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1 Introduction 

Conditional rewrite :-s:.steIlls are widely used as a high-level language to write functional 
programs. This may cause non-deterministic computations. So qne wants to prove that such 
a system R is canonical, i.e. terminating and confluent. This guarantees that for any input 
all possible computations stop and give the same result. There are well-known methods to 
prove termination and confluence if no extra variables are allowed. See [D090] for a survey. 

Fllnctional programming naturally demands for the where-comtruct and this construct can 
be incorporated into the rewrite system approach only by allowing extra variables. But 
extra variables should be allowed only in a very restricted form since it is not clear how to 
instantiate them when only the variables in the left-hand side of a rule are instantiated for 
rewriting. So in this paper we restrict to deterministic rewrite rules (see [Ga91] and [BG89] 
for this notion): We require that the extra variables are 'input bounded', In [Ga91] it is 
proved that -R is decidable and terminating if R is quasi-reductive. We prove that ---+R is 
confluent if R is in addition strongly deterministic and all proper critical pairs are joinable. 
:\ote that no paramodulation pairs (overlapping into the conditions) and no resolution pairs 
(factoring of a condition) need to be computed. These pairs may be harmful for arbitrary 
conditional rewrite systems with extra variables [Ga91], [De91]. As far ~ critical pairs are 
concerned, we neither need to consider variable overlappings nor overlappings of a rule with 
itself on top level. (Both are needed if R is not strongly deterministic.). 

For many strongly deterministic rewrite systems R encountered in practice it can be proved 
that all proper critical pairs are either unfeasible or context-joinable. Then R will be conflu­
ent, provided it is quasi-reductive. 

If R is a standard conditional rewrite system in the sense of [D090] and confluent then R 
is logical, Le. ~ R equals the R-equality =R. This is not true for a strongly deterministic 
R, one needs in addition the termination of R or a restriction on the right-hand sides of the 
condition in the rules that is more restrictive than strong determinism. 

~;'." ch<;s d strongly deterministic rewrite systems seems to re interesting for two reasons. 
First, interesting problems can be specified rather naturally. And second, well-moded Horn 
clause programs can be translated into this class of rewrite systems (see [GW92J). We show 
how to prove that a wel1-moded program is uniquely terminating: Any derivation starting 
with a well-moded query stops and all refutations give the same answer substitution. 

The paper is organized as follows: In section 2 we give the basic notations. We discuss the 
condition 'quasi-reductive' in section 3 and confluence in section 4. We show that -+R is 
logical under the conditions mentioned above in section 5 and we prove logic programs to be 
uniquely terminating in section 6. 

Our interest in studying deterministic rewrite systems stems from problems arising in the field 
of program synthesis [LS92]. Here conditional rewrite systems with extra variables naturally 
appear. 

The results of section 3 are basically contained in [BG89]. We present them here to make 
the paper self-contained. Beyond that we present an interesting method to prove quasi­
reductivity. This is done by incorporating given inequalities in the definition of the recursive 
path ordering in order to compare terms with extra variables. 

Some of the results presented in section 4 are also implicitely contained in [BG89]. The main 
differences are: (1) We do not want to start a completion algorithm but we want a simple 
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all possible computat ions  s top  and give t he  same result. There are well—known methods to
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that  all proper critical pairs are either unfeasible or context—joinable. Then R will be conflu-
en t ,  provided it is quasi-reductive.

If R is a. standard conditional rewrite system in the sense of [D090] and confluent then R
is logical, i.e. (Luz equals the R—equality =3 .  This  is not true for a strongly deterministic
R ,  one needs in addition the  termination of ‘R  or a restriction on  the  right-hand sides of the
condition in the rules that is more restrictive than strong determinism.
""!. 26  class of strongly deterministic rewrite systems seems to  be  interesting for two reasons.
Fi rs t ,  interesting problems can be specified rather naturally. And second, well-moded Horn
clause programs can be translated into this class of rewrite systems (see [GW92]). We show
how to  prove that a well-moded program is uniquely terminating: Any derivation starting
with a well-moded query stops and all refutations give the same answer substitution.

The paper is organized as follows: In section 2 we give the basic notations. We discuss the
condition ’quasi-reductive’ in section 3 and confluence in section 4 .  We show that “*3 is
logical under the conditions mentioned above in section 5 and we prove logic programs to  be
uniquely terminating in section 6.
Our interest in studying deterministic rewrite systems stems from problems arising in the field
of program synthesis [L892]. Here conditional rewrite systems With extra variables naturally
appear.
The results of section 3 are basically contained in [BG89]. We present them here to make
the paper self-contained. Beyond that we present an interesting method to prove quasi-
reductivity. This is done by incorporating given inequalities in the definition of the recursive
path ordering in order t o  compare terms with extra variables.

Some of the results presented in section 4 are also implicitely contained in [BG89]. The main
differences are: (1) We do not want to start a completion algorithm but we want a simple
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test on confluence for a given deterministic quasi-reductive rewrite system. We believe that 
many 'natural specifications' occurring in practice are really confluent (or at least ground 
confluent). (2) \Ve do not want to use the concept of a non-operational equation. (3) To test 
confluence we prove that critical pairs resulting from overlapping a rule by itself on top-level 
need not be considered. 

In [BG89] a result is reported that every absolutely deterministic, quasi-reductive and conflu­
ent R is logical. Here we show that one either needs additional restrictions on the right-hand 
sides of the conditions in a rule and no termination or termination and only strong determin­
ism for a confluent R to be logical. 

To study unique terminatior. of well-moded logic programs we follow [hA85] and [GW92]. In 
[GW92] only termination of derivations in well-moded logic programs is studied. We use the 
translation of well-moded logic programs into deterministic rewrite systems from that paper 
to extend results from [HA85]. 

2 Basic notations 

We assume the reader to be familiar with basic rewriting techniques and notations. For survey 
papers we refer to [AM90] and [DJ90] and especially for conditional rewriting to [D090]. 

A signature is a triple sig = (5, F, r). Here 5 is a set of sorts, F a set of operators and r a 
function r: F -> 5+ denoting the arity of the operators. T(F, V) is the set of terms over F 
and a set V of variables. A term is ground if it contains no variable. For a term t we denote 
by O(t) the set of positions p in t such that tip is not a variable. We denote by t[s]p the term 
that results from t by replacing tip by s. We write == for the syntactic identity of terms. 
\;'are0) is the set of variable occurring in an object (term, equation, ... ) o. 

A partial ordering >- Oll T(F, V) is well-founded if there is no infinite sequence to >- t l >- t2 >­
. ". It is compatible with substitutions (the term structure), if s >- s' implies O'(s) >- O'(s') 
for a.ny substitution' 0' (respectively, t[s]p >- t[s']p for any term t and position p in t). A 
reduction ordering is a partial ordering that is well-founded, compatible with substitutions 
and compatible with the term structure. We denote by I> the proper subterm relation and by 
>-st = (>- U l»+ the smallest ordering that contains >- and 1>. It is well-founded if >- is well­
founded and compatible with the term structure. There are well-known methods to construct 
reduction orderings, we mention the recursive path ordering RPO and the lexicographic path 
ordering LPO. For these orderings we have >- = >-st. For a survey paper on orderings see 
[De87]. 

We study conditional rewrite systems with extra variables. In this case it is convenient to 
consider oriented conditions. An unconditional oriented equation is a pair of terms, written 
u -+ v. An oriented condition C is a finite sequence of unconditional oriented equations 
C == Ul -+ VI, ••. , Un -+ Vn • It is called operational for a set Vo of variables if 

Var(ud ~ Vo U Var(ul -+ VI) u ... U Var(ui_1 -+ vi-d 

for i = 1, ... ,n. (This implies Var(ut} ~ Vo). Let R be a rewrite system such that -+R is 
already defined. A substitution 0' is a solution of C == Ul -+ VI, ••• , Un -+ Vn wrt. Rand Vo if 

0'( Ui) ~R 0'(vd for all 1 ~ i ~ n 
Var(O'(x)) ~ Var(O'(Vo)) for all x E Var(C) 
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test  on  confluence for a given deterministic quasi-reductive rewrite system. We believe that
many ”natural specifications‘ occurring in practice are really confluent (or at least ground
confluent).  (2) We do  not want. t o  use the  concept of a non-operational equation. (3 )  To test
confluence we prove t ha t  critical pairs resulting from overlapping a rule by itself on top—level
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In [BG89] a result is reported tha t  every absolutely deterministic, quasi-reductive and conflu—
ent  R is logical. Here we show that  one either needs additional restrictions on the right—hand
sides of the conditions in a rule and no termination or termination and only strong determin-
ism for a confluent R t o  be  logical.

To study unique termination of well-moded logic programs we follow [hA85] and [GW92]. In
[GW92] only termination of derivations in well—moded logic programs is studied. We use the
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and a set  V of variables. A term is ground if it  contains no variable. For a term t we denote
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that  results from t by replacing t /  p by s .  We write E for the syntactic identity of terms.
Var(o) is the set of variable occurring in an object (term, equation, ...) o.

A partial ordering >— on  TLF, V) is well-founded if there is no infinite sequence to >- t l  >- t2 )—
It is compatible with substitutions (the term structure), if s > 5' implies 0'(s) >— 0(s'  )

for any substitution‘o (respectively, t[s]p >- t[s']p for any term t and position p in t). A
reduction ordering is a partial ordering that is well—founded, compatible with substitutions
and compatible with the term structure.  We denote by [> the proper subterm relation and by
>“  = (>  U (>)+ the smallest ordering that contains >- and (>. It is well—founded if >» is well—
foundedand compatible with the term structure. There are well-known methods to construct
reduction orderings, we mention the recursive path ordering RPO and the lexicographic path
ordering LPO. For these orderings we have >- = >” .  For a survey paper on orderings see
[De87].

We study conditional rewrite systems with extra variables. In this case it is convenient to
consider oriented conditions. An unconditional oriented equation is a pair of terms, written
a ———> 12. An oriented condition C is a finite sequence of unconditional oriented equations
C E u l  —> v l ,  . . . ,  an -—> vn. It is called Operational for a set Vo of variables if

Var (u , )  g V0 U Var-(til -—> v1)U . . . U Var(u,-._1 _» tit--1)

for i = 1 ,  . . . ,  n .  (This  implies Var (u1)  g Vo). Let R be a rewrite system such that -—>R is
already defined. A substitution 0 is a solution of C E ul  —-> v1, . . . ,  un —> vn wr t .  R and V0 if

0(ug) ill—>3 0(2),) for all 1 $ i 5 n
Var(o(x)) g Var(a(Vo)) for all 2: € Var(C)



a IS irreducible if a(x) is irreducible for all x E V. a extends T with Dom(r) = Vo if 
a( 1') == T(X) for aJl x E ~o. If C' is empty then every a is a solution of C wrt. Rand Vo. 

::\ote that the problem to compute all ,solutions of C that exten rt T reduces to rewriting and 
matching. So, if --+ R is computable and terminating then the set of solutions of C wrt. to R 
and \/0 that extend T is finite and computable. 

Example 2.1 
R: O+y y O*y o 

.s(x) + z x+ s(y) s( x) * y y+(x*y) 
C == x + y --+ Xl + yl, Xl * yl - z 

Let Vo = {x,y} and r = {x .- sn(o),y.- sm(o)}. Then for all solutions a extending r we 
have a( z) E {Sk (0) I k = i . j, i + j = n + m}. 

Definition 2.1 A deterministic rule is a formula C ==:} I - r such that C == Ul ­

VI, ...• Un --+ Un is operational for V are 1) and V are r) ~ V are1) U V areC) and 1 is not a 
variable. The set of extra variables of this rule is £Var(C ==> / -+ r) = Var(C) - Var(l). 
A deterministic term rewrite system (DTRS) is a finite set R of deterministic rules. 

We simply write 1 - r instead of C ==:} 1 --+ r if C is empty. We next define the rewrite 
relation --+ R for a DTRS R. 

Definition 2.2 Let R be a DTRS. The rewrite relation -R is the smallest relation satisfying 
t[a(l)]p --+ t[a( r )]p whenever C ==:} l - r is a rule in Rand ais a solution of C wrt. Rand 
Var(l). 

