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Abstract 

This paper concerns a knowledge structure called method, within a compu­
tational model for human oriented deduction. With human oriented theorem 
proving cast as an interleaving process of planning and verification, the body of 
all methods reflects the reasoning repertoire of a reasoning system. While we 
adopt the general structure of methods introduced by Alan Bundy, we make an 
essential advancement in that we strictly separate the declarative knowledge 
from the procedural knowledge. This is achieved by postulating some stand­
ard types of knowledge we have identified, such as inference rules, assertions, 
and proof schemata, together with corresponding knowledge interpreters. Our 
approach in effect changes the way deductive knowledge is encoded: A new 
compound declarative knowledge structure, the proof schema, takes the place 
of complicated procedures for modeling specific proof strategies. This change of 
paradigm not only leads to representations easier to understand, it also enables 
us modeling the even more important activity of formulating meta-methods, 
that is, operators that adapt existing methods to suit novel situations. In this 
paper, we first introduce briefly the general framework for describing methods. 
Then we turn to several types of knowledge with their interpreters. Finally, 
we briefly illustrate some meta-methods. 

Keywords: Deduction, Planning and Verification, Methods, Declarative and Pro­
cedural Knowledge, Tactics. 
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1 Introduction 

There has been growing concern in the automated theorem proving community, that 
general purpose machine oriented procedures like resolution might have reached their 
limit in practice. Therefore the old discussion of the merits of a human-oriented vs. 
a machine oriented approach to automated theorem proving has been revived by 
researchers like Alan. Bundy. In response to his request for a "science of reasoning" 
[3] a string of systems and theories have been proposed that aim at combining human­
oriented deduction methods with sophisticated planners. 

A central concept of knowledge based reasoning in mathematics is that of a 
method. A method contains a piece of knowledge for solving or simplifying prob­

lems or transforming them into a form that is easier to solve. Therefore methods can
 
be quite general such as finding proofs by a case analysis or complete induction, or the
 

. advice to expand definitions. On the other hand, domain specific methods are also
 
very common, for instance, the elimination of a variable, the isolation of a function
 
symbol, or a clearly described proof sketch for proving a theorem by diagonalization.
 

During his academic training a mathematician has to accumulate lots of methods, 
both domain-specific and general. This body of methods is the reasoning repertoire 
which together with the factual knowledge, to a great extent forms his technical 
knowledge. Another equally important knowledge source of a mathematician is his 
ability to adapt existing methods to suit a new situation. When he faces a.new prob- . 
lem where no existing method fits, he will very often try to transform his reasoning 
repertoire in order to solve the new problem by analogy. 

Much of this discussion has been anticipated by George P61ya in the context 
of analyzing mathematical reasoning (eg. "How to Solve It" [14]), where he gives 
hundreds of examples that mathematicians have to learn during their training. Some 
of these methods have been stated very explicitly, for instance, the method of two loci 
in geometry instructs us to desc~ibe the same point in two different ways in order to 
obtain some equations. Others are very general and are largely illustrated with the 
help of examples only. AlIen Newell [12] discussed the relevance of P6lya's heuristics 
very intensively, although he did not achieve a formalization. 

Among the concrete systems proposed so far the approach of Alan Bundy [2] 
is probably the most influencing and advanced. He views methods essentially as a 
triple consisting of a tactic, a precondition, and a postcondition. There the tactic is 
a piece of program code that can manipulate the actual proof in a controlled way. 
The precondition and the postcondition form a specification of the deductive ability 
of the tactic, formulating declaratively the applicability condition of the tactic and 
a description of the proof status after its application. This has been an essential 
progress compared with the mere tactic language of LCF [6] or the system Nuprl [4], 
because within this framework it is now possible to develop proof plans with the help 
of the declarative knowledge in the preconditions and postconditions. Following a 
one-sided approach relying on procedural knowledge only, the Oyster-Clam system 
developed by Bundy's group, still has however a severe drawback: the adaption of 
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methods to other problems is almost impossible, because that would require the 
transformation of programs - tactics are just programs - which is known to be a 
very hard problem in practice. 

