
F
a

ch
b

e
re

i c
hin

fo
rm

a
t i

k
U

n
i v

e
rs

i t
ä

t K
a

i s
e

rs
l a

u
te

rn
P

o
s t

f a
ch

30
49

D
-6

7
5

0K
a

i s
e

rs
l a

u
te

rn

SE
KI

-
R

EP
O

R
T

INDUCTIVE PROOFS IN SPECIFICATIONS
PARAMETRIZED BY A BUILT-IN THEORY

Klaus Becker
SEKI Report SR—92—02 (SFB)

Inductive Proofs in Specifications

Parametrized by a Built-in Theory

Klaus Becker

Fachbereich Informatik

Universi tat Kaiserslautern

6750 Kaiserslautern

Germany

Inductive Proofs in Specifications
Parametrized by a Built-in Theory

Klaus Becker
Fachbereich Informatik

Universität Kaiserslautern
6750 Kaiserslautern

Germany

Abstract

We consider the problem of proving hypotheses to be valid in all canonical term models of some parametrized
positive/negative conditional equational specification that are induced by the actualizations of the given parameter
theory.
In a first part we develope a method to operationally handle as well the parameter actualizations as the body
specification and here in particular the negative conditions occuring possibly in the conditional equations. By
introducing restrictions on the conditional equations the induced canonical term algebras become in a certain sense
initial models of the specification.
In a second part we present a proof by consistency method to deal with hypotheses formulated as clauses over the

body and (formal) parameter language. If some syntactical premises are fulfilled and if a (built-in) algorithm is
available that decides whether clauses over the parameter language only are logical consequences of the parameter
theory or not, then the proof method becomes refutationally complete.

Abstract

We consider the problem of proving hypotheses t o be valid in all canonical term models of some parametrized
positive/negative conditional equational specification tha t are induced by the actualizations of the given parameter
theor .
In a lirst part we develope a me thod to operationally handle as well t he parameter actualizations as t he body
specification and here in part icular t he negative condit ions occuring possibly in the conditional equations. By
introducing restrictions on the condit ional equations t he induced canonical term algebras become in a certain sense
initial models of the specification.
In a second par t we present a proof by consistency method to deal w i th hypotheses formulated as clauses over the
body and (formal) parameter language. If some syntactical premises are fulfilled and if a (built-in) algorithm is
available that decides whether clauses over the parameter language only are logical consequences of the parameter
theory or not, then the proof method becomes refutationally complete.

1 Introduction

Automation of proving theorems that are valid in some" particular intended" models of a specification is
of great interest in computer science. In recent years powerful tools using inductive reasoning have been
developed for the case that the specifications admit initial models. Thereby the methods by which inductive
reasoning is performed differ, and may be divided into three groups. Firstly, induction is applied explicitly on
the structure of terms like in [Bu69] or [BoM079]. Secondly, completion based techniques for term rewriting
systems are used to get so called "proofs by consistency" (cf. [Mu80, HuHu82, Ba88]). Thirdly, a kind of
combination of the first and second method is realized as in [KoRu90]. Our approach here adopts the second
method heavily relying on the concept of Bachmair in [Ba88].

The specifications to be considered in this paper are parametric, the parameterpart being constituted
by an arbitrary (not necissarily equational) theory. On the one hand, this allows to abstract properties
by axiomatization that otherwise may be achieved implicitely from bottom-up specifications. On the other
hand, the parameter theory can be seperated from the body of the specification and may be treated as
built-in. Whereas the syntax of the parameter part is not restricted in any way, the body of the specification
has to be equational - precisely it has to consist of positive/negative conditional equations. Hence the
specifications we want to analyze differ in various aspects from those already studied by other authors:

Bevers/Lewi in [BeLe91] and Kounalis/Rusinowitch in [KoRu90] have developed methods to prove in­
ductive theorems in positive conditional (bottom-up) specifications. Wirth in [Wi91] allows in addition
negative conditions. Parametrized specifications are studied in a general fashion by H. Kirchner (cf. [Ki91])
in the unconditional case where the parameter theory also has to be equational. Ganzinger in [Ga87] con­
siders parametric positive conditional equational specifications which allow also nonequational assertions as
"parameter constraints", but he is primarily interested in confluence results and not in inductive theorem
proving.

The "particular intended" models of a given specification we are interested in are the canonical term
algebras T(A) induced by the body specification R and the models A of the parameter theory T. By
introducing further restrictions on R we achieve that every model A of the parameter theory T is " contained"
(isomorphicallyembeddable) in the corresponding canonical term algebra T(A) and that T(A) is initial in
the class of models of R that contain A. Hence the "intended" models are all the "free extensions" (cf.
[GoMe87]) T(A) of the models A of T induced by R. To be able to define T(A) we add to Ra " description
of A" - the diagram of A - consisting of the" evaluation rules" and the" protection restrictions" induced
by A.

Our concept to operationally handle the negative literals that may occur in the conditions of R is influ­
enced by [BaGa91]. We first develope a perfect model semantics and further add conditions until we reach
the desired initiality.

The theorems to be proved are clauses that are valid in all the canonical extensions T(A) of all the
models A of T. Additionally to proving theorems we' want to refute hypotheses t,hat are not valid in some
T(A). If the theory T is "simple" we will get a refutationally complete theorem prover.

The paper is organized as follows: The sections can be split into two main parts: the definition of
semantics (sections 2 - 5) and theorem proving (sections 6 - 11). Section 2 introduces the "standard
situation" we deal with. In section 3 and 4 we define the congruence relation which induces the canonical
term model in a slightly more general situation than our standard situation, as these results are of their
own interest. In section 5 we transfer the results achieved in the general situation to the standard situation.
Sections 6 to 9 are devoted to theorem proving. We introduce a new simplification concept which is influenced
by Nieuwenhuis/Orejas (cf. [NiOr91J). In section 10 we illustrate some ideas by examples and in section 11
we present a built-in algorithms for a simple theory.

We assume that the reader is familiar with the basic concepts of term rewriting, equational reasoning (cf.
[AvMa90, DeJo90J) and mathematical logic. We define notations only if they differ from standard notations.

2 Parametrized Specifications

A positive/negative conditional specification parametrized by a built-in theory (speco, Specl) (short: specifi­
cation) consists of speco = (Eo, T) and SpeCl = speco + (E, R), where Eo, E and El = Eo U E are signatures,

1

1 Introduct ion

Automation of proving theorems that are valid in some ”particular intended” models of a. specification is
of great interest in computer science. In recent years powerful tools using induct ive reasoning have been
developed for the case that the specifications admit initial models. Thereby the methods by which inductive
reasoning is performed differ, and may be divided in to three groups. Firstly, induction is applied explicitly on
the structure of terms like in [Bu69] or [BOM079]. Secondly, completion based techniques for term rewriting
systems are used to get so called ”proofs by consistency” (cf. [Mu80, HuHu82, Ba88]). Thirdly, a k ind of
combinat ion of t he fi rs t and second method is realized as in [KoRuQO]. Our approach here adopts t he second
method heavily relying on the concept of Bachmair in [Ba88].

The specifications to be considered in th i s paper are parametric , the parameterpart being consti tuted
by an arbi t rary (no t necissarily equat ional) theory. On the one hand , this allows to abstract properties
by axiomatizat ion that otherwise may be achieved implicitely from bottom-up specifications. On the other
hand , t he parameter theory can be seperated from the body of the specification and may be treated as
built-in. Whereas the syntax of t he parameter par t is not restricted i n any way, the body of the specification
has t o be equational — precisely i t has t o consist of posi t ive/negative conditional equations. Hence the
specifications we want to analyze differ in various aspects from those already studied by other authors:

Bevers/Lewi in [BeLe91] and Kounalis/Rusinowitch in [KoRu90] have developed methods to prove in-
ductive theorems in positive conditional (bottom-up) specifications. Wirth in [Wi91] allows in addition
negative conditions. Parametr ized specifications are s tudied i n a general fashion by H . Kirchner (cf. [Ki91])
in t he uncondit ional case where t he parameter theory also has to be equat ional . Ganzinger in [Ga87] con-
siders parametr ic positive condit ional equat ional specifications which allow also nonequational assertions as
”parameter constraints”, bu t he is pr imari ly interested in confluence results and not i n inductive theorem
proving.

The ”particular intended” models of a given specification we are interested in are the canonical term
algebras T (A) induced by the body specification R and the models A of the parameter theory T . By
introducing further restrictions on R we achieve t ha t every model ‚A of the parameter theory T is ”contained”
(isomorphically embeddable) in the corresponding canonical term algebra T(A) and that ’T(.A) is initial in
the class of models of R tha t contain .4. Hence the ”intended” models are all the ”free extensions” (cf.
[GoMe87]) T_(.A) of the models .A of T induced by R. To be able to define T(A) we add to R a ”description
of .A” — the diagram of .A — consisting of the ”evaluation rules” and the ”protection restrictions” induced
by .A.

Our concept to operat ionally handle the negative l i terals that may occur in the conditions of R is influ—
enced by [BaGa91]. We first develope a perfect model semantics and further add conditions until we reach
the desired initiality. "

The theorems to be proved are clauses that are valid in all the canonical extensions T(.A) of all the
models A of T . Addit ionally t o proving theorems we' want to refute hypotheses that are not valid in some
T(.A). If the theory T is ”simple” we will get a refutationally complete theorem prover.

The paper i s organized as follows: The sections can be spl i t in to two main par ts : t he definit ion of
semantics (sections 2 — 5) and theorem proving (sections 6 — 11). Section 2 introduces the ”standard
si tuat ion” we deal wi th . I n section 3 and 4 we define the congruence relation which induces the canonical
t e rm model i n a ' s l ight ly more general s i tua t ion than ou r s tandard s i tuat ion, as these results are of their
own interest . I n section 5 we transfer the results achieved in the general s i tuat ion to the standard s i tuat ion.
Sections 6 to 9 are devoted t o theorem proving. We introduce a new simplification concept which is influenced
by Nieuwenhuis/Orejas (cf. [NiOr91]). In section 10 we illustrate some ideas by examples and in section 11
we present a buil t- in a lgori thms for a s imple theory.

We assume that the reader is familiar with the basic concepts of term rewriting, equational reasoning (cf.
[AvMa90, DeJ090]) and mathematical logic. We define notations only if they differ from standard notations.

2 Parametrized Specifications
A pos i t i ve /nega t ive cond i t i ona l spec ifica t ion pa rame t r i zed by a built—in theo ry (specmspec l) (sho r t : specifi-
cation) consists of speco = (20 , T) and specl : speco + (2 , R) , where EO, E and 21 = Z30 UE are signatures,

T is a set of Eo-axioms of a theory (i.e. a set of closed Eo-formulas) and R is a finite set of positive/negative
conditional directed equations over El.

A signature E = (5, F) consists of a set 5 of sort symbols and a set F of function symbols with arities
in 5·.

A positive/negative conditional directed equation over El (short: conditional equation) is written in the
form U = v if Ul /\ ... /\ Un where u, v are El-terms and Ul , ... , Un are El-literals. As usual we require that
u is no variable and that all variables occuring in v, Ul , ... , Un also occur in u. We often split the literals of
a condition into a positive and a negative part and write them in the form Ul = VI /\ ... /\ Uk = Vk /\ Ul "#
VI /\ ... /\ UI "# VI or even 1\ U; = V; 1\ Ui "# vi'

; i
We write TERM(F;, V;) resp. LIT(F;, V;) resp CLAUSE(F;, V;) for the set of E;-terms resp. E;-literals

resp. E;-clauses, where F; resp. 5; is the set of function symbols resp. sort symbols from Ei and V; is the
set of variables associated with Si. If we want to express a sort restriction, we add an appropriate index,
e.g. LITo(Fl , Vd is the set of El-literals U = v resp. u"# v over the parameter sorts So, where u, v, u, v are
El-terms of sort So. We write TERM(F;) for the set of ground terms over E;.

The following example, which - in a modified version - is taken from [Gr90], specifies sorting by
successively extracting the minimum element. Note that the conditions are El-literals over sorts from So.

Example 1
(a) the signatures

So = {boole, element} 51 = So U {list}
Fo={t,f,>} F l = Fo U {nil,., leq, min, del, ord, sort}

~ boole
~ boole
~ boole
~ list
~ list
~ boole
~ element
~ list
-+ boole
~ list

(b) the parameter theory T = Tboole U Ttotordltet

Tboole {t "# f , 'ix : boole. x = t V x = f}
Ttotord.et {'ix, y, z : element. (x> x "# t) /\

(x > Y = t /\ Y > z = t ~ x > z = t) /\
(x> Y = t V x = y V y> x = tn

(c) the body specification R

(1) leq(x, nil) t
(2) leq(x, a.A) f if x>a=t
(3) leq(x, a.A) leq(x, A) if x>a"#t

(4) min(x, nil) x
(5) min(x, a.A) = min(a, A) if x>a=t
(6) min(x, a.A) = min(x, A) if x> a"# t

(7) del(x, nil) nil
(8) def(x, a.A) del(x, A) if x=a
(9) del(x,a.A) a.deICx, A) if x"#a

2

T is a set of EEO-axioms of a theory (i.e. a set of closed ISO-formulas) and R is a finite set of positive/ negative
condit ional directed equations over 21 .

A signature 2 = (S, F) consists of a set S of sort symbols and a set F of function symbols with arities
in S ‘ .

A positive/negative conditional directed equation over 21 (short: conditional equation) is written in the
form u = v if U1 /\ . . . A U,l where 14,1) are El- terms and UI , . . . , U„ are El-li terals. As usual we require that
u i s no variable and that all variables occuring in v, U1, . . . , U,. also occur in u . We often spli t the literals of
a condition into a positive and a negative part and write them in the form u ; : vl A . . . A uk : v]c A ül #
v1 A...Aiz, 965 , or even Au; : „An;— #ö j .

t 1
We write TERM(F.—, Vi) resp. LIT(F‚—‚ V5) resp CLAUSE(F,-, V;) for the set of Eg-terms resp. Eli-literals

resp. Eli-clauses, where F.- resp. S; is the set of function symbols resp. sort symbols from E.- and V; i s the
set of variables associated wi th S ; . If we want t o express a sort restriction, we add an appropriate index,
e.g. LITo(F1, V1) is the set of Ell-literals u = v resp. ü # 17 over t he parameter sorts So , where u , 1517,17 are
Ell-terms of sort 50. We write TERM (F.) for the set of ground terms over 2 ; .

The following example, which — in a' modified version — is taken from [GI-90], specifies sorting by
successively extracting the minimum element. Note that the conditions are XII-literals over sorts from So.

Example 1
(a) the signatures

$0 = {boole, element} S; : So U {list} —
F0 = { t , f , >} F1 = F0 U {ml, .,leq, min,del, 0rd, sor t}

t —> boole
f ——r boole
> element, element —-> boole
n i l ——> list
. element,list —> list
leq : element,list —> boole
min : element‚list —-> element
del : clement,list —-+ list
ord : list ‘ —> boole
sort : list _» list

(b) the parameter theory T : Tboole U Tgomdm

{t96 f , Vz :boo le .x= tVa := f}
{Vz,y,z:element. (x>z ; é t) A

(: c>y= t A y>z= t # z>z= t) / \
(x>y= t V z=y V y>x=t)}

Tboole

T to to rdse t Il
H

(c) the body specification R

(1) leq(:c‚ nil)
(2) leq(:e, a.A)
(3) leq(r, a.A)

(4) min(:::, nil)
(5) min(:c, a.A)
(6) min(;r,a.A)

t

f i f I>a= t
leq(x‚A) i f x>a7é t

.1:
min(a,A) if 1: > a = t
min(z ,A) if z>a¢ t

(7) del(a:, ni!)
(8) del(:c,a.A)
(9) del(a:‚ a.A)

nil
de l (a : ,A) i f a: = a
a.del(_x‚ A) i f 1: :‚E a

(10) ord(nil) t
(11) ord(a.A) ord(A) if leq(a, A) = t
(12) ord(a.A) f if leq(a, A) f. t

(13) sort(nil) nil
(14) sort(a.A) = min(a, A).sort(del(min(a, A), a.A»

(d) theorems to be proved

(A) min(a,A) > a f. t
(E) leq(min(x, A), A) = t
(C) leq(x, del(a, A» = leq(x, A) V x> a = t
(D) leq(x, sort(A» = leq(x, A)
(E) ord(sort(A» = t

An actualization of the parameter theory T is a model A of T (abbreviated by: A ~ T). We want to describe
A by its diagram. For that reason we enrich the signatures by adding new constants!! for each element a of
the carrier A of A. Let C(A) be the set of new constants and let Fi(A) = Fi U C(A). The positive diagram
DJA+(A) of A is the set of all (directed) equations f(gl""'f!,.) = gsuch that f E FOi ai,a E A and
fA (al' ... ,an) = a. The negative diagram DJA - (A) of A is the set of all negated equations g f. Qsuch that
a, b E A are distinct elements of the carrier of A.

If there are negative literals in the conditions one has to use additional informations to get the particular
models of interest (cf. [Ka88]). As in [BaGa91] we use a reduction ordering> for that purpose. So let> be
always given besides Rand T. We assume that R is compatible with >, i.e for u = v if 1\ Ui = Vi 1\ Uj f. Vj E

i j

R we have u > v, Ui, Vi, Uj, Vj. To get an ordering that is appropriate for conditional rewrite systems - see
the disscussion of decreasing conditional rewrite systems in [DeOkSi88] - we have to require an additional
well founded ordering >e that is an extension of >, that contains the proper subterm ordering >$1 and that
is stable w.r.t. substitutions. Now, if> is given, one can always assume >e to be the transitive closure of
> U >.1. For simplicity we will claim in the sequel that the proper subterm ordering >$1 is even part of>
so that we do not need the additional ordering >e.

Definition 1 A (reduction) ordering> on TERM (F1 , Vd is said to be T-extendable iff for every A ~ T
there is a (reduction) ordering >(A) on TERM(F1(A), Vd containing> such that DJA+(A) is compatible
with >(A).

