across Scenes. The following methods
are evaluated: NR-NeRF (1) without view conditioning, (2) with approximate
view conditioning, and (3) with exact view conditioning, naïve NR-NeRF, rigid
NeRF (Mildenhall et al., 2020) (1) with view conditioning and (2) without view
conditioning, and Neural Volumes (Lombardi et al., 2019) (1) without and (2)
with modifications. For PSNR and SSIM (Wang et al., 2004), higher is better. For
LPIPS (Zhang et al., 2018), lower is better. As in Tab. 6.1, 18 scenes are used here,
with an average length of 146 frames and a minimum of 41 and a maximum of
453 frames.

c.5 additional comparisons

This section shows preliminary qualitative comparisons to the concurrent,
non-peer-reviewed work Neural Scene Flow Fields (Li et al., 2021b) in
Fig. C.5.

C.5 additional comparisons 129

Input NR-NeRF NSFF Naïve Rigid Rigid
(Li et al., 2021b) NR-NeRF (no view dep.) (view dep.)

Figure C.5: Under challenging novel view scenarios, NR-NeRF benefits from
the geometry and appearance information that the canonical volume has accu-
mulated from all time steps, which allows NR-NeRF to output sharp results.
Both the concurrent, non-peer-reviewed Neural Scene Flow Fields (Li et al.,
2021b) and naïve NR-NeRF however entangle deformation with geometry and
appearance by conditioning the ’canonical’ volume on a time-dependent defor-
mation latent code. This makes sharing information across time more difficult,
leading to blurrier results in challenging novel view scenarios compared to
NR-NeRF’s results. Finally, rigid NeRF shows a blurry mix of the deformations
observed over the entire input sequence, which highlights the need to account
for deformations in the scene.

D
A P P E N D I X F O R C H A P T E R 7

This appendix expands on several points from Chapter 7. Sec. D.1 pro-
vides details on how correspondences are visualized. Sec. D.2 shows
per-scene quantitative novel-view-synthesis results. Sec. D.3 presents
more qualitative joint-tracking and novel-view results. Sec. D.4 contains
further architecture and training details. Sec. D.5 provides details on how
the baselines are adapted to joint tracking. Sec. D.6 gives more details on
the foreground masks used for evaluation.

d.1 correspondence visualization details

The experiments follow NR-NeRF’s visualization and replace the appear-
ance in the canonical model with a voxel grid of RGB cubes. Like prior
work (Park et al., 2021a; Tretschk et al., 2021), that sample i′ of the ray
is picked as the surface point r(si′) that is closest to an accumulated
transmittance ∑i′

i=1 wi of 0.5. For better visualization, rays with a total
accumulated transmittance below 0.4 (i.e. those hitting the background)
are filtered out and visualized as transparent. Fig. D.1 shows an example.

d.2 per-scene quantitative results

Tab. D.1 collects the quantitative results per scene for novel-view synthe-
sis.

d.3 more qualitative joint-tracking and novel-view re-
sults

Fig. D.2 contains the qualitative joints estimated at t=T for all sequences
not shown in Chapter 7. Fig. D.3 and Fig. D.4 contain more novel-view
results of all methods for four scenes at t= T

2 .

d.4 further architecture and training details

For all methods, the scene is normalized into the unit cube by tightly
fitting an axis-aligned bounding box to all near and far plane samples of
all images.

131

132 appendix for chapter 7

With Filtering Without Filtering

Figure D.1: Filtering for Correspondence Visualization. For better visualization,
rays with an accumulated transmittance below 0.4 are filtered out.

d.4.1 SceNeRFlow

Architecture. Both the coarse and fine deformation fields use the same
architecture. The hash grid consists of 16 levels, with two feature di-
mensions per level. The coarsest level has a resolution of 323, and each
subsequent level has a 1.3819 times higher resolution. The hashmap has
a size of 220. The shallow MLP has one hidden layer with 64 hidden
dimensions.

The canonical model uses a hash grid with 13 levels, two feature
dimensions per level, a coarsest resolution of 1283, and a scaling factor of
1.3819. The shallow MLP that outputs the opacity has one hidden layer
with 64 hidden dimensions. A second MLP outputs the appearance and
takes as input a 15-dimensional vector additionally regressed by the first
shallow MLP. The second MLP has two hidden layers with 64 hidden
dimensions.
Weighting Scheme for Smoothness Loss. Each sample i on ray r is
weighted depending on its closeness to the object. Mathematically, the
initial weight is σ̂r,i = exp(−σr,iδ), where σr,i is the opacity of the i-th
sample on ray r. Next, max-pooling with window size k = ⌊ f · S⌋ is
applied, where f=0.005 is empirically set:

σ̂′
r,i = max

i′∈[i−k,...,i+k]
σ̂r,i′ . (D.1)

Then, the regularization is weakened on empty space by u=10:

σ̂′′
r,i =

 1
u σ̂′

r,i if σ̂′
r,i > u · σ̂r,i

σ̂′
r,i else.

(D.2)

D.4 further architecture and training details 133

SceNeRFlow NR-NeRF SNF-A SNF-AG Background

Se
q.

1 U
nm

as
ke

d PSNR ↑ 27.49 26.84 27.84 26.73 18.64

SSIM ↑ 0.928 0.915 0.928 0.906 0.894

LPIPS ↓ 0.074 0.117 0.076 0.138 0.139

M
as

ke
d PSNR ↑ 29.73 29.38 30.02 29.89 —

SSIM ↑ 0.970 0.966 0.971 0.970 —

LPIPS ↓ 0.021 0.036 0.017 0.018 —

Se
q.

2 U
nm

as
ke

d PSNR ↑ 27.93 21.64 28.24 26.99 18.57

SSIM ↑ 0.929 0.875 0.929 0.907 0.898

LPIPS ↓ 0.069 0.183 0.074 0.136 0.130

M
as

ke
d PSNR ↑ 29.65 22.75 30.23 29.96 —

SSIM ↑ 0.970 0.931 0.972 0.970 —

LPIPS ↓ 0.019 0.081 0.017 0.019 —

Se
q.

3 U
nm

as
ke

d PSNR ↑ 27.72 21.48 27.50 26.61 18.94

SSIM ↑ 0.923 0.874 0.920 0.904 0.895

LPIPS ↓ 0.075 0.181 0.089 0.136 0.140

M
as

ke
d PSNR ↑ 28.95 22.25 28.90 28.47 —

SSIM ↑ 0.961 0.925 0.961 0.958 —

LPIPS ↓ 0.029 0.089 0.029 0.033 —

Se
q.

4 U
nm

as
ke

d PSNR ↑ 31.59 31.79 31.92 32.08 24.68

SSIM ↑ 0.950 0.948 0.951 0.949 0.943

LPIPS ↓ 0.034 0.055 0.036 0.044 0.070

M
as

ke
d PSNR ↑ 33.68 33.67 34.15 34.41 —

SSIM ↑ 0.980 0.978 0.981 0.981 —

LPIPS ↓ 0.011 0.031 0.012 0.014 —

Se
q.

5 U
nm

as
ke

d PSNR ↑ 32.25 31.73 32.58 32.77 23.33

SSIM ↑ 0.946 0.944 0.947 0.945 0.938

LPIPS ↓ 0.042 0.057 0.044 0.049 0.076

M
as

ke
d PSNR ↑ 34.08 33.29 34.49 34.95 —

SSIM ↑ 0.976 0.973 0.978 0.978 —

LPIPS ↓ 0.017 0.033 0.017 0.017 —

Se
q.

6 U
nm

as
ke

d PSNR ↑ 28.52 26.69 29.05 27.70 19.76

SSIM ↑ 0.938 0.917 0.937 0.918 0.916

LPIPS ↓ 0.060 0.123 0.069 0.120 0.105

M
as

ke
d PSNR ↑ 30.24 28.85 31.19 30.99 —

SSIM ↑ 0.978 0.969 0.980 0.979 —

LPIPS ↓ 0.015 0.035 0.013 0.013 —

Se
q.

7 U
nm

as
ke

d PSNR ↑ 34.38 34.79 35.32 35.43 26.08

SSIM ↑ 0.959 0.958 0.960 0.956 0.950

LPIPS ↓ 0.026 0.032 0.026 0.036 0.057

M
as

ke
d PSNR ↑ 37.88 38.01 39.33 39.83 —

SSIM ↑ 0.991 0.990 0.992 0.992 —

LPIPS ↓ 0.005 0.007 0.003 0.004 —

Se
q.

8 U
nm

as
ke

d PSNR ↑ 32.67 35.18 34.58 34.38 23.53

SSIM ↑ 0.937 0.942 0.944 0.941 0.926

LPIPS ↓ 0.046 0.041 0.042 0.047 0.088

M
as

ke
d PSNR ↑ 34.82 38.17 38.13 37.26 —

SSIM ↑ 0.980 0.984 0.986 0.984 —

LPIPS ↓ 0.022 0.017 0.013 0.018 —

Table D.1: Novel-View Synthesis. The table reports per-scene PSNR, SSIM, and
LPIPS.

134 appendix for chapter 7

SceNeRFlow PREF NR-NeRF

Se
q.

1
Se

q.
2

Se
q.

3
Se

q.
5

Se
q.

7

Figure D.2: Time Consistency. The solid skeleton is the tracking estimate at t=T.
The dotted skeleton is the pseudo-ground truth at t=T.

D.4 further architecture and training details 135

Ground Truth SceNeRFlow NR-NeRF SNF-A SNF-AG
V

ie
w

1
V

ie
w

2
V

ie
w

1
V

ie
w

2

Figure D.3: Novel-View Synthesis. (First row) Seq. 3 at t= T
2 . (Second row) Seq.

4 at t= T
2 .

Ground Truth SceNeRFlow NR-NeRF SNF-A SNF-AG

V
ie

w
1

V
ie

w
2

V
ie

w
1

V
ie

w
2

Figure D.4: Novel-View Synthesis. (First row) Seq. 7 at t= T
2 . (Second row) Seq.

8 at t=T.

