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Abstract
As cloud applications become increasingly event-driven, Function-as-a-Service

(FaaS) is emerging as an important abstraction. FaaS allows tenants to state

their application logic as stateless functions without managing the underlying

infrastructure that runs and scales their applications.

FaaS providers ensure the confidentiality of tenants’ data, to a limited extent,

by isolating function instances from one another. However, for performance

considerations, the same degree of isolation does not apply to sequential requests

activating the same function instance. This compromise can lead to confidentiality

breaches since bugs in a function implementation or its dependencies may retain

state and leak data across activations. Moreover, platform optimizations that

assume function statelessness may introduce unexpected behavior if the function

retains state, jeopardizing correctness.

This dissertation presents two complementary systems: Groundhog and CtxTainter.

Groundhog is a black-box and programming-language-agnostic solution that

enforces confidentiality by efficiently rolling back changes to a function’s state

after each function activation, effectively enforcing statelessness by breaking all

data flows at the request boundary. CtxTainter is a development-phase dynamic

data flow analysis tool that detects data flows that violate the statelessness

assumption and reports them to the developer for reviewing and fixing.
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Zusammenfassung
Da Cloud-Anwendungen zunehmend ereignisgesteuert sind, entwickelt sich

Function-as-a-Service (FaaS) zu einer wichtigen Abstraktion. FaaS ermöglicht es

Cloud-Kunden, ihre Anwendungslogik als zustandslose Funktionen anzugeben,

ohne die zugrunde liegende Infrastruktur verwalten zu müssen, die ihre Anwen-

dungen ausführt und skaliert.

FaaS-Anbieter gewährleisten in begrenztem Umfang die Vertraulichkeit der Daten

von Kunden, indem sie Funktionsinstanzen voneinander isolieren. Aus Leis-

tungserwägungen gilt diese Isolierung jedoch nicht für aufeinanderfolgende

Anfragen, die dieselbe Funktionsinstanz aktivieren. Dieser Kompromiss kann

zu Vertraulichkeitsverletzungen führen, da Fehler in einer Funktionsimplemen-

tierung oder ihren Abhängigkeiten den Zustand beibehalten und Daten über

Aktivierungen hinweg offenlegen. Auch Plattformoptimierungen, die von der

Zustandslosigkeit einer Funktion ausgehen, können die Korrektheit gefährden,

wenn die Funktion Zustand beibehält.

In dieser Dissertation werden zwei Systeme vorgestellt: Groundhog und Ctx-

Tainter. Groundhog ist eine Blackbox- und programmiersprachenunabhängige

Lösung, die Vertraulichkeit erzwingt, indem sie Änderungen am Zustand einer

Funktion nach jeder Aktivierung effizient rückgängig macht und den Daten-

fluss an der Anfragegrenze unterbricht. CtxTainter ist ein Tool zur dynamischen

Datenflussanalyse in der Entwicklungsphase das Datenflüsse erkennt, die die Zus-

tandslosigkeit verletzen, und sie dem Entwickler zur Überprüfung und Korrektur

meldet.
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Introduction
1

Function-as-a-Service (FaaS) is an emerging high-level abstraction for event-

driven cloud applications. This abstraction allows tenants to state their application

logic as stateless1 event-triggered2 functions3, typically written in a high-level

language like Python or JavaScript [32]. The FaaS provider exports an HTTP/S

endpoint, which can be used to invoke the FaaS function with arguments and

receive results. FaaS has an ‘on-demand’ charge model: a tenant only pays for

the compute time used to execute their functions.

The FaaS provider is responsible for deploying and executing the tenants’ func-

tions, provisioning and replicating functions as workload demand fluctuates, and

maintaining and multiplexing the hardware and software infrastructure across

different tenants and functions. Additionally, FaaS platforms offer tenant func-

tions access to platform services to facilitate building applications. These services

typically include storage, such as file-based access to scratch storage on a local

1Statelessness means that the FaaS function should externalize any data changes that should be
retained across invocations to an external persistent storage. This requirement is critical for
the function’s correctness because the platform can terminate an idle function instance at any
time without any notification.

2FaaS functions are activated in response to invocations or triggers and handle events one at a
time. Concurrent events may be handled sequentially or by separate instances of the function.

3A FaaS function, despite the name, does not map to a single programming language function;
rather, it refers to the code provided by the tenant, which can have libraries with many internal
functions but collectively provide functionality through a single entry point.
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disk, persistent key-value stores, and full relational database backends. Platform

services may also provide automatic invocation of tenant functions triggered

by timers, writes to certain key-value tuples, or updates to certain rows in a

database. Applications stitch together calls to these platform services and to the

developer-provided functions.

Ensuring data confidentiality is one of the core responsibilities of a FaaS provider.

FaaS providers invest in securely multiplexing the hardware and software infras-

tructure among tenants. They commonly rely on hardware-assisted (e.g. OS- [4,

82, 11, 89, 45], or VMM-based[7, 3])4 isolation primitives to isolate functions

from one another: each function executes within its own execution environment,

and different functions do not share the same execution environment, thus pre-

venting a malicious or compromised function from affecting the confidentiality of

other functions.

While existing isolation mechanisms effectively isolate function instances from

one another, they do not provide any isolation guarantees for sequential requests

activating the same function instance. Without proper sequential request isolation,

the confidentiality of end-client data is in jeopardy. The lack of sequential request

isolation in FaaS is the gap that this thesis closes.

In this thesis, we build a theoretical framework that allows us to reason about the

confidentiality and correctness guarantees provided by the different components

of the FaaS paradigm. Then, we discuss how sequential request isolation can be

4Some platforms [29, 41, 106] rely on language-based isolation, which can provide sufficient
guarantees for some classes of applications.
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achieved within that framework. Finally, we describe and prototype two comple-

mentary approaches that allow efficient and correct enforcement of sequential

request isolation in FaaS.

1.1 FaaS: A Stateless Paradigm

A key enabler for the FaaS paradigm is an expectation of the FaaS functions to

be stateless. Statelessness allows providers to decouple the control plane from

the data plane while managing the infrastructure. This separation means that

initializing, scaling, and terminating function instances does not risk data loss

as long as these operations happen at a time when a function is not actively

processing a request. Additionally, this separation gives providers high flexibility

in scheduling requests to instances. Because an instance does not retain state,

a request may be handled by any instance of the function. Similarly, follow-up

requests from the same end-client need not be handled by the same instance.

While the FaaS paradigm, as implemented by commercial providers, expects

functions to be stateless, this expectation is not backed by tools to verify or

enforce functions’ statelessness. In practice, it is not trivial for tenants to ensure

that their FaaS functions are stateless, especially when their FaaS functions depend

on third-party libraries. A FaaS function, or one of the third-party libraries it uses,

might have a bug or may have been originally written for a stateful computing

paradigm and retain state that is crucial for security and/or correctness.

3



To further understand the statelessness requirement in traditional FaaS offerings,

it is important to differentiate between the different classes of state that might be

inappropriately retained by a FaaS function. First, there is confidentiality-critical

state, such as state derived from the tenant’s end-client data. Second, there

may be correctness-critical state that might be retained for correctness/security

reasons, such as the internal state of a pseudo-random number generator (PRNG),

a statistical counter, or a stream tokenizer. Finally, there is non confidential-

nor correctness-critical state, which may be relevant for performance reasons,

e.g. a cache within a function. In this thesis, we focus on the confidentiality- and

correctness-critical states.

1.2 Confidentiality and Correctness: A Contract

An important aspect of cloud security is ensuring tenants’ data confidentiality

while correctly preserving the semantics of their deployed applications. As with any

composable system, reasoning about global properties such as confidentiality and

correctness requires understanding the different components of the system and

the mutual contracts they implement. Each component is responsible for meeting

its side of the contract and is expected to provide the required infrastructural

support for dependent components to allow them to fulfill their side of the contract

as well. A FaaS application depends on components supplied by two parties – the

platform provider and the tenant.

4



The confidentiality and correctness contract in FaaS aims at ensuring that the

data confidentiality and correctness properties are maintained throughout the

system. The contract (detailed in §2.3) can be viewed as a mechanism to ensure

data confidentiality while maintaining correctness, provided that the platform

provider and the tenant honor their sides of the contract. The data confidentiality

property stipulates that no request (a FaaS function activation) should breach

the confidentiality of any other request’s data (see §1.3 for details), while the

correctness property stipulates that for functions that adhere to the contract, the

semantics of the function (the tenant’s logic responsible for handling a single

request) when run under the FaaS provider’s infrastructure should be equivalent

to its semantics when invoked once and terminated – i.e. the semantics of handling

a request should not be altered by the platform.

The confidentiality contract requires FaaS provider to implement mechanisms that

prevent confidential data leakage through the platform infrastructure or services.

Additionally, the platform should offer the infrastructural support that allows

tenants to properly configure their FaaS applications and prevent confidential

data leakage among their end-clients. As such, tenants that properly configure

their FaaS application can securely use the platform services and secure their

end-clients’ data.

The correctness contract requires tenants to develop FaaS functions that do

not depend (for correctness) on any non-externalized state from previous acti-

vations of the same FaaS function instance. Functions that fail to externalize

correctness-critical state may suffer data loss or altered semantics as the platform
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may introduce operational optimizations that expect the absence of retained

correctness-critical state.

1.3 The Case for Sequential Request Isolation

FaaS providers implement a variety of mechanisms that provide infrastructural

support to enable tenants to configure their functions and data access permissions.

FaaS providers support client authentication on HTTP/S endpoints and minimally

check if a caller is authorized to invoke the function, based on an access control list

provided by the tenant. Access to platform services by the function is controlled

in this case on a per-tenant basis. Major FaaS providers like AWS Lambda, Azure

FunctionApps, Google Cloud Functions, and IBM Cloud Functions [7, 82, 45,

52] associate fine-grained, per-caller5 credentials to a function activation. Here,

activations of the same function can access different platform services depending

on the caller. Tenants can use this facility to control information flow via platform

services among differently privileged callers of the same function, such as the

different end-clients of a tenant’s deployed application.

In addition to the aforementioned infrastructural support for configuring proper

data access permissions, providers isolate function instances from one another to

prevent malicious or compromised functions from affecting the confidentiality of

other functions. However, for performance considerations, the same level of isola-

tion does not apply to sequential requests activating the same function instance,

5In this thesis, the caller is the entity causally responsible for the activation of a function.
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even when those requests come from differently privileged end-clients. Hence,

the confidentiality property within a FaaS function is not fully enforced by current

FaaS providers. Efficiently addressing this shortcoming without compromising

correctness is the main goal of this thesis.

While preventing confidential data leaks in the tenant-provided functions is not

solely the provider’s responsibility, the provider can (as we show in this thesis)

provide the infrastructural support for confidentiality to be enforced, lifting a

non-trivial effort off the shoulders of the tenant. Without the infrastructural

support to isolate different sequential activations of the same function instance,

bugs in a function implementation, or a third-party library/runtime it depends

on, may cause a leak of information from one activation of a function to a later

one. This sequential request isolation is critical if a function can be invoked by, or

on behalf of, differently privileged callers. For example, if the same FaaS function

container is first invoked to service Alice’s request and then invoked again to

service Bob’s request, there is a possibility that a bug in the function, some library,

or the language runtime causes Alice’s data from the first request to be retained

and later leaked in the response to Bob.

Such leaks may arise despite the fact that FaaS functions are typically written

in memory-safe, high-level languages like JavaScript or Python. First, functions

written in such languages may still contain logical bugs that leak data. Second,

high-level programming languages rely on libraries (e.g. NumPy, PyTorch, and

TensorFlow for Python) that are written in unsafe languages like C/C++ for

efficiency.
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More generally, “insecure shared space” [92] that is not cleared between sequen-

tial uses of an execution environment can, in principle, enable attacks similar to

those known from traditional serverful environments, such as the infamous Heart-

bleed bug [114], the Cloudbleed bug [56], and many others affecting various

programming languages, frameworks, and libraries [128, 53, 13, 14, 126, 1].6

To provide request isolation, FaaS providers like AWS lambda suggest, but do not

enforce, partitioning clients from different security domains by redirecting them

to distinct functions [19]. This approach requires duplication of the execution

environments, which does not scale to services with many mutually distrusting

clients, as is common in some e-commerce services.

A trivial way to ensure sequential request isolation would be for the provider to

execute every activation of a function in a freshly initialized container. However,

this solution is problematic from the performance perspective: When container

initialization is carried out naively, it can take seconds. But even when state-

of-the-art optimizations that reduce the cost of container cold-starts [18, 46,

88, 111, 37, 118, 9, 124] are employed, initialization can still take hundreds

of milliseconds. However, even this reduced cold-start time is higher than the

baseline execution time of a significant fraction of FaaS functions. For example,

function execution times in Microsoft Azure were reported to have a median

of 900 ms and a 25th %-ile of 100 ms [105]. Hence, starting a fresh execution

environment for each request would impose impractical overhead.

6To date, only an exploit that reuses the tmp filesystem (an insecure shared space) was demon-
strated in [97].
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A more efficient approach would be to fork a copy of a fully initialized process

for each function invocation and discard the copy once it terminates, similar to

what traditional web servers like Apache [10] support. Unfortunately, however,

fork does not work for multi-threaded functions or multi-threaded language

runtimes [69] such as NodeJS – the second most used language in FaaS [32].

Accordingly, our focus in this thesis is retrofitting sequential request isolation into

FaaS, by isolating sequential invocations of the same function within the same

execution environment from one another while preserving the correctness of the

tenants’ functions.

1.4 Thesis Contributions

In this thesis, we propose a conceptual framework for reasoning about the con-

fidentiality and correctness requirements for a function that will be invoked

repeatedly – reusing an execution environment – to serve differently privileged

callers, as in FaaS. This conceptual framework translates the global confidentiality

and correctness properties into local invariants that must be upheld within the

function’s execution environment.

Our framework looks at the different data flows that may be present in a function.

Some of these data flows are confidentiality- and/or correctness-critical. To

prevent the leakage of confidential data (e.g. end-client input arguments, retrieved

data, or credentials) while ensuring the correctness of the application, data flows

must be confined (isolated) to their appropriate scopes (i.e. confined to a single
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request context by default, and be consciously allowed to span multiple request

contexts only after code audit).

In FaaS, all data flows that arise while handling an end-client request are expected

to be concluded by the end of the request. This ensures that data within a function

instance belongs to a single caller at any given time; thus, neither confidentiality

nor correctness would be in jeopardy. For such flows, confidentiality is preserved

because data lives transiently only during the handling of a request and thus

can not be leaked to any subsequent request. Correctness is maintained because

platform optimizations that assume statelessness are not employed on function

instances actively handling a request, rather on idle instances that are awaiting

new requests.

However, runtimes that are provided by the FaaS providers and functions sub-

mitted by tenants may not be able to fulfill their side of the contract due to

the possibility of bugs that cause data to flow across invocations. Such data

flows that lives beyond the context of a single request are the ones that can

put confidentiality and/or correctness on the line, and these are the ones we

study. Confidentiality-critical flows are the flows that stem from (or operate

on) a request’s confidential data and affect the outputs of a subsequent request.

Correctness-critical flows, on the other hand, are the flows that do not stem from a

request’s confidential data but still affect the outputs of a subsequent request.

To achieve the sequential request isolation property within the execution environ-

ment, both confidentiality- and correctness-critical flows must be confined to a

single request context (never reach the outputs of a subsequent request). While

both types of flows must be confined to a single request context, enforcing such
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confinement requires different approaches that preserve the different properties.

Next, we describe two complementary approaches to isolate sequential requests,

thus ensuring confidentiality while preserving correctness.

Approach 1: Confidentiality by design

The first approach exploits the expected absence of correctness-critical flows from

FaaS functions and proposes a sequential request isolation enforcement system

that breaks all data flows at each request boundary, thus confining all data flows

to a single request context and enforcing confidentiality “by design”.

Following this principle, we design and implement Groundhog, a system that

enforces confidentiality by implementing a simple, fixed policy: any changes to

a function’s internal state during the handling of a request are rolled back to a

consistent, clean state, free from any confidential data, before another request

is handled. Groundhog is a black-box solution that is transparent to both the

developer and the provider; it is programming-language agnostic and does not

require any changes to the existing code of functions, libraries, language runtimes,

or OS kernels but requires provider collaboration to enable it. Groundhog isolates

sequential invocations with modest overhead on requests’ end-to-end latency and

throughput.

Groundhog ensures that the confidentiality requirement is unconditionally met.

The correctness property is maintained for FaaS functions that do not retain

correctness-critical state (because the rollback restores to a valid and consistent

earlier state of the function).
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Approach 2: Analyzing Statelessness

The second approach tackles the problem of undesired data flows through pro-

gram analysis. It employs Dynamic Data Flow Analysis (DDFA)[48, 49] on

functions to detect and track data flows that span multiple requests. This ap-

proach allows developers to identify and refactor such flows according to the

contract requirements. Like most program analysis tools, the analysis is best-

effort – it aids developers in writing code that observes the confidentiality and

correctness requirements but does not enforce either property (the developer

ultimately retains responsibility for meeting the confidentiality and correctness

requirements in their code).

Building on this idea, we design and implement CtxTainter, a system that relies on

information that can be collected via standard DDFA tools. CtxTainter adds infor-

mation about request boundaries, which is essential for identifying confidentiality-

and correctness-critical flows that span multiple requests and outputting them to

the developer. Unlike Groundhog, CtxTainter requires active developer participa-

tion to review and fix detected confidentiality and correctness violations during

the development phase. Because CtxTainter is a development phase tool, it does

not require any support or modifications from the platform provider and can be

used entirely within the development environment (e.g. integrated into an IDE,

or run in continuous integration/deployment pipelines).
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Ensuring confidentiality while preserving correctness

Combining Groundhog’s confidentiality enforcement with CtxTainter’s aid to

developers in finding correctness-critical flows allows FaaS applications to provide

end-clients with confidentiality guarantees while preserving correctness.

1.5 Organization

The rest of this thesis is organized as follows. Chapter 2 presents our concep-

tual framework for the goals and requirements of sequential request isolation.

Chapter 3 presents Groundhog7, and CtxTainter is presented in Chapter 48. The

related work for each system is discussed separately in §3.4 and §4.5, respectively.

Chapter 5 summarizes the results and discusses potential directions for future

work.

7Content mostly derived from the published paper [5], whose technical work and writing were
led by me.

8This work is presented for the first time in this thesis. The technical work and writing were led
by me.
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Conceptual framework
2

This chapter introduces the conceptual framework that guides this thesis’ work.

We start by describing the FaaS execution environment, then discuss and de-

compose the problem of sequential request isolation. After that, we derive the

conditions for achieving sequential request isolation without compromising cor-

rectness and finally discuss how our two complementary approaches fit within

this framework.

2.1 Execution Environment Reuse

In modern operating systems, programs run in memory-isolated environments

(processes [15]). The isolation of processes’ memory from one another is enforced

by the operating system and assisted by the hardware. Each process has exclusive

access to a virtual memory address space where static data is initially loaded from

the program executable. At runtime, data can be introduced into this isolated

environment through communication with the external environment via different

interfaces, such as argument passing, environment variables, and system calls that

enable inter-process communication, access to file systems, and networking.
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Process isolation can be hardened through the use of containers or virtual ma-

chines. Containers allow for isolating OS services such as storage and network,

while virtual machines isolate all OS services through software and hardware

virtualization technologies. Most FaaS platform providers deploy the processes

running the functions in containers [4, 82, 11, 89, 45], or in dedicated virtual-

machines [7, 3].

FaaS functions are launched in containerized processes in response to events

(e.g. requests). After a function runs to completion and returns the response, the

function instance can be safely terminated to free resources. However, because

functions are typically single-purposed and have short execution times [105],

the initialization phase (provisioning the execution environment and loading

the runtime binary, developer code, and data) constitutes a non-trivial overhead,

especially if a new function instance was to be launched for each event. For that

reason, cloud providers treat the provisioning of an execution environment as an

investment that can be amortized by handling consecutive requests to the same

function; once provisioned, each execution environment handles the requests it

receives sequentially until the demand drops.

The problem with execution environment reuse is that bugs in a function imple-

mentation — or a third-party library/runtime it depends on — may cause a leak

of information from one activation of a function to a subsequent one. This thesis

focuses on enabling request isolation while preserving correctness at the level of

the primitive OS construct for running FaaS functions — within processes.
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2.2 The Abstraction

To reason about the confidential information leakage from one request to a subse-

quent one, we need to study how data flows within the execution environment.

Our conceptual framework abstracts the life cycle of a FaaS function’s execution

environment as an initialization phase followed by a sequence of epochs, each

responsible for handling an end-client request to the main FaaS function handler.

We call each epoch a request context. Request contexts serve as an abstraction that

draws a conceptual boundary around each function invocation.

During the life cycle of a FaaS function’s execution environment, data gets intro-

duced into the execution environment through data sources and is externalized

out of the execution environment through data sinks. A function’s processing of a

data item all the way from its origin at a data source to its exit from the process

at a data sink constitutes a data flow.

Abstracting the function’s life cycle to a set of request contexts and data flows

allows us to reason about the confidentiality and correctness conditions that must

be met within the execution environment.

2.2.1 Data Sources

Execution environments are isolated from the external world. Data can be

introduced into the isolated execution environment through three main ways.

