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Abstract 

We present a method to integrate. built-in operations that are described by a given built-in 
algebra into conditional rewriting. First, equational specifications will be assigned a suitable 
semantics that takes into account the predefined structures. The interpretation of "semantically 
and syntactically mixed objects" is based on an appropriate introduction of sort hierarchies that 
allows to separate semantkal and syntactical considerations. As a consequence of this separation 
a great deal of"classical rewrite theory" as for instance a critical pair lemma can be generalized 
to our context. Further we are able to construct appropriate well-founded orderings to guarantee 
the termination of the rewrite relation that allow to integrate semantical informations from the 
given built-in algebra. In order to illustrate the ideas several examples concerning built-in 
arithmetic are presented. 

Abstrac t

We present a method to  integrate built-in operations that are described by a given built-in
algebra into conditional rewriting. ' F i r s t ,  equational specifications will be assigned a. suitable
semantics that takes into account t he  predefined structures.  The interpretation of ”semantically
and syntactically mixed objects” is based on an appropriate introduction of sort hierarchies that
allows to separate semantical and  syntactical considerations. As  a consequence of  this separation
a great deal of ”classical rewrite theory” as for instance a critical pair lemma can be generalized
to  our context. Further we are able to  construct appropriate well—founded orderings to  guarantee
t he  termination of the  rewrite relation tha t  allow to  integrate semantical informations from the
given built-in algebra.  In order  t o  i l lustrate t he  ideas several examples concerning built-in
arithmetic are presented.





1 Introduction 

Sets of conditional equations may be considered as the programs of a functional programming 
language with conditional rewriting as its computation mechanism. Conditional equations, 
interpreted as rewrite rules, are used to simplify terms -the basic objects to be operated on
according to the notion of "replacing equals by equals" until normal forms are possibly t1lached. 
(For a survey of conditional rewriting see [DeOk90].) 

Whereas built-in operations are available in common programming languages as PASCAL, 
LISP or PROLOG, they usually can not be employed in the rewrite case. To yield an easy to 
handle programming environment it would be of great interest to be able to integrate predefined 
structures within the rewrite process. 

Consider as an example the following equations, intended to define the greatest common 
divisor function over the natural numbers. 

Example 1.1 This example is refered to as 'standard example' throughout the paper. 

(1) g(x,O) x 
(2) g(O, y) = y 
(3) g(x + y, y) g(x,y) 
(4) g(x, x + y) g(x, y) 

It would be desirable to consider '+' and '0' as symbols with a predefined meaning that 
agrees with the natural interpretation of the symbols in the natural numbers. But in most 
rewrite environments equations as those above would not be "executable". Instead the specifier 
would have to define everything he uses himself in a bottom-up fashion. 

There are at least two additional reasons that make built-in concepts attractive. First, it may 
become possible to use objects as for instance real numbers that cannot be specified equationally. 
Thus, built-ins can increase the expressive power of the specification environment. Secondly, one 
possibly gains efficiency when treating predefined objects by appropriate built-in algorithms. 

The aim of this paper is to present a general approach of how to integrate predefined objects 
and operations into rewrite based equational reasoning. The problems that arise originate from

l 

the fact that syntactical and semantical methods have to be mixed when treating objects (terms, 
equations etc.) that consist of syntactical and semantical constituents. In particular we must 
generalize according to such interference effects 

•	 matching and equivalence check, which are fundamental for conditional rewriting, 

•	 unification, which is needed to ckeck (ground) confluence - a kind of correctness property 
of a set of rewrite rules, 

•	 orderings that guarantee the termination of the rewrite relation. 

To solve the problems we will separate syntactical and semantical considerations as far as 
possible. As a technical means for separation we switch over from "mixed terms" to "semantical 
congruence classes" (Le. "mixed terms" are to be considered equivalent according to prede
fined equivalences). Representatives of the "semantical congruence classes" will be treated by 
syntactical means that have to be compatible with the semantical equivalence. 

This conceptual proceeding is not new. In the case of unorientable equations a theory of 
rewriting modulo such equations based on the ideas just described has been developed (see 
[PeSt81]' [JoKi86]. [BaDe89]). But the applicability of this theory is rather limited. Serious 
difficulties arise when trying to design appropriate orderings and unification algorithms. 
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1 Introduct ion

Sets of conditional equations may be considered as the programs of a functional programming
language with conditional rewriting as its computation mechanism. Conditional equations,
interpreted as rewrite rules, are used to simplify terms —'the basic objects to be operated on —
according to the notion of ”replacing equals by equals” until normal forms are possibly reached.
(For a survey of conditional rewriting see [De0k90].)

Whereas built—in operations are available in common programming languages as PASCAL,
LISP or PROLOG, they usually can not be employed in the rewrite case. To yield an easy to
handle programming environment it would be of great interest to  be able to  integrate predefined
structures within the rewrite process.

Consider as an example the following equations, intended to define the greatest common
divisor function over the natural numbers.

Example 1 .1  This example is refered to as ’sta’ndard example’ throughout the paper.

(1) 9(x,0) = x
(2) 9(0.y) = y
(3) y(z+y‚y )  = g( :v ‚y )

(4) 9(w‚x+y) = Why)
It would be desirable to  consider ’+ ’  and ’0’ as symbols with a predefined meaning that

agrees with the natural interpretation of the symbols in the natural numbers. But  in most
rewrite environments equations as those above would not be ”executable”. Instead the specifier
would have to define everything he uses himself in a bottom-up fashion.

There are at least two additional reasons that make built-in concepts attractive. First, it  may
become possible to use objects as for instance real numbers that cannot be specified equationally.
Thus, built-ins can increase the expressive power of the specification environment. Secondly, one
possibly gains efficiency when treating predefined objects by appropriate built-in algorithms.

The aim of this paper is to present a general approach of how to integrate predefined objects
and operations into rewrite based equational reasoning. The problems that arise originate fromH
the fact that syntactical and semantical methods have to be mixed when treating objects (terms,
equations etc.)  that consist of syntactical and semantical Constituents. In particular we must
generalize according to  such interference effects

o matching and equivalence check, which are fundamental for conditional rewriting,

e unification, which is needed to ckeck (ground) confiuence —— a kind of correctness property
of a set of rewrite rules,

o orderings that guarantee the termination of the rewrite relation.

To solve the problems we will separate syntactical and semantical considerations as far as
possible. As  a technical means for separation we switch over from ”mixed terms” to  ”semantical
congruence classes” (Le. ”mixed terms” are to be considered equivalent according to prede-
fined equivalences). Representatives of the ”semantical congruence classes” will be treated by
syntactical means that have to  be compatible with the semantical equivalence.

This conceptual proceeding is not new. In the case of‘nnorientable equations a theory of
rewrit ing modulo  such  equat ions  based  on  the  ideas jus t  described has  been developed ( see
[PeStSl], [JoKiSG]. [BaDe89]). But the applicability of this theory is rather limited. Serious
difficulties arise when trying to  design appropriate orderings and unification algorithms.





As we want to develop an approach to integrate - at least in principle - arbitrary built
in objects and operations without any limitation, we cannot directly adopt the existing theory. 
Instead we will design a theory of rewriting modulo predefined equivalences and so avoid by some 
moderate restrictions the interferences that cause some of the main problems. The following 
remaks are to make dear our concept . 

• Consider a built-in operation '+' that is commutative on the built-in objects, hence ihduces 
the predefined equation x+y = y+x. Let f be a (unary) new "syntactical" function symbol and 
consider the "mixed terms" f(a + b) and f(a) + f(b) where a and b represent built-in objects. 
It is reasonable to require that the equivalence of a + band b + a induces the equivalence of 
f(a + b) and f(b + a). If we extended the range of validity of predefined equations in a"liberal 
fashion, we could also demand for the equivalence of f(a) + f(b) and f(b) + f(a). But as such 
a liberal interpretation of predefined equations would cause the problems mentioned above, we 
do not adopt it here. This decision can be motivated not only "by need" - as just done - but 
also "by matter" - as follows. 

When specifying by conditional equations over a built-in domain, the specifier is interested 
primarily in objects that are defined wrt. built-in objects (Le. that are equivalent to built-in 
objects wrt. the conditional equations of the specification). Hence, if f(a) or f(b) is not defined 
wrt. built-in objects, it does not matter (concerning the intent of the specifier) whether the two 
terms are equivalent or not. On the other side, if both terms are defined wrt. built-in objects, 
then the equivalence of f(a)+ f(b) and f(b)+ f(a) results as a consequence of the tommutativity 
of the built-in objects. Thus th.ere is no need for requiring the liberal interpretation of predefined 
equations. 

To realize our approach we first define an adequate semantics. As the main technical means 
to easily distinguish between predefined and mixed objects, we design an appropriate hierarchy 
of sorts: for each sort a copy is made and then the two sorts are related by a subsort declaration 
so that one of them - the "lower sort" - describes built-in resp. semantical objects, whereas 
the other - the "higher sort" - describes mixed resp. syntactical objects. This hierarchy 
aspect allows us to interprete equations according to the intuition that variables occuring in the 
equations are to range over built-in objects. As we may interprete built-in objects as constructors 
our approach provides a method to define a. kind of "constructor semantics". Further, this 
approach allows us to deal with equations that define function symbols only partially wrt. the 
"constructors" (see also [KaMu86]). 

We will demonstrate in this paper that by our concept to treat built-in structures we are 
able to adopt with some minor modifications a great deal of" classical rewrite theory". 

Our approach to integrate built-ins into the rewrite process differs from others in various 
aspects. First, we do not consider implementational aspects concerning rewriting of mixed 
ground terms as it is done in [KaCh89] and [Wa90]. Our work is more related to that of 
Vorobyov [Vo89] and Kirchner, Kirchner and Rusinowitch [KKR90]. 

Vorobyov deals with rewriting in the special context of built-in arithmetic. 
Kirchner, Kirchner and Rusinowi tch develop a very general approach based on the notion 

of constraints. (Note that Vorobyov also uses a kind of constraints though not mentioning 
this expression.) As in the case of constraint logic programming (see [JaLa87a]), constraints 
are used to represent knowledge about predefined structures. The aim of this approach is to 
convert syntactical problems into semantical ones by placing them - roughly spoken - into 
the constraint part. 

Both papers [Vo89] and [KKR90] require the conditions to be formulated in the language of 
built-ins, whereas we allow arbitrary conditions. Concerning some of the results of [Vo89] this 
restriction can be dropped (see [..\1'92]). 

2 

As we want to develop an approach to  integrate — a t  least in principle — arbitrary built-
in objects and operations without any limitation, we cannot directly adopt the existing theory.
Instead we will design a theory of rewriting modulo predefined equivalences and so avoid by some
moderate restrictions the interferences that  cause some of the main problems. The following
remaks are to  make clear our concept.

_. Consider a built—in operation ’+’ that is commutative on the built—in objects, hence i‘hduces
the predefined equation x+y  = y+z .  Let f be a (unary)  new ”syntactical” function symbol and
consider the ”mixed terms” f (a  + (7) and f (a )  + f (b)  where a and b represent built-in objects.
It is  reasonable to require tha t  the  equivalence of a + b and b + a. induces the equivalence of
f (a  + b) and f (b  + a) .  If we extended the range of validity of predefined equations in a'liberal
fashion, we could also demand for the equivalence of f (a )  + f(b) and f (b)  + f ( a ) .  But as such
a liberal interpretation of predefined equations would cause the problems mentioned above, we
do not adopt it here. This decision can be motivated not only ”by need” —— as just done — but
also ”by matter”—— as follows.

When specifying by conditional equations over a built-in domain, the specifier is interested
primarily in objects that are defined wrt. built-in objects (i.e. that are equivalent to  built-in
objects wrt. the conditional equations of the specification). Hence, if f ( a )  or f (b)  is not defined
wrt. built-in objects, it does not matter (concerning the intent of the specifier) whether the two
terms are equivalent o r  not .  On  the  other  side, if bo th  terms are defined wr t .  built-in objects,
then the  equivalence of f(a.) + f (b )  and  f (b )  + f ( a )  results as  a consequence of t he  ‘commutativity
of  t he  built-in objec ts .  Thus  there is no need for requiring t he  liberal interpretat ion of predefined
equations.  _

To realize ou r  approach we first define an  adequate semantics.  As  t he  main technical means
to  easily distinguish between predefined and mixed objects ,  we design an appropriate hierarchy
of sor ts :  for each sor t  a copy is made and then  the  two sor ts  are related by a subsor t  declaration
so that  one of them — the ”lower sort” — describes built-in resp. semantical objects, whereas
the other _ the ”higher sort” —— describes mixed resp. syntactical objects. This hierarchy
aspect allows us to interprete equations according to  the intuition that variables Occuring in the
equations are t o  range over built-in objects.  As we may interprete  built-in objects  as constructors
our approach provides a method to  define a_ kind of ”constructor  semantics”.  Further,  th is
approach allows us  t o  deal with equations tha t  define function symbols only partially wr t .  t he
”constructors” (see also [KaMu86]).

We will demonstrate  in this paper  tha t  by ou r  concept t o  t reat  built-in s t ructures  we are
able to  adopt with some minor modifications a great deal of ”classical rewrite theory”.

Our  approach to  integrate  built-ins in to  the  rewrite process differs from others  in various
aspects.  F i rs t ,  we do  not  consider: implementational aspects  concerning rewriting of mixed
ground terms as it is done in [KaChSQ] and [Wa90]. Our work is more related to that of
Vorobyov [V089] and Kirchner, Kirchner and Rusinowitch [KKRQO].

Vorobyov deals with rewriting in t he  special context of built-in ar i thmetic .
Kirchner, Kirchner and Rusinowitch develop a very general approach based on the notion

of constraints.  (No te  tha t  Vorobyov also uses a kind of constraints  though not  mentioning
this expression.) As in the case of constraint logic programming (see [JaLa87a]), constraints
are used to  represent knowledge about  predefined s t ructures .  The  aim of this  approach is t o
convert syntactical  problems into  semantical ones by placing them — roughly spoken —— in to
the  constraint  pa r t .

Both papers [V089] and [KKRQO] require the conditions to be formulated in the language of
built-ins, whereas we allow arbitrary conditions. Concerning some of the results of [V089] this
restriction can be dropped (see [.—\.y9'2]).
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Vorobyov avoids the interference effects 'between predefined equations and new syntactical 
function symbols by introducing a rather strong restriction: new syntactical function symbols 
are not allowed to have built-in domains as codomains. Note that by this restriction example 
1.1 lies out of the range of his theory. 

The interference problem is solved in [KKR90] in a way that is similar to ours fr~m the 
methodical point of view (namely avoid the interference effects by introducing an appropriate 
semantics) but that differs from ours with respect to its realization. 

Both approaches [V089] and [KKR90] differ from ours in the definition of the rewrite relation. 
Whereas we define it traditionally via matching, they replace matching by case splitting and 
a constraint satisfiability check. This difference reflects the contrary notions of explicit and 
implicit representation of knowledge (c. [JaLa87bJ). 

Our decision in favour of matching has two reasons. First, by this decision we are able - in 
contrast to [V089] and [KKR90] - to present a general method of how to guarantee termination. 
Secondly, we think that whenever explicit knowledge is available, then it should be employed to 
keep the objects to be treated by rewriting as simple as possible. Of course this decision limits 
rewriting in our approach to cases where matching is feasible. 

The paper is organized as follows: The sections 2 and 3 introduce our basic concept of how 
to interprete specifications in the presence of built-ins. The division into two sections reflects 
the fact that the interpretation is established by syntactical as well as semantical means. In 
section 4 we define rewriting modulo a given built-in algebra and consider the" correctness' of 
rewriting" (captured by the Church-Rosser property). Section 5' is devoted to a critical pair 
test for local confluence along the ideas of Knuth ,and Bendix [KnBe70]. Section 6 deals with 
termination problems. Finally in section 7 we make some remarks about the decidability of the 
rewrite relation. 

We assume that the reader is familiar with the basic concepts of term rewriting, equational 
reasoning (see e.g. [AvMa90, DeJ090]) and mathematical logic. We define notions and notations 
only if they differ from standard ones. 

Syntax 

The notion of order-sorted specification is used to code some basic semantical prerequisites into 
the syntax. By this decision we are able to simplify the formulation of the restrictive use of 
variable instantiations and hence to simplify the definition of the semantics of the specifications. 
(For a survey of order-sorted equational computation see [SNGM89].) 

