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Abstra
t

When mathemati
ians present proofs they usually adapt their explanations to their di-

da
ti
 goals and to the (assumed) knowledge of their addressees. Modern automated

theorem provers, in 
ontrast, present proofs usually at a �xed level of detail (also


alled granularity). Often these presentations are neither intended nor suitable for

human use. A 
hallenge therefore is to develop user- and goal-adaptive proof presen-

tation te
hniques that obey 
ommon mathemati
al pra
ti
e. We present a �exible and

adaptive approa
h to proof presentation that exploits ma
hine learning te
hniques to

extra
t a model of the spe
i�
 granularity of proof examples and employs this model

for the automated generation of further proofs at an adapted level of granularity.

Keywords: Adaptive proof presentation, proof tutoring, automated reasoning, ma
hine

learning, granularity.
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1 Let x be an element of A ∩ (B ∪ C), 2 then x ∈ A and x ∈ B ∪ C. 3 This means that x ∈ A,

and either x ∈ B or x ∈ C. 4 Hen
e we either have (i) x ∈ A and x ∈ B, or we have (ii) x ∈ A

and x ∈ C. 5 Therefore, either x ∈ A ∩ B or x ∈ A ∩ C, so 6 x ∈ (A ∩ B) ∪ (A ∩ C). 7 This

shows that A ∩ (B ∪ C) is a subset of (A ∩ B) ∪ (A ∩ C). 8 Conversely, let y be an element of

(A ∩ B) ∪ (A ∩ C). 9 Then, either (iii) y ∈ A ∩ B, or (iv) y ∈ A ∩ C. 10 It follows that y ∈ A,

and either y ∈ B or y ∈ C. 11 Therefore, y ∈ A and y ∈ B ∪ C so that y ∈ A ∩ (B ∪ C). 12

Hen
e (A ∩B) ∪ (A ∩ C) is a subset of A ∩ (B ∪ C).
13

In view of De�nition 1.1.1, we 
on
lude

that the sets A ∩ (B ∪C) and (A ∩B) ∪ (A ∩ C) are equal.

Figure 1: Proof of the statement A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), reprodu
ed from [4℄

1 Introdu
tion

A key 
apability trained by students in mathemati
s and the formal s
ien
es is the ability to


ondu
t rigorous arguments and proofs and to present them. Thereby, proof presentation

is usually highly adaptive as dida
ti
 goals and (assumed) knowledge of the addressee are

taken into 
onsideration. Modern automated theorem proving systems, however, do often

not su�
iently address this 
ommon mathemati
al pra
ti
e. They typi
ally generate and

present proofs using very �ne-grained and ma
hine-oriented 
al
uli. While some theorem

proving systems exist � amongst them prominent intera
tive theorem provers � that

provide means for human-oriented proof presentations (e.g. proof presentation modules

in Coq [17℄, Isabelle [18℄ and Theorema [19℄), the 
hallenge of supporting user- and goal-

adapted proof presentations has been widely negle
ted in the past. This 
onstitutes an

unfortunate gap, in parti
ular sin
e mathemati
s and the formal s
ien
es are in
reasingly

targeted as promising appli
ation areas for intelligent tutoring systems. In this paper

we present a �exible and adaptive approa
h to proof presentation that exploits ma
hine

learning te
hniques to extra
t a model of the spe
i�
 granularity of given proof examples,

and that subsequently employs this model for the automated generation of further proofs

at an adapted level of granularity. Our resear
h has its roots in the 
ollaborative Dialog

proje
t [5℄ in whi
h we developed means to employ the proof assistant Ωmega [16℄ for the

dialog-based tea
hing of mathemati
al proofs. In Dialog we have 
onsidered a dynami


approa
h: Instead of guiding the student along a pre-de�ned path towards a solution, we

support the dynami
 exploration of proofs, using automated proof sear
h. This presupposes

the development of te
hniques to adequately model the proofs a student is supposed to learn.

Inferen
e steps in Ωmega are implemented via an assertion appli
ation me
hanism [8℄,

whi
h is based upon Serge Autexier's CoRe 
al
ulus [1℄ as its logi
al kernel. In assertion

level proofs, all inferen
e steps are justi�ed by a mathemati
al fa
t, su
h as de�nitions,

theorems and lemmas, but not by steps of a purely te
hni
al nature su
h as stru
tural

de
ompositions, as required, for example, in natural dedu
tion or sequent 
al
uli.

The development of the dialog system prototype was guided by empiri
al studies using

a mo
k-up of the Dialog system [6℄. One resear
h 
hallenge that edu
ed out of the

experiments is the question of judging the appropriate step size of proof steps (in the


ontext of tutoring), also referred to as the granularity of mathemati
al proofs. Even in

introdu
tory textbooks in mathemati
s, intermediate proof steps are skipped, when this

seems appropriate. An example is the elementary proof in basi
 set theory reprodu
ed

in Figure 1. Whereas most of the proof steps 
onsist of the appli
ation of exa
tly one
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mathemati
al fa
t (in this 
ase, a de�nition or a lemma, su
h as the distributivity of and

over or), the step from assertion 9 to assertion 10 suggests the appli
ation of several

inferen
e steps at on
e, namely the appli
ation of the de�nition of ∩ twi
e, and then using

the distributivity of and over or.

student: (x, y) ∈ (R ◦ S)−1

tutor: Now try to draw inferen
es from that!


orre
t appropriate relevant

student: (x, y) ∈ S−1 ◦R−1

tutor: One 
annot dire
tly dedu
e that.


orre
t too 
oarse-grained relevant

Similar observations were made

in the empiri
al studies within the

Dialog proje
t. In these studies

the tutors who helped to simulate

the dialog system identi�ed limits

for how many inferen
e steps are to

be allowed at on
e. An example for

an ina

eptably large student step

that was reje
ted by the tutor is pre-

sented to the right.

The idea to represent proofs at di�erent levels of detail was in
orporated into Ωmega as

a hierar
hi
ally organized proof data stru
ture [2℄. The proof explanation system P.rex [9℄

implemented the idea to generate adapted proof presentations by moving up or down these

layers on request. Alas, though the proofs at di�erent levels of detail 
an be handled by the

Ωmega system, the problem remains of how to identify a parti
ular level of granularity and

how to ensure that this level of granularity is appropriate. This observation also applies

to the Edinburgh HiProofs system [7℄.

Autexier and Fiedler have proposed one parti
ular level of granularity [3℄, whi
h they


all what-you-need-is-what-you-stated granularity. Based on the assertion level inferen
e

me
hanism in Ωmega, they also developed a proof 
he
king me
hanism for this level.

In brief, their notion of granularity refers to su
h assertion level proofs, where all assertion

level inferen
e steps are spelled out expli
itly and refer only to fa
ts readily available from

the assertions or the previous inferen
e steps. However, they 
on
lude that even the simple

proof in Figure 1 does not 
omply with their level of granularity, sin
e the proof is missing

some details.

This paper presents in Se
tion 2 an adaptive framework to model proof granularity. This

framework has been implemented as an extension of the Ωmega proof assistant and it is

used to generate proof presentations at spe
i�
 granularity levels of interest. In Se
tion 3

we illustrate how our framework 
aptures the granularity of our running example proof in

Figure 1. Models for granularity 
an be learned in our framework from samples, for whi
h

we employ standard ma
hine learning te
hniques, as demonstrated in Se
tion 4.
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Def eq (1)

Def⊆ (2)

Def∩ (3)

Def∪ (4)

distr(5)

Def∩ (6)

Def∩ (7)

Def∪ (8)

x ∈S ⊢ x ∈S

(x∈ (A∩B)∨x∈ (A∩C)) ⊢ x∈S

(x∈ (A∩B) ∨ x∈A∧x∈C) ⊢ x∈S

(x∈A∧x∈B ∨ x∈A∧ x∈ C) ⊢ x∈S

(x∈A∧(x∈B ∨ x∈C)) ⊢ x∈S

(x∈ A∧ x∈ (B∪C)) ⊢ x∈S

(x∈ (A ∩ (B∪C))) ⊢ x∈S

⊢ (A∩ (B∪C))⊆S

y∈T ⊢ y∈T

(y∈A ∧ y∈ (B∪C)) ⊢ y∈T
Def∩ (15)

(y∈A ∧ (y∈B ∨ y∈C)) ⊢ y∈T
Def∪ (14)

(y∈A ∧ y∈B ∨ y∈A ∧ y∈C) ⊢ y∈T
distr (13)

(y∈A ∧ y∈B ∨ y∈ (A∩C)) ⊢ y∈T
Def∩ (12)

(y∈ (A∩B)∨ y ∈ (A∩C)) ⊢ y∈T
Def∩ (11)

(y∈S) ⊢ y∈T
Def∪ (10)

⊢ ((A ∩ B) ∪ (A ∩ C)) ⊆ T

Def⊆ (9)

⊢ (A∩(B∪C))
| {z }

T

= ((A∩B)∪(A∩C))
| {z }

S

Figure 2: Assertion level proof for the statement A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

2 An Adaptive Model for Granularity

We treat the granularity problem as a 
lassi�
ation task: given a proof step, representing

one or several assertion appli
ations, we judge it as either appropriate, too big or too small.

