
U
N

ID
E
fl

sl
T
fi

T
D

ES
 S

H
R

H
LH

N
D

ES
FH

CH
BE

BE
IC

H
IN

FU
BM

HT
IK

lm
S

ta
d

tw
al

d
[l

l-
66

00
S

aa
rb

rü
ck

en

ll
G

er
m

an
y

Methods — The Basic Units for
Planning and Verifying Proofs

Xiaorong Huang, Manfred Kerber, Michael Kohlhase
‘SEKI Report SR—92—20 (SFB)

S
E

K
I-

H
E

P
D

H
T

Methods - The Basic Units for Planning and
Verifying Proofs

Xiaorong Huang, Manfred K~rber,Michael Kohlhase*
Fachbereich Informatik, Universitat des Saarlandes
lm Stadtwald, W-6600 Saarbriicken 11, Germany

{huang Ikerber Ikohlhase}@cs.uni-sb.de

Abstract

This paper concerns a knowledge structure called method, within a compu­
tational model for human oriented deduction. With human oriented theorem
proving cast as an interleaving process of planning and verification, the body of
all methods reflects the reasoning repertoire of a reasoning system. While we
adopt the general structure of methods introduced by Alan Bundy, we make an
essential advancement in that we strictly separate the declarative knowledge
from the procedural knowledge. This is achieved by postulating some stand­
ard types of knowledge we have identified, such as inference rules, assertions,
and proof schemata, together with corresponding knowledge interpreters. Our
approach in effect changes the way deductive knowledge is encoded: A new
compound declarative knowledge structure, the proof schema, takes the place
of complicated procedures for modeling specific proof strategies. This change of
paradigm not only leads to representations easier to understand, it also enables
us modeling the even more important activity of formulating meta-methods,
that is, operators that adapt existing methods to suit novel situations. In this
paper, we first introduce briefly the general framework for describing methods.
Then we turn to several types of knowledge with their interpreters. Finally,
we briefly illustrate some meta-methods.

Keywords: Deduction, Planning and Verification, Methods, Declarative and Pro­
cedural Knowledge, Tactics.

*This work waS supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D3)

1

Methods — The Basic Units for Planning and
Verifying Proofs

Xiaorong Huang, Manfred Kerber, 'Michael Kohlhase*
Fachbereich Informatik, Universität des Saarlandes
Im Stadtwald, W—6600 Saarbrücken 11, Germany

{huang | kerb er I kohlhase}@cs.uni-sb.de

Abstract

This paper concerns a knowledge structure called method, within a compu-
tational model for human oriented deduction. With human oriented theorem
proving cast as an interleaving process of planning and verification, the body of
all methods reflects the reasoning repertoire of a reasoning system. While we
adopt the general structure of methods introduced by Alan Bundy, we make an
essential advancement in that we strictly separate the declarative knowledge
from the procedural knowledge. This is achieved by postulating some stand—
ard types of knowledge we have identified, such as inference rules, assertions,
and proof schemata, together with corresponding knowledge interpreters. Our
approach in effect changes the way deductive knowledge is encoded: A new
compound declarative knowledge structure, the proof schema, takes the place
of complicated procedures for modeling specific proof strategies. This change of
paradigm not only leads t o representations easier to understand, it also enables
us modeling the even more important activity of formulating meta-methods,
that is, operators that adapt existing methods to suit novel situations. In this
paper, we first introduce briefly the general framework for describing methods.
Then we turn to several types of knowledge with their interpreters. Finally,
we briefly illustrate some meta-methods.

Keywords: Deduction, Planning and Verification, Methods, Declarative and Pro-
cedural Knowledge, Tactics.

‘This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D3)

1

mailto:Ikohlhase}@cs.uni-sb.de

1 Introduction

There has been growing concern in the automated theorem proving community, that
general purpose machine oriented procedures like resolution might have reached their
limit in practice. Therefore the old discussion of the merits of a human-oriented vs.
a machine oriented approach to automated theorem proving has been revived by
researchers like Alan. Bundy. In response to his request for a "science of reasoning"
[3] a string of systems and theories have been proposed that aim at combining human­
oriented deduction methods with sophisticated planners.

A central concept of knowledge based reasoning in mathematics is that of a
method. A method contains a piece of knowledge for solving or simplifying prob­

lems or transforming them into a form that is easier to solve. Therefore methods can

be quite general such as finding proofs by a case analysis or complete induction, or the

. advice to expand definitions. On the other hand, domain specific methods are also

very common, for instance, the elimination of a variable, the isolation of a function

symbol, or a clearly described proof sketch for proving a theorem by diagonalization.

During his academic training a mathematician has to accumulate lots of methods,
both domain-specific and general. This body of methods is the reasoning repertoire
which together with the factual knowledge, to a great extent forms his technical
knowledge. Another equally important knowledge source of a mathematician is his
ability to adapt existing methods to suit a new situation. When he faces a.new prob- .
lem where no existing method fits, he will very often try to transform his reasoning
repertoire in order to solve the new problem by analogy.

Much of this discussion has been anticipated by George P61ya in the context
of analyzing mathematical reasoning (eg. "How to Solve It" [14]), where he gives
hundreds of examples that mathematicians have to learn during their training. Some
of these methods have been stated very explicitly, for instance, the method of two loci
in geometry instructs us to desc~ibe the same point in two different ways in order to
obtain some equations. Others are very general and are largely illustrated with the
help of examples only. AlIen Newell [12] discussed the relevance of P6lya's heuristics
very intensively, although he did not achieve a formalization.

Among the concrete systems proposed so far the approach of Alan Bundy [2]
is probably the most influencing and advanced. He views methods essentially as a
triple consisting of a tactic, a precondition, and a postcondition. There the tactic is
a piece of program code that can manipulate the actual proof in a controlled way.
The precondition and the postcondition form a specification of the deductive ability
of the tactic, formulating declaratively the applicability condition of the tactic and
a description of the proof status after its application. This has been an essential
progress compared with the mere tactic language of LCF [6] or the system Nuprl [4],
because within this framework it is now possible to develop proof plans with the help
of the declarative knowledge in the preconditions and postconditions. Following a
one-sided approach relying on procedural knowledge only, the Oyster-Clam system
developed by Bundy's group, still has however a severe drawback: the adaption of

2

1 Introduction

There has been growing concern in the automated theorem proving community, that
general purpose machine oriented procedures like resolution might have reached their
limit in practice. Therefore the old discussion of the merits of a human-oriented vs.
a machine oriented approach to automated theorem proving has been revived by
researchers like AlanBundy. In response to his request for a “science of reasoning”
[3] a string of systems and theories have been proposed that aim at combining human-
oriented deduction methods with sophisticated planners.

A central concept of knowledge based reasoning in mathematics is that of a
method. A method contains a piece of knowledge for solving or simplifying prob-
lems or transformn them into a form that “is easier to solve. Therefore methods can
be quite general such as finding proofs by a case analysis or complete induction, or the

\ advice to expand definitions. On the other hand, domain specific methods are also
very common, for instance, the elimination of a variable, the isolation of a function
symbol, or a clearly described proof sketch for proving a theorem by diagonalization.