The sort hierarchies to be considered in the sequel are very well- behaved, so that no conflict 
about which concept to treat sort hierarchies arises (see [vVa92] for a comparison of the different 
concepts ). 

Definition 2.1 A signature I: = (5, F, D) consists of a set S of sort symbols, a set F of function 
symbols and a set D of function declarations f : SI,' .. , Sn --> S (f E F; Si,S E 5) and subsort 
declarations SI <l 52 (51,52 E 5), where <l denotes the ordering relation between the sorts. 

A signature I: = (5, F, D) is said to be flat iff D contains no subsort declarations and for 
any f E F there exists exactly one function declaration in D. 

Before introducing the fundamental construction of sort hierarchies used throughout this 
paper. we give a short motivation. 

Built-in objects are described in a built-in language given by a "normal" (flat) signature 
I:o. The introduction of ne\v "svnta.:tical" function symbols is captured as usual by the notion 
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Vorobyov avoids t he  interference effects between predefined equations and new syntactical
function symbols by introducing a rather strong restriction: new syntactical function symbols
are not allowed to have built—in domains as codornains. Note that  by this restriction example
1.1 lies out of the range of his theory.

The interference problem is solved in [KKRQO] in a way that  is similar to  ours from the
methodical point of view (namely avoid t he  interference effects by introducing an appropriate
semantics) but that differs from ours with respect to its realization.

Both approaches [V089] and [KKRQO] differ from ours in the definition of the rewrite relation.
Whereas we define i t  traditionally via  matching,  they replace matching by case spli t t ing and
a constraint satisfiability check. This  difference reflects t he  contrary notions of explicit and
implicit representation of knowledge (c. [JaLa87b]).

Our  decision in favour of matching has two reasons. Firs t ,  by this  decision we are able — in
contrast to [V089] and [KKRQO] — to present a general method of how to  guarantee termination.
Secondly, we think tha t  whenever explicit knowledge is available, then i t  should be  employed to
keep the  objects  t o  be  t rea ted by rewriting as simple as  possible. Of course this  decision limits
rewriting in our approach to cases where matching is feasible.

The  paper  is organized as follows: The  sections 2 and 3 introduce ou r  basic concept of how
to  interprete specifications in the  presence of built-ins. The  division in to  two sections reflects
the  fact t ha t  t he  interpretat ion is established by syntactical as well as semantical  means.  In
section 4 we define rewriting modulo a given built-in algebra and consider t he  ”correctness'  of
rewriting” (captured by the  Church-Rosser property) .  Section 5° is devoted t o  a critical pair
tes t  for local confluence along the  ideas of Knu th  and Bendix [KnBe70]. Section 6 deals with
termination problems. Finally in section 7 we make some remarks abOut t he  decidability of t he
rewrite relation.

We assume tha t  t he  reader is familiar with t he  basic concepts of t e rm rewriting, equational
reasoning (see e.g. [AvMa90, DeJ090]) and mathematical logic. We define notions and notations
only if they differ from s tandard  ones.

2 Syntax

The  notion of order—sorted specification is used t o  code some basic semantical prerequisites into
the  syntax .  By this decision we a re  able t o  simplify t he  formulation of t he  restrictive use of
variable instantiat ions and  hence t o  simplify t he  definition of t he  semantics of t he  specifications.
(For a survey of order-sorted equational computat ion see [SNGM89].)

The  sor t  hierarchies t o  be  considered in the  sequel are very well-behaved, so t ha t  no  conflict
about  which concept t o  t rea t  sort  hierarchies arises (see [VVa9‘2] for a comparison of ' the  different
concepts).

Defin i t i on  2 .1  A signature E : (S ,  F, D)  consists o f a  se t  5- of sor t  symbols, a se t  F offanc t ion
symbols and  a se t  D of funct ion declarations f : 51, . . . , s , ,  —> s (f E n i , s  E S}  and  subsort
declarations 31 <1 32 {81,82 € 5} ,  where <1 denotes the ordering relation between the sorts .

A signature 3 : (S ,F ,D)  is sa id  to be flat ijf D contains no  subsort  declarations and  for
any  f E F there er is t s  exactly one funct ion declaration in D .

Before introducing the  fundamental  construction of. sor t  hierarchies used throughout  this
pape r .  we  g ive  a sho r t  mo t iva t i on .

Built—in objects  a r e  described in a built-in language given by a “normal” (flat) s ignature
EO. The  introduction of new "syntactical” function symbols is captured as usual by the  notion





of a signature enrichment Eo + El' Note that the resulting signature is still considered to be 
flat. Next this signature Eo + El will be suitably interpreted: By a copying process we get an 
order-sorted signature E induced by Eo and El' 

Definition 2.2 A signature enrichment Eo + El consists of a flat signature Eo = (So,Po, Do) 
(for the built-in language) and a triple El = (0, F l , Dd such that (So, Fl , D l ) is a flat signature 
too with Fa n F l = 0. 

Note that no new sorts are introduced by ~l' The more general case without such a sort 
restriction does not cause any difficulties. However it makes necessary some additional case 
distinctions that we want to avoid here. 

The copying process to be defined below requires Fa to be divided into FJ=O) and FJ~l), the 
set of symbols from Fa with an arity that is equal to 0 - the constants from Fo - resp. greater 
or equal than 1. 

Definition 2.3 Let~o + El = (So, Fa, Do) + (0, FI, Dd be a (flat) signature enrichment. ~ = 
(S, F, D) is said to be the hierarchical signature resp. order-sorted signature induced by ~o and 
~l - written ~ = ~o EB El - iff 

• 5 = So U 5/\ where 5/\ = {s/\ I sE So} and 

•	 F = Fa U F l and 

•	 D = Do U D/\ U Dsort where 
D/\ ::::;: {f : s~, . . :' s~ -+ s/\ I f E FJ~l) U F l and f: SI,' .. , Sn -+ S E Do U D l } and 
D sort = {s <1 S/\ I S E So}. 

vVhen speaking roughly the elements of So are called sorts of type "low" and the elements 
of 5/\ sorts of type "high". Note that the function symbols from the built-in language with an 
arity greater or equal than 1 are declared twice - a declaration for built-ins and an additional 
for mixed objects. This reflects the fact that these symbols have a semantical and syntactical 
"flavour" . 

Example 2.1 We first define suitable signatures to describe natural numbers and integers. Let 
Enat = (Snat, Fnat, Dnatl resp. ~int = (Sint, Fint, Dint) with 

Snat {nat}
 
Fnat {+, *,0,1,2....}
 
D nat {+ : nat, nat - nat, * : nat, nat -+.nat, 0: nat, 1: nat, ... }
 
Sint {int}
 
Fint {-. +. *. 0,1,2, ...}
 
Dint {- : int- int. + : int, int - int, * : int, int -+ int, 0 : int, 1: int, . ..}.
 

To continue our standard example let ~o = ~nat and ~1 = (0, F l , Dd with 

Fl {g}
 
DJ {g : 11fLt, nat - nut}.
 

To obtain ~. = :So -3 ~l let 

of a s ignature enrichment 20  + 21 .  Note that  t he  resulting signature i s  still considered to be
fla t .  Next this  s ignature 20  + 21  will be  suitably interpreted: By  a copying process we get an
order-sorted signature E induced by 20 and 21.

Definition 2 .2  A signature enrichment 20 + 21  consists of a flat signature 20  = (SgtFo,  Do)
(for the built-in language) and a triple 21 = (0), F1, D1) such that (So,F1, DI)  is afla t  signature

‚too with F0 n F1 = 0.

Note that no new Sorts are introduced by 21. The more general case without such a sort
restriction does not  cause any difficulties. However i t  makes necessary some additional case
distinctions tha t  we want t o  avoid here.

The copying process to  be  defined below requires F0 t o  be  divided into Fézo) and Fézl) ,  the
set  of symbols from F0 with an ar i ty  tha t  is equal t o  0 — the  constants from F0 — resp. greater
or  equal  than  1 .  .

Defini t ion  2 .3  Let "$0 + 21  = (50 ,  F0, DO) + ((0, F1, DI )  be a (flat) signature enrichment. 2 =
(S, F, D)  is said to be the hierarchical signature resp. order-sorted signature induced by EO and
El  — written E =_ 20  EB 21  — ijf

o S = SOUSA where S"  = {3" l s € 50} and

. F :  FoUF1  and

o D : Do U DA U DSM, where
D“ : {fzs’1\,.._.,sQ——'SAIfGFé21)UF1 and fz s1 , . . . ‚ s „—>s  EDoUDl}  and
Dsor t  : {34  SA | S E 50} .

When speaking roughly t he  elements of So are called sor ts  of type  ”low” and the  elements
of S"  sor ts  of type  ” high”. Note t ha t  t he  function symbols from the  built-in language with an
arity greater or equal than 1 are declared twice — a declaration for built-ins and an additional
for mixed objects .  Th i s  reflects t he  fact t ha t  these symbols have a semantical  and syntactical
”flavour”.

Example 2 .1  We fi r s t  define suitable signatures to describe natural  numbers and  integers. Let
Eno t  = (Snats  Fnu taa t )  resp. 2 in t  = (Sinta Finnp in t )  With

Sm; : {nat.}
Fna t  : {+‚* ,0 . ‚1 . ‚2 . . . . }

Dnat : {+  : nat, nat _. nat,* : nat .nat  ——>.nat, O : nat ,  l : nat,  . . .}
Sin t  : { in t}
Fin :  : {—.+ .* .0 ,1 ,2 ‚ . . . }
Din; : {— : i n t— int.. + : int, int ——» int, * : int .  int -—r int,  O '. int ,  1 : in t . .  . .}.

To continue ou r  s tandard  example let $0  = Em;  and  E} = (0,171,01) with

F1 {9}
D) = {g  : na t .  nut  —~ na t} .

To ob t a in  $“ : $0  % SI  le t





5 {nat, nat/\} 

F {+,*,g,O,1,2, ...} 
D/\ {+ : nat/\, nat/\ - nat/\, *: nat/\, nat/\ --. nat/\, g: nat/\, ""at/\ --. nat/\} 

D sort {nat <l nat/\} 
D Do U D/\ UDsort . 

4 
For the rest of this paper let E = Eo EEl El. To avoid the problems occuring when empty 

sor'ts are present (see [Wa92]) we assume throughout the paper that for any sort So E 50 there 
exists a constant c E Fa such that c :- So E Do. 

Let V = UsE50 Vs be the union of disjoint infinitary sets Vs of variables for the sorts,.of type 
"low". We will not introduce variables for the sorts of type "high" as we do not need them. 
E-terms are now defined as usual. 

Definition 2.4 The set T ERMs('5:', V) of E-terms of sort s is the least set with the following 
properties: 

•	 If f :- So E D and So :9 s, then f E T ERMs(y:', V). 

•	 If x E Vso and So :9 s, then x E T ERMs(E, V). 

•	 Iff: Sl"··,Sn ---. So E D, so:9s andti E TERMs;(E,V) (i l, ... ,n), then 
f(t1, ... ,tn ) E TERMs('E" V). 

Let T ERM(E, V) = UsES T ERMs('E" V). 
The E-terms sand t are said to be sort compatible iff there exists a sort s E 5 such that s 

and t are terms of sort s. 

By the construction of 'E, and the restriction, that variables exist only for sorts of type "low" , 
every (fiat) Eo + El-term can be interpreted as a (order-sorted) E-term (and vice versa). 

As a consequence of the well-behaved sort hierarchy, every E-term t can be equipped with 
a uniquely defined sort - written sort(t) - which is the wrt. <l minimal sort s such that 
t E T ERMs(E, V). It is easily verified that if t contains a new symbol from F1, t.hen sort(t) E 5\ 
otherwise sort(t) E So. Let T E RMo('E" V) resp. T ERM/\(E, V) denote the sets of E-terms t 
such that sort(t) E So resp. sort(t) E 5/\. Notice that TERMo(E, V)'= TERM(Eo, V). 

Substitutions are defined in a way so that they respect the sort hierarchies: 

Definition 2.5 A ('E,- )substitution a is an assignment from the set of variables V into the set 

of E-terms such that so1'l( a(:r)) = sort(;z;) and DO Al (a) = {x E V I a( x) =t x} is finite. 

We finish this section with the introduction of the fundamental notion of a specification with 
built-in algebra. The built-in objects and operations are described by a (fiat) Eo-algebra A. We 
assume throughout the paper that the built-in algebra A is term-generated (i.e. any element of 
the carrier A of A is the value of a 'E,o-term). Sometimes it is convenient to assume that for any 
element a E A there exists a constant Qc. E Fo to denote a. 

Notice that it is possible to abstract by parameterization from the special built-in algebra. 
In that case a general built-in theory instead of a built-in algebra would be given in advance. 

n 
Definition 2.6 A conditional equation over E is a formula 1\ Ui = Vi :=} U = V such that Ui 

;=1 
and Vi resp. u and L' are sort compatible 'E,-terrns. 

Definition 2.7 A specification with built-in algebra (E = 'E,o tt' 'E,1. E , A) consists of a 
hierarchical signature 'E, induced by CL (flat) signature enrichment 'E,o + 'E,l, a set E of conditional 
equations over E and a (built-in) Eo-algebra ..4. 

S = {nat ,  natA}
F = {+ ,* ,g ,0 ,1 ,2 , . . . }
D"  = {+  : nat" ,  natA —-> nat" ,  * : na t" ,  nat"  —> na t " ,  g : nat" ,  nat"  —> natA}
Dam = {na t  <] natA}
D = Do U D"  U.D_„‚„.

"

' For the rest of this paper let 2 = So EB 21. To avoid the problems occuring when empty
sorts are present (see '[Wa92]) we assume throughout the paper that for any sort so € So there
exists a constant c 6 F0 such that  c :—+ so € Do.

Let V = U,e  So Vs be the union of disjoint infinitary sets V, of variables for the sorts~of type
”low”. We will not introduce variables'for the sorts of type ”high” as we do not need them.
Z-terms are now defined as usual.

Defini t ion 2 .4  The se t  TERM,(E‚V)  of E - t e rms  of sort  s is the least set  with the following
properties:

. [ff :—+ so € D and  so 51 s ,  then f € TERM‚(E ,V) .

. Ifa: € V$0 and  so  9 s ,  then x E TERM,(E ,  V) .

o [ f f  : 51 , . . . , sn  —. so € D ,  so 51 s and  t.- E TERMS' . (E ,V)  (i = 1 , . . . , n ) ,  then
f ( t1 , .  . . , t , , )  € TERA/[3(5), V).

Let TERMOJ, V) :  UsesTERMs(E,  V).
The E- te rms  s and  t are sa id  to be sor t  compatible ifi there exists a sort 3 € S such that s

and t  are terms of so r t  3 .

By  the  construct ion of E and the  restriction, t ha t  variables exist only for sor t s  of type ”low”,
every (flat) 20 + Ell-term can be interpreted as a (order-sorted) E-term (and vice versa).

As a consequence of t he  well-behaved sor t  hierarchy, every E- term t can be  equipped with
a uniquely defined sort - written sort(t) — which is the wrt. <1 minimal sort s such that
t E TERMAE,  V). It is easily verified that i f t  contains a new symbol from F1, then sort(t)  E SA,
otherwise so r t ( t )  6 So. Let TERMo(E ,  V)  resp. TERM"(2 ,  V)  denote  the  se ts  of E- terms t
such that sort(t)  E 50 resp. sort(t) 6 SA. Notice that TERMo()3, V)‘: TERM(2o ,  V).

Substi tut idns are defined in a way so  t ha t  they respect t he  so r t  hierarchies:

Definition 2 .5  A (S-)substitution a is an assignment from the set of variables V into the set
of E-terms such that sor t (a( r ) )  = sort(.1:) and DOA/1(a) = {113 € V | a(:r) $ a:} is finite.

We finish this section with t he  introduction of t he  fundamental  notion of a specification with
built—in algebra. The built-in objects and operations are described by a (flat) filo-algebra ‚A. We
assume throughout  t he  paper t ha t  t he  built-in algebra A is term-generated (i.e. any element of
the  carrier A of ‚A i s  t he  value of a So—term). Sometimes i t  is convenient t o  assume tha t  for any
element a E A there exists a constant  a € Fo to  denote  a .

Notice that  it is possible to abstract by parameter-nation from the special built-in algebra.
In that case a general built-in theory instead of a built-in algebra would be given in advance.

