
F
a

ch
b

e
re

i c
h

In
fo

rm
a

t i
k

U
n

i v
e

rs
i t

ä
t

K
o

l s
e

rs
l o

u
te

m
P

o
s t

f a
ch

30
49

0
-6

7
5

0
K

o
l s

e
rs

l o
u

’ r
e

rn

SE
KI

-
R

EP
O

R
T

Condi t ional Rewriting modulo a
Bui l t - in Algebra

Jürgen Avenhaus, Klaus Becker

SEKI Report. SR—9‘2—11 (SFB)

Conditional Rewriting modulo a Built-in Algebra!

Jiirgen Avenhaus, Klaus Becker

Fachbereich Informatik

Uni versi tat Kaiserslautern

6750 Kaiserslautern

Germany

lThis research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt).

Conditional Rewriting modulo a Built-in "Algebra1

Jürgen Avenhaus, Klaus Becker
Fachbereich Informatik

Unive r s i t ä t Kaisers lau tern
6750 Kaiserslautern

Germany

lTh i s research was suppor ted by the Deutsche Forschungsgemeinschaft, SFB 314 (D4—Projekt).

Abstract

We present a method to integrate. built-in operations that are described by a given built-in
algebra into conditional rewriting. First, equational specifications will be assigned a suitable
semantics that takes into account the predefined structures. The interpretation of "semantically
and syntactically mixed objects" is based on an appropriate introduction of sort hierarchies that
allows to separate semantkal and syntactical considerations. As a consequence of this separation
a great deal of"classical rewrite theory" as for instance a critical pair lemma can be generalized
to our context. Further we are able to construct appropriate well-founded orderings to guarantee
the termination of the rewrite relation that allow to integrate semantical informations from the
given built-in algebra. In order to illustrate the ideas several examples concerning built-in
arithmetic are presented.

Abstrac t

We present a method to integrate built-in operations that are described by a given built-in
algebra into conditional rewriting. ' F i r s t , equational specifications will be assigned a. suitable
semantics that takes into account t he predefined structures. The interpretation of ”semantically
and syntactically mixed objects” is based on an appropriate introduction of sort hierarchies that
allows to separate semantical and syntactical considerations. As a consequence of this separation
a great deal of ”classical rewrite theory” as for instance a critical pair lemma can be generalized
to our context. Further we are able to construct appropriate well—founded orderings to guarantee
t he termination of the rewrite relation tha t allow to integrate semantical informations from the
given built-in algebra. In order t o i l lustrate t he ideas several examples concerning built-in
arithmetic are presented.

1 Introduction

Sets of conditional equations may be considered as the programs of a functional programming
language with conditional rewriting as its computation mechanism. Conditional equations,
interpreted as rewrite rules, are used to simplify terms -the basic objects to be operated on
according to the notion of "replacing equals by equals" until normal forms are possibly t1lached.
(For a survey of conditional rewriting see [DeOk90].)

Whereas built-in operations are available in common programming languages as PASCAL,
LISP or PROLOG, they usually can not be employed in the rewrite case. To yield an easy to
handle programming environment it would be of great interest to be able to integrate predefined
structures within the rewrite process.

Consider as an example the following equations, intended to define the greatest common
divisor function over the natural numbers.

Example 1.1 This example is refered to as 'standard example' throughout the paper.

(1) g(x,O) x
(2) g(O, y) = y
(3) g(x + y, y) g(x,y)
(4) g(x, x + y) g(x, y)

It would be desirable to consider '+' and '0' as symbols with a predefined meaning that
agrees with the natural interpretation of the symbols in the natural numbers. But in most
rewrite environments equations as those above would not be "executable". Instead the specifier
would have to define everything he uses himself in a bottom-up fashion.

There are at least two additional reasons that make built-in concepts attractive. First, it may
become possible to use objects as for instance real numbers that cannot be specified equationally.
Thus, built-ins can increase the expressive power of the specification environment. Secondly, one
possibly gains efficiency when treating predefined objects by appropriate built-in algorithms.

The aim of this paper is to present a general approach of how to integrate predefined objects
and operations into rewrite based equational reasoning. The problems that arise originate from

l

the fact that syntactical and semantical methods have to be mixed when treating objects (terms,
equations etc.) that consist of syntactical and semantical constituents. In particular we must
generalize according to such interference effects

•	 matching and equivalence check, which are fundamental for conditional rewriting,

•	 unification, which is needed to ckeck (ground) confluence - a kind of correctness property
of a set of rewrite rules,

•	 orderings that guarantee the termination of the rewrite relation.

To solve the problems we will separate syntactical and semantical considerations as far as
possible. As a technical means for separation we switch over from "mixed terms" to "semantical
congruence classes" (Le. "mixed terms" are to be considered equivalent according to prede
fined equivalences). Representatives of the "semantical congruence classes" will be treated by
syntactical means that have to be compatible with the semantical equivalence.

This conceptual proceeding is not new. In the case of unorientable equations a theory of
rewriting modulo such equations based on the ideas just described has been developed (see
[PeSt81]' [JoKi86]. [BaDe89]). But the applicability of this theory is rather limited. Serious
difficulties arise when trying to design appropriate orderings and unification algorithms.

1

1 Introduct ion

Sets of conditional equations may be considered as the programs of a functional programming
language with conditional rewriting as its computation mechanism. Conditional equations,
interpreted as rewrite rules, are used to simplify terms —'the basic objects to be operated on —
according to the notion of ”replacing equals by equals” until normal forms are possibly reached.
(For a survey of conditional rewriting see [De0k90].)

Whereas built—in operations are available in common programming languages as PASCAL,
LISP or PROLOG, they usually can not be employed in the rewrite case. To yield an easy to
handle programming environment it would be of great interest to be able to integrate predefined
structures within the rewrite process.

Consider as an example the following equations, intended to define the greatest common
divisor function over the natural numbers.

Example 1 .1 This example is refered to as ’sta’ndard example’ throughout the paper.

(1) 9(x,0) = x
(2) 9(0.y) = y
(3) y(z+y‚y) = g(:v ‚y)

(4) 9(w‚x+y) = Why)
It would be desirable to consider ’+ ’ and ’0’ as symbols with a predefined meaning that

agrees with the natural interpretation of the symbols in the natural numbers. But in most
rewrite environments equations as those above would not be ”executable”. Instead the specifier
would have to define everything he uses himself in a bottom-up fashion.

There are at least two additional reasons that make built-in concepts attractive. First, it may
become possible to use objects as for instance real numbers that cannot be specified equationally.
Thus, built-ins can increase the expressive power of the specification environment. Secondly, one
possibly gains efficiency when treating predefined objects by appropriate built-in algorithms.

The aim of this paper is to present a general approach of how to integrate predefined objects
and operations into rewrite based equational reasoning. The problems that arise originate fromH
the fact that syntactical and semantical methods have to be mixed when treating objects (terms,
equations etc.) that consist of syntactical and semantical Constituents. In particular we must
generalize according to such interference effects

o matching and equivalence check, which are fundamental for conditional rewriting,

e unification, which is needed to ckeck (ground) confiuence —— a kind of correctness property
of a set of rewrite rules,

o orderings that guarantee the termination of the rewrite relation.

To solve the problems we will separate syntactical and semantical considerations as far as
possible. As a technical means for separation we switch over from ”mixed terms” to ”semantical
congruence classes” (Le. ”mixed terms” are to be considered equivalent according to prede-
fined equivalences). Representatives of the ”semantical congruence classes” will be treated by
syntactical means that have to be compatible with the semantical equivalence.

This conceptual proceeding is not new. In the case of‘nnorientable equations a theory of
rewrit ing modulo such equat ions based on the ideas jus t described has been developed (see
[PeStSl], [JoKiSG]. [BaDe89]). But the applicability of this theory is rather limited. Serious
difficulties arise when trying to design appropriate orderings and unification algorithms.

As we want to develop an approach to integrate - at least in principle - arbitrary built
in objects and operations without any limitation, we cannot directly adopt the existing theory.
Instead we will design a theory of rewriting modulo predefined equivalences and so avoid by some
moderate restrictions the interferences that cause some of the main problems. The following
remaks are to make dear our concept .

• Consider a built-in operation '+' that is commutative on the built-in objects, hence ihduces
the predefined equation x+y = y+x. Let f be a (unary) new "syntactical" function symbol and
consider the "mixed terms" f(a + b) and f(a) + f(b) where a and b represent built-in objects.
It is reasonable to require that the equivalence of a + band b + a induces the equivalence of
f(a + b) and f(b + a). If we extended the range of validity of predefined equations in a"liberal
fashion, we could also demand for the equivalence of f(a) + f(b) and f(b) + f(a). But as such
a liberal interpretation of predefined equations would cause the problems mentioned above, we
do not adopt it here. This decision can be motivated not only "by need" - as just done - but
also "by matter" - as follows.

When specifying by conditional equations over a built-in domain, the specifier is interested
primarily in objects that are defined wrt. built-in objects (Le. that are equivalent to built-in
objects wrt. the conditional equations of the specification). Hence, if f(a) or f(b) is not defined
wrt. built-in objects, it does not matter (concerning the intent of the specifier) whether the two
terms are equivalent or not. On the other side, if both terms are defined wrt. built-in objects,
then the equivalence of f(a)+ f(b) and f(b)+ f(a) results as a consequence of the tommutativity
of the built-in objects. Thus th.ere is no need for requiring the liberal interpretation of predefined
equations.

To realize our approach we first define an adequate semantics. As the main technical means
to easily distinguish between predefined and mixed objects, we design an appropriate hierarchy
of sorts: for each sort a copy is made and then the two sorts are related by a subsort declaration
so that one of them - the "lower sort" - describes built-in resp. semantical objects, whereas
the other - the "higher sort" - describes mixed resp. syntactical objects. This hierarchy
aspect allows us to interprete equations according to the intuition that variables occuring in the
equations are to range over built-in objects. As we may interprete built-in objects as constructors
our approach provides a method to define a. kind of "constructor semantics". Further, this
approach allows us to deal with equations that define function symbols only partially wrt. the
"constructors" (see also [KaMu86]).

We will demonstrate in this paper that by our concept to treat built-in structures we are
able to adopt with some minor modifications a great deal of" classical rewrite theory".

Our approach to integrate built-ins into the rewrite process differs from others in various
aspects. First, we do not consider implementational aspects concerning rewriting of mixed
ground terms as it is done in [KaCh89] and [Wa90]. Our work is more related to that of
Vorobyov [Vo89] and Kirchner, Kirchner and Rusinowitch [KKR90].

Vorobyov deals with rewriting in the special context of built-in arithmetic.
Kirchner, Kirchner and Rusinowi tch develop a very general approach based on the notion

of constraints. (Note that Vorobyov also uses a kind of constraints though not mentioning
this expression.) As in the case of constraint logic programming (see [JaLa87a]), constraints
are used to represent knowledge about predefined structures. The aim of this approach is to
convert syntactical problems into semantical ones by placing them - roughly spoken - into
the constraint part.

Both papers [Vo89] and [KKR90] require the conditions to be formulated in the language of
built-ins, whereas we allow arbitrary conditions. Concerning some of the results of [Vo89] this
restriction can be dropped (see [..\1'92]).

2

As we want to develop an approach to integrate — a t least in principle — arbitrary built-
in objects and operations without any limitation, we cannot directly adopt the existing theory.
Instead we will design a theory of rewriting modulo predefined equivalences and so avoid by some
moderate restrictions the interferences that cause some of the main problems. The following
remaks are to make clear our concept.

_. Consider a built—in operation ’+’ that is commutative on the built—in objects, hence i‘hduces
the predefined equation x+y = y+z . Let f be a (unary) new ”syntactical” function symbol and
consider the ”mixed terms” f (a + (7) and f (a) + f (b) where a and b represent built-in objects.
It is reasonable to require tha t the equivalence of a + b and b + a. induces the equivalence of
f (a + b) and f (b + a) . If we extended the range of validity of predefined equations in a'liberal
fashion, we could also demand for the equivalence of f (a) + f(b) and f (b) + f (a) . But as such
a liberal interpretation of predefined equations would cause the problems mentioned above, we
do not adopt it here. This decision can be motivated not only ”by need” —— as just done — but
also ”by matter”—— as follows.

When specifying by conditional equations over a built-in domain, the specifier is interested
primarily in objects that are defined wrt. built-in objects (i.e. that are equivalent to built-in
objects wrt. the conditional equations of the specification). Hence, if f (a) or f (b) is not defined
wrt. built-in objects, it does not matter (concerning the intent of the specifier) whether the two
terms are equivalent o r not . On the other side, if bo th terms are defined wr t . built-in objects,
then the equivalence of f(a.) + f (b) and f (b) + f (a) results as a consequence of t he ‘commutativity
of t he built-in objec ts . Thus there is no need for requiring t he liberal interpretat ion of predefined
equations. _

To realize ou r approach we first define an adequate semantics. As t he main technical means
to easily distinguish between predefined and mixed objects , we design an appropriate hierarchy
of sor ts : for each sor t a copy is made and then the two sor ts are related by a subsor t declaration
so that one of them — the ”lower sort” — describes built-in resp. semantical objects, whereas
the other _ the ”higher sort” —— describes mixed resp. syntactical objects. This hierarchy
aspect allows us to interprete equations according to the intuition that variables Occuring in the
equations are t o range over built-in objects. As we may interprete built-in objects as constructors
our approach provides a method to define a_ kind of ”constructor semantics”. Further, th is
approach allows us t o deal with equations tha t define function symbols only partially wr t . t he
”constructors” (see also [KaMu86]).

We will demonstrate in this paper tha t by ou r concept t o t reat built-in s t ructures we are
able to adopt with some minor modifications a great deal of ”classical rewrite theory”.

Our approach to integrate built-ins in to the rewrite process differs from others in various
aspects. F i rs t , we do not consider: implementational aspects concerning rewriting of mixed
ground terms as it is done in [KaChSQ] and [Wa90]. Our work is more related to that of
Vorobyov [V089] and Kirchner, Kirchner and Rusinowitch [KKRQO].

Vorobyov deals with rewriting in t he special context of built-in ar i thmetic .
Kirchner, Kirchner and Rusinowitch develop a very general approach based on the notion

of constraints. (No te tha t Vorobyov also uses a kind of constraints though not mentioning
this expression.) As in the case of constraint logic programming (see [JaLa87a]), constraints
are used to represent knowledge about predefined s t ructures . The aim of this approach is t o
convert syntactical problems into semantical ones by placing them — roughly spoken —— in to
the constraint pa r t .

Both papers [V089] and [KKRQO] require the conditions to be formulated in the language of
built-ins, whereas we allow arbitrary conditions. Concerning some of the results of [V089] this
restriction can be dropped (see [.—\.y9'2]).

2

Vorobyov avoids the interference effects 'between predefined equations and new syntactical
function symbols by introducing a rather strong restriction: new syntactical function symbols
are not allowed to have built-in domains as codomains. Note that by this restriction example
1.1 lies out of the range of his theory.

The interference problem is solved in [KKR90] in a way that is similar to ours fr~m the
methodical point of view (namely avoid the interference effects by introducing an appropriate
semantics) but that differs from ours with respect to its realization.

Both approaches [V089] and [KKR90] differ from ours in the definition of the rewrite relation.
Whereas we define it traditionally via matching, they replace matching by case splitting and
a constraint satisfiability check. This difference reflects the contrary notions of explicit and
implicit representation of knowledge (c. [JaLa87bJ).

Our decision in favour of matching has two reasons. First, by this decision we are able - in
contrast to [V089] and [KKR90] - to present a general method of how to guarantee termination.
Secondly, we think that whenever explicit knowledge is available, then it should be employed to
keep the objects to be treated by rewriting as simple as possible. Of course this decision limits
rewriting in our approach to cases where matching is feasible.

The paper is organized as follows: The sections 2 and 3 introduce our basic concept of how
to interprete specifications in the presence of built-ins. The division into two sections reflects
the fact that the interpretation is established by syntactical as well as semantical means. In
section 4 we define rewriting modulo a given built-in algebra and consider the" correctness' of
rewriting" (captured by the Church-Rosser property). Section 5' is devoted to a critical pair
test for local confluence along the ideas of Knuth ,and Bendix [KnBe70]. Section 6 deals with
termination problems. Finally in section 7 we make some remarks about the decidability of the
rewrite relation.

We assume that the reader is familiar with the basic concepts of term rewriting, equational
reasoning (see e.g. [AvMa90, DeJ090]) and mathematical logic. We define notions and notations
only if they differ from standard ones.

Syntax

The notion of order-sorted specification is used to code some basic semantical prerequisites into
the syntax. By this decision we are able to simplify the formulation of the restrictive use of
variable instantiations and hence to simplify the definition of the semantics of the specifications.
(For a survey of order-sorted equational computation see [SNGM89].)

