
Frank Maurer
SEKI Report SR—91-09 (SFB)

EGDELwONK
G

a
n

m
m

‚_„m
a

m
u

m
UP

E
MOCE.KAC

‚
t

m
—

3
0

.
8

0
2

0
!

S
R

O
-O

s
m

s
o

a
g
fi
fi
fi

m
m

.E
O

n
m

E
.

.
_

v
fi

m
g

a
g

e
s

5
0

.
0

5
0

5
0

0
”

.

CA~lE~

<C <ID mm~ un Lt ~ If Cl 2a1ll cdl ~ cdl

OCIID<IDwn<ecdl~~ lE IID ~n IID ~®lfnIID~

Frank Maurer

University of Kaiserslautern

Depl of Computer Science

P.O. Box 3049, D-6750 Kaiserslautern

Germany

e-Mail: maurer@infonnatik.uni-Id.de

Abstract

In this paper we describe the CAKE-System which uses a hypertext abstract machine

(HAM) to support the development of expert systems. The CAKE-System is based on

the ideas of KADS but tries to overcome some of its shortcomings. It is developed to

support a scenario where multiple knowledge engineers cooperate with multiple experts

to built a maintainable knowledge base.

Keywords

Knowledge Engineering, Knowledge Acquisition, Hypertext, KADS

1. The Knowledge Engineering Process

Based on our experience in expert systems for diagnosis, construction, and planning in

technical domains, we work on a workbench which supports multiple knowledge

engineers cooperating with many experts in building knowledge bases. We divide the

process of knowledge acquisition in two steps (which may also be found in literature):

First a model must be constructed which describes all relevant entities of the domain,

Page 1- CAKE

CAKE:
Com-[punteraaficdledl

Knowledge Eng ineer ing

Frank Maurer

University of Kaiserslautern
Dept. of Computer Science

PO. Box 3049, D-6750 Kaiserslautern
Germany

e-Mail: maurer@informatikuni-kl.de

Abstract

In this paper we describe the CAKE-System which uses a hypertext abstract machine
(HAM) to support the development of expert systems. The CAKE-System is based on
the ideas of KADS but tries to overcome some of its shortcomings. It is developed to
support a scenario where multiple knowledge engineers cooperate with multiple experts
to built a maintainable knowledge base.

Keywords

Knowledge Engineering, Knowledge Acquisition, Hypertext, KADS

1 . The Knowledge Engineering Process

Based on our experience in expert systems for diagnosis, construction, and planning in
technical domains, we work on a workbench Which supports multiple knowledge
engineers cooperating with many experts in building knowledge bases. We divide the
process of knowledge acquisition in two steps (which may also be found in literature):
First a‘model must be constructed which describes all relevant entities of the domain,

Pagel-CAKE

mailto:maurer@infonnatik.uni-Id.de

second these entities must be instantiated with the domain knowledge. Therefore we

define:

knowledge acquisition = model construction + knowledge elicitation.

To construct the model the knowledge engineers have to collect data about the domain.

Then they have to structure the gathered information to find how the problem is solved:

they build a conceptual model (see [Wielinga, Schreiber, Breuker 91]). After structuring

the domain a formal ("design") and operational ("implementation") model must be built.

To summarize, the results of the model construction process are

•	 a collection of all gathered infonnations about the domain (today this data is stored

on different media; often it is only inside the heads of the knowledge engineers),

•	 a description of the domain in a semi-formal language (e.g. for diagnosis this

language includes concepts like symptoms, tests, fault descriptions, etc.),

•	 descriptions of the possible inferences and tasks,

•	 a specification of the integration of the resulting expert system into the application

environment (e. g. the interaction with the human users, the interfaces to other

software systems), and

•	 parts of a knowledge base and an inference engine.

In the second step the domain knowledge is elicitated and expressed in the (developed)

language (e.g. the possible symptoms of a failure in a CNC machining center are repre

sented, the symptoms which determine a special failure are asked, etc.).

The knowledge a~uisition process results in an expert system which shall be used to

support the every day tasks of the end users. Therefore, it normally must be integrated

into a heterogeneous environment of people and computer systems which are doing their

work. The resulting system is not stable over a longer period of time. People learn to do

their work in a better way, the communication structures change, the access to (external)

sources of information is improved. Normally,these changes result in an adaptation of

the software: maintenance is needed (which rises the costs of software development).

