
Saarland University
Department of Computer Science

Understanding and Assessment of Privacy Risks in
Machine Learning Systems

Dissertation
zur Erlangung des Grades

der Doktorin der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

von
Min Chen

Saarbrücken, 2024

Tag des Kolloquiums: 22. Mai 2024

Dekan: Prof. Dr. Roland Speicher

Prüfungsausschuss:
Vorsitzender: Prof. Dr. Thorsten Herfet
Berichterstattende: Prof. Dr. Michael Backes

Prof. Ninghui Li
Dr. Yang Zhang

Akademischer Mitarbeiter: Dr. Mingjie Li

Zusammenfassung

Datenschutz ist aufgrund wachsender Bedenken um den Schutz persönlicher Informa-
tionen zu einem bedeutenden Thema geworden. Angesichts der vielschichtigen Natur
des Paradigmas der Datenverarbeitung ist ein entscheidender Forschungsbereich die
Erfassung und Minderung von Datenschutzrisiken im komplexen Lebenszyklus der
Daten. Ein wichtiger Meilenstein im Verständnis von Datenschutzrisiken bei Daten ist
die Datenschutz Regulierung.

Viele Länder und Regionen haben Datenschutzvorschriften erlassen, um die Pri-
vatsphäre der Nutzer zu schützen, aber ihnen fehlen konkrete Umsetzungs Details
der Rechte in der Praxis des maschinellen Lernens (ML). Diese Dissertation präsen-
tiert eine Arbeitslinie, die zunächst den Datenschutz von ML-Systemen im Licht der
Datenschutzvorschriften versteht und dann die Datenschutzrisiken in zwei praktis-
chen ML-Systemen bewertet. Wir beginnen mit der Datenschutzverordnung "Recht
auf Vergessenwerden" und konzentrieren uns auf dessen technische Umsetzung in ML-
Systemen, die als "maschinelles Verlernen" bezeichnet wird. Konkret entwerfen wir
GraphEraser für das effiziente und nutzen erhaltende Widerrufen von Knoten/Kanten
und deren Auswirkungen auf Graph-Neuronale-Netzwerke. Zweitens beantworten wir
die Frage, ob bestehende Algorithmen zum maschinellen Verlernen zusätzliche Informa-
tionen über die Trainingsdaten preisgeben können. Wir stellen fest, dass das maschinelle
Verlernen ursprünglich dazu entworfen wurde, die Datenschutzrisiken von widerrufenen
Daten zu verringern, aber der Löschprozess zusätzliche Risiken aufdeckt. Drittens
untersuchen wir eine gängige Praxis beim Teilen von Graph-Einbettungen mit Dritten,
die Informationen über den Trainingsgraphen stark preisgibt. Schließlich bewerten
wir die Datenschutzrisiken im Few-Shot-Gesichtserkennungssystem, und wir schlagen
ein Prüfungstool namens Face-Auditor vor, um Probleme bei der nicht genehmigten
Datennutzung anzugehen.

Unsere Ergebnisse veranschaulichen die unbeabsichtigten Datenschutzrisiken in
den bestehenden Algorithmen zum maschinellen Verlernen, enthüllen empirisch die
Datenschutzrisiken in ML-Systemen und können dazu beitragen, vertrauenswürdige,
datenschutz orientierte ML-Systeme zu entwerfen.

iii

Abstract

Data privacy has emerged as a significant issue due to the growing concern about
safeguarding personal information. Given the multifaceted nature of the data processing
paradigm, a crucial area of research pertains to comprehending and mitigating privacy
risks throughout the intricate data life cycle. An important milestone in understanding
data privacy risks is the privacy regulations.

Many countries and regions have enacted privacy regulations to protect users’ privacy,
but they lack concrete implementation details of the rights in the machine learning
(ML) practice. This dissertation presents a line of work that first understands the
privacy of ML systems through the lens of privacy regulations and then assesses the
privacy risks in two practical ML systems. We start with the “right to be forgotten”
regulation and focus on its technical implementation in ML systems, referred to as
machine unlearning. Concretely, we design GraphEraser for efficient and utility-preserving
revoking nodes/edges and their impacts on graph neural networks. Second, we answer
whether existing machine unlearning algorithms can leak extra information about the
training data. We find that machine unlearning was initially designed to lower the
privacy risks of revoked data but the deleting process exposes more risks. Third, we
examine a common practice when sharing graph embedding with third parties that
severely leaks information about the training graph. Lastly, we assess the privacy
risks in the few-shot facial recognition system, and we propose an auditing tool called
Face-Auditor to address the unconsent data misuse problems.

Our results illustrate the unintended privacy risks in the existing machine unlearning
algorithms, empirically reveal the privacy risks in ML systems, and can shed light on
designing trustworthy, privacy-preserving ML systems.

v

Background of this Dissertation

This dissertation is based on the four papers [P1, P2, P3, P4] presented in the following.
I contributed to all papers as the main author and was responsible for all major parts,
including the technical design, empirical evaluation, and paper writing.

Chapter 3 is based on the work of [P1]. The idea of designing a machine unlearning
framework for graph data originated from a random question in the group meeting -
How to design a machine unlearning paradigm for graph data. Min Chen, Zhikun Zhang,
and Yang Zhang jointly discuss the designing goal of graph unlearning. Min Chen
and Zhikun Zhang searched for the solutions to balanced graph partition and designed
the framework of GraphEraser. Min Chen implemented the design and performed all
the evaluations. Tianhao Wang and Mathias Humbert provide valuable suggestions
on refining the design. Min Chen, Zhikun Zhang, Tianhao Wang, Mathias Humbert,
Michael Backes, and Yang Zhang participated in the writing and reviewing of the paper.

Chapter 4 is based on the work of [P2]. The research question assessing the
unintended privacy leakage originated from a joint discussion between Yang Zhang,
Zhikun Zhang, Tianhao Wang, and Min Chen. Min Chen, Zhikun Zhang, Tianhao
Wang, and Yang Zhang jointly designed the attack methods. Min Chen implemented
the attack on multiple model architectures and four defense methods. Mathias Humbert
and Tianhao Wang provided valuable feedback on the different stages of the design and
evaluation of attacks and defenses. Min Chen, Zhikun Zhang, Tianhao Wang, Mathias
Humbert, Michael Backes, and Yang Zhang participated in improving and reviewing
the paper.

Chapter 5 is based on the work of [P3]. The idea of inferring the graph attributes
from observing the Graph Embedding is from a joint discussion of Zhikun Zhang, Yun
Shen, Yang Zhang, and Min Chen. A research paper on privacy leakage in computer
vision models inspires the initial research questions - What information can we infer
from the graph embedding? Zhikun Zhang and Min Chen implemented the three attacks,
the perturbation-based defense, and drafted the paper. Zhikun Zhang, Min Chen, Yun
Shen, Michael Backes, and Yang Zhang participated in improving and reviewing the
paper.

Chapter 6 is based on the work of [P4]. The idea of using a user-level membership
inference attack as an auditing tool for data misuse detection was proposed by Min
Chen. Min Chen carried out the design, implementation, and evaluation and drafted the
paper. Zhikun Zhang and Tianhao Wang provide valuable suggestions for organizing

the paper. Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, and Yang Zhang
participated in improving and reviewing the paper.

[P1] Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M., and Zhang, Y. Graph
Unlearning. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2022, 499–513.

[P2] Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M., and Zhang, Y. When
Machine Unlearning Jeopardizes Privacy. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS). 2021, 896–911.

[P3] Zhang, Z., Chen, M., Backes, M., Shen, Y., and Zhang, Y. Inference Attacks
Against Graph Neural Networks. In: USENIX Security Symposium (USENIX
Security). 2022.

[P4] Chen, M., Zhang, Z., Wang, T., Backes, M., and Zhang, Y. FACE-AUDITOR:
Data Auditing in Facial Recognition Systems. In: USENIX Security Symposium
(USENIX Security). 2023.

Further Contributions of the Author

The author also contributed to the following paper.

[S1] Yun Shen, Yufei Han, Zhikun Zhang, Min Chen, Ting Yu, Michael Backes, Yang
Zhang, Gianluca Stringhini. Finding MNEMON: Reviving Memories of Node Em-
beddings. In ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2022.

[S2] Linkang Du, Zhikun Zhang, Min Chen, Minyang Sun, Shouling Ji, Peng Cheng,
Jiming Chen, Michael Backes, Yang Zhang. HyperThief: Stealing Hyper-parameters
from Deep Reinforcement Learning Models. Under review.

[S3] Min Chen, Karl Wuest, Michael Backes. SoK: Privacy Analysis of Blockchain in
the Wild. 2023

viii

Acknowledgments

Writing this dissertation means approaching the end of my Ph.D. journey. I would like
to take this opportunity to express my gratitude to the person who companied and
helped me in this long journey.

First, I want to give my deepest gratitude to my supervisor Prof. Michael Backes,
for your attitude toward doing high-impact research and your endeavor to build CISPA
into such a wonderful place for researchers. I had a fantastic journey when pursuing my
Ph.D. at CISPA.

Second, I would like to thank my dissertation committee members: Prof. Dr. Michael
Backes, Prof. Ninghui Li, and Dr. Yang Zhang. I appreciate your expertise and effort
in reviewing this dissertation and providing inspiring comments to improve my work.

Thanks to my collaborators, Dr. Zhikun Zhang, Dr. Tianhao Wang, Dr. Yang
Zhang, Prof. Mathias Humbert, and Dr. Yun Shen, I learned many things from you as
a new-bite researcher. You have shown me great examples of formulating interesting
research questions, critical thinking, the art of writing academic papers, and doing
rigorous and high impacts research.

Thanks to all my colleagues inside and outside CISPA. Thanks to Julia, Olga, and
Bettina, for taking plenty of care whenever I need help. Thanks to colleagues from other
departments, including but not limited to IT, scientific support, travel department,
HR department, and the front office, your professional work makes doing research at
CISPA so engaging. Thanks to Tin, Ahmed, Jie, Yugeng, and Allen, who have made
this journey fun and lovely. Also, I would like to thank CISPA Sparta, whenever I take
a short break and stare at you, I can feel the strength and courage to deal with any
complicated situation.

I would like to express my heartfelt gratitude to my family for their unwavering
support and endless love as I embark on this Ph.D. journey. They’re always my energy
charger. Special thanks to my husband, who plays many roles in my life. He is my
labmate, playfellow, roommate, research mentor, faithful listener, trouble solver, and
the only person to whom I could talk about everything. He shares in my joys and
sadness, respecting and standing by every decision I make. His unwavering support has
been instrumental in allowing me to pursue my dream and strive for success in this
Ph.D. endeavor.

ix

Contents

1 Introduction 1
1.1 Contributions . 4

1.1.1 Technical Implementation of Machine Unlearning 4
1.1.2 Understanding the Privacy Risks in Machine Unlearning 5
1.1.3 Assessing the Privacy Risks in Graph Embedding Sharing System 5
1.1.4 Assessing the Privacy Risks in Few-shot Facial Recognition System 6

1.2 Organization . 7

2 Preliminaries and Background 9
2.1 Machine Learning . 11

2.1.1 Classification Models . 11
2.1.2 Graph Neural Networks . 11

2.2 Machine Unlearning . 16
2.3 Privacy Attacks against Machine Learning Models 18
2.4 Applications of ML models . 19

2.4.1 Facial Recognition System . 19
2.4.2 Few-shot Learning for Facial Recognition 19

2.5 Related Work . 21
2.5.1 Machine Unlearning . 21
2.5.2 Attacks against Machine Learning 22
2.5.3 Attacks as an Auditing Tool for AI Systems 25
2.5.4 Privacy of Facial Recognition System 25

3 Technical Implementation of Machine Unlearning 27
3.1 Graph Unlearning . 30

3.1.1 Problem Definition . 30

xi

CONTENTS

3.1.2 GraphEraser Framework . 31
3.2 Balanced Graph Partition . 33

3.2.1 Community Detection Method (Strategy 1) 33
3.2.2 Embedding Clustering Method (Strategy 2) 37
3.2.3 Convergence Analysis . 39

3.3 Learning-based Aggregation (LBAggr) 40
3.4 Putting Things Together: GraphEraser 41
3.5 Evaluation . 42

3.5.1 Experimental Setup . 43
3.5.2 Overall Performance . 44
3.5.3 Gaining a Deeper Understanding 50
3.5.4 Hyperparameters . 56
3.5.5 Robustness of GraphEraser . 57
3.5.6 Unlearning Power of GraphEraser 59

3.6 Discussion . 60
3.7 Conclusion . 60

4 Understanding the Privacy Risks in Machine Unlearning 63
4.1 Membership Inference in Machine Unlearning 65

4.1.1 Problem Statement . 65
4.1.2 Threat Model . 65
4.1.3 Attack Pipeline . 66
4.1.4 Attack Model Training . 67
4.1.5 Feature Construction . 69

4.2 Privacy Degradation Measurement . 69
4.2.1 Experimental Setup . 70
4.2.2 Privacy Degradation Metrics . 72
4.2.3 Overall Performance . 73
4.2.4 Hyperparameters . 77
4.2.5 Attack Transferability . 78
4.2.6 Evaluation of the SISA Method 80
4.2.7 Attack Under Different Scenarios 81

4.3 Mitigating the Unintended Privacy Risk 85
4.3.1 Publishing the Topk Confidence Values 85
4.3.2 Publishing the Label Only . 86

xii

CONTENTS

4.3.3 Temperature Scaling . 87
4.3.4 Differential Privacy (DP) . 87

4.4 Conclusion . 88

5 Assessing the Privacy Risks in Graph Embedding Sharing System 89
5.1 Threat Model and Attack Taxonomy . 92

5.1.1 Attack Scenario . 92
5.1.2 Threat Model . 92
5.1.3 Attack Taxonomy . 93

5.2 Property Inference Attack . 94
5.2.1 Attack Overview . 94
5.2.2 Attack Model FAP . 95

5.3 Subgraph Inference Attack . 96
5.3.1 Attack Overview . 96
5.3.2 Attack Model FAS . 97

5.4 Graph Reconstruction Attack . 98
5.4.1 Attack Overview . 98

5.5 Evaluation . 100
5.5.1 Experimental Setup . 100
5.5.2 Property Inference Attack . 102
5.5.3 Subgraph Inference Attack . 104
5.5.4 Graph Reconstruction Attack . 109

5.6 Defenses . 113
5.7 Conclusion . 115

6 Assessing the Privacy Risks in Few-shot Facial Recognition System 117
6.1 Auditing Methodology . 120

6.1.1 Face-Auditor . 121
6.1.2 Auditor Training Phase . 122
6.1.3 Auditing Phase . 124

6.2 Evaluation . 125
6.2.1 Evaluation Settings . 125
6.2.2 Overall Performance . 127
6.2.3 Reference Information . 129
6.2.4 Hyperparameters . 134
6.2.5 Transferability . 137

xiii

CONTENTS

6.3 Robustness . 138
6.3.1 Input Perturbation . 138
6.3.2 Training Perturbation . 140
6.3.3 Output Perturbation . 141
6.3.4 MemGuard . 143

6.4 Discussion . 144
6.5 Conclusion . 145

7 Summary and Conclusion 147
7.1 Summary . 149
7.2 Future Research Directions . 150

A Appendix 153
A.1 Hyperparameter Settings of Simple Models 155

A.1.1 Implementation of SimpleCNN 155

xiv

List of Figures

2.1 An illustration of GNN Model. 11
2.2 Illustration of the metric-based few-shot facial recognition models. . . . 20

3.1 A schematic view of the framework of GraphEraser. 32
3.2 Illustration of LPA’s workflow. Different colors represent different shards. 34
3.3 Distribution of shard sizes with classical LPA. 35
3.4 Distribution of shard sizes with classical k-means. 37
3.5 Convergence evaluation of GraphEraser-BLPA and GraphEraser-BEKM on

five datasets. 40
3.6 Evaluation of the node/edge unlearning efficiency. 45
3.7 Correlation between the importance score of a shard model and its F1

score on the Cora dataset. 50
3.8 The t-SNE plot of shard embeddings for the Cora dataset. 51
3.9 Correlation between the importance of the graph structure (larger ratio of

edge deletion indicates graph structure is less important) and the utility
improvement of GraphEraser over Random. 52

3.10 Impact of the number of shards on the unlearning efficiency and model
utility on the Physics dataset. 57

3.11 Impact of δ on GraphEraser-BEKM and GraphEraser-BLPA for five datasets. 58
3.12 Impact of the ratio of unlearned nodes on the model utility. 58

4.1 A schematic view of the general attack pipeline. The membership status
of the target sample x is leaked due to the two versions of the model. . . 67

4.2 Training process of the attack model. 68
4.3 Privacy degradation level on the Scratch method for three categorical

datasets. 74

xv

LIST OF FIGURES

4.4 Privacy degradation level on the Scratch method for image datasets. . . 74
4.5 Attack AUC for different feature construction methods. 75
4.6 Attack AUC sensitivity to different hyperparameters on the Adult (in-

come) dataset with decision tree as target model. 79
4.7 Attack AUC for the SISA method on the Insta-NY dataset. 81
4.8 Multiple Intermediate Unlearned Models. 82
4.9 Group Deletion. 83
4.10 Online Learning. 84
4.11 Attack AUC of the remaining samples on the Insta-NY dataset. 85

5.1 Attack taxonomy of the graph embedding. 94
5.2 Attack pipeline of the property inference attack. 95
5.3 Attack pipeline of the subgraph inference attack. 96
5.4 Attack pipeline of the graph reconstruction attack. 99
5.5 Attack accuracy for property inference. 103
5.6 Datasets transferability for property inference attack. 104
5.7 Attack AUC for subgraph inference attack. 107
5.8 Sampling methods transferability for subgraph inference attack. 108
5.9 Embedding models transferability for subgraph inference attack. 109
5.10 Dataset transferability for subgraph inference. 109
5.11 Impact of the quality of graph auto-encoder on the AIDS dataset. . . . 112
5.12 Visualization of macro-level graph statistic distribution for graph recon-

struction attack on the AIDS dataset. 112
5.13 Perturbation defense against two inference attacks. 114
5.14 Perturbation defense against the graph reconstruction attack. 115

6.1 Overview of Face-Auditor. 121
6.2 Overall auditing performance for four evaluation metrics. 128
6.3 Relation between target model overfitting and auditing performance. . . 129
6.4 Impact of the reference information and the similarity selection. 130
6.5 T-SNE visualization on the impact of reference information. 132
6.6 Auditing performance when using different similarity metrics to generate

the reference information. 133
6.7 Number of ways (k) in the support set. 135
6.8 Number of shots (l) in the support set. 136
6.9 Number of query images (q). 136

xvi

LIST OF FIGURES

6.10 Auditing performance (measured by AUC) under datasets transfer. . . . 137
6.11 Auditing performance (measured by four metrics) under model transfer. 139
6.12 An illustration of images under different levels of adversarial noise per-

turbation. 140
6.13 Auditing performance under output perturbations. 142
6.14 Auditing performance comparison under an adaptive adversary against

Face-Auditor. 144

xvii

List of Tables

2.1 Summary of the notations used in this section. 12

3.1 Dataset statistics for evaluating the performance of GraphEraser. 43

3.2 Computational costs of the GraphEraser framework on five datasets. We
report the prediction cost and the relearning cost of LBAggr for BEKM. 46

3.3 Comparison of F1 scores for unlearning methods and different aggregation
methods. 47

3.4 Comparison of F1 scores for MLP and four GNN models. A larger gap
in F1 scores for MLP and GNN models means that the graph structural
information is more important for the GNN models. 47

3.5 Impact of the number of training nodes for learning LBAggr. 49

3.6 Comparison of F1 scores for different graph partition methods. 55

3.7 Comparison of graph partition efficiency for different balanced graph
partition methods. 56

3.8 Attack AUC of membership inference against our GraphEraser (AI) and
deterministic unlearning (AII). 59

4.1 Attack AUC in different overfitting levels. 77

4.2 Attack AUC for dataset and model transfer. 78

4.3 Attack AUC of the defense mechanisms. 86

5.1 Dataset statistics. 101

5.2 Attack AUC for different feature construction methods in the subgraph
inference attack. 107

5.3 Attack performance of graph reconstruction measured by graph isomor-
phism. 111

xix

LIST OF TABLES

5.4 Macro-level graph statistics on the attack performance of graph recon-
struction, the similarity of which is measured by cosine similarity. . . . 111

6.1 Dataset split in detail. 125
6.2 Target model performance. 127
6.3 Evaluation on different feature extractors F on four datasets and three

target models. 134
6.4 Auditing performance under input perturbation on UMDFaces. 140
6.5 Auditing performance under training perturbation. 142

A.1 SimpleCNN structure and hyperparameter. 155

xx

1
Introduction

1

The growing concern over personal information has led many countries and regions
to enact privacy regulations aimed at safeguarding users’ privacy. Examples of these
regulations include the General Data Protection Regulation (GDPR) [1] in the European
Union, the California Consumer Privacy Act (CCPA) [2] in California, the United States,
the Personal Information Protection and Electronic Documents Act (PIPEDA) [3] in
Canada, the Brazilian General Data Protection Law (LGPD) [4] in Brazil, Personal
Information Protection Law of the People’s Republic of China (PIPL) [5], and many
others.

There are two main roles in these privacy regulations: The data provider and the
data controller. The data providers originally generate and have authority over the data,
and the data controllers determine the purposes and means of processing personal data
in providing services or other commercial activities. These privacy laws govern many
rights of data providers and the obligations of data controllers. One essential aspect of
these regulations is the concept of the right to be forgotten, which allows users to
withdraw their data from a company’s databases or data products. However, complying
with this right can pose significant challenges for companies using the data, as it often
requires deleting multiple copies, updating or regenerating commercial models, and
more. Another crucial provision is the right of access, which authorizes users to know
how their data is processed, and companies must ensure the transparency of the data
processing. Furthermore, the right to restriction of processing comes into play
when data providers discover inaccuracies or unlawful processing of their data. In such
cases, the data controller has the obligation to inform the data providers and protect
their rights.

However, applying these rights to ML models proves to be more complex than other
data processing methods. ML models have a powerful memorization ability, making
them vulnerable to various privacy and security attacks, such as membership inference
attacks [145, 132], model stealing attacks [162, 116], data reconstruction attacks [47,
131], poisoning attacks [75, 136], etc. The challenge lies in adapting these rights to the
unique characteristics of ML practices, as concrete implementation details are scarce.
It remains uncertain whether existing standard practices (such as in search engines or
databases) can be directly applied to ML paradigms and whether new privacy risks may
arise as a result. Finding the right balance between privacy protection and the effective
use of ML models requires further exploration and understanding.

3

CHAPTER 1. INTRODUCTION

1.1 Contributions

In the following, we summarize the major contributions of this dissertation, which consist
of four works. We first introduce an efficient and applicable method to implement “the
right to be forgotten” in ML systems, then we further explore the privacy risks in
the known machine unlearning systems (the practice of implementing the right to be
forgotten in ML systems). We then assess privacy risks in two widely-used ML systems,
i.e., the graph embedding sharing system and the few-shot facial recognition system.

1.1.1 Technical Implementation of Machine Unlearning

We start with the “right to be forgotten” regulation and its technical implementations
in real-world ML systems. Specifically, the right to be forgotten entitles data owners to
the right to delete their data from an entity storing it. In the context of ML, researchers
have argued that, under the requirement of the right to be forgotten, the model provider
has an obligation to eliminate any impact of the data whose owner requested to be
forgotten, which is referred to as machine unlearning [28, 25].

While approximate machine unlearning methods can remove the impacts of the
revoked samples from a trained model and deal with the large underlying training
dataset, they either require specific model architecture [28, 51] or face the risks of
incompletely remove [53, 59, 73, 112]. A deterministic machine unlearning approach
consists in removing the revoked sample and retraining the ML model from scratch.
Among the existing solutions, the SISA (Sharded, Isolated, Sliced, and Aggregated) is
the most general one in terms of model architecture [25] and can guarantee the complete
remove. The basic idea of SISA is to randomly split the training dataset into several
disjoint shards and train each shard model separately. Upon receiving an unlearning
request, the model provider only needs to retrain the corresponding shard model.

SISA is effective for data that can be easily partitioned into small shards, but it is
unsuitable for scenarios where the model’s training data is non-iid (non-independent
and identically distributed) or when partitioning the data leads to a significant loss
of utility, particularly in cases involving graph data. Graph data often exhibit strong
interdependencies and structural correlations between nodes and edges, such as social
networks, financial networks, biological networks, recommender systems, and trans-
portation networks. Partitioning graph data can break these relationships and result in
the loss of crucial information necessary for accurate and meaningful analysis. In such
situations, SISA’s effectiveness may diminish.

4

1.1. CONTRIBUTIONS

In Chapter 3, we propose an end-to-end machine unlearning framework tailed to
graph data, namely GraphEraser, which can achieve high unlearning efficiency and low
model utility degradation. This framework calls attention to balancing the model utility
loss and the unlearning efficiency and provides insights to improve the model utility
loss due to the data partition.

1.1.2 Understanding the Privacy Risks in Machine Unlearning

Machine unlearning naturally generates two versions of ML models, namely the original
model and the unlearned model, and creates a discrepancy between them due to the
target sample’s deletion. While originally designed to protect the target sample’s
privacy, we argue that machine unlearning may leave some imprint of it and thus create
unintended privacy risks. Specifically, while the original model may not reveal much
private information about the target sample, additional information might be leaked
through the unlearned model. We then study to what extent data is indelibly imprinted
in an ML model by quantifying the additional information leakage caused by machine
unlearning.

In Chapter 4, we propose a novel membership inference attack against multiple
“machine unlearning” settings where an adversary can access both the original and
unlearned models. Our empirical results showed that machine unlearning was initially
designed to lower the privacy risks of revoked data. On the contrary, the deleting process
exposures more chances of being inferred the membership status.

We show that machine unlearning degrades the privacy of the target sample in
general. This discovery sheds light on the risks of implementing the right to be forgotten
in the ML context. We believe that our attack and metrics can help develop more
privacy-preserving machine unlearning approaches in the future.

1.1.3 Assessing the Privacy Risks in Graph Embedding Sharing Sys-
tem

Graph embedding is a powerful tool to solve the graph analytics problem by transforming
the graph data into low-dimensional vectors. These vectors could also be shared with
third parties to gain additional insights into what is behind the data. Graph embedding
is empirically considered sanitized since the whole graph is compressed to a single vector.

Although sharing graph embeddings for downstream graph analysis tasks is intriguing
and practical, the associated security and privacy implications remain unanswered. In

5

CHAPTER 1. INTRODUCTION

Chapter 5, we systematically investigate the information leakage of the graph embedding
by mounting three inference attacks. First, we can successfully infer basic graph
properties, such as the number of nodes, the number of edges, and graph density, of the
target graph with up to 0.89 accuracy. Second, given a subgraph of interest and the graph
embedding, we can determine with high confidence whether the subgraph is contained
in the target graph. Third, we propose a novel graph reconstruction attack that can
reconstruct a graph with similar graph structural statistics to the target graph. We
further propose an effective defense mechanism based on graph embedding perturbation
to mitigate the inference attacks without noticeable performance degradation for graph
classification tasks.

As the research community has identified some information leakage from the raw
data, sharing a compression version of raw data is often considered safer. However, for
the first time, we examine a common practice when sharing graph embedding with third
parties that could severely leak information about the training graph. This work sheds
light on discovering unintended privacy risks in graph embedding systems and provides
effective inference attacks to assess the privacy risks systematically.

1.1.4 Assessing the Privacy Risks in Few-shot Facial Recognition Sys-
tem

Machine learning has been widely adopted in real-world automatic decision-making
applications. With the power of facial recognition systems, entities with moderate
resources can canvas the Internet for face images and build well-performed facial
recognition models without people’s awareness and consent. Such kinds of face data
misuse are potentially disastrous [106] and infringe privacy laws. GDPR states that
the personal data must only be processed if the individual has given explicit consent
(Article 6(1)(a)), and the processing of personal data must be lawful, fair, and transparent
(Article 5(1)(a)) [1]. This means that if the third parties want to use the data owner’s
face images, they need to obtain consent from the data owner and inform the data
owner how their face images are processed.

To prevent face images from being misused, one straightforward method is to modify
the raw face images before uploading them to the Internet, such as distorting the face
images [90], producing adversarial patches [158], or adding imperceptible pixel-level
cloaks [137]. However, these approaches inevitably destroy the semantic information of
the face images and also increase the difficulty of retroactivity. Also, researchers have
argued that such defenses can be bypassed by newer technologies [126], which leads to

6

1.2. ORGANIZATION

an endless arms race between the attacker and defender. In such cases, an auditing tool
enables users to check whether a model is using/misusing their data is essential.

In Chapter 6, we investigate the auditing approach that enables ordinary users to
detect whether their private face images are being used to train a facial recognition
system when only similarity metric information is accessible. We propose Face-Auditor
based on the notion of user-level membership inference and provide practical guidelines
for using it in facial recognition systems. Face-Auditor can serve as a complementary
tool for existing privacy-protective actions. For instance, governments and regulators
can use Face-Auditor as a tool for enforcing privacy regulations by determining if models
are misusing data and violating individuals’ privacy rights. Individuals can adopt Face-
Auditor as an auditing tool to detect potential face data misuse. If a misuse happens,
they can legally correct or withdraw their data (according to GDPR Articles 15, 16,
17, 18). Besides, Face-Auditor can also be employed by model developers to conduct
self-inspection and ensure that their models are compliant with privacy regulations
while demonstrating transparency in their data processing practices.

1.2 Organization

The rest of this dissertation is organized as the following. In Chapter 2, we first provide
the needed preliminaries and background knowledge to ground this dissertation. Then
we summarize the related work to motivate our work and contributions to understand
the vulnerabilities in ML models. We explore the technical implementation of the right
to be forgotten in machine learning in Chapter 3. We investigate the unintended privacy
risks in machine unlearning in Chapter 4. In Chapter 5, we assess the privacy risks of
sharing graph embeddings. We propose a face auditor for data misuse detection and
assess the technical implementation in Chapter 6. Finally, we look into some future
work and conclude the dissertation in Chapter 7.

7

2
Preliminaries and Background

9

2.1. MACHINE LEARNING

2.1 Machine Learning

2.1.1 Classification Models

Machine learning classification is the most common ML task. An ML classifierM maps
a data sample x to posterior probabilities P, where P is a vector of entries indicating
the probability of x belonging to a specific class y according to the model M. The
sum of all values in P is 1 by definition. To construct an ML model, one needs to
collect a set of data samples, referred to as the training set D. The model is then built
through a training process that aims at minimizing a predefined loss function with some
optimization algorithms, such as stochastic gradient descent.

2.1.2 Graph Neural Networks

Numerous important real-world datasets are represented in the form of graphs, such as
social networks [125], financial networks [91], biological networks [81], or transportation
networks [39], recommender systems [117, 184], To take advantage of the rich information
contained in graphs, a new family of ML models, graph neural networks (GNNs), has
been recently proposed and has already shown great promise [15, 37, 82, 164, 160,
117, 179, 39, 67, 175, 26]. The core idea of GNNs is to transform the graph data into
low-dimensional vectors by aggregating the feature information from neighboring nodes.

Node Embeddings

Graph Embedding

• Node Classification

• Relation Prediction

• Community Detection

• Graph Classification

Graph Pooling

Graph Neural Networks

Figure 2.1: An illustration of GNN Model.

In a graph, a node represents an entity, and an edge connects different entities. We
denote an attributed graph by G = 〈V, A, F 〉, where V is the set of all nodes in graph G,

11

CHAPTER 2. PRELIMINARIES AND BACKGROUND

A ∈ {0, 1}n×n is the corresponding adjacency matrix (n = |V|), and F ∈ Rn×dF is the
feature matrix with dF being the dimension of node features. We denote u, v ∈ V as
two nodes in G, denote eu,v as an edge between u and v in G. The notations frequently
used in this paper are summarized in Table 2.1.

The basic intuition behind GNNs is that the neighboring nodes in a graph tend to
have similar features; the GNN models are designed to aggregate the feature information
from the neighborhood of each node to generate the node’s embedding (e.g., a size-512
vector). The node embeddings can then be used to conduct downstream tasks, such as
node classification [64, 164, 117], link prediction [172, 188], and graph classification [177,
174].

Table 2.1: Summary of the notations used in this section.

Notation Description

M A machine learning model
D Dataset
P Posteriors of a query sample

G = 〈V, A, F 〉 Graph
u, v ∈ V Nodes in G
eu,v Edge that connects u and v
A Adjacency matrix of G
F Attributes associated with V
Nu Neighborhood nodes of u
Hu Node embedding of u

dF / dH Dimension of attributes / embeddings
Φ Aggregation operation in message passing
Ψ Updating operation in message passing
m Message received from neighbors

For node classification tasks, whose goal is to use a GNN to predict the label of a
node u ∈ V given the node’s features Xu and its neighborhood information. To train a
GNN, we rely on the notion of message passing.

2.1.2.1 Message Passing

Typically, message passing is used to obtain the node embeddings. First, each node’s
features are assigned initial embeddings. In the following steps, every node receives a
“message” from its neighbor nodes, then aggregates the messages as its intermediate
embedding. After ` steps, the embedding of the node can aggregate information from
its `-hop neighbors. Formally, during the i-th step, the embedding H i

u of node u ∈ V is
updated using information aggregated from u’s neighbors Nu using a pair of aggregation

12

2.1. MACHINE LEARNING

operation Φ and updating operation Ψ:

H i+1
u = Ψi

(
H i
u,mi

Nu

)
mi
Nu

= Φi
(
H i
v,∀v ∈ Nu)

)
where mi

Nu
is the “message” received from u’s neighbors. There are several possible

implementations of Φ and Ψ as described below.

2.1.2.2 Aggregation Operation

Aggregation is designed for aggregating the messages from a node u’s neighbors. We
introduce four of the most widely used aggregation operations as follows:

• Graph Isomorphism Networks (GIN) [177]. GIN directly sums up the embed-
dings of u’s neighbors Nu, i.e., mNu =

∑
v∈Nu

Hv.

• Graph SAmple and aggreGatE (SAGE) [64]. The SAGE method takes an
average over u’s neighbors’ embeddings rather than summing them up, i.e., mNu =∑

v∈Nu
Hv

|Nu| .

• Graph Convolution Networks (GCN) [82]. The GCN method uses the symmet-
ric normalization for aggregation, i.e., mNu =

∑
v∈Nu

Hv√
|Nu|·|Nv |

.

• Graph Attention Networks (GAT) [164]. GAT assigns an attention weight or
importance score to each neighbor during the aggregation, i.e., mNu =

∑
v∈Nu

αu,vHv,
where the attention weight αu,v is defined as follows:

αu,v = exp(aT [WHu||WHv])∑
v′∈Nu

exp(aT [WHu||WH ′v])

Here, a is a learnable attention vector, W is a learnable matrix, and || denotes the
concatenation operation.

2.1.2.3 Updating Operation

The updating operation Ψ combines the node embeddings from node u and the message
from u’s neighborhood Nu. The most straightforward updating operation is to calculate
the weighted combination [134]. Formally, we denote the basic updating operation as
Ψbase = σ(WselfHu +WneighmNu), where Wself and Wneigh are learnable parameters,

13

CHAPTER 2. PRELIMINARIES AND BACKGROUND

σ is a non-linear activation function. Another method is to treat the basic updating
operation as a building block and concatenate it with the current embedding [64]. We
denote the concatenation-based updating operation as Ψconcat = Ψbase||Hu, where || is
the concatenation operation. An alternative is to use the weighted average of the basic
updating method and the current embedding [123], which is referred to as interpolation-
based updating operation and is formally defined as Ψinter = α1 ◦Ψbase + α2 ◦Hu. We
introduce three popular updating operations.

• Linear Combination [134]. The most basic updating method is to calculate the
linear combinations, i.e.,

Ψlinear = σ(WselfHu +WneighmNu)

where Wself and Wneigh are learned during the training process and σ is a non-linear
activation function. The main issue of the basic method is over-smoothing, resulting in
embeddings of all nodes being similar to each other after several steps of aggregation.

• Concatenation [64]. One practical approach to handle the over-smoothing issue is
to concatenate the result of the linear combination method with the current node
embedding, i.e., Ψconcat = Ψlinear||Hu.

• Interpolation [123]. Another method is to use the weighted average of the linear
combination method and the current embedding for updating, i.e., Ψinter = α1 ◦
Ψlinear + α2 ◦Hu.

2.1.2.4 Graph Pooling

The graph pooling operation Σ aggregates the embeddings of all nodes in the graph to
form a whole graph embedding, i.e., HG = Σ (Hu, ∀u ∈ G).

Global Pooling. The most straightforward approach for graph pooling is to directly
aggregate all the node embeddings, which is called global pooling, such as max pooling
and mean pooling. Although simple and efficient, the global pooling operation could
lose the graph structural information, leading to unsatisfactory performance [185, 23].

Hierarchical Pooling. To better capture the graph structural information, researchers
have proposed many hierarchical pooling methods [185, 23]. The general idea is
to aggregate n node embeddings to one graph embedding hierarchically instead of
aggregating them in one step as global pooling. Concretely, we obtain n node embeddings

14

2.1. MACHINE LEARNING

using message-passing modules and find m clusters according to the node embeddings,
where 1 < m < n. Next, we treat each cluster as a node with features being the graph
embedding of this cluster, then iteratively apply the message passing and clustering
operations until there is only one graph embedding.

Formally, in the `-th pooling step, we need to learn a cluster assignment matrix
S` ∈ Rn`×n`+1 , which provides a soft assignment of each node at layer ` to a cluster in
the next coarsened layer `+ 1. Suppose S` in layer ` has already been computed. We
can use the following equations to compute the coarsened adjacency matrix A`+1 and a
new matrix of node embeddings H`+1:

H`+1 = S`
T
H` ∈ Rn`+1×dH

A`+1 = S`
T
A`S` ∈ Rn`+1×n`+1

The main challenge lies in how to learn the cluster assignment matrix S`. In the
following, we introduce two state-of-the-art methods.

• Differential Pooling [185]. The DiffPool method uses a message-passing module
to calculate the assignment matrix as S` = softmax

(
GNN(A`, H`)

)
. In practice, it

can be difficult to train the GNN models using only gradient signals from the output
layer. To alleviate this issue, DiffPool introduces an auxiliary link prediction objective
to each pooling layer, which encodes the intuition that nearby nodes should be pooled
together. In addition, DiffPool introduces another objective to each pooling layer that
minimizes the entropy of the cluster assignment.

• MinCut Pooling [23]. The MinCutPool method uses an MLP (multi-layer percep-
tron) module to compute the assignment matrix as S` = softmax

(
MLP(A`, H`)

)
.

Different from DiffPool, MinCutPool introduces the minimum cut objective to each
pooling layer that aims to remove the minimum volume of edges, which aligns with
the objective of graph pooling (aiming to assign the closely connected nodes into the
same cluster).

2.1.2.5 Implementation of GNN Model

Typically, each step of message passing is referred to as a GNN module, and a GNN
model can be implemented by stacking multiple layers of the GNN module and one
layer of the softmax module for node classification. We denote a GNN model byM,
which can take as input the feature matrix F and the adjacency matrix A of a set of

15

CHAPTER 2. PRELIMINARIES AND BACKGROUND

nodes V, and output a posterior matrix P . Here each row of P is the posterior of one
node u ∈ V, which is a vector of entries indicating the probability of node u belonging
to a certain class. All values in each row of P sum up to 1 by definition.

The graph-level GNN models consist of a graph embedding module, which encodes
the graph into the graph embedding, and a multi-class classifier, which predicts the
label of the graph using the graph embedding. To train the GNN model, we normally
adopt the cross-entropy loss. For graph embedding modules containing hierarchical
pooling operations, we need to incorporate additional loss, such as minimum cut loss in
MinCutPool.

Once the GNN model is trained, it can be used as a feature extractor to transform
any graph into node embeddings or graph embeddings and perform downstream tasks,
such as node classification, link prediction, and graph classification.

• Node Classification. Node classification aims to predict the labels for a node in
a graph, given a partial training graph (Gtrain). To accomplish this task, a graph
neural network (GNN) model first generates a node embedding for each node by
transforming a high-dimensional relationship into a low-dimensional vector. The
model then employs a deep neural network (DNN) to map the relationship between
the node embedding and the known label. The success of node classification depends
on the assumption that similar nodes (in terms of their node embedding space) are
likely to share the same label.

• Link Prediction. Link prediction tasks aim to find whether a connection exists
between two entities given a partial graph. When the similarity of a pair of node
embeddings is high, it indicates that a link exists between them. In the standard
setup for link prediction, a model is given a set of nodes (V) and an incomplete set of
edges Etrain ∈ E . It learns from the partial graph to establish a similarity threshold
for making predictions and inferring the missing edges E \ Etrain.

• Graph Level Tasks. This type of task needs an input of a graph embedding H. For
instance, graph label prediction; graph clustering finds similar graphs by calculating
the similarities of a pair of graph embeddings; and graph regression.

2.2 Machine Unlearning

One of the most important and controversial articles in existing privacy regulations is
the right to be forgotten, which entitles data subjects to the right to delete their data

16

2.2. MACHINE UNLEARNING

from an entity storing it to preserve their privacy. The “right to be forgotten” allows
individuals to request the deletion of their data by the model owner to preserve their
privacy. It also implies data controller has an obligation to eliminate any impact of the
data whose owner requested to be forgotten. In the context of machine learning, e.g.,
MLaaS, this implies that the model owner should remove the target sample x from its
training set D. Moreover, any influence of x on the modelM should also be removed.
This process is referred to as machine unlearning.

Retraining from Scratch. The most legitimate way to implement machine unlearning
involves removing the revoked sample and retraining the ML model from scratch.
Formally, denoting the original model as Mo and its training dataset as Do, this
approach consists of training a new modelMu on dataset Du = Do \ x. We call this
Mu the unlearned model.

Retraining from scratch is easy to implement. However, when the size of the original
dataset Do is large, and the model is complex, the computational overhead of retraining
will be too large. To reduce the computational overhead, several approximate approaches
have been proposed [28, 51, 29, 53, 59, 95, 73, 25, 112].

SISA. SISA [25] is an efficient and general method to implement machine unlearning
that works in an ensemble way. The basic idea of SISA is to randomly split the
training dataset into several disjoint shards and train each shard model separately.
Upon receiving an unlearning request, the model provider only needs to retrain the
corresponding shard model. Concretely, the training dataset Do in SISA is partitioned
into k disjoint parts Do1,Do2, · · · ,Dok. The model owner trains a set of original ML
modelsM1

o,M2
o, · · · ,Mk

o on each corresponding dataset Doi. When the model owner
receives a request to delete a data sample x, it just needs to retrain the sub-modelMi

o

that contains x, resulting in unlearned modelMi
u. Sub-models that do not contain x

remain unchanged. Notice that the size of dataset Doi is much smaller than Do; thus,
the computational overhead of SISA is much smaller than the “retraining from scratch”
method.