First, initialization data that may be retrieved from remote storage or come

integrated within the function, such as default values of variables or parameters
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and program constants. This sort of initialization data is static and independent

of end-clients’ requests. Second, end-client inputs that constitute the invocation-

specific data provided by, or on behalf of, the end-client (e.g. in the form of

arguments, credentials, etc. ); these inputs are considered confidential unless

explicitly declassified by the developer, and finally, per-context freshness which

constitute invocation-specific inputs that must be obtained from the external

environment but are independent of the end-client identity or inputs. Examples

for per-context freshness inputs are inputs derived from an external source of

randomness (a random number that is reused is not random), timestamps (a stale

timestamp does not represent time accurately), or even the latest version of data

that is stored externally. These inputs must be fresh for each invocation regardless

of the end-client identity or input; the conditions under which a particular input

becomes stale differ by the input and the use case.

2.2.2 Data Sinks

In principle, a data sink can be any statement that consumes data. However,

for the purposes of request isolation, the relevant data sinks are the ones that

externalize data outside the execution environment. These data sinks include

the results of the function, which are returned to the end-client as a response,

passed to other services for applying further operations, or simply persisted on

external storage for later lookup. These different points at which data can be

externalized and exit the isolated execution environment represent the points

of risk where confidential data could be leaked, or correctness violations could

become externally visible.
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2.2.3 Data Flows

Data flows represent the life cycle of a data item within the execution environment

from its origin at a data source, throughout all the processing steps it undergoes,

and until its exit from the execution environment at a data sink. Each data item

can be part of one or more data flows. For reasoning about confidentialiy and

correctness, we need not analyze all the data flows as some are irrelevant.

For instance, data flows that arise and conclude within a request context are not

of interest because they do not pose a risk to either confidentiality or correctness.

Such flows do not risk confidential data leakage because the data flow arises

and concludes while handling a single end-client. Similarly, correctness is not

jeopardized because the function processing is not impacted by the platform

optimizations that happen before or after a request.

On the other hand, data flows that cross a request context boundary might be of

interest. Here we consider two classes of such flows:

1. Confidentiality-critical flows are all flows of data that stem from (or

operate on) a request’s confidential data sources and reach the data sinks of

a subsequent request.

2. Correctness-critical flows are all flows of data that do not stem from a

request’s confidential data but still reach the data sinks of a subsequent

request.
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2.2.4 External data flows

Although the confidentiality and correctness conditions rule out confidentiality-

and correctness-critical flows of data across requests, some functionality might

require maintaining data across requests. For example, a function might aggregate

confidential data from a large pool of users to train a machine-learning model.

For such functions, the developer is expected to declassify the information by

externalizing the aggregation process to a secure service out of the function’s

ephemeral execution environment. Active externalization of declassified data

is necessary if the tenant does not want to lose aggregated data as part of the

normal FaaS platforms’ continuous recycling of the “ephemeral" environments.

Similarly, per-context freshness inputs, such as PRNs, must rely on external

stateful services rather than linked libraries to prevent changing a function’s

semantics if it undergoes optimizations by the platform while being idle after a

request is handled.

2.3 Confidentiality and Correctness

Commercial FaaS platforms expect functions to be stateless, which, if true in

practice, would imply that the FaaS functions are free from confidentiality- and

correctness-critical flows because no state would be retained beyond a request

context. However, as discussed in §1.2 and §1.3, ensuring the statelessness of

FaaS functions is non-trivial. A FaaS function, or one of the third-party libraries or

the runtime it relies on, might have a bug or may have been originally designed
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for a stateful computing paradigm and may retain state crucial for confidentiality

and/or correctness.

The FaaS contract describes the responsibilities of the cloud provider and the

tenant. According to the standard FaaS shared responsibility model, the provider

and the tenant should be responsible for the data confidentiality and correctness

in their respective components. However, some of the components, such as

the execution environment, runs code contributed both by the provider and the

tenant.1 As we explain in Chapter 3, the provider can effectively and efficiently

enforce data confidentiality across requests reaching the execution environment.

By doing that, the provider alleviates the burden of ensuring confidentiality off

of the tenant’s shoulders. The correctness of the FaaS function’s logic, however,

remains the tenant’s responsibility.

Next, we discuss the tenants’ and the providers’ sides of the contract. If each party

fulfills their side of the contract, FaaS functions will operate with guaranteed

confidentiality without compromising the correctness.

2.3.1 The Tenant’s Side of the FaaS Contract

The commercial FaaS shared responsibility model requires that both the tenant

and the provider be responsible for meeting the confidentiality and correctness

requirements in the code/infrastructure they provide. However, because, as

discussed earlier and shown in Chapter 3, the provider can transparently enforce

1The language runtime and IO handlers are provided by the FaaS provider, while the tenant
provides the function handler and the helper libraries.
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confidentiality for both the provider’s and tenant’s contributed code, the tenant is

only responsible for meeting the correctness condition discussed next.

Correctness The tenant must only ensure one condition: The absence of

correctness-critical flows. The condition we propose is weaker than the stateless-

ness requirement expected from the tenants of commercial platforms, which

requires eliminating all flows that cross a request context boundary, necessarily

requiring that all code submitted by the tenant to be verifiably free from any bugs

that may retain state across invocations.

2.3.2 The Provider’s Side of the FaaS Contract

Confidentiality The confidentiality requirement stipulates that no request

(FaaS function activation) should breach the data confidentiality of any other

request. This property is enforced globally by implementing measures that isolate

instances of functions from one another. Because, as common in commercial FaaS

offerings, invocations of different functions are already isolated from each other,

the remaining requirement is sequential request isolation, which prevents leaks

of confidential data from one request handled by an execution environment to

the next request handled by the same environment. This isolation translates to

sequential request isolation, which prevents confidential data leakage from one

request context to a subsequent one.

Correctness The correctness requirement stipulates that for functions that

adhere to their side of the contract (§2.3.1), the semantics of the function (the
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tenant’s logic responsible for handling a single request) when run under the FaaS

provider infrastructure should be equivalent to its semantics when invoked once

and terminated (i.e. any optimizations or features introduced by the platform

must not alter the semantics of the tenant’s function). Additionally, and similar

to the tenant, the provider must ensure that the language runtimes and IO

wrappers contributed by the provider do not retain correctness-critical state

across invocations.

2.4 Fulfilling the Contract

In this thesis, we propose two broad, complementary approaches that help the

provider and the tenant fulfill their respective sides of the contract.

Our first approach, Groundhog, proposes a request-isolation enforcement system

that, when enabled by the provider, breaks all data flows at the request con-

text boundary, preventing any data from leaking from one request context to a

subsequent one. This approach works for FaaS functions that adhere to their

side of the contract (§2.3.1), where functions are expected to be free from any

correctness-critical flows.

Our second approach, CtxTainter, is based on software analysis and assists func-

tion developers in vetting their code and the libraries they rely on, such that

correctness-critical flows that cross a request context boundary can be detected
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and selectively eliminated.2 As opposed to Groundhog, which silently breaks all

flows at the request boundary, this approach allows the tenant/developer to meet

the correctness conditions during the development phase.3

When used together, Groundhog and CtxTainter guarantee confidentiality and aid

the developer in preserving the correctness properties: Groundhog can be used

to enforce confidentiality, and CtxTainter can be used as a complementary tool

to help the developer identify possible correctness violations and update their

function’s code to avoid them, thus reconciling confidentiality and correctness.

2There are fundamental limitations in software-analysis that prevent having both a sound and a
complete analysis simultaneously. Accordingly, only best-effort guarantees are possible.

3In principle, this approach can be used by developers (without FaaS-provider collaboration)
as an aid to also attain confidentiality. However, because security is non-negotiable and this
approach only aids the developer without promising soundness or completeness, we prefer to
limit CtxTainter’s scope to correctness-critical flows only.
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Groundhog:

Confidentiality by Design

3

This chapter presents our first key technique for achieving sequential request

isolation in FaaS, Groundhog. Groundhog is a system that enforces confidentiality

by implementing a simple, fixed policy: after each request, any changes to the

function’s internal state are rolled back to a consistent, clean state, free from

any confidential data. This policy implies that all data flows are broken at

each request boundary, thus confining all flows to a single request context and

enforcing confidentiality “by design” for FaaS platforms where stateless functions

and ephemeral execution environments are the norm.

Groundhog is designed with the goal of transparently retrofitting lightweight

sequential request isolation to existing FaaS platforms that already use containers1

to isolate different functions. Importantly, Groundhog allows the safe reuse of

containers across requests to the same function, thus avoiding the per-activation

container re-initialization cost of the trivial solution described in §1.3. Groundhog

is independent of the language, runtime, or libraries used to implement functions,

1This work is described in the context of FaaS platforms that already use containers to isolate
different functions from each other, but similar design principles should apply to VMM-based
isolation.
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does not require changes to function implementations, OS kernels or hypervisors,

and preserves most of the performance benefits of container reuse. To the best of

our knowledge, Groundhog is the first system to do so.

To implement a general-purpose lightweight solution, Groundhog exploits two

properties of FaaS platforms: (1) At most one function activation executes at

any time in a container, and (2) functions are not expected to retain runtime

state across activations.2 Accordingly, the core of Groundhog’s sequential request

isolation is a general, in-memory, lightweight process snapshot/restore mechanism.

Groundhog encapsulates each function in a (containerized) process and takes a

snapshot of each function process’ fully initialized state just before the function

is invoked for the first time. While this state typically includes a fully initialized

language runtime, possibly with multiple threads, the function has not yet re-

ceived activation-specific arguments or credentials, and its state is, therefore,

guaranteed to be free of secrets. Subsequently, whenever the function has finished

an activation and returned its results, Groundhog restores the function’s process

to the clean state recorded in the snapshot.

Groundhog guarantees confidentiality because the restoration ensures that no

data can leak from one activation to a subsequent one. Groundhog is efficient

because the cost of restoring the state is proportional to the amount of memory

modified during an activation. As we will show, most function activations modify

only a small proportion of the function process’ total state. Finally, Groundhog

2If functions intentionally retain non-confidential state between invocations, then using Ground-
hog can break correctness. In such scenarios, developers should externalize the state that
should be retained. Our complementary system, CtxTainter, presented in Chapter 4 can assist
developers in detecting the presence of such retained state and report candidate state for safe
externalization.
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restores state between activations of a function, and therefore, does not significantly

affect the function’s activation latency under low to medium server load.

We have implemented Groundhog in C using commodity Linux kernel facilities.

We evaluate Groundhog in OpenWhisk using Python, Node.js, and C functions

from the FaaSProfiler [104], pyperformance [122], and PolyBench/C [76] bench-

marks, which cover a wide variety of use cases. We demonstrate that Groundhog

achieves sequential request isolation with modest overhead on end-to-end la-

tency (median: 1.5%, 95p: 7%) and throughput (median: 2.5%, 95p: 49.6%)

relative to an insecure baseline that reuses containers and runtimes. The main

contributions of this chapter include:

1. The design of a language- and runtime-independent, in-memory lightweight

process snapshot/restore mechanism for general-purpose sequential request

isolation in FaaS while retaining the performance benefits of container

reuse.

2. The design and implementation of Groundhog,3 a system that provides

lightweight sequential request isolation on commodity Linux kernels and its

integration into the OpenWhisk FaaS platform. Groundhog can be retrofitted

to existing commercial systems without any changes to existing functions,

libraries, language runtimes, or OS kernels.

3. An experimental evaluation of Groundhog on functions from the FaaSProfiler

[104], pyperformance [122], and PolyBench/C [76] benchmarks within the

OpenWhisk FaaS platform, which demonstrates that Groundhog provides

3Groundhog is open-source and is available at [6].
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sequential request isolation with low to modest overhead on function latency

and peak throughput.

3.1 Design Preliminaries

Groundhog operates at the level of OS processes. It can be readily integrated into

FaaS platforms that encapsulate language runtimes and functions in standard or

containerized processes, which includes most major FaaS platforms currently in

production use as far as we know. Moreover, Groundhog places no restrictions on

function implementations or the programming language, runtime, or third-party

libraries they rely on. Groundhog transparently interposes on API calls between a

function implementation and the FaaS platform. Function implementations as

well as the existing FaaS platforms can remain unchanged.

By interposing on a function’s API calls, Groundhog detects when the function is

invoked and when its execution finishes and returns results. Groundhog uses this

information to transparently create an initial snapshot of a newly created process

before its first invocation and reverts its state after it has finished executing an

invocation. For this purpose, Groundhog relies on a custom in-memory process

snapshot/restore facility. The facility relies on standard Linux functionality, such

as soft-dirty bits to track modified pages, the /proc filesystem to monitor changes

to the process’ address space mappings and read/write process memory, and

ptrace to orchestrate state snapshot and restore.
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Figure 3.1.: Groundhog container life cycle

Fig. 3.1 illustrates a function process’s life cycle when Groundhog is being used.

Groundhog avoids container, runtime, and data initialization steps when reusing

a function container (process), and reverts the process’ state in a median of

3.7 ms (10p: 0.7 ms, 25p: 1 ms, 75p: 5.4 ms, 90p: 13 ms). From the perspective

of the FaaS platform, the Groundhog-enabled container enjoys the benefits of

container reuse while ensuring sequential request isolation, irrespective of bugs

in a function’s implementation, libraries, or runtime.

3.1.1 Insights

Groundhog’s design exploits two key properties of the FaaS paradigm (as im-

plemented by major FaaS providers) and one observation about typical FaaS

functions. We start with the two properties of FaaS platforms.

One-at-a-time function execution In FaaS platforms, each function container

executes at most one request at a time. For scalable throughput, FaaS plat-

forms create separate containers to concurrently execute activations of different

functions or handle simultaneous activations of the same function.

Stateless functions In the FaaS programming model, a function implementa-

tion cannot expect that its internal state is retained across activations. To maintain
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a persistent state, functions must instead rely on external or platform services

such as a key-value store or a database backend [17].

Some FaaS platforms support global state to enable performance optimizations.

This state can be initialized using tenant-supplied code that is executed once a

function container is initialized. Such an initialization step serves as a mechanism

to pre-compute or cache data and state that can be utilized by several subsequent

function activations independent of their inputs (e.g. populating data structures,

downloading machine learning models). This state is retained across invocations

as long as the container is reused, but is lost when the FaaS platform shuts

down the container. Since the platform is free to shut down an idle container

at any time, functions must not rely on the persistence of such global state for

correctness.4

The statelessness requirement implies that simple statistics counters or the internal

state of a PRNG, for instance, must not be assumed to persist across invocations

of a function; function implementations should instead use explicit external

services or platform facilities for maintaining persistent state such as PRNGs.

Data loss and/or functionality anomalies may arise if a function implementation

or a library it depends on relies on an internal state being maintained across

invocations, because the FaaS runtime may terminate or refresh a container

between invocations.

4Opportunistic caching of end-client-specific data should be possible through per-host caches
that are subject to access control based on the end-clients’ identity/privileges. However, we
are not aware of any provider that offer this kind of caching.
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The one-at-a-time and statelessness properties afford FaaS providers a high de-

gree of flexibility in placing, scheduling, and dynamically replicating function

activations. In the context of Groundhog, these properties imply that each reused

container has well-defined points in its life cycle—namely between sequential

activations—when its state can be safely restored to a point after the initializa-

tion of the global state but before the first function activation, thereby ensuring

efficient sequential request isolation.

Additionally, Groundhog relies on the following observation about typical FaaS

functions for its efficiency.

Small write sets Programs, including FaaS functions, written in managed

languages often consume a substantial amount of memory due to the language

runtime overhead. However, because FaaS functions are typically single-purposed,

only a small proportion of the memory is modified during an activation. This

improves Groundhog’s efficiency because only modified parts of memory need

to be restored after an activation. Our empirical evaluation on 58 benchmarks

shows that the number of memory pages actually modified by each function

invocation is only a small fraction of the overall function memory (mean: 8.5%

of the mapped address space is modified, median: 3.3%, 90p: 17%). A similar

observation was reported by REAP [118], where the examined functions’ working

sets (i.e. modified pages and pages that were only read) were on average 9%

of their memory footprints. Full measurement data for our benchmarks can be

found in [6].

Groundhog’s design and implementation, which is discussed in §3.2, was guided

by these three key insights.
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3.1.2 Design alternatives

Besides the trivial solution of using a fresh container for every request, which

is inefficient, there are three broad design approaches for efficient sequential

request isolation.

Language-based approaches When using appropriate safe programming lan-

guages [21], compiler instrumentation techniques [123], or runtimes [127] to

implement functions, the language semantics can ensure efficient request iso-

lation. However, this approach requires all tenants to use a particular (set of)

programming languages/compilers, prevents the use of libraries written in unsafe

languages for efficiency, and is vulnerable to bugs in the language runtime.

Fork A simple process-based technique is to fork a fully initialized function

process, execute an activation within the child process and discard the child

process after the activation finishes. The main limitation of this approach is that

fork as implemented in general-purpose operating systems cannot capture the

state of a multi-threaded process. To take full advantage of container reuse, we

need to be able to snapshot the fully initialized runtime of a managed language

like JavaScript, which typically includes multiple active threads. Additionally,

fork (or any copy-on-write (CoW) based approach) incurs expensive data-copying

page faults during the execution of the function (i.e., on the critical path of a

request).

Custom snapshot/restore facilities Reliance on a custom snapshot/restore

solution has been explored in prior work [9, 37, 118, 111, 108, 67] to reduce

container cold-start costs by snapshotting an initialized runtime to disk/memory,
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and restoring it when a new container is needed. In principle, this approach could

be used to instantiate a container for each activation. While substantially better

than a cold start for each activation, instantiating a container from a snapshot is

still too expensive when compared to container reuse.

3.1.3 Threat model

The FaaS platform, including the platform software, OS kernels, hypervisors, and

platform services are trusted. We assume that the platform authenticates clients

who connect to HTTP/S endpoints, and enforces access control to functions,

as well as a function activation’s access to platform services according to the

authenticated client’s credentials.

Legitimate tenants are expected to set up access control lists that allow only

legitimate parties to invoke their functions, and prevent unwanted information

flow via platform services among legitimate callers with different privileges.

Function implementations provided by tenants, including any libraries they link

and the language runtimes they rely on, are untrusted and may contain bugs

that retain credentials or sensitive data in the function’s memory (e.g. a payment-

processing/invoice-preparation function may retain credit card information) from

one client request and leak it to a later request from a different client.

Under these assumptions, Groundhog prevents leaks of information from a func-

tion activation to subsequent ones, while allowing container reuse. Side-channels

are out of scope.
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3.2 Groundhog Design and Implementation

Standard 
Linux 
Kernel

Groundhog
Snapshot/Restore

ptraceMemory Tracking
(soft-dirty/userfaultfd) /proc fs

stdin

f
stdout
stderrFaaS

Platform

Figure 3.2.: Groundhog Architecture: (1) The manager (solid green box), (2) The function
process (f). Groundhog relies on standard Linux kernel utilities.

Groundhog uses a novel, lightweight, in-memory process snapshot/restore facility

that achieves low restore times with minimal impact on the end-to-end request

latency under normal workloads. Fig. 3.2 illustrates Groundhog’s architecture.

The Groundhog manager process (solid green box) runs within an OS container

alongside the function process, and is responsible for enforcing request isolation.

The facility relies on standard Linux kernel features to snapshot, track, and restore

processes. The design was guided by the following goals:

Generality The facility operates on a generic, multi-threaded POSIX process

and makes minimal assumptions about the code (function) executing inside the

process. Groundhog can be used on an opt-in basis: each tenant can decide

whether to enforce sequential request isolation for their functions.
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Restore cost proportional to modified pages To take advantage of the fact

that most function activations modify only a small proportion of the function

process’ state, Groundhog tracks pages modified during a function activation

using the Linux soft-dirty bits tracking facility. As a result, Groundhog needs to

restore only those pages that were modified during an activation.

Restore cost off the critical function execution path FaaS platform servers,

and production servers in general, are less than fully utilized most of the time.

Therefore, the design of Groundhog’s snapshot/restore facility seeks to minimize

overhead during a function’s execution, in favor of performing all restore-related

tasks between function activations. Groundhog performs two main operations.

First, Groundhog takes an in-memory snapshot of the function process after a

container is created. This operation contributes only to the cold-start latency. Sec-

ond, Groundhog restores the memory layout and content to the snapshotted state

after a function invocation completes. Groundhog avoids copy-on-write and the

associated expensive data-copying page faults and it does not intercept memory-

layout-modifying syscalls during a function’s execution. Instead, Groundhog

identifies and reverts changes in the memory layout by diffing the memory layout,

and restores the content of modified pages as indicated by Linux’s soft-dirty bits;

it performs these actions during a restore operation, after a function invocation

completes and has returned its result to the invoker. Hence, Groundhog performs

expensive operations between function invocations, minimizing overhead during

function execution.
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3.2.1 Container initialization

The Groundhog manager process interposes between the FaaS platform and the

process executing the function. The FaaS platform initializes the Groundhog

manager process as if it were the process executing the function. The Ground-

hog manager then receives requests from the FaaS platform, relays them to the

function process, and communicates results back to the FaaS platform. It com-

municates with the FaaS platform using the latter’s standard communication

channels. (In OpenWhisk—the platform on which our prototype runs—these are

usually stdin and stdout.)

To initialize the actual function process, Groundhog forks a new process, prepares

pipes for communicating with it, drops the privileges of the child process, and

execs the actual function runtime in the child process.