This fact forces us to defme knowledge engineering as:

knowledge engineering = knowledge acquisition + integration + maintenance

This view stresses that knowledge engineering primarily is a kind of software

development and should produce systems which take advantage of the inherent abilities

of computers. The machines should support people in doing their jobs. For this purpose

we use methods which are appropriate for computers (which means the methods are

Page 2- CAKE

second these entities must be instantiated with the domain knowledge. Therefore we
define:

knowledge acquisition = model construction + knowledge elicitation.

To construct the model the knowledge engineers have to collect data about the domain.
Then they have to structure the gathered information to find how the problem is solved:
they build a conceptual model (see [W ielinga, Schreiber, Breuker 91]). After structuring
the domain a formal ("design") and operational (“implementation") model must be built.

To summarize, the results of the model construction process are
' a collection of all gathered informations about the domain (today this data ‘is stored

on different media; often it is only inside the heads of the knowledge engineers),
° a description of the domain in a semi-formal language (e.g. for diagnosis this

language includes concepts like symptoms, tests, fault descriptions, etc.),

° descriptions of the possible inferences and tasks,
° a specification of the integration of the resulting expert system into the application

environment (e. g . the interaction with the human users, the interfaces to other

software systems), and
° parts of a knowledge base and an inference engine.

In the second step the domain knowledge is elicitated and expressed in the (developed)
language (e.g. the possible symptoms of a failure in a CNC machining center are repre-
sented, the symptoms which determine a special failure are asked, etc.).

The knowledge acquisition process results in an expert system which shall be used to
support the every day tasks of the end users. Therefore, it normally must be integrated
into a heterogeneous environment of people and computer systems which are doing their
work. The resulting system is not stable over a longer period of time. People learn to do
their work in a better way, the communication structures change, the access to (external)

sources of information is improved. Normally, these changes result in an adaptation of
the software: maintenance is needed (which rises the costs of software development).
This fact forces us to define knowledge engineering as:

knowledge engineering = knowledge acquisition + integration + maintenance

This view stresses that knowledge engineering primarily is a kind of . software
development and should produce systems which take advantage of the inherent abilities
of computers. The machines should support people in doing their jobs. For this purpose
we use methods which are appropriate for computers (which means the methods are

Page2- CAKE

"computer adequate"). We think that the constructions of expert systems need not

produce a program which simulates the human expert (which is "cognitive adequate")

because the abilities of people are different from the abilities of machines. The

cooperation of humans and computers should produce improved problem solving

behaviour. Therefore, we specify the human-computer-interaction on a very abstract

layer: inside the conceptual model.

2. Requirements and Critiques

The fIrst step in building expert systems is collecting a huge amount of information.

Thereby the knowledge engineers discuss the problem with the experts, read text books,

get tables and diagrams etc. A lot of different media are involved in transfering these

informations. We think that these data should be stored in a single system so that it can be

used for further maintenance. We call this collection "Data Level".

Based oil the data level description the knowledge engineers have to structure the domain

resulting in the conceptual model. In KADS this step is not supported. Also, the

description of a conceptual model in KADS mainly depends on the experience of the

knowledge engineers1• Another critique on KADS is that the inference layer is specifIed

in a kind of flow chart depending on the functionality of the system Research in software

engineering has shown ([Meyer 88]) that the development of software should be based

on the data structures because they will change less in a program's life than the

functionality. This result leads to object oriented design, which is also not supported by
KADS.	 "..

A main source of costs within the life of software (and also of expert systems) arises

because of the diffIculties in maintenance. So, a knowledge engineering system has to

support the development of easily maintainable software. This may be supported by

references from the source code to its underlying assumptions and informations. Further

it must be possible to express when a knowledge base is consistent, so that a system may

check automatically these conditions for the actual knowledge base.

1	 The attempts to defme a fonnal, which means operational, language for conceptual models is in our

opinion misleading: the distance from the data level to a formalized knowledge base is often to large

that it can be done in one step. We think that an advantage of KADS is that it devides this distance in

more than one step.

