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Abstract

We present a method to integrate built-in operations that are described by a given built-in
algebra into conditional rewriting. First, equational specifications will be assigned a suitable
semantics that takes into account the predefined structures. The interpretation of ”semantically
and syntactically mixed objects” is based on an appropriate introduction of sort hierarchies that
allows to separate semantical and syntactical considerations. As a consequence of this separation
a great deal of "classical rewrite theory” as for instance a critical pair lemma can be generalized
to our context. Further we are able to construct appropriate well-founded orderings to guarantee
the termination of the rewrite relation that allow to integrate semantical informations from the
given built-in algebra. In order to illustrate the ideas several examples concerning built-in
arithmetic are presented.






1 Introduction

Sets of conditional equations may be considered as the programs of a functional programming
language with conditional rewriting as its computation mechanism. Conditional equations,
interpreted as rewrite rules, are used to simplify terms — the basic objects to be operated on —
according to the notion of "replacing equals by equals” until normal forms are possibly rpached.
(For a survey of conditional rewriting see [DeOk90].)

Whereas built-in operations are available in common programming languages as PASCAL,
LISP or PROLOG, they usually can not be employed in the rewrite case. To yield an easy to
handle programming environment it would be of great interest to be able to integrate predefined
structures within the rewrite process.

Consider as an example the following equations, intended to define the greatest common
divisor function over the natural numbers.

Example 1.1 This ezample is refered to as ’standard ezample’ throughout the paper.

(1) g(=,0) =
(2) 9(0,9) =y
(3) glz+wy,y) = g(=z,y)
4) g(z,z+y) = g(z,y)

It would be desirable to consider '+’ and ’0’ as symbols with a predefined meaning that
agrees with the natural interpretation of the symbols in the natural numbers. But in most
rewrite environments equations as those above would not be "executable”. Instead the specifier
would have to define everything he uses himself in a bottom-up fashion.

There are at least two additional reasons that make built-in concepts attractive. First, it may
become possible to use objects as for instance real numbers that cannot be specified equationally.
Thus, built-ins can increase the expressive power of the specification environment. Secondly, one
possibly gains efficiency when treating predefined objects by appropriate built-in algorithms.

The aim of this paper is to present a general approach of how to integrate predefined objects
and operations into rewrite based equational reasoning. The problems that arise originate from,
the fact that syntactical and semantical methods have to be mixed when treating objects (terms,
equations etc.) that consist of syntactical and semantical constituents. In particular we must
generalize according to such interference effects

¢ matching and equivalence check, which are fundamental for conditional rewriting,

¢ unification, which is needed to ckeck (ground) confluence — a kind of correctness property
of a set of rewrite rules,

¢ orderings that guarantee the termination of the rewrite relation.

To solve the problems we will separate syntactical and semantical considerations as far as
possible. As a technical means for separation we switch over from ”mixed terms” to ”semantical
congruence classes” (i.e. "mixed terms” are to be considered equivalent according to prede-
fined equivalences). Representatives of the "semantical congruence classes” will be treated by
syntactical means that have to be compatible with the semantical equivalence.

This conceptual proceediug is not new. In the case of unorientable equations a theory of
rewriting modulo such equations based on the ideas just described has been developed (see
[PeSt81], [JoKi86]. [BaDe89]). But the applicability of this theory is rather limited. Serious
difficulties arise when trying to design appropriate orderings and unification algorithms.






As we want to develop an approach to integrate — at least in principle — arbitrary built-
in objects and operations without any limitation, we cannot directly adopt the existing theory.
Instead we will design a theory of rewriting modulo predefined equivalences and so avoid by some
moderate restrictions the interferences that cause some of the main problems. The following
remaks are to make clear our concept.

. Consider a built-in operation '+’ that is commutative on the built-in objects, hence thduces
the predefined equation z +y = y+z. Let f be a (unary) new "syntactical” function symbol and
consider the "mixed terms” f(a + b) and f(a) + f(b) where a and b represent built-in objects.
It is reasonable to require that the equivalence of @ + & and b + a induces the equivalence of
f(a+b) and f(b+ a). If we extended the range of validity of predefined equations in a’liberal
fashion, we could also demand for the equivalence of f(a) + f(b) and f(b) + f(a). But as such
a liberal interpretation of predefined equations would cause the problems mentioned above, we
do not adopt it here. This decision can be motivated not only "by need” — as just done — but
also "by matter”— as follows.

When specifying by conditional equations over a built-in domain, the specifier is interested
primarily in objects that are defined wrt. built-in objects (i.e. that are equivalent to built-in
objects wrt. the conditional equations of the specification). Hence, if f(a) or f(b) is not defined
wrt. built-in objects, it does not matter (concerning the intent of the specifier) whether the two
terms are equivalent or not. On the other side, if both terms are defined wrt. built-in objects,
then the equivalence of f(a)+ f(b) and f(b)+ f(a) results as a consequence of the commutativity
of the built-in objects. Thus there is no need for requiring the liberal interpretation of predefined
equations. A

To realize our approach we first define an adequate semantics. As the main technical means
to easily distinguish between predefined and mixed objects, we design an appropriate hierarchy
of sorts: for each sort a copy is made and then the two sorts are related by a subsort declaration
so that one of them — the "lower sort” — describes built-in resp. semantical objects, whereas
the other — the "higher sort” — describes mixed resp. syntactical objects. This hierarchy
aspect allows us to interprete equations according to the intuition that variables occuring in the
equations are to range over built-in objects. As we may interprete built-in objects as constructors
our approach provides a method to define a kind of "constructor semantics”. Further, this
approach allows us to deal with equations that define function symbols only partially wrt. the
"constructors” (see also [KaMu86)).

We will demonstrate in this paper that by our concept to treat built-in structures we are
able to adopt with some minor modifications a great deal of "classical rewrite theory”.

Our approach to integrate built-ins into the rewrite process differs from others in various
aspects. First, we do not consider implementational aspects concerning rewriting of mixed
ground terms as it is done in [KaCh89] and [Wa90]. Our work is more related to that of
Vorobyov [Vo89] and Kirchner, Kirchner and Rusinowitch [KKR90].

Vorobyov deals with rewriting in the special context of built-in arithmetic.

Kirchner, Kirchner and Rusinowitch develop a very general approach based on the notion
of constraints. (Note that Vorobyov also uses a kind of constraints though not mentioning
this expression.) As in the case of constraint logic programming (see [JaLa87a]), constraints
are used to represent knowledge about predefined structures. The aim of this approach is to
convert syntactical problems into semantical ones by placing them — roughly spoken — into
the constraint part.

Both papers [Vo89] and [KKR90] require the conditions to be formulated in the language of
built-ins, whereas we allow arbitrary conditions. Concerning some of the results of [Vo89] this
restriction can be dropped (see [Ay92]).






Vorobyov avoids the interference effects between predefined equations and new syntactical
function symbols by introducing a rather strong restriction: new syntactical function symbols
are not allowed to have built-in domains as codomains. Note that by this restriction example
1.1 lies out of the range of his theory.

The interference problem is solved in [KKR90] in a way that is similar to ours from the
methodical point of view (namely avoid the interference effects by introducing an appropriate
semantics) but that differs from ours with respect to its realization.

Both approaches [Vo89] and [KKR90] differ from ours in the definition of the rewrite relation.
Whereas we define it traditionally via matching, they replace matching by case splitting and
a constraint satisfiability check. This difference reflects the contrary notions of explicit and
implicit representation of knowledge (c. [JaLa87b]).

