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Abstract

Abstract

Metal oxide semiconductor gas sensors are promising candidates for selectively measuring
harmful pollutants indoors. However, they suffer from their lack of selectivity, sensor-to-
sensor variance, and drift over time.

Advanced calibration and operation modes are required to overcome some of these
sensor drawbacks. During calibration, the sensor is exposed to many gas mixtures to
build robust, data-driven models. Based on the sensor response, these models deduce
the target gas concentration present. Special operation modes like temperature-cycled
operation are used to gain additional information from the transient behavior of the
sensor. However, calibration can be costly, time-consuming, and complicated, even
without complex operation modes.

Within this thesis, a new data-driven model for the evaluation and calibration of metal
oxide semiconductor gas sensors is introduced. The newly developed model, TCOCNN,
is a multi-layer convolutional neural network. Together with methods from the field of
deep learning, like transfer learning, it is possible to tackle long calibration times and
sensor-to-sensor variation. It was shown that it is possible to reduce the calibration
time by up to 99.3 % and significantly reduce the influence of sensor-to-sensor variance.
In some aspects, the TCOCNN surpasses state-of-the-art methods and provides insights
into the model’s inner workings, the temperature cycle, and the sensor itself.
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Zusammenfassung

Zusammenfassung

Metalloxid-Halbleiter-Gassensoren sind ein vielversprechender Kandidat für die Messung
einzelner schädlicher Gase in der Innenraumluft. Allerdings leiden die Sensoren unter
der starken Varianz zwischen den Sensoren, dem Drift über die Zeit, und der fehlenden
Selektivität.

Um den Sensor für die selektive Messung von schädlichen Gasen nutzbar zu machen,
muss der Sensor kalibriert und in komplexen Betriebsmodi (bspw. Temperaturzyklus)
verwendet werden. Während der Kalibrierung arbeitet der Sensor im Temperaturzyklus
und wird verschiedenen Gasgemischen ausgesetzt. Die daraus resultierenden Daten
werden dazu genutzt, ein Modell zu trainieren, das die Konzentration der Zielgase
vorhersagen kann. Diese aufwendige Kalibrierung ist bereits ohne Temperaturzyklus
teuer, komplex und zeitintensiv.

Deshalb wird innerhalb dieser Arbeit ein neues datengetriebenes Modell vorgestellt.
Die neue Methode basiert auf einem mehrschichtigen convolutional neural network
und wird als TCOCNN bezeichnet. Es konnte gezeigt werden, dass das TCOCNN in
manchen Aspekten signifikant bessere Ergebnisse als die klassischen Methoden erzielt.
Des Weiteren konnten fortgeschrittene Methoden des Deep Learning (bspw. Transfer
Learning) dazu genutzt werden, die Schlüsselfragen rund um Metalloxid-Halbleiter-
Gassensoren zu lösen. Beispielweise konnte die Kalibrierzeit um bis zu 99,3 % reduziert
werden, während trotzdem gezielte Einblicke in den Temperaturzyklus, den Sensor und
die Funktionsweise des Modells möglich sind.
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Introduction

1 Introduction

This thesis focuses on gas sensing with Metal Oxide Semiconductor (MOS) gas sensors,
primarily on how it can be done, the problems, and how to solve some of them. The
main gas sensing application analyzed is Indoor Air Quality (IAQ) monitoring. The
importance of appropriate IAQ monitoring is demonstrated in [1]. There, it was revealed
that in 2019, over 6 million people died due to air pollution [1]. In the same context,
the World Health Organization (WHO) has set a goal to reduce air pollution by 2030
substantially to prevent related deaths [2]. Specifically, IAQ monitoring is essential
as humans spend up to 90 % of their time indoors, which makes them particularly
vulnerable to indoor air pollution [3–5].

Currently, IAQ monitoring aims to measure harmful gases within the relevant concen-
tration ranges. The gases of interest for IAQ monitoring are usually carbon monoxide,
ozone, radon, and Volatile Organic Compounds (VOCs) (today, most of the time to-
tal VOC concentration) [6–9]. This information can be used to control ventilation
or warn the room’s occupants to leave. For this thesis, the main objective is to ac-
curately and selectively measure single VOCs [10], including Very Volatile Organic
Compounds (VVOCs) [11], and Semi Volatile Organic Compounds (SVOCs) [12]. How-
ever, selectively measuring important VOCs is complex since indoor air consists of
hundreds of different gases that can interfere with the measurement. Furthermore,
not all VOCs are relevant for IAQ monitoring. Some are less harmful, like ethanol or
isopropanol, while others, like benzene or formaldehyde, can already cause serious health
issues at low concentrations [13]. Currently, a popular method to rate IAQ is to calculate
the total VOC concentration with the help of the CO2 equivalent. Pettenkofer [7] had
already discovered the relationship between bad IAQ and the exhaled amount of CO2

by humans. However, since humans are not the sole source for the presence of VOCs,
the CO2 equivalent can be very inaccurate. For example, cleaning products, furniture,
and cooking emit VOCs but do not emit CO2 [14]. Furthermore, it is impossible with
this method to detect single harmful VOCs at low concentrations to ensure human
safety, and alternative methods must be developed. One approach would be to use the
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Motivation

gold standard, e.g., Gas Chromatography-Mass Spectrometry (GC-MS). While these
instruments are very reliable, they only allow for relatively slow measurements, require
expert knowledge (complex calibration), and are expensive. One promising alternative
might be MOS gas sensors.

1.1 Motivation

As stated previously, IAQ is paramount for human health. Promising candidates for
measuring single harmful VOCs are MOS gas sensors to ensure good IAQ [15]. MOS gas
sensors were chosen for this thesis because they are low cost, easy to use, and sensitive
to various gases [16–18]. Nevertheless, they are rarely deployed to detect single harmful
VOCs for multiple reasons.

First, MOS gas sensors are not very selective, meaning the detection of single harmful
gases cannot be easily achieved and is still subject to recent studies [19]. Likewise,
sensor response and target gas dependencies are too complex to be explained by an
analytic physical-chemical model [18]. Therefore, data-driven approaches are necessary,
leading to numerous calibration samples, which can be costly in terms of time and money.
Furthermore, the sensor-to-sensor variance requires every sensor to be independently
calibrated, making it even more expensive for the manufacturer [20]. Other major
drawbacks of MOS gas sensors are the stability over time and sensor poisoning [21, 22].
Both drawbacks change the properties of the sensor so that frequent recalibration is
necessary to continuously measure the target gases, which is unsuitable for industrial
and especially consumer applications.

In the past, multiple attempts have been made to tackle those drawbacks and make
MOS gas sensors viable for a wide range of gas sensing applications. One state-of-the-art
solution to improve the lack of selectivity is Temperature-Cycled Operation (TCO),
which has already been thoroughly studied in [18, 23] and is also used throughout this
thesis. In TCO, the sensor is heated to different temperature levels. The transient
responses of the sensor can then be used to derive the concentration of different gases
present. Similarly, other methods like calibration transfer and randomized calibration
are used to reduce the calibration time and to reduce the effect of sensor-to-sensor
variance on data-driven models [24, 25]. However, none of these methods have been
implemented in large-scale MOS gas sensor deployment for accurate IAQ monitoring.
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One of the reasons might be that calibration is still too costly in terms of time and
money and, therefore, not feasible for commercial applications.

