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Abstract

We investigate restricted termination and confluence properties of term rewrit-
ing systems, in particular weak termination and innermost termination, and their
interrelation. New criteria are provided which are sufficient for the equivalence
of innermost / weak termination and uniform termination of term rewriting sys-
tems. These criteria provide interesting possibilities to infer completeness, i.e.
termination plus confluence, from restricted termination and confluence proper-
ties.

Using these basic results we are also able to prove some new results about
modular termination of rewriting. In particular, we show that termination is
modular for some classes of innermost terminating and locally confluent term
rewriting systems, namely for non-overlapping and even for overlay systems. As
an easy consequence this latter result also entails a simplified proof of the fact
that completeness is a decomposable property of so-called constructor systems.
Furthermore we show how to obtain similar results for even more general cases of
(non-disjoint) combined systems with shared constructors and of certain hierar-
chical combinations of systems with constructors. Interestingly, these modularity

results are obtained by means of a proof technique which itself constitutes a mod-
ular approach.

Key Words: Term rewriting systems, confluence, termination, weak termination, in-
nermost termination, modularity, disjoint union, combined systems with shared
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1 Introduction

Term rewriting systems play an important role in various areas, e.g. in abstract data
type specifications, for automated theorem proving and as a basic computation model
for functional programming languages. In theory and practice, one of the most im-
portant properties of term rewriting systems is the strong normalization or (finite or
uniform) termination property which is undecidable in general. For ensuring this prop-
erty which is undecidable in general (see [HL78]), many sufficient criteria, techniques
and methods have been developed (see [Der87] for a survey). Most practically appli-
cable approaches are based on reduction orderings, i.e. well-founded term orderings
which are stable w.r.t. substitutions and monotonic w.r.t. the term structure.

On the other hand, in many rewriting based computation models, e.g. in functional
programming languages, the indeterminism of general rewriting is often restricted by
imposing some fixed rewriting strategy. For instance, a frequent restriction is inner-
most reduction, i.e. to require that every reduction step takes place at an innermost
position of the term to be reduced. Innermost reduction corresponds closely to the
functional evaluation mechanism employed in functional programming languages like
LISP or ML. Of course, it may be the case that correspondingly restricted computa-
tions, t.e. innermost reduction sequences, always terminate but arbitrary computations
(reduction sequences) do not necessarily terminate. A very simple example illustrating
this gap is the following:

Example 1.1 Let R = {f(a) — f(a),a — b}. Then we have e.g. the infinite reduction
sequence f(a) — f(a) — f(a) — ..., which uses only non-innermost reduction steps.
But of course, every innermost derivation in R (e.g. f(a) — f(b)) is terminating.

-

Other kinds of restrictions imposed on rewriting steps might also be conceivable ac-
cording to the intended purpose, e.g. leftmost outermost, top-down, bottom-up or
other context-dependent strategies. Unfortunately, very little is known about termina-
tion of rewriting under such restrictions and its relation to (uniform) termination. In
fact, there is one major exception, namely concerning the important and thoroughly
investigated class of so-called orthogonal TRSs, i.e. TRSs which are left-linear and
non-overlapping (see [Klo92] for a survey of basic ideas, concepts and results about
the theory of orthogonal TRSs). It is well-known that any orthogonal TRSs is conflu-
ent notwithstanding the fact that it may be non-terminating. For arbitrary TRSs one
can conclude in general nothing about confluence! or the existence of (unique) normal
forms if termination is not guaranteed since these properties are undecidable in the
general case.

In the following we shall study in particular under what conditions innermost termi-

nation implies (uniform) termination of rewriting. More generally, we shall investigate
and develop some extensions and generalizations of known results about orthogonal

1Of course, this phenomenon is due to the fact that in general confluence and local confluence need
not coincide. Hence, the critical pair test for ensuring local confluence is not sufficient for confluence.




TRSs. This is done by weakening both the no-overlap and the left-linearity require-
ment but still guaranteeing local confluence. Moreover, in a second part of the paper
we shall apply these abstract results in a modular fashion in order to obtain new suffi-
cient criteria for modular termination of TRSs and corresponding invariance properties
of certain classes of non-disjoint combinations of TRSs. Before going into details let
us give a summary of our main results:?

e If a TRS R is non-overlapping then weak innermost termination of R is equivalent
to innermost termination of R (see lemma 3.5).

e If a TRS R is non-overlapping and innermost terminating then it is (uniformly)
terminating (and confluent, hence complete) (see lemma 3.7 and theorem 3.10).

e If a TRS R is non-overlapping, weakly terminating and non-erasing then it is
terminating (and hence confluent and complete) (see theorem 3.13).

o If a TRS R is an innermost terminating overlay systemm with joinable critical
pairs then it is (uniformly) terminating (and hence confluent and complete) (see
theorem 3.20).

e If a TRS R is an innermost terminating constructor system with joinable critical
pairs then it is (uniformly) terminating (and hence confluent and complete) (see
corollary 4.6).

e Innermost termination is a modular property of TRSs (see lemma 4.2).

e Termination (and hence completeness) is modular for locally confluent overlay
systems (see theorem 4.4).

e The union of two constructor systems with disjoint sets of defined symbols is
complete if and only if both systems are complete (see theorem 4.8).3

e A combined system with shared constructors is a complete overlay system if and
only if its component systems are- complete overlay systems (see theorem 4.11).

o A weakly separated hierarchical combination of TRSs is a complete overlay sys-
tem if and only if its component systems are complete overlay systems (see the-
orem 4.28).1

The rest of the paper which is an extended version of [Gra92b] is structured as follows.
Firstly, we introduce the basic definitions and notions needed later on. In section
3 we study the innermost, weak and uniform termination properties of TRSs which
are non-overlapping but not necessarily left-linear. More generally-we.also investigate
the termination behaviour of certain restricted classes of (possibly overlapping) locally
confluent TRSs.

2The definitions involved here are presented below. .
3This result has been obtained in [MT91] by means of a more direct and rather intricate proof.
1Cf. [Der92], [Kri92] for slightly weaker, related results.
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Then. in section 4, we consider modular properties of TRSs, applying previously de-
veloped ideas and results. And finally, related work as well as some open problems are
discussed.

2 Preliminaries

We briefly recall the basic terminology needed for dealing with TRSs (see e.g. [K1092],
[DJ90]). Let V be a countably infinite set of variables and F be a set of function
symbols with VN F = 0. Associated to every f € F is a natural number denoting
its arity. Function symbols of arity 0 are called constants. The set T(F, V) of terms
over F and V is the smallestset with (1) V C T(F,V) and (2) if f € F has arity n
and ty,....t, € T(F.V) then f(t;....,t,) € T(F,V). If some function symbols are
allowed to be varyadic then the definition of 7(F, V) is generalized in an obvious way.
The set of all ground terms (over F), i.e. terms with no variables, is denoted by 7 (F).
In the following we shall always assume that 7 (F) is non-empty, i.e. there is at least
one constant in F. The set of variables (function symbols) cccurring in a term t is
denoted by V(t) (F(t)). The top symbol of a term ¢ is denoted by root(t).

A contert C[,...,] is a term with ‘holes’, i.e. a term in 7(F @& {D},V)* where O is
a new special constant symbol. If C[....,] is a context with n occurrences of O and
ti,....t, are terms then C[¢ty,...,1,] is the term obtained from C{,...,] by replacing

from left to right the occurrences of O by ¢,,...,¢,. A context containing precisely one
occurrence of O is denoted by C[]. For the set 7(Fw{O}, V) we also write CON(F, V).
A non-empty context is a term from CON (F,V)\ T (F, V) which is different from O. A
term s is a subterm of a term ¢ if there exists a context C[] with t = C[s]. If in addition
C[] # DO then s is a proper subterm of t. A substitution o is a mapping from V to
T(F,V) such that its domain dom(s) = {z € V|oz # z} is finite. Its homomorphic
extension to a mapping from 7 (F,V) to T(F,V) is also denoted by o.

A term rewriting system (TRS) is a pair (R,F) consisting of a signature F° and a
set R CT(F,V)x T(F,V) of (rewrite) rules (I,r) denoted by | — r with { ¢ V and
V(r) € V(I)." Instead of (R, F) we also write R” or simply R whew F is clear from
the context or irrelevant.

Given a TRS R” the rewrite relation —gr for terms s,t € T(F,V) is defined as
follows: s —xr t if there exists a rule / — r € R, a substitution ¢ and a context C{]
such that s = Clol] and t = C[or]. We also write —g or simply — when F or R”
is clear from the context, respectively. The symmetric, transitive, transitive-reflexive
and symmetric-transitive-reflexive closures of — are denoted by «, —*, —* and &,
respectively. By s —™ { we mean that s is reduced to ¢ in m steps. Accordingly .
5 =" t means s —™ t for some m < n. Two terms s,t are joinable in R, denoted by

5The symbol @ is to denote disjoint union.

SHere and subsequently we always tacitly assume that some (countably infinite) set V of variables
with VN F = @ is given.

"This restriction of excluding variable left-hand sides and right-hand side extra-variables is not a
severe one. In particular, concerning termination of rewriting it only excludes trivial cases.
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s |r t.if there exists a term u with s —% u  « t. A term s is irreducible or in normal
form if there is no term t with s — £. A term f is said to be a normal form of a term s if
s —* t and # s irreducible. A TRS R is terminating or strongly normalizing (SN) if —
is noetherian. i.e. if there is no infinite reduction sequence s; — s — 83 — --- . It is
said to be weakly terminating or weakly normalizing (WN) if for every term there exists
a normal form. Positions or occurrences of subterms of a term consist of sequences
of natural numbers and are compared by the usual lexicographic ordering (which we
shall ambiguously denote by <). The set of all positions of a term s is denoted by
O(s). The topmost position of a term is denoted by A, the ‘empty’ string. Two
uncomparable positions p and q are said to be parallel or disjoint which is denoted by
plg. If p < q we say that p is above q or g is below p. If s — ¢, then, in order to
make explicit the position p of the reduced subterm and the applied rule [ — r, we
shall sometimes use the notation s —, ., t or s —, t. A step of the form s — ¢ is
said to be a root reduction (step). If s —, t then the reduced subterm s/p of s is said
to be a reder.® A reduction step s — t by applying some rule of R at position p in s
is innermost if every proper subterm of s/p is irreducible. In that case we also write
s — t. R is innermost terminating or innermost normalizing (IN) if every sequence
of innermost reduction steps terminates. It 1s weakly tnnermost terminating or weakly
innermost normalizing (WIN) if for every term s there exists a terminating sequence
of innermost reduction steps starting with s. By oco(s) we denote the property that
there exists an infinite (R-) derivation starting with s. Accordingly, —oo(s) means that
every derivation starting with s is finite. By oo;(s) we denote the property that there
exists an infinite innermost derivation starting with s. And accordingly, —oo;(s) means
that every innermost derivation starting with s is finite.