The sort hierarchies to be considered in the sequel are very well- behaved, so that no conflict
about which concept to treat sort hierarchies arises (see [vVa92] for a comparison of the different
concepts).

Definition 2.1 A signature I: = (5, F, D) consists of a set S of sort symbols, a set F of function
symbols and a set D of function declarations f : SI,' .. , Sn --> S (f E F; Si,S E 5) and subsort
declarations SI <l 52 (51,52 E 5), where <l denotes the ordering relation between the sorts.

A signature I: = (5, F, D) is said to be flat iff D contains no subsort declarations and for
any f E F there exists exactly one function declaration in D.

Before introducing the fundamental construction of sort hierarchies used throughout this
paper. we give a short motivation.

Built-in objects are described in a built-in language given by a "normal" (flat) signature
I:o. The introduction of ne\v "svnta.:tical" function symbols is captured as usual by the notion

3

Vorobyov avoids t he interference effects between predefined equations and new syntactical
function symbols by introducing a rather strong restriction: new syntactical function symbols
are not allowed to have built—in domains as codornains. Note that by this restriction example
1.1 lies out of the range of his theory.

The interference problem is solved in [KKRQO] in a way that is similar to ours from the
methodical point of view (namely avoid t he interference effects by introducing an appropriate
semantics) but that differs from ours with respect to its realization.

Both approaches [V089] and [KKRQO] differ from ours in the definition of the rewrite relation.
Whereas we define i t traditionally via matching, they replace matching by case spli t t ing and
a constraint satisfiability check. This difference reflects t he contrary notions of explicit and
implicit representation of knowledge (c. [JaLa87b]).

Our decision in favour of matching has two reasons. Firs t , by this decision we are able — in
contrast to [V089] and [KKRQO] — to present a general method of how to guarantee termination.
Secondly, we think tha t whenever explicit knowledge is available, then i t should be employed to
keep the objects t o be t rea ted by rewriting as simple as possible. Of course this decision limits
rewriting in our approach to cases where matching is feasible.

The paper is organized as follows: The sections 2 and 3 introduce ou r basic concept of how
to interprete specifications in the presence of built-ins. The division in to two sections reflects
the fact t ha t t he interpretat ion is established by syntactical as well as semantical means. In
section 4 we define rewriting modulo a given built-in algebra and consider t he ”correctness' of
rewriting” (captured by the Church-Rosser property) . Section 5° is devoted t o a critical pair
tes t for local confluence along the ideas of Knu th and Bendix [KnBe70]. Section 6 deals with
termination problems. Finally in section 7 we make some remarks abOut t he decidability of t he
rewrite relation.

We assume tha t t he reader is familiar with t he basic concepts of t e rm rewriting, equational
reasoning (see e.g. [AvMa90, DeJ090]) and mathematical logic. We define notions and notations
only if they differ from s tandard ones.

2 Syntax

The notion of order—sorted specification is used t o code some basic semantical prerequisites into
the syntax . By this decision we a re able t o simplify t he formulation of t he restrictive use of
variable instantiat ions and hence t o simplify t he definition of t he semantics of t he specifications.
(For a survey of order-sorted equational computat ion see [SNGM89].)

The sor t hierarchies t o be considered in the sequel are very well-behaved, so t ha t no conflict
about which concept t o t rea t sort hierarchies arises (see [VVa9‘2] for a comparison of ' the different
concepts).

Defin i t i on 2 .1 A signature E : (S , F, D) consists o f a se t 5- of sor t symbols, a se t F offanc t ion
symbols and a se t D of funct ion declarations f : 51, . . . , s , , —> s (f E n i , s E S} and subsort
declarations 31 <1 32 {81,82 € 5} , where <1 denotes the ordering relation between the sorts .

A signature 3 : (S ,F ,D) is sa id to be flat ijf D contains no subsort declarations and for
any f E F there er is t s exactly one funct ion declaration in D .

Before introducing the fundamental construction of. sor t hierarchies used throughout this
pape r . we g ive a sho r t mo t iva t i on .

Built—in objects a r e described in a built-in language given by a “normal” (flat) s ignature
EO. The introduction of new "syntactical” function symbols is captured as usual by the notion

of a signature enrichment Eo + El' Note that the resulting signature is still considered to be
flat. Next this signature Eo + El will be suitably interpreted: By a copying process we get an
order-sorted signature E induced by Eo and El'

Definition 2.2 A signature enrichment Eo + El consists of a flat signature Eo = (So,Po, Do)
(for the built-in language) and a triple El = (0, F l , Dd such that (So, Fl , D l) is a flat signature
too with Fa n F l = 0.

Note that no new sorts are introduced by ~l' The more general case without such a sort
restriction does not cause any difficulties. However it makes necessary some additional case
distinctions that we want to avoid here.

The copying process to be defined below requires Fa to be divided into FJ=O) and FJ~l), the
set of symbols from Fa with an arity that is equal to 0 - the constants from Fo - resp. greater
or equal than 1.

Definition 2.3 Let~o + El = (So, Fa, Do) + (0, FI, Dd be a (flat) signature enrichment. ~ =
(S, F, D) is said to be the hierarchical signature resp. order-sorted signature induced by ~o and
~l - written ~ = ~o EB El - iff

• 5 = So U 5/\ where 5/\ = {s/\ I sE So} and

•	 F = Fa U F l and

•	 D = Do U D/\ U Dsort where
D/\ ::::;: {f : s~, . . :' s~ -+ s/\ I f E FJ~l) U F l and f: SI,' .. , Sn -+ S E Do U D l } and
D sort = {s <1 S/\ I S E So}.

vVhen speaking roughly the elements of So are called sorts of type "low" and the elements
of 5/\ sorts of type "high". Note that the function symbols from the built-in language with an
arity greater or equal than 1 are declared twice - a declaration for built-ins and an additional
for mixed objects. This reflects the fact that these symbols have a semantical and syntactical
"flavour" .

Example 2.1 We first define suitable signatures to describe natural numbers and integers. Let
Enat = (Snat, Fnat, Dnatl resp. ~int = (Sint, Fint, Dint) with

Snat {nat}

Fnat {+, *,0,1,2....}

D nat {+ : nat, nat - nat, * : nat, nat -+.nat, 0: nat, 1: nat, ... }

Sint {int}

Fint {-. +. *. 0,1,2, ...}

Dint {- : int- int. + : int, int - int, * : int, int -+ int, 0 : int, 1: int, . ..}.

To continue our standard example let ~o = ~nat and ~1 = (0, F l , Dd with

Fl {g}

DJ {g : 11fLt, nat - nut}.

To obtain ~. = :So -3 ~l let

of a s ignature enrichment 20 + 21 . Note that t he resulting signature i s still considered to be
fla t . Next this s ignature 20 + 21 will be suitably interpreted: By a copying process we get an
order-sorted signature E induced by 20 and 21.

Definition 2 .2 A signature enrichment 20 + 21 consists of a flat signature 20 = (SgtFo, Do)
(for the built-in language) and a triple 21 = (0), F1, D1) such that (So,F1, DI) is afla t signature

‚too with F0 n F1 = 0.

Note that no new Sorts are introduced by 21. The more general case without such a sort
restriction does not cause any difficulties. However i t makes necessary some additional case
distinctions tha t we want t o avoid here.

The copying process to be defined below requires F0 t o be divided into Fézo) and Fézl) , the
set of symbols from F0 with an ar i ty tha t is equal t o 0 — the constants from F0 — resp. greater
or equal than 1 . .

Defini t ion 2 .3 Let "$0 + 21 = (50 , F0, DO) + ((0, F1, DI) be a (flat) signature enrichment. 2 =
(S, F, D) is said to be the hierarchical signature resp. order-sorted signature induced by EO and
El — written E =_ 20 EB 21 — ijf

o S = SOUSA where S" = {3" l s € 50} and

. F : FoUF1 and

o D : Do U DA U DSM, where
D“ : {fzs’1\,.._.,sQ——'SAIfGFé21)UF1 and fz s1 , . . . ‚ s „—>s EDoUDl} and
Dsor t : {34 SA | S E 50} .

When speaking roughly t he elements of So are called sor ts of type ”low” and the elements
of S" sor ts of type ” high”. Note t ha t t he function symbols from the built-in language with an
arity greater or equal than 1 are declared twice — a declaration for built-ins and an additional
for mixed objects . Th i s reflects t he fact t ha t these symbols have a semantical and syntactical
”flavour”.

Example 2 .1 We fi r s t define suitable signatures to describe natural numbers and integers. Let
Eno t = (Snats Fnu taa t) resp. 2 in t = (Sinta Finnp in t) With

Sm; : {nat.}
Fna t : {+‚* ,0 . ‚1 . ‚2 }

Dnat : {+ : nat, nat _. nat,* : nat .nat ——>.nat, O : nat , l : nat, . . .}
Sin t : { in t}
Fin : : {—.+ .* .0 ,1 ,2 ‚ . . . }
Din; : {— : i n t— int.. + : int, int ——» int, * : int . int -—r int, O '. int , 1 : in t}.

To continue ou r s tandard example let $0 = Em; and E} = (0,171,01) with

F1 {9}
D) = {g : na t . nut —~ na t} .

To ob t a in $“ : $0 % SI le t

5 {nat, nat/\}

F {+,*,g,O,1,2, ...}
D/\ {+ : nat/\, nat/\ - nat/\, *: nat/\, nat/\ --. nat/\, g: nat/\, ""at/\ --. nat/\}

D sort {nat <l nat/\}
D Do U D/\ UDsort .

4
For the rest of this paper let E = Eo EEl El. To avoid the problems occuring when empty

sor'ts are present (see [Wa92]) we assume throughout the paper that for any sort So E 50 there
exists a constant c E Fa such that c :- So E Do.

Let V = UsE50 Vs be the union of disjoint infinitary sets Vs of variables for the sorts,.of type
"low". We will not introduce variables for the sorts of type "high" as we do not need them.
E-terms are now defined as usual.

Definition 2.4 The set T ERMs('5:', V) of E-terms of sort s is the least set with the following
properties:

•	 If f :- So E D and So :9 s, then f E T ERMs(y:', V).

•	 If x E Vso and So :9 s, then x E T ERMs(E, V).

•	 Iff: Sl"··,Sn ---. So E D, so:9s andti E TERMs;(E,V) (i l, ... ,n), then
f(t1, ... ,tn) E TERMs('E" V).

Let T ERM(E, V) = UsES T ERMs('E" V).
The E-terms sand t are said to be sort compatible iff there exists a sort s E 5 such that s

and t are terms of sort s.

By the construction of 'E, and the restriction, that variables exist only for sorts of type "low" ,
every (fiat) Eo + El-term can be interpreted as a (order-sorted) E-term (and vice versa).

As a consequence of the well-behaved sort hierarchy, every E-term t can be equipped with
a uniquely defined sort - written sort(t) - which is the wrt. <l minimal sort s such that
t E T ERMs(E, V). It is easily verified that if t contains a new symbol from F1, t.hen sort(t) E 5\
otherwise sort(t) E So. Let T E RMo('E" V) resp. T ERM/\(E, V) denote the sets of E-terms t
such that sort(t) E So resp. sort(t) E 5/\. Notice that TERMo(E, V)'= TERM(Eo, V).

Substitutions are defined in a way so that they respect the sort hierarchies:

Definition 2.5 A ('E,-)substitution a is an assignment from the set of variables V into the set

of E-terms such that so1'l(a(:r)) = sort(;z;) and DO Al (a) = {x E V I a(x) =t x} is finite.

We finish this section with the introduction of the fundamental notion of a specification with
built-in algebra. The built-in objects and operations are described by a (fiat) Eo-algebra A. We
assume throughout the paper that the built-in algebra A is term-generated (i.e. any element of
the carrier A of A is the value of a 'E,o-term). Sometimes it is convenient to assume that for any
element a E A there exists a constant Qc. E Fo to denote a.

Notice that it is possible to abstract by parameterization from the special built-in algebra.
In that case a general built-in theory instead of a built-in algebra would be given in advance.

n
Definition 2.6 A conditional equation over E is a formula 1\ Ui = Vi :=} U = V such that Ui

;=1
and Vi resp. u and L' are sort compatible 'E,-terrns.

Definition 2.7 A specification with built-in algebra (E = 'E,o tt' 'E,1. E , A) consists of a
hierarchical signature 'E, induced by CL (flat) signature enrichment 'E,o + 'E,l, a set E of conditional
equations over E and a (built-in) Eo-algebra ..4.

S = {nat , natA}
F = {+ ,* ,g ,0 ,1 ,2 , . . . }
D" = {+ : nat" , natA —-> nat" , * : na t" , nat" —> na t " , g : nat" , nat" —> natA}
Dam = {na t <] natA}
D = Do U D" U.D_„‚„.

"

' For the rest of this paper let 2 = So EB 21. To avoid the problems occuring when empty
sorts are present (see '[Wa92]) we assume throughout the paper that for any sort so € So there
exists a constant c 6 F0 such that c :—+ so € Do.

Let V = U,e So Vs be the union of disjoint infinitary sets V, of variables for the sorts~of type
”low”. We will not introduce variables'for the sorts of type ”high” as we do not need them.
Z-terms are now defined as usual.

Defini t ion 2 .4 The se t TERM,(E‚V) of E - t e rms of sort s is the least set with the following
properties:

. [ff :—+ so € D and so 51 s , then f € TERM‚(E ,V) .

. Ifa: € V$0 and so 9 s , then x E TERM,(E , V) .

o [f f : 51 , . . . , sn —. so € D , so 51 s and t.- E TERMS' . (E ,V) (i = 1 , . . . , n) , then
f (t1 , . . . , t , ,) € TERA/[3(5), V).

Let TERMOJ, V) : UsesTERMs(E, V).
The E- te rms s and t are sa id to be sor t compatible ifi there exists a sort 3 € S such that s

and t are terms of so r t 3 .

By the construct ion of E and the restriction, t ha t variables exist only for sor t s of type ”low”,
every (flat) 20 + Ell-term can be interpreted as a (order-sorted) E-term (and vice versa).

As a consequence of t he well-behaved sor t hierarchy, every E- term t can be equipped with
a uniquely defined sort - written sort(t) — which is the wrt. <1 minimal sort s such that
t E TERMAE, V). It is easily verified that i f t contains a new symbol from F1, then sort(t) E SA,
otherwise so r t (t) 6 So. Let TERMo(E , V) resp. TERM"(2 , V) denote the se ts of E- terms t
such that sort(t) E 50 resp. sort(t) 6 SA. Notice that TERMo()3, V)‘: TERM(2o , V).

Substi tut idns are defined in a way so t ha t they respect t he so r t hierarchies:

Definition 2 .5 A (S-)substitution a is an assignment from the set of variables V into the set
of E-terms such that sor t (a(r)) = sort(.1:) and DOA/1(a) = {113 € V | a(:r) $ a:} is finite.

We finish this section with t he introduction of t he fundamental notion of a specification with
built—in algebra. The built-in objects and operations are described by a (flat) filo-algebra ‚A. We
assume throughout t he paper t ha t t he built-in algebra A is term-generated (i.e. any element of
the carrier A of ‚A i s t he value of a So—term). Sometimes i t is convenient t o assume tha t for any
element a E A there exists a constant a € Fo to denote a .

Notice that it is possible to abstract by parameter-nation from the special built-in algebra.
In that case a general built-in theory instead of a built-in algebra would be given in advance.

T‘L

Defini t ion 2 .6 A conditional equat ion over 2 is a formula /\ u,- = v,- => u = 12 such that u,-
i=1

and v,- resp. u and L' a re so r t compatible S - t e rms .

Defini t ion 2 .7 A specification with built—in algebra (E = So $ 31 . E , A) consists of a
hierarchical s ignature 2 induced by a (flat) signature enr ichment 30+ 21 , a se t E of conditional
equations over E and a (built-in) So-algebra ‚A.

3 Semantics

We. consider a specification (k = kO EB kl , E , A) with built-in algebra A. The meaning of the
specification will be first characterized by model-theoretical means.

The algebras of interest are intended to contain in a certain sense the built-in algebra A and
to satisfy in addition the conditional equations from E. As a consequence of our orderrisorted
approach we have to consider order-sorted k-algebras.

Definition 3.1 Let k = kO EB kt. A ~>algebra B consists of a family {Bs Is E S} of sets and
functions fB for any f E F such that

•	 if f E FJ=ol and f ;-. s E Do, then fB E B s ,

f f
zErol:'(~tl and f .. SI,.··, Sn -. S E D0 then fl3·. Bs~ X ••• x B sf> ---+ Bs" sueh that

fl3(b t , .• . , bn) E Bs for all bi E BSi'

if f EFl and f; SI, •. ',Sn ~ S E D 1 then fl3: Bs " x ... X Bs " ---+ Bs".

