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Abstract

The development of quantum computers has ushered in a new epoch of computing.

Currently we are in an era, where the hardware is not yet sophisticated enough to

produce reliable results. However, quantum hardware is already being used to compute

simple problems. In addition, machine learning algorithms are gaining popularity and

are being used in various areas. This thesis provides concepts for efficient simulations

using quantum algorithms and machine learning methods.

The first part of this thesis gives a brief overview on basic concepts of quantum

computing and computational quantum chemistry.

The next part is divided into two chapters and deals with methods for more efficient

simulations when using quantum hardware or simulators. The first work describes the

differences between numerical and analytical gradients on simple models. The second

chapter of this part presents a post-processing method to improve results from quantum

simulations.

In the third and last part of this thesis, a method is presented that allows a machine

learning model to be extracted from only a small number of data points from two different

chemical reactions. It can be seen that with this model, for example, the interpolation

of the potential energy surface can be achieved with an error below chemical accuracy.
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Zusammenfassung

Die Entwicklung von Quantencomputern hat eine neue Epoche der Datenverarbeitung

eingeläutet. Derzeit befinden wir uns noch in einer Ära, in der die Hardware noch nicht

ausgereift genug, um zuverlässige Ergebnisse zu erzielen. Allerdings wird Quantenhard-

ware bereits zur Berechnung einfacher Probleme eingesetzt. Darüber hinaus werden

Algorithmen des maschinellen Lernens immer beliebter und in verschiedenen Bereichen

eingesetzt. In dieser Arbeit werden Konzepte für effiziente Simulationen mit Quantenal-

gorithmen und Methoden des maschinellen Lernens vorgestellt.

Der erste Teil dieser Arbeit gibt einen kurzen Überblick über die grundlegenden

Konzepte des Quantencomputings und der Quantenchemie.

Der nächste Teil ist in zwei Hauptkapitel unterteilt und befasst sich mit Methoden

für effizientere Simulationen beim Einsatz von Quantenhardware oder -simulatoren. Die

erste Arbeit beschreibt die Unterschiede zwischen numerischen und analytischen Gradi-

enten an einfachen Modellen. Das zweite Kapitel von diesem Teil stellt eine Methode

vor, um die Ergebnisse von Quantensimulationen zu verbessern.

Im dritten und letzten Teil dieser Arbeit wird eine Methode vorgestellt, die es

ermöglicht, ein Modell für maschinelles Lernen aus einer geringen Anzahl von Daten-

punkten von zwei verschiedenen chemischen Reaktionen zu extrahieren. Es zeigt sich,

dass mit diesem Modell zum Beispiel die Interpolation der potenziellen Energiefläche

mit einem Fehler unterhalb der chemischen Genauigkeit erreicht werden kann.
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Chapter 1

Quantum Computing

Classical computers as we know them today are powerful tools to determine and sim-

ulate a large number of problems. One of the pioneers in this field was Konrad Zuse,

who developed the world’s first programmable computer in 1941 called the Z3. The

Z3, which used vacuum tubes to perform calculations, was the first computer to use

binary arithmetic and floating-point numbers, as well as electromechanical relays for

processing. Since its development in 1947, transistors replaced vacuum tubes and made

computers smaller, more reliable and less expensive to build. This invention led to the

development of the first commercial computers in the 1950s, such as the IBM 701 and

the UNIVAC I. With the birth of the integrated circuit in the 1960s and 1970s, even

smaller and more powerful computers came to life. In 1965 Gordon Moore predicted

that the number of transistors on a chip would double every two years, a prediction that

came to be known as Moore’s law. This prediction has largely held true, leading to an

increase in computing power and a decrease in cost.

In today’s computers we already observe chips containing billions of transistors using

very sophisticated fabrication methods. However, it gets more difficult to fabricate chips

that follow Moore’s law and thus the computing power might reach a saturating point

in a few years. In the 1980s, Richard Feynman proposed the idea of using quantum

computers to simulate quantum systems, which are difficult or impossible to simulate

on classical devices [1]. With the establishment of this idea important quantum algo-

rithms such as Shor’s algorithm for factoring large numbers [2] and the Deutsch-Jozsa

algorithm for finding entries in large databases [3] have been developed.

Recent advances in quantum computing hardware [4–6] have led to an increasing

interest in developing quantum algorithms for noisy intermediate scale quantum (NISQ)

computers. One of the most promising applications for these near-term quantum com-

puters is the simulation of fermionic systems, such as lattice systems or small molecules.

The determination of the ground state and its energy is one of the key aspects to gain
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Chapter 1. Quantum Computing 4

information about the system. Hybrid quantum-classical algorithms, such as the Vari-

ational Quantum Eigensolver (VQE) [7] turn out to have lower resource requirements

– compared to for instance Shor’s algorithm – making them suitable for NISQ comput-

ers. These algorithms determine the ground state energy of a system via preparing a

parametrized trial state on a quantum computer and optimizing the parameter set with

a classical optimization routine.

Even though we are still in the era of noisy intermediate scale quantum devices [8],

a number of experiments showed highly promising results regarding possible advantages

of quantum computing over conventional computing [4, 5, 9–11], with one of the most

promising field of future application being in the realm of quantum simulations, e.g., of

materials or chemical systems [12, 13], with impressive recent demonstrations [14–21].

Yet, at the current stage, quantum resources are fairly limited. Despite tremendous

achievements concerning quantum error correction [22, 23], current qubit systems are

too small for the application of quantum error correction on a sufficient scale [24–26],

leading to erroneous results due to decoherence. Furthermore, error-prone measurements

are another source of inaccuracy for algorithms discussed for NISQ devices; particularly

for variational algorithms [7, 27–29] where a large number of measurements needs to

be taken during the challenging optimization procedure of the algorithm’s variational

parameters [30–34].

Despite these challenges, Part II of this thesis will provide solutions on how to deal

with gradient calculations and post-processing on a noisy quantum computer. This

chapter gives a brief introduction to some important topics within quantum computing,

such as quantum bits, entanglement, quantum operations and decoherence.

1.1 Quantum Bits

Quantum bits, or qubits, are the basic units of a quantum computer. Unlike the classical

bit, which can only exist in one of two states, 0 or 1, qubits can exist in a superposition

of both states.

Qubits can be implemented in a variety of physical systems such as superconducting

circuits [4, 35, 36] or trapped ions [25, 37]. Each of these types of qubits has its own

strengths and weaknesses, such as fast gate and moderate coherence times for supercon-

ducting qubits and vice versa for trapped ions. However, improvements are constantly

being made to make these qubits more stable, easier to control and less sensitive to

environmental noise.

The state of a qubit can be generally written as:

|ψ⟩ = α |0⟩+ β |1⟩ , (1.1)
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σ̂x

σ̂y

σ̂z

|ψ⟩θ

φ

Figure 1.1: Graphical representation of a qubit in an arbitrary pure state |ψ⟩, which
can be completely described by the two angles θ and φ.

where α and β are complex values. Here, we consider computational basis states with

|0⟩ =

(
1

0

)
and |1⟩ =

(
0

1

)
. As we will see later, these parameters describe the probability

amplitude of a qubit being either in the |0⟩ or |1⟩ state.
If we consider the Bloch sphere representation as in Fig. 1.1, the state of a qubit

can be described in terms of its polar angle θ and azimuthal angle φ by the following

equation

|ψ (θ,φ)⟩ = cos

(
θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩ . (1.2)

1.2 Product and Entangled States

If two or more qubits interact with each other we can distinguish between product and

entangled states. Product states can be written as a tensor product of single qubit

states, such as the following example:

1√
2
(|00⟩+ |10⟩) = 1√

2
(|0⟩+ |1⟩)⊗ |0⟩ . (1.3)

This is not possible for entangled states, where the famous Bell states [38] are an example

for two qubits:
1√
2
(|01⟩+ |10⟩) , 1√

2
(|00⟩+ |11⟩) . (1.4)

While product states could be represented classically in an efficient way for a small

number of qubits this would not be possible for entangled states. Consequently, in

order to create an entangled state between two qubits, one would require a two-qubit

entangling gate (called controlled NOT or CNOT which will be discussed in the next
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section).

It is simple to construct the states in Eq. 1.4 by solely using the so-called CNOT and

Hadamard gate. Another prominent example for entangled states is the three-qubit

GHZ state [39], which is similar to the aforementioned Bell state:

1√
2
(|000⟩+ |111⟩) . (1.5)

The entanglement of qubits leads to an exponential increase in the Hilbert space, which

can be used as a computational resource. An entanglement of 50 qubits would already

lead to a Hilbert space of dimension 250, which would require a memory of several

Petabyte on a classical supercomputer to simulate this number of qubits, while adding

only one more qubit would double the amount of memory. Consequently, this feature

allows quantum computers to be much faster than their classical counterparts for certain

types of algorithms and even solve problems that would not be possible on a modern

supercomputer.

1.3 Quantum Gates

Quantum gates are the basic building blocks of quantum circuits, much as logic gates

are the building blocks of classical circuits in today’s computers. A quantum gate is

a unitary transformation that can usually operate on one or two qubits to manipulate

their states, such as flipping a qubit’s state or adding a phase to it and acts on the

state of a qubit register. These operations can be represented as matrices within the

computational basis with |0⟩ =

(
1

0

)
and |1⟩ =

(
0

1

)
for the single-qubit case, and in

the two-qubit case the tensor-product basis |0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩, and |1⟩ ⊗ |1⟩.
Assuming we have a universal gate set, each unitary operation acting on n qubits can be

divided into single- and two-qubit gates. A typical example for a universal gate set is an

entangling gate, such as CNOT or CZ, and single-qubit rotations (as defined in Eq. (1.7)).

Note that these rotations can have arbitrary angles, making them not a member of the

Clifford group. If we would solely consider Clifford gates, we could efficiently simulate

our systems classically (according to the Gottesman-Knill theorem [40]) and no quantum

computer would be required.

In the following, a few examples of one- or two-qubit gates will be presented:
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|ψ⟩ RY (
π
2 ) RX(π)

Figure 1.2: Representation of the Hadamard gate in terms of rotation gates.

• Pauli - For instance the X gate that flips the qubit state or the Z gate that adds

a phase to the qubit. The matrix representations are as follows

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
. (1.6)

• Single-qubit rotation gates - Moreover, we can use rotation gates which are

especially important when it comes to compiling quantum circuits. Rotation gates

have the following structure:

Rj(θ) = e−
iθ
2
σj , (1.7)

where θ is a tunable parameter and σj is one of the Pauli matrices.

• Hadamard - The Hadamard gate is also known as the entangling gate and puts the

qubit in a superposition of the ground and excited state.

H =
1√
2

(
1 1

1 −1

)
. (1.8)

Depending on the initial state of the qubit, we find

H |0⟩ = 1√
2
(|0⟩+ |1⟩), H |1⟩ = 1√

2
(|0⟩ − |1⟩). (1.9)

If we for instance want to transform the Hadamard gate in terms of rotation gates

up to a global phase, we could apply a 90◦ rotation around the σy axis followed by

a 180◦ rotation around the σx axis. Note, that this applies a basis change, where

the eigenvectors of Z are transformed into the eigenvectors of X, and vice versa.

The corresponding circuit is illustrated in Fig. 1.2.

• CNOT - The CNOT or CX gate flips the qubit state of the target qubit when the

control qubit is in the |1⟩ state.

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (1.10)
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• CZ - The CZ gate adds a phase to the entire state if the control and target qubit

are both in the |1⟩ state.

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (1.11)

1.4 Quantum Measurements

One of the most important paradigms of quantum mechanics is the quantum measure-

ment postulate. These are described by a collection {Mm} of measurement operators

and are operators acting on the state space of the system being measured [38]. The index

m indicates the possible measurement outcome within the experiment. If we consider

that the state of the investigated quantum system immediately before the measurement

is |ψ⟩ then the probability that the result m occurs is given by

p(m) = ⟨ψ|M †
mMm |ψ⟩ . (1.12)

The state of the system after the measurement is

Mm |ψ⟩
⟨ψ|M †

mMm |ψ⟩
. (1.13)

The measurement operators satisfy the completeness equation,

∑
m

M †
mMm = I, (1.14)

which also states that probabilities sum to one:

1 =
∑
m

p(m) =
∑
m

⟨ψ|M †
mMm |ψ⟩ . (1.15)

To illustrate this postulate better, we will perform a measurement of one qubit in the

computational basis with two outcomes defined by the two measurement operatorsM0 =

|0⟩ ⟨0| andM1 = |1⟩ ⟨1|. Each measurement operator is Hermitian, and we findM2
0 =M0

and M2
1 =M1. In addition, the completeness relation is fulfilled, I =M †

0M0+M
†
1M1 =

M0 +M1. The probability of obtaining measurement outcome 0 measuring the state

|ψ⟩ = α |0⟩+ β |1⟩ is

p(0) = ⟨ψ|M †
0M0 |ψ⟩ = ⟨ψ|M0 |ψ⟩ = |α|2 . (1.16)
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Equivalently, the probability of measuring 1 is p(1) = |β|2. The states after the mea-

surement for the two cases is given by

M0 |ψ⟩
|α|

=
α

|α|
|0⟩ ,

M1 |ψ⟩
|β|

=
β

|β|
|1⟩ .

(1.17)

Multipliers, such as α
|α| can be ignored since they are simply a global phase factor which

can be ignored. Hence, the two post-measurement states are effectively |0⟩ and |1⟩.
It should be emphasized that while we stay in the computational basis the measure-

ment of other operators than the ones described above or the Pauli Z matrix requires

a decomposition into sums of Pauli operators, where the single terms of these operators

have to be determined via basis rotations, e.g., Pauli X can be measured by applying

a Hadamard and then measuring in the Z basis, since the Hadamard gate transform

between the X and Z basis as discussed above. This is why in Part II of this work we

will see that a lot of measurements have to be performed due to these basis rotations,

since we have a large number of Pauli products.

1.5 The Variational Quantum Eigensolver

One important type of algorithms within the NISQ era are so-called variational algo-

rithms such as the VQE. They start from a trial state given by

|ψ(θ)⟩ = Û(θ) |ψ0⟩ , (1.18)

with θ defining the parameter set, Û(θ) being a parametrized unitary operator, which

is implemented by a quantum circuit and |ψ0⟩ an initial state usually chosen to be a

single Slater determinant of orbitals obtained from the mean-field solution. The energy

of this trial state for a system with Hamiltonian Ĥ can then be written as

E(θ) = ⟨ψ(θ)| Ĥ |ψ(θ)⟩ . (1.19)

Minimizing the energy with respect to the parameter set leads to the optimal energy

attainable with the Ansatz and the corresponding parameter set θopt satisfying

E(θopt) = min
θ
E(θ). (1.20)
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According to the Rayleigh-Ritz variational principle [41, 42], the exact ground state of

the Hamiltonian Eexact sets a lower bound for the variationally determined energy

Eexact ≤ E(θopt). (1.21)

1.6 Density Matrix

The density matrix is defined as

ρ =
∑
i

pi |ψi⟩ ⟨ψi| , (1.22)

with pi describing the probabilities for a system being in the corresponding state ψi.

The sum of all probabilities has to be equal to 1, i.e.
∑

i pi = 1. A system whose state

can be represented by one single vector within the Hilbert space is defined as a pure

state [38] and can be written as:

ρ = |ψ⟩ ⟨ψ| . (1.23)

The properties of a density matrix are as follows:

• The trace of a density matrix is equal to one: Tr[ρ] = 1.

• Density matrices are positive semidefinite, meaning that all eigenvalues are non-

negative: ρ ≽ 0.

• They are Hermitian, i.e. ρ† = ρ.

A further property occurs for pure states which is idempotency, meaning that the squared

density matrix is equal to the density matrix (i.e. ρ2 = ρ). We can represent the state

defined in Eq. (1.1) in terms of a density matrix:

ρ =

(
|α|2 α∗β

β∗α |β|2

)
. (1.24)

If we now recall the trace property of a density matrix, we find that |α|2 + |β|2 =

1. These are the probability amplitudes for finding the qubit either in state |0⟩ with

probability |α|2 or in state |1⟩ with probability |β|2.
In case of mixed states, we find that the density matrix is not idempotent anymore

which is due to the ”tracing out” a part of the system. If we want to describe the

effect of decoherence (see next section) we use density matrices, where the environment

causing the noise has been traced out. For this we need mixed states and hence density
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matrices.

The expectation value ⟨M⟩ of an operator M can be calculated via

⟨M⟩ = Tr (ρM) , (1.25)

which is how one would describe the outcome of a quantum measurement. In the case

of a pure state ρ = |ψ⟩ ⟨ψ|, this simplifies to

Tr (ρM) = ⟨ψ|M |ψ⟩ , (1.26)

analogously to Eq. (1.16).

1.7 Decoherence

NISQ computers face with decoherence issues, which occur due to the interaction of the

qubits with the environment. The following sections present two different formalisms

that describe the change of a one-qubit density matrix under influence of different de-

coherence types.

To describe the effect of decoherence noise we make use of the superoperator for-

malism after vectorizing the density matrix [43, 44]. For each noise type there exists a

corresponding superoperator, which will be defined in the following. Assuming a general

one qubit density matrix, we can transform it to a vectorized form

ρ1 =

(
ρ00 ρ01

ρ10 ρ11

)
→ ρ⃗1 =


ρ00

ρ10

ρ01

ρ11

 . (1.27)

As a next step, we apply the one-qubit superoperator L to the vectorized density matrix,

ρ⃗′1 = Lρ⃗1 =


1 0 0 0

0 1− 2p 0 0

0 0 1− 2p 0

0 0 0 1




ρ00

ρ10

ρ01

ρ11

 =


ρ00

(1− 2p)ρ10

(1− 2p)ρ01

ρ11

 , (1.28)

where here we used the dephasing superoperator as an example, with dephasing prob-

ability p = 1
2

(
1− e−2Γt

)
, where Γ denotes the dephasing rate and t the time the noise
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acted on the system. Transforming Eq. (1.28) back to matrix form yields

ρ′1 =

(
ρ00 (1− 2p)ρ01

(1− 2p)ρ10 ρ11

)
. (1.29)

The superoperator formalism can be extended to multiple qubits. Here, one vectorizes

the multi-qubit density matrix and expands the superoperator such that it acts on the

subspace of the respective qubit. Throughout this work, we assume that each noise type

affects all qubits equally. Hence, we sequentially apply the superoperators acting each

individual qubits, with equal noise rates for all qubits.

Dephasing was just used as an example with the superoperator given in Eq. (1.28).

It can be understood as random phase errors, i.e., Pauli Z applications on qubits with a

certain rate. Averaging over many random instances yields a density matrix equivalent

to using the superoperator formalism.

The effect of damping noise can be seen as a de-excitation of a qubit with a certain

probability, i.e., the qubit – initially being in the excited state |1⟩ – decays after a certain

amount of time to the ground state |0⟩. The superoperator for the damping channel is

given as:

L =


1 0 0 p

0
√
1− p 0 0

0 0
√
1− p 0

0 0 0 1− p

 , (1.30)

with probability p being defined as p = 1− e−Γt. Here, Γ denotes the damping rate.

