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A B S T R A C T

Modelling 3D human motion is highly important in numerous applica-
tions, including AR/VR, human-robot interaction, gaming, and character
animations. To develop such applications, plausible 3D human motions
need to be captured from sensing devices or synthesised based on the
motion model definition.

Obtaining 3D human motion from a single RGB camera is one of the
ideal setups for motion capture due to its flexibility in the recording
locations and the subject’s clothes, and cost-effectiveness, unlike heavy
setups such as marker-based or marker-less multi-view motion capture
systems. However, capturing the 3D motions only from a monocular
camera is a highly ill-posed problem, which can result in the implausible
reconstruction of the motions (e.g. jitter, foot-skating, unnatural body
leaning and inaccurate 3D localisations). The problem becomes more chal-
lenging when considering interactions with environments and surface
deformations; The human body’s occlusions and the lack of modelling
for the interactions and deformations often lead to physically implausi-
ble collisions. Therefore, the captured motions often require costly and
time-consuming manual post-processing by experts before integration
into industry products.

Another major approach for obtaining 3D human motions is through
the use of motion synthesis methods. While many learning-based 3D
motion synthesis works have been proposed — including those that can
consider hand-hand and/or hand-object interactions — they often lack
realism. Many synthesis methods consider the shape and semantics of
the interacting object/environment. However, one crucial aspect missing
from current methods is the consideration of physical quantities. For
example, in our daily lives, our behaviour can be significantly influenced
by the physical properties of objects, such as their mass. No prior works
have explicitly addressed this factor when synthesising 3D motions.

This thesis addresses the aforementioned problems for motion cap-
ture with a monocular RGB camera and motion synthesis considering a
physics quantity. First, a monocular video-based MoCap method with
the explicit integration of rigid body dynamics modelling is proposed,

iii



mitigating the artefacts typically observable in the existing kinematics-
based MoCap methods. To introduce the power of learned physics prior,
the fully learning physics-based MoCap method is proposed next. It
highly improves the 3D accuracies while suppressing the artefacts in
the reconstructed motions thanks to the network components trained
with explicit physics modelling. Third, MoCap with interactions in a
complex scene such as indoors with occluding objects is addressed. By
modelling the whole-body contact with the environment and introducing
a novel collision handling component, the plausibility of interactions in
the captured motion is greatly improved compared with the prior works.
Moreover, this thesis presents the first method that captures not only the
hand and face motions but also the deformations arising from their inter-
actions, which is of high importance for various Graphics applications
that require immersive experiences. Furthermore, a novel 3D motion
synthesis method is proposed next. This method generates 3D object
manipulations with hands that exhibit realistic motions and interactions,
plausibly adapting to the conditioning object’s mass. Additionally, the
method can optionally take a user-provided object trajectory as input and
synthesise natural object manipulations influenced by the object’s mass,
offering a potential for substantial contributions to computer graphics
applications. Lastly, the insights collected in this thesis and the outlook
of the human motion capture and synthesis research are discussed.

The introduced methods in this thesis serve as milestones toward
democratising the realistic low-cost human motion capture that replaces
the aforementioned heavy motion capture setups and toward the widespread
use of learning-based motion synthesis methods in industrial applications
that require high motion realism.
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Z U S A M M E N FA S S U N G

Die Modellierung menschlicher 3D-Bewegungen ist für zahlreiche An-
wendungen von großer Bedeutung, darunter AR/VR, Mensch-Roboter-
Interaktion, Spiele und Charakteranimationen. Um solche Anwendun-
gen zu entwickeln, müssen plausible menschliche 3D-Bewegungen von
Erfassungsgeräten erfasst oder auf der Grundlage der Definition des
Bewegungsmodells synthetisiert werden.

Die Erfassung menschlicher 3D-Bewegungen mit einer einzigen RGB-
Kamera ist eines der idealen Setups für die Bewegungserfassung, da es
flexibel in Bezug auf die Aufnahmeorte und die Kleidung des Probanden
ist und kostengünstig, im Gegensatz zu schweren Setups wie marker-
basierten oder markerlosen Multi-View-Bewegungserfassungssystemen.
Die Erfassung der 3D-Bewegungen nur mit einer monokularen Kamera
ist jedoch ein äußerst ungünstiges Problem, das zu einer unplausiblen
Rekonstruktion der Bewegungen führen kann (Zittern, Fußbewegungen,
unnatürliche Körperneigung und ungenaue 3D-Lokalisierung). Das Pro-
blem wird noch schwieriger, wenn Interaktionen mit der Umgebung und
Oberflächenverformungen berücksichtigt werden. Die Verdeckung des
menschlichen Körpers und die fehlende Modellierung der Interaktionen
und Verformungen führen oft zu physikalisch unplausiblen Kollisionen.
Aus diesem Grund müssen die erfassten Bewegungen vor der Integra-
tion in Industrieprodukte oft kosten- und zeitaufwändig manuell von
Experten nachbearbeitet werden.

Ein weiterer wichtiger Ansatz zur Gewinnung menschlicher 3D Be-
wegungen ist die Verwendung von Bewegungssynthesemethoden. Ob-
wohl viele lernbasierte 3D-Bewegungssynthesemethoden vorgeschlagen
wurden - einschließlich solcher, die Hand-Hand- und/oder Hand-Objekt-
Interaktionen berücksichtigen können - mangelt es ihnen oft an Realis-
mus. Viele Synthesemethoden berücksichtigen die Form und die Seman-
tik des interagierenden Objekts/Umfelds. Ein entscheidender Aspekt,
der bei den derzeitigen Methoden fehlt, ist jedoch die Berücksichtigung
physikalischer Größen. In unserem täglichen Leben kann unser Verhal-
ten beispielsweise erheblich von den physikalischen Eigenschaften von
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Objekten, wie ihrer Masse, beeinflusst werden. Bisherige Arbeiten ha-
ben diesen Faktor bei der Synthese von 3D-Bewegungen nicht explizit
berücksichtigt.

Diese Arbeit befasst sich mit den oben genannten Problemen bei der
Bewegungserfassung mit einer monokularen RGB-Kamera und der Bewe-
gungssynthese unter Berücksichtigung eines physikalischen Bewegungs-
modells.

Zunächst wird eine monokulare videobasierte MoCap-Methode mit
der expliziten Integration der Starrkörperdynamikmodellierung vorge-
schlagen, die die Artefakte, die typischerweise bei den bestehenden ki-
nematikbasierten MoCap-Methoden zu beobachten sind, abmildert. Um
die Leistungsfähigkeit der erlernten Physikpriorität einzuführen, wird
als nächstes die vollständig lernende, physikbasierte MoCap-Methode
vorgeschlagen. Sie verbessert die 3D-Genauigkeit erheblich und unter-
drückt gleichzeitig die Artefakte in den rekonstruierten Bewegungen
dank der mit expliziter Physikmodellierung trainierten Netzwerkkom-
ponenten. Drittens wird MoCap mit Interaktionen in einer komplexen
Szene, z. B. in Innenräumen mit verdeckten Objekten, behandelt. Durch
die Modellierung des Kontakts des Koerpers mit der Umgebung und
die Einführung einer neuartigen Komponente zur Kollisionsbehandlung
wird die Plausibilität der Interaktionen in der erfassten Bewegung im Ver-
gleich zu früheren Arbeiten erheblich verbessert. Darüber hinaus wird in
dieser Arbeit die erste Methode vorgestellt, die nicht nur die Hand- und
Gesichtsbewegungen, sondern auch die aus ihren Interaktionen resultie-
renden Verformungen erfasst, was für verschiedene Grafikanwendungen,
die immersive Erfahrungen erfordern, von großer Bedeutung ist. Außer-
dem wird eine neuartige 3D-Bewegungssynthesemethode vorgeschlagen.
Diese Methode erzeugt 3D-Objektmanipulationen mit Händen, die realis-
tische Bewegungen und Interaktionen aufweisen und sich plausibel an
die Masse des konditionierten Objekts anpassen. Darüber hinaus kann
die Methode optional eine vom Benutzer bereitgestellte Objekttrajektorie
als Eingabe verwenden und natürliche Objektmanipulationen synthe-
tisieren, die von der Masse des Objekts beeinflusst werden, was einen
wesentlichen Beitrag zu Computergrafikanwendungen leisten könnte.
Abschließend werden die in dieser Arbeit gewonnenen Erkenntnisse und
der Ausblick eventuell weitere offene Forschungsfragen im Bereich der
menschlichen Bewegungserfassung und -synthese diskutiert.
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Die in dieser Arbeit vorgestellten Methoden dienen als Meilensteine auf
dem Weg zur Demokratisierung der realistischen und kostengünstigen
Erfassung menschlicher Bewegungen, die die oben erwähnten schwer-
fälligen Bewegungserfassungssysteme ersetzen, und auf dem Weg zum
weit verbreiteten Einsatz von lernbasierten Bewegungssynthesemethoden
in industriellen Anwendungen, die einen hohen Bewegungsrealismus
erfordern.
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1
I N T R O D U C T I O N

1.1 motivation

3D human motion modelling is a mathematical representation of human
movements in 3D space, typically modelled as a sequence of 3D joint
angles of a kinematic skeleton, and is highly important for various
computer graphics and vision applications. To utilise the 3D motions for
real-world applications, they need to be either crafted manually, captured
from sensors or synthesised based on the modelling definition.

In industry and academic settings, human motions are often obtained
using a motion capture system (MoCap). MoCap is an active area of study
focused on obtaining human movements, typically achieved using devices
such as RGB cameras, depth sensors, or systems with optical markers
attached to the subject’s body. Captured realistic 3D human motions are
invaluable in driving animated characters, significantly reducing the cost
and production time in video games or film production. Additionally,
these captured motions find applications in AR and VR environments,
enabling the virtual presence of real persons in them. They also serve a
critical role in sports analysis, helping athletes and trainers refine skills.

The prevalent method for MoCap in the industry involves subjects
wearing suits equipped with optical markers. While this approach pro-
vides highly accurate motion capture, it is inflexible in recording loca-
tions and expensive. Furthermore, these systems do not permit subjects
to wear everyday clothing during the capture, presenting significant
drawbacks, especially when developing a learning-based system aimed
at generalising across everyday life scenes that accepts visual inputs such
as 2D images. In response to these limitations, markerless multi-view
RGB camera-based motion capture systems are gaining popularity (see
Fig. 1.1a). These systems enable the capture of highly accurate 3D motions
of subjects in their everyday clothing. Nonetheless, both marker-based
and multi-view RGB camera systems are resource-intensive, costly and
impose limitations on recording locations. Consequently, there is a natu-
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(a) Markerless MoCap
(The Captury 2023)

(b) Torque Visualisation in MoCap
(Shimada et al., 2021)

Figure 1.1: (a) Multi-view RGB based 3D motion capture system that
reconstructs skeletal motions which are used in various applications such as
AR/VR, filmmaking, etc (The Captury 2023). (b) Visualisation of torques (green)
and the ground reaction force (purple) obtained from the physics-based
markerless human motion capture system (Shimada et al., 2021), which can
provide a deeper insight of human motions combined with the reconstructed
skeletal motions.

ral motivation to explore methods that reduce setup requirements such
as RGB cameras, IMU sensors, depth sensors, or combinations thereof.

Among the MoCap setups, capturing 3D human motions only from
a single RGB camera is one of the least constraining setups for MoCap,
thus it has been gaining a lot of attention in computer graphics and
vision research communities. However, this simplification of the capture
setup introduces significant challenges for accurately reconstructing 3D
human motions. Given only a single view, it is theoretically impossible to
simultaneously find the correct scale and depth of the object in the frame.
Furthermore, self- and external- occlusions are even more prominent in a
single-view setup compared to a multi-view scenario, e.g. only one side
of the body is visible from a single camera. These difficulties result in
artefacts in the reconstructed 3D motions, such as joint jitter, unnaturally
leaning bodies, irregular joint angles, self-collisions, environmental colli-
sions, and foot skating. Although the flexibility of the capture location is
an advantage of the lightweight monocular setup, capturing the 3D mo-
tions becomes even more challenging when the motions are performed
in complex environments, such as indoor settings with many occluding
objects (see Fig. 1.2a). Such severe occlusions can lead to inaccuracy in
the captured motions. Moreover, when the 3D scene geometry is given,
reconstructing highly intricate interactions with the environment is re-
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(a) MoCap in an indoor scene
(Shimada et al., 2022)

(b) MoCap with deformations
(Shimada et al., 2023)

Figure 1.2: Examples of new MoCap methods with external-/self-interactions.
(a) the method that considers everyday interactions in an indoor scene
(Shimada et al., 2022). (b) the method that takes into account self-interactions
and their deformations of a face surface, which are frequently seen in our daily
lives (Shimada et al., 2023).

quired; even a 3D localisation error of 1 cm can lead to highly implausible
body-environment collisions, particularly around interaction regions with
the environment. Furthermore, capturing only 3D joint angles overlooks
many aspects. Real-world interactions often involve deformations of our
body surfaces due to the soft tissues of the human body (see Fig. 1.2b).
Such aspects also need to be captured for improved realism, vital for
many graphics applications such as computer-animated characters and
avatars for telepresence.

As an alternative technique to obtain 3D human motion, learning-
based motion synthesis research is also coming increasingly into focus.
Numerous methods have been developed that generate 3D motions
controlled by text descriptions, action labels, or auditory signals. Recent
advancements even account for interactions with objects or surrounding
environments. Yet, a significant oversight is that none of these techniques
fully integrate the object’s inherent physical properties, which profoundly
influence human interactions. For example, when handling heavy objects,
individuals naturally use a broader palm area than with lighter ones.
Considering these intricate human behaviours is vital for achieving
improved realism in 3D motion synthesis.

To address the aforementioned challenges, this thesis advances the
state of the art of the single view RGB-based 3D human motion capture by
introducing the explicit modellings of physics and interactions between
the human and the scene, and on the body itself. Furthermore, this thesis
proposes the first method for the 3D object manipulation synthesis that



4 introduction

considers the object’s physical property (mass) for improved realism and
controllability.

1.2 explicit physics integration

One of the key goals of MoCap methods is to reconstruct the natural
and physically plausible 3D human motions that are not visually indis-
tinguishable from real-world motions. This realistic motion can then be
used in downstream applications without the need for postprocessing.
Many methods have been proposed to capture realistic 3D human mo-
tions from lightweight setups such as a monocular camera (Bogo et al.,
2016; Chen and Ramanan, 2017; Feng et al., 2021a; Habibie et al., 2019;
Kanazawa et al., 2018; Kocabas et al., 2020a; Martinez et al., 2017; Mehta
et al., 2017a,b; Moreno-Noguer, 2017; Newell et al., 2016; Pavlakos et al.,
2017, 2018b; Rhodin et al., 2018; Sun et al., 2021; Tekin et al., 2016; Tomè
et al., 2017; Yang et al., 2018; Zhou et al., 2017). However, due to its highly
ill-posed nature, the captured motions can appear unnatural, often due
to apparent violations of the laws of physics, such as implausible inter-
penetrations with the surrounding scene, jitter, unnatural poses, and foot
skating. To address these issues, many single-view MoCap methods have
attempted to leverage learned priors from 3D motion datasets. However,
these approaches cannot entirely prevent many of the aforementioned re-
construction errors as they lack awareness of physics modelling. Chapter
3 proposes an alternative way of mitigating such artefacts in monocular
pose estimation algorithms (Shimada et al., 2020). Relying on knowledge
from rigid body dynamics, this approach prevents the violation of laws
of real-world physics and significantly reduces artefacts in the recon-
structed motions. This chapter also introduces a new physical plausibility
measurement to assess the reconstructed motion quality from various
perspectives. In Chapter 4, a fully learning-based approach is introduced,
where the equation of motion is integrated into the method’s design (Shi-
mada et al., 2021). The neural network based motion controllers adjust
the intensity of the control signals for the humanoid character based on
the input motions. This approach yields substantially improved motions
compared to optimisation-based MoCap methods (Shimada et al., 2020)
in terms of 3D accuracy while faithfully obeying the rigid body dynamics
modelling. Moreover, not only are the reconstructed motions improved,
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but the estimated contact forces and joint torques also exhibit more plau-
sible values, although they are estimated only from a monocular RGB
video, which can be utilised to analyse the motions and assess stress on
the human body joints.

1.3 interactions with the scene

In our daily lives, humans constantly interact with the 3D world through
a variety of activities such as walking, sitting, lying, grabbing, and touch-
ing. Capturing such motions with the awareness of interactions is of high
importance for understanding human behaviour, AR/VR applications,
and more. However, capturing motions performed in complex scenes
only from a single RGB camera poses substantial challenges (e.g. the pres-
ence of occlusions caused by objects and frequent interactions with the
scene on different body parts such as the back, hands, feet, and buttocks).
As a consequence, the reconstructed motions often show inaccurate mo-
tions, implausible interactions and collisions with the scene geometry.
While numerous scene-aware MoCap works have been proposed (Hassan
et al., 2019; Li et al., 2022; Rempe et al., 2021, 2020; Zanfir et al., 2018;
Zhang et al., 2021d), yet the aforementioned issues remain unresolved.
Chapter 5 addresses the problem of human motion capture with scene
interactions from a single RGB input and a scene point cloud (Shimada
et al., 2022). The method comprises two innovative components that
significantly improve the plausibility of the reconstructed 3D motions.
The first component involves predicting the contact regions on both the
human body and the scene geometry surfaces using a pixel-aligned im-
plicit function. These estimated contact regions are then integrated into
the fitting optimisation process, effectively reducing the inherent depth
ambiguity of the single-view setup. The second component of the method
resolves severe body-environment collisions. This is achieved by intro-
ducing a novel sampling-based optimisation technique in a learned pose
prior manifold, significantly resolving these collisions in a hard manner.
Thanks to the two novel components, the final reconstructed motion
sequences demonstrate significantly more realistic motions interacting
with the environment compared to the prior works in the field.
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1.4 capturing face deformations

Hand-face interactions are a common occurrence in our daily lives, where
we touch our faces in various ways, such as poking a cheek, touching
the nose, or pinching the chin. During these interactions, the human face
surfaces often deform, which conveys facial expressions beyond those
produced solely by contracting facial muscles. Capturing these defor-
mation effects, along with the motions of the face and hands, is crucial
for applications that require immersive experiences such as VR, avatar
communications, etc. However, this aspect has not been addressed so far
in MoCap research. This problem casts challenges due to the constant oc-
clusions at the interaction regions and the lack of 3D dataset for training
learning approaches. Furthermore, highly accurate 3D localisation of the
hand and face is crucial to avoid collisions between them, particularly in
the interaction area. This aspect becomes even more challenging when
considering a single-view RGB setup due to its inherent depth ambiguity.
Chapter 6 addresses this problem and introduces several significant con-
tributions (Shimada et al., 2023). This research marks the first approach
to tackle the challenge of capturing deformation in hand-face interactions
from a single view. The work proposes the first dataset that contains
multiview RGB videos with their corresponding 3D geometries with sur-
face deformations for hand-face interactions. The method consists of the
neural networks trained on this dataset. These networks estimate plausi-
ble deformations and contacts resulting from the hand-face interactions.
Additionally, this chapter introduces learned hand-face interaction priors
to enhance the 3D localisation accuracy further. The final reconstructed
motions show highly accurate face and hand poses as well as plausible
deformations caused by their interactions.

1.5 mass-aware motion synthesis

Our daily interactions with objects are significantly influenced by their
physical properties, such as mass. For instance, an object’s weight can
change how we grasp it and the speed at which we move it. These
intricate behavioural changes need to be considered for synthesising 3D
object interactions to achieve improved realism. Surprisingly, this aspect
has not been addressed by the existing works on simulating hand object
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interactions (Christen et al., 2022; Ghosh et al., 2023; Zhang et al., 2021c;
Zheng et al., 2023). Chapter 7 tackles this problem by proposing the
first mass-conditioned 3D hand and object motion synthesis approach
(Shimada et al., 2024). The synthesised 3D hand-object interactions adjust
their behaviour based on the object’s mass and the interaction type. The
method also accepts a user-specified 3D object trajectory as input and
synthesises the natural 3D hand motions conditioned by the object’s mass.
This flexibility allows the method to be used for diverse applications, from
generating datasets for machine learning tasks to expediting animation
production. The comprehensive experiments verify that the generated
interactions from the method are highly realistic and plausible.

1.6 structure

This thesis comprises the following eight chapters:

• Chapter 1 provides an overview of the research scope of this thesis,
motivating the individual research topics. Additionally, it sum-
marises the structure and outlines the list of publications.

• Chapter 2 elaborates on background concepts needed for the un-
derstanding of the thesis.

• Chapter 3 presents the 3D human motion capture algorithm that
explicitly integrates physics modelling from rigid body dynamics
(Shimada et al., 2020). By introducing the laws of physics, the cap-
tured 3D human motions exhibit natural 3D motions suppressing
typical artefacts such as unnatural foot skating, irregular poses, spu-
rious body translations, motion jitter and environment collisions.

• Chapter 4 proposes the fully learning-based 3D human motion
capture algorithm (Shimada et al., 2021). Unlike the prior MoCap
works on the basis of explicit physics laws, the method is fully
neural network-based. The components learn the parameters of
proportional derivative (PD) controllers that actuate the humanoid
character. The networks adjust the intensity of the PD controller
signals based on the observed motions (e.g. higher intensities for
fast motions, and lower intensities for non-fast motions). The re-
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constructed 3D motions show improved plausibility and accuracy
compared to the prior works.

• Chapter 5 presents a motion capture method that explicitly models
the whole body human-environment interactions from an RGB
video and corresponding 3D scene represented by a point cloud
(Shimada et al., 2022). There are two key innovations to the ap-
proach. First, the method estimates dense contact labels on both
the body and environment surfaces, which subsequently guide
the fitting optimisation for improved 3D localisations. Second, the
method introduces a novel sampling algorithm in a learned pose
manifold space to resolve the physically implausible collisions in a
hard manner. Our experiments show that this work outperforms the
prior works by a big margin in terms of 3D accuracy and physical
plausibility.

• Chapter 6 describes a new method for single view face-hand in-
teraction capture along with the interaction-induced deformations
(Shimada et al., 2023). This chapter proposes a novel dataset capture
pipeline that integrates the deformable object simulator — position
based dynamics (PBD) — into a markerless multi-view tracking
system to obtain the ground truth 3D deformations of the face
tissues. Furthermore, the neural network based method estimates
the 3D face and hand positions along with the surface deformations
while reducing the artefacts compared to other related works.

• Chapter 7 introduces a 3D motion synthesis method for object
manipulation with hands, where the object’s mass conditions the
motion (Shimada et al., 2024). The synthesised 3D motions show
highly natural manipulations faithfully reflecting the influence of
the object’s mass. The method optionally accepts a user-specified
object trajectory as input and synthesises the 3D motions that
follow the provided trajectory. This functionality can substantially
streamline the process of 3D animation creation. This chapter also
explains the simple data capture methodology for capturing the
hand-object interactions using a multi-view camera setup.

• Chapter 8 concludes this thesis by providing a summary and the
insights derived from the preceding chapters. Additionally, this
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chapter offers a discussion on open questions remaining to be
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2
P R E L I M I N A R I E S

This chapter introduces several key concepts crucial for understanding the
methods presented in this thesis. First, foundational concepts needed for
modelling the human body are introduced. Second, detailed descriptions
of the fundamentals of rigid body dynamics are provided.

2.1 3d human body representation

Figure 2.1: Exemplary human skeleton
structure. The red dots represent the 3D
body joint positions. The edges between
the joints are the hypothetical lines that
imitate simplified human bones.

Human bodies have a very com-
plex structure: bones, muscles,
blood vessels, organs, blood cir-
culations, etc. Therefore, a simpli-
fied human 3D model is often em-
ployed in computer graphics and
vision research. The skeleton of
a human body is represented as
a tree structure described in Sec.
2.1.1. The explicit surface of a hu-
man body is typically represented
as a mesh, i.e. a set of 3D vertices
in a Cartesian coordinate and their
edge connection information. Such
a high-dimensional representation
is often parametrised for better
controllability and dimensionality
reduction purposes. Sec. 2.1.2 ex-
plains the parametric representation of the human body surface.

2.1.1 Skeletal representation of human body

As our human body is highly complex, a 3D articulated human pose is
often represented by a set of 3D joint positions with edges that connect

11
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Figure 2.2: Example of PCA-based human body parametric model M. Semantic
vectors control the body model; a shape vector β for representing various human
body shapes and a pose vector θ for the articulations of the body. The image is
taken from Xie et al. (2019).

them; see Fig. 2.1 for an example. The skeleton model is configured by
root translation τ ∈R3 and rotation ϕ∈ SO(3), joint angles θ ∈R3k and
bone lengths l∈Rk−1, where k denotes the number of joints. The 3D joint
positions J∈R3k can be obtained using a forward kinematic function that
accepts the skeleton configurations as input.

2.1.2 Parametric representation of human body

The surface of a human body is typically represented as a mesh that con-
sists of vertices and edge information. To reduce the high dimension of
the surface representation, PCA-based or neural network-based paramet-
ric models are often utilised, especially in tasks not specific to individual
identity. These parametric models typically accept semantic parameters
such as a shape and pose as inputs and return the vertex positions or
sign distance field (SDF) of the body surface. In this thesis, PCA-based
parametric model for a body (Pavlakos et al., 2019), a face (Li et al., 2017)
and hands (Romero et al., 2017) are used due to their simplicity and low
time and space complexities, see Fig. 2.2 for the exemplary PCA human
model.

2.2 basis of rigid body dynamics

In this subsection, the fundamentals of the rigid body dynamics mod-
elling leveraged in Chapter 3 and 4 are described.
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Let q ∈ Rm be the kinematic state of an articulated humanoid character.
The first six elements of q represent the root translation followed by the
root rotation of the character. q̇ and q̈ represent the first and second
order time derivative of q. Using a finite difference method, the relations
of q, q̇ and q̈ are modelled as follows:

q̇i+1 = q̇i + ∆tq̈i,

qi+1 = qi + ∆tq̇i+1,
(2.1)

where ∆t denotes the time interval, and the superscript i represents the
time step. In our physical world, we are able to execute motions by
obtaining external forces from the environment and generating internal
muscle forces. Based on Newton’s second law, the relationship between
the force, acceleration and mass of an articulated body is formulated as
follows:

M(q)q̈ − τ = JTGλ − c(q, q̇). (2.2)

Figure 2.3: Schematic visualisation of
the contact force λ and the vector vcc
that directs from the centre of mass of
the body to the contact point.

This equation is called equation of
motion describing the relations be-
tween the mass and inertia of the
character represented by a mass
matrix M ∈ Rm×m, torque vec-
tor τ ∈ Rm, contact force λ ∈
R3Nc , and the summarised grav-
ity, Coriolis and centripetal forces
c ∈ Rm. M contains the distribu-
tion of mass and moment of inertia
properties of the character. τ determines the internal joint torque, mim-
icking the summarised forces of all muscles attached to the respective
bones. λ models the Nc contact forces raised from external-interactions.
G is a matrix that converts λ into linear and rotational forces. Without
loss of generality, we assume Nc = 1. Then the formulation of G reads:

G =

E

χ

 (2.3)

where E ∈ R3×3 is an identity matrix. χ is an operator that computes
a cross-product between the contact force vector λ and a vector vcc =
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[vx
cc vy

cc vz
cc]

T that directs from the centre of mass (CoM) of the character to
the contact point, see Fig. 2.3 for its schematic visualisation. The operator
χ is the cross product rewritten in matrix form as

0 −vz
cc vy

cc

vz
cc 0 −vx

cc

−vy
cc vx

cc 0

 . (2.4)

For the contact forces λ to be physically plausible, the force vectors
need to reside in a so-called friction cone. For computational efficiency,
the friction cone constraint F is often linearly approximated:

Fj =
{

λj ∈ R3
∣∣∣λj

n > 0,
∣∣∣ λ

j
t

∣∣∣≤ µ̄λ
j
n,
∣∣∣ λ

j
b |≤ µ̄λ

j
n

}
(2.5)

where λb and λt are the tangential component, and λn denotes the normal
component of the contact force λ, respectively. µ̄ represents the friction
coefficient of an inner linear cone.

2.3 pd controller

A proportional derivative (PD) controller is one type of controller fre-
quently used in a control system. The output of the controller is in
proportion to the error signal and its derivative. This concept is lever-
aged in the Chapters 3 and 4. In the context of character control, the PD
controller is often used to estimate the actuation force τ given the target
kinematic state qtar. and its time derivative q̇tar. :

τ = kp ◦ (qtar. − q) + kd ◦ (q̇tar. − q̇), (2.6)

where kp and kd are coefficient values that weight the first term (error
signal) and the second term (derivative of the error signal), respectively.
“◦” denotes the Hadamard matrix product.
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P H Y S C A P : P H Y S I C A L LY P L AU S I B L E M O N O C U L A R 3 D
M O T I O N C A P T U R E I N R E A L T I M E

This chapter introduces a novel monocular RGB-based 3D human mo-
tion capture method that embeds explicit modelling of physics into the
approach (published as Shimada et al., 2020). Unlike the prior works that
directly estimate the 3D joint angles of a kinematic skeleton from the
video input, the introduced method estimates the forces and accelerations
that drive the humanoid character to reconstruct motions. As a result of
this in-depth modelling of physics, the reconstructed motions display sig-
nificantly fewer artefacts (e.g. jitters, environment collisions, foot-skating
unnatural body leaning, etc). Furthermore, this chapter introduces new
metrics to evaluate the plausibility of the reconstructed 3D motions from
the perspective of temporal consistency and body-environment collisions.

3.1 introduction

3D human pose estimation from monocular RGB images is a very ac-
tive area of research. Progress is fueled by many applications with an
increasing need for reliable, real-time and simple-to-use pose estimation.
Here, applications in character animation, VR and AR, telepresence, or
human-computer interaction, are only a few examples of high importance
for graphics.

Monocular and markerless 3D capture of the human skeleton is a
highly challenging and severely underconstrained problem (Kovalenko
et al., 2019; Martinez et al., 2017; Mehta et al., 2017b; Pavlakos et al., 2018a;
Wandt and Rosenhahn, 2019). Even the best state-of-the-art algorithms,
therefore, exhibit notable limitations. Most methods capture pose kine-
matically using individually predicted joints but do not produce smooth
joint angles of a coherent kinematic skeleton. Many approaches perform
per-frame pose estimates with notable temporal jitter, and reconstruc-
tions are often in root-relative but not global 3D space. Even if a global
pose is predicted, depth prediction from the camera is often unstable.

15
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Figure 3.1: PhysCap captures global 3D human motion in a physically plausible
way from monocular videos in real-time, automatically and without the use of
markers. (Left:) Video of a standing long jump (Peng et al., 2018b) and our 3D
reconstructions with substantially mitigated artefacts, thanks to the formulation
on the basis of physics-based dynamics in our method. (Right:) Our PhysCap
can directly drive virtual characters without any further post-processing. The
3D characters are taken from Adobe (2020).

Also, interaction with the environment is usually entirely ignored, which
leads to poses with severe collision violations, e.g. floor penetration or
the implausible foot sliding and incorrect foot placement. Established
kinematic formulations also do not explicitly consider the biomechanical
plausibility of reconstructed poses, yielding reconstructed poses with
improper balance, inaccurate body leaning, or temporal instability.

We note that all these artefacts are particularly problematic in the
aforementioned computer graphics applications, in which temporally
stable and visually plausible motion control of characters from all virtual
viewpoints, in global 3D, and with respect to the physical environment,
are critical. Further on, we note that established metrics in widely-used
3D pose estimation benchmarks (Ionescu et al., 2013; Mehta et al., 2017a),
such as mean per joint position error (MPJPE) or 3D percentage of correct
keypoints (3D-PCK), which are often even evaluated after a 3D rescaling
or Procrustes alignment, do not adequately measure these artefacts. In
fact, we show (see Sec. 3.4) that even some top-performing methods
on these benchmarks produce results with substantial temporal noise
and unstable depth prediction, with frequent violation of environment
constraints, and with frequent disregard of physical and anatomical
pose plausibility. In consequence, there is still a notable gap between
monocular 3D pose human estimation approaches and the gold standard
accuracy and motion quality of suit-based or marker-based motion cap-
ture systems, which are unfortunately expensive, complex to use and not
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suited for many of the aforementioned applications requiring in-the-wild
capture.

We, therefore, present PhysCap – a new approach for easy-to-use monoc-
ular global 3D human motion capture that significantly narrows this gap
and substantially reduces the aforementioned artefacts, see Fig. 3.1 for
an overview. PhysCap is, to our knowledge, the first method that jointly
possesses all the following properties: it is fully automatic, markerless,
works in general scenes, runs in real-time, captures a space-time coherent
skeleton pose and global 3D pose sequence of state-of-the-art temporal
stability and smoothness. It exhibits state-of-the-art posture and posi-
tion accuracy, and captures physically and anatomically plausible poses
that correctly adhere to physics and environment constraints. To this
end, we rethink and bring together in new way ideas from kinematics-
based monocular pose estimation and physics-based human character
animation.

The first stage of our algorithm is similar to (Mehta et al., 2017b) and
estimates 3D body poses in a purely kinematic, physics-agnostic way. A
convolutional neural network (CNN) infers combined 2D and 3D joint
positions from an input video, which are then refined in space-time
inverse kinematics to yield the first estimate of skeletal joint angles and
global 3D poses. In the second stage, the foot contact and the motion states
are predicted for every frame. Therefore, we employ a new CNN that
detects heel and forefoot placement on the ground from estimated 2D
keypoints in images, and classifies the observed poses into stationary or
non-stationary. In the third stage, the final physically plausible 3D skeletal
joint angle and pose sequence is computed in real-time. This stage regu-
larises human motion with a torque-controlled physics-based character
represented by a kinematic chain with a floating base. To this end, the
optimal control forces for each degree of freedom (DoF) of the kinematic
chain are computed, such that the kinematic pose estimates from the
first stage – in both 2D and 3D – are reproduced as closely as possible.
The optimisation ensures that physics constraints like gravity, collisions,
foot placement, as well as physical pose plausibility (e.g. balancing), are
fulfilled. To summarise, our contributions in this chapter are:

• The first, to the best of our knowledge, marker-less monocular 3D
human motion capture approach on the basis of an explicit physics-
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based dynamics model which runs in real-time and captures global,
physically plausible skeletal motion (Sec. 3.4).

• A CNN to detect foot contact and motion states from images
(Sec. 3.4.2).

• A new pose optimisation framework with a human parametrised by
a torque-controlled simulated character with a floating base and PD
joint controllers; it reproduces kinematically captured 2D/3D poses
and simultaneously accounts for physics constraints like ground
reaction forces, foot contact states and collision response (Sec. 3.4.3).

• Quantitative metrics to assess frame-to-frame jitter and floor pene-
tration in captured motions (Sec. 3.5.3.1).

• Physically-justified results with significantly fewer artefacts, such
as frame-to-frame jitter, incorrect leaning, foot sliding and floor
penetration than related methods (confirmed by a user study and
metrics), as well as state-of-the-art 2D and 3D accuracy and tempo-
ral stability (Sec. 3.5).

We demonstrate the benefits of our approach through the experimental
evaluations on several datasets (including newly recorded videos) against
multiple state-of-the-art methods for monocular 3D human motion cap-
ture and pose estimation.

3.2 related work

Our method mainly relates to two different categories of approaches –
(markerless) 3D human motion capture from colour imagery, and physics-
based character animation. In the following, we review related types of
methods, focusing on the most closely related works.