This thesis aims to improve existing methods to finally make MOS gas sensors suitable
for the selective measurement of VOCs. The main goal is to reduce calibration times and
sensor-to-sensor variance further. Therefore, some of the already existing methods are
combined with new techniques from the field of Deep Learning (DL), like convolutional
neural networks, transfer learning, and Explainable Artificial Intelligence (XAI). To put
the new results in perspective, they are compared with state-of-the-art methods like
classic Machine Learning (ML), e.g., Feature Extraction Selection Regression (FESR),
and classic calibration transfer methods, e.g., Direct Standardization (DS).

The challenges of unknown interfering gases, sensor drift, and poisoning are only
roughly introduced and should be further analyzed in future publications. Furthermore,
all described methods should be tested for a wider range of applications like breath
analysis, health monitoring, outdoor air monitoring (air pollution monitoring), and
industrial emission monitoring to validate their effectiveness [5, 26, 27].

1.2 Organization
The thesis is structured as follows: In the Theoretical Background chapter, the founda-
tions are presented to understand the core topics of this thesis. This chapter introduces
the MOS gas sensor together with the TCO. Furthermore, the Gas Mixing Appara-
tus (GMA) is introduced to understand how calibration samples are collected. The
design of the experiment is also explained to complement the data recording process. The
following sub-chapter introduces ML, covering various data-driven approaches ranging
from classical ML to Deep Learning (DL) and their advantages as well as disadvantages.
In the last part of the Theoretical Background chapter, the drawbacks of MOS gas
sensors are introduced together with state-of-the-art solutions. In the Results and
Discussion chapter, the three core papers that tackle the major drawbacks of MOS
gas sensors are presented in detail and placed in the context of other state-of-the-art
publications. Additionally, two conference papers are discussed to give a broader view
of neural networks in general and how they can be applied to cyclic sensor data. The
results are summarized in the Conclusion chapter and put into the larger context for
MOS gas sensors and their relevance for manufacturers. Possible further extensions are
listed in the Outlook.
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2 Theoretical Background

2.1 Gas Sensors
It is essential to mention that the presented sensor concept is not exhaustive and
covers only some essentials of gas sensors. In this regard, electrochemical sensors,
infrared gas sensors, and others are not discussed [28]. The foundation of this thesis
are Metal Oxide Semiconductor (MOS) gas sensors. Tetsuro Seiyama proposed the
first zinc-oxide semiconductor gas sensor in 1962 [29]. It was demonstrated that by
heating the sensor to high temperatures of around 400 °C, the resistance of the metal
oxide semiconductor changes rapidly depending on the gas present. Analyzing the
response made detecting individual gases at different concentration levels possible. Since
then, multiple materials (e.g., TiO2 [30], WO3 [31], SnO2 [30, 32]), structures (e.g.,
nanoparticles [33], nanoflakes [34], nanowires [35]) and operation modes (static operation,
dynamic exposure [36], and Temperature-Cycle (TC) [37, 38]) have been developed.
Thorough reviews on this matter can be found in [39, 40]. However, the general sensor
concept remains the same and can be described as follows [41]. Typically, the MOS gas
sensor system consists of a micro hotplate with the sensing element on top. Figure 2.1 (a)
shows that the sensing elements consist of two engaging metal wires. The two wires are
not connected; instead, the space in between is filled with a metal oxide semiconductor
material (most commonly SnO2 [40]). The general conductance of the metal oxide
semiconductor layer (e.g., SnO2) is caused by missing oxygen atoms, which results in
freely moving electrodes in the lattice [42]. Although the metal oxide semiconductor
material generally allows a current to flow, the resistance changes with respect to the
free charge carriers, which depends on the surrounding gases. Two processes must be
considered to understand the influence of the surrounding gas on the amount of freely
moving electrons. Firstly, physisorption, this effect attracts gases to the sensor’s surface
with the help of Van der Waals forces [43], and secondly, chemisorption [44], which allows
the adsorption of gases and, thereby, the transfer of electrons. One example is oxygen;
its high electronegativity binds freely moving electrons near the surface, hence increasing
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Figure 2.1: a) Basic MOS sensor model (adapted from [42]). b) Model for grain
boundary effect during adsorption and reduction of oxygen. The change
in resistance is indicated by the width of the conduction channel between
grains illustrated in red (adapted from [42, 46]).

the resistance and thereby changing the sensor’s electrical properties. Reducing gases
can then recombine with the chemisorbed oxygen (O−) on the surface, releasing the
electrons and allowing them to move again freely through the lattice [40], causing a
decrease in resistance. Of course, other gases can also bind to the gas sensor’s surface,
increasing or decreasing the amount of freely moving electrons (e.g., O3 [45]). Which
gas is more likely to bind to the surface or recombine with the gases at the surface
depends on the temperature [19].1 Therefore, the micro-hotplate can be used to control
the temperature and thereby manipulate the sensor’s response.

Although the presence or absence of oxygen is the dominant effect that determines
how many freely moving electrons are available, the grain boundaries define the general

1The material and the corresponding morphology also influence the selectivity of the sensor.
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resistance. This effect is illustrated in Figure 2.1 (b). Here, it can be seen that the
described effect of oxygen binding electrons at the surface has the most significant impact
at grain boundaries of the MOS substrate. This is because the depletion of electrons there
has the most significant influence on the resistance. Therefore, the sensor’s resistance
differs over multiple magnitudes if covered entirely with oxygen molecules or if no oxygen
is adsorbed at the surface. Since the general dependencies between surrounding gases
and sensor response are known, it is possible, under well-defined conditions, to calculate
the exact sensor response to a specific known gas or to measure the surrounding gas
based on the sensor response [47, 48]. Nevertheless, this is only feasible if the sensor
is operated under specific laboratory conditions (e.g., exposed to single gases, known
humidity; cf. Figure 2.2). Therefore, calculating is unsuitable for real-world applications
since it is impossible to determine every parameter during operation (surface-state) [49,
50]. The most popular approach to still predict the specific gas concentration is to build
a data-driven model by calibrating the sensor [24, 27, 51]. With the help of multiple
training samples, the model learns the relation between the sensor response and the
applied gas mixtures.

Figure 2.2: Double logarithmic dependency between sensor response and gas concen-
tration. Reprinted with permission of [52], © 1995 Shaker.