Page 3- CAKE

"computer adequate"). We think that the constructions of expert systems need not
produce a program which simulates the human expert (which is "cognitive adequate")
because the abilities of people are different from the abilities of machines. The
cooperation of humans and computers should produce improved problem solving
behaviour. Therefore, we specify the human-computer-inter'action on a very abstract
layer: inside the conceptual model. "

2 . Requirements and Critiques

The first step in building expert systems is collecting a huge amount of information.
Thereby the knowledge engineers discuss the problem with the experts, read text books,
get tables and diagrams etc. A lot of different media are involved in transfering these
informations. We think that these data should be stored in a single system so that it can be
used for further maintenance. We call this collection "Data Level".

Based on the data level description the knowledge engineers have to structure the domain
resulting in the conceptual model. In KADS this step is not supported. Also, the
description of a conceptual model in KADS mainly depends on the experience of the
knowledge engineersl. Another critique on KADS is that the inference layer is specified
in a kind of flow chart depending on the functionality of the system. Research in software
engineering has shown ([Meyer 88]) that the development of software should be based
on the data structures because they will change less in a program’s life than the
functionality. This result leads to object oriented design, which is also not supported by
KADS. ""

A main source of costs within the life of software (and-also of expert systems) arises
because of the difficulties in maintenance. 80, a lmowledge engineering system has to
support the development of easily maintainable software. This may be supported by
references from the source code to its underlying assumptions and informations. Further
it must be possible to express when a knowledge base is consistent, so that a system may
check automatically these conditions for the actual knowledge base.

1 Theattempts todefmea formal, which meansoperational, language for conceptual models is inour
opinion misleading: the distance from the data level to a formalized knowledge base is often to large

Mitcanbedoneinonestep. We think thatan advantageofKADS isthatitdevides thisdistancein

morethanouestep.

Page3-CAKE

Another requirement in the development of expert systems is the support of rapid

prototyping. In the context of model-based knowledge acquisition a rapid prototype may

be seen as an operational specification.

From our point of view, a knowledge engineering system has to support a kind .of

"model-based rapid prototyping". The building of a rapid prototype is often needed to

convince and satisfy the client who normally will not be able to handle an abstract

description of the expert system to be built. A prototype may also help in the knowledge

acquisition: It may serve as a starting point in a discussion of what is needed by the

customer. Often he will only be able to specify further requirements if he gets a

demonstration of a prototypical system. The prototyping should be "model-based" to

overcome some shortcomings of usual rapid-prototyping approaches: they often result in

a huge, unstructured rule-base. The KADS approach does not support the integration of

model-based approaches with rapid-prototyping techniques.

Our experience showed that the development of expert systems is a cyclic process where

specification and implementation phases are repeated several times. This is not a new

result: in software engineering the early waterfall models where replaced by a spiral

model. The basic KADS approach is mainly based on the overcome waterfall model2•

Large expert systems will be developed by multiple knowledge engineers cooperating

with multiple experts to collect multiple kinds of knowledge. Therefore, a knowledge

engineering environment has to support this groupwork.

3. CAKE: A Hypertext-Based Knowledge Engineering System

Based on hypermedia techniques we develop a software system which supports the

knowledge acquisition process based on the KADS methodology. Thereby we try to

overcome the shortcomings mentioned above. Our approach emphasizes a design for

maintainability of knowledge bases.

The CAKE system uses the hypertext abstract machine (following the ideas of

[Campbell. Goodman 88]) for storing and retrieving the informations. Its basic entities

are:

• Net or graph

The work of [Taytor et al. 89] tries to overcome this situation, too.

Page4-CAKE

2

Another requirement in the development of expert systems is the support of rapid
prototyping. In the context of model~based knowledge acquisition a rapid prototype may
be seen as an operational specification.

From our point of view, a knowledge engineering system has to support a kind _of
“model-based rapid prototyping”. The building of a rapid prototype is often needed to
convince and satisfy the client who normally will not be able to handle an abstract
description of the expert system to be built. A prototype may also help in the knowledge
acquisition: It may serve as a starting point in a discussion of what is needed by the
customer. Often he will only be able to specify further requirements if he gets a
demonstration of a prototypical system. The prototyping should be “model-based” to
overcome some shortcomings of usual rapid-prototyping approaches: they often result in
a huge, unstructured rule-base. The KADS approach does not support the integration of
model-based approaches with rapid-prototyping techniques.

