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Abstract

The current challenges of quantum computing development pertain to mitigating the ef-
fect of noise on the device. The problems of this era, in which Noisy Intermediate-Scale
Quantum (NISQ) computers must be used in the absence of error-correcting schemes, are
the focus of this thesis.

In one theme of the thesis, we investigate the drop in performance incurred by Quan-
tum Approximate Optimization Algorithm (QAOA) applied to constraint optimization
problems Max-kSAT and Max-kXOR, finding that significant changes in performance oc-
cur for increasing the number of literals k per constraint. We also investigate the use of
annealing-inspired schedules for QAOA, demonstrating that linear schedules outperform
those of Trotterized Quantum Annealing.

A second theme of the thesis concerns the co-design of devices for QAOA. Firstly, we
consider the tradeoffs in the decomposition of ZZ-generated gates into CZ- and CNOT-
gates, with depolarizing and coherent errors affecting each decomposition differently. We
find analytical and numerical evidence that both decompositions attain comparable gate
fidelities for low noise. We investigate QAOA in the digital-analog scheme, in which in-
dividual control of two-qubit gates is relinquished in favor of a global interaction, with
device control occurring only via single-qubit gates. We demonstrate that QAOA in this
scheme produces the same results as its digital counterpart for fast single-qubit gates.
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Zusammenfassung

In der aktuellen Entwicklung des Quantencomputings geht es darum das Rauschen auf
der Hardware zu minimieren. Die Probleme dieser Ära, in der Noisy Intermediate-Scale
Quantum (NISQ) Computer ohne Fehlerkorrekturverfahren verwendet werden, stehen im
Fokus dieser Arbeit.

In einem Schwerpunkt der Arbeit untersuchen wir den Leistungsabfall vom Quantum
Approximate Optimization Algorithm (QAOA) für die Optimierungsprobleme Max-kSAT
und Max-kXOR. Dabei stellen wir fest, dass signifikante Veränderungen in der Leistung
auftreten, wenn die Anzahl der Literale k zunimmt. Des Weiteren untersuchen wir die
annealing-inspirierten Initialisierungen für QAOA und zeigen, dass lineare Initialisierun-
gen das Trotterized Quantum Annealing übertreffen.

Ein zweiter Schwerpunkt der Arbeit ist das Co-Design von Hardware für den QAOA.
Zunächst betrachten wir ZZ-generierte Gatter in CZ- und CNOT-Gatter Zerlegung, wobei
depolarisierende und kohärente Fehler die einzelnen Zerlegungen unterschiedlich beein-
flussen. Wir finden analytische und numerische Hinweise darauf, dass beide Zerlegungen
vergleichbare Gattertreue bei geringem Rauschen erreichen. Des Weiteren untersuchen
wir den QAOA im digital-analogen Ansatz, bei dem die individuelle Steuerung von Zwei-
Qubit Gattern zugunsten einer globalen Interaktion aufgegeben wird und die Hardware-
Steuerung nur über Ein-Qubit Gatter erfolgt. Wir zeigen, dass der QAOA in diesem
Ansatz für schnelle Ein-Qubit Gatter vergleichbare Ergebnisse erzielt wie seine digitale
Ausführung.
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Chapter 1

Introduction

In this chapter, we delve into the fundamental aspects of quantum computing required
to comprehend this thesis. We explore quantum physics, which is crucial for understand-
ing the challenges of quantum computing and is the driving force behind my interest in
upcoming research topics. To achieve this, we provide a concise overview of the history
of quantum computing and the fundamentals of quantum gates in Section 1.1. Subse-
quently, in Section 1.2, we introduce Noisy Intermediate-Scale Quantum (NISQ) comput-
ing. Lastly, in Section 1.3, we delve into the concept of quantum decoherence and its
significance in quantum computing.
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Chapter 1

1.1 Quantum computing

In this section, we will provide an overview of the historical developments and the chal-
lenges associated with quantum computing. Subsequently, we will thoroughly examine
the essential gates required to construct a universal quantum computer.

1.1.1 History

In the early 1980s, pioneers like Benioff [1] and Feynman [2] laid the groundwork for
quantum computing, establishing its fundamental principles. Researchers took their first
strides towards practical implementation in the subsequent decade, embarking on exper-
imental endeavors during the 1990s [3, 4, 5, 6, 7].

Quantum computers give rise to a new class of algorithms that are not efficiently sim-
ulatable on classical computers due to the exponential scaling incurred when storing and
manipulating state vectors. Two of the most noteworthy quantum algorithms proposed
to date are Shor’s algorithm [8] and Grover’s search algorithm [9]. These algorithms
hold great promise for the future of quantum computing. Grover’s search algorithm, in
particular, provides guaranteed quadratic speedup compared to the best-known classical
counterparts. Although Shor’s algorithm has yet to demonstrate a proven speedup, it
holds the potential to accelerate computational speed significantly. For instance, Shor’s
algorithm can find the prime factors of an integer. The hardness of prime factorization
is crucial to security encryption protocols based on RSA. Therefore, Shor’s algorithm has
the potential to break RSA-based keys exponentially faster than brute force methods.
Besides these two well-known algorithms, the HHL algorithm, proposed in 2009 by Har-
row et al. [10], has attracted attention in recent years. The HHL algorithm [10] holds
significant potential regarding speeding up its classical counterparts. This algorithm can
solve linear systems of equations. One challenge for quantum algorithms is that imperfect
quantum hardware impacts their performance.

Before the development of quantum hardware, researchers acknowledged that quan-
tum machines are more prone to errors compared to classical computers. As a result, it
became essential to incorporate measurement techniques to verify the correct functioning
of quantum devices. However, integrating these measurement techniques is challenging
due to the requirement of commuting the measurement operator with the system de-
vice Hamiltonian, thereby avoiding any violation of Heisenberg’s uncertainty principle.
Furthermore, classical error correction codes pose a challenge due to the impossibility of
replicating the precise state of a qubit for measurement. This limitation arises from the
no-cloning theorem [11, 12], which establishes that there is no unitary transformation ca-
pable of duplicating an arbitrary quantum state. We can utilize classical codes; however,
to ensure that our measurements account for both X and Z errors while maintaining com-
mutation, it becomes necessary to employ two codes simultaneously. Shor [13], among
others [14, 15, 16], suggested quantum error correction (QEC) codes to overcome this
issue of imperfect quantum computing and impossible copying of the state. These codes
require an increased number of physical qubits on the actual device. We can differentiate
between logical and physical qubits. Logical qubits are the qubits an error-free algorithm
requires. In contrast, physical qubits represent the number of qubits needed to execute a
specific algorithm precisely under noisy conditions.

The era of fault-tolerant quantum computing defines a future age in which quantum
computations can be performed without losing coherence to fatal errors induced by envi-
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ronmental noise. In this era, the error rates of devices fall sufficiently below the threshold
values of a quantum error-correcting code in use. Improvements at all levels are needed
to pass this fault-tolerance threshold, from the materials used to substantiate qubits to
the on-device layout of physical qubits. Small increases in the gate and readout fideli-
ties could drastically impact the physical qubit requirements of a fault-tolerant quantum
computer. The number of operations required depends exponentially on the error rate
in a concatenated quantum error correcting code [17]. The two-qubit gate error is par-
ticularly interesting next to the readout fidelity, with the latter being today’s dominant
error in quantum hardware. It is worth noting that any quantum computing algorithm
can be decomposed into single-qubit and two-qubit gates [18]. Contemporary hardware
has attained fidelities for a two-qubit gate above 99 % [19] in superconducting platforms.
Generally, current hardware fidelities are approaching the fault-tolerance thresholds of
quantum error correcting codes [20]. Despite these achievements, encoding a single logi-
cal qubit may require thousands of physical qubits even with fidelities above 99% [21, 22,
23].

However, we need to analyze the error sources of two-qubit gates to improve the co-
herent and incoherent error regimes. In addition, not only the two-qubit gate error and
the readout error are too high. There are still too few qubits available to make fault-
tolerant quantum algorithms feasible. Making fault-tolerant quantum algorithms feasible
remains a long-term objective, distant from the near future. An unanswered question is
whether the quality and quantity of qubits can attain the limit of fault-tolerant quantum
computers.

1.1.2 Quantum entanglement and quantum superposition

Quantum phenomena such as quantum entanglement and superposition are the key fea-
tures of quantum mechanics and are necessary for the advantage. Consequently, we will
introduce the two features that set quantum mechanics apart from classical physics. We
start with the well-known Schrödinger equation

iℏ∂t ♣ψ(t)⟩ = Ĥ(t) ♣ψ(t)⟩ , (1.1.1)

which is elementary for the comprehension of quantum mechanics, with ♣ψ(t)⟩ ∈ H being a
state vector from some Hilbert space H. Ĥ(t) is the system’s Hamiltonian. This equation
governs a pure and error-free coherent evolution of the system, meaning that the system
is in a well-defined state at every point in time. For further investigation, let us consider
a two-level system. We denote the two states of a two-level system with ♣0⟩ and ♣1⟩. Let
α and β denote the probability amplitudes for the states, which are complex numbers,
satisfying the condition ♣α♣2+♣β♣2 = 1. We will now examine the concept of superposition,
demonstrated by the state

♣ψ⟩ = α ♣0⟩ + β ♣1⟩ . (1.1.2)

Unlike classical systems, which can only be in state ♣0⟩ or ♣1⟩, quantum systems can exist
in a superposition of both states.

For quantum entanglement we couple the two-level system with Hilbert space H1 to
another two-level system with Hilbert space H2. The joint system’s state notation can be
described as follows: If, for instance, the state ♣0⟩ is occupied in both systems, we represent
this configuration as ♣00⟩ in the joint system. We exemplify quantum entanglement by

3



Chapter 1

the state

♣ψ⟩ =
1√
2

(♣00⟩ + ♣11⟩) ∈ H1 ⊗ H2. (1.1.3)

Quantum entanglement refers to the phenomenon where a Hilbert space is composed of
H1 ⊗ H2, and the state cannot be factorized into ♣ψ⟩ = ♣ψ⟩1 ⊗ ♣ψ⟩2, where ♣ψ⟩1 ∈ H1 and
♣ψ⟩2 ∈ H2. Indeed, the state represented by Equation (1.1.3) cannot be factorized, leading
to the observation of quantum entanglement. These effects are of significant interest and
illustrate the differences between quantum and classical mechanics.

1.1.3 Universal sets of quantum gates

In this section, we will introduce the basic gate set required for constructing a universal
quantum computer. A quantum gate is represented by a unitary matrix. A universal
quantum gate set is a collection of quantum logic gates capable of simulating any quantum
algorithm and manipulating quantum states according to the desired objectives, thereby
enabling the implementation of any quantum operation. As previously mentioned, we
can reduce every quantum algorithm into two-qubit and single-qubit gates. Therefore,
our universal gate set only requires single and two-qubit gates.
To begin with, we will acquaint ourselves with the Pauli operators X, Y , and Z

X =

(

0 1
1 0

)

, Y =

(

0 −i
i 0

)

, and Z =

(

1 0
0 −1

)

, (1.1.4)

which are indispensable for this purpose. The Pauli and identity matrices are a basis
for all 2 x 2 complex matrices. Notably, the Pauli matrices possess two key properties:
Hermiticity and unitarity. By multiplying each matrix with the imaginary unit, the Pauli
matrices form a basis for the Lie algebra su(2). This Lie algebra serves as the generator
for the special unitary group SU(2). The Pauli rotation gates

RX = exp(−iXθ/2) =

(

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)

, (1.1.5)

RY = exp(−iY θ/2) =

(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)

, (1.1.6)

RZ = exp(−iZθ/2) =

(

exp(−iθ/2) 0
0 exp(iθ/2)

)

, (1.1.7)

also belong to SU(2). The three rotation gates RX , RY , and RZ are capable of reaching
every pure state on the Bloch sphere [24, 17]. The Bloch sphere is the surface of a sphere
on which all pure states of a two-level system are located. Specifically, RX rotates the
state vector around the x-axis, while RY and RZ rotate it around the y-axis and z-axis,
respectively. Since we have the capability to access all pure states in a two-level system,
the Pauli rotation gates serve as the first component of our universal gate set.

The second essential component for establishing a universal gate set is a non-local
two-qubit gate. Non-local two-qubit gates cannot be decomposed into two separate gates
represented as R1 ⊗ R2, where R1 and R2 belong to the SU(2) group [25]. A two-qubit
Pauli gate like Xl ⊗ Xj = XlXj with one X gate on qubit j and one on i is of local
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structure for instance. One non-local gate is the CNOT gate

CNOT = RY1

(

π

2

)

·RX1X2

(

π

4

)

·RX1

(−π
2

)

·RX2

(−π
2

)

·RY1

(−π
2

)

, (1.1.8)

which belongs to SU(4) \ (SU(2) ⊗SU(2)). The Pauli rotation gates and the CNOT gate
form one option for a universal quantum gate set.

The two-qubit gates are of significant interest in quantum computing because they are
more prone to errors than one-qubit gates. Moreover, quantum entanglement arises from
the operations of non-local gates, as illustrated in the following example

CNOT · H1 ♣00⟩ =
1√
2

♣00⟩ +
1√
2

♣11⟩ , ♣0⟩ H

♣0⟩
. (1.1.9)

We apply the Hadamard gate H1 to the first qubit to achieve superposition and then
apply the CNOT gate to derive quantum entanglement. The two-qubit gate is necessary
to achieve significant quantum effects, which may be responsible for quantum speed up
in specific algorithms.

Native gates refer to the set of gates available on a given quantum hardware. In the
case of trapped-ion-based quantum computers, the native two-qubit gate is

RXlXj
(θ) = exp

(−iXlXjθ

2

)

, (1.1.10)

Note that this gate is also a non-local gate. Of primary interest for quantum algorithms
is the transformed local gate of RXlXj

(θ)

RZlZj
(θ) = H1 · H2 ·RXlXj

(θ) · H1 · H2 = exp
(−iZlZjθ

2

)

. (1.1.11)

Especially for chemical problems and optimization problems, which are formulated into
Pauli-Z strings, this gate plays an essential role.

1.2 Noisy Intermediate-Scale Quantum (NISQ)

Computing

In the previous section, we explored the potential realization of quantum computers. This
section focuses on machines that still exhibit errors but do not incorporate Quantum Error
Correction (QEC) called Noisy Intermediate-Scale Quantum (NISQ) computers. We first
introduce the general concept in Subsection 1.2.1, outlining how such machines can be
constructed. Building upon this understanding, we then delve deeper into the Quantum
Approximate Optimization Algorithm (QAOA) in Subsection 1.2.2, which will be the
focus of this thesis.

1.2.1 The NISQ concecpt

Before reaching the quantum threshold value to build fault-tolerant quantum computers,
we must achieve essential milestones through bridge technologies for quantum computers.

5
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These machines may have qubit fidelities lower than the quantum threshold theorem [26,
21, 22, 23] requires and qubit numbers below 100, but they can run specific algorithms
efficiently. Because NISQ devices have a limited number of qubits, it is common to re-
nounce quantum error correction codes and instead use all available physical qubits as
logical qubits. This epoch is named Noisy Intermediate-Scale Quantum (NISQ) Comput-
ing. We can classify several NISQ hardware types, including superconducting gate-based
quantum computers, quantum annealers, and digital-analog quantum computers.

In this era researchers aim to discover algorithms that can demonstrate quantum ad-
vantage or supremacy, even in the presence of noise. Quantum supremacy refers to the
ability of a quantum device to solve a problem that is not feasible for a classical computer
to solve within a reasonable amount of time, regardless of the problem’s practical value. In
distinction, we obtain quantum advantage if a quantum computer can solve a real-world
problem faster than a classical computer. However, Google began the pursuit of quan-
tum supremacy on their Sycamore chip in 2019 [19]. In order to demonstrate quantum
supremacy, a random sampling algorithm was employed. Recently in 2021, Feng et al.
[27] presented a classical algorithm that may outperform Google’s sampling approach on
a supercomputer. Despite this, Google’s chip still notably improves cross-talk reduction.
The Sycamore chip, consisting of 51 qubits, achieves an infidelity of 0.36 % for a single
two-qubit gate. When measuring multiple two-qubit gates simultaneously, the infidelity
rises to 0.62 %. It is worth noting that both measurement methods yield results of the
same order of magnitude.

The algorithms designed for near-term devices are commonly referred to as NISQ algo-
rithms. However, these algorithms are faced with several challenges, such as decoherence,
coherent over-rotations, and cross-talk, which are common on NISQ devices. The most
well-known algorithms for gate-based NISQ devices are the Variational Quantum Algo-
rithms (VQAs). The main objective of every VQA is to find the optimal parameters for a
parametrized circuit in order to minimize the energy of the objective function. Variational
quantum algorithms exhibit strong resilience to noise, as demonstrated in several stud-
ies [28, 29, 30, 31]. Notably, Sharma et al. [32] showed that variational parameters are
highly robust against measurement and Pauli channel noise. The Variational Quantum
Eigensolver (VQE) and the Quantum Approximate Optimization Algorithm (QAOA) are
the most popular ones. The VQE is particularly interesting since it combines a NISQ
algorithm with chemistry optimization problems that are highly relevant to related en-
terprises. In quantum chemistry, calculating a molecule’s ground state energy is one of
the most significant challenges, and it forms the foundation for developing energy-efficient
fertilizer production [33], among other applications [34]. Molecules are quantum mechan-
ical in nature. As a result, the most efficient hardware for simulating them is a quantum
computer, as Feynman once suggested [35]. Classical simulations can only handle a small
number of atoms in complex molecules. Therefore, the VQE has emerged as a prominent
candidate to demonstrate quantum speedup [36, 37, 38]. In addition, there is hope that
this algorithm will exhibit supremacy as the first NISQ algorithm [39, 40].

The NISQ era has introduced new quantum hardware and algorithms that could
demonstrate quantum advantage or at least quantum supremacy in the near future. The
NISQ algorithm QAOA will be studied in detail throughout this thesis. It is worth not-
ing that there is currently no proven quantum advantage of VQAs over their classical
counterparts.
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1.2.2 A Quantum Approximate Optimization Algorithm

In 2017, Farhi, Goldstone, and Gutmann [41] proposed the Quantum Approximate Op-
timization Algorithm (QAOA), a heuristic algorithm combining classical and quantum
computing. This subsection will provide a comprehensive explanation of the algorithm’s
functionality. Its challenges and a brief overview of the current state of research will follow
this subsection.

The QAOA is designed to tackle combinatorial optimization problems of the succeed-
ing form

Ĉ(z̄) =
m
∑

α=1

Cα(z̄), (1.2.1)

where m defines the number of clauses present in the problem, while z̄ = z1z2 . . . zn
denotes the n-bit string. Each bit is assigned a value of zi ∈ ¶0, 1♢. A clause is considered
satisfied if Cα(z̄) = 1. Our objective is to identify the maximum number of clauses,
denoted by max Ĉ(z̄), and to determine the bit string z̄ that satisfies the most clauses.
The difficulty of solving these instances on a classical computer varies depending on the
specific problem. To maintain an overview of the upcoming equations, we will occasionally
use the shorthand notation Ĉ instead of Ĉ(z̄). The number of bits within the string z̄
depends on the specific problem under consideration. Ĉ implies that the problem has
already been translated into a quantum operator. The transformation ¶0, 1♢ → ¶1,−1♢
maps the single bits onto the eigenvalues of the Pauli-Z operator, thereby converting the
problem to a quantum operator. As we have formulated our problem on a Pauli-Z basis,
we use bracket notation ♣z̄⟩ = ♣z0, ..., zn⟩ instead of bit string notation.

To begin the QAOA approach, every bit string is initialized with the same probability
amplitude. This is achieved by applying the Hadamard gate to each qubit in the system,
resulting in the state

♣s⟩ = ♣+⟩⊗n = H⊗n ♣00, . . . , 0n−1⟩ . (1.2.2)

Next, we introduce the driver Hamiltonian given by

B̂ =
∑

i

Xi, (1.2.3)

which is a sum over the Pauli-X operators acting on each qubit in the system. The
QAOA method uses an exponential alternating approach between applying the driver
Hamiltonian and the cost Hamiltonian Ĉ(z̄) of the problem at hand. This leads to the
QAOA ansatz

♣γ⃗, β⃗⟩ = e−iβpB̂e−iγpĈ . . . e−iβ2B̂e−iγ2Ĉe−iβ1B̂e−iγ1Ĉ ♣s⟩ . (1.2.4)

The parameters associated with the driver Hamiltonian, denoted by β⃗ = (β1, β2, . . . , βn),
are unconstrained and can be chosen freely. Additionally, we consider the cost func-
tion Ĉ(z̄), which is also parameterized by unconstrained parameters denoted by γ⃗ =
(γ1, γ2, . . . , γn). The rotation gates for the driver and cost function are defined as

Û(Ĉ, γi) = e−iγiĈ and Û(B̂, βi) = e−iβiB̂. (1.2.5)

The number of parameters γ⃗, β⃗ used in the QAOA ansatz depends on different aspects and
is the subject of the research presented here. After creating the ansatz, the expectation
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Figure 1.1: QAOA loop: Initially, we incorporate the QAOA ansatz
on the Quantum Processing Unit (QPU) by implementing Hadamard
gates, as well as the two-qubit gates Û(Ĉ, γi) (red boxes) and Û(B̂, βi)
(blue boxes). Subsequently, we compute the expectation value ⟨Ĉ⟩γ⃗,β⃗ of
the output state, and the optimizer (green box) then seeks the global
minimum on a Central Processing Unit (CPU). The updated angles are
reassigned to the QPU to create the QAOA ansatz.

value of the cost function will be computed

Fp = ⟨Ĉ⟩γ⃗,β⃗ = ⟨γ⃗, β⃗♣ Ĉ ♣γ⃗, β⃗⟩ . (1.2.6)

⟨Ĉ⟩γ⃗,β⃗ serves as the loss function, and the aim is to determine the values of γ⃗ and β⃗ that

maximize ⟨Ĉ⟩γ⃗,β⃗, leading to

Mp = max
γ⃗,β⃗

⟨Ĉ⟩γ⃗,β⃗ . (1.2.7)

We designate the optimal parameters with γ⃗∗ and β⃗∗.
Figure 1.1 illustrates the step-by-step process of the QAOA. First, the desired number

of random parameters is used to create the QAOA ansatz on the quantum processing
unit (QPU). Next, the output state’s expectation value Fp is computed on a CPU. The
loss function is then optimized on the CPU, and the updated variables γ⃗ and β⃗ are
sent back to the QPU. The QPU then generates a new QAOA ansatz with the updated
parameters. This iterative process continues until a point of convergence is achieved.
The included parameters in the QAOA approach are called p-depth, p-value, or p. The
number of parameters is then 2p. We suggest obeying the following process to determine
the optimal value for p: begin with p = 1 and execute the loop procedure illustrated in
Figure 1.1. Once convergence is achieved for p = 1, increment the p-depth and repeat the
process. To improve maximization, we can increase the value from p to p + 1, provided
that

Mp ⩽Mp+1 (1.2.8)
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holds. We increase p until no further improvement in Mp is achieved. It is worth mention-
ing that for every p, the parameters have to be randomized for the QAOA ansatz. There
is no guarantee that the optimal parameters for a given p will be the same as those for
p+ 1. The QAOA ansatz is an approximate version of the adiabatic quantum computing
approach. Therefore, p → ∞ will enable us to achieve the maximum value

lim
p→∞Mp = max

z
Ĉ(z̄). (1.2.9)

The problem operator Ĉ is alternatively referred to as the Hamiltonian operator. As a
result, the notation Ĥ is predominantly employed to represent this operator related to
the problem.

In this thesis, we follow the convention that maximizing Ĉ(z̄) entails minimizing −Ĉ(z̄)
during the optimization process, thereby allowing us to determine the maximal energy
of the optimization problem. This implies that when referring to a global minimum
in the objective function or the loss function, we are specifically addressing the global
minimum within the optimization process, which corresponds to the global maximum of
the respective optimization problem under consideration.

1.2.3 Measuring QAOA performance

To quantify the performance of the QAOA, we introduce two parameters: the mean
approximation ratio Mp and the improvement over random guessing Ip. The subscript p
refers to the p-depth. The mean approximation we define by

Mp =
Mp − Emin

Emax − Emin

. (1.2.10)

The improvement over random guessing is defined by

Ip =
Mp − ⟨s♣ Ĥ ♣s⟩
Emax − ⟨s♣ Ĥ ♣s⟩

. (1.2.11)

We first investigate Mp. Emin and Emax are the minimum and maximum energy values of
the investigated Hamiltonian Ĥ. The mean approximation ratio compares the result of
Mp to the scale of the minimal and maximal energy of the problem’s distribution. This
is a valuable performance indicator for different instances of the same problem. If Mp

supplies the ground state energy then Mp = 1. In the worst-case scenario of the QAOA
performance, we achieve Mp = 0.

Now let us investigate the case for different problems. This entails exploring the
average of the classical probability density function denoted as N(E). N(E) is the cost
function Ĥ sorted by counts per energy. If we set the QAOA angles γi = βi = 0, the
QAOA approach produces the average N(E) = ⟨s♣ Ĥ ♣s⟩. The QAOA approach provides
N(E) without using the optimizer. Furthermore, if the optimizer stops in a region of
vanishing gradient in the parameter space, we also receive Mp = ⟨s♣ Ĥ ♣s⟩. These regions
cover most of the parameter space. For this reason, we refer the average energy ⟨s♣ Ĥ ♣s⟩
of the cost function to the point where the QAOA result is equal to purely random
guessing of the QAOA angles γ⃗ and β⃗. Thus, QAOA shows no improvement over the
classical average N(E). Figure 1.2 shows two problems that refer to two different energy
distributions. The left plot refers to a Gaussian distribution, and the right plot refers
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E

N(E) = 〈s|Ĥ|s〉

Ip
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N
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Ip
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Figure 1.2: Plotting probability density functions N(E) for a problem
Hamiltonian Ĥ. E represents the energy associated with a solution string
for Ĥ, while N represents the count of solution strings that share the
same energy. On the left plot, we have a Gaussian distribution, and
on the right plot, a gamma distribution. The green color indicates the
expectation value N(E), while the blue arrow represents the normaliza-
tion scale for Mp. Additionally, the magenta-colored curve signifies the
normalization scale used for Ip.

to a gamma distribution. We investigate the case ⟨s♣ Ĥ ♣s⟩ for both probability density
functions (pdfs), which reflects having no improvement utilizing QAOA. For the Gaussian
pdf, we achieve Mp = 0.5, whereas for the gamma pdf, we obtain Mp = 0.2. Indeed,
there is a distinction in Mp, but QAOA’s performance remains consistent in both cases.
For this reason, Mp is inappropriate for comparing different problems and hence different
pdfs.
To assess different problems, we utilize the QAOA’s improvement over random guessing,
denoted as Ip (refer to Equation (1.2.11)). For Ip we normalize Mp with N(E) as the
lower bound. Hence, if we set the angles γi = βi = 0 for both pdfs we achieve Ip = 0. We
conclude that Ip is for comparing QAOA performance among different problems and Mp

for comparing among different instances of one problem.