3.2.1 Multi-View RGB Methods for 3D Human MoCap

Reconstructing humans from multi-view images is well-studied. Multi-
view motion capture methods track the articulated skeletal motion, usu-
ally by fitting an articulated template to imagery (Bo and Sminchisescu,
2008; Brox et al., 2010; Elhayek et al., 2016, 2014; Gall et al., 2010; Stoll
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et al., 2011; Wang et al., 2018; Zhang et al., 2020c). Other methods, some-
times termed performance capture methods, additionally capture the
non-rigid surface deformation, e.g. of clothing (Cagniart et al., 2010;
Starck and Hilton, 2007; Vlasic et al., 2009; Waschbüsch et al., 2005). They
usually fit some form of a template model to multi-view imagery (Bradley
et al., 2008; De Aguiar et al., 2008; Martin-Brualla et al., 2018) that of-
ten also has an underlying kinematic skeleton (Gall et al., 2009; Liu
et al., 2011; Vlasic et al., 2008; Wu et al., 2012). Multi-view methods
have demonstrated compelling results and some enable free-viewpoint
video. However, they require expensive multi-camera setups and often
controlled studio environments.

3.2.2 Monocular RGB 3D Human MoCap and Pose Estimation

Marker-less 3D human pose estimation (reconstruction of 3D joint posi-
tions only) and motion capture (reconstruction of global 3D body motion
and joint angles of a coherent skeleton) from a single colour or greyscale
image are highly ill-posed problems. The state of the art on monocular
3D human pose estimation has greatly progressed in recent years, mostly
fueled by the power of trained CNNs (Habibie et al., 2019; Mehta et al.,
2017a). Some methods estimate 3D pose by combining 2D keypoints
prediction with body depth regression (Dabral et al., 2018; Newell et al.,
2016; Yang et al., 2018; Zhou et al., 2017) or with regression of 3D joint
location probabilities (Mehta et al., 2017b; Pavlakos et al., 2017) in a
trained CNN. Lifting methods predict joint depths from detected 2D
keypoints (Chen and Ramanan, 2017; Martinez et al., 2017; Pavlakos
et al., 2018a; Tomè et al., 2017). Other CNNs regress 3D joint locations
directly (Mehta et al., 2017a; Rhodin et al., 2018; Tekin et al., 2016). An-
other category of methods combines CNN-based keypoint detection with
constraints from a parametric body model, e.g. by using reprojection
losses during training (Bogo et al., 2016; Brau and Jiang, 2016; Habibie
et al., 2019). Some works approach monocular multi-person 3D pose
estimation (Rogez et al., 2019) and motion capture (Mehta et al., 2020), or
estimate non-rigidly deforming human surface geometry from monoc-
ular video on top of skeletal motion (Habermann et al., 2020, 2019; Xu
et al., 2020). In addition to greyscale images, Xu et al. (2020) use an
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asynchronous event stream from an event camera as input. Both these
latter directions are complementary but orthogonal to our work.

The majority of methods in this domain estimate 3D pose as a root-
relative 3D position of the body joints (Kovalenko et al., 2019; Martinez
et al., 2017; Moreno-Noguer, 2017; Pavlakos et al., 2018a; Wandt and
Rosenhahn, 2019). This is problematic for applications in graphics, as
temporal jitter, varying bone lengths and the often not recovered global
3D pose make animating virtual characters hard. Other monocular meth-
ods are trained to estimate parameters or joint angles of a skeleton (Zhou
et al., 2016) or parametric model (Kanazawa et al., 2018). Mehta et al.
(2020, 2017b) employ inverse kinematics on top of CNN-based 2D/3D
inference to obtain joint angles of a coherent skeleton in global 3D and in
real-time.

Results of all aforementioned methods frequently violate laws of
physics, and exhibit foot-floor penetrations, foot sliding, and unbal-
anced or implausible poses floating in the air, as well as notable jitter.
Some methods try to reduce jitter by exploiting temporal information
(Kanazawa et al., 2019; Kocabas et al., 2020a), e.g. by estimating smooth
multi-frame scene trajectories (Peng et al., 2018b). Zou et al. (2020) try
to reduce foot sliding by ground contact constraints. Zanfir et al. (2018)
jointly reason about ground planes and volumetric occupancy for multi-
person pose estimation. Monszpart et al. (2019) jointly infer coarse scene
layout and human pose from monocular interaction video, and Hassan
et al. (2019) use a pre-scanned 3D model of scene geometry to constrain
kinematic pose optimisation. No prior motion capture works formulate
explicit physics-based modelling and real-time capability, unlike ours.

3.2.3 Physics-Based Character Animation

Character animation with physics-based controllers has been investigated
for many years (Barzel et al., 1996; Sharon and Panne, 2005; Wrotek
et al., 2006), and remains an active area of research, (Andrews et al., 2016;
Bergamin et al., 2019; Levine and Popović, 2012; Zheng and Yamane,
2013). Levine and Popović (2012) employ a quasi-physical simulation that
approximates a reference motion trajectory in real time. They can follow
non-physical reference motion by applying a direct actuation at the root.
By using proportional derivative (PD) controllers and computing optimal
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torques and contact forces, Zheng and Yamane (2013) make a character
follow a reference motion captured while keeping balance. Liu et al. (2010)
proposed a probabilistic algorithm for physics-based character animation.
Due to the stochastic property and inherent randomness, their results
evince variations, but the method requires multiple minutes of runtime
per sequence. Andrews et al. (2016) employ rigid dynamics to drive a
virtual character from a combination of marker-based motion capture
and body-mounted sensors. This animation setting is related to motion
transfer onto robots. Nakaoka et al. (2007) transferred human motion
captured by a multi-camera marker-based system onto a robot, with an
emphasis on leg motion. Zhang et al. (2014) leverage depth cameras and
wearable pressure sensors and apply physics-based motion optimisation.
We take inspiration from these works for our setting, where we have to
capture in a physically correct way and in real-time global 3D human
motion from images, using intermediate pose reconstruction results
that exhibit notable artefacts and violations of physics laws. PhysCap,
therefore, combines an initial kinematics-based pose reconstruction with
PD controller based physical pose optimisation.

Several recent methods apply deep reinforcement learning to virtual
character animation control (Bergamin et al., 2019; Lee et al., 2019; Peng et
al., 2018b). Peng et al. (2018b) propose a reinforcement learning approach
for transferring dynamic human performances observed in monocular
videos. They first estimate smooth motion trajectories with recent monoc-
ular human pose estimation techniques, and then train an imitating
control policy for a virtual character. Bergamin et al. (2019) train a con-
troller for a virtual character from several minutes of motion capture data,
which covers the expected variety of motions and poses. Once trained,
the virtual character can follow the directional commands of the user in
real time, while being robust to collisional obstacles. Other work (Lee
et al., 2019) combines a muscle actuation model with deep reinforcement
learning. Jiang et al. (2019) express an animation objective in muscle
actuation space. The work on learning animation controllers for specific
motion classes is inspirational but different from real-time physics-based
motion capture of general motion.
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3.2.4 Physically Plausible Monocular 3D Human Motion Capture

Only a few works on monocular 3D human motion capture using explicit
physics-based constraints exist (Li et al., 2019; Vondrak et al., 2012; Wei
and Chai, 2010; Zell et al., 2017). Wei and Chai (2010) capture 3D human
poses from uncalibrated monocular video using physics constraints.
Their approach requires manual user input for each frame of a video.
In contrast, our approach is automatic, runs in real time, and uses a
different formulation for physics-based pose optimisation geared to our
setting. Vondrak et al. (2012) capture bipedal controllers from a video.
Their controllers are robust to perturbations and generalise well for a
variety of motions. However, unlike our PhysCap, the generated motion
often looks unnatural and their method does not run in real time. Zell
et al. (2017) capture poses and internal body forces from images only for
certain classes of motion (e.g. lifting and walking) by using a data-driven
approach, but not an explicit forward dynamics approach handling a
wide range of motions, like ours.

Our PhysCap bears most similarities with the rigid body dynamics
based monocular human pose estimation by Li et al. (2019). They estimate
3D poses, contact states and forces from input videos with physics-based
constraints. However, their method and our approach are substantially
different. While Li et al. (2019) focus on object-person interactions, we
target a variety of general motions, including complex acrobatic motions
such as backflipping without objects. Their method does not run in real-
time and requires manual annotations on images to train the contact state
estimation networks. In contrast, we leverage the PD controller based
inverse dynamics tracking, which results in physically plausible, smooth
and natural skeletal pose and root motion capture in real-time. Moreover,
our contact state estimation network relies on annotations generated in a
semi-automatic way. This enables our architecture to be trained on large
datasets, which results in improved generalisability. No previous method
of the reviewed category “physically plausible monocular 3D human
motion capture” combines the ability of our algorithm to capture global 3D
human pose of similar quality and physical plausibility in real time.
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3.3 body model and preliminaries

Figure 3.2: Our virtual character used in
stage III. The forefoot and heel links are
involved in the mesh collision checks
with the floor plane in the physics en-
gine (Coumans and Bai, 2016).

The input to PhysCap is a 2D im-
age sequence It, t ∈ {1, . . . , T},
where T is the total number of
frames and t is the frame index.
We assume a perspective camera
model and calibrate the camera
and floor location before tracking
starts. Our approach outputs a
physically plausible real-time 3D
motion capture result qt

phys ∈ Rm

(where m is the number of degrees
of freedom) that adheres to the image observation, as well as physics-
based posture and environment constraints. For our human model,
m = 43. Joint angles are parametrised by Euler angles. The mass dis-
tribution of our character is computed following Liu et al. (2010). Our
character model has a skeleton composed of 37 joints and links. A link
defines the volumetric extent of a body part via a collision proxy. The
forefoot and heel links, centred at the respective joints of our character
(see Fig. 3.2), are used to detect foot-floor collisions during physics-based
pose optimisation.

Throughout our algorithm, we represent the pose of our character by a
combined vector q ∈ Rm (Featherstone, 2014). The first three entries of
q contain the global 3D root position in Cartesian coordinates, the next
three entries encode the orientation of the root, and the remaining entries
are the joint angles. When solving for the physics-based motion capture
result, the motion of the physics-based character will be controlled by
the vector of forces denoted by τ ∈ Rm interacting with gravity, Coriolis
and centripetal forces c ∈ Rm. The root of our character is not fixed
and can globally move in the environment, which is commonly called a
floating-base system. Let the velocity and acceleration of q be q̇ ∈ Rm and
q̈ ∈ Rm, respectively. Using the finite-difference method, the relationship
between q, q̇, q̈ can be written as

q̇i+1 = q̇i + ϕq̈i,

qi+1 = qi + ϕq̇i+1,
(3.1)
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Figure 3.3: Overview of our pipeline.

where i represents the simulation step index and ϕ = 0.01 is the simula-
tion step size. For the motion to be physically plausible, q̈ and the vector
of forces τ must satisfy the equation of motion (Featherstone, 2014):

M(q)q̈ − τ = JTGλ − c(q, q̇), (3.2)

where M ∈ Rm×m is a joint space inertia matrix which is composed of
the moment of inertia of the system. It is computed using the Composite
Rigid Body algorithm (Featherstone, 2014). J ∈ R6Nc×m is a contact
Jacobi matrix which relates the external forces to joint coordinates, with
Nc denoting the number of links where the contact force is applied.
G ∈ R6Nc×3Nc transforms contact forces λ ∈ R3Nc into the linear force
and torque (Zheng and Yamane, 2013).

Usually, in a floating-base system, the first six entries of τ which corre-
spond to the root motion are set to 0 for a humanoid character control.
This reflects the fact that humans do not directly control root translation
and orientation by muscles acting on the root, but indirectly by the other
joints and muscles in the body. In our case, however, the kinematic pose
qt

kin which our final physically plausible result shall reproduce as much
as possible (see Sec. 3.4), is estimated from a monocular image sequence
(see stage I in Fig. 3.3), which contains artefacts. Solving for joint torque
controls that blindly make the character follow, would make the character
quickly fall down. Hence, we keep the first six entries of τ in our for-
mulation and can thus directly control the root position and orientation
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with an additional external force. This enables the final character motion
to keep up with the global root trajectory estimated in the first stage of
PhysCap, without falling down.

3.4 method

Our PhysCap approach includes three stages, see Fig. 3.3 for an overview.
The first stage performs kinematic pose estimation. This encompasses 2D
heatmap and 3D location map regression for each body joint with a CNN,
followed by a model-based space-time pose optimisation step (Sec. 3.4.1).
This stage returns 3D skeleton pose in joint angles qt

kin ∈ Rm along
with the 2D joint keypoints Kt ∈ Rs×2 for every image; s denotes the
number of 2D joint keypoints. As explained earlier, this initial kinematic
reconstruction qt

kin is prone to physically implausible effects such as foot-
floor penetration, foot skating, anatomically implausible body leaning
and temporal jitter, especially notable along the depth dimension.

The second stage performs foot contact and motion state detection, which
uses 2D joint detections Kt to classify the poses reconstructed so far into
stationary and non-stationary – this is stored in one binary flag. It also
estimates binary foot-floor contact flags, i.e. for the toes and heels of both
feet, resulting in four binary flags (Sec. 3.4.2). This stage outputs the
combined state vector bt ∈ R5.

The third and final stage of PhysCap is the physically plausible global
3D pose estimation (Sec. 3.4.3). It combines the estimates from the first
two stages with physics-based constraints to yield a physically plausible
real-time 3D motion capture result that adheres to physics-based posture
and environment constraints qt

phys ∈ Rm. In the following, we describe
each of the stages in detail.

3.4.1 Stage I: Kinematic Pose Estimation

Our kinematic pose estimation stage follows the real-time VNect algo-
rithm (Mehta et al., 2017b), see Fig. 3.3, stage I. We first predict heatmaps
of 2D joints and root-relative location maps of joint positions in 3D with
a specially tailored fully convolutional neural network using ResNet (He
et al., 2016). The ground truth joint locations for training are taken from
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the MPII (Andriluka et al., 2014) and LSP (Johnson and Everingham,
2011) datasets in the 2D case, and MPI-INF-3DHP (Mehta et al., 2017a)
and Human3.6m (Ionescu et al., 2013) datasets in the 3D case.

Next, the estimated 2D and 3D joint locations are temporally filtered
and used as constraints in a kinematic skeleton fitting step that optimises
the following energy function:

Ekin(qt
kin) =EIK(qt

kin) + Eproj.(qt
kin) +

Esmooth(qt
kin) + Edepth(qt

kin).
(3.3)

The energy function (3.3) contains four terms (see Mehta et al. (2017b)),
i.e. the 3D inverse kinematics term EIK, the projection term Eproj., the
temporal stability term Esmooth and the depth uncertainty correction term
Edepth. EIK is the data term which constrains the 3D pose to be close
to the 3D joint predictions from the CNN. Eproj. enforces the pose qt

kin

to reproject it to the 2D keypoints (joints) detected by the CNN. Note
that this reprojection constraint, together with calibrated camera and
calibrated bone lengths, enables computation of the global 3D root (pelvis)
position in the camera space. Temporal stability is further imposed by
penalising the root’s acceleration and variations along the depth channel
by Esmooth and Edepth, respectively. The energy (3.3) is optimised by
Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963), and
the obtained vector of joint angles and the root rotation and position
qt

kin of a skeleton with fixed bone lengths are smoothed by an adaptive
first-order low-pass filter (Casiez et al., 2012). Skeleton bone lengths
of a human can be computed, up to a global scale, from averaged 3D
joint detections of a few initial frames. Knowing the metric height of the
human determines the scale factor to compute metrically correct global
3D poses.

The result of stage I is a temporally consistent joint angle sequence
but, as noted earlier, captured poses can exhibit artefacts and contradict
physical plausibility (e.g. evince floor penetration, incorrect body leaning,
temporal jitter, etc.).
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Figure 3.4: (a) Balanced posture: the CoG of the body projects inside the base of
support. (b) Unbalanced posture: the CoG does not project inside the base of
support, which causes the human to start losing balance.

3.4.2 Stage II: Foot Contact and Motion State Detection

The ground reaction force (GRF) – applied when the feet touch the
ground – enables humans to walk and control their posture. The interplay
of internal body forces and the ground reaction force controls the human
pose, which enables locomotion and body balancing by controlling the
centre of gravity (CoG). To compute physically plausible poses accounting
for the GRF in stage III, we thus need to know foot-floor contact states.
Another important aspect of the physical plausibility of biped poses, in
general, is balance. When a human is standing or in a stationary upright
state, the CoG of the body projects inside a base of support (BoS). The BoS
is an area on the ground bounded by the foot contact points, see Fig. 3.4
for a visualisation. When the CoG projects outside the BoS in a stationary
pose, a human starts losing balance and will fall if no correcting motion
or step is applied. Therefore, maintaining a static pose with an extensive
leaning, as often observed in the results of monocular pose estimation, is
not physically plausible (Fig .3.4-(b)). The aforementioned CoG projection
criterion can be used to correct imbalanced stationary poses (Coros et al.,
2010; Faloutsos et al., 2001; Macchietto et al., 2009). To perform such
correction in stage III, we need to know if a pose is stationary or non-
stationary (whether it is a part of a locomotion/walking phase).
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(a) (b) (c)

Figure 3.5: (a) An exemplary frame from the Human 3.6M dataset with the
ground truth reprojections of the 3D joint keypoints. The magnified view in the
red rectangle shows the reprojected keypoint that deviates from the rotation cen-
tre (the middle of the knee). (b) Schematic visualisation of the reference motion
correction. Readers are referred to Sec. 3.4.3.1 for its details. (c) Example of a
visually unnatural standing (stationary) pose caused by physically implausible
knee bending.

Stage II, therefore, estimates foot-floor contact states of the feet in each
frame and determines whether the pose of the subject in It is stationary
or not. To predict both, i.e. foot contact and motion states, we use a
neural network whose architecture extends Zou et al. (2020) who only
predict foot contacts. It is composed of temporal convolutional layers
with one fully connected layer at the end. The network takes as input all
2D keypoints Kt from the last seven time steps (the temporal window
size is set to seven), and returns for each image frame binary labels
indicating whether the subject is in the stationary or non-stationary pose,
as well as the contact state flags for the forefeet and heels of both feet
encompassed in bt. The supervisory labels for training this network are
automatically computed on a subset of the 3D motion sequences of the
Human3.6M (Ionescu et al., 2013) and DeepCap (Habermann et al., 2020)
datasets using the following criteria: the forefoot and heel joint contact
labels are computed based on the assumption that a joint in contact
is not sliding, i.e. the velocity is lower than 5 cm/sec. In addition, we
use a height criterion, i.e. the forefoot/heel, when in contact with the
floor, has to be at a 3D height that is lower than a threshold hthres.. To
determine this threshold for each sequence, we calculate the average heel
hheel

avg and forefoot h f f oot
avg heights for each subject using the first ten frames

(when both feet touch the ground). Thresholds are then computed as
hheel

thres. = hheel
avg + 5cm for heels and h f f oot

thres. = h f f oot
avg + 5cm for the forefeet.
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This second criterion is needed since, otherwise, a foot in the air that is
kept static could also be labelled as being in contact.

We also automatically label stationary and non-stationary poses on the
same sequences. When standing and walking, the CoG of the human
body typically lies close to the pelvis in 3D, which corresponds to the
skeletal root position in both the Human3.6M and DeepCap datasets.
Therefore, when the velocity of 3D root is lower than a threshold φv,
we classify the pose as stationary, and non-stationary otherwise. In total,
around 600k sets of contact and motion state labels for the human images
are generated.

3.4.3 Stage III: Physically Plausible Global 3D Pose Estimation

Stage III uses the results of stages I and II as inputs, i.e. qt
kin and bt. It

transforms the kinematic motion estimate into a physically plausible
global 3D pose sequence that corresponds to the images and adheres to
anatomy and environmental constraints imposed by the laws of physics.
To this end, we represent the human as a torque-controlled simulated
character with a floating base and PD joint controllers (A. Salem and
Aly, 2015). The core is to solve an energy-based optimisation problem to
find the vector of forces τ and accelerations q̈ of the character such that
the equations of motion with constraints are fulfilled (Sec. 3.4.3.5). This
optimisation is preceded by several preprocessing steps applied to each
frame.

First i), we correct qt
kin if it is strongly implausible based on several

easy-to-test criteria (Sec. 3.4.3.1). Second ii), we estimate the desired
acceleration q̈des ∈ Rm necessary to reproduce qt

kin based on the PD
control rule (Secs. 3.4.3.2). Third iii), in input frames in which a foot is in
contact with the floor (Sec. 3.4.3.3), we estimate the ground reaction force
(GRF) λ (Sec. 3.4.3.4). Fourth iv), we solve the optimisation problem (3.9)
to estimate τ and accelerations q̈ where the equation of motion with the
estimated GRF λ and the contact constraint to avoid foot-floor penetration
(Sec. 3.4.3.5) are integrated as constraints. Note that the contact constraint
is integrated only when the foot is in contact with the floor. Otherwise,
only the equation of motion without GRF is introduced as a constraint
in (3.9). v) Lastly, the pose is updated using the finite-difference method
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(Eq. (3.1)) with the estimated acceleration q̈. The steps ii) - v) are iterated
n = 4 times for each frame of video.

As also observed by Andrews et al. (2016), this two-step optimisation
iii) and iv) reduces direct actuation of the character’s root as much as
possible (which could otherwise lead to slightly unnatural locomotion),
and explains the kinematically estimated root position and orientation by
torques applied to other joints as much as possible when there is a foot-
floor contact. Moreover, this two-step optimisation is computationally
less expensive rather than estimating q̈, τ and λ simultaneously (Zheng
and Yamane, 2013). Our algorithm thus finds a plausible balance between
pose accuracy, physical accuracy, the naturalness of captured motion and
real-time performance.

3.4.3.1 Pose Correction

Due to the error accumulation in stage I (e.g. as a result of the deviation
of 3D annotations from the joint rotation centres in the skeleton model,
see Fig. 3.5-(a), as well as inaccuracies in the neural network predictions
and skeleton fitting), the estimated 3D pose qt

kin is often not physically
plausible. Therefore, prior to torque-based optimisation, we pre-correct
a pose qt

kin from stage I if it is 1) stationary and 2) unbalanced, i.e.
the CoG projects outside the base of support (BoS). If both correction
criteria are fulfilled, we compute the angle θt between the ground plane
normal vn and the vector vb that defines the direction of the spine relative
to the root in the local character’s coordinate system (see Fig. 3.5-(b)
for the schematic visualisation). We then correct the orientation of the
virtual character towards a posture, for which CoG projects inside BoS.
Correcting θt in one large step could lead to instabilities in physics-based
pose optimisation. Instead, we reduce θt by a small rotation of the virtual
character around its horizontal axis (i.e. the axis passing through the
transverse plane of a human body) starting with the corrective angle
ξt = θt

10 for the first frame. Thereby, we accumulate the degree of correction
in ξ for the subsequent frames, i.e. ξt+1 = ξt +

θt
10 . Note that θt is decreasing

for every frame and the correction step is performed for all subsequent
frames until 1) the pose becomes non-stationary or 2) CoG projects inside
BoS1.

1 either after the correction or already in qt
kin provided by stage I
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However, simply correcting the spine orientation by the skeleton rota-
tion around the horizontal axis can lead to implausible standing poses,
since the knees can still be unnaturally bent for the obtained upright
posture (see Fig. 3.5-(c) for an example). To account for that, we adjust the
respective DoFs of the knees and hips such that the relative orientation
between the upper legs and spine, as well as the upper and lower legs,
are more straight. The hip and knee correction starts if both correction
criteria are still fulfilled and θt is already very small. Similarly to the θ

correction, we introduce accumulator variables for every knee and every
hip. The correction step for knees and hips is likewise performed until 1)
the pose becomes non-stationary or 2) CoG projects inside BoS1.

3.4.3.2 Computing the Desired Accelerations

To control the physics-based virtual character such that it reproduces
the kinematic estimate qt

kin, we set the desired joint acceleration q̈des

following the PD controller rule:

q̈des = q̈t
kin + kp(qt

kin − q) + kd(q̇t
kin − q̇). (3.4)

The desired acceleration q̈des is later used in the GRF estimation step
(Sec. 3.4.3.4) and the final pose optimisation (Sec. 3.4.3.5). Controlling the
character motion on the basis of a PD controller in the system enables the
character to exert torques τ which reproduce the kinematic estimate qt

kin

while significantly mitigating undesired effects such as joint and base
position jitter.

3.4.3.3 Foot-Floor Collision Detection

To avoid foot-floor penetration in the final pose sequence and to mitigate
contact position sliding, we integrate hard constraints in the physics-
based pose optimisation that enforce zero velocity of the forefoot and
heel links in Sec. 3.4.3.5. However, these constraints can lead to unnatural
motion in rare cases when the state prediction network may fail to
estimate the correct foot contact states (e.g. when the foot suddenly stops
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in the air while walking). We thus update the contact state output of the
state prediction network bt,j∈{1,...,4}, to yield b′

t,j∈{1,...,4} as follows:

b′
t,j∈{1,...,4} =


1, if ( bj = 1 and hj < ψ ) or

the j-th link collides with the floor plane,

0, otherwise.

(3.5)

This means we consider a forefoot or heel link to be in contact only if its
height hj is less than a threshold ψ = 0.1m above the calibrated ground
plane.

In addition, we employ the Pybullet (Coumans and Bai, 2016) physics
engine to detect foot-floor collision for the left and right foot links. Note
that combining the mesh collision information with the predictions from
the state prediction network is necessary because 1) the foot may not
touch the floor plane in the simulation when the subject’s foot is actually
in contact with the floor due to the inaccuracy of qt

kin, and 2) the foot can
penetrate into the mesh floor plane if the network misdetects the contact
state when there is actually a foot contact in It.

3.4.3.4 Ground Reaction Force (GRF) Estimation

We first compute the GRF λ – when there is a contact between a foot and
floor – which best explains the motion of the root as coming from stage I.
However, the target trajectory from stage I can be physically implausible,
and we will thus eventually also require a residual force directly applied
on the root to explain the target trajectory; this force will be computed
in the final optimisation. To compute the GRF, we solve the following
minimisation problem:

min
λ

∥M1q̈des + c1(q, q̇)− JT
1 Gλ∥,

s.t. λ ∈ F,
(3.6)

where ∥·∥ denotes ℓ2-norm, and M1 ∈ R6×m together with JT
1 ∈ R6×6Nc

are the first six rows of M and JT that correspond to the root joint,
respectively. c1 ∈ R6 denotes the first six elements of c (see Eq.3.2),
which also correspond to the root joint. Also, see Chapter 2 for the details
of the linearised friction cone constraint F.
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The GRF λ is then integrated into the subsequent optimisation step (3.9)
to estimate torques and accelerations of all joints in the body, including
an additional residual direct root actuation component that is needed
to explain the difference between the global 3D root trajectory of the
kinematic estimate and the final physically correct result. The aim is to
keep this direct root actuation as small as possible, which is best achieved
by a two-stage strategy that first estimates the GRF separately. Moreover,
we observed this two-step optimisation enables faster computation than
estimating λ, q̈ and τ all at once. It is, hence, more suitable for our
approach that aims at fast operation.

3.4.3.5 Physics-Based Pose Optimisation

In this step, we solve an optimisation problem to estimate τ and q̈ to
track qt

kin using the equation of motion (3.2) as a constraint. When contact
is detected (Sec. 3.4.3.3), we integrate the estimated ground reaction force
λ (Sec. 3.4.3.4) in the equation of motion. In addition, we introduce
contact constraints to prevent foot-floor penetration and foot sliding
when contacts are detected.

Let ṙj be the velocity of the j-th contact link. Then, using the relationship
between ṙj and q̇ (Featherstone, 2014), we can write:

Jjq̇ = ṙj. (3.7)

When the link is in contact with the floor, the velocity perpendicular
to the floor has to be zero or positive to prevent penetration. Also, we
allow the contact links to have a small tangential velocity σ to prevent
an immediate foot motion stop which creates visually unnatural motion.
Our contact constraint inequalities read:

0 ≤ ṙn
j , |ṙt

j |≤ σ, and |ṙb
j |≤ σ, (3.8)

where ṙn
j is the normal component of ṙj, and ṙt

j along with ṙb
j are the

tangential elements of ṙj.
Using the desired acceleration q̈des (Eq. (3.4)), the equation of motion

(3.2), optimal GRF λ estimated in (3.6) and contact constraints (3.8), we
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Table 3.1: Names and duration of our six newly recorded outdoor sequences
captured using SONY DSC-RX0 at 25 fps.

Sequence ID Sequence Name Duration [sec]

1 building 1 132

2 building 2 90

3 forest 105

4 backyard 60

5 balance beam 1 21

6 balance beam 2 12

formulate the optimisation problem for finding the physics-based motion
capture result as:

min
q̈,τ

∥q̈ − q̈des∥+ ∥τ∥,

s.t. Mq̈ − τ = JTGλ − c(q, q̇), and

0 ≤ ṙn
j , |ṙt

j |≤ σ, |ṙb
j |≤ σ, ∀j.

(3.9)

The first energy term forces the character to reproduce qt
kin. The second

energy term is the regulariser that minimises τ to prevent overshoot-
ing, thus modelling natural human-like motion. After solving (3.9), the
character pose is updated by Eq. (3.1). We iterate the steps ii) - v) (see
stage III in Fig. 3.3) n = 4 times, and stage III returns the n-th output
from v) as the final character pose qt

phys. The final output of stage III
is a sequence of joint angles and global root translations and rotations
that explains the image observations, follows the purely kinematic recon-
struction from stage I, yet is physically and anatomically plausible and
temporally stable.

3.5 results

We first provide implementation details of PhysCap (Sec. 3.5.1) and then
demonstrate its qualitative state-of-the-art results (Sec. 3.5.2). We next
evaluate PhysCap’s performance quantitatively (Sec. 3.5.3) and conduct
a user study to assess the visual physical plausibility of the results
(Sec. 3.5.4).
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Figure 3.6: Two examples of reprojected 3D keypoints obtained by our approach
(light blue colour) and Vnect (Mehta et al., 2017b) (yellow colour) together
with the corresponding 3D visualisations from different view angles. PhysCap
produces much more natural and physically plausible postures, whereas Vnect
suffers from unnatural body leaning.

We test PhysCap on widely-used benchmarks (Habermann et al., 2020;
Ionescu et al., 2013; Mehta et al., 2017a) as well as on backflip and jump
sequences provided by Peng et al. (2018b). We also collect a new dataset
with various challenging motions. It features six sequences in general
scenes performed by two subjects recorded at 25 fps. For the recording,
we used SONY DSC-RX0, see Table 3.1 for more details on the sequences.

3.5.1 Implementation

Our method runs in real time (25 fps on average) on a PC with a Ryzen7

2700 8-Core Processor, 32 GB RAM and GeForce RTX 2070 graphics
card. In stage I, we proceed from a freely available demo version of
VNect (Mehta et al., 2017b). Stages II and III are implemented in python.
In stage II, the network is implemented with PyTorch (Paszke et al.,
2019). In stage III, we use the Rigid Body Dynamics Library (Felis, 2017)
to compute dynamic quantities. We employ the Pybullet (Coumans and
Bai, 2016) as a physics engine for the character motion visualisation and
collision detection. In this work, we set the proportional gain value kp and
derivative gain value kd for all joints to 300 and 20, respectively. For the
root angular acceleration, kp and kd are set to 340 and 30, respectively. kp
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Figure 3.7: Reprojected 3D keypoints onto two different images with different
view angles for squatting. Frontal view images are used as inputs, and images
of the reference view are used only for quantitative evaluation. Our results are
drawn in light blue, whereas the results by VNect (Mehta et al., 2017b) are
provided in yellow. Our reprojections are more feasible, which is especially
noticeable in the reference view.

and kd of the root linear acceleration are set to 1000 and 80, respectively.
These settings are used in all experiments.

3.5.2 Qualitative Evaluation

Figs. 3.1 and 3.11 show that PhysCap captures global 3D human poses
in real time, even of fast and difficult motions, such as a backflip and a
jump, which are of significantly improved quality compared to previous
monocular methods. In particular, captured motions are much more
temporally stable, and adhere to laws of physics with respect to the
naturalness of body postures and fulfilment of environmental constraints,
see Figs. 3.6–3.8 and 3.10 for the examples of more natural 3D reconstruc-
tions. These properties are essential for many applications in graphics, in
particular for stable real-time character animation, which is feasible by
directly applying our method’s output (see Fig. 3.1).
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Figure 3.8: Several visualisations of the results by our approach and VNect
(Mehta et al., 2017b). The first and second rows show our estimated 3D poses
after reprojection in the input image and its 3D view, respectively. Similarly, the
third and fourth rows show the reprojected 3D pose and 3D view for VNect.
Note that our motion capture shows no foot penetration into the floor plane
whereas such an artefact is apparent in the VNect results.

3.5.3 Quantitative Evaluation

In the following, we first describe our evaluation method in Sec. 3.5.3.1.
We evaluate PhysCap and competing methods under a variety of criteria,
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Table 3.2: 3D error comparison on benchmark datasets. We report the MPJPE
in mm, PCK at 150 mm and AUC. Higher AUC and PCK are better, and lower
MPJPE is better. Note that the global root positions for HMR and HMMR were
estimated by solving optimisation with a 2D projection loss using the 2D and
3D keypoints obtained from the methods.

DeepCap Human 3.6M MPI-INF-3DHP
MPJPE↓
[mm]

PCK ↑
[%]

AUC ↑
[%]

MPJPE↓
[mm]

PCK ↑
[%]

AUC ↑
[%]

MPJPE↓
[mm]

PCK ↑
[%]

AUC ↑
[%]

Pr
oc

ru
st

es ours 68.9 95.0 57.9 65.1 94.8 60.6 104.4 83.9 43.1
Vnect 68.4 94.9 58.3 62.7 95.7 61.9 104.5 84.1 43.2
HMR 77.1 93.8 52.4 54.3 96.9 66.6 87.8 87.1 50.9

HMMR 75.5 93.8 53.1 55.0 96.6 66.2 106.9 79.5 44.8

no
Pr

oc
ru

st
es ours 113.0 75.4 39.3 97.4 82.3 46.4 122.9 72.1 35.0

Vnect 102.4 80.2 42.4 89.6 85.1 49.0 120.2 74.0 36.1
HMR 113.4 75.1 39.0 78.9 88.2 54.1 130.5 69.7 35.7

HMMR 101.4 81.0 42.0 79.4 88.4 53.8 174.8 60.4 30.8

gl
ob

al
ro

ot
po

si
ti

on

ours 110.5 80.4 37.0 182.6 54.7 26.8 257.0 29.7 15.3
Vnect 112.6 80.0 36.8 185.1 54.1 26.5 261.0 28.8 15.0
HMR 251.4 19.5 8.4 204.2 45.8 22.1 505.0 28.6 13.5

HMMR 213.0 27.7 11.3 231.1 41.6 19.4 926.2 28.0 14.5

i.e. 3D joint position, reprojected 2D joint positions, foot penetration into
the floor plane and motion jitter. We compare our approach with current
state-of-the-art monocular pose estimation methods, i.e. HMR (Kanazawa
et al., 2018), HMMR (Kanazawa et al., 2019) and Vnect (Mehta et al.,
2017b) (here we use the so-called demo version provided by the authors
with further improved accuracy over the original paper due to improved
training). For the comparison, we use the benchmark dataset Human3.6M
(Ionescu et al., 2013), the DeepCap dataset (Habermann et al., 2020) and
MPI-INF-3DHP (Mehta et al., 2017a). From the Human3.6M dataset, we
use the subset of actions that does not have occluding objects in the frame,
i.e. directions, discussions, eating, greeting, posing, purchases, taking photos,
waiting, walking, walking dog and walking together. From the DeepCap
dataset, we use the subject 2 for this comparison.

