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Bioconversion of organic waste requires the development and application of 
rather simple, yet robust technologies capable of transferring biomass into 
energy and sustainable materials for the future. Food waste plays a significant 
role in this process as its valorisation reduces waste and at the same time avoids 
additional exploitation of primary resources. Nonetheless, to literally become 
“litterate”. extensive research into such robust large-scale methods is required. 
Here, we  highlight some promising avenues and materials which fulfill these 
“waste to value” requirements, from various types of food waste as sustainable 
sources for biogas, bioethanol and biodiesel to fertilizers and antioxidants from 
grape pomace, from old-fashioned fermentation to the magic of anaerobic 
digestion.
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1 Introduction

In retrospect, future generations may look back at the first half of the 21st Century as a 
watershed, not only in politics, but also in economy and especially in the way we allocate and 
manage our limited resources and generate energy (1). If the present years turn out to be a 
truly epochal change, as some have already claimed, or just as another small milestone in a 
slow yet continuous transformation toward a carbon neutral and fairer world, needs to be seen 
(2). In any case, change is on the horizon and there is a rising demand – and interest – in new 
technologies and their various practical implementations (2, 3).

Our economic activities and practices during the last decades have indeed placed 
tremendous pressure on the ecological boundaries of planet Earth and are now threatening to 
ravage nature’s delicate balances and eco-systems. The constant drive toward growth and 
economic efficiency at the cost of society and the environment must be reconsidered (4, 5). As 
of 2022, the global estimate of atmospheric CO2 is around 414 ppm which exceeds the 
proposed planetary limit by over 60 ppm already. Fertilizers rich in nitrogen and phosphorous 
are being employed with amounts double what the soil, surface water and various species can 
tolerate (4, 5). It is expected that more than 100 species are being extinct every day and one 
should embrace the fact that we ourselves are also just such a species and we certainly can 
be healthier and living better within a healthy environment (4, 5).

When considering sustainability of our limited natural resources, several strategies come 
to mind, such as the 5Rs, i.e., refuse, reuse, refine, recycle or revaluate. We believe this list can 
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be extended further to even 10 such Rs, including remove, reduce, 
repair, replace and rally (6–9). It is, for instance, possible to reduce 
dependence of or to even entirely refuse a plastic bag at the 
supermarket or to reuse it a couple of times for different purposes (10, 
11). The plastic bag can be even removed and replaced with a more 
sustainable alternative such as a cotton bag which can be repaired and 
rallied for as an item worth revaluation. It is also possible to refine 
petrol engines so they consume less gasoline (12, 13). Some plastics 
may even be recycled whereas others, such as yogurt beakers, can 
be decorated with a lick of paint and thus re-valued as decorative 
flowerpots (14).

Yogurt beakers besides, however, one major source of potential 
value comes from waste itself, especially in form of wasted food and 
food waste. This material is of particular interest, since it is organic, 
renewable and available in large quantities at low or no costs.

Indeed, food waste may originate at any point during the complex 
modern food production system stretching from the “farm to the fork” 
(15). Whether at production, processing, distribution, retail or 
consumption, unused leftover materials are not only considered loss 
and waste, they also pose a serious ecological hazard. The composition 
of food waste varies depending on the source and can be categorized 
as pre-consumer and post-consumer food wastes (16). The 
pre-consumer food waste usually contains higher amounts of fruit and 
vegetable (48%), root and tubers (26%), cereals (14%) and lower 
amounts of dairy (6%), meat (3%), oil (2%) and fish (1%) based on dry 
weight. The post-consumer food waste primarily comprises of cereals 
(52%), fruits and vegetables (21%), dairy (12%), lower content of meat 
(6%), roots and tubers (6%), oil (2%) and fish (1%) of the dry weight 
(16). Similarly, the content of nutritional substances such as 
carbohydrate, fat, protein, starch, hemicellulose and non-nutritional 
products such as lignin also varies not only for pre- and post-
consumer food wastes but also for different types of wastes within 
these two categories (16). Pre-consumer apple waste, for instance, 
contains carbohydrates (48.1%), hemicellulose (24.4%), lignin (23.5%) 
and cellulose (7.2%) and the pre-consumer grape waste contains 
hemicellulose (30.3%), starch (21.0%), lignin (17.4%) and proteins 
(6.1%) (16, 17). The post-consumer food waste varies for its nutritional 
composition. Kitchen garbage comprises of fats (18.0%), carbohydrate 
(16.0%) and proteins (15.6%) (16, 18). Moreover, post-consumer used 
frying oil comprises of carbohydrates (28.4%), proteins (21.6%), fats 
(19.4%) and cellulose (3.9%) (16, 19). Post-consumer food industry 
waste such as grape pomace primarily comprises of proteins (43–75%) 
and lipids (6–15%) (16, 20).

According to the Food and Agriculture Organization (FAO), more 
than 17% of the total food produced globally becomes waste each year. 
In 2022, 2% were lost in retail, 5% from food services, and 11% were 
wasted by households (21). It is important to mention that the size of 
population is a crucial determinant which influences the volume of 
food waste generated within a country. Nations with larger populations 
tend to produce higher amounts of food waste (22, 23). In 2023, India 
and China, represent the world’s most populous countries with 
approximately 1,428,627,663 and 1,425,671,352 inhabitants, 
respectively. China’s annual food waste amounted to a staggering 
91.65 million metric tons, while India generated approximately 
68.76 million metric tons for 2020 (22, 23). Conversely, Germany, with 
a population of 83,294,633, produced a comparatively lesser amount 
of, approximately 6.26 million metric tons of food waste in 2020 
(22, 23).

In Germany, household food waste alone currently amounts to a 
staggering 75 kg per adult per year, often to the delight of Rattus 
norvegicus, the brown rat (24). Indeed, food waste undermines the 
sustainability of our food systems as all the resources invested into 
producing this food, such as land, energy, and water, are in one way or 
another “wasted” (25, 26). Furthermore, the disposal of food waste in 
landfills or through incineration, besides attracting vermin, also 
contributes to greenhouse gas emissions by 8%, thereby exacerbating 
climate change (25, 27).

In contrast, bioconversion can be  used to give such waste a 
renewed purpose, for instance to produce biofuels, fertilizers, animal 
feed, and nutraceuticals (25, 27). This approach offers a sustainable 
means to utilize food waste and reduce its environmental impact (28). 
It, therefore, hardly comes as a surprise that a future circular economy 
probably has to be based to a large extent on renewable materials and 
energies, among which organic natural materials are likely to play a 
dominant role (29–31). Apart from especially cultivating plants for 
energy and materials, which requires land, energy, effort and labor, 
organic waste - a cornucopia of resources if treated properly and with 
respect - only needs to be collected (32). Not surprisingly, our attitudes 
about traditional waste are currently undergoing major changes. To 
put it simple: Waste is simply a valuable resource at the wrong place, at 
the wrong time and in the wrong hands (33–35). It is time to close the 
circle with the missing stretch from “the fork to farm”.