Our decision in favour of matching has two reasons. First, by this decision we are able — in
contrast to [Vo89] and [KKR90] — to present a general method of how to guarantee termination.
Secondly, we think that whenever explicit knowledge is available, then it should be employed to
keep the objects to be treated by rewriting as simple as possible. Of course this decision limits
rewriting in our approach to cases where matching is feasible.

The paper is organized as follows: The sections 2 and 3 introduce our basic concept of how
to interprete specifications in the presence of built-ins. The division into two sections reflects
the fact that the interpretation is established by syntactical as well as semantical means. In
section 4 we define rewriting modulo a given built-in algebra and consider the "correctness’ of
rewriting” (captured by the Church-Rosser property). Section 5 is devoted to a critical pair
test for local confluence along the ideas of Knuth and Bendix [KnBe70]. Section 6 deals with
termination problems. Finally in section 7 we make some remarks about the decidability of the
rewrite relation.

We assume that the reader is familiar with the basic concepts of term rewriting, equational
reasoning (see e.g. [AvMa90, DeJo90]) and mathematical logic. We define notions and notations
only if they differ from standard ones.

2 Syntax

The notion of order-sorted specification is used to code some basic semantical prerequisites into
the syntax. By this decision we are able to simplify the formulation of the restrictive use of
variable instantiations and hence to simplify the definition of the semantics of the specifications.
(For a survey of order-sorted equational computation see [SNGM89].)

The sort hierarchies to be considered in the sequel are very well-behaved, so that no conflict
about which concept to treat sort hierarchies arises (see [Wa92] for a comparison of the different
concepts).

Definition 2.1 A signature ¥ = (S, F\, D) consists of a set S- of sort symbols, a set F of function
symbols and a set D of function declarations f : s1,...,8, — s (f € Fis;,s € §) and subsort
declarations s; <1 sy (s1,52 € 5), where < denotes the ordering relation between the sorts.

A signature © = (5, F, D) is said to be flat iff D contains no subsort declarations and for
any f € F there ezists exactly one function declaration in D.

Before introducing the fundamental construction of sort hierarchies used throughout this
paper. we give a short motivation.

Built-in objects are described in a built-in language given by a "normal” (flat) signature
Yo. The introduction of new "svutactical” function symbols is captured as usual by the notion






of a signature enrichment £ + ¥;. Note that the resulting sighature is still considered to be
flat. Next this signature Xo + ¥; will be suitably interpreted: By a copying process we get an
order-sorted signature ¥ induced by ¥ and ¥;.

Definition 2.2 A signature enrichment Zg + I, consists of a flat signature So = (Sg, Fo, Do)
(for the built-in language) and a triple £, = (0, Fy, Dy) such that (So, F1, D1) ts a flat signature
too with Fo N Fy = 0.

Note that no new sorts are introduced by ¥;. The more general case without such a sort
restriction does not cause any difficulties. However it makes necessary some additional case
distinctions that we want to avoid here.

The copying process to be defined below requires Fp to be divided into Fé:o) and Fézl), the
set of symbols from Fy with an arity that is equal to 0 — the constants from Fy — resp. greater
or equal than 1. :

Definition 2.3 Let Sg + Xy = (So, Fo, Do) + (0, F1, D) be a (flat) signature enrichment. ¥ =
(S, F, D) is said to be the hierarchical signature resp. order-sorted signature induced by ¥g and
Yy —written ¥ = Yo ¥, — iff

e 5= 53US8" where S" = {s" | s € Sp} and
o F'= FyU F| and

o D= Dgu DU D,,ry where
D’\:{f:sf,..'.,sg—*s"leFézl)UFl and f:81,...,8, =8 € DoU Dy} and
Disors = {s<0 8" | s € So}.

When speaking roughly the elements of Sy are called sorts of type "low” and the elements
of §” sorts of type "high”. Note that the function symbols from the built-in language with an
arity greater or equal than 1 are declared twice — a declaration for built-ins and an additional
for mixed objects. This reflects the fact that these symbols have a semantical and syntactical
"flavour”.

Example 2.1 We first define suitable signatures to describe natural numbers and integers. Let
Yinat = (Snats Fraty Dnat) resp. Tine = (Sint, Fing, Dint) with

Snat = {nat}

Frat = {+.%.0,1.2...)

Doat = {4+ :nat,nat — nat,* : nat, nat —.nat, 0:nat, 1:nat,...}

Sine = {int}

Frne = {—.4+.%.0,1,2,..}

Dine = {—:int—int.+ int,int — int,*:int,int — int, 0:int, 1:int,...}.

To continue our standard example let g = Y4 and Ty = (0, Fy, Dy) with

o= {g}
Dy = {y:nat.nat — nat}.

To obtain © = S, 5 %, lef






S = {nat,nat"}

F = {+,%,4,0,1,2,..}

D* = {+ :nat*,nat® — nat®, *:nat*,nat" — nat™, g:nat",nat — nat'}
Dyyry = {nat < nat™}

D = DoUD"U.D,ors.

i
" For the rest of this paper let ¥ = Zg @ ¥;. To avoid the problems occuring when empty
sorts are present (see [Wa92]) we assume throughout the paper that for any sort so € So there
exists a constant ¢ € Fp such that ¢ :— sg € Dy.
Let V' = [Uyes, Vs be the union of disjoint infinitary sets V, of variables for the sorts.of type
"low”. We will not introduce variables for the sorts of type "high” as we do not need them.
¥-terms are now defined as usual.

Definition 2.4 The set TERM,(L,V) of X-terms of sort s is the least set with the following
properties:

o Iff:— sy € D and sg s, then f € TERM,(X,V).
o IfreV,, and so s, thenz € TERM,(X,V).

o If f : s1,.--08, — s0 € D, spdsandt; € TERM,(X,V) (i = 1,...,n), then
F(t1y- . tn) € TERM,(Z, V).

Let TERM(E,V) = U,es TERM (X, V).
The Y-terms s and t are said to be sort compatible iff there ezists a sort s € § such that s
and t are terms of sort s.

By the construction of ¥ and the restriction, that variables exist only for sorts of type "low”,
every (flat) o + X;-term can be interpreted as a (order-sorted) X-term (and vice versa).

As a consequence of the well-behaved sort hierarchy, every X-term ¢ can be equipped with
a uniquely defined sort — written soré(t) — which is the wrt. < minimal sort s such that
t € TERM4(XZ,V). It is easily verified that if t contains a new symbol from Fy, then sort(t) € 7,
otherwise sort(t) € Sg. Let TERMo(Z,V) resp. TERM”(X,V) denote the sets of -terms ¢
such that sort(t) € Sg resp. sort(t) € S™. Notice that TERM(Z,Vy=TERM(Zo, V).

Substitutions are defined in a way so that they respect the sort hierarchies:

Definition 2.5 A (Z-)substitution o is an assignment from the set of variables V into the set
of X-terms such that sort(o(z)) = sort(z) and DOM (o) = {z € V | o(z) # z} is finite.

We finish this section with the introduction of the fundamental notion of a specification with
built-in algebra. The built-in objects and operations are described by a (flat) ¥o-algebra A. We
assume throughout the paper that the built-in algebra A is term-generated (i.e. any element of
the carrier A of A is the value of a Lp-term). Sometimes it is convenient to assume that for any
element a € A there exists a constant g € Fy to denote a.

