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Abstract 

This report presents the main ideas underlying the Q-MKRP-system, an environment 
for the development of mathematical proofs. The motivation for the development of 
this system comes from our extensive experience with traditional first-order theorem 
provers and aims to overcome some of their shortcomings. After comparing the benefits 
and drawbacks of existing systems, we propose a system architecture that combines 
the positive features of different types of theorem-proving systems, most notably the 
advantages of human-oriented systems based on methods (our version of tactics) and 
the deductive strength of traditional automated theorem provers. 

In Q-MKRP a user first states a problem to be solved in a typed and sorted higher­
order language (called POST) and then applies natural deduction inference rules in 
order to prove it. He can also insert a mathematical fact from an integrated data­
base into the current partial proof, he can apply a domain-specific problem-solving 
method, or he can call an integrated automated theorem prover to solve a subprob­
lem. The user can also pass the control to a planning component that supports and 
partially automates his long-range planning of a proof. Toward the important goal of 
user-friendliness, machine-generated proofs are transformed in several steps into much 
shorter, better-structured proofs that are finally translated into natural language. 

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2, D3) 
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1 Introduction 

The dream of machine assistance in proving math~matical theorems by far predates the 
advent of electronic computers: it is at least as old as Leibniz' idea of a lingua characteristica 
universalis and its corresponding calculus ratiocinator, whose alleged purpose was to solve 
mathematical and everyday problems stated in the lingua universalis by mere calculations 
( "calculemus" [30, 29]). This dream inspired logicians over the centuries and led at the end 
of the nineteenth century to a first realization in Frege's "Begriffsschrift" [16] (compare, 
e.g., [42, 18, 20, 17]). 

Work toward this ideal was continued in early artificial intelligence (AI) research with 
the implementation of inference machines, which were among the first existing AI systems 
[35]. 

A theorem-proving system may be built with various purposes in mind. One goal is the 
construction of an autonomous theorem prover, whose strength achieves or even surpasses 
the ability of human mathematicians. Another may be the modeling of human problem­
solving behavior on a machine, that is, cognitive aspects are the focus. A third purpose 
might be to build a system where the user derives the proof, with the system guaranteeing 
its correctness. 

By and large, these goals have been investigated and implemented independently in 
different systems. We believe, however, that each of these facets should have its place in a 
general proof-development tool that can one day serve as an assistant. 

With the !1-MKRP-system we are taking a first step in this direction. In contrast to 
traditional automated theorem proving, our goal is not to replace a human mathematician 
completely, but, in the spirit of a tactics-based proof-checking environment, to relieve him 
from the more tedious part of his daily work. Unlike existing proof checkers, however, we 
intend to incorporate strong automated deductive tools. 

The requirements for the !1-MKRP-system have been derived from our experience in 
proving an interrelated collection of theorems of a typical textbook on semigroups and 
automata [12] with the first-order theorem prover MKRP [36]. The main conclusion we have 
drawn from these experiments is that although current automated theorem provers have 
obviously reached the power to solve non-trivial problems, they do not provide sufficient 
assistance for systematically proving interrelated mathematical theorems of a given math­
ematical field. Shaped by this experience, the objectives we initially had in our earlier work 
on the MKRP-system evolved, resulting in the n-MKRP-arcmtecture. 

In section 2 we will discuss the strengths and weaknesses of existing inference systems, 
and in section 3 we illustrate a typical theorem-proving session in n-MKRP. The architec­
ture of !1-MKRP is described in section 4, and we conclude this report with an outlook. 

2 Strength and Limits of Existing Systems 

Let us divide existing theorem-proving systems roughly into three categories: machine­
oriented theorem provers, human-oriented (plan-based) theorem provers, and proof check­
ers. 
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automata [12] with the first-order theorem prover MKRP [36]. The main conclusion we have
drawn from these experiments is that although current automated theorem provers have
obviously reached the power t o  solve non-trivial problems, they do not provide sufficient
assistance for systematically proving interrelated mathematical. theorems of a given math-
ematical field. Shaped by this experience, the objectives we initially had in our earlier work
on the MKRP-system evolved, resulting in the Q—MKRP-architecture.

In section 2 we will discuss the strengths and weaknesses of existing inference systems,
and in section 3 we illustrate a typical theorem-proving session in Q—MKRP. The architec-
ture of Q-MKRP is described in section 4, and we conclude this report with an outlook.

2 Strength and Limits of  Existing Systems ‘

Let us divide existing theorem-proving systems roughly into three categories: machine-
oriented theorem provers, human-oriented (plan-based) theorem provers, and proof check-
ers.



2.1 Machine-Oriented Automated Theorem Provers 

By machine-oriented theorem proYers, we mean theorem provers based on computational 
logic theories such as resolution, paramodulation, or the connection method, Le., systems 
based upon some computer-oriented inference system, and which derive their strength from 
their ability to maintain and manipulate very large search spaces (on the order of 104 clauses 
in the 1960s, several hundred thousands in the following decade; current systems handle 
search spaces of several million clauses and soon we shall witness systems whose capabilities 
are in the billions). 

