
C
—

Q
—

b
O

—
Q

Q
m

—
O

v—
S

R
O

-Q

0
3

m
zo

o
tm

o
n

.
£

0
5

2
8

3
.a

5
2

3
9

2
::

V
E

G
E

E
E

.
2

0
.9

0
9

5
0

0
”.

.5.mVorD
.meroeht

J. Avenhaus. J. Denzinger

SEKI Report SR—93-06

lan‚mtauG
..

eg.mtuum
.

rt

.mD

E
O

n
m

E

-
_

xm
w

Distr ibuting equation‘al theOrem
proving1

J . Avenhaus - J . Denzinger
Fachbereich Inforniat ik. Universi tät Kaiserslautern

6750 Kaiserslautern

{avenhaus . deuzinge}äiüinformatik.uni—de

Abs t r ac t

In this paper we show tha t distributing t he theorem proving task to several
experts is a promising idea. We describe t he team work method which allows
the experts to compete for a whi le and then to cooperate. In the cooperation
phase the best results derived in the competit ion phase are collected and the less
important results are forgotten. We describe“ some useful experts and explain
in detail how they work together. We establish fairness criteria and so prove
the distributed system to be both, complete and correct. We have implemented
our system and show by non-trivial examples tha t drastical t ime speed-ups are
possible for a cooperating team of experts compared to the t ime needed by the
best expert in the team.

1A short version of this paper appears in the proceedings of ETA—93.

1 Introduction

The success of generaL tl1eOI"(,111 pro\'ers is lilllited by the fact that even for relatively
simple problems the search space for finding a proof becomes too large. There are
several possibilities to deal wit.h this problem. On the syntactical level one may restrict
the search space by designing powerful inference rules or by imposing order restrictions.
On the semantical level one ma..,. incorporate domain specific knowledge and proof
plans. On the machine le\'pl one may use para./lelism. In this paper we propose the
team work method (see [Oe9:3]). it easily allows one to combine these ideas.

The basic idea of the team work method is as follows: There is a supervisor that
activates severals experts - rUllning on difrerent processors - to work on the given
problem. Each expert is a prow'r by itself. il may focus on a subproblem (for example
on a special part of the database) and follow its own heuristics. So for a given amount
of time the experts' work independently and compete. 'When this time is elapsed the
supervisor stops the experts and calls the referees to judge the work done by the experts.
Based on the referee reports one of the experts is declared to be the winner. The referees
determine the best results of the losers and send these results to the winner. Now the
supervisor creates a new team of experts allCI starts a new round. The whole process
stops as soon as one expert has found a proof. This approach seems to be very flexible:
If the supervisor has some knowleclg<.> 011 the problem he can decompose the problem
into subproblems. select domain specific experts and combine their results. This allows
one to execute a given proof plan efficiently. On the other side. if only little is known
about the given problem. the supervisor Illay start a sta.ndard team of experts and
after each round exchange those experts by others that did not contribute to solving
the problem. In this case it is indispensable to forget those results that will not help to
find the proof. Otherwise the database would explode and the "wrong" experts would
prevent the system to find a proof. It is one task of referees to extract the useful results
derived by the experts.

It is the aim of this paper to make these ideas precise and to study the problems that
come along with the approach. We believe that t he approach is useful for a \",ride class of
theorem provers based on inference rules that generate new and simplify old facts (e.g.
resolution based provers), but we restrict in this paper to pure equational reasoning. To
be precise, the underlying prover is the unfailing Knuth-Bendix completion procedure
[BDP89]. In this case we are able to present different useful experts. Vve analyze the
tasks of the supervisor and the referees and we discuss communication problems. We
give simple criteria to guarantee fairness. they imply that the whole distributed system
is both, correct and complete. Experiments show that the approach is promising.
For example, we prove the ring example of Stickel [8t84] (a ring satisfying x 3 = x is
commutative) without AC-unification and AC-rewriting with a team consisting of two
experts in 308 seconds. Here the best expert alone needs 5153 seconds. This speed-up
factor much greater than two for a team of t\\'o experts is not unusual as other examples
show.

The paper is organized as follows: In section :2 we review the proof method unfailing
completion. In section 3 we describe the team work method in detail and we give

:2

1 In t roduct ion

The success of general-theorem provers is limited by the fact tha t even for relatively
simple problems the search space for finding a proof becomes too large. There are
several possibilities to deal with this problem. On the syntactical level one may restrict
the search space by designing powerful inference rules or by imposing order restrictions.
On the semantical level one may incorporate domain specific knowledge and proof
plans. On the machine level one may use parallelism. In this paper we propose the
team work method (see [De93]). it easily allows one to combine these ideas.

The basic idea of the team work method is as follows: There is a supervisor that
activates severals experts — running on different processors — to work on the given
problem. Each expert is a. prover by itself. il may focus on a subproblem‘ (for example
on a special part of the database) and follow its own heuristics.‘ So for a given amount
of t ime the experts 'work independently and compete. When this t ime is elapsed the
supervisor stops the experts and calls t he referees to judge the work done by the experts.
Based on the referee reports one of the experts is declared to be the winner. The referees
determine the best results of t he losers and send these results to the winner. Now the
supervisor creates a new team of exper ts and starts a new round. The whole process
stops as soon as one expert has found a. proof. This approach seems to be very flexible:
If the supervisor has some knowledge on the problem he can decompose the. problem
into subproblems. select domain specific experts and combine their results. This allows
one to execute a given proof plan efficiently. On the other side. if only little is known
about the given problem. the supervisor may star t a standard team of experts and
after each round exchange those experts by others that d id not contribute to solving
the problem. In this case i t is indispensable to forget those results that will not help to
find the proof. Otherwise the database would exPlode and the ”wrong” experts would
prevent the system to find a proof. I t is one task of referees to extract the useful results
derived by the experts. "
I t is the aim of this paper to make these ideas precise and to s tudy the problems that
come along with the approach. We believe tha t the approach is useful for a. wide class of
theorem provers based on inference rules that generate new and simplify old facts (e.g.
resolution based provers). bu t we restrict in this paper to pure equational reasoning. To
be precise, the underlying prover is the unfailing Knuth-Bendix completion procedure
[BDPSQ]. In this case we are able to present different useful experts. We analyze the
tasks of the supervisor and the referees and we discuss communication problems. We
give simple criteria to guarantee fairness. they imply that the whole distributed system
is both, correct and complete. Experiments show that the approach is promising.
For example. we prove the ring example of Stickel [St84] (a ring satisfying 3:3 = as is
commutative) without “AC-un i f i ca t i on and ACT—rewriting with a team consisting of two
experts i n 308 seconds. Here the best expert alone needs 5153 seconds. This speed-up
factor much greater than two for a. team of two experts is not unusual as other examples
Show.

The paper is organized as follows: In section ?. we review the proof method unfailing
completion. In section 3 we describe the team work method in detail and we give

2

2

conditions to gllarallt.('(' fairll('ss ill s('ct iOlll, \\'(' discuss sew'ral experts and the tasks
of the referees alld t tIC slIp('\,\'isol' ill scct iOIl .j, III section G we discuss some examples
and pro\'e that r<'ll1arkable spced-lIps are pussil)le for team experts working together.
Fi nally. insect iOIl 7 \\'(' l'f,la I e Oil r approach to some of those known in the li terature.

Unfailing completion as the basic proof proce­
dure

\Ve apply' the team work Illet hod oul lined in the introduction to purely equational
reasoning. So we are interested in the following problem:

Input: E. a set of equations o\'('r a fixed signature siy; s = t, an equation over sig
Question: Does s = t hold in every model of E ?

Let Th(E) denote the set of equations over 8ig that hold in every model of E. By
Birkhoff's theorem we have s = t E Th(E) iff 8 can be transformed into t by replacing
equals by equals. It is well-known that provers based on rewriting and completion
techniques developed by Knuth and Bendix [hH70] are efficient for this problem. In
order to avoid abortion of the completion procedure due to the fact that equations may
not be orientahle into rules we use the /lnfailing completion jJl'ocedure of Bachmair,
Oershowitz and Plaisted [BDP89] as our basic proof procedure.

We assume the reader to be familiar with rcwril ing and completion techniques. For an
overview see [AM90] and [0.190]. We use the standard notations.

A signature sig = (S, F, T) consists of a set S of sorts, a set F of operators and a
function T : F ~ S+ that fixes the input and output sorts of the operators. Let T(F, V)
denote the set of terms over F and a set l' of variables. vVe write t[s]p to denote that
s - tjp, i.e. s is the subterm of t at position p. By T(F) = T(F, 0) we denote a set
of ground fel'm8 over F. Let /\' be a set of new constants. A nduetion ordering >- is
a well-founded ordering on T(FU /\.1") that is compatible with substitutions and the
term structure, i.e. t 1 >- 12 implies O'(td >- 0'(12) and t[tdp >- t[t 2]po If >- is total on
T(F U 1\) then >- is called a ground reduction o/'dering.

A rule is ?n oriented equa.tion, writt.en l ~ r such that l/art r) ~ V ar(I). A set R of
rules is compatible with >- if l >- r for every l ~ r in R. If E is a set of equations
then RE = {O'(u) ~ O'(u) lu == u in E, 0' a substitution, O'(u) >- O'(v)} is the set of
orientable instances of equations in E, (\Ye use u == v to denote u = v or v = u.)
Finally, we have R(E) = R U RE.

Let u == v and s == t be equations in E U R. Let. u!p be a non-variable subterm
of u tha.t is unifiable with s, sa.v with most general unifier 0' = m,gu(ujp,s). Then
O'(u[t]p) = O'(v) is in Th(R U E). If O'(t) 'f a(8) and O'(v) 'f O'(u) then O'(u[t]p) = O'(v)
is a critical pair of R, E. \Ye denote by CP(R, E) the set of all critical pairs of R,E.
We are now ready to define the unfailing completion procedure. It works on triples of '
the form (E, R, g) and is parameterized by a ground reduction ordering >-. Here E is
a set of equations (originally the input), R a set of rules compatible with >- (originally

conditions to guarantee fairness in sect ion --|. We discuss several experts and the tasks
of the refm‘ees and the supm'visor in section ."). In section 6 we discuss some examples
and prove that remarkable speed-ups are possible for team experts working together.
Finally. in section 7' we relate our approach to some of those known in the literature.

2 Unfailing completion as the basic proof proce-
dure

We apply the team work method outlined in the introduction to purely equational
reasoning. So we are interested in the following problem:

Input : E . a. set of equations over a fixed signature sig; s := i , an equation over s ig
Ques t ion : Does s = t hold in every model of E '?

Let Th (E) denote the set of equations over s ig that hold in every model of E . By
Birkhoff’s theorem we have s = t 6 TIME) iff s can be transformed into t by replacing
equals by equals. I t is well-known tha t provers based on r ewr i t i ng and completion
techniques developed by Knuth and Bendix [K1370] are efficient for this problem. In
order to avoid abortion of the completion procedure due to the fact that equations may
not be orientable into rules we, use the unfailing completion procedure of Bachmair,
Dershowitz and Plaisted [BDPSQ] as our basic proof procedure.

We assume the reader to be familiar with rewriting and completion techniques. For an
overview see [AMQO] and [D190]. We use the standard notations.
A signature s ig = (S, F. T) consists of a. set S of sorts, a set F of operators and a
function T : F —+ 5+ that fixes the input and output sorts of the operators. Let T(F, V)
denote the set of terms over F and a set V of variables. We write Hs],D to denote that
s a 13/1), i.e. s is the subterm of t a t position p. By T(F) : T(F‚ @) we denote a set
of ground terms over F . Let. K be a. set of new constants. A reduction ordering >- is
a well-founded ordering on 'T(F U If. V) that is compatible with substitutions and the
term structure, i.e. t l >- 1‘; implies 0(11) >- a(£.2) and t[tl]p >— t[t-2]p. If >- is total on
T(F U K) then >- is called a ground reduction ordering.