T‘L

Defini t ion  2 .6  A conditional equat ion over 2 is a formula /\ u,- = v,- => u = 12 such that u,-
i=1

and v,- resp. u and  L' a re  so r t  compatible S - t e rms .

Defini t ion  2 .7  A specification with built—in algebra (E  = So  $ 31 .  E , A )  consists  of a
hierarchical s ignature 2 induced by a (flat) signature enr ichment  30+  21 ,  a se t  E of conditional
equations over  E and  a (built-in) So-algebra ‚A.





3 Semantics 

We. consider a specification (k = kO EB kl , E , A) with built-in algebra A. The meaning of the 
specification will be first characterized by model-theoretical means. 

The algebras of interest are intended to contain in a certain sense the built-in algebra A and 
to satisfy in addition the conditional equations from E. As a consequence of our orderrisorted 
approach we have to consider order-sorted k-algebras. 

Definition 3.1 Let k = kO EB kt. A ~>algebra B consists of a family {Bs Is E S} of sets and 
functions fB for any f E F such that 

•	 if f E FJ=ol and f ;-. s E Do, then fB E B s ,
 

f f
zErol:'(~tl and f .. SI,.··, Sn -. S E D0 then fl3·. Bs~ X ••• x B sf> ---+ Bs" sueh that
 

fl3(b t , .• . , bn ) E Bs for all bi E BSi'
 
if f EFl and f; SI, •. ',Sn ~ S E D 1 then fl3: Bs " x ... X Bs " ---+ Bs".


1 n 

Thus, a k-algebra is a non-overloaded algebra in the sense of [Wa92J. Note that B s f= 0 for 
any S E S by our assumption that sorts are not empty. 

To take into account the built-in algebra A let EA = {u = v I A F U = Vj U, v E 
T ERMo(k, V)} be the set of (5:'o-)equations induced by A. 

As a consequence of the assumption that A is term-generated each model B of EA has a 
"core" - constituted by the" base elements of type low" - that contains a uniquely defined 
homomorphic image of the built-in algebra A. 

The algebras that capture the model-theoretical meaning of the specification are the (order
sorted) k-algebras that are models of Eu EA. Thereby, a k-algebra is a model of an equation 
u= v iff it satisfies the equation wrt. any assignment that respects the sort hierarchy. Thus, by 
the variable restriction one only has to consider assignments that (correctly) instantiate variables 
by "base elements of type low". 

The operational definition of the semantics of the specification uses the following inference 
rules depending on the set E of condi tional eq uations and an additional set S of k-equations 
(see [Ga91], [Wa92] for similar approaches). The introduction of variable sets (see e.g. [Wa92]) 
can be dropped as we assume that there exist no empty sorts. 

(Reflexivity) 

u.= u 

(Symmetry) 

u=v 
v=u 

(Transitivity) 

u = v. v = w
 

u = tu
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3 Semantics .

We,consider a specification (2  = 20  69 E l  , E , .A) with built-in algebra .A. The meaning of the
specification will be first characterized by model-theoretical means.

The algebras of interest are intended to contain in a certain sense the built-in algebra A and
to  satisfy in addition the conditional equations from E .  As a consequence of our orderiisorted
approach we have t o  consider order-sorted E-algebras.

Definition 3 .1  Let 2 = 20 ® 21. A E-algebra ß consists ofa  family {B,  | s € S} of sets and
functions fß for any  f € F such that  „

O B, g BSA and

. iff € Ff”) and] ;—. s 6 Do, then f3  6 BS, .
i f f  € Foe” and f  : sh . . . , sn  _. s € Do then f3 : B,? x - - - x  8,3 -—> B“ such that
fß (b1 ‚ . .  .‚b,.„) € B, for a l l  I); € B“ ,
i f fEF1  and f : s ; , . . . , sn—as  €D1thenfB:B_,{«x "'XBSQ —+B‚A.

Thus, a E-algebra is a non-overloaded algebra in the sense of [Wa92]. Note that B, # @ for
any s € 5 by ou r  assumpt ion  tha t  so r t s  are not  empty.

To take into account the built-in algebra .A let EA = {u  = v I .A I: a = v; u ,v  €
TERM0(2,  V)} be the set of (EO—}equations induced by ‚A.

As a consequence of t he  assumption tha t  .A is term-generated each model B of EA has a
”core” —— constituted by the ”base elements of type low” — that contains a uniquely defined
homomorphic image of t he  built-in algebra .A.

The algebras that capture the model-theoretical meaning of the specification are the (order-
sor ted)  E-algebras tha t  are models of EU E ‚4. Thereby,  a E—algebra is  a model of an equation
i t :  12 iff i t  satisfies t he  equation wr t ,  any  assignment tha t  respects t he  sort  hierarchy. Thus ,  by
the variable restriction one only has to consider assignments that  (correctly) instantiate variables
by ”base elements of type  low”. _,

The operational definition of the semantics of the specification uses the following inference
rules depending on  the  se t  E of conditional equations and an additional set  S of 2~equations
(see [Ga91], [WaQ‘Z] for similar approaches). The introduction of variable sets (see e.g. [Wa92])
can be  dropped as we assume tha t  there exist no  empty  sor t s .

(Reflexivity)

u . :  u.

(Symmetry)

M:?)

(Transitivity)





(Congruence) 

f(ul""'u n ) = f(vl""'vn) 

if	 f( Ul, ... , un) and f( vI, ... , Vn) are both well - formed ~ - terms. 
ii 

(Substitutivity) 

0'( ut} = 0'(vd, ... , er(un) = er(Vn)
 

0'( u) = 0'(V)
 

n 

if er is a substitution, 1\ Uj = Vi ::} U =V E E and er(ui) = er(vj) E S (i = 1, ... , n). 
i=l 

Note that by syntactical means the applicability of the inference rule "substitutivity" is 
limited, as variables !:an only be substituted by ~-terms of type "low". 

We write S f- E U = v to indicate that u = v can be derived from the set S of ~-equations 

by the above inference rules. (depending on E). One easily proves that the inference rules are 
sound (using the fact that there exist no empty sorts): 

Lemma 3.1 Let 5 be a set of ~-equations. Then for all u, vETERM(~, V), if S f-E u = v, 
then 5 u E F u = v. 

Next we define the operational semantics of the specification with the aid of an appropriate 
congruence relation. We start with a relation that is induced by the built-in algebra A. 

Definition 3.2 Fors,t E TERM(~, V) let s ""'A tiff 
(aJ s,t E TERMo(~, V) and A F s= t resp. s = t E EA or 
(bJ s,t E TERM/I(~, V), S == f(sl'" .,sn), t == f(tl," .,tn ) and Si ""'A ti for i = 1, .. . ,n. 

One easily proves that"",A is a congruence relation on T ERM(~, V), the congruence relation 
induced by A. According to the intuition that built-in equivalences are given in advance, the 
inductive definition to follow starts with the congruence relation"'"A. 

Definition 3.3 Let: 

•	 For all u, vETERM(~, V): u ""'t~ V iff U ""'k,A v, or there exists a set 5 of ~-equations 

such that s ""'k,A t for all s = t E 5 and S f-E U = v. 

•	 ""'E,A= U ""'k,A' 
i~O 

Obviously, ""'E,A (as well as "'k,A) is a congruence relation on T ERM(~, V), the congruence 
relation induced by E and A. 

The following "Birkhoff-theorem" states the equivalence between the model-theoretical and 
operational semantics of the specification. 

Theorem 3.1 Let (~ = ~o @ ~l ' E , A) be a specification with built-in algebra A. Then for 
any s,t E TERM(~, V) we have S "'E.A tiff EU EA F S = t. 

"7 
I 

(Congruence)

u1=v1 , . . . , u„=vn
f (u1 , . . . , u„ )  = f (v1 , . . . , v„ )

i f  f (u ‘ ,  . . „an )  and  f ( vb .  . . ‚ v„ )  are  both well  — formed E — terms.

( Substitutivity)

0(u1) = 00);) ,  . . . ,  cr(u„) = 0‘('D„)
a (u )  = a(v)

„ .
if a is a substitution, A u.- = v,- => u = v G E and a(u‚-) = o(v‚-) 6 S ( i  = 1, . . . ,n) .

i=1

Note that  by syntactical means the applicability of the inference rule ”substitutivity” is
l imited, as variables can only be subs t i tu ted  by E-terms of type ”lo'w”.

We write S FE u = v to indicate that  u = U can be derived from the set S of E-equations
by the above inference rules. (depending on E) .  One. easily proves that the inference rules are
sound (using the  fact t ha t  there exist no  empty sor ts ) :

Lemma 3.1 Let S be a set of E-equations. Then for all u ,v  € TERM(E‚V)‚ i fS l-E u = v,
thenSUEl=u=v .

Next we define the operational. semantics of the specification with the aid of an appropriate
congruence relation. We start with a relation that is induced by the built-in algebra ‚A.

Definit ion 3 .2  For s , t  E TERM(E,V)  l e t s  NA t 217"
(a) s‚ t  € TERA/[0(2), V) and A I: s , :  t resp. s = t € EA or
(b) s , t  € TERM"(E ,V) ‚  3 E f ( s l , . . . , sn ) ,  t E f ( t 1 , . . . , t n )  and .9; NA t ;  for i = l , . . . ‚ n .

One easily proves tha t  NA is a congruence relation on  TERM (2 ,  V) ,  the  congruence relation
induced by A .  According to the intuition that built-in equivalences are given in advance, the
inductive definition to follow starts with the congruence relation NA-

Definit ion 3 .3  Let:

. NOE'AINA._

. For all u,  v E .TERM(E,  V): u „23:34 v ifiu ~13“ v, or  there exists a set S of E-equations
such tha t s~‘ElAt fo r  a l l s= t e  S andS i—Eu=v .

' ~E,A= U Nim-
iZO

Obviously, “EA (as well as ~35”) is a congruence relation on TERMQ),  V), the congruence
relation induced by E and A.

The  following ” Birkhoff—theorem" s ta tes  t he  equivalence between the  model-theoretical and
operat ional  semantics  of t he  specification.

Theorem 3.1 Let (E  = So 65 El . E , A)  be a specification with built-in algebra A .  Then for
any s , t  E TERM(E,V)  we haves  ~13}, t ifi’EU EA l: s = t.

*4
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Proof: 
(a) For the direction from left to right we prove by induction on i: For any s, t E T ERM('E, V), 
if s "'~,A t, then E U EA 1= 8 = t. 

The induction base i = 0 follows from the (easy to prove) fact that s "'At implies EA 1= s = t 
for all s, t E T ERM('E, V). '., 

For the induction step i t-+ i + 1 let s "'~~ t for s, t E T ERM('E, V). The case s .JE,A t is 

covered by the induction hypothesis. Thus, let S be given such that s' "'k,A t' for all s' == t' E S 
and S ~E s = t. The induction hypothesis provides E U EA 1= S. By the soundness of the 
inference system we get SuE 1= s = t. Consequently E U EA l= s = t. 
(b) For the direction from right to left let E U EA 1= s = t. Let 1(E,A) be. the canoni~al term 
algebra with carrier T ERM(E, V);"'E,A' defined as usual. It suffices to prove that 1(E,A) is a 
model of E U EA as then TeE,A) is a model of 8 = t which is equivalent to s "'E,A t. 

Let first U = v E EA. In order to prove that TeE,A) 1= U = v we have to show that 
O'(u) ""'E,A O'(v) for any substitution 0'. Let 0' be a substitution. As a consequence of our 
variable restriction we have O'(u) = O'(v) E EA. Thus O'(u) ""'~,A O'(v) resp. O'(u) "'E,A O'(v). 

Now let 1\ Uj = Vj =} U= v E E and let 0' be a substitution such that TeE,A) 1= 0'(Ui) = 0'(Vi) 
resp. O'(Uj) "'E,A O'(vd for i = l, ... ,n. For an appropriate kwe have'O'(uj) "'~,A O'(Vj) (i = 
1, ... , n). We get 0'(u) "'tJ 0'(v) by applying the related inference rule. Thus 0'(u) '"E,A 0'(v) 
resp. TeE,A) 1= 0'( u) = 0'(v). As 0' was an arbitrary substitution, TeE,A) 1= 1\ Ui = Vj =} U = v. 
o 

Rewriting 

When conditional equations are interpreted as rewrite rules; "replacement of equals by equals" 
is directionally limited "from left to right". 

Definition 4.1 A conditional rewrite rule over E is a (directed) conditional equation 

n 

/\ Uj = Vj =} 'U = V, 
i=1 

where the left hand side u is an element of T ERM"('f., V) and all variables occuring in v, Uj, Vi 
also occur in u. 

The extra condition LL E T ERM"("f., V), meaning that the left hand side of a rewrite rule 
has to contain a new symbol, is motivated by the aim that the built-in structure of the terms 
of a "low" sort should not be destroyed. Thus, if we interprete the terms of the "low" sorts 
as constructor terms, then this extra condition is a kind of constructor preserving property. In 
addition this condition assures that rewrite rules are always sort-decreasing, i.e. sort(u) !?:sort( v) 
(see [Wa92] or [SNGM89] for the relevance of this property). 

Next we define conditional rewriting modulo the built-in algebra A, which is essentially 
conditional rewriting of "-'A-equivC;1lence classes. 

Definition 4.2 Let R be a set of conditi.onal rewrite rules over E. A term sETERM(E, V) 
. rewrites modulo A to t E T ERM(E, V) ~ written s ----R/A t ~ iff there exist terms s', t' E 

. n 

TERM(E, V), an occurence pE 0(8'), a substitution 0' and a rule 1\ ui = Vi =} U = v E R 
i=1 

such that 

8
 

Proof:
(a) For the direction from left to right we prove by induction on i :  For any s , t  € TERM (2,17),
ifs~§M t, then Eu  EA |: s = t.

The induction base i = 0 follows from the  (easy to prove) fact that s ~A timplies EA }: s = t
for all s , t  e TERM(E,  V). _ a

‚_ For the induction step i r—> i+  1 let SMS:} t for s , t  € TERM(E, V). The case 3 Jig“ t is
covered by the induction hypothesis. Thus, let S be given such that s’ NZ.” t’ for all s’ = t’ € S
and S 1-5 8 = t .  The induction hypothesis provides E U EA |= S .  By the soundness of the
inference system we get 5 U E i: s = t .  Consequently E U E A l: s = t .
(b) For the direction from right to left let E U E A I: s = t .  Let (IKEA) be the canonical term
algebra with carrier TERM ( E,  V) „„ E. ‚4 , defined as usual. It  suffices to prove that ‚REM is a
model of E U EA as then 72E ,A)  is a model of s = t which is equivalent t o  s ~E,A t .

Let first u = v 6 EA.  In order  t o  prove that  72E,»  I: u = v we have to show that
0(a )  ME, ;  a(v)  for any substitution 0'. Let a be a substitution. As a consequence of our
variable restriction we have 0 (a )  = 0(0) & EA. Thus 0 (a )  "%‚A c7(v) resp. 0 ( a )  NE,.A 0(a) .

Now let /\ u,- = 0,- => u = 1) € E and let a be a substitution such that {REM} |: a(u‚—) = a(v;)
resp. a(u.-) QE'A a(v,-) for i = 1, .  . . ,n .  For an appropriate ls. we have*a(u,-) “EA a(v‚-) (i =
1, . . . ,  n). We get 0(a) NIE} a(v) by applying the related inference rule. Thus 0(a)  "EM a(v)
resp. 7(n l: 0 ( a )  = 0(0).  As a was an arbitrary substitution, Tag“) I: Au,- = v,- =:> u = 1).
D

4 Rewriting

When conditional equations are interpreted as rewrite rules; ”replacement of  equals by equals”
is directionally limited ”from left to right”.

Definition 4 .1  A conditional rewrite rule over )3 is a (directed) conditional equation
n,

/ \ u , -=v , -=>u=v ,
i=1

where the left hand side u is an element of TERM/XE,  V) and all variables occuring in v, U.;, ‘U,’
also occur in u.

The extra condition it E TERM  “ (& V), meaning that  the left hand side of a rewrite rule
has t o  contain a new symbol,  is motivated by the  aim tha t  t he  built—in structure of the  terms
of a ”low” sort  should not  be  destroyed. Thus,  if we interprete the  terms of the  ”low” sorts
as constructor terms, then this extra condition is a kind of constructor preserving property. In
additiOn this condition assures that rewrite rules are always sort-decreasing, i.e. sort(u) Esort(v)
(see [W392] or [SNGM89] for the relevance of this property).