Such systems have been successfully applied in different fields of logic and mathematics 
(see, e.g., [43, chapters 9,10]). The strength of these systems is truly remarkable. For 
example, the theorem that an involution group (for all x, x 0 x = e) is commutative 
has become trivial for the MKRP-system. As another example, the theorem that a ring 
whose multiplication is idempotent is also commutative is not really difficult for the system 
(compare [39]). One's respect for such a system grows when one seeks for half an hour in 
vain for the perhaps once-known but long-forgotten proof. Harder and even open problems 
have been solved by such theorem provers. 

On the other hand, observing the blind search behavior of such a system as it fails 
to solve a problem that seems trivial to us can be disappointing. What is missing is the 
mathematical knowledge and semantics that guide human search: for instance, function 
symbols such as "powerset" are treated in the same way as function symbols such as 
"successor", even in contexts a mathematician would never contemplate. Furthermore, 
although many applications of these systems are important and interesting (for instance, 
a test for the independence of the axioms of a given system, or their use in software 
and hardware verification), such applications differ substantially from the daily work of 
a mathematician when proving theorems. They are, rather, analogous to the tasks of a 
calculator or of a computer algebra system. 

2.2 Experiences with MKRP 

Throughout the development of the MKRP-system, testing was carried out on numerous 
theorems of a mathematical textbook on semigroups and automata [12]. During a time 
span of two years, about one third of the text book was fully encoded and finally proved 
by the MKRP-system. As the shortcomings of the system became more and more appar­
ent, however, our ultimate goal of proving the entire book in a systematic way was then 
abandoned. This experience greatly influenced the conception and design of the n-MKRP­
system. Below we discuss the strengths and weaknesses of the old MKRP-system, which are 
typical of existing fully automated theorem provers. 

•	 The representation of the mathematical concepts in the sorted first-order input -lan­
guage of MKRP is often clumsy and unnatural. Since the concepts and constructs of 
a typical mathematics textbook such as [12] are mostly higher-order, we were forced 
to use sophisticated encoding techniques to translate them manually into the MKRP 
first-order input language. While the availability of sorts and the built-in equality 
predicate allow for a tolerably adequate translation (and without sorts and equality 
such an encoding is well-nigh impossible), it is not always obvious what the theorems 
proved by MKRP have to do with the textbook theorems and hence what is actually 
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proven. The minimum that would be required for more accurate translations would' 
be an automatic translation technique from higher-order to first-order logic. 

Although a large proportion of the theorems could probably then be encoded into 
a first-order language with this transformational approach, some problems cannot 
adequately be handled this way, Le., those that are truly higher-order. 

Since the underlying logical language plays such an important role. for the design of 
a system, we discuss our choice for n-MKRP'S language in detail in section 4. 

•	 The MKRP-system, as other current automated theorem provers, has no integrated 
mathematical knowledge. Each time definitions and lemmas are used as preconditions 
for the actual theorem, they must be coded and reinput. This is not only rather, 
boring, but is also a serious source of error. The user is responsible for the correctness 
of the preconditions. Often (slightly) different formulations are chosen in different 
contexts, with the consequence that the correctness of the whole procedure of machine 
verification of textbooks is no longer assured. Moreover, the user may insert lemmas 
that cannot be proven in the given formulation. Discipline may be helpful-just as 
with enough discipline a modern operating system could in principle be developed 
in octal machine code-but as practice shows, automated assistance is indispensable. 
In short, a system that supports human mathematicians in proving theorems must 
include a database of mathematical knowledge that can be accessed and updated in 
a controlled way. This in itself is a major research task. 

•	 More often than not, real mathematical theorems are too hard to be proven auto­
matically. This state of affairs could be ameliorated by strengthening the deductive 
power of the prover in various ways: the integration of sorts; theory unification; soph­
isticated search strategies; better handling of equality. For every system, however, 
there exist theorems that cannot be shown automatically. In order to nonetheless 
use such a system, the user must be given the opportunity to guide the proof pro­
cess interactively. In a classical theorem-proving system this is almost impossible: 
the cycle of interaction consists of a complete restart with a different setting of the 
parameters or a reformulation of the clauses. The main influence of the user is the 
appropriate choice and formulation of the problem. The way the preconditions of a 
theorem are selected, for instance, is of paramount importance for the performance 
of the system. Even if this is done optimaily by giving a minimal set of precondi­
tions, the system may still be unable to achieve a proof automatically. Sometimes 
a slight reformulation, different preconditions, or simply a reordering of the clauses 
may help. An additional necessary facility is one for splitting the proof into subproofs 
manually, so that they can be proved separately and then used as lemmas later in 
the proof of the original theorem. Traditional theorem provers lack such support -and 
the situation is far from satisfactory, as all structuring decisions and all proof plans 
are hand-crafted. In short, all of this requires too much care and skill from the user, 
and not surprisingly there are fewer than a handful of well-known experts who are 
renowned for their skill in proving difficult theorems with the help of a machine. 

