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“No one knows the reason for all this, but it is probably quantum.”

Terry Pratchett, Pyramids

“This is all good, but what is actually quantum here?”

Leonid Yatsenko, a good question in the annual conference of the
Institute of Physics in Kyiv
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Abstract

This thesis theoretically explores new schemes in microwave photon detection and
superconducting qubit readout. We review the commonly used dispersive readout with
a homodyne detection and describe the quantization of the system. The use of pho-
todetectors for the readout may simplify its scaling. We introduce two such schemes.
In the first one, coherent radiation is used as a probe which is measured by a photon-
number-resolving detector. In the second one, the probe is in a single-photon Fock
state. A detector that is only able to distinguish between the presence and absence of
photons is used. We also provide a simple formula for the measurement-induced qubit
decoherence given that the resonator is occupied by coherent and thermal photons.
We use Langevin equations in our treatment of the dispersive readout, which allows
one to have a self-containing theory of the system. Finally, we consider a microwave
photodetector that is able to count photons up to two by using two-photon transition.
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Zusammenfassung

Diese Dissertation untersucht theoretisch neue Schemata zur Detektion von Mikrowellen-
Photonen und zur Messung von supraleitenden Qubits. Wir diskutieren die häufig ver-
wendete dispersive Messung von supraleitenden Qubits mittels homodyner Detektion
und beschreiben die Quantisierung des Systems. Die Verwendung von Fotodetektoren
kann die Skalierung der Messung vereinfachen. Wir stellen zwei solcher Schemata vor.
Im ersten Fall wird für das Testsignal kohärente Strahlung verwendet, die mit einem
Photonenzahl-auflösenden Detektor gemessen wird. Im zweiten Fall befindet sich das
Testsignal in einem Einzelphotonen-Fock-Zustand. Es wird ein Detektor verwendet,
der lediglich zwischen der Anwesenheit und Abwesenheit von Photonen unterscheiden
kann. Wir stellen auch eine einfache Formel der messinduzierten Qubit-Dekohärenz
vorausgesetzt, der Resonator ist mit thermischen und kohärenten Photonen besetzt.
Wir verwenden Langevin-Gleichungen in unserer Untersuchung der dispersiven Mes-
sung, was es ermöglicht, eine selbst enthaltende Theorie des Systems zu entwickeln.
Abschließend betrachten wir einen Mikrowellen-Fotodetektor, der bis zu zwei Photo-
nen durch Zwei-Photonen-Absorption zählen kann.
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Chapter I

Introduction

Quantum technologies are rapidly developing nowadays. In fact, the pace and the
character of the developments are extraordinary enough for the situation to be called
the “second quantum revolution”. The “first quantum revolution” happened when the
laws of quantum mechanics were used to build devices such as lasers, transistors, or
Magnetic Resonance Imaging (MRI) machines. While quantum mechanics is needed
to design these devices, their function can be described by the classical physics. A
laser emits light that mostly behaves as classical (yet highly coherent) radiation, a
transistor operates on classical currents, and an MRI machine provides an image
of classical tissues using classical radiation as a probe. In contrast, in the second
quantum revolution, the devices are built that need to manipulate quantum objects. A
quantum computer operates on complex superposition states to perform a calculation.
In quantum cryptography, quantum states of light or matter are used to prevent
eavesdropping. Non-classical states of a probe are used in quantum sensing, which
allows one to gain superior resolution.

One much simpler example of a device that detects and manipulates quantum
states of light is a single-photon detector. That is a device which is able to detect a
tiniest possible portion of electromagnetic energy in some mode, a single photon. We
introduce one type of single-photon detectors, the Josephson photomultiplier (JPM),
in Sec. 5. In Ch. VIII, we present our original results concerning a JPM that is able
to count up to two photons. Our JPM can operate in the range from 1 to 20 GHz;
the JPMs demonstrated so far detect photons around 4.8 GHz [1] and from 4.4 to 5.9
GHz [2]. The state of radiation in these ranges is typically detected by measuring its
phase and amplitude; a photodetector, however, measures the radiation intensity. We
mention some possible uses for a photodetector in Ch. VIII.

One application of the detectors is worth mentioning here: it is the dispersive
readout of a superconducting qubit. A qubit (QUantum BIT) is an elementary piece
of quantum information. Unlike the classical bit, which adopts values of either “0”
or “1”, a qubit can be in a superposition of two states |↓⟩ and |↑⟩ (in this thesis, we
adopt physical labeling for the states of the qubit). Besides, multiple qubits can be in
an entangled state. Quantum systems are needed to implement multiple qubits. One
promising implementation is a superconducting qubit, which is briefly introduced
in Sec. 1.3. The readout of a qubit is the process of quantum measurement which
collapses the superposition state of the qubit and determines which state—|↓⟩ or |↑⟩—
it occupies after the collapse. In the dispersive readout, radiation is used as a probe;
typically, to infer the state of the qubit, the phase shift of the probe radiation is
determined with a homodyne detection. This type of readout is briefly introduced in
Sec. 3.1 and its theory is given in Ch. III. Alternatively, one can use a photodetector
to gain information on the photon number in the probe. Two original schemes that
use photodetectors are discussed in Chs. IV and Ch. VII. A distinctive feature of our
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Φ, U

QC L

Figure 1.1: LC circuit

theoretical description of these schemes is the use of Langevin equations (see Sec. 6.1
for a brief introduction).

In the course of quantum measurement, a superposition state collapses turning into
a mere statistical mixture. This is is due to the decoherence of a system. We study
the measurement-induced decoherence in the dispersive readout and its dependence
on the temperature in Ch. V.

In the following subsections, we provide some broader background for the rest
of the thesis, and introduce the concepts and techniques that we use throughout it.
While doing that we further refer to the relevant parts of the thesis.

1 Superconducting quantum circuits

In a superconducting state, conducting electrons form Cooper pairs in a collective
state called a condensate. A condensate can be described by a wavefunction similar
to a single-particle wavefunction. The condensate wavefunction is highly coherent in
time and space, which leads to various macroscopic quantum effects—including the
Josephson effect important for us. Besides, this coherence means one can quantize
the degrees of freedom of an electric circuit.

1.1 Quantization of the LC circuit

Here we review the quantization procedure of an electric circuit on a basic example
of the LC circuit (see Fig. 1.1).

First we need to write out the Hamiltonian of the classical system. It is convenient
to use the node flux [3]

Φ(t) =

∫ t

−∞
dt′U(t′) (1.1)

as the generalized coordinate of the system. Here U denotes a voltage drop on some
branch of the circuit and Φ(−∞) = 0. The Lagrangian of the circuit is equal to
the difference of its kinetic and potential energies. For our choice of coordinate, the
Lagrangian of the LC circuit reads

L =
CΦ̇2

2
− Φ2

2L
. (1.2)

Node flux Φ and the respective voltage U are depicted in Fig. 1.1. The generalized
momentum of the circuit is

Q =
∂ L
∂Φ̇

= CΦ̇ (1.3)
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the charge of the upper plane of the capacitance C. Legendre transform yields the
Hamiltonian:

H = QΦ̇− L =
Q2

2C
+

Φ2

2L
. (1.4)

We could have guessed the Hamiltonian for the LC circuit right away. However,
for more complex circuits it is hard to do that. It is always safe to start from the
Lagrangian.

Now we quantize the system. The conjugate variables Φ and Q are promoted to
operators with the commutator

[Φ, Q] = iℏ. (1.5)

This procedure is known as canonical quantization. It can be motivated by mention-
ing that a commutator of two dynamical variables is proportional to their Poisson
bracket [4]. The reduced Planck constant ℏ = h/2π arises in the relation for the
theory to agree with experiment.

Let us write out the Hamiltonian in terms of the ladder operators. We introduce
the creation operator of a photon,

a† = Q

√
ρ

2ℏ
− i Φ√

2ℏρ
(1.6)

with ρ =
√
L/C, and the photon annihilation operator

a = Q

√
ρ

2ℏ
+ i

Φ√
2ℏρ

(1.7)

Note we call an excitation in the harmonic oscillator a photon. Using the commutation
relation (1.5), the Hamiltonian can be rewritten as

H = ℏωr

(
a†a+

1

2

)
, (1.8)

where ωr = 1/
√
LC.

The LC circuit can be used to model a single mode of a microwave resonator. We
will use the Hamiltonian (1.8) in what follows. We also write out useful identities:

Φ = i

√
ℏρ
2
(a† − a), (1.9)

Q =

√
ℏ
2ρ

(a† + a). (1.10)

According to the definition we have chosen, a is proportional to the negative-frequency
component of the voltage Q/C in the circuit.

More complex circuits can be quantized analogously. For that, each element po-
tential and kinetic energies are written out; the respective variables are then linked
to each other by the Kirchhoff’s laws, which leaves a set of independent variables of a
circuit. This procedure is carried out in Sec. II.1 and Appendix VIII.A. Note that for
a circuit with multiple degrees of freedom, a canonical momentum might depend on a
set of node fluxes, so Eq. (1.3) becomes a system of linear equations. Then solving it
for Φ̇s and plugging them into the Legendre transform (1.4) often requires quite a bit
of algebra. A more elegant approach is used in Appendix VIII.A that only requires
differentiation of the expressions for Qs to determine H.
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Al

Al2O3

Al

I

0

Φ, Ua) b)ϕ2

ϕ1

Figure 1.2: a) Real Josephson junction at low temperatures can be
represented as an ideal junction (cross) and a shunting capacitance.
b) Typical structure of a Josephson junction used on an aluminum

superconducting chip [5].

1.2 Josephson junction

Most interesting electric circuits contain a nonlinear element. In the superconducting
circuits, a Josephson junction is used to provide nonlinearity.

Usually, a Josephson junction used is formed by two superconductors separated
by a thin dielectric (see Fig. 1.2). The dielectric is so thin that the Cooper pairs are
able to tunnel through it. Peculiarly, the resulting dc current is present even when no
voltage is applied across the junction. On the other hand, an ac current arises even
with an applied dc voltage. These effects were predicted [6] by B. Josephson.

Here we give a hand-waving explanation of the formula for the Josephson cur-
rent [7, 8]. Let us consider an ideal Josephson junction (the right branch in Fig. 1.2a).
Density of superconducting current inside a superconductor is set by ∇φ, where φ is
the condensate phase. Analogously, current through the barrier should depend only
on the phase difference across it:

I = f(φ2 − φ1). (1.11)

Let us inverse time. This changes the sign of I. According to the Schrödinger equation
for the condensate wavefunction, this also changes the sign of φ1 and φ2. Therefore, f
is an odd function. Moreover, as adding 2π to the phases should not change anything,
f has a period of 2π. Current can not be infinite, so f has a maximum and a minimum.
The general form of f which satisfies these requirements is

I =
∑

n=1,2,...

In−1 sinn(φ2 − φ1). (1.12)

In the most common case, the current is given by

I = I0 sin(φ2 − φ1) (1.13)

with I0 > 0. Experimentally, this relation can be checked by observing, e.g., Shapiro
steps [9]. We have seen in Sec. 1.1 that it is convenient to treat an electric circuit in
terms of node flux Φ (1.1). It turns out that node flux is proportional to the condensate
phase. A Cooper pair at the top electrode in Fig. 1.2a has an energy E2 = −2eU
given that its energy is E1 = 0 at the bottom electrode. Here U is the voltage drop
on the junction and e > 0 is the absolute value of the electron charge. Approximately,
the Schrödinger equation iℏψ̇2 = E2ψ2 holds for the condensate wavefunction at the
top electrode ψ2 ∝ exp iφ2. It yields ψ2 ∝ exp

∫ t
−∞ dt

′E2/iℏ. From these relations
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and Eq. (1.1) it follows that the drop of node flux is

Φ = Φ0(φ2 − φ1)/2π, (1.14)

where Φ0 = h/2e is the flux quantum and

I = I0 sin 2πΦ/Φ0. (1.15)

Equations (1.14)–(1.15) with the node flux definition (1.1) constitute the Josephson
law. A simple phenomenological derivation of the Josephson effect is given in Ref. [10].
For a microscopic derivation and a list of literature about the topic, check Ref. [11].
For an application-focused introduction, see Refs. [12, 13].

To write out the Lagrangian of a circuit which includes a Josephson junction, we
need its potential energy. It can be calculated, up to a constant, as

E =

∫ t

0
dt′UI = −EJ cos 2πΦ/Φ0, (1.16)

where
EJ = I0Φ0/2π (1.17)

is Josephson energy. Due to our choice of sign in Eq. (1.13), the potential energy (1.16)
is minimized with φ2 − φ1 = 0. It is the junction stationary state in the absence of
external fields. In that state, no supercurrent flows in a circuit with such junctions.1

1.3 Superconducting qubits

A harmonic oscillator driven by a classical tone evolves with a displacement opera-
tor [15]. Hence if the evolution starts in a coherent state, such as a vacuum state, only
other coherent states are reachable. However, if we probe a system in a coherent state
through a linear coupling, the probe state evolves just as if it is driven classically
(see Sec. III.1 and Ref. [16]). We cannot see any quantum effects in such a setup.
Therefore, an LC circuit manipulated by a classical drive cannot be used as a qubit.

One possibility to overcome this is to introduce a nonlinearity into the LC circuit.
As the resulting spectrum is non-equidistant, it is possible to address two selected
energy levels with a coherent drive to create non-classical states. On a more general
level, introducing nonlinearities lifts the Ehrenfest theorem restriction, and quantum
effects might be visible directly in the expectation values of the system coordinates.2

In every architecture (see, for example, Ref. [18] for a review) of superconducting
qubits, Josephson junctions are used to provide nonlinearity.

A device that functions as a qubit is designed and operated such as in the logical
operations with it only the two lowest levels |↓⟩ and |↑⟩ matter. While sometimes
one also needs to take account of the higher levels, in this thesis we use the two-level
approximation. Hence the qubit Hamiltonian we use reads

Hq =
1

2
ℏωqσz, (1.18)

1That is not true for a π junction, for which Eq. (1.13) becomes I = −I0 sin(φ2 − φ1) and its
energy is minimized at ϕ2 − ϕ1 = π. For example, if a superconducting ring is interrupted by a π
junction, a current loops in the ring even with no external fields applied. To treat that system, one
can use the definition of node flux in terms of the condensate phase [14]. However, π junctions are
harder to make and their use is beyond the scope of this thesis. For the systems we consider, both
definitions are equivalent.

2One can as well use an extrinsic nonlinearity to prepare a quantum state in a linear system. Along
these lines, squeezed quantum states of a mechanical oscillator were used to encode a qubit [17].
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where σz is such that σz|↓⟩ = −|↓⟩ and σz|↑⟩ = |↑⟩.
While the times a superconducting qubit can store a quantum state are small as

compared to their ion or atomic counterparts [19], superconducting qubits nevertheless
possess a number of other outstanding qualities. Namely, their resonance frequency
and coupling to other systems are set by design; besides, the qubit is controlled and
read out by a convenient microwave equipment. This makes superconducting qubits
promising building blocks for a quantum computer.

2 Light-matter coupling in circuit quantum electrodynam-
ics

Here we write out the Hamiltonians of capacitive and inductive coupling between a
resonator and a qubit.

Capacitive coupling boils down (see Appendix VIII.A, Sec. II.1 and Ref. [14]) to
the terms proportional to QrQq in the Hamiltonian, where Qr and Qq are charge-like
generalized momenta of the resonator and the qubit, respectively. In what follows,
we also use the flux-like generalized coordinate of the qubit system Φq. Usually the
wavefunctions of the qubit ground state ⟨Φq|↓⟩ and of its excited state ⟨Φq|↑⟩ differ
in parity. Hence the only non-zero matrix elements of Qq = −iℏd/dΦq are ⟨↑|Qq|↓⟩
and ⟨↓|Qq|↑⟩. Then, using Eq. (1.10) for the resonator variable, one arrives at

Hcap = gℏ(a† + a)(σ+ + σ−), (1.19)

where σ+ = |↑⟩⟨↓| and σ− = |↓⟩⟨↑|. Inductive coupling gives rise to the terms propor-
tional to ΦrΦq. Analogous reasoning gives

Hind = gℏ(a† − a)(σ+ − σ−). (1.20)

The Hamiltonian

H =
1

2
ℏωqσz + gℏ(a† + a)(σ+ + σ−) + ℏωr

(
a†a+

1

2

)
(1.21)

and the Hamiltonians equivalent to it are called the Rabi Hamiltonians. In the next
section, we will use the Hamiltonian (1.21) in the interaction picture:

H → U †HU − iℏU †U̇ = gℏ(a†eiωrt + ae−iωrt)(σ+e
iωqt + σ−e

−iωqt), (1.22)

where U = exp 1
iℏH0t with H0 =

1
2ℏωqσz + ℏωr

(
a†a+ 1

2

)
.

The signs in Hamiltonians (1.19) and (1.20) depend on the convention taken in the
definitions (1.6)–(1.7) of a and a†. In fact, in the case of isolated qubit and resonator
the Hamiltonians can be transformed one into another. This can be shown by rotating
the qubit Bloch sphere around the z axis by π/2 and applying the unitary transforma-
tion exp(−ia†aπ/2) to the resonator variables. Another effect of the transformation is
that the signs in Eqs. (1.9)–(1.10) interchange. This also changes the initial conditions
for a, a† and σ±. Hence the dynamics generated by Hcap and Hind is different, even
though we can transform one Hamiltonian into another. Still, the dynamics has the
same steady-state limit and the quantities derived from the coefficients in the Hamil-
tonian are the same for both systems. If, however, another subsystem interacts with
the qubit or the resonator, there is no unitary transform to turn the full Hamiltonian
with the capacitive coupling into the one with the inductive coupling. Capacitive
and inductive couplings are no longer equivalent in that case [20]. Nevertheless, they
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become equivalent if one applies a commonly used approximation, which is described
below.

2.1 Rotating-wave approximation

Often, the rotating-wave approximation (RWA) can be used to describe interaction.
In the RWA, one neglects the fast-oscillating term gσ−ae

−i(ωq+ωr)t and its Hermitian
conjugate in the Rabi Hamiltonian (1.22). These terms lead to the contributions to
the dynamical equations of two types.

First are the terms proportional to 1/(ωq + ωr). They arise, for example, on
integration of the last two terms in

σ̇z = −2ig
(
σ+ae

i(ωq−ωr)t−a†σ−e−i(ωq−ωr)t+σ+a
†ei(ωq+ωr)t−σ−ae−i(ωq+ωr)t

)
. (1.23)

The equation follows from the interaction picture Hamiltonian (1.22). The result of
integration is often negligible to the contribution of the terms with σ+a and a†σ−.
Indeed, this contribution is proportional to 1/(ωq − ωr) and usually it holds that

ωq, ωr ≫ |ωq − ωr|. (1.24)

If the condition (1.24) does not hold, the frequencies of the qubit and the resonator
shift significantly due to the fast-oscillating terms. The resulting shift is known as the
Bloch-Siegert shift.

Second type of the contribution of the fast-oscillating terms is an addition to σz
and a†a. Taking the condition (1.24) into account,

σ̇z ≈ −2ig
(
σ+ae

i(ωq−ωr)t − a†σ−e−i(ωq−ωr)t
)
. (1.25)

Also,

d

dt

(
σ+ae

i(ωq−ωr)t − a†σ−e−i(ωq−ωr)t
)
= −ig

[
a†aσz +

1
2(σz + 1) + a2σz

]
, (1.26)

where it was taken into account that σ2+ = 0. On integration, the term −iga2σz is
proportional to g/2ωr. It does not contribute when

ωq, ωr ≫ g (1.27)

and the Eqs. (1.25)–(1.26) can be solved to yield σz. Otherwise, the term contributes
to σz and, as can be shown analogously, to a†a.

Under the conditions (1.24) and (1.27), the Rabi Hamiltonian (1.21) simplifies to

H =
1

2
ℏωqσz + gℏ(σ+a+ a†σ−) + ℏωr

(
a†a+

1

2

)
, (1.28)

which is known as the Jaynes-Cummings Hamiltonian. This Hamiltonian can be easily
diagonalized—see Ref. [19], for example. The diagonalization with a unitary transform
is discussed in the next section.

2.2 Dispersive transformation

One way to diagonalize the Jaynes-Cummings Hamiltonian (1.28) is via a unitary
transformation. It is shown in Refs. [21] and [22], that the Hamiltonian is diagonalized
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with

U = exp
{
− (2
√
N)−1 arctan

[
2λ
√
N(σ+a− a†σ−)

]}
, (1.29)

N = a†a+
1

2
(σz + 1), (1.30)

λ = g/(ωq − ωr). (1.31)

However, this transformation often is not practical. The Hamiltonians for real prob-
lems include the coupling of the resonator to the outer world. Such a Hamiltonian is
hard to diagonalize. We resort to a perturbation theory in λ. Assume the coupling is
weak and a few photons occupy the resonator,

4λ2(nch + 1)≪ 1, (1.32)

where nch denotes the characteristic number of photons in the resonator. The condi-
tion can be rewritten into two:

nch ≪ ncrit, λ2 ≪ 1, (1.33)

where ncrit = 1/4λ2 is called the critical photon number. When the condition (1.32)
holds, a first-order perturbation theory suffices. The exact transformation (1.29)
simplifies to

Ud = exp
[
− λσ+a+ λa†σ− +O(λ3)

]
. (1.34)

The transformation (1.34) is called dispersive. It acts on Eqs. (1.28) as follows:

H → U †dHUd ≈ Hq + H̃qr +Hr (1.35)

= H̃q +Hr = Hq + H̃r, (1.36)

where
H̃qr = λℏgσz

(
a†a+

1

2

)
(1.37)

is the Hamiltonian of a parametric qubit-resonator coupling, and

H̃q =
1

2
ℏω̃qσz, (1.38)

H̃r = ℏω̃r

(
a†a+

1

2

)
(1.39)

are the effective qubit and resonator Hamiltonians. We have denoted

ω̃q = ωq + 2χ

(
a†a+

1

2

)
(1.40)

the dressed qubit frequency, and

ω̃r = ωr + χσz (1.41)

the dressed resonator frequency. Here χ = gλ is known as the dispersive shift. It
follows from our analysis that expressions (1.35)–(1.36) are correct to the first order
of λ. A more intricate treatment, given in Ref. [21], shows that they hold to λ2.

Several qualitative features of the dynamics of our system follow from the form
of the dressed Jaynes-Cummings Hamiltonian given by Eqs. (1.35)–(1.41). It fol-
lows from Eqs. (1.36), (1.38), and (1.40) that the qubit frequency acquires a Stark
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shift, which depends on the number of photons in the resonator. On the other hand,
Eqs. (1.36), (1.39), and (1.41) show that the resonator acquires a shift in its frequency,
which depends on the state of the qubit. The shift is also known as the dispersive pull.
It should be stressed that the energy exchange between the qubit and the resonator is
negligible when the condition (1.32) holds. The parametric coupling is the only effect
of the qubit-resonator interaction.

A similar reasoning can be carried out one step beyond the RWA3. As explained
in Ch. VI, if the rapidly-oscillating terms of the Rabi Hamiltonian are small and
ωq ∼ ωr, one can still use the dispersive Hamiltonian (1.36). The dispersive shift
is then renormalized by the Bloch-Siegert shift. Along these lines, we describe the
photon transport through the qubit-resonator system in Ch. VI. Then in Ch. VII we
use these results to seek a speedup of the single-photon dispersive readout of a qubit.

3 Dispersive readout

Qubit readout is one of the most important processes in quantum information tech-
nologies. First of all, qubit readout occurs when the results of a computation are read
out. The possibility to read out a qubit is a basic requirement for quantum compu-
tation [24]. During the computation, a qubit state can be ruined by decoherence. To
avoid this, it is proposed to encode a logical qubit in several physical qubits. This
redundancy is then used in a process called quantum error correction, which is able
to undo the effect of decoherence on the logical qubit [25]. Quantum error correction
codes take the result of the qubit readout as input. Besides, one can initialize a qubit
by measurement, if, after the measurement, the qubit stays in the same eigenstate
it was detected in. This requirement constitutes a quantum-non-demolition (QND)
measurement [26]. It is usually desirable for the measurement to be QND, as this
avoids noises from the detector back-action [26]. In any case, it is important for the
measurement to be fast and robust.

The dispersive readout of a superconducting qubit [19] is a promising setup to
achieve these goals. While other readout techniques have been proposed (see the
references in Ref. [27]), it is the dispersive measurement that is both highly-QND and
can be made rather fast and high-fidelity. During the measurement a qubit is coupled
to a cavity off-resonantly. This results in the absence of energy exchange between
them; however, the resonance of the cavity gets shifted either to the blue or to the red
side, depending on whether the qubit is in the excited or in the ground state. This is
expressed by the dispersive Hamiltonian (1.36),

H =
1

2
ℏωqσz + ℏ(ωr + χσz)

(
a†a+

1

2

)
. (1.42)

The shift is used to infer the qubit state by measuring the resonator transmission or
reflection. Dispersive readout is QND for well-chosen parameters, when the Hamil-
tonian (1.42) is valid. In this case, σ̇z = 1

iℏ [σz, H] = 0 and the qubit state does not
change after collapse.

In practice there are several factors limiting the QND nature of the scheme. First,
the qubit Rabi oscillations [28] were neglected when making the dispersive approxima-
tion. Secondly, in reality, to control and read out the qubit, the resonator is coupled
to waveguides (this is modeled in Chs. III and VI). These waveguides provide an im-
portant source of relaxation for the qubit: this resonator-assisted relaxation is known

3It was shown by Braak [23] that the Rabi Hamiltonian (1.21) can be exactly diagonalized. How-
ever, it is not clear how to use his results if the system interacts with the outer world.
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Figure 1.3: Homodyne measurement. The input signal is U0 cos(ωt+
φ) = I cosωt + Q sinωt, where I = U0 cosφ and Q = −U0 sinφ. The
signal is multiplied with the local oscillator with different phases on
the frequency mixers. A mixer is depicted as a cross inside a circle.
(Physically, multiplication of signals in a mixer is achieved by using a
nonlinearity [30].) The low-pass filters separate the components pro-

portional to I and Q.

as the Purcell relaxation (see Refs. [28, 29]). Finally, the other sources of relaxation
were also neglected in the bare Hamiltonian (1.28).

3.1 Homodyne readout

Most implementations of the dispersive measurement infer the state (ground or ex-
cited) of the qubit by, roughly speaking, a shift in the coherent-state radiation which
is either transmitted through the cavity or reflected by it. Namely, after several am-
plification stages at different temperatures, the phase shift is detected with a room-
temperature homodyning. With the homodyne detection, one determines the I and
Q components of the signal with respect to the signal incident on the resonator (see
Fig. 1.3). The local oscillator in the homodyne detector is in phase with the signal in-
cident on the resonator due to the use of a frequency standard which synchronizes both
sources [31]. We find the expressions for average values of I and Q in Ch. III. To have
less noise in the output, a quantum-limited parametric amplifier is used in the first
cold stage of amplification [32]. A quantum-limited amplifier only adds an amount of
noise close to the limit imposed by the quantum physics [33, 34]. Such amplifiers were
used to demonstrate quantum jumps [35], reversal of the measurement-induced deco-
herence [36] and other outstanding phenomena (see Ref. [37]). However, the approach
still has disadvantages. It is not simple to use a parametric amplifier in the same
cryostat with the qubit and the cavity, as this introduces an additional non-reciprocal
element and a pump. Non-reciprocal elements which are used today are bulky, and
the pump is hard to isolate from the rest of the circuitry. This makes it hard to scale
the readout to bigger number of qubits [37].
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3.2 Photodetector readout

Recently, an alternative scheme of the dispersive measurement was put forward [37]
and implemented [2]. The idea is to use a detector absorbing a microwave photon, like
the detectors routinely used in optics. Then the cavity is driven on one of its shifted
frequencies ωr ± gλ [see Eqs. (1.39) and (1.41)] or close to it. Depending on whether
the qubit is in |↑⟩ or |↓⟩, the photons mostly pass through the cavity or reflect off it.
One infers the state of the qubit (|↑⟩ or |↓⟩) by the number of the detector clicks. A
detector can be placed on-chip, and the setup scales well for the readout of several
and more qubits. Numerous detectors of microwave photons were proposed (see e.g.
Refs. [38–40]), and some were demonstrated [1, 2, 41–48]. Most of the detectors
in the references can not provide any information besides the presence or absence
of photons. Such detectors are called vacuum detectors. In Refs. [2, 29, 37], the
qubit state is determined based on whether the detector clicked or not. We consider
the readout with a Fock-state probe and a vacuum detector in Ch. VII. In Ch. IV
we consider the readout with a detector that is able to distinguish the number of
incident photons—a photon-number-resolving-detector. A continuous coherent probe
is used. It is found that the use of a photon-number-resolving detector improves the
performance of that scheme. A photodetector with limited number resolution, which
is able to count microwave photons up to two, is considered in Ch. VIII.

3.3 Measurement-induced decoherence

Quantum measurement is always accompanied by decoherence. The latter results
in a superposition of eigenstates turning into a mere statistical mixture. Setup for
a dispersive readout with a coherent radiation is a convenient system to study this
process. When the cavity is driven by a coherent radiation, it becomes occupied by a
coherent state whose number of photons fluctuates. As the qubit frequency depends
on the cavity photon number, fluctuations of the photon number result in the qubit
phase becoming more and more random—hence the qubit decoheres. We provide a
simple formula for the rate of this measurement-induced decoherence in Ch. V. Apart
from the drive photons, the formula takes into account the thermal ones.

4 Measures of readout performance

It is possible that the qubit readout does not identify a state of the qubit correctly.
Common measures to quantify the readout performance are readout contrast and
fidelity. Also, sometimes it is more convenient to use the probability of erroneous
readout. All these measures are closely related.

4.1 Contrast

Probabilistic measurement contrast [37] is defined as

C = P↑|↑ − P↑|↓. (1.43)

Pm|i is the probability of inferring the qubit to be in state |m⟩ while it is in state |i⟩.
Note C is not the probability of a correct measurement result, as it does not comprise

Section 4 was published in “A. M. Sokolov and E. V. Stolyarov, Phys. Rev. A 101, 042306
(2020)”. Copyright (2020) by the American Physical Society. The majority of the text was written
by A. M. Sokolov.

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.042306
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.042306
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Figure 1.4: JPM operation and sources of errors. Working steps:
I) a photon of frequency ω excites the JPM, II) the JPM tunnels to
the continuum of states to the left, III) the JPM “rolls down” the
potential. Non-zero tunneling rate γ0 results in false counts, while the
non-radiative relaxation Γ10 can result in absence of a click even if

photons are present.

the probabilities of the qubit to be prepared in each state4. The contrast (1.43) is
also dubbed fidelity sometimes [49–52]. It is however more consistent to reserve the
term fidelity for the other, yet related, quantity.

4.2 Fidelity and error probability

We define the measurement fidelity as the probability of a correct measurement result.
Let P↓ and P↑ denote the probabilities to measure |↓⟩ and |↑⟩, respectively. Then the
fidelity is

F = 1− P↓P↑|↓ − P↑P↓|↑ (1.44)

We know nothing about the qubit initial state prior to readout. Hence it is reasonable
to set P↓,↑ = 1/2 and

F = 1− (P↑|↓ + P↓|↑)/2. (1.45)

That’s the formula given, for example, in Ref. [53]. Taking into account that P↑|↑ +
P↑|↓ = 1, we express fidelity (1.45) in terms of the probabilistic contrast (1.43):

F = (1 + C)/2. (1.46)

It is often convenient to argue in terms of the probability of an erroneous readout

ε = 1− F. (1.47)
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5 Josephson photomultiplier

A Josephson photomultiplier (JPM) is a microwave photon detector which is based
on the Josephson junction. It functions as follows (see Fig. 1.4). We start with
the JPM in the ground state. Tunneling from that state occurs rarely. A photon
excites the JPM. Tunneling rate of the excited state is much higher than from the
ground one, γ1 ≫ γ0. After the tunneling, the JPM “rolls down” the potential on the
other side of the barrier. While first it accelerates, soon the speed of rolling down
becomes constant, due to dissipation to other degrees of freedom. The JPM acquires a
macroscopic voltage drop Φ̇ = const across its contacts. This voltage can be detected
by a voltmeter and is interpreted as a click. This JPM is a vacuum detector: that is,
it can only distinguish a vacuum state from the states with one or more photons.

One can modify JPM to count photons to two. This is discussed in Ch. VIII.

5.1 Detector performance

Here we overview how to measure the likelihood of the detector working properly and
estimate these measures for the JPM. There are several possibilities for the detector
to give an incorrect result. First, it can fail to give a click when a photon is present.
The probability to have a click when a photon is present is called the bright count
probability. Second, the detector can fire if no photons are present. For the detector
which counts up to two photons, there is also a possibility to identify a single-photon
state as a multi-photon one. We call the probability of these processes the false count
probability. These measures can be combined to yield the probability of a detection
error.

Let us estimate the bright count probability P 0/1
b for the JPM. Given that we have

waited long enough, a photon is most probably absorbed by the JPM. However, this
does not necessarily give a click: a photon could get stuck in the ground state due to
the JPM relaxation. For each small period of time ∆t, a part γ1P1∆t of the occupation
P1 of the excited level tunnels, while a part Γ10P1∆t decays non-radiatively. After
the excited state gets depleted, the ground one is occupied with a probability

P0(topt) ≈ Γ10/(Γ10 + γ1). (1.48)

Ratios like this one are known as branching ratios. We neglected tunneling from the
ground state. P0 is taken at optimal time topt, which is a tradeoff between increasing
the false counts due to the ground state tunneling and partial depletion of the excited
state. It follows that,

P
0/1
b (topt) = 1− P0(topt) ≈ γ1/(Γ10 + γ1). (1.49)

This expression was also given in Ref. [54].
It is easy to estimate the false count probability for the JPM. When there are no

photons, the JPM stays in the ground state. However, from there it can still tunnel
and give a click. Occupation of the ground state is exp−γ0t, hence the false count
probability is

P
0/1
f (t) = 1− e−γ0t. (1.50)

Now we give an expression for the probability of detection error. A detection error
can occur if there was a photon, but the detector did not fire, or when there were no

4In Ref. [49] the quantity we call here the measurement contrast was erroneously claimed to equal
the probability of correct measurement result.
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Figure 1.5: Damped LC circuit. The dissipation results from the
energy being absorbed by the waveguide.

photons and it fired. The probability of error is

ε = P0P
0/1
f + P1(1− P 0/1

b ) (1.51)

where PN is a probability of an input state with N photons to occur. If nothing is
known about the resonator state beforehand, P0 = P1 = 1/2 and

ε =
1

2

(
P

0/1
f + 1− P 0/1

b

)
(1.52)

If the time dependence of both P 0/1
f and P 0/1

b is known, one can find the optimal time
for which ε is minimal.

6 Some methods to treat the open quantum systems

We have already encountered dissipation rate Γ10 in the JPM in the previous section,
but have not considered how to model the dissipation. Any dissipation occurs due to
the leakage to the external degrees of freedom. Hence the systems where dissipation
cannot be neglected are called the open systems. In this section, we present two
methods of how to treat such systems.

6.1 Langevin equations

Langevin equations is a versatile tool for modeling random dissipative processes. Us-
ing Langevin equations is especially useful when a correlator of some quantities is
sought. Here, as an example, we derive the Langevin equation for a damped quantum
resonator.

We model damping by the interaction with a semi-infinite waveguide (see Fig. 1.5).
Usually, in the circuit quantum electrodynamics (QED) [19], majority of the resonator
damping is indeed caused by coupling to a waveguide. Moreover, often that is a very
good model for other sources of dissipation as well [55].

The Hamiltonian of the system reads

H = ℏωr

(
a†a+

1

2

)
+ ℏ

∫ ∞
0

dkfk(a
†bk + b†ka) + ℏ

∫ ∞
0

dk ωkb
†
kbk. (1.53)

The Hamiltonian of the resonator is given according to Eq. (1.8). Operators b†k and bk
create and annihilate a photon with a wavevector k. Each mode is represented by a
Hamiltonian of a harmonic oscillator in Eq. (1.53). The infinite part of the waveguide
energy is omitted in the Hamiltonian. The waveguide is assumed to be dispersionless,

ωk = vk, (1.54)



6. Some methods to treat the open quantum systems 15

where v is the speed of propagating photons. The coupling between the resonator and
the waveguide is written in the RWA. We discuss a derivation of the waveguide and
the coupling Hamiltonians in the context of circuit QED in Ch. II.

From the Hamiltonian (1.53), one obtains the equation of motion for operators of
photon annihilation in the waveguides:

ḃk =
1

iℏ
[bk, H], (1.55)

ḃk = −iωkbk − ifka. (1.56)

Their formal integral is given by

bk(t) = bk(0)e
−iωkt − ifk

∫ t

0
dt′e−iωk(t−t′)a(t′). (1.57)

The equation states that the field in the waveguides consists of the free-oscillations
part and the part describing the influence of the resonator.

