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Abstract

The digital era is characterized by the widespread availability of rich data, which has fueled
the growth of machine learning applications across diverse fields such as computer vision,
natural language processing, speech recognition, and recommendation systems. Nevertheless,
data sharing is often at odds with serious privacy and ethical issues. The sensitive nature
of much of this data, which includes personal information on mobile devices, confidential
medical treatments, and financial records, demands a cautious approach to data sharing. This
caution is not just a matter of ethical responsibility but also a legal mandate, with stringent
regulations like the General Data Protection Regulation (GDPR) and the Health Insurance
Portability and Accountability Act (HIPAA) establishing barriers that, while protective, can
also impede the pace of technological progress. Additionally, the growing trend of using large-
scale, web-scraped datasets to build machine learning models raises serious concerns. This
approach, often without proper supervision, can unintentionally include private information
and copyrighted content not meant for public use, posing risks of privacy violations and legal
complications.

This presents a dilemma: the demand for extensive data to power complex machine learning
algorithms conflicts with the need to protect personal privacy and intellectual property rights.
Addressing this challenge is critical not only to maintain public trust but also to ensure that the
progress in machine learning is sustainable, responsible, and aligned with societal values. To
this end, this thesis investigates such privacy risks and seeks out viable solutions that permit
data sharing within strict privacy constraints. Specifically, this thesis examines three intertwined
perspectives within the realm of data privacy in machine learning: (1) privacy-preserving
generative modeling, which focuses on generating synthetic data while ensuring rigorous
privacy guarantees; (2) privacy attack and defense, dedicated to assessing and understanding
the actual privacy risks inherent in machine learning models; as well as (3) applications, which
emphasizes the implementation of privacy-preserving training methods on real-world sensitive
datasets.

Firstly, we explore privacy-preserving generative modeling, with the goal of creating syn-
thetic data that maintains characteristics of the population distribution relevant for particular
tasks, while adhering to rigorous privacy guarantee. Such synthetic data can be utilized and
analyzed as if it were the real data, thus enabling progress and facilitating reproducible research
in sensitive domains. The foundation of our approach is rooted in differentially private (DP)
generative modeling. Our advancements involve the development of sanitization protocols ded-
icated to generative modeling (Chapter 2), the design of a generation framework that reduces
the inherent complexity of DP training (Chapter 3), and offering a novel unified perspective
that presents a joint design surface for systematic investigation into future advancements in
the field (Chapter 4).

Secondly, we delve into privacy attack and defense mechanisms, particularly focusing on
real-world simulations of privacy threats. Our work primarily scrutinizes the membership
inference attack, which attempts to determine whether a particular data sample was part of
a machine learning model’s training set. This type of attack serves as a crucial metric for
identifying potential privacy leaks and establishing the lower bound of privacy cost in auditing
privacy-preserving algorithms. This thesis presents an in-depth analysis of such attacks against
generative models (Chapter 5), and devises effective countermeasures for general discriminative
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machine learning models (Chapter 6).
Lastly, we focus on adapting our analytical and design strategies in DP learning mechanisms

for practical applications, particularly within the medical field where data privacy is paramount.
This research yields findings and insights that guide the development of privacy-centric
technologies, tailored for complex real-world data distributions (Chapter 7).



Zusammenfassung

Das digitale Zeitalter ist gekennzeichnet durch die weit verbreitete Verfügbarkeit von um-
fangreichen Daten, die das Wachstum von Anwendungen des maschinellen Lernens in ver-
schiedenen Bereichen wie Computer Vision, Verarbeitung natürlicher Sprache, Spracherken-
nung und Empfehlungssystemen angetrieben haben. Dennoch steht das Teilen von Daten
oft im Widerspruch zu ernsthaften Datenschutz- und ethischen Fragen. Die sensible Natur
vieler dieser Daten, zu denen persönliche Informationen auf mobilen Geräten, vertrauliche
medizinische Behandlungen und Finanzaufzeichnungen gehören, erfordert einen vorsichti-
gen Ansatz beim Datenaustausch. Diese Vorsicht ist nicht nur eine Frage der ethischen
Verantwortung, sondern auch ein gesetzliches Mandat, wobei strenge Vorschriften wie die
Datenschutz-Grundverordnung (DSGVO) und der Health Insurance Portability and Account-
ability Act (HIPAA) Barrieren errichten, die zwar schützend sind, aber auch das Tempo des
technologischen Fortschritts behindern können. Darüber hinaus wirft der wachsende Trend,
großangelegte, aus dem Web extrahierte Datensätze zum Aufbau von Maschinenlernmodellen
zu verwenden, ernsthafte Bedenken auf. Dieser Ansatz, oft ohne angemessene Aufsicht, kann
unbeabsichtigt private Informationen und urheberrechtlich geschütztes Material enthalten, das
nicht für die öffentliche Nutzung bestimmt ist, und birgt Risiken von Datenschutzverletzungen
und rechtlichen Komplikationen.

Dies stellt ein Dilemma dar: Die Nachfrage nach umfangreichen Daten zur Speisung
komplexer Maschinenlernalgorithmen steht im Konflikt mit dem Bedürfnis, persönliche Privat-
sphäre und geistige Eigentumsrechte zu schützen. Die Bewältigung dieser Herausforderung
ist entscheidend, um nicht nur das öffentliche Vertrauen aufrechtzuerhalten, sondern auch
sicherzustellen, dass der Fortschritt im maschinellen Lernen nachhaltig, verantwortungsbe-
wusst und im Einklang mit gesellschaftlichen Werten ist. Zu diesem Zweck untersucht diese
Arbeit solche Datenschutzrisiken und sucht nach praktikablen Lösungen, die den Datenaus-
tausch innerhalb strenger Datenschutzbeschränkungen ermöglichen. Insbesondere untersucht
diese Arbeit drei miteinander verflochtene Perspektiven im Bereich des Datenschutzes beim
maschinellen Lernen: (1) Datenschutzfreundliche Datenfreigabe, die sich auf die Erzeugung
synthetischer Daten konzentriert und gleichzeitig strenge Datenschutzgarantien gewährleistet;
(2) Datenschutzangriff und -verteidigung, gewidmet der Bewertung und dem Verständnis
der tatsächlichen Datenschutzrisiken, die in Maschinenlernmodellen inhärent sind; sowie (3)
Anwendungen, die die Implementierung von datenschutzfreundlichen Trainingsmethoden auf
realen sensiblen Datensätzen hervorheben.

Erstens erforschen wir die Datenschutz gewahrende Datenfreigabe mit dem Ziel, synthetis-
che Daten zu erstellen, die Eigenschaften der Bevölkerungsverteilung beibehalten, die für
bestimmte Aufgaben relevant sind, und dabei strenge Datenschutzgarantien einhalten. Solche
synthetischen Daten können genutzt und analysiert werden, als wären sie echte Daten, was
Fortschritte ermöglicht und reproduzierbare Forschung in sensiblen Bereichen erleichtert. Die
Grundlage unseres Ansatzes ist in der differentiell privaten (DP) generativen Modellierung
verankert. Unsere Fortschritte umfassen die Entwicklung von Sanitisierungsprotokollen, die
der generativen Modellierung gewidmet sind (Chapter 2), das Design eines Generierungsframe-
works, das die inhärente Komplexität des DP-Trainings reduziert (Chapter 3), und bietet eine
neuartige einheitliche Perspektive, die eine gemeinsame Designoberfläche für systematische
Untersuchungen zukünftiger Fortschritte im Bereich präsentiert (Chapter 4).
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Zweitens beschäftigen wir uns mit Angriffs- und Verteidigungsmechanismen für den
Datenschutz, insbesondere konzentrieren wir uns auf realitätsnahe Simulationen von Daten-
schutzbedrohungen. Unsere Arbeit untersucht hauptsächlich den Mitgliedschafts-Inferenzangriff,
der zu bestimmen versucht, ob eine bestimmte Datenprobe Teil des Trainingssets eines
maschinellen Lernmodells war. Dieser Angriffstyp dient als entscheidendes Maß für die
Identifizierung potenzieller Datenschutzlecks und zur Festlegung der Untergrenze der Daten-
schutzkosten bei der Überprüfung von Datenschutzalgorithmen. Diese Dissertation präsentiert
eine eingehende Analyse solcher Angriffe gegen generative Modelle (Chapter 5) und entwickelt
wirksame Gegenmaßnahmen für allgemeine maschinelle Lernmodelle (Chapter 6).

Zuletzt konzentrieren wir uns darauf, unsere analytischen und gestalterischen Strategien in
DP-Lernmechanismen für praktische Anwendungen anzupassen, insbesondere im medizinis-
chen Bereich, wo Datenschutz von größter Bedeutung ist. Diese Forschung liefert Erkenntnisse
und Einsichten, die die Entwicklung von datenschutzorientierten Technologien leiten, die für
komplexe reale Datenverteilungen zugeschnitten sind (Chapter 7).
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The advancement of machine learning (ML) technologies in recent years has been re-
markable, predominantly powered by the exponential growth in big data. The vast
amounts of rich datasets are pivotal for the training of advanced ML algorithms. These

algorithms, especially in the fields of deep learning and reinforcement learning, require exten-
sive data to realize their expressive capabilities and predictive effectiveness, driving forward
innovative developments across a variety of industries and practical uses. However, the rapid
expansion of ML applications poses significant challenges regarding data privacy and ad-
herence to regulatory standards. The sharing of data, particularly when it involves sensitive
personal information, is stringently limited by privacy regulations, such as the General Data
Protection Regulation (GDPR) in Europe and the Health Insurance Portability and Account-
ability Act (HIPAA) in the United States. Such restrictions can largely hinder the pace of ML
advancements, especially in sensitive areas.

Moreover, the common practice of constructing machine learning models from large-scale,
web-scraped datasets also raises significant concerns. Such methods, often lacking rigorous
oversight, can inadvertently incorporate data from entities that do not anticipate or permit
such usage. The consequences are significant, potentially leading to severe privacy violations
if individual data is used without permission, and risking legal issues by using copyrighted
material without the necessary authorization.

Such a landscape poses a paradox — the need for rich data to feed the ever-growing
complexity of machine learning algorithms is at odds with the imperative to protect individual
privacy and intellectual property. This tension necessitates innovative solutions that can
reconcile the hunger for data with the ethical and legal frameworks designed to safeguard
society. Addressing this tension requires the development of novel methodologies that can
bridge the gap between data requirements for ML and adherence to ethical standards. Potential
solutions include differential privacy techniques to sanitize data, federated learning approaches
that train models on decentralized data, and synthetic data generation that offers a privacy-
compliant alternative for model training.

The goal of this thesis is to address the aforementioned challenges and develop algorithms
that enable learning while ensuring privacy guarantees. Our key idea is anchored in the
principles of differential privacy (DP), which offers a rigorous mathematical foundation for
quantifying and controlling the privacy risks associated with the learning processing. The key
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2 Introduction

contributions are briefly summarized below regarding the main topics of this thesis.

• In Part I, Privacy-Preserving Generative Modeling, we examine the generation of synthetic,
sanitized data that mimics the real data’s distributional characteristics while complying with
rigorous DP guarantees.

– In Chapter 2, we propose a novel gradient sanitization scheme for training deep generative
models, which naturally exploits the intrinsic properties of the training pipeline and
objective of generative adversarial networks to eliminate information loss during DP
training.

– In Chapter 3, we introduce a generative framework for constructing sanitized data that
directly optimizes for downstream analysis objectives to simplify the complexity of DP
generation and enhance its utility.

– In Chapter 4, we present a unified view of DP generative models that provides a joint
design surface enabling systematic exploration for the future design of new variants.

• In Part II, Privacy Attack and Defense, we investigate the potential privacy leakage by
executing practical attacks, with a focus on membership inference attacks, and propose
countermeasures against such attacks.

– In Chapter 5, we present a systematic investigation of membership inference attacks
targeting advanced generative models, with a specific focus on diffusion models.

– In Chapter 6, we propose defense mechanisms that effectively defend against membership
inference attacks while maintaining model utility.

• In Part III, Application, we study the application of DP generative methods on real-world
datasets with complicated distributions and their implications.

– In Chapter 7, we investigate the application of DP generative methods on gene expression
data and establishes a systematic evaluation along several different dimensions.

For the rest of this chapter, we discuss each topic and explain our contributions. Then, we
provide an outline of the thesis with relevant publications.

1.1 Privacy-preserving Generative Modeling

The principal aim of this part is to devise practical methodologies for publishing data with
stringent privacy guarantees, grounded in the principles of DP data publishing [51, 52, 58],
where a sanitized form of the data with rigorous privacy guarantees is publicly released
for downstream usage. Such sanitized synthetic data can be leveraged as if it were the real
data, analyzed with established toolchains, and can also be shared openly with the research
community, facilitating technological advance and reproducible research in sensitive domains.

Traditionally, the sanitization algorithms are designed for capturing low-dimensional
statistical characteristics and target at specific downstream tasks (e.g., answering linear
queries [179, 73, 19, 223]), which greatly restricts the expressiveness of the released data
distribution and fail to generalize to novel tasks unanticipated by the publisher. Instead,
inspired by the recent successes of deep generative models in learning high-dimensional
representations, the latest works [24, 32, 239, 245, 14] adopt deep generative models as the
underlying generation algorithm, achieving promising results in sanitizing high-dimensional
samples for general purpose. Unfortunately, existing methods are still struggling to generate
high-fidelity sanitized data that is useful for many real-world application scenarios. One
major challenge is the shortage of data samples when training the deep generative models
under a privacy budget acceptable for real-world deployment. This is especially problematic
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when considering datasets in sensitive domains (e.g., medical treatment records, genetic data),
which typically have a limited amount of data samples but follow complex high-dimensional
distributions.

1.1.1 Challenges

Despite significant progress in recent years, privacy-preserving generative modeling still faces
many open challenges that significantly impede its practical application. In the following, we
outline several key challenges that this thesis aims to address.
• Hyperparameter Tuning & Training Stability. Training generative models under DP

constraints typically involves a delicate and fragile tuning process. Hyperparameters, such
as the gradient clipping bound required by standard DP gradient sanitization method [1],
require careful selection. An improper choice can disrupt the entire training process due to
the inherent instability of training deep generative models. Furthermore, the straightforward
application of vanilla gradient sanitization techniques often results in substantial information
loss. This loss occurs due to the vast variance and long-tailed distribution of gradient norms,
making it exceedingly difficult to achieve satisfactory performance using existing methods.
Addressing this issue is crucial for effectively balancing privacy preservation and model
performance.

• Modeling Complexity. As a price of the great modeling capacity, deep generative models
are data-intensive and generally require a massive amount of diverse data samples to
achieve high generation quality. This is even more problematic when the privacy constraint
is imposed: given a privacy budget, the randomness required for hiding information
about individuals (which is normally implemented as injecting noise into the gradients)
scales inversely to the sample size. For a privacy budget that is acceptable for real-world
deployment (i.e., ϵ<10 as suggested by [165]), the often insufficient dataset sizes in real-world
applications fail to compensate for the distortion caused by DP noise, leading to unstable
training and a significant reduction in utility. This is particularly relevant for datasets
in sensitive domains (e.g., medical treatment records, genetic data), which typically have
limited amount of data samples but follow complex high-dimensional distributions. This
characteristic makes the additional randomness from DP a significant hindrance, rendering
existing training methods ineffective.

• Fragmented Research. Towards designing models that are better compatible with the privacy
target, recent works commonly tailor the training objective for the private case [24, 70, 32, 129],
all building on top of a generic generator framework. However, research is fragmented as
contributions have been made in different domains, different modeling paradigms, different
metric/discriminator choices, and different data modalities. Insufficient exploration has been
conducted to elucidate the inherent advantages and limitations of distinct methodological
categories and to determine their appropriate deployment in scenarios with varying levels of
privacy requirements and data characteristics. So far, a unified view of private generators is
missing in the literature, albeit that it naturally provides a joint design space to systematically
explore novel architecture and leverage the strengths across different methods.

1.1.2 Our Contributions

Towards mitigating the aforementioned key challenges and generally improving privacy-
preserving generative modeling, we made the following contributions.
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• In Chapter 2, we tackle the first challenge, hyperparameter tuning and training stability, by
proposing a novel gradient sanitization scheme that distorts the information more precisely
and obviates the need for delicate hyperparameter tuning of the clipping bound. Instead
of distorting all parameter gradients that occur during model training, we propose to
sanitize only the gradients with respect to the synthetic samples. This subset is essential for
updating the generator and ensures DP guarantees for both the generator and the generated
synthetic dataset. Moreover, our new formulation leverages the theoretical property derived
from the training objective of Wasserstein GANs, wherein the gradients to be sanitized
exhibit a specific norm consistent with the Lipschitz Property of the adopted Wasserstein
objective [8, 67]. This property enables us to naturally bypass the search for a clipping norm
required for DP training. Experimental evaluations on various datasets demonstrate that
our method significantly outperforms state-of-the-art approaches in generation quality and
downstream utility. Additionally, our scheme can be seamlessly applied in both centralized
and decentralized settings, providing user-level DP guarantees [113] even under an untrusted
server in the decentralized scenario.

• In Chapter 3, we address the second challenge, modeling complexity, by proposing an al-
ternative perspective of DP high-dimensional data generation and a novel DP generation
framework. Rather than aiming to fit the entire data distribution as is typically done, our
framework instead optimizes a small and representative set of samples. This optimization
is guided by discriminative information from downstream tasks. Compared to the default
approach, our framework simplifies the task and thus reduces the modeling complexity by
leveraging dedicated discriminative information and reducing the dimensionality of the opti-
mization problem. Our framework effectively bridges the gap between utility and generality
in private generative and discriminative modeling. Experimental results demonstrate that
our work significantly improves sample utility and offers superior practicality for real-world
applications.

• In Chapter 4, we address the third challenge, fragmented research, by presenting a unified
view of DP deep generative modeling that categorizes and streamlines existing approaches.
This creates a joint design surface that allows for the systematic development of new
methods tailored to diverse application scenarios. Within this framework, we engage in
a critical analysis of the strengths and weaknesses of various approaches, as well as the
intrinsic correlations between them. Our objective is to illuminate key considerations and
to inspire future research that will propel the field forward. We then explore possible
future directions for DP data generation, aiming to direct the collective efforts of researchers
towards significant advances in privacy-preserving machine learning. The chapter concludes
by highlighting promising research paths that could enhance the field and aid researchers in
navigating the complexities of data privacy.

1.2 Privacy Attacks and Defenses

The primary aim of a privacy attacker is to derive confidential details about individuals from the
training datasets used in machine learning models. A key form of this attack is the membership
inference attack (MIA), which determines whether a given query data sample was included in
the analysis study or the training of a model. The research into privacy attacks, particularly
MIAs, is increasingly vital due to the pervasive integration of data-centric technologies into
our daily lives. Moreover, such research is essential for assessing and enhancing the privacy
protections of systems that handle sensitive data. MIAs also have significant connections to
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other critical concepts in privacy and data security, such as differential privacy, intellectual
property rights protection [194], and the unintended disclosure of training data content [26, 27].
Additionally, the investigation of privacy attacks plays a vital role in auditing the (lower bound
of) privacy costs of learning systems, which is closely associated with Part I of our research
that aims at providing models with strict upper bound of the privacy costs against potential
adversaries.

While stringent DP guarantees serve as a natural defense against privacy attacks, they
may not be the optimal approach. Specifically, the protection level afforded by DP can exceed
what is necessary to prevent practical attackers, which in turn could compromise the model
utility. Therefore, developing practical defenses that optimize the privacy-utility trade-off is of
paramount importance.

1.2.1 Challenges

• Practicability and Effectiveness of Attacks. The central challenge in research on privacy
attacks is twofold: First, it requires determining the data quantities an attacker can access
and exploit, which dictates the practicability of the attack. This involves understanding the
attack surface across various contexts, particularly those reflecting the real-world use of the
targeted model or system. Second, it necessitates identifying the specific data quantities
an attacker should leverage to maximize the attack’s effectiveness. This process involves
pinpointing the system’s most susceptible points, where a breach could reveal the most
information about the sensitive data processed by the learning system. The intersection of
these two aspects, practicability and effectiveness, unveils a complex spectrum of challenges
that have shaped the trajectory of research in this domain.

• Privacy-utility Trade-off of Defenses. Defense mechanisms typically subject to a principled
privacy-utility trade-off, where enhanced privacy protection often comes at the cost of
reduced model utility. This tendency is observable in existing defenses, which tend to
be either less effective in defending against attacks (like regularization techniques), or
notably compromise model utility (such as DP mechanisms). Specifically, while adopting
DP mechanisms offers a strong defense by providing strict worst-case guarantees against
arbitrarily powerful attackers that exceed practical limits, DP methods inevitably sacrifice
model utility [170, 87, 74, 34, 97, 86] and meanwhile increase computation burden [64, 41].
In general, developing utility-preserving and computationally efficient defenses that target
at practically realizable attacks has become the primary focus of contemporary research in
this domain.

1.2.2 Our Contributions

In summary, we made the following contributions towards designing practical and effective
attacks and defenses.

• In Chapter 5, we pioneer the investigation of practical and effective Membership Inference
Attacks (MIAs) against diffusion models, the state-of-the-art technology for AI-based image
processing systems with emerging commercial uses in daily life. We begin by elucidating
the unique properties and usage patterns of diffusion models, which give rise to new
attack surfaces that have not been addressed in previous studies. Instead, we thoroughly
examine attack vectors and identify three major attack scenarios that are most representative
and prevalent in practice, considering real-world APIs as reference. Moreover, we design
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novel attacks tailored to diffusion models based on their unique characteristics, consistently
surpassing existing solutions by a substantial margin across various settings. Our attacks are
based on easily obtainable or estimable quantities and are both straightforward and highly
effective, supported by a theoretical basis. Extensive evaluation demonstrates the consistent
efficacy of our approach across varied scenarios, yielding key insights into components
that impact the vulnerability of real-world models. Lastly, our findings indicate a dual
implication: while the common practice of sharing diffusion models presents a markedly
high privacy risk, strong attack strategies exist that enable the monitoring of sample usage
during model training, which is crucial for intellectual property protection and the early
detection of data leakage.

• In Chapter 6, we introduce a novel defense mechanism that effectively protects against
a wide range of MIAs without compromising the defender’s model utility. Our strategy
hinges on two pivotal insights: firstly, the efficacy of a Bayesian optimal attack only depends
on the sample loss under mild assumptions of the model parameters [180]; secondly, a
pronounced disparity between the training and testing loss provably elevates membership
privacy risks [244]. By strategically moderating the target training loss to better align with
the test loss, our method reduces the loss gap, diminishing the distinctiveness between
the training and testing loss distributions, and thereby mitigates various attack vectors.
Moreover, our approach allows for a utility-preserving (or even improving) defense, greatly
improving upon previous results. As a practical benefit, our approach is easy to implement
and can be seamlessly integrated into existing classification models with minimal overhead.
Comprehensive evaluations across diverse datasets demonstrate that our method notably
surpasses state-of-the-art defenses, offering superior protection against MIAs and an im-
proved balance between privacy and utility. To our knowledge, this is the first approach that
comprehensively counters a broad spectrum of attacks while preserving model utility.

1.3 Application

While significant advancements have been achieved in the field of privacy-preserving data
generation in the past few years, the application of such techniques to real-world complex high-
dimensional data distribution with varied modalities remains an open challenging. Notably,
existing DP generation techniques have shown promising outcomes when applied to real-world
demographic data1, which inherently possesses properties conducive to privacy (e.g., large
sample sizes, low feature dimensions, highly correlated feature distributions) are present.
However, the application of such techniques to sensitive domains such as medical data is
largely under-explored. Specifically, the unique and diverse characteristics of medical data call
for dedicated efforts towards developing effective representation, modeling, and evaluation
techniques that have not been thoroughly investigated in existing literature.

1.3.1 Challenges

• Data Complexity. Real-world datasets in sensitive domains typically possess a diverse range
of data types and characteristics that complicate the application of DP techniques. For
instance, the data may include heterogeneous feature types, from numerical to categorical,
requiring complex pre-processing. Making such pre-processing steps DP can be non-trivial
to implement and may incur considerable information loss. Furthermore, the often large

1https://www.census.gov/data.html

https://www.census.gov/data.html
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number of features and their intricate inter-feature interactions are challenging for DP
methods to capture, potentially necessitating extensive feature engineering or specialized
model architectures. Morevoer, the typically limited size of datasets further complicates
DP learning and exacerbates the risk of overfitting. Lastly, complex data structures, such
as correlated samples, may demand the development of specialized privacy models and
adapted privacy notions, adding further complexity to the analysis and implementation of
DP techniques.

• Evaluation of Generation Methods. The evaluation of generation methods poses significant
challenges, particularly when dealing with real-world data that exhibits diverse feature
types and value ranges. Unlike the straightforward visual inspection for image data,
assessing general type of synthetic data requires complex metrics that capture multiple
dimensions. Existing studies have mainly focused on downstream utility, i.e., whether
synthetic data can substitute real data for downstream analysis such as training machine
learning models. However, this single-dimensional evaluation may be insufficient, often
leading to over-optimized assessments. A comprehensive evaluation that reliably determines
the effectiveness of generation methods and the quality of synthetic data remains under-
explored in current literature, despite its critical importance for practical applications.
Moreover, the development of robust and reliable metrics for such evaluations is an active
area of research that necessitates further effort.

1.3.2 Our Contributions

In summary, we made the following contributions towards investigating the feasibility of
applying DP generation methods on real-world complex data distributions from sensitive
domains.

• In Chapter 7, we initiate a systematic analysis of the application of existing representative DP
generation methods in their natural application scenarios, specifically focusing on real-world
gene expression data. Our thorough examination covers five distinct DP methods, from
deep generative models to parametric density estimations and marginal-based methods,
assessing them across downstream utility, statistical properties, and biological plausibility.
Our findings illustrate the unique properties of each method, their strengths and weaknesses,
and suggest new avenues for research. Our evaluation presents intriguing results: most
methods are capable of achieving seemingly reasonable downstream utility, according to the
standard evaluation metrics considered in existing literature, yet none of the DP methods is
able to accurately capture the biological characteristics of the real dataset. This observation
suggests a potential over-optimistic assessment of current methodologies in this field and
underscores a pressing need for future enhancements in model design.

1.4 Outline

In this section, we provide an overview of the thesis by briefly summarizing each chapter and
drawing a connection between them. We also note the respective publications and collaborations
with other researchers.

Chapter 1, Introduction: This chapter presents an overview of the principal research topics
explored in this thesis, outlining the interconnections among them and summarizing the
key contributions.
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Part I, Privacy-preserving Generative Modeling

Chapter 2: Gradient Sanitized Approach. In this chapter, we address the difficulties of train-
ing, including hyperparameter tuning and stability, in differentially private generative
modeling. We propose a novel gradient sanitization framework and present GS-WGAN,
a DP generative adversarial network. Our approach sanitizes a condensed form of the
gradients to reduce the information loss incurred by private learning and exploits the
analytical properties of the training objectives to bypass the need for searching for a
gradient clipping bound required by gradient-based DP training.

The content of this chapter corresponds to the NeurIPS 2020 publication with the title
“GS-WGAN: A Gradient Sanitized Approach for Learning Differentially Private Generators” [32].
Dingfan Chen is the first author of this paper, under the supervision of Prof. Mario
Fritz and in collaboration with Tribhuvanesh Orekondy from Max Planck Institute for
Informatics.

Chapter 3: Private Set Generation. In this chapter, we tackle the issue of modeling complexity
in DP generative modeling. By leveraging the principled trade-off between the generality
of general-purpose distribution fitting and the utility of task-specific modeling, we offer
a new perspective for DP generative modeling. Our approach aims to directly optimize
for downstream utility, which simplifies the task and reduces the dimension of the
optimization problem.

The content of this chapter corresponds to the NeurIPS 2022 publication with the title
“Private Set Generation with Discriminative Information” [29]. Dingfan Chen is the first author
of this paper, under the supervision of Prof. Mario Fritz and in collaboration with Raouf
Kerkouche from CISPA.

Chapter 4: Unified View. In this chapter, we work towards addressing the issue of fragmented
research in the field of DP generative modeling by presenting a unified view that
systematizes existing DP generative models. We propose a taxonomy that categorizes
existing methods based on their supported privacy barriers and associated threat models,
and we discuss in detail the inherent advantages and disadvantages of each category.

The content of this chapter corresponds to the pre-print with the title “A Unified View of
Differentially Private Deep Generative Modeling“ [30]. Dingfan Chen is the first author of
this paper, under the supervision of Prof. Mario Fritz and in collaboration with Raouf
Kerkouche from CISPA.

Part II, Privacy Attacks and Defenses

Chapter 5: Privacy Attack for Advanced Generative Models. In this chapter, we investigate
effective privacy attacks pertinent to practical usage scenarios of advanced generative
models, with a focus on membership inference attacks on diffusion models. We systemat-
ically explore the attack surface and present attack strategies that are tailored to various
practical settings.

The content of this chapter corresponds to the pre-print with the title “Data Forensics
in Diffusion Models: A Systematic Analysis of Membership Privacy“ [262]. Dingfan Chen
is a co-first author of this paper, under the supervision of Prof. Mario Fritz and in
collaboration with Derui Zhu and Prof. Jens Grossklags from Technical University of
Munich.
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Chapter 6: Defense against Privacy Attacks for General Discriminative Models. In this chap-
ter, we study effective and practical defense mechanisms against privacy attacks in
practice, with a focus on membership inference attacks on classification models. We
improve the principled privacy-utility trade-off by relaxing the training objective to a
more achievable level during the training process of the target model, which reduces
overfitting and thereby prevents potential privacy leakage without compromising model
utility.

The content of this chapter corresponds to the ICLR 2022 paper with the title “RelaxLoss:
Defending Membership Inference Attacks without Lossing Utility“ [33]. Dingfan Chen is the
first author of this paper, supervised by Prof. Mario Fritz and in collaboration with Ning
Yu, affiliated with Salesforce Research, University of Maryland, and Max Planck Institute
for Informatics

Part III, Application

Chapter 7: Privacy-preserving Generation of Gene Expression Data. In this chapter, we em-
bark on a thorough investigation into the application of DP generation techniques to
real-world gene expression data, presenting a comprehensive evaluation framework
that encompasses aspects such as downstream utility, statistical fidelity, and biological
plausibility, and critically investigating diverse representative methods to highlight their
intrinsic advantages and disadvantages.

This chapter corresponds to the PETs 2024 paper with the title “Towards Biologically
Plausible and Private Gene Expression Data Generation” [31]. Dingfan Chen is a co-first
author of this paper, under the supervision of Prof. Mario Fritz and in collaboration with
Dr. Marie Oestreich and Matthias Becker from the German Center for Neurodegenerative
Diseases, as well as Tejumade Afonja and Raouf Kerkouche from CISPA.

Chapter 8: Conclusion and Future Work. This chapter presents a comprehensive conclusion
of the thesis, offering insights into the main findings and contributions. Additionally, it
provides a vision for future research directions aimed at facilitating the development of
trustworthy and privacy-preserving machine learning systems.

1.5 Publications

The content of this thesis has previously appeared in the following publications, ordered as
outlined above:

• [32] Dingfan Chen, Tribhuvanesh Orekondy, Mario Fritz. “GS-WGAN: A Gradient-Sanitized
Approach for Learning Differentially Private Generators”. In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2020.

• [29] Dingfan Chen, Raouf Kerkouche, Mario Fritz. “Private Set Generation with Discrim-
inative Information”. In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2022.

• [30] Dingfan Chen, Raouf Kerkouche, Mario Fritz. “A Unified View of Differentially Private
Deep Generative Modeling”. Transactions on Machine Learning Research (TMLR), 2024.

• [262] Derui Zhu*, Dingfan Chen* (equal contribution), Jens Grossklags, Mario Fritz. “Data
forensics in diffusion models: A systematic analysis of membership privacy”. Arxiv Pre-print,
2023.
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• [33] Dingfan Chen, Ning Yu, Mario Fritz. “RelaxLoss: Defending Membership Inference
Attacks without Losing Utility”. International Conference on Learning Representations (ICLR),
2022.

• [31] Dingfan Chen*, Marie Oestreich*, Tejumade Afonja* (equal contribution), Raouf Kerk-
ouche, Matthias Becker, Mario Fritz. “Towards Biologically Plausible and Private Gene
Expression Data Generation”. Proceedings on Privacy Enhancing Technologies (PoPETs), 2024.

Further contributions were made to the following works not discussed in this thesis:

• [34] Dingfan Chen, Ning Yu, Yang Zhang, Mario Fritz. “Gan-leaks: A Taxonomy of
Membership Inference Attacks against Generative Models”. ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2020.

• [153] Marie Oestreich, Dingfan Chen, Joachim L Schultze, Mario Fritz, Matthias Becker.
“Privacy Considerations for Sharing Genomics Data”. EXCLI Journal, 2021.

• [248] Ning Yu*, Vladislav Skripniuk*, Dingfan Chen, Larry Davis, Mario Fritz. “Responsible
Disclosure of Generative Models Using Scalable Fingerprinting”. International Conference on
Learning Representations (ICLR), 2022.

• [4] Tejumade Afonja, Dingfan Chen, Mario Fritz. “MargCTGAN: A "Marginally" Better
CTGAN for the Low Sample Regime”. DAGM German Conference on Pattern Recognition
(GCPR), 2023.

• [228] Hui-Po Wang, Dingfan Chen, Raouf Kerkouche, Mario Fritz. "Fed-GLOSS-DP: Feder-
ated, Global Learning using Synthetic Sets with Record Level Differential Privacy". Proceed-
ings on Privacy Enhancing Technologies (PoPETs), 2024.



I
Pa r t 1 : P r i va c y - p r e s e r v i n g

G e n e r at i v e M o d e l i n g

In the first part of the thesis, we concentrate on privacy-preserving
generative modeling, delving into strategies to alleviate the sub-
stantial complexity that arises when integrating rigorous differential
privacy guarantees into the training of generative models. We work
towards developing practical algorithms that mitigate or bypass the
principled challenge of privacy-utility trade-off, stemming from an
enhanced gradient sanitization method (Chapter 2), a refined genera-
tive framework (Chapter 3), as well as a more in-depth understanding
of the inherent characteristics of the algorithm elements (Chapter 4).

In Chapter 2, we introduce an improved gradient sanitization scheme
for training deep generators with DP guarantees, addressing the
key challenges of hyperparameter tuning and training stability. Our
scheme reduce the sanitization scope to a condensed subset of essen-
tial gradients, retaining more information and lessening the negative
impacts of DP’s inherent randomness. Furthermore, our scheme
utilizes the analytical properties of the training objective to directly
bound the sensitivity required by DP, obviating the need for extensive
hyperparameter search and enhancing training stability.

In Chapter 3, we present a novel framework for DP generative mod-
eling that aims to address the intrinsic complexity issue typically
associated with such models. We introduce Private-Set, which di-
rectly optimizes a small set of representative samples for downstream
utility instead of aiming to fit the complete data distribution for
general purposes. Our approach simplifies the modeling problem
and reduces the dimensionality of the optimization task, which con-
tributes to notably improved model performance.

In Chapter 4, we propose a unified view of existing DP generation
algorithms, effectively bridging disparate strands of research within
this domain. We introduce a taxonomy that rigorously classifies
different methods according to their respective privacy barriers and
associated threat models, complemented by a critical assessment of
the strengths and limitations of each category. Our unified view
presents a joint design space that facilitates the structured exploration
of potential future developments in the field of DP data release.
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The wide-spread availability of rich data has fueled the growth of machine learning
applications in numerous domains. However, growth in domains with highly-sensitive
data (e.g., medical) is largely hindered as the private nature of data prohibits it from

being shared. To this end, we propose Gradient-sanitized Wasserstein Generative Adversarial
Networks (GS-WGAN), which allows releasing a sanitized form of the sensitive data with
rigorous privacy guarantees. In contrast to prior work, our approach is able to distort gradient
information more precisely, and thereby enabling training deeper models which generate more
informative samples. Moreover, our formulation naturally allows for training GANs in both
centralized and federated (i.e., decentralized) data scenarios. Through extensive experiments,
we find our approach consistently outperforms state-of-the-art approaches across multiple
metrics (e.g., sample quality) and datasets.

This chapter is based on [32]: As the first author of [32], Dingfan Chen proposed the
project idea, implemented the algorithms, conducted all experiments, and served as the main
writer of the paper. This paper was published in NeurIPS 2020 and has received more than 130

citations so far. It has been widely recognized as a baseline framework for many papers, being
actively used and extended by following works presented in top-tier conferences, e.g., [227, 24].
The code for this work can be found on GitHub 1.

2.1 Introduction

Releasing statistical and sensory data to a broad community has contributed towards advances
in numerous machine learning (ML) techniques e.g., object recognition (ImageNet [45]), lan-
guage modeling (RCV [110]), recommendation systems (Netflix ratings [16]). However, in
many sensitive domains (e.g., medical, financial), similar advances are often held back as the
private nature of collected data prohibits release in its original form. Privacy-preserving data
publishing [52, 58, 14] provides a reasonable solution, where only a sanitized form of the
original data (with rigorous privacy guarantees) is publicly released.

Traditionally, sanitization is performed in a differentially private (DP) framework [51].

1https://github.com/DingfanChen/GS-WGAN
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The sanitization method employed is often hand-crafted for the given input data [115, 254,
138] and the specific data-dependent task the sanitized data is intended for (e.g., answering
linear queries) [54, 179, 73, 19]. As a result, such sanitization techniques greatly restrict
the expressiveness of the released data distribution and fail to generalize to novel tasks
unanticipated by the publisher. Instead, recent privacy-preserving techniques [239, 257, 245, 14]
build on top of successes in generative adversarial network (GANs) [65] literature, to generate
synthetic data faithful to the original input distribution. Specifically, GANs are trained
using a privacy-preserving algorithm (e.g., using DP-SGD [1]) and demonstrate promising
results in modeling a variety of real-world high-dimensional data distributions. Common
to most privacy-preserving training algorithms for neural network models is manipulating
the gradient information generated during backpropagation. Manipulation most commonly
involves clipping the gradients (to bound sensitivity) and adding calibrated random noise (to
introduce stochasticity). Although recent techniques that employ such an approach demonstrate
reasonable success, they are mostly limited to shallow networks and fail to sufficiently capture
the sample quality of the original data.

In this paper, towards the goal of a generative model capable of synthesizing high-quality
samples in a privacy-preserving manner, we propose a differentially private GAN. We first
identify that in such a data-publishing scenario, only a subset of the trained model (specifically
the generator) and its parameters need to be publicly-released. This insight allows us to
surgically manipulate the gradient information during training, and thereby allowing more
meaningful gradient updates. By coupling the approach with a Wasserstein [8] objective
with gradient-penalty term [67], we further improve the amount of gradient information flow
during training. The Wasserstein objective additionally allows us to precisely estimate the
gradient norms and analytically determine the sensitivity values. As an added benefit, we
find our approach bypasses an intensive and fragile hyper-parameter search for DP-specific
hyperparameters (particularly clipping values).

Contributions. In summary, we make the following contributions:
• We propose a novel gradient-sanitized Wasserstein GAN (GS-WGAN), which is capable of

generating high-dimensional data with DP guarantee;

• Our approach naturally extends to both centralized and decentralized datasets. In the case
of decentralized scenarios, our work can provide user-level DP guarantee [113] under an
untrusted server;

• Extensive evaluations on various datasets demonstrate that our method significantly im-
proves the sample quality of privacy-preserving generative models over state-of-the-art
approaches.

2.2 Related Work

We review several differentially private GAN models, as well as their relations to our work.

DP-SGD GAN. Training GANs via DP-SGD [1, 239, 257, 14, 211, 57] has proven effective in
generating high-dimensional sanitized data. However, DP-SGD relies on carefully tuning of the
clipping bound of gradient norm, i.e., the sensitivity value. Specifically, the optimal clipping
bound varies greatly with the model architecture and the training dynamics, making the
implementation of DP-SGD difficult. Unlike previous works, we selectively apply sanitization
to a necessary and sufficient subset of gradients for preserving privacy, which enables us to
exploit the theoretical property of Wasserstein GANs [8, 67] for a precise estimation of the
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sensitivity value, avoiding the intensive search of hyper-parameters while reducing the clipping
bias.

PATE. Private Aggregation of Teacher Ensembles (PATE) is recently adapted to generative
models and two main approaches were studied: PATE-GAN [245] and G-PATE [129]. PATE-
GAN trained multiple teacher discriminators on disjoint data partitions together with a student
discriminator. In contrast, we consider a simplified model without a student discriminator.

G-PATE [129] is similar to our work in the sense that, both works trained the discriminator
non-privately while only training the generator with DP guarantee, and both sanitized gradients
that the generator received from the discriminator. However, G-PATE suffers from two main
limitations: (i) gradients need to be discretized by using manually selected bins in order to
suit for the PATE framework and (ii) high-dimensional gradients in the PATE framework bring
high privacy costs and thus dimension reduction techniques are required. Our framework
can effectively avoid these two limitations and achieve better sample quality due to the novel
gradient sanitation, see our experiments.

Fed-Avg GAN [10]. While many works focus on centralized setting, the decentralized case
has rarely been studied. To address this, Federated Average GAN (Fed-Avg GAN) proposed
to adapt GAN training by using the DP-Fed-Avg [139] algorithm, providing user-level DP
guarantee under trusted server. In comparison with Fed-Avg GAN that merely works on
decentralized data, our work can tackle both centralized and decentralized data using a single
framework. Note that Fed-Avg sanitized parameter gradients of the discriminator in a similar
way to DP-SGD, it also suffers from the difficulty of turning hyper-parameters.

2.3 Background

DP provides rigorous privacy guarantees for algorithms while allowing for quantitative privacy
analysis. We below present several definitions and theorems that will be used in this work.

Definition 2.3.1. (Differential Privacy (DP) [51]) A randomized mechanismM with range R is
(ε, δ)-DP, if

Pr[M(S) ∈ O] ≤ eε · Pr[M(S′) ∈ O] + δ (2.1)

holds for any subset of outputs O ⊆ R and for any adjacent datasets S and S′, where S and S′

differ from each other with only one training example. M is the GAN training algorithm in our
case, ε corresponds to the upper bound of privacy loss, and δ is the probability of breaching DP
constraints. Intuitively, DP guarantees the difficulty of inferring the presence of an individual
in the private dataset by observingM(S).

Definition 2.3.2. (Rényi Differential Privacy (RDP) [142]) A randomized mechanism M is
(λ, ε)-RDP with order λ, if

Dλ(M(S)∥M(S′)) =
1

λ− 1
log Ex∼M(S)

[(
Pr[M(S) = x]
Pr[M(S′) = x]

)λ−1
]
≤ ε (2.2)

holds for any adjacent datasets S and S′, where Dλ(P∥Q) = 1
λ−1 log Ex∼Q[(P(x)/Q(x))λ]

denotes the Rényi divergence. Moreover, a (λ, ε)-RDP mechanismM is also (ε + log 1/δ
λ−1 , δ)-DP.

In contrast to DP, RDP provides convenient composition properties to accumulate privacy
cost over a sequence of mechanisms (i.e., multiple gradient descent steps in our case).
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Theorem 2.3.1. (Composition) For a sequence of mechanismsM1, ...,Mk s.t. Mi is (λ, ε i)-RDP
∀i, the compositionM1 ◦ ... ◦Mk is (λ, ∑i ε i)-RDP.

Our approach is built on top of the Gaussian mechanism defined as follows.

Definition 2.3.3. (Gaussian Mechanism [53, 142]) Let f : X → Rd be an arbitrary d-dimensional
function with sensitivity being

∆2 f = max
S,S′
∥ f (S)− f (S′)∥2 (2.3)

over all adjacent datasets S and S′. The Gaussian MechanismMσ, parameterized by σ, adds
noise into the output,i.e.,

Mσ(x) = f (x) +N (0, σ2 I). (2.4)

M is (λ, λ∆2 f 2

2σ2 )-RDP.

To provide DP guarantees of the released generator, we exploit the closedness of DP under
post-processing, which is formalized as the following theorem.

Theorem 2.3.2. (Post-processing [53]) IfM satisfies (ε, δ)-DP, F ◦M will satisfy (ε, δ)-DP for
any function F with ◦ denoting the composition operator.

2.4 Method

Generative Adversarial Networks (GANs) [65]. Our approach models the underlying (pri-
vate) data distribution using a generative neural network, building on top of recent successes
of GANs. GANs (see Figure 2.1(a)) formulate the task of sample generation as a zero-sum
two-player game, between two neural network models: discriminator D and generator G. The
discriminator D is rewarded for correctly classifying whether a given sample is ‘real’ (i.e., from
the input data distribution) or ‘fake’ (generated by the generator). In contrast, the task of the
generator G is (given some random noise z) to generate samples which fool the discriminator
(i.e., causes misclassifications). After training the models in an adversarial manner, the discrim-
inator is discarded and the generator is used as a proxy to draw samples from the original
distribution.

Differentially Private GANs. Releasing the generator as a substitute for the original training
data distribution entails privacy risks [34]. Consequently, along the lines of recent work
[14, 239, 211, 257], our goal is instead to train the GAN in a privacy-preserving manner, such
that any privacy leakage upon disclosing the generator is bounded. A simple approach towards
the goal is replacing the typical training procedure (SGD) with a differentially private variant
(DP-SGD [1]) and thereby limiting the contribution of a particular training example in the final
trained model. DP-SGD enforces the desired privacy requirement by (i) clipping the gradients
gt to have an L2-norm no larger than C at each training step; and (ii) sampling random noise
and adding it to the gradients, before performing descent on the trained parameters θ:

g(t) := ∇θL(θD, θG) (gradient) (2.5)

ĝ(t) :=Mσ,C(g(t)) = clip(g(t), C) +N (0, σ2C2I) (sanitization mechanism) (2.6)

θ(t+1) := θ(t) − η · ĝ(t) (gradient descent step) (2.7)

While such an approach provides rigorous privacy guarantees, there are multiple shortcom-
ings: (i) the sanitization mechanismMσ,C, primarily due to clipping, significantly destroys the
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Figure 2.1: Approach outline. Our gradient sanitization scheme ensures DP training of the
generator.

original gradient information, and thereby affects utility; and (ii) finding a reasonable clipping
value C in the mechanism to balance utility with privacy is especially challenging. In particular,
as the gradient norms exhibit a heavy-tailed distribution, choosing a clipping value requires
an exhaustive search. Moreover, since the clipping value is extremely sensitive to many other
hyperparameters (e.g., learning rate, architecture), it requires persistent re-tuning. Now, we
discuss how we address these shortcomings within our gradient-sanitized approach.

Selectively applying Sanitization Mechanism. We begin by exploiting the fact that after
training the GAN, only the generator G is released. Consequently, we can perform gradient
steps by selectively applying the sanitization mechanism only to the corresponding subset of
parameters θG:

θ
(t+1)
D := θ

(t)
D − ηD · g(t)

D (ĝ(t)
D = g(t)

D ; Discriminator) (2.8)

θ
(t+1)
G := θ

(t)
G − ηG · ĝ(t)

G (ĝ(t)
G =Mσ,C(g(t)

G ); Generator) (2.9)

Apart from reducing the number of parameters sanitized, this also provides a benefit of more
reliably training a discriminator. In addition, we exploit the chain rule to further narrow the
scope of the sanitization mechanism:

gG = ∇θGLG(θG) = ∇G(z;θG)LG(θG) · JθG G(z; θG) (2.10)

ĝG =Mσ,C(∇G(z)LG(θG)︸ ︷︷ ︸
gupstream

G

) · JθG G(z; θG)︸ ︷︷ ︸
Jlocal

G

(2.11)

The above becomes easier to intuit by considering a typical loss function LG(θG) = −D(G(z; θG)).
As illustrated in Figure 2.1(b), Equation 2.11 can then be considered as placing the privacy
barrier for gradient information backpropagating from the discriminator back to the generator,
by applying the sanitization mechanism on gupstream

G . Note that the second term (Jlocal
G ) is the

local generator jacobian computed independent of training data, and hence does not require
sanitization. Consequently, using a more precise application of the sanitization mechanism on
the gradient information, our goal here is to maximally preserve the true gradient direction
during training.

Bounding sensitivity using Wasserstein distance. To bound the sensitivity of the optimizer
on individual training examples, a key step in sanitization mechanisms is to clip (Equation 2.6)
the gradient vector g (Equation 2.5) before updating parameters (Equation 2.7). Clipping is
typically performed in L2 norm, by replacing the gradient vector g by g/max(1, ||g||2/C) to
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Figure 2.2: Gradient norm (before clipping) dynamics during the GAN training process. In the
experiment, the clipping bound is chosen to be 1 and 1.1 in 2.2(c) and 2.2(a) respectively.

ensure ||g||2 ≤ C. However, clipping significantly destroys gradient information, as reasonable
choices of C (e.g., 4 [1]) are significantly lower than the gradient-norms observed (12 ± 10 in
our case) when training neural networks using standard loss functions. We propose to alleviate
the issue by leveraging a more suitable loss function, which generates bounded gradients (with
norms close to 1) by construction. Specifically, we use as our loss the Wasserstein-1 metric
[8], which measures the statistical distance between the real and generated data distributions.
Here, the training process can be interpreted as minimizing integral probability metrics (IPMs)
sup f∈F |

∫
M f dP −

∫
M f dQ| between real (P) and generated (Q) data distributions, where

F = { f : ∥ f ∥L ≤ 1} (i.e., the discriminator function f is 1-Lipschitz continuous). Theoretically,
the optimal discriminator has a gradient norm being 1 almost everywhere under P and Q [67]
(i.e., ∥gupstream

G ∥2 ≈ 1).
We incorporate the norm constraint into our training objective in the form of a gradient

penalty term [67]:

LD = −Ex∼P[D(x)] + Ex̃∼Q[D(x̃)] + λE[(∥∇D(αx + (1− α)x̃)∥2 − 1)2] (2.12)
LG = −Ez∼Pz [D(G(z))] (2.13)

where LD and LG represent training objectives for the discriminator and the generator, respec-
tively. λ is the hyper-parameter for weighting the gradient penalty term and Pz denotes the
prior distribution for the latent code variable z. The variable α ∼ U [0, 1], uniformly sampled
from [0, 1], regulates the interpolation between real and generated samples.

As a natural consequence of the Wasserstein objective, bounding the norms of our target
gradient gupstream

G (Equation 2.11) during training is integrated in our training objective (last
term in Equation 2.12). Consequently, we observe significantly lower variance in gradient
norms during training (see Figure 2.2(c)-2.2(d)) compared to training using a standard GAN
loss (see Figure 2.2(a)-2.2(b)). As a result, bounding the sensitivity (gradient norms) is now
largely delegated to our training procedure and clipping using the sanitization mechanism
destroys significantly less information. Additionally, we obtain the optimal clipping threshold
of C = 1, as ∥gupstream

G ∥2 ≈ 1 based on the theoretical property of Wasserstein GANs. This
allows us to derive a fixed and bounded sensitivity, eliminating the need for intensive hyper-
parameter search for a proper clipping threshold. Following this clipping strategy, a data-
independent privacy cost can be determined by the following theorem, whose proof is provided
in Appendix A.

Theorem 2.4.1. Each generator update step satisfies (λ, 2Bλ/σ2)-RDP where B is the batch
size.

Privacy Amplification by Subsampling. A well-known approach for increasing privacy of a
mechanism is to apply the mechanism to a random subsample of the database, rather than
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on the entire dataset [116, 12, 230]. Intuitively, subsampling decreases the chances of leaking
information about a particular individual since nothing about that individual can be leaked
once the individual is not included in the subsample. In order to further reduce the privacy
cost, we subsample the whole dataset into different subsets and train multiple discriminators
independently on each subset. At each training step, the generator randomly queries one
discriminator while the selected discriminator updates its parameters on the generated data
and its associated subsampled dataset.

Extending to Federated Learning. In addition to improving the privacy guarantee, perform-
ing subsampling in our setup also naturally accommodates training a generative model on
decentralized datasets (with a discriminator trained on each disjoint data subset). Recently,
Augenstein et al. [10] identified such techniques are extremely relevant when training models
in a federated setup [140], i.e., when the training data is private and distributed among edge
devices. We outline our method to train a differentially private GAN in a federated setup in
Figure 2.1(c) and remark some subtle differences between our approach and Fed-Avg GAN [10]
here: (i) the discriminators are retained at each client in our framework while they are shared
between the server and client in Fed-Avg GAN; (ii) the gradients are sanitized at each client
before sending to the server, with which we provide DP guarantee even under an untrusted
server. In contrast, the unprocessed information is accumulated at the server before being sani-
tized in Fed-Avg GAN; and (iii) The gradients w.r.t. the samples are transferred in GS-WGAN,
while Fed-Avg GAN transfers the gradients w.r.t. discriminator network parameters.

2.5 Experiment

2.5.1 Experiment Setup

To validate the applicability of our method to high-dimensional data, we conduct experiments
on image datasets. In line with previous works, we use MNIST [108] and Fashion-MNIST [238]
dataset. We model the joint distribution of images and the corresponding labels, i.e., the label
is supplied to both the generator and the discriminator, and the image is generated conditioned
on the input. During both training and inference, we use a uniform prior distribution for
generating labels, which is independent of the training dataset and thus does not incur
additional privacy cost (in contrast, [211] needs to assume the labels are non-private).

Evaluation Metrics. We evaluate along two fronts: privacy (determined by ε) and utility. For
utility, we consider two metrics: (a) sample quality: realism of the samples produced – evaluated
by Inception Score (IS) [184, 112] and Frechet Inception Distance (FID) [77] (standard in
GAN literature); and (b) usefulness for downstream tasks: we train downstream classifiers on
60k privately-generated data points and evaluate the prediction accuracy on real test set. We
consider Multi-layer Perceptrons (MLP), Convolutional Neural Networks (CNN) and 11 scikit-
learn [162] classifiers (e.g., SVMs, Random Forest). We include the following metrics in the
main paper: MLP Acc (MLP accuracy), CNN Acc (CNN accuracy), Avg Acc (Averaged accuracy
of all classification models), Calibrated Acc (Averaged accuracy of all classification models
normalized by the accuracy when trained on real data). The detailed results are presented in
Appendix A.

2PATE provides data-dependent ε, i.e., publishing ε value will introduce privacy cost. Thus, G-PATE is not directly
comparable to other methods and is excluded from our analysis study (Section 2.5.3).
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MNIST

IS↑ FID ↓ MLP ↑ CNN ↑ Avg ↑ Calibrated ↑
Acc Acc Acc Acc

Real 9.80 1.02 0.98 0.99 0.88 100 %
G-PATE 2

3.85 177.16 0.25 0.51 0.34 40%
DP-SGD GAN 4.76 179.16 0.60 0.63 0.52 59%
DP-Merf 2.91 247.53 0.63 0.63 0.57 66%
DP-Merf AE 3.06 161.11 0.54 0.68 0.42 47%
Ours 9.23 61.34 0.79 0.80 0.60 69%

Fashion-MNIST

Real 8.98 1.49 0.88 0.91 0.79 100%
G-PATE 3.35 205.78 0.30 0.50 0.40 54%
DP-SGD GAN 3.55 243.80 0.50 0.46 0.43 53%
DP-Merf 2.32 267.78 0.56 0.62 0.51 65%
DP-Merf AE 3.68 213.59 0.56 0.62 0.45 55%
Ours 5.32 131.34 0.65 0.65 0.53 67%

Table 2.1: Quantitative results on MNIST and Fashion-MNIST (ε = 10, δ = 10−5)

Architecture and Warm-start. We highlight two strategies adopted for improving the sample
quality as well as reducing the privacy cost: (i) Better model architecture: While previous
works are limited to shallow networks and thereby bottle-necking generated sample quality,
our framework allows stable training with a complex model architecture (DCGAN [168]
architecture for the discriminator, ResNet architecture (adapted from BigGAN [21]) for the
generator) to help improve the sample quality; and (ii) Discriminator warm-starting: To bootstrap
the training process, we pre-train discriminators along with a non-private generator for a few
steps, and we subsequently train the private generator using the warm-starting values of the
discriminators. Note that our framework allows pre-training on the original private dataset
without compromising privacy (in contrast, [257] needs to use external public datasets).

2.5.2 Comparison with Baselines

Baselines. We consider the following state-of-the-art methods designed for DP high-dimensional
data generation: DP-Merf and DP-Merf AE [69], DP-SGD GAN [211, 239, 257], and G-
PATE [129]. While PATE-GAN [245] demonstrates promising results on low-dimensional data,
we currently do not consider it as we were unable to extend it to our image datasets (more
details in Appendix A) for a fair comparison. For DP-Merf, DP-Merf AE, and G-PATE, we use
the source code provided by the authors. For DP-SGD GAN, we adopt the implementation of
[211], which is the only work that provides executable code with privacy analysis. For a fair
comparison, we evaluate all methods with a privacy budget of (ε, δ)=(10, 10−5) (consistently
used in previous works) over 60K generated samples.

Results. We present the qualitative results in Figure 2.3 and the quantitative results in Table 2.1.
In terms of sample quality, we find (Table 2.1, columns IS and FID) our method consistently
provides significant improvements over baselines. For instance, considering inception scores,
we find a relative improvement of 94% (9.23 vs. 4.76 of DP-SGD GAN) on MNIST and 45% on
Fashion-MNIST (5.32 vs. 3.68 of DP-Merf AE).

Furthermore, our method also generates samples that better capture the statistical properties
of the original data and are thereby making aiding performances of downstream tasks. For
instance, our approach increases performance of a downstream MLP classifier (Table 2.1,
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Method MNIST Fashion-MNIST

G-PATE

DP-SGD GAN

DP-Merf

DP-Merf AE

Ours

Figure 2.3: Generated samples with (ε, δ)=(10, 10−5)
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Figure 2.4: Privacy-utility trade-off on MNIST with δ = 10−5. (Top row: IS. Bottom row: FID.)

column MLP Acc) by 25% (0.79 vs. 0.63 of DP-Merf) on MNIST and 16% (0.65 vs. 0.56 of
DP-Merf) on Fashion-MNIST. In a word, our approach demonstrates significant improvements
across multiple metrics and high-dimensional image datasets.
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(a) Ours
(with bug)

(b) Ours
(without bug)

(c) Fed-Avg GAN
(with bug)

(d) Fed-Avg GAN
(without bug)
noise=0.01

(e) Fed-Avg GAN
(without bug)
noise =0.1

(f) Fed-Avg GAN
(without bug)
noise =0.5

Figure 2.5: Qualitative results on federated EMNIST.

2.5.3 Influence of Hyperparameters

The privacy/utility performances of our approach is primarily determined by three factors:(i)
subsampling rates γ, (ii) number of training iterations, and (iii) noise scale σ. We now
investigate how these factors influence privacy cost ε and utility (sample quality measured by
IS and FID), and additionally compare with baselines:

Subsampling rates. We evaluate the sample quality of our method considering multiple
choices of subsampling rates (γ ∈ [1/250, 1/500, 1/1000, 1/1500]) over the training iterations.
The results are presented in Figure 2.4(a), where the x-axis corresponds to the ε value evaluated
at different iterations. We observe that the sub-sampling rate should be sufficiently small
for achieving a reasonable sample quality while providing a strong privacy guarantee. A
value of 1/1000 yields relatively good privacy-utility trade-off, while further decreasing the
sub-sampling rate does not necessarily improve the results.

Iterations. We evaluate all methods during the course of training, where more iterations
lead to higher utilities, but at the expense of accumulating a higher privacy cost ε. From
Figure 2.4(b), we find our approach yields better sample qualities with fewer iterations (and
hence lower ε). Specifically, across the range of iterations, we find IS increases by 10-90%, while
the FID decreases by 20-60% compared to baselines.

Noise scale. We calibrate the noise scale of each method to certain privacy budget ε and
show the resulting privacy-utility curves in Figure 2.4(c). Similar to the previous case, our
method achieves a consistent improvement in both metrics spanning a broad range of noise
scale (privacy budget ε).

2.5.4 Federated Setting Evaluation

IS ↑ FID ↓ epsilon ↓ CT (byte) ↓
Fed Avg GAN 10.88 218.24 9.99× 106 ∼ 3.94× 107

Ours 11.25 60.76 5.99 × 102 ∼ 1.50 × 105

Table 2.2: Quantitative results on federated
EMNIST (δ = 1.15× 10−3)

Our approach allows to perform privacy-
preserving training of a GAN in federated
setup, where sensitive user dataset is parti-
tioned across K clients (e.g., edge devices).
Such a training scheme is useful to privately
inspect data for debugging. For evaluation,
we consider a real-world debugging task introduced in [10]: to detect the erroneous flipping of
pixel intensities, which occurs in a fraction of client devices. Two GAN models are trained:
one on client data that are suspected to be erroneous flipped (with bug) and one on the client
data that are believed to be normal (without bug). The samples generated by these two GAN
models should exhibit different appearance such that the bug can be detected by inspecting
the generated samples. To mimic the real-world situation where the server is blind to the
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erroneous pre-processing, only a fraction of the suspected users is indeed affected by the bug.
This has the realistic property that the client data is non-IID and poses additional difficulties in
the GAN training. A detailed description about the data can be found in Appendix A.

We conduct experiments on the Federated EMNIST dataset [23] and compare our GS-
WGAN with Fed-Avg GAN [10].As shown in Figure 2.5(a) and 2.5(b), the presence of bug is
clearly identifiable by inspecting the samples generated by our model. Moreover, as shown in
Table 2.2, our GS-WGAN yields better sample quality (0.28× smaller FID) with a significantly
lower privacy cost (104× smaller ε) compared to Fed-Avg GAN. Furthermore, our method
shows better robustness against large injected noise. This is illustrated in Figure 2.5(e) and
2.5(f): a noise scale larger than 0.1 inevitably leads to failure in training Fed-Avg GAN, whereas
our method can tolerate 10 times larger noise scale. In addition, we show in the last column
of Table 2.2 the amortized communication cost (CT) required for performing one update
step on the generator. Specifically, this corresponds to the total number of transferred bytes
(including both server-to-client and client-to-server) averaged over all participating clients. Our
GS-WGAN allows each client to retain its discriminator locally and only the gradients w.r.t.
generated samples are communicated (which is significantly more compact than gradients
w.r.t model parameters, as done by Fed-Avg GAN). We observe that GS-WGAN achieves a
magnitude of 102 gain in reducing the communication cost.

2.6 Conclusion

In this paper, we presente a differentially-private approach GS-WGAN to sanitize sensitive
high-dimensional datasets with provable privacy guarantees while simultaneously preserving
informativeness of the sanitized samples. Our primary insight is that privacy-preserving
training (which sacrifices utility) can be selectively applied only to the generator (which is
publicly released) while the discriminator (which is discarded post-training) can be trained
optimally. Additionally, introducing a Wasserstein training objective allows us to exploit the
Lipschitz property of the discriminator and leads to precise estimates of the sensitivity value
without exhaustive hyper-parameters search. Our extensive evaluation presents encouraging
results: sensitive datasets can be effectively distilled to sanitized forms which nonetheless
preserves informativeness of the data and allows training downstream models.
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Differentially private data generation techniques have become a promising solution
to the data privacy challenge –– it enables sharing of data while complying with
rigorous privacy guarantees, which is essential for scientific progress in sensitive

domains. Unfortunately, restricted by the inherent complexity of modeling high-dimensional
distributions, existing private generative models are struggling with the utility of synthetic
samples. In contrast to existing works that aim at fitting the complete data distribution, we
directly optimize for a small set of samples that are representative of the distribution under
the supervision of discriminative information from downstream tasks, which is generally an
easier task and more suitable for private training. Our work provides an alternative view for
differentially private generation of high-dimensional data and introduces a simple yet effective
method that greatly improves the sample utility of state-of-the-art approaches.

This chapter is based on [29]: As the first author of [29], Dingfan Chen proposed the
project idea, implemented the algorithms, conducted all experiments, and was the main writer
of the paper. This paper was published in NeurIPS 2022 and has garnered recognition, being
cited in several surveys and benchmarks, e.g., [249, 109, 181, 233]. The source code for this
work is available on Github 1.