With this new attitude in hand, novel research topics and 
strategies have come into view in order to unlock the potential of such 
biological waste-resources as part of a future circular bioeconomy (33, 
35). In this review, we shall showcase a few rather stimulating projects 
aiming to unlock the potential of organic food waste for new sources 
of (old) materials. The overarching attraction of these strategies results 
from a combination of (a) harvesting raw materials, (b) efficient waste 
management and (c) local economic circles. Rather than presenting a 
comprehensive review, though, we shall focus on a few selected and 
indeed elegant examples which we consider equally instructive and 
stimulating (36).

2 Aerobic decomposition 
(composting, vermicomposting and 
insect based-bio conversion)

As the litter rat has already been mentioned, the compost heap is 
the first port of call when it comes to processing food waste. Aerobic 
decomposition is an eco-friendly process to convert organic waste into 
fertilizers for soil. This method requires specific conditions such as an 
amenable carbon to nitrogen ratio (the ideal C to N ratio ranges from 
25:1 to 40:1), moisture content (40–60%), aeration, pH, the mix of 
feedstock materials and, of course, microorganisms (37).

Composting can be  divided into three main phases. The first 
phase, known as the mesophilic phase, is carried out by mesophilic 
microorganisms such as bacteria (Pseudomonas and actinobacteria) 
and fungi (Penicillium and Aspergillus) (38–40). In this phase, the 
microorganisms break down the organic compounds such as sugars 
and starch into simpler molecules with production of carbon dioxide 
(CO2) and water. The mesophilic phase lasts for 2 days. The second 
phase is the thermophilic phase, which occurs as the temperature rises 
to reach 55°C to 77°C due to bacterial and fungal activity. 
Decomposition is now facilitated by thermophilic microorganisms 
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such as Thermus aquaticus and Streptomyces coelicolor (41). Here the 
thermophilic bacteria break down the more complex organic 
compounds such as fats, cellulose and proteins to produce carbon 
dioxide (CO2) and water. This phase lasts for a few weeks to several 
months. Third, follows the maturation phase, which is characterized 
by a drop in the temperature, with mesophilic bacteria such as 
Actinobacteria and fungi such as Mucor and Trichoderma dominating 
the process (38–40). In this phase, after the waste pile cools down and 
mesophilic microorganisms become active again, the remaining 
organic matter continues to break down until the pile stabilizes. Then, 
the compost matures and over time becomes similar to the normal 
traditional soil. This phase lasts for several months (42). Subsequently, 
the resulting compost requires a pathogen removal process such as 
exposure to direct sunlight for drying, steam treatment and 
pasteurization (at around 60°C to 71°C) (43). The pathogen removal 
step is important to minimize the risk of spreading various plant and 
animal diseases, such as histoplasmosis, aspergillosis, tetanus, 
paronychia, and hypersensitivity pneumonitis (Farmer’s lung). On the 
other hand, several studies have affirmed a natural antimicrobial 
inhibitory effect of compost products, e.g., tea compost, against 
certain phyto-pathogens, such as Pythium debaryanum, Rhizoctonia 
species, and Fusarium oxysporum (40). In any case, it is actually 
counterproductive to try to sterilize food waste prior to composting, 
as has been suggested in the past, especially because of Aspergillus.

Besides producing a valuable organic material which nowadays 
replaces peat in gardening and agriculture, composting additionally 
benefits the environment by reducing residential food waste and 
lowering greenhouse gas emissions. As for the “logistics”, composting 
can be achieved easily in a highly decentralized fashion, for instance 
at home, and thus does not require collection and transportation of 
materials, although collections and centralized facilities are also very 
common, especially in urban areas. Curiously, some German cities, 
such as Sankt Ingbert, even employ professional “compost inspectors” 
who will check your personal heap and either approve it or force 
you to take part in the city’s centralized “green bin” collection system 
(44–46). Indeed, different composting methods for organic waste are 
amenable, such as aerated static pile composting, in-vessel composting 
and mound bed composting (the famous Germanic “Hügelkultur”) 
(47–50). Figure 1 briefly illustrates the composting process (44–46).

Another type of composting is known as “vermicomposting” by 
using earth worms to convert food waste into soil fertilizer. In this 
composting method the commercial, agricultural and residential food 
waste are passed through the worm-gut to form a nutrient rich 
vermicompost (51). The vermicompost - or worm castings - can 
be easily implemented indoors, in small batches with less nitrogen loss, 
and even in the cold weather. It is the richest nutrient fertilizer known 
to gardeners (52). People who are interested in growing their own 
vegetables are becoming interested in earthworm castings (52, 53). 
After the vermicompost or worm castings feed on the food waste, the 
worms produce particles which improve the soil properties and increase 
the water retention within the soil. The vermicompost contains 
phosphorous (1.8–2.2%), potassium (1.0–1.5%), nitrogen (1.5–2.2%) 
and micronutrients such as iron, magnesium, sulfur, zinc, calcium and 
sodium. More details on vermi-worm-compost are presented in Table 1 
(51, 62). It is important to mention that well-managed vermicomposting 
systems are also aerobic and no worms are being hurt, thus 
vermicomposting can create a sustainable environment for earthworms 
to thrive and continue their life cycle.

Notably, vermicomposting differs from normal composting in 
several ways. The temperature in vermicomposting, for instance, 
ranges from 10°C to just 32°C and the process is faster than microbial 
composting because the food waste passes through the earthworm 
gut, where a significant but not fully understood transformation takes 
place, enriching the resulting earthworm castings (worm manure) 
with plant growth regulators (51, 54, 55). Furthermore, earthworms 
produce a richer kind of compost, and thus are capable of transforming 
the food garbage into “gardeners’ gold” (51, 63).

The quantity of CO2 released from composting and 
vermicomposting varies for different waste systems as well as the 
organisms involved. In terms of aerobic digestion, anaerobic digestion 
and vermicomposting, CO2 constitutes the largest portion of 
greenhouse gas emissions that is 63.6, 80.9 and 78.3%, respectively 
(64–66). The main differences between composting and 
vermicomposting are also summarized in Table 1.

Amazingly, besides bacteria, fungi and worms, even insects can 
be utilized to convert food waste into soil fertilizers (67). Larvae of 
more than 2,000 species of insects participate in such conversions and 
include, for instance, the larvae of black soldier flies (Hermetia 
illucens), two-spotted crickets (Gryllus bimaculatus), desert locusts 
(Schistocerca gregaria), house flies (Musca domestica), Cambodian 
field crickets (Teleogryllus testaceus), yellow mealworms (Tenebrio 
molitor) and others (see Figure 1, insert) (68–72). Insects are employed 
already in such processes for a number of advantages which range 
from being cost effective to the possibility of reducing waste odors 
compared to other methods (73–75).