A partial ordering > on a set D is a transitive and irreflexive binary relation on D. A
partial ordering > on 7 (F,V) is said to be monotonic (w.r.t. the term structure) if it
possesses the replacement property, i.e.

s>t = C[s] > C[¢]
for all s,t,C[]. 1t is stable (w.r.t. substitutions) if
s>t == o0s5>o0t

for all s,t,o. A term ordering on 7(F,V) is a monotonic and stable partial ordering
on T(F,V). A reduction ordering is a well-founded term ordering.

A TRS is confluent (CONF) if *— o —* C —* o "« and locally confluent if
— o0 — C —*o "2 A confluent and terminating TRS is said to be convergent or
complete (COMP). If I; — rqy, [y — 7, are two rules'® of R and p some non-variable
position of Il; such that /; and [;/p are unifiable with most general unifier o then
(o(la[p «— 71]),0(r2)) is said to be a critical pair (CP) of R (obtained by overlapping

8This is a slight abuse of the usual notion of a redex which also comprises the information which

rule is applicable. For orthogonal TRSs the corresponding applicable rule is unmquely determined but
not in general.

“Here, ‘o’ denotes relation composition.
19W |.0.g. we assume that they do not have common variables.



[y = ry with l; — r; at position p). It is well-known that for terminating TRSs local
confluence is equivalent to joinability of all critical pairs (JCP). A TRS R is said to
be non-overlapping (NO) if there is no critical pair between rulzs of R. It is left-linear
(LL) if every variable occurs at most once in every left-hand side of an R-rule. R is
orthogonal (ORTH)" if it is left-linear and non-overlapping. It is non-erasing (NE) if
V(r) = V(i) for every rule I — r € R. If every critical pair of a TRS R is obtained by
an overlay, i.e. by overlapping left-hand sides of rules at top positions, then R is said
to be an overlay system (OS).

For the sake of readability let us summarize the abbreviating notions defined above
which shall be freely used in the sequel.!?

Abbreviations:
SN = strongly normalizing (terminating) 13
WN = weakly normalizing (weakly terminating)
IN = innermost normalizing (innermost terminating)
WIN = weakly innermost normalizing (weakly innermost terminating)
NO = non-overlapping
LL = left-linear
ORTH = orthogonal (non-overlapping and left-linear)
NE = non-erasing
cP = critical pair(s)
JCP = joinability of (all) critical pairs
CONF = confluence
COMP = completeness (convergence)
oS = overlay system -
oo(s) = there exists an infinite derivation starting with s
00;(s) = there exists an infinite innermost derivation starting with s
—0o(s) = there exists no infinite derivation starting with s
—00i(s) = there exists no infinite innermost derivation starting with s

For properties P and @ of TRSs we write P + () for denoting the conjunction of P and
Q. By P(R) we mean that the TRS R has property P. Moreover we also ambiguously
use the notation P(t) for terms ¢ provided there is a (sensible) local interpretation for
P(t). For instance, CON F(t) is to denote the property that whenever we have t —* v
and ¢t —™ w then there exists a term s with v —* s and w —* s.

13n the literature this orthogonality property is sometimes called ‘regularity’.

12These abbreviations are mainly borrowed from [Klo87], [K1092].

13fn the sequel we shall prefer ‘terminating’ instead of ‘normalizing’ in verbal phrases since it seems
to be the more usual notion in literature.



3 Restricted Termination and Confluence Proper-
ties of Term Rewriting Systems

In the following we shall study under which conditions various restricted kinds of
termination imply (uniform) termination (and possibly also'confluence under some
additional assumptions). Firstly we consider the no-overlap case, i.e. where no critical
pairs exist. Then we generalize the analysis by admitting restricted kinds of overlaps.
Moreover, where possible, we give examples showing that no precondition of results
obtained can be dropped.

It is well-known that under the assumption of termination the confluence property of
(finite) TRSs can be easily tested by simply investigating joinability of all critical pairs
(cf. [KB70], [Hue80]). If termination is not guaranteed it is in general much more
difficult to establish confluence. The problem is that for non-terminating systems
joinability of critical pairs is only equivalent to local confluence but not equivalent to
confluence any more. There are some sufficient criteria for confluence which do not

. depend on the termination property but instead on rather strong conditions concerning
the syntactical form of the rules and on how joinability of critical pairs has to be possible
(see e.g. THue80], [Klo92]). Due to the strong preconditions the practical applicability
of these criteria is rather limited.

Perhaps the most important and fundamental result concerning confluence of (possi-
bly) non-terminating TRSs is the following: Any orthogonal, i.e. left-linear and non-
overlapping TRS, is confluent (cf. e.g. [Ros73]). This fundamental property is crucial
for instance within the field of designing and implementing equational programming
languages (cf. e.g. [0’D77], [O’D85]) and has initiated a couple of investigations about
the class of orthogonal TRSs.

In particular, for orthogonal TRSs one also knows some sufficient criteria for termi-
nation which are formulated in terms of restricted termination properties {cf. e.g.
[0’D77], [K10o92]). But as soon as the orthogonality requirement is weakened, either
by allowing critical overlaps or by admitting non-left-linear rules, the main results (at
least concerning confluence) do not hold any more, in particular the so-called ‘parallel
moves lemma’ (cf. [Hue80], [Ros73]) which is the technical key lemma for inferring
confluence for orthogonal TRSs.

Our overall goal in the following will be to establish (uniform) termination (and
confluence) by looking for sufficient conditions involving restricted termination (and
confluence) properties.

We shall investigate in the following the termination (and confluence) properties of
TRSs which are still non-overlapping but possibly non-left-linear. Later on we shall
even relax the no-overlap requirement.

Let us start with the most important known results about confluence and termination
properties of orthogonal TRSs.

-—



Theorem 3.1 (c¢f. e.g. [Ros73], [0'D77], [Kl092]) Let R be a TRS with ORTH(R).

Then we have:

(1) CONF(R).

(2a) ¥t : [WIN(t) = IN(t)].

(%) WIN(R) => IN(R).

(3a) Vt : [IN(t) => SN(t)].

(3) IN(R) = SN(R).

(4) There is no innermost.reduction step s — t in R with oo(s), =oo(t).
(5a) NE(R) = [Vt : [WN(t) = SN(t)]].

(56) NE(R) = [WN(R) = SN(R)].

The following example shows that the left-linearity condition in theorem 3.1(1) cannot
be dropped.

Example 3.2 ([Hue80]) Let R be the TRS given by the rules
fz,@) > a, [flz,9(z)) = b, c—g(c).

Clearly, R is non-overlapping but neither left-linear nor confluent. We have e.g. the
derivations

fle) > a and fle,c) = fle,g(c)) — b.

Here a and b are in normal from. Note that R is obviously non-terminating and
moreover neither weakly innermost terminating nor weakly terminating.

Weak termination is not crucial for the existence of such counterexamples as shown by
the following

Example 3.3 (Sivakumar '86)'* Let R be the TRS given by the rules
f(.’l,',.’l:)—'?g(l‘), f(l’,g(.’lf))—*b, h(C,y)—*f(h(y,C),h(y,y))

Clearly, R is non-overlapping but not confluent. We have e.g. the derivations

h(e,c) = f(h(c,€), h(e, c)) — f(h(c, ), f(h(c,c), h(c,c))) — f(h(c,c), g(h(c,¢))) — b
and

hle, ) = F(h(e,), hie, ) = g(he,¢)) —* g(b).
Here b and g(b) are in normal from. Note that R is obviously non-terminating and

even not weakly innermost terminating (consider e.g. the term h(c,c)) but weakly
terminating.

14As mentioned in [DJ90] this example is due to Sivakumar.
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In the following we shall consider non-orthogonal TRSs which are still non-overlapping
but not necessarily left-linear. Let us start with an easy result about innermost reduc-
tions in such systems.

Lemma 3.4 Let R be a TRS with NO(R). Then we have:

(a) If s — t, s — u then either t = u or there erists a term v witht — v and
u —v. '

(b) If s —™t,s —" u then there ezists a termv and m' <m, n' < n witht —" v
" and u —™ v.

(¢)  is confluent.

Proof: It suffices to prove (a) since (b) is obtained from (a) by an easy induction,
e.g. on (m,n), and (c) is a consequence from (b). Hencelet s —, tand s —, u. If
the innermost redex positions p, ¢ of s are the same then the applied rule is unique
due to NO(R) which implies t = u. Otherwise p and ¢ are disjoint and v is uniquely
defined by s —,t —,v (and s —, u >, v). =

Our next result shows that for non-overlapping systems the existence of an innermost
normal form for some term ¢ implies that any innermost derivation initiated by ¢ is
finite.

Lemma 3.5 Let R be a TRS with NO(R). Then we have:

(a) ¥t : [WIN(t) = IN(t)].
(b) WIN(R) => IN(R).