3.1 Introduction

Data sharing is vital for the growth of machine learning applications in numerous domains.
However, in many application scenarios, data sharing is prohibited due to the private nature of
data (e.g., individual data stored on mobile devices, medical treatments, and banking records)
and the corresponding stringent regulations, which greatly hinders technological progress.
Differentially private (DP) data publishing [51, 52, 58] provides a compelling solution to such
challenge, where only a sanitized form of the data is publicly released. Such sanitized synthetic
data can be leveraged as if it were the real data, analyzed with established toolchains, and can
be shared openly to the public, facilitating technological advance and reproducible research in
sensitive domains.

1https://github.com/DingfanChen/Private-Set
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Yet, generation of high-dimensional data with DP guarantees is highly challenging and
traditional DP algorithms designed for capturing low-dimensional statistical characteristics are
not applicable to this task [179, 73, 19, 223]). Instead, inspired by the great successes of deep
generative models in learning high-dimensional representations, recent works [24, 32, 239, 245,
14, 70] adopt deep generative neural networks as the underlying generation backbone and
incorporate the privacy constraints into the training procedure, such that any privacy leakage
upon disclosing the data generator is bounded.

However, these methods have common shortcomings: (i) deep generative models are known
to be data-demanding [93], which becomes even harder to train when considering the privacy
constraints [32, 24]; (ii) they do not guarantee any optimal solution for the downstream task
(e.g. classification). In fact, existing models are still struggling to generate sanitized data that is
useful for downstream data analysis tasks. For example, when training a convolutional neural
network (ConvNet) classifier on the private generated data, the highest test accuracy reported
in literature is < 85% for MNIST dataset with (ε, δ) = (10, 10−5) [24], which lags far behind the
discriminative baseline (> 98% with (ε, δ) = (1.2, 10−5) [212]) and makes private generative
models less appealing for many practical scenarios with data analysis as the end goal.

In this work, we learn to synthesize informative samples that are privacy-preserving
and are optimized to train neural networks for downstream tasks. In contrast to existing
approaches, we directly optimize a small set of samples instead of the deep generative models
that is notoriously difficult to train in a private manner. Moreover, we exploit discriminative
information from downstream tasks to guide the samples towards containing more useful
information for downstream analysis. Compared to existing works, we improve the task utility
by a large extent (up to 10% downstream test accuracy improvement over state-of-the-art
approach), while still preserving the flexibility and generality across varying configurations for
downstream analysis. As an added benefit, our formulation naturally distilled the knowledge
of original data into a much smaller set, which largely saves the memory and computational
consumption for downstream analysis.

Contributions. We summarize our main contributions as follows:
• We present a new perspective of private high-dimensional data generation, with which we

aim to bridge the utility and generality gap between the private generative and discriminative
models. We believe this alternative view opens up new possibilities in different research
directions ranging from private analysis to generation.

• We introduce a simple yet effective method for generating informative samples that are
optimized for training downstream neural networks, while maintaining generality as well as
reducing the memory and computation consumption as added benefits.

• Experimental results demonstrate that, in comparison to existing works, our work im-
proves the sample utility by a large margin and offers superior practicability for real-world
application scenarios.

3.2 Background

We consider the standard central model of DP in this paper. We below present several
definitions and theorems that will be used in this work.

Definition 3.2.1. (Differential Privacy (DP) [51]) A randomized mechanismM with range R is
(ε, δ)-DP, if

Pr[M(D) ∈ O] ≤ eε · Pr[M(D′) ∈ O] + δ (3.1)
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holds for any subset of outputs O ⊆ R and for any adjacent datasets D and D′, where D and
D′ differ from each other with only one training example, i.e., D′ = D ∪ {x} for some x (or
vice versa). M corresponds to the set generation algorithm in our case, ε is the upper bound of
privacy loss, and δ is the probability of breaching DP constraints. DP guarantees the difficulty
of inferring the presence of an individual in the private dataset by observing the generated set
of samplesM(D).

Our approach is built on top of the Gaussian mechanism defined as follows.

Definition 3.2.2. (Gaussian Mechanism [53]) Let f : X → Rd be an arbitrary d-dimensional
function with sensitivity being

∆2 f = max
D,D′
∥ f (D)− f (D′)∥2 (3.2)

over all adjacent datasets D and D′. The Gaussian MechanismMσ, parameterized by σ, adds
noise into the output, i.e.,

Mσ(x) = f (x) +N (0, σ2 I). (3.3)

For ε, δ ∈ (0, 1),Mσ is (ε, δ)-DP if σ ≥
√

2 ln (1.25/δ)∆2 f /ε.

Any privacy cost is bounded upon releasing the private set of generated data due to the
closedness of DP under post-processing.

Theorem 3.2.1. (Post-processing [53]) IfM satisfies (ε, δ)-DP, F ◦M will satisfy (ε, δ)-DP for
any data-independent function F with ◦ denoting the composition operator.

3.3 Method

We consider a standard classification task where we are given a private dataset D = {(xi, yi)}N
i=1

with xi ∈ Rd the feature, yi ∈ {1, ..., L} the class label, N the number of samples, L the number
of label classes. Our objective is to synthesize a set of samples S = {(xSi , ySi )}M

i=1 such that
(i) samples in S have the same form as data in D; (ii) a neural network trained on S should
maximally match generalization performance of a deep neural network that is trained on D;
(iii) the privacy leakage of D when releasing S is upper bounded by a pre-defined privacy level
(ε, δ).

Let F(· ; θD) and F(· ; θS ) be the deep neural networks parameterized by θD and θS that
are trained on D and S respectively. The objective can be formulated as:

E(x,y)∼PD [ℓ(F(x; θD), y)] ≃ E(x,y)∼PD [ℓ(F(x; θS ), y)] (3.4)

where ℓ denotes the loss function (e.g., cross-entropy for the classification task) and the
expectation is taken over the real data distribution PD.

Equation 3.4 can be naturally achieved once θS ≈ θD. In particular, when given the same
initialization θD0 = θS0 , solving for θSt ≈ θDt at each training iteration t leads to θS ≈ θD as
desired. This can be achieved by optimizing the synthetic set S such that it yields a similar
gradient as if the network is trained on the real dataset at each iteration t:

min
S
Ldis(∇θL(S , θt),∇θL(D, θt)) (3.5)

where ∇θL(S , θt)) corresponds to the gradient of the classification loss on the synthetic set
S , ∇θL(D, θt) denotes the stochastic gradient on the real data, and Ldis is a sum of cosine
distances between the gradients at each layer [261, 259] (See Appendix B for more details).
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Algorithm 1: Private Set Generation (PSG)

Input: Dataset D = {(xi, yi)}N
i=1, learning rate for update network parameters τθ and

τS , sampling probability ρ, gradient clipping bound C, number of runs R, outer
iterations T, inner iterations J, batches K, desired privacy cost ε given a
pre-defined δ

Output: Synthetic set S
Compute the required DP noise scale σ numerically [1, 143] so that the privacy cost
equals ε after the training; Initialize synthetic set S (features xS are from Gaussian
noise; labels are balanced set depending on the pre-defined number of samples per
class) ;

for run in {1, ..., R} do
Initialize model parameter θ0 ∼ Pθ0 ;
for outer_iter in {1, ..., T} do

θt+1 = θt
for batch_index in {1, ..., K} do

Sample a batch {(xi, yi)}Bk
i=1, where each (xi, yi) from D is uniformly

sampled with probability ρ;
for each (xi, yi) in the batch do

// Compute per-example gradients on real data
gDθt

(xi) = ℓ(F(xi; θt), yi)

// Clip gradients

g̃Dθt
(xi) = gDθt

(xi) ·min(1, C/∥gDθt
(xi)∥2)

end
// Add noise to average gradient with Gaussian mechanism

g̃Dθt
= 1

Bk
∑Bk

i=1(g̃Dθt
(xi) +N (0, σ2C2 I))

// Compute parameter gradients on synthetic data and update S
gSθt

= ∇θL(S , θt)) =
1
M ∑M

i=1 ℓ(F(xSi ; θt), ySi )

S = S − τS · ∇SLdis(gSθt
, g̃Dθt

)

end
for inner_iter in {1, ..., J} do

// Update network parameter using S
θt = θt − τθ · ∇θL(S , θt)

end
end

end
return Synthetic set S
To mimic the training procedure, S and the network F(·; θ) are updated jointly in an

iterative manner, where in each outer iteration the S is trained to minimize the gradient
matching loss Ldis and in each inner iterations the network parameters θt are optimized
towards minimizing the classification loss on the synthetic set S . Moreover, S is optimized
over multiple initializations of network parameters θ0 to ensure the generalization ability of S
over different random initialization when training a downstream model. The objective can be
summarize as follows [229, 261, 259]:

S = arg min
S

Eθ0∼Pθ0

T−1

∑
t=0

[Ldis(∇θL(S , θt),∇θL(D, θt))] (3.6)
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where Pθ0 stands for the distribution over the initialization of network parameters.

sensitive ( , )-privateε δinner loop outer loop
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Figure 3.1: Illustration for the training pipeline.

We incorporate DP constraints by
sanitizing the stochastic gradient on
real data ∇θL(D, θt) at each outer it-
eration, while leaving the inner iter-
ations unchanged as their privacy is
guaranteed by the post-processing the-
orem 3.2.1. The final objective can be
formulated as follows:

S = arg min
S

Eθ0∼Pθ0

T−1

∑
t=0

[Ldis(gSθt
, g̃Dθt

)]

(3.7)
where we use g̃Dθt

to denote the parameter gradient on D that is sanitized via Gaussian
mechanism 3.2.2, and gSθt

to denote the parameter gradient on S . The whole pipeline is
summarized in Algorithm 1 and illustrated in Figure 3.1. We use the subsampled Renyi-DP
accountant [1, 143] to compute the overall privacy cost accumulated for iteratively updating S .
Note that the training procedure and the privacy computation are approximately as simple
as training a classification network with DP-SGD, which in general has lower difficulty than
training a DP deep generative models as done in existing works (witnessed by a significant
performance gap in terms of the classification accuracy). Moreover, in contrast to previous
works, our synthetic set S is directly optimized for downstream tasks, which naturally leads to
superior downstream utility to existing approaches.

3.4 Related Work

Differentially Private Generative Models. Training deep generative models in a private
manner has become the default choice for private high-dimensional data generation. Existing
methods typically adopt differentially private stochastic gradient descent (DP-SGD) [1, 211,
32, 24] or Private Aggregation of Teacher Ensembles (PATE) [158, 159, 130, 227] to equip the
deep generative models with rigorous privacy guarantees. Despite significant progress in
mitigating training instabilities and improving generation (visual) quality, existing works are
still far from being optimal in terms of the sample utility. This is mainly because existing
works are attempting to solve a problem that is inherently hard and almost impossible to
be solved accurately under the current private training framework. In contrast, we directly
optimize the samples (rather than the deep generative models that are much harder to train in
a private setting) and exploit the knowledge from a general class of downstream tasks that can
be employed on the samples to further guide the training.
Coreset Selection and Generation. Our work is largely motivated by recent success in
distilling a large dataset into a much smaller set of representative samples, i.e., the coreset.
For example, samples from a dataset are selected to be representative based on their ability to
mimic the gradient signal [145], hardness to fit [209], distance to the cluster centers [234, 173],
etc. Instead of selecting samples from the dataset, our work focus on synthesizing informative
samples from scratch [229, 261, 259, 127] under DP constraints, and optimizing the sample
utility for training downstream neural networks. While recent work [48] has shown promising
results in dataset distillation under privacy concerns, obtaining strict privacy guarantees has
remained challenging. Our set generation formulation is also similar in spirit to works in the
field of private queries release [179, 73, 19, 72] which synthesize a set of pseudo-data (under



30 Private Set Generation with Discriminative Information

(a)

MNIST FashionMNIST

ε=1 ε=10 ε=1 ε=10

DP-CGAN - 52.5 - 50.2
G-PATE 58.8 80.9 58.1 69.3
DataLens 71.2 80.7 64.8 70.6
GS-WGAN - 84.9 - 63.1
DP-Merf 72.7 85.7 61.2 72.4
DP-Sinkhorn - 83.2 - 71.1
Ours (spc=20) 80.9 95.6 70.2 77.7

(b)

MNIST FashionMNIST

spc=10 spc=20 full spc=10 spc=20 full

Real 93.6 95.9 99.6 74.4 77.4 93.5
DPSGD - - 96.5 - - 82.9

DP-CGAN 57.4 57.1 52.5 51.4 53.0 50.2
GS-WGAN 83.3 85.5 84.9 58.7 59.5 63.1
DP-Merf 80.2 83.2 85.7 66.6 67.9 72.4
Ours 94.9 95.6 - 75.6 77.7 -

Table 3.1: Test accuracy (%) on real data of downstream ConvNet classifiers when training on
the synthetic set with δ = 10−5. (a) Comparison under different privacy cost ε ∈ {1, 10}. (b)
Comparison when varying the number of samples per class (spc) for training the downstream
ConvNet with ε = 10, while “full” corresponds to 6000 samples per class. We show the results
when training on real data non-privately and with DPSGD [1] as reference.

DP guarantees) that is representative of the original data in answering linear queries. However,
as neural networks exhibit highly nonlinear properties, methods targeted at linear queries are
generally not applicable to our case and are algorithmically distinct from approaches designed
for neural nets.

3.5 Experiment

3.5.1 Classification

We first compare private set generation (PSG) with existing DP generative models on standard
classification benchmarks including MNIST [108] and FashionMNIST [238].

Setup. We use by default a ConvNet with 3 blocks where each block contains one Conv layer
with 128 filters, followed by Instance Normalization [218], ReLU activation and AvgPooling
modules, and a fully connected (FC) layer as the final output layer. We initialize the network
parameters using Kaiming initialization [75] and the synthetic samples using standard Gaussian.
We report the averaged results over 3 runs of experiments for all the comparisons. We list
below the default hyperparameters used for the main experiments and refer to the Appendix B
for more details: Clipping bound C = 0.1, R =1000 for ε = 10 (and 200 for ε = 1), number of
samples per class (spc) ∈ {10, 20}, K = 10, T = 10 for spc=10 (and =20 for spc=20).

Comparison to state of the art. We show in Table 3.1(a) the results of, to the best of our
knowledge, all existing DP high-dimensional data generation methods (whose validity has
been justified via peer review at top-tier conferences) that report results on the benchmark
datasets we consider. These include DP-CGAN [211], G-PATE [130], DataLens [227], GS-
WGAN [32], DP-Merf [70], DP-Sinkhorn [24]. For methods that are not open-sourced, we
report the original results from the published paper. As shown in Table 3.1(a), our formulation
results in significant improvement in the sample utility (measured by test accuracy on real
data) for training downstream classification models. Specifically, the improvement is consistent
and significant (around 5-10% increase over different configurations) for both the low privacy
budget regime (ε=1) (around 8-9% improvement over SOTA in this case) and a relatively high
privacy regime (ε=10) where all the investigated methods achieve convergence (around 10%
and 5% increase in test accuracy for MNIST and FashionMNIST, respectively). Note that in
contrast to most existing methods that show superiority only for a certain range of privacy
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MNIST FashionMNIST

ConvNet LeNet AlexNet VGG11 ResNet18 MLP ConvNet LeNet AlexNet VGG11 ResNet18 MLP

Real 99.6 99.2 99.5 99.6 99.7 98.3 93.5 88.9 91.5 93.8 94.5 86.9

DP-CGAN 50.2 52.6 52.1 54.7 51.8 54.3 50.2 52.6 52.1 54.7 51.8 54.3
GS-WGAN 84.9 83.2 80.5 87.9 89.3 74.7 54.7 62.7 55.1 57.3 58.9 65.4
DP-Merf 85.7 87.2 84.4 81.7 81.3 85.0 72.4 67.9 64.9 70.1 66.7 73.1
Ours (spc=10) 94.9 91.3 90.3 93.6 94.3 86.1 75.6 68.0 66.2 74.7 72.1 62.8
Ours (spc=20) 95.6 93.0 92.3 94.5 94.1 87.1 77.7 68.0 59.1 76.8 70.8 62.2

Table 3.2: Comparison of generalization ability across different network architecture with
(ε, δ) = (10, 10−5). Our generated set is optimized with ConvNet, while the downstream
classifiers are of different architecture. The classifiers are trained on the full synthetic set for
baseline methods.
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Figure 3.2: Comparison of the convergence rate to existing private generative models with
iteratively accumulated privacy cost. X-axis: privacy cost ε, Y-axis: utility (i.e., test accuracy
(%)) for training downstream ConvNet classifiers.

levels, our improvement covers a wide range, if not all, of practical scenarios spanning across
different privacy levels.

We then focus on the open-sourced methods that are strictly comparable (e.g., G-PATE and
DataLens provide data-dependent ε, i.e., publishing ε value will introduce privacy cost and
are thus not directly comparable) to ours and conduct a comprehensive investigation through
different angles.

Memory and computation cost. We additionally show that our method is the only one that
simultaneously shows advantages in reducing the memory and computation consumption of
downstream analysis. As shown in Table 3.1(b), training the classifier with full (6000 samples
per class) size of samples in most cases yields an upper bound for the test accuracy, while
training on randomly subsampled smaller sets will decrease the performance, unless the
generated samples are not informative such that they can be harmful to the downstream tasks
(e.g., for DP-CGAN). In contrast, we directly optimize to compress the useful information
into a small set of samples and naturally save the memory and computation consumption for
downstream analysis tasks.

Generalization ability across different architectures. One natural concern of our formulation
could be the generalization ability to unseen situations. While we exploit discriminative
information to guide the training, we (in principle) inevitably trade the generality off against
task-specific utility, leaving no performance guarantees for new models. Interestingly, as shown
in Table 3.2, we find that our generated set still provides better utility than all baseline methods
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Figure 3.3: Comparison for private training in the continual learning setting with δ = 10−5

and different ε. X-axis: training stage, Y-axis: averaged test accuracy (over all the stages till the
current one). We use a ConvNet classifier in this case and set spc = 10 for our method and spc
= 6000 for DP-Merf as default.

in most cases, even though the models for evaluation have a completely different architecture
from the one we used for training. The only case where our generated set does not work well is
for training MLPs. We conjecture that it is due to the difference in the network properties that
result in distinct gradient signals: for example, layers in MLPs are densely connected while
being sparsely connected in ConvNets, and Convolutional layers are translation equivalent
while FC layers in MLPs are not. Moreover, we argue that this may not be a bug, but a feature.
Note that the reference results on real data also indicate that the MLP is inferior to other
architectures while models with ConvNet, VGG, or ResNet architecture perform well in most
cases. In this regard, results on our generated set generally align well with the result on real
data, which suggests the possibility of conducting model selection with our private generated
set.

Convergence rate. For most private (gradient-based) iterative methods, the privacy cost accu-
mulates in each training iteration, and thus faster convergence is highly preferable. We show in
Figure 3.2 the training curves where the y-axis denotes the utility and the x-axis corresponds
to the privacy. We observe that our method generally has a much faster convergence rate than
existing methods that need to accumulate the privacy cost for each iteration. In particular, our
method already achieves a decent level of utility with ε ≤ 2 which is much lower than the
privacy budget used in most previous works (normally ε = 10).

3.5.2 Application: Private Continual Learning
The utility guarantee of our formulation requires that the network architecture is known to the
data provider/generator. Fortunately, it is not a rare case in practice. In particular, our method
is naturally applicable to cases where (i) there are multiple parties involved in training a model
and they agree on one common training protocol (i.e., the network architecture is known to
all participants); (ii) each party has its own data whose privacy need to be protected (i.e., the
training need to be DP); (iii) data on each party exhibit distinct property and is all informative
for the final task (i.e., a synthetic set of representative samples that capture such properties
would greatly aid the final task).

One example is continual learning [119, 187] where the training of the classification network
is split into stages. Here we consider a setting adjusted to the DP training: to protect the
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privacy of its data, each party is responsible for a different training stage where it performs
DP training of the model on its data, and subsequently delivers the DP model to the party
responsible for the next training stage. Note that the raw data would not be transferred as
otherwise the privacy would be leaked.

We conduct DP training on the SplitMNIST and SplitFashionMNIST datasets where the
data is partitioned into 5 parts (based on the class labels, which corresponds to the class-
incremental [173] setup) and we assume each part is held by one party and can not be accessed
by others for privacy sake (See Appendix B for more details). We show in Figure 3.3 (green
curves) the baseline results of DP training of model under the private class-incremental setting
(i.e., each party finetune the model is obtained from the previous stage on its own data using
DP-SGD). Apparently, this naive training scheme leads to catastrophic forgetting of information
learned in the early stages. Even worse is that the common strategy to cope with this issue
requires transferring a small set of real data to other parties such that it can be replayed in
the later training stage [173, 15, 166], which is not directly applicable to the private setting as
transferring the data breaks privacy. In contrast, private generation methods can be seamlessly
applied to this case, where a set of DP synthetic samples is transferred to enable the final model
to learn the characteristics of each partition of data. In particular, our formulation is better
suitable for this setting than other generation methods as the network architecture is known to
all participants and samples can be tailored to the specific network via our formulation. This is
verified in Figure 3.3, where our synthetic samples are generally more informative for training
the classifier when compared to DP-Merf – the overall best existing works in terms of the
downstream utility. Moreover, as our formulation condenses the information into a small set
of samples by construction, we also enjoy the advantages when considering the computation,
storage, and communication cost.

3.6 Discussion

In this section, we present several key factors that distinguish our approach from existing ones
and discuss possible concerns regarding our private set generation formulation.
Trade-off between Visual Quality and Task Utility. Our formulation is designed for op-
timizing the utility of downstream analysis tasks instead of the visual appearance as done
in previous works, thereby leaving no performance guarantee for the visual quality of the
synthetic samples. Moreover, the optimization of the private synthetic set is unconstrained and
unregulated over the whole data space, with the gradient signal as the only guidance. As the
data to gradient mapping is generally non-injective (i.e., different data can results in the same
gradient), searching for the correct data given the gradient is an indefinite problem, which
inevitably leads to outcomes that are out of the data manifold in practice. This can be seen
in the first row of Figure 3.5 where we plot our private synthetic samples trained under the
default setting.
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Figure 3.4: Training pipeline (with prior).

Recall that one key difference
between our formulation and ex-
isting works is that: we directly
optimize for a set of samples in-
stead of the deep generative mod-
els. We then take a further step
and investigate whether this dif-
ference is the key factor that deter-
mines the samples’ visual quality.
To do this, we employ a untrained
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(a) MNIST (w/o prior) (b) FashionMNIST (w/o prior)

(c) MNIST (with prior) (d) FashionMNIST (with prior)

Figure 3.5: Our synthetic samples under (ε, δ) = (10, 10−5) for MNIST and FashionMNIST
datasets with or without (w/o) incorporating a freshly initialized DCGAN generator network
as image prior.
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Figure 3.6: Comparison of the convergence rate when training with or without (w/o) the
image prior from the DCGAN architecture. X-axis: privacy cost ε, Y-axis: test accuracy (%) for
training downstream ConvNet classifiers.

DCGAN [168] model from [32] as
the generator backbone (denoted as G), let xS to be outputs of G, and then optimize over the
network parameter of G using the gradient matching loss as in Equation 3.5 (see Figure 3.4 for
a visual illustration). Mathematically, this transforms Equation 3.7 into:

min
φ

Eθ0∼Pθ0

T−1

∑
t=0

[Ldis(gSθt
, g̃Dθt

)] with S = {G(zi;φ), ySi }M
i=1 (3.8)

where φ is the parameter of G, zi is random Gaussian noise (fixed during training). Basically,
this formulation restricts the synthetic images to be within the output space of G, and the
inductive bias introduced by the convolutional structure serves as deep image prior [219] to
regularize the visual appearance of the synthetic images.

We show the synthetic samples in the second row of Figure 3.5, and compare the utilities
with our original formulation in Figure 3.6. We observe that the prior from the deep generative
model is indeed important for the visual quality. However, interestingly, better visual quality
does not mean better utility. Specifically, optimizing over the parameter of generator G exhibits
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a slower convergence than directly optimizing the samples, while the final performance is also
inferior (See quantitative results in Table 3.3). This gives several important indications that help
inform future research in this field: (i) the goal of achieving better downstream utility may be
incompatible with the goal of achieving better sample visual quality, while dedicated efforts
towards different goals are necessary; (ii) deep generative models may not be the best option
for the task of private data generation as they result in suboptimal utility (mainly due to its
slow convergence), which questions the current default way of thinking in this field.

Scalability & Transparency. We discuss the possible issues when scaling to more complicated
datasets which: (i) contains a large number of label classes; (ii) are diverse and require a large
number of samples to capture the statistical characteristics of the data distribution. For (i), the
complexity of our (and all the other) approaches will definitely increase as the number of label
classes increases. When considering the number of variables that need to be optimized, the
complexity increases linearly for our case, while for all methods (that optimize over the network
parameters) the increase is no less than ours. While the application of DP deep learning (of
discriminative models) to datasets with >10 label classes is rare, we anticipate that dealing
with a much larger number of label classes is too ambitious for DP generative modeling for
now. For (ii), we conduct the experiment when varying the number of samples per class and
present the results in 3.4, where we indeed observe the training difficulty when the number of
samples increases. We conjecture that it is mainly because the gradient signals for updating the
synthetic samples get sparser when the number increases, which results in a lower convergence
rate and thus worse results especially when the allowed privacy budget is low. However, it is
arguable whether this is a shortage as smaller amounts of samples allow more savings in the
storage and computation consumption while providing greater transparency of downstream
analysis.

MNIST FashionMNIST

1 10 20 1 10 20

w/o prior 81.4 94.9 95.6 66.7 75.6 77.7
with prior 88.2 92.2 90.6 63.0 70.2 70.7

Table 3.3: Test accuracy (%) on real data of downstream
ConvNet classifier with or without (w/o) adopting
image prior from DCGAN under (ε, δ) = (10, 10−5).

MNIST FashionMNIST

1 10 20 50 1 10 20 50

81.4 94.9 95.6 94.0 66.7 75.6 77.7 71.3

Table 3.4: Test accuracy (%) on real data of
downstream ConvNet classifier when varying
the numbers of samples per class (spc) under

(ε, δ) = (10, 10−5).

Generality and Expressiveness. Our formulation focus on the task of training downstream
neural networks, and thus have no guarantees for other (and more general) purpose. In
contrast, deep generative models are designed for capturing the complete data distribution
and, once perfectly trained, can be applied to more general cases. While our formulation
seems to be inferior in this regard, we argue that this should not be a major shortcoming
that outweighs the advantages: First of all, while deep generative models in principle have
much greater expressiveness than a small set of samples, such upper bound is hard, if not
impossible, to be achieved in the privacy learning setting. Instead, compromising the upper
bound for a more achievable target is worthy and shows great improvement over existing
works as demonstrated in Section 3.5.1. Moreover, our formulation generalizes seamlessly
to any gradient-based learning methods that a downstream analyst may adopt. While such
methods already cover the most part of the possible analysis algorithms that could be adopted
for high-dimensional data, we believe that our approach does exhibit a good level of practical
applicability.
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3.7 Conclusion

We introduce a novel view of private high-dimensional data generation: instead of attempting
to train deep generative models in a DP manner, we directly optimize a set of samples under
the supervision of discriminative information for downstream utility. We present a simple
yet effective method that allows synthesizing a small set of samples that are representative
of the original data distribution and informative for training downstream neural networks.
We demonstrate via extensive experiments that our formulation leads to great improvement
over state-of-the-art approaches in terms of the task utility, without losing the generality for
performing analysis tasks in practice. Moreover, our results question the current default way
of thinking and provide insights for further pushing the frontier in the field of private data
generation.
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The availability of rich and vast data sources has greatly advanced machine learning
applications in various domains. However, data with privacy concerns comes with
stringent regulations that frequently prohibit data access and data sharing. Overcoming

these obstacles in compliance with privacy considerations is key for technological progress
in many real-world application scenarios that involve sensitive data. Differentially private
(DP) data publishing provides a compelling solution, where only a sanitized form of the
data is publicly released, enabling privacy-preserving downstream analysis and reproducible
research in sensitive domains. In recent years, various approaches have been proposed for
achieving privacy-preserving high-dimensional data generation by private training on top
of deep neural networks. In this paper, we present a novel unified view that systematizes
these approaches. Our view provides a joint design space for systematically deriving methods
that cater to different use cases. We then discuss the strengths, limitations, and inherent
correlations between different approaches, aiming to shed light on crucial aspects and inspire
future research. We conclude by presenting potential paths forward for the field of DP data
generation, with the aim of steering the community toward making the next important steps in
advancing privacy-preserving learning.

This chapter is based on [30]: As the first author of [30], Dingfan Chen spearheaded its cre-
ation, from proposing the central idea and conducting the literature review to conceptualizing
a structured tug literature presentation approach, and serving as the main writer. This paper
was published in Transactions on Machine Learning Research and received a survey certificate.
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4.1 Introduction

Data sharing is crucial for the growth of machine learning applications across various domains.
However, in many application scenarios, data sharing is prohibited due to the private nature
of data (e.g., individual data from mobile devices, medical treatments, and banking records)
and associated stringent regulations, such as the General Data Protection Regulation (GDPR)
and the American Data Privacy Protection Act (ADPPA), which largely hinders technological
progress in sensitive areas. Fortunately, differentially private (DP) data publishing [51, 52, 58]
provides a compelling solution, where only a sanitized form of the data, with rigorous privacy
guarantees, is made publicly available. Such sanitized synthetic data can be leveraged as a
surrogate for real data, enabling downstream statistical analysis using established analytic
tools, and can be shared openly with the research community, promoting reproducible research
and technological advancement in sensitive domains.

Traditionally, the sanitization algorithms are designed for capturing low-dimensional
statistical characteristics and target at specific downstream tasks (e.g., answering linear
queries [179, 73, 19, 223]), which are hardly generalizable to unanticipated tasks involving
high-dimensional data with complex distributions. On the other hand, the latest research,
inspired by the recent successes of deep generative models in learning high-dimensional
representations, applies deep generative models as the foundation of the generation algorithm.
This line of approaches, as demonstrated in recent studies [24, 32, 239, 245, 14, 62], have shown
promising results in sanitizing high-dimensional samples for general purposes.

Towards designing models that are better compatible with the privacy target, recent
research typically customizes the training objective for privacy-centric scenarios [24, 70, 32,
129], all building on top of a foundational generic generator framework. However, research
is fragmented as contributions have been made in different domains, different modeling
paradigms, different metric and discriminator choices, and different data modalities. So far,
a unified view of private generative models is notably missing in the literature, despite its
potential to consolidate the design space for systematic exploration of innovative architectures
and leveraging strengths across diverse modeling frameworks.

In this paper, we pioneer in providing a comprehensive framework and a unified perspective
on existing approaches for differentially private deep generative modeling. Our innovative
framework, complemented by an insightful taxonomy, effectively encapsulates approaches from
existing literature, categorizing them according to the intrinsic differences in their underlying
privacy barriers. We thoroughly assess each category’s characteristics, emphasizing crucial
points relevant for privacy analysis, and discuss their inherent strengths and weaknesses, with
the aim of laying a foundation that supports seamless transition into potential future research.

Moreover, we present a thorough introduction to the key concepts of DP and generative
modeling. We highlight the key considerations that should be accounted for when developing
DP generative models to ensure results comparable, error-free results. Furthermore, we
introduce a taxonomy of existing representative types of deep generative models, classifying
them based on the distinctive privacy challenges present during DP training. This introduction
aims to equip researchers and practitioners with a systematic approach for the design and
implementation of future privacy-preserving data generation techniques.

Lastly, we discuss open issues and potential future directions in the broader field of devel-
oping DP generation methods. Our objective is not limited to reviewing existing techniques,
but also aims to equip readers with a systematic perspective for devising new approaches or
refining existing ones. This work is thoughtfully written to serve diverse audiences, with an
effort of providing practitioners with a comprehensive overview of the recent advancements,
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while aiding experts in reassessing existing strategies and designing innovative solutions for
privacy-preserving generative modeling.

4.2 Preliminaries of Differential Privacy

Setting. In this paper, we focus on the standard central model of DP, which is commonly
agreed upon by all the approaches referenced herein. In this model, a trusted party or server is
responsible for managing all data points, executing DP algorithms, and producing sanitized
data that conforms to privacy constraints. This sanitized data, generated from the implemented
DP algorithms, can be later shared with untrusted parties or released to the public while
ensuring strict privacy guarantees. It is noteworthy that although approaches based on local
DP may seem to generate a form of synthetic data—where users typically modify their own
data due to distrust in the central server and a desire to conceal private information—these
methods are fundamentally distinct from the ones explored in this work due to differing threat
models and the resulting privacy implications.

Definition 4.2.1 ((ε, δ)-DP [51]). A randomized mechanismM with range R is (ε, δ)-DP, if

Pr[M(D) ∈ O] ≤ eε · Pr[M(D′) ∈ O] + δ

holds for any subset of outputs O ⊆ R and for any adjacent datasets D and D′, where D and
D′ differ from each other with only one training example. ε is the upper bound of privacy loss,
and δ is the probability of breaching DP constraints. Smaller values of both ε and δ translate
to stronger DP guarantees and better privacy protection. Typically,M refers to the training
algorithm of a generative model. DP ensures that inferring the presence of an individual in the
private dataset—by observing the trained generative modelsM(D)—is challenging, with D
being the original private dataset. This same level of guarantee also holds when the attacker
observes the samples generated by the trained generative models (i.e., the sanitized dataset)
due to the post-processing theorem (Theorem 4.2.1).

Privacy notion. There are two widely used definitions for adjacent datasets in existing
works of DP data generation, which result in different DP notions: the “replace-one” and the
“add-or-remove one” notions:
• Replace-one: adjacent datasets are formed by replacing one data sample, i.e., D′ ∪ {x′} =
D ∪ {x} for some x and x′. This is sometimes referred to bounded-DP in literature.

• Add-or-remove-one: adjacent datasets are constructed by adding or removing one data sample,
i.e., D′ = D ∪ {x} for some x (or vice versa).

It is crucial to understand that different notions of DP may not provide equivalent privacy
guarantees even under identical (ε, δ) values, potentially leading to slight differences in
comparisons when algorithms are developed under varying privacy notions, a sentiment also
noted in [165]. Specifically, the “replacement” operation in the bounded-DP notion can be
understood as executing two edits: removing one data point x and adding another x′. This
suggests that the replace-one notion may be nested within the add-or-remove-one notion, and a
naive transformation would result in a (2ε, 0)-DP algorithm under the replace-one notion from
an algorithm that was (ε, 0)-DP under the add-or-remove-one notion. To minimize potential
confusion and promote fair comparisons, we emphasize that future researchers should clearly
specify the chosen notion in their work. Moreover, we encourage future research to include a
privacy analysis for both notions, if technically feasible.
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Privacy-preserving data generation is building on top of the closedness of DP under
post-processing: if a generative model is trained under a (ε, δ)-DP mechanism, releasing a
sanitized dataset generated by the model (for conducting downstream analysis tasks) will also
be privacy-preserving, with the privacy cost bounded by ε (and δ).

Theorem 4.2.1 (Post-processing [53]). IfM satisfies (ε, δ)-DP, F ◦M will satisfy (ε, δ)-DP for
any data-independent function F with ◦ denoting the composition operator.

While (ε, δ)-DP provides an intuitive understanding of the mechanism’s overall privacy
guarantee, dealing with composition is more convenient under the notion of Rényi Differential
Privacy (RDP). Existing approaches typically use RDP to aggregate privacy costs across a series
of mechanisms (such as multiple DP gradient descent steps during generative model training)
and then convert to the (ε, δ)-DP notion at the end (Appendix C.3). The formal definitions and
the corresponding theorems are listed below.

Definition 4.2.2 (Rényi Differential Privacy (RDP) [142]). A randomized mechanism M is
(α, ρ)-RDP with order α, if

Dα(M(D)∥M(D′)) = 1
α− 1

log Et∼M(D)

[(
Pr[M(D) = t]
Pr[M(D′) = t]

)α]
≤ ρ

holds for any adjacent datasets D and D′, where Dα(P∥Q) = 1
α−1 log Et∼Q[(P(t)/Q(t))α]

denotes the Rényi divergence.

Theorem 4.2.2 (Composition [142]). For a sequence of mechanisms M1, ...,Mk s.t. Mi is
(α, ρi)-RDP ∀i, the compositionM1 ◦ ... ◦Mk is (α, ∑i ρi)-RDP.

Theorem 4.2.3 (From RDP to (ε, δ)-DP [13]). If a randomized mechanismM is (α, ρ)-RDP, then

M is also
(

ρ + log((α− 1)/α)− (log δ + log α)/(α− 1), δ
)

-DP for any 0 < δ < 1.

In literature, achieving DP typically involves adding calibrated random noise, with scale
proportional to the sensitivity value (Definition 4.2.3), to the private dataset’s associated
quantity to conceal individual influence. A notable instance of this practice can be formularized
as the Gaussian Mechanism, as defined below.

Definition 4.2.3 (Sensitivity). The (global) ℓp-sensitivity for a function f : X → Rd that outputs
d-dimensional vectors is defined as:

∆p
f = max

D,D′
∥ f (D)− f (D′)∥p (4.1)

over all adjacent datasets D and D′. The sensitivity characterizes the maximum influence
(measured by ℓp norm) of one individual datapoint on the function’s output. When dealing
with matrix and tensor outputs, the ℓp norm is computed over the vectors that result from
flattening the matrices and tensors into vectors.

Definition 4.2.4 (Gaussian Mechanism [53]). Let f : X → Rd be an arbitrary d-dimensional
function with L2-sensitivity ∆2

f . The Gaussian MechanismMσ, parameterized by σ, adds noise
into the output, i.e.,

Mσ(x) = f (x) +N (0, σ2I). (4.2)

For ε, δ ∈ (0, 1),Mσ is (ε, δ)-DP if σ ≥
√

2 ln (1.25/δ)∆2 f /ε and (α,
α(∆2

f )
2

2σ2 )-RDP.
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4.2.1 Training Deep Learning Models with DP

Additionally, we present the most prominent frameworks for training deep learning models
with DP guarantees: Differentially Private Stochastic Gradient Descent (DP-SGD) in Sec-
tion 4.2.1.1 and Private Aggregation of Teacher Ensembles (PATE) in Section 4.2.1.2.

4.2.1.1 Differenetially Private Stochastic Gradient Descent (DP-SGD)

DP-SGD [1] is an adaptation of the standard SGD algorithm that injects calibrated random
Gaussian noise into the gradients during the optimization process, which ensures DP due to
the Gaussian mechanism. The algorithm consists of the following steps:
1. Compute the per-example gradients for a mini-batch of training examples.
2. Clip the gradients to bound their L2-norm (i.e., L2-sensitivity) to ensure that the influence of

any individual training example is limited.
3. Add Gaussian noise to the aggregated clipped gradients to introduce the required random-

ness for DP guarantees.
4. Update the model parameters using the noisy gradients.
The privacy guarantees provided by DP-SGD are determined by the choice of noise multi-
plier (which defines the standard deviation of the Gaussian noise by multiplying it with the
sensitivity), the mini-batch sampling ratio, and the total number of optimization steps. The
overall privacy guarantee can be calculated using the composition rule, which accounts for the
cumulative privacy loss over multiple iterations of the algorithm. By default, DP-SGD adopts
the add-or-remove-one notion, leading to a sensitivity value equal to the gradient clipping bound
(see Appendix C.2).

4.2.1.2 Private Aggregation of Teacher Ensembles (PATE)

The PATE framework [158, 159] consists of two main components: an ensemble of teacher
models and a student model. The training process begins with the partitioning of sensitive data
into multiple disjoint subsets. Each subset is then used to train a teacher model independently
(and non-privately), limiting the effect of each individual training sample to influence only one
teacher model. To train a DP student model, a public dataset with similar characteristics to the
sensitive data is used. During the training process, the student model queries the ensemble
of teacher models for predictions on the public dataset. The teacher models’ predictions are
then aggregated using a DP voting mechanism, which adds noise to the aggregated votes to
ensure privacy. The student model subsequently learns from the noisy aggregated predictions,
leveraging the collective knowledge of the teacher models while preserving the privacy of the
original training data.

The sensitivity of PATE is measured as the maximum change in label counts for teacher
models’ predictions between neighboring datasets. Given m teacher models, c label classes, the
counts for class j is defined by the number of teachers that assign class j to a query input x̄, i.e.,
nj(x̄) = |i : i ∈ [m], fi(x̄) = j| for j ∈ [c], where fi denotes the i-th teacher model. Changing
a single data point (whether by replacing, adding, or removing) will at most affect one data
partition and, consequently, the prediction for one teacher trained on the altered partition,
increasing the counts by 1 for one class and decreasing the counts by 1 for another class. This
results in a global sensitivity equal to ∆2

(n1,...,nc)
=
√

2 for both the replace-one and add-or-remove-
one notion (see Appendix C.2). To reduce privacy consumption, PATE is associated with a
data-dependent privacy accountant method to exploit the fact that when teachers have a large
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agreement, the privacy cost is usually much smaller than the data-independent bound would
suggest. Moreover, Papernot et al. [159] suggest private threshold checking for queries to only
use teacher predictions with high consensus for training the student model. Notably, to obtain
comparable results to approaches with data-independent privacy costs, extra sanitization via
smooth sensitivity analysis is required.

4.2.2 Important Notes for Deploying DP Models

The development of DP models necessitate a thorough examination to ensure their correctness
for providing a fair comparison of research progress and maintaining public trust in DP
methodologies. We present below a series of critical questions that serve as fundamental sanity
checks when developing DP models. This enables researchers to rapidly identify and rule out
approaches that are incompatible with DP, thereby optimizing their research efforts towards
innovation in this domain.
• What will be released to the public and accessible to potential adversaries? The most

critical question is to determine which components (e.g., model modules, data statistics,
intermediate results, etc.) will be made public and, as a result, could be accessible to potential
adversaries. This corresponds to the assumed threat model and establishes the essential
concept of a privacy barrier, which separates components accessible to potential attackers
from those that are not.

All components within the attacker-accessible domain must be provided with DP guarantees.
One common oversight is neglecting certain data-related intermediate statistics utilized
during the model’s training phase. These statistics might constitute only a minor aspect of
the entire process, or their existence might be implicit, given that they are incorporated into
other quantities. Nevertheless, failing to implement DP sanitization for these aspects can
undermine the intended DP protection for the outcomes, e.g., the trained model may no
longer adhere to DP standards.

For instance, when pre-processing is required for the usage of a DP model, an additional
privacy budget should be allocated for exposing related statistics such as the dataset’s mean
and standard deviation [212]. From a research standpoint, innovations may involve carefully
designing DP mechanisms that apply DP constraints only to components accessible by
attackers, while other components can be trained or computed non-privately to maintain high
utility. A concrete example includes training a discriminator non-privately and withholding
it by the model owner in deploying DP generative adversarial networks (see Section 4.4.3)
while only privatizing the generator’s training and releasing it to the public with a dedicated
DP mechanism.

• What is the adopted privacy notion and granularity? While DP asserts that an algorithm’s
output remains largely unchanged when a single database entry is modified, the definition
of a “single entry” can vary considerably (reflecting the concept of granularity), and the way
to modify the single entry can also be different (embodying the privacy notion). Thus, the
claims of DP necessitate an unambiguous declaration of the sense and level at which privacy
is being promised. As discussed in the previous section, the distinction in privacy notion
is universally crucial in the design of DP mechanisms. On the other hand, the granularity
becomes particularly relevant when handling data modalities that exhibit relatively less
structural representations, such as graphs and text. For instance, training DP (generative)
language models that provide guarantees at different levels (tokens, sentences, or documents)
will lead to substantial differences in the complexity and the application scenarios.
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Figure 4.1: Overview of training pipeline of generative models. (Blue arrow: forward pass;
Red arrow: backward pass; Dashed arrows indicate optional processes that may not be present
in all generative models.)

• What constitutes the sensitivity analysis? Sensitivity analysis demands rigorous attention,
focusing on two primary aspects. The first consideration calls for a clear statement of
the sensitivity type in use, e.g., global, local, and smooth sensitivity. Notably, techniques
predicated on local and smooth sensitivity are generally not directly comparable to those
depending on the global sensitivity. Second, determining the sensitivity bound during the
training of a generative model that consists of more than one trainable module may be
challenging, as discussed in Section 4.4.4, which necessitates a meticulous analysis to ensure
the correctness of the privacy cost computation.

4.3 Preliminaries of Generative Models

In this section, we present a comprehensive overview of representative generative models,
with the aim to develop a clear understanding of the essential operations required to achieve
DP across different types of generative models, as well as to demonstrate the fundamental
differences in their compatibility with private training.

4.3.1 Overview & Taxonomy

Given real data samples x from a dataset of interest, the goal of a generative model is to
learn and capture the characteristics of its true underlying distribution p(x) and subsequently
allows the model to generate new samples from the learned distribution. At a high-level
of abstraction, the training pipeline of generative models can be depicted as the diagram
in Figure 4.1. The “Measurement” block in the diagram summarizes the general process of
comparing the synthetic and real data distributions using a “critic”, which yields a loss term L
that quantifies the similarity between the two. This loss term then acts as the training objective
for the generator, with the update signal computed and then backpropagated to adjust the
generator’s parameters and improve its ability to generate realistic samples.

Furthermore, the diagram outlines two optional processes (indicated by dashed arrows),
that are involved in some generative models but not all. The first optional process involves
guiding the training of the generator by feeding (quantities derived from) real data as inputs,
which enables the explicit maximum likelihood computation and categorizes the models into
two types: implicit density and explicit density. The second optional process involves updating
the critic to better capture the underlying structure of the data and more accurately reflect
the similarity between the distributions. This distinction highlights the usage of either static
(data-independent) or learnable (data-dependent) features for the critic function within implicit
density models.

We present a taxonomy of existing representative types of generative models whose private
training has been realized in literature in Figure 4.2. We examine the following tiers in the
taxonomy trees that exert significant influence on the application scenarios and the design of
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corresponding private training algorithms:

• Explicit vs. Implicit Density Models
• Learnable vs. Static Critics
• Distribution-wise vs. Point-wise Optimization
• Tractable vs. Approximate Density

Explicit vs. Implicit Density Models. Existing generative models can be divided into two main
categories: explicit density models define an explicit density function pmodel(x; θ), while implicit
density models learn a mapping that generates samples by transforming an easy-to-sample
random variable, without explicitly defining a density function.

These distinctions in modeling design result in different paradigms during the training
phase, particularly in how real data samples are used (or accessed) in the process. Explicit den-
sity models typically use real data samples as inputs to the generator and also for measurement
(as demonstrated in Figure 4.1), thereby enabling the tractable computation or approximation of
the data likelihood objective. In contrast, implicit density models necessitate real data samples
solely for the purpose of distribution comparison measurements.

This distinction demarcates potential privacy barriers for these two types of models during
DP model training. In the context of implicit models, it is sufficient to privatize the single
access point to the real data (Section 4.4.1-4.4.3). However, when dealing with training private
explicit density models, it becomes essential to apply DP mechanisms that take both access
points into account.

Learnable vs. Static Critics. The training of generative models necessitates a “critic” to assess
the distance between the real and generated distributions, which then builds up the training
objectives for optimizing the generator. Specifically for implicit density models, the use of
different types of critics could potentially influence the placement of privacy barrier when
training DP models (Section 4.4.1- 4.4.2).

Within this framework, the critics may exist in two primary forms, namely learnable and
static (data-independent) variants. The distinction between the two lies in whether the critic
itself is a parameterized function that undergoes updates during the training of generative
models (learnable), or a data-independent function that remains static during the training
process (static).

We do not further differentiate for explicit density models as they typically employ simple,
data-independent critic such as L1 and L2 losses. Meanwhile, in contrast to implicit models,
varying the critics in explicit models typically does not alter the privacy barrier in DP training.
This is due to the constraint imposed by multiple access to real data in training of explicit
models, which restricts the flexibility in positioning the privacy barriers.

Distribution-wise vs. Point-wise Optimization. Generative models are designed to be
stochastic and capable of producing a distribution of data. This is achieved by supplying
the generator with random inputs (i.e., latent variables), stochastically drawn from a simple
distribution, such as the standard Gaussian. The optimization process generally proceeds
through mini-batches, essentially serving as point-wise approximations. Through substantial
number of update steps that involve various random latent variable inputs, the model is trained
to generalize over new random variables during the generation phase, enabling a smooth
transition from a point-wise approximation to the distribution-wise objective.

However, certain contexts may not necessitate the stochasticity nature in these models.
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Figure 4.2: Overview of different deep generative models.

Instead, there might be an intentional focus on generating a small set of representative samples,
a notion that resonates with the “coreset” concept. This could involve optimizing the model
over a limited, fixed set of random inputs rather than the entire domain. We label this as
point-wise optimization to distinguish it from the default distribution-wise optimization used in
training conventional generative models.

Recent studies have revealed intriguing advantages of merging insights from both these
strategies, particularly in the realm of private learning. For instance, the point-wise optimization
method exhibits remarkable compatibility with private learning primarily arises from the fact
that point-wise optimization is generally less challenging in comparison to the distribution-
wise training that requires generalization, which generally improves model convergence, and
consequently enhances privacy. However, this point-wise approach has its limitations. Unlike
distribution-wise training, it does not inherently support generalization over new latent code
inputs. This may restrict the stochastic sampling of new synthetic samples during inference.
As a result, there is a trade-off between the flexibility of use in downstream applications and
improved privacy guarantees.

We do not expressly differentiate between potential optimization strategies for explicit
density models within our taxonomy in Figure 4.2, as such distinction is not obvious in the
context of explicit density models. In these models, the latent space is typically formulated
through a transformation of the distribution within the data space. This transformation process
in turn complicates the control of stochasticity throughout the training phase and diminishes
the applicability of point-wise optimization.

Tractable vs. Approximate Density. For models defining explicit density, a key distinguishing
factor that shows practical relevance pertains to whether they allow exact likelihood computa-
tions. These models can broadly be categorized into two types: tractable density and approximate
density models. The classification primarily stems from the model structural designs, which
either enable tractable density inference or fall within the realm of approximate density.

Existing studies have demonstrated encouraging results when conducting DP training
on both types of models. Intriguingly, the DP training mechanisms appear to exhibit minor
distinctions when applied to these two different categories. On an optimistic note, such results
implies that it might be feasible to attain tractable likelihood computations with a DP guarantee
without considerable effort. However, it remains unclear as to whether the difference in model
designs will systematically influence their compatibility with DP training.
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<latexit sha1_base64="NNROO/l45zr+acO4/pQueOX4ors=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6cVmpfUATymQySYfOTMLMRCyhn+DWfo07cevajxGcpFlo64ELh3Pu5VxOkFIileN8GbW19Y3Nrfq2ubO7t3/QODzqySQTCHdRQhMxCKDElHDcVURRPEgFhiyguB9M7gq//4SFJAl/VNMU+wzGnEQEQaWljhd3Ro2mYzslrFXiVqQJKrRHjW8vTFDGMFeIQimHrpMqP4dCEUTxzPQyiVOIJjDGQ005ZFj6efnqzDrTSmhFidDDlVWqvy9yyKScskBvMqjGctkrxH+9gC0lq+jGzwlPM4U5WgRHGbVUYhU9WCERGCk61QQiQfTvFhpDAZHSbZmmV17mRc4IJYxBHkpb4eeZqftyl9tZJb0L272yLx8um63bqrk6OAGn4By44Bq0wD1ogy5AIAYv4BXMjbnxZrwbH4vVmlHdHIM/MD5/ACZan3E=</latexit>S <latexit sha1_base64="/Qz54gTmD7P9Ed0l0UW3um28nLQ=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6ceGion1AE8pkMm2HziPMTMQS+glu7de4E7eu/RjBSZqFth64cDjnXs7lRAklSnvel1VZWV1b36hu2lvbO7t7tf2DthKpRLiFBBWyG0GFKeG4pYmmuJtIDFlEcSca3+R+5wlLRQR/1JMEhwwOORkQBLWRHoI71a/VPdcr4CwTvyR1UKLZr30HsUApw1wjCpXq+V6iwwxKTRDFUztIFU4gGsMh7hnKIcMqzIpXp86JUWJnIKQZrp1C/X2RQabUhEVmk0E9UoteLv7rRWwhWQ+uwozwJNWYo3nwIKWOFk7egxMTiZGmE0MgksT87qARlBBp05ZtB8Vlluf0kWAM8li5Gj9PbdOXv9jOMmmfuf6Fe35/Xm9cl81VwRE4BqfAB5egAW5BE7QAAkPwAl7BzJpZb9a79TFfrVjlzSH4A+vzBy6qn3Y=</latexit>L

Measurement

<latexit sha1_base64="SIQg69wHBbgf/L4zqf183WJ7A0U=">AAACHXicbVDLSsNAFJ3UV42vqks3wSLUTUmkqMuiLlxWsA9oSphMpu3QeYSZSWkJ/Qy39mvciVvxYwQnaRfaeuDC4Zx7OZcTxpQo7bpfVmFjc2t7p7hr7+0fHB6Vjk9aSiQS4SYSVMhOCBWmhOOmJpriTiwxZCHF7XB0n/ntMZaKCP6spzHuMTjgpE8Q1EbqPgR+PCQVfzy5DEplt+rmcNaJtyRlsEQjKH37kUAJw1wjCpXqem6seymUmiCKZ7afKBxDNIID3DWUQ4ZVL81fnjkXRomcvpBmuHZy9fdFCplSUxaaTQb1UK16mfivF7KVZN2/7aWEx4nGHC2C+wl1tHCyPpyISIw0nRoCkSTmdwcNoYRIm9Zs288v0ywnQIIxyCNV1Xgys01f3mo766R1VfWuq7WnWrl+t2yuCM7AOagAD9yAOngEDdAECAjwAl7B3Jpbb9a79bFYLVjLm1PwB9bnDwuUooY=</latexit>

D�(x)

Real data  
<latexit sha1_base64="CKitbbY/vXadKSoRv3lhLK20E8c=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuizqwmVF+4AmlMlkkg6dmYSZiVhCP8Gt/Rp34ta1HyM4SbPQ1gMXDufcy7mcIKVEKsf5Mmorq2vrG/VNc2t7Z3evsX/QlUkmEO6ghCaiH0CJKeG4o4iiuJ8KDFlAcS8Y3xR+7wkLSRL+qCYp9hmMOYkIgkpLD158O2w0HdspYS0TtyJNUKE9bHx7YYIyhrlCFEo5cJ1U+TkUiiCKp6aXSZxCNIYxHmjKIcPSz8tXp9aJVkIrSoQerqxS/X2RQyblhAV6k0E1koteIf7rBWwhWUVXfk54minM0Tw4yqilEqvowQqJwEjRiSYQCaJ/t9AICoiUbss0vfIyL3KGKGEM8lDaCj9PTd2Xu9jOMume2e6FfX5/3mxdV83VwRE4BqfABZegBe5AG3QAAjF4Aa9gZsyMN+Pd+Jiv1ozq5hD8gfH5Aw0Zn2I=</latexit>D

(a) GAN

Static  

Synthetic data 
<latexit sha1_base64="NNROO/l45zr+acO4/pQueOX4ors=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6cVmpfUATymQySYfOTMLMRCyhn+DWfo07cevajxGcpFlo64ELh3Pu5VxOkFIileN8GbW19Y3Nrfq2ubO7t3/QODzqySQTCHdRQhMxCKDElHDcVURRPEgFhiyguB9M7gq//4SFJAl/VNMU+wzGnEQEQaWljhd3Ro2mYzslrFXiVqQJKrRHjW8vTFDGMFeIQimHrpMqP4dCEUTxzPQyiVOIJjDGQ005ZFj6efnqzDrTSmhFidDDlVWqvy9yyKScskBvMqjGctkrxH+9gC0lq+jGzwlPM4U5WgRHGbVUYhU9WCERGCk61QQiQfTvFhpDAZHSbZmmV17mRc4IJYxBHkpb4eeZqftyl9tZJb0L272yLx8um63bqrk6OAGn4By44Bq0wD1ogy5AIAYv4BXMjbnxZrwbH4vVmlHdHIM/MD5/ACZan3E=</latexit>S <latexit sha1_base64="/Qz54gTmD7P9Ed0l0UW3um28nLQ=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6ceGion1AE8pkMm2HziPMTMQS+glu7de4E7eu/RjBSZqFth64cDjnXs7lRAklSnvel1VZWV1b36hu2lvbO7t7tf2DthKpRLiFBBWyG0GFKeG4pYmmuJtIDFlEcSca3+R+5wlLRQR/1JMEhwwOORkQBLWRHoI71a/VPdcr4CwTvyR1UKLZr30HsUApw1wjCpXq+V6iwwxKTRDFUztIFU4gGsMh7hnKIcMqzIpXp86JUWJnIKQZrp1C/X2RQabUhEVmk0E9UoteLv7rRWwhWQ+uwozwJNWYo3nwIKWOFk7egxMTiZGmE0MgksT87qARlBBp05ZtB8Vlluf0kWAM8li5Gj9PbdOXv9jOMmmfuf6Fe35/Xm9cl81VwRE4BqfAB5egAW5BE7QAAkPwAl7BzJpZb9a79TFfrVjlzSH4A+vzBy6qn3Y=</latexit>L

Measurement

<latexit sha1_base64="mXTTqJLVGzQHkYptyoikscqKUlE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtgvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPzd+M8w==</latexit>

f

Real data  
<latexit sha1_base64="CKitbbY/vXadKSoRv3lhLK20E8c=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuizqwmVF+4AmlMlkkg6dmYSZiVhCP8Gt/Rp34ta1HyM4SbPQ1gMXDufcy7mcIKVEKsf5Mmorq2vrG/VNc2t7Z3evsX/QlUkmEO6ghCaiH0CJKeG4o4iiuJ8KDFlAcS8Y3xR+7wkLSRL+qCYp9hmMOYkIgkpLD158O2w0HdspYS0TtyJNUKE9bHx7YYIyhrlCFEo5cJ1U+TkUiiCKp6aXSZxCNIYxHmjKIcPSz8tXp9aJVkIrSoQerqxS/X2RQyblhAV6k0E1koteIf7rBWwhWUVXfk54minM0Tw4yqilEqvowQqJwEjRiSYQCaJ/t9AICoiUbss0vfIyL3KGKGEM8lDaCj9PTd2Xu9jOMume2e6FfX5/3mxdV83VwRE4BqfABZegBe5AG3QAAjF4Aa9gZsyMN+Pd+Jiv1ozq5hD8gfH5Aw0Zn2I=</latexit>D

Generator 
<latexit sha1_base64="ZehPtHmiao0m+kZnEHFHfyKFji4=">AAACH3icbVBNS8NAFNz4WeNX1aOXYBHqpSQi6rHoQY8VbCuYUDbbV7u4u4m7L2IN/R1e7a/xJl79MYLbmoO2DjwYZt5jHhOnghv0/U9nbn5hcWm5tOKurq1vbJa3tlsmyTSDJktEom9iakBwBU3kKOAm1UBlLKAd35+P/fYjaMMTdY2DFCJJ7xTvcUbRStFFJ8Q+IK2Gj88HnXLFr/kTeLMkKEiFFGh0yl9hN2GZBIVMUGNuAz/FKKcaORMwdMPMQErZPb2DW0sVlWCifPL00Nu3StfrJdqOQm+i/r7IqTRmIGO7KSn2zbQ3Fv/1YjmVjL3TKOcqzRAU+wnuZcLDxBs34nW5BoZiYAllmtvfPdanmjK0vbluOLnMxzkdlkhJVdfUEJ6Gru0rmG5nlrQOa8Fx7ejqqFI/K5orkV2yR6okICekTi5JgzQJIw/khbySkTNy3px35+Nndc4pbnbIHzif3848o3Q=</latexit>

G✓(z)

(b) Distribution matching

Measurement
Decoder 

<latexit sha1_base64="97egWNnKIebSS4Dsoh9uj7JhICg=">AAACJXicbVBNS8NAFNz4bfxq9eglWIR6KYmIeix68VjB1kJTwmb7ahd3N2H3pVpjf4pX/TXeRPDkLxHc1h60deDBMPMe85g4Fdyg7384c/MLi0vLK6vu2vrG5lahuN0wSaYZ1FkiEt2MqQHBFdSRo4BmqoHKWMB1fHs+8q/7oA1P1BUOUmhLeqN4lzOKVooKxTQKsQdIy2H//jHsPxxEhZJf8cfwZkkwISUyQS0qfIWdhGUSFDJBjWkFfortnGrkTMDQDTMDKWW39AZalioqwbTz8etDb98qHa+baDsKvbH6+yKn0piBjO2mpNgz095I/NeL5VQydk/bOVdphqDYT3A3Ex4m3qgXr8M1MBQDSyjT3P7usR7VlKFtz3XD8WU+yolYIiVVHVNBuB+6tq9gup1Z0jisBMeVo8ujUvVs0twK2SV7pEwCckKq5ILUSJ0wckeeyDN5cV6cV+fNef9ZnXMmNzvkD5zPbzrYpbw=</latexit>

p✓(x|z)
Synthetic data 

<latexit sha1_base64="NNROO/l45zr+acO4/pQueOX4ors=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6cVmpfUATymQySYfOTMLMRCyhn+DWfo07cevajxGcpFlo64ELh3Pu5VxOkFIileN8GbW19Y3Nrfq2ubO7t3/QODzqySQTCHdRQhMxCKDElHDcVURRPEgFhiyguB9M7gq//4SFJAl/VNMU+wzGnEQEQaWljhd3Ro2mYzslrFXiVqQJKrRHjW8vTFDGMFeIQimHrpMqP4dCEUTxzPQyiVOIJjDGQ005ZFj6efnqzDrTSmhFidDDlVWqvy9yyKScskBvMqjGctkrxH+9gC0lq+jGzwlPM4U5WgRHGbVUYhU9WCERGCk61QQiQfTvFhpDAZHSbZmmV17mRc4IJYxBHkpb4eeZqftyl9tZJb0L272yLx8um63bqrk6OAGn4By44Bq0wD1ogy5AIAYv4BXMjbnxZrwbH4vVmlHdHIM/MD5/ACZan3E=</latexit>S
Real data  

<latexit sha1_base64="CKitbbY/vXadKSoRv3lhLK20E8c=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuizqwmVF+4AmlMlkkg6dmYSZiVhCP8Gt/Rp34ta1HyM4SbPQ1gMXDufcy7mcIKVEKsf5Mmorq2vrG/VNc2t7Z3evsX/QlUkmEO6ghCaiH0CJKeG4o4iiuJ8KDFlAcS8Y3xR+7wkLSRL+qCYp9hmMOYkIgkpLD158O2w0HdspYS0TtyJNUKE9bHx7YYIyhrlCFEo5cJ1U+TkUiiCKp6aXSZxCNIYxHmjKIcPSz8tXp9aJVkIrSoQerqxS/X2RQyblhAV6k0E1koteIf7rBWwhWUVXfk54minM0Tw4yqilEqvowQqJwEjRiSYQCaJ/t9AICoiUbss0vfIyL3KGKGEM8lDaCj9PTd2Xu9jOMume2e6FfX5/3mxdV83VwRE4BqfABZegBe5AG3QAAjF4Aa9gZsyMN+Pd+Jiv1ozq5hD8gfH5Aw0Zn2I=</latexit>D<latexit sha1_base64="/Qz54gTmD7P9Ed0l0UW3um28nLQ=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6ceGion1AE8pkMm2HziPMTMQS+glu7de4E7eu/RjBSZqFth64cDjnXs7lRAklSnvel1VZWV1b36hu2lvbO7t7tf2DthKpRLiFBBWyG0GFKeG4pYmmuJtIDFlEcSca3+R+5wlLRQR/1JMEhwwOORkQBLWRHoI71a/VPdcr4CwTvyR1UKLZr30HsUApw1wjCpXq+V6iwwxKTRDFUztIFU4gGsMh7hnKIcMqzIpXp86JUWJnIKQZrp1C/X2RQabUhEVmk0E9UoteLv7rRWwhWQ+uwozwJNWYo3nwIKWOFk7egxMTiZGmE0MgksT87qARlBBp05ZtB8Vlluf0kWAM8li5Gj9PbdOXv9jOMmmfuf6Fe35/Xm9cl81VwRE4BqfAB5egAW5BE7QAAkPwAl7BzJpZb9a79TFfrVjlzSH4A+vzBy6qn3Y=</latexit>L