A rule is an oriented equation. written I ——> r such that Va r (r) g V a r (l) A set R of
rules is compatible with >— if l >- r for every l ——> r in R. If E is a set of equations
then RE = {a (u) -—> a (v) | u i r in E . cr a substi tution. 0 (a) >- 0(v) } is the set of
orientable instances of equations in E . (We use u & v to denote u = v or v = u.)
Finally, we have R(E) = R U RE.

Let u é v and s =°= t be equations in E U R. Let u / p be a non-variable subterm
of u that is unifiable with 3, say with most general unifier a = mgu(u/p‚s) . Then
a(u[t]p) = 0(0) is in Th“? U E) . If o (t) 3% 0(5) and 0(1)) % a‘(u) then a(u[t]p) = 0(0)
is a critical pair of R. E . We denote by C'—P(}?. E) the set of all critical pairs of R, E .
We are now ready to define the unfailing completion procedure. I t works on triples of \

_ the form (E , R, g) and is parameterized by a ground reduction ordering >—. Here E is
a set of equations (originally the input) . R a set of rules compatible with >— (originally

empty) and y a ~rolllld ('<[11;11 illll on'r F U 1\' (originally tlte> skolemized input goal
.'; = t). Tlw cOlllpletioll proc(·dllr(' is gi\'('11 by d sel of infe>rence rules and a set of
fairness condil ions Illa(rest riet (he applied(ion of Ihe inference rule'S.

Definition 2.1 (Inference system U, see [BDP89])
Let::-	 be a ground l'('(ludion ordulng. The infu(nce system U consists of the following
inference rulf.';.

(UI) Oriulf an equation

(E U {,~ == l}. R. g) f- l ((E. R U {s -+ I}. g) if s ::- t

(U2) DedllCf an equatioll

(E.R.g) f-u (EU {s = 1}.R.g) ifs = I E CP(R.E)

(SI)	 Deletc fll! equation
(E U {s = l}. R. g) f-u (E. R. g) if... == I

(S2)	 Simplify an equation

(E U {s == t}. R.g) f-u (E U {u = I}. H.g) if s -------R(E) It

(S3)	 Subsume an equatio'n

(EU {s == t,ll == d.R.g) f-u (EU {s = t},R,g) ifulp == O'(s),v =u[O'(t)]p
for some 0' and position p and 11 l> s

(S4)	 Simp/~fIJ a rule. right
(E.RU {8 -+ t}.g) f-u (E. NU {s -+ Il}.g) ~lt -------R(E) II

(SS)	 SimplifIJ a /'ltlt. left
(E. R U {s -+ n. g) f-u (E U {s = Il}. H. g) if S -------R(E) u using 1-+ rand

s l> I

(G1) SimplifIJ the goal

(E, R, s = t) f-u (E. R. It = t) if oS ------- R(E) u

(G2)	 Success

(E, R. s = t) f-u secC E S S' if s == t

In this definition l> denotes the encompassment ordering. It is the strict part of the
quasi-ordering defined by s ~t iff O"(t) == sip for some substitution 0' and some position
p. Notice that we have added subsumption rule (S:3) that is missing in [BDP89]. This
rule is indispensable for efficiency reasons. For instance, if commutative and associative
operators are present it prevents an explosion of the set E.

Using the orderings ::- and l> a proof.ordering >p can be constructed such tIH~.t the
following holds (see [BDP89]):
If (E,R,g) f-u (E',R',g') and B is a proof for s = t in (E,R) then there is a proof
B' for s = t in (E', R') with B ~p B' . In pa.rticula.r, if B is a peak sR(E) +- u -+R(E) t
and s = t is in E' then B >p Bs .t where Bs .! is the one step proof consisting of applying
the equation s = t.

Definition 2.2 (Fairness of a derivation sequence)

A U-derivation is a sequence (Ei• Ri.g;)i"?,o lcith (Ei• Ri,g;) f-u (Ei+1 , Ri+l,gi+d for all

i. It defines the sets RX' and E'X' of pfl'si::denf rules and equations by

R==unR E= = U n Ei .
j~Oi~j j~Oi~j

empty) and g a ground equation over I" U K (originally the skolemized input goal
s z: t) . The comple t ion p rocedure is given by a set of inference rules and a. set of
fairness conditions that restrict the application of the inference rules.

Defin i t i on 2 .1 (Inference system M, see [BDP89])
Let >- be a ground reduction. ordering. The inference system Ll consists of the following
inference .rul es.

(UI) Orient (In. equation
(EU {s é— t} . l ? .g) H , (E . RU {s ——+ t } .g) i fs >—t

(Ulf?) Deduce an. equation
(E .R .g] H , (EU {s = t} . !?.g) i f s : t. € CP(B. E)

(S t) Delete an equation
(EU {s = t } . l t ’ . g) h ; (E . 1? .g) ifs- 5 . !

(Si?) Simplify an. equation
(EU {:3 £ t } .R .g) h, (EU {u = t} . R.;/) i fs —>R(E) u

(55’) Subsume an. equation
(E U {s i t , - 11 :30} . 1?.g) H, (E U {s = t} . R ,g) i fu/p E o(s) , v —'_'..= u[o(t)]p

„ for some 0‘ and position p and u [> s
(54) Simplify a. rule. right

(E .RU {s —> t} .g) F” (E . RU {s —> u}.g) i f t *“"R(E) u
(55) Simplify a rule. !(]?

(E .}?U {s —> t} .g) l—u (EU {.3 = u}. t l . g) i fs ""-*mß) it using l——+ r and
s (> !

(GI) Simplify the goal
(E .R .S = t) " “ (E .R . ll. = l) l fS “"""R(E) u

(G2) Success
(E ,R . s = t) |_“ .S'UCCESS ifs E t

In this definition [> denotes the encompassment ordering. I t is the strict part of the
quasi-ordering defined by s [Zi iff JU) E s / p for some subs t i tu t iono and some position
p. Notice that. we have added subsumption rule (S3) that is missing in [BDPSQ]. This
rule is indispensable for efficiency reasons. For instance, if commutative and associative
operators are present it. prevents an explosion of the set E .

Using the orderings >- and [> a. proof “o rde r ing >p can be constructed such that the
following holds (see [BDP89]):
If (E , R ,g) l-u (E ' , R',g’) and B is a proof for s = t in (EJ?) then there is a proof
3' for s = t in [E'„ R ') with B Z„ B ' . In particular, if B is a peak 33(3) <— u —->R(E) t
and s = t i s in E’ then B >p B“ where B“ is the one step proof consisting of applying
the equation s = t .

Definition 2 .2 (Fairness of a derivation sequence)
A Ll-derivat ion is a sequence (E i . R;.g‚-)‚-Zg with (E,-, Rhgg) l-u (E,-+1, Ri+1‚g;+1) for all
i . It defines the sets R'“ and E 'x‘ of persistent rules and equations by

Rm=UflRa E°°=UfiEs .

120 Qi 32012}

Tht de:I'il'(ltioll i..,. Jili,. /f (itl/(I' it (lid...; /I'ltl/ S'('('('}:.'S,',· 01' d'j(fol' tC"I'y critical pair

II = t' in CP(R'x.}'.:"j, th(/'(/."; /111 i 2:: () /llId ({ pl"Oof13 for /I = l' in (E;,Rd with

Bu,v 2:: p B.

It is obvious that Olle way to get SUdl a proof B for a critical pair is to add the equation

u = v to a.n E;.

The main theorem on unfailing completion no\\' is ([I3DPS9])

Theorem 2.1 Let (Ei.Hi.gi)i?O br afalrU-daication u'ith(Eo,Ro,go) = (E,0,s=t)
wheres = I is the s!.:olrllli::(d l'U':'olon of$ = I. 11'(haDe s = t E Th(E) iffthe derivation
is finite and ends with .':;l·CCESS.

This theorem directly gives raise to a theorem prover for the problem" s = t E Th(E) ?"
that is both, correct and complete.

Definition 2.3 (Basic prover)

A basic proveI' is allY algorithm that with illput (E ..'i = t. >-) produces onlyU-derivations.

The basic proc(/' is fail'. d it pl'Oduu", only fair U -derivations.

Theorenl 2.2 Every fall' basic prol'(r starlut ll'ith input (E,,, t, >-) will stop and

generate SUCCESS ll'he//tuer :'; =£ t hold....

Proof: The theorem follO\vs immediately from Theorem 2.1 and the Definition 2.3.

3 Team work completion

The team work method \\'as mainly designed to use distributed computation in situa­
tions where almost nothing is kno\\'ll of ha\\' to find a proof for the problem instance
(E,s = t). In this case the supervisor acti\'Cl.tes a team of probably good experts (basic
provers) and lets them try to solve the problem independently. He hopes that at least
one of the experts is well suited for the problem instance and some of the other experts
deliver valuable subresults at the right t.ime. So after a while he stops the competition
phase and starts a team meeting for cooperation. Now the work of the experts has to
be judged and this is the task of the referees. So the supervisor really selects a team of
expert/referee pairs. Each referee gives a report. on the overall behavior of his expert
and selects the most important. results. On the basis of this information the supervisor
declares one of the experts as the winner and the selected results of the losers are sent
to the winner. Using this extended database of the winner the supervisor now starts a
new round of competition and cooperation. He stops a.ll computations as soon as one
proof has been found.

So the computation time is split int.o rounds. The I.~ - th round has the fo1l0wing form:

The der iva t ion is fair if t i l / n r it nuts with .5'(°((7.2135 o r (“1.56 for every cr i t ica l pair
it = v in C 'P(R'X.IL“”) . Nun is an i 2 U amt ((proof B for u = r in. (Ea-.125) with.
Bum 2,, B .

I t is obvious tha t one way to get such a proof B for a critical pair is to add the equation
u = v to an E i .

The main theorem on unfailing completion now is ([BDPSQD

Theorem 2 .1 Le t (E,-. Hg. 9;);20 hr a f a i rH- (t e r i r a t ion with. (EO1 no j = (E , 9,3“ = t)
where E = t is the shotnnizr-(l version ofs = t . We have s = t € THE) if)” the derivation
is finite and ends with .S't'C'C'Zi'.S'5.

This theorem directly gives raise to a theorem prover for the problem ”3 = t € Th(E) ?”
that is both, correct and complete.

Defini t ion 2 .3 (Basic prover)
A basic prover is any algorithm that with input. (E . s = t . >-) produces only Lt ~de-rivatz'ons.
The basic prove-r is fair. if it [)t’()(ttt(‘(.s only fair Zt—derivations.

Theorem 2 .2 Every fair basic p ro rc r s t a r t ed with inpu t (E . s = t.>—) will stop and
generate SUCCESS whenever s : 5 t holds.

Proof: The theorem follows immediately from Theorem 2.1 and the Definition 2.3.

3 Team work completion

The team work method was mainly designed to use distributed computation in situa-
tions where almost nothing is known of how to find a proof for the problem instance
(E , s = t) . In this case the supervisor activates a team of probably good experts (basic
provers) and lets them try to solve the problem independently. He hopes that at least
one of the experts is well suited for the problem instance and some of the other experts
deliver valuable subresults at the right t ime. So after a while he steps the competition
phase and starts a team meeting for cooperation. Now the work of the experts has to
be judged and this is the task of the referees. So the supervisor really selects a team of
expert / referee pairs. Each referee gives a report. on the overall behavior of his expert
and selects the most important. results. On the basis of this information the supervisor
declares one of the experts as the winner and the selected results of the losers are sent
to the winner. Using this extended database of the winner the supervisor now starts a
new round of competition and cooperation. He steps. all computations as soon as one
proof has been found.

So the computation t ime is split into rounds. The A: -— t h round has the following form:

Cooperation: The supen'isor accept s I II<' \"(·rl'\"('e report s from round I, - 1. Based on
this informal ion he detel'Jllilll's I \w ,,'illlll'r <lIlt! accepts the selected results of the
losers. Then he selects a new n-I upll' or l'xpert/rel"eree pairs.

Competition: The experts work indepelldently.

Judgement: The referees prepare their reports.

This concept sounds simple. In section (j we will demonstrate by examples that it
works and that it makes remarkahle speed-ups possible. Even more. the concept seems
to be very flexible. Very dirferent sorts of knowledge can be implemented either in the
supervisor (e.g. proof plans) or in the experts (e.g. domain knowledge).