Note that if >(A) is a T-extension of a reduction ordering> which has the proper subterm property, then
>(A) has the proper subterm property with respect to the greater set of terms as well. For a proof just
exchange the constants from C(A) by new variables.

Finally, if we are given T, R, > with> assumed to be T-extendable, we get after actualizing T by A a
triple (R(A), N(A), >(A) where

•	 R(A) = Ru DJA+(A) is the set of equations to be used to construct the term model T(A).

•	 N(A) = DJA- (A) is a set of "protection"-restrictions.

•	 >(A) is a reduction ordering which is used as induction guide in the construction of the te~m model
T(A).

The canonical term algebra

As mentioned in the introduction, we abstract here from the "standard (parameter passed) situation" ­
described by a triple (R(A), N(A»(A» - by considering arbitrary triples (R,N, H with

•	 >- being a reduction ordering on TERM(F, V) with >$t~>-,

• R being a set of positive/negative conditional directed equations over I; compatible with >- and

3

3

l
ord(A) if leq(a‚ A) = t
.f i f (€401.11) # t

(10) ord(nil)
(II) ord(a.A)
(12) ord(a.A)

nil
min(a‚ A).sort(del(min(a, A), a.A))

(13) sort(niI)
(14) sort(a.A)

(d) theorems to be proved

(A) min(a,A) > a # t
(B) q (min (z ‚ A),A) = t
(C) q (z ,de l (a ,A)) : q (x ‚ A) V a: > a : 1
(D) q(:c, sort(A)) : q(:r‚ A)
(E) ord(sort(A)) : t

An actualization of the parameter theory Tis a model A of T (abbreviated by: A l: T) . We want to describe
A by its diagram. For that reason we enrich the signatures by adding new constants g for each element a of
the carrier A of A. Let C(A) be the set of new constants and let F.-(A) = F.- UC(.A). The positive diagram
DIA+(A) o fA is the set of all (directed) equations f (g l , . . . , g„) : g such that f 6 F0; a ; , a E A and
f" (a1 , . . „an) : a . The negative diagram DIA‘ (A) ofA is the set of all negated equations g 96 qch that
a, b E A are distinct elements of the carrier of A .

If there are negative li terals in t he conditions one has to use addi t ional informations to get the part icular
models of interest (cf. [Ka88]). As in [BaGa91] we use a reduction ordering > for that purpose. So let > be
always given besides R and T . We assume that R is compatible with > , Le for u = v i f /\ u,— = v.- Aüj # T)“,— E

t J
R we have u > v, 11;, vbfl jfl i j . To get an ordering tha t i s appropriate for conditional rewrite systems —— see
the disscussion of decreasing conditional rewrite systems in [DeOkSiSS] — we have to require an additional
well founded ordering >e that is an extension of > , that contains the proper subterm ordering >” and that
is stable w.r . t . substi tutions. Now, if > is given, one can always assume >e to be the transitive closure of
> U >" . For s implici ty we will c la im in the sequel that the proper subterm ordering >" is even pa r t of >
so that we do not need the additional ordering >9. !

Definition 1 A (reduction) ordering > on TERM(F1, V1) is said to be T-extendable ifl'for every A I: T
there is a (reduction) ordering >“) on TERM(F1(A), V1) containing > such that DIA+(A) is compatible
wi th >(A) -

Note that if >“) is a T—extension of a reduction ordering > which has the proper subterm property, then
>(A) has the proper subterm property with respect to the greater set of terms as well. For a proof just
exchange the constants from C(A) by new variables.

Finally, if we are given T, R , > with > assumed to be T-extendable, we get after actualizing T by A a
triple (R(A), N(A), >(A)) where

o R(A) = RU DIA+ (A) is the set of equations to be used to construct the term model T(A).

o N (A) : DIA ' (A) is a set of ”protection”-restrictions.

0 >“) is a reduction ordering which is used as induction guide in the construction of the-term model
T(.A).

3 The canonical t e rm algebra
As mentioned in the introduct ion, we abstract here from the ”s tandard (parameter passed) si tuation” —
described by a triple (R(A), N (A)>(‚4)) — by considering arbitrary triples (R,/V , >) with

. >- being a reduction ordering on TERM(F, V) wi th >„g> ,

. R being a. set of positive/ negative conditional directed equations over E compatible with >- and

• N being a set of negated equations over E.

The results obtained for such an arbitrary triple will be carried over to the standard triples in section 5. R
and r will be used to construct the term model 7 whereas N serves as a set of restrictions. Note that in
contrast to [BaGa91] we do not require r to be total on ground terms.

Let INST(R) (resp. INST(N» be the set of ground instances ofR (resp. N), i.e. INST(R) = {T(U) =
T(V) if T(Ud /\ ... /\ T(Un) I U = v if U1 /\ .•../\ Un ER and T is a ground substitution}.

We define by noetherian induction on r for each u E TERM (F) a set Gu of unconditional directed
ground equations:

Let u E TERM (F) be a ground term and suppose that Gv is already defined for all ground terms v for
which u r v holds. Then let

G-<.u= Uu>-v Gv and

Gu = G-<.u U {u = v I there is an instance u = v if 1\ Ui = Vi 1\ Uj i- Vj ElN ST(R) such that
i j

Ui ~-<_ Vi for i = 1 ... k and not Uj ~-<_ Vj for j = 1 .. . /}

Note that we write --->-<_ resp. --->u instead of --+G-<_ resp --+G_. Finally let

G = UUETERM(F) Gu

be the ground rewrite system induced by Rand r.
The rewrite relation -=--+G induces a congruence relation ""=~G on the set TERM(F) of ground

terms and henceforth via "" a canonical term algebra 7 with carrier TERM (F) / _. 7 will be called the
canonical term algebra induced by (R, r).

We want 7 to be a model of Rand N - which is not true in gerenal. To guarantee this fact we
introduce the notion of consistency property. First let G {.,t} = {u = v E G I s ~ u or t ~ u} and as usual

--+{ •. <l =--+G{.,.,·

Consistency properties for (R, N, r):
(cl) For any s,t E TERM(F) we have: s ~ tiff s ~{.,.} t.

(c2) For any U i- v E INST(N) we have: not u ~ v .

.Lelllllla 1 Let (R, N, >-) satisfy the consistency properties (cl) and (c2). Then 7 is a model ofR and N.

Proof: 7 F= N is trivial by (c2). Let u = v if 1\ Ui = Vi 1\ Uj i- Vj E IN ST(R) and 7 F= 1\ Ui = Vi 1\ Uj i- Vj.
i j i j. . (. .Hence Ui +---+ Vi and not Uj +---+ Vj. By cl) we get Ui +---+{ _, ,V;} Vi. As U r Ui, Vi we have Ui +---+-< _ Vi. If

Uj ~-<_ Vj, then Uj ~ vi. Consequently u = v E G and 7 F= U = v. 0

The operational treatment of negations as defined above leads to so called perfect models. We summa­
rize in short the ideas and results necessary for our context (cf. [BaGa91] for the general case).

Exalllple 2 R = {c = b if a i- b}; N = 0; c r b, c r a

There are three term models of R (and N):

• 7 1 satisfies a i- b = c.

• 7 2 satisfies a = b i- c.

• 73 satisfies a = b = C.

7 1 is the model we prefer, as 7 1 is a "minimal" model and as the term equivalences in 7 1 are" constructive" .
We make precise these ideas by introducing the notion of a perfect model.

Arbitrary models of R (uN) can be compared by related congruence relations on TERM(F). Let A
be an algebra (over the signature related to F). A induces a congruence relation ""A on TERM(F) by

As ""A tiff sA = tA, where sA and t are the values of sand tin A. Let r P=-<-< be the preference ordering
on multisets of terms. We compare two congruence relations ""1 and ""2 on T ERM(F) by

""1>-i""2 iff {{s, t} I S ""1 t} >-P>-P {{s, t} Is ""2 t}.

4

. N being a set of negated equations over E. \

The results obtained for such an arbitrary triple will be carried over to the standard triples in section 5. 12
and >— will be used to construct the term model 7 whereas N serves as a set of restrictions. Note that in
contrast to [BaGa91] we do not require > to be total on ground terms.

Let INST(R) (resp. INST(N)) be the set of ground instances of’R. (resp. N) , i.e. INST('R‚) : { f (u) :
r(v)1'f r(U1) A . . . A T(U„) | u = v i f UI A . . .A-A U,. E R and ‘r is a ground substitution}.

We define by noetherian induction on > for each u € TERM (F) a set G„ of unconditional directed
ground equations:

Let u E TE RM (F) be a ground term and suppose that G., is already defined for all ground terms 11 for
which 11 > 1; holds. Then let

G4" : Un”) G., und

G., = G<u U {u = v | there is an instance a = v if Au.- = 0; Am 96 '17J- E INST(R) such that
" ‚i

u‚-<—>' <„ .v . - ‚ f a r i= l . . kandnotü j« ;»“ö j fo r j z l . . . ”
Note that We write ___->

(_ resp. —>„ instead of ——»G<_ resp —>G„. Finally let

G : UueTERM(F)Gu

be the ground rewrite system induced by 'R. and >-
The rewrite relation —->=—1G induces a congruence relation „:.—‚G on the set TERM (F) of ground

terms and henceforth via ~ a canonical term algebra T with carrier TERM (F) / „ T will be called the
canonical term algebra induced by (R , >) .

We want 7 to be a model of ’R. and N — which is not true in gerenal. To guarantee this fact we
introduce the notion of consistency property. First let Gut} = {u = v E G | s t u or t t u} and as usual
"""(. ,1)=—’G(. .1) '

Consistency properties for (R, N, >) '
(cl) Foranys tETERM(F) we have: s<—>t i f fs<—>„(, t
(c?) For any a # v E INST(N) we have: not a +——> v.
Lemma 1 Let (TL/V, >) satisfy the consistency properties (01) and (c2). Then T is a model of'R‚ and N.
Proof: T | =N is trivialby (c2). Let u = v i f / \u,- : v,- Au} 96 ij € INST('R‚) and’T |: Au.- = v.- AEJ- # ij.

" j
Hence u,- 1—1 1).- and not uJ- <—> vJ-. By (c l) we get 11,-4—1(_ H11 , - . As u >— u,-‚v; we have u.— (L.“ 1);. I f
UJ <-—‘—+<_ uJ-, then uJ- «—> vJ-. Consequently u—_- v € G and T |: u—_ 1). El

The operational treatment of negations as defined above leads to so called perfect models. We summa-
rize in short the ideas and results necessary for our context (cf. [BaGa91] for the general case).

Example2 'R.={c=bifa;£b}; N=(ll; c>-b, c>a
There are three term models of R (and N):

o Tl satisfies a # b = c.

o 7} satisfies a = b 96 c.

o T3 satisfies a = b = c.

TI is the model we prefer, as TI is a ”minimal” model and as the term equivalences in ’T1 are ”constructive”.
We make precise these ideas by introducing the notion of a perfect model.

Arbitrary models of R (UN) can be compared by related congruence relations on TERM (F) Let ‚A
be an algebra (over the signature related to F). A induces a congruence relation NA on TERM (F) by
s NA ! iff s "_- t" where s“ and t ‘ are the values of s and t 1n .A. Let >”: << be the preference ordering
on multisets of terms. We compare two congruence relations ~1 and „=, on TERM (F) by

~1>- ~2 ifi‘ {{s t} | s ~1 t} >-P>p {{s t} | s ~g t}

Definition 2 A n algebra A is called a perfect model of (n, N, 'r) iff A is a model of nuN and for any
other model B of nuN we have -at i

- A.

Theorem 1 Let (n,N, 'r) satisfy the consistency properties (cl) and (c2). Then T is a perfect model of
nuN.

Proof: (c. [BaGa91]) By Lemma 1, T F n uN'. Now let B F n uN. Assume -::/:-s. Let {s, t} E- \s.
We construct {s',t'} E.....s \ - with {s',t'} >P {s,t} resp. {s,t} 'r'r {s',t'}.

Case 1: {s,t} is a (w.r.t. 'r'r) minimal element of \s: As s ~ t we get by (cl) s ~{ •.•} t resp.

s == So <--->{ ••• t SI <--->{"'} ..• <--->{ •• l} sn == t for some n and so,···, Sn E TERM(F). As s 7-S t there exists a

m E {l, ... , n J so that Sm-l 7-a Sm. Let Sm-l <--->{"'} Sm with U= v E G{$,t}. By the definition of G there

is some u = v if !\ Ui =Vi !\Uj ::/: Vj E IN ST(R) with Ui ~-<. Vi and not Uj ~-<. Vj' We get U 7-S v,
i j

for otherwise Sm-la Sm' Further Uj 8 Vi, for otherwise {s, t} would not be a minimal element of - \8.

We have Uj 8 Vj for some j E {1, ,I}, for otherwise U8 v as B F u = v if !\Ui =Vi!\Uj ::/:Vj.
i j

Finally Uj 7- Vj, for otherwise Uj ~{~i'.i} Vj by (cl) and hence Uj ~-<. Vj. We get {Uj, Vj} E.....s \ and

{s,t} 'r'r {Uj,Vj}. Hence let s' == Uj and e == Vj.

Case 2: {s,t} is not a minimal element of \8: As 'r'r is noetherian there exists a w.r.t. 'r'r min­
imal element {s",t"} in - \8 such that {s,t} 'r'r {s",t"}. By case 1 we get {s',t'} E.....B \ with
{s",t"} 'r'r {s',t'} and consequently {s,t} 'r'r {s',t'}. 0

Example 2 above shows that a perfect model need not be initial. Now we want T not only to be a perfect
but also an initial model of nuN. We know that T is initial in the class of algebras B for which is a
subset of8. By requiring that certain inequivalences are equivalently transformable into "restrictions" in
N we will be able to prove that -~~/3 for any B F nuN.

Let N_ be the set of negated equations u:f- v (u, v E TERM(F, V» such that for any ground substitution
r with r(u) 7- r(v) there is an instance a :f- b E [NST(N) (of a "restriction") with r(u) a, r(v) b,
r(u) t a and r(v) t b. We might say that inequivalences that result from instantiating a member of N_
are operationally covered by the "restrictions" N.

Let Nn be the set of negativ literals that occur in the conditions of the conditional equations in n.

Negation covering property for (n, N, 'r):
(ne) Nn ~ N_

Lemma 2 Let (n,N, 'r) satisfy the consistency properties (cl) and (c2) as well as the negation covering
property (ne). Then~8 for any model B of nuN.

Proof: Let B F n uN. By noetherian induction w.r.t. 'r'r we prove P({s,t}) for any s,t E TERM(F)
with P({s,t}) iff 5 t implies 5 "'/3 t. Assume P({s',t'}) for any s',t' E TERM(F) with {s,t} 'r'r {s',t'}.
Let s t. Suppose 57-a t. Then - check the proof of theorem 1 - we get Uj ::/: Vj E INST(Nn) with
{Uj,Vj} E.....8 \ and {s,t} 'r'r {Uj,Vj}. By (nc) there is a::/: b E INST(N) with Uj a and Vj b as
well as Uj t a and Vj t b. By the induction hypothesis we get Uj 8 a and Vj -8 b. Hence aB b which
contradicts B F N. 0

Sufficient criteria for the consistency properties

We assume that (1?, N, :>-) is given as in section 3. We use the same notations as above.

Lemma 3 If ---+ is confluent, then (1?, N, 'r) satisfies the consistency property (cl).

Lemma 4 If ---+ is confluent and if a and b are neither identical nor ---+-reducible for any instance a :f­
bElN ST(N) , the~ (1?, N,:>-) satisfies the consistency property (c2).

5

4

Definition 2 An algebra ‚A is called a perfect model of (R,/V, >) ifl'A is a model of’R. UN and for any
other modelB of'R UN we have ~5 : '~A .

Theorem 1 Let (R .N‚>) satisfy the consistency properties (cl) and (c2). Then T is a perfect model of
R u N.

Proof: (c. [BaGa91]) By Lemma 1, T l: RUM. Now let B |: RUN. Assume «aß-vg. Let {s , t } €~ \ «5 .
We construct {s’,t’} €»; \ ~ with {s’, t’} >? {s , t } resp. { s , t } >> {s’,t’}.
Case 1: {s,t} is a (w.r.t. >>) minimal element of ~ \ "8! As s «L» t we get by (cl) s «LW, t reap.

M s l 4—7”, ‘_ ' (- . :) s,. E t for some n and so, . . . , s„ € TERM(F) . As s 743 t there exists a
m E {1 , . . . , n) so that sm._1 7% sm. Let s‚„_1 4—7” , sm wi th u = v € Gut} . By the definition o fG there
is some u = v if Au.- : nüj # Uj € INST(R) with u.- ; v,- and not fij «—‘-> _ ij. We get u 765 v ,

" J"

sEsoe—v

<- <

for otherwise sm_1 ~3 sm. Further u,- wg vg. for otherwise { s , t } would not be a minimal'element of ~ \ «3 .
We have ü,- "5 v,- for some j E { l , . . . , l } , for otherwise u ~5 1) as B }: u = 0 i f Au.- =v‚-/\ü_‚- #Fj .

" .i
Finally üj 76 '61-, for otherwise üj ;."i if,- by (cl) and hence 17,- é“ 5;. We get {m,öj} €~3 \ ~ and
{s,t} >> {i,-,Üj}. Hence let s’ E ii]- and t' E i j .
Case 2: {s , t } is not a minimal element of ~ \ NB: As >>- is noetherian there exists a w.r.t. >> min—
imal element {s"‚t”} in ~ \ ~5 such that {s,t} >>- {s”,t”}. By case 1 we get {s’,t'} e~3 \ ~ with
{s”,t”} >>- {s’‚t’} and consequently {s , t } >> {s',t’}. Cl

Example 2 above shows that a perfect model need not be initial. Now we. want ’1' not only to be a perfect
but also an initial model of ’R U N . We know that T is initial in the class of algebras B for which ~ is a
subset of NB. By requiring tha t certain inequivalences are equivalently transformable into ” restrictions” in
N we will be able to prove that «gas for any ß l: R UN.