The process of insect bioconversion begins with the collection of 
food waste from residential areas, farms, or restaurants. Subsequently, 
the collected waste is placed into certain reactors such as bins, cages, 
vertical farming systems, insect bags and sleeves, modular systems or 
insect trays (76). After that, it is exposed to species such as the black 
soldier fly (BSF) larvae, which can devour fruits, vegetables, and 
various organic waste into soil fertilizers. The larvae consume the 
organic waste as part of their natural feeding source, converting waste 
into a biomass after breaking down the organic materials within their 
digestive systems (75, 76). Once the insects have completed their life 
cycles and reached their desired stage of development the biomass can 
then be  collected and used as nutrient-rich soil amendment and 
fertilizer (77). The biomass produced by such insects generally is rich 
in nutrients such as N, P, K, Ca, Mg, S, as well as microelements, like 
Mn, Na, B, Zn, Fe, and Cu (75). It is important to mention that after 
producing the fertilizers, the insects are not intentionally killed and 
they continue their life cycles. Different insect species can be used but 
BSF is the most common choice due to its ability to reduce organic 
waste biomass by 60%, transforming it into nutrient-rich biomass (69, 
75). This method is environmentally friendly and sustainable as it 
helps reduce waste volume and greenhouse gas emissions. Also, BSF, 
two-spotted crickets or desert locust larvae have the capability to 
produce high-quality fertilizers known as frass fertilizers (70). These 
insect-driven processes could yield a variety of beneficial materials 
besides fertilizers, such as precursors of bioplastics (67, 74). Table 2 
provides a more comprehensive list of insect species suitable for 
bioconversion of food waste.

In this context, one may also mention that in the past, food waste 
has been fed to many higher animals, from rabbits to pigs and cows, 
and that in some instances, these animals have become seriously ill. 
The transmission of “Mad Cow Disease”, for instance, has been due to 
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cows being fed meat-based products. Thus employing higher animals 
rather than microbes, worms and larvae for such bioconversions may 
be a considerably more controversial issue.

3 Anaerobic digestion

Aerobic digestion is an energy intensive process which comsumes 
a lot of energy and air to produce CO2 instead of methane. As far as 
the energy balance is concerned, it is therefore often more economical 
to digest anaerobically. Here, organic waste from the food industry, 
such as fruits and vegetable waste, rice and maize straw and coffee 
husk, form the basis for bio-methanation thanks to their intrinsic 
methanation potential (84, 85). In fact, anaerobic digestion (AD) is 
one of the most common industrial-scale processes to convert food 
waste into renewable materials using “biological” means, in contrast, 
for instance, to pyrolysis. AD encompasses several phases: the process 
starts with preparing the feedstock where food waste is collected and 
sorted to remove the non-biodegradable materials. Then, the selected 
food waste is added into a large tank called “anaerobic digester” in the 
absence of dioxygen (86).

Once inside the digester, the digestion process begins through 
microbial activity of specialized bacterial communities which break 
down food waste in successive, different phases. In the first phase, 
hydrolysis occurs, facilitated by hydrolytic bacteria such as Bacteriodes, 
Clostridium, and Acetivibrio (86, 87). These bacteria break down food 
waste into its basic building blocks, e.g., amino acids, sugars, alcohols, 
and fatty acids at a pH of around 6.5 to 7.5. In the second phase, called 
acidogenesis, acidogenic bacteria such as Enterobacterium, 
Acetobacterium, and Eubacterium transform the hydrolysed materials 

into intermediate products, such as acetate, propionate, ethanol, 
lactate, and volatile fatty acids at pH ranging from 5.5 to 6.5 (86, 88). 
In the third acetogenesis phase, acetogenic bacteria such as 
Syntrophomonas wolinii and Syntrophomonas wolfeii utilize acidogenic 
products to produce acetic acid (CH3COOH), carbon dioxide (CO2) 
and hydrogen (H2) at a pH ranging from 6.2 to 6.8 (86, 89). Eventually, 
acetoclastic methanogens such as Methanosarcina barkeri, 
Methanosarcina frisius, and Methanobacterium formicicum come into 
play and convert acetate to methane (CH4), CO2 and water (H2O) (86, 
90). Additionally, hydrogenotrophic methanogens such as 
Methanobacterium arbophilicum and Methanothermus fervidus 
convert H2 and CO2 into predominantly CH4, thus contributing 
further to the production of CH4 and scavenging some of the CO2 at 
a pH ranging from 6.5 to 7.5 (86, 90). Biogas produced from AD 
comprises of 50–75% CH4 and 50–25% CO2 concentration. The flow 
of materials and different stages of AD are presented in Figure 2 (91).

The choice of the most suitable microorganisms is important for 
successful AD and lends itself to further research and development. 
Interesting examples of such anaerobic bacterial species employed in 
AD for biogas production include Clostridium kluyveri, Methanosaeta 
harundinacea, and Propionibacterium propionicus, among 
approximately a thousand other species (86, 92). Notably, certain 
bacteria, such as Selenomonas ruminantium, Rhodopseudomonas 
palustris P4, Citrobacter spp. y19, and Clostridium butyricum, are 
capable of producing “green” H2 in place of CH4, which can be utilized 
directly or converted chemically into biogas (93). Indeed, the topic of 
fermentative H2 production has gained significant attention recently 
not only in research but also in politics and legislation as part of the 
“net zero” strategy of switching the traditional carbon-based to a new 
hydrogen-fuelled economy (92, 94–96). As for numbers, Germany is 

FIGURE 1

Phases of composting including the relevant microorganisms: mesophilic phase, thermophilic phase and the final maturation phase to produce soil 
compost, conditioner and fertilizers. Photographs were created by © 2024 Elizabeth Jacob.
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one of the leading biogas producers globally with 28.8 million m3 of 
raw biogas generated and fed into the gas grid annually which is 
indeed a step into the right direction considering the huge demand 
and usage of more than 77 billion m3 in 2022. According to the 
International Energy Agency (IEA), China has established the highest 
number of biogas plants (more than 100,000 plants), followed by 
Germany (more than10,000 plants). In comparison, there were less 
than 350 Anaerobic Digesters operating in the United States in 2022 
(97, 98). AD is, however, associated with a few disadvantages, such as 
the emission of significant amounts of CH4 and the release of odors 
during production. Moreover, AD necessitates a careful equilibrium 
between the energy consumed during the operating process and the 
energy gained (45, 86, 99, 100). The costs associated with the AD can 
vary significantly depending on several factors such as the feedstock 
type, the size of the AD system-whether it’s a small-scale on-farm 
digester or a large municipal facility- and the use of mesophilic or 
thermophilic digestion equipment and infrastructure required for the 

transportation of the biogas produced may contribute additional costs 
(86, 99, 101, 102). Furthermore, the cost of land and infrastructure for 
AD should also be considered (86, 101). The total capital cost for the 
AD in Tollenaar Holsteins Dairy, California, United  States was 
US$1.7 million, with annual operating and maintenance costs of 
50,000 USD (103). Butler Farms, Texas, USA implemented a lagoon 
AD with costs ranging from 550,000 USD to 650,000 USD with an 
annual maintenance cost of 25,000 USD (103). Fair Oaks Dairy 
Indiana, United States, employed a mixed-plug flow AD costing 12 
million USD with estimated annual operating and maintenance costs 
of around 600,000 USD (103).