During his academic training a mathematician has to accumulate lots of methods,
both domain-specific and general. This body of methods is the reasoning repertoire
which together with the factual knowledge, to a great extent forms his technical
knowledge. Another equally important knowledge source of a mathematician is his
ability to adapt existing methods to suit a new situation. When he faces a new prob— '
lem where no existing method fits, he will very often try to transform his reasoning
repertoire 1n order to solve the new problem by analogy

Much of this discussion has been anticipated by George Pélya in the context
of analyzing mathematical reasoning (eg. “How to Solve It” [14]), where he gives
hundreds of examples that mathematicians have to learn during their training. Some
of these methods have been stated very explicitly, for instance, the method of two loci
in geometry instructs us to describe the same point in two different ways in order to
obtain some equations. Others are very general and are largely illustrated with the
help of examples only. Allen Newell [12] discussed the relevance of Polya’s heuristics
very intensively, although he did not achieve a formalization.

Among the concrete systems proposed so far the approach of Alan Bundy [2]
is probably the most‘ influencing'and advanced. He views methods essentially as a
triple consisting of a tactic, a precondition, and a postcondition. There the tactic is
a piece of program code that can manipulate the actual proof in a controlled way.
The precondition and the postcondition form a specification of the deductive ability
of the tactic, formulating declaratively the applicability condition of the tactic and
a description of the proof status after its application. This has been an essential
progress compared with the mere tactic language of LCF [6] or the system N uprl [4],
because within this framework i t is now possible to develop proof plans with the help
of the declarative knowledge 1n the preconditions and postconditions. Following a
one--sided approach relying on procedural knowledge only, the Oyster-Clam system
developed by Bundy’ 8 group, still has however a severe drawback: the adaption of

2

2

methods to other problems is almost impossible, because that would require the
transformation of programs - tactics are just programs - which is known to be a
very hard problem in practice.

To enable more natural manipulations on existing methods, we advance in this
paper an extension of Bundy's notion of methods by separating the procedural and
declarative knowledge in the tactic part of methods. We propose a notion of method,
that consists of a five-tuple: precondition, postcondition, rating (these three tell when
to apply a method), and the declarative content as well as the procedural content
(these two slots contain the information that is stored in Bundy's tactic slot).

Since the entire discussion is embedded within a computational model of human
deductive reasoning, section 2 first provides a brief sketch of the computational model.
Section 3 is devoted to the main topic, the method structure. Apart from the general
structure, we also propose three types of object level methods which quite naturally
correspond to the knowledge structure of a human mathematician. As a third issue,
we discuss meta-methods, which manipulate (object level) methods. A summary and
a discussion in section 4 conclude the paper.

General :Framework

Statically, we cast a reasoning being as a knowledge based system. We assume the
existence of a planner and a verifier that manipulate the proof tree, which is the
central datastructure that always reflects the current state of proof development is.
A proof tree is an ordered tree where every node is a quadruple:

<Derived-Formula, Method-Name, List-of-Support-Nodes, Status>
The first slot consists of a formula in a fixed object logic. Since the logic is quite

standard we do not discuss it here any further. The whole quadruple means that the
formula is or might be derived, using the method (to be explained below) indicated,
from the support nodes. The status slot has only three possible fillers: verified,
unverified, or rejected. Support nodes must precede the node supported in the order
defined by the ordered tree.

In our computational model we ascribe a reasoner's reasoning competence mainly
to the existence of methods that reflect the reasoner's basic deductive repertoire.
Methods essentially consist of a reasoning procedure, a piece of declarative knowledge,
and a specification. We will elaborate on this concept in greater detail in section 3.
To a remaining gap in the current proof tree, the planner usually consults the set of
methods at his disposal. The chosen method normally proposes asubtree which can
be integrated into the current proof tree. Since not all methods are sound or really
fill the gap, a verification process must follow. In addition, the planner may also
decide to generate new object level methods by applying meta-methods on existing
object level methods.

Dynamically, we assume the entire process, from the analysis of a problem to
the completion of a proof, to be an interleaving process of planning and verification.

3

methods to other problems is almost impossible, because that would require the
transformation of programs — tactics are just programs — which i s known to be a
very hard problem in practice.

To enable more natural manipulations on existing methods, we advance in this
paper an extension of Bundy’s notion of methods by separating the procedural and
declarative knowledge in the tactic part of methods. We propose a notion of method,
that consists of a five-tuple: precondition, postcondition, rating (these three tell when
to apply a method), and the declarative content as well as the procedural content
(these two slots contain the information that is stored in Bundy’s tactic slot).

Since the entire discussion is embedded within a computational model of human
deductive reasoning, section 2 first provides a brief sketch of the computational model.
Section 3 is devoted to the main topic, the method structure. Apart from the general
structure, we also propose three types of object level methods which quite naturally
correspond to the knowledge structure of a human mathematician. As a third issue,
we discuss meta-methods, which manipulate (object level) methods. A summary and
a discussion in section 4 conclude the paper.

2 General Framework

Statically, we cast a reasoning being as a knowledge based system. We assume the
existence of a planner and a verifier that manipulate the proof tree, which is the
central datastructure that always reflects the current state of proof development is.
A proof tree is an ordered tree where every node is a quadruple:

<Derived-Formula, Method-Name, List-of-Support—Nodes, Status>
The first slot consists of a formula in a. fixed object logic. Since the logic is quite

standard we do not discuss it here any further. The whole quadruple means that the
formula is or might be derived, using the method (to be explained below) indicated,
from the support nodes. The status slot has only three possible fillers: verified,
unverified, or rejected. Support nodes must precede the node supported in’ the order
defined by the ordered tree.

In our computational model we ascribe a reasoner’s reasoning competence mainly
to the existence of methods that reflect the reasoner’s basic deductive repertoire.
Methods essentially consist of a reasoning procedure, a piece of declarative knowledge,
and a specification. We will elaborate on this concept in greater detail in section 3.
To a remaining gap in the current proof tree, the planner usually consults the set of
methods at his disposal. The chosen method normally proposes a‘subtree which can
be integrated into the current proof tree. Since not all methods are sound or really
fill the gap, a verification process must follow. In addition, the planner may also
decide to generate new object level methods by applying meta-methods on existing
object level methods.

Dynamically, we assume the entire process, from the analysis of a problem to
the completion of a proof, to be an interleaving process of planning and verification.

3

This process is centered around the current proof tree, which accommodates concepts
like proof sketches, proof plans, and proofs. For a more comprehensive discussion of
the general framework of the computational model for human deductive reasoning,
readers are referred to [9, 10].

3 Methods

The concept of method is central to the reasoning process, since methods are the
basic units which are planned and carried out and body of methods constitutes the
basic reasoning repertoire, that is constantly adapted and enriched, as experiences
are collected. In the following subsection, we first provide a general definition of the
structure of methods, and compare our definition with similar concepts already in­
troduced in the literature. Then we turn to three types of specific methods identified
thus far. In the last subsection, we illustrate how new methods can be constructed.

3.1 General Concepts and Classifications

In our computational model, we define every method as having the following slots:

•	 Rating: A function indicating whether the method is total or partial, and
evaluating the appropriateness of applying this method.

•	 Precondition: Specifying preconditions of the problems a method is intended
to solve.

•	 Postcondition: Specifying the effect the method will end up with.

•	 Declarative content: A piece of declarative knowledge. We currently only deal
with three types of object level declarative knowledge: the natural dedl\ction
inference rules, the assertions (being facts either assumed of or proved previ­
ously), and proof schemata.

•	 Procedural content: Either a standard procedure interpreting the piece of de­
clarative knowledge, or a special purpose inference procedure devised for a
specific type of problems.