Proof: It suffices to prove the local version (a) since it implies (b). For a proof by
contradiction let t be a term with WIN(t) but not IN(t). Then we know that there
exists some innermost derivation

t=to 2t itz P Pina g

with ¢, irreducible. Obviously we have 00;(¢y) and —00;(t,). Thus there exists some
(unique) index k, 0 < &k < n — 1, with oo;(tx) and ~00;(tk+1). Due to ooi(¢) there are
terms t},ty,... such that

t=te >ty Dt o

is an infinite innermost derivation. By applying Lemma 3.4(a) and observing that
tesr # t due to 00i(t}), ~00(tis1) we know that there exists a term ¢}, with t, —
tisrs tkrr — thyy and —ooi(ty,;). By induction we can conclude that there is an
infinite sequence of terms t} ,,t{,,,... such that

]

L "
bevr by Dl o
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is an infinite innermost derivation. But this is a contradiction to —00;(tr4+1). Hence we
are done. u

For the sake of readability we shall use subsequently some more compact notations for
special (sequences of) reductions which are introduced now. For parallel (innermost)
reduction and normalization (w.r.t. some given TRS R) we use the following notations.
We write s —l}—p t if P is a non-empty set of mutually disjoint positions of s, and
s =% t by (parallel) one-step reductions of all the redexes s/p, p € P.!* In particular
we write s ——p t if s/p is an innermost redex of s for all redex positions p € P. We
write s ——~p t if P is a non-empty set of mutually disjoint positions of s and s »* ¢
by normalizing all the subterms s/p with p € P. In particular we write s —H—p t
if ¢ is obtained from s by normalizing all the subterms s/p of s with p € P using
only innermost reduction steps. By normalizing a term ¢ we mean reducing it to some
normal form. If WN(¢) holds then normalization of ¢ is possible but need not yield a
unique result. We write s —f— ¢, s —— t, s —H— t or s —H— t if there exists
a non-empty set P of mutually disjoint positions of s with s —{—p t, s ——p t,
s —H—ptors —H—pt, respectively. Moreover, for the sake of readability we also
write s —H,—-q—il tif s =tor s—Hpt. In the latter case P must clearly be non-empty
and s/p must be reducible for some p € P. Analogously, s ;.——J;L—-»\,S,I t means s =t or

S T':H«_"P t.
Moreover we shall tacitly make use of the following basic uniqueness properties of
parallel reduction and normalization:

NO(R) — [S ——H—‘)P tl A S—H——ip tz - tl =t2]7
and

s—H-pti A s—Hopts A Vpe P :COMP(s/p) = t;=1,.

In a non-overlapping and innermost terminating TRS R every reduction step can be
expressed in terms of (parallel) innermost reduction steps. In slightly generalized form
this yields the following.

Lemma 3.6 Let R be a TRS with NO(R) and s,t be terms with s — t and IN(s).
Then there ezxist terms s’ t' with

S — t
] * t ] *
s’ :_) tl

More precisely, we have s —4-'s' =t and s » t >t t', ie. s and ¥/
are obtained from s and t, respectively, by zero or one step(s) of parallel innermost
normalization.

15Note that — for proof-technical reasons which will become clearer later on — we do not require
lthat. s/p is a redex for all p € P but only that at least one subterm s/p of s with p € P is a redex.
This is reflected by the requirement s —+ ¢.
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Proof: Let R, s, t be given as above with s —p ., ¢. If this is an innermost
reduction step we are done. Hence, let us assume that the reduction step s —p 1, ¢
is non-innermost. Then we simply perform an innermost reduction of those subterms
of s/p to normal form!® which correspond to variable positions in the left-hand side of
rule { — r. This may be done by means of parallel reduction and such that subterms
corresponding to the same variable in [ are innermost reduced to identical normal
forms. Let us denote the resulting term by s’. Then the rule [ — r is applicable to
s', too, as an innermost step yielding, let’s say, t’. Clearly, ¢’ can also be obtained by
innermost reduction steps from ¢, namely by innermost normalizing those subterms in
t/p which correspond to variable positions in r in the same way as in s. ]

As an easy consequence of lemma 3.4 and lemma 3.6 we obtain the next result.

Lemma 3.7 For any TRS R we have: NO(R) A IN(R) => CONF(R).

Proof: From lemma 3.4(c) we know that — is confluent. Applying lemma 3.6 we
get - C «*. From —C — it finally follows that — is confluent, too. [ ]

If we omit the condition /N(R) in the above lemma then R can be non-confluent (see
e.g. example 3.2 above). Next we shall show that any non-overlapping and innermost
terminating TRS is terminating. The following two technical lemmas are useful for
giving a shorter proof of this result.

Lemma 3.8 Let R be given with NO(R) and let s —p ., t be a non-innermost re-
duction step. Then there exist a set P of mutually distinct positions of s strictly below

p and terms ', ' with s ——p s’ —pinr t' and t S 1.

Proof: Let R be a TRS with NO(R) and s —, -, t be a non-innermost reduction
step in R. Obviously we have s/p = o(l) for some substitution o. Define Q; := {u €
O(D)|l/u € V} and Q, := {u € O(r)|r/u € V}. Since s —, .., t is non-innermost at
least one proper subterm of s/p is reducible. From NO(R) we know that all innermost
redexes of s strictly below p are below positions pg with ¢ € ;. This means that we
can define s’ by s —{—p s’ where P is the set of positions of all innermost redexes of s
strictly below p and s'/p = ¢'(I) for some substitution ¢’. Moreover, if ¢’ is defined by
8" —pi_rt' then we get s —ffop s’ —,1., t'and s —=, 1., t =5 t/, where P’ is the
set of positions of all innermost redexes of ¢ strictly below p, as desired. n

Lemma 3.9 Let R be given with NO(R) and let s, t, t' be terms and P C O(s) a set
of (parallel) positions of s with s —,t, s ~——p s’ such that for at least one p' € P
we have p < p' and s/p' is reducible. Then there erists a term t' with s' -1 t' and

t ‘—H'—'?Sl t,.

1$Note that the assumption IN(s) of the lemma is crucial for ensuring the existence of an innermost
normal form.
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Proof: Let R be given with NO(R) and let s, ¢, ¢’ be terms with s —, ;.. t, s Jp s’
such that p < p’ and s/p’ is reducible for at least one p’ € P. Hence we know that
s —, t is not an innermost step. W.l.o.g. we may further assume that p = A (and hence
p <p forall p € P). From s —, t we deduce that s/p = o(l) for some substitution
o. Now we would like to apply the same rule | — r to s'/p. Remember that s’ is
obtained from s by parallel innermost reduction at the redex positions from P. Due
to NO(R) all these redex positions are below variable positions of I. Thus the only
potential reason for non-applicability of | — r to s’ is that s’ is no longer an instance of
! due to the fact that | — r might be non-left-linear. But this problem is easily solved
by an additional parallel reduction of s at all innermost redex positions (strictly below
p = A) which were not contained in P. Let us denote this set of all innermost redex
positions of s not contained in P by Q. Then we can (uniquely) define terms s” and ¢’

by s —f—p s +51 s" —% 1~ t' such that s —, 1, t —f>5'¢' as desired. »

Now we are prepared to prove the first main result.

Theorem 3.10 For any TRS R we have:

() NO(R) A IN(R) = SN(R).
(b) NO(R) => [Vt:IN(t) == SN(t)].

Proof: Although we shall prove a more general result later on (cf. Theorem 3.20) we
will give a proof here since it is simpler than the one for the more general case.

It suffices to prove (b) which implies (a). For a proof of (b) by contradiction let R be
a TRS with NO(R) and let ¢ be a term with N (¢) but not SN(¢). Hence there exists
an infinite derivation initiated by ¢. Due to I N(t) every such counterexample contains
at least one reduction step which is non-innermost. We consider now a counterexample

D:t'—"to-’tl—itg—)'~'

which is minimal in the sense that reduction steps are performed at deepest possible
positions. More precisely, this means that D has the form

D:t=ty »t; m- oty —optpn — -
such that t, —, t,41 is the first non-innermost step in D and such that
(¥*) whenever t, —,t for some termt, with ¢>p then -oo(t,).'”
By applying lemma 3.8 and using (*) we know that there exist terms s,,, Sn+1 with

<1
tr 7 $n = Sn1 and  toy T s

\ 17Note that in the proof this 'minimality’ property is only needed for the first non-innermost step in
\
|

D. Later on, in the proof of the more general theorem 3.20, we shall make use of the *full minimality’
property.
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and —00(s,), 700(Sn41). Moreover, 00(tny1) implies tnyq # Sny1, lence tpyy o= sSnqa.
In order to obtain a contradiction to —oo(sy,) it suffices to prove that s, — s,41 can
be extended to an infinite reduction sequence. For that purpose it is sufficient to show
that whenever we have t,, —— s, with —00(s,,) then there exists an index m' > m
and a term s,,» With t,, —H> Sm/, S; —F sms (and —oo(s,/)). Hence, let t,, —}>¢ sm
with —oco(s;) and ¢, —p timy1. Moreover assume w.l.o.g. that all positions from @ are
innermost redex positions of ¢,,. We distinguish three cases:

(). Vg € @Q : plg: Let spmyy be defined by s, —p sSmy1. Then we get ¢, —f—¢
Sm —p Sm41 and ty, — tmi1 @ Smt1 With "co(sm41). Hence we can choose
m =m+1.

(b) 3g € Q : ¢ > p: In this case lemma 3.9 yields the existence of a term s, with

<1
Sm =t Sm41, 700(Sm41) and tgr TH2S! Smg1. Due to 0o(tmi1), "00(Sm41) We
have t, 41 # Sm+1, hence t 41— Sm41. Hence we can choose m' = m + 1.

(c) 3¢ € @p > ¢q: Then we have p = q because ¢ is an innermost redex position of
tm. From NO(R) we know that reducing t,, at position p = ¢ yields a unique
result. Thus, choosing m' = m +1 and $j41 = S We get £, 0 Sm —* Sma1,
tm —p tmt1 1—H——>3} sm+1 With @' = @ \ {¢}. Using oo(tmt1), ~00(Sm+1) We can
conclude (@ > 2 and t41 ——0¢' Sm+1. Obviously, the reduction s,, —=* s, 41
is not a proper one (since we have sp4+1 = S;,) but we know that after at most
|@Q|—1 steps (in D) we must be back in case (a) or (b) in which a proper reduction
of s,, is enabled as desired.!®

By induction we can finally conclude now that there exists an infinite derivation initi-
ated by s,. But this is a contradiction to ~oo(s,). Hence we are done. =

As an easy consequence of this result we obtain the following.'?

Corollary 3.11 Let R be a TRS. Then the following holds:
NO(R) N IN(R) = COMP(R).

The next result says that innermost reduction steps in non-overlapping TRSs cannot
be critical in the sense that they may destroy the possibility of infinite derivations.

Lemma 3.12 Let R be a TRS with NO(R). Then there is no innermost reduction
step s — t in R with oo(s) but —~oo(t).

Proof: For a proof by contradiction assume s — t with oo(s) but —00(t), hence
SN(t). Together with s — ¢t this implies WIN(s). Using lemma 3.5 we get IN(s)
which by theorem 3.10 yields SN(s). But this is a contradiction to oo(s). n

18Formally this last conclusion is proved by an easy induction (on |Q]).
19Note that in lemma 3.7 we have independently shown the partial result NO(R) A IN(R) =
CONF(R) without making use of SN(R).

13




Obviously, lemmas 3.72¢ | 3.5, 3.12 and theorem 3.10 express generalizations of theorem
3.1 (1)-(4). Indeed, it is also possible to prove the following generalization of theorem -

3.1(5).
Theorem 3.13 For any TRS R the following holds:
(a) NO(RYANE(R)AWN(R) = SN(R).