Next, Groundhog creates a snapshot of the function process. As a performance

optimization, before taking the snapshot, Groundhog invokes the function with

dummy arguments that are independent of any client secrets. These dummy

arguments can be provided by the function deployer, once for every function they

deploy, and can be part of the function’s configuration. After the function returns,

Groundhog snapshots the state of the function process as described in §3.2.2.

After this snapshot is created, Groundhog informs the platform that it is ready to

receive actual function invocation requests.

The purpose of the dummy invocation is to trigger lazy paging, lazy class loading,

and any application-level initialization of global state, and to capture these in the

snapshot. Snapshotting without a dummy request would cause these (expensive)
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operations to happen again after every state restoration, which would increase

the latency of subsequent function activations. This is particularly relevant when

the function runs in an interpreted runtime like Python or Node.js, which may

heavily rely on lazy loading of classes and libraries [73]. We note that the

arguments provided to a dummy invocation may affect performance but not the

confidentiality guarantees.

3.2.2 Snapshotting the function process

To take a snapshot, the manager interrupts the function process, then (a) stores

the CPU state of all threads using ptrace [70]; (b) scans the /proc file system

to collect the memory mapped regions, memory metadata, and the data of all

mapped memory pages; (c) stores all of this in the memory of the manager

process; and (d) resets the soft-dirty bits memory tracking state. Finally, the

manager resumes the function process, which then waits for the first request

inputs. After the request is completed, Groundhog restores the function’s process

state back to this snapshot before accepting a new request.

3.2.3 Tracking state modifications

Groundhog uses the standard Soft-Dirty Bits (SD) feature of the Linux kernel [71],5

which provides a page-granular, lightweight approach to tracking memory modifi-

5Available on stock Linux kernels v3.11+. We identified and reported a bug that affected the
accuracy of the SD-Bits memory tracking in v5.6; the bug was fixed in v5.12 [83].
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cations. Each page has an associated bit (in the kernel), initially set to 0, that is

set to 1 if the page is modified (dirtied). When a function invocation completes,

Groundhog scans the SD-bits exposed by the Linux /proc filesystem to identify

the modified pages. After restoring the function process, Groundhog resets all

SD-bits to 0, ready for the next invocation.

We considered using Linux’s user-space fault-tracking file descriptor (UFFD) [72]6

feature for memory tracking and prototyped this alternative; however, we found

UFFD to have a significantly higher overhead compared to SD-bits due to the

frequent context switches to user space for fault handling.7 UFFD was marginally

faster than soft-dirty bits only when the number of dirtied pages was close to

zero.

3.2.4 Restoring to the snapshotted state

When a function invocation completes, the function process returns the result

to the Groundhog manager. Groundhog’s manager awaits the function response

and forwards it to the FaaS platform (which then sends it to the caller). Next,

the manager interrupts the function process and begins a restore. The manager

identifies all changes to the memory layout by consulting /proc/pid/maps and

pagemap (e.g. grown, shrunk, merged, split, deleted, new memory regions); these

changes are later reversed by injecting syscalls using ptrace [70, 39, 111]. The

6Write protection notifications available on stock Linux kernels v5.7+.

7A custom in-kernel facility that allows an application to request a list of modified pages
presumably could be much faster, but would require kernel modifications.
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manager restores brk, removes added memory regions, remaps removed memory

regions, zeroes the grown stack, restores memory contents of pages that have

their SD-bit set, madvises newly paged pages, resets SD-bits, and finally restores

registers of all threads.

After the restoration is completed, the child process is in an identical state to

when it was snapshotted, and the process is ready to execute the next request.

There are multiple optimizations that can be applied at the platform level. For

instance, if a function is invoked consecutively by mutually trusting callers, then

the FaaS platform can route the invocations to the same function instance and

instruct Groundhog to skip the rollback between such invocations. Similarly, if

the system is under heavy load due to invocations of different functions, then the

FaaS platform may quarantine the containers and instruct Groundhog to defer

the restoration.

3.2.5 Enforcing request isolation

Groundhog enforces request isolation by design. Groundhog prevents new re-

quests from reaching the function’s process until it has been restored to a state

free from any data of previous requests. This is achieved by intercepting the end-

client requests before they reach the function and buffering them in Groundhog

until the function’s process has been restored.

Although intercepting the communication ensures control of the function process

and enforces confidentiality, it can add an overhead of copying request input/out-

39



puts to and from Groundhog’s manager process. This overhead can be eliminated

as follows: (1) The FaaS platform can forward inputs directly to the function

process after waiting for a signal from Groundhog’s manager process that the

function has been restored to a clean state. This requires minor changes to the

FaaS platform to wait for the signal from Groundhog. (2) Upon completion of a

request, the function process can return outputs directly to the FaaS platform and,

separately, signal Groundhog’s manager process that its state can be rolled back.

The changes needed can be made in the I/O library that handles communication

with the platform in the function process. (No changes are needed to the code of

the individual functions submitted by the developers.8)

Assumptions: Groundhog relies on some standard Linux kernel facilities that

must not be blocked by the provider, namely the ptrace system call, the /proc

file system, and the soft-dirty bits tracking. Groundhog expects that function

implementations do not open network connections and files directly. (None of

the benchmarks we use in the evaluation require them.) Instead, functions are

expected to rely on platform services for network communication, for storage,

and for maintaining any persistent state.

Groundhog’s design is generic and agnostic to the function logic. However, our

prototype currently does not support functions that fork child processes.9 In

principle, Groundhog could be extended to intercept fork syscalls and track the

8We implemented (2) to facilitate debugging. Our evaluation still intercepts all inputs and
outputs to demonstrate that platform modifications were not required and show the overhead
of such interception on various functions.

9We have not seen such a computational pattern in the FaaS paradigm; parallelism is typically
achieved in FaaS through multiple function instances.
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child processes through standard ptrace tracking options. Similarly, through

standard ptrace options, Groundhog can be extended to intercept and adjust

syscalls (such as seccomp) that limit the availability of standard Linux kernel

facilities required by Groundhog.

Finally, as stated in our threat model, any external state (e.g. external storage, or

the state of network connections and pipe contents) is assumed to be subject to

access control. This is necessary to prevent data leaks across clients with different

privileges via the external state.

3.3 Evaluation

In this section we evaluate Groundhog’s performance on a range of FaaS bench-

marks. Overall, we show that:

• For a wide range of benchmark functions using three different languages/run-

times, Groundhog has a modest overhead on end-to-end latency and through-

put.

• Groundhog’s latency overhead depends primarily on the memory charac-

teristics of the function and is proportional to the number of pages dirtied

during a function’s execution. Groundhog’s throughput scales nearly linearly

with the number of available cores.

• Groundhog’s lightweight restoration has equivalent or better performance

than a strawman fork-based isolation approach, which is less general. We
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also compare to a WebAssembly-based isolation approach and show that

Groundhog has competitive performance despite being more general.

3.3.1 Evaluation Overview

Implementation. We implemented Groundhog in ~6K lines of C. Groundhog

is compatible with off-the-shelf Linux and requires no kernel changes.

OpenWhisk Integration. We integrated Groundhog with OpenWhisk [90]

by modifying OpenWhisk’s container runtimes for Python and Node.js to include

Groundhog. Additionally, we implemented an OpenWhisk container runtime for

native C, to enable the evaluation of native C FaaS benchmarks. Most OpenWhisk

runtimes use the actionloop-proxy design, where a distinct process acts as a proxy

that communicates with the OpenWhisk platform (through HTTP connections),

and forwards the requests to the runtime process (through stdin). The actionloop-

proxy has a simple wrapper to process inputs, call the developer’s function,

and return results. Groundhog interposes between the proxy and the runtime,

intercepting the stdin and stdout and forwards the stdin only when the function’s

process is restored to a clean state. OpenWhisk’s container runtime for Node.js,

on the other hand, is built using a single process that directly interacts with the

platform and runs the function. We refactored it to an actionloop-proxy-like design

to maintain a uniform Groundhog implementation that ensures confidentiality by

blocking inputs until the function’s process is restored to a clean state.10

10Encapsulating the full process would require Groundhog to implement the platform API or have
a small platform modification to allow blocking inputs until Groundhog signals to the platform
that the function’s process is being restored as described in §3.2.5.
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For the FaaS OpenWhisk-python-runtime, we added 15 Lines of Code (LoC) to

the FaaS-provider wrapper to signal the function’s readiness for snapshotting and

restoration to Groundhog as well as to collect timing measurements of the function

handler from inside the process. One line was modified to run Groundhog instead

of the runtime with the runtime command passed as an argument to Groundhog.

The container image was modified to include Groundhog.

For the FaaS OpenWhisk-Node-runtime, we refactored the runtime to follow the

unified proxy design, which required modifying 150 LoC. If we had chosen to run

the un-refactored runtime under Groundhog, only 30 LoC (same logic as for the

Python runtime) would need to be added, in addition to a signaling mechanism

with the platform as described in §3.2.5.

We implemented a new OpenWhisk-C-runtime; the baseline required 60 LoC

and the Groundhog version required an additional 21 LoC (same logic as for the

Python runtime). An off-the-shelf cJSON [35] parsing library (2.5K LoC) was also

added.

In general, integrating Groundhog with a FaaS platform that forwards requests to

(and receives results from) the function process through file descriptors would

require changes similar to ours for OpenWhisk. Integrating Groundhog with FaaS

platforms that retrieve requests through an HTTP API can be done by modifying

Groundhog to handle request retrieval and response sending, and by updating the

FaaS runtime to retrieve the request from and send the response to Groundhog.

Alternatively, a signaling mechanism between Groundhog and the FaaS platform

can be implemented as outlined in §3.2.5.
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Hardware Configuration. We ran all experiments on a private cluster hosting

OpenStack/Microstack (ussuri, r233). Each physical host has an Intel Xeon

E5-2667 v2 2-socket, 8-cores/socket processor, 256GB RAM and a 1TB HDD.

OpenWhisk Deployment. We use the standard distributed OpenWhisk deploy-

ment. Our distributed setup comprises 2VMs. One VM runs all OpenWhisk core

components except for the invoker, which runs on a separate VM. The invoker is

the component responsible for starting function containers locally and dispatching

function requests to them; this is the component that interacts with the containers

hosting Groundhog. We choose to isolate the invoker component in a separate

VM to have more control over variables affecting the experiments.

Both VMs are placed on the same physical host to minimize network commu-

nication overhead, creating favorable baseline conditions. To reduce potential

performance interference, we pin the two VMs to separate cores and ensure

that their memory is allocated from the corresponding NUMA domain. VMs are

configured with 64GB RAM and an experiment-dependent number of cores (SMT

turned off). The VMs run Ubuntu 20.04 with a stock Linux kernel v5.4. Open-

Whisk is configured to run all functions with a 2GB RAM limit and a 5-minute

timeout.

Experiment Configurations. To evaluate Groundhog’s overheads, we run two

primary configurations: BASE, an insecure baseline using unmodified OpenWhisk

that does not provide sequential request isolation (we prevent container cold-

starts in our experiments to deliberately create an unfavorable but conservative
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baseline); and GH, which uses Groundhog on OpenWhisk to provide sequential

isolation.

We also run a third configuration GHNOP, which includes Groundhog but does not

restore dirtied pages between consecutive invocations of the same function. This

configuration represents an optimization for the case where consecutive requests

are from the same security domain (through additional hints from the FaaS

platform which can be implemented as described in §3.2.5). The configuration

also helps quantify Groundhog’s page tracking and restoration costs, which is the

difference between the GH and GHNOP configurations.

Lastly, we compare Groundhog to two alternative approaches. First, we im-

plement a fork-based request isolation method, FORK, which is applicable to

single-threaded applications and runtimes only. Next, we compare Groundhog

to FAASM, a research FaaS platform designed to reduce cold-start latencies for

WebAssembly-compatible functions. We detail these alternative approaches in the

respective sections.

3.3.2 Microbenchmarks

In this experiment, we evaluate Groundhog’s impact on request latency and how

that impact varies with the memory size and the number of pages dirtied.11 We

evaluate both the in-function overheads that are on the critical path of function

11We also considered address space fragmentation (same overall address space size but a varying
number of memory maps) as an independent variable, but found that it has no statistically
significant impact on the overhead of GH or FORK.
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Figure 3.3.: Function latencies varying the number of dirtied pages (left) and the address
space size (right). Different colors represent different request isolation methods
(or no isolation for BASE). Solid lines are latencies with in-function overhead
but not restoration overhead, while dashed lines include both. (The lines of
BASE and GHNOP coincide visually in the figure.)

execution, and the restoration overhead which occurs off the critical path. We

defer evaluating Groundhog’s snapshotting overheads, which occur only once

after a new container starts, to §3.3.5.

Microbenchmark. We implement a simple single-threaded function in C that

pre-allocates an address space of a fixed size. Each invocation (a) dirties a subset

of the pages by writing a word to each page of that subset, then (b) reads one

word from each mapped page, even those that were not dirtied. We set up a

4-core VM with a single function-hosting container (this container is limited to

1 core), initialize the container, and then repeatedly invoke the function. We

measure function latencies at the OpenWhisk invoker.

In-Function Overheads

Low-load Workload. We run the microbenchmark with a low load workload

comprising 150 requests submitted one-at-a-time, with a small delay between

consecutive requests. This delay is sufficient for Groundhog to complete restora-

46



tion before the next request arrives, so measurements for the low-load workload

capture only the in-function overheads.

Results. The solid lines in Fig. 3.3 (left) plot function latency as we vary the

number of pages dirtied from 0 to 100K with a fixed 100K mapped pages. As

expected, GH introduces some latency overhead proportional to the number of

dirtied pages. This overhead is due to a minor page fault to set the soft-dirty (SD)

bit when a page is dirtied, which is required by the SD-bit mechanism on our

hardware. In contrast, GHNOP has negligible overhead relative to BASE since the

SD-bits set in the first run are not reset (there is no memory restoration), and

thus, these page faults are not incurred in subsequent runs.

We also ran a variant of the experiment where we fixed the number of dirtied

pages to 1K and varied the address space size from 1K to 100K pages. The solid

lines in Fig. 3.3 (right) show the function latency as we vary the address space

size. We observe that Groundhog’s(GH) overhead is constant with respect to

address space size because the in-function overheads depend only on the number

of dirtied pages, which is fixed in this experiment.

In-function + Restoration Overheads

High-Load Workload. We repeat the two experiments above with a high

load workload comprising 150 requests submitted back-to-back with no delay

between consecutive requests. This leads to additional delays while waiting for

Groundhog to complete restoration after the previous request. In contrast to the

low-load workload, the high-load workload thus reflects both the in-function and

the off-critical-path restoration overheads.
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Results. The dashed lines in Fig. 3.3 (left) show the function latency as we

vary the number of pages dirtied from 0 to 100K with a fixed 100K mapped

pages. We observe higher latency overheads for the high-load workload (dashed

lines) compared to the low-load workload (solid lines), and these overheads grow

linearly as the percentage of dirtied pages increases. There is a change in slope

at 60K because Groundhog is able to coalesce individual page restorations into

fewer, larger memory copy operations, which are more efficient.

Next, we repeat the second experiment variant. Fig. 3.3 (right) shows the function

latency as we vary the address space size from 1K to 100K pages while fixing

the number of dirtied pages to 1K. Although in-function overheads are constant,

restoration overheads in this experiment increase linearly with the address space

size because during restoration Groundhog must scan the SD-bits of the whole

mapped address space to determine the pages to restore.

Comparison to Fork

A potential alternative to our lightweight restoration is to use copy-on-write

techniques such as fork (§3.1.2). Fork is not general purpose – it only works

for single-threaded functions – however, we provide a performance comparison

for the purpose of illustration. We implement fork-based isolation and repeat

the two microbenchmark experiments. In our fork-based implementation, we

initialize the function up to the same point where Groundhog takes its snapshot

(a safe, clean state after a dummy request). Instead of lightweight restoration,

each request is then handled by a separate copy of the process forked at that

state.
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Fig. 3.3 (left) shows the function latency of FORK as we vary the number of pages

dirtied from 0 to 100K with a fixed 100K mapped pages. We observe that the

overhead of FORK is higher than GH because each page fault is significantly more

expensive than for GH, entailing an additional page copy on the critical path.

Fig. 3.3 (right) shows the function latency of FORK as we vary the address space

size from 1K to 100K pages while fixing the number of dirtied pages to 1K. We

see significantly higher overhead for FORK compared to Groundhog, and a linear

increase in latency with the address space size. This increase is predominantly

due to the additional overhead caused by dTLB misses on the first accesses to

each page (even if unmodified) of the new process. The first access of a page

in the new process can additionally require lazy creation of physical page table

entries, depending on the memory layout of the program.

3.3.3 FaaS Benchmarks

In this section, we evaluate Groundhog’s impact on request latency and through-

put for a range of FaaS benchmarks written in three different languages. We first

compare Groundhog to an insecure baseline in OpenWhisk. We then provide

an illustrative comparison to a fork-based implementation and to FAASM, an

alternative WebAssembly-based FaaS platform designed to optimize cold-starts,

but that can also be used for request isolation in limited cases.

Benchmarks. We evaluate 58 functions across three benchmarks and three

languages: 22 Python functions from the pyperformance benchmark [122], 23 C

49



functions from PolyBench/C [76], and 13 functions (6 Python, 7 Node.js) from

the FaaSProfiler benchmark suite [104].

These functions cover a wide variety of real FaaS use cases such as Web applica-

tions, JSON and HTML parsing/conversion, string encoding, data compression,

image processing (2D, 3D), optical character recognition (OCR), sentiment analy-

sis, matrix computations (e.g. multiplication, triangular solvers), and statistical

computations.

Measuring Latency. To measure latency, we deploy a 4-core VM with a single

FaaS function container that is limited to at most one core. In a separate VM on

the same machine,12 a closed-loop client submits requests one-at-a-time. This

workload is similar to the low-load setting from §3.3.2 and enables Groundhog to

complete restoration in between consecutive requests, so latency measurements

reflect Groundhog’s in-function overheads only. We report two latency mea-

surements: the end-to-end latency of requests as experienced by the end-client

(including all FaaS platform delays); and the invoker latency, which measures

only the function execution time at the invoker, excluding overheads of the re-

maining FaaS platform components, which Groundhog does not affect at all. All

measurements are averages of 1,200 invocations, except for C functions longer

than 10 seconds, where we report averages of 90 invocations.

Measuring Throughput. To measure throughput, we deploy a 4-core VM

with 4 function containers in a separate VM that maintains a large number of

in-flight requests (both the number of function containers and in-flight requests

12This placement minimizes network latencies to achieve the best baseline performance and to
allow easy and efficient scheduling of our 608 benchmark configurations on our resources.
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are chosen empirically to maximize throughput). This workload is similar to the

high-load setting from §3.3.2, as it ensures the FaaS platform is always saturated

with requests. Throughput measurements thus account for Groundhog’s full

overheads, including both the in-function and restoration overheads. Unless

otherwise specified, we report the peak sustained throughput in 4 runs, each at

least 1.5 minutes long.

Detailed Measurements. In addition to the figures presented in this section,

full measurement data for our benchmarks can be found in Appendix A. Table

1 shows the absolute latency and throughput measurements for the BASE, GH,

GHNOP, FORK, and FAASM configurations. Table 2 shows the relative overheads

compared to an insecure baseline. Table 3 shows the relation between the latency,

overheads, and throughput of Groundhog.

Comparison to the Baseline

The upper graphs of Fig. 3.4 (rel. E2E lat.) show the relative end-to-end re-

quest latency for all benchmarks. For each benchmark, we normalize the latency

measurements relative to BASE; thus, values <1 indicate better latency than the

baseline and >1 represents worse latency.

We first consider the results for GH and GHNOP . The main takeaway is that GH

overhead on end-to-end latency relative to BASE is low overall. In most cases

it is negligible (within one standard deviation). The median, 95th-percentile

and maximum relative overheads are 1.5%, 7% and 54%, respectively, and the

overhead is below 10.5% in all benchmarks except img-resize(n), where it is

51



0.0

1.0

2.0

rel
. E

2E
 la

t

GHNOP GH fork faasm

ch
ao

s (
p)

log
gin

g (
p)

py
ae

s (
p)

sp
ec

tra
l (

p)
de

lta
blu

e (
p)

go
 (p

)
md

p (
p)

py
fla

te
 (p

)
te

lco
 (p

)
he

xio
m 

(p
)

nb
od

y (
p)

ra
yt

ra
ce

 (p
)

un
pa

ck
_s

eq
 (p

)
fan

nk
uc

h (
p)

jso
n_

du
mp

s (
p)

pic
kle

 (p
)

ric
ha

rd
s (

p)
ve

rsi
on

 (p
)

flo
at

 (p
)

jso
n_

loa
ds

 (p
)

pid
igi

ts 
(p

)
sc

im
ar

k (
p)

pyperformance

0.0

1.0

2.0

re
l. i

nv
. la

t

0.0

1.0

2.0

re
l. 