The sensor effects captured with the training samples vary according to the operation
modes of the sensor. The most common approach is to operate the sensor in pure
air under a stable temperature, expose the sensor to the target and interfering gases,
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and then clean it with pure air (transient sensor response). The contamination and
cleaning process shows gas mixture-specific response patterns that can be learned [16,
36, 53]. However, this can be challenging for real-world use cases as complex switching
mechanisms between target air and purified air are required, where purifying itself
can be difficult [54]. Another approach is to use a sensor array (multiple different
sensors) under stable temperature and constant gas mixture [55]. This method relies on
a multisensor array and analyses the static response of the system to the gas mixture.
Every mixture has a specific fingerprint that can be learned [56]. The method used
throughout this thesis is temperature modulation. In this case, the gas sensor is covered
with a stable gas mixture, and with the help of micro hotplates, the temperature of the
sensor is modulated [15, 37, 38, 57, 58]. Today, because of the micro hotplate and the
micro-structured sensor elements, it is possible to heat the sensor within milliseconds
to high temperatures. Similarly, low temperatures are achieved because the system
quickly cools down as soon as the micro hotplate is turned off [59]. With the help of the
different temperature steps and the transient behavior of the sensor, it is possible to
have a virtual gas sensor that makes it possible to identify different gases selectively
[60]. Multiple temperature patterns have been proposed for this method, each with
benefits and drawbacks. Examples are given as ramping the temperature up and down
[61], quickly changing between two temperatures [62], or complex heating patterns [63,
Paper 2]. An example for a TCO is shown in Figure 2.3.
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Figure 2.3: Working principle of the temperature-cycled operation regarding oxygen
coverage. During heating, the general resistance of the sensor decreases.
Afterward, the oxygen molecules adsorb on the sensor, increasing the
resistance. Then, the sensor is cooled down, which generally increases the
resistance. Additionally, reducing gases recombine with O− during the
low-temperature phases, lowering the overall resistance (adapted from [18,
41, 46]).
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The TC consists of two different temperature steps, each with a specific duration.
The information about the surrounding gas can be extracted by analyzing the transient
behavior. The general principle is that during high-temperature phases, the sensor’s
O− coverage at the surface is renewed, and during low-temperature phases, reducing
gases can recombine with the O−. The different temperature levels during a TC allow
different gases to combine with the O− to change the sensor response. Based on the
gas-specific transient behavior, deducing the target gas concentration is possible. The
fundamentals of TCO, like the rate constant of the dynamic processes, are covered
within the Sauerwald-Baur model [18, 19, 23].

In order to gather the sensor responses, it is necessary to measure the sensor’s
resistance. The most basic approach to read out the sensor resistance is to connect the
sensor to one high-precision resistor and a voltage source, as shown in Figure 2.4.

Vhotplate

RP

Vsupply

(+)

(-)

Vprecision

Figure 2.4: Example configuration for a readout circuit (adapted from [64]).

The physical quantity measured is the voltage at the precision resistor (Rp). Since
the primary circuit works as a voltage divider, it is possible to calculate the resistance
of the gas sensor. For the data in this thesis, the voltage across the sensor is fixed, and
the current that flows through the sensor is measured. This method can be improved by
using a logarithmic amplifier before the Analog Digital Converter (ADC) [65].2 Using
the logarithmic amplifier has the benefit that less information on the transient behavior
is lost because the change in resistance over several orders of magnitudes is captured
with higher precision. This effect of the exponential change in resistance is described in
the Sauerwald-Baur model [18, 23].

2Some digital sensors have the required electronics already integrated.
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The MOS gas sensors used throughout this thesis are the SGP40 and SGP30 sen-
sors from Sensirion (Sensirion AG, Stäfa, Switzerland). These sensors consist of four
sub-sensors/pixels with a micro hotplate. For model building, all pixels are used simulta-
neously. Although only MOS gas sensors are covered within this thesis, the subsequently
introduced methods for sensor calibration can be applied to a wide range of sensors.

2.2 Gas Mixing Apparatus

As mentioned above, a data-driven model must be built to predict specific gas concen-
trations with the help of a MOS gas sensor.3 To collect the data for sensor calibration,
the sensor must be exposed to many known gas mixtures. Either the sensor is calibrated
in laboratory conditions with artificially generated gas mixtures [66, 67] or in the field
with reference instruments [68, 69]. Both methods come with benefits and drawbacks.
However, this thesis focuses on calibrating sensors under laboratory conditions. Although
calibrating under laboratory conditions sounds more manageable, it also comes with
challenges. This is because of multiple reasons: the applied gas mixture can consist
only of a selection of gases that represent the use-case (hundreds of different gases
in the real world), the gases within the mixtures can be difficult to handle (e.g., the
VVOC formaldehyde [13]), the independent gas concentrations can differ based on the
allowed thresholds in several orders of magnitudes (e.g., formaldehyde 0 - 100 ppb,
carbon monoxide 200 - 5000 ppb [5, 70]), not all gases are available in bottles, mixing
gases with an acceptable uncertainty is complex, and creating reproducible gas mixtures
with a relatively small uncertainty can be difficult. Thus, an advanced apparatus that
automatically mixes the desired gas mixtures and automatically applies the well-known
gas mixtures to the sensor or sensor systems is necessary.

Over the last few years, different methods to build such an apparatus have been
developed. Those approaches can mainly be divided into closed loop [67, 71] or continuous
flow [66, 72, 73]. Based on ISO 6145 [74], multiple iterations have been made at the
Lab for Measurement Technology (LMT) to build the most optimal continuous flow
Gas Mixing Apparatus (GMA) (cf. Figure 2.5) for the use cases covered, e.g., IAQ,
outdoor air quality, exhaust gas streams, or breath analysis [75–78]. Since the beginning,
the system has been designed with a continuous total flow realized with a carrier gas
in the form of zero air (sometimes nitrogen). Zero air is generated with the Ultra

3Building the data-driven model and collecting the calibration samples can be understood as calibrating
the sensor.
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Zero Air generator GT 30000 plus-EU (Schmidlin Labor + Service GmbH, Dettingen,
Germany). The surrounding air is sucked into the system, purified from all VOCs, H2,
CO, and the sum of all hydrocarbons is reduced to a maximum of 0.1 ppm [79]. The
flow of zero air through the system and sensor chamber is controlled with an Mass
Flow Controller (MFC) (1000 ml min-1).4 The GMA50A module of MKS Instruments
Germany was chosen because of its fast switching times and high precision [76–78].
Apart from the carrier gas, the system consists of multiple gas lines that provide the
sensor chamber with the humidified air, target, and background gases [77, 78]. Figure 2.5
shows the different types of gas lines. The most simple line used is the normal line.
There, the gas from a gas bottle is directly forwarded through an MFC to the gas mixing
chamber (0 - 20 ml min-1). A more complex version of the normal line consists of a
two-stage dilution. The target gas and zero air are mixed in the first stage within a
mixing pipe. This first mixture is controlled by two MFCs, one for the target gas in
air and the other for the zero air. The MFC for the gas bottle is usually smaller in
order to achieve a dilution as high as possible (10 - 20 ml min-1 vs. 500 ml min-1). After
the first mixing stage, not the entire flow is forwarded to the sensor chamber; instead,
only a fraction is forwarded with the help of a third MFC of the same size as the one
at the gas bottle. This multi-stage dilution ensures that the impurities of the different
gas bottles have a minimal impact. For example, a grade five rating gas bottle still has
10 ppm of impurities, which can significantly affect the calibration. With the help of
predilution, this can be reduced to concentrations smaller than 1 ppb [78]. Furthermore,
this two-stage approach allows reaching concentrations as small as 1:12505000 of the
original gas bottle concentration, as reported by [77]. However, the additional mixing
sections make these more complex dilution lines harder to build. A third gas line can
be designed by using a permeation oven instead of a gas bottle. This is usually done if
the gas is unavailable in a gas bottle but within a permeation tube. Nevertheless, the
principle remains the same: the target gas and zero air are mixed, and only a portion is
forwarded through an additional MFC. The last unique line is then used to humidify the
system’s gas flow. Humidification is essential since humidity significantly impacts MOS
gas sensors. So far, all lines are designed with very low residual humidity.5 In order
to vary the Relative Humidity (RH), the system contains one humidification line that
allows to humidify the total flow. This line is regulated with the help of zero air and a
single MFC. The dry air that passes through the MFC is humidified with the help of a

4The MFC is a module that can control the throughput of gas [76].
5Much smaller than 1 %.
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water bubbler and forwarded to the sensor chamber. The different lines are combined in
the gas mixing chamber, and the final gas mixture is generated with the specified gas
concentration at the desired humidity at room temperature. The most advanced GMA
was built recently and consists of up to 14 lines to generate the most complex mixtures.
A total of 14 lines is very well suited for indoor air applications, where ten lines can
be used for VOCs and at least two lines for background gases that can influence the
prediction of the target VOC. Ten VOCs are suitable since it is possible to categorize
most VOCs into ten groups, as described later within the Design of Experiment section.
Figure 2.5 illustrates the complete setup with all components.
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Figure 2.5: Schematic of the most complex GMA at LMT today (adapted from [77]).
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This description should only briefly overview the topic of GMA design. A more
detailed overview can be found in the following publications, which also dive into dead
volumes, timing within the GMA mixing sections, and efficiency regarding the gas
consumption [75–78].