As our feature spa
e we employ several mathemati
al and logi
al aspe
ts of proof steps, but

also aspe
ts of 
ognitive nature. For example, we keep tra
k of the ba
kground knowledge

of the user in a student model.

We illustrate our approa
h with an example proof step in Figure 1: 10 is derived

from 9 by applying the de�nition of ∩ twi
e, and then using the distributivity of and over

or. In this step (whi
h 
orresponds to multiple assertion level inferen
e steps) we make the

following observations:

(i) involved are two 
on
epts: def. of ∩ and distributivity of and over or,

(ii) the total number of assertion appli
ations is three,

(iii) all involved 
on
epts have been previously applied in the proof,

(iv) all manipulations apply to a 
ommon part in 9 ,

(v) the names of the applied 
on
epts are not expli
itly mentioned, and

(vi) two of the assertion appli
ations belong to naive set theory (def. of ∩) and one of

them relates to the domain of propositional logi
 (distributivity).

These observations 
an be represented as a feature ve
tor,

1

where, in our example, the

feature �distin
t 
on
epts� re
eives a value of �2�, and so forth. We express our models for


lassifying granularity as rule sets, whi
h asso
iate spe
i�
 
ombinations of feature values

to a 
orresponding granularity verdi
t (�appropriate�, �too big� or �too small�). These rule

sets may be hand-authored by an expert or they may be learned from empiri
al data as

we show in Se
tion 4. Our algorithm for granularity-adapted proof presentation takes two

arguments, a granularity rule set and an assertion level proof

2

as generated by Ωmega.

1

Currently, we use around twenty features whi
h are domain-independent, plus an indi
ator feature for

ea
h de�nition or lemma, and one indi
ator feature for ea
h theory.

2

Our approa
h is not restri
ted to assertion level proofs and is also appli
able to other 
al
uli. However,

in mathemati
s edu
ation we 
onsider single assertion level proof steps as the �nest granularity level of
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Figure 2 shows the assertion level proof generated by Ωmega for our running example;

this proof is represented as a tree (or a
y
li
 graph) in sequent-style notation and the proof

steps are ordered. Currently we only 
onsider plain assertion level proofs, and do not

assume any prior hierar
hi
al stru
ture or 
hoi
es between proof alternatives (as possible

in Ωmega). Our algorithm performs an in
remental 
ategorization of steps in the proof

tree (where n = 0, . . . , k denotes the ordered proof steps in the tree; initially n is 1):

while there exists a proof step n do

evaluate the granularity of the 
ompound proof step n (i.e., the proof step


onsisting of all assertion level inferen
es performed after the last step labeled

�appropriate with explanation� or �appropriate without explanation� � or the

beginning of the proof, if none exists yet) with the given rule set under ea
h

of the following two assumptions: (i) assuming that the involved 
on
epts are

mentioned in the presentation of the step (an explanation), and (ii) assuming

that only the resulting formula is displayed.

1. if n is appropriate with explanation

then label n as �appropriate with explanation�; set n := n+1;
2. if n is too small with explanation, but appropriate without explanation

then label n as �appropriate without explanation�; set n := n+1;
3. if n is too small both with and without explanation

then label n as �too small�; set n := n+1;
4. if n is too big

then label n−1 as �appropriate without explanation� (i.e. 
onsider the

previous step as appropriate), unless n−1 is labeled �appropriate with

explanation� or �appropriate without explanation� already or n is the �rst

step in the proof (in this spe
ial 
ase label n as �appropriate with expla-

nation� and set n := n+1).

od

We thereby obtain a proof tree with labeled steps (or labeled nodes) whi
h di�erentiates

between those nodes that are 
ategorized as appropriate for presentation and those whi
h

are 
onsidered too �ne-grained. Proof presentations are generated by walking through the

tree,

3

skipping the steps labeled too small.

4

When modeling granularity as a 
ategorization problem, we have to test the hypothesis

that the 
ombination of features we devise is useful for the 
lassi�
ation task. I.e., we

have to determine whether steps within a 
lass (i.e. �appropriate�, �too big� and �too

small�) 
an indeed be fruitfully 
hara
terized by spe
i�
 
ombinations of feature values,

and distinguished from the feature values that 
hara
terize the two other 
lasses. Our

methodology for evaluation of this hypothesis 
onsists in 
ase studies and in empiri
al

evaluations with mathemati
s tutors. This is exempli�ed in the following two se
tions.

interest. We gained eviden
e for this 
hoi
e from the empiri
al investigations in the Dialog proje
t

(
f. [5℄ and [6℄).

3

In 
ase of several bran
hes, a 
hoi
e is possible whi
h subtree to present �rst, a question whi
h we do

not address in this paper.

4

Even though the intermediate steps whi
h are too small are withheld, the presentation of the output

step re�e
ts the results of all intermittent assertion appli
ations, sin
e we in
lude the names of all involved


on
epts whenever a (
ompound) step is appropriate with explanation.
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1. In view of De�nition 1.1.1, we [show℄ that the

sets A ∩ (B ∪ C) and (A ∩ B) ∪ (A ∩ C) are

equal. 13 [First we show] that A∩(B∪C) is a
subset of (A∩B)∪ (A∩C). 7 [Later we show]
(A∩B)∪ (A∩C) is a subset of A∩ (B ∪C). 12

2. Let x be an element of A ∩ (B ∪C), 1
3. then x ∈ A and x ∈ B ∪C. 2

4. This means that x ∈ A, and either x ∈ B or

x ∈ C. 3

5. Hen
e we either have (i) x ∈ A and x ∈ B, or

we have (ii) x ∈ A and x ∈ C. 4

6. Therefore, either x ∈ A ∩B or x ∈ A ∩ C, 5

7. so x ∈ (A ∩B) ∪ (A ∩ C). 6

8. Conversely, let y be an element of (A ∩ B) ∪
(A ∩ C). 8

9. Then, either (iii) y ∈ A∩B, or (iv) y ∈ A∩C. 9
10. It follows that y ∈ A, and either y ∈ B or

y ∈ C. 10

11. Therefore, y ∈ A and y ∈ B ∪ C, 11

12. so that y ∈ A ∩ (B ∪ C). 11

(a)

1. We show that ((A ∩B) ∪ (A ∩ C) ⊆ A ∩
B∪C) and (A∩B∪C ⊆ (A∩B)∪(A∩C))
...be
ause of de�nition of equality

2. We assume x ∈ A ∩B ∪ C and show x ∈
(A ∩B) ∪ (A ∩ C)

3. Therefore, x ∈ A ∧ x ∈ B ∪ C

4. Therefore, x ∈ A ∧ (x ∈ B ∨ x ∈ C)
5. Therefore, (x∈A ∧ x∈B) ∨ (x∈A ∧ x∈C)
6. Therefore, x ∈ A ∩B ∨ x ∈ A ∩ C

7. We are done with the 
urrent part of the

proof (i.e., to show that x ∈ (A ∩ B) ∪
(A ∩ C)). [It remains to be shown that

(A ∩B) ∪ (A ∩ C) ⊆ A ∩B ∪ C℄

8. We assume y ∈ (A ∩ B) ∪ (A ∩ C) and

show y ∈ A ∩B ∪C

9. Therefore, y ∈ A ∩B ∨ y ∈ A ∩ C

10. Therefore, y ∈ A ∧ (y ∈ B ∨ y ∈ C)
11. Therefore, y ∈ A ∧ y ∈ B ∪ C

12. This �nishes the proof. Q.e.d.

(b)

