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Abstract

Even though i t  is not very often admitted, partial functions do play a
significant role in many practical applications of deduction systems. Kleene
has already given a semantic account of  partial functions using three-valued
logic decades ago, but there has not been a satisfactory mechanization. Recent
years have seen a thorough investigation of the framework of many-valued
truth-functional logics. However, strong Kleene logic, where quantification
is restricted and therefore not truth-functional, does not fit the framework
directly. We solve this problem by applying recent methods from sorted logics.
This paper presents a resolution calculus that combines the proper treatment
of partial functions with the efficiency of sorted calculi.
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1 Introduction 

Many practical applications of deduction systems in mathematics and computer sci
ence rely on the proper treatment of partial functions. Although there are work
arounds for most concrete situations, there has been a considerable interest in the 
community for clean formalizations of partial functions. 

One of the key problems to be solved when formalizing partial functions is to de
cide, what happens if partial functions are applied to arguments not in their domain. 
In mathematical practice expressions like § = 1 or odd(predecessor(O)) are thought 
to be neither true nor false. This phenomenon can be handled in the well-known 
systems for intuitionistic logic, where the law of the excluded middle does not hold, 
hence ~ = 1 can be (and in fact is) neither true nor false, since neither the truth 
nor the falsehood of this expression can be shown. However, most mathematicians 
do not want to give up the law of the excluded middle, because it is basic for a 
strong proof technique, the indirect proofl

. Another standard way to deal with this 
situation is to consider expressions like § as "meaningless". Kleene makes this ap
proach formal, by introducing an individual 1. denoting meaningless individuals and 
a third truth value u, standing for the "undefined" truth value. However, in contrast 
to the general framework for many-valued truth-functional logics, Kleene's quantifi
ers only range over defined values, that is, not over 1., making a direct utilization 
of the methods developed by Carnielli [6, 7], Hiihnle [H], Baaz and Fermiiller [2] 
impossible. Kleene's approach has been utilized by Tichy [19], Lucio-Carrasco and 
Gavilanes-Franco [14] to give logical systems for partial functions. Both approaches 
offer unsorted operationalizations of the systems in sequent calculi. 

Other authors (cf. [5, 8, 17, 20]) have avoided the problems that accompany 
treating a third truth value, and simply consider all atomic expressions containing 
a meaningless term as false. This has the advantage that partial functions can be 
handled within the classical two-valued framework. However, the serious drawback 
is that the results of these logic systems can be unintuitive to the working mathem
atician. For instance in elementary arithmetic the following sentence 

x
Vx, y, z. z = - ::::} x = y * z 

y 

is a theorem of such systems since the scope is true for y -I 0 and z = ~ obtains the 
truth value f which in turn makes the implication true. However, it is mathematical 
consensus that the equation should only hold provided that y is not O. It will turn 

1For example, consider the following problem: are there irrational numbers a and b such that 

ab is rational. With the law of the excluded middle this can be easily shown. If ~ is rationa<l, 

a = b := ..j2 solve the problem, since ..j2 is irrational. Is, however, ~ irrational, then a :::: ff 
and b = ..j2 solve the problem, since ab = (~)VZ = 2 is rational. You don't have to kno~ 
whether ..j2VZ is rational or not and indeed this question is not easily answered. (Compare [13, 
p.160]) 

3 

1 Introduct ion

Many practical applications of deduction systems in mathematics and computer sci-
ence rely on the proper treatment of partial functions. Although there are work-
arounds for most concrete situations, there has been a considerable interest in the
community for clean formalizations of partial functions.

One of the key problems to be solved when formalizing partial functions is to de-
cide, what happens i f  partial functions are applied to  arguments not in  their domain.
In mathematical practice expressions like 3 = 1 or odd(predecessor(0)) are thought
to be neither true nor false. This phenomenon can be handled in the well-known
systems for intuitionistic logic, where the law of the excluded middle does not hold,
hence § = 1 can be (and in fact is) neither true nor false, since neither the truth
nor the falsehood of this expression can be shown. However, most mathematicians
do not want to  give up the law of the excluded middle, because i t  is basic for a
strong proof technique, the indirect proof. Another standard way to deal with this
situation is to consider expressions like 5 as “meaningless”. Kleene makes this ap-
proach formal, by  introducing an individual L denoting meaningless individuals and
a third truth value u, standing for the “undefined” truth value. However, in  contrast
to the general framework for many-valued truth-functional logics, Kleene’s quantifi-
ers only range over defined values, that is, not over L ,  making a direct util ization
of the methods developed by Carnielli [6, 7], Hahnle [11], Baaz and Fermiiller [2]
impossible. Kleene’s approach has been utilized by Tichy [19], Lucio-Carrasco and
Gavilanes-Franco [14] to give logical systems for partial functions. Both approaches
offer unsorted operationalizations of the systems in sequent calculi.

Other authors (cf. [5, 8, 17, 20]) have avoided the problems that accompany
treating a third truth value, and simply consider all atomic expressions containing
a meaningless term as false. This has the advantage that partial functions can be
handled within the classical two-valued framework. However, the serious drawback
is that the results of these logic systems can be unintuitive to the working mathem-
atician. For instance in elementary arithmetic the following sentence

x
Ve, y ,z .2=~-=>xc=y*2

Y

is a theorem of such systems since the scope is true for y # 0 and z = Z obtains the
truth value f which in turn makes the implication true. However, i t  is mathematical
consensus that the equation should only hold provided that y is not 0. It will turn

'For example, consider the following problem: are there irrational numbers a and b such that

a ’  is rational. With the law of the excluded middle this can be easily shown. If va?  is rational,
. . . 2 ,  .

a = b : =  1/2 solve the problem,  since 1/2 i s  irrational. Is,  however, Nok  irrational, then a = Nok

and b = v/2 solve the problem, since a? = vz"? V2  = 2 1s rational. You don’t have to know

whether J?  is rational or not and indeed this question is not easily answered. (Compare [13,
p-160])



2 

out (cf. example 3.11) that the formula is not a theorem in our formalization, since 
the case y = 0 is a counterexample. 

We formalize Kleene's ideas for partial functions in an order-sorted three-valued 
logic, called SK£, that uses the Kleene's strong interpretation of connectives and 
quantifiers and adapts techniques from Weidenbach's logic [20] to handle definedness 
information. We furthermore present two versions 'RPF and 'RPF(1)) of a resolution 
calculus for partial functions. 

We would like to thank Christian Fermiiller and Ortwin Scheja for stimulating 
discussions. 

Strong Order-Sorted Kleene Logic (Sa) 

In [12] Kleene presents a logic, which he calls strong three-valued logic for reasoning 
about partial recursive predicates on the set of natural numbers. He argues that 
the intuitive meaning of the third truth value should be "undefined" or "unknown" 
and introduces the truth tables shown in definition 2.7. Similarly Kleene enlarges 
the universe of discourse by an element ..L denoting the undefined number. In his 
exposition the quantifiers only range over natural numbers, in particular he does not 
quantify over the undefined individual (number). 

The approach of this paper is to make Kleene's meta-level discussion of defined 
and undefined individuals explicit by structuring the universe of discourse with the 
sort 1) for all defined individuals. Furthermore we declare all functions and predicates 
to be strict, that is, if one of the arguments of a compound term or an atom evaluates 
to 1-, then the term evaluates to 1- or the truth value of the atom is u. Just as in 
Kleene's system, our quantifiers only range over individuals in 1), that is, individuals 
that are not undefined. This is in contrast to the well-understood framework for 
truth-functional many-valued logics, where the concept of definedness and defined 
quantification cannot be easily introduced, since quantification is truth-functional 
and depends on the truth values for all (even the undefined) instantiations of the 
scope. Kleene's concept of bounded quantification is essential for our program of 
representing partial functions, since in a truth-functional approach no proper univer
sally quantified expression can evaluate to the truth value t (dually for the existential 
quantifier), since all functions and predicates are assumed strict. 

In the following we present the logic system SK£, which is a sorted version of what 
we believe to be a faithful formalization of Kleene's ideas from [12]. We treat the 
sorted version here, since we need the machinery for dynamic sorts in the calculus 
to be able to treat the sort 1) (sort techniques as that from [20, 21] give us the 
bounded quantification). We will call formulations of SK£ where 1) is the only sort 
symbol in the signature strong unsorted J(leene logic. The further use of sorts gives 
the well-known advantages of sorted logics for the conciseness of representation and 
reduction of search spaces. 
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Syntax 

Definition 2.1 (Signature) A signature E: = (S, V, F, P) consists of the following 
disjoint sets 

•	 S is a finite set of sort symbols including the sort 1>. We define S* := S \ fD} 

•	 V is a set of variable symbols. Each variable x is associated with a unique sort 
S, which we write in the index, i.e. xs. We assume that for each sort S E S 
there is a countably infinite supply of variables of sort S in V. 

•	 :F is a set of function symbols. 

• P is the set of predicate symbols. 

The sets :F and P are subdivided into the sets F k of function symbols of arity k and 
p k of predicate symbols of arity k. Note that individual constants are just nullary 
functions. 

We call a signature unsorted if S* is empty, that is, if 1) is the only sort symbol. 

Definition 2.2 (Well-formed Terms and Formulae) We define the set of well
formed terms to be the set of variables together with f(t\' ... , t k

) for well-formed 
terms t\ ... , tk and f E :Fk

• 

If P E pk, then P(t 1 , ••• , t k ) is a proper well-formed atom. If t is a term and S a 
sort thent<::S is a well-formed sort atom. The set of well-formed formulae contains 
all well-formed atoms and with formulae A and B the formulae A /\ B, -,A, !A, and 
'tAxs. A. Here the intended meaning of 'the classical connectives is the usual, whereas 
the intended meaning of lA is that A is defined. 

Semantics 

In this section we will define the three valued semantics for sa by extending the 
universe of discourse with ..l for the undefined. Nate that this is similar to the 
classical flat epo construction [18], but Kleene's interpretation of truth values does 
not make u minimal. Since we are not interested in least fix-points, monotonicity 
does not play a role in this paper. 

Definition 2.3 (Partial E-AIgebra) Let E be a signature, then a partial E-algebra 
consists of a 

1. non-empty carrier set A, 

2. an interpretation function I :Fk ~ .r;,(Ak 
; A) 

I p k ~ .r;,(Ak; {f, t}) 
I S* -t F(A; {f, t})2. 

where J;(A; B) is the set of partial functions form A into B, and :F(Aj B) is 

2For defined individuals the membership to a sort is not undefined. 
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Syntax
Definition 2 .1  (Signature)  A signature X: = (S ,V ,  F ,  P )  consists of the following
disjoint sets

e S is a finite set of  sor t  symbols including the sort © .  We  define §*  : =  S \  {D }

e Vis a set of variable symbols. Each variable x is associated with a unique sort
S, which we write in the index, i.e. zs. We assume that for each sort S € §
there is a countably infinite supply of variables of sort S in V.

e F is a set of function symbols.

e P is the set of predicate symbols.

The sets F and P are subdivided into the sets F* of function symbols of arity k and
Pk of predicate symbols of arity k. Note that individual constants are just nullary
functions.

We call a signature unsorted if 5*  is empty, that is, if © is the only sort symbol.