(6) NO(R)ANE(R) => [Vt : WN(t) => SN(t)]

Proof: It suffices to prove the stronger (b) from which (a) follows easily. For a proof of
(b) by contradiction let us assume that R is a TRS with NO(R) A NE(R). Moreover,
let to be a term with WN(t;) but not SN(tp). Hence there exists a normalizing
derivation initiated by 2o, e.g. a derivation of the form

D:tsg—otij—ty—--—>t,_1—t,,n>0

with ¢, irreducible, hence co(ty) and —~co(t,). This implies that there is some (unique)
index k, 0 < k < n, with £, —, ., trs1, 00(te) and —oco(tg4+1). Let us denote the set
of variable occurrences of the left- and right-hand side of the applied rule | — r by
Qi :={q € O)|l/q € V} and Q, := {q € O(r)|r/q € V}, respectively. By lemma
3.12 we know that ¢/p must be a non-innermost redex of ¢{. Since R is non-overlapping
tr/pq must be reducible for at least one ¢ € Q;. From NE(R) we know moreover that
{tx/pg|q € Qi} = {ti+1/pq)q € Q.}. Furthermore —oco(ts41) implies SN (ti41/pg) for
all ¢ € Q, which - due to NO(R) - yields COMP(t) for all t € {tx/pq|q¢ € Qi} =
{tr+1/pg|lq € Q,}. Hence, for P := {pqlq € Qi}, P’ := {pg|q € Q.} there exist
(uniquely defined) terms sg, siq1 wWith tx —H—p Sk piar Sk41, tk —pior ther —H2P
sk+1 such that oo(tx), ~0o(tkss), moo(sk+1). Since parallel normalization of #; at all
positions from P can be achieved by using only innermost steps we obtain tx —% si41
with oco(tx) and —oo(sk+1)- This implies WIN(¢,) which yields IN(tx) by lemma 3.5
and SN(t;) by theorem 3.10. But this is a contradiction to oco(x). =

Note that the assumption NE(R) above cannot be dropped. To wit consider

Example 3.14 R := {a — f(a), f(z) — b} is clearly non-overlapping and weakly.
terminating but not strongly terminating and also not weakly innermost terminating.
For instance, b is a normal form of f(a) but cannot be obtained by innermost reduction.

In view of lemmas 3.4, 3.5, and theorem 3.10 one might be tempted to conjecture that
instead of requiring NO(R) and I N(R) it should also be sufficient to require JCP(R)
and WIN(R) for guaranteeing SN(R) and CONF(R). But this is not sufficient as

witnessed by

Example 3.15 For the TRS R given by a «— b « ¢ — d*! we have JCP(R) and
WIN(R) but neither CONF(R) nor SN(R).

2%Lemma 3.7 generalizes theorem 3.1(1) only in the sense that instead of (NO + LL)(R) it also
suffices to have (NO + IN)(R) for inferring CON F(R).
21Of course, b < c is to denote both rules & — ¢ and ¢ — b (and not the disjunction b — ¢ or ¢ — b).
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Even the stronger requirement JCP(R) and IN(R) is not sufficient for ensuring
SN(R) and CONF(R) as can be seen from

Example 3.16 Let R be given by a — f(b) & f(c) > d, b — e, c — €, f(e) = a
and f(e') — d. Here it is eastly verified that JCP(R) and IN(R) hold but neither
CONF(R) nor SN(R).

Another possibly tempting conjecture might be to insist on /N(R) and even require
CONF(R) in order to infer SN(R). But this is also not true in general.

Example 3.17 Consider the TRS R given by f(a) — f(a), a — b for which we have
CONF(R) and IN(R) but not SN(R).

But a common feature of the latter two counterexamples consists in the fact that for
both systems critical pairs were constructed by overlaps strictly below the root. This
is crucial as will be shown next.

To this end let us reconsider now theorem 3.10. Essentially, what we have done there
is to drop the precondition LL(R) in theorem 3.1(3), i.e. to require only NO + IN
instead of NO + LL + IN for deriving SN(+CON F). We shall strengthen this result
now by proving that the rather restrictive property NO may be further weakened by
restricting possible overlaps and guaranteeing local confluence. To be precise, NO
is replaced by OS + JCP, i.e. corresponding TRSs have to be®verlay systems (i.e.
critical pairs are admitted but only on top level) which are locally confluent (i.e. all
critical pairs are joinable).

In order to enable a simpler proof of this main result we need the following two auxiliary
lemmas.

Lemma 3.18 Let R be a TRS with OS(R) and JCP(R). Moreover let s —p ., 1
be a non-innermost reduction step with SN(3) for all proper subterms 5 of s/p. Then
there erist terms s', t' and sets P C O(s), @ € O(t) such that

s—Hops —pirt’ and t —&—»Sl t
with p < p’ for all p" € P, COMP(s/u) for allu € P and COMP(t/v) for all v € Q.

Proof: Under the assumptions of the lemma let Q; and @), be the sets of variable
positions of [ and r, respectively, and define P := {pq|q € @i}, @ := {pg|q € Q-}.
By assumption we know SN(3) for all proper subterms 5 of s/p. Due to JCP(R) this
implies COM P(3) for all proper subterms 5 of s/p. From OS(R) and the fact that
the step s —, ., ¢ is non-innermost we conclude that at least one subterm s/u of s,
u € P, is reducible. Thus s’ defined by s —4—p s’ exists (and is unique). Since s’ is an
instance of [, t’ is also uniquely defined by s’ —,;_., t'. Moreover, t' can be obtained
from t by (uniquely) normalizing all subterms ¢t/u of ¢t with u € Q, e.g. ¢ ——j%»él.
Finally, {t/v|v € Q} C {s/u|u € P} implies COMP(t/v) for all v € Q as desired. m

The next result is a technical key lemma which will be used below in the proof of
theorem 3.20 for properly extending some given finite derivation to an infinite one.
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Lemma 3.19 Let R be @ TRS with OS(R) and JCP(R). Moreover let s —p 1., t
and s —f4—y s’ with COMP(s/u) for all u € U, COMP(s/v) for all v € O(s) with
v>p, Us,:={u€U|u>p}#0 and s/u reducible for all u € Us,. Then there exists
a term t' and W C O(t) such that s -y s' =% t' and t o5 t' with COMP(t/w)
forallwe W,

. Proof: Let R, s, t, s, p, | = r and U be given as above. W.l.o.g. we may assume

= A which implies u > A for all u € U (due to the assumption Us, :={uv € U|u >
p} #0). Define Q; := {q € O(1)|I/q € V} C O(s), @, := {q € O(r)|r/g € V} C O(t).
Due to OS(R) we know that for every redex s/q of s with ¢ > A we have ¢ > ¢’ for
some ¢' € Q. Hence, every u € U is below or above some ¢ € ;. Now we define s”
by s —H—¢q, s”, t' by t —H—»é: t’ and show that s —{—oy s _H—’é,l s"” —p s t’ holds
(by appropiately rearranging certain reduction sequences). To this end we consider all
those positions from U U P; which are minimal among U U Q; w.r.t. <.

o If ¢ € Q; is minimal among U U @ such that u,,...,u,, m > 1, are all positions
from U below g then due to COMP(s/q) (since ¢ > )) normalization of s at
p can be achieved by normalizing s at u,...,u, followed by normalizing the

resulting term at q.

e If u € U is strictly minimal among U U @ such that ¢, ..., ¢, are all positions
from @) strictly below u then normalization of s at u can be achieved by first
normalizing s at q,...,q, yielding let’s say § and then normalizing in § the
subterm hat(s)/u. But the latter normalization must be empty, i.e. §/u must be
irreducible. To see this, let us assume that $/u is reducible, let’s say at position
v with rule I; — r; and matching substitution oy, i.e. 01(l1) = §/uv. By the
construction of § we know that 3/¢; is irreducible for : = 1,...,n. Hence, uv > A
{which follows from u > }) is a non-variable position of both § and I. Moreover
we know by the construction of § that $/u = ¢'(I)/u for some substitution o’
which implies ¢'(l)/uv = o1(l;). But this means that there exists a critical pair
between the rules I, — r, and | — r which is not a critical overlay due to uv > A.
Hence we have a contradiction to OS(R).

In summary this means that we have s —H—y s’ =" 3" —, 1, t' and s =y t 3

——%i t' with COMP(t/w) for all w € @, due to {t/w|w € Q,} C {s/v]|v € Q:i} and
COMP(s/v) for all v € O(s) with v > A. Hence choosing W := @, we are done. =

Now we are prepared to state and prove the following main result.
Theorerﬁ 3.20 For any TRS R we have:

(a) OS(R) A JCP(R) A IN(R) = SN(R) A CONF(R), and

(b) OS(R) A JCP(R) = [Vs: [IN(s)= SN(s) A CONF(s)]],

i.e. any locally confluent and innermost terminating overlay system is terminating and
confluent (part (a)) which elso holds in the localized version (b).
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Proof: It suffices to prove (b) since (a) follows from it. For a proof of (b) by
contradiction let R be a TRS with the assumed properties OS(R) and JCP(R) and let
to be a term with I N (o) but not SN(¢o). Then we consider a 'minimal’ counterexample
for tg, i.e. an infinite derivation

D: tog—ty ot — -
satisfying
(1) V5 20 : ooft;) ,and
(2) V3> 0Vs; : [t; =ptjp At; =, s; with ¢ > p] == —oo(s;).

The minimality assumption (2) says that reduction steps are performed at deepest pos-
sible positions. This means in particular that innermost reduction steps are preferred
as long as possible. Due to /N (tg) there must exist some first non-innermost step in
D, let’s say t, —pi—r tr+1. The minimality assumption (2) implies SN(t) and hence
COMP(t) (due to JCP(R)) for every proper subterm t of ¢t,/p. By applying lemma
3.18 and using (2) we know that there exist (uniquely defined) terms s,, s,+1 and
PCO(@,),p>p forallp € P# 0, Q C Otns1) with t, —H—p Sn —pier Sntr
and f,4 —&—»51 Sn41 such that —oo(s,) and COM P(t,41/q) for all ¢ € Q. Moreover,
oo(t,..,_l)_and "OO(S,H.l) 1mply tn+1 # Sn+1s hence tn+1 ——,H:—'Q Sn41-

In order to obtain a contradiction to —=00(sn ), it suffices to prove that s, — sp4; can
be extended to an infinite reduction sequence. For that purpose it is sufficient to show
that

whenever we have t,, —{->u s, with co(t,), ~oo(sm) and COMP(t,,/u) for
allue U

then there exists an index m’ > m, a term s, and a set U’ C O(t,,) with
Sm =Y Syt —HP U Smry 00(Sme)??and COM P(t,, [u) for all u € U'.

