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A B S T R A C T

We comprehensively investigate the usefulness of tail risk measures proposed in the literature.
We evaluate their statistical as well as their economic validity. The option-implied measure
of Bollerslev and Todorov (2011b) (𝐵𝑇 11𝑄) performs best overall. While some other tail risk
measures excel at specialized tasks, 𝐵𝑇 11𝑄 performs well in all tests: First, 𝐵𝑇 11𝑄 can predict
both future tail events and future tail volatility. Second, it has predictive power for returns
in both the time series and the cross-section, as well as for real economic activity. Finally, a
simulation analysis shows that the main driver of performance is measurement error.

1. Introduction

Tail risk can be defined as the risk of ending up in an exceptionally bad state of the world. That is, one in which a low-probability,
high-impact, i.e., high-marginal-utility, event occurs. In asset pricing, such a (left)-tail event is typically associated with extremely
negative market returns. Several anecdotal and empirical observations suggest that investors are concerned about tail risk. First,
previous studies find that the prices of out-of-the-money put options, instruments that provide a positive payoff in the case of a
left-tail event, are substantially higher than suggested by theory (Jackwerth, 2000; Bondarenko, 2014). Thus, investors appear to
be willing to pay more than standard models suggest to obtain crash insurance. Second, The Economist describes ‘‘low-probability,
high-impact events’’ as ‘‘a fact of life’’.1 Investment practitioners and politicians worry about ‘‘fail[ing] to capture [...] the extreme
negative tail’’ (Alan Greenspan) and see as one of their main objectives to ‘‘remove [...] tail risks, and the perception of tail risks’’
(Olivier Blanchard).2,3

The apparent interest of investors in tail events has sparked a large literature on various tail risk measures. Such measures come
in a variety of fashions, ranging from highly parameterized models to nonparametric approaches. The underlying data vary from
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Fig. 1. The top panel of this figure shows the average levels of various tail risk measures one day before (two-sigma or more) left-tail events. In the bottom
anel, we show a simple placebo test, reporting the average level of the tail risk measures before (absolute return of 0.02 sigma or less) nontail events. All tail
isk measures are standardized to have a mean of zero and a volatility of one. We divide the tail risk measures into four groups: option-implied (Group A),
tock-return-based (Group B), option-return-based (Group C), and macroeconomic measures (Group D). The colors indicate the intensity of the tail risk measures
rior to the events. The definitions of the tail risk measure acronyms are given in Table 1.

ption prices, to historical index and stock returns, to macroeconomic time series. The measures themselves vary in the main aspect
f tail risk they attempt to capture, with some capturing tail probabilities, others tail variation, and still others tail risk premia.
inally, some measures capture tail risk under the physical, while others rely on the risk-neutral probability distribution. In short,
oth investors and policymakers face a difficult choice between different measures with potentially conflicting predictions.

In this paper, we seek to provide some guidance on how best to measure tail risk. Our main contribution is to provide a systematic,
oherent, and comprehensive assessment of the tail risk measures proposed in the literature. Knowing how to measure tail risk is
ery important for academics, investment practitioners, and policymakers. Decisions based on an inaccurate measure could lead to
uge investment and welfare losses. Furthermore, assuming that tail risk is a relevant risk factor, it is essential for academics and
nvestors to accurately attribute portfolio performance to tail risk exposures. Thus, there is a great need to identify good tail risk
easures.

We analyze a large set of 16 tail risk measures introduced in the literature. Because they are partially based on very different
oncepts, theories, assumptions, and underlying data, the different tail risk measures are likely to capture different things. Indeed,
e find that the first two principal components (PCs) of the tail risk measures explain only 58% of their variation. The correlations
etween the different measures are moderate at best. In some cases, we even observe negative correlations. Thus, the decision to use a
pecific measure is nontrivial, with potentially important consequences. Tail risk measures should not be treated as interchangeable.

As a preview, Fig. 1 illustrates the large heterogeneity in the measures. It shows the average levels of the tail risk measures (each
tandardized to have a mean of zero and a standard deviation of one) one day before the tail events, as well as one day before the
lacebo (nontail) events. Some of them are high (as they should be), while others are close to or even below their average before a
ail event. Similarly, some measures on average indicate that a tail event is likely to occur, when in fact no such event subsequently
aterializes.

Having documented significant heterogeneity across measures, we go on to define the desirable criteria for a tail risk measure: it
hould matter both statistically and economically. That is, on the one hand, the tail risk measure should be able to capture both the
isk of jumps and provide an indication of the expected magnitude and quadratic variation caused by tail events. Thus, the first two
ests we devise are statistical in nature, with (i) a predictive probit regression that predicts two-sigma events and (ii) a prediction
f future left-tail variation. On the other hand, several studies show that tail risk is also important for investors (e.g., Rietz, 1988;
arro, 2006; Gourio, 2012; Muir, 2017; Dew-Becker et al., 2021). Therefore, a tail risk measure should be priced in the market. The
2
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last of our main tests (iii) is thus economic in nature: we examine whether the measures can predict future market excess returns.
All in all, we require a tail risk measure to ideally predict both risk and risk premia.

The overall winner of our analysis is the Bollerslev and Todorov (2011b) option-implied left-tail measure (𝐵𝑇 11𝑄). It performs
ell in predicting the occurrence and in particular the variation associated with future tail events up to one week in advance. In
ddition, it is able to forecast future market excess returns for several horizons up to one year in advance. 𝐵𝑇 11𝑄 is among the best
easures for each of these tasks, performing consistently well in all tests. In addition, it is relatively simple to implement compared

o other tail risk measures, requiring only observed deep out-of-the-money index put option prices.
We document that 𝐵𝑇 11𝑄 can also predict the magnitude, not just the occurrence, of future tail events. Furthermore, it performs

ell in predicting cross-sectional stock returns. Moreover, it also predicts real economic activity: 𝐵𝑇 11𝑄 is a strong negative
redictor of the growth of industrial production in the next month and year. We also confirm in the simulated environments of
he Pan (2002) and Santa-Clara and Yan (2010) jump–diffusion models that the empirical return predictability results we observe
or 𝐵𝑇 11𝑄 and the other measures are plausible.

Other measures work well for some specialized tasks. For example, the 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 measure of Maheu et al. (2013) works best
or predicting future tail events. However, it cannot predict future returns. The 𝐵𝑇 11𝑄 measure works best for predicting future
eft-tail variation. The 𝐴𝐷𝐵𝑒𝑎𝑟 measure of Lu and Murray (2019) also performs well overall. In particular, it excels at predicting
uture market excess returns, where it performs best overall, and also performs well in the statistical tests. Overall, we find that the
𝐷𝐵𝑒𝑎𝑟 measure is slightly inferior to the 𝐵𝑇 11𝑄 measure. Finally, more specialized, we find that the 𝜆𝐻𝑖𝑙𝑙 measure of Kelly and
iang (2014) works very well for long-term return forecasting.

We also analyze the sensitivity and robustness of 𝐵𝑇 11𝑄 and other tail risk measures to their definitions. We find that moderate
hanges in the target moneyness level do not materially affect the performance of 𝐵𝑇 11𝑄. Thus, it is not primarily the precise part
f the tail that is captured that drives the performance. However, with a time-varying target moneyness defined based on the current
t-the-money option-implied volatility, the measure performs significantly less well. This suggests that investors are more interested
n the absolute magnitude of a loss than its volatility-adjusted size. For other measures that rely on moneyness cutoffs rather than
argets, moderate variations in the cutoff generally do not have a material impact on the results.

Several other tests underscore the robustness of our results. Among other things, we show that the results are qualitatively similar
cross subsample periods, when predicting the number of jumps, when varying the tail event thresholds, for alternative definitions
f left-tail variation, and for different approaches to determining statistical significance. For all tests, the 𝐵𝑇 11𝑄 measure is among
he best.

Why does the 𝐵𝑇 11𝑄 measure work so well? It seems to combine several desirable features. For one, it uses forward-looking
nformation from options markets. In addition to being forward-looking, options markets have been shown to contain information
bout future returns that is not readily found in physical risk measures (Andersen et al., 2015).4 Most stock-return-based and
acroeconomic tail risk measures fail, especially in predicting returns. Moreover, the 𝐵𝑇 11𝑄 measure does not require the

stimation of structural parameters. Our simulations show that the 𝐵𝑇 11𝑄 measure captures its target (the left tail variation) much
etter than do most others. In particular, similar measures that require parametric or nonparametric optimization perform worse
oth empirically and in the simulations. Thus, measurement error is an important driver of the relative performance of tail risk
easures.

The literature contains studies that compare different risk measures in several areas. For example, there is a large literature
omparing the ability of different approaches to predict future volatility (e.g., Andersen and Bollerslev, 1998; Hansen and
unde, 2005; Jiang and Tian, 2005; Brownlees and Gallo, 2010). There are also studies looking at how best to forecast covariances
e.g., Symitsi et al., 2018) and beta (e.g., Faff et al., 2000; Hollstein and Prokopczuk, 2016; Hollstein et al., 2019). Surprisingly,
owever, to the best of our knowledge, to date no such study exists about tail risk. Given the plethora of different measures that
ave been proposed over the last decade, we believe there is an urgent need for such a study. Our main contributions are therefore
o (i) define the criteria that a good tail risk measure should satisfy and (ii) comprehensively analyze the measures proposed in
revious studies based on these criteria. Importantly, we use the same methodology to analyze and evaluate all measures.

The rest of the paper is organized as follows: In Section 2, we present the tail risk measures considered. Section 3 describes
ur methodology and data. In Section 4, we present the results of our main analysis, and in Section 5 we examine the impact of
ariations in the tail risk measure definitions. Simulation results are shown in Section 6. Section 7 concludes. Detailed descriptions
f the tail risk measures and extensive further analyses and robustness checks are provided in the Online Appendix.

. Tail risk measures

Our goal is to analyze as comprehensive a set of tail risk measures as possible. The selection of measures is based on two main
riteria: (i) relevance/importance and (ii) (public) availability of the underlying data for the measure. Based on these criteria, we
ave compiled the following list.5

4 In fact, David Einhorn refers to the traditional Value-at-Risk (VaR) approach based on historical return data as ‘‘an airbag that works all the time except
hen you have a car accident’’ (https://www.valuewalk.com/wp-content/uploads/2014/05/Grants-Conference-04-08-2008.pdf).
5 Other relevant measures include Andersen et al. (2015), Agarwal et al. (2017), Andersen et al. (2017), Seo and Wachter (2018) and Weller (2018). We do

ot use the measure of Andersen et al. (2015) because the model is highly parameterized, making the estimation computationally very intensive. For Andersen
t al. (2017), the weekly options are only available for a limited time period starting in 2011, making a meaningful empirical evaluation infeasible. Finally, we
3

o not have access to the data underlying the measures in Agarwal et al. (2017), Seo and Wachter (2018), and Weller (2018).

https://www.valuewalk.com/wp-content/uploads/2014/05/Grants-Conference-04-08-2008.pdf
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Table 1
Description of the tail risk measures.
This table lists the main tail risk measures used in this study. The column ‘‘Acronym’’ defines the symbol used in this paper to refer to the measure. ‘‘Source’’
provides the reference of the original paper, ‘‘Description’’ gives the main cornerstones of the definitions of the tail risk measures. ‘‘Interpretation’’ characterizes
the main quantity of which the measure provides an estimate. We assign the measures to the various categories to which they most naturally (but rather broadly
defined) belong. Finally, ‘‘Freq’’ denotes the frequency with which the different measures are available. ‘‘D’’ indicates that we observe a measure every trading
day. ‘‘W’’, ‘‘M’’, and ‘‘Q’’ denote weekly, monthly and quarterly observation frequencies, respectively.

Acronym Source Description Interpretation Freq

Group A — Option-Implied Measures

ATprob Andersen et al. (2020, 2021) Probability of a daily loss of 10% or
more

Left-tail probability D

ATvol Andersen et al. (2020, 2021) Nonparametric tail variation estimate Left-tail variation D
BT11Q Bollerslev and Todorov (2011b) Left tail approximation measure under Q Left-tail variation D
BT14Q Bollerslev and Todorov (2014) Inverse left-tail shape parameter Tail intensity decay W
BTX15Q Bollerslev et al. (2015) Parametric tail variation estimate (with

time-varying tail shape and jump
intensity)

Left-tail variation W

H_MRI Gormsen and Jensen (2022) First PC of risk-neutral higher moments Higher moment risk D
RIX Gao et al. (2018, 2019) Left-tail volatility as the difference of

two volatility indexes
Jump intensity D

TLM Vilkov and Xiao (2015) Expected shortfall inferred from
parameterized tail distribution

Expected shortfall D

Group B — Stock-Return-Based Measures

BT11P Bollerslev and Todorov (2011b) Left-tail approximation measure under P Left-tail variation D
CJI Christoffersen et al. (2012) Parametric model-implied conditional

jump intensity
Jump intensity D

JumpRisk Maheu et al. (2013) Parametric model-implied conditional
jump intensity

Jump intensity D

JumpRP Maheu et al. (2013) Parametric model-implied conditional
jump risk premium

Jump risk premium D

𝜆𝐻𝑖𝑙𝑙 Kelly and Jiang (2014) Left-tail shape parameter derived from
the cross-section of stock returns

Tail intensity decay M

Group C — Option-Return-Based Measures

ADBear Lu and Murray (2019) Return of bear spread put option
positions

(Change in) Left-tail prob. D

JUMP Cremers et al. (2015) Return of vega-neutral, gamma-positive
option portfolio

Jump risk premium D

Group D — Macroeconomic Measures

LE Adrian et al. (2019) Left entropy of expected GDP growth Left entropy Q

In the following, we present the main tail risk measures analyzed in this study. In order to keep the paper focused, only the main
echanisms of the different measures are described in this section. The technical details can be found in Section A1 of the Online
ppendix. We categorize the measures into four main groups, mainly based on their underlying data: (i) option-implied measures,

ii) stock-return-based measures, (iii) option-return-based measures, and (iv) tail risk measures based on macroeconomic data.
In Table 1, we summarize the measure acronyms and provide brief descriptions, further information on how to interpret the

ifferent measures, and the estimation frequency. Whenever possible, we define the acronyms for the tail risk measures in the
ame way as in the original studies. In cases where this would result in names that could not be uniquely identified, we rely on
ibliographic information about the study to generate generic acronyms based on the author names, years, and the probability
easure under which they are estimated.

.1. Underlying asset price dynamics

Let 𝑋 denote an asset price. Many of the tail risk measures, especially among the option-implied ones, assume a dynamic
ontinuous-time representation of the type:

𝑑𝑋𝑡
𝑋𝑡

= 𝑎𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + ∫R
(𝑒𝑥 − 1) �̃�P(𝑑𝑡, 𝑑𝑥). (1)

There are only a few restrictions on the drift (𝑎𝑡) and the diffusive process (𝑊𝑡; a Brownian motion). They are required to follow
àdlàg paths but are otherwise left unspecified. 𝜇(𝑑𝑡, 𝑑𝑥) is a simple counting measure of the jumps in 𝑋. The jump compensator is
𝑡 ⊗ 𝜈P𝑡 (𝑑𝑥), so that �̃�P(𝑑𝑡, 𝑑𝑥) = 𝜇(𝑑𝑡, 𝑑𝑥) − 𝑑𝑡 ⊗ 𝜈P𝑡 (𝑑𝑥). The quadratic variation of the log price process over the interval [𝑡, 𝑇 ] is:

𝑄𝑉[𝑡,𝑇 ] = ∫

𝑇

𝑡
𝜎2𝑠𝑑𝑠 + ∫

𝑇

𝑡 ∫R
𝑥2𝜇(𝑑𝑡, 𝑑𝑥). (2)

he first part on the right-hand side of Eq. (2) refers to the diffusive volatility due to small price changes. The second part captures
he variation due to tail events.
4
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The corresponding dynamics under the risk-neutral probability measure Q are:
𝑑𝑋𝑡
𝑋𝑡

=
(

𝑟𝑓,𝑡 − 𝛿𝑡
)

𝑑𝑡 + 𝜎𝑡𝑑𝑊
Q
𝑡 + ∫R

(𝑒𝑥 − 1) �̃�Q(𝑑𝑡, 𝑑𝑥). (3)

𝑟𝑓,𝑡 and 𝛿𝑡 are the instantaneous risk-free rate and dividend yield, respectively. 𝑊 Q
𝑡 is a Brownian motion under the risk-neutral

probability measure. In addition, �̃�Q(𝑑𝑡, 𝑑𝑥) = 𝜇(𝑑𝑡, 𝑑𝑥) − 𝑑𝑡 ⊗ 𝜈Q𝑡 (𝑑𝑥) with the latter part denoting the jump compensator under Q.
The predictable components of the tail variation under the real-world and risk-neutral probability measures (P and Q,

respectively) are:

𝑇𝑉 P = ∫

𝑇

𝑡 ∫R
𝑥2𝜈P𝑠 (𝑑𝑥)𝑑𝑠 and 𝑇𝑉 Q = ∫

𝑇

𝑡 ∫R
𝑥2𝜈Q𝑠 (𝑑𝑥)𝑑𝑠. (4)

For this study, our particular interest is in the left tail, hence the left-tail variation, which is defined as:

𝐿𝑇𝑉 P = ∫

𝑇

𝑡 ∫𝑥<−𝑘𝑡
𝑥2𝜈P𝑠 (𝑑𝑥)𝑑𝑠 (5)

and

𝐿𝑇𝑉 Q = ∫

𝑇

𝑡 ∫𝑥<−𝑘𝑡
𝑥2𝜈Q𝑠 (𝑑𝑥)𝑑𝑠. (6)

𝑘𝑡 is a cutoff that separates continuous returns from tail events. This cutoff can be either fixed or time-varying, depending on a
multiple of the current volatility (see Section A1 of the Online Appendix for details on how 𝑘𝑡 is specified for different measures).