Definition 2.2 (Well-formed Terms and Formulae) We define the set of well-
formed terms to be the set of variables together with f ( t * , . . . , t * )  for well-formed
terms #1, ...,t* and f € F*.

If P € P*, then P ( t . , . . . , t * )  is a proper well-formed atom. I f t is a term and Sa
sort then t <S  is a well-formed sort atom. The set of well-formed formulae contains
all well-formed atoms and with formulae A and B the formulae A A B ,  A ,  !A, and
Vz. A. Here the intended meaning of the classical connectives is the usual, whereas
the intended meaning of !A is that A is defined.

Semantics

In this section we will define the three valued semantics for SKL by extending the
universe of  discourse wi th L for the undefined. Note that this is similar to the
classical flat CPO construction [18], but Kleene’s interpretation of truth values does
not make u minimal. Since we are not interested in least fix-points, monotonicity
does not play a role in  this paper.

Definition 2.3 (Partial L-Algebra) Let X be a signature, then a partial X-algebra
consists of a

1. non-empty carrier set A,

2. an interpretation function I : F* — F(A ; A)
I : PF — F (A5 { f , t } )
I : S* — F(A; {f,t})%

where F (A ;  B )  is  the set of  partial functions form A into B ,  and F(A;  B )  i s

2For defined individuals the membership to  a sort is not undefined.

5



that of total functions. Partial functions are defined as right-unique relations. 
We define the carrier As of sort S as As := {a E A II(S) (a) = t}. Nate that 
in contrast to other sorted logics, it is not assumed that the As are non-empty. 
This fact will require special treatments in the transformation to clause normal 
form and for instantiations in the resolution calculus. 

The partial ~-algebra is an algebraic account of the standard interpretation in 
mathematics, where partiality of functions is directly modelled by right-unique rela
tions. To be able to use ,standard methods from predicate logics, we close the universe 
with a bottom element 1.. and model partial functions as strict total function. Obvi
ously these notions of algebras have a one-to-one correspondence, so both approaches 
are equivalent. 

Definition 2.4 (Strict ~-Algebra) Let ~ be a signature and (A,I) a partial ~
algebra then we obtain the strict ~-algebra (A1., I.L) for (A, I) by the following 
extensions 

1. A.L: = A U {1.}, where we assume that 1. is not already a member of A 

2. The interpretation function I.L is defined to be 

(a)	 I.L(f): = [I(f)].L, where h.L is the strict extension of a function, that is, 
h.L(aI, ... , ak) = h(aI, ... , ak), if (ab"" ak) E Dom(h) and 
h.L (ab' .. , ak) = 1.. otherwise. 

(b)	 I.L(P): = [I(P)].L, where Q.L is the strict extension of a predicate, that is, 
Q.L(at, . .. , ak) = Q(at, . .. ,ak), if (ab' .. ,ak) E Dom(Q) and 

.L( ) . .Q	 ab ... ,ak = u otherwIse. 

(c)	 I is extended to I.L for sorts in $* just as in the predicate case. 

(d)	 I.L(1))(a) := t, if a E A and I.L(1))(1.) := f. 

Since strict ~-algebrasare the intended semantics of sa, we will often drop the 
explicit reference to 1.. in our notation. Note that 1. rt As for any S E S. 

Definition 2.5 (~-assignment) Let (A,I) be a strict ~-algebra, then we call a 
total mapping t.p: V -----+ A.L a ~-assignment, iff t.p(xs) E As, provided As is non
empty and t.p(xs) = 1. if As = 0. We denote the ~-assignment that coincides with 
cp away from x and maps x to a with cp, [a/x]. 

Definition 2.6 Let cp be a ~-assignment into a strict ~-algebra (A,I) then we define 
the value function Iep from well-formed formulae to A inductively to be 

1. Iep(f) := I(f), if f is a function or a predicate. 

2. Iep(x) := cp(x), if x is a variable. 
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3. Icp(f(tl, ... ,tk
) :=I(f)(Icp(t1), ... ,Icp(tk » 

4. Icp(t"ES) = I(S)(Icp(t» 

Note that this definition applies to P and :F alike, thus we have given the semantics 
of all atomic formulae. The semantic status of sorts is that of total unary predicates; 
in particular in Ai. we have IAt"ES) = u, iff Icp(t) = .l. 

Definition 2.7 The semantics of composed formulae is obtained from the values of 
the atomic subformulae in a truth functional way. Therefore it suffices to define the 
truth tables for the connectives: 

1\ f u t 

f 
u 

t 

f 
f 
f 

f 
u 

u 

f 
u 

t 

f 
u 
t 

t 
u 
f 

f 
u 
t 

t 
f 
t 

Kleene does not use the! operator as a connective but treats it on the meta-Ievel. 
Note while it is useful it is not necessary for the treatment. Furthermore, even this 
connective does not render SK£ truth-functionally complete, since, just like negation 
and conjunction, ! is normal. 

The semantics of the universal quantifier is defined with the help of a function V 
from the non-empty subsets of the truth values in the truth values. We define 

t for T = it} 
IAVxs. A) := V({Icp,[a/x] (A) Ia E As}) with V(T):= 

{ 
u for T = {t, u} or {u} 
f f E T 

Note that with this definition quantification is separated into a truth functional 
part Vand an instantiation part that only considers members of As. 

Using the classical definitions the other connectives and the existential quantifier 
can be defined in terms of...." 1\, and V, e.g., A vB: = ....,(..,A 1\ ....,B). 

Definition 2.8 (E-Model) Let A be a well-formed formula, then we call a strict 
E-algebra M := (A,I) a E-model for A (written M ~ A), iff Icp(A) = t for all 
cp. With this notion we can define the notions of validity, (un)-satisfiability, and 
entailment in the usual way. 

Remark 2.9 The "tertium non datur" principle of classical logic is no longer valid, 
since formulae can be undefined, in which case they are neither true nor false. We 
do however have a "quartum non datur"-principle, that is, formulae are either true, 
false, or undefined, which allows us to derive the validity of a formula by refuting 
that it is false or undefined. We will use this observation in our resolution calculus. 
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since formulae can be undefined, in  which case they are neither true nor false. We
do however have a “quartum non datur”-principle, that is, formulae are either true,
false, or undefined, which allows us to derive the validity of a formula by  refuting
that i t  is false or undefined. We will use this observation in our resolution calculus.
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Extended Example 

We will formalize an extended example from elementary algebra that shows the basic 
features of SK£. Here the.sort R" denotes the real numbers withollt zero. Note that 
we use the sort information to encode definedness information for inversion: 1 is 
defined for all x ER", since R" is subsort of :D by definition. Naturally, we give 
only a reduced formalization of real number arithmetic that is sufficient for our 
example. (For instance, we could add expressions like ~~1).) Consider the formula 
A:= (AI A A2 A A3 A A4 A A5) =} T with 

Al \:1xR x i= 0 =} x~R" 

A2 \:1XR" l~R" x 

A4 \:1XR \:IYR X - y~R 

A5 \:1XR \:IYR x - Y = 0 =} x = y 

T \:1XR \:IYR x i= Y =} C~yr > 0 

An informal mathematical argumentation why T is entailed by Al A ... A A5 can 
be as follows: 

Let x and Y be arbitrary elements of R. If x = Y, the premise of T is wrong, 
hence the whole expression true (in this case the conclusion evaluates to u). If x i= Y, 
then the premise is true and the truth value of the whole expression is equal to that 

of the conclusion (x~y) 2 > O. Since x =1= Y we get by A5 that x - Y i= 0 and by 
A4 that x - y~R, hence by Al x - y~R" and by A2 x:y~R", which finally gives 

C~J2 > 0 together with A3. 
However, if we analyze the justification of this argumentation, we see that there 

is a hidden assumption, namely the totality of the binary predicate> on R x R. In 
fact the formula A is not a tautology, since it is possible to interpret the> predicate 
as undefined for the second argument being zero, so that A3 as well as T evaluate to 
u, while the other Ai evaluate to t, hence the whQle expression evaluates to u. There 
are two solutions of this problem, namely adding further formulae Ai, in which the 
definiteness of the predicates are specified, or - what is normally done in mathematics 
- to start with a formula where the Ai are assumed to be true, that is neither false 
nor undefined. We will discuss the alternatives later, when we give a formal proof 
for the example. 

Relativization into Truth-Functional Logic 

In this section we show that we can always systematically transform SKI:. formulae 
to formulae in an unsorted truth-functional three-valued logic K 3 in a way that 
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Extended Example
We will  formalize an extended example from elementary algebra that shows the basic
features of SKC. Here the sort IR" denotes the real numbers without zero. Note that
we use the sort information to encode definedness information for inversion: I is
defined for all z € R”,  since R*  is subsort of © by definition. Naturally, we give
only a reduced formalization of real number arithmetic that is sufficient for our
example. (For instance, we could add expressions like 3 £9 . )  Consider the formula
A:= (A1ANA2AA3AA4 AAS) = T with

A l  Ver z #0  = z<R”

A2  Vg .  2<R”

A3  Vzge z?  > 0

Ad V r  Vyr z —y<R

CAS V r  Vypz—y=0=2>z=y

2
T Ver Vymr zc # y  = (+ )  >00

An  informal mathematical argumentation why T is entailed by  A1A . . .  A A5 can
be as follows:

Let x and y be arbitrary elements of R.  If x = y, the premise of T is wrong,
hence the whole expression true ( in  this case the conclusion evaluates to u). If x # y,
then the premise is true and the truth value of the whole expression is equal to that
of the conclusion (+ )  > 0. Since z # y we get by A5  that z — y # 0 and by

r=y
A4 that z — y<R,  hence by A l  z — y<R” and by A2 —<R’,  which finally gives

(= )  > 0 together with A3.
However, if we analyze the justification of this argumentation, we see that there

is a hidden assumption, namely the totality of the binary predicate > on R x R.  In
fact the formula A is not a tautology, since it is possible to  interpret the > predicate
as undefined for the second argument being zero, so that A3 as well as T evaluate to
u, while the other Ai  evaluate to t ,  hence the whole expression evaluates to u. There
are two solutions of this problem, namely adding further formulae Ai ,  in  which the
definiteness of the predicates are specified, or — what is normally done in  mathematics
— to start with a formula where the Ai  are assumed to be true, that is neither false
nor undefined. We will discuss the alternatives later, when we give a formal proof
for the example.

Relativization into Truth-Functional Logic
In this section we show that we can always systematically transform SKL formulae
to formulae in an unsorted truth-functional three-valued logic K°  in a way that

8



respects the semantics. However, wc will sec that this formulation will lose much 
of the conciseness of the presentation and enlarge the search spaces involved with 
automatic theorem proving. 

At first glance it may seem that SiC£ is only an order-sorted variant of a three
valued instance of the truth functional many-valued logics that were very thoroughly 
investigated by Carnielli, Hahnle, Baaz and Fermiiller [2, 6, 7, 11]. However, since 
all instances of this framework af(~ truth-functional, that is, the denotations of the 
connectives and quantifiers only depend on the truth values of (certain instances 
of) their arguments, even unsorted Kleene logic does not fit into this paradigm, 
since quantification excludes the undefined element. In SKi we solve the problem 
with the quantification by postulating a sort 1:> of all defined individuals, which is a 
supersort of all other sorts. Therefore the relativization mapping not only considers 
sort information, it also has to care about definedness aspects in quantification. 