In sharp contrast to aerobic digestion, which focusses on the 
production of compost and thus ignores the effluvium, the products 
of AD can be divided into two main categories, biogas and digestate. 
Biogas can be utilized directly, for instance for heating, as vehicle fuel 
or to generate electricity. Digestate, on the other hand, is still rich in 
nutrients and can be converted further to biofertilizers for agricultural 

TABLE 1 Composting and vermicomposting.

Key differences Composting Vermicomposting References

Organisms Aerobic microorganisms such as bacteria 

and fungi

Earth worms such as

Red Wiggler (Eisenia foetida or Eisenia andrei) and 

Lumbricus rubellus

(54)

Microbial activity Breaking down of the complex organic 

compounds into simpler substances by 

microbes

Breaking down complex molecules by specialized 

enzymes in the gut of the worms

(55)

Temperature and speed Higher temperatures Lower temperatures (56)

Odor Higher odor The presence of worms maintains suitable aeration 

and less unpleasant odor

(57)

Space required More Less (58)

Plant growth regulator Absent Present (58)

End products Compost or humus Vermicompost or worm castings (51)

Nutrients in the end product (%)

Calcium (Ca)

Copper (Cu)

Iron (Fe)

Manganese (Mn)

Magnesium (Mg)

Nitrogen (N2)

Organic carbon

Phosphorus (P)

Potassium (K)

Sodium (Na)

Zinc (Zn)

2.27

0.0017

1.1690

0.0414

0.57

0.8

9.8–13.40

0.35

0.48

0.01

0.0012

1.18–7.61

0.0026–0.0048

0.2050–1.3313

0.0105–0.2038

0.093–0.568

0.51–1.61

12.2

0.19–1.02

0.15–0.73

0.058–0.158

0.0042–0.110

(51, 59)

Process costs Low High (54, 60)

Advantages Higher temperatures lead to pathogen free 

and rather clean final product

Waste reduction

Nutrient soil fertilizer and amendment

Faster than traditional composting

Less space required

Richer compost

Less odors

(45, 54, 60, 61)

Disadvantages Uncontrolled emissions of methane

Release of odors

Requires more space

Water pollution

Worms are sensitive to temperature which may 

affect the whole process in case of extremely cold or 

hot climates

More useful for low volumes of food waste due to 

limited capacity of vermicomposting bins

(45, 54, 60, 61)
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TABLE 2 Bioconversion of food waste by variety of insect species.

Insect Food wastes Countries Bioconversion 
approach

References

Scientific names Common names

Hermetia illucens Black soldier Fly (BSF)

Rice straw, restaurant 

waste
China Biofuel (76, 78)

Coffee pulp, husk Indonesia Biomass (76, 79)

Peels from fruit 

industry (banana and 

orange)

Sweden Soil enhancement (80)

Gryllus bimaculatus Two-spotted cricket

Soybean, sweet 

potato and wheat 

bran

Kenya-Uganda Frass fertilizer (69, 73)
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FIGURE 2

The complex biopolymers undergo Anaerobic Digestion (AD) which involves a series of biological processes in the presence of microorganisms to 
produce biogas.
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use (104). Compared to composting, AD entails higher costs, both in 
construction and operation, yet has the benefit of producing clean 
energy and heat, providing increased value to EU countries that may 
import most or all of their fossil fuels (105, 106). Recent advancement 
in the field of AD includes, anaerobic co-digestion (AcoD), where 
different organic waste products can be combined and blended with 
various other substrates. Additionally, soft magnetic ferrite serves as 
an effective and economical AD additive which not only promotes 
biomethane production but also recovers the materials and 
microorganisms (107, 108). Moreover, decentralized AD which 
operates in smaller-scale facilities gets rid of food waste generated 
from restaurants, cafeterias, cooked food centers or households (109).

3.1 Digestate

After the completion of the AD process, the remaining materials 
from each step are collected together as a whole digestate and 
exploited as a fertilizer (110, 111). Digestates can originate from 
different sources, such as maize, clover, corn, coffee, tea, fruits, stems, 
bakery waste, and sugar industrial waste. They are generally rich in 
potassium, ammonium and phosphorus (111). Phosphorus is found 
in food waste such as grains, dairy, and meat. Similarly, nitrogen is also 
generated during the AD process from proteins and other organic 
compounds, and it is converted into ammonia (NH3) (112, 113). A 
relevant example of a digestate rich in phosphorous and nitrogen is 
the one generated from algal biomass. Such digestate contains around 
390 mg/L of total phosphorous and 2,940 mg/L ammonia-nitrogen 
among other elements such as sodium and potassium (113, 114).

Such digestate is used primarily as a soil fertilizer and in 
hydroponic systems in greenhouses (111). It has been reported that 
applying the digestate in bubble-insulated greenhouses leads to higher 
yields of vegetables, such as lettuce, cape gooseberries, tomatoes, 
cucumbers, mushrooms (such as Agaricus subrufescens and Agaricus 
arvensis), and herbs (such as thyme, dill, parsley, basil, coriander, and 
melissa) (115). Moreover, the utilization of AD digestate as a fertilizer 
has demonstrated its ability to induce resistance against plant diseases 
and soil-borne pathogens, such as Fusarium oxysporum f. spp. 
Spinaciae, Ralstonia spp. and Phytophthora spp. (116–118). The 
activity against these soil-borne pathogens comes from the content of 
antagonistic microorganisms within the AD digestate. For example, 
Bacillus spp. promotes the forming of rhizobacteria due to biotic 
stress-tolerant spores. Also, Trichoderma fungus in AD digestate is 
reported to suppress a variety of plant pathogenic fungi, such as 
Sclerotinia sclerotiorum, Pythium ultimum and Botrytis cinerea by 
colonizing the plant roots and releasing enzymes that degrade fungal 
cell walls of their competitors (119, 120). This protective activity of the 
anaerobically produced digestate stands in contrast to the aerobically 
generated compost, which needs to be sterilized prior to use as the 
microorganisms contained therein may pose a danger to plants and 
animals (see section 2).