Viewed within a planning framew:ork, the precondition and the postcondition slots
together constitute the logical part of the specification of a method, which are both
constraints on the partial proof tree. In other words, by these two conditions it is
specified whether a method is applicable in a particular proof state or not. If several
applicable methods are found the rating procedure should estimate how promising
each one is. We are not going to elaborate on this concept, although for real planning
tasks this rating may be crucial. For details we refer to [15].

4

This process is centered around the current proof tree, which accommodates concepts
like proof sketches, proof plans, and proofs. For a more comprehensive discussion of
the general framework of the computational model for human deductive reasoning,
readers are referred to [9, 10].

3 Methods

The concept of method is central to the reasoning process, since methods are the
basic units which are planned and carried out and body of methods constitutes the
basic reasoning repertoire, that is constantly adapted and enriched, as experiences
are collected. In the following subsection, we first provide a general definition of the
structure of methods, and compare our definition with similar concepts already in—
troduced in the literature. Then we turn to three types of specific methods identified
thus far. In the last subsection, we illustrate how new methods can be constructed.

3.1 General Concepts and Classifications

In our computational model, we define every method as having the following slots:

. Rating: A function indicating whether the method is total or partial, and
evaluating the appropriateness of applying this method.

. Precondz'tz'on: Specifying preconditions of the problems a method is intended
to solve. .

. Postconditz'on: Specifying the effect the method will end up with.

o Declarative content: A piece of declarative knowledge. We currently only deal
with three types of object level declarative knowledge: the natural deduction
inference rules, the assertions (being facts either assumed of or proved previ—
ously), and proof schemata.

o Procedural content: Either a standard procedure interpreting the piece of de-
clarative knowledge, or a special purpose inference procedure devised for a
specific type of problems.

Viewed within a planning framework, the precondition and the postcondz'tz'on slots
together constitute the logical part of the specification of a method, which are both
constraints on the partial proof tree. In other words, by these two conditions it is
specified whether a method is applicable in a particular proof state or not. If several '
applicable methods are found the rating procedure should estimate how promising
each one is. We are not going to elaborate on this concept, although for real planning
tasks this rating may be crucial. For details we refer to [15].

4

Method

Rating

PreconditionSpecification

Declarative Part Postcondition

Declarative Content

Tactic

Procedural Content Procedural Part

Figure 1: The Structure of Methods

We assume, that the planner exclusively consults the specification while planning
a proof. The declarative content and the procedural content slots play the role of a
so-called tactic of systems like Nuprl [4] or Bundy's framework for proof planning
[3]. Concretely, the declarative content can be an arbitrary piece of declarative
knowledge, and the procedural content a Lisp procedure of the following format:

interpreter(DK Prooftree &optional other-information)

In other words, it is an interpreter which takes as input a piece of declarative
knowledge, a pointer to the current proof tree, and optionally other information, and
produces a subproof tree that can be integrated into the current partial proof tree.
From the logic point of view, the precondition, the postcondition and the declarat­
ive content slot together constitute the logical part of a method. These different
partitions are illustrated in figure 1.

There was a long and heated debate in AI as to whether knowledge should be
represented procedurally or declaratively. Arguments were put forward for both
positions from psychological and computational perspectives. Advantages and draw­
backs are discussed with respect to, among others, flexibility, computational effi­
ciency, communicability. Resulting from this discussion (cf. [18]) it has been realized
that both forms of knowledge are necessary to simulate intelligent behavior. Never~

theless most existing interactive proof development environments follow a one-sided
approach relying on procedural knowledge only. Although we do not want to claim
the psychological reality of our theory, we believe it is plausible that both aspects
play an important role in human theorem proving.

5

Method

Rating <
J

/
Specification <q Precondition

\ \
‘ \

Postcondition <—1 Declarative Part
J

/
" Declarative Content

Tactic

\Procedural Content 4-— Procedural Part -

Figure 1: The Structure of Methods

We assume, that the planner exclusively consults the specification while planning
a proof. The declarative content and the procedural content slots play the role of a
so—called tactic of systems like N uprl [4] or Bundy’s framework for proof planning
[3]. Concretely, the declarative content can be an arbitrary piece of declarative
knowledge, and the procedural content a Lisp procedure of the following format:

interpreter(DK Prooftree &optional other-information)

In other words, it is an interpreter which takes as input a piece of declarative
knowledge, a pointer to the current proof tree, and optionally other information, and
produces a subproof tree that can be integrated into the current partial proof tree.
From the logic point of view, the precondition, the postcondz‘tion and the declarat-
ive content slot together constitute the logical part of a method. These different
partitions are illustrated in figure 1.

There was: a long and heated debate in AI as to whether knowledge should be
represented procedurally or declaratively. Arguments were put forward for both
positions from psychological and computational perspectives. Advantages and draw-
backs are discussed with respect to, among others, flexibility, computational effi-
ciency, communicability. Resulting from this discussion (cf. [18]) it has been realized
that both forms of knowledge are necessary to simulate intelligent behavior. Never-
theless most existing interactive proof development environments follow a one-sided
approach relying on procedural knowledge only. Although we do not want to claim
the psychological reality of our theory, we believe it is plausible that both aspects
play an important role in human theorem proving.

5

Purely computationally, the generalizing the concept of tactic from a procedure (in
Bundy's framework) to a pair containing both a procedure and a piece of declarative
knowledge is also significant. By discerning the declarative part of tactics, it is now
possible to formulate meta-methods adapting the declarative part of existing methods
and thus come up with novel methods. If a tactic consisted of only procedural
knowledge, we would in effect be confronted with the much more difficult problem of
program synthesis, in order to achieve the above.

. While in for instance the special purpose tactics of Bundy,· the power of the method
rests on the procedural part (the declarative content can be empty), the three types
of object level methods to be introduced in the next subsection are supported by
interpreters, which are standard and simple. Thus our framework is cast so general
that it accommodates both a small set of general purpose procedures which operate
by applying pieces of domain-specific declarative knowledge, and an open-end set of
special purpose reasoning procedures, in which knowledge needed is already implicitly
incorporated. In this paper, we are going to concentrate mainly on three types of
general purpose methods at the object level, which are elaborated upon in detail
in subsequent subsections. In the rest of this subsection, we discuss some general
features along which methods may vary: A method is called

cognitively primitive, if it is planned and verified as a primitive unit, and its
applications lead to the insertion of a single node in the proof tree.

cognitively compound, if its application results in a compound subtree containing
nodes justified by subordinate methods it calls.

total, if the execution of its tactic part will certainly bring about the postconditions
of the method, if the precondition is satisfied;

partial, if it is only likely, but not guaranteed, that the tactic part will bring about
the postcondition even when the precondition is satisfied.

Note that for some methods the same tactic parts are identical and only the
specifications, thus forming total and partial methods for one tactic. Since total
methods are usually much more complicated than partial ones, a reasoner often tends
to employ a partial method in the more global planning phase, leaving the precise
checking to a more refining planning phase or even to the verification process. Indeed,
besides the most primitive methods (see subsection 3.2.1), it is even difficult to
devise feasible total methods. To keep the structure simple, we do not allow multiple
specifications in one method in this first version of our theory. As a consequence, we
must assume the existence of methods with identical tactic parts.

3.2 Three General Types of Object Level Methods

Within the framework set up so far, we are going to introduce three types of object
level methods, each handled in a subsection below. Technically, each type of method

6

Purely computationally, the generalizing the concept of tactic from a procedure (in
Bundy’s framework) to a pair containing both a procedure and a piece of declarative
knowledge is also significant. By discerning the declarative part of tactics, it is now
possible to formulate meta-methods adapting the declarative part of existing methods
and thus come up with novel methods. If a tactic consisted of only procedural
knowledge, we would in effect be confronted with the much more difficult problem of
program synthesis, in order to achieve the above.