2.2. Option-implied measures

𝑩𝑻 𝟏𝟏𝑸 (Bollerslev and Todorov, 2011b) is a measure of the left-tail variation similar to the predictable component of the left-tail
variation under Q (Eq. (6)). The main idea behind this and other, similar tail risk measures is that close-to-maturity deep out-of-the-
money put options will only end up in-the-money if there is a tail event during the remaining life span of the option. Thus, the value
of the put option is primarily determined by investors’ expectations of future left-tail events. 𝐵𝑇 11𝑄 is based on constant-moneyness
put options with a ratio of strike to futures price of 0.9.

𝑩𝑻 𝟏𝟒𝑸 (Bollerslev and Todorov, 2014) builds on a similar basic setup to Bollerslev and Todorov (2011b), but with a special
focus on the parameters governing the tail shape and its time variation. The main measure promoted in the study is the inverse of the
smoothed time-varying tail shape parameter 𝛼−𝑡 . The 𝐵𝑇 14𝑄 tail risk measure is estimated from one week of pooled short-maturity
out-of-the-money put prices. The larger the 𝐵𝑇 14𝑄 measure, the slower is the decay of the left tail intensity, thus, the ‘‘fatter’’ is
the tail for a given tail intensity level 𝜙−

𝑡 .
𝑩𝑻𝑿𝟏𝟓𝑸, 𝑨𝑻𝒑𝒓𝒐𝒃, and 𝑨𝑻𝒗𝒐𝒍 (Bollerslev et al., 2015; Andersen et al., 2020, 2021) are further extensions of the main setup used

for 𝐵𝑇 11𝑄 and 𝐵𝑇 14𝑄. Bollerslev et al. (2015) note that the time-varying tail shape parameter is not the only determinant of the
jump compensator and the tail variation. The level of the tail intensity must also be estimated. For 𝐵𝑇𝑋15𝑄, Bollerslev et al. (2015)
do this using a parametric optimization also based on one week of pooled short-maturity out-of-the-money put prices. Alternatively,
𝐴𝑇𝑣𝑜𝑙 uses similar basic equations but with a nonparametric estimation.6 Both 𝐵𝑇𝑋15𝑄 and 𝐴𝑇𝑣𝑜𝑙 provide parametric estimates
of the left-tail variation under Q in Eq. (6), which follows from the tail intensity process in Equation (A.2) in the Online Appendix.
Finally, 𝐴𝑇𝑝𝑟𝑜𝑏 is defined as the probability of a daily loss of 10% or more. It thus captures the cumulative left-tail intensity. The
measure is also based on the nonparametric estimation of the tail shape and level shift parameters. Both 𝐴𝑇𝑣𝑜𝑙 and 𝐴𝑇𝑝𝑟𝑜𝑏 are
estimated on a daily basis.

𝑯_𝑴𝑹𝑰 (Gormsen and Jensen, 2022) is a measure of higher-moment risk. It is defined as the first principal component
(PC) of the standardized option-implied skewness and kurtosis for a constant time-to-maturity. The moments are computed using
out-of-the-money put and call options using the inference techniques of Breeden and Litzenberger (1978) and Bakshi et al. (2003).7

𝑹𝑰𝑿 (Gao et al., 2018, 2019) is a left-tail variation index. The measure is constructed as the difference between the downside
variance of the holding period return as in Bakshi et al. (2003) and the integrated downside variance as in Britten-Jones and
Neuberger (2000). Intuitively, the difference between the two can be interpreted as tail risk, since the former gives more weight
to deep out-of-the-money put option prices than the latter. Du and Kapadia (2013) show that under asset price dynamics similar
to Eq. (1), their measure is proportional to the expected number of jumps.

𝑻𝑳𝑴 (Vilkov and Xiao, 2015) is a parameterized expected shortfall measure under Q. To infer the tail parameters, the
authors optimize over the difference between the theoretical (using Extreme Value Theory, EVT) and observed prices of deep
out-of-the-money put options. The resulting density can be used to calculate the expected shortfall.

6 Both 𝐴𝑇𝑣𝑜𝑙 and 𝐴𝑇𝑝𝑟𝑜𝑏 are based on the website ‘‘tailindex.com’’, previously maintained by Torben Andersen and Victor Todorov, but now closed down.
similar implementation to 𝐴𝑇𝑣𝑜𝑙 is now available from the CBOE: https://www.cboe.com/us/indices/dashboard/LTV/.
7 The authors show that the first PC is positively related to the kurtosis and negatively related to the skewness. The measure is negatively correlated with
5

olatility. Thus, it tends to be low during volatile periods.

https://tailindex.com
https://www.cboe.com/us/indices/dashboard/LTV/
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2.3. Stock-return-based measures

𝑩𝑻 𝟏𝟏𝑷 (Bollerslev and Todorov, 2011b) is a left-tail measure under the objective probability measure corresponding to 𝐵𝑇 11𝑄.
t is estimated from high-frequency intraday returns above a certain threshold. The authors use EVT-based approximations and
educed-form modeling to compute a forward-looking tail measure.

𝑪𝑱𝑰 (Christoffersen et al., 2012) is the tail intensity from a parametric dynamic volatility with separate dynamic jumps (DVSDJ)
odel. It is estimated using daily return data. To obtain the unobservable measures, Christoffersen et al. (2012) use a filtering

echnique along with maximum likelihood estimation.
𝑱𝒖𝒎𝒑𝑹𝒊𝒔𝒌 and 𝑱𝒖𝒎𝒑𝑹𝑷 (Maheu et al., 2013) are the conditional tail intensity and the conditional equity premium due to

umps (tail risk premium), respectively. Both measures are derived from a parametric Generalized Autoregressive Conditional
eteroskedastic (GARCH) jump mixture model. The tail risk premium is calculated as the first derivative of the equity risk premium
ith respect to the tail intensity. Since they argue that risk premia in the model behave inversely to the current state of volatility
nd tail risk, we define 𝐽𝑢𝑚𝑝𝑅𝑃 as the inverse of the corresponding Maheu et al. (2013) measure.
𝝀𝑯𝒊𝒍𝒍 (Kelly and Jiang, 2014) is the common time-varying tail shape parameter, derived from the cross-sectional distribution of

ndividual stock returns. The tail threshold is defined as the fifth percentile of all daily unsystematic returns in the cross-section
ver the past month. The measure is computed using the Hill (1975) power law estimator.

.4. Option-return-based measures

𝑨𝑫𝑩𝒆𝒂𝒓 (Lu and Murray, 2019) is the excess return of a bear spread portfolio of S&P 500 options. The bear spread portfolio is
esigned to pay $1 if the excess return of the S&P 500 is below a threshold 𝐾2. To generate this payoff, the portfolio is long a put
ption with strike price 𝐾1 and short a put option with strike 𝐾2, where 𝐾1 > 𝐾2. The payoff is scaled by 𝐾1 − 𝐾2. The resulting
ortfolio pays $0 above 𝐾1 and $1 below 𝐾2. The authors set 𝐾2 and 𝐾1 to be at a return of −1.5 and −1 standard deviations off

from the current S&P 500 forward price, respectively, and hold the portfolio for five days.
𝑱𝑼𝑴𝑷 (Cremers et al., 2015) is the return of a vega-neutral and gamma-positive portfolio created from market-neutral straddles

written on the S&P 500. We use the daily returns resulting from a strategy with daily rebalancing.

2.5. Macroeconomic measures

𝑳𝑬 (Adrian et al., 2019) is a measure of the left entropy of the expected distribution of gross domestic product (GDP) growth.
The authors model the conditional GDP growth distribution using interpolated quantile regressions with the National Financial
Conditions Index (NFCI) as the explanatory variable.

3. Data and methodology

3.1. Data

The tail risk measures introduced in the previous section require several types of data. We obtain both options and stock return
data from several sources. First, we obtain data on S&P 500 option prices as well as the corresponding Greeks and the risk-free
interest rate and dividend yield from OptionMetrics. To clean the option data, we follow the steps outlined in Carr and Wu (2003,
2009). First, we remove strike prices that are duplicated per day, keeping the one with the higher open interest. Second, the bid
prices must be strictly positive and ask prices cannot be lower than bid prices. Some measures impose a cutoff level for short-maturity
options. To be consistent, we follow Carr and Wu (2003, 2009) and choose 8 days.

Second, we use the 1-minute prices of the S&P 500 from Thomson Reuters Tick History (TRTH). We follow the steps recommended
by Barndorff-Nielsen et al. (2009) to clean the data. First, we use only data with a timestamp that falls during the exchange trading
hours, i.e., between 9:30 AM and 4:00 PM EST. Second, we remove recording errors in prices. Specifically, we filter out prices
that differ by more than 10 mean absolute deviations from a rolling centered median of 50 observations. We then use the nearest
previous entry to assign prices to each 1-minute interval.

Third, we obtain prices from the Center for Research in Security Prices (CRSP) for all stocks traded on the New York Stock
Exchange (NYSE), the American Stock Exchange (AMEX), and the National Association of Securities Dealers Automated Quotations
(NASDAQ) that are classified as ordinary common stocks (CRSP share codes 10 or 11). In addition, we obtain data on the S&P 500
index from the same source. We use the total return of the S&P 500 as the market return and subtract the 1-month Treasury bill
rate from Kenneth French’s website to obtain excess returns.8

Finally, we obtain data on the NFCI from the Chicago Federal Reserve and on the GDP from the Bureau of Economic Analysis
(BEA). We collect additional data from Amit Goyal’s webpage (10-year, 3-month, and 1-month Government Bond yields), the St.
Louis FRED (AAA and BAA rated corporate bond yields, industrial production), and Martin Lettau’s webpage (CAY).9

8 The website is https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
9 Amit Goyal’s webpage can be accessed as http://www.hec.unil.ch/agoyal/. Martin Lettau’s webpage is https://sites.google.com/view/martinlettau/

atawebpage.
6
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Our sample period runs from 1996 to 2017.10 Since the goal of this study is to compare different tail risk measures, we limit our
attention to this period, even for those measures for which data would be available for longer time series.

3.2. Empirical test design

What characterizes a good tail risk measure? Obviously, it should be good at predicting future tail events. To test this property,
we devise two statistical tests to assess the ability of the measures to predict future tail events. In addition, a good tail risk measure
should also be important in economic terms. That is, it should command a risk premium, i.e., it should be priced by investors (Rietz,
1988; Barro, 2006). To analyze the economic content, we test the ability of the measures to predict future aggregate market returns.
The following sections describe these tests in more detail.

3.2.1. Statistical tests
The first test we use is a simple prediction of realized tail events. We use a binary probit model (Vilkov and Xiao, 2015). We

define the threshold based on the VIX. The binary dummy variable is defined as follows:

𝐷𝑡+𝛥𝑡 =

{

1 if 𝑅𝑡+𝛥𝑡 ≤ −2𝜎𝑡,
0 if otherwise,

(7)

where 𝑅𝑡+𝛥𝑡 is the market excess return over the period from 𝑡 to 𝑡+𝛥𝑡, where 𝛥𝑡 is measured in trading days. 𝜎𝑡 = 𝑉 𝐼𝑋𝑡∕100
√

𝛥𝑡∕252
is the conditional volatility. 𝑉 𝐼𝑋𝑡 is the level of the VIX at the end of day 𝑡.

To test whether the tail risk measure can capture the realization of a 2-sigma tail event, we run the following regression:

𝐷𝑡+𝛥𝑡 = 𝑎 + 𝑏 ⋅ 𝑇𝑅𝑀𝑡 + 𝑐 ⋅ 𝑉 𝐼𝑋𝑡 + 𝜖𝑡+𝛥𝑡, (8)

where 𝑇𝑅𝑀𝑡 is the tail risk measure observation at time 𝑡. In this regression, we control for the current level of the VIX.
While the probit model captures the occurrence of tail events, it does not account for how much the observed returns exceed

the specified threshold and how much quadratic variation they account for. Predicting the quadratic variation due to left-tail events
may therefore be even more important for investors. Thus, in a second test, we examine the ability of the measures to predict the
future realized left-tail variation. This measure yields particularly high values when the size of the (ex-post) tail realizations is very
large or when there are many tail events in the period under study. Based on Mancini (2001), Bollerslev and Todorov (2011b)
propose the following left-tail variation measure, which is a special case of the truncated variance:

𝐿𝑇𝑉 P
𝑡 =

𝑛−1
∑

𝑖=1
𝑟2𝑖 ⋅ 1𝑟𝑖<(−𝜐𝑡,𝑖𝛹0.49)

𝐿𝑇𝑉 P
𝑡+𝛥𝑡 =

𝑡+𝛥𝑡
∑

𝑖=𝑡
𝐿𝑇𝑉 P

𝑖 ,

(9)

where 𝑟𝑖 denotes an intraday log return. Following Mancini (2001) and Bollerslev and Todorov (2011a) we include only intraday
returns. 𝛹 is the length of each intraday sampling interval as a fraction of a day. Following Bollerslev and Todorov (2011a), we
use market excess returns during 𝑛 = 390 1-minute intervals each day to estimate Eq. (9).11 1𝑟𝑖<(−𝜐𝑡,𝑖𝛹0.49

𝑛 ) denotes a dummy variable
that equals 1 if the realized intraday return 𝑟𝑖 is less than −𝜐𝑡,𝑖𝛹 0.49

𝑛 . 𝜐𝑡,𝑖 is a time-varying threshold adjusted by a time-of-day (𝑇𝑂𝐷)
factor that accounts for the predictable variation in intraday returns12:

𝜐𝑡,𝑖 = 4
√

𝐵𝑉𝑡 ∧ 𝑅𝑉𝑡 ⋅ 𝑇𝑂𝐷𝑖 ⋅ 𝛹
0.49. (10)

𝐵𝑉𝑡 and 𝑅𝑉𝑡 are the bi-power and realized variation, respectively. To test whether the tail risk measure can capture the future
left-tail variation, we run the following regression:

𝐿𝑇𝑉 P
𝑡+𝛥𝑡 = 𝑎 + 𝑏 ⋅ 𝑇𝑅𝑀𝑡 + 𝑐 ⋅ 𝐿𝑇𝑉 P

𝑡 + 𝑑 ⋅ 𝑉 𝐼𝑋𝑡 + 𝜖𝑡+𝛥𝑡. (11)

We control for both the lagged left-tail variation 𝐿𝑇𝑉 P
𝑡 and the current conditional volatility, measured by 𝑉 𝐼𝑋𝑡. We do this to see

if the tail risk measures contribute to predicting the left-tail variation beyond its own lag and the VIX.

3.2.2. Economic tests
Our main economic test examines the ability of the various tail risk measures to predict future market excess returns. If tail risk

is a relevant risk factor in the market, then the equity risk premium should include compensation for tail risk. Thus, when tail risk
is high, the equity risk premium should be higher than in calm times when tail risk is low. Therefore, a measure of tail risk that is
priced in the market should be able to positively forecast future market excess returns.