Clearly, the concept can only work if

a) the tasks of the supervisor and the referees are carefully examined

b) useful experts are created

c) reasonable criteria for refel~ees to judge the work of experts are developed

d) communication time is reduced to a minimum.

We will discuss these problems in section 5. Here we describe in more detail the general
form of an expert and how the cooperation of the experts is organized by the supervisor.
This will allow us to develop fairness criteria for the distributed system. This discussion
is on a conceptual level to simplify proofs. For implementational aspects see section 5.

By definition a basic prover is any algorithm that produces on input (E, s = t) only U­
derivations. We now present the general form of a basic prover used in our system. For
efficiency reasons a basic proveI' will apply the simplification rules from the inference
system U with highest priority. Then for a fixed input (E, s = t) its performance
mainly depends on the way the rules/equations are selected to compute critical pairs
by rule (U2). The experts to be described later mainly differ in their heuristics for this
choice. They try to generate many critical pairs early in order to give their heuristic a
chance to find a good one.

A basic prover P works on a quadruple (R, E, g, C P). Here Rand E are the current
sets of rules and equations, 9 is the current goal s = t and C P is the set of critical pairs
not processed so far. Furthermore, P has a reduction ordering :>- and a function called
choose-GP as input. P performs a while loop wit.h the following loop invariant: R is
compatible with :>- and for any equation It = v in E the terms u. v are, incomparable
by:>-. All critical pairs in CP(R, E) are already computed and stored in CP. The
function choose-CP selects the next element from C P to be processed. So a quadruple
(R, E, g, GP) of a basic proveI' corresponds to the triple (E, R, g) of the inference sys­
tem U. The C P-component in the quadruple is used to keep track of the critical pairs
not processed so far and for choosing a good one (according to the heuristic used) to
be processed next. In more detail P has the following form (by nfR(E)(t) we denote

6

Coopera t ion : The supm-visor accepts the referee reporls from round Ir — 1. Based on
this information he determines the winner and accepts the selected results of the
losers. Then he selects a new 11-1uple ol' expert/referee pairs.

Compet i t ion : The experts work independently.

Judgement : The referees prepare their reports.

This concept sounds simple. In sectionb‘ we wil l demonstrate by examples that i t
works and that i t makes remarkable speed—ups possible. Even more. the concept seems
to be very flexible. Very different sorts of knowledge can be implemented either in the
supervisor (e.g. proof plans) or i n the experts (e.g. domain knowledge).
Clearly, the concept can only work i f

a) the tasks of the supervisor and the referees are carefully examined

b) useful experts are created

c) reasonable criteria. for referees to judge the work of experts are developed

d) Communication t ime is reduced to a minimum.

We will discuss these problems i n section 5. Here we describe i n more detail the general
form of an expert and how the cooperation of the experts is organized by the supervisor.
This will allow us- to develop fairness criteria. for the distributed system. This discussion
is on a conceptual level to simplify proofs. For implementational aspects see section 5.

By definition a basic prover is any algorithm that produces on input (E, s = t) only Ll-
derivations. We now present the general form of a basic prover used in our system. For
efficiency reasons a basic prover wi l l apply the simplification rules from the inference
system L! wi th highest priority. Then for a fixed input (E , s = t) i ts performance
mainly depends on the way the rules/ equations are selected to compute critical pairs
by rule (U2). The exPerts to be described later mainly differ in their heuristics for this
choice. They try to generate many critical pairs early in order to give their heuristic a
chance to find a good one.

~A basic prover P works on a quadruple (R , E , g, C P) Here R and E are the current
sets of rules and equations, 9 is the current goal Ts’ = ? and CP is the set of critical pairs
not processed so far. Furthermore, P has a reduction ordering >- a.nd a function called
choose-CP as input. P performs a. while loop with the following loop invariant: R is
compatible wi th >— and for any equation u = U i n E the terms u . v areincomparable „
by >-. All critical pairs in C P(R .E) are already computed and stored in C P. The
function choose-CP selects the next element from‘ CP to be processed. So a quadruple
(R, E, g, C P) of a. basic prover corresponds to the triple (E , R, g) of the inference sys-
tem Ll. The C P-component in the quadruple is used to keep track of the critical pairs
not processed so far and for choosing a good one (according to the heuristic used) to
be processed next. In more detail P has the following form (by n f!“ E) (t) we denote

t.he	 COl11plltat iO\l 01" a \lorlllal I"orm 01" I \\·it 11 ('''I)('c(10 H(E)):

Procedure basic-prover

input: (R, E, s = t, C P,;;-, ('lIoo..,(-C/))

output: YES or NO or (R',E',g',C'jJ')
begin

while GP =j:. {} do

(12,7'2) := choosc-CP(CP):

GP:= GP\{(l2,7'2)}:

11 := n!R(E)(l2);

1'1 := n!R(E)(1'2):

if 11 =j:. 1'1 then

if 11 and 1'1 are comparahle with ;;- (Iel l := max{11, 1'd; l' :=min{11. 1'd)
then R:= RU {/---+ r};

GP := GP U {(nfR(E)(U), /lIR(Elv)) I II = v is a critical pair
bet.ween Rand 1= l' or E and 1= 1'};

interreduce Rand E:
else E:= Eu {I = 1'}:

CP:= GP U {(nfR(E)(U), nfH(E)(V)) I u = v is a critical pair
between Rand l = l' or E and 1 = l' or E};

interredllce Rand E:
if n!R(E)(S) == nfR(E)(t) then

answel·-to-supervisor "YES";
if interrupt-by-supervisor then

answer-to-referee (R,E,nfR(E)(s) = nfR(E)(t),GP) + statistical information;
endwhile;
answer-to-supervisor "NO";

end

It is easily seen that P is i.ncleed a basic prayer a('cording to Definition 2.:3. Fairness of
P can now be achieved by guaranteeing that the clwose-GP function rejects no ~quation

in GP infinitely often.

The supervisor may not interrupt a basic proyer in the middle of the while loop. An
interrupt may only occur at the position indicated in the procedure basic-prover.

Note that simplification, also backward simplification, is a fundamental part of our
basic provers and so of the distributed system also. So we do not have the bottleneck
backward subsumption as, for example, the approach of Slaney and Lusk [SL90] has.

The cooperation during a team meeting is organized as follows:

(1)	 The supervisor determines the winner of the latest round.

(2)	 He accepts the selected rules/equations from the losers and integrates them into
the qua.druple (R, E, g, C P) of the winner by processing them as indicated in the
while loop in the procedure basic-prm"er.

t he compu ta t i on of a no rma l fo rm o f ! w i l l : r e spec t t o l i ’ (l3)) :

Procedure basic-prover

inpu t : (R , E . s = t . CR >-. c'hoo.—.—-(-C'I’)
ou tpu t : YES or NO or (R ' , E ' . g ' . (" l ")
begin

While CP 7E {} do
(l2,r-2) := choose-CP(CP):
GP := C 'P \{ (l -2 .7 ‘2)}2
l 1 i=n fn (E) (12) ;

7‘1 != "-fR(E)(7‘°2)i
i f l l 72 r1 then

i f ll and r l are comparable with >- (let l := man:{ll,r1}; r := m.z'n{ll,r1})
then R := RU { l ——> r};

CP := CP U { (n fmgfiu) , n._fR(E)(v)) | u = v is a critical pair
between R and l = 1‘ or E and l = r};

interreduce R and E :
else E := EU {1 : r}:

CP := CP U {("fRUE-ZJWL n_l'R(E)(v)) | u. = v is a critical pair
between R and l = r or E and l = r or E} ;

in te r reduce R and E :
if a s (E) (s) E nfmgfi t) t hen _

answe'r— to—supervisor ” YES” ;
if interrupt-by-supervisor then

answer—to—referee (R , E , n fmgfi s) = n.fR(E)(t), CP) + s ta t is t ical information;
endwhi le ;
answer-to-supervisor ” NO” :_

end

It is easily seen that P is indeed a. basic prover according to Definition 2.3. Fairness of
P can now be achieved by guaranteeing that the choose—CP function rejects no equation
in C P infinitely often.

The supervisor may not interrupt a basic prover in the middle of the while loop. An
interrupt may‘only occur at the position indicated in the procedure basic-prover.

Note that simplification, also backward simplification, is a fundamental part of our
basic provers and so of the distributed system also. So we do not have the bottleneck
backward subsumption as. for example. the approach of Slaney and Lusk [S'L90] has.
The cooperation during a team meeting is organized as follows:

(1) The supervisor determines the winner of the latest round.

(2) He accepts the selected rules/ equations from the losers and integrates them into
the quadruple (R . E .. g , C P) of the winner by processing them as indicated in the
while loop in the procedure basic-prover.

"!

3)	 The supelTisor dC'tc'rlllill('s all Il-I.upl(· of ne\\" expert/referee pairs for the new
roull(L includillg the will/H'!". He sI art s t!lC' 11 - I experts (besides the winner)
wit h the <[uadl'u pie (0.0 ..1/. nuL' u (' P). \\" here (R. E. g. C P) is the updated
qua.druple of the \\"inller.

4 Fairness

The computation in the distributed system with input (E, s = t) is controlled by a team
strategy S. A team strategy determines in a. team meeting from the referee reports the
winner of the latest round and the ll-tuple of expert/referee pairs for the next round.
A team strategy is complete if for any input (E. s = t) with s = t E Th(E) the result
YES is produced. (By construction. if YES is prodl;ced then .>; = t E Th(E) holds. So
every team strategy S is correct.) \Ve are going to develop criteria for the completeness
of a team strategy.

To do so we first extend the inference system U for describing sequential provers to an
inference system VU for describing our dist.ributed prover. Then we express complete­
ness criteria for a team strategy by fairness criteria in VU.

We extend U to VU by adding rules for describing the integration of the selected
rules/equations of the losers into the database of the winner.

Definition 4.1 (Inference system 'VU)
Given the ground reduction ordering ;:- the inference system VU consists of the infer­
ence rules in U and the two rllles

(D1) Introduce rule (E, R, g) ~ (E, R U {I -+ r}, 9) if I = EuR rand 1 ;:- r

(D2) Introduce equation (E.R,g) f- (EU {u = v},R,g) ifu =EuR V and u,v are
;:- -incomparable.

Lemma 4.1 Suppose the distributed system is started with ,:nput quad1'uple (0,0, g, E)
and in every 1'ound the winner liStS (l giren reduction ordering;:-. Let (Ri, Ei,gi,CPi)
be the actual quadruple of an activt winner. Then we have (E, 0,g) f-i>u (Ei, ~,gi).

Proof: Let (Ei,i,' R i.i;, gi.i.) denote the system obtained by the winner of the i-th round
after the judgement pha.<;e and (Ei , R,gd t.he system of this winner after the coopera­
tion phase. Then we have the following derivation (E,0,g) f-Fu (E1,il'R1,i1l91.it) f-*
(Et,R1,gd /-Fu··· f-Fu (Ei,j;,Ri.ji,gi.j;) ~- (Ei,Ri,gi) H:;u···· It is clear that
every expert during the competition phase only uses the inference rules of U and there­
fore the inference rules of VU. It rema.ins to show, that the integration of the results
.of the losers, here denoted by f--, is done using inference rules in VU.

If a loser uses the same reduction ordering ;:- as the winner, we can add its selected

rules according to Dl and its select.ed equations according to D2. If a loser uses

another ordering both, its selected rules and its selected equations, are added using

. D2. Therefore we have (E, 0,g) /-Fu (E1 •il , Rl,i, ,91,il) /-i>u (Eh R},9d f-l;u··· f-l;u

(Ei,i"R;,i;,9i,i;) f-i>u (Ei,Ri,gd f-Eu ... which completes the proof. 0

3) The supervisor determines" an n—l.nple of new expert/referee pairs for the new
round. including the winner. l'le slarls lhe n — l experts (besides the Winner)
with the quadruple (”J/Lg. It U E U ('P) . where _(ti’..E.g.C-'P) is the updated
quadruple of the winner.