Encoder 
<latexit sha1_base64="g7jxuHvf4WE+dmSaicm4x9zdEvM=">AAACI3icbVDLSsNAFJ34rPHRqks3wSLUTUikqMuiG5cV7AOaECbTSTt0ZhJnJqU19kvc2q9xJ25c+CmC0zYLbT1w4XDOvZzLCRNKpHKcT2NtfWNza7uwY+7u7R8US4dHTRmnAuEGimks2iGUmBKOG4ooituJwJCFFLfCwe3Mbw2xkCTmD2qcYJ/BHicRQVBpKSgVHwMv6ZOKN3x69oaj86BUdmxnDmuVuDkpgxz1oPTtdWOUMswVolDKjuskys+gUARRPDG9VOIEogHs4Y6mHDIs/Wz++MQ600rXimKhhytrrv6+yCCTcsxCvcmg6stlbyb+64VsKVlF135GeJIqzNEiOEqppWJr1orVJQIjRceaQCSI/t1CfSggUro70/Tml9ksJ0AxY5B3pa3waGLqvtzldlZJ88J2L+3qfbVcu8mbK4ATcAoqwAVXoAbuQB00AAIpeAGvYGpMjTfj3fhYrK4Z+c0x+APj6wd+faTU</latexit>

q�(z|x)

ELBO  

(c) VAE

MeasurementReverse 
Diffusion 

<latexit sha1_base64="GciYAvn+v2CMDsnbwZQ8glq/xPc=">AAACLXicbVBNS8NAFNzUrxq/qp7ES7AIerAkIupR9OJRwbaCKWGzfbVLdzdh90UssfhrvNpf40EQr/4KwU3tQasDC8O8N8zbiVPBDfr+q1Oamp6ZnSvPuwuLS8srldW1hkkyzaDOEpHo65gaEFxBHTkKuE41UBkLaMa9s2LevANteKKusJ9CS9JbxTucUbRSVNlIoxC7gHQnvLuPctwLBg8Fw92oUvVr/gjeXxKMSZWMcRFVPsN2wjIJCpmgxtwEfoqtnGrkTMDADTMDKWU9egs3lioqwbTy0RcG3rZV2l4n0fYp9EbqT0dOpTF9GdtNSbFrJmeF+O8slhPJ2Dlu5VylGYJi38GdTHiYeEU/XptrYCj6llCmub3dY12qKUPbouuGI2de5EQskZKqtqkh3A9c21cw2c5f0tivBYe1g8uD6snpuLky2SRbZIcE5IickHNyQeqEkUfyRJ7J0Bk6L86b8/69WnLGnnXyC87HF6fhqQY=</latexit>

p✓(xt�1|xt)

Synthetic data 
<latexit sha1_base64="NNROO/l45zr+acO4/pQueOX4ors=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6cVmpfUATymQySYfOTMLMRCyhn+DWfo07cevajxGcpFlo64ELh3Pu5VxOkFIileN8GbW19Y3Nrfq2ubO7t3/QODzqySQTCHdRQhMxCKDElHDcVURRPEgFhiyguB9M7gq//4SFJAl/VNMU+wzGnEQEQaWljhd3Ro2mYzslrFXiVqQJKrRHjW8vTFDGMFeIQimHrpMqP4dCEUTxzPQyiVOIJjDGQ005ZFj6efnqzDrTSmhFidDDlVWqvy9yyKScskBvMqjGctkrxH+9gC0lq+jGzwlPM4U5WgRHGbVUYhU9WCERGCk61QQiQfTvFhpDAZHSbZmmV17mRc4IJYxBHkpb4eeZqftyl9tZJb0L272yLx8um63bqrk6OAGn4By44Bq0wD1ogy5AIAYv4BXMjbnxZrwbH4vVmlHdHIM/MD5/ACZan3E=</latexit>S <latexit sha1_base64="/Qz54gTmD7P9Ed0l0UW3um28nLQ=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6ceGion1AE8pkMm2HziPMTMQS+glu7de4E7eu/RjBSZqFth64cDjnXs7lRAklSnvel1VZWV1b36hu2lvbO7t7tf2DthKpRLiFBBWyG0GFKeG4pYmmuJtIDFlEcSca3+R+5wlLRQR/1JMEhwwOORkQBLWRHoI71a/VPdcr4CwTvyR1UKLZr30HsUApw1wjCpXq+V6iwwxKTRDFUztIFU4gGsMh7hnKIcMqzIpXp86JUWJnIKQZrp1C/X2RQabUhEVmk0E9UoteLv7rRWwhWQ+uwozwJNWYo3nwIKWOFk7egxMTiZGmE0MgksT87qARlBBp05ZtB8Vlluf0kWAM8li5Gj9PbdOXv9jOMmmfuf6Fe35/Xm9cl81VwRE4BqfAB5egAW5BE7QAAkPwAl7BzJpZb9a79TFfrVjlzSH4A+vzBy6qn3Y=</latexit>L

Forward 
Diffusion 

<latexit sha1_base64="fSlq+37cebpsFEj5y6oflUx99Jo=">AAACKHicbVDLSsNAFJ3Ud3zVx85NsAh1YUlE1KXoxmUF+wBbwmQysUNnJnHmRqwx/+JWv8addOt/CE7TLrT1wjCHc+7hXE6QcKbBdYdWaW5+YXFpecVeXVvf2CxvbTd1nCpCGyTmsWoHWFPOJG0AA07biaJYBJy2gv7VSG89UqVZLG9hkNCuwPeSRYxgMJRf3n2odh6f/Azyl/F/5OWHfrni1txinFngTUAFTabul787YUxSQSUQjrW+89wEuhlWwAinud1JNU0w6eN7emegxILqblZcnzsHhgmdKFbmSXAK9rcjw0LrgQjMpsDQ09PaiPxXC8RUMkTn3YzJJAUqyTg4SrkDsTOqxgmZogT4wABMFDO3O6SHFSZgCrTtTuHMRjk+iYXAMtQ1oE+5bfryptuZBc3jmndaO7k5qVxcTppbRntoH1WRh87QBbpGddRABD2jV/SG3q1368P6tIbj1ZI18eygP2N9/QCqD6b8</latexit>

q(xt|xt�1)

Real data  
<latexit sha1_base64="CKitbbY/vXadKSoRv3lhLK20E8c=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuizqwmVF+4AmlMlkkg6dmYSZiVhCP8Gt/Rp34ta1HyM4SbPQ1gMXDufcy7mcIKVEKsf5Mmorq2vrG/VNc2t7Z3evsX/QlUkmEO6ghCaiH0CJKeG4o4iiuJ8KDFlAcS8Y3xR+7wkLSRL+qCYp9hmMOYkIgkpLD158O2w0HdspYS0TtyJNUKE9bHx7YYIyhrlCFEo5cJ1U+TkUiiCKp6aXSZxCNIYxHmjKIcPSz8tXp9aJVkIrSoQerqxS/X2RQyblhAV6k0E1koteIf7rBWwhWUVXfk54minM0Tw4yqilEqvowQqJwEjRiSYQCaJ/t9AICoiUbss0vfIyL3KGKGEM8lDaCj9PTd2Xu9jOMume2e6FfX5/3mxdV83VwRE4BqfABZegBe5AG3QAAjF4Aa9gZsyMN+Pd+Jiv1ozq5hD8gfH5Aw0Zn2I=</latexit>DELBO  

(d) Diffusion models

Measurement
Inverse 

<latexit sha1_base64="j16niEJcFL8tvlSRpenHgBv8f10=">AAACJnicbVBNS8NAFNz4WeNXrUcvwSLowZJIUY9FLx4VrBaaGjbbF7u4uwm7L9Ia+le86q/xJuLNPyK4rT1odeDBMPMe85g4E9yg7787M7Nz8wuLpSV3eWV1bb28Ubkyaa4ZNFkqUt2KqQHBFTSRo4BWpoHKWMB1fHc68q/vQRueqkscZNCR9FbxhDOKVorKlSQKsQdIb4r9YLgb3j/sReWqX/PH8P6SYEKqZILzqPwZdlOWS1DIBDWmHfgZdgqqkTMBQzfMDWSU3dFbaFuqqATTKca/D70dq3S9JNV2FHpj9edFQaUxAxnbTUmxZ6a9kfivF8upZEyOOwVXWY6g2HdwkgsPU29UjNflGhiKgSWUaW5/91iPasrQ1ue64fiyGOVELJWSqq6pIfSHru0rmG7nL7k6qAWHtfpFvdo4mTRXIltkm+ySgByRBjkj56RJGOmTR/JEnp1n58V5dd6+V2ecyc0m+QXn4ws1YaWq</latexit>

f�1
✓ (z)

Synthetic data 
<latexit sha1_base64="NNROO/l45zr+acO4/pQueOX4ors=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6cVmpfUATymQySYfOTMLMRCyhn+DWfo07cevajxGcpFlo64ELh3Pu5VxOkFIileN8GbW19Y3Nrfq2ubO7t3/QODzqySQTCHdRQhMxCKDElHDcVURRPEgFhiyguB9M7gq//4SFJAl/VNMU+wzGnEQEQaWljhd3Ro2mYzslrFXiVqQJKrRHjW8vTFDGMFeIQimHrpMqP4dCEUTxzPQyiVOIJjDGQ005ZFj6efnqzDrTSmhFidDDlVWqvy9yyKScskBvMqjGctkrxH+9gC0lq+jGzwlPM4U5WgRHGbVUYhU9WCERGCk61QQiQfTvFhpDAZHSbZmmV17mRc4IJYxBHkpb4eeZqftyl9tZJb0L272yLx8um63bqrk6OAGn4By44Bq0wD1ogy5AIAYv4BXMjbnxZrwbH4vVmlHdHIM/MD5/ACZan3E=</latexit>S <latexit sha1_base64="/Qz54gTmD7P9Ed0l0UW3um28nLQ=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6ceGion1AE8pkMm2HziPMTMQS+glu7de4E7eu/RjBSZqFth64cDjnXs7lRAklSnvel1VZWV1b36hu2lvbO7t7tf2DthKpRLiFBBWyG0GFKeG4pYmmuJtIDFlEcSca3+R+5wlLRQR/1JMEhwwOORkQBLWRHoI71a/VPdcr4CwTvyR1UKLZr30HsUApw1wjCpXq+V6iwwxKTRDFUztIFU4gGsMh7hnKIcMqzIpXp86JUWJnIKQZrp1C/X2RQabUhEVmk0E9UoteLv7rRWwhWQ+uwozwJNWYo3nwIKWOFk7egxMTiZGmE0MgksT87qARlBBp05ZtB8Vlluf0kWAM8li5Gj9PbdOXv9jOMmmfuf6Fe35/Xm9cl81VwRE4BqfAB5egAW5BE7QAAkPwAl7BzJpZb9a79TFfrVjlzSH4A+vzBy6qn3Y=</latexit>L

Flow 
<latexit sha1_base64="6r/ONMYLpQa4iPC8N1uTAisCqgs=">AAACH3icbVBNS8NAFNz4WeNX1aOXYBH0UhIp6rHoxWMFq4UmlM32xS7ubuLuS2kJ/R1e7a/xJl77YwS3tQetDjwYZt5jHhNnghv0/YmztLyyurZe2nA3t7Z3dst7+/cmzTWDJktFqlsxNSC4giZyFNDKNFAZC3iIn66n/kMftOGpusNhBpGkj4onnFG0UpR0QuwB0pOwPzjtlCt+1Z/B+0uCOamQORqd8mfYTVkuQSET1Jh24GcYFVQjZwJGbpgbyCh7oo/QtlRRCSYqZk+PvGOrdL0k1XYUejP150VBpTFDGdtNSbFnFr2p+K8Xy4VkTC6jgqssR1DsOzjJhYepN23E63INDMXQEso0t797rEc1ZWh7c91wdllMczoslZKqrqkiDEau7StYbOcvuT+rBufV2m2tUr+aN1cih+SInJCAXJA6uSEN0iSMPJMX8krGzth5c96dj+/VJWd+c0B+wZl8AQCQo5E=</latexit>

f✓(x)

NLL  

Real data  
<latexit sha1_base64="CKitbbY/vXadKSoRv3lhLK20E8c=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuizqwmVF+4AmlMlkkg6dmYSZiVhCP8Gt/Rp34ta1HyM4SbPQ1gMXDufcy7mcIKVEKsf5Mmorq2vrG/VNc2t7Z3evsX/QlUkmEO6ghCaiH0CJKeG4o4iiuJ8KDFlAcS8Y3xR+7wkLSRL+qCYp9hmMOYkIgkpLD158O2w0HdspYS0TtyJNUKE9bHx7YYIyhrlCFEo5cJ1U+TkUiiCKp6aXSZxCNIYxHmjKIcPSz8tXp9aJVkIrSoQerqxS/X2RQyblhAV6k0E1koteIf7rBWwhWUVXfk54minM0Tw4yqilEqvowQqJwEjRiSYQCaJ/t9AICoiUbss0vfIyL3KGKGEM8lDaCj9PTd2Xu9jOMume2e6FfX5/3mxdV83VwRE4BqfABZegBe5AG3QAAjF4Aa9gZsyMN+Pd+Jiv1ozq5hD8gfH5Aw0Zn2I=</latexit>D

(e) Flow

Measurement
Autoregressive 

<latexit sha1_base64="dF+D6MnTqpQ4NH39crTk38m86jw=">AAACL3icbVBNSwMxFMz67fpV9djLYhHqwbIrouJJ9OKxgm2Fblmy6asNJtkleSuWtQd/jVf9NeJFvPojBLO1B60+SBhm3jDJxKngBn3/1Zmanpmdm19YdJeWV1bXSusbTZNkmkGDJSLRVzE1ILiCBnIUcJVqoDIW0Ipvzgq9dQva8ERd4iCFjqTXivc4o2ipqFROoxD7gLQa3t5F/L648+CY7wbDnahU8Wv+aLy/IBiDChlPPSp9ht2EZRIUMkGNaQd+ip2cauRMwNANMwMpZTf0GtoWKirBdPLRJ4betmW6Xi/R9ij0RuxPR06lMQMZ201JsW8mtYL8V4vlRDL2jjo5V2mGoNh3cC8THiZe0ZDX5RoYioEFlGlu3+6xPtWUoe3RdcORMy9yIpZISVXX1BDuhq7tK5hs5y9o7tWCg9r+xX7l5HTc3AIpky1SJQE5JCfknNRJgzDyQB7JE3l2np0X5815/16dcsaeTfJrnI8vlgKpbw==</latexit>

p✓(xi|x1:i�1)

Synthetic data 
<latexit sha1_base64="NNROO/l45zr+acO4/pQueOX4ors=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6cVmpfUATymQySYfOTMLMRCyhn+DWfo07cevajxGcpFlo64ELh3Pu5VxOkFIileN8GbW19Y3Nrfq2ubO7t3/QODzqySQTCHdRQhMxCKDElHDcVURRPEgFhiyguB9M7gq//4SFJAl/VNMU+wzGnEQEQaWljhd3Ro2mYzslrFXiVqQJKrRHjW8vTFDGMFeIQimHrpMqP4dCEUTxzPQyiVOIJjDGQ005ZFj6efnqzDrTSmhFidDDlVWqvy9yyKScskBvMqjGctkrxH+9gC0lq+jGzwlPM4U5WgRHGbVUYhU9WCERGCk61QQiQfTvFhpDAZHSbZmmV17mRc4IJYxBHkpb4eeZqftyl9tZJb0L272yLx8um63bqrk6OAGn4By44Bq0wD1ogy5AIAYv4BXMjbnxZrwbH4vVmlHdHIM/MD5/ACZan3E=</latexit>S <latexit sha1_base64="/Qz54gTmD7P9Ed0l0UW3um28nLQ=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6ceGion1AE8pkMm2HziPMTMQS+glu7de4E7eu/RjBSZqFth64cDjnXs7lRAklSnvel1VZWV1b36hu2lvbO7t7tf2DthKpRLiFBBWyG0GFKeG4pYmmuJtIDFlEcSca3+R+5wlLRQR/1JMEhwwOORkQBLWRHoI71a/VPdcr4CwTvyR1UKLZr30HsUApw1wjCpXq+V6iwwxKTRDFUztIFU4gGsMh7hnKIcMqzIpXp86JUWJnIKQZrp1C/X2RQabUhEVmk0E9UoteLv7rRWwhWQ+uwozwJNWYo3nwIKWOFk7egxMTiZGmE0MgksT87qARlBBp05ZtB8Vlluf0kWAM8li5Gj9PbdOXv9jOMmmfuf6Fe35/Xm9cl81VwRE4BqfAB5egAW5BE7QAAkPwAl7BzJpZb9a79TFfrVjlzSH4A+vzBy6qn3Y=</latexit>LNLL  

<latexit sha1_base64="qdOMT9rn73gZJ+N9BxbgMZPgFfQ=">AAACKnicbVDLSsNAFJ3UV42vqODGTbAIFUpIpKgboejGZQX7gLaEyWTaDp2ZhJlJaYn9Gbf2a9wVt/6G4KTtQlsvzHA45x7O5QQxJVK57szIbWxube/kd829/YPDI+v4pC6jRCBcQxGNRDOAElPCcU0RRXEzFhiygOJGMHjM9MYQC0ki/qLGMe4w2OOkSxBUmvKts/ZwdF/Un++VHKeUgTScXPlWwXXc+djrwFuCAlhO1be+22GEEoa5QhRK2fLcWHVSKBRBFE/MdiJxDNEA9nBLQw4Zlp10fv/EvtRMaHcjoR9X9pz97Ughk3LMAr3JoOrLVS0j/9UCtpKsunedlPA4UZijRXA3obaK7KwcOyQCI0XHGkAkiL7dRn0oIFK6QtNsz51pluOjiDHIQ+koPJqYui9vtZ11UL92vBun/FwuVB6WzeXBObgAReCBW1ABT6AKagCBV/AG3sHUmBofxsz4XKzmjKXnFPwZ4+sHXCGmtQ==</latexit>

x = (x1, .., xd)

Real data  
<latexit sha1_base64="CKitbbY/vXadKSoRv3lhLK20E8c=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuizqwmVF+4AmlMlkkg6dmYSZiVhCP8Gt/Rp34ta1HyM4SbPQ1gMXDufcy7mcIKVEKsf5Mmorq2vrG/VNc2t7Z3evsX/QlUkmEO6ghCaiH0CJKeG4o4iiuJ8KDFlAcS8Y3xR+7wkLSRL+qCYp9hmMOYkIgkpLD158O2w0HdspYS0TtyJNUKE9bHx7YYIyhrlCFEo5cJ1U+TkUiiCKp6aXSZxCNIYxHmjKIcPSz8tXp9aJVkIrSoQerqxS/X2RQyblhAV6k0E1koteIf7rBWwhWUVXfk54minM0Tw4yqilEqvowQqJwEjRiSYQCaJ/t9AICoiUbss0vfIyL3KGKGEM8lDaCj9PTd2Xu9jOMume2e6FfX5/3mxdV83VwRE4BqfABZegBe5AG3QAAjF4Aa9gZsyMN+Pd+Jiv1ozq5hD8gfH5Aw0Zn2I=</latexit>D

(f) Autoregressive

Figure 4.3: Diagram illustrating training process in generative models. Blue arrow: forward
pass; Red arrow: backward pass.

4.3.2 Representative Models

We provide an illustration of the operational flow of representative generative models in
Figure 4.3. As demonstrated, existing representative generative models can be effectively
encapsulated within our unified framework shown in Figure 4.1. We proceed to briefly
discuss the key characteristics of each type of generative models and their relation to potential
implementations for DP training in this subsection.

4.3.2.1 Implicit Density Models

As a canonical example of implicit density model, Generative Adversarial Network (GAN) [65]
employs a generator, Gθ (parametrized by θ), to learn the data distribution with the aid of
a discriminator Dϕ (parametrized by ϕ) trained jointly in an adversarial manner, obviating
the need for explicit density definition. The generator’s functionality is enabled by inputting
random latent variables, z, drawn from simple distributions such as a standard Gaussian,
and mapping these random inputs to the data space. Concurrently, the discriminator is
provided with both synthetic and real samples and its training objective is to differentiate
between the two. Throughout the training process, the generator and the discriminator
compete and evolve, enabling the generator to create realistic samples that can deceive the
discriminator, while the discriminator enhances its ability to distinguish between real and fake
samples. The original GAN training objective can be interpreted as optimizing the generator
to produce synthetic data that minimizes the Jensen-Shannon (JS) divergence between the
synthetic and real data distributions. This idea has been expanded in various GAN training
objective extensions explored in the literature. For instance, variants have been proposed based
on generalizations to any f-divergence [151], Wasserstein distance [8, 67], maximum mean
discrepancy (MMD) [18, 111], and Sinkhorn distance [61].

Of particular interest to DP training is the observation that many of these divergence metrics



A Unified View of Differentially Private Deep Generative Modeling 47

can be approximated without requiring the training of a discriminator network. This has led to
recent research in private generative models, which use a static function as the critic instead
of a discriminator network. While such approaches might fall short in standard (non-private)
generative modeling due to a lower expressive power compared to using learnable critic (that
is adaptable to large data with diverse properties), they are highly competitive in DP training,
as a static critic can effectively speed up convergence, thereby improving privacy guarantees.

In the case of implicit density models, the generator’s interaction with the private dataset is
typically indirect (only via the backward pass), meaning that there exists no direct link between
the data source, as illustrated in the accompanying diagrams (Figure 4.3). This configuration
presents an opportunity to strategically position the privacy barrier anywhere along the
backpropagation path where the generator retrieves signals from the real data, facilitating
an improved signal-to-noise ratio or simplified implementation. A more comprehensive
understanding is presented in Section 4.4.1-4.4.3.

4.3.2.2 Explicit Density Models

Several prominent explicit density models have been developed in literature, each with distinct
characteristics:
• The Variational Autoencoder (VAE) [100] is trained to maximize the Evidence Lower Bound

(ELBO), a lower bound of the log-likelihood, which typically simplifies to ℓ1/ℓ2 losses on
the data sample and its reconstruction under standard Laplacian/Gaussian noise modeling
assumptions. The model comprises trainable encoder and decoder modules. Encoding is
conducted through the encoder qϕ, which maps observed data to its corresponding latent

variables, denoted as x
qϕ→ z. The dimensions of these latent variables are typically smaller

than the data dimension d, embodying the concept of an information bottleneck [208, 189].
The decoder module is responsible for data reconstruction or generation, i.e., z

pθ→ x.
Additionally, VAE imposes regularization on the latent distributions to match the pre-
defined prior, thereby enabling the generation of valid novel samples during inference.

• Diffusion models [191, 196, 80] operate similarly to VAEs in terms of maximizing the ELBO.
However, instead of using a trainable encoder to map data to latent variables, diffusion
models transform the data iteratively through a linear Gaussian operation, represented
as x

q→ ...
q→ xt−1

q→ xt
q→ xT. This procedure causes the latent variables at the final

step xT to form a standard Gaussian distribution and maintain the same dimensionality as
the data. The generation process is executed by reversing the diffusion operation, which
means iteratively applying pθ(xt−1|xt) for all time steps t ∈ [T]. The trainable component
of diffusion models resides in the reverse diffusion process, while the forward process is
pre-defined and does not require training.

• Flow-based models [175, 102], in contrast, minimize the Negative Log-Likelihood (NLL)
directly. Uniquely, flow-based models employ the same invertible model for both encoding

(x
fθ→ z) and generation (z

f−1
θ→ x), by executing either the flow or its inverse. Due to the

invertibility demanded by the model construction, the dimensions of the latent variables z
are identical to those of the data.

• Autoregressive models [107, 155, 221, 220], as another instance of model with tractable density,
are also designed to minimize the NLL. Unlike some other models, they accomplish this
without the need for explicit latent variables or an encoding mechanism. Instead, these
models utilize partially observed data, denoted as x1:i−1, where each sample is regarded
as a high-dimensional vector with observations up to the (i− 1)th element. The model is
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then trained to predict potential values for the subsequent element, xi. Data generation
is conducted through an iterative autoregressive process, where elements of each data
vector is predicted one-by-one, starting from initial seeds. This can be represented as
x0

pθ→ ...
pθ→ x1:i−1

pθ→ x1:i
pθ→ ...

pθ→ x1:d. The component subject to training is the autoregressive
model itself. Its parameters, denoted by θ, are optimized to best predict the next elements in
the sequence based on previously observed values.
As illustrated in Figure 4.3, all these models require real data or derived quantities (such

as latent variables) as inputs to the generator during the training phase. This necessitates a
significant difference in the DP training of these models compared to implicit density models,
which only need indirect data access through the backward pass. In the context of typical
explicit density models, DP constraints must be accounted for, given the access to real data in
both the forward and backward pass. This typically results in privacy barriers being directly
integrated into the update process of the generator module, as further discussed in Section 4.4.4.

4.3.2.3 Extensions

Our diagram has been consciously designed to encompass future developments, including
potential hybrid variants of generative models. It facilitates systematic analysis of the mod-
ifications required to transition the original training pipeline to a privacy preserving one.
Specifically, to train a DP variant of such a model, one could follow the following steps: (1)
Illustrate the model components and information flows using diagrams analogous to those
shown in Figure 4.3. (2) Determine the component(s) that will be provided with DP guarantees,
taking into account practical use requirements and a feasible privacy-utility trade-off. (3)
Establish the privacy barrier to ensure the privacy of the targeted component, which will later
be made accessible for potential threat exposure. This step should consider all access paths
between the target component and the data source. (4) Calculate and bound the sensitivity. (5)
Implement the DP mechanism and calculate the accumulated privacy cost of the entire training
process.

4.4 Taxonomy

Accompanied by a comprehensive diagram encapsulating the complete spectrum of potential
design choices for deep generative models, we put forth a classification system for current
DP generative methods. This system is predicated on the positioning of the privacy barrier
within the diagram (Figure 4.1). Specifically, for explanatory purposes, we consider the
key components within our diagram (the Generator, Synthetic data, Measurement, and Real data),
resulting in following options for positioning the privacy barrier:

• B1: Between Real data and Measurement

• B2: Within Measurement

• B3: Between Measurement and Synthetic data

• B4: Within Generator

B1 through B4 are introduced sequentially, demonstrating the systematic transition of the
privacy barrier from the real data source towards the generator end. The data-processing
theorem 4.2.1 ensures that the DP guarantee is upheld as long as the data is “sanitized” through
a DP mechanism prior to exposure to potential adversaries. In this context, if a DP training
algorithm safeguards against threats introduced by B1, then it also provides the same protective
guarantee against attackers defined by B2 through B4.
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Approach Privacy Privacy Sensitivity Generative DP Code
barrier notion type framework framework

DP-Merf [70] B1 Replace-one Global Distribution matching Gaussian 1

DP-SWD [171] B1 Replace-one Smooth Distribution matching Gaussian 2

PEARL [120] B1 Replace-one Global Distribution matching Gaussian 3

DP-HP [224] B1 Replace-one Global Distribution matching Gaussian 4

DP-GEN [36] ∼B1 – – Energy-based model – 5

[71] B1 Replace-one Global Distribution matching Gaussian 6

DP-NTK [243] B1 Replace-one Global Distribution matching Gaussian 7

DPSDA [122] B1 Add-or-remove-one Global Diffusion Gaussian 8

SPRINT-gan [14] B2 Add-or-remove-one Global GAN DP-SGD 9

dp-GAN [257] B2 Add-or-remove-one Global GAN DP-SGD 10

DPGAN [239] B2 Add-or-remove-one Global GAN DP-SGD 11

[215] B2 Add-or-remove-one – GAN empirical DP –
PATE-GAN [245] B2 Both Local GAN PATE 12

[6] B2 Add-or-remove-one Global GAN DP-SGD 13

[242] B2 Add-or-remove-one Global GAN DP-SGD –
DP-CGAN [211] B2 Add-or-remove-one Global GAN DP-SGD 14

[57] B2 Add-or-remove-one Global GAN DP-SGD 15

DPMI [35] B2 Add-or-remove-one Global GAN DP-SGD –
DPautoGAN [206] B2 Add-or-remove-one Global GAN DP-SGD 16

Private-Set [29] B2 Add-or-remove-one Global Distribution matching DP-SGD 17

[17] B2 Add-or-remove-one Global GAN DP-SGD –
GS-WGAN [32] B3 Both Global GAN DP-SGD 18

G-PATE [129] B3 Both Local GAN PATE 19

DataLens [227] B3 Both Global/Local GAN PATE 20

DP-Sinkhorn [24] B3 Both Global Distribution matching DP-SGD 21

DP-GM [3] B4 Add-or-remove-one Global VAE DP-SGD –
DP-VaeGM [37] B4 Add-or-remove-one Global VAE , AE+ DP-SGD –
DP-SYN [2] B4 Add-or-remove-one Global AE+ DP-SGD –
P3GM [204] B4 Add-or-remove-one Global VAE DP-SGD 22

DP-NF [226] B4 Add-or-remove-one Global Flow DP-SGD 23

DP2-VAE [89] B4 Add-or-remove-one Global VAE DP-SGD –
DPDM [47] B4 Add-or-remove-one Global Diffusion DP-SGD 24

[62] B4 Add-or-remove-one Global Diffusion DP-SGD –
DP-LDM [133] B4 Add-or-remove-one Global Diffusion DP-SGD 25

DP-LFlow [88] B4 Add-or-remove-one Global Flow DP-SGD 26

Table 4.1: Table summary of existing works. The shaded area corresponds to approaches that
require public data features.

1https://github.com/ParkLabML/DP-MERF
2https://github.com/arakotom/dp_swd
3https://github.com/spliew/pearl
4https://github.com/parklabml/dp-hp
5https://github.com/chiamuyu/DPGEN
6https://github.com/ParkLabML/DP-MERF
7https://github.com/FreddieNeverLeft/DP-NTK
8https://github.com/microsoft/DPSDA
9https://github.com/greenelab/SPRINT_gan

10https://github.com/alps-lab/dpgan
11https://github.com/illidanlab/dpgan
12https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/pategan
13https://github.com/nesl/nist_differential_privacy_synthetic_data_challenge/
14https://github.com/reihaneh-torkzadehmahani/DP-CGAN
15https://github.com/SAP-samples/security-research-differentially-private-generative-models
16https://github.com/DPautoGAN/DPautoGAN
17https://github.com/DingfanChen/Private-Set
18https://github.com/DingfanChen/GS-WGAN
19https://github.com/AI-secure/G-PATE
20https://github.com/AI-secure/DataLens
21https://github.com/nv-tlabs/DP-Sinkhorn_code
22https://github.com/tkgsn/P3GM
23https://github.com/ChrisWaites/jax-flows/tree/master/research/dp-flows

https://github.com/ParkLabML/DP-MERF
https://github.com/arakotom/dp_swd
https://github.com/spliew/pearl
https://github.com/parklabml/dp-hp
https://github.com/chiamuyu/DPGEN
https://github.com/ParkLabML/DP-MERF
https://github.com/FreddieNeverLeft/DP-NTK
https://github.com/microsoft/DPSDA
https://github.com/greenelab/SPRINT_gan
https://github.com/alps-lab/dpgan
https://github.com/illidanlab/dpgan
https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/pategan
https://github.com/nesl/nist_differential_privacy_synthetic_data_challenge/
https://github.com/reihaneh-torkzadehmahani/DP-CGAN
https://github.com/SAP-samples/security-research-differentially-private-generative-models
https://github.com/DPautoGAN/DPautoGAN
https://github.com/DingfanChen/Private-Set
https://github.com/DingfanChen/GS-WGAN
https://github.com/AI-secure/G-PATE
https://github.com/AI-secure/DataLens
https://github.com/nv-tlabs/DP-Sinkhorn_code
https://github.com/tkgsn/P3GM
https://github.com/ChrisWaites/jax-flows/tree/master/research/dp-flows
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Mean

<latexit sha1_base64="6FzAp2rJ0l6kokwYi+AzGMasStM=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6cSNUtA9oQplMJunQmUmYmYgl9BPc2q9xJ25d+zGCkzQLbT1w4XDOvZzLCVJKpHKcL6O2srq2vlHfNLe2d3b3GvsHXZlkAuEOSmgi+gGUmBKOO4ooivupwJAFFPeC8U3h956wkCThj2qSYp/BmJOIIKi09ODFd8NG07GdEtYycSvSBBXaw8a3FyYoY5grRKGUA9dJlZ9DoQiieGp6mcQpRGMY44GmHDIs/bx8dWqdaCW0okTo4coq1d8XOWRSTligNxlUI7noFeK/XsAWklV05eeEp5nCHM2Do4xaKrGKHqyQCIwUnWgCkSD6dwuNoIBI6bZM0ysv8yJniBLGIA+lrfDz1NR9uYvtLJPume1e2Of3583WddVcHRyBY3AKXHAJWuAWtEEHIBCDF/AKZsbMeDPejY/5as2obg7BHxifPxxAn2s=</latexit>M
Real data  DP  sanitization

EmbeddingGenerator 
<latexit sha1_base64="+1FL27z5R+GXlmZq//Mrw6bDGQE=">AAACGnicbVDLSgNBEJyNr7i+oh69LAbBU9iVoB6DHvQYwTwgCWF20kmGzMwuM71iWPITXs3XeBOvXvwYwdkkB00saCiquqmmwlhwg77/5eTW1jc2t/Lb7s7u3v5B4fCobqJEM6ixSES6GVIDgiuoIUcBzVgDlaGARji6zfzGE2jDI/WI4xg6kg4U73NG0UrNu24bh4C0Wyj6JX8Gb5UEC1IkC1S7he92L2KJBIVMUGNagR9jJ6UaORMwcduJgZiyER1Ay1JFJZhOOvt34p1Zpef1I21HoTdTf1+kVBozlqHdlBSHZtnLxH+9UC4lY/+6k3IVJwiKzYP7ifAw8rIyvB7XwFCMLaFMc/u7x4ZUU4a2Mtdtzy7TLKfLIimp6pkSwvPEtX0Fy+2skvpFKbgslR/KxcrNork8OSGn5JwE5IpUyD2pkhphRJAX8kqmztR5c96dj/lqzlncHJM/cD5/AEqFoaU=</latexit>
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data-independent sensitive DP

Figure 4.4: Diagram illustrating the general training procedure of methods under B1.

The generator end typically represents the smallest unit necessary for preserving the
full functionality of the model, implying that the privacy barrier cannot be shifted further
without compromising the operational capabilities of the generative model. Moreover, we
reserve a more detailed discussion on the threat model (privacy barrier) integrated within
the adopted DP mechanism (not specifically relevant to generative models) for later sections,
where individual approaches will be introduced. Table 4.1 presents a summary of existing
works classified under our taxonomy.

4.4.1 B1: Between Real Data and Measurement

Threat Model. Establishing a privacy barrier between the Real data and the Measurement entails
using a DP mechanism to directly sanitize the data (features), thereby obtaining statistics
that characterize the real data distribution for subsequent operations like computing the loss
L as a Measurement that serves as the training objective for the generator. This approach
provides protection against attackers who might gain access to the sanitized data features or
any resultant statistics derived from the sanitized features, such as the loss measured on the
sanitized data, any gradient vectors for updating the generator, and the generator’s model
parameters.

General Formulation. Methods within this category typically adopt the distribution matching
framework (illustrated in Figure 4.3(b)), which aims to minimize the statistical distance between
real and synthetic data distributions [70, 171, 224]. This distance is assessed with a static,
unlearnable function, typically applying a data-independent feature extraction function ψ
to project the data samples into a lower-dimensional embedding space and subsequently
calculating the (Euclidean) distance between the resulting embeddings of real and synthetic
data. The generator is optimized to reduce the disparity between the mean embeddings
of synthetic and real data, which can be interpreted as minimizing the maximum mean
discrepancy (MMD) between the real and synthetic data distributions [18, 111].

During DP training of these models, data points xi or feature vectors ψ(xi) are first clipped
or normalized (by norm) to ensure bounded sensitivity. Subsequently, random noise is
injected into the mean features derived from the real samples, e.g., via Gaussian mechanism

24https://github.com/nv-tlabs/DPDM
25https://github.com/SaiyueLyu/DP-LDM
26https://github.com/dihjiang/DP-LFlow
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(Definition 4.2.4). The objectives can be formulated as follows:

Non-private: min
θ

∥∥∥ 1
|D|

|D|
∑
i=1

ψ(xi)−
1
|S|

|S|
∑
i=1

ψ(Gθ(zi))
∥∥∥

2

2
= min

θ

∥∥∥µ̂D − µ̂S
∥∥∥

2

2
(4.3)

DP: min
θ

∥∥∥µ̃D − µ̂S
∥∥∥

2

2
with µ̃D = µ̂D +N (0, ∆2

µ̂Dσ2I) (4.4)

with µ̂D = 1
|D| ∑|D|i=1 ψ(xi) and µ̂S = 1

|S| ∑|S|i=1 ψ(Gθ(zi)) representing the mean features of the
real and synthetic data, respectively. Meanwhile, µ̃D denotes the DP-sanitized mean real data
embedding with ∆2

µ̂D
being the sensitivity value that characterizes the influence of each real

data point on the mean embedding. A visual illustration can be found in Figure 4.4.

Representative Methods. While all methods in this category adhere to the same general
formulation, they primarily diverge in their construction of the feature extraction function ψ and
the objective function that forms the training loss L for the generator. DP-Merf [70] employs
the MMD minimization approach, optimizing a generator to minimize the difference between
synthetic and real data embeddings, using random Fourier features [169] for the embedding
function ψ. DP-SWD [171] instead employs random projections u ∈ Sd−1 for feature extraction.
Specifically, DP-SWD uniformly samples k random directions for data projection, thereby
enabling tractable computation of one-dimensional Wasserstein distances along each projection
direction. The Sliced Wasserstein Distance (SWD) [167, 20], which is determined as the mean
of one-dimensional Wasserstein distances over DP-sanitized projections, serves as the training
objective for the generator. Similar to DP-Merf, PEARL [120] employs the Fourier transform as
the feature extraction function while offering an alternative interpretation of describing the data
distribution using the characteristic function with the characteristic function distance as the
objective. Furthermore, PEARL proposes learning a re-weighting function for the embedding
features, placing greater emphasis on the discriminative features, in order to enhance the
expressiveness of the plain Fourier features employed in the DP-Merf approach.

Recent research efforts have primarily focused on identifying informative features that
can efficiently capture the underlying characteristics of the data distribution. Specifically,
DP-HP [224] employs Hermite polynomials as the feature embedding function. This choice of
embedding function reduces the required feature dimension, which consequently decreases
the effective sensitivity of the data mean embedding and leads to an improved signal-to-noise
ratio in the DP training. Harder et al. [71] further propose utilizing feature extraction layers
from pre-trained classification networks that capture general concepts learned on large-scale
public datasets. Additionally, DP-NTK [243] introduces the use of the Neural Tangent Kernel
(NTK) to represent data, resulting in the gradient of the neural network function serving as the
feature map, i.e., ψ(x) = ∇θ f (x; θ).

Privacy Analysis. The privacy analysis for methods in this category involves computing
the sensitivity and applying the privacy analysis of associated noise mechanisms, such as the
Gaussian mechanism (Definition 4.2.4). The sensitivity represents the maximum effect of an
individual data point on the mean embedding:

∆2 = max
D,D′
∥µ̂D − µ̂D′∥2 =

∥∥∥ 1
|D|

|D|
∑
i=1

ψ(xi)−
1
|D′|

|D′|
∑
i=1

ψ(x′i)
∥∥∥

2
(4.5)

In existing literature, the replace-one privacy notion is commonly used to compute the sensitiv-
ity value ∆2, resulting in an upper bound of 2

|D| when the feature vector by construction has a
norm equal to 1 or is normalized with a maximum norm of 1, i.e., ∥ψ(x)∥2 ≤ 1. Deriving the
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sensitivity value for the add-or-remove-one notion is slightly more technically involved, but
applying existing techniques used for the replace-one notion leads to a conservative bound of

2
|D|+1 (See Appendix). This implies two things: first, the sensitivity value decreases inversely
proportional to the size of the dataset, showing the beneficial effect of the “mean” operation
over large datasets, which smooths out individual effects through population aggregation.
Second, there is a minor difference in the computed sensitivity between the two privacy notions:

2
|D|+1 versus 2

|D| . This means that the current comparison results hold with negligible effect
when the dataset size is sufficiently large. While achieving a tighter bound for the sensitiv-
ity value is possible with the add-or-remove-one privacy notion, it may require additional
assumptions.

In contrast to other studies that compute the (worst-case) global sensitivity (Definition 4.2.3),
the sensitivity in DP-SWD represents a form of expected value, accompanied by a sufficiently
small failure probability. This efficiently harnesses the characteristics of random projections to
achieve a tight sensitivity bound, but requires careful comparison to other methods. When
combining this sensitivity definition with mechanisms that offer (ε, δ)-DP (i.e., the relaxed DP
notion), the final privacy guarantee will be weaker than (ε, δ), due to the additional failure
probability derived from the sensitivity itself.

Analysis, Insights, Implications. Methods under this category present several strengths.
Firstly, the “mean” operation adopted during the extraction of descriptive feature embeddings
significantly reduces the impact of each individual. This leads to a lower sensitivity value
that scales in inverse proportion to the number of data points being aggregated through the
“mean” operation. As a result, a strong privacy guarantee can be ensured with less randomness
required from the DP mechanism. Moreover, they are straightforward to implement, typically
necessitating just one instance of sanitization on the computed mean feature (known as
“one-shot sanitization”) throughout the training process, which further saves the privacy
consumption in comparison to iterative methods. These methods also converge quickly and
can yield acceptable results even under a low privacy budget, given the ease of fitting the static
target, i.e., the noisy mean.

Nevertheless, they come with certain drawbacks. The static feature might not be sufficiently
discriminative or informative, lacking the expressiveness found in methods that employ
trainable models as critics. Furthermore, the “mean” operation could potentially induce
unintended mode collapse in the generated distributions, trading off generation diversity for
privacy protection. This situation warrants attention in future works, particularly in optimizing
the trade-off between the expressiveness of the feature extraction method in the critic and
the privacy cost of achieving such expressiveness. A promising direction could be to exploit
knowledge from public non-sensitive data and/or pre-trained models that better describe data
without compromising the privacy of the sensitive data.

4.4.2 B2: Within Measurement

Threat Model. The previous category focuses on a static, sanitized statistical summary, derived
from a data-independent function, as a replacement for real data when training generative
models. However, learnable functions that are able to adapt to diverse data distribution may
offer superior expressive power. In this regard, a logical strategy is to incorporate DP into the
measurement process, particularly by training a DP critic. This privacy barrier sits “within
Measurement” and safeguards against adversaries with access to the critic and subsequent
quantities, including information flows to the generator. If gradient sanitization techniques
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like DP-SGD are employed for updating the critic, the DP mechanism further protects against
attacks targeting all intermediate gradients w.r.t. the critic’s parameters during the training
phase.

General Formulation. Methods in this category follow two main principles: Firstly, they use
a learnable critic (feature extraction function) that dynamically adapts to the private dataset,
necessitating a boundary on the potential privacy leakage of such critic. Secondly, the generator
is prohibited from accessing private real data directly, its access limited to indirect interaction
through the backward pass. This ensures the generator’s update signals are fully derived from
the learnable critic. As such, developing a DP critic is sufficient to assure DP for the generator
module (and the entire model) for privacy-preserving generation. GAN models (depicted in
Figure 4.3(a)) meet these criteria and serve as a foundational framework that most existing DP
methods in this category generally conform to.

Representative Methods. The implementation of the privacy barrier within the Measurement block
is exemplified in DP-GAN [257, 239] and concurrent studies [14, 215, 6, 242, 211, 57]. In this
context, the discriminator, acting as the learnable critic model, is trained via DP-SGD (Sec-
tion 4.2.1.1). The privacy of the generator is ensured by the post-processing theorem. As
per the public timestamp of paper releases, this approach can be traced back to [14], who
proposed training an ACGAN (Auxiliary Classifier GAN) [152] in a DP manner to conditionally
generate samples for downstream analysis tasks on medical data. The training pipeline can be
formalized as follows, with the illustration shown in Figure 4.5:

g(t)
D = ∇ϕL(Gθ, Dϕ) (Discriminator gradient) (4.6)

g(t)
G = ∇θL(Gθ, Dϕ) (Generator gradient) (4.7)

g̃(t)
D =Mσ,C(g(t)

D ) = clip(g(t)
D , C) +N (0, σ2C2I) (Apply DP sanitization) (4.8)

ϕ(t+1) = ϕ(t) − ηD · g̃(t)
D (Discriminator update) (4.9)

θ(t+1) = θ(t) − ηG · g(t)
G (Generator update) (4.10)

The generator Gθ and discriminator Dϕ are parameterized by θ and ϕ, respectively, with ηG
and ηD denoting their learning rates. Mσ,C refers to the Gaussian mechanism in DP-SGD, with
σ representing the noise scale and C indicating the gradient clipping bound. Although we have
omitted the sample index in the above equations for the sake of brevity, it should be noted
that the clipping function in Equation 4.8 is expected to take per-example gradients as inputs,
adhering to the standard procedure of DP-SGD (Section 4.2.1.1). Specifically, it suffices to apply
the sanitization only to the gradients that depend on the real data samples, including indirect
usage of real samples, such as through gradient penalty terms [67].

Unlike DP-GAN that employs DP-SGD for training the DP discriminator, PATE-GAN [245]
leverages the PATE framework (Section 4.2.1.2) to train its DP (student) discriminator. PATE-
GAN comprises three main components that are jointly trained throughout the process:
multiple (non-private) teacher discriminators, a DP student discriminator, and a DP generator.
Similar to the original PATE framework, PATE-GAN starts by partitioning the real dataset into
disjoint subsets, which subsequently serve to train the teacher discriminators independently. In
each training iteration, PATE-GAN follows a sequence of steps: (1) independently updating
the teacher discriminators using mini-batch samples from real data partitions and synthetic
samples drawn from the generator; (2) querying the teacher discriminators with a set of
synthetic samples; (3) the teacher discriminators then engage in a voting process on the
real/fake predictions for the synthetic samples they have received, and apply DP noise to the
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<latexit sha1_base64="UKhGgDNfpc81p7txywBOAzlHv1E=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4CokUdVl047KifUATymQyaYfOTMLMpFhDP8Gt/Rp34ta1HyM4SbPQ1gMXDufcy7mcIKFEKsf5Mipr6xubW9Vtc2d3b/+gdnjUkXEqEG6jmMaiF0CJKeG4rYiiuJcIDFlAcTcY3+Z+d4KFJDF/VNME+wwOOYkIgkpLD97keVCrO7ZTwFolbknqoERrUPv2whilDHOFKJSy7zqJ8jMoFEEUz0wvlTiBaAyHuK8phwxLPytenVlnWgmtKBZ6uLIK9fdFBpmUUxboTQbVSC57ufivF7ClZBVd+xnhSaowR4vgKKWWiq28ByskAiNFp5pAJIj+3UIjKCBSui3T9IrLLM8ZoJgxyENpK/w0M3Vf7nI7q6RzYbuXduO+UW/elM1VwQk4BefABVegCe5AC7QBAkPwAl7B3Jgbb8a78bFYrRjlzTH4A+PzB4FTn6c=</latexit>z

<latexit sha1_base64="pInG9l59uFQNYrRtBfw8mSyijEc=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4CokUdVl047KifUATymQyaYfOTMLMpLSEfoJb+zXuxK1rP0ZwkmahrQcuHM65l3M5QUKJVI7zZVQ2Nre2d6q75t7+weFR7fikI+NUINxGMY1FL4ASU8JxWxFFcS8RGLKA4m4wvs/97gQLSWL+rGYJ9hkcchIRBJWWnrzJdFCrO7ZTwFonbknqoERrUPv2whilDHOFKJSy7zqJ8jMoFEEUz00vlTiBaAyHuK8phwxLPytenVsXWgmtKBZ6uLIK9fdFBpmUMxboTQbVSK56ufivF7CVZBXd+hnhSaowR8vgKKWWiq28ByskAiNFZ5pAJIj+3UIjKCBSui3T9IrLLM8ZoJgxyENpKzydm7ovd7WdddK5st1ru/HYqDfvyuaq4Aycg0vgghvQBA+gBdoAgSF4Aa9gYSyMN+Pd+FiuVozy5hT8gfH5A331n6U=</latexit>x

<latexit sha1_base64="ZehPtHmiao0m+kZnEHFHfyKFji4=">AAACH3icbVBNS8NAFNz4WeNX1aOXYBHqpSQi6rHoQY8VbCuYUDbbV7u4u4m7L2IN/R1e7a/xJl79MYLbmoO2DjwYZt5jHhOnghv0/U9nbn5hcWm5tOKurq1vbJa3tlsmyTSDJktEom9iakBwBU3kKOAm1UBlLKAd35+P/fYjaMMTdY2DFCJJ7xTvcUbRStFFJ8Q+IK2Gj88HnXLFr/kTeLMkKEiFFGh0yl9hN2GZBIVMUGNuAz/FKKcaORMwdMPMQErZPb2DW0sVlWCifPL00Nu3StfrJdqOQm+i/r7IqTRmIGO7KSn2zbQ3Fv/1YjmVjL3TKOcqzRAU+wnuZcLDxBs34nW5BoZiYAllmtvfPdanmjK0vbluOLnMxzkdlkhJVdfUEJ6Gru0rmG5nlrQOa8Fx7ejqqFI/K5orkV2yR6okICekTi5JgzQJIw/khbySkTNy3px35+Nndc4pbnbIHzif3848o3Q=</latexit>

G✓(z)

Synthetic  
data

Privacy barrier
publicly accessible publicly inaccessible

Measurement
<latexit sha1_base64="/Qz54gTmD7P9Ed0l0UW3um28nLQ=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6ceGion1AE8pkMm2HziPMTMQS+glu7de4E7eu/RjBSZqFth64cDjnXs7lRAklSnvel1VZWV1b36hu2lvbO7t7tf2DthKpRLiFBBWyG0GFKeG4pYmmuJtIDFlEcSca3+R+5wlLRQR/1JMEhwwOORkQBLWRHoI71a/VPdcr4CwTvyR1UKLZr30HsUApw1wjCpXq+V6iwwxKTRDFUztIFU4gGsMh7hnKIcMqzIpXp86JUWJnIKQZrp1C/X2RQabUhEVmk0E9UoteLv7rRWwhWQ+uwozwJNWYo3nwIKWOFk7egxMTiZGmE0MgksT87qARlBBp05ZtB8Vlluf0kWAM8li5Gj9PbdOXv9jOMmmfuf6Fe35/Xm9cl81VwRE4BqfAB5egAW5BE7QAAkPwAl7BzJpZb9a79TFfrVjlzSH4A+vzBy6qn3Y=</latexit>L<latexit sha1_base64="t4YUM2SoIcGXiJYXvjwe4CrcPCI=">AAACGHicbVDLSsNAFJ3UV42vqks3wSK4CokUdVnUhcsK9gFNCJPJpB07MwkzE7GE/oNb+zXuxK07P0Zwkmah1QMXDufcy7mcMKVEKsf5NGorq2vrG/VNc2t7Z3evsX/Qk0kmEO6ihCZiEEKJKeG4q4iieJAKDFlIcT+cXBd+/xELSRJ+r6Yp9hkccRITBJWWejeBl45J0Gg6tlPC+kvcijRBhU7Q+PKiBGUMc4UolHLoOqnycygUQRTPTC+TOIVoAkd4qCmHDEs/L7+dWSdaiaw4EXq4skr150UOmZRTFupNBtVYLnuF+K8XsqVkFV/6OeFppjBHi+A4o5ZKrKIKKyICI0WnmkAkiP7dQmMoIFK6MNP0ysu8yAlQwhjkkbQVfpqZui93uZ2/pHdmu+d2667VbF9VzdXBETgGp8AFF6ANbkEHdAECD+AZvIC5MTdejTfjfbFaM6qbQ/ALxsc3j3qguQ==</latexit>

D�

Discriminator

<latexit sha1_base64="clqiPu9Rpa33m90oEZ4lh9NzHbk=">AAACF3icbVBNS8NAFNzUrxq/qh69BIvgKSQi6rGoB48VTFtoQthstu3S3U3Y3RRL6G/wan+NN/Hq0R8juElz0NaBB8PMe8xjopQSqRzny6itrW9sbtW3zZ3dvf2DxuFRRyaZQNhDCU1EL4ISU8Kxp4iiuJcKDFlEcTca3xV+d4KFJAl/UtMUBwwOORkQBJWWPH8yDO/DRtOxnRLWKnEr0gQV2mHj248TlDHMFaJQyr7rpCrIoVAEUTwz/UziFKIxHOK+phwyLIO8fHZmnWkltgaJ0MOVVaq/L3LIpJyySG8yqEZy2SvEf72ILSWrwU2QE55mCnO0CB5k1FKJVTRhxURgpOhUE4gE0b9baAQFREr3ZZp+eZkXOSFKGIM8lrbCzzNT9+Uut7NKOhe2e2VfPl42W7dVc3VwAk7BOXDBNWiBB9AGHkCAgBfwCubG3Hgz3o2PxWrNqG6OwR8Ynz/Ay6BL</latexit>gD
<latexit sha1_base64="cJ+1T6OwIJPXcGRWhul0NLUZg68=">AAACJXicbVDLSsNAFJ34rPHV6tJNsAiuSiKiLkVduKxgH2BKmExu6+DMJMzcVEvop7i1X+NOBFd+ieD0sdDqgQuHc+7lXE6cCW7Q9z+chcWl5ZXV0pq7vrG5tV2u7DRNmmsGDZaKVLdjakBwBQ3kKKCdaaAyFtCKHy7HfqsP2vBU3eIgg46kPcW7nFG0UlSuhI88AeQigSLs94bRVVSu+jV/Au8vCWakSmaoR+WvMElZLkEhE9SYu8DPsFNQjZwJGLphbiCj7IH24M5SRSWYTjF5fegdWCXxuqm2o9CbqD8vCiqNGcjYbkqK92beG4v/erGcS8buWafgKssRFJsGd3PhYeqNe/ESroGhGFhCmeb2d4/dU00Z2vZcN5xcFuOciKVSUpWYGsLT0LV9BfPt/CXNo1pwUju+Oa6eX8yaK5E9sk8OSUBOyTm5JnXSIIw8kmfyQkbOyHl13pz36eqCM7vZJb/gfH4DtJKmAw==</latexit>egD

<latexit sha1_base64="LGTm6MEF/WU93pWCdbKKfGsw9b4=">AAACF3icbVBNS8NAFNzUrxq/qh69BIvgKSQi6rHoQY8VTFtoQthstu3S3U3Y3RRL6G/wan+NN/Hq0R8juElz0NaBB8PMe8xjopQSqRzny6itrW9sbtW3zZ3dvf2DxuFRRyaZQNhDCU1EL4ISU8Kxp4iiuJcKDFlEcTca3xV+d4KFJAl/UtMUBwwOORkQBJWWPH8yDO/DRtOxnRLWKnEr0gQV2mHj248TlDHMFaJQyr7rpCrIoVAEUTwz/UziFKIxHOK+phwyLIO8fHZmnWkltgaJ0MOVVaq/L3LIpJyySG8yqEZy2SvEf72ILSWrwU2QE55mCnO0CB5k1FKJVTRhxURgpOhUE4gE0b9baAQFREr3ZZp+eZkXOSFKGIM8lrbCzzNT9+Uut7NKOhe2e2VfPl42W7dVc3VwAk7BOXDBNWiBB9AGHkCAgBfwCubG3Hgz3o2PxWrNqG6OwR8Ynz/F2KBO</latexit>gG

data-independent sensitive DP

Figure 4.5: Diagram illustrating the training pipeline of DP-GAN with a (vertical) privacy
barrier of type B2 as shown.

<latexit sha1_base64="6FzAp2rJ0l6kokwYi+AzGMasStM=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4ComIuiy6cSNUtA9oQplMJunQmUmYmYgl9BPc2q9xJ25d+zGCkzQLbT1w4XDOvZzLCVJKpHKcL6O2srq2vlHfNLe2d3b3GvsHXZlkAuEOSmgi+gGUmBKOO4ooivupwJAFFPeC8U3h956wkCThj2qSYp/BmJOIIKi09ODFd8NG07GdEtYycSvSBBXaw8a3FyYoY5grRKGUA9dJlZ9DoQiieGp6mcQpRGMY44GmHDIs/bx8dWqdaCW0okTo4coq1d8XOWRSTligNxlUI7noFeK/XsAWklV05eeEp5nCHM2Do4xaKrGKHqyQCIwUnWgCkSD6dwuNoIBI6bZM0ysv8yJniBLGIA+lrfDz1NR9uYvtLJPume1e2Of3583WddVcHRyBY3AKXHAJWuAWtEEHIBCDF/AKZsbMeDPejY/5as2obg7BHxifPxxAn2s=</latexit>M
Real data

 DP  sanitization

Generator 
<latexit sha1_base64="+1FL27z5R+GXlmZq//Mrw6bDGQE=">AAACGnicbVDLSgNBEJyNr7i+oh69LAbBU9iVoB6DHvQYwTwgCWF20kmGzMwuM71iWPITXs3XeBOvXvwYwdkkB00saCiquqmmwlhwg77/5eTW1jc2t/Lb7s7u3v5B4fCobqJEM6ixSES6GVIDgiuoIUcBzVgDlaGARji6zfzGE2jDI/WI4xg6kg4U73NG0UrNu24bh4C0Wyj6JX8Gb5UEC1IkC1S7he92L2KJBIVMUGNagR9jJ6UaORMwcduJgZiyER1Ay1JFJZhOOvt34p1Zpef1I21HoTdTf1+kVBozlqHdlBSHZtnLxH+9UC4lY/+6k3IVJwiKzYP7ifAw8rIyvB7XwFCMLaFMc/u7x4ZUU4a2Mtdtzy7TLKfLIimp6pkSwvPEtX0Fy+2skvpFKbgslR/KxcrNork8OSGn5JwE5IpUyD2pkhphRJAX8kqmztR5c96dj/lqzlncHJM/cD5/AEqFoaU=</latexit>

G✓

<latexit sha1_base64="UKhGgDNfpc81p7txywBOAzlHv1E=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4CokUdVl047KifUATymQyaYfOTMLMpFhDP8Gt/Rp34ta1HyM4SbPQ1gMXDufcy7mcIKFEKsf5Mipr6xubW9Vtc2d3b/+gdnjUkXEqEG6jmMaiF0CJKeG4rYiiuJcIDFlAcTcY3+Z+d4KFJDF/VNME+wwOOYkIgkpLD97keVCrO7ZTwFolbknqoERrUPv2whilDHOFKJSy7zqJ8jMoFEEUz0wvlTiBaAyHuK8phwxLPytenVlnWgmtKBZ6uLIK9fdFBpmUUxboTQbVSC57ufivF7ClZBVd+xnhSaowR4vgKKWWiq28ByskAiNFp5pAJIj+3UIjKCBSui3T9IrLLM8ZoJgxyENpK/w0M3Vf7nI7q6RzYbuXduO+UW/elM1VwQk4BefABVegCe5AC7QBAkPwAl7B3Jgbb8a78bFYrRjlzTH4A+PzB4FTn6c=</latexit>z

<latexit sha1_base64="pInG9l59uFQNYrRtBfw8mSyijEc=">AAACFXicbVDLSsNAFJ3UV42vqks3wSK4CokUdVl047KifUATymQyaYfOTMLMpLSEfoJb+zXuxK1rP0ZwkmahrQcuHM65l3M5QUKJVI7zZVQ2Nre2d6q75t7+weFR7fikI+NUINxGMY1FL4ASU8JxWxFFcS8RGLKA4m4wvs/97gQLSWL+rGYJ9hkcchIRBJWWnrzJdFCrO7ZTwFonbknqoERrUPv2whilDHOFKJSy7zqJ8jMoFEEUz00vlTiBaAyHuK8phwxLPytenVsXWgmtKBZ6uLIK9fdFBpmUMxboTQbVSK56ufivF7CVZBXd+hnhSaowR8vgKKWWiq28ByskAiNFZ5pAJIj+3UIjKCBSui3T9IrLLM8ZoJgxyENpKzydm7ovd7WdddK5st1ru/HYqDfvyuaq4Aycg0vgghvQBA+gBdoAgSF4Aa9gYSyMN+Pd+FiuVozy5hT8gfH5A331n6U=</latexit>x

<latexit sha1_base64="ZehPtHmiao0m+kZnEHFHfyKFji4=">AAACH3icbVBNS8NAFNz4WeNX1aOXYBHqpSQi6rHoQY8VbCuYUDbbV7u4u4m7L2IN/R1e7a/xJl79MYLbmoO2DjwYZt5jHhOnghv0/U9nbn5hcWm5tOKurq1vbJa3tlsmyTSDJktEom9iakBwBU3kKOAm1UBlLKAd35+P/fYjaMMTdY2DFCJJ7xTvcUbRStFFJ8Q+IK2Gj88HnXLFr/kTeLMkKEiFFGh0yl9hN2GZBIVMUGNuAz/FKKcaORMwdMPMQErZPb2DW0sVlWCifPL00Nu3StfrJdqOQm+i/r7IqTRmIGO7KSn2zbQ3Fv/1YjmVjL3TKOcqzRAU+wnuZcLDxBs34nW5BoZiYAllmtvfPdanmjK0vbluOLnMxzkdlkhJVdfUEJ6Gru0rmG5nlrQOa8Fx7ejqqFI/K5orkV2yR6okICekTi5JgzQJIw/khbySkTNy3px35+Nndc4pbnbIHzif3848o3Q=</latexit>

G✓(z)

Synthetic  
data

Privacy barrier publicly accessible
publicly inaccessible

Measurement

<latexit sha1_base64="uZHI5YKDZs3q3Op2DZB9FnkKfvc=">AAACFnicbVDLSsNAFJ3UV42vqks3g0VwFRIp6rKoC5cV7APaECaTaTt0HmFmIpbQX3Brv8aduHXrxwgmaRbaeuDC4Zx7OZcTxoxq47pfVmVtfWNzq7pt7+zu7R/UDo86WiYKkzaWTKpeiDRhVJC2oYaRXqwI4iEj3XBym/vdJ6I0leLRTGPiczQSdEgxMrl0F0zsoFZ3HbcAXCVeSeqgRCuofQ8iiRNOhMEMad333Nj4KVKGYkZm9iDRJEZ4gkakn1GBONF+Wvw6g2eZEsGhVNkIAwv190WKuNZTHmabHJmxXvZy8V8v5EvJZnjtp1TEiSECL4KHCYNGwrwIGFFFsGHTjCCsaPY7xGOkEDZZXbY9KC7TPCfAknMkIu0Y8jzL+/KW21klnQvHu3QaD41686ZsrgpOwCk4Bx64Ak1wD1qgDTAYgxfwCubW3Hqz3q2PxWrFKm+OwR9Ynz9PoZ99</latexit>

Dk

<latexit sha1_base64="m+Jyvl2na9/6mcp6C9Zf56784tc=">AAACFnicbVDLSsNAFJ3UV42vqks3g0VwFRIp6rKoC5cV7APaECaTSTt0HmFmIpbQX3Brv8aduHXrxwgmbRbaeuDC4Zx7OZcTJoxq47pfVmVtfWNzq7pt7+zu7R/UDo86WqYKkzaWTKpeiDRhVJC2oYaRXqII4iEj3XB8W/jdJ6I0leLRTBLiczQUNKYYmUK6Czw7qNVdx50DrhKvJHVQohXUvgeRxCknwmCGtO57bmL8DClDMSNTe5BqkiA8RkPSz6lAnGg/m/86hWe5EsFYqnyEgXP190WGuNYTHuabHJmRXvYK8V8v5EvJJr72MyqS1BCBF8FxyqCRsCgCRlQRbNgkJwgrmv8O8QgphE1el20P5pdZkRNgyTkSkXYMeZ4WfXnL7aySzoXjXTqNh0a9eVM2VwUn4BScAw9cgSa4By3QBhiMwAt4BTNrZr1Z79bHYrVilTfH4A+szx/tsp9D</latexit>

D1

<latexit sha1_base64="4YcLJ35zkYvd/tsjd5hRufL1t9o=">AAACI3icbVDLSsNAFJ3UV42PVl26CRbBVUlE1GVRFy4r2Ac0IUym03bozCTM3Igl9Evc2q9xJ25c+CmCk7QLbT1w4XDOvZzLiRLONLjup1VaW9/Y3Cpv2zu7e/uV6sFhW8epIrRFYh6rboQ15UzSFjDgtJsoikXEaSca3+Z+54kqzWL5CJOEBgIPJRswgsFIYbVyF/pAn0GJTEM6tcNqza27BZxV4i1IDS3QDKvffj8mqaASCMda9zw3gSDDChjhdGr7qaYJJmM8pD1DJRZUB1nx+NQ5NUrfGcTKjASnUH9fZFhoPRGR2RQYRnrZy8V/vUgsJcPgOsiYTFKgksyDByl3IHbyVpw+U5QAnxiCiWLmd4eMsMIETHe27ReXWZ4TklgILPu6bmor+vKW21kl7fO6d1m/eLioNW4WzZXRMTpBZ8hDV6iB7lETtRBBKXpBr2hmzaw36936mK+WrMXNEfoD6+sH0gulBQ==</latexit>

Dstu

…

<latexit sha1_base64="LsxTYMS1gffdwnjRFP08FYm8wwk=">AAACJHicbVDLSsNAFJ3UV42vqEs3wSK4KomIuiy6ceGign1AU8JkOm2HzkzCzE2xhP6JW/s17sSFG/9EcJJ2oa0HLhzOvYdzOVHCmQbP+7RKa+sbm1vlbXtnd2//wDk8auo4VYQ2SMxj1Y6wppxJ2gAGnLYTRbGIOG1Fo7t83xpTpVksn2CS0K7AA8n6jGAwUug4wYMOA4FhqESmIZ2GTsWregXcVeIvSAUtUA+d76AXk1RQCYRjrTu+l0A3wwoY4XRqB6mmCSYjPKAdQyUWVHez4vOpe2aUntuPlRkJbqH+dmRYaD0RkbnMf9TLu1z8dxeJpWTo33QzJpMUqCTz4H7KXYjdvBa3xxQlwCeGYKKY+d0lQ6wwAVOebQeFM8tzQhILgWVPV4E+T23Tl7/czippXlT9q+rl42WldrtoroxO0Ck6Rz66RjV0j+qogQgaoxf0imbWzHqz3q2P+WnJWniO0R9YXz8oO6XB</latexit>Lstu

<latexit sha1_base64="ZAZfQ1A1ytdbwyi2CrRCPlHlfk8=">AAACJHicbVDLSsNAFJ34rPEVdekmWARXJRFRl6IbFy4q2Ac0JUymtzo4MwkzN8US+idu9WvciQs3/ongpO1CWw9cOJx7D+dykkxwg0Hw6SwsLi2vrFbW3PWNza1tb2e3adJcM2iwVKS6nVADgitoIEcB7UwDlYmAVvJ4Ve5bA9CGp+oOhxl0Jb1XvM8ZRSvFnhfdmDiSFB+0LBDoKPaqQS0Yw58n4ZRUyRT12PuOeinLJShkghrTCYMMuwXVyJmAkRvlBjLKHuk9dCxVVILpFuPPR/6hVXp+P9V2FPpj9bejoNKYoUzsZfmjmd2V4r+7RM4kY/+8W3CV5QiKTYL7ufAx9cta/B7XwFAMLaFMc/u7zx6opgxtea4bjZ1FmROzVEqqeqaG8DRybV/hbDvzpHlcC09rJ7cn1YvLaXMVsk8OyBEJyRm5INekThqEkQF5Ji/k1Xl13px352NyuuBMPXvkD5yvH+6/pZ8=</latexit>Ltea
<latexit sha1_base64="ZAZfQ1A1ytdbwyi2CrRCPlHlfk8=">AAACJHicbVDLSsNAFJ34rPEVdekmWARXJRFRl6IbFy4q2Ac0JUymtzo4MwkzN8US+idu9WvciQs3/ongpO1CWw9cOJx7D+dykkxwg0Hw6SwsLi2vrFbW3PWNza1tb2e3adJcM2iwVKS6nVADgitoIEcB7UwDlYmAVvJ4Ve5bA9CGp+oOhxl0Jb1XvM8ZRSvFnhfdmDiSFB+0LBDoKPaqQS0Yw58n4ZRUyRT12PuOeinLJShkghrTCYMMuwXVyJmAkRvlBjLKHuk9dCxVVILpFuPPR/6hVXp+P9V2FPpj9bejoNKYoUzsZfmjmd2V4r+7RM4kY/+8W3CV5QiKTYL7ufAx9cta/B7XwFAMLaFMc/u7zx6opgxtea4bjZ1FmROzVEqqeqaG8DRybV/hbDvzpHlcC09rJ7cn1YvLaXMVsk8OyBEJyRm5INekThqEkQF5Ji/k1Xl13px352NyuuBMPXvkD5yvH+6/pZ8=</latexit>Ltea

<latexit sha1_base64="ZAZfQ1A1ytdbwyi2CrRCPlHlfk8=">AAACJHicbVDLSsNAFJ34rPEVdekmWARXJRFRl6IbFy4q2Ac0JUymtzo4MwkzN8US+idu9WvciQs3/ongpO1CWw9cOJx7D+dykkxwg0Hw6SwsLi2vrFbW3PWNza1tb2e3adJcM2iwVKS6nVADgitoIEcB7UwDlYmAVvJ4Ve5bA9CGp+oOhxl0Jb1XvM8ZRSvFnhfdmDiSFB+0LBDoKPaqQS0Yw58n4ZRUyRT12PuOeinLJShkghrTCYMMuwXVyJmAkRvlBjLKHuk9dCxVVILpFuPPR/6hVXp+P9V2FPpj9bejoNKYoUzsZfmjmd2V4r+7RM4kY/+8W3CV5QiKTYL7ufAx9cta/B7XwFAMLaFMc/u7zx6opgxtea4bjZ1FmROzVEqqeqaG8DRybV/hbDvzpHlcC09rJ7cn1YvLaXMVsk8OyBEJyRm5INekThqEkQF5Ji/k1Xl13px352NyuuBMPXvkD5yvH+6/pZ8=</latexit>Ltea

data-independent sensitive DP

Figure 4.6: Diagram illustrating the training pipeline of PATE-GAN with a (horizontal)
privacy barrier of type B2 as shown. Lstu and Ltea denote the student and teacher training
losses respectively, while Dstu is the student discriminator and D1, ..., Dk represent the teacher
discriminators.

results of the vote; (4) training the student discriminator with the query synthetic samples as
input and the DP aggregation of teacher predictions as the label; (5) finally, jointly updating the
generator and the student discriminator, with the generator querying the student discriminator
with new synthetic samples and obtaining update gradient signals from the DP student
discriminator. A visual illustration is presented in Figure 4.6.