136 appendix for chapter 7

Finally, the regularization is weakened on very small offsets ∆ ∈ R3 with
a soft threshold of st=0.001:

σ̂′′′
r,i (∆) = sig

(4∥∆∥2

st
− 2
)

σ̂′′
r,i, (D.3)

where sig(x)= 1
1+exp(−x) is the sigmoid function. The weighting thus is:

Lnorm,w =
1

RS ∑
r

∑
i

σ̂′′′
r,i (∆)Ee

[∣∣∥J⊤rr(si)
e∥2 − 1

∣∣], (D.4)

where ∆=∆c(rr(si)) when regularizing the coarse deformations, and
∆=∆ f (dc(rr(si))) when regularizing the fine deformations.
Learning Rates. The optimization uses exponential decay for the learning
rates when constructing the canonical model and for each timestamp
t>1. For t=1, they are decayed by a factor of 0.01 for all parameters. For
t>1, the coarse deformations decay by 0.1 when they get optimized, and
the fine deformations by 0.1 when they get optimized. All parameters of
the canonical model have an initial learning rate of 10−2. All deformation
parameters have an initial learning rate of 10−3. The vignetting param-
eters have an initial learning rate of 10−2 and are the only parameters
with no weight decay.

During the first 1000 iterations when building the canonical model, the
learning rates are warmed up with an additional factor that exponentially
increases from 0.01 to 1.

d.4.2 Variants

The experiments compare against two variants of the proposed method
that use time-varying canonical models and thus neglect correspon-
dences.

The first variant, SNF-A, allows the appearance but not the geometry
of the canonical model to change for t>1. This is implemented via a
separate appearance model that has the same HashMLP architecture as
the standard canonical model. Then, the standard canonical model, which
now only predicts the geometry, is kept fixed for t>1 while allowing the
appearance to vary.

The second variant, SNF-AG, has time-varying appearance and ge-
ometry. Thus, the standard canonical model can be used. The geometry
regularization losses Lback and Lhard are applied to the canonical model
at all timestamps t≥1.

For both variants, as much of the reconstruction as possible should
be explained via the deformations, such that the canonical model needs
to change as little as possible. Thus, the 10k iterations per timestamp

D.4 further architecture and training details 137

are split into three equally long phases: only coarse deformations (as
before), then only fine deformations (as before), then only the canonical
model. I.e., the canonical model gets optimized only during the third
phase, when the deformations are fixed.

Empirically, these variants are unstable to train, with frequent diver-
gence, but the following remedies help: The canonical hash grid(s) use
the settings from Instant NGP (Müller et al., 2022) (a coarsest resolution
of 16, with the resolution of each finer level being 1.5 times finer than the
previous level, with a total of 16 levels). During the third phase, Instant
NGP’s Huber loss is used with a threshold of 0.1 as reconstruction loss
instead of SceNeRFlow’s ℓ1 reconstruction loss. The learning rate expo-
nentially decays for the third phase, going from 10−2 to 10−3 (except for
the 300-frame Seq. 3, where a ten times lower learning rate is used for
long-term training stability).

d.4.3 NR-NeRF

NR-NeRF is adapted to the multi-view setting as follows: Since back-
ground images are provided to NR-NeRF, its rigidity network is not
necessary and hence removed. Furthermore, due to the large-motion
setting, its offsets loss that encourages the deformations to remain small
is removed. To keep runtime reasonable, pruning is used. Doing so also
allows to always sample densely and thus hierarchical sampling is not
applied. Foreground-focused batches and vignetting correction are also
used. Since the recommended (Tretschk et al., 2021) training time of 200k
iterations is only shown for very short scenes, NR-NeRF is instead trained
for longer on scenes in these experiments. Specifically, NR-NeRF’s train-
ing time is extended to that of SceNeRFlow and thus NR-NeRF trains
for one third of the number of iterations of SceNeRFlow. For Seq. 8,
NR-NeRF is trained for 200k iterations, as that is longer.

d.4.4 PREF

Like for NR-NeRF, background images are supplied, pruning is applied,
foreground-focused batches are used, and the vignetting correction is
learned. Since the evaluation follows the authors of PREF and splits the
long scenes into chunks of 25 frames (see Sec. D.5), the training time is
kept the same.

138 appendix for chapter 7

d.5 joint evaluation details

This section provides details on how PREF and NR-NeRF are adapted to
long-term 3D joint tracking.
PREF. To train on a longer sequence, PREF (Song et al., 2022) splits the se-
quence into chunks of 25 frames and trains on each chunk independently.
The experiments thus do the same with the proposed scenes. To obtain
long-term correspondences across chunks, the chunks are overlapped for
three frames.
NR-NeRF. Unlike SceNeRFlow, NR-NeRF’s canonical model does not
coincide with the world space at t=1. It is therefore not possible to
directly use {p̂1

j }j as the target canonical positions. Instead, the backward
deformation model is applied at t=1 to {p̂1

j }j to obtain their positions
in canonical space. These are then the joint positions in canonical space
and the world-space positions at t=1, which allows to apply the same
tracking procedure as for SceNeRFlow.

d.6 foreground masks for evaluation

Since the variants are not tuned beyond making their training stable, they
exhibit some significant undesired artifacts in empty space. In addition
to scores on the full images, masked scores are therefore also reported
that are focused on the actual dynamic object of interest. To this end,
foreground masks are required.

Training uses very coarse and inaccurate foreground masks. However,
more accurate foreground masks are used when computing masked
scores during evaluation. To also consider reconstructions that are slightly
off, these masks are dilated to include the areas surrounding the dynamic
foreground in pixel space. Fig. D.5 shows example masks.

The following procedure yields these more accurate foreground masks.
First, two foreground masks are computed separately: (1) mb using back-
ground subtraction with a threshold ∆t followed by a morphological
opening (i.e., first erosion, then dilation) of the foreground, and (2) mσ.
mσ very roughly detects shadows by determining whether the pixel in
Ic,t is a scaled version of the background pixel in Bc (i.e., whether a naïve
brightness change of the background has occurred). To this end, each of
the three channels of the pixel in Ic,t is divided by the respective channel
of the background pixel. Then, the standard deviation of the resulting
three factors is thresholded at σt. Finally, an opening is applied to obtain
the final mσ. Since both masks use a very generous opening, they are
combined into a single foreground mask by considering those pixels

D.6 foreground masks for evaluation 139

foreground that are foreground in both masks. ∆t, σt, and the opening
sizes are manually tuned for each sequence.

140 appendix for chapter 7

View 1, t=1 View 2, t=T

Ground Truth Mask Ground Truth Mask

Se
q.

1
Se

q.
2

Se
q.

3
Se

q.
4

Se
q.

5
Se

q.
6

Se
q.

7
Se

q.
8

Figure D.5: Foreground Masks for Evaluation.

B I B L I O G R A P H Y

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. url: https://www.tensorflow.org/.

Agarwal, Sameer, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian
Curless, Steven M. Seitz, and Richard Szeliski (2011). “Building Rome
in a Day.” In: Commun. ACM 54.10, 105–112.

Attal, Benjamin, Eliot Laidlaw, Aaron Gokaslan, Changil Kim, Christian
Richardt, James Tompkin, and Matthew O’Toole (2021). “TöRF: Time-of-
Flight Radiance Fields for Dynamic Scene View Synthesis.” In: Advances
in Neural Information Processing Systems (NeurIPS).

Atzmon, Matan and Yaron Lipman (2020). “SAL: Sign Agnostic Learning
of Shapes From Raw Data.” In: Computer Vision and Pattern Recognition
(CVPR).

Bagautdinov, Timur, Chenglei Wu, Jason Saragih, Yaser Sheikh, and
Pascal Fua (2018). “Modeling Facial Geometry using Compositional
VAEs.” In.

Bal, Artur and Henryk Palus (2023). “Image Vignetting Correction Using
a Deformable Radial Polynomial Model.” In: Sensors.

Balakrishnan, Guha, Amy Zhao, Adrian V. Dalca, Frédo Durand, and
John V. Guttag (2018). “Synthesizing Images of Humans in Unseen
Poses.” In: Computer Vision and Pattern Recognition (CVPR).

Bansal, Aayush, Minh Vo, Yaser Sheikh, Deva Ramanan, and Srinivasa
Narasimhan (2020). “4d visualization of dynamic events from uncon-
strained multi-view videos.” In: Computer Vision and Pattern Recognition
(CVPR).

Barron, Jonathan T and Jitendra Malik (2014). “Shape, illumination, and
reflectance from shading.” In: Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI).

141

https://www.tensorflow.org/

142 bibliography

Bartoli, Adrien, Yan Gérard, François Chadebecq, Toby Collins, and
Daniel Pizarro (2015). “Shape-from-Template.” In: Transactions on Pat-
tern Analysis and Machine Intelligence (TPAMI).

Basha, Tali, Yael Moses, and Nahum Kiryati (2013). “Multi-view scene
flow estimation: A view centered variational approach.” In: International
Journal of Computer Vision (IJCV).

Bednařík, J., P. Fua, and M. Salzmann (2018). “Learning to Reconstruct
Texture-less Deformable Surfaces.” In: International Conference on 3D
Vision (3DV).

Bhatia, Harsh, Gregory Norgard, Valerio Pascucci, and Peer-Timo Bre-
mer (2012). “The Helmholtz-Hodge decomposition—a survey.” In:
IEEE Transactions on Visualization and Computer Graphics (TVCG) 19.8,
pp. 1386–1404.

Bhatia, Harshil, Edith Tretschk, Zorah Lähner, Marcel Benkner, Michael
Möller, Christian Theobalt, and Vladislav Golyanik (2023). “CCuan-
tuMM: Cycle-Consistent Quantum-Hybrid Matching of Multiple
Shapes.” In: Computer Vision and Pattern Recognition (CVPR).

Blanz, Volker and Thomas Vetter (1999). “A morphable model for the
synthesis of 3D faces.” In: Proc. Conference on Computer Graphics and
Interactive Techniques.

