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ERRATA:

page 21, line 4, wrong:”equivalence relation”,
right:"left congruences”






Analogies between Proofs — A Case Study

Erica Melis*
Universitat Saarbriicken
Fachbereich Informatik

6600 Saarbriicken
email: melis@cs.uni-sb.de

This case study examines in detail the theorems and proofs that are shown by analogy
in a mathematical textbook on semigroups and automata, that is widely used as an
undergraduate textbook in theoretical computer science at German universities (P.
Deussen, Halbgruppen uud Automaten, Springer 1971).The study shows the import-
aut réle of restructuring a proof for inding analogous subproofs, and of reformulating
a proof for the analogical transformation. It also emphasizes the importance of the
relevant assumptions of a known proof, i.e., of those assumptions actually used in
the proof. In this document we show the theorems, the proof structure, the sub-
problems and the proofs of subproblems and their analogues with the purpose to
provide an empirical test set of cases for automated analogy-driven theorem proving.
Theorems and their proofs are given in natural language augmented by the usual
set of mathematical symbols in the studied textbook. As a first step we encode the
theorems in logic and show the actual restructuring. Secondly, we code the proofs
in a Natural Deduction calculus such that a formal analysis becomes possible and
mention reformulations that are necessary in order to reveal the analogy.

*This work was supported by a research scholarship of the Deutsche Forschungsgemeinschaft
(DFG)
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Introduction

Justified analogical reasoning proceeds by transferring an aspect from the base case
s to a target case t based on the similarity of these cases with respect to a second
aspect. The second and the first aspect have to be inherently connected. For example,
analogical reasoning takes as input the similarity of s and ¢ with respect to their
function and the connection between function and structure.

Then it yields the commonality of s and # with respect to their structure.

Within the context of (automated) theorem proving, problems and proofs are usually
inherently connected, in the sense that a basic heuristic assumption stipulates that
analogous theorems can be proved analogously also. This assumption is true in
many cases. For analogical theorem proving the first aspect of a connection is the
pair (ass,thm) which we call problem, that consists of the set of relevant assumptions
ass and of the theorem thm, and the second aspect is the proof of the theorem thm
from the assumptions ass.

To obtain an empirical test set and in order to gain practical experience with ana-
logical reasoning in mathematical theorem proving we have studied the textbook
“Halbgruppen und Automaten” (abbreviated as HUA in the following) [1], since it is
particularly rich in proofs that are explicitly stated as analogous to previous proofs
by the author. Furthermore the book already served as a test case for automated
theorem proving for the Margraf Karl Refutation Procedure [2].

This empirical study is the basis for our own approach to analogy-driven theorem
proving that is preseuted in detail in [5]. This approach is inherently based on

o the reformulation of the base problem together with the base proof, and on the
reformulation of the target problem. The aim of the reformulation is to make
the representation of the base and the target problem compatible such that the
essential analogy is revealed,

¢ carrying over certain reformulated parts of the base proof as parts of a hypo-
thetical target proof.

The following study presents all theorems in HUA that are explicitly marked as
analogous by the author. Theorems are first given in English (our translation) and
coded in predicate logic. The proofs are then coded in a Natural Deduction format,
such that a formal analysis becomes possible.

The main finding is that a problem P2 is called analogous to a problem P1 in the
textbook, if P1 can be reforimulated to a problem equal to P2, or P1 and P2 can
be reformulated to a common abstraction. Actually, P2 is often called analogous to
P1 even if only an important subproblem of P2 is analogous to a subproblem of P1.
Hence the standard approach to automated theorem proving by analogy (e.g., [?]),
which is mainly based on symbol mapping of the base case to the target case for a
given representation fails in many cases: There is no such symbol map unless the
actually given representation is reformulated such that the analogy becomes visible.



Why “Halbgruppen und Automaten”?

The textbook “Halbgruppen und Automaten” [1] was chosen for this case study since
it consists of the three chapters each of which is built upon the previous one, partially
by analogies. This is the reason, why this particular textbook is so rich in explicit
proofs by analogy and actually very much liked by students because of its uniform
structure. The actual chapters are:

e Semigroups and relations
e Semigroups and semimoduls
e Automata.

Notation

The study is based on Natural Deduction (ND) proofs, since it turned out to be
most natural to code the proofs given within the textbook in a proof calculus, whose
(primitive) rules are presented in [4] which in turn is based on [3]. The displayed
ND-proof lines do not always correspond to primitive rules but can easily splitted
into several lines that correspond to primitive ND-rules. The reason is to keep the
proofs more readable.

In the following we quote the theorems by their original decimal numbering from
HUA, for example, Theorem 17.6. refers to Satz 17.6. on page 182 in HUA. Some-
times a theorem is not explicitly stated in the textbook but just mentioned as analog-
ous to some previous theorem, for example the existence of certain homomorphisms
in semimoduls is directly carried over (i.e. is analogous) from the existence of homo-
mophisms in semigroups. Then, for instance, the theorem mentioned as analogous
to theorem 5.7 in section 7 of HUA is denoted as 7.5.7. As another notational con-
vention, we denote part n of theorem m by m.n.

The ND-proofs contain parts that are called relevant assumptions, and these may
correspond to applications of the ND-rule called HYP (hypothesis introduction). The
relevant assumptions are those hypotheses which cannot be omitted in the proof. As
a further refinement, the origin of the HYP-rule is replaced by the name of the
assumption that was introduced by the HYP-rule. For example, ASS means that the
formula is an assumption of the problem, DEF points to a definition, and AX means
that the hypothesis is an axiom. '



Analogous Theorems and Proofs in HUA

The following theorems are marked by the author of HUA to be shown by analogy:
Theorem 6.3. (Chapter II) is analogous to theorem 3.3. (Ch.I).

Theorem 6.6. (Ch.II) is analogous to theorem 3.6. (Ch.I).

Theorem 7.5.2. (Ch.II) is analogous to theorem 5.2. (Ch.I).

Theorems 4.10, 4.11, and 4.12 (Ch.I) for sets can be taken over for the corresponding
(sub-)theorems of 5.6, 5.7, and 5.8 for semigroups.

Theorems 5.6, 5.7, and 5.8 (Ch.I) for semigroups are supposed to be carried over
analogously to the corresponding theorems 7.5.6, 7.5.7, and 7.5.8 for semimoduls (in
Ch.II). ~
Theorem 5.3 (Ch.I) is analogous to theorem 4.8 (Ch.I).

Theorem 10.9.8 is analogous to 9.8 (ChL.IT).

Theorem 13.7 (Ch.1II) is analogous to theorem 6.9 (Ch.II).

Theorem 17.17.6 (Ch.III) is analogous to theorem 17.6 in the same section (Ch.III).
Theorem 17.9 part 2 (Ch.III) is analogous to 17.9 part 1 (Ch.III).

Two subproofs of theorem 17.6 are analogous.

The more interesting analogies are examined in the following.



CASE 1: THEOREMS 3.3 and 6.3

The proot of theorem 6.3 is analogous to the proof of theorem 3.3 in HUA, where
the respective theorems are given as:

Theorem 3.3

Let {T; :4 € I} be a family of leftideals in the semigroup F.

1. Then |; T; is a leftideal in F'.

2. If N; T; is not empty then N; 7T; is a leftideal in F.

Theorem 6.3

Let {T; : ¢ € I'} be a family of F-subsemimoduls in the F-semimodul S.
1. Then (J; T; is an F-subsemimodul in S.

2. If N; T; is not empty then N; T; is an F-subsemimodul in S.

The analogy of theorem 3.3 and theorem 6.3 is based on the correspondence between
the definitions of a leftideal and of a subsemimodul (definition 3.1 and definition 6.2
in HUA) which are given as:

Definition 3.1 A nonempty subset T of a semigroup F is called
leftideal it FT C T, where FT = {ft: fe€ F,t € T}.

Definition 6.2 A nonempty subset T of an F-semimodul S is called
F-subsemimodul if FT C T, where FT = {ft: f € F,t € T}.

Consider the analogy hetween the subproof of 3.3.1 and the subproof of 6.3.1: Cor-
responding to the definition of a leftideal, it is shown for 3.3.1 that |J; 7} is nonempty,
U; T; is a subset of F, and F' - |J; T; C U; T;. Thus splitting the theorem 3.3.1 into its
conjunctive subparts, a straightforward proof structure of 3.3.1 is the following:

e Part 1:
Theorem: J; T; is nonempty, i.e. (expanding the definition of 'nonempty’):
dz(z € U; T).
Relevant assumptions: Vi(1 € I — Jz(x € T;)); the definition of J; T.

e Part 2:
Theorem: |J; T; C F.
Relevant assumptions: the definition of |J; the definition of C; the assumption
Vitel - (T; C F)).

This part 1s demonstrated in more detail helow.

e Part3:
Theorem: F -J; T; C U; T:, e.g.(after expanding the definition of F'- T and of
Cr: Vi, fieINzeTLNfeEF— f-zeT) ‘
Relevant assumptions: the definition of F'-T'; the definition of C; the definition
of (J; the assumption Vi(r € I — F - T; C T3).



Given the definition of an F-subsemimodul, it has to be shown in a proof of 6.3.1
that {J; T; is nonempty, (J; 75 is a subset of S, and F - |J; T; C U; T;. Splitting the
theorem of 6.3.1 into its conjunctive subparts, a straightforward proof structure of
6.3.1 becomes:

e Part 1:
Theorem: {J; T; is nonempty, i.e.(expanding the definition of ‘nonemptyness’):
Relevant assumptions: Vi(s € I — Jx(x € T;)); the definition of |J; T;.

e Part 2:
Théorem: \J; T; C S.
Relevant assumptions of the completed proof: the definition of UJ; the definition
of C; the assumption Vi(i € I — (T; C 5)).

e Part3:
Theorem: F -\, T; C U, T;, i.e.(after expanding the definition of F'- T and of
Cy:Viz,flelha e TTANfeEF — f-zel))
Relevant assumptions: the definition of F'-T'; the definition of C; the definition
of J; the assumption Vi(r € I — F - T, C T;).

We shall now give the explicit ND proofs of theorem 3.3.1 part 2 and of theorem
6.3.1 part 2. The first proof is a translation of the given natural language proof in
HUA into an ND-calenlus, while the second proof is an analogical reconstruction (it
is not given in the textbook but just mentioned as “to be shown analogously”).



ND proof for theorem 3.3.1 part 2.