While the discriminator in the GAN framework aims to distinguish between two distri-
butions, recent research uncovered intriguing results when the learnable critic is designed to
target specific downstream tasks, such as classification. Specifically, Private-Set [29] employs
a classification network as a learnable feature extractor, which is trained with DP-SGD. This
learnable feature extractor, combined with the alignment in the gradients serving as the critic,
encourages the synthetic data to emulate the training trajectories of the real data during the
training process within a classification network, making the synthetic data useful for training
downstream classifiers and safe for public release due to the DP guarantees embedded within
the measurement process.

Privacy Analysis. Methods in this category inherit the privacy notion and sensitivity
computation from their respective framework for training the DP critic (See Section 4.2.1.1-
Section 4.2.1.2), while also inheriting the need for careful consideration regarding the applica-
tion of data-dependent privacy analysis or adherence to privacy notion constraints to ensure
comparable results. For methods grounded by DP-SGD, this results in a noticeable disparity
between the replace-one and add-or-remove-one DP notions, as illustrated by the doubled
sensitivity value when transitioning from the default add-or-remove-one to the replace-one
notion, i.e., C versus 2C with C denoting the gradient clipping bound. Consequently, a doubled
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noise scale is required to achieve an ostensibly identical privacy guarantee, inevitably resulting
in utility degradation and unfavorable comparison outcomes under the replace-one notion.

Analysis, Insights, Implications. While this training paradigm enjoys several advantages, such
as ease of implementation and representative features for characterizing the difference between
distributions, several challenges persist when applying such a paradigm in practice. Firstly,
the joint training of a generator alongside a critic, which typically necessitates an adversarial
approach, is inherently unstable due to the difficulty in maintaining equilibrium between these
two components. This instability can be further amplified by the incorporation of gradient
clipping and noise addition operations introduced by DP-SGD, or the additional fitting process
involved in transferring knowledge from the teacher discriminators to the student one through
the PATE framework. Moreover, the DP training of the critic often impedes its convergence,
resulting in a sub-optimal critic that may not effectively guide the generator.

Recent studies have investigated various strategies to alleviate these challenges, particularly
in the context of GANs. These include warm-starting the GAN discriminator by pre-training
on public data [257], dynamically adjusting the gradient clipping bounds during the training
process [257], re-balancing the discriminator and generator updates to restore parity to a
discriminator weakened by DP noise [17], and exploiting public pre-trained GANs while
restricting private modeling to the latent space [35]. In the Private-Set [29] framework that
optimizes for downstream classification task, it is reported that optimizing the generator in a
point-wise manner (as discussed in Section 4.3) or directly optimizing the synthetic set instead
of the generator model can empirically lead to faster convergence and preferable when strong
privacy guarantee is required. In this regard, we anticipate promising outcomes from the
future development of new variants of DP-compliant training pipelines and objectives that
offer improved convergence and, consequently, enhanced privacy guarantees.

4.4.3 B3: Between Measurement and Synthetic Data

Threat Model. In response to challenges associated with training the DP critic (Section 4.4.2),
recent studies have proposed shifting the privacy focus from the Measurement to the saniti-
zation of the intermediate signal that backpropagates to update the generator, i.e., between
Measurement and Synthetic data. The goal is to preserve the critic’s training stability and its utility
for accurately comparing synthetic and real data, thereby guiding the generator’s training
effectively. This strategy ensures privacy when revealing sanitized intermediate gradients
exchanged between the generator and the critic during the backward pass, as well as guarantees
DP for the generator, which is updated with sanitized gradients. However, this scheme does
not provide privacy guarantees for the release of the critics, since their training is conducted
non-privately.

General Formulation. Similar to the case outlined in Section 4.4.2, the backbone generative
models for this category are typically implicit density models. This restriction is in place as
these models do not invoke direct interaction between the real data and the generator during
the forward pass, which means that sanitizing the intermediate signals transmitted between
the Measurement and Synthetic data is sufficient for ensuring privacy protection. Methods in this
category adhere to the gradient sanitization scheme, which introduces a DP perturbation into
the gradients communicated between the critic and generator during the backward pass. This
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Figure 4.7: The diagram illustrates the general training process of methods incorporating the
privacy barrier B3. In the figure, gup

G and g̃up
G denote the upstream gradient (referenced as

gupstream
G in Equation 4.12) and its sanitized variant, respectively. Note that variations exist in

the formulation of critics and their corresponding training paradigms.

can be formulated as follows:

g(t)
G = ∇θLG(θ

(t)) = ∇Gθ(z)LG(θ
(t)) · JθGθ(z) (4.11)

g̃(t)
G =M

(
∇Gθ(z)LG(θ

(t))
︸ ︷︷ ︸

gupstream
G

)
· JθGθ(z)︸ ︷︷ ︸

Jlocal
G

(4.12)

Here, LG represents the generator’s loss (originating from a critic), andM denotes a potential
DP sanitization mechanism on gupstream

G —the gradient information backpropagating from the
critic to the generator. This can be considered as the gradient of the objective with respect
to the current synthetic samples. It is important to note that the second term (Jlocal

G ), i.e.,
the local generator Jacobian, is computed independently of training data and thus does not
require sanitization. The generator is subsequently updated with the DP sanitized gradient, i.e.,
θ(t+1) = θ(t) − ηG · g̃(t)

G . Meanwhile, the critic, if learnable, is updated normally (non-privately).
A visual illustration is presented in Figure 4.7.

Representative Methods. Existing methods explored various choices for the critic and different
DP mechanisms to sanitize the upstream gradients gupstream

G . GS-WGAN [32] adopts the
Gaussian mechanism for sanitization and capitalizes on the inherent bounding of the gradient
norm. This follows from the Lipschitz property when employing the Wasserstein distance
with gradient penalty [8, 67] as the objective when training a GAN. In contrast, G-PATE [129]
incorporates the PATE framework as its sanitization mechanism. This approach discretizes the
gradients and allows multiple teacher discriminator models to vote on these discretized gradient
values. The DP noisy argmax is then transferred to the generator. DataLens [227] further
improves the signal-to-noise ratio in the PATE sanitization by employing top-K dimension
compression.

In a different vein, DP-Sinkhorn [24] presents compelling results using a nonparametric
critic. Specifically, DP-Sinkhorn estimates the Sinkhorn divergence grounded on L1 and L2
losses in the data space, adhering to the distribution matching generative framework as
depicted in Figure 4.3(b). This use of a data-independent critic contributes stability to the
training process and capitalizes on the privacy enhancement brought by subsampling.

Privacy Analysis. The privacy analysis for this method category largely aligns with the
established unit sanitization mechanisms, denoted asM, which function on upstream gradients
gupstream

G . Nevertheless, specific attention is necessary given that these intermediate gradients
do not directly originate from real data samples. This scenario noticeably influences the
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sensitivity computation, defined formally by:

∆2 = max
D,D′
∥ f (gupstream

G )− f (g′G
upstream

)∥2 (4.13)

In this equation, f encapsulates the operations required to set bounds on the sensitivity
and to render the associated sanitization mechanism applicable. gG

upstream and g′G
upstream

symbolize the intermediate upstream gradients originating from neighboring datasets D and
D′ respectively. Specifically, f performs distinct roles according to the method employed:
For GS-WGAN and DP-Sinkhorn, f signifies the operation of norm clipping; In G-PATE,
f encompasses the processes of dimension reduction and gradient discretization, and the
computation of teacher voting histograms based on these discretized gradients; In the context
of DataLens, rather than employing random projection and discretization as in G-PATE, f
adopts a top-k stochastic sign quantization of the gradients. Subsequent to this operation, the
teacher voting histograms are also calculated.

A direct application of the triangle inequality reveals that ∆2 equals 2C (with C representing
the gradient clipping bound) in both GS-WGAN and DP-Sinkhorn for both the replace-one
and add-or-remove-one notions, while C is further guaranteed to be 1 in GS-WGAN by the
nature of the adopted Wasserstein objective. This is notably different from the substantial
disparity between the two privacy notions in the standard DP-SGD framework. In G-PATE, the
voting histogram diverges by a maximum of 2 entries for each gradient dimension, which are
processed independently via DP aggregation. As for the DataLens approch, the change of one
data point will at most reverse all the signs of the top-k elements of gradients originated from
one teacher model, leading to ∆2 = 2

√
k (See Appendix for details).

Typically, the total privacy cost is calculated based on the RDP accountant (Theorem 4.2.2).
Notably, each synthetic sample in a mini-batch constitutes one execution of the sanitization
mechanism for the DP-SGD framework, or one query in the PATE framework. In other words,
performing an update step with a mini-batch of synthetic samples on the generator can be
regarded as a composition of batch size times its unit sanitization mechanism.

Analysis, Insights, Implications. Compared to previous categories (Section 4.4.1-4.4.2),
shifting the privacy barrier away from the Measurement process itself offers several benefits.
These include: (1) the flexibility to employ a powerful critic, thereby effectively guiding the
generator towards capturing the characteristics of the data distribution; (2) seamless support
for different privacy notions (as discussed in privacy analysis above); (3) practically simpler to
properly bound the sensitivity. This can be achieved by exploiting the intrinsic properties of
the objective [32], or through the usage of the PATE framework [129, 227]. This is particularly
beneficial when compared to the previous scenario of learnable critics that typically necessitate
a laborious and fragile hyperparameter search for a reasonable gradient clipping bound.

However, the increased expressive capacity comes with the trade-off of relatively high
privacy consumption. The accumulation of privacy cost across iterations is notably faster in this
scenario than in standard DP-SGD training of a single model: each DP update on the generator
in this category equates to a batch size number of calls to the Gaussian mechanism, possibly
without the advantage of subsampling, as detailed in the preceding privacy analysis section.
This markedly contrasts with the standard DP-SGD training on a single discriminator, as
mentioned in the previous category (refer to Section 4.4.2), where each individual DP gradient
update equates to a single execution of the (subsampled) Gaussian mechanism.

Fortunately, this drawback has been partially mitigated through the use of data-dependent
privacy analysis (as demonstrated in PATE-based methods like G-PATE and DataLens) that
provides analytically tighter results that lead to stronger DP guarantees, or a data-independent
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critic (as in DP-Sinkhorn) that offers smooth compatibility with subsampling and better con-
vergence. Looking forward, we anticipate further developments from refining this training
paradigm, particularly through the utilization of strong backbone discriminators (and genera-
tors) trained on external non-private data, thereby optimizing privacy consumption.

4.4.4 B4: Within Generator

Threat Model. DP can be directly integrated into the training or deployment of a generator, the
minimal unit within the generative models pipeline essential for maintaining the full generation
functionality for future use. Generally, the privacy barrier safeguards against attackers who
have access to the trained generator model while a more fine-grained distinguishment between
the type of access (e.g., white-box or black-box) may be required depending on the application
scenarios and the adopted DP mechanism. If the gradient sanitization scheme is adopted, it
can protect against adversaries who can access the white-box generator (and possibly other
trainable components subject to DP sanitization) and the intermediate sanitized gradients
during the whole training process.

General Formulation. In this context, the training pipeline can be generally simplified to
the standard process of training DP classification models. This process, as exemplified by the
commonly used DP-SGD framework, entails bounding sensitivity through gradient clipping
and subsequently injecting randomness into the generator’s gradients. In contrast to category
B3, where the upstream gradient gupstream

G undergoes sanitization, in this case, it is the final

generator gradient g(t)
G (refer to Equation 4.11) that is being sanitized. This results in a difference

equivalent to the multiplicator of the local generator Jacobian (refer to Equation 4.12). Special
attention should be paid when implementing DP-SGD here, as additional model components
(e.g., the encoder in a VAE) alongside the generator could compromise the transparency of
the privacy analysis. It is crucial to ensure that the gradient clipping operation is executed
accurately to effectively limit each individual real sample’s influence on the generator. The
presence of an additional model component may disperse individual effects across multiple
gradients within a mini-batch, rendering standard per-example gradient clipping inadequate
(refer to the discussion in the privacy analysis below). Moreover, to optimize model utility,
it is necessary to precisely define the scope of gradient clipping and perturbation to ensure
that the implementation does not introduce unnecessary noise exceeding the desired privacy
guarantee.

Representative Methods. Existing works have realized such privacy barrier for various types
of generative models, particularly those within the explicit density category. Examples include
DP Normalizing Flow [226, 88], DP VAE [37, 3, 2, 204, 164], DP Diffusion models [47, 62, 133],
and DP training of language models [141, 118, 137, 250], which collectively illustrate the
extensive potential of DP generators across numerous applications such as density estimation,
high-quality image generation, training downstream models, and model selection. In particular,
Ghalebikesabi et al. [62] highlighted that certain training techniques advantageous for DP
classification models [42], such as pre-training, utilization of large batch sizes, and augmentation
multiplicity [56, 42], also show effectiveness when applied to training DP generators in diffusion
models. Furthermore, the work by Jiang et al. [88] underscores the potential efficacy of training
a DP Flow model within a compressed, lower-dimensional latent space. This strategy not only
circumvents the substantial computational demands [178], but also synergizes well with DP
protocols, given the direct correlation between the DP noise-to-signal-ratio and the model’s
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Figure 4.8: Diagram showcasing the DP training of a VAE (Section 4.3.2.2). This representation
is also applicable to other DP model training scenarios conforming to privacy barrier B4, e.g.,
by replacing the trainable encoder with a non-trainable module.

dimensionality.

Privacy Analysis. The privacy analysis follows from the adopted DP mechanism for training
the generators, similar to the standard case of training a DP classifier. A key consideration
lies in the correct implementation and analysis of the privacy cost when the models comprise
multiple trainable components, such as the encoder and decoder in the VAE. In such cases,
simply incorporating the DP-SGD into the generator module and conducting a standard
privacy accountant is inappropriate. This is due to the fact that each training example’s
influence is assimilated into the encoder’s parameters. Consequently, every training example,
even those absent from the current mini-batch, can affect all latent variables (which serve as
inputs to the generator/decoder) in each iteration, rendering the per-example gradient clipping
itself insufficient for bounding the sensitivity. A proper implementation would require either
enforcing DP also on the encoder (i.e., applying DP-SGD on both the encoder and decoder) or
factoring this into the privacy cost computation (i.e., the DP-SGD step on the decoder should
be counted as full batch Gaussian mechanism instead of a subsampled one). Moreover, in
situations where each sample in a mini-batch is used more than once, such as their use over
multiple time steps when training diffusion models, the cost must be accounted for every such
occurrence. To deal with this, one can refer to the multiplicity technique [56, 42, 62, 47], which
averages all gradients resulting from each unique training sample before clipping them.

Analysis, Insights, Implications. Methods in this category are generally easy to implement,
particularly for models with only a generator as the learnable component. This reduces training
to the standard classification cases, demonstrating significant potential and achieving state-of-
the-art generation quality when adapted to the latest generative modeling techniques [47, 62].
However, this privacy barrier setting may not be fully compatible with models containing
multiple trainable components. The reason for this lies in the potential integration of training
samples’ effects into the parameters of components other than the generator (e.g., the encoder
in VAEs, the discriminator in GANs), which substantially complicates the implementation
of DP mechanisms and may lead to unexpectedly high privacy consumption. Moreover,
DP methods are bounded by the expressive capability of the underlying generative model.
Particularly in this category, which predominantly relies on explicit density models, the usage
of simple critics (like static ℓ1 or ℓ2 loss functions) tends to restrict the capture of fine details,
often delivering less desirable outcomes compared to trainable critics. For instance, VAEs
have commonly produced blurrier images, whereas GANs pioneered the production of high-
resolution photorealistic generations. While recent advancements in explicit density models
have significantly improved their capabilities, particularly through innovative designs that
enable training on extensive datasets, there is a potential limitation concerning their practical



60 A Unified View of Differentially Private Deep Generative Modeling

utility. This limitation primarily arises from the substantial need for sensitive training data,
which is essential to achieve a satisfactory performance level with the resulting DP model in
real-world applications. Looking forward, we envision future advancement on balancing the
data efficiency and generation performance could largely improve the practicability of the DP
methods under this category.

4.5 Discussion

4.5.1 Connection to Related Fields

While the data generation methods investigated in this work are mostly designed to capture
the entire data distribution for general purposes, intriguing results are observed when the
generator is intentionally guided towards enhancing its downstream utility for specific target
tasks such as training neural network classifiers [29] and answering linear queries [126]. This
can be achieved by employing objectives tailored for downstream tasks, rather than relying
solely on general distribution divergence measures. If downstream tasks can be executed on
a specific set of samples and do not require a complete understanding of the distribution,
problem complexity can be further reduced by directly optimizing the synthetic samples instead
of the generative models. This strategy, which trade-off the generality of general-purpose
generative modeling for downstream utility, might be particularly beneficial considering the
high complexity inherent to DP generation. Moreover, such framework naturally aligns with
broader fields such as coreset generation, private query release, private Bayesian inference.
In these scenarios, a set of synthetic data can be optimized to resemble real data for specific
tasks [229, 11], substitute real data for answering queries to conserve the privacy budget under
DP [73, 72], or support privacy-preserving computation of the posterior distribution [134, 185].

4.5.2 Relation to Other Summary Papers

Several related summary papers complement our work by focusing on different aspects. For
instance, Tao et al. [207] benchmark multiple DP models for tabular data; Fan [55] and Cai et
al. [22] discuss early DP GANs; Jordan et al. [90] and De Cristofaro [43] provide high-level
overviews of DP synthetic data generation for non-expert audiences; Hu et al. [83] covers broad
classes of DP data generation methods without focusing on the technical part of deep generative
modeling; Lastly, Ponomareva et al. [165] offer a comprehensive summary of developing and
deploying general DP ML models, supplementing our focus on the technical aspects of DP
generative modeling.

4.5.3 Challenges and Future Directions

Public Knowledge. A promising future direction which holds significant practical relevance
is the exploitation of public data/knowledge in training DP generative models. Recent studies
have demonstrated promising improvements in DP generation introduced by leveraging public
data [35, 126, 71, 133] and reported high-quality generation [62, 122] with the aid of such
resources. A prevalent method for leveraging public knowledge involves utilizing large
foundation models, initially pre-trained on public datasets, and subsequently fine-tuned to
align with private data distributions for various applications. This approach is particularly
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relevant in the field of natural language processing (NLP), where the widespread availability of
foundation models and the typically significant semantic overlap between public and private
data renders DP fine-tuning relatively effective [118]. Additionally, the rapid growth of efficient
fine-tuning techniques also show great potential for facilitating DP learning [247, 49]. While
these advancements are particularly notable in the NLP domain, exploring the specific benefits
and most effective strategies for applying these techniques to other data modalities is a topic
that warrants further research. Furthermore, challenges that are generally associated with
private learning on public data [213] call for further investigation. In particular, the unique
difficulties specific to generative modeling, such as a small tolerance for distribution shift
(between the public and private data distributions), warrant additional exploration.

Task-specific Generation. There exists a principled trade-off between the flexibility offered
by general-purpose generative modeling and the utility of task-specific data generation. In
particular, capturing a complete high-dimensional data distribution is a difficult task. This task
becomes even harder when considering the privacy constraints, thus making the models highly
data-demanding and almost impossible for DP model to achieve reasonable performance in
practice. It has also been recently questioned to what extend a well-performing general-purpose
DP generative model can be realized at all [200, 201]. While it is difficult to predict how these
trade-off develop in the future, task-specific (or task-guided) data generation can greatly relax
the objectives, leading to real-world useful DP synthetic data (see examples discussed in
Section 4.5.1). On the other hand, such task-specific generation is particularly advantageous
for scenarios where the synthetic data is intentionally designed to be useful only for specific
(benign) tasks, thereby preventing potential unauthorized data misuse.

Conditional Generation. While the formulas presented throughout Section 4.4 are illustrated
through unconditional generation for simplicity and clarity, in practice, DP generation is
typically executed in a conditional manner, whereby samples are generated given specific input
conditions. Although implementing conditional generation is technically straightforward for all
generative network backbones [144, 192, 152, 236], it might necessitate additional consideration
with respect to the privacy analysis. For instance, when modeling the class-conditional data
feature distribution, an additional privacy budget may be allocated to learn the class label
occurrence ratio for addressing class imbalance [70], contrasting with other methodologies
that typically employ a data-independent uniform class-label distribution. Moreover, certain
situations necessitate meticulous investigation into privacy implications and performance.
Firstly, when the training process employs conditional (e.g., per-label class) sampling, additional
consideration for privacy cost is imperative, as this contradicts the requirements of random
sub-sampling incorporated in standard privacy cost computations. Secondly, some generative
modules may integrate such conditional information in non-trivial ways (e.g., being embedded
into the module parameters beyond mere gradients [95]). This integration can mean that
the conditional input might no longer be protected under DP guarantees via a vanilla DP
sanitization scheme. These scenarios necessitate further exploration to ensure the reliability of
privacy protections and to facilitate the development of more effective utility-preserving DP
generative models.

Federated Learning. DP data generation models have also shown promising potential in
applications related to federated training [10, 240, 256, 216], facilitating tasks such as privacy-
preserving data inspection and debugging that were previously infeasible due to privacy
constraints. Specifically, Augenstein et al. [10] incorporated DP-SGD into the training of a GAN
in a federated setting, where each client maintains a local GAN model and communicates the
gradients to the server during each communication round, with the gradients being sanitized
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under DP noise. Moreover, Chen et al. [32] illustrated that the privacy barrier B3 (Section 4.4.3)
is seamlessly compatible with the federated training setting. In this context, only the upstream
gradient (Equation 4.12) needs to be communicated, offering additional benefits such as
improved communication efficiency. More recently, task-specific DP generation has proven
particularly advantageous in alleviating non-iid challenges and enhancing convergence speed
for federated learning [241, 228]. Although these approaches might still require a substantial
amount of client local data and computational resources, the future development of efficient
algorithms is anticipated to yield fruitful outcomes.

Evaluation and Auditing. Evaluating generative models has historically posed a significant
challenge [132], and the same holds true for DP generation methods. While evaluating them
based on specific downstream tasks has been a common approach in existing literature, it
has become evident that relying solely on a single metric may be inadequate. This limitation
arises from the general lack of alignment among various aspects, including downstream utility,
statistical properties, and visual appearance [5, 201, 29, 59]. Consequently, there arises a need
for future investigations into comprehensive metrics that consider mixed objectives to more
effectively address a wide range of potential practical applications.

Furthermore, assessing the privacy guarantees of DP generators against real-world attacks
(i.e., “auditing” [85, 147]), and quantifying the privacy risk associated with synthetic data [201,
81], presents a particularly intricate challenge for generative models. This complexity primarily
arises from two key factors. Firstly, the measurement of privacy risks often conflicts with the
primary objective of maximum likelihood, which aims to precisely fit the training data. While
achieving an exact alignment with the training data aligns with training objectives, it raises a
debatable question about compromising privacy protection. Deciding whether an exact match
should be regarded as a privacy breach in such cases remains a matter of debate. Secondly,
generative models typically exhibit low sensitivity to privacy attacks [74, 34], which diminishes
the informativeness of computed auditing scores. These challenges highlight the need for
dedicated design tailored to the auditing of DP generative models.

4.6 Conclusion

In summary, we introduce a unified view coupled with a novel taxonomy that effectively
characterizes existing approaches in DP deep generative modeling. Our taxonomy, which
encompasses critical aspects such as threat models, general formulation, detailed descriptions,
privacy analysis, as well as insights and broader implications, provides a consolidated platform
for systematically exploring potential innovative methodologies while leveraging the strengths
of existing techniques. Furthermore, we present a comprehensive introduction to the core
principles of DP and generative modeling, accompanied by substantial insights and discussions
regarding essential considerations for future research in this area.
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Pa r t 2 : P r i va c y at ta c k s a n d

d e f e n s e s

While the previous part emphasized rigorous privacy guarantees
in training generative models, we now shift our focus to practical
aspects of privacy attacks and defenses. This transition complements
our earlier discussions, effectively bridging the rigorous theoretical
upper bounds of privacy risks with estimable lower bounds in
real-world scenarios. In particular, our efforts are directed towards
developing practical and effective privacy attacks against advanced
generative models, as discussed in Chapter 5. These attacks not only
highlight the necessity of devising dedicated privacy-preserving
training techniques but also serve as a validation tool. Concurrently,
we are exploring privacy defense strategies for general discriminative
(classification) models. These strategies, detailed in Chapter 6, are
designed to enhance the privacy-utility trade-off compared to the
standard rigorous privacy-preserving training elaborated in the
previous part.

In Chapter 5, we study privacy attacks targeting real-world
application scenarios of advanced generative models. Specifically,
we focus on membership inference attacks on diffusion models,
designed to ascertain if specific query samples have been used in the
training dataset of a target diffusion model that might be deployed or
integrated with media editing tools. We execute a systematic analysis
of the attack surface and present highly effective attack strategies,
each meticulously tailored for different attack settings.

In Chapter 6, we present an effective defense mechanisms
against membership inference attacks on classification models,
addressing diverse attack settings. Our principal strategy involves
moderating the training objective to a more attainable level while
preserving the model’s discriminative power. This method effectively
diminishes the generalization gap and minimizes model overfitting
and overlearning, consequently mitigating privacy risks without
compromising the model’s performance.
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Diffusion models have achieved tremendous success in image generation over recent
years, establishing themselves as the state-of-the-art technology for AI-based image
processing systems. Despite the numerous benefits brought by recent advances in

diffusion models, there are also concerns about their potential misuse, particularly in privacy
breaches and intellectual property infringement. Specifically, the unique characteristics of
diffusion models expose new attack surfaces and vulnerabilities when deployed in real-world
systems. With a thorough exploration of the attack surface, we present a comprehensive
analysis framework of membership inference attacks on diffusion models, complemented
with novel attack methods tailored to each attack scenario specifically relevant to diffusion
models. Leveraging easily obtainable quantities, our approach proves to be highly effective,
realizing near-perfect attack performance (>0.9 AUCROC) in realistic scenarios. Our extensive
evaluation demonstrates the effectiveness of our method, highlighting the importance of
considering privacy risks and intellectual property protection when using diffusion models in
image generation systems.

This chapter is based on [262]: As a co-first author of [262], Dingfan Chen played a pivotal
role in formulating the project idea, steering the experiments, and serving as the main writer
of the paper. This paper is under submission at the time of composing this thesis.
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5.1 Introduction

Deep generative modeling has made significant advancements over the past few years, giving
rise to photo-realistic media generation tools with emerging commercial uses for art and design.
In particular, the rapid improvement of denoising diffusion models [191, 150, 80, 196, 197, 198,
46] has not only greatly advanced the state-of-the-art in the image and video generation tasks
but also solidified diffusion models as arguably the most promising generative framework to
date, providing the foundation for powerful commercial models such as Stable Diffusion [178],
Imagen [182], and DALL·E-2 [172].

Despite the remarkable success of recent diffusion models, the widespread use of online
APIs and shared pre-trained models raises concerns about their potential risks in various
areas. One major concern is the risk of data misuse and violations of privacy, as sensitive
information pertaining to individual identities could be revealed. Additionally, malicious users
may attempt to infer the original training data, further exacerbating privacy concerns. An
example of such an attack is the membership inference attack (MIA) [188], which seeks to
determine if a particular data record was used to train a machine learning model. This is
particularly concerning in the context of diffusion models that serve as the backbone for online
media editing tools, which are accessible to the public.

MIA is closely related to other concerns, such as intellectual property (IP) infringement
and leakage of the content from specific training data samples during the development and
deployment of diffusion models. Advanced diffusion models rely heavily on the usage of
massive and diverse training data. However, with the commercialization of these models, there
is a risk of data being harvested from the internet for model training purposes without proper
regard for the IP rights of media creators. Moreover, such data might be regenerated by the
model in a manner that results in the leakage of the complete data sample. Even worse, it is
often impractical for developers to manually review all training samples for IP compliance or
to scrutinize the regeneration process to prevent data leakage. In this context, MIA emerges as
an essential foundation, not only for potential IP protection [194] but also for investigating and
understanding data leakage [26, 27]. Our work propels the frontier of trustworthy development
of diffusion models by presenting a systematic exploration of the associated attack surface,
complemented by practical and effective MIA strategies.

Diffusion models possess several distinct features that set them apart from other generative
models. First of all, the encoding process in diffusion models is unlearnable and fixed, following
a standard procedure that is known to the public. While this eases the training of diffusion
models on complex data distributions, it also presents vulnerabilities as attackers can easily
and precisely imitate the encoding process, even if the model developer tries to hide it during
model deployment (Section 5.5.3). In contrast, attacks on other generative models usually
require approximating the encoding process in a lossy manner, e.g., through gradient-based
optimization on the model internals [34] (Section 5.6.2). Additionally, the generation process
in diffusion models is iterative, resulting in multiple intermediate outputs that may all reveal
information about the training samples. Such information can be easily exploited by an
attacker to construct dedicated attacks tailored to diffusion models under different deployment
scenarios.

In this work, we pioneer the investigation of such risks associated with diffusion models.
Specifically, we conduct the first systematic analysis of MIAs against diffusion models. While
previous studies have explored MIAs in the context of both classification models [188, 183,
25, 180, 244, 195, 149] and other generative models [74, 78, 34], we highlight that diffusion
models have unique properties and usage patterns that create new attack surface not covered
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by existing works. Furthermore, established methods are mostly inappropriate to our scenario,
while potential adaptations would only yield suboptimal special cases of our proposed attack
(Section 5.4.4). Instead, we thoroughly examine the attack vectors and identify three major
attack scenarios that are most representative and prevalent in practice, given real-world APIs
as reference. Moreover, we design novel attacks tailored to diffusion models based on their
unique characteristics, consistently surpassing existing solutions by a substantial margin across
various settings.
Contributions: In summary, we make the following contributions in this work:
• Task-level: We present a comprehensive analysis framework and conduct the first systematic

investigation of MIAs on state-of-the-art diffusion models. With a thorough analysis of
the potential attack surface, our study reveals the most realistic threat models reflecting
real-world usage patterns, with which we aim to strategically guide and faithfully benchmark
future research in related fields.

• Approach-level: We devise novel attack strategies, tailored to suit various attack scenarios.
Supported by a theoretical foundation, our attacks use easily obtainable quantities, integrat-
ing simplicity, practicability and high effectiveness. Our enhancement techniques, such as
truncation and calibration (Section 5.4.1-5.4.2), markedly improve attack performance across
a spectrum of realistic settings. We anticipate broader applications of our approach, extend-
ing beyond MIAs and facilitating future advancements towards trustworthy deployment of
diffusion models.

• Insight-level: We thoroughly evaluate and provide key insights into components impacting
the effectiveness of attack strategies, demonstrating our approach’s consistent efficacy across
varied scenarios. Specifically, having only access to the API, our approach reaches >0.95
AUCROC on the CelebA dataset with 20k training samples, where previous work generally
fails to report effective attacks. Moreover, our attack demonstrates substantial effectiveness
when applied to real-world pre-trained Stable-Diffusion models trained on large-scale
datasets with 2.3 billion samples, evidenced by an AUCROC of >0.7 and a >24% TPR@1%
FPR. Our findings reveal a dual implication: while the common practice of sharing diffusion
models poses a markedly high privacy risk, strong attack strategies exist that present the
potential for monitoring sample usage during model training, serving needs such as IP
protection and early detection of data leakage.

5.2 Related Work

Generative Models. Generative models aim to simulate the probability distribution of real
data by defining a parametric family of densities and finding the optimal parameters. The
optimal parameter is typically found by either maximizing the (lower bound of) likelihood
of the real data or minimizing the (estimated) divergence between the generated and real
data distributions. With the advancement in the expressive power of deep neural networks,
recent generative models have achieved significant success in modeling high-dimensional data
distributions. Different types of deep generative models have been developed in the literature,
with generative adversarial networks (GANs) [65], variational autoencoders (VAEs) [101], and
diffusion-based models [191, 196, 80] being the representative ones. In this work, we focus on
diffusion models, which represent the current state-of-the-art deep generative framework [46]
and serve as the backbone for various online media generation tools [182, 178, 172]. Addition-
ally, we make connections and draw comparisons with GANs and VAEs (Section 5.5.6 and
5.6.2), which were the previous leading generative frameworks.
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white-box
gray-box black-box

knowledgeable agnostic extension specific agnostic
[27] ✓ - - - - -
[50] - ✓ - ✓ - -
[82] ✓ ✓ - - - -
[103] - ✓ - - - -
[136] ✓ - - - - -
[157] ✓ - - - - -
[237] - - - ✓ - -
Ours ✓ ✓ ✓ ✓ ✓ ✓

Table 5.1: Attack settings (defined in Table 5.2) of related works. ✓ indicates settings where
new attacks have been proposed.

Membership Inference Attacks (MIAs). MIAs were introduced by Shokri et al. [188] and
initially targeted black-box classification models where the full confidence score predictions are
accessible by the attacker. Subsequent works have developed various approaches in attacking
both white-box [149, 174] as well as black-box [188, 180, 244, 183, 195] classification models. In
particular, it has been shown that the sample loss generally can serve as a discriminative signal
that tells apart members from non-members [244]. Sablayrolles et al. [180] further showed that
black-box attacks can approximate the performance of white-box MIA under mild assumptions
on the model parameter distribution.

Recent works have explored such attacks on popular generative models such as GANs [34,
74] and VAEs [78]. Specifically, Hayes et al. [74] noted that disclosing the discriminator of a
GAN can leak membership information in a white-box setting and proposed using a shadow
model for black-box attacks. Hilprecht et al. [78] suggested the reconstruction error as a
membership score for white-box VAE attacks and counting generated samples within an ϵ-ball
of the query for a black-box membership score. Chen et al. [34] introduced a taxonomy of
MIAs against GANs and proposed an optimization-based approach for attacks with only
generator access and a distance-based approach for black-box setting with only synthetic
samples available.

Our work presents the first systematic analysis of MIAs on diffusion models. Despite
similarities in the training objectives with VAEs and comparable generation quality to GANs,
diffusion models have distinct properties and unique attack vectors that can be considered
and exploited by attackers. We thoroughly examine different attack scenarios specifically
relevant to diffusion models (see Table 5.2) and leverage its intrinsic characteristics, such as the
pre-defined encoding process and multi-step generation process, to conduct effective attacks.
Algorithmically, our approach shares the same high-level concept with existing sample loss-
based techniques [244, 180, 34], but differs fundamentally by exploiting the intrinsic properties
of diffusion models. This makes the membership score both representative and discriminative,
leading to improved performance. Notably, while there have been some very recent attempts,
mostly unpublished, to investigate privacy attacks on diffusion models [103, 237, 136, 82, 27,
157, 50], these efforts only constitute a subset of the scenarios investigated in our work (see
Table 5.1), with their proposed attacks generally fall into special and sub-optimal cases of our
attack model.
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5.3 Background

5.3.1 Diffusion Models

Formulation. Given observed samples x0 from a distribution of interest, the goal of a
generative model is to learn to model its true underlying distribution p(x0) and generate
novel samples from it. Specifically, diffusion models use a forward noising process q, i.e., the
“encoding” process, to gradually transform the data distribution into a standard Gaussian
N (0, I). The models then learn to reverse this transformation through a learnable denoising
function pθ, i.e., the "decoding" process. Once the denoising function pθ is learned, generating
new samples from the data distribution can be achieved by sampling from the standard
Gaussian and then iteratively applying the reverse denoising steps pθ(xt−1|xt). Formally, the
forward noising process can be written as follows,

q(xt|xt−1) = N (xt;
√

αtxt−1, (1− αt)I) (5.1)

where the subscript t is the step index, and αt is a scaling factor (0 ≤ αt ≤ 1) controlling
the amount of information preserved in each noising step (where a larger αt means more
information is kept). Given a sufficiently large T and an appropriate schedule of αT, the latent
xT at the final step forms a standard Gaussian distribution. Meanwhile, the forward process
defined in Equation 5.1 allows direct sampling of the noisy latent xt at an arbitrary step given
the input data x0 [80]:

q(xt|x0) = N (xt;
√

ᾱtx0, (1− ᾱt)I) (5.2)

xt =
√

ᾱtx0 +
√

1− ᾱtϵ (5.3)

where ᾱt = ∏t
s=0 αs and ϵ ∼ N (0, I) denotes a random noise sample. Moreover, the posterior

q(xt−1|xt, x0) can be computed using Bayes theorem:

q(xt−1|xt, x0) = N (xt−1; µq(xt, x0), Σq(t)) (5.4)

µq(xt, x0) =

√
αt(1− ᾱt−1)xt +

√
ᾱt−1(1− αt)x0

1− ᾱt

Σq(t) =
(1− αt)(1− ᾱt−1)

1− ᾱt
I

The joint distribution for the reverse process can be formularized as:

p(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1|xt) (5.5)

with p(xT) = N (xT; 0, I), indicating that the latent distribution at the final step T is a standard
Gaussian. The denoising function is modeled as a Gaussian using a neural network as follows:

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)) (5.6)

Objective. The diffusion models are trained to maximize the variational lower bound (VLB),
i.e., a lower bound of the log-likelihood of the observed data. Formally,

log p(x0) ≥ Eq(x1|x0)[log pθ(x0|x1)]− DKL(q(xT|x0)∥p(xT))

−
T

∑
t=2

Eq(xt|x0)[DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt))]
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where DKL denotes the KL divergence. The training objective can be equivalently written as
minimizing the negative VLB:

θ∗ = arg min
θ

Lvlb = arg min
θ

{L0 + L1 + ... + LT} (5.7)

L0 = − log pθ(x0|x1) (5.8)
Lt−1 = DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt)), 2 ≤ t ≤ T (5.9)
LT = DKL(q(xT|x0)∥p(xT)) (5.10)

In practice, L0 is computed by discretizing each color component into 256 bins, and evaluating
the probability of pθ(x0|x1) landing in the correct bin [46, 150]. Lt−1 in Equation 5.9 is
computed by sampling from an arbitrary step of the forward noising process (Equation 5.3)
and estimate Lt−1 using Equation 5.4 and 5.6. Optimizing over the sum in Equation 5.7 on the
training dataset is achieved by randomly sampling t for each image x0 in each mini-batch, i.e.,
approximating Lvlb using the expectation Et,x0,ϵ[Lt].

Parameterization. Recent works develop different ways to parameterize pθ in Equation 5.6 for
solving arg minθLt−1:

arg min
θ

Lt−1

= arg min
θ

1− ᾱt

2(1− αt)(1− ᾱt−1)
∥µθ(xt, t)− µq∥2

2 (5.11)

= arg min
θ

ᾱt−1(1− αt)

2(1− ᾱt)(1− ᾱt−1)
∥x̂θ(xt, t)− x0∥2

2 (5.12)

= arg min
θ

(1− ᾱt)(1− αt)

2αt(1− ᾱt−1)
∥ϵ0 − ϵ̂θ(xt, t)∥2

2 (5.13)

= arg min
θ

(1− ᾱt)(1− αt)

2αt(1− ᾱt−1)
∥sθ(xt, t)−∇ log p(xt)∥2

2 (5.14)

The most obvious option is to let the neural network predict µθ(xt, t) directly (Equation 5.11).
Alternatively, the network could predict x0 from noisy image xt and time index t (Equa-
tion 5.12) [80]. The network could also predict the noise ϵ0 that determines xt from x0
(Equation 5.13) [182, 80] and the score of the image at an arbitrary noise level, i.e, the gradient
of xt in data space (Equation 5.14) [196, 197, 198].

5.3.2 Membership Inference

In MIA, attackers are given a query set S = {(xi, mi)}N
i=1 with both member (training) and

non-member (testing) samples xi from the same distribution. The membership attribute mi

indicates if xi is a member (mi = 1 for members). The goal is to determine the membership
attribute mi of each sample xi. Each image is typically a distinct sample (i.e., xi = xi

img), but
for conditional generation, a sample could also contain text (i.e., xi = (xi

img, xi
text)). The attack

A(xi,M(θ)) predicts mi for a given query xi and a target diffusion modelM parameterized
by θ. The Bayes optimal attack Aopt(xi,M(θ)) is given by:

Aopt(xi,M(θ)) = 1

[
log

P(mi = 1|xi, θ)

P(mi = 0|xi, θ)
≥ 0

]
(5.15)
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Model Image Model Hyperparameters
type embedding internals T, αT

white-box (5.4.1) ✓ ✓ □ ✓
gray-box knowledgeable (5.4.2) ✓ ✓ ■ ✓
gray-box agnostic (5.4.2, 5.5.3) ✓ ✓ ■ ×
gray-box extension (5.6.3) ✓ × ■ ✓
black-box specific (5.4.3) ✓ × ■ ×
black-box agnostic (5.4.3) × × ■ ×

Table 5.2: Taxonomy of attack settings. (×: without access; ✓: with access; ■: black-box; □:
white-box). “Model type”: Whether the underlying model is known to be a diffusion model.
“Image embedding”: Whether access to the image embedding during generation is available.

with 1 denoting the indicator function, and P(mi = 1|xi, θ) representing the real underlying
membership probability.

Our attack is motivated by the recent results showing the dependence of attack success
rate on the sample loss [244, 180]: a large difference in expected loss between members and
non-members leads to successful attacks [244]. Sablayrolles et al. [180] further prove that the
Bayes optimal attack depends only on the sample loss under a mild posterior assumption of
the model parameters, resulting in:

Aopt(xi,M(θ)) = 1
[
ℓ(θ, xi) < τ(xi)

]
(5.16)

where τ denotes a threshold function.
Equation 5.16 implies a sample is likely a training member if the target model shows a

low loss on it. While many existing attacks [34, 180, 78] fit this paradigm, direct application
to diffusion models would suggest using the VLB loss Lvlb (Equation 5.7) as the membership
score (see discussions in Section 5.4.4). However, this approach (though adopted by previous
works such as [82, 136]) results in sub-optimal performance (see Section 5.5.2 and 5.6.1) or even
be infeasible under realistic threat models. Our proposed approach, tailored for each possible
threat model, is described in detail in Section 5.4.

5.4 General Attack Pipeline

5.4.1 White-box Setting

Threat Model. We start by investigating the white-box setting, representing the most
informed attacker scenario. In this scenario, attackers have complete access to the trained
model parameters θ, as well as the necessary information for model implementation, such as
the number of total steps T as well as the (schedule of) scaling factor αt used in the forward
and backward pass. This scenario reflects the common open-source practice of releasing the
source code and the pre-trained model checkpoints for public use. These resources, often used
as building blocks for image editing tools, are readily available online.

Approach. Existing results suggest that utilizing the sample loss is a viable approach for
calculating membership score (see Section 5.3.2). However, relying solely on Lvlb results in
subpar outcomes (see Section 5.5.2). We conjecture that this is mainly due to the following
reasons: First, the randomness in the sampling process during training may cause the unequal
weight of each term Lt in the total sum, leading to a deviation from the intended objective Lvlb.
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Figure 5.1: The distribution of Lt (5.1(a)) and L̂t (5.1(b)) terms for each reverse denoising step
t of a target diffusion model trained on CelebA with 5k samples.

More importantly, the large variance in the scale of each term Lt results in less informative
terms dominating the Lvlb sum, leading to a less discriminative outcome for membership
inference. As depicted in Figure 5.1(a), the terms with a larger value of t have the greatest
impact on the VLB loss, but they may be less informative in determining membership. This
is because they are close to the Gaussian noise endpoint xT and contain limited information
about the sample itself x0.

Hence, we propose using the independent terms Lt that are most discriminative for
membership inference instead of Lvlb (the sum of all terms). For this, we focus on terms
0 ≤ t ≤ Ttrun, where Ttrun is the point where the loss terms become significantly larger than the
previous ones. A simple rule of thumb is to set Ttrun to approximately 0.75T, which achieves
high effectiveness and is not sensitive to different datasets. In practice, a reasonable choice of
Ttrun can be selected on a small reference set. We also investigate various statistical functions to
summarize the loss terms (expressed as a general function f in Equation 5.17) instead of just
the sum as in Lvlb (see Section 5.5.2). We anticipate that a learnable function f may also be
effective, but for simplicity and high attack effectiveness, we use simple statistics such as mean
and median. Our attack can be formulated as follows:

A(xi,M(θ)) = 1
[

f
({
Lt(θ, xi)

}Ttrun

t=0

)
< τ(xi)

]
(5.17)

In line with existing results, the attack predicts that a sample belongs to the training set if its
overall loss (summarized by f ) is lower than a threshold τ(xi). The threshold function can
be calibrated to each sample to account for the impact of sample difficulty on membership
inference [180, 25].

5.4.2 Gray-box Setting

Threat Model. In this setting, we consider a more realistic scenario where the attacker does
not have direct access to the model parameter θ, but can still execute the model. This closely
resembles a situation where the model is available to the public through an online API, where
the model owner allows others to use the essential functions of the model without disclosing
the underlying model. The information that the attacker can exploit may vary depending on
the information released through the API. For example, some APIs allow greater control over
the generation process, while others do not. Here, we present our attack designed for scenarios
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that most closely resemble existing real-world APIs and defer the discussion of more relaxed
settings to the next subsection.

Approach. Similar to attacking a white-box diffusion model, we still use the sample loss as
the membership indicator. However, the attacker does not have direct access to the terms Lt.
Instead, what the attacker can access are the intermediate outputs x̂θ(xt, t) of the diffusion
models applying t denoising steps given the image embedding xT. (We consider an image
generation model here and discuss the extension to text-to-image models in Section 5.6.3.)
Given a query image x0, the attacker first runs the forward pass to obtain the image embedding
xT. Note that this requires knowledge or an educated guess about the total number of steps T
and the scheduling of the scaling factor αt. This information is typically displayed on online
APIs (see Appendix D.1.3) that allow flexible control of the generation process (e.g., as the
"num_inference_steps" and "scheduler" parameters.) The intermediate outputs can be obtained
by controlling the number of inference steps t and extracting the corresponding output images
displayed on the API. The attack can be formulated as:

A(xi,M(θ)) = 1
[

f
({
L̂t(θ, xi)

}Ttrun

t=0

)
< τ(xi)

]
(5.18)

with L̂t(θ, xi) = ∥x̂θ(xi
t, t)− xi

0∥2
2

Compared to the white-box setting, the attack assumption is slightly relaxed in that the attacker
needs to estimate the loss terms based on the information typically available on online APIs.
Each term of L̂t differs from the ground-truth Lt used in the white-box case by a scaling
factor (Equation 5.12). We deliberately do not use this scaling factor to reduce the impact of
the attacker not knowing the exact αt (this is accessible in some existing APIs but not all of
them) and potentially making incorrect guesses in some cases. Additionally, we use the same
truncation trick and explore several statistic functions f as in the white-box case to encourage
distinguishability in the membership score.

Additionally, we explore the situation where the model owner may reduce the intermediate
outputs by subsampling the inference steps, for example, to speed up the generation or limit
potential privacy exposure. Formally, the attack in this case can be formulated as follows:

A(xi,M(θ)) = 1
[

f (S) < τ(xi)
]

(5.19)

with S ⊆
{
L̂t(θ, xi)

}T
t=0

That is, the attacker may only have access to a subset of the intermediate outputs from the
reverse denoising steps of the diffusion model. We delve into the truncation techniques specific
to this scenario in the experiment section.

5.4.3 Black-box Setting

Threat Model. In this scenario, attackers are limited to passively obtaining generated samples
from well-trained generative models, without the ability to affect the generation process. This
creates a realistic scenario, as there are no set assumptions about the attacker’s abilities. We
categorize the situation into two cases based on the attacker’s knowledge of the synthetic
data being generated by a diffusion model, referred to as "known model type" and "unknown
model type". In the "known model type" case, the attacker recognizes that the accessible synthetic
data was produced by a diffusion model and may exploit this information to design targeted
attacks. For instance, this may correspond to common situations where the attacker can only
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collect final outputs from online diffusion model APIs but is not allowed to perform steerable
generation, thereby preventing our gray-box attacks discussed in Section 5.4.2.

Approach. Model-specific Attack: Once the attacker knows that the synthetic data set was
generated by a diffusion model, a natural approach would be to train a shadow diffusion
model to imitate the target diffusion model by using the synthetic data set as the training set.
This enables the attacker to carry out an attack in the same way as in a white-box scenario.
This type of attack is referred to as a “model-specific attack” to differentiate it from attacks that
do not use any information about the generative models. Formally,

A(xi,M(θ)) = 1
[

f
({
Lt(θ

s, xi)
}Ttrun

t=0

)
< τ(xi)

]
(5.20)

where θs represents the parameters of the shadow model, which were obtained by training the
diffusion model on the synthetic data generated by the target modelM(θ).

Model-agnostic Attack: In the absence of any additional information except for the synthetic
sample set, the attacker’s last resort is to use model-agnostic attacks. Several options exist in the
literature, such as GAN-Leak [34], which uses the Euclidean distance to the nearest neighbor in
the synthetic set as a proxy for the sample loss and membership score, and Monte-Carlo [78],
which counts the number of generated samples within an ϵ-ball of the query using a carefully
designed distance metric. In line with previous work, we use the distance of the query
image to its nearest neighbor in the synthetic set as the membership score. Furthermore, we
enhance the distance metric by using a pre-trained feature extractor (trained on the large-scale
public ImageNet [45] dataset) and further refine the distance calculation by leveraging label
information if available. Formally,

A(xi,M(θ)) = 1
[

min
k

{
ℓdis(xi, sk)

}K

k=1
< τ(xi)

]
(5.21)

with sk ∼ pθ representing the samples generated by the target model parameterized by θ. K
denotes the total number of synthetic samples, and ℓdis is the cosine distance in the feature
space of a pre-trained ImageNet classifier, where the feature space is determined by the output
of the second last layer.

5.4.4 Analysis & Insights

While our attack and several previous ones fall within a general likelihood ratio formulation
(Equation 5.15 in Section 5.3.2), and therefore demonstrate analogous algorithmic components,
our attack possesses distinctive features that are critical to its superior effectiveness. Specifically,
the white-box attack in [78] uses reconstruction error as the membership score. Adapting it
to diffusion models (has been realized in [82]) results in a special case of our gray-box attack
(using the loss term at the final time step), but with suboptimal configurations, i.e., truncating
all steps except the final one or using the “Min” statistical function (see results in Section 5.5.3).
The adaptation of the GAN-Leaks [34] white-box attack to diffusion models would suggest
optimizing the latent code using a gradient-based method to find the nearest neighbour in the
output space of the target diffusion model and using the nearest-neighbour distance as the
membership score. This approach will be upper-bounded by the aforementioned white-box
attack of [78] (that does not require optimization over the latent space), and thus further
upper-bounded by our methods. Seen from a more abstract perspective, the GAN-Leaks
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framework (suggests using the approximated data-likelihood) would translate into our white-
box attack with a “Sum” statistical function (has been adopted by [82, 136]), which is also
a suboptimal special case of ours. Furthermore, while previous black-box model-agnostic
attacks are applicable to diffusion models, we show in Sections 5.5.4 that our attack generally
outperforms previous ones (Figures 5.6(a)-5.6(b)).

The primary factors motivating the specialized features of our attack design lie in the
intrinsic properties of diffusion models. Firstly, diffusion models generate data iteratively, a
characteristic that sets them apart from most other types of generative models. This formulation
offers key opportunities for the attack to exploit knowledge from multiple iterations, instead
of relying solely on the singular one-shot signal as done in previous attacks. Moreover, the
loss terms produced from different iterations may convey varying amounts of information.
This variability necessitates specialized treatment, such as the truncation technique used
in our method. Specifically, by the construction of diffusion models, the Signal-to-Noise
Ratio (SNR) for the latent variable distribution at each time step conditioned on the clean
sample q(xt|x0), decreases monotonically as the time step increases [99]. In other words, as
q(xt|x0)=N (xt;

√
ᾱtx0, (1− ᾱt)I) (Equation 5.2), SNR(t)= µ2

σ2 =
ᾱt

1−ᾱt
, with SNR(t)< SNR(s) for

all t> s. This inherent property results in loss terms that are closer to the Gaussian noise end
becoming larger, since the latent variable tends to carry less informative signals about the
samples x0 as t increases (as illustrated in Figure 5.1). Our attack design accommodates these
unequal weights for each term by permitting arbitrary statistical functions that can capture the
distinctive characteristics of various scenarios. Additionally, our method explicitly eliminates
terms that, while dominant in scale, provide less discriminative information.

5.5 Experiment Analysis

In this section, we present the first systematic evaluation of membership inference attacks
against state-of-the-art diffusion models. Our comprehensive study encompasses all viable
threat models, ranging from the most knowledgeable white-box setting to the most practical
black-box one. Importantly, we make key discoveries linking the attack effectiveness to the
threat model, data set, model architecture, and training configuration, leading to practical
implications for securing the deployment of diffusion models in real-world settings.

5.5.1 Setup

Target Models and Datasets. In line with previous research, we conduct experiments
on benchmark datasets with diverse characteristics, including CelebA, CIFAR-10, Laion2B-
improved-aesthetics, and COCO-2017. We evaluate state-of-the-art diffusion models using
their official PyTorch implementation: Improved Diffusion [150], Guided Diffusion [46] and
pre-trained Stable Diffusion [178]. By default, we set the number of denoising steps T to
be 4000 and adopt a standard linear scheduler for αt. We mainly focus on the unconditional
image generation task and investigate text-to-image generation model in Section 5.6.3. All
experiments were conducted on a single NVIDIA A100 GPU. Notably, our target models
generate high-quality output (Table 5.8 and Figure D.1), surpassing the results in previous
works [74, 78, 34], demonstrating the high practical value of our study.

Attack Evaluation. We adopt the standard assessment procedures in MIA literature [34, 74,
180, 183, 188]. We assess the attack effectiveness on a balanced query set S, i.e., with an equal
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Figure 5.2: The white-box attack AUCROC
when applying different statistic function f
(Sum, Median, Min, and Max) to the en-
tire loss trajectory {Lt}T

t=0 on CelebA. The
“Sum” function corresponds to the direct
use of Lvlb for MIA.
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Figure 5.3: The gray-box attack AUCROC
when applying different statistic function f
(Sum, Median, Min, and Max) to the entire
loss trajectory estimated based on the inter-
mediate outputs (i.e., {L̂t}T

t=0) on CelebA.
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Figure 5.4: The attack AUCROC across different dataset sizes and attack scenarios. The results
obtained with (indicated as “w” and shown as solid lines) and without (indicated as “wo” and
shown as dashed lines) applying our truncation techniques are compared. We present the best
results for each case and the truncation step is always set to be 0.75T.

number of members and non-members. The attack performance is evaluated by measuring
the area under the receiver operating characteristic curve (AUCROC), which is obtained by
varying τ. The complete ROC curve is also provided for clear visualization of the attack’s
properties [25]. Moreover, we evaluate the truth false positive rate under a certain low false
positive rate (i.e., TPR@1%FPR and TPR@0.1%FPR) to demonstrate the attack performance
with realistic scenarios [25]. Additionally, following [74], the attack Accuracy and F1 Score
are calculated by setting the threshold to the median value of the membership scores over the
query set. All these metrics have a value ranging from 0 to 1, with a higher value indicating a
more effective attack.

5.5.2 Evaluation on White-box Attack

Effectiveness of Sample Losses as Membership Score. We first assess the feasibility of
inferring membership with white-box access to a target diffusion model based on the sample
loss terms {Lt}T

t=0 and/or the VLB loss Lvlb (which represents the sum of all loss terms). As
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Size ref T 0.975T 0.875T 0.75T 0.625T 0.5T
5k 1.00 0.54 1.00 1.00 1.00 1.00 1.00

10k 0.94 0.50 0.97 1.00 1.00 0.99 0.93

15k 0.80 0.50 0.81 0.99 0.99 0.96 0.80

20k 0.77 0.50 0.65 0.97 0.98 0.95 0.77

Table 5.3: The white-box Attack AUCROC for different truncating steps Ttrun in CelebA
trained with different training data size. The “ref” (meaning “reference”) column represents
the best results that can be achieved without any truncation (but may correspond to different
statistic functions). The rest of the results correspond to using a “Max” statistic function.
The columns, from left to right, represent increasing levels of truncation, excluding the top
[0, 100, 500, 1000, 1500, 2000] steps, respectively. The column labeled “T” (in gray) represents
“no truncation”. The best results (selected to four decimal places) for each configuration are
highlighted in bold.

shown in Figure 5.2, even simply using Lvlb as the membership score achieves promising attack
performance. For instance, we obtain 0.62 AUCROC when using Lvlb to attack the target model
trained with 20k data samples. The performance improves to 0.68 when we explore various
options of the statistical function f ∈ {Sum, Median, Max, Min} and select the best, which is
the “Median” in this setting. As a reference, previous work reported a maximum AUCROC of
0.61 under comparable conditions (i.e., white-box attack with the same size and type of split
in the training set, without using additional reference data) when attacking GANs [34]. The
“Average” function is not considered as it is equivalent to “Sum” in terms of discrimination.
While we expect that a more complicated design of function f might lead to improved results,
we observe that a simple data-independent function works sufficiently well in most cases and
stick to such choices throughout our evaluation.

Performance Gain from Truncation. To address the instability and indistinguishability
caused by large variations in the magnitude of Lt (as discussed in Section 5.4.4 and depicted in
Figure 5.1(a)), we improve our attacks by truncating the loss trajectory. This involves excluding
the initial denoising steps that have limited relevance to membership but have high values that
can easily dominate the statistical function. We present the detailed results in Table D.4 (in
Appendix) and present the results for the best configuration ( f is selected to be “Max” and
Ttrun is set to be 0.75T) in Figure 5.4(a). As shown in Figure 5.4(a), our truncation techniques
consistently improve the attack performance across various training configurations. In the
most challenging setting with a dataset size larger than 15k, the improvement is particularly
significant: by around 0.2 AUCROC on CIFAR-10 and 0.25 on CelebA, respectively.