4 Fairness

The computation in the distributed system with input (E . s = t) is controlled by a team
strategy 5'. A team, strategy determines in a team meeting from the referee reports the
winner of the latest round and the n—tuple of expert/ referee pairs for the next round.
A team strategy is complete i f for any input (E . s 7', t) with s == t e Th(E') the result
YES is produced. (By construction. “‘ YES is produced then s = t E TME) holds. So
every team strategy .S' is correct.) We are going to develop criteria for the completeness
of a team strategy. '
To do so we first extend the inference system 21 for describing sequential provers to an
inference system DU for describing our distributed prover. Then we express complete-
ness criteria for a team strategy by fairness criteria in DU .

We extend u to Dbl by adding rules for describing the integration of the selected
rules/equations of the losers into the database of the winner.

Definit ion 4 .1 (Inference system 'DZÄ)
Given the ground reduction ordering >- thr inference system. DU consists of the infer-
ence rules in bl and the two rules
(DI) Introduce rule (E,R.g) l- (E.. R U { l —+ r } ,g) i f ! =EuR r and I >- 1'
(D2) Introduce equation (E . R,g) l- (E U {n = v } , R ,g) if u :13”; v and 11,1) are
. >- -incompamble.

Lemma 4.1 Suppose the distributed system. is started with input quadruple (ill, (ll, g,E)
and in every round the winner uses a given reduction ordering >—. Let (R.-, Ei, 95, C Pi)
be the actual quadruple of an active winner. Then we have (E‚@‚ g) FEW (E.-‚Riga;

Proof: Let {Egg} , RM,- . gr.-J.) denote the system obtained by the winner of the i - th round
after the judgement phase and (E,-, R;‚ g;) the system of this winner after the coopera—
tion phase. Then we have the following derivation (E , @, g) l-gu (Eu: , RM, , glg-1) l"
(E1,R1,g1) F5“ . . . l‘iiiu (E,-‚j„R.-‚j‚.‚g‚-_j‚.) l-"' (E;.R.-,g;) I—gu It is clear that
every expert during the competition phase only uses the inference rules of U and there-
fore the inference rules of "DU . It remains to show. that the integration of the results
(of the losers, here denoted by P“. is done using inference rules in 'DLl .
If a loser uses the same reduction ordering >- as the winner, we can add i ts selected
rules according to D1 and its selected equations according to D2. If a loser uses
another ordering both. its selected rules and its selected equations. are added using

~D2. Therefore we have (E . 0.,g) Hf,“ (Em-‚. [fig-“gm” Pb“ (E1. 31,91) 0-75“ . . . F5“
(EideaRiJngidil If,“ (E.;. R,;‚gJ l—{m which completes the proof. Cl

8

Lemma -L1 indicates lllat. t II<' distributed cOlllputation can be described as a sequential
computation according to Ill{' iJlff'reJlCI' syS\('lll DU. The definition of fairness of a DU­
derivation is as in Ddinitioll 2.1. \()\\' TII('or('111 1.1 can be carried o\·er.

Theorem 4.1 Let (Ei, Ri, 9i);?o b(a fai,. DU -dfril'ation with (Eo, f4J, go) = (E, 0, S =
l). We ha11e s = t E Th(E) il] the r!ail'alioll is finite and ends with SUCCESS.

Proof: The proof is identical to the proof of Theorem 2.1 and can be found in [BDP89]
or [De93]. 0

Now we have to find fairness criteria for a t<'am strategy S such that using S will lead
to fair DU-derivations. For an input (E ..~ = t) the team strategy S may determine
the basic proveI' Po as the winner se\'{~ral times. say for the rounds io, it, i 2 , •••• Let
(Rj, Ej, gj, C PJ) be the starting quadruplf' or Po in round ij . \Ve call (Rj, Ej, gj, C PJ)j?o
the Po-sequence for Sand (E, s = t). The sequence (Ej, Rj,gj)j?'o is a subsequence of
the DU-derivation (Ei , Ri,g;)i?O defined by Sand (E,s = t). Note that the sets Eoo
and R"" are a1ways defined by (Ei • Ri. gi)i?O. This leads us to the following fairness
criteria that also weakens the restriction on the reduction ordering used by the winners.

Definition 4.2 (Fairness of a team strategy)
A team strategy S i:'i fair if (1) Ihere i.s a "eduelion ordering >-, such that for the
reduction 01"de1'ing >-i of the winna of the i-th round >-i ~ >-i+1 ~ >- holds and
(2) eithe1' the computation :'itOjJ8 or thue i8 a ba8ic pr01'el" Po with an infinite Po­
sequence (Rj, Ej,gj,CPJ)j?o for S alld (E.8 = t) such that f01' eve1'Y critical pai1'
u = v E CP(R=, E=) there is a j such that in (Ej, Rj, gj) there is a proof B for u = v
with Bu,v ~p B.

Theorem 4.2 Every fail' team strategy is complete.

Proof: y..'e have to show that a fair team strategy S leads to a. fair DU-derivation. By

Theorem 4.1 we then have the completeness of the team strategy.

Condition (1) of the definition of a. fair team strategy guarantees that S defines a

DU-derivation (see Lemma 4.1).

Condition (2) is in fact a. stronger condition than fairness of a derivation, because we

have to guarantee that at certain steps of the derivation, i.e. the team meetings in

which Po is determined as the winner, we find smaller proofs for critical pairs and not

after some arbitrary step of the derivation. Therefore, the fa.irness of any derivation

produced by S is triviaL 0

According to Theorem 4.2 a team strategy S is complete if for every input (E,s = t)

either the computation stops or an expert Po becomes the winner infinitely often and

for Po conditions (1) and (2) of Definition 4.2 hold.

Note that fairness of Po alone is not sufficient for condition (2). It is possibl~ that the

integration of the results of the losers leads a.lways to critical pairs that are better rated

by the choose-CP function of Po than already existing ones. Then these already existing

9

Lemma. 4.1 indicates that. t he distributed computation can be described as a sequential
computat ion according t o t he inference sys t em PM. The defin i t ion of fairness of a 'DU—
derivation is as in Definition 2.2. Now Tlmormn 2.1 can be carried over.

Theorem 4 .1 Let (E,-, 195 ,9n br (: fair Dbl-derivation with (EO, 120,90) : (E,@,Is‘ .:
t) . We have s = t E Th(E) (If the drrimlion is finite and ends with SUCCESS.

Proof: The proof is identical lo the proof of Theorem 2.1 and can be found in [BDP89]
or [De93]. III

Now we have to find fairness criteria for a team strategy $ such that using 8 will lead
to fair Dbl-derivations. For an input (E . s = t) the team strategy S may determine
the basic prover Po as the winner several t imes . say for the rounds io , i1 , i2 , Let
(R3, E}, g}, C P;) be the starting quadruple of P0 in round ij. We call (RS-., E}, g}, CPDJ-ZO
the Po-sequence for S and (E , s = t) . The sequence (E}, R}, g;)1-20 is a subsequence of
the DIX-derivation (E ; , ‚R,-„ gage defined by S and (E , s = t) . Note that the sets E°°
and R°° are always defined by (E;.Rg,g,-);20. Th i s leads us to the following fairness
criteria that also weakens the restriction on the reduction ordering used by the winners.

Definition 4.2 (Fairness of a team strategy)
A team strategy $ is fair if (}) (he-re is a, reduction ordering >—, such that for the
reduction ordering >—‚- of the w inne r of the i-th round >~,- g >-,-+1 g >— holds and
(2) either the computation stops o r there is a basic prover Po with an infinite Po-
sequence (R;,E},g;-,CP;)J-Zo for S and (B.:: = t) such, that for every critical pair
u = 0 € CP(R°°, E”) there is a j such that in (E:-, R3,g;) there is a proofB for u = v
with Bu,” Z„ B .

Theorem 4 .2 Every fair team strategy is complete.

Proof: We have to show that a. fair team strategy S leads to a fair DIX-derivation. By
Theorem 4.1 we then have the completeness of the team strategy.
Condition (1) of the definition of a fair team strategy guarantees that S defines a
’Du-derivation (see Lemma 4.1).

Condition (2) is in fact a stronger condition than fairness of a derivation, because we
have to guarantee that at certain steps of the derivation, i.e. the team meetings in
which P0 is determined as the winner, we find smaller proofs for critical pairs and not
after some arbitrary step of the derivation. Therefore, the fairness of any derivation
produced by 8 is trivial. D

According to Theorem 4.2 a team strategy 8 is complete if for every input (E , s = t)
either the computation stops or an expert Po becomes the winner infinitely often and
for P0 conditions (1) and (‘2) of Definition 4.2 hold.
Note that fairness of P0 alone is not sufficientfor condition (22). I t is possible that the
integration of the results of the losers leads always to critical pairs that are better rated
by the choose-CP function of Po than already existing ones. Then these already existing

9

equations will ('\'('Illually Ij('\'('r 1)(' ~('I('CI('d I IIIIS I<'ading to Cl contradiction to condition
(2). The next definitioll sllo\\'~ 1I~ n)fl<lit iOII~ for /)u that satisfies the condition (2) of
Definition -1.2. lI('re \\'C' idl'1I1 il\ ('(lllill iOIl~ Illal arl' equal up 10 Cl \'ariahle renaming.

Definition 4.3 (stl'ongly fair)
An e.7:pert P is ;;tl"Ol/gly fair/I thue /s a quasi-ordering:::; 011 the equations such that

• {e' I e':::; d is finite fOI' (ucry (ql/atiol/ to

• c1wose-CP(E) is a :::;-mil/imal c/(ment in E for every set E of equations

Lenuua 4.2 Let S be a ham ... /mtegy. al/d (E,8 =t) all input. If e.1:pert P is sl1'ongly
fai1' and appears infinitely of/rll il/ tll(",UfUCI/C(of winners for Sand (E,s = t) then
condition (2) of Dc.finition 4-.l holds,

Pr~'of: We have to show that expert P has a.n infinite P-sequence (Rj, Ej, qj, GPj)i?O
for Sand (E,8:::; t) such that for every critical pair u = v E CP(ROO, EOO), there is
a i such that in (E:, R~, gn there is a proof B for u = v with Bu.v ~p B. Remember,
the sequence (E:, Ri,gn is a subsequence of the 'DU-derivation produced by Sand
(E,s=t).

Let u = v be a critical pair in C P(R'x," EX'). Then for a.n i and all j 2: i we have
U E CP(Rj, Ej). This is true. because the rules 01' equations that build Lt =' V are
persistent and P appears infinit.ely often in the sequence of winners. If there is a proof
B in (E:, R~,gn with B U • L' 2: p B then we are done. This is the case, when at the time
U = v can be built the normal forms of It and v are identifical. Else u = v has been
built and put in the set GP of critical pairs (see algorithm basic prover). If u = v does
not appear in GP! then it was reduced or put in an Ek or Rk (k < i), and this results
in a proof B for u = v that is smaller or (when put in an Ek of the 'DU-sequence) equal
to Bu,v' Because these steps were performed before the derivation reached (E:, R~, gD
we know (Theorem 4.1) that there is a proof B' in (EL R~,gD for 'U = v with B ~p B'.

Finally, if tl = t' is in C P:, then there are only a limited number n of equations u' = v'
that are smaller than tl = v with respect to an ordering:::; (P is strongly fair). These
equations do not have to appear as critical pairs, but we know that at least after n + 1
critical pairs the critical pa.ir u = tl will be selected by P. Note that each time P being
the winner at least one critical pair will be selected. Therefore there will be a k ~ i
and a proof B for u = v in (E~, R~,g~) with Bu,IJ ~p B. 0

Corollary 4.1 Let S be a team strategy such that for eVe1"y input (E, s = t) the se­
quence of winners is either finite or it contains a strongly fair expert infinitely often.
Then S i.s complete.

It is easy to construct a strongly fair expert.. For example, the experts ADD-WEIGHT
and MAX-\VEIGHT discussed in the next section are strongly fair. To guarantee

10

equations will eventually never be selected thus leading to a contradiction to condition
(‘2). The next definition shows us conditions for PU that satisfies t he condition (2) of
Definition 4.2. Here we idem il'y (‘qllE-ll ions that are equal up to a variable renaming.