Next we define conditional rewriting modulo the built-in algebra .A, which is essentially
conditional rewriting of ~A-equivalence classes.

Definit ion 4 .2  Let R be a s e t  of conditional rewrite rules over E .  A term 8 E TERM(2 ,V)
_rewrites modulo A to  t E TEe / I (2 ,V)  —— written s _»RM t ——— ijff there exist terms s’,t’ E
.TERM(E,V) ,  an  occunence p € 0(3 ’ ) ,  a substitution 0 and  a rule /n\ ui :: m :> u = v E R

i=1
such  tha t





• s ""A S', s'lp == O"(U), S'(p <- O"(V)] == t', t' ""A t and 

• for any i E {1, ... , n} there exist ui, vi E T ERM(L, V) such that 

O"(Ui) ~R/A ui ""A vi R/A"'::- u(Vi). 

The least jixpoint of this recursion dejines the relation -R/A' Thus: 

• _0R/A =0 

•. - ~i~ is dejined as above exept that the rewrite proofs for the conditions can be. carried 

out in ,U<. -~/A' 
1_1 

• ----+> = U ---.. i
R/A i~O R/A 

Note that the syntactical variable restriction forces an innermost reduction strategy. 

Example 4.1 We continue our standard example.
 
The chain g(g(2, 1),0) -R/H' g(g(l, 1),0) -R/H' g(g(l, 0), 0) -R/H' g(l, 0) -RtH' 1 is correct,
 
whereas g(g(2, 1),0) ------R/H' g(2, 1) is not possible.
 

As in the case of rewriting modulo unorientable equations (see [BaDe89], [JoKi86]) we could 
switch over to a weaker rewrite relation -->'R\A' defined as least fixpoint according to the fol
lowing recursion: 

Definition 4.3 s -R\A t iff thae exists an occurence p E O(s), a substitution 0" and a rule 
n 
/\ U; = Vi ::} U = v E R such that 

;=1 

• sip ""A O"(U}, s[p <- O"(v)] == t and 

• jor any i E {1, ... , n} there exist ui, V:E T ERM('£, V) such that 

O"(u;) ~R\A ui ""A vi R\A-!- O"(vd· 

But this change would not have any influence on the results to come because the two rewrite 
relations do not differ very much in our context. To prove this we first state some technical 
results. 

Definition 4.4 Let Ol\.(t} = {p E O(t) I sort(tlp) E SI\.} be the set of syntactical positions of
 
t E TERM('£, il).
 

Lemma 4.1 Let s, t, u E T ERM(~, V}.
 
(aj If S ""A t and pE Ol\.(s). then p E Ol\.(t). Further sip ""A tip and s[p <- u] ""A t(p <- u} if
 
s[p <-u] and t[p - u] are correct ~-teT'ms.
 

(b) Let 0" be a substitution. [fp E OI\.(O"(s}), then p E Ol\.(s) and O"(slp) == O"(s)lp. 

Lemma 4.2 Let R be a set of conditional f'ewrite rules over '£. Let s, t E T ERM('£, V). Then 
s ~R(A t iff there exists CL term tu E TER.H(:::, Il} such that s -=--"R\A W "'A t. 
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o 3 NA s', s’/p5 o(u), s’[p <— a'(v)] ;. t’, t’ “04 t and

. for any i € {1, . . . ,n} there exist 14,1):- 6 TERMOE, V) such that
ah“)  "LR/‚4 u:  NA ”:  RIA;— (70);) -

The least fixpoint of this recursion defines the relation ""1214- Thus:

0 ..
. RIA—@

\ .

o_ -—>Ä7Ä is defined as above exept that the rewrite proofs for the conditions can be carried
. j

ou t  in  U ——>R/A.
J_<_I

I
R/A

Note that the syntactical variable restriction forces an innermost reduction strategy.

Example 4.1 We continue our standard example.
The chain g(g (2 .  1 ) . 0 )  —->„,„ y (9 (1 ‚1 ) ‚0 )—>„ ,„  g(9 (1 ‚0 ) ‚0 )  ——+R,„ 9(1‚ 0)  —>„,„ 1 is correct,
whereas g(g(2,1)'‚0)—-'R/N g(‘2, 1) is not possible.

As in the case of rewriting modulo unorientable equations (see [BaDe8r9], [JOK186]) we could
switch over to  a weaker rewrite relation _.»RM, defined as least fixpoint according to  the fol-
lowing recursion:

Definit ion 4 .3  s “”au t ijf there exists an occurence p 6 O(s)‚ a substitution 0 and a rule
n

‚ A  
U£=Ui -=>U‚=v  E Rsuch that

i=1

o s /p  NA 0(u), s[p <— o(v)] E t and

o for any i € {1 ,  . . . , n }  there exist uf,  véE TERM(E,  V)  such that

( f (U i )  _;R\A U,;- NA v i  R\A_  (TÜJi).

But this change would not have any influence on the results t o  come because the two rewrite
relations do not differ very much in our context. To prove this we first state some technical
results.

Definition 4 .4  Let O"(t) = {p  € 0( t )  | sortU/p) € 5"}  be the set of syntactical positions of
t E TERM(E‚ V) .  '

Lemma 4 .1  Let s ,  t ,  u E TERA-MS,  V) .
(a) Ifs  NA t and 1) € 0"(s ) .  then 1) € 0"( t ) .  Further s /p  NA t / p  and s[p «— u] NA t[p (— u} if
s[p <— u] and t[p ‚_ u] are correct E-ter'ms.
(b) Let a be a substitution. [ fp E O"(o(s)), then p E O"(s) and o(s /p)  E o(s ) /p .

Lemma 4.2 Let R be a set of conditional rewrite rules over 2 .  Let s , t  € TERMQ) ,  V) .  Then
3 Jän/A t if there assists a term w E TERA/[(2. V )  such that 3 %RM U) N,; t .





Proof: The direction from right to left is easy. 

For the direction from left to right we prove by in duction on j: If s --·i t, then thereR/A 

exists a term w such that s ---:....~\A w "'At. 
The induction base j = 0 is trivial. For the induction step we first consider the one step 

case s --~i1 L Let s',t',p,CF,!\Ui = Vi => U = v, ui, vi be given as indicated in the deflJnition. 

By lemma 4.1 we get sip "'A CF(U) and w == s[p - CF(V)] "'A s'[p - CF(V)] == t' ""A t.By the 
induction hypothesis there exist ui',v:' E TERM("£, V) such that CF(Ui) ---:""R\A ui' "".4 ui ""A 

vi "'A vi' R\A~ CF( vd. The iterated case s ---:....~;~ t can be proved easily by an induction 
argument. 0 

Rewriting is of great interest if every equational proof can be replaced by Cl: rewrite proof. 
We review some notions to capture the main ideas. 

Definition 4.5 Let R be (l set of conditional rewrite rules over "£. 
(a) A "£-equation s = t. is joinable modulo A, written sIR/A t, iff there exist s', t' E T ERM("£, V) 

such that s ~R/A S' "'At' R/A-'"'- t. A set S of equations is joinable modulo A iff any equation 
from S is joinable modulo A. 
(b) R is said to be Church-Rosser modulo A iff for any s, t E T ERM("£, V): 
s ""R,A t iff s 1R/ At. 
(c) R is said to be confluent modulo A (resp. locally confluent modulo A) iff for any s,SI,S2 E 
T ERM("£, V): if SI R/A-'"'- S -"'-R/A 82 (resp. SI R/A<-- S -R/A S2), then SI lR/A S2· 

The following theorems are generalizations of some classical results in rewrite theory. The 
first one slightly generalizes the Newman-lemma. 

Theorem 4.1 Let R be a conditional rewrite system over E. Let -R/A be terminating. Then 
R is confluent modulo A iff R is locally confluent modulo A. 

The proof is omited as it proceeds just analogously to the standard case. 

Theorem 4.2 Let R be a conditional rewrite system over E. Then R is Church-Rosser modulo 
A iff R is confluent rnodulo A. 

Proof: For the direction from left to right let R be Church-Rosser modulo A. Further let 
81 R/A"::'- 5 ~R/A 82· One easily proves (by induction on i) that for any u, vETERM(E, V), 

u -~/A v implies LL "'R,A v. Thus we get SI "'R,A 52· The assumption then provides SI lR/A S2' 
For the direction from right to left let R be confluent modulo A. We prove by induction on 

i:	 if u "'k,A v, then IL IRIA u. 
The induction base is trivial. For the induction step let u "-'it.~ v. The case u ""k,A v is 

covered by the induction hypothesis. Thus let S be given such that s' "'R.A t' for all s' = t' E S 
and S r:- R u = u. By the induction hypothesis S is joinable modulo A. We are finished if we 
have proved the following statement: If S f- R U = v and if S is joinable modulo A, then u = v 
is joinable modulo A too. 

We first consider a one-step derivation. The general multi-step case is then easily shown by 
induction on the lenght of the derinLtiotl. 

Let S f- R LL = v by a one-step derivation and let 5' be joinable modulo A. \Ve proceed by 
considering the diverse inference rules. The cases "reflexi vi ty", "symmetry" and "congruence" 

la
 

Proof: The direction from right to left. is easy. _
For the direction from left to right we prove by induction on j: If s —'>ÄM t, then there

exists a term 21) such that s _‚l'su w NA t.
The induction base j = 0 is trivial. For the induction step we first consider the one step

case s as; t. Let s’ ,t’,  p, o ,  Au,- = v.- => u = v, uf”); be given as indicated in the definition.
By lemma 4.1 we get s/p ~A 0(a) and w E s[p +— o(v)] NA s’[p <— a(v)] E t’ NA t. ‚By the
induction hypothesis there exist iii/,2)? € TERM(E,V) such that a(u;) JAR” uf’ NA 112 NA

RH RIA
argument.  El

:- . nr +1  ' ' . . .  .of NA 1),” <— a(v;).  The iterated case s —>'7 t can be proved easrly by an induction

Rewriting is of great interest if every equational proof can be replaced by a rewrite proof.
We review some notions to  capture  t he  main ideas.

Defini t ion 4 .5  Let R be a set of conditional rewrite rules over 2 .
(a) A E-equation s = tisjoinable modulo A, written s 1,2” t, if} there exist 3’, t’ E TERMOL‘, V)
such tha t s  _"!2/‚4 s’ ”A  t’ RM:— t. A set 5 of equations is joinable modulo A ifl' any equation
from 5 is joinable modulo A .
{b} R is said to be Church-Rosser modulo A ififor any s , t  E TERM(E,  V):
s ”RA t ifi s  LRM t..
(c) R is said to be confluent modulo A (resp. locally confluent modulo A)  iflfor any 3,31,32 E
TERM(E,V) :  i f s l  RM;  3 —'—-RM 32 {resp. s l  apf— s —> 32), then s l lR/A R/A s2.

The following theorems are generalizations of some classical results in rewrite theory. The
first one  slightly generalizes the  Newman-lemma.

Theorem 4 .1  Let R be a conditional rewrite system over E .  Let —>RM be terminating.  Then
R is confluent modulo A i/f R is locally confluent modulo A .

The proof is omited as i t  proceeds just analogously to t he  standard case.

Theorem 4 .2  Let R be a conditional rewrite system over 2 .  Then R is Church-Rosser modulo
A ifi’R is confluent modulo A.

Proof: For the direction from left to right let R be Church-Rosser modulo A.  Further let
.31 R/f— s —’n/A .32. One easily proves (by induction on i) that  for any u ,v  E TERM(E,V) ,
u _»Ä/A 1) implies a ”RA 11. Thus  we get 51 “RA 52. The  assumption then  provides s l  „LR/A 82.

For the direction from right to left let R be confluent modulo A. We prove by induction on
i: if u Nil/& u, then u [RM v. _

The induction base is’ trivial. For ' t he  induction s tep  let u “fig; 1). The  case u “hot v is
covered by the induction hypothesis. Thu-s let 5 be given such that  s’ ‚JRJ‘ t’ for all s '  = t’ 6 S
and S l-R u = v. By the  induction hypothesis 5 is joinable modulo A .  We are finished if we
have proved the  following s t a t emen t :  If S l-R u = v and if S is joinable modulo A,  t hen  u = 0
is joinable modulo A too.

We first consider a one-step derivation. The  general multi-step case is then  easily shown by
induction on  the  lenght of t he  derivation.

Let 5 F3  u = v by a one-step derivation and let S be joinable modulo A.  We proceed by
considering the diverse inference rules. The cases “reflexivity”, "symmetry” and ”congruence”
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5 

are trivial. For the case "transitivity" we use the assumption that R is confluent. Finally the 
"substitutivity" case follows from the definition of ~RIA' 0 

We finish this section with some (easy to prove) results that will be needed below. 

Lemma 4.3 Let s, s', t, t', to be E-terms and (7 be a substitution. Then: i 
(a) If s ~RIA t, then (7(s) ~RiA (7(t) and to[p +- s] ~RIA to(P +- t] (provided that pE OCto), 
to(P +- s], to(P +- t] E T ERM(E, V)). 
(b) If s l t, then (7(s) l (7(t) and to(P +- s] l to(P +- t] (provided that p E OCto),

R1A R1A R1A 

to(P +- s}, tolp +- t] ETERM(E, V)). If in addition s' "'..4 sand t "'..4 t', then s' l R1A t'.· 

Critical Pair Test 

In order to get a critical pair test we first generalize unification. The problem consists in 
determining the solutions of a ~:-eCJuation in the presence of predefined equivalences. 

Definition 5.1 A substitution (7 satisfies a set S of E-equations modulo A resp. is an A-solution 
of S iff (7(s) "'..4 (7(t) for all s = t E S. 

The aim is to determine a finite representation of all possible A-solutions of a E-equation 
resp. a set of E-equations. From the theory of semantic unification (for a survey see [Si89]) we 
know that we cannot expect to find such a finite representation for any algebra in the form of a 
finite set of substitutions. 

Example 5.1 We continue the standard example. Let N denote the Enat-algebra with the 
canonical interptetation of the symbols over the natural numbers. The equation x + y = x' * y' 
has infinitely manyN-solutions. but no finite representation by substitutions. 

The way out of this situation is to represent the solutions not explicitly by substitutions but 
implicitly in the form of a constraint (see [JaLa87b]). The next definition makes precise the 
notion of constraint used in our context. 

Definition 5.2 A constraint is eithEr' a finite conjunction of L.o-equations or an element of 
{T,1.}. 

Constraints will be denoted by the symbols Q, (3" (possibly with an index). "Ve identify 
finite sets of L.o-equations with the according conjunctions so that finite sets of Eo-equations 
represent constraints. Further we assume that T is true and 1. is false in any Eo-algebra A. 
Note that the equation in the example above is itself the solution representation. 

Equation solving proceeds in two steps, a first conceptual one and a second one that is of 
more practical interest. 

In the first step cl constraint representation of the A-solutions of an equation (a set of 
equations) is determined by mere syntactical means. In the second step this constraint may be 
"propagated" by a semantical built-in algorithm to yield a more explicit solution representation. 

\Ve first present an inference system I that allows to determine a constraint representation,S of the A-solutions of an a.rbitra.ry finite set S of S=-equations. The inference rules are designed 
to trace back'the recursive definition of the relation ""A. 
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are trivial. For the case ”transitivity” we use the assumption that R is confluent. Finally the
”substitutivity” case follows from the definition of ——>R„. El

We finish this section with some (easy to prove) results that will be needed below.

Lemma 4 .3  Let s , s ’ , t , t ’ , t o  be E-terms and 0 be a substitution. Then: i
(a) Ifs L’s/.4 t, then 0(3) —'—>R-/A o(t) and to[p <— s] LEM to[p +— t] (provided that p € O(to),
to[p «— s],to[p <— t] e TERM(2:, V)).
(b) Ifs  LR” t, then 0‘(s) 1R” 0(t) and to[p «— s] lR/A to[p 4-— t] (provided that p € 0(to),
to[p +— s],to[p <— t] € TERM(2 ,V) ) .  If in addition s’ NA s and t NA t’, then s' in“ t’,‘

5 Cr i t i ca l  Pair  Test

In order to get a critical pair test we first generalize unification. The problem consists in
determining the solutions of a E-equation in the presence of  predefined equivalences.