10 The starting date, 1996, is dictated by the fact that both the OptionMetrics and TRTH databases do not begin before that date. The end date of our sample
eriod is limited by the availability of data when we began this project.
11 In Section A3.8 of the Online Appendix, we show that the results are qualitatively similar when also including overnight returns and with 5-minute returns.
12 Additional implementation details, beyond those provided in the following paragraphs, can be found in Section A1.2 of the Online Appendix.
7
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We use the following regression model to test whether the tail risk measures can predict returns:

𝑅𝑡+𝛥𝑡 = 𝑎 + 𝑏 ⋅ 𝑇𝑅𝑀𝑡 + 𝑐 ⋅ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑡 + 𝜖𝑡+𝛥𝑡. (12)

Since there are several variables that have been previously documented to predict future stock returns, we follow Bollerslev et al.
(2009) and use several control variables in the vector 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑡: the consumption, wealth, income ratio (CAY), the default spread
(DFSP), the log dividend price ratio (log(D/P)), the stochastically detrended risk-free rate (RREL), the term spread (TMSP), and the
variance risk premium (VRP).

3.2.3. Further methodological details
Throughout this paper, we report partial rather than ‘‘full’’ 𝑅2s. We do this to emphasize the marginal contribution of each tail

risk measure to the explanatory power of a model that may include multiple variables.13 For the probit regressions, we obtain the
average contribution from the dominance analysis as described in Azen and Budescu (2003). A predictor is dominant if it contributes
more to the prediction than another. We report the partial 𝑅2 measure based on general dominance, which is derived from the mean
average incremental contribution at each level. For all other tests, we use the partial 𝑅2 of Lindeman et al. (1980). This measure
uses a simple unweighted average of the average contributions of different models of different sizes. In both cases, the partial 𝑅2s
add up to the total 𝑅2.

For statistical inference, we rely on the wild bootstrap procedure of Rapach et al. (2013), which we describe in detail in
Section A2.1 of the Online Appendix. The bootstrap preserves the contemporaneous correlation structure in the data, controls for
the Stambaugh (1999) bias, and allows for conditional heteroskedasticity in stock returns. To account for autocorrelation, we base
all 𝑡-statistics in the original and the bootstrap samples on robust Newey and West (1987) standard errors with 25 lags (252 lags
for annual horizons), as recommended by Lazarus et al. (2018). As a robustness test, in Section A3.9 of the Online Appendix, we
also present the results when using alternative inference methods, such as a block bootstrap. These are qualitatively similar.

Finally, to reduce the dimensionality in multiple regressions, we follow Bekaert et al. (2011) and use the general-to-specific
PcGets search algorithm. This algorithm eliminates insignificant predictor variables in several steps. We outline the details of the
procedure in Section A2.2 of the Online Appendix. As a robustness test, we also present the results of a jackknife procedure (Bekaert
et al., 2011) in Section A3.5 of the Online Appendix.

4. Main analysis

4.1. Summary statistics

In Table 2, we present the summary statistics of the 16 different tail risk measures. We find that the main characteristics of the
measures in our sample are consistent with those documented in the literature. The measures are very heterogeneous in their means
and standard deviations. To account for this, and to make the results comparable across measures, we standardize all of them to
have a mean of zero and a standard deviation of one for the following tests. Importantly, all but one of the measures have positive
skewness and have significant excess kurtosis. This observation is consistent with interpreting the measures as capturing the risk of
low-probability, high-impact events. As these events become increasingly likely, a tail risk measure should show a clear peak.

An important feature to distinguish between the different tail risk measures is their persistence. The (daily) first-order
autocorrelation exceeds 0.99 for 𝐶𝐽𝐼 , and 𝐽𝑢𝑚𝑝𝑅𝑃 . It is also above 0.90 for 𝐴𝑇𝑣𝑜𝑙, 𝐵𝑇 11𝑄, 𝐻_𝑀𝑅𝐼 , 𝑅𝐼𝑋, 𝑇𝐿𝑀 , and 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘.14

The high autocorrelations imply that the tail risk measured by these variables is very persistent and changes little from day to day.
On the other hand, 𝐽𝑈𝑀𝑃 has an autocorrelation close to zero. This low autocorrelation would imply that the tail risk is highly
variable even over short windows. Part of this is certainly due to the large noise in the estimation and the construction of the
measure as a daily return. It seems more akin to the first difference in tail risk. The first-order autocorrelations of the remaining
measures are all above 0.60, suggesting that tail risk is quite persistent by most measures.15 However, whether low, medium, or
high persistence is a desirable property of a good tail risk measure is an empirical question that we seek to answer in this section.

The Figures A2, A3, and A4 of the Online Appendix show the time series of the standardized tail risk measures. For better
visualization, we average all daily observations of the tail risk measures over a month. For most measures, we observe significant
peaks in October 2008, the height of the financial crisis immediately following the bankruptcy of Lehman Brothers. In particular,
all of the Andersen–Bollerslev–Todorov measures show this peak. For some of the other measures, however, we do not observe it.
For example, for 𝐻_𝑀𝑅𝐼 and 𝜆𝐻𝑖𝑙𝑙 there is a trough rather than a peak in the time series at that time. In addition, even for the
Andersen–Bollerslev–Todorov measures, we observe substantially different behavior in the time series, with strong peaks in some
measures that seem to be largely absent in others. This visual inspection of the tail risk measures thus suggests that they may not
be very strongly correlated with each other and thus may contain quite different information.

13 This is particularly important because our analyses also include control variables. In addition, for the analyses with multiple tail risk measures, we can
ssess the contribution of each individual variable.
14 The autocorrelation of the 𝜆𝐻𝑖𝑙𝑙 measure in our sample is somewhat lower than that reported by Kelly and Jiang (2014) (0.75 vs. 0.93). However, this

seems to depend on the sample period. For their full sample period (1963–2010), we also get an autocorrelation of 0.93.
15 In statistical tests, we use bootstrap procedures (described in Section A2.1 of the Online Appendix) to ensure that the inference is robust to this persistence
8

in the explanatory variables.
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Table 2
Summary statistics.
This table shows the summary statistics of the tail risk measures considered. The definitions of the tail risk measure acronyms are given in Table 1. We assign
the tail risk measures to different categories based on their underlying data. We present several time-series statistics. ‘‘𝑀𝑒𝑎𝑛’’ denotes the time-series average,
‘‘𝑆𝐷’’ is the standard deviation. For the remainder of the paper, we standardize the tail risk measures to have a mean of zero and a standard deviation of
one. ‘‘𝑀𝑒𝑑𝑖𝑎𝑛’’, ‘‘𝑀𝑖𝑛’’, and ‘‘𝑀𝑎𝑥’’ denote the median, the lowest, and the highest values of the measures, respectively. ‘‘𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠’’ and ‘‘𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠’’ denote
the skewness and kurtosis of the distributions of the measures. Finally, ‘‘𝐴𝑅(1)’’ shows the first-order autocorrelation of the measures. All measures except for
𝑅𝐼𝑋, 𝐵𝑇 14𝑄, 𝜆𝐻𝑖𝑙𝑙 , and 𝐿𝐸 are available at the daily frequency. 𝐵𝑇 14𝑄 is weekly, 𝜆𝐻𝑖𝑙𝑙 and 𝑅𝐼𝑋 are monthly, and 𝐿𝐸 is quarterly. The values of 𝐵𝑇 11𝑃 are
multiplied by 109.

𝑀𝑒𝑎𝑛 𝑆𝐷 𝑀𝑒𝑑𝑖𝑎𝑛 𝑀𝑖𝑛 𝑀𝑎𝑥 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝐴𝑅(1)

Group A — Option-Implied Measures

𝐴𝑇𝑝𝑟𝑜𝑏 0.8237 0.7408 0.5976 0.0754 10.0623 3.4242 23.768 0.7341
𝐴𝑇𝑣𝑜𝑙 0.0790 0.0359 0.0706 0.0021 0.3985 2.4111 13.425 0.9317
𝐵𝑇 11𝑄 0.0308 0.0506 0.0146 0.0001 0.7945 5.1971 42.812 0.9314
𝐵𝑇 14𝑄 0.0679 0.0244 0.0635 0.0351 0.3155 3.8270 29.511 0.8319
𝐵𝑇𝑋15𝑄 0.0090 0.0044 0.0079 0.0023 0.0430 2.5132 14.374 0.6192
𝐻_𝑀𝑅𝐼 −0.0000 1.3923 −0.3127 −2.4190 9.4042 2.2517 10.564 0.9650
𝑅𝐼𝑋 0.0204 0.0069 0.0015 0.0001 0.1234 8.5753 102.36 0.9529
𝑇𝐿𝑀 0.0015 0.0059 0.0192 0.0106 0.0588 1.5628 7.309 0.9761

Group B — Stock-Return-Based Measures

𝐵𝑇 11𝑃 0.0626 0.0035 0.0008 −0.0058 0.1218 15.295 364.68 0.8521
𝐶𝐽𝐼 0.1562 0.0621 0.0458 0.0028 0.4575 3.1576 15.675 0.9979
𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 1.0029 0.0885 0.1292 0.0431 0.6471 1.7382 6.8921 0.9720
𝐽𝑢𝑚𝑝𝑅𝑃 0.4426 0.3018 0.9184 0.4580 2.1240 1.2681 4.3748 0.9924
𝜆𝐻𝑖𝑙𝑙 −0.0855 0.0275 0.4450 0.3447 0.5054 −0.5789 3.8619 0.7538

Group C — Option-Return-Based Measures

𝐴𝐷𝐵𝑒𝑎𝑟 −0.0014 0.7180 −0.2841 −0.9962 9.9967 2.8659 20.274 0.6953
𝐽𝑈𝑀𝑃 0.0885 0.0455 −0.0073 −0.7931 1.1417 6.4229 159.62 −0.0480

Group D — Macroeconomic Measures

𝐿𝐸 0.8237 0.1690 0.0331 −0.0266 1.0478 3.5552 17.734 0.7904

Table 3
Correlations.
This table shows the time-series correlations between the tail risk measures considered. The definitions of the tail risk measure acronyms are given in Table 1.
To ensure comparability of the correlations, we use a daily sample with constant extrapolation. The last row shows the correlations of the tail risk measures
with the VIX.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Group A — Option-Implied Measures

(1) 𝐴𝑇𝑝𝑟𝑜𝑏 0.41 0.61 0.47 0.42 −0.36 0.48 0.67 0.37 0.53 0.47 0.13 −0.19 0.26 0.06 0.25
(2) 𝐴𝑇𝑣𝑜𝑙 0.70 0.64 0.63 −0.03 0.70 0.78 0.47 0.63 0.42 0.13 −0.12 0.14 0.06 0.45
(3) 𝐵𝑇 11𝑄 0.80 0.67 −0.31 0.91 0.83 0.73 0.78 0.56 0.08 −0.26 0.26 0.09 0.47
(4) 𝐵𝑇 14𝑄 0.85 −0.38 0.79 0.76 0.62 0.79 0.46 0.24 −0.38 0.08 0.03 0.52
(5) 𝐵𝑇𝑋15𝑄 −0.17 0.65 0.69 0.49 0.60 0.40 0.13 −0.24 0.12 0.04 0.38
(6) 𝐻_𝑀𝑅𝐼 −0.23 −0.37 −0.18 −0.38 −0.22 −0.35 0.44 −0.17 −0.05 −0.26
(7) 𝑅𝐼𝑋 0.76 0.74 0.73 0.49 0.02 −0.21 0.17 0.07 0.45
(8) 𝑇𝐿𝑀 0.53 0.81 0.60 0.24 −0.27 0.24 0.07 0.51

Group B — Stock-Return-Based Measures

(9) 𝐵𝑇 11𝑃 0.52 0.47 −0.05 −0.16 0.16 0.07 0.32
(10) 𝐶𝐽𝐼 0.49 0.35 −0.36 0.06 0.00 0.76
(11) 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 −0.33 −0.27 0.31 0.15 0.14
(12) 𝐽𝑢𝑚𝑝𝑅𝑃 −0.18 0.00 −0.04 0.48
(13) 𝜆𝐻𝑖𝑙𝑙 −0.04 −0.01 −0.22

Group C — Option-Return-Based Measures

(14) 𝐴𝐷𝐵𝑒𝑎𝑟 0.20 0.01
(15) 𝐽𝑈𝑀𝑃 −0.00

Group D — Macroeconomic Measures

(16) 𝐿𝐸

𝜌𝑉 𝐼𝑋 0.69 0.67 0.87 0.81 0.65 −0.48 0.79 0.93 0.59 0.87 0.65 0.25 −0.36 0.26 0.08 0.53

Table 3 shows the correlations of the tail risk measures. Consistent with the time-series plots, we find that the correlations
re indeed much lower than one would expect from different measures that are broadly designed to capture essentially the same
9

nderlying risk. In particular, the correlation between measures across different groups is typically low.
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Table 4
Principal components.
This table reports the results of a principal component analysis (PCA) of the standardized tail risk measures. The definitions of the tail risk measure acronyms
are given in Table 1. We use a daily sample of the tail risk measures, with constant extrapolation. We show the first two PCs among all measures and within
the different subgroups. The column ‘‘𝐶𝑢𝑚𝑉 𝑎𝑟’’ displays the cumulative variance explained by the PCs. The last column shows the correlation of each PC with
he VIX.
Full sample

𝐴
𝑇
𝑝𝑟
𝑜𝑏

𝐴
𝑇
𝑣𝑜
𝑙

𝐵
𝑇
11
𝑄

𝐵
𝑇
14

𝑄

𝐵
𝑇
𝑋
15
𝑄

𝐻
_𝑀

𝑅
𝐼

𝑅
𝐼𝑋

𝑇
𝐿
𝑀

𝐵
𝑇
11

𝑃

𝐶
𝐽
𝐼

𝐽
𝑢𝑚

𝑝𝑅
𝑖𝑠
𝑘

𝐽
𝑢𝑚

𝑝𝑅
𝑃

𝜆 𝐻
𝑖𝑙
𝑙

𝐴
𝐷
𝐵
𝑒𝑎
𝑟

𝐽
𝑈
𝑀

𝑃

𝐿
𝐸

𝐶
𝑢𝑚

𝑉
𝑎𝑟

𝜌 𝑉
𝐼𝑋

PC1 0.24 0.28 0.34 0.33 0.29 −0.16 0.32 0.34 0.26 0.33 0.24 0.07 −0.13 0.09 0.03 0.22 0.46 0.95
PC2 0.08 0.06 0.11 −0.07 0.02 0.24 0.12 0.01 0.18 −0.22 0.35 −0.62 0.20 0.27 0.21 −0.39 0.58 −0.04

Group A — Option-Implied Measures

PC1 0.29 0.35 0.41 0.39 0.36 −0.17 0.39 0.40 0.65 0.93
PC2 0.35 −0.35 −0.02 −0.02 −0.17 −0.84 −0.14 0.04 0.79 0.22

Group B — Stock-Return-Based Measures

PC1 0.51 0.57 0.52 0.04 −0.37 0.44 0.87
PC2 0.15 −0.28 0.40 −0.82 0.25 0.70 −0.15

Group C — Option-Return-Based Measures

PC1 0.71 0.71 0.60 0.21
PC2 0.71 −0.71 1.00 0.14

Among the option-implied measures, we generally observe the highest correlations. For example, 𝐵𝑇 11𝑄 has correlations of
.91 and 0.83 with 𝑅𝐼𝑋 and 𝑇𝐿𝑀 , respectively. On the other hand, 𝐻_𝑀𝑅𝐼 is negatively correlated with all other option-implied
easures.16 For the stock-return-based measures, the correlations are generally lower. Interestingly, the correlations of 𝐶𝐽𝐼 with
ost option-implied measures are also relatively high.17 The correlations of the option-return-based measures with all the others

re rather low. It is interesting to note that the only macroeconomic measure in our dataset, even though it is measured at a low
requency and is not directly based on stock or option data, is quite highly correlated with several of the other measures. For
xample, the correlations of 𝐿𝐸 with 𝐵𝑇 14𝑄, 𝑇𝐿𝑀 , and 𝐶𝐽𝐼 are all above 0.5.