1.2.4 Combinatorial optimization

The optimization of the QAOA parameters is one significant challenge to overcome. Fig-
ure 1.3 illustrates these challenges by exemplifying the loss function of the QAOA ansatz
for F1 with p = 1.

To begin with, F1 possesses a global minimum and maximum. The three colored
traces, magenta, red, and green, represent three problems the optimizer must overcome.
We start by examining the magenta curve. Its initial point is close to the local minimum.
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Figure 1.3: Plotting the QAOA solution space F1(γ1, β1) for p = 1 with
Ĉ = Z0Z1. F1(γ1, β1) is represented on the z-axis, while γ1 and β1 are
on the X-Y plane. The magenta, green, and red traces depict possible
paths a local optimizer can take from their respective initial points. The
cyan circle indicates a region of vanishing gradient.

When a local optimization strategy is employed in this case, the optimizer tends to be-
come stuck. On the other hand, the green trace is initialized close to the global minimum,
and the optimizer can locate the global minimum by following the gradient ∇F1. The red
path potentially gets stuck in a local minimum, requiring several optimization calls and,
therefore, many QPU calls. The green trace represents a more realistic situation for the
optimization process. The initial parameters are not the optimal parameters γ⃗∗, β⃗∗, but
we placed the optimizer in the concave region where the global minimum is located. As
a result, the optimizer requires fewer iterations than the other traces and can locate the
global minimum. The final scenario is represented by the cyan-colored circles, where the
optimizer could not locate the global minimum or any local minima despite the absence of
errors on the quantum device. This situation arises when the gradient of the loss function
vanishes ♣∇F1♣ → 0. It is crucial to distinguish this scenario from the vanishing gradient
phenomenon known as the barren plateau, which occurs due to over-parameterization.
Barren plateaus typically manifest when employing a random ansatz, like the VQE ap-
proach [42, 43, 44]. It is important to note that all the possible impediments in discovering
the ground state energy with the QAOA ansatz are based on the assumption of error-free
hardware, which is unrealistic. If the incoherent error is increased even slightly, the red
trace becomes an impractical scenario for the optimizer.

To overcome these challenges, it is necessary to apply knowledge of the problem or
a specific optimization technique to QAOA. One way to achieve this is by introducing
layerwise learning to optimize the parameter space of 2p. Alternatively, one can reuse
the parameters from the previous step [45, 46]. However, the critical issue is identi-
fying the most effective layerwise technique to avoid encountering a vanishing gradient
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in the parameter space. One possible solution is to group multiple parameters into a
single space. Irrespective of the specific sequential approach used, Mp saturates with
limp→∞ Mp ̸= max

z
Ĉ(z̄). Campos et al. [47] demonstrated that sequential optimization

could cause a sharp transition in the success probability of locating the optimal solution.
They also showed that introducing phase noise can overcome the saturation of the vari-
ational circuit. This result is based on the outcomes of training a quantum autoencoder
[48]. The sequential method reduces the parameter space, but a higher circuit depth is
typically required, regardless of whether saturation is achieved or not.

Rather than decreasing the parameter space, an alternative method is to restrict the
state space. Instead of providing the optimizer with all possible states after the measure-
ment process, the optimizer utilizes only states with the lowest energy eigenvalues. The
expectation value represents the lower tail of the probability distribution of measurement
outcomes rather than the distribution’s average. This approach simplifies the solution
space, which reduces the risk of being trapped in local minima far from the global min-
imum. The IBM quantum group has implemented this idea [49] into VQE and QAOA,
with supporting evidence that this method reduces the number of parametrized circuit
calls. This idea has been previously introduced in other scientific fields and is commonly
used in finance as conditional value at risk (CVaR) [49]. Furthermore, researchers [50]
have proposed a new loss function called Ascending-CVaR that is inspired by quantum
annealing. Generally, various techniques from other fields, such as machine learning [51],
have been attempted to identify the optimal parameters, but the task remains challenging.

1.2.5 Limitations of QAOA

In this subsection, we will provide a summary of what is currently understood about
the application of QAOA to specific problems. Instead of centering our attention on the
optimization aspect, within this subsection, our primary emphasis will be on choosing a
suitable value for p in order to attain a predefined threshold for the mean approximation
ratio and gaining insights into the optimal parameters that have been determined for
specific problems. Despite the assurance of attaining the global minimum, determining the
optimal angles for a particular problem and selecting an appropriate p value is challenging.
Due to the limited coherence time, there is significant interest in decreasing the circuit
depth of the QAOA, which can be achieved by using a small p.

Farhi et al. [41] discovered the limitations of the performance of QAOA applied to the
ring of disagrees

Ĥring = Z1Zn +
n−1
∑

i=1

ZiZi+1. (1.2.12)

They determined that the solution depends on the system size with Mp = n(2p+1)/(2p+
2). It is also possible to find an analytic solution for small problems, such as two qubit-
sized instances with p = 1, as demonstrated by Wang et al. [52]. For n = 2 and p = 1, they
calculated ⟨Ĉ⟩p=1 = 2 sin(4β1)cos(4γ1) with optimal parameters (γ∗

1 , β
∗
1) = π(3/8, 1/8).

Farhi et al. [53, 54] also demonstrated that for a fully connected Ising chain of the ZiZj
type, the cost function Ĉ = (1/

√
n3))

∑

i,jmi,jZiZj achieves convergence to optimal global

parameters γ⃗∗, β⃗∗ for n → ∞, regardless of the specific instance. In addition, they found
optimal analytical parameters for p ⩽ 8 and extrapolated values for 9 ⩽ p ⩽ 12. The
extrapolation trend builds on the analytical results of p = 8. Furthermore, they demon-
strated that the optimal values γ⃗∗, β⃗∗ for n → ∞ can also be utilized for n ⩾ 26, providing
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at least an improvement over random guessing for the mean approximation ratio.
The reachability of the global optimum in dependency of clause density was investi-

gated by Akshay et al. [55]. Reachability deficits were proven for the random boolean
satisfiability problems 2SAT and 3SAT. Additionally, Hastings [56] explored the limi-
tations of QAOA. In the research conducted by Biamonte’s group [57], they presented
analytic evidence of parameter concentration, where the optimal parameters concentrate
inversely polynomially based on the problem size. They also provided numerical evidence
across different problems. This result is significant compared to the findings of Fahri et
al. [53, 54], who presented optimal parameters independent of the instance. Streif et al.
[58] also provided numerical evidence of parameter concentration. Jahan Claes et al. [59]
studied multi-body coupling problems described by Equation (1.2.1) and found evidence
of comparable behavior between two-body and multi-body couplings for p = 1. They also
explored the optimal parameters in the limit n → ∞ and discovered that they are inde-
pendent of the specific problem instance. Another approach to mitigate the challenges
associated with the 2p large parameter space is to use symmetries in the loss function to
reduce the 2p dimensional space [60].

All these limiting factors raise the question of whether QAOA could even be a can-
didate to show quantum advantage or at least quantum supremacy [61, 62, 63, 64, 65].
According to Farhi et al. [66], the QAOA may demonstrate quantum supremacy even in
a shallow circuit depth.

1.2.6 QAOA applied to real-world problems

So far, we have covered how the QAOA can be applied to generic combinatorial opti-
mization problems. However, we have yet to investigate how QAOA could be applied to
real-world problems.

To employ QAOA in solving a real-world problem, the initial step involves converting
the problem into a quantum operator. This entails the translation of the problem into
Pauli Z-strings. This step is specific to the problem. One example of a real-world prob-
lem is the Traveling Salesperson Problem (TSP). TSP is a combinatorial optimization
problem. In this problem, a salesperson must find the shortest possible route to visit a
set of cities once. The objective is to minimize the total distance traveled, making TSP
a fundamental problem. However, applying an algorithm for solving TSP on a quantum
computer can be challenging due to the high circuit depth. The constraints in the prob-
lem formulation, such as specific weekdays for arriving at specific cities or travel costs,
can increase the circuit depth significantly, potentially exceeding the coherence time of
the system. One can add penalty terms with a Lagrange parameter to incorporate con-
straints into the cost function. Hadfield et al. [67] studied TSP for QAOA. Hadfield et
al. demonstrated the efficacy of using the two-qubit gate

XiYj(θ) = exp

(

−iθ
2

(

XiXj + YiYj

))

, (1.2.13)

as a driver in an error-free scenario to incorporate certain constraints [68, 69] of a specific
problem. Instead of using the X-driver, the XY -driver helps to stay in the feasible
subspace.

Enterprises are exploring potential problems that are well-suited for NISQ devices.
One such problem, the Flight Gate Assignment (FGA) problem, has been addressed by
Stollenwerk et al. [70]. This particular problem is of great interest to researchers, as
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it is known to be NP-hard. The problem arises when connecting flights, which involve
passengers from different flights, are required to wait until all passengers have arrived.
This can create a congestion point at the gate, obstructing the passage of other aircraft
as they wait to access the connecting gate. By implementing more efficient scheduling of
flights across all gates, it would be possible to decrease the waiting times for incoming
flights. This, in turn, could lead to substantial time and cost savings for both passengers
and airlines.

1.2.7 Adiabatic quantum computing

Adiabatic quantum computing, as a NISQ device, establishes a connection with the
QAOA. Thus, we provide a concise overview of the adiabatic approximation, founded
on the principles of the adiabatic theorem, which forms the foundation for adiabatic
quantum computers. This theorem states that when a system undergoes slow changes
over time and starts in its ground state, it will remain in the ground state at the final
time. Here, we will briefly review the adiabatic approximation by Sarandy et al. [71],
presenting the specific conditions that ensure a system remains in its ground state during
its time evolution.

To begin, it is important to note that we can diagonalize any Hamiltonian Ĥ(t) at
any time with

Û(t)†Ĥ(t)Û(t), (1.2.14)

for some suitable unitaries Û(t). So, we can find at any time instantaneous eigenstates
♣λn⟩ with eigenenergies Eλ. In fact, they fulfill the Schrödinger equation and also build
an orthonormal basis for the desired time t

⟨λn♣λm⟩ = δnm. (1.2.15)

For the time evolution of a specific state ♣ψ(t)⟩, we can express the state as a sum of
eigenstates based on their corresponding eigenenergies in the time-dependent Schrödinger
equation

♣ψ(t)⟩ =
D
∑

l=1

al(t)exp
(

−i
∫ t

0
El(t

′

)dt
′

)

♣λl(t)⟩ . (1.2.16)

We define

θl = −
∫ t

0
El(t

′

)dt
′

(1.2.17)

as the dynamical phase. al is a complex function in time and D is the dimension of the
Hilbert space. The goal is now to determine al. To achieve this, we substitute Equation
(1.2.16) into the time-dependent Schrödinger equation, resulting in the following

D
∑

l=1

al(Ĥ(t) ♣λl⟩)eθl =
D
∑

l=1

((∂tal) ♣λl⟩ + ial(∂tθl) ♣λl⟩ + al∂t ♣λl⟩))eiθl . (1.2.18)

The left-hand side and the second term on the right-hand side build the Schrödinger
equation for instantaneous time and cancel out. Equation (1.2.18) reduces to

0 =
D
∑

l=1

((∂tal) ♣λl⟩ + al ♣λl⟩))eθl . (1.2.19)

14



Introduction

In the next step, we take the scalar product with one eigenstate ♣λm⟩ to get an equation
of motion for the coefficients al

∂tam = −
D
∑

l=1

al ⟨λm♣∂tλl⟩ ei(θl − θm)

= −am ⟨λm♣∂tλm⟩ −
D
∑

l=1,l ̸=m
al ⟨λm♣∂tλl⟩ ei(θl − θm).

(1.2.20)

The term ⟨λm♣∂tλl⟩ in the equation can be rewritten in terms of the Hamiltonian with
time-independent Schrödinger equation for the instantaneous case at time t for state ♣λl⟩.
Subsequently, we perform the time derivative of the Schrödinger equation and the scalar
product with the state ⟨λm♣. The result can be plugged into Equation (1.2.20) leading to

∂tam = −am ⟨λm♣∂tλm⟩ −
D
∑

l=1,l ̸=m
al

⟨λm♣∂tĤ♣λl⟩
♣Em − El♣

e−i(θl − θm). (1.2.21)

By analyzing this equation, we can determine the condition for an adiabatic process. Our
objective is to separate the equation of motion for the coefficients al from all other energy
levels. In order to attain this goal, it is essential to reduce the magnitude of the second
term in the previous equation, which consequently results in the following condition

max
0≤t≤T

∣

∣

∣

∣

∣

⟨λm♣∂tĤ♣λl⟩
Eml

∣

∣

∣

∣

∣

≪ min
0≤t≤T

♣Eml♣, (1.2.22)

with T being the total evolution time and

Eml = ♣Em − El♣ (1.2.23)

being the energy gap between two states. Equation (1.2.22) states that to maintain the
relative positions of the lth and mth eigenstates in time and prevent them from crossing,
the rate of change in time of the Hamiltonian should be much smaller than the energy gap
Eml. We express the requirement that the system Hamiltonian changes slowly in time as
∂tĤ ≈ 0.

To observe the impact of this condition, let us revisit Equation (1.2.16) to deter-
mine the a(l)′s. Our current approach involves the omission of the second term in the
final equation of (1.2.20), driven by the constraint specified in Equation (1.2.22). This
simplification results in

∂tam = −am ⟨λm♣∂tλm⟩ . (1.2.24)

In fact, the solution for the complex function in time is

am(t) = am(0)eiγm , (1.2.25)

with

γm = i
∫ t

0
⟨λm(t

′

)♣∂tλm(t
′

)⟩ dt′

. (1.2.26)

In this case, we can deduce from the inner scalar product that the phase γ is a real value.
If we start in a specific state m, at the initial time, with am(0) = 1 and al(0) = 0 for all l
not equal to m. Under these conditions, all terms in Equation (1.2.16) except one cancel
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out yielding

♣ψm(t)⟩ = eiθmeiγm ♣λm(t)⟩ . (1.2.27)

Thus, we remain for the whole time in the mth state, picking up some additional phases.
It is worth noting that the instantaneous eigenstates of Ĥ(0) and Ĥ(t) for the mth state
are not the same. However, we can assert that the system remains in the same state as
long as we satisfy the condition outlined in Equation (1.2.22). This condition also leads
to a paradox. It is possible that when we apply the approximation for the same energy
eigenstate to two systems, they both satisfy the Hamiltonian yet end up being distinct
from each other. Therefore, we must introduce the parameter s = t/T , resulting in

max
s∈[0,1]

∣

∣

∣

∣

∣

⟨λm(s)♣∂sĤ♣λl(s)⟩
Eml(s)

∣

∣

∣

∣

∣

<< min
0≤t≤T

♣Eml(s)♣. (1.2.28)

1.3 Decoherence in quantum theory

Within this section, we aim to emphasize the significance of quantum decoherence in the
realm of quantum computing. Additionally, we present an introduction to the fundamental
concepts surrounding the simulation of quantum decoherence.

1.3.1 General concept

In this subsection, we focus on exploring the significance of decoherence for quantum com-
puting. Decoherence can be interpreted as a simple scattering process that lacks memory
effects in the system-environment interaction, resulting in the irreversible loss of certain
information about the system dynamics. The environment often has a large number of
degrees of freedom, making it highly complex and difficult to control. Decoherence forms
a significant barrier to realizing quantum computing. The study of quantum decoherence
is relatively new, as researchers previously concentrated on merging classical and quan-
tum mechanics rather than linking the environment to the quantum system. It was in
the early 1970s that Zeh [72, 73] drew attention to quantum decoherence in quantum
research. This was followed in the early 1980s by Zurek [74, 75], who established the
concept of einselection, which refers to environment-induced superselection. In 1985 and
1986, both Zeh [76] and Zurek [77] proposed the first numerical and theoretical concepts
of quantum decoherence.

To grasp the concept of quantum decoherence, we will explore a system interacting
with an environment and carry out a measurement of an observable on the system. Con-
sider an arbitrary system S that can exist in two possible states, ♣↑⟩ and ♣↓⟩. We allow
S to interact with an environment E, which also has two possible states, ♣e1⟩ and ♣e2⟩.
Furthermore, we demand that system-environment is coupled in the following way

♣↑⟩ ♣e1⟩ , ♣↓⟩ ♣e2⟩ . (1.3.1)

Accordingly, the environmental state depends on the system. This leads to system-
environment entanglement,

♣ψ⟩ =
1√
2

♣↑⟩ ♣e1⟩ +
1√
2

♣↓⟩ ♣e2⟩ . (1.3.2)
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Our next step is to measure the system using an observable ÔS while leaving the en-
vironment unaffected. We express the state vector ♣ψ⟩ in terms of a density matrix,
denoted as ρ, given by ρ = ♣ψ⟩ ⟨ψ♣. This density matrix, ρ, is in general represented
as a sum of classical probabilities ai and corresponding pure states ♣ψ⟩i, with the form
ρ =

∑

i ai ♣ψ⟩i ⟨ψ♣i. However, we only require a single pure state for our density matrix.
To obtain the equation for the system, we need to trace out the environment

ρS = TrE(ρ)

= ♣α♣2 ♣↑⟩ ⟨↑♣ + ♣β♣2 ♣↓⟩ ⟨↓♣
+ αβ∗ ♣↑⟩ ⟨↓♣ ⟨e2♣e1⟩ + α∗β ♣↓⟩ ⟨↑♣ ⟨e1♣e2⟩ .

(1.3.3)

Subsequently, we determine the expectation value of ÔS using the density matrix ρS

⟨ÔS⟩ = TrS(ρÔS)

= ♣α♣2 ⟨↑ ♣ÔS♣ ↑⟩ + ♣β♣2 ⟨↓ ♣ÔS♣ ↓⟩
+ αβ∗ ⟨↑ ♣ÔS♣ ↓⟩ ⟨e2♣e1⟩ + α∗β ⟨↓ ♣ÔS♣ ↑⟩ ⟨e1♣e2⟩ .

(1.3.4)

The expectation value includes two types of terms, those with classical probabilities and
those with interference between α and β. These interference terms are fragile and re-
sponsible for observing coherence effects between the two systems. They describe the
non-classical behavior and indicate the transition between classical and quantum nature.
The quantum coherent effects cannot be observed when these terms decay to zero. Inco-
herent processes mostly lead to an exponential decay of the off-diagonal elements [78, 79,
80]

⟨e2♣e1⟩ ∝ e−t/τd , (1.3.5)

with τd being the coherence time.
To overcome decoherence, researchers aim to isolate the qubit system from the en-

vironment while maintaining control over it. As mentioned previously, Shor [13], along
with other researchers [15, 81], brought forth the concept of quantum error correction to
prevent decoherence or rectify errors within the system.

1.3.2 Lindblad equation

Due to environmental complexity, it becomes necessary to develop an equation that de-
scribes only the system dynamics in time. In order to describe the effects of decoherence
in a time-dependent equation, it is essential to derive the Lindblad equation [79, 82].

The starting point for this derivation is the von Neumann equation

∂tρ(t) = [Ĥ(t), ρ(t)]. (1.3.6)

This equation defines the evolution of the system and environment over time. This differ-
ential equation is not efficiently simulable because of the large degrees of freedom of the
environment. As a result, approximations must be made.

To derive a system equation under the influence of the environment, we introduce
the concept of master equations. In Equation (1.3.6), ρ(t) represents the qubit system
and environment, with the Hamiltonian consisting of three components: ĤS(t) for pure
system dynamics, ĤE(t) for the environment, and Ĥint(t) for the interaction between the
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two. To simplify the von Neumann equation, we assume that the system and environ-
ment are not correlated at t = 0, meaning there is no entanglement. The density matrix
is separable with ρ(t = 0) = ρS(t = 0) ⊗ ρE(t = 0). Subsequently, we assume a weak
coupling between the environment and the system called the Born approximation. If the
environment is much larger than the system, the influence of the system on it can be
considered negligible, and the system and environment can be separated according to

ρ(t) ≈ ρS(t) ⊗ ρE. (1.3.7)

The following essential approximation is the so-called Markov approximation. We assume

τS ≫ τE, (1.3.8)

implying the environment’s correlation time τE is much shorter than the system’s τS. τ
is the characteristic time of correlation decay. Consequently, we do not take memory
effects of the environment into account. Considering that we use all the approximations
mentioned and change to the interaction picture, we reach the Lindblad equation

∂tρS = [Ĥ(t), ρS] +
∑

n

(

L̂nρS(t)L̂†
n − 1

2
L†
nL̂nρS(t) − 1

2
ρS(t)L̂†

nL̂n

)

. (1.3.9)

In order to obtain the above equation, we utilize the rotating wave approximation. This
means that we disregard fast-oscillating terms, as they average to zero. The resulting
Lindblad-type master equation aids our comprehension of quantum computers’ decoher-
ence. On the right-hand side of the equation, the first term represents the coherent
evolution of the system, while the second term represents incoherent evolution. The L̂n
operators comprise a set of non-unitary operations, which we will investigate in greater
detail. These operators define various physical incoherent processes. The field of research
that encompasses the study of the Lindblad equation is known as open quantum system
dynamics.

1.3.3 Quantum channels

In the prior subsection, we learned how to model quantum decoherence in a time-dependent
equation. This subsection analyzes the possible incoherent noise sources and how they
are inserted into quantum circuits. These noise sources are non-unitary to the system.
Our attention will be to show that quantum operations lead to the so-called operator sum
representation [17, 83].

First, we study pure states in the coherent Schrödinger picture. The time evolution
operator exp(−iĤt), not only preserves probability amplitudes but also exhibits linear-
ity. It transforms the input state vector into another state vector, making it a quantum
operation. Non-unitary operations lead to a mixed-state density matrix. Consequently,
the question is, how do we derive the quantum operations M̂ that recast density matrices
into density matrices:

ρ → ρ′ = M̂ρM̂ †. (1.3.10)

The use of the quantum operation for introducing errors to the system is mostly referred
to as quantum channels. Quantum channels are denoted with EŮconsequently, Equation
(1.3.10) can also be written as E(ρ) = ρ′. The deĄnition of density matrices gives rise to
the properties associated with quantum channels, which are:
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• completely positive-preserving: ρ ⩾ 0 ⇒ ρ′ ⩾ 0

• Trace-preserving: Tr(ρ) = Tr(ρ′)

• Linearity: E(αρi + βρj) = αE(ρi) + βE(ρj)

To show the operator sum representation, we introduce a unitary quantum operation
ÛSE acting on a system and environment. We aim to derive an equation for ρS. The
concept involves having a system ρS and an environment ρE. Additionally, we require
short interaction and a large bath. This leads to the separability of the system and
environment ρ = ρS ⊗ ρE before the operation ÛSE acts on ρ. We Ąrst purify the system
with the environment to model the interaction and then discard the environment. Let the
environment ρE = ♣e0⟩ ⟨e0♣ be in a pure state ♣e0⟩. Assuming that the environment starts
in a pure state does not restrict generality because if it begins in a mixed state, we have
the freedom to introduce an additional system that puriĄes the environment. To discard
the environment, we trace out the environmental degrees

ρ′
S = TrE

(

ÛSE(ρS ⊗ ρE)Û †
SE

)

, (1.3.11)

leading to
ρ′

S =
∑

i

(1S ⊗ ⟨λi♣)ÛSE(ρS ⊗ ♣e0⟩ ⟨e0♣)Û †
SE(1S ⊗ ♣λi⟩), (1.3.12)

with λi being an orthonormal basis of the environment. Next, we insert the identity 1S

for the system to deĄne

ρS ⊗ ♣e0⟩ ⟨e0♣ = (1S ⊗ ♣e0⟩)ρS(1S ⊗ ⟨e0♣), (1.3.13)

and derive the following equation

ρ′
S =

∑

i

(1S ⊗ ⟨λi♣)ÛSE(1S ⊗ ♣e0⟩)ρS(1S ⊗ ⟨e0♣)Û †
SE(1S ⊗ ♣λi⟩). (1.3.14)

We omit them for the expectation value. The operators are deĄned by

M̂i = ⟨λi♣ ÛSE ♣e0⟩ (1.3.15)

and are also known as Kraus operators [83] or operator sum representation

ρ′
S =

∑

i

M̂iρSM̂
†
i . (1.3.16)

Following from ÛSE and the completeness of λi we can show

∑

i

M̂iM̂
†
i =

∑

i

⟨λi♣ ÛSE ♣e0⟩ ⟨e0♣ Û †
SE ♣λi⟩ = TrE

(

ÛSEÛ
†
SEρE

)

= 1S. (1.3.17)

The set of operators M̂i build the operational elements of the quantum operation ÛSE.
There is a difference between quantum operation and operator sum representation. An
operator sum representation is not unique. For one quantum operation, one may Ąnd
different operator sum representations. The count of M̂i needed for the decomposition is
not given. If the sum only contains one term for illustration, the system would stay in a
unitary evolution and would take a pure system state into another pure state.
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QAOA applied to Constrained
Optimization Problems

To assess the capabilities of the Quantum Approximate Optimization Algorithm (QAOA),
we compare its performance with well-studied constrained optimization problems (COPs)
found in the literature, namely Max-kXOR and Max-kSAT. Our main emphasis is on
assessing the performance of QAOA in relation to p and k.

This chapter is organized as follows: In Section 2.1, we provide a general introduction
to the COPs, speciĄcally the kXOR and kSAT problems. In Section 2.2, we delve into a
more detailed examination of QAOAŠs performance for the Max-kXOR problem related
to k and p. Furthermore, in Section 2.3, we analyze the performance of QAOA applied
to Max-kSAT for k = 2, 3, 4, 5 problems and discuss the results with regard to the phase
transition of the decision problem.
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2.1 Constrained Optimization Problems

This section focuses on two constrained optimization problems (COPs), which we will then
later incorporate into QAOA. COPs consist of a certain number of constraints (clauses).
The objective is to maximize the number of satisĄed clauses. The Ąrst COP is Max-
kXOR, and the second is Max-kSAT. We chose these mathematical models because they
are well-studied for classical algorithms.