Figure 3: Comparison between (a) the (re-ordered) proof by Bartle and Sherbert [4℄ and

(b) the proof presentation generated with our rule set from the Ωmega proof in Figure 2

1) hypintro=1 ∧ total> 1 ⇒ step-

too-big

2) ∪-Defn∈{1, 2}∧∩-Defn∈{1, 2} ⇒
step-too-big

3) ∩-Defn< 3 ∧ ∪-Defn=0 ∧ mas-

tered
on
eptsunique=1 ∧ unmas-

tered
on
eptsunique=0 ⇒ step-

too-small

4) total<2 ∧ verb=true ⇒ step-too-

small

5) mastered
on
eptsunique<3 ∧
unmastered
on
eptsunique=0 ∧
verb=true ⇒ step-too-small

6) equalitydefn>0 ∧ verb=false ⇒
step-too-big

7) ⇒ step-appropriate

(a)

1) 
on
eptsunique∈{0, 1} ∧ equalitydefn=0 ∧ verb=true

⇒ step-too-small

2) hypintro=0 ∧ equalitydefn=0 ∧ ∪-Defn=0 ∧ verb=true

⇒ step-too-small

3) 
on
eptsunique ∈{2, 3, 4} ∧ ∪-Defn ∈{1, 2, 3} ⇒ step-

too-big

4) hypintro ∈{1, 2, 3, 4} ∧ 
on
eptsunique ∈{2, 3, 4} ⇒
step-too-big

5) unmastered
on
eptsunique=0 ∧ total ∈{0, 1, 2} ∩-Defn
∈{1, 2} ∧ 
lose=false ⇒ step-too-small

6) equalitydefn ∈{1, 2} ∧verb=false ⇒ step-too-big

7) equalitydefn∈{1, 2} ∧ verb=true ⇒ step-appropriate

8) equalitydefn=0 ∧ verb=false ⇒ step-appropriate

9) ⇒ step-appropriate

(b)

Figure 4: Rule sets employed in the running example: (a) rule set generated by hand,

(b) rule set generated using C5.0 (ordered by the rules' 
on�den
e values)
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3 Case Study

In this se
tion, we exemplarily model the step size of the textbook proof in Figure 1.

Starting point for the automated generation of our proof presentations are assertion level

proofs in the mathemati
s assistan
e system Ωmega. The basi
 assertion level proof,

assuming the basi
 de�nitions in naive set theory, is presented in Figure 2 as a sequent

style proof tree.

This proof 
onsists of �fteen assertion level inferen
e appli
ations, whi
h refer to the

de�nitions of equality, subset, union and interse
tion as well as the 
on
ept of distributivity.

Noti
e that the proof in Figure 1 (taken from the textbook Bartle & Sherbert [4℄) starts

(in statement 1 ) with the assumption that an element x is in the set A ∩ (B ∪ C). The

intention is to show the subset relation A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C). However, this

is not expli
itly revealed until step 6 , when this part of the proof is already �nished. The

same style of delayed justi�
ation for prior steps is employed towards the end of the proof,

where statements 12 and 13 justify (or re
apitulate) the pre
eding proof. It must be

questioned whether this style of presentation, where the motivation for some of the steps

(su
h as the above assumption) is only presented in retrospe
tive (when the assumption is

dis
harged), is still the most e�e
tive one for instru
ting students in our times. This style

originated in former 
enturies, when the general task of the apprenti
e was to �gure out the

reason behind the pro
edures of his te
hni
ally highly 
ompetent master with often poor

tea
hing skills.

Thus, for the modeling of step size, we 
onsider a re-ordered variant of the steps in

Figure 1, whi
h is displayed in Figure 3 (a).

5

We now generate a proof presentation whi
h

mat
hes the step size of the twelve steps in the original proof, skipping intermediate proof

steps a

ording to our feature-based granularity model. Figure 4 shows two sample rule

sets whi
h both lead to the proof presentation in Figure 3 (b). The rule set in Figure 4 (a)

was generated by hand, whereas the rule set in Figure 4 (b) was generated with the help

of the C5.0 data mining tool [15℄.

6

The feature hypintro indi
ates whether a (multi-inferen
e) proof step introdu
es a new

hypothesis, and 
lose indi
ates whether a bran
h of the proof has been �nished. The

feature total 
ounts the number of assertion level inferen
es within one (multi-inferen
e)

step. Furthermore, the features mastered
on
eptsunique and unmastered
on
eptsunique

indi
ate how many of the employed 
on
epts (if any) are supposed to be mastered or

unmastered by the user a

ording to a very basi
 student model (whi
h is updated in

the 
ourse of the proof). Furthermore, the o

urren
es of parti
ular de�ned notions are


ounted (via the features ∩-Defn, ∪-Defn, equalitydefn). For example, the �rst rule in

Figure 4 (a) 
an be interpreted as �If a step introdu
es a new hypothesis into the proof,

and 
onsists of more than one assertion level inferen
e rule, it is 
onsidered too big.� Note

5

Note that step (1) in the re-ordered proof 
orresponds to the statements 7 , 12 and 13 in the original

proof whi
h jointly apply the 
on
ept of set equality.

6

The sample proof was used to �t the rule set to it. All steps in the sample proof were provided as

appropriate, all intermediate assertion level steps were labeled as too-small, and always the next bigger step

to ea
h step in the original proof was provided as an example for a too big step. Care was taken that the

default rule of the generated rule set is of 
lass appropriate (whi
h was a
hieved via the 
ost fun
tion), so

that the rule set better transfers to other domains. Otherwise, in 
ase the default 
lass was too small, and

the examined proof steps were su�
iently di�erent from the generating sample (and thus failed to mat
h

the non-default rules), the resulting proof presentation would be ex
essively short.
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that rules 4�6 in Figure 4 (a) express the relation between the appropriateness of steps

and whether the employed 
on
epts are mentioned verbally (feature verb). Rule 6 has the

e�e
t of enfor
ing that the use of the de�nition of equality is always expli
itly mentioned

(as in step 1. in Fig 3 (b)). All other 
ases, whi
h are not 
overed by the previous rules,

are subje
t to a default rule. Rules are ordered by utility for 
on�i
t resolution.

The generated proof presentation in Figure 3 (b) 
onsists, similarly to the proof in

Figure 3 (a), of twelve steps. The three assertion level steps (11), (12) and (13) are


ombined into one single step from (9) to (10) in Figure 3 (b). Natural language is

produ
ed via simple patterns. (A more ex
iting natural language generation is possible

with Fiedler's me
hanisms [9℄, but this is not the subje
t of this paper.)

The rule sets in Figure 4 
an be su

essfully reused for other examples in the domains

as well. In Figure 5, we present the resulting proof presentation when applying the rule

set in Figure 4 (a) to a di�erent proof exer
ise, namely a proof of the theorem

(A ∩B)\C = A ∩ (B\C).

1. We show that ((A ∩ B)\C ⊆ A ∩ B\C) and (A ∩ B\C ⊆ (A ∩ B)\C) ...be
ause of de�nition of

equality

2. We assume x ∈ A ∩B\C and show x ∈ (A ∩B)\C
3. Therefore, x ∈ A ∧ x ∈ B\C
4. Therefore, x ∈ A ∧ x ∈ B ∧ ¬(x ∈ C)
5. We are done with the 
urrent part of the proof (i.e., to show that x ∈ (A ∩B)\C). It remains to be

shown that (A ∩B\C ⊆ A ∩B\C.
6. We assume y ∈ (A ∩B)\C and show y ∈ A ∩B\C
7. Therefore, y ∈ A ∧ y ∈ B ∧ ¬(y ∈ C) similarly to steps nr. (3 4)

8. This �nishes the proof. Q.E.D. ... similarly to step nr. 7

Figure 5: Sample proof presentation generated via the rule set in Figure 4 (a) for the

theorem (A ∩ B)\C = A ∩ (B\C)

PART de
ision list

------------------

total <= 2 AND total > 0 AND parapos <= 0: appropriate (85.0/4.0)

total <= 2 AND unmastered
on
eptsunique <= 0: step-too-small (11.0/2.0)

parapos <= 0 AND samesub <= 0: step-too-big (22.0/5.0)

unmastered
on
eptsunique <= 1 AND hypintro <= 0: appropriate (9.0)

: step-too-big (8.0/2.0)

Figure 6: Empiri
ally learned rule set. The feature parapos indi
ates whether an inferen
e

has been applied only on
e in a proof situation where it 
ould have been applied twi
e, in

the same dire
tion. The feature samesub indi
ates whether all inferen
e appli
ations within

a (multi-inferen
e) step apply to the same formula (and the same subparts thereof).
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4 Learning from Empiri
al Data

Classi�
ation problems are a well-investigated topi
 in the ma
hine learning 
ommunity.