E2
E 

la
t

2m
m 

(c)
3m

m 
(c)

ad
i (c

)
ata

x (
c)

bic
g (

c)
ch

ole
sk

y (
c)

co
rre

lat
ion

 (c
)

co
va

ria
nc

e (
c)

de
ric

he
 (c

)
do

itg
en

 (c
)

du
rb

in 
(c)

fdt
d-2

d (
c)

flo
yd

-w
ars

ha
ll (

c)
gr

am
sc

hm
idt

 (c
)

he
at-

3d
 (c

)
jac

ob
i-1

d (
c)

jac
ob

i-2
d (

c)
lu 

(c)
lud

cm
p (

c)
mv

t (
c)

nu
ss

ino
v (

c)
se

ide
l-2

d (
c)

tri
so

lv 
(c)

PolyBench

0.0

1.0

2.0

rel
. in

v. 
lat

0.0

0.5

1.0

rel
. E

2E
 la

t

0.0

1.0

rel
. E

2E
 la

t

ge
t-t

im
e (

p)

se
nt

im
en

t (
p)

jso
n (

p)

md
2h

tm
l (p

)

ba
se

64
 (p

)

pr
im

es
 (p

)

FaaSProfiler (python)

0.0

1.0

2.0

re
l. i

nv
. la

t

ge
t-ti

me
 (n

)

au
toc

om
ple

te 
(n)

jso
n (

n)

pri
me

s (
n)

im
g-r

esi
ze 

(n)

ba
se6

4 (
n)

oc
r-im

g (
n)

FaaSProfiler (node)

0.0

1.0

2.0

rel
. in

v. 
lat

Figure 3.4.: Relative end-to-end latency and invoker-measured latency of GH, GHNOP, FORK,
and FAASM compared to the insecure baseline BASE. Figures are capped at 2.5X
the baseline. Detailed numbers are in Appendix A. The symbols (p), (c), and
(n) denote Python, C, and Node.js benchmarks, respectively. Lower numbers
are better.

52



54.2% (discussed in the next paragraphs). The low overhead in most benchmarks

is unsurprising because end-to-end latency measurements include delays within

the FaaS platform that are significant relative to the overhead added by the SD-bit

tracking. These significant platform overheads are the same in the baseline and

Groundhog. Unless otherwise specified, GHNOP’s performance is on par with that of

BASE.

GH overheads are more apparent when we inspect invoker latencies. Fig. 3.4 (rel.

inv. lat) plots the invocation latency for all benchmarks, normalized to BASE. We

observe that for Python and C benchmarks the Groundhog overhead is relatively

low. However, for some specific Node.js benchmarks (Fig. 3.4 (FaaSProfiler

(node)), the overhead is more pronounced, up to 70% in the worst case. This

occurs for two reasons.

First, GH and GHNOP proxy inputs to functions, which causes additional overheads

for some of the Node.js functions with large inputs such as json and img-resize

(which take inputs of 200kB and 76kB, respectively). This cost arises due to our

refactoring of OpenWhisk’s Node.js runtime wrapper to follow the actionloop-

proxy design. This relative overhead can be reduced by integrating Groundhog

with the original single-process version of OpenWhisk Node.js.

Second, Node.js has a time-dependent behavior in garbage collection; namely,

garbage collection can be triggered by the passage of time. Snapshotting and

restoration can adversely affect this behavior because restoration reverts the

garbage collection state. The impact of this garbage collection was particularly

pronounced on some benchmarks such as img-resize (n). There are several

ways to tackle ths problem. For instance, time inputs could be virtualized such
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that the process restoration resets the time to the original time of the snapshot.

Another approach would be to modify the garbage collection behavior to be

time-independent. This problem is actually a broader problem in the space of

snapshot and restore techniques, where data (in this case, the timestamp) can

become stale by the time a restoration happens. A comprehensive treatment of

this problem is beyond the scope of Groundhog.13

Surprisingly, GH is faster than BASE on the pyperformance benchmark logging

(p). We discovered that this occurred due to a memory leak in the function’s

original implementation, causing it to slow down with repeated invocations. GH’s

restoration rolls back the leaked memory, thus avoiding the slowdown.

Fig. 3.5 shows the request throughput for all benchmarks, normalized to BASE.

Since functions are invoked sequentially, the throughput of GH relative to BASE

should be inversely proportional to GH’s relative invoker overhead, which is

roughly 1 + (in-function overhead + restoration overhead)/(baseline invoker

latency). Our observations are consistent with this calculation: The throughput

plots in Fig. 3.5 show the reciprocal of this calculation above each benchmark,

and the heights of the GH bars are approximately equal to this value, as expected.

For 40 out of 51 C/Python benchmarks the GH throughput is within 10% of BASE.

It is up to 50% lower on the remaining, mostly very short benchmarks.

On Node.js benchmarks, where GH’s relative invoker latencies can be very high

(as explained above), GH’s throughput is between 2% and 86% less than BASE’s.

13This maintained state in the Node.js runtime does not impact confidentiality or correctness
but affects performance. In Chapter 4, we propose CtxTainter, a tool that aids developers in
detecting flows that span multiple FaaS requests. Runtime developers/providers who wish to
ensure their language runtimes are stateless could also employ the same approach.
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GH’s Node.js restoration overheads tend to be higher than other runtimes as

Node.js’s runtime performs aggressive memory layout changes14 (see Fig. 3.8

for the restoration overheads of selected benchmarks). Across all benchmarks,

the median and 95th-percentile throughput reductions are 2.5% and 49.6%,

respectively.

Comparison to Fork

We also provide a comparison to the FORK alternative described in §3.3.2. Recall

that fork only applies to single-threaded functions; thus, we cannot provide

measurements for the Node.js runtime.

Fig. 3.4 also plots results for FORK for single-threaded benchmarks. The latency

overhead of GH is slightly less than that of FORK since GH’s page faults are lighter

than those of FORK (FORK’s page faults also require page copying, while GH’s page

faults only set a SD-bit each).

Fig. 3.5 shows that the throughput of FORK follows a similar rule to that of

GH. When compared to GH, FORK’s throughput is similar on all but very short

benchmarks, where GH’s throughput is noticeably higher than FORK’s.

Comparison to Request Isolation using Faasm

A potential alternative to Groundhog’s process-based request isolation is to

implement request isolation in the language runtime. To illustrate the perfor-

mance trade-offs of the two approaches, we compare Groundhog to FAASM [106],

14A less aggressive Node.js runtime would incur lower overheads.
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Figure 3.6.: Restoration duration (off the critical path) of GH, and FAASM. The symbols (p)
and (c) denote Python and C.

a state-of-the art FaaS platform where functions are isolated from each other

not using OS containers but by compiling them to WebAssembly, and relying on

spatial isolation within WebAssembly’s runtime. FAASM is designed to reduce FaaS

cold-start latencies, but it can be used for efficient request isolation: WebAssembly

limits each function to a contiguous 4GB memory map, which FAASM can quickly
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restore simply by a copy-on-write remapping after each request. Note that FAASM

is not a fully general solution to the request isolation problem since it places

restrictions on the functions – most notably, they must compile to WebAssembly.

FAASM comes with its own FaaS platform, which is significantly different from

OpenWhisk. Despite the differences in the platforms, which make a direct com-

parison difficult, we compare Groundhog and FAASM for completeness. For the

comparison, we use the pyperformance and PolyBench/C benchmarks, both of

which can be compiled to WebAssembly as demonstrated in [106]. We rely on

FAASM’s microbenchmarking infrastructure that reports both the overall latency

(end-to-end and invoker) and the restoration (reset) cost.

Fig. 3.4 shows latencies for FAASM next to those for GH. On most pyperformance

benchmarks, the latency of FAASM is considerably higher than that of GH, whereas

the restoration time is comparable (Fig. 3.6). This is because the Python inter-

preter and runtime are less efficient when compiled to WebAssembly (which

FAASM uses) compared to a natively compiled interpreter (which GH uses).

On PolyBench functions, FAASM’s latencies are generally lower than those of

GH. However, GH’s poorer relative performance is not because of Groundhog’s

overheads. Rather, WebAssembly’s runtime is specifically optimized for program

patterns that occur in PolyBench, so WebAssembly compiled PolyBench outper-

forms natively compiled PolyBench even in the baseline. (This observation has

been noted in prior work [106, 47, 54].)

The same trends continue to manifest in throughput measurements, where FAASM

has lower throughput than GH on most pyperformance functions, and higher
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Figure 3.7.: Throughput scaling with number of cores. Error bars (minute) represent the
standard deviation across 6 runs.

throughput than GH on most PolyBench functions. We omit the detailed through-

put comparison from the discussion as the results entangle many variables with

the isolation mechanism, such as the differences in the platforms’ internal com-

ponents and the runtimes (native vs WebAssembly). However, for reference, the

numbers can be found in Appendix A.

Overall, the performance differences between FAASM and GH are dominated by

differences between native and WebAssembly compilation rather than request

isolation costs.

Throughput scaling with cores

We expect GH’s throughput to scale linearly with cores as each core can run

a completely independent container instance with its own function and Ground-

hog copy. To confirm this, we repeat the throughput experiment above, varying

the number of cores available to the VM from 1 to 4 (and an equal number of

function container instances, each limited to 1 core). Fig. 3.7 shows absolute
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throughputs as a function of the number of available cores for a subset of 14

representative benchmarks of varying durations, number of mapped pages, and

number of dirtied pages. Reported numbers are sustained throughputs averaged

over 6 runs of at least 1.5 minutes each (excluding a warm-up). Error bars are

standard deviations (which were minimal) over the 6 runs. As expected, the

scaling is nearly linear in all cases. We expect this nearly-linear trend to continue

beyond 4 cores until a bottleneck in the kernel or memory buses arises.

3.3.4 Deconstructing restoration overheads

0 20 40 60 80 100
Relative restoration time (%)
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Figure 3.8.: Restoration overhead (deconstructed) and the one-time snapshotting overhead
for a subset of benchmarks.

60



Groundhog restoration involves several steps that we outlined in §3.2.4. In this

section we break down the cost of restoration for 14 representative benchmarks

with varying durations, number of mapped pages, and number of dirtied pages.

The overall restoration cost breaks down into the following components:

interrupting the function process.

reading the process’ memory mapped regions

scanning all mapped pages to identify which are dirtied

diffing the memory layout to identify how it has changed

restoring the original memory layout by injecting syscalls (brk, mmap, mun-

map, madvise, and mprotect)

restoring the contents of modified and removed pages

restoring registers

resetting the soft-dirty bits of all modified pages

detaching from the process

Each of these costs depends on different factors. The costs of interrupting,

restoring registers, and detaching are functions of the number of threads in

the process. The costs of reading, scanning, diffing the memory layout, and

resetting soft-dirty bits are functions of the address space size and layout. The

syscall injection cost depends on the number of memory layout changes and is

heavily dependent on the language runtime. Lastly, the cost of restoring the

contents of pages depends on the number of pages dirtied or unmapped during

an invocation.

Fig. 3.8 shows these costs normalized to the total restoration cost for our 14

representative functions shown in the throughput scaling experiment. For each
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benchmark, we also detail the absolute restoration time, the number of pages, and

the time for Groundhog to take its initial snapshot. (We revisit the snapshotting

overhead in §3.3.5.) In particular, we note that the memory restoration cost ( )

is strongly correlated with the total number of pages restored. Similarly, the time

spent scanning page metadata ( ) is strongly correlated with the total number

of pages. (As discussed in §3.2.3, optimizations can make the costs correlate to

the number of dirtied pages instead.)

3.3.5 Snapshotting overhead

The rightmost column of Fig. 3.8 outlines Groundhog’s snapshotting latency

overhead for the same 14 functions that we used in the throughput scaling

experiment. Recall that snapshotting is a one-time operation that occurs upon

container initialization. It involves pausing the process, copying the process’s state

to Groundhog’s manager process memory, and resuming the process. Snapshotting

requires scanning the memory layout of the process and copying its memory.

The time and memory costs are primarily proportional to the total number of

paged memory pages. The snapshotting latency overhead can be alleviated using

techniques that reduce cold start latencies (Catalyzer [37], REAP [118], FaaSnap

[9], Replayable [124], Prebaking [108], Pagurus [67]) by checkpointing the

initialized Groundhog process along with the function’s process. Groundhog’s

memory overhead could be easily reduced to be proportional to the number of

dirtied memory pages. The reduction of the memory overhead comes at the cost

of a one-time on-critical-path copy-on-write per unique modified page. Since
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snapshotting is an infrequent operation in Groundhog, we have not attempted

these optimizations.

3.3.6 Dummy Requests
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Groundhog optimizes for the on-critical path latency and chooses to take a

snapshot after a dummy request is processed to allow high-level languages to

trigger lazy paging, lazy class loading and any application-level initialization of

global state, and to capture these in the snapshot. Snapshotting without a dummy
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request would cause these relatively expensive operations to be re-executed after

every state restoration, which would increase the latency of subsequent function

activations. This is particularly relevant when the function runs in an interpreted

runtime like Python or Node.js, which heavily rely on lazy loading of classes

and libraries [73]. On a representative set of benchmarks, Fig. 3.9 shows that

most benchmarks benefit in terms of latency when the snapshot captures the

function’s state after a dummy request. However, taking a snapshot after the

dummy invocation can lead to increased restoration costs in some cases if the

language runtime aggressively modifies the memory layout.

3.4 Related work

Fork-based request isolation A standard technique for request isolation in ser-

vices, not FaaS specifically, is to fork a clean state to serve every request. For

example, the Apache web server [10], using the default Apache Prefork MPM,

uses this approach to isolate client sessions from each other. The same idea

can be used for request isolation in FaaS. However, fork() does not work with

multithreaded functions or runtimes without extensive modifications to prepare

all threads for a consistent snapshot [37]. Even for single-threaded functions, a

fork-based approach is less performant than Groundhog (see §3.3) due to the

high cost of forking a new process and the page-copying faults on the critical

path for all written pages. The cost of fork itself can be reduced using lighter

process-like abstractions such as lightweight contexts (lwCs) [74], but this does

not reduce the cost of page copying on the critical path.
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Advances in reducing container cold-start latencies Reducing container cold-

start latencies is an active area of research. Several techniques have been pro-

posed, including maintaining pre-warmed idle containers for a function [8, 12],

maintaining a pool of containers that can be repurposed [84, 111], maintaining

partially initialized runtimes with loaded libraries as in SOCK [88], relaxing

isolation between functions by allowing functions from the same app developer

to share containers (SAND [4], Azure [82]), and starting from slim container

images and adding non-essential functions only when needed (CNTR [115]).

These techniques do not provide request isolation, the problem that Groundhog

targets, but they can be combined with Groundhog to solve the cold-start latency

and the request isolation problems simultaneously.

Other methods of reducing cold-start latencies rely on snapshotting and restora-

tion, which Groundhog also uses. Replayable [124], making use of the phased

nature of runtime initialization, proposed lowering cold-start latencies by snap-

shotting after the initialization phase and then starting cold invocations from this

snapshot. In principle, this approach can also be used for request isolation by

starting each invocation from such a snapshot. However, existing snapshot/re-

store techniques have overheads that can be orders of magnitude higher than

those of Groundhog because they start a new execution environment for each

request rather than reuse an existing clean environment as Groundhog does.

Snapshotting techniques based on CRIU [31, 26, 120, 30, 98] serialize snapshots

to persistent storage and are insufficient for request isolation due to the high

overhead of deserialization during restoration, which is on the order of seconds.
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CRIU-based techniques that store snapshots in memory lower this overhead, but

not sufficiently. For example, VAS-CRIU [121] treats the address space as a

first-class OS primitive, allowing an address space to be attached to any process.

However, container restoration time is still on the order of ~0.5s. SEUSS [23]

takes a unikernel approach, building a customized VM for each function where

everything runs in kernel space. SEUSS allows incremental snapshots to jump-

start functions. However, SEUSS (and VAS-CRIU) rely on copy-on-write, thus

increasing the in-function latency, like the fork-based approach.

Catalyzer [37] trades function-start latency for in-function latency using a lazy

restoration that incurs page faults. REAP [118] reduces the cost of these page

faults by eagerly pre-fetching pages that were part of the active working set of the

function in the past. However, overall function latencies after a restoration are still

high: For a simple hello-world function that executes in 1ms without restoration,

Catalyzer and REAP latencies with restoration are 232ms and 60ms, respectively.

In contrast, Groundhog can restore a C hello world function in ~0.5 ms and an

equivalent Python function in ~1.7 ms off the critical path. Systems such as

Catalyzer [37] offer a warm-boot configuration that clones a running function

instance by sharing its base-EPT memory mappings on a CoW basis. Warm boot

configurations, if used for request isolation (i.e. a clone is created to handle each

request), will have a fork-like performance profile.

FaaSnap [9] performs a different optimization – it enhances the pre-fetching of

pages. For instance, it does concurrent prefetching while the VM is loading, and

fetches pages in the approximate order of loading such that pages have a higher

chance of being fetched by the time the function needs them. These optimizations
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further reduce the latency of cold starts by 1.4x relative to a baseline without the

optimizations. Nonetheless, overheads are high: The restoration of a simple hello

world in FaaSnap takes as much time as it does in REAP.

Cloudflare Workers [29], Faastly [41, 117], and FAASM [106] solve the cold-

start problem by relying on software-fault isolation (SFI) using V8 isolates and

WebAssembly [127]. Here, several function spaces – called Faaslets in FAASM–

are packed into a single running process, relying on SFI to isolate them from

each other. Obtaining a fresh Faaslet for a function invocation amounts to

remapping an unused Faaslet’s heap to a previously checkpointed, pre-warmed

state of the function, on a copy-on-write basis. WebAssembly limits the heap to a

contiguous 4GB region, so this remapping is fast and effectively solves the cold-

start problem. The FAASM paper notes that the same idea can be used for efficient

request isolation by applying the remapping between requests. We compared

the performance of this request isolation approach to that of Groundhog in

Figure 3.3.3. Unlike Groundhog, this technique is limited to languages, runtimes,

and threading models that can be compiled to WebAssembly.

3.5 Summary

Groundhog builds an efficient in-memory process state snapshot and restore

facility to provide sequential request isolation in FaaS platforms. Groundhog’s

design is agnostic to the FaaS platform, OS kernel, programming languages,

runtimes, and libraries used to write functions. Groundhog overheads on end-to-
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end latency and throughput are modest, and lower than what could be achieved

by repurposing state-of-the art techniques for solving the container cold-start

problem to provide sequential request isolation.
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CtxTainter:

Analyzing Statelessness

4

In FaaS, or any composable system, different components agree on and implement

a contract to ensure that they can securely and correctly interact with one another.

The FaaS paradigm, as currently implemented by commercial platform providers,

expects functions to be stateless. As discussed earlier in §1.1, statelessness allows

providers to safely implement performance optimizations without the need to

take any special measures for ensuring the confidentiality and the correctness

properties at the level of individual activations of a function, but rather at the

level of function instances.

While developers may try to design and implement stateless functions, bugs in

a function’s implementation — or a third-party library/runtime it depends on —

may cause a leak of information from one activation of the function to a subse-

quent one, violating the FaaS confidentiality contract. Similarly, the correctness

contract is violated if functions rely on off-the-shelf third-party libraries/runtimes

that were not developed with statelessness in mind because the state might

be retained for correctness reasons. This retained state may be manipulated

by common platform optimizations such as execution environment reuse and
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rapid execution environment provisioning by cloning running or checkpointed

instances.1

This chapter introduces CtxTainter, our proposed tool that assists developers in

analyzing statelessness by detecting flows of data that cross a request context

boundary. CtxTainter extends standard Dynamic Data Flow Analysis (DDFA)

techniques[48, 49] with the ability to reason about request contexts and identify

and report data flows that span multiple request contexts. As opposed to standard

request-boundary-agnostic DDFA techniques, CtxTainter can be used by develop-

ers in scenarios where simultaneously reasoning about data flows and request

context boundaries is needed, as in the case of FaaS.

CtxTainter’s ability to track the interaction of data flows with request context

boundaries can assist developers in writing functions that meet the contract’s

statelessness specifications by allowing developers to identify correctness-critical

1In addition to the traditional use of checkpoint and restoration techniques in debugging and
fault-tolerance [110, 112, 51, 59, 96, 116, 130, 43, 63, 57, 107, 94, 123, 24], migrating
applications [91, 77, 31] and intermittent computing [119, 79], C/R is now commonly used
in modern cloud offerings, like FaaS, for accelerating function starts and rapid function
out-scaling [7, 22, 37, 118, 9, 106]. Some FaaS providers checkpoint initialized function
environments and reuse the checkpointed state to rapidly start new instances. If the functions
are not stateless, such reuse of initialized state might break intended data flows or introduce
undesired flows that cross a request context boundary, thus changing function semantics and
potentially breaking correctness (and, in some cases, subsequently confidentiality and integrity
[22]). For instance, pseudo-random number generators (PRNGs) need to maintain state to
be able to generate seemingly fresh random numbers. If the checkpoint is taken after the
PRNG is initialized (seeded), then the stream of random numbers will be the same after each
restoration to the checkpoint. Correctness (and potentially security) problems arising from
the interplay between PRNGs and C/R techniques have been thoroughly discussed in [22].
This correctness problem is an instance of a class of problems arising due to caching data
from a source of per-context freshness (described in §2.2.1) and reusing the cached data in
subsequent request contexts. Other manifestations of this problem can be seen in any function
that relies on chained behavior (such as counters) where the chaining spans multiple request
contexts. Similarly, the problem manifests with the use of successive timestamps to measure
elapsed time (if a C/R operation separates the timestamps), or with the temporary caching of
data that is otherwise assumed to be refreshed with every new environment initialization.
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flows that cross the request context boundary and refactor the code to eliminate

them at development time. Similarly, If the provider supports only instance-level

isolation and does not enforce sequential request isolation, then CtxTainter can

also be used to help identify confidentiality-critical flows that live beyond a request

context and help the developer ensure data confidentiality. However, this is not

CtxTainter’s intended use-case as discussed in §2.4.