A single constraint or clause consists of k literals that take binary values. Only certain
value assignments to the variables satisfy the clause. The literals are picked from a set of
variables depending on the problem size. Next to the optimization task for the problem,
there is also the decision task for the problem. The decision task is to determine whether
a given problem is completely satisĄable or not. To identify the optimization tasks, they
are referred to as Max-kXOR and Max-kSAT.

2.1.1 kSAT constraints

In this subsection, we show how kSAT constraints, also known as kSAT clauses, are
constructed for the optimization task. Furthermore, we show how a kSAT clause can be
implemented on a quantum device.

The kSAT problem involves m clauses, where each clause is composed of k literals
selected from n variables and their negations. The literals within a single clause are
connected using the logical OR (∨) operator. This representation is also known as the
conjunctive normal form (CNF). A general kSAT decision problem can be written in the
following form

C =
m
∧

i

∨

¶j1,j2,..,jk♢
(¬)xijk , (2.1.1)

where i denotes a speciĄc clause from a set of m clauses, and j represents the chosen
variable from the set of n variables. In the context of the optimization problem, the
clauses are linked together using addition (+) instead of the logical OR (∧) used for the
decision problem. When explicitly listing each clause, the subscript i is omitted. To
demonstrate, we consider a randomly generated 2SAT instance

C = (x1 ∨ x4) ∧ (¬x1 ∨ x4) ∧ (x2 ∨ ¬x4) ∧ (x1 ∨ ¬x3)

∧(x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3),
(2.1.2)

consisting of 6 clauses. Each clause contains two literals. One way to visualize 2SAT is
through an implication graph. In this graph, we can deduce two implications for each
clause. Taking the Ąrst clause from Equation (2.1.2) as an example, we have

(x1 ∨ x4) : ¬x1 ⇒ x4, ¬x4 ⇒ x1. (2.1.3)

We can construct a directed graph by drawing an arrow from the Ąrst variable to the
implicated variable, as depicted in Figure 2.1. This graph represents the implication
relationships in the 2SAT problem. By analyzing the implication graph, we can determine
whether a 2SAT instance is satisĄable. If a variable and its negation are present in the
same cycle within the graph, it implies that only certain clauses can be satisĄed. This
statement holds true for the 2SAT instance depicted in Figure 2.1.

In order to enable the translation of kSAT problems for quantum computers, it is
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x1 x2 x3 x4

¬x1 ¬x2 ¬x3 ¬x4

Figure 2.1: Implication graph for Equation (2.1.2). Black circles are the
nodes of the variables and their negations. Red arrows are the implica-
tions if one of the literals per clause is false.

necessary to represent all clauses as k-qubit gates. We accomplish this by converting the
CNF form of the problem, denoted as C, into a quantum operator represented by Ĉ and
representing the variables as states in a Hilbert space. To begin, we convert the binary
variables for each element in the set n into the standard basis

¶0, 1♢ → ¶(1, 0)T, (0, 1)T♢. (2.1.4)

By taking the tensor product of all the standard basis states, we construct a Hilbert space
of dimension 2n.

For transforming the problem into an operator, we examine a particular strategy. Our
initial focus will be on 3SAT, and subsequently, we will expand this concept to encompass
kSAT. In 3SAT problems, each clause consists of three literals. Our target is to use Pauli
gates on the quantum device to construct each clause. In this context, every qubit on
the device represents one of the n variables. Consequently, for a given 3SAT clause, we
require a 3-qubit Pauli gate to simulate a CNF clause. Our focus lies on a Pauli gate
decomposition that incorporates ZiZjZk, ZiZj, and Zi Pauli gates, where i, j, and k
correspond to the respective qubits.

By analyzing the truth Table 2.1 of the 3SAT problem, we construct the operator that
represents the clauses. The binary variables are represented as true and false statements
according to ¶0, 1♢ → ¶false, true♢. By extracting the rightmost column from the truth
table in its binary representation, we can generate a column vector. This column vector is
then used as the diagonal elements of a matrix, denoted as Ĉ = diag(0, 1, 1, ..., 1), which
serves as our operator. This diagonal matrix we can decompose into the mentioned Pauli
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a b c (a ∨ b ∨c)
false false false false
false false true true
false true false true
false true true true
true false false true
true false true true
true true false true
true true true true

Table 2.1: Truth table for 3SAT problem for the clause (a ∨ b ∨ c)

gates

Ĉ = diag(0, 1, 1, 1, 1, 1, 1, 1) = α11 + α2

3
∑

i=1

Zi + α3

3
∑

i<j

ZiZj + α4Z1Z2Z3. (2.1.5)

For clause (a ∨ b ∨ c) the solution α⃗ is α⃗ = (7/8,−1/8,−1/8,−1/8). As a general rule,
the decomposition vector α⃗ and the needed Z gates for any kSAT clause are

Ĉ = diag(0, 1, ..., 1) = α11 + α2

k
∑

i=1

Zi + α3

k
∑

i<j

ZiZj + ...+ αk+1Z1...Zk,

with α⃗ = (α1, ..., αk, αk+1) = ((2k − 1)/2k, ...,−1/2k,−1/2k).

(2.1.6)

Clauses with negated literals correspond to permutations of the zero on the diagonal and
can be attained by applying XiXjdiag(0, 1, ..., 1)XiXj.

2.1.2 kXOR constraints

The second optimization problem we are investigating consists of kXOR constraints. In
contrast to kSAT, the primary distinction is that the variables within a clause are linked
together using the exclusive or (⊕) operator. In fact, a random kXOR decision problem
can be described as

C =
m
∧

i

⊕

¶j1,j2,..,jk♢
xijk . (2.1.7)

For example, consider a 2XOR clause containing two literals per clause. An undirected
graph can represent a 2XOR problem, denoted as G(V,E), as shown in the right-hand side
of Figure 2.2. Here, V represents the set of vertices corresponding to the variables, and E
deĄnes the edges, representing the connections between two vertices. Consequently, each
set of variables corresponds to a single clause. The graph on the left side of Figure 2.2
illustrates the Max-2XOR problem, also referred to as Max-cut. For the general Max-cut
problem, we only use non-negated variables.

To establish a quantum formulation of the problem, we adopt a similar procedure as
we did for kSAT constraints. We apply a transformation to kXOR constraints, yielding
an operator denoted as C → Ĉ. For this purpose, we investigate one clause in a 3XOR
instance and extend our Ąndings to higher values of k. Our examination involves analyzing
the truth table presented in Table 2.2 for the 3XOR clause. The outcome of this truth
table in binary representation is then used as the diagonal elements of a matrix, which
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Figure 2.2: Left: G(4,4) 2-regular graph with 4 clauses and a Max-cut
going through every edge leading to red and green colored partitions.
Right: non-regular Graph with an unknown cut.

represents the operator Ĉ. The Ąnal step involves converting the operator Ĉ into standard

a b c (a ⊕ b ⊕ c)
false false false false
true true false true
false true false true
false true true false
true false false true
true false true false
true true false false
true true true true

Table 2.2: Truth table for one clause C of 3XOR

Pauli gates. A 3XOR clause can be equivalently represented by a single 3-qubit Pauli gate,
such as

Ĉ = diag(0, 1, 1, 0, 1, 0, 0, 1) =
1

2
(1 − Zi1Zj2Zn3

). (2.1.8)

The generalization of the above equation to a general kXOR reads

Ĉ =
1

2
(1 − Zi1Zj2 . . . Znk

). (2.1.9)

When dealing with an odd number of negated variables within a clause, the minus sign
in Equation (2.1.9) transforms into a plus sign.

2.2 Limitations of QAOA applied to random

Max-kXOR

In this section, we focus on assessing the effectiveness of the QAOA for solving Max-kXOR
problems, speciĄcally concerning the dependence on k. We begin by providing an overview
in Subsection 2.2.1 of the selected Max-kXOR problems discussed in Subsection 2.1.2. In
Subsection 2.2.2 we examine the correlation of the performance of QAOA applied to Max-
kXOR and the clause-to-variable ratio r. We further investigate QAOAŠs performance
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dependence on k for Max-kXOR problems in Subsection 2.2.3.
Finally, in Subsection 2.2.4, we analyze how QAOAŠs performance compares across

various Max-kXOR problems, particularly for cases involving large values of p.

2.2.1 Max-kXOR problems under investigation

In this section, we explore the performance of the QAOA in the context of Max-kXOR
problems, with a particular focus on scenarios where k > 2. Notably, the application of
QAOA to Max-Cut problems (k = 2) has been extensively scrutinized in prior research
[84, 52, 41]. We speciĄcally select random graph instances to assess QAOAŠs performance
when applied to random Max-kXOR problems. It is worth noting that Marwaha et al.
[85] have previously investigated QAOAŠs performance in Max-kXOR problems charac-
terized by a unique constraint structure. In this specialized context, problems are empty
of triangles, implying that no pair of variables appears in more than one constraint, and
they remain non-adjacent. However, these constrained instances are rather speciĄc and
may not furnish a comprehensive overview of QAOAŠs overall performance trends. Fur-
thermore, they demonstrated the bounds for the constrained Max-kXOR problems with
respect to the classical threshold algorithm. Contrastingly, Basso et al. [86] have high-
lighted limitations in QAOAŠs performance when applied to random Max-kXOR problems
featuring constraint graphs with even values of k. Nevertheless, to gain a more compre-
hensive and nuanced understanding of QAOAŠs performance, it is imperative to engage in
numerical studies encompassing a wide spectrum of values for k and encompassing ran-
dom instances of the Max-kXOR problem. Such an extensive investigation will contribute
to a more robust comprehension of QAOAŠs performance characteristics in this domain.

In Section 2.1, we gained knowledge about how to translate the Max-kXOR problem
into the following operator representation

Ĉk =
∑

i...k∈E
gi...k Zi . . . Zk, (2.2.1)

with E being the set of edges of the problem graph. All edges appear with the same weight
in the generated problem graph expressed by gi...k = 1. To quantify the performance
among different system sizes and different Max-kXOR problems, we introduce the clause-
to-variable ratio r = ♣C♣/n. ♣C♣ is the count of clauses in the problem. The number of
edges is the number of variables n times the clause-to-variable ratio r. To construct a
Max-kXOR instance, we randomly select a clause from the entire set of constraints

(

n
k

)

with probability

p =
r · n
(

n
k

) . (2.2.2)

Max-kXOR, like Max-cut, falls under the complexity class NP-hard [87, 88]. However, it
is important to note that the decision problem of determining whether a kXOR problem
is satisĄable or not belongs to the complexity class P [89].

2.2.2 QAOA performance for Max-kXOR with respect to r

In this subsection, we apply the QAOA algorithm to random Max-kXOR problems. Figure
2.3 displays the results for QAOA applied to Max-kXOR in dependence on the clause-to-
variable ratio r. We investigate the performance for p = 1, 2, 3, 4 and k = 3, 4, 5, 6. First,
we observe that the performance Ip exhibits a signiĄcant decrease for small increments
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Figure 2.3: Plotting QAOA improvement over random guessing Ip
against the clause-to-variable ratio r for Max-kXOR for k = 4, 6, 8, 10.
For every plot, we calculate the performance of QAOA for p = 1, 2, 3, 4.
For every r, k, p, we average over 10000 randomly created ErdősŰRényi
instances for a qubit size 18.

in dr, regardless of the speciĄc Max-kXOR problem or p for r < 1. For r < 1, the
problem instances are under-constrained, and therefore, multiple solutions exist. These
problems are easy to solve for an algorithm regardless of whether it is a quantum or
classical algorithm. For increasing r > 1, the decrease in performance slows down for all
p and k. For r > 1, the problem instances have fewer solutions than for r < 1 and become
harder to solve for an algorithm.

In sum, we observe a dependence of the performance of QAOA applied to Max-kXOR
problems on r. The QAOA performances for all k and p only differ in a vertical shift
along the Ip-axis. Furthermore, the relative performance improvement p to p + 1 and
p+ 1 to p+ 2 decreases.
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2.2.3 QAOA performance in dependence on k

In this subsection, we investigate how the performance of QAOA changes when applied to
random Max-kXOR instances for large k. The results are shown in Figure 2.4. For r < 1,
we have a high standard deviation. For r > 1, the standard deviation for all k decreases.
For r > 1, we observe that the performance Ip decreases for increasing k, so we provide
Ąrst indication that for random Max-kXOR for increasing k, the problems become harder
to solve for QAOA.
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Figure 2.4: Plotting the performance of QAOA Ip as a function of the
parameter r for randomly generated Max-kXOR instances. Our analysis
covers the range of k ∈ [3, 10]. We calculate the average performance
over 10000 instances for each combination of r and k.

2.2.4 QAOA performance at high circuit depth

In this section, we analyze how QAOA performs on hard-to-solve random instances of the
Max-kXOR problem for large p. As previously discussed, solving instances with r > 1
is more difficult than those with r < 1, regardless of the value of k. The performance
of QAOA degrades linearly with a slight negative trend for r > 1. Consequently, we
anticipate that there wonŠt be a signiĄcant relative difference in QAOAŠs performance for
instances with r > 1, unless we approach a complete problem graph, meaning r ·n ≈

(

n
k

)

.
In Figure 2.5 we plot the results for Ip with 1 ⩽ p ⩽ 8 and 3 ⩽ k ⩽ 10. When
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we compare the difference in improvement at p = 1 and p = 8 among two k values, we
determine an increase in the performance difference, expressed as

Ikxor
p − I(k+n)xor

p < Ikxor
p+m − I(k+n)xor

p+m , (2.2.3)

with p,m > 0. This implies that the performance improvement of the QAOA is not
characterized by a linear shift when applied to different instances of Max-kXOR problems.
Instead, as we increase the parameter p in QAOA, the relative improvement reduces with
increasing k. Consequently, we conclude that as k grows, Max-kXOR problems become
progressively more challenging to solve using the QAOA algorithm. Building upon the
Ąndings of Basso et al. [86], who demonstrated the infeasibility of QAOA for solving Max-
kXOR problems with even values of k, we provide numerical evidence to substantiate that
this assertion holds for all values of k. This extends and complements the investigation
conducted by Marwaha et al. [85], which focused exclusively on Max-kXOR instances
that were empty of triangles.
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Figure 2.5: Plotting the performance Ip against p for Max-kXOR with
k = 4, 6, 8, 10. We set r = 1.5 to investigate hard-to-solve instances for
QAOA. Per p and Max-kXOR, we average over 1000 random instances.

2.3 Limitations for QAOA applied to random

Max-kSAT

In this section, our focus is on examining the performance of the QAOA for Max-kSAT
with k = 2, 3, 4, 5, as well as exploring its relationship to the satisĄability threshold
r∗

sat. We begin by providing a brief introduction in Subsection 2.3.1, discussing what is
currently known regarding Max-kSAT for classical algorithms and QAOA. Subsequently,
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we analyze the performance of QAOA for Max-kSAT in Subsection 2.3.2. In Subsection
2.3.3 we investigate the performance for high circuit depth.

2.3.1 Max-kSAT problems under investigation

In this subsection, we present the random Max-kSAT problems under examination. For
Max-kSAT, we have at most 2k possible clauses per set of k variables. Therefore, the
clause-to-variable ratio is

r =

(

n

k

)

n
2kp. (2.3.1)

p represents the probability, where p ∈ [0, 1], indicating the number of clauses from the
complete set that we use to generate a random instance of Max-kSAT.

The classical SAT solver for the decision problem like WalkSAT [90] and Survey Prop-
agation [91] have a dramatic decrease in performance close to the satisĄability phase
transition of kSAT. For r > r∗

sat, the probability of having a solution string that satisĄes
all clauses decreases to zero. For r ≪ r∗

sat, the probability of having a solution string
that satisĄes all clauses is close to 1. As the following table shows, r∗

sat increases with
increasing k. For r ≫ r∗

sat and r ≪ r∗
sat, solving the decision problem is easier compared to

kSAT r∗
sat

2 1
3 4.27
4 9.93
5 21.12

Table 2.3: Table for satiĄability clause-to-variable ratio r∗
sat for random

kSAT.

being close to the satisĄability threshold. This structure is often referred to as the easy-
hard-easy pattern. In the context of the Max-kSAT optimization problem, an easy-hard
pattern becomes apparent. This pattern entails that as we increase the clause-to-variable
ratio, the complexity of the optimization problems generally intensiĄes, making them
more challenging to solve.

Biamonte et al. [55] studied the relationship between QAOA performance and the
clause-to-variable ratio in Max-2SAT and Max-3SAT problems. Their empirical Ąndings
conĄrmed the existence of a threshold in the clause-to-variable ratio that signiĄcantly im-
pacts the performance of QAOA. Once this threshold is exceeded, a noticeable decrease
in QAOA performance occurs. No connection was discovered between the performance of
QAOA applied to Max-2SAT and Max-3SAT and the phase transition for the respective
decision problem.

2.3.2 QAOA performance of Max-kSAT with respect to r

In this subsection, we explore the performance of Max-kSAT denoted as I1 for the case
of p = 1. Figure 2.6 illustrates the results of I1 for problem sizes n = 15. As anticipated,
when the clause-to-variable ratio is low (0 < r < 1), all Max-kSAT instances exhibit
similar performance, achieving I1 values between 0.8 and 0.85. These instances are easily
solvable for all values of k, as the instances are under-constrained. This implies the

30



QAOA applied to Constrained Optimization Problems

existence of multiple solutions for a single instance in this regime. Moreover, for 0 < r < 1,
we are below the satisĄability threshold r∗

ksat of the respective decision problem for all
kSAT.

For r > 1, the performance I1 starts to decrease, indicating more challenging instances
appear for all Max-kSAT. In Figure 2.6, the Max-2SAT problem has a more signiĄcant

r∗2sat r∗3sat 6 r∗4sat 15 18 r∗5sat 26
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Figure 2.6: Plotting the improvement over random guessing I1 against
clause-to-variable ratio r for p = 1. The blue, orange, green, and red
graphs are the results for Max-kSAT with k = 2, 3, 4, 5. r∗

sat is the phase
transition for the respcted kSAT decision problem. For every r of every
kSAT, we average over 10000 random instances. The problem size is
n = 15.

QAOA performance decrease for small increments of dr than for k = 3, 4, 5. Upon further
increase of r beyond r∗

2sat of the respected decision problem, QAOAŠs performance for
the Max-2SAT problem demonstrates a slower change in QAOA performance for small
changes dr for r∗

3sat > r > r∗
2sat. However, as r surpasses the threshold r∗

3sat while still
remaining below r∗

4sat, the performance of QAOA applied to Max-3SAT problem is the
worst among all Max-kSAT in Figure 2.6. For Max-4SAT and Max-5SAT, we observe the
same QAOA performance decrease with respect to r and the satisĄability thresholds.

To sum up, in our examination of QAOA on Max-kSAT, we observe the following
trend. The worst QAOA performance among all Max-kSAT problems is observed when
r crosses the threshold of satisĄability for the respective decision problem while still
staying below the subsequent threshold. This trend holds true for Max-kSAT problems
with k ranging from 2 to 5. These Ąndings suggest a correlation between the satisĄability
threshold and the observed performance drop in Ip(r).

We also determine in Figure 2.6 for r ≫ r∗
5sat, the performance of QAOA decreases

with increasing k. We deĄne this phenomenon as the delocalization effect of COPs. The
effect of delocalization we classify as follows. Increasing k means more literals from the
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set of n variables are included in one clause. Consequently, if we change one bit of one
speciĄc solution string, we change the energy rate more for higher kSAT. In other words,
if we pick a solution string for QAOA and change the string by a few Hamming distances,
the result for the QAOA differs signiĄcantly from the original solution. The quantity of
delocalization connects the structure of the problem to the local properties of the QAOA.

One local property of the QAOA is characterized by including Pauli-X operators in
the driver Hamiltonian employed within the algorithm. This driver makes it possible
to change among solution strings for QAOA in shallow depth if we have problems like
Ĥ =

∑

i,j ZiZj. As soon as we increase the number of qubits in the interaction, we gain
delocalization effects. Following, the QAOA with a single qubit X-driver decreases in
performance. This assumption is substantiated by the results of Biamonte et al. [55].
They showed an increase in performance using the Grover driver

ĤGrover =
∑

i

Xi +
∑

i,j

XiXj + . . .+
∑

i,..,n

Xi . . . Xn. (2.3.2)

The Grover driver is a complete driver. ĤGrover allows all possible transitions between
bit strings and thus is of non-local structure. The study conducted in [55] demonstrated
that the utilization of ĤGrover as the driver yielded enhanced performance compared to
Pauli-X operators in the context of solving 2SAT and 3SAT problems.

2.3.3 QAOA performance at high circuit depth
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Figure 2.7: Plotting performance of QAOA Ip against p for
kSAT problems. The plot shows the performance for k =
2(blue), 3(orange), 4(green), 5(red). We average over 1000 random Max-
kSAT instances per k and per p value with r = 25.

In this subsection, we investigate the relative performance decrease of QAOA for large
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p on hard-to-solve Max-kSAT problems. To study the performance differences among the
Max-kSATs, we set r = 25, ensuring that we surpass the phase transition for the decision
problem for every k. In Figure 2.7, we present how QAOAŠs performance diminishes as
we increment the value of p for a speciĄc k. Upon a closer examination of the relative
performance differences, expressed as

Iksat
p − I(k+n)sat

p < Iksat
p+m − I(k+n)sat

p+m , (2.3.3)

for n,m > 0, a clear pattern emerges. We observe that relative improvement from p to
p + 1 decreases for increasing k. This trend suggests that Max-kSAT problems become
increasingly challenging to solve using QAOA as k increases. In other words, to achieve a
comparable level of performance between two Max-kSAT problems, a signiĄcantly higher
value of p is required for instances with larger values of k. Generally speaking, the relative
performance decrease for a speciĄc Max-kSAT problem indicates that QAOA is unsuitable
for hard-to-solve Max-kSAT problems. This is primarily due to the impracticality of
running QAOA on current quantum devices when a high circuit depth is necessary to
maintain acceptable performance levels.

2.4 Conclusion

In this section, we provide numerical evidence that the performance of QAOA decreases
with increasing k for random Max-kXOR problems. This stands in sharp contrast to
the Ąndings of Marwaha et al. [85], who reported that QAOAŠs performance improves
with increasing k for triangle-free instances. Furthermore, we showed that the relative
improvement of QAOA applied to Max-kXOR decreases for increasing k and also for
increasing p. We further showed that the performance of QAOA depends on the clause-
to-variable ratio r for Max-kXOR problems. Overall, we provide evidence that QAOA
applied to random Max-kXOR problems gets impracticable to run on a real device for
increasing k.

We also delved into the connection between QAOA performance applied to Max-kSAT
problems and the relation to the parameter k. Our investigation revealed that if r is above
the phase transition point of the decision problem for all values of k, the performance of
QAOA deteriorates the most when dealing with the largest values of k. Additionally, our
analysis demonstrated that as k increases, the relative improvement achieved by applying
QAOA to Max-kSAT problems diminishes. Consequently, we can deduce that Max-kSAT
problems, where the clause-to-variable ratio exceeds the phase transition threshold of the
decision problem, become increasingly impractical to solve on real quantum devices as k
increases.
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Annealing-inspired initialization for
QAOA

The Quantum Approximate Optimization Algorithm (QAOA) is a variational algorithm
designed to minimize the loss function by searching for the optimal parameters, repre-
sented as γ⃗∗ and β⃗∗. To achieve this, an optimizer is employed. It is essential to have
initial parameters γ⃗, β⃗ in proximity to the optimal parameters γ⃗∗, β⃗∗ to avoid the opti-
mizer becoming stuck in a region of vanishing gradient within the parameter space. The
QAOA ansatz can be viewed as an approximation of an annealing process. Sack et al. [92]
were the Ąrst to investigate QAOA parameter optimization inspired by annealing proto-
cols. Thus, our objective is to investigate various schedules for optimizing the QAOAŠs
initial parameters. In particular, we demonstrate that linear schedules outperform the
Trotterized Quantum Annealing (TQA) protocol introduced by Sack et al. [92].

This chapter primarily focuses on optimizing annealing-inspired linear schedules for
the initial parameters γ⃗, β⃗. We compare linear schedules with the TQA initialization
method. The chapter is structured as follows: Section 3.1 introduces the concept behind
the annealing-inspired initialization technique for QAOA. In Section 3.2, we perform a
detailed analysis, comparing the effectiveness of linear schedules and the TQA protocol
as initialization methods for QAOA. Section 3.3 compares sigmoid schedules and TQA.
Finally, in Section 3.4, we compare linear schedules with random initialization and the
Fourier method, which is not annealing-inspired.
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3.1 Annealing-inspired parameter schedule

In this section, we investigate the procedure to apply an annealing-inspired subroutine to
Ąnd initial parameters for QAOA. We propose incorporating a subroutine that employs
linear schedules for initializing the 2p parameters. This builds upon the TQA protocol
of Sack et al. [92]. To differentiate between these two approaches, we will refer to our
method as the linear schedule subroutine and to the method proposed by Sack et al. [92]
as the TQA subroutine. Both subroutines optimize within a parameter space of lower
dimensionality than the 2p. The origin of the TQA method lies in the observation that a
single execution of the QAOA can be viewed as a discrete representation of the quantum
annealing process

ψ(τ) = Û(τ) ♣s⟩ = T exp

(

∫ τ

0
Ĥ(t)dt

)

♣s⟩ . (3.1.1)

T is the time ordering operator and the Hamiltonian is

Ĥ(τ) = (1 − τ)ĤD + τĤP. (3.1.2)

ĤD deĄnes the driver Hamiltonian for which we possess knowledge of the ground state,
while ĤP corresponds to the problem Hamiltonian with an unknown ground state. The
annealing parameter τ ∈ [0, 1] is deĄned as τ = t/T . Here, t represents the time, and
T is the total runtime needed to make a smooth adiabatic transition. The total runtime
depends on the distance between the ground and the Ąrst excited state (minimal energy
gap ∆E). During this process, the initial state ♣s⟩ changes from the driverŠs to the problem
HamiltonianŠs ground state. If this time evolution is slow enough, the adiabatic theorem
ensures that the system remains in the ground state. In order to establish a system that
relies on the driver Hamiltonian initially and transitions to the problem Hamiltonian at
the Ąnal time, we build the Hamiltonian as delineated in Equation (3.1.2), aiming to
satisfy the two properties: Ĥ(τ = 1) = ĤP and Ĥ(τ = 0) = ĤD. Also, the Hamiltonian
Ĥ must gradually change over time, implying that ∂tĤ ≈ 0. Every other schedule which
does not have these two properties is called a diabatic schedule [93]. We are interested
in diabatic schedules because, for adiabatic quantum annealing, long runtime [94] and,
therefore, high p for QAOA is necessary. TQA method discretizes the annealing time
evolution into p slices

e−i∆tĤ ≈ e−i∆tĤDe−i∆tĤP , (3.1.3)

with γ = ∆t(t/T ) and β = ∆t(1 − t/T ), and optimizes ∆t. In this chapter, we want to

Ąnd suitable annealing-like initializations of γ⃗, β⃗ for p, and we compare them to the TQA
method.

