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Abstract

When mathematicians present proofs they usually adapt their explanations to their di-
dactic goals and to the (assumed) knowledge of their addressees. Modern automated
theorem provers, in contrast, present proofs usually at a fixed level of detail (also
called granularity). Often these presentations are neither intended nor suitable for
human use. A challenge therefore is to develop user- and goal-adaptive proof presen-
tation techniques that obey common mathematical practice. We present a flexible and
adaptive approach to proof presentation that exploits machine learning techniques to
extract a model of the specific granularity of proof examples and employs this model
for the automated generation of further proofs at an adapted level of granularity.

Keywords: Adaptive proof presentation, proof tutoring, automated reasoning, machine
learning, granularity.



Let = be an element of AN (BUC), [2] then z € A and x € BU C. [3] This means that z € A,
and either x € B or z € C. |4] Hence we either have (i) z € A and = € B, or we have (ii) z € A
and z € C. [5] Therefore, either x € ANBorxz € ANC,s0[6lz € (AN B)U(ANC). [T This
shows that AN (B UC) is a subset of (AN B)U (AN C). [8 Conversely, let y be an element of
(ANB)U(ANC). [9] Then, either (iii)) y € AN B, or (iv) y € ANC. It follows that y € A,
and either y € B or y € C. [11] Therefore, y € A and y € BUC so that y € AN (BUOCO).
Hence (ANB)U(ANC) is asubset of AN (BUC). In view of Definition 1.1.1, we conclude
that the sets AN (BUC) and (AN B)U(ANC) are equal.

Figure 1: Proof of the statement AN (BUC) = (AN B)U (ANC), reproduced from [4]

1 Introduction

A key capability trained by students in mathematics and the formal sciences is the ability to
conduct rigorous arguments and proofs and to present them. Thereby, proof presentation
is usually highly adaptive as didactic goals and (assumed) knowledge of the addressee are
taken into consideration. Modern automated theorem proving systems, however, do often
not sufficiently address this common mathematical practice. They typically generate and
present proofs using very fine-grained and machine-oriented calculi. While some theorem
proving systems exist — amongst them prominent interactive theorem provers — that
provide means for human-oriented proof presentations (e.g. proof presentation modules
in Coq [17], Isabelle |18] and Theorema [19]), the challenge of supporting user- and goal-
adapted proof presentations has been widely neglected in the past. This constitutes an
unfortunate gap, in particular since mathematics and the formal sciences are increasingly
targeted as promising application areas for intelligent tutoring systems. In this paper
we present a flexible and adaptive approach to proof presentation that exploits machine
learning techniques to extract a model of the specific granularity of given proof examples,
and that subsequently employs this model for the automated generation of further proofs
at an adapted level of granularity. Our research has its roots in the collaborative DIALOG
project [5] in which we developed means to employ the proof assistant QMEGA [16] for the
dialog-based teaching of mathematical proofs. In DIALOG we have considered a dynamic
approach: Instead of guiding the student along a pre-defined path towards a solution, we
support the dynamic exploration of proofs, using automated proof search. This presupposes
the development of techniques to adequately model the proofs a student is supposed to learn.
Inference steps in (XMEGA are implemented via an assertion application mechanism |[§],
which is based upon Serge Autexier’s CORE calculus [1] as its logical kernel. In assertion
level proofs, all inference steps are justified by a mathematical fact, such as definitions,
theorems and lemmas, but not by steps of a purely technical nature such as structural
decompositions, as required, for example, in natural deduction or sequent calculi.

The development of the dialog system prototype was guided by empirical studies using
a mock-up of the DIALOG system [6]. One research challenge that educed out of the
experiments is the question of judging the appropriate step size of proof steps (in the
context of tutoring), also referred to as the granularity of mathematical proofs. Even in
introductory textbooks in mathematics, intermediate proof steps are skipped, when this
seems appropriate. An example is the elementary proof in basic set theory reproduced
in Figure 1. Whereas most of the proof steps consist of the application of exactly one



mathematical fact (in this case, a definition or a lemma, such as the distributivity of and
over or), the step from assertion [9] to assertion suggests the application of several
inference steps at once, namely the application of the definition of N twice, and then using
the distributivity of and over or.

Similar observations were made

in the empirical studies within the student: (z,y) € (RoS)™!

DIALOG project. In these studies tutor: Now try to draw inferences from that!
the tutors who helped to simulate | correct | appropriate | relevant |

the dialog system identified limits

for how many inference steps are to student: (z,y) € S~'o R™!

be allowed at once. An example for tutor: One cannot directly deduce that.

an inacceptably large student step | correct | too coarse-grained | relevant |

that was rejected by the tutor is pre-
sented to the right.

The idea to represent proofs at different levels of detail was incorporated into (2MEGA as
a hierarchically organized proof data structure [2]. The proof explanation system P.rex [9]
implemented the idea to generate adapted proof presentations by moving up or down these
layers on request. Alas, though the proofs at different levels of detail can be handled by the
QMEGA system, the problem remains of how to identify a particular level of granularity and
how to ensure that this level of granularity is appropriate. This observation also applies
to the Edinburgh HiProofs system |7].

Autexier and Fiedler have proposed one particular level of granularity |3|, which they
call what-you-need-is-what-you-stated granularity. Based on the assertion level inference
mechanism in QMEGA, they also developed a proof checking mechanism for this level.
In brief, their notion of granularity refers to such assertion level proofs, where all assertion
level inference steps are spelled out explicitly and refer only to facts readily available from
the assertions or the previous inference steps. However, they conclude that even the simple
proof in Figure 1 does not comply with their level of granularity, since the proof is missing
some details.

This paper presents in Section 2 an adaptive framework to model proof granularity. This
framework has been implemented as an extension of the QMEGA proof assistant and it is
used to generate proof presentations at specific granularity levels of interest. In Section 3
we illustrate how our framework captures the granularity of our running example proof in
Figure 1. Models for granularity can be learned in our framework from samples, for which
we employ standard machine learning techniques, as demonstrated in Section 4.
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Figure 2: Assertion level proof for the statement AN (BUC) — (ANB)U(ANC)

2 An Adaptive Model for Granularity

We treat the granularity problem as a classification task: given a proof step, representing
one or several assertion applications, we judge it as either appropriate, too big or too small.
As our feature space we employ several mathematical and logical aspects of proof steps, but
also aspects of cognitive nature. For example, we keep track of the background knowledge
of the user in a student model.