Now we obtain the Langevin equation for a. It follows from the Hamiltonian (1.53)
that

ȧ = −iωra− i
∫ ∞
0

dkfkbk(t). (1.58)

Using Eq. (1.57), one splits the integral in Eq. (1.58),

−i
∫ ∞
0

dkfkbk(t) = −i
∫ ∞
0

dkfkbk(0)e
−iωkt −

∫ t

0
dt′
∫ ∞
0

dkf2ke
−ivk(t−t′)a(t′). (1.59)

The dispersion relation (1.54) was used.
To arrive at the Langevin equation, some approximations are required. First, the

integral over k in the second term can be extended to −∞. Indeed, a(t′) varies ap-
proximately as exp(−iωrt

′ − κt′/2), where κ > 0 is the damping constant we will
determine. Hence in the region of negative k the expression under the integral oscil-
lates fast. After the integration over t′, this region contributes only negligibly—if the
coupling fk does not have sudden peaks there, and the resonator is of high quality
factor with κ ≪ ωr. In fact, to continue, we assume that the coupling is constant.
The integration over t′ yields a result proportional to 1/(vk − ωr + iκ/2). Its abso-
lute value has a narrow peak in a region around k = ωr/v. Hence we assume that
fk ≈ f in this region that provides the major contribution to the integral. Using that∫ +∞
−∞ dk e−ikv(t−t

′) = 2πδ(t− t′)/v, one arrives at

ȧ(t) ≈
(
−iωr −

κ

2

)
a(t)− if

∫ ∞
0

dk bk(0)e
−iωkt, t > 0, (1.60)

where κ = 2πf2/v is the decay rate of the resonator. An argument very similar to
ours is presented in Ch. 6.3 of Ref. [15]. Extension of integration limits is also used
in Appendix D of Ref. [56] in a related argument.

Equation (1.60) is the Langevin equation for a. The last term on the right-hand
side of the equation is a Langevin noise source; the dissipation is accompanied by noise.
Note also, that the evolution of a in each instant of time depends only on its value at
the very instant. In other words, we have arrived at the Markov approximation [57].
Ultimately, it arises as we have assumed that the system does not feel the reservoir
internal structure.



16 Chapter I. Introduction

One may wonder, why not just carry out the integral over wavevectors k in
Eq. (1.59), without extending its lower limit? The integration yields∫ ∞

0
dkf2ke

−ivk(t−t′) =
πf2

v

[
PV

1

iπ(t− t′) + δ(t− t′)
]
, (1.61)

where we have assumed that fk ≈ f , and PV denotes the Cauchy principal value.
The second term in the brackets allows to recover the Langevin equation (1.60) on
integrating over t′. The first term there, however, provides then a divergence. Limiting
the time resolution can avoid the divergence [56]; but in any case, this term only adds
up to the resonator frequency ωr. Hence, we can use the cheap trick described for
obtaining (1.60), but we then mind that the renormalized ωr appears in our results. On
the other hand, when ωr is determined by measuring the resonator response to a signal
traveling by the attached waveguides (see Chs. III and IV), it is this renormalized
frequency that is measured anyway.

We expect that the same holds for other similar parameters when we use this
cheap trick throughout the thesis. We use Langevin equations in Chs. III–VII for the
problems related to qubit readout.

6.2 Lindblad master equation

Lindblad master equations are the equations on density matrix which are often used to
treat an open quantum system. As compared to the Langevin equations, this method
is usually easier and also allows one to find the dynamics of a (mixed) quantum state.
Here we review two ways of deriving the Lindblad master equation.

The first way is mostly mathematical and is based on two properties of density
matrices and one physical assumption. First, trace of a density matrix is always
unity. This is because the diagonal elements of a density matrix are probabilities of the
respective states to occur; they should sum up to unity. Second, density matrix always
stays positive. That is, all elements are non-negative in the diagonalized matrix.
Again, this is due to the diagonal elements being probabilities. More than that, if a
part of a density matrix is evolved by the equations we seek, the whole density matrix
should stay positive. Finally, the physical assumption is that, in each instant of time,
the evolution of a density matrix depends only on the density matrix in that instant
of time; i.e., we assume the evolution is Markovian and we neglect any memory in our
system. The equation for the density matrix ρ that satisfies the above requirements
is [58, 59]

ρ̇ =
1

iℏ
[H, ρ] +

N2−1∑
i=1

γi

(
LiρL

†
i −

1

2
[L†iLi, ρ]+

)
(1.62)

for an open system with N levels. Here H is a Hamiltonian which governs the unitary
part of the system dynamics. Li are called the jump operators. One can check that
for Li = |m⟩⟨n| with the states |n⟩ and |m⟩ such as their energies En > Em, the
rate γi is the rate of the decay n → m; and for Lj = |n⟩⟨n|, the rate γj is the pure
dephasing rate of |n⟩.

The second way [59, 60] to derive the Lindblad equation is more physical. One
considers a system weakly coupled to a huge thermal reservoir. The Born-Markov
approximation is used, which neglects the changes in the reservoir due to the system
evolution and neglects the system memory. This yields the Redfield equation. The
latter can be transformed into the Lindblad equation (1.62) by applying the secular
approximation. In the secular approximation one neglects the processes that link pop-
ulations ⟨n|ρ|n⟩ and coherences ⟨n|ρ|m⟩, where n ̸= m. For the relaxation rates much
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smaller than the frequency separation between the levels, these processes are mani-
fested by rapidly oscillating terms in the Redfield equations and are neglected [61].
One peculiar thing follows about the Redfield equation: without the secular approx-
imation the Redfield equation does not guarantee that ρnn are always non-negative.
Due to this and the fact that the Lindblad equation is much simpler, the Lindblad
equation is used much more often than the Redfield equation. We use the Lindblad
equation in Ch. VIII to model non-unitary processes in the JPM. We also derive a
Redfield equation for a tunneling model that links coherences and populations in Ap-
pendix VIII.C. We check that dismissing the rapidly oscillating terms in it gives rise
to the Lindblad equation for the JPM in Appendix VIII.D.
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Chapter II

Quantization of the
waveguide-resonator system

In Sec. I.6.1 the simplest case of a direct coupling of a waveguide and a resonator
was shown in Fig. 1.5. However, in circuit QED, a resonator is usually coupled to
a waveguide capacitively. A direct coupling provides damping that only depends on
the waveguide wave impedance (this can be explained by mentioning that a waveg-
uide can be replaced by a resistance equal to the waveguide impedance). Standard
impedances of convenient and widely used coaxial waveguides provide too much of
damping. This compromises coherence of a qubit coupled to the resonator due to the
Purcell effect [28]. A capacitor allows one to achieve reasonable values of damping.
In this chapter, we consider a single waveguide coupled capacitively to a resonator,
which interacts with a qubit inductively (see Fig. 2.1). It is straightforward to gener-
alize our treatment for the case of two waveguides coupled to the resonator, which is
usually the case in practice. As for the capacitive qubit-resonator coupling, one needs
to explicitly include a qubit into the treatment in that case [20]; however, the general
idea of our treatment stays the same.

A coupling capacitance we have is a point-like inhomogeneity in the waveguide.
Using the field expansion with zero current at the point of coupling yields the A2

term [62]. A more convenient approach allows one to avoid this term, as discussed
in the reference. In that approach, one finds the normal modes of an inhomogeneous
waveguide and uses that expansion to define the creation and annihilation operators.
In Ref. [63] the normal modes of a waveguide are identified numerically to treat an
ultrastrong coupling of a qubit and a resonator. However, the system studied in
the reference is different from that of ours: it is an inhomogeneous transmission-line
resonator that is coupled galvanically to a flux qubit. Our treatment bears some
resemblance to Refs. [20, 62, 64], but still the method we use is different. Unlike
Refs. [20, 62] we treat the coupling capacitance in the continuous limit, without re-
sorting to the discrete representation of the waveguide. This is also the approach used
in Sec. 2.2 of Ref. [64], but there an exotic Lagrangian coordinate is chosen—the full
charge of the segment of a waveguide from its start to a point x. Here we develop
an analytical theory that treats a point-like coupling capacitor right in the continu-
ous limit; we use the conventional Lagrangian variable of node flux at point x of a
waveguide.
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Φ(x)
C ′

Lr

Lq

Cr

0 x

Φr

Φc

Φ(0)

Figure 2.1: Waveguide-resonator system. A waveguide is loaded by
a resonator. The latter includes an arbitrary system with Lagrangian
Lq. Arrows indicate the direction of drop in node flux. Resonator
short circuit (long-dashed) provides a convenient set of line modes.

1 Lagrangian, Hamiltonian, and first quantization

Lagrangian of the system reads

Lw,0 = Lw +L0, (2.1)

Lw =

∫ +∞

−∞
dx θ(−x−)

(κΦ̇2

2
− (∂xΦ)

2

2ℓ

)
, (2.2)

L0 =
C ′(Φ̇(0)− Φ̇r)

2

2
+ Lr,qr+Lq, (2.3)

Lr,qr =
CrΦ̇

2
r

2
− (Φr − Φc)

2

2Lr
. (2.4)

Above and in what follows, x± stands for x ± ε, where ε is positive infinitesimal.
Lw is the Lagrangian of the line. κ and ℓ stand for the distributed capacitance and
inductance of the waveguide. Φ(x) denotes the node flux in the point x of the line. L0
is the Lagrangian of the point-like system: it describes the cavity-line coupling, the
resonator, and the qubit. Lagrangian of the qubit and the qubit-resonator coupler is
denoted by Lq. The coupling is through the node flux Φc. Lagrangian of the resonator
is denoted by Lr,qr. It includes a qubit-resonator coupling term. Drop of the node
flux across the resonator capacitance is Φr. For the system described it is possible to
write out the Hamiltonian of the waveguide-resonator coupling without knowledge of
Lq [20].

The generalized momenta of the system are

P (x) =
δL
δΦ̇(x)

= θ(−x−)κΦ̇(x) + δ(x)Q(0), (2.5)

Qr =
∂ Lw,0

∂Φ̇r

= −Q(0) + CrΦ̇r, (2.6)

Qq =
∂ Lq
∂Φ̇q

, (2.7)

where
Q(0) = C ′(Φ̇(0)− Φ̇r) (2.8)
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is a shortcut notation for the point charge at x = 0, and P (x) is the charge density
in the point x of the waveguide. Qr is the total charge of the resonator top node.
Φq stands for the set of qubit variables, and Qq stands for the respective generalized
momenta.

On performing the Legendre transform

Hw,0 =

∫ 0+

−∞
dxΦ̇P + Φ̇rQr + Φ̇qQq − Lw,0, (2.9)

one obtains the Hamiltonian

Hw,0 = Hw +H0, (2.10)

Hw =

∫ +∞

−∞
dx θ(−x−)

(P 2

2κ
+

(∂xΦ)
2

2ℓ

)
, (2.11)

H0 =
Q2(0)

2C̃ ′
+Hwr +Hr,qr +Hq, (2.12)

Hwr = QrQ(0)/Cr, (2.13)

Hr,qr =
Q2

r

2Cr
+

(Φr − Φc)
2

2Lr
, (2.14)

Hq = Φ̇qQq − Lq, (2.15)

where C̃ ′ = (1/C ′+1/Cr)
−1. The first term in Eq. (2.12) is known as the A2 term [62].

Next, we promote the canonical variables to operators. This imposes commutation
relations:

[Φ(y), P (y)] = iℏ δ(x− y), (2.16)
[Φr, Qr] = iℏ, [Φq, Qq] = iℏ. (2.17)

Other pairs of variables commute.

2 Second quantization of the waveguide

Now let us rewrite the waveguide Hamiltonian in terms of the photon creation and
annihilation operators. To do it, one expands the line field by an orthogonal set of
modes. A boundary condition at the line end generates such a set. In choosing a
convenient mode set, we will modify the true boundary condition by short-circuiting
the resonator. This allows us to include the A2 term into the mode expansion.

For completeness, we first obtain the true boundary condition at x = 0. The
waveguide dynamics is governed by the equations

Ṗ (x) = 1
iℏ [P (x), H], Φ̇(x) = 1

iℏ [Φ(x), H]. (2.18)

From the last equation it follows that

Φ̇(0) =
Q(0)

C̃ ′
+
Qr

Cr
, (2.19)

while the first one yields

Ṗ (x) =
1

iℏℓ

∫ +∞

−∞
dx′
(
∂x′ [P (x),Φ(x′)]

)
θ(−x′−)∂x′Φ(x′). (2.20)
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Carrying out a partial integration and using the commutator (2.16) results in

Ṗ (x) =
1

ℓ
∂x[θ(−x−)∂xΦ]. (2.21)

Taking limϵ→0

∫ ϵ
−ϵ dx of both sides while expressing P (x) with Eq. (2.5) gives

Q̇(0) = −1

ℓ
∂xΦ(0). (2.22)

Note that the sign differs from that given in Ref. [20], as our waveguide spans the
region of negative x. From Eqs. (2.19) and (2.22) the boundary condition follows,

1

ℓ
∂xΦ(0) = −C̃ ′Φ̈(0) +

C̃ ′

Cr
Q̇r. (2.23)

One can also obtain this boundary condition by considering the Kirchhoff’s laws at
x = 0.

Now we expand Φ(x) in terms of the wave equation eigenfunctions that satisfy
the boundary condition (2.23) while short-circuiting the resonator (see Fig. 2.1). The
wave equation reads

Φ̈ = v2∂2xΦ, v = 1/
√
κℓ, x < 0. (2.24)

It can be obtained from Eqs. (2.18) and (2.21). The general solution of the wave
equation is

Φ(x, t) = Φ→(t− x/v) + Φ←(t+ x/v). (2.25)

It is convenient to introduce φ⇄(ω) the Fourier transforms of Φ⇄(τ), so that

Φ⇄(τ) =
1√
2π

∫ +∞

−∞
dωeiωτφ⇄(ω). (2.26)

With the resonator short-circuited, no current flows through Cr and Q̇r = 0. In terms
of φ⇄(ω), the boundary condition (2.23) with Q̇r ≡ 0 reads

(1− iC̃ ′Zcω)φ→ = (1 + iC̃ ′Zcω)φ← (2.27)

with Zc =
√
ℓ/κ the characteristic impedance of the line. Introducing φ = φ→(1 −

iC̃ ′Zcω)(1 + C̃ ′2Z2
cω

2)−1/2 and using Eqs. (2.26) we rewrite Eq. (2.25) as

Φf(x, t) =

√
2

π

∫ ∞
0

dωeiωtφ(ω) cos
(ω
v
x−∆ω

)
+ h. c., (2.28)

tan∆ω = C̃ ′Zcω. (2.29)

It follows that the linear dispersion relation

ω = vk (2.30)

holds. In obtaining Eq. (2.28), it was used that since Φ is Hermitian, φ†(−ω) = φ(ω).
Also, as Φ is continuous, the expansion is valid up to and including x = 0. Subscript
“f” signifies that the field is free of influence of the resonator degree of freedom. In
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this case φ̇ = 0 and the use of Eq. (2.5) yields the charge density

Pf(x, t) = iκ(x)
√

2

π

∫ ∞
0

dωeiωt ωφ(ω) cos
(ω
v
x−∆ω

)
+ h. c., (2.31)

κ(x) = κθ(−x−) + C̃ ′δ(x). (2.32)

With C ′ at the line end, x = 0 is no longer a voltage node and a current antinode, as
some current can flow into C ′. This is more pronounced for higher frequencies, where
the impedance of the capacitor is lower.

Based on expansions (2.28) and (2.31), we make a change of variables

Φ(x, t) = i

∫ ∞
0

dω

√
ℏZc

πω
[b(ω, t)− b†(ω, t)] cos

(ω
v
x−∆ω

)
, (2.33)

P (x, t) = κ(x)
∫ ∞
0

dω

√
ℏZcω

π
[b†(ω, t) + b(ω, t)] cos

(ω
v
x−∆ω

)
(2.34)

for x ≤ 0. It is convenient to rewrite the Hamiltonian of the line and the effective
coupling capacitor C̃ ′:∫ 0−

−∞
dx
(P 2

2κ
+

(∂xΦ)
2

2ℓ

)
+

∫ 0+

0−
dx
Q2(x)

2C̃ ′
δ(x)

= lim
ε,η→0
η>ε>0

[∫ 0−ε

−∞
dx
(1
2

P 2

κθ(−x− η) + C̃ ′δ(x)
+

(∂xΦ)
2

2ℓ

)

+

∫ 0+η

0−ε
dx

1

2

[κΦ̇θ(−x− η) +Qδ(x)]2

κθ(−x− η) + C̃ ′δ(x)

]

=

∫ 0+

−∞
dx

[
P 2

2κ(x)
+

(∂xΦ)
2

2ℓ
θ(−x−)

]
= Hw,c. (2.35)

Further we need the orthogonality relations for the modes we expand the fields in:

2

πv

∫ 0

−∞
dx

κ(x)
κ

cos
(ω′
v
x+∆ω′

)
cos
(ω′′
v
x+∆ω′′

)
= δ(ω′ − ω′′) + δ(ω′ + ω′′),

(2.36)

2

πv

∫ 0

−∞
dx sin

(ω′
v
x+∆ω′

)
sin
(ω′′
v
x+∆ω′′

)
= δ(ω′ − ω′′)− δ(ω′ + ω′′).

(2.37)

Using those with the expansions (2.33)–(2.34), one arrives at

Hw,c = ℏ
∫ ∞
0

dω ωb†(ω)b(ω), (2.38)

where we have dropped the constant, yet diverging, part of the energy.
b(ω) and b†(ω) are the operators of creation and annihilation of a photon with

frequency ω in the waveguide. Indeed, one can show that the operators have the
appropriate commutation relations. First we express b(ω) in terms of the fields:

b(ω) =

√
Zc

ℏωπ

∫ 0

−∞
dx(P − iωΦ) cos

(ω
v
x+∆ω

)
. (2.39)
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Then use of the orthogonality relation (2.36) and the commutator (2.16) yields

[b(ω′), b†(ω)] = δ(ω − ω′). (2.40)

Now we express Hwr in terms of creation and annihilation operators. It follows
from Eqs. (2.34) and (2.5) that

Q(0) = C̃ ′
∫ ∞
0

dωeiωt
√

ℏZcω

π
[b†(ω) + b(ω)] cos∆ω. (2.41)

It is more common to work with the annihilation operator

bk =
√
v b(kv) (2.42)

of a photon with wavevector k and its conjugate b†k. The last equation follows from
the fact that the number of photons ⟨b†kbk⟩dk in an interval dk is the same as in
the respective interval dω, ⟨b†(ω)b(ω)⟩dω; here dk and dω can be related using the
dispersion relation (2.30). Substituting expression (2.41) to (2.13) and rewriting in
terms of bk and b†k gives rise to

Hwr = vQr

∫ ∞
0

dk
C̃ ′

Cr

√
ℏZck

π
(b†k + bk) cos∆kv. (2.43)

Rewriting (2.38) in terms of bk and b†k yields

Hw,c = ℏ
∫ ∞
0

dk ωkb
†
kbk. (2.44)

In what follows, we will also need the expression for voltage of the right-propagating
wave,

U→(x, t) =
P→(x, t)

κ(x)
=

∫ ∞
0

dk

√
ℏZcv2k

π
(b†ke

−ikx−∆vk + h. c.), (2.45)

where it was used that bk ∝ e−ivkt to pick the terms that describe the right-propagating
waves from Eq. (2.34). The expressions for the left-propagating voltage U← and for
Φ→ and Φ← can be obtained analogously.
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Chapter III

Qubit readout with a homodyne
detector

In the homodyne readout, one measures the quadratures of the signal transmitted1

through the resonator. We reviewed the homodyne measurement of the quadratures
in Sec. I.3.1. From those quadratures the qubit state can be inferred. In this chapter,
we calculate the expressions for the average values of the quadratures.

1 Continuous measurement

For simplicity, we assume that the resonator is driven continuously. The drive is
turned on in the initial instant of time t = 0. Its amplitude slowly, as compared
to the inverse transition frequencies of the system, approaches its steady-state value.
One then waits until the transients settle down and measures the transmitted signal in
its steady state. In Chs. IV and V, we will also consider a continuous measurement.
Hence the Hamiltonian and some of the results presented below are used in those
chapters.

2 Hamiltonian

Hamiltonian of the system reads:

H = Hq +Hqr +Hr +HrI +HrII +HI +HII, (3.1)

where

Hq =
1

2
ℏ[ωq + F (t)]σz, (3.2)

Hr = ℏωr

(
a†a+

1

2

)
, (3.3)

Hqr = ℏg(σ+a+ h. c.) (3.4)

are the Hamiltonians of the qubit, resonator and the qubit-resonator interaction, re-
spectively. The qubit longitudinally couples to the classical noise F (t), for which
⟨F (t)⟩ = 0. Inclusion of F (t) phenomenologically2 models loss of the qubit coherence

1The reflected signal can be used as well, but that requires additional complexity in the experi-
mental setup.

2For microscopic models, see Refs. [65, 66].
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that is unrelated to its coupling to the resonator—what we call the natural decoher-
ence. Hamiltonians of the waveguide fields are

Hα = ℏ
∫ ∞
0

dk ωkb
α†
k b

α
k , α = I, II (3.5)

according to Eq. (2.44). Here bI†k , b
I
k and bII†k , bIIk are the operators of creation and

annihilation of a photon with a wavevector k in the first and the second transmission
line, respectively. Modes of transmission lines constitute a heat bath the resonator
photon relaxes to. The terms responsible for interaction of the waveguides with the
resonator are

Hrα = ℏ
∫ ∞
0

dkfk(a
†bαk + h. c.). (3.6)

Equation (3.6) is obtained from Eq. (2.43). The expression (1.10) is used for Qr and
the RWA is made.

2.1 Driving with coherent radiation

Here we split the mode operators of the first waveguide into the operators of the drive
and the operator of the rest.

To drive a circuit QED system, radiation of a room-temperature classical generator
is attenuated in several stages at lower and lower temperatures [5, 31], thus avoiding
the thermal noise. Hence we assume that at t = 0 the first waveguide field is in the
coherent state [67]

|{ck}⟩ = exp

(∫ ∞
0

dk bI†k ck − h. c.
)
|0⟩. (3.7)

Here ck = v (2π)−1
∫∞
−∞ dte

ivkt(c+ c∗) is the Fourier transform of a signal c(t) + c∗(t)
with the negative-frequency part

c(t) =

∫ ∞
0

dk cke
−iωkt, (3.8)

where ωk = vk according to the dispersion relation (2.30). As can be shown by a
simple generalization of Sec. 5 treatment, the average voltage incident at the resonator
is proportional to the signal c+ c∗.

Now we split out the drive operators, similarly to what was done in Ref. [16] for
the laser driving. Consider the displacement operator

D(t) = exp

(∫ ∞
0

dk bI†k cke
−iωkt − h. c.

)
. (3.9)

If one moves to the displaced frame by transforming the system wavefunction |ψ⟩ →
D|ψ⟩, the initial condition on |ψ⟩ is |0⟩ as D(0)|0⟩ = |{ck}⟩. However, an additional
interaction term arises in the Hamiltonian (3.1):

HI +HrI → D†(HI +HrI)D − iℏD†Ḋ = HI +HrI +Hrd. (3.10)

Here Hrd =
∫∞
0 dk(fka

†cke
−iωkt + h. c.) is the Hamiltonian of the drive-resonator

coupling. The transformation (3.9) can be shown to be composed of moving into the
interaction picture, displacing each bk by ck and moving out of the interaction picture.
This sequence is also the simplest way to obtain the Hamiltonian (3.10).
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As discussed in Sec. 1, we assume that c(t = 0) = 0. On the other hand, we
measure the transmitted signal in the steady state. At these times the drive can be
considered monochromatic, i.e.,

c(t) ≈ c(0)e−iωdt for t≫ κ−1. (3.11)

Here we formally define c(0) so that ck = c(0)δ(k − ωd/v), where the dispersive
relation (2.30) is used. In our convention |c(0)|2 is the average density, per unit
length, of photons in the incident flux. After all, by plugging the monochromatic
ck into Hrd from Eq. (3.10), we arrive at the drive Hamiltonian in the steady state
continuous measurement:

Hrd ≈ ℏf [a†c(t) + h. c.], (3.12)

where f = fωd/v.
For clarity, we write out the displaced full Hamiltonian:

H → Hq +Hqr +Hr +HrI +HrII +Hrd +HI +HII. (3.13)

2.2 Full Hamiltonian in the dispersive frame

We diagonalize the Jaynes-Cummings Hamiltonian Hq+Hqr+Hr with the dispersive
transform (1.34), which yields the dispersive Hamiltonian (1.36). To transform the
full Hamiltonian (3.1) we express the bare operators σz and a in terms of their dressed
counterparts,

a→ U †daUd = a+ λσ− +O(λ2), (3.14)

σz → σz − 2λ(σ+a+ a†σ−) +O(λ2), (3.15)

and use Eq. (1.35). This yields the full system dressed Hamiltonian:

H → U †dHUd = Hq + H̃qr +Hr

+HrI +HrII +Hrd

+HFqr +HqI +HqII +Hqd

+HI +HII + o(λ)

(3.16)

with

Hqα = λℏ
∫ ∞
0

dkfk(σ+b
α
k + h. c.), (3.17)

Hqd = λℏf [σ+c(t) + h. c.], (3.18)
HFqr = −λℏF (t)(σ+a+ h. c.), (3.19)

and H̃qr defined in Eq. (1.37).
Direct interaction between the dressed qubit and resonator vanishes in Eq. (3.16);

however, qubit-bath and qubit-drive couplings appear. Due to these couplings, the
dressed qubit and resonator are effective systems both interacting with transmission
lines. Moreover, now the noise in the qubit transition frequency F (t) causes not only
the longitudinal decoherence of the qubit but also transitions of both the qubit and
the resonator [68]. In the following sections and in Chs. IV and V, we work in the
dressed picture.
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3 Outgoing voltage in terms of the resonator field

According to Eq. (2.45), the operator of voltage of the right-propagating wave in the
second waveguide is

U II
→(x, t) =

P→(x, t)

κ(x)
=

∫ ∞
0

dk

√
ℏZcv2k

π
bIIk e

ikx+i∆vk + h. c.. (3.20)

One can find, analogously to the derivation of Eq. (1.57), that

bIIk (t) = bIIk (0)e
−iωkt − i

∫ t

0
dt′fke

−iωk(t−t′)(a+ λσ−)t′ . (3.21)

Substituting Eq. (3.21) into Eq. (3.20) and using that the second waveguide is initially
in the vacuum state, we have

⟨U II
→(x, t)⟩ = −i

∫ ∞
0

dkfk

√
ℏZcv2k

π

∫ t

0
dt′⟨a+ λσ−⟩t′e−iωk(t−t′)+ikx+i∆vk + c. c..

(3.22)
We assume that the incoming signal bands and the system resonances are suffi-

ciently narrow. Then, analogously to the derivation of Eq. (1.60), we can extend the
integral over k to the negative values and replace k in Eq. (3.22) with the wavevectors
giving the main contribution to the integral:

⟨U II
→(x, t)⟩ ≈ −i

√
ℏZcv

π

∫ t

0
dt′
∫ ∞
−∞

dk e−iωk(t−t′)+ikx

× ⟨fei∆ωr
√
ωra+ λfqe

i∆ωq
√
ωqσ−⟩t′ + c. c., (3.23)

where
f = fωd/v ≈ fωr/v, fq = fωq/v. (3.24)

Using that
∫∞
−∞ dk e

−iωk(t−t′)+ikx = 2πv−1δ(t− t′ + x/v) yields

⟨U II
→(x, t)⟩ ≈ −i

√
4πℏZc

v

∫ t

0
dt′δ(t′ − t+ x

v
)

× ⟨fei∆ωr
√
ωra+ λfqe

i∆ωq
√
ωqσ−⟩t′ + c. c. (3.25)

With no loss of generality, we seek an expression for the voltage at the very beginning
of the waveguide:

⟨U II
→(x = 0+, t)⟩ = −i

√
4πℏZc

v
⟨fei∆ωr

√
ωra+ λfqe

i∆ωq
√
ωqσ−⟩t + c. c. (3.26)

for t > 0.
Strictly speaking, the voltage depends on both the resonator and the qubit states.

This coincides with the view of them as effective systems both connected to the waveg-
uide. However, as the rotating-wave approximation dictates the qubit and resonator
frequencies to be of the same order, the qubit term in Eq. (3.26) is negligible due to
λ being small. Therefore,

⟨U II
→(x = 0+, t)⟩ ≈ −i

√
ℏωrZcκ⟨a(t)⟩ei∆ωr + c. c., t > 0, (3.27)
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where
κ = 4πf2/v (3.28)

will be shown to be the resonator decay rate. Note, that after the qubit wavefunction
collapse, σ− vanishes and Eq. (3.27) becomes exact. The phase shift ∆ωr is due to
the coupling capacitor; see the explanation for Eq. (2.31).

4 Evolution of the resonator field

Here we find an explicit expression for a(t) the annihilation operator of the resonator
photon. First, let us obtain the Langevin equation for it. The evolution equation for
the operator reads

ȧ(t) = −iω̃r(t)a(t)− i
∫ ∞
0

dkfk(b
I
k + bIIk )t − ifc(t) + iλF (t)σ−(t) + o(λ), (3.29)

with ω̃r defined in Eq. (1.41). Analogously to the derivation of Eq. (1.60), we obtain

ȧ(t) =
(
−iω̃r(t)−

κ

2

)
a(t)− ifc(t)− λκ

2
σ−(t)

− i
∫ ∞
0

dkfk[b
I
k(0) + bIIk (0)]e

−iωkt + iλF (t)σ−(t) + o(λ), (3.30)

where κ (3.28) is the resonator decay rate.
Now we find the formal solution of the equation. Notice that ω̃r(t) is constant in

the accuracy of Eq. (3.30). Indeed, it is σz(t) that leads to changes in ω̃r(t); it can be
found that σ̇z(t) = O(λ). Therefore ω̃r(t) = ωr + gλσz(t) = const + o(λ). It is then
simple to write down the formal solution of Eq. (3.30):

a(t) = a(0)e−(iω̃r+κ/2)t −
∫ t

0
dt′e−(iω̃r+κ/2)(t−t′)

(
i

∫ ∞
0

dkfk[b
I
k(0) + bIIk (0)]e

−iωkt
′

+ ifc(t′) + λ
κ

2
σ−(t

′)− iλF (t′)σ−(t′)
)
. (3.31)

Note that the exponents in the solution cannot be just expanded to the first order in
λ. The term under the integral proportional to c(t) oscillates with frequency ωr−ωd,
which can be small or zero. This makes the O(λ) term in the exponent under the
integral matter.

We confine ourselves to the case of a steady state of the resonator field. Assume
the drive is turned on before the preparation of a qubit state, and the qubit is prepared
at time t = 0. Changing the qubit state shifts the cavity resonance, which leads to
transients in the resonator field [69]; those transients fade for times

t≫ κ−1. (3.32)

As the drive is turned on before the qubit preparation, the respective transients have
faded for those times too. In that case the resonator can be considered to be in a
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steady state, and the formal solution (3.31) takes the form

a(t) = −
∫ t

−∞
dt′e−(iω̃r+κ/2)(t−t′)

(
i

∫ ∞
0

dkfk[b
I
k(0) + bIIk (0)]e

−iωkt
′

+ ifc(t′) + λ
κ

2
σ−(t

′)− iλF (t′)σ−(t′)
)
. (3.33)

The last two terms under the integral in Eq. (3.33) contribute in the order of λ2,
as σ−(t) oscillates with the qubit frequency ωq. Still, we estimate their contribution
in detail—to be sure that the integration does not yield any factor to make the con-
tribution matter. First, we assume that the coupling is strong, κ ≲ g. Then the
contribution of the third integrand in Eq. (3.33) is smaller than λ2:∫ t

−∞
dt′e−(iω̃r+κ/2)(t−t′)λ

κ

2
σ−(t

′) ∼ κ

g

gλ

|ωq − ωr|
≲ λ2. (3.34)

This is beyond the accuracy with which Eq. (3.33) was obtained and should not be
accounted for. In what follows we also show that the last integrand in Eq. (3.33)
contributes negligibly in the relevant expectation values.

Integration of the drive and bath terms in Eq. (3.33) gives rise to a solution of
Eq. (3.30):

a(t) ≈ fc(0)e−iωdt

ω̃dr + iκ/2
+

∫ ∞
0

dk
fk

ω̃kr + iκ/2
[bIk(0) + bIIk (0)]e

−iωkt

+ iλσ−(t)

∫ t

−∞
dt′e(iωqr−κ/2)(t−t′)F (t′)ei

∫ t
t′ dt

′′F (t′′), (3.35)

ω̃βr = ωβ − ω̃r, β = k, d. (3.36)

To obtain the last term, we have used that σ−(t′)e−iωq(t−t′)−i
∫ t′
t dt′′F (t′′) varies slowly.

In addition, we have neglected the dispersive shift gλ to the bare qubit-resonator
detuning ωqr = ωq − ωr. The first term of the expression (3.35) describes the drive-
induced part of the field. Note that it depends on the σz by means of the dressed
frequency ω̃r, which enables dispersive readout of the qubit. The second term describes
the influence of the waveguide fluctuations. The last term describes the resonator
transitions due to the fluctuations in the qubit frequency [68]. They arise due to the
dressing by the qubit. Apart from the last term, the expression (3.35) was obtained
in Ref. [27] in the bare picture for the case of a single reservoir with discrete modes.

Now we calculate ⟨a(t)⟩, which will allow us to find the voltage in the second
waveguide (3.27). As it was already noted, σz should be considered constant in the
approximation Eq. (3.30) is obtained. Then the average of each term of the sum in
expression (3.35) splits as

⟨(ωkr − gλσz(0) + iκ/2)−1bαk (0)⟩ = ⟨(ω̃kr + iκ/2)−1⟩⟨bαk (0)⟩ (3.37)

and vanishes, as initially both waveguides are in the vacuum state in the displaced
picture. Then, we neglect the last term in Eq. (3.35). Correlation between σ− and F
arises only in the next order of λ [one can check that from Eq. (5.15) that we write
out later]. Hence one can split the average in the last term of Eq. (3.35). Assuming
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that F is Gaussian-distributed, we estimate the average of the integral there as∫ t

−∞
dt′e(iωqr+κ/2)(t′−t)⟨F (t′)ei

∫ t
t′ dt

′′F (t′′)⟩ ≈ − iΓ0

ωqr + iΓ0 + iκ/2
. (3.38)

Here we have used an identity from Appendix A. Then, we have assumed that F is a
white noise with ⟨F (t′)F (t′′)⟩ = ⟨F 2⟩δ(t′− t′′). That allows us to find ⟨

( ∫ t′

t dt′′F
)2⟩ ≈

(t′ − t)⟨F 2⟩ = 2(t′ − t)Γ0. Later in Ch. V, we show that Γ0 is the rate of the qubit
natural decoherence [70]. Similarly to Eq. (3.34), we find with Eq. (3.38) that the
last term of Eq. (3.35) is negligible when Γ0 ≲ g. In that regime, we expect this term
to be of same magnitude even for non-Gaussian F . So, on neglecting it and using
Eq. (3.37), we obtain:

⟨a(t)⟩ =
〈fc(0)e−iωdt

ω̃dr + iκ/2

〉
. (3.39)

5 Quadratures of the outgoing voltage

It is natural to express the voltage measured (3.27) in terms of the amplitude of the
incident wave voltage

U I
→(x, t) =

∫ ∞
0

dk

√
ℏZcv2k

π
(bIke

ikx+i∆vk + h. c.) (3.40)

in the frame that was not displaced by D (3.9). In this frame the state of the first
waveguide is |{ck}⟩ (3.7). Using that ck = c(0)δ(k − ωd/v), one obtains, analogously
to the derivation of Eq. (3.25):

⟨U I
→(x, t)⟩ ≈

√
ℏZcvωd

π
c(t)eikx+i∆ωd − i

√
ℏZc

πv

∫ t

0
dt′δ(t′− t+ x

v
) . . .+ c. c. (3.41)

The second term zeroes, as x < 0 in the first waveguide. Average voltage just at the
first port of the resonator is given by

⟨U I
→(x = 0−, t)⟩ = U I

0 cos(ωdt+∆ωr), (3.42)

where U I
0 = 4fc(0)

√
ℏωrZc/κ is the voltage amplitude that was expressed similarly

to the prefactor in Eq. (3.27). For simplicity, we assumed c(0) to be real. Drive
and resonator frequencies were assumed to be close to each other, |ωd − ωr| ≪ ωr.
Substituting Eq. (3.39) into Eq. (3.27) and using Eq. (3.42) we obtain

⟨U II
→(x = 0+, t)⟩ = U I

0

[
⟨I⟩ cos(ωdt+∆ωr)− ⟨Q⟩ sin(ωdt+∆ωr)

]
, (3.43)

where ⟨I⟩ is the dimensionless component in phase with the drive and ⟨Q⟩ is the
quadrature component. They are defined by means of the operators

I = − κ2/4

(ωdr − gλσz)2 + κ2/4
, (3.44)

Q =
(ωdr − gλσz)κ/2

(ωdr − gλσz)2 + κ2/4
. (3.45)

In Ref. [71] expressions for “effective qubit measurement operators” are given. They
coincide, for the case of a steady-state resonator, t≫ κ−1, with Eqs. (3.44) and (3.45).
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We also provide explicit expressions for the average quadratures. Applying the
identity

f(σz) =
1 + σz

2
f(1) +

1− σz
2

f(−1) (3.46)

to the quadratures (3.44) and (3.45) we obtain for their expectation values

⟨I⟩ = 1 + ⟨σz⟩
2

κ2/4

(ωdr − gλ)2 + κ2/4
+

1− ⟨σz⟩
2

κ2/4

(ωdr + gλ)2 + κ2/4
, (3.47)

⟨Q⟩ = −1 + ⟨σz⟩
2

(ωdr − gλ)κ/2
(ωdr − gλ)2 + κ2/4

− 1− ⟨σz⟩
2

(ωdr + gλ)κ/2

(ωdr + gλ)2 + κ2/4
. (3.48)

Dependencies of the quadratures on detuning for the qubit in either of two eigenstates
are given on Fig. 3.1.
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Figure 3.1: Dependence of the quadratures of transmitted voltage on
detuning. Detuning ωdr is given in units of gλ the qubit Stark shift per
one photon. Quadratures ⟨I⟩, ⟨Q⟩ are given in the units of amplitude
of the incident voltage on the first port, ⟨U I

→(x = 0−, t = 0)⟩. The
resonator decay rate is κ = gλ/2.
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Appendices

A Some averages involving Gaussian noise

Here we derive two known identities for averages that involve Gaussian-distributed
noise x. First, simply by averaging with respect to the distribution, we prove the
following identity:

⟨ex⟩ = 1√
2π⟨x2⟩

∫ +∞

−∞
dx ex exp

(
− x2

2⟨x2⟩

)
=

1√
2π⟨x2⟩

∫ +∞

−∞
dx e⟨x

2⟩/2 exp

(
−(x− ⟨x2⟩)2

2⟨x2⟩

)
= exp

⟨x2⟩
2
. (3.A.1)

We also prove another identity that we use in the main text. Introducing X(t) =∫ t
t0
dt′x(t′) , we calculate that

⟨x(t)eX(t)⟩ =
〈 d
dt
eX(t)

〉
=

1

2

( d
dt
⟨X2⟩

)
exp
⟨X2⟩
2

, (3.A.2)

where we have applied Eq. (3.A.1) for Gaussian-distributed X. The latter fact holds
since a sum of Gaussian-distributed random values is again a Gaussian random vari-
able. Another way to derive Eq. (3.A.2) is provided in §2.2 of Ref. [72].
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Chapter IV

Qubit readout with a
photon-number-resolving detector

In this chapter, we determine the optimal parameters for a simple scheme of dis-
persive readout of a qubit. In this scheme, continuous coherent radiation and a pho-
todetector is used. Qubit state is inferred by detecting the photon number transmitted
through the cavity. The use of a photodetector for the dispersive readout was already
investigated in Refs. [2, 37]. There, the detector absorbs the cavity photons when
the cavity is already populated. We consider the case of continuous drive and per-
manent resonator leakage, which is easier to achieve experimentally. Moreover, in
the reference, the vacuum detector is studied: that is, a detector that cannot provide
any information besides presence or absence of photons. In contrast, we deal with a
detector able to distinguish any number of incident photons. We will show that, in
the setup we consider, such a detector allows one to perform the measurement with a
better accuracy.