Informally K 3-formulae are just first-order formulae (with the additional unary 
connective !). While the three-valued semantics of the connectives is just that given 
in definition 2.7, the semantics of the quantifier uses unrestricted instantiation, that 
IS, 

T<p(Vx. A) := Y( {T<p,[ajx] (A) I a E A}) 

Definition 2.10 We define transformations Rels and Rei!>, that map SiCL.:-senten
ces to unsorted SKL.:-sentences and further into K 3-sentences. Rels is the identity 
on terms and atoms and homomorphic on connectives and 

Note that in order for these sentences to make sense in unsorted SiC£ we have to 
extend the set of predicate symbols by unary predicates S for all sort symbols S E S*. 
Furthermore, for any of these new predicates we need the axiom: VX'D' !S(x). The 
set of all these axioms is denoted by Rels (E). 

We define Rel'D to be the identity (only dropping the sort references from the 
variables) on terms and proper atoms and 

• Rel'D(t<E-1:»: =1:>(t) 

• Rel'D(Vx!>. A): = Vx.1:>(x) :::} Rel!>(A) 

Just as above we have to extend the set of predicate symbols by a unary predicate 
1:> and need a set Rel!>(E) of signature axioms, which contains the axioms 

VXl"'" xn• pn(Xll"" xn) V -,pn(Xll ... , xn) :::} (~(Xl) /\ '" /\ 1:>(xn )) 

VXI, ... , X n. ~(J(Xl'"'' xn)) :::} (~(Xl) /\ .,. /\ ~(xn)) 

for any predicate symbol P E pn, such that P f:. 1:> and for any function symbol 
f E P, together with the axioms 

VX. :D(x) V -':D(x) and :lx. ~(x) 
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respects the semantics. However, we wi l l  see that this formulation w i l l  lose much
of the conciseness of the presentation and enlarge the search spaces involved wi th
automatic theorem proving.

A t  first glance i t  may seem that  SKL is only an  order-sorted variant of  a three-
valued instance of the truth functional many-valued logics that were very thoroughly
investigated by Carnielli, Hahnle, Baaz and Fermiiller {2, 6, 7, 11]. However, since
all instances of this framework are truth-functional, that is, the denotations of the
connectives and  quantifiers only depend on  the t ruth values of  (certain instances
of) their arguments, even unsorted Kleene logic does not fit into this paradigm,
since quantification excludes the undefined element. In SKL we solve the problem
wi th  the quantification by postulating a sort © of all defined individuals, which is a
supersort of all other sorts. Therefore the relativization mapping not only considers
sort information, i t  also has to  care about definedness aspects in quantification.

Informally K°-formulae are just first-order formulae (with the additional unary
connective !). While the three-valued semantics of  the connectives i s  just that given
i n  definition 2.7, the semantics of the quantifier uses unrestricted instantiation, that
is,

Z,(Vz. A )  : =  V({Z [a/z](A) l a  € A } )

Definition 2.10 We define transformations Rel® and Rel®, that map SK(-senten-
ces to unsorted SKL-sentences and further into K3-sentences. Rel® is the identity
on terms and atoms and homomorphic on connectives and

Rel®(Vzs. ®) : =  Vzp. z<S  = Rel®(®)

Note that i n  order for these sentences to make sense in unsorted SKL we have to
extend the  set of  predicate symbols by  unary predicates S for all sort symbols § € S* .
Furthermore, for any of these new predicates we need the axiom: Vzyp. !S(z). The
set of all these axioms is denoted by Rel®(%).

We define Rel® to be the identity (only dropping the sort references from the
variables) on terms and proper atoms and

e Rel®(t<®):= D(t)

e Rel®(Vryp. A): = Vz. D(z)  = Rel”  (A)

Just as above we have to extend the set of predicate symbols by a unary predicate
D and need a set Rel®(X) of signature axioms, which contains the axioms

VZ1,...s Tne  P21 . . .  20)  V PY z1, . . . ,2 , )  = (D(z) A . . .  AD(z,))
VZi,..., Zn D(f(x1,.--,25)) = (D i r )  A . . .  AD(z,))

for any predicate symbol P € P ” ,  such that P # © and for any function symbol
f € F”, together with the axioms

Vz. D(z)  V D(z )  and dz. D(z)



These axiollls axiolJlat.ize t.he SAL lIot.ioll of ddilledness ill K:l . III part.il"t1<1,r t.he 
last axioms state that the predicate ::D is two-valued and non-empty, in coutrast t.o 
all other sort predicates which are strict and thus three-valued and may be empty. 
The other axioms force all functions and predicates to be interpreted strictly with 
respect to the ~ predicate. 

Note that in the case of nUllary function symbols (constants) the signature axioms 
have the form ~(CO). 

Theorem 2.11 (Sort Theorem) Let ~ be a set of sentences, then the following 
are equivalent 

1. ~ has a E-model. 

2. Rels(~) has a E U S*-model that satisfies ReIS(E). 

3. Rel:D 0 Rels(~) has a K 3 -model that satisfies Rel:D(E U S*) U Rels(E). 

Proof: We will only show the equivalence of 2. and 3. since the equivalence of 1. 
and 2. can be proven with the same methods. Therefore we can restrict our proof to 
unsorted SJC£, where S* = 0 

Let M := (A,I) be a E-model Jor ~, then we construct a K 3-model M 3 = 

(A3 ,I3 ) for Rel:D(~). Let A 3 := A, I 3 (J) := I(J) and I 3 (P) := I(P) where f is 
a function symbol and P is a predicate symbols or the sort~. Clearly, we have 
M 3 I=K Rel:D(E), since M is a E-model, where all functions are strict and the3 

carrier A = Im(I3 (::D)) is nonempty. 
Furthermore let 'P be a E-assignment and M Prp ~, then we show by structural 

induction that I~(Rel:D(~)) = IA~) and therefore M3 1=~3 Rel:D(~). This claim 
is immediate for terms and proper atoms. For sort atoms we have 

I~(Rel:D(t~::D)) = I~(::D(t)) = Z3(::D) (I;(t)) = I(::D)(IAt)) = Irp(t~::D) 

thus we have I;(Rel:D(A)) = Irp(A) for all atoms A. For quantified formulae we have 

I;(Rel:D(Vx:D' w)) = I; (Vx. ::D(x) :::} Rel:D(W)) = V(83
) , 

where 8 3 := {I~((::D(x)) :::} Rel:D(w)) I a E A3} and 'l/J := 'P, [a/x]. On the other 
hand 

Trp(Vx:D' W) = V{T,p(\l1) Ia E A} = V(8) 

Now T;(Rel:D(Vx:D' \l1)) = I~(Vx. ::D(X) :::;,. Rel:D(\l1)) 
= V({I3 (rp,[ajx] (::D(X) :::;,. Rel:D(w))) Ia E A3 

}), 

so we have to consider the following cases for a. If a = 1., then I~ (::D (x)) = f 
and therefore T~(::D(x) :::;,. Rel:D(W)) = 1. If a =J. 1., then by inductive hypothesis 
T;(Rel:D(w)) = Trp(W) and therefore 8 3 = 8 U {t}. 

I;(Relll(Vx:D' w)) = t iff 8 3 = 8 = {t} iff Irp(Vx:D' W) = t 
I~(Relll (VX:D' W)) = u iff 8 3 = 8 = {u, t} or {u} iff Irp(Vx:D' W) = u 
T~(Relll(Vx:D' \l1)) = f iff f E 8 3 = 8 U {t} iff Irp(Vx:D' w) = f 

la 

These axioms axiomatize the SAL notion of delinedness in K* .  Tn particular the
last axioms state that the predicate © i s  two-valued and non-empty, in  contrast to
all other sort predicates which are str ict  and thus three-valued and may be empty.
The other axioms force all functions and predicates to be interpreted strictly with
respect to the 3) predicate.

Note that in  the case of nullary function symbols (constants) the signature axioms
have the form ©(c°).

Theorem 2.11 (Sort Theorem) Let ® be a set of sentences, then the following
are equivalent

1. ® has a X-model.

2. Rel®(®) has a © U S*-model that satisfies Rel° (X).

3. Rel? o Rel®(®) has a K3-model that satisfies Rel?(X U S*)  U Rel“(X).

Proof:  We will only show the equivalence of 2. and 3. since the equivalence of 1.
and 2. can be proven wi th  the same methods. Therefore we can restrict our proof to
unsorted SKL, where S* = f

Let M :=  (A ,Z)  be a Z-model for ®, then we construct a K3-model M3  =
(A3, 7°) for Rel®(®). Let A? :=  A, I3(f) : =  Z(f) and I3(P) : =  I(P) where f is
a function symbol and P is a predicate symbols or the sort © .  Clearly, we have
M3 EK  Rel®(X), since M is a Y-model, where all functions are strict and the
carrier A = Im(Z°(D)) i s  nonempty.

Furthermore let ¢ be a ¥-assignment and M |=, ®, then we show by structural
induction that Z3(Rel®(®)) = Z,(®) and therefore M3  EEK Rel”(®). This claim
is immediate for terms and proper atoms. For sort atoms we have

Z,(Rel®(t<®D)) = I (D(t)) = T(D)(TE(t))  = Z(D)(Zo(t)) = Z ( t<D)

thus we have Z3(Re l®(A) )  = Z,(A) for all atoms A .  For quantified formulae we have

T3(Rel® (Vz. ¥)) = I3(Vz. D(z) = Rel®(¥)) = V(0?),

where ©? :=  {Z } ( (D(z ) )  = Re l®(¥) )  | a € A%} and 9 :=¢ , [ a / z ] .  On  the other
hand _ 8

Z,(Vzp. U)  = V{Z,(¥) | a € A}  = V(O)
Now I3(Rel®(Vzp. W)) = ZI3(Vz.D(X) = Rel®(¥))

= Y{T(4a/a(D(X) = Rel®(¥))) | a € A%}),
so we  have to  consider the following cases for a .  I f  a = L ,  then I 3 (D (z ) )  = f

and therefore Z3 (D(z) => Rel®(¥)) = t.  If a # 1 ,  then by inductive hypothesis
I3(Rel®(¥)) = Z,(¥) and therefore ©° = © U { t } .

T3(Rel®(Vap 0 )  = t  i f  © °=0  = { t }  i f  T,(Vop. U) = t
I3(Rel®(Vzp. ¥) )  =u  iff ©3=0  = {u, t }  or {u} iff Z,(Vzp. ¥ )=u
I3(Rel®(Vzp. 0 )  = f  i f  f e®®=0U( { t }  iff Z,(Vrp. VU) = f
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Since Re}::D is homomorphic for connectives, we have completed the induction, thus 
M 3 I=K Re}::D (.p) and we have proven the necessitation 'direction of the theorem,3 

For the proof of sufficiency let M 3 := (A3
, I 3 ) be a K3-model, such that M 3 1= 

Rel::D(<fl) U Rel::D(~), Let 

A:= {a E A3 
1 I 3 (1')(a) = t} and A-i:= {a E A3 

1 I 3(1')(a) = f} 

then A3 = A U A-i, since Vx. 1:'(x) V -,1'(x) E Rel::D(~) and A =I 0 as required 
in the definition, since ::Ix. 1'(x) E Rel::D(~). If A.l = 0 it is easy to see that 
(A3 , I 3 ) is already a partial ~-algebra and the assertion is trivial for the corresponding 
strict ~-algebra, So in the following we will assume that A.l is nonempty. Now let 
11": A3 ----+ A-i be a function that is the identity on A and ?r(a) = .1 for all a E A-i' 
As M 3 F= Rel::D(~), we know that t 3(J)(all" . ,an) E A.l if one ai E A-i, so the 
following definition is well-defined. 