1 n

Thus, a k-algebra is a non-overloaded algebra in the sense of [Wa92J. Note that B s f= 0 for
any S E S by our assumption that sorts are not empty.

To take into account the built-in algebra A let EA = {u = v I A F U = Vj U, v E
T ERMo(k, V)} be the set of (5:'o-)equations induced by A.

As a consequence of the assumption that A is term-generated each model B of EA has a
"core" - constituted by the" base elements of type low" - that contains a uniquely defined
homomorphic image of the built-in algebra A.

The algebras that capture the model-theoretical meaning of the specification are the (order
sorted) k-algebras that are models of Eu EA. Thereby, a k-algebra is a model of an equation
u= v iff it satisfies the equation wrt. any assignment that respects the sort hierarchy. Thus, by
the variable restriction one only has to consider assignments that (correctly) instantiate variables
by "base elements of type low".

The operational definition of the semantics of the specification uses the following inference
rules depending on the set E of condi tional eq uations and an additional set S of k-equations
(see [Ga91], [Wa92] for similar approaches). The introduction of variable sets (see e.g. [Wa92])
can be dropped as we assume that there exist no empty sorts.

(Reflexivity)

u.= u

(Symmetry)

u=v
v=u

(Transitivity)

u = v. v = w

u = tu

6

3 Semantics .

We,consider a specification (2 = 20 69 E l , E , .A) with built-in algebra .A. The meaning of the
specification will be first characterized by model-theoretical means.

The algebras of interest are intended to contain in a certain sense the built-in algebra A and
to satisfy in addition the conditional equations from E . As a consequence of our orderiisorted
approach we have t o consider order-sorted E-algebras.

Definition 3 .1 Let 2 = 20 ® 21. A E-algebra ß consists ofa family {B, | s € S} of sets and
functions fß for any f € F such that „

O B, g BSA and

. iff € Ff”) and] ;—. s 6 Do, then f3 6 BS, .
i f f € Foe” and f : sh . . . , sn _. s € Do then f3 : B,? x - - - x 8,3 -—> B“ such that
fß (b1 ‚ . . .‚b,.„) € B, for a l l I); € B“ ,
i f fEF1 and f : s ; , . . . , sn—as €D1thenfB:B_,{«x "'XBSQ —+B‚A.

Thus, a E-algebra is a non-overloaded algebra in the sense of [Wa92]. Note that B, # @ for
any s € 5 by ou r assumpt ion tha t so r t s are not empty.

To take into account the built-in algebra .A let EA = {u = v I .A I: a = v; u ,v €
TERM0(2, V)} be the set of (EO—}equations induced by ‚A.

As a consequence of t he assumption tha t .A is term-generated each model B of EA has a
”core” —— constituted by the ”base elements of type low” — that contains a uniquely defined
homomorphic image of t he built-in algebra .A.

The algebras that capture the model-theoretical meaning of the specification are the (order-
sor ted) E-algebras tha t are models of EU E ‚4. Thereby, a E—algebra is a model of an equation
i t : 12 iff i t satisfies t he equation wr t , any assignment tha t respects t he sort hierarchy. Thus , by
the variable restriction one only has to consider assignments that (correctly) instantiate variables
by ”base elements of type low”. _,

The operational definition of the semantics of the specification uses the following inference
rules depending on the se t E of conditional equations and an additional set S of 2~equations
(see [Ga91], [WaQ‘Z] for similar approaches). The introduction of variable sets (see e.g. [Wa92])
can be dropped as we assume tha t there exist no empty sor t s .

(Reflexivity)

u . : u.

(Symmetry)

M:?)

(Transitivity)

(Congruence)

f(ul""'u n) = f(vl""'vn)

if	 f(Ul, ... , un) and f(vI, ... , Vn) are both well - formed ~ - terms.
ii

(Substitutivity)

0'(ut} = 0'(vd, ... , er(un) = er(Vn)

0'(u) = 0'(V)

n

if er is a substitution, 1\ Uj = Vi ::} U =V E E and er(ui) = er(vj) E S (i = 1, ... , n).
i=l

Note that by syntactical means the applicability of the inference rule "substitutivity" is
limited, as variables !:an only be substituted by ~-terms of type "low".

We write S f- E U = v to indicate that u = v can be derived from the set S of ~-equations

by the above inference rules. (depending on E). One easily proves that the inference rules are
sound (using the fact that there exist no empty sorts):

Lemma 3.1 Let 5 be a set of ~-equations. Then for all u, vETERM(~, V), if S f-E u = v,
then 5 u E F u = v.

Next we define the operational semantics of the specification with the aid of an appropriate
congruence relation. We start with a relation that is induced by the built-in algebra A.

Definition 3.2 Fors,t E TERM(~, V) let s ""'A tiff
(aJ s,t E TERMo(~, V) and A F s= t resp. s = t E EA or
(bJ s,t E TERM/I(~, V), S == f(sl'" .,sn), t == f(tl," .,tn) and Si ""'A ti for i = 1, .. . ,n.

One easily proves that"",A is a congruence relation on T ERM(~, V), the congruence relation
induced by A. According to the intuition that built-in equivalences are given in advance, the
inductive definition to follow starts with the congruence relation"'"A.

Definition 3.3 Let:

•	 For all u, vETERM(~, V): u ""'t~ V iff U ""'k,A v, or there exists a set 5 of ~-equations

such that s ""'k,A t for all s = t E 5 and S f-E U = v.

•	 ""'E,A= U ""'k,A'
i~O

Obviously, ""'E,A (as well as "'k,A) is a congruence relation on T ERM(~, V), the congruence
relation induced by E and A.

The following "Birkhoff-theorem" states the equivalence between the model-theoretical and
operational semantics of the specification.

Theorem 3.1 Let (~ = ~o @ ~l ' E , A) be a specification with built-in algebra A. Then for
any s,t E TERM(~, V) we have S "'E.A tiff EU EA F S = t.

"7
I

(Congruence)

u1=v1 , . . . , u„=vn
f (u1 , . . . , u„) = f (v1 , . . . , v„)

i f f (u ‘ , . . „an) and f (vb . . . ‚ v„) are both well — formed E — terms.

(Substitutivity)

0(u1) = 00);) , . . . , cr(u„) = 0‘('D„)
a (u) = a(v)

„ .
if a is a substitution, A u.- = v,- => u = v G E and a(u‚-) = o(v‚-) 6 S (i = 1, . . . ,n) .

i=1

Note that by syntactical means the applicability of the inference rule ”substitutivity” is
l imited, as variables can only be subs t i tu ted by E-terms of type ”lo'w”.

We write S FE u = v to indicate that u = U can be derived from the set S of E-equations
by the above inference rules. (depending on E) . One. easily proves that the inference rules are
sound (using the fact t ha t there exist no empty sor ts) :

Lemma 3.1 Let S be a set of E-equations. Then for all u ,v € TERM(E‚V)‚ i fS l-E u = v,
thenSUEl=u=v .

Next we define the operational. semantics of the specification with the aid of an appropriate
congruence relation. We start with a relation that is induced by the built-in algebra ‚A.

Definit ion 3 .2 For s , t E TERM(E,V) l e t s NA t 217"
(a) s‚ t € TERA/[0(2), V) and A I: s , : t resp. s = t € EA or
(b) s , t € TERM"(E ,V) ‚ 3 E f (s l , . . . , sn) , t E f (t 1 , . . . , t n) and .9; NA t ; for i = l , . . . ‚ n .

One easily proves tha t NA is a congruence relation on TERM (2 , V) , the congruence relation
induced by A . According to the intuition that built-in equivalences are given in advance, the
inductive definition to follow starts with the congruence relation NA-

Definit ion 3 .3 Let:

. NOE'AINA._

. For all u, v E .TERM(E, V): u „23:34 v ifiu ~13“ v, or there exists a set S of E-equations
such tha t s~‘ElAt fo r a l l s= t e S andS i—Eu=v .

' ~E,A= U Nim-
iZO

Obviously, “EA (as well as ~35”) is a congruence relation on TERMQ), V), the congruence
relation induced by E and A.

The following ” Birkhoff—theorem" s ta tes t he equivalence between the model-theoretical and
operat ional semantics of t he specification.

Theorem 3.1 Let (E = So 65 El . E , A) be a specification with built-in algebra A . Then for
any s , t E TERM(E,V) we haves ~13}, t ifi’EU EA l: s = t.

*4

4

Proof:
(a) For the direction from left to right we prove by induction on i: For any s, t E T ERM('E, V),
if s "'~,A t, then E U EA 1= 8 = t.

The induction base i = 0 follows from the (easy to prove) fact that s "'At implies EA 1= s = t
for all s, t E T ERM('E, V). '.,

For the induction step i t-+ i + 1 let s "'~~ t for s, t E T ERM('E, V). The case s .JE,A t is

covered by the induction hypothesis. Thus, let S be given such that s' "'k,A t' for all s' == t' E S
and S ~E s = t. The induction hypothesis provides E U EA 1= S. By the soundness of the
inference system we get SuE 1= s = t. Consequently E U EA l= s = t.
(b) For the direction from right to left let E U EA 1= s = t. Let 1(E,A) be. the canoni~al term
algebra with carrier T ERM(E, V);"'E,A' defined as usual. It suffices to prove that 1(E,A) is a
model of E U EA as then TeE,A) is a model of 8 = t which is equivalent to s "'E,A t.

Let first U = v E EA. In order to prove that TeE,A) 1= U = v we have to show that
O'(u) ""'E,A O'(v) for any substitution 0'. Let 0' be a substitution. As a consequence of our
variable restriction we have O'(u) = O'(v) E EA. Thus O'(u) ""'~,A O'(v) resp. O'(u) "'E,A O'(v).

Now let 1\ Uj = Vj =} U= v E E and let 0' be a substitution such that TeE,A) 1= 0'(Ui) = 0'(Vi)
resp. O'(Uj) "'E,A O'(vd for i = l, ... ,n. For an appropriate kwe have'O'(uj) "'~,A O'(Vj) (i =
1, ... , n). We get 0'(u) "'tJ 0'(v) by applying the related inference rule. Thus 0'(u) '"E,A 0'(v)
resp. TeE,A) 1= 0'(u) = 0'(v). As 0' was an arbitrary substitution, TeE,A) 1= 1\ Ui = Vj =} U = v.
o

Rewriting

When conditional equations are interpreted as rewrite rules; "replacement of equals by equals"
is directionally limited "from left to right".

Definition 4.1 A conditional rewrite rule over E is a (directed) conditional equation

n

/\ Uj = Vj =} 'U = V,
i=1

where the left hand side u is an element of T ERM"('f., V) and all variables occuring in v, Uj, Vi
also occur in u.

The extra condition LL E T ERM"("f., V), meaning that the left hand side of a rewrite rule
has to contain a new symbol, is motivated by the aim that the built-in structure of the terms
of a "low" sort should not be destroyed. Thus, if we interprete the terms of the "low" sorts
as constructor terms, then this extra condition is a kind of constructor preserving property. In
addition this condition assures that rewrite rules are always sort-decreasing, i.e. sort(u) !?:sort(v)
(see [Wa92] or [SNGM89] for the relevance of this property).

Next we define conditional rewriting modulo the built-in algebra A, which is essentially
conditional rewriting of "-'A-equivC;1lence classes.

Definition 4.2 Let R be a set of conditi.onal rewrite rules over E. A term sETERM(E, V)
. rewrites modulo A to t E T ERM(E, V) ~ written s ----R/A t ~ iff there exist terms s', t' E

. n

TERM(E, V), an occurence pE 0(8'), a substitution 0' and a rule 1\ ui = Vi =} U = v E R
i=1

such that

8

Proof:
(a) For the direction from left to right we prove by induction on i : For any s , t € TERM (2,17),
ifs~§M t, then Eu EA |: s = t.

The induction base i = 0 follows from the (easy to prove) fact that s ~A timplies EA }: s = t
for all s , t e TERM(E, V). _ a

‚_ For the induction step i r—> i+ 1 let SMS:} t for s , t € TERM(E, V). The case 3 Jig“ t is
covered by the induction hypothesis. Thus, let S be given such that s’ NZ.” t’ for all s’ = t’ € S
and S 1-5 8 = t . The induction hypothesis provides E U EA |= S . By the soundness of the
inference system we get 5 U E i: s = t . Consequently E U E A l: s = t .
(b) For the direction from right to left let E U E A I: s = t . Let (IKEA) be the canonical term
algebra with carrier TERM (E, V) „„ E. ‚4 , defined as usual. It suffices to prove that ‚REM is a
model of E U EA as then 72E ,A) is a model of s = t which is equivalent t o s ~E,A t .

Let first u = v 6 EA. In order t o prove that 72E,» I: u = v we have to show that
0(a) ME, ; a(v) for any substitution 0'. Let a be a substitution. As a consequence of our
variable restriction we have 0 (a) = 0(0) & EA. Thus 0 (a) "%‚A c7(v) resp. 0 (a) NE,.A 0(a) .

Now let /\ u,- = 0,- => u = 1) € E and let a be a substitution such that {REM} |: a(u‚—) = a(v;)
resp. a(u.-) QE'A a(v,-) for i = 1, . . . ,n . For an appropriate ls. we have*a(u,-) “EA a(v‚-) (i =
1, . . . , n). We get 0(a) NIE} a(v) by applying the related inference rule. Thus 0(a) "EM a(v)
resp. 7(n l: 0 (a) = 0(0). As a was an arbitrary substitution, Tag“) I: Au,- = v,- =:> u = 1).
D

4 Rewriting

When conditional equations are interpreted as rewrite rules; ”replacement of equals by equals”
is directionally limited ”from left to right”.

Definition 4 .1 A conditional rewrite rule over)3 is a (directed) conditional equation
n,

/ \ u , -=v , -=>u=v ,
i=1

where the left hand side u is an element of TERM/XE, V) and all variables occuring in v, U.;, ‘U,’
also occur in u.

The extra condition it E TERM “ (& V), meaning that the left hand side of a rewrite rule
has t o contain a new symbol, is motivated by the aim tha t t he built—in structure of the terms
of a ”low” sort should not be destroyed. Thus, if we interprete the terms of the ”low” sorts
as constructor terms, then this extra condition is a kind of constructor preserving property. In
additiOn this condition assures that rewrite rules are always sort-decreasing, i.e. sort(u) Esort(v)
(see [W392] or [SNGM89] for the relevance of this property).

Next we define conditional rewriting modulo the built-in algebra .A, which is essentially
conditional rewriting of ~A-equivalence classes.

Definit ion 4 .2 Let R be a s e t of conditional rewrite rules over E . A term 8 E TERM(2 ,V)
_rewrites modulo A to t E TEe / I (2 ,V) —— written s _»RM t ——— ijff there exist terms s’,t’ E
.TERM(E,V) , an occunence p € 0(3 ’) , a substitution 0 and a rule /n\ ui :: m :> u = v E R

i=1
such tha t

• s ""A S', s'lp == O"(U), S'(p <- O"(V)] == t', t' ""A t and

• for any i E {1, ... , n} there exist ui, vi E T ERM(L, V) such that

O"(Ui) ~R/A ui ""A vi R/A"'::- u(Vi).

The least jixpoint of this recursion dejines the relation -R/A' Thus:

• _0R/A =0

•. - ~i~ is dejined as above exept that the rewrite proofs for the conditions can be. carried

out in ,U<. -~/A'
1_1

• ----+> = U ---.. i
R/A i~O R/A

Note that the syntactical variable restriction forces an innermost reduction strategy.

Example 4.1 We continue our standard example.

The chain g(g(2, 1),0) -R/H' g(g(l, 1),0) -R/H' g(g(l, 0), 0) -R/H' g(l, 0) -RtH' 1 is correct,

whereas g(g(2, 1),0) ------R/H' g(2, 1) is not possible.

As in the case of rewriting modulo unorientable equations (see [BaDe89], [JoKi86]) we could
switch over to a weaker rewrite relation -->'R\A' defined as least fixpoint according to the fol
lowing recursion:

Definition 4.3 s -R\A t iff thae exists an occurence p E O(s), a substitution 0" and a rule
n
/\ U; = Vi ::} U = v E R such that

;=1

• sip ""A O"(U}, s[p <- O"(v)] == t and

• jor any i E {1, ... , n} there exist ui, V:E T ERM('£, V) such that

O"(u;) ~R\A ui ""A vi R\A-!- O"(vd·

But this change would not have any influence on the results to come because the two rewrite
relations do not differ very much in our context. To prove this we first state some technical
results.

Definition 4.4 Let Ol\.(t} = {p E O(t) I sort(tlp) E SI\.} be the set of syntactical positions of

t E TERM('£, il).

Lemma 4.1 Let s, t, u E T ERM(~, V}.

(aj If S ""A t and pE Ol\.(s). then p E Ol\.(t). Further sip ""A tip and s[p <- u] ""A t(p <- u} if

s[p <-u] and t[p - u] are correct ~-teT'ms.