We study the performance of a simple scheme for the dispersive readout with a pho-
todetector. Readout accuracy can be characterized with the measurement contrast.
We find the measurement parameters maximizing the contrast: the drive-resonator de-
tuning and the ratio of a pull in the cavity resonance gλ to the resonator leakage rate.
The drive frequency is usually taken to match the pulled cavity resonance [27, 37, 69].
However, we show that this may result in a suboptimal contrast. We find the optimal
detuning and resonator leakage. Surprisingly, they vary with the measurement dura-
tion. The other approach is to estimate the readout accuracy with the signal-to-noise
ratio (SNR) in the photon count. Maximization of the SNR yields the parameters
which are constant and simpler to use. The circumstances when these parameters
result in close-to-optimal contrast are determined. We use our findings to estimate
the duration of the readout for different physical realizations of the scheme.

1 Measurement scheme

We consider the following system (see Fig. 4.1a). A qubit interacts with one of
the resonator modes. From the one side, the resonator is driven with a classical
quasi-monochromatic pump. On the other side, a photon-number-resolving detector
is placed. Photons leak out from the resonator by both sides. Both the detector and
the drive source do not reflect the photons. Either of them may be connected to the

Chapter IV—except for Secs. 2 and 4.2, some excerpts from other sections, and Appendix A—
was published in “A. Sokolov, Phys. Rev. A 93, 032323 (2016)”. Copyright (2016) by the American
Physical Society.

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.032323
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Figure 4.1: a) Schematic of the system which consists of: genera-
tors, a resonator coupled to a qubit, and a photocounter. b) Average
number of photons transmitted, for the qubit in the ground state (blue
line) and in the excited state (golden line). The root-mean-square de-
viation in the photon number is shown by the fill of respective color.

c) Measurement sequence (times not to scale).

cavity by means of waveguides. Alternatively, the detector may be coupled directly
to the resonator. The qubit state is controlled by a separate line.

We now describe the measurement sequence (see Fig. 4.1c). First the system is
thermalized. Qubit relaxes into the ground state. Any mutual coherence between the
qubit, the resonator, and the waveguide modes dies out. In case the measurement is
to be carried out with the excited qubit, a π-pulse [70] is applied to the qubit at time
t = 0. At the same time, the resonator drive is turned on. Some time after that,
at t = t0, one begins to count the detected photons. The time is chosen so that all
transients in the cavity have faded and the drive can be considered monochromatic.
The sequence ends at t = t0 + tm. It can be repeated to decrease the probability of
an erroneous inferring of the qubit state.

Let us discuss one subtleness in the model. As it was already mentioned, the drive
source is considered perfectly absorbing. It can be equivalently replaced [55] by a
continuation to infinity of the waveguide that connects the cavity to the source. A
wave generated by the source is then considered to come from the infinite waveguide.
The same reasoning holds for the detector, which is also perfectly absorbing.

As the measurement sequence is very similar to that considered in Ch. III, we will
use the Hamiltonian and some results from that section.

2 Photocounting statistics

To characterize the measurement, we need to know the dependence of photocounting
statistics on the qubit state. Here we find the probability of a given count of detected
photons, the average count, and the mean square deviation of the count. These
quantities are found for the simplest case of the qubit occupying one of its eigenstates.

First we introduce a useful notation. Consider the density of photons [73, 74] that
are traveling to the right in the second waveguide:

⟨ρtr(x, t)⟩ =
1

2π

∫ ∞
0

∫ ∞
0

dkdl⟨bII†k (t)bIIl (t)⟩e−i(k−l)x, x > 0. (4.1)
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Here x is a distance from the second port of the resonator.
Photocounting statistics is given in terms of the photon density (4.1) as follows.

The probability to detect n photons is given by [75–77]

P (n) =
〈
T:
Wn

n!
e−W :

〉
, (4.2)

where T:X: denotes the prescription of normal and time ordering of X, e.g.

T:b†(t1)b(t1)b
†(t2)b(t2): =

{
b†(t1)b

†(t2)b(t2)b(t1), t1 < t2

b†(t2)b
†(t1)b(t1)b(t2), t1 ≥ t2

(4.3)

and

W = ηv

∫ t0+tm

t0

dt′⟨ρtr(t′)⟩ (4.4)

is number of photons absorbed by the detector. Here η is the efficiency of a photon
counter, v is the speed of light, and tm is the duration of the photocounting process.
v⟨ρtr⟩ is the photon flux incident to the detector.

Now we find an expression for P (n). This is accomplished by doing several sim-
plifications. First, we place the detector at the beginning of the second waveguide.
Secondly, thermal fluctuations in the waveguides are neglected. And lastly, we con-
sider the qubit to occupy one of its eigenstates.

Let us express the sums over bath operators in Eq. (4.1) in terms of the resonator
and qubit operators and the bath operators at time t = 0. We assume the detector
placed at the very beginning of the second waveguide. This corresponds to x = 0+

in Eq. (4.1). Any other placement shifts the phase of the radiation incident to the
detector, which changes nothing for the photocounter. Taking an integral over all
modes in Eq. (3.21) one obtains, analogously to the derivation of Eq. (3.26):(∫ ∞

0
dk bIIk (t)e

ikx
)
x=0+

≈
∫ ∞
0

dk bIIk (0)e
−iωkt − 2πif

v
(a+ λσ−)t (4.5)

for t > 0. Up to a constant factor, the integral in the left-hand side of the equation
is known as the output operator of the field [57]. As we have assumed a constant
coupling f to the cavity as in Eq. (3.24), this operator depends only on the resonator
state at the same instant of time: The equation describes our system in the Markov
approximation, just as Eqs. (1.60) and (3.26) do.

Under reasonable conditions, bIk(0) and bIIk (0) do not enter the expression for P (n).
Recall we have separated the drive out of the waveguide operators, by transforming
the Hamiltonian with the displacement operator (3.9). In the resulting picture, we
assume the waveguides to occupy the vacuum state |0w⟩ at the initial instant of time
t = 0. This is a viable assumption, for both optical and superconducting realizations.
In optics, high frequencies make the number of thermal photons negligible at room
temperature. Superconducting realizations operate in the microwave domain; how-
ever, the system is put inside a cryostat maintaining very low temperatures. At such
temperatures, the effect of thermal radiation is negligible as well. Finding the ex-
pectation value of a normal-ordered expression with respect to |0w⟩ zeroes any terms
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containing bI,IIk (0) or the conjugates. We have then

P (n) = ⟨q|⟨0w|T:
Wn

n!
e−W :|0w⟩|q⟩ = ⟨q|T:

W̃n

n!
eW̃ :|q⟩, (4.6)

W̃ = ηv

∫ t0+tm

t0

dt′⟨ρ̃tr(t′)⟩, (4.7)

⟨ρ̃tr⟩ = ⟨ρtr|bk(0)I,II(†)≡0⟩, (4.8)

where |q⟩ is the state vector of the qubit. As the resonator field is in the steady
state given by Eq. (3.35), averages of our system do not depend on the initial state
of the resonator. With the prescription (4.8), we express the photon density (4.1)
in Eq. (4.2) in terms of the drive-induced part of the resonator field and the qubit
operators. Using Eqs. (4.5) and (3.35), we arrive at

⟨ρ̃tr(t)⟩ =
4π2f2

v2
(
|α̃|2 + λσ+α+ λα∗σ−

)
t
+ o(λ), (4.9)

α̃(t) =
fc(0)e−iωdt

ω̃dr + iκ/2
, α = α̃

∣∣
λ=0

. (4.10)

In Eq. (4.9), we omit the term in ⟨σ+a⟩ induced by the noise F in the qubit frequency.
Analogously to the derivation of Eq. (3.39), we find that this term is of order λ2 when
the qubit decoherence is slower than the coherent exchange between the qubit and
the resonator, Γ0 ≲ g.

The photon flux can be considered unaltering on the interval from t0 to t0 + tm.
One notices that the first term in Eq. (4.9) is constant by the definition (4.10) of α̃.
Subsequent time-dependent terms do not contribute substantially after integration in
Eq. (4.7): one has ∫ t0+tm

t0

dt′λσ+(t
′)α(t′) ∼ λ

ωq − ωd
∼ λ2 (4.11)

at least, and the same estimate for λα∗σ−. Therefore,

W̃ = ηtm
κ

2
|α̃|2, (4.12)

where we have used the expression for the resonator decay rate Eq. (3.28).
Let us discuss when it is possible to consider the resonator to be in the steady

state. First, all transients in the resonator should vanish before the measurement
begins. The condition for this is given by Eq. (3.32), in which t should be substituted
with t0. For clarity, we rewrite it here:

t0 ≫ κ−1. (4.13)

Second, during the measurement, the qubit should remain in the state in which it was
set up. In the first-order approximation in λ, the measurement does not affect the
qubit occupying one of its eigenstates. However, taking account of the next orders in
λ shows the qubit excitation can leak to the waveguides through the resonator [21, 27,
28]. Moreover, our model does not account for the relaxation sources other than the
waveguides (see Ref. [78], for example). Here it is sufficient to characterize all those
processes with the longitudinal relaxation time T1. Then the condition we have been
talking about reads

t0, tm ≪ T1. (4.14)
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The condition (4.14) is given in assumption of the single-shot measurement. How-
ever, it changes if one is free to perform a sequence of short measurements. In this
case, one collects photons in N bins, each lasting tm/N ; a bin is carried out with
a “fresh” qubit, prepared in a given state. The sum of all photons collected in bins
obeys the same formula (4.2). Therefore, our further arguments apply for the case
of sequential measurement, with tm denoting the sum of bin durations. An analog of
Eq. (4.14) for this case is

t0, tm/N ≪ T1. (4.15)

We calculate the expectation value in Eq. (4.6) for the qubit in one of its eigen-
states. σz in Eq. (4.10) can be substituted either with 1 or −1 for q = ↑ or ↓, respec-
tively. One arrives at the Poisson distribution

Pq(n) =
(nq)

n

n!
e−nq (4.16)

with
nq = ηtm

κ

2
⟨q|α̃∗α̃|q⟩ (4.17)

the average count of detected photons for the qubit in either of eigenstates q = ↑, ↓.
The mean-square deviation of a Poisson-distributed quantity is well known; it is

equal to the average value of a quantity. Thus,

∆n2q = nq. (4.18)

We express the average count (4.17) in terms of the system parameters explicitly.
Substituting Eq. (4.10) into Eq. (4.17) and rearranging, one has

n↑ =
ηtm(κ/2)3 |αres|2
(ωdr − gλ)2 + κ2/4

, n↓ =
ηtm(κ/2)3 |αres|2
(ωdr + gλ)2 + κ2/4

(4.19)

with
|αres|2 = 4f2|c|2/κ2 (4.20)

the average number of photons that enter the cavity at resonance.
By Eq. (4.19), the statistics (4.16) has symmetries: ωdr → −ωdr, “↑” → “↓” and

analogous for gλ. This is a consequence of neglecting relaxation. Readout character-
istics are set by the statistics; as they cannot depend on qubit states labeling, they
are even functions of ωdr and gλ. Hence it is enough to consider the case of positive
detuning and pull,

ωdr, gλ > 0. (4.21)

Statistics of the photocounts, given by Eqs. (4.16)–(4.18), is the same as if coher-
ent light was detected; it is possible to show that the state of the radiation in the
second waveguide is a coherent state indeed. The qubit and the resonator are coupled
dispersively, which means they don’t exchange energy. The resonator can be consid-
ered as not interacting with the qubit, even though its frequency becomes shifted. A
standalone resonator driven by a continuous monochromatic pump is known to reside
in the coherent state [76]; radiation in the very state leaks to the waveguides. In
a more formal way, this is shown in Refs. [79] and [80] using the master equation
formalism.

With the photocounting statistics obtained, in the next two sections we charac-
terize the robustness of the qubit measurement.
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3 Signal-to-noise ratio

In this section, we calculate SNR of a count of detected photons, and the conditions
optimizing the ratio. The conditions for the maximal SNR is determined for two cases.
First, we suppose one has a measurement setup with a fixed dispersive pull gλ and a
fixed resonator damping rate κ. With respect to gλ and κ, an optimal detuning ωdr

is found. In the other case, either κ or gλ can be varied as well.
We define SNR in our measurement as follows. A useful signal is the difference

between the average photocounts for the qubit in the excited and the ground states.
In both cases, the number of the photons detected fluctuates around its mean (see
Fig. 4.1b). Noise in the signal is then given by the sum of fluctuations in both cases.
That is,

SNR =
|n↑ − n↓|√

∆n2↑ +
√
∆n2↓

. (4.22)

A somewhat different expression is given in Ref. [53] in a similar context. While
there is no substantial quantitative difference in using those two, for our purposes the
form (4.22) results in cleaner math. Particularly, it is this form that appears naturally
in the expression for contrast in Sec. 4.4.

For Poissonian statistics we have, Eq. (4.22) simplifies. Substituting Eq. (4.18)
into it and rationalizing the denominator gives rise to

SNR =
√
n↑ −

√
n↓. (4.23)

While deriving the last expression, we have used that n↑ > n↓ due to Eq. (4.21).
A different expression for SNR is widely used in the literature on cavity quantum
electrodynamics with superconducting circuits [31, 68, 79, 81]. It is obtained for the
homodyne measurement.

We proceed to determine the conditions of maximum of SNR given by this expres-
sion.

3.1 Optimizing with respect to detuning

Let us consider the case of fixed resonator damping rate κ and fixed dispersive pull
gλ. Also, we require that the average number of photons that dwell in the cavity at
resonance, |αres|2 (4.20), is maintained constant. With a varying detuning, this can be
achieved by the appropriate choice of the drive power, which changes ϵ2 proportionally.
Under these circumstances, we find the detuning that maximizes SNR.

Here it is convenient to introduce a set of dimensionless notations. With the
notations, the mean counts (4.19) are expressed as

n↑ =
τm

(D −X)2 + 1
, n↓ =

τm
(D +X)2 + 1

, (4.24)

where
τm = η

κ

2
|αres|2tm (4.25)

is the dimensionless measurement time. τm gives the average count of photons ab-
sorbed by the detector in case the drive is resonant with the cavity. Also,

D =
ωdr

κ/2
(4.26)
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is the dimensionless detuning, and

X =
gλ

κ/2
(4.27)

is the dimensionless dispersive pull.
With Eq. (4.24), Eq. (4.23) takes the form

SNR =
√
τm

(
1/
√

(D −X)2 + 1− 1/
√
(D +X)2 + 1

)
. (4.28)

Now we find the optimal detuning Dopt. Carrying out the derivative of the
SNR (4.28) and equating it to zero one arrives at

Dopt +X[
(Dopt +X)2 + 1

]3/2 − Dopt −X[
(Dopt −X)2 + 1

]3/2 = 0. (4.29)

Due to Eq. (4.21), Dopt, X > 0. Therefore, the equation could have a real solution
only if

Dopt > X. (4.30)

In Appendix A it is shown that a critical point from Eq. (4.29) is indeed a point of
maximum. Another inequality,

Dopt <
√
X2 + 1, (4.31)

is of use. It can be obtained by multiplying the left- and the right-hand sides of
the inequality

√
Dopt +X >

√
Dopt −X by the first and the second term from

Eq. (4.29) and performing some algebra. It is difficult to obtain an analytical so-
lution to Eq. (4.29). We have found numerically1 its roots in the range given by
Eqs. (4.30) and (4.31). The resulting dependence of Dopt on X is shown in Fig. 4.2.
One can check that the given solutions satisfy Eq. (4.31). It is also seen that only at
large X the optimal detuning is D ≈ X.

This discrepancy with an intuitive choice of detuning can be explained. Just
as it seems, probing the cavity at one of its resonances maximizes the difference of
transmitted photons between the qubit eigenstates (see Fig. 4.1b). However, there is
a shot noise in the photon number for both eigenstates, which needs to be accounted
for. It turns out that with a proper detuning, the sum of noises decreases more than
the difference in photon number. This increases SNR, as compared to the resonant
probe case.

The difference Dopt−X is plotted in Fig. 4.3, and the effect on SNR of the optimal
choice of detuning is illustrated. The difference between the optimal (D = Dopt) and
the naive (D = X) detuning is appreciable for the whole range of X given in the
plot; in contrast, the interval where the increase in SNR is noticeable is substantially
narrower. It is worth using the optimal D under the conditions of weak measurement,
X < 1, as for a stronger measurement the increase in SNR is less than 1%. Note that
in the weak-measurement interval of X the ratio SNR/

√
τm still reaches 0.5.

Let us obtain an approximation of Dopt for big X. As in this case the value of
Dopt is close to X, we expand the equation on Dopt (4.29) in series in

ξ = Dopt −X, (4.32)
1The Matlab/Octave codes for the numerics in this chapter are available as a part of the GitLab

repository [82].
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Figure 4.2: Optimal dimensionless detuning D (4.26) and some ap-
proximations to it, as functions of the dimensionless dispersive pull

X (4.27).

leaving the terms up to the linear one. Assuming ξ ≪ 4X, one obtains

1[
(2X + ξ)2 + 1

]3/2 =
1

(4X2 + 1)3/2

(
1− 3

2

4Xξ

4X2 + 1

)
+ o

(
4Xξ

4X2 + 1

)
. (4.33)

Substituting the expression to Eq. (4.29) and omitting the terms quadratic in ξ one
can solve the resulting linear equation on ξ. This gives

Dopt −X = ξ ≈ 2X(4X2 + 1)

8X2 + (4X2 + 1)5/2 − 1
, (4.34)

ξ2 ≪ [X + (4X)−1]2/16, ξ2 ≪ 1. (4.35)

The first inequality in Eq. (4.35) is the condition of the little-o term in Eq. (4.33)
being negligible; the assumption of ξ ≪ 4X we have used deriving Eq. (4.33) follows
from this inequality. The other condition in Eq. (4.35) arises when the second term
in Eq. (4.29) is approximated by ξ. Expression (4.34) has the anticipated asymptote,

Dopt −X −→
X→∞

0. (4.36)

From Eq. (4.34), a simpler approximation can be obtained,

Dopt ≈ X + 2X(4X2 + 1)−3/2, (4.37)

which is the one shown in Fig. 4.2. For practical purposes it works well for X > 0.4,
a range of use even better than that of Eq. (4.34). However, one can check that the
latter expression, being better grounded mathematically, fits the exact solution of
Eq. (4.29) in a nicer fashion, albeit in more narrow range of X.
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Now consider the case of small X. We assume that D > X. An approximate
identity takes place, up to linear terms in X:

D[
(D ±X)2 + 1

]3/2 ≈ D

(D2 + 1)3/2

(
1∓ 3DX

D2 + 1

)
. (4.38)

We substitute Eq. (4.38) into Eq. (4.29) and find the solution of the resulting equation.
This gives the small-X approximation,

Dopt ≈ 1/
√
2, X2 ≪ 1. (4.39)

In the case of X ≫ 1, SNR has a simple dependence on the resonator leakage κ.
By Eq. (4.36), the optimal detuning in this case is D = X and Eq. (4.28) reduces to

SNR =
√
τm. (4.40)

From Eqs. (4.25) and (4.40) it follows that, at a fixed number of photons for the
cavity in resonance, |αres|2 = const, SNR increases with the damping rate κ as square
root. Physically, this means that as far as the resonator decay rate is negligible to the
dispersive pull, one can increase the decay rate to allow more photons to leak out of
the cavity; this improves SNR.

SNR is determined by the interplay of two effects that depend on the resonator
decay rate. Increasing κ allows more photons to leak out of the cavity. On the other
hand, decreasing κ improves the resolution of the two spectral peaks corresponding
to the qubit eigenstates. Therefore, one anticipates there is an optimal value of the
decay rate. We will determine it in the next subsection.
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3.2 Optimizing with respect to detuning and the pull/damping ratio

Here we consider the situation when, apart from the detuning, one is able to vary the
ratio of the dispersive pull to the cavity damping rate. As before, the average number
of cavity photons at resonance (4.20) is maintained constant. We show how the upper
bound on SNR for the measurement can be approached.

The assumption of the variable pull/damping ratio gλ/κ is quite plausible. The ra-
tio can be varied in two ways. First, κ can be set on the design stage of an experiment.
Fabrication of both optical and superconducting resonators is quite reproducible and
the leakage rate can be chosen with an appreciable precision. Second, for the su-
perconducting experiments, it is usually possible to tune the qubit frequency ωq in
situ [18]. By varying ωq one changes λ (1.31) and hence the pull/damping ratio.

Let us introduce the dimensionless detuning and decay rate

∆ =
ωdr

gλ
, K =

κ/2

gλ
. (4.41)

In these notations the mean counts (4.19) are given by

n↑ =
K3Tm

(∆− 1)2 +K2
, n↓ =

K3Tm
(∆ + 1)2 +K2

, (4.42)

where we have introduced the dimensionless time

Tm = η gλ |αres|2tm. (4.43)

With Eqs. (4.42)–(4.43), SNR (4.23) is expressed as

SNR =
√
Tm ·K3/2

(
1√

(∆− 1)2 +K2
− 1√

(∆ + 1)2 +K2

)
. (4.44)

Equation (4.43) suggests the optical range is favorable for our scheme. To see this,
one can rewrite Eq. (4.43),

Tm =
1

4

|αres|2
ncr η|ωq − ωr|tm, (4.45)

and the condition (1.32) for the measurement being non-demolition,

(nch + 1)/ncr ≪ 1, ncr = (2λ)−2, (4.46)

in terms of a critical number ncr = (2λ)−2. The physical meaning of ncr is that the
dispersive regime breaks down at this number of excitations. The ratio |αres|2/ncr is
small by condition (4.46). For the same values of the ratio, bigger |ωq − ωr| results in
higher Tm and better readout. However, by the condition (1.24) the difference should
be much smaller than the characteristic frequencies of the system. Therefore, high
frequencies are favorable.
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We find the maximum of SNR with respect to K and ∆. Equating partial deriva-
tives to zero gives the set of equations

∆+ 1[
(∆ + 1)2 +K2

]3/2 =
∆− 1[

(∆− 1)2 +K2
]3/2 , (4.47)

3(∆ + 1)2 +K2[
(∆ + 1)2 +K2

]3/2 =
3(∆− 1)2 +K2[
(∆− 1)2 +K2

]3/2 (4.48)

which determine the critical point. Note Eq. (4.47) is the same as Eq. (4.29), despite
being written in other notations. The solution of Eqs. (4.47)-(4.48) reads

∆ =
√
5/2, K =

√
3/2. (4.49)

One can check that, at the ∆ and K given, SNR reaches global maximum.
Using the definitions (4.41) and Eq. (4.44), we express ωdr, κ, and SNR in terms

of gλ:

ωdr ≈ 1.118gλ, κ = 1.732gλ, (4.50)

SNR ≈ 0.570
√
ηtm gλ|αres|2. (4.51)

Note that using an asymmetrical cavity one can increase SNR (4.51) substantially.
In this case, the overall damping is κI + κII, where κI and κII are the rates cavity
photons leak through the first and the second port. If the number of resonator photons
is fixed, increasing κI only widens the resonator spectrum; thus one makes the rate
as small as possible. On the other hand, κII gives the rate photons arrive at the
detector. In the best case of κI ≪ κII one changes κ/2 to κII in the prefactor of
the expression (4.17), while in the other occurrences κ is substituted with κII. This
doubles the dimensionless time Tm (4.43). Meanwhile, the optimal value of κII is the
same as the optimal κ of the symmetrical case. We have an increase in SNR by the
ratio of

√
2. The resulting value is the upper limit for SNR in the measurement we

consider,
SNR < 0.806

√
ηtm gλ|αres|2. (4.52)

We have investigated how to achieve the maximum SNR. However, SNR quantifies
the measurement robustness only heuristically. Note that we haven’t even specified the
way one distinguishes upper and lower states of the qubit. Besides, the notion (4.22)
of SNR takes into account only the two first moments n and n2 of the photon count.
SNR cannot give a full description of fluctuations that obey Poisson statistics (4.16)
and thus have non-vanishing moments of higher orders.

In the next section, we consider the measurement in finer detail and give a precise
characteristic of its performance.

4 Contrast of the thresholding measurement

In this section, we consider the thresholding measurement of the qubit. An analytical
expression for contrast of the measurement is given, in terms of the system parameters.
With it, we determine conditions for the maximum contrast. Also, it is shown that,
for big measurement times, one obtains maximum in contrast by maximizing SNR.

The easiest way to discriminate the state of the qubit by the number of photo-
counts is by a threshold count, which is set between the counts most probable for
each eigenstate. Then, if the number of detected photons is less than the threshold,
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the qubit is considered to occupy the ground state; and it is considered to be in the
excited state in the opposite case.

4.1 Threshold count

It is natural to set the threshold count nth to be the least number of photons detected,
for which the probability of the qubit to reside in the upper state |↑⟩ is bigger than
the probability to reside in the lower state |↓⟩ (see Fig. 4.4).
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Figure 4.4: Probabilities of the qubit to reside in either of its eigen-
states as a function of photocounts. Golden bars stand for the proba-
bilities P↑ of the qubit being in the excited state, |↑⟩. Blue bars stand
for the probabilities P↓ of the qubit being in the ground state, |↓⟩.
nth, the minimal number of counts to consider the qubit being in the
excited state, is marked on the axes. The gray area equals 1−C, which
is twice the probability of erroneous measurement due to the defini-
tion (1.43) of contrast C and Eqs. (1.45)–(1.47). For both subfigures,
D = 0.6 and X = 0.15. Each subfigure is plotted for a measurement
time such that: a) Half a photon will be detected on average with
the resonant drive. Solid lines show the continuation of the Poisson
distribution to the real values. b) Twenty photons will be detected
on average with the resonant drive. Dashed lines show the Gaussian

approximation to the distributions.

To determine nth, we first find its continuous analog: the point of intersection
ncontth of extrapolations of P↑(n) and P↓(n) to the real values. These are given by

P cont
q (n) =

(nq)
n e−nq

Γ(n+ 1)
, q = ↑, ↓ . (4.53)
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In other words, ncontth is defined by

P cont
↑ (ncontth ) = P cont

↓ (ncontth ). (4.54)

By performing simple algebra, one can solve the equation and obtain

ncontth =
n↑ − n↓

log n↑ − log n↓
. (4.55)

Plots of continuous distributions P cont
↑,↓ are given in Fig. 4.4a, with the positions of

ncontth and nth marked.
The threshold count nth can be found from ncontth . The peak of P cont

↑ is higher and
is located to the right of that of P cont

↓ . Also, as Eq. (4.55) shows, there is only one
point where the probabilities are equal. It follows then, from graphical considerations,
that P cont

↑ (n) > P cont
↓ (n) for n > ncontth . Therefore,

nth = ⌈ncontth ⌉ =
⌈

n↑ − n↓
log n↑ − log n↓

⌉
, (4.56)

where ⌈x⌉ denotes the first integer not less than x.

4.2 Poorly-resolving measurement

Consider the poorly-resolving measurement, in which distributions P↑ and P↓ almost
overlap. The condition for the distributions to be very close is

n↑ − n↓ ≪
√
n↑ +

√
n↓. (4.57)

Here, we have used that the width of each distribution is
√
∆n2, which reduces to

√
n

by Eq. (4.18). In terms of SNR (4.22), condition (4.57) takes a simple form:

SNR≪ 1. (4.58)

Consider the case of X ≪ 1. With a reasonable choice of detuning, D ∼ 1, the
condition (4.57) simplifies, giving

2X
√
τm ≪ 1. (4.59)

It is interesting to determine the threshold count in the poorly-resolving measure-
ment. To find the threshold, we consider the cases of n↓ > 1 and n↑ < 1 separately.
In the case of n↓ > 1, it follows from Eq. (4.57) that n↑ − n↓ ≪ n↑, n↓. This gives an
approximation for the logarithm in Eq. (4.55):

log
n↑
n↓
≈ n↑ − n↓

n↓
≈ n↑ − n↓

n↑
. (4.60)

Substituting the approximation into Eq. (4.56), one has

nth ≈ ⌈τm⌉, n↓ > 1. (4.61)

It was taken into account that, according to Eq. (4.57), the distributions vary slowly
in the vicinity of their maxima; thus the one-count difference in the threshold does
not affect robustness of measurement substantially. In the case of small counts, the
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threshold is
nth = 1, n↑ < 1. (4.62)

Condition (4.59) can be used to distinguish the inferior case of poorly-resolving
measurement. In such a measurement, the best one can do to discriminate the state
of the qubit, is to consider counts to the right of the distributions maxima to indicate
the qubit in |↑⟩, and counts to the left to indicate the qubit in |↓⟩. It follows from
Eq. (4.59), that this regime can be evaded by increasing the measurement time. More-
over, by increasing the duration of measurement one can reach a measurement contrast
which is arbitrary close to unity. This will be shown in the following subsection.

4.3 Contrast

If the number of detected photons is not less than the threshold count nth (4.56) and
one determines the qubit to be in the upper state, there is still a possibility that the
qubit is in the lower state, and vice versa (see Fig. 4.4b). We quantify this possibility
by the measurement contrast. According to the definition of the contrast (1.43) and
that of nth,

C =

nth−1∑
n=0

[P↓(n)− P↑(n)]. (4.63)

The sums in the definition can be expressed in terms of the incomplete Gamma
function,

Γ(n, x) =

∫ ∞
x

dt tn−1e−t. (4.64)

It is shown in Appendix B, that

Γ(n, x) = e−x(n− 1)!

n−1∑
n=0

xn

n!
(4.65)

for n integer. We apply Eq. (4.65) to each sum with the probabilities given by
Eq. (4.16). One arrives at

C =
Γ(nth, n↓)− Γ(nth, n↑)

Γ(nth)
. (4.66)

Contrast as a function of measurement time has discontinuities in the first deriva-
tive (see Fig. 4.5). This is explained in the following way. Increasing the duration of
measurement shifts the distributions (compare Figs. 4.4a and 4.4b), which moves the
threshold count nth as well. Increment of nth adds an additional term to the sums in
Eq. (4.63), abruptly changing the derivative of C. This gives a graphical method to
determine the threshold count for a given measurement duration. A number of cusps
in the contrast plot, up to the given time, gives the threshold count.

As a special case, the contrast of a vacuum detector can be obtained from Eq. (4.63).
Such a detector clicks (with a probability η) when at least one photon is absorbed. In
this case, we decide that the qubit is in the upper state. In the opposite case, if no
photons were detected during the measurement, one decides that the qubit is in the
lower state. The situation is captured by nth = 1. Then Eq. (4.63) reduces to

C1/0 = e−n↓ − e−n↑ . (4.67)
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Figure 4.5: Measurement contrast as a function of a dimensionless
time τm: the highest contrast for a given τm (the uppermost black
curve), contrast for D maximizing SNR (thick solid lines), contrast
for naive choice of detuning D = X (thin solid lines), contrast when
using the vacuum detector and D = 0.84, X = 0.5 (dashed line). The
dimensionless time τm (4.25) equals the mean photon count for the

resonant drive.

Contrast (4.67) is presented in Fig. 4.5. By Eq. (4.24), it has a maximum for the time
of measurement

τm
opt
1/0 =

(
log n↑ − log n↓

n↑ − n↓

)∣∣∣∣
τm=1

. (4.68)

For longer measurement it becomes more likely to detect a “false” photon in case
the qubit is in the lower state. Hence the degradation of the contrast C1/0 after the
measurement duration rises above τm

opt
1/0. It follows from Eqs. (4.56) and (4.68) that

nth increments quite in time one reaches the maximum contrast of the detection with
nth = 1.

In Ref. [37], contrast for the related measurement with the vacuum detector was
obtained; the quantity is called the measurement contrast there. Formally, expres-
sion (4.67) coincides with that of the mentioned work, when the latter is taken in the
limit of negligible number of dark counts. However, a different measurement sequence
is considered in the reference. There, a photon is allowed to leave the resonator only
after the cavity has been already pumped. This is in contrast to the case of continu-
ous drive and permanent leakage considered in this work. Hence the difference in the
expressions for resonator occupancy. As a consequence, the time (4.68) maximizing
contrast (4.67) is different in our case.

For a given τm, contrast is limited by a value that approaches unity with increasing
of τm. To find this limiting value, we first find detuning D and dispersive pull X that
maximize the contrast. It follows from its definition (4.64), that incomplete Gamma
function Γ(n, x) increases with decreasing of x. Therefore, contrast (4.66) increases
with increasing n↑ and decreasing n↓. Indeed, it is seen from Fig. 4.4, that as the
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Figure 4.6: Accuracy of the Gaussian approximation to the contrast
and the contrast of measurement with the vacuum detector. On the
main plot, two curves give the absolute error of the approximation.
Color convention as in Fig. 4.5: D = 1.17, X = 1 for the violet curve,
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approximated, and the contrast for the vacuum detector are shown.
Black dashed curve stands for the approximation; violet curve stands
for the actual contrast. Contrast of the readout with the vacuum
detector is given with a pink dashed curve. Measurement parameters
are the same as for the violet curves on the main plot and in Fig. 4.5.

distance between distributions becomes bigger, their overlap shrinks. It follows from
Eq. (4.24) that n↑ reaches its maximum of τm at D = X, while n↓ reaches its minimum
of zero at D → ∞ or X → ∞. Therefore, C has its highest value at D,X → ∞.
According to the definition (4.27) of X, the regime can be approached in the case
of small resonator decay, κ ≪ gλ. Now we calculate the threshold count nth in this
limiting case. It follows from Eq. (4.55) that the continuous threshold approaches
zero, limD,X→∞ n

cont
th = 0. However, ncontth is strictly greater than zero for any D,X.