Now we will see that I 7ro ,,,(t) = 1I"(I;(t)) for all well-formed SK£ terms t and assign
ments ep into M 3

. 

1. I 7ro <p(x) = 11" 0 ep(x) = 1I"(I;(x)). 

2. I 7ro <p(c) = I(c) = 7f(I3 (c)) = 7f(I;(c)). 

3.	 I 7ro<p(J(tl, ... ,tn)) I(J)(I7ro<p(t1 
), ,I7ro <p(tn))
 

I(J)(7f(I;(tl )), , 7f(I~(tn)))
 

7f(I3(f)(I~(tl), ,I~(tn)))
 

7f(I;(f(tl, ... , in))) 

Similarly the definition 

I(p)( 11"(Ul), ... ,11"(an)) := I 3 (p) (all' .. ,an) 

is well-defined, because M 3 1= Rel::D(~) and gives us I 7ro <p(A) = I 3 (Rel::D(A)) for 
all atoms A. From this we obtain the general result I 7ro <p( cl') = I~(Rel::D (If>)) by 
treating quantified formulae by a case analysis just as in the necessitation direction. 
In particular we have I 7rO <p(<1» = t, iff I;(lf» = t and therefore M F= <1>, whenever 
M 3 F Rel::D( <fl). 

As a consequence of the sort theorem, the standard operationalization for many
valued logics [2, 6, 7, 11] can be utilized to mechanize strong order-sorted Kleene logic 
and in fact the system of Lucio-Carrasco and Gavilanes-Franco [14] can be seen as a 
standard many-valued tableau operationalization [11,3] of the relativization of SK£. 
However, as the extended example shows, we can do better by using sorted methods, 
since relativization expands the size and number of input formulae and furthermore 
expands the search spaces involved in automatic theorem proving by building up 
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0 

Since Rel® is homomorphic for connectives, we have completed the induction, thus
M3 =X’ Rel®(®) and we have proven the necessitation direction of the theorem.

For the proof of  sufficiency let M?  :=  (A? 7°) be a K3model, such that M3  |=
Rel®(®) U Rel® (2). Let

A=  {a € A? | TD) (a )  = t }  and AL : =  {a  € A? | 7HD)(a) = f }

then A? = AU Aj, since Vz. D(z)  V -D(x) € Rel®(X) and A # 0 as required
in  the definition, since Jz. D (z )  € Rel®(Z). If A ,  = f i t  is easy to see that
(A°,T°) is already a partial L-algebra and the assertion is trivial  for the corresponding
strict Y-algebra. So in  the following we will assume that A ”  is nonempty. Now let
r t : A> — A !  be a function that is the identity on A and x(a) = L for a l l a  € A .
As M3  |= Rel®(Z),  we know that Z3 ( f ) ( a i , . . . , a , )  € Ay  if one a; € A , ,  so the
following definition 1s well-defined.

Z( f ) ( 7  ( a1 ) ,  . . .  ‚7(an)) = w(Z3(f) (ax, . . * *9  a„))

Now we will see that Z.o„(t) = 7(Zö(t)) for all well-formed SKL terms t and assign-
ments ¢ into M?}.

1. Zrop(z) = mo (2 )  = 7(T5(z)).

2. I rop (c )  = I(c) = m(T%(c)) = 7(Z,(c))-

3. Trowplflth,...,t")) = Z(f)(Trop(t'),..., Trop ( t™) )

= I ( f ) (m(Z,( t " ) ) , - - . ,m(Z5( t " ) ) )(TEE), - . ,  Tot")= m(Z3(f(#, . . . , t " ) )

1

Similarly the definition

Z(p)(m(a1),...,7(as)) :=  T°(p)(ay,...,  a )

i s  well-defined, because M® |= Rel®(Z) and gives us Zro,(A) = T3(Rel®(4)) for
all atoms A .  From this we obtain the general result Zr. (® )  = Z3(Rel®(®)) by
treating quantified formulae by a case analysis just as in  the necessitation direction.
In particular we have Tyoo(®) = t ,  iff Z3(®) = t and therefore M |= ®, whenever
M3  = Rel?(®). a

As a consequence of the sort theorem, the standard operationalization for many-
valued logics [2, 6, 7, 11] can be utilized to  mechanize strong order-sorted Kleene logic
and in  fact the system of Lucio-Carrasco and Gavilanes-Franco [14] can be seen as a
standard many-valued tableau operationalization [11, 3] of the relativization of SKL.
However, as the extended example shows, we can do better by using sorted methods,
since relativization expands the size and number of  input formulae and furthermore
expands the search spaces involved in automatic theorem proving by building up
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many meaningless branches. Note that already the formulation of SKI:, where we only 
have the required sort 1:' is more concise than the relativized version and as we will 
see the theory of definedness is treated goal~driven by the RPF calculus (cf. section 
3). Thus the RP;: calculus is closer to informal practice than the relativization in 
this respect. 

Extended Example (continued) 

The relativization Rels(Rel:D(A)) of the formula A in the extended example is the 
K 3 -formula (RI/\ R2 /\ R3/\ R4 /\ R5) => RT. 

RI Vx.1:'(x) => (lR(x) =} (x =I- 0 => lR*(x))) 

R2 Vx.1:'(x) =} (lR*(x) => lR*(~)) 

R3 Vx.1>(x) => (lR*(x) => x2 > 0) 

R4 Vx.1:'(x) => (lR(x) => (Vy.1>(y) /\ lR(y) => lR(x - V))) 

R5 Vx.1:'(x) => (lR(x) => (Vy.1:'(y) => (lR(y) => (x - y = 0 => x = V)))) 

RT Vx.1:'(x) => (lR(x) => (Vy.1:'(y) => (R(y) =} (x =I- 0 =} (~r > 0)))) 

The set of signature axioms Rel:D (E U S*) U Rels (E) is the following set of K 3 _ 

formulae: 
R= Vx, y. (x = y V x =I- y) => 1:'(x) /\ 1:'(y)
 

R> Vx, y. (x > y V x "f y) => 1:'(x) /\ 1:'(y)
 

R- Vx,y.1:'(x - y) => 1:'(x) /\ 1:'(y)
 

RI Vx.1:'(~) => 1:'(x) 

RO 1:'(0) 

R2 Vx.1:'(x2 
) => 1>(x) 

1:" Vx.1:'(x)V-'1:'(x) 

1:'0 :Jx.1:'(x) 

Simple Resolution 

In this section we present a resolution calculus with dynamic sorts that is a gen
eralization of Weidenbach's work [20, 21] with ideas from [2, 11]. The concept of 
dynamic sorts is essential to our program, since definedness cannot in general be 
decided by syntactic means only, but is usually given in the form of logical axioms 
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3 

many meaningless branches. Note  tha t  already the  formulation of  SKC where we on ly
have the required sort © is more concise than the relativized version and as we will
see the theory of definedness is treated goal-driven by the RPF calculus (cf. section
3). Thus the RPF  calculus is closer to informal practice than the relativization in
this respect.

Extended Example (continued)
The relativization Rel®(Rel®(A)) of the formula A in the extended example is the
K3-formula (R1 A R2 AR3 A R4 ARS) = RT.

R1 Vz. D(z)  = (R(z) = (z # 0 = R*(z)))

R2 Vz. D(z)  = (R*(z) = R*(1))

R3 Vz. D(z )  = (R*(z) = x? > 0)

R4 Vz. D(z)  = (R(x) = (Vy. D(y) AR(y) = R(z — y)))

R5 Vz. D(z) = (R(z) = (Vy. D(y) = (Ry)  = (z —y = 0 = z = y))))

RT Va. D(z) = (R(x) > (Vy. D(y) = (R(y) > (x #0 = (2) > 0))))
The set of signature axioms Rel?(X U S*) U Rel®(Z) is the following set of K3-
formulae:

R= Vz , y .(a =y  Vz  #y )=  D(z )  AD(y)

R> Vz,y.(z>y Vz  #y)=> D(z) AD)
R- Vz,y.D(z — y) = D(z) A D(y)

R/ Vz.D(1) = D(z )

R® D(0)

R? Vz. D(z?) > D(z)

D' Vz. D(z) V D(z)

D Ir .  D(z)

3 Simple Resolution

In  this section we present .a resolution calculus with dynamic sorts that is a gen-
eral izat ion of  Weidenbach’s work [20, 21]  with ideas from [2 ,  11 ] .  The concept of
dynamic sorts is essential to our program, since definedness cannot in general be
decided by syntactic means only, but is usually given in the form of logical axioms
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t.hat have 1,0 be reasoned about in the calculus itself. Thus static sort methods like 
those in [16, 10] are not sufficient for our purposes. 

Clause Normal Form 

Definition 3.1 Let A be a well-formed formula, then we call Aa (the formula A 
indexed with the intended truth value a E {f, u, t}), a labelled formula. We will 
call a labelled atom Aa a literal and a set of literals {A~t, ... , A~n} a clause. We 
say that a L;-model M satisfies a clause C, iff it satisfies one of its literals LOI, that 
is, I<p(LOI) = 0'. M satisfies a set of clauses iff it satisfies each clause. In order to 
conserve space, we employ the "," as the operator for the disjoint union of sets, so 
that C, Lot means C U {La}, in particular La is not a member of C. Furthermore we 
adopt Hahnle's notion of multi-labels in the form C, Aotl3 to mean C, Aa, A.B. 

Now we are in the position to give a set of transformations that take a set of 
labelled formulae to an equivalent set of clauses. 

Definition 3.2 (Transformations for Clause Normal Form) 

C, (A /\ B)t 

C,At C,B t 

C, (A /\ B)U 

C, (Vxs. A[xs])t C, (Vxs. A[xs])U 

C, A[xs]t C, A[J(yl, ... ,yn)]u C, A[xs]ut C, (f(yl, ... ,yn)~s)t 

C, (Vxs. A[xs])f 

C, A[J(yl, ... ,yn)]f C, (f(yl, . .. ,yn)~s)t 

C, (!A)t C, (!A)U C, (!A)f 

C Atf , C C,AU 

C, (t~S)U 

C, (t<E1))f 

where {xs, y\ . .. ,yn} = Free(A) and f is a new function symbol of arity n. Here 
Free(A) denotes the set of free variables of A. 

For any set ~ of well-formed labelled sentences we will denote the set of clauses 
resulting from a total reduction of cl> by the above transformations with CNF(<I». 
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General AssUlnption 3.3 The clause Ilonnal form transformatiolls as prcscllt(~d 

above arc Hot complete, i.e. they do not transform every given labelled formula int.o 
clause form, since the rules for quantified formulae insist that the bound variable 
occurs in the scope. In fact the handling of degenerate quantifications poses some 
problems in the presence of possibly empty sorts, as quantification over empty sets 
are vacuously true. In this situation we have three possibilities, either to forbid de
generate quantifications, or empty sorts, or treat degenerate quantifications in the 
clause normal form transforamtions. For this paper we chose the first, since degen
erate quantifications do not make much sense mathematically and do not appear in 
informal mathematics. Thus we will asssume that in all formulae in this paper the 
bound variables of quantifications occur in the scopes. 