Our experience showed that the development of expert systems is a cyclic process where
specification and implementation phases are repeated several times. This is not a new
result: in software engineering the early waterfall models where replaced by a spiral
model. The basic KADS approach is mainly based on the overcome waterfall modell.

Large expert systems will be developed by multiple knowledge engineers cooperating
with multiple experts to collect multiple kinds of knowledge. Therefore, a knowledge
engineering environment has to support this groupwork.

3 . CAKE: A Hypertext-Based Knowledge Engineering System

Based on hypermedia techniques we develop a software system which supports the
knowledge acquisition process based on the KADS methodology. Thereby we try to
overcome the shortcomings mentioned above. Our approach emphasizes a design for
maintainability of knowledge bases.

The CAKE system uses the hypertext abstract machine (following the ideas of
[Campbell, Goodman 88]) for storing and retrieving the informations. Its basic entities

are:
° Netorgraph

2 no work of [Taylor et aL 89] tries to overcome this situation, too.

Page 4 - CAKE

A net is a collection of nodes, links, and contexts.

•	 Node

A node is an infonnation unit. Nodes may contain texts, pictures, audio signals,

tables, fonnulas etc. Nodes are typed to provide special semantics (e. g. also rules

are expressed as nodes). '

•	 Link
A link connects nodes to express a kind of dependency (e. g. special links express

that a node is a comment of another node or one node is a specialization of

another). The user may follow a link from one node to the connected infonnations

and so explore the hyperspace.

•	 Context

Contexts divide a net into sets of objects belonging together (e. g. a context may

contain all informations belonging to the conceptual model whereas another context

stores the design model descriptions). A context may include other contexts (e. g.

for describing the conceptual model on different levels of abstraction).

To support the knowledge engineering process we enlarged the HAM by possibilities to

express consistency conditions. We implemented a production rule language which is

able to check these conditions referring to objects in a hypertext network3 . The

consistency rules are bound to the contexts of the net

In the rest of this chapter we describe the different models which are created by the

knowledge engineering ~ocess. Each model is represented as a context. Each context is a

collection of (sub)contexts which express different levels of abstraction inside a modeL

Contexts on the lowest level only contain nodes and links. This results in the multi-layer

abstraction hierarchy shown in figure 1. Links may connect objects inside a or between

different contexts. If a context is the target of a link then all the objects contained may be

accessed.

Cooperative work is supported by

•	 The possibility to defme different visibility conditions on the net by access control

rights for each entity.

3	 Based on this rule language we integrate an inference engine into the HAM which will be used for the

building of an expert system about environmental planning.

Page5-CAKE

A net is a collection of nodes, links, and contexts.
- Node

A node is an information unit. Nodes may contain texts, pictures, audio signals,
tables, formulas etc. Nodes are typed to provide special semantics (e. g. also rules
are expressed as nodes). ‘

. Link
A link connects nodes to express a kind of dependency (e. g. special links express
that a node is a comment of another node or one node is a specialization of
another). The user may follow a link from one node to the connected informations
and so explore the hyperspace.

° Context
Contexts divide a net into sets of objects belonging together (e. g. a context may

contain all informations belonging to the conceptual model whereas another context

stores the design model descriptions). A context may include other contexts (e. g.
for describing the conceptual model on different levels of abstraction).

To support the knowledge engineering process we enlarged the HAM by possibilities to
express consistency conditions. We implemented a production rule language which is

able to check these conditions referring to objects in a hypertext network3. The
consistency rules are bound to the contexts of the net.

In the rest of this chapter we describe the different models which are created by the
knowledge engineering process. Each model is represented as a context. Each context is a
collection of (sub)contexts which express different levels of abstraction inside a model._

Contexts on the lowest level only contain nodes and links. This results in the m’ulti-layer
abstraction hierarchy shown in figure 1. Links may connect objects inside a or between
different contexts. If a context is the target of a link then all the objects contained may be
accessed.

Cooperative work is supported by
° The possibility to define different visibility conditions on the net by access control

rights for each entity.