At inference time, the model owner aggregates predictions from the different sub-
models to provide an overall prediction. The most commonly used aggregation strategy
is the majority vote and posterior average. In Chapter 3, we show a learning-based
aggregation strategy and use majority vote and posterior average as baselines to evaluate
the impacts of the aggregator. In Chapter 4, we use the posterior average as the default
aggregation method to evaluate our membership inference attack against SISA-based
machine unlearning.

17

CHAPTER 2. PRELIMINARIES AND BACKGROUND

2.3 Privacy Attacks against Machine Learning Models

This dissertation mainly focuses on inference attacks against ML models. We use
sample-level membership inference attack as a privacy risk evaluation tool to understand
a model’s training data privacy risks (in Chapter 3 and Chapter 4). We use a user-level
membership inference attack as an auditing tool for potential data misuse without legal
consent (in Chapter 6). We also use property inference attack, data reconstruction attack,
and subgraph inference attack to obtain a fine-grained understanding of information
leakage (in Chapter 5). The subgraph inference attack can be seen as a subset-level
membership inference attack, and we describe the details of it in Section 5.3.

Sample-level Membership Inference. Given a modelMθ trained on dataset DTtrain,
a target data point x, and some auxiliary information, the goal of a sample-level
membership inference is to predict whether the data point x was used to train the model
Mθ, i.e., x ∈ DTtrain (member sample) or x 6∈ DTtrain (non-member sample).

Subset-level Membership Inference. Given a modelMθ trained on dataset DTtrain,
a target data subset S = {x1, x2, ..., xn}, and some auxiliary information, the goal of a
subset-level membership inference is to predict whether the subset S was used to train
the model Mθ, i.e., S ∈ DTtrain (member subset) or x 6∈ DTtrain (non-member subset).
In a graph, the subset represents a subgraph structure. The subset-level membership
inference predicts whether a distinct subgraph structure was part of the model’s training
graph.

User-level Membership Inference Attack. Unlike the sample-level membership
inference, a user-level membership aims to infer whether a user’s any data sample was
used to train a machine learning modelMθ. Formally, assume the target user u has a
set of data samples U = {u1, u2, · · · , un}, the user-level membership inference aims to
distinguish between U ∩ DTtrain 6= ∅ (member user) and U ∩ DTtrain = ∅ (non-member
user), where DTtrain is the training dataset of the target modelMθ.

Property Inference Attack. Given a model’s output P or middle-layer representation
H, a property inference attack aims to infer the statistical distribution of a model’s
training data based on auxiliary information.

Data reconstruction Attack. Given a middle-layer representation Hxo that is gener-
ated from a data xo, the goal of the data reconstruction attack aims to recover a data
xr that has the maximum similarity or minimum dissimilarity as xo.

18

2.4. APPLICATIONS OF ML MODELS

2.4 Applications of ML models

2.4.1 Facial Recognition System

Facial recognition is widely used for identification [169, 155, 135, 62]. Modern facial
recognition system utilizes machine learning models to determine whether a face image
being verified belongs to the authorized users (the complete system also includes other
components such as face detection [180] and liveness detection [114]). In the training
phase, a facial recognition model takes in multiple images for each user (e.g., from
different angles) in advance. In the identification phase, the facial recognition model
compares the image being examined with the pre-existing pictures to determine whether
it belongs to the authorized users and (if yes) to which authorized user this image
belongs.

The objective of the facial recognition system is to identify face images. Formally,
there is a pre-defined set of persons, which we call authorized users. They each contribute
multiple face images (which we call anchor images) for the system to “memorize” them
so that when a new face image comes, the system knows which (if any) authorized user
this image corresponds to. A straightforward approach is to train a classification model
with the anchor face images. However, the classification model oftentimes requires a
large amount of training data, while it is difficult to collect many face images from each
authorized user in practice. Furthermore, the set of authorized users often changes over
time, for example, when new colleagues join or leave a company. The classification
model needs to be retrained when the set of authorized users changes.

2.4.2 Few-shot Learning for Facial Recognition

To address the challenges of generalizing to unknown data distribution and improve
the scalability of facial recognition systems, companies have turned to using few-shot
learning techniques [170]. More recently, few-shot learning [83, 147, 153, 46] dominate
the traditional learning in facial recognition systems because it requires only a few
“anchor” face images from the authorized users. Few-shot learning is a machine learning
paradigm that aims to obtain good learning performance given limited supervised
information in the training set [33]. The high-level idea of few-shot learning is to exploit
prior knowledge to help train, thus reducing the size of the actual training set. An
important branch of commonly used few-shot learning algorithms is based on metric
learning, which learns the similarity/relation (measured by some metric) among the

19

CHAPTER 2. PRELIMINARIES AND BACKGROUND

images instead of (in the traditional classification problem) learning the mapping from
an image to a specific label.

𝒑

𝔼SSS

𝔼Q

𝔼SSS
𝔼SSS
𝔼SSS
𝔼SSS

P
P
P
P
P

ProtoNet

ProtoNet

𝔼

𝔼
𝑠!Q

S

𝑠! 𝑠" 𝑠# … 𝑠$𝒑

SiameseNet

𝔼

𝔼
𝑠"Q

S 𝔼

𝔼
𝑠$Q

S
……

Training
Phase

Training support set 𝕊!"#$%
(Sampled 𝒌 users)

Training Samples

ℳ

𝑚𝑖𝑛%
!"#

$

ℒ

Training query setℚ𝒕𝒓𝒂𝒊𝒏

Testing Phase

Testing query sample
ℚ!+,!$

Testing Samples
(Unseen users)

ℳ

Who isℚ%&'%(?

Testing support set 𝕊!+,!
(Provide 𝒌 users)

𝑝! 𝑝" 𝑝# … 𝑝$𝒑

𝒑

𝔼SSS

𝔼Q

𝔼SSS
𝔼SSS
𝔼SSS
𝔼SSS

Relation
Net

RelationNet

p! 𝑝" 𝑝# … 𝑝$𝒑

Support Set
(k-way-ℓ-shot)

Query Sample

ℓ

k

Figure 2.2: Illustration of the metric-based few-shot facial recognition models.

Figure 2.2 illustrates the general pipeline of metric-based few-shot learning algorithms,
which consists of training and testing phases (also called the deployment phase in facial
recognition systems). The training phase takes a large, publicly available training dataset
Dtrain (which consists of samples for many classes) and runs in multiple iterations. In
each iteration, we construct a support set Strain, which consists of randomly selected k
classes, each with ` samples, from Dtrain (this is referred to as k-way-`-shot few-shot
learning). We also construct a query set Qtrain similar to Strain by sampling from the
same classes (note that query set might be a bit confusing when used in training, but
this is the standard terminology in few-shot learning). Our goal is to train a feature
extractor F so that the features (embeddings) of the images from Strain and Qtrain

are optimized to be similar/close (in terms of some metric) if they belong to the same
class, and dissimilar if they are from different classes. In the testing/deployment phase,
we have a new support set Stest (anchor images from authorized users). Since F has
already been trained to perform well in distinguishing samples from different classes,
given one query image, we predict it as the closest class in Stest.

20

2.5. RELATED WORK

2.5 Related Work

We first summarize existing privacy attacks against machine learning models to provide
a general understanding of the privacy risks in Section 2.5.2. Then we discuss the
practice of using privacy attacks as an evaluation tool for accessing the vulnerabilities
of ML systems in Section 2.5.3.

2.5.1 Machine Unlearning

The notion of machine unlearning is first proposed in [28], which is the application of
the right to be forgotten in the machine learning context. The most legitimate approach
to implement machine unlearning is to remove the revoked samples from the original
training dataset and retrain the ML model from scratch. However, retraining from
scratch incurs very high computational overhead when the dataset is large and when
the revoke requests happen frequently. Thus, most of the previous studies in machine
unlearning focus on reducing the computational overhead of the unlearning process [28,
25, 20, 73].

For instance, Cao et al. proposed to transform the learning algorithms into a
summation form that follows statistical query learning, breaking down the dependencies
of training data [28]. To remove a data sample, the model owner only needs to remove
the transformations of this data sample from the summations that depend on this
sample. However, this algorithm does not apply to learning algorithms that cannot
be transformed into summation forms, such as neural networks. Bourtoule et al. [25]
proposed a more general algorithm named SISA. The main idea of SISA is to split the
training data into disjoint shards, with each shard training one sub-model. To remove a
specific sample, the model owner only needs to retrain the sub-model that contains this
sample. To further speed up the unlearning process, the authors proposed to split each
shard into several slices and store the intermediate model parameters when the model
is updated by each slice.

Another line of machine unlearning study aims to verify whether the model owner
complies with the data deletion request. Sommer et al. [148] proposed a backdoor-based
method. The main idea is to allow the data owners to implant a backdoor in their
data before training the ML model in the MLaaS setting. When the data owners later
request to delete their data, they can verify whether it has been deleted by checking
the backdoor success rate.

The research problem in this dissertation is orthogonal to previous studies. In

21

CHAPTER 2. PRELIMINARIES AND BACKGROUND

Chapter 3, we design a technical implementation of machine unlearning tailed to graph
data. In Chapter 4, our goal is to quantify the unintended privacy risks for the deleted
samples in machine learning systems when the adversary has access to both the original
model and the unlearned model. To the best of our knowledge, we are the first to
investigate this problem. Although quantifying privacy risks of machine unlearning has
not been investigated yet, there are multiple studies on quantifying the privacy risks
in the general right-to-be-forgotten setting. For example, Xue et al. [178] demonstrate
that in search engine applications, the right to be forgotten can enable an adversary
to discover deleted URLs when there are inconsistent regulation standards in different
regions. Ellers et al. [43] demonstrate that, in network embeddings, the right to be
forgotten enables an adversary to recover the deleted nodes by leveraging the difference
between the two versions of the network embeddings.

2.5.2 Attacks against Machine Learning

The field of machine learning is not immune to privacy breaches, and several types
of privacy attacks against machine learning (ML) models have been documented in
the literature. On the one hand, these attacks demonstrate the vulnerabilities of
ML models and emphasize the importance of protecting privacy in the ML paradigm.
On the other hand, privacy attacks against ML model also offer a valuable tool for
evaluating privacy risks, as they provide a comprehensive assessment of information
leakages. By analyzing the vulnerabilities these attacks exploit, researchers can develop
strategies and countermeasures to mitigate privacy breaches and enhance the overall
security and privacy of ML models. We next summarize three types of privacy attacks
against ML models. In Section 2.5.2.1, we discuss the membership inference attack. We
discuss property inference attacks in Section 2.5.2.2 and data reconstruction attacks in
Section 2.5.2.3. In the end, we also discuss some security attacks that can amplify the
privacy risks in Section 2.5.2.4.

2.5.2.1 Membership Inference

Membership inference attacks aim to infer whether a sample was used to train a target
model. Based on the information an adversary can access, existing membership inference
attacks can be categorized into three categories: White-box, grey-box, and label-only.
The inference methods rely on multiple assumptions, such as auxiliary datasets, target
models’ training dataset distribution, target models’ architecture, shadow models, or

22

2.5. RELATED WORK

multiple queries to the target model.

Sample-level Membership Inference. Previous studies on membership inference
attacks mainly focus on sample-level membership inference [145, 132, 94, 104, 65]. The
first membership inference attack was proposed by Shokri et al. [145], which uses shadow
models to mimic the target model’s behavior and generate training data for the attack
model. Salem et al. [132] gradually removed the assumptions of [145] by proposing three
different attack methods. More recently, membership inference has been extensively
investigated in various ML models and tasks, such as federated learning [104], white-
box classification [110], generative adversarial networks [65, 32], and computer vision
segmentation [69], recommender system [187], graph neural networks [P3], contrastive
learning [68], reinforcement learning [118, 54], and diffusion models [195, 30].

To mitigate the threat of membership inference, a plethora of defense mechanisms
have been proposed. The incremental defenses do not modify the training pipeline
but slightly modify different training procedures. The methods can be classified into
three classes: Reducing overfitting, perturbing posteriors, and adversarial training.
There are several ways to reduce overfitting in the machine learning field, such as
`2-regularization [145], dropout [132], and model stacking [132]. In [88], the authors
proposed to explicitly reduce the overfitting by adding to the training loss function a
regularization term, which is defined as the difference between the output distributions
of the training set and the validation set. Jia et al. [77] proposed a posterior perturbation
method inspired by adversarial examples. Nasr et al. [109] proposed an adversarial
training defense to train a secure target classifier. During the training of the target
model, a defender’s attack model is trained simultaneously to launch the membership
inference attack. The optimization objective of the target model is to reduce the
prediction loss while minimizing the membership inference attack accuracy. Another
defense method that modifies the training pipeline of the model can better negate the
model utility and membership inference attack performance. A recent paper summarizes
the state-of-the-art defense mechanisms against sample-level membership inference
attacks and proposes a self-distillation-based ensemble architecture [157].

User-level Membership Inference. Compared to the sample-level membership
inference, the user-level inference is less investigated. The first user-level membership
inference was proposed by Song et al. [151] for the natural language models, including
next-word prediction, neural machine translation, and dialog generation. They design
and evaluate a black-box auditing method that can detect, with very few queries to a
model, if a particular user’s texts were used to train it. Miao et al. [105] then investigate

23

CHAPTER 2. PRELIMINARIES AND BACKGROUND

the user-level membership inference against the automatic speech recognition model.

2.5.2.2 Property Inference Attacks

Ganju et al. [49] proposed the first property inference attack aiming at inferring general
properties of the training data (such as the proportion of each class in the training
data). An adversary needs white-box access to the victim model and trains a multi-
class meta-classifier to infer the underlying property. The meta-classifier is trained on
multiple shadow models from different datasets distribution, and a successful attack is
transferred from the shadow knowledge. Later, this attack is extended to collaborative
learning [104], generative adversarial networks [194]. A successful property inference
attack, on the one hand, can violate the intellectual property of the model owner by
revealing the victim model’s confidential training data distribution. On the other hand,
it can also serve as a stepping stone to launch other privacy attacks, such as membership
inference attacks [194].

2.5.2.3 Data Extraction Attacks

Data extraction attacks focus on inferring the missing attributes of the target ML model.
Specifically, model inversion attacks [48, 47] aim to find the feature of a data sample
when an adversary can access the label of that sample, for instance, know the name of
a person, and reconstruct how the person looks. Attribute inference attacks aim
to infer the private attribute of a data sample when its public attribute is known. For
instance, inferring the race of a person given the age or gender.

2.5.2.4 Security Attacks

The aforementioned attacks are all privacy attacks, which aim to infer the private
properties from the training data or distribution of training data. Another important
attack category against ML models is the security attacks, such as evasion attacks,
backdoor attacks, poisoning attacks, and model stealing attacks. These attacks were
originally designed to impact the model utility; the attack methods can be used to
reveal some private information.

Evasion attacks design adversarial examples [120, 119, 161, 121] in the model
deployment phase. In this setting, an adversary adds carefully crafted noise to samples
to mislead the target classifier. An example shows that using adversarial examples

24

2.5. RELATED WORK

as a distance metric can successfully launch a membership inference attack under the
label-only setting [92].

In a backdoor attack, the adversary (as a model trainer) embeds a trigger into
the model during the model training phase, aiming for targeted output for a specific
triggered data sample when the model is deployed [58, 166]. While the initial backdoor
is simple and brute force. Lately, clean-label backdoors have been proposed to keep
the modification stealthy [130]. Inspired by the intuition of backdoor attacks that it
behaves differently on clean data and poisoned data, Hu et al. propose a membership
inference attack that is enhanced by backdoor [70].

In a model stealing attack, the adversary aims to copy a model with minimum cost.
Tramèr et al. [162] proposed the first attack on inferring a model’s parameters. Other
works focus on inferring a model’s hyperparameters [115, 165, 140]. Model stealing
attacks can harm the intellectual property of the victim model. In the meantime,
knowing more information about the model also increase the risks of revealing private
information about the victim’s training data [115].

2.5.3 Attacks as an Auditing Tool for AI Systems

Using attacks against machine learning as an auditing tool has been a growing trend in
trustworthy AI [151, 96]. “Desirable attacks” [13] against ML, as an example, can be
used for legitimate concerns like human rights and civil liberties. Determining whether
a given image is present in a facial recognition database [47] can help individuals
determine whether they can bring a court case against the service provider. Model
inversion [47] can detect potential bias decision-making in credit risk evaluation systems.
Adversarial examples can be used as an obfuscation tool to make users less likely to
be tracked [6] or re-identified [137]. A similar notion of “subversive AI” adopts human-
centered enhanced adversarial machine learning to evade algorithmic surveillance before
publishing content online. Protective Optimization Technologies (POTs) [85] offer a
more general terminology for repurposing the original system to enhance privacy, evade
discrimination, or avoid surveillance.

2.5.4 Privacy of Facial Recognition System

With the proliferation of facial recognition systems, their privacy issues have attracted
increasing attention [156, 31, 173]. To protect users’ privacy, one strategy is to make the
face images difficult for a facial recognition system to recognize by relying on adversarial

25

CHAPTER 2. PRELIMINARIES AND BACKGROUND

examples [45, 31]. Sharif et al. [138] show that adding specially printed glasses can cause
the wearer to be misidentified. Komkov et al. [84] propose to add carefully computed
adversarial stickers on a hat to reduce its wearer’s likelihood of being recognized. Others
propose to add adversarial patches to make it difficult for facial recognition systems
to recognize the user as a person in an image [158, 176]. An alternative is to evade
the facial recognition models by poisoning their training samples. One representative
method is Fawkes [137]. However, these approaches can inevitably destroy the semantic
information of the face images and is still vulnerable to advanced adversaries [126].

26

3
Technical Implementation of

Machine Unlearning

27

Machine unlearning is a difficult task. One natural research question is whether we
can satisfy the requirement of the right to be forgotten, design an efficient unlearning
solution, and does minimum side effects on the machine learning model performance.
Specifically, we focus on graph data because numerous important real-world datasets
are represented in the form of graphs, and this type of data brings more challenges
than IID data (i.e., images). Graph neural network (GNN) is the state-of-the-art way
to analyze graph data. To overcome the non-Euclidean essence, GNN transforms each
node into a low-dimension vector, which is calculated by combining the node feature
and aggregating information from its neighboring nodes. Similar to other ML models,
GNNs can be trained on sensitive graphs such as social networks [117, 125], where the
data subject may request to revoke their data. However, learning representative GNNs
rely on graph structural information. Randomly partitioning the nodes into sub-graphs
(as in SISA) could severely damage the resulting model utility. Therefore, there is a
pressing need for novel methods for unlearning previously seen – but revoked – data
samples in the context of GNNs.

In this chapter, we propose GraphEraser, an efficient unlearning framework to achieve
high unlearning efficiency and keep high model utility in GNNs. Concretely, we first
identify two common types of machine unlearning requests in the context of GNN
models, namely node unlearning and edge unlearning, and propose a general framework
GraphEraser for machine unlearning in GNN models.

To design the framework, we meet several challenges. First, to permit efficient
retraining, the shard graph size should be balanced. However, as we show in Section 3.2,
highly unbalanced shard sizes might exist due to the structural properties of real-world
graphs [190, 52]. In such case, many (if not most) of the revoked samples would belong
to the largest shard whose retraining time would be substantial, and the unlearning
process would become highly inefficient. Second, the graph partition methods must
preserve the graph structural information to the greatest extent. Otherwise, the model
utility might be jeopardized or cause a useless model. Besides, the framework should be
general to any graph type and GNN model structure and robust to practical unlearning
scenarios.

In the following, we first define the graph unlearning problem in Section 3.1. We
then introduce the graph partition module for GraphEraser in Section 3.2 and the
learning-based aggregation method in Section 3.3. We perform extensive experiments in
Section 3.5 to evaluate the unlearning efficiency and model utility of GraphEraser. We
discuss the practical implication of GraphEraser in Section 3.6 and conclude the chapter

29

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

in Section 3.7.

3.1 Graph Unlearning

3.1.1 Problem Definition

In the context of GNNs, the training set Do is in the form of a graph Go, and a sample
x ∈ Do corresponds to a node u ∈ Go. For presentation purposes, we use training graph
to represent training set in the rest of this chapter. We identify two types of machine
unlearning scenarios in the GNN setting, namely node unlearning and edge unlearning.

Node Unlearning. For a trained GNN model Mo, the data of each data subject
corresponds to a node in the GNN’s training graph Go. In node unlearning, when a data
subject u asks the model provider to revoke all their data, this means the model provider
should unlearn u’s node features and their links with other nodes from the GNN’s
training graph. Taking the social network as an example, node unlearning means a user’s
profile information and social connections need to be deleted from the training graph of a
target GNN. Formally, for node unlearning with respect to a node u, the model provider
needs to obtain an unlearned modelMu trained on Gu = Go \ {Fu, eu,v|∀v ∈ Nu}, where
Fu is the feature vector of u.

Edge Unlearning. In edge unlearning, a data subject wants to revoke one edge
between their node u and another node v. Still using the social network as an example,
edge unlearning means a social network user wants to hide their relationship with
another individual. Formally, to respond to the unlearning request for eu,v, the model
provider needs to obtain an unlearned modelMu trained on Gu = Go \ {eu,v|v ∈ Nu}.
The features of the two nodes remain in the training graph.

General Unlearning Objectives. In the design of machine unlearning algorithms,
we need to consider two major factors: unlearning efficiency and model utility. The
unlearning efficiency is related to the retraining time when receiving an unlearning
request. This time should be as short as possible. The model utility is related to the
unlearned model’s prediction accuracy. Ideally, the prediction accuracy should be close
to that of retraining from scratch. In summary, the unlearning algorithm should satisfy
two general objectives: High Unlearning Efficiency and Comparable Model Utility.

Challenges of Unlearning in GNNs. As mentioned before, the state-of-the-art
approach for machine unlearning is SISA [25], which randomly partitions the training set
into multiple shards and trains a constituent model for each shard. SISA has achieved

30

3.1. GRAPH UNLEARNING

high unlearning efficiency and comparable model utility for ML models whose inputs
reside in the Euclidean space, such as images and texts. However, the input of a GNN is
a graph, and data samples, i.e., nodes of the graph, are not independently and identically
distributed. Naively applying SISA on GNNs for unlearning, i.e., randomly partitioning
the training graph into multiple shards, will destroy the training graph’s structure
which may result in large model utility loss. One solution is to rely on community
detection methods to partition the training graph by the detected communities, which
can preserve the graph structure to a large extent. However, directly adopting classical
community detection methods may lead to highly unbalanced shards in terms of shard
size due to the specific structural properties of real-world graphs [52, 127, 190] (see
Section 3.2.1 for more details). In consequence, the efficiency of the unlearning process
will be affected. Indeed, a revoked record would be more likely to belong to a large
shard whose retraining time would be larger. Therefore, in the context of GNNs, the
unlearning algorithm should satisfy the following objectives:

• G1: Balanced Shards. Different shards should share a similar size in terms of the
number of nodes in each shard. In this way, each shard’s retraining time is similar,
which improves the efficiency of the whole graph unlearning process. Enforcing this
objective can automatically satisfy the general unlearning pursuit of high unlearning
efficiency.

• G2: Comparable Model Utility. Graph structural information is the major factor
that determines the performance of GNN [82, 64, 174]. To achieve comparable model
utility, i.e., high prediction accuracy in node classification tasks, each shard should
preserve the structural properties of the training graph.

3.1.2 GraphEraser Framework

To address the two challenges of unlearning in GNNs, we propose GraphEraser, which
consists of the following three phases: Balanced graph partition, shard model training,
and shard model aggregation. The general framework of GraphEraser is illustrated in
Figure 3.1. It partitions the original training graph into disjoint shards, parallelly trains
a set of shard modelsMi, and learns an optimal importance score αi for each shard
model. When a node w needs prediction, GraphEraser sends w to all the shard models
and obtains the corresponding posteriors, which are then aggregated using the optimal
importance score αi to make the prediction. When a node u mounts an unlearning

31

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

α!

α"

α#

α$

Predict Label

𝓕𝟏 #

𝓕𝟐 #

𝓕𝟑 #

𝓕𝟒 #

𝒲

𝑢

Prediction Task

Unlearning Task
𝓕𝟒) #

Figure 3.1: A schematic view of the framework of GraphEraser.

request, GraphEraser removes u from the corresponding shard and retrains the shard
model.

Balanced Graph Partition. It is a crucial step of GraphEraser to fulfill the two
requirements defined in Section 3.1.1. We propose to use balanced graph partition
methods to partition the training graph into disjoint shards.

Shard Model Training. After the training graph is partitioned, the model owner
can train one model for each of the shard graph, referred to as the shard model (Mi).
All shard models share the same model architecture. To further speed up the training
process, the model owner can train isolated shard models in parallel.

Shard Model Aggregation. At the inference phase, for predicting the label of node
w, GraphEraser sends the corresponding data (the features of w, the features of its
neighbors, and the graph structure among them) to all the shard models simultaneously,
and the final prediction is obtained by aggregating the predictions from all the shard
models. The most straightforward aggregation strategy, also mainly used in [25] is
majority voting, where each shard model predicts a label and w takes the label predicted
most often. We refer to this aggregation strategy as MajAggr.

An alternative solution is to gather the posterior vectors of all shard models and
average them to obtain aggregated posteriors. The target nodes are predicted as the
highest posterior in this aggregation. We name this aggregation strategy as MeanAggr.

Observe that different shard models can contribute differently to the final prediction;
thus, allocating the same importance score for all shard models during the aggregation
phase might not achieve the best prediction accuracy. Therefore, we further propose
LBAggr, a learning-based method to find the optimal importance score allocation for
different shard models (see details in Section 3.3). This further improves the prediction

32

3.2. BALANCED GRAPH PARTITION

accuracy of GraphEraser.

3.2 Balanced Graph Partition

In this section, we introduce the graph partition module.

• Strategy 0. Consider the node feature information only and randomly partition the
nodes. Concretely, we assume the node features are independently and identically
distributed as in SISA. In this sense, we can randomly partition the graph based on
its node IDs.

This strategy can perfectly satisfy G1 (Balanced Shards) in Section 3.1.1, while
it cannot satisfy G2 (Comparable Model Utility) since it can destroy the structural
information of the graph. Thus, we treat this strategy as a baseline strategy.

To permit efficient retraining while keeping the structural information of the graph,
we propose two graph partition strategies to address G2.

• Strategy 1. Consider the structural information only and try to preserve it as much
as possible. One promising approach to do this is relying on community detection [167,
56, 168].

• Strategy 2. Consider both the structural information and the node features. To
implement this, we can first represent the node features and graph structure into low-
dimensional vectors, namely node embeddings, and then cluster the node embeddings
into different shards.

However, directly applying them can result in a highly unbalanced graph partition
due to the underlying structural properties of real-world graphs (see the distribution of
shard sizes with classical partition methods in Figure 3.4 and Figure 3.3). To address
this issue, we propose a general principle for achieving a balanced graph partition
(corresponding to G1) and apply this principle to design new approaches to achieve a
balanced graph partition for both Strategy 1 and Strategy 2. In the following, we
elaborate on our balanced graph partition algorithms for Strategy 1 and Strategy 2.

3.2.1 Community Detection Method (Strategy 1)

For Strategy 1, we rely on community detection, which aims at dividing the graph into
groups of nodes with dense connections internally and sparse connections between groups.

33

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

A spectrum of community detection methods has been proposed, such as Louvain [190],
Infomap [129], and Label Propagation Algorithm (LPA) [127, 167]. Among them, LPA
has the advantage of low computational overhead and superior performance. Thus, we
rely on LPA to design our graph partition algorithm. For consistency purposes, we use
shard to represent the community.

Label Propagation Algorithm. Figure 3.2 illustrates the workflow of LPA. At the
initial state, each node is assigned a random shard label (Figure 3.2a). During the
label propagation phase (Figure 3.2b → Figure 3.2c), each node sends out its own label
and updates its label to be the majority of the labels received from its neighbors. For
instance, the yellow node with a dashed outline in Figure 3.2b will change its label to
blue because the majority of its neighbors (two nodes above it) are labeled blue. The
label propagation process iterates through all nodes multiple times until convergence
(no nodes change their labels).

(a) Initial state (b) Propagation (c) Stable state

Figure 3.2: Illustration of LPA’s workflow. Different colors represent different shards.

Unbalanced Partition. LPA is intriguing and powerful; however, directly applying
the classical LPA results in a highly unbalanced graph partition. For instance, Figure 3.3
shows the distribution of shard size on the Cora dataset [181] (2166 nodes in the training
graph). It originally generated 341 shards, and we only show the top 100 shards in
terms of their sizes. We observe that the largest shard contains 113 nodes, while the
smallest one contains only 2 nodes. Directly adopting the unbalanced shards detected
by the classical LPA does not satisfy G1, which severely affects the unlearning efficiency.
For instance, if the revoked node is in the largest shard, there is not much benefit in
terms of unlearning time.

General Principle to Achieve Balanced Partition. To address the above issue,
we propose a general recipe to achieve a balanced graph partition. Given the desired
shard number k and maximal shard size δ, we define a preference for every node-shard
pairs representing the node assigned to the shard (which is referred to as destination

34

3.2. BALANCED GRAPH PARTITION

Shard ID
0

50

100

N
um

b
er

of
N

od
es

Figure 3.3: Distribution of shard sizes with classical LPA.

shard). This results in k×n node-shard pairs with different preference values. Then, we
sort the node-shard pairs by preference values. For each pair in descending preference
order, we assign the node to the destination shard if the current number of nodes in
that destination shard does not exceed δ.

Balanced LPA (BLPA). Following the general principle for achieving balanced parti-
tion, we define the preference as the neighbor counts (the number of neighbors belonging
to a destination shard) of the node-shard pairs, and the node-shard pairs with larger
neighbor counts have higher priority to be assigned.

Algorithm 3.1 gives the workflow of BLPA. The algorithm takes as input the set
of nodes V, the adjacency matrix A, the number of desired shards k, the maximum
number of nodes in each shard δ, maximum iteration T , and works in four steps as
follows:

• Step 1: Initialization. We first randomly assign each node to one of the k shards
(line 2).

• Step 2: Reassignment Profiles Calculation. For each node u, we denote its
reassignment profile using a tuple 〈u,Csrc,Cdst, ξ〉, where Csrc and Cdst are the current
and destination shards of node u, ξ is the neighbor counts of the destination shard
Cdst (line 5 - line 7). We store all the reassignment profiles in F.

• Step 3: Reassignment Profiles Sorting. We rely on the intuition that the
reassignment profile with larger neighbor counts should have a higher priority to be
fulfilled; thus we sort F in descending order by ξ and obtain Fs (line 10).

• Step 4: Label Propagation. Finally, we enumerate every instance of Fs. If the
size of the destination shard Cdst does not exceed the given threshold δ, we add

35

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

the node u to the destination shard and remove it from the current shard (line 11 -
line 13). After that, we remove all the remaining tuples containing node u from Fs.

The BLPA algorithm repeats steps 2-4 until the algorithm reaches the maximum iteration
T , or the shard does not change (line 16 - line 17).

Algorithm 3.1 BLPA Algorithm
Input: The set of all nodes V, adjacency matrix A, number of shards k,

maximum number of nodes in each shard δ; maximum iteration T ;
Output: Shards C = {C1,C2, · · · ,Ck};

1 Initialization:
2 Randomly allocate all nodes into k shards and obtain C0 =
{C0

1,C0
2, · · · ,C0

k}, step t = 0;
3 Label Propagation:
4 while True do
5 foreach node u in V do
6 foreach shard Cdst in {Ci|v ∈ Nu, v ∈ Ci} do
7 Store tuple 〈u,Csrc,Cdst, ξ〉 in F;
8 end
9 end

10 Sort F by ξ in descending order and obtain Fs;
11 foreach tuple in Fs do
12 if |Ctdst| < δ then
13 Ctdst ← Ct−1

dst ∪ u;
Ctsrc ← Ct−1

src \ u;
Remove all the remaining tuples containing node u from Fs;

14 end
15 end
16 if t > T or the shard does not change then
17 break;
18 end
19 t← t+ 1;
20 end
21 return Ct.

Algorithm Analysis. The computational complexity of BLPA depends on the size of
the reassignment profile F. Based on its definition, the number of tuples of each node
u in F equals to the number of neighbors of u. Thus, the computational complexity
of BLPA is O(n · dave), where n is the number of nodes, and dave is the average node
degree of the training graph.

36

3.2. BALANCED GRAPH PARTITION

3.2.2 Embedding Clustering Method (Strategy 2)

For Strategy 2, we rely on embedding clustering, which considers both the node
features and the graph structural information for the graph partitioning. To partition
the graph, we first use a pretrained GNN model to obtain all the node embeddings, and
then we perform clustering on the resulting node embeddings.

Embedding Clustering. We can adopt any state-of-the-art GNN models introduced
in Section 2.1.2 to project each node into an embedding space. With respect to
clustering, we rely on the widely used k-means algorithm[79], which consists of three
phases: Initialization, node reassignment, and centroids updating. In the initialization
phase, we randomly sample k centroids, which represent the “center” of each shard. In
the node reassignment phase, each node is assigned to its “nearest” shard in terms of
the Euclidean distance from the centroids. In the centroids updating phase, the new
centroids are recalculated as the average of all the nodes in their corresponding shard.

Similar to the case of the LPA method, directly using k-means can also produce
highly unbalanced shards. In Figure 3.4, we observe that on the Cora dataset, the
largest shard contains 10.24% of the nodes, while the smallest one only contains 1.05%
of the nodes.

Shard ID
0

50

100

150

N
um

b
er

of
N

od
es

Figure 3.4: Distribution of shard sizes with classical k-means.

Balanced Embedding k-means (BEKM). Following the same principle for achieving
a balanced partition, we propose BEKM as shown in Algorithm 3.2. We define the
preference as the Euclidean distance between the node embedding and the centroid
of the shard for all the node-shard pairs. A shorter distance implies a higher priority.
BEKM takes as input the set of all node embeddings H = {H1, H2, · · · , Hn}, the number
of desired shards k, the maximum number of node embeddings in each shard δ, the
maximum number of iterations T , and works in four steps as follows:

37

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

• Step 1: Initialization. We first randomly select k centroids C0 = {C0
1 , C

0
2 , · · · , C0

k}
(line 2).

• Step 2: Embedding-Centroid Distance Calculation. Then, we calculate all
the pairwise distances between the node embeddings and the centroids, which results
in n× k embedding-centroid pairs. These pairs are stored in F (line 5 - line 7).

• Step 3: Embedding-Centroid Distance Sorting. We rely on the intuition that
the embedding-centroid pairs with closer distance have higher priorities; thus, we sort
F in ascending order and obtain Fs (line 10).

• Step 4: Node Reassignment and Centroid Updating. For each embedding-
centroid pair in Fs, if the size of Cj is smaller than δ, we assign node u to shard Cj
(line 11 - line 18). After that, we remove all the remaining tuples containing node i
from Fs. Finally, the new centroids are calculated as the average of all the nodes in
their corresponding shards.

The BEKM algorithm repeats steps 2-4 until the algorithm reaches the maximum
iteration T , or the centroid does not change (line 20 - line 21).

Algorithm Analysis. Similar to BLPA, the computational complexity of BEKM
depends on the size of F. Since there are n nodes and k shards, the computational
complexity of BEKM is O(k · n). We empirically validate the convergence performance
of BEKM in Section 3.2.3.

The node embeddings from the pretrained model are only used to define the partition
of the graph but are not used in any stage of training and unlearning GNN models for
each shard. The goal of unlearning is to unlearn nodes/edges’ impact on the target GNN
model. Thus, once the partition is defined, we keep it fixed. In this sense, once a node
is removed, its influence is completely removed from the target GNN. In Section 3.5.5,
we evaluate multiple unlearning iterations with a fixed partition and show the stability
of graph partition methods.

Remarks. The choice between BLPA and BEKM depends on the GNN structure. In
Section 3.5.2.2, we provide a guideline on which one to choose.

In addition, we emphasize that GraphEraser is a general framework for graph un-
learning, and any other balanced graph partition methods can be plugged into it. In
Section 3.5.3.3, we empirically compare our proposed BLPA and BEKM with several
existing representative balanced graph partition methods and show that our proposed
methods are either more computationally efficient or better performing.

38

3.2. BALANCED GRAPH PARTITION

Algorithm 3.2 BEKM Algorithm
Input: Node embeddings H = {H1, H2, · · · , Hn}, the number of clusters k,

maximum number of nodes embedding in each cluster δ; maximum
number of iteration T ;

Output: Clusters C = {C1,C2, · · · ,Ck};
1 Initialization:
2 Randomly select k centroids C0 = {C0

1 , C
0
2 , · · · , C0

k}, step t = 0;
3 while True do
4 Nodes Reassignment:
5 foreach node embedding i ∈ H do
6 foreach centroid j ∈ C do
7 Store ||Hi − Cj ||2 in F;
8 end
9 end

10 Sort F in ascending order and obtain Fs.
11 foreach node i and centroid j in Fs do
12 if |Ctj | < δ then
13 Ctj ← Ctj ∪ i;

Remove all the remaining tuples containing node i from Fs;
14 end
15 end
16 Centroids Updating:
17 foreach cluster j ∈ Ct do

18 Ctj =
∑

i∈Ct
j
Hi

|Ct
j |

;
19 end
20 if t > T or the centroid do not change then
21 break;
22 end
23 t← t+ 1;
24 end
25 return Ct.

3.2.3 Convergence Analysis

It is difficult to theoretically prove the convergence of both BLPA and BEKM. Instead,
we conduct empirical experiments to validate the convergence performance of both
algorithms. An algorithm converges when the nodes of different shards between two
consecutive iterations do not move. Figure 3.5 illustrates the ratio of moved nodes
between different shards in each iteration. The experimental results show that the ratio
of moved nodes gradually approximates zero within 30 iterations for both algorithms
on all five datasets. Therefore, we set the number of iterations T to 30 for all our

39

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

experiments.

0 5 10 15 20 25 30
Number of Iterations

0.0
0.2
0.4
0.6
0.8
1.0
1.2

R
at

io
 o

f M
ov

ed
 N

od
es Cora

Citeseer

Pubmed

CS

Physics

(a) BLPA

0 3 6 9 12 15 18
Number of Iterations

0.0
0.2
0.4
0.6
0.8
1.0
1.2

R
at

io
 o

f M
ov

ed
 N

od
es Cora

Citeseer

Pubmed

CS

Physics

(b) BEKM

Figure 3.5: Convergence evaluation of GraphEraser-BLPA and GraphEraser-BEKM on
five datasets.

3.3 Learning-based Aggregation (LBAggr)

Our Proposal. In this section, we propose a learning-based aggregation method
LBAggr. We assign an importance score to each shard model, which can be learned
based on the following loss function.

min
α

E
w∈Go

[
L
(

m∑
i=0

αi · Mi(Fw,Nw), y
)]

+ λ
m∑
i=0
||αi|| (3.1)

where Fw and Nw are the feature vector and neighborhood of a node w from the training
graph, y is the true label of w,Mi(·) represents shard model i, αi is the importance
score forMi(·), and m is the total number of shards. We regulate the summation of

40

3.4. PUTTING THINGS TOGETHER: GRAPHERASER

all importance scores to 1. Further, L represents the loss function and we adopt the
standard cross-entropy loss. The regularization term || · || is used to reduce overfitting.

Solving the Optimization Problem. We can run gradient descent to find the
optimal α to solve the optimization problem. However, directly running gradient descent
can result in negative values in α. To address this issue, after each gradient descent
iteration, we map the negative importance score back to 0. The mapping of the negative
importance scores to 0 follows the general idea of projected gradient descent (PGD) [16].
In addition, the summation of the importance scores could deviate from 1. We first
tried to normalize the importance score using the summation of current scores in each
iteration; however, we empirically found that the loss could be extremely unstable across
different epochs. Thus, we instead use the SoftMax function for normalization in each
iteration.

Importance Scores Unlearning. Note that the nodes that learn the optimal im-
portance scores can also be revoked by their data subjects. Therefore, we need to
relearn the shard importance scores if a request-to-unlearn node is used to train the
LBAggr, and this learning time is counted as part of the unlearning time. To reduce
this relearning time, we propose to use only a small random subset of nodes from the
training graph to relearn. We empirically show in Section 3.5.2.3 that using only 10%
of the nodes in the training graph can achieve comparable utility as using all nodes.
In this sense, relearning the optimal shard importance scores is unnecessary when the
unlearned nodes are not used to train the LBAggr.

3.4 Putting Things Together: GraphEraser

Algorithm 3.3 illustrates the overall workflow of GraphEraser. It takes as input the
training graph G0, the GNN model type f , and all necessary parameters for Algorithm 3.1
and Algorithm 3.2 (k, δ, and T). If f is a GCN, we invoke Algorithm 3.1 to partition G0;
otherwise, we use Algorithm 3.2 (line 1 - line 6). We then use the partitioned graph Gs
to train a set of shard modelsM (line 8). Finally, we randomly sample a set of nodes
V0 from G0 to train the importance scores α for each shard model. The shard models
and importance scores produced by GraphEraser can be used to predict the label of new
samples. When the data owner revokes some nodes or edges, we only need to retrain
the corresponding shard model.

41

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

Algorithm 3.3 GraphEraser
Input: Training graph G0, GNN model type f , number of shards k, maxi-

mum number of nodes in each shard δ, maximum iteration T ;
Output: Shard models M = {M1,M2, · · · ,Mk}, importance scores

α = {α1, α2, · · ·αk};
1 Graph Partition:
2 if the GNN model type f is GCN: then
3 Partitioning G0 into k shards with Algorithm 3.1 and obtain Gs =

{G1
s ,G2

s , · · · ,Gks };
4 end
5 else
6 Partitioning G0 into k shards with Algorithm 3.2 and obtain Gs =

{G1
s ,G2

s , · · · ,Gks };
7 end
8 Shard Model Training:
9 Using Gs to train shard modelsM = {M1,M2, · · · ,Mk};

10 Importance Scores Learning:
11 Randomly sampling a set of nodes V0 from G0;
12 Replacing G0 in Equation 3.1 with V0 and train α;
13 returnM, α.

3.5 Evaluation

In this section, we evaluate the overall performance including unlearning efficiency,
model utility, and the superiority of our proposed learning-based aggregation method
LBAggr in Section 3.5.2. Second, to gain a better understanding of the uniqueness of
graph data and its impacts on unlearning, we investigate the correlation between the
properties of the shard models and the importance scores resulting from LBAggr and
the impact of graph structure in a more controllable manner. We also examine the
state-of-the-art balanced graph partition methods that come from three groups and
compare them with our balanced graph partition methods in terms of running time and
model utility Section 3.5.3. Third, we conduct ablation studies to show the impact of k
and δ on the unlearning efficiency and model utility in Section 3.5.4. Four, we show
the robustness of GraphEraser to the number of unlearned nodes/edges in Section 3.5.5.
Finally, we launch a membership inference attack to examine the unlearning power of
GraphEraser in Section 3.5.6.