Depolarization can be seen as bit and phase flip errors acting on the qubits. The

superoperator representation of this noise gate is defined as:

L =


1− 2

3p 0 0 2
3p

0 1− 4
3p 0 0

0 0 1− 4
3p 0

2
3p 0 0 1− 2

3p

 , (1.31)

with the depolarizing probability given as p = 3
4

(
1− e−Γt

)
, and the depolarizing rate

Γ. Note, that for our numerical simulations in the following we set the evolution time

to t = 1 and scale the rates Γ accordingly in dimensionless units.

Another method to describe (for instance depolarizing) noise is via the Kraus opera-

tor formalism. Since a quantum device can effectively be considered as an open quantum

system, i.e., the qubits on the quantum chip interacting with the environment, we sim-

ulate the execution of the circuits as follows: the quantum circuit is arranged in such a

way, that as many gates as possible are executed in parallel. After that the noise gate is
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|0⟩ U

N
U

N N
|0⟩ U U

Figure 1.3: Graphical illustration of a simple two-qubit circuit with one- and two-
qubit unitary operations U and three noise gates, labeled by N , describing the effect

of depolarization.

applied to all qubits in the circuit, which can effectively be described as the application

of Kraus operators to all qubits. This procedure is repeated until the measurement of

observables is performed and is illustrated in Fig. 1.3. The noise channel N̂ , acting on

a single qubit, can be described as [45]

N̂ (ρ̂) =
3∑

i=0

K̂iρ̂K̂
†
i , (1.32)

with ρ̂ being the density matrix representing the quantum system. The Kraus operators

K̂i are defined as follows:

K̂0 =

√
1− 3

4
ΓÎ, (1.33a)

K̂i =

√
Γ

2
σ̂i, i ∈ {1, 2, 3}, (1.33b)

with Γ = 1 − e−γ defining the depolarizing term and σ̂i being the Pauli operators. It

can be easily seen that in the noiseless case, i.e. γ = 0, the depolarizing term Γ vanishes

and only the Kraus operator with the identity operator Î is left, leading to a noiseless

quantum operation N̂ (ρ̂) = ρ̂. In the noisy case with γ > 0, not only K̂0, but also the

three other Kraus operators K̂i including the Pauli operators are taken into account, so

that the quantum operation N̂ induces depolarization in the system. The parameter γ,

determining the strength of the noise, is estimated as the ratio of the gate time Tg and

the coherence time T2 of a qubit.

The gate time Tg represents the time it takes to perform a given operation, for

instance the duration of a microwave pulse for controlling superconducting qubits. In

Fig. 1.3 the gate time can be viewed as the width of a single gate column, if we interpret

the horizontal direction of the algorithm as time axis. An example for a gate operation

is a qubit flip, where a qubit prepared in the |0⟩ state is flipped to the |1⟩ state after

applying an X gate on that qubit. For superconducting architectures, usual single and

two-qubit gate times range from 5 − 500 ns [35, 46], whereas trapped-ion designs show

single-qubit gate times in the microseconds and two-qubit gate times in the 10− 100µs

regime [37, 47]. The depolarization time T1 determines the time it takes for a undesired

qubit flip to occur, due to the coupling of the qubit to its environment. Hence, if we
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would like to perform N operations on a qubit, we require NTg ≪ T1 or equivalently

γ ≪ 1
N . In passing we note that the dephasing time T2 is limited by the relaxation time

T1 of the qubit, i.e., T2 ≤ 2 · T1. While typical coherence times have values in the order

of 100µs for superconducting qubits [35, 36, 48, 49], these values are several orders of

magnitude higher for ion trap devices, which can be several seconds [37]. Considering

these numbers, the ratio γ, which characterizes the noise strength, in our simulations is

chosen within

γ =
Tg
T2

∈
[
10−4, 10−2

]
. (1.34)

1.8 Fermion-Qubit Encoding

The Jordan-Wigner (JW) transformation is one way to encode a fermionic problem

into qubits. This is necessary to faithfully express fermionic operators, with anti-

commutation relations (which are defined in the next chapter in Eq. (2.1)), in terms

of qubit operators, that are spin degrees of freedom and intrinsically obey bosonic com-

mutation relations which are given by

[ap, a
†
q] = apa

†
q − a†qap = δpq,

[ap, aq] = [a†p, a
†
q] = 0.

(1.35)

with bosonic annihilation and creation operators ap, a
†
p. The transformations between

the fermionic annihilation and creation operator and the qubit representation are given

as

ck = Z0 ⊗ · · · ⊗ Zk−1 ⊗ σ+k , σ+k =
1

2
(Xk + iYk) , (1.36a)

c†k = Z0 ⊗ · · · ⊗ Zk−1 ⊗ σ−k , σ−k =
1

2
(Xk − iYk) . (1.36b)

In these equations, Xk, Yk, and Zk are the Pauli matrices of qubit k. The σ+k and

σ−k operators change the occupation number of the kth orbital, while the string of Z

operators recovers the exchange phase factor [42].

Due to its simplicity the JW encoding is a prominent example for the mapping of

fermions to qubits. It would only require M qubits to store a wavefunction with 2M

computational basis states. One downside of this encoding scheme lies in the parity. It

is stored non-locally, and it would take O(M) (with M being the number of orbitals or

qubits) operations to apply a fermionic operator.

In the next section, we will introduce fermionic anticommutation relations which are

fulfilled for this encoding scheme.



Chapter 2

Computational Quantum

Chemistry

While quantum computers offer a wide range of applications, quantum chemistry is one

prominent field providing numerous promising results even on today’s devices, raising

hope that this research area will offer meaningful results in the near-term future and

also in the quantum error correcting era.

This chapter provides a brief overview of important quantum chemistry methods,

such as the concept of reduced density matrices and mean-field methods like Hartree-

Fock.

2.1 Fermionic Anticommutation Relations

With the creation operator c†p electrons are excited into the single electron orbitals and

annihilated with the annihilation operator cp. These operators obey fermionic anti-

commutations relations [42]:

{cp, c†q} = cpc
†
q + c†qcp = δpq,

{cp, cq} = {c†p, c†q} = 0.
(2.1)

In the following we assume that a wavefunction of a system can be represented as

ψ(x0 . . .xN−1) = |fM−1, . . . , fp, . . . , f0⟩ , (2.2)

where xi = (ri, si) is the spatial and spin coordinate of the ith electron, N is the number

of electrons and M the number of orbitals in the system. fp = 1 when the pth orbital ϕp

is occupied, and fp = 0 when ϕp is unoccupied. The vector |f⟩ is known as an occupation

number vector and can be referred to as a Slater determinant.

15
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The actions of the fermionic operators on the determinants |f⟩ are given by

cp |fM−1, fM−2, . . . , f0⟩ = δfp,1(−1)
∑p−1

i=0 fi |fM−1, fM−2, . . . , fp ⊕ 1, . . . , f0⟩ ,

c†p |fM−1, fM−2, . . . , f0⟩ = δfp,0(−1)
∑p−1

i=0 fi |fM−1, fM−2, . . . , fp ⊕ 1, . . . , f0⟩ ,
(2.3)

where ⊕ is the addition modulo 2 and the phase term (−1)
∑p−1

i=0 fi enforces the exchange

anti-symmetry of fermions. From the creation and annihilation operator, we can define

the orbital occupation operator, which counts the number of electrons in a given orbital:

ni = c†ici,

ni |fM−1, . . . , fi, . . . , f0⟩ = fi |fM−1, . . . , fi, . . . , f0⟩ .
(2.4)

Using these operators, it is possible to write down any Hamiltonian within the so-called

second quantization. An example for such a Hamiltonian can be found in Eq. (2.9).

2.2 Chemical Basis Sets

Depending on the size of the system within quantum chemistry calculations there is a

variety of basis sets that can be used to determine important properties. Since a basis

could theoretically be infinitely large, it would be a computationally impossible task to

obtain solutions. Furthermore, in general the choice of a basis is not unique due to the

fact that it can be transformed as follows:

c̃i =
∑
j

Uijcj , (2.5)

where Uij are the elements of a unitary matrix.

Therefore, several basis sets can be used which will be presented in the following.

These basis sets usually differ from different approximations, for instance with respect

to the radial distribution of an atom or the number of different basis functions within

orbitals.

Single particle atomic orbitals are best understood by revisiting the most simple

atomic system, namely the non-relativistic hydrogen atom. The Hamiltonian of that

system has solutions of the form [42]

ψnlm = Rnl(r)Ylm(θ,ϕ). (2.6)

Here, n denotes the energy level of the orbital, l andm represent the angular momentum.

Rnl(r) are products of Laguerre polynomials and a term decaying exponentially with

the distance r, and Ylm(θ,ϕ) are spherical harmonics. Even though these solutions are
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exact for one electron atoms, they perform badly for many-electron systems, since these

solutions become rapidly diffuse and hence can not describe the behavior of the core

electrons precisely. Consequently, different solutions have to be used as basis states to

describe the behavior of many-electron atoms.

One option is to retain only the term in Rnl(r) with the highest power of r and

adding a parameter ζ. These functions are called Slater-type orbitals (STO) and are

written as

RSTO
n (r) ∝ (ζr)n−1 e−ζr, (2.7)

with n being the energy level and ζ being a fitting parameter, where different values are

being used for each orbital to create a good basis function. Furthermore, linear com-

binations of STO’s are required to approximate the true orbitals, as these functions do

not represent oscillatory behavior of an atom. A single basis function can be considered

for each orbital in the molecule, where for each basis function a different value for ζ is

given, known as the single-zeta representation. It is also possible to introduce n basis

functions, each with a different ζ value for each orbital, which is known as the n-zeta

representation.

While STO functions provide many desirable features, they are not well suited for

two-electron integral calculations, as this would be computationally expensive, and are

therefore not used as basis functions in practice. Consequently, Gaussian basis functions

are used to simplify two-electron integrals. These functions stem from considering the

Schrödinger equation with a three-dimensional Harmonic oscillator potential and form

of the Gaussian type orbitals (GTOs) is given by

RGTO
nl (r) ∝ (

√
αnlr)

l e−αnlr
2
, (2.8)

where αnl is a fitting parameter. As can be seen easily, due to the dependence on r2

in the exponent, GTOs are more localized than STOs leading to a weak approximation

of the atomic charge distribution. This means that more GTOs would be required to

describe a given orbital, however this limitation is compensated by the ease of the two-

electron integral evaluation.

To get a good starting point and a qualitative description of the system, so called

STO-nG basis sets can be introduced, where nG stands for n-Gaussians. In this basis

set, each atomic orbital is considered to be an STO, being approximated using n GTOs.

These basis sets are often referred to as minimal basis sets, as they include only orbitals

required to write the Hartree-Fock state.

Further common basis sets are the split-valence (or Pople [50]) and the correlation-

consistent basis sets, which can be used to obtain more accurate results. Split-valence

basis sets, such as the 6-31G basis include only the minimal orbitals as well, but better

approximate the true orbitals than the STO-nG bases. This is due to the increased radial
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flexibility for the valence electrons. The core orbitals are described by one approximate

STO, constructed from a linear combination of six GTOs, with each valence shell orbital

having a double-zeta representation. Two approximate STOs are introduced for each

valence orbital: the more localized STO consists of three GTOs, while the more diffuse

one is represented by a single GTO.

To even more increase the accuracy, we can introduce so-called correlation consistent

polarized valence n-zeta (or cc-pVnZ) basis sets, which were introduced by Dunning [51].

To recover the correlation energy these basis sets include additional unoccupied (or

virtual) orbitals being generated from correlated calculations on atoms. The core atoms

have a single-zeta and the valence atoms have an n-zeta representation. The considered

virtual orbitals are polarization functions with higher angular momenta than the valence

orbitals and these polarization functions are selected by the size of their contribution to

the correlation energy.

2.3 Molecular Hamiltonian and Reduced Density Matrices

We consider systems described by a spin-separated molecular Hamiltonian

H = const. +
∑
ij

hijc
†
icj +

∑
ijkl

Vijklc
†
ic

†
jclck, (2.9)

where const. collects all non-electron effects such as the interaction between the nuclei,

c(†) denotes the creation (annihilation) operators of the spin orbitals, and with the one-

and two-electron tensors hij and Vijkl:

hij =

∫
drϕ∗i (r)

(
−∇2

2m
+
∑
I

ZI

|r −RI |

)
ϕj(r), (2.10a)

Vijkl =

∫
drdr′

ϕ∗i (r)ϕ
∗
j (r

′)ϕk(r
′)ϕl(r)

|r − r′|
. (2.10b)

Here, hij contains all one-electron effects such as the kinetic energy and the Coulomb

interaction between the electron and the nuclei, where ϕ(r) denotes the spatial basis

function. The two-electron integral Vijkl describes the Coulomb interaction between the

electron located at position r and the electron located at r′.

The energy of a state |ψ⟩ with respect to this system is given by the expectation

value of the Hamiltonian given in Eq. (2.9),

E = ⟨H⟩ = const.+
∑
ij

hij ⟨c†icj⟩+
∑
ijkl

Vijkl ⟨c†ic
†
jclck⟩ = const.+

∑
ij

h1ijD
i
j+
∑
ijkl

V 2
ijklD

ij
kl,

(2.11)
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where we introduced the shorthand notation ⟨·⟩ = ⟨ψ| · |ψ⟩, and the one-particle and

two-particle reduced density matrices (1-RDM and 2-RDM):

1Di
j = ⟨c†icj⟩ = ⟨ψ| c†icj |ψ⟩ , (2.12a)

2Dij
kl = ⟨c†ic

†
jclck⟩ = ⟨ψ| c†ic

†
jclck |ψ⟩ . (2.12b)

When calculating the energy of a state on a quantum computer, one would map the

fermionic operators onto qubits, e.g., using the Jordan-Wigner transformation, and mea-

sure the elements of the RDM. However, with a NISQ device in particular and finite

computational resources one will obtain an erroneous result due to decoherence and shot

noise (more on our considered noise types and their respective descriptions in Sec. 4.2).

2.4 Ensemble N-Representability Conditions

As we will analyze in Chapter 4 we can reduce energy errors and measurement variances

by post-processing the result where we utilize knowledge about certain constraints that

the 1- and 2-RDM need to fulfill. Specifically, we utilize the fact that an RDM needs to

obey the so-called N -representability conditions if it is derived from a proper state of N

fermions. There is a variety of these conditions, especially when specifying how many

particles are distributed over how many orbitals; but this work we focus on just a few

constraints which generally hold for any fermionic systems with a well-defined particle

number (note that this is the case in chemical electronic structure problems) [52, 53]:

1. Hermiticity – It is easy to see from Eqs. (2.12a) and (2.12b) that the 1- and

2-RDM are Hermitian, meaning that:

1Di
j = (1Dj

i )
∗, (2.13a)

2Dij
kl = (2Dkl

ij )
∗ (2.13b)

2. Antisymmetry – Making use of fermionic anticommutation relations, we can

rewrite the elements of the 2-RDM:

2D
ij
kl = −2D

ji
kl = −2D

ij
lk = 2D

ji
lk. (2.14)

3. Positive semidefiniteness – The 1- and 2-RDM has to be positive semidefinite,

meaning that all eigenvalues of the matrices have to be non-negative.
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4. Trace integrity – From their definition one can derive that for a state with a

well-defined particle number N the traces of the 1- and 2-RDM are given by:

∑
i

1Di
i = N , (2.15a)∑

ij

2Dij
ij = N(N − 1). (2.15b)

5. Contractibility – Related to the trace relation, for an N particle state, one can

find the 1-RDM elements by contraction of the 2-RDM:

1Di
j =

1

N − 1

∑
k

2D
ik
jk, (2.16)

2.5 Hartree-Fock

The Hartree-Fock (HF) theory is a fundamental method in quantum chemistry that is

used to calculate the electronic structure of a molecule [42]. It is a self-consistent field

(SCF) method that provides an approximate solution to the Schrödinger equation for a

many-electron system and aims to find the dominant Slater determinant in the system

wavefunction. HF is based on the idea of a mean-field approximation, which assumes that

the behavior of each electron in the system is influenced by an average field generated

by all the other electrons. The theory provides a reasonable approximation to the true

wave function and is a useful starting point for more sophisticated methods – such as

CASSCF or CCSD – that take into account electron correlation effects that are not

captured by the simple Slater determinant.

To find the dominant Slater determinant of the system, the spatial shape of the

spin-orbitals is optimized in order to minimize the energy of the wavefunction [42].

Usually, a set of M orbitals is considered which is larger than the total number of

electrons N in the molecule. This means that N orbitals are occupied, while M − N

orbitals remain unoccupied or virtual. Since the electron-electron repulsion term (2.10b)

is neglected within the HF method the problem is reduced to N independent electrons.

As mentioned above, it is then assumed that each electron moves in an average charge

distribution of all other electrons, introducing an effective potential. Following this

assumption, the N coupled equations can be solved iteratively: first the positions of

all electrons are determined, then the potential is updated, and the process is repeated

until the orbitals converge. In the context of second quantization, this procedure is

carried out by repeatedly updating the orbitals to construct the Fock operator – which

contains the Coulomb and exchange operator to approximate the single-electron energy
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– diagonalizing the Fock operator to obtain new orbitals, and repeating until the orbitals

converge.

2.6 Density Functional Theory

The aim within density functional theory (DFT) is to solve the Kohn-Sham equation,

which is very similar to the time independent Schrödinger equation. The idea behind

DFT is to write the energy as a functional of the electron density:

E[n(r⃗)] =

∫
ϵxc(n)n(r⃗)dr⃗, (2.17)

where ϵxc(n) is the exchange-correlation energy density and n(r⃗) is the electron density.

Eq. (2.17) makes use of the so-called local density approximation (LDA), where the

functional only depends on the electron density at the coordinate where the functional

is evaluated [54].

The usual procedure within a DFT calculation is to start with an initial guess for

the electron density n(r⃗) and determine the effective potential, which is given as

Veff(r⃗) = Vext(r⃗) + VH[n(r⃗)] + Vxc[n(r⃗)]. (2.18)

Here, Vext(r⃗) is the external potential, VH[n(r⃗)] is the Hartree term covering the electron-

electron Coulomb repulsion, and the last term Vxc[n(r⃗)] is the exchange correlation

potential, including all many-particle interactions.

Next, the Kohn-Sham equations are solved, which take the following form:(
− ℏ2

2m
∇2 + Veff(r⃗)

)
ψi(r⃗) = ϵiψi(r⃗). (2.19)

From the solutions of the Kohn-Sham equations, we can derive the electron density:

n (r⃗) =
∑
i∈occ

|ψi (r⃗)|2 , (2.20)

where the index i solely runs over the occupied orbitals. The final step checks for

self-consistency; if the procedure did not converge, the steps are repeated exactly as

described above, however if convergence is achieved the electron density of the many-

body system is found and can be used to determine properties, such as the energy and

gradients of a system.