One concludes that nth = ⌈ncontth ⌉ = 1. Using Eq. (4.67) with n↓ = 0 and n↑ = τm, we
obtain the limiting contrast,

Cmax
τm = 1− e−τm . (4.69)

It is shown in Fig. 4.5 with a solid black curve. Note that at big X no photons
are transmitted through the resonator in case the qubit pushes the cavity out of
resonance. In this limit the vacuum and the photo-number-resolving detectors do not
differ. However, Cmax

τm is by no means the limit on the contrast at physical time tm.
The real limit will be found below, along the lines of finding the bound on SNR in
Sec. 3.2.

It is also shown in the figure how the choice of detuning maximizing SNR improves
contrast, as compared to the “naive” choice D = X. First, it is seen that there is
no need to use detuning other than D = X for stronger measurements beginning
with X = 1. This was already shown by analyzing SNR in Sec. 3.1. In the case
of smaller X, consider a measurement reaching 95% contrast. For X = 0.5, one
would need the measurement to last 1.5 times less if the detuning maximizing SNR
is used. And for X = 0.15 such choice of detuning shortens the measurement more
than sevenfold! Given such performance, it is natural to pose certain questions: Is
there some connection between the conditions of maximum of SNR and contrast?



4. Contrast of the thresholding measurement 51

Would there be any further advantage in using the detuning maximizing contrast?
We address these questions below.

4.4 Gaussian approximation

Consider a Gaussian approximation to the threshold count and contrast. We will show
that in this approximation contrast is expressed in terms of SNR.

One obtains the approximation as follows. For a long measurement and lots of
photocounts,

n↑, n↓ ≫ 1, (4.70)

Poisson distributions P↑ and P↓ are well-approximated with Gaussians:

Pq(n) ≈
1√

2π∆n2q

exp

[
−(n− nq)2

2∆n2q

]
, q = ↑, ↓ . (4.71)

The approximation is shown in Fig. 4.4b. With it, contrast (4.63) is expressed as

C ≈ 1√
π

∫ x↓

x↑

dx e−x
2
=

1

2
erf x↓ −

1

2
erf x↑, (4.72)

where the limits of integration are given by

xq =
ngaussth − nq√

2∆n2q

, q = ↑, ↓, (4.73)

and the Gaussian threshold count is

ngaussth =

√
n↑n↓

(
1 +

log n↑ − log n↓
n↑ − n↓

)
≈
√
n↑n↓. (4.74)

To derive the approximate identity in Eq. (4.74), it was taken into account that
nth (4.56) is huge compared to unity due to the condition (4.70). Also, we have used
the error function

erf x =
2√
π

∫ x

0
dx′e−x

′2
(4.75)

to express the integral in Eq. (4.72) in a convenient form. A comparison between
Eq. (4.72) and the exact expression for contrast is given in Fig. 4.6. For both sets
of system parameters given on the figure, accuracy of the approximation grows with
increase of measurement time. This is quite natural, as increasing the duration of
measurement increases the average number of photons detected, which makes the
Gaussian approximations to P↑ and P↓ more accurate. Gaussian distributions (4.71)
have different width, hence the complex expression for the threshold count (4.74).
This also means that the Gaussian theory with a symmetrical distributions given
in [50] does not reproduce the Gaussian approximation presented here.

Using Eq. (4.74), one expresses the parameters of the error function in Eq. (4.72)
in terms of SNR (4.28):

x↑ ≈ −SNR/
√
2, x↓ ≈ SNR/

√
2. (4.76)

The detuning which maximizes Gaussian contrast coincides with that maximizing
SNR.
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Equations (4.72), and (4.76)) constitute the expression for contrast which is for-
mally equivalent to that given in Ref. [50]. To show this, one should change our
definition of SNR in accordance to the reference. There, SNR is defined as a ratio
of signal and noise powers. Thus to arrive at the formula given in Ref. [50], one
should square the right-hand side of the SNR definition (4.22). Still, we have derived
the expression for a different case: The distributions (4.71) are of Poissonian width
set by Eq. (4.18) contrary to the same-width case considered in the reference; The
distributions are sufficiently narrow, by Eqs. (4.70) and (4.18).

We have shown that the maxima of SNR and contrast coincide for long mea-
surement times. Next we are going to investigate the exact conditions for maximum
contrast.

4.5 Maximizing contrast with respect to detuning

In this subsection, we find the detuning that maximizes measurement contrast. Here
the duration of measurement, the dispersive pull, and the resonator decay rate are
fixed. Just as before, we assume the average number of cavity photons at reso-
nance (4.20) is maintained constant.

The threshold count (4.56) changes in steps with the measurement duration. One
then expects that the optimal detuning has discontinuities in points where the thresh-
old changes. This behavior is illustrated in Fig. 4.7.
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Figure 4.7: Dependence of the dimensionless optimal detuning on
the dimensionless measurement duration for a fixed dispersive pull and
resonator leakage: the detuning maximizing contrast for X = 9 (top
solid) and X = 1 (bottom solid), the detuning maximizing SNR (bold
dotted), and the upper and lower bounds on the detuning (dashed).
The lower bound is not reached, despite the way it looks. The points

marked with empty circles are not reached too.

Let us consider durations τm between the discontinuities. Here, nth is constant;
points where contrast C has extrema are found by equating the first derivative of C
to zero, ∂C/∂D|nth≡const = 0. Carrying out the derivative of the expression (4.66),
the condition for extremum resolves to

Dopt +X

Dopt −X · e
n↑−n↓ =

(
n↑
n↓

)nth+1

. (4.77)
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It is shown in Appendix C that the extrema given by the equation are the points of
maximal contrast. The solution of Eq. (4.77) gives the optimal detuning between two
“jumps”.

Abrupt change of Dopt takes place in two cases. First, it occurs when the contrast
for the next threshold count nth + 1 exceeds that for the current one, nth. Strictly
speaking, as C(τm) is continuous, at the point of jump there exist two values of
Dopt. This is the case for the curve with X = 1 in Fig. 4.7, and the transitions
after the fourth one for the curve with X = 9. On the other hand, beginning with
some measurement duration τm, there can be no detuning satisfying Eq. (4.77) at the
present nth. This case is realized in the first four transitions occurring for X = 9, as
illustrated in Fig. 4.7. In both cases, nth increments by one and Dopt switches to the
value given by Eq. (4.77) with the threshold incremented.

The last case allows us to find upper and lower bounds on oscillations of the optimal
detuning. Consider the interval between two jumps. On the interval Dopt changes
continuously, governed by Eq. (4.77); with it, the continuous threshold ncontth (4.55)
changes. According to the definition (4.56) of the threshold count, nth increases when
ncontth passes by the current threshold. The value Dopt reaches prior to the increment
is the highest possible. One can find this highest possible value. We substitute nth in
Eq. (4.77) with ncontth , given by Eq. (4.55). The substitution gives rise to the equation

(D +X)
[
(D −X)2 + 1

]
= (D −X)

[
(D +X)2 + 1

]
. (4.78)

Solution of the equation sets the upper bound on Dopt:

Dopt ≤ Dhi, Dhi =
√
X2 + 1. (4.79)

As at the point of jump nth = ncontth +1, the value Dopt approaches to after the switch
can be found in an analogous way. We substitute nth in Eq. (4.77) with ncontth + 1,
which results in the equation

(D +X)
[
(D −X)2 + 1

]2
= (D −X)

[
(D +X)2 + 1

]2
. (4.80)

The equation reduces to the quartic equation. It has one real positive root. The root
is the lower bound on Dopt:

Dopt > Dlo, Dlo =

√
1/3(2

√
X4 +X2 + 1 +X2 − 1). (4.81)

Knowledge of the upper and lower bounds speeds up dramatically the numerical pro-
cedures to obtain Dopt.

We briefly review the numerical procedures used. The simplest way to determine
Dopt is to calculate C for D changing from Dlo to Dhi with small steps, and choose
the detuning resulting in the biggest contrast. The plot for X = 1 in Fig. 4.7 was
obtained this way. In the calculations, the interval from Dlo to Dhi was divided in
1000 steps. However, for X = 9, variations of C are too small to use this method.
The respective curve in Fig. 4.7 was calculated by solving Eq. (4.77) for each τm. In
both cases, τm was changing with a step of 0.1. As Dopt is quite steep just before
a jump, we determine each point of a jump as precise as possible. In the case Dopt

reaches Dhi, a switch occurs when ncontth becomes equal to the current threshold. In
the other case, the time is found using the fact that the contrasts for nth and nth + 1
are equal at the time of a switch.
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4.6 Maximizing contrast with respect to detuning and the pull/damping
ratio: the upper bound on the measurement contrast

Here we give the detuning and the ratio of dispersive pull to resonator leakage which
result in optimal contrast. The average number of cavity photons at resonance is kept
fixed. The resulting contrast is the biggest possible contrast for the scheme considered.
Using the optimal parameters, we show the possibility for high-contrast single-shot
readout in various realizations of the scheme.

We use the expressions of mean counts (4.42) in terms of ∆ and K (4.41). A
typical dependence of contrast (4.66) on those parameters is given in Fig. 4.8.
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Figure 4.8: Contrast at dimensionless time Tm = 11.29 vs. dimen-
sionless detuning ∆ and dimensionless resonator leakage K. The di-

mensionless quantities as defined in Eqs. (4.41) and (4.43).

One can write out the equations on a stationary point of contrast. Carrying out
the partial derivatives ∂C/∂∆ and ∂C/∂K and equating them to zero gives rise to
the following set of equations:

∆+ 1

∆− 1
· en↑−n↓ =

(
n↑
n↓

)nth+1

, (4.82)

3(∆ + 1)2 +K2

3(∆− 1)2 +K2
· en↑−n↓ =

(
n↑
n↓

)nth+1

. (4.83)

As before, nth is assumed constant during the differentiation. It follows from the
equations that

K2 = 3∆2 − 3, ∆ ̸= ±1. (4.84)

With this, the mean counts (4.42) can be expressed in terms of ∆ alone:

n↑ = Tm

√
27

2

(∆ + 1)
√
∆2 − 1

2∆ + 1
, (4.85)

n↓ = Tm

√
27

2

(∆− 1)
√
∆2 − 1

2∆− 1
. (4.86)

Plots of optimal ∆ and K in Fig. 4.9a are obtained with Eqs. (4.82) and (4.84)–
(4.86). This is done analogous to the calculation of X = 9 plot in Fig. 4.7. The key
difference is that Eqs. (4.85) and (4.86) are used to calculate contrast (4.66). Also,
here we have checked numerically that the computed critical points are the points of
maxima.
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are given vs. the time Tm (4.43).

The asymmetrical resonator with a negligible first-port leakage can be tackled in
the same way as in Sec. 3.2. It was shown that the dimensionless time Tm (4.43) is
multiplied by the factor of two in this case, so that a given contrast is reached quicker.
This gives the upper bound on contrast for the measurement with various ratios of
port leakage rates. The bound is shown in Fig. 4.9b, as well as the contrast for the
case of symmetrical resonator. Numerical estimations for the measurement duration
are given in Table 4.1.

It is important to use the photon-number-resolving detector to achieve a high-
contrast readout. The vacuum detector provides the optimal contrast only up to the
first jump in parameter values. After the jump, the optimal contrast is achieved with
nth ≥ 2, which is impossible for the vacuum detector. The possibility to resolve a
photon number matters starting from a contrast of about 73%.

Note the naive detuning (∆ = 1) and the optimal K result in a non-substantial
loss of contrast. The loss is below 1% for a contrast higher than 75%. That is not
surprising. We have already discussed in Sec. 3.1 that the naive detuning provides a
close-to-optimal contrast for gλ > κ/2 (K < 1). One can see from Fig. 4.9 that the
optimal K satisfies this condition for any reasonable value of the contrast.
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Table 4.1: Estimations for measurement time for different realiza-
tions of cavity QED: transmon superconducting qubit coupled to 1D
resonator, quantum dot (QD) in a nanocavity, Bose-Einstein conden-
sate (BEC) in a 3D optical cavity, and an ensemble of nitrogen defect
spins in diamond coupled to a 1D microwave resonator. Efficiency of

the detector is η = 0.9.

Qubit g1 |ωq−ωr| |αres|2 tm for C of T1
1

(MHz) (GHz) 95% 99%

Transmon [32] 86 11 11 0.7µs 1.2µs 20µs
QD [83] 21000 1000 10 1.2 ns 2.0 ns 11 ns
BEC [84] 1000 1000 1000 5.1 ns 11.0 ns 53 ns
N defects [85] 17 0.1 0.01 17.6µs 30.6µs 20 s

1 Value from reference.

5 Maximizing contrast vs maximizing signal-to-noise ra-
tio

In this section, we discuss how using the parameters maximizing contrast compares
to the use of those maximizing SNR, in terms of the resulting contrast.

First, for big measurement times, maximizing SNR results in the maximum of
contrast. We have shown this in Sec. 4.4, using the Gaussian asymptotics to contrast.

For smaller times, it depends on whether one is free to choose only the drive-
resonator detuning, or both the detuning and the resonator decay rate.

Consider the case one is able to choose a detuning only. For this case, we have
performed a numerical comparison of the contrast Cmax reached with the optimal
detuning, and the contrast Cmax. SNR the detuning maximizing SNR results in. A
non-vanishing difference Cmax−Cmax. SNR occurs near the point of threshold change.
It is found that the maximal difference is slightly bigger than 1%. Such a gain is
achieved for pulls X ≈ 0.5÷ 1. The contrasts reached under these circumstances are
about 50%÷ 60%.

If, in addition to detuning, it is possible to set the dispersive pull or the resonator
leakage, the gain becomes bigger. As shown in Fig. 4.9b, use of the parameters maxi-
mizing contrast rather than SNR pays off with a moderate increase of contrast, for a
range of measurement durations. Namely, a gain about 6% occurs in the measurement
reaching contrast about 65%. And even for contrast of about 95% the increase can
be close to 1%.

6 Conclusion

We have determined the optimal system parameters for the dispersive qubit readout
using a fully-absorbing, photon-number-resolving detector.

Probing the cavity on one of its resonances may result in suboptimal measurement
performance. This can be explained in terms of SNR in the difference in photon counts
for the |↓⟩ and |↑⟩ qubit states. Photon counts fluctuate due to the photon shot noise.
The difference is maximized for a resonance probe, but, with detuning, it decreases
slower than the noise in it. Hence there is an optimal detuning that maximizes the
SNR. The need to detune is most pronounced in the weak measurement, when the
dispersive pull is smaller than the cavity decay rate, gλ < κ/2. Consider the case
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when only the detuning can be varied. Then, the optimal detuning can be determined
by Fig. 4.3. For a very weak measurement, gλ≪ κ/2, we have obtained asymptotics
for the optimal detuning: ωdr = κ

√
2/4.

To obtain these results, it is sufficient to maximize a simple characteristic of the
measurement, SNR, which is given by Eq. (4.22). It turns out that the detuning max-
imizing contrast (4.63) results in almost the same values of contrast. For sufficiently
long measurement durations that result in high contrast, we have proved that the
conditions of maxima of SNR and contrast coincide. As for the moderate contrasts,
the difference in contrast is not substantial.

The situation is different if one is able to tune the gλ/κ ratio. One can use the
ratio that maximizes SNR if aiming at more than 95% contrast. A contrast very
close to the optimal one is then achieved, while the optimal gλ/κ is the same for
measurements of any duration. For a shorter measurement, it is better to use gλ/κ
that maximizes contrast. It is given in Fig. 4.9a. For each measurement duration,
there is a distinct gλ/κ ratio. (This does not mean the ratio should be changed
throughout the measurement.) As for the drive-resonator detuning, it can be chosen
as ωdr = gλ. This results in almost the same contrast as the exact value of optimal
detuning.

The photon-number-resolving detector is advantageous for the readout. With a
vacuum detector, one needs a longer measurement to achieve contrasts starting with
73%.

Single-shot readout using the considered scheme is achievable in various cavity-
QED type systems (see Table 4.1). The readout can reach 99% contrast. This opens
the possibility of using the readout in quantum error-correction schemes. Note our
scheme is best-suited for high frequencies of both the qubit and the cavity, as follows
from Eq. (4.43) and our comments on it.

Our results apply not only to a single-shot measurement but to the sequential
measurements as well. In this case the measurement time discussed is replaced with
the sum of durations of all measurements in a sequence.
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Appendices

A Extremal points of signal-to-noise ratio are its points
of maximum

If the second derivative of SNR (4.28) is negative in an extremal point D, that point
is the point of maximum. The respective condition reads

2(D +X)2 − 1[
(D +X)2 + 1

]5/2 =
2(D −X)2 − 1[
(D −X)2 + 1

]5/2 . (4.A.1)

We show the condition (4.A.1) holds for every extremal point. Let us put the
terms of Eq. (4.29) on the opposite sides of the equation and then square it:

(D +X)2[
(D +X)2 + 1

]3 =
(D −X)2[

(D −X)2 + 1
]3 . (4.A.2)

It was set Dopt → D for brevity. We multiply both sides of the inequality

[(D −X)2 + 1]−1/2 > [(D +X)2 + 1]−1/2 (4.A.3)

by the respective sides of Eq. (4.A.2) to obtain

(D +X)2[
(D +X)2 + 1

]5/2 > (D −X)2[
(D −X)2 + 1

]5/2 . (4.A.4)

Now we use yet another inequality

−[(D −X)2 + 1]−5/2 > −[(D +X)2 + 1]−5/2. (4.A.5)

One adds it to the inequality (4.A.4) doubled, which yields Eq. (4.A.1). Hence every
extremal point is the point of maximum.

B Cumulative distribution function of Poisson process

Here, we express the cumulative distribution function of Poissonian process in terms
of incomplete Gamma function.

The probability that a Poisson random variable ξ occurs with a value less than or
equal to N is

P (ξ ≤ N) =
N∑

n=0

λn

n!
e−λ. (4.B.1)

This quantity is known as cumulative distribution function of the variable. Incomplete
Gamma function is defined with the following expression:

Γ(n, x) =

∫ ∞
x

dt tn−1e−t. (4.B.2)

A basic property of the incomplete Gamma function reads

Γ(n+ 1, x) = nΓ(n, x) + xne−x. (4.B.3)
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It can be derived integrating by parts the definition (4.B.2). Noticing that

Γ(1, x) = e−x (4.B.4)

and applying induction to Eq. (4.B.3), one arrives at

Γ(n+ 1, x) = e−x
n∑

k=0

xkn(n− 1) · . . . · (n− k + 1) = e−xn!

n∑
k=0

xk

k!
. (4.B.5)

In obtaining Eq. (4.B.5) it was assumed that n is a positive integer or zero. With
Eq. (4.B.5), the cumulative distribution function (4.B.1) is expressed as follows:

P (ξ ≤ N) =
Γ(N + 1, λ)

Γ(N + 1)
, N = 0, 1, . . . (4.B.6)

C Conditions for contrast maximum at the extremal point

In this appendix, we show that the extrema Dopt given by Eq. (4.77) are the maxima
of contrast.

First of all, the highest Dopt possible, Dhi (4.79), maximizes contrast C. This
follows from the fact that the derivative ∂C/∂D|ncont

th ≡const changes its sign from plus
to minus while Dopt passes Dhi.

We now check that the solutions of Eq. (4.77) give maxima in the rest of the region
between two jumps, i.e., for Dopt < Dhi. In this region, extremum of C is a maximum
if

∂2C

∂D2

∣∣∣∣
nth≡const

< 0. (4.C.1)

Performing differentiation, one obtains

(D +X)2 + 1 + 2(τm − nth − 1)(D +X)[
(D +X)2 + 1

]nth+2 · e−n↓

<
(D −X)2 + 1 + 2(τm − nth − 1)(D −X)[

(D −X)2 + 1
]nth+2 · e−n↑ . (4.C.2)

For X > 0 the stronger inequality can be obtained by multiplying the denominator of
the right-hand side of Eq. (4.C.2) by [(D −X)2 + 1]/[(D +X)2 + 1]. Simplifying the
resulting inequality using Eq. (4.77) and taking logarithm of both sides of it, we have

n↑ − n↓ < nth log
n↑
n↓
. (4.C.3)

Using the definition (4.55) of ncontth , Eq. (4.C.3) reduces to

ncontth < nth (4.C.4)

which is the identity for Dopt < Dhi due to the definition of nth (4.56).
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Chapter V

Qubit decoherence due to weak
dispersive measurement

The measurement-induced decoherence in the dispersive readout was first studied in
Refs. [19, 79, 86]. Essentially, that decoherence arises as the resonator occupancy
fluctuates and induces the fluctuations in the qubit frequency. Two methods were
used in the work [79]: the first one assumes, similarly to Refs. [19, 86], that the
qubit phase fluctuations are Gaussian, and the other one uses the positive-P -function
technique. Thermal photons were neglected in both approaches. In Refs. [87, 88] the
resonator is not driven and is occupied by thermal photons only; for that case, the
two-time correlator of the photon number fluctuations was found in Ref. [87]. Both
thermal and drive photons were taken into account in Ref. [89] using the Wigner
function approach; a complex expression for the decoherence rate was provided.

While the more formal methods in Refs. [79, 88, 89] are applicable to a wider
range of parameters, the method based on the Gaussian approximation for the phase
provides a solid physical insight into the process of decoherence. Using that approach,
the decoherence rate was calculated in my Master’s thesis [90] while taking into ac-
count the influence of both thermal and coherent photons. However, in that thesis
the transition to the dressed picture [see Eq. (1.34)] and back is not always performed
thoroughly. The whole derivation is not fully coherent, and there are some claims that
invalidate the approximations used. Finally, the result seemed to be obtained without
any assumption about the measurement strength. On the other hand, it was shown in
Ref. [79] with other methods that the Gaussian approximation only works the weak
measurement—when the qubit shifts the cavity resonance only negligibly compared to
its linewidth.

Here we use the method based on the Gaussian approximation to derive the rate of
the measurement-induced dephasing while taking into account the influence of thermal
photons. For finding the decoherence rate, we first calculate the two-time correlator
of the photon number fluctuations, which can be useful for other applications. Unlike
Refs. [19, 79, 86, 90], we consistently use the Heisenberg equations of motion for our
derivation. With that approach, we want to achieve a clear and relatively rigorous
and simple calculation of the dephasing rates. Simultaneously, we would like to keep
our reasoning valid for any statistics of the frequency noise. This can be especially
useful as non-Gaussian extrinsic noise is known to arise in superconducting qubits [91].
Hence we ground the Gaussian assumption for the phase by the central limit theorem
for long measurement times as in Refs. [19, 87, 90]. However, we argue that either the
Gaussian phase assumption should be postulated as in Ref. [79], or the measurement
should be considered weak to neglect the time ordering while solving for the qubit
coherence operator.
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1 Definition of the qubit coherence

First, let us discuss how to express the qubit coherence. For that, we need to take
into account its environment. Their full state can be denoted as

|q, r,b⟩ =
∑
{ne}

(
c↓,{ne}|↓, {ne}⟩+ c↑,{ne}|↑, {ne}⟩

)
. (5.1)

The qubit state is spanned by its ground |↓⟩ and excited |↑⟩ states. The environment
state is labeled by the quantum numbers {ne}. We denote the expansion over all
its states mnemonically with

∑
{ne}. In our case, the environment consists of the

resonator and the waveguides connected to it. The waveguides play a role of thermal
bath in our model. Strictly speaking, there are other systems that provide additional
noise in the qubit transition frequency. However, as we model that with a classical
noise process F (t) in the Hamiltonian (3.1), this part of the environment does not
enter Eq. (5.1).

While that is not important for the core calculations of this chapter, we briefly
discuss how to span the state of the qubit environment in Eq. (5.1). One can use the
states

|{ne}⟩ = |n⟩|wI
k1...kN

⟩|wII
l1...lM

⟩ (5.2)

each denoting a state with the n-photon Fock state in the resonator, N photons in
the first waveguide with wavevectors k1 . . . kM , and similarly for M photons in the
second waveguide. The expansion in Eq. (5.1) then reads

∑
{ne}

≡
∞∑

N=0

∫ ∞
0

dk1 . . .

∫ ∞
0

dkN

∞∑
M=0

∫ ∞
0

dl1 . . .

∫ ∞
0

dlM

∞∑
n=0

. (5.3)

Should we have used the discrete representation of the waveguide modes, Eq. (5.3)
would have comprised a sum over all possible combinations of photon number states in
these modes. However, in the continuous limit that we use throughout this thesis, the
math is different. In Eq. (5.3), we sum over the total number N of the first waveguide
photons which are then distributed, in all possible manners, over the continuous modes
by N integrations. That is the approach we used in Ref. [29] to express the unitary
operator of a waveguide field; that very piece is also presented in Ch. VI of this thesis.

Now for the concept of coherence to naturally occur, consider some measurable A
of the qubit. Its average reads

⟨A⟩ = ⟨q, r,b|A|q, r, b⟩ (5.4)
= ρ00⟨↓|A|↓⟩+ ρ↓↑⟨↑|A|↓⟩+ ρ↑↓⟨↓|A|↑⟩+ ρ↑↑⟨↑|A|↑⟩ = Tr(ρA), (5.5)

where • means averaging of • over the ensemble of baths and over the realizations of
the noise F (t) in the qubit frequency, while

ρij =
∑

n,n1,n2,...

c∗i,n,n1n2...
cj,n,n1n2... = ⟨i|ρ|j⟩, i, j =↓, ↑ . (5.6)

It is seen that ρ is the qubit density matrix. Quantities ρ↓↓, ρ↑↑ are the probabilities
of finding the qubit in either of its eigenstates. Each of the other two matrix elements,
ρ↓↑ and ρ↑↓, expresses the ability to interfere of the amplitudes of probability ⟨q, r,b|↓⟩
and ⟨q, r,b|↑⟩. In other words, it is those non-diagonal density matrix elements that
store the qubit state coherence.
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It is straightforward to find the evolution of ρ↓↑ and ρ↑↓ through the corresponding
operators in the Heisenberg picture. From Eq. (5.4) and the definition of the qubit
lowering operator one finds at time t:

ρ↓↑(t) = ρ∗↑↓(t) = ⟨q, r,b : t|σ−|q, r,b : t⟩
= ⟨q, r, b : 0|U †(t)σ−U(t)|q, r,b : 0⟩ = ⟨q, r,b : 0|σ−(t)|q, r, b : 0⟩
= ⟨σ−(t)⟩,

(5.7)

where σ− and σ−(t) denote the lowering operators in the Schrödinger and the Heisen-
berg pictures respectively, and U(t) denotes the evolution operator of the system. Here
and in what follows ⟨•⟩ denotes both the expectation value of • and its averaging •
by the ensemble of baths.

We conclude that the magnitude of ⟨σ−(t)⟩ is the qubit coherence. In what follows,
the average ⟨σ−(t)⟩ is found, using the Heisenberg equations of motion.

2 Cavity population

To calculate ⟨σ−⟩, we first need to find the cavity population. It consists of the
photons due to the coherent drive, and the thermal photons.

We use the expression (3.35) for the photon annihilation operator a to arrive at

⟨n⟩ ≈ nb + nd, n = a†a, (5.8)

where we neglect the ∝ λ2 terms and higher. Here

nd =
〈 f2|c|2
ω̃2
dr + κ2/4

〉
(5.9)

is the number of the drive photons in the resonator, and

nb =

∫ ∞
0

dk
〈 f2k
ω̃2
kr + κ2/4

〉 ∑
α=I,II

⟨bα†k (0)bαk (0)⟩ (5.10)

is the number of the bath photons in it. Here the operators ω̃dr and ω̃kr of effective
detuning with the cavity are as defined in Eq. (3.36). Also, in obtaining Eq. (5.8), it
was taken into account that σz ≈ σz(0) in the accuracy of Eq. (3.35), and therefore
σz commutes with bαk (0). In addition, averages of the mixed products with drive and
noise terms from Eq. (3.35) vanish. Indeed, these products split into the products of
averages. The respective noise averages are negligible as discussed in the derivation
of Eq. (3.39) for ⟨a⟩.

We calculate the thermal population in the equilibrium with the bath which is
comprised by the waveguide modes. In Ch. III we have split the waveguide operators
into the drive and the drive operators with a unitary transformation as in Ref. [16].
Here we assume that in the resulting frame the waveguides are in the thermal state.
The density matrix of the first waveguide is

ρI =

∞∑
N

∫ ∞
0

dk1 . . .

∫ ∞
0

dkM |wI
k1...kN

⟩Ceℏv(k1+...+kN )/kBT ⟨wI
k1...kN

|, (5.11)

and similarly for the second one. That is, there is no coherence between the waveguide
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energy states, and the probabilities to find each state are due to the Gibbs distribu-
tion [92]. Here T is the cryostat temperature, kB is the Boltzmann constant, vk is the
frequency of the mode with wavevector k, and C is the normalization constant such
as C Tr ρ = 1. The state vectors |wI

k1...kN
⟩ are as explained for Eq. (5.2). Consider the

thermal population due to the first waveguide nIb, which is given by the α = I part of
the sum in Eq. (5.10). Using that ⟨wI

k1...kN
|bI†bI|wI

k1...kN
⟩ = N , we find

nIb = C Tr
{
ρI
∫ ∞
0

dk
f2k b

I†
k b

I
k

ω2
kr + κ2/4

}
≈ C

∫ ∞
−∞

dk

∞∑
N=0

f2Ne−ℏvkN/kBT

ω2
kr + κ2/4

. (5.12)

In the spirit of the Markov approximation, we have extended the integration to −∞
and assumed constant coupling fk ≈ f . Also, we neglect the dispersive shift here as
it is small compared to the resonator frequency. Performing the complex integration,
and summing up over N yields

nIb ≈ C
∞∑

N=0

2πif2

v

Ne−ℏωrN/kBT

iκ
=

1

2

1

eℏωr/kBT − 1
, (5.13)

where we have used the definition (3.28) of the decay rate κ. Also, we have plugged in
the value of C = 1−e−ℏωr/kBT which can be found similarly to the above calculations.
The same amount of thermal excitations comes from the second waveguide. Hence,
as expected, we recover the Bose-Einstein distribution for the photon population [92]:

nb =
1

eℏωr/kBT − 1
. (5.14)

This result can be obtained in a simpler manner using the discrete representation of
the bath modes [27].

3 Equation for the qubit lowering operator

Here we find the Langevin equation for the qubit lowering operator σ−. We take into
account the noise coming from the resonator state and the waveguides. We model
other noise sources with the classical noise F in the qubit frequency.

From the form of the Hamiltonian (3.16), the equation of motion of σ− is

σ̇− = −iΩqσ− + iλσz

(∫ ∞
0

dkfk(b
I
k + bIIk ) + fc− Fa

)
+ o(λ), (5.15)

where
Ωq(t) = ωq + 2gλ(a†a|t + 1/2) + F (t) (5.16)

is the effective qubit frequency.
Next, along the lines we have obtained the Langevin equation (1.60), we obtain

the Langevin equation for σ−(t),

σ̇−(t) = −iΩq(t)σ−(t) + λσz

(
i

∫ ∞
0

dkfk[b
I
k(0) + bIIk (0)]e

−iωkt

+ ifc(t) +
κ

2
a(t)− iF (t)a(t)

)
+ o(λ). (5.17)

We dropped the dependency of σz on time, as taking account of it exceeds the accuracy
of the equation.
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4 Coherence in the weak measurement

In this section, we calculate the qubit coherence for the case of weak measurement,

gλ≪ κ. (5.18)

In this regime, we avoid assumptions about the statistics of the frequency fluctuations.
For that, we make a physically motivated guess in finding the solution of Eq. (5.17).

Consider the time-dependent frequency term in that equation. Photon-number
dependent parts there are operators, thus [a†(t2)a(t2), a

†(t1)a(t1)] ̸= 0 and the qubit
frequency Ωq does not commute with itself at different times. Therefore, in general,
the solution of Eq. (5.17) requires time ordering.

However, we assume that the time ordering can be neglected if the condition (5.18)
holds. We present an intuitive reasoning to back that assumption. When |t2 − t1| ≪
1/gλ, dispersive interaction has not yet changed a†(t2)a(t2) enough to not commute
with a†(t1)a(t1). On the other hand, for |t2−t1| ≫ 1/κ dissipation has already dimin-
ished the quantumness of a†a and the respective two-time commutator is negligible.
Due to the condition (5.18), these two intervals of |t2−t1| overlap and the commutator
is negligible for all times. In that case the solution of Eq. (5.17) takes the form:

σ−(t) ≈ σ−(0) exp
(
−i
∫ t

0
dt′Ωq(t

′)

)
+ λσz

∫ t

0
dt′ exp

(
−i
∫ t

t′
dt′′Ωq(t

′′)

)
×
(
i

∫ ∞
0

dkfk[b
I
k(0) + bIIk (0)]e

−iωkt
′
+ ifc(t′) +

κ

2
a(t′)− iF (t′)a(t′)

)
. (5.19)

It is convenient to split the phase of each of the exponents in Eq. (5.19) into
deterministic and fluctuating part. We separate deterministic and noise parts in the
effective qubit frequency,

Ωq(t) = ⟨Ωq⟩+ 2gλ∆n(t) + F (t), (5.20)
∆n(t) = n(t)− ⟨n(t)⟩. (5.21)

This yields the following expression for the phase:∫ t

t′
dt′′Ωq(t

′′) = ⟨ω̃q⟩(t− t′) + ∆ϕn(t
′, t) + ∆ϕF (t

′, t), (5.22)

where ω̃q is defined in Eq. (1.40). In the course of obtaining the last expression we
used that ⟨F (t)⟩ = 0 and ⟨n⟩ = const by Eqs. (5.8)–(5.10). Also, we have introduced
the following notations: the phase noise

∆ϕn(t1, t2) = 2gλ

∫ t2

t1

dt′∆n(t′) (5.23)

caused by the fluctuations ∆n of photon number, and the noise

∆ϕF (t1, t2) =

∫ t2

t1

dt′F (t′) (5.24)

caused by the natural fluctuations F (t) in the qubit frequency.
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4.1 Averaging to find the coherence

In finding ⟨σ−⟩, we neglect the second term in Eq. (5.19). It gives rise to small
oscillations of magnitude about λf |c(0)|/ωqr due to the integrand term with the drive
signal c(t′). Also, we expect the noise terms there to provide a small amount of
coherence on averaging, similarly to the estimate in Eq. (3.38). We leave the proper
averaging of the noise terms for future work. Here we assume that

⟨σ−(t)⟩ ≈ ⟨σ−(0)⟩
〈
exp

[
− i
∫ t

0
dt′Ωq(t

′)
]〉
. (5.25)

We confine ourselves to the time scales much greater than both 2/κ the resonator
photon lifetime and τF the coherence time of F (t):

t≫ 2/κ, τF . (5.26)

Under this assumption, average of the solution (5.25) simplifies. Qubit frequency
fluctuations taken at the moments separated by their coherence time, F (t) and F (t+
τF ), can be considered to be independent random variables. The same holds for
the photon number fluctuations, ∆n(t). Those fluctuations coherence is estimated
by the time 2/κ the system “remembers” a photon state in the resonator. Hence,
for times qualifying the condition (5.26), integrals in Eqs. (5.23), and (5.24) become
infinite sums of independent random variables. With assumption of ∆n(t) and ∆F (t)
stationary, the integrals yield normally distributed random variables by the central
limit theorem. It is shown in Appendix III.A that ⟨ex⟩ = exp ⟨x

2⟩
2 for an x normally

distributed. Using this identity for normally-distributed iϕn and iϕF , one obtains
from Eq. (5.25) and Eq. (5.22) that

⟨σ−(t)⟩ = ⟨σ−(0)⟩e−i⟨ω̃q⟩t exp

(
−1

2
⟨∆ϕ2n(t)⟩ −

1

2
⟨∆ϕ2F (t)⟩

)
. (5.27)

We follow Ref. [70] in finding ⟨∆ϕ2F (t)⟩. It is assumed that F (t) is stationary and

⟨∆ϕ2F (t)⟩ =
∫ t

0

∫ t

0
dt1dt2⟨F (0)F (t2 − t1)⟩; (5.28)

with the Wiener-Khinchin theorem, it is expressed as

⟨∆ϕ2F (t)⟩ =
∫ +∞

−∞
dωSFF (ω)W (ω), (5.29)

where

W (ω) =

∫ t

0

∫ t

0
dt1dt2e

iω(t2−t1) =
sin2(ωt/2)

(ω/2)2
. (5.30)

is the spectral weight of those fluctuations in the phase noise. Due to the form of
W (ω), it is the region |ω| < 2π/t which influences ⟨∆ϕ2F (t)⟩ most. According to the
condition (5.26), we approximate S(ω) ≈ S(0) in this region. Therefore,

⟨∆ϕ2F (t)⟩ ≈ 2Γ0t, (5.31)

where
Γ0 = πSFF (0), (5.32)
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and

SFF =
1

2π

∫ +∞

−∞
dte−iωt⟨F (t)F (0)⟩ (5.33)

is the spectral density of the fluctuations in the qubit frequency. In other words, we
assume F to be a delta-correlated white noise on the timescales t that we are interested
in. As can be seen from Eqs. (5.27) and (5.31), Γ0 is the natural decoherence rate of
the qubit.