Table 3 also shows the correlations of the tail risk measures with the VIX, a simple measure of the current conditional volatility.
t would be natural to find that there is some correlation of tail risk with volatility. However, the tail risk measures should capture
he risk of ending up in particularly bad states of the world on top of the ‘‘normal’’ daily variation. We find that many tail risk
easures have high correlations with the VIX, e.g., 𝐵𝑇 11𝑄 (0.87), 𝐵𝑇𝑋14𝑄 (0.81), 𝑅𝐼𝑋 (0.79), 𝑇𝐿𝑀 (0.93), and 𝐶𝐽𝐼 (0.87).
hese high correlations imply that the tail risk measures may provide only little additional insights into tail risk beyond what is
aptured by the VIX. To account for this, we control for volatility in our empirical tests.

In Table 4 we present a principal component (PC) analysis of the tail risk measures. We compute the first two PCs among all
easures, as well as the respective first two PCs within each group of measures. Consistent with our previous results in this section,

he commonality among the different measures is rather low. The first PC of all measures can only explain 46% of the variation.
ogether with the second PC, the proportion increases to only 58%. Thus, it is difficult to capture the information contained in the
ifferent tail risk measures with just a few PCs.

The largest loadings of the first PC are on 𝐵𝑇 11𝑄 (0.34), 𝐵𝑇 14𝑄 (0.33), 𝑅𝐼𝑋 (0.32), 𝑇𝐿𝑀 (0.34), and 𝐶𝐽𝐼 (0.33). Thus,
hese measures appear to be the most representative of the common variation in the tail risk measures. Within the subgroups, the
egree of commonality is somewhat greater. The first two PCs in each subgroup capture at least 70% of the variation in the tail
isk measures. The highest loadings of the first PC among the option-implied measures are again on 𝐵𝑇 11𝑄 (0.41), 𝐵𝑇 14𝑄 (0.39),
𝐼𝑋 (0.39), and 𝑇𝐿𝑀 (0.40). Among the stock-return-based measures, the highest PC loadings are on 𝐵𝑇 11𝑃 (0.51), 𝐶𝐽𝐼 (0.57),
nd 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 (0.52). However, the ability to capture common variation in the tail risk measures may be a misguided objective for
electing a particular measure. Rather, we should judge the measures based on their ability to predict future tail events and capture
isk premia.

.2. Statistical tests

We start with the statistical tests. We use three different forecast horizons: (i) one day (𝐷𝑎𝑖𝑙𝑦), (ii) one week (𝑊 𝑒𝑒𝑘𝑙𝑦), and
iii) one month (𝑀𝑜𝑛𝑡ℎ𝑙𝑦).18 We do not consider longer horizons for this analysis because it seems unrealistic to be able to predict
ealized tail events or variation in the distant future. Starting with the probit model, we examine how well the tail risk measures

16 This is consistent with Gormsen and Jensen (2022), who show that 𝐻_𝑀𝑅𝐼 tends to be low when volatility is high.
17 𝜆𝐻𝑖𝑙𝑙 has negative correlations with almost all other measures except 𝐻_𝑀𝑅𝐼 . The latter observation is consistent with Kelly and Jiang (2014), who show

hat 𝜆𝐻𝑖𝑙𝑙 loads negatively on skewness and positively on kurtosis, as does (by construction) 𝐻_𝑀𝑅𝐼 .
18 Four of the measures are not available at a daily frequency. For these measures, we constantly extrapolate the most recent weekly, monthly, or quarterly
10

bservation until new information becomes available.
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perform in predicting future tail events. For each measure and forecast horizon, we run separate regressions of the (horizon-specific)
dummy variables on the lagged standardized tail risk measures and the VIX.

In Figure A1 of the Online Appendix, we illustrate the timing of realized left-tail events. We plot these separately for the daily,
eekly, and monthly horizons. There is some clustering of realized left-tail events during specific crisis periods, such as the bursting
f the dot-com bubble and the 2007–2008 financial crisis. Interestingly, we find that not all daily left-tail realizations lead to weekly
r monthly left-tail observations. Similarly, some weekly and monthly tail events occur without being driven by a single or multiple
aily tail observations.

The probit regression results are shown in Table 5. At the daily level, we find that many tail risk measures have some predictive
ower for future tail events. The three measures that yield the highest partial 𝑅2s with statistically significant positive slope

coefficients are, in order, 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘, 𝐵𝑇 11𝑃 , and 𝐵𝑇 11𝑄. At the weekly horizon, the performance of the measures becomes
somewhat weaker. Only 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘, 𝐵𝑇 11𝑄, and 𝐴𝐷𝐵𝑒𝑎𝑟 (ordered by partial 𝑅2) are also significant positive predictors of future
tail events at this horizon. At the monthly horizon, 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘, 𝜆𝐻𝑖𝑙𝑙, and 𝐽𝑈𝑀𝑃 are significant positive predictors of future tail
events.

It is important to note that we require the tail risk measures to be positively related to future tail events. That is, a high tail risk
measure should be associated with a higher probability of a future tail event. For example, at the monthly horizons, 𝐻_𝑀𝑅𝐼 and
𝐼𝑋 actually yield slope coefficients that are significantly negative. Such results are likely inconsistent with being a good tail risk
easure.19

In addition to the individual tail risk measures, we also repeat the probit regressions with the first PC of all measures and among
he different subgroups. We find that the first PC of all measures and that only using stock-return-based measures significantly
redict tail events at the daily frequency. At the weekly horizon none of the PCs significantly predicts future tail events and at the
onthly horizon only the PC derived from the options-return-based measures does so.

We also report the results of multiple probit regressions in Table 6. For each horizon, we select the measures with PcGets. For the
aily forecast horizon, the algorithm selects only 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘, and for the weekly horizon, it selects only 𝐵𝑇 11𝑄. Both yield significant
ositive slope coefficients. At the monthly forecast horizon, PcGets selects six measures, of which 𝐵𝑇𝑋15𝑄, 𝐵𝑇 11𝑃 , 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘, and
𝐻𝑖𝑙𝑙 yield significant positive slope coefficients.

Next, we move from a left-hand-side variable that only indicates whether or not there is a tail event to one that also contains
nformation about the variation it causes. That is, we predict the realized left-tail variation (also standardized to have a mean of
ero and a standard deviation of one). We present the results in Table 7. We examine the same time horizons as before and control
or the lagged left-tail variation measure and the VIX.

Starting with the daily frequency, we find that 𝐵𝑇 11𝑄 turns out to be the best predictor. It has the largest slope coefficient
nd the highest partial 𝑅2. The slope coefficient of 0.41 indicates that, all else being equal, an one standard deviation increase in
𝑇 11𝑄 increases the left-tail variation by 0.41 standard deviations. The measures 𝐻_𝑀𝑅𝐼 , 𝑅𝐼𝑋, 𝐵𝑇 11𝑃 , 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘, 𝐴𝐷𝐵𝑒𝑎𝑟, and
𝑈𝑀𝑃 are also significant positive predictors of future left-tail variation at the daily frequency. At the weekly horizon, 𝐵𝑇 11𝑄
lso performs best, while 𝐵𝑇 14𝑄, 𝐻_𝑀𝑅𝐼 , 𝑅𝐼𝑋, 𝐵𝑇 11𝑃 , and 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 also show some predictability for future left-tail variation.
inally, at the monthly horizon, only 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘, 𝐴𝐷𝐵𝑒𝑎𝑟, and 𝐿𝐸 yield significant positive predictive slope coefficients.

Turning to the PCs, we find that only the first PC of the stock-return-based measures has predictive power for future left-tail
ariation at all horizons. The other first PCs have predictive power for two of the three horizons.

In Table 8 we present the results of the multiple regressions to predict the future left-tail variation. Here, 𝐵𝑇 11𝑄 turns out to
e the best predictor of realized left-tail variation for the daily and weekly horizons, for which it is the only measure selected. At
he monthly horizon, however, the PcGets algorithm eliminates all tail risk measures. The lagged left-tail variation measure is the
nly one selected (see Table A19 of the Online Appendix).

Thus, overall, the statistical analysis places 𝐵𝑇 11𝑄 and 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 together in pole position in the horse race of tail risk measures.
oth perform well in predicting both future tail events and future left-tail variation. 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 is best at predicting the former, while
𝑇 11𝑄 is particularly good at the latter.

.3. Economic tests

For the last of our main tests, we turn to whether tail risk is priced in the market. While some of the tail risk measures are designed
or slightly different purposes, most of the studies seem to argue that their tail risk measure is priced. Therefore, this analysis is
quitable. We examine whether the tail risk measures have predictive power for future market excess returns over various time
orizons. For this analysis, we include an annual forecast horizon in addition to the daily, weekly, and monthly horizons. We do
his for two reasons. First, it is common in the return predictability literature to also consider longer horizons. Second, long-horizon
eturns may also be affected by tail-risk expectations, while for the statistical tests we would require observing actual tail event
ealizations, which are rare at long horizons. In the analysis we are interested in the marginal effect of the tail risk measures,
ontrolling for several other predictor variables (see the details in Section 3.2.2). We present the results in Table 9. As Kelly and
iang (2014), we use annualized returns in percentage points.

Looking first at the top performers from the statistical analysis, we find that 𝐵𝑇 11𝑄 again performs very well, while 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘
learly does not. 𝐵𝑇 11𝑄 significantly predicts future market excess returns at the daily, weekly, and annual horizons. Furthermore,

19 The negative predictive coefficient may be due to investors’ subjective beliefs about tail risk, which may show overreaction or underreaction (Baron and
11

iong, 2017).
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Table 5
Prediction of tail events.
This table reports the coefficients of the predictive probit regressions. We run single probit regressions of a dummy variable for
each lagged tail risk measure:

𝐷𝑡+𝛥𝑡 = 𝑎 + 𝑏 ⋅ 𝑇𝑅𝑀𝑡 + 𝑐 ⋅ 𝑉 𝐼𝑋𝑡 + 𝜖𝑡+𝛥𝑡.
𝐷𝑡+𝛥𝑡 equals 1 if the realized market excess return falls below the threshold defined by minus two times the current conditional
volatility, and 0 otherwise. The conditional volatility is defined as the level of the VIX at the end of the previous day (𝑉 𝐼𝑋𝑡).
𝑇𝑅𝑀𝑡 is the current observation of a tail risk measure. We use three different forecast horizons 𝛥𝑡: (i) one day (𝐷𝑎𝑖𝑙𝑦), (ii) one
week (𝑊 𝑒𝑒𝑘𝑙𝑦), and (iii) one month (𝑀𝑜𝑛𝑡ℎ𝑙𝑦). In parentheses, we present robust Newey and West (1987) standard errors with
25 lags. The 𝑅2 columns show the partial McFadden 𝑅2s, obtained by dominance analysis (in percentage points) ‘‘𝑃𝐶𝑂𝑛𝑒𝐴𝑙𝑙’’,
‘‘𝑃𝐶𝑂𝑛𝑒𝑂𝑝𝑡𝑖𝑜𝑛’’, ‘‘𝑃𝐶𝑂𝑛𝑒𝑆𝑡𝑅𝑒𝑡𝑢𝑟𝑛’’, and ‘‘𝑃𝐶𝑂𝑛𝑒𝑂𝑝𝑅𝑒𝑡𝑢𝑟𝑛’’ denote the first PCs of all measures, option-implied, stock-return-
based, and option-return-based tail risk measures, respectively. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels,
respectively.

𝐷𝑎𝑖𝑙𝑦 𝑅2 𝑊 𝑒𝑒𝑘𝑙𝑦 𝑅2 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅2

Group A — Option-Implied Measures

𝐴𝑇𝑝𝑟𝑜𝑏 −0.04 0.05 −0.06 0.07 −0.08 0.10
(0.06) (0.09) (0.10)

𝐴𝑇𝑣𝑜𝑙 0.01 0.09 −0.00 0.07 −0.05 0.07
(0.07) (0.07) (0.12)

𝐵𝑇 11𝑄 0.10* 0.37 0.13* 0.52 −0.07 0.14
(0.06) (0.09) (0.12)

𝐵𝑇 14𝑄 −0.06 0.09 −0.05 0.08 0.07 0.34
(0.06) (0.08) (0.09)

𝐵𝑇𝑋15𝑄 0.02 0.12 0.04 0.21 0.07 0.38
(0.06) (0.08) (0.11)

𝐻_𝑀𝑅𝐼 0.04 0.04 −0.05 0.19 −0.29* 1.91
(0.07) (0.07) (0.18)

𝑅𝐼𝑋 −0.02 0.08 −0.01 0.08 −0.87*** 1.32
(0.05) (0.08) (0.36)

𝑇𝐿𝑀 0.03 0.15 −0.02 0.12 −0.19 0.23
(0.19) (0.29) (0.38)

Group B — Stock-Return-Based Measures

𝐵𝑇 11𝑃 0.07*** 0.93 0.02 0.14 0.04 0.26
(0.02) (0.03) (0.03)

𝐶𝐽𝐼 −0.09 0.11 −0.20 0.28 −0.03 0.13
(0.10) (0.17) (0.10)

𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 0.20*** 1.93 0.18** 1.46 0.28** 3.68
(0.06) (0.09) (0.14)

𝐽𝑢𝑚𝑝𝑅𝑃 −0.18*** 1.48 −0.18** 1.55 −0.07 0.27
(0.07) (0.10) (0.15)

𝜆𝐻𝑖𝑙𝑙 0.02 0.02 −0.02 0.07 0.11** 0.39
(0.06) (0.08) (0.06)

Group C — Option-Return-Based Measures

𝐴𝐷𝐵𝑒𝑎𝑟 0.05* 0.21 0.06* 0.37 0.02 0.06
(0.03) (0.05) (0.05)

𝐽𝑈𝑀𝑃 −0.06 0.19 −0.05* 0.13 0.05*** 0.29
(0.06) (0.04) (0.02)

Group D — Macroeconomic Measures

𝐿𝐸 0.01 0.07 −0.07 0.10 0.05 0.31
(0.05) (0.07) (0.06)

𝑃𝐶𝑂𝑛𝑒𝐴𝑙𝑙 0.17* 0.37 0.06 0.17 0.11 0.25
(0.10) (0.16) (0.17)

𝑃𝐶𝑂𝑛𝑒𝑂𝑝𝑡𝑖𝑜𝑛 −0.01 0.13 0.04 0.16 −0.08 0.15
(0.12) (0.17) (0.32)

𝑃𝐶𝑂𝑛𝑒𝑆𝑡𝑅𝑒𝑡𝑢𝑟𝑛 0.20*** 1.10 0.11 0.39 0.18 0.84
(0.06) (0.10) (0.14)

𝑃𝐶𝑂𝑛𝑒𝑂𝑝𝑅𝑒𝑡𝑢𝑟𝑛 −0.00 0.01 0.02 0.04 0.05** 0.26
(0.05) (0.04) (0.03)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠

its partial 𝑅2s are in the top 4 of the individual tail risk measures for each of these horizons. For example, at the daily frequency, a
one-standard-deviation increase in 𝐵𝑇 11𝑄 implies an increase in the annualized market excess return by 28.67 percentage points,
ll else equal. The partial 𝑅2 is 0.45%. On the other hand, 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 cannot predict future market excess returns for any of the
orizons examined.