3.5.3.1 Evaluation Methodology

The established evaluation methodology in monocular 3D human pose es-
timation and capture consists of testing a method on multiple sequences
and reporting the accuracy of 3D joint positions as well as the accuracy
of the reprojection into the input views. The accuracy in 3D is evaluated
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Table 3.3: 2D projection error of a frontal view (input) and side view (non-input)
on DeepCap dataset (Habermann et al., 2020). PhysCap performs similarly to
VNect on the frontal view, and significantly better on the side view. For further
details, see Sec. 3.5.3 and Fig. 3.7.

Front View Side View
einput

2D [pixel] σ
input
2D eside

2D [pixel] σside
2D

Ours 21.1 6.7 35.5 16.8
Vnect (Mehta et al., 2017b) 14.3 2.7 37.2 18.1

by mean per joint position error (MPJPE) in mm, percentage of correct key-
points (PCK) and the area under the receiver operating characteristic (ROC)
curve abbreviated as AUC. The reprojection or mean pixel error einput

2D

is obtained by projecting the estimated 3D joints onto the input images
and taking the average per frame distance to the ground truth 2D joint
positions. We report einput

2D and its standard deviation denoted by σ
input
2D

with the images of size 1024 × 1024 pixels.
As explained earlier, these metrics only evaluate limited aspects of

captured 3D poses and do not account for essential aspects of temporal
stability, smoothness and physical plausibility in reconstructions such
as jitter, foot sliding, foot-floor penetration and unnaturally balanced
postures. Moreover, MPJPE and PCK are often reported after rescaling
of the result in 3D or Procrustes alignment, which further makes these
metrics agnostic to the aforementioned artefacts. Thus, we introduce four
additional metrics which allow to evaluate the physical plausibility of
the results, i.e. reprojection error to unseen views eside

2D , motion jitter error
esmooth and two floor penetration errors – Mean Penetration Error (MPE)
and Percentage of Non-Penetration (PNP).

When choosing a reference side view for eside
2D , we make sure that the

viewing angle between the input and side views has to be sufficiently
large, i.e. more than ∼ π

15 . Otherwise, if a side view is close to the input
view, such effects as unnatural leaning forward can still remain unde-
tected by eside

2D in some cases. After reprojection of a 3D structure to an
image plane of a side view, all further steps for calculating eside

2D are simi-
lar to the steps for the standard reprojection error. We also report σside

2D ,
i.e. the standard deviation of eside

2D .
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Table 3.4: Comparison of temporal smoothness on the DeepCap (Habermann
et al., 2020) and Human 3.6M datasets (Ionescu et al., 2013). PhysCap significantly
outperforms VNect and HMR, and fares comparably to HMMR in terms of this
metric. For a detailed explanation, see Sec. 3.5.3.

Ours Vnect HMR HMMR

DeepCap
esmooth 6.3 11.6 11.7 8.1
σsmooth 4.1 8.6 9.0 5.1

Human 3.6M
esmooth 7.2 11.2 11.2 6.8
σsmooth 6.9 10.1 12.7 5.9

To quantitatively compare the motion jitter, we report the deviation of
the temporal consistency from the ground truth 3D pose. Our smoothness
error esmooth is computed as follows:

JitX =∥ps,t
X − ps,t−1

X ∥,

JitGT =∥ps,t
GT − ps,t−1

GT ∥,

esmooth = 1
Tm ∑T

t=1 ∑m
s=1|JitGT − JitX|,

(3.10)

where ps,t represents the 3D position of joint s in the time frame t. T and
m denote the total numbers of frames in the video sequence and target
3D joints, respectively. The subscripts X and GT stand for the predicted
output and ground truth, respectively. A lower esmooth indicates lower
motion jitter in the predicted motion sequence.

MPE and PNP measure the degree of non-physical foot penetration
into the ground. MPE is the mean distance between the floor and 3D foot
position, and it is computed only when the foot is in contact with the
floor. We use the ground truth foot contact labels (Sec. 3.4.2) to judge
the presence of the actual foot contacts. The complementary PNP metric
shows the ratio of frames where the feet are not below the floor plane
over the entire sequence.

3.5.3.2 Quantitative Evaluation Results

Table 3.2 summarises MPJPE, PCK and AUC for root-relative joint po-
sitions with (first row) and without (second row) Procrustes alignment
before the error computation for our and related methods. We also report
the global root position accuracy in the third row. Since HMR and HMMR
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Table 3.5: Comparison of Mean Penetration Error (MPE) and Percentage of
Non-Penetration (PNP) on DeepCap dataset (Habermann et al., 2020). PhysCap
significantly outperforms VNect on this metric, measuring an essential aspect of
physical motion correctness.

MPE [mm] ↓ σMPE ↓ PNP [%] ↑
Ours 28.0 25.9 92.9

Vnect (Mehta et al., 2017b) 39.3 37.5 45.6

do not return global root positions as their outputs, we estimate the root
translation in 3D by solving an optimisation with 2D projection energy
term using the 2D and 3D keypoints obtained from these algorithms
(similar to the solution in VNect). The 3D bone lengths of HMR and
HMMR were rescaled so that they match the ground truth bone lengths.

In terms of MPJPE, PCK and AUC, our method does not outperform
the other approaches consistently but achieves an accuracy that is com-
parable and often close to the highest on Human3.6M, DeepCap and
MPI-INF-3DHP. In the third row, we additionally evaluate the global 3D
base position accuracy, which is critical for character animation from the
captured data. Here, PhysCap consistently outperforms the other methods
on all the datasets.

As noted earlier, the above metrics only paint an incomplete picture.
Therefore, we also measure the 2D projection errors to the input and
side views on the DeepCap dataset, since this dataset includes multiple
synchronised views of dynamic scenes with a wide baseline. Table 3.3
summarises the mean pixel errors einput

2D and eside
2D together with their

standard deviations. In the frontal view, i.e. on einput
2D , VNect has higher

accuracy than PhysCap. However, this comes at the prize of frequently
violating physics constraints (floor penetration) and producing unnatu-
rally leaning and jittering 3D poses. In contrast, since PhysCap explicitly
models physical pose plausibility, it excels VNect in the side view, which
reveals VNect’s implausibly leaning postures and root position instability
in depth, also see Figs. 3.6 and 3.7.

To assess motion smoothness, we report esmooth and its standard de-
viation σsmooth in Table 3.4. Our approach outperforms Vnect and HMR
by a big margin on both datasets. Our method is better than HMMR on
DeepCap dataset and marginally worse on Human3.6M. HMMR has an
explicit temporal component in the architecture.
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Figure 3.9: The estimated contact forces as the functions of time for the walking
sequence. We observe that the contact forces remain in a reasonable range for
walking motions (Shahabpoor and Pavic, 2017).

Table 3.5 summarises the MPE and PNP for Vnect and PhysCap on
DeepCap dataset. Our method shows significantly better results com-
pared to VNect, i.e. about a 30% lower MPE and a by 100% better result
in PNP, see Fig. 3.8 for qualitative examples. Fig. 3.9 shows plots of
contact forces as the functions of time calculated by our approach on the
walking sequence from our newly recorded dataset (sequence 1). The
estimated functions fall into a reasonable force range for walking motions
(Shahabpoor and Pavic, 2017).

3.5.4 User Study

The notion of physical plausibility can be understood and perceived sub-
jectively from person to person. Therefore, in addition to the quantitative
evaluation with existing and new metrics, we perform an online user
study which allows to subjectively assess and compare the perceived
degree of different effects in the reconstructions by a broad audience
of people with different backgrounds in computer graphics and vision.
In total, we prepared 34 questions with videos, in which we always
showed one or two reconstructions at a time (our result, a result by a
competing method, or both at the same time). In total, 27 respondents
have participated.

There were different types of questions. In 16 questions (category I),
the respondents were asked to decide which 3D reconstruction out of
two looks more physically plausible to them (the first, the second or
undecided). In 12 questions (category II), the respondents were asked to
rate how natural the 3D reconstructed motions are or evaluate the degree
of an indicated effect (foot sliding, body leaning, etc.) on a predefined
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Input Images Ours Vnect
Side View

HMMRHMR

Time

Figure 3.10: Several side (non-input) view visualisations of the results by
our approach, Vnect (Mehta et al., 2017b), HMR (Kanazawa et al., 2018) and
HMMR (Kanazawa et al., 2019) on DeepCap dataset. The green dashed lines
indicate the expected root positions over time. It is apparent from the side view
that our PhysCap does not suffer from the unnatural body sliding along the
depth direction, unlike other approaches. The global base positions for HMR
and HMMR were computed by us using the root-relative predictions of these
techniques, see Sec. 3.5.3.2 for more details.

scale. In five questions (category III), the respondents were also asked
to decide which visualisation has a more pronounced indicated artefact.
For two questions out of five, 2D projections onto the input 2D image
sequence were shown, whereas the remaining questions in this category
featured 3D reconstructions. Finally (category IV), the participants were
encouraged to list which artefacts in the reconstructions seem to be most
apparent and most frequent.

In category I, our reconstructions were preferred in 89.2% of the cases,
whereas a competing method was preferred in 1.6% of the cases. Note that
at the same time, the decision between the methods has not been made in
8.9% cases. In category II, the respondents have also found the results of
our approach to be significantly more physically plausible than the results
of competing methods. The latter were also found to have consistently
more jitter, foot sliding and unnatural body leaning. In category III,
noteworthy is also that the participants have indicated a higher average
perceived accuracy of our reprojections, i.e. 32.7% voted that our results
reproject better, whereas the choice felt on the competing methods in
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Figure 3.11: Representative 2D reprojections and the corresponding 3D poses
of our PhysCap approach. Note that, even with the challenging motions, our
global poses in 3D have high quality and 2D reprojections to the input images
are accurate as well. The backflip video in the first row is taken from Peng et al.
(2018b). Other sequences are from our own recordings.
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22.6% of the cases. Note that the smoothness and jitter in the results are
also reflected in the reprojections, and, thus, both influence how natural
the reprojected skeletons look like. At the same time, a high uncertainty of
44.2% indicates that the difference between the reprojections of PhysCap
and other methods is volatile. For the 3D motions in this category, 82.7%
voted that our results show fewer indicated artefacts compared to other
approaches, whereas 13.5% of the respondents preferred the competing
methods. The decision has not been made in 3.7% of the cases. In category
IV, 59% of the participants named jitter as the most frequent and apparent
disturbing effect of the competing methods, followed by unnatural body
leaning (22%), foot-floor penetration (15%) and foot sliding (15%).

The user study confirms a high level of physical plausibility and
naturalness of PhysCap results. We see that also subjectively, a broad
audience coherently finds our results of high visual quality, and the gap
to the competing methods is substantial. This strengthens our belief about
the suitability of PhysCap for computer graphics and primarily virtual
character animation in real time.

3.6 discussion

Our physics-based monocular 3D human motion capture algorithm sig-
nificantly reduces the common artefacts of other monocular 3D pose
estimation methods such as motion jitter, penetration into the floor, foot
sliding and unnatural body leaning. The experiments have shown that
our state prediction network generalises well across scenes with different
backgrounds (see Fig. 3.11). However, in the case of foot occlusion, our
state prediction network can sometimes mispredict the foot contact states,
resulting in the erroneous hard zero velocity constraint for feet. Addi-
tionally, our approach requires the calibrated floor plane to apply the
foot contact constraint effectively; standard calibration techniques can be
used for this. Swift motions can be challenging for stage I of our pipeline,
which can cause inaccuracies in the estimates of the subsequent stages,
as well as in the final estimate. In future, other monocular kinematic
pose estimators than Mehta et al. (2017b) could be tested in stage I, in
case they are trained to handle occlusions and very fast motions better.
Moreover, note that – although we use a single parameter set for PhysCap
in all our experiments (see Sec. 3.5) – users can adjust the quality of the
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reconstructed motions by tuning the gain parameters of PD controller
depending on the scenario. By increasing the derivative gain value, the
reconstructed poses are smoother, which, however, can cause motion de-
lay compared to the input video, especially when the observed motions
are very fast. By reducing the derivative gain value, our optimisation
with a virtual character can track image sequence with less motion delay,
at the cost of less temporally coherent motion.

Further, while our method works in front of general backgrounds,
we assume there is a ground plane in the scene, which is the case for
most man-made environments, but not irregular outdoor terrains. Fi-
nally, our method currently only considers a subset of potential body-to-
environment contacts in a physics-based way.

3.7 conclusions

We have presented PhysCap – the first physics-based approach for a global
3D human motion capture from a single RGB camera that runs in real
time at 25 fps. Thanks to the pose optimisation framework using PD
joint control, the results of PhysCap evince improved physical plausibility,
temporal consistency and significantly fewer artefacts such as jitter, foot
sliding, unnatural body leaning and foot-floor penetration, compared to
other existing approaches (some of them include temporal constraints).
We also introduced new error metrics to evaluate these improved prop-
erties which are not easily captured by metrics used in the established
pose estimation benchmarks. Moreover, our user study further confirmed
these improvements.



4
N E U R A L M O N O C U L A R 3 D H U M A N M O T I O N
C A P T U R E W I T H P H Y S I C A L AWA R E N E S S

The previous chapter introduced a new approach for physics-based
3D human motion capture. This chapter (published as Shimada et al.,
2021) introduces a fully learning-based approach for monocular RGB
3D human motion capture with explicit physics modelling. The neural
network based character controller is trained with rigid body dynamics
modelling, realising the networks to be aware of dynamics and physics
quantities. The learned controller adjusts the signal intensity depending
on the characteristics of the input video (e.g. high intensity when the input
contains fast motions such as dancing). Consequently, our new method
shows improved 3D accuracy compared with the existing physics-based
method proposed in the previous chapter, especially for challenging swift
motions. It also surpasses other kinematic-based state-of-the-art methods
in terms of the plausibility of the motions. In addition, the predicted
ground reaction force and torques show reasonable values, even though
they are estimated solely from a video input, which can be helpful for
several downstream applications such as sports analysis, rehabilitation,
comfort measurement for furniture designs and more.

4.1 introduction

3D human motion capture is an actively researched area enabling many
applications ranging from human activity recognition to sports analysis,
virtual-character animation, film production, human-computer interac-
tion and mixed reality. Since marker-based and multi-camera-based solu-
tions are expensive and unsuited for many applications (e.g. in-the-wild
capture and recordings outside the studio or legacy content), methods
for markerless 3D human motion capture from a monocular camera are
intensively researched (Mehta et al., 2017b; Shimada et al., 2020).

Monocular 3D human motion capture is a highly challenging inverse
problem due to the fundamental ambiguities in deducing 3D body config-

47
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Figure 4.1: (Left:) Results of our method on different sequences from the input
and side views. (Right:) Applications in motion analysis by force visualisation
and virtual character animation.

uration and scale from 2D cues, as well as due to difficult (self-)occlusions
(Kocabas et al., 2020a; Martinez et al., 2017; Mehta et al., 2017b; Pavlakos
et al., 2018b). Most state-of-the-art methods for 3D human pose estimation
and motion capture benefit from the rapid progress in machine learning
and have shown stark improvements in accuracy (Kocabas et al., 2020a;
Sun et al., 2019; Wandt and Rosenhahn, 2019). Despite this progress,
existing purely kinematic methods still have important limitations and
produce notable artefacts. Many produce per-frame predictions that can
be temporally highly unstable, and many produce root-relative but not
global 3D poses. Further, most existing methods are, by design, incapable
of considering interactions with the environment, let alone biophysical
pose or motion plausibility. The former often leads to collision violations
such as foot-floor penetration and floating in the air in captured motions;
the latter yields impossible poses with physically incorrect leaning and
posture or poses that would actually cause loss of balance. Captured
results are, therefore, not only inaccurate in several ways but also un-
natural, which greatly reduces data usability, in particular in computer
graphics related applications.

We, therefore, propose a new neural network-based approach for
monocular 3D human motion capture, which considers physical con-
straints in the observed scenes. We believe that improving upon the
recently proposed ideas of physical-awareness constraints in monocular
3D human motion capture (Rempe et al., 2020; Shimada et al., 2020) and
combining them with machine learning techniques can lead to further
advances in the domain. While the methods of Rempe et al. (2020) and
Shimada et al. (2020) contain two stages—with the physics-based pose
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optimisation implemented as an engineered method relying on classical
optimisation techniques,—we are the first to propose a fully-differentiable
framework for monocular 3D human motion capture with physical awareness.
Thus, our physics-based pose optimisation is a trainable neural net-
work with custom layers for physics-based constraints. We refer to our
approach as physionical, which means that it is fully differentiable, neu-
ral network-based and aware of physical boundary conditions. The 3D
motions estimated by our framework are smooth and natural and can
directly drive an animation character with no further postprocessing. We
can also visualise the joint torques and ground reaction forces estimated
from the motion in the video, which can be used for some applications,
e.g. sports analysis. See Fig. 4.1 for the visualisation of the reconstructed
3D motions and the example applications of our framework.

Our method includes two core neural components, i.e. a target pose
estimator network (TPNet) and an iterative dynamic cycle for controlling
a humanoid character while considering physics-based boundary con-
ditions. Both TPNet and the dynamic cycle are newly developed neural
networks that are end-to-end trained. TPNet kinematically regresses the
target reference 3D pose from input 2D keypoints that are obtained by
an off-the-shelf 2D detector, which serves as a foundation for the dy-
namic cycle. The dynamic cycle first calculates the gain parameters of a
neural proportional-derivative (PD) controller, generating a force vector
to control the kinematic character with physics properties through the
differentiable physics model. The force vector is then used to estimate
the ground reaction force (GRF), and both are then passed to the forward
dynamics module, which regresses the accelerations of the skeleton. The
latter is subsequently used to update the final global human pose in
3D, which matches the subject’s 2D pose in the input frames and obeys
the condition of plausible foot-floor placements. In the dynamic cycle,
our architecture contains a novel differentiable layer realising a hard con-
straint for preventing foot-floor penetration. Our motivation for a custom
optimisation layer comes from the fact that conventional losses in neural
networks can only express soft constraints on the learned manifold, i.e.
there is no guarantee that the expressed boundary conditions will be
strictly fulfilled at inference time. On the other hand, physical constraints
and forces such as gravity and ground reaction force (originating from
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the floor which naturally limits human motions) are strictly present in
the physical world without freedom of interpretation.

Since our architecture is fully differentiable, it is the first approach for
monocular physics-aware 3D motion capture that can be equally trained
on images annotated with strong and weak labels, i.e. joint angles, 3D
joint keypoints but also 2D joint keypoints. Since also 2D training data
can be used, our method can be trained for better generalisation and is
easier to fine-tune for motion classes for which any 3D annotation would
be very hard (e.g. in-the-wild athletics or sports videos). Our physionical
method is aware of the environment and physical laws and runs in real-
time at 20 frames per second. It outputs physically plausible results with
significantly fewer artefacts—such as unnatural temporal instabilities and
frame-to-frame jitter, foot-floor penetration and the uncertainty in the
absolute human poses along the depth dimension—than purely kinematic
methods and other physics-aware methods. Moreover, compared to the
most related method PhysCap (Shimada et al., 2020) in the previous
chapter, we mitigate the delay between the observed and estimated
motions. To summarise, the technical contributions of this chapter are as
follows:

• The first entirely neural and fully-differentiable approach for marker-
less 3D human motion capture from monocular videos with physics
constraints, which we call physionical (Sec. 4.3).

• A new canonicalisation of input 2D keypoints allowing network train-
ing and 3D human pose regression with different intrinsic camera
parameters and jointly on several datasets (Sec. 4.3.2). In contrast to
existing normalisation methods for human pose estimation in the
literature, our canonicalisation does not discard the cues for the global
pose estimation.

• The integration of hard boundary conditions in our architecture to
prevent foot-floor penetrations by taking advantage of the recent
progress in designing optimisation layers for neural architectures
(Agrawal et al., 2019a) (Sec. 4.3.4).

• Applications of our method in direct virtual character animation
and visualisation of joint torques related to muscle activation forces,
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which can be used to analyse the captured motions in conceivable
downstream tasks (Sec. 4.3.7).

The proposed method establishes a new state of the art and outper-
forms existing methods on several metrics, as shown in the experiments
(Sec. 4.5). We evaluate it on several datasets including Human3.6M
(Ionescu et al., 2013), MPI-INF-3DHP (Mehta et al., 2017a), DeepCap
(Habermann et al., 2020) as well as newly-recorded sequences (Sec. 4.5).
The differences in the results of our physionical approach compared to
existing techniques are especially noticeable when they are obtained on
scenes in the wild.

4.2 related work

A vast body of literature is devoted to 3D human motion capture with
multi-view systems (Bo and Sminchisescu, 2008; Brox et al., 2010; Elhayek
et al., 2015; Gall et al., 2010; Martin-Brualla et al., 2018; Starck and Hilton,
2007; Wu et al., 2012) and inertial on-body sensors (Dejnabadi et al.,
2006; Marcard et al., 2017; Tautges et al., 2011; Vlasic et al., 2007). Both
areas are well studied and these methods have shown impressive results.
On the downside, they require specialised camera rigs and hardware
which make their operation outside the studio difficult. In this section, we
thus further focus on related works on 1) physics-based virtual character
animation and 2) monocular 3D human pose estimation and motion
capture.

4.2.1 Physics-Based Virtual Character Animation

Many works have been proposed for physics-based character anima-
tion which is a significantly different problem compared to monocular
3D human motion capture. In virtual character animation, there is full
control over the simulated physical laws and the structure of the simu-
lated world (in which virtual characters are moving), whereas we are
interested in reconstructing physically plausible human motions from
partial observations (monocular videos). At the same time, the animated
character of these methods is inspirational for us, as they provide the
realism and motion plausibility of character motion required in computer
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graphics applications (Andrews et al., 2016; Barzel et al., 1996; Bergamin
et al., 2019; Levine and Popović, 2012; Liu et al., 2010; Sharon and Panne,
2005; Wrotek et al., 2006; Zheng and Yamane, 2013). Some techniques
for virtual character animation employ deep reinforcement learning and
motion imitation in physics engines, often requiring specialised networks
for each motion kind (Bergamin et al., 2019; Jiang et al., 2019; Lee et al.,
2019; Peng et al., 2018a,b). In contrast to the latter, our problem requires
a different approach. Since our goals are the generalisability across differ-
ent motions and high data throughout enabling real-time applications,
we use explicit equations of motions and physics-based constraints on
top of initial kinematic estimates, while preserving the differentiability
of our architecture trained in a supervised manner.

4.2.2 Classical Monocular 3D Human Motion Capture and Pose Estimation

This section focuses on the majority of works on monocular 3D human
motion capture and pose estimation that do not use explicit physics-
based and environment constraints. All such methods for 3D human pose
estimation and motion capture can be classified into 1) direct regression
approaches, 2) lifting approaches and 3) various hybrid approaches
leveraging mixtures of 3D and 2D predictions. The first category of
methods is based on convolutional neural networks and regresses 3D
joints directly from input images (Mehta et al., 2017a; Rhodin et al.,
2018; Tekin et al., 2016). The methods of the second category regress 3D
joints from detected 2D keypoints (Chen and Ramanan, 2017; Martinez
et al., 2017; Moreno-Noguer, 2017; Pavlakos et al., 2018b; Tomè et al.,
2017). Finally, multiple methods combine 3D joint depth (or location
probabilities) and 2D keypoint prediction with lifting constraints (Habibie
et al., 2019; Mehta et al., 2017b; Newell et al., 2016; Pavlakos et al., 2017;
Yang et al., 2018; Zhou et al., 2017). Among them, Habibie et al. (2019)
use additional weak supervision with in-the-wild images.

Some methods additionally use 3D shape priors. Statistical human
body models provide strong constraints on plausible human postures
which can be used for human pose estimation (Bogo et al., 2016; Kanazawa
et al., 2018; Kocabas et al., 2020a). In contrast, certain works leverage
actor-specific 3D human body templates for global 3D human motion
capture with shape tracking including surface deformations on top of
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a skeletal motion (Habermann et al., 2020; Xu et al., 2020; Xu et al.,
2018). Several further algorithms use different variants of anatomical con-
straints for the human body (e.g. body symmetry) and show improved
results in weakly-supervised (Dabral et al., 2018; Wandt and Rosenhahn,
2019) or even unsupervised 3D human pose estimation (Kovalenko et al.,
2019). Some works also use geometric vicinity and collision avoidance
constraints for the reconstruction of human-object interactions (Hassan
et al., 2019; Zhang et al., 2020a), and several other works can generalise
to multiple persons in the scene (Dabral et al., 2019; Fabbri et al., 2020;
Mehta et al., 2020; Rogez et al., 2019; Zanfir et al., 2018).

Most of the proposed algorithms work on single images (Kanazawa
et al., 2018; Kolotouros et al., 2019; Pavlakos et al., 2018b; Song et al.,
2020; Sun et al., 2019), whereas others take the temporal information
into account for improved temporal stability (Kanazawa et al., 2019;
Kocabas et al., 2020b; Pavllo et al., 2019). To directly drive a kinematic
character with skinned rigs, we need joint angles, root translation and
rotation of a consistent skeleton. Only few works estimate those from
the input RGB video directly and realise the character motion control
from a video (Mehta et al., 2020, 2017b; Shi et al., 2020). Among the latter,
MotioNet (Shi et al., 2020) is the most closely related method to ours.
Unlike our approach, it does not include an explicit physics model, which
can adds up to physically implausible effects in the estimates. Upon the
architecture design, MotioNet expects, at test time, the same intrinsic
camera parameters as in the training dataset, i.e. when the system is
applied to sequences with different camera intrinsics, the accuracy of
the estimated translations can vary considerably. In contrast, we use
canonical 2D keypoints which makes our physionical approach invariant
to camera intrinsics.

4.2.3 Monocular 3D Human Motion Capture with Physics-based Constraints

This section focuses on the emerging field of monocular 3D human mo-
tion capture with physics-based constraints. One of the pioneering works
in this domain was proposed by Wei and Chai (2010). Their method
requires manual user interactions for each input sequence and is com-
putationally expensive. Vondrak et al. (2012) perform 3D human motion
capture from monocular videos for physically-plausible character control.
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They recover 3D bipedal controllers using optimal control theory, which
are capable of simulating the observed motions in different environments.
Unfortunately, this method cannot easily generalise across motions and
does not run in real time. Zell et al. (2017) estimate 3D human poses
along with the inner and exterior forces from images for object lifting and
walking. Li et al. (2019) regress human and object poses in 3D along with
forces and torques exerted by human limbs from a monocular video and
an object prior. They focus on instruments with grips and recognise con-
tacts between a person and an object (i.e. the instrument or the ground)
to facilitate the trajectory-optimisation problem. The method of Zell et al.
(2020) for the analysis of 3D human motion capture relates to our setting.
It infers ground-reaction forces and joint torques from input 3D human
motion capture sequences, relying on a new dataset with multiple human
motion types and ground-truth forces acquired using force plates on the
floor. The advantage of this method is that the proposed forward and
inverse dynamics layers generalise to new locomotion types. Thus, the
main focus lies on the explainability of the captured human motions in 3D
from the physics perspective, whereas our goal is 3D human motion cap-
ture that satisfies physics-based (environmental) constraints at interactive
framerates.

Two recent methods for monocular 3D human motion capture with
physics constraints are Rempe et al. (2020) and Shimada et al. (2020). They
tackle general human motions by introducing laws of physics as regu-
larisers in their formulations. Both methods 1) start with initial kinematic
estimates (Xiang et al. (2019) and Mehta et al. (2017b), respectively) which
are subsequently refined through physics-based optimisation, 2) detect
foot contacts and 3) the camera is not moving. Rempe et al. (2020) and
Shimada et al. (2020), however, differ significantly in physics-based global
pose optimisation and the overall runtime. Rempe et al. (2020) use as a
proxy a reduced-dimensional model of the lower body inspired by Win-
kler et al. (2018), which does not include all joints but captures the overall
motion and contacts. In contrast, Shimada et al. (2020) rely on initial
kinematic pose corrections and a lightweight iterative physics-based pose
refinement with PD joint controllers and ground-reaction force estimation,
which enable real-time operation. Both these approaches are composi-
tional and only partially rely on neural networks (for the kinematic
estimates and foot contact detections, but not for the physics-based rea-
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Figure 4.2: Overview of our physionical approach for markerless monocular 3D
human motion capture.

soning), unlike our approach. We embed hard physics-based constraints
in our architecture and enable its full differentiability. Our trainable
model with explicit physics-based constraints realises more plausible
3D motion qualitatively and more accurate 3D poses quantitatively than
the existing physics-based approaches solving conventional optimisation
problems with the dynamics equations of motion (see Sec. 4.5).

4.3 method

overview Our goal is physically plausible monocular global 3D
human motion capture without markers. We follow a learning-based
approach trained through a fully-differentiable physics model, see Fig. 4.2
for an overview. Our framework includes a neural proportional-derivative
(PD) controller that estimates a force vector, allowing controlling the
kinematic character with dynamics properties to match its pose with
the subject’s pose in the image sequence. The ground reaction forces
are also estimated alongside the 3D motions without requiring any
supervisory force annotations. We can also read out and visualise internal
and contact forces regressed from the monocular input. Our method
accepts sequential 2D joint keypoints in a video (e.g. extracted with
an of-the-shelf 2D keypoint detector), and returns 3D skeleton poses
that satisfy (bio-)physical constraints. This significantly mitigates foot-
floor penetration, body sliding along depth direction and joint jitters. In
Sec. 4.3.1, we define our model and mathematical notations. In Sec. 4.3.2,
we discuss a canonicalisation method of the input 2D joint keypoints
which allows our global translation estimation network CT to be trained
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jointly on several datasets with different camera intrinsics. In Secs. 4.3.3
and 4.3.4, the target pose estimation network and the dynamic cycle with
physics-based constraints are elaborated, respectively. In the latter, the
3D pose is updated in the custom optimisation layer where we introduce
a hard constraint to prevent foot-floor penetration in a differentiable
manner. The obtained 3D poses are smooth, plausible and show mitigated
motion delay even on fast motion sequences thanks to the learning-based
PD controller which dynamically adjusts the gain parameters depending
on the motions in the scene. Our fully-differentiable architecture allows
finetuning using 2D annotations only for improved accuracy on in-the-
wild footage (Sec. 4.3.6). Applications of our methods are discussed in
Sec. 4.3.7.

4.3.1 Our Model, Assumptions and Notations

We represent the kinematic state of the skeleton by a pose vector q ∈ Rn+1

and its velocity q̇ ∈ Rn in the camera frame, with n = 46. The first seven
entries of q represent the root translation qtrans ∈ R3 and rotation in
the quaternion parametrisation qori ∈ R4, respectively. All remaining
n − 7 entries of q encode joint angles of the human skeleton model
parametrised by Euler angles. The first three entries of q̇ represent the
linear velocity of the root whereas the next three ones stand for its
angular velocity ω ∈ R3. The remaining entries of q̇ stand for the angular
velocity of each joint and they correspond to the joint order in q. The
time derivative of qori is approximated as follows:

dqori

dt
≈ 1

2

 0

ω

⊗ qori, (4.1)

where ⊗ represents a quaternion multiplication. Eq. (4.1) is used to
update the 3D root orientation from its angular velocity in each dynamics
simulation step.

We use M 2D joint keypoints normalised in two different ways, i.e. the
root-relative 2D keypoints normalised by the image size and gathered
in Krr ∈ RM×2, and the canonical 2D keypoints stacked in Kc ∈ RM×2,
allowing the network training on datasets with different camera intrinsics.
Resorting to root-relative 2D joint keypoints is a widely-used normali-
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sation approach for estimating the root-relative 3D pose from an image
or video since it is translation-invariant in the image space. Therefore,
we use Krr for estimating the joint angles and root orientation of the
character qrr. While this normalisation alone loses the cues for estimating
the global translation of the subject in the scene, the canonicalised 2D
joint keypoints retain the required information to regress the global pose,
see Sec. 4.3.2 for the details.

Our character is composed of links which are volumetric body part
representations with collision proxies, following the same structure as
Shimada et al. (2020). Our core idea is to enable awareness of physical
laws in our framework which helps to obtain physically plausible human
motion captures. We impose the laws of physics by considering Newto-
nian rigid body dynamics, which—when applied to our case—reads as
(Featherstone, 2014):

M(q)q̈ − τ = JT(q)Gλ− h(q, q̇), (4.2)

where M ∈ Rn×n and q̈ ∈ Rn are the inertia matrix in the skeleton frame,
which describes the moments of inertia of the system, and the acceleration
of q, respectively; J ∈ R6Nc×n is a contact Jacobian matrix which relates
velocities in the skeleton frame to velocities in Cartesian coordinates; Nc

denotes the number of links to which the contact forces are applied; G ∈
R6Nc×3Nc is the matrix that converts the contact force λ ∈ R3Nc to linear
forces and torques (for its details, readers are referred to Featherstone
(2014)); h ∈ Rn encompasses gravity, Coriolis and centripetal forces; the
force vector τ ∈ Rn represents the internal joint forces of the character,
with its first six entries being the direct root actuations which are set to 0
as per convention.

The total forces that explain the root motion include external forces
such as ground reaction force (GRF). Similar to several prior works
(Andrews et al., 2016; Levine and Popović, 2012; Shimada et al., 2020;
Yuan and Kitani, 2020), we minimise the direct (virtual) root actuation by
estimating the acting GRF and explaining the observed motions with it
as much as possible (instead of setting the first six entries of τ to zero).
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4.3.2 Input Canonicalisation

For the networks that estimate the character’s pose without global trans-
lation qrr (e.g. CP), we use root-relative 2D joint keypoints Krr. Many
algorithms, which use a perspective camera model, estimate the global
root position by optimising a 2D projection-based loss without learning
components (Habermann et al., 2020; Mehta et al., 2020, 2017b). Pavllo et
al. (2019) and Shi et al. (2020) employ neural networks to directly regress
the translation of the 3D poses. However, in this case, the learned motion
manifolds depend on the camera intrinsic parameters used during the
training. Consequently, at test time, they expect similar camera intrinsics.
To tackle this issue, we propose to use canonicalised 2D keypoints Kc

to factor out the influence of the camera intrinsics before they are fed
to the neural network that regresses the absolute root translation of the
character. Our architecture benefits from the canonicalisation in two ways.
First, the translation estimation network can be trained with a large scale
joint dataset, i.e. a composition of Human 3.6M (Ionescu et al., 2013), MPI-
INF-3D-HP (Mehta et al., 2017a) and DeepCap (Habermann et al., 2020),
which are recorded with different intrinsic camera parameters. Second,
arbitrary camera intrinsics can be used at test time without influencing
the performance of the network that regresses the global translations.

Consider the perspective camera projection without a skew parameter:
fx 0 cx

0 fy cy

0 0 1




X

Y

Z

 = Z


fxX
Z + cx

fyY
Z + cy

1

 , (4.3)

where [X, Y, Z]T is a 3D coordinate of a joint in the camera frame, f the
focal length and c the principal point. We see that the 2D joint keypoints[

fxX
Z + cx, fyY

Z + cy

]T
are influenced by the camera intrinsic parameters.

Therefore, we generate canonical 2D joint keypoints by applying the
identity as an intrinsic camera matrix:

1 0 0

0 1 0

0 0 1




X

Y

Z

 = Z


X
Z
Y
Z

1

 . (4.4)
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We use [X/Z, Y/Z]T as the canonical 2D joint keypoint which is not
influenced by camera intrinsic parameters. In the case, when the depth
information Z is not known (e.g. during the testing phase), we can still
obtain the canonical 2D joint keypoints assuming that camera intrinsics
are known. Let pm = [um, vm]T be the 2D joint locations of M joints in the
pixel coordinates, with m ∈ {1, . . . , M}. We next stack the canonicalised
2D keypoints in a single Kc matrix:

Kc =

[ u1−cx
fx

v1−cy
fy

u2−cx
fx

v2−cy
fy

. . .
uM−cx

fx
vM−cy

fy

]T
. (4.5)

It follows from Eqs. (4.4) and (4.5), that for a single pm and for the
corresponding 3D joint location Pm = [Xm, Ym, Zm]T, we have:

[
um−cx

fx
, vm−cy

fy

]T
=
[

Xm
Zm

, Ym
Zm

]T
. (4.6)

This can be interpreted as a point lying on the plane with Z = 1. The gen-
eralisability and accuracy of the networks trained with the canonicalised
2D keypoints are evaluated in Sec.4.5.