Let N... be the set of negated equations u # v (u, v E TERM (F, V)) such that for any ground substitution
r with r(u) 76 T(’U) there is an instance a 96 b € INSTUV) (of a ”restriction”) with r (u) ~ a, 7(1)) ~ b,
f (u) t a and r(v) : b. We might say that inequivalences that result from instantiating a member of N..
are operationally covered by the ”restrictions” N .

Let NR be the set of negativ literals that occur in the conditions of the conditional equations in ’R,.

Negation covering property for (R,/V, >):
(nc) N1; g N..

Lemma 2 Let (R‚N‚>) satisfy the consistency properties (cl) and (c2) as well as the negation covering
property (nc). Then ~§~5 for any model B of’R UN.

Proof: Let B): R UN. By noetherian induction w.r.t. >>- we prove P({s,t}) for any s,t E TERM(F)
with P({s,t}) ill 5 ~ t implies s «3 t . Assume P({s’,t’}) for any s’,t' E TERM(F) with {s , t } >>- {s’‚t’}.
Let s ~ t.' Suppose s 705 t . Then — check the proof of theorem 1 — we get üj # 17,- E INSTUVR) with
{11,317,} EN,; \ ~ and { s , t } >> {Üj,1_7j}. By (nc) there is a # b € INST(N) with fij ~ a and 17,- ~ b as
well as üj >_- a and öj t b. By the induction hypothesis we get it,- NB a and 17,— ~5 b. Hence a “B b which
contradicts B): N . U

4 Sufficient criteria for the consistency properties
We assume tha t (R, /V , >) is given as in section 3 . We use the same notations as above.

Lemma 3 If—’ is confluent, then (R‚N,>) satisfies the consistency property (cl) .

Lemma 4 If——> is confluent and i fa and b are neither identical nor ———i-reducible for any instance a 96

b € INST(N)‚ then ('R„N‚ >) satisfies the consistency property (c2).

We now turn to the question of how to guarantee the confluence of -, which plays the central role in
the lemmata above. The rewrite system G is not given directly, but has to be constructed by an inductive
process. So how can we make statements about G by only inspecting n? To give an answer to this question
we introduce the new rewrite relation -1l:

Definition 3 For s, t E TERM(F, V) let s -1l t iff there exists an occurence p E O(s), a substitution U

and an equation U = v if /\ Ui = Vi /\ Ui =f. Vi E"n such that s/p == u(u), s(p +- u(v)] == t and U(Ui) !1l u(v;)
i i

and not u(ui) !1l u(vi)'

Lemma 5 Let t E TERM(F) and let -. be confluent for all s -< t. Then for all s -< t and all s' we have:
s -. s' iff S -1l s'.

Proof: by inoetherian induction

Theorem 2 If -1l is ground confluent, then -a is confluent.

Proof: We prove by noetherian induction on >- that -. is confluent for all t E TERM(F). Then the
claim follows immediately. Let t E TERM(F) and assume that -. is confluent for all s -< t. As -a is
noetherian (note that n and hence G is compatible with >-) it suffices to prove local confluence and - as

/usual - to consider critical divergencies v ,+-- U -, u(p +- v'] with U = v, u' = v' E G t and u/p == u .
We first want to prove v 1l+-- U -R u(p +- v']. If t >- u and t >- u' , then we can use Lemma 5 and the
induction hypothesis. Now let w.l.o.g. t 'I- u. Then t == u as u = v E G t . We know that there exists some
u = v if /\ Ui = Vi /\ Ui =f. Vi E INST(Il) with Ui ~-<_ Vi and not Ui ~-<_ vi' By assumption --<_ is

i i
confluent. Hence Ui !-<_ vi. As t == u >- Ui, Vi we get by Lemma 5 Ui !1l vi· If we had ui !1l vi, then we
would get with Lemma 5 ui ~-<_ Vi' So U -1l v. Analogously we get u -1l u(p +- v'].

As -1l is ground confluent by assumption there exists awE TERM(F) with V ~1l w 1l~ u(p +- v'].
Again by Lemma 5 we can conclude v ~. w .~ u(p +- v']. 0

Corollary 1 If -1l is ground confluent, then for all s, t E TERM(F) we have: s -a t iff S -1l 1.

Now confluence of positive/negative conditional rewrite systems can be tested in the same manner as in
the merely positive conditional case.

A critical equation between two (variable disjoint) conditional' equations U = v if U and u' = v' if U'
is a conditional equation J-l(v) = J-l(u)(P +- J-l(v')] if J-l(U) /I. J-l(U/) where u/p is no variable, u/p and ui are
unifiable and J-l is the most general unifier of u/p and u' .

A substitution U satifies a condition /\ Ui = Vi /\ Ui =f. Vi w. r. t. n iff u(Ui) !1l u(Vi) (i = 1 ... k) and not
i i

u(ui) !1l u(vi) (j =1 ... I).
A conditional equation U = V if /\ Ui = Vi /\ Ui =f. Vi is called joinable w.r.t. n (and the signature "E) iff

i i
for any "E-substituti"on U which satisfies /\ Ui = Vi /\ Ui i= Vi we have u(u) !1l u(v).

i i

Theorem 3 If all critical equations that can be built from the conditional equations ofn are joinable w.r.t.
Il (and "E), then n is confluent.

Proof: analogous to the positive conditional case

5 Canonical term models for theory actualizations

We return to the situation described at the end of section 2 by R(A), N(A) and >(A). For each actualization
A of T we get the "standard situation" (n, N, >-) of section 3 and 4 where Il = R(A), N = N(A) and
>-= >(A)' Hence we get - by the process developed for an arbitrary (Il, N, >-) - for each A 1= T a canonical
term algebra T(A).

6

We now turn to the question of how to guarantee the confluence of —>, which plays the central role in
the lemmata above. The rewrite system G is not given directly, but has to be constructed by an inductive
process. So how can we make statements about G by only inspecting R? To give an answer to this question
we introduce the new rewrite relation -——>R:

Definition 3 For s , t E TERM(F, V) let s —>„ t ijf there exists an occurence p 6 0(5), a substitution 0'
and an equation u = v if Au; = v,- Aüj # 17,- €"R. such that 3/1) E 601), s[p «— o(v)] E t and a(u‚-) Ln «(v,-)

i .1'
and not 0(fij) l,e «f(öj).

Lemma 5 Let t e TERM (F) and let —>_ be confluent for all s < t. Then for all s < t and all s’ we have:
s ——>_ s' ifi's ——»R s'.

Proof: by inoetherian induction

Theorem 2 If —->R is ground confluent, then -——>a is confluent.

Proof: We prove by noetherian induction on >- that _», is confluent for all t € TERM (F) Then the
claim follows immediately. Let t E TERM (F) and assume that ——»‚ is confiuent for all s -< t. As —>G is
noetherian (note that 'R and hence G is compatible with >) i t suffices to prove local confluence and — as
usual — to consider critical divergencies v ‚4— u —>‚ u[p 4—- v'] with u = v, u' = v’ E G; and u/p E u'.
We first want to prove v 12‘— u -——>R u[p +— v’]. If t >- u and t > u’, then we can use Lemma 5 and the
induction hypothesis. Now let w.l.o.g. t $ u. Then t E u as u = v E G.. We know that there exists some
u = v i f Au; = nfij # Üj € INST('R‚) with u,- 4.“ v.- and not i,- «.—>(„ i j . By assumption ——>0 is

" .i
confluent . Hence u,- 1 v‚—. As t E u >- it,-‚v.- we get by Lemma 5 u.- ln vg. If we had ü,- 1R Üj , t hen we<!

would get with Lemma 5 if é“ 61-. So u —»R v. Analogously we get u —>,z u[p <- v’].
As ——+,¢ is ground confluent by assumption there exists a w € TERM (F) with v -;>.R w „<.— u[p 4-— v'].
Again by Lemma 5 we can conclude v L», w ‚4.— u[p «— v’]. El

Corollary 1 If —>„ is ground confluent, then for al l s , t € TERM(F) we have: 5 —>G t ifis —>R t .

Now confluence of positive/ negative conditional rewrite systems can be tested in the same manner as in
the merely positive conditional case.

A critical equation between two (variable disjoint) conditional! equations u = v i f U and u’ = v’ i f U’
is a conditional equation p(v) = p(u)[p «— „(t/)] i f p(U) A [1(U’) where 11/12 is no variable, _u/p and ui are
unifiable and ;; is the most general unifier of 11/1) and u’.

A substitution 0’ satifies a condition Au,- 2 1),- Am 96 '17,- u).r.t. 'R, iff o(u,-) in U(v‚-) (i : 1 . . . k) and not
I J«(m in am) 0:1...1). _

A ”minimal ”“““ “ = " if Ani = vi Aüj 96 F;- is called joinable w.r.t. R (and the signature):) ifi‘
i j

for any 2-substituti'on a' which satisfies Au.- = 1); Am 96 Ü,- we have o(u) LR 0'(v).
" J'

Theorem 3 If all critical equations that can be built from the conditional equations of'R, are joinlable u).r.t.
R (and 2), then 'R is confluent.

Proof: analogous to the positive conditional case

‘5 Canonical term models for theory actualizations
We return to the situation described at the end of section 2 by R(A), N (A) and >“) . For each actualization
A of T we get the ”standard situation” ('R,N,>~) of section 3 and 4 where R = R(A), N : N(A) and
>-= > (A) - Hence we get — by the process developed for an arbitrary ('R, N , >-) — for each .A [= T a canonical
term algebra 'T(.A).

Definition 4 A E 1(A)-algebra B contains the Eo-algebra A iff the Eo-algebra induced by {f!B I a E A} is
isomorphic to A via i : a f!B.

In the next lemma we put together the results of lemma 1 and lemma 2 of section 3 in the context of the
parameter passed situation.

Lemma 6 For any A ~ T, if (R(A), N(A), >(..4» satisfies the conditions (cl), (c2) and (nc), then T(A)
is initial in the class of El (A)-algebras that contain A and satisfy R.

Next we will formulatesufflcient criteria, such that (R(A), N(A), >(..4» satisfies (cl), (c2) and (ne) for all
A ~ T. Note that the criteria should be independent of the special models A.

Definition 5 R is said to be T-(ground) confluent iff R(A) is (ground) confluent for all A ~ T.

We want R to be T-ground confluent. For that reason we restrict R in a rather strong manner, such that
there will be no critical overlaps between equations from R and equations from DIA+(A) for any A ~ T.

Definition 6 R is called parameter simple iff the left hand sides of the (directed) equations of R do not
contain any symbol from Fo.

Note that R of example 1 is parameter simple. We want to use theorem 3 to conclude the confluence of
R(A) for any A ~ T. But in general joinability of the critical equations (that only result from R if R is
parameter simple) can not be treated with R alone. One has to take into account the additional equations
from DIA+(R) too, as the next example demonstrates.

Example 3 Fo = {b,c,d,e}; Fl = Fo U {a}; a > b, c, d, e; T=0

R:	 a = b
a = c if d = e

AF(d=e)t\(b:/;c); B ~ (d:/; e)

R is parameter simple. Whereas R(B) is (ground) confluent (because the condition d = e of the critical
equation b = c if d = e can not be satisfied by a Fl (B)-substitution) R(A) is not (by a similar argument).
The example shows that satisfiability of a condition in general depends on the model ofT. The next example
indicates that the reduction relation also depends on the model of T.

Example 4 Fo = {b, cl; Fl=FoU{a}; a> b,c; T=0

R: a = b if b:/; c

A ~ (b = c); B ~ (b:/; c)

The term a can be rewritten by R(B) into b wheras this is impossible by R(A).

Definition 7 A conditional equation is said to be T-(ground) joinable iff it is (ground) joinable w. r.t. R(A)
and El (A) for any A ~ T. A condition is said to be T-unreachable iff for any A ~ T there exists no
El (A)-substitution that satisfies the condition w.r.t. R(A).

Obviously, if the condition of a conditional equation is T-unreachable, then the conditional equation is T­
joinable. If a condition contains two complementary literals u = v and u :/; v (as it is the case in the critical
equations of example 1), then the condition is'T-unreachable for any theory T.

Corollary 2 Let R be parameter simple. If all critical equations from Rare T-(ground) joinable, then R is
T-(ground) confluent.

Corollary 3 Let R be parameter simple. If all critical equations from Rare T -ground joinable, then
(R(A), N(A), >(.A» satisfies the consistency properties (cl) and (c2) for any A ~ T.

7

Definition 4 A 21(A)-alyebra B contains the Eo-atgebm A if the EEO-algebra induced by {EB | a E A} is
isomorphic to A via i : a H gs.

In the next lemma we put together the results of lemma 1 and lemma 2 of section 3 in the context of the
parameter passed situation.

Lemma 6 For any A I: T, if (R(A),N (A), >(;4)) satisfies the conditions (c1), (c2) and (no), then T(A)
is initial in the class of 21(A)-algebras that contain A dnd satisfy R .

Next we will formulate‘suflicient criteria, such that (R(A),N(A), >90) satisfies (cl) , (c2) and (he) for all
A |: T . Note that the criteria should be independent of the special models A .

Definition 5 R is said to be T-(ground) confluent ifl' R(A) is (ground) confluent for all A I: T.

We want R to be T-ground confluent. For that reason we restrict R in a rather strong manner, such that
there will be no critical overlaps between equations from R and equations from DI A+(A) for any A l: T.

Definition 6 R is called parameter simple iflr the left hand sides of the (directed) equations of R do not
contain any symbol from F0.

Note that R of example 1 is parameter s imple. We want to use theorem 3 to conclude the confluence of
R(A) for any A l: T. But in general joinability of the critical equations (that only result from R if R is
parameter simple) can not be treated with R alone. One has to take into account the additional equations
from DIA+ (R) too, as the next example demonstrates.

Example 3 F0 : {b,c,d,e}; F1 = F0 U {a}; a > b,c,d,e; T : 0

R: a=b
a=c i fd=e

.Asw=k¢o ; Bsw¢a
R is parameter simple. Whereas R(B) is (ground) confluent (because the condition d = e of the critical
equation b = c i f d = e can not be satisfied by a F1(B)-substitution) R(A) is not (by a similar argument).
The example shows that satisfiabili ty of a condition i n general depends on the model of T . The next example
indicates that the reduction relation also depends on the model of T .

Example4 F0 = {b,c}; F1 = FoU{a}; a > b,c; T : ß

R: azb i fb¢c

Asw=¢ Bhw¢d

The term a can be rewritten by R(B) into b wheras this is impossible by R(A).

Definition 7 A conditional equation is said to be T—(ground) joinable iflr it is (ground) joinable w.r.t. R(A)
and Ed./1) for any A f: T . A condition is said to be T—unreachable ifl for any A l :T there exists no
21(A)-substitution that satisfies the condition w.r.t. R(A).

Obviously, if t he condition of a conditional equat ion is T—unreachable, then the conditional equation is T-
joinable. If a condition contains two complementary literals u = v and u # v (as'it is the case in the critical
equations of example 1), then the condition is T-unreachable for any theory T.

Corollary 2 Let R be parameter simple. If a l l cri t ical equations from R are T-(ground) joinable, then R is
T-(ground) confluent.

Corollary 3 Let R be parameter simple. If all critical equations from R are T-ground joinable, then
(R(A), N(A), >(A)) satisfies the consistency properties (c1) and (CE) for any A l: T .

Proof" Note that for any ~ # §. E N(A) (A 1== T) ~ and §. are distinct constants and irreducible in G(A).
The conclusion then follows immediately by previous lemmata.O

Next we give a sufficient criterion for (R(A), N(A), >(.A» to satisfy (nc) for all A F= T.

Definition 8 R is called T-sufficient complete w.r.t. parameter sorts if! for any A 1== T and any ground
term t E TERMo(Fl(A» of a parameter sort (this is indicated by the index 0) there exists a constant
g E C(A) such that t(.A) g.

Lemma 7 Let R be a set of conditional equations such that the literals in the conditions are El-literals over
the parameter sorts. Let R be T-ground confluent and T-sufficient complete w.r.t. parameter sorts. Then
(R(A), N(A), >(.A» satisfies the negation covering property (ne) for any A 1== T.

Proof: Let u # v E NR and r be a ground substitution with r(u) f(.A) r(v). By the assumptions there exist

!! and!? in C(A) such that r(u)(A) !! and r(v)(A) §.. By lemma 1 and corollary 1 we get r(u) ~R(.A) ~

and r(v) ~R(.A) §.. Hence r(u) 2:(A) !! and r(v) 2:(.A) §. as > is T-extendable by assumption. If ~ # §. were
not an element of N(A), then ~ and Qwould be the same constant and hence r(u)(..4) r(v). 0

We do not describe a test for T-sufficient completeness here. A simple test would be to check whether
some kind of syntactical case splitting - like in example 1 - is possible.

Though the sort restriction concerning the conditions seems rather restrictive, in practice it is not if
a "boolean theory" is available. Most conditions are expressed with the aid of newdefined predicates (i.e.
functions of some sort "boole"). We could weaken the. sort restriction by allowing positive literals over
arbitrary sorts in the conditions, but this would cause other difficulties which we will discuss in the next
section.

We finish this section with some remarks about T-extendable reduction orderings. If > is a recursive
(lexicographic) path ordering (cf. [De87]), then> is T-extendable for an arbitrary theory T. Just extend the
precedence >F, on Fl to a precedence >F,(.A) on Fl(A) by >F,(A) = >F, U{(f,~) If EFl and ~ E C(A)}.
But not every reduction ordering is T-extendable for every theory T as is shown in the example to follow.

Example 5 Fo = {b, cl; Fl = Fo U {f,g}

R:	 g(x,x) = f(b, c)
f(x,x) = g(x,x)

>

> is a reduction ordering. Let T = 0 and A be an Fl-algebra with A 1== (b = c). Hence there is an a E A
such that b =~, c =!! E DIA+(A). If >(A) were a T-extension of> then:

g(~,!!»(A)f(b,c»(A)f(!!,c»(A)f(!!,!!»(A)g(g,!!)