We illustrate our approach with an example proof step in Figure 1: is derived
from [9] by applying the definition of N twice, and then using the distributivity of and over
or. In this step (which corresponds to multiple assertion level inference steps) we make the
following observations:

(i) involved are two concepts: def. of N and distributivity of and over or,

)

(ii) the total number of assertion applications is three,

(iii) all involved concepts have been previously applied in the proof,

(iv) all manipulations apply to a common part in [9],

(v) the names of the applied concepts are not explicitly mentioned, and
)

(vi) two of the assertion applications belong to naive set theory (def. of N) and one of
them relates to the domain of propositional logic (distributivity).

These observations can be represented as a feature vector,! where, in our example, the
feature “distinct concepts” receives a value of “2”, and so forth. We express our models for
classifying granularity as rule sets, which associate specific combinations of feature values
to a corresponding granularity verdict (“appropriate”, “too big” or “too small”). These rule
sets may be hand-authored by an expert or they may be learned from empirical data as
we show in Section 4. Our algorithm for granularity-adapted proof presentation takes two
arguments, a granularity rule set and an assertion level proof? as generated by QMEGA.

! Currently, we use around twenty features which are domain-independent, plus an indicator feature for
each definition or lemma, and one indicator feature for each theory.

2Qur approach is not restricted to assertion level proofs and is also applicable to other calculi. However,
in mathematics education we consider single assertion level proof steps as the finest granularity level of



Figure 2 shows the assertion level proof generated by 2MEGA for our running example;
this proof is represented as a tree (or acyclic graph) in sequent-style notation and the proof
steps are ordered. Currently we only consider plain assertion level proofs, and do not
assume any prior hierarchical structure or choices between proof alternatives (as possible
in OMEGA). Our algorithm performs an incremental categorization of steps in the proof
tree (where n =0, ...,k denotes the ordered proof steps in the tree; initially n is 1):

while there exists a proof step n do

evaluate the granularity of the compound proof step n (i.e., the proof step
consisting of all assertion level inferences performed after the last step labeled
“appropriate with explanation” or “appropriate without explanation” — or the
beginning of the proof, if none exists yet) with the given rule set under each
of the following two assumptions: (i) assuming that the involved concepts are
mentioned in the presentation of the step (an ezplanation), and (ii) assuming
that only the resulting formula is displayed.

1. if n is appropriate with explanation
then label n as “appropriate with explanation”; set n := n-+1;

2. if n is too small with explanation, but appropriate without explanation
then label n as “appropriate without explanation”; set n := n—+1;

3. if n is too small both with and without explanation
then label n as “too small”; set n := n+1;

4. if n is too big
then label n—1 as “appropriate without explanation” (i.e. consider the
previous step as appropriate), unless n—1 is labeled “appropriate with
explanation” or “appropriate without explanation” already or n is the first
step in the proof (in this special case label n as “appropriate with expla-
nation” and set n := n+1).

od

We thereby obtain a proof tree with labeled steps (or labeled nodes) which differentiates
between those nodes that are categorized as appropriate for presentation and those which
are considered too fine-grained. Proof presentations are generated by walking through the
tree, skipping the steps labeled too small.*

When modeling granularity as a categorization problem, we have to test the hypothesis
that the combination of features we devise is useful for the classification task. IL.e., we
have to determine whether steps within a class (i.e. “appropriate”, “too big” and “too
small”) can indeed be fruitfully characterized by specific combinations of feature values,
and distinguished from the feature values that characterize the two other classes. Our
methodology for evaluation of this hypothesis consists in case studies and in empirical
evaluations with mathematics tutors. This is exemplified in the following two sections.

interest. We gained evidence for this choice from the empirical investigations in the DIALOG project
(cf. [5] and [6]).

3In case of several branches, a choice is possible which subtree to present first, a question which we do
not address in this paper.

“Even though the intermediate steps which are too small are withheld, the presentation of the output
step reflects the results of all intermittent assertion applications, since we include the names of all involved
concepts whenever a (compound) step is appropriate with explanation.
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Figure 3: Comparison between (a) the (re-ordered) proof by Bartle and Sherbert [4] and
(b) the proof presentation generated with our rule set from the QMEGA proof in Figure 2

)
2)

3)

7)

Figure 4: Rule sets employed in the running example:

. In view of Definition 1.1.1, we [show| that the

sets AN(BUC) and (AN B)U(ANC) are
equal. [First we show] that AN(BUC) is a
subset of (ANB)U(ANC). [7 [Later we show]
(ANB)U(ANC) is a subset of AN(BUC)[12]

. Let z be an element of AN (BUCQC),

then z € Aand x € BUC. [2]

. This means that z € A, and either z € B or

x € CJ[3

. Hence we either have (i) x € A and © € B, or

we have (i) z € A and z € C [4]
Therefore, either x € AN B orx € ANC[5
soz € (ANB)U(ANC). [6]

. Conversely, let y be an element of (AN B) U

(ANC).

. Then, either (iii) y € ANB, or (iv) y € ANC[9]
. It follows that y € A, and either y € B or

yeC.
Therefore, y € A and y € BUC,
so that y € AN (BUC).

(a)

hypintro=1 A total> 1 = step-

too-big 1)
U-Defne{1, 2} An-Defne{1,2} =
step-too-big 2)
N-Defn< 3 A U-Defn=0 A mas-
teredconceptsunique—=1 A unmas- 3)
teredconceptsunique=0 = step-
too-small 4)
total<2 A verb=true = step-too-
small 5)
masteredconceptsunique<3 A
unmasteredconceptsunique=0 A 6)
verb=true = step-too-small 7)
equalitydefn>0 A verb=false = 8)
step-too-big 9)

_ = step-appropriate

(a)

ootk w

. We show that (ANB)U(ANC)C AN

BUC) and (ANBUC C (ANB)U(ANC))
...because of definition of equality

We assume x € AN BUC and show z €
(ANB)U(ANCQC)

Therefore, x € ANz € BUC

Therefore, z € AN (x € BV e ()
Therefore, (t€A AN z€B) V (z€A N zeC)
Therefore, r €c ANBVxe ANC

We are done with the current part of the
proof (i.e., to show that x € (AN B)U
(AN CC)). [It remains to be shown that
(ANB)U(ANC)C ANnBUC]

We assume y € (AN B)U(ANC) and
showy e ANBUC

. Therefore,yc ANBVye AnC
10.
11.
. This finishes the proof. Q.e.d.