Apart from 𝐵𝑇 11𝑄, 𝐴𝑇𝑝𝑟𝑜𝑏, 𝑅𝐼𝑋, 𝑇𝐿𝑀 , and 𝐴𝐷𝐵𝑒𝑎𝑟 also have good and consistent predictive power for future market excess
returns. In fact, 𝐴𝐷𝐵𝑒𝑎𝑟 and 𝑇𝐿𝑀 have significant positive predictive power at all the forecast horizons considered. It is also
12

clear that option-based tail risk measures have significantly better predictive abilities than stock-return-based or macroeconomic
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Table 6
Multiple prediction of tail events.
This table reports the coefficients of the predictive probit regressions. We run multiple probit regressions of a dummy variable
on lagged tail risk measures:

𝐷𝑡+𝛥𝑡 = 𝑎 + 𝑏 ⋅ 𝑇𝑅𝑀𝑡 + 𝑐 ⋅ 𝑉 𝐼𝑋𝑡 + 𝜖𝑡+𝛥𝑡.
𝐷𝑡+𝛥𝑡 equals 1 if the realized market excess return falls below the threshold defined by minus two times the current conditional
volatility, and 0 otherwise. The conditional volatility is defined as the level of the VIX at the end of the previous day (𝑉 𝐼𝑋𝑡).
𝑇𝑅𝑀𝑡 is a vector of the current observations of the tail risk measures. We use four different forecast horizons 𝛥𝑡: (i) one day
(𝐷𝑎𝑖𝑙𝑦), (ii) one week (𝑊 𝑒𝑒𝑘𝑙𝑦), and (iii) one month (𝑀𝑜𝑛𝑡ℎ𝑙𝑦). For each forecast horizon, we first perform a variable selection
based on the PcGets algorithm. A blank space indicates that a variable was not selected. In parentheses, we present robust
Newey and West (1987) standard errors with 25 lags. The 𝑅2 columns present the partial McFadden 𝑅2s, obtained by dominance
analysis (in percentage points). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

𝐷𝑎𝑖𝑙𝑦 𝑅2 𝑊 𝑒𝑒𝑘𝑙𝑦 𝑅2 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅2

Group A — Option-Implied Measures

𝐴𝑇𝑝𝑟𝑜𝑏

𝐴𝑇𝑣𝑜𝑙

𝐵𝑇 11𝑄 0.07** 0.59
(0.04)

𝐵𝑇 14𝑄

𝐵𝑇𝑋15𝑄 0.38*** 1.47
(0.15)

𝐻_𝑀𝑅𝐼 −0.37** 2.33
(0.16)

𝑅𝐼𝑋 −1.90*** 3.56
(0.53)

𝑇𝐿𝑀

Group B — Stock-Return-Based Measures

𝐵𝑇 11𝑃 0.39*** 1.05
(0.14)

𝐶𝐽𝐼

𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 0.15*** 2.02 0.36** 4.22
(0.04) (0.16)

𝐽𝑢𝑚𝑝𝑅𝑃

𝜆𝐻𝑖𝑙𝑙 0.26*** 1.39
(0.08)

Group C — Option-Return-Based Measures

𝐴𝐷𝐵𝑒𝑎𝑟

𝐽𝑈𝑀𝑃

Group D — Macroeconomic Measures

𝐿𝐸

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠

measures. The only notable stock-return-based measure is 𝜆𝐻𝑖𝑙𝑙, whose predictive power seems to start only at the annual forecast
horizon. However, with a partial 𝑅2 of 7.03%, the long-term predictive ability of the measure is very strong.20

The PCs also perform well in predicting market excess returns. The first PC of all measures and that of the option-implied
easures predict returns at the daily, weekly, and annual horizons. The first PC from the option-return-based measures predicts

eturns for all horizons.
The results for the multiple return forecasts are shown in Table 10 and more or less confirm our previous results. The selected

easures with the highest impact at the daily and weekly forecast horizons are 𝑅𝐼𝑋 and 𝐴𝐷𝐵𝑒𝑎𝑟. At the monthly forecast horizon,
it is 𝐵𝑇 11𝑄, and at the annual horizon 𝐴𝑇𝑣𝑜𝑙 yields the highest partial 𝑅2 associated with a significantly positive selected measure.

We also conduct a further evaluation of the economic value of the tail risk measures. First, we perform an analysis where we
regress the future return not only on the tail risk measure, but also on a dummy interaction of the tail risk measure with our tail
dummy variable from Eq. (7). This analysis allows us to test whether the size of the tail event is also predictable. We present the
results in Tables A1 and A2 of the Online Appendix. We find that 𝐵𝑇 11𝑄, among others, again performs well for all horizons in
this more granular analysis.

20 Kelly and Jiang (2014) also report a good performance of 𝜆 for the 3- and 5-year forecast horizons in their 1963–2010 sample period.
13
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Table 7
Predictability of left-tail variation.
This table reports the coefficients of a predictive regression for future left-tail variation. We run single regressions of the standardized realized left-tail variation
for each lagged tail risk measure:

𝐿𝑇𝑉 P
𝑡+𝛥𝑡 = 𝑎 + 𝑏 ⋅ 𝑇𝑅𝑀𝑡 + 𝑐 ⋅ 𝐿𝑇𝑉 P

𝑡 + 𝑑 ⋅ 𝑉 𝐼𝑋𝑡 + 𝜖𝑡+𝛥𝑡.
𝑇𝑅𝑀𝑡 is the current observation of a tail risk measure. We control for the lagged left-tail variation 𝐿𝑇𝑉 P

𝑡 and the current level of the VIX (𝑉 𝐼𝑋𝑡). We use
hree different forecast horizons 𝛥𝑡: (i) one day (𝐷𝑎𝑖𝑙𝑦), (ii) one week (𝑊 𝑒𝑒𝑘𝑙𝑦), and (iii) one month (𝑀𝑜𝑛𝑡ℎ𝑙𝑦). In parentheses, we present robust Newey and

est (1987) standard errors with 25 lags. Statistical inference is based on the wild bootstrap of Rapach et al. (2013). The 𝑅2 columns show the Lindeman et al.
1980) partial 𝑅2 of each tail risk measure (in percentage points). ‘‘𝑃𝐶𝑂𝑛𝑒𝐴𝑙𝑙’’, ‘‘𝑃𝐶𝑂𝑛𝑒𝑂𝑝𝑡𝑖𝑜𝑛’’, ‘‘𝑃𝐶𝑂𝑛𝑒𝑆𝑡𝑅𝑒𝑡𝑢𝑟𝑛’’, and ‘‘𝑃𝐶𝑂𝑛𝑒𝑂𝑝𝑅𝑒𝑡𝑢𝑟𝑛’’ denote the first PCs
f all measures, option-implied, stock-return-based, and option-return-based tail risk measures, respectively. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%,
nd 1% levels, respectively.

𝐷𝑎𝑖𝑙𝑦 𝑅2 𝑊 𝑒𝑒𝑘𝑙𝑦 𝑅2 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅2

Group A — Option-Implied Measures

𝐴𝑇𝑝𝑟𝑜𝑏 0.01 0.88 −0.04 1.92 0.03 1.94
(0.06) (0.07) (0.05)

𝐴𝑇𝑣𝑜𝑙 0.05 1.23 0.04 2.84 −0.06 2.53
(0.04) (0.05) (0.08)

𝐵𝑇 11𝑄 0.41** 4.83 0.46** 10.27 0.09 6.82
(0.20) (0.23) (0.12)

𝐵𝑇 14𝑄 −0.00 1.16 0.08* 4.16 −0.11 4.11
(0.04) (0.05) (0.11)

𝐵𝑇𝑋15𝑄 −0.01 0.72 0.03 2.60 −0.03 2.71
(0.03) (0.04) (0.08)

𝐻_𝑀𝑅𝐼 0.05** 0.31 0.04* 0.84 −0.03 1.02
(0.02) (0.03) (0.04)

𝑅𝐼𝑋 0.20*** 3.17 0.21** 6.94 −0.22 5.36
(0.05) (0.09) (0.24)

𝑇𝐿𝑀 −0.08 1.44 −0.13 3.84 −0.13 3.79
(0.09) (0.15) (0.20)

Group B — Stock-Return-Based Measures

𝐵𝑇 11𝑃 0.16** 2.38 0.23** 8.07 0.05 6.90
(0.04) (0.06) (0.09)

𝐶𝐽𝐼 −0.08 1.15 −0.02 3.44 −0.02 3.62
(0.06) (0.07) (0.06)

𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 0.12** 2.08 0.17** 6.20 0.19* 7.17
(0.06) (0.10) (0.15)

𝐽𝑢𝑚𝑝𝑅𝑃 −0.09** 0.45 −0.12*** 1.05 −0.07* 0.82
(0.05) (0.06) (0.05)

𝜆𝐻𝑖𝑙𝑙 0.02 0.13 0.02 0.39 0.00 0.43
(0.02) (0.02) (0.02)

Group C — Option-Return-Based Measures

𝐴𝐷𝐵𝑒𝑎𝑟 0.04* 0.42 0.04 0.91 0.07** 1.00
(0.03) (0.04) (0.04)

𝐽𝑈𝑀𝑃 0.05** 0.29 0.01 0.09 0.02 0.08
(0.03) (0.01) (0.02)

Group D — Macroeconomic Measures

𝐿𝐸 −0.00 0.49 0.03 1.64 0.08** 2.48
(0.02) (0.03) (0.05)

𝑃𝐶𝑂𝑛𝑒𝐴𝑙𝑙 0.31*** 2.54 0.43*** 7.20 0.05 6.39
(0.11) (0.14) (0.24)

𝑃𝐶𝑂𝑛𝑒𝑂𝑝𝑡𝑖𝑜𝑛 0.21*** 2.33 0.25** 6.05 −0.17 5.27
(0.08) (0.13) (0.31)

𝑃𝐶𝑂𝑛𝑒𝑆𝑡𝑅𝑒𝑡𝑢𝑟𝑛 0.17*** 2.26 0.29*** 7.72 0.22* 7.90
(0.08) (0.10) (0.15)

𝑃𝐶𝑂𝑛𝑒𝑂𝑝𝑅𝑒𝑡𝑢𝑟𝑛 0.06** 0.58 0.03 0.66 0.06*** 0.68
(0.04) (0.03) (0.03)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠

Second, we analyze the impact of tail risk measures on the cross-section of stock returns. We first estimate the sensitivities of the
tocks to tail risk using a rolling historical window and then sort the stocks into portfolios based on these sensitivities. We present
he main results for value-weighted portfolios in Table A3 of the Online Appendix. We find that for 𝐵𝑇 11𝑄, the difference between

the high and low portfolios is −11.87% per year on average. These results are consistent with a mechanism in which stocks that
erform well following a high tail risk observation are highly desirable to investors, and trade at a premium. The vast majority of
he other tail risk measures do not yield significant negative high–low portfolio excess returns.

Third, we analyze the impact of tail risk on industrial production growth. The results are presented in Table A4 of the Online
ppendix. We find that many measures, including 𝐵𝑇 11𝑄, significantly negatively predict future industrial production growth at
14
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Table 8
Multiple predictability of left-tail variation.
This table reports the coefficients of a predictive regression for future left-tail variation. We run multiple regressions of the realized left-tail variation on the
lagged tail risk measures:

𝐿𝑇𝑉 P
𝑡+𝛥𝑡 = 𝑎 + 𝑏 ⋅ 𝑇𝑅𝑀𝑡 + 𝑐 ⋅ 𝐿𝑇𝑉 P

𝑡 + 𝑑 ⋅ 𝑉 𝐼𝑋𝑡 + 𝜖𝑡+𝛥𝑡.
𝑇𝑅𝑀𝑡 is a vector of the current observations of the tail risk measures. We control for the lagged left-tail variation 𝐿𝑇𝑉 P

𝑡 and the current level of the VIX
(𝑉 𝐼𝑋𝑡). We use three different forecast horizons 𝛥𝑡: (i) one day (𝐷𝑎𝑖𝑙𝑦), (ii) one week (𝑊 𝑒𝑒𝑘𝑙𝑦), and (iii) one month (𝑀𝑜𝑛𝑡ℎ𝑙𝑦). For each forecast horizon, we
first perform a variable selection based on the PcGets algorithm. A blank space indicates that a variable was not selected. In parentheses, we present robust
Newey and West (1987) standard errors with 25 lags. Statistical inference is based on the wild bootstrap of Rapach et al. (2013). The 𝑅2 columns show the
Lindeman et al. (1980) partial 𝑅2 of each tail risk measure (in percentage points). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively

𝐷𝑎𝑖𝑙𝑦 𝑅2 𝑊 𝑒𝑒𝑘𝑙𝑦 𝑅2 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅2

Group A — Option-Implied Measures

𝐴𝑇𝑝𝑟𝑜𝑏

𝐴𝑇𝑣𝑜𝑙

𝐵𝑇 11𝑄 0.25*** 6.09 0.43*** 18.55
(0.08) (0.15)

𝐵𝑇 14𝑄

𝐵𝑇𝑋15𝑄

𝐻_𝑀𝑅𝐼

𝑅𝐼𝑋

𝑇𝐿𝑀

Group B — Stock-Return-Based Measures

𝐵𝑇 11𝑃

𝐶𝐽𝐼

𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘

𝐽𝑢𝑚𝑝𝑅𝑃

𝜆𝐻𝑖𝑙𝑙

Group C — Option-Return-Based Measures

𝐴𝐷𝐵𝑒𝑎𝑟

𝐽𝑈𝑀𝑃

Group D — Macroeconomic Measures

𝐿𝐸

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠

both the monthly and annual horizons. A more detailed discussion and the full results of these further analyses can be found in
Sections A3.1, A3.2, and A3.3 of the Online Appendix.

5. Different tail risk measure definitions

An important difference between 𝐵𝑇 11𝑄 and other measures with similar basic setups (𝐴𝑇𝑝𝑟𝑜𝑏, 𝐴𝑇𝑣𝑜𝑙, 𝐵𝑇 14𝑄, 𝐵𝑇𝑋15𝑄, and
𝑇𝐿𝑀) is that it uses a fixed target moneyness while the others rely on a time-varying cutoff. Thus, an important driver of the results
may be which part of the tail the measures capture.

It is therefore worth examining the robustness of our main results to some variations in the option-implied tail risk measures. The
main 𝐵𝑇 11𝑄 measure uses out-of-the-money put options with a fixed moneyness level (defined as the strike price over the current
futures price) of 𝐾∕𝐹𝑡,𝜏 = 0.9 (see Section A1 of the Online Appendix for more details). Therefore, as a first check, we vary this
fixed threshold and also consider 𝐾∕𝐹𝑡,𝜏 = 0.8875 and 𝐾∕𝐹𝑡,𝜏 = 0.9125. Second, we also consider a version of the 𝐵𝑇 11𝑄 measure
based on time-varying moneyness with 𝐾∕𝐹𝑡,𝜏 = 𝑒−2.5𝜎𝐴𝑇𝑀,𝜏

√

𝜏 , where 𝜎𝐴𝑇𝑀,𝜏 is the at-the-money option-implied volatility and 𝜏 is
the option’s time-to-maturity. We denote this tail risk measure as 𝐵𝑇 11𝑄𝑣𝑎𝑟, while the others have their target moneyness levels in
the subscript. Finally, we also examine the measures 𝐴𝑇𝑝𝑟𝑜𝑏, 𝐴𝑇𝑣𝑜𝑙, 𝐵𝑇 14𝑄, 𝐵𝑇𝑋15𝑄, and 𝑇𝐿𝑀 with the fixed moneyness cutoff
of 𝐾∕𝐹𝑡,𝜏 = 0.9. We mark these measures with ‘‘fixed’’ in the subscript.