Notice that it is possible to abstract by parameterization from the special built-in algebra.
In that case a general built-in theory instead of a built-in algebra would be given in advance.

n

Definition 2.6 A conditional equation over £ is a formula A u; = v; = u = v such that u;
=1

and v; resp. u and v are sort compatible S-terms.

Definition 2.7 A specification with built-in algebra (¥ = 53 81, E , A) consists of a

hierarchical signature & induced by « (flat) signature enrichment To+ 51, a set E of conditional
equations over ¥ and a (built-in) Tg-algebra A.






3 Semantics .

We consider a specification (X = Zg® X, , £, A) with built-in algebra A. The meaning of the
specification will be first characterized by model-theoretical means.

The algebras of interest are intended to contain in a certain sense the built-in algebra A and
to satisfy in addition the conditional equations from E. As a consequence of our orderssorted
approach we have to consider order-sorted ¥-algebras.

Definition 3.1 Let £ = o £;. A L-algebra B consists of a family {B, | s € S} of sets and
functions fB for any f € F such that

e B, C Bya and

o if fe FS™ and f:— s € Dy, then fB € B,, A
if f € F(zl) and f : s1,...,8n — s € Dqg then f8 : Byp X -+ X Bgp — Bga such that
fB(bl,..., ) € Bs for all b; € By,
iffefy an(lf S1veer8n — S €I thenfB:Bsi\x---staeBsA.

Thus, a Z-algebra is a non-overloaded algebra in the sense of [Wa92]. Note that B, # @ for
any s € S by our assumption that sorts are not empty.

To take into account the built-in algebra A let £4 = {u = v | A E v = v; u,v €
TERMy(X,V)} be the set of (Xo— jequations induced by A.

As a consequence of the assumption that A is term-generated each model B of E4 has a
”core” — constituted by the “base elements of type low” — that contains a uniquely defined
homomorphic image of the built-in algebra A.

The algebras that capture the model-theoretical meaning of the specification are the (order-
sorted) E-algebras that are models of E.U E4. Thereby, a ¥-algebra is a model of an equation
u'= v iff it satisfies the equation wrt. any assignment that respects the sort hierarchy. Thus, by
the variable restriction one only has to consider assignments that (correctly) instantiate variables
by "base elements of type low”.

The operational definition of the semantics of the specification uses the following inference
rules depending on the set E of conditional equations and an additional set § of L-equations
(see [Ga91], [Wa9?] for similar approaches). The introduction of variable sets (see e.g. [Wa92])
can be dropped as we assume that there exist no empty sorts.

(Reflexivity)

U=y

(Symmetry)
u=1v
v=u

(Transitivity)






(Congruence)

Uy = Vye .oyl = Uy

flug,y ... un) = f(vy,...,00)

if f(ui,...,un) and f(vy,...,v,) are both well — formed ¥ — terms.

(Substitutivity)

o(uy) = o(n),...,0(up) = o(vn)
a(u) = o(v)

n :
if 0 is a substitution, \ui=vi=>u=v € Eando(u;)=0o(v;) € § (i=1,...,n).
=1

Note that by syntactical means the applicability of the inference rule “substitutivity” is
limited, as variables can only be substituted by Z-terms of type "low”.

We write S kg u = v to indicate that u = v can be derived from the set § of ¥-equations
by the above inference rules (depending on F). One easily proves that the inference rules are
sound (using the fact that there exist no empty sorts):

Lemma 3.1 Let S be a set of L-equations. Then for all u,v € TERM(L,V), if St u = v,
then SUE | u = v.

Next we define the operational semantics of the specification with the aid of an appropriate
congruence relation. We start with a relation that is induced by the built-in algebra A.

Definition 3.2 Fors,t e TERM(X,V) let s ~a t iff
(a) s,t e TERMu(E,V)and Al=s=tresp. s=t€ E4q or
(b) s,t e TERMMNE, V), s = f(s1,.-»8n), t = f(t1,...,tn) and s; ~4 t; fori=1,...,n.

One easily proves that ~ 4 is a congruence relation on TERM(X, V), the congruence relation
induced by A. According to the intuition that built-in equivalences are given in advance, the
inductive definition to follow starts with the congruence relation ~ 4.

Definition 3.3 Let:
° N%'A:NA

e Forallu,ve ‘TERﬂl(_E, V)iu N‘g‘}“ viffu N%,A v, or there erists a set S of X-equations
such that s ~g 4t foralls =t €S and Stgu=no.
[ J NE,.A: U NLE‘.A
i>0
Obviously, ~g 4 (as well as ~%; ) is a congruence relation on TERM (X, V), the congruence
relation induced by E and A.

The following " Birkhoff-theorem™ states the equivalence between the model-theoretical and
operational semantics of the specification.

Theorem 3.1 Let (L =Yo3 Y. E, A) be a spectfication with built-in algebra A. Then for
any s,t € TERM(Z,V) we have s ~p st iff EUE 4= s =1t

-3






Proof:
(a) For the direction from left to right we prove by induction on i: For any s,t € TERM(X,V),
if s~ 4t then EUE4[=s =1t

The induction base ¢ = 0 follows from the (easy to prove) fact that s ~ 4 t implies E4 s =1
for all s,t e TERM(X,V).

For the induction step i — ¢ + 1 let .f;'fv”'1 t for s,t € TERM(Z V) The case s ~'l Eatis
covered by the induction hypothesis. Thus, let S be given such that s’ ~% A tforalls’ =t € S
and S Fg s = t. The induction hypothesis provides FU E4 = S. By the soundness of the
inference system we get S U E = s = t. Consequently EU E4 = s = 1.

(b) For the direction from right to left let EU E4 = s = t. Let T(g 4 be the canonical term
algebra with carrier TERM (X, V), ,, defined as usual. It suffices to prove that 7(g 4 is a
model of EU E 4 as then 7(g 4) is 2 model of s = ¢t which is equivalent to s ~g 4 t.

Let first v = v € E4. In order to prove that (g 4) | © = v we have to show that
o(u) ~g.4 o(v) for any substitution ¢. Let o be a substitution. As a consequence of our
variable restriction we have o(u) = o(v) € E4. Thus o(u) ~%'A o(v) resp. o(u) ~g,4 o(v).

Now let Au; = v; = u = v € E and let o be a substitution such that 7(g 4 |= o(u;) = o(v;)
resp. o(u;) ~g 4 o(v;) for i = 1,...,n. For an appropriate k we have o(u;) IE:A o(v;) (1 =
1,...,n). We get a(u) ~51 o(v) by applying the related inference rule. Thus o(u) ~g 4 o(v)
resp. T(g.4) = o(u) = a(v) As o was an arbitrary substitution, 7(g 4) F Aui = vi = u = v.
g

4 Rewriting

When conditional equations are interpreted as rewrite rules, "replacement of equals by equals”
is directionally limited "from left to right”.

Definition 4.1 A conditional rewrite rule over X is a (directed) conditional equation

n

/\uizvi:>'u=v,

i=1
where the left hand side u is an element of TERM"(X,V) and all variables occuring in v, u;, v;
also occur in u.

The extra condition « € TERMNZ, V), meaning that the left hand side of a rewrite rule
has to contain a new symbol, is motivated by the aim that the built-in structure of the terms
of a "low” sort should not be destroyed. Thus, if we interprete the terms of the "low” sorts
as constructor terms, then this extra condition is a kind of constructor preserving property. In
addition this condition assures that rewrite rules are always sort-decreasing, i.e. sort(u) >sort(v)
(see [Wa02] or [SNGM89] for the relevance of this property).