Note that s -R t implies Var(t) ~ Var(s). Note also that -R is defined recursively. To 
make this recursion explicit we define the approximation of R as an infinite sequence (Rdi?,O 
of unconditional rewrite systems 

R o = {l-rll-rinR} 
Ri+l Ri U {a(l) - a(r) le==> 1 - r in R, a a solution of C wrt. Ri and Var(l)} 

We have s -R tiff s -R. t for some i 2: o. 
We have defined a DTRS with oriented conditions. Such a, system is called a normal condi­
tional rewrite system in [D090]. There are some othere ways to evaluate the conditions. If a 
condition U = v is to be evaluated by a joinability test then we write U ! v. A system with a 
joinability test for the conditions is called a standard conditional rewrite system in [D090]. 
For func,tional programming it is reasonable to allow both sorts of conditions, one for testing 
and the other one fOT computing. So a rule would be of the form 

Ut -+ VI, •• • , Un - Vn , SI ! t1 , • •• , Srn 1 tm ==> 1 - r 

The conditions Si 1 ti can easily be transformed into oriented conditions Si -+ Xi, ti -+ Xi 

using new extra variables Xi. For this reason we only allow oriented conditions. In the 
next section we will consider quasi-reductive ruies only in order to have -+R decidable and 
terminating. For standard conditional rewriting the conditions 'reduc.tive' and 'decreasing' 
are needed for the same purpose. It will be easy to see that, given a decreasing standard 
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or is irreducible if 0 (x )  is irreducible for all ::: E V.  0 extends r with Dom(r )  : V0 if
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Note that the problem to compute all solutions o fC  that extend 1' reduces to rewriting and
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Example 2 .1
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CEx+y——r: r ’+y ’ ,  :r’*y’—+:—:
Let V0 = {any}  and T := {x  +— s” (0 ) .y  «— sm(0)}.  Then for all solutions ar extending r we
have 0 (3 )  6 {3"(0) | k : i - j , z '+ j_=  n + m}.

Defini t ion  2 .1  A deterministic rule is a formula C => l —-> r such that C a u l  -——>
v1 . . . . .  an ——+ v„_ is operational for Va r ( l )  and  Var ( r )  g Var ( l )  U Var (C)  and l  is not a
variable. The set of extra variables of this rule is £Var (C  => l —-+ r )  = Var(C') - Var(l).
A deterministic term rewrite system (DTRS) is a finite se t  R of deterministic rules.

We simply write l ——> r instead of C => I -—~ r if C isempty.  We next define the  rewrite
relation ""R for a DTRS R .

Defini t ion 2 .2  Let R be a DTRS. The rewrite relation "*R is the smallest relation satisfying
t[o(l)]p ——+ t[o(r)]p whenever C => l —> T is a rule in R and o' is a solution ofC' wrt. R and
Var(l).

Note tha t  s —>R t implies Va r ( t )  g Var ( s ) .  Note also that  “**R is defined recursively. To
make this recursion explicit we define the  approximation of R as an infinite sequence (R020
of unconditional rewrite systems

Ro = { l—+r | l—+r inR}
Ri“ = R,- U {a( l)  -—+ a ( r )  | C => l -—> r in R, a a solution of C wrt. R.- and V’ar(l)}

We have s “”R t ifl ' s  ""R. t for some i Z 0 .

We have defined a DTRS with oriented conditions. Such a_ system is called a normal condi-
tional rewrite system in [D090]. There are some othere ways to  evaluate the conditions. If a
condition a = 2) is to be evaluated by a joinability test then we write a 1 v .  A system with a.
joinability test for the conditions is called a standard conditional rewrite system in [D090].
For functional programming it is reasonable to allow both sorts of conditions, one for testing
and the other one for computing. So a rule would be of the form

ul  —->v1 , . . . , u„—+v„‚31 l t1 ‚ . . . ‚ smi tm  =>l—+r

The conditions 5.- J, t,; can easily be transformed into oriented conditions 3,- —> m;,t,- —+ a:,-
using new extra variables an. For this reason we only allow oriented conditions. In the
next section we will consider quasi-reductive rules only in order to have -—+ R decidable and
terminating. For standard conditional rewriting the conditions ’reductive’ and ’decreasing’
are needed for the same purpose. It will be easy to see that,  given a decreasing standard

4



rule 81 1 tl,·· .. Srn 1 t m ~ I - r with no extra variables, then the transformed rule 
SI - Xl,t l - Xl •.. ·.sm - xm.t m - X m ==> 1- r is deterministic and quasi-reductive. So 
our approach is a generalization of standard conditional rewriting. 

For standard conditional rewriting we have: If s - R t then (i) a( 8) - R a( t) for any substi­
tution a and (ii) to[s]p - to[t]p for any position p in to. This holds also if R is a DTRS. The 
claim (ii) is trivial and (i) is proved by induction on i for the approximation (Ri)i?O of R: If 
s - R. t then 0""( s) - R. a( t). We need this fact in the proof of Theorem 4.1. 

3 Quasi-reductive DTRSs 

Now we impose a condition on DTRSs R so that -R is computable and terminating [GW92]. 

D"finition 3.1 
Let>- be a reduction ordering on T(F, V). A DTRS R is quasi-reductive wrt. >- if for every 
substitution a and every rule Ul - VI,' .. , Un - Vn ==> l - r in R 

(i) a( Uj ) >- a( Vj) for 1 ~ j ~ i implies a(l) >- st 0""( ui+d 

(ii) a(uj)>-a(vj) for l~j~n implies a(l)>-a(r) 

A DTRS R is called quasi-reductive if there is a reduction ordering >- such that R is quasi­
reductive wrt. >-.
 

Now we prove that a quasi-reductive DTRS can be used for effective computations. We make
 
this precise in Theorem 3.1 (see [GW92]). Let ~R(t) = {s I t ~R s} denote the set of
 
R-successors of t.
 

Theorem 3.1 Let R be a DTRS that is quasi-reductive wrt. >-. Then for evey term t the 
set ~R(t) is finite and effectively computable. We have -R ~ >-, so R is terminating. 

Proof: Let R be quasi-reductive wrt. >-. We prove the statement of the Theorem by 
induction on >-st. We have t -R s if there is a position p in t, a rule C ==> l - r in Rand 
a substitution a such that a(l) == tip and a is a solution of C wrt. Rand Var(/). Since R is 
finite it is enough to prove that for each rule C==>l - r there are only finitely many such 
solutions and one can compute them all. 

Let C == Ul - VI, ••• , Un - Vn and r be given such that r(/) == tip and Dom(r) = Var(/). We 
need to compute all solutions 0"" of C that extend T. Let 0""0 = T. Since R is quasi-reductive we 
have Var(ud ~ Var(l) and ao(l) >-st O""o(ut}. By induction hypothesis ~R(O"o(ud) is finite 
and computable. So we can compute all matches a'(vd == w,w E ~R(O""o(Ut», 0"' extends 
ao. Let 0"1 be such a match, then 0"1 is a solution of Ul - Vt and at (Ul) >- 0""1 (VI) and so 
0""1 (I) == r( I) >- oft 0"1 ( U2)' In this way one can compute all solutions O""j of Ul -+ VI, ••• , Ui -+ Vi 

extending T, and we have l1i(Uj) >- l1i(Vj) for j = 1, .. . ,i, so O"i(l) >-oft O"i(Ui+t}. For i = n we 
also have T(l) == an(l) >- an(r). 

This proves that the set {s I t -+R s} is finite and computable and that -+R ~ >- holds. So 
~RCt) is finite and computable, too. 0 

As a by-product of this proof we get 
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ru le  .31 l. t 1 . . . . . sm  L tm => [ —~ r wi th  no  ex t ra  variables .  t hen  t he  transformed rule
.51 -—— x1 .  t1 ——-— 1'1 . . . . .  sm -——+ mm ——-» rm  '=:> { .... r is de te rmin i s t i c  and  quas i - reduct ive .  So
our  approach is a generalization of s tandard  conditional rewriting.

For s tandard conditional rewriting we have: If s “**R t then  ( i )  0 (3)  “R  o ( t )  for any substi-
tut ion a and (ii) t0[s]p —-+ t0[t]p for any position p in to. This  holds also if R is a DTRS.  The
claim (ii) is trivial and  (i) is proved by induction on  i for the  approximation (R,-)‚gzo of R:  If
s —+R‚ t then 0(3) _‚R' (f(x). We need this fact in the proof of Theorem 4.1.

3 '  Quasi-reductive DTRSs

Now we impose a condition on DTRSs R so that  —>R is computable and terminating [GW92].

Defini t ion  3 .1
Let > be a reduction ordering on  TLF, V). A DTRS R is quasi-reductive wrt. >— iffor every
subs t i t u t i on  0 and  every  rule u l  ——r 'L11‚...‚un _» v„ =:— l—+ r in R

(z") am, -mom)  for 1 :19  implies 0(1)»... coa l )

( i i )  a(u‚-)_>_a(vJ-) for 1g  j g n implies ()(!) >— cr(r)

A DTRS R is called quasi-reductive if there is a reduction ordering >— such that R is quasi-
reductive wr t .  >-.

Now we prove that  a quasi-reductive DTRS can be  used for effective computations. We make
this precise in Theorem 3.1 (see [GW92]). Let AEG)  : { s  | t ‘LR 3} denote the set of
R-successors of t .

Theorem 3.1 Let R be a DTRS that is quasi-reductive wrt. >». Then for evey term t the
set  AEG)  is finite and effectively computable. We have —->R _C_ >—, so R is terminating.

Proof: Let R be quasi-reductive wr t .  >—. We prove the statement of the  Theorem by
induction on >“ .  We have t —->3 3 if there is a position p in t ,  a rule C =, I -—> r in R and
a substitution 0 such that 0(1  ) £ t /p  and a is a solution of C wrt .  R and Var“) .  Since R is
finite it is enough to prove that for each rule C = l —+ r there are only finitely many such
solutions and one can compute them all.

Let C E zu —> v1, . . . ,  an —> vn and ‘r be given such that f ( l )  E t /p  and Dom(*r) = Var“) .  We
need to compute all solutions cr of C that extend r .  Let 0’0 = 1'. Since R is quasi-reductive we
have Var(u1) ; Van—(I ) and 00(1) >-,t 00(u1). By induction hypothesis Modul»  is finite
and computable. So we can compute all matches 0"(01) E 10,10 6 Afi(ao(u1)), 0’ extends
00. Let 01 be such a. match, then 01 is a solution of ul ——> v1 and 01(u1) _>_ 01(01) and so
01(I) E r ( l )  >”  01(u2). In this way one can compute all solutions 0,— of u l  --> v l ,  . . . , u ;  —~> 1;,-
extending T, and we have 05 (15 ) :  0,-(vj) for j = 1 ,  . . . , i ,  so 02(1) >”  aim-+1). For z‘ = n we
also have f ( l )  E On“) >- a„(r).
This proves that the set {3 | t "*R 3} is finite and computable and that **R g >— holds. So

};(t) is finite and computable, too. CI
As a. by-product of this proof we get



Corollary 3.1 Let R be a DTRS that is quasi-reductive wrt. )-. If 0(/) -R 0(1') by P == 
UI - VI, . , . , Un - l',n ==> I - l' in R then o(l) )- st o( ud)-o( Vi) for all 1 S; i S; n. 0 

We 'lOW discuss how to pro\'p that a DTRS 'is quasi-reductive. The first approach is to 
eliminate in a deterministic rule p == UI - VI, ..• , Un -+ V n ==> I -+ l' the extra variables by 
backward substitution and then to apply a test for reductivity on the resulting rule. To do 
so we define the transformed rule p of p as follows: For x E EVar(p) let a(x) be the smallest 
i such that x E V are Vi)' We' simultaneously define terms Ui and substitutions 'Pi by 

'PI id 
9i+l {x.-- uO'(x) I x E Var(vl, ... ,vi)nEVar(p)} 
Ui - 'Pi (Ui) 

Definition 3.2 Let p == UI - VI,"" Un - V n ==> I - r be a deterministic rule. The 
backward substituted rule p is Ul -+ C, ... , Un -+ C ==> I - r where c is a new constant and 
r == 'Pn+l (1'). 

Lemma 3.1 Let)- be a reduction ordering. Let R be a DTRS such that for every rule p in 
R and its backward substituted form p == UI -+ C, ... , Un - C ==> j - r we have 

I )- st Uj for 1 S; i S; n and 1)- r 

then R is quasi-reductive wrt. >-. 

Proof: One verifies the conditions in Definition 3.1 by induction on i.	 o 

Example 3.1 

a)	 p == f(x) -+ pair(YbY2), YI + Y2 - Y3 ==> f(s(x» --+ pair(Y3d/z), 
Backward sutstitution gives p == f(x) --+ c, l(x) + l(x) .-4 C ==> l( s(x» --+ pair(f(x) + 
f(x), f(x». Let)- be the RPO with precedence f > pair, +. Then)- = )-st and 

f(s(x»)- f(x), lex) + lex), pair(f(x) + f(x), f(x». 
Hence p is quasi-reductive wrt. )-. 

b)	 p == f(x) --+ z ~ f(s(x)) --+ fez). 
We have p == f(x) --+ c ==> f(s(x» -+ f(f(x». Let>- be the RPO with precedence 
s )- f. Then p is quasi-reduetive wrt. )-. 

Notice that for a many-sorted specification backward substitution may result in ill-sorted 
terms. But most of the standard orderings are defined on the well-sorted and the ill-sorted 
terms as well and so can be used in Lemma 3.1. This holds for examples for the RPOs, LPOs 
and the polynomial orderings. 

There is a direct approach to extend some standard orderings so that they can be used to 
compare terms with extra variables and so to prove quasi-reductivity. We explain this for 
the RPO. 