There exist o�-the-shelf tools that allow to learn 
lassi�ers (like our rule sets) from anno-

tated examples (supervised learning). In our 
ase, an expert annotates proof steps with

the labels appropriate, too small or too big. Representing the proof steps in Ωmega has

the advantage that all the features of a parti
ular proof step are 
omputed in the ba
k-

ground, and 
ombined automati
ally with the expert's judgments as training instan
es for

the learning algorithm. Currently, our algorithm 
alls the C5.0 data mining tools [15, 14℄

� whi
h support the learning of de
ision trees and of rule sets � to obtain 
lassi�ers for

granularity.

As part of an ongoing evaluation, we have 
ondu
ted a study where a mathemati
ian

(with tutoring experien
e) judged the granularity of 135 proof steps. These steps were

presented to him via an Ωmega-assisted environment whi
h 
omputed the feature values

for granularity 
lassi�
ation in the ba
kground. The step size of proof steps presented

to the expert was randomized, su
h that ea
h presented step 
orresponded to one, two, or

three assertion level inferen
e steps. The presented proofs belonged to one exer
ise in naive

set theory and three di�erent exer
ises about relations. We evaluated rule learning using

C5.0 on our sample using 10 fold 
ross validation, whi
h resulted in a mean per
entage of


orre
t 
lassi�
ation of 84.6%, and κ = 0.62. We also used the PART 
lassi�er [10℄ in
luded

in the Weka suite

7

, whi
h is inspired by Quinlan's C4.5. After we ex
luded some of the

attributes (in parti
ular those that refer to the use of spe
i�
 
on
epts, i.e., Def. of ∩,
Def. of ◦, et
.), PART a
hieved 86.7% of 
orre
tly 
lassi�ed instan
es in strati�ed 
ross

validation (κ=0.68). Apparently, removal of the most domain-spe
i�
 attributes prevented

the algorithm from over�tting. The resulting rule set is presented in Figure 6.

The feature parapos indi
ates whether an inferen
e has been applied only on
e in a

proof situation where it 
ould have been applied twi
e, in the same dire
tion. The feature

samesub indi
ates whether all inferen
e appli
ations within a (multi-inferen
e) step apply to

the same formula (and the same subparts thereof). When applied to our running example,

we obtain the proof presentation as shown in Figure 7.

To 
ompare the rule-based 
lassi�ers with support ve
tor ma
hines, we applied SMO [13℄

on our data, resulting in 83.0% 
orre
tness and κ=0.57 in strati�ed 
ross validation, whi
h

is a similar performan
e to C5.0.

7

http://www.
s.waikato.a
.nz/~ml/weka/
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1. We show that ((A ∩B) ∨ (A ∩C) ⊆ A ∩B ∨C) and (A ∩B ∨C ⊆ (A ∩B) ∨ (A ∩C)) ...be
ause of
de�nition of equality

2. We assume x ∈ A ∩B ∨C and show x ∈ (A ∩B) ∨ (A ∩ C) ...be
ause of de�nition of subset

3. Therefore, x ∈ A ∧ x ∈ B ∨ C ...be
ause of de�nition of interse
tion

4. Therefore, x ∈ A ∧ (x ∈ B ∨ x ∈ C) ...be
ause of de�nition of union

5. Therefore, x ∈ A ∧ x ∈ B ∨ x ∈ A ∧ x ∈ C ...be
ause of logi
s

6. Therefore, x ∈ A ∩B ∨ x ∈ A ∩C ...be
ause of de�nition of interse
tion ... similarly to step nr. 3

7. We are done with the 
urrent part of the proof (i.e., to show that x ∈ (A∩B)∨ (A∩C)). It remains

to be shown that (A ∩B) ∨ (A ∩ C) ⊆ A ∩B ∨ C. ... be
ause of de�nition of union.

8. We assume y ∈ (A ∩B) ∨ (A ∩ C) and show y ∈ A ∩B ∨C ...be
ause of de�nition of subset

9. Therefore, y ∈ A ∩B ∨ y ∈ A ∩ C ...be
ause of de�nition of union

10. Therefore, y ∈ A ∧ y ∈ B ∨ y ∈ A ∧ y ∈ C ...be
ause of de�nition of interse
tion ... similarly to step

nr. 3

11. Therefore, y ∈ A ∧ (y ∈ B ∨ y ∈ C) ...be
ause of logi
s
12. Therefore, y ∈ A ∧ y ∈ B ∨C ...be
ause of de�nition of union

13. This �nishes the proof. Q.e.d. ...be
ause of de�nition of interse
tion

Figure 7: The assertion level proof in Figure 2 presented a

ording to the rule set from

Figure 6
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5 Con
lusion

Granularity has been a 
hallenge in AI for de
ades [11, 12℄. Here we have fo
used on

adaptive proof granularity, whi
h we treat as a 
lassi�
ation problem. We model di�erent

levels of granularity using rule sets, whi
h 
an be hand 
oded or learned from sample proofs.

As a 
ase study, we have formulated the granularity level of the proof in Figure 1 from

the textbook [4℄ as a rule set in our 
lassi�
ation-based approa
h. Classi�ers are applied

dynami
ally to ea
h proof step, thus taking into a

ount 
hangeable information su
h as the

user's familiarity with the involved 
on
epts. Using assertion level proofs as the basis for our

approa
h has the additional advantage that the relevant information for the 
lassi�
ation

task (e.g., the 
on
ept names) is easily read o� the proofs. This also eases the generation

of natural language proof output in general.

Future work 
onsists in empiri
al evaluations of the learning approa
h � to address the

following questions:

(i) what are the most useful features for judging granularity, and are they di�erent among

distin
t experts and domains,

(ii) what is the interrater reliability among di�erent experts and the 
orresponding 
las-

si�ers generated by learning in our framework?

The resulting 
orpora of annotated proof steps and generated 
lassi�ers 
an then be used

to evaluate the appropriateness of the proof presentations generated by our system.

A
knowledgements

We thank Claus-Peter Wirth for his thorough and helpful review of the paper. Furthermore,

we thank Eri
a Melis and her A
tiveMath group for valuable institutional and intelle
tual

support of this work.

Referen
es

[1℄ S. Autexier. The CoRe 
al
ulus. Pro
. CADE-20, vol. 3632 of LNCS, Springer, 2005.

[2℄ S. Autexier, C. Benzmüller, D. Dietri
h, A. Meier, and C.-P. Wirth. A generi
 modular

data stru
ture for proof attempts alternating on ideas and granularity. Pro
. MKM'05,

vol. 3863 of LNCS, Springer, 2006.

[3℄ S. Autexier and A. Fiedler. Textbook proofs meet formal logi
 - the problem of un-

derspe
i�
ation and granularity. Pro
. MKM-05, vol. 3863 of LNCS, Springer, 2005.

[4℄ R. G. Bartle and D. Sherbert. Introdu
tion to Real Analysis. Wiley, 2nd edition, 1982.

[5℄ C. Benzmüller, H. Hora
ek, I. Kruij�-Korbayová, M. Pinkal, J. H. Siekmann, and

M. Wolska. Natural language dialog with a tutor system for mathemati
al proofs. In

Cognitive Systems, vol. 4429 of LNAI, Springer, 2005.



12

[6℄ C. Benzmüller, H. Hora
ek, H. Lesourd, I. Kruij�-Korbajova, M. S
hiller, and M. Wol-

ska. A 
orpus of tutorial dialogs on theorem proving; the in�uen
e of the presentation

of the study-material. In Pro
. of Int. Conf. on Language Resour
es and Evaluation

(LREC 2006), Genoa, Italy, 2006. ELDA.