DFT can return good initial guesses using fewer computational resources and requir-

ing less time than its higher level counterparts, such as CASSCF and CCSD (see next

sections). Depending on the system and investigated property, it is possible to choose



Chapter 2. Computational Quantum Chemistry 22

between a variety of exchange and correlation functionals. One prominent example is

the B3LYP functional [55], which includes three exchange and two correlation functionals.

This hybrid functional performs well for basic properties such as the determination of

atomization energies, whereas it is struggling with reaction energies and some metals.

Consequently, one has to be careful with the specific choice of functionals since not all

of them can “cover” certain physical or chemical properties. Additionally, it is very

difficult to find the exact functional(s) for one specific problem. Therefore, a heuristic

choice of functionals is used which highlights the limits of DFT in terms of accuracy

when compared to other methods. For this reason usually one has to recall higher-level

methods such as CASSCF or CCSD to get better results.

2.7 Complete Active Space Self Consistent Field

If we now consider strongly correlated systems, the above-mentioned HF method per-

forms only poorly. Methods such as configuration interaction or coupled clusters (see

next section) are effective at recovering dynamic correlations, whereas for states where

multiple Slater determinants are equally important, static correlation dominates. Exam-

ples for static correlation are excited states and systems at the dissociation limit. One

method to solve these problems is to use the complete active space self-consistent field

method (CASSCF) [56]. This method considers the most important orbitals in the sys-

tem (the so-called active space) and performs a multiconfigurational self-consistent field

(MCSCF) calculation on all the determinants that could be generated from distributing

all electrons in the orbitals within this active space. The MCSCF approach includes a

wavefunction with several Slater determinants and performs a variational optimization

for the molecular orbitals and determinant amplitudes. The exact quantum mechani-

cal description of the active space is computationally expensive, since the Hilbert space

scales exponentially with the number of active orbitals.

2.8 Configuration Interaction

The configuration interaction (CI) method generates a correlated wavefunction by con-

sidering excitations above a reference state, which is usually chosen to be the HF state.

The full configuration interaction (FCI) wavefunction is recovered if all determinants are

included. Considering all excitations above the HF wavefunction we find the expression
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for the FCI wavefunction

|ψFCI⟩ =

I +∑
i,α

Tiαc
†
icα +

∑
i,j,α,β

Tijαβc
†
ic

†
jcαcβ + . . .

 |ψHF⟩ , (2.21)

where T are the parameters to be variationally optimized. This method has to be

restricted to a small number of excitations, as the inclusion of all determinants is clas-

sically intractable. Usually, single (CIS), double (CISD) and sometimes triple (CISDT)

excitations are used in calculations. These restrictions lead to good approximations

to the ground state energy because low energy excitations dominate the ground state

wavefunction. The disadvantages of this method are the slow convergence to the FCI

wavefunction and that it scales exponentially with the number of orbitals.

2.9 Coupled Cluster

The coupled cluster (CC) wavefunction is given by

|ψCC⟩ = eT |ψHF⟩ , (2.22)

with T =
∑

i Ti and

T1 =
∑

i∈virt,α∈occ
tiαc

†
icα,

T2 =
∑

i,j∈virt,α,β∈occ
tijαβc

†
ic

†
jcαcβ,

. . .

(2.23)

where occ denotes occupied and virt denotes unoccupied or virtual orbitals in the

Hartree-Fock state. The excitation amplitudes t are variationally optimized. In this

case we will only consider single and double excitations (CCSD), since it is classically

intractable to include all excitations. The CCSD method generates a trial wavefunction

which includes all possible determinants and because of its product parametrization it

provides faster convergence than the CI method. Due to its non-unitary nature the

resulting CC wavefunction does not obey the Rayleigh-Ritz variational principle. In

contrast to CASSCF, CC is not able to deal with systems underlying strong static cor-

relation.
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2.10 Data Sets within Machine Learning

There is a large number of different methods within machine learning ranging from

kernel-based methods to neural networks [57, 58]. In this section we will give a short

overview of the three main components within a dataset that are used for finding the

ideal machine-learned model: the training, validation and test set [59].

A training data set is a set of data points used during the learning process and used

to fit parameters (such as weights) of, for example, a classifier. Such a classifier can be

kernel-based and defined as

(Kσ + λI) α⃗ = O⃗, (2.24)

where Kσ is the kernel containing the input of the dataset, the vector α⃗ includes the fit

parameters (or weights) and O⃗ is the output vector. σ and λ are hyperparameters that

are optimized during the validation step – we will discuss these parameters later.

The aim is to determine the optimal combinations of variables that will generate a

good predictive model and to produce a trained (fitted) model that generalizes well to

unknown data. The fitted model is evaluated using data points from different datasets

(i.e. validation and test set) to estimate the model’s accuracy in classifying new data.

To reduce problems such as over-fitting, the data points within the validation and test

set should not be used to train the model.

A validation data set is used to tune the hyperparameters (such as σ and λ in

Eq. (2.24)) of a classifier. It is important to note that all data sets have to follow the

same probability distribution. The validation set is another important pillar to avoid

over-fitting. If, for instance, we are interested in finding the most suitable classifier for

a problem, the training set is used to train the different candidate classifiers, the valida-

tion set is used to compare their performances and decide which one to take. The test

set is used to obtain the performance characteristics (such as the accuracy) as a final

step. In our example Eq. (2.24), we have defined two hyperparameters, where λ is set

to a small constant value and σ is the parameter to be optimized, which is used within

symmetric gradient domain machine learning (sGDML) [57]. To find the optimal value

for σ, sGDML makes use of early stopping, where the candidate models are successive

iterations of the same kernel, and training stops when the error on the validation set

grows, making the routine to choose the previous model.

A test set is independent of the training set, but follows the same probability dis-

tribution as the training set. If a model fit to the training set fits the test set equally

well, minimal over-fitting has taken place. Therefore, a test set is only used to assess

the performance of a fully specified classifier. To do this, the final trained model is used

to predict classifications, such as the accuracy, of data points within the test set. In a

case where both validation and test sets are used, the test set is typically used to assess
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the final model that is selected during the validation process. It is possible to divide

the entire data set into two subsets only, namely the training and test set, making the

test set assessing the model only once. In other words, the hyperparameter σ is already

given a fixed value, so that the validation step is skipped. While this approach is not

recommended, one could use a method such as cross-validation, the partitioning into

two subsets might be sufficient since the results are averaged after repeated rounds of

model training and testing.
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Chapter 3

Analyzing Gradients in

Variational Algorithms

The definition of the trial state depends on the choice of the Variational Quantum

Eigensolver (VQE) Ansatz. One Ansatz that is well suited for lattice systems is the

Variational Hamiltonian Ansatz (VHA) [28, 60, 61], stating that for each term of a

generic decomposition of the Hamiltonian a separate parameter is defined. This way,

the number of parameters, and thus the circuit depth can be reduced compared to other

VQE Ansätze, such as the unitary coupled cluster with single and double excitations

(uCCSD) [62]. In the uCCSD Ansatz parameters are defined based on single and double

excitations of electrons from occupied to unoccupied (molecular) orbitals thus the num-

ber of parameters grows polynomially with the system size – with the excitation level

determining the highest power of the polynomial scaling. By contrast, the VHA uses

the structure of the Hamiltonian to determine the variational form. Therefore, periodic

lattice Hamiltonians, which are typically characterized by a sparse Hamiltonian with

few independent coupling constants yield an Ansatz where the number of parameters

does not scale with the system size.

The VHA is inspired by an adaptation of the so-called “adiabatic connection” from

many-body perturbation theory [63, 64]. Starting from the solution (ground state) of

non-interacting electrons the state is evolved on the quantum computer using a sequence

of unitary propagators constructed using parts of the fully-interacting Hamiltonian. The

variational parameters correspond to the propagation times of each unitary operator.

Having opted for the VHA to provide the parametrized trial state, the parameter set is

optimized such that the expectation value of the interacting Hamiltonian is minimized.

This chapter has been published in ”T. Piskor, J.-M. Reiner, S. Zanker, N. Vogt, M. Marthaler,
Frank K. Wilhelm, and F. G. Eich, Phys. Rev. A 105, 062415 (2022)”. Copyright (2022) by the
American Physical Society. The text was largely authored by T. Piskor. All numerical simulations were
performed by T. Piskor.
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There are several approaches to determine the optimal parameter set for a given cost

function ranging from gradient-free [65, 66] to gradient-based algorithms [67], which

usually lead to faster convergence compared to the gradient-free alternatives. In the

present work we focus on the analysis of the evaluation of gradients on NISQ computers,

which means that we are less concerned about the specific gradient-based optimization

algorithm. Hence, we use a simple steepest-descent approach for the optimization, where

the parameters are updated using the gradient of the energy directly, employing a fixed

learning rate (damping of the gradient).

The main question we address in this work is how measurement statistics and noise

affect the optimization of the parameters appearing in the quantum circuit. Since we

always have to perform measurements in order to get the expectation value of an ob-

servable, shot noise will always be existent – even on error-corrected quantum devices.

However, when simulating the quantum device we can obtain the limit of an infinite

number of measurements, providing us with the ideal reference result for the algorithm.

Furthermore, due to adverse coupling of the qubits to the environment, another source

of error has to be considered, namely the intrinsic depolarization of qubits. However, we

find that the dominant error for the noise model chosen in our simulations stems from

measurement statistics.

For the determination of the cost function’s gradient we compare two procedures: 1)

the finite-difference approximation to compute the gradients, which we also refer to as

“numerical” method, 2) the so-called parameter-shift rule, which we also refer to as “an-

alytical” method [33, 68–71]. While calculating the gradient numerically, the outcome of

the result is more susceptible towards noise effects, such as shot noise or depolarization

effects occurring in qubits, because there is a competition of improving the numerical

gradient by reducing the finite step size to evaluate the gradient versus resolving dif-

ferences of the cost function evaluated for two nearby values of a given parameter. To

bypass this hurdle, gradients can also be determined analytically via the parameter-shift

rule, with the hope to show a more resilient behavior [68] to noise effects, because it

relies on a fixed finite difference. However, there is an important caveat for using the

parameter-shift rule for optimizing a VHA: Compared to the numerical case, where the

number of additional circuit evaluations only grows with the number of parameters, the

number of additional circuit evaluations grows with twice the number of parametrized

gates for the parameter-shift rule. While the number of parameters solely depends on

the Ansatz, the number of parametrized gates depends on the implementation of the

trial state in the quantum circuit. In general, it has to be considered that one parameter

might occur in multiple parametrized gates – especially in case of the VHA (see section

1.5) – and thus the number of parameters might be much smaller than the number of

parametrized gates.
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In the following we compare both methods for determining the gradients, using a sim-

ple gradient-based optimization algorithm, by investigating a simple one-qubit circuit

and a 2- and 6-site Hubbard model, mapped onto 4 and 12 qubits, respectively. Sec. 1.5

discusses the VHA in more detail and Sec. 3.2 presents the simple gradient-based opti-

mization routine and compares the two approaches for determining the gradient. Sec. 3.3

details how many additional circuits are required to determine numerical and analytical

gradients. A brief overview on how noise has been implemented in our simulations is

given in Sec. 1.7. Finally, results are shown for the simple quantum circuit in Sec. 3.4.1

and for the one-dimensional Hubbard model in Sec. 3.4.2.

3.1 The Variational Hamiltonian Ansatz and 1D Hubbard

Model

Starting with an initial guess, θ0, the parameter set is updated iteratively, using the

procedure described in Sec. 3.2, to approach the optimal solution.

The explicit form of the unitary operator within the variational Hamiltonian Ansatz

(VHA), Û(θ), is constructed by decomposing the Hamiltonian into P separate terms,

as stated in Eq. (3.1a). The partial contributions to the Hamiltonian are Hermitian

operators, so we can use them as generators for unitary rotations. Since the partial

contributions do not commute in general, the order in which the unitaries are applied

matters. In practice, we repeat the application of the unitaries R times and allow for

different parameters (or rotation angles) in each repetition (Eq. (3.1b)) yielding a total

number of n = RP free variational parameters,

Ĥ =
P∑

α=1

Ĥα, (3.1a)

Û(θ) =
R∏

k=1

P∏
α=1

eiθα,kĤα . (3.1b)

In this work we investigate the 1D Hubbard model which is described by the Hamiltonian

Ĥ = T̂ + Ŵ

= −t
∑
i

∑
σ

(
ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ

)
+ U

∑
i

(
ĉ†i,↑ĉi,↑ −

1

2

)(
ĉ†i,↓ĉi,↓ −

1

2

)
,

(3.2)

with the first term describing nearest-neighbor hopping between site i and i + 1 and

spin σ, being either in the spin up ↑ or spin down ↓ state (kinetic energy) with hopping
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amplitude t and the second term describing the repulsion of two electrons on the same

site with interaction strength U . We consider a system is at half-filling – an average

of one electron per site. In our studies we focus on the case where the kinetic energy

and the interaction have the same magnitude and use t as our unit of energy, i.e.,

U = t = 1. Moreover, we employ periodic boundary conditions. The Hubbard model at

half filling is a prototypical model describing a Mott insulator, i.e., an insulator where

the fundamental gap is due to electron-electron interaction and any (static) mean-field

theory would yield a metal (unless the symmetry is artificially broken).

Quite naturally Hamiltonian (3.2) can be split into two contributions, i.e., the kinetic

energy T̂ and the interaction energy Ŵ. For system sizes larger than 2 sites the hopping

operator is split further into a so-called “even” and “odd” contribution, T̂e and T̂o.
The individual contributions to each of the three parts of the Hamiltonian, T̂e, T̂o and

Ŵ, commute among each other, which implies that each exponential can be split and

reordered easily without using the Baker-Campbell-Hausdorff formula.

3.2 Gradient Descent Optimizer

In this work we are interested in investigating how noise affects the synthesis of gradients

of the cost function (cf. Eq. (1.19)). While there are several established algorithms, such

as the BFGS algorithm [72–75], for gradient-based optimization, we decided to use a

very simple approach, namely a (damped) steepest-descent optimizer, in order to reduce

the complexity in the optimization process and focus on the gradient. Specifically, we

update a parameter θi according to

θτ+1
i = θτi − η∂θiE(θτ ), (3.3)

where ∂θiE(θ) denotes the derivative of the cost function with respect to θi, η is a

fixed learning rate (damping) controlling the step size towards the minimum of the cost

function and θτi is the ith parameter at iteration step τ . The parameter set at iteration

τ + 1 is given by the parameter set at step τ modified by the cost function’s gradient

scaled by the learning rate η. Compared to other gradient-based optimizers [67], the

steepest-descent optimizer is very simplistic in its form, since it contains only one fixed

hyperparameter. Since no information beyond the gradient, such as an approximate

Hessian matrix, is used, algorithm (3.3) may converge slower than, for example, the

aforementioned BFGS optimizer.

In order to determine the gradients for the optimization routine, two possibilities

will be discussed throughout this work. On the one hand, gradients can be determined
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numerically with a finite-difference method:

∂θiE(θ) ≈ 1

ϵ

(
E(θ1, . . . , θi + ϵ, . . . , θn)

−E(θ1, . . . , θi, . . . , θn)
)
,

(3.4)

with ϵ defining a small but finite step by which the parameter θi is shifted. This im-

mediately implies that the number of additional circuit evaluations for obtaining the

gradient using the finite-difference method corresponds to the number of parameters.

However, this method may be more susceptible towards noise effects, such as statistical

or depolarization noise due to the fact that the energy difference (cf. Eq. (3.4)) is getting

smaller, and therefore harder to resolve, if we improve the accuracy of the gradient by

making the step width ϵ smaller.

On the other hand we determine gradients analytically with the so-called parameter-

shift rule [68]. At its core the parameter-shift rule uses the fact that the cost function

generally is represented by a quantum circuit composed of (parametrized) single-qubit

rotations and fixed two-qubit gates. Note, that every unitary can be represented in such

a form (e.g., using CNOT plus arbitrary single-qubit rotations as a universal gate set [38])

and that we use such decompositions in our simulations to implement the exponentials

of the VHA in Eq (3.1b). Note also, that for the decompositions of the VHA evolution

a single parameter θα,k will in general appear in multiple rotation gates; however, for

the application of the parameter-shift rule they will need to be treated individually in

order to evaluate the gradient. Focusing on the dependence of the energy on a single

parameter θ1, which we assume to only control one single-qubit gate, the energy, Eq.

(1.19), can be written as,

E(θ1; θ2, . . . , θn) = A1 cos(ωθ1 + φ1) + . . .

. . .+Aα cos(ωθ1 + φα) + . . .+ C,
(3.5)

with amplitudes Aα, phase shifts φα and constant C, which depend on all other param-

eters θ2, . . . , θn (see appendix 3.A for a detailed derivation). The distance between the

two eigenvalues of the generator for the single-qubit rotation is denoted by ω – for Pauli

matrices we have ω = 2. The main idea of the parameter-shift rule is to consider the

derivative of a trigonometric function,

∂θ cos(ωθ + φ) = −ω sin(ωθ + φ)

=
ω

2

[
cos
(
ω
[
θ +

π

2ω

]
+ φ

)
− cos

(
ω
[
θ − π

2ω

]
+ φ

)]
,

(3.6)
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which highlights that the exact derivative with respect to the parameter θ is obtained

by taking the difference of two quantum circuits, where the parameter is shifted by ± π
2ω ,

respectively. The parameter-shift rule, as presented above, is based on the assumption

that a parameter θi only controls a single single-qubit gate (cf. App. (3.A)). However,

the parameter θi can appear in more than one gate for the VHA Ansatz. This is due to

the fact that the parameters are defined in Eq. (3.1b) in reference to generators from the

electronic Hamiltonian. In transforming the electronic Hamiltonian into the quantum

circuit several single-qubit rotations are parametrized, in general, by the same parameter

θi. Hence, the parameter-shift rule cannot be simply applied to the parameters defined

in Eq. (3.1b). Use of the parameter-shift rule can be vindicated by defining a new set of

parameters, µ, which assigns each parametrized single-qubit gate its own parameter µj

(j = 1, 2, · · · ,m− 1,m, where m ≥ n). Then we can compute the gradient with respect

to the new set of parameters as

∂µjE(µ) = r
[
E
(
µ1, . . . ,µj +

π

4r
, . . . ,µm

)
−E

(
µ1, . . . ,µj −

π

4r
, . . . ,µm

)]
.

(3.7)

Note that the parameter r, controlling the “step width”, in principle depends on the

explicit form of the unitary operator, Eq. (3.1b), but we can always define a linear map

from the parameter set θ to µ, such that r is the same for all parametrized gates (r = 1
2

for standard Pauli rotations, see e.g. Ref. [68] for details).