Next we define conditional rewriting modulo the built-in algebra A, which is essentially
conditional rewriting of ~ 4-equivalence classes.

Definition 4.2 Let R be a set of conditional rewrite rules over £. A term s ¢ TERM(X,V)
.rewrites modulo A to t € TERM(Z, V) — written s —_  t — iff there ezist terms s',1' €
TERM(X,V), an occurence p € O(s'), a substitution o and a rule /n\ U =0 >u=v € R

t=1
such that






e s~u8, s /p=o(u), dp—ov)]=t,t'~4t and

o foranyi € {1,...,n} there exist u},v. € TERM(X,V) such that

O'(U,') ;’R/A u ~A 'U‘ R/A*—-— 0(1),').

The least fizpoint of this recursion defines the relation — ,. Thus:

o —»R/A—— ]
. ——»}"J; is deﬁned as above exept that the rewrite proofs for the conditions can be carried

outin |J —

1< R/A

t
®* -~ = —_—
R/A R/ A

Note that the syntactical variable restriction forces an innermost reduction strategy.

Example 4.1 We continue our standard example.

The chain g(g(2,1),0) —y,, 9(9(1,1),0) —, 9(9(1,0),0) —,, 9(1,0) —,,, 1 is correct,
whereas g(g(2,1),0) —, 9(2, 1) is not possible.

As in the case of rewriting modulo unorientable equations (see [BaDe89], [JoKi86]) we could

switch over to a wealker rewrite relation —,, ,, defined as least fixpoint according to the fol-
lowing recursion:

Definition 4.3 s —, , t iff there exists an occurence p € O(s), a substitution o and a rule

n
A u=v,=>u=v € R such that

=1
e s/p~40(u), sfp—o(v)]=tand

o foranyi€ {1,...,n} there exist ui,v.. € TERM(X,V) such that
o(u;) —*—rR\A Uy ~ 4 U A o(vi)-
But this change would not have any influence on the results to come because the two rewrite

relations do not differ very much in our context. To prove this we first state some technical
results.

Definition 4.4 Let O™(t) = {p € O ) | sort(t/p) € S™} be the set of syntactical positions of
t e TERM(E,V)

Lemma 4.1 Let s, t,ue TERM(Z, V).
(a) If s ~4 t and p € O"(s), then p € OMNt). Further s/p ~4 t/p and s[p — u] ~4 t[p «— u] if
s[p — ul] and t[p — u] are correct S-terms.

(b) Let o be a substitution. [fp € O™ o(s)), then p € O"(s) and o(s/p) = o(s)/p.

Lemma 4.2 Let R be a set of conditional rewrite rules over & Let s,t e TERM(Z,V). Then
s ——»R/A t iff there exists a term w € TERM(X. V) such that s —

R\AwNAt.






Proof: The direction from right to left is easy. .
For the direction from left to right we prove by induction on j: If s —'»;/A t, then there

exists a term w such that s —‘»;\A w~4 L

The induction base j = 0 is trivial. For the induction step we first consider the one step
case § ——»if(;r; t. Let &', t',p,0, Au; = v; = u = v, u},v; be given as indicated in the definition.
By lemma 4.1 we get s/p ~4 o(u) and w = s[p « o(v)] ~a4 §'[p — o(v)] =t ~4 t. By the

induction hypothesis there exist uf,v} € TERM(Z,V) such that o(u;) —, , uf ~a uf ~4

= o L d J+1 i . . . .
v;i ~A V] g 0(vi). The iterated case s —_ , ¢ can be proved easily by an induction

argument. O

Rewriting is of great interest if every equational proof can be replaced by a rewrite proof.
We review some notions to capture the main ideas.

Definition 4.5 Let R be a set of conditional rewrite rules over ¥.
(a) A T-equation s = t.is joinable modulo A, written s | , t, iff there exist &', t e TERM(Z,V)

such that s —'»RM g~ t pja— b A set S of equations is joinable modulo A iff any equation
from § s joinable modulo A.

(b) R is said to be Church-Rosser modulo A iff for any s,t €« TERM(X,V):

s~patiffs LR/A L.

(c) R is said to be confluent modulo A (resp. locally confluent modulo A) iff for any s,s:1,s; €

E

TERM(Z,V): if s1 p,—— 8 ——g/a 52 (T€SP. S1 gy o= S =5, S2); then s1 |

RJA S?.
The following theorems are generalizations of some classical results in rewrite theory. The
first one slightly generalizes the Newman-lemma.

Theorem 4.1 Let R be a conditional rewrite system over X. Let —, , be terminating. Then
R is confluent modulo A iff R is locally confluent modulo A.

The proof is omited as it proceeds just analogously to the standard case.

Theorem 4.2 Let R be a conditional rewrite system over Y. Then R is Church-Rosser modulo
A iff R is confluent modulo A.

Proof: For the direction from left to right let R be Church-Rosser modulo A. Further let

S1 pja S —gsa S2- One easily proves (by induction on ) that for any u,v € TERM(Z,V),
U —»;/A vimplies u ~g 4 v. Thus we get sy ~p 4 s2. The assumption then provides s; Lrja 52-

For the direction from right to left let R be confluent modulo 4. We prove by induction on
i if u ~% 4 v, then u P ‘

The induction base is' trivial. For the induction step let u ~‘;{}A v. The case u NE,A v is
covered by the induction hypothesis. Thus let § be given such that s’ ~% , ' for all s’ = tes
and § Fr u = v. By the induction hypothesis S is joinable modulo A. We are finished if we
have proved the following statement: If S Fp u = v and if § is joinable modulo A, then u = v
is joinable modulo A too.

We first consider a one-step derivation. The general multi-step case is then easily shown by
induction on the lenght of the derivation.

Let S tg u = v by a one-step derivation and let § be joinable modulo A. We proceed by

considering the diverse inference rules. The cases "reflexivity”, "symmetry” and "congruence”
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are trivial. For the case "transitivity” we use the assumption that R is confluent. Finally the
"substitutivity” case follows from the definition of — ,. O

We finish this section with some (easy to prove) results that will be needed below.

Lemma 4.3 Let s,s',t,t',tg be X-terms and o be a substitution. Then: H
(a) If s =, , 1, then o(s) ——,,, o(t) and to[p + ] —z4 to[p — 1] (provided that p € O(to),
to[p — ], tolp — t] € TERM(Z,V)).

() If s lg, 4 t, then o(s) |, o(t) and tolp « s] lg,, tolp < t] (provided that p € O(to),
tolp — s],tolp — t] € TERM(Z,V)). If in addition s' ~4 s and t ~4 ', then s' | , t'.-

5 Critical Pair Test

In order to get a critical pair test we first generalize unification. The problem consists in
determining the solutions of a ¥-equation in the presence of predefined equivalences.

Definition 5.1 A substitution o satisfies a set S of X-equations modulo .A resp. is an .A-solution
of S iffo(s)~4 o(t) foralls =t € S.

The aim is to determine a finite representation of all possible .A-solutions of a X-equation
resp. a set of L-equations. From the theory of semantic unification (for a survey see [Si89]) we
know that we cannot expect to find such a finite representation for any algebra in the form of a
finite set of substitutions.

Example 5.1 We continue the standard example. Let N denote the L,.i-algebra with the
canonical interptetation of the symbols over the natural numbers. The equation z +y = z' * ¢/’
has infinitely many N -solutions, but no finite representation by substitutions.