[7℄ E. Denney, J. Power, and K. Tourlas. Hiproofs: A hierar
hi
al notion of proof tree.

Ele
tr. Notes Theor. Comput. S
i., 155: 341-359, 2006.

[8℄ D. Dietri
h. The task-layer of the Ωmega system. Diploma thesis, FR 6.2 Informatik,

Universität des Saarlandes, Saarbrü
ken, Germany, 2006.

[9℄ A. Fiedler. P.rex : An intera
tive proof explainer. Pro
. IJCAR 2001, vol. 2083 of

LNAI, Springer, 2001.

[10℄ E. Frank and I. H. Witten. Generating a

urate rule sets without global optimization.

In Pro
. of 15th Int. Conf. on Ma
hine Learning. Morgan Kaufmann, 1998.

[11℄ J. R. Hobbs. Granularity. Pro
. IJCAI-9, pp. 432�435, Los Angeles, CA, USA, 1985.

[12℄ G. M

alla, J. Greer, B. Barrie, and P. Pospisil. Granularity hierar
hies. In Computers

and Mathemati
s with Appli
ations: Sp. Issue on Semanti
 Networks, pp. 363�375,

1992.

[13℄ J. Platt. Fast Training of Support Ve
tor Ma
hines Using Sequential Minimal Op-

timization. In B. S
hoelkopf, C. Burges, and A. Smola, editors, Advan
es in Kernel

Methods - Support Ve
tor Learning, pp. 185-208. MIT Press, 1999.

[14℄ J. R. Quinlan. C4.5: Programs for Ma
hine Learning. Morgan Kaufmann, 1993.

[15℄ RuleQuest Resear
h. Data mining tools see5 and 
5.0. http://www.rulequest.
om/

see5-info.html, 2007.

[16℄ J. H. Siekmann, C. Benzmüller, and S. Autexier. Computer supported mathemati
s

with omega. Journal of Applied Logi
, 4(4):533�559, 2006.

[17℄ Y. Cos
oy, G. Kahn, L. Thery. Extra
ting text from proofs. In Pro
. Typed Lambda

Cal
ulus and its Appli
ations, pp. 109-123, Edinburgh, UK, Springer, 1995.

[18℄ M. Simons. Proof Presentation for Isabelle. In Pro
. TPHOLs '97, London, UK,

Springer, 1997.

[19℄ B. Bu
hberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru. A

Survey of the Theorema proje
t. In Pro
. ISSAC'97, Maui, Hawaii, pp. 384�391, 1997.



ar
X

iv
:0

90
3.

03
14

v4
  [

cs
.A

I] 
 2

5 
M

ay
 2

00
9

SEKI

2009

Granularity-Adaptive Proof Presentation

Marvin Schiller
German Research Center for Artificial Intelligence (DFKI),Bremen,

Germany

Marvin.Schiller@dfki.de

Christoph Benzmüller
International University in Germany, Bruchsal, Germany

c.benzmueller@googlemail.com

SEKI Working-Paper SWP–2009–01S
E
K
I

W
or

ki
ng

-P
ap

er
h
t
t
p
:
/
/
w
w
w
.
d
f
k
i
.
d
e
/
s
e
k
i

IS
S

N
18

60
-5

93
1

http://arxiv.org/abs/0903.0314v4


SEKI is published by the following institutions:

German Research Center for Artificial Intelligence (DFKI GmbH), Germany
• Robert Hooke Str. 5, D–28359 Bremen
• Trippstadter Str. 122, D–67663 Kaiserslautern
• Campus D 3 2, D–66123 Saarbrücken

International University of Germany, Campus 1, D–76646 Bruchsal, Germany

Jacobs University Bremen, School of Engineering & Science,Campus Ring 1, D–28759 Bremen, Germany

Universität des Saarlandes, FR 6.2 Informatik, Campus, D–66123 Saarbrücken, Germany

SEKI Editor:

Claus-Peter Wirth
E-mail: wirth@logic.at
WWW: http://www.ags.uni-sb.de/~cp

Please send surface mail exclusively to:

DFKI Bremen GmbH
Safe and Secure Cognitive Systems
Cartesium
Enrique Schmidt Str. 5
D–28359 Bremen
Germany

This SEKI Working-Paper refines and extends the following publication:

Granularity-Adaptive Proof Presentation. Proceedings of the 14th International Conference on Artificial Intelli-
gence in Education; Brighton, UK, 2009. Submitted.

This SEKI Working-Paper was internally reviewed by:

Claus-Peter Wirth
E-mail: wirth@logic.at
WWW: http://www.ags.uni-sb.de/~cp



Granularity-Adaptive Proof Presentation

Marvin Schiller
German Research Center for Artificial Intelligence (DFKI),Bremen, Germany

Marvin.Schiller@dfki.de

Christoph Benzmüller
International University in Germany, Bruchsal, Germany

c.benzmueller@googlemail.com

Searchable Online Edition
Submitted February 2, 2009

February 27, 2009

Abstract

When mathematicians present proofs they usually adapt their explanations to their didac-
tic goals and to the (assumed) knowledge of their addressees. Modern automated theorem
provers, in contrast, present proofs usually at a fixed levelof detail (also called granularity).
Often these presentations are neither intended nor suitable for human use. A challenge there-
fore is to develop user- and goal-adaptive proof presentation techniques that obey common
mathematical practice. We present a flexible and adaptive approach to proof presentation
that exploits machine learning techniques to extract a model of the specific granularity of
proof examples and employs this model for the automated generation of further proofs at an
adapted level of granularity.

Keywords: Adaptive proof presentation, proof tutoring, automated reasoning, machine learn-
ing, granularity.
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1 Let x be an element ofA ∩ (B ∪ C), 2 thenx ∈ A andx ∈ B ∪ C. 3 This means thatx ∈ A, and
eitherx ∈ B or x ∈ C. 4 Hence we either have (i)x ∈ A andx ∈ B, or we have (ii)x ∈ A andx ∈ C. 5
Therefore, eitherx ∈ A∩B or x ∈ A∩C, so 6 x ∈ (A∩B)∪ (A∩C). 7 This shows thatA∩ (B ∪C)
is a subset of(A∩B)∪ (A∩C). 8 Conversely, let y be an element of(A∩B)∪ (A∩C). 9 Then, either
(iii) y ∈ A ∩ B, or (iv) y ∈ A ∩ C. 10 It follows thaty ∈ A, and eithery ∈ B or y ∈ C. 11 Therefore,
y ∈ A andy ∈ B ∪C so thaty ∈ A∩ (B ∪C). 12 Hence(A∩B)∪ (A∩C) is a subset ofA∩ (B ∪C).
13 In view of Definition 1.1.1, we conclude that the setsA ∩ (B ∪ C) and(A ∩B) ∪ (A ∩C) are equal.

Figure 1: Proof of the statementA ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), reproduced from [4]

1 Introduction

A key capability trained by students in mathematics and the formal sciences is the ability to con-
duct rigorous arguments and proofs and to present them. Thereby, proof presentation is usually
highly adaptive as didactic goals and (assumed) knowledge of the addressee are taken into consid-
eration. Modern automated theorem proving systems, however, do often not sufficiently address
this common mathematical practice. They typically generate and present proofs using very fine-
grained and machine-oriented calculi. While some theorem proving systems exist — amongst
them prominent interactive theorem provers — that provide means for human-oriented proof pre-
sentations (e.g. proof presentation modules in Coq [17], Isabelle [18] and Theorema [19]), the
challenge of supporting user- and goal-adapted proof presentations has been widely neglected
in the past. This constitutes an unfortunate gap, in particular since mathematics and the formal
sciences are increasingly targeted as promising application areas for intelligent tutoring systems.
In this paper we present a flexible and adaptive approach to proof presentation that exploits ma-
chine learning techniques to extract a model of the specific granularity of given proof examples,
and that subsequently employs this model for the automated generation of further proofs at an
adapted level of granularity. Our research has its roots in the collaborative DIALOG project [5]
in which we developed means to employ the proof assistantΩMEGA [16] for the dialog-based
teaching of mathematical proofs. In DIALOG we have considered a dynamic approach: Instead
of guiding the student along a pre-defined path towards a solution, we support the dynamic explo-
ration of proofs, using automated proof search. This presupposes the development of techniques
to adequately model the proofs a student is supposed to learn. Inference steps inΩMEGA are
implemented via anassertion application mechanism [8], which is based upon Serge Autexier’s
CORE calculus [1] as its logical kernel. In assertion level proofs, all inference steps are justified
by a mathematical fact, such as definitions, theorems and lemmas, but not by steps of a purely
technical nature such as structural decompositions, as required, for example, in natural deduction
or sequent calculi.