Therefore, y € AN (y € BVyeC)
Therefore, y € ANy € BUC

(b)

conceptsunique €{0,1} A equalitydefn=0 A verb=true
= step-too-small
hypintro=0 A equalitydefn=0 A U-Defn=0 A verb=true
= step-too-small
conceptsunique €{2,3,4} A U-Defn €{1,2,3} = step-
too-big

hypintro €{1,2,3,4} A conceptsunique €{2,3,4} =
step-too-big

unmasteredconceptsunique=0 A total €{0, 1,2} N-Defn
€{1,2} A close=false = step-too-small

equalitydefn €{1,2} Averb=false = step-too-big
equalitydefne{1,2} A verb=true = step-appropriate
equalitydefn=0 A verb=false = step-appropriate

_ = step-appropriate

(b)

(b) rule set generated using C5.0 (ordered by the rules’ confidence values)

(a) rule set generated by hand,



3 Case Study

In this section, we exemplarily model the step size of the textbook proof in Figure 1.
Starting point for the automated generation of our proof presentations are assertion level
proofs in the mathematics assistance system (IMEGA. The basic assertion level proof,
assuming the basic definitions in naive set theory, is presented in Figure 2 as a sequent
style proof tree.

This proof consists of fifteen assertion level inference applications, which refer to the
definitions of equality, subset, union and intersection as well as the concept of distributivity.
Notice that the proof in Figure 1 (taken from the textbook Bartle & Sherbert [4]) starts
(in statement [1]) with the assumption that an element z is in the set AN (BUC). The
intention is to show the subset relation AN (BUC) C (AN B)U(ANC). However, this
is not explicitly revealed until step [6], when this part of the proof is already finished. The
same style of delayed justification for prior steps is employed towards the end of the proof,
where statements and justify (or recapitulate) the preceding proof. It must be
questioned whether this style of presentation, where the motivation for some of the steps
(such as the above assumption) is only presented in retrospective (when the assumption is
discharged), is still the most effective one for instructing students in our times. This style
originated in former centuries, when the general task of the apprentice was to figure out the
reason behind the procedures of his technically highly competent master with often poor
teaching skills.

Thus, for the modeling of step size, we consider a re-ordered variant of the steps in
Figure 1, which is displayed in Figure 3 (a).> We now generate a proof presentation which
matches the step size of the twelve steps in the original proof, skipping intermediate proof
steps according to our feature-based granularity model. Figure 4 shows two sample rule
sets which both lead to the proof presentation in Figure 3 (b). The rule set in Figure 4 (a)
was generated by hand, whereas the rule set in Figure 4 (b) was generated with the help
of the C5.0 data mining tool [15].5

The feature hypintro indicates whether a (multi-inference) proof step introduces a new
hypothesis, and close indicates whether a branch of the proof has been finished. The
feature total counts the number of assertion level inferences within one (multi-inference)
step. Furthermore, the features masteredconceptsunique and unmasteredconceptsunique
indicate how many of the employed concepts (if any) are supposed to be mastered or
unmastered by the user according to a very basic student model (which is updated in
the course of the proof). Furthermore, the occurrences of particular defined notions are
counted (via the features N-Defn, U-Defn, equalitydefn). For example, the first rule in
Figure 4 (a) can be interpreted as “If a step introduces a new hypothesis into the proof,
and consists of more than one assertion level inference rule, it is considered too big.” Note

®Note that step (1) in the re-ordered proof corresponds to the statements [7], and in the original
proof which jointly apply the concept of set equality.

6The sample proof was used to fit the rule set to it. All steps in the sample proof were provided as
appropriate, all intermediate assertion level steps were labeled as too-small, and always the next bigger step
to each step in the original proof was provided as an example for a too big step. Care was taken that the
default rule of the generated rule set is of class appropriate (which was achieved via the cost function), so
that the rule set better transfers to other domains. Otherwise, in case the default class was too small, and
the examined proof steps were sufficiently different from the generating sample (and thus failed to match
the non-default rules), the resulting proof presentation would be excessively short.



that rules 4-6 in Figure 4 (a) express the relation between the appropriateness of steps
and whether the employed concepts are mentioned verbally (feature verb). Rule 6 has the
effect of enforcing that the use of the definition of equality is always explicitly mentioned
(as in step 1. in Fig 3 (b)). All other cases, which are not covered by the previous rules,
are subject to a default rule. Rules are ordered by utility for conflict resolution.

The generated proof presentation in Figure 3 (b) consists, similarly to the proof in
Figure 3 (a), of twelve steps. The three assertion level steps (11), (12) and (13) are
combined into one single step from (9) to (10) in Figure 3 (b). Natural language is
produced via simple patterns. (A more exciting natural language generation is possible
with Fiedler’s mechanisms [9], but this is not the subject of this paper.)

The rule sets in Figure 4 can be successfully reused for other examples in the domains
as well. In Figure 5, we present the resulting proof presentation when applying the rule
set in Figure 4 (a) to a different proof exercise, namely a proof of the theorem

(ANB)\C = AN (B\C).

1. We show that (AN B)\C € An B\C) and (AN B\C C (AN B)\C) ...because of definition of
equality

We assume z € AN B\C and show =z € (AN B)\C

Therefore, z € ANz € B\C

Therefore, z € ANz € BA—(z €C)

We are done with the current part of the proof (i.e., to show that € (AN B)\C). It remains to be
shown that (AN B\C C AnB\C.