Bogo, Federica, Javier Romero, Gerard Pons-Moll, and Michael J. Black
(2017). “Dynamic FAUST: Registering Human Bodies in Motion.” In:
Computer Vision and Pattern Recognition (CVPR).

Boscaini, Davide, Jonathan Masci, Emanuele Rodoià, and Michael Bron-
stein (2016). “Learning Shape Correspondence with Anisotropic Con-
volutional Neural Networks.” In: International Conference on Neural
Information Processing Systems (NIPS).

Bouritsas, Giorgos, Sergiy Bokhnyak, Stylianos Ploumpis, Michael Bron-
stein, and Stefanos Zafeiriou (2019). “Neural 3D Morphable Models:
Spiral Convolutional Networks for 3D Shape Representation Learning
and Generation.” In: International Conference on Computer Vision (ICCV).

Bozic, Aljaz, Pablo Palafox, Michael Zollhöfer, Angela Dai, Justus Thies,
and Matthias Nießner (2020a). “Neural non-rigid tracking.” In: Ad-
vances in Neural Information Processing Systems (NeurIPS).

Bozic, Aljaz, Michael Zollhofer, Christian Theobalt, and Matthias Nießner
(2020b). “Deepdeform: Learning non-rigid rgb-d reconstruction with
semi-supervised data.” In: Computer Vision and Pattern Recognition
(CVPR).

Bronstein, Michael M, Joan Bruna, Taco Cohen, and Petar Veličković
(2021). “Geometric deep learning: Grids, groups, graphs, geodesics,
and gauges.” In: arXiv preprint.

bibliography 143

Bruna, Joan, Wojciech Zaremba, Arthur Szlam, and Yann LeCun (2013).
“Spectral Networks and Locally Connected Networks on Graphs.” In:
CoRR abs/1312.6203.

Buehler, Chris, Michael Bosse, Leonard McMillan, Steven J. Gortler, and
Michael F. Cohen (2001). “Unstructured lumigraph rendering.” In:
SIGGRAPH.

Cagniart, Cedric, Edmond Boyer, and Slobodan Ilic (2010). “Probabilis-
tic deformable surface tracking from multiple videos.” In: European
Conference on Computer Vision (ECCV).

Cai, Hongrui, Wanquan Feng, Xuetao Feng, Yan Wang, and Juyong
Zhang (2022). “Neural Surface Reconstruction of Dynamic Scenes
with Monocular RGB-D Camera.” In: Advances in Neural Information
Processing Systems (NeurIPS).

Captury, The (2023). Captury Studio. https://captury.com/.
Carceroni, Rodrigo L. and Kiriakos N. Kutulakos (2002). “Multi-View

Scene Capture by Surfel Sampling: From Video Streams to Non-Rigid
3D Motion, Shape and Reflectance.” In: International Journal of Computer
Vision 49.2, pp. 175–214.

Casillas-Perez, David, Daniel Pizarro, David Fuentes-Jimenez, Manuel
Mazo, and Adrien Bartoli (2021). “The Isowarp: the template-based
visual geometry of isometric surfaces.” In: International Journal of Com-
puter Vision (IJCV).

Chan, Caroline, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros (2019).
“Everybody Dance Now.” In: International Conference on Computer Vision
(ICCV).

Chang, Angel X, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan,
Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song,
Hao Su, et al. (2015). “ShapeNet: An information-rich 3D model repos-
itory.” In: arXiv preprint arXiv:1512.03012.

Chen, Hsiao yu, Edith Tretschk, Tuur Stuyck, Petr Kadlecek, Ladislav
Kavan, Etienne Vouga, and Christoph Lassner (2022). “Virtual Elastic
Objects.” In: Computer Vision and Pattern Recognition (CVPR).

Chen, Zhiqin and Hao Zhang (2019). “Learning implicit fields for gen-
erative shape modeling.” In: Computer Vision and Pattern Recognition
(CVPR).

Choy, Christopher B, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio
Savarese (2016). “3D-R2N2: A Unified Approach for Single and Multi-
view 3D Object Reconstruction.” In: European Conference on Computer
Vision (ECCV).

Cignoni, Paolo, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane,
Fabio Ganovelli, and Guido Ranzuglia (2008). “MeshLab: an Open-
Source Mesh Processing Tool.” In: Eurographics Italian Chapter Con-

https://captury.com/

144 bibliography

ference. Ed. by Vittorio Scarano, Rosario De Chiara, and Ugo Erra.
The Eurographics Association. isbn: 978-3-905673-68-5. doi: 10.2312/
LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136.

Collet, Alvaro, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev,
David Calabrese, Hugues Hoppe, Adam Kirk, and Steve Sullivan (2015).
“High-quality streamable free-viewpoint video.” In: ACM Transactions
on Graphics (ToG) 34.4, p. 69.

Corona, Enric, Tomas Hodan, Minh Vo, Francesc Moreno-Noguer, Chris
Sweeney, Richard Newcombe, and Lingni Ma (2022). “LISA: Learning
implicit shape and appearance of hands.” In: Computer Vision and
Pattern Recognition (CVPR).

Curless, Brian and Marc Levoy (1996). “A volumetric method for building
complex models from range images.” In: Proc. Conference on Computer
Graphics and Interactive Techniques.

Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst (2016).
“Convolutional Neural Networks on Graphs with Fast Localized Spec-
tral Filtering.” In: International Conference on Neural Information Process-
ing Systems (NIPS).

Deng, Bailin, Yuxin Yao, Roberto M Dyke, and Juyong Zhang (2022). “A
Survey of Non-Rigid 3D Registration.” In: Computer Graphics Forum
(Eurographics State of the Art Reports).

Deng, Boyang, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey
Hinton, and Andrea Tagliasacchi (2019). “Cvxnets: Learnable convex
decomposition.” In: Advances in Neural Information Processing Systems
Workshops.

Deng, Boyang, JP Lewis, Timothy Jeruzalski, Gerard Pons-Moll, Geoffrey
Hinton, Mohammad Norouzi, and Andrea Tagliasacchi (2020). “NASA:
Neural Articulated Shape Approximation.” In.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). “Im-
ageNet: A Large-Scale Hierarchical Image Database.” In: Computer
Vision and Pattern Recognition (CVPR).

Deprelle, Theo, Thibault Groueix, Matthew Fisher, Vladimir Kim, Bryan
Russell, and Mathieu Aubry (2019). “Learning elementary structures for
3D shape generation and matching.” In: Advances in Neural Information
Processing Systems (NeurIPS).

Dou, Mingsong, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean
Ryan Fanello, Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhe-
mann, David Kim, Jonathan Taylor, et al. (2016). “Fusion4d: Real-time
performance capture of challenging scenes.” In: ACM Transactions on
Graphics.

https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

bibliography 145

Du, Yilun, Yinan Zhang, Hong-Xing Yu, Joshua B Tenenbaum, and Jiajun
Wu (2021). “Neural radiance flow for 4d view synthesis and video
processing.” In: International Conference on Computer Vision (ICCV).

Egger, Bernhard, William A. P. Smith, Ayush Tewari, Stefanie Wuhrer,
Michael Zollhoefer, Thabo Beeler, Florian Bernard, Timo Bolkart, Adam
Kortylewski, Sami Romdhani, Christian Theobalt, Volker Blanz, and
Thomas Vetter (Aug. 2020a). “3D Morphable Face Models - Past,
Present and Future.” In: ACM Transactions on Graphics 39.5.

Egger, Bernhard, William AP Smith, Ayush Tewari, Stefanie Wuhrer,
Michael Zollhoefer, Thabo Beeler, Florian Bernard, Timo Bolkart, Adam
Kortylewski, Sami Romdhani, et al. (2020b). “3d morphable face mod-
els—past, present, and future.” In: ACM Transactions on Graphics.

Eslami, SM Ali, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola,
Ari S Morcos, Marta Garnelo, Avraham Ruderman, Andrei A Rusu,
Ivo Danihelka, Karol Gregor, et al. (2018). “Neural scene representation
and rendering.” In: Science 360.6394, pp. 1204–1210.

Fang, Jiemin, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang,
Wenyu Liu, Matthias Nießner, and Qi Tian (2022). “Fast Dynamic
Radiance Fields with Time-Aware Neural Voxels.” In: ACM Transactions
on Graphics (Proceedings of SIGGRAPH Asia).

Flynn, John, Michael Broxton, Paul Debevec, Matthew DuVall, Graham
Fyffe, Ryan Overbeck, Noah Snavely, and Richard Tucker (2019). “Deep-
View: View Synthesis with Learned Gradient Descent.” In: International
Conference on Computer Vision and Pattern Recognition (CVPR).

Fuentes-Jimenez, David, David Casillas-Perez, Daniel Pizarro, Toby
Collins, and Adrien Bartoli (2018). “Deep Shape-from-Template: Wide-
Baseline, Dense and Fast Registration and Deformable Reconstruction
from a Single Image.” In: arXiv e-prints.

Gao, Chen, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang (2021). “Dy-
namic view synthesis from dynamic monocular video.” In: International
Conference on Computer Vision (ICCV).

Gao, Hang, Ruilong Li, Shubham Tulsiani, Bryan Russell, and Angjoo
Kanazawa (2022). “Monocular Dynamic View Synthesis: A Reality
Check.” In: Advances in Neural Information Processing Systems (NeurIPS).

Gao, Lin, Jie Yang, Yi-Ling Qiao, Yu-Kun Lai, Paul L. Rosin, Weiwei
Xu, and Shihong Xia (2018). “Automatic Unpaired Shape Deformation
Transfer.” In: ACM Transactions on Graphics (TOG).

Garg, Ravi, Anastasios Roussos, and Lourdes Agapito (2013). “Dense Vari-
ational Reconstruction of Non-rigid Surfaces from Monocular Video.”
In: Computer Vision and Pattern Recognition (CVPR).

Garland, Michael and Paul S. Heckbert (1997). “Surface Simplification
Using Quadric Error Metrics.” In: ACM SIGGRAPH.