42

3.5. EVALUATION

3.5.1 Experimental Setup

Datasets. We conduct our experiments on five public graph datasets, including Cora,
Citeseer, Pubmed [181], CS [139], and Physics [139]. These datasets are widely used
as benchmark datasets for evaluating the performance of GNN models [82, 144, 193].
Table 3.1 summarizes the statistics of all the datasets.

Table 3.1: Dataset statistics for evaluating the performance of GraphEraser.

Dataset Category #. Nodes #. Edges #. Classes #. Features

Cora Citation 2,708 5,429 7 1,433
Citeseer Citation 3,327 4,732 6 3,703
Pubmed Citation 19,717 44,338 3 500

CS Coauthor 18,333 163,788 15 6805
Physics Coauthor 34,493 495,924 5 8415

For the datasets in Table 3.1, Cora, Citeseer, and Pubmed are citation datasets,
where the nodes represent the publications, and there is an edge between two publications
if one cites the other. The node features are binary vectors indicating the presence of
the keywords from a dictionary, and the class labels represent the publications’ research
field. CS and Physics are coauthor datasets, where two authors are connected if they
collaborate on at least one paper. The node features represent paper keywords for each
author’s papers, and the class labels indicate the most active fields of study for each
author.

GNN Models. We evaluate the efficiency and utility of GraphEraser on four state-of-
the-art GNN models, including SAGE, GCN, GAT, and GIN (discussed in Section 2.1.2).
For each GNN model, we stack two layers of GNN modules. All the models are
implemented with the PyTorch Geometric1 library. All the GNN models (including the
shard models) considered in this chapter are trained for 100 epochs. We use the Adam
optimizer and set the default learning rate to 0.01 with 0.001 weight decay.

Metrics. In the design of GraphEraser, we mainly consider two aspects of performance,
unlearning efficiency and model utility.

• Unlearning Efficiency. Directly measuring the unlearning time for one unlearning
request is inaccurate due to the diversity of shards. Thus, we calculate the average
unlearning time for 100 independent unlearning requests. Concretely, we randomly
1https://github.com/rusty1s/pytorch_geometric

43

https://github.com/rusty1s/pytorch_geometric

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

sample 100 nodes/edges from the training graph, record the retraining time of their
corresponding shard models, and calculate the average retraining time.

• Model Utility. We use the Micro F1 score to measure the model utility, which
is widely used to evaluate the prediction ability of GNN models on multi-class
classification [57]. The F1 score is a harmonic mean of precision and recall and can
provide a better measure of the incorrectly classified cases than the accuracy metric.

Competitors. We have two natural baselines in our experiments: The training from
scratch method (which is referred to as Scratch) and the random method (which is
based on partitioning the training graph randomly relying on Strategy 0, and we refer it
to as Random). The Scratch method can achieve good model utility, but its unlearning
efficiency is low. On the other hand, the Random method can achieve high unlearning
efficiency but suffers from poor model utility.

We implement community detection and embedding clustering-based graph partition
methods in Section 3.2 for GraphEraser. For presentation purposes, we refer to them as
GraphEraser-BLPA and GraphEraser-BEKM, respectively.

3.5.2 Overall Performance

3.5.2.1 Evaluation of Unlearning Efficiency

In this section, we evaluate the unlearning efficiency of different graph unlearning
methods on five datasets and four GNN models.

Setup. The default graph partition setting is based on the size of the original datasets,
and we ensure each shard is trained on a reasonable number of nodes and edges.
Specifically, we partition Cora, Citeseer, Pubmed, CS, and Physics into 20, 20, 50, 50,
and 100 shards, respectively. Figure 3.6 illustrates the node/edge unlearning efficiency
for different graph unlearning methods. We randomly unlearn 5% of the nodes in the
training graph and report the time cost. For the shard-based unlearning methods, i.e.,
Random, GraphEraser-BLPA, and GraphEraser-BEKM, each unlearning request time cost
consists of two parts: Retraining the shard models and relearning the importance scores
of LBAggr. As discussed in Section 3.3, we only use a small portion of nodes in the
training graph to learn the importance scores. The average relearning time of LBAggr
on all datasets is shown in the last column of Table 3.2. The results show that the
relearning time is less than 30 seconds for most of the datasets, which is negligible
compared to retraining the shard models.

44

3.5. EVALUATION

GAT GIN GCN SAGE0

10

20

30

40

U
nl

ea
rn

in
g

T
im

e
(s

)

Cora

GAT GIN GCN SAGE0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Citeseer

GAT GIN GCN SAGE0

50

100

150

200

250

300

350
Pubmed

GAT GIN GCN SAGE0

100

200

300

400

500
CS

GAT GIN GCN SAGE0

100

200

300

400

500

600

Physics

Scratch Random BLPA BEKM

(a) Node Unlearning

GAT GIN GCN SAGE0

5

10

15

20

25

30

35

40

U
nl

ea
rn

in
g

T
im

e
(s

)

Cora

GAT GIN GCN SAGE0
2
4
6
8

10
12
14
16

Citeseer

GAT GIN GCN SAGE0

50

100

150

200

250

300
Pubmed

GAT GIN GCN SAGE0
50

100
150
200
250
300
350
400

CS

GAT GIN GCN SAGE0

100

200

300

400

500

Physics

Scratch Random BLPA BEKM

(b) Edge Unlearning

Figure 3.6: Evaluation of the node/edge unlearning efficiency.

Results. We observe that the shard-based unlearning methods can significantly improve
the unlearning efficiency compared to the Scratch method. For all four GNN models, we
observe a similar time efficiency improvement level. In addition, the relative efficiency
improvement of larger datasets (Pubmed, CS, and Physics) is more significant than that
of smaller datasets (Cora and Citeseer). For instance, the unlearning time improvement
is 4.16× for the Cora dataset, 3.08× for the Citeseer dataset, 5.40× for the Pubmed
dataset, 19.25× for the CS dataset, and 35.9× for the Physics datasets. This is expected.
From the Scratch method perspective, training a large graph can cost a large amount of
time. From the shard-based methods perspective, we can tolerate more shards for larger
graphs while preserving model utility. Comparing different shard-based methods, we
observe that GraphEraser-BLPA and GraphEraser-BEKM have similar unlearning time as
Random. This is made possible by our approach for achieving a balanced partition with
BLPA and BEKM (see Section 3.2).

Additional Cost Analysis. Besides the unlearning cost, there are two additional
costs in the GraphEraser framework: Graph partition cost and prediction cost. Table 3.2
illustrates these costs on five datasets. We observe that the graph partition costs of
BLPA and BEKM are higher than Random. This is expected since both BLPA and BEKM
need to iterate multiple times to preserve the structural information. Once the graph
partition is done, we keep it fixed without redoing the graph partition. In this sense, we

45

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

Table 3.2: Computational costs of the GraphEraser framework on five datasets. We
report the prediction cost and the relearning cost of LBAggr for BEKM.

Graph Partition Cost Prediction Cost Learn Cost of
Dataset Random BLPA BEKM Scratch Shard LBAggr

Cora 0.8s 3s 26s 0.002s 0.003s 1.3s
Citeseer 0.5s 2s 20s 0.003s 0.004s 1.5s
Pubmed 1s 20s 240s 0.004s 0.008s 19s

CS 1s 13s 220s 0.004s 0.009s 25s
Physics 1s 40s 480s 0.005s 0.021s 33s

can tolerate this cost since it is only executed once. We further show in Section 3.5.5
that using a fixed partition does not result in noticeable model utility degradation for
GraphEraser.

For the prediction cost, the shard-based methods are slightly more time-consuming
compared to the Scratch method since we need to obtain the prediction from all shard
models and aggregate them. Fortunately, the prediction cost is negligible since most of
their values are smaller than 0.01 seconds.

3.5.2.2 Evaluation of Model Utility

Next, we evaluate the model utility of different graph unlearning methods. Table 3.3
(the red ground columns) shows the experimental results for node unlearning. For a fair
comparison, we also apply LBAggr for Random.

Influence of Datasets. We first observe that on the Cora and Citeseer datasets, our
proposed method, GraphEraser-BEKM and GraphEraser-BLPA, can achieve a much better
F1 score compared to the Random method. For instance, on the GCN model trained on
the Cora dataset, the F1 score for GraphEraser-BLPA is 0.676, while the corresponding
result is 0.509 for Random. For the Pubmed, CS, and Physics datasets, the F1 score
of the Random method is comparable to GraphEraser-BEKM and GraphEraser-BLPA,
and can even achieve a similar F1 score as the Scratch method in some settings. We
conjecture this is due to the different contributions of the graph structural information
to the utility of GNN models. Intuitively, if the graph structural information does not
contribute much to the GNN models, it is unsurprising that the Random method can
achieve comparable model utility as GraphEraser-BLPA and GraphEraser-BEKM.

To validate whether the graph structural information indeed diversely affects the
GNN models’ performance among different datasets, we introduce a baseline that uses

46

3.5. EVALUATION

Table 3.3: Comparison of F1 scores for unlearning methods and different aggregation
methods.

Dataset/ Scratch Random GraphEraser-BLPA GraphEraser-BEKM
Model MeanAggr MajAggr LBAggr MeanAggr MajAggr LBAggr MeanAggr MajAggr LBAggr

GAT 0.823 ± 0.006 0.649 ± 0.006 0.638 ± 0.010 0.706 ± 0.004 0.356 ± 0.005 0.492 ± 0.009 0.727 ± 0.009 0.672 ± 0.004 0.669 ± 0.012 0.754 ± 0.009
GCN 0.739 ± 0.003 0.337 ± 0.006 0.188 ± 0.004 0.509 ± 0.009 0.590 ± 0.008 0.319 ± 0.007 0.676 ± 0.004 0.390 ± 0.011 0.247 ± 0.012 0.493 ± 0.006
GIN 0.787 ± 0.013 0.760 ± 0.030 0.702 ± 0.033 0.736 ± 0.021 0.681 ± 0.039 0.594 ± 0.028 0.753 ± 0.015 0.758 ± 0.016 0.742 ± 0.031 0.801 ± 0.018C

or
a

SAGE 0.824 ± 0.004 0.583 ± 0.009 0.572 ± 0.012 0.682 ± 0.013 0.354 ± 0.008 0.486 ± 0.012 0.684 ± 0.014 0.673 ± 0.008 0.646 ± 0.010 0.740 ± 0.013

GAT 0.691 ± 0.015 0.502 ± 0.012 0.507 ± 0.016 0.631 ± 0.015 0.504 ± 0.010 0.486 ± 0.009 0.676 ± 0.004 0.744 ± 0.007 0.712 ± 0.010 0.746 ± 0.006
GCN 0.493 ± 0.006 0.263 ± 0.014 0.157 ± 0.011 0.277 ± 0.009 0.372 ± 0.006 0.192 ± 0.006 0.450 ± 0.006 0.298 ± 0.005 0.129 ± 0.007 0.332 ± 0.006
GIN 0.587 ± 0.031 0.611 ± 0.028 0.540 ± 0.056 0.626 ± 0.022 0.451 ± 0.062 0.447 ± 0.032 0.612 ± 0.026 0.725 ± 0.016 0.696 ± 0.014 0.739 ± 0.020

C
it
es
ee
r

SAGE 0.668 ± 0.013 0.519 ± 0.024 0.536 ± 0.026 0.623 ± 0.014 0.447 ± 0.007 0.472 ± 0.024 0.657 ± 0.012 0.708 ± 0.003 0.710 ± 0.007 0.716 ± 0.007

GAT 0.851 ± 0.004 0.852 ± 0.001 0.851 ± 0.002 0.857 ± 0.002 0.843 ± 0.002 0.840 ± 0.002 0.858 ± 0.003 0.853 ± 0.001 0.852 ± 0.001 0.860 ± 0.003
GCN 0.748 ± 0.017 0.484 ± 0.004 0.207 ± 0.000 0.551 ± 0.005 0.644 ± 0.004 0.423 ± 0.011 0.718 ± 0.010 0.353 ± 0.003 0.207 ± 0.000 0.482 ± 0.003
GIN 0.837 ± 0.015 0.854 ± 0.003 0.852 ± 0.003 0.856 ± 0.003 0.849 ± 0.002 0.843 ± 0.002 0.855 ± 0.004 0.859 ± 0.002 0.851 ± 0.010 0.859 ± 0.003

P
ub

m
ed

SAGE 0.874 ± 0.003 0.854 ± 0.002 0.852 ± 0.003 0.857 ± 0.002 0.841 ± 0.003 0.836 ± 0.003 0.863 ± 0.002 0.854 ± 0.002 0.852 ± 0.002 0.862 ± 0.002

GAT 0.919 ± 0.004 0.880 ± 0.001 0.877 ± 0.001 0.882 ± 0.000 0.664 ± 0.015 0.662 ± 0.009 0.858 ± 0.004 0.885 ± 0.001 0.882 ± 0.003 0.906 ± 0.002
GCN 0.903 ± 0.006 0.644 ± 0.002 0.528 ± 0.001 0.706 ± 0.008 0.658 ± 0.004 0.440 ± 0.003 0.750 ± 0.023 0.620 ± 0.003 0.502 ± 0.003 0.812 ± 0.012
GIN 0.867 ± 0.005 0.856 ± 0.006 0.839 ± 0.004 0.858 ± 0.005 0.655 ± 0.024 0.691 ± 0.011 0.789 ± 0.013 0.857 ± 0.005 0.844 ± 0.005 0.891 ± 0.002C

S

SAGE 0.932 ± 0.004 0.896 ± 0.005 0.896 ± 0.003 0.905 ± 0.004 0.745 ± 0.009 0.679 ± 0.003 0.886 ± 0.010 0.904 ± 0.007 0.903 ± 0.001 0.927 ± 0.002

GAT 0.955 ± 0.005 0.917 ± 0.001 0.915 ± 0.001 0.920 ± 0.002 0.871 ± 0.032 0.858 ± 0.044 0.921 ± 0.004 0.920 ± 0.001 0.917 ± 0.000 0.925 ± 0.001
GCN 0.947 ± 0.002 0.597 ± 0.001 0.533 ± 0.001 0.747 ± 0.010 0.817 ± 0.003 0.770 ± 0.001 0.858 ± 0.008 0.575 ± 0.003 0.506 ± 0.001 0.815 ± 0.001
GIN 0.934 ± 0.003 0.903 ± 0.002 0.916 ± 0.001 0.921 ± 0.002 0.842 ± 0.009 0.840 ± 0.006 0.907 ± 0.003 0.924 ± 0.002 0.919 ± 0.001 0.926 ± 0.001

P
hy

si
cs

SAGE 0.956 ± 0.005 0.712 ± 0.003 0.717 ± 0.002 0.823 ± 0.011 0.905 ± 0.003 0.894 ± 0.003 0.922 ± 0.001 0.926 ± 0.003 0.924 ± 0.002 0.933 ± 0.001

a 3-layer MLP (multi-layer perceptron) to train the prediction models for all datasets.
Note that we only use the node features to train the MLP model without considering
any graph structural information. Table 3.4 depicts the comparison of the F1 scores
between the MLP model and four GNN models on five datasets. We observe that for
the Cora and Citeseer datasets, the F1 score of the MLP model is significantly lower
than that of the GNN models, which means the graph structural information plays a
major role in the GNN models. On the other hand, the MLP model can achieve an
adequate F1 score compared to the GNN models on Pubmed, CS, and Physics datasets,
which means the graph structural information does not contribute much to the GNN
models.

Table 3.4: Comparison of F1 scores for MLP and four GNN models. A larger gap in F1
scores for MLP and GNN models means that the graph structural information is more
important for the GNN models.

Model Cora Citeseer Pubmed CS Physics

MLP 0.657 ± 0.019 0.587 ± 0.029 0.868 ± 0.002 0.927 ± 0.007 0.950 ± 0.003

GAT 0.823 ± 0.006 0.691 ± 0.015 0.851 ± 0.004 0.919 ± 0.004 0.955 ± 0.005
GCN 0.739 ± 0.003 0.493 ± 0.006 0.748 ± 0.017 0.903 ± 0.006 0.947 ± 0.002
GIN 0.787 ± 0.013 0.587 ± 0.031 0.837 ± 0.015 0.867 ± 0.005 0.934 ± 0.003
SAGE 0.824 ± 0.004 0.668 ± 0.013 0.874 ± 0.003 0.932 ± 0.004 0.956 ± 0.005

In conclusion, the contribution of the graph structural information to the GNN

47

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

model can significantly affect the behaviors of different shard-based graph unlearning
methods. To better illustrate the correlation between the importance of the graph
structure and the utility improvement over Random, we conduct an ablation study in
Section 3.5.4.

Guideline for Choosing an Unlearning Method. In practice, we suggest the
model provider evaluate the role of graph structure before choosing a proper graph
unlearning method. To this end, they can first compare the F1 score of MLP and GNN.
If the gap in the F1 score between MLP and GNN is small, the Random method can be
a good choice since it is much easier to implement, and it can achieve comparable model
utility as GraphEraser-BLPA and GraphEraser-BEKM. Otherwise, GraphEraser-BLPA and
GraphEraser-BEKM are better choices due to better model utility.

Regarding the choice between the two shard partition methods, i.e., GraphEraser-
BLPA and GraphEraser-BEKM, we empirically observe that if the GNN follows the GCN
structure, one can choose GraphEraser-BLPA; otherwise, one can adopt GraphEraser-
BEKM. We posit this is because the GCN model requires the node degree information
for normalization (see Section 2.1.2), and the GraphEraser-BLPA can preserve more local
structural information thus better preserve the node degree [168].

Comparison with Scratch. Interestingly, we could observe that GraphEraser-BEKM
performs slightly better than Scratch in some cases. For instance, the F1 score of
GraphEraser-BEKM is 0.801 on the Cora dataset and the GIN model, while the corre-
sponding F1 score of Scratch is 0.787. There are two possible reasons for this phenomenon.
First, sampling often can eliminate some “noise” in the dataset, which is consistent
with the observation of prior studies [186, 35]. Second, GraphEraser makes the final
prediction by aggregating all submodels’ results. In this sense, GraphEraser performs an
ensemble which is another way to improve model performance.

Considering the conclusions for node unlearning and edge unlearning are similar in
terms of both unlearning efficiency and model utility, we only provide the results for
node unlearning in the following parts.

3.5.2.3 Effectiveness of LBAggr

To validate the effectiveness of the LBAggr method proposed in Section 3.3, we compare
with MeanAggr and MajAggr by conducting experiments on five datasets and four GNN
models. Table 3.3 illustrates the F1 scores of different aggregation methods for Scratch,
GraphEraser-BLPA, and GraphEraser-BEKM. Note that the Scratch method does not

48

3.5. EVALUATION

need aggregation. We highlight the Scratch method in the green ground and our
proposed methods in the red . For each graph partition strategy, we highlight the best
value in bold. And for each GNN model, we highlight the best value in blue bold.
We omit the results of edge unlearning due to similar conclusions.

Observations. In general, LBAggr can effectively improve the F1 score in most
cases compared to MeanAggr and MajAggr. For instance, on the Cora dataset with
GraphEraser-BLPA unlearning method, LBAggr achieves 0.357 higher F1 score than that
of MajAggr for the GCN model. We also observe that the MajAggr method performs
the worst in most cases. We posit it is because MajAggr neglects information of the
posteriors obtained from each shard model. Concretely, if the posteriors of the shard
models have high confidence in multiple classes rather than a single class, the MajAggr
method will lose information about the runner-up classes, leading to bad model utility.

Comparing different GNN models, GCN benefits the most while GIN benefits the
least from LBAggr. In terms of model utility, the GraphEraser-BLPA method benefits
the most from LBAggr. We conjecture this is because the BLPA partition method
can capture the local structural information while losing some of the global structural
information of the training graph [143, 168]. Using LBAggr helps better capture the
global structural information by assigning different importance scores to shard models.

Table 3.5: Impact of the number of training nodes for learning LBAggr.

Model #. Nodes Cora Citeseer Pubmed CS Physics

10% 0.70 ± 0.02 0.71 ± 0.01 0.86 ± 0.00 0.91 ± 0.00 0.93 ± 0.00
1000 0.73 ± 0.01 0.72 ± 0.02 0.86 ± 0.00 0.91 ± 0.01 0.93 ± 0.00GAT
All 0.74 ± 0.00 0.72 ± 0.00 0.86 ± 0.00 0.91 ± 0.00 0.93 ± 0.00

10% 0.44 ± 0.00 0.31 ± 0.01 0.48 ± 0.00 0.81 ± 0.00 0.82 ± 0.00
1000 0.49 ± 0.01 0.31 ± 0.02 0.47 ± 0.01 0.81 ± 0.00 0.80 ± 0.00GCN
All 0.50 ± 0.00 0.32 ± 0.03 0.48 ± 0.00 0.82 ± 0.01 0.81 ± 0.01

10% 0.70 ± 0.00 0.72 ± 0.00 0.86 ± 0.00 0.88 ± 0.00 0.93 ± 0.00
1000 0.72 ± 0.02 0.73 ± 0.02 0.86 ± 0.00 0.89 ± 0.00 0.91 ± 0.03GIN
All 0.76 ± 0.00 0.71 ± 0.00 0.86 ± 0.00 0.89 ± 0.00 0.93 ± 0.00

10% 0.71 ± 0.01 0.70 ± 0.00 0.87 ± 0.00 0.93 ± 0.00 0.94 ± 0.00
1000 0.73 ± 0.03 0.71 ± 0.00 0.87 ± 0.00 0.92 ± 0.00 0.93 ± 0.01SAGE
All 0.74 ± 0.00 0.72 ± 0.00 0.87 ± 0.00 0.92 ± 0.00 0.94 ± 0.00

Impact of the Number of Training Nodes. As discussed in Section 3.3, to further
improve the unlearning efficiency, one can use a small portion of nodes in the training
graph to learn the importance score. Doing this can effectively reduce the relearning time
of LBAggr, as shown in Section 3.5.2.1. Here we evaluate its impact on the model utility.

49

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

We experiment on three different cases: randomly sample 10% of nodes, randomly
sample a fixed number of 1,000 nodes and use all nodes in the training graph.

Table 3.5 illustrates the results on five datasets and four GNN models for GraphEraser-
BEKM. We observe that both using 10% of nodes and using a fixed number of 1,000
nodes can achieve comparable model utility as that of using all nodes. In practice,
we suggest the model provider adopt the minimum of 10% and 1, 000 to learn the
importance scores. In other words, the model provider can use 10% for small graphs
and 1, 000 for large graphs. The conclusions are the same for GraphEraser-BLPA.

3.5.3 Gaining a Deeper Understanding

3.5.3.1 Correlation between Importance Scores and Shard Properties

To support the evidence of the effectiveness of LBAggr in Section 3.5.2.3, we next
investigate the influence of a shard’s properties on its importance score determined by
the LBAggr method. Figure 3.7 depicts the correlation between each shard’s F1 score

0.30 0.35 0.40 0.45 0.50 0.55 0.60
Shard Model F1 Score

0.00

0.05

0.10

0.15

0.20

0.25

Im
po

rt
an

ce
 S

co
re

(a) GraphEraser-BLPA

0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66
Shard Model F1 Score

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Im
po

rt
an

ce
 S

co
re

(b) GraphEraser-BEKM

Figure 3.7: Correlation between the importance score of a shard model and its F1 score
on the Cora dataset.

and its importance score. The x-axis stands for the shard model’s F1 score, and the
y-axis stands for the importance score of that shard. We report the results of the GAT
model with GraphEraser-BLPA and GraphEraser-BEKM unlearning methods. Generally,
shard models with more accurate predictions are assigned more significant importance
scores. This demonstrates that LBAggr guides GraphEraser to choose the shards with
the highest prediction capability.

We further investigate whether each shard’s graph properties influence its importance
score. To this end, we extract each shard’s embedding by averaging all its nodes’
embeddings obtained from the pretrained GNN model and project the shard embedding

50

3.5. EVALUATION

into a two-dimensional space using t-distributed stochastic neighbor embedding (t-
SNE) [99]. The results are plotted in Figure 3.8. Each circle represents the mean node

0.017
0.024

0.094

0.000 0.224

0.000

0.261

0.028

0.039 0.058

0.000

0.016

0.140

0.019

0.000 0.000

0.000

0.000

0.078

(a) GraphEraser-BLPA

0.073

0.000

0.000

0.192
0.000

0.000 0.289

0.0000.000

0.000

0.010
0.016

0.271

0.055 0.000

0.000

0.049

0.046
0.000

(b) GraphEraser-BEKM

Figure 3.8: The t-SNE plot of shard embeddings for the Cora dataset.

embeddings of a shard, where the circle size is proportional to its importance score in
annotations. As we can see, shards with more significant importance scores are typically
accompanied by shards with more miniature importance scores. This implies that for
shards trained on similar graphs (similar shard embeddings in the two-dimensional
space), our learning-based aggregation assigns a higher score to one of them. In another
way, it also learns to discard redundant information to improve utility.

3.5.3.2 Role of Graph Structure

To better illustrate the correlation between the importance of the graph structure and
the utility improvement of GraphEraser over Random (SISA), we performed another
experiment on Cora and Citeseer. Concretely, we delete different fractions of edges
from the training graph to model the significance of the graph structure and then

51

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

compare the performance gap between GraphEraser and Random. Figure 3.9 illustrates
the experimental results. We vary the ratio of deleted edges (as shown in the x-axis)
from 0% to 90% with a step of 10%. A higher deletion ratio reduces graph structure
information. And the y-axis represents the utility improvement of GraphEraser over
Random. Although there are some outliers, the overall trend (measured by the Pearson
correlation score above each sub-figure) shows that when the graph structure is more
important, the utility improvement of GraphEraser over Random is more significant in
most of the cases.

0.
0

0.
2

0.
4

0.
6

0.
8

Ratio of Deleted Edges

0.
02

0.
04

U
ti

lit
y

Im
pr

ov
em

en
t

ov
er

R
an

do
m

GAT (r=-0.711)

0.
0

0.
2

0.
4

0.
6

0.
8

Ratio of Deleted Edges

0.
1

0.
2

0.
3

GCN (r=-0.852)

0.
0

0.
2

0.
4

0.
6

0.
8

Ratio of Deleted Edges

0.
04

0.
06

GIN (r=-0.795)

0.
0

0.
2

0.
4

0.
6

0.
8

Ratio of Deleted Edges

0.
06

0

0.
06

5

0.
07

0

SAGE (r=-0.692)

(a) Cora

0.
0

0.
2

0.
4

0.
6

0.
8

Ratio of Deleted Edges

0.
08

5

0.
09

0

0.
09

5

U
ti

lit
y

Im
pr

ov
em

en
t

ov
er

R
an

do
m

GAT (r=-0.734)

0.
0

0.
2

0.
4

0.
6

0.
8

Ratio of Deleted Edges

0.
05

0.
10

0.
15

GCN (r=-0.921)

0.
0

0.
2

0.
4

0.
6

0.
8

Ratio of Deleted Edges

0.
08

0.
10

GIN (r=-0.902)

0.
0

0.
2

0.
4

0.
6

0.
8

Ratio of Deleted Edges

0.
10

0.
11

0.
12

SAGE (r=-0.765)

(b) Citeseer

Figure 3.9: Correlation between the importance of the graph structure (larger ratio of
edge deletion indicates graph structure is less important) and the utility improvement
of GraphEraser over Random.

3.5.3.3 Comparison with Existing Balanced Graph Partition Solutions

In this section, we empirically compare GraphEraser with existing solutions for balanced
graph partitioning [163, 87, 100] regarding running time and model utility.

Balanced Graph Partitioning. As discussed in Section 3.5.3.3, the existing balanced
graph partitioning algorithms can be broadly classified into three categories. The first
two categories adopt Strategy 1 in Section 3.2 that only considers graph structural
information. The third category adopts Strategy 2 in Section 3.2 that considers both
graph structural and node feature information.

Recall that in Section 3.2.1, community detection can inherently preserve graph
structural information with the cost of unbalanced partitioning. Thus, the first category
of previous studies aims to modify existing community detection methods to satisfy

52

3.5. EVALUATION

balanced community size constraints. In BLPA-LP [163], the authors formulate the
label propagation process as a linear programming problem to satisfy the community
size constraints.

On the other hand, previous studies in the second category do not rely on community
detection. Instead, they directly partition the graph by optimizing predefined criteria,
such as minimizing the graph cut [142, 38] or maximizing the graph modularity [113, 55].
However, these optimization problems are always NP-hard and cannot be solved exactly;
thus, the researchers proposed many approximate or intuitive algorithms. Spectral
graph partitioning [103, 190] is a widely adopted approach. The general idea is first
to calculate the Laplacian matrix of the graph, then calculate the eigenvectors of the
Laplacian matrix. Each node is mapped to one of the eigenvalues in the second smallest
eigenvector, and the sign of the corresponding eigenvalues defines the graph partition.
One can conduct the spectral graph partitioning method hierarchically to partition the
graph into multiple shards. The main drawback of the spectral methods is they cannot
deal with large-scale graphs. A promising solution for large-scale graph partitioning is
utilizing the multilevel graph partitioning methods. The general idea is first to contract
edges and obtain smaller graphs, then cut the resulting graph, and finally unfold back
to the original graph with some local improvement criterion [14, 16, 72]. Among the
multilevel graph partitioning methods, METIS [80, 87] is a family of the most widely
known techniques and achieves state-of-the-art performance [17].

The general idea of the third category is first to transform the attributed graph
into node embeddings and use balanced clustering methods to cluster the node embed-
dings. In BEKM-Hungarian [100], the authors modify the reassignment step of the
k-means algorithm to achieve balanced clusters. The core idea is to formulate the node
reassignment problem as a matching problem which is approximately solved by the
Hungarian algorithm. In [93], the authors propose to use linear regression to estimate
the class-specific hyperplanes that partition each class of the data point from others. A
soft balanced constraint is enforced to achieve balanced clustering. The drawback of
this method is that we cannot precisely control the cluster size.

Competitors. Existing balanced graph partition algorithms can be broadly classified
into three categories: The first category considers only the graph structural information
and relies on community detection as GraphEraser-BLPA. The second category considers
the graph structural information without relying on community detection. The third
category considers both structural information and node features as GraphEraser-BEKM.
For each category, we choose one most representative method as a competitor, and we

53

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

list the details as follows.

• BLPA-LP [163]. Similar to our proposed GraphEraser-BLPA, this method achieves
a balanced graph partition by constraining the label propagation process. The general
idea is to formulate the label propagation process as a linear programming problem
with 2k(k − 1) variables and 2k2 + nk(k − 1) constraints, where n and k are the
number of nodes and the number of shards, respectively. When the size of the
graph and the number of shards are large, solving the linear programming problem is
time-consuming.

• METIS [87]. The objective of METIS is to obtain a balanced graph partition while
cutting the minimum number of edges. The computational complexity of METIS is
O((n+m) · log k), where m is the number of edges. We implement this method with
official METIS 5.1.02 and a Python wrapper3 for METIS library.

• BEKM-Hungarian [100]. BEKM-Hungarian shares the general idea of our GraphEraser-
BEKM. The main difference is that it has a different mechanism in the node reassign-
ment step for achieving balanced k-means. Concretely, BEKM-Hungarian formulates
the node reassignment step as a matching problem and is approximately solved by
the Hungarian algorithm. The computational complexity of the Hungarian algorithm
is O(n3).

Results. Table 3.6 and Table 3.7 illustrate the model utility and graph partitioning
efficiency for different methods. We apply LBAggr for all the graph partitioning methods
for a fair comparison.

In general, graph partitioning methods rely on both graph structural information and
node features. i.e., GraphEraser-BEKM and BEKM-Hungarian, achieve the best model
utility when the target model is GAT, GIN, and SAGE, which is consistent with the
conclusion of Section 3.5.2.2. Comparing GraphEraser-BEKM and BEKM-Hungarian, we
observe that they achieve similar model utility; however, the computational complexity
of BEKM-Hungarian (O(n3)) is much higher than that of GraphEraser-BEKM (O(k ·n)).
From Table 3.7, we also observe that BEKM-Hungarian is not scalable to large graphs.

When the target model is GCN, the community detection-based methods, i.e.,
GraphEraser-BLPA and BLPA-LP, achieve a better model utility than the minimum-
cut-based method (METIS). We suspect this is because the GCN model requires the

2http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
3https://github.com/inducer/pymetis

54

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://github.com/inducer/pymetis

3.5. EVALUATION

Table 3.6: Comparison of F1 scores for different graph partition methods.

Dataset Model BLPA-based BEKM-based Minimum Edge Cut
D M GraphEraser-BLPA BLPA-LP GraphEraser-BEKM BEKM-Hungarian METIS

GAT 0.727 ± 0.009 0.712 ± 0.006 0.754 ± 0.009 0.740 ± 0.006 0.683 ± 0.007
GCN 0.676 ± 0.004 0.668 ± 0.020 0.531 ± 0.009 0.552 ± 0.005 0.458 ± 0.010
GIN 0.753 ± 0.015 0.722 ± 0.029 0.801 ± 0.018 0.795 ± 0.016 0.703 ± 0.020C

or
a

SAGE 0.684 ± 0.014 0.708 ± 0.002 0.740 ± 0.013 0.739 ± 0.005 0.694 ± 0.008

GAT 0.688 ± 0.005 0.590 ± 0.009 0.738 ± 0.006 0.737 ± 0.003 0.615 ± 0.002
GCN 0.516 ± 0.004 0.504 ± 0.022 0.417 ± 0.018 0.397 ± 0.023 0.457 ± 0.006
GIN 0.597 ± 0.021 0.589 ± 0.041 0.678 ± 0.072 0.655 ± 0.059 0.574 ± 0.064

C
it
es
ee
r

SAGE 0.642 ± 0.005 0.682 ± 0.007 0.743 ± 0.002 0.734 ± 0.002 0.677 ± 0.004

GAT 0.858 ± 0.003 0.857 ± 0.001 0.860 ± 0.003 0.857 ± 0.003 0.841 ± 0.001
GCN 0.718 ± 0.010 0.709 ± 0.004 0.659 ± 0.020 0.628 ± 0.034 0.650 ± 0.018
GIN 0.855 ± 0.004 0.854 ± 0.001 0.859 ± 0.003 0.853 ± 0.001 0.836 ± 0.001

P
ub

m
ed

SAGE 0.863 ± 0.002 0.857 ± 0.003 0.862 ± 0.002 0.858 ± 0.00 0.849 ± 0.003

GAT 0.858 ± 0.004 0.862 ± 0.003 0.906 ± 0.002 0.901 ± 0.003 0.891 ± 0.013
GCN 0.750 ± 0.023 0.745 ± 0.004 0.812 ± 0.012 0.806 ± 0.007 0.782 ± 0.021
GIN 0.789 ± 0.013 0.786 ± 0.003 0.891 ± 0.002 0.883 ± 0.007 0.862 ± 0.002C

S

SAGE 0.886 ± 0.010 0.889 ± 0.023 0.927 ± 0.002 0.922 ± 0.002 0.906 ± 0.004

GAT 0.921 ± 0.004 0.918 ± 0.004 0.925 ± 0.001 0.923 ± 0.001 0.918 ± 0.002
GCN 0.858 ± 0.008 0.856 ± 0.005 0.815 ± 0.001 0.808 ± 0.001 0.810 ± 0.001
GIN 0.907 ± 0.003 0.897 ± 0.011 0.926 ± 0.001 0.923 ± 0.002 0.895 ± 0.003

P
hy

si
cs

SAGE 0.922 ± 0.001 0.913 ± 0.002 0.933 ± 0.001 0.931 ± 0.001 0.911 ± 0.005

node degree information for normalization, and the community detection-based methods
can preserve more local structural information, thus better preserving the node degree.
Comparing GraphEraser-BLPA and BLPA-LP, GraphEraser-BLPA is more efficient than
BLPA-LP (see Table 3.7) while achieving comparable model utility.

Remarks. GraphEraser is a general framework for GNN unlearning; any balanced graph
partitioning method which meets the requirements in Section 3.1.1 can be adopted.
Therefore, we encourage the community to develop more efficient and better-performing
balanced graph partitioning algorithms for graph unlearning.

We generally observe that the graph partitioning methods rely on both graph struc-
tural information and node features. i.e., GraphEraser-BEKM and BEKM-Hungarian,
achieve the best model utility when the target model is GAT, GIN, and SAGE, which
is consistent with the conclusion of Section 3.5.2.2. Comparing GraphEraser-BEKM and
BEKM-Hungarian, we observe that they achieve similar model utility; however, the
computational complexity of BEKM-Hungarian (O(n3)) is much higher than that of
GraphEraser-BEKM (O(k · n)). From Table 3.7, we can see that BEKM-Hungarian is
not scalable to large graphs.

When the target model is GCN, the community detection-based methods, i.e.,

55

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

Table 3.7: Comparison of graph partition efficiency for different balanced graph partition
methods.

Dataset BLPA-based BEKM-based Minimum Edge Cut
D GraphEraser LP GraphEraser Hungarian METIS

Cora 3s 179s 26s 817s 4s
Citeseer 2s 30s 20s 1,309s 3s
Pubmed 20s 301s 240s 174,684s 21s

CS 13s 705s 220s 174,498s 15s
Physics 40s 2,351s 480s 948,790s 58s

GraphEraser-BLPA and BLPA-LP, achieve better model utility than the minimum-cut-
based method (METIS). We suspect this is because the GCN model requires the node
degree information for normalization, and the community detection-based methods can
preserve more local structural information, thus better preserving the node degree. Com-
paring GraphEraser-BLPA and BLPA-LP, GraphEraser-BLPA is more computationally
efficient than BLPA-LP (see Table 3.7) while achieving comparable model utility.

Remarks. GraphEraser is a general framework for GNN unlearning; any balanced graph
partitioning method which meets the requirements in Section 3.1.1 can be considered.
Therefore, we encourage the research community to develop more efficient and better-
performing balanced graph partitioning algorithms for the graph unlearning application.

3.5.4 Hyperparameters

We now evaluate the impact of hyperparameters in the graph partitioning phase with
regard to the performance of GraphEraser.

Number of Shards k. We conduct the experiments on the Physics dataset with
four GNN models. We vary the number of shards from 2 to 100. As suggested in
Section 3.5.2.2, we apply GraphEraser-BEKM for GIN, GAT, and SAGE, and GraphEraser-
BLPA for GCN.

The experimental results in Figure 3.10 show that the average unlearning time cost
decreases when the number of shards increases for all the GNN models. This is expected
since a larger number of shards means a smaller shard size, leading to higher unlearning
efficiency. On the other hand, the F1 score of all four GNN models slightly decreases.
Comparing the four GNN models, the utility of GCN model drops the most. We suspect
this is because the GCN model requires the node degree information for normalization,
which is severely reduced by graph partitioning. The number of shards is an important
hyperparameter for GraphEraser. In practice, it should be selected based on the size of

56

3.5. EVALUATION

the training graph.

0 20 40 60 80 100
Number of Shards

50
100
150
200
250
300
350

U
nl

ea
rn

in
g

T
im

e
(s

)

SAGE

GAT

GCN

GIN

(a) Unlearning Efficiency

0 20 40 60 80 100
Number of Shards

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

F
1

S
co

re

SAGE

GAT

GCN

GIN

(b) Target Model Utility

Figure 3.10: Impact of the number of shards on the unlearning efficiency and model
utility on the Physics dataset.

Maximum Number of Nodes in Each Shard δ. It is an important parameter in
both GraphEraser-BLPA and GraphEraser-BEKM for controlling the degree of balance of
the partitioned graphs. The minimum value of δ is dnk e, in which case the shards are
balanced. The maximum value of δ is n, meaning no constraints are enforced on the
shard size. In these cases, GraphEraser-BLPA and GraphEraser-BEKM fall back to the
standard LPA and EKM (embedding clustering with original k-means), respectively.

Intuitively, we aim to make δ as close as dnk e to achieve balanced shards for efficiency.
The remaining concern is what is the impact of δ on the model utility. We conduct
experiments for both GraphEraser-BLPA and GraphEraser-BEKM on five datasets. To
achieve comparable experiments across different datasets, we introduce a scaling pa-
rameter γ in the range of [0, 1] to regulate the choice of δ, i.e., δ = dnk e+ γ ·

(
n− dnk e

)
.

When γ = 0, δ equals to dnk e, which is the lower bound of δ; when γ = 1, δ equals to
n, which is the upper bound of δ. Figure 3.11 illustrates the experimental results. In
general, we observe that δ only has a slight impact on the model utility; thus, we set
δ = dnk e for all of our experiments which leads to the best efficiency.

3.5.5 Robustness of GraphEraser

In this section, we investigate the impact of the number of unlearned nodes on the
model utility of GraphEraser. We consider two distributions of node unlearning requests:
Uniform and non-uniform. For uniform unlearning, we randomly delete nodes from all
the shards. For non-uniform, we only delete nodes from half the shards with larger sizes.

Figure 3.12 illustrates the experimental results on three datasets and we evaluate
both uniform and non-uniform unlearning request distribution. We first observe that

57

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

10−4 10−3 10−2 10−1 100

γ

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
od

el
U

ti
lit

y

BEKM-SAGE
Cora

Citeseer

Pubmed

CS

Physics

(a) GraphEraser-BEKM

10−4 10−3 10−2 10−1 100

γ

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
od

el
U

ti
lit

y

BLPA-GCN
Cora

Citeseer

Pubmed

CS

Physics

(b) GraphEraser-BLPA

Figure 3.11: Impact of δ on GraphEraser-BEKM and GraphEraser-BLPA for five datasets.

the F1 scores of GraphEraser do not drop significantly in most settings when the ratio of
unlearned nodes is less than 10%. When deleting a larger ratio of nodes, we do observe
utility degradation in certain cases. For instance, for GCN trained on Pubmed, when the
ratio of deleted nodes is 50%, the utility drops from 0.72 to 0.56. Note that in practice,
it is unlikely to happen that 50% of the nodes will be deleted. In general, we conclude
that GraphEraser is robust to a large number of nodes’ deletion. Comparing the results
of non-uniform and uniform unlearning, we further observe that the distributions of the
deletion do not significantly affect the robustness.