4.3.3 Target Pose Estimation

After pre-processing the 2D joint keypoints (Sec. 4.3.2), the inputs are fed
to the target pose estimation network (TPNet) that outputs the global
target pose q̂ ∈ Rn+1 and binary labels for the contact states, i.e. toes
and heels b ∈ {0, 1}4, see Fig. 4.2 for the overview. TPNet consists of
two 1D convolution-based network modules (CT and CP) that consider
temporal information. Network CP first estimates the joint angles and
global orientation of the character without the root translation, which
is denoted by q̂rr, and foot contact labels b in the scene; q̂rr is further
processed by the forward kinematics layer f (·) to obtain the root-relative
3D joint keypoints Prr with bone lengths in Cartesian coordinates in the
absolute scale. Network CT takes as input Prr and Kc, and outputs the
global translation of the character q̂trans. At the end, we obtain global
3D skeleton pose q̂ which is further employed as a target pose of the
PD controller (Sec. 4.3.4.1). All the networks in TPNet are composed of
four residual blocks with 1D convolution layers with a window size of
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10. Note that our networks accept only past and current frames with no
access to the future frames, hence compatible with real-time applications.

4.3.4 Dynamic Cycle

In this section, we elaborate the dynamic cycle of our framework where
we control the human character considering dynamics quantities: M, J
and h are analytically estimated in each simulation step using the current
pose q0 and the velocity q̇0 (Featherstone, 2014).

4.3.4.1 Force Vector Computation by a Neural PD Controller

PD controllers enable motion tracking with a kinematic character while
maintaining a smooth motion. They are hence widely used in robotics
and physics-based animation research (Chentanez et al., 2018; Lee et al.,
2019; Levine and Popović, 2012; Putri, Machbub, et al., 2018; Sugihara and
Nakamura, 2006). Our framework also utilises a PD controller to compute
the internal force vector τ of the character. However, the smoothing
properties of PD controller can cause motion delay in the presence of fast
motions if the gain values are not optimal. The motion delay is especially
apparent when the results are shown reprojected to the input views.
This issue arises from fixing the gains which adjust the PD controller’s
sensitivity to the pose and velocity error (Shimada et al., 2020).

Similarly to Chentanez et al. (2018), we dynamically change the gain
coefficients depending on the target and current skeleton poses by our
dynamics network (DyNet). This approach significantly mitigates the
motion delay compared to the existing methods while keeping the mo-
tions smooth. Our DyNet accepts the target pose q̂, the current pose q0,
the current velocity q̇0, the mass matrix M and the current pose error
ePD = d(q̂, q0) ∈ Rn, and outputs gain parameters kp ∈ Rn of the PD
controller along with the offset forces α ∈ Rn for each DoF. The error
function d(·) computes entry-wise differences between q̂ and q0. For the
entries that represent the root orientation, we compute the quaternion
difference. Since we provide q̂ and q0, their residual information, i.e. ePD,
is not the essential input for the network. However, similar to Bergamin
et al. (2019), we observed that explicitly providing the current error to
DyNet leads to a much faster loss convergence. Therefore, we include
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ePD as one of the inputs to DyNet. The outputs of TPNet and DyNet are
used to compute the force vector τ following the PD controller rule with
the compensation term h1.:

τ = kp ◦ (q̂ − q0)− kd ◦ q̇0 + α + h, (4.7)

where “◦” denotes Hadamard matrix product. h represents the sum of
gravity, centripetal and Coriolis forces, which are analytically computed.

4.3.4.2 Ground Reaction Force Estimation

Figure 4.3: Schematic visualisation of
the friction cone and the ground reac-
tion force (GRF) at the foot-floor contact
position.

In the real world, external forces
are required to control the centre of
gravity of a human body. In other
words, for the motion to be phys-
ical, the global translation and ro-
tation of the character need to be
controlled by external forces such
as ground reaction forces obtained
from the contact positions. On the
other hand, the character motion
can be controlled to match the pose
of the subject in the scene using
the force vector τ . However, τ con-
tains direct linear and rotational
force applied on the root position
as elaborated in Sec. 4.3.4.1.

We thus train the ground reaction force estimation network (GRFNet)
to minimise the (virtual) force applied directly on the root, trying to
explain the global motion by the ground reaction force λ as much as
possible. Let τroot ∈ R6 be the force vector corresponding to the root
position (i.e. the first six elements of τ ).

Then, the main objective function for training GRFNet reads:

Lforce =
∥∥∥τroot − JT1 Gλ

∥∥∥2

2
, (4.8)

1 In literature, this is known as PD controller with force compensation (Yang et al., 2010).
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where JT1 denotes the first six rows of JT corresponding to the root
configuration. Minimising Eq. (4.8) encourages the network to estimate
λ which explains the forces applied on the root position by GRF.

However, the direction of the contact force does not only depend on
Eq. (4.8). Therefore, we also introduce the friction constraint F for λ to be
physically plausible. The estimated λ needs to be inside of the so-called
friction cone which is defined by the friction coefficient µ = 0.8 together
with the normal and tangential directions of the contact position. The
friction-cone constraint is defined as follows:

F ℓ =
{
λℓ ∈ R3

∣∣∣ λℓ
n > 0,

∥∥∥λℓ
t

∥∥∥
2
≤ µλℓ

n

}
, (4.9)

where ℓ represents the identifier of the link where contact force is ap-
plied; λn and λt represent the normal and tangential component of λ,
respectively. We next reformulate Eq. (4.9) to integrate into the training
objective of GRFNet:

Lcone =

∥θ∥2
2 , if θ > θmax,

0, else,
(4.10)

where θmax is the angle between the normal vector vn of the contact
position and a vector vs that lies on the surface of the friction cone, and θ

is the angle between vn and λ, see Fig. 4.3. Next, we introduce a temporal
smoothness regulariser for the ground reaction force λ:

Lsmooth =
∥∥λ− λpre

∥∥2
2 , (4.11)

where λpre represents the estimated λ in the previous simulation step.
The final objective function for GRFNet LGRF is as follows:

LGRF = Lforce + Lsmooth + Lcone. (4.12)
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4.3.4.3 Forward Dynamics

To introduce the laws of physics in our 3D motion capture algorithm, we
embed the forward dynamics layer in our architecture. We derive joint
accelerations q̈ from Eq. (4.2):

q̈ = M−1(q)(τ ∗ + JTGλ− h), (4.13)

where τ ∗ = τ − JTGλ. In this formulation, τ ∗ expresses the minimised
direct root actuation with contact force compensation for each joint torque.
This forward dynamics layer returns q̈ considering the mass matrix of
the body M, internal and external forces, gravity, Coriolis and centripetal
forces encompassed in h.

4.3.4.4 Constrained Pose Update

In this step, we update the character’s pose using the estimated accelera-
tions q̈ through the differentiable optimisation layer to prevent foot-floor
penetration. Given q̈ in the skeleton frame and the simulation time step
∆t, the velocity q̇ and the kinematic 3D pose q are updated using the
finite differences:

q̇i+1 = q̇i + ∆t q̈i,

qi+1 = qi + ∆t q̇i+1,
(4.14)

where i denotes the simulation step identifier. To prevent foot-floor
penetration, we introduce the differentiable optimisation layer following
the formulation of Agrawal et al. (2019b). This custom neural network
layer solves a specific optimisation problem for each forward pass and
returns its derivatives for each backward pass. More specifically, we
update the velocity in the skeleton frame q̇ solving the optimisation
below:

min
q̇∗

∥q̇∗ − q̇∥ , s.t. rc
n > 0, (4.15)

where rc
n represents the linear velocity of the contact position along the

normal direction of the floor. Velocity vector rc is computed as follows:

rc = T(Jq̇), (4.16)

where T(·) is the transformation from the camera frame to the floor frame
of reference. After solving (4.15), the estimated q̇∗ is substituted as q̇ in
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Eq. (4.14). The dynamic cycle introduced in this section is iterated k = 6
times. After the iterations are complete, we obtain the final physically
plausible 3D character’s pose q.

4.3.5 Network Training

We pre-train TPNet for a more stable training of the whole architecture.
Such pre-training is advantageous due to two reasons. First, estimating
joint angles from 2D joint keypoints leads to ambiguities in bone orienta-
tions (Shi et al., 2020). Second, controlling the dynamic character in 3D by
estimated forces to match the subject’s pose only from 2D joint keypoints
is an ill-posed problem. The network CP in TPNet is pre-trained with the
following objective loss function:

LCP = L3D(q̂) + L2D(q̂) + Lori(q̂ori) + Lirr.(q̂) + Lb(b). (4.17)

The main 3D loss L3D is defined as follows:

L3D(q̂) =
∥∥∥ f (q̂)− p′

3D

∥∥∥2

2
, (4.18)

where f (·) and p′
3D are forward kinematics function and ground-truth 3D

joint keypoints, respectively. The loss L2D stands for the 2D reprojection
error:

L2D(q̂) =
∥∥Π( f (q̂))− p′

2D
∥∥2

2 , (4.19)

where Π(·) and p′
2D are the perspective projection operator and ground-

truth 2D joint keypoints normalised by the image size, respectively. The
loss Lori is added for the supervision of the global root orientation
represented by a quaternion:

Lori(q̂ori) =
∥∥q̂ori ⊖ q′

ori
∥∥2

2 , (4.20)

where q′
ori is the ground-truth root orientation in quaternion parametri-

sation, and “⊖” denotes a difference computation after converting the
quaternion into a rotation matrix. The loss Lirr. keeps the estimated joint
angles in a reasonable range:

Lirr.(q̂) =
40

∑
i=1

Ψ(q̂i), with (4.21)
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Ψ(q̂i) =


(q̂i − ψmax,i)

2, if q̂i > ψmax,i

(ψmin,i − q̂i)
2 , if q̂i < ψmin,i,

0 , otherwise,

(4.22)

where q̂i denotes the joint angle of the i-th joint and [ψmin,i, ψmax,i] defines
the reasonable angle range for the i-th joint. Term Lb is the binary cross
entropy loss to train the network for estimating correct foot contact states
in the scene:

Lb(b) = −
4

∑
i=1

b′i log(bi) + (1 − b′i) log(1 − bi), (4.23)

where b′i and bi are the ground-truth contact label and predicted contact
probability on i-th joint, respectively.

The CT module of TPNet is trained with the 3D translation loss:

LCT (q̂trans) =
∥∥q̂trans − q′

trans
∥∥2

2 , (4.24)

where q′
trans denotes the ground-truth translation in 3D space.

After pre-training CP and CT with LCT and LCP , we train DyNet with
the following loss:

LDyn(q) = ∥q − q̂∥2
2 + φ ∥τ∥2

2 , (4.25)

where q is the final, physically-plausible 3D pose passed through the
differentiable physics model and φ = 10−6 is the weight of the regulari-
sation term of τ . The first term of LDyn enforces the character to catch
up with the target pose with the mitigated motion delay by dynamically
estimating the gain parameters of the PD controller. The second term of
LDyn prevents overshooting of the PD controller output. The GRFNet is
trained with Eq. (4.12) (Sec. 4.3.4.2). After pre-training all the networks
until convergence, all the networks are trained jointly with the corre-
sponding objective functions with an early stopping strategy. We use
Adam optimiser with a learning rate 3.0 × 10−6 for the pre-training, and
3.0 × 10−7 for the joint training.
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4.3.6 Adaptations for In-the-Wild Recordings

Our framework allows finetuning the networks with 2D annotations
only using the 2D reprojection loss. Such adjustment of the network
weights is especially effective for in-the-wild recordings which differ from
the training samples in many aspects (e.g. in the background, lighting
conditions or camera poses). We use the estimated 2D joint keypoints
from OpenPose (Cao et al., 2019, 2017; Simon et al., 2017; Wei et al., 2016)
as a pseudo-ground-truth 2D annotation to train our network, see Fig. 4.8
for the results of the ablative study for visual comparisons of the results
with and without finetuning.

4.3.7 Applications

Since our framework estimates the global translation, root orientation and
joint angles, virtual characters can be directly animated using the output
of our method. We can also visualise the estimated torques and ground
reaction forces that explain the motion in the scene; see Fig. 4.1-(right) for
an example. The purple vectors represent the estimated ground reaction
forces, and the more saturated green hue on the links represents stronger
torques applied on the child joints.

4.4 network details

We schematically visualise the network details in Fig. 4.4. Our imple-
mentations of CT and CP are based on Zou et al. (2020) and composed
of 1D convolutional layers with residual blocks. We use the replication
padding layer of size 1 for the embedding block and size 4 for the residual
block. The kernel size of the 1D convolutional layer for the embedding
and residual blocks are 3 and 5, respectively. For the 1D convolution
in the residual blocks, we use the dilation of size 2. For CT—although
it is possible to estimate q̂rr and b with a single neural network—we
observed that estimating the global rotation, joint angles and contact
labels with three different networks shows higher accuracy. Therefore,
CP consists of three replicated networks with the difference in the output
layer, see Fig. 4.4 for the details. For GRFNet and DyNet, all the inputs
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Figure 4.4: Schematic visualisations of the network details. “Emb.” and “Resi.”
stand for the embedding block (purple box) and residual block (green box),
respectively. “BN”, “RepPad”, “FC”, “Sig.” and “Conv1D” represent batch
normalisation, replication padding, fully-connected layer, sigmoid function and
1D convolution, respectively. The numbers next to the layers represent the output
dimensionality. “B” and “W” represent the batch size and temporal window
size, respectively.

are concatenated to one vector and fed to the networks. We can estimate
kp and α directly by DyNet, however, similar to Chentanez et al. (2018),
we obtain sg and s f (0 < sg < 1 and −1 ≤ s f ≤ 1) using sigmoid and
tanh functions, and compute kp = 2sgkini

p and α = γs f ; kini
p denotes the

initial gain parameters which are determined following Shimada et al.
(2020), and γ is the coefficient which is determined empirically. Note
that we use the fixed kini

p and γ = 10 values through all the experiments.
We observed that this formulation leads to improved stability and faster
convergence of the network training than directly estimating kp and α,
since the network outputs are always within the normalised range.
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Table 4.1: Comparisons of 3D joint position errors on DeepCap (Habermann
et al., 2020), Human 3.6M (Ionescu et al., 2013) and MPI-INF-3DHP(Mehta et al.,
2017a) datasets. “†” denotes physics-based algorithms, otherwise a kinematic
algorithm. “∗” denotes MotioNet with causal convolutions which does not have
access to the future frames, i.e. the similar problem set as our approach. For
DeepCap dataset, the numbers on the left and right of our approach represent
the 3D accuracy with and without training on DeepCap dataset, respectively.

DeepCap Human 3.6M MPI-INF-3DHP
MPJPE↓
[mm]

PCK ↑
[%]

AUC ↑
[%]

MPJPE↓
[mm]

PCK ↑
[%]

AUC ↑
[%]

MPJPE↓
[mm]

PCK ↑
[%]

AUC ↑
[%]

Pr
oc

ru
st

es

Ours† 52.6/63.6 97.3/95.9 67.1/60.1 58.2 96.1 64.4 99.1 85.5 42.7
PhysCap† 68.9 95.0 57.9 65.1 94.8 60.6 104.4 83.9 43.1
MotioNet* 123.0 73.0 31.0 59.1 - - - - -
VIBE 80.1 93.3 50.1 41.5 - - 63.4 - -
VNect 68.4 94.9 58.3 62.7 95.7 61.9 104.5 84.1 43.2
HMR 77.1 93.8 52.4 54.3 96.9 66.6 87.8 87.1 50.9
HMMR 75.5 93.8 53.1 55.0 96.6 66.2 106.9 79.5 44.8

no
Pr

oc
ru

st
es

Ours† 72.7/88.6 92.6/85.7 55.3/47.4 76.5 89.5 55.0 134.5 69.8 30.2
PhysCap† 113.0 75.4 39.3 97.4 82.3 46.4 122.9 72.1 35.0
MotioNet* 257.4 33.0 13.3 - - - - - -
VIBE 96.7 85.9 42.4 65.9 - - 97.7 - -
VNect 102.4 80.2 42.4 89.6 85.1 49.0 120.2 74.0 36.1
HMR 113.4 75.1 39.0 78.9 88.2 54.1 130.5 69.7 35.7
HMMR 101.4 81.0 42.0 79.4 88.4 53.8 174.8 60.4 30.8

4.5 experiments

We evaluate our physionical approach for monocular 3D human motion
capture on Human 3.6M (Ionescu et al., 2013)2, MPI-INF-3DHP (Mehta et
al., 2017a), DeepCap (Habermann et al., 2020) as well as newly recorded
sequences. We first provide implementation details (Sec. 4.5.1) and then
show qualitative results (Sec. 4.5.2) as well as the quantitative outcomes
(Sec. 4.5.2).

4.5.1 Implementation

Our neural networks are implemented using PyTorch (Paszke et al.,
2019) and Python 3.7. Adam optimiser was used to train them. For the
computation of dynamics quantities, we use Rigid Body Dynamics Library
(Felis, 2017). For the implementation of the differentiable optimisation

2 All experiments and training using Human 3.6M were conducted at MPII.
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Table 4.2: Global 3D translation error on DeepCap dataset (Habermann et al.,
2020). Note that our networks are trained on Human3.6M (Ionescu et al., 2013)
and MPI-INF-3DHP (Mehta et al., 2017a), and not trained on DeepCap dataset
(Habermann et al., 2020).

Ours
Ours w/o
CT module

Ours w/o
input cano.

PhysCap VNect VIBE

MPJPE [mm]↓ 62.6 68.7 105.0 110.5 112.6 244.5

layer we use Agrawal et al. (2019a), and Pybullet (Coumans and Bai, 2016)
for visualisation purposes. Our approach is evaluated on a workstation
with 32 GB RAM, AMD EPYC 7502P 32-Core Processor and NVIDIA
QUADRO RTX 8000.

4.5.2 Quantitative Results

In this section, we compare our method with other related kinematic-
based methods, i.e. VNect (Mehta et al., 2017b), HMR (Kanazawa et al.,
2018), HMMR (Kanazawa et al., 2019), VIBE (Kocabas et al., 2020a) and
MotioNet (Shi et al., 2020), as well as the recent physics-based method
PhysCap (Shimada et al., 2020) on benchmark datasets (Habermann et al.,
2020; Ionescu et al., 2013; Mehta et al., 2017a).

We follow the evaluation methodology proposed in Shimada et al.
(2020) which suggests comparisons of monocular 3D human motion
capture using an extended set of metrics. Along with the standard root-
relative 3D joint position accuracy metrics, i.e. mean per-joint position
error (MPJPE) [mm] (the lower, the better), percentage of correct key-
points (PCK) [%] and area under ROC curve (AUC) [%] (the higher, the
better), we report the global 3D translation error and 2D re-projection
errors by projecting the estimated 3D joints onto the input and evaluation
(unseen) views. Reprojection to evaluation views reveals various effects
(related to physical implausibility) which are difficult to access based
only on root-relative 3D errors and reprojections to the input views. Fur-
ther complementary metrics measuring the degree of plausibility of the
reconstructed poses are Mean Penetration Error (MPE), Percentage of
Non-Penetration (PNP) and temporal consistency error. MPE evaluates
the average distance between the foot and floor when there is actually a
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Table 4.3: Comparison of temporal smoothness on the DeepCap (Habermann
et al., 2020) and Human 3.6M datasets (Ionescu et al., 2013).

Ours PhysCap VNect HMR HMMR VIBE

DeepCap
esmooth 5.8 6.3 11.6 11.7 8.1 7.2
σsmooth 8.1 4.1 8.6 9.0 5.1 10.1

Human 3.6M
esmooth 4.5 7.2 11.2 11.2 6.8 -
σsmooth 6.9 6.9 10.1 12.7 5.9 -

foot-floor contact in the scene (lower is better). PNP shows the ratio of no
foot penetration into the floor (higher reflects a higher degree of physical
plausibility).

3d joint positions Table 4.1 summarises the root-relative 3D joint
position errors. The first and second row blocks report the calculations
with and without Procrustes alignment, respectively. On Human 3.6M
and MPI-INF-3DHP with Procrustes alignment, the accuracy of our
method is average among the compared methods. On Human 3.6M,
we obtain a slightly lower MPJPE than VNect, MotioNet and PhysCap
while HMR, HMMR and VIBE achieve the lowest errors in overall. On
MPI-INF-3DHP, the overall tendency is preserved, though in addition we
outperform HMMR. On the DeepCap dataset, we report the results of two
different variants, i.e. when the networks are trained on DeepCap dataset
+ Human3.6M + MPI-INF-3DHP (on the left) and Human3.6M + MPI-
INF-3DHP without DeepCap dataset (on the right). Even without using
DeepCap dataset for training, ours outperforms other tested algorithms.
Compared with Human 3.6M and MPI-INF-3DHP, DeepCap dataset
contains challenging motions such as dance, walking backwards, jumping
and running sequences. Purely kinematic algorithms tend to fail on these
challenging motions. In our case, the magnitudes of inaccuracies are
regularised within a reasonable range thanks to the explicit physics
model, which results in a lower MPJPE.

Most of the competing methods overfit to a single dataset and cannot
generalise well to other datasets. Without Procrustes alignment, our
approach outperforms all other evaluated methods on DeepCap dataset,
and ranks second on Human 3.6M. We consistently outperform the most
related methods on DeepCap, Human 3.6M and MPI-INF-3DHP (with
Procrustes), which estimate global 3D human poses and can be directly
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Table 4.4: 2D projection error of a frontal view (input) and side view (non-input)
on DeepCap dataset (Habermann et al., 2020).

Front View Side View

einput
2D [pix] σ

input
2D eside

2D [pix] σside
2D

Ours 7.6 7.5 11.5 13.1
PhysCap 21.1 6.7 35.5 16.8
VNect 14.3 2.7 37.2 18.1

used for virtual character animation. This list also includes the physics-
based PhysCap, i.e. the most closely related method to ours. The high
accuracy of purely kinematics methods (in Table 4.1, those are all methods
without “†”) on Human 3.6M and MPI-INF-3DHP comes at the price of
frequent and sudden changes in the 3D joint positions, which result in
jitters and other artefacts. Note that the obvious artefacts such as jitter
and foot-floor penetration are not revealed by these conventional metrics,
which suggests that considering those alone is not enough to judge the
motion quality: they do not draw the complete picture, especially when
having computer graphics applications in mind; hence, we report several
additional metrics to provide a more comprehensive assessment of the
motions.

global translation errors We also qualitatively compare the
accuracy of the global character’s root position (translation) on the Deep-
Cap dataset in Table 4.2. Note that we train our method only on Human
3.6M and MPI-INF-3DHP datasets in this experiment, which also evalu-
ates the generalisability of the translation estimator CT trained with the
canonical 2D keypoints. We also show our ablated models 1) without
the CT module and 2) without the input canonicalisation, in the third
and fourth columns, respectively. In the third case, instead of using CT,
we estimate the global translation by solving a 2D reprojection-based
optimisation with gradient descent, given the estimated root-relative 3D
pose and 2D joint keypoints. Without the input keypoint canonicalisation,
the performance of our algorithm is significantly decreased compared
to our full model. This is because the network overfits to the camera
parameters which are observed in the training datasets without the in-
put canonicalisation. For VIBE—since it does not return a global 3D



72 neural monocular 3d human motion capture with physical awareness

Table 4.5: Comparison of Mean Penetration Error (MPE) and Percentage of
Non-Penetration (PNP) on DeepCap dataset (Habermann et al., 2020).

MPE [mm]↓ PNP [%]↑
Ours 28.9 92.3
Ours w/o HC 29.7 89.6
PhysCap 28.0 92.9
VNect 39.3 45.6

translation—we apply re-scaling of bone lengths to match the ground-
truth bone lengths and likewise solve a reprojection-based optimisation
to estimate the global translation which we report in the seventh column.
We see that even without CT module activated, our method outperforms
PhysCap, VNect and VIBE by 75% (for PhysCap) and more (VNect and
VIBE).

physical plausibility measurement We further evaluate our
approach using quantitative measures for the plausibility of the 3D
motion. Table 4.3 shows the temporal smoothness error esmooth which is
computed as follows (Shimada et al., 2020):

esmooth =
1

Tk

T

∑
t=1

k

∑
s=1

∥JitGT − JitX| ,

with JitX =
∥∥∥ps,t

X − ps,t−1
X

∥∥∥ and JitGT =
∥∥∥ps,t

GT − ps,t−1
GT

∥∥∥ ,

(4.26)

where ps,t represents the 3D position of joint s in the frame t; T and k
denote the total numbers of frames in the input sequence and target 3D
joints, respectively. Smaller esmooth means less jitter in the reconstructed
3D motions. Our approach shows the lowest esmooth among all tested
methods, followed by the physics-based method PhysCap and VIBE and
HMMR with temporal constraints (i.e. these methods take several frames
as inputs). This confirms the significance of our explicit physics model
for more physically plausible results.

We also report in Table 4.4 the 2D reprojection error onto the input
views (einput

2D ) and side views (eside
2D ) that are not used as inputs to the

algorithms: σ
input
2D and σside

2D represent the standard deviation of einput
2D
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Figure 4.5: Estimated forces of the walking sequences from the DeepCap dataset.
The thick line and coloured area represent the means and standard deviations,
respectively. The force graph lies in the reasonable range for walking motion
(cf. Shahabpoor and Pavic (2017) and Zell et al. (2020)), and mostly shows a
smooth curve.

and eside
2D , respectively. Reprojection onto non-input-view is an expressive

operation since it reveals the artefacts which are not observable from the
input view (e.g. body leaning and wrong translation estimation along
the depth direction). Again, our results lead to the lowest metric among
all methods which suggests that our global 3D motion capture is more
physically plausible compared to other methods.

Finally, Table 4.5 reports the physical plausibility measurement for foot-
floor penetration. Our result is on par with PhysCap which introduces a
hard constraint to prevent foot-floor penetration, followed by the purely
kinematic method VNect. We also show our ablated model without the
hard constraint layer (Sec. 4.3.4.4). Compared to it, our full architecture
shows better performance in terms of the foot-floor penetration metric.

grf function In Fig. 4.5, we plot the forces estimated by our phy-
sionical algorithm for the walking motion from the DeepCap dataset.
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Figure 4.6: Qualitative comparisons of methods with physics-based constraints
on videos with fast motions. While having a consistently improved accuracy on
general motions compared to PhysCap, our approach can capture significantly
faster motions as it learns motion priors and the associated gains of the neural
PD controller from data.

The thick lines and coloured areas represent the mean values and stan-
dard deviations, respectively. In Figs. 4.5-(a), (b) and (c), we show the
estimated GRF along the vertical direction and joint torques of knee and
ankle, respectively. The curve is smooth and is in a reasonable range for
walking motions. Interested readers are referred to Shahabpoor and Pavic
(2017) and Zell et al. (2020) for visual comparisons with ground-truth
GRF curves for an exemplary walking sequence obtained with force
plates. Note that our approach accepts only a single 2D image sequence
as input and does not require any ground-truth forces for its training
unlike Zell et al. (2020). In Fig. 4.5-(d), we show an ablative study of
GRFNet. As elaborated in Sec. 4.3.4.2, GRFNet minimises the presence of
unnatural virtual forces directly applied on the character’s root joint τroot

and tries to explain the root motion by the GRF only, as much as possible.
We report

∥∥τroot
w

∥∥
2 for walking cycles, where w is the character’s weight.

Without GRFNet, the magnitude of the virtual force acting directly on
the root is ∼5 times higher compared to the case with the former. This
suggests that GRFNet helps to estimate more physically plausible forces
in the proposed framework.

4.5.3 Qualitative Results

We further show results on multiple in-the-wild sequences. All in all,
we observe that our physionical method outputs temporally consistent
global 3D human poses that not only accurately project to the input views
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Figure 4.7: Results of our method compared to purely-kinematic methods VIBE
(3D human pose and shape estimation) (Kocabas et al., 2020b) and VNect (3D
human motion capture) (Mehta et al., 2017b). Our reconstructions are more
temporally smooth, whereas the competing methods show frame-to-frame jitter
along all axes.
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Figure 4.8: The accuracy of our method
with finetuning using additional 2D an-
notations improves for in-the-wild se-
quences, compared to training using 3D
data only.

but also look physically plausi-
ble when observed from arbitrary
views in the 3D space. Our recon-
structed 3D motions show signifi-
cantly mitigated artefacts such as
spurious global translational vari-
ations along the depth dimension,
foot-floor penetration and jitters.

We qualitatively compare our
method with the most related work
PhysCap (Shimada et al., 2020) in
Fig. 4.6. It is noticeable that our
method catches up with fast mo-
tions with significantly mitigated
motion delay thanks to the learned
PD controller gain values for differ-
ent motion types (see Fig. 4.6-(left)).
PhysCap struggles to reconstruct correct 3D motions when fast motion
appears due to its fixed gain parameters of the PD controller. Also note
that our framework shows more accurate articulations on the in the-wild-
sequence (see Fig. 4.6-(right)). In Fig. 4.7, we compare our method with
the state-of-the-art kinematic-based methods VNect (Mehta et al., 2017b)
and VIBE (Kocabas et al., 2020b) on in-the-wild sequences. Only our
method reconstructs smooth sequential 3D motions. The 3D motions
by VNect and VIBE show sudden changes in joint positions which are
observed as jitters in the sequential visualisation.

We next show the results of our approach with and without finetuning
our network with 2D keypoints obtained on the sequences in the wild,
see Fig. 4.8 for the qualitative comparison. We use OpenPose (Cao et
al., 2019) to obtain 2D keypoints, and the networks are finetuned with
the 2D reprojection loss. After the finetuning, our framework shows
better overlay and visually more accurate 3D motions compared to the
networks trained with the 3D benchmark datasets only (Human 3.6M,
MPI-INF-3DHP and DeepCap).
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4.6 conclusions

We introduced a new fully-neural approach for 3D human motion cap-
ture from monocular RGB videos with hard physics-based constraints
which runs at interactive framerates and achieves state-of-the-art results
on multiple metrics. Our neural physical model allows learning motion
priors and the associated physical properties, as well as gain values of the
neural PD controller from data. Thanks to the custom neural layer, which
expresses hard physics-based constraints, our architecture is fully differ-
entiable. In addition, it can be trained jointly on several datasets thanks
to the new form of input canonicalisation. Our experiments demonstrate
that compared to PhysCap—a method with physics-based boundary
conditions—our physionical approach captures significantly faster mo-
tions, while being more accurate in terms of various 3D reconstruction
metrics. Thanks to the full differentiability, the proposed method can
be finetuned on datasets with 2D annotations only, which improves the
reconstruction fidelity on in-the-wild footage. These properties make
it well-suitable for direct virtual character animation from monocular
videos, without requiring any further post-processing of the estimated
global 3D poses.

We believe that the proposed method opens up multiple directions
for future research. Our architecture can be classified as a 2D keypoint
lifting approach, which has both advantages (e.g. the possibility of 2D
keypoint normalisation, on the one hand) and downsides (e.g. reliance
on the accuracy of 2D keypoint detectors, on the other). Next, our results
naturally lead to the question of what is the most effective way to in-
tegrate physics-based boundary conditions in neural architectures, and
how the proposed ideas can be applied to many related problem settings.





5
H U L C : 3 D H U M A N M O T I O N C A P T U R E W I T H P O S E
M A N I F O L D S A M P L I N G A N D D E N S E C O N TA C T
G U I D A N C E

The previous chapter introduced a new fully learning-based approach
for monocular RGB 3D human motion capture with explicit rigid body
dynamics modelling as an intricate part of the proposed neural network
architectures. While the captured motion appeared plausible and natural,
interactions were restricted solely to those between the feet and the floor.
However, our everyday activities involve more intricate interactions with
complex environments, such as sitting on a couch or touching a table. This
chapter (published as Shimada et al., 2022) presents a new formulation
of RGB-based MoCap with complex scene interactions. The method
consists of two key components: (1) contact-guided 3D localisation and
(2) collision handling in a learned pose manifold formulated as a hard
constraint. Thanks to these novel components, the reconstructed motions
show much more plausible interactions with the static scene qualitatively
and quantitatively in comparison to other scene-aware MoCap methods.

5.1 introduction

3D human motion capture (MoCap) from a single colour camera received
a lot of attention over the past years (Bogo et al., 2016; Chen and Ramanan,
2017; Choi et al., 2021; Habibie et al., 2019; Kanazawa et al., 2018, 2019;
Kocabas et al., 2020a, 2021a,b; Kolotouros et al., 2019, 2021; Martinez et
al., 2017; Mehta et al., 2017a, 2020, 2017b; Moreno-Noguer, 2017; Newell
et al., 2016; Pavlakos et al., 2017, 2018b; Pavllo et al., 2019; Rhodin et al.,
2018; Shi et al., 2020; Sun et al., 2019; Tekin et al., 2016; Tomè et al., 2017;
Wei and Chai, 2010; Yang et al., 2018; Zhou et al., 2017). Its applications
range from mixed and augmented reality, to movie production and game
development, to immersive virtual communication and telepresence.
MoCap techniques that not only focus on humans in a vacuum but also
account for the scene environment—this encompasses awareness of the

79
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Table 5.1: Overview of inputs and outputs of different methods. “τ” and
“env. contacts” denote global translation and environment contacts, respectively.
“ ∗ ” stands for sparse marker contact labels.

Approach Inputs
Outputs

body
pose τ

absolute
scale

body
contacts

env.
contacts

PROX (Hassan et al., 2019) RGB+ scene mesh ✓ ✓ ✗ ✗ ✗

PROX-D (Hassan et al., 2019) RGBD+ scene mesh ✓ ✓ ✗ ✗ ✗

LEMO (Zhang et al., 2021d) RGB(D)+ scene mesh ✓ ✓ ✗ ✓∗ ✗

HULC (ours) RGB+ scene point cloud ✓ ✓ ✓ ✓ ✓

physics or constraints due to the underlying scene geometry—are coming
increasingly into focus (Hassan et al., 2019; Rempe et al., 2021, 2020;
Shimada et al., 2021, 2020; Yi et al., 2022; Zanfir et al., 2018; Zhang et al.,
2021d).

Taking into account interactions between the human and the environ-
ment in MoCap poses many challenges, as not only articulations and
global translation of the subject must be accurate, but also contacts be-
tween the human and the scene need to be plausible. A misestimation
of only a few parameters, such as a 3D translation, can lead to recon-
struction artefacts that contradict physical reality (e.g. body-environment
penetrations or body floating). On the other hand, known human-scene
contacts can serve as reliable boundary conditions for improved 3D pose
estimation and localisation. While several algorithms merely consider hu-
man interactions with a ground plane (Rempe et al., 2021, 2020; Shimada
et al., 2021, 2020; Zanfir et al., 2018), a few other methods also account
for the contacts and interactions with the more general 3D environment
(Hassan et al., 2019; Zhang et al., 2021d). However, due to the depth ambi-
guity of the monocular setting, their estimated subject’s root translations
can be inaccurate, which can create implausible body-environment colli-
sions. Next, they employ a body-environment collision penalty as a soft
constraint. Therefore, the convergence of the optimisation to a bad local
minima can also cause unnatural body-environment collisions. This chap-
ter addresses the limitations of the current works and proposes a new 3D
HUman MoCap framework with pose manifold sampLing and guidance
by body-scene Contacts, abbreviated as HULC. It improves over other
monocular 3D human MoCap methods that consider constraints from
3D scene priors (Hassan et al., 2019; Zhang et al., 2021d). Unlike existing
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works, HULC estimates contacts not only on the human body surface
but also on the environment surface for improved global 3D translation
estimations. Next, HULC introduces a pose manifold sampling-based
optimisation to obtain plausible 3D poses while handling the severe
body-environment collisions in a hard manner. Our approach regresses
more accurate 3D motions respecting scene constraints while requiring
less-structured inputs (i.e. an RGB image sequence and a point cloud of
the static background scene) compared to the related monocular scene-
aware methods (Hassan et al., 2019; Zhang et al., 2021d) that require a
complete mesh and images. HULC returns physically plausible motions,
an absolute scale of the subject and dense contact labels both on a human
template surface model and the environment.