Hence, let t,, —{—v sm with 00(t,) and tm —p s tmer (for arbitrary m > n) and
assume w.l.o.g. that ¢, /u is reducible for all u € U. Then we have to distinguish the
following three cases:

(a) Yu € U : ulp: In this case we can choose m’ = m+1 and s,,» = s,,41 is obtained
from s,, by applying | — r at position p, i.e. we get ¢, —H-1r Sm —piar Smil,
tm —pior tmt1 —H=U Sm4r With —oo(spy1) and COMP(t4q/u) for alluw € U

as desired.

(b) 3u € U : u > p: From the minimality assumption (2) we know COMP(t,,/q)
(due to JCP(R)) for all ¢ > p, ¢ € O(ty). Hence, applying lemma 3.19 we
get a term Sm41 and a set W C O(tn41) with s —7F spy1, tmsr %

Sm+1, 00(Smy1) and COM P(tm 4, fw) for all w € W. Moreover, ~co(Sp,4.1) and
00(tm+1) imply tmy1 # Sm+1, hence 11 —How Sy as desired.
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(c) 3u € U : p> u: In this case smy; is defined by t, —pior tmir —H=F Sme1-2
From t,, —{—v $m, COMP(t,,/u) for all u € U and p > u for some u € U we
get COMP(t,41/u) for all w € U, and s,, = Sm41. Moreover, —0o(s,,) implies
—00(8m+1) which together with co(t;,41) yields ¢y # Sm41, hence t, 41 —H-u
Sm+1- The only problem now is that the reduction sequence passing by s, is
not properly extended due to s, = Sm41. But from COMP(¢,,/u) for all v € U
we know that only finitely many subsequent steps in D can take place below
positions from U. Hence, eventually case (a) or case (b) applies again in which a
proper extension of the reduction sequence passing by s, is possible as desired.?*

By induction we can conclude that there exists an infinite derivation starting from s,.
But this is a contradiction to ~oo(s,). Hence we are done. u

Note that for proving theorem 3.20 we cannot apply the (simpler) construction used
for proving theorem 3.10 by means of parallel (unique) one-step reduction. The crucial
point is that reduction of some term t at some position p need not be unique since
critical overlays are allowed. But — as we have shown — it is possible to modify the
construction by performing parallel normalization steps instead of parallel reduction
steps.

Note moreover that we cannot weaken the precondition of theorem 3.20 by omitting
the requirement JC P(R). To wit, consider

Example 3.21 25 Let R be the TRS consisting of the rules

fla,b,z) = f(z,z,2), G(z,y) >z, Gz,y)—>vy.

Obviously, R is an innermost tcrminﬁting overlay system but it is not strongly nor-
malizing as can be seen from the infinite (cyclic) derivation

f(a,6,G(a, b)) f(G(a,b),G(a,b),G(a, b))
f(a,G(a,b),G(a, b))

f(a,b,G(a, b))

B

Moreover, omitting the condition OS(R) in theorem 3.20 is not possible, either. Con-
sider e.g.%®

22Note that this is an implicit consequence of s, —+ s,,» and m’ > m, hence it could be omitted
here.

23More precisely, the definition of 5,4+, depends on whether {,,43/u is reducible for at least one
u € U. In this case s, 4 is defined by ty1 —H—v Sm41. Otherwise, i.e. if t,,43 /u is irreducible for
all u € U then we define 5,43 = tmy1-

24Formally, this can be proved by an additional easy induction.

Z5Note that by partitioning these 3 rules into Ry := {f(a,b,z) — f(z,z,z)} and R, := {G(z,y) —
z,G(z,y) — y} we obtain Toyama’s counterexample to modularity of termination (cf. {Toy87a}).

26Gee also example 3.16 which is already a counterexample to this conjecture.
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Example 3.22 ?7 Let R be the TRS consisting of the rules
f(a7b’x) - f(x,x.,x), a - C’ b — C’ f(z’y,z) - c’ G(‘T')y’y) — 1:7 G(y,x,y) hd x'

Here, R is innermost terminating and all critical pairs are joinable (the system is
even confluent) but there are two critical pairs which are no critical overlays and R is
non-terminating as witnessed e.g. by

f(a,b,Ga,b,8) — f(Gla, b,b),Gla,b,b), Gla, b, b))
—  f(a,G(a,b,b),G(a,b,b))
—  f(a,G(c,b,b),G(a,b, b))
—  f(a,G(c,b,¢c),G(a,b, b))
—  f(a,b,G(a,b,b))

»

According to theorem 3.1(3) (VO + LL + IN) implies SN, too. Theorem 3.10 says
that even (NO + IN) implies SN. Moreover, from theorem 3.20 we know that the
weaker property (OS + JCP + IN) implies SN, too. In view of these results another
interesting conjecture would be the following: "

(CONF+ LL+IN) = SN.

But again this is not true in general.

Example 3.23 (example 3.17 continued) Let R be given by the rules f(a) — f(a) and
a — b. Obviously, this system is confluent, left-linear and innermost normalizing but
ts clearly non-terminating.

By weakening the no-overlap requirement of lemmas 3.5, 3.12 and theorem 3.13 in
a manner analogous to theorem 3.20 one might be tempted to state the following
conjectures which would be generalizations of theorem 3.1(2), (4) and (5).

(C1) OS(R)AJCP(R) = [WIN(R) = IN(R)],

(C2) OS(R)AJCP(R) => there is no innermost reduction step s — ¢
in R with co(s) and —oo(t), and

(C3) OSRYANJCP(R)ANE(R) = [WN(R) = SN®R)]
But (C1), (C2) and (C3) are all refuted by the following very simple counterexample.

Example 3.24 Let R consist of the two rules a — a and a — b. Clearly, R is a non-
erasing overlay system where the only critical pair is a joinable overlay. Moreover, every
term has a normal form that can be computed by innermost reduction, but obviously R
15 not innermost terminating and hence not strongly terminating, too. Furthermore we
have a — b with co(a) and —oo(b).

2"Note that by partitioning these rules into R, := {f(a, b, z) — f(z, z, z),a—c,b—c, flz,y,z) —
c} and R2 := {G(z,y,y) — z,G(y, z, y) — z} we obtain a counterexample to modularity of complete-
ness (cf. [Dro89]).
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4 Applications to Disjoint and Non-Disjoint Unions
of TRSs

We shall now consider modular properties of TRSs and apply our previous results in
order to derive some interesting new results and provide simplified proofs of known
ones. Let us first give a brief (and incomplete) overview of known results in this field.
Modular properties of term rewriting systems, i.e. properties which are preserved under
disjoint unions, have attracted an increasing attention within the last few years. From
a theoretical point of view and also for efficiency reasons it is very useful to know
whether a combined TRS has some property whenever this property already holds for
the single ‘modules’. A simple and natural way of such ‘modular’ constructions is given
by the concept of ‘direct surh’ ([Toy87b]) or ‘disjoint union’.?® Two TRSs R; and R,
over disjoint signatures F; and F,, respectively, are said to be disjoint if F; and F,
are disjoint, i.e. F; N F,; = @ (in that case R; and R, are necessarily disjoint, too).
The (disjoint) union of two disjoint TRSs R;, R; is denoted by R, & R;. We shall
also speak of the disjoint union of R; and R, using the implicit convention that R,
and R; are assumed to be disjoint TRSs. A property P of TRSs is said to be modular
if the following holds for all disjoint TRSs Ry, Rz: Ry @ R, has property P iff both
R, and R, bave property P.?°

Toyama [Toy87b] has shown that confluence is modular. The termination property,

however, is in general not modular as witnessed by the following counterexample of
[Toy87b] (cf. example 3.21) :

Example 4.1 Consider the TRSs given by
R, : f(a,b,z) — f(z,z,z) and R, : G(z,y) — =
G(z,y) - y.

Clearly, both Ry and R, are terminating, but R; @ R, admits e.g. the following infinite
derivation:
f(a,6,G(a,b)) —x, f(G(a,b),G(a,b),G(a, b))
—R, f(a') G(aa b)’ G(av b))
—r, f(a,b,G(a,b))

—-)Rl

Note, that in this example R; is not confluent. Other, more complicated examples by
Klop & Barendregt as well as by Toyama gathered in [Toy87a] show that R; & R, may
be non-terminating even if R; and R, are both terminating, confluent and interreduced.

All these counterexamples have some common feature. Namely, one of the systems
contains a duplicating rule,® i.e. a rule / — r where some variable occurs strictly more

28Roughly spoken, the concept of ‘direct sum’ as defined in [Toy87b] is slightly more general than
that of ‘disjoint union’ because it allows for renaming function symbols in order to obtain disjointness.
2%Later on we shall also consider invariance properties of combination mechanisms which are more

general than ’direct sum modularity’.
39Such a TRS is said to be duplicating.
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often in r than in I, and the other system contains a collapsing rule I’ — ', i.e. 1’ is
a variable®!. As proved in [Rus87] termination is modular for the class of collapse-free
TRSs as well as for the class of non-duplicating systems. In [Mid89] it is shown that the
disjoint union R; @ R; of two terminating TRSs R, R, is again terminating whenever
one of the systems is non-duplicating and collapse-free. Moreover, as shown in [K090a],
simple termination is a modular property of (finite) TRSs, i.e. whenever two (finite)
TRSs R, R, can be shown to be terminating by means of simplification orderings then
this holds for their disjoint union, too. A unified approach to modular termination of
rewriting is provided in [Gra91], [Gra92a], [Gra93] where still more general sufficient
conditions for modularity of termination are presented.

Some extensions and generalizations of these known results on modular termination to
the case of conditional TRSs as well as to some restricted classes of non-disjoint unions

of TRSs can be found in [Mid90], [KO90b)], [Mid93], [Gra92c|, [Gra93] and [Ohl93].

An interesting result not subsumed by other ones is due to [TKB89] where it is shown
that completeness is modular for left-linear TRSs.

The main link between our abstract results proved in the previous section and the
problem of modular termination of rewriting is provided by the following easy but
fundamental result.

Lemma 4.2 [nnermost termination (IN) is a modular property of TRSs.