NNo S:D Formula
relevant assumptions
1. ;1 F Viz(z e Ti = Ji(i € INT €TY))
. ;2 F VM,N(MCN ~Vz(r€M —z€N))
3. 0 3 F VYiiel—-T;CF)
the proof
4. 4; Fotell T
5. 4; 1 Fotel T —~3iEelnteTy)
6. 4; 1 F teU T —-FGEelINteT)
7. 41 F o JiGe IAteT)
8. 8; F o€ IAteT;,
9. 8; H teT;,
10. 8; F i() el
1. ;3 Fwel—-T,CF
12. 8;3 F T, CF
13. 8,1,2,3 F teF
14. 4,1,2,3 F teF
15. :1,2,3 F teld, T —teF
16. ;1,2,3 F Vae(zelJ,Ti—x€F)
17. 72,3 F UTCF
Thm. ; F UTCF

Reason

(DEF |J)
(DEF C)
(ASS)

ND proof for theorem 6.3.1 part 2.

(HYP)

(VD 1)

(«~ D5)

(— D 6)

(HYP)

(AD)

(AD)

(VD)

(— D 10 11)
(YD, D,— D 9
12 3)

(Choice 7 8)
(DED 14)

(V1)

(= D,— D 16 2)
0

Reason

(DEF )
(DEF C)

(ASS)

NNo S:D Formula

relevant assumptions
1. 01 F VI,J:(:I:EUiUT;Hai(iEI/\.l‘ETi))
2. ;2 F VM,N(MCN - Ve(r €M —z €N))
3. 3 FoViiel —-TCS)

the proof

4. 4; FotelU T
5. 4: 1 FotelTi =G eINteTy)
6. 4;1 FotelUTi—=3i(ielnteT;)
7. 4;1 F o JiieIANteT;)
8. 8; F awelIAteT;,
9. 8 FoteT,
10. 8; F el
11. 03 Fowwel-T,CS
12. 8:3 F T,CS
13. 8:2,3 F tesS
14. 4;1,2,3 F tes
15 ;1,23 FoteU T, —1eS$
16. 31,2, 3 F Ve(eel, Ti — 2 €S)
17. 0 1,2,3 F UT:CS
Thm. ; F UTCS
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(HYP)

(VD 1)

(- D 5)

(— D 6)

(HYP)

(AD)

(AD)

(VD)

(— D 10 11)
(VD,~ D,~ D 9
12 3)

(Choice 7 8)
(DED 14)

(V1)

(= D,— D 16 2)
0



Discussion

Conjunctive goal splitting yields the same proof structure for theorem 3.3.1 and
theorem 6.3.1. Expanding the respective definitions then yields the same subtheorems
and relevant assumptions for parts 1 and 3, respectively. For these parts the proofs
are equal as well, due to the commonality of the subtheorems and of the relevant
assumptions.

For part 2 the subtheorems in 3.3.1 and 6.3.1 are not equal right away, however
the difference of the subtheorems 3.3.1 and 6.3.1 can be removed by replacing the
constant F' by the constant S.

The symbol mapping F' = S applied to theorem 3.3 in order to obtain theorem 6.3
can be extended by matching the assumptions as well. After unfolding the definitions,
the proof of theorem 3.3 contains only parts of the definitions 3.1 and 6.2 that
correspond directly. These are called assumptions relevant in the base proof. The
proof does not use those parts of the definition that actually differ, such as an ideal
being contained in a semigroup and a subsemimodul being contained in a semimodul.
Since the symbol mapping {F' = S} is applied to the second subproblem of 3.3.1
only, the mapping is consistent (one symbol is mapped to one symbol).

The mapped versions of all assumptions relevant in the base proof all occur in the
knowledge base or in the assumptions of the target problem 6.3, and this serves as a
strong justification for this analogy formation. '
This example can be dealt with by standard techniques known from the literature on
theorem proving by analogy, provided that means for structuring proofs and isolating
relevant assumptions are present.



CASE 2: THEOREM 17.6 and ITS ANALOGUE
Theorem 17.6 Let E C F, then

1. g i1s a leftcongruence in the semigroup F,

2. 7g is compatible with F, v

3. For all leftcongruences p in F', which are compatible with p, we have p C 7g,
where 7g is defined in definition 17.5 (see below).

Theorem analogue Let £ C F', then

l. 7k is a rightcongruence in the semigroup F,

2. 7 is compatible with F,

3. For all rightcongruences p in F, which are compatible with p, we have p C 7%,
where 7% is defined in a definition analogous to 17.5 (see below).

The following definitions are relevant assumptions:

Definiton 17.4

Let p be an equivalence relation on F and E C F. p is called compatible with E iff
for all f € F with Q(f)N E # 0 holds Q(f) C E, where Q(z) = {y : (y,z) € p}.

Definition 5.1

Let p be an equivalence relation on a semigroup F'. Then

pis called a leftcongruence iff for all g, f1, f2 € F holds
if p(f1, f2) then p(gfi,9f2)-

p is called a rightcongruence iff for all ¢, f1, f2 € F holds

if p(f1, f2) then p(fig, fog)-

The particular leftcongruence g in F is defined for £ C F as.
Definition 17.5.

(f,g)erg o (fEE—ogeE)-Vh(he F— (hf € E o hg € E))).

The particular rightcongruence 7z in F' is defined for E C F by the following ana-
logous definition.

Analogue to definition 17.5.

(f,9)€Erg > ((fEE g€ E)—-Yh(he F— (fh € E gheFE))).

The proof structure of 17.6 is:

e Part I:
Theorem: 7g is a leftcongruence in F'.
Relevant assumptions: the definition of a leftcongruence, the definition of a
semigroup, the definition 17.5.

e Part 2:
Theorem: mg is compatible with E.



Relevant assumptions: the definition of U; the definition of C; definition 17.4;
and definition 17.5.

e Part 3:
Theorem: leftcongruence(p) A compatible(p, E) — p C 7g
Relevant assumptions: the definition 17.4; the definition of leftcongruence; and
the definition of C.

The proof structure of the analogue of 17.6 is:

e Part 1:
Theorem: 7g 1s a rightcongruence in F
Relevant assumptions: the definition of a rightcongruence; the definition of a
semigroup; the analogue of definition 17.5.

e Part 2:
Theorem: 7% is compatible with E.
Relevant assumptions: the definition of U; the definition of C; the analogue of
definition 17.4; and the analogue of definition 17.5.

e Part 3:
Theorem: righicongruence(p) A compatible(p, E) — p C 7g.
Relevant assumptions: the analogue of definition 17.4; the definition of right-
congruence; and the definition of C.

Discussion

The symbol mapping {leficongruence = rightcongruence,ng = 7g} makes the
subproblems of 17.6 and those of its analogous theorem equal but in this case the
corresponding proofs still differ. This is due to the use of the different definitions of
le ftecongruence and reghtcongruence within the proofs which belong to the relevant
assumptions.
The definition 17.5 can be transformed to the analogous one by term mapping (i.e.
not just symbol mapping, as in the previous example). There are two possibilities
for the term mapping that transform the assumptions of 17.6 into the assumptions
of its analogue:

e the concrete term mapping: hf = fh;hg = gh;kf = fkikg = gk;hkf =

fhk; hkg = ghk for constants and variables h, f, g, k or,

e the term mapping based on the schema term, - termgy = termsy - term;
which could be used as well.

The occurrence of the mapped versions of all relevant assumptions of the base proof
in the knowledge base or in the assumptions of the analogue of problem 17.6. serves
as a justification for this analogy formation.

This example could also be treated by techniques known from the literature, provided
that means for isolating relevant assumptions are used in addition.



CASE 3: TWO ANALOGOUS PARTS OF 17.6.3

This example demonstrates a kind of analogy which is used very often in mathematics.
It is shown on the third part of theorem 17.6 of HUA.

Theorem 17.6.3 Let £ C F and let p be a leftcongruence in F' which is compatible -
with F, then p C 7g.

The definitions of compatible(p, E),le ftcongruence(p), g, and Q(z) are relevant
assumptions. They have been given in the previous paragraph.

The problem is A F p C ng with

A = {leftcongruence(p), compatible(p, E),(E C F), semigroup(F')} .

Some preparatory steps, usunally not expressed explicitly by mathematicians, are
necessary for the full logical proot:

1. Expanding the definition of C yields the problem
AFVa,y((x,y) € p— (z,y) € TE).

2. Expanding the definition of 7z yields the problem
AFVe,y((z,y)ep - (r € E—ye EYAVf(fEF — fr € E o fy € E)).

3. Two applications of the Deduction Theorem yield the problem
AU {(wo,50) Ep, (10 EE >y € E)V}FVf(fEF - frzo € E & fyo € E).

4. Restructuring (splitting) yields the subproblem

o AU {(zo, ) €Ep,(tp€EE—=y€E)}yFVf(fEF — frg€ E — fyo € E)
o AU{(x0,%) € p,(x¢ € E—yecE)}FVf(feF— fyu€FE — fro€ E).

5. Application of the Deduction Theorem yields the subproblems

(a) AU{(zo,y0) € ps(20 € E > yo € E)}U{fo €EF, foro € E} & foyo € E
(b) AU {(w0,90) € p,(v0 € E = yo € E)}U{fo €F, foyo € E} b foxo € E.
Thus we have obtained the subproblems (a) and (b) which are supposed to be proved

analogously in HUA. We present the two ND-proofs in the following and discuss the
respective transformation afterwards.