HULC features several innovations which in interplay enable its func-
tionality, i.e. 1) a new learned implicit function-based dense contact label
estimator for humans and the general 3D scene environment, and 2) a
new pose optimiser for scene-aware pose estimation based on a pose man-
ifold sampling policy. The first component allows us to jointly estimate
the subject’s absolute scale and its highly accurate root 3D translations.
The second component prevents severe body-scene collisions and acts as
a hard constraint, in contrast to widely-used soft collision losses (Hassan
et al., 2019; Mahmood et al., 2019). To train the dense contact estimation
networks, we also annotate contact labels on a large-scale synthetic daily
motion dataset: GTA-IM (Cao et al., 2020). To summarise, our primary
technical contributions are as follows:

• A new 3D MoCap framework with simultaneous 3D human pose
localisation and body scale estimation guided by estimated contacts.
It is the first method that regresses the dense body and environment
contact labels from an RGB sequence and a point cloud of the scene
using an implicit function (Sec. 5.3.3).

• A new pose optimisation approach with a novel pose manifold
sampling yielding better results by imposing hard constraints on
incorrect body-environment interactions (Sec. 5.3.4).

• Large-scale body contact annotations on the GTA-IM dataset (Cao
et al., 2020) that provides synthetic 3D human motions in a variety
of scenes (Fig. 5.1 and Sec. 5.4).
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We report quantitative results, including an ablative study, which show
that HULC outperforms existing methods in 3D accuracy and on physical
plausibility metrics (Sec. 5.5).

5.2 related work

5.2.1 Classic MoCap approaches

Most MoCap methods estimate 3D poses alone or along with the body
shape from an input image or video (Bogo et al., 2016; Chen and Ramanan,
2017; Choi et al., 2021; Habibie et al., 2019; Jiang et al., 2020; Kanazawa
et al., 2018, 2019; Kocabas et al., 2020a, 2021a; Kolotouros et al., 2019,
2021; Martinez et al., 2017; Mehta et al., 2017a; Moreno-Noguer, 2017;
Newell et al., 2016; Pavlakos et al., 2017, 2018b; Rhodin et al., 2018; Shi
et al., 2020; Sun et al., 2019; Tekin et al., 2016; Tomè et al., 2017; Wei and
Chai, 2010; Yang et al., 2018; Zhang et al., 2020b; Zhou et al., 2017). Some
methods also estimate 3D translation of the subject in addition to the 3D
poses (Kocabas et al., 2021b; Mehta et al., 2020, 2017b; Pavllo et al., 2019).
Unlike our HULC, these methods do not consider the interactions with
arbitrary scene geometries.

5.2.2 Awareness of human-scene contacts

Knowing contacts is helpful for the estimation and synthesis (Hassan
et al., 2021a; Wang et al., 2021) of plausible 3D human motions. Some
existing works regress sparse joint contacts on a kinematic skeleton (Li
et al., 2019; Rempe et al., 2021, 2020; Shimada et al., 2021, 2020; Zou
et al., 2020) or sparse markers (Zhang et al., 2021d). A few approaches
forecast contacts on a dense human mesh surface (Hassan et al., 2021b;
Müller et al., 2021). Hassan et al. (2021b) place a human in a 3D scene
considering the semantic information and dense human body contact
labels. Müller et al. (2021) propose a dataset with discrete annotations for
self-contacts on the human body. Consequently, they apply a self-contact
loss for more plausible final 3D poses. Unlike the existing works, our
algorithm estimates vertex-wise dense contact labels on the human body
surface from an RGB input only. Along with that, it also regresses dense
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contact labels on the environment given the scene point cloud along with
the RGB sequence. The simultaneous estimation of the body and scene
contacts allows HULC to disambiguate the depth and scale of the subject,
although only a single camera view and a single scene point cloud are
used as inputs.

5.2.3 Monocular MoCap with scene interactions

Among the scene-aware MoCap approaches (Hassan et al., 2019; Rempe
et al., 2021, 2020; Shimada et al., 2021, 2020; Zanfir et al., 2018; Zhang
et al., 2021d), there are a few ones that consider human-environment
interactions given a highly detailed scene geometry (Hassan et al., 2019;
Li et al., 2022; Zhang et al., 2021d). PROX (PROX-D) (Hassan et al.,
2019) estimates 3D motions given an RGB (RGB-D) image, along with
an input geometry provided as a signed distance field (SDF). Given an
RGB(D) measurement and a mesh of the environment, LEMO (Zhang
et al., 2021d) also produces geometry-aware global 3D human motions
with an improved motion quality characterised by smoother transitions
and robustness to occlusions thanks to the learned motion priors. These
two algorithms require an RGB or RGB-D sequence with SDF (a 3D
scan of the scene) or occlusion masks. In contrast, our HULC requires
only an RGB image sequence and a point cloud of the scene; it returns
dense contact labels on 1) the human body and 2) the environment, 3)
global 3D human motion with translations and 4) the absolute scale of
the human body. See Table 5.1 for an overview of the characteristics.
Compared to PROX and LEMO, our HULC shows significantly mitigated
body-environment collisions.

5.2.4 Sampling-based human pose tracking

Several sampling-based human pose tracking algorithms have been pro-
posed. Some of them utilise particle-swarm optimisation (John et al., 2010;
Saini et al., 2013, 2012). Charles et al. (2013) employ Parzen windows for
2D joint tracking. Similar to our HULC, Sharma et al. (2019) generate
3D pose samples by a conditional variational autoencoder (VAE) (Sohn
et al., 2015) conditioned on 2D poses. In contrast, we utilise the learned
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Method Overview Contact Labels on GTA-IM

Images Camera View Bottom View

Figure 5.1: (Left) Given image sequence I, scene point cloud S and its associated
frustum voxel grid SF, HULC first predicts for each frame dense contact labels
on the body cbo, and on the environment cen. It then refines initial, physically-
inaccurate and scale-ambiguous global 3D poses Φ0 into the final ones Φref
in (b). Also see Fig. 5.2 for the details of stages (a) and (b). (Right) Example
visualisations of our contact annotations (shown in green) on GTA-IM dataset
(Cao et al., 2020).

pose manifold of VAE for sampling, which helps to avoid local minima
and prevent body-scene collisions. Also, unlike Sharma et al. (2019), we
sample around a latent vector obtained from the VAE’s encoder to obtain
poses that are plausible and similar to the input 3D pose.

5.3 method

Given monocular video frames and a point cloud of the scene registered
to the coordinate frame of the camera, our goal is to infer physically
plausible global 3D human poses along with dense contact labels on both
body and environment surfaces. Our approach consists of two stages
(Fig. 5.1):

• Dense body-environment contacts estimation: Dense contact labels
are predicted on body and scene surfaces using a learning-based
approach with a pixel-aligned implicit representation inspired by
Saito et al. (2019) (Sec. 5.3.3);

• Sampling-based optimisation on the pose manifold: We combine
sampling in a learned latent pose space with gradient descent to
obtain the absolute scale of the subject and its global 3D pose,
under guidance by predicted contacts. This approach significantly
improves the accuracy of the estimated root translation and articula-
tions, and mitigates incorrect environment penetrations (Sec. 5.3.4).
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5.3.1 Modelling and Notations

Our method takes as input a sequence I = {I1, ..., IT} of T successive video
frames from a static camera with known intrinsics (T = 5 in our experi-
ments). We detect a squared bounding box around the subject and resize
the cropped image region to 225× 225 pixels. The background scene’s
geometry that corresponds to the detected bounding box is represented
by a single static point cloud S∈RM×3 composed of M points aligned
in the camera reference frame in an absolute scale. To model the 3D
pose and human body surface, we employ the parametric model SMPL-X
(Pavlakos et al., 2019) (its gender-neutral version). This model defines
the 3D body mesh as a differentiable function M(τ ,ϕ,θ,β) of global
root translation τ ∈R3, global root orientation ϕ∈R3, pose θ ∈R3K of K
joints and shape parameters β ∈R10 capturing the body’s identity. For
efficiency, we downsample the original SMPL-X body mesh with over
10k vertices to V∈RN×3, where N = 655. In the following, we denote
V = M(Φ,β), where Φ = (τ ,ϕ,θ) denotes the kinematic state of the
human skeleton, from which the global positions X∈RK×3 of the K = 21
joints can be derived.

5.3.2 Frustum Grid Transform

We conduct the transformation from the scene point cloud S ∈ RM×3,
defined in the camera frame, into the frustum voxel grid SF ∈ R32×32×256

whose third dimension corresponds to the discretised depth of the 3D
space. Given a vertex position p = (x, y, z), i.e. a row of S, in a perspective
frustum space, its normalised vertex p̂ into the cuboid space reads:

p̂ =
(

fx
x
z

, fy
y
z

, z
)

, (5.1)

where f = ( fx, fy) is the camera’s focal length. The components of all
points p̂ are then suitably normalised and binned so as to build the binary
occupancy grid SF.
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III) Refinement OptimisationI) Contact-based Optimisation
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Figure 5.2: Overview of a) dense contact estimation and b) pose manifold
sampling-based optimisation. In b-II), we first generate samples around the
mapping from θopt (orange arrows), and elite samples are then selected among
them (yellow points). After resampling around the elite samples (yellow arrows),
the best sample is selected (green point). The generated sample poses Φsam
(in grey colour at the bottom left in b-II)) from the sampled latent vectors are
plausible and similar to Φopt. (bottom left of the Figure) Different body scale
and depth combinations can be re-projected to the same image coordinates (i,
ii and iii), i.e. scale-depth ambiguity. To simultaneously estimate the accurate
body scale and depth of the subject (ii), we combine the body-environment
contact surface distance loss Lcon with the 2D reprojection loss.

5.3.3 Contact Estimation in the Scene

We now describe our learning-based approach for contact labels esti-
mation on the human body and environment surfaces; see Fig. 5.2-a)
for an overview of this stage. The approach takes I and S as inputs. It
comprises three fully-convolutional feature extractors, N1, N2 and N3,
and two fully-connected layer-based contact prediction networks, Ωbo

and Ωen, for body and environment, respectively. Network N1 extracts
from I a stack of visual features fI ∈ R32×32×256. The latent space features
of N1 are also fed to Ωbo to predict the vector cbo ∈ [0, 1]N of per-vertex
contact probabilities on the body surface.

We also aim at estimating the corresponding contacts on the environ-
ment surface using an implicit function. To train a model that generalises
well, we need to address two challenges: (i) No correspondence informa-
tion between the scene points and the image pixels is given; (ii) Each scene
contains a variable number of points. Accordingly, we convert the scene
point cloud S into a frustum voxel grid SF ∈ R32×32×256 (the third dimen-
sion corresponds to the discretised depth of the 3D space over 256 bins),
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see 5.3.2 for its details. This new representation is independent of the
original point-cloud size and is aligned with the camera’s view direction.
The latter will allow us to leverage a pixel-aligned implicit function in-
spired by PIFu (Saito et al., 2019), which helps the networks figure out the
correspondences between pixel and geometry information. More specif-
ically, SF is fed into N2, which returns scene features fS ∈ R32×32×256.
The third encoder, N3, ingests fI and fS concatenated along their third
dimension and returns pixel-aligned features FP ∈ R32×32×64. Based on
FP, Ωen predicts the contact labels on the environment surface as follows.
Given a 3D position in the scene, we extract the corresponding visual
feature fP ∈ R64 at the (u, v)-position in the image space from FP (via
spacial bilinear interpolation), and query arbitrary depth with a one-hot
vector fz ∈ R256. We next estimate the contact labels cen as follows:

cen = Ωen(fP, fz). (5.2)

Given contact ground truths ĉbo ∈ {0, 1}N and ĉen ∈ {0, 1}M on the body
and the environment, the five networks are trained with the following
loss:

Llabels = ∥cen − ĉen∥2
2+λ BCE(cbo, ĉbo), (5.3)

where BCE denotes the binary cross-entropy and λ = 0.3. We use BCE
for the body because the ground-truth contacts on its surface are binary;
the ℓ2 loss is used for the environment, as sparse ground-truth contact
labels are smoothed with a Gaussian kernel to obtain continuous signals.
For further discussions of (5.3), please see Sec. 5.3.5. At test time, we only
provide the 3D vertex positions of the environment to Ωen(·)—to find
the contact area on the scene point cloud—rather than all possible 3D
sampling points as queries. This significantly accelerates the search of
environmental contact labels while reducing the number of false-positive
contact classifications.

5.3.4 Pose Manifold Sampling-based Optimisation

In the second stage of the approach, we aim at recovering an accurate
global 3D trajectory of the subject as observed in the video sequence; see
Fig. 5.2-(b) for the overview. An initial estimate Φ0 is extracted for each
input image using SMPLify-X (Pavlakos et al., 2019). Its root translation
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τ being subject to scale ambiguity, we propose to estimate it more ac-
curately, along with the actual scale h of the person with respect to the
original body model’s height, under the guidance of the predicted body-
environment contacts (Contact-based Optimisation). We then update the
body trajectory and articulations in the scene while mitigating the body-
environment collisions with a new sampling-based optimisation on the
pose manifold (Sampling-based Trajectory Optimisation). A subsequent
refinement step yields the final global physically plausible 3D motions.

I) Contact-based Optimisation Scale ambiguity is inherent to a monocu-
lar MoCap setting: Human bodies with different scale and depth combi-
nations in 3D can be reprojected on the same positions in the image frame;
see Fig. 5.2 for the schematic visualisation. Most existing algorithms that
estimate global 3D translations of a subject either assume its known body
scale (Dabral et al., 2021; Shimada et al., 2021, 2020) or use a statistical
average body scale (Mehta et al., 2017b). In the latter case, the estimated τ

is often inaccurate and causes physically implausible body-environment
penetrations. In contrast to the prior art, we simultaneously estimate τ

and h by making use of the body-environment dense contact labels from
the previous stage (Sec. 5.3.3).

For the given frame at time t ∈ J1, TK, we select the surface regions
with cen > 0.5 and cbo > 0.5 as effective contacts and leverage them in
our optimisation. Let us denote the corresponding index subsets of body
vertices and scene points by Cbo ⊂ J1, NK and Cen ⊂ J1, MK. The objective
function for contact-based optimisation is defined as:

Lopt(τ , h) = λ2DL2D + λsmoothLsmooth + λconLcon, (5.4)

where the reprojection L2D, the temporal smoothness Lsmooth and the
contact Lcon losses weighted by empirically-set multipliers λ2D, λsmooth

and λcon, read:

L2D =
1
K

K

∑
k=1

wk∥Π(Xk)− pk∥2
2, (5.5)

Lsmooth =
∥∥τ − τprev

∥∥2
2 , (5.6)

Lcon = ∑
n∈Cbo

min
m∈Cen

∥Vn − Pm∥2
2 , (5.7)
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where pk and wk are the 2D detection in the image of the k-th body
joint and its associated confidence, respectively, obtained by OpenPose
(Cao et al., 2019); Π(·) is the perspective projection operator; τprev is
the root translation estimated in the previous frame; Xk, Vn and Pm are,
respectively, the k-th 3D joint, the n-th body vertex (n∈ Cbo) and the m-th
scene point (m∈ Cen). Note that the relative rotation and pose are taken
from Φ0. The body joints and vertices are obtained from M using τ and
scaled with h. For Lcon, we use a directed Hausdorff measure (Knauer
et al., 2009) as a distance between the body and environment contact
surfaces. The combination of Lcon and L2D is key to disambiguate τ and h
(thus, resolving the monocular scale ambiguity). As a result of optimising
(5.4) in frame t, we obtain Φt

opt, i.e. the global 3D human motion with
absolute body scale. We solve jointly on T frames and optimise for a
single h for them.

II-a) Sampling-based Trajectory Optimisation Although the poses Φt
opt,

t = 1 · · · T, estimated in the previous step yield much more accurate τ

and h compared to existing monocular RGB-based methods, incorrect
body-environment penetrations are still observable. This is because the
gradient-based optimisation often gets stuck in bad local minima. To
overcome this problem, we introduce an additional sampling-based op-
timisation that imposes hard penetration constraints, thus significantly
mitigating physically implausible collisions. The overview of this algo-
rithm is as follows: (i) For each frame t, we first draw candidate poses
around Φt

opt with a sampling function G; (ii) The quality of these sam-
ples is ranked by a function E that allows selecting the most promising
(“elite”) ones; samples with severe collisions are discarded; (iii) Using G
and E again, we generate and select new samples around the elite ones.
The details of these steps, E and G, are elaborated next (dropping time
index t for simplicity).

II-b) Generating Pose Samples We aim to generate Nsam sample states
Φsam around the previously-estimated Φopt = (τopt,ϕopt,θopt). However,
naïvely generating the relative pose θsam in the same way around θopt is
highly inefficient because (i) the body pose is high-dimensional and (ii)
the randomly-sampled poses are not necessarily plausible. These reasons
lead to an infeasible amount of generated samples required to find a
plausible collision-free pose; which is intractable on standard graphics
hardware. To tackle these issues, we resort to the pose manifold learned
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by VPoser (Pavlakos et al., 2019), which is a VAE (Kingma and Welling,
2014) trained on AMASS (Mahmood et al., 2019), i.e. a dataset with many
highly accurate MoCap sequences. Sampling is conducted in this VAE’s
latent space rather than in the kinematics pose space. Specifically, we first
map θopt into a latent pose vector with the VAE’s encoder Enc(·). Next,
we sample latent vectors using a Gaussian distribution centred at this
vector, with standard deviation σ (see Fig. 5.2-b). Each latent sample is
then mapped through VAE’s decoder Dec(·) into a pose that is combined
with the original one on a per-joint basis. The complete sampling process
reads:

Z ∼ N (Enc(θopt),σ), θsam = w ◦ θopt + (1 − w) ◦ Dec(Z), (5.8)

where ◦ denotes Hadamard matrix product and w∈R3K is com-
posed of the detection confidence values wk, k = 1 · · ·K, obtained from
OpenPose, each appearing three times (for each DoF of the joint). This
confidence-based strategy allows weighting higher the joint angles ob-
tained by sampling, if the image-based detections are less confident (e.g.
under occlusions). Conversely, significant modifications are not required
for the joints with high confidence values.

Since the manifold learned by VAE is smooth, the poses derived from
the latent vectors sampled around Enc(θopt) should be close to θopt.
Therefore, we empirically set σ to a small value (0.1). Compared to
the naïve random sampling in the joint angle space, whose generated
poses are not necessarily plausible, this pose sampling on the learned
manifold significantly narrows down the solution space. Hence, a lot
fewer samples are required to escape local minima. At the bottom left of
Fig. 5.2-b contains examples (grey colour) of Φsam (Nsam = 10) overlayed
onto Φopt (green).

To generate samples (τsam,ϕsam) for the root translation and orienta-
tion, we generate random samples around the initial translation τopt and
ϕopt since they have only 3 DoF for each. Specifically, we generate sam-
ples by adding the randomly generated offsets ∆τ = ψφτ and ∆ϕ = ψφϕ

to τopt and ϕopt, respectively; ψ is initialised to 1.0, and incremented by
1.0 when the solution is not found due to the hard collision constraint;
φτ ∈ [−0.03, 0.03]3 and φϕ ∈ [−0.01, 0.01]3 are the values generated
uniformly at random. The range of φϕ is kept small since even a small
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change of the root orientation greatly modifies the 3D joint positions. In
the following, we refer to this sampling process as function G(·).
II-c) Sample Selection The quality of the Nsam generated samples Φsam

is evaluated using the following cost function:

Lsam = Lopt + λsliLsli + λdataLdata, (5.9)

Lsli =
∥∥Vc − Vc,pre

∥∥2
2 , (5.10)

Ldata =
∥∥Φsam −Φopt

∥∥2
2 , (5.11)

where Lsli and Ldata are contact sliding loss and data loss, respectively,
and Lopt is the same as in (5.4) with the modification that the temporal
consistency (5.6) applies to the whole Φsam; Vc and Vc,pre are the body
contact vertices (with vertex indices in Cbo) and their previous positions,
respectively.

Among the Nsam samples ordered according to their increasing Lsam

values, the selection function EU(·) first discards those causing stronger
penetrations (in the sense that the amount of scene points inside a hu-
man body is above a threshold γ) and returns U first samples from the
remaining ones. If no samples pass the collision test, we regenerate the
set of Nsam samples. This selection mechanism introduces the collision
handling in a hard manner. After applying EU(·), with U<Nsam, U elite
samples are retained. Then, ⌊Nsam/U⌋ new samples are regenerated
around every elite sample using G. Among those, the one with minimum
Lsam value is retained as the final estimate. The sequence of obtained
poses is temporally smoothed by Gaussian filtering to further remove
jittering, which yields the global 3D motion (Φ̂t

sam)T
t=1 with significantly

mitigated collisions.

III) Final Refinement From the previous step, we obtained the se-
quence Φ̂sam = (τ̂sam, ϕ̂sam, θ̂sam) of kinematic states whose severe body-
environment collisions are prevented as hard constraints. Starting from
these states as initialisation, we perform a final gradient-based refinement
using cost function Lsam with Φ̂sam replacing Φopt. The final sequence is
denoted (Φt

ref)
T
t=1.
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5.3.5 Network Details

We elaborate here on the network architectures in the dense contact
estimation stage. Networks N1 and N3 consist of 2D-convolution-based
encoder and decoder architectures. We employ Resnet-18 (He et al., 2016)
for the encoder of N1 without the last two layers, i.e. a fully connected
layer and an average-pooling layer. We employ a U-Net (Ronneberger
et al., 2015)-based architecture for N3 with 2 sets of down-convolution
and up-convolution blocks. Network Ωen consists of 3 fully-connected
layers with LeakyReLU (Maas et al., 2013) activation function. At the
output layer, we use a sigmoid function instead of LeakyReLU. For the
details of N2, Ωbo and the decoder of N1, please see Fig. 5.3.

Figure 5.3: The detailed network architectures for N2, Ωbo and the decoder
of N1. The numbers next to the fully connected layers represent the output
dimensionality. The numbers next to the convolution layers represent kernel
size (‘k’), number of kernels (‘n’), size of sliding (‘s’) and padding size (‘p’).
Note that when the padding size is not shown, no padding is applied at the
convolution layer.

Why this Architecture Design? Here, we discuss the architecture design
choice for the environment contact estimation networks. Instead of the
pixel-aligned network Ωen, a 3D-convolution-based network can also be
applied to obtain the voxel grid that contains per-voxel contact labels
of the 3D scene. However, we observed that the 3D-convolution-based
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classifier network suffers from the underfitting issue during the training
due to the very small number of ground-truth positive contact labels over
the total number of voxels in the grid. With the pixel-aligned implicit
field, we can adjust these unbalanced positive and negative contact labels
by manipulating the sampling points in the 3D scene which we can freely
control. Also, unlike the original work (Saito et al., 2019) that provides
the scalar value as a depth query, we provide a one-hot vector as a depth
query to Ωen: we observed that it significantly reduces the loss value
during the training compared to providing the scalar depth queries.
Loss Function Design (Eq.(5.3)) Binary GT environment contacts label
(‘1’: contact, ‘0’: no contact) are very sparse signals, i.e. only a small
number of voxels (~0.01%) contain ‘1’. This reduces the network training
stability. We observed that smoothing the environment contact labels
mitigates the imbalance and enhances the training stability. Hence, with
smoothing, L2-loss (not BCE) for the environment contact estimation is
used. Contact labels for the body are more balanced compared to the
environmental contacts. Therefore, we do not smooth them and use BCE
loss.

5.4 datasets with contact annotations

As there are no publicly available large-scale datasets with images and
corresponding human-scene contact annotations, we annotate several
existing datasets.
GTA-IM (Cao et al., 2020) dataset contains various daily 3D motions.
First, we fit SMPL-X model onto the 3D joint trajectories in GTA-IM.
For each frame, we select contact vertices on the human mesh if: i) The
Euclidean distance between the human body vertices and the scene
vertices is smaller than a certain threshold; ii) The velocity of the vertex is
lower than a certain threshold. In total, we obtain the body surface contact
annotations on 320k frames, see Fig. 5.1 for examples of the annotated
contact labels.
PROX dataset (Hassan et al., 2019) contains scanned scene meshes, scene
SDFs, RGB-D sequences, 3D human poses and shapes generated by fitting
SMPL-X model onto the RGB-D sequences (considering collisions). We
consider the body vertices, whose SDF values are lower than 5 cm, as
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contacts. We annotate the environment contacts by finding the vertices
that are the nearest to the body contacts.
GPA dataset (Wang et al., 2022b, 2020b) contains multi-view image se-
quences of people interacting with various rigid 3D geometries, accurately
reconstructed 3D scenes and 3D human motions obtained from VICON
system (Vicon blade n.d.) with 28 calibrated cameras. We fit SMPL-X on
GPA to obtain the 3D shapes and compute the scene’s SDFs to run other
methods (Hassan et al., 2019, 2021b; Zhang et al., 2021d).

We extract 14 test sequences with 5 different subjects from GPA. We
also split PROX (Hassan et al., 2019) into training and test sequences.
The training sequences of PROX and GTA-IM (Cao et al., 2020) are used
to train the contact estimation networks.

5.5 evaluations

We compare our HULC with the most related scene-aware 3D MoCap
algorithms, i.e. PROX (Hassan et al., 2019), PROX-D (Hassan et al., 2019),
POSA (Hassan et al., 2021b) and LEMO (Zhang et al., 2021d). We also test
SMPLify-X (Pavlakos et al., 2019) which does not use scene constraints.
The root translation of SMPLify-X is obtained from its estimated camera
poses as done in Hassan et al. (2019). To run LEMO (Zhang et al., 2021d)
on the RGB sequence, we use SMPLify-X (Pavlakos et al., 2019) to initialise
it; we call this combination “LEMO (RGB)”.

We use the selected test sequences of GPA (Wang et al., 2022b, 2020b)
and PROX (Hassan et al., 2019) datasets for the quantitative and qualita-
tive comparisons. To avoid redundancy, we downsample all the predic-
tions to 10 fps except for the temporal consistency measurement (esmooth

in Table 5.4). Since the 3D poses in PROX dataset are prone to inaccu-
racies due to their human model fitting onto the RGB-D sequence, we
use it only for reporting the body-scene penetrations (Table 5.4) and for
qualitative comparisons.

5.5.1 Implementations and Training Details

The neural networks are implemented with PyTorch (Paszke et al., 2019)
and Python 3.7. We conducted the evaluations on a computer with one
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AMD EPYC 7502P 32 Core Processor and one NVIDIA QUADRO RTX
8000 graphics card. The training of the contact classification networks
continued until the loss convergence using Adam optimiser (Kingma
and Ba, 2015a) with a learning rate 3.0 × 10−4. Our framework runs
with 25 seconds per frame excepting the computation time of SMPLify-X
(Pavlakos et al., 2019) which we use for the initial root-relative pose
estimation. For the optimisation in Eq. (5.4) we use the weights λ2D = 1.0,
λsmooth = 0.01 and λcon = 0.01. For Eq. (5.9), λsli and λdata are set to 0.05
and 0.1. In the final refinement optimisation step, we use λdata = 1.0
while keeping the same weights for the other terms. Rather than using a
Chamfer loss for Lcon to minimise the body-environment contact vertex
distance, we use the Hausdorff measure (Knauer et al., 2009); indeed, we
observed that, with this measure, the reconstructed 3D motion is more
robust to the false positive contact labels on the environment vertices.
Note that the 2D keypoints are normalised by the image size. The joint
angles are defined in radians.

For the evaluations, we first pre-train our networks on the whole
GTA-IM dataset (Cao et al., 2020) using the image sequences and our
body contact annotations. Lastly, we train our networks on PROX dataset
(Hassan et al., 2019) with the environment contact labels obtained by us
(see Sec. 5.4). During the training, the ground-truth scene contact vertex
information is once converted into the frustum voxel grid representations
as described in Sec. 5.3.2.

5.5.2 Quantitative Results

We report 3D joint and vertex errors (Table 5.2), global translation and
body scale estimation errors (Table 5.3), body-environment penetration
and smoothness errors (Table 5.4) and ablations on the sampling-based
optimisation component, i.e. a) Manifold sampling vs. random sampling
and b) Different number of sampling iterations in Fig. 5.4. “Ours (w/o S)”
represents our method without the sampling optimisation component,
i.e. only the contact-based optimisation and refinement are applied (see
Fig. 5.2-(b) and Sec. 5.3.4). “Ours (w/o R)” represents our method without
the final refinement. “Ours (w/o SR)” denotes ours without the sampling
and refinement.
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Table 5.2: Comparisons of 3D error on GPA dataset (Wang et al., 2022b, 2020b).
“†” denotes that the occlusion masks for LEMO(RGB) were computed from GT
3D human mesh.

No Procrustes Procrustes

MPJPE↓
[mm]

PCK ↑
[%]

PVE ↓
[mm]

MPJPE↓
[mm]

PCK ↑
[%]

PVE ↓
[mm]

Ours 217.9 35.3 214.7 81.5 89.3 72.6
Ours (w/o S) 221.3 34.5 217.2 82.6 89.3 73.1
Ours (w/o R) 240.8 31.9 237.3 83.1 86.6 73.6

Ours (w/o SR) 251.1 31.5 245.2 83.9 86.6 74.1
SMPLify-X (Pavlakos et al., 2019) 550.0 10.0 549.1 84.7 85.9 74.1

PROX (Hassan et al., 2019) 549.7 10.1 548.7 84.6 86.0 73.9
POSA (Hassan et al., 2021b) 552.2 10.1 550.9 85.5 85.6 74.5

LEMO (RGB) (Zhang et al., 2021d) 570.1 8.75 570.5 83.0 86.4 73.7
LEMO (RGB) (Zhang et al., 2021d)† 570.0 8.77 570.4 83.0 86.4 73.6

3D Joint and Vertex Errors Table 5.2 compares the accuracy of 3D joint
and vertex positions with and without Procrustes alignment. LEMO also
requires human body occlusion masks on each frame. We compute them
using the scene geometry and SMPLify-X (Pavlakos et al., 2019) results.
We also show another variant “LEMO (RGB)†” whose occlusion masks
are computed using the ground-truth global 3D human mesh instead of
SMPLify-X. Here, we report the standard 3D metrics, i.e. mean per joint
position error (MPJPE), percentage of correct keypoints (PCK) (@150mm)
and mean per vertex error (PVE). Lower MPJPE and PVE represent more
accurate 3D reconstructions, higher PCK indicates more accurate 3D joint
positions.

On all these metrics, HULC outperforms other methods both with and
without Procrustes. Notably, thanks to substantially more accurate global
translations obtained from the contact-based optimisation (Sec. 5.3.4),
HULC significantly reduces the MPJPE and PVE with a big margin, i.e.
≈ 60% error deduction in MPJPE and PVE w/o Procrustes compared to
the second-best method. The ablative studies on Table 5.2 also indicate
that both the sampling and refinement optimisations contribute to accu-
rate 3D poses. Note that the sampling optimisation alone (“Ours (w/o
R)”) does not significantly reduce the error compared to “Ours (w/o SR)”.
This is because the sampling component prioritises the removal of envi-
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Table 5.3: Ablations and comparisons for global translations and absolute body
length on GPA dataset.

global
translation
error [m] ↓

absolute
bone length
error [m]↓

Ours (+1m) 0.242 0.104

Ours (+3m) 0.244 0.097
Ours (+10m) 0.244 0.109

Baseline (+1m) 0.751 0.498

Baseline (+3m) 1.033 0.560

Baseline (+10m) 2.861 1.918

SMPLify-X (Pavlakos et al., 2019) 0.527 0.156

PROX (Hassan et al., 2019) 0.528 0.160

POSA (Hassan et al., 2021b) 0.545 0.136

ronment penetrations by introducing hard collision handling, which is the
most important feature of this component. Therefore, the sampling com-
ponent significantly contributes to reducing the environment collision
as can be seen in Table 5.4 (discussed in the later paragraph). Applying
the refinement after escaping from severe penetrations by the sampling
optimisation further increases the 3D accuracy (“Ours” in Table 5.2)
while significantly mitigating physically implausible body-environment
penetrations (Table 5.4).
Global Translation and Body Scale Estimation Table 5.3 reports global
translation and body scale estimation errors for the ablation study of
the contact-based optimisation (Sec. 5.3.4). More specifically, we evaluate
the output Φopt obtained from the contact-based optimisation denoted
“ours”. We also show the optimisation result without using the contact
loss term (5.7) (“Baseline”). The numbers next to the method names
represent the initialisation offset from the ground-truth 3D translation
position (e.g. “+10m” indicates that the initial root position of the human
body was placed at 10 meters away along the depth direction from the
ground-truth root position when solving the optimisations).

Without the contact loss term—since global translation and body scale
are jointly estimated in the optimisation—the baseline method suffers
from up-to-scale issue (see Fig. 5.2). Hence, its results are significantly
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Table 5.4: Comparisons of physical plausibility measures on GPA dataset (Wang
et al., 2022b, 2020b) and PROX dataset (Hassan et al., 2019).

GPA
Dataset

PROX
Dataset

non penet.↑
[%]

esmooth↓
non penet.↑

[%]

RGB

Ours 99.4 20.2 97.0
Ours (w/o S) 97.6 28.1 93.8
Ours (w/o R) 99.4 24.7 97.1

Ours (w/o SR) 97.6 47.1 93.8

SMPLify-X (Pavlakos et al., 2019) 97.7 43.3 88.9
PROX (Hassan et al., 2019) 97.7 43.2 89.8

LEMO (RGB) (Zhang et al., 2021d) 97.8 19.9 -
POSA (Hassan et al., 2021b) 98.0 47.0 93.0

RGB-D
PROX-D (Hassan et al., 2019) - - 94.2
LEMO (Zhang et al., 2021d) - - 96.4

worse due to worse initialisations. In contrast, our contact-based opti-
misation disambiguates the scale and depth by localising the contact
positions on the environment, which confirms HULC to be highly robust
to bad initialisations. Compared to the RGB-based methods PROX, POSA
and SMPLify-X, our contact-based optimisation result has ≈ 40% smaller
error in the absolute bone length, and ≈ 57% smaller error in global
translation, which also contributes to the reduced body-environment
collisions as demonstrated in Table 5.4 (discussed in the next paragraph).