(b) Let 0" be a substitution. [fp E OI\.(O"(s}), then p E Ol\.(s) and O"(slp) == O"(s)lp.

Lemma 4.2 Let R be a set of conditional f'ewrite rules over '£. Let s, t E T ERM('£, V). Then
s ~R(A t iff there exists CL term tu E TER.H(:::, Il} such that s -=--"R\A W "'A t.

9

o 3 NA s', s’/p5 o(u), s’[p <— a'(v)] ;. t’, t’ “04 t and

. for any i € {1, . . . ,n} there exist 14,1):- 6 TERMOE, V) such that
ah“) "LR/‚4 u: NA ”: RIA;— (70);) -

The least fixpoint of this recursion defines the relation ""1214- Thus:

0 ..
. RIA—@

\ .

o_ -—>Ä7Ä is defined as above exept that the rewrite proofs for the conditions can be carried
. j

ou t in U ——>R/A.
J_<_I

I
R/A

Note that the syntactical variable restriction forces an innermost reduction strategy.

Example 4.1 We continue our standard example.
The chain g(g (2 . 1) . 0) —->„,„ y (9 (1 ‚1) ‚0)—>„ ,„ g(9 (1 ‚0) ‚0) ——+R,„ 9(1‚ 0) —>„,„ 1 is correct,
whereas g(g(2,1)'‚0)—-'R/N g(‘2, 1) is not possible.

As in the case of rewriting modulo unorientable equations (see [BaDe8r9], [JOK186]) we could
switch over to a weaker rewrite relation _.»RM, defined as least fixpoint according to the fol-
lowing recursion:

Definit ion 4 .3 s “”au t ijf there exists an occurence p 6 O(s)‚ a substitution 0 and a rule
n

‚ A
U£=Ui -=>U‚=v E Rsuch that

i=1

o s /p NA 0(u), s[p <— o(v)] E t and

o for any i € {1 , . . . , n } there exist uf, véE TERM(E, V) such that

(f (U i) _;R\A U,;- NA v i R\A_ (TÜJi).

But this change would not have any influence on the results t o come because the two rewrite
relations do not differ very much in our context. To prove this we first state some technical
results.

Definition 4 .4 Let O"(t) = {p € 0(t) | sortU/p) € 5"} be the set of syntactical positions of
t E TERM(E‚ V) . '

Lemma 4 .1 Let s , t , u E TERA-MS, V) .
(a) Ifs NA t and 1) € 0"(s) . then 1) € 0"(t) . Further s /p NA t / p and s[p «— u] NA t[p (— u} if
s[p <— u] and t[p ‚_ u] are correct E-ter'ms.
(b) Let a be a substitution. [fp E O"(o(s)), then p E O"(s) and o(s /p) E o(s) /p .

Lemma 4.2 Let R be a set of conditional rewrite rules over 2 . Let s , t € TERMQ) , V) . Then
3 Jän/A t if there assists a term w E TERA/[(2. V) such that 3 %RM U) N,; t .

Proof: The direction from right to left is easy.

For the direction from left to right we prove by in duction on j: If s --·i t, then thereR/A

exists a term w such that s ---:....~\A w "'At.
The induction base j = 0 is trivial. For the induction step we first consider the one step

case s --~i1 L Let s',t',p,CF,!\Ui = Vi => U = v, ui, vi be given as indicated in the deflJnition.

By lemma 4.1 we get sip "'A CF(U) and w == s[p - CF(V)] "'A s'[p - CF(V)] == t' ""A t.By the
induction hypothesis there exist ui',v:' E TERM("£, V) such that CF(Ui) ---:""R\A ui' "".4 ui ""A

vi "'A vi' R\A~ CF(vd. The iterated case s ---:....~;~ t can be proved easily by an induction
argument. 0

Rewriting is of great interest if every equational proof can be replaced by Cl: rewrite proof.
We review some notions to capture the main ideas.

Definition 4.5 Let R be (l set of conditional rewrite rules over "£.
(a) A "£-equation s = t. is joinable modulo A, written sIR/A t, iff there exist s', t' E T ERM("£, V)

such that s ~R/A S' "'At' R/A-'"'- t. A set S of equations is joinable modulo A iff any equation
from S is joinable modulo A.
(b) R is said to be Church-Rosser modulo A iff for any s, t E T ERM("£, V):
s ""R,A t iff s 1R/ At.
(c) R is said to be confluent modulo A (resp. locally confluent modulo A) iff for any s,SI,S2 E
T ERM("£, V): if SI R/A-'"'- S -"'-R/A 82 (resp. SI R/A<-- S -R/A S2), then SI lR/A S2·

The following theorems are generalizations of some classical results in rewrite theory. The
first one slightly generalizes the Newman-lemma.

Theorem 4.1 Let R be a conditional rewrite system over E. Let -R/A be terminating. Then
R is confluent modulo A iff R is locally confluent modulo A.

The proof is omited as it proceeds just analogously to the standard case.

Theorem 4.2 Let R be a conditional rewrite system over E. Then R is Church-Rosser modulo
A iff R is confluent rnodulo A.

Proof: For the direction from left to right let R be Church-Rosser modulo A. Further let
81 R/A"::'- 5 ~R/A 82· One easily proves (by induction on i) that for any u, vETERM(E, V),

u -~/A v implies LL "'R,A v. Thus we get SI "'R,A 52· The assumption then provides SI lR/A S2'
For the direction from right to left let R be confluent modulo A. We prove by induction on

i:	 if u "'k,A v, then IL IRIA u.
The induction base is trivial. For the induction step let u "-'it.~ v. The case u ""k,A v is

covered by the induction hypothesis. Thus let S be given such that s' "'R.A t' for all s' = t' E S
and S r:- R u = u. By the induction hypothesis S is joinable modulo A. We are finished if we
have proved the following statement: If S f- R U = v and if S is joinable modulo A, then u = v
is joinable modulo A too.

We first consider a one-step derivation. The general multi-step case is then easily shown by
induction on the lenght of the derinLtiotl.

Let S f- R LL = v by a one-step derivation and let 5' be joinable modulo A. \Ve proceed by
considering the diverse inference rules. The cases "reflexi vi ty", "symmetry" and "congruence"

la

Proof: The direction from right to left. is easy. _
For the direction from left to right we prove by induction on j: If s —'>ÄM t, then there

exists a term 21) such that s _‚l'su w NA t.
The induction base j = 0 is trivial. For the induction step we first consider the one step

case s as; t. Let s’ ,t’, p, o , Au,- = v.- => u = v, uf”); be given as indicated in the definition.
By lemma 4.1 we get s/p ~A 0(a) and w E s[p +— o(v)] NA s’[p <— a(v)] E t’ NA t. ‚By the
induction hypothesis there exist iii/,2)? € TERM(E,V) such that a(u;) JAR” uf’ NA 112 NA

RH RIA
argument. El

:- . nr +1 ' 'of NA 1),” <— a(v;). The iterated case s —>'7 t can be proved easrly by an induction

Rewriting is of great interest if every equational proof can be replaced by a rewrite proof.
We review some notions to capture t he main ideas.

Defini t ion 4 .5 Let R be a set of conditional rewrite rules over 2 .
(a) A E-equation s = tisjoinable modulo A, written s 1,2” t, if} there exist 3’, t’ E TERMOL‘, V)
such tha t s _"!2/‚4 s’ ”A t’ RM:— t. A set 5 of equations is joinable modulo A ifl' any equation
from 5 is joinable modulo A .
{b} R is said to be Church-Rosser modulo A ififor any s , t E TERM(E, V):
s ”RA t ifi s LRM t..
(c) R is said to be confluent modulo A (resp. locally confluent modulo A) iflfor any 3,31,32 E
TERM(E,V) : i f s l RM; 3 —'—-RM 32 {resp. s l apf— s —> 32), then s l lR/A R/A s2.

The following theorems are generalizations of some classical results in rewrite theory. The
first one slightly generalizes the Newman-lemma.

Theorem 4 .1 Let R be a conditional rewrite system over E . Let —>RM be terminating. Then
R is confluent modulo A i/f R is locally confluent modulo A .

The proof is omited as i t proceeds just analogously to t he standard case.

Theorem 4 .2 Let R be a conditional rewrite system over 2 . Then R is Church-Rosser modulo
A ifi’R is confluent modulo A.

Proof: For the direction from left to right let R be Church-Rosser modulo A. Further let
.31 R/f— s —’n/A .32. One easily proves (by induction on i) that for any u ,v E TERM(E,V) ,
u _»Ä/A 1) implies a ”RA 11. Thus we get 51 “RA 52. The assumption then provides s l „LR/A 82.

For the direction from right to left let R be confluent modulo A. We prove by induction on
i: if u Nil/& u, then u [RM v. _

The induction base is’ trivial. For ' t he induction s tep let u “fig; 1). The case u “hot v is
covered by the induction hypothesis. Thu-s let 5 be given such that s’ ‚JRJ‘ t’ for all s ' = t’ 6 S
and S l-R u = v. By the induction hypothesis 5 is joinable modulo A . We are finished if we
have proved the following s t a t emen t : If S l-R u = v and if S is joinable modulo A, t hen u = 0
is joinable modulo A too.

We first consider a one-step derivation. The general multi-step case is then easily shown by
induction on the lenght of t he derivation.

Let 5 F3 u = v by a one-step derivation and let S be joinable modulo A. We proceed by
considering the diverse inference rules. The cases “reflexivity”, "symmetry” and ”congruence”

10

5

are trivial. For the case "transitivity" we use the assumption that R is confluent. Finally the
"substitutivity" case follows from the definition of ~RIA' 0

We finish this section with some (easy to prove) results that will be needed below.

Lemma 4.3 Let s, s', t, t', to be E-terms and (7 be a substitution. Then: i
(a) If s ~RIA t, then (7(s) ~RiA (7(t) and to[p +- s] ~RIA to(P +- t] (provided that pE OCto),
to(P +- s], to(P +- t] E T ERM(E, V)).
(b) If s l t, then (7(s) l (7(t) and to(P +- s] l to(P +- t] (provided that p E OCto),

R1A R1A R1A

to(P +- s}, tolp +- t] ETERM(E, V)). If in addition s' "'..4 sand t "'..4 t', then s' l R1A t'.·

Critical Pair Test

In order to get a critical pair test we first generalize unification. The problem consists in
determining the solutions of a ~:-eCJuation in the presence of predefined equivalences.

Definition 5.1 A substitution (7 satisfies a set S of E-equations modulo A resp. is an A-solution
of S iff (7(s) "'..4 (7(t) for all s = t E S.

The aim is to determine a finite representation of all possible A-solutions of a E-equation
resp. a set of E-equations. From the theory of semantic unification (for a survey see [Si89]) we
know that we cannot expect to find such a finite representation for any algebra in the form of a
finite set of substitutions.

Example 5.1 We continue the standard example. Let N denote the Enat-algebra with the
canonical interptetation of the symbols over the natural numbers. The equation x + y = x' * y'
has infinitely manyN-solutions. but no finite representation by substitutions.

The way out of this situation is to represent the solutions not explicitly by substitutions but
implicitly in the form of a constraint (see [JaLa87b]). The next definition makes precise the
notion of constraint used in our context.

Definition 5.2 A constraint is eithEr' a finite conjunction of L.o-equations or an element of
{T,1.}.

Constraints will be denoted by the symbols Q, (3" (possibly with an index). "Ve identify
finite sets of L.o-equations with the according conjunctions so that finite sets of Eo-equations
represent constraints. Further we assume that T is true and 1. is false in any Eo-algebra A.
Note that the equation in the example above is itself the solution representation.

Equation solving proceeds in two steps, a first conceptual one and a second one that is of
more practical interest.

In the first step cl constraint representation of the A-solutions of an equation (a set of
equations) is determined by mere syntactical means. In the second step this constraint may be
"propagated" by a semantical built-in algorithm to yield a more explicit solution representation.

\Ve first present an inference system I that allows to determine a constraint representation,S of the A-solutions of an a.rbitra.ry finite set S of S=-equations. The inference rules are designed
to trace back'the recursive definition of the relation ""A.

11

are trivial. For the case ”transitivity” we use the assumption that R is confluent. Finally the
”substitutivity” case follows from the definition of ——>R„. El

We finish this section with some (easy to prove) results that will be needed below.

Lemma 4 .3 Let s , s ’ , t , t ’ , t o be E-terms and 0 be a substitution. Then: i
(a) Ifs L’s/.4 t, then 0(3) —'—>R-/A o(t) and to[p <— s] LEM to[p +— t] (provided that p € O(to),
to[p «— s],to[p <— t] e TERM(2:, V)).
(b) Ifs LR” t, then 0‘(s) 1R” 0(t) and to[p «— s] lR/A to[p 4-— t] (provided that p € 0(to),
to[p +— s],to[p <— t] € TERM(2 ,V)) . If in addition s’ NA s and t NA t’, then s' in“ t’,‘

5 Cr i t i ca l Pair Test

In order to get a critical pair test we first generalize unification. The problem consists in
determining the solutions of a E-equation in the presence of predefined equivalences.

Definition 5.1 A substitution 0 satisfies a set S of E-equations modulo A resp. is an A—solution
of S ifi'a(s) ~A a'(t) for a l l s = t € 5 .

The aim is to determine a finite representation of all possible A-solutions of a E—equation
resp. a set of E-equations. From the theory of semantic unification (for a survey see [Si89]) we
know that we cannot expect to find such a finite representation for any algebra in the form of a.
finite set of substitutions.

Example 5 .1 We continue the standard example. Let N denote the Emu-algebra with the
canonical interptetation of the symbols over the natural numbers. The equation x + y := x’ * y’
has infinitely mant-so lut ions . but no finite representation by substitutions.

The way out of this situation is to represent the solutions not explicitly by substitutions but
implicitly in the form of a constraint (see [JaLa87b]). The next definition makes precise the
notion of constraint used in our context.

Defini t ion 5 .2 .»l constraint is either a finite conjunction of Eo-equations or an element of
{Ta J—}—

Constraints will be denoted by the symbols 0 ,3 ,7 (possibly with an index). We identify
finite sets of FLO-equations with the according conjunctions so that finite sets of FLO-equations
represent constraints. Further we assume that T is true and J. is false in any EEO-algebra A .
Note that the equation in the example above is itself the solution representation.

Equation solving proceeds in two steps. a first conceptual one and a second one that is of
more practical interest.

In the first step a constraint represéntation of the „Al-solutions of an equation (a set of
equations) is determined by mere syntactical means. In the second step this constraint may be
”propagated” by a semantical built-in algorithm to yield a more explicit solution representation.

We first present an inference system I that allows to determine a constraint representation
75 of the Avsolutions of an arbitrary finite set 5 of S—equations. The inference rules are designed
to trace back‘ the recursive definit ion o f the relat ion ”A-

l l

(hierarchy fail)

Su{s=t}

{l-}

if sort(s) <J SOl't(t) or SOl·t(t) <J sort(s).

(syntactical fail)

S u {J(St, ... , sm) = gUt, ... , tn)}
{l-}

if sort(/(sl," .,sm)) = sort(g(t1 ,.· .,tn)) E S/\ and f::j:. g.

(decomposition)

SU {J(SI,,,,,Sn) = f(tt, ... ,tn)}

S U {SI = tt,.· ',Sn = tn}

if	 SOl't(f(Sl"",Sn)) = sort(f(tl, ... ,tn)) E SI\.

Let f-y denote the derivability relation induced by the inference system. The following
properties of f- r are easy to prove:

•	 f-y is terminating.

•	 If a new symbol from Ft IS still present in some equation, then some inference rule is
appl.iable.

•	 No inference rule is appliable if 5 is a constraint, i.e. if S contains only predefined symbols.

•	 f-I is correct, i.e.: If 05 f-r 05', then for all substitutions a, a satisfies 5 modulo A iff a
satisfies 5' modulo A.

Example 5.2 ~Ve continue our standard example.

Consider the 'f,-equation g('L' 0) = y(x'. ,T' +y'). The constraint-representation of the A-solutions

is I = {x =. x', 0 = :r' + .I)'}.

\Ve now turn to a critical pair test for local confluence.

Definition 5.3 Let U =? IL = (l and [i' =? iL' = u' be two conditional rules over L: that have no
variables in common. Then the conditional equation over 'f,

-("!P=U' /\ U /\ C' :::;> u[p - l,l] = U

is called a (conditional) critical pair between the two rules.

In contrast to the ordinary syntactical case we do not require u/p to be no variable. There
is no need for such a. condition in our context, as variables are of type "low" and the left hand
sides of the rules have to be of t\'pe "high". .-\n equation \vith the types of the two sides
being different has no solution ill our context. Xote that by these restrictions we do not have to
consider va.riable overlaps in the proof of the theorem to come. Hence we do not have to demand
for a termination property for R--- which is necessary in the syntactical case (see [DeOk90]).