0 10 20 30 40 50
Ratio of Unlearned Nodes (%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

F
1

S
co

re

GAT

Uniform Non-Uniform

0 10 20 30 40 50
Ratio of Unlearned Nodes (%)

0.30

0.35

0.40

0.45

0.50

0.55

0.60 GCN

0 10 20 30 40 50
Ratio of Unlearned Nodes (%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80 GIN

0 10 20 30 40 50
Ratio of Unlearned Nodes (%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80 SAGE

(a) Citeseer

0 10 20 30 40 50
Ratio of Unlearned Nodes (%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

F
1

S
co

re

GAT

Uniform Non-Uniform

0 10 20 30 40 50
Ratio of Unlearned Nodes (%)

0.40

0.45

0.50

0.55

0.60

0.65

0.70 GCN

0 10 20 30 40 50
Ratio of Unlearned Nodes (%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80 GIN

0 10 20 30 40 50
Ratio of Unlearned Nodes (%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80 SAGE

(b) Cora

0 10 20 30 40 50
Ratio of Unlearned Nodes (%)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
1

S
co

re

GAT

Uniform Non-Uniform

0 10 20 30 40 50
Ratio of Unlearned Nodes (%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80 GCN

0 10 20 30 40 50
Ratio of Unlearned Nodes (%)

0.70

0.75

0.80

0.85

0.90

0.95

1.00 GIN

0 10 20 30 40 50
Ratio of Unlearned Nodes (%)

0.70

0.75

0.80

0.85

0.90

0.95

1.00 SAGE

(c) Pubmed
Figure 3.12: Impact of the ratio of unlearned nodes on the model utility.

58

3.5. EVALUATION

Table 3.8: Attack AUC of membership inference against our GraphEraser (AI) and
deterministic unlearning (AII).

Model GAT GCN GIN SAGE
Dataset AI AII AI AII AI AII AI AII
Cora 0.512 0.508 0.511 0.510 0.513 0.510 0.511 0.510

Citeseer 0.515 0.510 0.510 0.510 0.513 0.513 0.512 0.510
Pubmed 0.509 0.510 0.511 0.509 0.512 0.511 0.510 0.511

CS 0.510 0.509 0.520 0.511 0.515 0.514 0.515 0.513
Physics 0.519 0.515 0.518 0.512 0.512 0.510 0.517 0.517

3.5.6 Unlearning Power of GraphEraser

Since our method is highly empirical, we adopt the state-of-the-art attack against
machine unlearning [P2] to quantify the extra information leakage of GraphEraser when
the graph is not re-partitioned. In particular, Chen et al. [P2] showed that the attackers,
using an enhanced membership inference attack [145], can determine whether a target
sample exists in the original model and is revoked from the unlearned model when
they have access to both the original and unlearned model. Here we quantify the
extra information leakage of GraphEraser as the attack’s performance difference between
deterministic unlearning and GraphEraser unlearning. Concretely, we introduce two
scenarios of membership inference attacks. We start from the same set of original
shard models. In scenario 1, the unlearned models are obtained by directly deleting the
revoked nodes from the corresponding shard graph and retraining the corresponding
shard models. This is how GraphEraser generates the unlearned models. In scenario 2, we
retrain from scratch (re-partition the graph and train a set of new shard models). This
type of unlearning deterministically unlearns every component while it is extremely time-
consuming. Denoting the two scenarios as AI and AII , the extra information leakage is
the difference of the attack AUC between AI and AII . We use the implementation4

of [P2] to conduct our experiments. The experimental results in Table 3.8 show that
the attack AUC of both AI and AII are close to 0.5 (random guessing), meaning that
GraphEraser does not leak much extra information. This is also consistent with the
observation of [P2] that the membership inference performs badly on the SISA-based
method since the aggregation reduces the influence of a specific sample on its global
model.

4https://github.com/MinChen00/UnlearningLeaks

59

https://github.com/MinChen00/UnlearningLeaks

CHAPTER 3. TECHNICAL IMPLEMENTATION OF MACHINE UNLEARNING

3.6 Discussion

Guarantee to the right-to-be-forgotten. The adversary might recover the deleted
data when they can access both the original and the unlearned model. Previous work
studied the unintended information leakage in the unlearning setting [21, P2]. However,
it is orthogonal to our work since the primary goal of machine unlearning is to comply
with “legitimate regulations” such as GDPR. In this sense, as long as the model is
trained without the revoked sample, the requirement of the right to be forgotten is
satisfied. One may argue that the graph partition depends on the node to be deleted;
however, it is unclear how adversaries can exploit this information. Besides, the graph
partition of SISA [25] also depends on the node to be deleted since they rely on prior
knowledge to put the more likely-to-be-deleted samples in one shard.

Compatibility with Commercial Graph Services. Compared with the existing
graph-learning-based services, the additional cost of GraphEraser is graph partition;
however, once the partition is defined, we can keep it fixed without extra effort. The
process of training shard models is the same as the existing services. Once this framework
is built, the maintenance effort of dealing with unlearning requests is much lower than
existing services since GraphEraser only needs to retrain the sub-model containing the
deleted samples.

Adaptive Machine Unlearning. The authors in [61] define the notion of (α, β, γ)-
unlearning, which enforces that the output of any unlearning algorithm should be
similar to that of retraining from scratch. The authors prove that the SISA method
satisfies (α, β, γ)-unlearning in the non-adaptive setting (unlearning requests arrive
in a non-adaptive way), but it does not satisfy (α, β, γ)-unlearning in the adaptive
setting. As GraphEraser follows the general idea of SISA, GraphEraser also satisfies
(α, β, γ)-unlearning in the non-adaptive setting but does not satisfy the adaptive setting.

3.7 Conclusion

In this chapter, we aim to design an unlearning framework for graph neural networks
that can achieve “High Unlearning Efficiency” and “Comparable Model Utility” for
retraining from scratch. We propose the first machine unlearning framework GraphEraser
in the context of GNNs. Concretely, GraphEraser first partitions the training data into
several small groups, trains a series of submodels, then generates the final prediction
by aggregating the predictions from all the submodels. Only the affected shard model

60

3.7. CONCLUSION

will be retrained in randomly unlearning request cases to achieve the high unlearning
efficiency goal. To achieve efficient retraining while keeping the structural information
of the graph, we propose a general principle for balancing the shards resulting from the
graph partitioning and instantiate it with two novel balanced graph partition algorithms,
Balanced Embedding K-Means (BEKM) and Balanced Label Propagation Algorithm
(BLPA). We further propose a learning-based aggregation method to improve the model’s
utility.

To illustrate the unlearning efficiency and model utility resulting from GraphEraser,
we conduct extensive experiments on five real-world graph datasets. The experimental
results show that GraphEraser can effectively improve the unlearning efficiency. For
instance, the average unlearning time is up to 2.06× shorter on the smallest dataset and
up to 35.94× shorter on the largest dataset than retraining from scratch. In addition,
GraphEraser provides an advanced model utility than random partitioning. Concretely,
GraphEraser achieves up to 62.5% higher F1 score than that of random partitioning.
Furthermore, our learning-based aggregation method can effectively improve the model
utility compared to the mean and majority-vote aggregation methods. Our proposed
learning-based aggregation achieves up to 93% higher F1 score than that of the mean
aggregation and 112% higher F1 score than that of the majority vote aggregation.

61

4
Understanding the Privacy Risks in

Machine Unlearning

63

4.1. MEMBERSHIP INFERENCE IN MACHINE UNLEARNING

In this chapter, we investigate the unintended information leakage caused by machine
unlearning. We first propose a novel membership inference attack in the machine
unlearning setting that determines whether the target sample is part of the training set
of the original model. Different from classical membership inference attacks [145, 132],
which leverage the output (posteriors) of a single target model, our attack leverages
outputs of both original and unlearned models. To solve this challenge, we need to
answer the following research questions: First, whether our proposed membership
inference attack can work, and how bad this privacy risk can be. Second, whether the
privacy leakage still exists in different unlearning scenarios, such as Third, whether this
privacy risk can be mitigated.

In the following of this chapter, we first present the details of privacy risks of machine
unlearning in Section 4.1. Next, we evaluate the attack performance on multiple models,
datasets, and practical scenarios in Section 4.2. In Section 4.3, we introduce several
possible defense mechanisms and empirically evaluate their effectiveness. Finally, we
conclude the chapter in Section 4.4.

4.1 Membership Inference in Machine Unlearning

In this section, we study to what extent data is indelibly imprinted in an ML model by
quantifying the additional information leakage caused by machine unlearning.

4.1.1 Problem Statement

Machine unlearning naturally generates two versions of ML models, namely the original
model and the unlearned model, and creates a discrepancy between them due to the
target sample’s deletion. While originally designed to protect the target sample’s
privacy, we argue that machine unlearning may leave some imprint of it and thus create
unintended privacy risks. Specifically, while the original model may not reveal much
private information about the target sample, additional information might be leaked
through the unlearned model.

4.1.2 Threat Model

When implementing the right to be forgotten in machine learning models, a common
acknowledgment of forgetting is that the revoked sample and its corresponding impacts
on the model should be erased, which can also be named “machine unlearning”. There

65

CHAPTER 4. UNDERSTANDING THE PRIVACY RISKS IN MACHINE UNLEARNING

are two lines of work to implementing machine unlearning, approximate unlearning and
deterministic unlearning. We focus on deterministic unlearning, which means the model
is indeed trained without the revoked samples, which is the original requirement of the
right to be forgotten. While originally designed to protect the privacy of the data owner,
we argue that machine unlearning may leave some imprint of the data in the ML model
and thus create unintended privacy risks.

Adversary’s Goal:. Given a target sample x, an original model, and its unlearned
model, the adversary aims to infer whether x is unlearned from the original model.
In other words, the adversary aims to know that the target sample is in the training
dataset of the original model, but it is not in the training dataset of the unlearned
model. While the goal of unlearning x is to protect x’s privacy, a successful attack
considered here can show unlearning instead jeopardizes x’s privacy (especially when x’s
membership leakage risk is not severe on the original model before machine unlearning).

Adversary’s Impacts:. Knowing that a specific data sample x was used to train a
particular model may lead to potential privacy breaches. For example, knowing that a
certain patient’s clinical records were used to train a model associated with a disease
(e.g., to determine the appropriate drug dosage or to discover the genetic basis of the
disease) can reveal that the patient carries the associated disease.

Adversary’s Knowledge:. Unlike classical membership inference, which only leverages
the output of a target ML model, our adversary can exploit information from both
original and unlearned models to perform their attack. We assume that the adversary
has black-box access to an original ML model and its unlearned model. This is realistic
as the target black-box model can be queried at any time, such as in the setting of
MLaaS, and all of the query results can be stored locally by the adversary. As such,
when there are no changes in the target sample’s outputs from two consecutive queries,
the unlearning does not happen, and the adversary does not need to launch the attack.
On the other hand, when the adversary observes changes in the target sample’s outputs,
they know that the target model has been updated.

4.1.3 Attack Pipeline

The general attack pipeline comprises three phases: posteriors generation, feature
construction, and (membership) inference. Posteriors Generation: The adversary
has access to two versions of the target ML model, the original model Mo and the
unlearned model Mu. Given a target sample x, the adversary queries Mo and Mu,

66

4.1. MEMBERSHIP INFERENCE IN MACHINE UNLEARNING

1. Posterior Generation

Unlearned Model
ℳ![𝒟"\𝑥]

Original Model
ℳ"[𝐷"]Query

2. Feature Construction 3. Inference

Attack Model
ℳ#Target Sample x

Posterior ℙ"

Posterior ℙ!

Is x in the training
set of ℳ"?

Figure 4.1: A schematic view of the general attack pipeline. The membership status of
the target sample x is leaked due to the two versions of the model.

and obtains the corresponding posteriors, i.e., Po and Pu. Feature Construction:
Given the two posteriors Po and Pu, the adversary aggregates them to construct the
feature vector F. We discuss five representative methods to construct the feature vector,
including direct concatenate, sorted concatenate, direct difference, sorted difference,
and Euclidean distance. Inference: Finally, the adversary sends the obtained F to the
attack model, which is a binary classifier, to determine whether the target sample x is
in the training set of the original model.

4.1.4 Attack Model Training

We assume the adversary has a local dataset, which we call the shadow dataset Ds. The
shadow dataset can come from a different distribution than the one used to train the
target model. To infer whether the target sample x is in the original model or not, our
core idea is to train an attack modelMA that captures the difference between the two
posteriors. The intuition is that if the target sample x is deleted, the two modelsMo

andMu will behave differently. Figure 4.2 illustrates the training process of the attack
model, and the detailed training procedure is presented as follows. The shadow dataset
Ds is split into disjoint shadow positive dataset Dsp and shadow negative dataset Dsn.
The shadow positive dataset Dsp is used to train the shadow original modelMs

o. The
shadow unlearned modelMs,i

u is trained on Dsp \ xip, where xip ∈ Dsp. In the inference
phase, the adversary first uses target sample xip to query the original and unlearned
models simultaneously to generate the positive features. Then they use a random sample
xin ∈ Dsn to query the corresponding models to generate the negative features. Finally,
they use the positive and negative features to train the attack modelMA.

Training Shadow Models. To mimic the behavior of the target model, the adversary

67

CHAPTER 4. UNDERSTANDING THE PRIVACY RISKS IN MACHINE UNLEARNING

F
𝑥!"

𝑥#"

Positive

Negative

Model QueryQ Feature ConstructionFDisjointly SplitS Model TrainT

T

Q

Q

S

F

Original Model
ℳ$

%[𝒟!%]

Unlearned Model
ℳ&

%," [𝒟!%\𝑥!"]

Original Model
ℳ$

% [𝒟!%]

Unlearned Model
ℳ&

%," [𝒟!%\𝑥!"]

Attack Model
ℳ(

Shadow Dataset
𝒟)

Shadow Positive
𝒟!%

Shadow Negative
𝒟*)

Figure 4.2: Training process of the attack model.

needs to train a shadow original model and a set of shadow unlearned models. To do
this, the adversary first partitions Ds into two disjoint parts, the shadow negative set
Dsn and the shadow positive set Dsp. The shadow positive set Dsp is used to train the
shadow original modelMs

o. The shadow unlearned modelMs
u is trained by deleting

samples from Dsp. For ease of presentation, we assume the shadow unlearned model
Ms

u is obtained by deleting exactly one sample. We will show that our attack is still
effective for group deletion in Section 4.2.7.2. The adversary randomly generates a set
of deletion requests (target samples) Rp = {x1

p, x
2
p, · · · , xmp } and train a set of shadow

unlearned modelsMs,1
u ,Ms,2

u , · · · ,Ms,m
u , where the shadow unlearned modelMs,i

u is
trained on dataset Dsp \ xip.

Obtaining Posteriors. At the posteriors generation phase, the adversary feeds each
target sample xip ∈ Rp to the shadow original modelMs

o and its corresponding shadow
unlearned modelMs,i

u , and gets two posteriors Pio and Piu.

Constructing Features. The adversary then uses the feature construction methods
discussed in Section 4.1.5 to construct training cases for the attack model. In classical
membership inference, posteriors of xip ∈ Rp serve as member cases of the attack model.
But in the machine unlearning setting, xip ∈ Rp is a member of the shadow original
modelMs

o and non-member of the shadow unlearned modelMs
u. To avoid confusion,

we call the samples related to xip ∈ Rp positive cases instead of member cases for the
attack model.

To train the attack model, the adversary also needs a set of negative cases. This
can be done by sampling a set of negative query samples Rn from the shadow negative
dataset Dsn and query the shadow original model and unlearned model. To get a good
attack model generalization performance, the adversary needs to ensure that the number
of positive cases and the number of negative cases of the attack model are balanced,

68

4.2. PRIVACY DEGRADATION MEASUREMENT

i.e., |Rp| = |Rn|, where | · | is the cardinality of the sample set.

4.1.5 Feature Construction

Given the two posteriors, a straightforward approach to aggregate the information is to
concatenate them, i.e., Po||Pu, where || is the concatenation operation. This preserves
the full information. However, it is possible that the concatenation contains redundancy.
To reduce redundancy, we can instead rely on the difference between Po and Pu to
capture the discrepancy left by the deletion of the target sample. In particular, we make
use of the element-wise difference Po − Pu and the Euclidean distance ‖Po − Pu‖2.

To better capture the level of confidence of the model, one may also sort the posteriors
before the difference or concatenation operations [49]. Specifically, we sort the original
posteriors Po in descending order and get the sorted original posteriors Pso. We then
rearrange the order of the unlearned posteriors Pu to align its elements with Po and get
the sorted unlearned posteriors Psu.

To summarize, we adopt the following five methods to construct the features for the
attack model:

• Direct concatenate (DirectConcat), i.e., Po||Pu

• Sorted concatenate (SortedConcat), i.e., Pso||Psu

• Direct difference (DirectDiff), i.e., Po − Pu.

• Sorted difference (SortedDiff), i.e., Pso − Psu.

• Euclidean distance (EucDist), i.e., ‖Po − Pu‖2

In Section 4.2.3.2, we conduct empirical experiments to evaluate the performance
of the above methods and provide a high-level summary of the best features to use
depending on the behavior of the underlying ML model.

4.2 Privacy Degradation Measurement

In this section, we conduct extensive experiments to evaluate the unintended privacy
risks of machine unlearning. In Section 4.2.3.1, we first conduct an end-to-end exper-
iment to validate the effectiveness of our attack on multiple datasets using the most
straightforward unlearning method, i.e., retraining from scratch. Second, we compare
different feature construction methods proposed in Section 4.2.3.2 and summarize the

69

CHAPTER 4. UNDERSTANDING THE PRIVACY RISKS IN MACHINE UNLEARNING

most appropriate choice depending on the context. We evaluate the impact of overfitting
and different hyperparameters in Section 4.2.3.3. We conduct experiments to evaluate
the dataset and model transferability between the shadow model and the target model in
Section 4.2.5. We also show the effectiveness of our attack against the SISA unlearning
method in Section 4.2.6. Third, we evaluate our attack in multiple practical scenarios
to Section 4.2.7. Finally, we evaluate the attack performance of our attack under four
defense mechanisms in Section 4.3.

4.2.1 Experimental Setup

We evaluate our proposed membership inference attack in seven datasets and seven
models. The experimental results show that our attack in multiple cases outperforms
the classical membership inference attack, which indicates that machine unlearning can
have counterproductive effects on privacy.

Target Models. In our experiments, we evaluate the vulnerability of both simple
machine learning models, including logistic regression (LR), decision tree (DT), random
forest (RF), and 5-layer multi-layer perceptron (MLP), and the state-of-the-art convolu-
tional neural networks, including SimpleCNN (implemented by us), DenseNet [71], and
ResNet50 [66]. All the convolutional networks are trained for 100 epochs.

Datasets. We run experiments on two different types of datasets: categorical datasets
and image datasets. The categorical datasets are used to evaluate the vulnerability
of simple machine learning models, while the image datasets are used to evaluate the
vulnerability of the convolutional neural networks.

• UCI Adult [7]. This is a widely used categorical dataset for classification. It
is a census dataset that contains around 50, 000 samples with 14 features. The
classification task is to predict whether the income of a person is over $50k, which is
a binary classification task.

• US Accident [8]. This is a countrywide traffic accident dataset, which covers the
49 states of the United States. This dataset contains around 3M samples. We filter
out attributes with too many missing values and obtain 30 valid features. The valid
features include temperature, humidity, pressure, etc. The classification task is to
predict the accident severity level, which contains 3 classes.

• Insta-NY [18]. This dataset contains a collection of Instagram users’ location
check-in data in New York. Each check-in contains a location and a timestamp, and

70

4.2. PRIVACY DEGRADATION MEASUREMENT

each location belongs to a category. We use the number of check-ins that happened
at each location in each hour on a weekly basis as the location feature vector. The
classification task is to predict each location’s category among 9 different categories.
After filtering out locations with less than 50 check-ins, we get 19,215 locations for the
Insta-NY dataset. Later in the section, we also use check-ins in Los Angeles, namely
Insta-LA [18], for evaluating the data transferring attack. This dataset includes
16,472 locations.

• MNIST [9]. MNIST is an image dataset widely used for classification. It is a 10-class
handwritten digits dataset that contains 42,000 samples, each being formatted into a
28× 28-pixel image.

• CIFAR10 [10]. CIFAR10 is the benchmark dataset used to evaluate image recogni-
tion algorithms. This dataset contains 60,000 colored images of size 32× 32, which
are equally distributed on the following 10 classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck. There are 50,000 training images and 10,000
testing images.

• STL10 [36]. STL10 is a 10-class image dataset, with each class containing 1,300
images. Classes include airplane, bird, car, cat, deer, dog, horse, monkey, ship, and
truck. In our experiments, we use STL10 only for data transferring attacks.

Experimental Settings. We evenly split each dataset D into disjoint target dataset
Dt and shadow dataset Ds. In Section 4.2.5, we will show that the shadow dataset can
come from a different distribution than the target dataset. The shadow dataset Ds is
further split into shadow positive dataset Dsp and shadow negative dataset Dsn (80%
for Dsp and 20% for Dsn). We randomly sample So subsets of samples from Dsp, each
containing Sr samples, to train So shadow original models. For each shadow original
model Ms,i

o , we train Su shadow unlearned models on Ds,io \ x. We split the target
dataset Dt in a similar way as the shadow dataset Ds.

By default, we set the hyperparameters of the shadow models to So = 20, Sr =
5000, Su = 100, and the corresponding hyperparameters of the target models to To =
20, Tr = 5000, Tu = 100. These hyperparameters have been shown to achieve a good
balance between computational overhead and attack performance in Section 4.2.4.

71

CHAPTER 4. UNDERSTANDING THE PRIVACY RISKS IN MACHINE UNLEARNING

4.2.2 Privacy Degradation Metrics

We propose two privacy degradation metrics that measure the difference in the confidence
levels of our attack and classical membership inference when predicting the correct
membership status of the target sample. Given n target samples x1 to xn, define piu as
the confidence of our attack in classifying xi as a member, and pim as the confidence
of classical membership inference. Let bi be the true status of xi, i.e., bi = 1 if xi is a
member, and bi = 0 otherwise.

In addition to the two privacy degradation metrics, we rely on the traditional AUC
metric to measure the absolute performance of our attack and classical membership
inference. To summarize, we have the following three metrics:

• DegCount. DegCount stands for Degradation Count. It calculates the proportion of
target samples whose true membership status is predicted with higher confidence by
our attack than by classical membership inference. Formally, DegCount is defined as

DegCount = 1
n

n∑
i

[
bi1pi

u>p
i
m

+ (1− bi)1pi
u<p

i
m

]

where 1P is the indicator function which equals 1 if P is true, and 0 otherwise. Higher
DegCount means higher privacy degradation.

• DegRate. DegRate stands for Degradation Rate. It calculates the average confidence
improvement rate of our attack predicting the true membership status compared to
classical membership inference. DegRate can be formally defined as

DegRate = 1
n

n∑
i

[
bi(piu − pim) + (1− bi)(pim − piu)

]

Higher DegRate means higher privacy degradation.

• AUC. It is a widely used metric to measure the performance of binary classification
in a range of thresholds. An AUC value of 1 shows a maximum performance, while
an AUC value of 0.5 shows a performance equivalent to random guessing.

72

4.2. PRIVACY DEGRADATION MEASUREMENT

4.2.3 Overall Performance

4.2.3.1 Retrain from Scratch

In this subsection, we conduct end-to-end experiments to evaluate our attack against
the most straightforward approach of retraining the ML model from scratch.

Setup. We start by considering the scenario where only one sample is deleted for each
unlearned model. The scenario where multiple samples are deleted before the ML model
is retrained will be evaluated in Section 4.2.7.2. We conduct the experiments on both
categorical datasets and image datasets with three evaluation metrics, namely AUC,
DegCount, DegRate, and report the results with the optimal features as explained in
Section 4.2.3.2.

Results for Categorical Datasets. Figure 4.3 depicts the attack performance of
categorical datasets. In each subfigure, the groups on the x-axis represent different
target models, and the legends (in different colors) represent different attack models. For
the AUC metric, the right bars (transparent ones) stand for the AUC value of classical
membership inference. We generally observe that our attack performs consistently better
than classical membership inference on all datasets, target models, attack models, and
metrics. Compared to classical membership inference, our attack achieves up to 0.48
improvement of the AUC. The best DegCount and DegRate values are 0.94 and 0.40,
respectively. This indicates that our attack indeed degrades the membership privacy of
the target sample in the machine unlearning setting. Comparing the performance of
different target models, we observe that the decision tree is the most vulnerable ML
model. We posit this is because the decision tree forms a tree structure, and deleting
one sample could explicitly change its structure; thus, the posterior difference between
the decision tree’s original model and the unlearned model is more significant, leading
to a better attack performance.

Results for Image Datasets. Figure 4.4 illustrates the performance for the image
datasets and complex convolutional neural networks. We keep the same attack models
as categorical datasets and use the SimpleCNN model for MNIST, use the ResNet50 and
DenseNet models for CIFAR10. In general, we also observe that our attack outperforms
classic membership inference attacks in all settings. Besides, CIFAR10 trained with
DenseNet shows the highest privacy degradation, while the MNIST dataset trained
with SimpleCNN shows the lowest. The reason behind this is that the overfitting level
of CIFAR10 trained with DenseNet is the largest. To further confirm this, we list the

73

CHAPTER 4. UNDERSTANDING THE PRIVACY RISKS IN MACHINE UNLEARNING

LR DT RF MLP0.0

0.2

0.4

0.6

0.8

1.0

A
U

C

Adult

LR DT RF MLP0.0

0.2

0.4

0.6

0.8

1.0 Accident

LR DT RF MLP0.0

0.2

0.4

0.6

0.8

1.0 Insta-NY

LR DT RF MLP0.0

0.2

0.4

0.6

0.8

1.0

D
eg

C
ou

nt

LR DT RF MLP0.0

0.2

0.4

0.6

0.8

1.0

LR DT RF MLP0.0

0.2

0.4

0.6

0.8

1.0

LR DT RF MLP0.0

0.1

0.2

0.3

0.4

0.5

D
eg

R
at

e

LR DT RF MLP0.0

0.1

0.2

0.3

0.4

0.5

LR DT RF MLP0.0

0.1

0.2

0.3

0.4

0.5

Attack Models: LR

LR-Base

DT

DT-Base

RF

RF-Base

MLP

MLP-Base

Figure 4.3: Privacy degradation level on the Scratch method for three categorical
datasets.

overfitting level of different models in Table 4.1. We observe that the overfitting level
of CIFAR10 trained with DenseNet is 0.439, while the MNIST dataset trained with
SimpleCNN has an overfitting level smaller than 0.05.

LR DT RF MLP
Attack Model

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
U

C

LR DT RF MLP
Attack Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
eg

C
ou

nt

LR DT RF MLP
Attack Model

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
eg

R
at

e

LR DT RF MLP
Attack Model

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
U

C

Dataset (Target Model) : MNIST (SimpleCNN)

MNIST (SimpleCNN)-Base

CIFAR10 (DenseNet)

CIFAR10 (DenseNet)-Base

CIFAR10 (ResNet50)

CIFAR10 (ResNet50)-Base

Dataset (Target Model) : MNIST (SimpleCNN)

MNIST (SimpleCNN)-Base

CIFAR10 (DenseNet)

CIFAR10 (DenseNet)-Base

CIFAR10 (ResNet50)

CIFAR10 (ResNet50)-Base

Figure 4.4: Privacy degradation level on the Scratch method for image datasets.

4.2.3.2 Finding Optimal Features

Figure 4.5 illustrates the attack AUC of different feature construction methods. We
compare two different types of target models: (a) the well-generalized model logistic
regression (trained on the Insta-NY dataset), and (b) the overfitted model ResNet50

74

4.2. PRIVACY DEGRADATION MEASUREMENT

(trained on the CIFAR10 dataset). We then apply the 5 different feature construc-
tion methods proposed in Section 4.1.5 to 4 different attack models, resulting in 20
combinations. For comparison, we also include the classical membership inference
as a baseline. DC, SC, DD, SD, ED stand for DirectConcat, SortedConcat, DirectDiff,
SortedDiff, EucDist, respectively. BL stands for the baseline, i.e., classical membership
inference.

LR DT RF MLP
Attack Model

B
L

D
C

S
C

D
D

S
D

E
DFe

at
ur

e
C

on
st

ru
ct

io
n

M
et

ho
d 0.504 0.503 0.490 0.510

0.505 0.524 0.485 0.504

0.614 0.599 0.574 0.496

0.546 0.941 0.982 0.529

0.568 0.952 0.983 0.659

0.969 0.968 0.974 0.942

(a) LR + Insta-NY

LR DT RF MLP
Attack Model

B
L

D
C

S
C

D
D

S
D

E
DFe

at
ur

e
C

on
st

ru
ct

io
n

M
et

ho
d 0.545 0.548 0.574 0.526

0.529 0.548 0.567 0.552

0.623 0.719 0.628 0.559

0.519 0.533 0.550 0.516

0.552 0.597 0.553 0.535

0.560 0.546 0.515 0.570

(b) ResNet50 + CIFAR10

Figure 4.5: Attack AUC for different feature construction methods.

Concatenation vs. Difference. Concatenation-based methods (DirectConcat, SortedConcat)
directly concatenate the two posteriors to preserve the full information, while difference-
based methods capture the discrepancy between two versions of posteriors. We use two
approaches to capture this discrepancy: element-wise difference (DirectDiff, SortedDiff)
and Euclidean distance (EucDist).

Overall, Figure 4.5 shows that, on the one hand, concatenation-based methods
perform better on the overfitted model, i.e., ResNet50. On the other hand, the difference-
based methods perform better on the well-generalized model, i.e., logistic regression.
We suspect this is due to the fact that the concatenation-based methods rely on plain
posterior information, which can provide a strong signal for membership inference
on the overfitted target model. This is consistent with the conclusion of previous
studies [145, 132] that classical membership inference (which uses plain posterior
information) performs well on overfitted target models. While we can also exploit the
difference-based methods to mount the attack on the overfitted target models, the
attack signal is not as strong as that of the concatenation-based methods, as shown
in Figure 4.5b. For the well-generalized target models, exploiting the plain posterior
information has shown to perform poorly in terms of membership inference [145, 132].

75

CHAPTER 4. UNDERSTANDING THE PRIVACY RISKS IN MACHINE UNLEARNING

In this case, the discrepancy information between the two versions of the posteriors
captured by the difference-based methods is more informative than the concatenation-
based feature construction methods.

Sorted vs. Unsorted. Comparing DirectConcat to SortedConcat and DirectDiff to
SortedDiff in Figure 4.5, we observe that the attack AUC of both the concatenation-
based method and difference-based method are clearly better after sorting. These results
confirm our conjecture that sorting could improve the confidence level of the adversary.

Feature Selection Summary. Our empirical comparison provides us with the follow-
ing rules for the feature construction methods: (1) use concatenation-based methods on
overfitted models; (2) use difference-based methods on well-generalized models; (3) sort
the posteriors before the concatenation and difference operations.

4.2.3.3 Impact of Overfitting

Overfitting measures the difference in accuracy between training and testing data.
Previous studies [145, 182, 98] have shown that overfitted models are more susceptible
to classical membership inference attacks, while well-generalized models are almost
immune to them. In this subsection, we want to revisit the impact of overfitting on our
attack.

Table 4.1 depicts the attack AUC for different overfitting levels. We use the random
forest as the attack model and use SortedDiff and SortedConcat as feature construction
methods for well-generalized and overfitted target models, respectively. In general,
our attack consistently outperforms the classical membership inference on both well-
generalized and overfitted models. On the overfitted models, i.e., CIFAR10 datasets with
ResNet50 and DenseNet as target models, we can observe that the classical membership
inference also works. However, our attack can achieve much better performance. On the
other hand, the experimental results show that our attack can still correctly infer
the membership status of the target sample in well-generalized models. For
example, when the target model is a decision tree, the overfitting level in the Adult
(Income) dataset is 0.019; thus, the decision tree can be regarded as a well-generalized
model. While the performance of classical membership inference on this model is
equivalent to random guessing (AUC = 0.497), our attack achieves a good performance,
with an AUC of 0.882. In summary, our attack performance is relatively independent of
the overfitting level.

76

4.2. PRIVACY DEGRADATION MEASUREMENT

Table 4.1: Attack AUC in different overfitting levels.

Dataset Mo Train / Test Acc. Overfitting AUC / Base-AUC

LR 0.795 / 0.782 0.013 0.600 / 0.505
DT 0.853 / 0.834 0.019 0.882 / 0.497
RF 0.852 / 0.843 0.009 0.659 / 0.459A

du
lt

MLP 0.767 / 0.763 0.004 0.506 / 0.503

LR 0.702 / 0.698 0.002 0.538 / 0.494
DT 0.722 / 0.701 0.021 0.929 / 0.501
RF 0.730 / 0.709 0.021 0.78 / 0.499

A
cc

id
en

t

MLP 0.670 / 0.644 0.026 0.513 / 0.493

LR 0.508 / 0.439 0.069 0.983 / 0.490
DT 0.404 / 0.373 0.031 0.941 / 0.503
RF 0.523 / 0.442 0.081 0.685 / 0.551

In
st

a-
N

Y

MLP 0.738 / 0.483 0.255 0.619 / 0.553

MNIST SimCNN 0.954 / 0.951 0.003 0.511 / 0.496

DenseNet 0.942 / 0.477 0.465 0.881 / 0.630CIFAR10
ResNet50 0.975 / 0.592 0.383 0.719 / 0.548

4.2.4 Hyperparameters

We now evaluate the impact of the hyperparameters on the performance of our attack.
Specifically, we focus on the number of shadow original models So, the number of
samples Sr per shadow original model, and the number of unlearned models Su per
shadow original model. The corresponding hyperparameters of the target models are
fixed (as defined at the end of Section 4.2.1) since only the hyperparameters of the
shadow models can be tuned to launch the attack.

We conduct the experiments on the Adult (Income) dataset with a decision tree as
the target model. Following our findings in Section 4.2.3.2, we evaluate the attack AUC
of different combinations of attack models, i.e., decision tree, random forest, logistic
regression, and difference-based feature construction methods, i.e., DirectDiff, SortedDiff,
EucDist.

Number of Shadow Original Models So. Figure 4.6a depicts the impact of So,
which varies from 1 to 100. The figure shows that the attack AUC sharply increases
when So increases from 1 to 5, but remains quite stable for greater values of So. This
indicates that setting So = 5 is enough for the diversity of the shadow original models.

Number of Samples Sr per Model. Figure 4.6b illustrates the impact of the number

77

CHAPTER 4. UNDERSTANDING THE PRIVACY RISKS IN MACHINE UNLEARNING

of samples per model Sr, the values are in the range of ∈ {500, 1000, 2000, 5000, 10000}.
When Sr increases from 500 to 1000, the attack AUC with SortedDiff increases from
0.67 to 0.83, while the attack AUC with EucDist increases from 0.73 to 0.86, except for
logistic regression. However, adding more than 1000 samples does not help improve the
attack performance further.

Number of Unlearned Models Su per Shadow Original Model. Figure 4.6c
illustrates the impact of Su, which varies from 1 to 100 and the legends are 5 combinations
of attack models and feature construction methods guided by Section 4.2.3.2. We
observe that Su has negligible impact on the attack AUC. This indicates that using a
few unlearned models is sufficient to achieve a high attack performance.

4.2.5 Attack Transferability

In practice, the adversary might not be able to get the same distribution dataset or
the same model structure to train the shadow models. We next validate the dataset
and model transferability between the shadow model and the target model. That is,
we evaluate whether the adversary can use a different dataset and model architecture
than the target model to train the shadow models. We evaluate categorical datasets
with simple model structures and image datasets with complex model structures in
Table 4.2. Where columns stand for dataset transfer, and rows stand for model transfer.
Names on the left of the arrows stand for configurations of shadow models, values in
the parentheses stand for the attack AUC of the classical membership inference.

Table 4.2: Attack AUC for dataset and model transfer.

Shadow→Target Insta-NY→Insta-NY Insta-NY→Insta-LA

DT→DT 0.944 (0.491) 0.931 (0.503)
DT→LR 0.964 (0.494) 0.974 (0.513)
LR→LR 0.986 (0.505) 0.982 (0.511)
LR→DT 0.927 (0.502) 0.926 (0.508)

Shadow→Target CIFAR10→CIFAR10 CIFAR10→STL10

DenseNet →DenseNet 0.881 (0.630) 0.813 (0.621)
DenseNet→ResNet50 0.847 (0.624) 0.805 (0.632)

ResNet50→ResNet50 0.719 (0.548) 0.687 (0.550)
ResNet50→DenseNet 0.721 (0.523) 0.675 (0.542)

Dataset Transferability. Comparing the AUC values of the transfer setting with
that of the non-transfer setting, i.e., bold rows in column Insta-NY→Insta-LA and
CIFAR10→STL10, we only observe a small performance drop for all target models. For

78

4.2. PRIVACY DEGRADATION MEASUREMENT

0 20 40 60 80 1000.80

0.82

0.84

0.86

0.88

0.90

0.92

A
U

C

(a) Number ofMs
o.

2000 4000 6000 8000 100000.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
U

C

(b) Number of Training Samples inMs
o.

0 20 40 60 80 1000.80

0.82

0.84

0.86

0.88

0.90

A
U

C

(c) Number ofMs
u perMs

o.

DT+SortedDiff DT+EucDist RF+SortedDiff RF+EucDist LR+EucDist

Figure 4.6: Attack AUC sensitivity to different hyperparameters on the Adult (income)
dataset with decision tree as target model.

instance, when the target model is a decision tree, the attack AUC of the transfer and

79

CHAPTER 4. UNDERSTANDING THE PRIVACY RISKS IN MACHINE UNLEARNING

non-transfer settings are 0.944 and 0.931, respectively. The attack AUC only drops by
1%.

Model Transferability. For model transferring attacks, we evaluate the pairwise
transferability among the decision tree and logistic regression. In Table 4.2, unbold rows
in column Insta-NY→Insta-NY and CIFAR10→CIFAR10 illustrate the performance
of model transfer. The experimental results show that model transfer only slightly
degrades the attack performance of our attack. For example, when the shadow and
target models are LR, the attack AUC equals 0.986. When we change the target model
to a decision tree, the attack AUC is still 0.927.

Dataset and Model Transferability. Unbold rows of unbold columns show the
attack AUC when we transfer both the dataset and the model simultaneously. Even
in this setting, our attack can achieve pretty good performance. This result shows the
robust transferability of our attack when the adversary does not have access to the same
distribution data and same model architectures.

4.2.6 Evaluation of the SISA Method

The unlearning algorithm we have focused on so far is retraining from scratch, which
can become computationally prohibitive for large datasets and complex models. Several
approximate unlearning algorithms have been proposed to accelerate the training process.
In this subsection, we evaluate the performance of our attack against the most general
approximate unlearning algorithm, SISA [25].

Setup. We remind the readers that the main idea of SISA is to split the original dataset
into k disjoint shards and train k sub-models. In the inference phase, the model owner
aggregates the prediction of each sub-model to produce the global prediction using some
aggregation algorithm. In this experiment, we set k = 5 and use the posterior average
as the aggregation algorithm. Figure 4.7 illustrates the attack AUC on the Insta-NY
dataset. We report the experimental results of four different target models and four
different attack models.

Results. The experimental results show that our attack performance drops compared
to the Scratch algorithm. We posit this is because the aggregation algorithm of SISA
reduces the influence of a specific sample on its global model. This observation further
motivates deploying unlearning methods such as SISA in real-world applications.

80

4.2. PRIVACY DEGRADATION MEASUREMENT

LR DT RF MLP
Target Model

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
U

C

Insta-NY

Attack Models
LR

LR-Base

DT

DT-Base

RF

RF-Base

MLP

MLP-Base

Figure 4.7: Attack AUC for the SISA method on the Insta-NY dataset.

4.2.7 Attack Under Different Scenarios

Next, we evaluate the effectiveness of our attack in different scenarios that might exist
in practice. We first focus on the case when there exist multiple intermediate versions
of unlearned models. Second, we consider when a group of samples is deleted. Third,
we investigate the online learning setting when multiple samples are deleted and added
simultaneously. Finally, we evaluate the impact of unlearning on the remaining samples’
membership privacy.

4.2.7.1 Multiple Intermediate Unlearned Models

As discussed in the threat model (Section 4.1.2), the adversary gains access to the
original and unlearned models by continuously querying the black-box target model.
In practice, the adversary obtains access to two consecutive versions of models by two
consecutive queries. However, the model owner would produce an unlearned model
whenever it receives deletion requests; thus, there might be multiple unlearned models
between these two consecutive queries that are unknown to the adversary. We call these
models intermediate models. Here, we evaluate the effectiveness of our attack when
multiple intermediate unlearned models exist.

Setup. Due to space limitations, we concentrate on the Insta-NY dataset with three
different target models, while the conclusions are consistent for other datasets. We use
LR as the attack model and select the best features following the principles described
in Section 4.2.3.2. Figure 4.8 depicts the results. The x-axis represents the number of
intermediate unlearned models we studied, i.e., {1, 10, 50, 100, 250}.

Results. The experimental results show that our attack consistently degrades the

81

CHAPTER 4. UNDERSTANDING THE PRIVACY RISKS IN MACHINE UNLEARNING

0 50 100 150 200 250
Number of Intermediate Models

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Target Models

LR

DT

RF

LR-Base

DT-Base

RF-Base

Figure 4.8: Multiple Intermediate Unlearned Models.

privacy of the target sample compared with the classical membership inference. In
addition, the attack AUC drops when the number of intermediate models increases.
This is expected since previously deleted samples mask the impact of the target sample.
If multiple intermediate models exist, the discrepancy information between the original
model and the unlearned model is contributed by both the target sample and other
deleted samples corresponding to the intermediate models. In other words, the impact
of the target sample and other deleted samples is entangled with each other, making
the inference of the membership status of the target sample more difficult.

Note that the data samples are unlikely to be revoked frequently in practice, and
the number of intermediate models is unlikely to be very large, so our attack is still
effective in real-world settings. For instance, our attack AUC can achieve at least 0.84
when the number of intermediate models is less than 10 when the target model is LR.

4.2.7.2 Group Deletion

In practice, cases could exist where a group of samples is deleted at once before generating
the unlearned model. This can happen when multiple data owners request the deletion
simultaneously or when the model owner caches the deletion requests and updates the
model only when he has received numerous requests to save computational resources.

Setup. We conduct experiments on our attack in the group deletion scenario. We ran-
domly delete a group of data samples from each original model to generate the unlearned
model. The ratio of samples in each group takes value from {0.02%, 0.2%, 1%, 2%, 5%}.
We delete at most 5% of the data samples since it is unlikely that more than 5% of users
revoke their data in practice. We evaluate our attack on the Insta-NY dataset with
three target models. Notice that the unlearned model of the group deletion is the same

82

4.2. PRIVACY DEGRADATION MEASUREMENT

as in Section 4.2.7.1 when the group size equals the number of intermediate unlearned
models. The difference is that in group deletion, we consider all samples in the group
as target samples.

0.0 1.0 2.0 3.0 4.0 5.0
Percentage of Unlearned Samples

0.4

0.5

0.6

0.7

0.8

0.9

1.0
A

U
C

Target Models

LR

DT

RF

LR-Base

DT-Base

RF-Base

Figure 4.9: Group Deletion.