The way out of this situation is to represent the solutions not explicitly by substitutions but
implicitly in the form of a constraint (see [JaLa87b]). The next definition makes precise the
notion of constraint used in our context.

Definition 5.2 i constraint is either a finite conjunction of Xg-equations or an element of
{T,L1}.

Constraints will be denoted by the symbols «, 3,7 (possibly with an index). We identify
finite sets of Tg-equations with the according conjunctions so that finite sets of £g-equations
represent constraints. Further we assume that T is true and L is false in any Yp-algebra A.
Note that the equation in the example above is itself the solution representation.

Equation solving proceeds in two steps, a first conceptual one and a second one that is of
more practical interest.

In the first step a constraint representation of the .A4-solutions of an equation (a set of
equations) is determined by mere syntactical means. In the second step this constraint may be
"propagated” by a semantical built-in algorithm to yield a more explicit solution representation.

We first present an inference system 7 that allows to determine a constraint representation
vs of the A-solutions of an arbitrary finite set § of S-equations. The inference rules are designed
to trace back the recursive definition of the relation ~ 4.
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(hierarchy fail)

Su{s=t}
{1}

if sort(s) < sort(t) or sort(t) A sort(s).

-

(syntactical fail)

SU{f(S1y-r8m) = g(t1, -1 ta)}
{L}

if sort(f(s1,...,8m)) = sort(g(ty,...,tn)) € S" and f # g.

(decomposition)

SU{f(s1y.v8n) = f(l1s.. i tn)}
SU{S[ = tl-,--uSn.: ln}

if sort(f(S1y...,8n)) = sort(f(l1,...,tn)) € S™.

Let 7 denote the derivability relation induced by the inference system. The following
properties of -7 are easy to prove:

o 7 is terminating.

e If a new symbol from F) is still present in some equation, then some inference rule is
appliable.

¢ Noinference rule is appliable if S is a constraint, i.e. if .S contains only predefined symbols.

o b7 is correct, i.e.: If S b7 S/, then for all substitutions o, o satisfies S modulo A iff o
satisfies S’ modulo A.

Example 5.2 We continue our standard ezample.

Consider the T-equation g(x.0) = g(a'. 2" +y"). The constraint-representation of the A-solutions
sy ={z=2,0=2"+y}

We now turn to a critical pair test for local confluence.

Definition 5.3 Let U = u= v and U' = v’ = v’ be two conditional rules over ¥ that have no
varicbles in common. Then the conditional equation over ¥

Yufpm=w NUNU" = ulp — =0

is called a (conditional) critical pair between the two rules.

In contrast to the ordinary svutactical case we do not require u/p to be no variable. There
is no need for such a condition in our context, as variables are of type "low” and the left hand
sides of the rules Lave to be of tvpe "high”. An equation with the types of the two sides
being different has no solution in our context. Note that by these restrictions we do not have to
consider variable overlaps in the proof of the theorem to come. Hence we do not have to demand
for a termination property for £ — which is necessary in the syntactical case (see [DeOk90]).
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Definition 5.4 A conditional equation § = s = t over ¥ is said to be joinable modulo A iff
for any substitution o, if a(.S) is joinable modulo A, then o(s) = a(t) is joinable modulo A.

Theorem 5.1 Let R be a conditional rewrite system over X. If all conditional critical pairs
that can be built from the rules of R are joinable modulo A, then R is locally confluent modulo
A. i
Proof: Let t,1,,t, € TERM(X,V) be such that ¢y ra— t —ra b2 with the rules U =
v =vand U’ = u' = v'. Hence for appropriate s,s’,s;,89 € TERM(Z,V), positions p,q and
substitution T: :

o t~us,s/p=rT1(u),slp— 1(v)] =s1, 8 ~4t1, 7(U) is joinable modulo A.
o t~us s'/qg=T1(w), s'[g — T(v')] = 53, 53 ~4 ta, T(U') is joinable modulo A.

As u,u’ € TERMMNE,V) we have p € O"(s) and ¢ € O"s'). By lemma 4.1 we get
p,q € O™(t). Then either p | ¢ or ¢ = p¢’ or p = gp’ for appropriate p’,¢’.
Case 1: p| gq. We have ¢ € O"(s) and s/q ~4 t/q ~4 s'/q. Further ¢ € O*(s[p « 7(v)]). Hence
slp — r(v)]/q=s/q~a §/qg=7(¥). Analogously s'[qg — r(v')]/p=s'/p ~4 s/p = 7(u). Let
wy = s[p — 7(v)ll¢ — 7(v")] and w, = §'[p — 7(v)]{g — T(v)]. Then:
t ——gya W1 ~NA W2 gy la.
Case 2: ¢ = pq’. (The case p = ¢p’ proceeds analogously.) We have ¢ = pg’ € O”(s'), hence
pq’ € O"(s), hence ¢’ € O™ (s/p), hence ¢ € O™(7(u)), hence ¢’ € O"(u) (by use of lemma 4.1).
Then: 7(u/q¢') = m(uw)/¢ = s/pqg’ ~a t/pg =t/q ~4 s'/q = 7(v'). Thus 7 satisfies u/q = o’
resp. Yy q=w Mmodulo A. It follows that T(v,/g=y ) A T(U) A 7(U’) is joinable modulo A.

As the critical pair v, gz A U A U" = u[¢’ — v'] = v is joinable modulo A by assumption
we get 7(u)[g’ — 7(v")] |, T(v). Lemma 4.3 then provides ¢; |, , t2. O
The second step in the equation solving process uses a built-in constraint propagation algo-
rithm to make the solution representation more explicit. We are here interested only in the
results that such a propagation algorithm may output and not in the details concerning the
algorithm itself.

To describe solutions that are partially explicit and partially implicit the notion of a con-
strained substitution is introduced.

Definition 5.5 A constrained substitution (v,o) is a pair consisting of a constraint ¥ and a
substitution o.

In practice o will be idempotent. Further no variable occuring in v will belong to the domain
of 0. As usual 7 |y denotes the substitution that has the same values as 7 on the set of variables
X and that is the identical mapping on V\ X.

Definition 5.6 Let v be « constraint and X be a (finite) set of variables such that VAR(vy) C
X. The set {(y1.01)..... (7, 0k)} of constrained substitutions is said to be a partially solved
representation of v wrt X (modulo A) iff the following items hold:

(a) For any i € {1l..... k} and any substitution p, iof u is an A-solution of v;, then poo; is an
A-solution of v.

(b} For any substitution 7. of 7 is an A-solution of v, then there exists an i € {1,...,k} and a
substitution p such that j is an A-solution of v; and 7 |x~4 oo |x.
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A constraint propagation algorithm is intended to receive a constraint vy as input and to
produce a partially solved representation of v as output. The next lemma states without proof
(that is straightforward) that constraint propagation does not effect the joinability of conditional
equations.

Lemma 5.1 LetyAU = s =t be a conditional equation. Let X be the set of variables oecuring
inyAU = s =t. Let {(11,01),---,(7k,0k)} be a partially solved representation of v wrt X
(modulo A). Then yAU = s =t is joinable modulo A iff {(yiAoi(U)=> oi(s=1t)|i=1,...,k}
is joinable modulo A.

Thus we may propagate the constraint part of a critical pair before testing for joinability.
Note that constraint propagation strongly depends on the built-in algebra A.