12

(hierarchy fail)

Su{s=q
{i}

i f sort(s) <] sort(t) or sort(t) <1 sort(s).

O
w

.

(syntactical fail)

Su {f(sll...‚s„) =g(t1‚...‚t‚.)}
{t}

i f sor t (f (s1 , . . . , sm)) : sor t (g(t1, . . . , i„)) € 5“ and f 75 g .

(decomposition)

5U{f (31 , - - - s3n l = f(t l ‚ . . . ‚ t„)}
Sub1=n„„ß„=„}

i f so r t (f (s l ‚ . . . ‚ s „)) : so r t (f (t l , . . . , tn)) € 5“ .

Let l-z denote the derivability relation induced by the inference system. The following
properties of l—I are easy to prove:

. I—I is terminat ing.

o If a new symbol from F1 is still present in some equation, then some inference rule is
appliable. -

. No inference rule is appliable if S is a constraint , i.e. i fS contains only predefined symbols.

o l-I is correct , i.e.: If S l-I S’ , then for all subst i tut ions a , cr satisfies S modulo A iff 0
satisfies S ' modulo A .

Example 5 .2 We continue ou r s tandard example.
Consider the E-equation g(.r. O) : g(9:'. r’+y’). The constraint-representation of the A-solutions
is 7 : {::: :-2;’,0 = (L" + y'}.

We now tu rn t o a critical pair test for local confluence.

Definition 5.3 Let L" :> u = v and 0" => a’ = v’ be two conditional rules over 2 that have no
variables in common . Then the conditional equation over E

“/u/pzu' /\ U A 0" => u[p —— v'] = v

is called a (conditional) critical pair between the two rules.

In contrast t o t he ordinary syntactical case we do not require u /p to be no variable. There
is no need for such a condition in our context , as variables are of type ”low” and the left hand
sides of t he rules have t o be of type "high" . An equation with the types of t he two sides
being different has no solution in ou r context . Note t ha t by these restrict-ions we do not have t o
consider variable overlaps in the prooiof the theorem to come. Hence we do not have to demand
for a termination property for R. ——— which is necessary in the syntactical case (see [De0k90]).

1'2

Definition 5.4 A conditional equation S ~ s = t over ~ is said to be joinable modulo A iff
for any substitution a, if a(S) is joinable modulo A, then a(s) = a(t) is joinable modulo A.

Theorem 5.1 Let R be a conditional rewrite system over~. If all conditional critical pairs
that can be built from the rules of R are joinable modulo A, then R is locally confluent modulo

A. I

Proof: Let t, tl, t2 E T ERM(Y:., V) be such that tl R/Af--.t ---+R/A t2 with the rules U =>
u = v and U' ~ u' = v'. Hence for appropriate S,S',SI,S2 E TERM(~, V), positions p,q and
substitution r:

• t "'A s, sip =: r(u), s[p <- rev)] =: SI, SI "'A tl, r(U) is joinable modulo A.

• t "'A s', s'lq =: r(u'), s'[q ~ rev')] =: s2, S2 "'A t2, r(U') is joinable modulo A.

As u, u' E T ER.A,f/'(y:', V) we have p E O"(s) and q E O"(s'). By lemma 4.1 we get
p,q E O"(t). Then either p I q or q == pq' or p == qp' for appropriate p',q'.
Case 1: pi q. We have q E O"(s) and slq "'A tlq ""A s'lq. Further q EO"(s[P +- rev)]). Hence
s[p <- r(v)]/q =:slq "'A s'lq =: r(u'). Analogously s'[q <- r(v')]/p =: s'lp "'A sip =: r(u). Let
Wl =: s[p <- r(v)][q ~ rev')] and Wz =: s'[p ~ r(v)][q <- rev')]. Then:

t l --+R/A wl "'A w2 R/A--- tz·
Case 2: q == pq'. (The case]J = qp' proceeds analogously.) We have q == pq' E O"(s'), hence
pq' E O"(s), hence q' E O"(s/p), hence q' E O"(r(u)), hence q' E O"(u) (by use of lemma 4.1).
Then: reu/q') =: r(u)/q' =: slpq' ""A tlpq' =: tlq ""A s'lq =: r(u'). Thus r satisfies ulq' = u'

resp. lu/q'=u' modulo A. It follows that T(ru/q'=u') 1\ r(U) 1\ r(U') is joina;ble modulo A.
As the critical pair lu/q'='" 1\ U 1\ U' ~ u[q' ;,- v'] = v is joinable modulo A by assumption

we get r(u)[q' ;,- r(v')] l / r(v). Lemma 4.3 then provides t l l R / t2. 0R A A

The second step in the equation solving process uses a built-in constraint propagation algo
rithm to make the solution representation more explicit. We are here interested only in the
results that such a propagation algorithm may output and not in the details concerning the
algorithm itself.

To describe solutions that are partially explicit and partially implicit the notion of a con
strained substitution is introduced.

Definition 5.5 A constrained substitution (,.a) is a pair consisting of a constraint I and a
substitution a.

In practice a will be idem potent. Further no variable occuring in I will belong to the domain
of a. As usual T Ix denotes the substitution that has the same values as T on the set of variables
X and that is the identical mavping on V \X.

Definition 5.6 Let { be Cl constraint and X be a (finite) set of variables such that V AR(I) <;;;

X. The set {(rl.aIl ({bad} of constmined substitutions is said to be a partially, solved
representation of -f Wl't X (ll1oclulo A) if] the following items hold:

(a) FaT' any i E {1. /,;} alld ([ny substitution Il, if f.l. is an A-solution of li, then It 0 ai is an
A-solution of {.
(b) FoT' any substitution r, ifT is all A-8olution off, then there exists an i E {l, ...• k} and a

substitution It such thal 11 is an A --~olution of -f i and r Ix "- A Il 0 ai Ix.

13

Defin i t ion 5 .4 A conditional equation S 2 s = t over E is said to be joinable modulo A it)”
for any substitution 0 , if 0(5) is joinable modulo A, then 0(3) = 0(t) is joinable modulo A .

Theorem 5 .1 Let R be a conditional rewrite system over 2 . If all conditional critical pairs
that can be built from the rules of R are joinable modulo A , then R is locally confluentpmodulo
A. i

Proof: Let t , t 1 , t 2 E TERM(E,V) be such that t l RM<—-— «t -——+R„ t : with the rules U =>
u = v and U’ => u’ = v' . Hence for appropriate s ,s’ ,s l ,s2 e TERM(E,V), positions p‚q and
subst i tut ion T: ‘

o t NA s , s /p E r (u) , s[p <- r(v)] E s l , sl NA t1, 7'(U) is joinable modulo A .

. tNA s’, s ’ /q E T(u’)‚ s’[q «— r[v')] E 32, 32 NA t2 , r (U ') is joinable modulo A .

As u,u’ € TERM"(E , V) we have 1) € 0" (s) and q € 0"(s ’) . By lemma 4.1 we get
p,q € 0" (t) . Then either p | q or q = pq' or p : qp’ for appropriate p’‚q’.
Case 1: pl q. We have q E OA(s) and s /q NA t /q NA s’/q. Further q E‘O"(s[p <— r(o)]). Hence
s[p «— r(u)]/q Es /q NA s’/q E r(u’). Analogously s’[q <-—- T(v’)]/p E s’/p NA s /p E r [u) . Let
wl E s[p <— T(v)][q -.— T(v’)] and 102 E s’[p _ T(o)][q (-— T(v’)]. Then:
t l _QR/A w1~A U); R/A.'— t z .

Case 2: q = pq’. (The case p : qp’ proceeds analogously.) We have q : pq' € O"(s’), hence
pq’ € 0" (s) , hence q’ € 0" (s /p) , hence q’ E 0"(T(u)) , hence q’ € O"(u) (by use of lemma 4.1).
Then: 7'(u/q’) s r(u)/q’ E s/pq’ NA t/pq’ E t / q NA s’/q E r(u’). Thus T satisfies u/q’ = u’
resp. "Yu/q,:„f modulo A . It follows that T(7„/q‚=„«) A T(U) /\ 'r(U’) is joinable modulo A .

As the critical pair 7„/q‚=„‚ A U /\ U' =:> u[q’ <— v’] = v is joinable modulo A by assumption
we get ‘r(u)[q’ «— T(v’)] .lR/A 7'(v). Lemma 4.3 then provides t1 lR /A t z . El

Thesecond s t ep in t he equation solving process uses a built-in constraint propagation algo-
r i thm to make the solution representation more explicit. We are here interested only in t he
results that such a propagation algorithm may output and not in the details concerning the
algorithm itself.

To describe solutions t ha t are partially explicit and partially implicit the not ion of a con-
strained substi tut ion is introduced.

Defini t ion 5 .5 A constrained substitution (')/‚a) is a pair consisting of a constraint 7 and a
substitution 0 .

In practice cr will be idempoten t . Further no variable occuring in '7 will belong to t he domain
o fo - As u sua l 7' i x deno te s t he subs t i t u t i on t ha t has t he same values as 7“ on the se t of variables
X and tha t is t he identical mapping on V_-\'.

Defini t ion 5.6 Let 7 be "a constraint and X be a {finite} set of variables such that VAR(7) g
X. The set {(*/1.01). . . „(*,/mom} of constrained substitutions is said to be a partially, solved
representation of 7 wr t X (modulo A) ijj‘ the following i t ems hold:
(a) For any i € {1 k } and any substitution u . i f u is an A-solut ion of 'n, then u o o,- is an
A-solution of 7 .
(b) For any substitution T. if.— is an A-solution of 7 , then there exists an i E { l , . . . , k } und a
substitution ‚u such that ILL is an A-solut ion of 7,- and T IXNA u o a; [_\

l 3

6

A constraint propagation algorithm is intended to receive a constraint 'Y as input and to
produce a partially solved representation of, as output. The next lemma states without proof
(that is straightforward) that constraint propagation does not effect the joinability of conditional.
equations.

Lemma 5.1 Let, /\ U => s = t be a conditional equation. Let X be the set of variables otcuring
in , /\ U => s = t. Let {(,h O"d, . .. , (rk, O"k)} be a partially solved representation of, wrt X

(modulo A). Then ,/\ U => s = t is joinable modulo A iff {'i /\ O"i(U) => O"i(s = t) I i =1, ... , k}
is joinafile modulo A.

Thus we may propagate the constraint part of a critical. pair before testing for joinability.
Note that constraint propagation strongly depends on the built-in algebra A.

Example 5.3 We continue the standard example. Consider the rules from example 1.1. All
critical pairs are joinable modulo lV. We consider only three cases.

(a)	 overlap (1),(1)

equation to be soved: g(x, 0) = g(x', 0)

constraint solution: {x = x', 0 = O}

propagated solution: (T, {x ~ ,1;/})

propagated critical pair: T => ;r = x

(b) overlap: (i),(4)
equation	 to be solved: g(x, 0) = g(x', x' + y/)

/
constraint solution: {,1: = ;r , 0 = .1: ' + V'}
propagated solution: (T, {x ~ O,x' ~ O,y' ~ a})
propagated critical pair: T=>O = g(0,0)
joining reductions: g(0,0) -R/,V 0

(c)	 overlap (3),(4)

equation to be solved: gC1: + y, y) = g(x' , x' + y'}

constraint solution: {x + y = :Z;', y = x' +V'}

propagated solution: (T, {." - 0, y - ,"', y' - O})

propagated critical pair: T => g(O, Xl) = g(:rl,O)

joining reductions: g(O. x') -n/.\/ ,r l and g(:1.'1.0) -R/N Xl

Hence: R is locally confluent modulo thl'. IwtulYll number interpretation lV.

Termination

In this section we investigate the termina.tion of the rewrite relation ---+R/A' After developing
some general results we consider recursive path orderings that iIlteg~ate semantic information
from the built-in algebra .4.

Example 6.1 The u{uations fl'Om example 1.1 do not induce CL terminating rewrite relation
modulo the naturul nllmuer interprEtation .\', as g(,7;, 0) "".V g(x +0,0) and hence g(x, 0) ---+R/N

g(x,O). We change the rewrite rtLLEs uy adding "sernantical information". Let boole be an
additional built-in sort and let ~,tl'tLe ue additional built-in symbols which are interpretated in

(an extended VErsion of) .\' in the IwttLral]ray. Let R now be the new rewrite system:

A constraint propagation algorithm is intended to receive a constraint 7 as input and to
produce a partially solved representation of 7 as ou tpu t . The next lemma states without proof
(t ha t is straightforward) t ha t constraint propagation does not effect t he joinability of conditional
equations.

Lemma 5 .1 Let 7A U => s = t be a conditional equation. Let X be the set of variables ottouring
in 7 /\ U => s = t . Let {(71,01)‚. . . , (7k‚ak)} be a partially solved representation o f7 wrt X
(modulo A). Then 7AU => 3 = t is joinable modulo .A ifl' {7,-Acrg(U) => 05(3 = t) I i = 1, . . . ,k}
is joinab'le modulo A .

Thus we may propagate the constraint part of a critical pair before testing for joinability.
Note that constraint propagation strongly depends on the built-in algebra A .

Example 5 .3 We continue the standard example, Consider the rules from example 1.1. All
critical pairs are joinable modulo N'. We consider only three cases.

{a} overlap (1),(1)
equation to be saved: g(m,0) = g(a:',0)
constraint solution: {a: : x ’ , 0 = 0}
propagated solution: (T , {a: — .7:’})
propagated critical pair: T :> x = x

(b) overlap: (I),('/‚)
equation to be solved: g(a:,0) : g(a;’‚:c' + y’)
constraint solution: {.7; = ;r’,0 = :L" + y'}
propagated solution: (T , {a: .—— 0,3,” «— 0, y’ _ 0})
propagated critical pair: T => 0 : g(0‚0) .
joining reductions: g(0,0) _"R/,v 0

(c) overlap.('3}‚(4}
equation to be solved: g(.i' + y_y) : g(z’,x’ + y")

constraint solution: {.7: + y : _7;’‚y : .r’ + y '}

propagated so lu t i on : (T . {.7: — [)‚y -- .r’, y ' .— 0})

propagated critical pair: T => g(0, r’) = g(J:'.‚O). . . ‘ . _ . , _, _, ,
]ommg 1eductzons. gtOUL) _R/.\’ .1 and g (1 . 0) _"a/ ,v 2:

Hence: R is locally confluent modulo the natural number interpretation JV.

6 Termination

In this section we investigate the termination of the rewrite relation —+R/A. After developing
some general results we consider recursive path orderings that integrate semantic information
from the built~in algebra A.

Example 6 .1 The equations from example 1.1 do not induce a terminating rewrite relation
modulo the natural number interpretation ‚V. a s g(a:. 0) ~,v gta: + 0 ,0) and hence g(.v,0) '_’R/N
g(a:,0). We change the rewrite rules by adding "semantical information”. Let boole be an
additional built—in sort and let > . t rue be additional built-in symbols which are interpretated in
(an extended version of} ‚V in the natural way. Let R now be the new rewrite system:

(1)	 g(x,O) x

(2)	 g(O,y) y
(3) y?- 0 true => g(x+y,y) = g(x,y)
(4) x?- 0 tl' ue => g(x,x + y) g(x,y)

Now we may use the well-foundedness of the algebra N wrt ?- and true and the fact thqt N F
y ?- 0 = true => x + y ?- x = true and N F x ?- 0 = true => x + y ?- Y = true to conclude that
~R/.N is terminating.

First the notion of decreasingness (see [DeOk90]) is generalized in order to guara~tee the
well-foundedness of --+R/A and to avoid an infinite regress in the recursive condition check.

For reasons that will become clear below we split the condition U of a conditional rewrite
rule into two parts, a constraint, and an additional part C. Thus a conditional rule will be
written in the form ,/\ C => u = v.

Definition 6.1 Let R be a conditional rewr'ite system over l:. R is said to be decreasing modulo
A iff there exists a well-founded extension> of --+R/A that satisfies the following items:

• > contains the subtam relation >st/A, where for s,t E TERM(l:, V) we have: s >stlA t
iff there exist Si E TERAJf'(E, V) and t l E TERM('£, V) such that s ""A Si >st t l ""A t
(> s~ denotes the normal proper subterm ordering).

•	 For any rule , /\ C => U = v E R and any substitution a that satisfies, modulo A,
a(u) > a(Ui), a(Vi) for all tti = Vi E C.

As in the "normal syntactical case" one easily proves that there cannot exist any infinite
descent when recursively checking conditions for rule application if the rewrite relation is de
creasing modulo A. Hence in that case the rewrite relation ---->R/A is terminating and decidable
(provided that A-equivalence and A-matching are decidable; see also section 7). In order to
prove decreasingness modulo A we next introduce a suitable notion of reduction ordering that
takes into account the signature hierarchy and the built-in algebra. Compatbility with such
a reduction ordering that in addition satisfies a subterm property then provides the desired
decreasingness.