If :J = {Uj ~ Vi I i = 1, ... , n} is a set of inequations then we denote by ?.:r the smallest 
quasi-ordering containing :J. If s is a term, then j (s) = {s ~ tit a subterm of s} is the' set 
of subterm-inequations defined by s. 
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Corollary 3 .1  Let R be a DTRS that is quasi-reductive wrt. >». If a ( l )  “*R a ( r )  by p E
u1—-» v1 . . . . . un  —— vn :: l —+ r in R then 0(1) >”  0(u‚-)_>_-_a(v‚-) for al l  1 g i g n .  D

We wow discuss how to  prove tha t  a DTRS “is quasi-reductive. The  first approach is to
eliminate in a deterministic rule p E u]  ——» v l ,  . . . ,  un -—~> vn => l ——> r t he  extra variables by
backward substi tut ion and then to  apply a test  for reductivity on the  resulting rule. To do
so we define the  transformed rule 5 of p as follows: For a: E £Var(p)  let a(:r) be  the smallest
i such tha t  x E Var(v‚°). We. simultaneously define terms figoand subst i tut ions (9.- by

991 = i d
‚o.-+1 : {::: «— Ea”) l J: E Var(v1,...,v,-) fl SVar(p)}
'üi E %(w)

Definit ion 3 .2  Let p E u l  ——> v1‚ . . . , u„  —-> vn => ! -—+ r be a deterministic rule. The
backward substituted rule fi is m -—> c ,  . . „ in  —-> c ==> I —+ r where c is a new constant and
75  9°n+1(7‘)o

Lemma 3 .1  Let >— be a reduction ordering. Let R be a DTRS such that for every rule p in
R and its backward substituted form p“ E Ti"; —-> c ,  . . ”if.“ —+ c => i -—-> r we have

l>s tm  for l g ign  un t i l »?

then R is quasi-reductive wrt. >—.

Proof: One verifies the conditions in Definition 3 .1  by induction on i .  , D

Example 3.1

a) p a f(x) -—> raids/hie), y: + 3/2 ——> ya => f(8($)) -> Pair(y3,zlz)-
Backward substitution gives ß 5 f (x )  _» c‚ f (x )  + f (x )  —-+ c => f(s(a:)) —-> pair(f(:c) +
f ( a : ) , f ( : r ) ) .  Let >— be the RPO with precedence f > pa i r ,+ .  Then >— = >-_.‚t and

f(6($)) > f(x), f(x) + f(x), Pair(f($) + f(3)‚f($))-
Hence p is quasi-reductive wrt. >-.

b) P =“:- f($) ** z ==> f(8($)) “* f(z)-
We have 25 E f (x )  -——+ c = f(s(:t)) —+ f(f( : t )) .  Let >- be the RFC with precedence
s >- f . Then p is quasi-reductive wrt. >-.

Notice that for a many-sorted specification backward substitution may result in ill—sorted
terms. But most of the standard orderings are defined on the well-sorted and the ill—sorted
terms as well and so can be used in Lemma 3.1. This holds for examples for the RPOs, LPOs
and the polynomial orderings.

There is a direct approach to extend some standard orderings so that they can be used to
compare terms with extra variables and so to prove quasi-reductivity. We explain this for
the RPO.

If .7 = {u,- Z v,- | i = 1, . . . , n }  is a set of inequations then we denote by _>__7 the smallest
quasi-ordering containing J . If s is a term, then .7(s) = {s _); t | t a subterm of s} is theset
of subterm-inequations defined by s .



Definition 3.3 Let ~ be a precedence on F and .:J a set of inequations. Then the RPO '0 
based on ~ and J is given by 

1. s '0 x if 5 ~..7u..7(s) x 

2. 5 == f(51'" .• 5n ) '0 t == g(t 1•••• ,tml 
if	 Sj r- ..7 t for some i or
 

f>g and sr-..7tjforallj or
 
f~g and {sr' ...• sn}b'0{tl, ... ,tm}
 

Here b~ denotes the multiset extension of ~ and r-..7 denotes the strict part of~, 

i.e.	 5 r-..7 t if Sr- ..7t, but not t~s. 

One easily proves 

Lemma 3.2 Let r- be the RPO based on a vrecedence ~ and let '0 be the RPO based on ~ 

and .J. If s '0 t then 0'( s )r-O'( t) for all substitutions a with 0'( u) r- 0'(v) for all U ~ v in .J. 
o 

Let p == Ul ~ VI,' .• , Un --+ Vn ==> I --+ r be a rule, let .Jj = {Uj ~ Vi I i = 1, ... , j - I} and 
let ~ be a precedence on :F and let r- (resp. ~) be the RPO based on ;:: (and .J). We say 
that p is compatible with r- if there are terms t, t', ti, t~ such that 

1 r-..7 tj r- ti r-..7 Uj for i = 1, ... , n
 
I r-..7 t r- t' ~ r
 

Now Lemma 3.2 immediately gives the following generalization of:'emma 3.1. 

Theorem 3.2 Let R be a DTRS and. r- an RPO. If every rule in R is compatible with >-­
then R is quasi-reductive wrt. r-. 0 

Example 3.2 
R: f(x) --+ f(s(y)) ==> f(s(x)) --+ f(s(y))
 
We have f(s(s(x» -R f(s(x)), so --+R is not empty.
 
Trying backward substitutions we have to prove f(s(x)) r- f(x) and f(s(x» r- f(s(J(x))
 
which holds for no reduction ordering. Applying Theorem 3.2 we have to prove with .J ='
 
{I(x) ? f(s(y))}
 

.f(s(x» r- f(x) and' f(s(x» >-- f(x)?:..:r f(s(y» 

This holds for the RPO based on the empty precedence. 

For another method to prove quasi-reductivity we refer to [GW92]. For a method to decide 
whether R is quasi-reductive wrt. to a given LPO we refer to [Co90]. 
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Defin i t i on  3 .3  Let  „>; be a precedence on  f and  J a se t  of ineqvat ions .  Then the RPO ij
based on  E: and J is given by

Lsgx  i s JUJMx

2 . s_= . f ( s l , . . . . sn ) :7 t5g ( t1 , . . . , tm)
if sg t j t  for some i  or

f>g  and s>—gt j fo ra l l j  or
f rog  and { s l , . . . . sn } :73 -_J{ t1 , . . . , tm}

Here ZZJE-J denotes the  mult iset  extension of kJ  and >J  denotes the strict part of :J,
i .e.  s >‘j’ t if s_>:-__Jt, but not  [);-Js.

A.

One easily proves

Lemma 3 .2  Let > be the RPO based on  a precedence 2: and let EJ be the RPO based on it
and J .  Ifs & t then o(s)_>_-o(t) for all substitutions o with 0 (a)  Z: 0 (v )  for all u 2 v in J .
D

Let pa  ul _, v1‚ . . . ‚u„‚  _.. vn => l —-+ r be  a ru l e ,  let Jj : {Hi 2 vg | i=1 , . . . , j— 1}  and
let 2: be a precedence on  ‚77 and let > (resp. :7)  be  the RPO based on 3:: (and J ) We say
tha t  9 is compatible w i th  > if there are terms t ,  t ’ ,  t ; ,  t :  such that

i t "?  t,- >— 135:3 !“  fo r i=1 , . . . , n
1:3  It > t '  & r

Now Lemma. 3.2 immediately gives the following generalization of Lemma 3.1.

Theorem 3 .2  Let R be a DTRS' and,>— an  RPO. If every rule in R is compatible with >-
then R is quasi-reductive wrt. >—. []

Example 3 .2
R:  f(x)—> f(8(y)) => f(8(w))—>f(8(y))
We have f (s(s(z))  "*R f(s(x)) ,  so —>R is not empty.
Trying backward substitutions we have to prove f(s(x))  >- f (x )  and f(s(:r)) >- f(s(f(:c)))
which holds for no reduction ordering. Applying Theorem 3 .2  we have to prove with J =”
{f(x) 2 f(8(y))}

-f(8(=ß)) > f(x) undo f(8(z)) >— f (w):y f(8(y))

This holds for the RFC based on the empty precedence.

For another method to prove quasi-reductivity we refer to [GW92]. For a method to decide
whether R is quasi-reductive wrt. to a given LPO we refer to [C090].

7 .



4 Confluence of a DTRS 

\Ve study under which conditions a DTRS R is confluent. We assume that R is a quasi­
r"ductive. In this case --+ R is terminating and so it is sufficient to prove local confluence. 
The criterion to be developed for proving local confluence is based on critical pairs. Wc start 
with examples to demonstrate the problems arising from extra variables. 

Example 4.1 

~ R:	 O+y--+y
 
sex) + y --+ x + s(y)
 

x + y --+ z + z' ==> f( x, y) --+ z 
We have f(s(O),O) --+R s(O) and f(s(O),O) --+ 0, but not s(O) lR O. This example 
shows that a critical pair resulting from overlapping a rule with itself at top-level may 
be harmful. We call such a critical pair improper. 

b) R:	 a --+ c
 

g(a) --+ h(b)
 
h(b) --+ g(c)
 

g(x) --+ h(z) ==> f(x) --+ z 

We have f(c)R +- f(a) --+R b but not f(c) lR b. This example shows that variable overlappings 
may be harmful. 

Notice that in both examples R is a quasi-reductive DTRS. Since we do not want to consider 
variable overlappings and improper critical pairs we have to look for additional conditions 
that make them harmless. 

Definition 4.1 Let R be a DTRS.
 
a) A term v is strongly irreducible wrt. R if <7( v) is irreducible for every irreducible substi­

tution <7.
 

b) R is called strongly deterministic if for every rule Ul --+ vI, . .. ,Un --+ Vn ==> I --+ r in R
 
each Vi is strongly irreducible wrt. R.
 

Notice that both DTRSs in Example 4.1 are not strongly deterministic. The following system 
R for computing the Fibonacci numbers is strongly deterministic. 

Example 4.2 
R:	 fib(O) --+ pair(s(O), 0)
 

fib( x) --+ pair(Y2' yd, Y1 + Y2 --+ Y3 ==> fib(s(x» --+ pair(Y3,Y2)
 

Definition 4.2 Let R be a DTRS and Cl ==> 11 --+ rland C2 ==> 12 --+ r2 be rules in R that 
have no variables in common. Let p E O(lI) such that <7 = mgu(/2, Itlp) exists. Then 
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4 Confluence  o f  a DTRS

We s tudy  unde r  wh ich  cond i t i ons  a DTRS R i s  confluen t .  We assume tha t  R i s  a quasi-
rcductive. In this case ._.R is terminat ing and  so i t  is sufficient t o  prove local confluence.
The  criterion t o  be' deveIOped for proving local confluence is based on critical pairs.  We start
with examples to  demonstrate  t he  problems arising from extra variables.

Example 4 .  1

a) R : 0 + y —-> y
8($ )+y  ——> 50 + 8(y )

x+y  —~ 2+2“ :  min—+2
We have f ( s (0 ) , 0 )  “"R 3('0)-and f ( s (0 ) , 0 )  —-+ 0 ,  but not  s (0 )  1R 0 .  This example
shows that a critical pair resulting from overlapping a rule with itself at top-level may
be harmful. We call such a critical pair improper.

b) R :  a ——> c

9(a) ——> Mb)
Mb) —+ 9(6)

g(x )—>h(z )=>  f(x)  “* 2

We have f ( c )R  «— f ( a )  “*R b but not  f ( c )  i n  b. This example shows that  variable overlappings
may be harmful. '

Notice that  i n  both  examples R is a quasi-reductive DTRS.  Since we do not want t o  consider
variable overlappings and improper critical pairs we have to look for additional conditions
that  make them harmless.

Definition 4 .1  Let R be a DTRS.
a) A term v is strongly irreducible wrt. R if 0 (v )  is irreducible for every irreducible substi-
tution a .
b) R is called strongly deterministic if for every rule zu —-> v1, . . . , un  —> vn = l ——> r in R
each v; is strongly irreducible wrt. R .

Notice that both DTRSs in Example 4 .1  are not strongly deterministic. The following system _
R for computing the Fibonacci numbers is strongly deterministic.

Example 4 .2
R : fib(0) -> paid-9(0), 0)

fib(a=) --> pair(v2. m), zu + 92 —-> ya => fib(8(a=)) “> pair(y3.y2)

Definition 4 .2  Let R be a DTRS and Cl @ 11 —> r1 and 02 => lg —-> 1'2 be rules in R that
have no variables in common. Let p € 0(l1) such that a = mgv(lg, l1 / p) exists. Then

0(C1) ,0 (02 )  => U( l1 [7 '2 ]p )  = ”(TI)
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is a critical pair, It is called improper if the rules differ only by a variable renaming and 
11 == lIfp. otherwise it is called proper. Let C P( R) denote the set of proper critical pairs that 
can bE built by pairs of rules in R. 
,-\ rritiral pair C ===> S = t resulting from Cl ==> 11 1'1 and ('2 ==>. l2 .-. 1'2 is joinable if--+ 

r(s) LR T(t) for each solution T ofC wrt. Rand Var(lI,12)' 

Now we prove that a strongly deterministic and quasi-reductive DTRS is confluent if all 
proper critical pairs are joinable. Note that there are two problems related to this result: (i) 
Given a term v, is it strongly irreducible? (ii) Given a conditional equation C ==> s = t, 
is it joinable? Unfortunately, both of these problems are undecidable for a deterministic 
and quasi-reductive R. But we will develop tools to prove that v is strongly irreducible and 
C ==> s = t. is joinable wrt. R. 