We emphasize that the parameter-shift rule yields, in principle, the exact gradient

and not an approximation as the finite-difference method described above. Moreover, the

parameter-shift rule is potentially more resilient towards noise and other effects, because

– in spite of being exact – it is evaluated using a finite difference with a step width on the

order of the spectral width of the generator (typically a scaled Pauli matrix). However,

the number of circuit evaluations scales with the number of parametrized gates and thus,

with increasing system size, requires more circuits than the finite-difference method. In

our work we consider a specific Ansatz, the VHA, for generating the variational quantum

circuit, which requires discussing the difference between the number of parameters, n

(number of components for θ), and the number of parametrized gates, m (number of

components for µ). For a generic variational quantum circuit, which aims at optimizing

all single-qubit gates independently, the number of parameters coincides trivially with

the number of parametrized gates.
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3.3 Circuit Evaluation

In this section, we highlight the difference between the number of parametrized gates,

m, and the number of variational parameters, n, mentioned in the previous section,

to expose the additional overhead for using the parameter-shift rule, i.e., the fact that

m ≥ n. An overview for the one-dimensional Hubbard model is given in Table 3.1,

where we compare the number of parameters and the number of parametrized gates for

1D Hubbard rings of various sizes (number of sites). Therefore, a circuit was generated

using a two-qubit decomposition [76, 77], consisting of one-qubit rotation gates and a

two-qubit controlled-Z gate.

# sites M
Hilbert space size

22M
# parameters

# parametrized
gates

2 16 2 10
4 256 3 28
6 4,096 3 42
8 65,536 3 56
10 1,048,576 3 70
12 16,777,216 3 84
14 268,435,456 3 98
16 4,294,967,296 3 112

Table 3.1: Number of parameters and parametrized gates for 1D Hubbard chains
with varying number of sites.

Table 3.1 shows the number of parameters and parametrized circuits for various sizes,

determined by the number of sites M in the one-dimensional Hubbard model. In the

case of M = 2 with one repetition for the Ansatz made in Eq. (3.1b), we only have two

parameters, namely one parameter for the hopping operator and one for the interaction

operator. Increasing the site number to M = 4 or M = 6 yields one further parameter

per repetition, since we now also split the hopping term (kinetic energy) into two inter-

nally commuting contributions (labeled “even” and “odd”). The total number of circuits

to evaluate for calculating energy and gradient with the finite-difference method is given

by the number of parameters, i.e., one circuit for each parameter shifted by ϵ, plus the

circuit with no shift applied to any parameter. Considering the 2-site Hubbard model

with one repetition in the VHA, which implies two parameters, a total number of three

circuits would be required in order to evaluate the gradient and the energy. Increasing

the number of repetitions from one to two, leading to four parameters, 5 circuits have

to be evaluated in order to determine the energy and its gradient. In general, the total

number of circuit evaluations required for gradient and energy determination is given
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by Nfd = RP + 1 = n+ 1 when using the finite-difference method, where P defines the

number of parameters and R the number of repetitions in the VHA (cf. Eq. (3.1b)).

For the parameter-shift rule, the additional circuits for evaluating the gradient is

proportional to twice the number of parametrized gates, leading to 21 circuits for the

2-site Hubbard model with one repetition. Similarly to the finite-difference case, the

number of parametrized gates scales linearly with the number of parameters and there-

fore also with the number of repetitions. In general, the number of circuits required

using the parameter-shift rule can be written as Nps = 2C(M)RP + 1 = 2m+ 1, where

we introduced the coefficient C(M), which translates the number of parameters to the

number of parametrized gates. Considering the data in table 3.1 and system sizes larger

than 2 sites, we get C(M) = 7
3M , which implies that the number of additional circuits

scales linearly with the system size using the Jordan-Wigner transformation [78] to map

fermionic sites to qubits. Note, that this scaling is still superior to uCCSD which scales

quadratic at best [7].

3.4 Results

In this section, we present numerical results for a simple quantum circuit and the one-

dimensional Hubbard model with two and six sites. In all cases, 50000 measurements

have been performed in order to get the averaged result of the respective observables.

Both, the finite-difference and parameter-shift algorithm have been performed five times

to get the stochastic effect of the finite number of measurements. The shaded areas in the

upcoming plots thus mark the worst (highest value) and the best (lowest value) energy

for each iteration step and do not represent the standard deviations of the optimization

runs. The solid lines mark runs without any effect of shot noise, representing the case

where the number of measurements N → ∞.

3.4.1 Simple Circuit

In order to get a better understanding of the gradient descent optimizer, a simple one-

qubit circuit has been investigated, where at first a Hadamard gate is applied to the

prepared ground state |0⟩ followed by a rotation Z gate (see Eq. (3.8a)). After this

operation, a measurement of the Pauli X operator is performed, leading to a trivial
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periodic function

|ψ(θ)⟩ = Û(θ) |ψ0⟩ = R̂z(θ)Ĥ |ψ0⟩

=

(
e−iθ/2 0

0 eiθ/2

)
1√
2

(
1 1

1 −1

)(
1

0

)

=
1√
2

(
e−iθ/2

eiθ/2

)
,

(3.8a)

E(θ) = ⟨X̂⟩ = ⟨ψ(θ)| X̂ |ψ(θ)⟩ = cos(θ). (3.8b)

The minimum of Eq. (3.8b) is attained for θ = (1 + 2p)π (p ∈ Z) with a minimal value

of Eexact = −1.

3.4.1.1 Shot Noise

Fig. 3.1 shows optimization runs for different values of ϵ for the finite-difference method,

as well as runs performed with the parameter-shift rule with N = 50000 measurement

shots. Note that in all plots, starting from Fig. 3.1, we are using a logarithmic scale for

the energy differences shown on the y-axis. The solid lines indicate simulations without

any source of noise (N → ∞) and the shaded areas with the corresponding color are

obtained as the envelope of five runs performed with statistical errors (N = 50000),

i.e., the upper line marks the maximum and the bottom line indicates the minimum of

the relative deviation from the optimal value at a given iteration of the optimization,

respectively. Focusing on the N → ∞ results, it can be seen that with decreasing ϵ

the accuracy gets better, which highlights the error introduced by approximating the

derivative using a finite difference. However, if statistical effects are included it can also

be seen that the fluctuations around the optimal curve increase with smaller ϵ, clearly

exposing that smaller ϵ are more prone to statistical errors. Considering the optimization

runs performed with the parameter-shift rule it can be seen that the on the one hand, a

more accurate result is achieved for the noiseless run (N → ∞), demonstrating that the

parameter-shift rule yields the exact gradient, and on the other hand the fluctuations

around the optimal curve are smaller compared to the finite-difference runs with ϵ = 0.02.

3.4.1.2 Shot and Depolarization Noise

Including the effect of depolarization noise, we observe that the deviation from the cost

function’s minimum increases. This is most pronounced for the parameter-shift rule and

small values of ϵ for the finite-difference method. We can attribute this to the fact that
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Figure 3.1: Optimization runs using a simple gradient descent Ansatz performed
with the finite-difference method compared to the parameter-shift rule for the simple
circuit and N = 50000. The bold line indicates a run without shot noise, whereas the
corresponding shaded region marks five optimization runs performed with shot noise.

For all optimization runs, a learning rate of η = 0.5 has been used.

the error introduced by using a larger ϵ in the finite difference dominates the overall

error. This is depicted in Fig. 3.2, where for the two mentioned cases a small shift away

from the minimum can be seen, compared to the noiseless run in Fig. 3.1. Increasing

the depolarization rate further leads to a higher deviation from the minimum for all

cases, as can be seen in Figs. 3.3 and 3.4. Especially for the case where γ = 10−2,

the finite-difference curves with the two smallest ϵ and the parameter-shift curve nearly

show the same result for the cost function after 50 iteration steps, clearly showing that

the depolarization error dominates the overall error.
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Figure 3.2: Same plot as Fig. 3.1, but with depolarization noise, characterized by the
rate γ = 10−4 included in the simulation.
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Figure 3.3: Same plot as Fig. 3.2, but with a depolarization rate of γ = 10−3.
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Figure 3.4: Same plot as Fig. 3.2, but with a depolarization rate of γ = 10−2.

3.4.2 Results for the 2-site Hubbard Model

Next, we study the one-dimensional Hubbard model by performing optimization runs

with shot noise only and with shot and depolarization noise. The Hubbard Hamiltonian

is defined in Eq. (3.2), where the initial state, |ψ0⟩, is chosen as the ground-state Slater

determinant for the non-interacting system.

For the 2-site Hubbard model we decompose the Hamiltonian simply into kinetic

energy and the interaction energy. Thus, the trial state for the 2-site Hubbard model is

given as

|ψ(θ)⟩ = eiθ2T̂ eiθ1Ŵ |ψ0⟩ , (3.9)
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where we only use one repetition of the unitaries, since this parametrization already

encompasses the exact ground state for the 2-site Hubbard model. As in the previous

example the parameter set θ has been determined with the gradient descent method

explained in Sec. 3.2. The exact analytical result for the 2-site Hubbard model [79] with

Eq. (3.9) as the trial state has been taken as the reference value Eexact.

3.4.2.1 Shot Noise

First, optimization runs including only shot noise have been performed, where the num-

ber of measurement shots has been set to N = 50000. As in the previous case the solid

lines in Fig. 3.5 show runs without shot noise, corresponding to the limit N → ∞. The

shaded areas represent the maximum and minimum of five optimization runs performed

with shot noise, respectively. From the graph it can be seen that the shaded region for

ϵ = 0.5 is vanishingly small at the scale of the plot. Starting around iteration step 10 it

can be observed, at the scale of the plot, that the fluctuations of the shaded regions in-

crease with smaller ϵ. The more accurate the gradients are in principle, the more relevant

becomes the fact that in practice we always perform a finite amount of measurements.

Fig. 3.5 shows that the energy deviation exhibits a minimum for gradients obtained via

finite difference, which can be attributed to the fact that the approximate derivatives

do not even in principle correspond to the true derivatives of the cost function. This

has to be contrasted with the energy deviation obtained by using the parameter-shift

rule to synthesize the gradients for the optimization procedure. Here, the gradients

are in principle (N → ∞) exact and the only error stems from the finite accuracy due

to a finite number of measurements for the gradient. However, our results show that

for a fixed number of measurements (N = 50000) the intrinsic error in calculating the

gradients via finite difference using ϵ = 0.05 is smaller than the statistical error due to

the finite number of measurements. Considering the measurement overhead (cf. Tab.

3.1 and Sec. 3.3) in synthesizing the gradients via the parameter-shift rule, favors the

finite-difference gradients.

3.4.2.2 Shot and Depolarization Noise

By adding depolarization noise with a rate of γ = 10−4 to the previous simulations it can

be seen that there are no significant differences for ϵ = 0.5 and ϵ = 0.2, except a minor

increase in the deviation from the exact energy, as shown in Fig. 3.6. However, there is

a larger offset for the parameter-shift run. For example, around the 20th iteration step,

the N → ∞ parameter-shift curve flattens out. As in the previous case, parameter-shift

simulations show a similar behaviour as the finite-difference runs with small ϵ.
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Figure 3.5: Optimization runs using a simple gradient descent Ansatz performed with
the finite-difference method compared to the parameter-shift rule for the 2-site Hubbard
model and N = 50000. The solid lines indicate runs without shot noise, whereas the
corresponding shaded region marks five optimization runs performed with shot noise.

For all optimization runs, a learning rate of η = 0.1 has been used.
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Figure 3.6: Same as Fig. 3.5, but now including depolarization noise, characterized
by the rate γ = 10−4, in the simulations.

3.4.3 Results for the 6-site Hubbard Model

In contrast to the 2-site Hubbard model, the number of repetitions has been set to 2 for

the 6-site Hubbard model, leading to a trial state given as

|ψ(θ)⟩ = eiθ6T̂oeiθ5T̂eeiθ4Ŵeiθ3T̂oeiθ2T̂eeiθ1Ŵ |ψ0⟩ , (3.10)

with T̂e and T̂o defined in Sec. 1.5.

By increasing the number of repetitions and thus the number of parameters in the

Ansatz, the variationally determined energy is closer to the true ground state energy of
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the system. Note that we use the optimal energy achievable with the given Ansatz (3.10)

as reference energy and denote it as Eexact. Due to the system size, runs with depolar-

ization noise were not performed.

3.4.3.1 Shot Noise

For the 6-site Hubbard model we perform optimization runs for three different choices

of ϵ and the parameter-shift rule with N = 50000. Taking a look at the solid lines in

Fig. 3.7, representing noiseless runs, it can be seen that with decreasing ϵ the energy

accuracy improves, which could also be observed in the two previous cases. Taking

shot noise into account, some minor fluctuations around the optimal curve for ϵ = 0.1

can be spotted. However, these fluctuations increase with decreasing ϵ besides that

an offset seems to occur, especially for ϵ = 0.01. While the noiseless run suggests an

energy accuracy in the order of 10−3 after 50 iterations steps with the gradient-descent

optimizer, this value roughly increases by an order of magnitude for the noisy runs.

The noiseless parameter-shift run shows a worse accuracy in energy after the first

50 iterations, however it shows better results compared to the finite-difference method

when shot noise is included. Fluctuations occur only around the noiseless run, whereas

no offset, as in the case of ϵ = 0.01 performed with the finite-difference method, can

be observed and thus showing an overall better performance compared to its numerical

counterpart. It has to be emphasized that the total number of circuits is considerably

higher for the parameter-shift rule – namely a factor of 24 – for this particular system and

consequently requires a lot more time to finish the 50 iterations compared to the finite-

difference method. Therefore, a compromise between runtime and accuracy in energy

is a plausible conclusion. Having a slightly worse accuracy but therefore requiring a

smaller number of additional circuits, one might choose the finite-difference method

with ϵ = 0.05.

3.5 Conclusion

In this work, two possibilities for gradient determination have been investigated and

tested on a simple toy model and the one-dimensional Hubbard model using the VHA

and a simple gradient-descent algorithm for parameter optimization.

On the one hand, gradients have been determined numerically with a simple finite-

difference method, where the difference between the obtained and exact minimum of the

cost function for noiseless runs gets smaller with decreasing step sizes ϵ. The number of

circuit evaluations scales only with the number of parameters defined in the parameter

set and thus shows a fast runtime compared to the parameter-shift method.
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Figure 3.7: Optimization runs using a simple gradient descent Ansatz performed with
the finite-difference method compared to the parameter-shift rule for the 6-site Hubbard
model and N = 50000. The solid lines indicate runs without shot noise, whereas the
corresponding shaded region marks five optimization runs performed with shot noise.

For all optimization runs, a learning rate of η = 0.03 has been used.

On the other hand, analytical gradients, determined with the parameter-shift rule,

lead to more accurate results and a more resilient behavior towards statistical noise.

Especially in the case of the 6-site Hubbard model, a better accuracy can be achieved

with the parameter-shift rule when simulating the system taking into account shot noise.

However, a major drawback of the parameter-shift rule, applied to the optimization of

a VHA circuit, is its scaling. Since the VHA does not only scale with the number of

parameters but also with the system size (which affects the number of parametrized

gates), the number of required measurements increases linearly with the system size as

detailed in Sec. 3.3. For example, in the 6-site case the number of circuit evaluations is

almost two orders of magnitude higher for the parameter-shift method compared to the

numerical counterpart. Thus, a compromise between runtime and accuracy can be made

for the finite-difference method, where the step size ϵ is chosen optimally to avoid sta-

tistical noise and provide the required accuracy. The obvious downside of this approach

that this optimal step width has to be determined and in general depends on the number

of measurements and other hyper-parameters of the optimization algorithm. Taking a

look at the simple toy model and the 2-site Hubbard model it can be concluded that

the finite-difference method is the method of choice when weighing both runtime and

accuracy. Even with shot and depolarization noise for both cases, there is no substan-

tial difference between optimization runs performed with the finite-difference method

choosing small step sizes ϵ and the parameter-shift rule.

We emphasize that the results presented in this work apply to the generic situation

where the trial state is constructed with the goal of reducing the number of parameters

optimized in the classical optimization loop of a quantum-classical hybrid optimization
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procedure, which leads to the important difference of number of parameters and num-

ber of parametrized gates when analyzing the measurement costs when considering the

parameter-shift rule. One motivation for reducing the number of parameters in the trial

state is given by the fact that so-called Barren plateaus [30, 80] hamper the optimiza-

tion of functions defined in high-dimensional spaces using gradient-based algorithms.

However, the trigonometric building blocks of any quantum circuit, highlighted in the

discussion of the parameter-shift rule in Sec. 3.2, suggests to use alternative (gradient-

free) optimization algorithms [81].

We stress, however, that our conclusions do not apply to generic variational quantum

circuits, which recently gained considerable attention in the context of quantum machine

learning [82–85]. These generic quantum circuits are directly composed using a universal

gate set, e.g., CNOT and arbitrary single qubit rotations [38], so the distinction of number

of parameters and number of parametrized gates does not apply – all parametrized gates

are treated as independent, so the number of parametrized gates corresponds trivially

to the number of variational parameters. The additional structure imposed by simulat-

ing fermions via the fermion-qubit mapping (Jordan-Wigner transformation, etc.) and

using parts of the Hamiltonian to generate the variational unitaries, is responsible for

the overhead of the parameter-shift rule, compared to the finite-difference method, in

our studies.

Finally, this suggests another possibility to generate the trial state, i.e., using the

VHA to generate the circuit, but optimizing each parametrized gate individually in

the optimization procedure. An interesting question for future studies is to investi-

gate whether treating each parametrized gate independently considerably improves the

minimal achievable energy compared to the standard VHA.



Appendices

3.A Derivation of the Parameter-Shift Rule

In this appendix we present an explicit derivation of Eq. (3.5). We start by choos-

ing a specific one-qubit rotation, R̂θi , in order to decompose the parametrized unitary

quantum circuit into

Û(θ) = V̂ R̂θiŴ , (3.11)

where V̂ and Ŵ are unitary rotations parametrized by all angles θj except for the angle

θi, which only parametrizes the selected single-qubit gate. The single-qubit rotation,

R̂θi , is explicitly given by

R̂θi = e−iθin·σ = cos(θi)1− i sin(θi)n · σ , (3.12)

where n is a unit vector defining the rotation axis (e.g., Cartesian unit vectors would

result in rotations around the x-, y-, or z-axis), θi provides the rotation angle and σ

denotes the vector of elementary Pauli matrices. Note that the Pauli matrices are, in

principle, also labeled by the qubit index on which they act, which is suppressed here in

order to keep the notation concise.