146 bibliography

Genova, Kyle, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas
Funkhouser (2020). “Local Deep Implicit Functions for 3D Shape.” In:
Computer Vision and Pattern Recognition (CVPR).

Genova, Kyle, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Free-
man, and Thomas Funkhouser (2019). “Learning shape templates with
structured implicit functions.” In: International Conference on Computer
Vision (ICCV).

Goldluecke, Bastian and Marcus Magnor (2004). “Space-time isosurface
evolution for temporally coherent 3D reconstruction.” In: Computer
Vision and Pattern Recognition (CVPR).

Golyanik, Vladislav, Soshi Shimada, Kiran Varanasi, and Didier Stricker
(2018). “HDM-Net: Monocular Non-rigid 3D Reconstruction with
Learned Deformation Model.” In: International Conference on Virtual
Reality and Augmented Reality (EuroVR).

Gortler, Steven J., Radek Grzeszczuk, Richard Szeliski, and Michael F.
Cohen (1996). “The Lumigraph.” In: SIGGRAPH, 43–54.

Graßhof, Stella and Sami Sebastian Brandt (2022). “Tensor-Based Non-
Rigid Structure from Motion.” In: Winter Conference on Applications of
Computer Vision (WACV).

Grathwohl, Will, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and
David Duvenaud (2018). “FFJORD: Free-Form Continuous Dynamics
for Scalable Reversible Generative Models.” In: International Conference
on Learning Representations (ICLR).

Griewank, Andreas and Andrea Walther (2008). Evaluating derivatives:
principles and techniques of algorithmic differentiation. Society for Indus-
trial and Applied Mathematics (SIAM).

Groueix, Thibault, Matthew Fisher, Vladimir G. Kim, Bryan Russell,
and Mathieu Aubry (2018). “AtlasNet: A Papier-Mâché Approach
to Learning 3D Surface Generation.” In: Computer Vision and Pattern
Recognition (CVPR).

Gu, Xiuye, Yijie Wang, Chongruo Wu, Yong Jae Lee, and Panqu Wang
(2019). “Hplflownet: Hierarchical permutohedral lattice flownet for
scene flow estimation on large-scale point clouds.” In: Computer Vision
and Pattern Recognition (CVPR).

Guo, Kaiwen, Peter Lincoln, Philip Davidson, Jay Busch, Xueming Yu,
Matt Whalen, Geoff Harvey, Sergio Orts-Escolano, Rohit Pandey, Jason
Dourgarian, and et al. (2019). “The Relightables: Volumetric Perfor-
mance Capture of Humans with Realistic Relighting.” In: ACM Trans.
Graph. 38.6.

Guo, Kaiwen, Feng Xu, Yangang Wang, Yebin Liu, and Qionghai Dai
(2015). “Robust non-rigid motion tracking and surface reconstruction

bibliography 147

using l0 regularization.” In: International Conference on Computer Vision
(ICCV).

Guo, Kaiwen, Feng Xu, Tao Yu, Xiaoyang Liu, Qionghai Dai, and Yebin
Liu (2017). “Real-Time Geometry, Albedo, and Motion Reconstruction
Using a Single RGB-D Camera.” In: ACM Transactions on Graphics.

Guo, Xiang, Guanying Chen, Yuchao Dai, Xiaoqing Ye, Jiadai Sun, Xiao
Tan, and Errui Ding (2022). “Neural Deformable Voxel Grid for Fast
Optimization of Dynamic View Synthesis.” In: Asian Conference on
Computer Vision (ACCV).

Habermann, Marc, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll,
and Christian Theobalt (2020). “DeepCap: Monocular Human Per-
formance Capture Using Weak Supervision.” In: Computer Vision and
Pattern Recognition (CVPR).

Habermann, Marc, Weipeng Xu, Michael Zollhöfer, Gerard Pons-Moll,
and Christian Theobalt (Mar. 2019). “LiveCap: Real-Time Human Per-
formance Capture From Monocular Video.” In: ACM Trans. Graph. 38.2,
14:1–14:17. issn: 0730-0301.

Handa, A., T. Whelan, J.B. McDonald, and A.J. Davison (2014). “A Bench-
mark for RGB-D Visual Odometry, 3D Reconstruction and SLAM.” In:
International Conference on Robotics and Automation (ICRA).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep
Residual Learning for Image Recognition.” In: Computer Vision and
Pattern Recognition (CVPR).

Hedman, Peter, Julien Philip, True Price, Jan-Michael Frahm, George
Drettakis, and Gabriel Brostow (Dec. 2018). “Deep Blending for Free-
viewpoint Image-based Rendering.” In: ACM Trans. Graph. 37.6, 257:1–
257:15. issn: 0730-0301.

Huguet, Frédéric and Frédéric Devernay (2007). “A variational method
for scene flow estimation from stereo sequences.” In: International
Conference on Computer Vision (ICCV).

Hung, Chun Ho, Li Xu, and Jiaya Jia (2013). “Consistent binocular depth
and scene flow with chained temporal profiles.” In: International Journal
of Computer Vision (IJCV).

Hutchinson, Michael F (1989). “A stochastic estimator of the trace of the
influence matrix for Laplacian smoothing splines.” In: Communications
in Statistics-Simulation and Computation 18.3, pp. 1059–1076.

Igarashi, Takeo, Tomer Moscovich, and John F Hughes (2005). “As-rigid-
as-possible shape manipulation.” In: ACM transactions on Graphics
(TOG) 24.3, pp. 1134–1141.

Innmann, Matthias, Michael Zollhöfer, Matthias Nießner, Christian
Theobalt, and Marc Stamminger (2016). “VolumeDeform: Real-time
Volumetric Non-rigid Reconstruction.” In.

148 bibliography

Iwase, Shun, Shunsuke Saito, Tomas Simon, Stephen Lombardi, Timur
Bagautdinov, Rohan Joshi, Fabian Prada, Takaaki Shiratori, Yaser
Sheikh, and Jason Saragih (2023). “RelightableHands: Efficient Neu-
ral Relighting of Articulated Hand Models.” In: Computer Vision and
Pattern Recognition (CVPR).

Jack, Dominic, Jhony K. Pontes, Sridha Sridharan, Clinton Fookes, Sareh
Shirazi, Frederic Maire, and Anders Eriksson (2018). “Learning Free-
Form Deformations for 3D Object Reconstruction.” In: Asian Conference
on Computer Vision (ACCV).

Johnson, Erik C.M., Marc Habermann, Soshi Shimada, Vladislav
Golyanik, and Christian Theobalt (2022). “Unbiased 4D: Monoc-
ular 4D Reconstruction with a Neural Deformation Model.” In:
arXiv:2206.08368.

Johnson, Justin, Alexandre Alahi, and Li Fei-Fei (2016). “Perceptual
losses for real-time style transfer and super-resolution.” In: European
Conference on Computer Vision (ECCV).

Kairanda, Navami, Edith Tretschk, Mohamed Elgharib, Christian
Theobalt, and Vladislav Golyanik (2022). “ϕ-SfT: Shape-from-Template
with a Physics-Based Deformation Model.” In: Computer Vision and
Pattern Recognition (CVPR).

Kanazawa, Angjoo, Shubham Tulsiani, Alexei A. Efros, and Jitendra
Malik (2018). “Learning Category-Specific Mesh Reconstruction from
Image Collections.” In: European Conference on Computer Vision (ECCV).

Kato, Hiroharu, Yoshitaka Ushiku, and Tatsuya Harada (2018). “Neural
3D Mesh Renderer.” In: Computer Vision and Pattern Recognition (CVPR).

Kim, Hyeongwoo, Mohamed Elgharib, Hans-Peter Zollöfer Michael Sei-
del, Thabo Beeler, Christian Richardt, and Christian Theobalt (2019).
“Neural Style-Preserving Visual Dubbing.” In: ACM Transactions on
Graphics (TOG) 38.6, 178:1–13.

Kim, Hyeongwoo, Pablo Garrido, Ayush Tewari, Weipeng Xu, Justus
Thies, Matthias Nießner, Patrick Pérez, Christian Richardt, Michael
Zollöfer, and Christian Theobalt (2018). “Deep Video Portraits.” In:
ACM Transactions on Graphics (TOG) 37.

Kingma, Diederick P and Jimmy Ba (2015). “Adam: A method for stochas-
tic optimization.” In: International Conference on Learning Representations
(ICLR).

Kocabas, Muhammed, Nikos Athanasiou, and Michael J. Black (June
2020). “VIBE: Video Inference for Human Body Pose and Shape Es-
timation.” In: Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). IEEE, pp. 5252–5262.

bibliography 149

Kokkinos, Filippos and Iasonas Kokkinos (2021). “Learning Monocu-
lar 3D Reconstruction of Articulated Categories From Motion.” In:
Computer Vision and Pattern Recognition (CVPR).

Kumar, Suryansh, Anoop Cherian, Yuchao Dai, and Hongdong Li (2018).
“Scalable Dense Non-rigid Structure-from-Motion: A Grassmannian
Perspective.” In: Computer Vision and Pattern Recognition (CVPR).

Kurenkov, Andrey, Jingwei Ji, Animesh Garg, Viraj Mehta, JunYoung
Gwak, Christopher Choy, and Silvio Savarese (2018). “DeformNet:
Free-Form Deformation Network for 3D Shape Reconstruction From a
Single Image.” In: Winter Conference on Applications of Computer Vision
(WACV).

Kutulakos, Kiriakos N and Steven M Seitz (2000). “A theory of shape by
space carving.” In: International Journal of Computer Vision (IJCV).

Larsen, E Scott, Philippos Mordohai, Marc Pollefeys, and Henry Fuchs
(2007). “Temporally consistent reconstruction from multiple video
streams using enhanced belief propagation.” In: International Conference
on Computer Vision (ICCV).

Lawrence, Jason, Danb Goldman, Supreeth Achar, Gregory Major Blas-
covich, Joseph G Desloge, Tommy Fortes, Eric M Gomez, Sascha Häber-
ling, Hugues Hoppe, Andy Huibers, et al. (2021). “Project starline: a
high-fidelity telepresence system.” In: ACM Transactions on Graphics.