Theorem 4.1 Let R be a DTRS that is strongly deterministic and quasi-reductive wrt. ~. 

R is confluent iff all critical pairs in C P( R) are joinable. 

Proof: Clearly, if R is confluent then all critical pairs in C peR) are joinable. So we now
 
assume that all critical pairs in CP(R) are joinable and pro~e by induction on >-st: Ift' R"'-::­

t -.:... R t" then t' lR t".
 
If t' == t or t" == t then t' lR t" holds. So assume t' R ~ t 1 R <-- t --+ R t2 ~R t". We will
 
prove t1 lR t2, then an inductive argument easily gives t' lR t".
 

Assume 

using Cl ==> II --+ rI, aI, position q in t
 
using C2 ==> [2 ..... 1'2, 0'2, position pin t
 

If the tip and tlq are disjoint subterms of t then t1 lR t 2 trivially holds. So we may assume 
that tip is a subterm of tlq. If t l> tlq, then t ~st tlq and we have t 1 lR t2 by induction 
hypothesis on tlq. So we assume t == tlq. Then we have t == O'I(ld and tip == 0'2(12). There 
are two cases: (a) p E O(ld and (13) p is a position in /1 with itlp a variable or p is not'a 
position in /1 . 

(et) : In this case there is a critical pair C ==> SI = S2 and a substitution T such that 
tl == T(St} and t2 == T(S2) and T is a so~ution of C wrt. Rand Var(lt, 12), If this critical 
pair is proper then it is in C peR) and hence joinable. This gives t1 1 t2. So aSsume 
that this critical pair is improper. Then t == O'I(lt) == 0'2(l2) and we may assume that 
Cl ==> II ..... 1'1 and C2 ==> 12 ..... 1'2 are identical, Le. Ci ==> 1i ..... ri == C ==> 1 ..... I' for 
i = 1,2. We have O'l(X) == 0'2(X) for all x E Var(l) and we will prove O'I(X) lR 0'2(X) for all 
x E Var(C ==> 1 1'). Since tl == 0'1(1') and t2 == 0'2(1') this will prove t1 lR t2. 

Let C = Ul ..... Vl, , Un ..... Vn and let O'~, O'~ be irreducible substitutions such that O'i( x) ~R 

O'Hx) for i = 1,2 and all x E £Var(C ==> 1 -+ 1'). It is enough t) prove that O'~ (x) == O'~(x) for 
all x E £Var(C ==> 1 -+ 1'). If x E Var( Ul -+ vd then x E Var(vd since Var(Ul) ~ Var(I). 
We have O'~ (vd R ...-::- 0'1 (Ut) == 0'2(ut> ~ O'~( Vt) and O'H vd is irreducible since O'i is 
irreducible. (Here we need that R is strongly deterministic and hence the Vi are strongly 
irreducible.) Since t ~ st O'i(ud we have O'~ (vd lR O'~( vd by induction hypothesis on O't (ud. 
This gives O'~ (VI) == O'~( Vt) and hence O'~ (x) == O'~( x). Now assume O'~ (x) == O'~(x) for all 
x E Var( Ut -+ Vt. ... , Ui -+ vd - Var(l), we have to prove O'Hx) == O'~(x) for x E Var(Ui+t -+ 

vi+d - Var(l). If x E V are~i+d then this is trivial since C ==> 1 -+ ris deterministic. So let 
x E V areVi+!). We have So in the following picture since O't(y) LR 0'2(Y) for all Y E V areUi+!). 
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is a critical pair. It is called improper if the rules differ only by a variable renaming and
l; E l l / p .  otherwise it is called proper. Let CP(R)  denote the set of proper critical pairs that
can be built by pairs of rules i n  R
1 cr i t ical  ;))air‘ C => s =: 1‘ resul t ing  from C1  => [1 -—~ r l  and  C2 => l2 ——+ r;  is joinable if

r ( s )  e t ) f o r  each solution r o fC  wrt R and Var  (11,12). —

Now we prove that a strongly deterministic and quasi-reductive DTRS is confluent if all
proper critical pairs are joinable. Note tha t  there are two problems related to this result: ( i )
Given a term '0, is it strongly irreducible ? (ii) Given a conditional equation C => s = t ,
is it joinable ? Unfortunately, bo th  of these problems are undecidable for a deterministic
and quasi-reductive R .  Bu t  we will develop tools t o  prove tha t  v is strongly irreducible and
C => s = t, is joinable wr t .  R .

Theorem 4 .1  Let R be a DTRS that is strongly deterministic and quasi--reductive wrt. >—.
R is confluent ifi all critical pairs m CP(R)  are joinable. »

Proof: Clearly, if R is confluent then all critical pairs in  CP(R)  are joinable. So we now
assume that all critical pairs in C P( R )  are joinable and prove by induction on >=“: If t’ R +3:—
t—:—>R t” then t' iR  t”.
If t ’ _= t or t” : t then t' 13  t” holds. So assume t’ R<—— t l  Re— t ——>R tz  -—:—>R t”.  We will
prove t1 LR t2,  then an inductive argument easily gives t' l g  t”.

Assume

t *3  t l  using C1 =>l1——r r l ,  01 ,  position q i n t
t —>R t2 using C2 => l2 —> 7‘2, 02 ,  position p in t

If the t /  p and t / q  are disjoint subterms of t then t l  l R 12 trivially holds. So we may assume
that t /p  is a subterm of t /q .  I f t  [> t / q ,  then t >“ t / q  and we have tl 1R tz by induction
hypothesis on t /q .  So we assume t -:-_= t /q .  Then we have t E 01(l1) and t /p =“: 02(12). There
are two cases: (a )  p € 0(l1) and (ß )  p is a position in ll with i l /p  a variable or p is not'a
position in  l l .

( a )  : In this  case there is a critical pair C => 31 = 32 and a substi tution 7 such that
t l  -:—: r ( s l )  and tz  _=.. r ( s2 )  and r is a solution of C wrt .  R and Var-(11,12). If this critical
pair is proper then i t  is in CP(R)  and hence joinable. This gives t l  ], t2 .  So assume
that this critical pair is improper. Then t E 01(11) E 02(l2) and we may assume that
C1 ==> l1 ——+ T1 and C2 => l2 —-> r2 are identical, i .e.  C,- => 1; ——> r,- E C => l ———+ r for
i = 1,2.  We have 01(3) E 02(3) for all 1: € Var( l )  and we will prove 01(3) iR  02(a:) for all
a: E Var(C => l —-> r ) .  Since tl  E 01(r) and tz a 02(r) this will prove t l  iR  t2.
Let C = zu ——> v l ,  . . . , an ——-> vn and let a i ,  05 be irreducible substitutions such that 0,-(a:) —"> R
0£(a:) for i == 1,  2 and all 2: € 8Var(C => l ——> r ) .  It is enough t.) prove that 01(3) 5 03(3) for
all a: € £Var(C => l ——+ r ) .  If :1: € Var(u1 —-> v1). then 9: € Var(v1) since Var(u1) g Var(l) .
We have aufm) R ; 01(u1) E 02(u1) 3—» 05(v1) and 0£(v1) is irreducible since 0:- is
irreducible. (Here we need that R is strongly deterministic and hence the 1)" are strongly
irreducible.) Since t >-,; er,-(ul) we have 01(01) i n  05(121) by induction hypothesis on 01(u1).
This gives 01(v1) E Jahn) and hence 01(3) “.:—*". 0501:). Now assume 01(3) E 0&(3) for all
a: € Var(u1 «+ v1, . . . , a; —-—+ “v,-) - Var( l ) ,  we have to prove 01(3) £ 05(3) for a: € Var(u,-+1 _»

v‚-+1)— Var(l) .  If a: € Var(ii,-+1) then this is trivial since C => l —> r is deterministic. So let
a: E Var(v,-+1). We have so in the following picture since 01(y) iR  ag(y)  for all y € Var(u,-+1).
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The term 81 exists by induction hypothesis on 0"1 (Ui+ d since t »- st 0"1 (ui+d, and 82 exists by 
induc.tion hypothesison·0"2(ui+d. This proves O"'(vi+d !R O"~(vi+d and now O"~(x) == O"~(x) 
follows as above. . 

(;3) : In this case there is a variable x E Var(lt) such that 0"2 (x) ---> R to with C2 ===> 12 - r2 

and 0"2. Define r to be the substitution r(y) == 0"1(Y) if Y =f. x and r(x) == to. Let r' be an 
irreducible substitution with r(y) ~R r'(y) for all y. Then we have 

t = 0"1(l1) -R t1 == O"l(rt} ~R r(rl) ~R r'(rd 
t = O"l(ld -R t2 == t[0"2(r2)]p ~R r(lt) ~R r'(lt) 

(Here we assume that t and Cl ===> Lt - r1 have no variables in common). We prove that r' 
is a solution of Cl wrt. Rand Var(ld. Then we have r'(lt) -R r'(rl) and so t l !R t2. 

Let Cl = Ul - Vl, ... ,Un -;. Vn ' We know that O"l(Ui) ~R O"l(Vi) and have to prove 
r'(ui) ~R r'(vi). We have r'(ui) R ~ r(ui) R ~ O"l(Ui) ~R O"l(Vi) ~R r'(vi). By 
induction hypothesis on O"l(U;) - notice that t »-st O"l(Ui) holds by Corollary 3.3 - we have 
r'(ut} ! r'(vi) and hence r'(ut} ~R T'(Vi) since T'(vd is irreducible. SO T' is indeed a 
solution of Cl wrt. Rand Var(ld. 0 

As mentioned above, it is undecidable whether a DTRS is strongly deterministic. But there 
is a sufficient condition that is eaSily testable. 

Definition 4.3 LetR be a DTRS 
a) A term v is absolutely irreducible Wt't. R if for all p E O(v) and each rule C ~ 1 -;. r in 
R v / p and 1 are not unifyable. 
b) R is absolutely deterministic if for every rule Ul -;. VI, ... , Un -;. Vn ===> I -;. r in Reach 
Vi is absolutely irreducible wrt. R. 

In many applications a DTRS is used to define functions over 'free constructors'. If R "is 
such a system and all right-hand sides of conditions in R are constructor terms then R is 
absolutely deterministic. 

Lemma 4.1 Let R be a DTRS.
 
a) If v is absolutely irreducible wrt. R then v is strongly irreducible wrt. R.
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1(ui+1 02(Ui+1))

0 i (v i+1 )  R 8o 0 '2 (v i+1)

*

R

The term 31 exists by induction hypothesis on  o;(u;+1)  since t >3; 01(U;+1), and 32 exiSts by
induction hypothesis -on-og(ui+1). This proves o’(v,-+1) iR 05(vi+1) and now o{(:r) £ 030:3)
follows as above. '

(ß )  : In th is  case there-is a. variable 3: € Var( l1)  such that  02(x)  «+3 to with Cg => l2 —> 7'2
and 0'2. Define 7 t o  be the  subst i tut ion r (y )  “=— 01(y) if y $ 3: and f (x )  E to. Let 1" be  an
irreducible substitution with r(y) “LR ‘r’(y) for all y. Then we have

t
t

0101)  ""R '31 E 0101) ;}?  T (T1)  _Z’R T 'U‘ l )

01(11 )_* t  5 t l 02 (7 ’2 ) lp  "LR 7 '01 )  "LU? T'Ul )

(Here we assume that  t and C; => 11 —-+ r1 have no variables in common). We prove that r’
is a solution of C1 wrt. R and Var—(11). Then we have 7"(11) —+R T’(r1) and so t l  iR t2.

Let Cl  = u l  ——> m, . . . ‚un  —a» v„ .  We know that 01(ug) —i—>R 01(v;) and have to prove
r’(ug) -—*->R r’(v,-). We have T'(u‚-) R e}— T(u‚-) R <—*— 01(u‚-) —*->R ( “ (m) —*—>R T'(v‚-). By
induction hypothesis on 01(ug) — notice that t >“  01 (11;) holds by Corollary 3.3 —- we have
r’(u‚-) l T'(’vg) and hence r'(u,-) —*—>R r’('u,-) since T'(v1) is irreducible. So 1" is indeed a
solution of 01 wrt. R and Var(l1). Cl
As mentioned above, it is undecidable whether a DTRS is strongly deterministic. But there
is a sufficient condition that is easily testable. '

Definition 4 .3  Le tR be a DTRS
a) A term 1: is absolutely irreducible wrt. R if for all p 6 0 (0 )  and each rule C => l -? r in
R 'v/p and l are not unifyable.
b} R is absolutely deterministic if for every rule ul —-+ 2:1,. . „u„  —> vn => 1 —> r in R each
u,- is absolutely irreducible wrt. R.