The cost function (1.19) can be rewritten as

E(θ) =
∑
m

⟨ψ0| Û(θ)†ÔmÛ(θ) |ψ0⟩ , (3.13)

highlighting that the energy is synthesized by measuring several Hermitian operators

Ôm. Defining |Ψ⟩ = Ŵ |ψ0⟩ and Ô′
m = V̂ †ÔmV̂ a single term of the sum (3.13) is given

by

Em = ⟨Ψ| R̂†
θi
Ô′

mR̂θi |Ψ⟩ . (3.14)

45
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Using Eq. (3.12) this leads to

Em = ⟨Ψ|
[
cos(θi)1 + i sin(θi)n · σ

]
Ô′

m[
cos(θi)1− i sin(θi)n · σ

]
|Ψ⟩

= cos2(θi) ⟨Ψ| Ô′
m |Ψ⟩

+ sin(θi) cos(θi) ⟨Ψ| i
[
n · σ, Ô′

m

]
|Ψ⟩

+ sin2(θi) ⟨Ψ|n · σÔ′
mn · σ |Ψ⟩ ,

where all three expectation values are given in terms of Hermitian operators. By virtue

of standard trigonometric identities this can be expressed as

Em = Am cos(2θi + φm) + Cm . (3.15)

We stress that Am, φm and Cm depend on all angles θj with j ̸= i, since our initial

assumption stated that θi does only appear in the explicitly selected single-qubit gate.

The generalization to Pauli matrices scaled by a factor s can be obtained by replacing

θi → sθi. Defining ω = 2s and summing all constant contributions Cm leads to Eq.

(3.5).



Chapter 4

Imposing N-Representability

Constraints on Reduced

Density Matrices

In this chapter, we present and analyze a method for improving the accuracy of a quan-

tum chemical simulation on a noisy quantum computer by the means of post-processing.

We are interested in calculations where the energy of a system in a given state is evalu-

ated via measuring the expectation values ⟨c†icj⟩ and ⟨c†ic
†
jclck⟩, i.e., the elements of the

one- and two-particle reduced density matrix (1- and 2-RDM), where c
(†)
i are fermionic

annihilation (creation) operators of the system in second quantization. On a NISQ com-

puter, we will obtain flawed values for these elements. However, we know that the 1-

and 2-RDM need to satisfy certain conditions and, hence, could try to mitigate the error

by post-processing the result accordingly, to conform with these constraints.

Specifically, we consider the so-called N -representability constraints that the RDMs

need to obey [52, 53]. They originate from the N -representability problem posed when

trying to guarantee a 2-RDM remains derivable from a valid density matrix of N

fermions, while modifying the 2-RDM in a variational approach to minimize the en-

ergy [86, 87]. Using N -representability constraints to improve on a quantum chemistry

calculation (on conventional computers) in a post-processing manner was previously

suggested [88], and also considered in a quantum computing context [89].

In these two references [88, 89], the concept is to pick a subset of theN -representability

constraints and project an erroneous RDM from a calculation to (in some norm) the

This chapter is available as a preprint in ”T. Piskor, F. G. Eich, M. Marthaler, Frank K. Wilhelm,
and J.-M. Reiner, arXiv:2304.13401 (2023)”. It has been submitted to Physical Review A. The text was
largely authored by T. Piskor. All numerical simulations were performed by T. Piskor.
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closest matrix that fulfills the selected constraints to obtain an improved RDM. Further-

more, this projection is not solely performed for the two-particle RDM (with elements

⟨c†ic
†
jclck⟩), but also the two-hole RDM (⟨cicjc†l c

†
k⟩), and particle-hole RDM (⟨c†icjc

†
l ck⟩).

We expand on this work by providing a more thorough analysis for the application of

this concept in energy calculations using a quantum computer. We investigate, through

analytical consideration and in particular numerical simulation, how different sources of

noise in a quantum computation affect the measured RDMs; and how the three options

of projecting in the respective particle, hole, or particle-hole sector, enhance the result.

We consider as test systems three molecules, H2, LiH and BeH2, and we consider three

quantum noise channels, dephasing, damping, and depolarization, and furthermore shot

noise, stemming from performing a limited amount of measurements to evaluate the

expectation values for the RDM elements. Based on our results, we propose a practical

approach how to utilize having multiple sectors as options to perform the projection in.

This chapter is structured as follows: In Sec. 4.1 we give a short overview on the basic

principles of N -representability as well as present notations that are valid throughout

this work. Sec. 4.2 explains how we are simulating noise via the superoperator formalism

and also shows the operators for the three investigated decoherence types: dephasing,

damping and depolarization. Furthermore, we give a brief description how we were sim-

ulating shot noise in combination with decoherence, and comment on how each type of

noise leads to states violating N -representability. A thorough description of our simula-

tion and post-processing procedure, followed by the definitions of the considered metrics

is given in Sec. 4.3. Finally, Sec. 4.4 gives a presentation of the results of our numerical

analysis, before we conclude in Sec. 4.5.

4.1 N-Representability Conditions for Hole and Particle-

Hole Reduced Density Matrices

In Sec. 2.4, we have already defined the 1- and 2-particle reduced density matrices with

its corresponding ensemble N -representability conditions. These conditions not only

hold for the 1- and 2-particle RDMs; similarly they also hold for the 1- and 2-hole, as

well as the particle-hole RDMs:

1Qi
j = ⟨ψ| cic†j |ψ⟩ , (4.1a)

2Qij
kl = ⟨ψ| cicjc†l c

†
k |ψ⟩ , (4.1b)

2Gij
kl = ⟨ψ| c†icjc

†
l ck |ψ⟩ . (4.1c)
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One can obtain these from the one- and two-particle RDMs using the following identities:

1Qj
i = δij −1 Di

j , (4.2a)

2Qlk
ji =

2D
ij
kl − δjl

1Di
k + δil

1D
j
k

+ δjk
1D

i
l − δik

1Dj
l + δjlδik − δilδjk,

(4.2b)

2Gil
kj = δjl

1D
i
k − 2D

ij
kl. (4.2c)

As in the case of the 1- and 2-particle RDM, we find the same constraints for the Q-

and G formulations. The only difference is the trace for the different sections. These

are defined by

Tr[1Q] = η, (4.3a)

Tr[2Q] = η(η − 1), (4.3b)

Tr[2G] = N(η + 1), (4.3c)

where η is the number of orbitals in the system.

N -representability constraints were long utilized to improve quantum chemical cal-

culations. In fact, they stem from the N -representability problem posed when trying

to guarantee a 2-RDM can be represented by, i.e., derived from, a proper state of N

fermions, while modifying the 2-RDM in a variational approach to minimize the en-

ergy [86, 87]. It was also proposed to look not just at the particle, but also the hole and

particle-hole sectors to improve numerical methods [88]. Furthermore, the constraints

of the particle sector were applied in the context of quantum computing to improve

measurement results of RDM elements [89].

We expand on this work by focusing on a quantum computing application, but pro-

viding a method that exploits N -representability conditions in the particle, hole, and

particle-hole sector. Furthermore, we perform a more thorough analysis how individual

noise types affect the performance of our method. To this end, we continue in the next

section to explain which kinds of noise we consider, how we describe them, and how the

individual N -representability constraints above are affected though them.

4.2 Application of Noise to Perfect Measurements

In this work we consider three different types of decoherence noise, namely damping,

depolarization and dephasing. To include stochastic effects, we will also investigate shot

noise. In this section we will discuss the superoperator formalism which we utilize, as

well as the single noise types and present how the individual noise types influence the
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N -representability conditions listed above. The different decoherence types have been

discussed in Sec. 1.7.

4.2.1 Shot Noise

Performing computations on a real quantum device requires multiple projective mea-

surements of qubits in the computational basis in order to extract operator expectation

values. In this work we faithfully simulated this measurement process to obtain the

expectation values influenced by shot noise using the HQS software package qoqo [90].

The software does this by grouping the operators (Pauli products) to be measured

into sets that can be measured simultaneously. For each set, the quantum circuit is

extended by the respective single-qubit rotations such that the Pauli products can be

measured in the computational basis. Each extended circuit is then simulated and the

resulting final state vectors are obtained. From there, for each measurement shot a bit

string is drawn from a probability distribution based on the prefactors of the according

final state vector in the computational basis. This bit string is then used to calculate

the simulated result of a projective measurement of a certain Pauli string.

We performed M = 1000 measurement shots for every Pauli string that we evaluate

and took the average of these to calculate the expectation value of the Hamiltonian for

a specific system and geometry. We are interested in statistical effects as well, hence, we

repeated these steps R = 100 times. Therefore, we find 100 different expectation values

for all geometries and thus can determine the measurement variance for a measurement

protocol relying on M shots per operator.

4.2.2 Influence of Noise on N-Representability

Now we will discuss how the presented types of noise affect the validity of the five N -

representability constrains listed in Sec. 4.1. First, we examine the quantum decoherence

channels, i.e., dephasing, damping, and depolarization.

The effect of these channels will depend on how we encode the fermionic problem into

qubits. In this work, we rely on the Jordan-Wigner transformation (1.36a) and (1.36b).

The first two listed N -representability conditions, hermiticity and antisymmetry, are

not affected by any quantum channel. The application still results in a physical state and

therefore the measurement of the fermionic operators will always reveal these fundamen-

tal properties. This also means that this is independent of the encoding, as long as the

resulting fermionic operators are valid. Likewise, the condition of positive semidefinite-

ness remains intact, since the regarded quantum noise channels are completely positive

maps [38].
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The final two listed constraints, the trace and contraction relations, on the other hand

both rely on the particle number N staying constant. In the Jordan-Wigner encoding the

particle number N is dependent on a sum of Pauli Z matrices, since from Eqs. (1.36a)

and (1.36b) follows that c†kck = 1
2(1−Zk). Dephasing noise, which – as explained above

in Sec. 1.7 – is essentially random Zk errors, therefore commutes with the particle num-

ber, i.e., [Zk,N ] = 0 for all k. Hence, using the Jordan-Wigner transformation, none of

the N -representability constraints that we consider in this work are violated by dephas-

ing noise. For this reason, in our numerical analysis that follows in Sec. 5.2, we do not

study dephasing. Note again, that this is due to our choice of encoding, using instead

other fermion to qubit mappings like, e.g., the Bravyi-Kitaev transformation [91], the

situation would be different. Appendix 4.A shows an explicit calculation for two qubits

under the influence of dephasing noise, where it is also proved that neither the trace nor

the positive-semidefiniteness is violated. Staying with the Jordan-Wigner encoding, the

case is also different for damping and depolarizing noise, since here, e.g., Pauli X errors

may occur, and [Xk,N ] ̸= 0, meaning the last to constraints can in fact be violated.

Consequently, these decoherence channels will be investigated in our numerics.

For shot noise the case is simple: It is completely statistical in its nature may violate

any of the five N -representability constrains mentioned above.

In the following, not all of the five constraints will be dealt with post-processing.

Hermiticity and antisymmetry will be guaranteed by construction – we will simulate

measuring only the minimal necessary amount of RDM elements and calculate the

rest using the according hermiticity and antisymmetry relations in Eq. (2.13a), (2.13b),

and (2.14). Positive semidefiniteness and the corrected trace will be attempted to en-

force in a post-processing manner as explained in the subsequent Sec. 4.3. Obtaining

1D via the contraction in Eq. (2.16) is also nontrivial if the 2D measurement is impaired

by noise. In order to perform the energy calculation according to Eq. (2.11), or per-

form the transformations to the two-hole or particle hole sector as in Eq. (4.2a), (4.2b),

and (4.2c), without needing to first correct 2D, we simply simulate the measurement of

1D additionally to the 2-RDM; which is an insignificant overhead as the 2-RDM contains

quadratically more elements as the 1-RDM.

4.3 Procedure

In this section we explain how we calculated the data used to produce the plots and

results presented in the following Sec. 4.4. There, we have chosen to analyze three

molecules as example systems, namely H2, LiH and BeH2. The first step was to derive

the molecular Hamiltonian (2.9), where we represented H2 in the STO-3G basis, and

LiH as well as BeH2 in the MinAO basis. Full configuration interaction (FCI) – which
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is equivalent to exact diagonalization – runs have been performed for all three systems,

yielding our reference ground state |ψFCI⟩ and its respective energy EFCI for each sys-

tem. Having obtained the state, using the equations given in Sec. 4.1 gives access to the

respective RDMs 1DFCI and
2DFCI.

Next we simulate decoherence, where we apply either damping, depolarizing, or de-

phasing noise to the reference state through the superoperator formalism described above

in Sec. 4.2 (each with a rate Γ = 10−2). Note again, that we use the Jordan-Wigner

transformation to translate the fermionic operators to Pauli operators, which also defines

the representation of the state and how the respective noise types affect it. This process

yields a new state |ψ⟩ which mimics the result of a ground state calculation, for each

of the example molecules, on a quantum computer, under the influence of decoherence.

With this state one can then derive the RDMs 1DQC and 2DQC , as well as the respective

energy EQC, where the index indicates that this a simulated quantum computation.

Now we tried improving on the energy result by projecting the RDMs to the closest

RDM that fulfills the N -representability constraints listed in Sec. 4.1. We guarantee

that hermiticity and antisymmetry properties are valid by constructing the RDMs from

measuring as little as necessary of the matrix elements and calculating the rest of the

matrix via the respective relations. Note that hermiticity and antisymmetry are not

violated by applying decoherence channels, but this step will be important when we will

consider shot noise below.

We have three options for projecting, fixing the two-particle RDMs, the two-hole

RDMs, or the particle-hole RDM; these options we call D-projection, Q-projection, and

G-projection, respectively. To perform a D-projection, we take the measured particle

1-RDM (1DQC) and the two-particle 2-RDM (2DQC) and perform a fixed trace and

positivity projection to both RDMs, which follows the algorithm from Ref. [89] and is

available as a function in the open source software OpenFermion [92]. This function

enforces the matrices to have a fixed trace – which in this case is related to the particle

number as given by Eqs. (2.15a) and (2.15b) – and to be positive semi-definite. For the

Q-projection, we use 1DQC and 2DQC together with Eqs. (4.2a) and (4.2b) to obtain

1QQC and 2QQC. These are then projected with the same function as in the case of

the D-projection (fixing the number of holes instead of the number of particles). Af-

ter the projection we transform back to the two-particle sector to evaluate the energy

using Eq. (2.11). Similarly, we proceeded for the G-projection, transforming from the

two-particle to the particle-hole sector using Eq. (4.2c), performing the projection, and

then transforming back.

The same procedure is done again for simulations where we assume on top of de-

coherence also a finite amount of projective measurements, i.e., where the results are

affected by shot noise (see Sec. 4.2.1).

Note again, that we measured 1DQC additionally to 2DQC (which is a negligible
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overhead). Since the contraction from the 2-RDM to the 1-RDM following Eq. (2.16)

is violated under the presence of noise, we use the measured 1D elements to evaluate

the energy EQC, and perform the transformation to the hole and particle-hole sectors

according to Eq. (4.2a), (4.2b), and (4.2c) to utilize the Q- and G-projections. For the

raw measurement, this yielded lower energy results than using a faulty contraction. Fur-

thermore, we observed that we could achieve lower energies for the individual Q- and

G-projections; this is in comparison to using faulty transformations, and, in particular,

also compared to otherwise needing to perform a D-projection first in order to allow for

a reasonable contraction (which would be necessary for the transformations).

We evaluated in the case where we did not include shot noise the energy difference

∆E between the energy E, either of the raw measurement or after post-processing by

on of the individual projections, versus the FCI energy for each geometry,

∆E = E − EFCI. (4.4)

Furthermore, we investigated how close this procedure brings us to the FCI 2-RDM by

looking at the fidelity:

F(2D, 2DFCI) =

(
Tr

√√
2D2DFCI

√
2D

)2

, (4.5)

where 2D describes the measured or once projected 2-RDM. Note, that the square roots

are well-defined as we are dealing only with positive semidefinite matrices in this case.

Including shot noise, we utilize following paradigm: We envision an experiment,

where we assume resources to perform a total of M = 1000 measurement shots for

every operator to measure; that is also for every data point in the plots in the following

Sec. 5.2. In order to analyze the statistics of performing such experiments, we repeat

the same process R = 100 times. For each data point, we therefore obtain 100 different

values Ei with i ∈ {1, . . . ,R}, where each Ei itself is the result of averaging over 1000

shots (hence, for every point a total of R ·M = 105 shots are simulated). Finally, we

average over the repetitions, yielding

E =
1

R

R∑
i=1

Ei, (4.6)

which is the energy we calculate again the energy difference to the reference energy:

∆E = E − EFCI. (4.7)

The reason for this averaging scheme is that, particularly for NISQ hardware, the number

of measurements are a scarce resource. Hence, we assume only 1000 shots per operator



Chapter 4. Imposing N -Representability Constraints on Reduced Density Matrices 54

in a single experiment. Averaging again over multiple repetitions gives not only a more

reliability expectation value to compare to the reference energy, but also allows to analyze

the variance over the repetitions,

Var(E) = 1

R

R∑
i=1

(Ei − µ)2 , µ =
1

R

R∑
i=1

Ei. (4.8)

This quantity gives insight about the expected accuracy of an energy measurement with

only a limited number of 1000 shots; specifically, it is interesting whether the proposed

post-processing method lowers the variance.

In the following section we will show the results of our calculations. There, we

provide an analysis how individual projections improved on the above quantities for the

different systems and noise types. Furthermore, we will comment on approaches we tried

to concatenate multiple projections to improve the results as much as possible, and how

we propose to select the best projection method.

4.4 Numerical Analysis

After discussing the procedure above, here we show our data on how much improvement

the D-, Q-, and G-projections grant on our simulated measurement results when dealing

with shot and decoherence noise. We examine if there is a preferred projection type for

certain noise types, systems or geometries, and furthermore investigate how combining

the different projection types alters the result.

The effects of damping and depolarization in addition to shot noise have been in-

vestigated on three systems, namely H2, LiH, and BeH2. At first, simulations without

shot noise will be discussed in Sec. 4.4.1 and afterwards the effect of shot noise will be

included in Sec. 4.4.2. Besides the investigation of the energy deviations with respect

to the FCI solution, we will furthermore take a look at the corresponding state fidelities

for the individual projection methods. The section discussing shot noise will provide

figures with energy errors, as well as measurement variances.

4.4.1 Simulations without Shot Noise

In this section we will investigate the energy errors and fidelities when performing sim-

ulations of the three systems with damping or depolarization present, but without shot

noise, and compare the simulations without post-processing and with the three projec-

tion types to see how these improve the analyzed quantities. Our simulation results are

compiled in Fig. 4.4.1 and Fig. 4.4.2.
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Figure 4.4.1: Energy errors and fidelities for the three investigated examples H2, LiH
and BeH2 for damping noise with a rate of Γ = 10−2. Shown are the results from
measurements of the 1- and 2-RDM without post-processing, which are indicated as
QC, as well as the results from the single projections D, Q and G. Best indicates the

results yielding the best energies.

At first, we will analyze the data shown in Fig. 4.4.1, where damping noise has been

considered. In Fig. 4.4.1a to 4.4.1c we plot the energy errors, and in Fig. 4.4.1d to 4.4.1f

the fidelity, each time for H2, LiH, and BeH2, respectively, at different inter-atomic dis-

tances. For all cases, we plot the quantities derived from measurements of the 1- and

2-RDM without post-processing (labeled as QC), as well as after performing a single D-,

Q-, or G-projection (labeled accordingly as D, Q, or G). We also highlight the projection

line that resulted in the smallest energy error (labeled as Best), making it easier to track

the projection that yields the best energy.