The fact that a parameter variable occurs twice in the left hand side of an equation of R is crucial as is
shown in the next lemma (stated without proof).

Definition 9 R is said to be parameter leftlinear if! no variable of a parameter sort occurs more than once
in the left hand sides of the equations of R.

Lemma 8 If > is a reduction ordering that is induced by a parameter simple and parameter leftlinear

unconditional rewrite system R (i.e. >=-±""'R)' then> is T-extendable for any theory T.

Proving T-inductive theorems

In the sections to follow we study inductive theorem proving w.r.t. specifications that are parametrized by
a built-in theory. Let R, > and T be given as in the last section, especially, let R be a set of conditional
equations with the conditions being over parameter sorts. We require R to be T-ground confluent and
T-sufficient complete w.r.t. parameter sorts in order to get initial models T(A) of R containing A for any
model A of T. Theorems to be proved are El-clauses.

8

6

Proof: Note that for any g # & € N (A) (A |: T) 5 and 9 are distinct constants and irreducible in G(.4).
The conclusion then follows immediately by previous lemmatafl

Next we give a sufficient criterion for (R(.A), N (A),) (“) to satisfy (nc) for all A Ii: T.

Definition 8 R is called T-suflicient complete w.r.t. parameter sorts if for any A I: T and any ground
term t € TERM0(F1(.A)) of a parameter sort (this is indicated by the index 0) there ezists a constant
g 6 C(11) such that t «(A) g.

Lemma 7 Let R be a set of conditional equations such that the literals in the conditions are III-literals over
the parameter sorts. Let R be T-ground confluent and T-suflicient complete w.r.t. parameter sorts. Then
(R(.A), N(.A), >(A)) satisfies the negation covering property (nc) for any A |: T.

Proof: Let u 96 v E Nn and r be a ground substitution with ‘r(u) 76“) f (v) . By the assumptions there exist
.g and Q in C(.A) such that 'r(u) «(A) g and r(v) «(A) L). By lemma 1 and corollary 1 we get f (u) an“) 5

and f(v) —'»„w b. Hence r(u) ZH) 9 and r(u) ZU) & as > is T-extendable by assumption. I fg # @ were
not an element of N (A), then 5 and 9 would be the same constant and hence r(u) «(A) f(v). Cl

We do not describe a test for T-suflicient completeness here. A simple test would be to check whether
some kind of syntactical case splitting — like in example 1 — is possible.

Though the sort restriction concerning the conditions seems rather restrictive, in practice it is not if
a ”boolean theory” is available. Most conditions are expressed with the aid of newdefined predicates (i.e.
functions of some sort ”boole”). We could weaken the, sort restriction by allowing positive literals over
arbitrary sorts in the conditions, but this would cause other difficulties which we will discuss in the next
section.

We finish this section with some remarks about T—extendable reduction orderings. If > is a recursive
(lexicographic) path ordering (cf. [De87]), then > is T—extendable for an arbitrary theory T. Just extend the
precedence >Fl on F1 to a precedence >53“) on F1(.A) by >53“) = >pl U{(f‚g) | f 6 F1 andg e C(.A)}.
But not every reduction ordering is T—extendable for every theory T as is shown in the example to follow.

Example 5 Fa = {b, c}; F1 = F0 U { f ig }

R: 9(3,2)=f(b:c)
f (zr ' t) =g (2 ,£)

> is a reduction ordering. Let T = ß and .A be an Fl-algebra with .A I: (b = c). Hence there is an a € A
such that b = g, c = g € DIA+ (A). If >“) were a T—extension of > then:

.de, 9.)>(A)f(b‚ C)>(A) f (£ ‚ c)> (A) f (2 ‚ g)>(‚4)9(g‚ 9)
The fact that a parameter variable occurs twice in the left hand side of an equation of R is crucial as is

shown in the next lemma (stated without proof).

Definition 9 R is said to be parameter leftlinear if no variable of a parameter sort occurs more than once
in the left hand sides of. the equations of R .

Lemma 8 If > is a reduction ordering that i s induced by a parameter simple and parameter leftlinear
unconditional rewrite system R (i.e. >=i>„), then > is T-eztendable for any theory T .

6 Proving T-inductive theorems
In the sections to follow we study inductive theorem proving w.r.t. specifications that are parametrized by
a built-in theory. Let R, > and T be given as in the last section, especially, let R be a set of conditional
equations with the conditions being over parameter sorts. We require R to be T-ground confluent and
T—suflicient complete w.r.t. parameter sorts in order to get initial models T(.A) of R containing .4 for any
model A of T. Theorems to be proved are Ell-clauses.

Definition 10
(a) A El-clause r is a T-inductive theorem w.r.t. R iffT(A) is a model ofr for any A F= T. Let ITH(T; R)
denote the set of T-inductive theor:~ms w.r.t. R. An element resp. subset of ITH(T; R) is also said to be
inductively valid w.r.t. Rand T.
(b) A Eo-clause r is said to be parameter valid w.r.t. T iffr is a logical consequence ofT (i.e. any model
of T is also a model of r).

First we want to achieve a theorem prover that is refutational complete modulo T. i.e.: a set of El-clauses
that is not inductively valid w.r.t. Rand T should be transformable in a finite number of steps into a set
of El-clauses containing a Eo-clause that is not parameter valid w.r.t. T. The theorem prover becomes
(fully) refutational complete. if there exists a (built-in parameter) algorithm to decide whether a Eo-clause
is parameter valid w.r.t. T or not. In order to be able to transform arbitrary clauses into Eo-clauses we only
consider El-clauses over parameter sorts. When speaking in the sequel of clauses we always mean El-clauses
over So. .

Note that by our assumptions we solve the problem of testing inductive reducability - which is shown to
be undecidable in general in the conditional case in [KaCh86] - by trivializing it. Nevertheless we may not
be able to decide whether a clause is a T-inductive theorem if the parameter validity w.r.t. T is undecidable.

The next lemma states the relationship between the semantically defined property of inductive validity
w.r.t. Rand T and the operationally defined congruence relation. We use u(yu; = V; YUj "I Vj) ~R(A)

• J
false as an abbreviation for the fact that for all i E {l, ...• k} we have u(u;) !R(A)"I u(v;) !R(A) and for
all j E {I, ... , I} we have u(Uj) !R(A) = u(Vj) !R(A) (V U; = V; VUj "I Vj is a clause and U a El (A)-ground

\ ; j

substitution). Note that -R(A) is ground convergent by our assumptions.

Lemma 9 Let R be T -ground confluent and T -sufficient complete w. r. t. parameter sorts. Let r be a E l ­

clause over So. Then r is not inductively valid w. r. t. Rand T iff for some A F= T and some El (A)-ground

substitution U we have u(r) ~R(.A.) false.

Lemma 10 Let R be T-ground confluent and T-sufficient complete w.r.t. parameter sorts. Then, if a
Eo-clause is not parameter valid w.r.t. T, then it is not inductively valid w.r.t. Rand T.

The assumptions being clarified we return to the theorem prover. It is given by an inference system
together with a strategy which produce the negative statement "no theorem" if some clause is present that
is not inductively valid w.r.t. Rand T and which allow to make the positive statement "the claus.es are
theorems" by absence of such clauses, but which possibly does not terminate in the latter case. The rules of
the inference system can be described by "reduction-rules" and "coverage-expansion-rules". For an efficient
prover it is important to reduce as much as possible. But reduction with conditional equations causes the
problem of how to treat the conditions. One either may verify them - possibly after case splitting - before
reducing or one may defer the verification and carry them along as additional context. [KoRu90], [BeLe91]
and [Ga87] choose the first possibility whereas we adopt like [Wi91] the second one, as we think it to be the
more general one.

To make understandable the notions below we give a short motivation. By reducing a clause r contex­
tually (in the sense of [ZaRe85]) with a conditional equation u = v if Ul /\ ... /\ Un one gets in the rewrite
CCl$e (see below) a rewritten clause of the form u(Ul /\ ... /\ Un) ::::} r' resp. -,u(Ur) V ... V -,u(Un) V r' and
"rest clauses" of the form u(-,U;) => r resp. u(U;) V r. We want all resulting clauses to be "smaller" than
r. But if we introduce complexities as usual by the multiset of the complexities of the literals constituting
the clauses, we do not get "smaller" results in the rest clause case. The idea to overcome this situation ­
inspired by [NiOr91] - can be described as follows:
u(U;) is "smaller" than some literal in r resp. it is a member of the so called <-complement of r. If u(U;)
does not occur in r or, equivalently, if -,u(Ui) V r is not "apparently tautological", then the <-complement
of u(U;) V r is "smaller" than the <-complement of r. But by switching over to the <-complement instead
of the clause itself we get problems with the rewritten clause. If we make a literal L occuring in r "sm~ller",

then the <-complement may" increase". To overcome this problem the literal L will not only be substituted
by a new L' but also conserverd (if necessary) in an additional clause that we will call history clause.
Syntactically clauses will be split into two parts written as r Ilip, the clause of primary interest r and the
assistant history clause ip. We identify a clause r with r II if no history clause is present.

9

Definition 10
(a) A Iii-clause I‘ is a T—inductive theorem w.r.t. R ifl'T(.A) is a model ofl‘ for any .4 |: T . Let ITH(.T; R)
denote the set of T-inductive theorems w.r.t. R . An element resp. subset of ITH(T; R) is also said to be
inductively valid w.r.t. R and T .
(b) A {Io—clause [‘ is sa id t o be parameter valid w.r . t . T ifi'I‘ is a logical consequence ofT (i .e . any model
ofT is also a model of 1").

First we want to achieve a theorem prover tha t is refutational complete modulo T , i .e.: a set of E1-clauses
that is not inductively valid w.r.t. R and T should be transformable in a. finite number of steps into a set
of Ell—clauses containing a Eo-clause that is not parameter valid w.r.t. T. The theorem prover becomes
(fully) refutational complete, if there exists a. (built-in parameter) algorithm to decide whether a {lo-clause
is parameter valid w.r.t. T or not. In order to be able to transform arbitrary clauses into {Io-clauses we only
consider El-clauses over parameter sorts. When speaking in the sequel of clauses we always mean Ell-clauses
over So. '

Note that by our assumptions we solve the problem of testing inductive reducability — which is shown to
be undecidable in general in the conditional case in [KaCh86] —— by trivializing i t . Nevertheless we may not
be able to decide whether a clause is a T-inductive theorem if the parameter validity w.r.t. T is undecidable.

The next lemma states the relationship between the semantically defined property of inductive validity
w.r.t. R and T and the operationally defined congruence relation We use a(V 11,-: v.- Vüjgé 51-) a“)

false as an abbreviation for the fact that for all i 6 {1‚. .,lc} we have «(u.-) l aufié ;(vg) in“) and for
all j € {1 , . . . , l } we have a(u‚) in”) : o'(v,-) LR“) (V ug—— v.- VUj # v,- is a clause and o' a 21(.A)——ground

substitution). Note that „(A) is ground convergent by our assumptions.

Lemma 9 Let R be T-ground confluent and T-suflicient complete w.r . t . parameter sorts. Let I‘ be a 21 -
clause over So. Then [‘ is not inductively valid w. r.t. R and T ifl'for some A I: T und some 21(A)-ground
substitution 0 we have «(F) 3—v false.

Lemma ‚10 Let R be T-yround confluent and T-suflicient complete w.r . t . parameter sorts. Then, if a .
{Io-clause is not parameter valid w.r. t . T , then it is not inductively valid w.r . t . R and T .

The assumptions being clarified we return to the theorem prover. It is given by an inference system
together with a strategy which produce the negative statement ”no theorem” if some clause is present that
is not inductively valid w.r.t. R and T and which allow to make the positive statement ”the clauses are
theorems” by absence of such clauses, bu t which possibly does not terminate in the latter case. The rules of
the inference system can be described by ”reduction-rules” and ”coverage-expansion—rules”. For an efficient
prover it is important to reduce as much as possible. But reduction with conditional equations causes the
problem of how to treat the conditions. One either may verify them —— possibly after case splitting — before
reducing or one may defer the verification and carry them along as additional context. [KoRu90], [BeLe9l]
and [Ga87] choose the first possibility whereas we adopt like [Wi91] the second one, as we think it to be the
more general one.

To make understandable the notions below we give a short motivation. By reducing a clause I‘ contex-
tually (in the sense of [ZaRe85]) with a conditional equation it = v if U1 A . . . A U,. one gets in the rewrite
case (see below) a rewritten clause of the form o(U1 A . . . A Un) :> I" resp. -o'(U1) V . . . V -10'(U,,) V I" and
” rest clauses” of the form o(-IU,-) => I‘ resp. o'(U,~) V I‘. We want all resulting clauses to be ”smaller” than
P. But if we introduce complexities as usual by the multiset of the complexities of the literals constituting
the clauses, we do not. get’ smaller” results in the rest clause case. The idea to overcome this situation -—
inspired by [NiOr91] —- can be described as follows:
0(Ug) 1s smaller” than some literal in P resp. it is a member of the so called <-complement of I‘. If o(U.-)
does not occur in F or, equivalently, if —-a'(U-) V I‘ is not’’apparently tautological”, then the <—complement
of o(U.-) V I‘ is ”smaller” than the <—complement of P. But by switching over to the <-complement instead
of the clause itself we get problems with the rewritten clause. If we make a literal L occuring in I‘ ”smaller”,
then the <—complement may ”increase”. To overcome this problem the literal L will not only be substituted
by a new L' bu t also conserverd (if necessary) in an additional clause that we will call history clause.
Syntactically clauses will be split into two parts written as I‘//<I>, the clause of primary interest I‘ and the
assistant history clause (1). We identify a clause 1" with I‘// if no history clause is present.

7

We make precise some notions used throughout the rest of the paper.
We identify a literal u = v resp. u 'I v with the multiset {u, v} and a clause with the multiset of the literals
(regarded as multisets) constituting the clause. We identify clauses that are - up to a variable permutation
- equivalent as multisets. We use the symbol ~ for the equivalence of multisets.

Let T be an extra symbol denoting a literal that is valid in every algebra. Let» (the multiset extension
of» be extended such that L » T for any literal L (we will use the same symbol for the extension).

A clause r =Cl V ... V Cn majorizesa clauSe Ll =D1 V ... V D" iff for any index i E {I, ... , k} there is
a j E {I, ... , n} such that Cj » Di. The <-complement of a clause r - written cpl< (r) - is the multiset
oflitera1s (each one occuring once) that are majorized by r and do not occur in r. A clause r//4! is called
majorizing iff r majorizes 4!. A literal C in a clause r is said to be maximal iff C is not majorized by r\ {C}.

By < u =v > VU1 V ... V Un resp. < U1 V ... V Uk > VV1 V ... V Vi we indicate a clause with one literal
resp. several literals singleld out. We call < u = v > VU1 V VUn rewrite reduetive w.r.t. q iff q(u) > q(v)
and {q(u)} »q(U;) for i = 1 ... n. We similarily call < U1 V VU" > VV1 V V Vi subsumption reductive
w.r.t. q iff q(U1 V... VU",) majorizes q(V1 V... VVi). An equation u = v if Ul /\ /\ Un will also be.written
in the form < u = v > V""U1 V ... V ...,Un .

A clause r = Cl V ... V Cn is called tautological iff there exist two indices i, j E {I, ... , n} such that
Ci == ""Cj (where ...,u = v == U 'I v and ...,u 'I v == u = v).

A critical clause between r / /~ == Cl V V Cn / /4! and < u = v > vU E R at the literal Ci is a clause
r' / /4!' where r' == J1.(Cd V ... V J1.(Ci)[P J1.(v)] V ... V J1.(Cn) V J1.(U) and 4!' == (J1.(4!) V J1.(Ci)) n cp1dr')
and C;jp and u are unifiable with mgu J1. and where C;/p is no variable.

We write EQ(T) for the set of unconditional equations of T and EQN EG(V Ui =Vi VUj 'I Vj) for the
i j

set {Uj =Vj I j = 1 .. . /} of equations induced by the negative literals in the clause.

The inference system

The inference system acts upon two sets of clauses, a set L of T-inductive theorems - the lemmata - and
a set H of splitted clauses - the hypotheses.

(DedHyp - deduction of a hypothesis)

L,H

L, H U {r/ /4!}
if r / /<t" is a critical clause between an element from Hand R at a maximal literal.

(IntLem - introduction of a lemma)

L ,H
LU{r},H

if rE ITH(T; R).

(DelTau - deletion of a tautology)

L, H U {r/ /<t,,}
L,H

if r == T, or r contains a liter,al of the form u = u, or r contains two complementary literals U = v and u :j:. v.

(DeIDed - deletion by built-in deduction)

L, H U {r V Ll/ /<t,,}

L,H

if rE CLAUSE(Fo, Vo) and r is a logical consequence of T.

10

We make precise some notions used throughout the rest of the paper.
We identify a literal u = v resp. u ;6 v with the multiset {u, v} and a. clause with the multiset of the literals
(regarded as multisets) constituting the clause. We identify clauses that are — up to a variable permutation
— equivalent as multisets. We use the symbol as for the equivalence of multisets.

Let T be an extra symbol denoting a literal that is valid in every algebra. Let > (the multiset extension
of >) be extended such that L > T for any literal L (we will use the same symbol for the extension).

A clause 1‘ = Cl V . . .VC„ majorizes'a clause A = DI V . „VD; ifl' for any index i E {1‚ . . . , Ic} there is
a. j E { l , . . . , n } such that 0; > D,-. The <-complement of a clause I‘ — written cpl<(I‘) —_is the multiset
of literals (each one occuring once) that are majorized by I‘ and do not occur in I‘. A clause 17/4, is called
.majorizing ill 1" majorizeflb. A literal C in a clause F is said to be maximal iff C is not majorized by I‘\{C}.