Definition 5.1 A substitution 0 satisfies a set S of E-equations modulo A resp. is an A—solution
of S ifi'a(s) ~A a'(t) for a l l s  = t € 5 .

The aim is to  determine a finite representation of all possible A-solutions of a E—equation
resp. a set of E-equations. From the theory of semantic unification (for a survey see [Si89]) we
know that we cannot expect to  find such a finite representation for any algebra in the form of a.
finite set of substitutions.

Example 5 .1  We continue the standard example. Let N denote the Emu-algebra with the
canonical interptetation of the symbols over the natural numbers. The equation x + y := x’  * y’
has infinitely mant-so lut ions .  but no  finite  representation by substitutions.

The  way out of this situation is to represent the solutions not explicitly by substitutions but
implicitly in the form of a constraint (see [JaLa87b]). The next definition makes precise the
notion of constraint used in our context.

Defini t ion  5 .2  .»l constraint is either a finite  conjunction of Eo-equations or an  element of
{Ta J—}—

Constraints will be denoted by the symbols 0 ,3 ,7  (possibly with an index). We identify
finite sets of FLO-equations with the according conjunctions so that finite sets of FLO-equations
represent constraints. Further we assume that T is true and J. is false in any EEO-algebra A .
Note that the equation in the example above is itself the solution representation.

Equation solving proceeds in two steps. a first conceptual one  and a second one that is of
more practical interest.

In the first step a constraint represéntation of the „Al-solutions of an equation (a set of
equations) is determined by mere syntactical means. In the second step this constraint may be
”propagated” by a semantical built-in algorithm to  yield a more explicit solution representation.

We first present an inference system I that allows to  determine a constraint representation
75 of the Avsolutions of an arbitrary finite set 5 of S—equations. The inference rules are designed
to  trace  back‘ the  recursive definit ion o f  the  relat ion ”A-

l l





(hierarchy fail) 

Su{s=t} 

{l-} 

if sort(s) <J SOl't(t) or SOl·t(t) <J sort(s). 

(syntactical fail) 

S u {J(St, ... , sm) = gUt, ... , tn)} 
{l-} 

if sort(/(sl," .,sm)) = sort(g(t1 ,.· .,tn )) E S/\ and f::j:. g. 

(decomposition) 

SU {J(SI,,,,,Sn) = f(tt, ... ,tn )}
 

S U {SI = tt,.· ',Sn = tn}
 

if	 SOl't(f(Sl"",Sn)) = sort(f(tl, ... ,tn )) E SI\. 

Let f-y denote the derivability relation induced by the inference system. The following 
properties of f- r are easy to prove: 

•	 f-y is terminating. 

•	 If a new symbol from Ft IS still present in some equation, then some inference rule is 
appl.iable. 

•	 No inference rule is appliable if 5 is a constraint, i.e. if S contains only predefined symbols. 

•	 f-I is correct, i.e.: If 05 f-r 05', then for all substitutions a, a satisfies 5 modulo A iff a 
satisfies 5' modulo A. 

Example 5.2 ~Ve continue our standard example.
 
Consider the 'f,-equation g('L' 0) = y( x'. ,T' +y'). The constraint-representation of the A-solutions
 
is I = {x =. x', 0 = :r' + .I)'}.
 

\Ve now turn to a critical pair test for local confluence. 

Definition 5.3 Let U =? IL = (l and [i' =? iL' = u' be two conditional rules over L: that have no 
variables in common. Then the conditional equation over 'f, 

-("!P=U' /\ U /\ C' :::;> u[p - l,l] = U 

is called a (conditional) critical pair between the two rules. 

In contrast to the ordinary syntactical case we do not require u/p to be no variable. There 
is no need for such a. condition in our context, as variables are of type "low" and the left hand 
sides of the rules have to be of t\'pe "high". .-\n equation \vith the types of the two sides 
being different has no solution ill our context. Xote that by these restrictions we do not have to 
consider va.riable overlaps in the proof of the theorem to come. Hence we do not have to demand 
for a termination property for R--- which is necessary in the syntactical case (see [DeOk90]). 
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(hierarchy fail)

Su{s=q
{i}

i f  sort(s) <] sort(t) or sort(t) <1 sort(s).

O
w

.

(syntactical fail)

Su {f(sll...‚s„) =g(t1‚...‚t‚.)}
{t}

i f  sor t ( f ( s1 , . . . , sm))  : sor t (g( t1, . . . , i„))  € 5“  and f 75 g .

(decomposition)

5U{f (31 , - - - s3n l  = f( t l ‚ . . . ‚ t„)}
Sub1=n„„ß„=„}

i f  so r t ( f ( s l ‚ . . . ‚ s „ ) )  : so r t ( f ( t l , . .  . , tn))  € 5“ .

Let l-z denote the derivability relation induced by the inference system. The following
properties of l—I are easy to  prove:

. I—I is terminat ing.

o If a new symbol from F1 is still present in some equation, then some inference rule is
appliable. -

. No inference rule is appliable if S is a constraint ,  i.e. i fS  contains only predefined symbols.

o l-I is correct ,  i.e.: If S l-I S’ ,  then for all subst i tut ions a ,  cr satisfies S modulo A iff 0
satisfies S '  modulo A .

Example 5 .2  We continue ou r  s tandard example.
Consider the E-equation g(.r. O) : g(9:'. r’+y’).  The constraint-representation of the A-solutions
is 7 : {::: :-2;’,0 = (L" + y'}.

We now tu rn  t o  a critical pair test for local confluence.

Definition 5.3 Let L" :> u = v and 0" => a’ = v’ be two conditional rules over 2 that have no
variables in  common .  Then the conditional equation over E

“/u/pzu' /\ U A 0" => u[p —— v'] = v

is called a (conditional) critical pair between the  two rules.

In  contrast  t o  t he  ordinary syntactical case we do  not  require u /p  to  be  no  variable. There
is no  need for such a condition in our  context ,  as variables are of type  ”low” and the  left hand
sides of t he  rules have t o  be of type "high" .  An equation with the  types  of t he  two sides
being different has no solution in ou r  context .  Note t ha t  by these restrict-ions we do not  have t o
consider variable overlaps in the prooiof the theorem to come. Hence we do not have to demand
for a termination property for R. ——— which is necessary in the syntactical case (see [De0k90]).
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Definition 5.4 A conditional equation S ~ s = t over ~ is said to be joinable modulo A iff 
for any substitution a, if a(S) is joinable modulo A, then a(s) = a( t) is joinable modulo A. 

Theorem 5.1 Let R be a conditional rewrite system over~. If all conditional critical pairs 
that can be built from the rules of R are joinable modulo A, then R is locally confluent modulo 

A. I 

Proof: Let t, tl, t2 E T ERM(Y:., V) be such that tl R/Af--.t ---+R/A t2 with the rules U => 
u = v and U' ~ u' = v'. Hence for appropriate S,S',SI,S2 E TERM(~, V), positions p,q and 
substitution r: 

• t "'A s, sip =: r(u), s[p <- rev)] =: SI, SI "'A tl, r(U) is joinable modulo A. 

• t "'A s', s'lq =: r(u'), s'[q ~ rev')] =: s2, S2 "'A t2, r(U') is joinable modulo A. 

As u, u' E T ER.A,f/'(y:', V) we have p E O"(s) and q E O"(s'). By lemma 4.1 we get 
p,q E O"(t). Then either p I q or q == pq' or p == qp' for appropriate p',q'. 
Case 1: pi q. We have q E O"(s) and slq "'A tlq ""A s'lq. Further q EO"(s[P +- rev)]). Hence 
s[p <- r(v)]/q =:slq "'A s'lq =: r(u'). Analogously s'[q <- r(v')]/p =: s'lp "'A sip =: r(u). Let 
Wl =: s[p <- r(v)][q ~ rev')] and Wz =: s'[p ~ r(v)][q <- rev')]. Then: 

t l --+R/A wl "'A w2 R/A--- tz· 
Case 2: q == pq'. (The case ]J = qp' proceeds analogously.) We have q == pq' E O"(s'), hence 
pq' E O"(s), hence q' E O"(s/p), hence q' E O"(r(u)), hence q' E O"(u) (by use of lemma 4.1). 
Then: reu/q') =: r(u)/q' =: slpq' ""A tlpq' =: tlq ""A s'lq =: r(u'). Thus r satisfies ulq' = u' 

resp. lu/q'=u' modulo A. It follows that T(ru/q'=u') 1\ r( U) 1\ r( U') is joina;ble modulo A. 
As the critical pair lu/q'='" 1\ U 1\ U' ~ u[q' ;,- v'] = v is joinable modulo A by assumption 

we get r( u)[q' ;,- r( v')] l / r( v). Lemma 4.3 then provides t l l R / t2. 0R A A 

The second step in the equation solving process uses a built-in constraint propagation algo
rithm to make the solution representation more explicit. We are here interested only in the 
results that such a propagation algorithm may output and not in the details concerning the 
algorithm itself. 

To describe solutions that are partially explicit and partially implicit the notion of a con
strained substitution is introduced. 

Definition 5.5 A constrained substitution (,.a) is a pair consisting of a constraint I and a 
substitution a. 

In practice a will be idem potent. Further no variable occuring in I will belong to the domain 
of a. As usual T Ix denotes the substitution that has the same values as T on the set of variables 
X and that is the identical mavping on V \X. 

Definition 5.6 Let { be Cl constraint and X be a (finite) set of variables such that V AR(I) <;;; 

X. The set {(rl.aIl ... .. ({bad} of constmined substitutions is said to be a partially, solved 
representation of -f Wl't X (ll1oclulo A) if] the following items hold: 

(a) FaT' any i E {1. .... /,;} alld ([ny substitution Il, if f.l. is an A-solution of li, then It 0 ai is an 
A-solution of {. 
(b) FoT' any substitution r, ifT is all A-8olution off, then there exists an i E {l, ...• k} and a 

substitution It such thal 11 is an A --~olution of -f i and r Ix "- A Il 0 ai Ix. 
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Defin i t ion  5 .4  A conditional equation S 2 s = t over E is said to be joinable modulo A it)”
for any substitution 0 ,  if 0(5)  is joinable modulo A,  then 0(3) = 0( t )  is joinable modulo A .

Theorem 5 .1  Let R be a conditional rewrite system over 2 .  If all conditional critical pairs
that can  be built from the rules of R are joinable modulo A ,  then R is locally confluentpmodulo
A.  i

Proof: Let t , t 1 , t 2  E TERM(E,V)  be  such that  t l  RM<—-— «t -——+R„ t :  with the rules U =>
u = v and U’ => u’ = v' .  Hence for appropriate s ,s’ ,s l ,s2 e TERM(E,V),  positions p‚q and
subst i tut ion T: ‘

o t NA s ,  s /p  E r (u ) ,  s[p <- r(v)] E s l ,  sl NA t1, 7'(U) is joinable modulo A .

. tNA  s’, s ’ /q  E T(u’)‚ s’[q «— r[v')] E 32, 32 NA  t2 ,  r (U ' )  is  joinable modulo A .

As u,u’ € TERM"(E ,  V )  we have 1) € 0" ( s )  and q € 0"(s ’ ) .  By lemma 4.1 we get
p,q € 0" ( t ) .  Then either p | q or q = pq' or p : qp’ for appropriate p’‚q’.
Case 1: pl q. We have q E OA(s) and s /q  NA t /q  NA s’/q. Further q E‘O"(s[p <— r(o)]). Hence
s[p «— r(u)]/q Es /q  NA s’/q E r(u’). Analogously s’[q <-—- T(v’)]/p E s’/p NA s /p  E r [u ) .  Let
wl E s[p <— T(v)][q -.— T(v’)] and 102 E s’[p _ T(o)][q (-— T(v’)]. Then:
t l  _QR/A w1~A U); R/A.'— t z .

Case 2: q = pq’. (The case p : qp’ proceeds analogously.) We have q : pq' € O"(s’),  hence
pq’ € 0" ( s ) ,  hence q’ € 0" ( s /p ) ,  hence q’ E 0"(T(u)) ,  hence q’ € O"(u)  (by use of lemma 4.1).
Then: 7'(u/q’) s r(u)/q’ E s/pq’ NA t/pq’ E t / q  NA s’/q E r(u’).  Thus  T satisfies u/q’ = u’
resp. "Yu/q,:„f modulo A .  It follows that T(7„/q‚=„«) A T(U) /\ 'r(U’) is joinable modulo A .

As the critical pair 7„/q‚=„‚ A U /\ U' =:> u[q’ <— v’] = v is joinable modulo A by assumption
we get ‘r(u)[q’ «— T(v’)] .lR/A 7'(v). Lemma 4.3 then provides t1 lR /A  t z .  El

Thesecond  s t ep  in  t he  equation solving process uses a built-in constraint propagation algo-
r i thm to  make the  solution representation more explicit. We are here interested only in  t he
results that such a propagation algorithm may output and not in the details concerning the
algorithm itself.

To describe solutions t ha t  are partially explicit and partially implicit the not ion of a con-
strained substi tut ion is introduced.

Defini t ion  5 .5  A constrained substitution (')/‚a) is a pair consisting of a constraint 7 and a
substitution 0 .

In practice cr will be  idempoten t .  Further no variable occuring in  '7 will belong to  t he  domain
o fo -  As  u sua l  7' i x  deno te s  t he  subs t i t u t i on  t ha t  has t he  same  values  as 7“ on  the  se t  of  variables
X and tha t  is t he  identical mapping on  V\_-\'.

Defini t ion  5.6 Let 7 be "a constraint and X be a {finite} set of variables such that VAR(7 )  g
X.  The set {(*/1.01). . . „(*,/mom} of constrained substitutions is  said to  be a partially, solved
representation of 7 wr t  X (modulo  A )  ijj‘ the following i t ems  hold:
(a) For any  i € {1 . . .  . k }  and any substitution u .  i f u  is an  A-solut ion of 'n, then  u o o,- is an
A-solution of 7 .
(b) For any substitution T. if.— is an A-solution of 7 ,  then there exists an i E { l ,  . . . , k }  und a
substitution ‚u such that ILL is  an  A-solut ion of 7,- and T IXNA u o a; [_\

l 3





6 

A constraint propagation algorithm is intended to receive a constraint 'Y as input and to 
produce a partially solved representation of, as output. The next lemma states without proof 
(that is straightforward) that constraint propagation does not effect the joinability of conditional. 
equations. 

Lemma 5.1 Let, /\ U => s = t be a conditional equation. Let X be the set of variables otcuring 
in , /\ U => s = t. Let {(,h O"d, . .. , (rk, O"k)} be a partially solved representation of, wrt X 

(modulo A). Then ,/\ U => s = t is joinable modulo A iff {'i /\ O"i( U) => O"i( s = t) I i =1, ... , k} 
is joinafile modulo A. 

Thus we may propagate the constraint part of a critical. pair before testing for joinability. 
Note that constraint propagation strongly depends on the built-in algebra A. 

Example 5.3 We continue the standard example. Consider the rules from example 1.1. All 
critical pairs are joinable modulo lV. We consider only three cases. 

(a)	 overlap (1),( 1)
 
equation to be soved: g( x, 0) = g( x', 0)
 
constraint solution: {x = x', 0 = O}
 
propagated solution: (T, {x ~ ,1;/})
 
propagated critical pair: T => ;r = x
 

(b) overlap: (i),(4) 
equation	 to be solved: g( x, 0) = g( x', x' + y/)
 

/
constraint solution: {,1: = ;r , 0 = .1: ' + V'} 
propagated solution: (T, {x ~ O,x' ~ O,y' ~ a}) 
propagated critical pair: T=>O = g( 0,0) 
joining reductions: g( 0,0) -R/,V 0 

(c)	 overlap (3),(4)
 
equation to be solved: gC1: + y, y) = g(x' , x' + y'}
 
constraint solution: {x + y = :Z;', y = x' +V'}
 
propagated solution: (T, {." - 0, y - ,"', y' - O} )
 
propagated critical pair: T => g(O, Xl) = g(:rl,O)
 

joining reductions: g( O. x') -n/.\/ ,r l and g( :1.'1.0) -R/N Xl
 

Hence: R is locally confluent modulo thl'. IwtulYll number interpretation lV. 