The linear schedule subroutine works as follows: First, the p has to be Ąxed for the
problem we want to solve. Second, decide for a schedule. Even though we can use various
schedules, since we always begin with linear schedules and investigate them the most in
the underlying thesis, we call the subroutine linear schedules. The freedom to choose
the schedule is an extension of the TQA method. The schedule determines how many
schedule parameters must be optimized in the linear schedule subroutine. For instance,
three schedule parameters must be optimized for a non-symmetric linear schedule with
Ąxed γ1 = 0. The essential point is that the initial QAOA parameters γ⃗(α⃗init), β⃗(α⃗init)
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depend on the schedule parameters α⃗ with

γ⃗(α⃗init) = (γ1(α⃗init), . . . , γp(α⃗init)), β⃗(α⃗init) = (β1(α⃗init), . . . βp, (α⃗init)). (3.1.4)

When a subscript init is present, it indicates a particular type of schedule. If there is
no subscript, it means no speciĄc schedule is being referred to. For example, for a linear
schedule, the QAOA parameters are distributed according to

γ⃗(a, b) = (a 1 + b, . . . a p+ b), β⃗(c, d) = (c 1 + d, . . . c p+ d), (3.1.5)

with the parameters a, b, c, d to be optimized. We proceed with the optimization of the
schedule parameters α⃗ in order to determine the optimal values α⃗∗. The state

♣α⃗⟩ =
p
∏

p′=1

eiβp′ (α⃗)ĤDeiγp′ (α⃗)ĤP ♣s⟩ , (3.1.6)

will be prepared on the quantum device, and the loss function

max
α⃗

⟨Ĥ⟩α⃗ = ⟨α⃗♣ Ĥ ♣α⃗⟩ (3.1.7)

will be optimized on the CPU. The mean approximation ratio of the optimized schedule
parameters we call

Lp(α⃗
∗) =

⟨Ĥ⟩α⃗∗ − Emin

Emax − Emin

, (3.1.8)

and the mean approximation ratio for executing QAOA with optimized schedule parame-
ters Mp(α⃗

∗). The depicted process in Figure 3.1 outlines the recommended approach for
the subroutine aimed at achieving a low Lp(α⃗

∗) ⩾ L. The linear schedule subroutine will

Choose p

decide for schedule α⃗:

γ⃗(α⃗), β⃗(α⃗)

optimize:

max
α⃗

⟨Ĥ⟩α⃗

Lp(α⃗
∗) > L

Lp(α⃗
∗) ⩾ L

M(α⃗∗)

Figure 3.1: Flowchart for optimizing QAOAŠs initial parameters with
linear schedule subroutine.

be executed until Lp(α⃗
∗) ⩾ L, with L being a threshold value. If Lp(α⃗

∗) ⩾ L, we have
the option to run the QAOA to compute Mp(α⃗

∗). Alternatively, if the Ąnal state of the
subroutine yields an energy that closely approximates the expected minimum energy of
the problem Hamiltonian ĤP, our objective is accomplished. If Lp(α⃗

∗) < L, a new sched-
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ule α⃗ can be chosen. One possible course of action could be: Ąrst, try a symmetric linear
schedule with one parameter; second, choose a symmetric sigmoid schedule with two pa-
rameters; third, try a non-symmetric linear schedule with three parameters and γ1 = 0. A
signiĄcant advantage of the linear schedule subroutine is its capability to work regardless
of the problem size and p-depth. Especially for highly non-degenerate and large-sized
problems, this approach can help Ąnd suitable initial parameters. Another way to achieve
a high Lp is to increase p until attaining coherence time to reach annealing-like conditions
for QAOA. If the annealing time is sufficiently large, the quantum annealing algorithm
will Ąnd the optimal solution due to the adiabatic theorem.

We will provide evidence that this subroutine is less complicated due to more local
minima close to the global minimum for a particular p. This leads to less state preparation
on the quantum computer than executing QAOA with random initial parameters. We
will provide evidence demonstrating that the linear scheduling subroutine surpasses the
TQA protocol in cases of shallow circuit depth when considering the mean approxima-
tion ratios Lp(α⃗

∗) and Mp(α⃗
∗). Furthermore, we will show that linear schedules and the

TQA method outperform random initialization methods due to less required optimizer
executions.

3.2 Applying linear schedules to QAOA parameters

In this section, we present the enhanced initialization of QAOA by utilizing linear sched-
ules. Firstly, in Subsection 3.2.1, we demonstrate the superior performance of linear
schedules compared to TQA in terms of Lp in shallow circuit depth. Building upon this
outcome, in Subsection 3.2.2, we delve into the examination of the performance of linear
schedules and TQA on Mp. Subsequently, in Subsection 3.2.3, we showcase the extent
to which each parameter deviates from its initial values and the Ąnal QAOA parameters
for both TQA and linear schedules. Additionally, in Subsection 3.2.4, we provide a time
perspective on the parameter results from the previous subsections. Finally, in Subsection
3.2.5, we establish the independence of our results from the system size as n increases.

3.2.1 Optimized QAOA start parameters

First, we apply linear schedules to a modiĄed version of the Sherrington-Kirkpatrick [95]
(SK) model

Ĥ =
∑

i,j

Ji,jZiZj +
∑

i

hiZi. (3.2.1)

In this case, we have single-qubit and two-qubit coupling with Ji,j, and hi coupling
strengths picked from a Gaussian distribution with mean zero ⟨Ji,j + hi⟩ = 0 and variance
σ(Ji,j) = σ(hi) = 1. The problem graph is fully connected. hi is an exterior magnetic Ąeld.
Barahona et al. [96] demonstrated that the problem of locating the lowest eigenvalue of
Ĥ is NP-hard, thus proving the impossibility of Ąnding a polynomial-time algorithm for
its solution. This challenge makes it particularly appealing to quantum computing. The
original SK model has no exterior magnetic Ąeld, and the problem size normalizes the
coupling strength Ji,j. The only parameter to determine for TQA is β1. Equation (3.1.6)
reduces to

♣α⃗⟩ =
p
∏

p′=1

ei((−β1/p) (p′−1)+β1) ĤDei(β1/p) (p′−1)ĤP ♣s⟩ (3.2.2)
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and for a general linear schedule with γ1 = 0 to

♣α⃗⟩ =
p
∏

p′=1

ei((−(βp−β1)/p) (p′−1)+β1) ĤDei(γp/p) (p′−1)ĤP ♣s⟩ . (3.2.3)

For TQA, we use the notation α⃗TQA to represent the parameter schedule, while for a
linear schedule, we utilize α⃗ls. Additionally, we introduce α⃗TQA,p=9 and α⃗ls,p=9 to signify
the linear schedule and the TQA protocol for p = 9. Figure 3.2 shows the result for
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Figure 3.2: Depicting the mean approximation ratio Lp plotted against
the parameter p, ranging from p = 2 to p = 100, considering the op-
timal schedule parameters α⃗∗

TQA and α⃗∗
ls. Furthermore, we illustrate

Lp for α⃗∗
TQA,p=9 and α⃗∗

ls,p=9. The parameter space for α⃗ls is set to
[β1, βp, γp] ∈ [0, 2π] × [0, 2π] × [0, 2π], while for α⃗TQA, it is constrained to
β1 ∈ [0, 2π]. The optimization of these schedules is carried out using the
BFGS optimizer. Our analysis encompasses an ensemble averaging over
1000 instances for each value of p and its corresponding schedule. The
Powell optimizer yields comparable outcomes despite its independence
from gradient-based techniques.

Lp for the schedules α⃗∗
ls, α⃗

∗
TQA, α⃗

∗
ls,p=9, α⃗

∗
TQA,p=9 up to p = 100. Accordingly, the mean

approximation ratio for random guessing will be exactly Lp = 0.5. Thus, Lp=0.5 means
we have no improvement over random guessing. For 1 < p < 10, the schedulesŠ mean
approximation ratio difference is at least

Lp(α⃗
∗
ls) − Lp(α⃗

∗
TQA) > 0.08. (3.2.4)

For p = 2 and α⃗ls, we achieve an improvement over random guessing of 0.2. Whereas for
TQA, we reach an improvement of 0.02. Sack et al. [92] achieved similar mean approxima-
tion ratios when applying TQA protocols to Max-cut instances. For p ⩽ 10 and α⃗TQA∗,p=9,
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Lp(α⃗TQA∗,p=9) exhibits an optimal value due to accordance with Lp(α⃗
∗
TQA). Similarly, it

is observed that Lp(α⃗ls∗,p=9) aligns with Lp(α⃗
∗
ls) within the range of 3 < p < 13. Draw-

ing from this insight, optimized scheduling parameters for a given p yield an optimal
mean approximation ratio for at least p − 1 and p + 1, corresponding to Lls,p−1(α⃗

∗
ls,p) ≈

Lls,p−1(α⃗
∗
ls,p−1) and Lls,p+1(α⃗∗

ls,p) ≈ Lls,p+1(α⃗∗
ls,p+1), respectively. This suggests that as p

increases, there is a gradual displacement of the global minimumŠs position within the
α⃗-parameter space. This result was also ascertained for Max-cut 3-regular unweighted
graphs [92].

To summarize, linear schedules outperform TQA protocols regarding the mean ap-
proximation ratios. Moreover, as illustrated in Figure 3.2, we have shown that both TQA
and linear schedules allow us to approach a mean approximation ratio close to the global
minimum for high circuit depth. This observation holds signiĄcance because as the value
of p increases, the optimization task becomes more challenging for QAOA with randomly
initialized parameters, primarily due to the increased likelihood of encountering barren
plateaus, as noted in prior research [97]. The number of required optimizer executions
increases exponentially 2O(p) [45]. In the case of TQA and linear schedules, achieving a
solution that outperforms the mean approximation ratio achieved by random parameter
guessing requires only a single execution of the optimizer.

3.2.2 Executing QAOA with optimized start parameters
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Figure 3.3: Plotting 1−Mp and 1−Lp against p in a log-linear scale. Solid
lines indicate mean approximation ratio Lp for optimized schedules for
TQA (orange line) and linear schedules (blue line) taking from 3.2. The
dotted blue line (Mp(α⃗

∗
ls)) and dashed orange line (Mp(α⃗

∗
TQA)) show the

respective QAOA results. We use BFGS optimizer on 1000 random SK
instances per p. Remark: For every instance, two optimizer executions
are applied.
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We now examine the difference in mean approximation ratios M(α⃗∗
ls), M(α⃗∗

TQA) for
QAOA with TQA and linear schedules. Figure 3.3 shows 1 − Mp and 1 − Lp for TQA
and linear schedules. We use the local optimizer BFGS for this simulation. For every
p, we observe an improvement from 1 − Lp to 1 − Mp for TQA and linear schedules
parameters. Consequently, the linear schedules approach does not lead to the problem of
starting on a barren plateau. Only for p = 2, we almost have no improvement between
1 − Lp and 1 − Mp for both schedules. The enhancement grows as p increases for both
schedules, which agrees with Guerreschi et al.[98]. Guerreschi et al. [98] proved that
a greater number of local minima in proximity to the global minimum manifest as the
parameter space expands. Furthermore, we determine that for p ⩽ 10, we always have a
greater Mp for linear schedules than for TQA. This is essential since only short circuits
can be executed on a quantum computer with high accuracy. Hence, linear schedules
outperform TQA protocols. For p > 10, the difference between TQA and linear schedules
initialization in Mp is less than 1%. For further investigations, we introduce three new
quantities

dinit =
∣

∣

∣(
#  ”

γβ(α⃗∗
init) − (

#  ”

γβ)*
init

∣

∣

∣ , d* =
∣

∣

∣(
#  ”

γβ)*
TQA − (

#  ”

γβ)*
ls

∣

∣

∣ , (3.2.5)

∆init = Mp(α⃗
∗
init) − Lp.

d is a distance in parameter space, and ∆ is the difference in the mean approximation
ratio. The subscript indicates the schedule method used for the subroutine. dinit is the
distance in parameter space between γ⃗, β⃗ using optimized schedule parameters and γ⃗∗, β⃗∗.
d∗ is the distance in parameter space between optimal QAOA angles γ⃗∗, β⃗∗ initialized by
TQA γ⃗(α⃗∗

TQA), β⃗(α⃗∗
TQA) and linear schedules γ⃗(α⃗∗

ls), β⃗(α⃗∗
ls). Finally, we compare the rela-

tive improvement ∆init in the mean approximation ratio before and after executing QAOA.
Table 3.1 shows the quantiĄer results. All the quantities in the table have been obtained

Quantity p = 3 p = 7 p = 12 p = 15 p = 18

⟨∆TQA⟩ 0.17 0.1 0.076 0.063 0.056

⟨∆ls⟩ 0.05 0.042 0.023 0.021 0.017

⟨dTQA⟩ 0.41 0.42 0.78 0.78 0.89

⟨dls⟩ 0.17 0.18 0.22 0.38 0.71

⟨d*⟩ 0.68 0.65 1.2 1.35 1.4

Table 3.1: Depicted are 3 quantiĄers for 5 different p values for TQA and
linear schedules to show the difference in both methods. The quantiĄers
∆init, d

*, dinit we refer to 3.2.2, init is the respected initialization method,
and ⟨.⟩ is the average over 1000 instances.

using the BFGS local optimizer. Similar values for the quantities can be achieved when
using other local optimizers. The average distance between γ⃗∗, β⃗∗ and γ⃗(α⃗∗

TQA), β⃗(α⃗∗
TQA)

indicated by ⟨dTQA⟩ is larger than for linear schedules. Therefore, we conclude that linear
schedulesŠ optimal parameters are closer to local minima in the 2p dimensional parameter
space than TQAŠs schedule. Executing QAOA with linear schedules initialization leads
to a greater M than for TQA initialization. Consequently, the optimizer is less likely to
explore a decreasing gradient region. The statement gains additional reinforcement from
the fact that the average distance of ⟨d*⟩ slightly increases as p grows. As a result, TQA
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and linear schedules converge to distinct points in the QAOA parameter space for their
Ąnal parameters γ⃗∗(α⃗∗

TQA), β⃗∗(α⃗∗
TQA) and γ⃗∗(α⃗∗

ls), β⃗
∗(α⃗∗

ls). Besides, the relative improve-
ment from Lp to Mp increases more for TQA than for linear schedules, as expressed by
∆TQA > ∆ls.

3.2.3 Parameter deviation after executing QAOA
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0.0

0.5

1.0

γ
i,
β
i

TQA
~γi(~α

∗

TQA)

~βi(~α
∗

TQA)

~γ∗

i
(~α∗

TQA)

~β∗

i
(~α∗

TQA)

1 2 3

ls

~γi(~α
∗

ls
)

~βi(~α
∗

ls
)

~γ∗

i
(~α∗

ls
)

~β∗

i
(~α∗

ls
)

2 4 6 8
0.0

0.5

1.0

γ
i,
β
i

2 4 6 8

2 5 9 12 15 18
i

0.0

0.5

1.0

γ
i,
β
i

2 5 9 12 15 18
i

Figure 3.4: Plotting parameter values γi, βi against multiple p.
Left column: solid blue, red line indicates the starting parameters
γi(α⃗

∗
TQA), βi(α⃗

∗
TQA) with the optimal TQA initialization. Blue, red

markers indicate the Ąnal parameters γ∗
i (α⃗

∗
TQA), β∗

i (α⃗
∗
TQA). The 3 rows

correspond to p = 3, 8, 18 (top to bottom). Right column: solid
cyan, yellow lines indicate optimal linear schedule initializations for
γi(α⃗

∗
ls), βi(α⃗

∗
ls). Cyan, and yellow markers are the respected Ąnal pa-

rameters γ∗
i (α⃗

∗
ls), β

∗
i (α⃗

∗
ls). For every single plot, we average over 1000

random Sk instances.

In this subsection, we examine the change in γ⃗(α⃗∗), β⃗(α⃗∗) and γ⃗∗(α⃗∗), β⃗∗(α⃗∗) regard-
ing TQA and linear schedules initialization. Figure 3.4 illustrates the outcomes for
p = 3, 8, 18. We commence with the examination of Figure 3.4 for p = 3. For TQA, we
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observe that γ⃗(α⃗∗
TQA), β⃗(α⃗∗

TQA) and γ⃗∗(α⃗∗
TQA), β⃗∗(α⃗∗

TQA) do not overlay within the stan-
dard deviations. β(α⃗∗

TQA) and the optimal QAOA parameters β∗(α⃗∗
TQA) are signiĄcant

close, with a difference of only 0.1 and low standard deviation (≈ 0.075 on average) across
all pi. However, TQA suffers from a poor initialization in γ⃗(α⃗∗

TQA). The optimal QAOA
parameters γ⃗∗(α⃗∗

TQA) exhibit a notable difference in γ∗
3(α⃗∗

TQA) compared to γ∗
3(α⃗∗

TQA),

with a high standard deviation. Whereas for linear schedules at p = 3, γ⃗(α⃗∗
ls), β⃗(α⃗∗

ls) and

γ⃗∗(α⃗∗
ls), β⃗

∗(α⃗∗
ls) differ by less than 0.1 for every element.

Next, we investigate the scenario with p = 8, corresponding to the second row in Fig-
ure 3.4. TQA and linear schedules deviations between γ⃗(α⃗∗), β⃗(α⃗∗) and γ⃗∗(α⃗∗), β⃗∗(α⃗∗)
are similar to p = 3. The parameters of linear schedules have fewer deviations between
optimal schedule and optimal QAOA parameters. Whereas for TQA, the most deviations
arise between γ∗

i (α⃗
∗
TQA) and γi(α⃗

∗
TQA). For higher p, the deviation between the initial and

Ąnal parameters increases. Additionally, the standard deviations increase.
For p = 18 in Figure 3.4, the disparities between γ⃗(α⃗∗), β⃗(α⃗∗), and γ⃗∗(α⃗∗), β⃗∗(α⃗∗) are

largely comparable to those observed for p = 3 and p = 8. However, there is an exception
as we observe an increase in the deviation between β⃗∗(α⃗∗

ls) and β⃗(α⃗∗
ls) for p ⩽ 4. Linear

schedules initialization is generally more stable than TQA. As we increase the value of p
we Ąnd that there is no signiĄcant deviation between γ⃗∗(α⃗∗

ls) and γ⃗(α⃗∗
ls). Additionally, we

discover that the standard deviation of each parameter, γ⃗∗(α⃗∗
ls) and β⃗∗(α⃗∗

ls), is consistently

lower than 0.02 for p ⩾ 4. While the standard deviation for the Ąrst one-third of β⃗∗(α⃗∗
ls)

elements increases as p increases, this increase is not as signiĄcant as the rise in TQA
standard deviation noted in γ⃗∗(α⃗∗

TQA). These conclusions align with the results in Table
3.1.

3.2.4 QAOA parameters as time evolution

In this subsection, our attention is directed toward examining the time representation
of γ⃗(α⃗ls), γ⃗(β⃗ls).The time analysis aims to elucidate how optimal and near-optimal linear
schedules change with respect to the mean approximation ratio as the value of p increases,
and we can obtain the operational time.

The QAOA can also be interpreted as an approach where we turn on and off two
Hamiltonians for certain amounts of time ∆ti with the unitary time evolution

U(Ttot) = exp
(

−iĤD∆tDp
)

exp
(

−iĤP∆tPp
)

exp
(

−iĤD∆tDp−1

)

exp
(

−iĤP∆tPp−1

)

×
. . .× exp

(

−iĤD∆tD1
)

exp
(

−iĤP∆tP1
)

.
(3.2.6)

The problem ĤP or the driver Hamiltonian ĤD are turned on for a duration of ∆ti, during
which the other Hamiltonian is turned off. This approach to the QAOA is commonly
referred to as the bang-bang approach and has been studied in [99, 100]. The sum of the
times per Hamiltonian can be viewed as the systemŠs operational time

Ttot =
p
∑

i=1

(

∆tDi + ∆tPi

)

. (3.2.7)

We deĄne

TD =
p
∑

i=1

∆tDi and TP =
p
∑

i=1

∆tPi (3.2.8)
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as the driver and the problem time. If we restrict to TQA protocols, we limit the total
time to

p
∑

i=1

∆tDi =
p
∑

i=1

∆tPi =
Ttot

2
. (3.2.9)

When using linear schedules, we consider the times (parameters) ∆tPp and ∆tDp to be
independent of each other. These parameters correspond to the angles γi and βi. It
is necessary to establish a speciĄc range for these parameters. In the context of the
Sherrington-Kirkpatrick model, the range of values for ∆tDp and ∆tPp is constrained to the
interval [0, 2π]. This constraint on ∆tDp arises from the periodicity of Pauli-X rotation

gate. Conversely, when examining exp(−iĤP∆tPi ) in the context of the SK model, this
periodic behavior does not occur within the interval [0, 2π]. Notably, in the SK model, an
observation is made that γ∗ and consequently ∆tP∗

p exhibit a tendency to remain within
the interval [0, 2π]. By combining the deĄnition presented in Equation (3.2.4) for Ttot

with the deĄnition of linear schedules in Equation (3.1) with γ1 = 0, it is possible to
determine the value of Ttot with the help of γ1, β1, γ2, and β2. The initial step in this
process is to calculate TD

TD =
p
∑

i=1

(β1 + (i− 1)(β2 − β1)) = (2β1 − β2)p+ (β2 − β1)
p
∑

i=1

i

= (2β1 − β2)p+ (β2 − β1)
p(p+ 1)

2
.

(3.2.10)

Analog to the previous equation, we can deduce the equation for TP. Both equations allow
us to to associate the times TD and TP as a function of β1βp, γ1γp. Because we convert 4
parameters from the schedule into two time parameters

¶γ1, γp♢ → TP, and ¶β1, βp♢ → TD, (3.2.11)

the conversion into TD, TP space is not unique. For example, setting β1 = 1, βp = 0 or
β1 = 0, βp = 1 results in different schedules and mean approximation ratios, but the
driverŠs time TD remain the same. In order to exclude solutions with the same time but a
lower Lp, we will focus on schedules with an improvement over random guessing, meaning
Lp > 0.5.

Figure 3.5 displays the mean approximation ratio for linear schedules Lp(T⃗ls) and

TQA Lp(T⃗TQA) in the TD, TP space for p = 3, 4, 6, 18. For p = 3, the optimal linear

schedule attains an average mean approximation ratio of T⃗ ∗
ls = 0.85. In the parameter

space, T⃗ ∗
ls is situated amidst numerous local minima, each yielding L3(T⃗ls) values that

closely approach the global minimum. These local minima have an approximation ratio
that differs from the optimal solution by approximately L3(T⃗

∗
ls) − L3(T⃗

∗
ls + δT⃗ls) ≈ 0.005.

Solutions above the threshold of L3(T⃗ls) > 0.8 favor a shorter TP time and a longer TD

time. This indicates that the linear schedules of the local minima are approximately in
alignment with the optimal schedule in Figure 3.4 for p = 3.

The top-right plot of Figure 3.5 indicates that achieving the optimal parameters for
TQA for a speciĄc problem might prove to be more difficult due to great difference in
L3(T⃗

∗
TQA) across different instances. Assuming that we have optimal values T ∗

D and T ∗
P

for TQA, a small change to these optimal parameters can result in a signiĄcant change in
the approximation ratio, with L3(T⃗

∗
TQA) − L3(T⃗

∗
TQA − δT⃗TQA) ≈ 0.2. This value exhibits

an order-of-magnitude increase compared to linear schedules. Regarding the overall time
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Figure 3.5: Plotting TD against TP for p = 3, 4, 6, 18. The color indicates
Lp(T⃗ls). Black stars indicate the optimal solution for α⃗∗

ls and α⃗∗
TQA. The

black line indicates the solution space for TQA. For every time point, we
average over 1000 SK instances.

evolution, optimal parameters for TQA result in a total time of TTQA∗

tot = 0.9, whereas
linear schedules necessitate T ls∗

tot = 1.2. The maximum times TD and TP for linear schedules
are

Tmax
D = 2πp and Tmax

P =
πp(p+ 1)

p− 1
. (3.2.12)

Tmax
D corresponds to a constant schedule by setting ∆tD1 = ∆tD2 = . . . = βp = 2π. For TP

we achieve Tmax
P , due to the constraint that we Ąxed γ0 = 0 and the parameter range to

[0, 2π].
In the top row of Figure 3.5, we observe an increase of local minima in the parameter

space for linear schedules from p = 3 to p = 4 in the vicinity of the global minimum with
respect to L4(T⃗ls). Additionally, the region of local minima in the parameter space for
linear schedules is close to the global minimum of TQA.

In the lower-left section of Figure 3.5, we can see a noticeable rise in the presence of
local minima close to the global minimum when using linear schedules. These additional
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local minima are situated at greater distances within the parameter space compared to
those observed for p = 3 and p = 4. The expansion of the local minima in the parameter
space of linear schedules leads to an overlap between the region of the global minimum for
TQA protocol and the local minima region of linear schedules. The local minima are now
below the solid black line compared to the cases when p = 3 and p = 4. This suggests
that linear schedules also with TD-time shorter than TP-time are suitable for higher p.

For p = 18 in Figure 3.5, it is evident that the region of local minima in the param-
eter space expands signiĄcantly below and above the solid black line. This expansion is
particularly pronounced within the range of short TP and long TD times.

Notably, both methods reach a circuit depth where the global minimum of each method
is encircled by neighboring local minima in the parameter space. Essentially, this implies
that both approaches have the potential to discover a well-suited schedule for the SK
Model that could be applicable across various instances. Particularly for short circuit
depths (p < 10), we present evidence suggesting that identifying a single schedule suit-
able for most instances will be more attainable with linear schedules. Furthermore, with
increasing p, a variety of linear schedules α⃗ls emerges, demonstrating a mean approxima-
tion ratio that closely approaches the global optimum.

3.2.5 System size dependence on the optimal linear schedules
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Figure 3.6: Plotting the schedule parameters α⃗∗
i,ls against the system size

n for the SK model. For linear schedules and Ąxed γ1 we have
α⃗∗ = (β∗

1 , β
∗
p , γ

∗
p)
T (blue, orange, green). Depicted are the parameters for

p = 2, 4, 16, 18. We average over 1000 random SK instances per p and n.