106



ND Proof of theorem 17.6.3 part a

Reason

(DEF)

(ASS)
(DEF)
(DEF)
(DEF)
(DEF)

(ASS)
(DEF)
(DEF equivrel)

(ASS)
(VD 9 10)
(ASS)
(ASS)
(ASS)

NNo S;D Formula
relevant assumptions
1. ;1 b VR,x,yvf: F(leftcongr(R) — ((¢,y) € R —
(fz, fy) € R))
2. ;2 b leftecongr(p
3. ;3 F o Vo,y(z € Qy) — (2,y) € p)
4, ;4 F YM, N :set,Ve(re(MON)—~xeMAzEN
5. ;) F VM : set(nonempty(M) — Jz(x € M))
6. ; 6 F  compatible(p, E) — VYr(nonempty(Q(z) N E) —
QzyCE
7. 0 7 F  compatible(p, E)
8. ;8  VM,N :setVe(M CN - (r € M — z € N))
9. 0 9 F VRY«,y, z(equivrelR > (z,2) € RA((x,y) € R —
(y,x) € R)..)
10. ; 10 F o equivrel{p)
11 ;9,10 F o Vae((z,r) €p)
12. 012 F o (zo,50) €Ep
13. ; 13 F o foeF
14. 14 F foro € E
The Proof
15. 0 1,2,13 F o (xo, ) € p — (foro, foxo) €Ep
16. 01,2,12,13  F (fowo, fow) €Ep
17. ;3 F o (faxo, fovo) € p— foro € Q(fn?/n)
18. 0 1,2,3, 12,13 £ foro € Qfoyo)
19. ;4 o foro € Qfoyo) — foxo € Q(fn!/())
20. ; 14, 1, 2, 3, 4, (o f().’lf() (S (Q(f().’!.'()) n E)
12, 13
21. 014, 1,2, 3,4, & Fe(x € (Qfore)NE))
12, 13
22. 05,14, 1,2, 3, b nonempty(Q(foxry) NE)
4, 12,13
23. 16,7 F o Va(nonempty(Qe) N E) — Q(z) C E)
24. ;5,6,7,14,1, F Q(foro) CE
2,3,4,12,13
25. ;9,10 F o (foye, fowe) €p
26. ;73,9,10 Fo (fowo) € Q(fowo)
27. ;8,5,6,7,14, +  (foyo) € Qfowe) — fovw € E
1,2 3,412,
13
28. 73,9,10,8,5, v fow €EFE
6,7,14, 1,2 3,
4,12, 13
Thm. ; Y (=

11

(VD,—~ D,— D1
2 13)

(— D12 15)
(VD,— D 3)

(— D16 17)
(VD,« D 4)
(ANI,— D 14 18
19)

(3I 20)

(YD,—~ D,— D 5
21)
(=D, D6 7)
(VD,— D 22 23)
(VD 11)

(VD,—~ D,— D 3

25)
(VD,— D 8 24)

(— D26 27)

0



ND Proof of theorem 17.6.3 part b

Reason

(DEF)

(ASS)
(DEF)
(DEF)
(DEF)
(DEF)

(ASS)
(DEF)
(DEF equivrel)

(ASS)
(¥D 9 10)
(ASS)
(ASS)
(ASS)

NNo S;D Formula
relevant assumptions
1. i1 F VR,z,yvf: F(leftcongr(R) «— ((¢,y) € R —
(fz, fy) € R))
2. ;2 F  leftcongr(p
3. ;3 B Ve, y(e € Qy) « (x,y) € p)
4. ;4 F VM, N :set,Ve(s e (MNN)—>zx€eMAzEN
5. i) F VM : set(nonempty(M) — 3x(z € M))
6. ) F  compatible(p, E) — Ve{nonempty(Q(z) N E) —
Qax)CE
7. ;7 - compatible(p, E)
8. ; 8  YM,N :setVe(M CN — (¢ €M —z € N))
9. ;9 F VRVa,y, z(congruenceR « (x,z) € RA({(z,y) € R —
(y,#) ER)...)
10. ; 10 F  congruence(p)
11. 79, 10 F o Va((x,x) € p)
12. ;12 Fo(xo, ) Ep
13, ;13 F o foEF
14. ; 14 F o foww €EE
The Proof
15. ;9,10 F o (w0, y0) € p— (yo,x0) € p
6. ;9,77 (4o, x0) € p
17. ,1,2,13 F o (w0, m0) € p— (Joxa, foro) € p
18. 0 1,2,12, 13 F o (fora, fon) € p
19. ;3 F o (foxa, fowo) € p — foxg € Q(foyu)
20. 0 1,2,3,12,13 + fowo € Q(foyo)
21. ; 4 F o fowo € Qfoyo) — foro € QU foye)
22. ) 14) 17 21 3) 41 F ./‘()'I"() S (Q(f().’(f(]) N E)
12,13
23. i 14,1, 2, 3,4, £ Fa(e € (Qfoxo) N E))
12,13
24. 05, 14,1,2,3, b nonempty(Q(foxg) N E)
4,12, 13
25. ;6,7 F o Ve(nonempty(Qx) N E) — Q(z) C E)
2.  :56,7,14,1, F Q(foro) C E
2,3,4,12,13
27. ;9,10 Fo (foyo, fowo) € p
28. 73,9, 10 E o (fowo) € Qfom)
29. ;8,6,6,7,14, B (fowe) € Qfoyo) — fowo € E
1,2,3,4,12,
13
30. 1 3,9,10,8,5, F foww€E
6,7,14,1,2,3,
4,12, 13
Thm. ; o ofoww e E

12

(VD,—~ D,AD 9
10)

(- D 12 15)
(VD,~ D,— D1
2 13)

(— D12 17)
(VD,— D 3)

(—= D18 19)
(VD,— D 4)
(AN,— D 14 20
21)

(31 22)

(VD,— D,— D5
23)

(< D,— D6 7)
(VD,— D 24 25)

(VD 11)
(VD,~ D,— D3

27)
(VD,— D 8 26)

(— D 28 29)

0



Discussion
An attempt to trauslate the first subproof to the second subproof by the symbol

mapping {Zo = Yo, Yo = To} falls, since the relevant assumptions differ in ((zq, yo) €
p) and ((yo, o) € p) after this mapping, respectively.

In order to obtain equal assumptions, ((zo,y0) € p) is to be replaced by ((yo, Ze) € p)
within the assumptions. ((yo,70) € p) becomes a new subtheorem, which is proven
by the subproof of (b) that consists of the lines 15 and 16.
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CASE 4: THEOREMS 5.7 and 7.5.7

Let us look at the analogy that provides a proof of theorem 5.7 that is based on the
proof of theorem 7.5.7' by examining the proofs of theorem 7.5.7 and theorem 5.7:
A stronger reformulation technique works for these examples, namely, abstraction
based on the definition of a homomorphism.

Theorem 7.5.7 Let S,Ty,T, be F-semimoduls. Let ¢y : S+ T3,02 : S +— T be
two homomorphisms into the F-semimoduls 7} and T, respectively, and let py, py
be the respectively induced leftcongruences.

1. If there exists a homomorphism & : 77 — T, with ®p; = ., then p; C p,.

2. Let p; C p2 and if ¢y is surjective, then there is a unique homomorphism @ :
H;, — H, with ®¢; = p,. If in addition, ¢, is surjective, then @ is surjective as well.

Theorem 5.7 Let S, Hy, H; be semigroups. Let ¢, : S’ — Hy, 2 : S" +— H, be
two homomorphisms into the semigroups Hy and Hj, respectively, and let py, ps be
the respectively induced congruences.

1. If there exists a homomorphism @ : Hy — H, with ®p; = g, then py C pa.

2. Let p; C py and if ¢ 1s surjective, then there is a unique homomorphism @ :
H; — Hj with ®p; = ¢,. Il in addition, ¢, is surjective, then ® is surjective as well.

The proofs are based on the definitions of a homomorphism in semigroups and a
homomorphism in F-semimoduls, respectively:

Definition 2.1 Let F and H be semigroups. A mapping ¢ : F' — H is called a
homomorphisin (from F to H) iff '

Vi g(fig € F —@(f-9)=e(f) ¢lg)

Definition 7.1 Let .S and T be F-semimoduls. A mapping ¢ : F' — H is called a
homomorphism (from S to T') iff

Vi, s(f€ FAs€S —o(f s)=w(f) ¢s)

The proofs of theorem 7.5.7 and of theorem 5.7 can now be structured as follows.
The proof structure of 7.5.7 becomes:

e Part 1:
Theorem: p1 C p
Relevant assumptions: the definition of py and of py; existence of a mapping ®
with ®p; = ;.

UThis analogy is harder to find than the transformation of the proof of 5.7 to a proof of 7.5.7

14



The

Part 2a:

Theorem: There exists a function

® with (Vz2(z € S — ®p1(2) = @a(2)) AVay((z € Ty = y € T2) A B(z) = y).

Relevant assumptions: @, is a mapping S — T; 1 is a mapping S ~ T7;
1 1s surjective; the comprehension axiom; = is an equivalence relation; the
definition of py and py; p1 C p2; the representation of functions as relations.

Part 2b:

Theorem: @ is the only mapping for which the theorem of 2a holds, i.e.,
YOz, y(( € S — B'(g1(2)) = @a(x)) = (y € Ty — B(y) = ¥(y)))

Relevant assumptions: the definition of ® : ®(p1) = 3; surjectivity of ¢;
transitivity of =.

Part 2c:

Theorem: ® is a F-semimodul-homomorphisin, i.e.,

Viz(ee Th NfeEF - @(f -x)= f-®(x)).

Relevant assumptions: surjective ¢r; ¢y 1s a homomorphism in an F'-semimodul;
0, is a homomorphism in an F-semimodul; the definition of ®; theorem of 2a.

Paxjt 2d:

Theorem: If o, 1s surjective then @ is surjective.
proof structure of 5.7 becomes:

Part 1:

Theorem: py C po

Relevant assumptions: the definition of p; and of p;; the existence of a mapping
® with ®p; = ¢,.

Part 2a:

Theorem: There exists a function ® with

Vz(z € §' — ®p1(z) = pa(2)) AVaTy((z € Hy = y € Hy) AN®(z) = y).
Relevant assumptions: ¢, : F' +— Hy is a mapping from a semigroup into a
semigroup; ¢, : F' +— Hj 1s a mapping from a semigroup into a semigroup F' =
Hy; ¢y 1s surjective; the comprehension axiom; = is an equivalence relation; the
definitions of py and po; p; C pa; the representation of functions as relations.

Part 2b: .
Theorem: @ is the only mapping for which the theorem of 2a holds, i.e.,
VOV, y((v € 5" — ¥'(p1(x)) = pa(r)) — (y € Hh — 2(y) = ¥'(y)))

Relevant assumptions: the definition of ® : ®(p1) = @2; 1 1s surjective; the
transitivity of =.

Part 2c:
Theorem: ® is a semigroup-homomorphism, i.e.,

Ve, y(r € Hi Ay € Hy — ®(x - y) = ®(z) - (y)).

15



Relevant assumplions: oy is surjective; ¢ is a semigroup-homomorphism; g
is a semigroup-homomorphism; the definition of ®; the theorem of 2a.

e Part 2d:
If ©; 1s surjective then @ is surjective.

As a remark, the parts 1, 2a, 2b, 2d of theorem 7.5.7 are equal to the corresponding
parts of theorem 4.11 of HUA as well, and in general play an important role.

The crucial point for the transformation of the proof of theorem 7.5.7.1 to the proof
of theorem 5.7.1 are the relevant assumptions of the respective part 1 of theorem 5.7
and of theorem 7.5.7, which differ in symbols only. Hence, they become equal by the
symbol mapping {F = S, H; = Ty, and H, = T>}. This symbol mapping is to be
applied to the whole proof of 5.7.1.