To find ⟨∆ϕ2n(t)⟩, the correlator ⟨∆n(t1)∆n(t2)⟩ is needed first. ⟨bk(0)⟩ = 0 as
the transmission lines are thermalized. By the same reason, we assume the waveguide
modes including the drive mode to be not entangled at the initial moment of time.
Hence ⟨bα(†)k (0)c(0)⟩ = 0, ⟨bα(†)k (0)bβl (0) = 0⟩ for k ̸= l or α ̸= β. By virtue of Eq. (3.35)
and these assumptions, the correlator can be expressed as

⟨∆n(t1)∆n(t2)⟩ =
∑
k,α

⟨Bα†
k1B

α
k2⟩
∑
l,β

⟨Bβ
l1B
†β
l2 ⟩

+ C∗2C1

∑
k,α

⟨Bα†
k1B

α
k2⟩+ C∗1C2

∑
l,β

⟨Bβ
l1B

β†
l2 ⟩+ o(λ), (5.34)

where Bα
ki = fkb

α
k (0)e

−iωkti/(ω̃kr + iκ/2), Ci = fc(0)e−iωdti/(ω̃dr + iκ/2) with ωdr =
ωd − ωr the bare detuning. The expression can be simplified. We assume the modes
to be closely spaced. Also, in the narrow range cut by the resonator Lorentzian, those
modes number of photons is taken to be constant. Thus,∑

k

⟨Bα†
k1B

α
k2⟩ =

nb
2
e−iω̃r(t2−t1)−κ

2
|t2−t1|, (5.35)

where the definition (3.28) of κ was used and nb is given by Eq. (5.14). With help of
Eq. (5.35), the correlator is finally obtained,

⟨∆n(t1)∆n(t2)⟩ = nb(nb + 1)e−κ|t2−t1|

+ nd

(
2nb cosωdr(t2 − t1) + e−iωdr(t2−t1)

)
e−

κ
2
|t2−t1| +O(λ). (5.36)

We have neglected the frequency shift gλ as it is not visible on top of the decay
rate κ/2 under the condition (5.18) of the weak measurement. The expression (5.36)
shows that the photon number fluctuations become uncorrelated when |t2− t1| > 2/κ.
Previously, in obtaining Eq. (5.27), we explained this intuitively.

Let us check some limiting cases of the photon number statistics. For the limit of
negligible thermal occupation

nb ≪ nd,
1

2
, (5.37)

it is seen from Eqs. (5.36) and (5.8) that ⟨∆n2⟩ ≈ ⟨n⟩. This is a hallmark of a coherent
state. On the other hand, for nb ≫ nd one has ⟨∆n2⟩ ≈ ⟨n⟩+ ⟨n⟩2. A thermal state
possesses such a statistics.
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Figure 5.1: Dependence of the measurement-induced qubit dephas-
ing on the thermal occupancy for small temperatures: Γd as given
by the simple expression (5.39) (solid) and the expression given in
Ref. [89] (dashed). Measurement is weak with κ = 2π 100MHz and
χ = 2π 1MHz. Thermal occupancy nb is much smaller than the num-

ber of photons due to the coherent drive nd.

Now we are in position to calculate ⟨∆ϕ2⟩ and ⟨σ−⟩. We set ωdr = 0. Using
Eqs. (5.36) and (5.23) and taking the appropriate integrals, we obtain

⟨∆ϕ2n⟩
2

= (Γd + Γb)t, (5.38)

Γd =
16g2λ2

κ
nd

(
nb +

1

2

)
, (5.39)

Γb =
4g2λ2

κ
nb(nb + 1), (5.40)

where it was taken into account that t ≫ 2/κ according to Eq. (5.26). By means of
Eq. (5.38), the expression for coherence (5.27) reduces to

⟨σ−(t)⟩ = ⟨σ−(0)⟩e−i⟨ω̃q⟩t exp[−(Γ0 + Γd + Γb)t], (5.41)

where Γ0 the natural dephasing rate of the qubit is defined in Eq. (5.32). We conclude
that here Γd+Γb is the decay rate that arises due to the photon fluctuations. Its drive-
induced part Γd can be “amplified” by the presence of thermal photons, according to
Eq. (5.39). The purely thermal part Γb is negligible for reasonably low temperatures
and strong enough drive. One can show that in the weak measurement limit (5.18),
the expressions (5.39)–(5.40) stay intact for ωdr ∼ χ.

Limiting cases of the expressions given are known in the literature. The correla-
tor (5.36) and ⟨σ+(t1)σ−(t2)⟩ were found in Refs. [79, 86] in the case of no thermal
photons. In the limit (5.37), ⟨σ+(t1)σ−(t2)⟩ from the reference is proportional to the
exponent in Eq. (5.41). In the same limit, the correlator (5.36) coincides with that
found in the literature. In Refs. [87, 88] a resonator occupied solely by thermal pho-
tons was considered. Our expression (5.40) for Γb equals that of Ref. [87]. Also, it is
the same as the golden-rule part of the expression from Ref. [88]. In Ref. [89] both
parts induced by the drive and the thermal photons are found. The thermal part, in
the Fermi’s golden rule approximation, coincides with the expression (5.40).

A different expression for the drive-induced part of the decoherence was found in
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Ref. [89] with the effect of thermal photons taken into account. In our notations and
for ωdr = 0, the expression from the reference reads

Γd = nd
κ2χ

2

∆th(κ+ 2Γ′b)

[∆2
th + (κ+ 2Γ′b)

2/4]2
, (5.42)

where ∆th = κ
2 Im ξ, Γ′b = κ

2 (Re ξ − 1), and ξ =
√

(1 + 2iχ/κ)2 + 8iχnb/κ. It is
claimed to be valid beyond the weak measurement regime. When both the condi-
tion (5.18) of weak measurement and the condition n2b ≪ κ2/32χ2 hold, Eq. (5.42)
coincides with Eq. (5.39). A comparison between the two formulas is plot in Fig. 5.1.

In the case of resonant drive ωd = ωr, the correlator (5.35) was obtained in my
Master’s thesis [90]. While the decoherence rates (5.39)–(5.40) can be deduced from
Eq. (3.41) in the Master’s thesis, here we have clearly provided the expressions for
them, properly taking into account the Gaussian approximation (5.26) we use. These
expressions were obtained in a rather careless way in the Master’s thesis. Most im-
portantly, the time ordering in the solution for the qubit phase was disregarded there,
despite the presence of the operator a†a in the qubit frequency. Here we have used
a more solid approach overall, and we have heuristically motivated that the time
ordering can be neglected in Eq. (5.19) for the weak measurement case (5.18).

5 Summary and discussion

We have determined the effect of thermal photons on the measurement-induced de-
coherence for the case of weak measurement [see the criterion (5.18)] and when the
Gaussian approximation is valid [see the criterion (5.26)]. Also, the two-time correla-
tor of the photon number fluctuations has been found. The decoherence rate consists
of three parts [see Eq. (5.39)]: a part due to the drive photons alone, a part pro-
portional to both the drive and the thermal population, and a part quadratic in the
thermal population that does not depend on the drive. When the quadratic term is
negligible, nb thermal photons entering the resonator increase the qubit dephasing
rate proportionally to nb + 1/2.

Since the publication of my Master’s thesis [90], we have been able to find the
analogous results in the literature. Compared to the result of Ref. [89], our expression
for the measurement-induced decoherence rate is much easier to interpret. The ex-
pression from the reference coincide with Eq. (5.39) in the limit of weak measurement
and small number of thermal photons.

Compared to the results of the Master’s thesis [90], here we have provided explicit
expressions for the decoherence rates (5.39)–(5.40) in the proper approximation. Our
derivation is now more rigorous and straightforward and does not contain a hidden
approximation about the time ordering in the solution for the qubit variables. We
claim that the time ordering can be neglected in the weak measurement regime. In
that approximation, qubit phase noise can be considered Gaussian for any type of its
frequency noise.

Still, there are several issues that we consider unresolved. First, we were not able
to thoroughly estimate the dressing correction in the qubit coherence which we have
neglected in Eq. (5.27). Finding out the average of the term with the natural noise
in the qubit frequency F in the second term of Eq. (5.19) may require the knowledge
of the natural noise statistical properties, as described for superconducting qubits in
Refs. [65, 66, 93, 94]. Estimate of the waveguide-related terms with operators bα(†)k

may be found using a quasiprobability distribution as in Refs. [79, 88, 89]. Second, it is
not very clear to us now, how our theory breaks at higher number of thermal photons
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nb. That happens even if it is compared to the treatment of Ref. [89], which also
does not take into account the higher-order nonlinearities [21, 28] in the dispersive
Hamiltonian (1.35). The comparison in Fig. (5.1) suggests that our theory breaks
already for nb > 5, which is worse than we expected. A possible explanation is that
the time ordering that we have neglected in Eq. (5.19) becomes more important for
higher populations. In the future, it might be interesting to properly prove that one
can drop the time ordering in the weak measurement limit. Another explanation is
that the non-Gaussian nature of frequency fluctuations becomes more pronounced for
higher photon numbers.

We provide more detail to back this claim. For higher powers of the frequency
noise, decoherence occurs already on small timescales [79, 86, 95, 96]. Following
Ref. [96], we estimate ⟨eiϕ⟩ ≈ ⟨ei dϕdt t⟩ for small times t. Statistics of the frequency
noise dϕ/dt then determines the average. This approximation may be used in future
research.
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Chapter VI

Fock photons transport beyond the
rotating-wave approximation

In this chapter, we provide a theory of transport of photons in a Fock state through
the resonator and the qubit beyond the RWA. Previous studies of the few-photon
transport through the resonator coupled to a qubit (see, e.g., Refs. [97–101]) use the
RWA to describe the resonator-qubit interaction. Here go beyond the RWA in treating
the photon transport by systematically taking into account the Bloch-Siegert shift.

Dissipation to the waveguides of the qubit and the resonator beyond the RWA
should be treated carefully [102]. While a suitable master equation for that case is
derived in that reference, we choose a different method to treat the system. Our
treatment of the system dynamics and photon transport is based on the Heisenberg-
Langevin equations for the entire system including the waveguides. The approach is
inspired by Refs. [27, 74]. It allows us to highlight some subtle moments that arise
due to the break of the RWA. While we focus on the superconducting qubit readout,
our treatment is applicable to other types of qubits that couple strongly to a cavity.

1 Hamiltonian

We model the system as shown in Fig. 6.1. The system Hamiltonian reads

H = Hq +Hqr +Hr +HrI +HrII +HI +HII, (6.1)

where

Hq =
1

2
ℏωqσz, Hr = ℏωr

(
a†a+

1

2

)
, (6.2)

Hqr = ℏgσx(a+ a†) (6.3)

are the Hamiltonians of the qubit, the resonator, and the qubit-resonator interaction,
respectively. Together, these three comprise the Rabi Hamiltonian. Here and below
we use the following notations: σx, σy, and σz for the Pauli operators of the qubit
(quasi)spin; σ± = 1

2(σx ± iσy) for the raising and lowering operators of the qubit; a†

Apart from minor corrections and changes, Ch. VI was published in “A. M. Sokolov and E. V. Stol-
yarov, Phys. Rev. A 101, 042306 (2020)”. Copyright (2020) by the American Physical Society. The
majority of the text was written by A. M. Sokolov. All calculations were carried out by A. M.
Sokolov.

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.042306
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.042306
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IIκ/2
ωr

ωq

|↓〉

|↑〉
g

κ/2
|1ξ〉

I

Figure 6.1: The system. Semi-infinite waveguides I and II couple
to the resonator. They model the lack of back action on the cavity
and the qubit: after a photon scatters off the resonator, it does not
return. A single-photon pulse |1ξ⟩ of exponentially damped shape is
incident on the first port of a cavity. The cavity resonant frequency is
ωr and its leakage is κ/2 to each of its ports. The cavity is dispersively
coupled to a qubit with rate g. The qubit transition frequency is ωq.

and a for the resonator photon creation and annihilation operators; g for the qubit-
resonator coupling strength. Hamiltonians of the waveguide fields are

Hα = ℏ
∫ ∞
0

dk ωkb
α†
k b

α
k , α = I, II, (6.4)

where the contribution of the zero-point oscillations is omitted. bα†k and bαk are the
operators of creation and annihilation of a photon with wave vector k and frequency
ωk in the waveguide with index α. The term responsible for the interaction of the
waveguides with the resonator is

Hrα = iℏ
∫ ∞
0

dkfk(a− a†)(bαk + bα†k ). (6.5)

We assumed that the resonator couples to both waveguides in the same manner and
with equal strength. With a unitary transformation, one can move from Hrα to the
Hamiltonian (2.43) derived before. Hqr (6.3) is then transformed to the Hamilto-
nian (1.20) up to a unitary transformation in the qubit variables. Therefore, under
the convention of Eqs. (1.6)–(1.7), our Hamiltonian describes the inductive qubit-
resonator coupling and the capacitive interaction with the waveguides—exactly the
situation we considered in Ch. II.

In general, the choice of signs in the Hamiltonians (6.3) and (6.5) captures the case
of different-type couplings: capacitive waveguide-resonator coupling and inductive
qubit-resonator interaction, or vice versa. If we do not drop the fast-oscillating terms
in the Hamiltonians, they are not equivalent to those with same-type couplings (see
Sec. I.2 and Ref. [20]). However, the change of the coupling type does not alter the
main results of this chapter. Section 3 outlines the changes in the case of a general
linear transversal coupling. A partial case of a same-type interaction is discussed there
as well.

1.1 Bloch-Siegert regime

The case of the qubit strongly detuned from the resonator is of interest. If ωq − ωr ∼
ωq + ωr, the RWA breaks down. We assume, however, that the frequencies are of the
same order of magnitude,

ωq ∼ ωr, (6.6)
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and there is a small parameter

Λ2 ≪ 1, Λ = g/(ωq + ωr). (6.7)

We also assume that there are not more than two photons in the cavity: one photon
can come from the single-photon input pulse and another one can appear due to the
excitation exchange with the qubit. Under these assumptions, the terms proportional
to a†σ++aσ− in the Rabi Hamiltonian can be treated as a perturbation and eliminated
via the unitary transformation

UBS = exp(Λaσ− − Λa†σ+). (6.8)

Transforming the Rabi Hamiltonian (6.2)–(6.3) with UBS gives

Hq +Hqr +Hr → U †BS(Hq +Hqr +Hr)UBS

= Hq +H ′qr +H ′r +O(Λ2), (6.9)

H ′qr = ℏg(σ+a+ a†σ−), (6.10)

H ′r = ℏ(ωr + gΛσz)

(
a†a+

1

2

)
. (6.11)

The shift gΛσz in the cavity resonance is known as the Bloch-Siegert shift [102].
We have omitted ℏgΛσza2 and its conjugate in Eq. (6.9). Upon integration of the

equations of motion for σ± and a(†), these terms contribute in the order of gΛ/ωr.
Due to the condition (6.6), this is of order Λ2 and should be neglected. In the same
approximation, the transform (6.8) is identical to that used in Ref. [102].

Now we transform the rest of the terms in the full Hamiltonian (6.1). Using
Eqs. (6.9)–(6.11) and a→ U †BSaUBS = a− Λσ+ +O(Λ2), one gets

H → H ′ = Hq +Hqr +H ′r +HrI +HrII +H ′qI +H ′qII +HI +HII +O(Λ2). (6.12)

The term
H ′qα = ℏΛ

∫ ∞
0

dkfkσy(b
α
k + bα†k ) (6.13)

describes the direct coupling between the dressed qubit and the waveguide. The
Hamiltonian (6.12) allows for Purcell decay in which the qubit relaxes to the waveg-
uides via the resonator. To take account of the Purcell decay, the Hamiltonian (6.12)
is used in Ref. [29] to model the single-photon transport through the resonator-qubit
system.

In the next two sections, we assume that the qubit relaxation is negligible. It is
possible to obtain analytical results for that case.

1.2 Dispersive Bloch-Siegert picture

The Hamiltonian (6.9)–(6.11) of the qubit-resonator subsystem is of the Jaynes-
Cummings form. It is possible to diagonalize it with a treatment similar to that
of Sec. 2.2 and Ref. [19]. The resonator-qubit detuning is large,

4λ2 ≪ 1, λ = g/(ωq − ωr). (6.14)

That is the critical photon number criterion (1.33) (see also Refs. [19, 21]) for a cavity
populated by a single photon. The photon comes from the input pulse. The dispersive
approximation is valid under the condition (6.14), and we neglect the possibility that
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the qubit will provide another photon. As |λ| > Λ, the inequality (6.7) follows from
the last one, and O(Λ2) + O(λ2) = O(λ2) as well as O(Λλ) = O(λ2). The dispersive
transform (1.34) then approximately diagonalizes the Hamiltonian (6.9). Applying
the transform yields

H → Hq + H̃r

+HrI +HrII + H̃qI + H̃qII

+HI +HII +O(λ2),

(6.15)

H̃r = ℏ(ωr + gΛσz + gλσz)

(
a†a+

1

2

)
, (6.16)

H̃qα = ℏ(λ+ Λ)

∫ ∞
0

dkfkσy(b
α
k + bα†k ). (6.17)

It was used that a→ U †daUd = a+ λσ− +O(λ2) and σ− → σ− + λaσz +O(λ2). The
total shift

χ = g(λ+ Λ) (6.18)

in the resonator frequency is identical to that given in Ref. [103]. It sets the per-
formance of a dispersive readout. As shown in Sec. 3, it does not change when
the qubit-resonator and the resonator-waveguide couplings are of the same type.
The Bloch-Siegert shift gΛ becomes comparable with the dispersive one gλ when
ωq − ωr ∼ ωq + ωr. Equations (6.15)–(6.17) constitute the Hamiltonian in the dis-
persive Bloch-Siegert picture. That is the picture we use in the next sections and in
Ch. VII.

2 Photon transport

Here we calculate the density of transmitted photons for a single-photon Fock pulse
with a given shape. First we link the density to the cavity population; then we express
the population in terms of the incoming pulse spectrum. The result is generalized for
an N -photon pulse.

2.1 Density of transmitted photons

The density of transmitted photons [73, 74] is

⟨ρtr(x, t)⟩ =
1

2π

∫ ∞
0

∫ ∞
0

dkdl⟨bII†k (t)bIIl (t)⟩e−i(k−l)x, (6.19)

where x > 0.
From the Hamiltonian (6.15), one obtains the equations of motion for the annihi-

lation operators of a waveguide photon:

ḃk =
1

iℏ
[bk, H]

= −iωkbk + fk[a− a† − i(λ+ Λ)σy].
(6.20)

Their formal solution is given by

bk(t) = bk(0)e
−iωkt + fk

∫ t

0
dt′e−iωk(t−t′)[a− a† − i(λ+ Λ)σy]t′ . (6.21)
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Waveguide indices are omitted for brevity. The first term on the right-hand side of
Eq. (6.21) represents the free-propagating part of the waveguide field and the second
one describes the influence of the qubit and the resonator.

Now we derive two useful identities. Multiplying Eq. (6.21) by eikx and integrating
over k, one obtains∫ ∞

0
dk bk(t)e

ikx =

∫ ∞
0

dk e−ikv(t−x/v)bk(0) +

∫ t

0
dt′
∫ ∞
0

dkfke
−ikv(t−t′−x/v)

× [a− a† − (λ+ Λ)(σ+ − σ−)]t′ , (6.22)

where the dispersion relation (2.30) was used. Consider the second term on the right-
hand side. Approximately, a, a†, σ−, and σ+ vary as e−iωrt′ , eiωrt′ , e−iωqt′ , and eiωqt′ .
We drop the terms proportional to σ+(t

′)eikvt
′ and a†(t′)eikvt

′ since they oscillate
rapidly and vanish after integration over t′. By a similar argument, we can extend the
integration by k to −∞ as in Sec. I.6.1. The remaining parts of the integrand comprise
σ−(t

′)eikvt
′ and a(t′)eikvt′ and oscillate fast for k < 0. Next, due to integration over t′,

only narrow regions around respective frequencies of a and σ− contribute significantly.
We assume that the coupling strength fk is approximately constant in these regions.
Extending the integration to −∞ and using that

∫ +∞
−∞ dk eikx = 2πδ(x) yields∫ ∞

0
dk bk(t)e

ikx =

∫ ∞
0

dk e−ikv(t−x/v)bk(0)

+
2π

v
θ
(
t− x

v

)
θ(x)[fra+ fq(λ+ Λ)σ−]t−x/v, (6.23)

where fr,q = f(ωr,q/v) and

θ(t) =


0 for t < 0,

1/2 for t = 0,

1 for t > 0

(6.24)

is the Heaviside step function. Step functions arise due to integration of δ(t′− t+x/v)
from t′ = 0 to t. At time t a point x in a waveguide is influenced by the qubit and
the resonator states at time t− x/v due to finite velocity of propagation. θ(t− x/v)
ensures that the resonator and the qubit do not influence a point x in a waveguide
for t < x/v. The reasoning analogous to that used in obtaining Eq. (6.23) leads to a
similar identity,∫ ∞

0
dkfkbk(t) =

∫ ∞
0

dkfke
−ikvtbk(0) +

1

4
θ(t)[κa+ κq(λ+ Λ)σ−]t, (6.25)

where

κ = 4πf2r /v, κq = 4πf2q/v. (6.26)

It will be seen from what follows that κ is the total decay rate of the resonator. κq is
the decay rate of the resonator as seen by the Purcell decay [102]. Equations (6.23)
and (6.25) are written in the Markov approximation, similarly to Eqs. (1.60), (3.26),
and (4.5).

In deriving Eqs. (6.23) and (6.25) we drop the terms under the integral which are
proportional to σ+(t′)eikvt

′ and a†(t′)eikvt
′ . This relates to the RWA made to write

out Eq. (A3) of Ref. [102]. In contrast to the reference, our approach allows making
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this approximation naturally.
Substituting Eq. (6.23) into Eq. (6.19), one has

⟨ρtr(x, t)⟩ =
1

2π

∫ ∞
0

∫ ∞
0
dkdl⟨bII†k (0)bIIl (0)⟩e−iv(k−l)(t−x/v)

+
κ/2

v
⟨a†a⟩t−x/v +

2πfqfr
v2

(λ+ Λ)
(
⟨a†σ−⟩t−x/v + c. c.

)
+
(1
v

〈
[fra

† + fq(λ+ Λ)σ+]t−x/v

∫ ∞
0

dk e−ikv(t−x/v)bIIk (0)
〉
+ c. c.

)
+O(λ2) (6.27)

for t > x/v > 0.
Now we show that only the second term in Eq. (6.27) should be retained. First,

we consider the averages that involve bIIk . Both waveguides, the resonator, and the
qubit are entangled in the ground state due to the counter-rotating terms like σ−bαk
and abαk in H̃qα (6.17) and Hrα (6.5). However, far from overdamping [104],

κ, κq ≪ ωr, ωq, (6.28)

and for a narrow-band pulse, the system state is approximately separable. Then the
second waveguide state is close to vacuum at t = 0. Indeed, the system is thermalized
at a low temperature, kBT ≪ ℏωr. In this case, the number of thermal photons in
the waveguides and the resonator is negligibly small. The input pulse has no effect
on the second waveguide at t = 0. Hence the resonator-waveguide subsystem is in
the ground state. Therefore, the first term in Eq. (6.27) vanishes. So does the term
with ⟨a†(t)bIIk (0)⟩ and its conjugate. Now we treat the qubit-related averages. We
assume that the qubit and the cavity are not initially correlated. The correlation
arises, over the course of time, in the first order of interaction parameters λ and Λ,
⟨a†σ±⟩ = O(λ). Then the terms with λ+ Λ in (6.27) are of second order in λ, which
is beyond the accuracy of Eq. (6.27). Thus finally,

⟨ρtr(x, t)⟩ =
κ

2v
⟨a†a⟩t−x/v, t >

x

v
> 0. (6.29)

This expression is interpreted as follows. In a time ∆t, κ∆t/2 photons leak to the
waveguide, where they propagate over a distance v∆t. The shape of a propagating
pulse follows the cavity population dynamics. The delay x/v is due to finite velocity
of propagation v.

2.2 Cavity population

Using the Hamiltonian (6.15), one obtains the equation of motion for the resonator
variable

ȧ(t) = −iω̃r(t)a(t)−
∑

α=I,II

∫ ∞
0

dkfk(b
α
k + bα†k )t +O(λ2), (6.30)

ω̃r(t) = ωr + gΛσz(t) + gλσz(t). (6.31)
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Applying Eq. (6.25) to Eq. (6.30) leads to the Heisenberg-Langevin equation for t ≥ 0

ȧ(t) =
[
−iω̃r(t)−

κ

2

]
a(t)− κ

2
a†(t)− κq

2
(λ+ Λ)σx(t)

−
∑

α=I,II

∫ ∞
0

dkfk(b
α
k (0)e

−ikvt + h. c.) +O(λ2). (6.32)

It follows from the equation that κ is the decay rate of the resonator. Equations (6.30)–
(6.32) are correct to the first order in λ. This follows from the accuracy of the
Hamiltonian (6.15).

Now we solve Eq. (6.32). Since σ̇z(t) = O(λ), the time dependence of ω̃r(t) is of the
second order in λ. This exceeds the accuracy of Eq. (6.32) and should be neglected.
Integrating Eq. (6.32), one obtains

a(t) = a(0)e−(iω̃r+κ/2)t −
∫ t

0
dt′e−(iω̃r+κ/2)(t−t′)

{
κ

2
a†(t) +

κq
2
(λ+ Λ)σx(t

′)

+
∑

α=I,II

∫ ∞
0

dkfk[b
α
k (0)e

−ikvt′ + h. c.]
}
. (6.33)

We assume that the coupling is strong and κq ≲ g. Then the integrands proportional
to κq/2 contribute beyond the accuracy of Eq. (6.32):∫ t

0
dt′e−(iω̃r+κ/2)(t−t′)(λ+ Λ)

κq
2
σ±(t

′) ∼ κq
g

λg

|ωq ± ωr|
≲ λ2. (6.34)

Moreover, the term with bα†k (0)ei(vk+ω̃r)t′ oscillates fast and becomes negligible after
integration over t′. The same holds for the term with a†(t′)eiωrt′ , the contribution of
which is negligible under the condition (6.28). One can also extend the integration
over t′ to −∞, as for t′ < 0 the input pulse does not appreciably influence the cavity.
Then carrying out the integration yields

a(t) ≈ a(0)e−(iω̃r+κ/2)t − ifr√
κ/2

∑
α=I,II

∫ ∞
0

dkR(vk)bαk (0)e
−ivkt, (6.35)

R(ω) =

√
κ/2

i(ω̃r − ω) + κ/2
. (6.36)

It was taken into account that f(ω/v) ≈ fr in the vicinity of ω = ωr ± g(λ+ Λ).
To calculate the cavity population, one can use an expansion of unity in the whole

system Hilbert space,
1 = 1q1r1I1II. (6.37)

Here the unity operators of the system parts are:

1q = |↑⟩⟨↑|+ |↓⟩⟨↓| (6.38)

for the qubit space,

1r =

∞∑
nr=0

|nr⟩⟨nr| (6.39)
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for the cavity space, and

1α =
∞∑
n=0

∫ ∞
0

dk1 . . .

∫ ∞
0

dkn|wα
k1...kn⟩⟨wα

k1...kn |, (6.40)

|wα
k1...kn⟩ = να(n)

∏
k=k1,...kn

bα†k (0)|0α⟩ (6.41)

for the α-th waveguide space. In Eq. (6.41), να is a normalization constant which
satisfies ⟨wα

k1...kn
|wα

k1...kn
⟩ = 1.

First we express ⟨a†a⟩ for an arbitrary state of the input pulse. By insertion of
the unity operator one gets

⟨a†a⟩ = ⟨ψ|a†1a|ψ⟩, (6.42)

where
|ψ⟩ = |q⟩|0r⟩|wI⟩|0II⟩ (6.43)

is the initial state of the entire system. It is comprised of wavefunctions of the system
parts. |q⟩ is the qubit wavefunction and |0r⟩ is that of the resonator; |wI⟩ is the
wavefunction of the first waveguide and |0II⟩ is that of the second one. As explained in
the course of derivation of Eq. (6.29), the initial state (6.43) can indeed be considered
separable. The resonator and the second waveguide are in the vacuum state initially.
We substitute the unity expansion (6.37)–(6.41) into Eq. (6.42) and use Eq. (6.35).
Then, using the initial state of the system (6.43), one arrives at

⟨a†a⟩t =
f2r
κ/2

∞∑
n=0

∫ ∞
0

dk1 . . .

∫ ∞
0

dkn

× ⟨q|
∣∣∣ ∫ ∞

0
dk⟨wI

k1...kn |R(vk)bIk(0)e−ivkt|wI⟩
∣∣∣2|q⟩. (6.44)

It was used that a(0)|0r⟩ = 0 and bII(0)|0II⟩ = 0. We also employed the property∑
q′=↑,↓

|⟨q′|ζ(σz)|q⟩|2 = |⟨↑|q⟩ ζ(1)|2 + |⟨↓|q⟩ ζ(−1)|2

= ⟨q|
∣∣ζ(σz)∣∣2|q⟩, (6.45)

where ζ is a function of σz.
Note that Eq. (6.44) can also be obtained by writing out the explicit form of the

system state vector and finding the relevant amplitudes first. This approach was used
in Appendix C of Ref. [29] and in Chs. 4.6.1–4.6.3 of the thesis [105]. Also, we use it
in Sec. VII.2 where we consider a decay of a two-level system into a waveguide.

Now we provide an expression for the population, given the input pulse is in a
single-photon Fock state:

|wI⟩ = |1Iξ⟩ ≡
∫ +∞

−∞
dk ξ′(k)bI†k (0)|0I⟩. (6.46)

Here ξ′(k) is the incident pulse spectrum. That is, ξ′(k) is the amplitude of the
probability density of finding a monochromatic photon with a wave vector k. It holds
that

∫ +∞
−∞ |ξ′(k)|2 = 1 due to normalization. We assume the pulse to be narrow-band,

i.e., its spectral width is much smaller than its central frequency. Hence the limits
of integration in Eq. (6.46) were extended to −∞. Using Eqs. (6.46) and (6.44), one



3. Other types of qubit-resonator and resonator-waveguide couplings 79

arrives at
⟨a†a⟩t = ⟨q|

∣∣F [R(ω)ξ(ω)](t)∣∣2|q⟩. (6.47)

The equation is only applicable for t ≥ 0 due to the original restriction in the
Langevin equation (6.32). We have defined the pulse Fourier transform F [ξ(ω)](t) =
(2π)−1/2

∫ +∞
−∞ dω exp(−iωt)ξ(ω), where

ξ(ω) =
ξ′(ω/v)√

v
. (6.48)

The last expression follows from the dispersion relation (2.30) and n′(k)dk = n(ω)dω
with n′(k) = |ξ′(k)|2 and n(ω) = |ξ(ω)|2. Density of photons in an increment dω is
the same as for the corresponding increment dk.

2.3 Generalization to an N-photon pulse

Due to the linearity of the system in the dispersive approximation, an N -photon Fock
pulse populates the resonator N times the one-photon pulse:

⟨a†a⟩t = N⟨q|
∣∣F [R(ω)ξ(ω)](t)∣∣2|q⟩. (6.49)

The expression of the same form was obtained in Ref. [106] for a coherent input pulse.
Also, the formula (6.29) was obtained without any assumptions on the input state.
However, for this generalization to be valid, the condition (1.33) should be taken
instead of the condition (6.14).

3 Other types of qubit-resonator and resonator-waveguide
couplings

The coupling Hamiltonians (6.3) and (6.5) can be of more general form. If any type
of linear transversal coupling is allowed,

Hgen
qr = ℏ(g∗σ+a+Gσ−a+ h. c.), (6.50)

Hgen
rα = ℏ

∫ ∞
0

dk(fkb
α†
k a+ Fkbka+ h. c.), (6.51)

where the constants of interaction g, fk, and Fk are complex. Each coupling here
is a mixture of inductive coupling, capacitive coupling, and a coupling described by
charge-flux terms like QΦ.

One partial case of Eqs. (6.50) and (6.51) is important from a practical standpoint.
In the main part of Ch. VI and in Ch. VII, the qubit-resonator coupling is capacitive,
and the resonator-waveguide coupling is inductive, or vice versa. Let us consider
the case when the qubit-resonator and the resonator-waveguide interactions are both
either capacitive or inductive. To describe it, one could alter the Hamiltonian (6.5)
of the cavity-waveguide coupling to

Hsame-type
rα = ℏ

∫ ∞
0

dkfk(a+ a†)(bαk + bα†k ). (6.52)

Should we use these Hamiltonians, our treatment would change only trivially.
Consider the general case of Hamiltonians (6.50) and (6.51). It is straightforward
to generalize the unitary transformations (6.8) and (1.34) to that case. The total
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magnitude of the qubit-dependent shift of the cavity resonance changes to

χ = Re(g∗λ+G∗Λ). (6.53)

In the case of the same-type couplings, χ stays intact and is given by Eq. (6.18).
Photon transport in the dispersive regime does not depend on whether the qubit-
resonator and the resonator-waveguide couplings are different or of the same type.
Indeed, one can show that Eqs. (6.29), (6.44), and all the subsequent ones are the
same for any type of coupling.

4 Conclusion

We have treated a cavity quantum electrodynamics system with a method based on
the Heisenberg-Langevin equations. This approach has allowed us to make the RWA
naturally for the coupling to the waveguides and to highlight the condition (6.28) of
its validity. We have considered a situation when the RWA for the qubit-resonator
coupling breaks, but the counter-rotating terms in the Hamiltonian can be treated as
a perturbation. For this case, a theory of multi-photon transport through the system
has been developed in the dispersive regime, neglecting the exchange of excitations
between the resonator and the qubit. Explicit expressions have been given for the
resonator population and the transmitted density of photons. The expressions we
have provided hold for other combinations of the qubit-resonator and the resonator
waveguides couplings.
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Chapter VII

Qubit readout with a single-photon
pulse and a photodetector

Dispersive measurement [19, 51] is an established method for readout of a super-
conducting qubit [14, 18]. In the dispersive readout, a qubit is weakly coupled to a
resonator. Depending on the qubit state, the cavity resonance is shifted either to the
blue or to the red side. To probe the cavity, homodyne detection is usually used.
When the cavity is probed with a resonant coherent signal, it acquires a phase shift
that depends on the qubit state. This shift is measured by homodyning after several
amplification stages. To approach quantum-limited amplification, parametric ampli-
fiers [34] are used. This requires additional circulators and drive tones in the cryostat,
which makes the setup hard to scale with the number of qubits.

An alternative approach is to use a photodetector [37, 49]. Suppose the probe
frequency is chosen at the cavity resonance for a particular qubit state. Depending on
the state of the qubit, the radiation either mostly passes through the cavity or reflects
off it. A photodetector on the cavity output port provides a click for a particular
qubit eigenstate. The click can be picked up by room-temperature electronics, with
no need for a complex and bulky amplification chain [37]. The photodetector scheme
was demonstrated in Ref. [2].

A coherent probe is used in most of the implemented and proposed readout
schemes. States of the output radiation—different for the qubit in the ground and
the excited states—are approximately coherent, too. As coherent states are non-
orthogonal, it is impossible to discriminate them without errors. This contributes to
the readout error. To overcome this, in Refs. [106, 107] the homodyne readout is mod-
ified in a way that the output radiation is squeezed. However, even more circulators
and drives are needed in the input chain. The proposed protocols make the homodyne
measurement even harder to scale.

A Fock-state probe in the photodetector scheme can be used to avoid the errors
due to the non-orthogonality. In this work, we study the dispersive readout with the
smallest possible amount of energy—a single photon—in the probe pulse of a given
spatial form. That is also the simplest case for both experiment and theory. A single-
photon pulse can be generated with a single element: an artificial atom decaying into a
waveguide [108]. A simple vacuum detector such as a Josephson photomultiplier [1, 2],
which can only distinguish a vacuum input state, is suitable for the measurement.
Some of the results for that case might be helpful for approximate analysis of a more
sophisticated case of a multi-photon input pulse. We expect that the scheme studied

Chapter VII, except for Sec. 2, was published in “A. M. Sokolov and E. V. Stolyarov,
Phys. Rev. A 101, 042306 (2020)”. Copyright (2020) by the American Physical Society. All figures
except Fig. 7.3 were created by A. M. Sokolov. The majority of the text was written by A. M. Sokolov.
Calculations described in this chapter were carried out by A. M. Sokolov.

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.042306
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.042306
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Figure 7.1: Measurement scheme. Notations regarding the pulse, the
qubit, and the cavity are as in Fig. 6.1. The qubit is prepared at the
initial moment of time. To prepare the excited state |↑⟩, a π pulse is
used. On the second port there is an vacuum detector with a quantum
efficiency η. The pulse can be generated by decay of a two-level system
with the transition frequency ωp. The two-level system is protected
from a reflected photon by a circulator. The dashed circulator indicates
there is no back-action on the cavity due to reflection off the detector.