We present the results in Table 11. For 𝐵𝑇 11𝑄0.8875 and 𝐵𝑇 11𝑄0.9125, the correlations with 𝐵𝑇 11𝑄 are almost perfect, with 1.00
15

when rounded to two decimal places. Correspondingly, the results for the two alternative fixed moneyness levels are qualitatively
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Table 9
Return predictability.
This table reports the coefficients of a return predictability regression. We run single regressions of the market excess return for each lagged tail risk measure:

𝑅𝑡+𝛥𝑡 = 𝑎 + 𝑏 ⋅ 𝑇𝑅𝑀𝑡 + 𝑐 ⋅ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑡 + 𝜖𝑡+𝛥𝑡.
𝑅𝑡+𝛥𝑡 is the excess return over the period 𝛥𝑡. 𝑇𝑅𝑀𝑡 is the current observation of a tail risk measure. We use the following control variables (𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑡): the
consumption, wealth, income ratio, the default spread, the log dividend price ratio, the stochastically detrended risk-free rate, the term spread, and the variance
risk premium. We use four different forecast horizons 𝛥𝑡: (i) one day (𝐷𝑎𝑖𝑙𝑦), (ii) one week (𝑊 𝑒𝑒𝑘𝑙𝑦), (iii) one month (𝑀𝑜𝑛𝑡ℎ𝑙𝑦), and (iv) one year (𝐴𝑛𝑛𝑢𝑎𝑙).
In parentheses, we present robust Newey and West (1987) standard errors with lag length chosen to be the maximum of 25 and the number of overlapping
observations. Statistical inference is based on the wild bootstrap of Rapach et al. (2013). The 𝑅2 columns show the Lindeman et al. (1980) partial 𝑅2 of each tail
isk measure (in percentage points). ‘‘𝑃𝐶𝑂𝑛𝑒𝐴𝑙𝑙’’, ‘‘𝑃𝐶𝑂𝑛𝑒𝑂𝑝𝑡𝑖𝑜𝑛’’, ‘‘𝑃𝐶𝑂𝑛𝑒𝑆𝑡𝑅𝑒𝑡𝑢𝑟𝑛’’, and ‘‘𝑃𝐶𝑂𝑛𝑒𝑂𝑝𝑅𝑒𝑡𝑢𝑟𝑛’’ denote the first PCs of all measures, option-implied,
tock-return-based, and option-return-based tail risk measures, respectively. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

𝐷𝑎𝑖𝑙𝑦 𝑅2 𝑊 𝑒𝑒𝑘𝑙𝑦 𝑅2 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅2 𝐴𝑛𝑛𝑢𝑎𝑙 𝑅2

Group A — Option-Implied Measures

𝐴𝑇𝑝𝑟𝑜𝑏 17.50** 0.25 9.50** 0.45 4.63** 0.47 0.94 0.29
(8.80) (4.69) (2.03) (0.92)

𝐴𝑇𝑣𝑜𝑙 4.75 0.01 1.23 0.01 1.02 0.05 3.80** 2.79
(5.38) (4.68) (3.20) (1.72)

𝐵𝑇 11𝑄 28.67*** 0.45 12.14* 0.38 4.39 0.21 3.33*** 2.24
(7.48) (6.96) (4.73) (0.96)

𝐵𝑇 14𝑄 10.75 0.03 8.07 0.08 1.82 0.18 2.33* 0.66
(8.20) (5.69) (4.82) (1.23)

𝐵𝑇𝑋15𝑄 6.48 0.02 3.12 0.02 −0.66 0.16 2.50* 1.21
(6.01) (4.54) (3.22) (1.36)

𝐻_𝑀𝑅𝐼 −9.28*** 0.03 −4.55* 0.04 −1.98 0.10 2.55 2.02
(3.99) (3.37) (3.00) (2.11)

𝑅𝐼𝑋 30.52*** 0.51 14.42* 0.53 2.30 0.08 3.39* 2.60
(6.55) (5.95) (4.56) (1.16)

𝑇𝐿𝑀 18.25*** 0.16 11.10** 0.32 6.47* 0.43 3.72*** 1.80
(5.63) (4.99) (3.92) (1.20)

Group B — Stock-Return-Based Measures

𝐵𝑇 11𝑃 18.39 0.23 3.68 0.04 −2.04 0.22 0.65 0.39
(8.76) (7.11) (3.89) (0.39)

𝐶𝐽𝐼 13.79* 0.03 10.51 0.11 8.00 0.34 3.82* 1.56
(8.97) (7.87) (6.11) (2.34)

𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 6.95 0.04 3.03 0.04 0.74 0.01 −0.78 0.64
(5.40) (5.86) (4.26) (1.58)

𝐽𝑢𝑚𝑝𝑅𝑃 1.03 0.01 3.80 0.05 4.00 0.20 1.10 0.60
(5.87) (6.09) (4.66) (2.21)

𝜆𝐻𝑖𝑙𝑙 −4.63 0.01 −3.99 0.07 −4.79* 0.28 2.65** 7.03
(3.79) (3.65) (2.96) (1.25)

Group C — Option-Return-Based Measures

𝐴𝐷𝐵𝑒𝑎𝑟 20.97*** 0.46 13.49*** 1.05 3.81** 0.36 0.60* 0.05
(4.73) (3.34) (1.61) (0.43)

𝐽𝑈𝑀𝑃 7.21 0.06 5.89*** 0.24 0.92 0.04 0.13 0.02
(7.10) (1.64) (0.73) (0.12)

Group D — Macroeconomic Measures

𝐿𝐸 −7.97 0.02 −10.26 0.16 −3.96 0.33 −5.70** 2.48
(7.90) (7.81) (5.79) (2.25)

𝑃𝐶𝑂𝑛𝑒𝐴𝑙𝑙 23.60*** 0.21 11.14* 0.23 3.13 0.12 2.61** 1.34
(7.66) (6.87) (5.43) (1.15)

𝑃𝐶𝑂𝑛𝑒𝑂𝑝𝑡𝑖𝑜𝑛 22.09*** 0.21 11.11* 0.25 3.73 0.12 3.58*** 1.87
(7.04) (5.92) (4.68) (1.21)

𝑃𝐶𝑂𝑛𝑒𝑆𝑡𝑅𝑒𝑡𝑢𝑟𝑛 16.04** 0.10 6.23 0.06 2.09 0.10 −0.28 0.51
(6.99) (7.52) (5.76) (1.21)

𝑃𝐶𝑂𝑛𝑒𝑂𝑝𝑅𝑒𝑡𝑢𝑟𝑛 18.27*** 0.36 12.47*** 0.95 3.02** 0.26 0.47* 0.04
(5.55) (2.75) (1.38) (0.32)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠

similar to those for the main 𝐵𝑇 11𝑄 measure. Thus, which exact fixed part of the tail the measure captures does not seem to have
primary impact on the results.

The choice of fixed versus time-varying target or cutoff moneyness has additional implications. On the one hand, time-varying
arget or cutoff moneyness helps to isolate tail risk from diffusive risk by pushing the threshold further out during periods of high
olatility. However, given the negligible impact of diffusive volatility on short-dated out-of-the-money options, this is unlikely to
e a significant effect. On the other hand, it is possible that investors only care about the magnitude of the return and do not adjust
t for the prevailing volatility. Thus, a return of −10% would be equally worrisome in both high- and low-volatility conditions. For
hese investors, a measure with a fixed target is obviously preferable.
16
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Table 10
Multiple return predictability.
This table reports the coefficients of a return predictability regression. We run multiple regressions of the market excess return on lagged tail risk measures:

𝑅𝑡+𝛥𝑡 = 𝑎 + 𝑏 ⋅ 𝑇𝑅𝑀𝑡 + 𝑐 ⋅ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑡 + 𝜖𝑡+𝛥𝑡.
𝑅𝑡+𝛥𝑡 is the excess return over the period 𝛥𝑡. 𝑇𝑅𝑀𝑡 is a vector of the current observations of the tail risk measures. We use the following control variables
(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑡): the consumption, wealth, income ratio, the default spread, the log dividend price ratio, the stochastically detrended risk-free rate, the term spread,
and the variance risk premium. We use four different forecast horizons 𝛥𝑡: (i) one day (𝐷𝑎𝑖𝑙𝑦), (ii) one week (𝑊 𝑒𝑒𝑘𝑙𝑦), (iii) one month (𝑀𝑜𝑛𝑡ℎ𝑙𝑦), and (iv) one
year (𝐴𝑛𝑛𝑢𝑎𝑙). For each forecast horizon, we first perform a variable selection based on the PcGets selection algorithm. A blank space indicates that a variable
was not selected. In parentheses, we present robust Newey and West (1987) standard errors with lag length chosen to be the maximum of 25 and the number of
overlapping observations. Statistical inference is based on the wild bootstrap of Rapach et al. (2013). The 𝑅2 columns show the Lindeman et al. (1980) partial
𝑅2 of each tail risk measure (in percentage points). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

𝐷𝑎𝑖𝑙𝑦 𝑅2 𝑊 𝑒𝑒𝑘𝑙𝑦 𝑅2 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅2 𝐴𝑛𝑛𝑢𝑎𝑙 𝑅2

Group A — Option-Implied Measures

𝐴𝑇𝑝𝑟𝑜𝑏

𝐴𝑇𝑣𝑜𝑙 −25.98*** 0.16 −16.78*** 0.34 3.92** 4.28
(10.11) (6.39) (1.78)

𝐵𝑇 11𝑄 12.75*** 0.82
(4.38)

𝐵𝑇 14𝑄

𝐵𝑇𝑋15𝑄

𝐻_𝑀𝑅𝐼

𝑅𝐼𝑋 56.10*** 0.68 31.38*** 0.86
(11.85) (6.91)

𝑇𝐿𝑀

Group B — Stock-Return-Based Measures

𝐵𝑇 11𝑃 −12.29* 0.20 −11.05*** 0.89
(5.76) (2.98)

𝐶𝐽𝐼 −30.19** 0.18 9.37** 3.21
(10.78) (3.37)

𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 −6.14** 3.35
(2.70)

𝐽𝑢𝑚𝑝𝑅𝑃

𝜆𝐻𝑖𝑙𝑙

Group C — Option-Return-Based Measures

𝐴𝐷𝐵𝑒𝑎𝑟 17.06*** 0.39 13.04*** 1.02 1.54*** 0.24
(4.69) (3.12) (0.43)

𝐽𝑈𝑀𝑃

Group D — Macroeconomic Measures

𝐿𝐸 −9.49*** 4.31
(2.54)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠

Moreover, the fixed and time-varying cutoff measures theoretically capture different things: while both attempt to approximate
he integral in Eq. (6), they do so with different cutoff parameters 𝑘𝑡, either fixed or time-varying. As a result, the time-series
ynamics of the two measures can be very different. Any difference in the dynamics can have a big impact on the prediction results.
inally, at-the-money option-implied volatility is a biased measure of true volatility, and the bias may vary over time. This introduces
dditional noise into measures based on time-varying cutoffs. Thus, the potential drawbacks of time-varying target moneyness are
ikely to outweigh the benefits. For time-varying cutoff moneyness, the effects are likely to be smaller because the estimates still
ely on multiple options beyond the cutoff.

As expected, the correlation between the fixed and time-varying target versions of 𝐵𝑇 11𝑄 is only modest at 0.53. For the
𝑇 11𝑄𝑣𝑎𝑟 measure, the results are quite different from those for 𝐵𝑇 11𝑄, and significantly worse. 𝐵𝑇 11𝑄𝑣𝑎𝑟 can predict future

ail events only at the daily horizon, the left-tail variation not at all, and future market excess returns only at the annual horizon.
hus, the time-varying target moneyness seems to rather add noise than help to extract more precise economic content for 𝐵𝑇 11𝑄.
e therefore recommend using the original measure with fixed moneyness.
The correlations between the fixed- and time-varying cutoff moneyness versions of the other measures are higher, being 0.79

or 𝐴𝑇𝑝𝑟𝑜𝑏, 0.93 for 𝐴𝑇𝑣𝑜𝑙, 0.86 for 𝐵𝑇 14𝑄, 0.92 for 𝐵𝑇𝑋15𝑄, and 0.97 for 𝑇𝐿𝑀 . Accordingly, the fixed-moneyness results for
hese measures are generally qualitatively similar to those with the time-varying moneyness cutoff. The only notable difference
s that 𝐴𝑇𝑝𝑟𝑜𝑏𝑓𝑖𝑥𝑒𝑑 outperforms the standard 𝐴𝑇𝑝𝑟𝑜𝑏 measure, particularly in predicting future tail events. Overall, however, the
𝑇 𝑝𝑟𝑜𝑏 measure still does not perform as well as 𝐵𝑇 11𝑄. For the other measures, the moneyness cutoff appears to have a
17
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Table 11
Different tail risk measure definitions.
This table reports the robustness analyses for different moneyness target and cutoff definitions of the option-implied tail risk measures. For 𝐴𝑇𝑝𝑟𝑜𝑏, 𝐴𝑇𝑣𝑜𝑙,
𝐵𝑇 14𝑄, 𝐵𝑇𝑋15𝑄, and 𝑇𝐿𝑀 , we use the fixed cutoff moneyness level of 0.9 instead of the time-varying one on which the main measures are based. We
denote the fixed-cutoff measures with a superscript ‘‘fixed’’. Furthermore, we vary the target moneyness of 𝐵𝑇 11𝑄, using 0.8875 (𝐵𝑇 11𝑄0.8875) or 0.9125
(𝐵𝑇 11𝑄0.9125), and we also use a variable moneyness level, defined as 𝑒−2.5𝜎𝐴𝑇𝑀,𝜏

√

𝜏 (𝐵𝑇 11𝑄𝑣𝑎𝑟). Panel A shows the results for predicting tail events. Panel
B shows the predictability of the left-tail variation, and Panel C presents the results for the return predictability. The corresponding methodologies are
described in the respective main tables. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.
Panel A. Prediction of Tail Events

𝐷𝑎𝑖𝑙𝑦 𝑅2 𝑊 𝑒𝑒𝑘𝑙𝑦 𝑅2 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅2

𝐴𝑇𝑝𝑟𝑜𝑏𝑓𝑖𝑥𝑒𝑑 −0.10 0.12 0.14** 0.47 0.17*** 0.68
(0.09) (0.08) (0.05)

𝐴𝑇𝑣𝑜𝑙𝑓𝑖𝑥𝑒𝑑 0.03 0.17 0.03 0.14 −0.16 0.51
(0.08) (0.08) (0.16)

𝐵𝑇 11𝑄0.8875 0.09* 0.35 0.10 0.38 −0.10 0.15
(0.06) (0.09) (0.11)

𝐵𝑇 11𝑄0.9125 0.10* 0.33 0.16** 0.61 −0.04 0.14
(0.06) (0.08) (0.12)

𝐵𝑇 11𝑄𝑣𝑎𝑟𝑦 0.09** 0.70 −0.04 0.04 −0.15** 0.50
(0.05) (0.08) (0.07)

𝐵𝑇 14𝑄𝑓𝑖𝑥𝑒𝑑 −0.03 0.05 0.04 0.20 0.10 0.56
(0.05) (0.07) (0.08)

𝐵𝑇𝑋15𝑄𝑓𝑖𝑥𝑒𝑑 0.06 0.31 0.03 0.15 0.05 0.32
(0.06) (0.08) (0.10)

𝑇𝐿𝑀𝑓𝑖𝑥𝑒𝑑 −0.06 0.14 −0.36 0.25 −0.41 0.33
(0.30) (0.49) (0.54)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠

Panel B. Predictability of Left-Tail Variation

𝐷𝑎𝑖𝑙𝑦 𝑅2 𝑊 𝑒𝑒𝑘𝑙𝑦 𝑅2 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅2

𝐴𝑇𝑝𝑟𝑜𝑏𝑓𝑖𝑥𝑒𝑑 −0.03 1.33 0.22 5.80 0.26* 5.81
(0.05) (0.21) (0.17)

𝐴𝑇𝑣𝑜𝑙𝑓𝑖𝑥𝑒𝑑 0.04* 1.16 −0.03 1.98 −0.11 1.92
(0.03) (0.07) (0.11)

𝐵𝑇 11𝑄0.8875 0.39** 4.92 0.42* 10.11 0.06 6.65
(0.19) (0.22) (0.12)

𝐵𝑇 11𝑄0.9125 0.49** 5.35 0.53** 10.80 0.15 7.12
(0.25) (0.26) (0.12)

𝐵𝑇 11𝑄𝑣𝑎𝑟𝑦 −0.00 0.44 −0.03 1.06 −0.05 0.97
(0.03) (0.03) (0.04)

𝐵𝑇 14𝑄𝑓𝑖𝑥𝑒𝑑 −0.02 0.68 0.00 2.20 −0.04 2.56
(0.03) (0.03) (0.05)

𝐵𝑇𝑋15𝑄𝑓𝑖𝑥𝑒𝑑 −0.01 0.49 0.00 1.48 −0.02 1.67
(0.03) (0.04) (0.06)

𝑇𝐿𝑀𝑓𝑖𝑥𝑒𝑑 0.02 1.72 −0.07 4.61 −0.43 4.65
(0.14) (0.32) (0.48)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠

Panel C. Return Predictability

𝐷𝑎𝑖𝑙𝑦 𝑅2 𝑊 𝑒𝑒𝑘𝑙𝑦 𝑅2 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅2 𝐴𝑛𝑛𝑢𝑎𝑙 𝑅2

𝐴𝑇𝑝𝑟𝑜𝑏𝑓𝑖𝑥𝑒𝑑 30.34*** 0.49 14.11** 0.58 6.39* 0.53 1.82* 0.77
(8.14) (7.20) (4.31) (1.12)

𝐴𝑇𝑣𝑜𝑙𝑓𝑖𝑥𝑒𝑑 −2.18 0.01 0.02 0.01 2.16 0.06 3.99** 3.49
(4.77) (3.96) (3.03) (1.68)

𝐵𝑇 11𝑄0.8875 28.38*** 0.45 12.45* 0.41 4.09 0.18 3.34** 2.32
(7.58) (7.05) (4.71) (0.99)

𝐵𝑇 11𝑄0.9125 29.49*** 0.46 12.20* 0.37 4.74 0.24 3.27*** 2.10
(7.28) (6.79) (4.74) (0.93)

𝐵𝑇 11𝑄𝑣𝑎𝑟𝑦 5.31 0.04 4.44 0.18 2.06 0.20 3.50** 4.14
(5.25) (3.27) (2.18) (1.48)

𝐵𝑇 14𝑄𝑓𝑖𝑥𝑒𝑑 11.84** 0.06 5.77 0.05 0.66 0.24 2.34* 0.55
(6.14) (4.49) (3.38) (1.50)

𝐵𝑇𝑋15𝑄𝑓𝑖𝑥𝑒𝑑 8.20* 0.05 4.33 0.08 −0.64 0.10 2.17* 0.90

(continued on next page)
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Table 11 (continued).
(5.62) (3.96) (2.70) (1.17)

𝑇𝐿𝑀𝑓𝑖𝑥𝑒𝑑 24.94*** 0.25 15.10** 0.50 7.30* 0.49 3.69*** 1.79
(6.83) (5.93) (4.67) (1.10)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠

negligible effect on the results. Thus, for measures with a cutoff point, moderate changes in the exact part of the tail that they look
at also do not seem to have a primary effect on the results.