The proofs of parts 2c of theorem 7.5.7 and theorem 5.7 are given next. For simplicity,
let - be a polymorphic function.
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ND Proof of theorem 7.5.7 part 2¢

NNo S;D Formula Reason
relevant assumptions
1. i1 F Ve,y, fleehAhyeDLAfeFAr=y— f-x=f-y) (T is semimodul)
2. ; F Ve, f(feFAzeES—(f-)el) (S is semimodul)
3. ] FoVe,y, flreTihnyeiINfeFAz=y— f-2=fy) (Ax
=T}-is-semimodul)
4. ;4 b hom_from.S(p) «VfVz{f e FAz €S — o(f - T) = (DEF homfrom.S
fe(x)) p)
5. ;9 b hom_from Ty(®) > VfVzs(fe FAz €T — (hom_from T7)
O(f-2)y=7f- <I>(:1.-))
6. ;6 b Vo, f(fe FAzeTy— f-ze€Th) (Ty-is-semimodul)
7. 0 7 FoVr,yz(r=yAy=z —a=2) (Ax =transitive)
8. ; 8 b Ve(e € S — @ala) € Ty) (Def )
9. 1 9 F Va(er eTh — @) eTh) (lemma 2a)
10. ; 10 b Va(z €S — () €Ty) (Def ¢y)
11. ;11 F Ye,y(reTiAyETI Ae =y — &(z) = ®(y)) (lemma 2a)
12. ; 12 F o Yae(e € S — @(p1(x)) = pa(x)) (lemma 2a)
13. ;13 F Vy(y e h — Fx(€ SApi(x) =y)) (ASS surjective 1)
4. ;14 o hom_from_S(p1) (ASS)
5. ;15 o hom_from_S(g2) (ASS)
The Proof
16. i 4, 14 b VfVe(f€EFAz €S — pr1(f-x)= [ p1(x)) (< D,— D4 14)
17. 14,15 F ViVe(fEFAx€ES — ¢ga(f &) = - pa(x)) («»D,— D4 15)
18. 18: F fEF (HYP)
19. 19, Foxp €T (HYP)
(*)
20. 19; 13 Foo3g(y € SApi(y) = xo) (VYD,— D 19 13)
21. 19; 13 F aeSApi(a) =, (3D 20)
22, 19;10,13 Fa€SApi(a)=x0Api(a) €T (VD,AD,~ D,ANI
10 21)
23. 19; 10, 13 Fooei(a) € Ty A py(a) = xg (A D 22)
24. 19,18;10,13 + apyeNApi(a) ETIAFEFApi(a) = za (n118 19 23)
25. 18,19;10,13,3+ f-pi1(a) = f -z (VD,— D3 24)
26. 19,18;10,13,3F a€eSApi(a) =xoApi(a) €TINS -pi(a)=f zq . (N125 22)
**)
27. 19, 18; 10,3, 4, F  ®(f - 74) = (f - pi(a)) {(AD,—~ D11 6 26
11, 6 19)
28. 18,19;10,3,4,F ®(f - p1(a)) = (p1(f - @) (VD,— D 11 26
14, 11 16)
29. 19,18; 10,3, 4, F  ®(e1(f - a)) = pa(f - @) (VD,— D 12 26 2)
2,12
30. 18, 19; 10,3, 4, - pu(f-a) = f - p2(a) (VvD,— D 17 18
15 _ 26)
31. 19,18, 10,3, 4, & f-pz(a) = f ®(pi(a)) (VD26 12 1 8 9)
12,1,8,9
32. 19, 18; 10,3, 4, = f-®(p1(a)) = f - (a0) (-D1 26 11 9)
11, 9
33, 19,18, 10,3, 4, F ®(f - w0) = f - B(wo) (= D7 27 28 29

14, 15, 11, 7, 2,
8,96, 1
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34.

:3,4, 14, 4, 15, F
11, 7, 2, 10, 8,
9, 6,13, 12, 1

fFeEFANtye€Ty — ®(f o) = f- ®(xg))

(DED 33)

35.

36.

©3,4,14, 15, F
11,7, 2, 10, §,
9,6,13,12, 1
:3,4,14,15,
11,7, 2, 10, 8,
9,6, 13,12, 1,

5

ViVe(f€e FAz €Ty — O(f - ) = f-®(x)).

hom_from_Ti(®)

ND Proof of theorem 5.7 part 2c

(VI 34)

(- D,—~ DNVD 5
35)

NNo S;D Formmila Reason
m relevant, assumptions
1. ;1 o VYay g,y (e, ka9, 92 € HoAey = a0 Ayy = yp — (Ax semigroup Hj)
ry YL =Ty Y2)
2. ;2 oV, awe; €S Aan €S -y 22 € 5') (Ax S’ semigroup)
3 ;3 Ve ae,y, (e, a0, 1,2 € HLAZ = 22 Ay = Yo — (Ax semigroupH)
Ty = a2 y2)
4. 4 o ohom_from_S' (@) — YaVy(z € S Aye S — (DEF hom_from.S’
o(x - y) = () - p(y) )
5. ) F hmn_fmm Hy(®) « VaVy(e € Hy ANy € Hy — (DEF
(x - y) = ®(x) - B(y)) hom from_H)
6. ;0 6 F Vl e lhiAnye H —a-ye Hy) (Ax semigroup Hy)
7. 0 7 F oVe,ys(e=yAy=2z—a=2z) (Ax= transitive)
8. ; 8 F o Ve(r e S — pa(x) € Ha) (ASS Def »)
9. ;9 F Va(x € H — ®(x) € Ha) (lemma 2a)
10. ;10 F o Va(e € 8" — 1 (x) € Hy) (Def 1)
i 1 F Ve, 1/(r€H1/\1/€H1/\.r:1/—><I>(f) ?(y)) (lemma 2a)
12. ;12 F Va(e €S — &(p1(x)) = p2(x)) (lemma 2a)
13, ;13 o Vy(y € Hy — Ae(e € S' Apr(2) = 9)) (ASS surj ¢1)
14. ; 14 F o hom_in_.S'(¢1) (ASS)
15. ; 15 F o hom_an S (p2) (ASS)
The Proof
16. ;4,14 F VyWVae(y e S'Axe €S — p1(x-y) = ¢1(x) - 01(y) (= D,—-D4 14)
17. 14,15 F VWe(y e S"Aa €S — po(a - y) = p2(x) - p2(y) (- D,— D4 15)
18. 18, F ST EHL (HYP)
19. 19; b ey € Hy (HYP)
(*)
20. 18; 13 Foo3y(y € 8" Api(y) = &10) (— D,VD 18 13)
21. 19; 13 Foo3z(z € 8" Api(2) = an0) (— D,vD 19 13)
22. 18; 13 Fooar €8 Apy(ay) = aq (3D 20)
23. 19; 13 Fooay €S Api(az) = x99 (3D 21)
24. 18; 10, 13 Foa €S Api(ar) = a0 Apr(ay) € Hy (AD,YD,ANI,— D
22 10
25. 19: 10, 13 Fooas € 8" Api(ay) = xa9 A pi(as) € Hy (/\D,\)D, AlL— D
23 10
26. 18, 10, 13 F (pl((l,l) € Hl AN Lpl((l,l) = rio (/\ D 2)4)
27. 19; 10, 13 F o oei(as) € Hy Api(az) = xaa (A D 25)
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28. 18; 10, 13 F ooz € HiApi(a) € Hi Api{ar) = #10 (AT18 26)

29. 19; 10, 13 Fooaon € Hy Agi(ay) € Hy Api(az) = x99 (AT119 26)

30. 18, 1(), 10, 13 - L0 € 1{1 A 4,01((1.1) € Hl /\gal(al) =19 N&yp € (/\ 128 29)

] H1 A <p1((12) € H] A 501((12) = T30
31. 18,19; 10,13, 3+ ~ p1(a1) - p1(az) = z10 - 30 (VD,— D 3 30)
32. 18,19; 10, 13,3+ a1 € S'Api(a1) = x10Ap1{a1) € HiAay € S'Ap1(ay) = (A131 24 25)
w20 A pi(az) € Hy A(figal) p1{az) = w10 - T20

33. 18, 1‘9, 10, 3, F q)(.’lfl() - 1?2(]) = Q(@l((ll) . 501((12)) (/\D, — D 11 32
13,11, 6 18 19 6)

34. 18,19; 10,3, F ®(pi(a1) - p1(a2)) = ®(p1{ay - uz)) (AD,YD,— D 11
13, 4, 14, 11, 6, 32 16 6)

35. %8, 19; 10,3, F  ®(p1(a1 - az)) = pa(a; - az) (AD,YD,— D 32
13, 2, 12 12 2)

36, 18,19;10,3, F  gular-a) = pa(ay) - p2(az) (AD,YD,— D 17
13, 4, 15 32)

37. 18, 19; 10,3, +  alay) - pa(an) = B(e1(a1)) - B(e1(az)) (ND,¥D 32 12 1
13,12,77,8,9 8 9)

38. 18, 19, 10, 3, (o ‘I’(gol(ul)) . <I>(<,01(a2)) = q>(.’l.'1()) . (I)(:l:20) (/\D,-—* D132 11
13,11, 1,9 9 10)

39. 18, 19; 10,3, F  &(xy0-x20) = P(x10) - B(#20) (AD,~ D7 33 34
13, 1, 4, 14, 15, 35 36 37 38)
11,7, 2,8, 9,
12,6

40. ; 3, 13, 1, 4, 14,F a0 € HiAagy € Hy — (D(.’ltm . .’ltz()) = (I)(Jtl()) . (P(:Ifg()) (DED 39)
15, 11,7, 2, 8,
9,12, 6, 10

41. 13,13, 1,4, 14, Vo Veo(ay € HiNay € Hy — ®(x1-25) = (1) P(x3)) (VI 40)
15, 11,7, 2, 8,
9,12, 6, 10

42. 13,13, 1,4, 14, F  hom_from_H(D) (« D,— D,¥D 5
15,11, 7,2, 8, 41)
9,12,6,5, 10

Discussion

The subtheorems 2c¢ of 7.5.7 and 5.7 differ in more than one corresponding symbol.
Thus symbol mapping is not sufficient to obtain equal theorems and assumptions of
5.7.2c and 7.5.7.2c.
Term mapping, e.g., {f - term(z) = term(z)- term(y)} is not sufficient either, since
part (*) would differ after the term mapping and a proof checker would not accept
the transformation as a proof of 5.7.2c. Probably more importantly however, the
theorem and the assumptions of 5.7.2c and 7.5.7.2c contain' different subformulae
of the form © € M and quantifiers which have to be modified by the mapping
as well. This problem is due to fact that the mapping of terms is essentially an
abstraction by which some irrelevant symbols disappear. The actual justification for
this abstraction 1s the occurrence of the definition of a homomorphism within the

19



relevant assumptions. An analogy based on pure term mapping is not justified at all
and hence the abstracting reformulation has to be preferred. Another reason for this
preference is that less modification is to be done after this analogy formation.