2.3 Design of Experiment
After introducing the MOS gas sensors and the GMA to record the calibration data,
the next step is to record meaningful calibration samples in order to be able to build
a stable and robust data-driven model that is capable of performing the target task.
As described earlier, the main application in this work is IAQ monitoring. For IAQ,
VOCs are one of the most critical substances to detect. However, detecting harmful
VOCs requires careful gas sensor calibration. During calibration, multiple environmental
influences must be taken into account to build a reliable model. For example, various
gases that can influence the prediction in the real world and the different humidity levels
must be considered. The process of accounting for known influences for calibration is
called Design of Experiment (DoE) and is currently investigated by many researchers
[24, 80–83]. However, because this thesis mainly focuses on evaluating gas sensor
calibration, the topic of DoE is only briefly introduced using an IAQ example. The
first important question for the DoE for gas sensors is: In which environment does the
sensor operate later? This question is essential because the selection of interfering gases,
background gases, and the RH would vary significantly based on the use case (e.g.,
breath analysis vs. IAQ). Therefore, the DoE for IAQ monitoring is always done with
realistic background concentrations of hydrogen and carbon monoxide and a realistic
RH [15, 84]. Furthermore, indoor air consists of hundreds, if not thousands, of VOCs,
making it impossible to use all of them within the calibration. Therefore, the next step
in the DoE is to select the most critical VOCs. The selection of the most important
VOCs can be done with the help of the substance groups theory [15], which states that
all VOCs can be categorized into ten subgroups. For smaller datasets, the dominant
substance of each category or, if possible, multiple main contributors can be used. The
eight most important VOC groups for IAQ monitoring and their main contributors are
listed in Table 2.1.

Besides the different groups and substances per group, Table 2.1 also indicates
the different concentration ranges typically encountered in indoor air. For a more
sophisticated DoE, the maximum allowed indoor concentration over a more extended
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Table 2.1: The eight most important chemical classes for VOCs extracted from analyti-
cal studies [85, 86] together with representatives, P90, and P95 quantiles for
reference measurements. Reprinted with permission of Ref. [15]. T. Baur,
2023.

Chemical Class
(representative) P90 in µg/m3 (ppb) P95 in µg/m3 (ppb)

Alcohols (ethanol) 320 (∼170) 520 (∼790)
Aldehydes (formaldehyde) 340 (∼270) 480 (∼390)

Alkanes (n-hexane, n-heptane) 180 (∼50) 350 (∼90)
Aromatics (toluene) 190 (∼50) 370 (∼90)

Esters (ethyl acetate) 140 (∼30) 280 (∼70)
Ketones (acetone) 250 (∼100) 420 (∼170)

Terpenes (limonene, α-pinene) 170 (∼30) 330 (∼60)
Organic acid (acetic acid) 150 (∼60) 240 (∼100)

period is given by [5, 70]. With this information, it is possible to define the different gas
mixtures and the corresponding concentration ranges that can be used to calibrate the
sensor for IAQ monitoring. The next task is to define the Unique Gas Mixture (UGM)
in order to calibrate the sensor. Therefore, the different gas mixtures that are applied
to the sensor must be specified. Since the data-driven model should be as robust
and accurate as possible, it is necessary to have data samples covering the complete
range for all gases. The first experiments done in this field used sequential calibration
[24, 68]. Figure 2.6 shows an example of this scheme. In sequential calibration, all
gases are increased step-wise gas per gas. The drawback of this approach is that it
requires many samples6 to cover all concentration ranges for all gases, and it introduces
systematics that the model can learn (overfitting [24]). That implies that the model
might learn the dependency between time and gas concentration instead of the actual
gas concentration and corresponding sensor response. One method to prevent this is to
apply different gases in ascending and descending order. Nevertheless, this doubles the
calibration time and does not prevent overfitting. Therefore, the only suitable way is to
use randomized calibration [24]. In this case, the gas concentrations are not predefined
and separately selected; instead, random concentrations are randomly picked from a
predefined distribution for every UGM. This ensures that no systematic is introduced
that the data-driven model might learn. However, multiple methods can help improve
the randomization, which enables building an even more robust and stable model.

6In the case of 4 concentrations per gas, 4numbergases UGMs would be necessary.
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Examples are random subsampling, Latin hypercube sampling [87, 88], and orthogonal
sampling [89]. For most datasets in this work, Latin hypercube sampling is used. For
Latin hypercube sampling, the first step is to define the probability distribution of every
gas on hand. For this work, most of the time, equal distribution over a given range is
assumed.
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Figure 2.6: Example for a possible design of experiments concerning the selection of
gas concentrations. Sequential subsampling, random subsampling, and
Latin hypercube subsampling for calibration are shown.

The next step is to select how many UGMs (sample points) should be used. Afterward,
the range for all gases is split into sections of similar probability (equidistant for equal
distribution). Then, each sample is randomly picked for each gas from the concentration
range. After selecting this first UGM no other UGM can have one concentration from
the same sub-range of the specific gases. Figure 2.6 illustrates this approach in more
detail. The benefit of Latin hypercube sampling is minimizing the correlation between
different gases. A robust model can be built where predicting one gas based on two or
more others is impossible.

2.4 Machine Learning

After the data is recorded, the next step is to build a data-driven model that predicts the
target gas concentration based on the raw sensor output. However, before the specific
data-driven models for gas sensor calibration are introduced, the general concepts of
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analytical model building, Artificial Intelligence (AI), Machine Learning (ML), and
Deep Learning (DL) are introduced in the following.

2.4.1 General Machine Learning

In the first step, the terms analytical model building, AI, ML, and DL need to be
structured. Analytical model building usually describes the workflow of a scientist. In
this approach, a human analyses the problem, and afterward, an analytical model in
the form of a closed-form mathematical solution is derived [90]. This formula describes
the situation and allows the problem to be solved. Examples would be any model in the
realm of physics (e.g., CO2 IR gas sensors) [91].

Since analytic model building based on human calculation can be tedious or even
impossible for some tasks, a new branch called AI evolved. AI uses the computer and its
computing power to solve the problem [92]. Nowadays, AI is closely related to algorithms
that can learn from data. However, in the domain of AI, not every model needs to
be capable of learning. Instead, they can work based on a simple algorithm written
by a human. Therefore, AI contains a sub-set called ML, representing the approaches
capable of learning based on collected data. Instead of a human making observations,
computer-based algorithms can make them based on previously seen data. ML can
again be split into classic ML (e.g., decision trees, support vector machines, k-Nearest
Neighbors, simple artificial neural networks) and DL. DL only differs from classical ML
in terms of the model used to learn. While ML covers all learning algorithms (also DL
algorithms), DL explicitly describes the methods that contain neural networks with
more than one hidden layer [93].