•	 Traditional theorem provers like the MKRP-system operate on a normal form offormu~ 

las, usually the clausal normal form. It is a non-trivial task to ingest a long (several 
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hundred steps) and complex proof in the resolution (or a similar) format. Hence, there 
is a need to present the proofs in a more intelligible way. This becomes even more 
important when the system is used as a mathematical assistant, where a user wants 
to read the proof in a language that corresponds to his own mode of representation. 
In particular, mathematicians untrained in the field of automated reasoning will not 
read cryptic clausal proofs, but expect polished and structured representations that 
highlight the essential steps and ideas of the proof. 

Although automated theorem provers have solved difficult and open mathematical prob­
lems (see e.g. [43, chapter 9]), these problems are, generally speaking, relatively untypical 
of workaday mathematics. Today's automated theorem provers seem to outperform human 
mathematicians only in very technical and highly special domains, where there is very little 
(or almost no) human intuition, or where enormous syntactical calculations are the main 
hurdle. A collection of typical theorems of a mathematical text on the other hand, can­
not, as a practical matter, be automatically proved. We believe therefore that the future 
is in systems that intimately interact with the user, so that the user can provide needed 
guidance, but in which the automatic component can carry out large parts on its own. 

Further, automated theorem provers have to date been primarily employed to prove 
single theorems. If we prove interrelated theorems, such as they typically occur in a 
mathematical text, we encounter quite different problems. 

In addition, an automated theorem prover does not benefit from its own experiences: 
once a problem is solved, its solution is forgotten, or at best stored in a protocol that is, 
unfortunately, not helpful to the system toward the proof of another problem. 

In summary, traditional work on automated theorem proving has overemphasized the 
pure task of the mechanization of deductive inference. Although this is an essential in­
gredient of a mathematical assistant, there is far more to do, and considerable additional 
automated support is necessary in order to have a truly useful tool for developing and 
discovering proofs. 

2.3 Interactive Systems 

Interactive proof checking and proof development systems have been built with the aim 
of achieving a new standard of rigor in mathematical proof. As pointed out by Nicolaas 
Govert de Bruijn, the developer of one of the earliest systems (AUTOMATH), only a small 
part of mathematical literature today is absolutely flawless. To improve this situation, 
interactive proof checkers have been developed that carry out the meticulous final checking. 
In a similar spirit, proof development systems such as Nuprl were built, where the user 
essentially develops a proof and the system ensures that every step is correct. In future, 
this might result in new standards for the acceptance of mathematical papers: for each 
of his theorems an author would have to deliver a machine-readable proof that could. be 
checked by the proof checking system of the editor [7, p.580]. For this purpose it is not 
important whether the author produces the proof himself or it was generated automatically. 
For simplicity, proof-checking system designers have as a first step offered interactive-only 
environments, where users must specify all details themselves. 

For several reasons, AUTOMATH and most other comparable systems have not reached 
any broad acceptance as a working instrument for mathematicians. One reason is that 
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there is a loss factor of 10 to 20 when using AUTOMATH. The loss factor expresses what is 
lost in brevity when translating ordinary mathematics into AUTOMATH. It is an important 
observation, however, that this loss factor is constant over the range of a book, that is, it 
does not increase (nor does it decrease) later in the book [7, p.603]. Although it is possible 
in principle to check a whole mathematical textbook with the system, this is a clumsy 
task. For instance, 1.S. van Benthem Jutting was able to check Landau's "Grundlagen der 
Analysis" in the AUTOMATH-system [24], but it took more than five years. An important 
lesson learned from the AUToMATH-approach is that the user-friendliness of such a system 
is important for its acceptance and performance. Consequently, in more recent systems 
like Nuprl [11], Muscadet [37], Isabelle [38], and IMPS [14], much more attention has been 
paid to the user. In particular, these systems are no longer mere interactive proof checkers 
but normally incorporate some human-oriented proof techniques that are encoded and 
represented in so-called tactics. Tactics are programs that manipulate the current state 
of the proof not only by the application of a single calculus step, but by a whole series of 
such steps. In this way one user interaction, namely the call of a single tactic, results in a 
sequence of steps. Nevertheless, while these systems are finding increasing acceptance and 
have also been demonstrated with remarkable success, there is one major objection. They 
incorporate far too little automated deductive support; the proof is found by the user with 
a little help from the machine, rather than vice versa: a lot of machine support with a little 
(conceptual) help from the user. 

2.4 Human-Oriented Theorem Provers 

Human-oriented theorem-proving systems have attracted growing attention after the initial 
enthusiasm for machine-oriented theorem provers died down and the limitations 'of later 
systems became more apparent. By human-oriented theorem provers, we mean systems 
that model human proof-search behavior, for example, by representing it as a planning 
process [9]. In contrast to machine-oriented logics, the object language is not a normalized 
first-order language such as clauses, but "a language closer to the one with which we 
ourselves describe the problem" [8, p.91]. Correspondingly, the calculus of such systems is 
not based on a machine-oriented formalism like resolution, but usually on some variant of 
a natural deduction calculus. Moreover, while the strength of traditional theorem provers 
essentially relies on fLxed domain-independent search strategies, the deductive power of 
plan-based systems mainly resides in user-written domain-specific methods. 