6. Simulation evidence

To better understand why some option-implied tail risk measures work better than others, we perform a simulation analysis using
he simulated environments of two important classes of standard option pricing models.21 First, we simulate stock index returns and

option prices using the model of Pan (2002). For simplicity, we follow Carr and Wu (2003) and assume that the interest rate 𝑟𝑓 and
the dividend yield 𝛿 are constant. The joint data-generating process for the index price 𝑋 and its volatility 𝜎 is as follows:

𝑑𝑋𝑡 =
[

𝑟𝑓 − 𝛿 + 𝜂𝑥𝜎
2
𝑡 + 𝜆𝜎2𝑡

(

𝜇 − 𝜇∗)]𝑋𝑡𝑑𝑡 + 𝜎𝑡𝑋𝑡𝑑𝑊
(1)
𝑡 + 𝑑𝑍𝑡 − 𝜇𝑋𝑡𝜆𝜎

2
𝑡 𝑑𝑡, (13)

𝑑𝜎2𝑡 = 𝜅𝜎
(

�̄�2 − 𝜎2𝑡
)

𝑑𝑡 + 𝜎𝜎𝜎𝑡
(

𝜌𝑑𝑊 (1)
𝑡 +

√

1 − 𝜌2𝑑𝑊 (2)
𝑡

)

. (14)

𝑊 (1) and 𝑊 (2) are adapted Brownian motions. The Brownian shocks are correlated with the correlation coefficient 𝜌. Price jumps
are captured by the pure-jump process 𝑍, which consists of random jump arrival times and random jump sizes. Jumps follow a
Poisson distribution. For small time intervals 𝛥𝑡, the conditional probability of a jump is approximately 𝜆𝜎2𝑡 𝛥𝑡. If there is a jump
event, the expected relative jump size is 𝜇 = 𝑒𝜇𝐽+𝜎

2
𝐽 ∕2 − 1.

For the parameters, we use the estimates of Pan (2002), reported in Tables 3 and 6 of her paper. In particular, we set 𝜂𝑥 = 3.6,
𝜆 = 12.3, 𝜇 = −0.008, 𝜎𝐽 = 0.0387, and 𝜇∗ = −0.192. Also, 𝜅𝜎 = 6.4, �̄�2 = 0.0153, 𝜎𝜎 = 0.30, 𝜌 = −0.53, 𝑟𝑓 = 0.058, and 𝛿 = 0.025. As
starting values, we use the unconditional averages and 𝑋0 = 1.

We simulate this system 𝑛 = 10,000 times, each with 5-minute data for 510 daily time-series observations. We discard the first
52 days as a burn-in period. The next 6 days are used to compute the option-based tail risk measures used in this study, and
he last 252 days provide various return forecast windows for evaluating the tail risk measures. We compute option prices using
Fourier transform of the risk-neutral densities (Carr and Madan, 1999). We compute 25 out-of-the-money put (and call) options
ith moneyness between 0.7 and 1 (1 and 1.3).22 In addition, we also compute the boundary put option price with a moneyness of
−2.5𝜎𝐴𝑇𝑀,𝜏

√

𝜏 . We follow Chong and Todorov (2023) and assume that option prices are observed with random measurement errors
according to:

𝑂𝑡(𝐾𝑗 ) = 𝑂𝑡(𝐾𝑗 )

(

1 +

(

0.01 + 0.004
|

|

|

|

|

𝐾𝑗

𝐹𝑡,𝜏
− 1

|

|

|

|

|

)

𝑧𝑡,𝑗

)

, (15)

where 𝑂𝑡(𝐾𝑗 ) is the observed option price (put or call) with strike price 𝐾𝑗 , 𝑂𝑡(𝐾𝑗 ) is the model-implied option price with no
measurement error, and 𝑧𝑡,𝑗 is the realization of a standard normally distributed random variable.23

Finally, we compute the tail risk measures as described in Section A1 of the Online Appendix. For measures based on short-term
options (without a precise target time-to-maturity), we compute option prices with 10 business days to maturity. For those referring
to ‘‘options expiring in the next month’’ we use 21 business days to maturity, and for those expiring in the ‘‘month after next’’ we
use 42 business days. We track future market excess returns over different windows separately in each simulated system. We thus
have 𝑛 = 10,000 observations of each tail risk measure along with the simulated future returns.

We present the results in Panels A and B of Table 12. To establish a baseline, we perform an analysis based on ‘‘infeasible’’ jump
measures computed directly from the model state variables and the conditional distribution at time 𝑡. We consider jump intensity,
different definitions of jump variation under P and Q, the 5% value-at-risk and expected shortfall, and the probability of a 10%
loss, each also under P and Q. We find that almost all of these infeasible measures have significant predictability for future returns
in the Pan (2002) model. Their median correlation is 0.92. Only the jump variation with a time-varying threshold based on ten
times the at-the-money implied volatility has low correlations with the other measures and appears to have no discernible return
predictability. Thus, the 𝐴𝑇𝑣𝑜𝑙 and 𝐵𝑇𝑋15𝑄 measures that proxy this infeasible measure are unlikely to perform well. On the other
hand, other tail risk measures that proxy one of the remaining infeasible measures should be capable of predicting future returns
in the Pan (2002) model.

21 We thank an anonymous associate editor for suggesting that we pursue this analysis.
22 We need the call options primarily to compute the 𝐻_𝑀𝑅𝐼 measure, as well as the model-free option-implied variance needed to compute the variance

isk premium.
23 As a slight refinement of Chong and Todorov (2023), we model measurement errors that are more volatile for options further out-of-the-money. The authors
19

se a flat specification with 0.015𝑧𝑡,𝑗 , which they choose to approximate the bid–ask spread of index options.
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Table 12
Return predictability simulation.
This table reports the coefficients of return predictability regressions in simulated environments. We simulate 10,000 5-minute price paths in the Pan (2002)
and Santa-Clara and Yan (2010) models. For each price path, we aggregate the information to the daily level and compute option prices of out-of-the-money put
options with moneyness between 0.7 and 1. Using these options, we compute the values of all option-based tail risk measures and track future market excess
returns in the system. Finally, we run single regressions of the simulated market excess returns for each lagged tail risk measure:

𝑅𝑡+𝛥𝑡 = 𝑎 + 𝑏 ⋅ 𝑇𝑅𝑀𝑡 + 𝑐 ⋅ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑡 + 𝜖𝑡+𝛥𝑡.
𝑅𝑡+𝛥𝑡 is the excess return over the period 𝛥𝑡. 𝑇𝑅𝑀𝑡 is the current observation of a tail risk measure. The results for these are in Panels B and D. In Panels
A and C, we also consider a number of infeasible measures calculated directly from the model state variables and density. These include the jump intensity
(𝐽𝑢𝑚𝑝𝑖𝑛𝑡), the jump variation (𝐽𝑉 ) under various definitions, the 5% value-at-risk and expected shortfall, and the probability of a loss of 10% or more. We
consider measures under P and Q, as indicated by the last capital letter in each measure. The different jump variation measures include one that uses a constant
threshold 𝑘 = 𝑙𝑜𝑔(0.9), two with time-varying thresholds 𝑘𝑡 based on 2.5 and 10 times the current at-the-money implied volatility (subscripts 𝑣𝑎𝑟 and 𝑣𝑎𝑟10,
respectively), and one that follows the definition of Bollerslev and Todorov (2011b) (subscript 𝐵𝑇 ; see Equation (A.1) in the Online Appendix). 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑡 contains
the simulated variance risk premium. We use four different forecast horizons 𝛥𝑡: (i) one day (𝐷𝑎𝑖𝑙𝑦), (ii) one week (𝑊 𝑒𝑒𝑘𝑙𝑦), (iii) one month (𝑀𝑜𝑛𝑡ℎ𝑙𝑦), and (iv)
one year (𝐴𝑛𝑛𝑢𝑎𝑙). In parentheses, we present robust Newey and West (1987) standard errors with 34 lags. The 𝑅2 columns show the Lindeman et al. (1980)
partial 𝑅2 of each tail risk measure (in percentage points). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively. In Panel E, we also
show the correlations of the simulated tail risk measures with their corresponding infeasible measures (see Table 1; we use the exact matches for the jump
variation) and the state variables that drive the risk premia in each model. Blank spaces indicate that there is no clear corresponding infeasible measure.
Panel A. Infeasible Measures in the Pan (2002) Model

𝐷𝑎𝑖𝑙𝑦 𝑅2 𝑊 𝑒𝑒𝑘𝑙𝑦 𝑅2 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅2 𝐴𝑛𝑛𝑢𝑎𝑙 𝑅2

𝐽𝑢𝑚𝑝𝑖𝑛𝑡 8.80*** 0.19 7.21*** 0.64 6.23*** 2.14 1.40*** 1.22
(2.67) (1.25) (0.54) (0.13)

𝐽𝑉 𝑃 9.62*** 0.23 7.42*** 0.68 6.33*** 2.21 1.36*** 1.15
(3.03) (1.39) (0.60) (0.14)

𝐽𝑉 𝑃𝑣𝑎𝑟 7.86*** 0.15 6.75*** 0.56 5.85*** 1.89 1.35*** 1.13
(2.34) (1.11) (0.49) (0.12)

𝐽𝑉 𝑃𝑣𝑎𝑟10 −0.97** 0.00 −0.77** 0.01 −0.61*** 0.02 0.02 0.00
(0.46) (0.36) (0.20) (0.12)

𝐽𝑉 𝑃𝐵𝑇 9.86*** 0.25 7.46*** 0.69 6.27*** 2.18 1.32*** 1.08
(3.12) (1.44) (0.62) (0.15)

𝑉 𝑎𝑅𝑃 7.88*** 0.16 6.78*** 0.56 5.91*** 1.93 1.36*** 1.15
(2.38) (1.13) (0.49) (0.12)

𝐸𝑆𝑃 7.85*** 0.15 6.77*** 0.56 5.88*** 1.91 1.36*** 1.15
(2.39) (1.13) (0.50) (0.12)

𝑃 10𝑙𝑜𝑠𝑠𝑃 9.35*** 0.22 7.33*** 0.66 6.34*** 2.22 1.39*** 1.20
(2.95) (1.35) (0.59) (0.14)

𝐽𝑉 𝑄 9.67*** 0.24 7.43*** 0.68 6.32*** 2.21 1.36*** 1.14
(3.04) (1.40) (0.60) (0.14)

𝐽𝑉 𝑄𝑣𝑎𝑟 8.59*** 0.18 7.12*** 0.62 6.15*** 2.09 1.39*** 1.20
(2.56) (1.20) (0.52) (0.13)

𝐽𝑉 𝑄𝑣𝑎𝑟10 −0.91** 0.00 −0.72** 0.01 −0.53*** 0.02 0.03 0.00
(0.43) (0.37) (0.20) (0.11)

𝐽𝑉 𝑄𝐵𝑇 9.89*** 0.25 7.47*** 0.69 6.26*** 2.17 1.31*** 1.07
(3.13) (1.44) (0.62) (0.15)

𝑉 𝑎𝑅𝑄 8.02*** 0.16 6.85*** 0.58 5.97*** 1.96 1.37*** 1.16
(2.43) (1.15) (0.50) (0.12)

𝐸𝑆𝑄 7.94*** 0.16 6.83*** 0.57 5.94*** 1.95 1.37*** 1.16
(2.41) (1.14) (0.50) (0.12)

𝑃 10𝑙𝑜𝑠𝑠𝑄 9.33*** 0.22 7.32*** 0.66 6.34*** 2.22 1.39*** 1.20
(2.94) (1.35) (0.59) (0.14)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠

Panel B. Simulated Options in the Pan (2002) Model

𝐷𝑎𝑖𝑙𝑦 𝑅2 𝑊 𝑒𝑒𝑘𝑙𝑦 𝑅2 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅2 𝐴𝑛𝑛𝑢𝑎𝑙 𝑅2

𝐴𝑇𝑝𝑟𝑜𝑏 9.29*** 0.22 7.31*** 0.66 6.22*** 2.14 1.23*** 0.95
(3.28) (1.51) (0.64) (0.15)

𝐴𝑇𝑣𝑜𝑙 −6.05*** 0.09 −5.46*** 0.37 −4.88*** 1.33 −1.20*** 0.89
(2.06) (0.98) (0.46) (0.12)

𝐵𝑇 11𝑄 9.80*** 0.24 7.43*** 0.68 6.28*** 2.19 1.32*** 1.09
(3.11) (1.43) (0.62) (0.14)

𝐵𝑇 14𝑄 8.68*** 0.19 6.13*** 0.47 4.70*** 1.24 1.05*** 0.69
(2.43) (1.17) (0.51) (0.14)

𝐵𝑇𝑋15𝑄 −5.74*** 0.08 −5.48*** 0.37 −4.96*** 1.37 −1.21*** 0.91
(2.09) (1.00) (0.46) (0.12)

𝐻_𝑀𝑅𝐼 −5.37*** 0.07 −5.41*** 0.36 −4.47*** 1.11 −0.98*** 0.60
(1.86) (0.89) (0.39) (0.12)

(continued on next page)
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Table 12 (continued).
𝑅𝐼𝑋 9.39*** 0.22 7.43*** 0.68 6.34*** 2.22 1.39*** 1.19

(2.87) (1.33) (0.57) (0.14)
𝑇𝐿𝑀 7.85*** 0.15 6.61*** 0.54 5.81*** 1.86 1.37*** 1.17

(2.36) (1.12) (0.50) (0.12)
𝐴𝐷𝐵𝑒𝑎𝑟 1.45 0.00 2.12** 0.05 1.41*** 0.10 0.26** 0.05

(2.31) (1.17) (0.51) (0.13)
𝐽𝑈𝑀𝑃 1.74 0.01 0.10 0.00 0.98** 0.05 0.14 0.01

(2.12) (0.93) (0.43) (0.13)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠

Panel C. Infeasible Measures in the Santa-Clara and Yan (2010) Model

𝐷𝑎𝑖𝑙𝑦 𝑅2 𝑊 𝑒𝑒𝑘𝑙𝑦 𝑅2 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅2 𝐴𝑛𝑛𝑢𝑎𝑙 𝑅2

𝐽𝑢𝑚𝑝𝑖𝑛𝑡 11.83*** 0.09 5.75*** 0.12 4.72*** 0.37 0.61*** 0.06
(4.53) (1.98) (0.85) (0.25)

𝐽𝑉 𝑃 12.46*** 0.10 6.05*** 0.13 4.76*** 0.37 0.61*** 0.06
(4.48) (1.99) (0.85) (0.25)

𝐽𝑉 𝑃𝑣𝑎𝑟 11.75*** 0.09 5.79*** 0.12 4.70*** 0.36 0.61*** 0.05
(4.51) (1.95) (0.84) (0.25)

𝐽𝑉 𝑃𝑣𝑎𝑟10 −7.71** 0.04 −3.32** 0.04 −1.39** 0.03 −0.07 0.00
(3.76) (1.57) (0.78) (0.26)

𝐽𝑉 𝑃𝐵𝑇 12.41*** 0.10 6.04*** 0.13 4.79*** 0.38 0.61*** 0.06
(4.47) (1.98) (0.85) (0.25)

𝑉 𝑎𝑅𝑃 15.31*** 0.14 7.01*** 0.17 4.08*** 0.28 0.41* 0.03
(3.87) (1.77) (0.80) (0.25)