Definition 6.2 A partial ordering> on T ERM(~, V) is said to be a reduction ordering wrt
(~ = ~o ffi ~l,A) ijj the following items hold:

(a)	 > is compatible with the utlilt-in algebra A: foranys,t,s',t ' E TERM(~, V), ifs ""A Si >
t l

""A	 t, then s > t.

(b)	 > is monotonic wrt syntactical replacement: for any s, t E T ERA1(~, V) and any symbol
f, ifs> t and f(,· ,,8... ,) E TERJJf'(~, 1,/), then f(· .. ,s, ...) > f(... ,t, ...).

(c)	 > is well-foundnl.

In the sequel we writfe' '(il > L' iff for any substitution a, if a satisfies Ai modulo A, then
a(u»er(v).

Definition 6.3 Lel R Ix a condiliof1ulreu:rite system, A partial ordering> is compatible with
R iit for ariy '(/\ C :::;. U = I' ::: R ({'C IWCE! : il > t'. ili. Vi. (chere Ili = Vi E C .

.\ote that this kind of compatibility requires a kind of stability too.

1.5

(1) ‘ gone) = z
(2) y(0‚y) = y
(3) y>0 = true => 9($+y‚y) = 903,31)
(4) z>0 : t rue :> g(:i:,:r+y) : g(a:,y)

Now we may use the well-foundedness of the algebra N wrt >- and true and the fact that N I:
y>0=true=>r+y>x=true andN|=$>~0=true=>z+y>y=true toconclude that
——+R/N is terminating. '

First the notion of decreasingness (see [De0k90]) is generalized in order to guarantee the
well-foundedness of —~>RM and to avoid an infinite regress in the recursive condition check.

For reasons that will become clear below we split the condition U of a conditional rewrite
rule in to two parts, a constraint 7 and an additional part C . Thus a conditional rule will be
wri t ten i n the form 7 A C => a = v .

(

Defini t ion 6 .1 Let R be a conditional rewrite system over 2 . R is said to be decreasing modulo
A iff there exists a well-founded extension > of —->RM that satisfies the following items:

. > contains the subterm relation >‚t/A, where for s , t e TERMOD, V) we have: s)„“ t
ijf there exist s' 6 TERM"(E‚V) and t’ € TERM(E,V) such that s NA 3' >3; t’ NA t
(>55 denotes the normal proper subterm ordering).

o For any rule 7 A C :> n = 'L‘ E R and any substitution 0' that satisfies 7 modulo ‚A,
(7(a) > a(u‚-),cr(vi) for all u,- : v.- E C.

As in the "normal syntactical case” one easily proves tha t there cannot exist any infinite
descent when recursively checking conditions for rule application if the rewrite relation is de-
creasing modulo‘A . Hence in tha t case t he rewrite relation —,RM is terminating and decidable
(provided that A-equivalence and A-matching are decidable; see also section 7) . In order t o
prove decreasingness modulo A we next introduce a suitable notion of reduction ordering that
takes in to account t he signature hierarchy and the built-in algebra. Compatbi l i ty wi th such
a reduction ordering tha t in addition satisfies a sub term property then provides the desired
decreasingness.

Defini t ion 6.2 A partial ordering > on TERM(E, V) is said to be a reduction ordering wrt
(E = So 63 El./4) ijf the following items hold: '

(a} > is compatible with the built-in algebra ‚A: for any s , t , s’, t’ E TERM(E, V) , i fs NA 3’ >
t' NA t , then 3 > t .

(b) > is monotonic wrt syntactical replacement: for any s , t E TERA/[(2, V) and any symbol
f. i f s > t and f(. . . s . .) E TERMNEV) , then f f . . . , s , . . .) > f (. . . . t , . . .) .

(C} > is well—founded.

In t he sequel we wr i t e 7 : a > v iff for any subs t i t u t i on 0 . if 0 sa t i sfies 7 modulo ‚A, t hen
0(a) > (7(1)). ‘

Defin i t i on 6 .3 Let !?. be a conditional rewrite sys tem. A partial ordering > is compatible w i th
[Z ijffor any 7 A C :> (L = r E I? we have 7 : a > v . {L,-. v;. where u.,- = u,- E C.

Note t ha t this kind of compatibility requires a kind of stability t oo .

i s

Lemma 6.1 Let> be a reduction ordering wrt (~ = ~o EB ~1>A) that is compatible with the
conditional rewrite system R. Let further> contain >st/A- Then R is decreasing modulo A.

Proof: First, > is well-founded by definition. Next we prove that ---"'R/A ~>.

Let s ---"'R/A t with s', t', p, a" f\ C => U = v as indicated in the definition of the rewrite re
lation. By assumption, :u > v. As A l= a(,) this implies a(u) > a(v). As u E TERM':r(E, V)
we get s' > t' by the monotonicity property of >. Finally, s > t as > is compatible with A.

Now let, f\ C => u = v E R and let a be a substitution that satisfies, modulo A. The
assumption, : u > Ui, Vj yields a(u) > a(Uj), a(vd for any Uj = Vi E C. 0

As usual the assumption that> contains >st/A can be dropped if > is sort compatible (i.e.
if s > t, then sand t are sort compatible). The transitive closure of > and>st/A satisfies the
desired properties.

As the compatibility property, : U > v, Uj, Vj requires possibly an infinite number of tests we
next integrate the constraints into the notion of reduction ordering by parameterizing orderings
with constraints.

Definition 6.4 The set {>{-t)1 , is CL constraint} of partial orderings on TERM(~,V) is said
to be a constrained reduction ordering system wrt (~ = ~o EB ~1> A) iff the following items hold:

(a)	 >(T) is a reduction onleriny lOtt (~ = ~o EB ~l, A).

(b)	 The system is stable (wrt senwntical substitutions): for all u, vETERM(~, V), all con
straints, and any substitution a, if U >b) v, then a(u) >(O"b) a(v).

(c)	 The system is cOlnpatible with constraint satisfaction: If A l=" then >(-r)= >(T).

Definition 6.5 Let {>{-t)1 ~f is a constraint} be a constrained reduction ordering system wrt
(E = ~o EB El, A). The system is compatible with. the conditional rewrite system R iff for any
, f\ C =} u = v E R we have U >("1) v, Ui, Vi, where Ui = Vi E C.

Lemma 6.2 Let {>{-tll , is a constraint} be a constrained reduction ordering system wrt (~ =
EoEBE1,A) that is compatible with R. Then >(T) is a reduction ordering that is compatible with
R (in the sense of definition 6..3).

Proof: Let ~f f\ C =} U = v ER and Ui = Vi E C. We prove,: U >(T) V,Ui,Vi. Let A l= ab)
for a substitution ~f' As U >(~/) v, Ui, l'j we get a(u) >(O"(-y») a(v),a(ud,a(vj) by the stability
property. Compatibility with constraint satisfaction finally yields a(u) >(T) a(v),a(ui),a(vi)' 0

To give an example of a constrained reduction ordering system we define suitable recursive
path orderings. The knO\vleclge about the built-in algebra A intended to be integrated into the
construction of the recursive pa.th ordering is giverl by a so-called constrained base ordering
system. As a method of integration we let the base orderings be part of the precedences that
induce the recursive path orderings.

\Ve	 first generalize A-equivalence by integrating constraints:

Definition 6.6 Fof' s,t E TERJl('S, 1-') let S ,,-,~l t iff
(a)	 s,t E TER.\1o('5:,I') and --t i= f ::::;> S = t Of'

(b)	 s,t E TERM/\('S. If), S == f(·~l'" .. s,,), t == f([l, ... ,t,,) and Si "-'~) ti for i = 1, ... ,n.

16

Lemma 6.1 Let > be a reduction ordering wrt (E = 20 G) 21,..4) that is compatible with the
conditional rewrite system R. Let further > contain >, t /A. Then R is decreasing. modulo A .

Proof: F i r s t , > is well-founded by definition. Next we prove that —>R A<_:>.

Let s —’n/.4 t w i th s’, t’, p , o ,7 A C :> u = v as indicated in the definition of the rewrite re-
lation. By assumption 7 :"u > v . As A l: 0(7) this implies 0(a) > 0(1)). As u E TERM'ME, V)
we get s’ > t’ by the monotonicity property of >. Finally, s > t as > is compatible with ‚Ä.

Now let 7 A C => u = v € R and let a be a substitution that satisfies 7 modulo A. The
assumption 7 : u > it,-‚v.- yields 0 (a) > a(u;),a(v,-) for any a.- = v.- € C. El

As usual the assumption that > contains >st/A can be dropped if > is sort compatible (Le.
if s > t , then s and t are sort compatible). The transitive closure of > and >„M satisfies the
desired properties.

As the compatibility property 7 : u > 1;, u;, v,- requires possibly an infinite number of tests we
next integrate the constraints into the notion of reduction ordering by parameterizing orderings
wi th constraints.

Defini t ion 6 .4 The set {>(”) | 7 i s a cons tra in t } of partial orderings on TERM():, V) is said
to be a constrained reduction ordering system wrt (E = 20 @ XDA) ijf the following items hold:

(a} >”) is a reduction ordering wrt (E =. 20 EB 21,.A).

(b) The systenzzis stable (wrt sernantical substitutions): for all a, 1) € TERM(2‚ V), all con-
straints 7 and any substitution 0 , i fu >07) 11, then 0 (a) >("(")) 0(1)).

{c} The system is compatible with constraint satisfaction: IfA l: 7 , then >“) : > ”) .

Definit ion 6.5 Let {>(“Vll 7 is a constraint} be a constrained reduction ordering system wrt
(E : 20 EB 21‚A) . The sys tem is compatible with. the conditional rewrite system R ifi‘for any
7 /\ C => ‚u = v E R we have u >“) mug, vi, where a; = v; E C.

Lemma 6.2 Let {>(7ll 7 is a constraint} be a constrained reduction ordering system wrt (Z =
$069 21 ,A) that is compatible with R. Then >”) is a reduction ordering that is compatible with
R {in the sense of definition 6.3).

Proof: Let 7 /\ C :> u = v E R and in : v; E C. We prove 7 : u >”) v,u;,v‚-. Let ‚A l: 0(7)
for a substitution 7 . As a >”) Lani, v,- we get 0 (a) >070”) a(v),a(u,-),o(v.-) by the stability
property. Compatibility with constraint satisfaction finally yields 0(a) >”) a(v)‚ U(u‚-),cr(v‚—). D

To give an example of a constrained reduction ordering system we define suitable recursive
path orderings. The knowledge about the built-in algebra .A intended t o be integrated into the
construction of the recursive path ordering is given by a so-called constrained base ordering
sys tem. As a method of integration we let the base orderings be part of the precedences that
induce the recursive path orderings.

We first generalize A—equivalence by integrating constraints:

Definition 6.6 For—„u e TERMDZJ") lets «;(/“;) t if}
(a) s , t E TER.l-[o(‘:. V) (LINZ/«i i: “. => s = t orI

(WM 6 TERM/KEV). sa fm 5n), tE f(t1,...,tn) and s,- JJ) t,» for i : l , . . . n .

16

One easily proves that "'~) is stable wrt substitutions, i.e. for all s, t E T ERM(~, V) and

any substitution " if s "'~) t, then a(s) ",~(-y)) aCt).

Definition 6.7 A set {>&"Y) 1 , is a constraint} of partial orderings on TERMo(''E., V) is said
to be a constrained base ordering system modulo A iff the following items hold:

(a)	 >&T) is wellfounded.

(b)	 >~"Y) is compatible with A, i.e. for any s, t, s', t' E T ERM(''E., V) and any constraint" if
s ",h) s' >h) t' ",(-y) t then s >h) t '

A 0 A' o'

(c)	 The system is stable wrt substitutions.

(d)	 The system is compatible with constraint satisfaction.

For an example of such a constrained base ordering system modulo A let A be well-founded
wrt. >-,true E Fa (Le. the relation {(a,b) E A x A I>-A (a,b) = trueA } is well-founded). Now
let for u, vETERMo('£, V)

u >~"Y) V if f A 1= , => u >- u = h·ue.

Then {>b"Y) I , is a constraint} is a constrained base ordering system modulo A - the con
strained base oT'dering system induced by A, >-, true.

For the rest of this section let {>~"Y)I , is a constraint} be a constrained base ordering
system modulo A.

Hierarchical '£-terms will be converted into flat terms by abstracting from the internal struc
ture of predefinecl terms in order to use the syntactical recursive path ordering construction.
For that purpose let [u] be a new constant symbol for any term u E T ERMo('£, V) and
Co = {[u] I u E T ER.to.lo(~, V)} be the set of these new constants. Further let F* = FI' u Co
where F/\ = FJ~I) U F1 • The mapping a converts (hierarchical) '£-terms into (flat) F*-terms.
For u E T ERM(E, V) let

a(u) = { [u] ~f u E TERM~('£, V) ,

J(a(uI), ... ,o:(un)) tJuETERM ('£,V)andu=J(ul'''''Un).

By abuse of notation let for s E TER.\f(F*) and any substitution a

a(s) = {	 [a(u)] ~J S = [u]

f(a(sd, ... ,a(sn)) tf S = f(sl, ... ,sn)'

Let also by abuse of notatioll [u] >6') [u] iff u >~,) u and a(s) "':;) aCt) iff s "':;) t.

'rVe now define the recursive path ordering >~~~,A modulo A on the F* -terms. 'rVe first review
the usual definition of the recursive path ordering (see [De87]).

Definition 6.8 Let;::: ut CL quasi-ordering (the precedence) with", denoting its equivalence part
and> its strict [HU't.

(aJ	 The permutative congruence ""per", induced by ~ is defined by; FOT'S == !(Sl"",Sn),t ==
g(tl, . , .. tn) E T E RJI (F) let s ""perm t iff J '" 9 and there exists Cl permutation 11' on
{I" .:.,n} such that Si ""perm t"(i) Jor i = l" .. ,n.

17

One easily proves t ha t~ (1) is stable wrt substitutions, i.e. for all s , t € TERM(E,V) and
any substitution 7 , i f s NS" t, then a (s)~ (0(7)) 0(t) .

Definit ion 6 . 7 A set {>(7)| 7 is a constraint} of partial orderings on TERM0(E, V) is said
to be a constrained base ordering system modulo A if the following items hold: l

(a) >0T) is wellfounded. .

(b) >“) is compatible with .A, i e . for any s , t , s’, t’ E TERM(2, V) and any constraint 7 , if
„(7) s’ >(7) t 'w (7) t then s >(7) t

(c) The system is stable wrt substitutions.

(11) The system is compatible wit/L constraint satisfaction.

For an example of such a constrained base ordering system modulo A let ‚A be well-founded
wrt. > , t rue € F0 (i.e. the relation {(a,b) € A x A |>-A (a,b) = trueA} is well-founded). Now
let for u',v E TERM0(E, V)

u>gfiv i f fA j=7=> u>v=true .

Then {>},“l 7 i s a constraint} is a constrained base ordering system modulo .A — the con-
strained base ordering system induced by A , > , t r ue .

For the rest of this section let {>ßfll 7 i s a constraint} be a constrained base ordering
system modulo A .

Hierarchical E-terms will be converted into flat terms by abstracting from the internal struc-
ture of predefined te rms in order t o use t he syntactical recursive path ordering construction.
For that purpose let [a] be a new constant symbol for any term it E TERM0(Z,V) and
Co = {[u] | u E TER.M()[$,V)} be the set of these new constants. Further let F" = F" U Co
where F" = F621) U F1. The mapping a converts (hierarchical) Z—terms into (flat) F *-terms.
For a € TERA/[(2. V) let

(_ [M ifueTERMMnV) .
““““ flqm%„„q%n UuéTERMNäVMmdu:flm„„ßfi .

|

By abuse of notat ion let for s E TERA-HF“) and any subst i tu t ion 0

_ [dWl ifs=W]
a (3) ‘ "{ f (o ' (s1) , . . . ‚ c r (sn)) i f s = f (s1 , . . . , sn) .

Let also by abuse of notation [a] >8y [.v] ifi‘ u >“) v and a (s)~ (7) a(t) MT 5 N51) t.
We now define the recursive path o1dexing >?)po A modulo .A on the F*— terms We first review

the usual definition of the recursive path ordering (see [De87]).

Defini t ion 6 .8 Let ,2 be a quasi-ordering (the precedence) with ~ denoting its equivalence part
and > i ts s t r ic t part .

(a} The permutat ive congruence «nem, induced by Z is defined by: For 3 E f (s l , . . . , sn) , t E
g(t1 , t n) E TERAHF) l e t s ~pe,.m t if} f ~ g and there exists a permutat ion 1r on
{ l , . . . _ ‚ n} such that s,- ~pem t d i) for i = l , . . . , n .