An reformulation of theorem 7.5.7 and its proof to theorem 5.7 and its proof consists
of three steps.

1. Abstraction of both problems (i.e., theorem and assumptions) 7.5.7.2.c and
5.7.2.c based on the meaning of the two respective definitions of homomorphism.
The key is a reforinulation of terms of the form .f-term(z) to terms Op(term(z))
for 7.5.7.2c and terml-term2 to Op(terml,term2) with a function variable Op.
This reformulation affects the definitions of homomorphism within the relevant
assumptions: ~
ViVae(fe FAz € S — o(f-z) = f-¢(z)) becomes
Va(z € S — o(Op(x)) = Op(e(x)))
by the mapping f - term =Op(term)

Va,y(r € Ay € " — (- y) = ¢(x) - o(y)) becomes

Va,y(t € S"Ay € §" — o(Op'(x,y)) = Op'(p(x),0(y)))

by the mapping termi-term2 =Op(termi,term2). ‘

The reformulation affects also the corresponding terms within the whole proof.
Certain subformulae and quantifiers become superfluous and, hence, can be
omitted. As a result we obtain the theorems and reformulated proofs 7.5.7.2¢’

and 5.7.2.¢.

2. The problems 7.5.7.2.c" and 5.7.2.c’ are not equal yet. Their comparison sug-
gests another reformnlation of 7.5.7.2.c’ to 7.5.7.2.c” in order to obtain equal
abstracted assumptions and theorems, which increases the number of argu-
ments of Op in 7.5.7.2.c.’. This reformulation causes several additional changes
within the reformulated proof.

3. Finally, to return to the original theorem and assumptions of 5.7.2.c, a reversion
of the abstraction of 5.7.2.c has to be applied to 7.5.7.2.¢".

All these reformulations have to be applied to the whole proofs and not only to the
assumptions and the theorem.
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CASE 5: THEOREMS 4.8 and 5.3

Theorem 4.8 Let p and o be two equivalence relations, then
1. (pN o) is an equivalence relation and

2. (pU o) is the smallest equivalence relation, containing p and o.

Theorem 5.3 Let p and o be two equivalence relations, then
1. (pNo)is a leftcongruence and
2. (pU )" is the smallest leftcongruence containing p and o.

The proofs of theorem 4.8 and theorem 5.3 can be structured as follows.

The proof structure for theorem 4.8 becomes:

Part 1:

1. Theorem: (p N o) is an equivalence relation.
1.1. Subtheorem: reflexivity of (p N o),

1.2. Subtheorem: symmetry of (p N ),

1.3. Subtheorem: transitivity of (p N o).

Part 2:

2. Theorem: (p U c)'is an equivalence relation.
2.1. Subtheorem: reflexivity of (p U o)F,

2.2. Subtheorem: symetry of (p U a)?,

2.3. Subtheorem: transitivity of (p U o).

Part 3:
Theorem: (p U o) is the smallest equivalence relation.

The proof structure of 5.3 becomes:

Part 1:

l.a. Theorem: (pN o) is an equivalence relation.
l.a.1. Subtheorem: reflexivity of (p N o),

l.a.2. Subtheorem: symmetry of (p N o),

1.a.3. Subtheorem: transitivity of (p N o),

Lb. Theorem: (fi, f2) € (PN o) = (9f1,9/2) € (pN o).

Part 2:

2. Theorem: (p U o) is a leftcongruence

2.a. Subtheorem: (p U )" is an equivalence relation.
2.a.1l. Subsubtheorem: reflexivity of (p U o)?,

2.a.2. Subsubtheorem: symmetry of (p U o)?,

2.a.3. Subsubtheorem: transitivity of (p U o)?,

2.b. Subtheorem: (fi, f2) € (pU o)t — (¢f1,9f2) € (pU o).
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e Part 3:

Theorem: (pU )" is the smallest equivalence relation.

Discussion

This example illustrates particularly well the importance of structuring theorems and
proofs for analogy-driven theorem proving: Some parts of the proofs become identical.
For example, the proofs of the parts la, 2a, and 3 of theorem 5.3 are identical to the
corresponding subproofs of theorem 4.8 since the problems have identical theorems

and assumptions.

Looking at the remaining parts it turns out that
5.3.1.b can be proved analogously to 4.8.1.2 and
5.3.2.b can be proved analogously to 4.8.2.2. These proofs are given in the following:

ND Proof of theorem 4.8 part. 1.2

NNo S§;D Formula Reason
relevant assumptions
1. i1 F VR(symm(R) « Vr1,z2((x,,22) € R — (x2,%1) € R)) (DEF-symm)
2. ;2 F VRy, Ry, z((r € (RiNRy) & (r € Ry Az €Ry)) (DEF-N)
3. ;3 F symm(p) (ASS)
4. ; 4 F o symm(o) (ASS)
- The proof
d. 9; Fo (fi, f2) €(enp) (HYP)
6. ;2 Fo(fuf)€(enp) = (fi,fr)eaA(fi,f2)€p (VD,~ D 2)
7. 5; 2 Foo(fi,f2) Ep (— D,AD 6)
3. 5; 2 F o (fi.f) €Ea (= D,AD 6)
9. ;1 F symm(p) — Vay,22((x1,72) € p — (x2,21) € p) (VvD,~ D 1)
10. ;1,3 B Vay, a((e1, 22) € p — (13, 21) € p) (—D9 3)
11. 1,3 (i) Ep—(fr,fi)€Ep (VD 10)
12. 1 F o symm(o) — Vo, w2((x1, 22) € 0 — (22, 21) € ) (VD,~ D 1)
13. 01,4 BV, xo((21,22) €0 — (22, 71) € 0) (— D12 4)
14. 1,4 F (L f) €0 — (fo i) ED (VD 13)
15, 5:21,3 Fo(fo, f1) Ep (- D11 7)
6. 52,14 F o (f f) €0 (= D 14 8)
17. 5:2,1,4,3  F (fo, fi) €(eNp) (VD,— D 2 16)
18 52,1,4 b (fu f2) €(@0p) = (fa, fi) € (01 p) (DED 17)
9. ;2,1,4 F VL f((f f2) € (eNp) — (f2, /i) € (e Np)) (VI 18)
20. 02,1, 4 F o symm(o Np) (VD,~ D,— D1
19)
Thm. ; F o symm(e Np) 0
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ND Proof of theorem 5.3 part 1.b

NNo S;D Formula Reason
relevant, assumptions

1. i1 F  VR(leftcongruence(R) « Vg, zy,x2(g € H Az, 33) € (DEF-

R — (g1, 972) € R)) leftcongruence)
2. 2 F VRy,Ry,z((x € (RiNRz) — (¢ € Ry Az € R)) (DEF-N)
3. i3 t  leftcongruence(p) (ASS)
4 ;4 F  leftcongruence(o) (ASS)

The proof

5 5; o (fi, f2) € (o nNp) (HYP)
6 ; 2 Fo(fi,f2)€(enp)—(fi,fr) €Ean(fi,f2)Ep (YD, D 2)
7 7 Fogo€H (HYP)
8 5; 2 E (i, f)Ep (— D,AD, 6)
9. 3; 2 Fo(fi,f2) €0 (— D,AD, 6)
10. i1 F o leftecongruence(p) — Vg, x1,22(9 € H A(2y,x2) € (VD,~ D 1)

p— (gxy, grs) € p)
11. ;1 F o VY, aa((r, ©2) € p — (gox1, gox2) € p) (= D10 3)
12 1 F o lefteongruence(a) — Vg, x1,22(g € H A (&1, 2) € (YD,~ D 1)

o — (g1, gay) € o)
13. 71 F o Vay,au((x1, 72) € 0 — (goe1, gors) € @) (= D12 4)
14. 7; 1 Fo(fi,fo) €Ep—(gafr,m0f2)Ep (VD 11)
15. 5, 7,2, 1,3 Fo (gofi,90f2) €Ep (— D, 14 8)
16. 7.1 o (fi, f2) €0 = (gofi,90f2) €0 (VD 13)
17 51 77 27 ll 4 }— (!Infly.‘l()fz) co (“” D, 16 9)
18. 5 7,2,1,4,3 + (gofi,90f2) € (¢ N p) (VD,~ D 2 17)
19 7,2,1,4,3 F g€ HA(f1,f2) € (aNp) — (90f1,90f2) € (6N p) (DED 18)-
20. 721 1)47 3 F v(l’jlaf'l(geH/\(flafZ)e (Uﬂp)—>(gf1,gf2)€crﬂp) (VI 19)
21. :2,1,4,3 F o lefteongruence(e 0 p) (VD,~ D,— D, 1
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Thm. ; F lefteongruence(o O p) 0 )
Discussion

Symbol- or term mappings are not sufficient for a transformation of 4.8.1.2 to 5.3.1.b.
For example, the symbol mapping {symm = leftcongrunce} is not sufficient, since
the definitions of symm and leftcongruence (which are part of the relevant as-
sumptions) are not equal after this mapping. An additional term mapping would
have to be restricted to certain occurrences of terms, because the overall mapping
{(fa, f1) = (¢ f1,9 - f2)} or {(terml,term2) = (g - terml,g - term2)} also yields
{(f1, f2) = (g9f2,9f1)} which is not desired at all. Furthermore, the reformulated
proof cannot be verified for 5.3.1.h because of missing sort declarations and quanti-
fiers.

Furthermore, the theorem and the assumptions of 4.8.1.2 and 5.3.1.b contain subfor-
mulae of the form = € M and quantifiers which have to be modified by the mapping.
This problem is due to fact that the necessary mapping of terms is essentially an
abstraction by which some symbols irrelevant for the proof disappear, just as in the
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previous case. The actual justification for this abstraction is the occurrence within
the relevant assumptions of the definitions of symm and le ftcongruence, which have
the same characteristic structure. An analogy formation based on pure term mapping
1s not justified at all and hence the abstracting reformulation has to be preferred.
A successful transformation is composed of an abstraction followed by a symbol
mapping, and a subsequent reverse abstraction.