By < u = 9 > VU1 V. . .VU„ resp. < U1V. . .VU1 . > VV1 V . . .VW we indicate a clause with one literal
resp. several literals singleld out. We call < u = v > VU1 V. . .V U,. rewrite reductive w. r.t. 0' if!" a(u) > 0(0)
and {6(a)} > a’(U,-) for i = 1 . . .n . We similarily call < UI V . . ‚VU; > VVl V. . .V V; subsumption reductive
w.r.t. a ifl' (7(U1 V . . .VUk) majorizes a(V1V.. .VV1). An equation u = v i f UI A . . . A U" will also bewritten
in the form < u = v > V-1U1V. . .VfiU. . .

A clause I‘ = Cl V V C'" is called taatological iff there exist two indices i , j € {1 , . . . , n } such that
n- i (where - ‘u=vEu¢vand Hu¢vEu=v) .

A critical clause between I‘//<I> E 01 V . . . V C„//(I> and < u = 0 > VU € R at the literal C; is a clause
I"//<I>' where I" 5 #(Cr) V . . . V p(C.-)[p «— p(v)] V . . . V MC,.) V p(U) and <I>’ E (#05) V #(Ci)) ncpl<(l")
and C;/ p and u are unifiable with mgu a and where 05/!) is no variable.

We write EQ(T) for the set of unconditional equations of T and EQNEG(V u,- = v,- VTIj # ii) for the
: 1

set {m = ij | j = 1 . . .I} of equations induced by the negative literals in the clause.

7 The inference system

The inference system acts upon two sets of clauses, a set L of T—inductive theorems —- the lemmata —— and
a set H of splitted clauses — the hypotheses.

(DedHyp —— deduction of a hypothesis)

L, H
L, H u {F//<I>}

if I‘//<I> is a critical clause between an element from H and R at a maximal literal.

(IntLem —— introduction of a. lemma)

L ,H
Lu{r},H

if r e ITH(T; R).

(DelTau _ deletion of a tautology)

L,HU {Pl/<>}
L,'H _ '

if I‘ E T, or I‘ contains a literal of the form u = u , or 1‘ contains two complementary literals u = 1) and u # v.

(DelDed —- deletion by built-in deduction)

L, H u {r v A//<I>}
L,H

if I‘ € CLAUSE(F0, V0) and I‘ is a logical consequence of T.

10

(DelSub - deletion by T-subsumption)

L,HU{fVt:..//<I>}
L,H

if for some substitution u and some f' ET we have f = u(f').

(DelEqu - deletion by equivalence transformations)

L,B U {u = v V fll<l>}
L,H

if u ~E v where E = EQ(T) U EQN EG(f) and the variables in EQNEG(f) are considered as constants.

(SimpEqu - simplification by equivalence transformations)

L,HU{CVfl/<I>}

L, H U {C' U f I I<I>'}

if Clp == u, C' == C[p - v], U ~E v where E = EQ(T) U EQNEG(f), u > v and <1>' == (<I> U {Cl) n
cpldc' V n.
(SimpElim - simplification by literal elimination)

L,HU{CVfll<l>}
L, H U {f/ /<I>'}

if C occurs in f, or C == u #- u, or C E LIT(Fo, Vo) and T F -,C, or C == u(C') and -,C' E T, and
<1>' == (<I> U {C}) n cp1dn.

(SimpRew - simplification by clausal rewriting)

L,HU{CVfll<l>}
L,HU{C'VfVu(UI)V ... Vu(Un)II<I>' , CVfv-,u(UI)II<I> , ... , CVfV-,u(Un)II<I>}

if there is a substitution u, a position p and a clause < u = v > VU1 V ... V Un/jiff such that one of the
following items holds:

• < u = v > VU1 V .. , V Unlliff E R U L, Clp == u(u), C' == C[p - u(v)]' < u = v > VU1V ... V Un is
rewrite reductive w.r.t. u, fV<I>Vu(U1)V ...Vu(Un) is not tautological, <1>' == (<I>u{C})ncp1dC'Vf).

• <	 u = v > VU1 V ... V Un/ /iff E H, Clp == u(u), Clp I> u (I> is the subsumption ordering),
C' == C[p - u(v)], < u = v > VU1V ... V Un is rewrite reductive w.r.t. u, f V <I> V u(UI) V ... V u(Un)
is not tautological, <1>' == (<I> U {C}) n cpl< (C' V n.

(SimpSub - simplification by clausal subsumption)

L, H U {f V t:..II<I>}
L, H U {T , f V t:.. V -,u(VI}/ /<1> , ... , f V t:.. V -,u(Vi)1I<I>}

if there is a substitution u, a position p and a clause < U1 V ... V Uk > VV1 V ... V Vii I ill such that one of
the following items holds:

• < U1 V ... V Uk > VV1 V ... V Vii I ill E L, f == u(U1 V ... V Uk), < U1 V ... V Uk > VV1 V ... V Vi is
subsumption reductive w.r.t. u, t:.. V <I> V u(VI} V ... V u(Vi) is not tautological.

• < U1 V ... V Uk > VV1 V ... V Vii I ill E H, f == u(U1 V ... V Uk), < U1 V ... V Uk > VV1 V ... V Vi is
subsumption reductive w.r.t. u, t:.. V <I> V u(VI} V '" V u(Vi) is not tautological and
(a) u is no permutation or
(b) u is a permutation and
(b 1) r is majorized by ~ or

(b2) f is not majorized by t:.. and t:.. ~~ u(VI} V .. .Vu(Vi) and (t:.. V <1»n Cp1du(V1) V ...Vu(Vi» ~

u{Ilf).

11

(DelSub — deletion by T-subsumption)

L,H U {I‘ vA//<I>}
L, H

if for some substitution 0’ and some I" E T we have I‘ : a(I") .

(DelEqu —— deletion by equivalence transformations)

L,.H U {u = v V I‘//<I>)
L, H

if u <—'—>E v where E : EQ(T) U EQNEGU‘) and the variables in EQNEGO‘) are considered as constants.

(Simqu — simplification by equivalence transformations)

L ,H U {CV I‘//<I>}
L, H U {0 U I‘//<I>’}

if 0/12 a u, C’ s C[p «— v], u 4.5 t) where E = EQ(T) u EQNEG(I‘)„ u > 9 and «V s (<I>u {0}) n
cpl<(C' V F).

(SimpElim — simplification by literal elimination)

L, H u {CV I‘//<I>}
L, H U {F//<I>’}

if C occurs in I‘, o r C E u # u , or C e LIT(Fo,Vo) and T |: -1C, or C E o’(C’) and -vC’ E T, and
(D' E (<I>u {C}) ncp1<(r) .

(SimpRew — simplification by clausal rewriting)

L, H u {CV I‘//<I>}
L,H U {C’V PV a(U1) V . ..Va'(U„)//<I>’ , CV F Vfio'(U1)//<I> ‚ . . . , CV]" V-\0'(U„)//<I>}

if there is a substitution 0 , a position p and a clause < u = 1; > VU1 V . . . V Un/l‘I' such that one of the
following items holds:

0 < u : v > VU1V.. .VU,. / / \ II ERUL, C/pEo‘ (u) , C’ECh}4——a(v)], <a : v > VUIV. . .VUn is
rewrite reductive w.r.t. a , I‘V<I>Va’(U1)V...Vq(Un) is not tautological, <I>' E (<I>U{C})ncpl<(C’Vl").

. < u = 0 > VU1 V V U„//\Il € H, C/p E 0(a) , C/p > u (D is the subsumption ordering),
C’ E C[p «— a(v)], < u = v > VU1 V . . . V Un is rewrite reductive w.r.t. a , I‘V<I> V 6(U1) V . . .V a’(U„)
is not tautological, <I>’ E (<I> U {0}) n cpl< (C’ V I‘).

(SimpSub — simplification by clausal subsumption)

L,H U {I‘VA//<I>}
L;HU {T , I‘V AV-ra(V1)//<I> , . . . , I‘VAV-aa'(V;)//<I>}

if there is a substitution d’, a position p and a clause < U1 V . . . V U1= > VV1 V V V‚//\Il such that one of
the following items holds:

0 < Ulv . . . vU„ >vVlv . . . vV , / / \ I I e L, I ‘Ea (U1V. . .VUk) ‚ < Ulv . . . vU „ > vV ,v . . . v v ‚ is
subsumption reductive w.r.t. a‘, A V (I) V 0(V1) V . . . V 0(V1) is not tautological.

. < U1 v...VU,c > vV1v . . . s / / \ I ' & H, I‘ Ea(U1V„.VUk)‚ < U1 v...vU‚c > vv lv . . . vV ‚ is
subsumption reductive w.r.t. a', A V <I> V 0(Vl) V . . . V 6(Vl) is not tautological and
(a) a is no permutation or
(b) a is a permutation and
(b l) I‘ is majorized by A or
(b2) 1‘ is not majorized by A and A >>> a'(V1)V . . .V .::-(V,) and (A V<I>)nCpI<(0'(V1)V . . .Va(V1)) €
(TOP).

l l

8 Correctness and refutational completeness

The proceeding in this section is closely related to [Ba88]. In what we differ from other approaches is the
definition of the complexity measure.

We write (L, H) I- (L', H') to indicate that (L', H') is the result of applying an inference step on (L, H).
The next lemma states (without proof) the correctness of the inference system.

Lemma 11 Let (L, H) I- (L', H').
(a) If L ~ ITH(T; R), then L' ~ ITH(T; R).
(b) H ~ ITH(T; R) iff H' ~ ITH(T; R).
(c) If the clauses in H are majorizing, then the clauses in H' are too.

Complexities are defined for literal and clause instances w.r.t. a model of T. A literal resp. clause
instance w. r.t. A F= T is a pair (L, r) resp. (fI lip, r) of a literal resp. clause and a El (A)- ground
substitution. A H-inconsistency w.rot. A F= T is a clause instance (fllip,r) w.r.t. A with T(A) ~ r(f)
resp. r(f) "":"'R(.A) false.

We begin by defining the literal complexity cL (c. [Ba88]): Let A F= T and r be a El (A)-ground
substitution.

({ r(u)}, {u}, r(v» if u > v

cL (u = v, r) = cL (u #- v, r) = ({ r(v)}, {v}, r(u» if v > u

{ ({ r(u), r(v)}, {u, v}, -) otherwise

Let >L be the lexicographically combination of~, I> I> and >. We next define three auxiliary complexities
Cl, C2 and C3· Let f I lip == Cl V ... V Cnllcp. Then:

cl(f,r) {cL(Ci,r) liE {I, .. . ,n} and C i is maximal in f}
c2(fI lip) = cpl<C f V CP)
c3(f, r) {cL (Ci, r) liE {I, ... , n}}

Each Ci is considered as multiset.
The clausal complexity c is defined as

c(fllip) = { (cl(f,r),c2(fl/ip),c3(f,r)) if r(f) "":"'R(.Al false

max otherwise

where max is a new symbol. Let >c be the lexicographically combination of >L>L, ~, >L>L and let max
be maximal w.r.t. >c. Note that >c is noetherian by construction.

The next lemma states the fundamental properties of the complexity measure >c needed below. As it is
rather technical we summarize the ideas. We have to consider two cases:
Case 1: A literal C in f is exchanged by a clause 1::..' (that is majorized by C) to get the new clause f' and
is stored in ip' if" necessary" .
Case 2: A literal ...,U majorized by r is added to f if f V ip V U is not tautological.
In the first case we have to consider two subcases:
Case 1.1: C is a maximal literal in r.
Case 1.2: C is majorized by f\{C}.

In case 1.1 the literal C "contributes" to the complexity measure Cl and consequently cI(f, r) >L>L
cI(f', r).

In case 1.2 we first get cI(f, r) ~ cl(f', r) as neither C nor 1::..' "contributes" to Cl. As C is stored in the
history clause ip' we get c2(fllip) ~ c2(f'//CP'). Finally we obviously have c3(f,r) >L>L c3(f',r).

In case 2 cI(f, r) ~ cl(fV...,U, r) as...,U is majorized by f. Now ...,U does not occur in fVip for otherwise
f V ip V U would be tautological. Hence when adding ...,U to f the <-complement properly decreases, i.e.
c2(fIlip) ~ c2(f v...,UIICP).

Lernma 12 Let A F= T and r be a El (A)-ground substitution. Let f / /~ be a clause with r(f) "":"'R(.A) false.

(a) Let f = Cv I::.. such that C is not majorized by 1::... LeOt {Cl ~~ 1::..' and r(1::.. V t:..') "":"'R(.A) false. Then
c(fllip, r) >c c(1::.. V t:..' / lip', r) for an arbitrary CP'.

12

8 . Correctness and refutational completeness
The proceeding in this section is closely related to [Ba88]. In what we difl'er from other approaches is the
definition of the complexity measure.

We write (L, H) l- (L’, H') to indicate that (L’, H’) is the result of applying an inference step on (L, H).
The next lemma states (without proof) the correctness of the inference system.

Lemma 11 Let (L, H) |- (L', H') .
(a} IfL ; ITH(T; R), then L' g ITH(T; R).
(b) H 9 ITH(T; R) ifiH' ; ITH(T; R).
(c) If the clauses in H are majorizing, then the clauses in H' are too.

Complexitias are defined for literal and clause instances w.r.t. a model of T. A literal resp. clause
instance w.r.‘t. .A l: T is a pair (L,r) reap. (F//<I>,r) of a literal resp. clause and a 21(A)- ground
substitution. A H-inconsistency w.r.t. A l: T is a clause instance (I‘//<I>,‘r) w.r.t. A with T(A) V: T(I‘)
resp. f(I‘) LR”) false.

We begin by defining the literal complexity cL (c. [Ba88]): Let A I: T and r be a 21(A)-ground
substitution.

({ r (u) } , {u} : 7 (0)) i f u > v ‘
cL(u = v, r) = cL(u 96 „, 1') : ({r(v)}‚ {„} , f(„n ;; „ > „

({TÜ‘), T(”)}‚ {u, v}, -) otherwise

Let >L be the lexicographically combination of >>, [> > and >. We next define three auxiliary complexities
c l , 62 and ca. Let I‘//<I> E C1 V . . .VC,,//<I>. Then:

c1(I‘,r) = {cL(Cg, r) I i € {1‚. . . , n} and C.- is maximal in I‘}
”(IV/‘1’) = CP1<(F V ‘1’)
c3(l",r) : {cL(C.-‚r) | i E {1, . . . ,n}}

Each c; i s considered as multiset.
The clausal complexity c is defined as

c(l‘//<I>) = { (61(F‚T),cz(P//<I>)‚c3(l‘,r)) i f TU‘) 45,“) false
max o therwise

where man: is a new symbol. Let >° be the lexicographically combination of >L>L, >>, >L>L and let mac
be maximal w.r.t. >° . Note that >c i s noetherian by construction.

The next lemma states the fundamental properties of the complexity measure >° needed below. As it is
rather technical we summarize the ideas. We have to consider two cases:
Case 1: A literal C in 1" is exchanged by a clause A’ (that is majorized by C) to get the new clause I" and
is stored in <1>’ if ” necessary”.
Case 2: A literal -U majorized by I‘. is added to I‘ if I‘ V <I> V U is not tautological.
In the first case we have to consider two subcases:
Case 1.1: C is a maximal literal in 1".
Case 1.2: C is majorized by l"\{C}. '

In case 1.1 the literal C ”contributes” to the complexity measure 01 and consequently c1(I‘,7') >L>L
C1 (IV , T) .

In case 1.2 we first get c1(F, r) % c1(l"‚ r) as neither C nor A’ ”contributes” to c1. As C i s stored in the
history clause <I>' we get cz(I‘//<I>) % eg(l"//<I>’). Finally we obviously have C3(I‘, T) >L>L C3(1'"‚ r) .

In case 2 c1(I‘, r) % c1(I‘V—vU, r) as fiU i s majorized by I‘. Now —-U does not occur in I‘V<I> for otherwise
I‘ V {> V U would be tautological. Hence when adding fiU to I‘ the <-complement properly decreases, i.e.
Cz(F//(I>) >> 62 (F V “U/ /Ö) .

Lemma 12 Let A i: T und T be a 21(A)—ground substitution. Let I‘//<I> be a clause with r(I‘) ARM) fa lse .
(a) Let [‘ : CV A such that C is not majorized by A. Let {C} >>>) A’ and T(A V A’) Jan“) fa lse . Then
c(I‘//<I>, T) >c C(A V A’//(I>’‚ r) for an arbitrary <I>’.

12

(b) Let U be a literal that is majorized by f. Assume that f V~ VU is not tautological/and r(f V ...,U) ~R("()
false. Then c(f/ I~, r) >c c(f V ...,U/ I~, r).

(c) Let f' I I~' he a majorizing clause such that r(f') ~R("() false and f »» f' and (fV~)ncpldf')~ ~'.
Then c(fI I~, r) >c c(f' I I~', r).

Proof:
(a) We have cl(f, r) >L>L Cl(d Vd', r) as cL(D, r) contributes to cl(f, r).
(b) As U (resp. ...,U) is majorized by f we get cl(f, r) ~ Cl (fV...,U, r),U doesn't occur in fV~ for otherwise
fV~V U would be tautological. As...,U E cpldfV~)\cpldfV""UV~) we get c2(f//~)>> c2(fV""UII~).

(c) Obviously cl(f, r) >L>L cl(f', r) or cl(f, r) ~ cl(f', r). We proof cpldf' V ~') ~ cpldf V ~). Let
D E cpldf' V ~'). Then D f!. f' V ~'. As f' majorizes ~' there is some C' E f' such that C' » D. As
f »» f' there exists some C E f such that C »D. Hence D is majorized by f V~. If D were an
element of f V ~ then - as D E cpl< (f') - by assumption D E ~', which contradicts D f!. f' V ~'. Hence
D E cpldf V ~). Consequently c2(f I I~) » c2(f' I I~') or c2(fI I~) ~ c2(f' / /~'). Obviously we have
c3(f, r) >L>L c3(f', T). 0

Lemma 13 Let (L,H) I- (L',H'). Let A FT. If(fl/~,T) is a H-inconsistency w.r.t. A, then either
(fll~,r) is a H'-inconsistency w.r.t. A or there exists a H'-inconsistency (f'I/~',r') w.r.t. A such that
c(fl/~,r) >C c(f'//~',T').