A successful realization of such a plan-based approach is the OYSTER-Cg\M-system [9], 
where the Nuprl-tactics have been extended to so-called methods. A method can be viewed 
as a unit consisting of a procedural tactic and a declarative specification. The latter allows 
reasoning about methods and in particular allows for an automatic planning of proofs. 

These techniques have been applied in particular to systems based on mathema~ical 

induction. For example, a large part of the heuristic knowledge of the Boyer-Moore prover 
[6]	 has been encoded into such methods. 

Since the working language and the proof formalism are usually human-oriented, these 
systems also support user interaction in the spirit of a proof checker. 

To summarize, a plan-based framework allows for a natural encoding of domain-specific 
problem-solving knowledge. However, the deductive strength of traditional theorem provers 
with their sophisticated domain-independent proof search strategies is not available. 
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there is a loss factor of 10 to 20 when using AUTOMATH. The loss factor expresses what is
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observation, however, that this loss factor is  constant over the range of a book,  that is ,  i t
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(conceptual) help from the user.

2 .4  Human-Oriented Theorem Provers

Human-oriented theorem-proving systems have attracted growing attention after the initial
enthusiasm for machine-oriented theorem provers died down and the limitations of later
systems became more apparent. By  human-oriented theorem provers, we mean systems
that model human proof-search behavior, for example, by representing it as a planning
process [9]. In contrast t o  machine-oriented logics, the object language is not a normalized
first-order language such as clauses, but “a language closer t o  the one with which we
ourselves describe the problem” [8, p.91]. Correspondingly, the calculus of such systems is
not based on a machine-oriented formalism like resolution, but usually on some variant of
a natural deduction calculus. Moreover, while the strength of traditional theorem provers
essentially relies on fixed domain-independent search strategies, the deductive power of
plan-based systems mainly resides in user-written domain-specific methods.

A successful realization of such a planobased approach is the OYSIER-CEM-system [9],
where the Nuprl-tactics have been extended to soocalled methods. A method can be viewed
as a unit consisting of a procedural tactic and a declarative specification. The latter allows
reasoning about methods and in particular allows for an automatic planning of proofs.

These techniques have been applied in particular t o  systems based on mathematical
induction. For example, a large part of the heuristic knowledge of the Boyer-Moore prover
[6] has been encoded into such methods.

Since the working language and the proof formalism are usually human-oriented, these
systems also support user interaction in  the spirit of a proof checker.

To summarize, a plan-based framework allows for a natural encoding of domain-specific
problem-solving knowledge. However, the deductive strength of traditional theorem provers
with their sophisticated domain-independent proof search strategies is not available.
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2.5 Requirements for a Proof Development Environment 

A comfortable environment for proving mathematical theorems is a computer-aided proof 
development system that acts like a CASE tool for mathematics. As such it should support 
at a minimum the positive features of each of the above three classes of systems. The fol­
lowing table gives an overview of the features of plan-based inference systems and standard 
automated theorem provers: 

plan-based prover I traditional theorem prover 

domain-dependent reasoning power domain-independent reasoning power 
sorted higher-order logic first-order logic 
interactive automatic 
communication of proof ideas fixed proof strategies 
mathematical knowledge logical knowledge 
human-oriented proof presentation machine-oriented proof presentation 

Taking account of the complementary structures of existing systems, our basic idea is 
to build a proof development environment, called Q-MKRP, which combines the reasoning 
power of automated theorem provers as logic engines with the proof-planning paradigm. 
In particular, attention will also be paid to the support for a comfortable user interaction. 

Illustration of a Concrete Problem-Solving Cycle 

Let us look at an example to demonstrate how an interactive human-oriented theorem 
praver can be employed with an integrated machine-oriented theorem-proving system. As 
a first observation, mathematicians usually have a good intuition of what to do globally 
in a given situation, and they quite comfortably explain these domain-specific strategies 
to other mathematicians or to students. In contrast, they usually offer no explanation 
for the minute sequence of deductive steps that constitutes the final proof. Based on this 
observation, we assert that a mathematician can be best served by a system that supports 
the global planning and searching for a proof on a human-oriented interactive level, whereas 
the second task, filling in the details, is delegated to a logical engine such as a resolution­
based theorem prover. Such a division of labor is advantageous, not least because it allows 
the user to provide as much of the problem-solving knowledge as he can, while the rest is 
left to the machine. 

Now consider the following theorem (see [12, p.37]): 
"If p and 0' are two equivalence relations, then the transitive closure of their union, (pUO'?, 

is also an equivalence relation." 
The following definitions are necessary for proving the theorem: 

• definition of equivalence relation (in terms of reflexivity, symmetry, transitivity) 

• definitions of reflexivity, symmetry, transitivity 

• definition of union, 'ia, b : S (p U 0')(a, b) -<==> p(a, b) V 0'( a, b) 

• definition of transitive closure as pt:= U pn 
nEIN 
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A comfortable environment for proving mathematical theorems is  a computer—aided proof
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to  build a proof development environment, called Q—MKRP, which combines the reasoning
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in a given situation, and they quite comfortably explain these domain-specific strategies
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is also an equivalence relation.”
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. definition of equivalence relation (in terms of reflexivity, symmetry, transitivity)
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• inductive definition of pn as pI = P and pn+l =po pn. 