Levoy, Marc and Pat Hanrahan (1996). “Light Field Rendering.” In: SIG-
GRAPH, 31–42.

Li, Guannan, Chenglei Wu, Carsten Stoll, Yebin Liu, Kiran Varanasi,
Qionghai Dai, and Christian Theobalt (2013). “Capturing relightable
human performances under general uncontrolled illumination.” In:
Comput. Graph. Forum 32.2, pp. 275–284.

Li, Tianye, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph
Lassner, Changil Kim, Tanner Schmidt, Steven Lovegrove, Michael
Goesele, Richard Newcombe, et al. (2022). “Neural 3D Video Synthesis
From Multi-View Video.” In: Computer Vision and Pattern Recognition
(CVPR).

Li, Xueqian, Jhony Kaesemodel Pontes, and Simon Lucey (2021a). “Neural
scene flow prior.” In: Advances in Neural Information Processing Systems
(NeurIPS).

Li, Xueting, Sifei Liu, Shalini De Mello, Kihwan Kim, Xiaolong Wang,
Ming-Hsuan Yang, and Jan Kautz (2020). “Online Adaptation for Con-
sistent Mesh Reconstruction in the Wild.” In: Advances in Neural Infor-
mation Processing Systems (NeurIPS).

Li, Zhengqi, Simon Niklaus, Noah Snavely, and Oliver Wang (2021b).
“Neural scene flow fields for space-time view synthesis of dynamic
scenes.” In: Computer Vision and Pattern Recognition (CVPR).

150 bibliography

Lin, Wenbin, Chengwei Zheng, Jun-Hai Yong, and Feng Xu (2022). “Occlu-
sionFusion: Occlusion-aware Motion Estimation for Real-time Dynamic
3D Reconstruction.” In.

Liu, Jia-Wei, Yan-Pei Cao, Weijia Mao, Wenqiao Zhang, David Junhao
Zhang, Jussi Keppo, Ying Shan, Xiaohu Qie, and Mike Zheng Shou
(2022). “DeVRF: Fast Deformable Voxel Radiance Fields for Dynamic
Scenes.” In: Advances in Neural Information Processing Systems (NeurIPS).

Liu, Lingjie, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian
Theobalt (2020). “Neural sparse voxel fields.” In: Advances in Neural
Information Processing Systems 33.

Liu, Lingjie, Marc Habermann, Viktor Rudnev, Kripasindhu Sarkar, Jiatao
Gu, and Christian Theobalt (2021). “Neural Actor: Neural Free-view
Synthesis of Human Actors with Pose Control.” In: ACM Transactions
on Graphics (Proceedings of SIGGRAPH Asia).

Liu, Shichen, Shunsuke Saito, Weikai Chen, and Hao Li (2019a). “Learning
to infer implicit surfaces without 3D supervision.” In: Advances in
Neural Information Processing Systems (NeurIPS).

Liu, Xingyu, Charles R Qi, and Leonidas J Guibas (2019b). “FlowNet3D:
Learning Scene Flow in 3D Point Clouds.” In: Computer Vision and
Pattern Recognition (CVPR).

Liu, Yebin, Qionghai Dai, and Wenli Xu (2010). “A Point-Cloud-Based
Multiview Stereo Algorithm for Free-Viewpoint Video.” In: IEEE Trans-
actions on Visualization and Computer Graphics (TVCG) 16.3, pp. 407–
418.

Lombardi, Stephen, Tomas Simon, Jason Saragih, Gabriel Schwartz, An-
dreas Lehrmann, and Yaser Sheikh (2019). “Neural volumes: Learning
dynamic renderable volumes from images.” In: ACM Transactions on
Graphics (TOG).

Lombardi, Stephen, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer,
Yaser Sheikh, and Jason Saragih (2021). “Mixture of volumetric primi-
tives for efficient neural rendering.” In: ACM Transactions on Graphics.

Loper, Matthew, Naureen Mahmood, and Michael J. Black (2014). “MoSh:
Motion and Shape Capture from Sparse Markers.” In: ACM Transactions
on Graphics (TOG).

Loper, Matthew, Naureen Mahmood, Javier Romero, Gerard Pons-Moll,
and Michael J. Black (2015). “SMPL: A Skinned Multi-person Linear
Model.” In: ACM Transactions on Graphics (TOG).

Lorensen, William E and Harvey E Cline (1987). “Marching cubes: A
high resolution 3D surface construction algorithm.” In: Conference on
Computer Graphics and Interactive Techniques.

bibliography 151

Loshchilov, Ilya and Frank Hutter (2019). “Decoupled Weight Decay
Regularization.” In: International Conference on Learning Representations
(ICLR).

Ma, Liqian, Qianru Sun, Stamatios Georgoulis, Luc Van Gool, Bernt
Schiele, and Mario Fritz (2018). “Disentangled Person Image Genera-
tion.” In: Computer Vision and Pattern Recognition (CVPR).

Maas, Andrew L, Awni Y Hannun, Andrew Y Ng, et al. (2013). “Rectifier
nonlinearities improve neural network acoustic models.” In: Interna-
tional Conference on Machine Learning (ICML).

Malik, Jameel, Ahmed Elhayek, Fabrizio Nunnari, Kiran Varanasi, Kiarash
Tamaddon, Alexis Héloir, and Didier Stricker (2018). “DeepHPS: End-
to-end Estimation of 3D Hand Pose and Shape by Learning from
Synthetic Depth.” In: International Conference on 3D Vision (3DV).

Martin Brualla, Ricardo, Peter Lincoln, Adarsh Kowdle, Christoph Rhe-
mann, Dan Goldman, Cem Keskin, Steve Seitz, Shahram Izadi, Sean
Fanello, Rohit Pandey, Shuoran Yang, Pavel Pidlypenskyi, Jonathan
Taylor, Julien Valentin, Sameh Khamis, Philip Davidson, and Anasta-
sia Tkach (2018). “LookinGood: Enhancing performance capture with
real-time neural re-rendering.” In: vol. 37.

Masci, Jonathan, Davide Boscaini, Michael M. Bronstein, and Pierre
Vandergheynst (2015). “Geodesic Convolutional Neural Networks on
Riemannian Manifolds.” In: International Conference on Computer Vision
Workshop (ICCVW).

Matsuyama, Takashi, Xiaojun Wu, Takeshi Takai, and Toshikazu Wada
(2004). “Real-time dynamic 3-D object shape reconstruction and high-
fidelity texture mapping for 3-D video.” In: IEEE Transactions on Circuits
and Systems for Video Technology 14.3, pp. 357–369.

Menapace, Willi, Stéphane Lathuilière, Aliaksandr Siarohin, Christian
Theobalt, Sergey Tulyakov, Vladislav Golyanik, and Elisa Ricci (2022).
“Playable Environments: Video Manipulation in Space and Time.” In:
Computer Vision and Pattern Recognition (CVPR).

Mescheder, Lars, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin,
and Andreas Geiger (2019). “Occupancy networks: Learning 3D recon-
struction in function space.” In: Computer Vision and Pattern Recognition
(CVPR).

Meshry, Moustafa, Dan B. Goldman, Sameh Khamis, Hugues Hoppe, Ro-
hit Pandey, Noah Snavely, and Ricardo Martin-Brualla (2019). “Neural
Rerendering in the Wild.” In: Computer Vision and Pattern Recognition
(CVPR).

Michalkiewicz, Mateusz, Jhony K Pontes, Dominic Jack, Mahsa Baktash-
motlagh, and Anders Eriksson (2019). “Implicit surface representations

152 bibliography

as layers in neural networks.” In: International Conference on Computer
Vision (ICCV).

Mildenhall, Ben, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron,
Ravi Ramamoorthi, and Ren Ng (2020). “Nerf: Representing scenes as
neural radiance fields for view synthesis.” In: European Conference on
Computer Vision (ECCV).

Miller, Graham, Adrian Hilton, and Jonathan Starck (2005). “Interac-
tive free-viewpoint video.” In: IEEE European Conf. on Visual Media
Production, pp. 50–59.

Mittal, Himangi, Brian Okorn, and David Held (2020). “Just Go With the
Flow: Self-Supervised Scene Flow Estimation.” In: Computer Vision and
Pattern Recognition (CVPR).

Monti, Federico, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan
Svoboda, and Michael M Bronstein (2017). “Geometric deep learning
on graphs and manifolds using mixture model cnns.” In: Computer
Vision and Pattern Recognition (CVPR).

Müller, Thomas (2021). tiny-cuda-nn. Version 1.7. url: https://github.
com/NVlabs/tiny-cuda-nn.

Müller, Thomas, Alex Evans, Christoph Schied, and Alexander Keller
(2022). “Instant Neural Graphics Primitives with a Multiresolution
Hash Encoding.” In: ACM Transactions on Graphics.

Mustafa, Armin, Hansung Kim, Jean-Yves Guillemaut, and Adrian Hilton
(2016). “Temporally coherent 4d reconstruction of complex dynamic
scenes.” In: Computer Vision and Pattern Recognition (CVPR).

Nagano, Koki, Graham Fyffe, Oleg Alexander, Jernej Barbiç, Hao Li,
Abhijeet Ghosh, and Paul Debevec (2015). “Skin Microstructure Defor-
mation with Displacement Map Convolution.” In: ACM Trans. Graph.
34.4.

Neverova, Natalia, Riza Alp Güler, and Iasonas Kokkinos (2018). “Dense
Pose Transfer.” In: ECCV.

Newcombe, Richard A, Dieter Fox, and Steven M Seitz (2015). “Dynamic-
fusion: Reconstruction and tracking of non-rigid scenes in real-time.”
In: Computer Vision and Pattern Recognition (CVPR).

Ngo, Dat Tien, Sanghyuk Park, Anne Jorstad, Alberto Crivellaro, Chang D.
Yoo, and Pascal Fua (2015). “Dense Image Registration and Deformable
Surface Reconstruction in Presence of Occlusions and Minimal Tex-
ture.” In: International Conference on Computer Vision (ICCV).