1. The abstraction of problem 4.8.1.2 that yields problem 4.8.1.2’ changes the
pairs (terms, term, ), which are determined by the definition of symm, to terms
f,en(termy,termsy). The abstraction of problem 5.3.1.b that yields problem
5.3.1.b’ transforms the pairs (g - term,, g - terms) to f;(termy,term,). These
reformulations affect the pairs contained in the definition of symm(R) and
le ftcongruence(R), respectively. It affects the derived terms within the whole
proof and in addition, certain formulae and quantifiers have to be removed.

2. The symbol mapping {symin = leftcongruence, f,e, = f,} is applied to prob-
lem 4.8.1.2" and yields problem 4.8.1.2” which is equal to problem 5.3.1.b".

3. Finally, to return to the original problem 5.3.1.b, a reversion of the abstraction
of problem 5.3.1.b has to be applied to problem 4.8.1.2".

In the following the ND-proofs of theorem 4.8 part 2.2 and of theorem 5.3 part 2.b
are given.
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ND Proof for theorem 4.8 part 2.2

NNo §;D Formula Reason
relevant assumptions
1. ;1 F  VR(symm(R) « Vuy, x2((x1,22) € R — (x2,71) € R)) (DEF symm)
2. ;2 F Ve(z€(pUo)—zE€EpVIE0) (DEF-U)
3. 3 F Ve, y,k(k€N - ((z,y) € R — (y,2) € {(Induction-AX)
RYA(((x,y) € R* — (y,2) € R*) — ((z,y) €
REFL i (y,x) € R¥1)) > Vn(n € N — (z,y) €
R™ — (y,x) € R™))
4. i 4 F Ve, y((z,y) €(pUa) — (z,y) € (pU)) (DEF-(pua)l)
5. 5 F Vn,z,y(n € N = ((x,y) € (pU )t « Fz((z,2) € (DEF (p U o)"t1)
(puea) A(z,y) €(pUa)) V((2,y) €
(pUa)* A(x;2) € (pU)))
6. i 6 b Vo, y(z,y) € (pUo) — In(n € N A(x,y) € (pU o)) (DEF-(pU o))
7. 3 7 F o symm(p) (ASS) |
8. ; 8  symm(e) (ASS)
induction base
9. 9 Fo(fi,f2) € (pUo) (HYP)
10. 9 F o (fi,fo)€pV(f, f2) €0 (VD,— D2 9)
11. 11 F o (fi,fa)€Ep (HYP)
12 11:1,7 o (fa, ) Ep (vD,— D7 11 1)
13, 11:1,7,2 o (fo fi) € (pU0) (YD, D,— D 2
12
4. 11,1,7,2,4 + {(fo, fi) € (pU ) (V}D,HD,_»D 13
4
15. ;1)7) 214 + (flyf‘.!)el)_"(.ﬁlafl)e(pua)l (I)DED 14)
16. 16; F (h,f2) €0 (HYP)
17. 16, 1,8 Fo(fo, €0 (VD,— D8 16 1)
18. 16; 1, 2, 8 Fo(fo, h)e(puo) (VD,—~ D,— D2
17)
19. 16;1,2,84 + (f2, /1) €E(pUo)? (VD,~ D,— D 18
1)
20. 01,2,8, 4 Fo(fi,fo) € —(f, i) €(pUo)! (DED 19)
9. 9,1,2,8,7,4 F (fo /1) € (pUc) (VD 10 15 20)
22.  ;1,2,8 74 t VA, (N, F) E(pUa) = (f2, i) € (pUo)! (DED,VI 21)
The proof induction step
23 23, F kEN (HYP)
24. 24; F o Ve, xa((xy, 72) € (pU ) — (22,21) € (pUa)F) (Induction-HYP)
25. 25 Fo(fi,fo) € (pua)tt! (HYP) .
26.  25,23;5 Foo3z(((,2) €E(pUa) Az, f2) € (pUa))V((z, f2) € («+D,— D5 25)
(pUa) A(fi.2) € (pUa)))
27,21 Eo ((fi,20) € (pU )" A (20, f2) € (pU )YV ((0, f2) € (HYP)
(pUY A(fi,x0) € (pUO))
case 1
28.  28; F o (f1,20) € (pUT* A(zo, f2) € (pU )} (HYP)
29.  28; Fo(fi,x0) € (pUa)F (AD 28)
30. 28 Foo (w0, f2) €(pUa)t (AD 28)
31. 28, 23; F (w0, f1) E(pUa)F (VD,— D 24 29)
32. 28, 24; Fo (f2,20) € (pUa)! (VD,— D 24 30)
33, 24,28,23;  F  (fo,20) € (pU) A (20, 1) € (pU o)) (AT 31 32)
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(fzoa0) € (pUA) A(x0, f1) € (pUG)V (fa,x0) €

3z((f2,2) € (pUG) A(z, i) € (pUB)* V (f2,2) €

(VI 33)
(AI,3I 34)

(VD,~ D,— D 35
5)

case 2
(w0, f2) € (pU ) A(f1,70) € (pU o)

€ (pUam)*)
f@uvﬁ)vuamo

m

3z((2, 1) € (pU ) A(fr,2) € (pU YV (fr,2) €

Vi, L2((fi, fo) € (pU )P+t — (f2, i) € (pUa)FHY)
k€ N AVay, zy(((x1,72) € (pU o)k — (2g,21) €

(pUa)) = V1, fo((fi, ) € (pUa)H — (fo, f1) €

Vfi, f:¥n(n € NA(fi, f2) € (pU ) — (f2, 1) €

(HYP)

(AD 37)

(AD 37)

(¥D,— D 24 38)
(¥D,— D 24 39)
(AI 40 41)

(VI 42)

(31 43)

(VD,—~ D,— D 44
5)
(vD 45 36 27)

(CHOICE 46 27
26)

(DED,VI 47)
(DED 48)

(VI,AI,— D 49 22
3)

for (pU o)t

dn(n € NA(f1,f2) € (pua)?)

In(n e NA(fo, i) € (pUa))

(f1,f2) € (pU ) — (f2, 1) € (pU )
Vi, FA(f1, f2) € (pU ) — (f2, fi) € (pU))

34. ; 24, 28, 23 [
(pU (7)" A (o, f1) € (pU 0’)1
35. 28, 24, 23, (o
(pUa) A(z f1) € (pUa))
36. 28,24,23;5 F (f2, i) €E(pUa)Ftt
37. 37, +
38. 37, F o (x0, f2) € (pUa)*
39. 37; F o (fi,70,) €E(pUo)t
40. 37, 23, Foo(fz,z0) €(pUo)
41. 37, 24, F (%0, f1) € (pU0)}
42. 24, 37, 23, F o (f2,20) € (pUG) A (20, f1)
43, ;24,3723 F (f2,20) € (U A (20, 1)
(pUa) A(xo, i) € (pU )
44. 37, 24, 23; (=
(pUa) A(z, i) €(pUa))
45. 37,24,23;5 F (fy, f1) € (pUa)kt!
46. 37,28,24,23, F (fs, /1) €E(pUa)Ft?
27: 5
47, 23,24,37,25, F (fo, fr) € (pU o)+
28; 5
48. 23,24,28, 37,5+
49. ;D +
(pUa) +l))
5. ;1,2,34,5 F
7,8 (pua)™)
5l.  Bl; F o (fi, ) e(pUa)
52. 51;6 F
53.  53; F o oma € NA(fi, f2) €(pUa)™
o4. 53;1,2,3,4,5,F my&eNA (fz,fl) c(pUa)™
7,8 ‘
55. 53;1,2,3,4,5,F
7,8
56. 53, 1,2,3,4,5,F (fs, 1) €(pUa)
7,8
57. 51;6,1,2,3,4,F fg,fl)E(/)UO')t
57,8
58.  :6.1,2,3,4 F
57,8
59. ;6,1,2,3,4, F
57,8
60. ;6,1,2,3,4, F  symm(pUa)
5,7, 8
Thm. ; F o osymm(p Uo)t
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(HYP)

(VD,~ D,— D 6
51)

(HYP)

(VD,— D 53 50)

(3I 54)

(— D6 55)
(CHOICE 56 52
53)

(DED 57)

(VI 58)

(-~ D59 1)
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ND Proof for theorem 5.3 part 2.b

Reason

relevant assumptions
VR(leftcongruence(R) « Vi, x2,4(g € F(z1,2) €

Vz(x € (pUo) >z EpVa€o0)
Vka'r’yuIlaylvaay2>m3)y3yg(k € NAg € F—
((r,y) € R* = (gz,9y) € R)) A(((#1,1) € R —
(91,9%) € R*) — ((22,92) € R**! — (922, 932) €
R¥+1)) —Vn(n € N — (z3,y3) € R" — (gx,gy) €

Ve, y((z,y) € (pU ) < (2,y) € (pU )

Vn,z,y(n € N — ((z,y) € (pU o)™+ & 3z((z,2) €
(pUa)" A(z,y) €(pUr))V((2,y) €

(pUa)" A(z,2) € (pUa))))

Va,y(z,y) € (pUa) < In(n € NA(z,y) € (pU)")

(DEF-
leftcongruence)
(DEF-U)
(Induction-AX)

(DEF-(pUa)')
(DEF (pU o)+1)

(DEF-(p U o))
(ASS)
(ASS)

induction base

(fi,f2) €pVv(fh, o) Ea

(fi, f2) €Ep— (gafi,90f2) € (pU )}

(f1,f2) €0 — {gof1,90f2) € (pU )}

Vi, f2,9(9 EFA(f1, f2) € (pU o) — (9f1,9f2) €

(HYP)

(HYP)

(YD, = D2 10)
(HYP)

(VD, & D,AI—
D7 129 1)
(VD,—~ D,— D 2
13)

(YD, —~ D,— D 14
4)

(DED 15)

(HYP)

(VD,— D,AI — D
8§ 17 9 1)
(YD, — D,— D 2
18)

(vD,— D,— D 19
4)

(DED 20)

(vD11 16 21)

(DED VI 22)

induction step
Yay, wa((w1, 22) € (pu (r)k — {qa1,932) € (pU 0’)”)

3(((fr,2) €(pUa) A(z, o) € (pU) )V ((2, o) €
(pUa) A(fr,2) € (pUa)))