In many applications a DTRS is used to define functions over ’free constructors’. If R 'is
such a system and all right-hand sides of conditions in R are constructor terms then R is
absolutely deterministic.

Lemma 4.1 Let R be a DTRS.
a) If v is absolutely irreducible wrt. R then u is strongly irreducible wrt. R .
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b) If R is absolutely deterministic then R is strongly deterministic.
 
c) It is undecidable whether a quasi-reductive DTRS is strongly deterministic.
 

Proof:
 
a) Let a be an irreducible substitution. If a(v) is reducible then there is a position pE O(v)
 
and a rule C===?l --. r in R such that 1 matches a( v / p), so 1 and v / pare 11llifyable. This is
 
impossible if v is absolutely irreducible.
 
b) This follows from a).
 
c) We reduce Post's Correspondence Problem (PCP) to our problem. Let L = {O:'l"",O:'m}
 

be an alphabet and A = aI, ... , an and B = bl , ... ,bn two lists of words over L. Then
 

By abuse of notation we identify the letters O:'j with unary function symbols O:'j(x), then the
 
words aj and bj become terms aj(x) and bj(x). respectively. We need a new constant 0 and
 
new function symbols f,g,h,h' and use lists over {1; .. . ,n}. Let
 

R:	 f(nil) --. 0 g( nil) --. 0
 
f( i.l) --. aj(f(l)) g(i.l) - bj(g(l))
 
eq(x,x) --. true
 
eq(f(i.l),g(i.l)) --. true ===? h( i.l) --. nil
 
h(/) - h(/) ===? h'(l) - l
 

Let Ro consist of the rules in R except the last one. Then v == h(l) is not strongly irreducible 
wrt. Ro iff PC P( A, B) holds, so R is strongly deterministic iff PCP( A, B) does not hold. 
Notice that R is a quasi-reductive DTRS. Since PCP is undecidable, part c) of the Lemma 
is proved. 0 

We now develop a sufficient criterion for confluence of a quasi-reductive and strongly deter­
ministic DTRS. It is based on contextual rewriting. We use here a more restrictive version of 
contc.. ~uol! rewriting than that used iLl [BG89]. It is easier to implemeflt and results in easier 
proofs. 

Let C = {U1 - VI, ..• , un --+ vn } be a set of oriented equations, called here a context. We 
denote by C its skolemized form, i.e. C results from C by replacing each variable x by a new 
constant x. If t is a term, then I results from t by replacing each x E V areC) by the constant 
x. We write s --+ R,C t if s --+ RuC .t. Obviously, we have' 

Lemma 4.2 If s ~R,C t then a(s) ~R a( t) for every solution a of C.	 o 

Definition 4.4 Let R be a DTRS that is quasi-reductive wrt. >- and let C ==> s = t be a 
critical pair resulting from Cj ==> lj --+ rj for i = 1,2 and a = mgu(ltfp, 12). We call C ==> 
s = t unfeasible if there are terms to, tll t2 such that a(11) >-"t to, to ~R,C. tll to ~R,C t2 
and t1, t2 are not unifyable and strongly irreducible. We call C ==> s = t context-joinable if 
there is some to such that s ~R,C to, t ~R,C to. 

Note that in the definition of an unfeasible critical pair C ==> s = t we have a(h) >- u if 
u --+ v in C and V are u) ~ V area(1d). So we may choose to to be any such term u. In many 
cases a quasi-reductive and strongly deterministic DTRS can be-proved-to be confluent by 
the following Theorem. 
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b} If R is absolutely deterministic then R is strongly deterministic.
c} It is undecidable whether a quasi-reductive DTRS is strongly deterministic.

Proof:
a) Let a be an irreducible substitution. If 0(1)) is reducible then there is a position p 6 0(1))
and a rule C => l —+ r in  R such tha t  l matches o (v /p ) ,  so l and v /p  are unifyable. This is
impossible if v is absolutely irreducible.
b )  This follows from a ) .
c)  We reduce Post’s Correspondence Problem (PCP)  to our problem. Let E = {0:1, . . . ‚a,-„}
be  an alphabet  and A = a1 ,  . . . , an  and B = b1,  . . .  ‚ bn  two lists of words over )3. Then

PCP(A ,B)  iff chairmen“Ebiibg2...bgk f o r some lg i jgn , j=1 , . . . , n .

By abuse of notation we identify the  letters a, wi th  unary function symbols (1,;(3), then the
words a]- and  bj become terms az)-(:::) and bJ-(x), respectively.  We need a new constant  O and
new function symbols fig ,  h ,h ’  and use lists over { l ‘ , .  . . ,  n } .  Let

R :  f (n i l )—>0 g(nil)—-+U
fun!) -—+ «z,-(f(x)) gut )  —— man 1555 n

eq(x,:r)  —+ t rue
eq ( f ( i . l ) , g ( i . l ) )  —> t rue  => h ( i . l )  ——> n i l  1 g i 5 n
h( l )—h( l )  => h’(l)—+l

Let R0 consist of the rules in R except the last one. Then t) E h(l) is not strongly irreducible
wr t .  R0 iff PCP(A ,  B )  holds, so R is strongly deterministic iff PCP(A ,B)  does not hold.
Notice that R is a quasi-reductive DTRS. Since PCP is undecidable, part c) of the Lemma
is proved. E]

We now develop a sufficient criterion for confluence of a quasi-reductive and strongly deter—
ministic DTRS.  It is based on contextual rewriting. We use here a more restrictive version of
content“! rewriting than that used in [BG89]. It is easier to implement and results in easier‘
proofs.
Let C : {ul ——> v l ,  . . . ,  u,, —-+ vn} be a set of oriented equations, called here a context. We
denote by Ü its skolemized form, i.e. Ü results from C by replacing each variable a: by a new
constant 35. If t is a. term, then t results from t by replacing each a: E Var(C)  by the constant
Tr“. We write 3 “912,0 t if E “’RLJZ" t .  Obviously, we have-

Lemma 4.2  If s —:—>R,c t then 0(3) ‘L’R o( t )  for every solution 0' of C .  ‘ CI

Definition 4.4  Let R be a DTRS' that is quasi-reductive wrt. >- and let C => s = t be a
critical pair resulting from C,- = l,- —+ r,- for i = 1 ,2  and a = mgu( l1 /p , l2 ) .  We call C =>
s = t unfeasible if there are terms to,t1,t2 such that o(l1) >3; to, to —'—>R‚C. t1, to —'>R,C 132
and t1 , t2  are not unifyable and strongly irreducible. We call C => s = t context-joinable if
there is some to such that s -:-’R,C to ,  t “**-+35 to .

’Note that in the definition of an unfeasible critical pair C => 8 = t we have 0(l1) >— u if
u -> v in C and Var(u)  g Var(a(l1)). So we may choose to to be any such term ii. In many
cases a quasi—reductive and strongly deterministic DTRS can bevproved to be" confluent by
the following Theorem.
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Theorem 4.2 Let Jl be a DTRS that is quasi-reductive wrt. >- and strongly deterministic. 
If every critical pair in C P( R) is either unfeasible or context-joinable then R is confluent. 

Proof: We repeat the proof of Theorem ..t.1. The only point we have to consider is the first 
case in (Q): Let C ===> 8, = 82 be a proper critical pair resulting from ei ===> li ---+ ri, i = 1,2, 
and (j = mgu(ltfp, l2)' There is a solution r of e such that t == r(j(lt} and t l == r(st}, t2 == 
r(s2)' By induction hypothesis on t we may assume: If Si R ~ S ~R s" and r(j(lt} >-st s 
then Si lR s". Then we have to prove t l lR t2. 

e ===> SI = S2 is not unfeasible: Otherwise there are to, t~, t~ such that (j(lI) >- st to, to ~R,e 

t~, to ~R t~ and to, t~ are not unifyable and strongly irreducible. Since r is a solution of C 
we have by Lemma 4.2 that r(j(lt} >-st r(to), r(to) ":::""'R r(t~) and r(to) ":::""'R r(t~). Let J.l 
be an irreducible substitution such that r(x) ":::""'R J.l(x) for all x. Then r(to) ":::""'R J.l(to)and 
r(to) ~R J.l(t~) and J.l(to) t J.l(t~). By induction hypothesis on r(to) we have J.l(t~) lR J.l(t~). 
But this is impossible since J.l(to) and J.l(t~) are irreducible. 

So e ===> 81 = S2 is context-joinable. Since r is a solution of C we have tl == TeSt) lR r(s2) == 
t2 by Lemma 4.2 0 

Let e ===> s = t be a critical pair of some R. If s == t then it is called trivial. A trivial critical 
pair is always context-joinable. If C contains u ---+ a and u -+ b, where a and b are distinct 
irreducible constants, then e ===> s = t is unfeasible. But there are less' trivial examples 
where Theorem 4.2 is applicable. 

Example 4.3 (see [BG89j)
 
We specify the Qu.icksort-algorithm
 

R:	 o~ x -+ true (1) 
sex) ~o -+ false (2) 
sex) ~ s(y) -+ x ~ l' (3) 
app( nil, 12) -+ l2 (4) 
app(x.lt, 12) -+ x.app(/t, 12) (5) 
split(x, nil) -+ pair(nil, nil) (6) 

x ~ y -+ false,split(x,/) -+ pair(lt, 12) ::::;.	 split(x, y.l) -+ pair(y.lI, 12) (7) 
x	 ~ y -+ true,split(x,/) -> pair(lt, 12) ===> split(x, y.l) -+ pair(lt, y.l2) (8) 

sort(nil) -+ nil (9) 
sort(x.l) -+ app(sort(lt), x.sort(/2» (lO) 

There is only one proper critical pair, it is C ===> pair(y.lt, 12) = pair(lt, y.l2) with C == x ~ 

y -+ true, split(x, I) -> pair(lt,l2),x ~ y -+ false,split(x, I) -+ pair(li,l~) and it results from 
rules (7) and (8). Since C contains x ~ y -+ false and x ~ y -+ true, this critical pair 
is unfeasible. R is strongly deterministic and R is quasi-reductive wrt. to a semantic path 
ordering [St93j, [Ge92j. So we have a simple proof that R is confluent. 

5 On the descriptive power of --+R 

Any conditional term rewriting system R can naturally be regarded as a set· of conditional 
equa.tions. So the R-equality =R is well-defined (for details see below). If R is a standard 
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Theorem 4 .2  Le t  R be a DTRS  that  is quasi-reductive wrt .  > and  strongly deterministic.
If every critical pair in  CP(R)  is either unfeasible or  context-joinable then R is confluent.

Proof: We repeat the proof of Theorem 4.1. The only point we have to consider is the first
case in  (a ) :  Let C :> 31 = 32 be  a proper critical pair resulting from C,- => l; —— rh i  : 1,  2 ,
and a = mgu( l1 /p , lg ) .  There is a solution 1' of C such that  t E ro ( l1 )  and £1 E 7(31),t2 E
7(52). By induction hypothesis on t we may assume: If s' R <—'—— s im  s” and 7'0'(l1) >>“ s
then  s’ iR  s”. Then we have to  prove t l  iR  t2.

C => s1 = 32 i s  no t  unfeasible: Otherwise  there are t o ,  if), tg such  t ha t  o ( l1 )  >“ t 0 , t 0  —*->R‚c
t3, to —*>R ig and ti), tg are not unifyable and strongly irreducible. Since 1' is a solution of C
we have by Lemma 4.2 that ro(l1) >“ T(to),r(to) "LR 7(t6) and r(to) —*>R f(tg). Let p
be an irreducible substi tution such that  7 (3 )  %R „(x )  for all x .  Then f ( t o )  —*—>R Mtg)  and
r(t0) —'->R Mtg) and #06 )  $ Mtg). By induction hypothesis on 1'(to) we have „(im 13  Mtg).
But this is impossible since Mtg) and Mtg) are irreducible.

So C => s1 = 32 is context-joinable. Since 1' is a solution o fC  we have tl  ?. T(81) i n  1"(32) E
tz by Lemma 4.2 Ü

Let C => s = t be  a critical pair of some R .  If s E t then  i t  is called trivial. A trivial critical
pair is always context—joinable. If C contains u ———> a and u -—> b ,  where a and b are distinct
irreducible constants .  then  C =» s = t is unfeasible. Bu t  there are less trivial examples
where Theorem 4.2 is applicable.

Example 4 .3  (see [BG89]}
We specify the Quicksort-algorithm

R : O 5 x —> true (I)
s(:r) 50  ——> false (2)
3(33) S SUI") “* «”C S 3' (3)
app(nil‚  12) -—> 12 (4)
app(:r.l1,l2) —> z.app(l1,l2) (5)
split(:c, ni l)  —> pair(nil, ni l)  (6)

a: g y -—> false,split(x,l)  —-> pair(ll,l2) => split(:c,y.l) —-> pair(y.11‚lg) (7)
a: g y —+ true,spl i t (x , l )  ——+ pair(ll,l2) => split(:z:, g.!) -+ pair(l1,y.l2) (8)

sort(nil) —> nil (9)
split(:r,l) —-> pair(l1, l2) => sort(:r.l) —+ app(sort(l1), z.sort(l2)) (10)

There is only one proper critical pair, it is C ==> pair(y.11,lz) = pair(l1,y.l2) with C _=.. z S
y —-> true,split(a:, l )  --+ pair(l1,l2), a: S y —> false,split(a;,l) —» pair(l‘i, la) and it results from
rules (7) and (8). Since C contains :: 5 y —> false and a: g y —+ true, this critical pair
is unfeasible. R is strongly deterministic and R is quasi-reductive wrt. to a semantic path
ordering [St93], [Ge92]. So we have a simple proof that R is confluent.