Nguyen-Phuoc, Thu H, Chuan Li, Stephen Balaban, and Yongliang Yang
(2018). “RenderNet: A deep convolutional network for differentiable
rendering from 3D shapes.” In: Advances in Neural Information Processing
Systems (NIPS).

https://github.com/NVlabs/tiny-cuda-nn
https://github.com/NVlabs/tiny-cuda-nn

bibliography 153

Niemeyer, Michael, Lars Mescheder, Michael Oechsle, and Andreas
Geiger (2019). “Occupancy flow: 4D reconstruction by learning particle
dynamics.” In: International Conference on Computer Vision (CVPR).

– (2020). “Differentiable Volumetric Rendering: Learning Implicit 3D
Representations without 3D Supervision.” In: Computer Vision and
Pattern Recognition (CVPR).

Niepert, Mathias, Mohamed Ahmed, and Konstantin Kutzkov (2016).
“Learning Convolutional Neural Networks for Graphs.” In: International
Conference on Machine Learning (ICML).

Nieto, Jesús R and Antonio Susín (2012). “Cage based deformations: a
survey.” In: Deformation Models: Tracking, Animation and Applications.
Springer.

Ohtake, Yutaka, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-
Peter Seidel (2003). “Multi-level partition of unity implicits.” In: ACM
Transactions on Graphics (TOG).

Orts-Escolano, Sergio, Christoph Rhemann, Sean Fanello, Wayne Chang,
Adarsh Kowdle, Yury Degtyarev, David Kim, Philip L Davidson, Sameh
Khamis, Mingsong Dou, et al. (2016). “Holoportation: Virtual 3d tele-
portation in real-time.” In: Annual Symposium on User Interface Software
and Technology.

Oswald, Martin R., Jan Stühmer, and Daniel Cremers (2014). “Generalized
Connectivity Constraints for Spatio-temporal 3D Reconstruction.” In:
European Conference on Computer Vision (ECCV).

Parashar, Shaifali, Mathieu Salzmann, and Pascal Fua (2020). “Local
Non-Rigid Structure-From-Motion From Diffeomorphic Mappings.”
In: Computer Vision and Pattern Recognition (CVPR).

Park, Jeong Joon, Peter Florence, Julian Straub, Richard Newcombe,
and Steven Lovegrove (2019). “DeepSDF: Learning continuous signed
distance functions for shape representation.” In: Computer Vision and
Pattern Recognition (CVPR).

Park, Keunhong, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan
B Goldman, Steven M. Seitz, and Ricardo Martin-Brualla (2021a). “Ner-
fies: Deformable Neural Radiance Fields.” In: International Conference
on Computer Vision (ICCV).

Park, Keunhong, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Ricardo Martin-Brualla, and Steven M Seitz
(2021b). “HyperNeRF: a higher-dimensional representation for topolog-
ically varying neural radiance fields.” In: ACM Transactions on Graphics.

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer (2017). “Automatic differentiation in pytorch.” In:
Advances in Neural Information Processing Systems (NeurIPS) Workshops.

154 bibliography

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala (2019). “PyTorch:
An Imperative Style, High-Performance Deep Learning Library.” In:
Advances in Neural Information Processing Systems (NeurIPS).

Perriollat, Mathieu, Richard Hartley, and Adrien Bartoli (2011). “Monoc-
ular Template-based Reconstruction of Inextensible Surfaces.” In: Inter-
national Journal of Computer Vision (IJCV).

Pfister, Hanspeter, Matthias Zwicker, Jeroen van Baar, and Markus Gross
(2000). “Surfels: Surface Elements as Rendering Primitives.” In: Proceed-
ings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’00. USA: ACM Press/Addison-Wesley Publish-
ing Co., 335–342. isbn: 1581132085.

Pumarola, Albert, Antonio Agudo, Lorenzo Porzi, Alberto Sanfeliu, Vin-
cent Lepetit, and Francesc Moreno-Noguer (2018). “Geometry-Aware
Network for Non-Rigid Shape Prediction From a Single View.” In:
Computer Vision and Pattern Recognition (CVPR).

Pumarola, Albert, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-
Noguer (2021). “D-nerf: Neural radiance fields for dynamic scenes.”
In: Computer Vision and Pattern Recognition (CVPR).

Qi, Charles Ruizhongtai, Li Yi, Hao Su, and Leonidas J Guibas (2017).
“PointNet++: Deep hierarchical feature learning on point sets in a
metric space.” In: Advances in Neural Information Processing Systems
(NeurIPS).

Qian, Neng, Jiayi Wang, Franziska Mueller, Florian Bernard, Vladislav
Golyanik, and Christian Theobalt (2020). “HTML: A Parametric Hand
Texture Model for 3D Hand Reconstruction and Personalization.” In:
European Conference on Computer Vision (ECCV).

Quiroga, Julian, Thomas Brox, Frédéric Devernay, and James Crowley
(2014). “Dense semi-rigid scene flow estimation from rgbd images.” In:
European Conference on Computer Vision (ECCV).

Ranjan, Anurag, Timo Bolkart, Soubhik Sanyal, and Michael J. Black
(2018). “Generating 3D Faces using Convolutional Mesh Autoen-
coders.” In: European Conference on Computer Vision (ECCV).

Rebain, Daniel, Mark Matthews, Kwang Moo Yi, Dmitry Lagun, and
Andrea Tagliasacchi (2022). “LOLNeRF: Learn from One Look.” In.

Riegler, Gernot and Vladlen Koltun (2020). “Free View Synthesis.” In:
European Conference on Computer Vision (ECCV).

bibliography 155

Riegler, Gernot, Ali Osman Ulusoy, and Andreas Geiger (2017). “OctNet:
Learning deep 3D representations at high resolutions.” In: Computer
Vision and Pattern Recognition (CVPR).

Romero, Javier, Dimitrios Tzionas, and Michael J. Black (2017). “Embod-
ied Hands: Modeling and Capturing Hands and Bodies Together.” In:
ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia).

Russell, Chris, João Fayad, and Lourdes Agapito (2012). “Dense Non-
rigid Structure from Motion.” In: International Conference on 3D Imaging,
Modeling, Processing, Visualization and Transmission.

Saito, Shunsuke, Zeng Huang, Ryota Natsume, Shigeo Morishima,
Angjoo Kanazawa, and Hao Li (2019). “PIFu: Pixel-aligned implicit
function for high-resolution clothed human digitization.” In: Interna-
tional Conference on Computer Vision (ICCV).

Salimans, Tim and Durk P Kingma (2016). “Weight normalization: A sim-
ple reparameterization to accelerate training of deep neural networks.”
In: Advances in Neural Information Processing Systems (NeurIPS).

Salzmann, Mathieu, Vincent Lepetit, and Pascal Fua (2007). “Deformable
surface tracking ambiguities.” In: Computer Vision and Pattern Recogni-
tion (CVPR).

Sarkar, Kripasindhu, Dushyant Mehta, Weipeng Xu, Vladislav Golyanik,
and Christian Theobalt (2020). “Neural Re-Rendering of Humans from
a Single Image.” In: European Conference on Computer Vision (ECCV).

Schönberger, Johannes Lutz and Jan-Michael Frahm (2016). “Structure-
from-Motion Revisited.” In: Computer Vision and Pattern Recognition
(CVPR).

Schönberger, Johannes Lutz, Enliang Zheng, Marc Pollefeys, and Jan-
Michael Frahm (2016). “Pixelwise View Selection for Unstructured
Multi-View Stereo.” In: European Conference on Computer Vision (ECCV).

Seelbach Benkner, Marcel, Maximilian Krahn, Edith Tretschk, Zorah Läh-
ner, Michael Moeller, and Vladislav Golyanik (2023). “QuAnt: Quan-
tum Annealing with Learnt Couplings.” In: International Conference on
Learning Representations (ICLR).

Shade, Jonathan, Steven Gortler, Li-wei He, and Richard Szeliski (1998).
“Layered Depth Images.” In: Proceedings of the 25th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’98. New
York, NY, USA: Association for Computing Machinery, 231–242. isbn:
0897919998.

Shimada, Soshi, Vladislav Golyanik, Christian Theobalt, and Didier
Stricker (2019). “IsMo-GAN: Adversarial Learning for Monocular Non-
Rigid 3D Reconstruction.” In: Computer Vision and Pattern Recognition
Workshops (CVPRW).

156 bibliography

Shimada, Soshi, Vladislav Golyanik, Edith Tretschk, Didier Stricker, and
Christian Theobalt (2019). “DispVoxNets: Non-Rigid Point Set Align-
ment with Supervised Learning Proxies.” In: International Conference on
3D Vision (3DV).

Shysheya, Aliaksandra, Egor Zakharov, Kara-Ali Aliev, Renat Bashirov,
Egor Burkov, Karim Iskakov, Aleksei Ivakhnenko, Yury Malkov, Igor
Pasechnik, Dmitry Ulyanov, Alexander Vakhitov, and Victor Lempitsky
(2019). “Textured Neural Avatars.” In: Computer Vision and Pattern
Recognition (CVPR).

Sidhu, Vikramjit, Edith Tretschk, Vladislav Golyanik, Antonio Agudo,
and Christian Theobalt (2020). “Neural Dense Non-Rigid Structure
from Motion with Latent Space Constraints.” In: European Conference
on Computer Vision (ECCV).

Sigal, Leonid, Alexandru O Balan, and Michael J Black (2010). “Hu-
maneva: Synchronized video and motion capture dataset and baseline
algorithm for evaluation of articulated human motion.” In: International
Journal of Computer Vision (IJCV).

Sinha, Ayan, Asim Unmesh, Qixing Huang, and Karthik Ramani (2017).
“SurfNet: Generating 3D Shape Surfaces Using Deep Residual Net-
works.” In: Computer Vision and Pattern Recognition (CVPR).