Remark 3.4 For treating degenerate quantifications in the clause normal form trans
formation we have to add the rules 

C, (Vxs. A)t C, (Vxs. A)f C, (Vxs. A)U 

C, At, (X-ES/ 

In the context of mathematics it is often natural to assume the sorts to be 
non-empty. In this case the the quantifier rules can be simplified, by changing the 
clause declaring the Skolem constant from C, (J(yl, . .. , yn)~s)t to the unit clause 
(J(y\ ... , yn)~s)t. Naturally the resolution calculus has to be changed accordingly, 
as we will see below. 

Furthermore the discussion above is obsolete and the assumption 3.3 can be taken 
back. 

Remark 3.5 Some transformation rules for multi-labels look more natural and sym
metric than those for single truth values. For instance we have the rule: 

C, (A /\ B)fu
 

C,Afu ,Bfu
 

As usual the reduction to clause normal form conserves satisfiability. 

Theorem 3.6 Let <I> be a set of labelled sentences! then the clause normal form 
CNF( <I» is satisfiable! iff <I> is. 

Resolution Calculus (RPF) 

Now proceed to give a simple resolution calculus, which utilizes unsorted unification. 
However despite its name the calculus still utilizes the sort information present in the 
clause set and therefore gives considerably improved search behavior over unsorted 
methods as in [14]. In the next section, we will further improve the calculus by using 
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sorted unification algorithm, which delegates parts of the search into the unification 
algorithm. 

For unsorted substitutions the naive resolution rule is unsound. Therefore we 
have to add a residual (the sort constraint) that ensures the well-sortedness of the 
unifier. 

Definition 3.7 (Sort Constraints) Let a = W/x1J, ... ,[tn /xsJ be a substitu
tion, then we define the sort constraint for a to be the clause 

X(CT) := {[tl~Sl]fu, ... , [tn~Sn]fu} 

Definition 3.8 (Resolution Inference Rules (RPF» 

V\C MIJ,D LO'., MO'., C 
-------Res -------Fac 
CT( C), CT(D), X(a) a(LO'.), a(C), ~(a) 

(t~:D)f, C L'Y, D 
--------- Strict 

p(C),p(D),~(p) 

where 0: =f f3 and J E {t, f}. For Res and Fac the substitution a is the most general 
(unsorted) unifier of L and M and for Strict there exists a subterm s of L, such that 
p is a most general unifier of t and s. 

Remark 3.9 Note that clauses containing Afut are tautologous and can therefore 
be deleted in the generation of the clause normal form as well as in the deduction 
process. The calculus can. be extended by the usual subsumption rule, allowing to 
delete clauses that are subsumed (super-sets). 

In the case where we have assumed non-empty sorts we have to provide declara
tions (unit clauses) of the form (cs-ES)t with new constants cS for all sorts S E S* 
in order to obtain a complete calculus. 

Definition 3.10 Let A be a sentence and 1> be the clause normal form of the set 
{ {Af }, {Aun then we say that A can be derived in RP;: (I- A), iff there is a derivation 
of the empty clause 0 from 1> with the inference rules above. 

Example 3.11 Now we can come back to the example from the exposition. The 
assertion is not a theorem of SK£, since the clause normal form of the instance 
{{(1 = ~ =? 1 = 0* l)f},{(l = ~ =? 1 = 0* 1)U}}: 

(1 = ~)U, (1 = ~)t 

(1=0*1)U,(1=0*1)f 

is satisfiable. In fact in any reasonable formalization of elementary algebra 1 ~ 

is undefined, whereas 1 = 0 * 1 is false. Thus, since 1?P:F is sound (cf. 3.13), the 
example cannot be a theorem. 
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Remark 3.12 In practical applications most problems will be of the form ;1 := (A 1/\ 

... I\.An =} C) where the Ai are the assumptions and C is the intended conclusion. 
In contrast to classical first-order predicate logic where it suffices to take the clause 
normal form of {{Al}, ... , {A~}, {Cf }} t.he situation here is more complex, since in 
SiC£, we also have to refute the case that A gets the value u. It is however easy to 
see; that we can start the calculation of the clause normal form with the set 

or with the sets 

{{A~t}, , {A~t}, {A~, ... , A~}, {CU
} }
 

{{AD, ,{A~}, {Cfu }}
 

which have to be refuted by the resolution calculus independently. In the second 
case the refutation can be split in two independent proofs, thus reducing the search 
space considerably. Nevertheless, the refutation of the set (*) is impractical except for 
trivial examples. Fortunately in mathematical practice the assumptions Ai often have 
the status of axioms, which are assumed to be true independently of the theorem3 . 

Then the problem is really of the form 

The clause normal form of A' is just that of (**), which is close to the classical case 
in derivational complexity. In particular the background theory formalized by the Ai 
results in exactly the same clauses as in the classical case. 

Extended Example (continued) 

Following the discussion above we will continue our extended example with the cal
culation of the clause normal form (**) of Al/\!Al/\ ... /\ A5/\!A5 =} T. Since Rand 
JR* are not empty, we use the simplified quantification rules of remark 3.4 and provide 
the declaration l-EJR and I-EJR*, which we will not need in the particular refutation. 
Without this assumption clauses TI through T5 would have extra literals. 

Al (XR = O)t, (x~lR*)t 

A2 (_1 -ElR*)t
xR+ 

A3 (x~+ > O)t 

A4 (XR - YR-ElR)t 

A5 (XR - YR = O)f, (XR = YR)t 

3This is also the very idea of the set of support strategy in resolution theorem proving. 
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Following the discussion above we will continue our extended example with the cal-
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R*  are not empty, we use the simplified quantification rules of remark 3.4 and provide
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The price [or the formal treatment of three-valued partiality has to be paid in the 
complicated clause normal form of the formula l' with the label fu. 

1'1 (c~lR? 1'6 (c = dl, (e = f)fu 

1'2 (d~R)t 
1'7 (c = d)f, (C~f r> 0) fu 

1'3 (e~R)t 

1'4 (J~R)t 1'8 ((C~d)2>o)f,(e=nfU 

1'5 (g(YR)~lR)t 

Eight further clauses resulting from the theorem are not shown here, four are 
tautologies, four others not needed for the derivation below. 

1'6 & A5-tRl (c - d = O)f, (e = nfu, (c~lR)fu, (d~lR)fu 

RI & AI-tR2 (c - d~lR*)t, (e = nfU, (c - d~lR)fu, (c~lR)fu, (d~lR)fu 
R2 & A4-tR3 (c - d~lR*)t, (e = j)fu, (c~lR)fu, (d~lR/u 
R3 & TI-tR4 (c-d~lR*)t,(e=nfu,(d~lR)fu 
R4 & T2-tR5 (c - d~lR*)1, (e = j)fU 

1'8 & A3-tR6 (e = j)fu, (C~d) ~lR*1 fu
 
R5 & A2-tR7 (e = nfU, (c - d~lR*)1u
 

nfuR7 & R5-tR8 (e = 

Analogously, clause 1'7 can be reduced with 1'9 to RI6. 

... & ". -R16 (C~f) 2 > 0) fu 

_1 ~lR*)fURl6 & A3 -tR17 ( e-f
 
Rl7 & A2 ---4R18 (e - f~lR*/U
 

Rl8 & Al -tRI9 (e - f = 0)1, (e - f~lR/u
 
RIg & A4 ---4R20 (e - f = 0) t , ( e~ lR/u ,(J~ lR/u
 
R20 & A5 -R21 (e = j)1, (e~lR)fu, (J ~lR)fu
 

R2l & 1'3 ---4R22 (e = 1)1, (J~lR)fu
 
R22 & 1'4 ---4R23 (e = 1)t
 
R8 & R23---4R24 o
 

Soundness and Completeness 

Theorem 3.13 (Soundness) Let q> be set of clauses with q> ~ DJ then q> is unsat
isfiable. 

Proof sketch: The soundness of the resolution and factoring rules is established 
in the usual way taking into account that the sort constraints make the substitutions 
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Eight further clauses resulting from the theorem are not shown here, four are
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T8
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R7
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& A4—>R3
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& R5— RA
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c= (2) <x)"
(e = fH), (c  — deR* ) “
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Soundness and Completeness
Theorem 3.13 (Soundness) Let ® be set of clauses with ® + O, then ® is unsat-
isfiable.

Proof  sketch: The soundness of the resolution and factoring rules is established
in the usual way tak ing  in to  account that  the sort constraints make the substi tut ions
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"well-sorted" and thus compatible with the semantics: The sort constraints add two 
sort literals (t~S)f, (t~S)U per component of the substitution, which only can be 
refuted if indeed (t~S)t. 

The Strict rule is sound, because functions and predicates in SIC£, are strict and 
thus undefined subterms of a literal make the literal undefined. 

Definition 3.14 Let C := {Lr 1
, ... , L~n} be a clause, then the conditional instan

tiation uL(C) of u to C is defined by 

The following result from [20] is independent of the number of truth values. 

Lemma 3.15 Conditional instantiation is sound: for any clause C, substitution u 
and E-model M we have that M F uL(C), whenever M F C. 

Definition 3.16 Let A be a well-formed sentence and CNF(A) be the clause normal 
form of A, then we define the Herbrand set of clauses CNFH(A) for A to be 

CNFH(A):= {uL(C) ICE CNF(A),u ground substitution, Dom(a) = Free(C)} 

Definition 3.17 We will call two literals LOt and Lf3 complementary, if a =1= (J and 
literals L'Y and (t~1))f .l..-complementary, if t is a subterm of Land 'Y E {t, f}. 

Definition 3.18 (Herbrand Model) Let <P be a set of clauses, then the Herbrand 
base H( <p) of <P is defined to be the set of all ground atoms containing only function 
symbols that appear in the clauses of <P. If there is no constant in <P, we add a new 
constant c. A valuation 1/ is a function 11.(<p) ~ {f, u, t}, such that for all atoms 
L, M E H( <p) the literals Lv(L) and Mv(M) are not .i-complementary. Note that 
these literals are not complementary since 1/ is a function. The E-Herbrand Model 11. 
for <P and 1/ is the set H := {LOt Ia = 1/(L), L E H(<p)}. 

We say that a E-Herbrand. model 11. satisfies a clause set <P iff for all ground 
substitutions u and clauses C E <P we have u L(C) n H -I- 0. A clause set is called 
E-Herbrand-unsatisfiable iff there is no E-Herbrand-model for <P. 

Theorem 3.19 (Herbrand Theorem) Let A be a well-formed formula, then the 
clause normal form CNF(A) has a E-model iffCNFH(A) has a E-Herbrand-model. 

Proof: Let M = (A,l") be a E-model for <P := CNF(A). We will see that 

is a E-Herbrand model for \If := CNFH(A) if c.p is an arbitrary E-assignment. It is 
immediately clear that l"Ip is a valuation, therefore 11. is E-Herbrand model. Assume 
that it is not a E-Herbrand mOdel for \If, that is, there is a clause C E \If, such that 
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“well-sorted” and thus compatible with  the semantics: The sort constraints add two
sort literals ( t<S)f,  (t<S)¥ per component of the substitution, which only can be
refuted i f  indeed (t<S)*.