' While in for instance the special purpose tactics of Bundy,the power of the method
rests on the procedural part (the declarative content can be empty), the three types
of object level methods to be introduced in the next subsection are supported by
interpreters, which are standard and simple. Thus our framework is cast so general
that it accommodates both a small set of general purpose procedures which operate
by applying pieces of domain-specific declarative knowledge, and an open-end set of
special purpose reasoning procedures, in which knowledge needed is already implicitly
incorporated. In this paper, we are going to concentrate mainly on three types of
general purpose methods at the object level, which are elaborated upon in detail
in subsequent subsections. In the rest of this subsection, we discuss some general
features along which methods may vary: A method is called

cognitively primitive, if it is_planned and verified as a primitive unit, and its
applications lead to the insertion of a single node in the proof tree.

cognitively compound, if i t s application results in a compound subtree containing
nodes justified by subordinate methods it calls.

total , if the execution of i t s tactic part will certainly bring about the postconditions
of the method, if the precondition is satisfied;

partial, if i t is only likely,- but not guaranteed, that the tactic part will bring about
the postcondition even when the precondition is satisfied.

Note that for some methods the same tactic parts are identical and only the
specifications, thus forming total and partial methods for one tactic. Since total
methods are usually much more complicated than partial ones, a reasoner often tends
to employ a partial method in the more global planning phase, leaving the precise
checking to a more refining planning phase or even to the verification process. Indeed,
besides the most primitive methods (see subsection 3.2.1), it is even difficult to
devise feasible total methods. To keep the structure simple, we do not allow multiple
specifications in one method in this first version of our theory. As a consequence, we
must assume the existence of methods with identical tactic parts.

3 .2 Three General Types of Object Level Methods

Within the framework set up so far, we are going to introduce three types of object
level methods, each handled in a subsection below. Technically, each type of method

6

is primarily defined by coupling one standard interpreter with chunks of declarative
knowledge of one type of object level knowledge. In the sequel, we refer to these
methods as methods applying a piece of declarative knowledge. To each type of
method, we also suggest some plausible pre- and postconditions. The first two types,
the applications of natural deduction inference rules and the application of assertions,
are cognitively primitive. We want to emphasis their naturalness, which in effect
allows us to formulate proof schemata, the third type of object level knowledge, in a
quite intuitive way.

3.2.1 The Methods Applying Rules of Inference

First we are introduce a procedure that applies rules of inference, a natural con­
sequence of the natural logic hypothesis. Currently we assume an order sorted pre­
dicate logic of higher-order [10] as the wOrking language, a language adequate for
formalizing mathematics. However, the main content of this paper is independent
to the choice of language. As the set of inference rules, we adopt the natural deduc­
tion system first proposed by Gerhard Gentzen [5, 1]. The follQwing is a listing of
several important inference rules similar to those presented in his calculus NK, with
additional restrictions on sort structures. If a term t is of the sort 8, we denote it as
t : 8. For a detailed definition, see [10].

6. FrG . 6rFVGj ~FrHj 6,GrH CASEZS FF ~ aDEDuetwn, FR '

6. r 3x : 81.Fx ; 6, Fa.:S2 rH; 8ubsort(82,81) CHOICE
EFR '

While the rules of inference included in the natural deduction system are con­
sidered as cognitively elementary and innate, a human reasoner may learn new,
domain-specific rules during the reasoning activities, in which he is involved. For
example, a rule about subset might be learned:

where "a", "81 " and "82" are metavariables of type "Element" or "8et". These new
rules have the cognitive status acquired and compound. For more detailed discussions,
the readers are referred to [7].

Now we turn to the notion of the applications of such rules of inference, and
their role in the entire process of proof searching. We assume in our theory that the
application of a rule of inference is carried out by a general purpose interpreter which
mainly matches formula schemata in rules against formulas contained in support
nodes. As a Lisp function, it has the format:

rUle-interpreter(rule proof-tree & other-information)

7

is primarily defined by coupling one standard interpreter with chunks of declarative
knowledge of one type of object level knowledge. In the sequel, we refer to these
methods as methods applying a piece of declarative knowledge. To each type of
method, we also suggest some plausible pre- and postconditions. The first two types,
the applications of natural deduction inference rules and the application of assertions,
are cognitively primitive. We want to emphasis their naturalness, which in effect
allows us to formulate proof schemata, the third type of object level knowledge, in a
quite intuitive way.

3.2 .1 The Methods Applying Rules of Inference

First we are introduce a procedure that applies rules of inference, a natural con-
sequence of the natural logic hypothesis. Currently we assume an order sorted pre-
dicate logic of higher-order [10] as the working language, a language adequate for
formalizing mathematics. However, the main content of this paper is independent
to the choice of language. As the set of inference rules, we adopt the natural deduc-
tion system first proposed by Gerhard Gentzen [5, 1]. The following is a listing of
several important inference rules similar to those presented in his calculus NK, with
additional restrictions on sort structures. If a term t is of the sort S , we denote i t as
t : S . For a detailed definition, see [10].

A FFG DEDuction, N'FVG? Adi?“ AJGl—HCASE,
m

A I- 3x : SLF3; ALI-2,52 I‘- H ; Subsort(5'2,.5'1)

While the rules of inference included in the natural deduction system are con-
sidered as cognitively elementary and innate, a human reasoner may learn new,
domain-specific rules during the reasoning activities, in which he is involved. For
example, a. rule about subset might be learned:

“651 ,51932
(1 6 5 2

where “a”, “5'1” and “52” are metavariables of type “Element” or “Set”. These new
rules have the cognitive status acquired and compound. For more detailed discussions,
the readers are referred to [7]

Now we turn to the notion of the applications of such rules of inference, and
their role in the entire process of . proof searching. We assume in our theory that the
application of a rule of inference is carried out by a general purpose interpreter which
mainly matches formula schemata in rules against formulas contained in support
nodes. As a Lisp function, i t has the format:

rule-interpreter(rule proof—tree & other-information)

7

Technically speaking, given a rule of inference of the form:

(1)

the rule interpreter allows both the derivation of Q' from Pt, . .. , P~, where Q' and
Pt, ... ,P~ are the corresponding instances of Q and PI,"" Pn , and the deriva­
tion of ,Pf from P{, ... ,Pf-ll Pf+ll'" P~, and 'Q'. Usually, the argument "other.:
information" points out a set of nodes in the proof tree serving as the support nodes.
For rules where the instantiation cannot be determined by the matching alone (for
example the Univ_Elim rule, the instatiation of the universal quantifier), additional
information must be provided in the argument "other-information". Now for every
rule ofinference, we have a method which applies it, since the definition above fully
specifies the ability of such methods, and yet is simple enough to be checked without
undue efforts, it is plausible to assume that it may be instantiated for every particular
rule of inference, and serve as specification in the corresponding methods.

3.2.2 Methods Applying Assertions

The second type of important object level knowledge is also encountered every day
by mathematicians. It concerns objects such as axioms, definitions, lemmas and
theorems, and even intermediate results achieved during proof search. They are,
in our theory, collectively called assertions. Moreover, assertions are normally also
interrelated in complex conceptual structures [11.]. The notion of the application of
an assertion, though normally not defined precisely, bears a central role both in proof
searching and proof documentation. One prima facie evidence is that proofs found
by mathematicians are almost exclusively presented in terms of the applications of
some assertions.