The development of the dialog system prototype was guided byempirical studies using a
mock-up of the DIALOG system [6]. One research challenge that educed out of the experiments
is the question of judging the appropriate step size of proofsteps (in the context of tutoring),
also referred to as thegranularity of mathematical proofs. Even in introductory textbooks in
mathematics, intermediate proof steps are skipped, when this seems appropriate. An example is
the elementary proof in basic set theory reproduced in Figure 1. Whereas most of the proof steps
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consist of the application of exactly one mathematical fact(in this case, a definition or a lemma,
such as the distributivity ofand overor), the step from assertion9 to assertion10 suggests the
application of several inference steps at once, namely the application of the definition of∩ twice,
and then using the distributivity ofand overor.

student: (x, y) ∈ (R ◦ S)−1

tutor: Now try to draw inferences from that!

correct appropriate relevant

student: (x, y) ∈ S−1 ◦R−1

tutor: One cannot directly deduce that.

correct too coarse-grained relevant

Similar observations were made in
the empirical studies within the DIA -
LOG project. In these studies the tutors
who helped to simulate the dialog sys-
tem identified limits for how many in-
ference steps are to be allowed at once.
An example for an inacceptably large
student step that was rejected by the tu-
tor is presented to the right.

The idea to represent proofs at different levels of detail was incorporated intoΩMEGA as a
hierarchically organized proof data structure [2]. The proof explanation system P.rex [9] im-
plemented the idea to generate adapted proof presentationsby moving up or down these layers
on request. Alas, though the proofs at different levels of detail can be handled by theΩMEGA

system, the problem remains of how to identify a particular level of granularity and how to en-
sure that this level of granularity is appropriate. This observation also applies to the Edinburgh
HiProofs system [7].

Autexier and Fiedler have proposed one particular level of granularity [3], which they call
what-you-need-is-what-you-stated granularity. Based on the assertion level inference mecha-
nism inΩMEGA, they also developed a proof checking mechanism for this level. In brief, their
notion of granularity refers to such assertion level proofs, where all assertion level inference steps
are spelled out explicitly and refer only to facts readily available from the assertions or the pre-
vious inference steps. However, they conclude that even thesimple proof in Figure 1 does not
comply with their level of granularity, since the proof is missing some details.

This paper presents in Section 2 an adaptive framework to model proof granularity. This
framework has been implemented as an extension of theΩMEGA proof assistant and it is used to
generate proof presentations at specific granularity levels of interest. In Section 3 we illustrate
how our framework captures the granularity of our running example proof in Figure 1. Models
for granularity can be learned in our framework from samples, for which we employ standard
machine learning techniques, as demonstrated in Section 4.
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DEF EQ (1)
DEF⊆ (2)
DEF∩ (3)
DEF∪ (4)
DISTR(5)
DEF∩ (6)
DEF∩ (7)
DEF∪ (8)

x ∈S ⊢ x ∈S

(x∈ (A∩B)∨x∈ (A∩C)) ⊢ x∈S

(x∈ (A∩B) ∨ x∈A∧x∈C) ⊢ x∈S

(x∈A∧x∈B ∨ x∈A∧ x∈ C) ⊢ x∈S

(x∈A∧(x∈B ∨ x∈C)) ⊢ x∈S

(x∈ A∧ x∈ (B∪C)) ⊢ x∈S

(x∈ (A ∩ (B∪C))) ⊢ x∈S

⊢ (A∩ (B∪C))⊆S

y∈T ⊢ y∈T

(y∈A ∧ y∈ (B∪C)) ⊢ y∈T
DEF∩ (15)

(y∈A ∧ (y∈B ∨ y∈C)) ⊢ y∈T
DEF∪ (14)

(y∈A ∧ y∈B ∨ y∈A ∧ y∈C) ⊢ y∈T
DISTR (13)

(y∈A ∧ y∈B ∨ y∈ (A∩C)) ⊢ y∈T
DEF∩ (12)

(y∈ (A∩B) ∨ y ∈ (A∩C)) ⊢ y∈T
DEF∩ (11)

(y∈S) ⊢ y∈T
DEF∪ (10)

⊢ ((A ∩ B) ∪ (A ∩ C)) ⊆ T
DEF⊆ (9)

⊢ (A∩(B∪C))
| {z }

T

= ((A∩B)∪(A∩C))
| {z }

S

Figure 2: Assertion level proof for the statementA ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

2 An Adaptive Model for Granularity

We treat the granularity problem as a classification task: given a proof step, representing one or
several assertion applications, we judge it as eitherappropriate, too big or too small. As our
feature space we employ several mathematical and logical aspects of proof steps, but also aspects
of cognitive nature. For example, we keep track of the background knowledge of the user in a
student model.

We illustrate our approach with an example proof step in Figure 1: 10 is derived from9 by
applying the definition of∩ twice, and then using the distributivity ofand overor. In this step
(which corresponds to multiple assertion level inference steps) we make the following observa-
tions:

(i) involved are two concepts: def. of∩ and distributivity ofand overor,

(ii) the total number of assertion applications is three,

(iii) all involved concepts have been previously applied inthe proof,

(iv) all manipulations apply to a common part in9,

(v) the names of the applied concepts are not explicitly mentioned, and

(vi) two of the assertion applications belong tonaive set theory (def. of∩) and one of them
relates to the domain of propositional logic (distributivity).

These observations can be represented as a feature vector,1 where, in our example, the feature
“distinct concepts” receives a value of “2”, and so forth. Weexpress our models for classifying
granularity as rule sets, which associate specific combinations of feature values to a corresponding
granularity verdict (“appropriate”, “too big” or “too small”). These rule sets may be hand-
authored by an expert or they may be learned from empirical data as we show in Section 4.
Our algorithm for granularity-adapted proof presentationtakes two arguments, a granularity rule
set and an assertion level proof2 as generated byΩMEGA. Figure 2 shows the assertion level

1Currently, we use around twenty features which are domain-independent, plus an indicator feature for each
definition or lemma, and one indicator feature for each theory.

2Our approach is not restricted to assertion level proofs andis also applicable to other calculi. However, in
mathematics education we consider single assertion level proof steps as the finest granularity level of interest. We
gained evidence for this choice from the empirical investigations in the DIALOG project (cf. [5] and [6]).
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proof generated byΩMEGA for our running example; this proof is represented as a tree (or acyclic
graph) in sequent-style notation and the proof steps are ordered. Currently we only consider plain
assertion level proofs, and do not assume any prior hierarchical structure or choices between proof
alternatives (as possible inΩMEGA). Our algorithm performs an incremental categorization of
steps in the proof tree (wheren = 0, . . . , k denotes the ordered proof steps in the tree; initiallyn

is 1):

while there exists a proof stepn do
evaluate the granularity of the compound proof stepn (i.e., the proof step consisting
of all assertion level inferences performed after the last step labeled “appropriate with
explanation” or “appropriate without explanation” — or thebeginning of the proof, if
none exists yet) with the given rule set under each of the following two assumptions:
(i) assuming that the involved concepts are mentioned in thepresentation of the step
(anexplanation), and (ii) assuming that only the resulting formula is displayed.

1. if n is appropriate with explanation
then labeln as “appropriate with explanation”; setn := n+1;

2. if n is too small with explanation, but appropriate without explanation
then labeln as “appropriate without explanation”; setn := n+1;

3. if n is too small both with and without explanation
then labeln as “too small”; setn := n+1;

4. if n is too big
then labeln−1 as “appropriate without explanation” (i.e. consider the previous
step as appropriate), unlessn−1 is labeled “appropriate with explanation” or
“appropriate without explanation” already orn is the first step in the proof (in
this special case labeln as “appropriate with explanation” and setn := n+1).

od

We thereby obtain a proof tree with labeled steps (or labelednodes) which differentiates between
those nodes that are categorized as appropriate for presentation and those which are considered
too fine-grained. Proof presentations are generated by walking through the tree,3 skipping the
steps labeledtoo small.4

When modeling granularity as a categorization problem, we have to test the hypothesis that
the combination of features we devise is useful for the classification task. I.e., we have to de-
termine whether steps within a class (i.e. “appropriate”, “too big” and “too small”) can indeed
be fruitfully characterized by specific combinations of feature values, and distinguished from the
feature values that characterize the two other classes. Ourmethodology for evaluation of this
hypothesis consists in case studies and in empirical evaluations with mathematics tutors. This is
exemplified in the following two sections.