NNo S§;D Formula
1. 1 =
R — (gz1,9%3) € R))
2. ;2 F
3. 03 F
R"))
4. 04 F
5. 5 F
6. ;6 F
7. 0T F lefteongruence(p)
8. ; 8 F o lefteongruence(o)
9. 9; FogueF
10. 10 Fo(fi,f)e(pua)t
11. 10; 2 F
12. 12 F o (fuf)ep
13, 12,9;1,7 F oo (gofi,gof2) €p
4. 12,9, 1,27 F (gof1,90f2) €E(pUo0)
15, 12,9, 1,2,4, 7+ (gof1,90f2) € (pU )
16. 9;1,2,4,7 [
17. 17, Fo(fif) €0
18. 17,9 1,8 F (g0fi,g0f2) €0
19. 17,9;1,2,8 F  (gof1,90f2) € (pU )
20. 17,9;1,2,4,8 +  (gofi,90f2) € (pU o)}
21, 9;1,2,4,8
22. 10,9, 1,2, 4,7,  (yufr,90f2) € (pU )t
8
23. 0 1,2,4,7,8 F
(pua)t)
24. 24; F keN
25, 25; +
2. 26, 24; Foo(fi, f2) € (pUa)t*?
27. 26, 24; 5 -
28. 24, 26,5 F

((fi,x0) € (pU ) A0, f2) € (pUG))V ((m0, f2) €
(pUa)E A(f1,20) € (pU))

(HYP)
(InductionHYP)
(HYP)

(VD,~ D,— D 5
26)

(3D 21)

case 1
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(f1,20) € (/)U(r)’C A (zo, f2) € (pU )

3:((9f1,2) € (pU o) A(2,9f2) € (pUO)')

(fi,20) € (pUG)* A(z0, f2) € (pUO) — (9f1,9f2) €

(HYP)

(AD 29)

(AD 29)

(— D 25 30)

(— D 25 31)
(A1,3I 32! 33)
(AL,VD, D,—
D 32 33 5)

(DED 35)

case 2
(0, f2) € (pU ) A(f1,10) € (pUo)?

F((9f1,2) € (pU ) A(z,9f2) € (pU)F)

(fi,z0) € (U A(zo, 2) € (pU ) — (g9f1,9f2) €

k€ N AVay, ay, f1, f2(((x1,22) € (pU a’)k —_—
(g71,9%2) € (pU ) A((f1, f2) € (pU)*H! —

(HYP)

(AD 37)

(AD 37)

(— D 25 38)

(— D 25 39)
(AIL3I 40 41)
(ALYD,— D,—
D,VI 40 41 42 5)
(DED 43)

(VD 36 44 28)
(DED VI 45)

induction for (pU o)™
Vi, fo,g¥n(n e NAge FA(fi,f2) €E(pUo)” —

(VI,AI,— D 46 23
3)

for (pU o)t

In(n € N A (f},fz) eE(pUo)?)

mg € N A(gf1,9f2) € (pua)™

In(n € N A(gfr,9f2) € (pUa)?)

(f1, f2) € (pU ) — (9f1,0f2) € (pU o)

Vfi, folg € FA(f1, [2) € (pU0) = (9f1,9F2) €

29. 29, -
30. 29, 24; F o (fi,x0) € (pUa)F
31. 29, 24, F o (xo, f2) € (pU o)
32. 29, 24, 25; F (g9fi,970) € (pU )t
33. 29, 24, 25; F (g9x0,9f2) € (pU o)}
34. 29, 24, 25; -
35.  29,24,25;5 F (gfi,9f2) € (pUa)Ft!
36. 24,255 =
(pUa)Ft!
37. 37; F
38. 37,24 Fo(fi,z0) € (pUa)!
39. 37, 24; F o (x0, f2) € (pU o)
40. 37,24, 25: Fo (gfi,910) € (pU o)
41. 37, 24, 25; F o (gz0,9f2) € (pUa)F
42. 37, 24, 25; 8
43, 37,24,25:5 F (gf1,9f2) € (pUa)t!
44. 24,955 -
(pUa)ttt
45.  24,26,255 F  (gf1,9fs) € (pU o)kt
46. ;5 -
(af1,9f2) € (pUa)FF))
47, ;1,2,3,4,5, F
7,8 (9f1,9F2) € (pUO)")
48. 48, F (i, ) €(pua)
49.  48:6 F
50.  48; 6 F mo e NA(f1, f2) €(pUa)™me
51.  48,9;1,2, 3,4, F
56,7, 8
52. 48,9;1,2, 3,4, F
56,7, 8 -
53, 48,9;1,2,3,4,F (¢f1,9f2) € (pUa)
56,7, 8
h4. ;1,2,3,4,5, F
6,7, 8
55.  ;1,2,3,4,5, F
6,7,8 (pUa))
56. 1,2,3,4,5, F leftecongruence(p Uo)t
6,7, 8
Thm. ; b leftecongruence(p Ua)t
Discussion

(HYP)

(VD,—~ D,— D 6
48)

(3D 49)

(VD,— D 50 47)

(31 51)
(— D6 52)
(DED 53)
(VI 54)

(— D55 77)

()

The same reformulation as presented for theorem 4.8.1.2 that leads to theorem 5.3.1.b
works for theorem 4.8.2.2 and theorem 5.3.2.h as well.
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CASE 6: THEOREM 5.2 and its ANALOGUE

Theorem 5.2
Let p be an equivalence relation on a semigroup F'. The following assertions are
equivalent

a) p is a leftcongruence in F
b) For all f € F and h € F holds h- Q(f) C Q(hf).

Theorem 7.5.2 (analogous to 5.2.)

Let p be an equivalence relation in an F-semimodul S. The following assertions are
equivalent

a’) p is a congruence in §

b’) For all f € S and i € F holds h-Q(f) C Q(hf).

The proofs of these theorems are based on definitionl and definitionl’ of z € Q(z)
(see Case 2) for semigroups F' and S, which differ in some symbols and on definition2
and definition2’ of = € h - Q(z), which differ in some symbols as well.

Definition 2:

Vo,z,h(t E FANz€ FAhReF -2 eh-Qz) o ylye FAy e Q(z) Az =h-y))
Definition 2’:

Ve, z,h(r € SAze€SAhe Foaeh -Qz)eylye SAy€p(z)Az=h-y))
The proofs of theorem 5.2 and theorem 7.5.2 can be structured as follows:

The proof structure of 5.2. is:

e Part 1 (a—b)
Theorem: Yh, f(h € FA f € F — h-Q(f) C Q(hf))
Relevant assumptions: definitionl; assumption of p being a leftcongruence in a
semigroup; the extensionality axiom of =; definition2.

o Part 2 (aeDb)
Theorem: p(fy, f2) — pl(hfi,hf)

Relevant assumptions: (a part of) the definition F' is semigroup; definitionl;
the definition of C; definition2.

The proof structure of 7.5.2 is:

e Part 1 (a’—b’)
Theorem: Vh, f(he FAfe S — h-Q(f) C QhSf))
Relevant assumptions: definitionl’; assumption of p being a congruence rela-
tion on a semimodul; the extensionality axiom of =; definition2’.

29



o Part 2 (a’D7)
Theorem: p(fr, f2) — p(hfu, hfo)

Relevant assumplions: (a part of) the definition that F' is semimodul; defini-

tionl’; the definition of C; definition2’.

ND proof of the subtheorem 5.2.1

Reason

(AX=)
(part of DEF left-

congruence(R))
(DEF1)

(DEF2)
(part  of

semigroup(F))
(DEF Q)

DEF

NNo S;D Formula
relevant assumptions

1. 1 F VRV, o'y, ¥ (x =o' Ay =y — (Rey < Rz'y'))

2. 2 F VRVAh, fi,fo(h€ FANfi€ FAfo € F— (R(h, f2) —
R(hfy, hf'.»)))

3. ;3 F Vi,z,e(h€e FAze F—-(c€eh - Qzeoz€
FA3yye FAz=h-yAp(y, z))))

4. ; 4 b Va,z(s € FAzEF —a € Qz — p(x,2))

5. ;5 F Ve,yr€e FAyeF —a-yeF)

6. ; 6 F VM, N(M CN —VYe(x € M — z € N))

the proof

7. 7, F heF

8. 8; F ferF

9. 9; Foay€h-Qf

10. 7,8, 93 b ap€F

11. ;3 F (o€ FAMEFAFEF —(ap€h-Qf —3yly €
FAxzo=h-yAply, 1))

12. 7,83 F (z0€F —=(xg€h -Qf «Fylye FAxy=
h-ynply, )

13. 7,8,9;3 FoJylye FAxp=h-yAp(y, f))

14. 14; Foywe€FAxy=h-yoAp(yo, f)

15, 14 Fooyo € FAp(yo, f)

16, 14, 8; F oy €FAfEFAp(y,f)

17. 14, 8; 2 F o p(hyo, 1 F)

18. 14, 8; 2, 1 F o op(xo, hf)

19. 7,89,3,2,1 F  pleg, hf)

20. 7,85 F hferF

21. 7,8,9,4,5, 1, b xyeQhf)

3,2

22. 14,5,1,3,2 F heFAfEF —(ea€h -Qf - ag€Qhf))

23. 74,5,1,3,2 F Ve, fM(he FAfEF —(x€h-Qf -z Qhf)))

24. 14,5,1,3,2,6 - VYh,f(he FANfEF —h-Qf CQ(hf))

Thm. ; F Vh,flhe FAfEF —h-Qf CQ(hf))

(HYP)

(HYP)

(HYP)

(VD,—~ D,AD 9 3
78)

(VD 3)

(= D11 7 8)

(= D,— D12 9)
(HYP)

(AD 14)

(A 15 8)

(VD,— D 16 2)
(¥D,— D17 14 1)
(CHOICE 18 13)
(VD,—~ D5 7 8)
(VD,AD,— D4 20
10)

(DED 21)

(VI 22)

(— D6 23)

0

The operation - should have been used in the theorem, in the assumptions, and in
the proof. Instead, the polymorphic symbol - is used for convenience and readability.

proof of the subtheorem 7.5.2.1

NNo

S;D

Formula
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relevant assumption

1. il F VRVz, 2y, (r=2' Ay=y — (Rzy — Rz'y)) (AX=)

2. ;2 b Vh, f, fo(h€E FANfLESAf2 €8 — (R(f1r, f2) — (part of DEF con-
R(hf1, hf2))) gruence(R))

3. ;3 b Vhz,x(h€FAzeS—(e€h - Qre—reSATy(ye (DEF1’)
SAz=h-yApy z))))

4. ;4 F Vo,z(e €SANz€S—x € Qz— p(x,2)) (DEF?2’)

5. i) F Ve,y(re FAyeS—az-y€S) (part of DEF F-

semimodul($))
6. ; 6 F MCNoVYe(zeM —x€eN) (DEF C)
the very proof

7. 7; F heF (HYP)

8. 8; F fesS (HYP)