4 Biofuels

Besides the rather crude methods of aerobic or anaerobic 
digestion of such “mixed” food waste, one may also envisage a more 
refined collection and thus more directed processing of certain food 

(waste) items, such as sugars and fats. Indeed, expired or used cooking 
oils have a long tradition of being used as fuels, with some diesel-
powered busses already in the 1980s smelling distinctively of French 
Fries or Fish & Chips on the go. Today, the large-scale production of 
“biofuels” such as biodiesel from plant-based oils and bioethanol from 
sugars is rather common and increasing steadily. Then again, given 
that agriculture has the potential to provide us with renewable 
materials year after year, it is not surprising that energy crops, rather 
than food waste, are used as primary source of biofuels, which is 
highly controversial from an ecological perspective. Indeed, such 
“energy plants” are increasingly cultivated in fields where they replace 
crops traditionally used for animal and human consumption (37). 
Various examples of energy plants exist, including sugarcane, sugar 
beets, sunflowers, soybeans, and corn (32).

As for biodiesel production, fats and oils, such as algae oil, cooking 
waste oil, and plant-based oils (among them soybean oil, palm oil, 
sunflower oil, peanut oil, Jatropha and rapeseed oil) can be hydrolysed 
and re-esterified through a process known as “transesterification.” As 
part of the transesterification process, the oils or fats react with an 
alcohol (mostly methanol) in the presence of a suitable catalyst to 
form esters and glycerol (121, 122). This process is also exemplified in 
Figure 3 (123, 124). Essentially, transesterification entails the (bio-)
chemical hydrolysis of triglycerides into free fatty acids (FFA) and 
glycerol, followed by separation of glycerol and esterification of the 
FFAs with methanol to yield liquid fatty acid esters with high energy 
density, low melting (−35°C) and high boiling (192°C) points. These 
esters may serve as biodiesel. The glycerol obtained as a side product 
in this process is not wasted either – as a “natural product” it finds 
applications in moisturizers, soaps, cosmetics, and medicines. 
Microorganisms involved in this biodiesel production process are 
highly methanol resistant or genetically modified to sustain the harsh 
chemical conditions and include bacteria such as Stenotrophomonas 
maltophilia D18, Lysinibacillus fusiformis B23, Acinetobacter junii C69, 
Acinetobacter pitti C95, Rhodococcus opacus pd630, Pseudomonas 
citronellolis, and Escherichia coli, as well as yeast species such as 
Naganishia liquefaciens and Rhodosporidium toruloides (125–127). It 
is important to mention that not all types of waste oil need 
transesterification before being used as a replacement for diesel fuel. 
Vegetable oils and cooking oils from restaurants or households need 
transesterification to be converted into biodiesel. The insect oils which 
are produced through insect-based bioconversion, in contrast, can 
be used as a replacement for diesel directly, yet with challenges related 
to cold weather and emissions of pollutants. In general, the total 
production costs for a gallon of biodiesel can vary from country to 
country, for instance in 2014 it ranged from 5.53 USD to 6.38 USD in 
Texas, United States (128). As of April 2023, the price of biodiesel in 
Germany was 1,471 USD per ton (129). Besides production costs, one 
should also consider the competition for feedstock resources. This 
competition, if not managed properly can lead to several adverse 
consequences (130, 131). The exploitation of edible oils for the 
production of biodiesel can trigger the “food vs. fuel” debate, diverting 
valuable agricultural resources from food production to biofuel 
production which may potentially impact the food prices (132, 133). 
Moreover, the production of biodiesel is a resource-intensive process 
which demands excessive amounts of water, energy, and agricultural 
inputs such as fertilizers and pesticides (130, 131). Biodiesel 
production offers several advantages, such as reduced greenhouse gas 
emissions and renewable energy sources, yet one should also consider 
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the competition for feedstock resources and the related challenges to 
understand the overall situation (130, 131).

Another example of biofuel which can be produced from food 
waste is bioethanol, in which sugars, especially single sugars, play a 
vital role. This process typically involves fermentation, relying on 
microorganisms such as yeasts (Saccharomyces cerevisiae and 
Issatchenkia orientalis), bacteria (Thermoanaerobacter mathranii, 
Zymomonas mobilis, and Geobacillus thermoglucosidasius), fungi 
(Zygomycetes and Mucor indicus), and even algae, such as Chlorella 
vulgaris (37, 134–137). In practice, bioethanol production from food 
waste involves four main steps. Firstly, the food waste needs to 
be collected, sorted and pretreated by heating, grinding or shredding 
to break down complex carbohydrates (136). Secondly, hydrolysis 
starts to break down complex carbohydrates, mostly cellulose or 
starch, into simpler sugars, such as xylose or glucose. Thirdly, the 
fermentation of hydrolysed sugars into ethanol and CO2 takes place 
by microorganisms in the absence of dioxygen as part of an anaerobic 
fermentation. After fermentation, the ethanol is separated from the 
fermentation broth via distillation (134).

The duration and yield of such a bioethanol production process 
depend on the type of food waste and microorganisms involved. 
Vegetable and fruit waste, such as apple pomace, potato and tomato has 
been reported to yield 149.9 g/L, 7.6 g/L and 23.7 g/L of ethanol, 
respectively, when fermented in the presence of Saccharomyces 
cerevisiae. Dairy products such as cheese whey yield 8 g/L ethanol when 
digested by Kluyveromyces marxianus (138). The individual bioethanol 
production phases and more details about the bioethanol yields from 
different food waste samples are summarized in Figure 4 (138).

In Germany, bioethanol in its pure form is not suitable as petrol-
substitute and can only be added to conventional oil-based gasoline at 
concentrations up to 5% (E5) or 10% (E10) and quite recently even 
20% (E20) (139, 140). Brazil has been a pioneer in the use of 
bioethanol as a fuel source. The “Proalcool” Program, which started 
in the 1970s, was a key factor in the country’s success in transitioning 
from fossil fuel to bioethanol (141–143).

Nonetheless, there is also a rather heated ecological debate 
regarding such renewable “power plants”. On the one side, these plants 
need to be cultivated and therefore take up valuable agricultural space 
which is no longer available for the plantation of other plants, for 

instance wheat (144). In fact, the production of such energy plants in 
ecologically sensitive regions, for instance in the rainforests, adds to 
these arguments and issues which need to be resolved first and before 
such biofuels from cultivars rather than waste can be considered as truly 
sustainable (144). In addition, the process of bioethanol production is 
itself energy intensive, especially the distillation step, and encompasses 
the formation of CO2. Indeed, neither biodiesel nor bioethanol, if used 
in a combustion engine, can be considered as entirely “clean” as burning 
them in an engine still produces environmental pollutants such as sooth 
and nitric oxides (NOx). Although bioethanol may be used in fuel cells, 
this technology is still in its infancy. At the same time, bioethanol 
production poses food security risks, especially in low and middle-
income countries. It is essential to strike a balance between utilizing 
food waste and addressing the global population’s food needs (145, 
146). The costs of bioethanol production depend on the type of biomass 
used, but in general, they range from 0.20 to 0.30 USD per liter (134). 
Recently, genetic engineering strategies have been employed for the 
enhancement of biofuel production. Biodiesels, bioalcohols and 
isoprenoid-based biofuels are, nowadays, obtained by exploiting 
different genetically engineered yeasts, such as S. cerevisiae XUSE, 
S. cerevisiae SXA-R2P-E, S. cervisiae M1: kurdriavzevii NUPHS33, 
S. cerevisiae YG5C423, Yarrowia lipolytica, Cryptococcus curvatus and 
Rhodotorula toruloides (147–152).