𝐸𝑆𝑃 14.93*** 0.14 7.41*** 0.19 5.20*** 0.45 0.58*** 0.05
(4.19) (1.88) (0.82) (0.24)

𝑃 10𝑙𝑜𝑠𝑠𝑃 14.85*** 0.14 6.97*** 0.17 4.97*** 0.41 0.59*** 0.05
(4.39) (2.03) (0.86) (0.25)

𝐽𝑉 𝑄 5.92* 0.02 3.06** 0.03 2.82*** 0.13 0.49** 0.04
(4.03) (1.76) (0.80) (0.25)

𝐽𝑉 𝑄𝑣𝑎𝑟 5.13* 0.02 2.75* 0.03 2.66*** 0.12 0.48** 0.03
(4.00) (1.72) (0.79) (0.25)

𝐽𝑉 𝑄𝑣𝑎𝑟10 −9.63*** 0.06 −4.26*** 0.06 −2.45*** 0.10 −0.13 0.00
(2.93) (1.31) (0.67) (0.25)

𝐽𝑉 𝑄𝐵𝑇 11.55*** 0.09 5.66*** 0.11 4.59*** 0.35 0.61*** 0.05
(4.50) (1.98) (0.85) (0.25)

𝑉 𝑎𝑅𝑄 15.00*** 0.14 6.43*** 0.14 4.49*** 0.34 0.53** 0.04
(4.71) (2.08) (0.86) (0.25)

𝐸𝑆𝑄 13.49*** 0.12 6.78*** 0.16 4.92*** 0.40 0.61*** 0.06
(4.32) (1.88) (0.83) (0.25)

𝑃 10𝑙𝑜𝑠𝑠𝑄 14.29*** 0.13 6.76*** 0.16 4.94*** 0.40 0.60*** 0.05
(4.42) (2.02) (0.86) (0.25)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠

Panel D. Simulated Options in the Santa-Clara and Yan (2010) Model

𝐷𝑎𝑖𝑙𝑦 𝑅2 𝑊 𝑒𝑒𝑘𝑙𝑦 𝑅2 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑅2 𝐴𝑛𝑛𝑢𝑎𝑙 𝑅2

𝐴𝑇𝑝𝑟𝑜𝑏 9.64** 0.06 5.37*** 0.10 3.90*** 0.25 0.65*** 0.06
(4.46) (2.00) (1.22) (0.26)

𝐴𝑇𝑣𝑜𝑙 4.90 0.02 3.72** 0.05 3.19*** 0.16 0.47** 0.03
(3.85) (1.66) (0.74) (0.25)

𝐵𝑇 11𝑄 12.47*** 0.10 6.06*** 0.13 4.82*** 0.38 0.61*** 0.06
(4.48) (1.98) (0.85) (0.25)

𝐵𝑇 14𝑄 0.40*** 0.00 0.10*** 0.00 −0.14*** 0.00 0.02*** 0.00
(0.04) (0.02) (0.01) (0.00)

𝐵𝑇𝑋15𝑄 0.40*** 0.00 0.10*** 0.00 −0.14*** 0.00 0.02*** 0.00
(0.04) (0.02) (0.01) (0.00)

𝐻_𝑀𝑅𝐼 −4.30* 0.01 −3.04*** 0.03 −1.65*** 0.04 0.16 0.00
(3.02) (1.25) (0.62) (0.24)

𝑅𝐼𝑋 13.09*** 0.11 6.32*** 0.14 4.96*** 0.41 0.62*** 0.06
(4.50) (2.00) (0.86) (0.25)

𝑇𝐿𝑀 −14.62*** 0.13 −6.27*** 0.14 −4.04*** 0.27 −0.63*** 0.06
(4.78) (2.17) (0.90) (0.24)

𝐴𝐷𝐵𝑒𝑎𝑟 −0.67 0.01 0.46 0.00 0.45 0.01 0.02 0.00
(10.44) (2.53) (0.91) (0.25)

(continued on next page)
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Table 12 (continued).
𝐽𝑈𝑀𝑃 −7.31 0.04 −1.38 0.01 −0.60 0.00 0.02 0.00

(17.59) (3.72) (1.09) (0.26)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠 𝑌 𝑒𝑠

Panel E. Correlations with Infeasible Measures and State Variables

Pan (2002) Model Santa-Clara and Yan (2010) Model

Infeasible 𝜆𝜎2
𝑡 Infeasible 𝑌𝑡 𝑌 2

𝑡 𝜆𝑡 𝑌𝑡𝑍𝑡

𝐴𝑇𝑝𝑟𝑜𝑏 0.94 0.87 0.68 0.10 0.12 0.69 0.55
𝐴𝑇𝑣𝑜𝑙 −0.13 −0.83 0.27 −0.20 −0.20 0.75 0.42
𝐵𝑇 11𝑄 1.00 0.94 0.99 0.20 0.20 1.00 0.80
𝐵𝑇 14𝑄 0.71 0.72 0.02 −0.02 −0.02 −0.01 −0.02
𝐵𝑇𝑋15𝑄 −0.13 −0.84 0.03 −0.02 −0.02 −0.01 −0.02
𝐻_𝑀𝑅𝐼 −0.79 −0.62 −0.56 −0.00 −0.34
𝑅𝐼𝑋 0.99 0.99 0.99 0.26 0.26 0.99 0.83
𝑇𝐿𝑀 1.00 0.98 −0.60 −0.66 −0.67 −0.59 −0.74
𝐴𝐷𝐵𝑒𝑎𝑟 0.25 0.27 0.16 0.17 0.19 0.12 0.19
𝐽𝑈𝑀𝑃 −0.01 0.11 0.10 0.03 0.07

Since the infeasible measures generally exhibit material predictability in the context of the Pan (2002) model, the performance of
he tail risk measures appears to be driven primarily by how well the various measures capture these infeasible quantities. However,
here is still some secondary heterogeneity across measures. The best-performing infeasible measures include the jump variation
easures, the probability of a 10% loss, and the jump intensity. Based on these results, 𝐴𝑇𝑝𝑟𝑜𝑏, 𝐵𝑇 11𝑄, 𝐵𝑇 14𝑄, 𝑅𝐼𝑋, and 𝑇𝐿𝑀

hould be particularly good predictors of future returns in the Pan (2002) model if they are good proxies for their corresponding
nfeasible measures. Interestingly, among the jump variation measures, the version underlying the 𝐵𝑇 11𝑄 measure of Bollerslev
nd Todorov (2011b) has the highest predictability for short horizons.

Panel B of Table 12 shows that, consistent with our empirical results, the measures 𝐴𝑇𝑝𝑟𝑜𝑏, 𝐵𝑇 11𝑄, and 𝑅𝐼𝑋 perform best in this
simulated environment. They yield the highest positive coefficients and the largest partial 𝑅2s among all measures for all forecast
horizons. The coefficients and partial 𝑅2s for these measures are generally similar in magnitude to those for the corresponding
infeasible measures, indicating that they capture their targets well within the Pan (2002) model. The 𝐵𝑇 14𝑄, 𝑇𝐿𝑀 , and 𝐴𝐷𝐵𝑒𝑎𝑟
measures also yield positive coefficients for all horizons. However, 𝐴𝐷𝐵𝑒𝑎𝑟, which also performs well empirically, yields only very
small partial 𝑅2s in the simulated environment of the Pan (2002) model.

In addition, also consistent with the empirical results, 𝐻_𝑀𝑅𝐼 is a significant negative predictor of future market excess returns
over short time periods. Finally, as also observed empirically, the remaining measures (𝐴𝑇𝑣𝑜𝑙, 𝐵𝑇𝑋15𝑄, and 𝐽𝑈𝑀𝑃 ) appear to
have little to no ability to positively predict future market excess returns in the simulated environment of the Pan (2002) model.
Thus, the fact that our empirical results are largely reproduced in the simulated sample reassuringly confirms the superiority of the
simple 𝐵𝑇 11𝑄 measure.

As a second alternative, we also simulate the model of Santa-Clara and Yan (2010). Note that unlike the Pan (2002) model, Santa-
Clara and Yan (2010) introduce a non-affine option pricing model that allows for separate and imperfectly correlated processes for
stochastic volatility and stochastic jump intensity. It includes a risk premium for both the jump intensity and the jump size. The
model dynamics are:

𝑑𝑋𝑡 =
[

𝑟𝑓 + 𝜙𝑡 − 𝜆𝑡𝜇𝑄
]

𝑋𝑡𝑑𝑡 + 𝑌𝑡𝑋𝑡𝑑𝑊
(1)
𝑡 +𝑄𝑡𝑋𝑡𝑑𝑁𝑡, (16)

𝑑𝑌𝑡 =
[

𝜇𝑌 + 𝜅𝑌 𝑌𝑡
]

𝑑𝑡 + 𝜎𝑌 𝑑𝑊
(2)
𝑡 , (17)

𝑑𝑍𝑡 =
[

𝜇𝑍 + 𝜅𝑍𝑍𝑡
]

𝑑𝑡 + 𝜎𝑍𝑑𝑊
(3)
𝑡 , (18)

𝑙𝑜𝑔(1 +𝑄𝑡) ∼ N
(

𝑙𝑜𝑔
(

1 + 𝜇𝑄
)

− 1
2
𝜎2𝑄, 𝜎

2
𝑄

)

, (19)

𝑃𝑟𝑜𝑏(𝑑𝑁𝑡 = 1) = 𝜆𝑡𝑑𝑡, with 𝜆𝑡 = 𝑍2
𝑡 . (20)

he Brownian motions 𝑊 (1), 𝑊 (2), and 𝑊 (3) have constant correlations (𝜌12, 𝜌13, and 𝜌23). 𝑁 is a Poisson process and 𝑄 is the jump
ize, which follows an independent displaced log-normal distribution. Details on the calculation of the risk premium 𝜙𝑡 can be found
n Section A2.3 of the Online Appendix.

We use the parameters from Table 2 of Santa-Clara and Yan (2010). That is, 𝜇𝑌 = 2.841, 𝜅𝑌 = −18.079, 𝜎𝑌 = 0.334, 𝜇𝑍 = 7.745,
𝜅𝑍 = −9.436, 𝜎𝑍 = 1.529, 𝜇𝑄 = −0.098, 𝜎𝑄 = 0.160, 𝜌12 = −0.495, 𝜌13 = −0.597, 𝜌23 = 0.168, and 𝛾 = 1.917. As starting values we use
𝑋0 = 1 and the unconditional averages from Table 3 of Santa-Clara and Yan (2010). The other steps of the simulation are similar
to the ones for the Pan (2002) model. The option prices are also computed based on a Fourier transform and we apply the same
measurement error specification.24

24 Since the Fourier transform of the Santa-Clara and Yan (2010) model directly yields a solution for the call price rather than the distribution of the index
22

rice at maturity, we use the approach of Breeden and Litzenberger (1978), with 901 option prices between moneyness 0.2 and 2 to approximate the density.
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We present the return predictability results in Panels C and D of Table 12. Panel C shows that the overall predictability by all
nfeasible measures in the Santa-Clara and Yan (2010) model is clearly weaker in terms of the partial 𝑅2s and more heterogeneous

(median correlation of 0.76) than in the Pan (2002) model. Again, almost all the infeasible measures taken directly from the model
state have significant return predictability. Only the jump variation with a time-varying threshold based on ten times the at-the-
money implied volatility performs very poorly, as in the Pan (2002) model. In the Santa-Clara and Yan (2010) model, the jump
variation measures underlying the 𝐵𝑇 11𝑄 measure of Bollerslev and Todorov (2011b) has a higher return predictability than other
jump variation measures, this time markedly so. Panel D shows that 𝐴𝑇𝑝𝑟𝑜𝑏, 𝐵𝑇 11𝑄, and 𝑅𝐼𝑋 are the best tail risk measures, again
consistent with the empirical analysis. Most other measures do not perform as well as their infeasible counterparts.25

Finally, we analyze the mechanisms of return predictability in the two models in more detail. In the Pan (2002) model, the risk
premium component of the index price 𝑋 depends on two components: one that captures premia due to ‘‘Brownian’’ return risks
(𝜎2𝑡 ) and one that is associated with jump risk (𝜆𝜎2𝑡 ). Thus, in this model, the tail risk measures must capture the main state variable
𝜎2𝑡 well in order to predict returns. In the Santa-Clara and Yan (2010) model, on the other hand, the risk premium depends on 𝑌𝑡,
𝑌 2
𝑡 , 𝜆𝑡 = 𝑍2

𝑡 , and the interaction 𝑌𝑡𝑍𝑡 (see Equation (A.30) in Section A2.3 of the Online Appendix).
Thus, the return predictability of the tail risk measures depends on the extent to which they can capture the risk premia in

the model. This may fail along two dimensions: (i) some of the infeasible measures that the tail risk measures proxy may predict
returns better than others, and (ii) the approaches may be susceptible to measurement error and noise induced by the way they are
estimated. We have already noted that most of the infeasible measures have strong return predictability, although there are subtle
differences, particularly in the Santa-Clara and Yan (2010) model.

We examine dimension (ii) in Panel E of Table 12. The table reports the correlations of the tail risk measures with their
corresponding infeasible counterparts (according to the measure definitions; see Table 1), as well as with the model state variables
that drive the risk premia. We find that the 𝐵𝑇 11𝑄 and 𝑅𝐼𝑋 measures work so well in the two models because they consistently
approximate their infeasible counterparts with high precision. Correspondingly, these measures are also highly correlated with
the model state variables, in particular the jump intensity. Other tail risk measures, especially those based on parametric or
nonparametric optimization (e.g., 𝐴𝑇𝑝𝑟𝑜𝑏, 𝐴𝑇𝑣𝑜𝑙, 𝐵𝑇 14𝑄, 𝐵𝑇𝑋15𝑄, and 𝑇𝐿𝑀), fail to consistently capture their corresponding
infeasible counterparts very well. Interestingly, some tail risk measures, such as 𝐴𝑇𝑝𝑟𝑜𝑏, 𝐵𝑇 14𝑄, and 𝑇𝐿𝑀 , do a much better
job of capturing their infeasible counterparts in the simpler Pan (2002) model than in the more complex and non-affine model
of Santa-Clara and Yan (2010).

Thus, the simulation analysis shows that measurement error is a primary driver of differences in the relative performance of the
tail risk measures. The fact that the tail risk measures capture slightly different aspects of tail risk also plays a role, but the accuracy
with which the tail risk measures capture the aspect of tail risk they are trying to capture appears to be more important.

7. Conclusion

We contribute to the literature by conducting a comprehensive empirical analysis of a wide range of tail risk measures that
have been proposed over the last decades. We find a large heterogeneity across different tail risk measures. The first two principal
components explain only 58% of their total variation, while some tail risk measures are even negatively correlated. This finding is
a clear warning to researchers and practitioners not to treat different tail risk measures as interchangeable.

We find that the option-implied measure of Bollerslev and Todorov (2011b), 𝐵𝑇 11𝑄, performs best overall. Other measures
perform even better for specialized tasks, notably the 𝐽𝑢𝑚𝑝𝑅𝑖𝑠𝑘 measure of Maheu et al. (2013) for predicting future tail events
and the 𝐴𝐷𝐵𝑒𝑎𝑟 measure of Lu and Murray (2019) for predicting future market excess returns. However, only 𝐵𝑇 11𝑄 consistently
excels at all tasks: It can predict the occurrence and the magnitude of future tail events, as well as the variation caused by them.
The measure also predicts market excess returns at several horizons up to one year. Moreover, it is priced in the cross-section of
stock returns and affects real economic activity. A simulation analysis shows that low measurement error is an important driver of
the good performance of 𝐵𝑇 11𝑄.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2024.105769.

25 The most extreme case is the 𝑇𝐿𝑀 measure, which inversely predicts returns in the Santa-Clara and Yan (2010) model. We note that this is related to the
hape of the distribution implied by the model. Empirically and in the Pan (2002) model, the tail shape parameter 𝜉 (see Section A1 of the Online Appendix

for more details) is generally positive, while in the Santa-Clara and Yan (2010) model, it is almost always negative. Since the tail risk measure is defined as
𝛽 , where 𝛽 is the scale parameter, 𝜉 > 0 and 𝜉 < 0 have fundamentally different implications for the 𝑇𝐿𝑀 measure.
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