Let us first illustrate this concept by examining a concrete example of the applk­
ations of assertions. Given an assertion defining the notion of subset:

We may derive

• a E S' from a E S' and S' C S'·2 I I - 2'

• S~ ~ S~ from a E S~ and a 1: S~;

• Vx: Element.x E S~ =} x E S~ from S~ ~ S~.

and so on; by applying this definition.

Although no introspection is possible to reveal the internal structure of the inter­
preter applying assertions, in [8], we have associated every application of an assertion
to a proof segment justified by the natural deduction rules only,' referred to as its

8

Technically speaking, given a rule of inference of the form:

P1,...,P,.
Q

the rule interpreter allows both the derivation of Q’ from Pl’, . . . , P1,, where Q’ and
PI’,. . . ,P‚; are the corresponding instances of Q and P1 , . . . ,P„ , and the deriva-
tion of fiPi' from P1’‚. . . , {_1, ‚CH,. . . P,", and —'Q' . Usually, the- argument “other-'
information” points out a set of nodes in the proof tree serving as the support nodes.
For rules where the instantiation cannot be determined by the matching alone (for
example the Univ-Elim rule, the instatiation of, the universal quantifier), additional
information must be provided in the argument “other-information”. Now for every
rule of inference, we have a method which applies it, since the definition above fully
specifies the ability of such methods, and yet is simple enough to be-rchecked without
undue efforts, it is plausible to assume that it may be instantiated for every particular
rule of inference, and serve as specification in the corresponding methods.

(1)

3.2.2 Methods Applying Assertions

The second type of important object level knowledge is also encountered every day
by mathematicians. It concerns objects such as axioms, definitions, lemmas and
theorems, and even intermediate results achieved during proof search. They are,
in our theory, collectively called assertions. Moreover, assertions are normally also
interrelated in complex conceptual structures [11]. The notion of the application of
an assertion, though normally not defined precisely, bears a central role both in proof
searching and proof documentation. One prima facie evidence is that proofs found
by mathematicians are almost exclusively presented in terms of { the applications of
some assertions.

Let us first illustrate this concept by examining a concrete example of the applic-
ations of assertions. Given an assertion defining the notion of subset:

V81,5'2 : Set-31 (_: 5'2 © Va: : Element-a: € S1 # m € 52

We may derive

. a€S£f roma€S i andSiQS’é;

. S igSé f romaGS ' i andaéSg ;

. Va: : Elemente: 6 Si => zu € 5'; from S; g SQ.

and so on; by applying this definition.
Although no introspection is possible to reveal the internal structure of the inter—

preter applying assertions, in [8], we have associated every application of an assertion
to a proof segment justified by the natural deduction rules only,‘referred to as its

8

natural expansion. By studying the natural expansions in our preliminary empirical
studies on naturally occurring mathematical proofs, we came up with a character­
ization of the input-output relation for the primitive procedure applying assertions.
The characterization as well as the related definitions can be found in [8].

The reasoning ability of a method applying a certain assertion equals to that of a
finite set of compound inference rules. However, it is not plausible to suggest that the
planning decisions are made based on this information. As a means of assessment, it
is apparently too complicated and time consuming. The kind of partial methods we
believe to be a viable approximation is defined in the following pattern:
Suppose A is an arbitrary assertion, the following is one possible method applying
A:

Method: application-A

rating rating-application- A

pre exlineset L.VI E L.instance-subformula-neg(formula(l), A)

post
exline n. justification(n)=application-A /\

instance-subformula-neg(formulaen),A)

dec-cont A

proc assertion-interpreter

Here the predicate instance-subformula-neg(l, A) checks if I is either a subformula
of A, an instance thereof, or, thirdly, a negation of the first two cases.

3.2.3 Methods Applying Proof Schemata

The third type of methods is tied to a more novel kind of knowledge structure called
proof schema, and an interpreter instantiating them. These notions are introduced to
account for the well-observed phenomenon, that people benefit from their successful
and unsuccessful experiences. In other words, with the accumulation of experience,
the reasoning ability of a reasoner also evolves. In our theory, this is simulated by
the evolution of the collection of proof schemata at the disposal of a reasoner.

Intuitively, proof schemata are proofs or abstract proofs which provide solutions
to reasoning problems. At the very beginning, a proof schema is usually a complete
or partial proof found by a reasoning subject for a previous problem. A (partial)
specification of the corresponding problem can serve as the pre- and postcondition
of the method. Undergoing meta-level manipulations, proof schemata also provide
solutions to novel problems. These manipulated proof schemata may contain meta­
variables, which are instantiated by concrete formulas by the procedure applying the
proof schemata. Technically, for now, it suffices to understand proof schemata as
proof trees containing meta-level variables.

The following method hom1 is a very simple example of a method applying a
proof schema. It represents the following proof strategy: If f is a given function, P

9

natural expansion. By studying the natural expansions in our preliminary empirical
studies on naturally occurring mathematical proofs, we came up with a character-
ization of the input-output relation for the primitive procedure applying assertions.
The characterization as well as the related definitions can be found in [8].

The reasoning ability of a method applying a certain assertion equals to that of a
finite set of compound inference rules. However, it is not plausible to suggest that the‘
planning decisions are made based on this information. As a means of assessment, i t
is apparently too complicated and time consuming. The kind of partial methods we
believe to be a viable approximation is defined in the following pattern: ’
Suppose A is an arbitrary assertion, the following is one possible method applying
A:

Method: application-A

rating rating-application—A

pre exlineset L.Vl € L-instance-subformula—neg(formula(I), A)
t exline n. justification(n)=application-A A

pos instance-subformula—negjformuldn),A)
dec—cont A

proc assert ion-interpreter

Here the predicate instance-subformula—neg(l, A) checks if I is either a subformula
of A, an instance thereof, or, thirdly, a. negation of the first two cases.

3.2.3 Methods Applying Proof Schemata

The third type of methods is tied to a more novel kind of knowledge structure called
proof schema, and an interpreter instantiating them. These notions are introduced to
account for the well-observed phenomenon, that people benefit from their successful
and unsuccessful experiences. In other words, with the accumulation of experience,
the reasoning ability of a reasoner also evolves. In our theory, this is simulated by
the evolution of the collection of proof schemata at the disposal of a reasoner.

Intuitively, proof schemata are proofs or abstract proofs which provide solutions
to reasoning problems. At the very beginning, a proof schema is usually a complete
or partial proof found by a reasoning subject for a previous problem. A (partial)
specification of the corresponding problem can serve as the pre- and postcondition
of the method. Undergoing meta-level manipulations, proof schemata also provide
solutions to novel problems. These manipulated proof schemata may contain meta-
variables, which are instantiated by concrete formulas by the procedure applying the
proof schemata. Technically, for now, i t suffices to understand proof schemata as
proof trees containing meta-level variables.

The following method homl is a very simple example of a method applying a
proof schema. It represents the following proof strategy: If f is a. given function, P

9

a defined predicate and the goal is to prove P(J(c)), then show P(c) and use this to
show P(J(c)). The very idea is that f is a homomorphism for the property P and
that f can be "rippled out" (compare [2]).