Results. Figure 4.9 shows that our consistently outperforms classical membership
inference attack, demonstrating extra information leakage in group deletion. However,
the attack performance of group deletion is slightly worse than single sample deletion,
even though our attack is still effective when the group size is smaller than 0.2%. For
example, when the target model is LR, the attack AUC of single deletion and group
deletion (0.2% target samples) are 0.972 and 0.842, respectively. The reason is that
a single sample could be hidden among the deleted sample group, thereby preserving
its membership information. This result reveals that conducting group deletion could
mitigate, to some extent, the impact of our attack.

In practice, we believe 0.2% might already be too large for unlearning. The results
of [22] show that 3.2 million requests for removing URLs have been issued to Google for
5 years, which certainly constitutes less than 0.2% of the total URLs Google indexes.

4.2.7.3 Online Learning

In real-world deployments, ML models are often updated with new samples, which is
known as online learning or incremental learning. Next, we evaluate the performance
of our attack in online learning settings where multiple samples are deleted and added
simultaneously.

Setup. To set up the experiment, we delete a group of target samples from the original
dataset and add the same number of new samples; then, we retrain the model from

83

CHAPTER 4. UNDERSTANDING THE PRIVACY RISKS IN MACHINE UNLEARNING

scratch to obtain the unlearned model. We conduct experiments on Insta-NY with
different target models and use LR as the attack model.

0.0 1.0 2.0 3.0 4.0 5.0
Percentage of Updated Samples

0.4

0.5

0.6

0.7

0.8

0.9

1.0
A

U
C

Target Models

LR

DT

RF

LR-Base

DT-Base

RF-Base

Figure 4.10: Online Learning.

Results. Figure 4.10 show that adding samples to the target model in the unlearning
process has a slight impact on our attack. For example, compared with pure deletion,
the attack AUC only slightly drops from 0.972 to 0.940 when the target model is LR,
and the number of unlearned samples equals 10 (0.2%).

4.2.7.4 Impact on Remaining Samples

Finally, we evaluate whether deleting the target sample can influence the privacy of
other remaining samples.

Setup. We use the same attack pipeline described in Section 4.1.3 to mount the
attack. Concretely, we use data samples that reside in both the original and unlearned
models as positive cases and use shadow/target negative datasets as negative cases. We
concentrate on the Insta-NY dataset with four target models and four attack models
where one data sample is deleted.

Results. Figure 4.11 shows that the attack AUC of our attack is higher than that
of the classical membership inference, which only exploits information of the original
model, indicating deleting the target sample also degrades privacy, to some extent, of
the remaining samples. However, the attack AUC of all target models are less than 0.6,
meaning the remaining samples are less sensitive to our attack. This is expected because
the remaining samples are members of both the original model and the unlearned model.
Deleting other data samples has some but limited impact on their posteriors in the
unlearned model.

84

4.3. MITIGATING THE UNINTENDED PRIVACY RISK

LR DT RF MLP
Target Model

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
U

C

Insta-NY

Attack Models
LR

LR-Base

DT

DT-Base

RF

RF-Base

MLP

MLP-Base

Figure 4.11: Attack AUC of the remaining samples on the Insta-NY dataset.

4.3 Mitigating the Unintended Privacy Risk

We explore four possible defense mechanisms and empirically evaluate their effectiveness.
The former two mechanisms reduce the information accessible to the adversary [145],
and the latter two eliminate the impact of a single sample on the output of the ML
models. In Table 4.3, we list the attack performance of no defense mechanisms (ND),
publishing the Top-k confidence values (Top-1, Top-2, Top-3), label-only defense (Label),
temperature scaling (TS) based defense, and differential privacy (DP) based defense.
Do, MT , and MA stand for the original dataset, target model, and attack model,
respectively.

4.3.1 Publishing the Topk Confidence Values

This defense reduces the attacker’s knowledge by only publishing the top k confidence
values of the posteriors returned by both original and unlearned models. Formally, we
denote the posterior vector as P = [p1, p2, · · · , p`], where ` is the number of classes
of the target model and pi is the confidence value of class i. When the target model
receives a query, the model owner calculates posteriors P and sorts them in descending
order, resulting in Ps = [ps1, ps2, · · · , ps`]. The model owner then publishes the first k
values in Ps, i.e., [ps1, ps2, · · · , psk].

In the machine unlearning setting, the top k confidence values of the original model
and the unlearned model may not correspond to the same set of classes. To launch our
attack, the adversary constructs a pseudo-complete posterior vector for both the original
model and the unlearned model. The pseudo-complete posteriors take the published

85

CHAPTER 4. UNDERSTANDING THE PRIVACY RISKS IN MACHINE UNLEARNING

confidence values for their corresponding classes and evenly distribute the remaining
confidence value to other classes, i.e., for j ∈ {k + 1, . . . , `}, psj = 1−(ps

1+ps
2+···+ps

k)
`−k . The

adversary can then launch our attack using the pseudo-complete posteriors.
Table 4.3 shows the experimental results of Top-1, Top-2 and Top-3 defenses on

Insta-NY and Adult. For the Adult dataset, we report the results of the decision tree as
the target model; for the Insta-NY dataset, we report the results of the decision tree and
logistic regression as the target model. We report the performance of 4 different attack
models, each selecting the best feature following the principle described in Section 4.2.3.2.
The results show that publishing top k confidence value cannot effectively mitigate our
attack.

Table 4.3: Attack AUC of the defense mechanisms.

Do (MT) MA ND Top-1 Top-2 Top-3 Label TS DP[ε1] DP[ε2]

RF 0.916 0.899 0.906 0.911 0.501 - - -
DT 0.918 0.903 0.906 0.910 0.506 - - -
LR 0.918 0.904 0.907 0.911 0.506 - - -

Adult (DT)

MLP 0.918 0.904 0.909 0.907 0.493 - - -

RF 0.937 0.930 0.931 0.942 0.506 - - -
DT 0.938 0.932 0.932 0.943 0.502 - - -
LR 0.928 0.923 0.927 0.926 0.502 - - -

Insta-NY (DT)

MLP 0.928 0.923 0.927 0.929 0.505 - - -

RF 0.976 0.947 0.965 0.965 0.546 0.635 0.519 0.477
DT 0.972 0.946 0.961 0.961 0.546 0.654 0.524 0.500
LR 0.969 0.948 0.960 0.962 0.546 0.610 0.519 0.500

Insta-NY (LR)

MLP 0.970 0.948 0.960 0.966 0.453 0.653 0.506 0.504

4.3.2 Publishing the Label Only

This defense further reduces the information accessible to the adversary by only pub-
lishing the predicted label instead of confidence values (posteriors). To launch our
attack, the adversary also needs to construct the pseudo-complete posteriors for both
the original model and the unlearned model. The main idea is to set the confidence
value of the predicted class as 1 and set the confidence value of other classes as 0.
Table 4.3 illustrates the performance of the “label only” defense. The experimental
setting is similar to the Top-k defense. The experimental results show that the “label
only” defense can effectively mitigate our attack in all cases. The reason is that deleting
one sample is unlikely to change the output label of a specific target sample.

It is worth noting that recent studies have shown that an adversary can recover, to

86

4.3. MITIGATING THE UNINTENDED PRIVACY RISK

a large extent, the posteriors from the label with the so-called sampling attack [128, 92].
In this case, our membership inference attack is still effective. We leave the investigation
of the improved attack in the presence of label-only publishing defense as future work.

4.3.3 Temperature Scaling

Temperature scaling divides the logits vector by a learned scaling parameter, which is
a simple yet effective approach to eliminate the over-confident problem of the output
posteriors of neural networks [60]. This defense reduces the impact of a single sample
on the output posteriors.

Table 4.3 illustrates the performance of the “temperature scaling” defense. We
report the performance of 4 different attack models, each selecting the best feature
following the principle described in Section 4.2.3.2. The experimental results show
that temperature scaling is an effective defense mechanism. However, this method
only applies to neural networks whose last layer is SoftMax. Logistic regression in our
experiment can be regarded as a neural network with one input layer and one softmax
layer.

4.3.4 Differential Privacy (DP)

DP [89, 42, 122, 24, 111] guarantees that any single data sample in a dataset has a
limited impact on the output. Previous studies have shown DP can effectively prevent
classical membership inference attacks [76, 96]. To validate whether DP can prevent
our membership inference attack in the machine unlearning setting, we train both the
original model and unlearned model in a differentially private manner.

We experiment with Differentially-Private Stochastic Gradient Descent (DP-SGD) [12],
the most representative DP mechanism for protecting machine learning models. The
core idea of DP-SGD is to add Gaussian noise to the gradient g during the model
training process, i.e., g̃ = g +N

(
0,∆2

fσ
2I
)
. We use the Opacus library1 developed by

Facebook to conduct our experiments. Note that since DP-SGD can only be applied
to the ML models that encounter gradient updating in the training process, we only
report the results for logistic regression. We set the privacy budget parameters as
δ = 10−5, ε1 = 4.64, ε2 = 0.7. The last two columns of Table 4.3 illustrate the effective-
ness of the DP defense. The experimental results show that DP can effectively prevent
our membership inference attack. It is worth noting that DP can inevitably degrade

1https://github.com/pytorch/opacus

87

https://github.com/pytorch/opacus

CHAPTER 4. UNDERSTANDING THE PRIVACY RISKS IN MACHINE UNLEARNING

the target model’s accuracy. We need carefully tune the privacy budget parameters to
strike a trade-off between privacy and model utility in practice.

We leave the in-depth exploration of more effective defense mechanisms against our
attack as future work.

4.4 Conclusion

In summary, we have made several important observations:

• Our attack consistently degrades the membership privacy of the Scratch unlearning
method compared to classical membership inference. The attack performance drops
for the SISA unlearning method, which motivates deploying unlearning methods such
as SISA in real-world applications.

• We obtain the following rules for selecting the feature construction methods: (1) use
concatenation-based methods on overfitted models; (2) use difference-based methods
on well-generalized models; (3) sort the posteriors before the concatenation and
difference operations.

• Our transferring attacks show that our attack is still effective when the shadow model
is trained on different-distributed datasets and different architecture from the target
model.

• When the number of unlearned/updating samples represents less than 0.2% of the
training dataset, our attack is still effective in the scenarios of multiple intermediate
unlearned models, group deletion, and online learning.

• Deleting the target sample also degrades the privacy of the remaining samples to
some extent; however, the remaining samples are less sensitive to our attack.

In our evaluation, privacy degradation is especially significant for well-generalized
ML models where classical membership inference does not perform well. To avoid the
potential negative impacts of our attack, we investigate four mechanisms to mitigate
the newly discovered privacy risks and show that releasing the predicted label only,
temperature scaling, and differential privacy are effective. We believe our results can
help improve privacy protection in practical implementations of machine unlearning.

88

5
Assessing the Privacy Risks in

Graph Embedding Sharing Systems

89

Recently, a new family of deep learning models known as graph neural networks
(GNNs) has been proposed to obtain graph embedding and has achieved state-of-the-art
performance. The core idea of GNNs is to train a deep neural network that aggregates
the feature information from neighborhood nodes to obtain node embedding. They can
be further aggregated to obtain the graph embedding for graph classification. Such graph
embedding is empirically considered sanitized since the whole graph is compressed to
a single vector. In turn, it has been shared with third parties to conduct downstream
graph analysis tasks. For example, the graph data owner can generate the graph
embeddings locally and upload them to the Embedding Projector service1 provided by
Google to explore the properties of the graph embeddings visually. Despite that sharing
graph embeddings for downstream graph analysis tasks is intriguing and practical, the
associated security and privacy implications remain unanswered.

In this chapter, we initiate a systematic investigation of the privacy issue of graph
embedding by exploring three inference attacks. The first attack is property inference
attack, which aims to infer the basic properties of the target graph given the graph
embedding, such as the number of nodes, the number of edges, the graph density, etc.
We then investigate the subgraph inference attack. That is, given the graph embedding
and a subgraph of interest, the adversary aims to determine whether the subgraph is
contained in the target graph. For instance, an adversary can infer whether a specific
chemical compound structure is contained in a molecular graph if gaining access to
its graph embedding, posing a direct threat to the intellectual property of the data
owner. The challenge of the subgraph inference attack is that the formats of the graph
embedding (i.e., a vector) and the subgraph of interest (i.e., a graph) are different and
not directly comparable. Finally, we aim to reconstruct a graph that shares similar
structural properties (e.g., degree distribution, local clustering coefficient, etc.) with
the target graph. We call this attack graph reconstruction attack. For instance, if the
target graph is a social network, the reconstructed graph would allow an adversary to
gain direct knowledge of sensitive social relationships.

We introduce the threat model and attack taxonomy in Section 5.1. We depict the
design of three inference attacks in Section 5.2, Section 5.3 and Section 5.4, respectively.
In Section 5.5, we conduct extensive experiments on multiple real-world graph datasets
to illustrate the effectiveness of our proposed attacks. We propose and evaluate an
effective defense mechanism in Section 5.6. We summarize some future work and
conclude the chapter in Section 5.7.

1https://projector.tensorflow.org/

91

https://projector.tensorflow.org/

CHAPTER 5. ASSESSING THE PRIVACY RISKS IN GRAPH EMBEDDING SHARING
SYSTEM

5.1 Threat Model and Attack Taxonomy

5.1.1 Attack Scenario

We focus on the whole graph embedding HG , which is oftentimes computed on a sensitive
graph (e.g., biomedical molecular network and social network). Such graph embedding
HG is empirically considered sanitized since the whole graph is compressed to a single
vector. In practice, it has been shared with third parties to conduct downstream graph
analysis tasks. For example, the graph data owner can calculate the graph embeddings
locally and upload them to the Embedding Projector service provided by Google to
explore the properties of the graph embeddings visually. Another example is that some
companies release their graph embedding systems, together with which they publish
some pretrained graph embeddings to facilitate the downstream tasks. These systems
including the PyTorch BigGraph2 system developed by Facebook, DGL-KE3 system
developed by Amazon, and GROVER developed by Tencent4. Besides, the graph
embeddings can also be shared in the well-known model partitioning paradigm [86, 78].
This paradigm can effectively improve the scalability of inference by allowing the graph
data owner to calculate the graph embeddings locally and upload them to the cloud for
further inference or analysis.

Despite sharing graph embeddings for downstream graph analysis tasks being
intriguing and promising, the associated security and privacy implications remain
unanswered. For instance, Song et al. [152, 149] demonstrated that the embeddings
could leak sensitive information about image and text data in Euclidean space. Recall
that the goal of graph embedding HG is to preserve graph-level similarity. A natural
question is: would the graph embedding HG leak sensitive structural information of its
corresponding graph G?

5.1.2 Threat Model

We consider the scenario where the adversary obtains a whole graph embedding (which
is referred to as target graph embedding HGT

) from the victim, either from Embedding
Projector, pretrained graph embeddings, or model partitioning paradigm. The goal of
the adversary is to infer the sensitive information of the graph that is used to generate
this graph embedding. We call this graph target graph GT and the GNN model that

2https://github.com/facebookresearch/PyTorch-BigGraph
3https://github.com/awslabs/dgl-ke
4https://github.com/tencent-ailab/grover

92

https://github.com/facebookresearch/PyTorch-BigGraph
https://github.com/awslabs/dgl-ke
https://github.com/tencent-ailab/grover

5.1. THREAT MODEL AND ATTACK TAXONOMY

is used to generate the target graph embedding target embedding model FT . Note
that inferring the sensitive information of the target graph with “graph embedding” is
more challenging than that with “node embeddings” in previous study [40]. From the
attacker’s perspective, it represents the most difficult setting since the whole graph is
compressed to a single vector by the aforementioned pooling methods in Section 2.1.2.
To train the attack model FA, we assume the adversary has an auxiliary dataset Daux
that comes from the same distribution of the target graph. This is plausible in practice.
For instance, if the target graph embedding is generated from a social network, the
adversary can collect social network graphs by themselves through public data API.5

For molecular networks, the adversary can use public datasets online.6 We also show
that our attacks are still effective when Daux comes from a different distribution than
the target graphs in Section 5.5. We further assume the adversary only has black-box
access to the target embedding model [152, 149], which is the most difficult setting for
the adversary [145, 74, 150, 104, 150]. This assumption is plausible when the target
embedding model is accessible via public API or freely available online.7

5.1.3 Attack Taxonomy

We formalize three inference attacks that can reveal sensitive information about the
target graph given the threat model. An overview of the attack taxonomy is shown
in Figure 5.1. Concretely, the adversary obtains the whole graph embedding HGT

of a
sensitive target graph GT , which is primarily shared with third parties for downstream
tasks, and aims to infer sensitive information about GT : (1) Infer the basic properties
of GT , such as the number of nodes, the number of edges, and graph density (FAP);
(2) given a subgraph of interest GS , infer whether GS is contained in GT (FAS); (3)
reconstruct a graph GR that is similar with GT (FAR).

Property Inference Attack (FAP). Given the target graph embedding HGT
, the

attack goal is to infer the basic properties of GT , such as the number of nodes, the
number of edges, the density, etc. Note that the primary goal of GNN is learning
information from graphs for downstream tasks, e.g., protein toxicity prediction. Many
graph properties, such as node numbers, are not related to the downstream tasks,
and successful property inference attacks imply such properties are overlearned [152,
149] by GNNs. These properties can be proprietary when the graph contains valuable

5https://developer.twitter.com/en/docs/twitter-api
6https://chrsmrrs.github.io/datasets
7http://snap.stanford.edu/gnn-pretrain/

93

https://developer.twitter.com/en/docs/twitter-api
https://chrsmrrs.github.io/datasets
http://snap.stanford.edu/gnn-pretrain/

CHAPTER 5. ASSESSING THE PRIVACY RISKS IN GRAPH EMBEDDING SHARING
SYSTEM

Downstream Tasks
• Graph Classification
• Graph Matching
• Graph Visualization
• ……

Target
Embedding
Model ℱ!

Target Graph
Embedding

H𝒢!

Target Graph 𝒢#

Property Inference
ℱ$%

• Graph density
• Number of nodes
• Number of edges
• ……

Subgraph Inference
ℱ$&

Graph Reconstruction
ℱ$'

𝒢'

𝒢&

• Is 𝒢& in 𝒢# ? • Reconstruct 𝒢#

Figure 5.1: Attack taxonomy of the graph embedding.

information, such as molecules. Inferring such properties can directly violate the
intellectual property (IP) of the data owner.

Subgraph Inference Attack (FAS). Given the target graph embedding HGT
and a

subgraph of interest GS , the attack goal is to infer whether GS is contained in GT . For
instance, an attacker can infer whether a specific chemical compound structure (GS) is
contained in a molecular graph (GT) if gaining access to its graph embedding (HGT

).
Note that we consider the scenario where the subgraph constitutes a major part of

the target graph. Small graphs, such as triangles or stars, are universal for almost all
graphs, hence not taking part in our subgraph inference attack.

Graph Reconstruction Attack (FAR). Given the graph embedding HGT
, the attack

goal is to reconstruct a graph GR that shares similar graph structural statistics, such
as degree distribution and local clustering coefficient, with GT . Concretely, we aim to
reconstruct an adjacency matrix A of GT . Knowing the high-level structural quantities
of the molecular graphs may lead to IP loss for the companies creating them. For
instance, the adversary can develop generic drugs at a much lower cost than the famous
pharmaceutical companies by exploiting the high-level structural quantities of the
reconstructed molecular graphs to narrow down the search space.

5.2 Property Inference Attack

5.2.1 Attack Overview

Given the target graph embedding HGT
, the goal of the property inference attack is

to infer the basic properties of the target graph GT , such as the number of nodes, the
number of edges, and density. Figure 5.2 illustrates the general attack pipeline of the

94

5.2. PROPERTY INFERENCE ATTACK

property inference attack. Our attack model FAP takes as input the target graph
embedding HGT

and outputs all the interested graph properties of GT simultaneously.
The attack model FAP is a multi-task classifier, which consists of multiple output layers,
each predicting one graph property.

Graph Density

Target Graph
Embedding

𝐻𝒢!

Attack Model ℱ"#

Number of Nodes

Number of Edges

......

Figure 5.2: Attack pipeline of the property inference attack.

5.2.2 Attack Model FAP

Model Definition. Formally, the property inference attack FAP is defined as

FAP : HGT
→ {graph properties}

Concretely, the attack model consists of a feature extractor E (multiple sequential linear
layers), and multiple parallel prediction layersM, each responsible for predicting one
property. We outline the technical details of building FAP below.

Training Data. To train the attack model, we need a set of graph embeddings HG
and a set of properties of interest P. As discussed in Section 5.1, the adversaries have
access to an auxiliary dataset Daux that comes from the same distribution of GT . The
adversaries can obtain the auxiliary graph embedding HGaux of the auxiliary graph
Gaux ∈ Daux by querying the target embedding model. Finally, we use the graph
properties of Gaux to label HGaux . We further bucketize the domain of the property
values into k bins. For instance, if the density of a graph is in the range of [0, 1] and
k = 5, we bucketize the graph density into 5 bins, which results in 5 classes in the
classification. Note that modeling the inference of continuous value into a multi-class
classification is commonly used, such as demographic properties prediction in social
networks [101] and dropout rate prediction [115].

95

CHAPTER 5. ASSESSING THE PRIVACY RISKS IN GRAPH EMBEDDING SHARING
SYSTEM

Training Attack Model. Recall that the attack model FAP combines a feature
extractor E and multiple prediction layers M. We can train the attack model by
optimizing the following optimization problem:

min E
Gaux∈Daux

∑
p∈P
L [Mp(E(HGaux)), p]

, where P is the set of properties that the attackers interested, p is a property in P, L is
the cross-entropy loss. Notice that all properties share the same parameters for E , and
use different parameters forMp.

5.3 Subgraph Inference Attack

5.3.1 Attack Overview

Given the target graph embedding HGT
and a subgraph of interest GS , the attack goal is

to infer whether GS is contained in GT . Here, we assume that GS constitutes a major part
of the target graph GT .8 That is, we do not focus on small subgraphs, such as triangles
or stars, as they appear in almost all the graphs, thus not worth the adversary’s efforts.
The general attack pipeline of the subgraph inference attack is illustrated in Figure 5.3.
The attack model FAS has two inputs with different formats, namely target graph
embedding and subgraph. The subgraph is transformed into a subgraph embedding by
an embedding extractor integrated into the attack model, aggregated with the target
embedding, and sent to a binary classifier for prediction.

Is 𝒢!
in 𝒢"?

MLP

Target Graph
Embedding

H𝒢!

Attack Model ℱ$%

Subgraph
Embedding H𝒢"

Embedding
Extractor ℱ&𝒢!

⊕

Figure 5.3: Attack pipeline of the subgraph inference attack.

Note that the subgraph inference attack is more challenging than the property
8We experiment with subgraphs containing from 20% to 80% of the target graph’s nodes (see

Section 5.5.3).

96

5.3. SUBGRAPH INFERENCE ATTACK

inference attack FAP . First, subgraph isomorphism is known to be NP-complete [50].
Second, the attack model FAS has two inputs with different formats, namely the
embedding (HGT

) and the graph (GS), and cannot be directly compared. To make the
two inputs comparable, we integrate a graph embedding extractor ME in the attack
model to transform the subgraph GS to a subgraph embedding HGS

. The architecture
ofME can be either the same with (when the target embedding model is known) or
different from (when the target embedding model is unknown) the target embedding
model FT . Finally, the target graph embedding HGT

and the subgraph embedding HGS

are aggregated, using the approaches introduced in Section 5.3.2, and sent to a binary
classifier for prediction.

5.3.2 Attack Model FAS

Attack Definition. Formally, the subgraph inference attack is defined as

FAS : 〈HGT
,GS〉 → {GS ∈ GT ,GS /∈ GT }

Concretely, the attack model FAS is a binary classifier to determine if a given subgraph
GS is contained in the target graph GT . We outline the technical details of building FAS
below.

Generating Positive and Negative Samples. Similar to the property inference
attack, we use the auxiliary dataset Daux to obtain the training data for the attack
model FAS . To generate ground truth for FAS , given an auxiliary graph Gaux ∈ Daux,
we generate a positive subgraph GS ∈ Gaux and a negative subgraph ḠS /∈ Gaux. The
positive subgraph GS is generated by sampling a subgraph from the auxiliary graph
Gaux using the graph sampling method, such as random walk. To generate the negative
subgraph ḠS , we use the same sampling method to sample a subgraph from another
auxiliary graph G′aux ∈ Daux and G′aux 6= Gaux. As aforementioned, the subgraph of
interest constitutes a major part of the target graph, and the sampled negative subgraph
ḠS is unlikely to be contained in Gaux.

For each auxiliary graph Gaux, we have one positive subgraph GS and one negative
subgraph ḠS . The adversary first obtains the auxiliary graph embedding HGaux by
querying the target embedding model. They then have a positive sample 〈HGaux ,GS〉,
which is labeled as 1, and a negative sample 〈HGaux , ḠS〉, which is labeled as 0, for the
attack model.

Constructing Features. The attack model first uses a graph embedding extractor to

97

CHAPTER 5. ASSESSING THE PRIVACY RISKS IN GRAPH EMBEDDING SHARING
SYSTEM

transform the subgraph GS into a subgraph embedding HGS
to make the two inputs

comparable. The attack model then aggregates the target graph embedding HGT
and

the subgraph embedding HGS
to generate an attack feature vector χ. We propose the

following three aggregation strategies:

• Concatenation. A commonly used approach is to concatenate the two graph
embeddings, i.e., χ = HGT

||HGS
, where || is the concatenation operation.

• Element-wise Difference. An alternative is to calculate the element-wise difference
between two graph embeddings, i.e., χ = HGT

−HGS
.

• Euclidean Distance. Another approach is to calculate the Euclidean distance
between two graph embeddings, i.e., χ = ||HGT

−HGS
||2.

We empirically evaluate the effectiveness of these three strategies in Section 5.5.3.

Training Attack Model. The final step of the attack is to send the attack feature
vector χ to a binary classifier, which is modeled as an MLP (multi-layer perceptron), to
determine whether GS is contained in GT . We use the cross entropy loss and gradient
descent algorithm to train the attack model. Note that the binary classifier and the
graph embedding extractor in the attack model FAS are trained simultaneously.

5.4 Graph Reconstruction Attack

5.4.1 Attack Overview

Given the target graph embedding HGT
, the attack goal is to reconstruct a graph

GR that has similar graph statistics, such as degree distribution and local clustering
coefficient, with the target graph GT . Figure 5.4 shows the overall attack pipeline of the
graph reconstruction attack. The attack model FAR is a decoder that can transform
the embedding into a graph. The decoder can be obtained from the graph auto-encoder
paradigm. The graph reconstruction attack is the most challenging task because we
are rebuilding the whole graph from a single vector HG. To this end, the attack model
FAR leverages a tailored graph auto-encoder [146] and puts its decoder into service to
transform the graph embedding into a graph. Once trained, the adversary feeds HGT

to
the decoder, and the decoder outputs reconstructed graph GR that has similar graph
statistics with the target graph GT .

98

5.4. GRAPH RECONSTRUCTION ATTACK

𝒢!

E DH Graph
Matching

Attack Shadow Model

D

Attack Model ℱ"#

𝒢"$%

𝒢&

Train

Inference

Target Graph
Embedding

H𝒢!

Figure 5.4: Attack pipeline of the graph reconstruction attack.

5.4.1.1 Attack Model FAR

Attack Definition. Formally, the graph reconstruction attack is defined as

FAR : HGT
→ GR

Essentially, the graph reconstruction attack FAR is the decoder of a customized graph
auto-encoder. We outline the technical details of building FAR below.

Graph Auto-encoder Design. We use the graph auto-encoder paradigm to train the
attack model. The architecture is shown in the training phase of Figure 5.4. We use an
auxiliary dataset Daux to train the graph auto-encoder. Different from the auto-encoder
in the image domain, the graph auto-encoder has an additional component named
graph matching except for the encoder and decoder. The reason for introducing the
graph matching component is that neither the auxiliary graph Gaux ∈ Daux nor the
reconstructed graph GR imposes node orderings (i.e., graph isomorphism), making the
calculation of loss between Gaux and GR inaccurate. For instance, an auxiliary graph
Gaux and a reconstructed graph GR with the same structure and completely different
node orderings can have different adjacency matrices, such that the loss between Gaux
and GR is large while it is expected to be zero. Besides, the encoder in the graph
auto-encoder can transform a graph to graph embedding, which can be modeled as a
GNN model. The decoder can transform the graph embedding back to the graph in the
form of an adjacency matrix, which can be modeled as a multi-layer perceptron.

99

CHAPTER 5. ASSESSING THE PRIVACY RISKS IN GRAPH EMBEDDING SHARING
SYSTEM

Graph Matching. Following the same strategy as in [146], we adopt the maximum
pooling matching method in our implementation. The main idea is to find a trans-
formation matrix Y ∈ {0, 1}n×n between GT and GR, where Ya,i = 1 if node va ∈ GT
is assigned to vi ∈ GR, and Ya,i = 0 otherwise. Due to space limitation, we refer the
readers to [146] for the detailed calculation of Y .

Training Attack Model. To train the graph auto-encoder, we use the cross entropy
to calculate the loss between Gaux and GR, which calculates the cross entropy between
each pair of elements in Gaux and GR. Formally, denote the adjacency matrix of Gaux
and GR as AGaux and AGR

respectively. For each training sample, we first conduct the
graph matching to obtain Y , then use the cross entropy between AGaux and Y AGR

Y T

to update the graph auto-encoder.

Fine-tuning Decoder. Note that the structure or the parameters of the encoder can
be different from the target embedding model; thus, the decoder may not perfectly
capture the correlation between the auxiliary graph Gaux and its graph embedding HGaux

generated by the target embedding model. To address this issue, we use the auxiliary
graph Gaux to query the target embedding model and obtain the corresponding graph
embedding HGaux . Then, the graph-embedding pairs 〈Gaux, HGaux〉 obtained from the
target embedding model are used to fine-tune the decoder using the same procedure of
graph matching and loss function as aforementioned [131].

Discussion. Both the space and time complexity of the graph matching algorithm is
O(n4); thus, our attack can only be applied to graphs with tens of nodes. This is enough
in many real-world datasets, such as bioinformatics and molecular graphs. In the future,
we plan to investigate more advanced methods to extend our attacks to larger graphs.
Besides, our current attack can only restore the graph structure of the target graph.
We plan to reconstruct the node features and the graph structure simultaneously in the
future.

5.5 Evaluation

5.5.1 Experimental Setup

Datasets. We conduct our experiments on five public graph datasets from TU-
Dataset [107], including DD, ENZYMES, AIDS, NCI1, and OVCAR-8H. These datasets
are widely used as benchmark datasets for evaluating the performance of GNN mod-
els [177, 34, 44, 41]. DD and ENZYMES are bioinformatics graphs, where the nodes

100

5.5. EVALUATION

Table 5.1: Dataset statistics.

Dataset Type #. Graphs Avg. Nodes Avg. Edges #. Feats #. Classes

DD Bioinformatics 1,178 284.32 715.66 89 2
ENZYMES Bioinformatics 600 32.63 62.14 21 6

AIDS Molecules 2,000 15.69 16.20 42 2
NCI1 Molecules 4110 29.87 32.30 37 2

OVCAR-8H Molecules 4052 46.67 48.70 65 2
PC3∗ Molecules 2751 26.36 28.49 37 2

MOLT-4H∗ Molecules 3977 46.70 48.74 65 2

represent the secondary structure elements, and an edge connects two nodes if they are
neighbors along the amino acid sequence or one of the three nearest neighbors in space.
The node features consist of the amino acid type, i.e., helix, sheet, or turn, as well as
several physical and chemical information. AIDS, NCI1, and OVCAR-8H are molecule
graphs, where nodes and edges represent atoms and chemical bonds, respectively. The
node features typically consist of one-hot encoding of the atom type, e.g., hydrogen,
oxygen, carbon, etc. Each dataset has multiple independent graphs with a different
number of nodes and edges, and each graph is associated with a label. For instance, the
label of the molecule datasets indicates the toxicity or biological activity determined in
drug discovery projects. Table 5.1 summarizes the statistics of all the datasets.

Graph Embedding Models. As discussed in Section 2.1.2, the graph embedding
models typically consist of node embedding modules and graph pooling modules (see
Section 2.1.2). In our experiments, we use a 3-layer SAGE [64] module to implement
node embedding. For graph pooling, we consider the following three methods.

• MeanPool [63]. Given all the node embeddings Hu,∀u ∈ G, MeanPool directly aver-
age all the node embeddings to obtain the graph embedding, i.e., HG = 1

|G|
∑
u∈G Hu,

where |G| is the number of nodes in G.

• DiffPool [185]. This is a hierarchical pooling method, which relies on multiple
layers of graph pooling operations to obtain the graph embedding HG . Concretely,
we use three layers of graph pooling operations in our implementation. The first and
second graph pooling layers narrow the number of nodes to 0.25 · |G| and 0.252 · |G|,
respectively, using DiffPool operation. In the last layer of graph pooling, we use the
mean pooling operation to generate the final graph embedding HG .

• MinCutPool [23]. This is also a hierarchical graph pooling method. Similar to
DiffPool, we use three layers of graph pooling operations. The first two graph pooling

101

CHAPTER 5. ASSESSING THE PRIVACY RISKS IN GRAPH EMBEDDING SHARING
SYSTEM

layers narrow the number of nodes to 0.5 · |G| and 0.52 · |G|, respectively, using
MinCutPool operation, and the last layer uses the mean pooling operation.

For presentation purposes, we use the name of graph pooling methods, namely
MeanPool, DiffPool, and MinCutPool, to represent the graph embedding models in this
section.

Experimental Settings. For each dataset D, we split it into three disjoint parts,
target dataset DT , attack training dataset DtrainA , and attack testing dataset DtestA . The
target dataset DT (40%) is used to train the target embedding model FT , which is shared
by all three inference attacks. The attack training dataset DtrainA (30%) corresponds to
the auxiliary dataset Daux, which is used to generate the training data for the attack
model. The attack testing dataset DtestA (30%) corresponds to the target graph GT in
the attack phase. By default, we set the graph embedding dimension dH as 192, which
is the default setting of PyTorch Geometric.

5.5.2 Property Inference Attack

Evaluation Metrics. As the attack goal of the property inference attack is to infer
the basic graph properties of the target graph GT , a commonly used metric to measure
the attack performance is the attack accuracy, which calculates the proportion of graphs
being correctly inferred.

Attack Setup. We conduct extensive experiments on five real-world graph datasets
and three state-of-the-art GNN-based graph embedding models. In our experiments,
we consider five different graph properties: Number of nodes, number of edges, graph
density, graph diameter, and graph radius. For each graph property, we bucketize its
domain into k bins, which transforms the attack into a multi-class classification problem.
Concretely, for the number of nodes (edges) and the graph diameter (radius), the
property domain is from 1 to the maximum number of nodes (edges) and the maximum
graph diameter (radius) in the auxiliary dataset Daux. For the graph density, the
property domain is [0.0, 1.0]. In our experiments, we consider four different bucketization
schemes, i.e., k ∈ {2, 4, 6, 8}.

Competitors. We have two competitors for evaluating the effectiveness of our proposed
attack.

• Random Guessing (Random). The most straightforward baseline is random
guessing, which varies for different bucketization schemes. For instance, the attack

102

5.5. EVALUATION

accuracy of random guessing for k = 2 and k = 8 are 0.5 and 0.125.

• Directly Summarizing Auxiliary Dataset (Baseline). Another baseline attack
directly summarizes the properties from the auxiliary dataset Daux instead of training
a classifier. Concretely, we calculate the average property values from Daux and use
them for predicting the properties of the target graphs.

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

A
cc

ur
ac

y
(N

um
b

er
of

N
od

es
) DD

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0
ENZYMES

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0
AIDS

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0
NCI1

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0
OVCAR-8H

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

A
cc

ur
ac

y
(N

um
b

er
of

E
dg

es
)

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

A
cc

ur
ac

y
(G

ra
ph

D
en

si
ty

)

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 80.0

0.2

0.4

0.6

0.8

1.0

4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

4 6 2

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

A
cc

ur
ac

y
(G

ra
ph

D
ia

m
et

er
)

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k

A
cc

ur
ac

y
(G

ra
ph

R
ad

iu
s)

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 80.0

0.2

0.4

0.6

0.8

1.0

4 6 80.0

0.2

0.4

0.6

0.8

1.0

2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

MeanPool DiffPool

4 6

MinCutPool

2

Random Baseline

Figure 5.5: Attack accuracy for property inference.

Experimental Results. Figure 5.5 illustrates the attack performance, where different
rows represent different graph properties and different columns represent different
datasets. In each figure, different legends stand for different graph embedding models,
and different groups stand for different bucketization schemes. The Random and Baseline
methods represent the random guessing and summarizing auxiliary dataset baseline,
respectively.

In general, the experimental results show that our attack outperforms two baseline
attacks in most of the settings. For instance, when the bucketization scheme k = 2,

103

CHAPTER 5. ASSESSING THE PRIVACY RISKS IN GRAPH EMBEDDING SHARING
SYSTEM

on the number of nodes property, we can achieve an attack accuracy of 0.904 on the
DD dataset for the DiffPool model, while the attack accuracy of random guessing and
summarizing auxiliary dataset baseline is 0.500 and 0.541, respectively. We further
observe that a larger bucketization scheme k leads to worse attack accuracy. This is
expected because larger k requires higher granularity of graph structural information
and is more difficult for the classifier to distinguish. In addition, we note that, in most
of the cases, the attack accuracy on the MeanPool model is worse than that of the other
two graph embedding models, and sometimes even close to that of the random guessing
baseline. This can be explained by the fact that the MeanPool model directly averages
all the node embeddings, which might lose some graph structural information.

Datasets Transferability. In previous experiments, we assume the auxiliary dataset
Daux comes from the same distribution as the target graphs. To relax this assumption,
we conduct additional experiments when Daux comes from a different distribution than
the target graphs. We evaluate the transferability between OVCAR-8H (OVC) and
MOLT-4H (MOL), as well as between NCI1 and PC3 on MinCutPool with k = 2. The
experimental results in Figure 5.6 show that our property inference attack is still effective
when Daux and the target graphs come from different distributions.

OVC MOL

O
V

C
M

O
L

0.724 0.664

0.691 0.718

Num of Nodes

OVC MOL

O
V

C
M

O
L

0.728 0.662

0.701 0.709

Num of Edges

OVC MOL

O
V

C
M

O
L

0.737 0.683

0.695 0.720

Graph Density

NCI1 PC3

N
C

I1
P

C
3

0.828 0.749

0.817 0.754

Num of Nodes

NCI1 PC3

N
C

I1
P

C
3

0.831 0.748

0.807 0.755

Num of Edges

NCI1 PC3

N
C

I1
P

C
3

0.829 0.760

0.816 0.762

Graph Density

Figure 5.6: Datasets transferability for property inference attack.

5.5.3 Subgraph Inference Attack

Evaluation Metrics. Recall that the subgraph inference attack is a binary classification
task; thus, we use the AUC metric to measure the attack performance, which is widely
used to measure the performance of binary classification in a range of thresholds [48, 18,

104

5.5. EVALUATION

124, 77, 191, P2]. The higher AUC value implies better attack performance. An AUC
value of 1 implies maximum performance (true-positive rate of 1 with a false-positive
rate of 0), while an AUC value of 0.5 means performance equivalent to random guessing.

Attack Setup. We conduct extensive experiments on five graph datasets and three
graph embedding models to evaluate the effectiveness of our proposed attack. To obtain
the subgraph, we rely on three graph sampling methods: Random walk sampling,
snowball sampling, and forest fire sampling.

• Random Walk Sampling. The main idea of RandomWalk is to randomly pick a
starting node and then simulate a random walk on the graph until we obtain the
desired number of nodes.

• Snowball Sampling. The main idea of Snowball is to randomly select a set of seed
nodes, and then iteratively select a set of neighboring nodes of the selected nodes
until we obtain the desired number of nodes.

• Forest Fire Sampling. The main idea of FireForest is to randomly select a seed
node, and begin “burning” outgoing edges and the corresponding nodes. Here, a node
“burns” its outgoing edges and the corresponding nodes means these edges and nodes
are sampled. If an edge gets burned, the node at the other endpoint gets a chance
to burn its own edges, and so on recursively until we obtain the desired number of
nodes.

For each sampling method, we consider four sampling ratios, i.e., {0.2, 0.4, 0.6, 0.8},
which determines how many nodes are contained in the subgraph. In practice, the
sampling ratio is determined by the size of the subgraph of interest.

We use the element-wise difference to generate the feature vector χ. We generate
the same number of positive samples and negative samples in both training and testing
datasets to learn a balanced model.

Competitor. Recall that we integrate a graph embedding extractor in the attack model
to transform the subgraph into subgraph embedding in Section 5.3. The embedding
extractor is jointly trained with the binary classifier in the attack model. An alternative
for subgraph inference is to generate the subgraph embedding from the target model
together with the target graph embedding, and then train an isolated binary classifier
as the attack model. To validate the necessity of integrating an embedding extractor

105

CHAPTER 5. ASSESSING THE PRIVACY RISKS IN GRAPH EMBEDDING SHARING
SYSTEM

in the attack model, we compare it with the baseline attack that obtains subgraph
embeddings from the target model.

Experimental Results. Figure 5.7 illustrates the attack performance, where different
rows represent different datasets, and different columns represent different sampling
methods. In each figure, different legends and groups stand for different graph embedding
models and different sampling ratios. We use the element-wise difference method to
generate the feature vector χ.

The experimental results show that our attack is effective in most of the settings,
especially when the sampling ratio is 0.8. For instance, we can achieve 0.982 attack
AUC on the DD dataset and MeanPool model with FireForest sampling method. Besides,
we observe that when the sampling ratio decreases, the attack AUC decreases for most
settings. This is expected as the positive samples, and the negative samples tend to
be more similar to each other on smaller subgraphs, making the attack model more
difficult to distinguish between them. Despite this, our attack can still achieve 0.859
attack AUC on ENSYMES and MeanPool with Snowball when the sampling ratio is 0.2.

Comparing different graph embedding models, we further observe that the subgraph
inference attack performs the best on the MeanPool model in most settings, which is
opposite to the property inference attack. We suspect this is because DiffPool and
MinCutPool decompose the graph structure during their pooling process; thus, the
subgraph as a whole might never be seen by the target model. This makes it harder for
graph embedding matching to be effective.

Necessity of Embedding Extractor. Comparing with the baseline, we observe that
our subgraph inference attack consistently outperforms the baseline attack in most
cases, especially when the sampling ratio is small. For instance, on the DD dataset,
when the sampling ratio is 0.2, our attack achieves 0.821 AUC on MeanPool model and
FireForest sampling method, while the baseline attack achieves an AUC of 0.515. We
further observe that when the sampling ratio increases, the baseline attack can gradually
achieve a comparable attack AUC as our attack. This is expected as distinguishing
between the positive subgraph, and negative subgraph is much easier when the sampling
ratio is large.