Plausibility Measurements We also report the plausibility of the recon-
structed 3D motions in Table 5.4. Non penet. measures the average ratio
of non-penetrating body vertices into the environment over all frames. A
higher value denotes fewer body-environment collisions in the sequence;
esmooth measures the temporal smoothness error proposed in Shimada
et al. (2020). Lower esmooth indicates more temporally smooth 3D motions.
On both GPA and PROX datasets, our full framework mitigates the colli-
sions thanks to the manifold sampling-based optimisations (ours vs. ours
(w/o S)). It also does so when compared to other related works as well.
Notably, HULC shows the least amount of collisions even compared with
RGBD-based methods on the PROX dataset. Finally, the proposed method
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a) b)

Figure 5.4: (a) MPJPE [mm] comparison with different numbers of samples for
the learned manifold sampling strategy vs. the naïve random sampling in the
joint angle space of the kinematic skeleton. (b) MPJPE [mm] comparison with
different numbers of iterations in the sampling strategy.

also shows the significantly low esmooth (on par with LEMO(RGB)) in this
experiment.
More Ablations on Sampling-based Optimisation In addition to the
ablation studies reported in Tables 5.2, 5.3 and 5.4, we further assess the
performance of the pose update manifold sampling step (Fig. 5.2-(b)-
(II)) on GPA dataset (Wang et al., 2022b, 2020b), reporting the 3D error
(MPJPE [mm]) measured in world frame. Note that we report MPJPE
without the final refinement step to assess the importance of the manifold
sampling approach. In Fig. 5.4-(a), we show the influence of the number
Nsam of samples on the performance of our manifold sampling strategy
vs. a naïve random sampling with a uniform distribution in a kinematic
skeleton frame. Specifically, for the naïve random sampling, we use
the random sampling for the pose parameter θopt ∈ R3K similar to the
method explained in Sec. 5.3.4: the randomly generated offsets ∆θ = ψφθ

are added to θopt to generate the pose samples; φθ ∈ [−0.26, 0.26]3K

are the values that are uniformly generated at random. In Fig. 5.4-(a),
since the generated samples of the learned manifold return plausible
pose samples, our pose manifold sampling strategy requires significantly
fewer samples compared to the random sampling (∼15× more samples
are required for the random sampling to reach 243 [mm] error in MPJPE).
This result strongly supports the importance of the learned manifold
sampling. No more than 2000 samples can be generated due to the
hardware memory capacity. In Fig. 5.4-(b), we report the influence of



100 hulc : 3d human motion capture with . . . dense contact guidance

Table 5.5: Ablation study for the sliding loss term Lsli.

MPJPE [mm] ↓ sliding error [mm] ↓

Ours 217.9 16.0
Ours (w/o Lsli) 220.2 18.5

the number of generation-selection steps using functions G and EU (with
U = 3) introduced in Sec. 5.3.4, with Nsam = 1000 samples. No iteration
stands for choosing the best sample from the first generated batch (hence
no resampling), while one iteration is the variant described in Sec. 5.3.4.
This first iteration sharply reduces the MPJPE, while the benefit of the
additional iterations is less pronounced. Based on these observations, we
use only one re-sampling iteration with 1000 samples in the previous
experiments. Finally, we ablate the confidence value-based pose merging
in Eq. (5.8), setting Nsam=1000 and the number of iterations to 0. The
measured MPJPE for with and without this confidence merging are 245.5
and 249.1, respectively.
More Ablations on Lsli For the completeness, we report the ablative
study for the sliding loss term Lsli (Eq.(5.9)) used in our optimisations.
In Table 5.5, we report MPJPE and sliding error esli. measured in a world
frame for our full framework (“Ours”) and our framework w/o the
sliding loss term (“Ours (w/o Lsli)”). The sliding error esli. is measured
by computing the average of the drift of the contact vertex on the human
surface, based on the assumption that contact positions in the scene are
not moving (i.e. zero velocity). This is a reasonable assumption since most
of the contact positions in daily life in a static scene are static contacts,
which is also the case with our evaluation dataset; GPA dataset (Wang
et al., 2022b, 2020b).

With the sliding loss term, our framework reduces the sliding error by
∼14% compared to w/o Lsli. Notably, integration of Lsli reduces the 3D
joint error (MPJPE) by 1% as well.
Contact Classifications As HULC is the first method estimating contact
labels on dense body and environment surfaces from monocular RGB and
point cloud input, there are no other existing works that estimate the same
outputs. Nonetheless, we report the performance on the GPA dataset for
completeness and future reference. The precision, recall and accuracy of
the body surface contact estimation are 0.22, 0.41 and 0.91, respectively.
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ours PROX PROX-DSMPLify-X LEMOInput RGB
RGB based

Ours PROX POSALEMO 
(RGB)

POSA Input 
RGB

RGB-D based RGB based

Figure 5.5: The qualitative comparisons of our results with the related methods
on PROX (left) and GPA dataset (right). Our RGB-based HULC shows fewer
body-scene penetrations even when compared with RGB-D based methods;
mind the red rectangles in the second row.

For the environment surface contact estimation, 0.045, 0.18 and 0.96,
respectively. Note that these classification tasks are highly challenging,
especially since the environment point cloud contains several thousands
of vertices to be classified. Furthermore, GPA dataset sequences are not
included in the training dataset for the contact estimation networks.
Although it is conceivable that the reported numbers can be further
improved, our framework largely benefits from the estimated contact
labels and significantly reduces the 3D localisation errors.

5.5.3 Qualitative Results

Fig. 5.5 summarises the qualitative comparisons on GPA and PROX
datasets. HULC produces more physically plausible global 3D poses with
mitigated collisions, whereas the other methods show body-environment
penetrations. Even compared with the RGB(D) approaches, HULC miti-
gates collisions (mind the red rectangles).

5.6 concluding remarks

Limitations HULC requires the scene geometry aligned in a camera
frame like other related works (Hassan et al., 2019, 2021b; Zhang et
al., 2021d). Also, HULC does not capture non-rigid deformations of
scenes and bodies, although the body surface and some objects in the
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environment deform (e.g. when sitting on a couch or lying in a bed).
Moreover, since our algorithm relies on the initial root-relative pose
obtained from an RGB-based MoCap algorithm, the subsequent steps can
fail under severe occlusions. Although the estimated contact labels help to
significantly reduce the 3D translation error, the estimated environment
contacts contain observable false positives.
Conclusion We introduced HULC—the first RGB-based scene-aware Mo-
Cap algorithm that estimates and is guided by dense body-environment
surface contact labels combined with a pose manifold sampling. HULC
shows 60% smaller 3D-localisation errors compared to the previous meth-
ods. Furthermore, deep body-environment collisions are handled as a
hard constraint in the pose manifold sampling-based optimisation, which
significantly mitigates collisions with the scene. HULC shows the low-
est number of collisions even compared with RGBD-based scene-aware
methods.



6
D E C A F : M O N O C U L A R D E F O R M AT I O N C A P T U R E F O R
FA C E A N D H A N D I N T E R A C T I O N S

The previous chapter introduced a new scene-aware motion capture
approach. This approach leverages the estimated whole-body contacts
for improved 3D accuracy while resolving the collisions with the novel
sampling optimisation step in a pose manifold space. While the proposed
method shows improved performances over the prior works in terms of
3D accuracy and interaction plausibility, the interacting scene is assumed
to be static. However, in the real world, daily interactions often result in
observable non-rigid effects.

This chapter (published as Shimada et al., 2023) presents the first
technique that predicts the hand and face motions, along with the non-
rigid skin deformations resulting from their interactions, all from a
single-view RGB video. Due to the lack of a suitable training dataset
for this problem, this chapter proposes a new 3D deformation dataset
with corresponding multi-view RGB images. It is generated using a
marker-less multi-view capture system combined with a deformable
object simulator. For the simulation, this chapter also proposes a novel
non-uniform stiffness computation that considers the underlying skull
geometry of a human head. The effectiveness of the locally varying
stiffness values is demonstrated qualitatively. The networks trained on
the new dataset regress plausible deformations and contacts only from
RGB inputs, which are subsequently leveraged in the final global fitting
optimisation step. To address the inherent depth ambiguity of the single-
view setup, a novel variational autoencoder-based interaction prior is
also integrated into the global fitting optimisation. The ablation study
validates the importance of this component. The reconstructed motions
from the proposed method show the lowest 3D errors for the hand and
face motions compared with other related works while being the first to
model the deformations arising from interactions.

103
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Figure 6.1: Our Decaf approach captures hands and face motions as well as the
face surface deformations arising from the interactions from a single-view RGB
video.

6.1 introduction

The reconstruction of 3D hands and face models from a monocular RGB
video is a challenging and important research area in computer graph-
ics. The task becomes significantly more difficult when attempting to
reconstruct hands and face simultaneously including surface deformations
caused by their interactions. Capturing such interactions and deformations
is crucial for enhancing realism in reconstructions as they are frequently
observed in everyday life (hand-face interaction occurs 23 times per hour
on average during awake-time (Kwok et al., 2015)), and they significantly
impact the impressions formed by others. Consequently, reconstructing
hand-face interactions is key for avatar simulation, virtual/augmented
reality, character animation, where realistic facial movements are essential
to create an immersive experience, as well as for applications such as
sign language transcriptions and driver drowsiness monitoring. Despite
several studies on the reconstruction of face and hand motions, the cap-
ture of interactions between them and the corresponding deformations
from a monocular RGB video remains unaddressed (Tretschk et al., 2023).
On the other hand, naïvely using existing template-based hand and face
reconstruction methods leads to artefacts such as collisions, and missing
interactions and deformations due to the inherent depth ambiguity in
the monocular setting and the lack of deformation modelling in the
reconstruction pipeline.

Several key challenges are associated with this problem setting. One (I)
is the lack of an available markerless RGB capture dataset for face and
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hand interaction with non-rigid deformations for model training and
method evaluation. Capturing such a dataset is highly challenging due
to the constant presence of occlusions caused by hand and head motions,
particularly at the interaction region where non-rigid deformation occurs.
Another challenge (II) is the inherent depth ambiguity of the single-
view RGB setup, which makes it difficult to obtain accurate localisation
information, resulting in errors that can cause artefacts such as collisions
or non-touching of the hand and head (when they interact in practice). To
tackle these challenges, we propose Decaf (short for deformation capture of
faces interacting with hands), a monocular RGB method for capturing face
and hand interactions along with facial deformations.

Specifically, to address (I), we propose a solution that combines a
multiview capture setup with a position-based dynamics simulator for
reconstructing the interacting surface geometry, even under occlusions.
To integrate the deformable object simulator, we calculate the stiffness
values of a head mesh using a simple but effective “skull-skin distance”
(SSD) method. This approach provides non-uniform stiffness to the mesh,
which significantly improves the qualitative plausibility of the recon-
structed geometry compared with uniform stiffness values. To address
the challenge (II), we train the networks to obtain the 3D surface deforma-
tions, contact regions on the head and hand surfaces, and the interaction
depth prior from single-view RGB images utilising our new dataset.
During the final optimisation stage, we utilise these information from
different modalities to obtain plausible 3D hand and face interactions
with non-rigid surface deformations, which helps disambiguate the depth
ambiguity of the single-view setup. Our approach results in much more
plausible hands-face interactions compared to the existing works; see
Fig. 6.1 for representative results.

In summary, the primary technical contributions of this chapter are as
follows:

• Decaf , the first MoCap approach for 3D hand and face interaction
reconstruction with face surface deformations (Sec. 6.3).

• A global fitting optimisation guided by the estimated contacts,
learned interaction depth prior, and deformation model of the face
to enable plausible 3D interactions (Sec. 6.3.3).
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• The acquisition of the first markerless RGB-based 3D hand-face
interaction dataset with surface deformations with consistent topol-
ogy based on position-based dynamics (PBD). The reference 3D
data for model training and evaluation are generated using a simple
and effective non-uniform stiffness estimation approach for human
head models, namely skull-skin distance (SSD; Sec. 6.4).

Our Decaf outperforms benchmark and existing related methods both
qualitatively and quantitatively, with notable improvements in physical
plausibility metrics (Sec. 6.5.3).

6.2 related work

This section focuses on the 3D reconstruction of hands interacting with
objects in the monocular (single-view) capture context.

6.2.1 Hand Reconstruction with Interactions

There have been diverse works proposed to capture 3D hand motions
with interactions. Several works reconstruct 3D hand and rigid object
interactions from depth information (Hu et al., 2022; Zhang et al., 2019,
2021b) or RGB camera (Cao et al., 2021; Grady et al., 2021; Liu et al.,
2021; Tekin et al., 2019). There are several works that reconstruct hand-
hand interactions. Mueller et al. (2019) reconstruct two hands interactions
from a single depth camera utilising collision proxies based on Gaussian
spheres embedded in the hand model. Some works reconstruct interacting
3D hands from a single RGB image (Wang et al., 2022a; Zhang et al.,
2021a). However, none of these works considers the non-rigidity while
interactions unlike ours.

Similar to our approach, Tsoli and Argyros (2018) reconstruct non-rigid
cloth and hand interaction by considering hand/object contact points
in the optimisation. However, the method requires RGB-D input unlike
ours. Our work assumes no access to depth sensor information and re-
constructs interactions with a deformable face. The face exhibits varying
stiffness values based on the surface area, owing to the underlying skull
structure in a human’s head. This is in contrast to cloth interactions,
which typically have uniform stiffness values. Furthermore, our face
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autonomously changes its pose and expression during the sequence,
whereas in Tsoli and Argyros (2018), the behaviour of the cloth changes
only due to the interacting hand or gravity. These unique characteris-
tics, coupled with the limited input setting, make our problem highly
challenging.

6.2.2 Monocular Face Reconstruction

Capturing a human face from a single view RGB input is important for
many graphics applications, thus a significant amount of works have
been proposed with learning-free (Garrido et al., 2013, 2016; Thies et al.,
2016; Wu et al., 2016) and learning-based approaches (Ichim et al., 2015;
Lattas et al., 2020; Saito et al., 2016). In this category, some works train the
networks in a self-supervised manner to reconstruct faces with textures
and illuminations (Tewari et al., 2017) or details with estimated normals
(Danecek et al., 2022; Feng et al., 2021b). Although these works capture
the geometry of expressive deforming human faces, none of the works
in this category models the face deformations caused by the interactions
unlike ours.

6.2.3 Shape from Template (SfT)

This algorithm class bears a similarity to our approach. SfT assumes a
template mesh of the tracking object and deforms the template mesh
based on the observations such as RGB/-D sequences. Several works
address this problem with learning-based algorithms (Bozic et al., 2020;
Fuentes-Jimenez et al., 2021; Golyanik et al., 2018; Kairanda et al., 2022;
Shimada et al., 2019), and some with learning-free optimisation-based
approaches (Habermann et al., 2018; Ngo et al., 2015; Salzmann et al.,
2007; Yu et al., 2015; Zollhöfer et al., 2014). Unlike these approaches, our
method models interactions between two different objects (i.e. hand and
face) from a single view RGB input under severe occlusions caused by the
interactions. Petit et al. (2018) propose a physics-based non-rigid object
tracking method using a finite element method. However, their method
requires RGB-D input and focuses on simple deformable objects (e.g.,
cubes and discs). In contrast, our approach does not rely on depth infor-
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mation and handles interactions between a complex articulated hand and
face, considering locally varying stiffness values. Some works estimate
3D human poses with self- and multi-person interactions (contacts) from
single RGB images (Fieraru et al., 2020, 2021; Müller et al., 2021). How-
ever, they do not model significant surface deformations due to contacts
(e.g. during hand-face interactions). Li et al. (2022) propose a method that
addresses a problem set that bears resemblance to ours. It estimates the
3D global human pose along with the deformations of the interacting
environment surface based on ARAP-loss. However, their method does
not consider stiffness values specific to object categories and does not
incorporate learned priors for non-rigid deformations, distinguishing it
from our approach.

6.2.4 Template Free Non-Rigid Surface Tracking

Some methods in this category reconstruct non-rigid surfaces by acquir-
ing first an explicit template mesh from RGB-D inputs (Innmann et al.,
2016). Some use node graphs (Lin et al., 2022) or implicit SDF surface rep-
resentations (Slavcheva et al., 2017) for non-rigid surface tracking. Guo et
al. (2017) propose a method that reconstructs the non-rigid surface along
with the surface albedo and low-frequency lighting. Our approach differs
from these works by considering the dynamics of the interactions be-
tween two different materials i.e. face and hand, and face surface stiffness
values based on bone structure. Additionally, our dataset and method’s
output have consistent 3D mesh topologies that are very important for
the supervision of network training in explicit surface space.

6.2.5 Physics-based MoCap

Recently, numerous physics-based algorithms for motion capture have
been proposed. Several works model the interactions with the environ-
ment from a static single RGB camera (Gärtner et al., 2022a,b; Huang
et al., 2022; Innmann et al., 2016; Luo et al., 2022; Rempe et al., 2020;
Shimada et al., 2021, 2020; Xie et al., 2021; Yuan et al., 2021) or with
objects (Dabral et al., 2021). Some works reconstruct 3D poses from ego-
centric views (Luo et al., 2021) or IMUs (Yi et al., 2022). Hu et al. (2022)
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Figure 6.2: Schematic visualisation of Decaf , the proposed system to predict
3D poses of hands and face in interaction from a sequence of monocular RGB
images of a subject. The final output from Decaf reconstructs the face and hands,
incorporating plausible surface deformations on the face resulting from their
interactions.

reconstruct hand-object interactions from an RGB-D camera sequence
modelling the physics-based contact status. While the existing approaches
primarily focus on modelling the interactions with static floor planes or
rigid objects, our method uniquely addresses non-rigid deformations
arising from interactions between hands and face. This capability is made
possible thanks to our networks trained on our novel dataset, which
incorporates 3D deformations generated using a maker-less multiview
motion capture system combined with position based dynamics (PBD)
(Müller et al., 2007) – a widely adopted deformable object simulation
algorithm employed in modern physics engines.

6.3 method

Our goal is to reconstruct hands interacting with a face in 3D, includ-
ing non-rigid face deformations caused by the interaction, from a sin-
gle monocular RGB video. Fig. 6.2 provides an overview of the pro-
posed framework. Our deformation and contact estimation network
DefConNet, trained on our new dataset (Sec. 6.4), estimates face sur-
face deformations and contact labels on both face and hand surfaces
from an image sequence; the contact labels are crucial to achieve plau-
sible and realistic interactions in 3D (Sec. 6.3.2). The estimated de-
formations, contacts and 2D keypoints are subsequently sent to the
global fitting optimisation stage (Sec. 6.3.3), where we also utilise the
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Figure 6.3: Example artefacts caused by
the depth inaccuracies after solving a
naïve single RGB based fitting optimi-
sation, i.e. Eqs. (6.5) and (6.8) without
Ltouch,Lcol. andLdepth. The locations of
the observable artefacts are indicated by
the red circles on each row.

interaction prior obtained from
a conditional variational autoen-
coder (Sohn et al., 2015) condi-
tioned on the 2D key points for
the improved interactions between
the hands and face. After this stage,
we obtain the final 3D reconstruc-
tion of the face and hands in the
form of parametric hand and head
models with applied deformations.
We next explain the notations and
assumptions that are used in this
work (Sec. 6.3.1), followed by the
details of our Decaf approach.

6.3.1 Modelling and Preliminaries

Our Decaf accepts as input a sequence I = {It}= {I1, ..., IT} of T = 5 suc-
cessive RGB frames from a static camera with known intrinsic camera
parameters. We resize It to 224× 224 pixels after cropping the detected
bounding box around the subject’s face and hands in each frame. To
represent the 3D face, we employ a gender-neutral version of FLAME
parametric model F (Li et al., 2017). We utilise its identity parameters
βf ∈R100, jaw pose θf ∈R3 and expression parameters Ψ∈R50 combined
with the global translation τf ∈R3 and rotation rf ∈R3 that can be for-
mulated as a differentiable function F (τf, rf,βf,θf,Ψ). Model F returns
3D head vertices Vf ∈RM×3 (M = 5023) from which we obtain the 3D
face landmarks Jf ∈RKf×3 (Kf = 68). To represent 3D hands, we employ
the gender neutral version of the statistical MANO parametric hand
model (Romero et al., 2017) that defines the hand mesh as a function
M(τh, rh,θh,βh) of global translation τh ∈R3 and global root orientation
rh ∈R3, pose parameters θh ∈R45 and hand identity parameters βh ∈R10.
This function M returns hand 3D mesh vertices Vh ∈RN×3 (N = 778)
from which 3D hand joint positions Jh ∈RKh×3 (Kh = 21) are obtained.
We assume that the face identity and hand shape parameters are known.
In the following, Φf = (τf, rf,βf,θf,Ψ) and Φh = (τh, rh,βh,θh) denote
the kinematic states of the face and hand in a 3D space.
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Figure 6.4: Schematic visualisation of depth ambiguity in a monocular setup.
f denotes the focal length of the camera. a) and b): Given the same 3D poses
of face and hand of the same scale in the 3D space, different combinations of
depths and focal lengths can result in indistinguishable images after the 2D
projection in a monocular setting. This effect, known as depth ambiguity, poses
a challenge for methods attempting to estimate the depth values of the hand
and face in the camera frame from monocular 2D inputs (e.g. RGB images or 2D
keypoints). However, the relative location of the hand w.r.t. the head is invariant
to the positions of the face and hand in 3D space (e.g. 0.3 [m] above). Based on
this idea, our DePriNet learns the depth prior in the canonical face frame where
the origin of the frame is located at the centre of the head.

6.3.2 Interaction Estimation

We introduce a learning-based approach that estimates plausible inter-
actions in a scene, i.e. the vertex-wise face deformations and contacts
on the face and hand surfaces given only single-view RGB images. The
approach is trained on our new dataset (Sec. 6.4).

Our neural network accepts as input an image sequence I and outputs
the deformation on the head model as per-vertex displacements in a
camera frame p∈RM×3, contact labels on the face cf ∈ {0, 1}M and the
hand ch ∈ {0, 1}N . The contact labels are binary signals, i.e. 1 for contact,
0 otherwise. The network is trained to estimate the contact probability
using the binary cross entropy (BCE):

Llabels = BCE(cf, ĉf) + BCE(ch, ĉh), (6.1)
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Template fitting PBD-based optimisation

Stiffness computation based on SSD

Multiview RGB recordings

1

2

3

3

Figure 6.5: Overview of the dataset generation pipeline. We first capture the hand
and face interactions using a markerless multi-view setup. (1) Subsequently,
the obtained RGB image sequences are used to solve template-based fitting
optimisation. (2) To provide the plausible stiffness values on the head mesh
for the later position-based dynamics (PBD) optimisation stage, we compute
skull-skin distances (SSD) and obtain vertex-wise stiffness values, see Sec. 6.4.2
for the details. (3) Using the fitted templates from (1) and the stiffness values
from (2), we solve the PBD-based tracking optimisation. This stage handles the
physically implausible collisions and provides plausible surface deformations
on the head mesh surface (Sec. 6.4.3).

where ĉf and ĉh denote the ground-truth contact labels for the face and
hand, respectively. We also train the network to estimate the deformations
using the ground-truth annotations p̂m:

Ldef. =
1
M

M

∑
m=1

(wm
def ∥pm − p̂m∥2

2 + bm
def ∥pm∥), (6.2)

where

wm
def =

0.3, if ||p̂m||= 0,

1.0, otherwise,
bm

def =

1, if ||pm||> ψ,

0, otherwise.
(6.3)

The first term in Eq. (6.2) allows the network to learn the 3D deformations
in our dataset. The weight wdef helps to penalise the network predictions
more on deforming vertices. We observe that this weighting strategy
improves the network precision as the majority of the face vertices have
no deformations. The second loss term in Eq. (6.2) regularises the un-
naturally large deformations on the face surface where bdef works as a
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Figure 6.6: Example visualisations of the reconstructed 3D head and hand
interactions with the stiffness values computed using the skull-skin distance
(SSD) (second to fourth columns) and the uniform stiffness value (fifth to
seventh columns). With SSD, the obtained surface deformations are much more
plausible compared to naïevely assigning the uniform stiffness value to all the
head vertices. The red circles highlight the overly deformed surfaces (top) and
inaccurate deformations that ignore the underlying jaw in the human head
(bottom).

binary label to penalise only the vertices with deformations greater than
ψ = 0.1 [m].

6.3.3 Global Fitting Optimisation

Using the estimated deformations p, contact labels cf and ch and 2D joint
keypoints, we obtain the global positions of the face Φf and hand Φh in
the 3D scene considering their interactions. In this optimisation step, we
also update p to refine and handle the minor collisions. The objective
follows:

Lopt(Φf,Φh, p) = Lface + Lhand. (6.4)

The fitting loss term of the face model Lface reads:

Lface(Φf, p) = L2D + Lreg., (6.5)

where L2D and Lreg. are the weights of the 2D reprojection term and
regulariser loss term , respectively. Employing the projection function
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Π(·) with the known camera intrinsics, the 2D reprojection loss term is
formulated as follows:

L2D =
1
M

M

∑
m=1

wm
conf.∥Π(Jm

f )− Ĵm
f ∥

2
2, (6.6)

where Ĵm
f and wm

conf. are, respectively, the reference 2D face landmarks
and the corresponding confidence value obtained by the method of Bulat
and Tzimiropoulos (2017) given the input image. We also minimise the
regulariser loss term Lreg. to introduce the statistical prior for the shape
βf and expression Ψ, and temporal smoothness in the motion:

Lreg. = λβ∥βf∥2
2 + λΨ∥Ψ∥2

2 + λV̇∥V̇f∥2
2 + λV̈∥V̈f∥2

2, (6.7)

where V̇f and V̈f denote the velocity and acceleration of the head vertex
positions Vf, respectively. λ• denotes a weight of the loss term. The objec-
tive for the hand fitting Lhand optimisation includes the 2D reprojection
term L2D, regulariser term Lreg., collision term Lcol., touchness term Ltouch

and the depth prior term Ldepth:

Lhand(Φh, p) = L2D + Lreg. + λtouchLtouch

+λcol.Lcol. + λdepthLdepth,
(6.8)

where λ• are the corresponding weights. The terms L2D and Lreg. are
the same as in (6.6)-(6.7) with the modification that (6.6) is applied on
the hand 3D joints Jh compared with the reference 2D hand keypoints
Ĵh, and (6.7) on the hand shape βh, velocity and acceleration of hand
vertices, excluding the expression prior loss ∥Ψ∥2

2.
Due to the inaccuracy of the depth estimation in the monocular setting,

simply solving the fitting optimisation w.r.t. the face and hand global
positions can cause artefacts, e.g. collisions between the face and hand or
non-touching artefacts. Fig. 6.3 shows examples of such artefacts, when
solving a naïve 2D reprojection based single view fitting optimisation
i.e. (6.4) excluding Ltouch, Lcol. and Ldepth. They immediately give the
impression of unnatural hand-face interaction to the viewer. To address
the “non-touching” artefacts, we utilise the touching loss term Ltouch that
penalises the distances between the contact surfaces on the face and
hands inspired by Shimada et al. (2022). Specifically, we treat the face and
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hand vertices with contact probabilities cf > 0.5 and ch > 0.5 as effective
contacts, respectively. Let Cf ⊂ J1, nK and Ch ⊂ J1, mK be the index subsets
of the face and hand vertices with the effective contacts. Using a Chamfer
loss, Ltouch is formulated as follows:

Ltouch =
1
|Cf| ∑

i∈Cf

min
j∈Ch

∥∥∥Vi
f − Vj

h

∥∥∥2

2
+

1
|Ch| ∑

j∈Ch

min
i∈Cf

∥∥∥Vi
f − Vj

h

∥∥∥2

2
. (6.9)

To avoid collisions between hands and a head, we also introduce the
collision loss term Lcol. for minimising the penetration distance of the
hand vertices. Specifically, we first detect the hand vertices colliding with
the face mesh based on an SDF criterion (Yu, 2023). Then, we minimise
the distance between colliding hand vertices and their nearest vertices on
the head mesh. Let P ⊂ J1, WK be the subset of indices of hand vertices
Vh colliding with the face mesh. The collision loss is formulated as:

Lcol. = ∑
i∈P

min
j∈Vf

∥∥∥Vi
h − Vj

f

∥∥∥2

2
+ LregDef, (6.10)

where Vf ⊂ J1, MK is the set of all the indices of the face vertices Vf.
The term LregDef regularises the update of the deformation p from the
perspective of edge lengths, neighbouring face angles and original defor-
mation estimated by DefConNets. Let l = {l1, ..., lx} and φ = {φ1, ..., φy}
be vectors that consist of the edge lengths and the angles between the
neighbouring faces of the face mesh, respectively. The formulation of
LregDef reads:

LregDef =
x

∑
i=1

si
edge ∥li − l0∥2

2 +
y

∑
i=1

si
bend ∥φi − φ0∥2

2 +∥p − p0∥2
2 , (6.11)

where l0 and φ0 denote the edge lengths and dihedral angles at rest and
p0 is the displacements estimated by DefConNets in the previous step;
sedge and sbend are, respectively, the edge and bending stiffness values
that consider the underlying skull structure of a human head. The details
of the stiffness computations are elaborated in Sec. 6.4.2.

To further introduce the learned prior for the depth position of the
hand, we train a conditional variational autoencoder (CVAE) (Sohn et al.,
2015) -based depth prior network DePriNet that is conditioned on the 2D
key points. DePriNet is trained to reconstruct the 3D hand key points
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Reference Image Without hands Without handsReconstructed
face and hand

Reconstructed
face and hand

Reference Image

Figure 6.7: Example visualisations from our new hands+face 3D motion capture
dataset with hand shape articulations non-rigid face deformation. The recon-
structed 3D geometry shows plausible surface deformations thanks to the fitting
optimisation combined with PBD.

in a canonical face frame, as estimating the depth of hand and face in
the camera frame only from monocular 2D input is challenging due to
the depth ambiguity (e.g. 3D hand and face with different combinations
of focal lengths and depths can be projected onto the same position in
the 2D image). However, the hand positions relative to the face in the 3D
space are invariant to the depth in the camera frame; see Fig. 6.4 for a
schematic visualisation. We train DePriNet with the standard losses:

Lvae =
∥∥J∗h − Ĵ∗h

∥∥2
2 + KL (q(Z | Ĵ∗h, Θ)∥N (0, I)). (6.12)

The first term is a reconstruction loss to reproduce the ground-truth
input hand joints in a canonical face frame Ĵ∗h ∈RKh×3 and J∗h ∈RKh×3

denotes the output from the decoder network of DePriNet. The second
loss term penalises the deviation of the latent vector Z∈R50 distribution
from a standard normal distribution N (0, I) using the Kullback-Leibler
divergence loss KL(·∥·). Latent Z is sampled from a Gaussian distribution
whose mean and variance are estimated from the encoder network q(·)
of DePriNet. At test time, we use the decoder network p(·) of DePriNet
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to output depth candidates of the hand positions that are integrated into
the depth prior loss Ldepth in the global fitting optimisation:

Ldepth =
u

∑
i=1

wi
∥∥Jz

h − T(J∗h,i)
∥∥2

2 , (6.13)

where wi = 1 − ηi − min(η)
max(η)− min(η)

, ηi = |Zi|1, (6.14)

Jz
h denotes the z-value of the hand 3D keypoints Jh that corresponds to

the depth axis in the camera frame, and T(·) is a transformation from the
canonical face space to the camera frame that consists of the rotation and
translation of the face model (that are also simultaneously obtained in
this global fitting optimisation); J∗h,i is the i-th sample obtained from the
decoder p(·) given u = 100 latent vectors ∼N (0, I) and the conditioning
vector Θ that consists of face and hand 2D keypoints with corresponding
confidence values as well as the face 3D rotation in the camera frame in
6D representation (Zhou et al., 2019). Note that 2D key points of the face
and hands are translated to be a face-root relative representation for the
conditioning. The conditioning 3D head rotation is obtained during the
optimisation (6.4). Each generated sample is weighted by the scalar w that
has the higher value the closer the corresponding latent vector Z is to zero
(i.e. a statistically more likely sample). We utilise the two independent
DePriNets of the same architecture for the left and right hands. After
minimising the objective that combines all these loss terms, we obtain the
final 3D head and hand reconstructions with plausible deformations and
interactions. The significance of each loss term is evaluated in Sec. 6.5.
The final deformed face vertices V∗

f are obtained by simply adding the
updated deformations p to the face model parameterised by Φf, i.e.
V∗

f = F (Φf) + p.

6.3.4 Architectures of Our Networks

Our Decaf comprises several components (Fig. 6.2). We employ Bulat
and Tzimiropoulos (2017) and Lugaresi et al. (2019) for 2D keypoint
and bounding box estimation of the face and hand, respectively. The
DefConNet is composed of two encoders and three decoders. The encoders
for the cropped face and hand images follow the ResNet-18 architecture
(He et al., 2016). The decoders, sharing the same architecture, estimate
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per-vertex deformations and contact labels for the face and hand. Each of
them includes three fully connected layers with leaky ReLU activation
(Maas et al., 2013) and their hidden layer dimensions equal to 1024. We
duplicate DefConNet for both hands and compute the union of the face
deformations and contacts before the final global fitting optimisation.
The DePriNet is a variational autoencoder (Kingma and Welling, 2014),
consisting of three linear fully connected layers with batch normalisations,
ReLU activations (Agarap, 2018), a latent dimension of 50 and hidden
size of 128 for both encoders and decoders.

6.4 dataset

In this work, we build a new markerless multi-view dataset for 3D hand-
face interactions for method training and evaluation. It contains eight
subjects—captured with 15 SONY DSC-RX0 cameras at 50 fps (i.e. from
15 different viewpoints)—along with the corresponding reference 3D
geometries of a right hand and head, including surface deformations of
the head represented as per-vertex displacements. In total, the dataset
contains 100K frames, see Table 6.1 for the details. Each actor performs
seven different actions with three different facial expressions. For each
captured view, the background masks are obtained using Sengupta et al.
(2020). The bounding boxes (for the hands and the faces) and 2D key
points (for the faces), are obtained using Lugaresi et al. (2019) and Bulat
and Tzimiropoulos (2017), respectively.

In the remainder of this section, we elaborate on our dataset generation
pipeline; see Fig. 6.5 for the overview. The first step of the pipeline, i.e.
multiview template fitting, is explained In Sec. 6.4.1. Next, to obtain a
reasonable stiffness value that considers the underlying skull structure
of a human face, we introduce a simple but effective skull-skin distance
(SSD) approach in Sec. 6.4.2. The computed stiffness values are further
utilised in the deformable object simulation relying on position based
dynamics (PBD), and we obtain the final 3D geometry with plausible
interactions arising from hand-face interactions (Sec.6.4.3).
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6.4.1 Multiview Template Fitting

We first solve the 2D keypoint reprojection-based fitting optimisation to
obtain the MANO (Romero et al., 2017) and FLAME model (Li et al., 2017)
parameters, so that the hand and face shapes match the multiview 2D
keypoints with known intrinsic and extrinsic calibrations. The objective
for the face fitting encompasses (6.6) and (6.7). For the hand, we also
minimise (6.6) and (6.7) with the modification that (6.6) is applied on the
hand 3D joints Jh, and (6.7) is applied on the hand shape βh, velocity and
acceleration of hand vertices, excluding the expression loss term ∥Ψ∥2

2.
However, FLAME does not model the surface deformation caused by the
interactions, which can result in physically implausible collisions; see the
red circle in Fig. 6.5-(1). We address this limitation by integrating into
our tracking pipeline a deformable object simulator relying on position-
based dynamics (PBD) (Müller et al., 2007). Our approach assumes non-
homogeneous stiffness values of the human face, and we describe next
how we obtain those.