Proof:

The cases (DedHyp), (IntLem), (DeITau), (DeIDed) and (DeIEqu) are trivial. The cases (SimpEqu) and

(SimpElim) are treated with lemma 12(c).

(SimpRew): Let T(C V r) ~R("() false resp. T(A) ~ T(C V f). (A and r as claimed)

Case 1: simplification with p, u and < u = v > VUl V ... V Un ER U L:

Case 1.1: T(A) ~ T(u(Ud V... Vu(Un »: Then T(A) F r(u(u) = u(v». Further T(A) ~ r(C'VfV u(Ul)V

... V u(Un)) for otherwise T(A) F T(C). By lemma 12(c) we get c(C V f I I~, r) >c c(C' V f V u(Ud V ... V

u(Un)//~',r).

Case 1.2: T(A) F T(U(Ui)) for some i: Then we get the desired result by lemma 12(b).

Case 2: simplification with p, u and < u = v > VUl V ... V Unll"iJ! E H:

Case 2.1: T(A) ~ r(u(Ud V ... V U(Un)):

Case 2.1.1: T(A) F r(u(u = v V Ul V V Un)): Proceed as in case 1.1.

Case 2.1.2: T(A) ~ r(u(u = v V Ul V V Un)): As we have cL(C, r) >L cL(u = v, TU) >L CL(Ui, TU) we

get Cl(C V f, r) >L>L Cl(U = v V Ul V V Un, TU).

Case 2.2: as case 1.2

(SimpSub): Let r(r. V d) ~R("() false resp. T(A) ~ T(f V d).

Case 1: subsumption with p, u and < U\ V ... V Uk > VV\ V ... V V, E L: Then T(A) F u(V;) for some i.

By lemma 12(b) we get the desired result.

Case 2: subsumption with p, u and < U\ V ... V Uk > VVl V ... V V,1/"iJ! E H:

Case 2.1: T(A) ~ r(u(Vd V ... V u(Vj»: Then T(A) ~ r(u(Ul V ... V Uk V VI V. " V VI)).

Case 2.1.1: u is no permutation or u is a permutation and f is majorized by d: Then cl(f V d, r) >L>L

Cl(Ul V ... V Uk V VI V ... V VI, ru).

Case 2.1.2: u is a permutation, f is not majorized by d, d »» u(VI) V" .Vu(V,) and (dv~)nCpldu(VI)v

... V u(V,» ~ u(W): By lemma 12(c) we get c(f V d, r) >c c(u(UI) V ... V U(Uk) V u(Vl) V ... V u(V,), r).

Case 2.2: analogous to case 1. 0

For a (modulo T) refutational complete theorem plOver we need "fair" derivations:

Definition 11
(a) H' is a T-covering set for H (w.r.t. R) iff for any AFT and each H -inconsistency (f I /~, T) w. r.t. A
there exists a H U H' -inconsistency (f'/ I~', r') w.r.t. A such that c(fI I~, T) >c c(f'I I~', r').
(b) A derivation (Lo, Ho) I- (L l , H d I- ... is said to be fair if! the set UiEN Hi of all deduced clauses is a
T-covering set for the set UiEN nj~i Hj of all persisting clauses.

Theorem 4 Let (Lo, Ho) I- (L 1, H d I- ... be a fair derivation.
(a) If Ho is not inductively valid w.r.t Rand T, then there exists an i E N such that Hi contains'a Eo-clause

13

.
R(A)(b) Let U be a literal that is majorized by 1‘. Assume that I‘V<I>VU is not tautological’aud f(I ‘V-vU)

false. Then c(I‘//<1>, 1') >° c(I‘ V ‘1U//<I>,1').
(c) Let l'"//<I>' be a majorizing clause such that 1'(I") im“) false and I‘ >> I" and (I‘VQ)ncpl<(1"’) _C_ <I>'.
Then c(I‘//<I>, r) >c c(l'"//<I>’‚ r) .

Proof:
(a) We have c1(l‘, 1') >L>L c1(A V A’, 1') as cL(‘D‚ 1') contributes to c1(I‘, r) .
(b) As U (resp. HU) is majorized by 1‘ we get c1(l", r) z c1(I‘V-U, r) . -vU doesn’t occur in I‘V<I> for otherwise
FV<I>VU would be tautological. As -U E cpl<(I‘V<I>)\cpl<(I‘VfiUV<I>) we get c2(l"//<I>) > c2(I‘VflU//<I>).
(e) Obviously QC", 1') >L>L c1(I", r) or c1(I‘, 1') z c1(l",1'). We proof cpl<(I" V <I>’) g cpl<(I‘ V <15). Let
D € cpl<(I" V (D’) . Then D ¢ I" V Q’. As I" majorizes <I>’ there is some C’ € I" such that C’ > D. As
I‘ >>>) 1" there exists some C € P such that C > D. Hence D is majorized by F V <I>. If D were an
element of I‘ V @ then —— as D e cpl< (I") — by assumption D € (D’ , which contradicts D € I" V <I>’ . Hence
D E cpl<_‚(I‘ V (I)). Consequently 02(F//<I>) > C2(I"//<I>') or C2(1"//<I>) % cz(F'//&I>’). Obviously we have
C3(I‘,1') >L>L C3(I",1'). a

Lemma 13 Let (L ,H) l- (L’,H’). Let .A } :T . If (I‘//(I>,r) is a H-inconsistency w.r.t. A , then either
(F//<I>,r) is a H’-inconsistency w.r.t. ‚A or there exists a H’-inconsistency (P'//<I>’,r’) w.r.t. ‚A such that
c(I‘//<I>, r) >c c(I"//<I>', 1").

Proof:
The cases (DedHyp), (IntLem), (DelTau), (DelDed) and (DelEqu) are trivial. The cases (Simqu) and
(SimpElim) are treated with lemma 12(c).
(SimpRew): Let r(c V I‘) L’Rw false resp. T(.A) % f(C V I‘). (‚A and r as claimed)
Case 1: simplification wi th p, a- and < u = v > VU1 V . . .V U,. E RU L:
Case 1.1: T(.A) bk r(a(U1)V. . .Va(U„)): Then T(A) l: r(cr(u) : a(v)). Further T(A) V: 1'(C’VI‘Va'(U1)V
...V0'(U„)) for otherwise T(.A) l: 1(C). By lemma 12(c) we get c(C V F//<I>, r) >° c(C’ VI‘ Va'(U1) V . . .V
a(U,,)//<I>’,r).
Case 1.2: ’T(.A) l: r(a’(Ui')) for some i: Then we get the desired result by lemma 12(b).
Case 2: simplification with p, a' and < u = v > VU1 V . . .V U„//\Il E H:
Case 2.1: T(.A) V: 1’(¢7(U1) V . . . V a(U„)):
Case 2.1.1: T(.A))2 1'(¢r(u = v V U; V . . .V U„)): Proceed as in case 1.1.
Case 2.1.2: '1'(.A) bb 'r(0'(u = v V U1 V . . .V U„)): As we have cL(C,1')>L cL(u = v,1'a) >L cL(U‚-‚ra) We
get c1(C'V I ‘ , r) >L>L c1(u : v V U1 V . . . V U", ra) .
Case 2.2: as case 1.2
(SimpSub): Let 1'(I‘.V A) Law false resp. 'T(.A) V: r(I‘ V A).
Case 1: subsumption with p, a and < UI V . . .V Uk > VVI V . . .V V; E L: Then T(A) }: a’(V,-) for some 2'.
By lemma 12(b) we get the desired result.
Case 2: subsumption with p, a and < U1V. . .V U), > VVl V . . .V VI//‘I' E H:
Case 2.1: T(A) bé r(a(V1) V . . . V a'(V1)): Then T(.A) bé r(a’(U1 V . . . V U]; V V1 V . . . V W)).
Case 2.1.1: 0' is no permutation or a is a permutation and I‘ is majorized by A: Then c1(1‘ V A, r) >L>L
c1(U1V. . .VUk VV;V. . .VV1 ,1 'a ') .
Case 2.1.2: 0 is a. permutation, I‘ is not majorized by A, A >>>> «(VI)V. . .VU(V‚) and (AVQ)fiCpl<(a(V1)V
. . . V a(V1)) (_: a(‘I'): By lemma 12(c) we get c(I‘ V A, 1) >c c(a(U1) V . . .V c(Uk) V c(Vl) V . . . V 0(V1), 1').
Case 2.2: analogous to case 1. C1

For a (modulo T) refutational complete theorem prover we need ”fair” derivations:

Definition 11
(a) H’ is a T—covering set for H (w.r.t. R) ifi'for any .A |: T and each H—inconsistency (I‘//<I>‚ 1') w.r.t. .A
there exists a H U H’-inconsistency (F'//<I>’, 1") w.r.t. .A such that c(F//<I>, 1') >° c(I"//(I>'‚ 1").
(b) A derivation (Lo ,Ho) l- (L1 ,H1) l— is said t o be fair-i1)r the set UiEN H.- of all deduced clauses is a
T-covering set for the set UieN n]. Zi H,- of all persisting clauses.

Theorem 4 Let (Lo ,Ho) l- (L1, H1) l- - -- be a fair derivation.
(a) IfHo is not inductively valid w.r.t R and T , then there exists an i E N such that H,— contains a {lo-clause

13

9

that is not parameter valid w.r.t. T. ("refutational completeness mod. T")
(b) If U'<k1 Hi is a T-covering set for Hk and if every Eo-clause in Ui<k Hi is parameter valid w.r.t. T,_

then Ui$~ Hi ~ ITH(T; R).

Proof: as in [Ba88]

T -covering sets

Theorem 4 in the last section requires a fair derivation to obtain a (modulo T) refutational complete theorem
prover. In this section we give a sufficient condition under which one always can produce a fair derivation.

We want to guarantee that a clause r //~ that cannot be treated by a built-in algorithm - i.e. that
contains a new symbol - can be covered by a set of critical clauses between Rand r at a maximal literal
C in r as indicated in the formulation of the inference system. Two problems arise: We firstly want to
guarantee that an instantiated clause containing a new symbol is --->R(A) -reducible by some equation from
R and secondly that such a reduction is possible at a maximal literal in the clause (such that this literal
contributes to the complexity measure cr).

To get the first property we require R to be parameter leftlinear. We write -R(A);R resp. -R(A),A

to indicate that an equation from R resp. DIA+(A) is used in the rewrite step. The next lemma states
(without proof) the interchangeability of the rewrite steps using Rand DIA+(A).

Lemma 14 Let R be parameter simple and parameter leftlinear. Let R be T-ground confluent (as usual). Let

A F= T. If S ~R(A);A t -R(A),R u for s, t, u E TERM(FI(A», then there exists a term v E TERM(FI(A»
•such that s -R(A);R V -R(A);A U.

In order to guarantee that a clause containing a new symbol contains a maximal literal with a new symbol
we require> to be compatible with the specification hierarchy.

Definition 12 An ordering> is said to be compatible with the specification hierarchy iff no term s E
TERM(Fo, Vo) with only parameter symbols is greaterw.r.t. > than any termt E TERM(FI , Vr) containing
a new symbol from FI\Fo.

The next lemma now assures the existence of fair derivations. Consequently, if the premises of the lemma
are-fulfilled, we can construct a modulo T refutational theorem prover. The way how such a prover works
will then be described in the next section.

Lemma 15 Let R be T -ground confuent and T -sufficient complete w. r. t. parameter sorts (as usual). Let R
further be parameter simple and parameter leftlinear. Let> be compatible with the specification hierarchy.
Let r //~ be a clause containing a new symbol from F I \Fo. Then there exists a maximal literal C i in
r == Cl V ... V Ck such that the set C RITCLAUSE(R, r, Ci) of critical clauses between Rand r at the
literal Ci is aT-covering set for {r/ / 4> }.

Proof: Let A F= T and r be a El (A)-ground substitution with r(f) ~R(A) false. As> is compatible with
the specification hierarchy there is some literal C i in r that contains a new symbol and that is not majorized
by r\{Ci}. By T-sufficient completeness (and our overall assumption of clauses to be over sort So) we know
that r(Ci) is -R(A) -reducible. By the previous lemma we know that r(Ci) is even -R(A);R -reducible.
Case 1: There exists a variable x in Ci such that r(x) is --->R(.A);R-reducible. Consider r' with r'(x) being
the --->R(A);R-normal form of r(x). Then (r/ /~, r') has the desired property.
Case 2: There is no variable x in Ci such that r(x) is -R(A);R -reducible. Then there exists a condi­
tional equation < u = v > vU E R (U == UI V ... V Un) and a critical clause p(Cr) V '" V p(Ci)[P f­

p(v)] v...Vp(Ck)Vp(U)/ /4>' E CRITCLAUSE(R, f, Ci) and a substitution r' such that r(-.U) ~R(A) true

and r = r'p. Hence r'(p(Cr) V V Jl(Ci)[P f- p(v)] V V p(Ck) V p(U» ~R(A) false. By lemma 12(a)
we get c(f/ /4>, r) >C c(Jl(Cr) v V Jl(Ci)[P f- Jl(v)] V V p(Ck) V p(U)//~', r'). 0

The question arizes of how restnctlve parameter leftlinearity is. The following lemma and the succeed­
ing corollary state (without proof) that it is not at all in our context.

14

that is not parameter valid w.r . t . T . (”refutational completeness mod. T”)
(b) If UK,‘ H.— is a T-covcring set for H„ and if every Eo-clause in Uigk H.- is parameter valid w.r.t. T,
then Uis; H.- g ITH(T; R).

Proof: as in [Ba88]

9 T-covering sets
Theorem 4 in the last section requires a fair derivation to obtain a (modulo T) refutational complete theorem
prover. In this section we give a sufficient condition under which one always can produce a fair derivation.

We want to guarantee that a clause I‘//<I> that cannot be treated by a built-in algorithm — i.e. that
contains a new symbol — can be covered by a set of critical clauses between R and I‘ at a maximal literal
C in I‘ as indicated in the formulation of the inference system. Two problems arise: We firstly want to
guarantee that an instantiated clause containing a new symbol is' -——>R A -reducible by some equation from
R and secondly that such a reduction is possible at a maximal literal in the clause (such that this literal
contributes to the complexity measure c l) .

To get the first property we require R to be parameter leftlinear. We write """n(4);n resp. —+R(AM
t o indicate that an equation from R resp. DIA+(.A) is used in the rewrite step. The next lemma states
(without proof) the interchangeability of the rewrite steps using R and DIA+(A).

Lemma 14 Let R be parameter simple and parameter Ieftlinear. Let R be T-ground confluent (as usual). Let
A |: T . Ifs Ling“ t _’n(4);n u for s, t , u e TERM(F1(.A)), then there exists a term v G TERM(F1(.A))
such that s —* v u .R(A);R 'n(A);A

In order to guarantee that a clause containing a new symbol contains a maximal literal with a new symbol
we require > to be compatible wi th the specification hierarchy.

Definition 12 An ordering > is said to be compatible with the specification hierarchy ifi no term 8 €
TERM(F0, Vo) with only parameter symbols is greater w.r.t. > than any termt E TERM(F1, V1) containing
a new symbol from F1\Fo.

The next lemma now assures the existence of fair derivations. Consequently, if the premises of the lemma
are‘fulfilled , we can construct a modulo T refutational theorem prover. The way how such a prover works
will then be described in the next section.

Lemma 15 Let R be T-ground confuent and T-sufl‘icient complete w. r.t. parameter sorts (as usual). Let R
further be parameter simple and parameter leftlinear. Let > be compatible with the specification hierarchy.
Let I‘//<I> be a clause containing a new symbol from F1\Fo. Then there exists a maximal literal C; in
l" E C; V . . .V C„ such that the set CRITCLAUSE(R, I ‘ ,C;) of critical clauses between R and I" at the
literal C.- is a T-covering set for {I‘//(I>}.

Proof: Let A }: T and T be a. 21(A)-ground substitution with 1'(I‘) ;»RM) false. As > is compatible with
the specification hierarchy there is some literal C.- in 1" that contains a new symbol and that is not majorized
by I‘\{C‚-}. By T—suflicient completeness (and our overall assumption of clauses to be over sort So) we know
that T(C.-) is —>R(A)-reducible. By the previous lemma we know that ‘r(C,-) is even —>R(A);R-reducible.
Case 1: There exists a variable a: in C.- such that r(x) is —->R(A);R—reducible. Consider 1" with r’(:e) being
the ——>R(Am-normal form of f(x). Then (IV/0,1”) has the desired property.
Case 2: There is no variable x in C.- such that r (x) is —rfl(A);R-reducible. Then there exists a condi—
tional equation < u = v > VU € R (U 5 U1 V . . .V U,.) and a. critical clause p(C'1)V . . .Vp(C.-)[p «—
p(v)]V. . .Vp(Ck)Vß(U)//<I>' € CRITCLAUSE(R, I‘,C‚-) and asubstitution ‘r' such that f (fiU) LR“) true
and r : ‘r’p. Hence r’(u(Cl) V . . . V p(C,-)[p «- p(v)] V . . . Vp(Ck) V MUD—15,“) false. By lemma 12(a)
we get c(l‘//<I’, r) >c c(p(C1) V . . . V p(C;)[p 4— p(v)] V . . . V [1(Ck) V p(U)//<I>’, 1"). D

The question arizes of how restrictive parameter leftlinearity is. The following lemma and the succeed—
ing corollary state (without proof) that i t is not at all in our context .

14

Lemma 16 Let R be parameter simple, T-ground confluent and compatible with a T-extendable reduction
ordering> (as usual). Let u = v if U E R be a conditional equation with two distinct positions ql, q2 E O(u)
such that U/ql == U/q2 == x E Vo. Let y be a new variable and R' the rewrite system that results from R where
(u = v if U) is exchanged by (U[q2 +- y] = v if U 1\ x = y). Then for any AFT and s, t E T ERM(FI(A»
we have:

(a) s ~R(.A) t ifJ S ~R/(.A) t
(b) R' is T -ground confluent.