17

(b)	 The recursive path ordering >rpo induced by .2: is defined by: For s == f(SI, ••• , srn), t ==
g(t l , ••. , tn) E T ERM(F) let 5 >rpo t iff one of the. following items holds:

(a)	 Si >rpo t or Si "'perm t for some i E {I,.", m}.

((3) f > g and s >rpo tj for all j E {I, .. . ,n}. .
. i

(r)	 f '" g and for approprzate A,B,ai,bi we have {SI"",sm} = A U {at, ... ,ak},
{t l ,.,., t n } = B U {bI, .. " bd, A >rpo>rpo Band ai "'perm bi (i = 1, ... , k) ..

Definition 6.9 Let.2: FII be a well-founded partial ordering on FI\ and {>~"")I i is a cons~raint}
be a constrained base ordering system modulo A. Let i be a constraint. Then

.2: ('"Y) = "'2') U ~ FAU >~...,) U{(J, [u]) I f E FI\; [u] E Co}

is the precedence modulo A induced by .2: FA and >~7). This precedence induces the permutative

equivalence "'~~~m,A .modulo A wrt. .2: FA and >~...,) and the recursive path ordering >~;~,A
modulo A wrt . .2: FA and >67

) (on the F*-terms).

Lemma 6.3 Let .2: FA be a well-founded partial ordering on FI\ and {>67)1 i is a constraint}

be	 a constrained base ordering system modulo A. Let >~;~,A be the recursive path ordering

modulo A wrt. .2: FA and >67
). Let further 5,5', t, t' ETERM(F*), I be a constraint and u be

a substitution. Then the following items hold:

(a)	 If s ",b) s' '"Vb) t' '"Vb) t then 5 '"Vb) t
J A perm.A A' perm,A .

(b)	 [fs '"Vb) 5' >h) t' '"Vb) t then 5 >b) t
J A rpo,A A' rpo,A .

(e)	 If s "'~~~rri.A t, then u(s) '"V~~~~:A aCt).

(d)	 If 5 >(7) t then a(s) (crh))a(t)
J rpo,A' rpo,A'

(e)	 If A F= At, then >~;~.A = > ~.;J.A·

(J)	 >~;J.A is wellfounded.

Proof: The proof of (a), (b) resp. (c), (d) proceeds by induction on the sum of the lengths of
5' and t' resp. 5 and t. Below we sketch only the proof of part (b), the other cases are shown
analogously. Statement (e) follows from the fact that by the related property of the constrained

base ordering system the tV'iO precedences are identical. To see (f) note that >~T) is assumed

to be wellfounded. Hence the precedence .2:: (T) is wellfounded too. It follows (see [DeS7]) that

>~;;,A is wellfounded.
Proof of part (b): For the illduction base let s' and t' be constants from F*.

Case 1: 5' = [u'], t' = [u'] for appropriate !L',V' E TERM(Eo,V). Then there exist u,v E
TERM(Eo,V) such that s = [n]. t = [v]. By.inspecting the definition of the precedence we get

b)	 , b) , (-I) rI'l . . h {('Y)I' . }' . d bu '"V A U >0 V CV A u. le assumption t at >0 I IS a constraInt IS a constramc ase

ordering system modulo A provides u >6'Y) I':. Thus s >~;~.A t.

Case 2: s' E FA and t' = [Vi] for u' E TERM(~o, V). Then s = 5' and t = [vJ for some

vETERM(~o, V). Thus s >('Y) t and consequently s >b) At.'
rpo,

IS

(b) The recursive path ordering >,” induced by 2, is defined by: For s E f (s l , . . . ,sm),t E
g(t1, . . . , t,.) E TERM(F) let s >,” t ifl' one of the following items holds:

(a) s,— >,po t o r s,- «pam t for some i € {1 ‚ . . . ,m} .

(‚B) f> g ands >rpo tj for a l l j 6 {1 , . . . , n } .
(7) f ~ g und for appropriate A‚B‚a.—,b‚- we have { s l , . . . , s , , , }= A U. . i {a1 , .,ak}‚

{ t l , . . . , tn} : B U{b1 , . . . , bk} , A >rpo>rpo B and a i Nperm b i (i _ — 1 , . . , . k)

Definition 6 . 9 Let 2, FA be a well- founded partial ordering an F" and {>(7)| 7 is a constraint}
be a constrained base ordering system modulo .A. Let 7 be a constraint. Then

> ('1) __ „(;) „ > „„ ><~> U{ (f , [u]) | f e F“;[u] € Co}
is the recedence modulo ‚A induced by ‚Z A and >07). This precedence induces the ermutativeP F 0 P

(Z lmA modulo A w1t. ‚ZFA and >3”) 521,14

modulo .A wrt. ‚Z FA and >}; {on the F‘—terms}.
equivalence ~ and the recursive path ordering >

Lemma 6 .3 Let 2, F" be a well-founded partial ordering on FA and {>g”)| 7 is a constraint}
be a constrained base ordering sys tem modulo A . Let >31 , A be the recursive path ordering

modulo A wrt. ,2 FA and >(7). Let further s,.s’, t,t’ € TERM(F*), 7; be a constraint and a be
a substitution. Then the following i tems hold:

(a} Ifs N27) s’ „(W) A t’ MEZ) t , then s „h) t .perm. perm .A

(b) Ifs « fp s ’);”;LA t’ MEZ) t , then s >33,” t .

(c) Ifs Magma t , then 0(3) ~;:£2?A a(t).

(d) Ifs> $” At , then „(.)ßgngm.

(€) UA l= 7.. then >32)”: ABA

(f) >,” A is wellfouncled.

Proof: The proof of (a) , (b) resp. (c) , (d) proceeds by induct ion on the sum of the lengths of
s’ and t’ resp. s and t . Below we sketch only the proof of part (b), the other cases are showu
analogously. S ta tement (ee) follows from the fact tha t by the related property of the constrained
base ordering sys tem t he two p1ecedences are identical. To see (f) no te t ha t >(T) is assumed
to be wellfounded. Hence the p1ecede11ce ‚ZU-) is wellfounded too. It follows (see [De87]) that
>£:2,A is wellfounded.

Proof of part (b): For the induction base let 3’ and t’ be constants from F“.
Case 1: s’ = [u’], t’ = [v'] for appropriate u'.-v’ € TERM(20,V). Then there exist 21,1) 6
TERM(ED‚ V) such that s -— [u]. t—— [v]. By inspecting the definition of the precedence we get

„(W) u' >“) u ’~ T1 The assumption that {>(")| 7 is a constraint} is a constrained base
ordering sys tem modulo A p1ox'1des u >(l u. Thus 3 >i -pbA t .
Case 2: s’ E F" and t’ =[u ’ l f ox v’ E TERM(EO, V) . Then s = s’ and t = [u] for some
1) E TERM(EO, V) . Thus 8 >(" t and consequently s >S‘;)o,A t.-

18

Case 3: s', t' E FA. Then s = s' and t = t', consequently s >~;~,A t.

Case 4: s' = [u'] for some u' E T ERM(Eo, V) and t' E FA. Note that this case is impossible by

the definition of the precedence.

For the induction step let the sum of the lengths of s' and t' be greater than 2. Notice that the
claim follows immediately if t' E Co and that the case s' E Co is impossible by the definition of
the precedence. It remains the "syntactical case" s' == f(sL , s~) and t' == y(t~, ... , t~) where
f,g E FA. Then we have s == f(sl, ... ,sm) and t == g(tl, ,tn) with appropriate F·-terms
Si, tj. 'The proof now proceeds straightforward by case analysis using the induction hypothesis
and statement (a). 0

The recursive path ordering modulo A on T ERM(E, V) wrt. ~ FA and >~'"Y) is defined in
the obvious way:

('"Y) 'ff () ('"Y) ()s >rpo,A t t ex s >rpO,A ex t .

With the aid of lemma 6.3 the following theorem is easily proved:

Theorem 6.1 Let ~ p. be a well-founded partial ordering on FA and {>~'"Y)II is a constraint}

be a constrained base ordering system modulo A. Let >~;~,A be the recursive path ordering

modulo A on T ERM(E, V) wrt. ~ Ft' and >~"Y). Then he set {>~;~,AII is a constraint} is a

constrained reduction ordering system wrt (E = Eo EB El, A). In addition > ~;~,A contains> at/A'

Corollary 6.1 Let ~ Ft' be Cl well-founded partial ordering on FA and {>~'"Y)II is a constraint}

be a constrained base ordering system modulo A. Let >rb) A be the recursive path ordering modulo po,

A on T ERM(E, V) wrt. ~ Ft' and >~"Y). Let further the system {>~;~,AII is a constraint} be
compatible with a conditional rewrite system R. Then R is decreasing modulo A.

Example 6.2 We continue example 7.1
Let N be the natural number interpretation (enriched by a standard boolean interpretation). We

have FA = {+,;...,g}. Let >Ft'= 0. Let {>~"Y)II I is a constraint} be induced by N,;...,true.
Then

>(T)g(x,O) rpo X

(T)
g(O,y) >/"po Y

(y~O=trtLe)
g(x + y,y) >"po g(:r, y)

(x~O=tnLe)
g(x,x+y) >rpo g(x,y)

Thus R is decreasing modulo JV and especially, -R/N is terminating.

Decidability of A-equivalence and A-match

In order to get a decidable rewrite relation modulo the built-in algebra A-equivalence and A
match have to be decidable. We finish the paper with some remarks about decidability results,

We first consider the decidability of A-eqivalence. In general A-equivalence is not decidable.
This follows from the fact. that there exists a signature ~o and a Eo-algebra A such that the
equivalence relation rv A on T ER.\lo(~, Il) is not decida.ble (\ve thus consider a case where no
new symbols are present). For a justifica.tion let E be a set of :So-equations (for an appropriate

19

7

Case 3: s’, t’ € F" . Then s = s’ and t = t ' , consequently s >32,” t .
Case 4: s’ = [u’] for some u’ € TE RM (Eo,V) and t’ € FA. Note that this case is impossible by
the definition of the precedence.

For the induction step let the sum of the lengths of 8’ and t' be greater than 2. Notice that the
claim follows immediately if t’ € Co and that the case s ' € Co is impossible by the definition of
the precedence. It remains the ”syntactical case”- 3’ E f(s’1, . . . , sin) and t’ E g(t’1, . . . , t’n) where
f , g € F" . Then we have 3 E f (s l , . . .‚sm) and t E g(t1 , . . . , t „) with appropriate F"-terms
si, t i . =The proof now proceeds straightforward by case analysis using the induction hypothesis
and statement (a) . CI

The recursive path ordering modulo .A on TERM (E,V) wrt. ‚?, FA and >87) is defined in
the obvious way:

8 >£;b‚A t i f f O4s) >£ZLA a(t).

With the a id of l emma 6.3 the following theorem is easily proved:

Theorem 6.1 Let Z FA be a well-founded partial ordering on F" and {>f,"’| 7 is a constraint}
(7)be a constrained base ordering system modulo A . Let > be the recursive path orderingrpo,.A

modulo .A on TERA/[(23, V) wrt. Z FA and >81). Then he set {>£;2>‚Al 7 i s a constraint} is a
constrained reduction ordering system wrt (E = 20621 , , 4) . In addition >£Io)‚A contains >fl /A '

Corollary 6.1 Let ‚2, FA be a well-founded partial ordering on FA and {>g"’| 7 is a constraint}
be a constrained base ordering system modulo A. Let >£;b‚.4 be the recursive path ordering modulo

A on TERMQI, V) wrt. ,2 FA and >5” . Let further the system {>£ ;b ,A l 7 i s a constraint} be
compatible with a conditional rewrite system R. Then R is decreasing modulo ‚A.

Example 6 .2 We continue example 7.1
Let/V be the natural number interpretation (enriched by a standard boolean interpretation). We
have FA : {+ ,> ,g} . Let >pn= @. Let {>901 7 is a constraint} be induced by N‚> , t rue .
Then

g(:z:,0) >91; 1‘

9(0.y) >(rio) y
y(l‘+y.y) >$i>30=tml am:—y)
g(w‚ r+y) >$i3o>°=”"e’ allay)

Thus R is decreasing modulo N and especially, “am is terminating.

7 Decidabil i ty of A-equivalence and A-match

In order to get a decidable rewrite relation modulo the built-in algebra A-equivalence and .A—
match have to be decidable. We finish t he paper with some remarks about decidability results.

We first consider the clecidability of A—eqivalence. In general .A-equivalence is not decidable.
This follows from the fact. that there exists a signature EO and a Eo-algebra A such that the
equivalence relation NA on TERMOUJ‘ V) is not decidable (we thus consider a case where no
new symbols are present). For a justification let E be a set of Eo-equations (for an appropr ia te

i9

Eo) such that the inductive theory of E is not recursively enumerable. Let A denote the initial
model of E. Now, if we could decide U "'A v resp. A ~ U = v for arbitrary u, v E TERM(Eo, V),
then we obviously could enumerate the theory of A resp. the inductive theory of E.

In many special cases however A-equivalence can be proved to be decidable. First note that
S "'A t iff A ~ [s=t (s,t E TERM(E, V)), so that we can concentrate on Eo-equations.

In the "mere syntactical case" we assume that A ~ U = v iff u == v for alUu, v E
T ERM(Eo, V). This case is available if A is the free term algebra induced by Eo and V.
In this case A-equivalence is obviously decidable.

Example 7.1 Let So = {nat}, Fo = {O,s} and Do = {D:-+ nat,s: nat -+ nat}. Let A be the
canonical term algebra indu.ced by Eo and V.

Nex.t the special ~nat-algebraN and ~int-algebra Z are considered. A-equivalence turns out
to be decidable for these two algebras. For a proof we first introduce the notion of a polynomial
over Enat resp. Eint.

Definition 7.1 A polynomial P(Xl,"" xk) over E nat resp. Eint is a term of the form

where the so-called coefficients C(i! ...ik) are elements of the "basic" Enat-terms {D, 1,2, ...} resp.
of the "basic" Eint-terms {D, 1, -(1), ...} and d is a natural nu.mber called maximal exponent.

The degree of p, written deg(p), is the greatest number n~ d such that there exists a

coefficient C(i\ ...ik) with i l + ... + ik = nand c(i\ ...ik) 1-A 0 (A = N,Z).

Note that we omit brackets and use the usual priority and abbreviation conventions.
It is easily verified that for any sETERlvI(Eo, V) one can effectively construct a polynomial

Ps over Eo such that Ps "'AS (where Eo = Enat , E int and A = N, Z). The next lemma states a
well known result and provides a method to decide A-equivalence in our special cases.

Lemma 7.1 Let P(.7.:I," .,.l:k) and P'(XI, ... ,Xk) be polynomials over E nat resp. Eint with
(w.l. o. g) the same maximal exponent cl and with coefficients c(i ... ik) and c'(. .). Then for

1, , 'L1, ••• ,'Lk

A = N and A = Z,

P '"A pi iff c(· .) = c'· . f 01' all coefficients (i.e. p and pi are identical).
l[,"·,'k - ('1"""k)

Corollary 7.1 .V-equivalence and Z -equivalence are decidable.

We turn to A-matching. In general A-matching is not decidable. As a countere,:ample
consider Z-matching. If Z-matching were decidable, then Hilbert's 10th problem were too, in
contrast to the well-known result in [~la70].

The "mere syntactical case" (see above) is trivial as in this case A-matching reduces to
ordinary syntactical matching.

Whereas Z-matching is undecidable. N-matching is decidable. The decision procedure pre
sented below is far away from being of practical interest. Our only interest here is to make the
search space for the matching substitution finite. Let tt, s be Enat-terms. The decision to be
made is whether there exists a substit.ution (J' such that O'('u) "'/If s or not. Again the problem
can be simplified by switching over t.o polynomial representations.

20

EO) such tha t the inductive theory of E is not recursively enumerable. Let ‚A denote the initial
model of E . Now, if we could decide u NA v resp. .A l: u = v for arbitrary u, u E TERM(EO‚ V),
then we obviously could enumerate the theory of A resp. the inductive theory of E .

In many special cases however A—equivalence can be proved to be decidable. First note that
s NA t ifi' .A I: 73:; (s , t € TERM(E,V)) , so that we can concentrate on Eo-equations. _

In the ”mere syntactical case” we assume that .A I: u = v iff a E v for all—"iu, v 6
TERM (>30, V). This case is available if A is the free term algebra induced by 20 and V.
In this case A-equivalence is obviously decidable.

Example 7 .1 Let So = {not}, F0 = {0,3} and D0 = {0 :-—+ na t , s : nat —> nat}. Let ‚A be the
canonical term algebra induced by 20 and V.

Next the special Emu-algebra N and Sim-algebra Z are considered. A-equivalence turns out
to be decidable for these two algebras. For a proof we first introduce the notion of a polynomial
over EM, resp. Ei,“.