Example 5.3 We continue the standard ezample. Consider the rules from ezample 1.1. All
critical pairs are joinable modulo N'. We consider only three cases.

(a) overlap (1),(1)
equation to be soved: g(x,0) = g(z',0)
constraint solution: {2 =2',0 = 0}
propagated solution: (T, {z — 2'})
propagated critical pair: T = 2 =z

(b) overlap: (1),(4)
equation to be solved: g(z,0) = g(2',2" + y')
constraint solution: {v = 2',0 = 2" + '}
propagated solution: (T,{z — 0,2 — 0,3’ — 0})
propagated critical pair: T = 0 = ¢(0,0) v
joining reductions: ¢{0,0) —_ 0

(c) overlap-(3),(4)
equation to be solved: g(z + y.y) = g(z',2" + y')
constraint solution: {zx+y=2",y=2"+y'}
propagated solution: (T.{x — 0,y — z’,y’" — 0})
propagated critical pair: T = ¢(0,2') = g(2',0)
joining reductions: g(0.z") !

RIN

' and g(2’.0) z’

RIN RIN

Hence: R is locally confluent modulo the natural number interpretation N.

6 Termination

In this section we investigate the termination of the rewrite relation —g, 4+ After developing
some general results we consider recursive path orderings that integrate semantic information

from the built-in algebra A.

Example 6.1 The equations from example 1.1 do not induce a terminating rewrite relation
modulo the natural number interpretation N’ as g(2,0) ~y g(z + 0,0) and hence g(z,0) ST
g(z,0). We change the rewrite rules by adding “sermantical informalion”. Let boole be an
additional built-in sort and let = true be additional built-in symbols which are interpretated in
(an extended version of ) \" in the natural way. Let R now be the new rewrite system:






(1) 9(z,0) = z
(2) g(0,y) =y
(3) y>0 = true = glz+y,y) = g(z,9)
(4) z>0 = true = g(z,z+y) = g(z,9)

Now we may use the well-foundedness of the algebra N wrt > and true and the fact thgt N |=
y>0=true=>z+y>z=true and N Ez > 0 =true= z +y > y = true to conclude that

—rn U8 terminating.

First the notion of decreasingness (see [DeOk90]) is generalized in order to guarantee the

well-foundedness of —, , and to avoid an infinite regress in the recursive condition check.
For reasons that will become clear below we split the condition U of a conditional rewrite

rule into two parts, a constraint v and an additional part C. Thus a conditional rule will be

written in the form yA C = u = v.

Definition 6.1 Let R be a conditional rewrite system over ¥. R is said to be decreasing modulo

A iff there exists a well-founded extension > of —,, , that satisfies the following items:

e > contains the subterm relation > 4, where for s,t € TERM(Z,V) we have: s >q/4t
iff there exist s' € TERM™Z,V) andt' € TERM(X,V) such that s ~4 8’ >t/ ~4 ¢
(>s: denotes the normal proper subterm ordering).

o For any rule Y AC = uw = v € R and any substitution o that satisfies v modulo A,
o(u) > o(u;),o(vy) for all u; = v; € C.

As in the "normal syntactical case” one easily proves that there cannot exist any infinite
descent when recursively checking conditions for rule application if the rewrite relation is de-
creasing modulo .A. Hence in that case the rewrite relation —, , is terminatin’g and decidable
(provided that A-equivalence and A-matching are decidable; see also section 7). In order to
prove decreasingness modulo A we next introduce a suitable notion of reduction ordering that
takes into account the signature hierarchy and the built-in algebra. Compatbility with such
a reduction ordering that in addition satisfies a subterm property then provides the desired
decreasingness.

Definition 6.2 A partial ordering > on TERM (X, V) is said to be a reduction ordering wrt
(Y =308 Sy, A) iff the following items hold: ‘

(a) > is compatible with the built-in algebra A: for any s,t,s',t' € TERM(E,V), if s ~4 8 >
t~ 4 t, then s > t.

(b) > is monotonic wrt syntactical replacement: for any s,t € TERM(Z,V) and any symbol
foifs>tand fl....s...) e TERMMNI, V), then f(....8,..)> f(...,t,...).

{c) > s well-founded.

In the sequel we write v : ¢ > v iff for any substitution o, if o satisfies ¥ modulo A4, then
olu) > o(v). :

Definition 6.3 Let R be a conditional rewrite system. A partial ordering > is compatible with
R iff foranysANC = u=1rv £ K we have v :u>vou; v, where u; = v; € C.

Note that this kind of compatibility requires a kind of stability too.
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Lemma 6.1 Let > be a reduction ordering wrt (X = o & £,,.A) that is compatible with the
conditional rewrite system R. Let further > contain >y, 4. Then R is decreasing modulo A.

Proof: First, > is well-founded by definition. Next we prove that —, , C>.

Let s —, , t with s',t',p,0,7A C = u = v as indicated in the definition of the rewrite re-
lation. By assumption v :'u > v. As A |= o(7) this implies o(u) > o(v). As u € TERM?%(Z,V)
wé get s’ > t' by the monotonicity property of >. Finally, s > t as > is compatible with A.

Now let Y AC = u = v € R and let o be a substitution that satisfies v modulo A. The

assumption ¥ : u > u;, v; yields a(u) > o(u;), o(v;) for any u; = v; € C. O

As usual the assumption that > contains >,/4 can be dropped if > is sort compatible (i.e.
if s > ¢, then s and t are sort compatible). The transitive closure of > and >,/ 4 satisfies the
desired properties.

As the compatibility property ¥ : u > v, u;, v; requires possibly an infinite number of tests we
next integrate the constraints into the notion of reduction ordering by parameterizing orderings
with constraints. '

Definition 6.4 The set {>{V)] v is a constraint} of partial orderings on TERM(X,V) is said
to be a constrained reduction ordering system wrt (X = Xo @ X1, .A) iff the following items hold:

(a) > is a reduction ordering wrt (L = Lo @ I1,.4).

(6) The system:z's stable (wrt semantical substitutions): for all u,v € TERM(X,V), all con-
straints v and any substitution o, if u > v, then o(u) >N g(v).

(c) The system is compatible with constraint satisfaction: If A= v, then >M= 5,

Definition 6.5 Let {>(")| v is a constraint} be a constrained reduction ordering system wrt
(L= X0 X1, A). The system is compatible with. the conditional rewrite system R iff for any
YAC = u=v € R we have u > v, u;, v;, where u; = v; € C.

Lemma 6.2 Let {>{7)] v is a constraint} be a constrained reduction ordering system wrt (L =
Co® Ty, A) that is compatible with R. Then >{7) is a reduction ordering that is compatible with
R (in the sense of definition 6.3).

Proof: Let YAC = u=v € Rand u; = v; € C. We prove v:u >(T) v, u;,v;. Let A = o(y)
for a substitution 7. As u > v u; vy we get o(u) >0V g(v),0(u;),0(v;) by the stability
property. Compatibility with constraint satisfaction finally yields o(u) >(T) o(v), o(u;),0(v;). O

To give an example of a constrained reduction ordering system we define suitable recursive
path orderings. The knowledge about the built-in algebra A intended to be integrated into the
construction of the recursive path ordering is giver by a so-called constrained base ordering
system. As a method of integration we let the base orderings be part of the precedences that
induce the recursive path orderings.