Comparison of Feature Construction Methods. We propose three strategies to
aggregate the graph embeddings of the target graph and the subgraph of interest in
the attack model FAS , namely concatenation, element-wise difference, and Euclidean
distance, in Section 5.3. We now compare the performance of different strategies.

106

5.5. EVALUATION

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

D
D

A
tt

ac
k

A
U

C

RandomWalk

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0 Snowball

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0 FireForest

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

E
N

Z
Y

M
E

S
A

tt
ac

k
A

U
C

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.80.0

0.2

0.4

0.6

0.8

1.0

A
ID

S
A

tt
ac

k
A

U
C

0.2 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.6 0.4

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

N
C

I1
A

tt
ac

k
A

U
C

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.40.0

0.2

0.4

0.6

0.8

1.0

O
V

C
A

R
-8

H
A

tt
ac

k
A

U
C

0.2 0.80.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

0.6 0.8

MeanPool

MeanPool (Baseline)

0.4 0.6

DiffPool

DiffPool (Baseline)

MinCutPool

MinCutPool (Baseline)

Figure 5.7: Attack AUC for subgraph inference attack.

Table 5.2: Attack AUC for different feature construction methods in the subgraph
inference attack.

0.8 0.6 0.4 0.2
Dataset Concat EDist EDiff Concat EDist EDiff Concat EDist EDiff Concat EDist EDiff

DD 0.53 ± 0.01 0.81 ± 0.06 0.88 ± 0.01 0.51 ± 0.01 0.79 ± 0.04 0.87 ± 0.01 0.52 ± 0.01 0.79 ± 0.02 0.85 ± 0.01 0.50 ± 0.02 0.71 ± 0.08 0.80 ± 0.00

ENZYMES 0.49 ± 0.02 0.63 ± 0.10 0.88 ± 0.03 0.52 ± 0.03 0.71 ± 0.10 0.88 ± 0.03 0.54 ± 0.02 0.56 ± 0.07 0.86 ± 0.01 0.48 ± 0.02 0.53 ± 0.03 0.78 ± 0.01

AIDS 0.51 ± 0.01 0.53 ± 0.04 0.78 ± 0.04 0.55 ± 0.01 0.51 ± 0.02 0.76 ± 0.05 0.54 ± 0.01 0.51 ± 0.03 0.73 ± 0.06 0.56 ± 0.02 0.50 ± 0.00 0.76 ± 0.05

NCI1 0.51 ± 0.00 0.51 ± 0.02 0.70 ± 0.06 0.49 ± 0.02 0.52 ± 0.01 0.67 ± 0.06 0.50 ± 0.01 0.51 ± 0.01 0.64 ± 0.03 0.49 ± 0.01 0.51 ± 0.01 0.64 ± 0.00

OVCAR-8H 0.54 ± 0.01 0.63 ± 0.12 0.89 ± 0.02 0.50 ± 0.04 0.69 ± 0.09 0.88 ± 0.02 0.51 ± 0.03 0.74 ± 0.02 0.84 ± 0.01 0.54 ± 0.01 0.60 ± 0.13 0.82 ± 0.02

Table 5.2 shows the experimental results on five datasets when the graph embedding
model is DiffPool, and the graph sampling method is RandomWalk. Due to space
limitation, we use Concat, EDist, and EDiff to represent Concatenation, Euclidean
Distance, and Element-wise Difference, respectively.

We observe that the element-wise difference method achieves the best performance,
while the concatenation method has an attack AUC close to random guessing. This

107

CHAPTER 5. ASSESSING THE PRIVACY RISKS IN GRAPH EMBEDDING SHARING
SYSTEM

indicates that the discrepancy information between two graph embeddings (element-wise
difference method) is more informative than the plain graph embeddings (concatenation
method) in terms of subgraph inference attack. Note that the Euclidean distance also
implicitly captures the discrepancy information of two graph embeddings, while it relies
on one scalar value and loses other rich discrepancy information.

Sampling Methods Transferability. So far, our experiments use the same sampling
method for the auxiliary graph to train the attack model and the target graph to test the
attack model. We conduct additional experiments to show whether our attack still works
when the sampling methods are different. Figure 5.8 illustrates the experimental results
on DD and ENZYMES datasets. RW, SB, and FF are abbreviations for RandomWalk,
Snowball, and FireForest, respectively. We use DiffPool as the graph embedding model
and adopt a sampling ratio of 0.8. As we can see, in most cases, the sampling methods
do not have a significant impact on the attack performance.

RW SB FF

R
W

S
B

F
F

0.881 0.888 0.917

0.882 0.877 0.891

0.899 0.896 0.917

DD

RW SB FF

R
W

S
B

F
F

0.879 0.901 0.888

0.864 0.854 0.863

0.846 0.894 0.865

ENZYMES

Figure 5.8: Sampling methods transferability for subgraph inference attack.

Embedding Models Transferability. In previous experiments, the architecture of
the graph embedding extractor in the attack model is the same as the target embedding
model. In practice, the model architecture of the target embedding model might be
unknown to the adversaries. To understand whether our attack still works when the
architectures are different, we conduct experiments on the DD and ENZYMES datasets.
Figure 5.9 illustrates the experimental results of RandomWalk sampling method with a
sampling ratio of 0.8. MP, DP, and MCP are abbreviations for MeanPool, DiffPool, and
MinCutPool, respectively. We observe that the attack performance drops slightly when
the model architectures are different. Despite this, we can still achieve a 0.773 attack
AUC in the worse case.

Datasets Transferability. Similar to the property inference attack, to relax the
assumption that Daux comes from the same distribution of the target graphs, we
conduct additional experiments when Daux and the target graphs come from different

108

5.5. EVALUATION

MP DP MCP

M
P

D
P

M
C

P

0.971 0.791 0.773

0.834 0.881 0.846

0.847 0.879 0.875

DD

MP DP MCP

M
P

D
P

M
C

P

0.978 0.777 0.874

0.919 0.879 0.874

0.905 0.852 0.877

ENZYMES

Figure 5.9: Embedding models transferability for subgraph inference attack.

distributions. We experiment on the RandomWalk method with a sampling ratio of 0.8.
The experimental results in Figure 5.10 show that our subgraph inference attack is still
effective for dataset transfer.

NCI1 PC3

N
C

I1
P

C
3

0.974 0.971

0.957 0.976

MeanPool

NCI1 PC3

N
C

I1
P

C
3

0.718 0.747

0.677 0.789

DiffPool

NCI1 PC3

N
C

I1
P

C
3

0.848 0.853

0.845 0.892

MinCutPool

OVC MOL

O
V

C
M

O
L

0.958 0.985

0.950 0.994

MeanPool

OVC MOL

O
V

C
M

O
L

0.892 0.803

0.861 0.814

DiffPool

OVC MOL

O
V

C
M

O
L

0.750 0.708

0.729 0.758

MinCutPool

Figure 5.10: Dataset transferability for subgraph inference.

5.5.4 Graph Reconstruction Attack

Evaluation Metrics. We evaluate the performance of graph reconstruction from two
perspectives:

1. Graph Isomorphism. The graph isomorphism compares the structure of the
reconstructed graph GR with the target graph GT and determines their similarity.
The graph isomorphism problem is well-known to be intractable in polynomial
time; thus, approximate algorithms such as Weisfeiler-Lehman (WL) algorithm
are widely used for addressing it [141, 177, 108]. The general idea of the WL
algorithm is to calculate the WL graph kernel of two graphs iteratively. We

109

CHAPTER 5. ASSESSING THE PRIVACY RISKS IN GRAPH EMBEDDING SHARING
SYSTEM

normalize the WL graph kernel in the range of [0.0, 1.0], and a WL graph kernel
of 1.0 means two graphs perfectly match. We adopt the DGL implementation of
the WL algorithm in our experiments.9

2. Macro-level Graph Statistics. Recall that the objective of the graph recon-
struction attack is to generate a graph GR that has similar graph statistics with
the target graph GT . In practice, there are a plethora of graph structural statistics
to analyze a graph, we adopt four of them: Degree distribution, local clustering
coefficient (LCC), betweenness centrality (BC), and closeness centrality (CC).

• Degree Distribution. The degree distribution P (k) of a graph is defined to
be the fraction of nodes in the graph with degree k. It is the most widely used
graph statistic to quantify a graph.

• Local Clustering Coefficient (LCC). The LCC of a node quantifies how
close its neighbors are being into a cluster. It is primarily introduced to
determine whether a graph is a small-world network.

• Betweenness Centrality (BC). The betweenness centrality is a measure of
centrality in a graph based on the shortest paths. For every pair of nodes in
a graph, there exists at least one shortest path between the nodes such that
either the number of edges that the path passes through is minimized. The
betweenness centrality for each node is the number of these shortest paths that
pass through the node.

• Closeness Centrality (CC). The CC of a node is a measure of centrality in
a graph, which is calculated as the reciprocal of the sum of the length of the
shortest paths between the node and all other nodes in the graph. Intuitively,
the more central a node is, the closer it is to all other nodes.

Note that the number of nodes in GR might be different from the target graph GT
due to the graph auto-encoder architecture, and there are no node orderings imposed for
GR and GT ; thus, we cannot directly compare the node-level graph statistics including
LCC, CC, and BC. To address this issue, we bucketize the statistic domain into 10
bins and measure their distributions. For each graph statistic, we use three metrics to
measure the distribution similarity between the target graph GT and the reconstructed
graph GR: Cosine similarity, Wasserstein distance, and Jensen-Shannon (JS) divergence.

9https://github.com/InkToYou/WL-Kernel-DGL

110

https://github.com/InkToYou/WL-Kernel-DGL

5.5. EVALUATION

Intuitively, higher cosine similarity and lower Wasserstein distance/JS divergence mean
better attack performance. The ranges of cosine similarity, Wasserstein distance, and
JS divergence are [−1.0, 1.0], [0.0, 1.0], and [0.0, 1.0], respectively.

Attack Setup. Recall that both the space and time complexity of the graph matching
algorithm is O(n4), we conduct our experiments on three small datasets in Table 5.1,
i.e., AIDS, ENZYMES, and NCI1, and three graph embedding models. We run all the
experiments five times with the mean and standard deviation reported.

Table 5.3: Attack performance of graph reconstruction measured by graph isomorphism.

Dataset DiffPool MeanPool MinCutPool

AIDS 0.875 ± 0.003 0.794 ± 0.003 0.869 ± 0.002
ENZYMES 0.670 ± 0.019 0.653 ± 0.022 0.704 ± 0.012

NCI1 0.752 ± 0.005 0.771 ± 0.010 0.693 ± 0.007

Experimental Results. Table 5.3 and Table 5.4 illustrate the attack performance
in terms of graph isomorphism and macro-level graph statistics (measured by cosine
similarity), respectively. In general, our attack achieves strong performance. For
instance, the WL graph kernel on AIDS and DiffPool achieves 0.875. Besides, the
cosine similarity of the betweenness centrality distribution is larger than 0.85 for all
the settings. We can also achieve 0.99 cosine similarity for local clustering coefficient
distribution for the AIDS and NCI1 datasets. For degree distribution and closeness
centrality distribution, the attack performance is slightly worse; however, we can still
achieve cosine similarity larger than or close to 0.5.

Table 5.4: Macro-level graph statistics on the attack performance of graph reconstruction,
the similarity of which is measured by cosine similarity.

Dataset Target Model Degree Dist. LCC Dist. BC Dist. CC Dist.

AIDS
MeanPool 0.651 ± 0.001 0.999 ± 0.001 0.987 ± 0.001 0.876 ± 0.002
DiffPool 0.894 ± 0.001 0.999 ± 0.001 0.983 ± 0.001 0.787 ± 0.002

MinCutPool 0.888 ± 0.003 0.999 ± 0.001 0.983 ± 0.001 0.785 ± 0.006

ENZYMES
MeanPool 0.450 ± 0.070 0.646 ± 0.005 0.959 ± 0.001 0.516 ± 0.037
DiffPool 0.519 ± 0.007 0.661 ± 0.008 0.958 ± 0.001 0.504 ± 0.005

MinCutPool 0.467 ± 0.019 0.490 ± 0.009 0.916 ± 0.001 0.414 ± 0.009

NCI1
MeanPool 0.736 ± 0.003 0.999 ± 0.001 0.877 ± 0.001 0.402 ± 0.001
DiffPool 0.633 ± 0.002 0.999 ± 0.001 0.877 ± 0.001 0.495 ± 0.002

MinCutPool 0.570 ± 0.002 0.999 ± 0.001 0.877 ± 0.001 0.496 ± 0.001

111

CHAPTER 5. ASSESSING THE PRIVACY RISKS IN GRAPH EMBEDDING SHARING
SYSTEM

Impact of Graph Auto-encoder. To investigate the impact of the quality of the
graph auto-encoder on the attack performance, we conduct additional experiments on the
graph auto-encoders trained with different epochs. Figure 5.11 shows the experimental
results. We observe that as the number of epochs increases, our attack performance
increases, indicating the quality of the graph auto-encoder has a positive impact on
our attack. When the number of epochs exceeds 10, the attack performance remains
unchanged for most of the settings. Thus, we train the graph auto-encoder for 10 epochs
in our experiments.

10 20 30 40 50 60 70 80 900.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

C
os

in
e

S
im

ila
ri

ty

MeanPool

10 20 30 40 50 60 70 80 900.5
0.6
0.7
0.8
0.9
1.0
1.1 DiffPool

10 20 30 40 50 60 70 80 900.5
0.6
0.7
0.8
0.9
1.0
1.1 MinCutPool

Degree Dist. LCC Dist. BC Dist. CC Dist. Isomorphism

Figure 5.11: Impact of the quality of graph auto-encoder on the AIDS dataset.

Visualization. To better illustrate the effectiveness of our graph reconstruction attack
on preserving the macro-level graph statistics, we provide a distribution visualization
of the AIDS dataset in Figure 5.12. We experiment on the MinCutPool model. The
visualization results show that our graph reconstruction attack can effectively preserve
the macro-level graph statistics.

0 3 6 9 12 15 180
2
4
6
8

10
12
14

N
um

b
er

of
N

od
es Target Graph

Reconstructed Graph

Degree Distribution

0.0 0.2 0.4 0.6 0.8 1.00
3
6
9

12
15
18
21

N
um

b
er

of
N

od
es

LCC Distribution

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

N
um

b
er

of
N

od
es

CC Distribution

0.0 0.2 0.4 0.6 0.8 1.00
3
6
9

12
15
18
21

N
um

b
er

of
N

od
es

BC Distribution

Figure 5.12: Visualization of macro-level graph statistic distribution for graph recon-
struction attack on the AIDS dataset.

112

5.6. DEFENSES

5.6 Defenses

Graph Embedding Perturbation. A commonly used defense mechanism for infer-
ence attacks is adding perturbation to the output of the model [192]. We propose to
add perturbations to the target graph embedding HGT

to defend our proposed inference
attacks. Formally, given the target graph embedding HGT

, the data owner only shares
a noisy version of graph embedding H̃GT

= HGT
+ Lap (β) to the third party, where

Lap (β) denotes a random variable sampled from the Laplace distribution with scale
parameter β; that is, Pr [Lap (β) = x] = 1

2β e
−|x|/β . Notice that adding noise to the graph

embedding vector may destroy the graph structural information, thus affecting normal
tasks such as graph classification. Therefore, we need to choose a moderate level of
noise to trade off the defense effectiveness and the performance of the normal tasks.

Defense Evaluation Setup. We conduct experiments to validate the effectiveness
of our proposed defense against all the inference attacks, as well as the impact on
the normal graph classification task. For the property inference attack, we evaluate
the performance of graph density with bucketization scheme k = 2. For the subgraph
inference attack, we consider the RandomWalk sampling method with a sampling ratio
of 0.8. We conduct experiments on three graph embedding models.

Defense against Inference Attacks. Figure 5.13 illustrates the experimental results,
where the first and second column represents the attack performance of the property
inference attack and subgraph inference attack, respectively, and the last column
represents the accuracy of the normal graph classification task. For two attacks, higher
means better attack performance. For the original task, higher means better model
utility. In each figure, the x-axis stands for the scaling parameter β of Laplace noise,
where larger β means larger noise. The y-axis stands for the attack performance/normal
graph classification accuracy. We observe that when the noise level increases, the attack
performance for both property inference and subgraph inference attacks decreases. This
is expected since more noise will hide more structural information contained in the
graph embedding. On the other hand, the accuracy of the graph classification tasks will
also decrease when the noise level increase. To defend against inference attacks while
preserving the utility for normal tasks, one needs to choose the noise level carefully. For
instance, when we set the standard deviation of Laplace noise to 2, the performance of
the subgraph inference attack significantly drops while the graph classification accuracy
only slightly decreases.

113

CHAPTER 5. ASSESSING THE PRIVACY RISKS IN GRAPH EMBEDDING SHARING
SYSTEM

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
D

Property Inference

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Subgraph Inference

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Graph Classification

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
N

Z
Y

M
E

S

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 2 4 6 8 100.1

0.2

0.3

0.4

0.5

0.6

MeanPool DiffPool MinCutPool

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
ID

S

Property Inference

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Subgraph Inference

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1.0
Graph Classification

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
V

C
A

R
-8

H

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 2 4 6 8 100.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

MeanPool DiffPool MinCutPool

Figure 5.13: Perturbation defense against two inference attacks.

Defense against Graph Reconstruction Attack. Figure 5.14 illustrates the graph
embedding perturbation defense performance for graph reconstruction attack. In each
figure, the x-axis stands for the scaling parameter β for Laplace noise, where larger
β means a higher noise level. The y-axis stands for the cosine similarity of degree
distribution and graph isomorphism, respectively. The experimental results show that
our defense mechanism is still effective for graph reconstruction attacks.

Connection to Differential Privacy. Note that adding Laplace noise in our graph
embedding perturbation defense is closely related to the Laplace mechanism of differential
privacy (DP) [42, 89], which provides a rigorous mathematical guarantee for data privacy.
Therefore, it will be interesting to connect the graph embedding perturbation defense
to DP. Formally, the graph embedding perturbation satisfies ε-DP if β = ∆FT

ε , where
∆FT

is the `1 sensitivity of FT , which measures the maximum `1 distance of any two
neighboring graphs (two graphs that differ in one edge). However, ∆FT

is difficult to
compute since FT is a complex non-linear function, and analyzing the impact of one
edge of the target graph on the graph embedding is difficult. We leave the investigation
of ∆FT

as our future work.

114

5.7. CONCLUSION

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

D
eg

re
e

D
is

t.

AIDS

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0 ENZYMES

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0 NCI1

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

G
ra

ph
Is

om
or

ph
is

m

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

MeanPool DiffPool MinCutPool

Figure 5.14: Perturbation defense against the graph reconstruction attack.

5.7 Conclusion

When dealing with the graph data, sharing graph embedding is empirically considered
sanitized since the whole graph is compressed to a single vector. In turn, it has been
shared with third parties to conduct downstream graph analysis tasks. For example,
the graph data owner can generate the graph embeddings locally and upload them to
the Embedding Projector service provided by Google to explore the properties of the
graph embeddings visually.

In this chapter, we systematically investigate the information leakage of the graph
embedding by mounting three inference attacks. We consider the scenario where the
adversary obtains a whole graph embedding from the victim, either from Embedding
Projector, pretrained graph embeddings, or model partitioning paradigm. The goal of
the adversary is to infer the sensitive information of the graph that is used to generate
this graph embedding. First, we can successfully infer basic graph properties, such as
the number of nodes, the number of edges, and graph density, of the target graph with
up to 0.89 accuracy. Second, given a subgraph of interest and the graph embedding, we
can determine with high confidence whether the subgraph is contained in the target
graph. For instance, we achieve 0.98 AUC on the DD dataset. Third, we propose a novel
graph reconstruction attack that can reconstruct a graph with similar graph structural
statistics to the target graph. We further propose an effective defense mechanism based
on graph embedding perturbation to mitigate the inference attacks without noticeable
performance degradation for graph classification tasks.

All three successful inference attacks prove that the graph information could be

115

CHAPTER 5. ASSESSING THE PRIVACY RISKS IN GRAPH EMBEDDING SHARING
SYSTEM

leaked even if only sharing a compressed graph embedding vector. We need to be more
cautious about sharing our data, even if it is in a representation form.

116

6
Assessing the Privacy Risks in

Few-shot-based Facial Recognition
Systems

117

With the power of facial recognition systems, entities with moderate resources can
canvas the Internet for face images and build well-performed facial recognition models
without people’s awareness and consent. For example, clearview.ai reveals that a private
company has collected 3 billion online face images and trained a powerful model capable
of recognizing millions of citizens. Such kinds of misuse of facial recognition systems
are potentially disastrous [106] and infringe the privacy laws such as European Union’s
General Data Protection Regulation (GDPR). GDPR states that the personal data must
only be processed if the individual has given explicit consent (Article 6(1)(a)), and the
processing of personal data must be lawful, fair, and transparent (Article 5(1)(a)) [1].
This means that if the third parties want to use the data owner’s face images, they
need to obtain consent from the data owner and inform the data owner how their face
images are processed. Sharing personal data online typically implies that the data
owners are willing to share their data with the public for social or promotion purposes.
However, this does not grant others the right to misuse the data for unconsent purposes,
particularly in commercial activities.

To prevent face images from being misused, one straightforward method is to modify
the raw face images before uploading them to the Internet, such as distorting the face
images [90], producing adversarial patches [158], or adding imperceptible pixel-level
cloaks [137]. However, these approaches inevitably destroy the semantic information of
the face images and also increase the difficulty of retroactivity. Also, researchers have
argued that such defenses can be bypassed by newer technologies [126], which leads to
an endless arms race between the attacker and defender.

In this chapter, we take a different angle by advocating a responsible auditing
approach that enables normal users to detect whether their private face images are being
used to train a facial recognition system. This approach provides users with evidence in
claiming proprietary of their face images. Furthermore, it complies with data privacy
protection regulations such as GDPR, which gives users the right to know how their
data is processed. If data owners do not want any entity to use their face images to
train the facial recognition system, they can use Face-Auditor for auditing if their face
images are being used. If they find their face images were used without their consent,
the data owners can take legal action against the model developer in accordance with
GDPR regulations.

In Section 6.1, we first formulate the auditing process as user-level membership infer-
ence and depicts the design details of Face-Auditor. We conduct extensive experiments in
Section 6.2 to illustrate the effectiveness of Face-Auditor. In Section 6.3, we investigate

119

clearview.ai

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

the robustness of Face-Auditor when different defense mechanisms are introduced to
protect the training images or the target models. We discuss the practical impacts and
the future work and conclude the chapter in Section 6.4.

6.1 Auditing Methodology

Auditing Goal. We aim to determine whether any of the target user u’s face images
were used to train a target facial recognition modelMT (target model for short). We
formulate this auditing process as a user-level membership inference problem. Formally,
assume the target user u has a set of face images U = {u1, u2, · · · , un}, the user-level
membership inference aims to distinguish between U ∩ DTtrain 6= ∅ (member user) and
U ∩ DTtrain = ∅ (non-member user), where DTtrain is the training dataset ofMT . This
is different from the classic sample-level membership inference that aims to determine
whether a specific face image was used to train the target model, i.e., ui ∈ DTtrain
(member sample) or ui 6∈ DTtrain (non-member sample).

Auditing Scenario. Facial recognition systems are often trained by computer vision
companies and sold to individual users or other companies for deployment. The model
developer of the facial recognition system might collect face images from the Internet
and misuse these face images without the data owners’ consent. Users who want to audit
potential misuse of their face images could use Face-Auditor as a privacy-auditing tool.
Note that Face-Auditor is unnecessary to be trained by individuals. Alternatively, a third
party with legal access to facial images (such as a qualified Auditing-ML-as-a-Service
company, law enforcement, or government agency) can purchase the well-known facial
recognition systems in the market and provides (free or charged) auditing services
to individuals. By doing so, the third-party entity can ensure auditing accuracy and
efficiency, making it more convenient for users who want to audit their face images.
Individuals can quickly check if their face images are being used without their consent
and take appropriate actions, such as reporting to the authorities or suing the model
developer per the protection of privacy regulations [1, 2, 11].

Auditor’s Capabilities. The auditor has a basic knowledge of the facial recognition
model, such as metric scores, input format, etc. To mimic the real-world application,
we consider the most challenging setting where the auditor only has black-box access to
the target model. We assume the auditor can obtain an auxiliary face image dataset.
Note that the auxiliary dataset does not need to contain face images from the same set
of users or the same distribution as the target model; thus, the auditor can utilize some

120

6.1. AUDITING METHODOLOGY

online public datasets to build Face-Auditor, which is practical in real-world applications.
In the auditing phase, the auditor does not need access to the specific face images used
to train the target model; instead, it only needs to take a few available face images of
the target user. Furthermore, the auditor can design their support set (legitimate users)
and query set to audit the target model.

(4) Build Probing Set

Target User’s
Known Images

Metric
Scores

Member or
Non-Member
user of ℳ!‘s
training set

a. Auditor Training Phase

b. Auditing Phase

𝒟aux

Shadow Model
ℳ!

Face Auditor
ℳ"

(5) Probe(1) Split by User

Auditor Training Set

Suspicious Model ℳ#

”non-member” user
……

”member” user

……
(6) Feature
Generation

(7) Training ℳ"

Member Set 𝓓𝒎𝒆𝒎

𝑢"# 𝑢"$ 𝑢"%𝑢"& 𝑢"'

(2) Split by Samples

(3) Training

Non-member Set 𝓓𝒏𝒐𝒏𝒎𝒆𝒎

𝑢(# 𝑢($ 𝑢(%𝑢(& 𝑢('

Build Probing Set ℙ

𝑢! 𝑢)$ 𝑢)%𝑢)& 𝑢)'

Training Samples 𝓓𝒎𝒆𝒎
𝒕𝒓𝒂𝒊𝒏

𝑢"# 𝑢"$ 𝑢"%𝑢"& 𝑢"'

Probing Set ℙ = ⟨𝕊, ⟩ℚ

𝑢"# 𝑢"$ 𝑢(#𝑢"… 𝑢($ 𝑢(…

Non-Training Samples𝓓𝒎𝒆𝒎
𝒏𝒐𝒏𝒕𝒓𝒂𝒊𝒏

𝑢"# 𝑢"$ 𝑢"%𝑢"& 𝑢"'

𝝌𝒃||𝝌𝒓

Figure 6.1: Overview of Face-Auditor.

6.1.1 Face-Auditor

There are two phases of Face-Auditor: training and auditing. The training phase is
composed of seven steps: (1) The auditor splits its auxiliary dataset into (disjoint)
training set and testing set by class (here, a class represents a user). (2) The training
set is further split into training and non-training samples. (3) The training samples
are used to train a shadow model. (4) The non-training samples and testing set form
a probing set. (5) We use the probing set to query the shadow model and collect the
model outputs. (6) The outputs are labeled by member or non-member, depending on
whether the input is from the non-training samples or the testing set. (7) We train a
supervised binary classifier as our auditing model. In auditing phase, the auditor builds
a probing set with known images from the target users and then queries a target facial
recognition modelMT and collects the corresponding outputs (i.e., distance scores) as
the auditing feature. Feeding these feature vectors into Face-Auditor, the auditor gives
a prediction of member or non-member user.

Figure 6.1 illustrates the overall workflow of Face-Auditor. Generally, there are two

121

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

phases, auditor training and target user auditing. The auditor training phase aims to
train a binary classifier that can distinguish between member users and non-member
users. The general idea is to use the auxiliary dataset Daux to train a shadow model
that mimics the behavior of the target model. We then design a probing set (consisting
of support set and query set) to query the shadow model and generate a set of similarity
scores (between support set and query set), which serves as features to train the auditor
model MA. While most of the existing studies on membership inference are based
on the shadow model paradigm [145, 132, 151, 65, 105], the main challenge lies in
constructing the attack/audit features for the attack model. For the sample-level
membership inference against classification models, the attack features are constructed
by feeding the target samples to the target model independently and using the output
posteriors as attack features. On the other hand, in the user-level few-shot setting, the
auditor does not have the exact images that are used to train the target model. Thus,
we need to carefully design a probing set to query the target model and combine the
similarity scores as audit features.

In the auditing phase, the auditor collects a set of new face images from the target
user and builds a probing set to query the target model. The auditor then collects the
similarity scores returned by the target model as the auditing features and feeds them
toMA, which gives a prediction of the member or non-member user.

6.1.2 Auditor Training Phase

Training the Shadow Model. Assume the auxiliary dataset Daux contains face
images of U users, and each user has I face images. We first split Daux into two disjoint
datasets by users, namely member dataset Dmem and nonmember dataset Dnonmem.
Recall that, for member users, Face-Auditor does not need to have access to the specific
images used to train the auditor model; thus, for the member dataset Dmem, we further
split it (by sample) into two disjoint parts, Dtrainmem and Dnontrainmem . We use Dtrainmem to train
the shadow model and use Dnontrainmem and Dnonmemto construct the probing set. To be
more clear, all users in Dmem are the member users, while images in Dtrainmem are member
samples, and images in Dnontrainmem are non-member samples. We follow the procedure
described in Section 2.4.2 to construct the support and query set to train the shadow
modelMs.

Constructing the Probing Dataset. Unlike classical classification models that take
a single image as input and output posteriors, few-shot learning models require a support

122

6.1. AUDITING METHODOLOGY

set S and a query set Q as input and output a sequence of similarity scores (as described
in Section 2.4.2). Consequently, generating an auditing feature for few-shot learning
is more complex than traditional membership inference attacks against classification
models. To improve auditing performance, the auditor must carefully design the support
set S and query set Q, rather than directly feeding the training and testing datasets
to the shadow model Ms to obtain posteriors. For ease of presentation, we call the
combination of the support set and query set as probing set P = 〈S,Q〉.

Since the architecture of SiameseNet is slightly different from ProtoNet and Rela-
tionNet, we need to design different probing sets for them.

• SiameseNet. As discussed in Section 2.4.2, the SiameseNet model processes the
support set separately, which leads to its probing set consisting of a 1-way-`-shot
support set and multiple query images. For each probe, we set both the support set
and the query images from the same target user (the user to be audited, who may be
a member from Dnontrainmem or a non-member from Dnonmem).

• ProtoNet & RelationNet. Unlike SiameseNet, both ProtoNet and RelationNet
takes the support set and query images together as input, forming a k-way-`-shot
support set. We assign the first class of the support set to the target user and select
the query images from that user. The remaining classes in the support set can be
selected from any user, as the similarity scores between these classes and the query
images are not used to generate the auditing features.

Generating the Auditing Feature. We use the similarity scores between the query
image and the support set returned by the shadow model as the basic auditing feature
χb. We use q images in the query set Q, resulting in an auditing feature vector of length
q.

To further improve the auditing performance, we consider using the image-level
similarity between the query image and the support set as additional reference infor-
mation, referred to as reference auditing feature χr. In summary, the auditing feature
χ is a concatenation of the basic auditing feature and the reference auditing feature,
i.e., χ = χb||χr. We consider three types of image-level similarity metrics: Directly
compare the similarity between image pixels (MSE and CosSim), compare the structural
similarity between images (SSIM), and use a deep neural network to compare (LPIPS).
Denote the pixel matrix of two images as X and Y , and four metrics can be described
as follows.

123

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

• MSE (Mean Square Error). We first represent the image pair as two pixel vectors
X and Y , the MSE of these two images is calculated as 1

N

∑N
i=1(Xi − Yi)2, where N

is the total number of pixels. A smaller MSE indicates higher similarity.

• CosSim (Cosine Similarity). For two pixel vectors X and Y , the CosSim is
calculated as X·Y

||X||||Y || , where · represents an inner product of two vectors and || · ||
presents the cardinality of a vector. The values of CosSim are in the range of [-1, 1].
A larger CosSim indicates higher similarity.

• SSIM (Structural Similarity Index Measure) [171]. It compares two images by
considering luminance, contrast, and structure. Formally, SSIM(X,Y) = `(X,Y)α ·
c(X,Y)β · s(X,Y)γ , where `(·), c(·), s(·) represent luminance, contrast, structure
respectively, and α, β, γ are weight parameters. A larger SSIM value indicates higher
similarity.

• LPIPS (Learned Perceptual Image Patch Similarity) [189]. The general idea
is to use a pretrained convolutional model to transform the two images X and Y

into embeddings, normalize the activations in the channel dimension, and take the `2
distance. We then average across spatial dimensions and across all layers. We use
VGG16 as the default backbone convolutional model of the LPIPS model. A larger
LPIPS indicates higher similarity.

We conduct empirical experiments in Section 6.2.3 to show that the reference
information can effectively improve the auditing performance, and cosine similarity
achieves relatively better performance in most settings.

Training the Auditing Model. For all the few-shot learning models, we use Dnonmemtrain

and Dtest to construct the probing set for member users and non-member users, respec-
tively. We use a three-layer multi-layer perceptron (MLP) with 100 hidden neurons as
the auditing model.

6.1.3 Auditing Phase

To determine whether a target user’s face images are used to train the target model, the
auditor only needs to take multiple face images from the target user. Note that these
face images are not necessarily used to train the target model. The auditor then uses
the same strategy as the training phase to construct the probing set P and generate
the auditing feature χ. Finally, the auditing feature is fed to the auditing model to
determine the membership status of the target user.

124

6.2. EVALUATION

6.2 Evaluation

In this section, we first describe the experimental setup in Section 6.2.1 and evaluate the
overall auditing performance in Section 6.2.2. We then validate the effectiveness of the
reference information and investigate the effectiveness of different image-level similarity
metrics in Section 6.2.3. Third, we evaluate the impact of different hyperparameters on
the auditing performance in Section 6.2.4. We show the transferability of Face-Auditor
in Section 6.2.5.

6.2.1 Evaluation Settings

Face Datasets. We perform experiments on four widely used real-world face image
datasets: UMDFaces [19], WebFace [183], VGGFace2 [27], and CelebA [97]. Since the
number of face images for all users is highly unbalanced, to make the experimental
results comparable, we filter out the users with a number of images less than 100 (except
for CelebA). For the users having more than 100 images, we randomly sample 100
images for them. We resize all images to 96× 96 and evaluate the performance of both
the target model and the auditing model.

Under the setting of Figure 6.1, which indicates half of the images from 40% users
are used to train the shadow/target models, we randomly select 10% images from the
40% to generate member labels and 10% testing images for generating non-member
labels, they use the data to train and evaluate the performance of Face-Auditor. We
summarize the dataset split in Table 6.1. The dataset was split into two halves for the
shadow model and target model, with users being divided equally between them. We
allocated 80% of the users for Dmem and the remaining 20% for Dnonmem. Within the
training set, each user’s images were split into two equal parts. One part (50% as Dtrainmem)
was used to train the shadow/target model, while the other part (50% as Dnontrainmem) was
used to generate the member labels. This split ensured sufficient training data for a
well-performed shadow/target model. We keep member and nonmember labels balanced
for a fair and accurate evaluation of the performance of Face-Auditor.

Table 6.1: Dataset split in detail.

Dataset after Prepossessing Target/Shadow Model Auditing Model
Dataset #. Users #. Images per User #. Training Images #. Testing Images #. Training Images #. Testing Images
(D) (U) (I) (40% ∗ U) ∗ (50% ∗ I) (10% ∗ U) ∗ (50% ∗ I) (10% ∗ U) ∗ (50% ∗ I) (10% ∗ U) ∗ (50% ∗ I)

UMDFaces 200 100 4,000 1,000 1,000 1,000
Webface 827 100 16,520 4,130 4,130 4,130
VggFace2 5,257 100 105,140 26,285 26,285 26,285
CelebA 6,348 20 25,392 6,348 6,348 6,348

125

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

Target Models. We experiment on three facial recognition system architectures as
introduced in Section 2.4.2, all with the default configurations.

• SiameseNet. Following the setting of [83], we implement the SiameseNet with
a four-convolution-layer feature extractor with a ReLU and Max-Pooling for each
convolution layer to learn complex patterns in the data. The target model is trained
with BCE loss and Adam optimizer.

• ProtoNet. Following the setting of [147], we implement the ProtoNet with a four-
convolution-layer feature extractor with batch normalization and ReLU activation
function for each convolution layer. The target model is trained with cross-entropy
loss and an SGD optimizer with a step scheduler.

• RelationNet. Following the setting of [153], we implement the RelationNet with a
four-convolution-layer feature extractor and a two-convolution-layer relation network.
The feature extractor and the RelationNet are trained with Adam optimizer with a
step scheduler. We use MSE loss to train the metric parameters of RelationNet.

Metrics. We use four metrics to evaluate the performance of Face-Auditor.

• Accuracy. We use accuracy to measure the auditing success rate. Concretely,
accuracy measures the correctly predicted probing sets to the total probing sets.
Higher accuracy means better performance.

• AUC. For a binary classification model (our attack model), AUC (the Area Under
the Curve) is the measure of the ability of a classifier to distinguish between classes
when the decision threshold varies. The higher the AUC, the better the performance
of the model at distinguishing between the positive and negative classes. AUC equals
1 indicates perfect prediction, while 0.5 indicates random guessing.

• F1 Score. F1 Score is a harmonic mean of precision (the proportion of true positive
cases to the member classes) and recall (the proportion of true positive cases to all
correctly predicted classes), which can provide a better measure of the incorrectly
classified cases than the accuracy metric. A higher F1 Score indicates better auditing
performance.

• False Positive Rate (FPR). The false Positive Rate evaluates the proportion of
incorrect ownership claims to the total cases. In practice, a higher false positive rate
may degrade the credibility of Face-Auditor and cause unnecessary lawsuits. In our
case, a lower FPR indicates better auditing performance.

126

6.2. EVALUATION

Experimental Settings. Following the classical setting of shadow model-based mem-
bership inference [145, 132, 151, 65, 105], we equally split each dataset by users into two
disjoint parts, the target set DT and auxiliary set Daux. We then split both the target
set DT and the auxiliary set Daux as in Section 6.1.2. We train the auditing model on
Daux and evaluate the auditing model on DT . We evaluate 5-way-5-shot with 5 queries
by default and explore the impacts of different parameters in Section 6.2.4.

Table 6.2: Target model performance.

Dataset UmdFaces WebFace VGGFace2 CelebA

MTarget MS MP MR MS MP MR MS MP MR MS MP MR

Train Acc. 0.775 0.960 1.000 0.650 0.748 0.800 0.818 0.951 1.000 0.647 0.818 0.940
Test Acc. 0.500 0.794 0.852 0.460 0.670 0.757 0.767 0.868 0.943 0.603 0.802 0.867
Overfitting 0.275 0.166 0.148 0.190 0.078 0.043 0.051 0.083 0.057 0.044 0.016 0.073

6.2.2 Overall Performance

Target Model Performance. We first investigate the performance of the target
models. Table 6.2 illustrates the training accuracy, the testing accuracy, and the
overfitting (accuracy gap between training and testing datasets) of three target models
trained on four face image datasets. Higher test accuracy means better representation
power and higher overfitting indicates a worse generalization ability of the target model.
In the table,MS represents SiameseNet,MP represents ProtoNet, whileMR represents
RelationNet. We first observe that the overfitting level varies across different models but
keeps low in most settings. Besides, the RelationNet achieves the best testing accuracy,
indicating RelationNet has the best representation power.

Auditing Performance. We then evaluate the overall auditing performance of Face-
Auditor. We conduct experiments on three target models trained on four face image
datasets and report the auditing performance with four metrics in Figure 6.2. The three
model architectures are grouped by dataset and the auditing performance over four
different evaluation metrics in each subfigure.

In general, we observe that Face-Auditor achieves good auditing performance for all
the target models and datasets. For instance, SiameseNet, ProtoNet, and RelationNet
trained on the UMDFaces dataset achieve up to 1.0, 0.80, and 0.85 auditing accuracy,
respectively. We further observe that the auditing performance varies on three different
target models. We achieve the best auditing performance on SiameseNet and the worst
on ProtoNet. This is due to the different memorization power of the target models. The

127

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

UM
DFac

es

W
eb

Fac
e

VGGFac
e2

Cele
bA

0.0

0.2

0.4

0.6

0.8

1.0

A
ud

it
in

g
P

er
fo

rm
an

ce

Accuracy

UM
DFac

es

W
eb

Fac
e

VGGFac
e2

Cele
bA

0.0

0.2

0.4

0.6

0.8

1.0 AUC

UM
DFac

es

W
eb

Fac
e

VGGFac
e2

Cele
bA

0.0

0.2

0.4

0.6

0.8

1.0 F1 Score

UM
DFac

es

W
eb

Fac
e

VGGFac
e2

Cele
bA

0.0

0.2

0.4

0.6

0.8

1.0 False Positive Rate

SiameseNet ProtoNet RelationNet

Figure 6.2: Overall auditing performance for four evaluation metrics.

memorization power of different models can be explained by the fact that member users’
similarity between face images is optimized in the training process. SiameseNet has the
highest memorization power since images of the member users are separately optimized
in the training process. In contrast, that of ProtoNet and RelationNet are optimized
together with other classes. Comparing ProtoNet and RelationNet, since RelationNet
uses a trainable relation module to compute the similarity scores while ProtoNet directly
computes the Euclidean distance; thus RelationNet has higher memorization power
than ProtoNet.

Comparing different datasets, we observe the best auditing performance on UMD-
Faces and the worst on CelebA. This is because UMDFaces has the least users (i.e.,
200 users in our experiment), and CelebA has the most users (i.e., 6348 users in our
experiment). Besides, CelebA only contains 20 images for each user; the samples used
to represent a user are much fewer than the other three datasets, thus further increasing
the challenge for auditing.

While we observe that it is easier to infer a target user’s membership status
when there are fewer users and each user has more samples in the dataset.
In practice, it is unnecessary to train few-shot learning-based facial recognition models
on face datasets of more than 3k users since the objective of the few-shot learning is to
learn the similarity information between classes, and 3k users are enough for learning a
few-shot learning model.

Impact of Overfitting. Previous studies have shown that overfitting plays a crucial
role in launching a successful membership inference [182, 132]. To investigate the impact
of overfitting, we provide a scatter plot showing the relation between the overfitting
and the auditing performance in Figure 6.3. Twelve dots in each subfigure represent
the combination of three target model architectures and four datasets. The Pearson
correlation values between auditing performance (for accuracy, AUC, and F1 Score)
and overfitting level are 0.412, 0.406, and 0.412, respectively. We observe that higher

128

6.2. EVALUATION

0.00 0.05 0.10 0.15 0.20 0.25
Target Model Overfitting

0.70

0.75

0.80

0.85

0.90

0.95

1.00
A

ud
it

in
g

P
er

fo
rm

an
ce

A
U

C

(a) AUC

Figure 6.3: Relation between target model overfitting and auditing performance.

overfitting indeed leads to better auditing performance. Unlike classical sample-level
membership inference requiring relatively high overfitting to achieve satisfying inference
performance, Face-Auditor can achieve good auditing performance even when
the overfitting level is low. For instance, when the overfitting level is 0.02, Face-
Auditor can achieve 0.93 auditing accuracy. On the other hand, the classical sample-level
membership inference can only achieve 0.6 accuracy when the overfitting is 0.02 (see
Figure 2 in [132]).