Termination 

In this section we investigate the termina.tion of the rewrite relation ---+R/A' After developing 
some general results we consider recursive path orderings that iIlteg~ate semantic information 
from the built-in algebra .4. 

Example 6.1 The u{uations fl'Om example 1.1 do not induce CL terminating rewrite relation 
modulo the naturul nllmuer interprEtation .\', as g(,7;, 0) "".V g(x +0,0) and hence g(x, 0) ---+R/N 

g(x,O). We change the rewrite rtLLEs uy adding "sernantical information". Let boole be an 
additional built-in sort and let ~,tl'tLe ue additional built-in symbols which are interpretated in 

(an extended VErsion of) .\' in the IwttLral ]ray. Let R now be the new rewrite system: 

A constraint propagation algorithm is intended to  receive a constraint 7 as input  and to
produce a partially solved representation of 7 as ou tpu t .  The  next lemma states without proof
( t ha t  is straightforward) t ha t  constraint propagation does not  effect t he  joinability of conditional
equations.

Lemma 5 .1  Let 7A U => s = t be a conditional equation. Let X be the set of variables ottouring
in 7 /\ U => s = t .  Let {(71,01)‚. . . , (7k‚ak)} be a partially solved representation o f7  wrt X
(modulo A). Then 7AU => 3 = t is joinable modulo .A ifl' {7,-Acrg(U) => 05(3 = t) I i  = 1, . . . ,k}
is joinab'le modulo A .

Thus we may propagate the  constraint part  of a critical pair before testing for joinability.
Note that  constraint  propagation strongly depends on  the built-in algebra A .

Example 5 .3  We continue the standard example, Consider the rules from example 1.1. All
critical pairs are joinable modulo N'. We consider only three cases.

{a} overlap (1),(1)
equation to be saved: g(m,0) = g(a:',0)
constraint solution: {a: : x ’ ,  0 = 0}
propagated solution: (T ,  {a: — .7:’})
propagated critical pair:  T :> x = x

(b) overlap: (I),('/‚)
equation to be solved: g(a:,0) : g(a;’‚:c' + y’)
constraint solution: {.7; = ;r’,0 = :L" + y'}
propagated solution: (T ,  {a: .—— 0,3,” «— 0, y’  _ 0})
propagated critical pair: T => 0 : g(0‚0) .
joining reductions: g(0,0) _"R/,v 0

(c) overlap.('3}‚(4}
equation to be solved: g(.i' + y_y) : g(z’,x’ + y")

constraint solution: {.7: + y : _7;’‚y : .r’ + y '}

propagated so lu t i on :  (T .  {.7: — [)‚y -- .r’, y '  .— 0})

propagated critical pair:  T => g(0,  r’)  = g(J:'.‚O). . . ‘ . _ . ,  _, _, ,
]ommg 1eductzons. gtOUL ) _R/.\’ .1 and  g (1  . 0 )  _"a/ ,v 2:

Hence: R is locally confluent modulo the natural  number interpretation JV.

6 Termination

In this section we investigate the termination of the rewrite relation —+R/A. After developing
some general results we consider recursive path orderings that integrate semantic information
from the built~in algebra A.

Example  6 .1  The equations from example 1.1 do not  induce a terminating rewrite relation
modulo the natural  number interpretation ‚V. a s  g(a:. 0)  ~,v gta: + 0 ,0 )  and  hence g(.v,0) '_’R/N
g(a:,0).  We change the rewrite rules by adding "semantical information”. Let boole be an
additional built—in sort and let > . t rue  be additional built-in symbols which are interpretated in
(an extended version of} ‚V in the natural way. Let R now be the new rewrite system:





(1)	 g(x,O) x 

(2)	 g(O,y) y 
(3) y?- 0 true => g(x+y,y) = g(x,y) 
(4) x?- 0 tl' ue => g(x,x + y) g(x,y) 

Now we may use the well-foundedness of the algebra N wrt ?- and true and the fact thqt N F 
y ?- 0 = true => x + y ?- x = true and N F x ?- 0 = true => x + y ?- Y = true to conclude that 
~R/.N is terminating. 

First the notion of decreasingness (see [DeOk90]) is generalized in order to guara~tee the 
well-foundedness of --+R/A and to avoid an infinite regress in the recursive condition check. 

For reasons that will become clear below we split the condition U of a conditional rewrite 
rule into two parts, a constraint, and an additional part C. Thus a conditional rule will be 
written in the form ,/\ C => u = v. 

Definition 6.1 Let R be a conditional rewr'ite system over l:. R is said to be decreasing modulo 
A iff there exists a well-founded extension> of --+R/A that satisfies the following items: 

• > contains the subtam relation >st/A, where for s,t E TERM(l:, V) we have: s >stlA t 
iff there exist Si E TERAJf'(E, V) and t l E TERM('£, V) such that s ""A Si >st t l ""A t 
(> s~ denotes the normal proper subterm ordering). 

•	 For any rule , /\ C => U = v E R and any substitution a that satisfies, modulo A, 
a( u) > a( Ui ), a( Vi) for all tti = Vi E C. 

As in the "normal syntactical case" one easily proves that there cannot exist any infinite 
descent when recursively checking conditions for rule application if the rewrite relation is de
creasing modulo A. Hence in that case the rewrite relation ---->R/A is terminating and decidable 
(provided that A-equivalence and A-matching are decidable; see also section 7). In order to 
prove decreasingness modulo A we next introduce a suitable notion of reduction ordering that 
takes into account the signature hierarchy and the built-in algebra. Compatbility with such 
a reduction ordering that in addition satisfies a subterm property then provides the desired 
decreasingness. 

Definition 6.2 A partial ordering> on T ERM(~, V) is said to be a reduction ordering wrt 
(~ = ~o ffi ~l,A) ijj the following items hold: 

(a)	 > is compatible with the utlilt-in algebra A: foranys,t,s',t ' E TERM(~, V), ifs ""A Si > 
t l 

""A	 t, then s > t. 

(b)	 > is monotonic wrt syntactical replacement: for any s, t E T ERA1(~, V) and any symbol 
f, ifs> t and f(,· ,,8... ,) E TERJJf'(~, 1,/), then f(· .. ,s, ... ) > f( ... ,t, ... ). 

(c)	 > is well-foundnl. 

In the sequel we writfe' '( il > L' iff for any substitution a, if a satisfies Ai modulo A, then 
a(u»er(v). 

Definition 6.3 Lel R Ix a condiliof1ulreu:rite system, A partial ordering> is compatible with 
R iit for ariy '( /\ C :::;. U = I' ::: R ({'C IWCE! : il > t'. ili. Vi. (chere Ili = Vi E C . 

.\ote that this kind of compatibility requires a kind of stability too. 
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(1) ‘ gone) = z
(2) y(0‚y) = y
(3) y>0  = true => 9($+y‚y) = 903,31)
(4 )  z>0  : t rue  :> g(:i:,:r+y) : g(a:,y)

Now we may use the well-foundedness of the algebra N wrt >- and true and the fact that N I:
y>0=true=>r+y>x=true  andN|=$>~0=true=>z+y>y=true  toconclude that
——+R/N is terminating. '

First the notion of decreasingness (see [De0k90]) is generalized in order to  guarantee the
well-foundedness of —~>RM and to  avoid an infinite regress in the recursive condition check.

For reasons that will become clear below we split the condition U of a conditional rewrite
rule in to  two parts, a constraint 7 and an additional part C .  Thus a conditional rule will be
wri t ten i n  the  form 7 A C => a = v .

(

Defini t ion  6 .1  Let R be a conditional rewrite system over 2 .  R is said to be decreasing modulo
A iff there exists a well-founded extension > of —->RM that satisfies the following items:

. > contains the subterm relation >‚t/A, where for s , t  e TERMOD, V)  we have: s )„“ t
ijf there exist s' 6 TERM"(E‚V)  and t’ € TERM(E,V)  such that s NA 3' >3; t’ NA t
(>55 denotes the normal proper subterm ordering).

o For any  rule 7 A C :> n = 'L‘ E R and any  substitution 0' that satisfies 7 modulo ‚A,
(7(a) > a(u‚-),cr(vi) for all u,- : v.- E C.

As in  the  "normal  syntactical case” one easily proves tha t  there cannot exist any infinite
descent when recursively checking conditions for rule application if the  rewrite relation is de-
creasing modulo‘A .  Hence in tha t  case t he  rewrite relation —,RM is terminating and decidable
(provided that  A-equivalence and A-matching are decidable; see also section 7) .  In order t o
prove decreasingness modulo A we next introduce a suitable notion of reduction ordering that
takes in to  account t he  signature hierarchy and the  built-in algebra. Compatbi l i ty  wi th  such
a reduction ordering tha t  in  addition satisfies a sub term property then  provides the  desired
decreasingness.

Defini t ion  6.2 A partial ordering > on TERM(E,  V)  is said to be a reduction ordering wrt
(E = So 63 El./4) ijf the following items hold: '

(a} > is compatible with the built-in algebra ‚A: for any s , t ,  s’, t’ E TERM(E,  V) ,  i fs  NA 3’ >
t' NA  t ,  then 3 > t .

(b) > is  monotonic wrt syntactical replacement: for any  s , t  E TERA/[(2, V )  and any  symbol
f. i f s  > t and f( .  . . s . . )  E TERMNEV) ,  then f f .  . . , s , . . . )  > f ( .  . . . t , . . . ) .

(C} > is well—founded.

In  t he  sequel  we  wr i t e  7 : a > v iff for any  subs t i t u t i on  0 .  if 0 sa t i sfies  7 modulo ‚A, t hen
0(a )  > (7(1)). ‘

Defin i t i on  6 .3  Let !?. be a conditional rewrite sys tem.  A partial ordering > is compatible w i th
[Z ijffor any  7 A C :> (L = r E I? we have 7 : a > v .  {L,-. v;. where u.,- = u,- E C.

Note t ha t  this  kind of compatibility requires a kind of stability t oo .

i s





Lemma 6.1 Let> be a reduction ordering wrt (~ = ~o EB ~1>A) that is compatible with the 
conditional rewrite system R. Let further> contain >st/A- Then R is decreasing modulo A. 

Proof: First, > is well-founded by definition. Next we prove that ---"'R/A ~>. 

Let s ---"'R/A t with s', t', p, a" f\ C => U = v as indicated in the definition of the rewrite re
lation. By assumption, :u > v. As A l= a(,) this implies a(u) > a(v). As u E TERM':r(E, V) 
we get s' > t' by the monotonicity property of >. Finally, s > t as > is compatible with A. 

Now let, f\ C => u = v E R and let a be a substitution that satisfies, modulo A. The 
assumption, : u > Ui, Vj yields a(u) > a(Uj), a(vd for any Uj = Vi E C. 0 

As usual the assumption that> contains >st/A can be dropped if > is sort compatible (i.e. 
if s > t, then sand t are sort compatible). The transitive closure of > and>st/A satisfies the 
desired properties. 

As the compatibility property, : U > v, Uj, Vj requires possibly an infinite number of tests we 
next integrate the constraints into the notion of reduction ordering by parameterizing orderings 
with constraints. 

Definition 6.4 The set {>{-t)1 , is CL constraint} of partial orderings on TERM(~,V) is said 
to be a constrained reduction ordering system wrt (~ = ~o EB ~1> A) iff the following items hold: 

(a)	 >(T) is a reduction onleriny lOtt (~ = ~o EB ~l, A). 

(b)	 The system is stable (wrt senwntical substitutions): for all u, vETERM(~, V), all con
straints, and any substitution a, if U >b) v, then a(u) >(O"b) a(v). 

(c)	 The system is cOlnpatible with constraint satisfaction: If A l=" then >(-r)= >(T). 

Definition 6.5 Let {>{-t)1 ~f is a constraint} be a constrained reduction ordering system wrt 
(E = ~o EB El, A). The system is compatible with. the conditional rewrite system R iff for any 
, f\ C =} u = v E R we have U >("1) v, Ui, Vi, where Ui = Vi E C. 

Lemma 6.2 Let {>{-tll , is a constraint} be a constrained reduction ordering system wrt (~ = 
EoEBE1,A) that is compatible with R. Then >(T) is a reduction ordering that is compatible with 
R (in the sense of definition 6..3). 

Proof: Let ~f f\ C =} U = v ER and Ui = Vi E C. We prove,: U >(T) V,Ui,Vi. Let A l= ab) 
for a substitution ~f' As U >(~/) v, Ui, l'j we get a(u) >(O"(-y») a(v),a(ud,a(vj) by the stability 
property. Compatibility with constraint satisfaction finally yields a(u) >(T) a(v),a(ui),a(vi)' 0 

To give an example of a constrained reduction ordering system we define suitable recursive 
path orderings. The knO\vleclge about the built-in algebra A intended to be integrated into the 
construction of the recursive pa.th ordering is giverl by a so-called constrained base ordering 
system. As a method of integration we let the base orderings be part of the precedences that 
induce the recursive path orderings. 

\Ve	 first generalize A-equivalence by integrating constraints: 

Definition 6.6 Fof' s,t E TERJl('S, 1-') let S ,,-,~l t iff 
(a)	 s,t E TER.\1o('5:,I') and --t i= f ::::;> S = t Of' 

(b)	 s,t E TERM/\('S. If), S == f(·~l'" .. s,,), t == f([l, ... ,t,,) and Si "-'~) ti for i = 1, ... ,n. 
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Lemma 6.1  Let > be a reduction ordering wrt (E = 20 G) 21,..4) that is compatible with the
conditional rewrite system R. Let further > contain >, t /A.  Then R is decreasing. modulo A .

Proof: F i r s t ,  > is well-founded by definition. Next we prove that —>R A<_:>.

Let s —’n/.4 t w i th  s’,  t’,  p , o ,7  A C :> u = v as indicated in the definition of the rewrite re-
lation. By assumption 7 :"u > v .  As A l: 0(7)  this implies 0(a)  > 0(1)). As u E TERM'ME, V)
we get s’ > t’ by the monotonicity property of >.  Finally, s > t as > is compatible with ‚Ä.

Now let 7 A C => u = v € R and let a be a substitution that satisfies 7 modulo A.  The
assumption 7 : u > it,-‚v.- yields 0 (a )  > a(u;),a(v,-) for any a.- = v.- € C.  El

As usual the assumption that > contains >st/A can be dropped if > is sort compatible (Le.
if s > t ,  then s and t are sort compatible). The transitive closure of > and >„M satisfies the
desired properties.

As the compatibility property 7 : u > 1;, u;, v,- requires possibly an infinite number of tests we
next integrate the constraints into the notion of reduction ordering by parameterizing orderings
wi th  constraints.

Defini t ion 6 .4  The set {>(”) |  7 i s  a cons tra in t }  of partial orderings on  TERM():, V) is said
to be a constrained reduction ordering system wrt (E = 20 @ XDA) ijf the following items hold:

(a} >” )  is a reduction ordering wrt (E =. 20 EB 21,.A).

(b) The systenzzis stable (wrt sernantical substitutions): for all a,  1) € TERM(2‚  V),  all con-
straints 7 and any substitution 0 ,  i fu  >07) 11, then 0 (a )  >("(")) 0(1)).

{c} The system is compatible with constraint satisfaction: IfA l: 7 ,  then >“ ) :  > ” ) .

Definit ion 6.5 Let {>(“Vll 7 is a constraint} be a constrained reduction ordering system wrt
(E  : 20  EB 21‚A) .  The sys tem is compatible with. the  conditional rewrite system R ifi‘for any
7 /\ C => ‚u = v E R we have u >“ )  mug, vi, where a; = v; E C.

Lemma 6.2 Let {>(7ll 7 is a constraint} be a constrained reduction ordering system wrt (Z =
$069 21 ,A)  that is compatible with R. Then >”)  is a reduction ordering that is compatible with
R {in the sense of definition 6.3).

Proof: Let 7 /\ C :> u = v E R and in :  v; E C.  We prove 7 : u >”)  v,u;,v‚-. Let ‚A l: 0(7)
for a substitution 7 .  As a >” )  Lani, v,- we get 0 (a )  >070”) a(v),a(u,-),o(v.-) by the stability
property. Compatibility with constraint satisfaction finally yields 0(a)  >” )  a(v)‚  U(u‚-),cr(v‚—). D

To give an example of a constrained reduction ordering system we define suitable recursive
path orderings. The  knowledge about the built-in algebra .A intended t o  be  integrated into the
construction of the recursive path ordering is given by a so-called constrained base ordering
sys tem.  As a method of integration we  let the base orderings be part of the  precedences that
induce the  recursive path orderings.