3 Based on this rule language we integrate an inference engine into the HAM which will be used for the
building of an expert system about environmental planning.

Page 5 - CAKE

•	 The possibility to defme different views on the net by a filter mechanism4. Thereby

we take advantage of the typing of nodes, contexts and links.

•	 The possibility of an adaptation of the user interface depending on the needs of

different users.

•	 The browsing facilities of the hypenext machine.

•	 The possibility to comment any information stored.

Conceptual
Model

Specialization

WriteEvaluate

.. " .

Read

Specialization

Figure 1: A multi-layer abstraction hierarchy

3.1. The Data Level

All gathered infonnation about the domain is represented as (typed) nodes inside the

hypennedia network in a natural way. So we are able to store and easily retrieve texts,

pictures, tables, mathematical fonnulas, and audio signals. This infonnal, unstructured

conglomerate of knowledge is structured by the knowledge engineers. They are able to

4	 The filtering mechanism is a propeny of the underlying HAM.

Page6-CAKE

° The possibility to define different views on the net by a filter mechanism“. Thereby
we take advantage of the typing of nodes, contexts and links.

° The possibility of an adaptation of the user interface depending on the needs of
different users.

° The browsing facilities of the hypertext machine.
° The possibility to comment any information stored.

J
Figure l : A multi-layer abstraction hierarchy

3 . l . The Data Level

All gathered information about the domain is represented as (typed) nodes inside the
hypermedia network in a natural way. So we are able to store and easily retrieve texts,
pictures, tables, mathematical formulas, and audio signals. This informal, unstructured
conglomerate of knowledge is structured by the knowledge engineers. They are able to

4 The filtering mechanism is a property of the underlying HAM.

Page 6 - CAKE

jnsert new links which represent connections between the nodes (e.g., a node may be the

reason for an inference step, which is contained in another riode). The CAKE-System

supports the model construction process by handling multiple versions of nodes and by

storing refinement and reason linkss. In fact, the hypermedia network may be used for

building an explanation component for the expert system. The resulting data level model

consists of

• a specification of the input/output functionality ofthe KBS to be built,

• a specification of the concepts of the domain (the language),

• a specification of the possible inferences, and

• some (prototypical) instances of the domain.

All specifications are stored informally using natural language or other representation for

malismslike sound and pictures with all its ambiguities. The advantage is that a data level

model uses the language of the highest expression power for human communication.

3.2. The Conceptual Model (The Knowledge Level)

The next step is based on the work on CASE (see for example [Gane 90]). We will

implement a software tool for a graphical description of a conc~ptual model. Thereby we

focus on an object-oriented design perspective and not on the functionality of the expert

system to develop.

The tool is going to be integrated in the hypermedia environment Therefore, we are able

to document the transition from the informal data level model to the semi-formal

conceptual model by inserting special links be,tween nodes on different layers. In this

way the development process becomes more transparent

3.3. The Design Model

The design model refines the conceptual model by formalizing the data structures and

algorithms. Here the needed inference engines and data structures have to be specified:

• What representation formalisms are needed (Frames, Rules, Constraints etc.)?

• Do we need a kind of TMS for non-monotonic reasoning?

• How can we solve the control problem?

Refmement links connect abstract and concrete infonnation on multiple layers, reason links connect

inferences 8nd their reasons.

Page? -CAKE

5

insert new links which represent connections between the nodes (e. g., a node may be the
reason for an inference step, which is contained in another node). The CAKE-System
supports the model construction process by handling multiple versions of nodes and by
storing refinement and reason links5. In fact, the hypermedia network may be used for
building an explanation component for the expert system. The resulting data level model
consists of ‘.

° a specification of the input/output functionality of the KBS to be built,
° a specification of the concepts of the domain (the language),
° a specification of the possible inferences, and
° some (prototypical) instances of the domain.

All specifications are stored informally using natural language or other representation for-
malism-like sound and pictures with all its ambiguities. The advantage is that a data level
model uses the language of the highest expression power for human communication.

3 .2 . The Conceptual Model (The Knowledge Level)

The next step is based on the work on CASE (see for example [Gane 90]). We will
implement a software tool for a graphical description of a conceptual model. Thereby we
focus on an object-oriented design perspective and not on the functionality of the expert
system to develop.