Proof: Let RI', R)? be disjoint innermost terminating TRSs. Then we show by
structural induction that IN(¢) holds for all t € T(F; W F,,V). If t is a variable
then IN(t) is trivially satisfied. If ¢ is a constant of F; W F; then IN(t) is satisfied
by assumption. If ¢ = f(¢;,...,t,) then we have by induction hypothesis IN(#;) A
...ANIN(t;). W.lo.g. we may further assume f € F;. Now, if ¢ is irreducible (w.r.t.
Ri W R;) we are done. Otherwise, we know by induction hypothesis that for every
1 € {1,...,n} every innermost derivation of t; is eventually terminating. This means
that every innermost derivation starting with ¢ is either terminating or has the form
t = f(ty,...,ta) —* f(t},..., ) —x ... where t},...,¢/ are all irreducible (w.r.t.

R1WR;). If in the latter case t' := f(¢],...,t]) were not innermost normalizing, i.e.
00;(t'), we could conclude that R, is not innermost normalizing (this is easily seen by
replacing every maximal subterm sy, ..., s, of t with root(s;) € F;, by a fresh variable
z; such that z; = x4 whenever s; = s;). =

Note that weak normalization and weak innermost normalization are modular proper-
ties of TRSs, too, as shown in [BKM89], [Dro89] and [KK90].

Combining lemma 4.2 with theorem 3.10 we obtain

Theorem 4.3 Termination (and hence completeness) is modular for the class of non-
overlapping TRSs.

31A system without collapsing rules is said to be collapse-free.
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Proof: Let R;, R, be two non-overlapping and terminating TRSs. Hence we have
(NO + SN)(R,) and (NO + SN)(R;) implying (NO + IN)(R;) and (NO + IN)(Ry).
Since NO is obviously modular and IN, too, due to lemma 4.2 -ve conclude (NO +
IN)(Ry ® R;). By applying theorem 3.10 we finally obtain (VO + SN)(R, ® R.) and
hence (SN + CONF)(R1 & R;) as desired. |

Similarly, theorem 3.20(a) yields the following generalized modularity result.

Theorem 4.4 Termination (and hence completeness) is modular for the class of locally
confluent overlay systems.

Proof: Analagous to the proof of theorem 4.3 using lemma 4.2 and theorem 3.20(a).
]

Note that this result is in a sense a variation of the main result of [TKB89] which
says that (LL + CONF + SN) is modular. Theorem 4.4 states that the left-linearity
restriction can be dropped if a stronger kind of confluence property is satisfied, namely,
every critical pair must be a joinable overlay. In other words, (OS + JCP + SN) is
modular.

Moreover, e;(ample 4.1 shows that dropping JCP is not possible because in general
(OS + SN) is not modular.

Furthermore let us show now that theorem 3.20(a) can be used to give a substantially
simplified proof of the main result from [MT91]. For a precise formulation we need
some terminology from [MT91].

Definition 4.5 (/MT91]) Let R” be a TRS with F = CWD such that D = {root(l) |1 —
r € RT} and C = F\ D. The symbols in D are said to be defined symbols and those
in C constructors. To emphasize the partitioning of F into F = C ¥ D we also write
(R*,C,D) or (R,C,D) instead of R” and say that R = (R,C, D) is a TRS with con-
structors. Then R” is said to be a constructor system (CS) if
C D U 70 F(t;), ie. if no left-hand side argument contains a defined
f(t1sentn;)—ri€RF 3=1

symbol.3® If (RT1,Cy, Dy), (R2?,C,, Dy) are constructor systems with Dy N Fy = Dy N
(CzlﬁDz) = 0 = Dzﬂ(cllﬂpl') = ’Dzﬂfl then (R1UR2)f1Uf2 = (RIUR2,C1U62,D1L*JD2)
is said to be a combination of constructor systems (with disjoint sets of defined symbols
and common constructors).

Middeldorp and Toyama have shown in [MT91] that completeness is preserved for
combinations of constructor systems. In fact, a slightly more general result is proved

in (MT91].

32Note that function symbols from F which do not occur in rules of R are (by definition) considered
to be constructors.

33This definition of constructor system corresponds to what is usually meant when one speaks of a
constructor discipline (for specifying functions).
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Since any constructor system is by definition a special overlay system we easily obtain
from theorem 3.20 the following

Corollary 4.6 For any TRS R we have CS(R) A IN(R) A JCP(R) = SN(R) A
CONF(R), i.e. any innermost terminating and locally confluent constructor system
ts terminating and confluent, hence complete.

Moreover we need the following result.

Lemma 4.7 The combination of innermost terminating constructor systems (with
deisjoint sets of defined symbols) is again an innermost terminating constructor system.

Proof: The proof is very similar to that of lemma 4.2 and uses similar arguments as
given in [MT91] in the proof of the fact that weak normalization is preserved under
the union of constructor systems with disjoint sets of defined symbols.

Let (R,C,D) = (R1UR, Y 19%2 C,UC,, Dy W D,) be the combination of two innermost
normalizing CSs (R7,Cy, D1) and (R32,C2, D2). We will show by structural induction
that for every termt € T(C W D,V) we have IN(t). The caset €e CY D WV, ie. if
t is a constant or a variable, is easy. Now suppose t = f(¢1,...,t,) and assume by
induction hypothesis IN(t;)A...AIN(t,). If f is a constructor, i.e. f € C then IN(t)
follows from IN(t;)A...AIN(t,). Else we may assume w.l.o.g. f € D,. Clearly, every
innermost derivation issued by t is terminating or has the form

tzf(tl""wtn) T"* f(t’h"'at:z) 0 S

with t/ irreducible (w.r.t. R; UR;), 1 < j < n. If in the latter case ¢’ := f(#3,...,t;,)
were not innermost normalizing, we could conclude that R; is not innermost normal-
izing, i.e. 0o;(t') (w.r.t. Ry). This is easily seen by replacing every maximal subterm
S1y---,8m of t with root(s;) € D, by a fresh variable z; such that z; = z; whenever
8; = Sk. |

Now it is easy to give a substantially simplified and 'modular’ proof of

Theorem 4.8 ([MT91]) The combination of complete constructor systems (with dis-
joint sets of defined function symbols) is again complete.*

Proof: Straightforward by combining corollary 4.6 and lemma 4.7. ]

Theorem 3.20 provides us with a rather general approach for ensuring the invariance
of completeness under certain combinations of TRSs. What is necessary to apply this

340One may allow here common defined function symbols under the additional assumption that for
such symbols the corresponding definition rules have to coincide in both systems. See [MT91] for more

details and a precise definition of ‘composable’ constructor systems and ‘decomposable’ properties of
constructor systems.
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result is to define appropriate classes of (not necessarily disjoint) TRSs and/or combi-
nation mechanisms which ensure that the properties OS, JCP and IN are preserved.
Above we have seen that this is easily possible for combinations of constructor systems
(with disjoint sets of defined symbols). Moreover it is straightforward to cover the
more general case of combined systems with shared constructors.

Definition 4.9 (¢f. [KO90b]) Let R]' = (R,,C1,D1), R3? = (R,,C2, D;) be TRSs
with constructors such that Dy, N D; = DyNC, = D, NG, = O. Then the TRS
R = (R,C,D) = (RiUR:,CUCy, D1 W D;) is said to be a combined system with
shared constructors (C and disjoint sets Dy, D, of defined symbols).

Clearly, every combination of constructor systems (with disjoint sets of defined sym-
bols) is a combined system with shared constructors but not vice-versa in general,
since for the latter defined symbols may occur in left-hand side arguments which is not
allowed for constructor systems.

It is easy to see that if R = (R, U Ry)"1Y2 = (R, U R2,CLUC, D, WD) is a
combined system with shared constructors such that R;, R, are overlay systems then
the combined system R” is an overlay system, too. Moreover we also have CP(R) =
CP(R,) UCP(R:), hence local confluence of R is inherited from local confluence of
Ri, Ra. Furthermore innermost termination of R is also inherited from innermost
termination of R,, R, as shown next.

Lemma 4.10 Let RF = (R; U R3)71Y"2 be a combined system with shared construc-
tors. Then we have:

IN(RIY) A IN(RJ?) <<= IN(R”).
Proof: The ’if’-direction is trivial and the ’only-if’-direction is completely analogous

to the proof of lemma 4.7. [

With the above observation, the preceding lemma and theorem 3.20 we obtain the
following result as corollary.

Theorem 4.11 Let R” = (RyUR;)"Y*2 be a combined system with shared construc-
tors. Then R” is a complete overlay system if and only if both RI' and RI? are
complete overlay systems.

Even more generally we shall consider now certain kinds of hierarchical combinations
of TRSs and show that our main theorem 3.20 is applicable here, too. Hierarchical
combinations are particularly interesting from a practical point of view, for instance in
many rewriting based function definition formalisms. For illustration let us consider a
simple example.

Example 4.12 Consider the TRSs (CSs) given by

R1: 0+y — Y fl—‘:Dlel’
s(z) +y — s(z+y) G ={0,s}, D1 = {+}
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R Oey — 0 Fa=DalC,
s(r)xy — rxEYy+y CZ———{U.S,‘-F},’D-Z:{*}

where 0 and s(uccessor) are common constructors. Here the combined system R” =
(Ry U R neither is a combination of constructor systems (with disjoint sets of
defined symbols) nor a combined system with shared constructors. But R” is a hierar-
chical combination of constructor systems in the sense that defined function symbols of
the base system Ry may occur in right-hand sides of Ry but do not occur in left-hand
sides of R,. In other words. the function ' is defined recursively by R, tn terms of
the predefined function '+ of the base system R,.

Formally we get the following

Definition 4.13 Let R{" = (R7'.C,.Dy). R3? = (R32.C,.D,) be TRSs with con-
structors such that D, N (Cy, WD) = 0. Moreover. defining Py := C; ND, to be the
set of predefined symbols (of R32) we require that no predefined symbol from Py oc-
curs in a left-hand side of R,. In other words. defined symbols of RT' may be used as
predefined (constructor) symbols in R3* but only on right-hand sides. Then the TRS
(RiU R, Y72 45 said to be the hierarchical combination of (the base system) R, with
the (non-base system) R,.*

For such cases we would still like to be able to infer termination (and confluence) of the
hierarchical combination R{UTR, from possibly restricted termination (and confluence)
properties of Ry, R,y. The inheritance of local confluence is easily obtained for the case
that the combination does not give rise to new critical pairs. Formally we get the
following.