To enable more natural manipulations on existing methods, we advance in this 
paper an extension of Bundy's notion of methods by separating the procedural and 
declarative knowledge in the tactic part of methods. We propose a notion of method, 
that consists of a five-tuple: precondition, postcondition, rating (these three tell when 
to apply a method), and the declarative content as well as the procedural content 
(these two slots contain the information that is stored in Bundy's tactic slot). 

Since the entire discussion is embedded within a computational model of human 
deductive reasoning, section 2 first provides a brief sketch of the computational model. 
Section 3 is devoted to the main topic, the method structure. Apart from the general 
structure, we also propose three types of object level methods which quite naturally 
correspond to the knowledge structure of a human mathematician. As a third issue, 
we discuss meta-methods, which manipulate (object level) methods. A summary and 
a discussion in section 4 conclude the paper. 

General :Framework 

Statically, we cast a reasoning being as a knowledge based system. We assume the 
existence of a planner and a verifier that manipulate the proof tree, which is the 
central datastructure that always reflects the current state of proof development is. 
A proof tree is an ordered tree where every node is a quadruple: 

<Derived-Formula, Method-Name, List-of-Support-Nodes, Status> 
The first slot consists of a formula in a fixed object logic. Since the logic is quite 

standard we do not discuss it here any further. The whole quadruple means that the 
formula is or might be derived, using the method (to be explained below) indicated, 
from the support nodes. The status slot has only three possible fillers: verified, 
unverified, or rejected. Support nodes must precede the node supported in the order 
defined by the ordered tree. 

In our computational model we ascribe a reasoner's reasoning competence mainly 
to the existence of methods that reflect the reasoner's basic deductive repertoire. 
Methods essentially consist of a reasoning procedure, a piece of declarative knowledge, 
and a specification. We will elaborate on this concept in greater detail in section 3. 
To a remaining gap in the current proof tree, the planner usually consults the set of 
methods at his disposal. The chosen method normally proposes asubtree which can 
be integrated into the current proof tree. Since not all methods are sound or really 
fill the gap, a verification process must follow. In addition, the planner may also 
decide to generate new object level methods by applying meta-methods on existing 
object level methods. 

Dynamically, we assume the entire process, from the analysis of a problem to 
the completion of a proof, to be an interleaving process of planning and verification. 
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This process is centered around the current proof tree, which accommodates concepts 
like proof sketches, proof plans, and proofs. For a more comprehensive discussion of 
the general framework of the computational model for human deductive reasoning, 
readers are referred to [9, 10]. 

3 Methods 

The concept of method is central to the reasoning process, since methods are the 
basic units which are planned and carried out and body of methods constitutes the 
basic reasoning repertoire, that is constantly adapted and enriched, as experiences 
are collected. In the following subsection, we first provide a general definition of the 
structure of methods, and compare our definition with similar concepts already in­
troduced in the literature. Then we turn to three types of specific methods identified 
thus far. In the last subsection, we illustrate how new methods can be constructed. 

3.1 General Concepts and Classifications 

In our computational model, we define every method as having the following slots: 

•	 Rating: A function indicating whether the method is total or partial, and 
evaluating the appropriateness of applying this method. 

•	 Precondition: Specifying preconditions of the problems a method is intended 
to solve. 

•	 Postcondition: Specifying the effect the method will end up with. 

•	 Declarative content: A piece of declarative knowledge. We currently only deal 
with three types of object level declarative knowledge: the natural dedl\ction 
inference rules, the assertions (being facts either assumed of or proved previ­
ously), and proof schemata. 

•	 Procedural content: Either a standard procedure interpreting the piece of de­
clarative knowledge, or a special purpose inference procedure devised for a 
specific type of problems. 