Sitzmann, Vincent, Justus Thies, Felix Heide, Matthias Niessner, Gor-
don Wetzstein, and Michael Zollhofer (2019a). “DeepVoxels: Learning
Persistent 3D Feature Embeddings.” In: Computer Vision and Pattern
Recognition (CVPR).

Sitzmann, Vincent, Michael Zollhöfer, and Gordon Wetzstein (2019b).
“Scene representation networks: Continuous 3D-structure-aware neural
scene representations.” In: Advances in Neural Information Processing
Systems (NeurIPS).

Slavcheva, Miroslava, Maximilian Baust, Daniel Cremers, and Slobodan
Ilic (2017). “Killingfusion: Non-rigid 3d reconstruction without corre-
spondences.” In: Computer Vision and Pattern Recognition (CVPR).

Slavcheva, Miroslava, Maximilian Baust, and Slobodan Ilic (2018).
“SobolevFusion: 3D Reconstruction of Scenes Undergoing Free Non-
Rigid Motion.” In: Computer Vision and Pattern Recognition (CVPR).

Smolic, Aljoscha, Karsten Mueller, Philipp Merkle, Christoph Fehn, Peter
Kauff, Peter Eisert, and Thomas Wiegand (2006). “3D video and free
viewpoint video-technologies, applications and MPEG standards.” In:
IEEE International Conference on Multimedia and Expo. IEEE, pp. 2161–
2164.

Song, Liangchen, Xuan Gong, Benjamin Planche, Meng Zheng, David
Doermann, Junsong Yuan, Terrence Chen, and Ziyan Wu (2022). “PREF:

bibliography 157

Predictability Regularized Neural Motion Fields.” In: European Confer-
ence on Computer Vision (ECCV).

Sorkine, Olga and Marc Alexa (2007). “As-rigid-as-possible surface mod-
eling.” In: Symposium on Geometry Processing (SGP).

Speelpenning, Bert (1980). Compiling fast partial derivatives of functions
given by algorithms. University of Illinois at Urbana-Champaign.

Starck, Jonathan, Gregor Miller, and Adrian Hilton (2006). “Volumetric
Stereo with Silhouette and Feature Constraints.” In: British Machine
Vision Conference (BMVC).

Stumpfel, Jessi, Andrew Jones, Andreas Wenger, Chris Tchou, Tim
Hawkins, and Paul Debevec (2006). “Direct HDR capture of the sun
and sky.” In: ACM SIGGRAPH Courses.

Stutz, David and Andreas Geiger (2018). “Learning 3D shape completion
under weak supervision.” In: International Journal of Computer Vision
(IJCV).

Sumner, Robert W., Johannes Schmid, and Mark Pauly (2007). “Embedded
Deformation for Shape Manipulation.” In: ACM SIGGRAPH.

Tan, Qingyang, Lin Gao, Yu-Kun Lai, and Shihong Xia (2018a). “Varia-
tional Autoencoders for Deforming 3D Mesh Models.” In: Computer
Vision and Pattern Recognition (CVPR).

Tan, Qingyang, Lin Gao, Yu-Kun Lai, Jie Yang, and Shihong Xia (2018b).
“Mesh-Based Autoencoders for Localized Deformation Component
Analysis.” In: AAAI Conference on Artificial Intelligence (AAAI).

Tan, Shufeng and Michael L. Mayrovouniotis (1995). “Reducing data
dimensionality through optimizing neural network inputs.” In: AIChE
Journal 41.6, pp. 1471–1480.

Teed, Zachary and Jia Deng (2021). “RAFT-3D: Scene flow using rigid-
motion embeddings.” In: Computer Vision and Pattern Recognition
(CVPR).

Tewari, Ayush, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen
Lombardi, Kalyan Sunkavalli, Ricardo Martin-Brualla, Tomas Simon,
Jason Saragih, Matthias Nießner, Rohit Pandey, Sean Fanello, Gordon
Wetzstein, Jun-Yan Zhu, Christian Theobalt, Maneesh Agrawala, Eli
Shechtman, Dan B Goldman, and Michael Zollhöfer (2020). “State of the
Art on Neural Rendering.” In: Computer Graphics Forum (Eurographics
State of the Art Reports).

Tewari, Ayush, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar
Tretschk, Yifan Wang, Christoph Lassner, Vincent Sitzmann, Ricardo
Martin-Brualla, Stephen Lombardi, Tomas Simon, Christian Theobalt,
Matthias Nießner, Jonathan T. Barron, Gordon Wetzstein, Michael Zoll-
höfer, and Vladislav Golyanik (2022). “Advances in Neural Rendering.”
In: Computer Graphics Forum (Eurographics State of the Art Reports).

158 bibliography

Theobalt, Christian, Naveed Ahmed, Hendrik Lensch, Marcus Magnor,
and Hans-Peter Seidel (2007). “Seeing People in Different Light-Joint
Shape, Motion, and Reflectance Capture.” In: IEEE Transactions on
Visualization and Computer Graphics (TVCG) 13.4, 663–674.

Thies, Justus, Michael Zollhöfer, and Matthias Nießner (2019). “Deferred
neural rendering: image synthesis using neural textures.” In: ACM
Transactions on Graphics 38.

Tretschk, Edith, Vladislav Golyanik, Michael Zollhöfer, Aljaz Bozic,
Christoph Lassner, and Christian Theobalt (2024). “SceNeRFlow: Time-
Consistent Reconstruction of General Dynamic Scenes.” In: International
Conference on 3D Vision (3DV).

Tretschk, Edith, Navami Kairanda, Mallikarjun B R, Rishabh Dabral,
Adam Kortylewski, Bernhard Egger, Marc Habermann, Pascal Fua,
Christian Theobalt, and Vladislav Golyanik (2023). “State of the Art in
Dense Monocular Non-Rigid 3D Reconstruction.” In: Computer Graphics
Forum (Eurographics State of the Art Reports).

Tretschk, Edith, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer,
Christoph Lassner, and Christian Theobalt (2021). “Non-Rigid Neural
Radiance Fields: Reconstruction and Novel View Synthesis of a Dy-
namic Scene From Monocular Video.” In: International Conference on
Computer Vision (ICCV).

Tretschk, Edith, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer,
Carsten Stoll, and Christian Theobalt (2020a). “PatchNets: Patch-Based
Generalizable Deep Implicit 3D Shape Representations.” In: European
Conference on Computer Vision (ECCV).

Tretschk, Edith, Ayush Tewari, Michael Zollhöfer, Vladislav Golyanik, and
Christian Theobalt (2020b). “DEMEA: Deep Mesh Autoencoders for
Non-Rigidly Deforming Objects.” In: European Conference on Computer
Vision (ECCV).

Tulsiani, Shubham, Hao Su, Leonidas J Guibas, Alexei A Efros, and
Jitendra Malik (2017). “Learning shape abstractions by assembling vol-
umetric primitives.” In: Computer Vision and Pattern Recognition (CVPR).

Tung, Tony, Shohei Nobuhara, and Takashi Matsuyama (2009). “Complete
multi-view reconstruction of dynamic scenes from probabilistic fusion
of narrow and wide baseline stereo.” In: International Conference on
Computer Vision (ICCV).

Vedula, Sundar, Simon Baker, Peter Rander, Robert Collins, and Takeo
Kanade (1999). “Three-dimensional scene flow.” In: International Con-
ference on Computer Vision (ICCV).

Verma, Nitika, Edmond Boyer, and Jakob Verbeek (2018). “FeaStNet:
Feature-Steered Graph Convolutions for 3D Shape Analysis.” In: Com-
puter Vision and Pattern Recognition (CVPR).

bibliography 159

Vogel, Christoph, Konrad Schindler, and Stefan Roth (2015). “3d scene
flow estimation with a piecewise rigid scene model.” In: International
Journal of Computer Vision (IJCV).

Wang, Liao, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yanshun Zhang,
Yingliang Zhang, Minye Wu, Jingyi Yu, and Lan Xu (2022). “Fourier
PlenOctrees for Dynamic Radiance Field Rendering in Real-time.” In:
Computer Vision and Pattern Recognition (CVPR).

Wang, Nanyang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and
Yu-Gang Jiang (2018). “Pixel2Mesh: Generating 3D Mesh Models from
Single RGB Images.” In: European Conference on Computer Vision (ECCV).

Wang, Yufu, Nikos Kolotouros, Kostas Daniilidis, and Marc Badger (2021).
“Birds of a feather: Capturing avian shape models from images.” In:
Computer Vision and Pattern Recognition (CVPR).

Wang, Zhou, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli
(2004). “Image quality assessment: from error visibility to structural
similarity.” In: IEEE Transactions on Image Processing.

Waschbüsch, Michael, Stephan Würmlin, Daniel Cotting, Filip Sadlo, and
Markus Gross (2005). “Scalable 3D video of dynamic scenes.” In: The
Visual Computer 21.8, pp. 629–638.

Williams, Francis, Jerome Parent-Levesque, Derek Nowrouzezahrai,
Daniele Panozzo, Kwang Moo Yi, and Andrea Tagliasacchi (2020).
“Voronoinet: General functional approximators with local support.” In:
Computer Vision and Pattern Recognition Workshops (CVPRW).

Wu, Shangzhe, Tomas Jakab, Christian Rupprecht, and Andrea Vedaldi
(2021). “DOVE: Learning Deformable 3D Objects by Watching Videos.”
In: arXiv preprint arXiv:2107.10844.

Xian, Wenqi, Jia-Bin Huang, Johannes Kopf, and Changil Kim (2021).
“Space-time neural irradiance fields for free-viewpoint video.” In: Com-
puter Vision and Pattern Recognition (CVPR).

Xiang, Donglai, Hanbyul Joo, and Yaser Sheikh (2019). “Monocular total
capture: Posing face, body, and hands in the wild.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 10965–
10974.

Xie, Yiheng, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan,
Numair Khan, Federico Tombari, James Tompkin, Vincent Sitzmann,
and Srinath Sridhar (2022). “Neural Fields in Visual Computing and
Beyond.” In: Computer Graphics Forum (Eurographics State of the Art
Reports).