From all sub-figures we can observe a significant improvement in terms of the energy

error for all projection types; almost an order of magnitude lower errors are reached.

The data also verifies numerically that the projections do not fall below the FCI energy

(which would be unphysical). We furthermore observe that certain projections lead to

somewhat smaller energy errors. As for instance in Fig. 4.4.1a it can be seen that the

Q-projection leads to the best results for all distances between the hydrogen atoms,

whereas the D- and G-projection lead to the same, worse result. Interestingly, D- and

G-projection lie on top of each other and the Q-projection deviates, which hints at a

fundamental way damping affects the respective two-particle, particle-hole, and two-hole
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Figure 4.4.2: Energy errors and fidelities for the three investigated examples H2, LiH
and BeH2 for depolarizing noise with a rate of Γ = 10−2. Shown are the results from
measurements of the 1- and 2-RDM without post-processing, which are indicated as
QC, as well as the results from the single projections D, Q and G. Best indicates the

results yielding the best energies.

sectors. However, it is dependent on the system, and even within a system dependent on

the inter-atomic distance (see Fig. 4.4.1c), which projection type yields the best energy.

The fidelity curves in Fig. 4.4.1d to 4.4.1f show general improvement of the fidelity

performing post-processing, often times coming much closer to perfect fidelity than the

initial QC result. We also observe the same behavior w.r.t. the D- and G-projection

yielding the same value and Q deviating. However, we see that the best projection in

terms of the energy value does not necessarily yield the highest fidelity. While from a

heuristic argument one would expect lowering the energy error leads to approaching the

correct 2-RDM as well, yet there is no direct connection of course. This can be eas-

ily seen from considering examples with a dense lower spectrum, or even a degenerate

ground state. But it is important to realize that optimizing for the best energy will not

guarantee all properties of the 2-RDM to be optimized as well. If one is interested in

quantities other than the energy, one might try to alternate the approach.

Comparing the above observations with the data in Fig. 4.4.2, where depolarizing

noise was considered, we generally see similar results. However, a few differences can be

pointed out: Which projection type yielded the best energy in the three systems (and for

particular inter-atomic distances) is not equal to the case of damping noise. We also do
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not observe anymore the strong link between the D- and G-projections (see Fig. 4.4.2a).

Hence, the best projection type does depend really on all variables considered; the chem-

ical system, the inter-atomic distance, as well as the noise type, and there is no obvious

a priori choice. Another key difference to the previous figure is in Fig. 4.4.2d, where

we find that, unfortunately, the fidelity is actually reduced for all projections compared

to the raw QC calculation. This highlights on the other hand our advisory of being

cautious when looking at properties other than the energy of the system.

Another point we would like to address is that so far we only looked at applying

a single projection, either D, Q, or G. In Refs. [88, 89] an iterative approach, where

one applies one projection type after the other in an alternating fashion until the result

converges, is proposed. This is following the hope that in this way, the end result is as

closely N -representable as possible using the projections at hand.

Pursuing this idea, we tried alternating sequences of the D-, Q-, and G-projections as

well. Following a projection with another one of a different kind in some cases changed

(not necessarily lowered) the energy difference to the FCI reference. However, in our

systems we could not observe an improved energy when using a projection series versus

the best energy result after only one projection. Looking at the fidelity instead, we also

could see quantitative changes, but not find a conclusive improvement in the sense that

projection series would lead to higher fidelities.

On top of this analysis of projection series, we also tested if one can reach lower

energy values if one performs partial projections, possibly avoiding phenomena like local

minima. Here, we tried to iteratively post-process RDM’s by only changing it towards

the fully projected RDM by a small amount,

2Di+1 = αB(2Di) + (1− α)(2Di), (4.9)

where B(2Di) is the two-particle RDM that stems from the energetically best projection

(D, Q, or G) of 2Di, i is the iteration step, and α ∈ [0, 1] is the projection percentage.

However, we have observed that this procedure, even for very small values of α = 0.001,

converges again to the best result of simply one of the three projections.

Particularly since we are interested mostly in the energy calculation, and that the

projections do not yield unphysical energies below the FCI reference, we found the easiest

approach for obtaining the best possible energy with the post-processing options avail-

able is to apply once the D-, Q, and G-projection and pick the best energy result. This is

a very simple to implement strategy that is furthermore very efficient computationally,

particularly compared to iterative approaches.
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4.4.2 Simulations with Shot Noise

We now include effects of a finite number of measurements in the simulations of our

chemical systems. Though, we refrained from simulating the effect of decoherence in

combination with shot noise for BeH2 due to time and resource constraints. We simu-
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Figure 4.4.3: Energy errors and measurement variances for the three investigated
examples H2, LiH and BeH2 for damping and shot noise with 1000 measurement shots,
100 repetitions and a rate of Γ = 10−2. Shown are the results from measurements of
the 1- and 2-RDM without post-processing, which are indicated as QC, as well as the
results from the single projections D, Q and G. Best indicates the results yielding the

best energies.

lated again damping in Fig. 4.4.3 and depolarization in Fig. 4.4.4, now with the addition

of shot noise stemming from measuring Pauli strings each with 1000 shots, furthermore

averaging over 100 repetitions of such a scenario. Note, that our investigated regime,

the effect of decoherence was always strong compared to the statistical fluctuations from

limited measurements. This guarantees in our simulations for energy results to remain

above the FCI reference, which would not necessarily be the case for pure shot noise.

However, if one could drop below the FCI energy, our approach for picking the lowest

energy projection as best projection would not be meaningful. On the other hand, in
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Figure 4.4.4: Energy errors and measurement variances for the three investigated
examples H2 and LiH for depolarizing and shot noise with 1000 measurement shots,
100 repetitions and a rate of Γ = 10−2. Shown are the results from measurements of
the 1- and 2-RDM without post-processing, which are indicated as QC, as well as the
results from the single projections D, Q and G. Best indicates the results yielding the

best energies.

our chosen regime this is not an issue, and we believe that this regime of decoherence

dominating shot noise is realistic to assume for NISQ applications.

Looking at Fig. 4.4.3 and Fig. 4.4.4, we observe very similar results to Fig. 4.4.1 and

Fig. 4.4.2: We find a similar order of improvement in terms of energy error, and the best

projection w.r.t. the energy is again not easily predictable but varies between systems,

noise type and inter-atomic distance. Note, that now the Best label does not follow a

specific projection type; here, we choose the best projection w.r.t. the energy for every

repetition individually. Hence, for every repetition a different projection turns out to

be the favored one, averaging over 100 repetitions yields a better value than for every

other pure projection type.

Another difference to the plots of Sec. 4.4.1 is that instead of the fidelity we now plot

the measurement variance as a relevant quantity in the context of measurement errors

due to statistical shot noise. Again, the points labeled Best do not present necessarily
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the best variance, as the optimization happened according to the energy. But impor-

tantly, we see a significant reduction in the variance when post-processing the results by

projecting to fulfill our selected N -representability constraints. Specifically, in the case

of larger distances in H2, the reduction spans two orders of magnitude.

This variance reduction is a remarkable feature of the presented projection method.

It could potentially enable to measure quantities with a rather low number of shots while

still remaining confident about the accuracy of the result. Hence, the method could be

a good candidate to reduce the measurement overhead which is a considerable obstacle

in quantum computing, particularly in the NISQ era where quantum resources are fairly

limited. This sparks interest in studying this property of our, or alike, methods more

extensively in further research.

4.5 Conclusion

The aim of this work was to try to reduce the energy error from 1- and 2-RDM calcu-

lations on a (simulated) quantum computer limited by decoherence and finite number

of measurement shots. We investigated a post-processing method that enforced certain

general N -representability constraints by projecting the measured RDMs into the sub-

space where these conditions were fulfilled. Here, we regarded projecting the RDMs not

just in the particle sector, but also the hole and particle-hole sector – where one can

switch between the sectors by simple transformations.

Specifically, we guaranteed hermiticity and antisymmetry by construction of the

RDM from the measurements, and enforced positive semidefiniteness as well as the cor-

rect trace through the post-processing projection. Analyzed were then ground state

calculations of H2, LiH and BeH2 under the influence of damping and depolarizing chan-

nels, as well as shot noise.

We found the post-processing according to the N -representability constraints led

to an improvement in terms of the energy error for all investigated example systems

and noise types for all projections, i.e., the D-, Q- and G-projection in their respec-

tive particle, hole, and particle-hole sectors. Similarly, the state fidelity was generally

improved as well. We could not observe an easily explained behavior which of the D-,

Q-, or G-projection performed best depending on the system, the inter-atomic distance,

or noise type. On the other hand, we also found the best approach to always find the

smallest energy error – independent of the system or noise type – is to simply take the

smallest value of the three presented projection types. Using approaches with series of

alternating projections as previously suggested [88, 89], or an iterative variant relying

on partially projecting the RDM in each step, did not lead to better energy results;

furthermore, they did not necessarily lead to the lower state fidelities either. We note,
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that this simple way of finding the lowest energy hinges on the fact that we operate in a

regime that is dominated by decoherence (versus shot noise), where we did not observe

projecting to energies lower than the FCI reference. However, this regime is reasonable

to assume for NISQ devices.

In terms of the measurement variance, another investigated metric for shot noise

simulations, we could see that the application of the proposed post-processing method

led to a decrease by up to an order of magnitude. The precise reduction in variance

was again depending on the sector in which the projection was performed, without a

clear choice to be made a priori. While our approach of optimizing for the lowest energy

did not necessarily yield the lowest measurement variance, it performed very well in

general. This makes it a viable approach for not just improving the energy error but

also the variance; which is a particularly compelling feature, as this would enable to

significantly increase the confidence in the accuracy of a quantum computation with a

restricted number of measurement shots, especially considering the magnitude of the

improvement.

In conclusion, we found our presented method of mitigating decoherence and shot

noise to be very useful for improving energy calculations, particularly with respect to the

highly effective reduction of the measurement variance. In the considered noise regime,

our practical approach to utilize the three different sectors to project proved not just to

be simple but also fruitful. The post-processing has low computational effort and there

is no overhead to the quantum computation itself. Our positive results spark interest for

expanding on the method by including more constraints, e.g., further N -representability

conditions, or other system-specific conserved symmetries. Investigating these ideas we

leave for future work.





Appendices

4.A Dephasing and N-Representability Conditions

In the following, we consider a two-qubit system with a given noiseless density matrix ρ

underlying the effect of dephasing. Hence, we observe a transformation ρ → ρ′, where

the transformed noisy density matrix is given as

ρ′ =
∑
i

MiρM
†
i . (4.10)

Here, the matrices Mi describe the different combinations of the Kraus operators for

the corresponding noise type. In case of two qubits, we can write M0 = K0 ⊗ I · I⊗K0,

M1 = K1 ⊗ I · I⊗K0 and so on. Following the assumption that the dephasing rates are

equal for both qubits, we find three different Kraus operators:

K0 =

(√
1− p 0

0
√
1− p

)
,K1 =

(√
p 0

0 0

)
,K2 =

(
0 0

0
√
p

)
, (4.11)

with p = 1− e−Γ being the dephasing term with dephasing rate Γ =
Tg

Tcoh
. Here, Tg and

Tcoh describe the gate and coherence time, respectively. Now we can write the dephased

density matrix ρ′ as

ρ′ =


ρ00 (1− p)ρ01 (1− p)ρ02 (1− p)2ρ03

(1− p)ρ10 ρ11 (1− p)2ρ12 (1− p)ρ13

(1− p)ρ20 (1− p)2ρ21 ρ22 (1− p)ρ23

(1− p)2ρ30 (1− p)ρ31 (1− p)ρ32 ρ33

 . (4.12)

Since we are interested in obtaining the 1-RDM under influence of dephasing noise, we

can now determine the expectation value for each element 1D
i
j(

1D
i
j

)′
= ⟨c†icj⟩

′
= Tr

(
ρ′c†icj

)
. (4.13)

63
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Before we can write the entire dephased 1-RDM for two qubits, we have to perform a

fermion-qubit mapping (for instance with a Jordan-Wigner transformation) at first:

ck = Z0 ⊗ · · · ⊗ Zk−1 ⊗ σ+k , (4.14a)

c†k = Z0 ⊗ · · · ⊗ Zk−1 ⊗ σ−k , (4.14b)

with σ+ = 1
2 (X + iY ) and σ− = 1

2 (X − iY ). Finally, the dephased 1-RDM can be

evaluated:

1D
′
=

(
ρ11 + ρ33

1
2(1− p)2(ρ12 + ρ21)

1
2(1− p)2(ρ12 + ρ21) ρ22 + ρ33

)
. (4.15)

It can be easily seen that the trace of the dephased 1-RDM equals the trace of the

noiseless 1-RDM.

To show that the positive semi-definiteness is neither violated, we can use the fact

that for a n×n Hermitian matrix all principal minors and the determinant of the matrix

itself are non-negative. In case of a 2×2 matrix there is only one principal minor, which

is simply the trace of the matrix. Since the principal minors solely contain the diagonal

elements of the 1-RDM (ρ11 + ρ33 and ρ22 + ρ33), which per definition are positive, we

find that the first criterion fulfills the condition for positive semidefiniteness.

In order to prove the second criterion (i.e. showing that the determinant of the entire

dephased 1-RDM 1D
′
is positive) we rewrite the 1-RDM as

1D
′
=

(
Λ0

1
2(1− p)2Λ1

1
2(1− p)2Λ1 Λ2

)
, (4.16)

with Λ0 = ρ11 + ρ33, Λ1 = ρ12 + ρ21, Λ2 = ρ22 + ρ33. If we at first consider the case

without dephasing noise (i.e. p = 0) the determinant of the dephased 1-RDM is given

as:

|1D′| = Λ0Λ2 −
1

4
Λ2
1 ≥ 0. (4.17)

We know that Eq. (4.17) is non-negative, since per definition a noiseless 1-RDM has to

be positive semi-definite. On the other hand, we can consider p = 1. In that case we

have

|1D′| = Λ0Λ2 ≥ 0, (4.18)

which is also non-negative since Eq. (4.18) contains only the diagonal elements of the

1-RDM. Finally, the last case with an arbitrary value for p ∈ (0, 1) also guarantees that

we have a non-negative determinant and thus a positive semi-definite matrix:

Λ0Λ2 ≥ Λ0Λ2 −
1

4
(1− p)4Λ2

1 ≥ Λ0Λ2 −
1

4
Λ2
1 ≥ 0. (4.19)
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Another way to show that the dephased reduced density matrix is positive semi-definite

is via the square root of a matrix. If there exists a positive semi-definite, Hermitian

matrix B satisfying M = BB, then M is positive semi-definite. This unique matrix B

is denoted with B =M
1
2 . One way to obtain the square root of a matrix is via a Schur

or Cholesky decomposition.





Part III

Data Interpolation for Quantum

Chemistry Methods with

Machine Learning

67





Chapter 5

Mechanistic Reaction Studies

Mechanistic studies of chemical reactions are one of the most important and wide-spread

applications of computational quantum chemistry [93]. A minimal meaningful workflow

consists of locating reactants, products and a corresponding transition state (TS). This

allows one to assess the thermodynamics and kinetics of reactions without thermal con-

tributions and thereby reveal reaction mechanisms. It is highly desirable to perform

vibrational analysis for stationary points of a Potential Energy Surface (PES) to elu-

cidate whether the structures correspond to minima or saddle points. This also allows

computing reaction rate coefficients via canonical Transition-State Theory (TST) taking

vibrational degrees of freedom into account [94]. To be more rigorous, one should also

compute reaction paths connecting the stationary points, one option being following the

Intrinsic Reaction Coordinate (IRC) starting from the TS [95].

These objectives are routinely reached by direct dynamics approaches [96], i.e. meth-

ods evaluating energy and its derivatives on-the-fly. The number of ab initio quantum

chemistry calls typically reaches hundreds and more. One should not ignore unsuccessful

attempts to locate TS and find IRC, which are not uncommon in mechanistic reaction

studies. Qualitatively accurate description of reaction paths involving breaking or form-

ing of chemical bonds can only be achieved with advanced electronic structure methods.

Often but not always those include static correlation, i.e. multi-reference and multi-

configurational wave function approaches [97]. As an alternative, Density Functional

Theory (DFT) with carefully selected hybrid and double-hydrid functionals can pro-

vide accurate results [98]. All these methods are, however, computationally demanding

even for moderate-size systems. Therefore, the researchers often apply computationally

cheaper methods for the mechanistic reaction studies, employing more accurate elec-

tronic structure theories only to stationary points (for an example, see the study of

This chapter is available as a preprint in ”T. Piskor, P. Pinski, T. Mast, and V. V. Rybkin,
arXiv:2304.00942 (2023)”. It has been submitted to Physical Chemistry Chemical Physics. The text
was largely authored by T. Piskor. All numerical simulations were performed by T. Piskor.
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the reaction between ferrocenium and trimethylphosphine [99]). Some such heuristic

method combinations are known as composite methods, or recipes, e.g. the Gaussian-n

family [100–102] and CBS-QB3 [103]. Despite many successful applications, these ap-

proaches imply properties inconsistent with geometries. They are designed not for PES

exploration, but rather for stationary point calculations, and are prone to unpredictable

errors (for an example, see [104]).

Ideally, a composite method should provide accurate energies consistent with ge-

ometric structures at least in a relevant part of the configuration space, while being

computationally feasible, i. e. based only on few energy/force evaluations at the high-

level of electronic structure theory. This implies obtaining a locally fitted PES: once it

is available, one can complete many tasks “free” of charge, including reactive molecular

dynamics simulations, canonical and variational TST calculations [94] and so on.

A fitted PES can be efficiently generated using one of the rapidly evolving Machine-

Learning (ML) approaches (for the general method overviews see review [105] and per-

spective [106]). These typically require little, if any, feature design: mainly, the struc-

tures with associated energies, and sometimes also energy gradients, are needed as input.

They demonstrate remarkable flexibility, successfully describing even non-adiabatic pro-

cesses [107, 108] and systems without a classical atomistic structural formula [109]. The

main type of application for such ML-PES is extensive Molecular Dynamics (MD) sam-

pling (see exemplary applications to organic crystals [110] and liquid water [111]). The

resulting PES is often called “global” as it embraces vast regions of the configuration

space, although the reactive regions of it are typically not covered. There are only

a handful of applications of ML-PES fitting to reactive systems: second-order nucle-

ophilic substitution (SN2) [112], pericyclic [113], decomposition [114], dissociation [115],

Diels-Alder [116] and proton-transfer reactions [117]. In addition, ML-PES have been

successfully used for automatic mechanism discovery [118]. All these applications, how-

ever, aimed at “global” PES fitting required abundant data: typical sets include at least

thousands of data points. Most of them, therefore, used Density Functional Theory

(DFT) methods or cheaper many-body correlated wave functions as underlying elec-

tronic structure theory.