Method: hom1

rating rating-hom1

(exline 1) /\ (exline 2)

(exline 5)
1. 1; I­ \fx.FormulaJ
2. 2; I­ \fx.P(x) {:} Formula'
3. 3; I- P(e)
4. 4; I­ Eq_Elim-r(Univ..Elim«2), !(e)) ,
5. 2,4' I- P(f(c))

schema-interpreter

(J1)
(J2)
(PLAN)

(5)) (PLAN 2)
(PLAN 2 4)

pre

post

dec-cont

proc

The specification of this method means that hom1 can be applied if the lines 1
and 2 exist in the partial proof under construction and line 5 is an open goal. In this
case, the schema-interpreter will insert line 3 and 4 into the partial proof, as well
as adapt the justification of line 5.

The formulas in line 1 and 2 are properties of the function f and the predic­
ate P (e.g. their definitions). Both f and Pare meta-variables standing for (func­
tion/predicate) constants of the object logic. As opposed to formulas in other lines,
which are given as formula schemata, the formula in line 4 must be constructed by the
schema-interp~eterapplying the natural deduction rules for eliminating universal
quantifier and equivalence.

For example, to prove that the converse relation of a binary relation p is symmetric
(formally: symmetric(converse(p))), the method hom1 can be applied by substituting
converse, symmetric, and p for the meta-variables f, P, and c, respectively. The
resulting proof fragment is listed below:

1. 1; I- \f(j.\fx 1 y.(x, y) E converse((j) {:} (y, x) E (j (Jl)
2. 2; I- \f(j.symmetric«(j) {:} \fx,y.(x,y} E (j => (y,x) E (j (J2)
3. 3; I- symmetric(p) (PLAN)
4. 4; I- \fx, y.(x, y} E converse(p) => (y, x) E converse(p) (PLAN 2)
5. 2,4; I- symmetric(converse(p)) (PLAN 24)

3.3 Mechanisms Constructing Methods

Our theory is also devised to account for the evolution of the reasoner's basic reas­
oning repertoire. This is achieved by the existence of meta-methods and automatic
learning procedures. Notice, while the methods cause changes in the current partial
proof, meta-methods enrich the knowledge base by adding new methods. Meta­
methods are usually invoked by the intention to solve a specific problem, and their
applications require concentration and efforts, as opposed to those more perceptual
procedures, like remembering a proof or a rule, running in a more uncontrolled way.

10

a defined predicate and the goal is to prove P(f (c)), then show P(c) and use this to
show P(f(c)). The very idea is that f is a homomorphism for the property P and
that f can be “rippled out” (compare. [2]).

Method: hom1
rating rat ing-hom1

pre (exline 1) A (exline 2)

post (exline 5) .
1. 1; }— Var-Formula, (J1)
2. 2; l- Vx-P(x)¢Formula’ (J2)

dec—cont 3. 3; I- P(c) (PLAN)
4. 4; l- Eq_Elim_r(Univ_Elim((2),f(c)),(5)) (PLAN 2)
5~ 2A; l” P(fLC)L @AN 24)

proc schema-interpreter

The specification of this method means that hom1 can be applied if the lines 1
and 2 exist in the partial proof under construction and line 5 is an open goal. In this
case, the schema-interpreter will insert line 3 and 4 into the partial proof, as well
as adapt the justification of line 5.

The formulas in line 1 and 2 are properties of the function f and the predic—
ate P (e.g. their definitions). Both f and' P are meta—variables standing for (func-
tion/predicate) constants of the object logic. As opposed to formulas in other lines,
which are given as formula schemata, the formula in line 4 must be constructed by the
schema-interpreter applying the natural deduction rules for eliminating universal
quantifier and equivalence.

For- example, to prove that the converse relation of a binary relation p is symmetric
(formally: symmetric(converse(p))), the method hom1 can be applied by substituting
converse, symmetric, and p for the meta-variables f , P , and c, respectively. The
resulting proof fragment is listed below:
1. 1; I- Vo'.Vm, y.(:c,y) € converse(tr) @ (y, z) € u (J l)
2. 2; l“ Va.symm‘etric(a) @ Vaz,y.(a:, y) E a' => (31,12) € a' (J2)
3. 3; l- symmetric(p) (PLAN)
4. 4; |-- Van, y-(w, y) E converse(p) => (31,3) € converse(p) (PLAN 2)
5. 2,4; I- symmetric(converse(p)) (PLAN 2 4)

3 .3 Mechanisms Constructing, Methods
Our theory is also devised to account for the evolution of the reasoner’s basic reas-
oning repertoire. This is achieved by the existence of meta-methods and automatic
learning procedures. Notice, while the methods cause changes in the current partial
proof, meta-methods enrich the knowledge base by adding new methods. Meta.-
methods are usually invoked by the intention to solve a specific problem, and their
applications require concentration and efforts, as opposed to those more perceptual
procedures, like remembering a proof or a rule, running in a more uncontrolled way.

10

3.3.1 The Combination of Methods

In thi~ subsection, we briefly explain the automatic part of· meta-level activities.
These activities are very similar to those called learning during problem solving de­
scribed in cognitive models in general, and in frameworks for problem solving in
particular, for a comprehensive survey, readers are referred to [16].

The most simple form of learning is similar to the process called compounding
identified in problem solving process. There, the compounding process puts two or
more existing operators into a sequence. A mechanism called chunking is proposed
in [13], which combines compounding with the tuning process adapting the heuristic
knowledge associated with the operators. In our framework, chunking can be viewed
as compounding instantiated methods, adding information about the instantiation
into pre- and postcondition.

Methods in our ~heory may be combined similarly, yet in a little bit more com­
plicated way. We are not going to go into details here, interested readers are referred
to [10].

3.3.2 Meta-Methods

As already mentioned, our theory is also devised to account for evolution of the
reasoner's basic reasoning repertoire. In addition to those procedures merely re­
membering useful information, this is achieved mainly through the existence of
meta-methods manipulating proof schemata. When a reasoner is confronted with
a novel yet similar problem, proof schemata evolving from previously successfully
found proofs are modified to cope with the new problem. This is also the advice
P6lya gives in his survey to problem solving [14].

As opposed to methods, meta-methods are thought to be very general and problem
independent. As a consequence of this we do not think that meta-meta-methods and
a whole hierarchy of meta-Ievels are necessary.

Currently we have identified two groups of meta-methods. Guided by heuristic
knowledge of different kinds, they will .

• generalize existing methods built upon a proof schema, or,

• reformulate existing methods built upon a proof schema, to suit new problems.

The second kind of meta-method consists of 'a concrete mapping stated in the
declarative content and an .interpreter for mappings, which applies a mapping in a
controlled way to the logical content of the method to be reformulated. In particular
there are strict constraints on mappings to be applied on proof schemata that prohibit
the formation of syntactically ill-formed formulas. For details see [HI]. A discussion
on reformulations can also be found in [17]. For space restrictions, we are only going
to illustrate our approach to meta-methods with a generalization example.

11

3 .3 .1 The Combination of Methods

In this subsection, we briefly explain the automatic part of “meta-level activities.
These activities are very similar to those called learning during problem solving de-
scribed in cognitive models in general, and in frameworks for problem solving in
particular, for a comprehensive survey, readers are referred to [16].

The most simple form of learning is similar to the process called compounding
identified in problem solving process. There, the compounding process puts two or
more existing operators into a sequence. A mechanism called chunki-ng is proposed
in [13], which combines compounding with the tuning process adapting the heuristic
knowledge associated with the operators. In our framework, chunking can be viewed
as compounding instantiated methods, adding information about the instantiation
into pre- and postcondition. '

Methods in our theory may be combined similarly, yet in a little bit more com-
plicated way. We are not going to go into details here, interested readers are referred
to [10].