3In case of several branches, a choice is possible which subtree to present first, a question which we do not address
in this paper.

4Even though the intermediate steps which aretoo small are withheld, the presentation of the output step reflects
the results of all intermittent assertion applications, since we include the names of all involved concepts whenever a
(compound) step is appropriate with explanation.
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1. In view of Definition 1.1.1, we [show] that the sets
A ∩ (B ∪ C) and(A ∩ B) ∪ (A ∩ C) are equal.
13 [First we show] thatA∩ (B ∪C) is a subset of
(A∩B)∪ (A∩C). 7 [Later we show] (A∩B)∪
(A ∩ C) is a subset ofA ∩ (B ∪C). 12

2. Letx be an element ofA ∩ (B ∪ C), 1
3. thenx ∈ A andx ∈ B ∪ C. 2
4. This means thatx ∈ A, and eitherx ∈ B or x ∈

C. 3
5. Hence we either have (i)x ∈ A andx ∈ B, or we

have (ii)x ∈ A andx ∈ C. 4
6. Therefore, eitherx ∈ A ∩B or x ∈ A ∩C, 5
7. sox ∈ (A ∩B) ∪ (A ∩ C). 6
8. Conversely, let y be an element of(A ∩B) ∪ (A ∩

C). 8
9. Then, either (iii)y ∈ A ∩B, or (iv) y ∈ A ∩ C. 9

10. It follows thaty ∈ A, and eithery ∈ B or y ∈ C.
10

11. Therefore,y ∈ A andy ∈ B ∪ C, 11
12. so thaty ∈ A ∩ (B ∪ C). 11

(a)

1. We show that((A∩B)∪(A∩C) ⊆ A∩B∪C)
and (A ∩ B ∪ C ⊆ (A ∩ B) ∪ (A ∩ C))
...because of definition of equality

2. We assumex ∈ A ∩ B ∪ C and showx ∈
(A ∩B) ∪ (A ∩ C)

3. Therefore,x ∈ A ∧ x ∈ B ∪C

4. Therefore,x ∈ A ∧ (x ∈ B ∨ x ∈ C)
5. Therefore,(x∈A ∧ x∈B) ∨ (x∈A ∧ x∈C)
6. Therefore,x ∈ A ∩B ∨ x ∈ A ∩ C

7. We are done with the current part of the proof
(i.e., to show thatx ∈ (A∩B)∪(A∩C)). [It
remains to be shown that(A∩B)∪(A∩C) ⊆
A ∩B ∪ C]

8. We assumey ∈ (A∩B)∪ (A∩C) and show
y ∈ A ∩B ∪ C

9. Therefore,y ∈ A ∩B ∨ y ∈ A ∩C

10. Therefore,y ∈ A ∧ (y ∈ B ∨ y ∈ C)
11. Therefore,y ∈ A ∧ y ∈ B ∪ C

12. This finishes the proof. Q.e.d.

(b)

Figure 3: Comparison between (a) the (re-ordered) proof by Bartle and Sherbert [4] and (b) the
proof presentation generated with our rule set from theΩMEGA proof in Figure 2

1) hypintro=1∧ total> 1 ⇒ step-too-
big

2) ∪-Defn∈{1, 2}∧∩-Defn∈{1, 2} ⇒
step-too-big

3) ∩-Defn<3 ∧ ∪-Defn=0∧ mastered-
conceptsunique=1∧ unmasteredcon-
ceptsunique=0⇒ step-too-small

4) total<2 ∧ verb=true ⇒ step-too-
small

5) masteredconceptsunique<3 ∧
unmasteredconceptsunique=0 ∧
verb=true⇒ step-too-small

6) equalitydefn>0 ∧ verb=false ⇒
step-too-big

7) ⇒ step-appropriate

(a)

1) conceptsunique∈{0, 1} ∧ equalitydefn=0∧ verb=true⇒
step-too-small

2) hypintro=0∧ equalitydefn=0∧ ∪-Defn=0∧ verb=true⇒
step-too-small

3) conceptsunique∈{2, 3, 4} ∧ ∪-Defn∈{1, 2, 3} ⇒ step-too-
big

4) hypintro∈{1, 2, 3, 4} ∧ conceptsunique∈{2, 3, 4} ⇒ step-
too-big

5) unmasteredconceptsunique=0∧ total ∈{0, 1, 2} ∩-Defn
∈{1, 2} ∧ close=false⇒ step-too-small

6) equalitydefn∈{1, 2} ∧verb=false⇒ step-too-big
7) equalitydefn∈{1, 2} ∧ verb=true⇒ step-appropriate
8) equalitydefn=0∧ verb=false⇒ step-appropriate
9) ⇒ step-appropriate

(b)

Figure 4: Rule sets employed in the running example: (a) ruleset generated by hand, (b) rule
set generated using C5.0 (ordered by the rules’ confidence values)
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3 Case Study

In this section, we exemplarily model the step size of the textbook proof in Figure 1. Starting
point for the automated generation of our proof presentations are assertion level proofs in the
mathematics assistance systemΩMEGA. The basic assertion level proof, assuming the basic
definitions in naive set theory, is presented in Figure 2 as a sequent style proof tree.

This proof consists of fifteen assertion level inference applications, which refer to the defini-
tions of equality, subset, union and intersection as well asthe concept of distributivity. Notice
that the proof in Figure 1 (taken from the textbook Bartle & Sherbert [4]) starts (in statement1)
with the assumption that an elementx is in the setA ∩ (B ∪ C). The intention is to show the
subset relationA∩ (B ∪C) ⊆ (A∩B)∪ (A∩C). However, this is not explicitly revealed until
step 6, when this part of the proof is already finished. The same style of delayed justification
for prior steps is employed towards the end of the proof, where statements12 and 13 justify
(or recapitulate) the preceding proof. It must be questioned whether this style of presentation,
where the motivation for some of the steps (such as the above assumption) is only presented in
retrospective (when the assumption is discharged), is still the most effective one for instructing
students in our times. This style originated in former centuries, when the general task of the
apprentice was to figure out the reason behind the proceduresof his technically highly competent
master with often poor teaching skills.

Thus, for the modeling of step size, we consider a re-orderedvariant of the steps in Figure 1,
which is displayed in Figure 3 (a).5 We now generate a proof presentation which matches the
step size of the twelve steps in the original proof, skippingintermediate proof steps according to
our feature-based granularity model. Figure 4 shows two sample rule sets which both lead to the
proof presentation in Figure 3 (b). The rule set in Figure 4 (a) was generated by hand, whereas
the rule set in Figure 4 (b) was generated with the help of the C5.0 data mining tool [15].6

The featurehypintro indicates whether a (multi-inference) proof step introduces a new hy-
pothesis, andclose indicates whether a branch of the proof has been finished. Thefeaturetotal
counts the number of assertion level inferences within one (multi-inference) step. Furthermore,
the featuresmasteredconceptsunique andunmasteredconceptsunique indicate how many of the
employed concepts (if any) are supposed to be mastered or unmastered by the user according to a
very basic student model (which is updated in the course of the proof). Furthermore, the occur-
rences of particular defined notions are counted (via the features∩-Defn,∪-Defn, equalitydefn).
For example, the first rule in Figure 4 (a) can be interpreted as “If a step introduces a new hypoth-
esis into the proof, and consists of more than one assertion level inference rule, it is considered
too big.” Note that rules 4–6 in Figure 4 (a) express the relation between the appropriateness of
steps and whether the employed concepts are mentioned verbally (featureverb). Rule 6 has the
effect of enforcing that the use of the definition of equalityis always explicitly mentioned (as in

5Note that step (1) in the re-ordered proof corresponds to thestatements7, 12 and 13 in the original proof
which jointly apply the concept of set equality.