4.1 Design Preliminaries

As discussed in Chapter 2, we abstract FaaS functions to a set of data flows, each

capturing the life cycle of a data item from the data source throughout the read,

transform, and write operations it passes through until the data item reaches a

sink. Some of these data flows arise and conclude within a single request context,

thus having no bearing on the function’s contract with the provider. Data flows

that span multiple request contexts are the ones that can jeopardize meeting the

contract. To help the developer meet the contract, flows that cross the request

boundary must be detected and reported to the developer.

The goal of CtxTainter is to 1 detect as many data flows as possible that cross the

request context boundary and report them to the developer for detailed inspection.

2 support developers in debugging violations by providing full data flow traces

for developer-specified sources of interest. 3 Once the developer has indicated a

source of interest, CtxTainter should be able to run the analysis without requiring

the developer to further annotate or instrument their code.
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4.1.1 Design Dimensions

Building a data flow analysis tool that fulfills the aforementioned goals requires

making design decisions along three main dimensions. The first dimension is

the broad data flow analysis approach, whether the analysis should be done

statically or dynamically. Second, the abstraction level at which the analysis

operates, whether at the source code, at an intermediate representation, or at

the machine code level. Finally, how precise should the analysis be, as there is

usually a trade-off between the precision and speed of the analysis. Next, we

explore these dimensions and discuss our design decisions.

Data Flow Analysis Approaches

There are several standard approaches for analyzing data flows [36, 48, 49, 100,

50, 99, 16, 101]. At their core, they share a simple idea, sources of data are

monitored. When data is introduced through one of these sources (c.f. §2.2.1), a

label is attached to the data, and the label is propagated with the data through all

read, write, and transform steps that involve the data item. Eventually, the data

may reach outputs of interest (sinks, c.f. §2.2.2). A policy determines whether

the flow of any given data item to a given sink is valid. The policy uses the

label of the data item and reports invalid flows to the developer or to a system

administrator. Data flow analysis can be done statically, dynamically, or through

hybrid approaches. Here, we focus on the broad static and dynamic approaches.

Static approaches use static analysis tools such as the industry-standard CodeQL

[42] and PySa [40] tools, which build data flow graphs of the program based on a
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reachability analysis without the need to run the program. Being able to perform

the analysis without the need to run the program makes static analysis-based

approaches a low-cost option for scanning programs for bugs and vulnerabilities.

However, static analysis tools cannot accurately detect dynamically resolved data

flows without explicit hints/annotations from the developer, especially in dynamic

languages like Python or JavaScript – two of the most common languages in the

FaaS paradigm [32].

Dynamic data flow analysis tools [113, 62, 28, 25, 101, 85], on the other hand,

track the flow of the data in the program as it executes, making it more capable of

capturing flows that go through dynamically resolved execution paths. Dynamic

data flow analysis typically involves instrumenting the code or the runtime to

record the flow of data or using a debugger to step through the program execution

steps and observe the values of variables and how they change over time. While

dynamic data flow analysis is more precise, it can only detect problematic flows

in paths that have been executed – If there is a bug/problem in an unexplored

path, it will not be detected.

Both static and dynamic data flow analysis systems are commonly used to detect

(and prevent) vulnerabilities. In such scenarios, they aim to ensure that sensitive

data introduced by unsafe sources do not reach potentially vulnerable sinks. For

example, raw user input may be considered an unsafe source of data; thus, should

not be trusted to be directly passed to a database query engine. Once the unsafe

raw user input is received, a label is attached to it (marking the variable holding

the data as tainted) to prevent it from reaching a potentially vulnerable sink,

such as a database query API. If the tainted raw user input reaches a function
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that creates the code of a database query, then there is a risk of a code injection

vulnerability. Data flow analysis systems also introduce functionality to drop the

taint off of the data. For instance, if the raw user input goes through a function

that sanitizes the input, then the resulting data is endorsed (i.e. its taint is dropped)

and the sanitized input can be safely consumed by the sinks. To summarize, data

flow analysis systems track data from sources, apply the propagation rules (one of

which is endorsement) till the data reaches the sinks where the taint is evaluated.

CtxTainter checks a simple policy: A flow to a sink is valid if and only if it does not

cross a request context boundary. No existing framework provides all the required

machinery to allow accurate identification of data flows that cross a request

context boundary. For FaaS, building a tool on top of dynamic data flow analysis

is reasonable because most functions are written in dynamic languages which

are more accurately analyzed by dynamic rather than static analysis techniques.

Moreover, adding the reasoning about request contexts is simpler in DDFA tools

as the request context boundary will be encountered during the execution, and

information about this boundary can be easily extracted.

Execution Metadata Extraction

Performing data flow analysis requires identifying the relations between the

different program constructs and variables. This step of extracting metadata can

be done on the source-code (the abstract syntax tree (AST)), the intermediate

representation (e.g. byte Code), or the machine code. Doing the data flow analysis

at each abstraction level has its advantages and disadvantages. For development
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and debugging support purposes, the analysis is typically done at the source-code

level as the source-code is readily available and the data flow results can be

directly mapped to locations in the source code.

One of the important data flow analysis techniques that allows for identifying

the relationship between the program’s variables is the construction of variable

relation sets. In its simplest form, this technique requires (1) identifying the

operands and destination (if any) of each statement, and (2) deciding whether

the operation would result in data being propagated from each operand to the

destination or not. (1) is generally known in the literature [48, 49, 101, 81,

66] as the DEF/USE (or DEF/Ref) sets of the statement, where DEF refers to the

def initions of new or re-assigned variables and USE (or Ref) refers to the usage

(or referencing) of data from a source or from previously defined variables; (2) is

known as applying the propagation rules.

For compiled languages, it is possible to construct the DEF/USE sets of the variables

statically at compile time. However, for dynamic languages, which are typically

used in FaaS, the effectiveness of static analysis tools is limited due to the dynamic

features of the languages [129].

When considering dynamic data flow analysis, there are two broad ways to extract

the data from the execution: 1 By instrumenting the interpreter and augmenting

it with data structures to maintain additional metadata (like taint) about the data

items processed [61, 80], or 2 by injecting hooks into the runtime allowing

data collection at vantage points within the execution. Such hooks can be set

up through a debugging library [129, 66], or through code-rewriting to wrap

operations of interest to call the hooks that collect the metadata [38].
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CtxTainter collects data through a debugger interface hook. Relying on the

debugger interface hooks allows the metadata extraction logic to be concise

and well-contained in one module rather than scattered across the interpreter

implementation, which facilitates extending and enhancing the logic or applying

it to other programming languages. Moreover, the debugger interface should be

stable against changes to the interpreter implementation, thus avoiding long-term

maintenance costs. Additionally, the debugging interface typically provides rich

enough information about the executed statement and provides a view into the

interpreter state, which is sufficient to collect all required metadata.

Analysis Precision

There are several design aspects that influence the precision of data flow analyses.

These include context-, flow-, object-, field-, and path-sensitivity, or any combina-

tion of them [109, 86, 16]. Context-sensitivity differentiates taints from different

function calls of the same function definition, flow-sensitivity distinguishes the

taints associated with the same variable at each assignment, object-sensitivity

distinguishes different instances of the same class, field-sensitivity distinguishes

between the fields of the same object, and path-sensitivity takes into considera-

tions the variable(s) that decide the control flow when analyzing the different

branches. There is a correlation between sensitivity and accuracy. If we give up

on sensitivity along one or more dimensions, we get a simpler and faster tool, but

we increase the possibility of reporting more false positives.
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To minimize false positives, we choose to make CtxTainter’s analysis context-,

flow-, object-, and field-sensitive. Our analysis is not path-sensitive, which means

that implicit information flows that arise from the evaluation of conditional

branch predicates will not influence the labels/taints assigned to DEFs of different

branches. Path-insensitivity in the case of CtxTainter is tolerable since the most

important state (such as keys, passwords, user profile information, PRNG state,

etc. ) would be retained in variables that cross request boundaries through direct

flows and not through implicit flows.

Because CtxTainter does not need to be path-sensitive, the taint of variables that

are part of a conditional predicate does not need to be propagated to all DEFs that

are assigned in the conditional branches. However, adding such support should

be straightforward [16] if a use-case calls for it.

4.1.2 Assumptions

The FaaS platform, including the platform software, OS kernels, hypervisors, and

platform services are trusted. Function implementations provided by tenants,

including any libraries they link and the language runtimes that are not marked

for analysis are assumed to be stateless.

Any source code that is marked for analysis is not trusted and may contain bugs

that retain state, violating the FaaS statelessness assumption. CtxTainter’s analysis

reports individual execution steps that handle data flows from previous request

contexts and optionally provides full traces of flows that stem from sources

marked for full-trace reporting. For data flows that pass through functions that
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are part of trusted libraries, CtxTainter assumes that the functions’ returns only

depend on the passed arguments.

When all of these assumptions hold, CtxTainter’s design allows for a sound

analysis of direct data flows on the executed paths. However, if one or more of the

aforementioned assumptions do not hold, then CtxTainter becomes a best-effort

aid for detecting data flows that cross a request context boundary.

4.2 Design and Implementation

This section provides an incremental description of the design of CtxTainter.

Although CtxTainter’s design is applicable to various dynamic programming

languages such as Python, Ruby, and JavaScript, we adopt the terminology of the

Python programming language in this thesis2.

4.2.1 Overview

CtxTainter’s design consists of three components, each responsible for one of

the three phases of CtxTainter’s operation. The three components/phases are 1

Preparation: Static source-code normalization and AST-metadata extraction, 2

Online: Execution of the code in a test environment and metadata collection, and

3 Offline: Data traces analysis.

2Python, being the most commonly used language for Function-as-a-Service (FaaS) [32], was
chosen for implementing CtxTainter’s proof of concept.
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The preparation phase takes as an input the source code that will be subject

to analysis. In this phase, the source code undergoes static transformations

to simplify the subsequent phases. The source code transformation linearizes

nested expressions, simplifies complex constructs, and transforms the code to its

equivalent Single Static Assignment (SSA) form (whenever possible). Additionally,

in this phase, the AST of each module is stored, and metadata about the source

code structure is extracted and stored to assist in identifying the binding scope of

variables referenced during the subsequent phases of CtxTainter.3

Next, the online phase invokes the FaaS function with developer-provided test

inputs in a debugging environment that collects the relevant runtime metadata

during the execution. This debugging environment relies on the language’s

debugging library (sys.settrace() in the case of Python), which is instructed

to invoke a debugging hook before each statement is executed. The debugging

interface provides the hook with information about the current statement as well

as access to the interpreter’s current frame object (which contains information on

all visible variables). The hook then statically extracts the DEFs/USEs of the current

statement by looking up the AST statement (available from the preparation phase)

that corresponds to the statement to be executed. The hook assigns each DEF a

unique identifier4 based on its static and dynamic occurrence in the code and the

execution, respectively. Similarly, the hook resolves the USEs to their earlier DEFs

3The preparation phase is mostly based on PolyCruise’s [66] version of the PyPredictor [129]
normalization module. CtxTainter extends the reused component to additionally extract
information about the code structure and thereby allow precise variable scoping in the
subsequent phases.

4Constructing a unique identifier for each DEF is crucial for context-sensitivity because at the
time of resolving a USE, the tool must be able to precisely identify the DEF based on the
variable-binding context and the language resolution rules.
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by applying the language’s variable resolution rules. Finally, the hook also labels

each DEF with the request context it appeared in, attaches taint to all variables

consuming data from the developer-specified sources of interest (and propagates

the taint downstream to all dependent variables), outputs information on all USEs

that depend on DEFs defined in previous request contexts, and stores traces of all

statements that handle tainted data (coming from developer-specified sources of

interest).5

Finally, the offline analysis performs a form of dynamic program slicing [27,

125] by consuming the output traces from the online phase, then building a

dependency graph that captures the DEF-USE chains of tainted variables that stem

from a developer-specified source and reach a developer-specified sink. This

dependency graph is then analyzed to identify flows that span multiple request

contexts, and finally, the tool outputs the execution trace to facilitate debugging.

Next, we describe the technical design details that enable CtxTainter’s analysis.

4.2.2 Inputs and Outputs

The inputs to the analysis are:

• The source code to be analyzed. This includes the source code of the

function and all untrusted libraries.

5Our implementation of the online phase is based on the dynamic data flow tracking framework
introduced by PolyCruise[66] and PyPredictor[129]. CtxTainter extracts a lot of additional
information to allow the analysis to be object- and field-sensitive and makes the analysis aware
of request contexts.
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• The function call that marks the beginning of a new request (i.e. the entry

point of the FaaS function).

• Optionally, sources (and sinks) of interest.

The outputs of the analysis are:

• All incidents involving statements that depend on data stemming from a

previous request context.6

• A full trace of all statements that appear in each flow that starts at a

developer-marked source of interest, crosses a request context boundary,

and ends at a sink of interest.

In addition to the main analysis outputs, the preparation phase outputs the

normalized source code as well as the following mappings7 (the relevance of

which will become apparent in the next subsection):

• Normalized source code line number -> Original source code line number

(to facilitate mapping the normalized code to the original source code)

• Normalized source code line number -> AST representation (to enable

extracting the DEFs and USEs during the online phase)

• Normalized source code line number -> Enclosing function/class definition

line number (to allow detecting variables scopes)

6The dependency on data introduced in a previous request context might cause confidentiality
and/or correctness violations. All such incidents are reported by default, even if the developer
does not specify sources/sinks of interest.

7The first two mappings are already emitted by PolyCruise[66], the third mapping, from the
normalized source code line number to the enclosing function/class definition line number, is
introduced by CtxTainter.
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4.2.3 Metadata Extraction

At its core, CtxTainter’s analysis constructs global DEF-USE chains for all variables

encountered during the execution of the program. DEFs and USEs are data holders

that are assigned (DEF) or used/referenced (USE) during the execution. Because

FaaS platforms handle requests one at a time (§3.1.1), it is easy to identify where

a request context change happens in the DEF-USE chains.

While conceptually very simple, to construct accurate8 DEF-USE chains we need to

accurately and uniquely identify each DEF and be able to reliably resolve its USEs

to it.

Uniquely identifying DEFs CtxTainter’s reliance on the debugging interface

means that CtxTainter is allowed to inspect the statement before it is executed.

This means that the DEF of the statement is not yet present in the interpreter’s

state. CtxTainter differentiates between two types of DEFs: scope-accessible and

global-accessible.

Scope-accessible DEFs require information about the scope from which they are

accessible. The accessibility scope of these DEFs is determined by their location in

the code (static), and the call stack frame at which they are DEFined (dynamic).9

Consequently, scope-accessible DEFs are uniquely identified by their static scope

in the form “module.(class|function)*.NAME" along with a dynamic unique call

stack frame ID.

8By accurate, we mean that the analysis is context-, flow-, object-, and field-sensitive.

9Context-sensitivity requires differentiating between the same variable DEFinitions that are
introduced in different function calls.
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Globally-accessible DEFs, on the other hand, are object attributes (e.g. module-

bound variables, class (static) variables, instance variables, ....) that can be

accessed from any code location in the program through an object reference and

an attribute. Consequently, globally-accessible DEFs are uniquely identified by

the object reference and the field name. In Python, a global DEF that is assigned

within a non-global scope (e.g. a function) must be declared with keywords that

indicate the scope binding [95]. DEFs that are bound globally at the module level

must be declared “global". Similarly, DEFs that are to be bound to the nearest

enclosing function scope, must be declared with the “nonlocal" keyword.

Mapping USEs to DEFs The unique identification rules for DEFs apply to USEs

as well. Additionally, and in contrast to DEFs, when USEing variables that are

not defined in the current scope, the Python interpreter does not require explicit

variable qualification using the global or nonlocal keywords; instead, the Python

interpreter automatically resolves the USE according to the LEGB rule.10 CtxTainter

follows the same scope resolution rules to be able to map USEs to DEFs. Specifically,

CtxTainter’s online phase maintains information about the scope at which each

DEF was defined. This is done by maintaining a set of globally DEFined variables

as well as a set of DEFined variables for each frame on the call stack.

10The LEGB acronym stands for Local, Enclosing, Global, and Built-in scopes [64, 95].
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4.2.4 Request Contexts and Taint Tracking

To detect data flows that cross a request context boundary, CtxTainter needs

to maintain information on the context at which a variable was last written

(DEFined). Accordingly, CtxTainter classifies each DEFined variable into one of

three sets: The initialization set, the previous requests contexts set, and the current

request context set. The initialization set contains all DEFs that are encountered

before the first request’s input is read. The previous requests contexts set contains

all DEFs encountered after reading the first request’s input and before reading

the current request’s input. Finally, the current request context set contains all

DEFs encountered since the current request’s input was read. These three sets are

maintained for globally-scoped DEFs and for the locally-scoped per-stack-frame

DEFs.

To additionally maintain information on data stemming from developer-specified

sources of interest, the maintained sets are converted to hash maps that store a

taint boolean to indicate that a particular variable stems from a tainted source of

interest. Throughout the program execution, a DEF will be tainted if it directly

reads data from a tainted source or a tainted USE. (See §4.2.5 for the detailed

taint propagation rules.)

In summary, the final data structures maintained are:

• Three sets of global hashmaps for the initialization, previous, and current

globally-accessible DEFs of the corresponding request contexts.
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• Three sets of per-stack-frame hashmaps for the initialization, previous, and

current scope-accessible DEFs of the corresponding request contexts.

Once the execution starts, encountered DEFs are always added to the “current"

hashmap of the corresponding accessibility level (global/local). On the first

encounter of the function that marks the beginning of a new request context,

all DEFs in the current request context hashmap are moved to the initialization

hashmap. Subsequent encounters of the function that marks the beginning of a

new request context will move the DEFs from the current request context to the

previous requests context hashmap.

4.2.5 Taint Propagation Rules

As described in 4.2.4, one of CtxTainter’s features that facilitates debugging is

tracking and reporting full execution traces of correctness- and confidentiality-

critical flows that stem from a developer-specified source of interest. To do

that, CtxTainter attaches a taint to the returns of the input functions of interest

specified by the developer and propagates that taint throughout the DEF-USE

chains. Accordingly, newly defined DEFs will become tainted if they consume data

held by a tainted USE. There are four cases for the forward propagation of taint

from USEs to DEFs:

• A statement with a DEF and one or more USEs: If one of the USEs is tainted,

then the DEF gets tainted.
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• A call to an instrumented function with one or more passed arguments: If a

passed argument is tainted, then the corresponding formal argument gets

tainted.

• A return from an instrumented function: If the return is tainted, then the

DEF at the call site gets tainted.

• A call to a non-instrumented function: The DEF at the call site is tainted if

any of the passed arguments is tainted.

4.2.6 Detecting Boundary-Crossing Flows

A data flow that crosses a request context boundary is identified if a USEed variable

is not found in the current request context’s global or per-stack-frame hashmaps

but is found in the previous request contexts’ corresponding hashmaps.

Detected data flows that cross the request context boundary indicate that the

function does not honor the statelessness requirement of the FaaS contract and

is retaining data across requests. This retained data may be confidentiality- or

correctness-critical, and could jeopardize the end-client’s confidentiality if no

request-isolation enforcement mechanism (such as Groundhog) is in place. Simi-

larly, correctness may be in jeopardy if the FaaS platform performs optimizations

that assume statelessness of functions.
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4.2.7 Reconstructing Violating Flows

CtxTainter’s offline analysis phase consumes the DEF/USE metadata of all instruc-

tions that handled tainted data during the online phase. From this, it constructs a

dependency graph represented as an adjacency matrix. The graph nodes represent

DEFs, and edges represent dependencies (if graph[i][j] is set, it means that the

variable represented by the node in rowi depends on the variable represented

by the node in columnj). In a standard dependency graph, a variable occupies

only one row; as the execution proceeds, the bits in a variable’s row represent the

variable’s current dependencies.

CtxTainter builds the dependency graph differently, as a continuously expanding

adjacency matrix – at every execution step, the assigned variable is placed in a

new row, even if it has already been assigned earlier. As a result, the dependency

graph captures the entire history and order of dependencies between variables

(flow-sensitivity), not just the current status.

Once the dependency graph is built, request contexts are represented in adjacent

rows and columns in the matrix. Similarly, developer-specified sources and sinks

of interest are mapped to nodes on the dependency graph (i.e. matrix indexes).

Identifying violations is done by simple bounds check on the dependencies of

each DEF; if a DEF has a dependency in an index that belongs to a previous request

context, then this DEF marks the point at which the data flow crosses the request

boundary. For each such detected violation, a simple graph traversal starting at

the violation finds the provenance of the violation and the downstream flows

toward developer-specified sinks. The reconstructed data flow is then a candidate
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for reporting to the developer as it stems from a source (and optionally reaches a

sink) specified by the developer.

4.2.8 Limitations

The current design and implementation of CtxTainter suffers from some limita-

tions. First, CtxTainter assumes that non-instrumented functions (that are part

of non-instrumented third-party/native libraries) will only pass the taint from

the arguments to the return. This assumption might lead to false negatives. One

way to address this limitation is to mark all standard language libraries as part of

the code-base that is subject to analysis and instrument native libraries to track

taint.