The tool is going to be integrated in the hypermedia environment. Therefore, we are able
to document the transition from the informal data level model to the semi-formal

conceptual model by inserting-‘special links between nodes on different layers. In this
way the development process becomes more transparent.

3 . 3 . The Design Model

The design model refines the conceptual model by formalizing the data structures and
algorithms. Here the traded inference engines and data structures have to be specified:

° What representation formalisms are needed (Frames, Rules, Constraints etc.)?
° Do we need a kind of TMS for non-monotonic reasoning?
° How can we solve the control problem?

5 Refinement links connect abstract and concrete information on multiple layers. reason links connect

inferences and their reasons.

Page 7 - CAKE

Further the access of needed data is described This includes:

•	 A description of the interaction of the user with the system (the "model of

cooperation").

•	 A specification of the access path to information stored in databases and

spreadsheets.

•	 A description of the access of sensoric infonnations.

The design model is tailored to object-oriented specifications. This means that we have to

specify the slots (instance variables), an inheritance hierarchy and the protocol of the

objects. This results in multi-dimensional object definitions. CAKE will be able to

support an efficient reorganization of the definitions: moving slots up and down in the

inheritance hierarchy, reorganizing the hierarchy itself based on the protocol of objects.

3 .4. Remarks on the Implementation Level

Based on the design model, an expert system shell and the runtime environment are

implemented (resulting in an implementation model). This shell mainly contains a fonnal

language which represents the acquired domain concepts (e.g., symptoms, failure de

scriptions (see above». Furthermore, an acquisition interface is implemented which

allows the expert to enter his knowledge. We think that this direct transfer is only

possible if the knowledge representation language reflects the expert's tenninology. To

accelerate the filling of the shell, advanced expert system techniques (case-based

reasoning, inductive learning, qualitative modelling) may be used (see [Althoff, Maurer,

Rehbold 90]).

The implementation is supported- by a knowledge dictionary which enables the

knowledge engineers to search for already implemented object classes and generic

interpretation models. Although software reuse is a main goal of the CAKE approach the

indexing of the available software is, until now, not solved in a really satisfying way.

Today we are able to find existing modules by keywords or synonyms of keywords.

This is only a syntactical match. A further possibility is to browse existing nets for

informal specifications of old solutions which solve the new problem. Here the work is

mainly done by the knowledge engineers by hand. This possibility heavily depends on a

well organized group of networks.

Page 8- CAKE

Further the access of needed data is described. This includes:
. A description of the interaction of the user with the system (the “model of

cooperation”).
' A specification of the access path to information stored in databases and

spreadsheets.
° A description of the access of sensoric informations.

The design model is tailored to object-oriented specifications. This means that we have to
specify the slots (instance variables), an inheritance hierarchy and the protocol of the
objects. This results in multi-dimensional object definitions. CAKE will be able to
support an efficient reorganization of the definitions: moving slots up and down in the
inheritance hierarchy, reorganizing the hierarchy itself based on the protocol of objects.

3 .4 . Remarks on the Implementation Level

Based on the design model, an expert system shell and the runtime environment are
implemented (resulting in an implementation model). This shell mainly contains a formal
language which represents the acquired domain concepts (e.g., symptoms, failure de-
scriptions (see above». Furthermore, an acquisition interface is implemented which
allows the expert to enter his knowledge. We think that this direct transfer is only
possible if the knowledge representation language reflects the expert’s terminology. To
accelerate the filling of the shell, advanced expert system techniques (case-based
reasoning, inductive learning, qualitative modelling) may be used (see [Althoff, Maurer,

Rehbold 90]).

The implementation is supported-- by a knowledge dictionary which enables the
knowledge engineers to search for already implemented object classes and generic
interpretation models. Although software reuse is a main goal of the CAKE approach the
indexing of the available software is, until now, not solved in a really satisfying way.
Today we are able to find existing modules by keywords or synonyms of keywords.
This is only a syntactical match. A further possibility is to browse existing nets for
informal specifications of old solutions which solve the new problem. Here the work is
mainly done by the knowledge engineers by hand. This possibility heavily depends on a
well organized group of netWorks.