We first generalize A-equivalence by integrating constraints:

Definition 6.6 Fors.t € TERM{S, V) let s ~) ¢ iff
(a) st € TERM(S, V) and A=~ = 5=t or

‘

(b) s, t e TERMMNE. V), s = fls1..... Sy L= flbr,. -y ty) and s; “‘(X) t; fori=1,...,n.
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One easily proves that ~ ( ) is stable wrt substitutions, i.e. for all s,t € TERM(XZ,V) and
any substitution v, if s "‘9) t, then o(s) ~E4 o) o(t).
Definition 6.7 A set {>07)| ¥ is a constraint} of partial orderings on TERMy(X,V) is said
to be a constrained base ordering system modulo A iff the following items hold: f
(a) >§JT) is wellfounded. |

(b) > is compatible with A, i.e. for any s,t,8',t' € TERM(%,V) and any constramt v, if
(‘Y) S >(’7) tl ("l) t then s >(‘Y) t.

(c) The system is stable wrt substitutions.

(d) The system is compatible with constraint satisfaction.

For an example of such a constrained base ordering system modulo A let A be well-founded
wrt. >,true € Fy (i.e. the relation {(a,b) € A x A [=* (a,b) = true?} is well-founded). Now
let for u,v € TERMy(X,V)

u> vszA}=7:>u>v_t1ue

Then {>07 | ¥ is @ constraint} is a constrained base ordering system modulo A — the con-
strained base ordering system induced by A, >, true.

For the rest of this section let {>(()7)| v is d constraint} be a constrained base ordering
system modulo A.

Hierarchical X-terms will be converted into flat terms by abstracting from the internal struc-
ture of predefined terms in order to use the syntactical recursive path ordering construction.
For that purpose let [u] be a new constant symbol for any term v € TERMy(X,V) and
Co ={[u] | u € TERM,(Z,V)} be the set of these new constants. Further let F* = FA U Cy
where F» = Fézl) U Fi. The mapping « converts (hierarchical) E-terms into (flat) F*-terms.
Forue TERM(X,V) let

(4) = [u] if ue TERMy(Z,V) ,
W= fle(ur), - aluy)) if ue€ TERMNE, V) and u = f(uy,...,un).

By abuse of notation let for s € TERV (F™) and any substitution o

o(w) fo=lu
U(S)"{ flo(st),...,o(sn)) fs F(s1,.. ., 8n).

Let also by abuse of notation [u] >§” [v] iff uw > () 4 and afs) ~ ('Y) a(t) iff s Nh) t.

We now define the recursive path ordering >( ) o.4 modulo A on the F*-terms. We first review
the usual definition of the recursive path oxdeun (see [De8T)).

Definition 6.8 Let 2 be o quasi-ordering (the precedence) with ~ denoting its equivalence part
and > its strict part.

(a) The permutative congruence ~pe.p, induced by 2 is defined by: For s = f(s1,...,8,),t =
gty ... tn) € TERM(F) let s ~perm t iff f ~ ¢ and there erists a permutation ™ on
{1,...,n} such that s; ~perm tey fore=1,...,n
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(b) The recursive path ordering >,p, induced by 2 is defined by: For s = f(s1,...,8m),t =
g(t1,...,tn) € TERM(F) let s >,po t iff one of the following items holds:

(@) 8i >rpot OF S ~perm t for some i € {1,...,m}.
(B) f>gand s >0 tj forallje {1,...,n}.

(v) f ~ g and for appropriate A,B,aib; we have {s1,...,8m} = AU {al, ,ak},
{t1,-.-ytn} = BU{b1,..., bk}, A >rpo>rpo B and a; ~perm b (i =1,...,k)."

Definition 6.9 Let 2 .. be a well-founded partial ordering on F" and {>(7)| 7 is a constraint}
be a constrained base ordering system modulo A. Let v be a constraint. Then

20 = DUz U SY U )] f € FY[u] € Co)

is the precedence modulo A induced by 2 1 and > O) This precedence induces the permutative

equivalence ~£Zlm' 4 modulo A wrt. 2 p. and >(.,) and the recursive path ordering >£Z?,, A

modulo A wrt. 2 .. and > von the F*-terms).
F 0

Lemma 6.3 Let 2 .. be a well-founded partial ordering on F" and {>9)I v i3 a constraint}

be a constrained base ordering system modulo A. Let >£ZL,A be the recursive path ordering

modulo A wrt. 2 . and >g7). Let further s,s',t,t' € TERM(F™), 7. be a constraint and o be
a substitution. Then the following items hold:

(a) If s NS) I(;;lmAt )¢, then s NéelmAt

(0) If s ~Q0 5 ST v N then s ST ot

(c) If s~ b, then a(s) ~7) (t).

permi, A S
(@) If s >0 4 t, then a(s) 7)o (1).
(e) If A7, then >1) 4= >11) 4.

(f) >£B.A is wellfounded.

Proof: The proof of (a), (b) resp. (c¢), (d) proceeds by induction on the sum of the lengths of
s' and ¢ resp. s and t. Below we sketch only the proof of part (b), the other cases are shown
analogously. Statement (e) follows from the fact that by the related property of the constrained

base ordering system the two precedences are identical. To see (f) note that >(()T) is assumed

to be wellfounded. Hence the precedence 2 (7 is wellfounded too. It follows (see [De87]) that
>£:<3,A is wellfounded.
Proof of part (b): For the induction base let s’ and ¢’ be constants from F*.

Case 1: ¢ = [v'], ¢ = [v/] for appropriate v',v' € TERM(Zo,V). Then there exist u,v €
TERM(Zo, V) such that s = [u]. t = [v]. By inspecting the definition of the precedence we get
u N(J) u >(A' u’ ~S') v. The assumption that {>OW)| v is a constraint} is a constrained base
ordering system modulo A provides u >(() . Thus s >f LA t.

Case 2: §' € F’\ and t' = [V/] for v € TER\I(AO, ). Then s = ¢’ and t = [v] for some

v € TERM(Zo,V). Thus s > ¢ and consequently s >£¥;l.A t.:
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Case 3: ¢',t' € F*. Then s = s’ and t = t/, consequently s >1(-;3>,A t.
Case 4: s’ = [u'] for some v’ € TERM(Zo,V) and t' € F*. Note that this case is impossible by
the definition of the precedence.

For the induction step let the sum of the lengths of s’ and ¢’ be greater than 2. Notice that the
claim follows immediately if ¢ € Cp and that the case s’ € Cp is impossible by the definition of
the precedence. It remains the "syntactical case™ s' = f(s,...,sl,) and t' = g(t},...,t,} where
f,g € F*. Then we have s = f(s1,...,5n) and t = ¢(t1,...,t,) with appropriate F*-terms
si,t;.  The proof now proceeds straightforward by case analysis using the induction hypothesis
and statement (a). O

The recursive path ordering modulo A on TERM(X,V) wrt. 2 pa and >(()7) is defined in
the obvious way:

s> tiffals) > 4 alt).

With the aid of lemma 6.3 the following theorem is easily proved:

Theorem 6.1 Let 2 . be a well-founded partial ordering on F" and {>((;')| v i8 a constraint}

be a constrained base ordering system modulo A. Let >$Z<)>,A

modulo A on TERM(%,V) wrt. 2 pa and >g7). Then he set {>£ZL,AI Y is a constraint} is a

be the recursive path ordering

constrained reduction ordering system wrt (¥ = Lo® X1, A). In eddition >S‘B,A contains > g4/ 4.