To facilitate routine mechanistic reaction studies one should be able to construct

semi-local reactive PES with only a few hundreds of data points using high-level ab

initio methods. Such work has been performed by Young et al. [119] for several model

processes, although the authors restricted themselves to DFT methods, which are typi-

cally insufficient to describe chemical reactions due to their single-reference character.

In this work we propose a multi-level protocol for generating semi-local reactive PES

for routine mechanistic reaction studies based on ML methods with small data sets

and a combination of electronic structure theories. Computationally cheaper DFT is

used to generate relevant structures, whereas high-level ab initio methods are applied to
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refine the energetics. The multi-level nature of the protocol makes it suitable for incor-

porating evolving quantum computing methods which promise quantum advantage for

correlated electronic-structure problems [120, 121], while remaining non-routine. The

feasibility of the approach is demonstrated with two organic reactions: monomolecular

Bergman cyclization of enediyne to para-benzyne [122] and a bimolecular SN2 reac-

tion of chloromethane with a bromide ion [123]. The former is a textbook example

of a chemical reaction involving multi-reference character [124] and is treated with a

complete-active-space self-consistent-field method, whereas the latter can be described

with a single-reference correlated method [125] and is treated with a coupled-cluster

approach.

This paper is organized as follows. In Sec. 5.1, we introduce the simulation protocol.

In particular, we focus on obtaining relevant geometries for the investigated reactions,

as well as reference methods and the machine learning technique of choice. Next, we

present the results: PES sections, energy and force-prediction errors, and performance

of the ML-PES for geometry optimization, vibrations and reaction rates. We conclude

and give an outlook for this work in Sec. 5.4.

5.1 Methodology

5.1.1 Simulation Protocol

We applied the general protocol for fitting a semi-local reactive PES, which includes the

following steps:

1. Optimize reactants and products with a cheaper electronic structure method;

2. Find an approximate reaction path using the Nudged Elastic Band (NEB) [126]

method with a cheaper electronic structure method;

3. Select points along the reaction path to form the data set;

4. Calculate energies and forces with a reference correlated method;

5. Split this data set into training, validation and test subsets;

6. Fit the ML-PES, validate and test using the corresponding subsets.

After being generated, the fitted PES was employed to compute the properties: sta-

tionary points, harmonic vibrations and intrinsic reaction coordinates in both directions

from the TS. In addition, we calculated rate coefficients using transition state theory
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(TST). To evaluate the quality of the fitted semi-local PES the properties were compared

with those obtained directly by the reference electronic structure method with energies

and forces calculated on-the-fly. The details of each step are described below.

5.1.2 Electronic Structure Calculations

We used DFT with the PBE exchange-correlation functional [127] in combination with

the double-zeta split-valence def2-SVP basis set [128] as a cheaper electronic structure

method for both reactions. These calculations have been performed with NWChem [129].

For the Bergman cyclization the complete active space self-consistent field [130]

(CASSCF) method with the double-zeta split-valence def2-SVP basis set [128] was used

as the reference.

For the initial configuration, we used MP2 natural orbitals to select the active space

guess, which consisted of 12 electrons in 12 orbitals (12, 12) as suggested by Lindh and

Persson [131]. The CASSCF wave function for atomic configurations in the data set was

calculated with the previous guess for the molecular orbitals, so that no discontinuities

occurred in the potential energy surface. CASSCF calculations were performed using

PySCF [132, 133].

The reference correlated method for the SN2 reaction was coupled-cluster singles and

doubles (CCSD) [134] based on the Hartree-Fock reference within the spin-restricted

formalism. As in the previous example, CCSD calculations have been performed with

PySCF [133]. The basis set of choice has been the double-zeta correlation-consistent basis

set cc-PVDZ [135–137].

5.1.3 Data Set Generation

NWChem [129] has been used to generate the data sets by performing NEB [126] calcu-

lations. For both reactions, DFT (the cheaper method) energies and forces were used,

with reactants as start points and products as end points. We used 100 beads for the SN2

reaction and 200 for the Bergman cyclization. The geometries were randomly selected

from the optimized elastic band. Thus, they lie on the approximate transition path of

the PES obtained from the cheaper method, rather than on the path of the reference

method.

5.1.4 Machine Learning Fit of the Semi-Local Reactive PES

We opted for the symmetric gradient domain machine learning (sGDML) method [57,

138, 139] to fit the PES as it efficiently employs the forces and does not require feature
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design: sGDML uses inverse atomic distances as features and the interatomic forces as

the output. Importantly, sGDML has been shown to faithfully reproduce PES from

a limited number of structures. Moreover, it has been successfully applied to small

molecules using coupled-cluster reference data [140].

To perform one sGDML fit, a certain number of points from the data set is taken to

define the training, validation and test set. These numbers are detailed in Sec. 5.2. The

first step within one sGDML run is to generate a first model by constructing the kernel

matrix out of the training points and setting values for the hyper-parameters σ and λ.

The regularization parameter is hereby fixed to a certain value and the length scale σ

is varied during the learning process. After the training step, the model is validated

against the validation set, where the energy and gradient errors are determined. This

procedure is continued until the best σ is found. As a last step the optimized model is

validated against the test set, which has no data from neither the training nor validation

set and the errors in energy and gradients are compared.

5.1.5 Property Calculation

We optimized the stationary points of the PES using DFT-optimized structures as ini-

tial guess and followed the IRC from the TS in both directions with pysisyphus [141].

Both, the fitted PES and the reference electronic structure method in PySCF [133] were

employed as energy functions. Gradients for both PES types were calculated analyti-

cally.

We calculated harmonic vibrations for all stationary points on the PES and com-

puted the reaction rate coefficients using conventional TST with a harmonic oscillator-

rigid rotor approximation for the partition functions. The working equations and the

corresponding rates are given in Appendix 5.A.

5.2 Results

In this section, we present the results for our investigated examples. At first, the PES

scans for the reference method and sGDML, as well as the energy differences between

both methods will be shown. The next analysis will provide information about the mean

absolute errors of the geometries between the reference and machine learning method for

the reactant and TS. To perform geometry optimizations for both structures, we used the

open-source package pysisyphus. In addition, we computed and compared harmonic

vibrations for the optimized structures. Besides the intrinsic reaction coordinate we

finally compared the reaction rate coefficients for all methods and reactions. The intrinsic
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Figure 5.2.1: Bergman cyclization of enediyne. The reactant, transition and product
states are labeled with R, TS, and P, respectively. Elements are colored as follows:

carbon (cyan), hydrogen (white).

reaction coordinate has been determined with pysisyphus as well, where the Euler-

Predictor-Corrector integrator was used.

5.2.1 Bergman Cyclization of Enediyne

The reaction is shown in Fig. 5.2.1, including the optimized reactant and product.

5.2.1.1 Model Training

We created an sGDML model for the data set consisting of 200 data points: we used

150 training, 30 validation and 20 test points. The regularization parameter was set to

λ = 10−15 and the best length scale was found to be σ = 6. With these parameters,

we obtained a model with a Mean Absolute Error (MAE) of 0.0067 kJ/mol and a Root

Mean Square Error (RMSE) of 0.0071 kJ/mol for the energy, whereas the MAE and

RMSE for the forces was 0.0033 kJ/Å ·mol and 0.0075 kJ/Å ·mol, respectively, on the

test data set.

5.2.1.2 Potential Energy Surface Scan

The PES profiles corresponding to the DFT optimized NEB path computed with sGDML

and CASSCF are shown in Fig. 5.2.2a. As expected from the small values of MAE and

RMSE, the two surfaces agree within chemical accuracy (see Fig. 5.2.2b). Starting from

the reactant state and moving towards the TS the energy error is small and practically

constant. The smallest error can be found in the vicinity of the TS, increasing signif-

icantly towards the product state, although still being two orders of magnitude within

chemical accuracy.
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Figure 5.2.2: Potential energy profile for the Bergman cyclization of enediyne along
the optimized NEB path.
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(a) Reactant state.
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(b) Transition state.
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Figure 5.2.3: Accuracy of geometric structures from the semi-local fitted PES for
the Bergman cyclization of enediyne: position differences (MAE) for sGDML- and

CASSCF-optimized structures. Atom numbering is given in Fig. 5.2.1.

5.2.1.3 Geometry Optimization

In Fig. 5.2.3 we compare the geometric structures of the stationary structures as obtained

by sGDML and the reference method, CASSCF. Directly comparing the optimized ge-

ometries from both methods, we find that the MAE for all inter-atomic distances never

reaches the value of 0.01 Å for the reactant state. However, for the TS, the error is

considerably larger reaching a deviation of 0.22 Å in the worst case. Although it is a

significant value, the corresponding distance is between two non-bonded hydrogen atoms

separated by more than 5 Å. For other distances, the error does not exceed 0.1 Å.
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Figure 5.2.4: IRC for the Bergman cyclization of enediyne: relative energies and Root
Mean Square (RMS) gradients. The TS corresponds to the maximum energy value at

approximately 9.5 value of the IRC displacement.

5.2.1.4 Vibrations, Intrinsic Reaction Coordinates and Reaction Rate Co-

efficients

After obtaining the optimized TS, we analyze the connection between it and the basins

of reactants and products by integrating the IRC as shown in Fig. 5.2.4. On the fitted

semi-local PES, the TS does connect the reactants and products by a minimum energy

path, which is in qualitative agreement with the reference CASSCF calculation along

the entire curve as indicated by the maximum and RMS errors in the gradients.

The successful computation of the IRC gives the first positive accuracy assessment

of vibrational modes on the semi-local fitted PES: the imaginary frequency at the TS

is needed to define the direction of the path. A more detailed look at vibrational fre-

quencies reveals only semi-qualitative agreement between the sGDML and the reference

CASSCF PES (see Table 5.B.1 in Appendix 5.B.1): the differences between the frequen-

cies reach up to approximately 200 cm−1 for high-frequency nodes, which is still less

than 10 %.

Rate coefficients dependent on structures, vibrations and reaction barriers are good

integrated indicators of the fitted PES quality. The barrier heights for the Bergman cy-

clization are ∆E‡
CASSCF = 194.59 kJ for the reference method and ∆E‡

sGDML = 194.57 kJ

for the fitted PES, which are in excellent qualitative agreement. Assuming T = 300K, we

obtain the following reaction rate coefficients from the conventional TST (as described

in Appendix 5.A) for the two methods: kCASSCF = 3.4548×10−22m3s−1 for the CAS(12,

12) and ksGDML = 4.3856× 10−22m3s−1 for sGDML. The agreement is semi-qualitative

and stems from the pre-exponential factors defined by the partition functions, which in

turn depend on vibrations and structures being less accurate than the barriers.
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Figure 5.2.5: SN2 reaction of chloromethane with bromide. The reactant, transition
and product states are labeled with R, TS, and P, respectively. Elements are colored

as follows: carbon (cyan), hydrogen (white), bromine (pink), chlorine (blue).

5.2.2 SN2 Reaction of Chloromethane with Bromide

The reaction between CH3Cl and Br– is shown in Fig. 5.2.5, including the optimized

reactant and product.

5.2.2.1 Model Training

To generate a machine learning model, we created a data set with a total of 100 ge-

ometries separated into 50 training, 30 validation and 20 test points. The regularization

parameter was set to λ = 10−15 and the best length scale was found to be σ = 32.

With these parameters, we obtained a model with both the MAE and RMSE being

0.0013 kJ/mol, whereas the MAE and RMSE for the forces were 0.0105 kJ/Å ·mol and

0.0293 kJ/Å ·mol, respectively, on the test data set.

5.2.2.2 Potential Energy Surface

The potential energy profiles of the SN2 reaction for the reference method, CCSD, and

sGDML are shown in Fig. 5.2.6a. The good agreement between CCSD and the sGDML

fit along the (DFT) NEB path can be immediately seen in Fig. 5.2.6b. The energy differ-

ence is of similar order as for the Bergman cyclization and does not exceed 0.02 kJ/mol.

However, we observe the higher errors in the TS region rather than in the vicinity of the

product state.
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Figure 5.2.6: Potential energy profile for the SN2 reaction of chloromethane and
bromide along the optimized NEB path.
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(b) Transition state.
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Figure 5.2.7: Accuracy of geometric structures from the semi-local fitted PES for the
SN2 reaction of chloromethane and bromide: position differences (MAE) for sGDML-

and CCSD-optimized structures. Atom numbering is given in Fig. 5.2.5.

5.2.2.3 Geometry Optimization

In Fig. 5.2.7 we compare the geometric structures of the stationary structures obtained

by sGDML and the reference method. The general agreement between the reference and

fitted PES is better than for the Bergman cyclization, where the MAE never exceeds

0.025 Å for a particular interatomic distance. For the SN2 reaction, the better agreement

is reached for the TS with the MAE staying below a value of 0.01 Å. The largest deviation

in case of the reactant state can be found for the distances between the non-bonded

bromide ion (indicated by index 2) and the hydrogen atoms from the methylene group

(indices 3, 4 and 5).
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Figure 5.2.8: IRC for the SN2 reaction of chloromethane with bromide: relative
energies and Root Mean Square (RMS) gradients. The TS corresponds to the maximum

energy value at approximately 4.8 value of the IRC displacement.

5.2.2.4 Vibrations, Intrinsic Reaction Coordinates and Reaction Rate Con-

stants

After obtaining the optimized TS, we analyze the connection between it and the basins

of the reactants and products by integrating the IRC as shown in Fig. 5.2.8. On the

fitted semi-local PES, the TS does connect the reactants and products by a minimum

energy path, which is in qualitative agreement with the reference CCSD calculation

along the entire path as indicated by the maximum and RMSE in the gradients.

As in the previous example, successful computation of the IRC indicates the cor-

rect Hessian structure at the TS with the only imaginary eigenvalue corresponding to

the same eigenvector as in the reference method. A more detailed look at vibrational

frequencies reveals only qualitative agreement between the sGDML and the reference

CCSD PES (see Table 5.B.2 in Appendix 5.B.2): the differences between the frequencies

reach several hundreds of cm−1 for both high- and low-frequency modes.

The barrier heights for the SN2 reaction were identical up to the second digit:

∆E‡ = 69.47 kJ for CCSD and the fitted PES. At T = 300K, the CCSD reaction

rate coefficient is 1.8187 × 10−31m3s−1, whereas this value is 2.2287 × 10−32m3s−1 for

sGDML, which is an order of magnitude smaller than the reference method. This dif-

ference occurs due to the larger deviations in the harmonic vibrations, defining the

pre-exponential factors in the TST equations.
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5.3 Discussion

The most important property of the fitted semi-local PES surfaces obtained by the

proposed protocol is the general stability with respect to PES exploration techniques.

Indeed, for both unimolecular and bimolecular reactions geometry optimizations have

converged to the stationary points, connected by physically meaningful minimum energy

paths. This is achieved by the multi-level nature of our approach.

On the one hand, the NEB driven by the cheaper method (here DFT with a PBE

exchange-correlation functional) generates structures relatively close to the reactive re-

gion of the system as defined by more accurate reference electronic structure methods

(here, CASSCF or CCSD). Indeed, DFT methods are known to predict sensitive geo-

metric structures [142] (even if the energy barriers are not precise). This is illustrated

by the SN2 reaction studied in this work: in Fig. S1 of the SI we see that the highest

energy point on the NEB path for both PBE and CCSD is located at the similar values

of the reaction coordinate, although the energy barriers differ dramatically.

On the other hand, structures sampled by NEB using the cheaper method should

be far enough from the minimum energy path of the reference method. The points on

the true minimum energy path (approximated by NEB [126]) have only one non-zero

gradient component – the one along the path tangent direction [95]. Keeping in mind

that sGDML uses gradients as inputs for fitting, providing only structures on the min-

imum energy path would provide no information about the nature of the PES along

orthogonal directions and make model very sensitive to numerical noise. Consequently,

using a cheaper electronic structure method for the NEB simulation is not only compu-

tational effort saving, but also essential for the quality of the data set used to train a

gradient-based ML model.

Despite qualitative agreement achieved by the semi-local fitted PES in structures,

energy barriers and IRC, a more subtle property, vibrational spectrum, is computed less

accurately. Although the structure of Hessian is qualitatively correct, some frequen-

cies can differ by several hundreds of cm−1. This is particularly noticeable for the SN2

example and as a consequence leads to a significant error (order of magnitude) in the

reaction rate coefficient as compared to the reference value. This effect must have to do

with a smaller number of training points (only 50) used for the model as compared to

the Bergman cyclization (150 points). Another reason is the fact that the relevant PES

region for the SN2 is flatter as this for the Bergman cyclization (compare Fig. 5.2.4 and

Fig. 5.2.8), one indication of which is the lower energy barrier for the former reaction.

This makes finite-difference evaluation of the second derivatives of energy less reliable

and requires a better PES sampling for obtaining qualitative results.
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5.4 Conclusions and Outlook

In this work, we have proposed a multi-level protocol for reaction mechanism studies

aiming to match the accurate electronic structure theory description at the reduced

computational cost. The approach involves cheaper electronic structure method to gen-

erate structures along the reaction path via the NEB method, evaluating energies and

gradients for a restricted set of them with an accurate (reference) theory and fitting a

semi-local reactive PES using machine learning method, sGDML. The fitted PES is then

used for computing properties.

The protocol has been applied to a unimolecular (Bergman cyclization) and a bi-

molecular (SN2) reactions using PBE/CASSCF and PBE/CCSD, respectively, as cheap-

/reference method pairs, the results being compared with those obtained on-the-fly by

the reference method. Our approach achieves quantitative agreement in structure op-

timization for the PES stationary points, reaction energy barriers and IRC following

using as little as 50-150 training points (corresponding to energy and gradient calcu-

lations with the reference method), whereas the agreement in vibrational frequencies

and reaction coefficients is only (semi-)qualitative. The key to the performance of the

protocol is its multi-level character as the differences between the reference and cheap

methods are essential to provide meaningful information about the reactive PES region.

The results are encouraging as important objective of mechanistic reaction study

can be performed with high-level electronic structure method without prior knowledge

of the TS structure (due to the application of the NEB) requiring only scarce amount

of data. The protocol is simple and can be automatized for routine calculations.

At the same time, we have not considered more complex reactions with multiple

steps, product branching and shallow minima. These cases would require more subtle

approaches to sampling and larger amounts of training data.

Our simple protocol can be further improved by applying smart selection of train-

ing points using molecular fingerprints [143] and using methods even computationally

cheaper than DFT (such as modern tight-binding, GFN2-XTB [144]) for sampling struc-

tures. Moderately accurate reference methods applied here should be substituted by

those providing qualitatively correct PES, such as multi-reference approaches, to match

the experimental accuracy. Furthermore, the potential of different ML fitting techniques

should be explored.





Appendices

5.A Reaction Rate Coefficients

We use conventional transition state theory to compute rate coefficients for the two

reactions as follows [145]:

k =

(
kBT

h

)(
qtrans,TS/V

qtrans,R/V

)(
qrot,TS/V

qrot,R/V

)(
qvib,TS/V

qvib,R/V

)
e−∆E‡/kBT , (5.1)

where kB being the Boltzman constant, T - the temperature and h - the Planck con-

stant. qtrans,TS , qrot,TS and qvib,TS denote the translational, rotational and vibrational

partition functions for the transition state, whereas qtrans,R, qrot,R and qvib,R are their

counterparts for the reactants.