Viewed within a planning framew:ork, the precondition and the postcondition slots 
together constitute the logical part of the specification of a method, which are both 
constraints on the partial proof tree. In other words, by these two conditions it is 
specified whether a method is applicable in a particular proof state or not. If several 
applicable methods are found the rating procedure should estimate how promising 
each one is. We are not going to elaborate on this concept, although for real planning 
tasks this rating may be crucial. For details we refer to [15]. 
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Procedural Content Procedural Part 

Figure 1: The Structure of Methods 

We assume, that the planner exclusively consults the specification while planning 
a proof. The declarative content and the procedural content slots play the role of a 
so-called tactic of systems like Nuprl [4] or Bundy's framework for proof planning 
[3]. Concretely, the declarative content can be an arbitrary piece of declarative 
knowledge, and the procedural content a Lisp procedure of the following format: 

interpreter(DK Prooftree &optional other-information) 

In other words, it is an interpreter which takes as input a piece of declarative 
knowledge, a pointer to the current proof tree, and optionally other information, and 
produces a subproof tree that can be integrated into the current partial proof tree. 
From the logic point of view, the precondition, the postcondition and the declarat­
ive content slot together constitute the logical part of a method. These different 
partitions are illustrated in figure 1. 

There was a long and heated debate in AI as to whether knowledge should be 
represented procedurally or declaratively. Arguments were put forward for both 
positions from psychological and computational perspectives. Advantages and draw­
backs are discussed with respect to, among others, flexibility, computational effi­
ciency, communicability. Resulting from this discussion (cf. [18]) it has been realized 
that both forms of knowledge are necessary to simulate intelligent behavior. Never~ 

theless most existing interactive proof development environments follow a one-sided 
approach relying on procedural knowledge only. Although we do not want to claim 
the psychological reality of our theory, we believe it is plausible that both aspects 
play an important role in human theorem proving. 
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theless most existing interactive proof development environments follow a one-sided
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Purely computationally, the generalizing the concept of tactic from a procedure (in 
Bundy's framework) to a pair containing both a procedure and a piece of declarative 
knowledge is also significant. By discerning the declarative part of tactics, it is now 
possible to formulate meta-methods adapting the declarative part of existing methods 
and thus come up with novel methods. If a tactic consisted of only procedural 
knowledge, we would in effect be confronted with the much more difficult problem of 
program synthesis, in order to achieve the above. 

. While in for instance the special purpose tactics of Bundy,· the power of the method 
rests on the procedural part (the declarative content can be empty), the three types 
of object level methods to be introduced in the next subsection are supported by 
interpreters, which are standard and simple. Thus our framework is cast so general 
that it accommodates both a small set of general purpose procedures which operate 
by applying pieces of domain-specific declarative knowledge, and an open-end set of 
special purpose reasoning procedures, in which knowledge needed is already implicitly 
incorporated. In this paper, we are going to concentrate mainly on three types of 
general purpose methods at the object level, which are elaborated upon in detail 
in subsequent subsections. In the rest of this subsection, we discuss some general 
features along which methods may vary: A method is called 

cognitively primitive, if it is planned and verified as a primitive unit, and its 
applications lead to the insertion of a single node in the proof tree. 

cognitively compound, if its application results in a compound subtree containing 
nodes justified by subordinate methods it calls. 

total, if the execution of its tactic part will certainly bring about the postconditions 
of the method, if the precondition is satisfied; 

partial, if it is only likely, but not guaranteed, that the tactic part will bring about 
the postcondition even when the precondition is satisfied. 

Note that for some methods the same tactic parts are identical and only the 
specifications, thus forming total and partial methods for one tactic. Since total 
methods are usually much more complicated than partial ones, a reasoner often tends 
to employ a partial method in the more global planning phase, leaving the precise 
checking to a more refining planning phase or even to the verification process. Indeed, 
besides the most primitive methods (see subsection 3.2.1), it is even difficult to 
devise feasible total methods. To keep the structure simple, we do not allow multiple 
specifications in one method in this first version of our theory. As a consequence, we 
must assume the existence of methods with identical tactic parts. 

3.2 Three General Types of Object Level Methods 

Within the framework set up so far, we are going to introduce three types of object 
level methods, each handled in a subsection below. Technically, each type of method 
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is primarily defined by coupling one standard interpreter with chunks of declarative 
knowledge of one type of object level knowledge. In the sequel, we refer to these 
methods as methods applying a piece of declarative knowledge. To each type of 
method, we also suggest some plausible pre- and postconditions. The first two types, 
the applications of natural deduction inference rules and the application of assertions, 
are cognitively primitive. We want to emphasis their naturalness, which in effect 
allows us to formulate proof schemata, the third type of object level knowledge, in a 
quite intuitive way. 