Defini t ion 7 .1 A polynomial p(.z~1, . . . ,wk) over Emu resp. Sin: is a term of the form

d
P($1‚---‚$k) = Z 2 €(i1. . . ik)$i‘ “”932"

i=0 i1+ . . .+ ik = i

where the so-called coefficients C(ilmik) are elements of the ”basic” Emu-terms {0 , 1 ,2 , . . .} resp.
of the ”basic” Elm-terms {O, l , —(1),. . . } and d is a natural number called maximal exponent.

The degree of p, written deg(p), is the greatest number n 5 d such that there exists a
coefi‘icient C(i l -n ik l with i1 + . . . + ii,- = n and CH:-„ind

74,4 [) (A = N,.Z}.

Note that we omit brackets and use the usual priority and abbreviation conventions.
It is easily verified that for any s E TERM (20 , V) one can effectively construct a polynomial

p , over 20 such that p$ “M s (where 20 = Em", Em and .A = N', Z) . The next lemma states a
well known result and provides. a method to decide .A—equivalence in our special cases.

Lemma 7 .1 Let 11(x1,... , .rk] and p'(a:1,...,.7:k) be polynomials over Em“ resp. 2m: with
(w.l.o.g) the same maximal exponent d and with coefficients c(,-l _____

ik) and c’(Then for
‚A: /VandAzz ,

i1,...‚ik)'

prvA p' i f f Winn-Jr) E C’Ul _____
ik) for all coe f f i c i en t s (i e . p and p’ are identical).

Corollary 7 .1 ,V-equivalence and Z-equivalence are decidable.

We turn to A—matching. In general A-matching is not decidable. As a counterexample
consider Z-matching. If Z-matchiug were decidable, then Hilbert’s 10th prob‘em were too, in

- contrast to the well-known result in [Mai’O].
The ”mere syntactical case” (see above) is trivial as in this case .A-matching reduces to

ordinary syntactical matching.
Whereas Z—matching is undecidable. ‚V—matching is decidable. The decision procedure pre-

sented below is far away from being of practical interest. Our only interest here is t o make the
search space for the matching substitution finite. Let u , s be Smut-terms. The decision to be
made is whether there exists a substitution 0 such that 0 (a) NN s or not. Again the problem
can be simplified by switching over to polynomial representations.

‘20

Definition 1.2 A substitution a is called a polynomial substitution iff 0"(Xi) is a polynomial
qi(Yb . .. , yt} over Enat such that the maximal exponent of qi coincides with the degree of qi.

It suffices to decide for arbitrary polynomials p(Xl, ••• , Xk) and q(YI' ... , Yl) over Enat whether
there exists a polynomial substitution 0" that satisfies O"(p) '"N q.

il
Definition 1.3 Let p(xl, ... , Xk) be a polynomial over Enat and let (1 be a substitution. The
variable xi contributes to p wrt 0" (and N) iff there exists a constituent C(il ...ik)X~l •• • X~k of p

such that ij i- 0 and c(i1 ...il;) rfN O.

Now let P(XI,.'" Xk) and q(YI, ... , yd be given. Let d he the degree of q and let c be the
(wrt N) maximal coefficient of q. Suppose that a is a polynomial substitution with (1(p) "'N q.
It is easily verified that if Xj contributes to p wrt 0", then the degree of the polynomials O"(Xj)
is less or equal than d and the coefficients of a(xj) are less or equal than c. If xi does not
contribute to p wrt (1, then the value a(xj) can be ch~nged into 0 without changing O"(p) wrt
"'N. Thus, if there exists a polynomial substitution 0" with a(p) '"N q, then there exists one so
that a(xj) is a polynomial with degree ~ d and coefficients ~ c wrt N. As there exist only a
finite number of such "test-substitutions" we get the following result:

Lemma 1.2 The)V-match is decidable.

Let us finally ret urn to Z -matching again. Though undecidable in general there can be made
some positive statements. Fortunately matching is usually needed only for a finite number of
patterns - the Eo-terms introduced by the left hand sides of the rewrite rules from R. Thus,
if we keep the syntax of R rather simple, we can possibly decide Z-matching wrt the relevant
patterns.

Definition 1.4 A Eint -term is said to be linear iff it is a polynomial over Eint of a degree ~ 1.
R is said to be linear iff every ~int -term occuring as subterm in a left hand side of a rule

from R is linear.

Now the problem is to decide for a linear term p == alxl + .. .akxk + c and an arbitrary
polynomial q' (Yl, ... , Yi) over ~int whether there exists a substi tu tion a wi th a(p) '" Z q'. First we
transform the problem into an equivalent one by " bringing c on the other side". Let q(Yb ... , Yl)
be the resulting polynomia.l. It is easily verified that if there exists a matching substitution for
p and q, then there exists such a substitution a with

with appropriate "basic" integer terms Cj,(i1""k)' :-Iow such a substitution satisfies a(p) "'2 q iff
the following system of equations with the unknown Cj,(ij ... i!;) has a solution in Z:

{alCl,(ij ... ikl + ... + (lkCk,(i1 ... id = c(ij ... ik) I i = 0, ... , d and i l +... + ik = i}.

As such a system of equations can be solved we get:

Lemma 1.3 Z -matching It'l'! a linwr rewrite system R is decidable.

21

Definition 7 .2 A substitution 0 is called a polynomial substitution ifl' a(:c.') is a polynomial
q.-(y1, . . . , y,) over 2M, such that the maximal exponent of q,- coincides with the degree of qg.

It suffices to decide for arbitrary polynomials p(z.1, . . . , zk) and q(y1, . . . , y,) over EM, whether
there exists a polynomial substitution or that satisfies 0(1)) NN q. :

ii

Definition 7 . 3 Let p(:c1,. . .,a:1,) be a polynomial over En,“ and let a be a substitution. The
variable xj contributes to p w1t a (and N) ifi there exists a constituent c(„_ „_‘yz‘l . „a.-k" of p
such that tj # O and c(„___„_) 74M 0 .

Now let p(:c1, . . .,zk) and q(y1, . . „w) be given. Let d be the degree of q and let c be the
(wrt N') maximal coefficient of q. Suppose that or is a polynomial substitution with a(p) NN- q.
It is easily verified that if 3:]- contributes t o p wrt a , then the degree of the polynomials (f(zj)
is less or equal than (I and the coefficients of 0(mj) are less or equal than c. If $j does not
contribute to p wrt a , then the value a(x‚—) can be changed into 0 without changing 0(1)) wrt
NN. Thus, if thexe exists a polynomial subst i tut ion 0 w i th 0(1)) NM q , then there exists one so
that 0 (x j) is a polynomial with degree 5 d and coefficients 5 c wrt N . As there exist only a
finite number of such ”test-substitutions” we get the following result:

Lemma 7 .2 The ‚Af—match is decidable.

Let us finally return to Z -matching again. Though undecidable in general there can be made
some positive s ta tements . Fortunately matching is usually needed only for a finite number of
patterns — t he St,-terms introduced by t he left hand sides of t he rewrite rules from R . Thus,
if we keep the syntax of R rather simple, we can possibly decide Z—matching wr t t he relevant
pa t t e rns .

Definit ion 7 .4 A Sim—term is said to be linear iff it is a polynomial over Ein; o fa degree $ 1.
R is said to be linear ijf every Sim-term occuring as subterm in a left hand side of a rule

from R is linear.

Now the problem is t o decide for a linear term p E a lx l + . . .akzk + c and an arbitrary
polynomial q’(y1, . . . , yl) over S im whether there exists a subst i tut ion (7 w i th 0(1)) NZ q’. First we
transform the problem into an equivalent one by ”bringing c on the other side”. Let q(y1, . . . ,yz)
be the resulting polynomial. It is easily verified that if there exists a matching substitution for
p and q , then there exists such a substi tution 0 w i th

d
0($ j)=Z Z Cj . (i 1 . . . i o l ‘ i ‘ - - -$ i*

i=0 l l + . -+ ik= l

with app1op1iate ”basic“ integer ter ms Cj (i1 . . „_). Now such a substitution satisfies o(p) ~g q iff
t he following sy s t em of equations wi th t he unknown c j - (i l - u i k) has a solution i n Z :

{a161,(i1...ik) +; - - + akck . (i , . . . i k) = C(1‘1„ . i ; .) | i : 0 , - - . , d and i1 + . . . + i k = i } -

As such a sys tem of equations can be solved we get:

Lemma 7 .3 Z—nmtching 11‘1'1 (.1. linear rewrite sys tem R is decidable.

21

References

'[AvMa90]

[Ay92]

[BaDe89]

[De87]

[DeJo90]

[DeOk90]

[Ga91]

[JaLa87a]

[JaLa87b]

[JoKi86]

[KaCh89]

[KaMu86]

[KKR90]

[KnBe70]

[)"Iai"O]

[PeSt81]

J. Avenhaus and K. Madlener, Term rewriting and equational reasoning,in: R.
B. Banerji, ed., Formal Techniques in Artificial Intelligence (North-Holland, Am
sterdam, 1990) pp. 1-43. .

I
M. Ayala Rincon, Built-in conditional rewrite systems, to appear as internal report
at the university of Kaiserslautern.

1. Bachmair and N. Dershowitz, Completion for rewriting modulo a congruence,
Theoretical Computer Science 67 (1989) pp. 173-201. .

N. Dershowitz, Termination of rewriting, J. Symbolic Computation 3 (1987) pp.
69-116.

N. Dershowitz and J .P. Jouannaud, Rewriting systems, in: J. van Leeuwen, ed.,
Handbook of Theoretical Computer Science, Vol. B (EIsevier, Amsterdam, 1990)
pp. 241-320.

N. Dershowitz and M. Okada, A rationale for conditional equational programming,
Theoretical Computer Science 75 (1990) pp. 111-138.'

H. Ganzinger, Order-sorted completion: the many-sorted way, Theoretical Com
puter Science 89 (1991) pp. 3-32.

J. Jaffar and J .-1. Lassez, Constraint logic programming, in Proc. of ACM Symp.
on Principles of Progmmming Languages '87 (1987) pp. 111-119.

J. J affar and J .-1. Lassez. From unification to constraints, in: K. Furukawa et al.,
eds., Logic Progmmming '87, Proc. of the 6th Conference, LNCS 315, (Springer,
Berlin, 1988) pp. 1-18.

J.-P. Jouannaud and H. I\:irchner, Completion of a set of rules modulo a set of
equations, SIAM J. on Computing 15 (1986) pp. 1155-1194.

S. Kaplan and C. Choppy, Abstract rewriting with concrete operators, in: 3rd
RTA '89, LNCS 355, (Springer, Berlin, 1989) pp. 178-185.

D. Kapur, D.R. Mussel', Inductive reasoning for incomplete specifications, in: Proc.
IEEE Symposium on Logic in Computer Science (Cambridge MA, 1986) pp. 367
377.

C. Kirchner, H. Kirchner and M. Rusinowitch, Deduction with symbolic con
straints, Revue d'lntelligence Artificielle 4(3) (1990) pp. 9-52.

D.E. Knuth and P.B. Bendix, Simple word problems in universal algebra, in: J.
Leech, eeL, Cornputatiorwl Problems in Abstract Algebra (Pergamon Press, Oxford,
19(0) pp. 3,t2-3i"6.

J. V.)'latijasE'vic Enulllera.ble sets are Diophantine, Soviet Afath. (DoH.) 11 (1970)
pp. :l5..l-:3.5i".

G.E. Peterson and),1.£. StickeL Complete sets of reductions for 'some equational
theories, J. of the Association for Cornputing :'vIachinery 28 (1981) pp. 233-264.

22

References

-[AvMa90]

[Ay92]

[BaDe89]

[De87]

[DeJ090]

[De0k90]

[Ga91]

[J aLa8 7a]

[.1 aLa87b]

[JoKi86]

[KaCh89]

[KaMu86]

[KKRQD]

[KnBe70]

[MaTO]

[PeStSl]

J . Avenhaus and K. Madlener, Term rewriting and equational reasoning,in: R.
B. Banerji, ed., Formal Techniques in Artificial Intelligence (North-Holland, Am-
s te rdam, 1990) pp. 1-43.

_ l
M. Ayala Rincon, Built—in conditional rewrite systems, to appear as internal report
at t he university of Kaiserslautern.

L. Bachmair and N. Dershowitz, Completion for rewriting modulo a congruence,
Theoretical Computer Science 67 (1989) pp. 173-201.

N. Dershowitz, Termination of rewriting, J. Symbolic Computation 3 (1987) pp.
69-116.

N. Dershowitz and J .P . Jouannaud, Rewriting systems, in : J . van Leeuwen, ed . ,
Handbook of Theoretical Computer Science, Vol. B (Elsevier, Amsterdam, 1990)
pp . 241—320.

N. Dershowitz and M. Okada, A rationale for conditional equational programming,
Theoretical Computer Science 75 (1990) pp. 111-138. \

H. Ganzinger, Order-sorted completion: the many-sorted way, Theoretical Com-
pute r Science 89 (1991) pp. 3—32.

J . Jaffar and J .-L. Lassez, Constraint logic programming, in Proc. of ACM Symp.
on Principles of Programming Languages ’87 (1987) pp. 111-119.

J . Jaffar and J . -L. Lassez. From unification t o constraints, in: K . Furukawa et a l . ,
eds., Logic Programming ’87, Proc. of the 6th Conference, LNCS 315, (Springer,
Berlin, 1988) pp. 1-18.

J .-P. J ouannaud and H. Kirchner, Completion of a set of rules modulo a set of
equat ions, SIAM J . on Computing 15 (1986) pp. 1155-1194.

S. Kaplan and C. Clioppy, Abstract rewriting with concrete operators, in: 3rd
RTA ’89, LNCS 355, (Springer, Berlin, 1989) pp. 178-185.

D. Kapur , D.R. Musse‘r, Inductive reasoning for incomplete specifications, in : Proc.
[EEE Symposium on Logic in Computer Science (Cambridge MA, 1986) pp. 367-
377.

C. Kirchner, H. Kirchner and M. Rusinowitch, Deduction wi th symbolic con-
straints, Revue (l’Intelligence Artificielle 4(3) (1990) pp. 9-52.

DE. Knu th and RB. Bendix, Simple word problems in universal algebra, in: J .
Leech, ed. , Computational Problems in Abstract Algebra (Pergamon Press , Oxford,
1970) pp. 13—12-2376.

J.VÄ. Matijas'evic. Enumerable sets a r e Diophantine, Soviet Math. {Do/cl.) 11 (1970)
pp . 354-357.

GE. Peterson and ME. Stickel. Complete sets of reductions for some equational
theories. J . of the Association for Computing Machinery 28 (1981) pp. 233-264.

'2'2

[Si89] J.H. Siekmann, Unification theory J. of Symbolic Computation 7 (1989) pp. 207
274.

[SNGM89] G. Smolka, W. Nutt, J.A. Goguen and J. Meseguer, Order-sorted equational com
putation, in: H. Ait-Kaci and M. Nivat, eds., Resolution of Equations in Algebraic
Structures, Vo/. 2 (Academic Press, San Diego CA, 1989) pp. 297-367.\

[Vo89] S.G. Vorobyov, Conditional rewrite rule systems with built-in arithmetic and in
duction, in: 3rd RTA '89, LNCS 355, (Springer, Berlin, 1989) pp. 492-512.

[Wa92] U. Waldmann, Semantics of order-sorted specifications, Theoretical Computer Sci
ence 94 (1992) pp. 1-35.

[Wa90] H.R. Waiters, Hybrid implementations of algebraic specifications, in: Algebraic
and Logic Programming, Proc. 2nd 1nl. Conf. 1990, LNCS 463, (Springer, Berlin,
1990) pp. 40-54.

23

[Si89]

[SNGM89]

[V089]

[Wa92]

[wage]

J .H . Siekmann, Unification theory J. of Symbolic Computation 7 (1989) pp . 207-
274.

G . Smolka, W. N u t t , J .A . Goguen and J . Meseguer, Order-sorted equational com-
puta t ion , in: H . Ait-Kaci "and M. Nivat, eds. , Resolution of Equations in Algebraic
Structures, Vol. 2 (Academic Press, San Diego CA, 1989) pp . 297-367. R

S.G. Vorobyov, Conditional rewrite rule systems with built—in arithmetic and in-
duction, in: 3rd RTA ’89, LNCS 355, (Springer, Berlin, 1989) pp. 492~512.

U. Waldmann, Semantics of order-sorted specifications, Theoretical Cor'npuzter Sci-
ence 94 (1992) pp. 1-35.

H.R. Walters, Hybrid implementations of algebraic specifications, in: Algebmic
and Logic Programming, Proc. 2nd Int. Conf. 1990, LNCS 463, (Springer, Berlin,
1990) pp. 40-54. '

'23