The calculation of the rotational partition functions requires the eigenvalues of the

inertia tensor:

qrot(T ) =
π2

σ

√
(8πIAkBT )/h2

√
(8πIBkBT )/h2

√
(8πICkBT )/h2, (5.2)

where IA, IB and IC are the eigenvalues of the inertia tensor.

The harmonic vibrational partition function is defined as:

qvib(T ) =
N∏
i

(
1

1− e
−hcνi
kBT

)
, (5.3)

where νi are vibrational frequencies and N is the number of normal modes.

This translational partition function is defined as:

qtrans(V ,T ) = V

(
2πkBTm

h2

)3/2

, (5.4)

where m is the mass of the molecule.

For the unimolecular Bergman cyclization, the translational partition functions in

Eq. 5.1 cancel out, whereas for the bimolecular SN2 reaction they have to be included.
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5.B Harmonic Vibrations

5.B.1 Vibrational Modes for the Bergman Cyclization of Enediyne

Mode number νRCASSCF /m
−1 νRsGDML/m

−1 νTS
CASSCF /m

−1 νTS
sGDML/m

−1

0 10.3i 7.9i 799.5i 646.8i
1 7.2i 2.4i 0.9i 0.1i
2 0.7i 0.1i 0.0 0.0
3 0.1i 0.1i 0.4 0.0
4 2.9 0.3 3.5 7.2
5 6.3 3.0 7.7 9.0
6 100.5 102.7 8.1 11.2
7 211.7 206.7 348.1 353.1
8 220.4 225.0 422.5 403.4
9 323.1 324.8 485.2 491.0
10 402.5 422.9 543.8 502.1
11 564.7 548.1 598.4 528.5
12 577.9 567.8 639.9 617.9
13 578.1 574.4 679.2 665.1
14 591.1 581.0 736.2 677.5
15 594.1 589.8 818.2 835.3
16 728.9 725.9 856.7 949.5
17 778.1 742.7 975.7 956.7
18 900.5 883.0 1024.2 1015.0
19 1001.9 966.9 1033.1 1032.2
20 1063.1 1073.7 1148.2 1043.7
21 1291.9 1348.8 1210.1 1120.0
22 1497.3 1500.6 1453.9 1333.9
23 1658.1 1613.1 1479.7 1427.4
24 2238.8 2123.6 1713.0 1685.2
25 2246.3 2230.1 1885.0 1832.8
26 3338.3 3326.4 3365.9 3144.6
27 3354.6 3327.8 3381.2 3275.8
28 3611.0 3572.6 3482.0 3367.0
29 3611.2 3577.6 3487.3 3441.6

Table 5.B.1: Comparison between CASSCF and sGDML frequencies for the reactant
and transition state.



Chapter 5. Mechanistic Reaction Studies 85

5.B.2 Vibrational Modes for the SN2 Reaction

Mode number νRCCSD/m
−1 νRsGDML/m

−1 νTS
CCSD/m

−1 νTS
sGDML/m

−1

0 36.0i 3.2i 447.7i 448.1i
1 0.7i 1.4i 0.1i 0.3i
2 0.4i 0.7i 0.1i 0.2i
3 0.1 0.0 0.1 0.0
4 0.4 0.2 3.0 3.0
5 0.5 19.2 3.7 3.7
6 73.4 100.5 40.9 19.7
7 73.4 405.2 184.1 176.7
8 92.4 411.1 188.9 440.2
9 666.6 652.9 188.9 443.5
10 988.8 1022.0 921.5 1093.0
11 989.2 1030.7 922.1 1102.4
12 1328.1 1639.9 1003.4 1117.8
13 1468.1 1677.2 1409.1 1171.4
14 1468.4 1764.9 1409.2 1220.6
15 3152.2 2911.4 3228.6 2690.0
16 3275.1 3376.1 3440.0 3422.7
17 3275.6 3550.1 3441.8 3584.3

Table 5.B.2: Comparison between CCSD and sGDML frequencies for the reactant
and transition state.
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5.C Reaction Coordinate (NEB) for the SN2 reaction

Reaction coordinate
0

20

40

60

E 
/ k

J/m
ol CCSD

DFT

Figure 5.C.1: PES comparison between CCSD and DFT (PBE). Energies have been
calculated for the same structures corresponding to the final state of the NEB calcula-

tion with DFT(PBE).



Conclusion

Quantum computing is a rapidly growing field of research, not only in academia but also

for industrial use cases. As hardware performance tends to increase every year, more

and more applications can be mapped and simulated on quantum devices. However, as

we are still in the NISQ era, noise effects lead to results that may not be reliable enough.

Therefore, the right choice of algorithms and post-processing of quantum measurements

is key in the current quantum age to obtain representative results. In addition, obtain-

ing a reliable expectation value on a quantum device is relatively expensive and would

require at least a million measurement shots, so we would like to make due with de-

termining as little expectation values as possible. In this case, sophisticated classical

methods such as machine learning techniques can be used to gain more information

about the system under investigation and to build representative models.

Chapters 1 and 2 gave brief introductions to the fields of quantum computing and

computational quantum chemistry, respectively.

In Chapter 3 of this thesis we compared two methods to determine gradients –

namely the finite-difference or numerical method, and the parameter-shift rule or ana-

lytical method – on a quantum computer taking depolarization noise into account. Due

to its simplicity, we have used a gradient descent optimizer which just contains one pa-

rameter, the so-called learning rate. For a simple toy system we could observe that the

parameter-shift rule reaches a smaller error after a certain amount of iteration steps,

compared to the finite-difference method with three different choices for the learning

rate. In case of more complicated systems, specifically small one-dimensional Hubbard

models, an advantage of the analytical method compared to its classical counterpart

could not be observed. This might be due to the fact that the circuit has a larger circuit

depth and width but more importantly that the same parameters appear in multiple

parametrized gates. The question if another gradient method, such as BFGS would

provide better results with the parameter-shift rule is left for a future work.

Chapter 4 provided insights into the post-processing of measurements on a noisy

quantum device using N-representability conditions. We studied not only the case of

decoherence noise, but also the combination of decoherence and shot noise in a regime

that is realistic for today’s quantum computers. Considering only decoherence noise,

we saw that the application of two N-representability conditions – namely fixed trace

and positive semidefiniteness – could reduce the energy error compared to runs without

post-processing. In particular, the case of H2 has shown that we could reduce the energy
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error by almost an order of magnitude. In addition, we considered the 2-RDM fidelity for

all cases. Here we partially observed an improvement compared to the raw measurement

when applying the above constraints to the reduced density matrices. Unfortunately,

with this projection method there is no strong correlation between the energy error and

the 2-RDM fidelity. With the inclusion of shot noise in our simulations, the method

led to improved results. A further analysis of the measurement variance confirmed the

efficiency of this method. While for LiH calculations we observed a reduction of the

measurement variance in the order of half to about one order of magnitude, for H2 we

observed an improvement of up to two orders of magnitude. This deviation could be

due to the low number of measurements and repetitions in the case of larger molecules,

which typically require a higher number of data for representative results. Another rea-

son might be the possibly bad scalability of this method for larger systems, where the

investigation of said scalability would be a task for future studies. This post-processing

method could be particularly interesting in the NISQ era, where we still have to deal

with decoherence noise. When we reach the era where quantum error correction will

be possible and we would only have to deal with shot noise, this method might be less

advantageous. We have also seen that this method is not helpful to mitigate pure de-

phasing noise in combination with the Jordan-Wigner encoding. However, this approach

shows that we can improve the energy errors by one to two orders of magnitude when

using NISQ devices.

Finally, in Chapter 5 we have used a machine learning approach that requires a small

number of data points to produce a representative model. The machine learning model of

choice was sGDML, which uses the inverse interatomic distances of the molecule as input

and the corresponding forces, or energy gradients with respect to positions, as output.

By training only 150 (Bergman cyclization) and 50 (SN2 reaction) points, we were able

to obtain good models for further processing. This further processing included, for ex-

ample, interpolation of the entire potential energy surfaces and geometry optimizations,

where all observables were compared with the corresponding reference methods, namely

CASSCF for the Bergman cyclization and CCSD for the SN2 reaction. In all cases good

agreement with the reference methods was observed. The idea behind using as few data

points as possible is to replace computations on classical devices with computations on

real quantum hardware. In the case of CASSCF, the active space would be represented

by system (or “good“) qubits, while all other unoccupied states would be represented by

bath (or “bad“) qubits. As quantum hardware is expensive today, the aim is to perform

as few computations as possible to achieve a relatively low throughput. These points

can then be used and fed into an approach as described in this chapter.

The aim of this thesis was to find methods for reducing the amount of resources that

are required for computations on today’s quantum computers. Our analysis of calculat-

ing gradients in an optimization procedure using the parameter-shift rule to calculate
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compared to a simple finite-element method for algorithms of different complexity pro-

vided insights about the strengths, but also the limitations, of the parameter-shift rule,

and sparks ideas for further research in this realm. While our post-processing approach

offers positive and promising results for the near-future application on quantum devices,

the presented machine learning Ansatz could already be beneficial using today’s purely

classical computers. It would be interesting to see how these methods perform on real

quantum hardware and on larger systems.
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H. Putterman, C. Quintana, J.-M. Reiner, P. Roushan, N. C. Rubin, D. Sank, K. J.

Satzinger, V. Smelyanskiy, D. Strain, K. J. Sung, P. Schmitteckert, M. Szalay,

N. M. Tubman, A. Vainsencher, T. White, N. Vogt, Z. J. Yao, P. Yeh, A. Zal-

cman, and S. Zanker, Observation of separated dynamics of charge and spin in the

fermi-hubbard model (2020), arXiv:2010.07965 [quant-ph] .

[18] B. Rost, L. D. Re, N. Earnest, A. F. Kemper, B. Jones, and J. K. Freericks, Demon-

strating robust simulation of driven-dissipative problems on near-term quantum

computers (2021), arXiv:2108.01183 [quant-ph] .

[19] R. N. Tazhigulov, S.-N. Sun, R. Haghshenas, H. Zhai, A. T. K. Tan, N. C.

Rubin, R. Babbush, A. J. Minnich, and G. K.-L. Chan, Simulating challenging

correlated molecules and materials on the sycamore quantum processor (2022),

arXiv:2203.15291 [quant-ph] .

[20] S. Xu, Z.-Z. Sun, K. Wang, L. Xiang, Z. Bao, Z. Zhu, F. Shen, Z. Song, P. Zhang,

W. Ren, X. Zhang, H. Dong, J. Deng, J. Chen, Y. Wu, Z. Tan, Y. Gao, F. Jin,

X. Zhu, C. Zhang, N. Wang, Y. Zou, J. Zhong, A. Zhang, W. Li, W. Jiang, L.-W.

Yu, Y. Yao, Z. Wang, H. Li, Q. Guo, C. Song, H. Wang, and D.-L. Deng, Digital

simulation of non-abelian anyons with 68 programmable superconducting qubits

(2022), arXiv:2211.09802 [quant-ph] .

[21] S. Guo, J. Sun, H. Qian, M. Gong, Y. Zhang, F. Chen, Y. Ye, Y. Wu, S. Cao,

K. Liu, C. Zha, C. Ying, Q. Zhu, H.-L. Huang, Y. Zhao, S. Li, S. Wang, J. Yu,

D. Fan, D. Wu, H. Su, H. Deng, H. Rong, Y. Li, K. Zhang, T.-H. Chung, F. Liang,

J. Lin, Y. Xu, L. Sun, C. Guo, N. Li, Y.-H. Huo, C.-Z. Peng, C.-Y. Lu, X. Yuan,

X. Zhu, and J.-W. Pan, Experimental quantum computational chemistry with

optimised unitary coupled cluster ansatz (2023), arXiv:2212.08006 [quant-ph] .

[22] A. Erhard, H. Poulsen Nautrup, M. Meth, L. Postler, R. Stricker, M. Stadler,

V. Negnevitsky, M. Ringbauer, P. Schindler, H. J. Briegel, R. Blatt, N. Friis, and

T. Monz, Nature 589, 220 (2021).

[23] R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, M. Ansmann, F. Arute, K. Arya,

A. Asfaw, J. Atalaya, R. Babbush, D. Bacon, J. C. Bardin, J. Basso, A. Bengts-

son, S. Boixo, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, B. B.

Buckley, D. A. Buell, T. Burger, B. Burkett, N. Bushnell, Y. Chen, Z. Chen,

B. Chiaro, J. Cogan, R. Collins, P. Conner, W. Courtney, A. L. Crook, B. Curtin,

D. M. Debroy, A. Del Toro Barba, S. Demura, A. Dunsworth, D. Eppens, C. Er-

ickson, L. Faoro, E. Farhi, R. Fatemi, L. Flores Burgos, E. Forati, A. G. Fowler,

B. Foxen, W. Giang, C. Gidney, D. Gilboa, M. Giustina, A. Grajales Dau, J. A.

https://arxiv.org/abs/2010.07965
https://arxiv.org/abs/2108.01183
https://arxiv.org/abs/2203.15291
https://arxiv.org/abs/2211.09802
https://arxiv.org/abs/2212.08006
https://www.nature.com/articles/s41586-020-03079-6


Bibliography 94

Gross, S. Habegger, M. C. Hamilton, M. P. Harrigan, S. D. Harrington, O. Hig-

gott, J. Hilton, M. Hoffmann, S. Hong, T. Huang, A. Huff, W. J. Huggins, L. B.

Ioffe, S. V. Isakov, J. Iveland, E. Jeffrey, Z. Jiang, C. Jones, P. Juhas, D. Kafri,

K. Kechedzhi, J. Kelly, T. Khattar, M. Khezri, M. Kieferová, S. Kim, A. Kitaev,
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I. D. Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya, S. Sim, L. Veis, and

A. Aspuru-Guzik, Chemical Reviews 119, 10856 (2019).

[121] B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan, Chemical Reviews 120, 12685

(2020).

[122] R. R. Jones and R. G. Bergman, Journal of the American Chemical Society 94,

660 (1972).

[123] C. Ingold, Structure and Mechanism in Organic Chemistry (1969).

[124] H. Dong, B.-Z. Chen, M.-B. Huang, and R. Lindh, Journal of Computational

Chemistry 33, 537.

[125] Z. Kerekes, D. A. Tasi, and G. Czakó, The Journal of Physical Chemistry A 126,
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H. Früchtl, L. Gagliardi, J. Garza, N. Gawande, S. Ghosh, K. Glaesemann, A. W.
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[143] G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler, and M. Ceriotti, The

Journal of Chemical Physics 148, 241730 (2018).

[144] C. Bannwarth, S. Ehlert, and S. Grimme, Journal of Chemical Theory and Com-

putation 15, 1652 (2019).

[145] P. Atkins and J. Paula, Atkins’ physical chemistry (2008).

https://doi.org/10.1063/5.0004997
https://doi.org/10.1063/5.0004997
https://doi.org/https://doi.org/10.1016/0301-0104(80)80045-0
https://doi.org/10.1021/ja00090a047
https://doi.org/10.1021/ja00090a047
https://doi.org/https://doi.org/10.1016/j.cplett.2017.03.004
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1063/1.443164
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.464303
https://doi.org/10.1063/1.478678
https://doi.org/10.1063/1.478678
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1038/s41467-018-06169-2
https://doi.org/10.1038/s41467-018-06169-2
https://doi.org/10.1063/1.5078687
https://doi.org/10.1063/1.5078687
https://doi.org/https://doi.org/10.1002/qua.26390
https://doi.org/https://doi.org/10.1002/qua.26390
https://doi.org/https://doi.org/10.1002/anie.202205735
https://doi.org/https://doi.org/10.1002/anie.202205735
https://doi.org/10.1063/1.5024611
https://doi.org/10.1063/1.5024611
https://doi.org/10.1021/acs.jctc.8b01176
https://doi.org/10.1021/acs.jctc.8b01176
http://www.worldcat.org/isbn/9780195685220

	I Introduction
	1 Quantum Computing
	1.1 Quantum Bits
	1.2 Product and Entangled States
	1.3 Quantum Gates
	1.4 Quantum Measurements
	1.5 The Variational Quantum Eigensolver
	1.6 Density Matrix
	1.7 Decoherence
	1.8 Fermion-Qubit Encoding

	2 Computational Quantum Chemistry
	2.1 Fermionic Anticommutation Relations
	2.2 Chemical Basis Sets
	2.3 Molecular Hamiltonian and Reduced Density Matrices
	2.4 Ensemble N-Representability Conditions
	2.5 Hartree-Fock
	2.6 Density Functional Theory
	2.7 Complete Active Space Self Consistent Field
	2.8 Configuration Interaction
	2.9 Coupled Cluster
	2.10 Data Sets within Machine Learning


	II Improving Simulations on Noisy Quantum Computers
	3 Analyzing Gradients in Variational Algorithms
	3.1 The Variational Hamiltonian Ansatz and 1D Hubbard Model
	3.2 Gradient Descent Optimizer
	3.3 Circuit Evaluation
	3.4 Results
	3.4.1 Simple Circuit
	3.4.2 Results for the 2-site Hubbard Model
	3.4.3 Results for the 6-site Hubbard Model

	3.5 Conclusion

	Appendices
	3.A Derivation of the Parameter-Shift Rule

	4 Imposing N-Representability Constraints on Reduced Density Matrices
	4.1 N-Representability Conditions for Hole and Particle-Hole Reduced Density Matrices
	4.2 Application of Noise to Perfect Measurements
	4.2.1 Shot Noise
	4.2.2 Influence of Noise on N-Representability

	4.3 Procedure
	4.4 Numerical Analysis
	4.4.1 Simulations without Shot Noise
	4.4.2 Simulations with Shot Noise

	4.5 Conclusion

	Appendices
	4.A Dephasing and N-Representability Conditions


	III Data Interpolation for Quantum Chemistry Methods with Machine Learning
	5 Mechanistic Reaction Studies
	5.1 Methodology
	5.1.1 Simulation Protocol
	5.1.2 Electronic Structure Calculations
	5.1.3 Data Set Generation
	5.1.4 Machine Learning Fit of the Semi-Local Reactive PES
	5.1.5 Property Calculation

	5.2 Results
	5.2.1 Bergman Cyclization of Enediyne
	5.2.2 SN2 Reaction of Chloromethane with Bromide

	5.3 Discussion
	5.4 Conclusions and Outlook

	Appendices
	5.A Reaction Rate Coefficients
	5.B Harmonic Vibrations
	5.B.1 Vibrational Modes for the Bergman Cyclization of Enediyne
	5.B.2 Vibrational Modes for the SN2 Reaction

	5.C Reaction Coordinate (NEB) for the SN2 reaction

	Conclusion
	Bibliography