Xu, Weipeng, Avishek Chatterjee, Michael Zollhöfer, Helge Rhodin,
Dushyant Mehta, Hans-Peter Seidel, and Christian Theobalt (2018).
“MonoPerfCap: Human Performance Capture From Monocular Video.”
In: ACM Trans. Graph. 37.2, 27:1–27:15.

160 bibliography

Yang, Gengshan, Minh Vo, Neverova Natalia, Deva Ramanan, Vedaldi
Andrea, and Joo Hanbyul (2022). “BANMo: Building Animatable 3D
Neural Models from Many Casual Videos.” In: Computer Vision and
Pattern Recognition (CVPR).

Yen-Chen, Lin (2020). NeRF-pytorch. https://github.com/yenchenlin/
nerf-pytorch/.

Yi, Li, Hao Su, Xingwen Guo, and Leonidas Guibas (2017). “SyncSpec-
CNN: Synchronized Spectral CNN for 3D Shape Segmentation.” In:
Computer Vision and Pattern Recognition (CVPR).

Yildirim, Ilker, Max H Siegel, Amir A Soltani, Shraman Ray Chaudhari,
and Joshua B Tenenbaum (2023). “3D Shape Perception Integrates
Intuitive Physics and Analysis-by-Synthesis.” In: arXiv preprint.

Yoon, Jae Shin, Kihwan Kim, Orazio Gallo, Hyun Soo Park, and Jan
Kautz (2020). “Novel View Synthesis of Dynamic Scenes With Globally
Coherent Depths From a Monocular Camera.” In: Computer Vision and
Pattern Recognition (CVPR).

Yoon, Jae Shin, Ziwei Li, and Hyun Soo Park (2018). “3d semantic trajec-
tory reconstruction from 3d pixel continuum.” In: Computer Vision and
Pattern Recognition (CVPR).

Yu, Alex, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa (2021). “pixel-
NeRF: Neural Radiance Fields from One or Few Images.” In: Computer
Vision and Pattern Recognition (CVPR).

Yu, Rui, Chris Russell, Neill D. F. Campbell, and Lourdes Agapito (2015).
“Direct, Dense, and Deformable: Template-Based Non-Rigid 3D Re-
construction from RGB Video.” In: International Conference on Computer
Vision (ICCV).

Zhai, Mingliang, Xuezhi Xiang, Ning Lv, and Xiangdong Kong (2021).
“Optical flow and scene flow estimation: A survey.” In: Pattern Recogni-
tion.

Zhang, Kai, Gernot Riegler, Noah Snavely, and Vladlen Koltun (2020).
“NeRF++: Analyzing and Improving Neural Radiance Fields.” In: arXiv
preprint arXiv:2010.07492.

Zhang, Li, Brian Curless, and Steven M Seitz (2003). “Spacetime stereo:
Shape recovery for dynamic scenes.” In: Computer Vision and Pattern
Recognition (CVPR).

Zhang, Richard, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver
Wang (2018). “The Unreasonable Effectiveness of Deep Features as a
Perceptual Metric.” In: Computer Vision and Pattern Recognition (CVPR).

Zhang, Ruo and Ping-Sing Tsai (1999). “Shape-from-shading: a survey.”
In: Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

Zhang, Xiuming, Pratul P Srinivasan, Boyang Deng, Paul Debevec,
William T Freeman, and Jonathan T Barron (2021). “Nerfactor: Neural

https://github.com/yenchenlin/nerf-pytorch/
https://github.com/yenchenlin/nerf-pytorch/

bibliography 161

factorization of shape and reflectance under an unknown illumination.”
In: ACM Transactions on Graphics.

Zhao, Fuqiang, Yuheng Jiang, Kaixin Yao, Jiakai Zhang, Liao Wang,
Haizhao Dai, Yuhui Zhong, Yingliang Zhang, Minye Wu, Lan Xu, et
al. (2022). “Human Performance Modeling and Rendering via Neu-
ral Animated Mesh.” In: ACM Transactions on Graphics (Proceedings of
SIGGRAPH Asia).

Zhu, Hao, Hao Su, Peng Wang, Xun Cao, and Ruigang Yang (2018). “View
Extrapolation of Human Body from a Single Image.” In: Computer Vision
and Pattern Recognition (CVPR).

Zollhöfer, Michael, Matthias Nießner, Shahram Izadi, Christoph
Rehmann, Christopher Zach, Matthew Fisher, Chenglei Wu, Andrew
Fitzgibbon, Charles Loop, Christian Theobalt, and Marc Stamminger
(2014). “Real-time Non-rigid Reconstruction using an RGB-D Camera.”
In: ACM Transactions on Graphics.

Zollhöfer, Michael, Patrick Stotko, Andreas Görlitz, Christian Theobalt,
Matthias Nießner, Reinhard Klein, and Andreas Kolb (2018). “State of
the art on 3D reconstruction with RGB-D cameras.” In.

Zuffi, Silvia, Angjoo Kanazawa, David Jacobs, and Michael J. Black (2017).
“3D Menagerie: Modeling the 3D Shape and Pose of Animals.” In:
Computer Vision and Pattern Recognition (CVPR).

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Overview
	1.3 Structure
	1.4 Contributions
	1.5 Publications

	2 Related Work
	2.1 Representing General Objects
	2.1.1 Global Geometry Representations
	2.1.2 Patch-Based Geometry Representations
	2.1.3 Classical Mesh Deformations.
	2.1.4 Auto-Encoding-Based Mesh Deformations.

	2.2 Reconstructing General Objects
	2.2.1 Rigid Objects
	2.2.2 Static and Dynamic Novel-View Synthesis
	2.2.3 3D Correspondence Estimation
	2.2.4 Non-Rigid Objects
	2.2.5 Dynamic NeRFs

	3 Background
	3.1 Deformation Types and Parametrizations
	3.1.1 Deformation Types
	3.1.2 Parametrizing Deformations

	3.2 Graph Convolutions
	3.2.1 Spiral Graph Convolutions
	3.2.2 Spectral Graph Convolutions

	3.3 Coordinate-Based Networks
	3.4 Neural Radiance Fields

	 Representing General Non-Rigid Objects
	4 DEMEA
	4.1 Introduction
	4.2 Method
	4.2.1 Mesh Hierarchy
	4.2.2 Embedded Deformation Layer (EDL)
	4.2.3 Differentiable Space Deformation
	4.2.4 Training
	4.2.5 Reconstructing Meshes from Images/Depth
	4.2.6 Network Architecture Details

	4.3 Results
	4.3.1 Evaluation Settings
	4.3.2 Ablation Study
	4.3.3 Evaluations of the Autoencoder

	4.4 Applications
	4.4.1 RGB to Mesh
	4.4.2 Depth to Mesh
	4.4.3 Latent Space Arithmetic

	4.5 Limitations
	4.6 Conclusion

	5 PatchNets
	5.1 Introduction
	5.2 Method
	5.2.1 Implicit Patch Representation
	5.2.2 Preliminaries
	5.2.3 Loss Functions
	5.2.4 Blended Surface Reconstruction

	5.3 Results
	5.3.1 Settings
	5.3.2 Surface Reconstruction
	5.3.3 Object-Level Priors
	5.3.4 Articulated Deformation

	5.4 Limitations
	5.5 Conclusion

	 Reconstructing General Non-Rigid Objects
	6 Non-Rigid Neural Radiance Fields
	6.1 Introduction
	6.2 Method
	6.2.1 Adaptations of NeRF for NR-NeRF
	6.2.2 Deformation Model
	6.2.3 Losses

	6.3 Results
	6.3.1 Data
	6.3.2 Qualitative Results
	6.3.3 Ablation Study
	6.3.4 Comparisons
	6.3.5 Simple Scene Editing

	6.4 Limitations
	6.5 Conclusion

	7 SceNeRFlow
	7.1 Introduction
	7.2 Method
	7.2.1 Constructing the Canonical Model
	7.2.2 Optimizing per Timestamp
	7.2.3 Implementation Details

	7.3 Results
	7.3.1 Qualitative Results
	7.3.2 Quantitative Results
	7.3.3 Ablations
	7.3.4 Simple Editing

	7.4 Limitations
	7.5 Conclusion

	8 Conclusion
	8.1 Insights
	8.1.1 Domain Knowledge in the Small-Data Regime
	8.1.2 Classical Optimization with Neural Networks
	8.1.3 The Unreasonable Effectiveness of Neural Radiance Fields

	8.2 Outlook
	8.2.1 Backwards Deformation Modeling
	8.2.2 More Sophisticated Deformation Models
	8.2.3 Synergies with Novel-View Synthesis
	8.2.4 Integrating Vision Models

	A Appendix for Chapter 4
	A.1 Artifacts
	A.2 Normalization
	A.3 Standard Deviations in Tab. 4.4
	A.4 FCA and CA Results
	A.5 Coarse Embedded Graphs

	B Appendix for Chapter 5
	B.1 Reduced Test Set
	B.2 Object-Level Priors
	B.2.1 Surface Reconstruction
	B.2.2 Ablation Study
	B.2.3 Partial Point Cloud Completion

	B.3 Synthetic Noise
	B.4 Preliminary Results on ICL-NUIM

	C Appendix for Chapter 6
	C.1 Training Details
	C.2 Implementation Details
	C.3 Comparisons
	C.3.1 Prior Work and Baseline
	C.3.2 Training/Test Split
	C.3.3 Additional Results

	C.4 Extensions
	C.4.1 Multi-View Data
	C.4.2 View Dependence

	C.5 Additional Comparisons

	D Appendix for Chapter 7
	D.1 Correspondence Visualization Details
	D.2 Per-Scene Quantitative Results
	D.3 More Qualitative Joint-Tracking and Novel-View Results
	D.4 Further Architecture and Training Details
	D.4.1 SceNeRFlow
	D.4.2 Variants
	D.4.3 NR-NeRF
	D.4.4 PREF

	D.5 Joint Evaluation Details
	D.6 Foreground Masks for Evaluation

	 Bibliography