To facilitate further investigations, we present the dependence of the optimal param-

46



Annealing-inspired initialization for QAOA

eters α⃗∗
ls on the system size in Figure 3.6. For p = 2, β∗

1 does not converge for increasing
system size. β∗

1 exhibits Ćuctuations across the entire range of [0, 2π]. Whereas for γ∗
2 , β

∗
2

we can note a convergence for n > 4 to γ∗
2 = 0.2, β∗

2 = 0.45. For p = 4 we observe a
tendency for β∗

1 to become constant for n > 7 with β∗
1 = 0.5. On top of that, γ∗

4 and β∗
4

also get constant for n > 7 with γ∗
4 , β

∗
4 = 0.15. This aligns with our observation in Figure

3.4 for p = 3 for linear schedules.
In the case of small values of p, the optimal schedule remains independent of the sys-

tem size as n increases, with γ∗
p = β∗

p = 0.15 converging to the same parameter values.
As n grows and p remains small, a non-TQA schedule becomes more suitable. For p = 16
and p = 18 the parameters β∗

1 , β
∗
p , γ

∗
p are identical.

On top of that, for p → ∞, n → ∞, the linear schedule α⃗∗
ls becomes independent

of depth and system size. Since we reach convergence for Lp(α⃗
∗
ls), α⃗

∗
ls remains the same

from p = 16 to p = 18. As p increases, the standard deviation of each parameter in α⃗∗
ls

decreases. Therefore, we discover a universal linear schedule in the thermodynamic limit
when p is sufficiently large.

3.3 Applying sigmoid schedule to QAOA

This section will compare the TQA protocol α⃗TQA and the symmetric sigmoid schedules
α⃗sg. The parameters for the sigmoid schedule are deĄned by

γp(α⃗) =
p
∑

p′=1

β1

1 + e(p′−p/2)csg
, βp(α⃗) =

p
∑

p′=1

β1

1 + e(p′−p/2)csg
. (3.3.1)

The sigmoid function allows us to change the scheduleŠs shape with one parameter csg > 0.
A linear schedule is related to csg → 0. The schedule becomes a unit step function for high
csg. In Figure 3.7, we depict the relationship between 1 − Lp and p for both optimized
sigmoid and TQA schedules. In the case of the sigmoid schedule, we consider four distinct
sigmoid values csg, for which we optimized the parameter β∗

1 per p. To make it comparable
to the previous results, we utilize again the SK model. In a general context, we observe a
diminishing trend in 1−Lp as the parameter p increases up to a certain threshold value for
all sigmoid schedules depicted. Beyond this speciĄc threshold value of p, 1 − Lp remains
approximately constant. Consequently, we cannot identify a suitable value for β∗

1 for each
sigmoid schedule, causing 1 − Lp → 0 for p → ∞. However, for csg = 1.0, we identify
a performance improvement over TQA of L4(α⃗

∗
TQA) − L4(β

∗
1 , csg = 1.0) = 0.1 for p = 4.

This improvement decreases for the best sigmoid schedules as p increases. SpeciĄcally,
for p = 5 and p = 10, the improvement over TQA is L5(α⃗

∗
TQA) − L5(β

∗
1 , csg = 1.0) = 0.07

and L10(α⃗
∗
TQA) − L10(β

∗
1 , csg = 1.0) = 0.05, respectively.

Figure 3.8 shows the normalized shapes of the parameter schedules corresponding to
the sigmoid values in Figure 3.7. For small p, the preferred shape is closer to a step
function. As the parameter p increases, the curve progressively takes on a form that
increasingly resembles the TQA schedule. This explains the decrease in the improvement
in Lp between sigmoid and TQA for increasing p. For large p, the sigmoid step function
shapes are no longer advantageous over TQA. Furthermore, the sigmoid shapes become
more damped as β∗

1 decreases with increasing p. In conclusion, we recommend using a
sigmoid schedule for low p rather than a TQA schedule.
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Figure 3.7: Plotting mean approximation ratio of the optimized sched-
ule parameters 1 − Lp(α⃗) for QAOA against p, for 4 different sigmoid
schedules. Plotted are 1 − Lp for sigmoid values csg = 0.4, 0.5, 0.8, 1.0,
which performs best on QAOA for p = 4, 6, 8, 10, respectively. Figure
3.8 shows the shapes of these sigmoid functions. The black dashed line
indicates TQA performance. For every schedule, we average over 1000
random SK instances.

3.4 Linear schedules versus Fourier initialization

This section will examine the linear schedules and the Fourier method developed by
Zhou et al. [45] regarding performance and optimization efforts. This section presents
a comparison between two approaches that seek to determine the optimal angles γ⃗∗ and
β⃗∗. We assess both approaches based on their impact on the Mp value of QAOA, as well
as the level of optimization efforts required. The term "optimization efforts" refers to the
number of times the optimization process has to be invoked.

The Ąrst approach involves employing linear schedules, as mentioned earlier, which are
based on the annealing schedule technique. The second approach, proposed by Zhou et
al. [45], utilizes the Fourier method, which involves reusing the parameters p for QAOA
parameters p+ 1. Thus, requiring only O[poly(p)] optimizer calls, compared to the 2O(p)

required for the random initialization strategy. The method of Zhou et al. is based on
spectral analysis and involves transforming the (γ⃗, β⃗) according to

γi =
q
∑

k=1

uksin
[(

k − 1

2

)(

i− 1

2

)

π

2



, βi =
q
∑

k=1

vkcos
[(

k − 1

2

)(

i− 1

2

)

π

2



. (3.4.1)

The parameters uk and vk are chosen freely and can be thought of as the kth amplitude
of either γi or βi. u⃗ = (u1, . . . , uq) and v⃗ = (v1, . . . , vq) represent the sets of parameters
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Figure 3.8: Sigmoid shapes: Plotting schedule parameters f(x, csg)
against x. x is reĆecting the p values for γi. Depicted are the sigmoid
schedules, which show the best QAOA performance for p = 4, 6, 8, 10
from Figure 3.7. These sigmoid plots are normalized to p = 10. Because
we have a symmetric sigmoid schedule, the βi values are γi mirrored at
the y-axis.

corresponding to uk and vk. The value of q can be selected within the range 1 ⩽ q ⩽ p.
Starting with p = 1, we then insert the parameters u1 and v1 to obtain u2 and v2 for p = 2.
As we expect a smooth transition for γi, βi from p to p+ 1, only the lower frequencies of
(u⃗, v⃗) will be relevant. Therefore, trying lower values of q Ąrst is advisable since higher
values will be cut off. The different Fourier methods, represented as Fourier[q, R], depend
on q and another parameter R. If q is set to p, the case is denoted by Fourier[∞, R].
R describes the number of perturbations we apply to the initial point. For instance, if
R = 10, we will set 10 initial points for p. We will optimize each and select the best
option. To compare linear schedules against the Fourier method, we will investigate the
same problem as in [45]. We are dealing with a weighted Max-cut on a three-regular
graph

Ĥ =
∑

<i,j>

wij
2

(1 − ZiZj). (3.4.2)

The weighting function wij assigns a randomly selected value from a Gaussian distribution
to each edge i, j. The Gaussian distribution has zero mean and unit variance. Like in the
original paper, we set R = 10 and q = p.

In Figure 3.9, we compare the Fourier approach, linear schedules, and random initial-
ization methods. The red curve, which indicates the mean approximation ratio for linear
schedules Mp(α⃗

∗
ls), achieves comparable mean approximation ratios as Mp(Fourier[∞, R =

10]) (blue curve) method for p ⩽ 10. Both mean approximation ratios are on the same
scale and reach a maximal difference of Mp(α⃗

∗
ls) − Mp(Fourier[∞, R = 10]) ≈ 0.01 for
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Figure 3.9: Plotting 1 − Mp against p. The magenta-colored curve rep-
resents the Fourier method with q = p. The blue curve represents the
initial values for linear schedules, and the red curve represents the QAOA
execution with linear schedule initialization. Yellow indicates the results
for random initial starting points for p ⩽ 10. For p ⩽ 10 and random
initialization, we conducted more than 10000 optimizer executions. For
higher values of p, it is not possible to use the random initialization tech-
nique, therefore. We averaged the results over 1000 instances.

p ⩽ 10. However, the inĄdelity 1 − Mp for linear schedules is always greater. For p > 10,
Mp(α⃗

∗
ls) exhibits only a marginal improvement from p to p+ 1 compared to p < 10. This

suggests that the initialization method may not effectively leverage the additional dimen-
sionality brought by the increase in p. For p = 20, the mean approximation ratio attains
an inĄdelity value of 1 − M20(α⃗

∗
ls) = 0.01. In contrast, M20(Fourier[∞, R = 10]) achieves

inĄdelity of approximately 1 − M20(Fourier[∞, R = 10]) ≈ 0.001 for p = 20. To achieve
this, more optimization runs are needed for the Fourier method. The Fourier method
depends on the previous p value, which requires more optimization effort for high p, such
as p = 20. Particularly in this case, we have 10 optimizer executions per p, resulting in
190 optimizer executions for p = 20. In contrast, linear schedules only require 2 optimizer
executions for p = 20. The random initialization method is only effective for p ⩽ 6. To
achieve results close to Fourier or linear schedules with the random initialization method,
10000 optimization executions are necessary for 4 < p < 6.

3.5 Conclusion

In this chapter, we showed that linear schedules outperform TQA in two categories for
p ⩽ 10. First, when considering a speciĄc parameter conĄguration p, linear schedules
yield higher mean approximation ratios for the optimized parameters Lp(α⃗

∗) compared

50



Annealing-inspired initialization for QAOA

to TQA, as expressed by Lp(α⃗
∗
ls) > Lp(α⃗

∗
TQA). However, the difference in Lp(α⃗

∗) between
α⃗∗

TQA and α⃗∗
ls diminishes for p > 10. Second, linear schedules outperform TQA in terms

of the mean approximation ratio Mp(α⃗
∗), as indicated by Mp(α⃗

∗
ls) > Mp(α⃗

∗
TQA). The

results demonstrate that the optimal parameters obtained from linear schedules guide
QAOA to a region in the parameter space where more nearby local minima align closely
with the global minimum of the QAOA objective, compared to TQA. This assertion is
substantiated by the average separation between γ⃗(α⃗∗) and β⃗(α⃗∗) compared to γ⃗∗(α⃗∗)

and β⃗∗(α⃗∗). Notably, the average separation for TQA is larger, especially for short circuit
depth.

Optimizing linear schedules requires three parameters, while TQA optimization only
requires one. However, even though the parameter space is larger, we need only one op-
timization run for the subroutine to get a greater Lp for linear schedules than for TQA.
Therefore, we observed no difference in optimization efforts between linear schedules and
TQA in low-dimension parameter space.

Moreover, for low p, a sigmoid schedule offers an advantage over TQA in the mean
approximation ratio Lp. Thus, linear schedules outperform TQA with another one-
parameter method. In general, the difference between linear schedules and TQA becomes
insigniĄcant as p increases. This conclusion is supported by the time comparison plot in
Figure 3.5.
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Coherent and non-unitary errors in
ZZ-generated gates

The foundation of every quantum computer is built upon two-qubit gates, which are
more prone to errors than one-qubit gates. For the NISQ algorithm, the ZZ-generated
gates (RZZ(γ)) play a crucial role. The gateŠs accuracy and impact on the algorithmŠs
performance rely on the hardware capabilities for two-qubit gates, speciĄcally how the
decomposition into the native gate set affects the circuit depth. This chapter focuses on
decomposing RZZ(γ) into CZ, CP, and iSWAP gates, considering both incoherent and
coherent errors in the gate Ądelity. We show that CZ and CP decomposition achieve
comparable gate Ądelities for low coherent and incoherent noise.

This chapter is structured as follows: In Section 4.2, we explain the calculation of gate
Ądelity, drawing upon the research conducted by Cabrera et al. [101]. Furthermore, we
emphasize the key Ąndings of their work. Section 4.3 discusses incorporating coherent
errors in CZ and CP circuits, providing analytical and numerical results for the gate Ą-
delities. Next, in Section 4.4, we analyze the gate decompositions for CP and CZ gates
under depolarizing error. Finally, in Section 4.5, we compare the gate Ądelities of CZ and
CP decompositions and discuss which gate might be more suitable for a superconducting
platform considering speciĄc noise conditions. Since iSWAP belongs to the same equiv-
alence class as CZ, we anticipate that CZ and iSWAP yield comparable gate Ądelities.
Thus, we only present the less known decomposition of RZZ(γ) into iSWAP in Section
4.6.
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4.1 Depolarizing channel

In the introduction chapter, we investigated the general concept of quantum channels.
This section will clarify the speciĄc depolarizing channel, which models different standard
errors within a single model. The general form of the d-dimensional depolarizing error is
given by

E(ρ) =
1

2d
p+ (1 − p)ρ. (4.1.1)

Here, p denotes the probability that the density matrix becomes a completely mixed state
1/2d after the channel is applied, while 1 − p represents the probability that the initial
density matrix ρ remains unchanged. The depolarizing channel can be decomposed into
bit-Ćip, phase-Ćip, and bit-phase-Ćip errors, which occur in all permutations with equal
probability. Table 4.1 provides an overview of the Kraus operators for the error under
consideration. A bit-Ćip and phase-Ćip can be achieved by applying X and Z operators,

M M̂ ♣ψ⟩ Quantum Operation

Z M̂ ♣0⟩ = − ♣0⟩ Phase-Ćip

X M̂ ♣0⟩ = ♣1⟩ Bit-Ćip

Y M̂ ♣0⟩ = − ♣1⟩ Bit- and Phase-Ćip

Table 4.1: Quantum error operators on the example state ♣0⟩

respectively. The combination of both errors applied simultaneously leads to Y = iXZ.
The three types of errors result in different contractions of the Bloch sphere (see Figure
4.1). The contraction of the Bloch sphere differs for each type of error: the bit-Ćip
channel contracts along the Y-Z plane, the phase-Ćip contracts along the X-Y plane,
and the phase-bit-Ćip channel contracts along the X-Z plane. The depolarizing channel
uniformly contracts the Bloch sphere in each direction. The contraction effect depends
on the probability p. Regarding two-qubit gates, we have two options for the depolarizing
channel: d = 2 and d = 1. The latter corresponds to applying two single quantum
channels to each qubit. First, we will consider the Kraus operator sum representation
of Equation (4.1.1) for d = 2 the density matrix of a mixed state can be decomposed
using the operators L̂ ∈ [X, Y, Z,1] and M̂ ∈ [X, Y, Z], resulting in 1/22 = (p/16)ρ +
(p/16)

∑4
i=1

∑3
j=1 M̂jL̂iρL̂

†
iM̂

†
j . By substituting p → (16/15)p, this decomposition yields

the operator sum representation of the d = 2 depolarizing channel

E(ρ) = (1 − p)ρ+
p

15

4
∑

i=1

3
∑

j=1

M̂jL̂iρL̂
†
iM̂

†
j . (4.1.2)

Another possibility is to describe the depolarizing error using two one-qubit quantum
channels, resulting in

E(ρ) = (1 − p)ρ+ (1 − p)
p

3

∑

i
M̂iρM̂

†
i + (1 − p)

p

3

∑

i
M̂iρM̂

†
i

+
p2

9

∑

i,j
M̂jM̂iρM̂

†
i M̂

†
j .

(4.1.3)
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Figure 4.1: Sketching incoherent errors: In gray, we plot the Bloch sphere
for single qubits, which is the error-free state. The blue error indicates
that all the pure states ♣ψp⟩ live on the Bloch sphere. The mixed states
live on the red sphere like ♣ψm⟩. The red spheres illustrate the contraction
of the Bloch sphere after a related error. Top left: bit-Ćip error, Top right:
phase-Ćip and bit-Ćip error, bottom right: phase-Ćip error, bottom left:
depolarizing error.

The equation displayed above contains two probability weights. One corresponds to the
likelihood of encountering two errors on both qubits, which is p2/9. In contrast, the other
probability weight corresponds to the occurrence of an error on a single qubit, which is
((p − p2)/3). For a two-qubit gate with d = 2, the error occurrence grows linearly with
p, while for d = 1, we have a polynomial dependence of p for error occurrence. For the
case of a two-qubit gate, the d = 2 channel is more accurate. From a general hardware
perspective, there is no reason to unweight different error types for a two-qubit gate. We
will not investigate correlated two-qubit quantum channels where only the same type of
error on each qubit is allowed, for instance, X1X2ρX1X2.

4.2 Gate fidelity

Gate Ądelity is a vital measure tool to classify the quality of the gates. To calculate the
gate Ądelity, we Ąrst examine the state Ądelity, deĄned by Richard Josza [102], which is
the square root of the original Uhlmann equation [103]

F (ρ, ρ′) =
(

Tr
(

√√
ρρ′√ρ

))2

, (4.2.1)
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with ρ and ρ′ being general density matrices. Let ρ and ρ′ be representatives for pure
states ♣ψ⟩ and ♣ψ′⟩. In this case, Equation (4.2.1) reduces to the square overlap ♣ ⟨ψ♣ψ′⟩ ♣2
because ρ = ρ1/2 for pure states.

For gate Ądelities, we always want to compare a gate operation Û under error-free and
erroneous conditions. The unitary gate operation takes any pure state to another pure
state ρ = Ûρ0Û

†. The erroneous gate operation ρ′ = E(ρ0) can be non-unitary, and thus
Equation (4.2.1) reduces to F (ρ, ρ′) = Tr(ρρ′). The gate Ądelity is the average of the
integral over all possible pure states as input states. For the one-qubit gate, this implies
integrating over the Bloch sphere, and for the two-qubit case, integrating over two times
the Bloch sphere

F = ⟨F ⟩ =
1

16π2

∫

Tr(ρρ′)dΩ2, (4.2.2)

with dΩ2 being the volume integral. The Pauli matrices and the identity matrix span
the whole space of density matrices over C

4 × C
4. Thus ρ can be decomposed into

ρ = (1 +
∑15
i=1 qjSj). Where Sj is an element of Sj ∈ [X, Y, Z,1] ⊗ [X, Y, Z]. Next, we

insert the Pauli expansion into Equation (4.2.2) and integrate over

F =
1

16



4 +
1

5

15
∑

j=1

fj



 =
1

16



4 +
1

5

∑

i,j

Tr[ÛSjÛ
†E(Sj)]



 . (4.2.3)

Only the diagonal elements are non-zero for the previous equation. Bowdrey et al. [104]
showed this for the one-qubit case. Cabrera examined [105, 101] the n-qubit case.

Zoller et al. [106, 107] demonstrated that gate Ądelity can also be assessed using 16
initial pure states and using Equation (4.2.1). Frequently, the 16 initial states

♣Ψa⟩ ♣Ψb⟩ , (4.2.4)

with a,b=1,..,4 and

Ψ1 = ♣0⟩ , Ψ3 = (1/
√

2)(♣0⟩ + ♣1⟩),
Ψ2 = ♣1⟩ , Ψ4 = (1/

√
2)(♣0⟩ + i ♣1⟩),

(4.2.5)

are used [106, 107, 108, 109]. We vectorize the two indices of ♣Ψa⟩ ♣Ψb⟩ to achieve the the
16 state Ądelities fj. The value of the gate Ądelity is always between 0 and 1 because of
the normalized initial states.

4.3 Decomposing RZZ(γ) gate into CP and CZ gates

with coherent noise

In this section, we examine the decomposition of RZZ(γ) into CZ and CP gates. We
demonstrate the incorporation of coherent error and present the results for the gate Ądelity
in the presence of coherent noise.

4.3.1 CZ and CP circuits

The RZZ(γ) gate plays an essential role in implementing quantum algorithms. Typical
combinatorial optimization problems like travel salesman will be mapped onto an Ising
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chain and incorporated in a QAOA ansatz or an annealing process.
Depending on the hardware, the RZZ(γ) gate will be decomposed into the native gate

set. For example, trapped-ion-based quantum computers have the RZZ(γ) gate or other
gates within the same equivalence class, such as RXX(γ) [110, 111], natively available.
This means that RZZ(γ) gate can be created efficiently by applying single-qubit rotations
to their native two-qubit gate, as shown by RZZ(γ) = H1H2RXX(γ)H1H2. In this context,
we are investigating the decomposition of RZZ(γ) into the Ąxed controlled-Z gate (CZ)
and the parametric controlled-phase gate (CP). However, since the controlled-Z gate is
not in the same equivalence class of non-local two-qubit gates (SU(4) \ (SU(2) ⊗SU(2)))
as RZZ(γ), at least two two-qubit gates are required for the decomposition [25, 112, 113].
The group of Andreas Wallraff has been investigating the hardware implementation of
CP and CZ gates [114]. We decompose RZZ(γ) into a controlled-phase gate (CP) [114]
according to

RZZ(γ) =

i

j

RZ(γ)

RZ(γ)

(

1 0
0 e(−2iγ)

)

, with CP(γ) =











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiγ











(4.3.1)

being the CP gate. The RZZ(γ) gate and Z-gate are deĄned as

RZZ(γ) =











1 0 0 0
0 eiγ 0 0
0 0 eiγ 0
0 0 0 1











and RZ(γ) =

(

1 0
0 eiγ

)

. (4.3.2)

CP and RZZ(γ) gate belong to the same equivalence class, meaning we only need single-
qubit rotations RZ(γ) to construct the decomposition. The decomposition of RZZ(γ) into
controlled-Z gate CZ is according to

RZZ(γ) =

i

j H H RZ(γ) H H

, (4.3.3)

with CZ =











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1











.

To decompose CNOT into CZ, we require Ąve single-qubit gates - four Hadamard gates for
basis transformation and one RZ(γ) for the rotation. Unlike the CP decomposition, which
involves two-qubit and single-qubit gates containing γ, the CZ decomposition contains γ
only in the RZ(γ) gate. This could provide an advantage on certain hardware, as single-
qubit gates are generally less error-prone than two-qubit gates, and a Ąxed two-qubit
gate like CZ only needs to be calibrated once. The error rate for single-qubit gates is
negligible, with a gate Ądelity of 10−5 [115]. However, the error rate for two-qubit gates
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is higher than for single-qubit gates. In the supremacy experiment [19], the two-qubit
gate inĄdelity was approximately 0.36%, which makes it impossible to run an algorithm
with quantum error correction code. An error rate below 0.1% is necessary to build a
fault-tolerant quantum computer, as demonstrated by various threshold theorems [21, 22,
23].

4.3.2 CZ gate fidelity under coherent noise

To begin, we explore the CZ decomposition and the impact of coherent errors on gate
Ądelity. For this purpose, we consider the circuit represented by (4.3.3) and include the
CP gate as the erroneous gate operation

Û co
cz = H2 · CZ · CP(θ) · H2 ·RZ2

(γ) · H2 · CZ · CP(ζ) · H2. (4.3.4)

ζ and θ are coherent over-rotations applied after the two CZ gates. The error-free CZ
decomposition (CP(θ, ζ = 0)) reads

Ûcz = H2 · CZ · H2 ·RZ2
(γ) · H2 · CZ · H2. (4.3.5)

The gate Ądelity F co
cz , with the superscript for the error type and the subscript for the

decomposition, is calculated according to Zoller et al. [106, 107] and Equation (4.2.1)

F co
cz =

1

16

16
∑

j=1

♣ ⟨ψj♣(Û co
cz )† · Ûcz♣ψj⟩ ♣2. (4.3.6)

Because we are still in the coherent Schrödinger picture, Equation (4.2.1) reduces to
the square overlap. The decomposition of RZZ(γ) into CZ gates is not diagonal, which
means that the quantum operators CP(θ) and CP(ζ) cannot commute through due to the
presence of Hadamard gates. Therefore, the state Ądelity equation is

f co
cz,j = ♣ ⟨ψj♣ H†

2 · CZ† · CP†(θ) · H†
2 ·R†

Z2
(γ) · H†

2 · CZ† · CP†(ζ) · H†
2 · H2 · CZ

× H2 ·RZ2
(γ) · H2 · CZ · H2 ♣ψj⟩ ♣2

= ♣⟨ψj♣H2 · CZ · CP(θ) ·RX2
(γ) · CZ · CP(θ) · CZ ·RX2

(γ) · CZ · H2♣ψj⟩♣2.
(4.3.7)

Now, we can summarize the results for all 16 state Ądelities. The error only inĆuences the
third and fourth entries of the state vector ♣ψj⟩, which results in no dependence on the
coherent error for ψ3, ψ6, ψ10, ψ16, leading to a state Ądelity of f3,6,10,16 = 1. For further
investigation, we presume the coherent error to be small and impose a standard deviation
of the error of σ(θ) ⩽ 0.06π, equivalent to an error rate of 3%. This is a realistic error
rate for superconducting hardware. We expand each state Ądelity to the second order to
obtain a closed equation for gate Ądelity in the CZ decomposition that does not violate
space constraints. We will disregard any terms that are of order three O(h3) or higher.
The variable h3 encompasses all terms of order three, namely ζ3, θ3, ζ2θ1, and ζ1θ2. To
determine the general form of hm without coefficients, we can apply the binomial equation

hm =
m
∑

s=1

ζsθm−s. (4.3.8)
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9 of 16 states exhibit a quadratic dependence on the errors and demonstrate a strong
relationship between the error and the rotation angle

fcz,j = 1 − h2(Ξ +ϖsin(γ) + Υcos(γ)) + O(h3). (4.3.9)

Not every element of h2 contributes to a given state Ądelity equation. The values of
Ξ, ϖ,Υ ∈ R depend on the considered state. We distinguish 4 different state Ądelities
among the 9

f co
cz,5, f

co
cz,7, f

co
cz,9, f

co
cz,11 = 1 − 0.19 θ2 − 0.25 θζcos(γ) − 0.125 θζ − 0.19 ζ2 + O(h3),

f co
cz,8 = 1 − 0.25 θ2 − 0.5 θζcos(γ) + ζ2 (−0.125cos(2γ) − 0.125) + O(h3),

f co
cz,12, f

co
cz,14 = 1 − 0.12 θ2 + ζ2 (−0.13 sin(γ) − 0.03 cos(2γ) − 0.16) + O(h3),

+ ζ (−0.125 θsin(γ) − 0.25 θcos(γ) − 0.125 θ) + O(h3)

f co
cz,1, f

co
cz,2 = 1 − 0.25 θ2 − 0.5 θζcos(γ) − 0.25 ζ2 + O(h3),

(4.3.10)

In addition, the last three remaining state Ądelities show a quadratic relationship between
θ and the rotation angle

f co
cz,4 = 1 + ζ2 (0.125 cos(2γ) − 0.125) + O(h3)

f co
cz,13, f

co
cz,15 = 1 + (−0.16 + ζ2 (0.125 cos(γ) + 0.03 cos(2γ)) + O(h3).