We first generalize A—equivalence by  integrating constraints:

Definition 6.6 For—„u e TERMDZJ") lets «;(/“;) t if}
(a)  s , t  E TER.l-[o(‘:. V )  (LINZ/«i i: “. => s = t orI

(WM 6 TERM/KEV). sa  fm  .....  5n), tE f(t1,...,tn) and s,- JJ) t,» for i :  l , . . . n .
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One easily proves that "'~) is stable wrt substitutions, i.e. for all s, t E T ERM(~, V) and 

any substitution " if s "'~) t, then a(s) ",~(-y)) aCt). 

Definition 6.7 A set {>&"Y) 1 , is a constraint} of partial orderings on TERMo(''E., V) is said 
to be a constrained base ordering system modulo A iff the following items hold: 

(a)	 >&T) is wellfounded. 

(b)	 >~"Y) is compatible with A, i.e. for any s, t, s', t' E T ERM(''E., V) and any constraint" if 
s ",h) s' >h) t' ",(-y) t then s >h) t ' 

A 0 A' o' 

(c)	 The system is stable wrt substitutions. 

(d)	 The system is compatible with constraint satisfaction. 

For an example of such a constrained base ordering system modulo A let A be well-founded 
wrt. >-,true E Fa (Le. the relation {(a,b) E A x A I>-A (a,b) = trueA } is well-founded). Now 
let for u, vETERMo('£, V) 

u >~"Y) V if f A 1= , => u >- u = h·ue. 

Then {>b"Y) I , is a constraint} is a constrained base ordering system modulo A - the con
strained base oT'dering system induced by A, >-, true. 

For the rest of this section let {>~"Y)I , is a constraint} be a constrained base ordering 
system modulo A. 

Hierarchical '£-terms will be converted into flat terms by abstracting from the internal struc
ture of predefinecl terms in order to use the syntactical recursive path ordering construction. 
For that purpose let [u] be a new constant symbol for any term u E T ERMo('£, V) and 
Co = {[u] I u E T ER.to.lo(~, V)} be the set of these new constants. Further let F* = FI' u Co 
where F/\ = FJ~I) U F1 • The mapping a converts (hierarchical) '£-terms into (flat) F*-terms. 
For u E T ERM(E, V) let 

a(u) = { [u] ~f u E TERM~('£, V) ,
 
J(a(uI), ... ,o:(un )) tJuETERM ('£,V)andu=J(ul'''''Un).
 

By abuse of notation let for s E TER.\f(F*) and any substitution a 

a(s) = {	 [a(u)] ~J S = [u]
 
f(a(sd, ... ,a(sn)) tf S = f(sl, ... ,sn)'
 

Let also by abuse of notatioll [u] >6') [u] iff u >~,) u and a(s) "':;) aCt) iff s "':;) t. 

'rVe now define the recursive path ordering >~~~,A modulo A on the F* -terms. 'rVe first review 
the usual definition of the recursive path ordering (see [De87]). 

Definition 6.8 Let;::: ut CL quasi-ordering (the precedence) with", denoting its equivalence part 
and> its strict [HU't. 

(aJ	 The permutative congruence ""per", induced by ~ is defined by; FOT'S == !(Sl"",Sn),t == 
g(tl, . , .. tn ) E T E RJI (F) let s ""perm t iff J '" 9 and there exists Cl permutation 11' on 
{I" .:.,n} such that Si ""perm t"(i) Jor i = l" .. ,n. 
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One easily proves t ha t~  (1) is stable wrt substitutions, i.e. for all s , t  € TERM(E,V)  and
any substitution 7 ,  i f s  NS" t, then a ( s )~  (0(7)) 0(t) .

Definit ion 6 .  7 A set {>(7)| 7 is  a constraint} of partial orderings on TERM0(E, V) is said
to be a constrained base ordering system modulo A if the following items hold: l

(a) >0T) is wellfounded. .

(b) >“ )  is compatible with .A, i e .  for any s ,  t ,  s’, t’ E TERM(2,  V) and any constraint 7 ,  if
„(7)  s’ >(7 )  t 'w  (7) t then s >(7 )  t

(c) The system is stable wrt substitutions.

(11) The system is compatible wit/L constraint satisfaction.

For an example of such a constrained base ordering system modulo A let ‚A be well-founded
wrt. > , t rue  € F0 (i.e. the relation {(a,b) € A x A |>-A (a,b) = trueA} is well-founded). Now
let for u',v E TERM0(E,  V)

u>gfiv i f fA j=7=>  u>v=true .

Then {>},“l 7 i s  a constraint} is a constrained base ordering system modulo .A — the con-
strained base ordering system induced by A ,  > ,  t r ue .

For the rest of this section let {>ßfll 7 i s  a constraint} be a constrained base ordering
system modulo A .

Hierarchical E-terms will be converted into flat terms by abstracting from the internal struc-
ture of predefined te rms  in order t o  use t he  syntactical recursive path  ordering construction.
For that  purpose let [a] be a new constant symbol for any term it E TERM0(Z,V) and
Co = {[u] | u E TER.M()[$,V)} be the set of these new constants. Further let F" = F" U Co
where F" = F621) U F1. The mapping a converts (hierarchical) Z—terms into (flat) F *-terms.
For a € TERA/[(2. V) let

( _ [M ifueTERMMnV) .
““““  flqm%„„q%n UuéTERMNäVMmdu:flm„„ßfi .

|

By abuse  of notat ion let for s E TERA-HF“)  and any subst i tu t ion 0

_ [dWl ifs=W]
a (3 ) ‘ "{ f (o ' ( s1 ) , . . . ‚ c r ( sn ) )  i f  s = f ( s1 , . . . , sn ) .

Let also by abuse of notation [a] >8y [.v ] ifi‘ u >“)  v and a ( s )~  (7) a(t) MT 5 N51) t.
We now define the recursive path o1dexing >?)po A modulo .A on the F*— terms We first review

the usual definition of the recursive path ordering (see [De87]).

Defini t ion  6 .8  Let ,2 be a quasi-ordering (the precedence) with ~ denoting its equivalence part
and  > i ts  s t r ic t  part .

(a} The permutat ive  congruence «nem, induced by Z is  defined by: For 3 E f ( s l ,  . . . , sn ) , t  E
g( t1 , . . . . t n )  E TERAHF)  l e t s  ~pe,.m t if} f ~ g and  there exists a permutat ion 1r on
{ l , . . . _ ‚  n}  such that s,- ~pem t d i )  for i = l ,  . . . , n .
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(b)	 The recursive path ordering >rpo induced by .2: is defined by: For s == f( SI, ••• , srn), t == 
g(t l , ••. , tn ) E T ERM(F) let 5 >rpo t iff one of the. following items holds: 

(a)	 Si >rpo t or Si "'perm t for some i E {I,.", m}. 

((3) f > g and s >rpo tj for all j E {I, .. . ,n}. . 
. i

(r)	 f '" g and for approprzate A,B,ai,bi we have {SI"",sm} = A U {at, ... ,ak}, 
{t l ,.,., t n } = B U {bI, .. " bd, A >rpo>rpo Band ai "'perm bi (i = 1, ... , k) .. 

Definition 6.9 Let.2: FII be a well-founded partial ordering on FI\ and {>~"")I i is a cons~raint} 
be a constrained base ordering system modulo A. Let i be a constraint. Then 

.2: ('"Y) = "'2') U ~ FAU >~...,) U{(J, [u]) I f E FI\; [u] E Co} 

is the precedence modulo A induced by .2: FA and >~7). This precedence induces the permutative 

equivalence "'~~~m,A .modulo A wrt. .2: FA and >~...,) and the recursive path ordering >~;~,A 
modulo A wrt . .2: FA and >67

) (on the F*-terms). 

Lemma 6.3 Let .2: FA be a well-founded partial ordering on FI\ and {>67 )1 i is a constraint} 

be	 a constrained base ordering system modulo A. Let >~;~,A be the recursive path ordering 

modulo A wrt. .2: FA and >67 
). Let further 5,5', t, t' ETERM(F*), I be a constraint and u be 

a substitution. Then the following items hold: 

(a)	 If s ",b) s' '"Vb) t' '"Vb) t then 5 '"Vb) t 
J A perm.A A' perm,A . 

(b)	 [fs '"Vb) 5' >h) t' '"Vb) t then 5 >b) t
J A rpo,A A' rpo,A . 

(e)	 If s "'~~~rri.A t, then u(s) '"V~~~~:A aCt). 

(d)	 If 5 >(7) t then a(s) (crh))a(t)
J rpo,A' rpo,A' 

(e)	 If A F= At, then >~;~.A = > ~.;J.A· 

(J)	 >~;J.A is wellfounded. 

Proof: The proof of (a), (b) resp. (c), (d) proceeds by induction on the sum of the lengths of 
5' and t' resp. 5 and t. Below we sketch only the proof of part (b), the other cases are shown 
analogously. Statement (e) follows from the fact that by the related property of the constrained 

base ordering system the tV'iO precedences are identical. To see (f) note that >~T) is assumed 

to be wellfounded. Hence the precedence .2:: (T) is wellfounded too. It follows (see [DeS7]) that 

>~;;,A is wellfounded. 
Proof of part (b): For the illduction base let s' and t' be constants from F*. 

Case 1: 5' = [u'], t' = [u'] for appropriate !L',V' E TERM(Eo,V). Then there exist u,v E 
TERM(Eo,V) such that s = [n]. t = [v]. By.inspecting the definition of the precedence we get 

b)	 , b) , (-I) rI'l . . h {('Y)I' . }' . d bu '"V A U >0 V CV A u. le assumption t at >0 I IS a constraInt IS a constramc ase 

ordering system modulo A provides u >6'Y) I':. Thus s >~;~.A t.
 
Case 2: s' E FA and t' = [Vi] for u' E TERM(~o, V). Then s = 5' and t = [vJ for some
 

vETERM(~o, V). Thus s >('Y) t and consequently s >b) At.'
rpo, 

IS 

(b) The recursive path ordering >,” induced by 2, is defined by: For s E f ( s l ,  . . . ,sm),t  E
g(t1, . . . , t,.) E TERM(F)  let s >,” t ifl' one of the following items holds:

(a) s,— >,po t o r  s,- «pam t for some i € {1 ‚ .  . . ,m} .

(‚B) f>  g ands  >rpo tj for a l l j  6 {1 , . . . , n } .
(7) f ~ g und for appropriate A‚B‚a.—,b‚- we have { s l , . . . , s , , , }=  A U. . i {a1 ,  .,ak}‚

{ t l ,  . . . , tn}  : B U{b1 ,  . . . , bk} ,  A >rpo>rpo  B and  a i  Nperm b i  ( i _ — 1 , . . , . k )

Definition 6 .  9 Let 2, FA be a well- founded partial ordering an F" and {>(7)| 7 is a constraint}
be a constrained base ordering system modulo .A. Let 7 be a constraint. Then

> ('1) __ „(;) „ > „„ ><~> U{ ( f , [u ] )  | f e F“;[u] € Co}
is the recedence modulo ‚A induced by ‚Z A and >07). This precedence induces the ermutativeP F 0 P

(Z lmA  modulo A w1t. ‚ZFA and >3”) 521,14

modulo .A wrt. ‚Z FA and >}; {on the F‘—terms}.
equivalence ~ and the recursive path  ordering >

Lemma 6 .3  Let 2, F" be a well-founded partial ordering on FA and {>g”)| 7 is a constraint}
be a constrained base ordering sys tem modulo A .  Let >31 ,  A be the recursive path ordering

modulo A wrt. ,2 FA and >(7). Let further s,.s’, t,t’ € TERM(F*),  7; be a constraint and a be
a substitution. Then the following i tems hold:

(a} Ifs N27) s’ „(W) A t’ MEZ) t ,  then s „h )  t .perm.  perm .A

(b) Ifs « fp s  ’ );”;LA t’ MEZ) t ,  then s >33,” t .

(c) Ifs Magma t ,  then 0(3) ~;:£2?A a(t).

(d) Ifs> $” At ,  then „(.)ßgngm.

(€) UA l= 7.. then >32)”: ABA

(f) >,” A is wellfouncled.

Proof: The  proof of ( a ) ,  ( b )  resp. ( c ) ,  ( d )  proceeds by induct ion on  the  sum of the  lengths of
s’ and t’ resp. s and t .  Below we sketch only the proof of part (b), the other cases are showu
analogously. S ta tement  ( ee )  follows from the  fact tha t  by the  related property of the  constrained
base ordering sys tem t he  two p1ecedences are identical. To see ( f )  no te  t ha t  >(T ) is assumed
to  be wellfounded. Hence the p1ecede11ce ‚ZU- ) is wellfounded too. It follows (see [De87]) that
>£:2,A is wellfounded.

Proof of part (b): For the induction base let 3’ and t’ be constants from F“.
Case 1: s’ = [u’], t’ = [v'] for appropriate u'.-v’ € TERM(20,V).  Then there exist 21,1) 6
TERM(ED‚ V)  such that s -— [u]. t—— [v]. By inspecting the definition of the precedence we get

„(W) u' >“) u ’~  T1  The assumption that {>(")| 7 is a constraint} is a constrained base
ordering sys tem modulo  A p1ox'1des u >( l u. Thus  3 >i -pbA  t .
Case 2: s’ E F"  and t’ =[u  ’ l f ox  v’ E TERM(EO,  V ) .  Then  s = s’ and t = [u] for some
1) E TERM(EO,  V ) .  Thus 8 >(" t  and consequently s >S‘;)o,A t.-
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Case 3: s', t' E FA. Then s = s' and t = t', consequently s >~;~,A t.
 
Case 4: s' = [u'] for some u' E T ERM(Eo, V) and t' E FA. Note that this case is impossible by
 
the definition of the precedence.
 

For the induction step let the sum of the lengths of s' and t' be greater than 2. Notice that the 
claim follows immediately if t' E Co and that the case s' E Co is impossible by the definition of 
the precedence. It remains the "syntactical case" s' == f( sL , s~) and t' == y(t~, ... , t~) where 
f,g E FA. Then we have s == f(sl, ... ,sm) and t == g(tl, ,tn) with appropriate F·-terms 
Si, tj. 'The proof now proceeds straightforward by case analysis using the induction hypothesis 
and statement (a). 0 

The recursive path ordering modulo A on T ERM(E, V) wrt. ~ FA and >~'"Y) is defined in 
the obvious way: 

('"Y) 'ff () ('"Y) ()s >rpo,A t t ex s >rpO,A ex t . 

With the aid of lemma 6.3 the following theorem is easily proved: 

Theorem 6.1 Let ~ p. be a well-founded partial ordering on FA and {>~'"Y)II is a constraint} 

be a constrained base ordering system modulo A. Let >~;~,A be the recursive path ordering 

modulo A on T ERM(E, V) wrt. ~ Ft' and >~"Y). Then he set {>~;~,AII is a constraint} is a 

constrained reduction ordering system wrt (E = Eo EB El, A). In addition > ~;~,A contains> at/A' 

Corollary 6.1 Let ~ Ft' be Cl well-founded partial ordering on FA and {>~'"Y)II is a constraint} 

be a constrained base ordering system modulo A. Let >rb ) A be the recursive path ordering modulo po, 

A on T ERM(E, V) wrt. ~ Ft' and >~"Y). Let further the system {>~;~,AII is a constraint} be 
compatible with a conditional rewrite system R. Then R is decreasing modulo A. 

Example 6.2 We continue example 7.1 
Let N be the natural number interpretation (enriched by a standard boolean interpretation). We 

have FA = {+,;...,g}. Let >Ft'= 0. Let {>~"Y)II I is a constraint} be induced by N,;...,true. 
Then 

>(T)g(x,O) rpo X 

(T)
g(O,y) >/"po Y 

(y~O=trtLe)
g(x + y,y) >"po g(:r, y) 

(x~O=tnLe)
g(x,x+y) >rpo g(x,y) 

Thus R is decreasing modulo JV and especially, -R/N is terminating. 