•	 definition of composition of relations p 0 ~ 

A human proof plan for this theorem might look as follows: 

1.	 The original problem can be decomposed quite naturally into three subproblems: 
(puO')t is reflexive, (pUO')t is symmetric, and (pU~)t is transitive. Furthermore-and 
this observation is more sophisticated-a mathematician would rely on the heuristics 
that the three properties can be decoupledj in order to prove one property (reflexivity, 
symmetry, transitivity) of the transitive closure, the other two are not needed as 
preconditions. . 

1.1.	 The reflexivity of (pU~)t is trivial, because it contains p and ~. This subtheorem can 
be proved immediately by an automated theorem prover (MKRP did this, in fact). 
Note that at this level of minute logical details a mathematician has hardly any 
explicit proof strategies. 

1.2. In order to show the symmetry of (pU O')t, show the lemmas"If p and 0' are symmetric 
then (p U ~) is symmetric." and "If i is symmetric then in is symmetric for all 
n E IN.". The rest is trivial and should (and can) be done by a logic engine. 

1.3. Show	 that for an arbitrary relation p, the transitive closure pt is transitive. This 
requires showing by induction that if pn(a, b) and pm(b, c) then pn+m(a, c). The gaps 
should be filled in by an automated theorem prover (and in fact they were). 

During the attempt to show the lemma"If i is symmetric then in is symmetric for all 
n E IN.", a mathematician might notice that a further lemma, "i 0 in = in 0 i" is needed, 
which can be shown by mathematical induction. It is important to notice that it is quite 
common that not all necessary lemmas can be determined a priori, rather that some must 
be formulated during the proof process. This is particularly the case with so-called bridge 
lemmas [6]. 

As this example demonstrated, a supporting system must have at least the following 
features: 

•	 The language should be higher-order, because there are abundant assertions about 
relations, natural numbers, functions on relations and so on. This language should be 
sorted, since this helps (as is well-known from first-order theorem proving) to struc­
ture the domain of discourse into sets of elements. Sorts thereby radically improve 
the search behavior of a system. 

•	 Different types of logic engines are needed, including higher-order provers, induction­
based provers and, since many subproblems can only be solved by first-order logic 
engines of a certain type, several of such engines. 

•	 There should be a mechanism that allows the logic engines to generate new subprob­
lems. 
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n+1o inductive definition of p" as p1 = p and p = p o p".

. definition of composition of relations p o 0'

A human proof plan for this theorem might look as follows:

1. The original problem can be decomposed quite naturally into three subproblems:
(,a)t is reflexive, (pLJa)‘ is symmetric, and (;)UO')‘L is transitive. Furthermore—and
this observation is more sophisticated—a mathematician would rely on the heuristics
that the three properties can be  decoupled; in order to  prove one property (reflexivity,
symmetry, transitivity) of the transitive closure, the other two are not needed as
preconditions. '

1.1. The reflexivity of (pUa)t is trivial, because it contains p and a .  This subtheorem can
be  proved immediately by an automated theorem prover (MKR_P did this, in fact).
Note that at this level of minute logical details a mathematician has hardly any
explicit proof strategies.

1.2. In order t o  show the symmetry of (pUa) ‘ ,  show the lemmas “If p and  a are symmetric
then (p U 0)  is symmetric.” and “If r is symmetric then 7“ is symmetric for all
n E IN.”. The rest is trivial and should (and can) be done by a logic engine.

1.3. Show that for an arbitrary relation p, the transitive closure p" is transitive. This
requires showing by induction that if p"(a, b) and pm(b, 6) then pn+m(a, €). The gaps
should be filled in by an automated theorem prover (and in fact they were).

During the attempt t o  show the lemma “If r is symmetric then 7'" is symmetric for all
n 6 IN . ” ,  a mathematician might notice that a further lemma, “1' o r "  = r"  o r ”  is needed,
which can be shown by mathematical induction. It is important to  notice that it is quite
common that not all necessary lemmas can be determined a priori, rather that some must
be formulated during the proof process. This is particularly the case with so-called bridge
lemmas [6].

As this example demonstrated, a. supporting system must have at least the following
features:

0 The language should be  higher-order, because there are abundant assertions about
relations, natural numbers, functions on relations and so on. This language should be
sorted, since this helps (as is well—known from first-order theorem proving) t o  struc-
ture the domain of discourse into sets of elements. Sorts thereby radically improve

' the  search behavior of a sys tem.

. Different types of logic engines are needed, including higher-order provers, induction-
based provers and, since many subproblems can only be  solved by first-order logic
engines of a certain type, several of such engines.

0 There should be  a mechanism that allows the logic engines to  generate new subprob-
lems.



4 The O-MKRP-System 

In this section we describe the key features of the n-MKRP-system, an interactive proof 
development environment that is based on the ideas presented in the previous sections. 