5 On the descriptive power of “+12

Any conditional term rewriting system R can naturally be regarded as a set-of conditional
equations. So the R-equality = R is well-defined (for details see below). If R is a standard
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system without extra variables then the following fact is well-known: If R is confluent then 
-*- R = =R. \Vf> prove a similar result for strongly deterministic systems. \Ve start with an 
example to demonstrate the problems arising from directed conditions. 

Example 5.1 
R: g(x) - hex) 

hex) - g(y) => J(x) - y 
Let >- be the RPO with precedence J > g > h. Then R is quasi-reductive wrt. >-. We have 
CP(R) = 0, so R is terminating and confluent. We have J(x) =R x but not j(X)!R x. So 
.....::-. R is properly included in =R. Notice that R is not strongly deterministic. 

We now formally define =R. 

A conditional equation over a signature sig = (S, F, T) is a formula of the form 

A conditional equational system E is a set of conditional equations. We are going to define 
=E· 

Let E be a conditional equational system and let G be a set of unconditional equations. We 
first define an inference system depending on E and G. It consists of the following five rules 

Reflexivity r- t = t 
Symmetry tl = t2 r- t2 = t1 

Transitivity t1 = t2, t2 = t3 r- tl = t3 
Congruence t 1 = SI, ... ,tn = Sn r- J(tl, ... ,tn ) = j(SI,' .. ,sn) 

if j(tl, ... , tn), J(SI, ... , sn) are terms 
E- Application a(ud = a(vd, ... ,a(un ) = a(vn ) r- a(s) = a(t) 

if a(Ui) = a( vd in (; for i = 1, ... , n 
Ul = VI, ••• , un = vn => S : = t in .t; 

We write G r- E U = v if U = v can be deduced by this inference system. 

Next we define an infinite sequence (Edi>o of unconditional equational systems as an ap­
proximation of E: -

Eo {u = v I0 r- E U = v} 
Ei+l = Ei U {u = v I Ei r- E U = v} 

Now 

U =E v iff u = v in some Ei, i ~ O. 

The relevance of this definition is based on Birkhoff's Theorem: u = E v iff u = '0 holds in 
every model of E. 

Now let R be a DTRS. We associate to R the conditional equational system 

E(R) = {Ut = V},"',Un = Un ===:} 1= r I Ut - V},"',Un - Vn ===:} 1- r in R} 

and simply write U =R v instead of U =E(R) v. 
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system without ex t ra  variables then the  following fact is  well-known: If R is confluent then
mg = 2n .  We prove  a s imi l a r  r e su l t  for s t rong ly  de t e rmin i s t i c  sy s t ems .  We s ta r t  w i th  an
example t o  demonstra te  t he  problems arising from directed conditions.

Example  5 .1
R:  g(a:) —+ h(:r)

Mr) -> 9(y) = f(x) —> y
Let >- be the RPO with precedence f > 9 > h .  Then R is quasi-reductive wrt. >». We have
CP(R)  = @, so R is terminating and confluent. We have f (x )  : 3  a: but not f (x )  lR a:. .30
«———+3 is properly included in =R- Notice that R is not strongly deterministic.

We now formally define :3 .

A conditional equation over a signature s ig  : [S.,]:1 1') is a formula of t he  form

I t ]  : m, . . . ‚un:  vn => S= t

A conditional equational system E is a set of conditional equations.  We are going to define
___E.

Let E be a conditional equational system and let G be a set of unconditional equations. We
first define an inference system depending on E and G' . It consists of the following five rules

Reflexivity l- t = t
Symmetry t1 : t2 F- t2 = t1
Transitivity t ;  = t2 ,  t2 = t3 l- t1 = t3
Congruence t l  : .51, . . . , t n  = sn  l- f ( t 1 ,  . . . , t n )  = f (31 ,  . . . , sn )

if f ( t 1 , . . . , t n ) , f ( s1 ,  . . . , sn )  are terms
E-Application (f(m) : 0(v1),. . .‚a(u„) : (f(vn) l- a ( s )  : 0(t)

if o(u‚-) : o'(v‚-) in (? for i = 1 , . . . , n
u l  : v l , . . . , u„ ‚=  vn => 5 : : t i n  b’

We write G l-E u = v if u = 12 can be deduced by this inference system.

Next we define an infinite sequence (E,-);ZO of unconditional equational systems as an ap-
proximation of E :

EO : { uzv lß l—Eu=v }
Eg+1 = E;U{u=v |E‚ - |—Eu=v}

Now

uzgv  iff u :v in someE. - , i 20 .

The relevance of this definition is based on Birkhofi' ’s Theorem: u : 5  v ifl' u = 'v holds in
every model of E .

Now let R be a DTRS. We associate to R the conditional equational system

E(R)={u1  = v1 , . . . , u„=  vn => l= r | u1  —>vl,...,u„—>‘v„ =>l—->r in  R}

and simply write u =: R 9 instead of u =E(R) v.
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Theorem 5.1 Let R be strongly deterministic, terminating and confluent. Then s ~R t 
iff S =R t. 

Proof: Let (Eik~o be the approximation of E(R) and =i = =E.. Let (Rik~o be the 
approximation of R and ~i = ~ H,' 

a) s ~R t implies S =R t: Induction on i proves -+i ~ =i· This gives -+R ~ =R and 

~R~ =R· 
b) d = R t implies s ~ R t: We prove by induction on i that =i <;;; ~ R for all i ~ O. Then 
=R <;;; ~ R immediately follows. 
For i = lJ we trivially have =0 = ~o <;;; ~ R. Let i > O. Then =i is the smallest 
congruence relation with =i-l <;;; =i and 0'( I) =i 0'( r) whenever p == Ul -+ VI, ... , Un ===* I -+ r 

is in Rand 0'( Uj) =i-l 0'( Vj) for 1 ~ j ~ n. Also ~ R is a congruence relation. So 
it is enough to prove 0'(/) .....:::-.. R <1( r) if <1( Uj) =i-l 0'(Vj) for 1 ~ j ~ n. Let <1' be the 
irreducible substitution with a(x) ~R a'(x) for all x E Var(p). By induction hypothesis 
we have a( Uj) ~ R <1( Vj) and hence a'e Uj) ~R a'(Vj). Since ~ R is confluent and a' (Vj) 

is irreducihle we get a'(uj) ~R a'(vjl) for 1 ~ j ~ n. This implies <1' (1) -+R <1'(r) and hence 

we have a(l) ~R <1(r). 0 

We call R logical if ~ R equals =R. By Theorem 5.1, R is logical if R is strongly determin­
istic, quasi-reductive and confluent. For some applications quasi-reductivity is a requirement 
that is too hard. The rewrite relation -R may be computable but not terminating. So the 
question arises whether Theorem 5.1 holds true if R is allowed to be non-terminating. The 
proof of Theorem 5.1 shows that the answer is 'yes' if R is weakly terminating, i.e. for every 
t there is an irreducible term t' such that t ~R t'. The next example shows that the answer 
to the question is 'no' in general. 

Example 5.2 
R:	 a-b f(a)-a f'ea) -+ a
 

b -+ a f( b) -+ a f'(b) -+ a
 
j'(x) -+ f(x) ==> g(x) -+ x
 

R is a normal conditional rewrite system in the sense of [D090j. It is strongly deterministic 
since f( x) is strongly irreducible, but R is not terminating and not absolutely deterministic. 
To prove confluence one easily shows by induction on l>: If tl R +-- t - R t2 then there 
. . h <1 d <1 (H <1 d ) Bzs a term S Wlt tl -=-+ R s an t2 -=-+ R s. ere t -=-+ s enotes t == s or t -+R s. Y 
Lemma 2.5 in [Bu80] this proves that -+R is indeed confluent. We have I(a) =R f'ea) and 
hence g(a) = R a. But g(a) !R a does not hold. So R is not logical. 

Now. we prove that the result of Theorem 5.1 still holds if the termination assumption is 
replaced by stronger restrictions on the rules in R. 

Theorem 5.2 Let R be a confluent DTRS such that for every role Ul -+ Vt. • •• , Un -+ Vn ==> 
1-+ r in R 

Vi is absolutely irreducible and 
V arevd n V areut. ... , uil ::= 0 

for 1 ~ i ~ n. Then s ~R t iff S =R t. 

Proof: We repeat the proof of Theorem 5.1. Part a) carries over directly. For b) we have to 
show: 
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Theorem 5 .1  Le t  R be strongly de terminis t ic ,  terminat ing  and  confluent.  Then s <—*-->R t
ifl 's 2} ;  l .

Proof: Let (E,-)»o be  the  approximation of E (R)  and z,; : =E.- Let (R,-);” be  the
approximation of R and _.,- = “*R.‘ _
a) 3 «1—93 t implies s =R  t: Induction on i proves —->‚- 9 =,-. This, gives **R _C_ =R  and
*—*-*R C.; =12-
b)  s :R  t implies  s +—'—+R t :  We prove by i nduc t ion  on  i t ha t  :=; g <—:—>R for all i 2 0 .  Then
=R (_; <——'——+R immediately follows.
For i = U we trivially have :0 : +—*—->0 g «"—rn. Let i > 0 .  Then =.- is the smallest
congruence relation with =,-_1§=,- and a ( l )  =,- a ( r )  whenever p E zu -—> v l ,  . . . ,  an => l —-> r
is in  R and 0 (u j )  ==,-_1 0(v j )  for 1 S j 5 n .  Also eine is a congruence relation. So
it is enough to  prove GU) <—:—>R 0'(r) if 0 (u j )  =.-..1 0(1),) for 1 5 j g 12. Let 0’ be the
irreducible substitution with 0(3)  ;R  0'(:z:) for all a: E Var(p) .  By induction hypothesis
we have am)-) +——'—-+R 0(vj) and hence 0"(uj) <—*—>R o’(vj). Since “"R is confluent and cr’(‘vj)
is irreducible we get a'(u,-) LR o’(vj,) for 1 g j g n .  This implies a’(l) —-—>R a'(r) and hence
we have JU) <—'i—+R cr(r). - Cl
We call R logical if «in; equals zn .  By  Theorem 5 .1 ,  R is logical if R is strongly determin-
istic,  quasi-reductive and confluent. For some applications quasi-reductivity is  a requirement
that  is too hard.  The rewrite relation ——+R may be computable bu t  not terminating. So  the
question arises whether Theorem 5.1 holds true  if R is allowed to  be non-terminating. The
proof of Theorem 5.1 shows that  the  answer is ’yes’ if R is  weakly terminating, i .e .  for every
t there is an irreducible term t' such that t ——'—-> R t’ . The next example shows that the answer
to the  question is  ’no’ i n  general.

Example 5 .2
R:  a—rb  f(a)—+0. _ f (a )—ea

bra  f(l’)“ML f’lbl—ea
f ( x )  -—+ f ( x )  => g(:z:) -—+ a:

R is a normal conditional rewrite system in the sense of [D090]. It is strongly deterministic
since f ( x )  is strongly irreducible, but R is not terminating and not absolutely deterministic.
To prove confluenCe one easily shows by induction on l>.' If t l  R 4—— t —->R tz then there
is a term 3 with t1 i n  s and tz gig s .  {Heret & 3 denotes t E s o r t  —+R 3 . )  By
Lemma 2.5 in [Hu80] this proves that "*R is indeed confluent. We have f (a)  :p; f’(a) and
hence 9 (a )  :3  (1. But g (a)  i n  a does not hold. So R is not logical.

Now ‚we  prove that the result of Theorem 5.1 still holds if the termination assumption is
replaced by stronger restrictions on the rules in R .

Theorem 5 .2  Let R be a confluent DTRS such that for every rule ul —> v l ,  . . . ,  u,. -—-> v„ =
l _» r in R

v,- is absolutely irreducible and
Var(v,-) n Var-(v.1, . . . , tag) = @

f o r l  S ign .  Thens i—LRt  ifi s zg t .

Proof: We repeat the proof of Theorem 5.1. Part a) carries over directly. For b) we have to
show:
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Claim: If p == UI - VI,"" Un -+ Vn ====> l -+ r III Rand 0'( Uj) !R 0'( Vj) then there is a 0" 

such that O"(u)} -:-R a'(vj} for 1 ~ j ~ 11 and O'(x) ~R O"(x) for all x E Var(p). 

From this claim we get a'(l) -R a'(r) and a(/) ~R a(v). Then the prOof of Theorem 5.1 
can be carried over. 