Defini t ion 4 .3 (s t rong ly fair)
An expert P is strongty fair if there is a quasi—ordering g on the equations such that

o {e' | e’ _<_ e} is finite for (very (qua/ion e

. choose-CP(E} is a S-minimai element. in. E for every set E of equations

Len‘una 4 .2 Let S be a team strategy. and (E , s = 't) an input. If expert P is strongly
fair and appears infinitely oftrn in HM. sequence of winners for $ and (E , s == t) then
condition (3?) of Definition 4...? Ito/(ts.

Prolof: We have to show that. expert P has an infinite P-sequence (R}, E}, (13, C P‚') ‚20
for 8 and (E.,s == t) such that. for every critical pair u = v 6 CP(R°° ,E°°) , there is
a i such that in (E9, RE, g;) there is a. proof 8 for u = v with Bw, Zp B . Remember,
the sequence (Ef,Rf,g§) is a subsequence of the DIX-derivation produced by S and
(E , s 213) .

Let u = v be a. critical pair in ("IK/?"". E'x'). Then for an i and all j Z i we have
u E CP(R3~,E;-). This is true. because t he rules or equations that build it =i v are
persistent and P appears infinitely often in the sequence of winners. If there is a proof
B in (E: , 32,915) with BM Z„ B then we are done. This is t he case, when at the time
u = 1) can be built the normal forms of u and v are identifical. Else u = v has been
built and pu t in the set CP of critical pairs (see algorithm basic prover). If u = 22 does
not appear in C P,! then i t was reduced or put in an Ek or Rt (k < i) , and this results
in a proof B for u = '0 that is smaller or (when put in an Ek of the Dil-sequence) equal
to Bum. Because these steps were performed before the derivation reached (E5, 122,92)
we know (Theorem 4.1). that. there is a proof B' in (E:, Iii-.93) for n = v with B Z„ B'.
Finally, if u = v is in C P: , then there are only a limited number n of equations 11’ = '0'
that are smaller than u = v with respect to an ordering g (P is strongly fair). These
equations do not have to appear as critical pairs, bu t we know that at least after n + 1
critical pairs the critical pair u = u will be selected by P . Note that each time P being
the winner at least one critical pair will be selected. Therefore there will be a k 2 i
and a proof B for u = v in (El., RLgL) with Bu,” Z„ B . - Cl

Corollary 4 .1 Let 8 be a team. strategy such that for every input (E , s = t) the se-
quence of winners is either fini te Or it contains a strongly fair expert infinitely often.
Then S is complete.

It is easy to construct a. strongly fair expert . For example. the experts ADD-WEIGHT
and MAX—VV EIGHT discussed in the next. section are strongly fair. To guarantee

10

fairness of the team strateg,". sllch an ('x[>('rt should periodically become the winner.
In the meantinw unfair exp('rt s 111,1\' I)('COlll<' till' ,,'inllcr. .

\·Ve can relax tll(' conditioll "strongly fair" a little bit. \Vhat we l'eally need is that
the choo$c-CP fUllctioll for t II<' dist inguisll<'d st rongly fair expert P never rejects an
equation in the eP-component inrillitcly often. even if not all the equations in the
CP-component are generated by P itself but may be added from outside during a team
meeting. There are several possil)ilities to guarantee this. One is indicated in Definition
4.4. Another one would be to use time stamps and let the choose-CP function always
select the oldest equation.

Condition (1) of Definition 4.2 restrict.s only the reduction ordering of the winners. All
the other experts in the team may use an arbitrary reduction ordering. So completeness
of a team strategy is easy to achievC'. Therc are also ways to weaken condition (1). For
further details see [De9:3].

Note that our way of proving t.he team work completion to be complete can easily be
adapted to prove the completeness of the team work method for other theorem proving
methods, based on generation and simplification of facts.

5	 Experts, referees, the supervisor and implemen­
tation aspects

5.1 Experts

Every expert is a basic prO\'er P, its beha,'ior is mainly determined by its choose-GP
function. In this function the heuristic of P for traversing the search space is encoded.
We have implemented generic experts according to the following classification

• using syntactic arguments

• focusing on subproblems by focusing on a subset of function symbols

'. focusing on special aspects of the (completion) method

• focusing on goal-oriented ded uction

We discuss some of them.

Syntactic arguments: Experiments show that it is often advantageous to process
short critical pairs first (see [Hu80J). Generalizing this idea we define a numerical
weight for each term. This leads to two very useful experts called ADD-WEIGHT and
MAX-WEIGHT. They give precedence to those critical pairs that have a small sum
(a small maximum) of the two terms in the pair. It turns out that these experts in
general perform very differently. These experts can be created without any knowledge
of the problem instance, so they can be used as a member of the standard team.

Focusing on function symbols: The expert POLYNOM-WEIGHT associates to
every function symbol a. polynomial and a constant to all variables and so it defines

11

fairness of the team strategy. such an expert should periodically become the winner.
In the meantime unfair experts may become the winner.

we can relax the condition "strongly fair" a little bit. What we r ea l l y need is that
the choose—CF function for the distinguished strongly fair expert _P never rejects an
equation in the CP-component infinitely often. even if not all the equations in the
CP-component are generated by P itself but. may be added from ou ts idedur ing a team
meeting. There are several possibilities to guarantee this. One is indicated in Definition
4.4. Another one would be to use t ime s tamps and let the choose—CP function always
select the oldest equation.

Condition (1) of Definition 4.2 restricts only the reduction ordering of the winners. All
the other experts in the team may use an arbitrary reduction ordering. So completeness
of a team strategy is easy t o achieve. There are also ways to weaken condition (1). For
further details see [De-93].
Note that our way of proving the team work completion to be complete can easily be
adapted to prove the completeness of the team work method for other theorem proving
methods, based on generation and simplification of facts.

5 Experts , referees, the-supervisor and implemen-
tat ion aspects

5.1 Experts

Every expert is a basic prover P , i ts behavior is mainly determined by i ts choose-CP
function. In this function the heuristic of P for traversing the search space is encoded.
We have implemented generic experts according to the following classification

. using syntactic arguments

o focusing on subproblems by focusing on a subset of function symbols

- o focusing on special aspects of the (completion) method

o focusing on goal—oriented deduction

We discuss some of them.

Syntactic arguments: Experiments show that it is often advantageous to process
short critical pairs first (see [Hu80]). Generalizing this idea we define a numerical
weight for each term. This leads to two very useful experts called ADD-WEIGHT and
MAX-WEIGHT. They give precedence to those critical pairs that have a. small sum
(a small maximum) of the two terms in the pair. It turns out that these experts in
general perform very differently. These experts can be created without any knowledge
of the problem instance. so they can be used as a member of the standard team.
Focusing on function symbols: The expert POLYNOM-W' EIGHT associates to
every function symbol a polynomial and a. constant to all variables and so i t defines

11

a weight for each term. To foclls on the operators in Fo ~ F. one associates small
polynomials to the .r E Fo and larg<' polYllomials to the f E F - Fo. Experience shows
that this method allows a finf' tuning of the search for a prooL

Focusing on the Inethod: Somel imes it is known that a result of a subproblern is
needed for the rest of the proof. In order to get that result early an unfair expert may
be needed. We have implemented FORC'ED-DIV and PREFER-RULE. The first of
these experts concentrates on a subset of the datahase even if there is a high risk of
divergence (i.e. generating an infinite regular set of equations). The second expert
only selects critical pairs that are orientahle by its reduction ordering. We discuss the
use of these experts more deeply in section 6 in combination with the examples div
and ring.

Focusing on the goal: Experience sho\,'s that near the end of the proof often all
needed result.s are already deduced but the pro\"(:,r can not find t.he final steps of the
proof at this moment. To solve this problem we have creat.ed the expert GOAL-SIM.
This expert defines a measure for the similarity between the goal and a critical pair.
We have implemented several measures. they depend on the facts whether subterms
of the goal and the whole critical pair or subterms of the pair and the whole goal are
unifiable. This expert has proven to be very useful in the situation lined out above. It is
comparable with the terminator in resolution based theorem provers using connection
graphs (see e.g. (A083]).

There is a wide variety to define other experts that ust;:' special knowledge to focus
on parts of critical pairs. It seems also possible to learn heuristics from analogous
successful proofs. The teamwork method provides a good basis to activate such an
expert even if the risk is high that it will be unsuccessful. In this case its results are just
forgotten - provided the situation is correctly analyzed by the corresponding referee.

5.2 Referees

A referee has to judge the work of his expert: He has to determine the appropriateness
of his expert to the given situation and he has to ext~act the best results derived by his
expert. Without special information on the given problem instance this seems to be
har-d and much work is to be done .in this direction. Up to now we have experimented
with referees that base their judgement. on st.atistical information.

To determine the appropriateness of an expert to the given situation the referee com­
putes a weighted sum of the following components:

- the number of rules, equations and critical pairs generated during the latest round

the number of reductions of the goal

- the number of reductions of rules, equations, critical pairs

- the average weight of all processed critical pairs in the latest round in relation to
the last ,,~ critical pairs

12

a weight for each term. To focus on the operators in F0 _C_' F.. one associates small
po lynomia l s t o t he f E F}; and l a rge po lynomia l s to t he f € F —— F0. Experience shows
tha t this method allows a. fine tuning of the search for a. proof.

Focusing on the me thod : Sometimes it is known that a. result of a subproblem is
needed for the rest of t he proof. In order to get that. result. early an unfair expert may
be needed. We have implemented FORCED—DIV and PREFER—RULE. The first of
these experts concentrates on a. subset of the database even if there is a high risk of
divergence (Le. generating an infinite regular set of equations). The second expert
only selects critical pairs tha t are orientable by i ts reduction ordering. We discuss the
use of these experts more deeply ' i n section 6 in combination with the examples div
and ring.

Focusing on the goal: Experience shoivs that near the end of the proof often all
needed results are already deduced bu t the prover can not find the final steps of the
proof at this moment. To solve this problem we have created the expert GOAL—SIM.
This expert defines a measure for the similarity between the goal and a critical pair.
We have implemented several measures. they depend on the facts whether subterms
of the goal and the whole critical pair or subterms of the pair and the whole goal are
unifiable. This expert has proven to be very useful in the situation lined out above. It is
comparable with the terminator in resolution based theorem provers using connection
graphs (see e.g. [AOS3]).
There is a wide variety to define other experts that use special knowledge to focus
on parts of critical pairs. I t seems also possible to learn heuristics from analogous
successful proofs. The team .work method provides a good basis to activate such an
expert even if the risk is high tha t i t will be unsuccessful. In this case i ts results are just
forgotten — provided the situation is correctly analyzed by the corresponding referee.

5 .2 Referees

A referee has to judge the work of his expert: He has to determine the appropriateness
of his expert to the given situation and he has to extract the best results derived by his
expert. Without special information on the given problem instance this seems to be
hard and much work is to be done in this direction. Up to now we have experimented
with referees that base their judgement on statistical information.

To determine the appropriateness of an expert to the given situation the referee com-
putes a weighted sum of the following components:

— the number of rules, equations and critical pairs generated during the latest round

the number of reductions of the goal

-— the number of reductions of rules. equations, critical pairs

the average weight of all processed critical. pairs in the latest round in relation to
the last k critical pairs

The reasons for introducing Ill<' fIrsl 11Ir('e of these components seem to be clear. The
fourth compon(>nt is us('d to illdical<' \\'ll<'lher the expert became better during the
latest round.

To determine the \'alue of Cl gin'lI nt!e/<'<JuCltioll one can restrict the first three com­
ponents to t bis rule/equation. So tht.' refereE' computes a weigbted sum for every new
rule/equation he generates and deli\'(>rs t he best ones according to this measure.

The referee has to be fair to the expert: Experts (for example ADD-\VEIGHT and
GOAL-SI[\,I) are created for totally different purposes and this has to be taken intb
account by the referee. This can be done by a.djusting the weights to the components
mentioned above.

5.3 The supervisor

The supervisor is responsible for the team meetings. He

- determines the winner for the next round

- integrates the selected results from the losers into the winner's database

- determines the new n-tuple of expert/referee pairs

- determines the time for the next team meeting.