We further show that the performance gain is not sensitive to the particular choice of
the truncation step Ttrun and training configurations. As can be seen from Table 5.3 (See
Figure D.2(a) for the visualization), a boost in the attack performance can be achieved with
a relatively large range of possible values of Ttrun (e.g., when Ttrun is roughly in the range
from 0.875T to 0.75T). Moreover, the best value turns out to be consistent across different
training settings (i.e., the training set size and dataset in our experiments). This suggests a high
practical value of our technique such that the attacker may be able to determine the appropriate
parameter on any available reference dataset and use such selected parameters for completing
the attack. We set by default the statistic function to be a “Max” function and Ttrun to be 0.75T
for our white-box attack when adopting truncation techniques, which empirically leads to
promising performance across various situations.

Effect of Dataset Size. The size of the training dataset is a key determinant of the membership
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risk associated with machine learning models, as previously noted in the literature [188, 74, 34].
As the number of training samples grows, the model becomes unable to capture the point-wise
delta distribution and moves from memorization to generalization. Specifically, previous
studies have shown that MIA performance tends to be less effective (< 0.6 AUCROC) when
the training dataset size exceeds 10k [78, 34].

Consistent with these findings, our results show a tendency of decline in the attack
AUCROC as the size of the training dataset grows (refer to Figure 5.4(a)). However, we
observe a consistently high level of attack performance throughout our evaluations, even in
cases where previous attacks have typically failed. For example, when the training set size
is up to 10k, our attack achieves near-perfect AUCROC on both datasets, and even with a
training set size of 20k, our attack remains highly effective (0.98 attack AUCROC for CelebA
and 0.99 for CIFAR-10) after applying our truncation techniques. These results highlight the
potential of using sample losses for effective attacks and the significant privacy risk incurred
by the common practice of sharing diffusion models in open source.

5.5.3 Evaluation on Gray-box Attack

Estimated Losses as Membership Score. We further consider the real-world scenario where
third-party providers, such as Amazon AWS, offer API services to create images using diffusion
models. In this scenario, attackers typically have access to the generated images at any inference
step of the deployed diffusion model (e.g., by specifying the inference step parameter and
obtaining the displayed output), but may not have knowledge of the ground-truth loss terms
Lt (which requires knowing the exact values of αt). As discussed in Section 5.4.2, the attack
must estimate the loss based on the intermediate output shown on the API. We evaluate the
attack performance based on our proposed estimation in Equation 5.18.

We present our results obtained by using the whole estimated loss trajectories {L̂t}T
t=0 in

Figure 5.3. As can be seen, we demonstrate promising performance with an AUCROC of 0.9 for
datasets with up to 10k training samples, and an AUCROC value of 0.74 when the dataset size
grows to 20k. Despite a slight decrease in comparison to the white-box setting, our gray-box
already achieves a reasonable level of performance in its vanilla form, suggesting the potential
effectiveness of our formulation. Our results also reveal that “Median” and “Sum” statistical
functions perform better than the others, with “Median” showing the best performance in
most cases across different training configurations. This naturally follows our intuition that
using a robust statistic that captures the discriminative factors may be preferable over simply
aggregating the available information. Moreover, when compared to the white-box case, the
loss terms used by our gray-box method generally exhibit higher variance and magnitude
(caused by the difference in the scaling factors between the white-box and gray-box loss terms).
This observation partially explains the superior performance of different functions in each
scenario. Specifically, “Median” function is a more robust choice for the gray-box attack, while
the “Max” function is a more discriminatory choice for the white-box attack.

Performance Gain from Truncation. Similar to the case in the white-box setting, not all of the
estimated loss terms are informative in distinguishing between members and non-members.
Moreover, recall that the generation process in a diffusion model is designed to mimic the
reverse denoising process, resulting in noisier outputs in the early denoising stages and thus a
larger difference when compared with the clean query sample. By construction, this makes
these loss terms corresponding to the earlier denoising steps to have larger magnitudes and to
possibly dominate the attack prediction.
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(a) Member samples (correctly identified)

(b) Non-member samples (correctly classified)

(c) Member samples (but classified as non-members)

Figure 5.5: The query images together with their reconstruction triggered by our gray-box
attack. The first column presents the ground-truth query images, while the last column refers
to the final generated images from Guided-Diffusion models trained on CelebA (20k). The
intermediate results are plotted per 400 time steps.

Our truncation technique is an effective solution for addressing this issue in the gray-box
setting. As demonstrated in Figure 5.4(b) and detailed in Table D.5 (in the Appendix D), our
truncation technique consistently improves the attack AUCROC by up to 0.22 on CelebA and
0.2 on CIFAR-10, particularly in challenging cases where the training set size is larger than 10k.
These cases typically result in less successful attacks with AUCROC less than 0.6 for existing
works [34], whereas we achieve highly effective attacks with AUCROC around 0.95 throughout
our evaluation.

We further validate our intuition (discussed in Section 5.4.4) via qualitative results in
Figure 5.5, where we generally observed that: (1) Starting from the noise end, the intermediate
results from the first 0.25T steps do not manifest significant visual distinction, which supports
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our truncation technique to eliminate or reduce the influence of less informative terms. (2)
For member data, the intermediate results begin to visually resemble the query at around
the 0.5T time step counted from the noise end. In contrast, non-member images require
more steps (approximately up to 0.75T) to reach a similar level of visual similarity. This
discrepancy suggests that the target diffusion model indeed displays distinct behaviors for
member vs. non-member images, which can be exploited by an adversary. (3) Both member
and non-member images can be reconstructed to a high degree of visual similarity by the
final step. This observation clarifies why relying solely on the final reconstruction difference
(as suggested by prior works [78, 34]) may not yield optimal effectiveness. (4) While some
member samples might display complex visual patterns (and/or be underrepresented in the
distribution) making them more challenging to reconstruct and thus harder for an MIA to
detect (see examples in Figure 5.5(c)), they still tend to be successfully reconstructed at earlier
time steps compared to non-members. Consequently, it remains possible for a stronger attack
(e.g., with carefully tuned hyperparameters) to detect these samples.

We also studied the impact of various truncation step options on the attack performance.
As shown in Figure D.2(b) (in the Appendix), the optimal choice remains largely stable across
different training setups (see detailed quantitative results in Table D.4). The results indicate
that improvements can be achieved with a wide range of reasonable choices. Based on these
findings, we set the default truncation step to be 0.75T and the “Median” statistical function as
the default for evaluating gray-box attacks with truncation techniques.

Adaptive Defenses. While some of the diffusion APIs expose all the relevant hyperparameters
for generation (and potential attack) and allow controllable synthesis, model owners may decide
to withhold certain information to protect commercial interests and preserve privacy, which
creates extra challenges for attackers. We study the impact of withholding hyperparameters in
diffusion model APIs from an adaptive defense perspective.

We take a more in-depth investigation into the case where the adopted scheduler of αt is
not accessible. While the official implementation supports two scheduler options, we evaluate
our attack performance by using a different scheduler than the one used to train the target
model. This simulates a worst-case scenario where the attacker guesses the hyperparameter
incorrectly. Our results show that our gray-box attacks remain effective even when using a
different scheduler (see Table 5.4), with AUCROC values of 0.91 and 0.65 for datasets of 5k and
20k, respectively. These results suggest that even with a different scheduler, samples can still be
mapped to descriptive embeddings in the latent space, revealing information for attack during
the reverse generation process. Additionally, as there are only a few options for the scheduler
and the forward process is largely the same or highly similar for most diffusion models, it
is likely that the attacker can guess the correct scheduler. This implies that withholding the
scheduler may not eliminate the privacy risk.

5k 20k
Median Sum Min Max Median Sum Min Max

w/o 0.62 0.56 0.56 0.49 0.53 0.50 0.49 0.50

w 0.91 0.65 0.56 0.52 0.65 0.54 0.49 0.50

Table 5.4: The gray-box attack AUCROC on CelebA under wrong guessing of (the scheduler
for) αt with (“w”) or without (“wo”) applying the truncation technique. The truncation
step is set to be the default value Ttrun = 0.75T. We highlight the best performance in each
configuration in bold.

We also consider the case where the model owner may choose to suppress the intermediate
outputs. As demonstrated in Table 5.5, even when 75% or 50% of the intermediate outputs
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during the reverse generation process are suppressed, our attack remains highly effective. While
such suppression reduces the amount of information leaked to the public, thus diminishing
potential risks, we posit that a well-designed attack using appropriate statistical techniques can
still be successful. This premise is supported by an examination of the loss term distribution: as
shown in Figure 5.1(b), an attack can exploit a certain range of the discriminative region. Even
with substantial suppression, if the attacker can extract a subset of the intermediate outputs
within such region, an inference attack can still be successfully executed.

75% 50%
Median Sum Min Max Median Sum Min Max

w/o 1.00 0.69 0.61 0.51 1.00 0.69 0.57 0.50

w 1.00 0.94 0.61 0.50 1.00 0.94 0.57 0.50

Table 5.5: The gray-box attack AUCROC on CelebA with 5k training samples when the model
owner suppresses the intermediate output (with 75% or 50% suppression ratio). We evaluate
both with (“w”) and without (“wo”) the truncation technique, where the truncation step is
always set to Ttrun = 0.75T. We highlight the best performance in each configuration in bold.

5.5.4 Evaluation on Black-box Attack

Model-Specific Attack and Cross-model Generalization. The model owner may decide to
hide intermediate results when deploying an API, limiting the attacker’s access to only the
final synthetic output and limiting control over the generation process. In extreme cases, the
attacker may only have access to the final synthetic output without any intermediate results.
However, such APIs may still provide clues about the underlying model used [172, 182]. In
such cases, training a shadow model as a proxy of the target and conducting the attack on the
shadow model would be a good strategy.

With a proxy model in hand, the attacker can apply either white-box or gray-box attack tech-
niques discussed previously. We present results using the default settings for both white-box
and gray-box attacks with truncation in Figure 5.4(c). We observe that the attack performance
decreases as the dataset size increases, but reasonable levels of AUCROC values above 0.6 are
still generally obtained. The performance of the gray-box and white-box attacks is generally
comparable. By default, we use the gray-box attack with truncation for further evaluation due
to its overall stability.

We take a step further into the investigation of the cross-architecture generalization of our
model-specific black-box attack. Specifically, we study the scenario where the shadow model
has a different architecture and may adopt a different setup of the key hyperparameters than
the target model. As seen in Table 5.6, there is a slight decrease in attack AUCROC (0.77)
compared to when the shadow model and target model have the same architecture (AUCROC
0.82). Furthermore, changing the key hyperparameter (the denoising step in our case) also
results in a slight decrease in AUCROC from 0.77 to 0.73, but the change is not substantial.
This aligns with previous research findings, as changing the architecture can cause the shadow
model to be less similar to the target model.

However, the difference in architecture may have less impact on attacks against generative
models compared to classification models. In the black-box scenario, membership information
in generative models is completely contained in the generated distribution, which can still be
captured by a shadow model with a different architecture. In contrast, for classification models,
membership information is mainly represented by their specific responses to each query, which
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can vary greatly between models with different architectures. Therefore, attacks based on
shadow models remain relatively effective in cross-architecture scenarios for generative models,
unlike MIAs against classification models that tend to become less effective [74, 188].

Diffusion Steps AUCROC Accuracy F1-Score TPR@1%FPR
2000 0.73 0.68 0.68 5.99%
4000 0.77 0.69 0.69 7.34%
6000 0.76 0.68 0.68 6.77%

Table 5.6: The black-box attack performance when attacking a guided diffusion model with an
improved diffusion model as the shadow model. Different settings of the diffusion steps are
considered when training the shadow model. The experiments were carried out on the CelebA
dataset with 5k training samples.

Model-based vs. Model-agnostic. For the least informed attack scenario, attackers would
have to rely on a model-agnostic method, i.e., they cannot use any extra knowledge of the
target model except blindly collecting generated samples from it. In this case, we build upon
existing methods that calculate the distance between the query sample and generated samples
(closer distance indicates higher membership probability). We improve upon these methods
by enhancing the distance metrics, i.e., we use a pre-trained ImageNet classifier as a feature
extractor and compute the cosine distance between features as the metrics. Our modification
leverages the rich semantic information from the pre-trained feature extractor to improve the
discriminative power of the resulting membership score. The comparisons to existing methods
are shown in Figures 5.6(a) and 5.6(b). As shown, our model-agnostic attack performs slightly
better than existing methods, while our model-specific attack greatly improves by leveraging
slightly more information that is always freely available even in a black-box setting.
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Figure 5.6: The black-box attack AUCROC on 5.6(a) CelebA and 5.6(b) CIFAR-10, respectively.
We adopt the gray-box attack (with truncation) on the shadow model for our model-specific
attack.

5.5.5 Exploring Larger Dataset Sizes

While previous studies mainly reported effective attacks on datasets with no more than 20k
training data samples, our attack performance has not yet reached its saturation point in such
scenarios, maintaining an AUCROC of over 0.95 (for both gray-box and white-box cases). To
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Figure 5.7: ROC curves of our white-box and gray-box (with truncation techniques) attacks on
CelebA and CIFAR-10.

Dataset Dataset Size AUCROC TPR@0.1%FPR TPR@1%FPR

CIFAR-10

20k 0.97 8.34% 41.57%
30k 0.87 1.52% 10.06%
40k 0.73 0.36% 4.48%

CelebA
20k 0.98 15.22% 51.06%
30k 0.91 8.19% 34.14%
40k 0.69 1.18% 6.06%

Table 5.7: The gray-box attack performance against guided diffusion models with varying
dataset size.

push the boundaries of our approach, we further experimented with guided diffusion models
trained with a larger size of training data (up to the maximum effective size for the adopted
benchmarking datasets that still leaves a sufficient amount of data for MIA evaluation). As
presented in Table 5.7, our approach is still capable of extracting membership information,
achieving an AUCROC that generally exceeds 0.7. Furthermore, the attack maintains a
high TPR under specific low FPR thresholds (0.1% and 1%). Specifically, the TPR is always
substantially higher than the FPR at least three times greater, indicating that the attack could
successfully identify significantly more member samples than it misclassified non-members as
members (refer to Figure 5.7(a) for the complete ROC curves), which points to a strong attack.
Notably, an MIA is deemed successful “if it can reliably violate the privacy of even just a few
users in a sensitive dataset” [25].

5.5.6 MIA Comparison between Diffusion Models and GANs

Our results presented in previous sections suggest that diffusion models may be generally
more vulnerable to MIAs in comparison to other popular generative models such as GANs
under various attack scenarios. In this section, we closely examine their behavior under MIAs
in a similar setting. We train and evaluate both diffusion and GAN models on the same sample
set using the same attack method (i.e., the model-agnostic black-box attack from [34]). We
consider the widely used models that represent the state-of-the-art or previous state-of-the-
art at their release time. These include two GAN models, namely the StyleGAN [94] and
progressive GAN (PGGAN) [92], and the “Guided” and “Improved” diffusion models. The
results in Table 5.8 show that diffusion models have higher attack AUCROC compared to GAN
models, with PGGAN having 0.56 and Improved Diffusion having 0.62, while the difference in
the TPR@1%FPR becomes much more significant. These also support that diffusion models
tend to be more vulnerable to MIA attacks than GAN models, even when considering only



84 Data Forensics in Diffusion Models: A Systematic Analysis of Membership Privacy

model-agnostic attacks, not to mention the exceptionally high privacy risk when our dedicated
approaches are applied.

Guided Improved StyleGAN PGGAN
FID 22.46 24.78 25.89 55.28

AUCROC 0.59 0.62 0.51 0.57

TPR@1%FPR 5.14% 6.11% 1.02% 4.04%

Table 5.8: The generation quality (FID) and attack performance (AUCROC, TPR@1%FPR) of
various generative models trained on the CelebA dataset with 5k samples. The model-agnostic
attack from [34] was evaluated. The FID was calculated based on 40k generated images from
each generative model.

5.6 Discussion

In this section, we highlight several key insights and their practical implications, as well as
discuss possible concerns regarding our attack formulation.

5.6.1 Comparison with Concurrent Works

While our study covers a broad spectrum, which subsumes several existing and concurrent
works as discussed in Section 5.2, we also demonstrate superior advantages in terms of attack
effectiveness and algorithmic design. Table 5.9 and 5.10 present results on benchmark datasets
with 20k samples. Our approach consistently outperforms other methods by a noticeable
margin, even including those unpublished works that offer comparable evaluations, across all
metrics.

Method-wise, our approach also stands out in its practicability and modeling superiority.
For comparison, [27] necessitates the training of >10 shadow models, with each using 50%
of the target dataset (>10k samples), rendering it notably sample-inefficient. The methods
of [50, 103] rely on the reconstruction loss at a specific intermediate step as the membership
score, but with hyperparameters that require extensive tuning and are non-transferable across
datasets. Both [82] and [136] align with our sub-optimal attack setup, mirroring our vanilla
gray-box (“min” and “sum”) and white-box (“sum”) attacks without truncation. [237] employs
the final reconstruction loss as the membership score and requires a shadow dataset with over
3k samples for training its attack predictor. Remarkably, our proposed approach surpasses
methods like [26, 50, 103, 82, 136], offering clearly better practicability than [26] and [82].
Moreover, our method possesses hyperparameters that are easily transferable between datasets,
needing <200 shadow samples from a relevant distribution for adjustment.

5.6.2 Privacy Risks of Diffusion Models

Our results in Section 5.5 (particularly in Section 5.5.6) show that MIAs have a notably higher
attack success rate when targeting diffusion models compared to other popular generation
models like GANs across various attack scenarios. This possibly can mainly be attributed to
the objective used by diffusion models. The objective, which is to maximize the log-likelihood
lower bound on all training samples, can result in a loss landscape that locally minimizes
the loss around each training sample, potentially leading to a spike in the distribution if not
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Dataset Method AUCROC TPR@0.1%FPR TPR@1%FPR

CIFAR-10

[27] 0.98 27.93% 90.63%
[82] 0.93 19.98% 88.47%
[136] 0.93 20.10% 87.99%
Ours 0.98 30.68% 93.46%

CelebA

[27] 0.97 30.97% 92.27%
[82] 0.92 23.01% 89.21%
[136] 0.91 21.08% 87.19%
Ours 0.98 33.49% 95.12%

Table 5.9: Comparison to existing works under white-box setting.

Dataset Method AUCROC TPR@0.1%FPR TPR@1%FPR

CIFAR-10

[50] 0.91 4.19% 27.32%
[82] 0.86 0.82% 10.09%
[103] 0.93 5.21% 34.21%
Ours 0.98 8.34% 41.57%

CelebA

[50] 0.96 13.98% 48.76%
[82] 0.92 9.98% 36.91%
[103] 0.94 12.06% 40.24%
Ours 0.98 15.22% 51.06%

Table 5.10: Comparison to existing works under gray-box knowledgeable setting.

properly regularized. This inevitably leaves clues for attackers to successfully conduct their
attacks. In contrast, the adversarial objective used in GANs indirectly guides the generator to
produce samples that resemble the training data, while also preventing exact memorization
through adversarial updates. These indicate that diffusion models may intrinsically pose a
higher privacy risk and should be used with caution in real-world applications, especially
considering their widespread use as a standard media generation tool.

Additionally, it is relatively easy to reduce privacy risk for other generative models by only
releasing the functional part (e.g. the generator) and keeping the unnecessary part (e.g. the
encoder in VAEs or the discriminator in GANs) private [34]. However, this is normally not the
case for diffusion models, since the unnecessary part of diffusion models (the forward process)
is fixed, unlearned, identical or highly similar across models and settings, making it easy for
the attacker to guess and mimic the real process. As a result, an attack generally requires
less effort to associate each query sample with its latent variable and estimate the likelihood
needed for the attack. This can be seen in the qualitative results shown in Figure 5.5: the
reconstruction is more accurate when compared to previous cases that required gradient-based
optimization [34]. This characteristic of diffusion models thus poses higher potential risks in
deployment scenarios.

5.6.3 Conditional Generation

Our approach can be seamlessly extended to conditional generation models, such as the text-
to-image stable diffusion models. Specifically, we consider each query sample as a combination
of an image and its accompanying text description. We extract multiple images generated
at various diffusion steps from the target diffusion models for the query text and derive
the membership score via Equation 5.18. However, the loss is computed only on the image
component xi

img, and the text xi
text serves as an additional input to the model. We investigate
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two publicly released pre-trained models, stable-diffusion-v1.4 and stable-diffusion-v1.5, both
from the official Huggingface repository. We use the inference implementation without any
modifications to collect the generated images at different steps, to simulate the gray-box setting.
For evaluation, we use COCO-2017 [121] as the non-member set, which exhibits a distribution
similar to the member set (i.e., Laion2B-improved-aesthetics [186]) used by the pre-trained
stable diffusion models. All images are resized to a resolution of 512×512 for evaluation.
As Table 5.11 demonstrates, our approach effectively extracts membership information from
these real-world diffusion models, trained on large-scale datasets, specifically, with 2.3 billion
samples. Remarkably, our method maintains a significant level of TPR (exceeding 24%) even at
a low FPR of 1%. This demonstrates its potential in accurately tracing the usage of specific
samples during the training of a diffusion model, while concurrently highlighting the privacy
risks associated with potential training data leakage when deploying or sharing such models
that operate on sensitive data.

Models AUCROC F1-Score TPR@1%FPR
stable-diffusion-v1.4 0.73 0.71 24.21 %
stable-diffusion-v1.5 0.74 0.71 25.66 %

Table 5.11: Our attack performance on the pre-trained stable diffusion models.

5.6.4 Potential Defenses

As presented in Section 5.5.4, limiting the information available to attackers is generally effective
in protecting against such attacks. A slight decrease in attack performance can occur when the
model developer hides important parameters, causing the attacker to make incorrect guesses,
while a larger degradation happens when the model owner further prevents controllable
generation (comparing gray-box to black-box model-specific attacks) and even obscures the
sources of synthetic samples (comparing model-specific to model-agnostic attacks). However,
these measures can come at the cost of a degraded user experience and may not be a sustainable
solution.

Providing rigorous privacy guarantees is another option for the defense. Differential privacy
(DP) [53] is a widely used technique that ensures protection against privacy attacks. To prevent
privacy leakage from machine learning models, DP incorporates adding random noise to
the gradients during training to reduce the impact of each individual sample on the model
parameter and thus hide the presence of the data in the training set [1]. However, DP training
inevitably hampers the model utility and significantly increases the computational cost during
training. While notable recent progress has been achieved in developing DP generative models,
these advancements are largely limited to simple datasets like MNIST and Fashion-MNIST and
do not offer a practical solution for the complex datasets considered in this work (for example,
see generation results in [47]). We believe a more in-depth investigation into developing
efficient and effective defense mechanisms for MIA on diffusion models is required but leave it
as future work as it is orthogonal to our contributions in this work.

5.7 Conclusion

In this work, we present the first systematic analysis of membership inference attacks against
diffusion models. Our study presents, for the first time, the key attack vectors that are
particularly relevant for real-world deployment scenarios of diffusion models. Moreover, we
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propose our novel attack approaches tailored to each attack scenario. Our methods exploit
readily available information while delivering promising performance across a broad range
of settings, thereby demonstrating high potential for application scenarios that necessitate
accurate auditing of data usage when developing and deploying diffusion models. Our findings,
coupled with our insights, highlight the high potential privacy risks associated with diffusion
models, an area we believe warrants further exploration. To facilitate future research in this
field, the source code implementation will be made openly available upon publication.
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As a long-term threat to the privacy of training data, membership inference attacks
(MIAs) emerge ubiquitously in machine learning models. Existing works evidence
strong connection between the distinguishability of the training and testing loss

distributions and the model’s vulnerability to MIAs. Motivated by existing results, we propose
a novel training framework based on a relaxed loss (RelaxLoss) with a more achievable learning
target, which leads to narrowed generalization gap and reduced privacy leakage. RelaxLoss
is applicable to any classification model with added benefits of easy implementation and
negligible overhead. Through extensive evaluations on five datasets with diverse modalities
(images, medical data, transaction records), our approach consistently outperforms state-of-
the-art defense mechanisms in terms of resilience against MIAs as well as model utility. Our
defense is the first that can withstand a wide range of attacks while preserving (or even
improving) the target model’s utility.

This chapter is based on [33]: As the first author of [33], Dingfan Chen proposed the
project idea, implemented the algorithms, conducted all experiments, and served as the main
writer of the paper. This paper was selected as a spotlight paper in ICLR 2022 (among the top
20% of the accepted papers). The source code is available on Github 1

6.1 Introduction

While deep learning (DL) models have achieved tremendous success in the past few years,
their deployments in many sensitive domains (e.g., medical, financial) bring privacy concerns
since data misuse in these domains induces severe privacy risks to individuals. In particular,
modern deep neural networks (NN) are prone to memorize training data due to their high

1https://github.com/DingfanChen/RelaxLoss
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capacity, making them vulnerable to privacy attacks that extract detailed information about the
individuals from models [188, 193, 244] .

In membership inference attack (MIA), an adversary attempts to identify whether a specific
data sample was used to train a target victim model. This threat is pervasive in various
data domains (e.g., images, medical data, transaction records) and inevitably poses serious
privacy threats to individuals [188, 148, 183], even given only black-box access (query inputs in,
posterior predictions out) [188, 183, 195] or partially observed output predictions (e.g., top-k
predicted labels) [38].

Significant advances have been achieved to defend against MIAs. Conventionally, regular-
ization methods designed for mitigating overfitting such as dropout [199] and weight-decay [60]
are regarded as defense mechanisms [183, 87, 188]. However, as conveyed by [98, 97], vanilla
regularization techniques (which are not designed for MIA), despite slight improvement to-
wards reducing the generalization gap, are generally unable to eliminate MIA. In contrast,
recent works design defenses tailored to MIA. A common strategy among such defenses is
adversarial training [66, 65], where a surrogate attack model (represented as a NN) is used
to approximate the real attack and subsequently the target model is modified to maximize
prediction errors of the surrogate attacker via adversarial training. This strategy contributes
to remarkable success in defending NN-based attacks [148, 87]. However, these methods
are greatly restricted by strong assumptions on attack models, thereby failing to generalize
to novel attacks unanticipated by the defender (e.g., a simple metric-based attack) [195]. In
order to defend attacks beyond the surrogate one, differentially private (DP) training tech-
niques [1, 158, 159] that provide strict guarantees against MIA are exploited. Nevertheless, as
evidenced by [170, 87, 74, 86, 34, 97], incorporating DP constraints inevitably compromises
model utility and increases computation cost.

In this paper, we present an effective defense against MIAs while avoiding negative impacts
on the defender’s model utility. Our approach is built on two main insights: (i) the optimal
attack only depends on the sample loss under mild assumptions of the model parameters [180];
(ii) a large difference between the training loss and the testing loss provably causes high
membership privacy risks [244]. By intentionally ‘relaxing’ the target training loss to a level
which is more achievable for the test loss, our approach narrows the loss gap and reduces the
distinguishability between the training and testing loss distributions, effectively preventing
various types of attacks in practice. Moreover, our approach allows for a utility-preserving
(or even improving) defense, greatly improving upon previous results. As a practical benefit,
our approach is easy to implement and can be integrated into any classification models with
minimal overhead.

Contributions. In summary, we make the following contributions:

• We propose RelaxLoss, a simple yet effective defense mechanism to strengthen a target
model’s resilience against MIAs without degrading its utility. To the best of our knowledge,
our approach for the first time addresses a wide range of attacks while preserving (or even
improving) the model utility.

• We derive our method from a Bayesian optimal attacker and provide both empirical and
analytical evidence supporting the main principles of our approach.

• Extensive evaluations on five datasets with diverse modalities demonstrate that our method
outperforms state-of-the-art approaches by a large margin in membership inference protec-
tion and privacy-utility trade-off.
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6.2 Related Work

Membership Inference Attack. Inferring membership information from deep NNs has been
investigated in various application scenarios, ranging from the white-box setting where the
whole target model is released [149, 174] to the black-box setting where the complete/partial
output predictions are accessible to the adversary [188, 183, 244, 180, 195, 38, 84, 217]. An ad-
versary first determines the most informative features (depending on the application scenarios)
that faithfully reflect the sample membership (e.g., logits/posterior predictions [188, 183, 87],
loss values [244, 180], and gradient norms [149, 174]), and subsequently extracts common
patterns in these features among the training samples for identifying membership. In this work,
we work towards an effective defense by suppressing the common patterns that an optimal
attack relies on.

Defense. Existing defense mechanisms against MIA are mainly divided into three main
categories: (i) regularization techniques to alleviate model overfitting, (ii) adversarial training
to confuse surrogate attackers, and (iii) a differentially private mechanism offering rigorous
privacy guarantees. Our proposed approach can be regarded as a regularization technique
owing to its effect in reducing generalization gap. Unlike previous regularization techniques,
our method is explicitly tailored towards defending MIAs by reducing the information that
an attacker can exploit, leading to significantly better defense effectiveness. Algorithmically,
our approach shares similarity with techniques that suppress the target model’s confidence
score predictions (e.g., label-smoothing [68, 146] and confidence-penalty [163]), but ours is
fundamentally different in the sense that we modulate the loss distribution with gradient
ascent.

Previous state-of-the-art defense mechanisms against MIA, such as Memguard [87] and
Adversarial Regularization [148], are built on top of the idea of adversarial training [66,
65]. Such approaches usually rely on strong assumptions about attack models, making
their effectiveness highly dependent on the similarity between the surrogate and the real
attacker [195]. In contrast, our method does not rely on any assumptions about the attack
model, and has shown consistent effectiveness across different attacker types.

Differential privacy [51, 53, 1, 158] provides strict worst-case guarantees against arbitrarily
powerful attackers that exceed practical limits, but inevitably sacrifices model utility [170, 87,
74, 34, 97, 86] and meanwhile increases computation burden [64, 41]. In contrast, we focus on
practically realizable attacks for utility-preserving and computationally efficient defense.

6.3 Preliminaries

Notations. We denote by zi = (xi, yi) one data sample, where xi and yi are the feature and
the one-hot label vector, respectively. f (· ; θ) represents a classification model parametrized by
θ, and p = f (x; θ) ∈ [0, 1]C denotes the predicted posterior scores (after the final softmax layer)
where C denotes the number of classes. 1 denotes the indicator function, i.e., 1[p] equals 1 if
the predicate p is true, else 0. We use subscripts for sample index and superscripts for class
index.

Attacker’s Assumptions. We consider the standard setting of MIA: the attacker has access
to a query set S = {(zi, mi)}N

i=1 containing both member (training) and non-member (testing)
samples drawn from the same data distribution Pdata, where mi is the membership attribute
(mi = 1 if zi is a member). The task is to infer the value of the membership attribute mi
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associated with each query sample zi. We design defense for a general attack with full access
to the target model. The attack A(zi, f (·; θ)) is a binary classifier which predicts mi for a
given query sample zi and a target model parametrized by θ. The Bayes optimal attack
Aopt(zi, f (·; θ)) will output 1 if the query sample is more likely to be contained in the training
set, based on the real underlying membership probability P(mi = 1|zi, θ), which is usually
formulated as a non-negative log ratio:

Aopt(zi, f (·; θ)) = 1

[
log

P(mi = 1|zi, θ)

P(mi = 0|zi, θ)
≥ 0

]
(6.1)

Defender’s Assumptions. We closely mimic an assumption-free scenario in designing our
defense method. In particular, we consider a knowledge-limited defender which: (i) does not
have access to additional public (unlabelled) training data (in contrast to [158, 159]); and (ii)
lacks prior knowledge of the attack strategy (in contrast to [87, 148]). For added rigor, we also
study attacker’s countermeasures to our defense in Section 6.6.4.

6.4 RelaxLoss

The ultimate goal of the defender is two-fold: (i) privacy: reducing distinguishability of member
and non-member samples; (ii) utility: avoiding the sacrifice of the target model’s performance.
We hereby introduce each component of our method targeting at privacy (Section 6.4.1) and
utility (Section 6.4.2).

6.4.1 Privacy: Reduce Distinguishability via Relaxed Target Loss

We begin by exploiting the dependence of attack success rate on the sample loss [244, 180].
In particular, a large gap in the expected loss values on the member and non-member data,
i.e., E[ℓ]non −E[ℓ]mem, is proved to be sufficient for conducting attacks [244]. Along this line,
[180] further show that the Bayes optimal attack only depends on the sample loss under a mild
posterior assumption of the model parameter: P(θ|z1, .., zn) ∝ e−

1
T ∑N

i=1 mi ·ℓ(θ,zi)2. Formally,

Aopt(zi, f (·; θ)) = 1[−ℓ(θ, zi) > τ(zi)] (6.2)

where τ denotes a threshold function 3. Intuitively, Equation 6.2 shows that zi is likely to be
used for training if the target model exhibits small loss value on it. These results motivate
our approach to mitigate MIAs by reducing distinguishablitiy between the member and
non-member loss distributions.

Relaxing Loss Target with Gradient Ascent Directly operating on member and non-member
loss distributions, however, is impractical, since the exact distributions are intractable and a
large amount of additional hold-out samples are required for estimating the distribution of
non-member data. In order to bypass these issues and reduce the distinguishability between
the member and non-member loss distributions, we propose to simplify the problem by
considering the mean of the loss distributions, and subsequently set a more achievable mean

2This corresponds to a Bayesian perspective, i.e., θ is regarded as a random variable that minimizes the empirical
risk ∑N

i=1 mi · ℓ(θ, zi). T is the temperature that captures the stochasticity.
3We summarize both the strategy MALT and MAST from [180] in Equation 6.2, where τ is a constant function for
MALT.
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value for the target loss, where the loss target is relaxed to a level that is easier to be achieved
for the non-member data.

Algorithmically, instead of pursuing zero training loss of the target model, we relax the
target mean loss value α to be larger than zero and apply a gradient ascent step as long as the
average loss of the current batch is smaller than α.

Algorithm 2: RelaxLoss

Input: Dataset {(xi, yi)}N
i=1, training epochs E, learning rates τ, batch size B, number of

output classes C, target loss value α
Output: Model f (·; θ) with parameters θ
Initialize model parameter θ ;
for epoch in {1, ..., E} do

for batch_index in {1, ..., K} do
Get sample batch {(xi, yi)}B

i=1
Perform forward pass: pi = f (xi; θ)
Compute cross entropy loss L(θ) on the batch
if L(θ) ≥ α then

// gradient descent
θ← θ− τ · ∇L(θ)

else
if epoch %2 = 0 then

// gradient ascent
θ← θ+ τ · ∇L(θ)

else
// posterior flattening
Construct softlabel ti with

tc
i =

{
pc

i if yc
i = 1

(1− pc
i )/(C− 1) otherwise

Compute cross entropy loss with the softlabel: a)
ℓ(θ, zi) = −∑C

c=1 sg[tc
i ] log pc

i L(θ) = 1
B ∑B

i=1 ℓ(θ, zi)
Update model parameters: θ← θ− τ∇L(θ)

end
end

end
end
return model f (· ; θ)

asg stands for the stopgradient operator that is defined as identity at forward pass and has zero partial derivatives,
i.e., ti is a non-updated constant.

6.4.2 Utility: Apply Posterior Flattening and Normal Gradient Operations

With the relaxed target loss, the predicted posterior score of the ground-truth class pgt is no
longer maximized towards 1. If the probability mass of all non-ground-truth classes 1− pgt

concentrates on only few of them (e.g., hard samples that are close to the decision boundary
between two classes), it is very likely that one non-ground-truth class has a score larger than
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Figure 6.1: Loss histograms on CIFAR-10 with ResNet20 architecture when applying (a) vanilla
training, (b) our method with α = 0.5, and (c) our method with α = 1.0. The empirical mean
and variance of the loss distributions are shown in the figure. The AUC of a loss thresholding
attack equals to 0.84 in (a), 0.67 in (b), and 0.57 in (c). We observe that our method fits the
target mean (Section 6.4.1), increases the variance of the training loss distribution and reduces
the distinguishability between member and non-member distributions (Section 6.5).

pgt (i.e., maxc,c ̸=gt pc > pgt), thus leading to incorrect predictions. To address this issue, we
propose to encourage a large margin between the prediction score of the ground-truth-class
and the others by flattening the target posterior scores for non-ground-truth classes. Specifically,
we dynamically construct softlabels during each epoch by: (i) retaining the score of the ground-
truth class, i.e., the current predicted value pgt, and (ii) re-allocating the remaining probability
mass evenly to all non-ground-truth classes.

In summary, we run a repetitive training strategy to balance privacy and utility, which
consists of two steps: (i) if the model is not well-trained, i.e., the current loss is larger than the
target mean value α, we run a normal gradient descent step; (ii) otherwise, we apply gradient
ascent or the posterior flattening step (See Algorithm 2).

6.5 Analytical Insights

In this section, we analyze the key properties that explain the effectiveness of RelaxLoss.
We provide both analytical and empirical evidence showing that RelaxLoss can (i) reduce
the generalization gap, and (ii) increase the variance of the training loss distribution, both
contributing to mitigating MIAs.

RelaxLoss reduce the generalization gap. We apply RelaxLoss to CIFAR-10 dataset and plot
the resulting loss histograms in Figure 6.1. With a more achievable learning target, RelaxLoss
blurs the gap between the member and non-member loss distributions (Figure 6.1), which
naturally leads to a narrowed generalization gap (Appendix Figure E.1) and reduced privacy
leakage [244].

RelaxLoss increases the variance of the training loss distribution. We observe that RelaxLoss
spreads out the training loss distribution (i.e., increase the variance) due to its gradient ascent
step (Appendix E.1.1): large loss samples tend to have a more significant increase in its loss
value during the gradient ascent step (See Figure 6.2 for demonstration). In contrast, except DP-
SGD, existing defense methods do not have this property (Appendix E.3.9). Intuition suggests
that the increase of training loss variance suppresses the common pattern among training
losses and reduces the information that can be exploited by an attacker, thus contributing
to the protection against attacks. To verify the association between the variance increasing
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member

non-member

member

non-member

<latexit sha1_base64="am6CKLf/R9zmNT1K2ny8pNrrqL0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhN7JbDJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWasjpVQulWhIYJLlndcitYK9UMk0iwZjS8nfrNJ6YNV/LBjlIWJtiXPOYUrZMaHRTpALulsl/xZyDLJMhJGXLUuqWvTk/RLGHSUoHGtAM/teEYteVUsEmxkxmWIh1in7UdlZgwE45n107IqVN6JFbalbRkpv6eGGNizCiJXGeCdmAWvan4n9fObHwdjrlMM8sknS+KM0GsItPXSY9rRq0YOYJUc3croQPUSK0LqOhCCBZfXiaN80pwWfHvL8rVmzyOAhzDCZxBAFdQhTuoQR0oPMIzvMKbp7wX7937mLeuePnMEfyB9/kDjNOPHA==</latexit>α

<latexit sha1_base64="vpYpJzy8EWdAKuv7X6pGXxWe8v4=">AAACBXicbVBNS8NAEN34WetX1KMeFotQLyURRY9FETxWsB/QhLLZTtulm03c3Qgl9OLFv+LFgyJe/Q/e/Ddu2hy09cHA470ZZuYFMWdKO863tbC4tLyyWlgrrm9sbm3bO7sNFSWSQp1GPJKtgCjgTEBdM82hFUsgYcChGQyvMr/5AFKxSNzpUQx+SPqC9Rgl2kgd+8ALiR4EQXo9LnvA+TH2ONxjj/B4QDp2yak4E+B54uakhHLUOvaX141oEoLQlBOl2q4Taz8lUjPKYVz0EgUxoUPSh7ahgoSg/HTyxRgfGaWLe5E0JTSeqL8nUhIqNQoD05ndrGa9TPzPaye6d+GnTMSJBkGni3oJxzrCWSS4yyRQzUeGECqZuRXTAZGEahNc0YTgzr48TxonFfes4tyelqqXeRwFtI8OURm56BxV0Q2qoTqi6BE9o1f0Zj1ZL9a79TFtXbDymT30B9bnD5Dhl/g=</latexit>

E(`) ≤ ↵

<latexit sha1_base64="am6CKLf/R9zmNT1K2ny8pNrrqL0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhN7JbDJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWasjpVQulWhIYJLlndcitYK9UMk0iwZjS8nfrNJ6YNV/LBjlIWJtiXPOYUrZMaHRTpALulsl/xZyDLJMhJGXLUuqWvTk/RLGHSUoHGtAM/teEYteVUsEmxkxmWIh1in7UdlZgwE45n107IqVN6JFbalbRkpv6eGGNizCiJXGeCdmAWvan4n9fObHwdjrlMM8sknS+KM0GsItPXSY9rRq0YOYJUc3croQPUSK0LqOhCCBZfXiaN80pwWfHvL8rVmzyOAhzDCZxBAFdQhTuoQR0oPMIzvMKbp7wX7937mLeuePnMEfyB9/kDjNOPHA==</latexit>α

<latexit sha1_base64="vpYpJzy8EWdAKuv7X6pGXxWe8v4=">AAACBXicbVBNS8NAEN34WetX1KMeFotQLyURRY9FETxWsB/QhLLZTtulm03c3Qgl9OLFv+LFgyJe/Q/e/Ddu2hy09cHA470ZZuYFMWdKO863tbC4tLyyWlgrrm9sbm3bO7sNFSWSQp1GPJKtgCjgTEBdM82hFUsgYcChGQyvMr/5AFKxSNzpUQx+SPqC9Rgl2kgd+8ALiR4EQXo9LnvA+TH2ONxjj/B4QDp2yak4E+B54uakhHLUOvaX141oEoLQlBOl2q4Taz8lUjPKYVz0EgUxoUPSh7ahgoSg/HTyxRgfGaWLe5E0JTSeqL8nUhIqNQoD05ndrGa9TPzPaye6d+GnTMSJBkGni3oJxzrCWSS4yyRQzUeGECqZuRXTAZGEahNc0YTgzr48TxonFfes4tyelqqXeRwFtI8OURm56BxV0Q2qoTqi6BE9o1f0Zj1ZL9a79TFtXbDymT30B9bnD5Dhl/g=</latexit>

E(`) ≤ ↵

large

<latexit sha1_base64="am6CKLf/R9zmNT1K2ny8pNrrqL0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhN7JbDJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWasjpVQulWhIYJLlndcitYK9UMk0iwZjS8nfrNJ6YNV/LBjlIWJtiXPOYUrZMaHRTpALulsl/xZyDLJMhJGXLUuqWvTk/RLGHSUoHGtAM/teEYteVUsEmxkxmWIh1in7UdlZgwE45n107IqVN6JFbalbRkpv6eGGNizCiJXGeCdmAWvan4n9fObHwdjrlMM8sknS+KM0GsItPXSY9rRq0YOYJUc3croQPUSK0LqOhCCBZfXiaN80pwWfHvL8rVmzyOAhzDCZxBAFdQhTuoQR0oPMIzvMKbp7wX7937mLeuePnMEfyB9/kDjNOPHA==</latexit>α

<latexit sha1_base64="JgbctiS+nxKtxSXfE8D4c6RsYJ8=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9BjUg8cI5gHZJcxOepMhsw9nZgNhk+/w4kERr36MN//GSbIHTSxoKKq66e7yE8GVtu1va2V1bX1js7BV3N7Z3dsvHRw2VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wO/WbQ5SKx9GjHiXohbQX8YAzqo3kjd07FJoSF4UYd0plu2LPQJaJk5My5Kh1Sl9uN2ZpiJFmgirVduxEexmVmjOBk6KbKkwoG9Aetg2NaIjKy2ZHT8ipUbokiKWpSJOZ+nsio6FSo9A3nSHVfbXoTcX/vHaqg2sv41GSaozYfFGQCqJjMk2AdLlEpsXIEMokN7cS1qeSMm1yKpoQnMWXl0njvOJcVuyHi3L1Jo+jAMdwAmfgwBVU4R5qUAcGT/AMr/BmDa0X6936mLeuWPnMEfyB9fkDkRCR9w==</latexit>|∆`|

large
<latexit sha1_base64="JgbctiS+nxKtxSXfE8D4c6RsYJ8=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9BjUg8cI5gHZJcxOepMhsw9nZgNhk+/w4kERr36MN//GSbIHTSxoKKq66e7yE8GVtu1va2V1bX1js7BV3N7Z3dsvHRw2VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wO/WbQ5SKx9GjHiXohbQX8YAzqo3kjd07FJoSF4UYd0plu2LPQJaJk5My5Kh1Sl9uN2ZpiJFmgirVduxEexmVmjOBk6KbKkwoG9Aetg2NaIjKy2ZHT8ipUbokiKWpSJOZ+nsio6FSo9A3nSHVfbXoTcX/vHaqg2sv41GSaozYfFGQCqJjMk2AdLlEpsXIEMokN7cS1qeSMm1yKpoQnMWXl0njvOJcVuyHi3L1Jo+jAMdwAmfgwBVU4R5qUAcGT/AMr/BmDa0X6936mLeuWPnMEfyB9fkDkRCR9w==</latexit>|∆`|

<latexit sha1_base64="am6CKLf/R9zmNT1K2ny8pNrrqL0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhN7JbDJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWasjpVQulWhIYJLlndcitYK9UMk0iwZjS8nfrNJ6YNV/LBjlIWJtiXPOYUrZMaHRTpALulsl/xZyDLJMhJGXLUuqWvTk/RLGHSUoHGtAM/teEYteVUsEmxkxmWIh1in7UdlZgwE45n107IqVN6JFbalbRkpv6eGGNizCiJXGeCdmAWvan4n9fObHwdjrlMM8sknS+KM0GsItPXSY9rRq0YOYJUc3croQPUSK0LqOhCCBZfXiaN80pwWfHvL8rVmzyOAhzDCZxBAFdQhTuoQR0oPMIzvMKbp7wX7937mLeuePnMEfyB9/kDjNOPHA==</latexit>α
<latexit sha1_base64="9UEdTd8bfRDEEFt4h/269qNgL9M=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBEEoSRS1GVRFy4r2Ac0oUymN+3QySTMTMQS+ituXCji1h9x5984abPQ1gMXzpxzL3PvCRLOlHacb2tldW19Y7O0Vd7e2d3btw8qbRWnkkKLxjyW3YAo4ExASzPNoZtIIFHAoROMb3K/8whSsVg86EkCfkSGgoWMEm2kvl3xgHN8hr1b4Jrg/NW3q07NmQEvE7cgVVSg2be/vEFM0wiEppwo1XOdRPsZkZpRDtOylypICB2TIfQMFSQC5Wez3af4xCgDHMbSlNB4pv6eyEik1CQKTGdE9Egtern4n9dLdXjlZ0wkqQZB5x+FKcc6xnkQeMAkUM0nhhAqmdkV0xGRhGoTV9mE4C6evEza5zX3ola/r1cb10UcJXSEjtEpctElaqA71EQtRNETekav6M2aWi/Wu/Uxb12xiplD9AfW5w9t+JNr</latexit>

` + ∆`

<latexit sha1_base64="9UEdTd8bfRDEEFt4h/269qNgL9M=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBEEoSRS1GVRFy4r2Ac0oUymN+3QySTMTMQS+ituXCji1h9x5984abPQ1gMXzpxzL3PvCRLOlHacb2tldW19Y7O0Vd7e2d3btw8qbRWnkkKLxjyW3YAo4ExASzPNoZtIIFHAoROMb3K/8whSsVg86EkCfkSGgoWMEm2kvl3xgHN8hr1b4Jrg/NW3q07NmQEvE7cgVVSg2be/vEFM0wiEppwo1XOdRPsZkZpRDtOylypICB2TIfQMFSQC5Wez3af4xCgDHMbSlNB4pv6eyEik1CQKTGdE9Egtern4n9dLdXjlZ0wkqQZB5x+FKcc6xnkQeMAkUM0nhhAqmdkV0xGRhGoTV9mE4C6evEza5zX3ola/r1cb10UcJXSEjtEpctElaqA71EQtRNETekav6M2aWi/Wu/Uxb12xiplD9AfW5w9t+JNr</latexit>

` + ∆`

(a) Vanilla gradient descent

member

non-member

member

non-member

<latexit sha1_base64="am6CKLf/R9zmNT1K2ny8pNrrqL0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhN7JbDJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWasjpVQulWhIYJLlndcitYK9UMk0iwZjS8nfrNJ6YNV/LBjlIWJtiXPOYUrZMaHRTpALulsl/xZyDLJMhJGXLUuqWvTk/RLGHSUoHGtAM/teEYteVUsEmxkxmWIh1in7UdlZgwE45n107IqVN6JFbalbRkpv6eGGNizCiJXGeCdmAWvan4n9fObHwdjrlMM8sknS+KM0GsItPXSY9rRq0YOYJUc3croQPUSK0LqOhCCBZfXiaN80pwWfHvL8rVmzyOAhzDCZxBAFdQhTuoQR0oPMIzvMKbp7wX7937mLeuePnMEfyB9/kDjNOPHA==</latexit>α

<latexit sha1_base64="vpYpJzy8EWdAKuv7X6pGXxWe8v4=">AAACBXicbVBNS8NAEN34WetX1KMeFotQLyURRY9FETxWsB/QhLLZTtulm03c3Qgl9OLFv+LFgyJe/Q/e/Ddu2hy09cHA470ZZuYFMWdKO863tbC4tLyyWlgrrm9sbm3bO7sNFSWSQp1GPJKtgCjgTEBdM82hFUsgYcChGQyvMr/5AFKxSNzpUQx+SPqC9Rgl2kgd+8ALiR4EQXo9LnvA+TH2ONxjj/B4QDp2yak4E+B54uakhHLUOvaX141oEoLQlBOl2q4Taz8lUjPKYVz0EgUxoUPSh7ahgoSg/HTyxRgfGaWLe5E0JTSeqL8nUhIqNQoD05ndrGa9TPzPaye6d+GnTMSJBkGni3oJxzrCWSS4yyRQzUeGECqZuRXTAZGEahNc0YTgzr48TxonFfes4tyelqqXeRwFtI8OURm56BxV0Q2qoTqi6BE9o1f0Zj1ZL9a79TFtXbDymT30B9bnD5Dhl/g=</latexit>

E(`) ≤ ↵

<latexit sha1_base64="am6CKLf/R9zmNT1K2ny8pNrrqL0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhN7JbDJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWasjpVQulWhIYJLlndcitYK9UMk0iwZjS8nfrNJ6YNV/LBjlIWJtiXPOYUrZMaHRTpALulsl/xZyDLJMhJGXLUuqWvTk/RLGHSUoHGtAM/teEYteVUsEmxkxmWIh1in7UdlZgwE45n107IqVN6JFbalbRkpv6eGGNizCiJXGeCdmAWvan4n9fObHwdjrlMM8sknS+KM0GsItPXSY9rRq0YOYJUc3croQPUSK0LqOhCCBZfXiaN80pwWfHvL8rVmzyOAhzDCZxBAFdQhTuoQR0oPMIzvMKbp7wX7937mLeuePnMEfyB9/kDjNOPHA==</latexit>α

<latexit sha1_base64="vpYpJzy8EWdAKuv7X6pGXxWe8v4=">AAACBXicbVBNS8NAEN34WetX1KMeFotQLyURRY9FETxWsB/QhLLZTtulm03c3Qgl9OLFv+LFgyJe/Q/e/Ddu2hy09cHA470ZZuYFMWdKO863tbC4tLyyWlgrrm9sbm3bO7sNFSWSQp1GPJKtgCjgTEBdM82hFUsgYcChGQyvMr/5AFKxSNzpUQx+SPqC9Rgl2kgd+8ALiR4EQXo9LnvA+TH2ONxjj/B4QDp2yak4E+B54uakhHLUOvaX141oEoLQlBOl2q4Taz8lUjPKYVz0EgUxoUPSh7ahgoSg/HTyxRgfGaWLe5E0JTSeqL8nUhIqNQoD05ndrGa9TPzPaye6d+GnTMSJBkGni3oJxzrCWSS4yyRQzUeGECqZuRXTAZGEahNc0YTgzr48TxonFfes4tyelqqXeRwFtI8OURm56BxV0Q2qoTqi6BE9o1f0Zj1ZL9a79TFtXbDymT30B9bnD5Dhl/g=</latexit>

E(`) ≤ ↵

large

<latexit sha1_base64="am6CKLf/R9zmNT1K2ny8pNrrqL0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhN7JbDJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWasjpVQulWhIYJLlndcitYK9UMk0iwZjS8nfrNJ6YNV/LBjlIWJtiXPOYUrZMaHRTpALulsl/xZyDLJMhJGXLUuqWvTk/RLGHSUoHGtAM/teEYteVUsEmxkxmWIh1in7UdlZgwE45n107IqVN6JFbalbRkpv6eGGNizCiJXGeCdmAWvan4n9fObHwdjrlMM8sknS+KM0GsItPXSY9rRq0YOYJUc3croQPUSK0LqOhCCBZfXiaN80pwWfHvL8rVmzyOAhzDCZxBAFdQhTuoQR0oPMIzvMKbp7wX7937mLeuePnMEfyB9/kDjNOPHA==</latexit>α

<latexit sha1_base64="JgbctiS+nxKtxSXfE8D4c6RsYJ8=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9BjUg8cI5gHZJcxOepMhsw9nZgNhk+/w4kERr36MN//GSbIHTSxoKKq66e7yE8GVtu1va2V1bX1js7BV3N7Z3dsvHRw2VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wO/WbQ5SKx9GjHiXohbQX8YAzqo3kjd07FJoSF4UYd0plu2LPQJaJk5My5Kh1Sl9uN2ZpiJFmgirVduxEexmVmjOBk6KbKkwoG9Aetg2NaIjKy2ZHT8ipUbokiKWpSJOZ+nsio6FSo9A3nSHVfbXoTcX/vHaqg2sv41GSaozYfFGQCqJjMk2AdLlEpsXIEMokN7cS1qeSMm1yKpoQnMWXl0njvOJcVuyHi3L1Jo+jAMdwAmfgwBVU4R5qUAcGT/AMr/BmDa0X6936mLeuWPnMEfyB9fkDkRCR9w==</latexit>|∆`|

large
<latexit sha1_base64="JgbctiS+nxKtxSXfE8D4c6RsYJ8=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9BjUg8cI5gHZJcxOepMhsw9nZgNhk+/w4kERr36MN//GSbIHTSxoKKq66e7yE8GVtu1va2V1bX1js7BV3N7Z3dsvHRw2VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wO/WbQ5SKx9GjHiXohbQX8YAzqo3kjd07FJoSF4UYd0plu2LPQJaJk5My5Kh1Sl9uN2ZpiJFmgirVduxEexmVmjOBk6KbKkwoG9Aetg2NaIjKy2ZHT8ipUbokiKWpSJOZ+nsio6FSo9A3nSHVfbXoTcX/vHaqg2sv41GSaozYfFGQCqJjMk2AdLlEpsXIEMokN7cS1qeSMm1yKpoQnMWXl0njvOJcVuyHi3L1Jo+jAMdwAmfgwBVU4R5qUAcGT/AMr/BmDa0X6936mLeuWPnMEfyB9fkDkRCR9w==</latexit>|∆`|

<latexit sha1_base64="am6CKLf/R9zmNT1K2ny8pNrrqL0=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhN7JbDJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWasjpVQulWhIYJLlndcitYK9UMk0iwZjS8nfrNJ6YNV/LBjlIWJtiXPOYUrZMaHRTpALulsl/xZyDLJMhJGXLUuqWvTk/RLGHSUoHGtAM/teEYteVUsEmxkxmWIh1in7UdlZgwE45n107IqVN6JFbalbRkpv6eGGNizCiJXGeCdmAWvan4n9fObHwdjrlMM8sknS+KM0GsItPXSY9rRq0YOYJUc3croQPUSK0LqOhCCBZfXiaN80pwWfHvL8rVmzyOAhzDCZxBAFdQhTuoQR0oPMIzvMKbp7wX7937mLeuePnMEfyB9/kDjNOPHA==</latexit>α
<latexit sha1_base64="9UEdTd8bfRDEEFt4h/269qNgL9M=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBEEoSRS1GVRFy4r2Ac0oUymN+3QySTMTMQS+ituXCji1h9x5984abPQ1gMXzpxzL3PvCRLOlHacb2tldW19Y7O0Vd7e2d3btw8qbRWnkkKLxjyW3YAo4ExASzPNoZtIIFHAoROMb3K/8whSsVg86EkCfkSGgoWMEm2kvl3xgHN8hr1b4Jrg/NW3q07NmQEvE7cgVVSg2be/vEFM0wiEppwo1XOdRPsZkZpRDtOylypICB2TIfQMFSQC5Wez3af4xCgDHMbSlNB4pv6eyEik1CQKTGdE9Egtern4n9dLdXjlZ0wkqQZB5x+FKcc6xnkQeMAkUM0nhhAqmdkV0xGRhGoTV9mE4C6evEza5zX3ola/r1cb10UcJXSEjtEpctElaqA71EQtRNETekav6M2aWi/Wu/Uxb12xiplD9AfW5w9t+JNr</latexit>

` + ∆`

<latexit sha1_base64="9UEdTd8bfRDEEFt4h/269qNgL9M=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBEEoSRS1GVRFy4r2Ac0oUymN+3QySTMTMQS+ituXCji1h9x5984abPQ1gMXzpxzL3PvCRLOlHacb2tldW19Y7O0Vd7e2d3btw8qbRWnkkKLxjyW3YAo4ExASzPNoZtIIFHAoROMb3K/8whSsVg86EkCfkSGgoWMEm2kvl3xgHN8hr1b4Jrg/NW3q07NmQEvE7cgVVSg2be/vEFM0wiEppwo1XOdRPsZkZpRDtOylypICB2TIfQMFSQC5Wez3af4xCgDHMbSlNB4pv6eyEik1CQKTGdE9Egtern4n9dLdXjlZ0wkqQZB5x+FKcc6xnkQeMAkUM0nhhAqmdkV0xGRhGoTV9mE4C6evEza5zX3ola/r1cb10UcJXSEjtEpctElaqA71EQtRNETekav6M2aWi/Wu/Uxb12xiplD9AfW5w9t+JNr</latexit>

` + ∆`

(b) Gradient ascent

Figure 6.2: Comparison between vanilla gradient descent and the gradient ascent step in
RelaxLoss (demonstrated in 2D). The loss contour lines are plotted in the figure, the bottom
part of which corresponds to a low loss region. The target loss level α is visualized in the figure.
Training with vanilla gradient descent step results in near zero loss for member samples, and
large loss values for non-member samples. In contrast, a large loss value ℓ tends to trigger large
update |∆ℓ| during the gradient ascent step. As a result, RelaxLoss spreads out the training
loss distribution and blurs the gap between the distributions (Section 6.5).
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Figure 6.3: Correlation between the training set loss variance and the MIA performance on
CIFAR-10 (ResNet20). Each point in the figure corresponds to one target model trained with
different defense mechanisms. The Pearson’s correlation coefficients equal to: (a) -0.77 for
black-box attacks; (b) -0.94 for white-box attacks; and -0.85 if considering black-box and white-
box attacks together.

effect and the defense effectiveness, we conduct experiments on CIFAR-10 dataset and measure
the Pearson’s correlation coefficients between the training loss variance and the attack AUC
(Figure 6.3). With an overall score of -0.85 (-0.77 and -0.94 for black-box and white-box
attacks, respectively), we conclude a fairly strong negative relationship. When considering a
typical Gaussian assumption of the loss distributions [244, 114], we further show this variance
increasing property helps to lower an upper bound of the attack AUC, and provide formal
analysis in Appendix E.1.2.
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6.6 Experiments

In this section, we rigorously evaluate the effectiveness of our defense across a wide range of
datasets with diverse modalities, various strong attack models, and eight defense baselines
representing the previous state of the art.

6.6.1 Experimental Setup

Settings. We set up seven target models, trained on five datasets (CIFAR-10, CIFAR-100, CH-
MNIST, Texas100, Purchase100) with diverse modalities (natural and medical images, medical
records, and shopping histories). For image datasets, we adopt a 20-layer ResNet [76] and an
11-layer VGG [190]; and for non-image datasets, we adopt MLPs with the same architecture
and same training protocol as in previous works [148, 87]. We evenly split each dataset into
five folds and use each fold as the training/testing set for the target/shadow model4, and use
the last fold for training the surrogate attack model (for [87, 188]). We fix the random seed
and training setting for a fair comparison among different defense methods. See Appendix E.2
for implementation details.

Attack methods. To broadly handle attack methods in our defense evaluation, we consider
attacks in a variety of application scenarios (black-box and white-box) and strategies. We consider
the following state-of-the-art attacks from two categories: (i) White-box attacks: Both [149, 174]
are based on gradient norm thresholding. We denote these attacks by the type of gradient
followed by its norm. Grad-x and Grad-w stand for the gradient w.r.t. the input and the
model parameters, respectively; (ii) Black-box attacks: [183] (denoted as NN, standing for the
proposed neural network attack model). We adopt the implementation provided by [87] and
use the complete logits prediction as input to the attacker. [180] (denoted as Loss for their
loss thresholding method). We use a general threshold independent of the query sample,
as the adaptive thresholding version is more expensive computational-wise with no or only
marginal improvements. [195] (denoted as Entropy and M-Entropy for their proposed attack
by thresholding the prediction entropy and a modified version, respectively.). We exclude
attacks that only use partial output predictions (e.g., top-1 predicted label) from our evaluation
as they are strictly weaker than the attacks we include above [38].

Evaluation metrics We evaluate along two fronts: utility (measured by test accuracy of the
victim model) and privacy. For privacy, in line with previous works [195, 87, 180, 188, 148, 183],
we consider the following two metrics: (i) attack accuracy: We evaluate the attack accuracy
on a balanced query set, where a random guessing baseline corresponds to 50% accuracy. For
threshold-based attack methods, following [195], we select the threshold value to be the one
with the best attack accuracy on the shadow model and shadow dataset; (ii) attack AUC: The
area under the receiver operating characteristic curve (AUC), corresponding to an integral
over all possible threshold values, represents the degree of separability. A perfect defense
mechanism corresponds to AUC=0.5.
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(b) CIFAR-100

Figure 6.4: Comparisons of all defense mechanisms on CIFAR-10 and CIFAT-100 dataset with
ResNet20 architecture. Each subplot corresponds to one attack method. The x-axis corresponds
to the attack AUC (the lower the better) while the y-axis is the target model’s test accuracy (the
higher the better). For visualization purposes, we plot the ideal defense on the top-left corner,
whose x-coordinate equals 0.5 and y-coordinate is set to be the highest test accuracy among all
models.

6.6.2 Comparison to Baselines

Defense Baselines. We consider two state-of-the-art defense methods: Memguard [87] and
Adversarial regularization (Adv-Reg) [148]. Additionally, we compare to five regularization
methods: Early-stopping, Dropout [199], Label-smoothing [68, 146], Confidence-penalty [163]
and (Self-)Distillation [79, 255]. Moreover, we compare to differential private mechanism, i.e.,
Differentially private stochastic gradient descent (DP-SGD) [1]5. We exclude defenses that
additionally require public (unlabelled) data [158, 159] for training the target model from our
evaluation.

Privacy-utility trade-off. We vary the hyperparameters that best describe the privacy-utility
trade-off of each method across their effective ranges (See Appendix E.2 for details) and
plot the corresponding privacy-utility curves. We set the attack AUC value (privacy) as x-
axis and the target model’s performance (utility) as the y-axis. A better defense exhibits a
privacy-utility curve approaching the top-left corner, i.e., high utility and low privacy risk.
As shown in Figure 6.4(a) and 6.4(b) (and Appendix Figure E.3-E.7), we observe that our
method improves the privacy-utility trade-off over baselines for almost all cases: (i) Previous
state-of-the-art defenses (Memguard and Adv-Reg) are effective for the NN attack, but can
hardly generalize to the other types of attack, which is also verified in [195]. Moreover, as a
test-time defense, Memguard is not applicable to white-box attacks. In contrast, our method
is consistently effective irrespective of the attack model and applicable to all types of attacks.

4Shadow models are used for training the attack models in the NN-based attack and selecting the optimal threshold
for all metric-based attacks.