Let the assumption of the claim hold true. We will define 0" by induction on j. To do so 
we need the following fact: If v is absolutely irreducible and r( v) ~R w then w ~ R r'(v) 

and r(x) ~R r'(x) for all x E Var(v) for some substitution r'. This fact holds true even if 
v is non-linear since -+ R is confluent. Together with a(Uj) 10'(Vj) it implies that there are 

substitutions O'i such that 0'( Uj) ~R ai( Vj). 

We are going to define 0'1," "O'n such that aj(u;) ~R O'j(v;) for 1 ~ i ~ j and 
O'(x) ~R aj(x) for x E Var(ul,vl,··.,Uj,Vj): For j = 1 we may choose 0'1 = O'~. 

Using aj_1 we now have to define O'j. We have aj-l(Uj) R ~ O'(Uj) ~R O'j(Vj), so 

there is ai' with O'j_l(Uj) ~R O'i'(Vj) since -R is confluent and Vj is absolutely irre­

ducible. 

O'j-dx) 

If x 

~R 

E Var(vj) n Var(vl, ... 

tx R~ ai/ex) for some 

,vj-Il then O'j_l(X) R ~ 

tx · Now we define O'j by 

a(x) ~R O''j(x), so 

x ff. V areVj) 
x E Var(vj) ­ Var(vI, 

x E Var(vj)nVar(vI, 

,Vj-d 

,vj_d 

Then aj-l(x) ~R O'j(x) for x E Var(ul,vl, ... ,Uj-J,vj_d and O'(x) ~ O'j( x) for 
x E Var(ul,vl, ... ,Uj,Vj). We have O'j(Uj) ~R aj(v;) for 1 ~ i < j, since Var(vj) n 
Var(ul, ... ,Uj) = 0 and O'j_l(U;) ~R O'j_l(Vj), ard we haveO'j(uj) ~ O'j(Vj)' by 
construction. 

Now choosing 0" = O'n the claim is proved. This finishes the proof of the theorem. 0 

Theorem 5.2 holds if in each rule Ul - VI, ... , Un - Vn ==> I - r the Vi'S are irreducible 
constants. One may ask whether the condition Var(Vi)n Var(Ut, ... , Ui) = 0 can be dropped. 
The following example shows that then the Theorem may not hold, even if the Vi'S are 
restricted to be variables. This indicates that conditional rewrite systems are very sensitive 
according to the introduction of extra-variables. 

Example 5.3 
R: b - g(a,b) 

b - z,g(a,z) -+ z ====> f(a) - c 
R is confluent, absolutely deterministic and not terminating. Taking 0' = {z ~ b} one gets 
f( a) =R c. But both terms f( a). and c are irreducible, so f( a) 1c does not hold. Hence Ris 
not logical. Note that Theorem 5.2 is not applicable to R only because of V2 == z E Var( U2) = 
Var(g(a, z)). . 

6 Uniquely terminating well-moded logic programs 

We now apply the results of the previous sections to well-moded logic programs. 

A logical program is a set of Horn-clauses. Normally such a program is used to describe 
a search in a search space. In this case no distinction is made between input and output 
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Claim: p E u1—- v1 , . . . ,  an -—+ v„ => l -—> r in R and a (u , - )1R  0'(vj)— then there is a 0’
such that o’(u.J) -—-:—~R o’(vJ-) for 1 g j S n and (f(x) —'>R o’(:c) for all x E Var(p).

From th i s  c l a im  we get o ’ ( l ]  —'_R o ’ ( r )  and  GU)  —f—>R a(v ) .  Then the  proof of Theorem 5 .1
can  be  carried over .

Let t he  assumption of t he  claim hold t rue .  We will define o’ by induction on  3'. To do so
we need the following fact: If v is absolutely irreducible and 7(1)) ““:-+3 w then w _*+R ‘r'(v)
and f (x )  —'—»3 1" ( 3)  for all a: € Var(v)  for some substitution 1". This fact holds true even if
1) is non-linear since —->R is confluent. Together with o(u,-) l o(vj) it implies that there are
substitutions a; such that 0(uj)  —"——>R org-(vi).

We are going to  define 01 , . . . , on  such tha t  (f)-(ng) LR oJ-(vg) for 1 g i g j and
( f (x )  

_1_‚R o'j(:c) for a: E Var(u1,v1, . . . ,uj ,vj) :  For 3' = 1 we may choose 01. = o i .
Using cr)-_] we now have to define dj .  We have 0'j_1('l.l.j) R «L 0'(‘U‚j) —*+R oS-(vj), so
there is of with oJ-_1(uj) —'-> R o;’(vj) since —*R is confluent and '01- is absolutely irre-
ducible. If 3 € Var (v j )  n Var (v1 ‚ . . . ‚ v j_1 )  then o j_1(x )  R +—'— cr(:c) —*>R 033(3), so
aj_1(;c) —'-+R tx Re:— oflx)  for some tx.  Now we define a]- by

o j_1 (m)  2: & Var(v‚ - )
cr)-(a:) £ affix) x € Var(vj)  -— Var-(v1, . .  .,vj._1)

tx 3: € Va r (v j )  n Var-('01,. . .,vj_.1)

Then cr)-„(x) "ZR cr)-(a:) for a: E VGT‘(U1,’UI,...,’U.j—],Uj_1) and 0(a) ——*—> (TJ-(a:) for
33 € Var (u1 ,v1 ‚ . . . , u , - , v j ) .  We have aj(u‚°) “L’R oj(v.°) for 1 S i < j ,  since Var('vj) fi
Var (u1 , . . . , u J - )  = 0 and O‘ j—1(U£)  ‘LtR aj_1(v‚-)‚ ”d  we have-o j (u j )  i" CHOU) by
cons t ruc t ion .

Now choosing o’ = on the claim is proved. This finishes the proof of the theorem. E]

Theorem 5.2  holds if in each rule zu --> vl ,  . . . , un  ——> vn => l —+ r the vg’s are irreducible
constants. One may ask whether the condition Var (v . - )nVar (u1 ,  . . . , u i )  = @ can be dropped.
The following example shows that then the Theorem may not hold, even if the vi’s are
restricted to be  variables. This indicates that conditional rewrite systems are very sensitive
according to  the introduction of extra-variables.

Example 5 .3
R : b —-> g(a,b)

b —->. z ,g(a ,z)  —-> 3 => f(a)  -—> c
R is confluent, absolutely deterministic and not terminating. Taking a = {z  <— b} one gets
f (a)  : 3  c. But both terms f (a) .and c are irreducible, so f(a) l c does not hold. Hence R is
not logical. Note that Theorem 5.2 is not applicable to R only because of_ vg E z e Var(u2)  =.-
Var(g(a,  z) ) .

6 Uniquely terminating well-moded logic programs

We now apply the results of the previous sections to well-moded logic programs.

A logical program is a set of Horn-clauses. Normally such a program is used to describe
a. search in a search space. In this case no distinction is made between input and output

15



posl\,lOns for the predicate symbols. But it has turned out that logic programs are also 
widely used to write programs in a functional manner. In this case each predicate symbol 
is assigned a fixed 'mode' to distinguish between input and output positions. To compute 
with such a moded program one starts with a query such that its inp 1lt positions are filled 
by ground terms. Then, doing logical operations the information sweeps into the output 
positions. 

So the question arises whether a well-moded logic program is uniquely terminating, i.e. 
whether for each input all possible computations stop and give the fame result. In this 
section~we develop means to assure this property. 

This problem has been studied earlier by the first author [HA85]. The results presented 
here go far about those presented there. For example, we do not restrict to hierarchical 
specifications of the logic program. Here we follow the approach of [GW92]. In that paper 
only termination of computations in logic programs is studied. Here we are also interested 
in guaranteeing uniqueness of the results. 

, 
We start with some notations and definitions hut we assume that the reader has some knowl­
edge on logic programming and SLD-derivations. 

A signature is a quadruple sigo = (5, Po, :Fo, To) where 5 is a set of sorts, :Fo is a set of 
function symbols, Po is a set of predicate symbols and TO : :Fo U Po -;. 5+ assigns to each 
function and predicate symbol its arity. If P E Po and t}, ... , t n are terms then P( t}, ... , t n ) 

is an atom. A Horn-clause is a formula of the form A +- B l , ... , Bm where m ~ 0 and A, Bi 
are atoms. A logic program P is a set of Horn-clauses. A query is a formula of the form 
+- B}, ... , Bm where m ~ 1 and Bi are 'atoms. 

A logic program P is moded if for every occurrence of an atom A == P(t}, ... , tn ) there is a 
function mA: {l, .. . ,n} -;. {in,out}. If mA(i) = in (mA(i) = out) then position i is called 
an input position (output position) of A. A variable x occurs in an input (output) position in 
A if x E Var(t;) for some i with mA(i) = in (mA(i) = out). 

To eva,l11ate a iuo(l'ed logic program P we only consider left-to-right SLD-derivations. They 
always select the left-most literal of a query for the next resolution step. So we restriCt to 
LR-well-moded programs as defined next. 

Definition 6.1 a) Let C == A +- B}, ... , Bm be a clause and x E Var(C). The head A of 
C is called a producer (consumer) of x, if x occurs in an input (output) position of A. The 
body atom Bj is called a producer (consumer) of x, if x occurs in an output (input) position 
of Bj. 

b) The clause Bo +- B}, ... , Bm .is cal/ed LR-well-moded, if every variable x in the clause 
has a producer Bi (0 ~ i ~ n) such that for every consumer B j of x we have i < j. A logic 
progrom P is LR-well-~oded if every clause in P is LR-well-mOOed. 
c) A query +- B}, . .. , Bm is LR-well-moded if every variable x in the query has a producer 
Bi such that for every consumer Bj of x we have i < j. 

By this definition, if +- B l , .•. , Bm is LR-well-moded and Bt == P( tt, ... , tn ) then ti are 
ground terms for all input positions i of Bt. One easily proves [GW92] 

Lemma 6.1 Let P be an LR-wel/-mOOed logic progrom and Go, G}, ... a left-to-right SLD­
derivation starting with an LR-well-mOOed query Go. Then all quenLes Gi are LR-well-moded, 
and the first atom of every non-empty Gi is ground on all its input positions. o. 
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positions for t he  predicate symbols. Bu t  i t  has turned out tha t  logic programs are also
widely used to  write programs in a functional manner.  In this  case each predicate symbol
is assigned a fixed ”mode” to distinguish between input  and output  positions. To compute
with 'such a moded program one s tar ts  with a query such tha t  i t s  input  positions are filled
by ground terms.  Then,  doing logical operations the  information sweeps into the output
positions.

80  t he  question arises whether  a well-moded logic program is uniquely terminating, i.e.
whether  for each input  all possible computations stop and give the same result. In this
section’we develop means to assure this property.

This problem has been studied earlier by the first author [HA85]. The results presented
here go far about  those presented there.  For example, we do not restrict to  hierarchical
specifications of the logic program. Here we follow the approach of [GW92]. In that paper
only termination of computations in logic programs is studied. Here we are also interested
in guaranteeing uniqueness of t he  results.

We start  wi th  some notat ions and definit ions bu t  we assume that  the  reader has some knowl-
edge on logic programming and SLD-derivations.

A signature is a quadruple s'z'go : (S,Po‚.7-'o,ro) where S is a set of  sorts,  1-}; is a set of
function symbols ,  Po i s  a set of predicate symbols and ro : fg U Po -——> 5+  assigns to each
function and predicate symbol i t s  arity. If P 6 ”Po and t l ,  . . . , tn are terms then P ( t1 ,  . . . ,  t,,)
is an atom. A Horn-clause is a formula of the  form A <— B l ,  . . . ,  Bm where m Z 0 and A,  B,- ’
are atoms.  A logic program 13 is a set of Horn-clauses. A query is. a formula of the form
«— 81 , .  . . ,  Bm where m 2 1 and B,- are atoms.
A logic program "P is moded if for every occurrence of an atom A E P( t1 ,  . . . ,  tn)  there is a
function mA : {1, . . . ,  n}  —> {in,out}. If m,;(i) : i n  (mA(i) = out) then position i i s  called
an input position (output  position) of A. A variable a: occurs in an input (output) position in
A. if a: € Var(t,-) for some i with mA(i) = i n  (mA(i) == out).
To evaluate a moded logic program P we only consider left-to-right SLD-derivations. They
always select the left—most literal of a query for the next resolution step.  30 we restrict to
LR-well-moded programs as defined next.

Definition 6 .1  a) Let C ..=_ A *— B1 ,”  .,B,,., be a clause and a: e Var (C) .  The head A of
C is called a producer (consumer) of a:, if a: occurs in an input (output) position of A .  The
body atom B,- is called a producer (consumer) of a:, if 2: occurs in an output (input) position
Of B j .

b) The clause Bo <— B1 , . . . ,Bm is called LR-well-moded, if every variable a: in the clause
has a producer B,- (0 S _i g n)  such that for every consumer B,— of 2: we have i < j .  A logic
program 1’ is LR—well-moded if every clause in 'P is LR-well—moded.
c) A query <— B l ,  . . . , Bm is LR-well—moded if every variable a: in the query has a producer
B,- such that for every consumer B,- of a: we have i < 3'.