Page 8 - CAKE

The implementation should use a interpretative programming language to shorten the edit

compile-execute-cycle. This is needed to support a fast development and allows rapid

prototyping. We decided to use Smalltallc-SO as the programming environment.

3 •S• Filling the Model

To fIll- the constructed model (= to edit the knowledge base) our system is able to use

different approaches: first we support the building of an interactive editing environment,

secondly we are able to integrate case-based reasoning and machine learning approaches.

3. S. 1. Consistency Checking and Maintenance

A problem with expert systems is that knowledge is often not stable over time and only

the expert(s) know when and how the knowledge base must be updated. So our goal is

that the expert himself maintains the knowledge base. For this reason, our first step in the

knowledge acquisition process is to provide a knowledge representation language which

uses the expert's tenninology. Further, we provide a generic maintenance component

which allows to specify consistency conditions about the objects of the shell. These are

automatically preserved by the system. Last, we are able to built easily an environment

for the editing of the knowledge base which is constructed depending on the wishes of

the experts. The knowledge engineers are only needed for maintenance if the constructed

model must be updated. They are not needed for changes in the elicitated knowledge.

3.S.2. - Automated Knowledge Acquisition

The result of the model construction process is, among other things, a definition of the

needed data structures. Often we will get some kinds of formulas and rules as the

appropriate description of entities. For example, an error classifIcation is naturally

described by a rule with a specifIcation of a situation as condition and the related

diagnosis as right hand side. These data structures may be generated by case-based

reasoning an machine learning approaches. The work of [WeB 91], [Althoff, Maurer,

Rehbold 90] and (Althoff, WeB 91] deal with these aspects.

4. State of Realization and Future Work

The hypertext abstract machine which allows to store and retrieve text and audio

information is (prototypically) implemented. A forward-chaining rule interpreter and a

Page9- CAKE

The implementation should use a interpretative programming language to shorten the edit-

compile—execute-cycle. This is needed to support a fast development and allows rapid-
prototyping. We decided to use Smalltalk-80 as the programming environment.

3 . 5 . Filling the Model

To fillthe constructed model (= to edit the knowledge base) our system is able to use
different approaches: first we support the building of an interactive editing environment,
secondly we are able to integrate case-based reasoning and machine learning approaches.

3 .5 .1 . Consistency Checking and Maintenance

A problem with expert systems is that knowledge is often not stable over time and only

the expert(s) know when and how the knowledge base must be updated. So our goal is
that the expert himself maintains the knowledge base. For this reason, our first step in the
knowledge acquisition process is to provide a knowledge representation language which
uses the expert’s terminology. Further, we provide a generic maintenance component
which allows to specify consistency conditions about the objects of the shell. These are
automatically preserved by the system. Last, we are able to built easily an environment
for the editing of the knowledge base which is constructed depending on the wishes of
the experts. The knowledge engineers are only needed for maintenance if the constructed
model must be updated. They are not needed for changes in the elicitated knowledge.

3 .5 .2 . - Automated Knowledge Acquisition

The result of „ the model construction process is, among other things, a definition of the
needed data structures. Often we will get some kinds of formulas and rules as the
appropriate description of entities. For example, an error classification is naturally
described by a rule with a specification of a situation as condition and the related
diagnosis as right hand side. These data structures may be generated by case-based
reasoning an machine learning approaches. The work of [Weß 91], [Althoffi Maurer,
Rehbold 90] and [Althoff, Weß 91] deal with these aspects.

4 . State of Realization and Future Work

The hypertext abstract machine which allows to store and retrieve text and audio
information is (prototypically) implemented. A forward-chaining rule interpreter and a

Page9-CAKE

filtering mechanism are also realized. Now we start the implementation of two

applications in environmental planning domains. These application will show

shortcomings ofour current prototyp and lead to its improvement

Our prototype is realized in Smalltalk -80. Because of the image concept of Smalltalk-SO

we are not able to share parts of a hypertext network. Also the access control lists are not

implemented. We will improve our CAKE-System by the use of an object-oriented

database (Gemstone) for storing and retrieving of informations. Then access rights will

also be supported resulting in better possibilities for cooperative work.

Acknowledgments

I like to thank Scarlett Nokel, Mike Stadler and Stefan WeB for reading and discussing

preliminary versions of this paper.