6.4.2 Stiffness on a Head Mesh

Deformable object simulators require known material stiffness. The stiff-
ness of human face tissues is non-uniform, due to the rich mimic mus-
culature and the skull anatomy. Therefore, assuming uniform stiffness
in the whole face and head would result in artefacts when running the
simulation; see Fig. 6.6 for the examples. We obtain the non-uniform
stiffness values based on a simple but effective skin-skull distance (SSD)
assumption. It is based on the assumption that our face and head region
tend to have higher stiffness when the distance between the skin and
skull surface is smaller (e.g. forehead), and vice versa (e.g. cheek). To
compute SSD, we employ the mean skull and skin surface of a statistic
model from (Achenbach et al., 2018). The obtained tissue stiffness map
is upon our expectation and the corresponding pseudo-ground-truth
deformations are used in quantitative experiments in Sec. 6.5.
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Let D = [d1, ..., dh]∈Rh be a set of nearest distances between the skin
and skull surfaces computed for all the h skin vertices of Achenbach et al.
(2018). The stiffness s of the i-th skin vertex is calculated as follows:

si = (1 − d̂i)
b, (6.15)

where d̂ is the normalised distance:

d̂i =
di − min(D)

max(D)− min(D)
, (6.16)

with the operators min(·) and max(·) to compute the minimum and
maximum values of the input vector; b is empirically set to 4. After com-
puting the per-point stiffness si, we transfer it to the FLAME head model
by finding the corresponding vertices based on the nearest neighbour
search after fitting the FLAME head model onto the skin surface model
of Achenbach et al. (2018). In Fig. 6.5-(2), we show the visualisation of the
assigned stiffness values (more saturated green encodes lower stiffness).
The assigned values are expected from the anatomical viewpoint (e.g.
high stiffness around the head region and low stiffness near the tip of
the nose and cheeks). The edge and bending stiffness values in (6.11)
are obtained by simply computing the average over the s of vertices that
forms the edges and triangles.

6.4.3 PBD-based Optimisation

Position based dynamics (PBD) (Müller et al., 2007) is a technique for
simulating deformable objects, which gained popularity for its robustness
and simplicity; it is widely used in game and physics engines. We utilise
PBD to resolve implausible head-hand collisions which are challenging to
address in a markerless motion capture setup due to constant occlusions
at the interaction regions. We utilise stretch constraint Cstretch, bending
constraint Cbend and collision constraint Ccollision in the PBD simulator.
For each pair of connected vertices p1 and p2 in the mesh, Cstretch is
defined as follows:

Cstretch (p1, p2) = |p1 − p2| − l0, (6.17)
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where l0 denotes the rest length of the edge between p1 and p2. For each
pair of adjacent triangles (p1, p3, p2) and (p1, p2, p4), the definition of
bending constraint Cbend reads:

Cbend (p1, p2, p3, p4) =

acos
(

(p2 − p1)× (p3 − p1)

|(p2 − p1)× (p3 − p1)|
· (p2 − p1)× (p4 − p1)

|(p2 − p1)× (p4 − p1)|

)
− φ0,

(6.18)

where φ0 is the rest angle between the two triangles. Collision constraint
Ccollision can be integrated for each vertex p:

Ccollision (p) = nTp − h = 0, (6.19)

where n and h are the normal of the colliding plane and the distance
from the plane that p should maintain. After resolving collisions, we
introduce friction as formulated in Müller et al. (2007) with 0.5 for both
kinetic and static friction coefficients.

We also additionally introduce constraint Ctrack for tracking the refer-
ence 3D motions obtained in Sec. 6.4.1. More specifically, this tracking
constraint minimises the Euclidean distance between the vertex of the
template mesh p and its corresponding vertex pref in the reference mesh
from the previous multi-view fitting stage:

Cstretch (p, pref) = |p − pref| . (6.20)

For the simulation, we use the stiffness values obtained in Sec.6.4.2, and
finally obtain the 3D geometry of the interacting hand and face with the
surface deformations (also see Fig. 6.5-(3) for the example reconstruction).

6.5 evaluations

We next evaluate our Decaf on our new dataset. As there are no existing
methods that address the same problem we tackle, we compare our
method to a most closely related approach, i.e. a monocular full-body
capture PIXIE (Feng et al., 2021a) and its variants that reconstruct only
hands and face independently, denoted as PIXIE (hand+face). We also
compare to our benchmark method that includes hand-only (Lugaresi
et al., 2019) and face-only (Li et al., 2017) trackers.
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Table 6.1: Details of our new dataset. This dataset contains several types of
data including pseudo ground truth of 3D surface deformations represented
as 3D displacement vectors for seven different actions with three different
facial expressions performed by eight subjects. The “Age” signifies the age
range, whereas the number in the brackets means the corresponding number of
subjects.

Characteristic Value/Description

Number of subjects 8

Number of views 16

Total Number of Frames 100 K
Ethnicity 5 Asian, 3 Caucasian
Gender 6 male, 2 female

Age 20 - 29 (5), 30 - 39 (3)
Facial expressions neutral, open mouth, smiling

Action types

poking a cheek (open hand)
poking a cheek (pointing hand)

punching a cheek
pushing a cheek with a palm

rubbing a cheek
pinching a chin

touching nose front
touching nose from side

Data types

2D hand keypoints
2D face landmarks

RGB videos
foreground segmentation masks

hand-face bounding box
3D mesh for hand and face

3D surface deformations

Note that in this method variant, DefConNet and non-rigid collision
handling (6.10) are deactivated. Our dataset contains separate training
and testing sequences containing the same kinds of actions. We train our
networks on the training sequences of 5 different subjects and conduct
the quantitative evaluations on 3 different subjects unseen during the
training. For the qualitative comparisons, we show the results of our data
recording green studio and indoor sequences captured using a SONY
DSC-RX0 camera.
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Input Image Ours PIXIE PIXIE (hand + face)

Figure 6.8: Visualisations of the experimental results by our method, PIXIE
(Feng et al., 2021a) and hand-face only mode of PIXIE. The PIXIE results (fourth
column) frequently lack interactions between the hand and face, resulting in a
low touchness ratio (Table 6.2). PIXIE (hand+face) in the fifth column shows
collisions and lacks face-hand interactions as the method is agnostic to the
latter. Our results (second column) exhibit natural interactions between the hand
and face along with plausible face deformations (third column), which are not
present in the results of the competing approaches (fourth and sixth columns).

6.5.1 Implementation and Training Details

The neural networks were implemented in PyTorch (Paszke et al., 2019).
The evaluations and network training were conducted on a computer with
an NVIDIA QUADRO RTX 8000 graphics card and AMD EPYC 7502P
32 Core Processor. The training was continued until convergence using
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Input Image Ours PIXIE PIXIE (hand + face)

Figure 6.9: Visualisations of the experimental results by our method, PIXIE (Feng
et al., 2021a) and hand-face-only mode of PIXIE for indoor scenes. Similar to
the case with the green-screen studio (Fig. 6.8), the results in this experimental
setup are plausible and represent expressive facial deformations, whereas PIXIE
(Feng et al., 2021a) and its slimmed-down version show inaccurate interactions
and lack deformations.

Adam optimiser (Kingma and Ba, 2015b) with a learning rate 3 · 10−4.
DefConNet models are trained until convergence which takes ≈12 hours.
Since our dataset was captured with right-hand and face interactions,
we flip the image and the corresponding 3D ground-truth annotations
and contact labels horizontally to obtain the input and ground truth for
the left hand. For the global fitting optimisation, we set the loss term
weights of (6.5), λβ = 1 · 10−5, λΨ = 1 · 10−3, λV̇ = 3 · 10−4, λV̈ = 3 · 10−4.
For (6.8), we employed the following weights: λtouch = 0.1, λcol. = 1.0,
λdepth = 3 · 10−3, λβ = 1 · 10−5 , λV̇ = 3 · 10−4, λV̈ = 3 · 10−4. As the 2D
hand keypoint estimator (Lugaresi et al., 2019) in our method estimates
3D hand key points as well, we utilise them to initialise our hand pose
by simply fitting the MANO hand model onto the 3D keypoints using
inverse kinematics (Note that this step is optional.).

6.5.2 Qualitative Evaluations

Fig. 6.8 and Fig. 6.9 show comparisons of our results with results of PIXIE
(Feng et al., 2021a) and its hand+face only version in a studio and an
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Figure 6.10: Visualisation of the effect of Lcol. (6.10). Starting from the colliding
hand and face poses (left-most visualisation), our non-rigid collision loss term
effectively resolves the physically implausible inter-penetrations in the course of
the optimisation.

indoor scene. Only our method reconstructs face deformations caused
by the interactions while showing much more accurate 3D localisations
of the hands and face compared to other approaches. In Fig. 6.10, we
also show an example visualisation of the non-rigid collision loss (6.10)
starting from colliding hand and face positions. While the optimisation
progresses, the physically implausible collisions are resolved by plausibly
deforming the face surface. Our qualitative results confirm that Decaf
produces significantly more plausible hand-face interactions and natural
face deformations from a single RGB video compared with others.

To assess the generalisability of our Decaf across diverse identities and
lighting conditions, we evaluate it on in-the-wild images; see Fig. 6.11.
The reconstructed 3D shapes show plausible interactions with reasonable
facial deformations. Furthermore, the estimated contacts showcased in
Fig. 6.12 faithfully mirror the contact regions evident in the input im-
ages. As a result, the final reconstructions show plausible hand-to-face
interactions guided by the estimated contacts. To further assess the gen-
eralisability of our method on unseen actions, we train our networks
excluding “poking a cheek (pointing hand)” and “punching a cheek”
actions from the training dataset; the results for these actions are illus-
trated in Fig. 6.13. Our method produces satisfactory results for “poking
a cheek (pointing hand)”. On the other hand, the exclusion of “punching
a cheek” from the training dataset is a highly challenging scenario as no
other actions in the training data contain interactions between the back



126 decaf : monocular deformation capture for face and hand interactions

Figure 6.11: 3D reconstructions on unseen identities in the wild. Our Decaf rea-
sonably generalises across different identities and illuminations unseen during
the training.

side of the hand and the face. Given that our approach is neural and
learning-based, such a substantial deviation from the training set can
lead to inaccurate interactions in the results.
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Figure 6.12: Visualisations of the estimated contacts on in-the-wild images. The
green and blue colours represent the face contacts regressed by the right- and
left-hand DefConNet, respectively (see Fig. 6.2). The yellow colour represents
the contact regions on the hand(s). All estimations are reasonable.

6.5.3 Quantitative Evaluations

To evaluate our algorithm from various perspectives numerically, we
report multiple evaluation metrics. We calculate the 3D per vertex error
(PVE) as an indicator of the 3D accuracy as well as the 3D deforma-
tion errors for our estimated face deformations. Additionally, we report
the metrics of collision distance, non-collision ratio and touchness ratio to
quantify the physical plausibility of the reconstructed hands and faces.
We also include the F-Score to evaluate the overall plausibility of the
reconstructions, taking into account both the occurrences of collisions
and the correctness of the interactions. The specific details of each metric
are elaborated as follows:

• Per vertex error (PVE) measures the magnitude of the 3D error by
computing the average Euclidean distances between the reconstruction
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Figure 6.13: 3D reconstructions on actions unseen during the training, i.e. (left:)
poking a cheek (pointing hand) and (right:) punching a cheek.

and the ground-truth vertices. We report the errors in the camera
frame before and after applying a translation on the hand and face
that aligns the centroid of the face with the origin of the coordinate
frame, denoted as PVE and PVE†, respectively. Hence, PVE† measures
the reconstruction quality focusing on the relative position of the
hand w.r.t. the head, which is important when judging the accuracy of
hands-head interactions.

• Deformation error (DefE) measures the magnitude of the error by
computing the average Euclidean distances between the estimated per-
vertex 3D deformations and their pseudo ground truth. We also report
+DefE that computes DefE only for deformations with the correspond-
ing ground-truth deformation vectors of norm greater than 5 [mm], i.e.
when non-negligible interactions are present. Lower DefE and +DefE
indicate higher prediction accuracy of the deformations.

• Collision distance (Col. Dist.) measures the collision distances aver-
aged over the number of vertices and frames. A lower collision distance
indicates a smaller magnitude of collisions throughout the sequence.

• Non-collision ratio (Non. Col.) measures the ratio of the frames with
no collisions between the hand and face over all sequence frames. A
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Table 6.2: Comparisons of the 3D reconstruction accuracy and plausibility of
interactions. “†” denotes PVE after applying a translation on both the face and
hand that translates the centre of the face mesh to the origin.

3D Error Plausibility Measurement

PVE↓
[mm]

PVE†↓
[mm]

Col.Dist.↓
[mm]

Non.Col. ↑
[%]

Touchness ↑
[%]

F-Score ↑
[%]

Ours 11.9 9.65 1.03 83.6 96.6 89.6
Ours w/o Ltouch 17.4 15.2 6.83 68.7 78.5 73.2
Ours w/o Lcol. 15.7 12.9 14.4 59.6 87.7 71.0

Ours w/o Ldepth 15.9 13.8 11.0 77.2 85.5 81.1

Benchmark 18.9 17.7 19.3 64.2 73.2 68.4
PIXIE (hand+face) 41.6 26.3 7.04 75.9 75.1 75.5

PIXIE 51.9 39.7 0.11 97.1 51.8 67.6

higher non-collision ratio indicates fewer collisions in the reconstructed
sequence.

• Touchness ratio measures the ratio of frames over all the frames where
contacts between face and hand are present in the prediction when
there are face-hand contacts in our ground truth. The hand vertices
with the nearest distance from the face surface lower than 5 [mm] are
considered in contact. This metric exposes the presence of an artefact,
namely the occurrence of face-hand interactions in the input frame
while the hand does not make physical contact with the face in the
reconstruction. A higher ratio indicates more plausible reconstructions.

• F-Score for Non. Col. and touchness ratio are also reported by com-
puting the harmonic mean of the two (as these two metrics are com-
plementary to each other). It is very important to report F-Score, since
each of these metrics in isolation is not meaningful (e.g. constant pres-
ence of hand-face collisions will result in perfect touchness ratio 100%;
no presence of interaction throughout the sequence will make the per-
fect Non. Col. 100%). A higher F-Score indicates a higher plausibility
of the interactions in the reconstructions showing fewer occurrences
of collisions and incorrect interactions.

3D Error Comparisons. We report PVE in Table 6.2-(left) to evaluate
the 3D accuracy of the reconstructed hand and face. Our Decaf shows
the best performance scoring around 40% less error compared with the
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Table 6.3: 3D deformation error comparisons. “+” indicates that DefE was
computed only on deformations whose ground-truth deformation vector has
a norm greater than 5 [mm]. Note that DefE and +DefE for related methods
and benchmarks are computed using zero displacements as only our method
outputs the per-vertex deformations (denoted with “*”) .

DefE. [mm]↓ +DefE. [mm]↓

Ours 0.08 2.28
Ours w/o refinement 0.09 2.35

Benchmark 0.13* 7.28*
PIXIE (hand+face) 0.13* 7.28*

PIXIE 0.13* 7.28*

second best method, benchmark ((Lugaresi et al., 2019) + (Li et al., 2017)).
We also report the 3D accuracies of the deformations; DefE and +DefE in
Table 6.3. To compute DefE for the related works, we simply provide zero
deformations as those methods do not model per-vertex deformations
caused by interactions. For both DefE and +DefE, our method shows the
lowest errors, i.e.about 60% lower errors for DefE and 40% lower errors
compared with others.

Plausibility of Interactions. In Table 6.2, we report Col. Dist., Non. Col.,
Touchness and F-Score. It is very important to show F-Score as Non. Col.
and Touchness are complementary to each other. Ours show low collision
distances while showing quite high Touchness, which indicates the highly
plausible face-hand interactions that correspond to the input images, thus
the best performance in F-Score. In contrast, PIXIE shows extremely low
collision distances while showing much worse Touchness compared with
ours. This is because, in most cases, the reconstructed hand and face are
wrongly not interacting with each other when they should be interacting;
see Fig. 6.8 for the example reconstructions. The benchmark and PIXIE
(hand+face) independently reconstruct the face and hands being agnostic
of the interactions of those; therefore, they show quite frequent collisions
(high Col. Dist. and low Non. Col.) as well as incorrect interactions (Low
Touchness), thus lower F-Score than ours. Given these metrics in Table 6.2
and the qualitative results, Decaf shows the most plausible interactions
in the reconstructed results compared with the related methods.
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Figure 6.14: PVE plots for two exemplary test sequences (left: woman on top-left
in Fig. 6.7; right: man on middle-right in Fig. 6.7) in relation to the degree of
occlusions and deformations in the pseudo ground truth. Our full model is
affected by the occlusions (the bottom row) substantially less than its ablated
versions.

Ablation Studies In Table 6.2, we show the ablation studies of the recon-
structions denoted as “Ours w/o Ltouch”, “Ours w/o Lcol. ” and “Ours
w/o Ldepth ” to assess the importance of each loss term. For both the
3D accuracy and plausibility measurements, removing one loss term
results in a severe performance decrease, which confirms all those loss
terms contribute to higher 3D localisations and improvement of inter-
action plausibilities. Additionally, in Table 6.3, we also show the DefE
and +DefE without updating the deformations in the final global fitting
optimisation stage, i.e. direct output from the DefConNet denoted as
“Ours w/o refinement”. Our final global fitting optimisation improves the
estimated deformations from DefConNet, reducing the DefE and +DefE
by 10% and 3%.

Fig. 6.14 shows PVE plots for two test sequences from our dataset,
highlighting the stability of our results. Amount of occlusion stands for
the per-frame ratio of face pixels occluded by hand pixels from the
camera view and amount of deformations signifies the per-frame sums of
deformations in the pseudo ground truth. We observe that the ablated
versions of our method are starkly influenced by occlusions, which can
be recognised with the help of peaks occurring at the frames with the
(locally) largest deformations as well as the most significant occlusions.
In contrast, our full model is affected by the occlusions substantially less,
and its curve has a smaller standard deviation of PVE, which verifies the
importance of each loss term.
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Table 6.4: Perfomance measurement of our contact estimation component. Our
method estimates reasonable contacts on face-hand surfaces only from RGB
input, which are integrated into the final global fitting optimisation. The signifi-
cance of the contacts is validated in Table 6.2.

F-score ↑ Precision ↑ Recall ↑ Accuracy ↑

face 0.57 0.69 0.49 0.99

hand 0.47 0.62 0.39 0.98

Contact Estimations. To our knowledge, there are no existing works
that estimate the dense contacts on hand-face surfaces from RGB inputs.
Nonetheless, we report the performance of the contact estimation of
our method for comparison on Table 6.4. Note that although estimating
contact vertices only from RGB inputs is a highly challenging problem,
our Decaf estimates reasonable contacts that significantly improve the 3D
localisation as validated in Table 6.2.

6.6 discussions and limitations

Our Decaf captures plausible 3D deformations along with hand-face
interactions solely from a monocular RGB video, effectively reducing
unnatural collisions and non-touching artefacts. While our method is the
first to address this problem set, it does have certain limitations. Our net-
work learns from a newly created dataset computed using Position-Based
Dynamics (PBD) with a skull-skin-distance (SSD) approach combined
with the multi-view markerless motion capture setup. PBD is widely
utilised in modern physics engines, ensuring that our pseudo-ground
truth deformations are plausible. However, it may introduce some dis-
crepancies between the actual deformations and calculated deformations
as this PBD-based approach does not integrate visual information such
as photometric loss. Nevertheless, we believe this approach to be satis-
factorily accurate to obtain plausible deformations although the visual
information is not reliable at the interaction regions due to the constant
occlusions, which is verified in our qualitative experiments.

Our method employs PCA-based parametric face and hand models.
Consequently, the 3D reconstructions of both body parts maintain consis-
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tent topology though, as a downside, miss high-frequency details such
as wrinkles or blood vessels.

Lastly, our method primarily focuses on handling pushing actions (e.g.
pushing or poking cheeks). Furthermore, it is important to note that
object-hand-face interactions, which fall outside the scope of our research,
can be addressed in future studies.

6.7 conclusions

Decaf is the first monocular RGB-based approach for deformation-aware
3D hand-face motion capture. Our method captures non-rigid face surface
deformations arising from various hand-head interactions. It regards the
human head anatomy (i.e. skull-skin distance used to calculate non-
uniform facial tissue stiffness), detects hand-head contacts and is trained
on a new dataset of facial performances. In our experimental evaluation,
Decaf demonstrates the highest 3D reconstruction (in terms of PVE) and
plausibility metrics (in terms of F-score) among all compared methods.
Especially significant are the advancement in terms of PVE compared
to the most closely related previous method (roughly fourfold error
reduction) and qualitative improvements in the estimated 3D geometry,
which opens up many possibilities for downstream applications (e.g.
next-generation telepresence systems).





7
M A C S : M A S S C O N D I T I O N E D 3 D H A N D A N D O B J E C T
M O T I O N S Y N T H E S I S

The preceding chapter introduced the first monocular RGB video-based
MoCap method that reconstructs 3D face-hand motions simultaneously
with the deformations resulting from them. This approach incorporated
explicit modelling of interaction-induced deformations within a learning-
based framework. Moreover, the novel VAE-based interaction prior net-
work played a pivotal role in disambiguating the depth of a face and
hands during the reconstruction. The chapter also introduced the first 3D
deformation dataset with corresponding multi-view videos for hand-face
interactions, which was leveraged to train the deformation estimator and
the interaction prior.

In this thesis, several physics-based MoCap approaches were intro-
duced. However, it is highly challenging to estimate all physical quantities
that are part of the mathematical physics models, given only a monoc-
ular video (e.g. mass distribution of the subject, friction coefficient of
the ground and foot, and more). Consequently, the previous chapters
resorted to using average values for these physical parameters, which
can introduce certain inaccuracies in the estimates. This indicates the im-
portance of a 3D motion dataset tied to ground truth physical quantities
that allows the development of learning-based approaches that regress
such physical quantities accurately.

This chapter (published as Shimada et al., 2024) introduces the first
approach for synthesising 3D object manipulations with hands condi-
tioned by a physical quantity, namely the mass of the manipulated object.
The synthesised motions exhibit behaviour that faithfully adapts to the
conditioning mass. This method can be helpful for ML applications as
it can generate a 3D motion dataset with a corresponding mass value.
Furthermore, the proposed method offers the flexibility of optionally
incorporating user-provided object trajectories as inputs while tailoring
the motion behaviour based on the conditioning mass. This feature has
the potential to reduce the workload of 3D motion designers significantly.

135
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Our experiments confirm that the synthesised motions show a high
motion diversity and plausibility in terms of motion dynamics and inter-
actions. Moreover, the proposed method is favoured compared with its
benchmark methods in the user study.

7.1 introduction

Hand-object interaction plays an important role in our daily lives, involv-
ing the use of our hands in a variety of ways such as grasping, lifting,
and throwing. It is crucial for graphics applications (e.g. AR/VR, avatar
communication and character animation) to synthesise or capture physi-
cally plausible interactions for their enhanced realism. Therefore, there
has been a growing interest in this field of research, and a significant
amount of work has been proposed in grasp synthesis (Grady et al., 2021;
Karunratanakul et al., 2020; Krug et al., 2010; Li et al., 2007; Taheri et al.,
2020), object manipulation (Christen et al., 2022; Ghosh et al., 2023; Mor-
datch et al., 2012; Ye and Liu, 2012; Zhang et al., 2021c), 3D reconstruction
(Corona et al., 2020; Hu et al., 2022; Liu et al., 2021; Mueller et al., 2019;
Schroder and Ritter, 2017; Tekin et al., 2019; Wang et al., 2020a), graph
refinement (Detry et al., 2010; Pollard and Zordan, 2005; Zhou et al., 2022)
and contact prediction (Brahmbhatt et al., 2019).

Because of the high dimensionality of the hand models and inconsis-
tent object shape and topology, synthesising plausible 3D hand-object
interaction is challenging. Furthermore, errors of even a few millimetres
can cause collisions or floating-object artefacts that immediately convey
an unnatural impression to the viewer. Some works tackle the static grasp
synthesis task using an explicit hand model (Grady et al., 2021; Krug et
al., 2010; Taheri et al., 2020) or an implicit representation (Karunratanakul
et al., 2020). However, considering the static frame alone is not sufficient
to integrate the method into real-world applications such as AR/VR as
it lacks information of the inherent scene dynamics. Recently, several
works have been proposed to synthesise the hand and object interactions
as a continuous sequence (Christen et al., 2022; Zhang et al., 2021c; Zhou
et al., 2022). However, none of the state-of-the-art work explicitly consid-
ers an object’s mass when generating hand-object interactions. Real-life
object manipulation, however, is substantially influenced by the mass of
the objects we are interacting with. For example, we tend to grab light
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Object weight:  0.2 kg Object weight:  5.0 kg

Figure 7.1: Example visualisations of 3D object manipulation synthesised by our
method MACS. Conditioning object mass values of 0.2kg (left) and 5.0kg (right)
are given to the model for the action type "passing from one hand to another".
MACS plausibly reflects the mass value in the synthesised 3D motions.

objects using our fingertips, whereas with heavy objects oftentimes the
entire palm is in contact with the object. Manually creating such anima-
tions is tedious work requiring artistic skills. In this chapter, we propose
MACS, i.e. the first learning-based mass conditioned object manipulation
synthesis method. The generated object manipulation naturally adopts
its behaviour depending on the object mass value. MACS can synthe-
sise such mass conditioned interactions given a trajectory plus action
label (e.g. throw or move). The trajectory itself may also be generated
conditioned on the action label and mass using the proposed cascaded
diffusion model, or alternatively manually specified.

Specifically, given the action label and mass value as conditions, our
cascaded diffusion model synthesises the object trajectories as the first
step. The synthesised object trajectory and mass value further condition
a second diffusion model that synthesises 3D hand motions and hand
contact labels. After the final optimisation step, MACS returns diverse
and physically plausible object manipulation animations. We also demon-
strate a simple but effective data capture set-up to produce a 3D object
manipulation dataset with corresponding mass values. The contributions
of the method are as follows:

• The first approach to synthesise mass-conditioned object manipula-
tions in 3D. The setting includes two hands and a single object of
varying mass.

• A cascaded denoising diffusion model for generating trajectories of
hands and objects allowing different types of conditioning inputs.
Our approach can both synthesise new object trajectories and oper-
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ate on user-provided trajectories (in this case, the object trajectory
synthesis part is skipped).

• A new component for introducing plausible dynamics into user-
provided trajectories.

The comprehensive experiments confirm that MACS synthesises quali-
tatively and quantitatively more plausible 3D object manipulations com-
pared with other baselines. MACS shows plausible manipulative interac-
tions even for mass values vastly different from those seen during the
training.

7.2 related work

There has been a significant amount of research in the field of 3D hand-
object interaction motion synthesis. Here, we will review some of the
most relevant works in this area. Grasp synthesis works are discussed in
Sec. 7.2.1 and works that generate hand-object manipulation sequences in
Sec. 7.2.2. Lastly, closely related recent diffusion model based synthesis
approaches are discussed in Sec. 7.2.3.

7.2.1 Grasp Synthesis

Synthesising physically plausible and natural grasps bears a lot of poten-
tial downstream applications. Thus, many works in this field have been
proposed in computer graphics and vision (Ghosh et al., 2023; Li et al.,
2007; Pollard and Zordan, 2005; Ye and Liu, 2012; Zhang et al., 2021c),
and robotics community (Krug et al., 2010; Thobbi and Sheng, 2010).
ContactOpt (Grady et al., 2021) utilises a differentiable contact model to
obtain a plausible grasp from a hand and object mesh. Karunratanakul
et al. (2020) proposed a grasping field for a grasp synthesis where hand
and object surfaces are implicitly represented using a signed distance
field. Zhou et al. (2022) proposed a learning-based object grasp refine-
ment method given noisy hand grasping poses. GOAL (Taheri et al.,
2022) synthesises a whole human body motion with grasps along with
plausible head directions. These works synthesise natural hand grasp
on a variety of objects. However, unlike the methods in this class, we
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synthesise a sequential object manipulation, changing not only the hand
pose but also object positions bearing plausible hand-object interactions.

7.2.2 Object Manipulation

Synthesising a sequence for object manipulation is challenging since the
synthesised motions have to contain temporal consistency and plausible
dynamics considering the continuous interactions. Ghosh et al. (2023)
proposed a human-object interaction synthesis algorithm associating the
intentions and text inputs. ManipNet (Zhang et al., 2021c) predicts dexter-
ous object manipulations with one/two hands given 6 DoF of hands and
object trajectory from a motion tracker. CAMS (Zheng et al., 2023) synthe-
sises hand articulations given a sequence of interacting object positions.
Unlike these approaches, our algorithm synthesises the 6 DoF of the
hands and objects as well as the finger articulations affected by the con-
ditioned mass values. D-Grasp (Christen et al., 2022) is a reinforcement
learning-based method that leverages a physics simulation to synthesise
a dynamic grasping motion that consists of approaching, grasping and
moving a target object. In contrast to D-Grasp, our method consists of a
cascaded diffusion model architecture, allowing controllability regarding
the object trajectory and having explicit control over the object mass value
that influences the synthesised interactions. Furthermore, D-Grasp uses a
predetermined target grasp pose and, therefore, does not faithfully adjust
its grasp based on the mass value in the simulator unlike ours.

7.2.3 Diffusion Model based Synthesis

Recently, diffusion model (Sohl-Dickstein et al., 2015) based synthesis
approaches have been receiving growing attention due to their promising
results in a variety of research fields, e.g. image generation tasks (Ho
et al., 2020; Rombach et al., 2022; Saharia et al., 2022), audio synthesis
(Kong et al., 2021), motion synthesis (Dabral et al., 2023; Tevet et al., 2023;
Yuan et al., 2023; Zhang et al., 2022) and 3D character generation from
texts (Poole et al., 2023). MDM (Tevet et al., 2023) shows the 3D human
motion synthesis and inpainting tasks from conditional action or text
inputs utilising a transformer-based architecture allowing the integration
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Figure 7.2: The proposed framework. The object trajectory synthesis stage
accepts as input the conditional mass value m and action label a along with
a Gaussian noise sampled from N (0, I), and outputs an object trajectory. The
hand motion synthesis stage accepts a, m and the synthesised trajectory as
conditions along with a Gaussian noise sampled from N (0, I). ConNet, in this
stage, estimates the per-vertex hand contacts from the synthesised hand joints,
object trajectory and conditioning values a, m. The final fitting optimisation step
returns a set of 3D hand mesh that plausibly interacts with the target object.

of the geometric loss terms during the training. Unlike the existing works
in the literature, our method condition the synthesised motions on a
physical property, i.e. object mass.

7.3 method

Our goal is to synthesise 3D motion sequences of two hands interacting
with an object whose mass affects both the trajectory of the object and
the way the hands grasp it. The inputs of this method are a conditional
scalar mass value and optionally a one-hot coded action label and/or
a manually drawn object trajectory. Our method synthesises a motion
represented as N successive pairs of 3D hands and object poses. To this
end, we employ denoising diffusion models (DDM) (Sohl-Dickstein et al.,
2015) for 3D hand motion and object trajectory synthesis; see Fig. 7.2
for the overview. We first describe our mathematical modelling and
assumptions in Sec. 7.3.1. In Secs. 7.3.2 and 7.3.3, we provide details of
our hand motion synthesis network HandDiff and trajectory synthesis
algorithm TrajDiff, respectively. We describe the method to synthesise the
3D motions given user input trajectory in Sec. 7.3.3.2.



7.3 method 141

7.3.1 Assumptions, Modelling and Preliminaries

We assume that the target object is represented as a mesh. 3D hands
are represented with a consistent topology, which is described in the
following paragraph.

hand and object modelling To represent 3D hands, we employ
the hand model from GHUM (Xu et al., 2020) which is a nonlinear
parametric model learned from large-scale 3D human scans. The hand
model from GHUM defines the 3D hand mesh as a differentiable function
M(τ ,ϕ,θ,β) of global root translation τ ∈R3, global root orientation
ϕ∈R6 represented in 6D rotation representation (Zhou et al., 2019),
pose parameters θ ∈R90 and shape parameters β ∈R16. We employ two
GHUM hand models to represent left and right hands, which return hand
vertices v∈R3l (l = 1882 = 941 · 2) and 3D hand joints j∈R3K (K = 42 =
21 · 2). The object pose is represented by its 3D translation τobj. ∈R3 and
rotation ϕobj. ∈R6. Our method MACS synthesises N successive (i) 3D
hand motions represented by the hand vertices V = {v1, ..., vN} ∈RN×3l

and hand joints J = {j1, ..., jN} ∈RN×3K, and (ii) optionally object poses

Φ= {Φ1, ...,ΦN} ∈RN×(3+6), (7.1)

where Φi = [τobj.,i,ϕobj.,i]. The object pose is defined in a fixed world
frame F , and the global hand translations are represented relative to the
object centre position. The global hand rotations are represented relative
to F .

denoising diffusion model The recently proposed Denoising
Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) has shown com-
pelling results both in image synthesis tasks and in motion generation
tasks (Tevet et al., 2023). Compared to other existing generative models
(e.g. VAE (Sohn et al., 2015) or GAN (Goodfellow et al., 2014)) that are
often employed for motion synthesis tasks, the training of DDPM is sim-
ple, as it is not subject to the notorious mode collapse while generating
motions of high quality and diversity.

Following the formulation by Ho et al. (2020), the forward diffusion
process is defined as a Markov process adding Gaussian noise in each
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step. The noise injection is repeated T times. Next, let X(0) be the original
ground-truth (GT) data (without noise). Then, the forward diffusion
process is defined by a distribution q(·):

q
(

X(1:T) | X(0)
)

=
T

∏
t=1

q
(

X(t) | X(t−1)
)

, (7.2)

q
(

X(t) | X(t−1)
)

= N
(

X(t) |
√

1 − βtX(t−1), βtI
)

, (7.3)

where βt are constant hyperparameters (scalars) that are fixed per each
diffusion time step t. Using a reparametrisation technique, we can sample
X(t) using the original data X(0) and standard Gaussian noise ϵ∼N (0, I):

X(t) =
√

αtX(0) +
√

1 − αtϵ, (7.4)

where αt = ∏t
i=1(1 − βi). The network is trained to reverse this process by

denoising on each diffusion time step starting from a standard normal
distribution X(T)∼N (0, I):

p
(

X(0:T)
)

= p
(

X(T)
) T

∏
t=1

p
(

X(t−1) | X(t)
)

, (7.5)

where p
(

X(t−1) | X(t)
)

denotes the conditional probability distribution
estimated from the network output. From Eq. (7.5), we obtain the mean-
ingful generated result X∗ after T times of denoising process. that follows
the data distribution of the training dataset.

In the formulation of DDPM (Ho et al., 2020), the network is trained
to predict the added noises on the data for the reverse diffusion process.
The simple loss term is formulated as

Lsimple = Eϵ,t∼[1,T]

[∥∥∥ϵ − ϵθ

(
X(t), t, c

)∥∥∥2

2

]
, (7.6)

where c denotes an optional conditioning vector. The loss term of Eq. (7.6)
drives the network ϵθ towards predicting the added noise. Training the
network with Eq. (7.6) alone already generates highly diverse motions.

In our case, X∗ represents sequences of 3D points corresponding to the
synthesised motion trajectories (for hands and objects). Unfortunately,
Eq. (7.6) alone often leads to artefacts in the generated sequences such as
joint jitters and varying bone lengths when applied to motion synthesis.
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To improve the plausibility of the generated results, Dabral et al. (2023)
proposed an algorithm to integrate the explicit geometric loss terms into
the training of DDPM. At an arbitrary diffusion time step t, we can obtain
the approximated original data X̂(0) using the estimated noise from ϵθ

instead of ϵ in Eq. (7.4) and solving for X̂(0):

X̂(0) =
1√
α

X(t) −
(√

1
α
− 1

)
ϵθ

(
X(t), t, c

)
. (7.7)

During the training, geometric penalties can be applied on X̂(0) so as
to prevent the aforementioned artefacts. In the following sections, we
follow the mathematical notations of DDPM literature (Dabral et al.,
2023; Ho et al., 2020) as much as possible. The approximated set of hand
joints and object poses obtained from Eq. (7.7) are denoted Ĵ(0) and Φ̂(0),
respectively. Similarly, the synthesised set of meaningful hand joints and
object poses obtained from the reverse diffusion process Eq. (7.5) are
denoted J∗ and Φ∗, respectively.