5 Waste into value: upcycling of 
industrial food waste (wine, beer, 
bagasse and beet pulp)

Admittedly, some of the recent examples have been less appetizing, 
especially for the ones of us who are not yet quite “litterate” or 
dedicated litter rats yet. They may also have raised the question if 
initially unwanted biological side products necessarily have to end up 
in the litter bin or have to be used for applications which are less 
valuable than the ones associated with the products they are derived 
from (107, 108). Indeed, in order to fuel the circle of bioeconomy from 
a truly economical perspective, one may wish to derive at applications 
for waste - or products from waste - which would be as or even more 
valuable than the ones of the material itself. In fact, such an increase 

FIGURE 3

Production of biodiesel via transesterification.
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in value should provide the financial impetus needed for companies 
to engage in such bio-economic circles (153, 154). Here, re-validation, 
such as upcycling and bio-valorization, come into play. As the 
neighbors tends to say: “Are you eventually removing the weed around 
your house?” – “Not quite, I  am  collecting my smoke”. At closer 
inspection, and besides weed(s), a surprising spectrum of organic 
by-products from food production may be valorized, such as grape 
seeds, brewed coffee waste, tomato stems, berries, fruits, potatoes, 
walnut shells and peels (155, 156).

The first and perhaps the most prominent example of industrial 
food waste is grape pomace which comprises of seeds, stalks and skin 
and is a high-quality residue of the wine industry laced with 
flavonoids, anthocyanins and (poly-)phenols (157, 158). The grape 
pomace contains a higher amount of dietary fibers (19–38%), sugars 
(12–33%), proteins (8.49–10.32%) and lower amounts of pectin (3.68–
29.20%), catechin (150.16 mg) and anthocyanin (84.40-131 mg) per 
100 g of pomace based on dry weight (20, 155, 159–161).

The whole grape pomace can be used or up-cycled to produce 
energy and various products, such as ruminant feed, biofertilizer, 
biopolymers, composites, and even a basis for mushroom cultivation 
through microbial processing, as summarized in Figure 5 (20, 162).

Grape seeds constitute a major part of the grape pomace and for 
many centuries have been discarded as part of low-value fertilizer (20, 
162). Today, the seeds are collected, cleaned and pressed to produce a 
highly valuable grape seed oil. The increased interest toward grape 
seeds is primarily due to their high content of phytochemicals, such 
as phytosterols, carotenoids, vitamin E, unsaturated fatty acids, 
phenolic compounds (hydroxybenzoic and cinnamic acid derivatives, 
gallic acid, kaempferol, quercetin, catechin, epicatechin, gallocatechin 
and procyanidin dimers) (163, 164). Moreover, this oil is rich in beta-
sitosterol, which has the potential to reduce cholesterol levels and 
possibly even benign prostatic hyperplasia (BPH, resulting in so-called 

ewer urinating in men) (165, 166). As for economics, the oil is sold at 
prices considerably higher than sunflower oil and perhaps even fetches 
more than the wines the grapes had been processed for initially (20, 
161, 163). These days a bottle of reasonable wine in Germany goes for 
4 €/L whereas a bottle of grapeseed oil easily catches 8 €/L. (167, 168)

Interestingly, the oil cake from de-oiled grape seeds is no waste either 
– it may be processed further to grape seed flour as depicted in Figure 5. 
Again, this flour by itself is a highly valuable product, not only 
economically, also nutritionally (163, 169, 170). Moreover, the antioxidant 
and anti-inflammatory properties of de-oiled grape seeds and grape seed 
flour make them a popular ingredient in cosmetics and personal care 
products (171). They are often used in the production of anti-aging and 
skin brightening products (171, 172). Intriguingly, de-oiled grapeseed 
meal, which is the by-product obtained after extraction of oil, is often also 
used as a source of protein and dietary fiber in animal feed (171). Besides 
improving the nutritional value of various food products, the de-oiled 
grape seeds are often added as a natural preservative to dairy products, 
processed meats and oils (173–176), thanks to the presence of astringent 
polyphenolic substances. As for the economics of grape seed flour, 1 kg 
goes for a staggering 20 € these days.

Brewers spent grain (BSG) is another by-product of the food 
/ beverage industry formed during the process of brewing. The 
production of 100 L of beer generates 20 kg of BSG which 
primarily comprises of lignocellulose fibers (around 70% dry 
weight basis) but is also rich in nutrients such as proteins (20% on 
a dry weight basis), minerals and vitamins (177). Today 70% of 
BSG is exploited as feed for animal such as cattle, chicken and 
poultry, 10% for the production of biogas, and the rest goes to 
landfills (178) (Figure 6).

Considering these low-value applications, if any, BSG represents 
another fine example of value gone to waste (179). Indeed, BSG or what 
is called now occasionally SuperGrain+ (SG+) contains considerable 

FIGURE 4

Production of bioethanol from different waste products varies not only in the time required for fermentation but also the yield obtained.
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FIGURE 5

Upcycling of grape seeds for the production of value-added products.

FIGURE 6

Brewer’s spent grain (BSG, by Homburger Brauhaus, photo generated by the authors) can be employed to produce bread, vegetarian patty or even 
bioplastics. It can also be pressed to produce sheets or tablets thanks to the presence of lignin which serves as a natural binder.
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amounts of nutritionally valuable components, such as proteins, fibers 
and phenolic compounds, which in turn may benefit in some health 
conditions, such as heart diseases, hypercholesterolemia and cancer 
(180). Today, it is attractive to process BSG further to produce BSG flour 
and use it in baking and cooking, in vegan patties and in bread, as a 
powerful source of dietary fiber and provider of proteins and polyphenols, 
and as a regulator of the gut microbiota (181).

As for applications outside nutrition, and besides being used as a 
low-value fuel in biogas plants, BSG can also be processed further to 
various novel materials, such as solid plates and even bioplastics. BSG 
plates, for instance, are formed as a result of high temperature and 
pressure treatment and due to the “melting” and resolidifying of the 
lignin “glue” (12–28 % w/w) (179). These plates are not only 100% 
“bio” yet also 100% biodegradable (181). The formation of polymers / 
plastics, on the other hand, is considerably more complicated and 
involves acid treatment, similar to the one used to form bioplastics 
from banana peels (182, 183).