9. 9; F axg€h- Qf (HYP)

10. 7.8,9:3 o TR = (VD,« D,AD 9 3

78

11. 3 F (40 €ESAREFAFES = (20 €h-Qf & y(y € (VD)3)
SAxg=h-ynp(y, H))) ‘

12. 7, 8; 3 (o (.’lf() €5 — (.’IT() & h - Qf And By(y eSA Ty = (—> D11 7 8)
h-ynp(y, H)))

13. 7,893 Fo3yye SAzg=h-yAp(y,f)) («<+D,—D12 9)

14. 14, Foyww €S Axg=h- -y Aplyo,f) (HYP)

15. 14; Fooyo € SAp(yo, F) (AD 14)

16. 14, 8; F oy €SAFESApy,[) (AI'15 8)

17. 14,8:2 F o p(hyo, bf) (VD,— D 16 2)

18. 14,821 ko p(xa, hf) (vD,— D17 14 1)

19. 7,8,9:3,2,1 +  p(xo, hf) (CHOICE 18 13)

20. 7,85 F LfesS (VD,— D5 7 8)

21. 7,8,9,4,5,1, F x5€Q(hf) (VD,AD,-+ D4 20

3,2 10)

22. :4,5,1,3,2 F heFAfeS—(xg€h-Qf —ay€Qhf)) (DED 21)

23. 14,5,1,3,2 F Ve, flhe FAfFES—(x€h -Qf > x€Qhf))) (VI 22)

24. 14,5,1,3,2,6 Vi, f(he FAfeS—h-Qf CQAS)) (= D6 23)

Thm. ; F Vi, f(heFAFES—h-Qf CQUhIS)) 0

The operation -g should have been used in the theorem, in the assumptions, and in
the proof. The polymorphic symbol - is used as before for convenience and readability.

Discussion

At first sight, a symbol mapping with {F = S, - = -5} seems to be an appropriate
technique to remove the superficial differences between the problems 5.2.1 and 7.5.2.1.
However, applying this symbol mapping causes confusion, because the mapping {F
= S} has to be applied at some occurrences only. Such a symbol mapping is called
inconsistent.

Instead a reformulation by abstraction works: It transforms the theorem, the assump-
tions, and the proofs of 5.2.1 to the abstracted theorem 5.2.1' etc. by the mapping
{h-F term = ap(term)}, where ap is a new variable, and by removing certain for-
mulae and quantifiers which become superfluous, such as (h € F) and Vh. This
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abstraction is based on line 2 of the proof, which is a part of the definition of a
leftcongruence on a semigroup. The same abstraction as for 5.2.1 transforms the
theorem, the assumptions, and the proof of 7.5.2.1 to the abstracted theorem 7.5.2.1’
using the mapping {h-sterm = ag(term)}, and also removing (h € F') and Vh. This
abstraction is based on line 2 of the proof of 7.5.2.1, which is part of the definition
of a congruence on a semimodul. The theorem and the relevant assumptions of
5.2.1" and 7.5.2.1' are equal except for the symbols ar and F. Hence, we need a final
symbol mapping { ar = as; F = S}, which yields identical problems 5.2.1” and
7.5.2.1". The proof of the original theorem 7.5.2.1 can be obtained by a reversion
of the abstraction that was applied to theorem 7.5.2.1 and to its assumptions and
proof.
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CASE 7: THEOREMS 6.9 and 13.7

The proofs of theorems 6.9 and 13.7 are marked as analogous in HUA, which means
in this case for each of the corresponding subproofs essentially the same method
should be used for proving the theorem.

Theorem 6.9

Let F' = W(X) be a free semigroup, S a nonempty set, and let &5 : X x S+— S be a
mapping, then there exists one and only one mapping ® : X x § + S which satisfies
the semimodul condition

(V) Vf,g,s(fe FNge FAs€ S — ®((fg),s) = ®(f,®(g,s))) and secondly

(2) @ restricted to (X x S) is .

This mapping ® is uniquely defined by:

(D) Vz,u,s(z € SAue FAs €S — &((zu),s) = oz, P(u, 5)))

and xs = ®(z,s) = Py(x, 3).

Theorem 13.7

Let £ = W(X) be a free semigroup, S an F-semimodul, A a semigroup, and let
do: X x S+ A be a mapping.

Then there exists one and only one mapping A : X x 5 +— A satisfying the automata-
condition

(1) Vf,g,s(f€ FAge FAs €S — M(f,9),8) = Mf,(g3)) - Mg, s))) and secondly
(2’) A restricted to X x S is Ay,

This mapping A is uniquely defined by:

(D) Vo, u,s(z € SAu € FAs €S — A(zu),s) = do(z, (us)) - AMu, s)) and

xs = Mz, s) = do(z, s).

The proofs of theorem 6.9 and theorem 13.7 can be structured as follows.
The proof structure of 6.9. is:

e Part 1
Theorem: Uniqueness of @, 1.e., ‘
I (v € FAs € S)and if there exists @ for which (1) and (2) are true, then
Q'(u,s) = ®(u,s))

The proof is by induction on the level of generation of u:

1. base step: the relevant assumptions are (2)

2. induction step: the relevant assumptions are the induction hypothesis; (1)
is true for (®'); @ is a mapping; (2) is true for (®');(2) is true for (®); (1)
is true for (®).

e Part 2
Theorem: ® is a mapping , i.e.,
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Yuy, ug, s1, 52011,y € FAs1,80 € SAup = ug Asp = s3 — O(ug,s1) =

P (uz,52)))

The proof is by induction on the level of generation of uj, us:

1. base step: the relevant assumptions are that ®¢ is a mapping and that (2)
is true for ().

2. induction step: the relevant assumptions are the induction hypothesis;
that F'is a free semigroup; that (D) is true for (®); transitivity of =; and
the theorem of part 2.1.

Part 3

Theorem: The mapping @ of part 2 fulfills condition (1), i.e.,
Vu,w,s(u,w € FAs €S — O((uw),s) = &(u, ®(w, s)))

The proof 1s by induction on the level of generation of u:

L. base step: the relevant assumptions are definition of ®; (D) is true for ®.

2. induction step: the relevant assumptions are the induction hypothesis; the
theorem of part 2; that F' is a semigroup; that (D) is true for (®) with
uw=u’; and that (D) is true for (®) with ws=s’.

The proof structure of 13.7 is:

Part 1

Theorem: Uniqueness of A, i.e.,

If (w € FAsé€S)and il there exists A’ for which (1’) and (2’) are true, then
N(u, ) = A(u, s)

The proof is by induction on tle level of generation of u:

1. base step: the relenant assumptions are (2’)

2. induction step: the relevant assumptions are the induction hypothesis; (1)
is true for (A'); (2’) is true for (X’); (2°) is true for (A); (1°) is true for (A);
and additionally, Vo, y,z,t{(a =y Az=t s z-42=y-at).

Part 2

Theorem: Existence of a mapping A, i.e.,

Vuy, tg, 1, 82(ur, ug € FAsy, s2 € SAup = ugAsy = s3 — AMug, 1) = Mus, s2)))
The proof 1s by induction on the level of generation of wy, usy:

1. base step: the relevant assumptions are that A is a mapping and that (2)
is true for ().

2. induction step: the relevant assumptions are the induction hypothesis;
that F' is a free semigroup; that (D’) is true for (); the transitivity of
=; the theorem of part 2.1; and additionally, Vz,y,z,t(zr =y Az =t —
Toaz=y-at).
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e Part 3
Theorem: The mapping A of part 2 fulfills the condition (1°), i.e.,
Vu,w,s(u,w € FAs €S — A(uw),s) = Au, (ws)) - Mw, s))

The proof is by induction on the level of generation of u:

1. base step: the relevant assumptions ave the definition of A; and that (D)
is true for-A.

2. induction step: the relevant assumptions are the induction hypothesis;
the theorem of part 2.; that F is a semigroup; that (D’) is true for A with
uw=u’; that (D’) is true for A with ws=s’; and additionally,
(uw)s=u(ws) (since S is an F-semimodul);
Ve,y,z,t(x=yANz=t—oa-4z2=1y-4t).

Discussion

Based on the following correspondences between the assumptions

(1) - (1), |

(2) - (27), and

(D) - (D),

that are induced by the structure of the theorems a reformulation composed of the
following steps succeeds in making the theorems and assumptions equal.

|
1. The term mapping

{B(£, 0(g.5)) = A (9 5)) - M5, 5)) 5 Bol, ®(1,5)) = holz,u - 5) - A(u, )}
transforms the subtheorems and the assumptions of 6.9 to that of 13.7. However,
the application of this term mapping, which is based on a comparison of the
assumptions and of the theorems is not sufficient for producing a verifiable
proof, for which we need additional assumptions.

2. These additional preconditions are necessary for the subproofs 1.2, 2.2, and 3.2
of theorem 13.7. These preconditions are
Va,y,z,{e = y Az =1t = 242 = y-4t) for 1.2, 2.2, and 3.2, and for
the subproof 3.2 Va,y,z(x € FAy € FAz € § — (2y)z = x(yz)). The
first formula is assumed to be in the knowledge base, since -4 is a function by
definition. The second formula is in the knowledge base since S is assumed to
be an F-semimodul.






Conclusion

This report contains those theorems and their proofs in a Natural Deduction
format that are explicitly marked as analogous in HUA. In addition, we gave
some hints and a discussion for each case , to show how the actual analogy
could be established. However, in order to keep this self-contained such that
it may serve as a test set for other workers in the field as well, we did not
show how our system actually established the analogy and how it finds the
respective proofs.

An account of our approach to analogy-driven theorem proving, by which
all of these cases could be solved, is given in [5].

References

(1] P. Deussen. Halbgruppen und Automaten, volume 99 of Heidelberger
Taschenbicher. Springer, 1971.

[2] N. Eisinger and H.J. Ohlbach. The Markgraf Karl Refutation Proce-
dure (MKRP). In J.Siekmann, editor, Proc. 8th International Conference
on Automated Deduction (CADE), volume 230 of LNCS, pages 681-682,
Berlin, 1986. Springer.

[3] Gerhard Gentzen. Untersuchungen iber das logische Schliefen I. Math.
Zettschrift, 39, 1935.

[4] X. Huang. An extensible natural calculus for argument presentation.
SEKI-Report SR-91-3, University Kaiserslautern, 1991.

[5] E. Melis. Change of representation in theorem proving by analogy. SEKI-
Report SR-93-07, Universitat des Saarlandes, Saarbriicken, 1993.

[6] S. Owen. Analogy for Automated Reasoning. Academic Press, 1990.