5In line with previous work [38], we adopt small noise scale (<0.5) for maintaining target model’s utility at a decent
level, which leads to meaninglessly large ϵ values.
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(a)
Dataset Ntrain

CIFAR-10 12000

CIFAR-100 12000

CH-MNIST 1000

Texas100 13466

Purchase100 39465

(b)
CIFAR10

(ResNet20)
CIFAR10

(VGG11)
CIFAR100

(ResNet20)
CIFAR100

(VGG11)
CH-MNIST Texas100 Purchase100

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
wo defense 70.5 96.6 73.8 97.0 33.2 63.0 41.4 67.5 77.1 99.6 52.3 82.6 89.1 99.8

with defense 73.8 98.2 74.4 97.8 35.1 67.7 41.4 69.9 78.4 99.7 55.3 86.8 89.1 99.6
∆ 4.68 1.66 0.81 0.82 5.72 7.46 0.00 3.56 1.69 0.10 5.74 5.08 0.00 -0.20

Table 6.1: (a) Size of the target model’s training set. (b) Target model’s test accuracy (in %)
with and without (wo) applying our defense. The relative difference (∆) is in % and the increase
is highlighted in green and decrease in red . See Appendix E.3.2 for more details.

(ii) In comparison with other regularization methods, our method showcases significantly
better defense effectiveness. Specifically, when compared with Early-stopping, the generally
most effective regularization-based defense baseline, our approach decreases the attack AUC
(i.e., relative percentage change) by up to 26% on CIFAR-10 and 46% on CIFAR-100 for a
same level of utility. (iii) DP-SGD is generally the most effective defense baseline, despite the
meaningless large ϵ values, which is consistent with [38]. In comparison with DP-SGD, our
method improves the target model’s test accuracy by around 16% on CIFAR-10 and 12% on
CIFAR-100 (relative percentage increase) across different privacy levels. (iv) (See detailed results
in Appendix E.3.8) Our approach is the only one that exhibit consistent defense effectiveness
across various data modalities and model architectures, while the best baseline methods
can only show effectiveness for at most one data modality (e.g., DP-SGD for images, and
Label-smoothing for transaction records).

6.6.3 RelaxLoss Vs. Attacks

As can be seen from the privacy-utility curves in Figure 6.4 and Appendix E.3.8, our approach
is the only one that can consistently defend various MIAs without sacrificing the model utility.
We then evaluate to what extend the attacks can be defended without loss in the model utility. To this
end, we select α corresponds to the model with the lowest privacy risk (lowest attack AUC
averaged over all attacks), under the constraint that the defended model achieve a top-1 test
accuracy not worse than the undefended model.

Utility. Table 6.1 summarizes the test accuracy of target models defended with our method.
Compared with vanilla training, our method achieves a consistent improvement (up to 7.46%)
in terms of utility across different datasets and model architectures, albeit a 0.2% accuracy drop
for a saturated top-5 accuracy (99.6% compared to 99.8%).

Privacy. Figure 6.5 shows the membership privacy risk (AUC) of the target models in Table 6.1.
We observe that our method is consistently effective for all types of attacks, datasets, and model
architectures. In particular, our method consistently reduces the attack AUC: (i) to <0.6 for all
non-image datasets; (ii) from 0.7 to 0.55 for CH-MNIST; (iii) from >0.8 to 0.55 for CIFAR-10

(R) and from >0.9 to <0.6 for CIFAR-100 (R). We also include the attack accuracy values in
Appendix Table E.3, which shows our method reduces most attacks to a random-guessing
level. We thus conclude that our method improves both target models’ utility as well as their
resilience against MIAs.
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Figure 6.5: Attack AUC on target models trained with and without (wo) applying our defense
method. Each subplot is titled with the corresponding attack method’s name. (R) and (V)
denotes ResNet and VGG network, respectively. The corresponding target model’s utility is
shown in Table 6.1.

6.6.4 Adaptive Attack

We further analyze the robustness of our method against attack’s countermeasures. Namely, we
consider the situations where attackers have full knowledge about our defense mechanism and
the selected hyperparameters, and have tailored the attacks to our defense method. We simulate
the adaptive attacks by: (i) training shadow models with the same configuration used for
training our defended target models in Table 6.1, (ii) simulating the adaptive attacks using the
calibrated shadow models. We report the highest attack accuracy (i.e., worst-case privacy risk)
among different adaptive attacks in Table 6.2 (See Appendix E.3.3 for details). We observe that
despite being less effective in defending against adaptive attacks than non-adaptive attacks, our
method still greatly decreases the highest adaptive attacker’s accuracy by 13.6%-37.6% compared
to vanilla training.

CIFAR10

(ResNet20)
CIFAR10

(VGG11)
CIFAR100

(ResNet20)
CIFAR100

(VGG11)
CH-MNIST Texas100 Purchase100

w/o defense 87.3 80.7 92.6 97.5 67.1 79.0 65.7
w/ defense (non-adaptive) 50.0 50.0 50.0 50.0 50.7 50.0 50.1
∆ (non-adaptive) -42.7 -38.0 -46.0 -48.7 -24.4 -36.7 -23.9
w/ defense (adaptive) 56.0 68.2 57.8 84.2 56.6 53.8 56.0
∆ (adaptive) -35.9 -15.5 -37.6 -13.6 -15.6 -31.9 -14.8

Table 6.2: The highest attack accuracy (in %) among different adaptive attacks (and the
corresponding non-adaptive attack accuracy is shown for reference) evaluated on the target
model with (w/) or without (w/o) defense. ∆ corresponds to the relative difference (in %)
in attack accuracy when applying our defense compared to vanilla training. The used target
models are the same as in Table 6.1.
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6.6.5 Ablation Study

We study the impact of each component of our approach and plot the results in Figure 6.6. We
observe that while applying posterior flattening alone (without gradient ascent) has limited
effects, using it together with gradient ascent indeed improves the model’s test accuracy across
a wide range of attack AUC, which validates the necessity of all components of our method.
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Figure 6.6: Ablation study on CIFAR-100 with ResNet architecture. We validate the necessity
of our gradient ascent (Section 6.4.1) and posterior flattening step (Section 6.4.2)

6.7 Discussion

Properties of RelaxLoss. RelaxLoss enjoys several properties which explain its superiority
over existing defense methods. In particular, we provide empirical and analytical evidence
showing that in contrast to most existing methods (Appendix E.3.9), RelaxLoss reduces the
generalization gap and spreads out the training loss distributions (Section 6.5), thereby effec-
tively defeating MIAs. Moreover, we observe that RelaxLoss soften the decision boundaries
(Appendix E.3.10), which contributes to improving model generalization [253, 163].

Practicality. We consider the practicality of our method from the following aspects: (i)
Hyperparameter tuning: Our method involves a single hyperparameter α that controls the
trade-off between privacy and utility. A fine-grained grid search on a validation set (i.e., first
estimating the privacy-utility trade-off with varying value of α, and subsequently selecting
the α corresponding to the desired privacy/utility level) allows precise control over the
expected privacy/utility level of the target model. (ii) Computation cost: Our method incurs
negligible additional computation cost when compared with backpropagation in vanilla training
(Appendix E.3.6). In contrast, baseline methods generally suffer from a larger computation
burden. For instance, Memguard slows down the inference due to its test-time optimization
step, while the training speed of DP-SGD and Adv-Reg is greatly hindered by per-sample
gradient computation [64, 41] and adversarial update step, respectively.

6.8 Conclusion

In this paper, we present RelaxLoss, a novel training scheme that is highly effective in protecting
against privacy attacks while improving the utility of target models. Our primary insight is that
membership privacy risks can be reduced by narrowing the gap between the loss distributions.
We validate the effectiveness of our method on a wide range of datasets and models, and
evidence its superiority when compared with eight defense baselines which represent previous
state of the art. As RelaxLoss exhibits superior protection and performance and is easy to
be implemented in various machine learning models, we expect it to be highly practical and
widely used.



III
Pa r t 3 : A p p l i c at i o n

In this part, we apply the previously discussed privacy-preserving
data generation techniques in Part I to more challenging real-world
applications, while also considering the practical privacy attacks
explored in Part II.

In Chapter 7, we conduct a comprehensive investigation of
DP generation techniques applied to real-world gene expression
data with complex high-dimensional distribution. Specifically, we
introduce an evaluation framework that assesses various aspects of
the synthetic data, including downstream utility, statistical fidelity,
and biological plausibility. We examine a range of representative
methods and present key insights into their advantages, drawbacks,
and implications for potential future improvements.
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Generative models trained with Differential Privacy (DP) are becoming increasingly
prominent in the creation of synthetic data for downstream applications. Existing
literature, however, primarily focuses on basic benchmarking datasets and tends to

report promising results only for elementary metrics and relatively simple data distributions.
In this paper, we initiate a systematic analysis of how DP generative models perform in their
natural application scenarios, specifically focusing on real-world gene expression data. We
conduct a comprehensive analysis of five representative DP generation methods, examining
them from various angles, such as downstream utility, statistical properties, and biological
plausibility.

Our extensive evaluation illuminates the unique characteristics of each DP generation
method, offering critical insights into the strengths and weaknesses of each approach, and
uncovering intriguing possibilities for future developments. Perhaps surprisingly, our analysis
reveals that most methods are capable of achieving seemingly reasonable downstream utility,
according to the standard evaluation metrics considered in existing literature. Nevertheless, we
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find that none of the DP methods are able to accurately capture the biological characteristics of
the real dataset. This observation suggests a potential over-optimistic assessment of current
methodologies in this field and underscores a pressing need for future enhancements in model
design.

This chapter is based on [31]: As a co-first author of [31], Dingfan Chen implemented all
the DP generation methods, conducted the data generation experiments, and was the main
writer of the paper. This paper has been accepted by PETs 2024.

7.1 Introduction

Genomic data is considered a goldmine for medical researchers, enabling them to tackle a wide
array of challenges. These challenges range from identifying patients at risk of specific diseases,
to developing tailored drugs to enhance treatment reliability and reduce care duration. Gene
expression data stands as one of the most extensively utilized forms of genomic data. More
specifically, in a cell, the instructions on how to build the cell’s proteins are encoded in the
DNA as genes. In order to produce proteins, copies of the genes are made from the DNA in the
form of messenger RNAs (mRNAs) which are then translated into proteins. The more mRNA
copies are made of a gene, the more of the corresponding protein can be produced. Conditions
such as environmental stimuli or diseases can alter the kind and quantity of proteins that are
being produced. Thus, the cell’s response to such conditions is reflected in the transcription of
genes, i.e., the strength of their expression. Measuring gene expression has therefore become
an essential biomedical tool in order to understand how a cell, tissue or organism responds to
the conditions it is exposed to [231, 39].

Nevertheless, the use of gene expression data is not without danger, as it can threaten
patient privacy [153]. The precise nature of the information it contains could attract the interest
of malicious entities, capable of exploiting it for multiple purposes. For example, an insurance
company could choose to raise the coverage cost for a patient predisposed to a serious illness.
Additionally, publishing information about a person’s genetic predispositions for stigmatized
diseases can severely impact their social life and societal acceptance.

In light of these concerns, there arose a need to protect individual privacy and avoid such
problems, leading to exploration of methods that are able to generate synthetic data backed by
rigorous privacy guarantees. Such approaches involve creating synthetic datasets that reflect
the characteristics of real gene expression data while providing strong theoretical differential
privacy (DP) guarantees. Nonetheless, employing DP entails introducing randomness during
the training process, which inevitably compromises the quality of the produced synthetic data.
Furthermore, as we strive for stronger privacy guarantees, the randomness required for privacy
increases proportionally, further affecting the quality of the synthetic data to a larger extent.
This underscores the well-known trade-off between privacy and utility.

Despite significant advances in DP data generation methods that report both good gener-
ation quality and privacy guarantees, the majority of quality assessment have unfortunately
focused solely on downstream utility. A notable gap persists in evaluations that overlook the
preservation of essential statistical and biological characteristics. These characteristics are,
however, crucial for ensuring the fidelity and applicability of the generated data. In real-world
scenarios, the challenge becomes even more pronounced due to the vast feature space inherent
in gene expression data, which stands in stark contrast to the often limited number of available
samples. Consequently, the effectiveness of existing methods, previously tested primarily on
basic benchmark datasets with relatively simple distributions, remains unclear when applied
to real-world gene expression data.
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In this paper, we fill this gap by presenting the first systematic quality assessment of
synthetic gene expression data produced by five benchmark DP generation models with
diverse characteristics. Our assessment encompasses five metrics, spanning various aspects
from downstream utility, statistical fidelity, to biological plausibility. Our extensive experimental
results reveal intriguing findings:(1) significant privacy risks do exist if the generative models
are trained non-privately, while DP training (even with a high privacy budget of ε = 100)
greatly mitigates such risks; (2) almost all methods manage to achieve seemingly near-perfect
performance in terms of standard utility metrics while providing a reasonably strong privacy
guarantee (e.g., ε ≤ 10), yet none of the DP models succeed in producing biologically plausible
data.

In summary, the key contributions of our study are outlined below:

• Our work presents the first comprehensive and systematic analysis of DP generation methods
applied to real-world gene expression data. Our extensive investigation encompasses five
diverse generation models, five metrics targeting three principal aspects, providing the
first comprehensive view for the current state of real-world applicability of DP generation
methods.

• Our analysis reveals crucial insights, highlighting the limitations of existing evaluations
that predominantly focus on a single aspect, namely, downstream utility. In contrast, our
thorough assessment establishes a reliable evaluation framework that effectively addresses
the misconceptions arising from these one-dimensional evaluations.

• Our compelling findings, complemented by an in-depth discussion, offer fresh perspectives
for the future development in the related field. With our systematic assessment, we aim
to steer DP generation methods towards improved practicality in real-world applications
involving sensitive data.

7.2 Related Work

7.2.1 Models for Synthetic Gene Expression Data

Various types of generative models have been employed for generating synthetic gene ex-
pression data. Variational autoencoders and deep Boltzmann machines have been used to
generate data that aids in designing studies and planning analysis for large experiments [214].
Generative adversarial networks have been exploited for generating gene expression data
to combat the challenges of low sample sizes via data augmentation, which is specifically
motivated by the unfavorable ratio of samples to features in these datasets [105, 135]. Ad-
ditionally, synthetic gene expression data has also been used to train imputation methods
for handling missing data [156]. However, none of these methods ensure privacy during the
whole data generation process. Given that genome-related data, including the gene expression
data, is highly privacy-sensitive [153], applying existing works in real-world scenarios becomes
challenging due to privacy regulations.

To the best of our knowledge, there is a lack of research delving into the differentially
private generation of synthetic gene expression data. While some studies, like [210], have
investigated the private generation of synthetic data within the realm of medical data at large,
a dedicated focus on gene expression data remains notably absent.
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7.2.2 Measuring Quality of Synthetic Gene Expression Data

A variety of methods have been applied in the past to assess the quality of synthetic gene
expression data from a biological standpoint. These methods have been used both in the
context of bulk as well as single-cell RNA-seq data. Bulk RNA-sequencing refers to the process
of sequencing the mRNA transcripts from a sample containing a collection of many cells [117].
The resulting data thus reports the average expression strength of each gene across these
cells. Single-cell RNA-sequencing on the other hand, first separates the cells present in the
sample before sequencing each individually, generating an expression profile at cell resolution
rather than sample resolution [117, 205]. The methods used for evaluating this data comprise
the comparison of expression data distributions [9, 214, 251] by looking at mean and median
expressions, proportion of zero counts (in single-cell cases) and coefficients of variation. Also,
metrics related to functional biology have been applied [225, 214, 105, 156, 135], including
preservation of gene-gene correlations, gene ontology terms, differentially expressed genes and
clusters in reduced dimensional space, using for example t-SNE, PCA, UMAP or after feature
selection.

7.3 Preliminaries

7.3.1 Threat Model

The objective of an adversary is to infer private information about individuals in the training
datasets by launching various privacy attacks, such as membership inference attack (MIA),
which aims to ascertain if a particular data point was used in training the dataset. We consider
two common scenarios for synthetic data generation from an attack standpoint:
• A trained generator generates the synthetic data (e.g., Section 7.4.1-7.4.4). In this case, the

adversary can have either black-box access or white-box access to the generator. Black-box
access means the adversary can only access the synthetic data generated by querying the
model through an API. White-box access allows the adversary to access the generator’s
internal state, including its parameters.

• The synthetic data is directly generated without using any generator (e.g., Section 7.4.5). In
this scenario, the adversary only has access to the synthetic data.
While our privacy model protects against the most powerful adversaries, as discussed

below in Section 7.3.2, our experiments consider the scenario with the most knowledgeable
adversary who has white-box access to the trained generator, as well as the practical scenario
where only the synthetic data is accessible.

7.3.2 Privacy Model

We aim to develop a solution that protects against potential attacks as delineated in our threat
model in Section 7.3.1. Specifically, we adopt differential privacy (DP), which ensures the
difficulty to infer the presence of any record in the training dataset, even when the adversary has
white-/black-box access to the trained generator and/or to the synthetic data. As a result, any
potential negative impact on an individual’s privacy cannot be attributed to their involvement
in the training phase (up to ε and δ). For instance, if an insurance company accesses the
generator or the synthetic data (from DP generation methods) and decides to increase an
individual’s insurance premium, such a decision cannot be attributed to the individual’s data
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presented in the training dataset.

Definition 7.3.1 ((ε, δ)-DP [53]). A randomized mechanismM with range R is (ε, δ)-DP, if

Pr[M(D) ∈ O] ≤ eε · Pr[M(D′) ∈ O] + δ

holds for any subset of outputs O ⊆ R and for any adjacent datasets D and D′, where D and
D′ differ from each other by adding or removing one training example, i.e., D′ = D ∪ {x} or
D = D′ ∪ {x} for a data sample x. The privacy parameter ε is the upper bound of privacy loss,
and δ is the probability of breaching DP constraints. Smaller values of both ε and δ translate to
stronger DP guarantees and better privacy protection.

Definition 7.3.2 (Gaussian Mechanism [53]). Let f : X → Rd be an arbitrary d-dimensional
function with L2-(global) sensitivity ∆2

f :

∆2
f = max

D,D′
∥ f (D)− f (D′)∥2 (7.1)

The Gaussian MechanismMσ, parameterized by σ, adds noise into the output, i.e.,

Mσ(x) = f (x) +N (0, σ2I). (7.2)

For ε, δ ∈ (0, 1),Mσ is (ε, δ)-DP if σ ≥
√

2 ln (1.25/δ)∆2 f /ε.

Theorem 7.3.1 (Post-processing Theorem). IfM satisfies (ε, δ)-DP, F ◦M will satisfy (ε, δ)-DP
for any data-independent function F with ◦ denoting the composition operator.

The post-processing theorem guarantees that if a DP generation model is (ε, δ)-DP, releasing
the trained generator and the synthetic dataset will also be privacy-preserving, with the privacy
cost bounded by ε and δ.

7.3.3 Biological Criteria

Differential Expression. When diseases and other pathological conditions affect the body,
they can alter gene activation within cells, contributing to the manifestation of symptoms. The
specific set of genes whose expression levels vary from one disease to another are commonly
referred to as differentially expressed (DE) genes. Identifying DE genes that distinguish between
two conditions is a fundamental step in gene expression analysis [7, 40, 176, 177]. Differential
expression can occur as either up-regulation or down-regulation, meaning that the expression of
genes is significantly increased or decreased in one condition compared to another, respectively
(see Section 7.5.3 for the formal definition).

Gene Co-Expression. Genes that are involved in the same biological pathways often form a
functional group or module, meaning they collectively respond to a condition by similar changes
in the expression strength. For example, all genes involved in fighting off a bacterial infection
will be activated together when such a pathogen enters the body. Such genes are referred
to as co-expressed. In order to identify activated or inactivated biological pathways, detecting
such modules of co-expressed genes is a common step in the analysis of gene-expression
data [154, 106]. Specifically, co-expression between a pair of genes with indices j and k is
quantified using their Pearson correlation coefficient rjk with

rjk =
∑n

i=1(x(i)j − x̄j)(x(i)k − x̄k)
√

∑n
i=1(x(i)j − x̄j)2

√
∑n

i=1(x(i)k − x̄k)2
, (7.3)
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where x(i)j and x(i)k are the expression values of genes j and k in sample i, respectively, while x̄j

and x̄k are the mean expression values of the two genes across n biological samples. Groups of
genes with high Pearson correlation coefficients are considered modules of co-expressed genes,
with rjk > 0.7 are typically considered as biologically significant co-expressions.

7.4 Models

Given the real dataset D = {(x(i), y(i))}n
i=1 consisting of n samples (x(i), y(i)) with x(i) ∈ Rd

and y(i) ∈ {1, ..., C} denoting the features and class labels respectively, the objective of the
generation methods is to capture the real underlying distribution p(x, y) and generate synthetic
data samples (x̃, ỹ) that mimic the statistical characteristics of the real samples from D. In
our case, the feature vector x(i) represents the gene expression level and the class label y(i)

corresponds to the disease type, with d and C denoting the feature dimension and number of
label classes, respectively.

In this work, we explore the most prominent categories of (DP) generation methods found
in the literature: (1) density estimation (probability distribution fitting), (2) graphical models-based
methods, (3) marginal-based methods, and (4) deep generative models. A summary of these
methods and their diverse characteristics can be found in Table 7.1.

Method Category Attribute type DP sanitization
RON-Gauss Density estimation continuous only one-shot
VAE Deep generative model continuous iterative
GAN Deep generative model continuous iterative
Private-PGM Graphical model discrete only one-shot
PrivSyn Marginal discrete only one-shot

Table 7.1: Summary of Models.

7.4.1 RON-Gauss

RON-Gauss [28] generates synthetic data by drawing samples from a multivariate Gaussian
distribution fitted in a projected space of the real data. Specifically, it operates by executing the
following steps: Firstly, the data is pre-processed to ensure it possesses bounded sensitivity and
adheres to the regularity conditions for the Diaconis-Freedman-Meckes effect (which guarantees
the data will exhibit Gaussian-like distribution after projection with high probability). Next, a
random orthonormal (RON) projection is applied on the pre-processed data, i.e., X = W TX
with W ∈ Rd×p signifying the RON projection matrix and X representing the pre-processed
data matrix. Subsequently, a multivariate Gaussian model is fitted onto the projected data.
During the inference stage, new samples are drawn from the fitted Gaussian distribution
and are inversely projected into the original data space to form synthetic data samples. To
maintain privacy, DP noise is added into both the mean and covariance of the fitted Gaussian
distribution. Moreover, the Gaussian model is independently applied to each label class to
facilitate label-conditional generation, which aligns with the concept of a Gaussian mixture
model (GMM), where each label class forms a mode of the GMM. The detailed algorithm is
presented in Algorithm 3.
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Algorithm 3: RON-Gauss

Input: Dataset D = {(x(i), y(i))}n
i=1, projection dimension p, noise scale σ

Output: Synthetic dataset S
for c in {1, ..., C} do

(1) Extract samples with label class c to form data matrix Xc ∈ Rd×nc ;
(2) Pre-process data and compute the mean:
• Pre-normalize:x(i) := x(i)/∥x(i)∥2 ∀x(i) ∈ Xc

• Compute the DP mean: µc =
1
nc

∑nc
i=1 x(i) +N (0, σ2I)

• Center the data: x(i) := x(i) − µc ∀x(i) ∈ Xc

• Re-normalize: x(i) := x(i)/∥x(i)∥2 ∀x(i) ∈ Xc

(3) Apply RON projection: Xc := W TXc ∈ Rp×nc ;

(4) Derive the DP covariance: Σc =
1
nc

XcXT
c +N (0, σ2I);

(5) Synthesize data for class c by drawing samples from the Gaussian distribution
x̃(i) ∼ N (W Tµc, Σc);
(6) Inversely project and recenter: x̃(i) := W x̃(i) + µc and construct the synthetic set
Sc = {(x̃(i), c)}nc

i=1;
end
return Synthetic dataset S = S1 ∪ · · · ∪ SC

7.4.2 VAE

The Variational Autoencoder (VAE) [100] is a type of deep generative model that consists of
both an encoder and a decoder. During training, these two components are cascaded and
optimized to reconstruct data under pre-defined similarity metrics such as L1/L2 loss. The
encoder (denoted as qϕ) maps input data x into a latent space, while the decoder (denoted as pθ)
maps the encoded latent representation back into the data space. Meanwhile, VAE regularizes
the encoder by imposing a prior Pz over the latent code distribution. This regularization
encourages the latent code to form a simple distribution that is amenable to sampling. During
inference, new latent codes z are sampled from the prior distribution Pz and then fed into
the decoder to generated synthetic samples. The formal VAE objective is composed of a
reconstruction term and a prior regularization term:

min
θ,ϕ
LVAE = −Eqϕ(z|x)[pθ(x|z)] + KL(qϕ(z|x)∥Pz) (7.4)

where KL(·∥·) denotes the KL divergence, z and x stand for the latent code and the real data,
respectively. qϕ(z|x) represents the probabilistic encoder parameterized by ϕ, and pθ(x|z)
represents the probabilistic decoder parameterized by θ. In practice, the prior Pz is always
chosen to be a unimodal Gaussian distribution and z is sampled using the reparameterization
trick, facilitating a closed-form derivation of the second term.

We employ the class conditional (CVAE) [192] for label-conditional generation. In this
framework, both the encoder and the decoder receive additional (one-hot) label information y.
Formally, the training objective can be expressed as:

min
θ,ϕ
LCVAE = −Eqϕ(z|x,y)[pθ(x|z, y)] + KL(qϕ(z|x, y)∥Pz) (7.5)

During the generation process, labels are generated based on their occurrence rates in the
real dataset. Privacy constraints is incorporated in the training stage by replacing the regular
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stochastic gradient descent (SGD) update with DP-SGD [1], which involves clipping the
per-example gradients and adding calibrated random noise to the mini-batch gradients.

7.4.3 GAN

The Generative Adversarial Network (GAN) [65] is another widely used type of deep generative
model. It comprises two neural network components, a generator Gθ and a discriminator
Dϕ, which are trained simultaneously in an adversarial manner. The generator takes random
noise z (latent code) as input and generates samples that approximate the distribution of
the training data. Conversely, the discriminator evaluates both generator-generated samples
and real training data samples, aiming to distinguish between the two sources. Throughout
training, these two modules engage in a competitive process, each adapting to the other: the
generator seeks to generate progressively more realistic samples to deceive the discriminator,
while the discriminator learns to distinguish the two sources more accurately. The standard
GAN training objective can be formulated as

min
θ

max
ϕ

Ex∼Pdata [log(Dϕ(x))] + Ez∼Pz [log(1− Dϕ(Gθ(z)))] (7.6)

where θ, ϕ denote the parameters of the generator and the discriminator respectively. Pdata
stands for the real data distribution, and the Pz is the prior distribution of the latent code.
The first term in the objective prompts the discriminator to output high scores for real data
samples. In contrast, the second term encourages the discriminator to assign lower scores to
generated samples, while the generator is optimized to maximize the discriminator’s output
score. During inference, the generator will receive new latent code samples z drawn from the
known prior distribution Pz, often standard Gaussian, and produce synthetic data samples.

For private training, we adopt the DP Wasserstein GAN (DP-WGAN) [6] implementation
and its conditional variant to integrate label information during generation. Specifically, the
Wasserstein distance [8] is used as the training objective with the label information acting as
auxiliary input for both the generator and discriminator:

min
θ

max
ϕ

Ex∼Pdata [Dϕ(x, y)]−Ez∼Pz [Dϕ(Gθ(z, y), y)] (7.7)

The DP guarantee is ensured by employing DP-SGD for discriminator updates, which in
turn guarantee the privacy of the whole GAN model and the synthetic data due to the
post-processing theorem (Theorem 7.3.1).

7.4.4 Private-PGM

The Private Probabilistic Graphical Models (Private-PGM) framework [138] is designed to
construct undirected graphical models from DP noisy measurements over low-dimensional
marginals, which facilitates the generation of new synthetic samples via sampling from the
learned graphical model. Specifically, Private-PGM operates on records consisting of discrete
attributes. Formally, a record is denoted as x = (x1, ..., xd, xd+1) where each feature attribute xi
for all i∈{1, ..., d} and the label y = xd+1 fall within a discrete finite domain. Let C represent a
collection of measurement sets, where each C∈C is a subset of {1, ..., d + 1} (i.e., the combinations
of attributes), and let vC define the marginal probability vector on C. Private-PGM first obtains
DP noisy measurements mC = QCvC +N (0, σ2

C I) with QC denoting the linear marginal query
set over measurement set C and N (0, σ2

C I) representing the noise introduced by the Gaussian
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mechanism (with σC the noise scale determined by the desired privacy level εC and δ. Refer
to Definition 7.3.2). Subsequently, it estimates the marginal v̂ that best explain all the noisy
measurement v̂ = arg minv ∥Qv − m∥ where Q is a block-diagonal matrix with diagonal
blocks {QC}C∈C (i.e., combining all the query set QC) and m = (mC)C∈C the combined vector
of measurements. Meanwhile, it estimates the parameter of the graphical model using existing
graph inference and learning algorithms such as belief propagation on a junction tree.

In general, QC can represent a complex set of linear queries expressed over C, and its
selection can be adaptively tailored to downstream objectives. In our work, we adhere to
the default implementationwhere QC is set to be an identity matrix. This configuration
renders the measurement mC equivalent to the corresponding noisy marginal vC +N (0, σ2

C I).
Moreover, for computational feasibility, we adopt the basic configuration offered by the
official implementation that sets C =

{
{1}, ..., {d + 1}

}
∪
{
{1, d + 1}, ..., {d, d + 1}

}
, which

encompasses all one-way marginals as well as the 2-way marginals associated with the label
attribute. The privacy budget is allocated uniformly across each measurement, i.e., εC = ε/|C|
with ε the total privacy cost due to sequential composition.

7.4.5 PrivSyn

Similar to Private-PGM, PrivSyn [258] operates on data with discrete attributes to obtain mea-
surable (noisy) marginals. However, while Private-PGM explicitly constructs factorized sparse
graphical models, PrivSyn directly generates data from the noisy marginal measurements.
This approach inherently allows the use of an implicitly dense graphical model, enhancing its
expressiveness capacity.
PrivSyn is structured to execute the following steps sequentially:
• Marginal selection: This step selects the most informative marginals from the candidate set to

optimize the privacy-utility trade-off.

• Noise addition: DP noise is added to the selected marginal measurements, ensuring privacy
guarantee.

• Post-processing: This phase ensures consistency from the noisy measurements. It addresses
issues such as negative marginal measurements, cases where probabilities do not sum up to
1, and aligning different marginals that share common attributes.

• Data Synthesis: Starting with a randomly initialized synthetic dataset, this step iteratively
updates it to ensure alignment with the marginal measurements.
In our experimental evaluation, we omit the more involving 2-way marginal selection step

for our dataset, as this step is prohibited by the significant computation and privacy costs,
which scale quadratically with the feature dimensions. Instead, we utilize all 2-way marginals
linked with the label attribute, aligning with the approach taken in Private-PGM to ensure
a fair comparison. Apart from this, we adhere to the default configuration of the official
implementation, which allocates the privacy budget at a ratio of 1 : 8 between publishing the
1-way and 2-way marginals.

7.5 Multi-Dimensional Evaluation of Synthetic Gene Expression

Data

Our study delved into a comprehensive assessment of various models. This evaluation was
executed through a meticulous analysis of model performance across three main aspects: utility
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(Section 7.5.1), statistical (Section 7.5.2), and biological (Section 7.5.3) evaluation. Each aspect
encompasses distinct metrics: machine learning efficacy for utility evaluation, marginal (histogram
intersection) and joint (distance to closest record) closeness for statistical evaluation, as well as
differential expression and gene co-expression for biological evaluation.

7.5.1 Utility Evaluation

7.5.1.1 Machine Learning Efficacy

Evaluating the quality of synthetic data typically involves a standard procedure of assessing its
performance within a downstream task. This evaluation determines whether the synthetic data,
when used as a replacement for the real data, can accomplish the desired task with comparable
effectiveness. This is executed by training machine learning models on real (train) data and
evaluating their performance on held-out (test) data. Subsequently, a parallel model is trained
on synthetic data and evaluated using the same held-out data. The choice of evaluation metrics
is determined by the specific nature of the task at hand. In our work, we adopt the standard
accuracy score for evaluating the disease classification task.

7.5.2 Statistical Evaluation

Utility-based metrics, however, often offer an incomplete perspective due to their narrow
evaluation lens, presenting a single facet of the model’s performance, which can occasionally
lead to misleading impressions. In order to address this potential bias, it becomes crucial to
incorporate additional statistical metrics that emphasize the fidelity of the generation process.
This entails assessing how effectively the model captures both the marginal distribution and
the underlying joint distribution of the data, providing a more comprehensive understanding
of its performance.

7.5.2.1 Histogram Intersection

The histogram intersection serves as a prevalent qualitative tool for visualizing one-dimensional
data (i.e., single columns/attributes), enabling a comprehensive exploration of the data’s
distribution characteristics. Understanding such single-dimensional distributions can be pivotal
for subsequent pre-processing and analysis steps. Prior studies have harnessed this metric to
compare the distributions of synthetic and real data by selecting specific attributes from the
real dataset and overlaying the histograms of the corresponding real data onto the synthetic
ones. This technique, referred to as distribution matching plots, provides a qualitative assessment
of how closely the two distributions align.

However, relying solely on qualitative measures has its limitations, particularly when
confronted with large feature sets like gene expression data. Manually visualizing each
column becomes impractical. This necessitates a quantitative approach that maintains a
similar essence but can be aggregated to yield a single score. The histogram intersection metric
proposed in [4] is applicable in such scenario. It is computed as the sum of the minimum
probability values between the real data column and the synthetic data column. This sum
is subsequently averaged across the various columns in the dataset (see Equation 7.9). In
contrast to other analogous techniques like the Wasserstein distance1 or Jensen-Shannon divergence

1https://www.wikiwand.com/en/Wasserstein_metric

https://www.wikiwand.com/en/Wasserstein_metric
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score2, the histogram intersection score demonstrates superior performance and exhibits a strong
correlation with other metrics [4] 3. This quantitative approach strikes a balance between
comprehensiveness and practicality, making it an effective tool for evaluating the quality of the
generated data.

pc =
sc

|D|∆i
qc =

tc

|S|∆i
(7.8)

HI(pi, qi) = ∑
c

min(pc, qc) (7.9)

Overlap Score =
1
d ∑

i
HI(pi, qi) (7.10)

where pi and qi denote the histogram representations of the probability distributions for the
real (D) and synthetic (S) datasets within feature i, respectively. The terms pc and qc represent
the proportions of category c for feature i, with sc/tc denoting the counts of real/synthetic
samples in category c. The factor ∆i is introduced as a normalization term, specifying the bin
size for numerical features. The term HI(pi, qi) represents the histogram intersection score
for feature i. The dimensionality of the feature space is denoted by d. The Overlap Score is
computed by averaging the histogram intersection scores across all features.

7.5.2.2 Distance to Closest Record

The distance to closest record metric aims to measure the similarity between the joint distribution
of real and synthetic data. Obtaining an exact measurement of the joint distribution is inherently
challenging and always infeasible, as the underlying probability distribution of the real data
is unknown and generally intractable. To circumvent this, we approximate the alignment of
joint distributions using k-nearest neighbors (KNN). This involves computing the Euclidean
distance between each synthetic data sample and its k nearest neighbors in either the held-out
or training set. The objective is to evaluate the plausibility of each synthetic sample being real.
The final KNN Distance score is the average across all synthetic dataset samples and various k
values, as defined in Equation 7.12.

dk(x̃) = firstk

(
sort

({
∥x̃− x∥2 | ∀x ∈ Dtrain/test

}))
(7.11)

KNN Distance Score =
1
|S| · k ∑̃

x∈S

k

∑
i=1

dk,i(x̃) (7.12)

where S denotes the synthetic set, D the real dataset, dk(x̃) is a sequence contain the k smallest
values of distances (where sort(·) represents the sorting operation in ascending order and
firstk(·) denotes the operation for retrieving the first k elements from the sorted sequence),
with dk,i(x̃) denoting the i-th element of dk(x̃).

7.5.3 Biological Evaluation

7.5.3.1 Differential Expression

There are several methods to measure differential expression, but many of them make strong
assumptions on the distribution underlying gene expression data [7, 177, 131]. However, the

2https://www.wikiwand.com/en/Jensen-Shannon_divergence
3The histogram intersection metric defined here also corresponds to 1 - total variation distance, a popular metric
that quantifies the similarity between two probability distributions.

https://www.wikiwand.com/en/Jensen-Shannon_divergence
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question of which distribution gene expression data follows has been subject to debate for many
years [44]. To avoid making any (potentially false) assumptions regarding the distribution, we
chose a non-parametric test for the identification of differentially expressed genes, namely the
Wilcoxon signed rank test [235]. For each pair of conditions in the data, the test was conducted on
the expression values of each gene measured across the samples of the respective condition. We
ran the test using the pairwise Wilcoxon function from the R-package scran (version 1.26.2) and
using the alternative hypothesis for each side to differentiate between up- and down-regulation.
We considered a gene as differentially expressed between two conditions if the p-value was at
most 0.05. The reconstruction of DE-genes by different generative models M at varying privacy
levels ε is commonly quantified via the mean true positive rate (TPR) defined as follows.

TPRM,ε =

∑
{ai ,aj}⊂A,ai ̸=aj

(
TPRup

ai ,aj,M,ε + TPRdown
ai ,aj,M,ε

)

2 · (|A|2 )
(7.13)

where A denotes the set of condition pairs (each pair representing different disease types
distinguished by unique label classes in our case). TPRup (down)

ai ,aj,M,ε signifies the true positive rate
for identifying up-regulated (or down-regulated) DE-genes within synthetic data generated by
the modelM under a given privacy budget ε, in comparison to the actual DE-genes observed
in the real dataset for conditions ai and aj. (

|A|
2 ) represents the count of all possible unordered

condition pairs.

7.5.3.2 Gene Co-Expression

To assess if groups of co-expressed genes that are present in the real data were preserved in
the synthetic data, we applied hCoCena [154], an R-package that enables the integration of
different gene expression datasets, i.e., the real and the synthetic data in our case, and their
subsequent joint co-expression analysis. The tool creates a gene co-expression network for
each set, which is a weighted graph G = (V, E), where the nodes V represent genes, edges
E represent co-expressions and the edges are weighted with the co-expression strength. The
weight w is computed as the Pearson Correlation Coefficient r between their expression values
across samples, such that w(ei,j)=r(xi, xj), where xi and xj are the expression values of gene i
and j, respectively. Afterwards, genes that are not significantly strongly co-expressed according
to a user-defined correlation cut-off with any other gene are discarded to only include strong
co-expressions that are potentially biologically meaningful. A gene co-expression network is
created for each dataset. We then used these co-expression networks to identify the number
of co-expressions (i.e., graph edges) that were correctly reconstructed in the synthetic data
and the number of spurious co-expressions introduced in the synthetic data that did not exist
in the real data. Additionally, modules of strongly co-expressed genes were identified in the
network of the real dataset using the Leiden community detection algorithm. We investigated the
mean group fold-changes (GFCs) for the detected modules across conditions in the real and
the synthetic data. GFCs are a metric for the average expression of a module in a group of
samples, i.e. all samples of a particular experimental condition, essentially representing the
activation or deactivation of the module under the given condition.
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Figure 7.1: Utility Evaluation by Machine Learning Efficacy, and Statistical Evaluation by
Histogram Intersection and Distance to Closest Record. Shown in (a) are the Accuracy Scores
for the Machine Learning Efficacy metric across 5 various models for the DP-case (blue shading)
with varying ε values, alongside the non-private case. Similarly, (b) and (c) display the Overlap
Score and K-Nearest Neighbors Distance Score for the Histogram Intersection metric and Distance
to Closest Record metric, respectively. Evaluations encompassed two seeds for training split
creation and two synthetic dataset randomizations. The presented values represent means
across these randomization seeds. The black dashed line represents the reference score on
actual train-test data, signifying the best attainable score.

7.6 Evaluation

7.6.1 Dataset

The generative models were trained on a bulk RNA-seq dataset compiled by Warnat-Herresthal
et al. [232]. The dataset is structured as a matrix, with rows corresponding to samples and
columns to features. Each row represents a biological specimen obtained from a patient, while
each column indicates the expression level of a particular gene. The expression levels are
quantified by RNA-seq counts, with higher integer values indicating greater gene activity. It
comprises samples from 5 disease classes, 4 classes of which are types of leukemia and the
fifth class is the category “Other”, which is made up of samples from various other diseases
as well as healthy controls. The 4 leukemia types are acute myeloid leukemia (“AML”), acute
lymphocytic leukemia (“ALL”), chronic myeloid leukemia (“CML”) and chronic lymphocytic
leukemia (“CLL”). Sample counts per class are listed in Table 7.2. As per the original publication,
the data were normalized with DeSeq2 [131] to account for varying sequencing depths and
RNA composition, which is necessary to compare expression levels of different samples and
conduct a DE-gene analysis. Given the high dimensionality of the features (more than 12k
genes) and the comparatively low sample size (1181), we reduced the feature space to 958

genes. Notably, even this reduced feature dimension remains significantly high, especially
when compared with standard benchmarking datasets which typically comprise merely dozens
of features. These 958 genes were not selected randomly but based on their characterization
as landmark genes in the LINCS L1000 project [203]. The landmark genes were identified as
representative genes that, when measured, allow the inference of around 20k other genes.

Pre-processing and Post-processing. In accordance with standard practices, we pre-processed
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Class AML ALL CML CLL Other Total

# Samples 508 12 14 13 634 1181

Table 7.2: Dataset summary. Listed are the different sample classes present in the dataset and
the number of samples in each class.

our data prior to model training. For RON-Gauss, GAN, and VAE, which operate on continuous
data expected to be well-centered, we standardized each feature by subtracting its mean and
dividing by its standard deviation. Conversely, for Private-PGM and PrivSyn which rely on
discrete representations for computing marginals, we discretized each feature into four bins
based on its quantiles: <25%, 25%-50%, 50%-75%, and >75%. This approach was chosen to
accurately represent up- and down-regulation, while also maintaining a condensed format
(resulting in a limited number of bins after discretization) for an optimized privacy-utility
trade-off.

After training and generation, we implemented the following post-processing measures:
• For RON-Gauss, GAN, and VAE: We reverted the standardization by multiplying the

generated data features by the standard deviation and adding back the mean (both the
standard deviation and the mean were pre-computed on the real dataset).

• For Private-PGM and PrivSyn: We mapped the generated discrete data back to the original
continuous mean value associated with each bin.

We verify the efficacy of our approach via our preliminary experiments: the continuous pre-
and post-precessing was proved to be lossless, while the discrete one did not affect the biological
and utility evaluation.

In line with the common evaluation protocol adopted in DP literature, we do not incorporate
DP into the pre- and post-processing process, and the label class occurrence ratio is treated as
public information and used during generation. This approach aids in producing meaningful
evaluation results and offers a more accurate indication of performance, particularly given
our challenging setup. However, it is crucial to note that in real-world applications, all such
processes including the hyperparameter selection [160] would require DP sanitization to
ensure stringent privacy protection. Although implementing such sanitization is generally
technically straightforward (e.g., either computed on public data or using DP techniques such
as Algorithm 2 in [212] and [63] for DP sanitization techniques applicable to continuous and
discrete processing, respectively), it can lead to considerable utility loss in bio-data, mainly
due to limited sample sizes, which warrants further discussion and investigation.

7.6.2 Setup

We follow the official implementation for methods that offer open-source code: RON-Gauss4,
GAN5, Private-PGM6, PrivSyn7 and adopt the default hyperparameter setting. We use the
authorized RDP accountant implementation adopted by both TensorFlow privacy8 and Opacus9

for VAE and GAN. For the VAE model, which lacks an official DP implementation, we tuned

4https://github.com/inspire-group/RON-Gauss/tree/master
5https://github.com/nesl/nist_differential_privacy_synthetic_data_challenge/
6https://github.com/ryan112358/private-pgm
7https://github.com/usnistgov/PrivacyEngCollabSpace/tree/master/tools/de-identification/
Differential-Privacy-Synthetic-Data-Challenge-Algorithms/DPSyn

8https://www.tensorflow.org/responsible_ai/privacy/tutorials/classification_privacy
9https://opacus.ai/api/accounting/rdp.html

https://github.com/inspire-group/RON-Gauss/tree/master
https://github.com/nesl/nist_differential_privacy_synthetic_data_challenge/
https://github.com/ryan112358/private-pgm
https://github.com/usnistgov/PrivacyEngCollabSpace/tree/master/tools/de-identification/Differential-Privacy-Synthetic-Data-Challenge-Algorithms/DPSyn
https://github.com/usnistgov/PrivacyEngCollabSpace/tree/master/tools/de-identification/Differential-Privacy-Synthetic-Data-Challenge-Algorithms/DPSyn
https://www.tensorflow.org/responsible_ai/privacy/tutorials/classification_privacy
https://opacus.ai/api/accounting/rdp.html
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the key hyperparameters (including the weight of the reconstruction loss term, the number
of training iterations, the gradient clipping bound, the batch size, and the latent dimension)
via grid-search. We repeat the experiments over different random seeds and report the mean
and standard deviation over these seeds by default. For biological evaluation where results
from different seed cannot be aggregated, we detail the outcomes for each individual seed
separately. The δ is set to be 10−5 by default across our experiments.

7.7 Experiments
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Figure 7.2: Biological Evaluation by DE-Gene Preservation. Shown is the preservation of
DE-genes (true positive rate (TPR): solid lines; false positive rate (FPR): dashed lines) across
the tested models for the DP-case (indicated by blue shading) with different values of ε and
the non-private case. The evaluation was performed for two different seeds used for creating
the training split (left and right plot). The presented values are means across two different
seeds set for generating the data (except for Private-PGM and PrivSyn, where seeding is not
possible).

Figure 7.3: Biological Evaluation by Co-Expression Preservation for r > 0. Shown is the
co-expression preservation across the tested models for different values of ε as well as the
non-private case for two different seeds used for creating the training split (left and right plot).
Specifically, non-transparent bars give the number of correctly reconstructed co-expressions
with Pearson Correlation Coefficient r > 0 and an associated p-value < 0.05, while semi-
transparent bars give the number of co-expressions introduced by the model that did not exist
in the real data. The dashed black line indicates the number of co-expressions in the real data.
All values shown are means across two different seeds set for generating the data (except for
Private-PGM and PrivSyn, where seeding is not possible).

We study five different generative models: VAE, GAN, RON-Gauss, Private-PGM, and
PrivSyn, which encompass diverse categories, attribute types, and DP sanitation approaches, as
summarized in Table 7.1. Our assessment was conducted under two scenarios: initially, without
the imposition of DP constraints, and subsequently, with DP integration using values of epsilon
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(ε) ranging from 5 to 100, signifying a spectrum from high to low privacy levels. We did not
reduce the privacy budget to values smaller than 5, as the models fail to achieve reasonable
results at this threshold. For models such as VAE and GAN that were not originally designed
with DP protections, we incorporate DP to the gradients following the DP-SGD framework [1]
to create their respective private variants. Conversely, for inherently privacy-centric models
like RON-Gauss, Private-PGM, and PrivSyn, we set the noise scale to be zero to simulate their
non-private counterparts. These diverse models were then evaluated using the metrics detailed
in Section 7.5. We set the real data as Reference (See the dashed black lines in Figure 7.1), which
represents the score of each metric when applied to the real training data and then evaluated
on the real held-out (i.e., test) data.

7.7.1 Utility Evaluation

For the Machine Learning Efficacy metric, given the classification nature of the task (predicting
diverse disease types using gene expression data), we employ a widely-used and straightfor-
ward machine learning approach known as logistic regression. This model undergoes training
as outlined in Section 7.5.1.1. The chosen evaluation metric is the accuracy score.

Results and Findings. The outcomes, depicted in Figure 7.1(a), portray the machine learning
utility scores for various generative models across differing privacy levels, ranging from high
(ε = 5) to low (ε = 100). In the non-private context (termed as non-priv in Figure 7.1(a)),
we observe that all five models—with the exception of GAN —exhibit a substantial utility
score ranging from 86% to 98%. This shows a moderate decrease of 0.5% to 12% relative
to the reference point set by real data (black dashed line). Within the private realm (ε =
5, 10, 20, 50, 100), models such as Private-PGM, PrivSyn, and RON-Gauss display consistent
high utility, encountering a reduction of less than 7.4% in very high privacy conditions (ε = 5)
to a 5.8% drop in situations with lower privacy (ε = 100). Notably, these models demonstrate a
higher utility as ε increases. Remarkably, the utility metric easily saturates, even with a simple
probabilistic model (i.e., the unimodal Gaussian as in RON-Gauss), while the VAE exhibits
slight advantages in the non-private case. The GAN model generally performs worse in terms
of the utility metric and exhibits relatively high variance, potentially due to the unstable nature
of its adversarial training process, which is exacerbated in our dataset with limited samples.

7.7.2 Statistical Evaluation

7.7.2.1 Histogram Intersection

We initiate by subjecting the numerical column to min-max pre-processing, a technique that
rescales values to fit within the range of 0 to 1. Following this normalization, a discretization
binning process is employed, utilizing 25, 50, and 100 bin size, which provides an approximated
representation of the numerical column’s distribution, and thus ensures tractability. No
additional pre-processing steps are required for the discrete and categorical columns. Our
computation of the Overlap Score adheres to the definition in Equation 7.10.

Results and Findings. Figure 7.1(b) illustrates the overlap score, which serves as the mean of
the histogram intersection scores between the columns of real and synthetic data, as detailed in
Section 7.5.2.1. In general, across both private and non-private settings, most models exhibit
subpar performance on this metric. An exception stands out: the VAE model (depicted by
the blue line). Remarkably, it showcases a consistent overlap score of ~80%, experiencing
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only a 6.8% relative drop compared to the reference set by the real data (black dashed line).
This performance trend consistently improves from the high privacy setting (ε = 5) to the low
privacy setting (ε = 100), indicating that the synthetic data’s marginal distribution increasingly
resembles that of the real data, with the relaxation of privacy constraints. However, this does
not uniformly apply to all models. For instance, the RON-Gauss model (represented by the
green line) shows an unexpected behavior—its overlap score is higher in the very high privacy
setting (ε = 5) compared to the non-private setting, exhibiting an 85% drop in performance
relative to the real data reference. This outcome is surprising given that this model involves
continuous attribute types, which should typically lead to a moderately increasing overlap
score as ε increases. Similarly, the GAN model follows a similar trend to RON-Gauss, but it
demonstrates a higher overlap score in the non-private setting, with a reduced relative drop of
48.8%. We conjecture that such seemingly abnormal behavior may be partially explained by the
fact that both GAN and RON-Gauss did not capture the marginal distributions faithfully even
in the non-private case, which making the results more influenced by randomness than by the
learnability. The inferior performance of the Private-PGM and PrivSyn models in this metric
can potentially be attributed to the loss in precision resulting from the reverse transformation
inherent in the discretization process, which may dominate the additional information loss
incurred by privacy constraints. Interestingly, despite the modest performance in this metric,
the same models excel in the private setting for the machine learning efficacy metric. This
underlines the necessity of evaluating synthetic data from various generative models across an
array of metrics to gain a comprehensive understanding of their behavior relative to real data.

7.7.2.2 Distance to Closest Record

This metric aims to approximate the likelihood that a synthetic data sample originates from the
distribution of real data samples. This measurement relies on the K-Nearest Neighbors (KNN)
approximation technique. In our experimental setup, we specifically set the value of k to 10,
which dictates the computation of the KNN Distance Score according to Equation 7.12. Our
procedure involves fitting the KNN classifier from SKlearn10 on the real test data. Subsequently,
we compute the 10-NN distances from the test set to each sample within the synthetic dataset.
Figure 7.1(c) shows the averaged 10-NN distance score for different epsilon values (x-axis) and
diverse generative models. A higher proximity of this score to the reference established by the
real data implies a greater likelihood that the joint distribution of real and synthetic data aligns
closely. Scores falling below the reference point set by real data imply that the synthetic data
samples are closely aligned with the distribution of the real test data. However, it is essential
to exercise caution while interpreting these results due to the relatively small size of the test
set. Making assertive conclusions based solely on these findings might be premature.

Results and Findings. Intuitively, we anticipate that the score for this metric should be
lower, indicating closer alignment to the real data reference (depicted by the black dashed line)
in the non-private setting. As privacy levels increase, we expect a moderate increase in the
distance—moving from ε = 100 to ε = 5. This examination aims to substantiate the assertions
made by prior study [161] that this metric has the potential to quantify privacy. However,
the results illustrated in Figure 7.1(c) present a counter-intuitive observation. All models,
excluding the graphical-based models Private-PGM and PrivSyn, demonstrate distances below
the real data reference. This holds true for both private and non-private scenarios. Notably, the
VAE model stands out, exhibiting a low distance to the closest test record (i.e closest to the
real data reference but still falls below the black dashed line). This shows a relative drop of

10https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
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48% when contrasted with the reference established by real data. Notably, the Private-PGM
and PrivSyn models, which yield unsatisfactory outcomes in the histogram intersection metric,
also exhibit the most substantial distances to the real data reference. This persistent distance
above the black dashed line further indicates that the reverse discretization process could lead
to a loss of precision in these models. Additionally, for the VAE model, across the ε = 5 to
ε = 50 range, there’s a pronounced variance in scores across different experimental random
seeds. This variance might offer insights into the model’s sensitivity behavior in the private
setting.

7.7.2.3 Summary of Utility and Statistical Evaluation

The observed results of Figure 7.1 underscore the necessity of assessing diverse metrics when
evaluating synthetic data. Moreover, it brings to light an intriguing revelation: even if the
synthetic data strays from both marginal and joint distributions, it still exhibits the capacity
to maintain substantial downstream utility tasks. This observation reinforces the significance
of a comprehensive evaluation approach that considers various aspects of data behavior and
performance.

7.7.3 Biological Evaluation

To evaluate the different models for biological soundness, we assessed their capabilities of
maintaining two biological aspects in the generated synthetic data: (1) the preservation of
differential expression by assessing the TPR and FPR of reconstructed DE-genes per model
and across privacy parameters and (2) the preservation of co-expressions between genes, i.e.,
their Pearson Correlation Coefficients r as well as the activation of co-expressed modules. The
models were evaluated once without the constraint of DP and then with DP using ε = 100, 50,
20, 10, 5.

7.7.3.1 Differential Expression

We first compared the models’ ability to maintain DE-genes in a non-private setting. As shown
in Figure 7.2, it can be observed that the TPR was high for PrivSyn and VAE models, reaching
more than 75% on both data split seeds. RON-Gauss , Private-PGM and GAN showed subpar
results, with the GAN model performing particularly poorly. Regarding the FPR, all models
maintained rates below 25%, with PrivSyn and Private-PGM reaching FPRs close to zero.
For the DP training setting, we observe from Figure 7.2 the following:
• VAE: At a privacy parameter ε = 100, the TPR decreases noticeably in comparison to the

non-DP setting from around 75% on average to approximately 50%. As ε is reduced further,
the TPR continues to show a decreasing tendency, albeit at a less steep rate. Even at the
lowest privacy budget of ε = 5, the TPR of VAE remains higher than that of the GAN in the
non-DP setting. Moreover, VAE shows better or equal TPR than PrivSyn at low ε values, and
outperforms RON-Gauss across all ε but underperforms Private-PGM once DP is introduced.
The FPR increases slightly when introducing DP but remains largely stable for different
values of ε.

• GAN:The TPR of DE-genes in the GAN model observed under non-DP conditions remains
poor at the introduction of DP and decreasing ε, staying below 20%, while the FPR remains
stable (around 10%) across all ε.
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(a) ε = 5 (b) ε = 10

(c) ε = 20 (d) ε = 50

(e) ε = 100 (f) Non-private

Figure 7.4: Activation patterns of co-expressed gene modules in VAE for r > 0. Shown are
the Group Fold Changes (GFCs) of gene modules (rows) in the real and the synthetic data
sampled with two different seeds. The dendrograms representing the hierarchical clustering of
the sample groups differentiated by label class and seed, with each column corresponding to a
distinct group. Optimally, samples with the same label classes should be adjacent, indicating
that they are clustered together. Numbers on the right indicate the number of genes per module,
numbers in square brackets on the bottom indicate the number of samples per condition and
dataset. Darker shades of red imply activation of the gene module, while darker shades of blue
indicate deactivation.
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• RON-Gauss: The TPR of the RON-Gauss model drops when introducing DP. Intriguingly,
and somewhat against expectations, it exhibits a slight improvement as the privacy loss ε
decreases, yet it still only attains low values (around 30%). Concurrently, the FPR steadily
increases with decreasing ε, eventually approaching the TPR.

• Private-PGM: The TPR of Private-PGM exhibits a slight increase with decreasing ε, with
Private-PGM outperforming all other models for ε ≤ 50. Conversely, the FPR rate also
increases drastically, reaching around 35%.

• PrivSyn: While PrivSyn showed near perfect TPR in the non-DP case, it is strongly impacted
by the introduction of DP, falling below VAE and Private-PGM for ε ≤ 50. This performance
loss is similarly reflected in the increasing FPR with decreasing ε values.
In summary, while PrivSyn and VAE demonstrate good preservation of DE genes in the

non-DP setting, their performances drop when introducing DP and they are surpassed by the
Private-PGM model. However, this boost in DE-gene preservation of the Private-PGM model
is accompanied by an increasing false positive rate, possibly indicating that the Private-PGM
model generally tends to generate more DE genes, however without biological correctness.
Both the GAN and the RON-Gauss models perform poorly on this metric, especially in the DP
case.

7.7.3.2 Co-expression

Here, we investigated both the general preservation of co-expressed genes as well as the
activation and deactivation of strongly co-expressed gene sets, so-called modules, detected in
the real data. The preserved co-expressions as well as the activation patterns of co-expressed
gene modules were assessed once for all positive correlations identified in the data (r > 0)
(Figure 7.3, Appendix F.5-F.8) and once after filtering for only highly co-expressed genes (r
> 0.7) (Appendix Figure F.9-F.11). The latter is motivated by the typical interest in strongly
correlated genes during co-expression analyses. The detection of gene modules was performed
on the real data for these respective filtering thresholds. In both cases, co-expressions were
filtered for associated p-values < 0.05.

We first investigate the non-private setting. When considering all co-expressions with r
> 0, the VAE reconstructed most of the them while only introducing few false ones that did
not exist in the real data (Figure 7.3). The GAN model had less correctly and more incorrectly
reconstructed co-expressions than the VAE (Figure 7.3) and the patterns of activation in the
gene modules do not match the real data (Appendix Figure F.5). The Private-PGM and PrivSyn
models had very similar performances, with more correctly than incorrectly reconstructed
co-expressions, however only reconstructing half of the co-expressions found in the real data
(Figure 7.3). The activation of the gene modules was well reconstructed (Appendix Figure F.6,
F.7). The number of correctly and incorrectly reconstructed co-expressions was almost equal
for the RON-Gauss model (Figure 7.3) and activation patterns in the gene modules were almost
entirely lost (Appendix Figure F.8). Reducing the co-expressions to only those with r > 0.7,
only the VAE model and one of the sampling seeds for the GAN yielded any results. The VAE
correctly reconstructed most co-expressions from the real set but additionally introduced an
almost equal number of incorrect co-expressions (Appendix Figure F.9). Activation patterns in
gene modules were well preserved (Appendix Figure F.10). In the data generated by the GAN,
the number of incorrectly introduced co-expressions was very high (Appendix Figure F.9) and
activation patterns in the gene modules remained poor (Appendix Figure F.11).
For the DP setting, we list below our findings:
• VAE: For all co-expressions with r > 0, the number of correct co-expressions reconstructed by

the VAE reduced gradually when introducing DP with decreasing ε (Figure 7.3). Meanwhile,
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the number of incorrect co-expressions more than doubled. Activation patterns of gene
modules were well maintained for the classes CML, AML and Other at ε = 100 and 50. For
lower ε, the characteristic patterns of the modules were increasingly lost as illustrated in
Figure 7.4, indicated by the increasing lack of distinctive colors. While the order of gene
modules (rows) is fixed to improve comparability, the order of sample groups (columns)
is dictated by their hierarchical clustering. This is intended, since it illustrates similarity
between module expression of different conditions in the different datasets. In the case of
biologically high-quality synthetic data, synthetic samples are expected to co-locate with real
samples of the same condition. Note that the results are only shown for one seed used for
splitting the dataset for training. If the synthetic data successfully captured the co-expression
modules, disease classes are expected to cluster together across synthetic and real data.
Focusing only on highly co-expressed genes with r > 0.7, a high number of co-expressions
is introduced that do not occur in the real data (Appendix Figure F.9). Preservation of
module activation is comparable to that observed when selecting co-expressions with r > 0

(Appendix Figure F.10).

• GAN: When considering all co-expressions with r > 0, the number of correctly reconstructed
co-expressions decreased and the number of incorrect ones increased when introducing DP
with ε = 100 and reducing this value did not impact the metric further (Figure 7.3). The
module activation patterns from the real data are almost entirely lost with the modules
demonstrating homogeneous activation (Appendix Figure F.5). When filtering for r > 0.7
there were no co-expressions left for any of the ε-values.

• Private-PGM & PrivSyn: The Private-PGM and PrivSyn models demonstrated similar behav-
ior, with the number of reconstructed co-expressions barely being affected by introducing
varying levels of privacy in comparison to the non-DP setting (Figure 7.3). Private-PGM
maintained the module activation patters for very high ε-values (100 and 50) and for lower ε
(20, 10, 5) patterns of large classes such as AML and Other where maintained, but degraded
for the smaller classes (Appendix Figure F.6). Similar results are observed for PrivSyn, with
the exception that the degradation of activation patterns already starts at ε = 50 (Appendix
Figure F.7). Like the GAN, both models did not generate any significant co-expressions
exceeding r > 0.7.

• RON-Gauss: While in the non-DP setting, the number of incorrect co-expressions was
still slightly lower than that of correct ones, this changes in the DP-setting (Figure 7.3).
Decreasing values of ε, however, not only gradually increased the number of incorrectly
reconstructed ones, but also that of the correctly reconstructed co-expressions. The gene
modules lose their distinctive patterns, showing uniform activation and thus the synthetic
data is clustering distinctly away from the real data for all ε (Appendix Figure F.8). As was
the case for all models but the VAE, no high co-expressions with r > 0.7 were generated by
the RON-Gauss model.

In summary, all models except the VAE struggled at correctly recreating strong co-
expressions and even the VAE was prone to introducing a high number of incorrect co-
expressions for r > 0.7. Also for weaker co-expressions, introducing DP strongly impaired
the utility of the data both in terms of general co-expressions as well as the activation and
inactivation of highly co-expressed modules, with only high ε-values of 100 and 50 maintaining
the co-expression structure in the data of some models but not offering any considerable
privacy.
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7.8 Discussion and Future Directions

Private vs. non-private synthetic data. The biological evaluation of the different models
yielded that some model types are capable of generating synthetic data with high biological
utility in the non-DP setting. However, the incorporation of DP, though essential for maintaining
privacy, significantly hampers their performance. In examining the generally top-performing
VAE models through membership inference attacks (Section 7.3.1), we found that non-DP
training poses a considerable privacy risk, with AUC-ROC scores of 0.949 and 0.614 for
white-box (implemented following [78]) and black-box attacks (implemented following [34]),
respectively. Notably, setting the privacy budget at a relative high level of ε=100 resulted in a
rapid decline of AUC-ROC scores to around 0.52 in both scenarios. While such high privacy
budgets ε =100/50 in some cases still allowed good reconstruction of biology properties
as measured by our metrics, these budgets are generally too high to be considered strictly
privacy-preserving.

Challenges of low sample regime. As has become apparent in the analysis of activation
patterns of co-expressed modules, classes with low sample counts were the first to lose their
activation patterns with decreasing privacy budgets. However, such low sample sizes are highly
common in gene expression datasets given the often low availability of sampling material. This
is particularly the case for rare diseases or samples that can only be acquired with invasive
and/or risky medical procedures. Another point that requires addressing is the feature space.
The results presented here were achieved on a strongly reduced feature space of approximately
1000 genes, with gene expression datasets often comprising 20-times as many features. The
observed limitations of differentially private data generation can thus be expected to increase
further when attempting to generate full sets.