(4.3.11)

The analytical equation for gate Ądelity in CZ decomposition up to the second order,
obtained by summing up all state Ądelities, is

F co
cz =

1

16

16
∑

j=1

♣ ⟨ψj♣(Û co
cz )†Ûcz♣ψj⟩ ♣2

= 1 − 0.12 θ2 − 0.02 θζsin(γ) − 0.19 θζcos(γ) − 0.05 θζ

− 0.02 ζ2sin(γ) + 0.02 ζ2cos(γ) − 0.13 ζ2 + O(h3).

(4.3.12)

The numerical results are displayed in Figure 4.2, which shows the gate Ądelity F co
cz as

a function of the rotation angle γ. This Ądelity exhibits a quadratic dependence on the
parameters θ, ζ and a damped cosine function dependence on γ. The most signiĄcant
inĄdelity, we would expect at cos(γ = π/2). However, due to the small contribution of
sin(γ), the minimum Ądelity min

γ
F co

cz (γ, θ = const.) is shifted. The minimum gate Ądelity

is achieved at γ = 0.72π and σ(ζ), σ(θ) = 0.062π. Since the gate Ądelity depends on γ,
we obtain the same gate Ądelity for different standard deviations σ(ζ), σ(θ). For instance,
at γ = 0.72 and standard deviations of σ(ζ), σ(θ) = 0.051π(2.55 %), the gate inĄdelity is
1−F co

cz (γ = 0.72π, σ(ζ)σ(θ) = 0.051π) = 0.0068 . The same inĄdelity is achieved at γ = 0
with standard deviations of σ(ζ), σ(θ) = 0.054π (2.7%). Conversely, for σ(ζ), σ(θ) =
0.054π we achieve 1 − F co

cz (γ = 0.72π, σ(ζ)σ(θ) = 0.051π) = 0.0068 as we know, and
1 − F co

cz (γ = 0.72π, σ(ζ)σ(θ) = 0.054π) = 0.0085 at the minimum γ = 0.72π. Hence, the
rotation angles close to γ ≈ 0 and γ ≈ π are more error-robust against coherent noise
than those close to γ ≈ 0.72π. For σ(ζ), σ(θ) < 0.04π, the gate Ądelity difference between
distinct values of γ is negligible. The gate Ądelity decreases below 99% for standard
deviationsσ(ζ), σ(θ) > 0.06π. For simplicity, we assume θ = ζ.
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Figure 4.2: RZZ(γ) gate Ądelity in CZ gate decomposition plotted against
γ rotation and coherent errors θ, ζ. The color map indicates the gate
inĄdelity 1−Fcz. For θ and ζ, we independently picked 10000 times from
a random Gaussian distribution with mean = 0 and std=σ(θ), σ(ζ).

Figure 4.3: Plotting the gate Ądelity of Equation (4.3.13) for γ and σ(θ)
as the x-y-axis and the z-direction displays 1 − F co

cz .

Using this assumption, we can deduce the following coherent error gate Ądelity for the

60



Coherent and non-unitary errors in ZZ-generated gates

CZ decomposition

F co
cz = 1 − θ2(0.3 + 0.04sin(γ) + 0.17cos(γ)) + O(θ3). (4.3.13)

Figure 4.3 illustrates the relationship between the gate inĄdelity, as deĄned in Equation
(4.3.13), and the rotation angle. It is evident that the rotation angle signiĄcantly inĆu-
ences the gate inĄdelity. The difference between the minimum and maximum inĄdelity
increases as the standard deviation σ(θ) increases.

4.3.3 CP gate fidelity under coherent noise

The error-free decomposition of the RZZ(γ) gate into a CP gate is given by

Û co
cp = RZ1

(γ) ·RZ2
· CP(−2γ), (4.3.14)

and the erroneous CP gate decomposition is according to

Û co
cp = RZ1

(γ) ·RZ2
(γ) · CP(−2γ + θ). (4.3.15)

This results in the following gate Ądelity

F co
cp =

1

16

16
∑

j=1

♣ ⟨ψj♣(Û co
cp)† · Ûcp♣ψj⟩ ♣2

=
16
∑

j=1

♣ ⟨ψj♣R†
Z1

(−2γ) ·R†
Z2

(γ) · CP†(−2γ + θ) ·RZ1
(γ) ·RZ2

· CP(−2γ)♣ψj⟩ ♣2

=
16
∑

j=1

♣ ⟨ψj♣CP†(θ)♣ψj⟩ ♣2.

(4.3.16)

The decomposition of RZZ(γ) into CP gates for error-prone Û co
cp and error-free Ûcp uni-

tary is diagonal. This implies that all gate operations commute for the gate Ądelity F co
cp ,

allowing the right side CP†(γ+θ) to cancel out with the Hermitian conjugate counterpart
on the left side. As a result, the only remaining gate operation is the gate error unitary
CP†(θ). Notably, the gate Ądelity in CP decomposition under the coherent error is in-
dependent of the rotation angle γ. Three different state Ądelities f co

cp,j can be observed
among all 16 states. The Ąrst set of states, f co

cp;1,2,3,6,7,10,11,16 = 1, remain unaffected by
the coherent error. The other two types of state Ądelities are

f co
cp,4, f

co
cp,5, f

co
cp,8, f

co
cp,9 =

1

2
(1 + cos(θ)),

f co
cp,12, f

co
cp,13, f

co
cp,14, f

co
cp,15 =

1

16
(10 + 6 cos(θ)).

(4.3.17)

Therefore, the gate Ądelity follows a cosine in dependence of θ, and we can deduce

F co
cp =

1

32
(25 + 7 cos(θ)). (4.3.18)
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Figure 4.4 displays the gate Ądelity and state Ądelities for θ ∈ [0, 0.06π]. At the maximum
error bound of 0.06π, the gate Ądelity decreases below 99.2%. F co

cp(θ = 0.06π) is 0.7%
higher than F co

cz (γ = 0.72, 0.06π) = 99.0% at the minimum gate Ądelity. For θ ⩽ 0.02π,
the gate Ądelity is F co

cz ⩽ 99.9%.
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Figure 4.4: Gate Ądelity of RZZ(γ) in CP decomposition plotted against
standard deviation σ(θ).

4.3.4 Comparing state fidelities

Although F co
cp has a slight advantage over F co

cz , there are certain state Ądelities fj where
F co

cz is advantageous over F co
cp . To compare the state Ądelities between CZ and CP de-

compositions, we deĄne
∆f co

j = f co
cz,j − f co

cp,j. (4.3.19)

Depending on the rotation angle γ, CZ decomposition is advantageous over CP decompo-
sition for f4,8,13,15. Figure 4.5 exhibits the result of the state Ądelities for f4(left plot) and
f13,15(right plot). First, we investigate the left plot. When the standard deviations are
high, σ(ζ), σ(θ) ⩾ 0.05π, and the rotation angle is close to γ ≈ π or γ ≈ 0, the advantage
of CZ decomposition over CP is 0.9%. On the other hand, for a rotation angle close to
γ = 0.5 and high standard deviations of ζ(θ), σ(θ) ⩾ 0.05π, ∆f4 shows an advantage for
CP over CZ decomposition. We will further examine the state Ądelities

f co
cz,4 ∝ (θ2(cos(2γ) − 1)) and f co

cp,4 ∝ (1 − θ2/2), (4.3.20)

to comprehend the change of ∆f4 in dependence of σ(ζ), σ(θ) and γ. The cosine in f co
cz,4

leads to the highest deĄcit in gate Ądelity for γ ≈ 0.5π. On the other hand, f co
cz,4 is

increased for high and low angles γ ∈ ¶0, π♢, even with increased σ(ζ), σ(θ). Since f cp
4

does not depend on γ, increasing σ(θ) results in the lowest state Ądelity. Hence, ∆f co
4
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Figure 4.5: Plotting ∆fj against coherent error (σ(θ) on the y-axis) and
the rotation angle (γ on the x-axis). The dark green color indicates an
advantage of CZ decomposition over CP decomposition. White color
indicates no advantage of one gate over the other. The dark brown
color indicates an advantage of CP over CZ decomposition. Left plot:
State Ądelity difference for f4 = 1√

2
(0, 0, 1, 1)T . Right plot: State Ądelity

difference for f13 = 1
2
(i, i, 1, 1)T and f15 = 1

2
(1, 1, 1, 1)T .

increases in combinations with high or low γ and increasing σ(θ). The right plot presents
∆f13,15. Compared to ∆f co

4 , the state Ądelity for CZ decomposition has a shift in the
cosine, and the lowest state Ądelity value is smaller than for ∆f co

4 . For this reason, CP is
advantageous over CZ when γ ≈ π for ∆f13,15.

4.4 CZ and CP gate under depolarizing noise

This section examines how the depolarizing channel E affects the gate Ądelity of RZZ(γ).
Therefore, we decompose RZZ(γ) into CZ and CP gates and compare their respective gate
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Figure 4.6: Gate Ądelities for RZZ(γ) plotted against the probability for
depolarizing error p for CP (orange) and CZ (blue) decomposition. The
red line indicates the 99% gate Ądelity barrier.

Ądelities. To calculate the gate Ądelity, we will use

Fde =
1

16

16
∑

j=1

(

Tr
(√√

ρjρ′
j

√
ρj
))

=
1

16

16
∑

j=1

(

Tr
(√

ρjρ′
jρj
))

=
1

16

16
∑

j=1

(

Tr
(

√

Û ♣ψj⟩ ⟨ψj♣ Û †ρ′
jÛ ♣ψj⟩ ⟨ψj♣ Û †

))

=
1

16

16
∑

j=1

⟨ψj♣ Û †ρ′
jÛ ♣ψj⟩ .

(4.4.1)

♣ψj⟩ represents the initial pure state and Û a general unitary transformation, while ρ′
j

denotes the density matrix achieved after applying the gate operation charged with an

incoherent error on the state ♣ψj⟩. Since ρj is a pure state, we have
√
ρj =

√

(ρj)2 = ρj.
The state Ądelity with respect to the depolarizing error and CP decomposition is

fde
cp,j = ⟨ψj♣U †

cpE(Ûcp ♣ψj⟩ ⟨ψj♣ Û †
cp)Ûcp ♣ψj⟩ , (4.4.2)

while for CZ decomposition, it is

fde
cz,j = ⟨ψj♣ Û †

czE(E(Ûcz ♣ψj⟩ ⟨ψj♣ Û †
cz))Ûcz ♣ψj⟩ . (4.4.3)

We apply the incoherent channel twice in the CZ decomposition due to the two CZ gates.
Although the channels can be applied after each gate, we can use both after the unitary
gate operation Ûcz because the depolarizing channels commute. Figure 4.6 shows the
results for p ⩽ 1.4%. Fde

cp reaches a gate Ądelity of 99% for p = 0.0125. The same
gate Ądelity is attained for Fde

cz at p = 0.0063. Since we apply two depolarizing channels
to the CZ decomposition, the Ądelity is reached at approximately half the error rate of
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CP decomposition. By applying the deĄnition (4.1.1) of E on CP, we obtain the linear
equation for the gate Ądelity Fde

cp = 1 − 0.8p. For the CZ gate Ądelity, we deduce

Fde
cz = (1 − p)2 +

1

4
(1 − p)p+

1

16
p2. (4.4.4)

Expanding Equation (4.4.4) up to the Ąrst order results in Fde
cz = 1 − 1.55 p. Single-state

Ądelities are identical since the depolarizing error contracts the Bloch sphere uniformly.
We demonstrated that for small standard deviations σ(ζ), σ(θ) and low and high angles
γ, the gate Ądelities F co

cz and F co
cp yield similar results in the coherent case. However, the

gate Ądelity for CZ decomposition decreases twice as fast as p increases when exposed to
the depolarizing error.

4.5 Performance of CZ and CP gate

In this section, we visualize coherent and incoherent errors for RZZ(γ) into CZ and CP
decomposition into one result. We summarize the results from both previous sections and
recommend which gate should be used under which conditions. On top of that, we show
the scaling behavior of both errors and how they are connected.

4.5.1 Advantage of CP over CZ gate
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Figure 4.7: Plotting the Ądelity difference Fcp −Fcz in dependency of the
coherent error θ (x-axis) and the depolarizing error p (y-axis). Purple or
white corresponds to a high advantage of Fcp over Fcz, whereas the red
color corresponds to comparable gate Ądelity of both decompositions.

In Figure 4.7, we simultaneously apply the depolarizing and coherent error. For the
simulation in Figure 4.7, we set the rotation angle to γ = 0.01π to neglect the γ sin(θ)
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effects in Fde,co
cz . The plot depicts gate Ądelities above 99%. If σ(θ) < 0.016(0.8%) and

p < 0.032%, both decompositions yield similar gate Ądelities, with a difference of at most
0.02% between Fde,co

cp and Fde,co
cz . For σ(ζ), σ(θ) ⩾ 0.016(0.8%) and p ⩾ 0.032%, gate

Ądelities for both decompositions drop below 99.8%.
Consequently, if we can suppress the incoherent error and allow for small coherent

over-rotations, there would be no advantage of CP over CZ. If σ(ζ), σ(θ) ⩾ 0.036(0.8%)
and p ⩾ 0.0087%, we achieve a Ądelity difference of about 0.3% (Figure 4.7; purple/white
region). In Figure 4.7, Fde,co

cp ≈ 99.8% ± 0.2% for all error probabilities, while Fde,co
cz ⩽

99.5% in the lowest case (top-right corner). The polynomial scaling of the depolarizing
error would be demonstrated by increasing the depolarizing error (p > 0.1%). Thus, the
heatmap would change from a radial color trend caused by the inĆuence of σ(ζ), σ(θ)
and p on the gate Ądelities to a polynomial trend in dependence on p for higher error
rates. Of course, the circuit depth duplicates for CZ over CP decomposition. However,
the pulse calibration for different angles for the parametric CP gate would also introduce
another source of error. If both gates have small depolarizing error rates of p ⩽ 0.032%
and small coherent over-rotations of σ(θ), σ(ζ) < 0.016π (0.8%), we recommend using the
CZ gate over the CP gate. CP decomposition is advantageous over CZ decomposition for
depolarizing error rates p ⩾ 0.03%.

4.5.2 Scaling of coherent and incoherent error

This section examines the scaling behavior of coherent and incoherent errors concern-
ing CZ and CP decomposition for RZZ(γ). Given that coherent and incoherent errors
commute, we can derive the following equation for the resulting density matrix ρ after
applying CP decomposition Û co

cp and the incoherent channel E

E(Û co,†
cp ρÛ co

cp) = (1 − p)Û co,†
cp ρÛ co

cp + p1. (4.5.1)

The above equation tells us the proportion of the unitary and incoherent error. We obtain
the scaling quantities

Ωde,cp = p and Ωco,cp = (1 − p). (4.5.2)

The coherent error is associated with the input density matrix, represented by the fac-
tor (1 − p), denoting the probability of no incoherent error occurring. As decoherence
increases, the proportion of coherent error decreases linearly.

However, Equation (4.5.2) only informs us about the scaling behavior of the errors
without providing insight into the gate Ądelity. It is important to note that, at the same
error probability, the incoherent error will result in a larger reduction in gate Ądelity than
the coherent error. This is due to the exponential decay of the off-diagonal elements of
the density matrix ρ, caused by the incoherent error.

After applying CZ error-prone gate decomposition Û co
cz and E we achieve

E(E(Û co,†
cz Û co,†

cz ρÛ co
cz Û

co
cz )) = (1 − p)2Û co,†

cz Û co,†
cz ρÛ co

cz Û
co
cz + ((1 − p)p+ p)1. (4.5.3)

Thus, the proportions of the incoherent and coherent error in CZ decomposition are

Ωde,cz = (1 − p)p+ p. and Ωco,cz = (1 − p)2. (4.5.4)

Figure 4.8 illustrates the proportions outlined in Equation (4.5.4) and (4.5.4). For p ≪ 0.1,
both CZ and CP decompositions exhibit identical proportions for coherent and incoher-
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ent errors. At these low error probabilities, the gate Ądelities Fde,co
cz and Fde,co

cp achieve
comparable levels of accuracy. However, as p ≫ 0.1, we observe linear scaling, denoted
by Ωde,cp and Ωco,cp, for CP decomposition, and polynomial scaling, denoted by Ωde,cz and
Ωco,cz, for CZ decomposition. Because the coherent error is linked to the input density
matrix, and as the depolarizing error p increases, the proportion Ωco,cz decreases. Due
to the polynomial scaling of Ω in CZ decomposition, the gate Ądelity Fde,co

cz decreases
at a faster rate compared to Fde,co

cp . In Figure 4.8, two dashed red lines represent the
proportions of incoherent and coherent errors, with Ωco = Ωde = 0.5. The gate Ądelities
for CZ and CP decomposition coincide at p = 0.29 for CZ and p = 0.5 for CP.
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Figure 4.8: Plotting scale Ω (y-axis) of coherent and incoherent errors
for RZZ(γ) in CP and CZ decomposition against the depolarizing error p
(x-axis). Dashed lines indicate the incoherent error proportion, and solid
lines are the coherent error proportion. Green-colored curves are in CZ
decomposition, and blue-colored curves are in CP decomposition.

4.6 Decomposing RZZ(γ) into iSWAP gate

In hardware implementations, the iSWAP gate is also widely used as the non-local two-
qubit gate. It belongs to the same equivalence class as CZ. CZ and iSWAP are members
of the XY family. The general XY -gate is deĄned as

XYlk(α) = exp

(

− i

2
α

(

XlXk + YlYk

))

, (4.6.1)
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with α being the rotation angle. The two-qubit gates CZ and iSWAP are achieved by
tuning the angle α

iSWAP = XY (α = 1.5) =











1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1











. (4.6.2)

In order to decompose RZZ(γ) into iSWAP gates, we need to check if both gates belong
to the same equivalence class. If so, both gates only differ in single-qubit rotations. To
test this, we illustrate the results by Yuriy Makhlin [113] and use them to prove that
iSWAP and RZZ(γ) do not belong to the same equivalence class. First, Mahklin [113]
showed that local two-qubit gates Û1 ⊗ Û2 with Û1, Û2 ∈ SU(2) and unit determinant can
be transformed into subgroup SO(4), which consists of real and orthogonal matrices in
Bell basis explicit. Moreover, he proved that for every two-qubit gate Û with det(Û) = 1,
the local invariants are determined by the eigenvalues of the characteristic polynomial of
m(Û) = ÛT

B ÛB with
ÛB = Q̂†ÛQ̂, (4.6.3)

being the transformation from standard basis ♣00⟩ , ♣11⟩ , ♣01⟩ , ♣10⟩ into Bell basis 1√
2
(♣00⟩+

♣11⟩), i√
2
(♣01⟩ + ♣10⟩), 1√

2
(♣01⟩ − ♣10⟩), i√

2
(♣00⟩ − ♣11⟩) with

Q̂ =
1√
2











1 0 0 i
0 i 1 0
0 i −1 0
1 0 0 −i











. (4.6.4)

We need to follow a speciĄc procedure to decide if two randomly selected unitary matrices
L̂ and Û belong to the same equivalence class in SU(4). Firstly, we must convert both
matrices from the standard basis to the Bell basis using L̂TBL̂B and ÛT

B ÛB. Secondly, we
need to compute the characteristic polynomial, which is expressed in the following form

χ(m(Û)) = det(λI −m(Û)) = λ4 − Tr(m(Û))λ3 +
1

2
(Tr2(m(Û)) − Tr(m(Û)2))λ2

+ Tr(m(Û))s+ 1.

(4.6.5)

Hence, we have to calculate the two values

Tr(m) and Tr2(m) − Tr(m2). (4.6.6)

If both values are identical, we are in the same equivalence class. So Makhlin [113] restricts
his results to two-qubit gates with det(Û) = 1 Ąrst. Makhlin [113] also investigates the
general two-qubit gates N̂ ∈ SU(4). We focus on SU(4) because every gate K̂ ∈ U(4) can
be decomposed into K̂ = eiαK̂1 with K̂1 ∈ SU(4). General two-qubit gates are deĄned
up to a global phase factor eiα. To account for this factor, we need to divide the two
invariants by the determinant and the corresponding normalization constant, which leads
us to obtain

G1 =
Tr(m(Û))

16 det(Û)
, (4.6.7)
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G2 =
Tr2(m(Û)) − Tr(m(Û)2)

4 det(Û)
. (4.6.8)

The values of the invariants for both gates and additional ones are noted in the following
table. We use the notation [Gate] and select a representative gate from that class to

Gate G1 G2

iSWAP i/4 0
RZZ(γ) 1

2
+ 1

2
cos(2γ) 2 + cos(2γ)

CP 1
2

+ 1
2
cos(2γ) 2 + cos(2γ)

CZ 0 1

Table 4.2: local invariants G1, G2 for different gates

designate a speciĄc equivalence class. The SWAP class, denoted as [SWAP], encompasses
iSWAP and has invariant values of G1 = i/4 and G2 = 0. The [CP] class, which includes
RZZ(γ), exhibits invariant values of G1 = 1

2
+ 1

2
cos(2γ) and G2 = 2 + cos(2γ). Hence, it

can be concluded that iSWAP and RZZ(γ) are not equivalent. According to [112], we can
transform between two equivalence classes by applying the original Gate (iSWAP) twice
to obtain the target gate RZZ(γ). Furthermore, as per [112], we require local rotation
gates Û1, Û2, Û3 ∈ SU(2) ⊗ SU(2) between the two-qubit gates. Thus, the general form
for decomposing RZZ(γ) into iSWAP gates is

RZZ(γ) = Û1(ω⃗) · iSWAP · Û2(γ, ς⃗) · iSWAP · Û3(η⃗). (4.6.9)

We restrict our rotation angle γ to be in Û2. Every single-qubit gate can be described by
a unitary of SU(2) with

Û(β, κ, µ) = eiαRZ(β) ·RY (κ) ·RZ(µ), (4.6.10)

and three parameters contained in RX and RY rotations. α is the global phase. Our local
two-qubit gates Ûi ∈ SU(2) ⊗ SU(2) can be described by six parameters. To optimize
our circuit, we need to determine the optimal values for the 18 variables representing the
single-qubit rotations. We utilize the BFGS optimizer to identify these values. Once we
have found the optimal parameters, we can decompose the local gates into Hadamard and
RZ rotation gates, which will provide us with the Ąnal decomposition

RZZ(γ) = Û1(ω⃗) · iSWAP · Û2(γ, ς⃗) · iSWAP · Û3(η⃗)

=
i

j

RZ(π/2)
iSWAP

H RZ(γ) H
iSWAP

RZ(π/2)

H RZ(−π/2) RZ(−π/2) H

.

(4.6.11)

If quantum hardware has an iSWAP gate available, we only need to calibrate the RZ gate
and the Hadamard gate on the machine to obtain the [CP] class.
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4.7 Conclusion

In this chapter, we compared RZZ(γ) in CZ and CP gate decomposition. Considering both
small coherent and incoherent errors, we have discovered that the gate Ądelities Fde,co

cz

and Fde,co
cp exhibit comparable results. Depending on the state, CZ gate even provides

an advantage in state Ądelities for pure incoherent errors. This is important because, for
variational quantum algorithms, the parameter space tends to accumulate numerous local
minima as a result of coherent errors. This accumulation of minima introduces complexity
to the optimization process. Consequently, using a QAOA on hardware that utilizes CZ
gates and has a short circuit depth can provide advantages compared to hardware that
relies on CP gates. Regarding coherent errors, we discovered that the gate Ądelity of
RZZ(γ) in CZ decomposition depends on the rotation angle γ. In the case of small
coherent errors and the absence of incoherent noise, the gate Ądelity is higher for small
rotation angles than for larger ones. Additionally, we derived an analytical equation that
expresses the gate Ądelity for CZ decomposition as a function of the coherent error.

Furthermore, we have demonstrated a gate decomposition method for RZZ(γ) that
employs the iSWAP gate, assuming the availability of a Hadamard gate and Pauli-Z
rotations. The iSWAP decomposition consists of two Ąxed two-qubit gates like CZ, and we
expect similar gate Ądelities between the two decompositions. Since our quantum channels
do not affect the single-qubit gates, only the state Ądelities will change. Therefore, we have
not conducted numerical and analytical studies for iSWAP decomposition and instead
refer to CZ decomposition.
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QAOA in the digital-analog scheme

This chapter will discuss the publication "Approximating the quantum approximate op-
timization algorithm with digital-analog interactions" released in Phys. Rev. A 106,
042446 (2022). This project was a joint effort between David Headley from Daimler-Benz
AG and Ana Martin from IKERBASQUE, Bilbao, Spain. We aimed to combine David
Headley and my knowledge of quantum algorithms with Ana MartinŠs expertise in the
digital-analog scheme. My primary contribution to this project was the numerical imple-
mentation of the QAOA digital-analog approach, while David Headley was responsible for
the analytic bound estimation. This chapter aims to integrate the Quantum Approximate
Optimization Algorithm (QAOA) into the digital-analog paradigm. We demonstrate that
when employing fast single-qubit gates, the digital-analog approach of QAOA achieves
comparable results to the digital implementation.

This chapter is structured as follows: We provide a concise overview of the history of
digital-analog quantum computing in Section 5.1. Following that, in Section 5.2, we study
the mathematical concepts that enable us to translate an algorithm into a digital-analog
device. The primary focus of Section 5.3 is to clarify the speciĄc conditions under which
the QAOA implemented in the digital-analog scheme produces comparable results to its
digital counterpart.

71



Chapter 5

5.1 Digital Analog Quantum Computing

Analog quantum simulators such as [116, 117] have limitations when executing various
algorithms, unlike a universal quantum computer that can simulate arbitrary Hamiltoni-
ans using one- and two-qubit gates, as demonstrated in [18]. Due to high circuit depth,
the gate-based technique is typically vulnerable to numerous coherent and incoherent er-
rors. Apart from depolarizing errors, the system can also encounter cross-talk issues. To
illustrate, constructing a two-qubit gate in a superconducting platform requires bringing
the two qubits that are intended to interact into resonance. Unfortunately, the qubit
pair sometimes transmits an electric signal to uninvolved qubits, leading to disruptions.
Capacitively or inductively coupled qubits typically cause this phenomenon, which can
also occur when the qubits are decoupled and go off-resonance. As a result, quantum
algorithms like Shor can encounter cross-talk issues when a large number of qubits are
required. In contrast, analog quantum computers, such as quantum annealers, are less
susceptible to these types of errors compared to gate-based machines [118]. In theory,
every analog device has the potential to perform any algorithm that a gate-based ma-
chine can [119, 120]. Nonetheless, this concept is mainly theoretical, as in practice, the
evolution times required are often too long and would exceed the coherence time. In
the case of an analog quantum computer, all qubits are brought into resonance, and the
systemŠs Hamiltonian evolves in time without any external disturbances. Digital-analog
quantum computing integrates the gate-based and the analog approach. The purpose is
to merge all non-local two-qubit gates into a single Hamiltonian, which is then simulated
in time. The system is controlled by fast single-qubit gates, which are considerably faster
than two-qubit gates by a factor of roughly two to three orders of magnitude [121, 122],
leading to minimal disruptions.