The Strict rule is sound, because functions and predicates in SKL are strict and
thus undefined subterms of a literal make the literal undefined. OD

Definition 3.14 Let C :=  {L7 ! , . . . ,  L9”}  be a clause, then the conditional instan-
t iation o |  (C )  of o to C is defined by

o l  (C ) :=  {o (L } * ) , . . . , 0 (LS" ) }U  L(o|Free(c))

The following result from [20] is independent of the number of truth values.

Lemma  3.15 Conditional instantiation is sound: for any clause C ,  substitution o
and X-model M we have that M |= | (C), whenever M EC.

Definition 3 .16  Let A be  a well-formed sentence and CNF(A) be  the clause normal
form of  A, then we define the Herbrand set of clauses CNFy(A) for A to  be

CNFpg(A):= { c l  (C) | C € CNF(A) ,o  ground substitution, Dom(c) = Free(C)}

Definition 3.17 We will call two literals L*  and LP complementary, i f  a # B and
literals L”  and ( t<®)f  L-complementary, if ¢ is a subterm of L and 7 € { t , f } .

Definition 3.18 (Herbrand Mode l )  Let ® be a set of  clauses, then the Herbrand
base H(®) of ® is defined to be the set of all ground atoms containing only function
symbols that appear i n  the clauses of ®. If there is no constant in  ®, we add a new
constant c. A valuation v is a function H(®)  — { f , u , t } ,  such that for all atoms
LM € H(®)  the literals LZ)  and M“M) are not L-complementary. Note that
these l i terals are not  complementary since v i s  a function. The X-Herbrand Model HK
for ® and v is the set H :=  {L*  | a = v (L ) ,L € H(®P)}.

We say that a X-Herbrand model H satisfies a clause set ® iff for all ground
substitutions o and clauses C € ® we have 0]  (C)  NH  # 0. A clause set is called
Y-Herbrand-unsatisfiable iff there is no ¥-Herbrand-model for ©.

Theorem 3.19 (Herbrand Theorem) Let A be a well-formed formula, then the
clause normal  form CNF(A )  has a £ -mode l  iff CNFg(A)  has a X-Herbrand-model.

Proof: Let M = (A,7)  be a ¥-model for ® :=  CNF(A).  We will see that

H:= {L * |  Le  H (®) ,a=T , (L ) }

is a Y-Herbrand model for ¥ :=  CNFy(A)  i f  is an arbitrary X-assignment. I t  is
immediately clear that Z,  is a valuation, therefore H is ¥-Herbrand model. Assume
that i t  is not a X-Herbrand model for ¥ ,  that is, there is a clause C € ¥ ,  such that
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HnC = 0. Since C E IIJ there is a substitution a = [tilx~J and a clause D E <P, 
such that C = al(D) = a(D) U S:;(a). 

Without loss of generality we can assume that I(Si)(I",,(t i 
)) = t, since otherwise 

I<p(ti-<E:S i ) E {f, u}, and therefore (t i-<E:5i)'"Y EH for I E if, u}, which contradicts the 
assumption. Thus the mapping 1/J := <.p, [I<p(ti)jx i

] is a ~-assignment. 

Note that since M is a model of 4>, we have that M F D and therefore there is a 
literal VX E D, such that a = I1/I(L) = IAa(L)), hence a(L) EH, which contradicts 
the assumption. 

For the converse direction let 'H be a I:-Herbrand model for \IT. To construct a 
~-model M for <I> we first construct a partial ~-algebra (A,I). Let 

A:= {t 13Lo E 'H where a E {f, t} and t subterm of L} 

and let I(5), IUn) and I(pn) be partial functions, such that 

I(5)(t) = t iff (t~5)t E 1-{ 

IU")(t 1 
, ••• ,in);= /,'(t 1 

, ••• ,tn) iff fn(t\ ... ,tn 
) EA 

I(pn)(e, . .. ,tn) := a iff (pn(t 1
, ••• , tn)t E 1{ 

Now let M be the strict I:-algebra corresponding to the partial I:-algebra (A,I). 
We proceed by convincing ourselves that M 1= <I>. Let C E <I> and e.p := [t ijx~J 
be an arbitrary I;-assignment. Since A is a set of ground terms <.p is also a ground 
substitution and moreover (ti~Sd E 1{ by construction of T. 

Since H is a I;-Herbrand model for lIt we have 'Pl (C)nH = (e.p(C)uS:;(e.p))nH =1= 

0. Since 'H cannot contain complementary literals we must already have a literal 
r.p(Lfr) E <.p(C) n H. Now let v be the valuation associated with H. Since <.p(Lo) E 1i 
we have a = v(e.p(L)) = I<p(L), which implies M I=<P LO. Since we have taken C and 
r.p arbitrary, we get the assertion. 0 

Corollary 3.20 A set <P of ground unit clauses is unsatisfiable iff it contains two 
complementary or .l-complementary literals. 

Theorem 3.21 (Ground Completeness) Let <I> be an unsatisfiable set of ground 
clauses, then there exists a 'RPF derivation of the empty clause from <P. 

Proof: The proof is analogous to the standard k-parameter proof of Anderson and 
Bledsoe [1]. We show be induction on k := L~E~(card(C) - 1) that there exists a 
refutation for 4>. 

If k = 0 then <I> is a set of ground unit clauses. Therefore by Lemma 3.20 and the 
assumed unsatisfiability there has to be a pair of complementary or .l-complementary 
literals in <P. Thus a single application of the rule Res or Strict yields the empty 
clause. 

If k > 0, then there is a non-unit clause C =; Cl U C2 E <P. If <P = <p' U {C} then 
the k parameters for <1>1:= <1>' U {Cd and <P2:= <1>' U {C2} are smaller than k and 
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HNC = 0. Since  C € U there is  a subst i tu t ion  0 = [t'/z%] and a clause D € ®,
such that C = l l  (D) = o (D)U  (0).

Without loss of generality we can assume that Z(S;)(Z,(t')) = t ,  since otherwise
T(t  <S%) € { f ,u} ,  and therefore (t '<S*)” € H for y € { f ,u } ,  which contradicts the
assumption. Thus the mapping © :=  @, [Z,(t}/z']  is a D-assignment.

Note that since M i s  a model of  ® ,  we  have that M |= D and therefore there i s  a
literal L*  € D ,  such that a = Ty(L) = Z,(0(L)),  hence o(L) € H,  which contradicts
the assumption.

For the converse direct ion let H be a Y.-Herbrand model for ¥ .  To  construct a
Y-model M for ® we  first construct a partial L-algebra (A,Z). Let

A :=  { t  | JL* € H where a € { f , t }  and £ subterm of L }

and let Z(S), Z(f™) and Z(P”) be partial functions, such that

(SY) =t  iff ( t <S )eH
TOME. )  = f™, . . . ,0°) ME f f . . . tM) eA

I(P™)(t,. . . , t")  =a  iff (P*(t%,...,t")* eH

Now let M be the strict X-algebra corresponding to the partial Y-algebra (A,Z).
We proceed by  convincing ourselves that M |= ®. Let C € ® and ¢ = [t*/z%]
be an arbitrary X-assignment. Since A is a set of ground terms ¢ is also a ground
substitution and moreover (t '<S;) '  € H by construction of Z.

Since H is a X-Herbrand model for ¥ we have | (C)NH  = (p(CIUL(@))NH #
@. Since H cannot contain complementary literals we must already have a literal
o(L%) € o(C)N'H. Now let v be the valuation associated with H.  Since ¢(L*)  € H
we have a = v(p(L)) = I , (L) ,  which implies M |=, L * .  Since we  have taken C and
© arbitrary, we  get the assertion. 0

Corol lary 3 .20  A set ® of ground unit  clauses is unsatisfiable iff i t  contains two
complementary or  L-complementary literals.

Theorem 3 .21  (Ground Completeness) Let ® be an unsatisfiable set of  ground
clauses, then there exists a RPF derivation of the empty clause from ®.

Proof:  The proof is analogous to  the standard k-parameter proof of Anderson and
Bledsoc [1]. We show be induction on k :=  Y scg(card(C) — 1) that there exists a
refutation for ®.

If k = 0 then ® is a set of ground unit clauses. Therefore by Lemma 3.20 and the
assumed unsatisfiability there has to be a pair of complementary or L-complementary
literals in ®. Thus a single application of the rule Res or Strict yields the empty
clause.

If k > 0, then there is  a non-unit clause C = C; UC;  € ®. If ® = U {C} then
the k parameters for ®; :=  ®' U {C , }  and ® ,  : =  U {C2} are smaller than k and
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therefore by inductive hypothesis there are refutations for <J.)1 and <J.)2 which can be 
combined to a refutation for <J.), since <J.) is ground. 0 

Theorem 3.22 (Completeness) The calculus consisting of the rules Res, Fac, and 
Strict is refutation complete. 

Proof: For the proof of this assertion we combine the completeness result from the 
ground case with a lifting argument. It turns out that the lifting property can be 
established by methods from [20], since they are independent of the number of truth 
values. 0 

4 Resolution with Order-Sorted Unification 

The calculus defined above can still be improved by introducing an order-sorted 
unification. 

Definition 4.1 (Conditional Objects) A pair OC = @IIC is called a conditional 
declaration (a conditional term, a conditional substitution), if C is a set of literals 
and @ is a declaration t~S (a term t, a substitution a). We will call a conditional 
object ground, iff @ is ground. We define the application of a conditional substitution 
aC:= allD to a conditional term OC := @IIC (denoted by aC(oC)) to be a(@)lla(C)UD. 

Definition 4.2 Let 1) be a set of conditional declarations, then the set wsTs(~, 1)) 
of well-sorted conditional terms of sort S is inductively defined by 

1. variables Xs E wsTs(~, 1)) 

2. if t~Tlle E 1) then t E WSTT(I:, 1)) 

3. if t E WSTT(I:, 1)) and s E wsTs(I:, V) then [s/xs]t E WSTT(I:, 1)). 

We call a conditional substitution [t 1 
/ x1J, ... , [t1

/ xsJ lie a well-sorted substitution, 
iff tillC E wsTsj (I:,1)), for some sets of literals Ci, such that C = Ui Ci. Ob
viously the application of well-sorted conditional substitutions to well-sorted con
ditional terms yields well-sorted conditional terms, so wsT(I:, V) is closed under 
well-sorted substitutions and the set of well-sorted substitutions is a monoid with 
function composition. 

Unification 

Definition 4.3 (Unification Problem) Let r := {SI = tt, ... ,sn =tn 
} be a set of 

two-element multi-sets of terms (called disagreement set), then we will call a pair rllD 
a unification problem, that is, an unification problem is a conditional disagreement 
set. It is called well-sorted, iff tillCi and sillDi E wsT(I:, V) for some sets Ci, Di of 
literals, such that Ui Ci U Ui D i = D. We will call a unification problem solved, if I 
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therefore by inductive hypothesis there are refutations for ®;  and ®,  which can be
combined to a refutation for ®, since ® is ground. [

Theorem 3.22 (Completeness) The calculus consisting of  the rules Res, Fac, and
Strict is refutalion complete.