6. We assume y € (AN B)\C and show y € AN B\C

7. Therefore, y € ANy € BA—(y € C) similarly to steps nr. (3 4)

8. This finishes the proof. Q.E.D. ... similarly to step nr. 7

Ok

Figure 5: Sample proof presentation generated via the rule set in Figure 4 (a) for the
theorem (AN B)\C = AN (B\C)

PART decision list

total <= 2 AND total > O AND parapos <= 0: appropriate (85.0/4.0)
total <= 2 AND unmasteredconceptsunique <= 0: step-too-small (11.0/2.0)
parapos <= 0 AND samesub <= 0: step-too-big (22.0/5.0)

unmasteredconceptsunique <= 1 AND hypintro <= 0O: appropriate (9.0)
: step-too-big (8.0/2.0)

Figure 6: Empirically learned rule set. The feature parapos indicates whether an inference
has been applied only once in a proof situation where it could have been applied twice, in
the same direction. The feature samesub indicates whether all inference applications within
a (multi-inference) step apply to the same formula (and the same subparts thereof).



4 Learning from Empirical Data

Classification problems are a well-investigated topic in the machine learning community.
There exist off-the-shelf tools that allow to learn classifiers (like our rule sets) from anno-
tated examples (supervised learning). In our case, an expert annotates proof steps with
the labels appropriate, too small or too big. Representing the proof steps in (2MEGA has
the advantage that all the features of a particular proof step are computed in the back-
ground, and combined automatically with the expert’s judgments as training instances for
the learning algorithm. Currently, our algorithm calls the C5.0 data mining tools |15, 14]
— which support the learning of decision trees and of rule sets — to obtain classifiers for
granularity.

As part of an ongoing evaluation, we have conducted a study where a mathematician
(with tutoring experience) judged the granularity of 135 proof steps. These steps were
presented to him via an Q2MEGA-assisted environment which computed the feature values
for granularity classification in the background. The step size of proof steps presented
to the expert was randomized, such that each presented step corresponded to one, two, or
three assertion level inference steps. The presented proofs belonged to one exercise in naive
set theory and three different exercises about relations. We evaluated rule learning using
C5.0 on our sample using 10 fold cross validation, which resulted in a mean percentage of
correct classification of 84.6%, and k = 0.62. We also used the PART classifier |[10] included
in the Weka suite’, which is inspired by Quinlan’s C4.5. After we excluded some of the
attributes (in particular those that refer to the use of specific concepts, i.e., Def. of N,
Def. of o, etc.), PART achieved 86.7% of correctly classified instances in stratified cross
validation (k=0.68). Apparently, removal of the most domain-specific attributes prevented
the algorithm from overfitting. The resulting rule set is presented in Figure 6.

The feature parapos indicates whether an inference has been applied only once in a
proof situation where it could have been applied twice, in the same direction. The feature
samesub indicates whether all inference applications within a (multi-inference) step apply to
the same formula (and the same subparts thereof). When applied to our running example,
we obtain the proof presentation as shown in Figure 7.

To compare the rule-based classifiers with support vector machines, we applied SMO [13]
on our data, resulting in 83.0% correctness and x—0.57 in stratified cross validation, which
is a similar performance to C5.0.

"http://www.cs.waikato.ac.nz/"ml/weka/
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No ok N

8.
9.
10.

11.
12.
13.

We show that (ANB)V(ANC)CANBVC)and (ANBVC C(ANB)V(ANC)) ..because of
definition of equality

We assume x € AN BV C and show = € (AN B)V (ANC) ...because of definition of subset
Therefore, x € ANz € BV C ...because of definition of intersection

Therefore, z € AN (x € BV z € C) ...because of definition of union

Therefore, v € ANx € BVax e ANz € C ...because of logics

Therefore, x € ANBVax e ANC ...because of definition of intersection ... similarly to step nr. 3
We are done with the current part of the proof (i.e., to show that © € (AN B)V (ANC)). It remains
to be shown that (AN B)V (ANC)C ANBVC. ... because of definition of union.

We assume y € (AN B)V (ANC) and show y € AN BV C ...because of definition of subset
Therefore, y € ANBVy e ANC ...because of definition of union

Therefore, y € ANye BVy e ANy € C ..because of definition of intersection ... similarly to step
nr. 3

Therefore, y € AN (y € BVy € C) ...because of logics

Therefore, y € ANy € BV C ..because of definition of union

This finishes the proof. Q.e.d. ...because of definition of intersection

Figure 7: The assertion level proof in Figure 2 presented according to the rule set from
Figure 6
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5 Conclusion

Granularity has been a challenge in AI for decades |11, 12]. Here we have focused on
adaptive proof granularity, which we treat as a classification problem. We model different
levels of granularity using rule sets, which can be hand coded or learned from sample proofs.

As a case study, we have formulated the granularity level of the proof in Figure 1 from
the textbook [4] as a rule set in our classification-based approach. Classifiers are applied
dynamically to each proof step, thus taking into account changeable information such as the
user’s familiarity with the involved concepts. Using assertion level proofs as the basis for our
approach has the additional advantage that the relevant information for the classification
task (e.g., the concept names) is easily read off the proofs. This also eases the generation
of natural language proof output in general.

Future work consists in empirical evaluations of the learning approach — to address the
following questions:

(i) what are the most useful features for judging granularity, and are they different among
distinct experts and domains,

(ii) what is the interrater reliability among different experts and the corresponding clas-
sifiers generated by learning in our framework?

The resulting corpora of annotated proof steps and generated classifiers can then be used
to evaluate the appropriateness of the proof presentations generated by our system.
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Abstract

When mathematicians present proofs they usually adapt ¢éixglanations to their didac-
tic goals and to the (assumed) knowledge of their addresddedern automated theorem
provers, in contrast, present proofs usually at a fixed lefrdetail (also called granularity).
Often these presentations are neither intended nor seitabhuman use. A challenge there-
fore is to develop user- and goal-adaptive proof presemtagchniques that obey common
mathematical practice. We present a flexible and adaptipeoaph to proof presentation
that exploits machine learning techniques to extract a inoidthe specific granularity of
proof examples and employs this model for the automatedrgtoe of further proofs at an
adapted level of granularity.