The first task is based on the referee reports about the appropriateness of the experts
in the latest round. For the integration of the results of the losers see section 3.

We give some hints to create the team for the next round in case where almost nothing
is known about the problem instance. For the first rounds a standard team should
be activated, including the expert ADD-\VEIGHT orMAX-WEIGHT. Later on every
expert should be activated periodically, he should replace the expert with the lowest
rating. Additionally, if during a team meet.ing an expert gets a rating far below the
others he should be replaced by another one. The details have to be fixed by the user.

To determine the length of a round the following rules have turned out to be useful.
For the first. rounds the length should be kept fixed. Next, since the database grows
and henceforth it costs some time to find new useful results, the length of the rounds
should grow linearly. Finally e\"en faster growing is recommended, i.e. an exponential
growth.

5.4 Implementation aspects

A crucial point with distributed systems is the need to reduce the communication
overhead and the idle times of processors to a minimum. From the conceptual point
of view the team work method takes this into account by limiting the communication
to fixed events, the team rileetings. \\'"e now discuss implementation aspects.

13

The reasons for introducing the first three of these components seem to be clear. The
fourth component is used l o indicate whether the expert became better during the
latest round.

To determine the value of a given rule/equation one can restrict the first three com-
ponents to this rule/ equation. So the referee computes a weighted sum for every new
rule/equation he generates and delivers the best ones according to this measure.

The referee has to be fair to the expert: Experts (for example ADD-VV EIGHT and
GOAL—SIM) are created for totally different purposes and this has to be taken into
account by the referee. This can be done by adjusting the weights to the components
mentioned above.

5 .3 The supervisor

The supervisor is responsible for the team meetings. He

— determines the winner for the next round

— integrates the selected results from the losers into the winner’s database

— determines the new n—tuple of expert / referee pairs

— determines the t ime for the next team meeting.

The first task is based on the referee reports about the appropriateness of the experts
in the latest round. For the integration of the results of the losers see section 3.

We give some hints to create the team for the next. round in case where almost nothing
is known about the problem instance. For the first rounds a standard team should
be activated, including the expert ADD-WEIGHT orMAX-WEIGHT. Later on every
expert should be activated periodically, he should replace the expert with the lowest
rating. Additionally, if during a team meeting an expert gets a rating far below the
others he should be replaced by another one. The details have to be fixed by the user.

To determine the length of a round the following rules have turned out to be useful.
For the first rounds the length should be kept fixed. Next, since the database grows
and henceforth i t costs some t ime to find new useful results, the length of the rounds
should grow linear-1y. Finally even faster growing is recommended, i.e. an exponential
growth.

5.4 Implementation aspects

A crucial point with distributed systems is the need to reduce the communication
overhead and the idle times of processors to a minimum. From the conceptual point
of view the team work method takes this into account by limiting the communication
to fixed events, the team meetings. we now discuss implementation aspects.

13

6

\Ve have implemented thl' conCl'pt ue,l units ('xperL rcfereeand supervisor as "quasi­
'processes" (seE' below). In order to lllillilllize the transport. of data on the net we in
genera.l do not send data to tlte ctuasi-pro('('sscs but run the quasi-processes on that
processor that has the (lata. SO Wl' always run an expert/referee pair on the same
processor. The superyisor is act i\'C' ollly during the team meetings. At the beginning
the supervisor is run on the processor of t he old winner. Here he determines the
new winner for the next round. After that the supervisor is run on the processor of
the new \vinner. here he integrates tll(' results from the losers. determines the new
team a.nd sends the sta.rting information to the processors of the ot.her team members.
Technically, we have implemented a single process with the three modes expert, re/el'ee,
and supel'visol·. Now a quasi-process for an expert is just a process in mode expert.
This trick allows one to realize t.he ideas developed a.bove. Vve call this concept floating
control.

To reduce idle times we int.erleave tile tasks of the supervisor with the preprocessing
of the team members: If all expert uses the same ordering as the new winner then
he can accept the starting quadruple (R. E. g. CP) separated into these components.
Otherwise he has to accept. this information in the f01"111 (0, 0,g, RuE U GP). In any
case he has to sort the CP-component according to his choose-CP function and that
costs more time than sending data. So t.he supen'isor first sends the CP-component of
the winner without the results of t.he losers. he then processes the results of the losers
and then sends this information to the other team members. So the time for processing
the results of the old losers can be used by the new experts to preprocess their input
data.

We have implemented our team work completion in G under UNIX on a cluster of SUN
ELC machines. Unfortunately, up to now we have implemented tJ1e communication by
message passing for a cluster of two machines only. This is the basis for the results
reported in section 6. An implementation of broadcasting allowing for bigger clusters
is under wa.y.

Results

We will demonstrate the usefulness of the team work method on five examples from
different areas of equationa.l reasoning. Ea.ch team consists of two experts that work
together. In Table 1 we compare the run time needed by the team with the sequential
run time of each member of the team. The speed-up factor is the time needed by the
best of the two experts divided by the time needed by the team.

The run times given in the table include the communica.tion overhead and the idle
times. So it is the time the user has to wait for the proof. For the sequential prover
this is very close to the CPU-time.

1-!

“fe have implemented the conceptual units expert. referee‘and supervisor as ”quasi-
‘processes" (see below). In order to minimize the transport of data on the net we in
general do not send data to the quasi-procc—isses but run the quasi—processes on that
processor that has the data. So we always run an expert/ referee pair on the same
processor. The supervisor is active only during the team meetings. A t the beginning
the supervisor is run on the processor of the old winner. Here he' determines the
new winner for the next; round. After that the supervisor is run on the processor of
the new winner. here he inl'.(-.=-gra.t.es the results from the losers. determines the new
team and sends the starting information to the processors of the other team members.
Technically, we have implemented a. single process with the three modes expert, referee,
and supervisor. Now a quasi-process for an expert is just a process i n mode expert.
This tr ick allows one to realize the ideas developed above. We call th is concept floating
control. i
To reduce idle times we interleave the tasks of the supervisor wi th the preprocessing
of the team members: I f an expert: uses the same ordering as the new winner then
he can accept the starting quadruple (R. E . g.C'P) separated into these components.
Otherwise he has to accept this information in the form (ill, @,g, R U E U CP) . In any
case he has to sort the CP-component according to his choose-CF function and that
costs more time than sending data. So the supervisor first sends the CP—component of
the winner without the results of the losers. he then processes the results of the losers
and then sends this information to the other team members. So the time for, processing
the results of the old losers can be used by the new experts to preprocess their input
data.

We have implemented our team work completion i n C under UNIX on a cluster of SUN
ELC machines. Unfortunately. up to now we have implemented the communication by
message passing for a. cluster of two machines only. This is the basis for the results
reported in section 6. An implementation of broadcasting allowing for bigger clusters -
is under way.

6 Results

We will demonstrate the usefulness of the team work method on five examples from
different areas of equational reasoning. Each team consists of two experts that work
together. In Table l we compare the run time needed by the team with the sequential
run time of each member of the team. The speed-up factor is the time needed by the
best of the two experts divided by the time needed by the team.

The run times given in the table include the communication overhead and the idle
times. So i t is the time the user has to wait for the proof. For the sequential prover
this is very close to the CPU-time.

14

I example I team lIst expert I 2nd expert I speed-up I

Z22 !).O:~2 lG.:211 :39.760 :3.2
div :2.81:3 :3Ui% - 12.:3
lukal 15.0-11 ~);').-I07 40.908 .) ~

~.I

luka:2 1:3.:')18 2:37:30.000 81.:38:3 6.0
nng :307.%2 - 515:3.000 16.7

Table 1: run-tulle compansoll team /'oS sequential experts (In seconds)

Before we comment Oil these results we will gi\"(~ brief descriptions of the examples and
the teams used.

Example Z22:

Input: a(b(c(.r))) d(.r) b(c(d(.r))) - e(x)
c(d(e(;d)) a(.r) d(c(a(;t'))) - b(:1')

e(a (b(.r))) c(.r) a(ol(.r)) .r

al(a(.r)) = .1' h(hL(.1')) .1' b1(b(.r)) .1'
c(cl (.1')) ./' d (c(.r)) ./' d(d1 (.1')) = :1'
d1(d(.1')) .1' f(d(.r)) .1' e1(e(:r)) :};

Ordering:	 LPO with precedence el > e > d1 > d > cl > c> b1 > b>

a1 > a

Task: Complete system

Tealll: expert!: POLYNOl\!-\VEIGHT

expert2: l\'1AX- \\'EIGHT

The example Z22 was brought to our attention by J. A. Kalman during the CADE­
10 conference. The completion of the equationaI system shows that the equations
represent the cyclic group of order :22 (therefore the name Z22).

The system is completed by our team in two rounds. The winner of the first round
is MAX-WEIGHT. POLYNOM-\NEIGHT who assigns inthis example to all function
symbols polynomials of the form x+cf with cf a positive number finishes the completion
in the second round. The speed-up is due to the change of heuristic for choosing critical
pairs because all tules selected from the results of POLYNOM-\VEIGHT after the first
round were already in the set of rules of MAX- \VEIGHT.

Example div:

Input:	 f(g(f(:t})) = g(f(.r)) c(d(b(a3
(x))) = a3(x)

h(f(g(;r))) c(e) a8 (.1') c(:1')
4 2 2b(c(d(a (x)))) a (b(c(a (.1')))) bi (.r)	 a(x)

Ordering: Knuth-Bendix ordering KBO with weight 1 for all symbols
and precedence h > f > 9 > a > b > c > d > e

I·)

l example] team | l s t exper t | 2nd exper t | speed-up |
222 5.032 1032-11 39.760 3.2
div 22.813 34.698 — 12.23
lukal ' 15.0-1 ---l 95.107 40.908 _ 22.7
Inka“). . 13.518 223730.000 81.383 6.0
ring 307.962 - 5153.000 161.7

Table 1: run—time comparison team r s sequential experts (-in seconds)

Before we comment on these results we will give brief descriptions of the examples and
the teams used.

Example Z22:

Input : a(b(c(.r))) = d(.r) b(c(d(.r))) = e(:z:)
c(d(e(; r))) : a (z) d (e (a (. r))) '— b(:r)
e (a (b(. r))) : ch) a (a1 (r)) = .r _

al(a.(.r)) : .r b(b1(.r)) = .r b1(b(.r)) = .r
c(cl(.r)) _—_. .r c:1(c(.r)) = .r (l(dl(.r)) :: :1:
(11(d(.r)) = .r e-(el(.r)) = .r el(e(:r)) = a:

Ordering: LPO with precedence 61 > e > d l > (1 > c1 > c > ()1 > b >
a l > a

Task: Complete system
Tealn: exper t l : POLYNOM-VV EIGHT

expert‘Z: MAX-\V EIGHT

The example 22?. was brought to our attention by J . A. Kalman during the CADE-
10 conference. The completion of the equ‘ational system shows that the equations
represent the cyclic group of order 22 (therefore the name Z22).

The system is completed by our team in two rounds. The winner of the first round
is MAX-WEIGHT. POLY NOM—VV EIGHT who assigns in th i s example to all function
symbols polynomials of the form x+cf with cf a positive number finishes the completion
in the second round. The speed-up is due to the change of heuristic for choosing critical
pairs because all rules selected from the results of POLY NOM-VV EIGHT after the first
round were already in the set. of rules of MAX-VV EIGHT.
Example div:
Input: f(g(f(:v))) = gun-n c(d(b(a3(a—m = am)' hmgmn = c(e) aaa—) = ctr)

b(c(d(a“(:v)))) = a2(b(c(a2(.vm) W) = am

Ordering: Knuth-Bendix ordering KBO with weight 1 for all symbols
andprecedenceh>f>g>a>b>c>d>e

15

Task: Prove c(d(b(c(t}))) = h(g20(f()))
Teanl: expertl: POLYl\O:\I-WEIGIlT

expel't2: FORCED-DJV

This example shows the adYilnl ages of focusing on different parts of the set of equa­
tions. Only using t.he firsl 1\\"0 ('quilt ions or the input h(g2°(.f(e))) == c(e) can be
proved. Only using the last. ·1 equal ions c(d(b(c(e.)))) = c(e l can be proved. The
expert FORCED-DIV can prO\'e the right side of the goal in approx. 2 seconds and
POLYNO~'I-WEIGIIT,again only using polynomials of the form x + Cl as interpre­
tations with big CJ values for the symbols f, 9 and h, needs the same time to prove
the left side. So, after a round of 2 seconds the expert POLYNOM-WEIGHT is the
winner and gets from. FORCED-DrV the rule h(g2°(f(e))) - c(e), which is considered
very good by its referee. because it can reduce the goal. As POLYNOM-WEIGHT has
already found the rule c(d(b(c(e)))) ~ c(() the proof is finished.