Comparing models. The biological evaluation indicated that some model architectures (VAE,
PrivSyn and sometimes Private-PGM) are better than others (GAN, RON-Gauss) at learning
and generating such highly complex, non-normally distributed data like gene expressions. In
general, VAE stands out with the best overall performance, likely because of their substantial
expressive capacity, which outperforms simpler probabilistic models like RON-Gauss and
methods dependent on low-dimensional approximations, such as PrivSyn and Private-PGM.
Moreover, VAEs benefit from stable training processes, advantageous in scenarios with limited
samples, unlike the less stable GANs. However, incorporating privacy into this process presents
challenges, while maintaining biological utility in a privacy-preserving manner requires further
research and possibly more data.

Dependent data. In certain scenarios where the dataset used contains dependent records—such
as those associated with the same individual (e.g., single-cell data), a transition to a more
advanced level of protection becomes imperative, wherein the goal shifts to preserving each
group of dependent records (referred to as Group-level DP). However, this elevation in privacy
protection comes with the trade-off of injecting more noise, potentially leading to a greater
compromise in the quality of the synthetic data. Furthermore, the task of defining a set of de-
pendent records is not always straightforward. For instance, while it is evident that individuals
within the same family often share a common genomic heritage, the extent of relatedness to
consider when forming such groups remains ambiguous. Determining whether to include only
immediate family members like parents and siblings or to encompass more distant relatives
poses an additional challenge. Due to these intricate aspects of privacy considerations, we
opt to exclude single-cell datasets from our analysis, despite their potential size advantage for
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assessing non-DP generative models.

General-purpose synthetic data vs. task-specific data. Providing general-purpose private
synthetic data that is useful for all kinds of downstream tasks while preserving statistical and
biological properties is still a highly challenging task. Having accurate generators would also
imply a strong model and insights for the respective domain, which is often not the case for
many bio-medical applications. In addition, small sub-population might not be represented
and suffer from mode collapse issues of the generator. It has also been recently questions to
what extend such an ultimate solution can be achieved at all [200, 201]. While it is difficult
to predict how these trade-off develop in the future, the increased available of such medical
data will have a positive effect. In addition, task-specific data generation (e.g. [29]) in a data
distillation approach can relax the objectives, but is also departing from the goal of preserving
statistic and biological properties by mostly focusing on downstream utility.

7.9 Conclusions

We provide the first systematic analysis of non-private and differentially private generation of
gene expression data that covers five diverse modeling approaches ranging from simple density
estimation over graphical models to deep generative models. Our analysis encompasses a
diverse set of metrics that shed light on the quality of the generated data in terms of statistical
and biological properties as well as down-stream utility. A key message of our work is that such
a broad evaluation is necessary in order to understand the limitations of current generators.
Overall, simple estimators fall behind in performance but equally very complex models like
GAN are suffering from the low sample regime as typically encountered in bio-medical
applications. While downstream utility can be strong, the synthetic data itself might not retain
statistical nor biological properties. Adding privacy preserving estimation and learning of the
generators amplifies these problems. A general model recommendation is difficult to provide,
as these trade-offs will shift as more data is going to become available in the future. However,
we see a tendency that the evaluated graphical models have retained better the differential
expression and the variational autoencoder retained better the co-expression - in particular
when privacy is added. We will release our setup and evaluation framework in order to further
drive progress in this domain.
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Recent advances in machine learning, while significant, depend heavily on the availability
of large-scale, high-quality data. However, in many real-world scenarios involving
sensitive information, these advancements may be significantly restricted due to privacy

concerns and regulatory barriers that limit data sharing. Meanwhile, the increased usage of
personal data in commercial machine learning applications amplifies the risk of privacy
violations. Such hurdles present considerable challenges, which can dampen the momentum
of progress and innovation in the general field of machine learning.

This thesis aims to address practical privacy issues and devise solutions to these data challenges.
We approach the problem from the following main perspectives:

• Privacy-preserving Generative Modeling: We investigate how to generate synthetic data
with strict privacy guarantees. The primary aim is to create synthetic datasets that preserve
the analytical utility of the original data, such as for training machine learning algorithms,
while strictly limiting the risk of disclosing any individual’s private information.

• Privacy Attacks and Defenses: We assess the vulnerabilities inherent in machine learning
models and the potential privacy breaches that could occur when these models are deployed,
particularly the likelihood of them leaking private information. Moreover, we investigate
countermeasures that can be implemented to fortify these models against such privacy
attacks.

• Application: We pioneer in applying privacy-preserving data generation methods to real-
world sensitive datasets, involving a systematic study of various representative methods with
unique characteristics. Moreover, we establish a comprehensive evaluation framework that
accurately captures the different facets of the generated data, particularly its applicability in
real-world downstream analyses.

We provide a comprehensive summary of our contributions aimed at addressing the afore-
mentioned aspect of privacy in machine learning. Additionally, we outline potential future
directions for research, highlighting areas that could benefit from further exploration and
improvement.

127



128 Conclusion and Future Work

8.1 Discussions of Contributions

8.1.1 Privacy-preserving Generative Modeling

Significant progress has been made in incorporating DP guarantees into the training of deep
generative models, yielding promising results in sanitizing high-dimensional samples for arbi-
trary downstream tasks [24, 32, 239, 245, 14]. Unfortunately, these methods still face challenges
in producing high-fidelity sanitized data that is broadly useful in real-world scenarios, often
due to inherent difficulties and practical engineering hurdles.

In conclusion, our proposed novel modifications to the DP training paradigms for deep
generative models enhance previous methods by tackling the core challenges identified in
this field: hyperparameter tuning and training stability, modeling complexity, as well as
fragmented research, as introduced in Chapter 1. Accordingly, our solution fall into three
aspects: sanitization scheme (Chapter 2), generation framework (Chapter 3), and a unified
perspective (Chapter 4) of this problem.

• Gradient Sanitization Scheme. To alleviate the difficulty of hyperparameter search and to
improve training stability, in Chapter 2, we introduce a novel gradient sanitization scheme
that can be naturally integrated into the training of a generative adversarial network. Our
primary insight posits that privacy-preserving training, often at the expense of utility, need
only be applied to the generator—the component that will be released to the public. In
contrast, the discriminator, which is often discarded post-training, can be optimally trained
without privacy constraints. Furthermore, our approach effectively utilizes the Lipschitz
property inherent in the discriminator from the Wasserstein training objective, enabling the
achievement of precise sensitivity estimates without the need for exhaustive hyperparameter
tuning.

• Generation Framework. We tackle the inherent modeling complexity of generating private
high-dimensional data by proposing a new framework, as detailed in Chapter 3. Instead
of training deep generative models with DP constraints, we directly optimize a small set
of samples guided by discriminative information targeting downstream utility, which is a
more attainable objective. We introduce a simple yet effective method to synthesizing a
set of representative samples that reflects the original data for training downstream neural
networks. Our findings challenge prevailing thinking and offer new insights to advance the
field of private data generation.

• Unified View. We introduce a unified view, coupled with a novel taxonomy, that effectively
characterizes existing approaches and integrates the otherwise fragmented research in DP
deep generative modeling, as detailed in Chapter 4. Our taxonomy covers critical aspects
such as threat models, general formulations, detailed descriptions, privacy analysis, as well
as insights and broader implications, providing a holistic design surface for systematically
exploring innovative methodologies and building upon the strengths of existing techniques.
Furthermore, we present an in-depth introduction to the core principles of DP and generative
modeling, enriched with substantial insights and discussions on key considerations for future
research in this field.
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8.1.2 Privacy Attacks and Defenses

While a significant amount of research on privacy attacks and defenses in machine learning
systems has been presented in recent years, the pursuit of understanding and mitigating these
issues continues due to their adversarial nature. Stronger attacks could emerge from efforts to
devise strategies that are customized for each application scenario, while stronger defenses
are required to counteract these attacks. The fundamental goal in analyzing privacy attacks is
to augment their effectiveness and practicability, while the focus of designing defenses is to
establish an ideal balance between privacy preservation and functional utility.

Our investigation encompasses both a systematic analysis of attacks against advanced genera-
tive models (Chapter 5) and the development of effective defenses on general discriminative
models (Chapter 6).

• Privacy Attack for Advanced Generative Models. We provides a pioneering systematic
analysis of membership inference attacks on diffusion models, the state-of-the-art generative
backbone widely adopted in modern media editing tools. We uncover the key attack vectors
relevant to the deployment of diffusion models in real-world contexts and introduce effective
attack strategies, capitalizing on easily obtainable information to achieve robust performance
across various settings. Our results highlight the significant potential privacy risk associated
with diffusion models, with which we aim to motivate further research into related topics.

• Defense against Privacy Attacks in Discriminative Models. We introduce a novel training
approach that effectively protects against membership inference attacks while preserving
the utility of the target models. Our key insight is that membership privacy risks can be
mitigated by reducing the discrepancy between training and testing loss distributions. This
insight has led to the development of RelaxLoss, which modifies the training objective to
a more attainable goal. Our approach provides effective protection and is straightforward
to implement across various machine learning models, demonstrating its practicality and
potential for widespread application.

8.1.3 Application

Despite the considerable progress achieved by recent research in privacy-preserving data
generation, the deployment of these methods to address real-world, complex, high-dimensional
data across different modalities continues to present a significant challenge. The adoption
of these privacy techniques in sensitive domains, as well as their proper integration into
various application scenarios, remains largely unexplored. Moreover, the unique and diverse
characteristics of data in sensitive domains call for specialized advancements in representation,
modeling, and evaluation methodologies—areas that the current body of research has not yet
sufficiently addressed.

• Privacy-preserving Generation of Gene Expression Data. We present the first comprehen-
sive analysis of gene expression data generation, covering five methodologies ranging from
simple density estimators to advanced deep generative models. Our analysis utilizes a broad
spectrum of metrics to evaluate the properties of the synthetic data, including statistical
and biological characteristics, as well as its downstream utility. Our critical investigation
highlights the necessity of such extensive evaluations to understand the limitations of current
data generators. While most existing methods, including the most basic parametric Gaussian



130 Conclusion and Future Work

density estimation, can yield near-perfect downstream utility with strong DP guarantees,
they often fail to preserve the statistical and biological characteristics of the original data. The
challenge of generating DP synthetic data that preserves statistical fidelity and is biologically
plausible remains an open issue, necessitating future research.

8.2 Future Directions

The research detailed in this thesis has shown significant promise in understanding and
mitigating the privacy risks associated with the development and deployment of machine
learning models. A central aspect of this advancement has been the exploration of viable
solutions, notably privacy-preserving data generation, to tackle the data privacy challenge.
However, there are still open challenges and opportunities for future development that broaden
the scope of our current research and warrant further investigation. In the following subsections,
we present a series of potential future research directions that we intend to explore.

8.2.1 Privacy-preserving Generative Modeling

Exploiting Public Knowledge. As privacy-preserving algorithms inherently suffer from high
sample complexity, a promising future direction which holds significant practical relevance is
the exploitation of public knowledge in training DP generative models. While recent studies
have demonstrated great promise in improving private classification models [158, 159], privacy
query release [125], DP generation [35, 126, 71, 133] and reported high-quality generation [62,
122] with the aid of such resources, current research relies heavily on strong assumptions about
the public data distribution (e.g., assuming that public and private data come from the same
distribution) while the specifics of its usefulness and the most effective way to utilize these
resources are still unclear. Moreover, the challenges commonly linked with private learning on
public data necessitate additional scrutiny [213]. In particular, the unique difficulties specific to
generative modeling, such as a small tolerance for distribution shift, calls for more in-depth
investigation. Future research should focus on practical cases where public data originates
from diverse sources, presenting distribution shifts, and develop innovative methods to tackle
these distributional disparities.

Task-specific Generation. Fitting a complete high-dimensional data distribution for general
purpose is a complex task, and privacy constraints further exacerbate this challenge by in-
creasing the model’s data requirements. A principled trade-off emerges between the flexibility
provided by general-purpose generative modeling and the utility of task-specific data genera-
tion. A natural solution to alleviate the complexity issue is to incorporate prior knowledge to
simplify the task. For instance, one could utilize the knowledge of potential downstream tasks
to direct the training of DP generation methods. This might involve using a task-dependent
supervision loss, such as an additional classification loss for a downstream classification task.
Furthermore, generating data specifically for defined tasks has the added advantage of being
useful for predetermined benign applications, thus reducing the risk of potential unauthorized
data misuse. While promising results have been achieved with DP generation of synthetic
data for standard downstream tasks such as answering linear queries [73, 72], Bayesian es-
timation [134, 185], and training classification models [29], developing specialized solutions
for different scenarios may necessitate significant modifications to the existing frameworks,
highlighting a need for further research in this area.
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Application in Multi-party Interaction. DP data generation finds a compelling use case in
multi-party interactions, where the need for privacy-protected data exchange is paramount.
For instance, DP data generation has shown promising potential in the realm of federated
learning [10, 32, 256, 216], enabling tasks such as privacy-preserving data inspection and de-
bugging that were previously infeasible due to privacy constraints. Task-specific DP generation
can be particularly useful in these contexts, as it has shown potential in addressing non-iid
issues and in contributing to the faster convergence of federated learning models [241, 228].
While these methods may still require substantial amounts of local data and computational
resources from the participants, future development of efficient algorithms is anticipated to
lead to promising results.

8.2.2 Privacy Attacks and Defense

Expanding Attack Surfaces. The recent proliferation of machine learning applications in
everyday life inevitably leads to new vulnerabilities and expands potential attack surfaces,
increasing the demand for enhanced privacy protection. For instance, the increasing need for
training in a distributed or federated setting, which involves information exchange between
parties, opens up possibilities for privacy attacks by malicious participants or untrusted central
servers. Sensitive data could potentially be reconstructed from transmitted intermediate
signals [263], which however, is hard to defend using existing solutions designed for the
standard centralized training setting. While operations such as secure aggregation have been
proposed, their protection level under potential strong privacy attacks is not fully understood.
Furthermore, the evolving complexity of interactions between the service providers and data
providers highlights the necessity for a more in-depth examination of privacy-preserving
mechanisms. This may necessitate different levels of privacy protection beyond the customer
data privacy, such as the model privacy of the service provider for intellectual property, which
warrants future development of appropriate protection mechanisms that exhibit resilience even
under advanced threat models.

Privacy Auditing. Assessing the privacy guarantees of privacy-preserving techniques via
real-world attack simulations, commonly referred to as “privacy auditing” [85, 147], presents
substantial potential and calls for the development of potent attacks. Specifically, while
such techniques have been investigated in the context of auditing classification models, the
exploration of computationally efficient attacks suitable for more complex models, such as the
generative ones, remains an open challenge. This complexity primarily stems from several
factors. Firstly, to fully leverage the attack capabilities permitted by the associated threat model,
auditing attacks often require the repetitive training of multiple models on neighboring data
subsets, a process that significantly increases computational demands. This necessitates the
invention of efficient approximation methods. Moreover, generative models generally exhibit
low sensitivity to privacy attacks [74, 34], resulting in less informative auditing results. These
challenges highlight a pressing need for strategic design of more efficient attacks, particularly
those tailored for the auditing of DP generative models.

8.2.3 Broader View

Our long-term objective is to develop trustworthy machine learning systems, wherein privacy-
preserving learning is a pivotal element, anchoring the foundational trust in artificial intel-
ligence systems. As we look to the future, our ambition is to delve into the broader field of
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these subjects, tackling other related challenges such as ethics, interpretability, robustness, and
fairness.

Holistic Assessment and Design of Trustworthy Systems. The pursuit of trustworthiness in
AI systems encompasses a range of facets, some of which may synergize and reinforce each
other, while others might present conflicting objectives. This complex landscape necessitates a
holistic approach in both the assessment and design phases, requiring a deep understanding
and careful integration of these diverse elements. A key challenge lies in identifying and
addressing both the aligned and conflicting dimensions. For instance, the trade-off between
transparency and privacy in AI algorithms exemplifies such a conflict. To effectively tackle these
challenges, future work should be committed to multidisciplinary approaches that integrate
various elements to achieve an optimized balance.

Risks Related to Foundation Models. The future of developing effective machine learning
systems is closely linked to the advancement of foundation models, i.e., large ML models trained
on a vast quantity of data at scale and can be adapted to a wide range of downstream tasks.
These models are crucial in establishing the backbone for numerous downstream applications,
paving the way for a diverse range of AI technologies. Aiming for these foundation models to
function in a trustworthy and privacy-preserving way, to conform to ethical standards, and to
provide interpretability and fairness is crucial for future research and practice in the general
field of machine learning. Initiatives that focus on aligning foundation models with ethical
standards, enhancing methods for transparency and interpretability, and bolstering them
against adversarial threats are of great importance and necessitate concerted efforts. Ultimately,
the aim of this research is to develop foundation models that are not only technologically
advanced but also resonate with the broader goal of creating AI that is as ethically responsible
as it is revolutionary.
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AGS-WGAN: A Gradient-Sanitized Approach for

Learning Differentially Private Generators

These supplementary materials include the privacy analysis (§A.1), the algorithm pseudocode
(§A.2), the details of experiment setup (§A.3), and additional results (§A.4). Our source code is
available at Github: https://github.com/DingfanChen/GS-WGAN.

A.1 Privacy Analysis

The privacy cost (ε) computation including: (i) bounding the privacy loss for our gradient
sanitization mechanism using RDP; (ii) applying analytical moments accountant of subsampled
RDP [230] for a tighter upper bound on the RDP parameters; (iii) tracking the overall privacy
cost: multiplying the RDP orders by the number of training iterations and converting the
resulting RDP orders to an (ε, δ) pair (Definition 3.2 [142]). We below present the theoretical
results.

Theorem 2.4.1. Each generator update step satisfies (λ, 2Bλ/σ2)-RDP where B is the batch
size.

Proof. Let f =clip(gupstream
G , C), i.e., the clipped gradient before being sanitized. The sensitivity

can be derived via the triangle inequality:

∆2 f = max
S,S′
∥ f (S)− f (S′)∥2 ≤ 2C (A.1)

with C=1 in our case. Hence, we haveMσ,C is (λ, 2λ/σ2)-RDP.
Each generator update step (which operates on a batch of data) can be expressed as

ĝG =
1
B

B

∑
i=1
Mσ,C(∇G(zi)LG(θG)) · JθG G(zi; θG) (A.2)

This can be seen as a composition of B Gaussian mechanisms. Concretely, we want to bound
the Rényi divergence Dλ(ĝG(S)∥ĝG(S′)) with S, S′ denoting the neighbouring datasets. We use
the following properties of Rényi divergence [222]:
(i) Data-processing inequality : Dλ(PY∥QY) ≤ Dλ(PX∥QX) if the transition probabilities A(Y|X)
in the Markov chain X → Y is fixed.
(ii) Additivity : For arbitrary distributions P1, .., PN and Q1, ..., QN let PN = P1× · · · ×PN and
QN =Q1× · · · ×QN . Then Dλ(PN∥QN) = ∑N

n=1 Dλ(Pn∥Qn)

Let u and v denote the output distribution of the sanitization mechanismMσ,C when applied
on S and S′ respectively, and h the post-processing function (i.e., multiplication with the local

157

https://github.com/DingfanChen/GS-WGAN


158 GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators

Jacobian). We have,

Dλ(ĝG(S), ĝG(S′)) ≤ Dλ

(
h1(u1) ∗ · · · ∗ hB(uB)∥h1(v1) ∗ · · · ∗ hB(vB)

)
(A.3)

≤ Dλ

((
h1(u1), · · · , hB(uB)

)
∥
(
h1(v1), · · · , hB(vB)

))
(A.4)

= ∑
b

Dλ((hb(ub)∥hb(vb)) (A.5)

≤∑
b

Dλ(ub∥vb) (A.6)

≤ B ·max
b

Dλ(ub∥vb) (A.7)

≤ B · 2λ/σ2 (A.8)

where (3)(4)(6) are based on the data-processing theorem; (5) follows from the additivity; and
the last equation follows from the (λ, 2λ/σ2)-RDP ofMσ,C.

Theorem A.1.1. (RDP for Subsampled Mechanisms [230]) Given a dataset containing n
datapoints with domain X and a randomized mechanismM that takes an input from X m for
m ≤ n, let the randomized algorithmM◦ subsample be defined as: (i) subsample: subsample
without replacement m datapoints of the dataset (with subsampling rate γ = m/n); (ii) apply
M: a randomized algorithm taking the subsampled dataset as the input. For all integers λ ≥ 2,
ifM is (λ, ϵ(λ))-RDP, thenM◦ subsample is (λ, ϵ′(λ))-RDP where

ϵ′(λ) ≤ 1
λ− 1

log
(

1 + γ2
(

λ

2

)
min

{
4(eϵ(2) − 1), eϵ(2) min {2, (eϵ(∞) − 1)2}

}

+
λ

∑
j=3

γj
(

λ

j

)
e(j−1)ϵ(j) min{2, (eϵ(∞) − 1)j}

)

In practice, we adopt the official implementation of [230] 1 for computing the accumulated
privacy cost (i.e., tracking the RDP orders and converting RDP to (ε, δ)-DP).

A.2 Algorithm

We present the pseudocode of our proposed method in Algorithm 4 (Centralized setup) and
Algorithm 5 (Federated setup).

1https://github.com/yuxiangw/autodp

https://github.com/yuxiangw/autodp
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Algorithm 4: Centralized GS-WGAN Training
Input: Dataset S, subsampling rate γ, noise scale σ, warm-start iterations Tw,

training iterations T, learning rates ηD and ηG, the number of discriminator
iterations per generator iteration ndis, batch size B

Output: Differentially Private generator G with parameters θG, total privacy cost ε
1 Subsample (without replacement) the dataset S into subsets {Sk}K

k=1 with rate γ
(K=1/γ);

2 for k in {1, ..., K} in parallel do
3 Initialize non-private generator θk

G, discriminator θk
D for step in {1, ..., Tw} do

4 for t in {1, ..., ndis} do
5 Sample batch {xi}B

i=1 ⊆ Sk ;
6 Sample batch {zi}B

i=1 with zi ∼ Pz ;
7 θk

D ← θk
D − ηD · 1

B ∑i∇θk
D
LD(θ

k
D; xi, G(zi; θk

G)) ;
8 end
9 θk

G ← θk
G − ηG · 1

B ∑i∇θk
G
LG(θ

k
G; G(zi; θk

G), θk
D) ;

10 end
11 Initialize private generator θG ;
12 for step in {1, ..., T} do
13 Sample subset index k ∼ U [1, K] ;
14 for t in {1, ..., ndis} do
15 Sample batch {xi}B

i=1 ⊆ Sk ;
16 Sample batch {zi}B

i=1 with zi ∼ Pz ;
17 θk

D ← θk
D − ηD · 1

B ∑i∇θk
D
LD(θ

k
D; xi, G(zi; θG)) ;

18 end
19 θG ← θG − ηG · 1

B ∑iMσ,C(θG; G(zi; θG), θk
D) · JθG G(zi; θG) ;

20 Accumulate privacy cost ε ;
21 end
22 end
23 return Generator G(· ; θG), privacy cost ε
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Algorithm 5: Federated (Decentralized) GS-WGAN Training
Input: Client index set {1, ..., K}, noise scale σ, warm-start iterations Tw, training

iterations T, learning rates ηD and ηG, the number of discriminator iterations
per generator iteration ndis, batch size B

Output: Differentially Private generator G with parameters θG, total privacy cost ε
1 for each client k in {1, ..., K} in parallel do
2 ClientWarmStart(k)
3 end
4 Initialize private generator θG ;
5 for step in {1, ..., T} do
6 Sample client index k ∼ U [1, K] ;
7 for t in {1, ..., ndis} do
8 Sample batch {zi}B

i=1 with zi ∼ Pz ;
9 {ĝup

i }B
i=1 ← ClientUpdate(k, G(zi; θG))

10 end
11 θG ← θG − ηG · 1

B ∑i ĝup
i · JθG G(zi; θG) ;

12 Accumulate privacy cost ε ;
13 end
14 return Generator G(· ; θG), privacy cost ε
15

16 Procedure ClientWarmStart(k)
17 Get local dataset Sk ;
18 Initialize local generator θk

G, discriminator θk
D ;

19 for step in {1, ..., Tw} do
20 for t in {1, ..., ndis} do
21 Sample batch {xi}B

i=1 ⊆ Sk ;
22 Sample batch {zi}B

i=1 with zi ∼ Pz ;
23 θk

D ← θk
D − ηD · 1

B ∑i∇θk
D
LD(θ

k
D; xi, G(zi; θk

G)) ;
24 end
25 θk

G ← θk
G − ηG · 1

B ∑i∇θk
G
LG(θ

k
G; G(zi; θk

G), θk
D) ;

26 end
27

28 Procedure ClientUpdate(k, G(zi; θG))
29 Get local dataset Sk, local discriminator D(· ; θk

D) ;
30 Sample batch {xi}B

i=1 ⊆ Sk ;
31 θk

D ← θk
D − ηD · 1

B ∑i∇θk
D
LD(θ

k
D; xi, G(zi; θG)) ;

32 returnMσ,C(θG; G(zi; θG), θk
D)
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A.3 Experiment Setup

A.3.1 Hyperparameters

We adopt the hyperparameters setting in [67] for the GAN training, and list below the
hyperparameters relevant for privacy computation.

Centralized Setting. We use by default a subsampling rate of γ=1/1000, noise scale σ=1.07,
pretraining (warm-start) for 2K iterations and subsequently training for 20K iterations.

Federated Setting. We use by default a noise scale σ=1.07, pretraining (warm-start) for 2K
iterations and subsequently training for 30K iterations.

A.3.2 Datasets

Centralized Setting. MNIST [108] and Fashion-MNIST [238] datasets contain 60K training
images and 10K testing images. Each image has dimension 28× 28 and belongs to one of the
10 classes.

Federated Setting. Federated EMNIST [23] dataset contains 28× 28 gray-scale images of
handwritten letters and numbers, grouped by user. The entire dataset contains 3400 users
with 671,585 training examples and 77,483 testing examples. Following [10], the users are
filtered by the prediction accuracy of a 36-class (10 numeric digits + 26 letters) CNN classifier.
For evaluating the sample quality, we train GAN models on the users’ data which yields
classification accuracy ≥ 93.9% (866 users); For simulating the debugging task, we randomly
choose 50% of the users and pre-process their data by flipping the pixel intensities. To mimic
the real-world situation where the server is blind to the erroneous pre-processing, users with
low classification accuracy ≤88.2% are selected (2136 users) as they are suspected to be affected
by erroneous flipping (with bug). Note that only a fraction of them is indeed affected by the
bug (1720 with bug, 416 without bug). This has the realistic property that the client data is
non-IID and poses additional difficulties in the GAN training.

A.3.3 Evaluation Metrics

In line with previous literature, we use Inception Score (IS) [184, 112] and Frechet Inception
Distance (FID) [77] for measuring sample quality, and classification accuracy for evaluating the
usefulness of generated samples. We present below a detailed explanation of the evaluation
metrics we adopted in the experiments.

Inception Score (IS). Formally, the IS is defined as follows,

IS = exp
(

Ex∼G(z)DKL(P(y|x)∥P(y))
)

which corresponds to exponential of the KL divergence between the conditional class P(y|x)
and the marginal class distribution P(y), where both P(y|x) and P(y) are measured by the
output distribution of a pre-trained classifier when passing the generated samples as input.
Intuitively, the IS should exhibit a high value if P(y|x) has low entropy (i.e., the generated
images are sharp and contain clear objects) and P(y) is of high entropy (i.e., the generated
samples have a high diversity covering all the different classes). In our experiments, we use
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pre-trained classifiers on the real datasets (with test accuracy equals to 99.25%, 93.75%, 92.16%
on the MNIST, Fashion-MNIST and Federated EMNIST dataset respectively) 2 for computing
the IS.

Frechet Inception Distance (FID). The FID is formularized as follows,

FID = ∥µr − µg∥2 + tr(Σr + Σg − 2(ΣrΣg)
1/2)

where xr ∼ N (µr, Σr) and xg ∼ N (µg, Σg) are the 2048-dimensional activations of the Inception-
v3 pool3 layer for real and generated samples respectively. A lower FID value indicates a
smaller discrepancy between the real and generated samples, which corresponds to a better
sample quality and diversity. Following previous works 3 , we rescale the images and convert
them to RGB by repeating the grayscale channel three times before inputting them to the
Inception network.

Classification Accuracy. We consider the following classification models in our experiments:
Multi-layer Perceptron (MLP), Convolutional Neural Network (CNN), AdaBoost (adaboost),
Bagging (bagging), Bernoulli Naive Bayes (bernoulli nb), Decision tree (decision tree), Gaussian
Naive Bayes (gaussian nb), Gradient Boosting (gbm), Linear Discriminant Analysis (lda), Linear
Support Vector Machine (linear svc), Logistic Regression (logistic reg), Random Forest (random
forest), and XGBoost (xgboost). For implementing the CNN model, we use two hidden layers
(with dropout) each containing 32 and 64 kernels and apply ReLU as the activation function.
For implementing the MLP, we use one hidden layer with 100 neurons and set ReLU as the
activation function. All the other classification models are implemented using the default
hyperparameters supplied by the scikit-learn [162] package.

A.3.4 Baseline Methods

We present more details about the implementation of the baseline methods. In particular, we
provide the default value of the privacy hyperparameters below.

DP-Merf (AE) 4 We use as default a batch size=500 (γ=1/120), noise scale σ=0.588, training
iteration=600 (epoch=5) for implementing DP-Merf, and batch size=500, noise scale σ=0.686,
training iteration=2040 (epoch=17) for implementing DP-Merf AE.
DP-SGD GAN 5 We set the default hyper-parameters as follows: gradient clipping bound
C=1.1, noise scale σ=2.1, batch size=600, training iterations=30K.
G-PATE We use 2000 teacher discriminators with batch size of 30 and set noise scales σ1=600

and σ2=100, consensus threshold T=0.5. A random projection with projection dimension=10 is
applied.
PATE-GAN 6 When extending PATE-GAN to high-dimensional image datasets, we observe
that after a few iterations, the generated samples are classified as fake by all teacher discrimi-
nators and the learning signals (gradients) for student discriminator and the generator vanish.
Consequently, the training stuck at the early stage where the losses remain unchanged and no
progress can be observed. While this issue is well resolved by careful design of the prior distri-
bution, as reported in the original paper, we find that this technique has a limited effect when

2https://github.com/ChunyuanLI/MNIST_Inception_Score
3https://github.com/google/compare_gan
4https://github.com/frhrdr/Differentially-Private-Mean-Embeddings-with-Random-Features-for-Synthetic-Data-Generation
5https://github.com/reihaneh-torkzadehmahani/DP-CGAN
6https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/2534877d99c8fdf19cbade16057990171e249ef3/alg/
pategan/

https://github.com/ChunyuanLI/MNIST_Inception_Score
https://github.com/google/compare_gan
https://github.com/frhrdr/Differentially-Private-Mean-Embeddings-with-Random-Features-for-Synthetic-Data-Generation
https://github.com/reihaneh-torkzadehmahani/DP-CGAN
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/2534877d99c8fdf19cbade16057990171e249ef3/alg/pategan/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/2534877d99c8fdf19cbade16057990171e249ef3/alg/pategan/
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applied to the high-dimensional image dataset. In addition, we make the following attempts
to address this issue: (i) changing the network initialization (ii) increasing (or decreasing) the
network capacity of the student discriminator, the teacher discriminators, and the generator
(iii) increasing the number of iterations for updating the student discriminator and/or the
generator. Despite some progress in preserving the gradients for larger iterations, none of the
above attempts successfully eliminate the issue, as the training inevitably gets stuck within 1K
iterations.

A.4 Additional Results

Effects of gradient clipping. We show in Figure A.1 the gradient norm distribution before and
after gradient clipping. The clipping bound is set to be 1.1 for DP-SGD and 1 for our method.
In contrast to DP-SGD, the clipping operation distorts less information in our framework,
witnessed by a much smaller difference in the average gradient norm before and after the
clipping. Moreover, the gradients used in our method exhibit much less variance both before
and after the clipping compared with DP-SGD.

(a) DP-SGD (before) (b) DP-SGD (after) (c) Ours (before) (d) Ours (after)

Figure A.1: Effects of gradient clipping.

Comparison to Baselines. We provide the detailed quantitative results in Table A.1 and A.2,
which are supplementary to Table 2.1 in the main paper. We show in parentheses the calibrated
accuracy, i.e., the absolute accuracy of each classifier trained on generated data divided by the
accuracy when trained on real data. The results are averaged over five runs.

Real GAN (non-private) G-PATE DP-SGD GAN DP-Merf DP-Merf AE Ours

MLP 0.98 0.84 (85%) 0.25 (26%) 0.60 (61%) 0.63 (64%) 0.54 (55%) 0.79 (81%)
CNN 0.99 0.84 (85%) 0.51 (52%) 0.64 (65%) 0.63 (64%) 0.68 (69%) 0.80 (81%)
adaboost 0.73 0.28 (39%) 0.11 (16%) 0.32 (44%) 0.38 (52%) 0.21 (29%) 0.21 (29%)
bagging 0.93 0.46 (49%) 0.36 (38%) 0.44 (47%) 0.43 (46%) 0.33 (35%) 0.45 (48%)
bernoulli nb 0.84 0.80 (95%) 0.71 (84%) 0.62 (74%) 0.76 (90%) 0.50 (60%) 0.77 (92%)
decision tree 0.88 0.40 (45%) 0.13 (14%) 0.36 (41%) 0.29 (33%) 0.27 (31%) 0.35 (40%)
gaussian nb 0.56 0.71 (126%) 0.61 (110%) 0.37 (66%) 0.57 (102%) 0.17 (30%) 0.64 (114%)
gbm 0.91 0.50 (55%) 0.11 (12%) 0.45 (49%) 0.36 (40%) 0.20 (22%) 0.39 (43%)
lda 0.88 0.84 (95%) 0.60 (68%) 0.59 (67%) 0.72 (82%) 0.55 (63%) 0.78 (89%)
linear svc 0.92 0.81 (88%) 0.24 (26%) 0.56 (61%) 0.58 (63%) 0.43 (47%) 0.76 (83%)
logistic reg 0.93 0.83 (90%) 0.26 (28%) 0.60 (65%) 0.66 (71%) 0.55 (59%) 0.79 (85%)
random forest 0.97 0.39 (41%) 0.33 (34%) 0.63 (65%) 0.66 (68%) 0.45 (46%) 0.52 (54%)
xgboost 0.91 0.44 (49%) 0.15 (16%) 0.60 (66%) 0.70 (77%) 0.54 (59%) 0.50 (55%)

Average 0.88 0.63 (71%) 0.34 (40%) 0.52 (59%) 0.57 (66%) 0.42 (47%) 0.60 (69%)

Table A.1: Classification accuracy on MNIST (ε=10, δ=10−5).

Privacy-utility Curves. We show in Figure A.2 the privacy-utility curves of different methods
when applied to the Fashion-MNIST dataset. We evaluate over three runs and show the
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Real GAN (non-private) G-PATE DP-SGD GAN DP-Merf DP-Merf AE Ours

MLP 0.88 0.77 (88%) 0.30 (34%) 0.50 (57%) 0.56 (64%) 0.56 (64%) 0.65 (74%)
CNN 0.91 0.73 (80%) 0.50 (54%) 0.46 (51%) 0.54 (59%) 0.62 (68%) 0.64 (70%)
adaboost 0.56 0.41 (74%) 0.42 (75%) 0.21 (38%) 0.33 (59%) 0.26 (46%) 0.25 (45%)
bagging 0.84 0.57 (68%) 0.38 (45%) 0.32 (38%) 0.40 (47%) 0.45 (54%) 0.47 (56%)
bernoulli nb 0.65 0.59 (91%) 0.57 (88%) 0.50 (77%) 0.62 (95%) 0.54 (83%) 0.55 (85%)
decision tree 0.79 0.53 (67%) 0.24 (30%) 0.33 (42%) 0.25 (32%) 0.36 (46%) 0.40 (51%)
gaussian nb 0.59 0.55 (93%) 0.57 (97%) 0.28 (47%) 0.59 (100%) 0.12 (20%) 0.48 (81%)
gbm 0.83 0.44 (53%) 0.25 (30%) 0.38 (46%) 0.27 (33%) 0.30 (36%) 0.38 (46%)
lda 0.80 0.77 (96%) 0.55 (69%) 0.55 (69%) 0.67 (84%) 0.65 (81%) 0.67 (84%)
linear svc 0.84 0.77 (91%) 0.30 (36%) 0.39 (46%) 0.46 (55%) 0.40 (48%) 0.65 (77%)
logistic reg 0.84 0.76 (90%) 0.35 (42%) 0.51 (61%) 0.59 (70%) 0.50 (60%) 0.68 (81%)
random forest 0.88 0.69 (78%) 0.33 (37%) 0.51 (58%) 0.61 (69%) 0.55 (63%) 0.54 (61%)
xgboost 0.83 0.65 (78%) 0.49 (59%) 0.52 (63%) 0.62 (75%) 0.55 (66%) 0.47 (57%)

Average 0.79 0.61 (77%) 0.40 (54%) 0.42 (53%) 0.50 (65%) 0.45 (56%) 0.53 (67%)

Table A.2: Classification accuracy on Fashion-MNIST (ε=10, δ=10−5).

corresponding mean and standard deviation. Similar to the results shown in Figure 2.4 in the
main paper, our method achieves a consistent improvement over prior methods across a broad
range of privacy budget ε.
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Figure A.2: Privacy-utility trade-off on Fashion-MNIST with δ=10−5. (Left: Effects of noise
scale. Right: Effects of Iterations.)



BPrivate Set Generation with Discriminative

Information

These supplementary materials include the privacy analysis (§B.1), the details of the adopted
algorithms (§B.2), and the details of experiment setup (§B.3), and additional results and discus-
sions (§B.4). The source code is available at https://github.com/DingfanChen/Private-Set.

B.1 Privacy Analysis

Our privacy computation is based on the notion of Rényi-DP, which we recall as follows.

Definition B.1.1. (Rényi Differential Privacy (RDP) [142]). A randomized mechanism M is
(α, ε)-RDP with order α, if

Dα(M(D)∥M(D′)) = 1
α− 1

log Ex∼M(D)

[(
Pr[M(D) = x]
Pr[M(D′) = x]

)α−1
]
≤ ε (B.1)

holds for any adjacent datasets D and D′, where Dα(P∥Q) = 1
α−1 log Ex∼Q[(P(x)/Q(x))α] is

the Rényi divergence of order α > 1 between the distributions P and Q.

To compute the privacy cost of our approach, we numerically compute Dα(M(D)∥M(D′))
in Definition B.1.1 for a range of orders α [143, 230] in each training step that requires access
to the real gradient gDθ . To obtain the overall accumulated privacy cost over multiple training
iterations, we use the composition properties of RDP summarized by the following theorem.

Theorem B.1.1. (Adaptive Composition of RDP [143]). Let f : D → R1 be (α, ε1)-RDP and
g : R1 ×D → R2 be (α, ε2)-RDP, then the mechanism defined as (X, Y), where X ∼ f (D) and
Y ∼ g(X,D), satisfies (α, ε1 + ε2)-RDP

In total, our private set generation (PSG) approach (shown in Algorithm 1 of the main paper)
and the generator prior variant (shown in Algorithm 2) can be regarded as a composition over
RTK (i.e., the number of iterations where the real gradient is used) homogenous subsampled
Gaussian mechanisms (with the subsampling ratio = B/N) in terms of the privacy cost.

Lastly, we use the following theorem to convert (α, ε)-RDP to (ε, δ)-DP.

Theorem B.1.2. (From RDP to (ε, δ)-DP [142]). IfM is a (α, ε)-RDP mechanism, thenM is
also (ε + log 1/δ

α−1 , δ)-DP for any 0 < δ < 1.
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https://github.com/DingfanChen/Private-Set
https://github.com/DingfanChen/Private-Set
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B.2 Algorithms

B.2.1 Objective

The distance Ldis (in Equation 5 of the main paper) between the real and synthetic gradients is
defined to be the sum of cosine distance at each layer [261, 259]. Let θl denote the weight at
the l-th layer, the distance can be formularized as follows,

Ldis(∇θL(S , θt),∇θL(D, θt)) =
L

∑
l=1

d(∇θlL(S , θt),∇θlL(D, θt))

where d denotes the cosine distance between the gradients at each layer:

d(A, B) =
out

∑
i=1

(
1− Ai· · Bi·
∥Ai·∥∥Bi·∥

)

Ai· and Bi· are the flattened gradient vectors to each output node i. For FC layers, θl is a 2D
tensor with dimension out× in and the flattened gradient vector has dimension in, while for
Conv layer, θl is a 4D tensor with dimensionality out× in× h× w and the flattened vector has
dimension in× h× w. out,in, h, w corresponds to the number of output and input channels,
kernel height, and width, respectively.

B.2.2 Generator Prior

We present the pseudocode of the generator prior experiments (Section 6 of the main paper) in
Algorithm 2, which is supplementary to Figure 3.4-3.6 and Equation 3.8 of the main paper.

The only difference to the original PSG formulation is that the samples are restricted
to be the output of a generator network and the updates are conducted on the generator
network parameters (See Figure 3.4 for the illustration and see Figure 1 in the main paper for a
comparison). Note that the generator network is freshly initialized (i.e., untrained) when we
commence the training process, thereby restricting the prior image to originate only from the
convolutional structure instead of utilizing additional public knowledge for data. Additionally,
we fix the random latent code zi during the whole training process to guarantee that there is no
other randomness/degree of freedom except that introduced by the generator network itself.
While it is possible to allow random sampling of the latent code and generate changeable S to
mimic the training of generative models (i.e., train a generative network using the gradient
matching loss), we observe that the training easily fails in the early stage. We argue that this
also indicates that training a generative network is a harder task than training a set of samples
directly, which explains the better convergence behavior and superior final performance of our
formulation in comparison to existing works (which build on top of deep generative networks).
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Algorithm 2: Private Set Generation with Generator Prior

Input: Dataset D = {(xi, yi)}N
i=1, learning rate for update network parameters τθ and

τφ, sampling probability ρ, DP noise scale σ, gradient clipping bound C, number
of runs R, outer iterations T, inner iterations J, batches K, number of classes L,
number of samples per class (spc), desired privacy cost ε given a pre-defined δ

Output: Synthetic set S
Compute the DP noise scale σ numerically so that the privacy cost equals to ε after the
training; Initialize model parameter φ of the conditional generator G;

for c in {1, ..., L} do
for sample_index in spc do

ySi = c ;
Sample zi ∼ N (0, I) (zi is fixed for each corresponding synthetic sample during
the training) ;

xS = G(zi, ySi ; φ);
Insert (xSi , ySi ) into S ;

end
end
for run in {1, ..., R} do

Initialize model parameter θ0 ∼ Pθ0 ;
for outer_iter in {1, ..., T} do

θt+1 = θt
for batch_index in {1, ..., K} do

Sample a batch {(xi, yi)}Bk
i=1, where each (xi, yi) from D is uniformly

sampled with probability ρ; for each (xi, yi) in the batch do
// Compute per-example gradients on real data

gDθt
(xi) = ℓ(F(xi; θt), yi)

// Clip gradients

g̃Dθt
(xi) = gDθt

(xi) ·min(1, C/∥gDθt
(xi)∥2)

end
// Add noise to average gradient with Gaussian mechanism

g̃Dθt
= 1

Bk
∑Bk

i=1(g̃Dθt
(xi) +N (0, σ2C2 I))

// Compute parameter gradients on synthetic data and update G
gSθt

= ∇θL(S , θt)) =
1
M ∑M

i=1 ℓ(F(xSi ; θt), ySi ) where xSi = G(zi, ySi ;φ)

φ = φ− τφ · ∇φLdis(gSθt
, g̃Dθt

)

end
for inner_iter in {1, ..., J} do

// Update network parameter using S
S = {G(zi, ySi ;φ), ySi }M

i=1
θt = θt − τθ · ∇θL(S , θt)

end
end

end
return Synthetic set S
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B.3 Experiment Setup

B.3.1 Datasets

MNIST [108] dataset contains 28 × 28 grayscale images of digit numbers. The dataset
comprises 60K training images and 10K testing images in total. The task is to classify the image
into one of the 10 classes based on the digit number it contains.

Fashion-MNIST [238] dataset consists of 28× 28 grayscale images fashion products of 10

categories. The total dataset size is 60K for the training set and 10K for the testing set,
respectively. The task is to classify the fashion product given in the images.

B.3.2 Required Resources and Computational Complexity

All our models and methods are implemented in PyTorch. Our experiments are conducted
with Nvidia Tesla V100 and Quadro RTX8000 GPUs and a common configuration with 16GB
GPU memory is sufficient for conducting all our experiments.

In comparison to normal non-private training, the major part of the additional memory
and computation cost is introduced by the DP-SGD [1] step (for the per-sample gradient
computation) that sanitizes the parameter gradient on real data, while the other steps (including
the update on S , and the updates of F(·; θ) on S are equivalent to multiple calls of the normal
non-private forward and backward passes (whose costs have lower magnitude than the
DP-SGD step). Moreover, our formulation requires much less computational and memory
consumption than previous works that require training multiple instances of the generative
modules [32, 130, 227].

B.3.3 Hyperparameters

Training. We set the default value of hyperparameters as follows: batch size = 256 for both
computing the parameter gradients in the outer iterations and for update the classifier F in the
inner iterations, gradient clipping bound C = 0.1, R = 1000 for ε = 10 (and R = 200 for ε = 1),
K = 10. The number of inner J and outer T iterations are dependent on the number of samples
per class (spc), as more samples generally requires more iterations till convergence: (T, J) is
set to be (1, 1), (10, 50), (20, 25) and (50, 10) for spc = 1, 10, 20, 50, respectively. The DP noise
scale σ is calculated numerically1 [1, 143] so that the privacy cost equals to ε after the training
(with RTK steps in total that consume privacy budget), given that δ = 10−5. The learning
rate is set to be τθ = 0.01 (and τφ = 0.01 for training with generator prior) and τS = 0.1 for
updating the network parameters and samples, respectively. We use SGD optimizer for the
classifier F, and samples S (with momentum= 0.5), while we use Adam optimizer for the
generator G if trained with prior. For the training process, no data augmentation is adopted.
Our implementation of the DP-SGD step and the uniform data sampling operation is based on
the Opacus [246] 2 package.

Evaluation. We set the epoch to be 40 and 300 when training the downstream classification
models on the synthetic data with “full” size (spc = 6000) and small size (spc ∈ {1, 10, 20, 50}),

1Based on Google’s TensorFlow privacy under version ≤ 0.8.0: https://github.com/tensorflow/privacy/blob/
master/tensorflow_privacy/privacy/analysis/rdp_accountant.py

2https://opacus.ai/

https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/analysis/rdp_accountant.py
https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/analysis/rdp_accountant.py
https://opacus.ai/
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respectively, to guarantee the convergence of downstream model training and maintain the
evaluation efficiency. We set the learning rate to be 0.01 at the beginning and decrease it
(by multiplying with 0.1) when half of the total epoch is achieved. We use SGD optimizer
with momentum= 0.9, weight decay= 5 · 10−4 and set batch size = 256 for training the
classifier. Random cropping and re-scaling are adopted as data augmentation when training
the classification model.

B.3.4 Baseline Methods

We present more details about the implementation of the baseline methods. In particular, we
provide the default value of the privacy hyperparameters below.

DP-Merf [70] 3 For ε = 1 we use as the default hyperparameters setting provided in the
official implementation: DP noise scale σ = 5.0, training epoch = 5, while for ε = 10, the DP
noise scale is σ = 0.568.

DP-CGAN [211] 4 We set the default hyper-parameters as follows: gradient clipping bound
C = 1.1, noise scale σ = 2.1, batch size= 600 and total number of training iterations= 30K. We
exclude this model from evaluation at ε = 1 as the required noise scale is too large for the
training to make progress, which is consistent with the results in literature [70, 32].

GS-WGAN [32] 5 We adopt the default configuration provided by the official implemen-
tation (ε = 10): the subsampling rate = 1/1000, DP noise scale σ = 1.07, batch size = 32.
Following [32], we pretrain (warm-start) the model for 2K iterations, and subsequently train
for 20K iterations. Similar to the case for DP-CGAN, we exclude this model from evaluation at
ε = 1 as the required noise scale is too large for the training to be stable.

For G-PATE [130], DataLens [227] and DP-Sinkhorn [24], we present the same results as
reported in the original papers (Table 3.1 of the main paper) as reference, as they are either not
directly comparable to ours or not open-sourced.

B.3.5 Private Continual Learning

Setting. The experiments presented in Section 5.2 of the main paper correspond to the class-
incremental learning setting [173] where the data partition at each stage contains data from
disjoint subsets of label classes. And the task protocol is sequentially learning to classify
a given sample into all the classes seen so far. For our experiments on SplitMNIST and
SplitFashionMNIST benchmarks [252], the datasets are split into 5 partitions each containing
samples of 2 label classes. The evaluation task is thus binary classification for the first stage,
while two more classes are included after each following stage.

While a clear definition of the private continual learning setting is, to the best of our
knowledge, missing in the literature, we introduce a basic case where privacy can be strictly
protected during the whole training process. In brief, we need to guarantee that all the
information that is delivered to another party/stage should be privacy-preserving.

Hence, for the DP-SGD [1] baseline, the classification model is initialized to be a 10-class
classifier, and is updated (fine-tuned) via DP-SGD at each training stage on each data partition.

3https://github.com/frhrdr/dp-merf
4https://github.com/reihaneh-torkzadehmahani/DP-CGAN
5https://github.com/DingfanChen/GS-WGAN

https://github.com/frhrdr/dp-merf
https://github.com/reihaneh-torkzadehmahani/DP-CGAN
https://github.com/DingfanChen/GS-WGAN
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During the whole process, the model is transferred between different parties while privacy is
guaranteed by DP-SGD training.

And for the private generation methods, i.e., DP-Merf and Ours, we use a fixed privacy
budget to train a private generative model or a private synthetic set for each partition/stage.
Subsequently, such a generative model or synthetic set is transferred between parties for
conducting different training stages. For evaluation, a n-class classifier is initialized and then
trained on the transferred private synthetic samples for each stage, where n is the total number
of label classes seen so far. In our experiments, both methods only exploit information from
the local partition for the generation, i.e., our private set is optimized on a freshly initialized
classification network at each stage and for DP-Merf the mean embedding is taken over the
local partition. While our formulation can be adjusted to (and may be further improved by)
more advanced training strategies designed for continual learning to eliminate forgetting, many
of such strategies are not directly compatible with private training as they require access to
old data. We believe that our introduced private continual learning setting is of independent
interest and leave an in-depth investigation of this topic as future work.

Hyperparameters. We use the default values for the hyperparameters as shown in Section
B.3.3 and B.3.4, except that the training epoch is set to be 10 for DP-SGD and the runs R = 200
for Ours, to balance the convergence, forgetting effect, and evaluation efficiency. Moreover, the
DP noise scale is calibrated to each partition of the data.

B.4 Additional Results and Discussions

B.4.1 Dataset Distillation Basis

In this paper, we propose to use the gradient matching technique [261, 259] (among existing
dataset distillation approaches) as a basis for private set generation. In the following, we briefly
discuss other popular dataset condensation approaches that achieve competitive performance
for non-private tasks but appear less suitable for private learning. For example, [229] requires
solving a nested optimization problem, which makes it hard to quantify the individual’s effect
(i.e., the sensitivity) and thus difficult to impose DP into the training. In addition, [260] relies
on "per-class" feature aggregation as the only source of supervision to guide the synthetic data
towards representing its target label class. However, this "per-class" operation contradicts label
privacy and the requirement of uniform sampling for the privacy cost computation. In contrast,
our formulation adopts uniform sampling (which is compatible with DP) and exploits the
(inherently class-dependent) gradient signals to generate representative samples.

B.4.2 Computation Time

Under the default setting (See Section B.3.2 and B.3.3), it takes around 4.5 hours and 11 hours
to train the synthetic data for the case of spc = 10 and spc = 20, respectively. To the best of
our knowledge, our method is more efficient than existing works that require pre-training
of (multiple) models [32, 130], but requires more running time than methods that use static
pre-computed features [70]. Moreover, we see a tendency that the distilled dataset requires less
time on downstream tasks compared to samples from generative models due to the smaller
(distilled) sample size.
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B.4.3 Evaluation on Colored Images

1 10 20

non-private 30.0 48.6 52.6
ε = 10 28.9 40.3 42.6

Table B.1: Test accuracy (%) on real
data of downstream ConvNet

classifier on CIFAR-10.

In this section, we provide additional evaluation re-
sults on colored image benchmark dataset. On CIFAR-
10 [104] dataset, We use the same default setting as
described in Section B.3.3 and adjust the network ar-
chitectures to the input dimension (32× 32× 3). We
summarize in Figure B.1 the quantitative results of
downstream utility when varying the number of sam-
ples per class (spc ∈ {1, 10, 20}) and show as reference
the results when training non-privately (We show here
the results when applying uniform sampling of the data instead of the original per-class
sampling approach [261, 259] also for the non-private baseline for controlled comparison).
Additionally, we show in Figure B.1 the synthetic images when training under DP (ε = 10),
and in B.2 the results when training non-privately. We observe that while the synthetic samples
look noisy and non-informative, they do provide useful features for downstream classifiers,
leading to a decent level of performance. Note that colored images are generally challenging
for private learning. In fact, this makes our work the first one that is able to report non-trivial
performance on this dataset.

Figure B.1: CIFAR-10 (ε = 10)

Figure B.2: CIFAR-10 (non-private)





C
A Unified View of Differentially Private Deep

Generative Modeling

This appendix provides additional details to the main paper presented in Chapter 4: we provide
additional notes in §C.1, additional sensitivity analysis in §C.2, and additional background on
DP in §C.3.

C.1 Additional Notes on Potential Methods with Privacy Bar-
rier B1

In the DP deep generative modeling literature, existing approaches with privacy barrier between
Real data and Measurement (Section 4.4.1) typically release sanitized features in a condensed and
aggregated form. In this sense, recent approaches, which may deviate from the general “mean
embedding” formulation (as shown in Equation 4.3-4.4), but still publish a sanitized statistical
summary of the private dataset, such as DPSDA [122], fall into this category. Specifically,
DPSDA sanitizes a count histogram that summarizes the distribution of real data and employs
it as a measurement to refine the synthetic data distribution, thereby rendering it more similar
to the real private data distribution.

However, one might wonder if it is feasible to release a DP database in the original form of
the real data, prior to the training of a generative model. A positive example of this idea can be
found in the Small Database Mechanism (SmallDB) in the context of private query release,
introduced in Section 4.1 of [53]. This mechanism outputs a sanitized database in the same
form as the original data, by selecting the database (from all possible sets of the data universe)
via the exponential mechanism with a utility function of the negative error to the query release
problem (difference in the query answer on the synthetic versus the real database). However, as
the name suggests, the use of such an algorithm is largely limited to small (low-dimensional)
datasets. This is mainly due to the exponential growth of the data universe with dimensionality,
which drastically increases the computational burden and undermines the accuracy guarantees.

While DP-GEN [36] attempted to apply a similar idea to deep generative models, the
output space of their generation method only supports (has non-zero probability) combinations
of its input private dataset (See detailed proofs in Appendix B of [47]), instead of the entire
data universe. This invalidates their claimed privacy guarantee, and the performance of a
proper implementation of such a “direct database release” approach on high-dimensional data
remains unclear.

173
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C.2 Additional Sensitivity Analysis

C.2.1 Privacy barrier B1

Sensitivity of DP-Merf [70] and the General Formulation in Section 4.4.1. It can be clearly
seen that the L2-sensitivity for the replace-one notion is 2

m , where m = |D| represents the
size of the private dataset, as demonstrated in the original paper. Subsequently, we proceed
to derive a conservative bound for the sensitivity value in the DP-Merf method under the
add-or-remove-one DP notion, which can be generalized to other approaches within the same
category (Section 4.4.1), including [120, 224, 71, 243]. For the add-one case, we let m = |D| and
assume, without loss of generality, that D′ = D ∪ {x′m+1} and x′i = xi for all i = 1, ..., m.

∆2 = max
D,D′

∥∥∥ 1
m + 1

m+1

∑
i=1

ϕ(x′i)−
1
m

m

∑
i=1

ϕ(xi)
∥∥∥

2

= max
x′m+1,A

∥∥∥ 1
m + 1

(ϕ(x′m+1) + A)− 1
m

A
∥∥∥

2

= max
x′m+1,A

∥∥∥ 1
(m + 1)m

A− 1
m + 1

ϕ(x′m+1)
∥∥∥

2

≤ max
A

∥∥∥ 1
(m + 1)m

A
∥∥∥

2
+ max

x′m+1

∥∥∥ 1
m + 1

ϕ(x′m+1)
∥∥∥

2

≤ 1
(m + 1)m

m +
1

m + 1
=

2
m + 1

where A = ∑m
i=1 ϕ(xi) for brevity. The inequalities follow from the triangle inequality and

the fact that ∥ϕ(·)∥2 = 1
Similarly, for the remove-one case, we let m = |D|, D′ ∪ {xm} = D and x′i = xi for all

i = 1, ..., m− 1.

∆2 = max
D,D′

∥∥∥ 1
m− 1

m−1

∑
i=1

ϕ(x′i)−
1
m

m

∑
i=1

ϕ(xi)
∥∥∥

2

= max
xm,A

∥∥∥ 1
m− 1

A− 1
m
(A + ϕ(xm))

∥∥∥
2

= max
xm,A

∥∥∥ 1
(m− 1)m

A− 1
m

ϕ(xm)
∥∥∥

2

≤ max
A

∥∥∥ 1
(m− 1)m

A
∥∥∥

2
+ max

xm

∥∥∥ 1
m

ϕ(xm)
∥∥∥

2

≤ 1
(m− 1)m

(m− 1) +
1
m

=
2
m

with A = ∑m−1
i=1 ϕ(xi). The inequalities follow from the triangle inequality and the fact that

∥ϕ(·)∥2 = 1

Sensitivity of DP-SWD [171]. The sensitivity is calculated as the maximum difference over
two embeddings, determined after performing random projections on two neighboring datasets.
The "replace-one" notion is adopted to simplify the analysis. With a probability of at least 1− δ,
it can be shown that:

∥XU − X ′U∥2
F ≤ w(k, δ)
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with w(k, δ) = k
d +

2
3 ln 1

δ +
2
d

√
k d−1

d+2 ln 1
δ . Here X, X ′ denote data matrices in R|D|×d for neigh-

boring datasets D,D′ under the bounded-DP notion, while U ∈ Rd×k represents the random
projection matrix with each column independently drawn from Sd−1. Additionally, it is ensured
that ∥Xi,: − X ′i,:∥2 ≤ 1 for all i by pre-processing the dataset, making each sample record have
unit norm. To prove the desired result, the sensitivity is first transformed into a summation of
k i.i.d random variables following the beta distribution B(1/2, (d− 1)/2), which then allows
the application of Bernstein’s inequality to establish concentration bounds for the summation.
For a more detailed proof, please refer to Appendix 8.1-8.2 in [171].

Sensitivity of DPSDA [122]. The core component of DPSDA is the method of constructing
a nearest neighbors histogram that describes the real data distribution while providing DP
guarantees (refer to Algorithm 2 in [122]). Specifically, for every real sample xi in the private
dataset D, the algorithm identifies its nearest synthetic counterparts and constructs a histogram.
This histogram represents the frequency of each existing synthetic sample sk being the closest
to the real samples. Given a synthetic dataset consisting of n samples {sk}n

k=1 and let m = |D|:

hj =
∣∣i : i ∈ [m], j = arg min

k∈[n]
d(xi, sk)

∣∣ for j = 1, ..., n

where h = (h1, ..., hn) builds up the histogram with each hj reflecting the number of real
samples for which the corresponding synthetic sample sj is the nearest neighbor, based on the
distance metric d. Subsequently, DP Gaussian noise is added to the histogram for providing
privacy guarantees: h = h +N (0, σI).

For the add-or-remove-one notion, we can assume that w.l.o.g. the neighboring datasets
D,D′ satisfy D′ ∪ {xm} = D (or D′ = D ∪ {xm}). Let sj be the closest synthetic sample to xm
and h, h′ represent the histograms on D and D′ respectively. The L2-sensitivity is then given
by:

∆2 = max
D,D′
∥(h1, · · · , hn)− (h′1, · · · , h′n)∥2

= max
hj,h′j
∥(0, ..., 0, hj − h′j, 0, ..., 0)∥2

= 1

For the replace-one notion, we define neighboring datasets D,D′ to satisfy D′ ∪ {xm} =
D ∪ {x′m} with xm ̸= x′m. The L2-sensitivity is defined by:

∆2 = max
D,D′
∥(h1, · · · , hn)− (h′1, · · · , h′n)∥2

= max
hj,h′j,hk ,h′k

∥(0, ..., 0, hj − h′j, 0, ..., 0, hk − h′k, 0, ..., 0)∥2

=
√

12 + 12 =
√

2

where sj and sk are the closet synthetic samples to xm and x′m respectively, while w.l.o.g. j < k.

C.2.2 Privacy barrier B2

The sensitivity analysis for methods in this category inherits the approach used in the DP-SGD
and the PATE framework, which is presented below.
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Sensitivity of DP-SGD (Section 4.2.1.1). The main component of the DP-SGD algorithm can
be formalized as follows:

Clip: ḡt(xi)← gt(xi)/ max
(

1,
∥gt(xi)∥2

C

)

Add noise: g̃t ←
1
B

(
∑

i
ḡt(xi) +N (0, σ2C2I)

)

where gt(xi) = ∇θtL(θt, xi) denotes the gradient on sample xi at iteration t, C represents the
clipping bound, B is the batch size, σ is the noise scale, and the summation is taken over all
samples in the batch. The sensitivity in DP-SGD is computed as:

∆2 = max
D,D′
∥∑

i
ḡt(xi)−∑

i
ḡt(x′i)∥2

For the add-or-remove-one DP notion, let D′,D only differ in the existence of x′i, i.e., D′ =
D ∪ {x′i}, it is easy to see that

∆2 = max
x′i
∥ḡt(x′i)∥2 ≤ C

For the replace-one DP notion, w.l.o.g. let D′ ∪ {x′i} = D ∪ {xi}, thus

∆2 = max
x′i ,xi

∥ḡt(xi)− ḡt(x′i)∥2 ≤ 2C

due to the triangle inequality.

Sensitivity of PATE (Section 4.2.1.2). Given m teachers, c possible label classes and an input
vector x, the “votes” of teachers that assign class j to a query input x̄ is denoted as:

nj(x̄) = |i : i ∈ [m], fi(x̄) = j| for j = 1, ..., c

with fi denotes the i-th teacher model. And the histogram of the teachers’ vote histogram is:

n̄(x̄) = (n1, · · · , nc) ∈Nc

As each training data sample only influences a single teacher due to the disjoint partitioning,
changing one data sample in the training dataset—whether it’s removal, addition, or replace-
ment—will at most alter the votes (by 1) for two classes, denoted here as classes i and j, on any
possible query sample x̄. Let the vote histograms resulting from neighboring datasets D,D′ be
(n1, · · · , nc) and (n′1, · · · , n′c) respectively, the global sensitivity can be represented as:

∆1 = max
D,D′
∥(n1, · · · , nc)− (n′1, · · · , n′c)∥1

= max
ni ,n′i ,nj,n′j

∥(0, ..., 0, ni − n′i, 0, ..., 0, nj − n′j, 0, ..., 0)∥1

= max
ni ,n′i
|ni − n′i|+ max

nj,n′j
|nj − n′j| ≤ 2

∆2 = max
ni ,n′i ,nj,n′j

∥(0, ..., 0, ni − n′i, 0, ..., 0, nj − n′j, 0, ..., 0)∥2

= max
ni ,n′i ,nj,n′j

√
(ni − n′i)

2 + (nj − n′j)
2 ≤
√

2
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This holds for all possible query samples x̄.
The L1- and L2-sensitivities calibrate the two variants of noise mechanisms used in PATE:

the Gaussian NoisyMax (GNMax) and the max-of-Laplacian (LNMax). The GNMax is defined
as:

PATEσ(x̄) = arg max
j∈[c]

{nj(x̄) +N (0, σ2)}

and the LNMax as:
PATEγ(x̄) = arg max

j∈[c]
{nj(x̄) + Lap(1/γ)}

C.2.3 Privacy barrier B3

Sensitivity of GS-WGAN [32] and DP-Sinkhorn [24]. The sensitivity for both GS-WGAN
and DP-Sinkhorn can be derived via triangle inequality:

∆2 = max
D,D′
∥ f (gupstream

G )− f (g′G
upstream

)∥2

≤ max
D
∥ f (gupstream

G )∥2 + max
D′
∥ f (g′G

upstream
)∥2

≤ 2C

with f denoting the gradient clipping operation and C the clipping bound. Notably, no matter
which privacy notion is used, both terms (maxD ∥ f (gupstream

G )∥2 and maxD′ ∥ f (g′G
upstream)∥2)

are upper-bounded by the gradient clipping bound C.