7.3.2 Hand 3D Motion Synthesis

Our DDPM-based architectures HandDiff H(·) and TrajDiff T (·) are
based on the stable diffusion architecture (Rombach et al., 2022) with
simple 1D and 2D convolution layers. During the training, we follow the
formulation of Dabral et al. (2023) described in Sec. 7.3.1 to introduce
geometric penalties on Ĵ(0) ∈RN×3K and Φ̂(0) ∈RN×9 combined with the
simple loss described in Eq. (7.6).

hand keypoints synthesis In this stage, we synthesise a set of
3D hand joints and per-vertex hand contact probabilities. Knowing the
contact positions on hands substantially helps to reduce the implausible
"floating object" artefacts of the object manipulation (see Sec.7.5 for the
ablations). The synthesised 3D hand joints and contact information are
further sent to the final fitting optimisation stage where we obtain the
final hand meshes considering the plausible interactions between the
hands and the object.

Our diffusion model based HandDiff H(·) accepts as inputs a 3D tra-
jectory Φ∈RN×(3+6) and mass scalar value m where N is the number of
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frames of the sequence. From the reverse diffusion process of H(·), we
obtain the synthesised set of 3D joints J∗ ∈RN×3K. Φ can be either syn-
thesised by TrajDiff T (·) (Sec. 7.3.3.1) or manually provided (Sec. 7.3.3.2).
Along with the set of 3D hand joint positions, the 1D convolution-based
ConNet f (·) also estimates the contact probabilities b∈RN×l on the hand
vertices from the hand joint and object pose sequence with a conditioning
vector c that consists of a mass value m and an action label a. ConNet
f (·) is trained using a binary cross entropy (BCE) loss with the GT hand
contact labels lcon.:

Lcon. = BCE( f (J(0),Φ(0), c), lcon.), (7.8)

where J(0) and Φ(0) denotes a set of GT 3D hand joints and GT object
poses, respectively. At test time, ConNet estimates the contact probabilities
from the synthesised 3D hand joints and object positions conditioned
on c. The estimated contact probabilities b are used in the subsequent
fitting optimisation step, to increase the plausibility of the hand and object
interactions.

The objective LH for the training of HandDiff reads:

LH = Lsimple + λgeoLgeo, (7.9)

where Lsimple is computed following Eq. (7.6) and

Lgeo = λrec.Lrec. + λvel.Lvel. + λaccLacc. + λblenLblen.. (7.10)

Lrec., Lvel. and Lacc. are loss terms to penalise the positions, velocities
and accelerations of the synthesised hand joints, respectively:

Lrec. = ∥Ĵ(0) − J(0)∥2
2, (7.11)

Lvel. = ∥Ĵ(0)vel. − J(0)vel.∥
2
2, (7.12)

Lacc. = ∥Ĵ(0)acc. − J(0)acc.∥2
2, (7.13)

where Ĵ(0) is an approximated set of hand joints from Eq. (7.7) and J(0)

denotes a set of GT hand joints. Ĵ(0) and J0 with the subscripts “vel.”
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and “acc.” represent the velocities and accelerations computed from their
positions, respectively.

Lblen. penalises incorrect bone lengths of the hand joints using the
function dblen : RN×3K → RN×K that computes bone lengths of hands
given a sequence 3D hand joints of N frames:

Lblen. = ∥dblen(Ĵ(0))− dblen(J(0))∥2
2. (7.14)

At test time, we obtain a set of 3D hand joints J∗ using the denoising
process detailed in Eq. (7.5) given a Gaussian noise ∼ N (0, I), and a set
of per-vertex contact labels.

fitting optimisation Once the 3D hand joint sequence J∗ is syn-
thesised from the trained H, we solve an optimisation problem to fit
GHUM hand models to J∗. We use a threshold of b > 0.5 to select the
effective contacts from the per-vertex contact probability obtained in the
previous step. Let bn

idx ⊂ J1, LK be the subset of hand vertex indices with
effective contacts on the n-th frame. The objectives are written as follows:

argmin
τ ,ϕ,θ

(λdataLdata + λtouchLtouch + λcol.Lcol. + λpriorLprior). (7.15)

Ldata is a data term to minimise the Euclidean distances between the
GHUM (J) and the synthesised hand joint key points (J∗):

Ldata = ∥J − J∗∥2
2. (7.16)

Ltouch is composed of two terms. The first term reduces the distances
between the contact hand vertices and their nearest vertices P on the
object to improve the plausibility of the interactions. The second term
takes into account the normals of the object and hands, which also
enhances the naturalness of the grasp by minimising the cosine similarity
s(·) between the normals of the contact hand vertices n and the normals
of their nearest vertices of the object n̂.

Ltouch =
N

∑
i=1

∑
j∈bi

idx

∥∥∥Vj
i − Pj

i

∥∥∥2

2
+

N

∑
i=1

∑
i∈bidx

(1 − s(nj
i , n̂j

i)), (7.17)
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where the subscript i denotes i-th sequence frame and the superscript j
denotes the index of the vertex with the effective contact. Lcol. reduces
the collisions between the hand and object by minimising the penetration
distances. Let Pn ⊂ J1, UK be the subset of hand vertex indices with
collisions on n-th frame. Then we define

Lcol. =
N

∑
i=1

∑
j∈Pn

∥∥∥Vj
i − Pj

i

∥∥∥2

2
. (7.18)

Lprior is a hand pose prior term that encourages the plausibility of
the GHUM hand pose by minimising the pose vector θ of the GHUM
parametric model:

Lprior = ∥θ∥2
2. (7.19)

With all these loss terms combined, our final output shows a highly
plausible hand and object interaction sequence. The effectiveness of the
loss terms is shown in our ablative study (Sec. 7.5.2).

7.3.3 Object Trajectory Generation

The input object trajectory for HandDiff can be provided in two ways,
(1) synthesising 3D trajectory by TrajDiff (Sec.7.3.3.1) or (2) providing a
manual trajectory (Sec. 7.3.3.2). The former allows generating an arbitrary
number of hands-object interaction motions conditioned on mass values
and action labels, which can contribute to a large-scale dataset generation
for machine learning applications. The latter allows for tighter control of
the synthesised motions, which are still conditioned on an object’s mass
value but restricted to the provided trajectory.

7.3.3.1 Object Trajectory Synthesis

: Template vertex

Y x

z

Figure 7.3: Definition of the tem-
plate vertices.

To provide a 3D object trajectory to Hand-
Diff, we introduce a diffusion model-based
architecture TrajDiff that synthesises an ob-
ject trajectory given a mass value m and an
action label a∈R6 encoded as a one-hot
vector. We observed that directly synthe-
sising a set of object rotation values causes
jitter artefacts. We hypothesise that this
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issue comes from simultaneously synthesising two aspects of a pose,
translation and rotation, each having a different representation. As a
remedy, we propose to represent both the translation and rotation as
3D coordinates in a Cartesian coordinate system. Specifically, we first
synthesise the reference vertex positions Pref on the object surface defined
in the object reference frame, and register them to the predefined template
vertex positions Ptemp to obtain the rotation of the object. We define 6
template vertices as shown in Fig. 7.3. TrajDiff thus synthesises a set
of reference vertex positions Pref ∈RN×q where q = 18(= 6 × 3) that are
defined in the object centre frame along with a set of global translations.
We then apply Procrustes alignment between Pref. and Ptemp. to obtain
the object rotations. The objective of TrajDiff is defined as follows:

LT = Lsimple + λgeo.(λrec.Lrec. + λvel.Lvel. + λacc.Lacc. + λref.Lref.). (7.20)

Lrec., Lvel. and Lacc. follow the definitions given in Eqs. (7.11), (7.12) and
(7.13), where J(0) is replaced with GT 3D object poses whose rotation is
represented by the reference vertex positions instead of 6D rotation. Lref

is defined as:

Lref = ∥P̂(0)
ref − P(0)

ref ∥
2
2+∥drel(P̂

(0)
ref )− drel(P

(0)
ref )∥

2
2. (7.21)

The first term of Lref penalises the Euclidean distances between the
approximated reference vertex positions P̂(0)

ref of Eq. (7.7) and the GT refer-
ence vertex positions P(0)

ref . The second term of Lref penalises the incorrect
Euclidean distances of the approximated reference vertex positions rel-
ative to each other. To this end we use a function drel : RN×3q → RN×q′ ,
where q′ = (q

2), which computes the distances between all the input
vertices pairs on each frame.

The generated object trajectory responds to the specified masses. Thus,
the motion range and the velocity of the object tend to be larger for
smaller masses. In contrast, with a heavier object, the trajectory shows
slower motion and a more regulated motion range.

7.3.3.2 User-Provided Object Trajectory
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User input 
path

Re-sampled 
path 

Total length 
of the path

Cumulative value computation

Mass: Residual 
computation

End

Start

Start

End

. . . . 0.03 0.10 0.2 0.3 0.99 1.0 1.0 1.0. . . . 

0.03 0.07 0.1 0.1 0.02 0.01 00. . . . 

Vector of ratios representation

: Normalized target trajectory

: Uniformly re-sampled  user-specified 
  trajectory

: Update of the ratios on the path for
  each time step

: Cumulative values of 

Notations

Figure 7.4: Schematic visualisa-
tion of the user input trajectory
processing stage.

Giving the user control over the output in
synthesis tasks is crucial for downstream
applications such as character animations
or avatar generation. Thanks to the de-
sign of our architecture that synthesises
3D hand motions and hand contacts from
a mass value and an object trajectory, a
manually drawn object trajectory can also
be provided to our framework as an input.
However, manually drawing an input 3D
trajectory is not straightforward, as it must
consider the object dynamics influenced
by the mass. For instance, heavy objects
will accelerate and/or decelerate much
slower than lighter ones. Drawing such
trajectories is tedious and often requires
professional manual labour. To tackle this
issue, we introduce a module that accepts
a (user-specified) trajectory with an arbi-
trary number of points along with the ob-
ject’s mass, and outputs a normalised target
trajectory (NTT). NTT is calculated from
the input trajectory based on the inter-
mediate representation that we call vec-
tor of ratios, see Fig. 7.4 for the overview.
First, the input (user-specified) trajectory
is re-sampled uniformly to N f ix = 720
points and passed to RatioNet, which for
each time step estimates the distance trav-
elled along the trajectory normalised to
the range [0, 1] (e.g. the value of 0.3 means
that the object travelled 30% of the full tra-
jectory within the given time step). The NTT from this stage is further
sent to the Hand Motion Synthesis stage to obtain the final hand and object
interaction motions. We next explain 1) the initial uniform trajectory
re-sampling and 2) the intermediate ratio update approach.
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Uniform Input Trajectory Re-sampling To abstract away the variability of
the number of points in the user-provided trajectory of Nuser points, we
first interpolate it into a path Φfix of length Nfix points. Note that Nuser is
not fixed and can vary. We also compute the total path length duser that
is used as one of the inputs to the RatioNet network (elaborated in the
next paragraph):

duser =
Nfix−1

∑
i=1

∥Φi
fix −Φi+1

fix ∥2, (7.22)

where Φi
fix denotes the i-th object position in Φfix.

Intermediate Ratio Updates Estimation. From the normalised object path Φfix,
a total distance of the path duser, and mass m, we obtain the information of
the object location in each time step using a learning-based approach. To
this end, we introduce a MLP-based network RatioNet R(·) that estimates
the location of the object along the path Φfix encoded as a ratio starting
from the beginning, Specifically, RatioNet accepts the residual of Φfix

denoted as Φ̄fix, a mass scaler value and duser and outputs a vector r∈RN

that contains the update of the ratios on the path for each time step:

r = R(Φ̄fix, m, duser). (7.23)

Next, we obtain the cumulative ratios rcuml from r starting from the
time step 0 to the end of the frame sequence. Finally, the NTT ΦNTT =
[Φ0

NTT, ..., ΦN
NTT] at time step t is obtained as:

Φt
NTT = Φid

fix, with id = round(rt
cum · Nfix), (7.24)

where id and “·” denote the index of Φfix, and multiplication, respectively.
RatioNet is trained with the following loss function Lratio:

Lratio = ∥r − r̂∥2
2+∥rvel − r̂vel∥2

2+∥rac. − r̂acc∥2
2+Lone, (7.25)

Lone = ∥(
N

∑
i=1

ri)− 1∥2
2, (7.26)

where r̂ denotes the GT ratio updates. Note that all terms in Eq. (7.25)
have the same weights. The subscripts “vel.” and “acc.” represent the ve-
locity and accelerations of r and r̂, respectively. Lone encourages RatioNet
to estimate the sum of the ratio updates to be 1.0.
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7.3.4 Network Architecture

We employ the Unet-based diffusion model networks from Ho et al. (2020)
for our TrajDiff and HandDiff. HandDiff uses four sets of 2D convolutional
residual blocks for the encoder and decoder architecture. TrajDiff is
composed of two sets of residual blocks of 1D convolution layers instead
of 2D convolutions. The number of kernels at its output 1D convolutional
layer is set to 21 which corresponds to the dimensionality of the object
pose. ConNet consists of three-1D convolutional layers with ELU and a
sigmoid activation for its hidden layers and output layer, respectively.
Similarly, RatioNet is composed of three-layer MLP with ELU and sigmoid
activation functions in the hidden and output layers, respectively. Starting
from the input layer, the output layer dimensions are 1024, 512 and 180.

7.4 dataset

Figure 7.5: Image of our mark-
ered sphere and recording ex-
ample.

Since there exists no 3D hand and ob-
ject interaction motion dataset with cor-
responding object mass values of the ob-
jects, we reconstruct such motions using
8 synchronised Z-CAM E2 cameras of 4K
resolution and 50 fps. As target objects,
we use five plastic spheres of the same
radius 0.1[m]. We fill them with different
materials of different densities to prepare
the objects of the same volume and differ-
ent weights, i.e. 0.175, 2.0, 3.6, 3.9, 4.9 kg.
Each sphere is filled entirely so that its
centre of mass does not shift as the object is moved around. Five different
subjects are asked to perform five different actions manipulating the ob-
ject: (1) vertical throw and catch, (2) passing from one hand to another, (3)
lifting up and down, (4) moving the object horizontally, and (5) drawing
a circle. The subjects perform each action using both their hands while
standing in front of the cameras and wearing coloured wristbands (green
for the right wrist and yellow for the left wrist), which are later used
to classify handedness. The recordings from the multi-view setup were
further used to reconstruct the 3D hand and object motions, totalling
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Table 7.1: Diversity and multimodality for the hand and trajectory synthesis
compared to the ground truth.

Hand synthesis Trajectory synthesis

Diversity ↑ Multimodality ↑ Diversity ↑ Multimodality ↑

GT 9.984±0.36 7.255±0.32 10.041±0.28 7.374±0.29

Ours 9.606±0.33 7.07±0.30 11.01±0.37 8.05±0.33

VAE 8.350±0.42 6.0465±0.34 9.584±0.47 7.696±0.43

VAEGAN 7.821±0.27 5.887±0.26 8.428±0.29 6.285±0.30

110k frames. The details of the capture and reconstruction processes are
described in the following text.

hand motion reconstruction To reconstruct 3D hand motions,
we first obtain 2D hand key points from all the camera views using
MediaPipe (Lugaresi et al., 2019). We then fit GHUM hand models
(Xu et al., 2020) for both hands on each frame by solving 2D keypoint
reprojection-based optimisation with the known camera intrinsics and
extrinsic combining with a collision loss term (Eq. (7.18)), a pose prior
loss (Eq. (7.19)) and a shape regulariser term that minimises the norm of
the shape parameter β of the GHUM hand parametric model.

object trajectory reconstruction We place around 50 ArUco
markers of the size 1.67 × 1.67 cm on each sphere for the tracking opti-
misation (see Fig. 7.5 for the example of our tracking object). The marker
positions in the image space are tracked using the OpenCV (Bradski,
2000) library. The 3D object positions on each frame are obtained by
solving the multi-view 2D reprojection-based optimisation.

7.5 experiments

To the best of our knowledge, there exists no other work that addresses
the hand object manipulation synthesis conditioned on mass. Therefore,
we compare our method mainly with two baseline methods which, simi-
larly to our method, employ an encoder-decoder architecture, but which
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Table 7.2: Physical plausibility measurement of our full model and its trimmed
versions vs VAE and VAE-GAN.

mcol [%] ↑ mdist [mm] ↓ mtouch [%] ↓

Ours 97.84 0.041 1.97
Ours w/o Ltouch 100.0 0.0 63.3
Ours w/o Lcol. 38.41 0.296 1.88

VAE 97.2 0.055 2.80

VAE-GAN 96.03 0.058 2.03

Table 7.3: Wasserstein distances between the acceleration distributions
(“acc. dist”) of the generated motions and ground-truth motions. Combining
both Lvel and Lacc shows the highest plausibility in terms of the accelerations.

Ours Ours w/o Lvel Ours w/o Lacc

acc. dist. ↓ 7.35 26.4 11.2

are based on the popular methods VAE (Kingma and Welling, 2014) and
VAEGAN (Yu et al., 2019). Specifically, the VAE baseline uses the same
diffusion model architecture as our method, but we add a reparameteri-
sation layer (Kingma and Welling, 2014) and remove the skip connections
between the encoder and the decoder. The VAEGAN baseline shares
the same architecture of the generator, while the discriminator network
consists of three 1D convolution layers and two fully connected layers
at the output of the network, and we use ELU activation in the discrim-
inator (Clevert et al., 2015). The generator and discriminator networks
are conditioned by the same conditioning vector. In all the following
experiments, we will refer to our proposed method as Ours and to the
baselines as VAE and VAEGAN.

7.5.1 Training and Implementation Details

All the networks are implemented in TensorFlow (Abadi et al., 2015) and
trained with 1 GPU Nvidia Tesla V100 until convergence. The training of
HandDiff, TrajDiff, ConNet and RatioNet takes 5 hours, 3 hours, 2 hours
and 2 hours, respectively. We set the loss term weights of Eq. (7.10) and
(7.20) to λrec. = 1.0, λvel. = 5.0 and λacc. = 5.0. λblen. of Eq. (7.10) and λref of
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Table 7.4: Wasserstein distances between the acceleration distributions
(“acc. dist”) of the generated and ground-truth motions.

0.175 [kg] 2.0 [kg] 3.6 [kg] 3.9 [kg] 4.9 [kg]

ours 0.006 0.010 0.012 0.011 0.011
ours w/o cond. 0.089 0.070 0.081 0.061 0.074

Table 7.5: Wasserstein distances between the acceleration distributions
(“acc. dist”) of ground-truth trajectory and the generated from RatioNet (Ours).
We also show the same metric computed on the interpolated subdivided trajec-
tory with an equal length.

Ours Interpolation

acc. dist. ↓ 0.379 0.447

Eq. (7.20) are set to 10.0 and 1.0, respectively. For the fitting optimisation
defined in Eq. (7.15), we set λdata = 1.0, λtouch = 0.7, λcol. = 0.8 and
λprior = 0.001. As suggested in Dabral et al. (2023), λgeo. of Eq. (7.10)
and (7.20) are set such that larger penalties are applied with a smaller
diffusion step t:

λgeo. =
10

exp 10t
T

, (7.27)

where T is the maximum diffusion step. We empirically set the maximum
diffusion step T for HandDiff and TrajDiff to 150 and 300, respectively.

7.5.2 Quantitative Results

In this section, we evaluate the motion quality of MACS from various
perspectives. We report a diversity and multi-modality measurement as
suggested by Guo et al. (2020) in Table 7.1. We also evaluate the physical
plausibility by measuring the following metrics:
Non-collision ratio (mcol) measures the ratio of frames with no hand-
object collisions. A higher value indicates fewer collisions between the
hand and the object.
Collision distance (mdist) measures the distance of hand object pene-
tration averaged over all the samples. A lower value indicates a lower
magnitude of the collisions.
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Table 7.6: Results of the user study (perceptual motion quality).

GT Ours VAE VAEGAN

reality score ↑ 7.10±2.09 6.01±2.08 5.10±2.24 4.54±2.39

Non-touching ratio (mtouch) measures the ratio of samples over all
the samples where there is no contact between the hand and object. A
lower value indicates fewer floating object artefacts (i.e. spurious absence
of contacts). Note that to report mtouch, we discard throwing motion
action labels, as the assumption is that there should be constant con-
tacts between the hands and the object. The hand vertices whose nearest
distances to the object are lower than a threshold value of 5mm are
considered contact vertices. Similarly, to compute mcol and mdist, the
interpenetrations over 5mm are considered collisions. To compute the
metrics, we generate 500 samples across 6 different action labels.

diversity and multimodality Diversity measures the motion
variance over all the frames within each action class, whereas multi-
modality measures the motion variance across the action classes. High
diversity and multimodality indicate that the generated samples contain
diversified motions. Please refer to Guo et al. (2020) for more details. We
report the diversity and multimodality metrics for the generated hand
motions and the object trajectories in Table 7.1. It is clear that in both
cases Ours generates much more diversified motions when compared to
the baselines, which we attribute to our diffusion model-based architec-
ture. Notably, the generated trajectory samples contain more diversified
motions compared with the metrics computed on the GT data.

physical plausibility We report the physical plausibility mea-
surements in Table 7.2. Ours shows the highest performance across all
three metrics mcol, mdist and mtouch. VAE yields mcol and mdist com-
parable to Ours, however, its mtouch is substantially higher with 42%
error increase compared to Ours. VAEGAN shows mtouch similar to Ours
however it underperforms in terms of the collision-related metrics.
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Figure 7.6: Grasp synthesis with different object masses. Our method can gen-
erate sequences influenced by masses close (in black) and far (in red) from the
training dataset.

ablation study Here, we motivate the use of the important loss
terms of our fitting optimisation and training loss functions.
Interaction loss terms Ltouch and Lcol.: In Table 7.2, we show the results of
the fitting optimisation without Ltouch and without Lcol.. When omitting
the contact term Ltouch, the generated hands are not in contact with the
object in most of the frames. This results in substantially higher metric
mtouch and manifests through undesirable floating object artefacts. Omit-
ting the collision term Lcol. leads to frequent interpenetrations, lower
mcol and higher mdist. Therefore, it is essential to employ both the loss
terms to generate sequences with higher physical plausibility.
Temporal loss terms Lvel. and Lacc.: to report the ablative study of the loss
terms Lvel. and Lacc. for the network training, we compute the Wasser-
stein distance between the accelerations of the sampled data and the
GT data denoted as “acc. dist.” in Table 7.3. Combining the two loss
terms Lvel. and Lacc., our method shows the shortest distance from the
GT acceleration distributions.
Plausibility of the conditioning mass value effect: can be evaluated by
measuring the similarity between the GT object accelerations and the
sampled ones. In Table 7.4, we show the “acc. dist.” between the accel-
erations of the ground truth object motions and the sampled motions
with and without mass conditioning. With the conditioning mass value,
our network synthesises the motions with more physically plausible
accelerations on each mass value compared with the network without a
mass conditioning.
Effect of RatioNet on the user-provided trajectories: The goal of Ra-
tioNet is to provide plausible dynamics on the user-provided trajectories
given conditioning mass values, e.g. higher object motion speed appears
with lighter mass and the object is moved slower with heavier mass value.
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Figure 7.7: Example visualisations of 3D
manipulations of the objects that are un-
seen during the network training, given
conditioning mass values of 0.2kg (top
row) and 5.0kg (bottom row).

For the ablative study of RatioNet,
we report the “acc. dist.” with and
without RatioNet comparing with
the acceleration distributions of
our GT trajectories. For the com-
ponent without RatioNet, we sim-
ply apply uniform sampling on
the provided trajectories, denoted
as “Interpolation” in Table 7.5.
Thanks to our RatioNet, the ob-
ject acceleration shows much more
plausible values than without the
network, faithfully responding to
the conditioning mass values.

user study The realism of 3D motions can be perceived differently
depending on individuals. To quantitatively measure the plausibility of
the synthesised motions, we perform an online user study. We prepared
26 questions with videos and gathered 42 participants in total. The
videos for the study were randomly selected from the sampled results
of VAE and VAEGAN baselines, MACS and the GT motions. In the
first section, the subjects were asked to select the naturalness of the
motions on a scale of 1 to 10 reality score (1 for completely unnatural
and 10 for very natural). Table 7.6 shows the mean scores. MACS clearly
outperforms other benchmarks in this perceptual user study, thanks
to our diffusion-based networks that synthesise 3D manipulations with
high-frequency details. In the additional section, we further evaluated our
method regarding how faithfully the synthesised motions are affected by
the conditional mass value. We show two videos of motions at once where
the network is conditioned by mass values of 1.0 and 5.0, respectively. The
participants were instructed to determine which sequence appeared to
depict the manipulation of a heavier object. On average, the participants
selected the correct answer with 92.8% accuracy, which suggests that
MACS plausibly reflects the conditioning mass value in its motion.
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7.5.3 Qualitative Results

interaction synthesis In Fig. 7.1, we show the synthesised hand
and object interaction sequence conditioned by the action labels and
mass of the object. The synthesised motions show realistic and dynamic
interactions between the hands and the object.

grasp synthesis We show five samples of grasps for different condi-
tioning mass values in Fig. 7.6. To generate this visualisation, we trained
HandDiff without providing the action labels. In order to synthesise the
graphs, we provide an object trajectory with position and rotations set to
0. Our method shows diverse grasps faithfully reflecting the conditional
mass values. Most notably, the synthesised hands tend to support the
heavy object at its bottom using the whole palm, whereas the light object
tends to be supported using the fingertips only. Furthermore, the syn-
thesised grasps show reasonable results even with unseen interpolated
(2.5kg) and extrapolated (0.05kg and 10.0kg) mass values (highlighted in
red).

unseen objects We show the synthesised motions for objects that
were not seen during the training, specifically a cone, the Stanford bunny
and a cube in Fig. 7.7. Thanks to the synthesised hand contact labels con-
ditioned by a mass value, MACS shows modest adaptations to different
shapes while still correctly reflecting the provided mass values.

contact visualisation In Fig. 7.8 - (left), we provide visual exam-
ples of synthesised contacts with different mass values (0.18kg and 4.9kg).
The synthesised contacts are distributed across the palm region when a
heavier mass is given, whereas they concentrate around the fingertips
with a lighter mass, which follows our intuition.

user specified trajectory Fig. 7.8 - (right) displays example syn-
thesis results with user-provided input trajectories (S-curve and infinity
curve). Thanks to the RatioNet, the object speed reflects the conditioning
mass value, i.e. faster speed for lighter mass and vice versa.
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Figure 7.8: (left) Example visualisations of the contacts synthesised by ConNet,
given conditioning mass values of 0.18 kg (top) and 4.9 kg (bottom). With heav-
ier mass, the contact region spans the entire palm region, whereas contacts
concentrate around the fingertips for a light object. (right) Example visualisa-
tions of 3D object manipulation given user input trajectories of S curve (top) and
infinity curve (bottom). Thanks to the RatioNet, the object manipulation speed
matches our intuition i.e. slower manipulation speed with heavier objects, and
vice versa.

7.6 conclusion

This chapter introduced the first approach to synthesise realistic 3D object
manipulations with two hands faithfully responding to conditional mass.
Our diffusion-model-based MACS approach produces plausible and
diverse object manipulations, as verified quantitatively and qualitatively.

Since this topic has so far been completely neglected in the literature,
the focus of this chapter is to demonstrate the impact of mass onto
manipulation and hence we opted to use a single shape with uniform
static mass distribution. As such there are several limitations that open
up to exciting future work; for example the effect of shape diversity, non-
uniform mass distribution (i.e. one side of the object is heavier than the
other), or dynamic mass distribution (e.g. a bottle of water). Furthermore,
we would like to highlight that other physical factors, such as friction
or individual muscle strength, also impact object manipulation and
could be addressed in future works. Lastly, while this chapter focused
on synthesis with applications for ML data generation, entertainment
and mixed reality experiences, we believe that weight analysis is another
interesting avenue to explore, i.e. predicting the weight based on observed
manipulation. This could be valuable in supervision scenarios to identify
if an object changed its weight over time.



8
C O N C L U S I O N

This thesis provided novel and various ways for capturing 3D human
motion from a monocular view RGB video as well as 3D hand-object ma-
nipulation synthesis. The approaches introduce explicit physics and/or
new modelling of human behaviour in daily life, such as environment
interactions and body surface deformation for more realistic and accurate
3D reconstructions of human motions as well as the object manipulation
synthesis explicitly conditioned by the object’s mass.

Chapter 3 introduced a new monocular RGB-based human motion cap-
ture method by explicitly modelling the equations of motion, which runs
in real time. The target kinematic pose and foot-floor contact informa-
tion, as well as the motion state of the subject, are obtained from neural
network based approaches that are utilised in the final physics-based
motion tracking optimisation. Thanks to this explicit physics modelling
in a motion estimation framework, the new approach exhibits much
fewer artefacts (e.g.implausible collisions, joint jitters, foot skating and
unnatural pose that is not achievable under gravity) than earlier purely
kinematics-based approaches.

Despite the aforementioned advantages, there are a few limitations.
For instance, this method uses a proportional derivative (PD) controller
to control the humanoid character with physics quantities. The controller
contains “fixed” coefficient values that adjust the intensity of the PD
controller signal. Thus, the reconstructed 3D motions can show delayed
motions when very fast motions, such as dancing, are given as inputs
due to the static coefficient for the PD controllers. Chapter 4 tackled this
issue by realising a fully learning-based approach with differentiable
rigid body dynamics modelling. The networks estimate the coefficients of
the PD controllers as well as the ground reaction forces to track even fast,
challenging motions. The reconstructed 3D motions are plausible, han-
dling foot-floor collisions. The approach estimates plausible forces and
joint torques that can be visualised for applications like sports analysis,
rehabilitation, etc.
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This thesis also addressed MoCap with the simultaneous consideration
of complex body-environment interaction in Chapter 5. The proposed
method realises significantly improved 3D localisation over the prior
works thanks to the guidance by the estimated body-environment con-
tacts. Moreover, the novel sampling optimisation in a learned posed
manifold space handles severe collisions in a hard manner. With those
two novel components combined, the method is able to capture highly
plausible human interactions in a complex scene from a monocular view
input.

Chapter 6 proposed the first MoCap method that captures 3D hand
and face motions along with the non-rigid facial skin deformations arising
from their interactions. The new 3D deformation dataset was generated
utilising a marker-less multi-view motion capture system combined
with position based dynamics simulator. The proposed method trained
on the dataset predicts face and hand motions along with non-rigid
deformations of the face, showing highly natural self-interactions.

Chapter 7 proposed the first method to synthesise the 3D object manip-
ulation with hands influenced by the conditioning object’s mass value.
The synthesised manipulations faithfully respond to the mass value. For
instance, when dealing with a heavy object, the hands tend to support it
from the bottom, utilising a large palm region, whereas a lighter object
is often manipulated using the fingertips. Notably, the method option-
ally accepts as input the user-provided object trajectory and synthesises
the natural manipulation of the object with plausible dynamics that fol-
lows the user-specified trajectory. This method represents the first of its
kind and holds the potential to make significant contributions to various
applications in machine learning and computer graphics.

8.1 insights

In addition to the contributions introduced in this thesis for monocular
RGB-based human motion capture and motion synthesis, this subsection
provides the insights collected throughout these research works.

resolving depth ambiguity This thesis proposed a series of
monocular RGB-based MoCap methods while introducing several priors
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to resolve the depth ambiguity of the single view setup. One of my
observations is that estimating the human depth in a camera frame using
a learning-based approach from single-view RGB inputs, without the
awareness of focal length, can lead to severe overfitting to the training
dataset. This occurs because the different combinations of focal lengths
and subject depths can project the human figure to the same image plane
location. Therefore, Chapter 4 first normalised the estimated 2D human
key points using the known focal length before inputting them into the
depth estimation network. This step abstracts away the focal length’s
impact from the input keypoints, which helped the network to generalise
across different datasets that contain cameras with different focal lengths.

Chapter 6 also proposed a novel approach to reduce the depth ambi-
guity using the VAE-based learned interaction prior. This is based on
the idea that the depth of the subject in the camera can differ signifi-
cantly from sequence to sequence, the relative depths of the hands from
the face do not. Therefore, the learned interaction prior is defined in
the “canonical face frame”, which resulted in a substantial improvement
of the 3D localisation accuracy compared to the one without the prior.
Utilising the contact information also immensely helps to disambiguate
the depth. The collision signal between the environment and the human
body indicates the inaccuracy of the relative depth. In case the estimated
contacts are estimated, such information can also be utilised to reduce
the depth ambiguity as demonstrated in Chapters 6 and 5.

effectiveness of explicit physics modelling This thesis
demonstrated that incorporating physics-based modelling into a Mo-
Cap system significantly reduces visual artefacts. Such formulation is
especially advantageous for reconstruction tasks when occlusions occur
in the input view, as the physics modelling remains effective for such
scenarios as well. However, it is important to note that purely kinematics-
driven methods can outperform physics-based techniques regarding 3D
joint position accuracy as observed in Chapters 3 and 4. This is because
physics modelling serves as a motion regulariser, minimising visual
artefacts at the possible expense of 3D precision. Therefore, evaluating
both 3D positional error and motion plausibility together is important.
Additionally, I emphasise the need for more detailed human body mod-
elling for improved accuracy in the obtained 3D reconstruction. Our foot,
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for instance, comprises over 20 intricately coordinated muscles enabling
movement (Muscles 2018). However, current physics-based MoCap meth-
ods often employ very simple shape primitives for body representation
(e.g. concatenation of a few cuboids to model a foot). Employing such
a simplified body model while enforcing physics-based constraints in
the methods can result in the over-regularisation of the reconstructed
motion.

8.2 outlook

In this subsection, I provide the possible research directions of future
work that can be derived from the research works introduced in this
thesis.

autoregressive motion synthesis considering the states

Numerous techniques for human motion synthesis have been proposed
in the literature, allowing users to control motion types through action
labels, texts, and sound cues. This explicit controllability is invaluable for
graphics applications. However, it comes at the cost of reduced motion
variability. In the real world, our actions are often influenced by the
environment and mind. For instance, in a warm room, someone might
decide to shed a layer of clothing, or open a window if it is cooler
outside. While we can often anticipate such real-world decisions, there
is always an element of unpredictability. Leaving this unpredictability in
motion synthesis can enhance the realism and immersion for downstream
applications, such as the development of non-player characters (NPCs)
in games and VR environments. Developing an auto-regressive motion
synthesis method which responds to an individual’s current state, such
as their comfort level, can be a promising direction. This "comfort" metric
can be influenced by environmental factors and the physical forces acting
upon the individual, and the method could generate subsequent motions
to mitigate any discomfort. Such an algorithm design paves the way for
crafting more unpredictable, lifelike avatar behaviours.

interactions with photo realism In this thesis, the works
primarily focusing on capturing or synthesising realistic motions with in-
teractions were introduced. The downstream applications of these works
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are AR/VR, mixed reality and avatar communication, which require not
only motion realism but also photorealism. While several photorealis-
tic implicit 3D representations exist, for instance, Neural radiance field
(Mildenhall et al., 2020) and SDF+colour (Zhong et al., 2023), modelling
physical interactions between the implicit scene and explicit representa-
tion (e.g. a hand mesh) is non-trivial. Recently, a new photorealistic scene
representation, 3D Gaussian Splatting, was proposed (Kerbl et al., 2023).
The 3D scene is represented as a set of 3D Gaussian with translation,
rotation and colours, allowing to keep correspondence over time (Luiten
et al., 2023). Unlike the existing photorealistic representations, this repre-
sentation is explicit, making interaction modelling more intuitive. When
paired with non-rigid deformation modellings, such as position based
dynamics, interactions with the scene represented by 3D Gaussians can
potentially create interactions of higher realism.
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