The back-action can also be avoided without a circulator [2].

can be scaled reasonably well. Indeed, compared to the readout method reported in
Ref. [2], our scheme only requires an additional circulator.

It is challenging to perform a readout with a single photon. We enhance the
readout efficiency by increasing the qubit-resonator coupling. With other parameters
unchanged, this increases an unwanted exchange of excitations between the qubit and
the resonator. To suppress it, the qubit-resonator detuning ωq−ωr should also be in-
creased. Eventually, ωq−ωr becomes of the same order of magnitude as ωq+ωr, which
invalidates the rotating-wave approximation (RWA). To remedy this, the counter-
rotating terms in the Hamiltonian can be treated in the first order of perturbation
theory. This gives a Bloch-Siegert shift in the cavity resonance [102, 103] as demon-
strated in the experiment of Ref. [109]. We show how this shift can be used to improve
readout.

In what follows, we provide the theory of the single-photon readout and show
how to optimize the parameters of the system with a simple analytical approach.
Example parameters are then given, for which we calculate the contrasts and the
qubit population in the end of the measurement. The latter is calculated with the
numerics described in Ref. [29]. The numerical approach is also used to calculate
contrasts more precisely and to further optimize the system parameters.

1 Measurement scheme

The readout setup is schematically depicted in Fig. 7.1. The resonance ωr of the
cavity is shifted to ωr + χ for the excited qubit state |↑⟩, and ωr − χ for its ground
state |↓⟩. At one of the resonances, a probe photon is incident on the cavity. Suppose
the photon central frequency is ωp = ωr + χ. If the qubit is in the excited state, it is
most likely that the photon passes through the cavity. Then the detector delivers a
click, which indicates that the qubit is excited. If there is no click, we decide that the
qubit is in the ground state. Due to a large qubit-resonator detuning, it is unlikely
that they exchange an excitation. Hence the measurement scheme can be highly
quantum-non-demolition [26].

In what follows, we use the following convention on the measurement sequence.
At t = 0 the probe photon is far from the resonator, so its influence on the cavity,
the qubit, and the detector is negligible. The pulse front reaches the cavity port at
t = t0. One waits for the detector clicks from t = 0 to tm, where tm is referred to as
the measurement time.
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x0

|1ξ〉

Figure 7.2: Generation of a single-photon pulse by a two-level system

2 Generation of an exponentially damped pulse

Here we show how the decay of a two-level system generates an exponentially damped
pulse.

The system we consider in this section is depicted in Fig. 7.2. The circulator
between the two-level system and the cavity (see Fig. 7.1) prevents any signal from
coming to the two-level system. This is modeled by a semi-infinite waveguide con-
nected to the two-level system. The Hamiltonian of the whole system is

H =
1

2
ℏωpσz + fℏ

∫ ∞
0

dk(σ+bk + h. c.) + ℏ
∫ ∞
0

dk ωkb
†
kbk. (7.1)

We have used the RWA here. The Hamiltonian is in fact the well-known Fano-
Anderson model, originally used to describe a discrete state coupled to a continuum
in an atom [110, 111] and in a solid [112]. In the interaction picture the Hamiltonian
reads

H → U †HU − iℏU †U̇ = fℏ
∫ ∞
0

dk(σ+bke
i(ωp−ωk)t + h. c.), (7.2)

where U = exp 1
iℏH0t with H0 =

1
2ℏωpσz + ℏ

∫∞
0 dk ωkb

†
kbk.

The Hamiltonian conserves the number of excitations. Therefore, if initially the
two-level system is excited and the waveguide is empty, the wavefunction of the system
reads

|ψ⟩ = c|0⟩|↑⟩+
∫ ∞
0

dk ξ′(k)b†k|0⟩|↓⟩ (7.3)

at any time. From the Schröinger equation

iℏ|ψ̇⟩ = H|ψ⟩ (7.4)

follows that

ξ̇′(k) = −ifcei(ωk−ωp)t, (7.5)

ċ = −if
∫ ∞
0

dk ξ′(k)e−i(ωk−ωp)t. (7.6)

The equations are easy to solve. Substituting Eq. (7.5) into Eq. (7.6) yields

ċ(t) = −f2
∫ ∞
0

dk

∫ t

0
dt′cei(ωk−ωp)t. (7.7)

By the same argument as used in the derivation of Eq. (1.60), the integration by k
can be extended to the negative values. The resulting integral is expressed in terms
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of the delta function; then, simplifying the expression gives rise to

ċ = −γc/2, (7.8)

where γ = 2πf2/v. Taking into account that c(0) = 1, one finds the solution to the
equation:

c(t) = e−γt/2. (7.9)

Substituting the solution into Eq. (7.5) and integrating yields

ξ′(k) =

√
γv

2π

1

ωk − ωp + iγ/2
(1− ei(ωk−ωp)t−γt/2), (7.10)

where it was used that ξ′ = 0 at t = 0. For t ≫ γ−1 the excitation has mostly gone
into the waveguide and

ξ′(k) ≈
√
γv

2π

e−iωkt

ωk − ωp + iγ/2
(7.11)

in the Schrödinger picture. We have applied U to go back from the interaction picture:

|ψ⟩Sch = U |ψ⟩ = ce−iωpt|0⟩|↑⟩+
∫ ∞
0

dk ξ′(k)e−iωktb†k|0⟩|↓⟩, (7.12)

hence ξ′ → ξ′e−iωkt. We call ξ′(k) the pulse spectrum. The amplitude of the proba-
bility density to find the photon at point x in the resulting pulse is

ϱ′(x) = F−1[ξ′(k)](x) =
√
γ

v
e(i

ωp
v
+ γ

2v
)(x−vt)θ(−x+ vt) (7.13)

up to a non-relevant phase. The resulting pulse is called exponentially-damped [113].
Now we rewrite the amplitude of the photon density of the pulse and its spectrum

in the coordinate system related to the cavity (see Fig. 6.1). We assume that the
process of forming of an exponentially damped pulse does not influence the cavity.
Again, due to the presence of the circulator, the waveguide connected to the cavity
first port can be considered infinite. At the initial instant of time the pulse front is
located at vt = −vt0:

ξ′(k) =
1√
2πvtp

eikvt0

k − kp + i(2vtp)−1
, (7.14)

ϱ′(x) =
1√
vtp

e[ikp+(2vtp)−1](x+vt0)θ(−x− vt0). (7.15)

where kp = ωp/v and tp = 1/γ. The photon density |ϱ′(x)|2 decays over the length
vtp, hence tp is regarded as the pulse duration. After traveling for time t0, the pulse
front arrives at the cavity first port at time t0.

A related problem of a single-photon absorption by a three-level atom was solved in
Ref. [114]. There, a formalism of non-Hermitian “Hamiltonians” was used to describe
the evolution of the atom “wavefunction” non-unitary dynamics [16]. Apart from
that technical difference, the treatment in the reference is equivalent to ours. The
cornerstone of both approaches is to assume that the coupling rate does not vary with
frequency.
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3 Readout contrast

Having obtained a description of photon transport in Ch. VI, we can now assess the
performance of our readout scheme. In this section, an expression for the readout
contrast in our measurement scheme is derived.

The measurement outcome is based on the state of an vacuum photodetector on
the second cavity port. We assign the readout result to be “↑” when there is a click
and “↓” in the other case. Hence Eq. (1.43) becomes

C = Pcl|↑[ξ(ω)]− Pcl|↓[ξ(ω)], (7.16)

where Pcl|q is the probability of a click, given that the qubit is prepared in an eigenstate
q =↑, ↓, and the cavity is irradiated by a pulse with spectrum ξ(ω).

The way we decide on the readout outcome is easy to justify in the dispersive
regime when the condition (6.14) holds. In this regime, the qubit does not decay
to the waveguides. Also, recall the input pulse is single-photon. Then at most one
photon reaches the second waveguide and the detector. In this case, the probability
of a click is

Pcl = η⟨Ntr⟩, (7.17)

where Ntr =
∫ tm
0 dtvρtr(t) is the total number of photons transmitted through the

cavity, tm denotes the counting time, and η is a quantum efficiency of the photodetec-
tor. It is clear from the form of Eqs. (7.17), (7.16) and the results of Ch. VI that the
contrast depends on the types of the qubit-resonator and the resonator-waveguides
couplings only through χ. With Eq. (6.29), Eq. (7.17) yields

Pcl = η
κ

2

∫ tm

0
dt⟨a†a⟩t. (7.18)

Suppose we have a high-Q resonator and a narrow-band incoming pulse. Let the pulse
be in resonance with the cavity if the qubit is excited:

ωp = ⟨↑|ω̃r|↑⟩ = ωr + χ, (7.19)

where ω̃r = ωr+ χσz analogously to Eq. (1.41) but with χ the total shift of the cavity
resonance (6.18). Then by Eqs. (6.47) and (6.36) the resonator reflects most of a pulse
if the qubit is in the ground state. Most likely, the detector does not click in this case.
On the other hand, if the qubit is excited, the resonator transmits most of the pulse
to the detector port. It is most probable then for the detector to deliver a click.

In the dispersive regime, Eq. (7.16) simplifies. Cavity population (6.47) is sym-
metrical with respect to a qubit flip and a shift of ξ(ω):

↑→↓, ξ(ω)→ ξ(ω + 2χ), ⟨a†a⟩ → ⟨a†a⟩; (7.20)

↓→↑, ξ(ω)→ ξ(ω − 2χ), ⟨a†a⟩ → ⟨a†a⟩. (7.21)

Due to Eq. (7.18) the symmetry applies to the click probability, too. Hence

C = Pcl|↑[ξ(ω)]− Pcl|↑[ξ(ω − 2χ)]. (7.22)
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Figure 7.3: Readout contrast as a function of the dimensionless dis-
persive pull X (7.24) and cavity leakage K (7.23). The dashed line

shows the position of maximum for each X.

It is convenient to introduce dimensionless quantities

τ =
t− t0
tp

, K = κtp, (7.23)

D = (ωr + χσz − ωp)tp, X = χtp. (7.24)

Equations (6.47)–(6.48), upon insertion of Eq. (7.14) yield

⟨a†a⟩ = θ(τ)⟨q| 4Ke
−(K+1)τ/2

(K − 1)2 + 4D2

[
cosh

(K − 1)τ

2
− cosDτ

]
|q⟩. (7.25)

If K = 1 and D = 0, one obtains

⟨a†a⟩ = θ(τ)12e
−ττ2. (7.26)

Using this result, one can check that for the exponentially damped pulse

C = Pcl|D=0 − Pcl|D=2X . (7.27)

The contrast is compromised by unwanted scattering. The first term in Eq. (7.27)
is less than unity, as a non-monochromatic photon can reflect off the cavity even in
resonance. The second term describes the loss of contrast due to the false photon
count. It occurs when a photon passes the cavity off-resonance.

Suppose the measurement is long enough for the detector to absorb most of the
outgoing pulse energy. That is, tm ≫ tp, κ

−1. Then one can integrate to ∞ in
Eq. (7.18). Performing the integration using Eqs. (7.26) and (7.25) gives

Pcl|D=0 =
ηK

K + 1
, (7.28)

Pcl|D=2X =
ηK(K + 1)

(K + 1)2 + 16X2
. (7.29)

Equations (7.27)–(7.29) and (7.23)–(7.24) constitute the expression for the contrast.
The contrast is shown in Fig. 7.3.
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Detuning the probe photon from a cavity resonance, i.e. ωp ̸= ωr ± χ, lowers the
contrast. To check this, one can straightforwardly generalize the expressions for the
contrast for a non-zero detuning. Note that when a coherent-state probe is used, the
maximum of contrast is away from the resonance due to the shot noise [49].

For a given X, the contrast is maximized for

K = u+
1

4u
− 1

2
, u =

3

√
X
√
16X2 + 1 +

16X2 + 1

4
− 1

8
. (7.30)

The position of maximum is shown in Fig. 7.3. For 2X2/3 ≫ 1 one obtains that

K ≈ 2X2/3. (7.31)

Note it follows that χ > κ.
As C grows with X, the case of a large dispersive pull is of interest. In this case,

one can give a simple expression for the maximal contrast. It is shown in Appendix A
that the contrast can be approximated as

C ≈ η
(
1− 3

2κtp

)
(7.32)

if the cavity decay rate K = κtp is optimal, as given by Eq. (7.31), and

X = χtp ≳ 100, (7.33)

with χ given by Eq. (6.18). As follows from the derivation of Eq. (7.32), a third of the
contrast loss is due to the false photon count off the resonance. The other two-thirds
are from the absence of a count in the resonance.

Equations (7.32) and (7.31) are the quantitative version of the general consider-
ations given in Ref. [69]. To readout the qubit in our setup means to distinguish a
change 2χ in the resonator frequency. This can only be accomplished if

2χtm > 1, (7.34)

where the measurement time tm is of the same order of magnitude as the pulse duration
tp.

4 Analytical optimization

Here we use our analytical results to choose the system parameters; the qubit re-
laxation is neglected. The main idea is to relate the minimal measurement time for
obtaining a given contrast with the time for the qubit to stay intact. One also takes
care to get acceptable errors due to finite counting time and to avoid qubit relaxation
due to the counter-rotating terms in the Hamiltonian.

4.1 Minimal pulse duration to get a given error

Here we determine a pulse duration tp that suffices to perform a readout with a given
accuracy. The counting time is considered infinite.
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It is convenient to argue in terms of the probability of an erroneous readout (1.47).
By expressing it in terms of contrast with Eq. (1.46) and using the approxima-
tion (7.32) for the latter, one gets

ε =
1− η
2

+
3η

8(χtp)2/3
. (7.35)

Let us assume η = 1. Then

tp ≥
1

χ

(
3

8ε

)3/2

(7.36)

suffices to get an error not exceeding ε.

4.2 Error due to a finite counting time

Let us calculate the degradation of contrast due to finite counting time. Integration
in Eq. (7.18) with limits from t = 0 to tm gives

Pcl(tm) = Pcl(∞)−∆(tm), (7.37)

where

∆(tm) =

(
Ke−τm + e−Kτm

2K
+

2e−(K+1)τm/2[(K + 1) cosDτm +D sinDτm]

(K + 1)2 + 4D2

)

× 2K2

(K − 1)2 + 4D2
, (7.38)

Pcl(∞) is the click probability given by Eq. (7.29), and τm = tm/tp. In the spirit of
the approximations used to obtain Eq. (7.32), one has

∆(τm)|D=0 ≈ (1 + 2/K)e−τm , (7.39)
∆(τm)|D=2X ≈ 0. (7.40)

Then, from Eqs. (1.43) and (7.24) it follows that

C(τm) = C(∞)−∆(τm), (7.41)

where C(∞) is given by Eqs. (7.22) and (7.28)–(7.29).
To have ∆ ≈ 0.3%, one chooses tm = 6tp. In comparison, for tm = 3tp the

degradation in contrast is already around 5%. For both cases, one needs K ≳ 10.

4.3 Maximal readout duration for the qubit not to relax

Qubit relaxation time T1 is limited by the time of its Purcell decay TP. From Refs. [19,
28], one has

T1 < TP, TP ≈
1

κλ2
. (7.42)

Here we assume that κq ≈ κ.
Thus the readout duration is limited by the condition

tm ≪ TP (7.43)
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The ratio TP/tm is chosen to avoid significant errors due to the qubit relaxation. Using
Eqs. (7.42), (7.23), and (7.31), one obtains

tp <

(
tp
2TP

)3/2 1

λ3χ
. (7.44)

The ratio tm/tp is chosen to limit the error due to finite integration time. The error
is given by Eqs. (7.41) and (7.39).

We don’t take into account the correction to the qubit relaxation due to the Bloch-
Siegert dressing. This is justified for

Λ2 ≪ λ2. (7.45)

Combining Eqs. (7.36) and (7.44) yields the limit on readout error,

(1− C)/2 = ε >
3TP
4tp

λ2. (7.46)

To express ε in terms of contrast C, Eqs. (1.47) and (1.46) were used. A reasonable
choice tm = TP/10 and tm = 6tp yields ε = 45λ2.

4.4 Parameter choice

Now one can determine all of the system parameters. By virtue of Eq. (7.46), λ is set
by the readout contrast to be attained. The other parameters are chosen as follows.
The ratio λ/Λ is set by the requirement (7.45) which limits the relaxation due to the
Bloch-Siegert dressing. In terms of this ratio,

ωr =
λ/Λ− 1

λ/Λ + 1
ωq. (7.47)

With this and the definition (6.14) of λ one gets

g = 2λωq(λ/Λ + 1)−1. (7.48)

Plugging the latter expression into Eq. (7.44) and using Eq. (6.18) results in

tp =
λ

2Λ

(
tp
2TP

)3/2 1

λ5ωq
. (7.49)

Measurement duration tm is related to tp by choosing an acceptable error due to finite
integration time, which is given by Eqs. (7.41) and (7.39). Resonator leakage κ can
be obtained with Eqs. (7.31) and (7.49), and definitions (7.23) and (7.24).

Equations (7.49) and (7.46) elucidate what parameters to alter for achieving fast
and high-fidelity readout. Higher ωq is favorable for our readout scheme. As shown
in Ch. IV and Ref. [49], a related scheme with a photodetector also favors higher
frequencies. Higher λ is especially beneficial if the qubit does not decay.

The dispersive shift gλ and the Bloch-Siegert shift gΛ should be of the same sign
to maximize the total pull χ (6.18). This is the case for ωq > ωr. For λ/Λ = 10 [which
satisfies Eq. (7.45)], the pull χ is about 20% larger for ωq > ωr than in the opposite
case. Hence tp (7.36) and tm decrease by the same percentage.

In the approximations used, the optimal parameters are the same for the case of a
multi-photon input. In the dispersive approximation, the system is linear with respect
to the number of input photons. Therefore, the contrast of the multi-photon readout
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Table 7.1: Parameters for high-fidelity readout. Contrasts Cd are
calculated in the dispersive approximation using Eq. (7.32). Contrasts
Cn and the post-measurement qubit populations P↑(tm) are obtained
numerically. An ideal detection is assumed with η = 1. The integration
time relates to the pulse duration as tm = 7tp. For analytical estimates

of parameters, tm = TP/15 is chosen.

ωq/2π ωr/2π λ g/2π κ/2π tm Cd Cn P↑
(GHz) (GHz) (MHz) (kHz) (ms) (%) (%) (%)
Parameters optimized analytically:
5.00 4.09 0.006 5.7 7.2 36.9 99.3 98.1 92.3

20.00 16.36 0.006 22.9 28.9 9.2 99.3 98.1 92.2
Parameters optimized numerically:
5.00 4.09 0.005 4.4 3.8 36.9 98.8 98.5 97.5

20.00 16.36 0.005 18.1 16.9 9.2 98.8 98.5 97.2

depends only on the probability of a single photon passing through the cavity when
the photon is off-resonant and the probability of reflecting it when the photon is in
resonance with the cavity. However, as explained for Eq. (7.32), these probabilities are
proportional to 1 − C. By increasing C these probabilities decrease, which increases
the contrast in the multi-photon case.

5 Estimates and comparison with numerics

In this section, we provide the system parameters optimized with the analytical ap-
proach of Sec. 4 and the parameters optimized with the numerical approach described
in Ref. [29]. We also compare the contrasts obtained with the analytical theory and
the numerics.

First let us discuss the cases when the analytical approach works well. The higher
the post-readout qubit population P↑ is, the better Cd approximates Cn. This is
seen from Tables 7.1 and 7.2. As for the parameters optimization, here the analytics
provides good results if high fidelities are targeted. We compare the resulting contrasts
with those obtained by numerical optimization; the details of the numerical method
are described below. One can see from Table 7.1 that numerical optimization gives
only a slight improvement of less than 0.5% for the contrast.

Note the readout times given in Table 7.1 are far beyond the best accessible life-
times of superconducting qubits as of 2022 [115–118]. The contrasts given in the table
do not take into account the intrinsic sources of the qubit decay, which start to play
a role at such times. The purpose of this table is to demonstrate the regime when the
formula (7.32) and the analytical optimization work perfectly well.

Numerical optimization provides considerably higher contrasts than the analytical
optimization if we optimize for a fast readout (see Table 7.2). This is explained as
follows. The qubit decay shifts the cavity resonance

⟨ω̃r⟩ = ωr + χ⟨σz⟩ (7.50)

during readout. This raises the probability of unwanted scattering due to the detuning
with the probe photon. According to Eqs. (7.50), (6.18), and (7.48), the shift suscep-
tibility to the decay in ⟨σz⟩ increases proportionally to λ2. However, the pulse spectral
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Table 7.2: Parameters for fast readout. Here the measurement time
is tm = 6tp, where tp is the pulse duration. For analytical parameter
estimates we set tm = TP/10. Other parameters, as well as notations,
are the same as in Table 7.1. To calculate Cd, Eqs. (7.27)–(7.29) are

used here as χtm does not satisfy the condition (7.33).

ωq/2π ωr/2π λ g/2π κ/2π tm Cd Cn P↑
(GHz) (GHz) (MHz) (MHz) (µs) (%) (%) (%)
Parameters optimized analytically:
5.00 4.09 0.059 53.6 4.08 1.0 71.0 67.9 89.2
20.00 16.36 0.050 180.0 9.99 0.6 79.1 75.9 88.9

Parameters optimized numerically:
5.00 4.09 0.095 86.4 5.80 1.0 82.0 75.8 66.5
20.00 16.36 0.074 269.0 12.90 0.6 86.3 80.6 71.9

density widens as λ5 according to Eq. (7.49), which reduces unwanted scattering due
to decay. The reduction is more effective with larger λ. Based on Eq. (7.49), it is the
increase of λ that is the best strategy to readout faster. As explained before, one can
sustain more qubit decay in that case. Therefore, tm/TP should be increased to allow
longer pulses and decrease the error (7.46) due to the pulse non-monochromaticity.
This is not taken into account in the analytical optimization: see Eq. (7.49), where the
ratio is fixed. As the numerical optimization yields larger tm/TP, the population P↑
is smaller for the relevant sets in Table 7.2. Note that P↑ is better for the numerically
optimized sets in Table 7.1. Indeed, λ is chosen small there to achieve high contrasts.
However, tm/TP in analytical optimization is too large to get relaxation errors that
are small enough.

6 Discussion and outlook

A protocol for the dispersive readout that uses merely a single photon has been consid-
ered in this chapter. We have managed to develop an analytical model of the readout
by neglecting the Purcell decay of the qubit. Using this theory, we have derived a com-
pact expression for the readout contrast. Optimal parameters of the system have been
expressed too. Both the readout time and its contrast are set by the characteristic
frequencies of the system ωq and ωr and by the ratio λ = g/(ωq − ωr) of the coupling
strength to the detuning. We have complemented our analytical approach with the
numerical model, which accounts for the relaxation. We have used the model to check
the analytical contrasts and to optimize the system parameters further. Making the
measurement time closer to the qubit lifetime results in more relaxation, but gives
less error due to the scattering. Numerical optimization allows one to find a compro-
mise between the relaxation and the scattering errors. It is particularly helpful for
designing a fast measurement reaching contrasts up to 90%. In that case, it gives an
increase in contrast of more than 5%. For the contrasts above 98%, numerics gives an
improvement of about 0.5%. We stress that the only sources of errors in our scheme
are qubit relaxation and unwanted scattering of the probe pulse.

There are no errors caused by the non-orthogonality of the states being distin-
guished by the detector. Despite the absence of these errors, our scheme is slower
than the state-of-the-art readout. We attribute this to the fact that it uses just one
photon. As the photon is non-monochromatic, it can pass or reflect the cavity when



92 Chapter VII. Qubit readout with a single-photon pulse and a photodetector

it is not wanted. By using more photons to probe the cavity, one can significantly
decrease the probability of those errors. For example, there are a few tens of pho-
tons in the measurement pulse in Ref. [51], as can be shown by simple estimates with
Eq. (20) of Ref. [69]. The case of multiple input photons is left for future work. Some
of the results obtained in this chapter might be helpful for the investigation of that
case. Due to the linearity of the system in the dispersive approximation, the scheme
parameters optimized analytically are the same as for the single-photon case. Besides,
we have obtained the formula for the photon transport in the multi-photon case. We
also believe that the features of the system behavior due to the excitation exchange
between the qubit and the resonator we have studied are qualitatively retained in the
multi-photon case.

There are other possibilities to improve our scheme performance. One can use
stronger qubit-resonator coupling g to obtain the higher magnitude g(λ + Λ) of the
qubit-dependent cavity pull. To retain the non-demolition character of the readout,
λ = g/(ωq − ωr) and the Purcell decay rate T−1P = κλ2 should be kept constant.
However, to minimize quasiparticle generation, the cavity and the qubit frequen-
cies ωr and ωq are limited by the superconducting gap. One can only increase the
|Λ/λ| = |ωq−ωr|/(ωq+ωr) ratio to overcome the Purcell decay. While doing so addi-
tionally improves the readout due to the higher Bloch-Siegert shift, one would need to
account for the qubit relaxation due to the counter-rotating terms in the Hamiltonian.
Interestingly, this type of relaxation depends on the combination of the qubit-resonator
and the resonator-waveguide couplings (see Ref. [20] and Sec. VI.3). Alternatively, a
Purcell filter [51] could be used to suppress the qubit relaxation while increasing the
coupling g. In this case, κq, the resonator decay rate as seen by the qubit, differs
significantly from the resonance decay rate κ. One can check that Eqs. (7.44), (7.46),
and (7.49) are then modified with the replacement tp/TP → (κ/κq)(tp/TP). Further-
more, if λ is replaced with λ

√
κ/κq, the measurement error ε (7.46) does not change.

The measurement time tm ∝ tp, however, decreases by the ratio of κ/κq. As can be
deduced from Ref. [32], κ/κq ∼ 100 is achievable for the typical parameters we use.

We expect that the studied setup for the superconducting qubit readout is favor-
able for on-chip integration. On-chip circulators were already demonstrated [119–121].
The same holds for single-photon sources [108, 122] and photodetectors [1, 2, 42, 45,
48]. Moreover, we only need one type of classical signals: those to prepare the states
of the qubit and the photon source. This may simplify the integration of control
circuitry on a chip using the single flux quantum logic. Such control was already
demonstrated [123], and some promising proposals for it were put forward [124–126].

In addition to the study of the single-photon readout, our work provides some
general results. We have shown that under the conditions (6.7), (6.6), and (7.45), a
change of coupling types does not change the magnitude of the dispersive pull. Hence
it does not alter the performance of a dispersive readout with any type of detector
and probe. Also, it has been found that the Bloch-Siegert shift can aid dispersive
readout. A proper choice of its sign increases the qubit-dependent cavity pull without
a substantial impact on the qubit lifetime.

In conclusion, a theory of a single-photon dispersive measurement with a photode-
tector has been developed. Using this theory, we have assessed the performance of
the scheme. Hence we were able to quantitatively analyze an ultimate limit of disper-
sive readout with an elementary portion of electromagnetic energy—a single photon.
Sources of the readout errors have been identified. The role of the Bloch-Siegert shift
and the coupling types has been elucidated. Some of our results are also valid for
the multi-photon input. For future work, considering multi-photon Fock pulses is of
interest.
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Appendices

A Derivation of the approximate formula for the readout
contrast

Here we show how to approximate Eqs. (7.27)–(7.29) with Eq. (7.32). Equations (7.27)–
(7.29) yield

C

η
=

K

K + 1
− 4K2

(K − 1)2 + 16X2

(
1

4
+

1

4K
− K + 1

(K + 1)2 + 16X2

)
. (7.A.1)

In what follows, we drop the terms that contribute below 0.1% to C/η. As η ∼ 1,
these terms contribute with the same order of magnitude to C too.

The Taylor expansion of the first term in Eq. (7.A.1) is K/(K + 1) = 1− 1/K +
1/2K2 + . . . We drop the terms starting from 1/2K2, as they contribute to the order
of magnitude 10−3 or less if X ≳ 40. This can be shown using Eq. (7.31). The second
term in Eq. (7.A.1) is approximated as K2/16X2, which is below or of order 10−2

for X ≳ 100. In the Taylor expansion 4K2/[(K − 1)2 + 16X2] = K2/4X2[1 − (K −
1)2/16X2+. . .] we neglect the terms starting with the second one. (K−1)2/X2 ∼ 10−1

contributes as 10−3 to C since K ≳ 10 for X ≳ 100. Also, we neglected the terms
1/4K and (K + 1)/[(K + 1)2 + 16X2] as these terms contribute not more than 10−3.
Finally,

C ≈ η
(
1− 1

K
− K2

16X2

)
= η

(
1− 3

2K

)
, (7.A.2)

for X ≳ 100; we used Eq. (7.31) in obtaining the last equality.
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Chapter VIII

Counting microwave photons to
two

1 Introduction

Quantum optics deals with indivisible units of electromagnetic radiation on an
elementary level. It is not restricted to optical frequencies or interactions with single
atoms. In fact, the platform of circuit quantum electrodynamics based on guided
microwaves and superconducting circuits containing Josephson junctions has proven
successful in implementing the functionality necessary for quantum optics [1, 19, 127]
and to reach unparalleled coupling strengths of microwave photons to matter [128,
129]. It is also a successful platform for quantum computing [130]. Unlike natural
atoms, the matter component of circuit quantum electrodynamics can be specially
tailored to perform a certain function [127]. For example, one can design a counter
of microwave photons which is based on Josephson junctions [1, 2, 38, 40–48, 53, 131,
132].

There are several reasons to have such a detector. At the end of a quantum
microwave experiment one usually amplifies a signal and then measures its ampli-
tude with a homo- or a heterodyne. To achieve a decent signal-to-noise ratio, several
amplification stages are required. Moreover, a cold stage with a quantum-limited
amplifier [34] is used. This requires bulky circulators and additional drive tones (see
e.g. Ref. [51]). In the optical range one usually uses a photon detector, which re-
acts to a certain amount of energy. Photodetectors were also demonstrated in the
microwave range. In Refs. [42–44] quantum non-demolition detectors were demon-
strated. In Ref. [45] a destructive detector was demonstrated that uses only coherent
quantum dynamics and hence allows rapid resetting. In Ref. [46], dissipation engi-
neering was used to implement a destructive detector. However, these detectors rely
on the readout of an ancillary qubit and their use in the readout of another qubit does
not reduce overhead. Moreover, the detectors include circulators and a several-stage
amplification sequence, which rules out the possibility for a compact design with the
current technology. The destructive detector demonstrated in Refs. [47, 48] is quite
compact as it only requires a resonator coupled to a Josephson junction. However,
it is slow, requiring seconds for a photon to be detected. Josephson photomultipli-
ers (JPMs) [1, 2] are especially compact, fast, and simple destructive detectors. The
use of JPM in a microwave quantum optics experiment allows one to avoid complex
and bulky amplification and promises integration with cold classical electronics [133].

Chapter VIII—except for Sec. 8, Appendix C, changes in Fig. 8.3, and various corrections—was
published in “A. M. Sokolov and F. K. Wilhelm, Phys. Rev. Appl. 14.6, 064063 (2020)”. Copyright
(2020) by the American Physical Society. The majority of the text was written by A. M. Sokolov.
Calculations described in this chapter were carried out by A. M. Sokolov.

https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.14.064063
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Figure 8.1: Two modes of operation of the JPM that counts to two.
In the two-photon mode, the JPM possesses three metastable states.
A single photon rarely excites the JPM to |1⟩ due to detuning ∆.
Two photons excite it to |2⟩, which then tunnels quickly to the (quasi)
continuum. JPM then “rolls” down the potential. This provides a
macroscopic voltage on the junction, which is interpreted as a click.
In the one-photon mode, the JPM possesses two metastable states. A

single photon can deliver a click.

This might be useful for faster control and data acquisition, as well as for building
quantum information processing devices with more qubits.

Most designs for microwave photodetectors demonstrated so far only discriminate
the vacuum state vs. the states with a non-zero number of photons, i.e., they are called
vacuum detectors [134]. However, for certain applications a detector that resolves the
input photon number is desirable. In the dispersive readout with a photodetector [2,
37, 135], photon number resolution can improve fidelity in certain schemes [49]. Other
uses include optimal discrimination of coherent states [136] and characterization [137]
of microwave single-photon sources [108, 122]. Detectors of microwave photons were
demonstrated [43, 44] and envisioned [42, 47] that possess limited capabilities for
number resolution. However, they have a large footprint and other disadvantages
discussed before, and they are only able either to distinguish a certain Fock state
against all other states [42, 44], react to photon number above a threshold [47], or
determine parity of the photon number [43]. The detector demonstrated in Ref. [41]
resolves up to three photons, but relies on readout of an auxiliary qubit and includes a
pump. To the best of our knowledge, no compact photodetectors with photon number
resolution were demonstrated or proposed in the microwave range.

We propose a compact, photon-number resolving JPM based on the two-photon
transition (see Fig. 8.1). It works as follows. First the JPM is set in the two-photon
mode and its ground state is prepared. In this mode, the JPM clicks if two or more
photons are present. This can be seen as an extension of a vacuum detector. Note that,
after a click, it is a slow process to return the JPM to a state where it is sensitive to
photons. If there are fewer than two photons, the JPM is tuned to the single-photon
mode. This can be done fast. Here it works as a vacuum detector and fires if a
photon is present. Hence the detector discriminates the vacuum state, single-photon
state, and states with two or more photons. We present a theory of this detector in
Sections 2–5 and evaluate its performance in Sections 6–7.
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Figure 8.2: a) Circuit diagram of a resonator mode coupled to a
JPM. The latter is a Josephson junction with a critical current I0 and
contact capacitance C. The junction is biased with an external current
I. Voltage U is read out by an external voltmeter. b) The potential

energy of the JPM.
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Figure 8.3: a) Another variant of JPM schematics: a flux-biased loop
with a Josephson junction. b) Energy landscape of this JPM variant,

as explained in Sec. 3.2.1 of Ref. [138].

2 Model

In this section, we write out the Hamiltonian of our system. Then, we treat dissipation
and tunneling with the Lindblad equation formalism. For simplicity, a current-biased
Josephson junction (Fig. 8.2) serves as a JPM model. However, we discuss why our
results are also applicable to the flux-biased JPM (Fig. 8.3).

2.1 Hamiltonian

We consider a resonator coupled to a JPM (see Fig. 8.2). Full system Hamiltonian is

H = HJPM +Hc +Hr. (8.1)

Here, the resonator Hamiltonian is given by

Hr =
Q2

r

2C̃r

+
Φ2
r

2Lr
, (8.2)

where Qr denotes the charge on the resonator capacitance Cr, and Φr is the drop
of node flux on it. A tilde denotes that a capacitance is renormalized by the JPM-
resonator interaction. The JPM Hamiltonian is of the form

HJPM =
Q2

2C̃
+W, W = −Φ0I0 cos 2π

Φ

Φ0
− IΦ. (8.3)

Here, Φ0 denotes the flux quantum. Q is the charge of the JPM capacitance C, Φ
is its node flux. The JPM resides in a washboard potential W , which is plotted in
Fig. 8.1. The resonator and the JPM interact through a coupling capacitance C ′. The
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coupling Hamiltonian is

Hc =
C̃ ′

CCr
QQr. (8.4)

The expressions for C̃, C̃r, and C̃ ′, as well as a detailed derivation of the circuit
Hamiltonian are given in Appendix A. One can promote our canonical variables to
operators. Their commutators are:

[Φ, Q] = [Φr, Qr] = iℏ, (8.5)

while the other pairs commute. For two related circuits, a similar Hamiltonian was
obtained in Ref. [139], which only differs in the type of coupling.

It is convenient to rewrite the Hamiltonian (8.1) in terms of ladder operators. In
the Hamiltonian model, we restrict the JPM dynamics to the metastable states in a
well—|0⟩, |1⟩, and |2⟩ in Fig. 8.1. For the resonator, we make a usual substitution (1.9)–
(1.10). The resulting Hamiltonian is

H =ℏ(ω +∆)|1⟩⟨1|+ ℏ2ω|2⟩⟨2|+ ℏωa†a
+ ℏg1(|1⟩⟨0|a+ h. c.) + ℏg2(|2⟩⟨1|a+ h. c.),

(8.6)

where1 g1 = C̃ ′(CCr)
−1√ℏ/2ρ ⟨1|Q|0⟩ and g2 = C̃ ′(CCr)

−1√ℏ/2ρ ⟨2|Q|1⟩. The JPM
is designed for its 0 → 2 transition frequency to match 2ω, where ω = 1/

√
LrC̃r is

the resonator frequency. The rotating-wave approximation was used in obtaining the
Hamiltonian. The coupling of the JPM to the resonator is assumed to be linear in
the field quadrature, hence its matrix elements in the Fock basis couple states that
are different by exactly one photon.

2.2 Lindbladian

The model given so far does not take into account the interaction with the external
degrees of freedom. First, in the Hamiltonian (8.6), we have excluded the states
the system tunnels to. Hence the tunneling is a non-unitary process in this model.
Moreover, even the non-truncated Hamiltonian (8.1) does not take account of the
non-radiative transitions in the JPM and its dephasing. However, it would turn out
that these processes, along with the tunneling, set the JPM performance.