3.2.1 The Methods Applying Rules of Inference 

First we are introduce a procedure that applies rules of inference, a natural con­
sequence of the natural logic hypothesis. Currently we assume an order sorted pre­
dicate logic of higher-order [10] as the wOrking language, a language adequate for 
formalizing mathematics. However, the main content of this paper is independent 
to the choice of language. As the set of inference rules, we adopt the natural deduc­
tion system first proposed by Gerhard Gentzen [5, 1]. The follQwing is a listing of 
several important inference rules similar to those presented in his calculus NK, with 
additional restrictions on sort structures. If a term t is of the sort 8, we denote it as 
t : 8. For a detailed definition, see [10]. 

6. FrG . 6rFVGj ~FrHj 6,GrH CASEZS FF ~ aDEDuetwn, FR ' 

6. r 3x : 81.Fx ; 6, Fa.:S2 rH; 8ubsort(82,81) CHOICE 
EFR ' 

While the rules of inference included in the natural deduction system are con­
sidered as cognitively elementary and innate, a human reasoner may learn new, 
domain-specific rules during the reasoning activities, in which he is involved. For 
example, a rule about subset might be learned: 

where "a", "81 " and "82" are metavariables of type "Element" or "8et". These new 
rules have the cognitive status acquired and compound. For more detailed discussions, 
the readers are referred to [7]. 

Now we turn to the notion of the applications of such rules of inference, and 
their role in the entire process of proof searching. We assume in our theory that the 
application of a rule of inference is carried out by a general purpose interpreter which 
mainly matches formula schemata in rules against formulas contained in support 
nodes. As a Lisp function, it has the format: 

rUle-interpreter(rule proof-tree & other-information) 
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A FFG DEDuction, N'FVG? Adi?“ AJGl—HCASE,
m

A I- 3x : SLF3; ALI-2,52 I‘- H ;  Subsort(5'2,.5'1)

While the rules of inference included in the natural deduction system are con-
sidered as cognitively elementary and innate, a human reasoner may learn new,
domain-specific rules during the reasoning activities, in which he is involved. For
example, a. rule about subset might be learned:

“651 ,51932
( 1 6 5 2

where “a”, “5'1” and “52” are metavariables of type “Element” or “Set”. These new
rules have the cognitive status acquired and compound. For more detailed discussions,
the readers are referred to  [7]

Now we turn to  the notion of the applications of such rules of inference, and
their role in the entire process of . proof searching. We assume in our theory that the
application of a rule of inference is carried out by a general purpose interpreter which
mainly matches formula schemata in rules against formulas contained in support
nodes. As a Lisp function, i t  has the format:

rule-interpreter(rule proof—tree & other-information)
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Technically speaking, given a rule of inference of the form: 

(1) 

the rule interpreter allows both the derivation of Q' from Pt, . .. , P~, where Q' and 
Pt, ... ,P~ are the corresponding instances of Q and PI,"" Pn , and the deriva­
tion of ,Pf from P{, ... ,Pf-ll Pf+ll'" P~, and 'Q'. Usually, the argument "other.: 
information" points out a set of nodes in the proof tree serving as the support nodes. 
For rules where the instantiation cannot be determined by the matching alone (for 
example the Univ_Elim rule, the instatiation of the universal quantifier), additional 
information must be provided in the argument "other-information". Now for every 
rule ofinference, we have a method which applies it, since the definition above fully 
specifies the ability of such methods, and yet is simple enough to be checked without 
undue efforts, it is plausible to assume that it may be instantiated for every particular 
rule of inference, and serve as specification in the corresponding methods. 

3.2.2 Methods Applying Assertions 

The second type of important object level knowledge is also encountered every day 
by mathematicians. It concerns objects such as axioms, definitions, lemmas and 
theorems, and even intermediate results achieved during proof search. They are, 
in our theory, collectively called assertions. Moreover, assertions are normally also 
interrelated in complex conceptual structures [11.]. The notion of the application of 
an assertion, though normally not defined precisely, bears a central role both in proof 
searching and proof documentation. One prima facie evidence is that proofs found 
by mathematicians are almost exclusively presented in terms of the applications of 
some assertions. 