Second, CtxTainter simplifies the tracking of collection data structures (lists,

dictionaries, and sets) by maintaining a single taint for the whole data structure.

If the data structures holds variables of primitive data types (int, char, etc. ), then

false positives may arise. If, however, the data structure holds objects, then there

will be no false positives because the fields of the objects will be identified by

the object reference and field name rather than the collection’s object reference.

Support for per-index taint for collection-like data structures could be added at

the cost of increased space consumption.

Finally, analyzing compute-intensive loops would result in slowdowns that would

increase the duration of the analysis, leading to developers waiting for more than

a few seconds for the analysis to finish. Similarly, if these compute-intensive

loops handled tainted variables, there would be a fast growth in the number
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of emitted DEF/USE metadata chains. This limitation can be overcome through

optimizations that detect the presence of such compute-intensive loops and enable

coarse-grained tracking for them at the cost of reduced precision.

4.3 Implementation

We implement CtxTainter as an extension of standard dynamic data flow analysis.

CtxTainter implements a novel analysis that utilizes the same information readily

utilized by the taint-propagation components of DDFA tools. Concretely, CtxTain-

ter builds on PolyCruise [66], a state-of-the-art cross-language data flow analysis

tool.11

We chose PolyCruise because it has a modular design and decomposes the dy-

namic data flow taint analysis into two independent phases. The first phase is

source-code translation, where the source code is transformed into a language-

independent symbolic representation (LISR) that captures the DEF/USE sets of

each relevant execution step. In the second phase, a language-agnostic data

flow analysis engine analyzes the emitted DEF/USE sets. By separating these two

phases, PolyCruise is able to perform data flow analysis on flows of data that

span different programming languages by implementing the first phase for each

language of interest. For the Python programming language, PolyCruise relies

on PyPredictor [129] for transforming the Python source code into its equivalent

11Similar DDFA tools could have also been used as a base.
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Single Static Assignment (SSA), which is then directly mapped to its LISR during

runtime (by interrupting each instruction via sys.settrace()).

CtxTainter utilizes the Python source code translation component from PolyCruise

and builds a new analysis engine. Although PolyCruise’s engine is only execution-

context- and flow-sensitive, CtxTainter’s engine, in addition to being request

context aware, is also execution-context-, flow-, object-, and field-sensitive.
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4.4 Evaluation

In this section, we assess how well CtxTainter aids developers in reasoning about

data flows that span multiple request contexts. We aim to answer the following

questions:

1. How effective is CtxTainter in detecting data flows that cross a request

context boundary? (Are there false negatives?)

2. How precise is CtxTainter’s analysis? (Are there false positives?)

Throughout this section, we will highlight the capabilities (and limitations) of

CtxTainter by showcasing various scenarios where CtxTainter is able (or unable)

to detect data flows that cross a request context boundary. We also show the

effort required from the developer to use CtxTainter on ready-to-deploy FaaS

functions.

To understand CtxTainter’s effectiveness in detecting data flows that cross the

request context boundary, we handcrafted 10 test cases that use various features

of the Python programming language to inject data flows that cross the request

context boundary and can lead to confidentiality and/or correctness violations.

To report on CtxTainter’s precision, we analyze all Python functions that are part

of Groundhog’s evaluation along with the third-party libraries they rely on and

report on the flows that cross the request context boundary as well as any false

positives encountered.
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4.4.1 Handcrafted examples

In high-level programming languages that do not generally allow direct memory

access via mutable pointers, data flows that cross a request context boundary

must happen through global state. This global state may be set and read through

global variables, static/class variables, and object fields. To give an intuition of

how such flows can manifest, we present a detailed walkthrough of one of the

handcrafted examples (Example 1 below) that shows a data flow through a global

variable. We then briefly discuss a second example in which data flows across a

request context boundary through both static variables and object fields.

While detecting request-context-crossing data flows is conceptually simple, the

challenge is in tracking flows through the language features that eventually lead

to global state tainting. In our handcrafted examples (listed below), we cover a

sizeable subset of the Python language’s main features.

• P1: A global variable assigned in one request context and read in a subse-

quent one.

• P2: Time measurements, where an initial timestamp is taken in a request

context and used for comparison in a subsequent one.

• P3: A variable assigned in a conditional branch and read in a subsequent

request context that does not re-assign the variable first.

• P4: An internal state of a library is maintained and updated over multiple

requests. (In this case, a PRNG python library holds the latest state to

generate a new pseudo-random number.)
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• P5: Accumulating end-client inputs (primitive data types) into lists/dic-

tionaries/sets, but reading only the data item that was written in the current

request context.

• P6: Accumulating end-client inputs (objects with fields) into lists/dictionar-

ies/sets, but reading only the data item that was written in the current

request context.

• P7: Passing confidential data through a non-instrumented library.

• P8: Passing data derived from tainted sources through recursive function

calls.

• P9: Passing data derived from tainted sources through functions that rely

on Python’s polymorphism for resolving the target function.

• P10: Passing data derived from tainted sources through nested Python

classes and nested functions.

Example 1

1 var = 0
2 def process (data ):
3 global var
4 tmp = var
5 var = data
6 return tmp
7 def main_handler ( params ):
8 return process ( params )
9 if __name__ == ’__main__ ’:

10 while (True ):
11 print ( main_handler ( input ()))

Listing 4.1: P1: Confidential inputs of each request is leaked to the subsequent one
through a global variable.
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1 import builtins
2 v1 = 0
3 var = v1
4 def process (data )):
5 global var
6 tmp = var
7 var = data
8 return tmp
9 def main_handler ( params ):

10 v2 = process ( params )
11 return v2
12 v4 = ’__main__ ’
13 v3 = (name == v4)
14 if v3:
15 while True:
16 v5 = input ()# <------source
17 v6 = main_handler (v5)
18 print (v6)# <------sink

Listing 4.2: A represention of the unwanted data flow happening in Listing 4.1 after the
SSA transformation. In one request, confidential data from input() in line
#16 (marked “source") flows along the green path to the variable “var". In a
later request, that data flows along the red path from “var" to the output in
line #18 (marked "sink").

In this sample program, input() is a source of interest that will return tainted

data that must be fully tracked, and the sink is any data that is passed to the

function print(). The main handler (Lines 7-8) calls a buggy function process

that leaks the passed data to a global variable. This global variable is read during

the subsequent call to the process function and returned. The function call

input() defines the request boundary. To detect the flow that crosses the request

boundary, we run CtxTainter on P1.

First, the example source code in Listing 4.1 is normalized during the preparation

phase to be in the form shown in Listing 4.2. Next, the online phase runs the

normalized P1 under the debugging interface where CtxTainter’s hook is called
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v1 . . . . . . . . . . . . . . . . . .
var 1 . . . . . . . . . . . . . . . . .
v4 . . . . . . . . . . . . . . . . . .
v3 . . 1 . . . . . . . . . . . . . . .
v5 . . . . . . . . . . . . . . . . . .
params . . . . 1 . . . . . . . . . . . . .
data . . . . . 1 . . . . . . . . . . . .
tmp . 1 . . . . . . . . . . . . . . . .
var . . . . . . 1 . . . . . . . . . . .
v2 . . . . . . . 1 . . . . . . . . . .
v6 (sink) . . . . . . . . . 1 . . . . . . . .
v5 . . . . . . . . . . . . . . . . . .
params . . . . . . . . . . . 1 . . . . . .
data . . . . . . . . . . . . 1 . . . . .
tmp . . . . . . . . 1 . . . . . . . . .
var . . . . . . . . . . . . . 1 . . . .
v2 . . . . . . . . . . . . . . 1 . . .
v6 (sink) . . . . . . . . . . . . . . . . 1 .

Table 4.1.: CtxTainter’s dependency graph (adjacency matrix) for Listing 4.2. Different
shades of gray represent different request contexts.

before each statement. CtxTainter extracts the DEFs/USEs from each statement and

keeps track of the request context they appeared in as well as their accessibility

scope. CtxTainter propagates the taint forward according to the propagation rules

outlined in §4.2.5 and outputs a trace of all the statements (with the collected

metadata) referencing tainted USEs. Finally, the offline phase consumes the output

trace and constructs the flows that show how the leak happened, as we explain

next.
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For explanation purposes, Table 4.1 was generated using a special configuration

that instructs CtxTainter to output and builds the dependency matrix for all

executed statements instead of only outputting the statements that are part of

data flows stemming from the developer-marked source of interest.

In Table 4.1, we see two boundary-crossing. A red colored cell represents the first

read that causes data stemming from a source of interest to leak into a subsequent

request context. The red-colored edges (set bits) collectively represent a flow

starting from a specified source of interest and reaching a sink (with a marked

border). Similarly, an Orange colored cell represents the first read of data in a

flow that stems from non-sensitive initialization data that was assigned before the

first request context, and all orange-colored edges collectively represent a flow

starting from non-confidential data and reaching a sink (with a marked border).

CtxTainter outputs the flows in the form of a chain of <variable:LineNumber>

tuples, with the variable that crossed the request context marked. The red flow

is outputted as: v5:16 -> params:9 -> data:4 -> var:7 =» tmp:6 =» v2:10 ->

v6:17, while the orange flow is outputted12 as: v1:2 -> var:3 =» tmp:6 =» v2:10

-> v6:17.

Example 2
In this example (Listing 4.4), we have a program that takes a student name as an

input and generates a unique random student ID based on the population count

and a randomly generated number. The PRNG implementation snippet shown in

Listing 4.3 is taken from [68].

12Because the orange flow handles initialization data rather than data stemming from a previous
request context, it is not emitted by default (Unless requested by the developer)
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1 import numpy
2 class PRNG( object ):
3 """ Base class for any Pseudo - Random Number Generator ."""
4 def __init__ (self , X0 =0):
5 """ Create a new PRNG with seed X0."""
6 self.X0 = X0
7 self.X = X0
8 self.t = 0
9 self.max = 0

10 ....
11 class LCG(PRNG ):
12 """A simple linear congruential
13 Pseudo - Random Number Generator ."""
14 def __init__ (self , seed =0, m = 2**31 -1 , a = 7**4 , c = 0):
15 """ Create a new PRNG with seed X0."""
16 super (). __init__ (X0=seed)
17 self.m = self.max = m
18 self.a = a
19 self.c = c
20
21 def __next__ (self ):
22 """ Produce a next value and return it ,
23 following the recurrence equation :
24 X_{t+1} = (a X_t + c) mod m."""
25 self.t += 1
26 x = self.X
27 self.X = (self.a * self.X + self.c) % self.m
28 return x

Listing 4.3: A snippet from the PRNG library [68].

1 from PRNG import LCG
2 class Person :
3 population = get_population_from_db ()
4 prng = LCG(seed =12011993 + population )
5 def __init__ (self , name ):
6 self.name = name
7 Person . population += 1
8 class Student ( Person ):
9 def __init__ (self , name ):

10 super (). __init__ (name)
11 self.id = str(self. population + self.prng. randint ())
12 if __name__ == ’__main__ ’:
13 while (True ):
14 s = Student ( input ())
15 print (s.name , s.id)

Listing 4.4: P4: Correctness-critical state is retained (by object fields in the PRNG library
and by a class/static variable of the Person class) and used accross request
contexts.
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Upon Initialization, the function refreshes the population counts from a remote

server and seeds a pseudo-random number generator before handling any request.

In the shown snippet, each request updates the population count and generates

a new student ID based on the updated population count and a pseudo-random

number.

For this example, CtxTainter reports multiple statements that read data written in

a previous request context. Namely,

• Person.population at Person.init:7

• t at LCG.__next__:25

• X at LCG.__next__:26

• X at LCG.__next__:27

None of the statements stem from a developer-specified source that should be

fully tracked. Accordingly, CtxTainter reports only the statements that reads

data from a previous request context rather than the full trace. Note that self.a,

self.c, and self.m in LCG.__next__:27 are detected as flows that stem from the

initialization and thus are not reported by default.

Results

We ran CtxTainter on all hand-crafted examples (P1-P10). We confirmed that all

relevant flows were reported (i.e. there were no false negatives). However, a false

positive was reported in the case of P5 because CtxTainter currently accumulates

the taint of all data inserted into a collection data structure, which is a known
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limitation when primitive data types are added to collections (see §4.2.8). Note

that this does not affect P6, because CtxTainter is field-sensitive, and attaches

taints to the object fields and not the object references.

4.4.2 Benchmark examples

While we do not claim that CtxTainter supports the full Python Programming

language syntax, it does support a relatively large set of it as demonstrated

by the analysis of generic Python benchmarks.13 We ran CtxTainter on all the

Python functions that are part of the Groundhog evaluation, including all the

third-party libraries they rely on. Out of 28 benchmarks, two benchmarks were

not fully analyzed. The sentiment-analysis benchmark was not analyzed due to

a bug in the source-code translation logic in one of the PolyCruise components.

Additionally, the pyperf-mdp benchmark has compute-intensive loops, thereby

slowing the processing of the benchmark when run under CtxTainter’s taint

tracking. The majority of the 26 successfully analyzed benchmarks were analyzed

by CtxTainter in less than a minute (median: 19s, max: 40h:27m). We leave

runtime optimizations to future work (discussed in §5.1.2).

In all benchmarks, we mark the function that reads the request inputs as the

request context boundary and as a source of interest.

13CtxTainter supports the subset of the python programming language that is generated by the
SSA normalization step of PolyCruise/PyPredictor
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Results

On the 26/28 successfully analyzed pyperformance and FaaSProfiler benchmarks,

no tainted data leaks across request context boundaries were detected. This

was expected because the majority of the benchmarks only take an input to

control how compute-intensive the benchmark should be; this input is then

eventually used in a loop guard, which does not taint DEFs introduced in the loop

body because, as discussed in §4.1.1, our FaaS-focused analysis does not need

path-senstivity.

In two benchmarks (pyperf-go and pyperf-richards), CtxTainter reported 11

unique data flow violations where a data flow crossed the request context bound-

ary. All occurrences of the 11 violations were true positives, and the code was

manually inspected to verify that there was a variable update in one request con-

text and that the updated state was accessed in the subsequent request context.

CtxTainter did not report any false positives.

The 11 unique data flow patterns that CtxTainter reported were as follow: In

pyperf-go, 6 execution paths involved reading one of two global variables. Both

global variables were updated in a request context and later read in a subsequent

one. On the other hand, pyperf-richards maintains a global object that has

multiple fields, some of which are nested objects. CtxTainter reported 5 execution

paths that involved reading one of the attributes of the global object or of one of

its nested objects that had an attribute updated in one request context and later

read in a subsequent one.
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While the loss of the state maintained via the reported data flows might not

be detrimental to the correctness of the benchmarks, similar patterns in other

FaaS functions might result in impaired functionality or data loss if the FaaS

provider decides to employ optimizations that assume that functions are stateless.

Such optimizations include directly terminating the function after each request,

bootstrapping multiple function instances by cloning existing functions, or request-

isolation that involves function-state-rollback as in Groundhog.

4.5 Related Work

While Data Flow Analysis (DFA) can be used to analyze the source code of

functions and assist developers in tracking data flows and understanding them,

existing tools focus on vulnerability detection and are geared towards finding

flows from sources (usually confidential or untrusted input) to sinks (usually pub-

lic outputs or critical APIs) without any notion of request boundaries. CtxTainter

extends DFA techniques to make them request-aware. In the rest of this chapter,

we discuss the different general analysis techniques and why they are insufficient

for analyzing statlessness. Finally, we discuss the information flow analysis trends

in FaaS and how CtxTainter contrasts with them.

4.5.1 Static Analysis

Static analysis tools analyze the source code of an application and build data

flow graphs without running the application, providing a cheap way for scanning
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the application for bugs/vulnerabilities. Industry-standard static analysis tools

such as [42, 40] are optimized for security vulnerability detection and must make

approximations that lead to false positives, false negatives, or both. Indeed, it

is not possible for a static analyzer to accurately detect all flows of information

that will be dynamically resolved (at runtime) without explicit hints from the

developer, more so in dynamic languages that are the norm for FaaS applications

[32].

4.5.2 Dynamic Analysis

Dynamic analysis tools [113, 62, 28, 25, 101, 85, 66, 61] are able to precisely

capture data flows, even for dynamically resolved variables. On the other hand,

they are limited to the execution paths that are exercised during testing. For

CtxTainter, as a tool that aids developers, relying on dynamic analysis is an

acceptable compromise, as most functions are (1) written in dynamic languages,

and are (2) designed to perform one functionality, so the code path exercised is

likely similar for all requests.

In contrast to static analysis, dynamic analysis makes it easier to reason about

different instances of (calls to) the same data source, which can be easily expanded

by CtxTainter to reason about flows spanning multiple request contexts.
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4.5.3 Hybrid approaches

Hybrid approaches such as concolic execution [44, 103, 102] rely on symbolic

execution [58], which analyzes the program to identify the dependencies between

program symbols. These dependencies can be used to build the program’s control

flow graph (CFG). The CFG can then be used to derive expressions that can

be used to generate inputs that exercise various execution paths and then run

the program under dynamic analysis with fresh inputs generated to cover the

execution paths. This approach augments dynamic analysis by improving its

path coverage. Extending CtxTainter with a symbolic execution pass to enhance

coverage is left as future work.

4.5.4 Verification

A verifiably stateless function trivially does not have boundary-crossing flows and

will, therefore, meet its contract. Additionally, it will not leak data even if the

provider does not enforce sequential request isolation (e.g. through Groundhog).

However, current methods of formal verification require expert knowledge of

special theorem proving tools [20, 87], a huge investment of time [65, 60], and

more research is required to enable robust support for dynamic languages. Hence,

relying on assistive best-effort analysis tools like CtxTainter is a much more viable

alternative.
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4.5.5 Information flow in FaaS

Most existing work on information flow analysis in FaaS has been done at the

granularity of the FaaS function (the functionality and deployment unit), where

the goal is to prevent control flow hijacking by passing information between func-

tions in an unintended order, as in SecLambda [55] and Alastor [34]. Systems

such as Valve [33] propagate taint over the network across workflows to capture

inter-function security violations. SCIFFS [93] enables information flow tracking

of confidential FaaS when the data propagates to third-party security analytics

platforms. These systems all focus on leaks that happen through channels out-

side the execution environment. CtxTainter, on the other hand, focuses on the

orthogonal problem of intra-function data flows that arise due to the re-use of the

execution environment among mutually distrusting end-clients. A secure FaaS

offering should have mechanisms to prevent both intra- and inter-function data

leaks, and CtxTainter (and/or Groundhog) can be augmented with inter-function

data flow tracking tools to prevent both kinds of leaks.

Distributed tracing aims to track data flows that belong to a request within a

distributed system to analyze correlated events across different components. Dis-

tributed tracing systems propagate request-critical information along the request

execution path within the system’s components (as in baggage contexts [78]).

Like standard data flow tracking, distributed tracing propagates relevant infor-

mation within an execution environment and additionally propagates selected

information across environments, so a request context encapsulates a single

request across multiple components. CtxTainter, on the other hand, is limited
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to a single execution environment but analyzes data flows across sequential

requests.

4.6 Conclusion

This chapter presented CtxTainter, a system that assists developers in identifying

flows of data that cross the request context boundary, thus helping a function

developer meet their side of the FaaS contract.

CtxTainter can also be used as a standalone sequential request isolation tool that

assists developers in identifying confidentiality-critical flows of data that cross a

request context boundary.
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Conclusion and Future

Work

5

The Function-as-a-Service (FaaS) model provides a simplified programming model

for developing inherently scalable event-driven applications. The FaaS model

allows tenants to state their application logic in the form of functions without

managing the underlying infrastructure that runs and scales their applications.

FaaS providers are responsible for deploying and executing the tenants’ func-

tions, provisioning and replicating functions as workload demand fluctuates, and

maintaining and multiplexing the hardware and software infrastructure across

different tenants and functions.

Current FaaS providers ensure the confidentiality of tenants’ data by isolating

function instances from one another. While such isolation suffices for ensuring

confidentially and correctness properties for stateless functions, a function’s state-

lessness cannot be trivially guaranteed or verified, especially for functions that

rely on third-party libraries and runtimes that may have bugs or may have been

developed originally for stateful paradigms. As a result, sequential requests that

activate the same function instance may be at risk of confidentiality breaches

because bugs in the function’s code or in a third-party library it relies on could
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expose data from one request to a subsequent one. Moreover, optimizations that

reuse an instance’s state jeopardize the function’s correctness because such opti-

mizations can introduce unintended data flows between sequential requests.

This thesis presented two complementary systems: Groundhog and CtxTainter.

Groundhog is a black-box and programming-language agnostic solution that

enforces confidentiality by design. Groundhog efficiently rolls back changes to a

function’s state after each function activation, effectively breaking all data flows

at the request boundary. CtxTainter is a development-phase dynamic data flow

analysis tool that detects data flows that cross a request context boundary and

reports them to the developer for auditing.

5.1 Future Work

5.1.1 Groundhog

The current Groundhog prototype is built using standard Linux Kernel facilities.

Groundhog allows retrofitting existing production systems with request isolation

without the need for kernel patching. That said, Groundhog can benefit from

local optimizations that can improve the efficiency of the memory snapshotting,

tracking, and restoration operations. Additionally, global optimizations at the

platform/host level would allow Groundhog to operate with lower resource

consumption.
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Local Optimizations

A custom dirty-page tracking facility Groundhog’s prototype relies on the

standard Linux Kernel soft-dirty bits (SD) tracking [71]. SD bits provide a

simple and clean interface for memory modification tracking but suffers two main

limitations. First, the absence of tracking granularity control: SD does not provide

knobs for setting the tracking granularity: either all process pages are tracked or

none. Second, there is no interface to retrieve the set of pages that have been

modified. Instead, the whole mapped address space must be scanned to identify

the modified pages.