The origins of digital-analog quantum computing can be traced back to nuclear mag-
netic resonance [123] and quantum optimal control [124]. For example, assume a Hamil-
tonian Ĥ needs to be simulated for time t using a quantum simulator. However, the
simulator can only access Ĥ

′

. So the question that arises is, can we decompose the
simulator Ĥ

′

into

e−iĤt = e−iĤ
′

t1U1e
−iĤ ′

t2U2 . . . e
−iĤ ′

tnUn, (5.1.1)

with control unitaries Ui to construct the entire time evolution e−iĤt. The Ąrst theoret-
ical concepts for digital-analog quantum computing were proposed by Dodd et al. [125]
and Parra-Rodriguez et al. [126], among others [127, 128, 129]. Parra-Rodriguez et al.
[126] demonstrated the digital-analog procedure for an Ising-like problem, which natu-
rally appears in many algorithms. Meanwhile, Dodd et al. [125] presented a different
decomposition technique that has been proven to be universal. The Ąrst digital-analog
quantum simulators for chemistry [130] and other models [131, 132] for superconducting
qubits have already been proposed. The Ąrst quantum algorithms, such as the quantum
Fourier transformation, have also been translated into the digital-analog approach [133].
The work of Ana Martin et al. [133] is a signiĄcant cornerstone in the Ąeld. QFT is a
subroutine in numerous algorithms, including quantum phase estimation and the HHL
algorithm, as introduced by Harrow et al. in [10]. Ana Martin and her colleagues provide
evidence demonstrating the noise resilience of the QFT against coherent errors. In addi-
tion, Garcia-Molina et al. [134] showed that the QFT is more robust against incoherent
errors than its digital counterpart.
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5.2 Digital-analog paradigm

This section will discuss the digital-analog paradigmŠs theory and how to implement it
on a physical machine, as outlined in the work by Parra-Rodriguez et al. [126]. As
abovementioned, we want to merge the error resilience of the analog computer with the
freedom of choice in the algorithms that a gate-based quantum computer offers.

5.2.1 Calculating digital-analog blocks

This section provides a summary of the research conducted by Parra-Rodriguez et al. as
documented in their work [126]. We assume that we have access to a device Hamiltonian,
an analog quantum computer capable of bringing all qubits into resonance and allows us
to control the device Hamiltonian by turning it on and off. We further demand access to
single-qubit gates we can apply to the system as required.

We now demonstrate how to map every algorithmŠs two-qubit gates onto the analog
device according to [126]. For this purpose, we consider an arbitrary two-body Ising
Hamiltonian,

Ĥarb =
∑

i<j

gijZiZj, (5.2.1)

with an all-to-all connection (ATA), with the aim of determining the ground state, for
example. To prevent errors, we aim to simulate this Hamiltonian in time instead of decom-
posing every ZZ coupling into a two-qubit gate. The objective is to achieve the desired
transformation. To accomplish this, we will utilize a homogenous Ising Hamiltonian

Ĥdevice = g
∑

i<j

ZiZj, (5.2.2)

as our device. For the sake of simplicity, we set g = 1 in the device Hamiltonian. The
Ising Hamiltonian can construct universal ZiZj gates [135]. As previously mentioned, our

goal is to simulate Ĥarb on the device Ĥdevice, within a time of tF , through the use of the
time evolution operator Ûarb(t) = e−iĤarbtF . Therefore, we must determine the appropriate
mapping

tF
n
∑

i,j

gi,jZiZj =
n
∑

i<j

n
∑

l<m

tlmXlXmZiZjXlXm. (5.2.3)

Equation (5.2.3) illustrates the transformation from one Ising Hamiltonian to another.
We can solve this equation for the time intervals tlm and combine the resulting values
with Pauli-X rotations around the ZZ rotation gates on the device Hamiltonian with n
qubits. By doing so, we can map the problem Hamiltonian onto the device. We replace
the digital gates with at most n(n − 1)/2 time slices. The total simulation time of the
system is given by the sum

∑

l<m tlm. To compute tlm, we commute the Pauli-X gates
from the left side of the ZiZj to the right site. For single-qubit indices l,m ̸= i ̸= j, we
can easily commute through, and the Pauli-X gates cancel out. However, for the case of
ZiZjXj = −XjZiZj, a minus sign arises, and we can rewrite the right side of Equation
(5.2.3) to

tF
n
∑

i,j

gi,jZiZj =
n
∑

i<j

n
∑

l<m

tlm(−1)δli + δlj + δmi + δmjZiZj. (5.2.4)
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In the next step, we vectorize the index pairs (l,m) → ω and (i, j) → ζ with

ω = n(l − 1) +
l(l + 1)

2
+m and (5.2.5)

ζ = n(i− 1) +
i(i+ 1)

2
+ j. (5.2.6)

By using the vectorization, we can express the Kronecker sign in Equation (5.2.4) as a
two-dimensional matrix with

Mωζ = (−1)δli + δlj + δmi + δmj . (5.2.7)

The Matrix inversion of Mωζ will provide us the time intervals tω with

gζ = (1/tF )Mωζtω → tω = M−1
ωζ gζtF , (5.2.8)

with gij → gζ and tlm → tω.
We have demonstrated that we can compute the time intervals between the various

qubit interactions by matrix inversion M−1
ωζ . With this method, we can now simulate

Ûarb(t) = e−itF Ĥarb with Ûdevice(tF ) =
n
∏

l<m

XlXme
tlm
∑n

i<j
ZiZjXlXm. (5.2.9)

To simplify the above expression, we apply the X rotations as NOT gates when using
them on a digital-analog device. This can be achieved using the rule

eitÛŴ Û †
=

∞
∑

k=0

(it)k

k!
(ÛŴ Û †)k = . . .+

(it)2

2!
(ÛŴ

❍
❍❍Û †ÛŴ Û †) + . . .

= Û
(

. . .+
(it)2

2!
Ŵ 2 + . . . Û †

)

= ÛeitŴ Û †,

(5.2.10)

for any unitary operation Û and Pauli-X gates. This allows us to simplify the right-
hand side of Equation (5.2.9). We can use Equation (5.2.9) to simulate entangling two-
qubit gates on an analog device by decomposing every algorithmŠs two-qubit gates into
an inhomogeneous Ising chain. This allows us to perform the simulation on the device
instead of a digital quantum computer. Although the sign matrix cannot be inverted
directly for n = 4, a solution is presented in [126].

All the concepts presented in this chapter can be extended to inhomogeneous and non-
all-to-all connected device Hamiltonians, as discussed in [136]. Galicia et al. [136] address
the challenge of dealing with practical hardware limitations by constraining the device
Hamiltonian to graphs with limited connectivity. The only difference in their approach
would be the compiled circuits, as constraints in the device HamiltonianŠs connectivity
may require more SWAP gates. The matrix inversion provides us with the time intervals,
as shown in Equation (5.2.8). Still, it does not indicate how to implement it on an actual
device due to the possibility of negative time intervals.
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5.2.2 Negative times in the digital-analog approach

To simulate in the DAQC approach, we must keep the problem Hamiltonian unchanged
because we are simulating the Hamiltonian throughout

∑n
l<m tlm. Hence, we have to

ensure that all times tlm are positive. We will elaborate on how to achieve this for both
homogenous and inhomogeneous device Hamiltonians. Furthermore, there is a general
concept that is applicable regardless of the device Hamiltonian.

We begin by considering the homogenous ATA device Hamiltonian. In this case, we can
take advantage of the periodicity of the unitary and add 2π to every time block. However,
with the always-on resource Hamiltonian, the required time would be too long. Instead of
gaining an error advantage by reducing cross-talk, we would exceed the coherence time.
Another approach involves utilizing the eigenvalues [126]. To start, we can express the
matrix M multiplied by the time vector t⃗ as

Mt⃗ = M (⃗t− tmin1⃗ + tmin1⃗), (5.2.11)

with tmin being the minimal time of the time vector with tmin < tω for all ω. 1⃗ is a
column vector Ąlled with ones. Intuitively, 1⃗ is an eigenvector of matrix M . Following
from the fact that M is a symmetric matrix built up on Pauli-X commutation relations.
Furthermore, the plus state ♣+⟩, which is an eigenstate of the Pauli-X gate, is proportional
to 1⃗. Therefore, we deduce

Mt⃗ = M (⃗t− tmin1⃗) + λtmin1⃗. (5.2.12)

λ is the eigenvalue of M for eigenvector 1⃗. Consequently, the time vector t⃗∗ = t⃗ − tmin1⃗
for the sign matrix is

Mt⃗ = Mt⃗∗ + λtmin1⃗. (5.2.13)

We have an additional analog block for simulating λ1⃗. However, it is crucial to ensure that
the eigenvalue λ is negative so that this block evolves in positive time. The eigenvalue
turns out to be negative for n < 7 and for n = 3, 5, 6, while the matrix becomes singular
at n = 4. For n > 6, the eigenvalue is always positive, which could lead to the extra block
λtmin being negative if tmin < 0. To circumvent this issue, one possible solution is to add
2π to the exponent, thereby ensuring that the homogenous resource Hamiltonians remain
positive. By refraining from adding 2π to every analog block, we can prevent the coherence
lifetime of the qubit from being exceeded. The periodicity argument we lose in the case of
inhomogeneous device Hamiltonians. In such a case, we can convert Ĥarb → −Ĥarb and
use the problem HamiltonianŠs periodicity if possible. In this study, we focus primarily on
Max-cut problems, which have multiple integer values of 1/2 as couplings (gij ∈ N/2 with
N ∈ Z+). To account for this, we introduce a minus sign to the problem Hamiltonian
and time, which we then calculate in modulo 2π. By doing so, we can absorb the negative
sign of the problem Hamiltonian into the matrix M and ensure that the eigenvalue λ
is negative. Alternatively, we can achieve −M by inverting the protocol. In this case,
instead of sandwiching the ZZ couplings with X1X2ZZX1X2, we would sandwich them
with X3..XnZZX3..Xn. The time evolution of the device unitary, including the extra
block, is given by

Ûdevice(tF ) = exp



i
∑

ζ,ω

Mωζt
∗
ωZiZj



exp



λtmin

∑

ζ

ZiZj



. (5.2.14)
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5.2.3 stepwise Digital Analog Quantum Computing

The Digital Analog Quantum Computing (DAQC) paradigm encompasses two distinct
procedures. The Ąrst is the stepwise Digital Analog Quantum Computing (sDAQC)
scheme, as depicted in Figure 5.1. This scheme consists of analog Hamiltonian simulation
components interspersed with single-qubit X rotations, each requiring a duration of ∆t,
corresponding to the time required for a full rotation of a Pauli-X gate. Notably, this
duration is approximately two to three orders of magnitude shorter [121, 122] than the
typically required time for a two-qubit gate. To implement this procedure, a device must
be capable of activating and deactivating the device Hamiltonian and enabling access to
single-qubit rotations. When all sources of error are disregarded, sDAQC is identical to
the pure digital approach.

. . .

. . .

. . .

. . .

...
...

...
...

...
...

. . .

. . .

♣0⟩ X

eit1ĤR

X

eit2ĤR eit3ĤR eitKĤR

♣1⟩ X X X X

♣2⟩ X X X X

♣3⟩ X X

♣N⟩

Analog QCDigital QC

∆t t1 ∆t t2 ∆t t3 . . . ∆t

Figure 5.1: General stepwise Digital Analog Quantum Comput-
ing(sDAQC): Blue gates: depicted are the analog blocks for the times
tlm for a general resource Hamiltonian of size n and analog blocks of
depth tK = n(n − 1)/2. Green gates: single-qubit X rotation gates
that are applied in time ∆t in the digital part. The bottom black line
indicates the timeline. Red lines indicate cancellation of single-qubit ro-
tations XiXi = 1 of adjacent time slices for example t12 and t23.

5.2.4 banged Digital Analog Quantum Computing

The alternative procedure to sDAQC is the banged Digital Analog Quantum Computing
(bDAQC) approach. In the bDAQC scheme, we activate the device Hamiltonian at the
beginning and deactivate it at the end of the time evolution. Furthermore, we disrupt the
system with fast single-qubit gates in the interim.

The bDAQC scheme is illustrated in Figure 5.2, which entails incorporating X rotation
gates into the device Hamiltonian. These gates can be applied simultaneously during a
time interval of ∆t. To transform Pauli-X gates into X rotation gates, we use X = eiXt
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for t = π/2. As a result, the time evolution unitary for bDAQC can be expressed as

ei(Ĥ +X)∆t = eiĤ∆teiX∆t + O(∆t2). (5.2.15)

The subsequent inquiry pertains to the Trotter errorŠs size, which is O(∆t2), and how it
compares to that of the digital approach. This is dependent on the speed of the single-
qubit X gates. In the case of inĄnitely fast single-qubit gates, with ∆t → 0, bDAQC is
identical to sDAQC. Suppose the Trotter error is insigniĄcant for the chosen device. In

. . .

. . .

. . .

. . .

...
...

...
...

...
...

. . .

. . .

♣0⟩ X X

♣1⟩ X X X X

♣2⟩ X X X X

♣3⟩ X X

♣N⟩

Ttot =
n
∑

l<m

tlm

Figure 5.2: General banged Digital Analog Quantum Comput-
ing(bDAQC): The blue gate is the resource Hamiltonian which is turned
on for the total time Ttot (bDAQC). The single-qubit X rotations are
applied simultaneously at certain time points.

that case, the bDAQC scheme is more error robust than sDAQC concerning cross-talk
due to the less needed control ability of the device Hamiltonian. In the following, we
designate the pure analog bDQAC unitary as ÛZZ , and ÛZZ+X represents the unitary
that incorporates digital single-qubit X-gates alongside its analog component.

5.3 QAOA in the DAQC scheme

This section demonstrates the integration of QAOA into the digital-analog approach as
a primary focus. Subsequently, we evaluate the performance of QAOA in the bDAQC
scheme compared to its pure digital counterpart. Additionally, we provide an analysis
of the computational time required for both the digital and digital-analog approach of
QAOA.
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5.3.1 Apply DAQC to QAOA

This subsection focuses on the workings of a potential QAOA device in the digital-analog
scheme. To simplify matters, we concentrate on problem Hamiltonians

Ĥarb =
∑

ij

(1 − ZiZj). (5.3.1)

The problem graphs we investigate are random non-regular graphs. However, it is worth
noting that other problems involving ZiZj interactions, such as 2SAT, can also be ex-
plored. Theoretically, problems like Max-kXOR with higher degrees than 2 for k can be
applied to the device Hamiltonian. After, we map to the device Hamiltonian. A standard
device Hamiltonian for this type of problem may resemble

Ĥdevice = θ(t)
n
∑

i<j

ZiZj + α
n
∑

i=0

ϕi(t)Xi. (5.3.2)

The parameter α corresponds to the coupling strength and determines the gate duration of
a Pauli-X rotation. By summing up the two-qubit ZZ interaction terms, we can construct
the entangling device Hamiltonian, which features a homogeneous coupling. Additionally,
we use a step function θ with θ ∈ ¶0, 1♢ to enable sudden activation and deactivation of
the coupling.

In addition, we require single-qubit Pauli-X gates with a step-function ϕi for each
qubit, with ϕi ∈ ¶0, 1♢. With digital and analog control components, we aim to construct a
QAOA device tailored for solving the Max-cut problem. While we could adjust the number
of one-qubit gates available to make the device more versatile for various problems, this
is not the primary goal of our research. Rather, we aim to create NISQ algorithms, such
as QAOA, using a digital-analog device suitable for this purpose. To employ a machine
that meets these requirements, we must activate and deactivate the device Hamiltonian
using θ in the sDAQC scheme. However, in the bDAQC scheme, we can relinquish even
more control by enabling the device Hamiltonian at the initial time t = 0 and switching
it off at the Ąnal time tF using θ(tF − t). Compared to other algorithms like QFT in the
digital-analog scheme [133], where the exp(−iγZZ) incorporation must be performed, the
QAOA is already formulated in terms of these rotations for the two-qubit gates, giving it
an advantage. As a result, we can employ the mapping from Equation (5.2.8) to determine
the total time required in the bDAQC scheme. To calculate the overall time in the bDAQC
scheme, we only need to multiply the times by the variational parameter γ, leading to

p
∑

d=1

γdtω =
p
∑

d=1

γdM
−1
ωζ gζtF . (5.3.3)

We only need to perform the matrix inversion for p = 1 and can use it for higher orders
of p. Therefore, we will focus on p = 1 in our upcoming simulations. For the single-qubit
rotations of the device Hamiltonian Ĥdevice, we have to set all ϕi = 1 instantaneously and
let the device Hamiltonian to be on all the time. The gate rotation time for the driver
Hamiltonian is β/α. We need to include an extra block λtmin1⃗ between the γtω and the
driver block. Ultimately, we need to demonstrate that the Trotter error in the middle
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analog block of the γ decomposition

ÛZZ(tω)ÛX+ZZ(1/α)ÛZZ(tω+1) = exp

(

i

(

tωγ − 1

α

)

∑

i<j

ZiZj

)

× exp

(

i

α

(

α(Xl +Xm +Xl+1 +Xm+1) +
∑

i<j

ZiZj

))

exp

(

i

(

tω+1γ − 1

α

)

∑

i<j

ZiZj

)

,

(5.3.4)

does not lead to a high difference in M1 compared to the QAOA in the DQC scheme.
Of course, this depends on the coupling strength α. Equation (5.3.4) shows the imple-
mentation of a random bDAQC block. Generally speaking, we subtract 1/α of the device
Hamiltonian before and after the single-qubit rotations and add 1/α to the single-qubit
X rotations. Subtracting 3/(2α) of the device Hamiltonian for the analog blocks at the
beginning and the end, and 1/α for the analog blocks in between, is also necessary. To
simulate this process, we need to Trotterize the block ÛX+ZZ(1/α). We distinguish here
between the computational Trotter error due to the simulations on the computer and the
Trotter error due to the bDAQC scheme.

For the driver block, we also have to subtract inĄnitesimal time from the device Hamil-
tonian

ÛZZ(λtmin)Û(B̂ + Ĥdevice, β/α)

= exp

(

i

(

λtminγ − β

α

)

∑

k<j

ZiZj

)

exp

(

iβ

α

(

∑

k<j

ZiZj + α
∑

i

Xi

)

.
(5.3.5)

We need to combine all the deviceŠs Hamiltonian ingredients to describe the systemŠs
evolution. This includes turning on the single-qubit rotations of the drive for a duration
of β/α. However, we also need to subtract the time taken by the extra analog block,
which is represented by λtmin1⃗. After this step, we arrive at the Ąnal unitary operator
that fully characterizes the systemŠs evolution

Ûdevice(t) = T exp

(

∫ tF

0
Ĥdevice(t)dt

)

, (5.3.6)

with T being the time ordering operator, we must include because of the time dependence
of the device Hamiltonian.

As we have already mentioned, implementing a device with the digital-analog scheme
can reduce errors caused by cross-talk. Moreover, the variational nature of the QAOA,
compared to non-variational algorithms, provides coherent error reduction, which is an
added advantage. This combination of NISQ and DAQC concepts could pave the way for
a new era of devices before fault-tolerant quantum computers can be built.

5.3.2 Performance of bDAQC-QAOA versus QAOA

This section focuses on examining how well the bDAQC scheme performs with respect to
the QAOA. In the preceding section, we integrated all components necessary to implement
the bDAQC scheme for QAOA on a single device. As a result, we formulate the QAOA
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ansatz for the bDAQC scheme with p = 1 as follows

ÛDA(α) ♣s⟩ =exp

((

λtminγ − β1

α

)

Ĥres

)

exp

(

β1

α

(

Ĥres + α
∑

i

Xi

))

×
n
∏

l<m

exp

(

1

2α
(Xl +Xm)Ĥres

)

× exp

((

γ1tlm − 1

α

)

Ĥres

)

× exp

(

1

2α
(Xl +Xm)Ĥres

)

♣s⟩

(5.3.7)

and calculate the loss function. After the optimization, we Ąrst calculate the expectation
value with the optimal parameters

⟨Ĥ⟩DA

γ⃗∗

DA
,β⃗∗

DA
= ⟨s♣ ÛDA(α)ĤÛDA(α)† ♣s⟩ . (5.3.8)

After normalization with the maximum value of the problem Hamiltonian Emax, we obtain
the mean approximation ratio

MDA
1 =

⟨Ĥ⟩DA

γ⃗∗

DA
,β⃗∗

DA
− Emin

Emax − Emin

. (5.3.9)

Subsequently, we compare the mean approximation ratio of the bDAQC-QAOA scheme
with the pure DQC-QAOA mean approximation ratio. The difference in the mean ap-
proximation ratios is

∆M1 = M1 − MDA
1 . (5.3.10)

As mentioned in the prior subsection, we study the speed ratio α and examine the limit
when bdaqc-QAOA delivers comparable results to DQC-QAOA mean approximation ra-
tio. As the problem Hamiltonian Ĥarb, we use non-regular Max-cut instances of the
ErdősŰRényi model for random graphs, where the probability of having a connection be-
tween two vertices is 70%.

Figure 5.3 shows the results for qubit numbers ranging from 8 to 25 and speed ratios
ranging from 1 to 10000. The green color indicates that the DQC-QAOA outperforms
the bDAQC approach, while the brown color indicates the opposite. The white color
represents a neutral regime. We observe that in the low-speed ratio regime (1-10) and low
qubit numbers (8-10), the DQC-QAOA outperforms the bDAQC-QAOA by approximately
7.5%. This result is caused by a high Trotter error, which is worst when the coupling
strength is α = 1 in the bDAQC-QAOA scheme. In scenarios involving low-speed ratios
and low qubit numbers, the bDAQC scheme can no longer encode the problem Hamilto-
nian, resulting in an error equivalent to the result of a depolarizing error regarding the
parameter space. This error affects the parameter space. As a result, the parameter space
becomes Ćat with unstable regions. The mean approximation ratio calculation ensures
that the percentage difference in the worst-case scenario of low-speed ratio α does not
exceed 12.5%. As the Trotter error increases, local minima and maxima values will de-
crease or increase until the parameter space becomes Ćat. The Ćat spaceŠs expectation
value is close to the global minimum. Whereas the overlap of both approaches goes down
to zero. Furthermore, current quantum devices can execute two and one-qubit gates at
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Figure 5.3: The color map indicates the percentage difference in mean
approximation ratio between pure digital QAOA and bDAQC-QAOA.
According to Equation (5.3.10), the difference is ∆M1. The x-axis indi-
cates the speed ratio α of the single-qubit rotations. The y-axis displays
the number of qubits per instance. We take random non-regular Max-cut
instances with a Ąlling factor of 70%. We average over 50 instances per
speed ratio α and per qubit number n.

different speeds. However, we notice a slight improvement for bDAQC-QAOA at higher
qubit numbers (n > 14) when the speed ratio is the same. The QAOA approach fails to
optimize due to a more complex parameter space.

Increasing α to 102 reduces the Trotter error in the bDAQC ansatz, resulting in a
decrease in the mean approximation ratio from 7.5% to 2.5%. This reĆects the current
hardwareŠs order of magnitude for α. In the range of α ∈ [102, 103], we see even an advan-
tage of the bDAQC-QAOA over the DQC-QAOA scheme. As the qubit number increases,
the advantage of bDAQC-QAOA over the digital QAOA appears to shift towards higher
α values. This cannot be explained purely by the translation from DQC to bDAQC. In
literature, there are examples of how noise could even be beneĄcial for variational algo-
rithms [48]. In such cases, errors can be interpreted as Pauli errors and could potentially
lead to an improvement, as demonstrated in [48]. Thus, a detailed error analysis com-
paring DQC and bDAQC devices would be necessary, but this is not the subject of this
research. If we increase α to an order of 104, we reach the limit where the Trotter error
in the bDAQC scheme becomes negligible. In this limit, DQC and bDAQC are identical
under error-free devices.

Suppose current hardware providers like Google and IBM could bring all qubits into
resonance. In that case, we could easily measure if we have an advantage of DAQC over
DQC due to fewer cross-talk errors. This we should do for low time decomposition tnm,
to stay in coherence time.
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5.3.3 Parameter space of bDAQC-QAOA

In this subsection, we investigate the parameter space for bDAQC-QAOA discussed in
the previous subsection.

Figure 5.4 shows one instanceŠs expectation values for two different values of α ∈
¶10, 1000♢ in the parameter space. The expectation value F of the bDAQC approach
changes to the Trotter error. As expected, the left plot indicates that at a high-speed
ratio of α = 1000, the values of F1 for both approaches are almost identical. However, for
α = 10, we notice that the Trotter error introduces a reduction in the global minimum.
Additionally, the solution space presents more small local minima than the DQC-QAOA
approach, making the optimization process even more challenging. Although the optimal
parameter distances, γ∗ and β∗, between bDAQC and DQC increase from 0.1 a.u. for
α = 1000 to 0.15 a.u. for α = 10, we cannot generalize that the distance increases as α
decreases. The coherent error appears random among the instances, making it difficult
to predict.
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Figure 5.4: Plotting expectation value F1 for Ąxed β1 against γ1 for p = 1
and for DQC and bDAQC. For different values of α. For both plots, we
take the same problem of a random problem graph of size N = 8. The
green curve is the expectation value of QAOA in DQC, and the blue
curve is the expectation value of QAOA in bDAQC. Left plot: we take
a speed ratio of α = 10. We Ąxed βDQC

1 = 0.65 and βbDAQC
1 = 0.5 at the

global minimum of both approaches. Therefore, the distance due to the
coherent error of the global minimum is ∆(γ∗

1 , β
∗
1)DQC,bDAQC = 0.15 a.u.