To model them, we use the master equation formalism [60]. The Lindblad equation
for our system reads

ρ̇ = L̂ρ, L̂ρ =
1

iℏ
[H, ρ] + (L̂0 + L̂1 + L̂2)ρ. (8.7)

Lindbladians L̂0, L̂1, and L̂2 describe the incoherent processes involving the JPM
states |0⟩, |1⟩, and |2⟩:

L̂0 = γ0D[|m⟩⟨0|], (8.8)

L̂i = Γi i−1D[|i− 1⟩⟨i|] + Γi iD[|i⟩⟨i|] + γiD[|m⟩⟨i|], i = 1, 2. (8.9)

Losses in the resonator are neglected. Here D[•]ρ = •ρ •† −1
2 [•†•, ρ]+ with [a, b]+ =

ab + ba. For an i-th excited state of the JPM, γi is its tunneling rate, Γi i−1 is the
relaxation rate, and Γi i is the pure decoherence rate. In abbreviations like these, we

1Expressions for the coupling rates given in this thesis differ by the factor of i from our published
work [140] due to the difference in the definition of a and a†.
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mean double index in a subscript. |m⟩ denotes an amalgamation of the many possible
states the JPM can tunnel into [38].

We have also considered another model for the tunneling [141]. The model is
derived in Appendix C. It is also claimed in the appendix that for the model to
be valid, the metastable levels should be separated by a frequency of order of the
tunneling rates. In this case the JPM will not work, as the |1⟩ width is more than the
anharmonicity and a single photon can excite the JPM. However, for completeness we
also provide the dressed superoperator L̂ for this type of tunneling in Appendix D. It
turns out that this model reproduces the Lindblad tunneling in the RWA.

2.3 Flux-biased variation

A flux-biased loop with a junction [2] can be more convenient to operate. It avoids
voltages above the gap and hence quasiparticle production; therefore, the JPM can be
reset much faster. The circuit diagram of this JPM variant and its energy landscape
is shown in Fig. 8.3. Here, tunneling occurs to bound states in the global minimum.
One aims at a regime where the global minimum resides in a wide and deep well.
Then it is unlikely for an excitation to bounce back to the local minimum and get
re-emitted back to the resonator. In fact, there is a large number of densely separated
bound states, which can be treated as a continuum. Tunneling here can be described
in the same way as in the current-biased JPM we consider. Qualitatively, we expect
the same results for the flux-biased JPM variant.

3 Effective description of the two-photon processes

It is convenient to move to the frame where the first excited state of the JPM takes no
part in the system dynamics. The two-photon terms appear then in the Hamiltonian
explicitly. We use a Schrieffer-Wolff transform (see Ref. [142] and references therein)
to obtain the Hamiltonian in that frame. Also, one needs to know how the relaxation
processes are dressed in this picture. Therefore, the very transform is also applied to
the Lindbladian.

3.1 Effective Hamiltonian

One can decouple the first excited state of the JPM with the unitary transform [143]

U = exp(−λ1|1⟩⟨0|a+ λ2|2⟩⟨1|a− h. c.), (8.10)

where
λ1,2 = g1,2/∆. (8.11)

Hamiltonian (8.6) is then transformed as

H → U †HU ≈ ℏ(ω +∆+ χ1)|1⟩⟨1|+ ℏ(2ω − χ2)|2⟩⟨2|
+ ℏg̃(|2⟩⟨0|a2 + h. c.) + ℏ(ω + χ1σ

01
z − χ2σ

12
z )a†a

(8.12)

with

σijz = |j⟩⟨j| − |i⟩⟨i|, χi =
g2i
∆
, (8.13)

g̃ =
g1g2
∆

. (8.14)
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By regrouping the terms in Eq. (8.12), one can check that χ1 and χ2 are the Stark
shifts [19] per photon in the respective JPM levels.

The resulting Hamiltonian describes the system in the first order of perturbation
theory. We have neglected the terms which contribute to the H matrix elements as
λ21,2Nch or λ1λ2Nch, where Nch is a characteristic number of photons in the resonator.
Hence the Hamiltonian (8.12) holds if

λ21,2Nch ≪ 1. (8.15)

A transform is known [144], that exactly decouples the first excited state of a
three-level atom interacting with a resonator mode. However, it does not accomplish
this in the presence of the environment and is hence not useful here.

3.2 Interaction picture

It is convenient to move to the interaction picture with a unitary transform Ui =
exp(H0t/iℏ), where H0 is given by the first and the last lines in the right-hand side
of Eq. (8.12). That is, H0 is the effective Hamiltonian of the qubit and the resonator
including the parametric interaction terms. This gives rise to

H → U †i HUi − iℏU †i U̇i = ℏg̃|2⟩⟨0|eirta2 + h. c., (8.16)

r = 2χ1 − χ2 + (χ1 − χ2)N, N = a†a. (8.17)

We used the facts that |2⟩⟨0| → |2⟩⟨0| exp[i{2ω − χ2(N + 1) + χ1N}t] and a2 →
a2 exp[−2i(ω + χ1σ

01
z − χ2σ

12
z )t].

In the interaction picture, the non-diagonal elements of the density matrix (coher-
ences) do not oscillate with a high frequency. This simplifies the differential equations
that govern the matrix elements. What is more important, in the interaction pic-
ture decoherence becomes the fastest process. This would allow us to make crucial
approximations in Sec. 5.

Before that, one needs to check how the Lindbladian changes in the working frame.

3.3 Effective Lindbladian

Here we transform the Lindbladian first with the unitary transform U , as given in
Eq. (8.10), and then with Ui as in Eq. (8.16). Transition to another frame with
U changes the rates of non-unitary processes. In that frame, a resonator photon
gets dressed by the JPM, thus acquiring new channels of tunneling and decay. The
subsequent move to the interaction picture is also not completely trivial due to the
parametric interaction terms in H0.

While the density matrix transforms by ρ→ UρU †, jump operators of Lindbladi-
ans transform as

|i⟩⟨j| → U †|i⟩⟨j|U, i, j = 0, 1, 2,m. (8.18)

An explicit form of the Lindbladian transformed with U is given in Appendix B. It
contains the jump operators a and a† of the dressed resonator.

When moving further to the interaction picture, |i⟩⟨j| and a(†) in the Lindbladian
pick up oscillating factors with photon number operator in the exponent, similarly to
the operators in Eq. (8.16). These operator terms are due to the parametric interaction
in the effective Hamiltonian (8.12). The conservative part of the Lindbladian is trans-
formed by taking into account of the changes in the Hamiltonian, as in Eq. (8.16). As
for the dissipative part, one can check that the regular non-operator phases cancel out
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in the Lindbladian (8.B.1). On the other hand, the operator phases remain, as they
do not commute with ρ and a. It is straightforward to write down the dressed Lind-
bladian in the interaction picture L̂′. For that, one performs the substitutions (8.18)
with Ui as well as a(†) → U †i a

(†)Ui in the dressed Lindbladian (8.B.1).

4 Equations for the click probability

Probability of the detector click is given by the occupation of |m⟩ disregarding the
resonator state,

P =

∞∑
N=0

ρNm,Nm. (8.19)

Here
ρMi,Nj = ⟨M |ρij |N⟩, ρij = ⟨i|ρ|j⟩, (8.20)

where i, j = 0, 1, 2,m index the JPM states while M and N index the Fock states of
the resonator. In this section, we write out the exact equations that allows one to
calculate P .

First the equation on ρmm is given. Transforming the dressed Lindbladian (8.B.1)
to the interaction picture L̂→ L̂′ and projecting it on |m⟩ gives rise to

ρ̇mm =γ̂0ρ00 + γ̂1ρ11 + γ̂2ρ22

− (γ1λ2ρ̃12a− γ0λ1ρ̃01a− γ2λ2aρ̃12 + γ1λ1aρ̃01 + h. c.),
(8.21)

where ρ̃10 = ei(χ1+χ2)Ntρ10e
−iχ2Nt and ρ̃21 = eiχ2Ntρ21e

−i(χ1+χ2)Nt due to the trans-
formation to the interaction picture of the dressing correction L̂(1) in the Lindbla-
dian (8.B.1). The equation is given up to and including terms of order λ1 and λ2. In
Eq. (8.21) and in the following equations, we use the superoperators

γ̂0ρ = γ0e
iχ1Ntρe−iχ1Nt, (8.22)

γ̂1ρ = γ1e
−i(χ1+χ2)Ntρei(χ1+χ2)Nt, (8.23)

γ̂2ρ = γ2e
iχ2Ntρe−iχ2Nt, (8.24)

Γ̂10ρ = Γ10e
−i(2χ1+χ2)Ntρei(2χ1+χ2)Nt, (8.25)

Γ̂21ρ = Γ21e
i(χ1+2χ2)Ntρei(χ1+2χ2)Nt (8.26)

that take into account the effect of moving to the interaction picture on the bare
part (8.7) of the dressed Lindbladian. The only terms that change there are those
responsible for the accumulation in the JPM populations due to the incoherent pro-
cesses.

To complete Eq. (8.21), one needs equations for ρ̇00, ρ̇11, and ρ̇22 with the same
accuracy. For ρ̇12 and ρ̇01, the zeroth approximation in λ1 and λ2 would suffice.
Equations (8.B.1) and (8.16)–(8.17) yield

ρ̇00 = (ig̃ρ02e
irta2 + h. c.)− γ0ρ00 + Γ̂10ρ11 + ⟨0|L̂′(1)ρ|0⟩, (8.27)

ρ̇11 = −(γ1 + Γ10)ρ11 + Γ̂21ρ22 + ⟨1|L̂′(1)ρ|1⟩, (8.28)

ρ̇22 = (−ig̃eirta2ρ02 + h. c.)− (γ2 + Γ21)ρ22 + ⟨2|L̂′(1)ρ|2⟩ (8.29)
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in the first order in λ1 and λ2. Next we express

ρ̇01 = −ig̃a†2e−irtρ21 −
1

2
d01ρ01 +O(λ1 + λ2), (8.30)

ρ̇12 = ig̃ρ10a
†2e−irt − 1

2
d12ρ12 +O(λ1 + λ2), (8.31)

as well as

ρ̇02 = ig̃ρ00a
†2e−irt − ig̃a†2e−irtρ22 −

1

2
d02ρ02 + ⟨0|L̂′(1)ρ|2⟩+O(λ21 + λ22 + λ1λ2),

(8.32)

where

d01 = γ0 + γ1 + Γ10 + Γ11, (8.33)
d12 = γ1 + γ2 + Γ10 + Γ21 + Γ22, (8.34)
d02 = γ0 + γ2 + Γ21 + Γ22 (8.35)

are the full decoherence rates of the 0 → 1, the 1 → 2, and the 0 → 2 transitions,
respectively. Due to the form of Eqs. (8.27) and (8.29), we have calculated ρ̇02 in the
first order in λ1 and λ2.

It is straightforward to write out a full set of equations to calculate ρmm and P . To
do that, one transforms the dressed Lindbladian L̂ in Appendix B into the interaction
picture as described in Sec. 3.3, arriving at the working frame Lindbladian L̂′ with
a dressed correction L̂′(1). Then one uses the L̂′(1) matrix elements and projects
Eqs. (8.21) and (8.27)–(8.32) on the photon number states. However, in the regime
the device operates well, much simpler equations can be used.

5 Fast decoherence

If there are two photons in the resonator, the JPM should fire as fast as possible. After
the photons excite the JPM, it should tunnel immediately. More precisely, this should
happen much faster than the excitation bounces back coherently to the cavity or the
JPM relaxes non-radiatively. In this regime, the JPM decoheres instantaneously;
hence the system state is determined by the probabilities of the excitation to occupy
either the cavity or the JPM. Here we obtain the rate equations for the case of fast
decoherence.

For that case we assume that

Γ̃1 + Γ11 ≫ t−1, Γ̃2 + Γ22 ≫ Γ̃1, t
−1, (8.36)

where t is the time we observe the system at, and

Γ̃1 = γ1 + Γ10, Γ̃2 = γ2 + Γ21. (8.37)

By Eqs. (8.36), and given that
γ0 ≪ γ1 ≪ γ2, (8.38)

Eqs. (8.33) and (8.34) yield d01 ≈ Γ̃1 + Γ11 and d12 ≈ Γ̃2 + Γ22. Moreover, at time t
the coherences between the neighbor JPM levels have already died out,

ρ01 ≈ ρ12 ≈ 0, (8.39)
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which follows from the form of Eqs. (8.30)–(8.31) and the conditions (8.36). Equa-
tion (8.21) then simplifies to

ρ̇mm = γ0ρ00 + γ1ρ11 + γ2ρ22. (8.40)

One can show the system is then governed by rate equations. First we express ρ02
in terms of the probabilities ρ00 and ρ22. The formal solution of Eq. (8.32) reads

ρ02(t) ≈ ρ02(0)e−
1
2
(Γ̃2+Γ22)t + ig̃

∫ t

0
dt′e−

1
2
(Γ̃2+Γ22)(t−t′)

× [ρ00a
†2e−irt

′ − a†2e−irt′ρ22eΓ̃2t′e−Γ̃2t′ ]. (8.41)

We took into account that ⟨0|L̂′(1)ρ|2⟩ ≈ 0 due to Eq. (8.39). The first term in the
right-hand side vanishes due to Eqs. (8.36). Now we make an approximation similar to
the Weisskopf-Wigner one: we assume a†(t′), e−irt′ , ρ00(t′), and ρ22(t′)eΓ̃2t′ to change
slowly in comparison to the rate Γ̃2. Treating these terms as constants allows one to
perform the integration, which yields

ρ02(t) ≈ i
2g̃

Γ̃2 + Γ22

ρ00a
†2e−irt. (8.42)

Substituting this into Eqs. (8.27)–(8.29) and projecting them on the resonator Fock
states gives rise to

ρ̇N 0,N 0 ≈ −BN N−2ρN 0,N 0 − γ0ρN 0,N 0 + Γ10ρN 1,N 1, N ≥ 2

ρ̇N−2 2,N−2 2 ≈ BN N−2ρN 0,N 0 − Γ̃2ρN−2 2,N−2 2, N ≥ 2

ρ̇N 0,N 0 ≈ −γ0ρN 0,N 0 + Γ10ρN 1,N 1, N = 0, 1

ρ̇N 1,N 1 ≈ −Γ̃1ρN 1,N 1 + Γ21ρN 2,N 2.

(8.43)

It was used that the matrix elements ⟨i|L̂′(1)ρ|i⟩ ≈ 0 for i = 0, 1, 2 due to Eq. (8.39).
We have defined

BN N−2 =
4g̃2

Γ̃2 + Γ22

N(N − 1) (8.44)

the rate of absorption of two photons from an N -photon state. BN N−2 is also the
stimulated emission rate; however, Eqs. (8.43) do not contain stimulated emission
terms, as the stimulated emission is slow compared to the competing processes. One
can figure out from Eqs. (8.43) that the condition

BN N−2 ≪ Γ̃2 + Γ22 (8.45)

should hold, as we have assumed ρ00 and ρ22 to change slowly. Also, as e−irt′ is
assumed to change slowly as well, the condition

χ2Nmax ≪ Γ̃2 + Γ22 (8.46)

is required to hold. In the course of its derivation, it was taken into account that
χ2 − χ1 ∼ χ2 as

g2 ≈
√
2g1 (8.47)

in the harmonic approximation of the JPM potential. Nmax in Eq. (8.46) is the highest
number of a Fock state such that its occupation is not negligible. The condition (8.46)
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is easy to interpret in the laboratory frame. It makes sure that the two-photon tran-
sition is not detuned from the Stark-shifted second excited level more than by its
linewidth. This interpretation suggests that the condition might be weakened to use
the “<” inequality sign.

As manifested by Eqs. (8.43), the dressing does not change the rates of non-unitary
processes if the decoherence is fast; this can be explained as follows. Consider |1 0⟩
the dressed state of a photon and the ground-state JPM. In terms of the bare states,
it is a photon entangled with the excited JPM, |1 0⟩ ≈ |1 0⟩b + λ1|0 1⟩b. Admixture
of the bare excited JPM adds its decay channels to the dressed state. However, due
to the rapid decoherence, the state collapses to a statistical mixture. The addition to
the decay rate is then of order of λ21, which is negligible.

In the next subsections, we calculate the click probabilities for vacuum, single-
photon, and two-photon inputs. In the two-photon mode, a click should be delivered
if more than one photon dwells in the resonator; no click should occur in the opposite
case. Clicks that do occur for vacuum or single-photon inputs we call false counts.

5.1 Vacuum input

Here we determine the probability of a JPM click in the case there are no photons in
the resonator.

First we determine the initial state of the system. In the laboratory frame, both
the JPM and the cavity are in the ground state at the initial instant:

|Ψb(0)⟩ = |0 0⟩. (8.48)

So are they in our working frame,

|Ψ(0)⟩ = U †|Ψb(0)⟩ = |0 0⟩, (8.49)

where U is defined in Eq. (8.10). Therefore,

ρ(0) = |0 0⟩⟨0 0|. (8.50)

For this case, Eqs. (8.43), (8.19) and (8.40) simplify to

Ṗf = γ0ρ00,00 and ρ̇00,00 = −γ0ρ00,00. (8.51)

With the initial conditions given by Eq. (8.50) and

Pf(0) = 0, (8.52)

these equations yield
Pf(t) = 1− e−γ0t (8.53)

with γ0 the false count rate. The JPM can tunnel even while in the ground state,
hence delivering a false count.

5.2 One-photon input

Analogously to the previous case, one can determine the initial state. In the laboratory
frame

|Ψb(0)⟩ = |1 0⟩, (8.54)
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while in the working frame

|Ψ(0)⟩ =U †|Ψb(0)⟩
=|1 0⟩+ λ1|0 1⟩+O(λ21) +O(λ22),

(8.55)

ρ(0) = |1 0⟩⟨1 0|+ λ1|1 0⟩⟨0 1|+ λ1|0 1⟩⟨1 0|+O(λ21) +O(λ22). (8.56)

Recall that, in our working frame, there is no interaction with the JPM’s first ex-
cited state. However, in this frame, a bare photon acquires a part of it according to
Eq. (8.55). This may cause a click if the excitation from the first level tunnels.

In the limit of fast decoherence, the dressed initial state coincides with the bare
one. Due to Eq. (8.39), coherences vanish on times (8.36) we are interested in and

ρ(0) ≈ |1 0⟩⟨1 0|. (8.57)

Solving Eqs. (8.43), (8.19) and (8.40) with the initial conditions given by Eqs. (8.57)
and (8.52) yields

Pf(t) = 1− e−γ0t. (8.58)

The false count rate for the single-photon input is the same as for the vacuum input.
This can be explained as follows. As commented before, the one-photon admixture
in Eq. (8.56) may deliver a click. However, it relies on the system coherence. The
coherence dies out momentarily and the admixture decays before the JPM excitation
can tunnel.

This does not hold in the next order of perturbation theory. Luckily, there is a
simple way to estimate the next-order false count rate. This rate will provide the limit
of applicability of Eq. (8.58).

Let us calculate the tunneling rate due to the one-photon transition in the next
order of perturbation theory. As the conditions (8.36) of the fast decoherence are
secured, one can argue in terms of probabilities and transition rates. From Eq. (8.55),
probability of the JPM residing in the first excited state is

⟨1|ρ(0)|1⟩ = λ21 +O(λ31) +O(λ32). (8.59)

According to Eqs. (8.43), the first excited state tunnels with rate γ1. Therefore, for
the initial state ρ(0), the rate of the first-level tunneling is λ21γ1. Note the Eqs. (8.43)
are obtained up and including terms of the order of λ1,2 only. However, higher-order
terms in the equations only give rise to corrections of order beyond λ21,2 in the rate.

The tunneling rate via the first excited state sets the limit of validity of Eq. (8.58),

t≪ γ−11 λ−21 . (8.60)

For the two-photon input we consider below, the limit of validity is the same. It can
be obtained analogously.

5.3 Two-photon input

To determine initial conditions, one applies the same reasoning as for the vacuum and
the one-photon input. This gives rise to

ρ(0) = |2 0⟩⟨2 0|+ λ1|2 0⟩⟨1 1|+ λ1|1 1⟩⟨2 0|. (8.61)
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Γ10

Γ21
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|2 0〉 |0 2〉

|0 1〉

|0 0〉

|1 0〉

|0 0〉

Cavity ladder JPM ladder

γ2 � B20

Figure 8.4: Two-photon absorption in the limit of fast decoherence
and tunneling. {|mn⟩} are the states the JPM can tunnel to.

Due to the fast decoherence, the initial state should be approximated as

ρ(0) ≈ |2 0⟩⟨2 0|. (8.62)

This can be shown analogously to the case of one-photon input.
Equations (8.43), (8.19) and (8.40) become

ρ̇20,20 = −B20ρ20,20 − γ0ρ20,20, (8.63)

ρ̇02,02 = B20ρ20,20 − Γ̃2ρ02,02, (8.64)

ρ̇01,01 = −Γ̃1ρ01,01 + Γ21ρ02,02, (8.65)
ρ̇00,00 = −γ0ρ00,00 + Γ10ρ01,01, (8.66)

Ṗb = γ0ρ20,20 + γ2ρ02,02 + γ1ρ01,01 + γ0ρ00,00 (8.67)

with
B20 = 8g̃2/(Γ̃2 + Γ22) (8.68)

the two-photon absorption rate. The rate equations are illustrated in Fig. 8.4. Equa-
tions, similar to Eqs. (8.63)–(8.67) were obtained in Ref. [38] for the one-photon tran-
sition in a two-state JPM well. As compared to the reference, our equations lack the
stimulated emission terms. This is explained for Eqs. (8.43). Moreover, the ground
level tunneling was not accounted for in the reference.

We solve Eqs. (8.63)–(8.67) by carrying out the Laplace transform. The initial
conditions are given by Eqs. (8.62) and Pb(0) = 0. The solution in the Laplace
domain is

P̃b(s) =
γ0B20Γ21Γ10

s(s+ γ0)(s+ Γ̃1)∆2

+
γ1B20Γ21

s(s+ Γ̃1)∆2

+
γ0(B20 + Γ̃2) + γ2B20

s∆2
+
γ0
∆2

, (8.69)

where
∆2 = (s+ Γ̃2)(s+B20 + γ0). (8.70)

Now we find an expression for the click probability in the time domain. It is found
by calculating the inverse Laplace transform,

Pb(t) =
1

2πi

∫ σ+i∞

σ−i∞
ds estP̃b(s). (8.71)
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By carrying out the integrals and doing approximations, one arrives at

Pb(t) = 1− e−B20t − Γ21

γ2 + Γ21

Γ10

γ1 + Γ10
e−γ0t. (8.72)

We used the condition (8.38) and

γ0 ≪ B20 ≪ Γ̃2, (8.73)

where the last inequality is a more stringent version of the condition (8.45). This
allowed us to drop the terms proportional to B20/Γ̃2 and γ0,1/Γ̃2. These terms are
negligibly small in comparison to the second term in the equation. While it will turn
out the last term is also small, it decays much slower than the second one. Hence it is
considerable for t > 1/B20. Equation (8.72) holds for the times (8.36) coherence has
already vanished.

One can interpret Eq. (8.72). The second term there is the population of the state
|2 0⟩ of the resonator in the two-photon Fock state and the JPM in the ground state.
Tunneling from this state is negligible due to Eq. (8.73). After an excitation transfers
from |2 0⟩ to |0 2⟩ with the rate B20, it tunnels immediately due to the condition (8.45).
Hence 1− exp(−B20t) is the tunneling probability for the times before the resonator
is depleted. Afterward, the third term in Eq. (8.72) starts to matter. While absorbing
photons, the JPM can also relax to its first excited state |1⟩. After all photons are
absorbed, the JPM relaxes to |1⟩ with a small probability Γ21/(γ2+Γ21). From |1⟩ the
JPM relaxes to the ground state with the probability Γ10/(γ1+Γ10). There it is stuck
due to the slow ground-state tunneling of rate γ0, which only becomes substantial
for the longer times. While tunneling can also occur from |1⟩, this mostly happens
while the resonator is not yet depleted and the tunneling from |0 2⟩ is ongoing. Due
to the condition (8.38), this process is much faster than the tunneling from |1⟩ and
the respective term does not play a role in Eq. (8.72).

5.4 Error probability

One can now calculate the probability of false discrimination between the state with
N = 2 photons and the states with N = 1 or N = 0 photons. This error is expressed
as

ε = P0,1Pf + P2(1− Pb) (8.74)

where P0,1 = P0 + P1 and PN is a probability of an input state with N photons to
occur. Pb denotes a probability of a bright count—i.e., a probability of registering a
two-photon state when it dwells in the resonator. It was taken into account that the
probability of a false count Pf is the same for both N = 0 and N = 1.

If we know nothing about the resonator state beforehand, P0,1 = P2 = 1/2. Using
the expressions (8.53) and (8.58) for Pf and Eq. (8.72) for Pb yields

ε =
1

2
(1 + e−B20t +

(Γ21

Γ̃2

Γ10

Γ̃1

− 1
)
e−γ0t). (8.75)

The error probability is plot in Fig. 8.5.
With Eq. (8.75), it is possible to find the minimal error and the optimal waiting

time t. At
t ≈ 1

B20
ln
B20

γ0
(8.76)
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Table 8.1: JPM Parameters. The decay rates are from Ref. [145].
Coupling strength g1 is chosen as described in the text.

C I0 I/I0 Γ10/2π Γ22/2π g1/2π
(pF) (µA) (kHz) (MHz) (MHz)

2 10 0.97987 318 2.1 13.8

Table 8.2: Estimates for the JPM.

γ0/2π γ1/2π γ2/2π ω/2π ∆/2π B20/2π Nmax
(Hz) (kHz) (MHz) (GHz) (MHz) (MHz)

37 54 41 8.2 194 0.35 14

one attains the minimal error

ε ≈ γ0
2B20

(
1 + ln

B20

γ0

)
+

1

2

Γ21

Γ̃2

Γ10

Γ̃1

. (8.77)

One can check the expression is the same if the condition with γ0 in Eq. (8.73) is not
used in obtaining Eq. (8.72).

5.5 More than two photons in the input

For the case there are N > 2 photons in the cavity, a two-photon transition occurs,
leaving N − 2 photons in the cavity. To describe this, one only need to change the
state labels and B20 → BN N−2 in Eqs. (8.61)–(8.77). The bright count probability Pb

improves, as BN N−2 > B20 by Eq. (8.44). By the same reason, the error ε gets smaller
if one needs to discriminate a state with N > 2 photons against the states with one
or no photons. Moreover, the error is smaller even if N breaks the condition (8.15)
but the requirement (8.46) still holds. In that case, additional clicks are provided by
the single-photon transition and the subsequent tunneling from the first level.

6 Distinguishing a multi-photon state

In this section, example parameters for the JPM in the two-photon mode are provided.
For those parameters, we estimate the probabilities of bright and false counts, the time
to distinguish a multi-photon state, and the probability of false discrimination.

First let us summarize the requirements for our JPM to work as described above.
The energy of the junction plasma oscillations should much exceed that of a thermal
excitation, ℏωp ≫ kBT , where T is the temperature of the JPM environment. On the
other hand, we do not want to spur quasiparticles while exciting the JPM. Hence

ωp ≪ ∆gap, (8.78)

where ∆gap is the superconductor gap. Furthermore, the effective Lindbladian (8.B.1)
we have used is correct if the conditions (8.15) and (8.60) hold. Finally, we have
required the JPM to decohere fast by the conditions (8.36) and (8.45)–(8.46).

It is convenient to introduce the Josephson energy

EJ =
I0Φ0

2π
(8.79)
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Table 8.3: JPM performance in the detection of the two-photon
state. The bright Pb (8.72) and the false Pf count probabili-
ties [Eqs. (8.53) and (8.58)] are given for the optimal waiting time

t (8.76).

t Pf Pb

(µs) % %

4.2 0.1 98.6

and the capacitive energy

EC =
e2

2C
. (8.80)

The ratio
β = I/I0 (8.81)

is given in Table 8.1. For that ratio, three levels fit in the well.
One needs to know the position of the levels in the well. For that, we expand the

potential around the well minimum up to the cubic terms:

W

EJ
≈
√
1− β2
2

δ2 − β

6
δ3, (8.82)

where δ = 2πΦ/Φ0−ϕmin is the dimensionless flux with respect to the well minimum at
ϕmin = arcsinβ. To determine the level structure correctly, the cubic approximation
should be accurate in the region up to the barrier maximum at δmax = 2 cotϕmin. For
a weak anharmonicity, one can calculate the position of the levels using the second-
order perturbation theory [146, 147]. It is useful to define

n0 =
(1− β2)5/4

3β2

√
EJ

2EC
(8.83)

the barrier height in the units of

ωp =
1

ℏ
√
8EJEC(1− β2)1/4 (8.84)

the level separation in harmonic approximation. Expressions (8.83) and (8.84) coincide
with those given in Ref. [147]. Transition frequency from the ground to the first
excited state is ω10 = ωp(1 − 5/36n0). Transition frequency to the second excited
state is ω20 = ωp(2− 5/12n0) [70]. We aim to detect photons of frequency

ω = ω02/2. (8.85)

This photon is detuned from the 0→ 1 transition by

∆ = ω10 − ω =
5

72

ωp

n0
. (8.86)

We provide the value of ∆ in Table 8.2.
Knowledge of ∆ allows one to set g1 and g2. One can use the criterion (8.15) for

that. To be sure that no clicks are delivered when there is a single photon in the
resonator, Eq. (8.15) should hold for Nch = 1. This requirement does not matter for
bigger photon numbers—by the reasoning similar to that at the end of Section 5.4. So,
we choose λ2 = 0.1 which fulfills one of the requirements (8.15) for Nch = 1. By virtue
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Figure 8.5: Probability of missing a two-photon state for a device
with the parameters given in Table 8.1. (Inset) Error in the discrimi-
nation of the two-photon state against the states with fewer photons.

of Eq. (8.47), the part of the condition (8.15) with λ1 (8.11) holds automatically. From
the definition (8.11) of λ1 and λ2 and the relationship (8.47), one gets that

g2 = λ2∆, g1 = λ2∆/
√
2. (8.87)

One also needs to make sure that the condition (8.46) holds. This yields the
biggest photon number Nmax that can be distinguished from the single-photon and
the vacuum states. Its value is given in Table 8.2.

Let us calculate the rate B20 of the two-photon absorption. It follows from the
Eqs. (8.68), (8.14), (8.87), and (8.11) that

B20 ≈ 4λ42∆
2/(Γ̃2 + Γ22). (8.88)

Assuming flat density of states of the thermal reservoir, one can estimate in the
harmonic approximation that

Γ21 ≈ 2Γ10. (8.89)

Tunneling rates γ0, γ1, and γ2 are calculated with the WKB method [146] and are
given in Table 8.2. We used the expression [147]

γn =
ωn

n!
√
2π

(
n+ 1/2

e

)n+1/2

exp

(
−2S

ℏ

)
(8.90)

for the tunneling rate. The integral in the action S =
∫ Φ2

Φ1
dΦ
√

2C(W − ℏωn) was
carried out numerically 2 for the exact potential W given by Eq. (8.3). The n-th level
eigenfrequencies ωn and the barrier boundaries Φ1 and Φ2 were determined using the
cubic approximation. With all the necessary quantities obtained, one can calculate
B20. Its value is provided in the table.

Now one can estimate the JPM performance. The error (8.75) and the probability
to miss a two-photon state 1−Pb [see Eq. (8.72)] are shown in Fig. 8.5. The dominant
contribution to the false counts at the optimal counting time (8.76) is due to the
ground level tunneling as given by Eqs. (8.53) and (8.58). The false count probability
is given in Table 8.3. Transitions to the first excited state |1⟩ in the second-order

2The respective Python codes are available as a part of the GitLab repository [148].
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perturbation theory in λ1,2 contribute as well. However, one can check that by the
criterion (8.60) their effect is still vanishing for the relevant times. Also, |1⟩ could be
excited by an off-resonant single photon due to the level widening. However, this is
highly improbable, as

Γ̃1 + Γ11 ≪ ∆. (8.91)

7 Counting to two

A two-step procedure (see Fig. 8.1 and Section 1) is to be performed to count photons
to two. To switch from the two-photon mode to the single-photon one, bias current
I [see Fig. 8.2 and the Hamiltonian (8.3)] is changed so that the JPM possesses
two metastable states instead of three. Here we estimate the error in discrimination
between the vacuum input state, a one-photon state, and a multi-photon state. The
total time of the discrimination is estimated as well.

Full time to count to two is approximately the same as the time to distinguish
a multi-photon state vs. the vacuum or the single-photon state. Additional time
consists of the time to switch to the single-photon mode and the time to discriminate
the vacuum state. To spur no excitations in the JPM, the switching should be much
slower than the inverse transition frequencies. For the parameters in Table 8.1, the
switching can be as fast as 10 ns. Now let us compare the waiting times. Time to
discriminate a multi-photon state is determined by B20, as it follows from Eq. (8.72).
Time to discriminate the vacuum is set by γ1 in the two-state configuration and B10

the single-photon absorption rate. The latter can be calculated analogously to the
two-photon absorption rate (8.68). This yields B10 = 4g21/(Γ̃1+Γ11). With Eq. (8.14)
one has

B20

B10
= 2λ22

Γ̃1 + Γ11

Γ̃2 + Γ22

≈ λ22. (8.92)

Equation (8.89) and the fact that decay is much faster than the pure decoherence were
used in obtaining the last equality in Eq. (8.92). WKB estimate for the tunneling rate
from the excited state gives

γ1 ≈ 2π 19MHz. (8.93)

We chose I/I0 = 0.98473 to fit two levels in the well. By Eq. (8.93), as well as by
the value of B20 from Table 8.2 and Eq. (8.92), discrimination of the vacuum state is
much faster than that of a multi-photon state.

Now we find the probability to incorrectly determine the number of input photons.
Let P 0/1

b denote the probability to correctly identify a single-photon state in the second
stage; Pb denotes that in the first stage as before. Probability of error in the two-step
discrimination is then

ε0/1/2 = P0Pf + P1[Pf + (1− Pf)(1− P 0/1
b )] + P2(1− Pb). (8.94)

It was taken into account that the false count probability is negligible for the second
stage, as compared to Pf the false count probability in first stage. This is due to the
detection time in the second stage being much smaller than that in the first one. We
assume that nothing is known about the input and P0 = P1 = P2 = 1/3. One can
rewrite Eq. (8.94) in a more convenient form:

ε0/1/2 = 1
3 [Pf(1 + P

0/1
b ) + 1− P 0/1

b + 1− Pb]. (8.95)
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To compute ε0/1/2, one needs to estimate P 0/1
b . For the optimal counting time, a

photon is most probably absorbed by the JPM. However, this does not necessarily
give a click: a photon could get stuck in the ground state due to the JPM relaxation
with a probability Γ10/(Γ10 + γ1). Therefore,

P
0/1
b ≈ γ1/(Γ10 + γ1) ≈ 98.3%, (8.96)

where the estimate (8.93) was used. The expression (8.96) was also given in Ref. [54].
With the estimate (8.96) and the values from Table 8.3 one obtains

ε0/1/2 ≈ 1.1%. (8.97)

The optimal time can be chosen to minimize the full counting error (8.95) instead
of that in the discrimination of a multi-photon state (8.75). However, this does not
improve the full error substantially.

As explained in Sec. 5.5, Pb increases for more than two photons in the input;
hence ε0/1/2 decreases if one accounts for the higher photon numbers. However, the
difference for the photon numbers not much larger than two is not substantial, while
the cases with much more photons are unlikely in practice. Therefore, ε0/1/2 is a good
approximation to the error in discrimination between the vacuum state, single-photon,
and a multiphoton state.

8 Fast pure decoherence

In this section we consider the case when the pure decoherence dominates other rates:

Γ11 ≫ t−1, γ0, γ1,Γ10, (8.98)

Γ22 ≫ t−1, γ1, γ2,Γ10,Γ21, χ2Nmax, B20. (8.99)

where t is operation time. Historically, we first considered this very case, as we were
motivated by Ref. [38]. However, this regime is unpractical for our JPM. The reason
for that are JPM coupling rates limited by its nonlinearity according to Eqs. (8.15)
and (8.60). With the coupling rates fixed and Γ22 ≫ γ2, the two-photon absorption
rate B20 (8.68) is at least one degree of magnitude smaller for the case of fast pure
decoherence. Detection time is then changed accordingly. Moreover, reaching pure
decoherence that is faster than the |2⟩ tunneling probably requires sophisticated en-
vironment engineering and does not provide any benefits. Below, we give the results
for this regime for the sake of completeness.

Analogously to the derivation of Eqs. (8.43) one obtains

ρ̇N 0,N 0 =−B20(ρN 0,N 0 − ρN−2 2,N−2 2)− γ0ρN 0,N 0 + Γ10ρN 1,N 1, N ≥ 2,

ρ̇N−2 2,N−2 2 =B20(ρN 0,N 0 − ρN−2 2,N−2 2)− (γ2 + Γ21)ρN−2 2,N−2 2, N ≥ 2,

ρ̇N 0,N 0 =− γ0ρN 0,N 0 + Γ10ρN 1,N 1, N = 0, 1,

ρ̇N 1,N 1 =− (γ1 + Γ10)ρN 1,N 1 + Γ21ρN 2,N 2.