Keywords. Adaptive proof presentation, proof tutoring, automateasoning, machine learn-
ing, granularity.



Let z be an element oft N (B U C), [2lthenz € A andx € B U C. [3] This means that € A, and
eitherz € B orz € C. [4/Hence we either have (i) € A andz € B, or we have (iijx € Aandz € C.
Therefore, eithex € ANBorxz € ANC,sol6lx € (ANB)U(ANC). [ This shows thati N (B U C')
is a subset of AN B)U (AN C).[8 Conversely, lety be an element©f N B) U (AN C).[9 Then, either
(i) y € AN B, or (iv)y € AnC.[10 It follows thaty € A, and eithery € B ory < C. [11] Therefore,
y € Aandy € BUC sothaty € AN(BUC).[12 Hence(ANB)U(ANC)isasubsetoAN(BUC).
In view of Definition 1.1.1, we conclude that the seits) (B U C') and(A N B) U (AN C) are equal.

Figure 1: Proof of the statemedtn (BU C) = (AN B) U (AN C), reproduced from [4]

1 Introduction

A key capability trained by students in mathematics and dhnen&l sciences is the ability to con-
duct rigorous arguments and proofs and to present them.ebjgproof presentation is usually
highly adaptive as didactic goals and (assumed) knowletilpe @ddressee are taken into consid-
eration. Modern automated theorem proving systems, hawgeeften not sufficiently address
this common mathematical practice. They typically gereegaid present proofs using very fine-
grained and machine-oriented calculi. While some theoremipg systems exist — amongst
them prominent interactive theorem provers — that proviéans for human-oriented proof pre-
sentations (e.g. proof presentation modules in Coq [1@pdBe [18] and Theorema [19]), the
challenge of supporting user- and goal-adapted proof ptasens has been widely neglected
in the past. This constitutes an unfortunate gap, in pdaicgince mathematics and the formal
sciences are increasingly targeted as promising apmicatieas for intelligent tutoring systems.
In this paper we present a flexible and adaptive approachotaf presentation that exploits ma-
chine learning techniques to extract a model of the speaifinuarity of given proof examples,
and that subsequently employs this model for the automagedrgtion of further proofs at an
adapted level of granularity. Our research has its rootheéncbllaborative InLOG project [5]

in which we developed means to employ the proof assistareGA [16] for the dialog-based
teaching of mathematical proofs. InA.0G we have considered a dynamic approach: Instead
of guiding the student along a pre-defined path towards diso|we support the dynamic explo-
ration of proofs, using automated proof search. This pnessgs the development of techniques
to adequately model the proofs a student is supposed to. léaference steps ifIMEGA are
implemented via a@assertion application mechanism [8], which is based upon Serge Autexier’s
CORE calculus [1] as its logical kernel. In assertion level pm@lll inference steps are justified
by a mathematical fact, such as definitions, theorems anchéambut not by steps of a purely
technical nature such as structural decompositions, asreet) for example, in natural deduction
or sequent calculi.

The development of the dialog system prototype was guidedrbpirical studies using a
mock-up of the DALOG system [6]. One research challenge that educed out of thexiexgnts
is the question of judging the appropriate step size of psbeps (in the context of tutoring),
also referred to as thgranularity of mathematical proofs. Even in introductory textbooks in
mathematics, intermediate proof steps are skipped, whesélems appropriate. An example is
the elementary proof in basic set theory reproduced in EiguiWhereas most of the proof steps



consist of the application of exactly one mathematical facthis case, a definition or a lemma,
such as the distributivity ofind overor), the step from assertid9] to assertiof10 suggests the
application of several inference steps at once, namelyghkcation of the definition ofy twice,
and then using the distributivity @ind overor.

Similar observations were made in
the empirical studies within the IB- student: (z,y) € (Ro S)~!
LOG project. In these studies the tutors tutor: Now try to draw inferences from that!
who helped to simulate the dialog sys- | correct| appropriate| relevant]|
tem identified limits for how many in-
ference steps are to be allowed at once. student: (z,y) € S~!o R~
An example for an inacceptably large tutor: One cannot directly deduce that.
student step that was rejected by the tu- | correct| too coarse-grainedl relevant|
tor is presented to the right.

The idea to represent proofs at different levels of detas w&orporated intd2MEGA as a
hierarchically organized proof data structure [2]. Thedgbrexplanation system P.rex [9] im-
plemented the idea to generate adapted proof presentéyom®ving up or down these layers
on request. Alas, though the proofs at different levels ¢hitlean be handled by theMEGA
system, the problem remains of how to identify a particusel of granularity and how to en-
sure that this level of granularity is appropriate. Thisexation also applies to the Edinburgh
HiProofs system [7].

Autexier and Fiedler have proposed one particular levelrahglarity [3], which they call
what-you-need-is-what-you-stated granularity. Based on the assertion level inference mecha-
nism inQQMEGA, they also developed a proof checking mechanism for this lein brief, their
notion of granularity refers to such assertion level proofsere all assertion level inference steps
are spelled out explicitly and refer only to facts readilyaigable from the assertions or the pre-
vious inference steps. However, they conclude that evesithple proof in Figure 1 does not
comply with their level of granularity, since the proof isssing some details.

This paper presents in Section 2 an adaptive framework toetrmadof granularity. This
framework has been implemented as an extension dkheGA proof assistant and it is used to
generate proof presentations at specific granularity $evkinterest. In Section 3 we illustrate
how our framework captures the granularity of our runningregle proof in Figure 1. Models
for granularity can be learned in our framework from samples which we employ standard
machine learning techniques, as demonstrated in Section 4.