4.1 The Architecture 

Generally speaking, the n-MKRP-system is an integration of plan-based and machine­
oriented theorem-proving systems with a strong emphasis on user interaction. The overall 
architecture is illustrated in figure 1. This is to be understood as follows: the current state 
of the proof under construction is represented in a data structure called the proof tree, 
representing a partial natural deduction proof [17]. To proceed, the user has the following 
options to manipulate the proof tree: 

•	 He can insert mathematical facts contained in the n-DB (database) into the proof 
tree (e.g., as an already-proved premise). Furthermore, he can update the database 
with new definitions, theorems, etc. 

•	 Re can apply an existing method in the method-DB. Methods play the role of the 
tactics of proof checking systems. They generate a sequence of natural deduction 
steps that constitute a typical subproof. Faced with a new problem, the user can also 
create new methods or modify existing ones by invoking so-called meta-methods. 

•	 In case a subproblem is such that it can be proved by one of the integrated logic 
engines, this subproblem is then handed over to the corresponding logic engine. 

•	 After a successful run of a logic engine, the user may choose to initiate the automatic 
translation of the resulting machine-oriented subproof into the natural deduction 
format. 

•	 Since the correctness of the various components, in particular of the user generated 
methods, are not generally guaranteed, the user must verify the final proof in terms 
of the inference rules of the natural deduction calculus by activating the verifier. 

To further relieve the user, a planner can be invoked to propose a proof plan, that is, 
a structure composed of the operations mentioned above. 

4.2 The Language 

Since the technical mathematical language of a typical textbook is essentially a sorted 
higher-order logic augmented by many special-purpose representational constructs that are 
typical for the field at hand, we have developed an appropriate input language called POST 
[27,33]. Since we are interested mainly in applications of standard mathematics, we also 
made the choice for classical higher-order logic as opposed to a nonstandard logic such as 
intuitionistic logic. In particular, our logic is built on Alonzo Church's simple theory of 
types [10] (an excellent introduction to classical higher-order logic can be found in [1]), but 
enriched by sorts (in the same sense that first-order logic is extended to sorted first-order 
logic). 
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made the choice for classical higher-order logic as opposed to  a nonstandard logic such as
intuitionistic logic. In particular, our logic is built on Alonzo Church’s simple theory of
types [10] (an excellent introduction to classical higher-order logic can be found in [1]), but
enriched by sorts (in the same sense that first-order logic is extended to  sorted first-order
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Figure 1: Architecture of n-MKRP 

The input languages of classical automated theorem provers are usually variants of 
classical first-order logic. Most mathematicians agree that first-order logic is in principle 
sufficient to express common mathematical properties (Hilbert's Thesis [2, pAl]). The 
standard idea is to build the common concepts on a set theory like that of Zermelo-Fraenkel 
[44,15] or von Neumann-Godel-Bernays [34, 19,3] as proposed in (5] and carried out in [40]. 
In practice, however, mathematicians use set theory only in a naive way as one paradigm 
among many others. Moreover, building an automated theorem prover on top .of a set 
theory is not without complications, even if the more suitable formulation of set theory in 
[40] is used, as there are far too many set-theoretic inference steps possible at each stage 
of the search space that have little to do with the problem at hand. 

Our main reason for choosing a sorted and typed higher-order logic (and not set theory) 
is based on the experience that the straightforward use of the MKRP-system for set theory 
was computationally too costly, because the key notion of a function must be defined in set 
theory as a left-total, right-unique relation, a relation as a subset of the Cartesian product 
of two sets and so on. In higher-order logic these notions are first-class primitive objects. 
In addition, sorted higher-order logic in many cases can be straightforwardly translated 
to first-order logic and often this is adequate [26]. Furthermore, higher-order unification, 
which is the crucial operation for efficient theorem proving in unsorted higher-order logic, 

10
 

Figure 1: Architecture of Q—MKRP
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classical first-order logic. Most mathematicians agree that first-order logic is in principle
sufficient to express common mathematical properties (Hilbert’s Thesis [2, p.41]). The
standard idea is to build the common concepts on a set theory like that of Zermelo-Fraenkel
[44, 15] or von Neumann-GESdel-Bernays [34, 19, 3] as proposed in [5] and carried out in [40].
In practice, however, mathematicians use set theory only in a naive way as one paradigm
among many others. Moreover, building an automated theorem prover on top ‘of a set
theory is  not without complications, even if the more suitable formulation of set theory in
[40] is used, as there are far too many set-theoretic inference steps possible at each stage
of the search space that have little to  do with the problem at hand.