Let us first illustrate this concept by examining a concrete example of the applk­
ations of assertions. Given an assertion defining the notion of subset: 

We may derive 

• a E S' from a E S' and S' C S'·2 I I - 2' 

• S~ ~ S~ from a E S~ and a 1: S~; 

• Vx: Element.x E S~ =} x E S~ from S~ ~ S~. 

and so on; by applying this definition. 

Although no introspection is possible to reveal the internal structure of the inter­
preter applying assertions, in [8], we have associated every application of an assertion 
to a proof segment justified by the natural deduction rules only,' referred to as its 
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V81,5'2 : Set-31 (_: 5'2 © Va: : Element-a: € S1 # m € 52

We may derive

. a€S£f roma€S i  andSiQS’é;

. S igSé f romaGS ' i  andaéSg ;

. Va: : Elemente: 6 Si => zu € 5'; from S; g SQ.

and so on; by applying this definition.
Although no introspection is possible to  reveal the internal structure of the inter—

preter applying assertions, in [8], we have associated every application of an assertion
to a proof segment justified by the natural deduction rules only,‘referred to  as its
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natural expansion. By studying the natural expansions in our preliminary empirical 
studies on naturally occurring mathematical proofs, we came up with a character­
ization of the input-output relation for the primitive procedure applying assertions. 
The characterization as well as the related definitions can be found in [8]. 

The reasoning ability of a method applying a certain assertion equals to that of a 
finite set of compound inference rules. However, it is not plausible to suggest that the 
planning decisions are made based on this information. As a means of assessment, it 
is apparently too complicated and time consuming. The kind of partial methods we 
believe to be a viable approximation is defined in the following pattern: 
Suppose A is an arbitrary assertion, the following is one possible method applying 
A: 

Method: application-A 

rating rating-application- A 

pre exlineset L.VI E L.instance-subformula-neg(formula(l), A) 

post 
exline n. justification(n )=application-A /\ 

instance-subformula-neg(formulaen),A) 

dec-cont A 

proc assertion-interpreter 

Here the predicate instance-subformula-neg(l, A) checks if I is either a subformula 
of A, an instance thereof, or, thirdly, a negation of the first two cases. 

3.2.3 Methods Applying Proof Schemata 

The third type of methods is tied to a more novel kind of knowledge structure called 
proof schema, and an interpreter instantiating them. These notions are introduced to 
account for the well-observed phenomenon, that people benefit from their successful 
and unsuccessful experiences. In other words, with the accumulation of experience, 
the reasoning ability of a reasoner also evolves. In our theory, this is simulated by 
the evolution of the collection of proof schemata at the disposal of a reasoner. 

Intuitively, proof schemata are proofs or abstract proofs which provide solutions 
to reasoning problems. At the very beginning, a proof schema is usually a complete 
or partial proof found by a reasoning subject for a previous problem. A (partial) 
specification of the corresponding problem can serve as the pre- and postcondition 
of the method. Undergoing meta-level manipulations, proof schemata also provide 
solutions to novel problems. These manipulated proof schemata may contain meta­
variables, which are instantiated by concrete formulas by the procedure applying the 
proof schemata. Technically, for now, it suffices to understand proof schemata as 
proof trees containing meta-level variables. 

The following method hom1 is a very simple example of a method applying a 
proof schema. It represents the following proof strategy: If f is a given function, P 
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a defined predicate and the goal is to prove P(J(c)), then show P(c) and use this to 
show P(J(c)). The very idea is that f is a homomorphism for the property P and 
that f can be "rippled out" (compare [2]). 

Method: hom1 

rating rating-hom1 

(exline 1) /\ (exline 2) 

(exline 5) 
1. 1; I­ \fx.FormulaJ 
2. 2; I­ \fx.P(x) {:} Formula' 
3. 3; I- P(e) 
4. 4; I­ Eq_Elim-r(Univ..Elim«2), !(e)) , 
5. 2,4' I- P(f(c)) 

schema-interpreter 

(J1) 
(J2) 
(PLAN) 

(5)) (PLAN 2) 
(PLAN 2 4) 

pre 

post 

dec-cont 

proc 

The specification of this method means that hom1 can be applied if the lines 1 
and 2 exist in the partial proof under construction and line 5 is an open goal. In this 
case, the schema-interpreter will insert line 3 and 4 into the partial proof, as well 
as adapt the justification of line 5. 