References

[Althoff, Maurer, Rehbold 90]

K. D. Althoff, F. Maurer, R. Rehbold: Multiple Knowledge Acquisition Strategies

in MOLTKE, in: Proc. European Knowledge Acquisition Workshop 90

[Althoff, WeB 91]

K.-D. Althoff, S. WeB: Case-based Knowledge Acquisition, Learning and Problem

Solving for Diagnostic Real World Tasks, Proc. EKAW 91,1991

[Campbell, Goodmann 88]

Brad Campbell, Joseph M. Goodman: HAM: A General Purpose Hypertext

Abstract Machine, Communications of the ACM, July 1988, Vol. 31, No. 7

[Wielinga, Schreiber, Breuker91]

B.Wielinga, A Th. Schreiber, J.Breuker: KADS: A Modelling Approach to

Knowledge Engineering, KADS-rrrrl.l/PPlUvAlOO8/1.0, Esprit Project P 5248

KADS-ll, 1991

[Gane90]

Chris Gane: Computer-Aided Software Engineering, Prentice-Hall, 1990

[Meyer88]

Bertrand Meyer: Object-oriented Software Construction, Prentice-Hall International,

1988

[Taylor et al. 89]

Page 10 - CAKE

filtering mechanism are also realized. Now we start the implementation of two
applications i n environmental planning domains. These application will show
shortcomings of our current prototyp and leadtoits improvement.

Our prototype is realized in Smalltalk -80. Because of the image concept of Smalltalk-80
we are not able to share parts of a hypertext network. Also the access control lists are not
implemented. We will improve our CAKE—System by the use of an object-oriented
database (Gemstone) for storing and retrieving of informations. Then access rights will
also be supported resulting in better possibilities for cooperative work.

Acknowledgments

I like to thank Scarlett Nökel, Mike Stadler and Stefan Weß for reading and discussing
preliminary versions of this paper.

References

[Althoff, Maurer, Rehbold 90]

K. D. Althoff, F. Maurer, R. Rehbold: Multiple Knowledge Acquisition Strategies
in MOLTKB, in: Proc. European Knowledge Acquisition Workshop 90

[Althoffl Weß 91]
K.-D. Althoff, S. WeB: Case-based Knowledge Acquisition, Learning and Problem
Solving for Diagnostic Real World Tasks, Proc. EKAW 91, 1991

[Campbell, Goodmann 88]
Brad Campbell, Joseph M. Goodman: HAM: A General Purpose Hypertext
Abstract Machine, Communications of the ACM, July 1988, Vol. 31, No. 7

[Wielinga, Schreiber, Breuker91]
B.Wie1inga, A Th. Schreiber, J.Breuker: KADS: A Modelling Approach to
Knowledge Engineering, KADS-Ill'l‘l.1/PPIUvA/008/l.0, Esprit Project P 5248
KADS-lI, 1991

[Gane 90]
Chris Gane: Computer-Aided Software Engineering, Prentice-Hall, 1990

[Meyer 88]

Bertrand Meyer: Object-oriented Software Construction, Prentice-Hall International,
1988 '

[Taylor et al. 89]

PagelO-CAKE

R. Taylor, D. Porter, F. Hickman, K.-H. Streng, S. Tansley, G. Dorbes: System

Evolution - Principles and Methods (the Life-eycle Model), ESPRIT project P 1098,

Deliverable task 09, Touche Ross, 1989

[WeB 91]

S. WeB: PAIDEX/2: Ein Systemzum adaptiven, fallfokussierenden Lemen jn

technischen Diagnosesituationen, SEKI Working Paper SWP-91-01, University of

Kaiserslautem, 1991 (in German)

Page 11 - CAKE

R. Taylor, D. Porter. F. Hickman, K.-H. Streng, S. Tanslcy, G. Dorbes: System
Evolution - Principles and Methods (the Life-cycle Model), ESPRIT project P 1098,

Deliverable task G9, Touche Ross, 1989
[Weß 91]

S. Weß: PATDEX/Z: Ein System ‚zum adaptiven, fallfokussierenden Lernen in
technischen Diagnosesituationen, SEKI Working Paper SWP—9l-01, University‘of
Kaiserslautern, 1991 (in German)

Pagell-CAKE