One way to address this limitation would be to use an approach similar to

Linux’s user-space fault-tracking file descriptor (UFFD) [72] that does not suffer

from these problems. UFFD allows fine-grained tracking control and sends fault

notifications of modified pages to the userspace for handling. However, the

IOCTL-based notification mechanism has significantly higher overhead compared

to SD-bits due to the frequent context switches to user space for fault handling.

Relying on a custom in-kernel facility that allows the application to specify the

regions to be tracked (as in UFFD) and additionally request a list of modified

pages asynchronously would be probably more efficient. A similar facility was

implemented by James Litton [75] for anonymous memory mappings and showed

promising throughput improvements over standard SD-bits.

Hot memory regions With better control over the memory tracking, hot

memory regions that are modified as part of each request can be detected and

excluded from the tracking and be always restored after each request.
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Global Optimizations

A production FaaS platform that retrofits Groundhog can enable scheduling

optimizations that further reduce the customer-perceived impact of restoring

containers to a clean state. For instance, sequential requests from the same end-

client trust domain can be forwarded to the same function instance without the

need to roll back the state of the previous invocation. Similarly, Groundhog-aware

scheduling optimizations (similar to the optimizations described in [2]) can be

applied for applications that invoke multiple functions in a workflow/sequence

such that resources can be directed towards function instances that will be invoked

first.

Another optimization would be to run Groundhog as part of the container/VM

management system, thereby allowing Groundhog to consolidate and deduplicate

the memory snapshots of all function instances on the same host. However, this

optimization carries the risk of introducing new performance bottlenecks that are

not present in the current design.
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5.1.2 CtxTainter

CtxTainter tracks data flows that cross a request context boundary by means

of dynamic taint tracking. The nature of dynamic taint tracking, as part of a

forward execution of the source code, makes forward tracing of data flows easy.

To that end, CtxTainter allows developers to specify sources of data that will be

fully traced. Complete flow traces that show the position of a violation on the

trace are easy to audit and fix. Additionally, CtxTainter reports all instances of

boundary-crossing data movements, even if the upstream source of data is not

marked for tracking by the developer. These reported boundary-crossing data

movements serve as a hint for the developer to investigate the data flow and

decide whether to deem such flow safe or not. In some cases, the developer may

need support in the form of tracing the data movement operation backward to

the data source that introduced it. Backward tracing is not trivial, as it requires

information that was not collected during the execution of the program.

To support backward tracing, one can record all execution traces, but that is not

feasible from a computational and storage point of view. Programs can perform

millions of memory reads/writes per second, and the overhead of tracking the

dependencies and flow provenance in such scenarios is very high. To combat the

explosion in the storage requirement, one can rely on coarse-grained tracking that

records high-level dependencies for debugging purposes. For instance, detailed

dependencies captured within a function call can be discarded on the function’s

return, and only the dependencies between the outputs and the inputs get main-

tained. Similarly, recording the dependencies within a loop can be skipped, and

a compact dependency summary can be added once the loop concludes. Such
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optimizations can enable full tracing of all data flows at a lower computational

cost.

Another approach to support backward tracing would be to re-execute the source

code, instructing the dynamic tracing to record all traces for the N execution steps

preceding the execution step that resulted in a boundary-crossing data movement.

This can be easily achieved by means of execution step counting and the use of

deterministic program inputs during testing.
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Appendix





Detailed Groundhog results
A

E2E
Latency(ms)

Invoker
Latency(ms) T’put(req/s)

E2E
Latency(ms)

Invoker
Latency(ms) T’put(req/s)

E2E
Latency(ms)

Invoker
Latency(ms) T’put(req/s)

E2E
Latency(ms)

Invoker
Latency(ms) T’put(req/s)

base
GHGHNOPfork
faasm

chaos(p)

688 ±143

689 ±116
690 ±105

1235 ±18

691 ±111
649 ±86

649 ±54
651 ±64

1201 ±13

652 ±39
6.03
5.985.812.99

5.94

logging(p)

1288 ±657

1319 ±648
260 ±73
383 ±12

259 ±68
1249 ±653

1282 ±646
224 ±4.8
345 ±2.6

228 ±5.2
0.00
0.0015.69.69

16.3

pyaes(p)

4707 ±99

4734 ±100
4715 ±98
8721 ±85

4788 ±93
4672 ±64

4699 ±65
4678 ±53
8559 ±73

4751 ±61
0.82
0.810.810.40

0.80

spectral(p)

631 ±84

636 ±92
638 ±83

1367 ±18

642 ±87
593 ±9.9

599 ±16
602 ±13

1323 ±5.1

605 ±14
6.45
6.526.242.62

6.40

base
GHGHNOPfork
faasm

deltablue(p)

48.4 ±56

47.0 ±34
53.0 ±55

150 ±5.8

50.3 ±52
20.4 ±1.6

20.7 ±2.0
22.1 ±1.9

129 ±2.1

21.3 ±2.0
158
15584.724.4

140 go(p)

631 ±92

633 ±80
634 ±84

1014 ±14

637 ±110
593 ±6.6

598 ±5.8
596 ±6.4
982 ±4.9

597 ±5.7
6.48
6.446.243.51

6.42 mdp(p)

6377 ±88

6395 ±103
6419 ±98

12422 ±105

6444 ±99
6346 ±64

6362 ±82
6387 ±81

12295 ±82

6412 ±82
0.59
0.580.580.24

0.58

pyflate(p)

1636 ±76

1645 ±69
1663 ±92
2780 ±30

1660 ±74
1600 ±16

1611 ±16
1623 ±11
2644 ±5.6

1623 ±13
2.39
2.382.321.26

2.34

base
GHGHNOPfork
faasm

telco(p)

191 ±98

192 ±93
189 ±71
332 ±9.9

191 ±73
156 ±3.8

158 ±3.1
157 ±3.6
315 ±0.7

158 ±3.0
25.0
24.523.411.3

23.8

hexiom(p)

254 ±85

251 ±79
255 ±72
495 ±10

254 ±84
218 ±4.2

218 ±2.9
220 ±3.7
467 ±1.6

219 ±4.0
17.4
17.416.07.60

17.3
nbody(p)

2859 ±96

2869 ±90
2882 ±98
5471 ±38

2881 ±103
2824 ±69

2835 ±55
2847 ±60
5361 ±26

2845 ±53
1.34
1.341.330.63

1.34

raytrace(p)

2496 ±107

2494 ±80
2490 ±73
4070 ±38

2500 ±96
2459 ±67

2460 ±47
2458 ±44
4001 ±40

2464 ±51
1.58
1.571.560.83

1.57

base
GHGHNOPfork
faasm

unpack_seq(p)

28.3 ±21

28.4 ±22
34.1 ±16

123 ±4.8

29.6 ±17
3.33 ±1.2

3.44 ±1.4
7.71 ±5.7

103 ±0.4

5.03 ±2.1
802
83613629.6

398

fannkuch(p)

29.7 ±25

29.0 ±16
38.4 ±67

125 ±5.2

31.8 ±26
4.59 ±1.2

4.70 ±1.5
8.56 ±5.5

105 ±1.1

6.13 ±2.0
572
55713229.1

350

json_dumps(p)

567 ±76

586 ±101
580 ±105
939 ±14

586 ±86
533 ±6.0

549 ±8.2
541 ±6.8
900 ±5.1

551 ±9.9
7.19
7.116.863.94

6.95

pickle(p)

139 ±80

139 ±69
139 ±61
210 ±6.8

140 ±109
106 ±1.9

105 ±1.8
107 ±2.2
184 ±1.2

106 ±2.1
35.5
35.432.717.6

35.0

base
GHGHNOPfork
faasm

richards(p)

387 ±77

391 ±112
396 ±81
636 ±11

385 ±87
353 ±4.6

353 ±6.2
360 ±6.2
607 ±19

351 ±4.4
10.7
10.610.25.86

10.8

version(p)

28.2 ±23

27.9 ±27
32.3 ±22
11.0 ±0.8

29.8 ±28
3.07 ±1.6

3.03 ±1.2
6.81 ±3.8
3.89 ±0.0

4.05 ±1.5
990
925265254

563 float(p)

57.3 ±65

56.2 ±51
62.9 ±69

162 ±5.7

57.9 ±56
27.1 ±1.9

27.1 ±1.9
29.3 ±2.0

141 ±1.3

27.9 ±1.9
126
12573.922.5
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json_loads(p)

135 ±82

136 ±73
139 ±80
286 ±8.5

136 ±70
102 ±1.9

103 ±2.1
104 ±2.2
252 ±2.2

103 ±2.1
36.5
36.330.713.2

35.3

base
GHGHNOPfork
faasm

pidigits(p)

2380 ±71

2376 ±44
2385 ±59
7224 ±44

2380 ±56
2348 ±5.8

2347 ±5.6
2353 ±6.9
6994 ±16

2349 ±6.5
1.64
1.641.620.47

1.63

scimark(p)

1848 ±79

1838 ±85
1868 ±77
3513 ±25

1841 ±75
1813 ±31

1801 ±28
1833 ±23
3482 ±5.9

1807 ±28
2.12
2.142.100.97

2.12

2mm(c)

27390 ±1548

28147 ±1908
28274 ±2212
24181 ±2903

28963 ±1715
27236 ±1544

28065 ±1906
28183 ±2193
20590 ±2777

28887 ±1712
0.12
0.130.110.14

0.10 3mm(c)

45948 ±1849

47007 ±2714
45736 ±2720
38270 ±3312

46901 ±2476
45729 ±1717

46929 ±2716
45661 ±2720
31627 ±2653

46824 ±2473
0.07
0.070.060.09

0.06

base
GHGHNOPfork
faasm

adi(c)

28470 ±1117

29088 ±1156
28257 ±1621
24456 ±2525

28941 ±1226
28311 ±923

29011 ±1152
28173 ±1602
19504 ±1178

28858 ±1216
0.12
0.110.120.15

0.12 atax(c)
68.7 ±64

70.6 ±75
70.4 ±75
30.3 ±2.0

68.4 ±65
36.5 ±1.6

36.5 ±1.7
36.7 ±1.6
22.2 ±0.8

36.8 ±2.0
93.5
93.191.5118

92.0 bicg(c)

75.9 ±75

75.7 ±75
75.5 ±71
34.4 ±2.2

77.1 ±80
42.8 ±1.9

42.7 ±1.8
43.3 ±2.0
25.9 ±0.7

43.2 ±2.0
81.0
80.679.3105

79.9

cholesky(c)

166285 ±9224

177333 ±8313
170728 ±11479
140259 ±21552

175803 ±8275
166183 ±9209

177223 ±8310
170629 ±11483
112430 ±8753

175692 ±8256
0.02
0.020.020.02

0.02

base
GHGHNOPfork
faasm

correlatio(c)

32509 ±694

34142 ±1038
32964 ±987
25082 ±3381

34406 ±1122
32430 ±693

34056 ±1029
32869 ±957
19377 ±4334

34329 ±1118
0.10
0.100.100.14

0.09

covariance(c)

33092 ±496

34858 ±942
33715 ±1191
24674 ±3531

35055 ±1081
33021 ±495

34776 ±948
33641 ±1189
17964 ±4700

34971 ±1084
0.10
0.100.100.15

0.10

deriche(c)

1148 ±108

1119 ±112
1146 ±114
919 ±76

1148 ±104
1115 ±86

1086 ±90
1114 ±86
674 ±18

1115 ±77
4.47
4.344.504.26

4.43

doitgen(c)

691 ±101

688 ±118
694 ±102
677 ±10

691 ±94
651 ±15

646 ±13
652 ±15
662 ±1.6

650 ±15
5.98
6.015.955.55

5.96

base
GHGHNOPfork
faasm

durbin(c)

33.1 ±27

32.0 ±19
34.0 ±34
9.57 ±1.1

33.5 ±41
7.64 ±1.4

7.65 ±1.1
7.98 ±1.4
5.43 ±0.0

8.03 ±1.5
315
325318326

296

fdtd-2d(c)

2210 ±62

2216 ±69
2209 ±60
2856 ±24

2213 ±58
2179 ±24

2185 ±22
2176 ±21
2695 ±12

2183 ±20
0.89
0.890.890.87

0.89

floyd-wars(c)

21225 ±42

21248 ±110
21234 ±66
23356 ±165

21243 ±39
21151 ±39

21158 ±44
21158 ±57
21840 ±35

21171 ±37
0.17
0.170.170.11

0.17

gramschmid(c)

61227 ±6114

62882 ±3330
62591 ±1577
45304 ±2867

65076 ±2157
60900 ±6020

62799 ±3331
62507 ±1570
44627 ±2702

64980 ±2151
0.06
0.060.050.07

0.05

base
GHGHNOPfork
faasm

heat-3d(c)

3088 ±95

3090 ±93
3319 ±48
8780 ±49

3305 ±66
3060 ±82

3060 ±73
3289 ±19
8645 ±19

3272 ±28
1.02
1.020.980.33

0.98

jacobi-1d(c)

27.9 ±18

28.9 ±42
33.6 ±63
8.27 ±1.1

30.6 ±49
3.81 ±1.2

3.87 ±1.2
4.10 ±1.4
4.01 ±0.0

4.15 ±1.6
671
652604359

579

jacobi-2d(c)

2357 ±40

2371 ±71
2368 ±63
5077 ±57

2378 ±76
2329 ±17

2338 ±17
2338 ±19
4971 ±25

2343 ±15
1.05
1.041.050.71

1.05 lu(c)

196660 ±11451

206484 ±10894
200061 ±11097
160516 ±4122

207712 ±13029
196556 ±11445

206382 ±10885
199953 ±11092
138303 ±6926

207604 ±13014
0.02
0.020.020.02

0.02

base
GHGHNOPfork
faasm

ludcmp(c)

193637 ±6461

199407 ±8662
193763 ±6494
161293 ±3763

199649 ±8790
193546 ±6456

199297 ±8660
193653 ±6490
138991 ±10860

199550 ±8783
0.02
0.020.020.02

0.02 mvt(c)

176 ±87

179 ±81
178 ±92
108 ±5.3

178 ±89
140 ±3.1

145 ±3.6
143 ±3.8
76.7 ±7.1

144 ±3.2
28.8
28.028.936.1

28.3

nussinov(c)

39327 ±4277

38163 ±1059
36208 ±1035
38477 ±3146

38398 ±830
39123 ±4053

38086 ±1058
36134 ±1033
30232 ±1793

38324 ±827
0.09
0.080.090.09

0.09

seidel-2d(c)

23186 ±194

23177 ±46
23180 ±51
19062 ±88

23173 ±46
23140 ±22

23142 ±20
23145 ±20
18836 ±32

23139 ±21
0.16
0.160.170.18

0.16

base
GHGHNOPfork
faasm

trisolv(c)

57.6 ±75

54.4 ±71
58.9 ±88
19.3 ±1.5

55.8 ±65
23.1 ±1.5

23.0 ±1.7
23.2 ±1.7
11.4 ±0.5

23.2 ±2.2
138
137134175

135

get-time(p)

29.6 ±34

27.9 ±20
35.0 ±40
30.4 ±35

2.94 ±1.2

3.03 ±1.4
7.10 ±4.1
4.15 ±1.7

1039
1004257
552

sentiment(p)

32.7 ±25

32.6 ±27
43.0 ±40
34.9 ±24

6.47 ±1.8

6.64 ±1.8
11.7 ±3.7
8.88 ±3.2

385
38544.1
230 json(p)

71.0 ±87

67.6 ±77
78.8 ±89
72.1 ±73

9.85 ±3.4

10.0 ±3.4
15.8 ±4.6
13.0 ±4.0

150
152120
135

base
GHGHNOPfork

md2html(p)

69.4 ±52

71.2 ±70
77.2 ±62
73.8 ±75

31.1 ±1.9

31.3 ±1.8
35.1 ±2.4
32.7 ±2.3

93.9
93.568.8
88.5

base64(p)

785 ±110

786 ±102
807 ±100
806 ±107

743 ±7.1

745 ±7.0
764 ±9.3
761 ±10

5.18
5.195.05
5.10

primes(p)

1867 ±89

1860 ±105
1896 ±91
1870 ±119

1830 ±53

1820 ±55
1857 ±35
1831 ±75

2.04
1.991.99
1.99

get-time(n)

36.8 ±78

35.1 ±65
39.3 ±87

3.70 ±1.3

4.55 ±1.2
6.37 ±3.6

942
779133

base
GHGHNOP

autoc.(n)

42.7 ±111

37.7 ±82
39.9 ±80

3.82 ±1.4

4.47 ±1.3
6.29 ±3.4

923
677122

json(n)

71.1 ±101

72.5 ±89
72.7 ±79

9.39 ±3.5

13.6 ±3.6
16.1 ±4.9

159
14786.6

primes(n)

317 ±109

319 ±101
327 ±111

275 ±20

279 ±20
287 ±23

11.8
11.88.16

img-resize(n)

506 ±132

556 ±148
780 ±149

445 ±74

491 ±68
722 ±111

6.57
6.184.10

base
GHGHNOP

base64(n)

686 ±107

664 ±118
758 ±112

644 ±20

620 ±29
715 ±21

5.62
5.854.34

ocr-img(n)

2540 ±100

2551 ±107
2555 ±97

2492 ±11

2500 ±11
2508 ±12

1.53
1.531.52

Table A.1.: Latency and throughput measurements comparing Groundhog to several other systems: base
baseline OpenWhisk; GH Groundhog on OpenWhisk; faasm faasm; fork fork-based implementa-
tion on OpenWhisk; and GHNOP Groundhog with no restoration. We run 58 benchmarks across
three languages indicated by (p) Python, (c) C, and (n) Node.js. We highlight cells of interest
if there is more than a 5% difference as follows: Green indicates results faorable to Ground-
hog Red indicates results unfaorable to Groundhog Blue indicates the unexpected result that
Groundhog is outperforming the baseline. Disclaimer: Faasm throughput measurements are
provided for the curious reader, but no conclusions should be drawn based on them as they
entangle many variables such as the difference in the platforms, their internal components and
deployment, runtimes (native vs WebAssembly), as well as the isolation mechanism.
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Benchmark Base End-to-End Latency (ms) / rel. overhead (%) ±CoV(%) Throughput (r/s) / rel. overhead (%) Inv. lat (ms)/rel. (%) ± CoV (%) Restoration
baseline GHNOP GH fork faasm baseline GHNOP GH fork faasm baseline GH time (ms) #Kpages (%))