After introducing the general idea of AI and ML, it is essential to understand that
different problems require different learning approaches to solve the task. For ML, these
methods can be divided into four domains: supervised learning, semi-supervised learning,
unsupervised learning, and reinforcement learning [94–97]. The approaches differ in
the availability of the data and the target/label to solve the task at hand. The data
describes the current observation (e.g., pictures, numeric tables, or sensor readings).
Based on the data, further information about the current observation is derived (e.g.,
what animal can be seen in the picture). The target describes the information that the
model should extract from the data during inference (unavailable to the model when
used in practice).7

7Inference refers to the model being used to classify a new observation.
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For supervised learning, the data and the corresponding targets are available during
the training. This allows a model to learn the dependencies between the data and
the target. The model can then be used for evaluating new but similar observations.
This approach is used in various fields, from computer vision to gas sensing tasks [98].
For semi-supervised learning [99], only some data with the desired target is available
during training. One typical example is novelty detection for condition monitoring tasks
[100]. In this case, only the data and the information that the machine was in working
condition are available. The task is to build a model that analyzes new observations
and decides if the machine is still working or deviates from its original state [101]. For
unsupervised learning, only the data is available, and the task is to find patterns within
the data. This approach includes methods like clustering [102, 103]. Reinforcement
learning is slightly different from the just described methods [97]. For this approach,
the data is not gathered from an external process. Instead, the learning algorithm is
trained online in a virtual environment or via human feedback. Therefore, the data and
the corresponding target (reward and punishment) are dynamically generated through
operation and are used to train the model. This allows the algorithm, e.g., to learn to
play games [104].

Within this work, exclusively supervised ML methods are used. Within supervised
learning, the task can be either classification or regression. Most of the time, the task
can be defined as finding a projection function Ow(x) that predicts the correct output
for an input instance x [105]. The task of finding the optimal Ow(x) is often transformed
into the minimization of a loss function. The loss function thereby represents the model’s
performance on the desired task. An example of a regression loss is given in Equation 2.1,
with |D| representing the number of observations in training set D, O the model output
with parameter w (can be any model), x the independent observations (xi ∈ D), and
the corresponding target ŷ.

L(D) = 1
|D|

∗
|D|∑
j=1

(Ow(xj) − ŷj)2 (2.1)

A prediction is made with the help of the found projection function Ow. This function
performs the projection of the test instance xt to the output (classification or regression).
A simple example of linear regression without bias is given in Equation 2.2.

Ow(xt) = w ∗ xt (2.2)
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Before specific ML models are introduced, the most crucial part is to understand how
to validate and test the model [106, 107] and how to rate their performance. First, the
methods to rate the performance of a ML model need to be introduced. For classification,
one common approach is to calculate the classification error. This error quantifies the
amount of wrongly classified instances. However, this metric is not always optimal. In
the case of medical studies, for example, it is sometimes more critical to avoid predicting
false negatives [108]. Therefore, multiple metrics were developed, like F1-score, recall,
sensitivity, and specificity. For regression problems, the most popular metric is the
Root-Mean-Squared Error (RMSE). Yet, sometimes the RMSE is misleading, and other
metrics need to be assessed, like R-squared. Therefore, it is always important to choose
the most meaningful metric for the use case.

The next step is to perform a meaningful validation by splitting the data correctly.
The data should at least be split into training and testing while focusing on solving the
target task.8 The model learns from the training data, and the model’s performance is
tested using the remaining test data. However, most ML models require optimization
before they reach optimal performance. Therefore, the training data is usually again
split into training and validation [106]. As before, the training data is used to train
the model, and the validation data is used to rate the performance for different model
optimizations. The performance on the validation set can subsequently be used to
find optimal model parameters that possibly perform best on the test data. If only
a section of the original train data is left out for validation, the approach is called
leave-out validation [109]. Cross-validation is performed for more robust models. For
cross-validation [110], the evaluation (same model optimization parameter) is done
multiple times, and in each step, different subsets of the original training data are left
out. Throughout all iterations, every data point is precisely once in the validation set,
and the mean performance across all validation sub-sets defines the performance of the
specific model. This approach usually provides a more reliable estimation of the model’s
performance on the test data based on the validation error. Many more validation
methods can be used to validate the model further, as described in [106]. Specifically
crucial is appropriate validation and testing for detecting overfitting [106]. Overfitting
means the model has learned unrelated systematic (e.g., noise) and has yet to learn the
general underlying dependencies to perform well in real-world scenarios [111]. This can
happen for multiple reasons, such as sub-optimal training data or insufficient data that

8One Example: If the stability over time of a model should be tested, the test data should focus on
this task.
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does not incorporate all aspects of the real world. Therefore, having an appropriate
DoE and finding the optimal training, validation, and test split for the specific use case
is always important.9

2.4.2 Classic Machine Learning

Classic supervised ML is defined in this work as all ML methods except neural networks,
including DL [112]. Examples include support vector machines [113], Gaussian processes
[114], linear regression [115], or decision trees [116, 117]. Those algorithms are used to
learn the dependencies between input data and target. Classic ML performs exceptionally
well for tabular data [118] (e.g., medical datasets)10 but can also be used together with
raw sensor readings, images, or text. However, classical ML algorithms, solely used for
regression and classification, tend to fail in this case because the information within
the data is not easily accessible (e.g., due to the curse of dimensionality [119]).11

Therefore, this work introduces classical ML not only as the regression and classification
algorithm but as a stack/pipeline of algorithms used on the data [120, 121]. The
stack consists of any pre-transformation of the raw data, a corresponding feature
extraction, followed by feature selection, and a final classification or regression algorithm.
This more sophisticated approach is called from here on Feature Extraction Selection
Classification (FESC) or Feature Extraction Selection Regression (FESR).

The pre-transformation strongly depends on the data and is necessary to unify the
input data and make the data suitable for the ML task. Text, for example, is tokenized,
or pictures are scaled in size and value. During feature extraction, the pre-transformed
input is converted into meaningful features. After extraction, each feature describes a
specific property of the raw data (e.g., a feature from the frequency domain, a feature
from the time domain, or other extracted features). This process highlights properties
that may not have been obvious in the raw data and simultaneously suppresses unwanted
noise. The feature extraction process is especially complex since it depends on the
use case. Sometimes, it is necessary to design specific features for a use case based on
domain-specific knowledge [122]. In industrial applications, the data is often transformed
with the help of Fourier transformation to extract specific frequency bands that are

9For example, group-based validation is essential if many samples are very similar within the training
data to check for interpolation capabilities.

10Tabular data is specified as strongly heterogeneous data, for example, medical datasets (blood
pressure, height, and patient weight).