(c) R and R' produce the same equivalences on TERM(FI(A», i.e.: ~G(.A)==~G/(.A).

Corollary 4 Let R be parameter simple, T -ground confluent and compatible with aT-extendable reduction
ordering>. Then there exists aT-ground confluent R' (compatible with» that is parameter leftlinear and
produces the same equivalences on TERM(FI(A» for any AFT.

10 The Theorem Prover

We first describe how the theorem prover works and then demonstrate it by considering an example.
The prover repeatedly performs the following (conditional) operations: (note that at the beginning all

clauses are assumed to be unmarked)

(1) All clauses in H are marked: Accept the hypotheses.
(2) There exist unmarked clauses in H:
(2.1) There are no Eo-clauses in H:
(2.1.1) No simplification and deletion rule is appliable: Mark a (unmarked) clause and cover it.
(2.1.2) A simplification or deletion rule is appliable: Apply it.
(2.2) There are Eo-clauses in H:
(2.2.1) All Eo-clauses are parameter valid w.r.t. T: Delete them with DelDed.
(2.2.2) There is a Eo-clause that is not parameter valid w.r.t. T: Stop and refute the hypotheses.

To illustrate the prover we return to example 1 introduced in section 2 where T consists of the axioms
of totally ordered sets and in addition of two standard boolean axioms. We want to prove that the clauses
(A) ,... , (E) are inductivley valid w.r.t. Rand T. As we only want to demonstrate the method and not
to present all details here we only consider the proofs of (A), (B) and (E) (using (A) ,... , (D) as lemmata).
When applying DelDed (i.e. the built-in algorithm) we use in this section an oracle. In the next section we
present an algorithm to replace the oracle.

As ordering> we may use a semantical recursive path ordering as in [Gr90] (that can be chosen to be
compatible with the specification hierarchy and to be T-extendable). The system R of conditional equations
is parameter simple and parameter leftlinear. One easily proves that R is T-ground confluent and T-sufficient
complete w.r.t. parameter sorts.

To shorten the derivations we use in addition a simplification rule (SimpRew'). Note that every step
using this rule can be replaced by succesive (SimpRew)-steps.

(SimpRew' - simplification by clausal rewriting)

L, H U {CV rll4>}

L,HU{q vrVu(Udll4>~ I·· .,

if there exist a substitution u, a position p and clauses < u =VI > VUI , .•• , < u = Vn > VUn ER so that:
Clp == u(u), c: == C[p +- u(v;)] (i = 1. .. n), 4>~ == (4)U {C}) ncpldC: V f) (i = 1. .. n) and "UI V ... V"Un
is logically valid.

Below we have listed derivations that prove the clauses (A), (B) and (E). The information in the right
column indicates the rule that is applied next to the clause in the middle column. The item in the left
column indicates the results that are obtained by applying a rule: for instance by applying (DedHyp) on
the clause with item (A) we get the clauses with items (A. I), (A.2) and (A.3). The additional star indicates
the marked (covered) clauses. History clauses are not needed here as always maximal literals are treated.

15

Lemma 16 Let R be parameter simple, T-ground confluent and compatible with a T-eztendable reduction
ordering > (as usual). Let u = v i f U € R be a conditional equation with two distinct positions q1,q2 € 0(u)
such that 11/!“ E u/qz E .1: € Vo. Let y be a new variable and R’ the rewrite system that results from R where
(u = v if U) is exchanged by (u[q2 4— y] = v i f UA: = 31)». Then for any .A I: T and s , t E TERM(F1(A))
we have: .
(a) s 4—5,“) t :fl's 4—>R‚w t
(b) R' is T-ground confluent.
(c) R and R’ produce the same equivalences on TERM(F1(.4)), i.e.: ANNE;

0 ' (A) '

Corollary 4 Let R be parameter simple, T-ground confluent and compatible with a T-eztendable reduction
ordering > . Then there exists a T-ground confluent R’ (compatible with >) that is parameter leftlinear and
produces the same equivalences on TERM(F1(.A)) for any A I.: T.

10 The Theorem Prover

We first describe how the theorem prover works and then demonstrate it by considering an example.
The prover repeatedly performs the following (conditional) operations: (note that at the beginning all

clauses are assumed to be unmarked)

(1) All clauses in H are marked: Accept the hypotheses.
(2) There exist unmarked clauses in H:
(2.1) There are no Eo-clauses in H:
(2.1.1) No simplification and deletion rule is appliable: Mark a (unmarked) clause and cover it.
(2.1.2) A simplification or deletion rule is appliable: Apply i t .
(2 .2) There are Zia—clauses in H:
(2.2.1) All Eo-clauses are parameter valid w.r.t. T: Delete them with DelDed.
(2.2.2) There is a {lo-clause that is not parameter valid w.r.t. T: Stop and refute the hypotheses.

To illustrate the prover we return to example 1 introduced in section 2 where T consists of the axioms
of totally ordered sets and in addition of two standard boolean axioms. We want to prove that the clauses
(A) ,..., (E) are inductivley valid w.r.t. R and T. As we only want to demonstrate the method and not
to present all details here we only consider the proofs of (A), (B) and (E) (using (A) ,..., (D) as lemmata).
When applying DelDed (Le. the built-in algorithm) we use in this section an oracle. In the next section we
present an algorithm to replace the oracle.

As ordering > we may use a semantical recursive path ordering as in [Gr90] (that can be chosen to be
compatible with the specification hierarchy and to be T-extendable). The system R of conditional equations
is parameter simple and parameter leftlinear. One easily proves that R is T—ground confluent and T-sufficient
complete w . r . t . parameter sorts.

To shorten the derivations we use in addition a. simplification rule (SimpRew’). Note that every step
using this rule can be replaced by succesive (SimpRew)-steps.

(SimpRew’ — simplification by clausal rewriting)

L,HU{CVI‘//<I>}
L,HLJ{C;vI‘V¢7(U1)//<I>'1 C‚’‚VI‘Va'(U„)//<I>;‚}

if there exist a. substi tution 0 , a position p and clauses < u = 111 > VUl , . . . , < u = v,. > VUn € R so that:
C/pE a(u), C: E C[p<— a(v¢)] (i=1 . . .n) , <I>£'_—‘(<I>U{C})ncpl<(C{Vl‘)(i= 1 . . .n) and flU1V...V—1U„
is logically valid.

Below we have listed derivations that prove the clauses (A), (B) and (E). The information in the right
column indicates the rule that is applied next to the clause in the midd le column. The item in the left
column indicates the results that are obtained by applying a rule : for instance by applying (DedHyp) on
the clause with item (A) we get the clauses with items (A.1), (A.2) and (A3) . The additional star indicates
the marked (covered) clauses. History clauses are not needed here as always maximal literals are treated.

15

(*) (A) (min(a, A) > a :f:. t) DedHyp
(A.l) (a>a:f:.t) De/Ded

(*) (A.2) (min(b, B) > a :f:. t) v (a> b :f:. t) DedHyp

(A.2.1) (b> a :f:. t) v (a> b :f:. t) DelDed
(A.2.2)
(A.2.2)

(min(e, C) > a :f:. t) V (a> b:f:. t) V (b > e:f:. t)
T :

SimpSub(A)
DelTau

(*) (A.2.3) (min(b, C) > a :f:. t) V (a> b:f:. t) V (b > e:f:. t) DedHyp
(A.2.3.1) (b > a :f:. t) V (a> b:f:. t) V (b > e = t) DelDed
(A.2.3.2) (min(d, D) > a :f:. t) V (a > b:f:. t) V (b > e = t) V (b > d:f:. t) SimpSub(A.2)
(A.2.3.2.1) T De/Tau
(A.2.3.2.2) (a> b :f:. t) V (b > e =t) V (b > d:f:. t) V (b > d =t) De/Ded
(A.2.3.3) (min(b, D) > a :f:. t) V (a > b:f:. t) V (b > e = t) V (b > d = t) SimpSub(A.2.3)
(A.2.3.3) T De/Tau
(A.3) (min(a, B) > a :f:. t) V (a> b = t) SimpSub(A)
(A.3) T De/Tau

(*) (B) (leq(min(x,A),A) =t) DedHyp
(B.l) (leq(x, nil) = t) SimpRew
(B.l) (t = t) DelTau
(B.2) (leq(min(a, A), a.A) = t) V (x> a :f. t) SimpRew'
(B.2.1) (f = t) V (x > a :f:. t)) V (min(a, A) > a :f:. t) SimpE/im
(B.2.1) (x> a:f:. t)) V (min(a,A) > a:f:. t) SimpSub(A)
(B.2.1) T De/Tau
(B.2.2) (leq(min(a, A), A) = t) V (x> a :f:. t) V (min(a, A) > a = t) SimpSub(B)
(B.2.2) T De/Tau
(B.3) (leq(min(x, A), a.A) = t) V (x> a = t) SimpRew'
(B.3.1) (f = t) V (x > a = t) V (min(x, A) > a:f:. t) SimpE/im

(*) (B.3.1) (x> a = t) V (min(x, A) > a :f:. t) DedHyp
(B.3.1.1) (x> a = t) V (x> a :f:. t) DelTau
(B.3.1.2) (x > a = t) V (min(b, B) > a :f:. t) V (x> b:f. t) SimpSub(B.3.1)
(B.3.1.2.1) T DelTau
(B.3.1.2.2) (x > a = t) V (x > b :f.t) V (b > a :f:. t) DelDed
(B.3.1.3) (x> a = t) V (min(x, B) > a :f. t) V (x> b = t) SimpSub(B .3.1)
(B.3.1.3) T DelTau
(B.3.2) (leq(min(x, A), A) = t) V (x > a = t) V (min(x, A) > a = t) SimpSub(B)
(B.3.2) T DelTau

(*) (E) (ord(sort(A)) = t) DedHyp
(E.l) (ord(ni/) = t) SimpRew
(E.l) (t = t) De/Tau
(E.2) (ord(min(b, B).sort(del(min(b, B), b.B))) = t) SimpRew'
(E.2.1) (ord(sort(de/(min(b, B), b.B))) = t) V (/eq(...) :f:. t) SimpRew(E)
(E.2.1) (t = t) V (/eq(...) :f:. t) De/Tau
(E.2.2) (f = t) V (/eq(min(b, B), sort(del(min(b, B), b.B))) = t) SimpE/im
(E.2.2) (leq(min(b, B), sort(del(min(b, B), b.B))) = t) SimpRew(D)
(E.2.2) (/eq(mineb, B), del (mineb, B), b.B)) = t) SimpRew(C)
(E.2.2.1) (leq(min(b, B), b.B) = t) V (min(b, B) > min(b, B) = t) SimpE/im

I (E.2.2.1) (leq(min(b, B), b.B) = t) SimpRew'
(E.2.2.1.1) (f = t) V (min(b, B) > b :f:.t) SimpSub(A)
(E.2.2.1.1) (f=t)VT DelTau
(E.2.2.1.2) (leq(min(b, B), B) = t) V (min(b, B) > b = t) SimpSub(B)
(E.2.2.1.2) TV (min(b, B) > b = t) De/Tau
(E.2.2.2) (/eq(...) =t) V (min(b, B) > min(b, B) :f:. t) DelSub

16

(A) (min(a, A) > a # t) DedHyp

(*)

(A.1) (a > a # t) DeIDed
(A.2) (min(b, B) > a # t) V (a > b # t) DedHyp
(A21) (b > a 96 t) V (a > b ;(: t) DelDed
(A.2.2) (min(c‚ C) > a 96 t) V (a > b # t) V (b > c 96 t) SimpSub(A)
(A22) T " DelTau
(A23) (min(b‚ C) > a # t) V (a > b .7‘: t) V (b > c # t) DedHyp
(A.2.3.l) (b > a # t) V (a > b 96 t) V (b > c = t) DelDed
(A232) (min(d‚ D) > a # t) V (a > b # t) V (b > c = t) V (b > d # t) SimpS'ub(A.2)
(A2321) T DelTau
(A2322) (a > b # t) V (b > c = t) V (b > d 96 t) V (b > d = t) DelDed
(A.2.3.3) (min(b, D) > a # t) V (a > b # t) V (b > c = t) V (b > d = t) SimpSub(A.2.3)
(A.2.3.3) T DeITau
(A.3) (min(a, B) > a 9E t) V (a > b = t) SimpSub(A)
(A.3) T DeITau

(B) (leq(min(z, A), A) = t) DedHyp
(3.1) (q(a:, nil) : i) SimpRew
(8 .1) (t = t) DelTau
(8.2) (q(min(a, A), a.A) = t) V (a: > a # t) SimpRew'
(8.2.1) (f = t) V (a: > a # t)) V (min(a‚ A) > a # t) SimpEIim
(8.2.1) (3 > a # t)) V (min(a,A) > a # t) SimpSub(A)
(8.2.1) T DeITau
(8.2.2) (q(min(a , A), A) = t) V (x > a 96 t) V (min(a, A) > a = t) SimpSub(3)
(3.2.2) T DelTau
(8 .3) (leq(min(a:, A), (LA) : t) V (r > a = t) SimpRew'
(8.3.1) (f = t) V (a: > a = t) V (min(:c‚ A) > a 96 t) SimpEIim
(8.3.1) (1: > a = t) V (min(z,A) > a # t) DedHyp
(3.3.1.1) (: > a = t) V (z > a 96 t) DelTau
(8.3.1.2) (:: > a = t) V (min(b, B) > a 96 t) V (a: > b 96 t) SimpSub(B.3.1)
(8.3.1.2.1) T DeITau
(3.3.1.2.2) (:|: > a = t) V (m > b f t) V (b > a # t) DelDed
(8.3.1.3) (:|: > a = t) V (min(z, B) > a # t) V (a: > b = t) SimpSub(8.3.l)
(8.3.1.3) T DelTau
(8.3.2) (leq(min(z, A), A) = t) V (:: > a = t) V (min(x, A) > a = t) SimpSub(8)
(8.3.2) T DelTau

(E) (ord(sort(A)) = t) DedHyp
(E . l) (ord(nil) : t) SimpRew
(E.1) (t = t) DelTau
(E.2) (ord(min(b, B).sort(del(min(b, B), b.B))) : t) SimpRew’
(E.2.1) (ord(sort(del(min(b, B), b.3))) = t) V (leq(. .) # t) SimpRew(E)
(E.2.1) (t = t) V (leq(. . .) 96 t) DelTau
(E22) (f = t) V (q(min(b , B), sort(del(min(b‚ 3) , b.3))) = t) SimpEIz'm
(E22) (leq(min(b, B), sort(del(min(b, 3),b.3))) = t) SimpRew(D)
(E22) (q(min(b‚ B), del(min(b‚ B), b.3)) = t) SimpRew(C)
(E221) (leq(min(b‚ 8), b.8) : t) V (min(b‚ B) > min(b, 3) = t) SimpElim
(E.2.2.1) (q(min(b‚ B), b.B) : t) SimpRew’
(E.2.2.1.1) (f = t) v (min(b, B) > b ;e' t) SimpSub(A)
(E2211) (f = t) V T DeITau
(E2212) (leq(min(b, 3) , B) = t) V (min(b, 3) > b = t) SimpSub(B)
(E.2.2.1.2) T V (min(b, 3) > b = t) DelTau
(E.2.2.2) (leq(. . .) = t) V (min(b, 8) > min(b‚ B) 96 t) DelSub

16

11 A Built-in Algorithm

Finally we present a procedure to decide whether a Eo-clause f is a logical consequence ofT or - equivalently
- whether Tu {--.r} is not satisfiable. We consider the special case of example 1. Hence

So = {boole, element}

Fo = {t,f, >}

Tboole {t :f f , Tlx : boole. x = t V x = f}
Ttotord3et {Tlx,y,z: element.	 (x> x:f t) /\

(x > Y = t /\ y> z = t ~ x > z = t) /\

(x > y =t V x =y V Y > x = tn

No variables of type boole occur in the example. So we consider only the case of clauses resp. literals with
variables ranging over the sort element.

Let f E CLAUSE(Fo, Velemend. Then --.f is a conjunction of literals from LIT(Fo, Velement). Every
literal has one of the following forms (possibly interchanging the left and right hand sides of the equations):
x = y, x :f y, x> y = t, x> y :f t, x> Y = f, x> y :f f, t = t, t :f t, t = f, t :f f.J = f.J:f f.
We will transfer --.f with the inference system to follow until no rule application is possible. Then one is able
to decide whether TU {--.r} is satisfiable or not. Let A be a set of atomic formulas over Fo and Velement.

Let ..L be an extra literal that is unsatisfiable in any algebra.

A U {L 1 /\ ... /\ L; /\ ... /\ Ln } . {..J.	 ..J. f ..J. ..J. }
AU{..L}	 IfL;E x-rx,x>x=t,x>x-r ,t-rt,t=f.J-rf

AU{L1 /\ .•• /\L;/\ ... /\Ln } 'f {..J.	 ..J.}
A {L· L T L L} 1 L;E x=x,x>x-rt,x>x=f,t=t,t-rf.J=f

U 1 /\ ... /\ ;-1 /\ /\ ;+1 /\ ... /\ n

A U {L 1 /\ ... /\ (x :f y) /\ ... /\ Ln }	 'f ...j.
--:---7-=-------:~---::.-'-------:.-----.,,-----::-71 X F Y

A U {L 1 /\ ... /\ (X > Y = t V Y > x = t) /\ ... /\ Ln }

AU{L1 /\ ... /\L;/\ ... /\L n }j. d { }
A {L () L } If X 'F Y an L; Ex> y:f t, x> y = f

U 1/\"'/\ y>X=tVX=y /\ ... /\ n

A U {L1 /\ /\ (x > y :f f) /\ /\ L n }

A U {L 1 /\ /\ (x> Y = t) /\ /\ Ln }

A U {L 1 /\ .•. /\ (L;1 V L i ,) /\ /\ Ln }

A U {L 1 /\ ... /\ L; 1 /\ ••• /\ L n , L 1 /\ ... /\ L;, /\ , .. /\ L n }

Au {L} .
A U {L /\ (x = z)} If (x = z) ft L	 and for some y: (x =y), (y = z) EL

A U {L} .
A U {L /\ (x > z =tn If (x > z = t) ft L and for some y: (x> y =t), (y > z = t) E L

AU {L} .
A {L (n If (x > z = t) ~ L and for some y: (x> y = t), (y = z) E L

U /\ x>z=t

AU{L} .