DEFU (8) r €Sz €S yeETFHyeT DEFN (15)

DEFN (7) (ze(ANB)Vze (ANC))Fz€S (yeAANye(BUQC))FyeT DEFU (14)
DEFN (6) (xe(ANB)VacAAzeC)Fx€S (yeAAN(yeBVyel)) FyeT DISTR (13)

DISTR(5) (reANzeEBVzeANze C)HzES (yeANyeBVyceANyeC)FyeT DEFﬂ(lZ)
DEFU (4) (x€AN(z€BVzEC)) FzES (yeANyeBVye(AnC)) FyeT DEFN (11)
DEFN (3) (xe ANze(BUC))FzeS (ye(ANB) vy € (ANC)) FyeT DEFU (10)
DEFC (2) (ze(AN(BUQ)))FzeS (yeS) FyeT DEFC (9)

DEF EQ(1) F (AN (BUC))CS F(ANB)UANC))CT

F (AN(BUC)) = ((ANB)U(ANC))

T S

Figure 2: Assertion level proof for the statement (BUC)=(ANB)U (ANC)

2 An Adaptive Model for Granularity

We treat the granularity problem as a classification taskerga proof step, representing one or
several assertion applications, we judge it as eippropriate, too big or too small. As our
feature space we employ several mathematical and logipat&sof proof steps, but also aspects
of cognitive nature. For example, we keep track of the bamlgd knowledge of the user in a
student model.

We illustrate our approach with an example proof step in Fdu is derived fron{9] by
applying the definition of) twice, and then using the distributivity ahd overor. In this step
(which corresponds to multiple assertion level infererteps) we make the following observa-
tions:

(i) involved are two concepts: def. of and distributivity ofand overor,
(ii) the total number of assertion applications is three,
(ii) all involved concepts have been previously appliedia proof,
(iv) all manipulations apply to a common part9)
(v) the names of the applied concepts are not explicitly maet, and
(vi) two of the assertion applications belongraive set theory (def. of ) and one of them
relates to the domain of propositional logic (distributyyi

These observations can be represented as a feature vedtere, in our example, the feature
“distinct concepts” receives a value of “2”, and so forth. &#press our models for classifying
granularity as rule sets, which associate specific comibimabf feature values to a corresponding
granularity verdict (“appropriate”, “too big” or “too smg. These rule sets may be hand-
authored by an expert or they may be learned from empiric& da we show in Section 4.

Our algorithm for granularity-adapted proof presentatadges two arguments, a granularity rule
set and an assertion level préads generated bYMEGA. Figure 2 shows the assertion level

1Currently, we use around twenty features which are domadefiendent, plus an indicator feature for each
definition or lemma, and one indicator feature for each theor

20ur approach is not restricted to assertion level proofsiaradso applicable to other calculi. However, in
mathematics education we consider single assertion lewvef gteps as the finest granularity level of interest. We
gained evidence for this choice from the empirical investtisns in the DaLOG project (cf. [5] and [6]).



proof generated b§2MEGA for our running example; this proof is represented as a treadyclic
graph) in sequent-style notation and the proof steps aeredd Currently we only consider plain
assertion level proofs, and do not assume any prior hiaaicttructure or choices between proof
alternatives (as possible idaMEGA). Our algorithm performs an incremental categorization of
steps in the proof tree (where= 0, ..., k denotes the ordered proof steps in the tree; initially
is1):

while there exists a proof step do

evaluate the granularity of the compound proof sigpe., the proof step consisting
of all assertion level inferences performed after the legt Bbeled “appropriate with
explanation” or “appropriate without explanation” — or theginning of the proof, if
none exists yet) with the given rule set under each of theviolig two assumptions:
(i) assuming that the involved concepts are mentioned iptbsentation of the step
(anexplanation), and (ii) assuming that only the resulting formula is déy@d.

1. if nis appropriate with explanation
then labeln as “appropriate with explanation”; set= n+1;

2. if nistoo small with explanation, but appropriate without exjation
then labeln as “appropriate without explanation”; set= n+1;

3. if nistoo small both with and without explanation
then labeln as “too small”; set := n+1;

4. if nistoo big
then labeln—1 as “appropriate without explanation” (i.e. consider thevpous
step as appropriate), unless-1 is labeled “appropriate with explanation” or
“appropriate without explanation” already oris the first step in the proof (in
this special case labelas “appropriate with explanation” and set= n+1).

od

We thereby obtain a proof tree with labeled steps (or labetetts) which differentiates between
those nodes that are categorized as appropriate for patieenand those which are considered
too fine-grained. Proof presentations are generated byingathrough the treé,skipping the
steps labeletbo small.*

When modeling granularity as a categorization problem, axeetio test the hypothesis that
the combination of features we devise is useful for the diaation task. l.e., we have to de-
termine whether steps within a class (i.e. “appropriat&dp“big” and “too small”) can indeed
be fruitfully characterized by specific combinations ofttea values, and distinguished from the
feature values that characterize the two other classes. n@tirodology for evaluation of this
hypothesis consists in case studies and in empirical evahsawith mathematics tutors. This is
exemplified in the following two sections.

3In case of several branches, a choice is possible whicheutatipresent first, a question which we do not address
in this paper.

4Even though the intermediate steps whichtacesmall are withheld, the presentation of the output step reflects
the results of all intermittent assertion applicationscsiwe include the names of all involved concepts whenever a
(compound) step is appropriate with explanation.



1. Inview of Definition 1.1.1, we [show] thatthe sets 1 \we show that(ANB)U(ANC) C ANBUC)
AN (BUC)and(ANB)U(ANC) are equal. and(ANBUC C (AﬂB)L_J (AN Q)
[First we shoWthat AN (B U C) is a subset of ...because of definition of equality
(ANB)U(ANC). [1] [Later we show(A N B) U 2. We assume € AN B U C and showr €
(AN C)isasubsetofi N (BUC)[12 (ANB)U(ANC)

2. Letz be anelementafin (BU O), 3. Thereforez € ANz € BUC

3. thenz € Aandz € BUC.[2] 4. Thereforez € AN (z € BV € O)

4. This means that € A, and eitherr € Borx € 5. Therefore(z€A A 2€B) V (z€A A z€C)
c@l ) . 6. Thereforex c ANBVze ANC

5. Hence we either have () € A andz € B, or we 7. We are done with the current part of the proof
have (i) € Aandz € C[4] (i.e., to show that € (ANB)U(ANC)). [It