11Curse of dimensionality means that the model cannot learn the intended dependencies because of
too many input features/dimensions.
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characteristic of the analyzed machine. Similarly, methods like Principal Component
Analysis (PCA) can create new features for tabular data. But even with specifically
designed features, it is still possible to run into the course of dimensionality [119],
which means there are too many features, and the classification or regression still
fails. Therefore, feature selection is performed to eliminate unnecessary or redundant
features. For this task, there are three general fields: filter methods (calculates a
metric independent of the classification/regression algorithm, e.g., Relieff or Pearson
correlation), wrapper methods (searches through subspace of features with the help of
an additional classification/regression algorithm, e.g., recursive feature elimination), and
embedded methods (feature selection is part of the classification/regression algorithm,
e.g., decision trees) [123, 124]. The last part of the FESC/FESR can then still make use
of all the algorithms that classic ML provides (e.g., Support Vector Machine (SVM),
decision trees, Gaussian processes). This can be done because after the feature extraction
and selection, the data is basically transformed into tabular data with a reduced feature
set, and the algorithm will perform reasonably well.

Two examples of a framework that performs feature extraction, selection, and classi-
fication/regression are the FESC/FESR toolbox [125] and the DAV3E toolbox (Data
Analysis and Verification/Visualization/Validation Environment) [49] both developed
at the LMT. Both toolboxes provide similar functions for feature extraction, selection,
and classification/regression. However, the FESC/FESR toolbox is tailored explicitly
for an automated approach. Therefore, different combinations of algorithms (extraction,
selection, and classification/regression) are tested in a predefined validation scenario
to find the optimal combination for the use case automatically. The feature extraction
algorithms are selected to be complementary, which means that features are either
extracted from the time domain, from the time/frequency domain, or from the frequency
domain. The feature selection is generally used in wrapper fashion, and the inner
functions are complementary (filter or wrapper). As explained above, the final learning
algorithm (classification or regression) can be any algorithm that suits the use case.
In the FESC/FESR toolbox, 15 algorithm combinations are tested for regression and
classification (five extractors, three selectors, one classification/regression). The five
feature extraction methods are introduced in more detail in the following. The statistical
moment’s extractor divides the signal into N equidistant segments and calculates the
mean, variance, skewness, and kurtosis for every segment [120]. For the best Daubechies
wavelet extractor, the most critical time-frequency coefficients are returned based on
the highest mean coefficients observed during training [126, 127]. The best Fourier
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coefficients extractor similarly returns the top 10 % frequency bands with the highest
mean energy based on the training [128]. The principle component analysis extractor
returns the first 500 PCA components. The Adaptive Linear Approximation (ALA)
extractor splits the signal into linear segments based on the reconstruction error of the
training data and returns the mean and slope for these segments [120, 129, 130]. Feature
selection is twofold. First, one of three algorithms is used to specify the ranking used
in the second stage to find the optimal subset (wrapper method). The first ranking
method tests for the Pearson correlation and reduces the features by default to 500
essential features. The ranking within these 500 features is based on the correlation
coefficient. The Pearson selector can either be used as the stand-alone ranking method
or as a pre-selector for the other two computationally expensive ranking methods to
limit the number of features from the start. The recursive feature elimination algorithm
[131] repeatedly removes one feature from the 500 pre-selected features based on the
relevance (either importance within the support vector machine with linear kernel or
the factor within a least squares regression) to reevaluate the ranking of the feature set.
Thereby, getting a different ranking compared to the Pearson selection of the features is
possible. The last ranking method is Relieff [132]. This method considers the locality of
the different classes based on the different features. Features that separate the classes
well will get a higher ranking. The actual selection happens in wrapper fashion by
iteratively testing the top 200 features depending on the ranking of one of the three
algorithms and testing the subsets from 1 - 200 with the help of the chosen classification
or regression algorithm. The best subset based on a 10-fold cross-validation is selected
for the final model building. For classification, only one algorithm is currently available
in the toolbox; this algorithm consists of two stages. First, the remaining features are
transformed with the help of Linear Discriminant Analysis (LDA) [133, 134]. Afterward,
the Mahalanobis distance between the new sample and the mean of each class is used
for classification [133]. Mahalanobis was chosen because it also considers the scattering
of the training data.12

Complementary to classification, linear regression is a suitable algorithm for the
regression task. This method directly attempts to find a w and b for Equation 2.3, which
minimizes Equation 2.4 where ŷ represents the actual target.

Ow(X) = Y (X) = w ∗ X + b (2.3)

12This stack of 15 possible combinations showed promising results for industrial datasets [120].
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L(D) = 1
|D|

∗
|D|∑
j=1

(w ∗ xj + b − ŷj)2 (2.4)

However, linear regression can fail if X contains correlated variables. Therefore,
Partial Least Squares Regression (PLSR) [135, 136] is used as it works better under
such conditions because it creates new orthogonal features.13 The data X and target
Y are decomposed into X = TP T + E and Y = UCT + F to find a projection C from
T to Y , where T contains new orthogonal features (Y = TCT + G with G).14 This is
similar to the principal component regression, where X is transformed with the help
of principal component analysis. However, in this case, the transformation takes X

and Y into account in order to find T and U with maximized covariance. PLSR is an
iterative approach. In each step n (n represents the number of components), the scores
tn of X are estimated with tn = Xn ∗ wn, where wn is the weight vector wn = XT

n ∗ y

("covariance" feature to y). With tn estimated, it is possible to calculate the loadings
of x (pn). Afterward, the coefficients are calculated with the help of linear regression
(cn = yT ∗ tn), where cn is only a scalar that represents the contribution of tn for the final
prediction. After each step, the matrix X is deflated Xn+1 = Xn−tn∗pT

n , and the process
is repeated until X is empty or the number of components is reached. The prediction is
made with Y = X ∗ B + G, where B can be constructed with B = W ∗ (P T ∗ W )−1 ∗ c

(project c back to original space), and G is a constant value (c0 − pT
0 ∗ B). The matrices

W , P , T , and the vector c are constructed by combining all intermediate results in a
large matrix or vector [135]. For PLSR, the algorithm used is the SIMPLS algorithm
[137].

A detailed introduction of the FESC/FESR toolbox and the algorithms can be found
in [125, 133], and a short description of DAV3E (Data Analysis and Verification/Visual-
ization/Validation Environment) is given in [49]. Compared to the FESC/FESR toolbox,
DAV3E is specifically tailored for gas sensor applications and includes a graphical user
interface.

2.4.3 Neural Network Basics / Deep Learning

Before it is discussed how ML can help to calibrate gas sensors, a few general neural
network basics and DL methods need to be introduced. As described above, neural
networks are a part of ML. They are ML models that can learn to solve a task with the
13Capital letters represent matrices, and lowercase letters are vectors.
14T & U : scores, P & C: loading’s, E & F & G: residuals.
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help of backpropagation, gradient descent, and the data together with the corresponding
targets. In general, neural networks are heuristic learning algorithms that build a
computation path that transforms the input into an output (in this case, regression
or classification). The basis of the neural networks in the form of the perceptron was
developed by Frank Rosenblatt [138] in 1958. Since then, a massive development followed,
leading to DL as we know it today [139]. The following section describes the essential
parts of a neural network.

2.4.3.1 Neurons and Neural Networks

The general structure of a neuron/perceptron can be found in Figure 2.7. A neuron was
inspired by biology, respectively the brain, and consists of n inputs, weights, a bias, an
activation function, and one output [138]. During processing, each input is scaled with
the corresponding weight. Afterward, all scaled inputs are summed up, and the bias
is added. The weights and the bias represent the learnable parameters and define the
dependencies between the input and output of the neuron. After multiplication and
summation, the result is processed with a so-called activation function, cf. Equation 2.5
[140], with xi being the input.