6.2.3 Reference Information

As discussed in Section 6.1.1, the reference information helps to improve auditing
performance. In this subsection, we first validate the effectiveness of the reference
information, then investigate the impact of different similarity metrics.

Effectiveness. We conduct experiments on four face image datasets and three target
models to validate the effectiveness of the reference information. The experimental results
in Figure 6.4 illustrate that exploiting reference information can significantly
improve the auditing performance in most of the settings (by comparing the
“w/o.” and “w.” bars).

We further explore why the reference information can improve the auditing perfor-
mance using a t-SNE plot in Figure 6.5. Each red triangle is a member sample, and each
blue circle is a non-member sample of the UMDFaces dataset. Specifically, by comparing
Figure 6.5c left and right subfigures, we observe that the member and non-member are
much further from each other after exploiting the reference information. We also observe

129

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

0.0

0.2

0.4

0.6

0.8

1.0

S
ia

m
es

eN
et

UMDFaces

0.0

0.2

0.4

0.6

0.8

1.0 WebFace

0.0

0.2

0.4

0.6

0.8

1.0 VGGFace2

0.0

0.2

0.4

0.6

0.8

1.0 CelebA

0.0

0.2

0.4

0.6

0.8

1.0

A
ud

it
in

g
P

er
fo

rm
an

ce
P

ro
to

N
et

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
io

nN
et

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

w/o. Reference & Low Similarity

w/o. Reference & High Similarity

w. Reference & Low Similarity

w. Reference & High Similarity

(a) AUC

0.0

0.2

0.4

0.6

0.8

1.0

S
ia

m
es

eN
et

UMDFaces

0.0

0.2

0.4

0.6

0.8

1.0 WebFace

0.0

0.2

0.4

0.6

0.8

1.0 VGGFace2

0.0

0.2

0.4

0.6

0.8

1.0 CelebA

0.0

0.2

0.4

0.6

0.8

1.0

A
ud

it
in

g
P

er
fo

rm
an

ce
P

ro
to

N
et

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
io

nN
et

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

w/o. Reference & Low Similarity

w/o. Reference & High Similarity

w. Reference & Low Similarity

w. Reference & High Similarity

(b) Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

S
ia

m
es

eN
et

UMDFaces

0.0

0.2

0.4

0.6

0.8

1.0 WebFace

0.0

0.2

0.4

0.6

0.8

1.0 VGGFace2

0.0

0.2

0.4

0.6

0.8

1.0 CelebA

0.0

0.2

0.4

0.6

0.8

1.0

A
ud

it
in

g
P

er
fo

rm
an

ce
P

ro
to

N
et

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
io

nN
et

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

w/o. Reference & Low Similarity

w/o. Reference & High Similarity

w. Reference & Low Similarity

w. Reference & High Similarity

(c) F1 Score

Figure 6.4: Impact of the reference information and the similarity selection.

130

6.2. EVALUATION

different effects of reference information on the three target models. We suspect the
reason is that the improvement level by reference information is positively correlated to
the memorization power of different models, and ProtoNet has the lowest memorization
power in terms of user-level membership inference as discussed in Section 6.2.2.

Impact of Similarity. Given the reference information of the raw face images, another
question is whether to choose query images with high similarity or low similarity to the
support set. To answer this, we compare the auditing performance when choosing the
five highest-similarity query images and the five lowest-similarity query images from the
testing dataset. The experimental results are shown in Figure 6.4.

By comparing the “Low Similarity” and “High Similarity” bars, we observe that the
original similarity between the query images and the support set only slightly impacts
the auditing performance on ProtoNet and RelationNet. When auditing the SiameseNet
model, high similarity pairs can enhance the auditing performance. Take the SiameseNet
trained on CelebA as an example, the “Low Similarity” query images can achieve 0.758
auditing accuracy, while the “High Similarity” query images can achieve 0.858 auditing
accuracy.

In summary, randomly choosing query images from the testing dataset when con-
structing the probing set can make the auditing model work well in most cases, but
to achieve the best auditing performance, “High Similarity” images are rec-
ommended.

Choice of Similarity Metrics. We can adopt multiple metrics to measure the
similarity between the target image and the support set as discussed in Section 6.1.2.
Figure 6.6 illustrates the auditing performance when using different similarity metrics
to generate the reference information. We first observe that all four metrics can
achieve relatively high auditing performance on SiameseNet. Regarding the auditing
performance on ProtoNet and RelationNet, the performance variance increases among
different datasets. In general, CosSim can achieve the best and the most stable
performance in most of the settings. We posit the reason is that it generates a
bounded value (-1 to 1), which tends to be consistent with the normalized input feature
of Face-Auditor.

Impact of the Embedding Extractor. Recall that all three target models contain
an embedding extractor that maps an image to an embedding. Tian et al. [159] showed
that in few-shot learning, the quality of the embedding extractor has some impact on the
target model performance. We now investigate the impact of the embedding extractor

131

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

Attack AUC: 0.998 Attack AUC: 1.0

(a) SiameseNet w/o.& w. reference.

Attack AUC: 0.583 Attack AUC: 0.898

(b) ProtoNet w/o.& w. reference.

Attack AUC: 0.546 Attack AUC: 0.955

(c) RelationNet w/o.& w. reference.

Figure 6.5: T-SNE visualization on the impact of reference information.

on the auditing performance for the following architectures:

• MobileNet [133] is an efficient model pretrained on the ImageNet dataset and widely
adopted for mobile and embedded vision applications.

132

6.2. EVALUATION

UMDFaces WebFace VGGFace2 CelebA0.0

0.2

0.4

0.6

0.8

1.0

A
ud

it
in

g
P

er
fo

rm
an

ce
A

U
C

SiameseNet

UMDFaces WebFace VGGFace2 CelebA0.0

0.2

0.4

0.6

0.8

1.0 ProtoNet

UMDFaces WebFace VGGFace2 CelebA0.0

0.2

0.4

0.6

0.8

1.0 RelationNet

None MSE CosSim SSIM LPIPS

(a) AUC

UMDFaces WebFace VGGFace2 CelebA0.0

0.2

0.4

0.6

0.8

1.0

A
ud

it
in

g
P

er
fo

rm
an

ce
A

cc
ur

ac
y

SiameseNet

UMDFaces WebFace VGGFace2 CelebA0.0

0.2

0.4

0.6

0.8

1.0 ProtoNet

UMDFaces WebFace VGGFace2 CelebA0.0

0.2

0.4

0.6

0.8

1.0 RelationNet

None MSE CosSim SSIM LPIPS

(b) Accuracy

UMDFaces WebFace VGGFace2 CelebA0.0

0.2

0.4

0.6

0.8

1.0

A
ud

it
in

g
P

er
fo

rm
an

ce
F

1
S

co
re

SiameseNet

UMDFaces WebFace VGGFace2 CelebA0.0

0.2

0.4

0.6

0.8

1.0 ProtoNet

UMDFaces WebFace VGGFace2 CelebA0.0

0.2

0.4

0.6

0.8

1.0 RelationNet

None MSE CosSim SSIM LPIPS

(c) F1 Score

UMDFaces WebFace VGGFace2 CelebA0.0

0.2

0.4

0.6

0.8

1.0

A
ud

it
in

g
P

er
fo

rm
an

ce
F

al
se

P
os

it
iv

e
R

at
e

SiameseNet

UMDFaces WebFace VGGFace2 CelebA0.0

0.2

0.4

0.6

0.8

1.0 ProtoNet

UMDFaces WebFace VGGFace2 CelebA0.0

0.2

0.4

0.6

0.8

1.0 RelationNet

None MSE CosSim SSIM LPIPS

(d) False Positive Rate

Figure 6.6: Auditing performance when using different similarity metrics to generate
the reference information.

• ResNet18 [66] is a public model with a deep residual network structure and pretrained
on the ImageNet dataset.
• ResNet50 [66] is a public model with a deeper residual network structure and
pretrained on the ImageNet dataset.
• GoogleNet [154] is a type of convolutional neural network based on the Inception

architecture, which allows the network to choose between multiple convolutional filter
sizes in each block.

Table 6.3 illustrates the experimental results. In general, we observe that the
embedding extractor can help improve the target model performance but only slightly

133

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

Table 6.3: Evaluation on different feature extractors F on four datasets and three target
models.

Target Model SiameseNet ProtoNet RelationNet
Dataset Feature Extractor F MTarget Acc. MAuditor AUC MTarget Acc. MAuditor AUC MTarget Acc. MAuditor AUC

SimpleCNN 0.568 0.995 ± 0.002 0.806 0.853 ± 0.041 0.856 0.900 ± 0.021
MobileNet 0.593 0.999 ± 0.001 0.699 0.823 ± 0.047 0.748 0.779 ± 0.032
GoogleNet 0.535 0.993 ± 0.003 0.710 0.885 ± 0.033 0.735 0.839 ± 0.059
ResNet18 0.593 0.992 ± 0.003 0.729 0.850 ± 0.028 0.848 0.862 ± 0.028U

M
D
Fa

ce
s

ResNet50 0.595 0.996 ± 0.002 0.733 0.830 ± 0.021 0.782 0.884 ± 0.030

SimpleCNN 0.398 0.956 ± 0.015 0.583 0.876 ± 0.023 0.711 0.900 ± 0.022
MobileNet 0.545 0.994 ± 0.007 0.541 0.890 ± 0.021 0.786 0.907 ± 0.033
GoogleNet 0.485 0.983 ± 0.008 0.568 0.843 ± 0.037 0.725 0.873 ± 0.051
ResNet18 0.515 0.989 ± 0.006 0.593 0.847 ± 0.027 0.688 0.869 ± 0.043W

eb
Fa

ce

ResNet50 0.477 0.991 ± 0.007 0.548 0.793 ± 0.034 0.694 0.798 ± 0.036

SimpleCNN 0.662 0.998 ± 0.002 0.882 0.867 ± 0.020 0.934 0.915 ± 0.021
MobileNet 0.685 0.993 ± 0.001 0.868 0.867 ± 0.025 0.917 0.915 ± 0.011
GoogleNet 0.640 0.998 ± 0.004 0.877 0.870 ± 0.026 0.903 0.921 ± 0.039
ResNet18 0.677 0.995 ± 0.002 0.903 0.845 ± 0.034 0.935 0.892 ± 0.024V

G
G
Fa

ce
2

ResNet50 0.637 0.997 ± 0.004 0.923 0.852 ± 0.023 0.952 0.933 ± 0.036

SimpleCNN 0.522 0.858 ± 0.019 0.837 0.698 ± 0.045 0.886 0.830 ± 0.028
MobileNet 0.590 0.812 ± 0.022 0.793 0.721 ± 0.052 0.872 0.853 ± 0.048
GoogleNet 0.562 0.777 ± 0.020 0.764 0.700 ± 0.038 0.845 0.871 ± 0.081
ResNet18 0.585 0.796 ± 0.020 0.804 0.690 ± 0.052 0.867 0.834 ± 0.033C

el
eb

A

ResNet50 0.555 0.785 ± 0.014 0.869 0.700 ± 0.050 0.902 0.845 ± 0.018

impacts the auditing performance in most settings.

6.2.4 Hyperparameters

Recall that we need carefully design a probing set P = 〈S,Q〉 to achieve an optimal
auditing performance. We have three important hyperparameters in the probing set
i.e., the number of ways k, the number of shots l, and the number of queries q. We
investigate their impacts on auditing performance in Section 6.2.4.1, Section 6.2.4.2,
and Section 6.2.4.3.

6.2.4.1 The Number of Ways k

In Figure 6.7, we observe only a slight decrease in the auditing accuracy (less than 4%)
as we increase the number of ways k in the support set for all three model architectures.
This parameter affects the search space of the target model (we observe a worse target
model performance in more ways of the support set), but it does not significantly affect
the auditing model, as we only use the largest similarity score to form the auditing
feature. This also explains why Face-Auditor can work when thousands of users are in
the training set of the target model.

134

6.2. EVALUATION

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

S
ia

m
es

eN
et

Accuracy

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

AUC

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

F1 Score

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

False Positive Rate

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

P
ro

to
N

et

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

R
el

at
io

nN
et

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

3 5 8 10 20

Figure 6.7: Number of ways (k) in the support set.

6.2.4.2 The Number of Shots l

The results in Figure 6.8 show that increasing the number of shots in the support
set leads to a more precise description of a user, as reflected by better target model
performance on ProtoNet and RelationNet. However, since SiameseNet only takes image
pairs as input, the target model performance is unaffected by the number of shots.
Interestingly, we found that the auditing performance consistently improved as the
number of shots increased for the SiameseNet. We believe this is because ProtoNet and
RelationNet represent each user’s multiple images as a whole and calculate inter-class
distances to discriminate between multiple users. When generating the posteriors,
ProtoNet and RelationNet already consider the influence of multiple shots, resulting in
each user being represented as a single vector for comparison, regardless of the number
of shots in the support set. On the other hand, SiameseNet takes image pairs per
probe, and more shots indicate more diverse probes from a single user. This allows for
capturing a user’s character from multiple probes, leading to an increase in auditing
performance.

6.2.4.3 The Number of Query Images q

We investigated the impact of the number of query images q on three datasets with
100 images per user in their preprocessed dataset, providing a wide range of q values
to explore. Our results, shown in Figure 6.9, demonstrate that auditing performance

135

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

S
ia

m
es

eN
et

Accuracy

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

AUC

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

F1 Score

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

False Positive Rate

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

P
ro

to
N

et

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

R
el

at
io

nN
et

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace2 CelebA
0.2
0.4
0.6
0.8
1.0

1 3 5 8

Figure 6.8: Number of shots (l) in the support set.

improves and the false positive rate decreases as the number of query images increases.
The rationale is that more query images lead to a broader auditing feature that captures
more information about the user, and more images of a user can help distinguish
them from other users. The increasing trend is more pronounced for RelationNet and
ProtoNet, suggesting that more diverse queries can reveal more information about the
underlying training data of the few-shot facial recognition models, especially when the
model has a higher memorization ability.

UMDFaces WebFace VGGFace20.0
0.2
0.4
0.6
0.8
1.0

S
ia

m
es

eN
et

Accuracy

UMDFaces WebFace VGGFace20.0
0.2
0.4
0.6
0.8
1.0 AUC

UMDFaces WebFace VGGFace20.0
0.2
0.4
0.6
0.8
1.0 F1 Score

UMDFaces WebFace VGGFace20.0
0.2
0.4
0.6
0.8
1.0 False Positive Rate

UMDFaces WebFace VGGFace20.0
0.2
0.4
0.6
0.8
1.0

P
ro

to
N

et

UMDFaces WebFace VGGFace20.0
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace20.0
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace20.0
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace20.0
0.2
0.4
0.6
0.8
1.0

R
el

at
io

nN
et

UMDFaces WebFace VGGFace20.0
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace20.0
0.2
0.4
0.6
0.8
1.0

UMDFaces WebFace VGGFace20.0
0.2
0.4
0.6
0.8
1.0

1 3 5 10 20 30 40

Figure 6.9: Number of query images (q).

136

6.2. EVALUATION

6.2.5 Transferability

In practice, the auditor might not be aware of the target model’s architecture or its
training data distribution. Thus, in this section, we aim to evaluate the transferability
of Face-Auditor. We first evaluate the dataset transferability when the training data
of the shadow model comes from a different distribution than the target model and
then evaluate the model transferability when the architecture of the shadow model is
different from the target model.

Dataset Transferability. We conduct experiments on three target models. For each
target model, we use one dataset as the auxiliary dataset and the other three datasets
as target datasets. In total, we have 16 combinations. We report the experimental
results for the AUC metric in Figure 6.10. The x-axis is the dataset used to train the
shadow models and probe the target/shadow models and the y-axis is the dataset used
to train the target models.

Umdfaces Webface VGGFace2 CelebA

Um
dfa

ce
s

W
eb

fa
ce

VGGFac
e2

Cele
bA

0.988 0.996 0.999 0.914

0.949 0.961 0.989 0.767

0.973 0.993 0.994 0.868

0.973 0.965 0.994 0.806

AUC

(a) SiameseNet
Umdfaces Webface VGGFace2 CelebA

Um
dfa

ce
s

W
eb

fa
ce

VGGFac
e2

Cele
bA

0.909 0.890 0.841 0.738

0.896 0.906 0.872 0.710

0.894 0.887 0.809 0.687

0.898 0.889 0.840 0.728

AUC

(b) ProtoNet
Umdfaces Webface VGGFace2 CelebA

Um
dfa

ce
s

W
eb

fa
ce

VGGFac
e2

Cele
bA

0.935 0.917 0.921 0.812

0.935 0.931 0.917 0.815

0.934 0.936 0.907 0.833

0.932 0.934 0.918 0.813

AUC

(c) RelationNet

Figure 6.10: Auditing performance (measured by AUC) under datasets transfer.

In general, we observe that Face-Auditor maintains a good performance when the
target dataset and the auxiliary dataset come from different distributions in most of the
cases. For instance, when the auxiliary dataset is VGGFace2, and the target dataset is
WebFace, we can achieve up to 0.954 auditing accuracy, only 0.029 lower than the same
distribution auxiliary dataset.

Two reasons can explain the high auditing performance under dataset transfer
settings. On the one hand, the uniqueness of human faces does not change substantially.
Once a user’s image is seen during the training process of the target model, it is easy to
distinguish it from those never seen before. Which also shows the severe privacy risks of
facial recognition models. On the other hand, Face-Auditor is trained on a shadow dataset
with no user overlap as the target model’s training dataset. The disjoint classes
split forces the auditing model to not rely on the overfitting intuition to

137

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

determine the membership status but learn to discriminate from the metric
scores’ internal correlations.

Model Transferability. We conduct experiments between RelationNet and ProtoNet
due to the fact that they share the same input data format and report the experimental
results in Figure 6.11. In each subfigure, the x-axis represents the target model, and
the y-axis represents the shadow model.

We observe that the auditing performance slightly decreases when the architecture
of the shadow model is different from the target model. The drop is significant when
using RelationNet as the shadow model to audit ProtoNet. On the contrary, using
ProtoNet as the shadow model to audit RelationNet can achieve better performance.
We suspect the reason is that the linear Euclidean metric of ProtoNet is a particular
case of non-linear metric, which supports a pre-trained linear model that still works in
most cases.

6.3 Robustness

In practice, the target model might be equipped with different techniques to preserve
the privacy of the training data. Therefore, we conduct experiments to validate the
robustness of Face-Auditor when the training images or the target models are protected.
Concretely, we consider three representative privacy-preserving mechanisms in a general
ML model pipeline: Input perturbation (perturb the training images), training per-
turbation (perturb the training gradient by enforcing differential privacy), and output
perturbation (perturb the output similarity scores). We also show the robustness of
Face-Auditor under an adaptive attack setting, where the target model’s output is
perturbed specifically to evade the auditing from Face-Auditor.

In this section, we investigate the robustness of Face-Auditor when the target mod-
els’ framework is perturbed to evade auditing. Concretely, we consider four defense
mechanisms: Input perturbation in Section 6.3.1 (perturb the training images), training
perturbation in Section 6.3.2 (perturb the training gradient by enforcing differential
privacy), and output perturbation in Section 6.3.3 (perturb the similarity scores returned
by the target models). In the end, we also explore an adaptive adversary in Section 6.3.4.

6.3.1 Input Perturbation

Methodology. Multiple techniques are proposed to perturb the face images before
training the facial recognition models [31, 45] and prevent the face images from be-

138

6.3. ROBUSTNESS

P
ro

to
N

et
R

el
at

io
nN

etA
U

C

0.732 0.919

0.495 0.925

UMDFaces

0.778 0.938

0.499 0.944

WebFace

0.861 0.901

0.481 0.909

VGGFace2

0.642 0.780

0.503 0.816

CelebA
P

ro
to

N
et

R
el

at
io

nN
et

A
cc

ur
ac

y 0.681 0.596

0.501 0.831

0.707 0.804

0.512 0.899

0.740 0.784

0.511 0.821

0.605 0.666

0.500 0.503

P
ro

to
N

et
R

el
at

io
nN

et
F

1
S

co
re 0.620 0.397

0.525 0.832

0.726 0.779

0.492 0.896

0.777 0.776

0.595 0.812

0.562 0.703

0.667 0.012

ProtoNet RelationNet

P
ro

to
N

et
R

el
at

io
nN

et
F

al
se

P
os

it
iv

e
R

at
e

0.132 0.023

0.452 0.096

ProtoNet RelationNet

0.202 0.059

0.226 0.036

ProtoNet RelationNet

0.223 0.089

0.387 0.074

ProtoNet RelationNet

0.192 0.236

0.500 0.004

Figure 6.11: Auditing performance (measured by four metrics) under model transfer.

ing misused. In our experiments, we consider a recently proposed technique called
Fawkes [137]. The general idea of Fawkes is to add imperceptible noise to the target
images that drive the embeddings of the face images to deviate from that of the raw
face images. According to its homepage, it has been downloaded more than 840, 000
times and used in various applications.

Visualization of Adversarial Perturbation. The original Fawkes provides three
adversarial perturbation levels [137], aims to strike a better model utility and face image
protection ability. To give a direct impression of the input perturbation, we show a
visualization of different perturbation levels in Figure 6.12.

Evaluation. The open-sourced Fawkes implementation1 allows us to choose three

1https://github.com/Shawn-Shan/fawkes

139

https://github.com/Shawn-Shan/fawkes

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

O
ri

gi
na

l
L

ow
M

id
dl

e
H

ig
h

Figure 6.12: An illustration of images under different levels of adversarial noise pertur-
bation.

perturbation levels: Low, middle, and high. We experiment on the UMDFaces dataset
and three target model architectures. Concretely, we use Fawkes with three perturbation
levels to prepossess all the images in UMDFaces and then use the same pipeline
introduced in Section 6.1.2 to build our shadow model and auditing model.

We report the target model performance and the auditing performance under
different perturbation levels in Table 6.4. The higher the perturbation level, the better
the privacy-preserving level.

We observe a slight performance drop of the target model when applying high-
level perturbation, indicating the perturbed face images (especially under high-level
perturbation) are more difficult to train. Regarding the auditing performance, we
only observe a slight drop (the drop percentage is less than 6%), which indicates that
Face-Auditor is robust to input perturbation.

Table 6.4: Auditing performance under input perturbation on UMDFaces.

Target Model SiameseNet ProtoNet RelationNet
Perturbation Level MTarget Acc. (∆) MAuditor Acc. MTarget Acc. (∆) MAuditor Acc. MTarget Acc. (∆) MAuditor Acc.

Original 0.500 0.991 ± 0.000 0.782 0.879 ± 0.000 0.847 0.961 ± 0.000
Low 0.485 (-0.015) 1.000 ± 0.001 0.803 (+0.021) 0.785 ± 0.073 0.874 (+0.027) 0.914 ± 0.019

Middle 0.496 (-0.004) 0.993 ± 0.002 0.843 (+0.061) 0.852 ± 0.032 0.877 (+0.030) 0.903 ± 0.017
High 0.477 (-0.023) 0.973 ± 0.004 0.777 (-0.005) 0.843 ± 0.027 0.838 (-0.009) 0.913 ± 0.021

6.3.2 Training Perturbation

Methodology. A generic approach to protect users’ data privacy is differential privacy
(DP), which guarantees that any sample in the input dataset has a limited impact on

140

6.3. ROBUSTNESS

the final output. For machine learning models, the most representative DP algorithm is
Differentially-Private Stochastic Gradient Descent (DP-SGD) [12]. In general, DP-SGD
adds Gaussian noise to gradient g during the target ML model’s training process, i.e.,
g̃ = g+N

(
0,∆2

gσ
2I
)
. Note that there is no prior knowledge to determine the influence

of a single training sample on the gradient g; thus, the sensitivity of g cannot be
directly computed. To address this problem, DP-SGD proposes to bound the `2 norm
of the gradient to C by clipping g to g/max{1, ||g||2/C}. This clipping ensures that
if ||g||2 ≤ C, g is preserved; otherwise, it gets scaled down to be the norm of C. As
such, the sensitivity of g is bounded by C. Note that we aim to show the defensive
performance of adding perturbation in the training process of the target model. Besides,
existing user-level DP mainly focus on the federated learning setting [102, 104]. They
do not fit to few-shot learning paradigms.

Evaluation. We conduct experiments on four datasets and three target models. The
experimental results are in Table 6.5. We report the target model performance and
auditing performance for three different privacy-preserving levels, i.e., Low, Middle,
and High. Original means the target model without enforcing DP-SGD. The privacy
budgets for three privacy levels are 1.02, 3.32, and 47.35.

We first observe that DP-SGD has a severe impact on the target model
performance. We further observe variations in the auditing performance across the
three model architectures: SiameseNet is more sensitive to DP-SGD while ProtoNet and
RelationNet are less sensitive. Take VGGFace2 as an example. Applying a high-level
noise to the training phase of SiameseNet makes target model accuracy drop by 55%,
while the auditing accuracy only drops 1.4%. On the other hand, the auditing accuracy
of ProtoNet and RelationNet remains almost the same.

6.3.3 Output Perturbation

Methodology. Another approach to protecting ML models from inference attacks is
adding perturbations to the target models’ outputs. In this subsection, we evaluate
the robustness of our auditing model when the similarity scores returned by the target
model are perturbed. We implement this defense by adding a zero-mean Laplace noise
with a standard deviation δ to the target model’s outputs. The auditing model feature
is built on these noise-perturbed similarity scores or posteriors.

Evaluation. We conduct experiments on all four datasets and three target models.
The experimental results are in Figure 6.13. The x-axis represents different noise levels

141

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

Table 6.5: Auditing performance under training perturbation.

Target Model SiameseNet ProtoNet RelationNet
Dataset Perturbation Level MTarget Acc. MAuditor AUC MTarget Acc. MAuditor AUC MTarget Acc. MAuditor AUC

Original 0.500 0.996 ± 0.003 0.793 0.883 ± 0.022 0.852 0.935 ± 0.012
Low 0.357 0.918 ± 0.009 0.454 0.919 ± 0.000 0.212 0.941 ± 0.018

Middle 0.370 0.941 ± 0.010 0.455 0.905 ± 0.024 0.211 0.938 ± 0.021

U
M
D
Fa

ce
s

High 0.273 0.942 ± 0.008 0.490 0.902 ± 0.017 0.201 0.947 ± 0.012

Original 0.390 0.986 ± 0.009 0.607 0.875 ± 0.028 0.756 0.905 ± 0.023
Low 0.287 0.960 ± 0.008 0.364 0.940 ± 0.000 0.200 0.944 ± 0.000

Middle 0.242 0.960 ± 0.018 0.370 0.920 ± 0.005 0.202 0.939 ± 0.000

W
eb

Fa
ce

High 0.235 0.938 ± 0.010 0.353 0.911 ± 0.000 0.196 0.924 ± 0.015

Original 0.575 0.996 ± 0.002 0.868 0.866 ± 0.016 0.943 0.906 ± 0.014
Low 0.330 0.981 ± 0.004 0.433 0.929 ± 0.000 0.215 0.932 ± 0.011

Middle 0.250 0.990 ± 0.007 0.425 0.877 ± 0.024 0.214 0.913 ± 0.019

V
G
G
Fa

ce
2

High 0.258 0.982 ± 0.005 0.405 0.885 ± 0.024 0.215 0.909 ± 0.012

Original 0.435 0.901 ± 0.024 0.812 0.713 ± 0.042 0.867 0.828 ± 0.000
Low 0.333 0.804 ± 0.020 0.355 0.727 ± 0.037 0.211 0.849 ± 0.000

Middle 0.325 0.795 ± 0.028 0.430 0.751 ± 0.020 0.205 0.870 ± 0.000C
el
eb

A

High 0.242 0.789 ± 0.011 0.390 0.623 ± 0.000 0.208 0.891 ± 0.000

used to perturb the target model’s outputs. Higher values mean a stronger perturbation
degree and the y-axis represents the auditing performance.

We observe Face-Auditor is robust to output perturbation. Concretely, the
auditing performance on SiameseNet and ProtoNet does not drop significantly, and the
auditing performance drop on RelationNet is in the scope of 15%. We also observe a
slight drop in the target model performance when the noise perturbation level increases,
which indicates the robustness of Face-Auditor.

0.00 0.25 0.50 0.750.00

0.25

0.50

0.75

1.00

S
ia

m
es

eN
et

UMDFaces

0.00 0.25 0.50 0.750.00

0.25

0.50

0.75

1.00 WebFace

0.00 0.25 0.50 0.750.00

0.25

0.50

0.75

1.00 VGGFace2

0.00 0.25 0.50 0.750.00

0.25

0.50

0.75

1.00 CelebA

0.00 0.25 0.50 0.750.00

0.25

0.50

0.75

1.00

A
ud

it
in

g
P

er
fo

rm
an

ce
P

ro
to

N
et

0.00 0.25 0.50 0.750.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.750.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.750.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
Output Perturbation Level

0.00

0.25

0.50

0.75

1.00

R
el

at
io

nN
et

0.00 0.25 0.50 0.75
Output Perturbation Level

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
Output Perturbation Level

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
Output Perturbation Level

0.00

0.25

0.50

0.75

1.00

Accuracy AUC F1 Score False Positive Rate Target Testing Accuracy

Figure 6.13: Auditing performance under output perturbations.

142

6.3. ROBUSTNESS

6.3.4 MemGuard

Threat Model. In practice, a malicious data collector might be aware of the existence of
Face-Auditor. They modify their facial recognition models in a way to evade auditing and
gain financial benefits or avoid a lawsuit. We evaluate the performance of Face-Auditor
when the target model’s output is perturbed to avoid membership auditing.

Methodology. We follow the design intuition of MemGuard [77] and perform adaptive
attacks against Face-Auditor. The general idea is to perturb the similarity scores (outputs
of the target model) while achieving two objectives: Minimum label loss and maximum
auditing confusion. The first goal guarantees the noisy posteriors do not change the
predicted labels of the target model given any inputs. The second goal aims to make
Face-Auditor randomize its predictions of the user-level membership status given any face
images to be audited. Concretely, to make Face-Auditor unable to distinguish member
and non-member users, the adaptive attacker aims to add the maximum noise on the
similarity scores under the constraint of not affecting the corresponding label. To ensure
that the final summation of the target model’s output is valid (summing to one), after
adding the maximum noise to the target similarity score, we apply a SoftMax function to
the entire similarity score vector, generating the final perturbed score vector. Note that
the adversary cannot perturb the reference information as it is prepared by Face-Auditor
and is a fixed value given any input images; thus, we concatenate the original reference
information and the perturbed similarity scores as the auditing feature.

Results. Figure 6.14 illustrates the auditing performance of Face-Auditor under an
adaptive attack. We observe that adaptive perturbation on the target model’s outputs
only slightly affects the auditing performance. The drop in auditing performance is
less than 5%. This differs from the sample-level membership inference case, in which
MemGuard leads to near-random guessing attack performance. There are three reasons.
First, MemGuard can only perturb one value of the auditing feature per query, while
Face-Auditor queries the target model multiple times and combine the similarity scores of
multiple queries as the auditing feature. Second, in sample-level membership inference,
an adaptive adversary can perturb the whole attack feature (the posterior of the target
sample) simultaneously, but it can only perturb one value per query in our user-level
membership inference setting. Third, the reference information helps maintain the
relative correlation of the query images and captures the subtle difference between
member and non-member users. Additionally, our experimental results (in Section 6.3.3)
show a limited impact of output perturbation even without the minimum label loss

143

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

0.2

0.4

0.6

0.8

1.0

S
ia

m
es

eN
et

Accuracy

0.2

0.4

0.6

0.8

1.0
AUC

0.2

0.4

0.6

0.8

1.0
F1 Score

0.2

0.4

0.6

0.8

1.0
False Positive Rate

0.2

0.4

0.6

0.8

1.0

A
ud

it
in

g
P

er
fo

rm
an

ce
P

ro
to

N
et

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

UM
DFac

es

W
eb

Fac
e

VGGFac
e2

Cele
bA

0.2

0.4

0.6

0.8

1.0

R
el

at
io

nN
et

UM
DFac

es

W
eb

Fac
e

VGGFac
e2

Cele
bA

0.2

0.4

0.6

0.8

1.0

UM
DFac

es

W
eb

Fac
e

VGGFac
e2

Cele
bA

0.2

0.4

0.6

0.8

1.0

UM
DFac

es

W
eb

Fac
e

VGGFac
e2

Cele
bA

0.2

0.4

0.6

0.8

1.0

Original Adaptive Attack

Figure 6.14: Auditing performance comparison under an adaptive adversary against
Face-Auditor.

constraint. In summary, the similarity scores are more difficult for an adaptive adversary
to perturb than output perturbation due to the minimum label loss constraint, which
keeps the predicted label of a query sample fixed for a given support set and leaves the
adversary little room to perturb.

6.4 Discussion

Practical Impacts of Face-Auditor. Face-Auditor can serve as a complementary tool
for existing privacy-protective actions. Governments and regulators can use Face-Auditor
as a tool for enforcing privacy regulations by determining if models are misusing data
and violating individuals’ privacy rights. Face-Auditor can be used by individuals as
an auditing tool to detect potential misuse of face data. If a misuse happens, they
can take legal actions to correct or withdraw their data (according to GDPR Articles
15, 16, 17, 18). Face-Auditor can also be employed by model developers to conduct
self-inspection and ensure that their models are compliant with privacy regulations
while demonstrating transparency in their data processing practices.

Potential Risks of Using Face-Auditor. While Face-Auditor has the potential to
increase transparency for users contributing their data to train a model, it also poses a

144

6.5. CONCLUSION

threat to the intellectual property of the model provider. A malefactor could exploit
Face-Auditor to launch user-level membership inference attacks against models with
sensitive training data and use Face-Auditor as a stepping stone for other malicious
activities, such as attribute inference attacks. Knowing that a user is in a sensitive
facial recognition-based system’s authorized zone could also allow an attacker to design
adversarial examples to become an authorized user. On a facial recognition-based disease
diagnosis system, a known member user might also expose to the privacy of having a
particular disease. Although model developers can introduce protective mechanisms,
our evaluation of the robustness of Face-Auditor in Section 6.3 demonstrates that its
inference performance remains high even when subjected to four perturbations. In
situations where private information is at risk of being inferred by malicious users,
criminal laws such as the UK’s Data Protection Act 2018 (sections 170 and 171) can
deter such activities from occurring [11].

Extend to Other Data Domain. Our evaluation in this chapter mainly focuses on
facial recognition models, so we use the term “user-level” instead of “class-level”. We
believe our method can be adapted to other objects as well, and the key challenge lies
in choosing the appropriate reference information. For instance, when dealing with text
data, a better reference might be the frequency of rare words rather than sentence-level
or word-level similarity [151].

6.5 Conclusion

One privacy-sensitive application of the machine learning model is the facial recognition
system, which determines whether a face image being verified belongs to an authorized
user. However, the sensitivity of face images often faces high risk of being misused
by malicious model trainers. To prevent the face images from being misused, one
straightforward strategy is to modify the raw face images before uploading them to the
Internet. However, these approaches inevitably destroy the semantic information of
the face images and might be bypassed by a stronger attacker. Therefore, an auditing
method that does not interfere with the facial recognition model’s utility and cannot be
quickly bypassed is urgently needed.

In this chapter, we proposed Face-Auditor to determine whether a target user’s face
images were used to train a few-shot-based facial recognition system relying on the
user-level membership inference. We formulate the face auditing process as a user-level
membership inference problem, and propose a complete toolkit Face-Auditor that can

145

CHAPTER 6. ASSESSING THE PRIVACY RISKS IN FEW-SHOT FACIAL
RECOGNITION SYSTEM

carefully choose the probing set to query the few-shot-based facial recognition model
and determine whether any of a user’s face images is used in training the model. We
further propose to use the similarity scores between the original face images as reference
information to improve the auditing performance. Extensive experiments on multiple
real-world face image datasets show that Face-Auditor can achieve auditing accuracy
of up to 99%. We showed that Face-Auditor is robust when the users’ face images or
the target models are equipped with different perturbation mechanisms to the training
images or the target models. In the end, we discuss the practical implications and
potential risks of using Face-Auditor. Face-Auditor provides a new solution to prevent
data misuse, especially in facial recognition systems.

146

7
Summary and Conclusion

147

7.1. SUMMARY

7.1 Summary

Implementing the requirements of the privacy regulations in the machine learning
systems is complicated and involves many tasks, such as deleting the storage of many
copies, updating or regenerating the commercial models, and providing sufficient proof-
of-privacy-protection to avoid fining or redesigning the whole system. However, machine
learning’s powerful memorization ability makes every step challenging.

This dissertation first understands the privacy in machine learning models through a
technical implementation of the requirement of the privacy regulation, then launches two
privacy attacks against machine unlearning and graph embedding sharing to challenge
preconceived notions of privacy protection in machine learning models. We found
unintended privacy leakage could happen counterfactually or under a stronger adversary
scenario. To avoid our discovered privacy risks happening in the real world, we design
mitigation methods for each of the located privacy attacks. Besides, we also design an
auditing tool for unconsent data misuse detection, which protects users’ privacy right.

Our first work [P1] starts with implementing “the right to be forgotten” in machine
learning models and understanding the difficulties of balancing the model utility and
unlearning efficiency. Due to the uniqueness of graph data, Graph Neural Networks
are proposed to transform non-Euclidean graphs into low-dimensional vectors that
are optimized with gradient descent algorithms. Deleting nodes/edges from a GNN
model’s training set can be challenging due to the entanglements of the nodes and edges.
More importantly, breaking the training graph’s structural information can cause severe
model utility degradation. In Chapter 3, we propose an end-to-end framework called
GraphEraser, which can achieve deterministic unlearning with high unlearning efficiency
and low model utility degradation.

Our second work [P2] answers why implementing the right to be forgotten in machine
learning models is more challenging than other data-oriented products like databases
or search engines. In Chapter 4, we propose a membership inference attack against
the “machine unlearning” setting where an adversary can access both the original
and unlearned models. Our experimental results showed that machine unlearning was
initially designed to lower the privacy risks of revoked data. On the contrary, the
deleting process exposures more chances of being inferred the membership status. We
investigated various unlearning scenarios and found that the different model behavior
caused by machine unlearning cause an intrinsic privacy leakage in all the settings. To
reduce practical risks, we assessed four defense mechanisms for our proposed attack and

149

CHAPTER 7. SUMMARY AND CONCLUSION

found that only three of them were effective.
In the context of the machine learning paradigm, privacy risks can arise in data

collection, model training, model deployment, or model updating. Our third work [P3]
in Chapter 5 examines a common practice when sharing graph embedding with third
parties that could severely leak information about the training graph. We launch three
attacks against the graph embedding and successfully infer the properties of its original
graph, whether a subgraph structure is in its original graph or even reconstructs the
original graph. Our three attacks break the ingrained perception that “sharing graph
embedding is more secure than sharing raw graph". Through extensive experiments, we
understand the unintended privacy leakage in the model deployment phase.

Our fourth work [P4] utilizes privacy attacks against ML models for good. In
Chapter 6, we design Face-Auditor based on the notion of user-level membership inference
and provide practical guidelines for using it in facial recognition systems. In practice,
some malicious companies might misuse users’ data without their consent. In such cases,
an auditing tool enables users to check whether a model is using/misusing their data is
essential. Once misuse is detected, users could resort to “the right to restrict processing”
to stop the unlawful commercial data process.

7.2 Future Research Directions

Machine learning models are known to be vulnerable to various attacks, such as
membership inference, property inference, attribute inference, model inversion, data
reconstruction, model stealing, backdoor attacks, etc. To build a trustworthy AI system,
we need to understand the vulnerabilities of the pipeline, assess the privacy leakage
risks, and design mitigation methods to avoid potential attacks from the real world.
The privacy regulations provide a way to guide the improvement of privacy protection,
yet the implementation details in machine learning systems still need more work. We
summarize some future work that was raised during the writing of this dissertation into
three themes, understanding, assessment, and mitigation.

First, the technical implementation of privacy-related regulations (e.g., GDPR) for
machine learning (ML) models needs more understanding. How to design/redesign the
ML paradigm that complies with the privacy regulations is still an open question and
needs cooperation from the ML community and law conducts. Model providers need to
respond to the enactment of privacy regulations actively, otherwise, they might meet a
huge fine. But efficiently satisfying the requirement of privacy regulations only to find

150

7.2. FUTURE RESEARCH DIRECTIONS

another cropping up, as we discovered in Chapter 4 (While originally designed to protect
the privacy of the data owner, machine unlearning may leave some imprint of the data
in the ML model and thus create unintended privacy risks.) Sharding the dataset can
be an effective and general way to reduce privacy risks and achieves a high model utility.
Our design in Chapter 3 can strike a balance between unlearning efficiency and model
utility, and we also showed low privacy leakage through a membership inference attack.
But it needs to redesign the whole ML pipeline and is difficult to achieve in the model
deployment phase. This raises the second research direction of achieving the unlearning
goal without changing the ML pipeline and cost the minimum economic loss.

Second, empirically assessing provides a good way to gain an intuitive sense of
privacy leakage in different ML models, as some existing paradigms can provide a false
sense of security or privacy. We found a counterintuitive privacy leakage of sharing
graph embedding in Chapter 5 and unintended privacy degradation caused by machine
unlearning in Chapter 4. However, given an ML system, assessing the privacy leakage
needs multi-dimensional attacks against the system. Launching one attack on a specific
condition is not enough to gain an overall evaluation of the privacy risks. The attack
methods might differ due to different threat models and the quality of the auxiliary
information an adversary could access. Thus, designing a systematic privacy evaluation
tool or designing a once-for-all privacy probing mechanism might be important for
understanding the practical risks.

Third, designing multiple mechanisms to mitigate the vulnerabilities of different
ML models needs more work. In Chapter 4, we evaluate four mitigation methods, i.e.,
publishing label, publishing top-k posteriors, scaling the temperature score to strike a
balance between model confidence and privacy leakage, and adding differential privacy
bounded Gaussian noise to the model’s outputs. Three of these mitigation methods
can survive our proposed attacker. But it is not clear if an advanced adversary who
utilizes our known intuition can design a more advanced attack to bypass these defenses.
In Chapter 6 we design Face-Auditor to detect unconsent data misuse. However, our
false positive rate is not always to be 0. Thus one important future work includes
further reducing the false positive rate of Face-Auditor, adapting Face-Auditor to other
potentially sensitive domains, and designing Face-Auditor under more severe attack
scenarios, for instance, when a user-level defense mechanism is equipped to the malicious
model trainer to evade the auditing.