6. Therefore, eithet € AnBorz e ANC|J§ remains to be shown thatn B)U(ANC) C

7. soz € (ANB)U(ANC).[6] ANBUC] B

8. Conversely, lety be an element(@fn B) U (AN 8. We assume € (AN B)U(ANC) and show
o.@g _ ye ANBUC

9. Then, either (iijly € AN B, or (iv)y € AN C[9 9. Thereforey e ANBVye ANC

10. It follows thaty € A, and eithery € Bory € C. 10. Thereforey € AA(y e BVy e C)

11. Thereforey € Aandy € BUC,

12. sothay € AN (BUC).
(a)

Figure 3: Comparison between (a) the (re-ordered) proofdngi@and Sherbert [4] and (b) the

11. Thereforeye ANy e BUC
12. This finishes the proof. Q.e.d.

(b)

proof presentation generated with our rule set from(ive&EGA proof in Figure 2

1) hypintro=1A total> 1 = step-too-
big

2) U-Defne{1,2}AN-Defne{1,2} =
step-too-big

3) N-Defn< 3 A U-Defn=0A mastered-
conceptsunique=A unmasteredcon-
ceptsunique=6: step-too-small

4) totak2 A verb=true = step-too-
smalll

5) masteredconceptsunigud A
unmasteredconceptsunique=0 A
verb=true= step-too-small

6) equalitydefr-0 A verb=false =
step-too-big

7) _= step-appropriate

(@)

Figure 4. Rule sets employed in the running example: (a) setgenerated by hand, (b) rule

1) conceptsunique{0, 1} A equalitydefn=0A verb=true=-
step-too-small

2) hypintro=0A equalitydefn=0n U-Defn=0 A verb=true=
step-too-small

3) conceptsunique{2, 3,4} A U-Defne{1, 2,3} = step-too-
big

4) hypintroe{1,2,3,4} A conceptsunique{2,3,4} = step-
too-big

5) unmasteredconceptsunique=0 total €{0,1,2} N-Defn
€{1,2} A close=false= step-too-small

6) equalitydefre{1, 2} Averb=false= step-too-big

7) equalitydef{1,2} A verb=true= step-appropriate

8) equalitydefn=0\ verb=false=- step-appropriate

9) _= step-appropriate

(b)

set generated using C5.0 (ordered by the rules’ confidenues)a



3 Case Study

In this section, we exemplarily model the step size of thébteek proof in Figure 1. Starting
point for the automated generation of our proof presentat@re assertion level proofs in the
mathematics assistance syst@mEGA. The basic assertion level proof, assuming the basic
definitions in naive set theory, is presented in Figure 2 ajaent style proof tree.

This proof consists of fifteen assertion level inferencdiappons, which refer to the defini-
tions of equality, subset, union and intersection as wethasconcept of distributivity. Notice
that the proof in Figure 1 (taken from the textbook Bartle &e@jert [4]) starts (in stateme{d])
with the assumption that an elements in the setd N (B U C). The intention is to show the
subset relatiotd N (BUC) C (AN B)U (ANC). However, this is not explicitly revealed until
stepl6], when this part of the proof is already finished. The samessifitielayed justification
for prior steps is employed towards the end of the proof, etstatement[12 and[13 justify
(or recapitulate) the preceding proof. It must be questiombether this style of presentation,
where the motivation for some of the steps (such as the atsstargtion) is only presented in
retrospective (when the assumption is discharged), istlstilmost effective one for instructing
students in our times. This style originated in former caef) when the general task of the
apprentice was to figure out the reason behind the procedtinestechnically highly competent
master with often poor teaching skills.

Thus, for the modeling of step size, we consider a re-ordeaeidnt of the steps in Figure 1,
which is displayed in Figure 3 (&). We now generate a proof presentation which matches the
step size of the twelve steps in the original proof, skippirigrmediate proof steps according to
our feature-based granularity model. Figure 4 shows twg$amle sets which both lead to the
proof presentation in Figure 3 (b). The rule set in Figure)An@as generated by hand, whereas
the rule set in Figure 4 (b) was generated with the help of H.€ Gata mining tool [15].

The featurehypintro indicates whether a (multi-inference) proof step intragkia new hy-
pothesis, andlose indicates whether a branch of the proof has been finished. fé&taretotal
counts the number of assertion level inferences within omdt{-inference) step. Furthermore,
the featuresnasteredconceptsunique and unmasteredconceptsunique indicate how many of the
employed concepts (if any) are supposed to be mastered @asterad by the user according to a
very basic student model (which is updated in the courseeoptbof). Furthermore, the occur-
rences of particular defined notions are counted (via thieifesn-Defn, U-Defn, equalitydefn).
For example, the first rule in Figure 4 (a) can be interpreggdfa step introduces a new hypoth-
esis into the proof, and consists of more than one assediah inference rule, it is considered
too big.” Note that rules 4—6 in Figure 4 (a) express the i@hdbetween the appropriateness of
steps and whether the employed concepts are mentionedlydfbatureverb). Rule 6 has the
effect of enforcing that the use of the definition of equaltyalways explicitly mentioned (as in

SNote that step (1) in the re-ordered proof corresponds tetiement{7], and[13 in the original proof
which jointly apply the concept of set equality.

5The sample proof was used to fit the rule set to it. All stephignstample proof were provided agpropriate,
all intermediate assertion level steps were labeleasmall, and always the next bigger step to each step in the
original proof was provided as an example faoa big step. Care was taken that the default rule of the generated
rule set is of clasappropriate (which was achieved via the cost function), so that the reféstter transfers to other
domains. Otherwise, in case the default classteasmall, and the examined proof steps were sufficiently different
from the generating sample (and thus failed to match thed®fault rules), the resulting proof presentation would
be excessively short.



step 1. in Fig 3 (b)). All other cases, which are not coverethigyprevious rules, are subject to
a default rule. Rules are ordered by utility for conflict resion.

The generated proof presentation in Figure 3 (b) consistslasly to the proof in Figure 3
(a), of twelve steps. The three assertion level steps (12),4nd (13) are combined into one
single step from (9) to (10) in Figure 3 (b). Natural languegaroduced via simple patterns. (A
more exciting natural language generation is possible Rigkller's mechanisms [9], but this is
not the subject of this paper.)

The rule sets in Figure 4 can be successfully reused for ettaanples in the domains as well.
In Figure 5, we present the resulting proof presentatiomapplying the rule set in Figure 4 (a)
to a different proof exercise, namely a proof of the theorem

(ANB\C = AN (B\O).