Our main reason for choosing a sorted and typed higher-order logic (and not set theory)
is based on the experience that the straightforward use of the MKRP-system for set theory
was computationally too  costly, because the key notion of a function must be  defined in set
theory as a left-total, right-unique relation, a relation as a subset of the Cartesian product
of two sets and so on. In higher-order logic these notions are first-class primitive objects.
In addition, sorted higher-order logic in many cases can be straightforwardly translated
to  first-order logic and often this is adequate [26]. Furthermore, higher-order unification,
which is the crucial operation for efficient theorem proving in unsorted higher—order logic,
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No S;D Formula Reason 

1. 1·, f- Eqrel( IT) (Hyp) 
2. 2', f- Eqrel(p) (Hyp) 
3. 1·, f- ref( IT) 1\ symm(IT) 1\ trans( IT) (Def-Eqrel 1) 
4. 2·, f- ref(p) 1\ symm(p) 1\ trans(p) (Def-Eqrel 2) 
5. 5; f- 'Vr.'VfJ..'Vx.(r u fJ.)(x) <==:> (r(x) V fJ.(x)) (Def-Union) 
97. 97; f- ref« IT Up)1) (PLAN) 
98. 98; f- symm«IT U p)t) (PLAN) 
99. 99; f- trans«IT U p)t) (PLAN) 
Thm. 1,2;5 f- Eqrel«IT U p)t) (Def-EqreI97 98 99) 

Figure 2: Example of a partial proof 

can be generalized to sorted higher-order unification [28]. 

4.3 Proof Format and Methods 

In addition to the problem formulation language, the proof format is also crucial for an 
adequate interface. As a common proof format for both the user and the system, we have 
chosen a generally established natural deduction formalism [17]. In figure 2 we present a 
snapshot of a partial proof for the example introduced in section 3 above: not all definitions 
and lemmas necessary for proving this problem are already included in the partial proof at 
this point. 

As argued above, an advanced tool for proving mathematical theorems should support 
the user in communicating his proof strategies to the system. In our case, the user can 
guide the search for a proof by providing high-level proof plans [9], while the remaining 
gaps in the plan are filled in by a planning component or by the underlying logic engines. 
These proof plans are the essence of the knowledge that constitutes a mathematical field, 
such as the completeness proofs for resolution-based strategies that are typically shown 
first at the ground level by induction on what is known as the excess-literal number and 
then by lifting. 

More concretely, in Q-MKRP we basically follow the framework proposed by Alan Bundy 
et al. for the planning of proofs. Bundy's method concept provides a general framework for 
proof planning. It is, however, too restricted and rigid in the following way. The deductive 
power of human beings relies to an extraordinary extent on their ability to adapt known 
proof techniques to new and original situations. That is, methods have to be modified to 
the given situation. In Q-MKRP this is done by meta-methods. In this sense, analogical 
theorem proving, for example, plays a role. To enable the modification of methods by 
meta-methods, we extend the method structure by splitting the tactic part of a method 
into two parts: a declarative part containing the proper information and a procedural part 
that interprets the declarative part. The declarative part is accessible for modifications 
(for details see [23, 22, 32]). 
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can be  generalized to  sorted higher-order unification [28].

4 .3  P roof  Format and Methods

In addition to  the problem formulation language, the proof format is  also crucial for an
adequate interface. As a. common proof format for both the user and the system, we have
chosen a generally established natural deduction formalism [17]. In figure 2 we present a
snapshot of a partial proof for the example introduced in section 3 above: not all definitions
and lemmas necessary for proving this problem are already included in the partial proof at
this point.

As argued above, an advanced tool for proving mathematical theorems should support
the user in communicating his proof strategies to the system. In our case, the user can
guide the search for a proof by providing high-level proof plans [9], while the remaining
gaps in the plan are filled in by a. planning component or by the underlying logic engines.
These proof plans are the essence of the knowledge that constitutes a mathematical field,
such as the completeness proofs for resolution-based strategies that are typically shown
first at the ground level by induction on what is known as the excess-literal number and
then by lifting.

More concretely, in Q—MKRP we basically follow the framework proposed by Alan Bundy
et al. for the planning of proofs. Bundy’s method concept provides a general framework for
proof planning. It is,  however, too restricted and rigid in the following way. The deductive
power of human beings relies to an extraordinary extent on their ability t o  adapt known
proof techniques to  new and original situations. That is, methods have to  be  modified to
the given-situation. In Q—MKRP this is done by meta-methods. In this sense, analogical
theorem proving, for example, plays a role. To enable the modification of methods by
meta—methods, we extend the method structure by splitting the tactic part of a method
into two parts: a declarative part containing the proper information and a procedural part
that interprets the declarative part.  The declarative part is  accessible for modifications
(for details see [23, 22, 32]).
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Figure 3: Integration of first-order theorem provers in n-MKRP 

4.4 A Problem-Solving Cycle in O-MKRP 

A problem-solving cycle in our system goes as follows: The user formulates his problem in 
POST. In order to solve the problem, he may load definitions and already-proved theorems 
from the database, he may invoke a method to split the original problem by hand or let a 
planner do this job, or he may pass a subproblem to one of the logic engines. When the 
subproblem is within the capability of the logic engine, a corresponding proof will be found 
and translated back into the interface format. Then the user can continue with the above 
cycle. 

There is a gap between the problem formulation language POST and the proof format, 
on the one hand, and the input and output languages of the underlying first-order theorem 
provers, on the other hand. To integrate first-order theorem provers, we have to bridge 
this gap by transforming POST into the input languages of the underlying provers and 
translating the output proofs (such as a clause proof of a resolution-based system) back 
into natural deduction proofs. An overview of the problem solving cycle with a first-order 
theorem prover in n-MKRP is illustrated in figure 3. 