Decidability of A-equivalence and A-match 

In order to get a decidable rewrite relation modulo the built-in algebra A-equivalence and A
match have to be decidable. We finish the paper with some remarks about decidability results, 

We first consider the decidability of A-eqivalence. In general A-equivalence is not decidable. 
This follows from the fact. that there exists a signature ~o and a Eo-algebra A such that the 
equivalence relation rv A on T ER.\lo(~, Il) is not decida.ble (\ve thus consider a case where no 
new symbols are present). For a justifica.tion let E be a set of :So-equations (for an appropriate 
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Case 3: s’, t’ € F" .  Then s = s’ and t = t ' ,  consequently s >32,” t .
Case 4: s’ = [u’] for some u’ € TE  RM (Eo,V) and t’ € FA.  Note that this case is impossible by
the definition of the  precedence.

For the induction step let the sum of the lengths of 8’ and t' be greater than 2. Notice that the
claim follows immediately if t’ € Co and that the case s '  € Co is impossible by the definition of
the precedence. It remains the ”syntactical case”- 3’ E f(s’1, . . . , sin) and t’ E g(t’1, . . . , t’n) where
f , g  € F" .  Then we have 3 E f ( s l , .  . .‚sm) and t E g( t1 , . . . , t „ )  with appropriate F"-terms
si,  t i .  =The  proof now proceeds straightforward by case analysis using the induction hypothesis
and statement (a) .  CI

The recursive path ordering modulo .A on TERM  (E,V) wrt. ‚?, FA and >87) is defined in
the obvious way:

8 >£;b‚A t i f f  O4s) >£ZLA a(t).

With  the  a id  of l emma 6.3 the  following theorem is easily proved:

Theorem 6.1 Let Z FA be a well-founded partial ordering on F" and {>f,"’| 7 is a constraint}
(7)be a constrained base ordering system modulo A .  Let > be the recursive path orderingrpo,.A

modulo .A on TERA/[(23, V) wrt. Z FA and >81). Then he set {>£;2>‚Al  7 i s  a constraint} is a
constrained reduction ordering system wrt (E  = 20621 , , 4 ) .  In addition >£Io)‚A contains >fl /A '

Corollary 6.1 Let ‚2, FA be a well-founded partial ordering on FA and {>g"’| 7 is a constraint}
be a constrained base ordering system modulo A. Let >£;b‚.4 be the recursive path ordering modulo

A on TERMQI,  V) wrt. ,2 FA and >5” .  Let further the system {>£ ;b ,A l  7 i s  a constraint} be
compatible with a conditional rewrite system R. Then R is decreasing modulo ‚A.

Example 6 .2  We continue example 7.1
Let/V be the natural number interpretation (enriched by a standard boolean interpretation). We
have FA : {+ ,> ,g} .  Let >pn=  @. Let {>901 7 is  a constraint} be induced by N‚> , t rue .
Then

g(:z:,0) >91; 1‘

9(0.y) >(rio) y
y(l‘+y.y) >$i>30=tml am:—y)
g(w‚ r+y)  >$i3o>°=”"e’ allay)

Thus R is decreasing modulo N and  especially, “am is terminating.

7 Decidabil i ty of  A-equivalence and A-match

In order to get a decidable rewrite relation modulo the built-in algebra A-equivalence and .A—
match have to  be  decidable. We finish t he  paper with some remarks about  decidability results.

We first consider the clecidability of A—eqivalence. In general .A-equivalence is not decidable.
This follows from the fact. that there exists a signature EO and a Eo-algebra A such that the
equivalence relation NA on  TERMOUJ‘ V) is not decidable (we thus  consider a case where no
new symbols are present).  For a justification let E be a set  of Eo-equations (for an appropr ia te
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Eo) such that the inductive theory of E is not recursively enumerable. Let A denote the initial 
model of E. Now, if we could decide U "'A v resp. A ~ U = v for arbitrary u, v E TERM(Eo, V), 
then we obviously could enumerate the theory of A resp. the inductive theory of E. 

In many special cases however A-equivalence can be proved to be decidable. First note that 
S "'A t iff A ~ [s=t (s,t E TERM(E, V)), so that we can concentrate on Eo-equations. 

In the "mere syntactical case" we assume that A ~ U = v iff u == v for alUu, v E 
T ERM(Eo, V). This case is available if A is the free term algebra induced by Eo and V. 
In this case A-equivalence is obviously decidable. 

Example 7.1 Let So = {nat}, Fo = {O,s} and Do = {D:-+ nat,s: nat -+ nat}. Let A be the 
canonical term algebra indu.ced by Eo and V. 

Nex.t the special ~nat-algebraN and ~int-algebra Z are considered. A-equivalence turns out 
to be decidable for these two algebras. For a proof we first introduce the notion of a polynomial 
over Enat resp. Eint. 

Definition 7.1 A polynomial P(Xl,"" xk) over E nat resp. Eint is a term of the form 

where the so-called coefficients C(i! ...ik) are elements of the "basic" Enat-terms {D, 1,2, ...} resp. 
of the "basic" Eint-terms {D, 1, -(1), ...} and d is a natural nu.mber called maximal exponent. 

The degree of p, written deg(p), is the greatest number n~ d such that there exists a 

coefficient C(i\ ...ik) with i l + ... + ik = nand c(i\ ...ik) 1-A 0 (A = N,Z). 

Note that we omit brackets and use the usual priority and abbreviation conventions. 
It is easily verified that for any sETERlvI(Eo, V) one can effectively construct a polynomial 

Ps over Eo such that Ps "'AS (where Eo = Enat , E int and A = N, Z). The next lemma states a 
well known result and provides a method to decide A-equivalence in our special cases. 

Lemma 7.1 Let P(.7.:I," .,.l:k) and P'(XI, ... ,Xk) be polynomials over E nat resp. Eint with 
(w.l. o. g) the same maximal exponent cl and with coefficients c(i ... ik) and c'(. .). Then for 

1, , 'L1, ••• ,'Lk 

A = N and A = Z, 

P '"A pi iff c(· .) = c'· . f 01' all coefficients (i.e. p and pi are identical).
l[,"·,'k - ('1"""k) 

Corollary 7.1 .V-equivalence and Z -equivalence are decidable. 

We turn to A-matching. In general A-matching is not decidable. As a countere,:ample 
consider Z-matching. If Z-matching were decidable, then Hilbert's 10th problem were too, in 
contrast to the well-known result in [~la70]. 

The "mere syntactical case" (see above) is trivial as in this case A-matching reduces to 
ordinary syntactical matching. 

Whereas Z-matching is undecidable. N-matching is decidable. The decision procedure pre
sented below is far away from being of practical interest. Our only interest here is to make the 
search space for the matching substitution finite. Let tt, s be Enat-terms. The decision to be 
made is whether there exists a substit.ution (J' such that O'('u) "'/If s or not. Again the problem 
can be simplified by switching over t.o polynomial representations. 
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EO) such tha t  the inductive theory of E is not recursively enumerable. Let ‚A denote the initial
model of E .  Now, if we could decide u NA v resp. .A l: u = v for arbitrary u, u E TERM(EO‚ V),
then we obviously could enumerate the theory of A resp. the inductive theory of E .

In many special cases however A—equivalence can be proved to be decidable. First note that
s NA t ifi' .A I: 73:; ( s , t  € TERM(E,V) ) ,  so that we can concentrate on Eo-equations. _

In the ”mere syntactical case” we assume that .A I: u = v iff a E v for all—"iu, v 6
TERM (>30, V). This case is available if A is the free term algebra induced by 20 and V.
In this case A-equivalence is obviously decidable.

Example 7 .1  Let So = {not}, F0 = {0,3} and D0 = {0  :-—+ na t , s  : nat —> nat}. Let ‚A be the
canonical term algebra induced by 20 and V.

Next the special Emu-algebra N and Sim-algebra Z are considered. A-equivalence turns out
to be decidable for these two algebras. For a proof we first introduce the notion of a polynomial
over EM, resp. Ei,“.

Defini t ion  7 .1  A polynomial p(.z~1, . . . ,wk) over Emu resp. Sin: is a term of the form

d
P($1‚---‚$k) = Z 2 €(i1. . . ik)$i‘  “”932"

i=0  i1+ . . .+ ik  = i

where the so-called coefficients C(ilmik) are elements of the ”basic” Emu-terms {0 ,  1 ,2 ,  . . .}  resp.
of the ”basic” Elm-terms {O, l ,  —(1),. . . }  and d is a natural number called maximal exponent.

The degree of p, written deg(p), is the greatest number n 5 d such that  there exists a
coefi‘icient C( i l -n ik l  with i1 + . . . + ii,- = n and CH:-„ind 

74,4 [) (A = N,.Z}.

Note that we omit brackets and use the usual priority and abbreviation conventions.
It is easily verified that for any s E TERM (20 ,  V)  one can effectively construct a polynomial

p ,  over 20 such that p$ “M s (where 20  = Em", Em and .A = N', Z ) .  The next lemma states a
well known result and provides. a method to  decide .A—equivalence in our special cases.

Lemma 7 .1  Let 11(x1,... , .rk] and p'(a:1,...,.7:k) be polynomials over Em“ resp. 2m: with
(w.l.o.g) the same maximal exponent d and with coefficients c(,-l _____ 

ik )  and c’( Then for
‚A: /VandAzz ,

i1,...‚ik)'

prvA p' i f f  Winn-Jr) E C’Ul _____ 
ik )  for  all  coe f f i c i en t s  ( i e .  p and  p’ are identical).

Corollary 7 .1  ,V-equivalence and Z-equivalence are decidable.

We turn to A—matching. In general A-matching is not decidable. As a counterexample
consider Z-matching. If Z-matchiug were decidable, then Hilbert’s 10th prob‘em were too, in

- contrast to the well-known result in [Mai’O].
The ”mere syntactical case” (see above) is trivial as in this case .A-matching reduces to

ordinary syntactical matching.
Whereas Z—matching is undecidable. ‚V—matching is decidable. The decision procedure pre-

sented below is far away from being of practical interest. Our only interest here is t o  make the
search space for the matching substitution finite. Let u , s  be Smut-terms. The decision to  be
made is whether there exists a substitution 0 such that 0 (a )  NN s or not. Again the problem
can be simplified by switching over to  polynomial representations.
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Definition 1.2 A substitution a is called a polynomial substitution iff 0"( Xi) is a polynomial 
qi(Yb . .. , yt} over Enat such that the maximal exponent of qi coincides with the degree of qi. 

It suffices to decide for arbitrary polynomials p( Xl, ••• , Xk) and q(YI' ... , Yl) over Enat whether 
there exists a polynomial substitution 0" that satisfies O"(p) '"N q. 

il 
Definition 1.3 Let p(xl, ... , Xk) be a polynomial over Enat and let (1 be a substitution. The 
variable xi contributes to p wrt 0" (and N) iff there exists a constituent C(il ...ik)X~l •• • X~k of p 

such that ij i- 0 and c(i1 ...il;) rfN O. 

Now let P(XI,.'" Xk) and q(YI, ... , yd be given. Let d he the degree of q and let c be the 
(wrt N) maximal coefficient of q. Suppose that a is a polynomial substitution with (1(p) "'N q. 
It is easily verified that if Xj contributes to p wrt 0", then the degree of the polynomials O"(Xj) 
is less or equal than d and the coefficients of a(xj) are less or equal than c. If xi does not 
contribute to p wrt (1, then the value a(xj) can be ch~nged into 0 without changing O"(p) wrt 
"'N. Thus, if there exists a polynomial substitution 0" with a(p) '"N q, then there exists one so 
that a( xj) is a polynomial with degree ~ d and coefficients ~ c wrt N. As there exist only a 
finite number of such "test-substitutions" we get the following result: 

Lemma 1.2 The )V-match is decidable. 

Let us finally ret urn to Z -matching again. Though undecidable in general there can be made 
some positive statements. Fortunately matching is usually needed only for a finite number of 
patterns - the Eo-terms introduced by the left hand sides of the rewrite rules from R. Thus, 
if we keep the syntax of R rather simple, we can possibly decide Z-matching wrt the relevant 
patterns. 

Definition 1.4 A Eint -term is said to be linear iff it is a polynomial over Eint of a degree ~ 1. 
R is said to be linear iff every ~int -term occuring as subterm in a left hand side of a rule 

from R is linear. 

Now the problem is to decide for a linear term p == alxl + .. .akxk + c and an arbitrary 
polynomial q' (Yl, ... , Yi ) over ~int whether there exists a substi tu tion a wi th a(p) '" Z q'. First we 
transform the problem into an equivalent one by " bringing c on the other side". Let q(Yb ... , Yl) 
be the resulting polynomia.l. It is easily verified that if there exists a matching substitution for 
p and q, then there exists such a substitution a with 

with appropriate "basic" integer terms Cj,(i1""k)' :-Iow such a substitution satisfies a(p) "'2 q iff 
the following system of equations with the unknown Cj,(ij ... i!;) has a solution in Z: 

{alCl,(ij ... ikl + ... + (lkCk,(i1 ... id = c(ij ... ik ) I i = 0, ... , d and i l +... + ik = i}. 

As such a system of equations can be solved we get: 

Lemma 1.3 Z -matching It'l'! a linwr rewrite system R is decidable. 
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Definition 7 .2  A substitution 0 is called a polynomial substitution ifl' a(:c.') is a polynomial
q.-(y1, . . . ,  y,) over 2M,  such that the maximal exponent of q,- coincides with the degree of qg.

It suffices to  decide for arbitrary polynomials p(z.1, . . . , zk )  and q(y1, . . . , y,) over EM, whether
there exists a polynomial substitution or that satisfies 0(1)) NN q. :

ii

Definition 7 .  3 Let p(:c1,. . .,a:1,) be a polynomial over En,“ and let a be a substitution. The
variable xj contributes to  p w1t a (and N ) ifi there exists a constituent c(„_ „_‘yz‘l . „a.-k" of p
such that tj # O and c(„___„_) 74M 0 .

Now let p(:c1, . . .,zk) and q(y1, . . „w)  be given. Let d be the degree of q and let c be the
(wrt N' ) maximal coefficient of q. Suppose that or is a polynomial substitution with a(p) NN- q.
It is easily verified that if 3:]- contributes t o  p wrt a ,  then the degree of the polynomials (f(zj)
is less or equal than (I and the coefficients of 0(mj) are less or equal than c. If $j does not
contribute to  p wrt a ,  then the value a(x‚—) can be changed into 0 without changing 0(1)) wrt
NN.  Thus,  if thexe exists  a polynomial subst i tut ion 0 w i th  0(1)) NM q ,  then  there exists one so
that 0 ( x j )  is a polynomial with degree 5 d and coefficients 5 c wrt N . As there exist only a
finite number of such ”test-substitutions” we get the following result:

Lemma 7 .2  The ‚Af—match is decidable.

Let us finally return to Z -matching again. Though undecidable in general there can be made
some positive s ta tements .  Fortunately matching is usually needed only for a finite number of
patterns — t he  St,-terms introduced by t he  left hand sides of t he  rewrite rules from R .  Thus,
if we keep the  syntax of R rather simple, we can possibly decide Z—matching wr t  t he  relevant
pa t t e rns .

Definit ion 7 .4  A Sim—term is said to be linear iff it is a polynomial over Ein; o fa  degree $ 1.
R is said to be linear ijf every Sim-term occuring as subterm in a left hand side of a rule

from R is linear.

Now the  problem is t o  decide for a linear term p E a lx l  + . . .akzk + c and an arbitrary
polynomial q’(y1, . . . ,  yl) over S im  whether there exists a subst i tut ion (7 w i th  0(1)) NZ q’. First we
transform the problem into an equivalent one by ”bringing c on the other side”. Let q(y1, . . . ,yz)
be the resulting polynomial. It is easily verified that if there exists a matching substitution for
p and q ,  then  there exists such a substi tution 0 w i th

d
0($ j )=Z  Z Cj . ( i 1 . . . i o l ‘ i ‘ - - -$ i*

i=0  l l + . -+ ik= l

with app1op1iate ”basic“ integer ter ms Cj ( i1 . .  „_). Now such a substitution satisfies o(p) ~g  q iff
t he  following sy s t em  of equations wi th  t he  unknown c j - ( i l - u i k )  has a solution i n  Z :

{a161,(i1...ik) +; - - + akck . ( i , . . . i k )  = C(1‘1„ . i ; . )  | i :  0 ,  - - . , d  and  i1 + . . .  + i k  = i } -

As  such a sys tem of equations can be  solved we get:

Lemma 7 .3  Z—nmtching 11‘1'1 (.1. linear rewrite sys tem R is  decidable.
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