6The sample proof was used to fit the rule set to it. All steps in the sample proof were provided asappropriate,
all intermediate assertion level steps were labeled astoo-small, and always the next bigger step to each step in the
original proof was provided as an example for atoo big step. Care was taken that the default rule of the generated
rule set is of classappropriate (which was achieved via the cost function), so that the rule set better transfers to other
domains. Otherwise, in case the default class wastoo small, and the examined proof steps were sufficiently different
from the generating sample (and thus failed to match the non-default rules), the resulting proof presentation would
be excessively short.
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step 1. in Fig 3 (b)). All other cases, which are not covered bythe previous rules, are subject to
a default rule. Rules are ordered by utility for conflict resolution.

The generated proof presentation in Figure 3 (b) consists, similarly to the proof in Figure 3
(a), of twelve steps. The three assertion level steps (11), (12) and (13) are combined into one
single step from (9) to (10) in Figure 3 (b). Natural languageis produced via simple patterns. (A
more exciting natural language generation is possible withFiedler’s mechanisms [9], but this is
not the subject of this paper.)

The rule sets in Figure 4 can be successfully reused for otherexamples in the domains as well.
In Figure 5, we present the resulting proof presentation when applying the rule set in Figure 4 (a)
to a different proof exercise, namely a proof of the theorem

(A ∩B)\C = A ∩ (B\C).

1. We show that((A ∩B)\C ⊆ A ∩B\C) and(A ∩B\C ⊆ (A ∩B)\C) ...because of definition of equality
2. We assumex ∈ A ∩B\C and showx ∈ (A ∩B)\C
3. Therefore,x ∈ A ∧ x ∈ B\C
4. Therefore,x ∈ A ∧ x ∈ B ∧ ¬(x ∈ C)
5. We are done with the current part of the proof (i.e., to showthatx ∈ (A ∩ B)\C). It remains to be shown

that(A ∩B\C ⊆ A ∩B\C.
6. We assumey ∈ (A ∩B)\C and showy ∈ A ∩B\C
7. Therefore,y ∈ A ∧ y ∈ B ∧ ¬(y ∈ C) similarly to steps nr. (3 4)
8. This finishes the proof. Q.E.D. ... similarly to step nr. 7

Figure 5: Sample proof presentation generated via the rule set in Figure 4 (a) for the theorem
(A ∩ B)\C = A ∩ (B\C)

PART decision list

------------------

total <= 2 AND total > 0 AND parapos <= 0: appropriate (85.0/4.0)

total <= 2 AND unmasteredconceptsunique <= 0: step-too-small (11.0/2.0)

parapos <= 0 AND samesub <= 0: step-too-big (22.0/5.0)

unmasteredconceptsunique <= 1 AND hypintro <= 0: appropriate (9.0)

: step-too-big (8.0/2.0)

Figure 6: Empirically learned rule set. The featureparapos indicates whether an inference
has been applied only once in a proof situation where it couldhave been applied twice, in the
same direction. The featuresamesub indicates whether all inference applications within a (multi-
inference) step apply to the same formula (and the same subparts thereof).
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4 Learning from Empirical Data

Classification problems are a well-investigated topic in the machine learning community. There
exist off-the-shelf tools that allow to learn classifiers (like our rule sets) from annotated examples
(supervised learning). In our case, an expert annotates proof steps withthe labelsappropriate, too
small or too big. Representing the proof steps inΩMEGA has the advantage that all the features
of a particular proof step are computed in the background, and combined automatically with the
expert’s judgments as training instances for the learning algorithm. Currently, our algorithm calls
the C5.0 data mining tools [15, 14] — which support the learning of decision trees and of rule
sets — to obtain classifiers for granularity.

As part of an ongoing evaluation, we have conducted a study where a mathematician (with
tutoring experience) judged the granularity of 135 proof steps. These steps were presented to him
via anΩMEGA-assisted environment which computed the feature values for granularity classifi-
cation in the background. The step size of proof steps presented to the expert was randomized,
such that each presented step corresponded to one, two, or three assertion level inference steps.
The presented proofs belonged to one exercise in naive set theory and three different exercises
about relations. We evaluated rule learning using C5.0 on our sample using 10 fold cross valida-
tion, which resulted in a mean percentage of correct classification of 84.6%, andκ = 0.62. We
also used the PART classifier [10] included in the Weka suite7, which is inspired by Quinlan’s
C4.5. After we excluded some of the attributes (in particular those that refer to the use of specific
concepts, i.e., Def. of∩, Def. of◦, etc.), PART achieved 86.7% of correctly classified instances in
stratified cross validation (κ=0.68). Apparently, removal of the most domain-specific attributes
prevented the algorithm from overfitting. The resulting rule set is presented in Figure 6.

The featureparapos indicates whether an inference has been applied only once ina proof
situation where it could have been applied twice, in the samedirection. The featuresamesub
indicates whether all inference applications within a (multi-inference) step apply to the same
formula (and the same subparts thereof). When applied to ourrunning example, we obtain the
proof presentation as shown in Figure 7.

1. We show that((A ∩ B) ∨ (A ∩ C) ⊆ A ∩ B ∨ C) and(A ∩ B ∨ C ⊆ (A ∩ B) ∨ (A ∩ C)) ...because of
definition of equality

2. We assumex ∈ A ∩B ∨ C and showx ∈ (A ∩B) ∨ (A ∩ C) ...because of definition of subset
3. Therefore,x ∈ A ∧ x ∈ B ∨ C ...because of definition of intersection
4. Therefore,x ∈ A ∧ (x ∈ B ∨ x ∈ C) ...because of definition of union
5. Therefore,x ∈ A ∧ x ∈ B ∨ x ∈ A ∧ x ∈ C ...because of logics
6. Therefore,x ∈ A ∩B ∨ x ∈ A ∩ C ...because of definition of intersection ... similarly to step nr. 3
7. We are done with the current part of the proof (i.e., to showthatx ∈ (A ∩ B) ∨ (A ∩ C)). It remains to be

shown that(A ∩B) ∨ (A ∩ C) ⊆ A ∩B ∨ C. ... because of definition of union.
8. We assumey ∈ (A ∩B) ∨ (A ∩C) and showy ∈ A ∩B ∨C ...because of definition of subset
9. Therefore,y ∈ A ∩B ∨ y ∈ A ∩ C ...because of definition of union

10. Therefore,y ∈ A ∧ y ∈ B ∨ y ∈ A ∧ y ∈ C ...because of definition of intersection ... similarly to step nr. 3
11. Therefore,y ∈ A ∧ (y ∈ B ∨ y ∈ C) ...because of logics
12. Therefore,y ∈ A ∧ y ∈ B ∨ C ...because of definition of union
13. This finishes the proof. Q.e.d. ...because of definition of intersection

Figure 7: The assertion level proof in Figure 2 presented according to the rule set from Figure 6

7http://www.cs.waikato.ac.nz/~ml/weka/
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To compare the rule-based classifiers with support vector machines, we applied SMO [13]
on our data, resulting in 83.0% correctness andκ=0.57 in stratified cross validation, which is a
similar performance to C5.0.
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5 Conclusion

Granularity has been a challenge in AI for decades [11, 12]. Here we have focused on adap-
tive proof granularity, which we treat as a classification problem. We model different levels of
granularity using rule sets, which can be hand coded or learned from sample proofs.

As a case study, we have formulated the granularity level of the proof in Figure 1 from the
textbook [4] as a rule set in our classification-based approach. Classifiers are applied dynamically
to each proof step, thus taking into account changeable information such as the user’s familiarity
with the involved concepts. Using assertion level proofs asthe basis for our approach has the
additional advantage that the relevant information for theclassification task (e.g., the concept
names) is easily read off the proofs. This also eases the generation of natural language proof
output in general.

Future work consists in empirical evaluations of the learning approach — to address the fol-
lowing questions:

(i) what are the most useful features for judging granularity, and are they different among
distinct experts and domains,

(ii) what is the interrater reliability among different experts and the corresponding classifiers
generated by learning in our framework?

The resulting corpora of annotated proof steps and generated classifiers can then be used to eval-
uate the appropriateness of the proof presentations generated by our system.
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