By this definition, if <— 31 , ”  . ,Bm is LR-well-moded and BI £- P ( t1 , .  . . , t , , )  then t,- are
ground terms for all input positions 1' of B l .  One easily proves [GW92]

Lemma 6 .1  Let ”P be an LR-well-moded logic program and Go,G'1,. . . a left-to-right SLD-
derivation starting with an LR-well-moded query Go. Then all queries G'; are LR-well-moded,
and the first atom of every non-empty G,- is ground on all its input positions. E].
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Pine ti

:'1ow we associate to every logic program P over the signature sig = (5, Po, Fo, TO) a DTRS 
R(P) over thp signature sig = (5, F, T). Here F consists of the f E Fo and for each atom 
A == P( tl, ... , tn ) with input positions i l , ... , ik and output !>ositions ik+l,"" in the two 
functio'1 symbols Pin and Pout. We associate to the atom A == P(tl,' .. , tn) the rule peA) == 

l , '••• tik ) -+ Pout( tik+1 ' ... , tin)' We associate to a clause C == A <- B l , .•. , Bm the 
rule 

p(C) == p(Bd, ... ,p(Bn) =:} peA) 

and to P the system R(P) = {p(C) I C in P). 

Example 6.1 
P:	 APP(ni/,/2,/2) <­

APP(X'/1'/2,X'/3) APP(l1,l2,/3)
 

a) If all atoms have mode m(l) = m(2) = in, m(3) = out then
 
R(P) APPine nil, 12) -+ APPout(l2)
 

APPin(ll, /2) -+ APPout(l3) =:} APPin(x.lt, /2) -+ APPout(x.l3)
 

b) If all atoms have mode m(1) = m(2) = out, m(3) = in then
 
R(P) APPin(/2) -+ APPout(nil,12)
 

APPin(l3) -+ APPoUt(l1,l2) =:} APPin(x.l3) -+ APPout(x.lh/2)
 

In both cases R(P) is strongly deterministic and quasi-reductive. In case a) R(P) is confluent, 
but in case b) R(P) is not confluent. 

The following lemma states that R(P) is always absolutely deterministic if P is LR-well­
moded. 

Lemma 6.2
 
a) If C = A +- B h . .. , B n is LR-well-moded then p(C) is deterministic.
 
b) If P is LR-well-moded then R(P) is absolutely deterministic.
 
c) If +- B 1 , ••. , Bm is an LR-well-moded query and p(Bl ) == Pin(th"" tn) -+ Pout(s}, ... , Sk)
 
then all ti are ground terms.
 

Proof: a) This follows directly from the definitions, 
b) R(P) is deterministic by a). If Ul -+ VI,' •• , un -+ Vn ==} I -+ r is a rule R(P) then Vi 

is of the form Pout( SI, , , " Sk) and I is of the form Pinetl, ... , tn). So each 'Vi is absolutely 
irreducible wrt. R(P). Hence R(P) is absolutely deterministic. 
c) This follows from Lemma 6,1. 

The following lemma relates computations in P to computations in R(P). It is proved in 
[GW92]. 

Lemma 6.3 Let P be an LR-well-moded logic program such that R(P) is quasi-reductive 
and let +- B be an LR-well-moded query. If there is a left-to-right SLD-refutation. of +- B 
with computed answer substitution 9 and p(B) == Pin(th ... ,tm ) -+ Pout(s}, ... ,Sk) then 
Pin(tl, ... ,tm) --+R Pout(9(st}, ... ,9(Sk)) . O. 
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0 

Now we associate to  every logic program ’P over the  signature s ig  = (5 ,  770, F0, To) a DTRS
MP)  over t he  signature s ig  = (52.7.. T). Here ‚7: consists of the  f E fg and for each atom
A E P( t1 . . .  „ i n )  w i th  i npu t  pos i t ions  i l ,  . . . ,  ik and  ou tpu t  pos i t ions  i k+1 , .  . . , ifl  the  two
function symbols P in  and Pout .  We associate t o  the  atom A E P( t1  , . . . ,  tn)  the  rule p (A)  E
Pin ( t ‚ - „ . . .  tgk‘) — Pout ( t , -„ l , . .  „ t , - „ ) .  We associate t o  a clause C E A <— B1 , . . . ,Bm the
rule

9(0) E p(Bl)‚ - - —‚p(Bn) => MA)

and to 'P the system R('P) = {p(C) [ C in 'P).

Example 6 .1
'P : APP(m'l,12,12) ..—

APP(x . l1 . l g ,27 . l 3 )  1- APP( l1 , l 2 , l 3 )

a) If a l l  a toms have mode m(1 )=  m(2 )=  in ,  m(3)  = out  then
12(1)) APPin(nil,12) —> APPoutUg)

APPin ( l1 , l g )  —+ APPout ( l3 )  => APPin(a: . l1, lg)  ——> APPout(x. l3)

b) If all atoms have mode m(1) : m(2) : out, m(3) : i n  then
RU?) APPinUg)  -—> APPou t (n i l , l 2 )

APPin ( l3 )  -—+ APPou t ( l1 , l g )  => APPin(a : . l3 )  ——> APPou t ( : r . l l , l g )

In both cases RU?) is strongly deterministic and quasi—reductive. In case a) R(’P) is confluent,
but in case b) R('P) is not confluent.

The following lemma states that R(’P) is always absolutely deterministic if ’P is LR-well-
moded.

Lemma 6 .2
a) If C = A <— 81, . . . ,  Bu is LR-well-moded then p(C) is deterministic.
b) If 'P is LR-well-moded then RU?) is absolutely deterministic.
c) If<—— Bl ,  . . . , Bm is an LR-well—moded query and p(Bl )  E Pin ( t1 ,  . . . , t n )  —> Pout(31 , . . . , sk )
then all  t,- are ground terms.

Proof: a)  This follows directly from the definitions.
b) R('P) is deterministic by a). If ul ——> '01,.- . .,ufl —+ v„ => l —-> r is a rule R('P) then u,-
is of the form Pou t ( s l , .  . . . ,sk) and l is of the form P in ( t1 , .  . q t“ ) .  So each-v,- is absolutely
irreducible wrt. R(’P). Hence RCP) is absolutely deterministic.
c )  This follows from Lemma 6.1. E]

The following lemma relates computations in 'P to computations in R(’P). It is proved in
[GW92].

Lemma 6.3 Let ’P be an LR-well—moded logic progmm such that R(‘P) is quasi-reductive
and let <— B be an LR-  well-modem! query. If there is a left to-right SLD-refutation‘of +— B
with computed answer substitution 6 and p(B)=  Pin( t1 , . .  .,tm) —-> Pout(.91, . .  . ,sk) then
Pin(t1,.. . tm) "*R Pout(9(sl),. .,9(sk)) ' Ü.
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\Ve now come to the main result of this section. 

Definition 6.2 An LR-well-moded logic program P is uniquely te-minating if for every LR­
well-moded q"uery ~ B every left-to-right SLD-derivation is terminating and every left-to­
right SLD-refutation computes the same answer substitution 8. 

Theorem 6.1 Let P be an LR-well-moded logic program such that R(P) is quasi-reductive 
and every critical pair in C P( R(P)) is either unfeasible or context-joinable. Then P is 
uniquely terminating. 

Proof: By Theorem 4.5 of [GW92] every left-to-right SLD-der;vation starting with an LR­
well-moded query ;- B terminates. Since R(P) is strongly deterministic it is confluent by 
Theorem 4.2. Now t.he statement follows from Lemma 6.3. 0 

Example 6.2 

a)	 The following logic program is intended to compute from a given list I the last element 
z of 1 and the list I' resulting from l by eliminating z. 

P:	 P(x.nil, x, nil);­
P(x.y.l, z, x.l') ;- P(y.l, z, I')
 

Translation of P into a rewrite system gives
 

R(P): Pin(x.nil) -+ Pout(x, nil)
 
Pin(y.l) -+ Pout(z, I') => Pin(x.u.l) -+ Tout(z, x.l')
 

We prove that R(P) is quasi-reductive by using the backward substitution technique: 
We have to prove that Pin(x.y.l) ~ Pout(Pin(y.l), x.Pin(y.l)). This holds true for the 
RPO based on the precedence Pin> Pout, Pin >. We have CP(R(P)) = 0, so R(P) 
is confluent and P is uniquely terminating. 

b)	 The following logic program P is intended to compute the greatest common divisor z of 
the natural numbers x, y. 
P:	 GCD(x, 0, x) <­

GCD(O,y,y) <­

GCD(s(x), s(y), z) ;- LESS(x, y, true), SUB(y, x, Zl), GCD(s(x), Zt. z) 
GCD(s(x), s(y), z) <- LESS(x, y,false), SUB(x, y, Zl), GCD(zI, s(y), z) 
SUB(x,O,x) ; ­
SUB(s(x),s(y),z) <- SUB(x,y,z) 
LESS(x,O,false) <­

LESS(O, s(y), true) <­

LESS(s(x), s(y), u) <- LESS(x, y, u) 
This gives R(P): 
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We now come  t o  t he  ma in  r e su l t  o f  t h i s  s ec t i on .

Definit ion  6 .2  An  LR-well-moded logic program ? is uniquely terminating if for every LR-
well-moded query e— B every left—to-right SID-derivation is terminating and  every left-to-
right SID—refutation computes the same answer substitution €.

Theorem 6 .1  Let ”P be an  LR-well-moded logic program such that RU?) is quasi-reductive
and every critical pair in CP(R(P))  is either unfeasible or  context-joinable. Then ’P is
uniquely terminating.  '

Proof: By Theorem 4.5 of [GW92] every left-to—right SLD-derivation starting with an LR-
well—moded query <— B terminates.  Since R(’P) is strongly deterministic i t  is confluent by
Theorem 4.2. Now the statement follows from Lemma 6.3. [3

Example 6 .2

a) The following logic program is intended to compute from a given l i s t l  the last element
2 of !  and the list 1' resulting from Z by eliminating 2.
?:  P(:c.nil‚:c, nil) <—

P(:i:.y.l, 2, :::.l') <— P(y.l,  z,  l’)
Translation of ’P into a rewrite system gives

R(’P): Pin(:t.nil) —+ Pout(:z:, nil)
Pin (y . l )  -—-» Pout(z,  l’) => Pin(a:.fn.l) ——> Pout(z, :c. l’)

We prove that RCP) is quasi-reductive by using the backward substitution technique:
We have to prove that Pin(:t.y.l) > Pout(Pin(y.l),  x.Pin(y.l)). This holds true for the
EPO based on the precedence Pin > Pout, Pin > .  We have C P(R('P)) =": @, so R('P)
is confluent and 'P is uniquely terminating.

b) The following logic program 'P is intended to compute the greatest common divisor z of
the natural numbers a:, y .
? : GCD(a:,0,x) <—

GCD(0‚y ‚  y) <—
GCD(s(a:), s(y)‚ z) +— LESS($ ,  y, true),  SUB(y,  a:, 21), GCD(s(a:), zl,  z )
GCD(3(Z) ,  3(3 ’ ) :  Z) "— LESSC”!  ya false) ,  SUBÜ”! y ,  21) ,  GCD(21,  SGI),  Z)
SUB(2:,0,2:) <—
SUB(8($ ) ‚  8(y ) ,  z )  *— SUB(:6‚  y, 2)

LESS(2: ,0 ,  false) <—
LESS(O, s(y), true)  +—LESS(s(x)‚s(y)‚u) «— LESS(a=‚ m)

This gives R('P):
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(1)	 GCDin(x,O) -- GCDout(x) 
(2)	 GC Din(O, y) -- GC Dout(y) 
(J)	 LESSin(x,y) - LESSout(true), 

SCBin(y,x) - SUBout(zr), 
GCDin(s(x),zd -+ GCDout(z) =} GCDin(s(x),s(y» -+ GCDout(z) 

(4)	 LESSin(x, y) -+ LESSout(false), 
SU Bin(x, y) -+ SU Bout(Zl), 
GCDin(zl's(y» -+ GCDout(z) =} GCDin(s(x),s(y» -+ GCDout(z) 

(5)	 SU Bin(x, 0) -+ SUBout(x) 
(6)	 SU Bin(x, y) -+ SU Bout(z) => SUBin(s(x), s(y» -+ SUBJut(z) 
(7)	 LESSin(x, 0) -+ LESSout(false) 
(8)	 LESSin(O,s(y» -+ LESSout(true) 
(9)	 LESSin(x, y) -+ LESSout(u) ===> LESSin(s(x),s(y» -. LESSout(u) 

One can prove that R( P) is quasi-reductive using backward substitution and an ap­
propriate semantic path ordering [St93]. There is only one proper critical pair C ===> 
GC Dout( z) = GCDout( z') genemted by the third and fourth rule i.. R(P). Here C 
contains LESSin(x, y) -. LESSout(true) and LESSin(x, y) -+ LESSout(false), so 
this critical pair is unfeasible. Hence R(P) is confluent and P is uniquely terminating. 
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