In order to pass a subproblem to a first-order theorem prover the problem must be first 
translated to first-order logic [25], then normalized into clausal normal form and after a 
successful run of the prover, the clause proof is normalized into a so-called refutation gr-aph 
[13]. Out of this graph a first-order natural deduction proof can be generated [31], which 
in turn can be retranslated into a higher-order natural deduction proof. 

To illustrate the problem solving cycle, let us return to the example introduced in 
section 3. With the partial proof given in figure 2 as the current state, the user may now 
choose to load the definition of reflexivity, which results in the insertion of line 6 in figure 
4. Now the user believes that the plan line 97 can be proved directly by calling the logic 
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4.4  A Problem-Solving Cycle in  Q—MKRP

A problem-solving cycle in our system goes as follows: The user formulates his problem in
’POST. In order to  solve the problem, he may load definitions and already-proved theorems
from the database, he may invoke a method to split the original problem by hand or let a
planner do this job,  or he may pass a subproblem to one of the logic engines. When the
subproblem is within the capability of the logic engine, a corresponding proof will be  found
and translated back into the interface format. Then the user can continue with the above
cycle.

There is a gap between the problem formulation language 'POS T and the proof format,
on the one hand, and the input and output languages of the underlying first-order theorem
provers, on the other hand. To integrate first-order theorem provers, we have to  bridge
this gap by transforming POST into the input languages of the underlying provers and
translating the output proofs (such as a clause proof of a resolution-based system) back
into natural deduction proofs. An overview of the problem solving cycle with a first-order
theorem prover in Q—MKRP'is illustrated in figure 3.

In order to  pass a subproblem to  a first-order theorem prover the problem must be first
translated to first-order logic [25], then normalized into clausal normal form and after a
successful run of the prover, the clause proof is normalized into a so-called refutation graph
[13]. Out of this graph a first-order natural deduction proof can be generated [31], which
in turn can be retranslated into a higher-order natural deduction proof.

To illustrate the problem solving cycle, let us return to  the example introduced in
section 3. With the partial proof given in figure 2 as the current state,  the user may now
choose to  load the definition of reflexivity, which results in the insertion of line 6 in figure
4. Now the user believes that the plan line 97 can be proved directly by calling the logic
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No S;D Formula Reason 

l. l', f- Eqrel(0") (Hyp) 
2. 2', f- Eqrel(p) (Hyp) 
3. l', f- ref(0") /\ symm(0") /\ trans(0") (Def-Eqrel 1) 
4. 2', f- ref(p) /\ symm(p) /\ trans(p) (Def-Eqrel 2) 
5. 5', f- "Ir."Ip.."Ix.(r U p.)(x) ~ (r(x) V p.(x)) (Def-Union) 
6. 6', f- "Ir.ref(p) ~ ("la. r(a, a)) (Def-ref) 
97. 1,2,5,6,... ; f- ref«O" U p)t) (MKRP) 
98. 98; f- symm«O" U p)l) (PLAN) 
99. 99; f- trans«O" U p)l) (PLAN) 
Thm. 1,2;5 f- Eqrel«O" U p)l) (Def-Eqrel97 98 99) 

Figure 4: Extended example of a partial proof 

engine MKRP. After a successful MKRP run, plan line 97 will be converted into the proved 
line 97 with MKRP as justification. At this point the user has the option to call a program 
PTrans that generates a natural deduction proof from the clausal proof found by MKRP. 
In this case line 97 will be replaced by the subproof thus generated. After the completion 
of the entire proof, the system restructures and substantially shortens (i.e., abstracts) the 
natural deduction proof thus found and the final presentation is in natural language [21]. 

Outlook 

n-MKRP is currently under development. While the overall framework is set up and imple­
mented, we are gradually integrating the other components. The transformation mechan­
ism and the first logic engine, (the MKRP-system), are already incorporated into n-MKRP. 
Other systems will follow, in particular logic engines for higher-order logic and mathem­
atical induction (INKA [4]). A database with many of the mathematical facts of [12] has 
been developed on top of a frame-like mathematical knowledge base (see [41] for details). 
Two of the most challenging problems of the whole project will be the realization of the 
planning framework and the declarative approach to methods. 

With the n-MKRP-system we are orienting our project in the direction outlined above. 
We believe that this will result in a system that finally measures up to the standards of a 
mathematical assistant, the goal toward which we have worked for the last decade. 
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natural deduction proof thus found and the final presentation is in natural language [21].

5 Out look
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ism and the first logic engine, (the MKRP-system), are already incorporated into Q—MKRP.
Other systems will follow, in particular logic engines for higher-order logic and mathem-
atical induction (INKA [4]). A database with many of the mathematical facts of [12] has
been developed on top of a frame-like mathematical knowledge base (see [41] for details).
Two of the most challenging problems of the whole project will be the realization of the
planning framework and the declarative approach to  methods.

With the Q—MKRP—system we are orienting our project in the direction outlined above.
We believe that this will result in a system that finally measures up to the standards of a
mathematical assistant, the goal toward which we have worked for the last decade.
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