Once again, valorized BSG may be  or become more valuable 
economically and also socially and ecologically than the beer 
produced in the first instance. And although this is indeed a matter of 
taste, it shows that such strategies of “turning waste into value” by 
re-validation may provide the necessary incentives for closing the 
relevant processing circles in an economically viable fashion turn out 
to be attractive for local companies, including bakeries, mills and 
breweries (181). As mentioned before, there is no waste, only material 
at the wrong place, wrong time and in the wrong hands.

Another example of the valorization of industrial waste are sugar 
beets which are frequently used to extract sugar, especially in colder 
climates such as Russia, Germany and the United States, producing 41.2, 
31.9 and 8.1 million tonnes of sugar beets per year, respectively (184–
186). The production of sugar from beets results in by-products known 
as Sugar Beet Pulp (SBP). Sugar Beet Pulp Pellets (SBPP), derived from 
these bulbs, serve as popular livestock feed, suitable for animals such as 
horses, cattle and sheep (187, 188). The dried form of SBPP, known as 
“shreds” can be stored for several years without expiring. SBPP is a 
valuable source of nutrients due to its carbohydrate, fiber and protein 
content (187, 188). The main carbohydrates present in SBP are sucrose 
(10% of dry matter) and polysaccharides, including cellulose (22–40%), 
galactan, araban (24–32%), and pectin (24–32%) (187, 188).

Besides the beverage industry which, not surprisingly, produces 
millions of tons of by-products every year, there are also other examples 
of - more limited - food waste turned into value. In fact, some of these 
materials feed the field of natural cosmetics. Spent coffee grounds 
(SCG), for instance, is rich in chlorogenic acid and polyhydroxy-
alkanoates and apart from being used traditionally in home gardening 
and against slugs has recently found its way into cosmetics. In this 
context, it is used as a source of antioxidants or for anti-cellulite activity 
(189, 190). SCG has also turned into an ingredient of specific hair 
shampoos as it is still rich in caffeine and thus may be useful in the 
treatment of androgenetic alopecia. There are even certain bakery 
products, such as biscuits, which contain SCG (190, 191). Indeed, as 
for pomace and BSG, SCG has plenty of potential to be used in various 
ways other than just for slugs in home gardening (192).

The same considerations also apply to the peels of many fruits, 
especially citrus fruits, such as oranges and lemons. Their peels are 
increasingly being used in household products, such as cleaning liquids 
(193). Here, the etherical oils and flavors contained in these peels are of 
particular importance as they endow these products with natural 

cleansing properties and fragrances. Notably, these peels also represent 
a valuable raw material in the field of cosmetics and, if cultivated free of 
pesticides, can even be processed further by the food industry itself, for 
instance for the production of jams and marmalades. Again, some of 
these applications, especially in the field of nutrition, provide such peels 
with a value which may even exceed the one of the fruits and juices 
derived from them, such as the famous coarse cut English Orange 
Marmalade (193, 194). Indeed, one does not have to be a Peelite to 
admire the use of such peels in exquisite marmalades, cakes, teas and, 
of course, in cosmetics – and the zero-waste approach that goes with it. 
Alternatively, the citrus essential oils (CEOs) derived from such peels 
contain substances such as terpenoids and phenols and thus offer broad-
spectrum insecticidal, antifungal and antibacterial properties (195).

Similar opportunities arise for nutshells, which can be processed 
to abrasive materials, or for ordinary corncobs, which after removing 
the grains still have a value once dried and milled, for instance as 
adsorbents (196). Even stale bread can be considered as a valuable raw 
material and turned into drinks such as Kvass via fermentation by 
lactic acid bacteria (LAB) (197, 198). Such bacteria can also offer a 
pickling condition necessary for the manufacture of pickles, green 
olives, sauerkraut, sausages, buttermilk, yogurt, and some cheeses. 
Important members include Streptococcus, Lactobacillus, and 
Pediococcus (197, 199). Another example, LAB such as 
Lactiplantibacillus plantarum and Lactobacillus acidophilus bacteria 
can be used to prepare the fermented Agri-waste for animal feed, often 
referred to as “silage” (200). Corn silage production requires the waste 
of corn, i.e., stalks, leaves and the remaining parts of the cobs and LAB 
such as, Lactiplantibacillus plantarum, Lactobacillus buchneri and 
Weissella hellenica which may produce a high-quality animal feed able 
to improve animal physical performance (200, 201).

Eventually, even eggshells may be converted into value-added 
products. Due to their high content of calcium carbonate (CaCO3), 
eggshells in the form of “eggshell powder” are utilized as calcium 
supplements for humans. Additionally, their potassium and 
magnesium content makes them suitable as plant fertilizers (202). 
Moreover, eggshells can serve as animal feed supplements for 
livestock. More recently, eggshells have also been employed in natural 
filters designed to remove impurities and contaminants from waste 
water (77, 202, 203).

6 Bioconversion vs. traditional 
disposal methods

The previous sections have shown that there are many avenues 
available to deal with litter, from simple composting in the backyard 
to sophisticated valorization in shampoos. Notably, the ecological as 
well as economic impact of these different methods may differ 
significantly depending on the circumstances. It may be  more 
reasonable, for instance, to simply compost the odd SCG in your 
garden if you live in a remote village, whereas a highly frequented 
coffee shop in the center of Paris would probably prefer to donate or 
even sell the same “waste” to the cosmetics industry – unless, of 
course, there is a bakery nearby.

In any case, the enormous amounts of food waste produced 
globally should not simply end up in landfills or incinerators, as they 
still often do. On the one hand, disposing of food waste in landfills or 
through incineration has detrimental consequences for the 
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environment (153–155). It leads to greenhouse gas emissions, 
especially CO2 and CH4, increased demand for landfill capacity, which 
affects ecosystems and nearby populations, and contamination of 
ground- and surface water. The ash generated from incinerating waste 
and the leachate from landfilling are documented to contain toxic 
residues eventually worsening air and water pollution and resulting in 
loss of biodiversity. In contrast, utilizing bioconversion as an 
alternative method may reduce the negative environmental 
consequences and extract the value of otherwise hazardous pollutants 
(202). The food waste management methods, benefits and their 
impacts on the environment are summarized in Table 3.

Various strategies should therefore be implemented to minimize 
food waste, such as food sharing and donations, “lick your plate with 
pride” campaigns and maximizing recycling and upcycling of food 
waste wherever and whenever possible. By adopting these alternative 
approaches, individually or in concert, the environmental impact of 
food waste disposed in landfills or incinerated may be minimized, 
thereby contributing to more sustainable waste management practices 
(202, 214, 215).