A {L (n If (z > Y = t) ~ L and for some x: (x> y = t), (x = z) EL

U /\ z>y=t

We write A ---... A' if A' is the result of applying an inference rule on A. A conjunction L = L 1 /\ ••. /\ L ofn
literals is said to be closedw. r. t. consequences iff no one of the last four rules is appliable on L.

The following lemma summarizes some easy to prove results concerning the transformation oC-sets of
atomic formulas by the inference system. We only scetch the proof of part (c).

17

11 A Built-in Algorithm
Finally we present a procedure to decide whether a {Io-clause I‘ is a logical consequence of T or —— equivalently
— whether TU {HF} is not satisfiable. We consider the special case of example l . Hence

So = {boole, element}
F0 = {AL >}
Tboole = { t¢ f , sboole . z= tVz=f}
Tto to rdu t : {" /31v : e l emen t . (17 > 1! # t) /\

(:1 :>y=t A y>z= t => z>z= t) / \
(z>y= t V z=y Vy>z= t)}

No variables of type boole occur i n the example. So we consider only the case of clauses resp. literals with
variables ranging over the sort element

Let I‘ E CLAUSE(F0, Veumem) Then -vI‘ i s a conjunction of li terals from LIT(Fa, V,;‚m‚„g) Every
literal has one of the following forms (possibly interchanging the left and right hand sides of the equations):
x=y ,z¢y . z>y= t . r>y¢ t . z>y=f . z>weLt= t , t ¢ t . t= f . t ¢ f , f= f . f¢ f .

We will transfer -vI‘ with the inference system to follow until no rule application is possible. Then one is able
to decide whether T U {HF} is satisfiable or not. Let A be a set of atomic formulas over Fo and Vezemm.
Let J. be an extra literal that is unsatisfiable in any algebra.

AU{L1A. . .AL. -A . . .AL„}
AU{J.}

i fL . - e{z¢m>z=t . z>z¢ i , t ¢ t . z= r , f¢n

AU{L1A...AL.-A.. .AL„}
AU{L1A. . .AL. - -1ATAL. -+1A. . . / \L„ } i fL ie{Z :$,$>Z# t ,3>3=f ‚ i= t ‚ t 7£ ' f ‚ f= f}

AU{L1A. . . / \ (z ;£y)A . . .AL„}
AU{L1A. . . / \ (:1 :>y=tVy>a:=t) / \ . . .AL„ } i f r äéy

AU{L1A. . .AL; / \ . . . / \L‚ .}
AU{L1A. . . / \ (y>:1:=tV:c=y) / \ . . . / \L„} i f x$yandL . -6{z>y ;6 t , z>y=f}

AU{L,A. . .A(z>y¢f)A . . . / \L , , }
AU{L1A. . . / \ (: c>y= t) / \ . . .AL„}

AU{L1A. . .A(L„vL; ‚)A . . . / \L„}
AU{L1A. . .AL;IA. . .AL„ , LlA. . . / \L . - ‚A . - . .AL„}

AU{L}
AU{LA(:c= z)}

i f (z=z)¢Landfo r somey : (z=y) , (y=z)EL

AU{L}
AU{LA(z>z= t)}

AU{L}
AU{LA(:c>z= t)}

i f (: c>z= t)¢Landfo r somey : (: c>y= t) , (y>z= t)€L

i f (1 :>z= t)¢Landfo r - some y : (z>y= t) , (y=z)eL

A U {L} .
mm 1f (Z>y—t)¢L and fo r somez . (Z>y—t) , ($=Z)EL

We write A «» A’ if A’ is the result of applying an inference rule on A. A conjunction L = L1 A . . ‚A Ln of
literals is said to be closed vw. r . t . consequences ifi' no one of the last four rules is appliable on L .

The following lemma summarizes some easy to prove results concerning the transformation of ' s e t s of
atomic formulas by the inference system. We only scetch the proof of part (c).

17

Lemma 17
(a) If A is a finite set of atomic formulas (over Fa and V.'ement) then there exists a set A' of atomic formulas

with A"":' A' that cannot be transformed any more. (i.e.: is terminating.)
(b) Let A .,:. A' such that A' cannot be transformed any more. Then L E A' iff L == .1 or L == L1 /I. ... /I. Ln

such that L is closed w.r.t. consequences and L; == T or L; == (z = y) or L; == (z > y = t) where z and y
are distinct variables (i = 1, ... , n).
(c) If L == L1 /I. ... /I. Ln such that L is closed w.r.t. consequences and L; == T or L; == (z = y) or
L; == (z > y =t) where z and y are distinct variables (i =1, ... , n), then TU {L} is satisfiable.
(d) Let A":' A'. Then Tu {L} is satisfiable for some LEA iffTU {L' } is satisfiable for some L' E A'.

Proof: (c) Let L == L1 /I. •.. /I. Ln such that L is closed w.r.t. consequences and L; == Tor L; == (z = y)
or L; == (z > y = t) where z and y are distinct variables (i = 1, ... , n). Let 'Rboole be the Eo-algebra with
the set of real numbers as carrier of sort element, with a standard boolean part and with >'R being the
natural interpretation of >. Note that 'Rboole is a model of T. We will construct an assignment j3 of the
variables - the construction being presented in form of an algorithm - such that 'Rboole satisfies L w.r.t.
this assignment.

BEGIN
X := var(L)
Y:=0
WHILE X i 0 DO

BEGIN
let x be an element of X
Y< := {y E Y I (x > Y = t) E L}
Y= := {y E Y I (x = y) E L}
Y> := {y E Y I (y > x = t) E L}
IF Y= i 0 THEN j3(x) := (3(y) for some y E Y= ELSE

BEGIN
IF Y< = 0 THEN val< := 0 ELSE val< := max{j3(y) lyE Y<}
IF Y> = 0 THEN val> := 1 ELSE val> := min{{3(y) lyE Y>}
j3(x) := (val< + val»/2
END

X:= X\{x}
Y:= Y U {x}
END

END

X denotes the set of variables that are not assigned a value and Y the set of variables that have been assigned
a value. One easily proves that the following statements are invariants of the loop:

• If (x = y) ELand x,y E Y then (3(x) = (3(y) .

• If (x> y =t) ELand x, yE Y then j3(x) >'1< (3(y) = t'1<.

As the loop obviously terminates we get the desired result. 0

Corollary 5 Let So = {boole,element} and Fa = {t,f,>}. Let T = noole U'ltotord..t. Then for every
clause r E CLAUSE(Fo, Velemend it is decidable whether TU {.r} is satisfiable resp. whetherr is a logical
consequence of T.

Acknowledgements: I would like to thank J. Avenhaus for many valuable discussions and helpful sugges­
tions.

18

Lemma 17
(a) If A is a finite set of atomic formulas (over F0 and Vacuum) then there exists a set A’ of atomic formulas
with A «'» A' that cannot be transformed any more. (i. e.: «» is terminating.)
(b) Let A M A’ such that A’ cannot be transformed any more. Then L € A’ ifl 'LE .L or L= L; A. .A L,l
such that L is closed w. r..t consequences and L.- = T or L.— = (z—_ y) or L.- ..—_-(:c > y—— t) where :|: and y
are distinct tiariahles (i -.. l , . . , .n)
(c) If L= A L,. such that L is closed to r..t consequences and L.- E T or L.- E (a: = y) or
L.- E (:c > y =Lt) where ::: and y are distinct variables (i—.- 1, . . .,n), then TU {L} is satisfiable.
(d) Let A :» A’. Then TU {L} is satisfiable for some L € A ifiTU {L’} is satisfiable for some L’ e A’.

Proof: (c) Let L E L1 A . . . /\ L,. such that L is closed w.r.t. consequences and L.— E T or L; E (a: = y)
or L,- E (z > y = t) where :c and y are distinct variables (i = 1, . . . , n) . Let Ram, be the Eo-algebra. with
the set of real numbers as carrier of sort element, with a standard boolean part and with >72 being the
natural interpretation of > . Note that Rboo le is a model of T . We will construct an assignment ß of the
variables — the construction being presented in form of an algorithm —— such that 121,0,“ satisfies L w.r . t .
this assignment.

BEGIN
X := var(L)
Y := O
WHILE X # 0 DO

BEGIN
let :: be an element of X
Y< == {yEY|(1'>y=t)€L}
Y=:={y€Yl (==y)€L}
Y> := {yEYI(y>w=t)€L}
IF Y_ # 0 THEN ß(z) : : ß(y) for some y € Y= ELSE

BEGIN
IF Y<—_ @ THEN val< := 0 ELSE val< : : ma:c{‚ß(y) | y € Y<}
IF Y>-_ @ THEN val) .= 1 ELSE val) := min{ß(y) | y 6 Y3}
ß(:c) := (val< + vaI>)/2
END

X : : X\{z}
Y := Y U {a:}
END

END

X denotes the set of variables that are not assigned a value and Y the set of variables that have been assigned
a. value. One easily proves that the following statements are invariants of the loop:

. If (z = y) E L and 2,31 6 Y then 5(3) = ß(y).

. If (a: > y ='t) € L and any 6 Y then ß(:c) >R My) = t'R.

As the loop obviously terminates we get the desired result. EI

Corollary 5 Let $0 = {boole ,e lement} and F0 = { t , f ,> } . Let T = Thole UTgogordug. Then for every
clause 1" € CLAUSE(F0‚ Velemem) it is decidable whether TU {-‘I‘} is satisfiable resp. whether I‘ is a logical
consequence of T .

Acknowledgements: I would like to thank J . Avenhaus for many valuable discussions and helpful sugges-
tions,

18

References

[AvMa90] J. Avenhaus and K. Madlener, Term Rewriting and Equational Reasoning, in: R. B. Banerji,
ed., Formal Techniques in Artificial Intelligence (North-Holland, 1990) pp. 1-43.

[Ba88] L. Bachmair, Proof by Consistency in Equational Theories, in: 3rd LICS (1988) pp. 228-233.

[BaGa91] L. Bachmair and H. Ganzinger, Perfect Model Semantics for Logic Programs with Equality,
in: Proc. of 8th Int. Con! on Logic Programming (MIT Press 1991) pp. 645-659.

[BeLe91] E. Bevers and J. Lewi, Proof by Consistency in Conditional Equational Theories, in: Condi­
tional and Typed Rewriting Systems - 2nd CTRS '90, LNCS 516 (Springer, 1991) pp. 194-205.

[BoMo79] R. S. Boyer and J. S. Moore, A Computational Logic (Academic Press, 1979).

[Bu69] R. Burstall, Proving Properties of Programs by Structural Induction, Computer Journal 12
(1969) pp. 41-48.

[De87] N. Dershowitz, Termination of Rewriting, J. Symbolic Computation 3 (1987) pp. 69-116.

[DeJo90] N. Dershowitz and J. P. Jouannaud, Rewriting Systems, in: J. van Leeuwen, ed., Handbook of
Theoretical Computer Science, Vol. B (Elsevier, 1990) pp. 241-320.

[DeOkSi88] N. Dershowitz, M. Okada and G. Sivakumar, Canonical Conditional Rewrite Systems, in 9th
International Conference on Automated Deduction, LNCS 310, (Springer, 1988) pp. 538-549.

[Ga87] H. Ganzinger, Ground Term Confluence in Parametric Conditional Equational Specifications,
in: STACS '87, LNCS 247 (Springer, 1987) pp. 286-298.

[GoMe87] J. Goguen and J. Meseguer, Models and Equality for Logic Programming, in TAPSOFT '87,
LNCS 250, (Berlin, 1987) pp. 1-22.

[Gr90] B. Gramlich, Completion Based Inductive Theorem Proving - A Case Study in Verifying
Sorting Algorithms, SEKI Report SR-90-04.

[HuHu82] G. Huet and J. M. Hullot, Proofs by Induction in Equational Theories with Constructors, J.
Comput. Syst. Sci 25 (1982) pp. 239-266.

[Ka88] S. Kaplan, Positive/Negative Conditional Rewriting, in: Conditional Term Rewriting Systems,
LNCS 308 (Springer 1987) pp. 129-143.

[KaCh86] S. Kaplan and M. Choquer, On the Decidability of Quasi-Reducability, in: Bull. EATCS 28
, (1986) pp. 32-34.

[Ki91]	 H. Kirchner, Proofs in Parametrized Specifications, in: 4th RTA '91, LNCS 488 (Springer,
1991) pp. 174-187.

[KoRu90]	 E. Kounalis and M. Rusinowitch, Mechanizing Inductive Reasoning, in: Proc. of 8th AAA! '90
(MIT Press, 1990) pp. 240-245.

[Mu80]	 D. R. Musser, On Proving Inductive Properties of Abstract Data Types, in: Proc. 7th ACM
Symp. on Principles of Programming Languages (1980) pp. 154-162.

[NiOr91]	 R. Nieuwenhliis and F. Orejas, Clausal Rewriting, in: Conditional and Typed Rewriting Systems
- 2nd CTRS '90, LNCS 516 (Springer, 1991) pp. 246-261.

[ZaRe85]	 H. Zang and J. L. Remy, Contextual Rewriting, in: 1st RTA '85, LNCS 202 (Springer, 1985)
pp. 46-62.

[Wi9l]	 c.-P. Wirth, Inductive Theorem Proving in Theories specified by Positive/Negative-Conditional
Equations, Diplomarbeit, Universitat Kaiserslautern, Fachbereich Informatik, 1991.

19

References

[AvMa90]

[Ba88]

[BaGaQ 1]

[BeLe9 1]

[BoMo79]
[Bu69]

[De87]

[DeJ 09 0]

[DeOkSi88]

[Ga87]

[GoMe87]

[Gr90]

[HuHu82]

[Ka88]

[KaCh86]

[Ki91] '

[KoRu90]

[Mu80]

[Ni0r91]

[ZaRe85]

[Wi91]

J . Avenhaus and K. Madlener, Term Rewriting and Equational Reasoning, in: R. B. Banerji,
ed., Formal Techniques in Artificial Intelligence (North-Holland, 1990) pp. 1-43.

L. Bachmair, Proof by Consistency in Equational Theories, in: 3rd LICS (1988) pp. 228-233.

L. Bachmair and H. Ganzinger, Perfect Model Semantics for Logic Program with Equality,
in : Proc. of 8th Int . Conf. on Logic Programming (MIT Press 1991) pp . 645-659.

E. Bevers and J . Lewi, Proof by Consistency in Conditional Equational Theories, i n : Condi-
tional and Typed Rewriting Systems — 2nd CTRS ’90, LNCS 516 (Springer, 1991) pp. 194-205.

R. S . Boyer and J. S . Moore, A Computat ional Logic (Academic Press, 1979).

R. Burstall, Proving Properties of Programs by Structural Induction, Computer Journal 12
(1969) pp. 41—48.

N. Dershowitz, Termination of Rewriting, J. Symbolic Computation 3 (1987) pp. 69-116.

N. Dershowitz and J . P . Jouannaud , Rewriting Systems, in : J . van Leeuwen, ed . , Handbook of
Theoretical Computer Science, Vol. B (Elsevier, 1990) pp . 241-320.

N. Dershowitz, M. Okada and G . Sivakumar, Canonical Conditional Rewrite Systems, i n 9th
Internat ional Conference on Automated Deduction, LNCS 310, (Springer, 1988) pp . 538-549.

H. Ganzinger, Ground Term Confluence in Parametric Conditional Equational Specifications,
in: STACS ’87, LNCS 247 (Springer, 1987) pp. 286-298.

J . Goguen and J. Meseguer, Models and Equality for Logic Programming, in TAPSOF T ’87,
LNCS 250, (Berlin, 1987) pp. 1-22.

B. Graml ich , Completion Based Induct ive Theorem Proving — A Case Study in Verifying
Sorting Algorithms, SEKI Report SR—90-04.

G. Huet and J . M. Hullot, Proofs by Induction in Equational Theories wi th Constructors, ‚I.
Comput. Syst. Sci 25 (1982) pp. 239-266.

S. Kaplan, Positive/Negative Conditional Rewriting, in: Conditional Term Rewriting Systems,
LNCS 308 (Springer 1987) pp. 129-143.

S . Kaplan and M. Choquer, On the Decidability of Quasi-Reducability, in : Bull. EATCS 28
. (1986) pp. 32-34.

H. Kirchner, Proofs i n Parametrized Specifications, in : 4 th RTA ’91, LNCS 488 (Springer,
1991) pp . 174-187.

E. Kounalis and M. Rusinowitch, Mechanizing Inductive Reasoning, in: Proc. of 8th AAA] ’90
(MIT Press, 1990) pp. 240—245.

D. R . Musser, On Proving Induct ive Properties of Abstract Data Types, in : Proc. 7th ACM
Symp. on Principles of Programming Languages (1980) pp . 154-162.

R. Nieuwenhu'is and F . Orejas, Clausal Rewriting, i n : Condit ional and Typed Rewriting Systems
— 2nd CTRS ’90, LNCS 516 (Springer, 1991) pp. 246—261.

H. Zang and J . L. Rémy, Contextual Rewriting, in: Is t RTA ’85, LNCS 202 (Springer, 1985)
pp . 46-62.

C.-P. Wir th , Inductive Theorem Proving in Theories specified by Positive / Negative‘Conditional
Equations, Diplomarbeit, Universität. Kaiserslautern, Fachbereich Informatik, 1991.

19