The formulas in line 1 and 2 are properties of the function f and the predic­
ate P (e.g. their definitions). Both f and Pare meta-variables standing for (func­
tion/predicate) constants of the object logic. As opposed to formulas in other lines, 
which are given as formula schemata, the formula in line 4 must be constructed by the 
schema-interp~eterapplying the natural deduction rules for eliminating universal 
quantifier and equivalence. 

For example, to prove that the converse relation of a binary relation p is symmetric 
(formally: symmetric(converse(p))), the method hom1 can be applied by substituting 
converse, symmetric, and p for the meta-variables f, P, and c, respectively. The 
resulting proof fragment is listed below: 

1. 1; I- \f(j.\fx 1 y.(x, y) E converse((j) {:} (y, x) E (j (Jl) 
2. 2; I- \f(j.symmetric«(j) {:} \fx,y.(x,y} E (j => (y,x) E (j (J2) 
3. 3; I- symmetric(p) (PLAN) 
4. 4; I- \fx, y.(x, y} E converse(p) => (y, x) E converse(p) (PLAN 2) 
5. 2,4; I- symmetric(converse(p)) (PLAN 24) 

3.3 Mechanisms Constructing Methods 

Our theory is also devised to account for the evolution of the reasoner's basic reas­
oning repertoire. This is achieved by the existence of meta-methods and automatic 
learning procedures. Notice, while the methods cause changes in the current partial 
proof, meta-methods enrich the knowledge base by adding new methods. Meta­
methods are usually invoked by the intention to solve a specific problem, and their 
applications require concentration and efforts, as opposed to those more perceptual 
procedures, like remembering a proof or a rule, running in a more uncontrolled way. 
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oning repertoire. This is achieved by the existence of meta-methods and automatic
learning procedures. Notice, while the methods cause changes in the current partial
proof, meta-methods enrich the knowledge base by adding new methods. Meta.-
methods are usually invoked by the intention to solve a specific problem, and their
applications require concentration and efforts, as opposed to those more perceptual
procedures, like remembering a proof or a rule, running in a more uncontrolled way.
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3.3.1 The Combination of Methods 

In thi~ subsection, we briefly explain the automatic part of· meta-level activities. 
These activities are very similar to those called learning during problem solving de­
scribed in cognitive models in general, and in frameworks for problem solving in 
particular, for a comprehensive survey, readers are referred to [16]. 

The most simple form of learning is similar to the process called compounding 
identified in problem solving process. There, the compounding process puts two or 
more existing operators into a sequence. A mechanism called chunking is proposed 
in [13], which combines compounding with the tuning process adapting the heuristic 
knowledge associated with the operators. In our framework, chunking can be viewed 
as compounding instantiated methods, adding information about the instantiation 
into pre- and postcondition. 

Methods in our ~heory may be combined similarly, yet in a little bit more com­
plicated way. We are not going to go into details here, interested readers are referred 
to [10]. 

3.3.2 Meta-Methods 

As already mentioned, our theory is also devised to account for evolution of the 
reasoner's basic reasoning repertoire. In addition to those procedures merely re­
membering useful information, this is achieved mainly through the existence of 
meta-methods manipulating proof schemata. When a reasoner is confronted with 
a novel yet similar problem, proof schemata evolving from previously successfully 
found proofs are modified to cope with the new problem. This is also the advice 
P6lya gives in his survey to problem solving [14]. 

As opposed to methods, meta-methods are thought to be very general and problem 
independent. As a consequence of this we do not think that meta-meta-methods and 
a whole hierarchy of meta-Ievels are necessary. 

Currently we have identified two groups of meta-methods. Guided by heuristic 
knowledge of different kinds, they will . 

• generalize existing methods built upon a proof schema, or, 

• reformulate existing methods built upon a proof schema, to suit new problems. 