151

A
Appendix

153

A.1. HYPERPARAMETER SETTINGS OF SIMPLE MODELS

A.1 Hyperparameter Settings of Simple Models

We use multiple ML models to evaluate the unintended privacy leakage in machine
unlearning systems. All models are implemented by sklearn version 0.22 except for the
logistic regression classifier. For reproduction purposes, we list their hyperparameter
settings as follows:

• Logistic Regression. We implement a single linear logistic regression classifier with
PyTorch. Training with Adam optimizer for 100 epochs.

• Decision Tree. We use the Gini index as the criterion, set parameter max_leaf_nodes
as 10, and set other hyperparameters as default.

• Random Forest. We use the Gini index as the criterion, use 100 estimators, set
min_samples_leaf=30, and set other hyperparameters as default.

• Multi-layer Perceptron. For the multi-layer-perceptron classifier, we use the Adam
optimizer and Relu activation function. And set the hidden layer size and learning
rate to 128 and 0.001, respectively.

A.1.1 Implementation of SimpleCNN

The architecture of our SimpleCNN is illustrated in Table A.1. For the MNIST dataset,
input_channel Ci = 1, image width W , and height H are both 28. The kernel_size of
convolution layer Kc and Max-pooling layer Km are 3 and 2, respectively. We train the
SimpeCNN for 100 epochs and use an SGD optimizer with a learning rate of 0.001.

Table A.1: SimpleCNN structure and hyperparameter.

Layer Hyperparameters

Conv2D_1 (Ci, 32, Kc=3, 1)
Relu -

Conv2D_2 (32, H, Kc, 1)
Maxpolling2D Km=2
Dropout_1 (0.25)
Flatten 1
Linear_1 (H × (W/2−K + 1)× (H/2−K + 1), 128)

Relu -
Dropout_2 0.5
Linear_2 (128, #classes)
Softmax dim=1

155

Bibliography

Author’s Papers for this Thesis

[P1] Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M., and Zhang, Y. Graph
Unlearning. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2022, 499–513.

[P2] Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M., and Zhang, Y. When
Machine Unlearning Jeopardizes Privacy. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS). 2021, 896–911.

[P3] Zhang, Z., Chen, M., Backes, M., Shen, Y., and Zhang, Y. Inference Attacks
Against Graph Neural Networks. In: USENIX Security Symposium (USENIX
Security). 2022.

[P4] Chen, M., Zhang, Z., Wang, T., Backes, M., and Zhang, Y. FACE-AUDITOR:
Data Auditing in Facial Recognition Systems. In: USENIX Security Symposium
(USENIX Security). 2023.

Other references

[1] https://gdpr-info.eu/.

[2] https://oag.ca.gov/privacy/ccpa.

[3] https://laws-lois.justice.gc.ca/ENG/ACTS/P-8.6/index.html.

[4] https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_

Protection_Law.pdf.

[5] https://personalinformationprotectionlaw.com/.

[6] https://equalais.media.mit.edu/.

157

https://gdpr-info.eu/
https://oag.ca.gov/privacy/ccpa
https://laws-lois.justice.gc.ca/ENG/ACTS/P-8.6/index.html
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://personalinformationprotectionlaw.com/
https://equalais.media.mit.edu/

BIBLIOGRAPHY

[7] https://archive.ics.uci.edu/ml/datasets/adult.

[8] https://www.kaggle.com/sobhanmoosavi/us-accidents.

[9] http://yann.lecun.com/exdb/mnist/.

[10] https://www.cs.toronto.edu/~kriz/cifar.html.

[11] https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted.

[12] Abadi, M., Chu, A., Goodfellow, I., McMahan, B., Mironov, I., Talwar, K., and
Zhang, L. Deep Learning with Differential Privacy. In: ACM SIGSAC Conference
on Computer and Communications Security (CCS). 2016, 308–318.

[13] Albert, K., Penney, J., Schneier, B., and Kumar, R. S. S. Politics of Adversarial
Machine Learning. CoRR abs/2002.05648 (2020).

[14] Andersen, R., Chung, F. R. K., and Lang, K. J. Local Graph Partitioning using
PageRank Vectors. In: Annual Symposium on Foundations of Computer Science
(FOCS). 2006, 475–486.

[15] Atwood, J. and Towsley, D. Diffusion-Convolutional Neural Networks. In: Annual
Conference on Neural Information Processing Systems (NIPS). 2016, 1993–2001.

[16] Avdiukhin, D., Pupyrev, S., and Yaroslavtsev, G. Multi-Dimensional Balanced
Graph Partitioning via Projected Gradient Descent. Proceedings of the VLDB
Endowment (2019).

[17] Awadelkarim, A. and Ugander, J. Prioritized Restreaming Algorithms for Bal-
anced Graph Partitioning. In: ACM Conference on Knowledge Discovery and
Data Mining (KDD). 2020, 1877–1887.

[18] Backes, M., Humbert, M., Pang, J., and Zhang, Y. walk2friends: Inferring Social
Links from Mobility Profiles. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2017, 1943–1957.

[19] Bansal, A., Nanduri, A., Castillo, C. D., Ranjan, R., and Chellappa, R. UMDFaces:
An Annotated Face Dataset for Training Deep Networks. In: International Joint
Conference on Biometrics (IJCB). 2017, 464–473.

[20] Baumhauer, T., Schöttle, P., and Zeppelzauer, M. Machine Unlearning: Linear
Filtration for Logit-based Classifier. CoRR abs/2002.02730 (2020).

158

https://archive.ics.uci.edu/ml/datasets/adult
https://www.kaggle.com/sobhanmoosavi/us-accidents
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.legislation.gov.uk/ukpga/2018/12/contents/enacted

OTHER REFERENCES

[21] Béguelin, S. Z., Wutschitz, L., Tople, S., Rühle, V., Paverd, A., Ohrimenko, O.,
Köpf, B., and Brockschmidt, M. Analyzing Information Leakage of Updates
to Natural Language Models. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2020, 363–375.

[22] Bertram, T., Bursztein, E., Caro, S., Chao, H., Chin, R., Fleischer, F., Gustafsson,
A., Hemerly, J., Hibbert, C., InvernizziLanah, L., Donnelly, K., Ketover, J., Laefer,
J., Nicholas, P., Niu, Y., Obhi, H., Price, D., Strait, A., Thomas, K., and Verney,
A. Five Years of the Right to be Forgotten. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS). 2019, 959–972.

[23] Bianchi, F. M., Grattarola, D., and Alippi, C. Spectral Clustering with Graph
Neural Networks for Graph Pooling. In: International Conference on Machine
Learning (ICML). 2020, 874–883.

[24] Biswas, S., Dong, Y., Kamath, G., and Ullman, J. R. CoinPress: Practical Private
Mean and Covariance Estimation. In: Annual Conference on Neural Information
Processing Systems (NeurIPS). 2020.

[25] Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C., Jia, H., Travers, A.,
Zhang, B., Lie, D., and Papernot, N. Machine Unlearning. In: IEEE Symposium
on Security and Privacy (S&P). 2021.

[26] Brophy, J. and Lowd, D. Machine Unlearning for Random Forests. In: Interna-
tional Conference on Machine Learning (ICML). 2021, 1092–1104.

[27] Cao, Q., Shen, L., Xie, W., Parkhi, O. M., and Zisserman, A. VGGFace2: A
Dataset for Recognising Faces across Pose and Age. In: International Conference
on Automatic Face & Gesture Recognition (FG). 2018, 67–74.

[28] Cao, Y. and Yang, J. Towards Making Systems Forget with Machine Unlearning.
In: IEEE Symposium on Security and Privacy (S&P). 2015, 463–480.

[29] Cao, Y., Yu, A. F., Aday, A., Stahl, E., Merwine, J., and Yang, J. Efficient
Repair of Polluted Machine Learning Systems via Causal Unlearning. In: ACM
Asia Conference on Computer and Communications Security (ASIACCS). 2018,
735–747.

[30] Carlini, N., Hayes, J., Nasr, M., Jagielski, M., Sehwag, V., Tramèr, F., Balle, B.,
Ippolito, D., and Wallace, E. Extracting Training Data from Diffusion Models.
CoRR abs/2301.13188 (2023).

159

BIBLIOGRAPHY

[31] Chandrasekaran, V., Gao, C., Tang, B., Fawaz, K., Jha, S., and Banerjee, S. Face-
Off: Adversarial Face Obfuscation. Privacy Enhancing Technologies Symposium
(2021).

[32] Chen, D., Yu, N., Zhang, Y., and Fritz, M. GAN-Leaks: A Taxonomy of Member-
ship Inference Attacks against Generative Models. In: ACM SIGSAC Conference
on Computer and Communications Security (CCS). 2020, 343–362.

[33] Chen, W., Liu, Y., Kira, Z., Wang, Y. F., and Huang, J. A Closer Look at Few-
shot Classification. In: International Conference on Learning Representations
(ICLR). 2019.

[34] Chen, Z., Villar, S., Chen, L., and Bruna, J. On the equivalence between graph iso-
morphism testing and function approximation with GNNs. In: Annual Conference
on Neural Information Processing Systems (NeurIPS). 2019, 15868–15876.

[35] Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J. Cluster-
GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional
Networks. In: ACM Conference on Knowledge Discovery and Data Mining (KDD).
2019, 257–266.

[36] Coates, A., Ng, A. Y., and Lee, H. An Analysis of Single-Layer Networks
in Unsupervised Feature Learning. In: International Conference on Artificial
Intelligence and Statistics (AISTATS). 2011, 215–223.

[37] Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional Neural Net-
works on Graphs with Fast Localized Spectral Filtering. In: Annual Conference
on Neural Information Processing Systems (NIPS). 2016, 3837–3845.

[38] Delling, D., Goldberg, A. V., Razenshteyn, I. P., and Werneck, R. F. F. Graph
Partitioning with Natural Cuts. In: International Symposium on Parallel and
Distributed Processing (IPDPS). 2011, 1135–1146.

[39] Diao, Z., Wang, X., Zhang, D., Liu, Y., Xie, K., and He, S. Dynamic Spatial-
Temporal Graph Convolutional Neural Networks for Traffic Forecasting. In:
AAAI Conference on Artificial Intelligence (AAAI). 2019, 890–897.

[40] Duddu, V., Boutet, A., and Shejwalkar, V. Quantifying Privacy Leakage in
Graph Embedding. CoRR abs/2010.00906 (2020).

[41] Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and Bresson, X. Bench-
marking Graph Neural Networks. CoRR abs/2003.00982 (2020).

160

OTHER REFERENCES

[42] Dwork, C. and Roth, A. The Algorithmic Foundations of Differential Privacy.
Now Publishers Inc., 2014.

[43] Ellers, M., Cochez, M., Schumacher, T., Strohmaier, M., and Lemmerich, F.
Privacy Attacks on Network Embeddings. CoRR abs/1912.10979 (2019).

[44] Errica, F., Podda, M., Bacciu, D., and Micheli, A. A Fair Comparison of Graph
Neural Networks for Graph Classification. In: International Conference on Learn-
ing Representations (ICLR). 2020.

[45] Evtimov, I., Sturmfels, P., and Kohno, T. FoggySight: A Scheme for Facial
Lookup Privacy. Privacy Enhancing Technologies Symposium (2021).

[46] Faraki, M., Yu, X., Tsai, Y., Suh, Y., and Chandraker, M. Cross-Domain Similarity
Learning for Face Recognition in Unseen Domains. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2021, 15292–15301.

[47] Fredrikson, M., Jha, S., and Ristenpart, T. Model Inversion Attacks that Ex-
ploit Confidence Information and Basic Countermeasures. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2015, 1322–1333.

[48] Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., and Ristenpart, T. Privacy in
Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing.
In: USENIX Security Symposium (USENIX Security). 2014, 17–32.

[49] Ganju, K., Wang, Q., Yang, W., Gunter, C. A., and Borisov, N. Property Inference
Attacks on Fully Connected Neural Networks using Permutation Invariant Rep-
resentations. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2018, 619–633.

[50] Garey, M. R. and Johnson, D. S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[51] Ginart, A. A., Guan, M. Y., Valiant, G., and Zou, J. Making AI Forget You: Data
Deletion in Machine Learning. In: Annual Conference on Neural Information
Processing Systems (NeurIPS). 2019, 3513–3526.

[52] Girvan, M. and Newman, M. E. J. Community Structure in Social and Biological
Networks. Proceedings of the National Academy of Sciences (2002).

[53] Golatkar, A., Achille, A., and Soatto, S. Eternal Sunshine of the Spotless Net:
Selective Forgetting in Deep Networks. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2020, 9301–9309.

161

BIBLIOGRAPHY

[54] Gomrokchi, M., Amin, S., Aboutalebi, H., Wong, A., and Precup, D. Membership
Inference Attacks Against Temporally Correlated Data in Deep Reinforcement
Learning. CoRR abs/2109.03975 (2021).

[55] Good, B. H., Montjoye, Y.-A. D., and Clauset, A. Performance of Modularity
Maximization in Practical Contexts. Physical Review E (2010).

[56] Gregory, S. Finding Overlapping Communities in Networks by Label Propagation.
New Journal of Physics (2010).

[57] Grover, A. and Leskovec, J. node2vec: Scalable Feature Learning for Networks.
In: ACM Conference on Knowledge Discovery and Data Mining (KDD). 2016,
855–864.

[58] Gu, T., Dolan-Gavitt, B., and Grag, S. Badnets: Identifying Vulnerabilities in
the Machine Learning Model Supply Chain. CoRR abs/1708.06733 (2017).

[59] Guo, C., Goldstein, T., Hannun, A. Y., and Maaten, L. van der. Certified
Data Removal from Machine Learning Models. In: International Conference on
Machine Learning (ICML). 2020, 3832–3842.

[60] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On Calibration of Modern
Neural Networks. In: International Conference on Machine Learning (ICML).
2017.

[61] Gupta, V., Jung, C., Neel, S., Roth, A., Sharifi-Malvajerdi, S., and Waites, C.
Adaptive Machine Unlearning. In: Annual Conference on Neural Information
Processing Systems (NeurIPS). 2021.

[62] Gurovich, Y., Hanani, Y., Bar, O., Nadav, G., Fleischer, N., Gelbman, D., Basel-
Salmon, L., Krawitz, P. M., Kamphausen, S. B., Zenker, M., Bird, L. M., and
Gripp, K. W. Identifying Facial Phenotypes of Genetic Disorders Using Deep
Learning. Nature Medicine (2019).

[63] Hamilton, W. L. Graph Representation Learning. Morgan and Claypool, 2020.

[64] Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive Representation Learning on
Large Graphs. In: Annual Conference on Neural Information Processing Systems
(NIPS). 2017, 1025–1035.

[65] Hayes, J., Melis, L., Danezis, G., and Cristofaro, E. D. LOGAN: Evaluating
Privacy Leakage of Generative Models Using Generative Adversarial Networks.
Privacy Enhancing Technologies Symposium (2019).

162

OTHER REFERENCES

[66] He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning for Image
Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016, 770–778.

[67] He, S., Bastani, F., Jagwani, S., Park, E., Abbar, S., Alizadeh, M., Balakrishnan,
H., Chawla, S., Madden, S., and Sadeghi, M. A. RoadTagger: Robust Road
Attribute Inference with Graph Neural Networks. In: AAAI Conference on
Artificial Intelligence (AAAI). 2020, 10965–10972.

[68] He, X. and Zhang, Y. Quantifying and Mitigating Privacy Risks of Contrastive
Learning. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2021, 845–863.

[69] He, Y., Rahimian, S., Schiele1, B., and Fritz, M. Segmentations-Leak: Membership
Inference Attacks and Defenses in Semantic Image Segmentation. In: European
Conference on Computer Vision (ECCV). 2020, 519–535.

[70] Hu, H., Salcic, Z., Dobbie, G., Chen, J., Sun, L., and Zhang, X. Membership
Inference via Backdooring. In: International Joint Conferences on Artificial
Intelligence (IJCAI). 2022, 3832–3838.

[71] Huang, G., Liu, Z., Maaten, L. van der, and Weinberger, K. Q. Densely Connected
Convolutional Networks. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017, 2261–2269.

[72] Huang, S., Li, Y., Bao, Z., and Li, Z. Towards Efficient Motif-based Graph
Partitioning: An Adaptive Sampling Approach. In: International Conference on
Data Engineering (ICDE). 2021, 528–539.

[73] Izzo, Z., Smart, M. A., Chaudhuri, K., and Zou, J. Approximate Data Deletion
from Machine Learning Models: Algorithms and Evaluations. In: International
Conference on Artificial Intelligence and Statistics (AISTATS). 2021, 2008–2016.

[74] Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., and Papernot, N. High
Accuracy and High Fidelity Extraction of Neural Networks. In: USENIX Security
Symposium (USENIX Security). 2020, 1345–1362.

[75] Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., and Li, B. Manipu-
lating Machine Learning: Poisoning Attacks and Countermeasures for Regression
Learning. In: IEEE Symposium on Security and Privacy (S&P). 2018, 19–35.

163

BIBLIOGRAPHY

[76] Jayaraman, B. and Evans, D. Evaluating Differentially Private Machine Learning
in Practice. In: USENIX Security Symposium (USENIX Security). 2019, 1895–
1912.

[77] Jia, J., Salem, A., Backes, M., Zhang, Y., and Gong, N. Z. MemGuard: Defending
against Black-Box Membership Inference Attacks via Adversarial Examples. In:
ACM SIGSAC Conference on Computer and Communications Security (CCS).
2019, 259–274.

[78] Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., and Tang, L.
Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge. In:
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 2017, 615–629.

[79] Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R.,
and Wu, A. Y. An Efficient k-Means Clustering Algorithm: Analysis and Imple-
mentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2002).

[80] Karypis, G. and Kumar, V. A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs. SIAM Journal on Scientific Computing (1998).

[81] Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Riley, P. Molecular
Graph Convolutions: Moving Beyond Fingerprints. Journal of Computer-Aided
Molecular Design (2016).

[82] Kipf, T. N. and Welling, M. Semi-Supervised Classification with Graph Con-
volutional Networks. In: International Conference on Learning Representations
(ICLR). 2017.

[83] Koch, G., Zemel, R., and Salakhutdinov, R. Siamese Neural Networks for One-
Shot Image Recognition. In: ICML Workshop on Deep Learning (DL). 2015.

[84] Komkov, S. and Petiushko, A. AdvHat: Real-World Adversarial Attack on Ar-
cFace Face ID System. In: International Conference on Pattern Recognition
(ICPR). 2020, 819–826.

[85] Kulynych, B., Overdorf, R., Troncoso, C., and Gùrses, S. F. POTs: Protective
Optimization Technologies. In: Conference on Fairness, Accountability, and
Transparency (FAT). 2020, 177–188.

164

OTHER REFERENCES

[86] Lane, N. D. and Georgiev, P. Can Deep Learning Revolutionize Mobile Sensing?
In: International Workshop on Mobile Computing Systems and Applications
(HotMobile). 2015, 117–122.

[87] LaSalle, D. and Karypis, G. A Parallel Hill-Climbing Refinement Algorithm for
Graph Partitioning. In: International Conference on Parallel Processing (ICCP).
2016, 236–241.

[88] Li, J., Li, N., and Ribeiro, B. Membership Inference Attacks and Defenses in
Classification Models. In: ACM Conference on Data and Application Security
and Privacy (CODASPY). 2021, 5–16.

[89] Li, N., Lyu, M., Su, D., and Yang, W. Differential Privacy: From Theory to
Practice. Morgan & Claypool Publishers, 2016.

[90] Li, T. and Lin, L. AnonymousNet: Natural Face De-Identification With Measur-
able Privacy. In: IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). 2019, 56–65.

[91] Li, X., Saúde, J., Reddy, P., and Veloso, M. Classifying and Understanding
Financial Data Using Graph Neural Network. In: The AAAI Workshop on
Knowledge Discovery from Unstructured Data in Financial Services (KDF). 2020.

[92] Li, Z. and Zhang, Y. Membership Leakage in Label-Only Exposures. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS). 2021,
880–895.

[93] Liu, H., Han, J., Nie, F., and Li, X. Balanced Clustering with Least Square
Regression. In: AAAI Conference on Artificial Intelligence (AAAI). 2017, 2231–
2237.

[94] Liu, H., Jia, J., Qu, W., and Gong, N. Z. EncoderMI: Membership Inference
against Pre-trained Encoders in Contrastive Learning. In: ACM SIGSAC Con-
ference on Computer and Communications Security (CCS). 2021.

[95] Liu, Y., Ma, Z., Liu, X., Liu, J., Jiang, Z., Ma, J., Yu, P., and Ren, K. Learn to
Forget: Memorization Elimination for Neural Networks. CoRR abs/2003.10933
(2020).

[96] Liu, Y., Wen, R., He, X., Salem, A., Zhang, Z., Backes, M., Cristofaro, E. D.,
Fritz, M., and Zhang, Y. ML-Doctor: Holistic Risk Assessment of Inference
Attacks Against Machine Learning Models. In: USENIX Security Symposium
(USENIX Security). 2022.

165

BIBLIOGRAPHY

[97] Liu, Z., Luo, P., Wang, X., and Tang, X. Deep Learning Face Attributes in the
Wild. In: IEEE International Conference on Computer Vision (ICCV). 2015,
3730–3738.

[98] Long, Y., Bindschaedler, V., Wang, L., Bu, D., Wang, X., Tang, H., Gunter,
C. A., and Chen, K. Understanding Membership Inferences on Well-Generalized
Learning Models. CoRR abs/1802.04889 (2018).

[99] Maaten, L. van der and Hinton, G. Visualizing Data using t-SNE. Journal of
Machine Learning Research (2008).

[100] Malinen, M. I. and Fränti, P. Balanced K-Means for Clustering. Structural,
Syntactic, and Statistical Pattern Recognition (2014).

[101] Malmi, E. and Weber, I. You Are What Apps You Use: Demographic Prediction
Based on User’s Apps. In: International Conference on Weblogs and Social Media
(ICWSM). 2016, 635–638.

[102] McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L. Learning Differentially
Private Recurrent Language Models. In: International Conference on Learning
Representations (ICLR). 2018.

[103] McSherry, F. Spectral Partitioning of Random Graphs. In: Annual Symposium
on Foundations of Computer Science (FOCS). 2001, 529–537.

[104] Melis, L., Song, C., Cristofaro, E. D., and Shmatikov, V. Exploiting Unintended
Feature Leakage in Collaborative Learning. In: IEEE Symposium on Security
and Privacy (S&P). 2019, 497–512.

[105] Miao, Y., Xue, M., Chen, C., Pan, L., Zhang, J., Zhao, B. Z. H., Kaafar, D., and
Xiang, Y. The Audio Auditor: User-Level Membership Inference in Internet of
Things Voice Services. Privacy Enhancing Technologies Symposium (2021).

[106] Moraes, T. G., Almeida, E. C., and Pereira, J. R. L. de. Smile, You are being
Identified! Risks and Measures for the Use of Facial Recognition in (Semi-)public
Spaces. AI Ethics (2021).

[107] Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel, P., and Neumann, M.
TUDataset: A collection of benchmark datasets for learning with graphs. In: The
ICML Workshop on Graph Representation Learning and Beyond (GRL). 2020.

166

OTHER REFERENCES

[108] Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G.,
and Grohe, M. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural
Networks. In: AAAI Conference on Artificial Intelligence (AAAI). 2019, 4602–
4609.

[109] Nasr, M., Shokri, R., and Houmansadr, A. Machine Learning with Membership
Privacy using Adversarial Regularization. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS). 2018, 634–646.

[110] Nasr, M., Shokri, R., and Houmansadr, A. Comprehensive Privacy Analysis
of Deep Learning: Passive and Active White-box Inference Attacks against
Centralized and Federated Learning. In: IEEE Symposium on Security and
Privacy (S&P). 2019, 1021–1035.

[111] Nasr, M., Song, S., Thakurta, A., Papernot, N., and Carlini, N. Adversary
Instantiation: Lower Bounds for Differentially Private Machine Learning. In:
IEEE Symposium on Security and Privacy (S&P). 2021.

[112] Neel, S., Roth, A., and Sharifi-Malvajerdi, S. Descent-to-Delete: Gradient-Based
Methods for Machine Unlearning. In: International Conference on Algorithmic
Learning Theory (ICALT). 2021, 931–962.

[113] Newman, M. E. Modularity and Community Structure in Networks. Proceedings
of the National Academy of Sciences (2006).

[114] Nogueira, R. F., Alencar Lotufo, R. de, and Machado, R. C. Fingerprint Live-
ness Detection Using Convolutional Neural Networks. IEEE Transactions on
Information Forensics and Security (2016).

[115] Oh, S. J., Augustin, M., Schiele, B., and Fritz, M. Towards Reverse-Engineering
Black-Box Neural Networks. In: International Conference on Learning Represen-
tations (ICLR). 2018.

[116] Orekondy, T., Schiele, B., and Fritz, M. Prediction Poisoning: Towards Defenses
Against DNN Model Stealing Attacks. In: International Conference on Learning
Representations (ICLR). 2020.

[117] Pal, A., Eksombatchai, C., Zhou, Y., Zhao, B., Rosenberg, C., and Leskovec, J.
PinnerSage: Multi-Modal User Embedding Framework for Recommendations
at Pinterest. In: ACM Conference on Knowledge Discovery and Data Mining
(KDD). 2020, 2311–2320.

167

BIBLIOGRAPHY

[118] Pan, X., Wang, W., Zhang, X., Li, B., Yi, J., and Song, D. How You Act Tells a
Lot: Privacy-Leaking Attack on Deep Reinforcement Learning. In: International
Conference on Autonomous Agents and Multi-agent Systems (AAMAS). 2019,
368–379.

[119] Papernot, N., McDaniel, P. D., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A.
Practical Black-Box Attacks Against Machine Learning. In: ACM Asia Conference
on Computer and Communications Security (ASIACCS). 2017, 506–519.

[120] Papernot, N., McDaniel, P. D., Jha, S., Fredrikson, M., Celik, Z. B., and Swami,
A. The Limitations of Deep Learning in Adversarial Settings. In: IEEE European
Symposium on Security and Privacy (Euro S&P). 2016, 372–387.

[121] Papernot, N., McDaniel, P., Sinha, A., and Wellman, M. SoK: Towards the Science
of Security and Privacy in Machine Learning. In: IEEE European Symposium on
Security and Privacy (Euro S&P). 2018, 399–414.

[122] Papernot, N., Song, S., Mironov, I., Raghunathan, A., Talwar, K., and Erlings-
son, Ú. Scalable Private Learning with PATE. In: International Conference on
Learning Representations (ICLR). 2018.

[123] Pham, T., Tran, T., Phung, D. Q., and Venkatesh, S. Column Networks for
Collective Classification. In: AAAI Conference on Artificial Intelligence (AAAI).
2017, 2485–2491.

[124] Pyrgelis, A., Troncoso, C., and Cristofaro, E. D. Knock Knock, Who’s There?
Membership Inference on Aggregate Location Data. In: Network and Distributed
System Security Symposium (NDSS). 2018.

[125] Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., and Tang, J. DeepInf: Social
Influence Prediction with Deep Learning. In: ACM Conference on Knowledge
Discovery and Data Mining (KDD). 2018, 2110–2119.

[126] Radiya-Dixit, E., Hong, S., Carlini, N., and Tramér, F. Data Poisoning Won’t
Save You From Facial Recognition. In: ICML Workshop on Adversarial Machine
Learning (AdvML). 2022.

[127] Raghavan, U. N., Albert, R., and Kumara, S. Near Linear Time Algorithm
to Detect Community Structures in Large-scale Networks. Physical Review E
(2007).

[128] Rahimian, S., Orekondy, T., and Fritz, M. Differential Privacy Defenses and
Sampling Attacks for Membership Inference. In: PriML Workshop (PriML). 2020.

168

OTHER REFERENCES

[129] Rosvall, M. and Bergstrom, C. T. Maps of Random Walks on Complex Networks
Reveal Community Structure. Proceedings of the National Academy of Sciences
(2008).

[130] Saha, A., Subramanya, A., and Pirsiavash, H. Hidden Trigger Backdoor Attacks.
In: AAAI Conference on Artificial Intelligence (AAAI). 2020, 11957–11965.

[131] Salem, A., Bhattacharya, A., Backes, M., Fritz, M., and Zhang, Y. Updates-Leak:
Data Set Inference and Reconstruction Attacks in Online Learning. In: USENIX
Security Symposium (USENIX Security). 2020, 1291–1308.

[132] Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz, M., and Backes, M.
ML-Leaks: Model and Data Independent Membership Inference Attacks and
Defenses on Machine Learning Models. In: Network and Distributed System
Security Symposium (NDSS). 2019.

[133] Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L. MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2018, 4510–4520.

[134] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. The
Graph Neural Network Model. IEEE Transactions on Neural Networks (2009).

[135] Schroff, F., Kalenichenko, D., and Philbin, J. FaceNet: A Unified Embedding for
Face Recognition and Clustering. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2015, 815–823.

[136] Shafahi, A., Huang, W. R., Najibi, M., Suciu, O., Studer, C., Dumitras, T., and
Goldstein, T. Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural
Networks. In: Annual Conference on Neural Information Processing Systems
(NeurIPS). 2018, 6103–6113.

[137] Shan, S., Wenger, E., Zhang, J., Li, H., Zheng, H., and Zhao, B. Y. Fawkes:
Protecting Privacy against Unauthorized Deep Learning Models. In: USENIX
Security Symposium (USENIX Security). 2020, 1589–1604.

[138] Sharif, M., Bhagavatula, S., Bauer, L., and Reiter, M. K. Accessorize to a
Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS). 2016,
1528–1540.

[139] Shchur, O., Mumme, M., Bojchevski, A., and Günnemann, S. Pitfalls of Graph
Neural Network Evaluation. CoRR abs/1811.05868 (2018).

169

BIBLIOGRAPHY

[140] Shen, Y., He, X., Han, Y., and Zhang, Y. Model Stealing Attacks Against
Inductive Graph Neural Networks. In: IEEE Symposium on Security and Privacy
(S&P). 2022.

[141] Shervashidze, N., Schweitzer, P., Leeuwen, E. J. van, Mehlhorn, K., and Borg-
wardt, K. M. Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning
Research (2011).

[142] Shi, J. and Malik, J. Normalized Cuts and Image Segmentation. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 1997, 731–
737.

[143] Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., and Sun, Y. Masked Label
Prediction: Unified Message Passing Model for Semi-Supervised Classification.
In: International Joint Conferences on Artificial Intelligence (IJCAI). 2021,
1548–1554.

[144] Shi, Y., Huang, Z., Wang, W., Zhong, H., Feng, S., and Sun, Y. Masked Label
Prediction: Unified Massage Passing Model for Semi-Supervised Classification.
CoRR abs/2009.03509 (2020).

[145] Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Membership Inference
Attacks Against Machine Learning Models. In: IEEE Symposium on Security
and Privacy (S&P). 2017, 3–18.

[146] Simonovsky, M. and Komodakis, N. GraphVAE: Towards Generation of Small
Graphs Using Variational Autoencoders. In: International Conference on Artificial
Neural Networks (ICANN). 2018, 412–422.

[147] Snell, J., Swersky, K., and Zemel, R. S. Prototypical Networks for Few-shot
Learning. In: Annual Conference on Neural Information Processing Systems
(NIPS). 2017, 4077–4087.

[148] Sommer, D. M., Song, L., Wagh, S., and Mittal, P. Towards Probabilistic Verifi-
cation of Machine Unlearning. CoRR abs/2003.04247 (2020).

[149] Song, C. and Raghunathan, A. Information Leakage in Embedding Models. In:
ACM SIGSAC Conference on Computer and Communications Security (CCS).
2020, 377–390.

[150] Song, C., Ristenpart, T., and Shmatikov, V. Machine Learning Models that
Remember Too Much. In: ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS). 2017, 587–601.

170

OTHER REFERENCES

[151] Song, C. and Shmatikov, V. Auditing Data Provenance in Text-Generation
Models. In: ACM Conference on Knowledge Discovery and Data Mining (KDD).
2019, 196–206.

[152] Song, C. and Shokri, R. Membership Encoding for Deep Learning. In: ACM
Asia Conference on Computer and Communications Security (ASIACCS). 2020,
344–356.

[153] Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H. S., and Hospedales,
T. M. Learning to Compare: Relation Network for Few-Shot Learning. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2018, 1199–
1208.

[154] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. Going Deeper with Convolutions. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2015, 1–9.

[155] Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. DeepFace: Closing the Gap
to Human-Level Performance in Face Verification. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2014, 1701–1708.

[156] Tan, M., Zhou, Z., and Li, Z. The Many-faced God: Attacking Face Verification
System with Embedding and Image Recovery. In: Annual Computer Security
Applications Conference (ACSAC). 2021, 17–30.

[157] Tang, X., Mahloujifar, S., Song, L., Shejwalkar, V., Nasr, M., Houmansadr, A.,
and Mittal, P. Mitigating Membership Inference Attacks by Self-Distillation
Through a Novel Ensemble Architecture. In: USENIX Security Symposium
(USENIX Security). 2022, 1433–1450.

[158] Thys, S., Ranst, W. V., and Goedemé, T. Fooling Automated Surveillance
Cameras: Adversarial Patches to Attack Person Detection. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2019, 49–55.

[159] Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J. B., and Isola, P. Rethinking
Few-Shot Image Classification: A Good Embedding is All You Need? In: European
Conference on Computer Vision (ECCV). 2020, 266–282.

[160] Torng, W. and Altman, R. B. Graph Convolutional Neural Networks for Predict-
ing Drug-Target Interactions. Journal of Chemical Information and Modeling
(2019).

171

BIBLIOGRAPHY

[161] Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., and McDaniel,
P. Ensemble Adversarial Training: Attacks and Defenses. In: International Con-
ference on Learning Representations (ICLR). 2017.

[162] Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., and Ristenpart, T. Stealing
Machine Learning Models via Prediction APIs. In: USENIX Security Symposium
(USENIX Security). 2016, 601–618.

[163] Ugander, J. and Backstrom, L. Balanced Label Propagation for Partitioning
Massive Graphs. In: ACM International Conference on Web Search and Data
Mining (WSDM). 2013, 507–516.

[164] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y.
Graph Attention Networks. In: International Conference on Learning Represen-
tations (ICLR). 2018.

[165] Wang, B. and Gong, N. Z. Stealing Hyperparameters in Machine Learning. In:
IEEE Symposium on Security and Privacy (S&P). 2018, 36–52.

[166] Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., and Zhao, B. Y.
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks.
In: IEEE Symposium on Security and Privacy (S&P). 2019, 707–723.

[167] Wang, F. and Zhang, C. Label Propagation through Linear Neighborhoods. IEEE
Transactions on Knowledge and Data Engineering (2008).

[168] Wang, H. and Leskovec, J. Unifying Graph Convolutional Neural Networks and
Label Propagation. CoRR abs/2002.06755 (2020).

[169] Wang, M. and Deng, W. Deep Face Recognition: A Survey. Neurocomputing
(2021).

[170] Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. Generalizing from a Few Examples:
A Survey on Few-shot Learning. ACM Computing Surveys (2020).

[171] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. Image Quality
Assessment: from Error Visibility to Structural Similarity. IEEE Transactions
on Image Process (2004).

[172] Wei, X., Xu, L., Cao, B., and Yu, P. Cross View Link Prediction by Learning
Noise-resilient Representation Consensus. In: International Conference on World
Wide Web (WWW). 2017, 1611–1619.

172

OTHER REFERENCES

[173] Wenger, E., Shan, S., Zheng, H., and Zhao, B. Y. SoK: Anti-Facial Recognition
Technology. In: IEEE Symposium on Security and Privacy (S&P). 2022.

[174] Wu, J., He, J., and Xu, J. DEMO-Net: Degree-specific Graph Neural Networks
for Node and Graph Classification. In: ACM Conference on Knowledge Discovery
and Data Mining (KDD). 2019, 406–415.

[175] Wu, Y., Dobriban, E., and Davidson, S. B. DeltaGrad: Rapid retraining of
machine learning models. In: International Conference on Machine Learning
(ICML). 2020, 10355–10366.

[176] Wu, Z., Lim, S., Davis, L. S., and Goldstein, T. Making an Invisibility Cloak:
Real World Adversarial Attacks on Object Detectors. In: European Conference
on Computer Vision (ECCV). 2020, 1–17.

[177] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How Powerful are Graph Neural
Networks? In: International Conference on Learning Representations (ICLR).
2019.

[178] Xue, M., Magno, G., Cunha, E., Almeida, V., and Ross, K. W. The Right to be
Forgotten in the Media: A Data-Driven Study. Privacy Enhancing Technologies
Symposium (2016).

[179] Yang, C., Pal, A., Zhai, A., Pancha, N., Han, J., Rosenberg, C., and Leskovec, J.
MultiSage: Empowering GCN with Contextualized Multi-Embeddings on Web-
Scale Multipartite Networks. In: ACM Conference on Knowledge Discovery and
Data Mining (KDD). 2020, 2434–2443.

[180] Yang, S., Luo, P., Loy, C. C., and Tang, X. WIDER FACE: A Face Detection
Benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016, 5525–5533.

[181] Yang, Z., Cohen, W. W., and Salakhutdinov, R. Revisiting Semi-Supervised
Learning with Graph Embeddings. In: International Conference on Machine
Learning (ICML). 2016, 40–48.

[182] Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. Privacy Risk in Machine
Learning: Analyzing the Connection to Overfitting. In: IEEE Computer Security
Foundations Symposium (CSF). 2018, 268–282.

[183] Yi, D., Lei, Z., Liao, S., and Li, S. Z. Learning Face Representation from Scratch.
CoRR abs/1411.7923 (2014).

173

BIBLIOGRAPHY

[184] Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J.
Graph Convolutional Neural Networks for Web-Scale Recommender Systems.
In: ACM Conference on Knowledge Discovery and Data Mining (KDD). 2018,
974–983.

[185] Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., and Leskovec, J.
Hierarchical Graph Representation Learning with Differentiable Pooling. In:
Annual Conference on Neural Information Processing Systems (NeurIPS). 2018,
4805–4815.

[186] Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and Prasanna, V. GraphSAINT:
Graph Sampling Based Inductive Learning Method. In: International Conference
on Learning Representations (ICLR). 2020.

[187] Zhang, M., Ren, Z., Wang, Z., Ren, P., Chen, Z., Hu, P., and Zhang, Y. Mem-
bership Inference Attacks Against Recommender Systems. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2021, 864–879.

[188] Zhang, M. and Chen, Y. Weisfeiler-Lehman Neural Machine for Link Prediction.
In: ACM Conference on Knowledge Discovery and Data Mining (KDD). 2017,
575–583.

[189] Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2018, 586–595.

[190] Zhang, X. and Newman, M. E. J. Multiway Spectral Community Detection in
Networks. Physical Review E (2015).

[191] Zhang, Y., Humbert, M., Surma, B., Manoharan, P., Vreeken, J., and Backes, M.
Towards Plausible Graph Anonymization. In: Network and Distributed System
Security Symposium (NDSS). 2020.

[192] Zhang, Z., Wang, T., Honorio, J., Li, N., Backes, M., He, S., Chen, J., and
Zhang, Y. PrivSyn: Differentially Private Data Synthesis. In: USENIX Security
Symposium (USENIX Security). 2021, 929–946.

[193] Zhou, J., Chen, C., Zheng, L., Zheng, X., Wu, B., Liu, Z., and Wang, L. Privacy-
Preserving Graph Neural Network for Node Classification. CoRR abs/2005.11903
(2020).

[194] Zhou, J., Chen, Y., Shen, C., and Zhang, Y. Property Inference Attacks Against
GANs. In: Network and Distributed System Security Symposium (NDSS). 2022.

174

OTHER REFERENCES

[195] Zhu, D., Chen, D., Grossklags, J., and Fritz, M. Data Forensics in Diffusion
Models: A Systematic Analysis of Membership Privacy. CoRR abs/2302.07801
(2023).

175

	Introduction
	Contributions
	Technical Implementation of Machine Unlearning
	Understanding the Privacy Risks in Machine Unlearning
	Assessing the Privacy Risks in Graph Embedding Sharing System
	Assessing the Privacy Risks in Few-shot Facial Recognition System

	Organization

	Preliminaries and Background
	Machine Learning
	Classification Models
	Graph Neural Networks

	Machine Unlearning
	Privacy Attacks against Machine Learning Models
	Applications of ML models
	Facial Recognition System
	Few-shot Learning for Facial Recognition

	Related Work
	Machine Unlearning
	Attacks against Machine Learning
	Attacks as an Auditing Tool for AI Systems
	Privacy of Facial Recognition System

	Technical Implementation of Machine Unlearning
	Graph Unlearning
	Problem Definition
	GraphEraser Framework

	Balanced Graph Partition
	Community Detection Method (Strategy 1)
	Embedding Clustering Method (Strategy 2)
	Convergence Analysis

	Learning-based Aggregation (LBAggr)
	Putting Things Together: GraphEraser
	Evaluation
	Experimental Setup
	Overall Performance
	Gaining a Deeper Understanding
	Hyperparameters
	Robustness of GraphEraser
	Unlearning Power of GraphEraser

	Discussion
	Conclusion

	Understanding the Privacy Risks in Machine Unlearning
	Membership Inference in Machine Unlearning
	Problem Statement
	Threat Model
	Attack Pipeline
	Attack Model Training
	Feature Construction

	Privacy Degradation Measurement
	Experimental Setup
	Privacy Degradation Metrics
	Overall Performance
	Hyperparameters
	Attack Transferability
	Evaluation of the SISA Method
	Attack Under Different Scenarios

	Mitigating the Unintended Privacy Risk
	Publishing the Topk Confidence Values
	Publishing the Label Only
	Temperature Scaling
	Differential Privacy (DP)

	Conclusion

	Assessing the Privacy Risks in Graph Embedding Sharing System
	Threat Model and Attack Taxonomy
	Attack Scenario
	Threat Model
	Attack Taxonomy

	Property Inference Attack
	Attack Overview
	Attack Model FAP

	Subgraph Inference Attack
	Attack Overview
	Attack Model FAS

	Graph Reconstruction Attack
	Attack Overview

	Evaluation
	Experimental Setup
	Property Inference Attack
	Subgraph Inference Attack
	Graph Reconstruction Attack

	Defenses
	Conclusion

	Assessing the Privacy Risks in Few-shot Facial Recognition System
	Auditing Methodology
	Face-Auditor
	Auditor Training Phase
	Auditing Phase

	Evaluation
	Evaluation Settings
	Overall Performance
	Reference Information
	Hyperparameters
	Transferability

	Robustness
	Input Perturbation
	Training Perturbation
	Output Perturbation
	MemGuard

	Discussion
	Conclusion

	Summary and Conclusion
	Summary
	Future Research Directions

	Appendix
	Hyperparameter Settings of Simple Models
	Implementation of SimpleCNN