3 .3 .2 Meta-Methods

As already mentioned, our theory is also devised to account for evolution of the
reasoner’s basic reasoning repertoire. In addition to those procedures merely re-
membering useful information, this is achieved mainly through the existence of
meta-methods manipulating proof schemata. When a reasoner is confronted with
a novel yet similar problem, proof schemata evolving from previously successfully
found proofs are modified to cope with the new problem. This is also the advice
Pölya gives in his survey to problem solving [14].

As opposed to methods, meta-methods are thought to be very general and problem
independent. As a consequence of this we do not think that meta-meta-methods and
a whole hierarchy of meta-levels are necessary.

Currently we have identified two groups of meta—methods. Guided by heuristic
knowledge of different kinds, they will

o generalize existing methods built upon a proof schema, or,

. reformulate existing methods built upon a proof schema, t o suit new problems.

The second kind of meta-method consists of a concrete mapping stated in the
declarative content and an .interpreter for mappings, which applies a. mapping in a
controlled way to the logical content of the method to be reformulated. In particular
there are strict constraints on mappings to be applied on proof schemata that prohibit
the formation of syntactically ill-formed formulas. For details see [10]. A discussion
on reformulations can also be found in [17]. For space restrictions, we are only going
to illustrate our approach to meta-methods with a generalization example.

11

In section 3.2.3 we have introduced the method hom1, which simplifies a problem
by generating an intermediate goal, where a unary function symbol is eliminated.
Suppose we are facing the novel problem of proving that the union of symmetric
relations is itself a symmetric rel~tion. What we need is a variant of hom1, which is
able to handle a binary function symbol (i.e. "union") in a similar yvay.

In the following, we illustrate how to use the meta-method add-argument to
obtain a binary version hom2 from the unary version hom1.

Meta-Method: add-argument

rating meta-add-argument-rating

pre exmethod M. subterm(J(x),post(M))

post goal=post(proc-add-argument(a,M))

dec-cont a = {f(x) ~ g(x,y)}

proc proc-add-argument

This meta-method is supposed to add an argument to a key function f used in
a method, this modified function is called g. Note that the precondition states that
there is indeed such a function in M. In order to ensure that f is important to M, it is
required that f is a part of the postcondition of M. Based on the mapping given as
the declarative content, the procedure add-argument modifies the proof schema in M
by primarily carrying out the following three actions:

•	 replace all occurrences of terms f(x) by g(x, y) and modify the corresponding
quantifications,

•	 replace all occurrences of terms f(c) by g(c, d) (d has to be a new meta-variable
standing for a constant),

• if c occurs in a proof line, but not in a term f (c), a copy of this line will be
inserted into the proof schema, replacing c by d (in the example below, line 4
is copied from 3).

As a crucial advantage of separating the procedural and the declarative knowledge
in methods, the procedural content of Mcan be taken over for the new method.

If we apply add-argument to horn!, we obtain the new method hom2.

12

In section 3.2.3 we have introduced the method homl, which simplifies a problem
by generating an intermediate goal, where a. unary function symbol is eliminated.
Suppose we are facing the novel problem of proving that the union of symmetric
relations is itself a symmetric relation. What we need is a variant of homl, which is
able to handle a binary function symbol (i.e. “union”) in a similar way.

In the following, we illustrate how to use the meta—method add-argument to
obtain a binary version hom2 from the unary version homl.

Meta-Method: add-argument

rating meta-add-argument-rating

pre exmethod M. subterm(f(:v),post(M))
post goal=post(proc-add—argument(a,M))

dec-cont a = {f(x) |—-> g(w,y)}
proc proc-add-argument

This meta-method, is supposed to add an argument to a key function f used in
a method, this modified function is called 9 . Note that the precondition states that
there is indeed such a function in M. In order to ensure that f is important to M, i t is
required that f is a part of the postcondition of M. Based on the mapping given as
the declarative content, the procedure add-argument modifies the proof schema in M
by primarily carrying out the following three actions:

o replace all occurrences of terms f (a:) by g(a:,y) and modify the corresponding
quantifications,

. replace all occurrences of terms f (c) by g(c, d) (d has to be a new meta-variable
standing for a constant),

0 if c occurs in a proof line, but not in a term f(c) , a copy of this line will be
inserted into the proof schema, replacing c by d (in the example below, line 4
is copied from 3).

As a crucial advantage of separating the procedural and the declarative knowledge
in methods, the procedural content of M can be takenvover for the new method.

If we apply add-argument to hom1, we obtain the new method hom2.

12

4

Method: hom2

rating rating-hom1

(exline 1) (exline 2)

(exline 6)
1. l' I­ \fx,y.Formulag,
2. 2' I­ \fx.P(x) {:} Formula",
3. 3' I- P(e),
4. 4' I­ P(d),
5. 5; I­ Eq-Elim..r(Univ_Elim«2), g(e, d
6. 25; I- P(a(e d))

schema-interpreter

(Jl)
(J2)
(PLAN)
(PLAN)

)), (5)) (PLAN 2)
(PLAN 2 5)

pre

post.

dec-cont

proc

It is generally the case as in this example, the information of meta-methods is
largely encoded as procedures. We believe, however, that this is not a real drawba.ck,
since meta.-methods are devised in a domain independent way, and therefore no meta­
meta-methods are needed.

Conclusion

In this paper, we have proposed a knowledge structure called method. With this
notion, we want to suggest a change of paradigm concerning the encoding of deduct­
ive knowledge. Instead of encoding proof strategies as complicated procedures that
are difficult to understand and to adapt, our approach uses a compound declarative
knowledge structure called proof schema. The naturalness of the methods applying
proof schemata is due in large part to the naturalness of the types of primitive meth­
ods, namely the applications of inference rules and the applications of assertions. The
appropriateness of assuming these three types of methods is supported by examining
the proofs in mathematical text books. We want also to indicate that our method
structure can accommodate more procedural knowledge as well, this is however not
the subject of concern here.

Our declarative approach is not only cognitively more adequate, it is also computa­
tionally more feasible. Meta-methods have been devised to adapt existing methods
applying proof schemata to suit new situations. As opposed to methods, meta­
methods are normally not domain-specific but of a very general nature. There is no
need therefore for meta-meta-methods. In [10], an example can be found how the
proof of a diagonalization problem is modified to solve three other similar problems.

Methods and meta-methods can be used in two ways: as powerful deductive op­
erators in an interactive proof development environment, or as the basic reasoning
repertoire of an automated proof planner. For the latter purpose, much more exper­
ience must still be gathered concerning the formulation of specifications of methods.
We are also working on a general mechanism to accommodate more powerful meta­
methods.

13

Method: hom2
rating rating-ham

pre (exline 1) (exline 2)
post. (exline 6)

1. 1; i- Vx,y.Formulag (J1)
2. 2; l- Vx.P(z)§Formula" (J2)
3. 3; !- P(c) (PLAN)

dec'cont 4. 4; r- P(d) (PLAN)
5. 5; l- Eq_Elim_r(Univ_Elim((2),g(c,d)),(5)) (PLAN 2)
6. 2,5; l- Pjg(g‚d)) ‚ JPLAN 2i)

proc schema-interpreter

It is generally the case as in this example, the information of meta—methods is
largely encoded as procedures. We believe, however, that this is not a real drawback,
since meta—methods are devised in a domain independent way, and therefore no meta—
meta-methods are needed.