Definition 4.14 (cf. [Mid90]) Two TRSs Ry, Ry are said to be non-interfering if
CP(R] UR2) = CP(Rl) U CP(RQ)

Lemma 4.15 (c¢f. [Mid90]) For non-interfering TRSs Ry, R, we have:
JCP{Ry) N JCP(Ry) — JCP(RiUR,).

te., Ry URy s locally confluent if both Ry and Ry are locally confluent.

One easily verifiable criterion for non-interference of TRSs is the following,.

Lemma 4.16 Let RT'. R3? be TRSs with root(lhs(Ry))NF(lhs(R2)) = root(lhs(R,))N
F(lhs(Ry)) = O where 1hs(R) denotes the set of left-hand sides of a TRS R, F(t)

(F(T)) the set of function symbols occurring in a term t (or a set T of terms) and

root(t) (root(T)) the set of root symbols of a term t (or a set T of terms). Then R,

Ry are non-interfering. hence: JCOP(Ry) AN JCP(Ry) = JCP(R1UR,).

F Fs _ :
35Note that bothh R{* and R are TRSs with constructors. but not necessarily constructor systems

{CSs).
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The following examples demonstrate some subtleties of hierarchical combinations of
TRSs.

Example 4.17 (Ezample 3.2 continued) Consider the TRSs given by
Ri : f(z,z) — a, f(z,9(z)) > b and R;:c— g(c).

Here, both systems are confluent but their hierarchical combination®® is only locally
confluent and not confluent any more.

Example 4.18 (/Gra91]) Consider the TRSs given by
Ri:a>b and R, : h(z,z)—> h(a,b).

Here, botl systems are confluent and terminating but their hierarchical combination is
only confluent but not terminating any more (consider e.g. the infinite cyclic derivation
h(b,b) — h(a,b) — h(b,b)---). Note that a € D; = P; occurs on the right-hand side
of the Ry-rule h(z,z) — h(a,b) below h € D,.

!
By modifying Example 4.17 above we can show that both termination and confluence
may be lost.under hierarchical combinations.

Example 4.19 Consider the TRSs given by
Ri : f(z,z) — a, f(z,9(z)) = b,d > ¢c and Rz : e(c) — g(e(d))

with C = {a,b,c,g9}, D1 = {f,d}, D; = {e} and P, = {d}. Here, both systems are
confluent and terminating but their hierarchical combination R = R, U R, is neither
confluent nor terminating. We have e.g. f(e(c),e(c)) — a and f(e(c),e(c)) =% b in
R, where both a and b are irreducible. Moreover, e(c) — g(e(d)) — g(e(c)) — ... isan
infinite (looping) derivation in R. Note again that in Ry the predefined symbol d € Dy
occurs below e € D, in the right-hand side of e(c) — g(e(d)).

The following examples show that for a hierarchical combination of R; with R, ter-
mination can get lost if defined symbols are allowed to be nested on left or right-hand

sides of Ry or R;.

Example 4.20 3 Consider the TRSs given by
Ri: f(a,b,2) — f(z,z,7) " Ra:g(z,y,y) — =z
f(:v,y,z) - C g(ya:’hx) - T
a — C

b — ¢

35Note that the combination is not properly hierarchical since no defined symbol from R, is used in
right-hand sides of R,. We have here Dy = {f}, D; = {c} and P, = 0. In particular, g is a common
constructor.

37This example which shows that completeness is not a modular property of TRSs is due to [Dro89).
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where Dy = {a,b, f}, Dy = {g}, C = {c} and P, = 0.® Both R, and R; are easily seen
to be terminating (and confluent) but R = Ry U R, is non-terminating. We have e.g.
an infinite (cyclic) derivation of the form f(a,b,g(a,b,b)) —* f(a,b,g(a,b, b)) — ....
The system R even is a disjoint combination of TRSs. Obviously, the first R,-rule
contains nested D,-symbols on its left-hand side.

Example 4.21 (c¢f. [Kr192]) Consider the hierarchical combination of TRSs given by
Ri: f(z) >z and Ry: g(z) - f(z), h(a) — h(g(a))
with Dy = {f}, D2 = {g,h}, P2 = {f} and C = {a}. Again both systems are clearly

terminating but their hierarchical combination R = Ry U R, is non-terminating. We
have for instance the following infinite (cyclic) derivaion in R: h(a) —g%, h(g(a)) -z,
h(f(a)) ==, h(a) = ---: Here, the right-hand side of the second rule of Ry contains
nested Dy-symbols, namely h and g.

In order to identify (more) principal problems concerning the invariance of termina-
tion (and confluence) under hierarchical combinations we consider now a (simplified)
schematic version of Example 4.12.

Example 4.22 Assume that R]' is some complete CS with a set C = {0,s} of con-
structors where some (unary) functions g and h are (pre)defined, i.e. D; = {g,h} such
that R, is a complete constructor system. Then we consider the hierarchical combina-

. — 1UF2 2 . f(O) = t()
tion R” = (R U Ra)"M0% where Ry? is given by | 0y _ 0 e(h(a))

to some fized term from T(C) and D, = {f}. It is obvious that R, is also complete,
but the interesting question is whether the combined system R’ is terminating (and
confluent). Intuitively it is clear that the definition of g provided in R, is irrelevant
for the termination behaviour of f which only depends on the definition of h. For
instance, if for h interpreted over the natural numbers we have 'h(z) < z’ for all z
then the definition of f, i.e. the combined system, is terminating (and confluent, hence
complete). If however 'h(z) > z’ for all = then the definition of f is non-terminating
in the combined system.

with

Hence, in order to obtain a sufficient criterion for the invariance of termination under
such hierarchical combinations we try to solve the above problem by eliminating the
possibility that predefined function symbols may occur on right-hand sides of the non-
base system below function symbols from D,. The above considerations motivate the
following definitions (cf. Dershowitz [Der92]).

Definition 4.23 Let R = (RiUR,)"1Y2 with F; =CwDy, F, = (CYP YYD, be
the hierarchical combination of RT' with R3?. Then we say that R, is flat if symbols

3Hence, the combination is not only hierarchical but even modular.

39Note that we assume here w.l.o.g. that the set of constructor symbols of ’R,‘.f’ consists of the
constructor symbols of ’le’ plus the predefined symbols from D; (for a given hierarchical combination
of ’R’,fl = (R1,C1,D;) with R]? = (R2,Cz, D7) this can always be achieved by taking C to be C =
C,U(C2\ Dy ) and considering (R1,C,D;) and (Ra,C, Dy) instead of RT! and RJ?, respectively.
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from D, are not nested, on both sides of the rules of R, (that is, no path from the root
symbol to a constant or variable has more than one D, symbol along it).*® In this case
the combined system R” is also said to be flat. Moreover the hierarchical combination
R” is said to be separated if no predefined function symbol from D; occurs below a
defined one of D, on a right-hand side of R,.

Now we are prepared to state the following interesting result.

Theorem 4.24 A flat and separated hierarchical combination R* = (R, U R;)*1V72
is innermost normalizing if and only if both R and RJ? are innermost normalizing.

Proof: The ’only-if’ direction of the theorem is trivial. Hence let us assume that
R” = (R1 U R;)*1Y%2 is a flat and separated hierarchical combination such that both
R. and R; are innermost normalizing. Let D; and D; be the set of defined symbols of
Ri1 and R, respectively, C be the set of common constructors and P, C D; be the set
of predefined function symbols of R,. Assume now for a proof by contradiction that
R is not innermost normalizing. Then there exists a counterexample, i.e. an infinite
innermost R-derivation

D:t =l —ty ity e

W.l.o.g. we-may further assume that all proper subterms of ¢, are irreducible (if there
exists an infinite innermost R-derivation then this derivation either contains a root
reduction step or else, using the pigeonhole principle, one can extract from it another
infinite R-derivation starting with a root reduction step). We distinguish the following
three cases according to where the root symbol of 5 does stem from and show that in
each case we obtain a contradiction.

(a) If root(ty) € C then t, is obviously R-irreducible contradicting the assumption

wi(to).
(b) If root(to) € D) we know that ¢, has the form to = Clsy,...,ss] where C[,...,]
is a context containing only symbols from CU D, UV and sy,...,S, are all the

maximal subterms of ¢3 with root symbol in D,. The first step of D above then
has the form
to =C[s1,--.,8n] 7Ry, C'lSiyy--y8im] =t

with ¢z € {1,...,n} for k=1,...,m and C'[,...,] is again a context containing
only symbols from C U D, U V. Since all proper subterms of ¢, are irreducible we
know in particular that all the s;, 1 <7 < n are irreducible. That means %, as
well as ¢, are irreducible w.r.t. R,. Moreover no innermost R-reduction step in
D can take place below some s;. Hence any innermost R-reduction step starting
with #; must again be an innermost R;-step. By induction we can conclude that
D is an R-innermost derivation using only R;-steps in the 'top R,-layer’.*! This
implies that we can transform the infinite R -innermost derivation D into an

4ONote that in this case R is in particular a constructor system.
“INote that R,-steps may create new R-redexes.
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infinite RI*-innermost derivation D' as follows: For o = C[sq,..., sn] as above
we obtain t' by replacing the maximal ’alien’ subterms s;, 1 < ¢ < n, by fresh
variables r; such that r; = r; whenever s; = s;. By this transformation we
obtain from

D: to T oo t p2.a—r2 ta T pads—rs ts Tpadi—re

the infinite R]*-derivation

Y. ’ ’ ’ .
D to T ordi—n tl T2l tz T p3ds—rs t3 g TRVCS

But this is a contradiction to IN(R,).

(c) If root(to) € D, we know that to has the form to = C[s1,...,s,] where C[,...,]
1s a context containing only symbols from CUD; UV and sy,..., s, are all the
maximal subterms of tq with root symbol in D;. This case is more difficult because
the first step in D is an innermost Rg-step, i.e. of the form t, —%, t;, which
may introduce new innermost R,-redexes due to the possibility of predefined
D;-symbols on right-hand sides of R,. We shall show now by induction that
R, is not innermost normalizing which yields a contradiction to the assumption
IN(R3). To this end we define a measure for the terms ¢; which is invariant for
every innermost R;-step in D and properly decreases for every innermost R,-
step in D. The basic idea is to collect the multiset of all maximal subterms ¢ of
t; with root(t) € D, which are R-reducible and to compare these multisets by
the multiset extension of some appropriate well-founded ordering. Formally we
define for every ¢; (0 < 1):42 \

M(t) := {{t'| ¢’ is a maximal R-reducible subterm of ¢ with root(t') € D;}}

and the ordering
>i=( g, U>a)F,

i.e. > is the transitive closure of the union of the innermost R;-reduction relation
and the proper subterm ordering (denoted by >,;). The (finite) multiset extension
of > is denoted by >> and defined as usual. Since — %, is terminating we know
that >= ( g, U >4 )" is well-founded. Moreover, >> is well-founded if and
only if > is well-founded. Hence, in order to obtain a contradiction it suffices to
construct an infinite properly decreasing >> chain. Consider now some arbitrary
step t, — tn41 in D. We shall prove the following two properties:

(D) ta eyt = M(t) = M(ta)

and
(II) tn '.—F'Rz tn+1 == M(tn) > M(tn+1) .