Right plot: we take speed ratio of α = 1000. β1 is Ąxed to βDQC
1 = 0.65

and βbDAQC
1 = 1.65. Hence the distance is ∆(γ∗

1 , β
∗
1)DQC,bDAQC = 0.1 a.u.

due to the coherent error.
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5.3.4 Variational resilience

Unlike the HHL algorithm [137] or the QFT [133] in the DAQC scheme, the QAOA has
an additional feature, the optimizer, which reduces the coherent error in the approach.
This makes the QAOA, in combination with the DAQC scheme, particularly appealing
for the NISQ era. In this section, we investigate the role of the optimizer in the bDAQC-
QAOA scheme. The QAOA leverages the expectation value as the loss function, allowing
the optimizer to determine the optimal angles γ⃗∗, β⃗∗. We utilize the identical approach to

Ąnd the optimal angles γ⃗∗
DA, β⃗

∗
DAof ⟨Ĥ⟩DA

γ⃗∗

DA
,β⃗∗

DA
regarding the expectation value of Equation

(5.3.8). An open question remains regarding at which α the optimal parameters γ⃗∗, β⃗∗ of
the QAOA match those of the bDAQC-QAOA ansatz. Furthermore, if there are differ-
ences in the optimal angles between the two approaches, how can the optimizer mitigate
the Trotter error and Ąnd new parameters for the DA approach?

We analyze Figure 5.5 to explore this question. In particular, we utilize the optimal
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Figure 5.5: The color map indicates the percentage difference in mean
approximation ratio between bDAQC-QAOA with optimized parameters
γ⃗∗

DA, β⃗
∗
DA and unoptimized bDAQC-QAOA using the parameters γ⃗∗, β⃗∗

from QAOA. According to Equation (5.3.11), the difference is V1. The
x-axis indicates the speed ratio α of the single-qubit rotations. The
y-axis indicates the number of qubits per instance. We take random
non-regular Max-cut instances with a Ąlling factor of 70%. We average
over 50 instances per speed ratio α and per qubit number n.

parameters γ⃗∗, β⃗∗ obtained from QAOA and substitute them into the non-variational
form of the bDAQC-QAOA expectation value in Equation (5.3.8). We then calculate the
mean approximation ratio and subtract this value from the optimized bDAQC-QAOA
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mean approximation ratio in variational form, leading to

V1 =
⟨Ĥ⟩DA

γ⃗∗

DA
,β⃗∗

DA
− ⟨Ĥ⟩DA

γ⃗∗,β⃗∗

Emax − Emin

. (5.3.11)

For high α values, there is no difference because both approaches of DQC and bDAQC
are identical. Consequently, when the optimal angles are the same, the variational and
non-variational forms of bDAQC-QAOA yield no distinction.

However, at lower speed ratios, ranging from α ∈ [101, 102], the difference between
the two approaches achieves the maximum with ∆V1 ⩾ 10%. In this range, the varia-
tional bDAQC-QAOA scheme outperforms the non-variational form regarding the mean
approximation ratio, and the optimal angles differ. The introduced Trotter error α in the
bDAQC approach makes the non-variational form of bDAQC-QAOA ineffective. Never-
theless, the optimizer can mitigate the error in the bDAQC approach.

When α is in the range of α ∈ [1, 10], as mentioned in the preceding section, the
bDAQC-QAOA approach fails to encode the problem. The surface is almost Ćat in this
range, and the variational form cannot absorb the Trotter error. In this speciĄc range,
the bDAQC-QAOA circuit encounters a phenomenon known as a barren plateau, where
the gradient tends to vanish [138]. The occurrence of signiĄcant noise in the system [139]
can contribute to the emergence of this phenomenon. In such cases, the optimizer will
not help, and if we insert the optimal parameters of the QAOA in the bDQAC scheme,
we will get two different optimal points with the same value. Figure 5.5 deĄnes when to
use the variational form or the Ąxed number of the gate sequence.

5.3.5 Time duration of DQC and DAQC

In order to compare the QAOA on a DQC and a DAQC device, we must determine the
time required for both algorithms. Therefore, we conducted a time analysis for each ap-
proach without incorporating any assumptions about errors in the two-qubit gates or any
factors that may limit coherence time.

However, to conduct a more detailed analysis, we would need to examine speciĄc hard-
ware components, such as Pauli errors, cross-talk, and the latency of a two-qubit gate. To
ensure a fair comparison, we assume the digital approach possesses an all-to-all connected
hardware graph, enabling ZZ interactions without needing SWAP gates. However, the
digital approach cannot apply all two-qubit gates associated with a single qubit on the
hardware graph simultaneously. Therefore, we make a straightforward approach that the
time required for a problem Hamiltonian is

Ttot,DQC = max
v∈V

(deg(v)) + 1. (5.3.12)

The graph G(V,E) represents the problem Hamiltonian with E the set of all edges and V
the set of all vertices. deg is the degree of a vertex v, so the number of edges connected to
the vertex. The graphŠs max degree is the vertex with the most connections. This is the
maximum time interval we have for a digital version. We set the time for a single interval
to one without considering any quantum compiling improvements that could potentially
reduce circuit depth as demonstrated in [140, 141]. To obtain the total time for DAQC,
we sum up all time intervals tnm and add the extra analog block of λtmin.

Figure 5.7 depicts an example problem graph, including its decomposition into DQC
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Figure 5.6: Plotting the number of qubits against the total time re-
quired for digital quantum computing (orange curve) and digital-analog
quantum computing (blue curve). The x-axis indicates the number of
qubits for a random Max-cut graph with a Ąlling factor of 70% for the
ErdősŰRényi graph. The y-axis indicates the time the protocols need.
We average over 100 random instances per number of qubits. The re-
source Hamiltonian for DAQC is set to be homogeneous.

and DAQC. In this example, the max degree of the graph is equal to the total time in the
DQC, expressed as Ttot,DQC = maxv∈V (deg(v)) ̸= maxv∈V (deg(v)) + 1. The distinction is
due to the non-regular problem graph. In regular graphs, the time interval is primarily
according to Equation (5.3.12).

Because we are looking for bDAQC decomposition, we include all single-qubit gates,
which take time ∆t into the analog blocks. Thus, ∆t does not account for the time
calculation. Figure 5.6 shows the results of this study. The DQC protocol demonstrates
a linear trend in dependence on the qubit number. The DAQC protocol outperforms
DQC in total time Ttot for n ⩽ 13. For n > 13, the DAQC scheme requires more
time Ttot than DQC. Estimating the total time for the two QAOA protocols helps us to
determine the appropriate circuit depth for running QAOA using the DAQC scheme. This
is particularly important for short circuit depths compatible with the available qubits on
hardware platforms in the NISQ era.

It should be noted that we have not accounted for any inhomogeneous coupling in
our simulations. Introducing inhomogeneous coupling to the resource Hamiltonian would
result in a robust exponential increase in the total time for the DAQC protocol shown
in Figure 5.6. Consequently, the advantage of DAQC over DQC would shift to a lower
qubit number. An even more signiĄcant challenge is not having an all-to-all connected
resource Hamiltonian. In these cases, we must incorporate the swap gates into the analog
time evolution. This would signiĄcantly increase the total time required for the DAQC
protocol compared to the DQC protocol, which requires only swap gates. The total
time calculation is not an algorithm-independent comparison between DQC and DAQC.
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Figure 5.7: Compiling DAQC and DQC for an arbitrary problem Hamil-
tonian. a) depicted is a non-regular problem graph of qubit size 6 with
equal weights per edge with a number of edges ♣E♣ = 8 (ErdősŰRényi
graph with Ąlling factor 60 %). b) shows the compiling of a) into DQC
into 4 tint time intervals with max(deg(v) = 4). c) shows the decompo-
sition of a) into DAQC into 15 time intervals of length xtint. Blue are
the analog blocks, and green are the single-qubit X rotation blocks. The
value X of each time interval is written below the respected blue analog
block. ∆t is the time for the X gates. The extra analog block without
single-qubit X gates λtmin is not depicted. Overall, we have as total time
for bDAQC: Ttot = (41/8)tint (after X gate cancellation + 3 zero time
intervals + extra analog block). We will include the ∆t in the analog
time block due to the bDAQC scheme. In this speciĄc example, DQC is
faster than bDAQC by 1.125 tint.

When comparing DQC and DAQC protocols of QFT [133], the time period for the DAQC
protocols is shorter for high qubit numbers.

5.3.6 Minimum state fidelity

So far, we have presented numerical results for the Trotter error between QAOA in bDAQC
and the DQC scheme. In this section, we will examine an analytical approach to establish-
ing the minimum state Ądelity between the two approaches. Therefore, we Ąrst estimate
the Trotter error between both unitaries and combine this with the state Ądelity. David
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Headley proved this in Phys. Rev. A 106, 042446 (2022) . I will rephrase the main results
in this section.

The structure of our problem is reĆected in the second-order Trotterization [142, 143]
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We will now shift our attention to the device Hamiltonian, speciĄcally when we activate
the single-qubit X rotations

Ĥ = α
∑

m∈Mµ

Xm +
∑

j<k

ZjZk. (5.3.14)

We will apply this Hamiltonian for time ∆t between the two analog blocks. Assuming
a homogeneous resource Hamiltonian and Mµ representing a different set of single-qubit
rotations, we have three options for Mµ. Generally speaking, we can apply this bound at
most n(n−1)/2+2 times. SpeciĄcally, we have n(n−1)/2 analog blocks following matrix
inversion, one extra block to avoid negative times, and the X-driver Ąeld from the QAOA
ansatz. Neglecting cancellation, we have (n(n− 1)/2) − 1 bounds with ♣Sµ♣ = 4 elements,
two bounds with ♣Sµ♣ = 2 elements, and one bound, which is the driver block, where we
apply a total of ♣Sµ♣ = n single-qubit rotations. Additionally, for the driver bound, we
use t = β/α for ∆t with

Â = t
∑

j<k

ZjZk, B̂ = tα
∑

m∈Mµ

Xm. (5.3.15)

We can now express the Trotter error bound for Equation (5.3.13)
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We now calculate the Ąrst commutator on the RHS

∑

m∈Mµ

∑

m′∈Mµ

∑

j<k

[[ZjZk, Xm], Xm′ ]

=
∑

m∈Mµ

∑

m′∈Mµ

∑

j<k

(2(δjm − 1) + 2(δkm − 1))[ZjZkXm, Xm′ ]

=
∑

m∈Mµ

∑

m′∈Mµ

∑

k>m

2[ZmZkXm, Xm′ ] +
∑

m∈Mµ

∑

m′∈Mµ

∑

j<m

2[ZjZmXm, Xm′ ]

=
∑

m∈Mµ

∑

m′∈Mµ

∑

j ̸=m
2[ZjZmXm, Xm′ ] =

∑

m∈Mµ

∑

m′∈Mµ

∑

j ̸=m
2(δjm + δjm′ + δmm′)[ZjZmXm, Xm′ ]

=
∑

m∈Mµ

∑

m′∈Mµ

∑

j ̸=m
2
(

[ZjZmXm, Xm′ ]δm′m + [ZjZmXm, Xm′ ]δjm(1 − δm′m)
)
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=
∑

m∈Mµ

(

∑

j ̸=m
4ZmZj +

∑

m′∈Mµ♣m′ ̸=m
4iYmYm′

)

. (5.3.17)

To begin, we extract the commutator sums and then evaluate the inner commutator
[ZjZk, Xm]. When j = m or k = m, the commutator vanishes. For the non-commuting
terms, we utilize XZ = −ZX to obtain 2ZjZmXm per bracket. We then split both Kro-
necker deltas into two sums, the Ąrst for higher values of k concerning m and the second
for lower values of j with respect to m. This is possible because j ̸= k. Next, we eliminate
one of the two indices j, k. Since both terms yield the same value, we can rewrite it as
∑

k>m a+
∑

j<m a =
∑

j ̸=m a. In the following equation, we discard every commutator for
which all three indices j,m, and m′ differ. We need this to understand the subsequent
line. We then distinguish the indices and count how many are identical. We have one
term where all three indices are identical and another term where we have two pairs of
indices. The Ąnal equation in (5.3.17) is derived by commuting through the elements. In
the Ąrst sum, we commute X through, cancel it out, and then obtain a minus sign, which
multiplies the commutator by two. Through δm′m, the sum over m′ vanishes as well.
The second sum follows the same procedure, but instead of canceling out, we multiply
to obtain ZX = iY . Additionally, through δjm, we cancel out the sum over j and must
exclude m from m′ in the sum.

In the next step, we estimate the operator norm of this commutator. The operator
norm estimates how much the unitary matrices differ from each other, which we deter-
mine through the greatest eigenvalue. For commuting matrices, we can use the following
theorem.

Theorem 5.3.1. Let A be a matrix with spectrum σ(A) and B a matrix with spectrum
σ(B). If and only if the matrices are commuting [A,B] = 0 then we can say about the
spectrum of A+B

σ(A+B) := λk ∈ ¶λi + λj, λi ∈ σ(A), λj ∈ σ(B)♢, ∀k. (5.3.18)

Then we can say that the Matrices A and B are simultaneously diagonalizable with

P (A+B)P−1 = PAP−1 + PBP−1, (5.3.19)

with P being the transformation matrix of the map and P−1 the inverse of P .

The last line of Equation (5.3.17) presents two sums, one for ZmZj and another for iYmYm′ .
In the worst-case scenario, these sums add linearly as an upper bound for the greatest
eigenvalue. This is valid for terms of the form (ZmZj + iYmYm′)δjm′ , which commute
and fulĄll the previous theorem. If non-commuting terms are added to the sum, such
as (ZmZj + iYmYm′)(1 − δjm′), the eigenvalues will be lower. The linear addition of the
eigenvalues provides the best upper bound for the operator norm. We must now collect
all eigenvalues and determine their length. For a given Sµ, there are s possible indices,
leading to s(s− 1)Y Y and s(n− 1)ZZ contributions to the greatest eigenvalue. We can

rewrite Equation (5.3.17) using the norm to s
√

(s− 1)2 + (n− 1)2. Consequently, we
estimate the bound of the commutator to

α2t3s
√

(s− 1)2 + (n− 1)2

3
. (5.3.20)
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We now investigate the second commutator on the RHS of Equation (5.3.16)

∑

m∈Mµ

∑

j<k

∑

j′<k′

[[ZjZk, Xm], Zj′Zk′ ] =
∑

m∈Mµ

∑

j<k

∑

j′<k′

[(ZjZkXm −XmZjZk), Zj′Zk′ ]

=
∑

m∈Mµ

∑

j<k

∑

j′<k′

2(δjm + δkm)[ZjZkXm, Zj′Zk′ ] =
∑

m∈Mµ

∑

j′<k′

∑

j ̸=m
2Zj[ZmXm, Zj′Zk′ ]

=
∑

m∈Mµ

∑

j′<k′

∑

j ̸=m
2(δj′m + δk′m)Zj[ZmXm, Zj′Zk′ ] =

∑

m∈Mµ

∑

j′ ̸=m

∑

j ̸=m
−4ZjZj′ZmXmZm

=
∑

m∈Mµ

∑

j′ ̸=m

∑

j ̸=m
4ZjZj′Xm.

(5.3.21)

We begin by extracting the commutator sums and then examine the inner commutator. If
the index pairs, (j,m) or (k,m), do not commute, we use -XZ = ZX, which expands the
commutator. If all three indices differ, the inner commutator and the entire term cancel
out. Next, we sum over the Kronecker deltas and apply the previous fact. When δkmδjm
is true, the term cancels out, resulting in

∑

j<k → ∑

j ̸=m. We can then extract Zj from
the commutator, as the outer commutator consists of a ZZ-string Zj′Zk′ and commutes.
We repeat this step in the following equation, as we did in the second line. If all three
indices differ, everything cancels out in the commutator. As a result, we can rewrite the
sum over prime indices as

∑

j′<k′ → ∑

j′ ̸=m. Finally, we can commute Zm, which cancels
out with the other. Let us now consider the upper bound of this commutator. The sums
over j and j′ produce a (n−1)2 for each single-qubit rotation s in the set of Sµ. Therefore,
we have s(n− 1)2 terms per Sµ.

We can estimate the upper bound using the sub-multiplicative norm

♣♣ÂB̂♣♣ ⩽ ♣♣Â♣♣ ♣♣B̂♣♣, (5.3.22)

which is valid for square matrices. Therefore, in the worst possible case, the greatest
eigenvalue is equal to the number of Pauli strings, leading to a total bound for the Trotter
error of

∆µ =
αst3

3





(n− 1)2

2
+ α

√

(s− 1)2 + (n− 1)2



. (5.3.23)

To establish the relationship between the Trotter bound and the minimum state Ądelity
between error-free DQC and bDAQC with Trotter error, we need to calculate the minimum
state Ądelity using the following formula

fα−DA-QAOA = min
ψ

∣

∣

∣

∣

∣

∣

∣

∣

⟨ψ♣U †
QAOAÛDA♣ψ⟩

∣

∣

∣

∣

∣

∣

∣

∣

2

. (5.3.24)

First, we go back to the Trotter error. We can bound this error by ∆, and subsequently,
for two unitaries, we obtain

♣♣Û †
QAOA − ÛDA♣♣ ⩽ ∆. (5.3.25)

Using the sub-multiplicative norm, Equation (5.3.25) can be rewritten as

♣♣1 − ÛQAOAÛDA♣♣ = ♣♣UQAOAÛ
†
QAOA − ÛQAOAÛDA♣♣ ⩽

♣♣ÛQAOA♣♣ ♣♣Û †
QAOA − ÛDA♣♣ ⩽ ∆.

(5.3.26)
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We can use the fact that the norm of a unitary operator is always ♣♣ÛQAOA♣♣ = 1 to
establish the validity of this inequality. Furthermore, the difference in norm between a
unitary and the identity operator can be bounded by the maximum value of the unitary,
which is given by

♣♣ei♣θ♣max − 1♣♣ ⩽ ∆. (5.3.27)

♣θ♣max is the greatest phase for an eigenvalue ei♣θ♣max of ÛQAOAÛDA. We now assume that
all angles are small and lie in the interval [−π/2, π/2]. We deĄne the greatest eigenvalue
as the one that results in the most signiĄcant decrease in the Trotter error. Worth noting
that the error is conĄned to the interval 0 < ∆ < 1. The upcoming question is, what
leads to the largest deĄcit in the phase causing the greatest deĄcit ∆. The real part of the
eigenvalue in this interval is always positive. Consequently, as we approach the boundaries,
this reduces ∆. Besides, the sine of the imaginary part is increased at the borders. We
Ąnally Ąnd the equation relating the Trotter borders and the greatest eigenvalue

√

sin(♣θ♣max)2 + (1 − cos(♣θ♣max)2) = 2sin





♣θ♣max

2



= ∆. (5.3.28)

Through sin−1, we can deduce the angle

θmax = 2sin−1





∆

2



. (5.3.29)

Consider the state Ądelity of a single step µ in one analog block for one unitary operation
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∣

∣

2

, (5.3.30)

with Ô = Û †
QAOAÛDA. We can further diagonalize Equation (5.3.30) to

∣

∣

∣

∣

∣

∣

∣

∣

⟨ψ′♣diag
(

eiθ⃗
)

♣ψ′⟩
∣

∣

∣

∣

∣

∣

∣

∣

2

, (5.3.31)

The vector θ⃗ includes all phases θi to the eigenvalues eiθi , ranging from θmin to θmax. Our
goal is to minimize the state Ądelity, which can be achieved by preparing the state in an
equal superposition of the most negative and most positive eigenvalues of the operator
Ô. To be precise, if we have the eigenvalues θi in an n-dimensional Hilbert space ordered
from maximum to minimum value, such that θi ∈ θmax, θmax/2, θmax/3, . . . , θmin, then we
can Ąnd the smallest square overlap for a state by deĄning

♣ψ′⟩ =
1√
2

(♣θmax⟩ + ♣θmin⟩). (5.3.32)
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We can determine the minimum state Ądelity by

min
ψ′
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2

= cos(♣θ♣max)2.

(5.3.33)

Because we are in orthogonal basis, terms like ⟨θmin♣θmin⟩ = 0 cancel out. Therefore we
can bound the Ądelity of one analog block µ to

fµ ⩾ cos(♣θ♣max)2. (5.3.34)

We can now insert the Trotter bound ∆µ into Equation (5.3.29) and insert Equation
(5.3.29) into the previous equation

fµ ⩾ cos



2sin−1





∆

2









2

⩾ 1 − ∆2
µ, (5.3.35)

for small ∆. We now sum up all analog blocks and all single-qubit rotations combinations
µ to accomplish

fα−DA-QAOA ⩾ 1 −
n(n−1)/2+2

∑

µ=1

(1 − fµ) = 1 −
n(n−1)/2+2

∑

µ=1

∆2
µ. (5.3.36)

5.4 Conclusion

We have demonstrated the implementation of QAOA in the digital-analog bDAQC scheme.
We showed that the mean approximation ratios between the digital and bDAQC ap-
proaches are identical for high-speed ratios α for the single-qubit gates. However, for
low-speed ratio α, the gate duration of two and one-qubit gates becomes equal. In this
case, we observed an increase in the Trotter error in the bDAQC scheme compared to
high α ≫ 1, which results in a decrease in the max and min values of the loss func-

tion ⟨Ĥ⟩DA

γ⃗,β⃗ . Low α is unrealistic for a real device. Single-qubit gates are always faster

than two-qubit ones. Furthermore, we showed that in the mid-range of α ∈ [102, 103],
we could take advantage of the Trotter error and see a beneĄt over the digital QAOA.
Moreover, we have demonstrated that the variational approach helps in mitigating the
Trotter error associated with the bDAQC-QAOA approach. Additionally, we derived an
analytical bound for the minimum state Ądelity of the erroneous bDAQC-QAOA ansatz
in dependence of the Trotter error. We also established that the digital-analog approach
takes less time for low qubit numbers than the digital approach. However, for n ⩾ 13,
DQC-QAOA has an advantage over bDAQC-QAOA in time duration. The time analy-
sis neglects circuit optimization and is only the Ąrst quantiĄer for the time comparison
between both schemes.
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Conclusions and Outlook

This thesis has shown different improvements made to the QAOA and provided insights
into its capabilities for solving speciĄc problems. We delved into various combinatorial
optimization problems and explored different initialization techniques for QAOAŠs pa-
rameters. Furthermore, we examined the inĆuence of gate errors on the QAOAŠs most
important gate. Additionally, we demonstrated the efficacy of QAOA in an algorithm-
hardware co-design context.

In Chapter 2, we Ąrst investigated the QAOA performance for constraint optimization
problems. We showed that for applying QAOA to random Max-kXOR problems, the
performance of the algorithm decreases for increasing k for hard-to-solve instances. We
further provide evidence that the relative QAOA improvement from p to p+ 1 decreases
with increasing k and p. This indicates that for high k, Max-kXOR problems need a
high circuit depth, and therefore, running QAOA on a real device is unlikely. Our results
emphasize the analytic study of Basso et al. [86], which shows that QAOA for even k is
limited in performance. We further demonstrated the correlation of the clause-to-variable
ratio r on the QAOA performance for Max-kXOR. Increasing r leads to harder problems
and, therefore, harder to solve for QAOA. We notice a fast shift in performance when
r < 1. In such cases, the problem instances are under-constrained, making them easier
to solve. Conversely, when r > 1, the instances are in the over-constrained domain, with
fewer solutions compared to the under-constrained domain. Here, the performance change
in QAOA exhibits a linear trend with a slight negative slope as r increases. For Max-
kSAT problems, we also provide evidence that the decrease in performance of QAOA for
increasing k for hard-to-solve instances, meaning r is beyond the respected phase transi-
tion of the related decision problem.

In Chapter 3, we analyzed annealing-inspired initialization strategies for the QAOA.
We showed that linear schedules outperform the Trotterized Quantum Annealing (TQA)
protocol suggested by Sack et al. [92]. First, when examining a particular parameter
setting p, linear schedules exhibit superior mean approximation ratios Lp(α⃗

∗) for the op-
timized schedule parameters as compared to TQA. Second, when employing QAOA with
optimized schedule parameters, linear schedules also surpass TQA in terms of the mean
approximation ratio Mp(α⃗

∗). We illustrated that the advantage is more pronounced for
shallow circuit depth (p < 10). Moreover, we demonstrated that the optimal QAOA pa-

rameters γ⃗∗ and β⃗∗ are in closer proximity to the initial parameters γ⃗(α⃗∗
ls) and β⃗(α⃗∗

ls) of
the linear schedules, as compared to TQA. This implies that employing linear schedules
reduces the level of optimization effort required.
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In Chapter 4, we examined the difference in the gate Ądelity of the RZZ(γ) gate in
controlled-phase gate (CP) and controlled-Z gate (CZ) decomposition. We showed that
RZZ(γ), which is a cornerstone for the implementation of the QAOA, in CZ decompo-
sition provides comparable gate Ądelities as CP decomposition for small coherent and
incoherent errors, despite its need for two two-qubit gates. Moreover, we showed that CZ
is advantageous over CP for the pure incoherent error case for some states. This holds
signiĄcance because the parameter space of a variational quantum algorithm experiences
an increase of small local minima due to coherent errors, adding complexity to the op-
timization process. Thus, employing a QAOA on hardware featuring CZ gates for short
circuit depth can offer advantages compared to hardware equipped with CP gates. In
contrast to CP, the gate Ądelity in CZ decomposition depends on the rotation angle γ.

In Chapter 5, we investigated the QAOA in the digital-analog paradigm. We showed
that under realistic gate duration for single-qubit rotations, the QAOA in the bDAQC
paradigm becomes identical to the pure digital version. In fact, the mean approximation
ratios are nearly the same. If single-qubit gates are as fast as two-qubit gates, the QAOA
in the bDAQC paradigm gets worse. Furthermore, weŠve shown that employing the vari-
ational approach aids in reducing the Trotter error linked to the bDAQC-QAOA method.
Additionally, we demonstrated that the QAOA implemented in the bDAQC requires less
time on the device compared to its digital counterpart for shallow circuit depth. Overall,
the QAOA in the bDAQC scheme can be implemented on a real device and could lead to
higher accuracy than the digital version due to being less error-prone to cross-talk errors,
for instance.

This thesis sheds light on our expectations for QAOA concerning combinatorial op-
timization problems and the search for optimal parameters. It also highlights the vast
potential for future exploration in this Ąeld. It remains uncertain whether QAOA can out-
perform classical algorithms, and identifying the problem domains that are particularly
well-suited for accelerated performance with QAOA is an ongoing pursuit. Furthermore,
introducing QAOA within the digital-analog scheme paves the way for developing a novel
quantum machine that offers enhanced error robustness compared to its purely digital
counterpart, tailored explicitly for QAOA. However, it is important to note that such
a quantum machine has not yet been realized, and experimental physicists may need to
conceive new concepts and approaches before we witness the emergence of a digital-analog
device designed speciĄcally for QAOA.
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