Corollary 6.1 Let 2 . be a well-founded partial order)ing on F" and {>g”| ¥ s a constraint}
(v

rpo

AonTERM(X,V) wrt. 2 pr and >0V Let further the system >0 v 18 a constraint} be
F 0 rpo,A

compatible with a conditional rewrite system R. Then R is decreasing modulo A.

be a constrained base ordering system modulo A. Let >_ " , be the recursive path ordering modulo

Example 8.2 We continue ezample 7.1

Let N be the natural number interpretation (enriched by a standard boolean interpretation). We
have F* = {+,>,9}. Let >pa= 0. Let {>((f)‘\ v is a constraint} be induced by N, >, true.
Then

A7)

g9(z,0) Srpo b
g0y) > y
gz +yy) >0 gley)
glz,z+y) >E07TY glay)

Thus R is decreasing modulo N and especially, —

xS terminating.

7 Decidability of A-equivalence and A-match

In order to get a decidable rewrite relation modulo the built-in algebra A-equivalence and A-
match have to be decidable. We finish the paper with some remarks about decidability results.

We first consider the decidability of A-eqivalence. In general A-equivalence is not decidable.
This follows from the fact, that there exists a signature Ly and a Y,-algebra .4 such that the
equivalence relation ~4 on TTERM(E, V') is not decidable (we thus consider a case where no
new symbols are present). For a justification let E be a set of Lg-equations (for an appropriate
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¥o) such that the inductive theory of E is not recursively enumerable. Let A denote the initial
model of E. Now, if we could decide u ~4 v resp. A = u = v for arbitrary u,v € TERM (X, V),
then we obviously could enumerate the theory of A resp. the inductive theory of E.

In many special cases however A-equivalence can be proved to be decidable. First note that
s~4tiff A 7= (s,t € TERM(Z,V)), so that we can concentrate on Yg-equations.

In the "mere syntactical case” we assume that A = u = v iff v = v for alliv,v €
TERM(Z,,V). This case is available if A is the free term algebra induced by ¥o and V.
In this case A-equivalence is obviously decidable.

Example 7.1 Let Sy = {nat}, Fo = {0,s} and Dy = {0 :— nat,s : nat — nat}. Let A be the
canonical term algebra induced by Lo and V.

Next the special ,4;-algebra A and X;n;-algebra Z are considered. .A-equivalence turns out
to be decidable for these two algebras. For a proof we first introduce the notion of a polynomial
over Xpat resp. Zing.

Definition 7.1 A polynomial p(21,...,2k) over L ¢ resp. Tine is @ term of the form
d . .
p(xl,-.-,l'k) = Z Z c(il...ik)l‘t]l ...z;c“
=0t .. i =t

where the so-called coefficients c(;; ;) are elements of the "basic” Tpqs-terms {0,1,2,...} resp.
of the "basic” ¥;,,-terms {0,1,—(1),...} and d is a natural number called maximal exponent.

The degree of p, written deg(p), is the greatest number n < d such that there exists a
coefficient c;,. ;) with iy + ...+ i =n and c(iy. i) *40 (A=N,Z).

Note that we omit brackets and use the usual priority and abbreviation conventions.

It is easily verified that for any s € TERM (X, V') one can effectively construct a polynomial
ps over Lg such that p; ~4 s (where g = Ypge, Zine and A = N, Z). The next lemma states a
well known result and provides a method to decide A-equivalence in our special cases.

Lemma 7.1 Let plzy,...,x,) and p'(zy,...,2;) be polynomials over L., resp. Xin with
(w.l.o.g) the same maximal exponent d and with coefficients c¢;, ;.\ and c'( Then for

A=Noand A = Z,

k il,...,ik)'

/

p~al iff ey = Cliyipy JOr all coef ficients (i.e. p and p' are identical).
Corollary 7.1 N -equivalence and Z-equivalence are decidable.

We turn to A-matching. In general .4-matching is not decidable. As a counterexample
consider Z-matching. If Z-matching were decidable, then Hilbert’s 10th prob’em were too, in
- contrast to the well-known result in [Ma70].

The “mere syntactical case” (see above) is trivial as in this case A-matching reduces to
ordinary syntactical matching.

Whereas Z-matching is undecidable, V-matching is decidable. The decision procedure pre-
sented below is far away from being of practical interest. Our only interest here is to make the
search space for the matching substitution finite. Let u,s be ¥,,,-terms. The decision to be
made is whether there exists a substitution ¢ such that o(u) ~u s or not. Again the problem
can be simplified by switching over to polynomial representations.
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Definition 7.2 A substitution o is called a polynomial substitution iff o(z;) is @ polynomial
¢i(Y1y-- -, Y1) over Lo such that the mazimal exponent of q; coincides with the degree of g;.

It suffices to decide for arbitrary polynomials p(zy,...,zx) and ¢(y1, ..., Y1) over X,,¢ whether
there exists a polynomial substitution o that satisfies o(p) ~xr g. :
Definition 7.3 Let p(z1,...,2x) be a polynomial over L4 and let o be a substitution. The
variable z; contributes to p wrt o (and N) iff there ezists a constituent c;, i)z’ ... of p

such that i; # 0 and ¢(;, ;) #~ 0.

Now let p(zy,...,z¢) and ¢(y1,..., %) be given. Let d Le the degree of ¢ and let ¢ be the
(wrt A') maximal coefficient of ¢. Suppose that o is a polynomial substitution with o(p) ~xr ¢.
It is easily verified that if z; contributes to p wrt ¢, then the degree of the polynomials o(z;)
is less or equal than d and the coefficients of o(z;) are less or equal than ¢. If z; does not
contribute to p wrt o, then the value o(z;) can be changed into 0 without changing o(p) wrt
~n. Thus, if there exists a polynomial substitution o with o(p) ~xr ¢, then there exists one so
that o(z;) is a polynomial with degree < d and coefficients < ¢ wrt A’. As there exist only a
finite number of such "test-substitutions” we get the following result:

Lemma 7.2 The N -match is decidable.

Let us finally return to Z-matching again. Though undecidable in general there can be made
some positive statements. Fortunately matching is usually needed only for a finite number of
patterns — the Yo-terms introduced by the left hand sides of the rewrite rules from R. Thus,
if we keep the syntax of R rather simple, we can possibly decide Z-matching wrt the relevant
patterns.

Definition 7.4 A T;,;-term is said to be linear iff it is a polynomial over ;,;: of a degree < 1.
R is said to be linear iff every ¥;,;-term occuring as subterm in a left hand side of a rule
from R is linear.

Now the problem is to decide for a linear term p = ayz; + ...arzk + ¢ and an arbitrary
polynomial ¢'(y1,. .., y) over ¥;n, whether there exists a substitution o with o(p) ~z ¢'. First we
transform the problem into an equivalent one by “bringing c on the other side”. Let ¢(y1,...,u)
be the resulting polynomial. It is easily verified that if there exists a matching substitution for
p and ¢, then there exists such a substitution ¢ with

d
Y T 5! ik
o(z;) = Z Z Ciiri) B Ty
(=0 8y .=t

with appropriate "basic™ integer terms ¢;;, ). Now such a substitution satisfies o(p) ~z ¢ iff
the following system of equations with the unknown ¢;;, ;) has a solution in Z:
{alcly(il‘_.ik) -{*-\. co P QRCE (i) = Cligin) [i=0,...,dand iy + ...+ i = ?,}

As such a system of equations can be solved we get:

Lemma 7.3 Z-matching wrt a linear rewrite system R is decidable.
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