4 Conclusion

In this paper, we have proposed a knowledge structure called method. With this
notion, we want to suggest a change of paradigm concerning the encoding of deduct-
ive knowledge. Instead of encoding proof strategies as complicated procedures that
are difficult to understand and to adapt, our approach uses a compound declarative
knowledge structure called proof schema. The naturalness of the methods applying
proof schemata is due in large part to the naturalness of the types of primitive meth-
ods, namely the applications of inference rules and the applications of assertions. The
appropriateness of assuming these three types of methods is supported by examining
the proofs in mathematical text books. We want also to indicate that our method
structure can accommodate more procedural knowledge as well, this is however not
the subject of concern here.

Our declarative approach is not only cognitively more adequate, i t is also computa-
tionally more feasible. Meta-methods have been devised to adapt existing methods
applying proof schemata to suit new situations. As opposed to methods, meta-
methods are normally not domain-specific but of a very general nature. There is no
need therefore for meta-meta—methods. In [10], an example can be found how the
proof of a diagonalization problem is modified to solve three other similar problems.

Methods and meta-methods can be used in two ways: as powerful deductive op—
erators in an interactive proof development environment, or as the basic reasoning
repertoire of an automated proof planner. For the latter purpose, much more exper-
ience must still be gathered concerning the formulation of specifications of methods.
We are also working on a general mechanism to accommodate more powerful meta-
methods.

13

Acknowledgement

We would like to thank Jorg Denzinger, Erica Melis, and IngerSonntag for many
fruitful discussions about proof plans, which inspired and clarified many of the ideas
presented here. In addition, thanks are due to Erica Melis and Dan Nesmith for their
comments on a draft of this paper.

References

[1]	 P. B. Andrews. Transforming Matings into Natural Deduction Proofs. LNCS
87, Springer, 1980.

[2]	 A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In CADE-9,
Springer, 1988.

[3]	 A. Bundy. A Science of Reasoning: Extended Abstract. In CADE-l0, Springer,
1990.

[4]	 R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Devel­
opment System. Prentice Hall, 1986.

[5]	 G. Gentzen. Untersuchungen iiber das logische SchlieBen I. Math. Zeitschrift,
39, 1935.

[6]	 M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized Logic
of Computation. LNCS 78, Springer, 1979.

[7]	 X. Huang. An Extensible Natural Calculus for Argument Presentation. Tech­
nical Report SEKI SR-91-3, Univ. Kaiserslautern, 1991.

[8]	 X. Huang. Applications of assertions as elementary tactics in proof. planning. In
V. Sgurev and B. du Boulay, editors, AIMSA-92. Elsevier Science Publishers,
1992.

[9]	 X. Huang. An explanatory framework for human theorem proving. In H. J.
Ohlbach, editor, GWAI-92, LNAI, Springer, 1992.

[10]	 X. Huang, M. Kerber, and M. Kohlhase. Theorem proving as a planning and
verification process. Technical Report to appear as SEKI Report, Univ. des
Saarlandes, 1992.

[11]	 M. Kerber. On the representation of mathematical knowledge in frames and its
consistency. In WOCFAI-91, 1991.

14

Acknowledgement

We would like to thank Jörg Denzinger, Erica Melis, and Inger "Sonntag for many
fruitful discussions about proof plans, which inspired and clarified many of the ideas
presented here. In addition, thanks are due to Erica Melis and Dan Nesmith for their
comments on a draft of this paper.

References

[1] P. B. Andrews. Tiansforming Matings into Natural Deduction Proofs. LNCS
87, Springer, 1980.

[2] A. Bundy. The Use of Explicit Plans t o Guide Inductive Proofs. In (JADE-.9,
Springer, 1988.

[3] A . Bundy. A Science of Reasoning: Extended Abstract. In CADE-lü, Springer,
1990.

[4] R. L. Constable et al. Implementing Mathematics with the arl Proof Devel-
opment System. Prentice Hall, 1986.

[5] G. Gentzen. Untersuchungen fiber das logische Schließen I. Math. Zeitschrift,
39, 1935.

I [6] M. Gordon, R . Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized Logic
of Computation. LNCS 78, Springer, 1979.

[7] X. Huang. An Extensible Natural Calculus for Argument Presentation. Tech—
nical Report SEKI SR—91-3, Univ. Kaiserslautern, 1991.

[8] X . Huang. Applications of assertions as elementary tactics in proof. planning. In
V . Sgurev and B . du Boulay, editors, AIMSA-92. Elsevier Science Publishers,
1992.

[9] X. Huang. An explanatory framework for human theorem. proving. In H. J .
Ohlbach, editor, G WAI-92, LNAI, Springer, 1992.

[10] X. Huang, M. Kerber, and M. Kohlhase. Theorem proving as a. planning and
verification process. Technical Report to appear as SEKI Report, Univ. des
Saarlandes, 1992.

[11] M. Kerber. On the representation of mathematical knowledge in frames and its
consistency. In WOCFAI—91, 1991.

14

[12]	 A. Newell. The heuristic of George Polya and its relation to artificial intelligence.
Technical Report CMU-CS-81-133, Department of Computer Science, Carnegie­
Mellon University, Pittsburgh, USA, 1981.

[13]	 A. Newell and P. Rosenbloom. Mechanism of skill acquisition and the law of
practice. In J. R. Anderson, editor, Cognitive Skills and Their Acquisition.
Hillsdale, 1981.

[14]	 G. P6lya. How to Solve it. Princeton Univ. Press, 1945.

[15]	 1. Sonntag and J. Denzinger. Extending automatic theorem proving by planning.
Personal communication, Fachbereich Informatik, Univ. Kaiserslautern, 1992.

[16]	 K. VanLehn. Problem solving and cognitive skill acquisition. In M. 1. Posner,
editor, Foundations of Cognitive Science. MIT Press, 1989.

[17]	 F. J. T. William M. Farmer, Joshua D. Guttman. Little theories. In D. Kapur,
editor, CADE-l1. LNAI 607, Springer, 1992.

[18]	 T. Winograd. Frame representations and the declarative/procedural controversy.
In D. G. Bobrow and A. M. Collins, editors, Representation and Understanding:
Studies in Cognitive Science. Academic Press, 1975.

15

[12] A. Newell. The heuristic of George Polya and its relation to artificial intelligence.
Technical Report CMU-CS-81-133, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, USA, 1981.

[13] A. Newell and P. Rosenbloom. Mechanism of skill acquisition and the law of
practice. In J. R. Anderson, editor, Cognitive Skills and Their Acquisition.
Hillsdale, 1981.

[14] G. Polya. How to Solve it. Princeton Univ. Press, 1945.

[15] I. Sonntag and J. Denzinger. Extending automatic theorem proving by planning.
Personal communication, Fachbereich Informatik, Univ. Kaiserslautern, 1992.

[16] K. VanLehn. Problem solving and cognitive skill acquisition. In M. I. Posner,
editor, Foundations of Cognitive Science. MIT Press, 1989.

[17] F. J. T. William M. Farmer, Joshua D. Guttman. Little theories. In D. Kapur,
editor, CADE-II. LNAI 607, Springer, 1992.

[18] T. Winograd. Frame representations and the declarative /procedural controversy.
In D. G. Bobrow and A. M. Collins, editors, Representation and Understanding:
Studies in Cognitive Science. Academic Press, 1975.

15