'~ll experts, except FORCED-Dr\'. generate the rule h(g2°(f(e))) - c(e) very late,
because it is big. They concentrate mainly on the consequences of the last four in­
put equa~ions. Therefore they nccd much time until they can complete the proof
(ADD-WEIGHT, l\lAX-WEIGHT or GOAL-SIM need the same or more time com­
pared to POLYNOM-WEIGHT). On the other hand, FORCED-DIV concentrates
on the divergence /(gi(/(.1:)))_ i(f(.r)) and therefore neglects the other equations.,
The cooperation forced by the team work method leads to an enormous speed-up by
combining the strength of bot.h experts.

Example lukal and luka2:

Input:	 C(T,.r) =;1' C(.1'.c'(y,.1')) = T C(x, N(N(x))) = T
C(C(.r,y).C(N(y).N(J~))) = T C(C(J:,C(y,z)),C(C(x,y),C(x,z))) = T
C(N(N(x)),x) = T C(C(a:, C(y, z)), C(y, C(x, z))) = T

Ordering: LPO with precedence C > N > T > p > q > r

Task: lukal: Prove C(C(p,q),C(C(q,r),C(p,r))) = T
luka2: Prove C(C(N(p).p),p) = T

Team: luka.l: expertl: ADD-\VEIGHT
expert2: GOAL-SIM

luka2: expert!: POLYNOM-WEIGHT
expert2: MAX-WEIGHT

The examples lukal and luka2 are taken from [Ta56]. The input equations are an equa­
tiona! axiomatization for propositiollal ca.lculus by Frege. Lukasiewicz gave another set
of axioms of which lukal and luka2 are the first two.

Fair sequential basic provers have problems wit.h these examples in so far as they simply
try to complete the set of input equations. The goals do not influence the computa­
tion. This is also one of the major critisims Oll completion based equationaI theorem

16

Task: Prove c(d(b(c(c)))) = h(gz°(‚/'(()))
Team: expert 1: PO LYNO ;\I-\\"I:IIGII'1‘

expert'Z: FORCED-DIV

This example shows the advantages of focusing on different parts of the set of equa—
tions. Only using the first. two equations of the input. h(gzo(f(e))) ”= C(e) can be
proved. Only using the last 4 equations ('(d(rb(c(e)))) = c(e) can be proved. The
expert FORCED—DIV can prove the right side of the goal i n approx. :2 seconds and
POLYNOM-WEIGl-IT, again only" using polynomials of the form a: + Cf as interpre-
tations wi th big 6,- values for the symbols f . g and [2, needs the same time to prove'
the left side. So. after a round of '2. seconds the eXpert POLYNOM-WEIGHT is the
winner and gets from FORCED—DIV the ru le h(g20(f (e))) --+ (:(e), which is considered
very good by i ts referee. because i t can reduce the goal. As POLYNOM-WEIGHT has
already found the rule. c(d(b(c(e)))) ——+ c(c) the proof is finished.

' A l l experts. except FORCED-DIV". generate the rule h(gzo(f(e))) —-—> c(e) very late,
because i t is big. They concentrate mainly on the consequences of the last four in-
put equations. Therefore they need much time unt i l they can complete the proof
(ADD-WEIGHT. MAX-\\" EIGHT or GOA L-SlM need the same or more time com-
pared to POLYNOM-W EIGHT). On the other hand. F ORCED-DIV concentrates
on the divergence f (g‘(f (:r)))-—+ g‘ (f (.r)) and therefore neglects the other equations.
The cooperation forced by the team work method leads to an enormous speed—up by
combining the Strength of both experts.

Example lukal and luka2:
Input: C(T‚.r.) = :r C(.r..C'(y,.r)) = T C(zr..N(N(a:))) = Town-„y).C(1\—f(y)„f\f(a=))) = T C(cr(a=‚0(y‚zn‚C(C(x‚y)‚0(x‚z))) = TC(N<N(x)>‚x) = T memos, z)).0(y,C(x.z))) = T
Ordering: LPO with precedence C > N > T > p > q > r

Task: lukal: Prove C(C(p ,q) .C(C(q ' , r) .C (p , r)))=T
luka2: Prove C(C(N(p).p).‚p) = T

Team: lukal: expertl: ADD-WEIGHT
eXpert‘Z: GOAL-SIM

luka2: expert l : POLYNOM—WEIGHT
expert'Z: MAX-“ ’ EIGHT

The examples lukal and Inka? are taken from [Ta56]. The input equations are an equa-
tional axiomatization for propositional calculus by Frege. Lukasiewicz gave another set
of axioms of which lukal and luka2 are the first two.
Fair sequential basic provers have problems wi th these examples in so far as they simply
try to complete the set of input equations. The goals do not influence the computa-
tion. Th i s

„ is also one of the major c'ritisims on completion based equational theorem

16

proving. But in our team work approach t lwre are Illany COIlcepts that force the team
to concentrate on the gin'Il goal. For exalllple. t he referees take illto account in their
judgempnts reductions of the goal. Furt.her wc can includ~ heuristics that concentrate
on the goal. They are not fair. but a team strategy using them ca.n be fair. For lukal
the winner of the first round is ADD-\VEICHT. No result of GOAL-SIr-.l is integrated

.in the winning system. Blit in thp second round GOAL-SI!'1 completes the proof.
Aga.in, the change of the heuristic is responsible for the speed-up. GOAL-SIM is not.
able to generate the facts it needs for appropriate use of its heuristic. This is done by
ADD-WEIGHT. For luka2 we haw the same situation. POL'y'NOl\I-WEIGHT wins
the first round, while l\JAX- \VEIGHT finds no good results. But in the second round·
MAX-WEIGHT finishes the proof.

Example ring:

Input:

j(O.x)	 .I' j(.r.O) ;1:

j(x, g(x)) o j(j(;r,y),:.:) - j(.r,j(y, :.:))

f(J(x,y),z) = f(·r,f(y,:.:)) f(·r. j (y. :.:)) j(f(;r,y),.f(x,z))

j(g(x),x) o

j(x,y) j(y ..r)

f(j(x,y),z) - j(f(.r,:.:), f(y,:.:))

Ordering:	 KBO with weights

'P(J) = 5, .p(j) = 4, .p(g) = 3

'P(O) = 1, <.p(b) = 1. .p(a) = 1

and precedence f > j > 9 > 0 > b > a

Task: Prove f(a, b) = .f(b, a)

Team:	 expert1: PREFER-ROLE

expert2: ADD-WEIGHT

This example is mentioned as a challenging problem in [St84]. Reported automated
proofs were obtained by using completion proveI' with build-in theory AC. However, our
team does not use build-in theories. It needs 5 rounds to find the proof. The winner. of
each round is PREFER-RULE, but the proof is completed by ADD-WEIGHT. After
the first round the referee of ADD-'VEIGHT selects the two equations j(x,j(y,z» =
j(y, j(z, x») and j(x,j(y, z)) = j(z. j(y, J.~)) that are added to the system of PREFER­
RULE. Although PREFER-RULE selects no critical pa.irs that ca.n not be oriented,
results of other experts are considered. These equations are necessa.ry, because they
introduce the commutativity of j in t.he syst.emof PREFER-RULE. (Note that although
j(x, y) = j(y, x) is an input equation, it will not be selected by PREFER-RULE !) The
proof can only be found by ADD-vVEIGHT, because the commutativity of f is neeaed,
which will never be selected by PREFER-RULE.

So Y'le have achieved speed-ups in very different areas - semi-thue systems (coded here
by monadic function symbols), ring theory, equa.tional propositiona.l logic - for both

17

proving. But in our team work approach there are many concepts that force the team
to concentrate on the given goal. For example. the referees take into account in their
judgements reductions of the goal. Further we can include heuristics that concentrate
on the goal. They are not fair. but a team strategy using them can be fair. For lukal
the winner of the. first. round is ADD-\VEIG HT . No result of GOAL-SIM is integrated

.in the winning system. But in the second round GOAL-SIM completes the proof.
Again, the change of the heuristic is responsible for the speed-up. GOAL-SIM is no t ,
able to generate the facts i t needs for appmpriate use of i ts heuristic. This is done by
ADD—WEIGHT. For lukaZZ we have the same situation. POLYNOM-VVEIGHT wins
the first round, while ltlAX-WEIG HT finds no good results. But in the second round
MAX-WEIGHT finishes the proof.

Example r ing:
Input:

j(0.-r-) = r j(.2:.0) = a:
j($-‚-g(fß)) = U J 'Ut l 'ayhr) = j_(1*‚j(y‚f:))

f (f ($ ‚ y) ‚ 3) = f(«r-„fw—SH f(—v„j(y.:)) = j (f (; r , y) ‚ f (: c ‚ z))

flag) = „fly—r)
f(j(1‘-‚y)‚3) = j(f(.1‘-'s3)«f(y‚:))
Ordering: KBO with weights

59(f) = 5 . 90') = 4 . 9(9) = 3
a0) = 1. pa») = 1. „am =1
and precedence f > j > g > 0 > b > a

Task: Prove f (a , b) = f (b , a)

Team: expert]: PREFER—RULE
expert2: ADD—WEIGHT

This example is mentioned as a. challenging problem in [St84]. Reported automated
proofs were obtained by using completion prover with build-in theory AC. However, our
team does not use build-in theories. I t needs 5 rounds to find the proof. The winner: of
each round is PREFER-RULE. but the proof is completed by ADD-WEIGHT. After
the first round the referee of ADD-W EIGHT selects the two equations j (a:, j (y, 2)) :
j (y , j (z , a :)) and j(:r . , j (y, s)) = j (z . j (y , : r)) that are added to the system of PREFER-
RULE. Although PREFER-RULE selects no critical pairs that can not be oriented,
results of other experts are considered. These equations are necessary, because they
introduce the commutativity of j in the system of PREFER-RULE. (Note. that although
j (: r ,y) == j (y , x) is an input equation, i t will not be selected by PRE‘FER—RULE !) The
proof can only be found by ADD—W EIGHT, because the commutativity bf f is needed,
which will never be selected by PREFER—RULE.
So we have achieved speed-ups in very different areas -— semi-thue systems (coded here
by monadic' function symbols). r ing theory. equational propositional logic -— for both

17

7

completion and (Ho\'ing tasks. The cOlllhinilt ion or different heurist ics in a competitive
but also cooperati\'c way leads to spccd-lIps t hat are 1110re than linear in comparison
to the sequential heuristics used in the team. The example ,.in9 suggests that there
may be other and better ways to deal with theories than using the expensive tp.eory
completion.

Note that the sequential run times are fast. Our sequential prover can compete with
such systems as OTTER or HE\'EAL (see [~rc90] and [AA90]) on these examples.
Therefore the speed-ups of the leanls are 110t. due to weakeness of our sequential prover.

Related work

In the literature several attempts are reported to use parallel or distributed comput­
ing to enhence the power of theorem proving. They differ in the granularity of the
parallelisation and in the degree of cooperation.

Yelick and Garland [GY92] use a very fine granularity of parallelism. Their approach
is based on the inference system of Badunair, Dershowitz and Hsiang [BDH86] for the
Knuth-Bendix completion procedure and the parallelisation takes place on the level of
these inference rules. According to our experience this granularity is too fine. There is
no aspect of cooperation and competition discussed in the paper.