Proof: For the proof of this assertion we combine the completeness result from the
ground case with a lifting argument. I t  turns out that the lifting property can be
established by  methods from [20], since they are independent of the number of truth
values. DO

4 Resolution w ı th Order-Sorted Unification

The calculus defined above can still be improved by introducing an order-sorted
unification.

Definition 4 .1  (Cond i t iona l  Objec ts)  A pair o° = @||C is  called a condit ional
declaration (a conditional term, a conditional substitution), if C is a set of literals
and @ is a declaration t <S  (a term ¢,  a substitution 0).  We will call a conditional
object ground, iff @ is ground. We define the application of a conditional substitution
0°  : =  o||D to a conditional term 0°  :=  @||C (denoted by °(0°))  to be o(@)||c(C)UD.

Definition 4.2 Let D be a set of conditional declarations, then the set wsTs(X,  D)
of well-sorted conditional terms of sort S 1s inductively defined by

1. variables zg  € wsTs(X,D)

2. if t<T||C € D then t € wsTr(X,D)

3. i f t € wsTr(X,D) and s € wsTs(X,D) then [s/zs|t € wsTr(X,D).

We call a conditional subst i tut ion [t'/z} ],...,[t'/2%]|| |C a well-sorted substi tut ion,
Aff IC :  € wsTs , (E ,D ) ,  for some sets of  literals C;, such that C = |J; C;. Ob-
viously the application of well-sorted conditional substitutions to well-sorted con-
ditional terms yields well-sorted conditional terms, so wsT(X,D)  is closed under
well-sorted substitutions and the set of well-sorted substitutions is a monoid with
function composition.

Unification

Definition 4.3 (Unification Problem) Let I : =  { s '  =t}, . . . ,s"™ = t " }  be a set of
two-element multi-sets of  terms (called disagreement se t ) ,  then we  wil l  call a pair T' | |D
a unification problem, that is, an unification problem is a conditional disagreement
set. It is called well-sorted, iff t*||C; and s*||D; € wsT(X,D)  for some sets C ; ,Di of
literals, such that U;  C;  UJ ;  D;  = D .  We will call a unification problem solved, if |

|
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• the Xi are distinct and do not occur on the right hand' sides of equations. 

• t i E wsTs.(E, V) for all 1 ~ i ~ n. 

Now we will present a set of transformations for a nondeterministic unification 
algorithm that computes complete sets4 of unifiers for well-sorted unification prob
lems. The nondeterministic unification algorithm starts with a well-sorted unification 
problem r and enumerates the set of irreducible unification problems from r. Such a 
unification problem is called a success node, if it is in solved form and a failure node 
otherwise. The set of substitutions corresponding to the success nodes is the output 
of the algorithm. 

Definition 4.4 (Order-sorted Unification) The following inference system gives 
a non-deterministic algorithm for order-sorted unification in SK.c. 

Xs = vT,rllc
elim-var if ZT-ESIID E 1) or S = T (then D is empty). 

x = y, [yjx]fll[yjx]G U D 

f(8\ ... ,sn) = f(t1, ... ,tn),rIlC 
decompose 

Xs = f(S1, ... , sn), rl/c
imitate if f(tt, ... ,tn)IID E V 

xs = f(t1, ... ,tn),sl = t1, ... ,sn = c,rllcuD 
or S = 1) (then D is empty) and furthermore Xs ~ Free(f(t l 

, .•. , in)). 

Xs = YT,rllc 
intersect 

Xs = zv,Yr = zv,rllc U Dl U D 2 

non-reg Xs = YT, rllG 
Xs = (f(s!, ... ,Sn),YT = (f(tt, ,in),sl = tl, ... ,sn = tn,rllGuDl UD2 

if f(8\ ... ,sn)-ESIIDl and f(t 1 , , tn)~TIID2 E'D. 

For the rules imitate, intersect, and non-reg we assume the sets of variables in 
the declarations in V and the unification problem to be disjoint. If this is not the 
case the variables have to be renamed in the declarations. For all newly introduced 
:r = t, these rules are directly followed by applications of the rule 

:r = t, file 
elim-new 

x = t, [tjx]fiI[tjx]C 

4JIere the instantiation ordering for completeness is just that for ordinary substitutions,. since 
this set of transformations is clearly not complete for the instantiation ordering derived from the 
definition of composition for conditional substitutions. 
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e i t  is of the form z§, =t',..., 2% =s " , y '  =y ' , . . . , y™  =y™||C, and

e the x ’  are distinct and do not occur on the right hand sides of equations.

o t' c wsTs (X,D)foral l l  < i<n .

Now we will present a set of transformations for a nondeterministic unification
algorithm that computes complete sets* of unifiers for well-sorted unification prob-
lems. The nondeterministic unification algorithm starts with a well-sorted unification
problem I' and enumerates the set of irreducible unification problems from I .  Such a
unification problem is called a success node, i f  i t  is in solved form and a failure node
otherwise. The set of substitutions corresponding to the success nodes is the output
of the algorithm.

Definition 4.4 (Order-sorted Unification) The following inference system gives
a non-deterministic algorithm for order-sorted unification in SKC.

r s  = Yr,  TCelim-var — if zr<S||D € Do r  S=T (then D is empty).
z= ,  [y/=ITlg/=IC UD  )

fs)... 5") = f(t... ‚#*), TIIC
decompose

s t= t , . . . , s "= t "T |C

zs  = f ( s ' , . . . , s " ) ,T | | ICimitate — if f(t! , . . . , t")IID € D
zs = f(#',...,t"),s' = t ' , . . . , s "= "  T||CUD

or $ = (then D is empty) and furthermore zs ¢ Free(f( t ! , . . . , t " ) ) .

r s  = Y r ,  D I IC
intersect 7 > if 23,<S| |D!  and 23,<S||D* € D

I s  = ZV ,UT  = zv ,  C IC  uD  UD

non-reg Ts  =y r ,  r j c
zs = ( f ( s ' , . . . . s " )u r  = ( f ( t , . . . , t " ) , s '  =¢ , . . . , s "  =", T||C uD !  U D?

if  f (s l , . . . ,s")<S| |D" and f(¢*, . . . , t")<T||D* € D.

For the rules imitate,  intersect, and non-reg we assume the sets of variables in
the declarations i n  D and the unification problem to be disjoint. If this is not the
case the variables have to be renamed i n  the declarations. For all newly introduced
rv = t ,  these ru les  are d i rect ly  followed by  applications of  the rule

x = t ,T ' |C  IB

z = t,[t/z]|T|[t/=]C
elim-new

“Here the instantiation ordering for completeness is just that for ordinary substitutions,.since
th is set of  transformations is clearly not complete for the instantiation ordering derived from the
definition of  composition for conditional substitutions.
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Remark 4.5 Note that we have to keep trivial variable pairs in our solved forms, 
since we do not postulate transformation rule for deleting trivial pairs (constants 
and function symbols can be deleted by the decompose rule). This trick prevents the 
loss of already used variables from the unification problem and eases the freshness 
conditions (we only have to consider the free variables of the current unification 
problem) in the rules imitate, intersect and non-reg. 

In contrast to the related set of rules for order-sorted unification in [21] or [16] 
we only eliminate solved pairs, that are known to be well-sorted from the set V of 
declarations. Therefore we do not need the explicit failure rules these authors need, 
since they do not test for well-sortedness of the pair before eliminating. In our system 
we define failure as irreducibility and non-solvedness, but we could also add explicit 
failure rules to detect failure early for a practical implementation. 

Theorem 4.6 The above set of rules define a sound and complete non-deterministic 
unification algorithm. 

Proof sketch: It is obvious that all inference rules maintain the property of well
sortedriess for unification problems, since all new pairs added are from declarations 
(and we also record the respective conditions) and are therefore well-sorted by defin
ition and the set of well-sorted terms is closed under well-sorted substitutions. 

The rest of the soundness and completeness proof is independent of the conditions, 
since we have chosen the instantiation ordering independently. In particular solved 
forms are independent of the conditions. Since without conditions the set of inference 
rules corresponds to that given in [16, p.98], we refer to the proofs given there. 0 

Resolution (RP:F(1J)) 

The notion of substitution discussed above is not yet the one appropriate for a resol
ution calculus, where substitutions are required to have ground instances. otherwise 
the resolution rule becomes unsound: Let S be a sort that does not have ground 
terms, i.e. where As may be empty, then the clause set {{(Pxs)t}, {(pYs)f}} would 
be refutable, without being unsatisfiable. A well-sorted term may not have ground 
instances, if it contains variables of sorts that do not have ground terms. Therefore 
we are interested in conditions for sorts to be non-empty. 

Lemma 4.7 Let V be a set of conditional sort declarations, then the problem whether 
the set of conditional ground terms of sort S is empty is decidable. Furtht:rmore the 
set of conditions for the nonemptyness with respect to V is effectively computable. 

Proof sketch: Let Ax(V) be the set of propositional formulae SI :::} ... :::} sn :::} T, 
such that t-E-TIIC E 1) and {x1d are the free variables of t. Then the emptyness 
problem is equivalent to the problem whether Ax(V) F S in propositional logic, 
which is known to be decidable. 
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Remark 4.5 Note that we have to keep trivial variable pairs in our solved forms,
since we do not postulate transformation rule for deleting trivial pairs (constants
and function symbols can be deleted by  the decompose rule). This trick prevents the
loss of already used variables from the unification problem and eases the freshness
conditions (we only have to consider the free variables of the current unification
problem) in  the rules imitate,  intersect and non-reg.

In contrast to the related set of rules for order-sorted unification in  [21] or [16]
we only eliminate solved pairs, that are known to  be well-sorted from the set D of
declarations. Therefore we do not need the explicit failure rules these authors need,
since they do not test for well-sortedness of the pair before eliminating. In  our system
we define failure as irreducibility and non-solvedness, but we could also add explicit
failure rules to detect failure early for a practical implementation.

Theorem 4.6 The above set of rules define a sound and complete non-deterministic
unification algorithm.

Proof  sketch: It is obvious that all inference rules maintain the property of well-
sortedness for unification problems, since all new pairs added are from declarations
(and we  also record the respective condit ions) and are therefore well-sorted by  defin-
i t ion and the set of well-sorted terms is closed under well-sorted substitutions.

The rest of the soundness and completeness proof is independent of the conditions,
since we have chosen the instantiation ordering independently. In  particular solved
forms are independent of the conditions. Since without conditions the set of inference
rules corresponds to that given in  [16, p.98], we refer to the proofs given there. 0

Resolution (RPF(D))
The notion of substitution discussed above is not yet the one appropriate for a resol-
ution calculus, where substitutions are required to have ground instances. otherwise
the resolution rule becomes unsound: Let S be a sort that does not have ground
terms, i.e. where As  may be empty, then the clause set { { (Pzs ) ' } ,  { (Pys){}}  would
be refutable, without being unsatisfiable. A well-sorted term may not have ground
instances, if  i t  contains variables of sorts that do not have ground terms. Therefore
we are interested in  conditions for sorts to be non-empty.

Lemma 4.7 Let D be a set of  conditional sort declarations, then the problem whether
the set of conditional ground terms of sort S is empty is decidable. Furthermore the
set of  conditions for the nonemptyness with respect to D is effectively computable.