(8.100)

8.1 Vacuum and one-photon input

The derivation and the resulting click probabilities are the same as in the Secs. 5.1–5.2.
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8.2 Two-photon input

Analogously to the derivation of (8.63)–(8.66) one obtains:

ρ̇20,20 = −B20(ρ20,20 − ρ02,02)− γ0ρ20,20, (8.101)
ρ̇02,02 = B20(ρ20,20 − ρ02,02)− (γ2 + Γ21)ρ02,02, (8.102)
ρ̇01,01 = −(γ1 + Γ10)ρ01,01 + Γ21ρ02,02, (8.103)
ρ̇00,00 = −γ0ρ00,00 + Γ10ρ01,01. (8.104)

Equations (8.101) and (8.102) describe the induced emission and absorption caused
by a two-photon process, as well as the non-radiative processes. Equations of the
same form were obtained in Ref. [38] for a one-photon transition between the ground
and the first excited state.

We solve Eqs. (8.101-8.104) by carrying out the Laplace transform. The initial
conditions are given by Eqs. (8.62) and (8.52). This allows one to find the Laplace
transform of the click probability,

P̃ (s) =
γ0B20Γ21Γ10

s(s+ γ0)(s+ Γ̃1)∆2

+
γ1B20Γ21

s(s+ Γ̃1)∆2

+
γ0(B20 + Γ̃2) + γ2B20

s∆2
+
γ0
∆2

, (8.105)

where

∆2 = s2 + s(s+ 2B20 + Γ̃2 + γ0) +B20(γ0 + Γ̃2) + γ0Γ̃2 (8.106)

Γ̃1 = Γ10 + γ1, Γ̃2 = Γ21 + γ2, (8.107)

B20 = 8g̃2/Γ22 (8.108)

Now we find an expression for the click probability in the time domain. It is found
by calculating the inverse Laplace transform,

P (t) =
1

2πi

∫ σ+i∞

σ−i∞
ds estP̃ (s). (8.109)

This yields, after some algebra,

P (t) = 1− Γ21Γ10e
−γ0t

(Γ̃1 − γ0)(Γ̃2 − γ0)
+

(γ1 − γ0)B20Γ21e
−Γ̃1t

(Γ̃1 + s+)(Γ̃1 + s−)(γ0 − Γ̃1)

+
1

s+ − s−

[
es+t(

γ0B20Γ21Γ10

s+(s+ + γ0)(s+ + Γ̃1)
+

γ1B20Γ21

s+(s+ + Γ̃1)

+
B20(γ0 + γ2) + γ0Γ̃2

s+
+ γ0) + s+ → s−

]
. (8.110)

Here s+ → s− denotes the repetition of the previous term with s+ changed to s−.
Also,

s± = 1
2(−2B20 − Γ̃2 − γ0 ±

√
4B20 + (Γ2 − γ0)2), (8.111)

and the combined rates of non-radiative processes in the first and the second excited
states are denoted by

Γ̃1 = Γ10 + γ1, Γ̃2 = Γ21 + γ2. (8.112)

Below we consider some limiting cases of the expression (8.110). But first we
describe a convenient technique to approximate P (t).
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8.2.1 Approximations in the Laplace domain

It is not always convenient to analyze the limiting cases of P (t) (8.110) directly.
Instead, it may be easier to approximate P̃ (s) first. The approximate P (t) is then
found by the inverse Laplace transform.

We approximate P̃ (s) by approximating position of its poles. Three rules should
be obeyed:

(i) Neglecting ϵ in a pole position makes the approximation valid for ϵt≪ 1 only.

(ii) An approximated pole can be “merged” with another one.

(iii) An approximated pole should be much further from any other—except for the
one it is possibly merged with—as compared to the neglected quantity ϵ.

Also, in the time domain, we would often give prefactors of an exponent with
accuracy lower than its argument.

8.2.2 The limit of overwhelming ground-state tunneling

Let us approximate P (t) for γ0 ≫ B20,Γ21. In that case, poles s± (8.111) are approx-
imately −γ0 and −γ2. We have neglected a quantity of order O(B20) +O(Γ21) in the
poles. Using the rules from the previous subsection,

P̃ (s) ≈ γ0B20Γ21Γ10

s(s+ γ0)2(s+ Γ̃1)(s+ γ2)
+

γ1B20Γ21

s(s+ Γ̃1)(s+ γ0)(s+ γ2)

+
γ0γ2

s(s+ γ0)(s+ γ2)
+

γ0
(s+ γ0)(s+ γ2)

(8.113)

for
B20,Γ21 ≪ t−1, γ0, |γ2 − γ0|, |Γ̃1 − γ0,2|. (8.114)

Inverse Laplace transform gives

P (t) = 1− e−γ0t. (8.115)

The expression holds when the conditions (8.114) and (8.60) are satisfied.
Equation (8.115) is not hard to interpret. Ground state tunneling is much faster

than the excitation to the second excited state. Hence, only the ground state tunneling
can fire the JPM. That is the same situation as in the case of vacuum and one-photon
cavity. In this regime, the JPM cannot distinguish the two-photon state.

8.2.3 The limit of fast two-photon absorption and emission

Here we find P (t) for the case, when the two-photon processes are faster than any
other process captured by Eq. (8.110). As before, we first approximate s± (8.111).
Consider (Γ̃2 − γ0)/(2B20) is small. One can expand the square root in s± in this
quantity, which yields

s+ = −1

2
(Γ̃2 + γ0) +O

(
Γ̃2 − γ0
2B20

)2
B20

2
. (8.116)

We approximate the other pole as

s− = −2B20 +O(Γ̃2/2) +O(γ0/2). (8.117)
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Now one can approximate P̃ (s),

P̃ (s) ≈ γ0B20Γ21Γ10

s3(s+ 2B20)(s− s+)
+

γ1B20Γ21

s2(s+ 2B20)(s− s+)

+
(γ0 + γ2)B20

s(s+ 2B20)(s− s+)
+

γ0
(s+ 2B20)(s− s+)

. (8.118)

According to the rules from Sec. 8.2.1, the expression is valid for

2B20 ≫ γ2,Γ21, Γ̃1, γ0 ≪ 2B20, Γ̃2/2, (8.119)

t≪ Γ−11 , γ−10 , 8B20/Γ̃
2
2. (8.120)

Inverse Laplace transform of P̃ (s) yields

P (t) =
γ2

Γ21 + γ2
(1− e−(Γ21+γ2)t/2). (8.121)

The limit of applicability of this expression is set by conditions (8.119), (8.120)
and (8.60).

It is possible to interpret Eq. (8.121). First, we explain why exp[−(Γ21 + γ2)t/2]
gives the total population of the ground state |0⟩ and the second excited state |2⟩.
Two-photon absorption and emission are much faster than any other process. They
redistribute the population of |0⟩ and |2⟩ equally. Hence, at the initial instant of time
t = 0 those populations should be considered 1/2. In a small period of time ∆t, the
population of |2⟩ decays by (γ2 + Γ21)ρ02,02∆t. This gets immediately redistributed
with |0⟩. In the end, |2⟩ looses 1

2(γ2 +Γ21)∆tρ02,02 of its population, and so does |0⟩.
It follows that, at time t, there are 1

2 exp[(γ2 +Γ21)t/2] excitations at each of |0⟩ and
|2⟩. On the other hand, 1− exp[(γ2 +Γ21)t/2] excitations were lost due to incoherent
processes. Of those, γ2 of γ2 + Γ2 has tunneled and provided a click.

9 Discussion and outlook

We have proposed a detector of microwave photons with limited photon number reso-
lution. We were able to provide a simple analytical theory of the detector using that
its decoherence is fast compared to other processes due to the fast tunneling. Note
that the case of fast pure decoherence is unpractical, as in this case the two-photon
absorption is much slower. Realistic parameters have been provided that allow dis-
tinguishing between the vacuum, single-photon, and a multi-photon state in 4.2µs
with 1.1% error probability. The most time-consuming part in the device operation
is the discrimination of a multi-photon state vs. the single-photon or vacuum one.
The speed of this step is limited by the two-photon absorption rate, which in turn is
set by the coupling strength of the JPM to the cavity. To avoid single-photon tran-
sitions, the coupling should be much weaker than the JPM anharmonicity. A larger
anharmonicity can lead to faster detection. Moreover, faster detection decreases the
false count probability Pf . The probability to count photons incorrectly is determined
by Pf and the probabilities to miss a multi- and the single-photon state. As for the
probabilities to miss photons, they are determined by branching ratios between the
excited state tunneling and relaxation.

For the proposed parameters, the 8.2 GHz photons are detected. The frequency
can be chosen at the design stage in the range from 1 GHz to 20 GHz. The up-
per limit on the frequency is set by the superconducting gap of aluminum, which
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is about 82 GHz, and the condition (8.78). As for the lower limit, it is determined
by the requirement (8.91) for the intermediate level being narrow enough to exclude
single-photon transitions, the relationship (8.86) between the plasma frequency and
the anharmonicity, and an estimate for the decoherence of the JPM first excited state,
which is about 1 MHz.

Let us consider some avenues for development of the detector. One possibility is to
modify it for the detection of itinerant photons. It seems that the most straightforward
option is to attach a waveguide directly. This introduces reflection losses; to minimize
them, the detector should be matched to its input [113]. What is more important, a
detector can analyze only a part ητ of a pulse of duration τ for photon pairs and the
remaining part for single photons. In the second stage lasting (1−η)τ , the probability
of a photon click diminishes as P 0/1

b → (1 − η)P 0/1
b compared to the case when the

whole pulse is available. In the first stage that lasts ητ , the probability of a JPM
detecting a pair of photons diminishes as Pb → η2Pb. The resulting error in counting
to two is ε0/1/2 ≤ (1+ η− η2)/3 ≤ 5/12, where, to obtain the first inequality, we have
considered the case of no false counts, Pf = 0. Besides, the incoming pulse should be
no shorter than about 4µs for the JPM to detect a pair of photons reliably. Note that
using two detectors—first one in the two-photon mode and the next one in the one-
photon mode—is ruled out for the JPM described. Indeed, in that case the incoming
pulse first needs to interact with the two-photon detector solely. Interaction with the
one-photon detector can result in a absorption of a photon, which spoils the results
of the two-photon detector. Hence one needs a delay line between those; however, as
the incoming pulse duration is no shorter than 4µs, the delay line length should be
about 1 km to isolate the detectors. More viable option is to attach the resonator to a
waveguide; it will function as a capture cavity from Ref. [2, 41]. Instead of resonator,
one can also store the incoming photons in a low-loss loop, so that a short pulse
constantly returns back to the detector if its photons are not detected.

As another possibility, one can envision is a JPM that counts photons up to N .
This device might use an N -photon transition through N − 2 auxiliary levels at the
first stage to discriminate the states with N or more photons. Afterward, it can
be sequentially tuned to discriminate the states with N − 1, N − 2, and down to
1 photon. However, as the interaction strength for the JPM transition from |n⟩ to
|n− 1⟩ is approximately gn =

√
Ng1, the effective N-photon transition strength is

g̃(N) = g1 . . . gN/∆
N−1 = gN1

√
N !/∆N−1. This decays rapidly with N , which makes

the idea unpractical. However, it still might work if one can engineer stronger N -
photon coupling. The use of non-linear coupling that includes a Josephson junction
looks promising for that. A stronger coupling also improves the detection speed.
Another possibility to detect faster is to use a coherent Rabi oscillation between the
cavity and the JPM [2, 135]. To capture photons, the JPM can be operated in a
deep-well regime where tunneling is negligible for the first three of its states; after
that, one can tilt the JPM potential for the tunneling to occur from |2⟩. As compared
to incoherent absorption [see Eq. (8.44)], this process is not compromised by the
JPM decoherence. The excitation fully transfers to the JPM in Rabi half-period
π/2g̃N(N − 1). However, this time depends on the number N of resonator photons,
which severely restricts the detection efficiency of an arbitrary multiphoton state. On
the other hand, that might be another way to reach photon number resolution.
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Appendices

A Derivation of the circuit Hamiltonian

Lagrangian of the system in Fig. 8.2 is given by

L = LJPM+Lr+Lc, (8.A.122)

LJPM =
CΦ̇2

2
+ EJ cos 2π

Φ

Φ0
+ IΦ, (8.A.123)

Lc =
C ′(Φ̇− Φ̇r)

2

2
, (8.A.124)

Lr =
CrΦ̇

2
r

2
− Φ2

r

2Lr
. (8.A.125)

Here EJ is defined by Eq. (8.79).
Generalized momenta are

Q = ∂ L /∂Φ̇ = (C + C ′)Φ̇− C ′Φ̇r, (8.A.126)

Qr = ∂ L /∂Φ̇r = −C ′Φ̇ + (Cr + C ′)Φ̇r. (8.A.127)

The system Hamiltonian is given by the Legendre transform,

H = QΦ̇ +QrΦ̇r − L . (8.A.128)

One needs to find the kinetic energy part T of H. It is a quadratic form in Q and Qr,

T =
1

2

∂2H

∂Q2
Q2+

1

2

∂2H

∂Q2
r

Q2
r+

∂2H

∂Q∂Qr
QQr+

∂H

∂Q

∣∣∣∣
Q,Qr=0

Q+
∂H

∂Qr

∣∣∣∣
Q,Qr=0

Qr. (8.A.129)

It was used that potential energy, which composes the rest of H, does not depend on
the momenta. Differentiating Eq. (8.A.128) and using the expressions for generalized
momenta (8.A.126)–(8.A.127) gives rise to

∂2H/∂Q2 = ∂Φ̇/∂Q (8.A.130)

and ∂H/∂Q|Q,Qr=0 = 0. Other coefficients are given by the similar formulas. One
then determines the renormalized capacitances

C̃ =
C + C ′(1 + C/Cr)

1 + C ′/Cr
, C̃r =

Cr + C ′(1 + Cr/C)

1 + C ′/C
, (8.A.131)

C̃ ′ = (1/C ′ + 1/C + 1/Cr)
−1 (8.A.132)

in the Hamiltonian (8.1)–(8.4).

B Dressed Lindblad equation

Here we write out the explicit form of the first-order corrections in the Lindbladian
in our working frame.

On applying the transform U (8.10), the Lindbladian (8.7) becomes

L̂→ L̂+ L̂(1), (8.B.1)
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where L̂(1) is first-order in λ1 and λ2. It can be given in terms of its matrix elements:

⟨0| L̂(1)ρ |0⟩ =− λ2 Γ10 a
† ⟨2| ρ |1⟩+ 1

2
λ1 (Γ10 + Γ11 − γ0 + γ1) a

† ⟨1| ρ |0⟩
− λ1 Γ10 a ⟨0| ρ |1⟩+ c. c., (8.B.2)

⟨1| L̂(1)ρ |1⟩ =− 1

2
λ2 (−Γ10 + Γ11 + Γ21 + Γ22 − γ1 + γ2) a

† ⟨2| ρ |1⟩

+ λ2 Γ21 a ⟨1| ρ |2⟩+
1

2
λ1 (Γ10 − Γ11 − γ0 + γ1) a ⟨0| ρ |1⟩+ c. c.,

(8.B.3)

⟨2| L̂(1)ρ |2⟩ =− 1

2
λ2 (−Γ10 − Γ11 + Γ21 − Γ22 − γ1 + γ2) a ⟨1| ρ |2⟩+ c. c.,

(8.B.4)

⟨m| L̂(1)ρ |m⟩ =− λ2 γ1 a† ⟨2| ρ |1⟩+ λ1 γ0 a
† ⟨1| ρ |0⟩

+ λ2 γ2 a ⟨1| ρ |2⟩ − λ1 γ1 a ⟨0| ρ |1⟩+ c. c., (8.B.5)

⟨0| L̂(1)ρ |1⟩ =− λ1 Γ21 a
† ⟨2| ρ |2⟩+ 1

2
λ1 (Γ10 − Γ11 − γ0 + γ1) a

† ⟨1| ρ |1⟩

+ λ1 Γ10 ⟨1| ρa† |1⟩+
1

2
λ1 (Γ10 + Γ11 − γ0 + γ1) ⟨0| ρa† |0⟩

− 1

2
λ2 (−Γ10 − Γ11 + Γ21 + Γ22 − γ1 + γ2) ⟨0| ρa |2⟩ , (8.B.6)

⟨1| L̂(1)ρ |2⟩ =− 1

2
λ2 (−Γ10 − Γ11 + Γ21 − Γ22 − γ1 + γ2) a

† ⟨2| ρ |2⟩

+
1

2
λ1 (Γ10 + Γ11 − γ0 + γ1) a ⟨0| ρ |2⟩ − λ2 Γ21 ⟨2| ρa† |2⟩

− 1

2
λ2 (−Γ10 + Γ11 + Γ21 + Γ22 − γ1 + γ2) ⟨1| ρa† |1⟩ , (8.B.7)

⟨0| L̂(1)ρ |2⟩ =− 1

2
λ2 (−Γ10 − Γ11 + Γ21 + Γ22 − γ1 + γ2) ⟨0| ρa† |1⟩

+
1

2
λ1 (Γ10 + Γ11 − γ0 + γ1) a

† ⟨1| ρ |2⟩ , (8.B.8)

⟨m| L̂(1)ρ |0⟩ =1

2
λ1 (Γ10 + Γ11 − γ0 + γ1) ⟨m| ρa |1⟩ , (8.B.9)

⟨m| L̂(1)ρ |1⟩ =− 1

2
λ2 (−Γ10 − Γ11 + Γ21 + Γ22 − γ1 + γ2) ⟨m| ρa |2⟩

+
1

2
λ1 (Γ10 + Γ11 − γ0 + γ1) ⟨m| ρa† |0⟩ , (8.B.10)

⟨m| L̂(1)ρ |2⟩ =− 1

2
λ2 (γ2 − γ1 + Γ22 + Γ21 − Γ11 − Γ10) ⟨m| ρa† |1⟩ . (8.B.11)

For the calculation of the matrix elements, a custom simplifier was programmed for
the Maxima computer algebra system. The simplifier allows for a limited set of ma-
nipulations with the JPM bras and kets, and the resonator creation and annihilation
operators. The respective codes are available as a part of GitLab repository [148].

C The Ping-Li-Gurvitz tunneling master equation

In this appendix, we derive a master equation for tunneling in which each level tunnels
to the same set of states. In this case, tunneling can excite the system to a higher
metastable state for a short time. We generalize the Ping-Li-Gurvitz [141] derivation
of the master equation to arbitrary number of the metastable states. Besides, we
make an assumption that the derivation and the resulting equation is applicable to
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the tunneling of states from the same potential well [54]. Finally, we claim that this
theory is only applicable to closely separated metastable states.

C.1 Hamiltonian

Tunneling from the metastable states |i⟩ to the continuum states |c⟩ is described by
the Hamiltonian

H =
∑
i

ℏΩi|i⟩⟨i|+
∑
c

ℏωc|c⟩⟨c|+
∑
c,i

(ℏfic|c⟩⟨i|+ h. c.) (8.C.1)

It is useful to compare the Hamiltonian (8.C.1) with the Hamiltonian describing
relaxation to a reservoir. The Hamiltonian of a subsystem with levels |i⟩ that is in
contact with a thermal bath with N modes is

Hr =
∑
i

ℏΩi|i, 0⟩⟨i, 0|+
∑
i,j

ℏωij |i, 01, . . . 1j , . . . 0N ⟩⟨i, 01, . . . 1j , . . . 0N |

+
∑
i=1,...

j

(ℏfij |i− 1, 01, . . . 1j , . . . 0N ⟩⟨i, 0|+ h. c.) (8.C.2)

Before the relaxation the bath is in the vacuum state and the state of the full system
is |i, 0⟩. On relaxation, the subsystem falls down from the level |i⟩ to the level |i− 1⟩
while a mode j acquires a photon, resulting in the state |01, . . . 1j , . . . 0N ⟩ of the
bath. The resulting state of the full system is different for each level |i⟩. In this
respect the relaxation Hamiltonian (8.C.2) differs from the Ping-Li-Gurvitz tunneling
Hamiltonian (8.C.1). However, if each metastable state tunnels to a separate set of the
states across the barrier, the tunneling is described by mostly the same Hamiltonian.
The only difference is that the ground state can tunnel but cannot relax, and the
respective term is absent in the relaxation Hamiltonian.

C.2 The master equation

The system state
|Ψ⟩ =

∑
i

αi|i⟩+
∑
c

βc|c⟩ (8.C.3)

is governed by the Schrödinger equation

ih|Ψ̇⟩ = H|Ψ⟩. (8.C.4)

Using the Hamiltonian (8.C.1) and the form of the system state (8.C.3) one obtains
the equations

α̇i = −iΩiαi − i
∑
c

ficβc (8.C.5)

β̇c = −iωcβc − i
∑
i

ficαi (8.C.6)

Formal solution of for βc is

βc(t) = βc(0)e
−iωct − i

∫ t

0
dt′e−iωc(t−t′)

∑
i

ficαi(t
′). (8.C.7)
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We assume that the states |c⟩ are very dense with the density of states ρ(ωc) and

∑
c

ficβc(t) ≈
∑
c

ficβc(0)e
−iωct − i

∫ t

0
dt′
∫ +∞

−∞
dωcficρ(ωc)e

−iωc(t−t′)
∑
j

fjcαj(t
′).

(8.C.8)
As αi ∝ e−iΩit−γit, the integration by time yields a function that cuts a narrow region
in ωc. Only this region gives a substantial contribution to the integral by ωc [see the
derivation of Eq. (1.60)]. We assume that in this narrow region ρ(ωc) ≈ ρ, fic ≈ fi.
Then, with

∫ +∞
−∞ dωce

−iωc(t−t′) = 2πδ(t− t′), one has∑
c

ficβc(t) ≈ −iπρ
∑
j

fifjαj(t), (8.C.9)

where it was taken into account that the states |c⟩ are unoccupied initially,

βc(0) = 0. (8.C.10)

Substituting Eq. (8.C.9) into Eq. (8.C.5) gives rise to

α̇i = −iΩiαi −
∑
j

ηij

√
γiγj

2
αj , (8.C.11)

where γi = 2πρf2i and ηij = fifj/|fifj |. According to Ref. [141], when the wavefunc-
tions of |i⟩ and |j⟩ have the same pairness, ηij = 1, otherwise ηij = −1. However, all
ηij = 1 in Ref. [54].

One now can write out the master equation

ρ̇ij = i(Ωj − Ωi)ρij −
∑
k

(ηik

√
γiγj

2
ρkj + ηjk

√
γjγk

2
ρik) (8.C.12)

on the density matrix ρij = αiα
∗
j .

It is instructive to consider the case with two metastable states in the well and
γ1 = γ2 = γ. For the initial conditions ρ00 = 1, ρ11 = 0, and ρ01 = ρ10 = 0, the
solution of Eqs. (8.C.12) reads:

ρ00 =
γ2 cosh2 t

2

√
γ2 − ϵ2 − ϵ2

γ2 − ϵ2 e−γt, (8.C.13)

ρ11 =
γ2 sinh2 t

2

√
γ2 − ϵ2

γ2 − ϵ2 e−γt, (8.C.14)

ρ01 = ρ∗10 = −
iϵ(1− cosh t

√
γ2 − ϵ2) +

√
γ2 − ϵ2 sinh t

√
γ2 − ϵ2

2(γ2 − ϵ2) γe−γt, (8.C.15)

where ϵ = Ω1 − Ω0. The same equations are given in Ref. [141] for the case of small
level separation γ > ϵ. In the form (8.C.13)–(8.C.15) we present the equations, they
are also applicable for the case of ϵ > γ if one uses the rule that

√−β = i
√
β for

β > 0. In that case the oscillatory behavior appears.
A striking feature of this system is that |1⟩ can be excited due to the tunneling.

Coherence arises between |0⟩ and |1⟩ as, during the leakage to the continuum, both
states interact with the leaked part of the quantum. This coherence results in the
possibility of |1⟩ to be excited. However, according to Eq. (8.C.14) the excitation
lasts only for time 1/γ. Due to the Heisenberg inequality, ℏ(Ω1 − Ω0)/γ ≲ h. It
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follows that
Ω1 − Ω0 ≲ γ/2π. (8.C.16)

Therefore, the theory is applicable to closely separated levels only. A possible ex-
planation is that with a wider separation each level tunnels to a separate continuum
of levels. Note that in the Ω1 − Ω0 ≫ γ case this feature does not appear in the
population (8.C.14). That is what one should expect. In that case one can throw out
the rapidly oscillating terms in the master equation (8.C.12) that link the coherence
and the populations. Then it reproduces the Lindblad master equation for tunneling.
The latter can be obtained from Eq. (8.7).

D The JPM with the Ping-Li-Gurvitz tunneling

Here we determine the first-order correction L̂(1) to the dissipative part of the JPM
master equation superoperator for the Ping-Li-Gurvitz tunneling model. It is argued
that, in the RWA, the model is equivalent to the Lindblad tunneling.

The superoperator is defined similarly to the case of Lindblad tunneling as in
Eq. (8.B.1), but for the case of the tunneling described by Eqs. (8.C.12). The bare
part of the superoperator can be figured out from these equations. We then determine
its dressed correction L̂(1). Its matrix elements read:

⟨0| L̂(1)ρ |0⟩ =− λ2 Γ10 a
† ⟨2| ρ |1⟩ − 1

2
(λ1
√
γ1 γ2 + λ2

√
γ0 γ1) a

† ⟨2| ρ |0⟩

+
1

2
λ1 (γ1 − γ0 + Γ11 + Γ10) a

† ⟨1| ρ |0⟩ − 1

2
λ1
√
γ0 γ1 a

† ⟨0| ρ |0⟩

− 1

2
λ2
√
γ0 γ2 a ⟨1| ρ |0⟩ − λ1 Γ10 a ⟨0| ρ |1⟩ −

1

2
λ1
√
γ0 γ1 a ⟨0| ρ |0⟩

+ c. c., (8.D.1)

⟨1| L̂(1)ρ |1⟩ =− 1

2
λ2 (γ2 − γ1 + Γ22 + Γ21 + Γ11 − Γ10) a

† ⟨2| ρ |1⟩

+
1

2
(λ2
√
γ1 γ2 + λ1

√
γ0 γ1) a

† ⟨1| ρ |1⟩ − 1

2
λ2
√
γ0 γ2 a

† ⟨0| ρ |1⟩

− 1

2
λ1
√
γ0 γ2 a ⟨2| ρ |1⟩+ λ2 Γ21 a ⟨1| ρ |2⟩

+
1

2
(λ2
√
γ1 γ2 + λ1

√
γ0 γ1) a ⟨1| ρ |1⟩

+
1

2
λ1 (γ1 − γ0 − Γ11 + Γ10) a ⟨0| ρ |1⟩+ c. c., (8.D.2)

⟨2| L̂(1)ρ |2⟩ =− 1

2
λ2
√
γ1 γ2 a

† ⟨2| ρ |2⟩ − 1

2
λ1
√
γ0 γ2 a

† ⟨1| ρ |2⟩ − 1

2
λ2
√
γ1 γ2 a ⟨2| ρ |2⟩

− 1

2
λ2 (γ2 − γ1 − Γ22 + Γ21 − Γ11 − Γ10) a ⟨1| ρ |2⟩

+
1

2
(−λ1

√
γ1 γ2 − λ2

√
γ0 γ1) a ⟨0| ρ |2⟩+ c. c., (8.D.3)

⟨0| L̂(1)ρ |1⟩ =− λ1 Γ21 a
† ⟨2| ρ |2⟩ − 1

2
(λ1
√
γ1 γ2 + λ2

√
γ0 γ1) a

† ⟨2| ρ |1⟩

+
1

2
λ1 (γ1 − γ0 − Γ11 + Γ10) a

† ⟨1| ρ |1⟩ − 1

2
λ1
√
γ0 γ1 a

† ⟨0| ρ |1⟩

− 1

2
λ2
√
γ0 γ2 a ⟨1| ρ |1⟩ −

1

2
λ1
√
γ0 γ1 a ⟨0| ρ |1⟩+ λ1 Γ10 ⟨1| ρa† |1⟩

− 1

2
λ1
√
γ0 γ2 ⟨0| ρa† |2⟩+

1

2
(λ2
√
γ1 γ2 + λ1

√
γ0 γ1) ⟨0| ρa† |1⟩
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+
1

2
λ1 (γ1 − γ0 + Γ11 + Γ10) ⟨0| ρa† |0⟩

− 1

2
λ2 (γ2 − γ1 + Γ22 + Γ21 − Γ11 − Γ10) ⟨0| ρa |2⟩

+
1

2
(λ2
√
γ1 γ2 + λ1

√
γ0 γ1) ⟨0| ρa |1⟩ −

1

2
λ2
√
γ0 γ2 ⟨0| ρa |0⟩ ,

(8.D.4)

⟨1| L̂(1)ρ |2⟩ =− 1

2
λ2 (γ2 − γ1 − Γ22 + Γ21 − Γ11 − Γ10) a

† ⟨2| ρ |2⟩

+
1

2
(λ2
√
γ1 γ2 + λ1

√
γ0 γ1) a

† ⟨1| ρ |2⟩ − 1

2
λ2
√
γ0 γ2 a

† ⟨0| ρ |2⟩

− 1

2
λ1
√
γ0 γ2 a ⟨2| ρ |2⟩+

1

2
(λ2
√
γ1 γ2 + λ1

√
γ0 γ1) a ⟨1| ρ |2⟩

+
1

2
λ1 (γ1 − γ0 + Γ11 + Γ10) a ⟨0| ρ |2⟩ − λ2 Γ21 ⟨2| ρa† |2⟩

− 1

2
λ2
√
γ1 γ2 ⟨1| ρa† |2⟩ −

1

2
λ1
√
γ0 γ2 ⟨1| ρa |1⟩

− 1

2
λ2 (γ2 − γ1 + Γ22 + Γ21 + Γ11 − Γ10) ⟨1| ρa† |1⟩

− 1

2
(λ1
√
γ1 γ2 + λ2

√
γ0 γ1) ⟨1| ρa† |0⟩ −

1

2
λ2
√
γ1 γ2 ⟨1| ρa |2⟩ ,

(8.D.5)

⟨0| L̂(1)ρ |2⟩ =− 1

2
(λ1
√
γ1 γ2 + λ2

√
γ0 γ1) a

† ⟨2| ρ |2⟩

+
1

2
λ1 (γ1 − γ0 + Γ11 + Γ10) a

† ⟨1| ρ |2⟩ − 1

2
λ1
√
γ0 γ1 a

† ⟨0| ρ |2⟩

− 1

2
λ2
√
γ0 γ2 a ⟨1| ρ |2⟩ −

1

2
λ1
√
γ0 γ1 a ⟨0| ρ |2⟩

− 1

2
λ2
√
γ1 γ2 ⟨0| ρa† |2⟩ −

1

2
λ1
√
γ0 γ2 ⟨0| ρa |1⟩

− 1

2
λ2 (γ2 − γ1 + Γ22 + Γ21 − Γ11 − Γ10) ⟨0| ρa† |1⟩

− 1

2
(λ1
√
γ1 γ2 + λ2

√
γ0 γ1) ⟨0| ρa† |0⟩ −

1

2
λ2
√
γ1 γ2 ⟨0| ρa |2⟩ .

(8.D.6)

The matrix elements were calculated with a Maxima script that is available in
the GitLab repository [148]. We used ηij = (−1)i+j in the course of obtaining
Eqs. (8.D.1)–(8.D.6). Unlike the approach of Sec. 5, here we do not find the L̂(1)

matrix elements with |m⟩. Probability of the detector click can be obtained as
P = 1−∑∞N=0(ρN 0,N 0 + ρN 1,N 1 + ρN 2,N 2). One can then obtain the rate equations
as described in Sec. 4.

However, there is no need to do that in practice. The superoperator L̂ as given by
the equations (8.C.12) contains the rapidly-oscillating terms like the one proportional
to √γ0γ2|0⟩a†⟨2|ρ|0⟩⟨0|. We consider the case when the tunneling rates are orders of
magnitude smaller than the JPM level separation (see Table 8.2). In that case, the
rapidly-oscillating terms can be neglected. Then one arrives at the Lindblad superop-
erator as given by Eq. (8.B.1) and the subsequent equations. This approximation can
be done one step earlier, as discussed in Appendix C. Note also that, as explained in
Sec. 2.2, the JPM does not work under the conditions we expect the Ping-Li-Gurvitz
tunneling to occur.
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Chapter IX

Conclusion

The thesis has considered several methods of dispersive readout, measurement-induced
qubit decoherence, and a photon-number resolving detector of microwave photons. We
have also provided some background theory relevant to the field.

Chs. II–III derive the results which are known in literature, albeit with original self-
containing methods. In Ch. II, we have quantized a semi-infinite waveguide connected
to a resonator, which is a part of the system that is used for dispersive readout of
a superconducting qubit. Ch. III presents the full Hamiltonian of the system in
the RWA, for the case of continuous coherent radiation incident on the cavity. The
model is used to determine the quadratures of the radiation transmitted through the
cavity. When performing a dispersive readout with a homodyne detection, it is these
quadratures which are monitored to infer the state of the qubit. The Hamiltonian of
Ch. III is used in Chs. IV and V.

In Chs. IV and VII, we have considered some schemes of dispersive readout that
use a photodetector. Ch. IV considers a readout with a continuous coherent radiation
and an ideally photon-number-resolving detector. The readout is optimized using the
two figures of merit: SNR and the readout contrast. During the readout process,
the cavity resonance gets shifted depending on the qubit state (ground or excited).
One can probe the cavity with coherent radiation at the frequency that is resonant
for the qubit in the excited state. Then if the qubit is excited, large amount of
photons gets transmitted through the cavity, and very few photons are transmitted
otherwise. However, to obtain the maximal SNR in the difference in photon counts
between the qubit states, one should detune the probe from the resonance. Other
optimal parameters also exhibit non-trivial dependence on each other, as discussed
in Sec. IV.6. We have found that it is enough to maximize the SNR to achieve a
close-to-the-best contrast for most practical purposes. Ch. VII considers a readout
with a Fock pulse and a vacuum detector. To achieve better readout contrasts, we
use the parameters that invalidate the RWA; hence we provide a description of the
readout that is valid beyond the RWA. In Ch. VI, we provide a theory of the Fock
pulse transport through the cavity-qubit system beyond the RWA in the dispersive
approximation. With a Fock pulse, there is no shot noise in the transmitted radiation
and hence no associated measurement error—unlike the standard schemes that use a
coherent probe. The readout error in that case is due to the unwanted reflection of
a photon in resonance with the cavity and transmission of an off-resonant photon.
These processes occur due to finite linewidths of the cavity resonance and the photon.
Despite the absence of shot noise in the probe, the single-photon readout performance
is behind that of standard schemes, where tens of photons are used in the probe. Some
possibilities to improve the readout are discussed in Sec. VII.6. It might be interesting
to study the use of several-photon Fock pulses.

Ch. V considers an effect of the cavity thermal photons on the measurement-
induced qubit decoherence. We have considered a qubit that is read out dispersively
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with a coherent radiation. As the qubit frequency depends on the cavity photon
number, its fluctuations—both thermal and the shot noise fluctuations—cause qubit
decoherence. We obtain a simple formula valid for the weak measurement regime,
that is, when the dispersive shift of the cavity due to the interaction with the qubit
is much smaller than the cavity decay rate. For nb thermal photons in the cavity, the
decoherence rate grows proportionally to nb + 1/2 when nb is small. We have used a
physically motivated approximation regarding time ordering in the weak measurement
limit. It might be worth proving this approximation in the future. Note that in
the case of a Fock-state probe, there is no photon shot noise in the cavity. The
qubit decoherence in that case is due to the process of photodetection and might be
interesting to study.

In Ch. VIII, we have proposed a JPM that is able to count microwave photons
up to two. It can be used in a scheme of dispersive readout from Ch. IV, where the
ability to count photons starts to matter if one aims at fidelities of about 73% and
higher. The detector uses a two-photon transition through an intermediate level to
test for the states with two and more photons. The main limiting factors for the JPM
performance are the anharmonicity of its potential (the bigger the anharmonicity the
better) and the rate of non-radiative decay (the less the decay rate the better). It
might be possible to design a much faster two-photon JPM by using a Josephson
nonlinearity in the JPM-photon coupling. Our preliminary calculations show that
such a nonlinearity allows for fast two-photon transitions. If this can be scaled to
higher multi-photon processes, a JPM may arise that is able to count photons up to
three or four. Also, with use of a capture cavity, the JPM can be utilized to count
flying photons. As discussed in Sec. VIII.9, other possibilities to do that are not
practical. Beside, we discuss the idea to load photons to the counting JPM with
Rabi oscillations and the idea to extend the original JPM to count higher photon
numbers with multi-photon transitions via intermediate levels—both ideas have been
found unpractical.
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