chaos (p) 688.18±20.8 +0.12 ±16.8 +0.36 ±16.1 +0.22 ±15.3 +79.45 ±1.4 6.03 -0.90 -1.40 -3.70 -50.40 648.52±13.3 +0.54 ±6.0 4.9 0.47 (7.4)
logging (p) 1287.57±51.0 +2.43 ±49.1 -79.89 ±26.1 -79.82 ±28.3 -70.26 ±3.1 0 0 +inf +inf +inf 1249.39±52.2 -81.76 ±2.3 4.8 0.41 (6.7)
pyaes (p) 4707.26±2.1 +0.57 ±2.1 +1.71 ±1.9 +0.16 ±2.1 +85.26 ±1.0 0.82 -0.40 -1.30 -1.00 -50.80 4671.98±1.4 +1.70 ±1.3 6 0.84 (13.5)
spectral (p) 630.84±13.4 +0.87 ±14.5 +1.84 ±13.6 +1.20 ±13.0 +116.72 ±1.3 6.45 +1.1 -0.80 -3.20 -59.30 592.76±1.7 +2.09 ±2.3 4.3 0.21 (3.4)
deltablue (p) 48.44±116.6 -2.97 ±71.6 +3.88 ±102.6 +9.51 ±103.8 +210.47 ±3.8 157.63 -1.70 -11.00 -46.30 -84.50 20.43±7.9 +4.33 ±9.5 4.6 0.33 (5.3)
go (p) 631.16±14.5 +0.32 ±12.7 +0.91 ±17.3 +0.41 ±13.2 +60.67 ±1.4 6.48 -0.60 -0.90 -3.60 -45.80 592.99±1.1 +0.61 ±1.0 6.9 0.95 (15.2)
mdp (p) 6377.46±1.4 +0.27 ±1.6 +1.05 ±1.5 +0.65 ±1.5 +94.77 ±0.8 0.59 -0.60 -1.00 -1.40 -58.80 6345.53±1.0 +1.05 ±1.3 9.6 2.85 (38.9)
pyflate (p) 1635.93±4.7 +0.53 ±4.2 +1.45 ±4.5 +1.65 ±5.5 +69.92 ±1.1 2.39 -0.60 -2.10 -3.20 -47.30 1599.84±1.0 +1.42 ±0.8 11.7 2.33 (28.2)
telco (p) 190.81±51.5 +0.80 ±48.2 +0.30 ±38.2 -0.83 ±37.3 +74.13 ±3.0 25.01 -2.00 -4.90 -6.50 -54.70 155.64±2.4 +1.54 ±1.9 3.9 0.53 (16.2)
hexiom (p) 253.92±33.5 -1.18 ±31.6 +0.13 ±33.2 +0.58 ±28.0 +94.80 ±2.1 17.45 -0.10 -1.00 -8.30 -56.50 218.21±1.9 +0.45 ±1.8 4.3 0.28 (4.5)
nbody (p) 2858.53±3.4 +0.38 ±3.1 +0.78 ±3.6 +0.83 ±3.4 +91.39 ±0.7 1.34 +0.0 -0.10 -0.70 -53.20 2823.65±2.4 +0.76 ±1.9 4.1 0.21 (3.4)
raytrace (p) 2495.66±4.3 -0.06 ±3.2 +0.17 ±3.8 -0.22 ±2.9 +63.10 ±0.9 1.58 -0.30 -0.60 -1.10 -47.60 2459.2±2.7 +0.19 ±2.1 4.4 0.35 (5.6)
unpack_seq (p) 28.34±74.3 +0.27 ±75.8 +4.45 ±56.3 +20.19 ±47.5 +333.81 ±3.9 801.86 +4.3 -50.40 -83.00 -96.30 3.32±36.8 +51.21 ±40.9 3.2 0.2 (3.3)
fannkuch (p) 29.7±83.6 -2.46 ±56.3 +7.04 ±83.3 +29.26 ±173.9 +319.97 ±4.2 572.32 -2.80 -38.80 -77.00 -94.90 4.59±27.1 +33.77 ±32.7 3.1 0.19 (3.1)
json_dumps (p) 567.41±13.3 +3.26 ±17.3 +3.19 ±14.6 +2.13 ±18.2 +65.41 ±1.5 7.19 -1.10 -3.40 -4.70 -45.30 533.09±1.1 +3.45 ±1.8 4.9 0.51 (8.0)
pickle (p) 139.26±57.7 +0.01 ±49.5 +0.64 ±77.5 -0.07 ±43.6 +50.49 ±3.2 35.49 -0.20 -1.40 -7.80 -50.60 105.64±1.8 +0.01 ±2.0 2.9 0.23 (6.7)
richards (p) 387.47±19.9 +1.01 ±28.7 -0.66 ±22.7 +2.22 ±20.4 +64.22 ±1.7 10.68 -0.50 +1.6 -4.10 -45.20 353.13±1.3 -0.56 ±1.3 4.2 0.23 (3.7)
version (p) 28.24±82.1 -1.35 ±98.6 +5.33 ±92.7 +14.34 ±66.8 -61.13 ±7.1 990.38 -6.60 -43.20 -73.30 -74.30 3.07±50.5 +31.82 ±36.0 1.7 0.17 (5.4)
float (p) 57.28±112.7 -1.80 ±90.7 +1.07 ±96.4 +9.73 ±110.0 +182.82 ±3.5 125.98 -0.80 -13.40 -41.30 -82.10 27.06±7.1 +2.91 ±6.7 5 0.65 (10.4)
json_loads (p) 135.04±60.7 +0.87 ±53.4 +1.04 ±51.2 +3.03 ±57.3 +111.67 ±3.0 36.46 -0.50 -3.20 -15.70 -63.70 101.98±1.9 +1.33 ±2.1 4 0.22 (3.6)
pidigits (p) 2380.0±3.0 -0.19 ±1.8 -0.01 ±2.4 +0.20 ±2.5 +203.53 ±0.6 1.64 -0.20 -0.50 -1.00 -71.50 2347.55±0.2 +0.07 ±0.3 5.4 0.81 (13.2)
scimark (p) 1848.12±4.3 -0.54 ±4.6 -0.37 ±4.1 +1.09 ±4.1 +90.08 ±0.7 2.12 +0.7 +0.0 -0.90 -54.40 1812.64±1.7 -0.34 ±1.6 3.8 0.52 (16.0)

2mm (c) 27390.28±5.7 +2.76 ±6.8 +5.74 ±5.9 +3.22 ±7.8 -11.72 ±12.0 0.12 +0.6 -16.10 -12.50 +10.7 27236.21±5.7 +6.06 ±5.9 3.1 0.02 (2.0)
3mm (c) 45947.69±4.0 +2.30 ±5.8 +2.07 ±5.3 -0.46 ±5.9 -16.71 ±8.7 0.07 -1.80 -8.80 -8.80 +23.4 45729.02±3.8 +2.40 ±5.3 2.3 0.02 (2.0)
adi (c) 28470.33±3.9 +2.17 ±4.0 +1.65 ±4.2 -0.75 ±5.7 -14.10 ±10.3 0.12 -5.80 -2.60 -2.80 +24.6 28311.08±3.3 +1.93 ±4.2 0.8 0.02 (2.0)
atax (c) 68.72±92.5 +2.78 ±105.9 -0.42 ±94.3 +2.52 ±106.4 -55.96 ±6.5 93.55 -0.50 -1.70 -2.20 +25.8 36.45±4.4 +1.01 ±5.4 1 0.03 (3.1)
bicg (c) 75.89±98.7 -0.20 ±98.5 +1.59 ±103.1 -0.45 ±93.9 -54.72 ±6.3 81.05 -0.50 -1.40 -2.10 +29.1 42.78±4.4 +0.89 ±4.7 0.9 0.03 (3.1)
cholesky (c) 166284.84±5.5 +6.64 ±4.7 +5.72 ±4.7 +2.67 ±6.7 -15.65 ±15.4 0.02 -8.60 -1.00 -2.60 +0.4 166182.8±5.5 +5.72 ±4.7 0.6 0.02 (2.0)
correlation (c) 32508.82±2.1 +5.02 ±3.0 +5.84 ±3.3 +1.40 ±3.0 -22.85 ±13.5 0.1 +2.4 -6.20 -5.90 +43.1 32429.64±2.1 +5.86 ±3.3 2 0.02 (2.0)
covariance (c) 33092.13±1.5 +5.34 ±2.7 +5.93 ±3.1 +1.88 ±3.5 -25.44 ±14.3 0.1 -3.80 +0.8 +0.4 +48.3 33020.56±1.5 +5.91 ±3.1 2 0.02 (2.0)
deriche (c) 1148.32±9.4 -2.56 ±10.1 -0.01 ±9.0 -0.16 ±9.9 -19.94 ±8.3 4.47 -3.00 -1.00 +0.6 -4.70 1114.99±7.7 +0.00 ±6.9 0.8 0.02 (2.0)
doitgen (c) 691.08±14.7 -0.44 ±17.1 -0.01 ±13.7 +0.45 ±14.8 -2.00 ±1.5 5.98 +0.6 -0.30 -0.40 -7.00 650.53±2.2 -0.08 ±2.3 1.3 0.02 (2.0)
durbin (c) 33.1±82.8 -3.25 ±59.1 +1.31 ±122.9 +2.64 ±100.6 -71.09 ±11.8 314.68 +3.2 -6.00 +1.0 +3.8 7.64±17.6 +5.05 ±18.4 0.6 0.02 (2.0)
fdtd-2d (c) 2209.61±2.8 +0.29 ±3.1 +0.15 ±2.6 -0.05 ±2.7 +29.23 ±0.9 0.89 -0.50 -0.30 +0.1 -2.30 2179.15±1.1 +0.16 ±0.9 1 0.02 (2.0)
floyd-warshall (c) 21224.8±0.2 +0.11 ±0.5 +0.09 ±0.2 +0.05 ±0.3 +10.04 ±0.7 0.17 -0.30 -1.80 -1.20 -35.20 21151.44±0.2 +0.09 ±0.2 0.8 0.02 (2.0)
gramschmidt (c) 61226.6±10.0 +2.70 ±5.3 +6.29 ±3.3 +2.23 ±2.5 -26.01 ±6.3 0.06 -1.10 -11.10 -6.20 +18.5 60899.77±9.9 +6.70 ±3.3 2.5 0.02 (2.0)
heat-3d (c) 3088.12±3.1 +0.07 ±3.0 +7.02 ±2.0 +7.47 ±1.5 +184.32 ±0.6 1.02 -0.40 -4.00 -4.10 -67.60 3059.55±2.7 +6.94 ±0.9 16.1 3.39 (77.9)
jacobi-1d (c) 27.92±63.9 +3.34 ±144.5 +9.65 ±159.4 +20.44 ±188.8 -70.39 ±12.8 671.34 -2.80 -13.80 -10.00 -46.60 3.81±32.7 +9.01 ±39.4 0.6 0.02 (2.0)
jacobi-2d (c) 2356.66±1.7 +0.62 ±3.0 +0.90 ±3.2 +0.49 ±2.7 +115.44 ±1.1 1.05 -0.20 0.00 +0.3 -32.10 2329.32±0.7 +0.60 ±0.6 0.7 0.02 (2.0)
lu (c) 196660.22±5.8 +5.00 ±5.3 +5.62 ±6.3 +1.73 ±5.5 -18.38 ±2.6 0.02 +5.8 +2.2 +3.3 +11.6 196555.78±5.8 +5.62 ±6.3 0.7 0.02 (2.0)
ludcmp (c) 193637.44±3.3 +2.98 ±4.3 +3.10 ±4.4 +0.06 ±3.4 -16.70 ±2.3 0.02 +0.1 +7.3 +7.0 +6.9 193545.91±3.3 +3.10 ±4.4 1 0.02 (2.0)
mvt (c) 176.37±49.5 +1.40 ±45.2 +0.89 ±49.9 +0.75 ±51.9 -38.62 ±4.9 28.78 -2.60 -1.70 +0.4 +25.3 140.33±2.2 +2.86 ±2.2 1.2 0.03 (3.1)
nussinov (c) 39326.91±10.9 -2.96 ±2.8 -2.36 ±2.2 -7.93 ±2.9 -2.16 ±8.2 0.09 -6.40 -3.00 -0.90 +2.0 39122.65±10.4 -2.04 ±2.2 1 0.02 (2.0)
seidel-2d (c) 23186.15±0.8 -0.04 ±0.2 -0.06 ±0.2 -0.02 ±0.2 -17.79 ±0.5 0.16 -0.50 +0.0 +0.6 +9.7 23140.14±0.1 -0.01 ±0.1 0.8 0.02 (2.0)
trisolv (c) 57.62±130.2 -5.65 ±130.4 -3.14 ±115.6 +2.28 ±149.3 -66.54 ±7.7 138.18 -0.80 -2.40 -2.80 +26.6 23.07±6.6 +0.42 ±9.3 1 0.02 (2.0)

get-time (p) 29.6±113.6 -5.68 ±72.6 +2.71 ±114.8 +18.13 ±114.1 1038.74 -3.30 -46.90 -75.30 2.94±40.5 +41.08 ±41.0 1.7 0.18 (5.6)
sentiment (p) 32.67±76.3 -0.10 ±82.0 +6.66 ±68.5 +31.69 ±92.4 385.07 0.00 -40.20 -88.50 6.47±27.2 +37.26 ±35.8 6 0.57 (3.4)
json (p) 70.97±122.9 -4.81 ±113.7 +1.56 ±101.8 +11.04 ±113.0 150 +1.5 -9.80 -19.80 9.85±34.2 +31.68 ±30.6 3.7 0.87 (26.1)
md2html (p) 69.36±75.3 +2.66 ±98.6 +6.36 ±101.6 +11.38 ±80.0 93.94 -0.50 -5.80 -26.80 31.04±6.3 +5.46 ±7.1 4.2 0.62 (12.6)
base64 (p) 785.33±14.0 +0.03 ±13.0 +2.63 ±13.3 +2.81 ±12.4 5.18 +0.2 -1.50 -2.50 743.23±1.0 +2.45 ±1.4 7.7 1.66 (32.4)
primes (p) 1866.58±4.8 -0.34 ±5.6 +0.17 ±6.3 +1.56 ±4.8 2.04 -2.40 -2.30 -2.40 1829.74±2.9 +0.05 ±4.1 3.2 0.53 (16.5)

get-time (n) 36.84±211.2 -4.69 ±184.6 +6.68 ±220.4 942.07 -17.30 -85.80 3.7±34.8 +72.22 ±56.2 12.6 0.64 (0.4)
autocomplete (n) 42.74±260.6 -11.90 ±217.9 -6.71 ±201.2 922.59 -26.60 -86.80 3.82±36.8 +64.58 ±54.2 13.5 0.92 (0.6)
json (n) 71.1±142.4 +1.99 ±122.7 +2.22 ±108.5 159.09 -7.50 -45.60 9.4±37.8 +71.32 ±30.7 13 0.85 (0.5)
primes (n) 316.85±34.3 +0.65 ±31.7 +3.27 ±33.9 11.79 +0.1 -30.70 274.63±7.3 +4.56 ±8.0 84.7 34.2 (17.0)
img-resize (n) 505.76±26.0 +9.87 ±26.6 +54.20 ±19.2 6.57 -6.00 -37.60 445.27±16.7 +62.09 ±15.3 61.8 18.05 (10.1)
base64 (n) 686.33±15.6 -3.19 ±17.8 +10.48 ±14.7 5.62 +4.1 -22.80 644.02±3.1 +11.04 ±2.9 161.9 53.83 (25.8)
ocr-img (n) 2539.62±3.9 +0.43 ±4.2 +0.60 ±3.8 1.53 -0.40 -1.00 2491.66±0.4 +0.68 ±0.5 13.9 1.08 (0.7)

Table A.2.: Latency and throughput measurements showing the overheads of GHNOP(Groundhog with no
restoration), GH,FORK, and FAASM relative to an unsecure baseline. We run 58 benchmarks
across three languages indicated by (p) Python, (c) C, and (n) Node.js. We highlight cells of
interest if there is more than a 5% difference as follows: Green indicates results faorable to
Groundhog Red indicates results unfaorable to Groundhog Blue indicates the unexpected result
that Groundhog is outperforming the baseline. GH’s impact on throughput can be approximated
by the relative restoration time compared to the invoker’s latency (inv. lat.). Disclaimer: Faasm
throughput measurements are provided for the curious reader, but no conclusions should be
drawn based on them as they entangle many variables such as the difference in the platforms,
their internal components and deployment, runtimes (native vs WebAssembly), as well as the
isolation mechanism.
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Benchmark
baseline Groundhog Restoration

Invoker lat (ms) T’put Invoker lat (ms) T’put time (ms) #pages (K) #faults (K) #restored (K)

cholesky (c) 166182.8±9208.73 0.02 175691.9±8256.49 0.02 0.57 0.98 0.02 0.01
jacobi-1d (c) 3.8±1.25 671.34 4.2±1.64 578.99 0.62 0.98 0.03 0.02
durbin (c) 7.6±1.35 314.68 8.0±1.48 295.98 0.62 0.98 0.03 0.02
jacobi-2d (c) 2329.3±17.03 1.05 2343.4±14.98 1.05 0.69 0.98 0.02 0.01
lu (c) 196555.8±11445.0 0.02 207603.5±13014.02 0.02 0.74 0.98 0.02 0.01
seidel-2d (c) 23140.1±22.03 0.16 23139.0±21.4 0.16 0.75 0.98 0.02 0.02
deriche (c) 1115.0±86.2 4.47 1115.0±76.95 4.43 0.75 0.98 0.02 0.01
adi (c) 28311.1±923.24 0.12 28857.6±1215.98 0.12 0.77 0.98 0.02 0.02
floyd-warshall (c) 21151.4±39.35 0.17 21171.3±37.12 0.17 0.78 0.98 0.02 0.01
bicg (c) 42.8±1.88 81.05 43.2±2.03 79.87 0.93 0.98 0.03 0.03
fdtd-2d (c) 2179.1±23.85 0.89 2182.6±19.73 0.89 0.97 0.98 0.02 0.02
trisolv (c) 23.1±1.51 138.18 23.2±2.16 134.92 0.97 0.98 0.03 0.02
atax (c) 36.4±1.6 93.55 36.8±1.99 91.99 0.99 0.98 0.03 0.03
nussinov (c) 39122.6±4053.11 0.09 38323.5±827.3 0.09 1.02 0.98 0.02 0.02
ludcmp (c) 193545.9±6455.96 0.02 199550.2±8782.81 0.02 1.02 0.98 0.03 0.02
mvt (c) 140.3±3.06 28.78 144.3±3.2 28.28 1.16 0.98 0.04 0.03
doitgen (c) 650.5±14.61 5.98 650.0±14.79 5.96 1.31 0.98 0.04 0.02
version (p) 3.1±1.55 990.38 4.0±1.46 562.89 1.66 3.14 0.17 0.17
get-time (p) 2.9±1.19 1038.74 4.1±1.7 552.09 1.66 3.19 0.18 0.18
covariance (c) 33020.6±494.9 0.10 34971.3±1084.18 0.10 1.97 0.98 0.04 0.02
correlation (c) 32429.6±692.85 0.10 34328.9±1118.18 0.09 2.00 0.98 0.04 0.02
3mm (c) 45729.0±1717.42 0.07 46824.4±2473.21 0.06 2.32 0.98 0.04 0.02
gramschmidt (c) 60899.8±6020.33 0.06 64980.4±2150.99 0.05 2.53 0.98 0.04 0.02
pickle (p) 105.6±1.89 35.49 105.7±2.11 34.98 2.90 3.45 0.23 0.23
2mm (c) 27236.2±1544.4 0.12 28887.4±1712.35 0.10 3.12 0.98 0.04 0.02
fannkuch (p) 4.6±1.24 572.32 6.1±2.0 350.22 3.14 6.12 0.19 0.19
unpack_seq (p) 3.3±1.22 801.86 5.0±2.06 398.15 3.17 6.12 0.20 0.20
primes (p) 1829.7±53.45 2.04 1830.7±75.43 1.99 3.24 3.22 0.51 0.53
json (p) 9.9±3.37 150.00 13.0±3.97 135.34 3.71 3.33 0.64 0.87
scimark (p) 1812.6±30.71 2.12 1806.6±28.47 2.12 3.77 3.26 0.51 0.52
telco (p) 155.6±3.8 25.01 158.0±2.95 23.77 3.91 3.29 0.53 0.53
json_loads (p) 102.0±1.95 36.46 103.3±2.14 35.29 4.04 6.12 0.22 0.22
nbody (p) 2823.7±69.0 1.34 2845.0±53.46 1.34 4.08 6.12 0.21 0.21
richards (p) 353.1±4.64 10.68 351.1±4.41 10.85 4.16 6.18 0.23 0.23
md2html (p) 31.0±1.95 93.94 32.7±2.31 88.50 4.25 4.93 0.63 0.62
spectral (p) 592.8±9.92 6.45 605.2±14.14 6.40 4.29 6.12 0.22 0.21
hexiom (p) 218.2±4.21 17.45 219.2±3.98 17.28 4.35 6.18 0.28 0.28
raytrace (p) 2459.2±67.26 1.58 2463.9±51.19 1.57 4.42 6.25 0.36 0.35
deltablue (p) 20.4±1.61 157.63 21.3±2.02 140.26 4.64 6.18 0.23 0.33
logging (p) 1249.4±652.55 0.00 227.9±5.2 16.34 4.77 6.12 0.42 0.41
json_dumps (p) 533.1±6.0 7.19 551.5±9.92 6.95 4.92 6.37 0.51 0.51
chaos (p) 648.5±86.06 6.03 652.0±39.21 5.94 4.93 6.32 0.47 0.47
float (p) 27.1±1.92 125.98 27.8±1.87 109.09 4.99 6.26 0.65 0.65
pidigits (p) 2347.6±5.76 1.64 2349.1±6.51 1.63 5.40 6.14 0.81 0.81
sentiment (p) 6.5±1.76 385.07 8.9±3.18 230.39 6.00 16.86 0.57 0.57
pyaes (p) 4672.0±63.68 0.82 4751.3±61.36 0.80 6.02 6.21 0.83 0.84
go (p) 593.0±6.64 6.48 596.6±5.69 6.42 6.90 6.25 0.84 0.95
base64 (p) 743.2±7.11 5.18 761.5±10.48 5.10 7.67 5.13 1.86 1.66
mdp (p) 6345.5±63.96 0.59 6412.3±82.13 0.58 9.55 7.33 2.22 2.85
pyflate (p) 1599.8±16.39 2.39 1622.5±12.58 2.34 11.67 8.25 3.01 2.33
get-time (n) 3.7±1.29 942.07 6.4±3.58 133.45 12.58 156.76 0.59 0.64
json (n) 9.4±3.55 159.09 16.1±4.94 86.58 13.02 156.78 0.67 0.85
autocomplete (n) 3.8±1.41 922.59 6.3±3.41 121.98 13.52 156.98 0.69 0.92
ocr-img (n) 2491.7±10.63 1.53 2508.5±12.24 1.52 13.95 156.80 0.89 1.08
heat-3d (c) 3059.5±81.59 1.02 3272.0±28.01 0.98 16.09 4.35 0.02 3.39
img-resize (n) 445.3±74.34 6.57 721.7±110.76 4.10 61.83 179.43 9.58 18.05
primes (n) 274.6±20.11 11.79 287.1±23.1 8.16 84.74 201.35 1.27 34.20
base64 (n) 644.0±20.22 5.62 715.1±20.89 4.34 161.93 208.42 47.98 53.83

Table A.3.: Groundhog’s overhead on the throughput is a function of Groundhog’s added overhead both
on the critical path (#faults) which has negligible overhead on most functions, as well as the
overhead off the critical path (Restoration time) which is mostly a function of the address space
size (#pages (K)) and the number of restored pages (#restored (K)) as well as restoring the
memory layout as demonstrated earlier in Fig. 3.8. Data is sorted by the restoration time.
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