Ow(X) = factivation(net) = factivation((
n∑

i=1
wi ∗ xi) + b) (2.5)

The activation function can have multiple forms; the most popular are sigmoid,
hyperbolic tangent, and rectified linear unit (ReLU). Those activation functions need to
be nonlinear, differentiable, and fast to calculate. An exception is the ReLU function,
which is not differentiable. However, this is only at one point, which can be sufficiently
approximated. An activation function is needed because it introduces nonlinearity and
thereby creates various complex features and nonlinear segmentations. With different
activation functions, different forms of features can be created.

Today, the most popular activation function is the ReLU activation. The ReLU func-
tion is especially useful as it has the special properties of generating linear dependencies
in the positive range while still being nonlinear (e.g., linearly separable classes). Fur-
thermore, the ReLU activation does not suffer from the vanishing gradient, like sigmoid
activation (zero gradients for large negative and positive sums), which prevents the
neuron from learning [141]. Nevertheless, ReLU is not the optimal activation function
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Figure 2.7: Example of one neuron.

since it suffers from drawbacks like dying neurons [142]. Therefore, activation functions
are still heavily researched [143].

A neural network consequently consists of multiple neurons that resemble a network
(cf. Figure 2.8). The neurons are usually structured in layers, and the processing chain
proceeds from left to right. The neurons on the left are called the input layer, while the
neurons on the right resemble the output layer. The layers of neurons in the middle
represent the so-called hidden layers. If multiple hidden layers are present, the neural
network is called deep neural network/Multi-Layer Perceptron (MLP) [144]. Input
data primarily determines the left part of the neural network. For example, different
layers are needed depending on the input. If the input is a picture, a Convolutional
Neural Network (CNN) might be the best choice, while for an ensemble of features, a
fully connected layer might work best. The output layer will change according to the
task on hand. For classification problems, the last layer is typically a fully connected
layer with as many neurons as classes trained. The activation function of this layer is
then a sigmoid/softmax function that resembles the probability of a particular class.
For regression problems, the last layer is usually a fully connected layer with only one
neuron, and the activation is typically the identity. However, regression tasks can also
have multiple outputs if multiple regression tasks need to be performed within the same
network simultaneously. The hidden layers in the middle can typically have various
forms and shapes.

In a simple regression network, as represented in Figure 2.8, the output of every
neuron can be calculated with Equation 2.6, with j being the layer number, k the neuron
in the current layer, and i the input number. The overall function then depends on
the weights and biases of the whole network. As for every ML algorithm, the goal is
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Figure 2.8: Example of one neural network consisting of two fully connected hidden
layers.

to adapt the computation path to optimize the regression or classification task. As
introduced above, this is done by minimizing the loss function. During training, the
neurons’ weights and biases are optimized to reduce the loss. The metric or loss to
determine the performance for regression is usually the root mean squared error, and
for classification, the cross-entropy loss; however, many more loss functions can be used
for specific use-cases [145].

Oj,k(x) = factivation(netj) = factivation((
n∑

i=1
wi,j,k ∗ Oj−1,i) + bj,k) (2.6)

The following chapter dives more into detail to better understand how a neural
network works and how they are optimized.

2.4.3.2 Backpropagation and Gradient Descend

Backpropagation and gradient descent are fundamental components for tuning the
trainable parameters (weights and biases) in the neural network [146, 147] to minimize
the loss function. During backpropagation [140, 148–150], the gradient for each neuron
involving its input, output, and error/loss is calculated (chain rule [151]). With the
help of gradient descent, the weights are adjusted to find a minimum (most of the time
local minimum) of the loss function L (e.g., mean squared error or cross-entropy loss).
Equation 2.7 demonstrates how the loss of a single sample is calculated. Oj represents
the output of the specific neuron j (currently investigated). The sum iterates over all
outputs the network possesses. Equation 2.8 shows how the gradient for a specific weight
is calculated based on one observation with the help of the chain rule. The parameters
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are the same as in Equation 2.6, and Oi is the output of the neuron from the layer to
the left.

L(x) = 1
2 ∗

n∑
j=1

(Oj(x) − ŷj)2 (2.7)

∂L

∂wi,j

= ∂L

∂Oj

∗ ∂Oj

∂netj

∗ ∂netj

∂wi,j

= ∂L

∂Oj

∗ f ′
activation(netj) ∗ Oi (2.8)

As shown in Equation 2.9 δ is now specified as the loss of the neuron with respect to
the input of the neuron.

δ = ∂L

∂Oj

∗ f ′
activation(netj) (2.9)

In order to calculate the gradient for a specific weight, two cases have to be distin-
guished: either the neuron is an output neuron or a neuron in the hidden layer. With
the help of Equations 2.10, 2.11, it is possible to calculate every gradient in a network
from the end to the beginning (backpropagation).15 A more detailed derivation can be
found in [140].

δoutput = (Oj − ŷj) ∗ f ′
activation(netj) (2.10)

δhidden =
n∑

k=1
(δk,previous ∗ wk,previous) ∗ f ′

activation(netj) (2.11)

After the gradients are accessible, the gradient descent algorithm tries to find the
optimal weights and biases regarding the objective function (loss). The process of finding
the optimal weights to minimize the objective function is illustrated in Figure 2.9, and
the basic algorithm can be found in Equation 2.12 [147].16

When training from scratch, the different weights and biases are randomly initialized
(e.g., Glorot initializer [153]). During training, the data is repeatedly fed through the
network. In each epoch/step, the objective function based on the training data is
traversed to find the optimum (e.g., gradient descent) [154]. Thus, the weights (w) are
adjusted slightly in each step until a suitable solution is found. The amount the weights
are allowed to change in each iteration is determined by the learning rate α (usually

15Previous: layer to the right, k: neuron in the layer.
16Wij represents the weight between neuron i from the layer to the left and the neuron j from the

current layer.

26



Theoretical Background

0 5 10
Weight

0

5

10

15

20

25

Lo
ss

Good learning rate

Loss function

0 5 10
Weight

0

5

10

15

20

25

Lo
ss

Learning rate too large

Loss function

Figure 2.9: Illustration of gradient descent to find the optimum (adapted from [152]).

between 0 and 1) and the gradient. If the learning rate is too large, it is possible that
the weights are adjusted too much in each iteration, and the network will not find a
good solution. If the learning rate is too small, finding the minimum takes infinite time
(cf. Figure 2.9).

W new
ij = W old

ij − α ∗ ∂L

∂Wij

= W old
ij − α ∗ δj ∗ Oi (2.12)

The gradient descent algorithm is one of the earliest methods combined with neural
networks to optimize the weights [138, 147]. Since then, the algorithm has changed.
Although gradients are still calculated or estimated, many improvements have been
made to search through the loss function in order to find the minimum faster and
more precisely. While for gradient descent, the gradient of the complete dataset is
calculated before weights are updated, the gradient is nowadays approximated with the
help of methods like stochastic gradient descent [155, 156]. Thereby, a single random
instance is used to approximate the gradient of the whole dataset, and the weights are
updated with each sample. That usually speeds up the training process as progress
is made with each instance. However, this method leads to quite noisy descents to
the minimum. Therefore, stochastic mini-batch gradient descent was introduced [156,
157]. This approach estimates the gradient with a set of samples (mini-batch, e.g.,
64), allowing faster convergence. Nevertheless, this approach tends to have a lot of
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unnecessary orthogonal movement to the original gradient, and therefore, new methods
like RMSprop [158, 159] and momentum [160] were developed—RMSprop updates
Equation 2.12 with Equation 2.13. RMSprop minimizes the orthogonal movement to
the actual gradient by normalizing the gradients (usually β = 0.9 and ϵ = 10−8) [158].