7 Future trends in waste management

An enormous amount of food, i.e., around 2.5 billion tons, which 
accounts for almost one third of the food produced annually, goes to 
the bin. The economic value of this wasted food amounts to 
approximately 230 billion USD, according to a report by the Boston 
Consulting Group (BCG) (216). At the same time, one-third of the 
world’s population is facing the challenge of insufficient food, 
particularly in developing countries, impacting around 320 million 
people according to the United Nations. Food waste levels are 
expected to increase by another third by 2030 (216). In order to 
counteract the global impacts of food waste, sustainable food waste 
management approaches have to be  adopted. First and foremost 
important strategies would require waste reduction at the place of 

origin not only through improved management but also via 
bio-valorization. Additionally, implementation of advanced recycling 
and upcycling methods which transform food waste into valuable 
products, such as bioplastics, fertilizers, and biofuels are equally 
important (217).

Sustainable practices, such as composting, anaerobic digestion 
and insect-based bioconversion of food waste-to-energy are slowly 
yet gradually evolving and need to be  integrated into waste 
management. Composting is a traditional method, which is 
becoming more popular not only due to its simplicity but also its 
ability to produce nutrient-rich soil (44, 45). In contrast, anaerobic 
digestion is gaining attraction for its capacity to generate biogas for 
energy production and decreasing waste (101). Insect biorefinery is 
also another very important emerging tool in the context of the 
circular bioeconomy since this refinery is able to transform organic 
waste material to value-added products such as biofertilizers, animal 
feeds, edible foods, biopolymers, bio-enzymes and biodiesel (76, 
218). Furthermore, recent developments in the field of enzyme 
technology are focused at breaking down the food waste at the 
molecular level to obtain valuable products (219, 220). Another 
innovative approach involves utilizing food waste as culture medium 
to grow algae which provides a sustainable source of biomass for 
various applications (221, 222). A few strategies involve a 
combination of techniques for the management or upcycling of 
organic waste products. Palm bunches have been exploited as 
biodiesel feedstocks through integrated solid-state and submerged 
fermentations by fungal co-cultures (223). This technique employs 
a combination of solid-state and submerged fermentations, with 
multiple types of fungi working together (fungal co-cultures) for the 
production of biodiesel (223). Moreover, the extraction of valuable 
nutrients from organic waste employing supercritical fluids is also 
an important technique although it may not be cost effective (224). 
In summary, the future of food waste management is likely to involve 
a combination of these methods, which will be contingent on local 
regulations and specific waste streams. The primary focus will 

TABLE 3 Food waste management methods, their benefits and effects on environment.

Food waste 
management methods

Gasses produced 
during the process

Benefits Impact on environment References

Composting CO2

Low amounts of CH4 and N2O

Waste reduction

Nutrient soil fertilizer and 

amendment

Uncontrolled emissions of methane 

from poorly managed composting

Emission of foul odors

(45, 204)

Anaerobic digestion High amounts of CH4

Low amounts of CO2

CO, H2S, NH3 and CH3SH

Production of Biogas

Reduced relianace on fossil fuel

Waste management

Emission of methane

Delicate balance between energy 

used and enegry gained

(86, 205, 206)

Biofuels production CH3OH

CO2

Reduced reliance on fossil  

fuel

Sustainable waste management

Affects air quality

High operational costs

(207, 208)

Incineration High amounts of CO2

CO

NO2

NO

SO2

Waste reduction

Elimination of harmful 

pathogens and microorganisms

The gaseous emissions can 

contribute to air pollution and 

impact local air quality

Formation of dioxins from 

incineration

(209–211)

Disposal in landfills CH4

CO2

Waste reduction Air pollution and climate change

Release of odor affects the air 

quality

(212, 213)
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revolve around adopting a comprehensive approach that 
incorporates technological innovation, raises consumer awareness 
and corporate social responsibility, promotes consumer behavior 
change and gives more value to surplus “saved” food (225, 226). The 
Food Recovery Hierarchy outlines actions which organizations, 
individuals and families can take to prevent and manage wasted 
food, as summarized in the Figure 7.

8 Conclusion

As part of this manuscript, we  have aimed to showcase a 
selection of modern chemical, biochemical and (micro-)biological 
techniques which may eventually enable us to turn organic 
by-products or “waste” into valuable (raw) materials and energy. 
Indeed, valorization of biological (waste) materials currently 
appears as one of the most promising avenues to limit waste on the 
one hand and to avoid depletion of natural resources on the other. 
As one important pillar of a future circular bioeconomy, the “waste 
into value” concept promises carbon neutrality and also local 
employment. Rather surprisingly, the underlying strategies of 
bio-valorization are often based on traditional, robust methods and 
techniques and therefore may have disappointed the ones expecting 
high-tech molecular or microbiology. Still, the projects presented 
are not trivial and often do require modern (bio-)chemistry and 
analysis to enable a safe, large-scale handling, production, use and, 
in some cases, consumption.

In future, microbiology, together with molecular biology is likely 
to improve the fermentation processes mentioned here considerably, 
for instance in the fields of biofuels and biogas. It may become possible 
to produce H2 rather than CH4 via (an)aerobic digestion, thus 

departing further from carbon-based materials and fuels. Then again, 
some of these biofuels, such as CH4 and bioethanol and most recently 
ammonia (NH3), are easier to store and handle compared to electricity 
or H2, and thus may eventually become amenable to uses in 
low-emission fuel cells rather than combustion engines.

At the same time, more selective collection and processing 
methods are likely to increase the yields and thus also value of 
bio-derived products, such as “green” urea and phosphate from 
human and animal excrements. Here, methods to collect and refine 
the waste produced by farm animals more efficiently could be a first 
step, as it may be easier to implement logistically than returning to the 
good old family bog hole in the garden.

No doubt, even if driving a honey wagon around town may not 
be  your dream job of the future, new innovations in the field of 
household waste, from peels to coffee, may indeed provide fascinating 
opportunities. Citrus peels can already be processed on a small scale and 
with the help of vinegar to cleaning liquids at home, and decentralized 
local fermenters and production facilities are springing up and into 
action even in the smallest villages, such as in Kirkel-Altstadt, Saarland, 
Germany, where the foundation stone for a new biogas plant running 
on horse manure and hay has just been laid, and which may soon supply 
heat and electricity - and odor - for about 300 households (227).

In most cases, a biochemist or biologist is at hand to supervise and 
control such faculties and to ensure that, literally, no shit happens, 
from the anecdotal detonation of bog holes to a large-scale escape of 
BSF. Maybe this simply underlines the fact that numerous challenges 
for modern biochemistry await us outside the Noble-Prize winning 
fields of biotechnology and medicine, and despite their low-key, 
down-to-earth and hands-on applications, these research and 
development projects are certainly not litter and definitely not for 
the bin.

FIGURE 7

The Food Recovery Hierarchy enlists the actions which can be carried out by the organizations, individuals, and families for the sustainable 
management of food waste. The highest priority has been assigned to feed humans and animals, followed by industrial applications, recycling, AD and 
energy recovery. Landfill and/or incineration have been assigned as the least preferred actions.
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