Sensitivity of DataLens [227]. Given m teachers, the d-dimensional gradients yielded from
each teacher i after applying top-k sign quantization take the following form (refer to Algorithm
2 in [227]):

ĝi ∈ {0, 1,−1}d with ∥ĝi∥1 = k and ∥ĝi∥2 =
√

k

In other words, gi contains exactly k non-zero elements, with the non-zero elements taking
values of either 1 or −1, depending on the sign of the original upstream gradient.

Consider gradient sets {ĝi}m
i=1 and {ĝ′i}m

i=1 which originate from neighboring datasets D
and D′ respectively. As the influence of each data point is limited to a single teacher model,
these gradient sets differ by at most one element. Without loss of generality, let’s assume they
diverge in the i-th element. The L2-sensitivity is then computed as follows:

∆2 = max
D,D′

∥∥∥
m

∑
i=1

ĝi −
m

∑
i=1

ĝ′i
∥∥∥

2

= max
ĝi ,ĝ′i

∥∥ĝi − ĝ′i
∥∥

2

≤ ∥ĝi∥2 + ∥ĝ′i∥2 = 2
√

k

C.2.4 Privacy barrier B4

The sensitivity analysis for methods in this category adheres to the DP-SGD framework. While
special considerations may be required to ensure the implementation correctly adheres to this
framework, these considerations typically do not alter the sensitivity analysis itself.
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C.3 Additional Background on Privacy Cost Accumulation

Theorem 4.2.2 (presented in Section 4.2) provides a straightforward method for calculating the
aggregated privacy cost when composing multiple (potentially heterogeneous) DP mechanisms.
In this section, we present more details regarding determining the accumulated privacy cost
over multiple executions of sampled Gaussian mechanisms (Definition C.3.1).

Definition C.3.1 (Sampled Gaussian Mechanism (SGM) [1, 143]). Let f be an arbitrary function
mapping subsets of D to Rd. The sampled Gaussian mechanism (SGM) parametrized with the
sampling rate 0 < q ≤ 1 and the noise multiplier σ > 0 is defined as

SGq,σ
∆
= f ({x : x ∈ D is sampled with probability q}) +N (0, σ2Id)

where each element of D is sampled independently at random with probability q without
replacement.

The sampled Gaussian mechanism consists of adding i.i.d Gaussian noise with zero mean
and variance σ2 to each coordinate of the true output of f , i.e., SGq,σ injects random vectors
from a multivariate isotropic Gaussian distribution N (0, σ2Id) and into the true output, where
Id is written as I if unambiguous in the given context.

Theorem C.3.1. [143] Let SGq,σ be the sampled Gaussian mechanism for some function f
with ∆2

f ≤ 1 for any adjacent D,D′ under the add-or-remove-one notion. Then SGq,σ satisfies
(α, ρ)-RDP if

ρ ≤ Dα

(
N (0, σ2)

∥∥ (1− q)N (0, σ2) + qN (1, σ2)
)

and ρ ≤ Dα

(
(1− q)N (0, σ2) + qN (1, σ2)

∥∥N (0, σ2)
)

Theorem C.3.1 reduce the problem of proving the RDP bound for SGq,σ to a simple special
case of a mixture of one-dimensional Gaussians.

Theorem C.3.2. [143] Let SGq,σ be the sampled Gaussian mechanism for some function f and
under the assumption ∆2

f ≤ 1 for any adjacent D,D′ under the add-or-remove-one notion. Let
µ0 denote the pdf of N (0, σ2), µ1 denote the pdf of N (1, σ2), and let µ be the mixture of two
Gaussians µ = (1− q)µ0 + qµ1. Then SGq,σ satisfies (α, ρ)-RDP if

ρ ≤ 1
α− 1

log (max{Aα, Bα})

where

Aα
∆
= Ez∼µ0 [(µ(z)/µ0(z))

α]

Bα
∆
= Ez∼µ[(µ0(z)/µ(z))α]

Theorem C.3.2 states that applying SGM to a function of sensitivity (Equation 4.2.3) at most
1 satisfies (α, ρ)-RDP if ρ ≤ 1

α−1 log(max{Aα, Bα}). Thus, analyzing RDP properties of SGM is
equivalent to upper bounding Aα and Bα.

Corollary C.3.1. [143] Aα ≥ Bα for any α ≥ 1.
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This allows reformulation of the RDP bound as

ρ ≤ 1
α− 1

log Aα

The Aα can be calculated for a range of α values using the numerically stable computation
approach presented in Section 3.3 of [143], which is implemented in standard DP packages
such as Opacus1 and Tensorflow-privacy2. Then, the smallest Aα (tightest bound) is used to
upper bound ρ and later the RDP privacy cost is converted to (ε, δ)-DP via Theorem 4.2.3.
Notably, this approach generalizes previous results such as moment accountant [1] (See Table 1

in [143] for a summary).

1https://opacus.ai/
2https://github.com/tensorflow/privacy

https://opacus.ai/
https://github.com/tensorflow/privacy




DData Forensics in Diffusion Models: A
Systematic Analysis of Membership Privacy

This appendix provides additional details to the main paper presented in Chapter 5: we provide
additional details on the experimental setup in §D.1 and a range of additional evaluation results
and discussion in §D.2.

D.1 Experiment Configuration

D.1.1 Setup

We present the additional details of our experimental setup in this section. Table D.1 summa-
rizes the key hyperparameters that we adopted in training the guided diffusion and improved
diffusion models. For the stable diffusion model, we use the official released models with the
same hyper-parameters from the Huggingface website1. For StyleGAN2 and PGGAN3, we use
the official open-sourced implementation with the default hyperparameters for training. All
experiments were conducted on a single NVIDIA A100 GPU.

Hyperparameters
Guided

Diffusion
Improved
Diffusion

StyleGAN PGGAN

channels 128 128 512 128

residual block 3 3 3 -
learn sigma True True - -

noise scheduler linear linear - -
batch size 256 256 64 64

learning rate 1e-3 1e-3 1e-3 1e-3
diffusion steps 4000 2000;4000;6000 - -

dropout 0.3 0.3 0.3 0.3

Table D.1: Summary of the Training Hyperparameters.

D.1.2 Dataset

CelebA [128]. The CelebA is a large-scale face attributes dataset containing 200k RGB
images, which are aligned using facial landmarks. To ensure comparability with previous
results, we adopt the standard pre-processing procedure when training diffusion models and
evaluating attack performance. This involves randomly selecting a maximum of 40k images
(corresponding to the more challenging random-split setting in [34]), center-cropping them,
and resizing them to a resolution of 64×64 for training the models and evaluating the attacks.

1https://huggingface.co/CompVis
2https://github.com/NVlabs/stylegan
3https://github.com/tkarras/progressive_growing_of_gans
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CIFAR-10 [104]. The CIFAR-10 is a dataset of 60k RGB images with shape 32×32×3. Each
image is labelled with one of 10 classes, representing the object depicted in the image.

Laion2B-improved-aesthetics4. The Laion2B-improved-aesthetics is a curated subset of
Laion2B that focuses on images with high-resolution quality and improved aesthetics. It
consists of color images with resolutions of 512×512 or higher. Each image has an estimated
aesthetics score of >5.0 and an estimated watermark probability of <0.5. Furthermore, the
text caption for each image in Laion2B-improved-aesthetics is in English. The dataset includes
more than 2.3 million image-caption pairs.

COCO-20175. COCO is a large-scale object detection, segmentation, and captioning dataset. It
contains more than 200k images and 80 object categories. Each image is associated with one
annotated English text caption. We randomly sample the images from datasets and resize it
from the original resolution to 512×512 using the open-source scripts6.

D.1.3 External Resources

In this section, we list the third-party libraries and tools used to conduct our experiments.
• Hugging Face Stable Diffusion API: https://replicate.com/stability-ai/stable-diffusion.

• Stable-diffusion-V1.4: https://huggingface.co/CompVis/stable-diffusion-v1-4

• stable-diffusion-v1.5: https://huggingface.co/runwayml/stable-diffusion-v1-5

D.2 Additional Results

D.2.1 Generation Quality

We display the generated samples from different generative models in Figure D.1. As can be
observed, all models demonstrate a reasonable level of generation quality (practical utility),
and none of the models exhibit significant visual differences in their generation quality. This
consistency controls the factor of generation quality in their vulnerability to MIAs. The
associated quantitative measurements (e.g., FID) are presented in Table 5.8.

(a) Guided Diffusion (b) Improved Diffusion (c) StyleGAN (d) PGGAN

Figure D.1: The synthetic images sampled from Guided Diffusion, Improved Diffusion,
StyleGAN and PGGAN trained on CelebA with 5k samples, respectively.

4https://huggingface.co/datasets/laion/laion2B-en-aesthetic
5https://cocodataset.org/
6https://github.com/rom1504/img2dataset

https://replicate.com/stability-ai/stable-diffusion
https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/runwayml/stable-diffusion-v1-5
https://huggingface.co/datasets/laion/laion2B-en-aesthetic
https://cocodataset.org/
https://github.com/rom1504/img2dataset


Data Forensics in Diffusion models: A Systematic Analysis of Membership Privacy 183

D.2.2 White-box Setting

We present the investigation of various statistic functions f on the loss trajectory on CIFAR-10

dataset in Table D.2. The results confirm the consistency with findings from experiments on
the CelebA dataset.

Size Truncation Min Max Median Sum

5000

without 0.51 0.54 1.00 0.93

with 0.50 1.00 0.97 1.00

10000

without 0.49 0.50 0.93 0.74

with 0.49 0.99 0.74 0.98

15000

without 0.50 0.50 0.91 0.73

with 0.50 0.99 70 0.98

20000

without 0.49 0.50 0.85 0.67

with 0.49 0.99 0.64 0.95

30000

without 0.51 0.51 0.73 0.58

with 0.51 0.92 0.58 0.84

40000

without 0.51 0.51 0.63 0.54

with 0.51 0.76 0.54 0.70

Table D.2: The white-box attack AUCROC when applying different statistic function f (Min,
Max, Median, and Sum) to the loss trajectory {Lt}T

t=0 with and without truncations. The
experiments were conducted on the CIFAR-10 dataset with various training set sizes, as
indicated in the first column. For the cases where the truncation technique is applied, we set
the truncation step to be the default value with Ttrun = 0.75T.

We present the quantitative results in Table D.3, which is supplementary to Figure 5.4(a) in
the main paper.

CelebA CIFAR-10

Truncation 5k 10k 15k 20k 5k 10k 15k 20k
w/o 1.00 0.94 0.80 0.77 1.00 0.93 0.91 0.85

w 1.00 1.00 0.99 0.98 1.00 0.99 0.99 0.99

Table D.3: The white-box attack AUCROC across different training set sizes. Without (“w/o”)
truncation, the statistic function is selected to be “Median”, while it is set to be “Max” with
(“w”) truncation. The truncation step is set to be Ttrun = 0.75T.

Additionally, we examine in detail the potential factors that may impact the vulnerability
of target diffusion models to MIA, such as truncating loss trajectory, statistical functions,
training set size, etc. Our extended experiments on the CelebA dataset cover various training
configurations, and the results are displayed in Table D.4.

We visualize the results of our white-box attack across various settings of the truncation
steps on the CelebA dataset across various training configurations. We present the results in
Figure D.2(a). This is supplementary to the results in Table 5.3 in the main paper.

D.2.3 Gray-box Setting

We provide additional quantitative results for our gray-box attack investigating the selection
of truncation steps across various training set sizes on CelebA. The results are presented in
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(a) CelebA (5k)

f T 0.975T 0.875T 0.75T 0.625T 0.5T
Median 1.00 1.00 0.99 0.94 0.77 0.56

Sum 0.99 0.71 1.00 1.00 1.00 0.97

Min 0.50 0.56 0.50 0.50 0.50 0.50

Max 0.54 1.00 1.00 1.00 1.00 1.00

(b) CelebA (10k)

f T 0.975T 0.875T 0.75T 0.625T 0.5T
Median 0.94 0.89 0.83 0.67 0.54 0.50

Sum 0.86 1.00 0.98 0.97 0.92 0.74

Min 0.50 0.50 0.49 0.49 0.49 0.50

Max 0.50 0.97 0.99 1.00 0.99 0.93

(c) CelebA (15k)

f T 0.975T 0.875T 0.75T 0.625T 0.5T
Median 0.80 0.77 0.67 0.56 0.51 0.50

Sum 0.74 0.96 0.98 0.95 0.81 0.62

Min 0.50 0.50 0.50 0.50 0.50 0.50

Max 0.50 0.81 0.99 0.99 0.96 0.80

(d) CelebA (20k)

f T 0.975T 0.875T 0.75T 0.625T 0.5T
Median 0.77 0.65 0.65 0.55 0.51 0.50

Sum 0.71 0.84 0.97 0.93 0.79 0.61

Min 0.50 0.49 0.50 0.50 0.50 0.50

Max 0.50 0.65 0.98 0.98 0.95 0.77

Table D.4: The white-box attack AUCROC with different statistic function f and truncation
steps Ttrun (shown in each column) on CelebA across various training set sizes (shown in the
title of each sub-table). The first column T corresponds to “no truncation”.

T 0.975T 0.875T 0.75T 0.625T 0.5T
Ttrun
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(a) White-box
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(b) Gray-box

Figure D.2: The D.2(a) white-box and D.2(b) gray-box attack AUCROC for different truncation
steps Ttrun across different dataset sizes on CelebA. The statistic function is selected to be “Max”
and “Median” for the white-box and gray-box attacks, respectively.

Table D.5, with the qualitative illustration being presented in Figure D.2(b).
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(a) CelebA (5k)

f T 0.875T 0.725T 0.625T 0.5T 0.25T
Median 1.00 1.00 1.00 1.00 1.00 1.00

Sum 0.69 0.80 0.94 1.00 1.00 1.00

Min 0.59 0.55 0.55 0.58 0.55 0.55

Max 0.50 0.50 0.54 0.66 1.00 1.00

(b) CelebA (10k)

f T 0.875T 0.725T 0.625T 0.5T 0.25T
Median 0.90 0.99 1.00 1.00 1.00 1.00

Sum 0.59 0.67 0.79 0.94 1.00 0.98

Min 0.50 0.50 0.50 0.51 0.49 0.50

Max 0.49 0.50 0.50 0.55 0.86 0.97

(c) CelebA (15k)

f T 0.875T 0.725T 0.625T 0.5T 0.25T
Median 0.76 0.91 0.97 0.99 0.99 0.99

Sum 0.55 0.60 0.70 0.85 0.96 0.99

Min 0.50 0.50 0.50 0.50 0.50 0.50

Max 0.50 0.50 0.50 0.52 0.76 1.00

(d) CelebA (20k)

f T 0.875T 0.75T 0.625T 0.5T 0.25T
Median 0.74 0.88 0.96 0.98 0.99 0.98

Sum 0.55 0.60 0.69 0.83 0.95 0.98

Min 0.50 0.50 0.50 0.50 0.50 0.50

Max 0.50 0.50 0.50 0.51 0.74 0.99

Table D.5: The gray-box attack AUCROC with different statistic function f and truncation
steps Ttrun (shown in each column) on CelebA across various training set sizes (shown in the
title of each sub-table). The first column T corresponds to “no truncation”.

D.2.4 Black-box Setting

We present the TPR of different black-box attacks at certain levels of low FPR in Figure D.3
and Figure D.4, supplementing the results in Figure 5.6 in the main paper. As can be seen
from the plots, the comparison results over TPR are largely consistent with those obtained
using AUCROC, though our model-specific attack shows a greater advantage over others when
compared at TPR@(0.1 or 0.01)FPR. Consistently across all configurations, the TPR achieved
by our attack is higher than the FPR, indicating a successful attack due to its ability to more
accurately identify members than incorrectly predict non-members as members. Importantly,
an MIA can be regarded as successful if it can reliably identify even a few members.

The TPR of different model-agnostic black-box attacks at certain levels of low FPR on
various types of generative models is presented in Figure D.5, which supplements the results
in Table 5.8 in the main paper. The comparison results are consistent regardless of the adopted
metrics (AUCROC or TPR) for evaluating attack performance, all showing that diffusion
models generally have a higher vulnerability to MIA than GANs do, even when all of them
are trained in the same controlled environment and exhibit similar generation quality (see the
quantitative results in Table 5.8).
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Figure D.3: The black-box attack TPR at low FPR on CIFAR-10.
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Figure D.4: The black-box attack TPR at low FPR on CelebA.
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Figure D.5: The model-agnostic black-box TPR at low FPR for various generative models on
CelebA(5k).



ERelaxLoss: Defending Membership Inference

Attacks without Losing Utility

This appendix provides additional support to the main ideas presented in the submission:
§E.1 provides additional theoretical analysis giving rise to insights on the foundations of our
method. Moreover, as we have conducted a rigorous and broad experimental analysis that
goes beyond the key insights presented in the main paper, we provide additional details on the
experimental setup in §E.2 and a range of additional evaluation results and discussion in §E.3.

E.1 Theoretical Analysis

E.1.1 How Does Gradient Ascent Step Increase Loss Variance?

In this section, we show how the gradient ascent step in RelaxLoss increase the loss variance.
We write ℓ for the loss instead of ℓ(θ, zi) for brevity if the dependence is not relevant for our
argumentation.

Theorem E.1.1. If Cov(ℓ, ∆ℓ) > 0, then the variance of loss distribution Var(ℓ) is increased
after a gradient ascent step.

Proof. The variance of loss distribution before and after applying gradient ascent step amounts
to Var(ℓ) and Var(ℓ+ ∆ℓ), respectively. Following from the fact that

Var(ℓ+ ∆ℓ) = Var(ℓ) + Var(∆ℓ) + 2Cov(ℓ, ∆ℓ)

and the non-negativity of Var(∆ℓ) as well as Cov(ℓ, ∆ℓ), we conclude Var(ℓ+ ∆ℓ) > Var(ℓ),
i.e., the loss variance will increase.

We focus on the loss increase after the gradient ascent step (i.e., assuming that ∆ℓ ≥ 0,
which holds for most cases, despite the stochasticity) and interpret ∆ℓ as the rate of loss change.
The condition Cov(ℓ, ∆ℓ) > 0 can be understood as: the larger the loss value is, the faster it
changes, and vice versa. This is a reasonable assumption for most training algorithms for
achieving convergence. We reason the exact condition and the related assumptions below.

Condition E.1.1. The gradient magnitude (squared ℓ2 norm) is positively correlated to the loss
value, i.e., Cov(∥∇ℓ∥2

2, ℓ) > 0. Intuitively, it means the gradient norm tends to decrease as the
loss decreases.

We use the cross-entropy loss as an example:

ℓCE(θ, zi) = −
C

∑
c=1

yc
i log pc

i (E.1)

The gradient is given by:

∇ℓCE(θ, zi) = Jθi(pi − yi) (E.2)

187



188 RelaxLoss: Defending Membership Inference Attacks without Losing Utility

where Jθi represents the jacobian of the logits (before the final softmax layer) w.r.t. the model
parameter θ. Once the loss on sample zi becomes smaller, we have ∥pi − yi∥2 → 0, i.e., the
prediction get closer to the ground-truth label. By the submultiplicativity of matrix norm and
the continuity of the squared function, we then have ∥∇ℓCE(θ, zi)∥2

2 → 0, i.e., the gradient norm
decreases as the loss value gets smaller. Hence, ℓCE(θ, zi) has the desired property required by
Condition E.1.1.

Condition E.1.2. The change in loss after the gradient ascent step ∆ℓ is linear in the squared
gradient norm ∥∇ℓ∥2

2, i.e., ∆ℓ = c1∥∇ℓ∥2
2 + c2 with c1, c2 the constants quantifying the linear

relationship.

Corollary E.1.1. Given the assumption that the gradient of each sample within a batch (1)
has the same norm and (2) has non-negative inner product (i.e., well-aligned) with each
other and the gradient alignments remain the same over different batches, the gradient ascent
step: θ(t+1) = θ(t) + τ∇L(θ(t)) satisfy the linearity (in Condition E.1.2) with c1 > 0, where
the superscript t corresponds to the t-th iteration, and ∇L denotes the batch gradient with
batchsize = B.

Proof. This follows from the nature of the first-order gradient-based optimization method.
Applying a first-order Taylor-expansion of the sample loss at θ(t), we obtain:

ℓ(θ(t+1), zi) = ℓ(θ(t), zi) + τ⟨∇ℓ(θ(t)),∇L(θ(t)⟩+ O(τ)
∆ℓ = ℓ(θ(t+1), zi)− ℓ(θ(t), zi) (E.3)

=
τ

B
∥∇ℓ(θ(t), zi)∥2

2 +
τ

B ∑
j ̸=i
⟨∇ℓ(θ(t), zi),∇ℓ(θ(t), zj)⟩+ O(τ)

=
τ

B
∥∇ℓ(θ(t), zi)∥2

2 +
τ

B ∑
j ̸=i
∥∇ℓ(θ(t), zi)∥2 · ∥∇ℓ(θ(t), zj)∥2 · cos(αij) + O(τ)

=
τ

B
∥∇ℓ(θ(t), zi)∥2

2
(
1 + ∑

j ̸=i
cos(αij)

)
+ O(τ) (E.4)

where cos(αij) is the cosine of the angle between gradients of sample i and j, and O(τ)
summarizes the higher-order terms and is regarded as a constant (i.e., c2). Given the assumption
that each sample within a batch exhibits well-aligned gradients with the same norm, i.e.,
∥∇ℓ(θ(t), zi)∥2 = ∥∇ℓ(θ(t), zj)∥2 and cos(αij) ≥ 0 for all j ̸= i, we have Equation E.4 and
τ
B

(
1 + ∑j ̸=i cos(αij)

)
> 0. Additionally, given that the gradient alignments remain the same

over different batches, i.e.,
(
1 + ∑j ̸=i cos(αij)

)
is constant for all i, j, we have c1 = τ

B

(
1 +

∑j ̸=i cos(αij)
)
> 0.

Lemma E.1.1. Given the Condition E.1.1 and E.1.2, we have the desired property Cov(ℓ, ∆ℓ) by
linearity.

Proof.

Cov(ℓ, ∆ℓ) = Cov(ℓ, c1∥∇ℓ∥2
2 + c2) (E.5)

= c1Cov(ℓ, ∥∇ℓ∥2
2) > 0 (E.6)

where Equation E.5 and E.6 are yielded by using Condition E.1.2 and E.1.1, respectively.
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E.1.2 How Does RelaxLoss Affect MIA?

In this section, we show how RelaxLoss affects the optimal MIA Aopt (measured by its AUC
value). We exploit the following results for relating the attack AUC to a statistical distance
between the loss distributions.

We first regard the MIA as a binary hypothesis testing problem with the null H0 and
alternate hypothesis H1 defined as follows:

H0 : zi is a non-member sample, i.e., zi ∈ Dtrain

H1 : zi is a member sample, i.e., zi ∈ Dtrain

The attacker need to make a decision on whether the query sample came from Dtrain based
on a rejection region Sreject. As discussed in Section 6.4.1, under a posterior assumption on
the model parameter, Sreject for the optimal attack Aopt [180] fully depends on the sample loss,
i.e., Aopt rejects the null hypothesis if ℓ(θ, zi) ∈ Sreject. The type I error (i.e., the H0 is true but
rejected) is defined as P(ℓ(θ,Dtrain) ∈ Sreject), and the type II error (i.e., the H0 is false but
retained) is defined as P(ℓ(θ,Dtrain) ∈ Sreject).

Theorem E.1.2. [91, 123, 124] Let TP and FP denote the true positive rate (1− type II error) and
false positive rate (type I error) of Aopt respectively, their relation to the total variation distance
between the loss distributions DTV(P, Q) is quantified as follows (See [91] Appendix A for the
derivation):

TP ≤ FP + min{DTV(P, Q), 1− FP} (E.7)

where P and Q denote the distribution of the training loss ℓ(θ,Dtrain) and the testing loss
ℓ(θ,Dtrain), respectively.

The ROC curve is obtained by plotting the largest achievable true positive (TP) rate on the
vertical axis against the false positive (FP) rate on the horizontal axis, while the AUC value
corresponds to a summation over all pairs of TP and FP.

Corollary E.1.2. The AUC value can be upper bounded as follows ([124] Corollary 1):

AUC ≤ −1
2

DTV(P, Q)2 + DTV(P, Q) + 1/2 (E.8)

For ease of analysis, we then upper bound the total variation distance via the Hellinger
distance, which is symmetric and has a closed-form expression for common distributions such
as Gaussian.

Theorem E.1.3. [202] The total variance distance can be upper bounded by the Hellinger
distance:

DTV(P, Q) ≤
√

2DH(P, Q) (E.9)

where the Hellinger distance satisfies 0 ≤ DH(P, Q) ≤ 1

For Gaussian distributions, the Hellinger distance has a closed form:

D2
H(P, Q) = 1−

√
2σ1σ2

σ2
1 + σ2

2
exp

(
−1

4
(µ1 − µ2)2

σ2
1 + σ2

2

)
(E.10)

where µ1, µ2 denote the mean and σ1, σ2 denote the variance of P and Q.
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Let c = σ2/σ1 denote the ratio of the training and testing loss variance, we see that DH(P, Q)
is fully characterized by: (i) the value of the training loss variance σ2

1 , (ii) the squared distance
between the mean (µ1 − µ2)2, and (iii) the variance ratio c:

D2
H(P, Q) = 1−

√
2c

1 + c2
︸ ︷︷ ︸

(∗)

exp
(
−1

4
(µ1 − µ2)2

(1 + c2)σ2
1

)

︸ ︷︷ ︸
(∗∗)

(E.11)

Our approach decreases the (µ1 − µ2)2 and increases σ2
1 (Section 6.5) as well, both of which

lead to a decrease of the Hellinger distance, and thus decreases the upper bound of the attacker
AUC as desired.

It remains to consider how our approach will change c and how the change in c will affect
the Hellinger distance. First, we observe that c ≥ 1, i.e., the testing distribution has larger
variance than the training distribution (See Appendix E.3.9). Moreover, c gets closer to 1

when applying our approach (See Figure 6.1 in the main paper). As a result, (∗) will increase
(Corollary E.1.3) and (∗∗) will decrease (Corollary E.1.4).

Corollary E.1.3. If c′ ≥ c ≥ 1, then
√

2c
1+c2 ≥

√
2c′

1+c′2

Proof. Let f (c) =
√

2c
1+c2 . We have f ′(c) = 1−c2√

2c(c2+1)3/2 . It is obvious that f has critical point at

c = 1, i.e., f ′(1) = 0 and f ′(c) ≤ 0.

Corollary E.1.4. For fixed value of µ1, µ2 and σ1, if c′ ≥ c ≥ 1, then

exp
(
−1

4
(µ1 − µ2)2

(1 + c2)σ2
1

)
≤ exp

(
−1

4
(µ1 − µ2)2

(1 + c′2)σ2
1

)

Proof. It is obvious as c occurs in the denominator inside the exponential term.

Additionally, we notice that the change in the (∗) dominates in most cases: the (∗∗) term
commonly has value within [0.9, 1.0], while the (∗) term changes from 10−3 to 1 when our
approach is applied. Therefore, under a Gaussian assumption of the loss distributions, our
method can decrease the Hellinger distance between the distributions, thereby reducing an
upper bound of the attack AUC.

E.2 Experiment Setup

E.2.1 Datasets

CIFAR-10 [104] is a dataset of 60k color images with shape 32× 32× 3. Each image corresponds
to a label of 10 classes which categorizes the object inside the image. Following the standard
preprocessing procedure 1, we normalize the image pixel value to have zero mean and unit
standard deviation.
CIFAR-100 [104] consists of 60k color images of size 32× 32× 3 in 100 classes. Same as for
the CIFAR-10 dataset, we perform mean-subtraction and standardization.

1https://pytorch.org/hub/pytorch_vision_resnet/

https://pytorch.org/hub/pytorch_vision_resnet/
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CH-MNIST [96] contains 5000 greyscale images of 8 different types of tissues from patients
with colorectal cancer. We obtain the preprocessed dataset from Kaggle 2 and use images of
size 28×28 for our experiments. All images are normalized to [−1, 1].
Texas100 contains medical records of 67,330 patients published by the Texas Department of
State Health Services 3. Each patient’s record contains 6,169 binary features (such as diagnosis,
generic information, and procedures the patient underwent) and is labeled by its most suitable
procedure (among the 100 most frequent ones). We use the preprocessed data provided by
[188, 195]4.
Purchase100 is a dataset of customers’ shopping records released by the Kaggle Acquire
Valued Shoppers Challenge 5. We use the preprocessed version provided by [188, 195]4, which
contains 197,324 data samples. Each sample, representing one user’s purchase history, consists
of 600 binary features. Each feature denotes the presence of one product in the corresponding
user’s purchase history. The data is clustered into 100 classes of different purchase styles. The
classification task is to predict the purchase style given the 600 binary features.

We summarize all datasets in details in Table E.1.

Dataset Data type Feature type
Feature Ntotal

Ntrain/Ntest Ntrain/Ntest
dimension (target model) (shadow model)

CIFAR-10 color image numerical 3072 60000 12000 12000

CIFAR-100 color image numerical 3072 60000 12000 12000

CH-MNIST grayscale image numerical 784 5000 1000 1000

Texas100 medical record categorical 6169 67330 13466 13466

Purchase100 purchase record categorical 600 197324 39465 39464

Table E.1: Summary of datasets. Ntotal denotes the total dataset size. Ntrain and Ntest are the
size of the training and testing set, respectively.

E.2.2 Model Architectures

For CIFAR-10 and CIFAR-100 datasets, we use a 20-layer ResNet and an 11-layer VGG architec-
ture 6. For CH-MNIST, we adopt a 20-layer ResNet. And for the non-image datasets, we adopt
the same architecture as used in [148]7: a 4-layer fully-connected neural network with layer
size [1024, 512, 256, 100] for Purchase100, and a 5-layer fully-connected neural network with
layer size [2048, 1024, 512, 256, 100] for Texas100.

E.2.3 Implementation details

We apply SGD optimizer with momentum=0.9 and weight-decay=1e-4 by default. We set the
initial learning rate τ = 0.1 and drop the learning rate by a factor of 10 at each decay epoch 6.
We list below the decay epochs in square brackets and the total number of training epochs
are marked in parentheses: CIFAR-10 and CIFAR-100 [150,225] (300); CH-MNIST [40,60] (80);
Texas100 and Purchase100 [50,100] (120). Additionally, we adopt the following techniques for
improved performance across heterogeneous data modalities: we restrict the scope of posterior
flattening to incorrect predictions for natural image datasets (CIFAR-10 and CIFAR-100); and

2https://www.kaggle.com/kmader/colorectal-histology-mnist
3https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
4https://github.com/inspire-group/membership-inference-evaluation
5https://www.kaggle.com/c/acquire-valued-shoppers-challenge
6https://github.com/bearpaw/pytorch-classification
7https://github.com/SPIN-UMass/ML-Privacy-Regulization

https://www.kaggle.com/kmader/colorectal-histology-mnist
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
https://github.com/inspire-group/membership-inference-evaluation
https://www.kaggle.com/c/acquire-valued-shoppers-challenge
https://github.com/bearpaw/pytorch-classification
https://github.com/SPIN-UMass/ML-Privacy-Regulization
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we further suppress the target posterior scores of ground-truth class pgt to small values (≤0.3)
during the posterior flattening step on non-image data (Texas100 and Purchase100). By default,
no data augmentation is applied.

E.2.4 Required Resources

All our models and methods are implemented in PyTorch. Our experiments are conducted with
Nvidia Tesla V100 and Quadro RTX8000 GPUs. Our method introduces minimal changes and
negligible additional cost compared with vanilla training and thus can be flexibly integrated
into any deep learning framework without imposing specific constraints on the required
hardware resources.

E.2.5 Defense Methods

Early-stopping. The basic idea behind Early-stopping is to truncate training before a model
starts to overfit. In our experiments, we save target models’ checkpoints at varying numbers of
training epochs and subsequently evaluate the attack AUC and test accuracy of each model
checkpoint. We set checkpoints at the following epochs: [25, 50, 75, 100, 125, 150, 175, 200, 225, 250
, 275] for CIFAR-10 and CIFAR-100 datasets; [5, 10, 15, 20, 25, 30, 40, 50] for CH-MNIST dataset;
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110] for Texas100 and Purchase100 datasets.

Dropout. Dropout prevents co-adaptation of feature detectors by randomly masking out a
set of neurons in the networks, thereby alleviating model overfitting. In our experiments, we
apply dropout to the last fully-connected layer of each target model and evaluate across a wide
range of dropout rates (over [0.1, 0.3, 0.5, 0.7, 0.9]).

Label-smoothing. Label-smoothing prevents overconfident predictions by incorporating a
regularization term into the training objective that penalizes the distance (measured by the
KL-divergence) between the model predictions and the uniform distribution. The objective is
formularized as follows

L = α · DKL(U ∥ pθ(y|x)) + (1− α) · LCE(θ, z) (E.12)

where DKL is the KL-divergence; U denotes the uniform distribution; pθ(y|x) denotes the
output prediction. α is a hyper-parameter with range [0, 1] that balances the cross-entropy
loss LCE and the regularization term. We vary the α across its full range for plotting the
privacy-utility curves.

Confidence-penalty. Confidence-penalty regularizes models by penalizing low entropy output
distributions. This is achieved via an entropy regularization term in the objective:

L = −α · H(pθ(y|x)) + LCE(θ, z) (E.13)

where H(pθ(y|x)) = −
C

∑
c=1

pθ(yc|x) log(pθ(yc|x)) (E.14)

H represents the entropy of the output prediction, and α is a hyper-parameter that controls the
importance of the entropy regularization term. Consistent with the original paper [163], we
vary the α over [0.1, 0.3, 0.5, 1.0, 2.0, 4.0, 8.0].

Distillation. Knowledge distillation stands for a general process of transferring knowledge
from a set of teacher model(s) to a student model. To focus our investigation on the effect of
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the distillation operation itself, we use self-distillation [255] in our experiments, i.e., we train
the student model to match a single teacher model with the same architecture. The objective
for training the student model (i.e., the target model) is:

L = αT2 · DKL( p̃θs(y|x) ∥ p̃θt(y|x)) + (1− α) · LCE(θ, z) (E.15)

where p̃θ(y|x)c =
exp( f (θ, x)c/T)

∑c′ exp( f (θ, x)c′/T)
(E.16)

The KL-divergence term DKL targets at minimizing discrepancy between the softened student
p̃θs(y|x) and teacher prediction p̃θt(y|x). T denotes the temperature scaling factor that controls
the degree of softening. α is a hyper-parameter that balances the KL-divergence and the
normal cross-entropy LCE term. To determine the hyper-parameter that best describes the
privacy-utility trade-off, we conduct preliminary experiments and investigate the effect of α
and T independently. By fixing one and changing the other, we observe similar results in terms
of the privacy-utility trade-off. Following practical standards, we then fix the α=0.5 and vary
the temperature T over [1, 2, 5, 10, 20, 50, 100] for plotting the privacy-utility curves.

DP-SGD. DP-SGD enforces privacy guarantees by modifying the optimization process. It
consists of two steps: (i) clipping the gradients to have a L2-norm upper-bounded by C at
each training step; (ii) injecting random noise to the gradients before performing update steps.
We adopt the implementation provided by the Opacus library 8. We tune the clipping bound
C when fixing the noise scale to 0.1, as suggested by the official documents. To plot the
privacy-utility curves, we vary the noise scale with a fixed pre-selected clipping bound.

Memguard. Memguard modifies the output predictions of pre-trained target models during
test-time, i.e., output predictions are perturbed by adversarial noise to fool a surrogate attack
model. Following the official implementation9, we adopt the same architecture for the surrogate
and the real NN attack model, and use the complete logits prediction as input to the attack
models. Each surrogate attack model is trained on the target model’s predictions when
inputting the target model’s training data (used as member samples) and a separate hold-out
set data (used as non-member samples). The privacy-utility trade-off is fully determined by the
magnitude of the adversarial noise (measured by L1-norm). We plot the privacy-utility curves
by increasing the noise magnitude from 0 until the NN attack has been defended (i.e., attack
AUC ≈ 0.5).

Adv-Reg. Adv-Reg incorporates an adversarial objective when training the target model:
the target model is trained to minimize a weighted sum of the cross-entropy loss and the
adversarial loss (obtained from a surrogate attack). Same as in Memguard, each surrogate
attack model is trained on the target model’s training data and a separate hold-out set data. We
follow the official implementation7 and vary the weight α (=1.0 by default) of the adversarial
loss across [0.8, 1.0, 1.2, 1.4, 1.6, 1.8] for plotting the privacy-utility curves.

E.3 Additional Results and Discussion

E.3.1 Limitations and Future Works

Although RelaxLoss is empirically proven effective for improving target models’ utility, it is
generally hard to explain such improvement, as understanding the generalization ability is still

8https://github.com/pytorch/opacus
9https://github.com/jjy1994/MemGuard

https://github.com/pytorch/opacus
https://github.com/jjy1994/MemGuard
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an open problem. As an attempt, we conduct experiments on toy datasets and attribute the
improvement to a flat decision boundary (See Appendix E.3.10). A thorough investigation into
how each individual components of our approach affects generalization are left for our future
works. In addition, the assumptions of model parameters [180] which are made for the optimal
attack demand further validation.

E.3.2 RelaxLoss Vs. Attacks

Supplementary to Table 6.1 in the main paper, Table E.2 summarizes the top-1 training and
test accuracy as well as the generalization gap (i.e., difference between the top-1 training and
test accuracy) of target models with or without being defended via our method. We observe
that our approach, as desired, reduces the generalization gap and is still able to achieve high
performance.

CIFAR-10

(ResNet20)
CIFAR-10

(VGG11)
CIFAR-100

(ResNet20)
CIFAR-100

(VGG11)
CH-MNIST Texas100 Purchase100

train test gap train test gap train test gap train test gap train test gap train test gap train test gap
wo defense 100 70.5 29.5 100 73.8 26.2 100 33.2 66.8 100 41.4 58.6 99.0 77.1 21.9 99.9 52.3 47.6 100 89.1 10.9

with defense 87.0 73.8 13.2 99.5 74.4 25.1 52.7 35.1 17.6 99.7 41.4 58.3 90.1 78.4 11.7 67.1 55.3 11.8 99.8 89.1 10.7
∆ -13.0 3.3 -16.3 -0.5 0.6 -1.1 -47.3 1.9 -49.2 -0.3 0.0 -0.3 -8.9 1.3 -10.2 -32.8 3.0 -35.8 -0.2 0.0 -0.2

selected α 1 0.4 3 0.5 0.2 2.5 0.8

Table E.2: The top-1 training and test accuracy as well as the generalization gap (in %) of
the target models with or without (wo) applying our defense. ∆ corresponds to the absolute
difference after applying our defend method (in %). We also include the selected value of α.
This is supplementary to Table 6.1 in the main paper.

Entropy M-Entropy Loss NN Grad-x ℓ1 Grad-x ℓ2 Grad-w ℓ1 Grad-w ℓ2

CIFAR-10

(ResNet20)

wo defense 86.5 87.3 86.9 82.5 87.5 87.5 87.8 87.8
with defense 50.0 50.0 50.0 49.9 50.0 50.0 49.9 50.0

∆ -42.2 -42.7 -42.5 -39.5 -42.9 -42.9 -43.2 -43.1

CIFAR-10

(VGG11)

wo defense 80.1 80.7 80.6 76.1 81.5 81.3 82.7 82.9
with defense 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

∆ -37.6 -38.0 -38.0 -34.3 -38.7 -38.5 -39.5 -39.7

CIFAR-100

(ResNet20)

wo defense 91.8 92.1 92.6 87.0 93.7 93.7 94.6 94.7
with defense 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

∆ -45.5 -45.7 -46.0 -42.5 -46.6 -46.6 -47.1 -47.2

CIFAR-100

(VGG11)

wo defense 97.1 97.5 97.4 98.1 98.5 98.4 98.9 98.9
with defense 50.0 50.0 50.0 50.6 50.1 50.1 50.6 50.4

∆ -48.5 -48.7 -48.7 -48.4 -49.1 -49.1 -48.8 -49.0

CH-MNIST
wo defense 55.5 56.7 56.7 63.6 67.6 67.7 67.1 66.4

with defense 49.9 52.3 50.9 50.3 52.2 51.7 50.7 49.9
∆ -10.1 -7.8 -10.2 -20.9 -22.8 -23.6 -24.4 -24.8

Texas100

wo defense 70.3 79.0 79.0 63.8 78.5 78.5 78.4 78.3
with defense 50.0 50.0 50.0 50.0 52.0 53.0 51.1 50.0

∆ -28.9 -36.7 -36.7 -21.6 -33.8 -32.5 -34.8 -36.1

Purchase100

wo defense 63.9 64.8 64.7 62.6 65.8 65.7 65.8 65.7
with defense 50.0 50.0 50.0 49.6 52.3 52.2 50.1 50.1

∆ -21.8 -22.8 -22.7 -20.8 -20.5 -20.5 -23.9 -23.9

Table E.3: The attacker accuracy (in %) evaluated on the target models with and without
(wo) applying our defense. ∆ corresponds to the relative difference after applying our defend
method (in %). All the thresholds are selected with undefended shadow models trained with
shadow dataset.

In Table E.3, we show the attack accuracy values on target models trained with and without
(wo) applying our defense method, which is supplementary to Table 6.1 and Figure 6.5 in the
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main paper. Same as in previous work [195]4, the attack’s decision threshold is selected to be
the one that yields the best attack accuracy on undefended shadow models. We observe that
our approach effectively reduces the attack accuracy to a random-guessing level (around 50%)
for most cases. In particular, we find that the selected decision thresholds is highly biased in
certain cases s.t. all the queried samples are predicted to be positive (or negative), which leads
to exactly 50% accuracy.

E.3.3 Adaptive Attack

In Table E.4, we show the accuracy of adaptive (a.) attacks on target models trained with
(w/) applying our defense method, which is supplementary to Section 6.6.4 in the main paper.
For thresholding-based attacks, the attack’s decision threshold is selected to be the one that
yields the best attack accuracy on the shadow models (which is trained with exactly the same
configuration as our defended target models in Table 6.1). And for the NN-based attack, we
use the complete logits prediction from the pre-trained shadow models as features to train
the adaptive attack models (modeled as a NN). We observe that our approach consistently
reduces the attack accuracy for all cases, though the reduction is less significant compared to
non-adaptive attacks shown in Table E.3.

Entropy M-Entropy Loss NN Grad-x ℓ1 Grad-x ℓ2 Grad-w ℓ1 Grad-w ℓ2

CIFAR10

(ResNet20)
w/ defense (a.) 52.5 56.0 56.0 54.2 53.5 53.3 54.0 53.8

∆ -39.3 -35.9 -35.6 -34.3 -38.9 -39.1 -38.5 -38.7
CIFAR10

(VGG11)
w/ defense (a.) 64.4 68.2 67.8 66.6 66.2 66.4 67.4 68.0

∆ -19.6 -15.5 -15.9 -12.5 -18.8 -18.3 -18.5 -18.0
CIFAR100

(ResNet20)
w/ defense (a.) 52.2 57.8 57.8 53.6 50.1 50.1 50.0 50.1

∆ -43.1 -37.2 -37.6 -38.4 -46.5 -46.5 -47.1 -47.1
CIFAR100

(VGG11)
w/ defense (a.) 78.9 84.2 84.0 83.4 78.2 78.2 81.6 82.2

∆ -18.7 -13.6 -13.8 -15.0 -20.6 -20.5 -17.5 -16.9

CH-MNIST
w/ defense (a.) 50.7 53.9 53.4 50.9 55.8 55.7 56.6 56.4

∆ -8.6 -4.9 -5.8 -20.0 -17.5 -17.7 -15.6 -15.1

Texas100

w/ defense (a.) 51.6 53.8 53.8 52.1 51.9 51.9 51.8 53.4
∆ -26.6 -31.9 -31.9 -18.3 -33.9 -33.9 -33.9 -31.8

Purchase100

w/ defense (a.) 54.0 54.8 54.8 54.5 55.4 55.4 55.6 56.0
∆ -15.5 -15.4 -15.3 -12.9 -15.8 -15.7 -15.5 -14.8

Table E.4: The accuracy (in %) of adaptive (a.) attacks evaluated on the target models with
(w/) applying our defense. ∆ corresponds to the relative difference (in %) attack accuracy when
applying our defend method compared to vanilla training. The selected target models are the
same as in Table 6.1.

E.3.4 Generalization Gap

We show the training and testing accuracy (and the generalization gap) when applying
RelaxLoss with varying value of α in Figure E.1. We observe that increasing the value of α
will reduce the generalization gap. Moreover, RelaxLoss with a reasonable value of α can even
improves the test accuracy of vanilla training.

E.3.5 Compatibility with Data Augmentation

Additionally, we investigate the effectiveness of our approach when data augmentation is
applied. Following practical standard, we apply random cropping and random flipping when
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Figure E.1: Training and testing accuracy (y-axis) with varying value of α (x-axis) on CIFAR-10

(ResNet20) and CIFAR-100 (ResNet20) datasets. We plot the training and testing accuracy of
vanilla training (wo defense) in dashed lines for reference.

training the target models on CIFAR-100 dataset. As illustrated in Figure E.2, RelaxLoss is
compatible with standard data augmentation techniques: our approach enjoys the performance
boost introduced by data augmentation while retaining its effectiveness in defending MIAs.
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Figure E.2: Effect of data augmentation (denoted as “aug") on CIFAR-100 (ResNet20). When
jointly applied with data augmentation, our approach shows consistent effectiveness in im-
proving the MIA resistance and model utility.

E.3.6 Computational Complexity

The additional computation cost of RelaxLoss scales as O(BC) (B: batch size; C: number of
classes), which includes: (i) softlabel construction of cost O(BC); and (ii) computation of the
cross-entropy loss on the softlabel O(BC). Note that we reuse the prediction pi generated by
the previous forward-pass and thus no additional forward (nor backward) pass is required.
Compared to the forward and backward pass, which is of magnitude at least O(BNL) (N:
number of neurons per layer; L: number of layers), the additional costs of RelaxLoss are
negligible as NL (roughly the total amount of neurons of the whole network) is much larger
than C (the number of neurons of the last layer).

E.3.7 Effect on Different Classes of Individuals

To analyze the effect of RelaxLoss on different individuals, we conduct additional experiments
on Texas and Purchase datasets which consist of 100 classes with non-uniform class distribution
(i.e., the proportion of each class ranges from 0.35% to 4.5% for Texas, and 0.05%-2.6% for
Purchase) and evaluate the attack performance on each class separately.
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In Table E.5, we show the 10 highest Attack AUC (in increasing order) among all the
classes, which can be regarded as the estimated worst-case privacy risk of different classes of
individuals. As can be seen from the tables, applying our defense method effectively reduces
the Top-10 Attack AUC (i.e., worst-case privacy risk), and the effectiveness is consistent on each
dataset across different attack methods, with which we conclude that our method, despite the
nonuniformity, does defend MIAs for different individuals.

(a) Texas

Atttack methods with/wo defense Top-10 Attack AUC

Loss
wo defense 0.985, 0.987, 0.988, 0.989, 0.994, 0.994, 0.995, 0.996, 0.998, 0.999

with defense 0.717 , 0.719, 0.721, 0.722, 0.724, 0.739, 0.741, 0.743, 0.752, 0.761

Entropy
wo defense 0.846, 0.847, 0.851, 0.851, 0.854, 0.864, 0.865, 0.868, 0.879, 0.880

with defense 0.617, 0.619, 0.625, 0.625, 0.636, 0.636, 0.648, 0.679, 0.733, 0.747

M-Entropy
wo defense 0.985, 0.987, 0.989, 0.990, 0.992, 0.993, 0.994, 0.996, 0.997, 0.999

with defense 0.717, 0.718, 0.722, 0.722, 0.724, 0.741, 0.742, 0.742, 0.754, 0.761

Grad-x l2
wo defense 0.837, 0.837, 0.844, 0.848, 0.850, 0.852, 0.859, 0.865, 0.903, 0.943

with defense 0.644, 0.650, 0.653, 0.655, 0.657, 0.666, 0.679, 0.691, 0.723, 0.744

Grad-w l2
wo defense 0.850, 0.852, 0.853, 0.856, 0.862, 0.862, 0.863, 0.866, 0.867, 0.874

with defense 0.627, 0.631, 0.632, 0.632, 0.633, 0.634, 0.643, 0.644, 0.661, 0.663

(b) Purchase

Atttack methods with/wo defense Top-10 Attack AUC

Loss
wo defense 0.699, 0.709, 0.715, 0.719, 0.727, 0.731, 0.735, 0.738, 0.763, 0.875

with defense 0.663, 0.666, 0.671, 0.672, 0.684, 0.692, 0.694, 0.701, 0.705, 0.722

Entropy
wo defense 0.692, 0.697, 0.714, 0.714, 0.718, 0.724, 0.725, 0.725, 0.747, 0.868

with defense 0.651, 0.651, 0.654, 0.657, 0.658, 0.673, 0.678, 0.681, 0.695, 0.711

M-Entropy
wo defense 0.699, 0.711, 0.716, 0.720, 0.727, 0.731, 0.734, 0.739, 0.765, 0.875

with defense 0.663, 0.666, 0.671, 0.672, 0.684, 0.693, 0.694, 0.701, 0.705, 0.721

Grad-x l2
wo defense 0.708, 0.725, 0.730, 0.733, 0.736, 0.738, 0.742, 0.747, 0.777, 0.897

with defense 0.653, 0.662, 0.662, 0.667, 0.667, 0.669, 0.672, 0.684, 0.696, 0.697

Grad-w l2
wo defense 0.662, 0.664, 0.665, 0.666, 0.666, 0.668, 0.670, 0.671, 0.681, 0.710

with defense 0.629, 0.629, 0.632, 0.634, 0.634, 0.638, 0.639, 0.654, 0.655, 0.663

Table E.5: Top-10 Attack AUC among 100 label classes on (a) Texas and (b) Purchase with and
without (wo) applying our defense. The AUC values are shown in increasing order.

E.3.8 Privacy-utility Curves

In this section, we include detailed results with regard to various datasets and different
target models’ architectures: we show results on CIFAR-10 dataset with VGG11 architecture
in Figure E.3; CIFAR-100 dataset with VGG11 architecture in Figure E.4; CH-MNIST with
ResNet20 architecture in Figure E.5; Texas100 with MLP architecutre in Figure E.6; Purchase100

with MLP architecutre in Figure E.7.
We observe that while baseline approaches are effective for at most one data modality, our

approach is the only one that is consistently effective in defending MIAs, across all different
datasets and model architectures.

Natural Images. See Figure 6.4(a)-6.4(b) in main paper, and Figure E.3-E.4: for natural image
datasets (CIFAR-10 and CIFAR-100), DP-SGD is the best baseline method in terms of defending
MIAs and preserving model utility, but is inferior to RelaxLoss as our method consistently
achieve better test accuracy (model utility) across the full range of achievable privacy level.

Among all regularization-based defense methods, Early-stopping is the only one that
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exhibits noticeable effects in reducing attack AUCs. In comparison, our approach can achieve
the same level of defense effectiveness with a much better model utility. Moreover, our approach
can further decrease the attack AUC to a random-guessing level, which is not achievable by
Early-stopping.

Memguard and Adv-Reg, previous state-of-the-art defense mechanisms specifically de-
signed for MIAs, are highly effective in defending NN-based attack but generally lose their
effectiveness for other types of attacks. In comparison, our approach shows much better
defense effectiveness for all types of attacks while achieving better model utility at the same
time.
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Figure E.3: Comparisons of all defense mechanisms on CIFAR-10 dataset (VGG11). We set the
clipping bound C = 0.5 and vary the noise scale over 0.01-0.45 for DP-SGD. We vary the noise
magnitude across 0-20 for Memguard.

Gray-scale Medical Images See Figure E.5: for gray-scale medical image (CH-MNIST), our
approach is comparable with the best baseline methods (i.e., Confidence-penalty), as both
approaches are able to reduce the MIAs to a random-guessing level while preserving the model
utility.

In comparision, DP-SGD is significantly worse than our approach for this data modality, as
it inevitably degrades the model utility.

Memguard and Adv-Reg are still highly effective in defending NN-based attack. Moreover,
Memguard is able to defend black-box MIAs to a random-guessing level without degrading the
model utility, but is not applicable to white-box attacks. In contrast, our approach is applicable
to all attacks, and achieves comparable (or better) effectiveness for black-box attacks.

Binary Medical and Transaction Records. See Figure E.6-E.7: for binary medical and transac-
tion records (Texas100 and Purchase100), Label-smoothing performs generally the best among
all baseline methods. Compared to our approach, Label-smoothing can achieve superior
model utility when the Attack AUC is of range around 0.65-0.8 on Texas100 and 0.55-0.65
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Figure E.4: Comparisons of all defense mechanisms on CIFAR-100 dataset (VGG11). We set the
clipping bound C=1.0 and vary the noise scale over 0.01-0.3 for DP-SGD. We vary the noise
magnitude across 0-400 for Memguard.
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Figure E.5: Comparisons of all defense mechanisms on CH-MNIST dataset. We set the clipping
bound C=5.0 and vary the noise scale over 0.001-0.5 for DP-SGD. We vary the noise magnitude
across 0-50 for Memguard.
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on Purchase100. However, our approach is able to reduce the attack AUC to around the
random-guessing level, which is not always possible for Label-smoothing (white-box attacks
on Purchase100, black-box attacks on both datasets).

DP-SGD exhibits unexpected results for these two datasets: small noise scale results in
both lower Attack AUC and higher model utility, which is contradictory to the common
belief that small-scale noise only provides weak privacy guarantee and thus the Attack AUC
will remain high. We conjecture that there exists a non-negligible gap between the worst-
case privacy guarantee that provided by the theoretical privacy analysis and the real-world
attack performance in practice. Especially for the small-scale noise case, the privacy cost ϵ is
meaninglessly large and cannot faithfully reflect the risk when facing practical MIAs. We tried
varying the noise scale in the experiments: by decreasing the noise scale, we find DP-SGD
cannot reduce the Attack AUC to random-guessing level, while by increasing the noise scale,
the utility soon drops significantly. In comparison, our approach consistently yields better
privacy-utility trade-off.
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Figure E.6: Comparisons of all defense mechanisms on Texas100 dataset. We set the clipping
bound C=1.0 and vary the noise scale over 0.001-0.5 for DP-SGD. We vary the noise magnitude
across 0-500 for Memguard.
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Figure E.7: Comparisons of all defense mechanisms on Purchase100 dataset. We set the clipping
bound C=1.0 and vary the noise scale over 10−4-0.4 for DP-SGD. We vary the noise magnitude
across 0-300 for Memguard.
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E.3.9 Loss Histograms

To better understand the effect of each defense method, we additionally plot the loss histograms
when applying different defense methods on target models with a ResNet20 architecture
trained on CIFAR-10 dataset in Figure E.8-E.14. In the parentheses of each subtitle, we show
the hyper-parameter values corresponding to each subfigure from left to right.

We observe that: (i) Regularization techniques in general have limited effects in reducing the
gap between the training and testing loss distributions. (ii) Unlike our approach (See Figure 6.1
in the main paper), baseline methods are generally not able to increase the training loss variance
nor closing the gaps between the member and non-member distributions, which explains the
superior performance of our approach in defending various types of MIAs. (iii) By setting a
relatively large noise scale, DP-SGD is able to increase the training loss variance and reducing
the gap between the training and testing loss values (See last column of Figure E.11). However,
the large scale of noise dampen the learning signal in this case, leading to a non-negligible
utility drop.
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Figure E.8: Loss histograms when applying Label-smoothing (α = 0.2,0.4,0.6,0.8).
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Figure E.9: Loss histograms when applying Dropout (dropout rate = 0.1,0.5,0.7,0.9)
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Figure E.10: Loss histograms when applying Confidence-penalty (α = 0.1,0.5,1.0,2.0)
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Figure E.11: Loss histograms when applying DP-SGD (noise scale = 0.01,0.05,0.1,0.5)
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Figure E.12: Loss histograms when applying Adv-Reg (α = 0.8,1.0,1.2,1.4)
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Figure E.13: Loss histograms when applying Distillation (T = 1,10,50,100)
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Figure E.14: Loss histograms when applying Early-stopping (ep = 25,50,75,100).
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E.3.10 Analysis of Model Generalization

As supplementary to Section 6.7 of our main paper, we show results of toy experiments that
investigate the impact of our approach on model generalization. We visualize the prediction
scores and the decision boundaries in Figure E.15. In contrast to vanilla training that assigns
high confidence scores on hard examples near the decision boundary, our approach can soften
the decision boundaries, leading to a large area with low (and well-calibrated) predicted
confidence scores. In line with [253, 163], we conjecture that the flatness of decision boundaries
improves model generalization, while an in-depth analysis is left as future work.

Input data Vanilla training Ours

Input data Vanilla training Ours

Input data Vanilla training Ours

Input data Vanilla training Ours

Figure E.15: Visualization of target models’ prediction scores and decision boundaries. The
training samples are shown in solid colors and testing points are semi-transparent.
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Gene Expression Data Generation

This appendix provides additional details to the main paper presented in Chapter 7: we provide
additional results regarding the utility and statistical evaluation in §F.1, and co-expression
evaluation in §F.2.

F.1 Utility and Statistical Evaluation

F.1.1 Plot of Evaluation Metrics Across Individual Models
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Figure F.1: Utility Evaluation by Machine Learning Efficacy.
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Figure F.2: Statistical Evaluation by Histogram Intersection.
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Figure F.3: Distance to Closest Record.
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Figure F.4: Distance to Closest (Train) Record.

F.2 Additional Plots for Gene Co-expression Evaluation

F.2.1 r > 0 (Default Setting)

We present in Figure F.5 the co-expressed gene module evaluated on the GAN generated
samples (with r > 0). It is evident that there is a notable degradation of structural integrity
in the module activation patterns within the synthetic data. This phenomenon persists across
various privacy budget levels, including the non-private scenario.

(a) ε = 5 (b) ε = 10 (c) ε = 20

(d) ε = 50 (e) ε = 100 (f) non-priv

Figure F.5: Activation patterns of co-expressed gene modules in GAN after filtering co-
expressions for r > 0. Shown are the Group Fold Changes (GFCs) of gene modules (rows) in the
real and the synthetic data sampled with two different seeds. Numbers on the right indicate
the number of genes per module. Darker shades of red imply activation of the gene module,
while darker shades of blue indicate deactivation. The dendrograms show the hierarchical
clustering of the classes in the different data sets.

We present in Figure F.6 the co-expressed gene module evaluated on the PGM generated
samples (with r > 0). As can be observed, there is a noticeable decline in the activation patterns
of the detected co-expression module when ε ≤ 20.

We present in Figure F.7 the co-expressed gene module evaluated on the PrivSyn generated
samples (with r > 0). A loss of module activation patterns can be observed for all shown
privacy budgets, becoming increasingly prominent with decreasing ε.

We present in Figure F.8 the co-expressed gene module evaluated on the Ron-Gauss
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(a) ε = 5 (b) ε = 10 (c) ε = 20

(d) ε = 50 (e) ε = 100 (f) non-priv

Figure F.6: Activation patterns of co-expressed gene modules in PGM after filtering co-
expressions for r > 0. Shown are the Group Fold Changes (GFCs) of gene modules (rows) in the
real and the synthetic data sampled with two different seeds. Numbers on the right indicate
the number of genes per module. Darker shades of red imply activation of the gene module,
while darker shades of blue indicate deactivation. The dendrograms show the hierarchical
clustering of the classes in the different data sets.

(a) ε = 5 (b) ε = 10 (c) ε = 20

(d) ε = 50 (e) ε = 100 (f) non-priv

Figure F.7: Activation patterns of co-expressed gene modules in PrivSyn after filtering co-
expressions for r > 0. Shown are the Group Fold Changes (GFCs) of gene modules (rows) in the
real and the synthetic data sampled with two different seeds. Numbers on the right indicate
the number of genes per module. Darker shades of red imply activation of the gene module,
while darker shades of blue indicate deactivation. The dendrograms show the hierarchical
clustering of the classes in the different data sets.
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generated samples (with r > 0). Already in the non-private setting, the synthetic data exhibits
mostly uniform activation of the different gene modules, maintaining almost none of the
structure present in the real data.

(a) ε = 5 (b) ε = 10 (c) ε = 20

(d) ε = 50 (e) ε = 100 (f) non-priv

Figure F.8: Activation patterns of co-expressed gene modules in RON-Gauss after filtering
co-expressions for r > 0. Shown are the Group Fold Changes (GFCs) of gene modules (rows) in
the real and the synthetic data sampled with two different seeds. Numbers on the right indicate
the number of genes per module. Darker shades of red imply activation of the gene module,
while darker shades of blue indicate deactivation. The dendrograms show the hierarchical
clustering of the classes in the different data sets.

F.2.2 r > 0.7

We evaluate the co-expression preservation for r>0.7 which is typically considered as bio-
logically meaningful and present the results in Figure F.9. Note that in the first split (left)
only the VAE model was capable of generating significant co-expressions with r > 0.7, while
in the second seed (right) also the GAN trained without DP yielded some co-expressions.
Within the VAE, co-expressions that were incorrectly introduced in the synthetic data greatly
exceed the correctly reconstructed ones. Meanwhile, the GAN model struggles to generate any
co-expressions above 0.7, regardless of their correctness.

We present in Figure F.10 the co-expressed gene module evaluated on the GAN generated
samples (with r > 0.7). The results indicate that the activation patterns of co-expression
modules are poorly maintained in the synthetic data. This is evidenced by the incorrect
clustering of disease classes when comparing the real and synthetic data.

We present in Figure F.11 the co-expressed gene module evaluated on the VAE generated
samples (with r > 0.7). We observe a general decline in module activation with the reduction
of privacy budgets, which suggests a degradation in the accuracy of reconstructed module
activation patterns within the synthetic data.
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(a) Co-Expression Preservation

Figure F.9: Biological Evaluation by Co-Expression Preservation for r > 0.7. Shown is the
co-expression preservation across the tested models for different values of ε as well as the
non-private case for two different seeds used for creating the training split (left and right plot).
Non-transparent bars give the number of correctly reconstructed co-expressions with Pearson
Correlation Coefficient r > 0.7 and an associated p-value < 0.05, while semi-transparent bars
give the number of co-expressions introduced by the model that did not exist in the real data.
The dashed black line indicates the number of co-expressions in the real data. All values shown
are means across two different seeds set for generating the data.

(a) non-priv

Figure F.10: Activation patterns of co-expressed gene modules in GAN after filtering co-
expressions for r > 0.7. Shown are the Group Fold Changes (GFCs) of gene modules (rows) in
the real and the synthetic data sampled with two different seeds. Numbers on the right indicate
the number of genes per module. Darker shades of red imply activation of the gene module,
while darker shades of blue indicate deactivation. The dendrograms show the hierarchical
clustering of the classes in the different data sets.
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(a) ε = 5 (b) ε = 10 (c) ε = 20

(d) ε = 50 (e) ε = 100 (f) non-priv

Figure F.11: Activation patterns of co-expressed gene modules in VAE after filtering co-
expressions for r > 0.7. Shown are the Group Fold Changes (GFCs) of gene modules (rows) in
the real and the synthetic data sampled with two different seeds. Numbers on the right indicate
the number of genes per module. Darker shades of red imply activation of the gene module,
while darker shades of blue indicate deactivation. The dendrograms show the hierarchical
clustering of the classes in the different data sets.
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