We show that(A N B)\C € An B\C)and(AnN B\C C (AN B)\C) ...because of definition of equality
We assume € AN B\C and showr € (AN B)\C

Thereforeg € ANz € B\C

Thereforeg € ANz € BA—(z € C)

We are done with the current part of the proof (i.e., to stiwatx € (AN B)\C). It remains to be shown
that(A N B\C € AnB\C.

We assumg € (AN B)\C and showy € AN B\C

Thereforey € ANy € BA—=(y € C) similarly to steps nr. (3 4)

8. This finishes the proof. Q.E.D. ... similarly to step nr. 7

AR

No

Figure 5: Sample proof presentation generated via the mileng=igure 4 (a) for the theorem
(ANB)\C = An(B\C)

PART decision list

total <= 2 AND total > 0 AND parapos <= 0: appropriate (85.0/4.0)
total <= 2 AND unmasteredconceptsunique <= 0: step-too-small (11.0/2.0)
parapos <= 0 AND samesub <= 0: step-too-big (22.0/5.0)

unmasteredconceptsunique <= 1 AND hypintro <= 0: appropriate (9.0)
: step-too-big (8.0/2.0)

Figure 6: Empirically learned rule set. The featyarapos indicates whether an inference
has been applied only once in a proof situation where it chake been applied twice, in the
same direction. The featusamesub indicates whether all inference applications within a (tmul
inference) step apply to the same formula (and the same gshipareof).



4 Learning from Empirical Data

Classification problems are a well-investigated topic i itachine learning community. There
exist off-the-shelf tools that allow to learn classifieikdlour rule sets) from annotated examples
(supervised learning). In our case, an expert annotates proof stepshétlabelsappropriate, too
small or too big. Representing the proof stepsEGA has the advantage that all the features
of a particular proof step are computed in the background ,cambined automatically with the
expert’s judgments as training instances for the learniggrethm. Currently, our algorithm calls
the C5.0 data mining tools [15, 14] — which support the leagrof decision trees and of rule
sets — to obtain classifiers for granularity.

As part of an ongoing evaluation, we have conducted a studyrevdA mathematician (with
tutoring experience) judged the granularity of 135 proepst These steps were presented to him
via anQQMEGA-assisted environment which computed the feature valuegrémularity classifi-
cation in the background. The step size of proof steps ptedea the expert was randomized,
such that each presented step corresponded to one, twageerabsertion level inference steps.
The presented proofs belonged to one exercise in naive aetytland three different exercises
about relations. We evaluated rule learning using C5.0 orsaumple using 10 fold cross valida-
tion, which resulted in a mean percentage of correct claasidin of 84.6%, and = 0.62. We
also used the PART classifier [10] included in the Weka $uitdich is inspired by Quinlan’s
C4.5. After we excluded some of the attributes (in partictiase that refer to the use of specific
concepts, i.e., Def. afi, Def. of o, etc.), PART achieved 86.7% of correctly classified instarin
stratified cross validation:€0.68). Apparently, removal of the most domain-specifidtaites
prevented the algorithm from overfitting. The resultingersét is presented in Figure 6.

The featureparapos indicates whether an inference has been applied only onaeproof
situation where it could have been applied twice, in the sdirection. The featursamesub
indicates whether all inference applications within a (munference) step apply to the same
formula (and the same subparts thereof). When applied tousuning example, we obtain the
proof presentation as shown in Figure 7.

=

We show thaf(ANB)V (ANC)CAnBvC)and(ANBVC C (ANB)V (ANC(C)) ..because of
definition of equality
We assume € AN BV C and showr € (AN B) Vv (AN C) ...because of definition of subset
Thereforex € ANz € BV C ...because of definition of intersection

Thereforegz € AN (z € BV x € C) ...because of definition of union
Thereforex € ANz € BVx e ANz € C ...because of logics
Thereforez € AN BV x € AN C ...because of definition of intersection ... similarly tepstir. 3
We are done with the current part of the proof (i.e., to shtmatz € (AN B) vV (AN C)). It remains to be
showntha{ANB) Vv (ANC) C AnBVC. ... because of definition of union.

8. We assumg € (AN B)V (ANC) andshowy € AN BV C ...because of definition of subset

9. Thereforey € AN BVy e AN C ...because of definition of union
10. Thereforey e ANy € BVy e ANy € C ...because of definition of intersection ... similarly tegstir. 3
11. Thereforey € AN (y € BV y € C) ...because of logics
12. Thereforey € A Ay € BV C ...because of definition of union
13. This finishes the proof. Q.e.d. ...because of definitfantersection

NogR~ON

Figure 7: The assertion level proof in Figure 2 presentedralcg to the rule set from Figure 6

"nttp://www.cs.waikato.ac.nz/~ml/weka/
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To compare the rule-based classifiers with support vectahimas, we applied SMO [13]
on our data, resulting in 83.0% correctness ar0.57 in stratified cross validation, which is a
similar performance to C5.0.
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5 Conclusion

Granularity has been a challenge in Al for decades [11, 1&reHve have focused on adap-
tive proof granularity, which we treat as a classificatioolgpem. We model different levels of
granularity using rule sets, which can be hand coded oréebinom sample proofs.

As a case study, we have formulated the granularity levehefaroof in Figure 1 from the
textbook [4] as a rule set in our classification-based apgiro@lassifiers are applied dynamically
to each proof step, thus taking into account changeablenration such as the user’s familiarity
with the involved concepts. Using assertion level proofshasbasis for our approach has the
additional advantage that the relevant information for d¢fessification task (e.g., the concept
names) is easily read off the proofs. This also eases theaemreof natural language proof
output in general.

Future work consists in empirical evaluations of the leagrapproach — to address the fol-
lowing questions:

() what are the most useful features for judging granufadind are they different among
distinct experts and domains,

(i) what is the interrater reliability among different eeqps and the corresponding classifiers
generated by learning in our framework?

The resulting corpora of annotated proof steps and gemkchssifiers can then be used to eval-
uate the appropriateness of the proof presentations geddrg our system.
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