Proof  sketch: Let Az(D)  be the set of propositional formulae S* = . . .  = S"  = T ,
such that t <T | |C  € D and {z i }  are the free variables of  t. Then the emptyness
problem is equivalent to the problem whether Az(D) | S$ in propositional logic,
which is known to be decidable.
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In particular the set Ax(D) is a Horn clause set, therefore propositional SLD
resolution with an appropriate strategy is a decision algorithm for the problem 
Ax(V) F= S. From a SLD proof Ax(V) f- S, the set of conditions for S to have 
ground formulae can be computed by identifying the declarations corresponding to 
the clauses in the proof and collecting the suitably instantiated versions of their 
conditions. 

Definition 4.8 Let S be a sort, then we define v(S) to be the set of conditions 
computed by the algorithm sketched in 4.7, if S is nonempty and v(S) a tautology 
if S is empty. For a substitution a := [tl / Xl], ... [tn / xn] let S(a) the set of all sorts 
of variables free in t1, ... , tn, then we define v(a) := USeS("') v(S). 

Now we can adapt the resolution calculus to order-sorted unification: 

Definition 4.9 (Resolution with Order-Sorted Unification (1?P:F(V))) 
Let V be a set of conditional declarations 

LOI C MP D LCi MOl C 
, , Res(V) " Fac(V)

a(C), a(D), E, v(a) a(LCi ), a(C), E, v(a) 

(t~::D/,C L'Y,D 
-------- Striet(V)

p(C), p(D), F, v(p) 

where Q' i= f3 and, E {t, f}. For Res(D) and Fac(V) the substitution allE is the 
most general well-sorted unifier of L and M and for Striet(V) there exists a subterm 
s of L, such that pllF is a most general well-sorted unifier of t and s. 

Note that by residuating v(a) in our calculus, we have not prohibited inferences 
with substitutions that do not have ground instances. We have merely rendered 
the generated clauses tautologous. A practical implementation would not add such 
clauses, since they can never contribute to a refutation. 

Let III be a clause set and 

and VC (\l1) ~ V M (\l1) a subset, such that for any clause of the form C, (t-ES)t in \l1 
there is exactly one conditional declaration t~SIIC in VC (\l1). 

These definitions give us two variants of the resolution calculus, RP:F(VM) if we 
take V to be V M(\l1) or RP:F(VC

) , if we take V:= V C (\l1). For the latter variant 
we have to reevaluate the set VC (\l1) after each inference step to obtain a complete 
calculus. 
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In particular the set Az(D) is a Horn clause set, therefore propositional SLD-
resolution with an appropriate strategy is a decision algorithm for the problem
Az(D) = S. From a SLD proof Az(D) | § ,  the set of  conditions for S to have
ground formulae can be computed by identifying the declarations corresponding to
the clauses in  the proof and collecting the suitably instantiated versions of their
conditions. Cl

Definition 4.8 Let S be a sort, then we define v(S) to be the set of conditions
computed by the algorithm sketched in  4.7, if S is nonempty and v(S) a tautology
i f  S is empty. For a substitution o :=  [ t ' / z ! ] , . . . [ t " / z " ]  let S(o)  the set of all sorts
of variables free in  ¢ ' , . . . ,1" ,  then we define v(7) : =  Uges(s) V(S)-

Now we can adapt the resolution calculus to order-sorted unification:

Definition 4.9 (Resolution with Order-Sorted Unification (RPF(D)))
Let D be  a set of  conditional declarations

L* ,  C MP D LY, M*,C
Res(D) Fac(D)

o(C),o(D), E,v(g) o (L%) ,o (C ) ,  E,v(o)

( t<D) ' ,C  L " ,D
Strict(D)

p(C),p(D), F,v(p)

where a # Bß and y € { t , f } .  For Res(D) and Fac(D) the substitution o| |E is the
most general well-sorted unifier of L and M and for Strict(D) there exists a subterm
s of  L ,  such that p| |F  is a most general well-sorted unifier of ¢ and s.

Note that by residuating v(o) in  our calculus, we have not prohibited inferences
with substitutions that do not have ground instances. We have merely rendered
the generated clauses tautologous. A practical implementation would not add such
clauses, since they can never contribute to a refutation.

Let ¥ be a clause set and

DM (¥) : =  {t<S|C | C, (t<S)* € ¥)

and DC ( ¥ )  © DM(¥ )  a subset, such that for any clause of the form C,  ( <5 ) !  i n  ¥
there is exactly one conditional declaration ¢t<S||C in  D°(¥).

These definitions give us two variants of the resolution calculus, RPF(DY) i f  we
take D to  be  DM (WU) or  RPF(DC), i f  we take D :=D(¥ ) .  For the latter variant
we have to  reevaluate the set D “ (V )  after each inference step to  obtain a complete
calculus.
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Remark 4.10 In the case of non-empty sorts we can simplify the inference rules by 
deleting the non-emptyness conditions v(O") and v(p) in the definition of RPF(D). 
Furthermore, unlike in the simple resolution calculus we do not need to add new 
constant declarations for completeness. 

Remark 4.11 At first glance the use of order-sorted unification in the calculus is 
not a great improvement over that with unsorted unification, since in the refined 
calculus residuation is also required. The difference in the calculi is that each use of 
a conditional declaration in the unification algorithm of 'RPF(D) has to be imitated 
by a resolution step in RPF. The conditions residuated in 1?PF(D) are only those, 
that are not yet present as positive information in the clause set, whereas those of 
'RPF are all that are needed for well-sortedness irrelevant of the sort information 
already present in the clause set. 

Theorem 4.12 Both variants RPF(DC ) and 1?PF(pM) are sound and complete. 

Proof: The methods from [21] apply to SK£, since unification is only concerned 
with terms and the difference in the number of truth values does not affect the term 
structure. 0 

Extended Example (continued) 

Following the discussion above we will continue our extended example and show a 
proof using order-sorted unification. The refined calculus uses the same clause normal 
form as in the unsorted case. 

T6 & A5~Rl (c - d = O)f, (e = J)fu
 
RI & AI~R2 (c - d~lR*)t, (e = J)fu
 
T8 & A3~R3 (e = J)fu
 

( 2 ) fuT7 & A5~R4 (c-d=O/, C~f) >0 

( 2 ) fuR4 & AI~R5 (c-d~lR*)t, C~f) >0 

((e~ f)2 > 0) fuT9 & A3~R6 

R6 & A3~R7 (e-f=O)t
 
R7 & A5~R8 (e = J)t
 
R3 & R8~R9 0
 

Note that clauses R2 and R5 are conditional declarations that have been added 
to our set of declarations, these additional declarations have made resolution steps 
R3 and R7 possible. Now we see the improvement of the refined calculus, where we 
need 9 steps as compared to 24 steps in the unsorted case. One can easily imagine 
the magnitude of the search space and the proof for the relativized formulation. 
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Remark 4.10 In the case of non-empty sorts we can simplify the inference rules by
deleting the non-emptyness conditions v(o) and v(p) in the definition of RPF(D).
Furthermore, unlike in  the simple resolution calculus we do not need to  add new
constant declarations for completeness.

Remark 4 .11  A t  first glance the use of  order-sorted unification in  the calculus i s
not a great improvement over that with unsorted unification, since in the refined
calculus residuation is also required. The difference in the calculi is that each use of
a condit ional declarat ion i n  the unification algorithm of  RPF(D) has to  be  imi ta ted
by a resolution step in  RPF. The conditions residuated in RPF(D) are only those,
that are not yet present as positive information in the clause set, whereas those of
RPF are all that are needed for well-sortedness irrelevant of the sort information
already present ın the clause set.

Theorem 4.12 Both variants RPF(DC) and RPF(DM) are sound and complete.

Proof: The methods from [21] apply to SKL, since unification is only concerned
with terms and the difference in the number of  truth values does not affect the term
structure.  ; =

Extended Example (continued)
Following the discussion above we will continue our extended example and show a
proof using order-sorted unification. The refined calculus uses the same clause normal
form as in  the unsorted case.

T6 & A5—R1 (c—d  =0 ) f , ( e  = f )
Rl & A1—R2 ( c—d<R) ,  (e = ff“
T8 & A3—R3 (e=  f ) l

17  & A5—R4 ( c -d=0 ) , ( ( ) "  > 0)

RA & Al—R5 (c-deR’)', (2)  > 0)
fu

T9 & A3—R6 (=  ) ’  > 0)
R6 & A3—R7 (e— f=0 ) "
R7 & A5—R8 (e=  f ) t
R3 & R8—R9 O

Note that clauses R2 and R5 are conditional declarations that have been added
to our set of declarations, these additional declarations have made resolution steps
R3 and R7  possible. Now we see the improvement of  the refined calculus, where we
need 9 steps as compared to  24 steps in  the unsorted case. One can easily imagine
the magnitude of the search space and the proof for the relativized formulation.
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5 Conclusion 

We have developed an order sorted three-valued logic for the formalization of informal 
mathematical reasoning with partial functions. This system generalizes the system 
proposed by Kleene in [12] for the treatment of partial functions over natural numbers 
to general first-order logic. In fact we believe that the unsorted version of ouI' system 
without the! operator is a faithful formalization of Kleene's ideas. Furthermore we 
have presented a sound and complete resolution calculus with dynamic sorts for our 
system, which uses the sort mechanism to capture the fact that in Kleene's logic 
quantification only ranges over defined individuals. 

Our calculus can be seen as an extension of classical logic that combines methods 
from many-valued logics (cf. [2, 11]) for a correct treatment of the undefined and 
order-sorted logics (see [20, 21]) for an adequate treatment of the defined. It differs 
from the sequent calculus in [14] in that the use of dynamic sort techniques greatly 
simplifies the calculus, since most definedness preconditions can be taken care of in 
the unification. Thus we believe that our system is not only more faithful to Kleene's 
ideas (definedness inference is handled in the unification at a level below the calculus) 
but also more efficient for the sort techniques involved. 

Of course further extensions of the system described here have to be considered 
in order to be feasible for practical mathematics. 

In particular this calculus does not address the question of the efficient mechaniz
ation of equality, here paramodulation (cf. [15]) or even superposition ([4]) methods 
would be interesting to study. However, we believe that this endeavor will mainly 
involve the development of the sort aspects for these calculi, because we think that 
the aspects of three-valuedness will not be critical. 

On the other hand, the mechanization of higher-order features is essential for the 
formalization of mathematical practice. Higher-order logics are especially suitable 
for formalizing partial functions, since functions are first class objects of the systems, 
that can even be quantified over. In this direction the work of Farmer et al. [8, 9] 
has shown that partial functions are a very natural and powerful tool for formalizing 
mathematics. We expect that our three-valued approach, which remedies some prob
lems of their simpler two-valued approach (see the discussion in the introduction and 
in example 3.11) can be generalized in much the same manner and will be a useful 
tool for formalizing mathematics. 
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On the other hand, the mechanization of higher-order features is essential for the
formalization of mathematical practice. Higher-order logics are especially suitable
for formalizing partial functions, since functions are first class objects of the systems,
that can even be quantified over. In this direction the work of Farmer et al. [8, 9]
has shown that partial functions are a very natural and powerful tool for formalizing
mathematics. We expect that our three-valued approach, which remedies some prob-
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