On the contrary, Ertel [Er90] uses a very coarse granularity of parallelism. He uses a
tableaux-ba.'3ed theorem prover and observes that for a fixed input problem and a fixed
strategy the running time may heavily depend on the order the input data are given
to the prover. So he starts parallel computations with several, randomly generated,
permutations of the input data and stops as soon as one processor has found a proof.
Also every decision a prover has to make is done randomly. In this approa.ch there is
no cooperation between the provers. they only compete.

Slaney and Lusk [SL90] have proposed to use parallelism to compute the clousure of
a set of facts (i.e. clauses) under some inference rules. The processors share a com­
mon memory and the inferences are distributed among the processors such that each
processor gets assigned facts. Then the processor generates all inferences of its facts
with all other facts. The drawback with tliis approach is that backward subsumption
(and simplification) is costly. Here only parallelism is used, there is no cooperation or
competition between the processors.

The DARES system ([CMM90]) does not only distribute the process of generating new
facts, but also the initial facts are distributed among the processors. Then requests
have to be started to get new facts from other processors. For starting and answering
such requests DARES uses heuristics and no central control is needed. In DARES the
different behavior of the problem solving nodes is only achieved by different facts. No
further control knowledge, like in our team work method, is used.

In a recent paper of Bonacina and Hsiang [BH92] the problem of how to guarantee
fairness in distributed automatic deduction is studied. Each processor Pk has stored in
its own memory at time i the set Sf" of facts. So at time i the whole da.ta. basis consists

18

complet ion and p rov ing t a sks . The combined ion ol' different heur is t ics in a competi t ive
bu t also cooperative way leads to speed—ups tha t a r e more t han l inear i n comparison
to the sequential heuristics used in the team. The example ring suggests that there
may be other and better ways to deal with theories than using the expensive theory
completion.

Note that the sequential run times are fast. Our sequential prover can compete with
such systems as OTTER or R EYEAL (see [MCQO] and [AA90]) on these examples.
Therefore the speed-ups of l he teams are not due to weakeness of our sequential prover.

7 Related work

In the literature several at tempts are reported to use parallel or distributed comput-
ing to enhence the power of theorem proving. They differ in the granularity of the
parallelisation and in the degree of cooperation.
Yelick and Garland [GYQ'Z] use a very fine granularity of parallelism. Their approach
is based on the inference system of Bachmair, Dershowitz and Hsiang [BDHSG] for the

‘ Knuth-Bendix completion procedure and the parallelisation takes place on the level of
these inference rules. According to our experience this granularity is too fine. There is
no aspect of cooperation and competition discussed in the paper.

On the contrary, Ertel [ErQO] uses a very coarse granularity of parallelism. He uses a
tableaux—based theorem prover and observes that for a fixed input problem and a fixed
strategy. the running t ime may heavily depend on the order the input data are given
to the prover. So he starts parallel computations with several, randomly generated,
permutations of the input da ta and stops as soon as one processor has found a proof.
Also every decision a prover has to make is done randomly. In this approach there is
no cooperation between the provers. they only compete.

Slaney and Lusk [SLQO] have proposed to use parallelism to compute the clousure of
a set of facts (i .e . clauses) under some inference rules. The processors share a com-
mon memory and the inferences are distributed among the processors such that each
processor gets assigned facts. Then the processor generates all inferences of its facts
with all other facts. The drawback with this approach is that backward subsumption
(and simplification) is costly. Here only parallelism is used, there is no cooperation or
competition between the processors.

The DARE-S system ([CMMQUD does not only distribute the process of generating new
facts, but also the initial facts are distributed among the processors. Then requests
have to be started to get new facts from other proCessors. For starting and answering
such requests DARES uses heuristics and no central control is needed. In DARES the
different behavior of the problem solving nodes is only achieved by different'facts. No
further control knowledge, like in our team work method, is used.
In a recent paper of Bonacina and Hsiang' [BH92] the problem of how to guarantee
fairness in distributed automatic deduction is studied. Each processor 1);, has stored in
its own memory at time i the set S!“ of facts. So at time i the whole data basis consists

18

-, 1 c, I' } I' l I' I I d1/of '~i U,·· U ,"1, ',ae I pr()c('~~ol' \\'\)r,~ un 1I ~ OWll (al a an(Slmu taneous y sen s
messages to draw inf('r('nc('~ I)('{ W\'('II hi~ <lnd foreign dat.a. ('rileria are developed that
guarantee fairness (and so compk1t'Il(,~S) or 1he whole system. The problems here arise
from the fact that the data basc is distribut('(l. III our approach, there is a common data
base for all experts whene\'cr a new round is started. This simplifies the problem to
gtiarantee fairness. \Ve belie\'e tbat it also san's unproductive time for communication.

19

of 5'," U U ‚g , - " . Each processor works un i t s own da t a and s imu l t aneous ly sends
messages to draw inferences between his and foreign data . ('riteria. are developed that
guarantee fairness (and so completeness) of the whole system.- The problems here arise
from the fact that the data. base is distributed. In our approach, there is a. common data
base for all experts whenever a. new round is started. This simplifies the problem to
guarantee fairness. We believe that. it also saves unproductive t ime for communication.

19

References

[A.-\90] .-\nantharamilll. S.. Alldrianari\·('lo. \.: Hcuristical crit.ical pair criteria
in automated theorem pro\·ing. fJI'OC. DISC:O '90, LiVeS 429, Spl'iTl:ger,
1990, pp. 18.f - 19.].

[Al\190] Avenhaus, .l .. ~Iadlencr, 1-':.: Term Rewriting and Equational Reason­
ing, in R.B. Banerji (ed): Formal Techniques in Al·tificial Intelligence,
Elsf:l'ier. 1990. pp. 1 - rJ.

[A08:3] Antoniou, G.. Ohll)och. H..J.: T(..>rminator. Pmc. 8th /.leAf, [{ar!s7'uhe,
198:3.

[BDH86] Badullair. L.. Dersho\\'itz. 1\ .. Hsiang, .J.: Orderings for equational
proofs. Proc. Symposium on Logic ill Compute7' Science, 1986, pp. 346
- .]57.

[BDP89] Bachmair, L.. Dershowitz. ~ .. Plaisted. D.A.: Completion without Fail­
ure, Coli. Oil the Resolution 01 Equations in Algebraic Structures, Austin
(1987), Acaderilic Pn'ss, 1989.

[BH92] Bonacina. t\:LP.. Hsiang. .1.: On fairness in distributed automated deduc-'
tion. to be published.

[CMM90] Conry, S.E.: MacIntosh. D..1., ~Ieyer. R.A.: DARES: A Distributed Au­
tomated REasoning Syst.em. Pmc. AAA I-90, 1990, pp. 78-85.

[De93]' Denzinger..1.: TEAM\VORI\: A method to design distributed knowledge
based equational theorem prO\·ers. (in German) Ph.D. thesis, University
of Kai8erslautcrn, 199.3.

[DJ90] Dershowitz, N., Jouannaud..LP.: Rewriting systems, in J. van Leeuwen
(Ed.): Handbook of theoretical computer science, Vol. 8., Elsevier, Am­
ste7'dam, 1990, pp. 241 - 320.

[Er90] El'teL \V.: Random Competition: A Simple, but Efficient Method for
Parallelizing Inference Systems. Internal Report TUAf-19050, Technical
Unive7'sity of Munich. 1990.

[GY92] Garland, S..I.. Yelick. I-.:.A.: A Para.llel Completion procedure for Term
Rewriting Syst.ems, Proc. 11th CA DE, 1992, pp. 109 - 12.'1.

[Hu80] Huet, G.: ConHuent Reductions: Abstract Properties and Applications
to Term Rewriting Systems. Journal of A CM, Vol. 27, No. 4, 1980, pp.
798 - 821.

[KB70] Knuth, D.E., Bendix. P.B.: Simple Word Probl~ms in Universal Algebra,
Computational Algebm, J. Leech, Peryamon P,'ess, 1970, pp. 263 ­ 297.

[Mc90] McCune, W.\V.: OTTER 2.0 Users Guide, Technical Report ANL-90/9,
Argonne National Labomt07'y, Argonne, 1990.

[SL90] Slaney, .1.I\: .. Lusk. E.L.: Parallelizing the Closure Computation in Au­
tomated Deduction. Pl'Oc. 10th CA DE, LNAf 449. Springe7', Kaisers­
lautern, 1990. pp. 28 - 39.

[St84] Stickel, M.E.: A Case Study of Theorem Proving by the Knuth-Bendix
l\lethod: Discovering t.hat .1,3 = J~ implies Ring Commutativity, Proc.
CADE-7, LNCS 170, Springer, 1984, pp. 248 ­ 258.

[Ta56] Tarski, A.: Logic, Sema.ntics, l\feta mathematics, Oxford University
Press, 1956.

20

References
[AAQO]

[AMQO]

[A083]

[BDH86]

[BDP89]

[BH92]
[CMMQO]

[De93] ‘

[DJQO]

[Er90]

[GY92]

[HuSO]

[KB70]

[Mc90]

[SL901

[St84]

' "[Ta56]

Aliaiitliaraman. S. . Amlrianarix'olo. N.: l-leuristical critical pair criteria
in automated tlworem proving. Proc. DISCO '90. LNCS' 4339, Springer,
1990, pp. 184' - 193.
Avenhaus. J . . Madlener. K.: Term Rewriting and Equational Reason—
ing. in R.B. Banerji (ed): Formal Techniques in Artificial Intelligence,
Elsevier. 1990. pp. 1 —- 433’.
Anton iou . G . . Oh lbach . [-l..l.: Te rmina to r . Proc. 8th lJCAl, Karlsruhe,
1983.
Bachmair. I... Dershowitz. N.. l-Isiang, J . : Orderings for equational
proofs. Proc. .S'gmposinm. on Logic in Computer Science, 1986, pp. 346
-— 357.
Bachmair. L.. Dershowitz. N.. Plaisted. D.A.: Completion without Fail—
ure. Coll. on the Resolution onuations in Algebraic Structures, Austin
{1987). Academic Press. 1989.
Bonacina. M.?.. Hsiang. .I .: On fairness in distributed automated deduce
t ion. to be published.
Conry. S.E.: Macintosh. D.J. . Meyer. R.A.: DARES: A Distributed Au-
tomated REasoning System. Proc. A AA 1-90, 1990, pp. 78—85.
Denzinger. J.: TEA l\-1WO RK: A method to design distributed knowledge
based equational theorem provers. (in German) Ph.D. thesis, University
of Kaiserslautern, I993.
Dershowitz . N . . Jouannaud . J .P . : Rewri t ing systems. i n J . van Leeuwen
(Ed.): Handbook of theoretical computer science, Vol. B., Elsevier, Am-
sterdam, 1990. pp. 3341 — 390.
Ertel. W. : Random Competition: A Simple, but Efficient Method for
Parallelizing Inference Systems. Internal Report TUM-19050, Technical
University ofilluniclz. 1990.
Garland, S..]... Yelick. RA. : A Parallel Completion procedure for Term
Rewriting Systems. Proc. 11th C'.--‘lDE. 1992, pp. 109 —— 123.
Huet . G.: Confluent Reductions: Abstract Properties and Applications
to Term Rewriting Systems. Journal of ACM, Vol. 27, No. 4, 1980, pp.
798 -— 821.
Knuth, D.E.. Bendix. P.B.: Simple Word Problems in Universal Algebra,
Computational Algebra. J. Leech, Pergamon Press, 1970, pp. 263 — 2.97.
McCune, W.W.: OTTER. 2.0 Users Guide, Technical Report .ANL-90/9,
Argonne National Laboratory. Argonne, 1990.
Slaney. J ‚K.. Lusk. E.L.: Parallelizing the Closure Computation in Au-
tomated Deduction. Proc. 10th. C'ADE, LNAI 449, Springer, Kaisers-
lantern. 1990. pp. 328 — 39.
Stickel. M.E.: A Case Study of Theorem Proving by the Knuth-Bendix
Method: Discovering that .1'3 = .1: implies Ring Commutativity, Proc.
CADE-7, LNCS I70, Springer, 1984, pp. 248 — 258.
Tarski. A.: Logic. Semantics. Meta mathematics. Oxford University
Press. 1956.