The second kind of meta-method consists of 'a concrete mapping stated in the 
declarative content and an .interpreter for mappings, which applies a mapping in a 
controlled way to the logical content of the method to be reformulated. In particular 
there are strict constraints on mappings to be applied on proof schemata that prohibit 
the formation of syntactically ill-formed formulas. For details see [HI]. A discussion 
on reformulations can also be found in [17]. For space restrictions, we are only going 
to illustrate our approach to meta-methods with a generalization example. 
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In section 3.2.3 we have introduced the method hom1, which simplifies a problem 
by generating an intermediate goal, where a unary function symbol is eliminated. 
Suppose we are facing the novel problem of proving that the union of symmetric 
relations is itself a symmetric rel~tion. What we need is a variant of hom1, which is 
able to handle a binary function symbol (i.e. "union") in a similar yvay. 

In the following, we illustrate how to use the meta-method add-argument to 
obtain a binary version hom2 from the unary version hom1. 

Meta-Method: add-argument 

rating meta-add-argument-rating 

pre exmethod M. subterm(J(x),post(M)) 

post goal=post(proc-add-argument(a,M)) 

dec-cont a = {f(x) ~ g(x,y)} 

proc proc-add-argument 

This meta-method is supposed to add an argument to a key function f used in 
a method, this modified function is called g. Note that the precondition states that 
there is indeed such a function in M. In order to ensure that f is important to M, it is 
required that f is a part of the postcondition of M. Based on the mapping given as 
the declarative content, the procedure add-argument modifies the proof schema in M 
by primarily carrying out the following three actions: 

•	 replace all occurrences of terms f( x) by g(x, y) and modify the corresponding 
quantifications, 

•	 replace all occurrences of terms f( c) by g(c, d) (d has to be a new meta-variable 
standing for a constant), 

• if c occurs in a proof line, but not in a term f (c), a copy of this line will be 
inserted into the proof schema, replacing c by d (in the example below, line 4 
is copied from 3). 

As a crucial advantage of separating the procedural and the declarative knowledge 
in methods, the procedural content of Mcan be taken over for the new method. 

If we apply add-argument to horn!, we obtain the new method hom2. 
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4 

Method: hom2 

rating rating-hom1 

(exline 1) (exline 2) 

(exline 6) 
1. l' I­ \fx,y.Formulag, 
2. 2' I­ \fx.P(x) {:} Formula", 
3. 3' I- P(e), 
4. 4' I­ P(d), 
5. 5; I­ Eq-Elim..r(Univ_Elim«2), g(e, d
6. 25; I- P(a(e d)) 

schema-interpreter 

(Jl) 
(J2) 
(PLAN) 
(PLAN) 

)), (5)) (PLAN 2) 
(PLAN 2 5) 

pre 

post. 

dec-cont 

proc 

It is generally the case as in this example, the information of meta-methods is 
largely encoded as procedures. We believe, however, that this is not a real drawba.ck, 
since meta.-methods are devised in a domain independent way, and therefore no meta­
meta-methods are needed. 

Conclusion 

In this paper, we have proposed a knowledge structure called method. With this 
notion, we want to suggest a change of paradigm concerning the encoding of deduct­
ive knowledge. Instead of encoding proof strategies as complicated procedures that 
are difficult to understand and to adapt, our approach uses a compound declarative 
knowledge structure called proof schema. The naturalness of the methods applying 
proof schemata is due in large part to the naturalness of the types of primitive meth­
ods, namely the applications of inference rules and the applications of assertions. The 
appropriateness of assuming these three types of methods is supported by examining 
the proofs in mathematical text books. We want also to indicate that our method 
structure can accommodate more procedural knowledge as well, this is however not 
the subject of concern here. 

Our declarative approach is not only cognitively more adequate, it is also computa­
tionally more feasible. Meta-methods have been devised to adapt existing methods 
applying proof schemata to suit new situations. As opposed to methods, meta­
methods are normally not domain-specific but of a very general nature. There is no 
need therefore for meta-meta-methods. In [10], an example can be found how the 
proof of a diagonalization problem is modified to solve three other similar problems. 

Methods and meta-methods can be used in two ways: as powerful deductive op­
erators in an interactive proof development environment, or as the basic reasoning 
repertoire of an automated proof planner. For the latter purpose, much more exper­
ience must still be gathered concerning the formulation of specifications of methods. 
We are also working on a general mechanism to accommodate more powerful meta­
methods. 
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Method: hom2
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