“In the following we use double braces in order to distinguish multisets from sets. For the sake of
readability the usual set operations are ambiguously used for multisets, too.
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From IN(R,) we know that only finitely many consecutive steps in D can be
R,-innermost steps, hence this implies that D is of the form

D:tny i=1to PR, L1 = tngt1 PR, tny TRy tpt1 TR, bnp - -
with infinitely many x,-steps. But this implies — using (I) and (II) —
M(tn,) > M(tn,) > M(t.,) > ... .

This is an infinite properly decreasing >>-chain which contradicts IN(R,).

It remains to prove the claims (I) and (II) above. (I) follows from the invariant
in D that for every ¢, no R,-rule is applicable below a maximal subterm ¢ of t,
with root(t) € D, (this is an easy consequence of the assumption that R is flat
and separated ). (II) is proved by definition of M(.) and of > as follows. Let
tn ply—ry tng1 With I3 — 3 € Ry, Then we distinguish two cases.

(1) tu/p € M(t,), i.e. t,/p = o(lz) for some substitution o is a maximal
reducible subterm of t, with root symbol in D;: Obviously t,41/p = o(r2)
is of the form C[sy,...,s,] with root(s;) € D; for 1 < ¢ <m and CJ,...,]
a context over C U D; U V. By definition of M we get

M(tny) € (M(8)\ {t./p}}) U{{si[1 <2 <m}}.

Due to t,/p = o(lz) —r, 0(r2) = Cs1,...,5m] > si foralli,1 <1 < m,
this implies M(t,) > M(tp4+1).

(2) to/p € M(t,): From t, = o(l2) for some substitution o we know that ¢,/p
is a proper subterm of some maximal (R;-reducible) subterm t,/q of ¢t with
root(t,/q) € D,. Hence we either have

M(tn41) = (M(E) \ {ta/q}}) U {{tnsa/q}}
for the case that t,41/¢ is-(R-) reducible, or else
M(tn4r) = M(ta) \ {tn/q}}
for the case that t¢,4,/q is (R-) irreducible.

In both cases we clearly get
M(t,) > M(tny) -
Hence the claim is proved which completes the whole proof.
u

Combining this result with Lemma 4.15 and Theorem 3.20 we obtain as corollary the
following invariance result for completeness of hierarchical combinations.
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Theorem 4.25 Let R = (R, UR;)"Y"2 be a flat and separated hierarchical combi-
nation such that both RT* and RJ? are locally confluent overlay systems. Then R” is
complete if and only if both R)* and R}? are complete.

Theorem 4.25 has already been stated in [Der92] but without proof. A similar result has
been presented in [Kri92], too, (cf. Theorem 7, p. 11) but the proof given there for the
main technical Lemma (cf. [Kri92] Theorem 6, p.10) is incorrect. One interesting idea
presented in [Kri92] is to weaken the 'flatness’ condition defined above but retaining
'separation’. The intuition for that is as follows. The crucial point for the ’separation’
property defined above is to guarantee that R-rules do not introduce D;-symbols on
right-hand sides of R,-rules below Dy-symbols. In order to ensure this property one
may weaken the 'flatness’ condition by allowing nested D, symbols on right-hand sides
of Rj-rules in such a way that (direct or indirect) introduction of D;-symbols below
D;-symbols is impossible. This leads us to the following.

Definition 4.26 (¢f. [Kri92]) Let R = (R; U R;)"Y*2 be the hierarchical combi-
nation of the TRSs with constructors (’R.IF‘,CI,'DI) and ('Rf’,cz,Dz). Then we say
that R, is weakly separated if for every rule l; — r; € Ry and every mazimal subterm

t = f(t,. .. tn) of r2 with root(t) = f € Dy the following holds:

 DEPr(g)nDi=0 forallge (D,uDy)N| ) F(t)

i=1
where the set DEPr(g) of functions symbols on which g 'depends’ is defined by
DEPr(g) := {h € F|g —5 h} with ¢ —4 h if there ezists a rule | — r € R with
root(l) = g and h € F(r). In this case we also say that the combined system R” is
weakly separated.*

Theorem 4.27 Let RT = (R; U R2)"1Y%2 be a weakly separated hierarchical combi-
nation. Then RT = (R, U R2)71Y%2 is innermost normalizing if and only if both R
and RY? are innermost normalizing.

Proof: The proof is analogous to the proof of Theorem 4.24. ]

As a straightforward consequence of Theorem 4.27 above we obtain the following result
which is a slight generalization of both Theorem 4.25 (cf. Theorem 24 in [Der92]) and
Theorem 7 in [Kri92].

Theorem 4.28 Let R = (R, U R)F1Y*2 be a weakly separated hierarchical combi-
nation such that both RT' and REI? are locally confluent overlay systems. Then R” is
complete if and only if both RT' and R? are complete.

Note that Theorem 4.28 is not in contradiction to Example 4.20. There, applying
Theorem 4.27 yields innermost termination of the disjoint union R* = (R, UR,)F1u7)

43[f R, is weakly separated and both R, and R, are additionally constructor systems then R is
sald to be a proper extension of R, in [Kri92].
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of both TRSs RJ! and RZ?% . On the other hand we have seen that R” is non-
terminating. But this is not a contradiction to Theorem 4.28 above since ’R,f‘ is not
an overlay system which means that Theorem 4.28 is not applicable. In other words,
innermost termination may be preserved, but for the implication IN(R) => SN(R)
we need stronger conditions (e.g. OS(R) A JCP(R)).

5 Discussion, Related Work and Open Problems

As noticed by Dershowitz (cf. [Der92]) (one of) the first to consider modularity issues
in rewriting was Bidoit ([Bid81]) with his ’gracious’ conditions. He proved in [Bid81]
that completeness is modular for orthogonal, fully defined* constructor systems. Other
interesting results concerning termination of rewriting are investigated by Dershowitz
[Der92] and Geupel [Geu89] by means of overlap (and forward) closures. In particular,
it is shown in [Geu89] that — as conjectured in [Der81] — a non-overlapping TRS
is terminating if and only if no-right-hand side of a forward closure initiates an infi-
nite derivation. This implies as an easy consequence that completeness is modular for
non-overlapping TRS (cf. Theorem 4.3 above) as noticed in [Der92]. Moreover, the fol-
lowing generalization of the above result about forward closures is stated in [Der92](cf.
Proposition 17):* A uniquely normalizing overlay system is terminating if and only
if no right-hand side of a forward closure initiates an infinite derivation.*” This result
can be used alternatively to provide a proof of our Theorem 4.4 above as sketched in
[Der92]. Furthermore some other known and new results about termination of (non-
disjoint) combinations of TRSs are summarized in [Der92). In particular Theorem 4.25
is mentioned there but without proof. As already mentioned a similar result has also
been presented in [Kri92], but with an incorrect proof.

Before concluding now let us finally discuss the general idea underlying the approach
presented and some open problems. In fact, what has been done in section 3, is on the
one hand side an abstract analysis of the interrelation between restricted and uniform
termination under some additional assumptions. On the other hand the goal of the
analysis and the results obtained may be considered to be a kind of ‘modular’ approach
to modular properties of TRSs in the following sense. We wanted to find properties P
such that e.g.

IN+P = SN(+P)

holds. The additional knowledge available was that IN is modular. Generalizing
this situation we get the following abstract ‘modular’ approach for obtaining sufficient
conditions for the modularity of some property ). Assume that @ is not modular.

*4Note that this follows already from Lemma 4.2.

45This means that every ground term can be reduced to a constructor ground term.

46In [Der92] no formal proof for this result is given but some proof idea which roughly spoken says
that the proof of [Geu89] can be adapted to the more general case of uniquely normalizing overlay
systems.

4THere, a TRS is said to be uniquely normalizing if no term has more than one normal form.
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Then look for other modular properties P, ..., P, with*®
(Pt +P) = Q.

Then the property (P + --- + P, + @) is obviously modular, hence @ is modular for
the class of TRSs satisfying (P, + --- + P,).

Unfortunately, this kind of modular approach is not easily applicable to the main result

of [TKB89| which says that (LL + CONF + SN) is a modular property of TRSs.

For obtaining a modular proof here we would have to find some property P (probabiy
a kind of restricted termination property) satisfying

(1) (LL+ CONF + P) is modular , and

(2) (LL+CONF+P) = SN.

Since P cannot be IN, this is an interesting open problem. But note that even for
the case that such a (hopefully easy to understand) property P exists it is not clear a
priori that the proofs of (1) and (2) would be simple.

We suppose that it should be possible to extend our approach and proof ideas to
the more general case of conditional TRSs. This might in particular also yield a
relatively simple proof of the fact that completeness is a decomposable property of
conditional constructor systems, a result which has recently been obtained in [Mid93].
Moreover our abstract results also provide a thorough theoretical basis for investigating
applications like (termination and uniqueness properties of ) different function definition
formalisms and inductive theorem proving problems.

6 Conclusion

We have provided an abstract analysis of how various kinds of restricted termination
(and confluence) properties are related to uniform termination (and confluence). In
particular, we have proved some new results about sufficient criteria for termination
(strong normalization) which can be considered as generalizations of known results
about orthogonal TRSs. Moreover we have shown how these results can be applied in
a modular fashion in order to derive simple modular proofs of known and new results
concerning modular properties of term rewriting systems. Even more generally we
have shown how to obtain invariance results for termination and confluence of certain
non-disjoint combinations of TRSs.

Acknowledgements: [ would like to thank Klaus Madlener and Claus-Peter Wirth
for useful hints and fruitful discussons on early versions of this paper. Moreover I'm
grateful to Andrea Sattler-Klein for a thorough reading of a final draft and for detailed
criticisms.

48Glightly weaker, it even suffices that only the conjunction (P + ---+ P,) is modular.
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