W new
ij = W old

ij − α ∗ ∂L

∂Wij

∗ 1√
RMSnew

dWij
+ ϵ

(2.13)

RMSnew
dWij

= RMSold
dWij

∗ β + (1 − β) ∗ ∂L

∂Wij

2
(2.14)

Similarly, momentum remembers the previous gradients (cf. Equations 2.15, 2.16)
and finds a mean gradient closer to the actual gradient, thereby speeding up the training
process (β = 0.999) [160]. Both methods profit from the benefit of calculating the
gradient based on a subset of input samples and speed up the convergence with the
help of memory terms and first and second-order approximation of the gradient. The
publications [158, 160] showed that all those methods provide several drawbacks and
benefits. However, the new methods provide faster and better results than basic gradient
descent.

W new
ij = W old

ij − α ∗ MNew
dWij

(2.15)

MNew
dWij

= MOld
dWij

∗ β + (1 − β) ∗ ∂L

∂Wij

(2.16)

Today’s state-of-the-art approach for optimizing a neural network is Adaptive Moment
Estimation (Adam). Compared to the other methods, Adam combines the benefits of
mini-batches, statistic gradient descent, RMSprop, and momentum in one approach and
extends those by a bias correction term. This additional term prevents the two other
terms from converging to zero. Because Adam can combine the different benefits of all of
the mentioned methods, it is the most widely used technique [147, 161]. Equation 2.19
summarizes how the different methods are combined. A more detailed review of all the
new developments around the gradient descent algorithm can be found in [147, 162].

W new
ij = W old

ij − α ∗
MNew

dWij√
RMSnew

dWij
+ ϵ

(2.17)

MNew
dWij

= (MOld
dWij

∗ β1 + (1 − β1) ∗ ∂L

∂Wij

) ∗ 1
1 − βnumIteration

1
(2.18)
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RMSnew
dWij

= (RMSold
dWij

∗ β2 + (1 − β2) ∗ ∂L

∂Wij

2
) ∗ 1

1 − βnumIteration
2

(2.19)

If a minimum is found, it is essential to note that in every data-driven modeling, the
optimized loss function and the underlying data are only a sparse representation of
reality. Therefore, an optimum of any model does not mean that a generally applicable
model was found. Furthermore, it is always essential to test different methods as there
is no algorithm that fits all tasks best [163, 164].

2.4.3.3 Special Hidden Layer

After introducing the general concepts of neural networks (neurons, backpropagation,
gradient descent), the next step is to build the network in detail. In order to achieve
the best possible performance, the neural network has to be designed with care. The
most crucial part, thereby, is to select suitable neural network layers. Distinct hidden
layers and their tunable parameters can be used between network input and output to
tailor the model for a specific problem [98].

The most widely known layer is the fully connected layer (derived from the perceptron
[138]). This layer consists of multiple neurons, and each neuron takes in the output
of every neuron from the previous layer. Afterward, the inputs are scaled with the
corresponding weights, summed up, and modified with the activation function, as
explained above. Therefore, the number of weights is defined by the number of inputs
and number of neurons in the fully connected layer (plus one for each neuron for the
bias). The output size of this layer is then defined by the number of neurons in this
layer. The tunable parameters that can be used to optimize this layer for a specific task
are usually the number of neurons and the activation function. This layer is often used
as a regression or classification layer at the end of convolutional neural networks [98,
165] or to process tabular data in medicine [166].

The convolutional layer [167, 168] (cf. Figure 2.10) is mostly used for computer vision
[169, 170] or speech recognition tasks [171]. This layer’s unique property is that it can
extract local features by sliding a kernel over the input. When sliding over the data, the
kernel is convoluted in each step with the data to extract meaningful features [98]. The
extracted features are based on the kernel weights learned during training (e.g., edges
or slopes within the input image). Figure 2.10 gives an example of such a convolution.
The input data for a convolutional layer usually has three dimensions: x and y resemble
the usual size of the data frame (e.g., picture), and the third dimension represents the
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number of channels (e.g., color channels in pictures). The tunable parameters of such a
layer are the kernel size, striding, padding, and the number of filters. The first parameter
to discuss is the kernel size. This parameter defines the window size regarding width and
height. The kernel is moved over the data based on the second parameter, the striding
size. This parameter defines how the kernel is moved from the upper left corner over
the whole frame. Usually, the striding and kernel sizes are chosen to cover the essential
features best. However, it is possible that the image is not properly/evenly processed
with a specific kernel and striding size. In this case, it is necessary to perform padding at
the edges to cover the image evenly. For padding, different methods are viable: extend
the data by 0 around the edges or copy the pixels at the border. A more complete
summary of padding can be found in [172]. The last parameter that can be tuned for
convolutional layers is the number of filters. Multiple filters lead to multiple independent
kernels to extract different features. More than one filter is reasonable as each filter
usually extracts independent features, generating many additional robust features. The
number of weights in a convolutional layer can be calculated with Equation 2.20. The
parameter xkernel represents kernel size in x direction, ykernel defines the kernel in y, and
numFiltersOut stands for the number of filters present in the convolutional layer.

numW = xkernel × ykernel × numChannelsIn × numFiltersOut (2.20)

The output of a convolutional layer with an Input of 20 × 20 × 3, 100 filters, and a
striding and kernel size of 2 × 2 then has an output size of 10 × 10 × 100 and contains
2 × 2 × 3 × 100 weights and 100 biases.

Another layer is the batch normalization layer, usually used to introduce an additional
regularization effect into the neural network. The layer is placed between two hidden lay-
ers, standardizing each intermediate output independently during training and inference
(subtract mean, then divide by standard deviation). During training, the standardization
is done with the help of the mini-batch and during inference with the previously learned
mean and standard deviation based on the training data. There are two standard
methods for learning the two moments’ (mean and standard deviation) used during
inference. One way is to calculate them during the whole training process with the
help of momentum (similar to the momentum optimizer above) [173]. Alternatively,
the parameters can be calculated in the last epoch in one step [174]. It is important
to mention that Keras, the most commonly used library for DL, uses the first method
[173], while Matlab, which is used for this work, uses the second [174]. This can lead
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Figure 2.10: Example for a convolutional layer with an input image with size 4 × 4, a
kernel size of 2 × 2, a striding size of 1 × 1, and without padding.

to significant differences; however, Matlab performs slightly better. In any case, the
batch normalization layer leads to minimized variance in the output of the neurons
across the network, which eases finding suitable features for subsequent layers [175, 176].
During training, this is especially helpful in reducing the covariate shift. Covariate shift
describes the problem that the input of subsequent layers can be vastly different in
distribution during each training epoch, which slows down the training process due to
large weight changes. Furthermore, the problem of vanishing and exploding gradients
is reduced by always remaining in the sensitive range of many activation functions
[176–179]. A complete explanation of batch normalization that considers the scaling
parameter can be found in [176–179].

Likewise, the Dropout layer [180] is also used for regularisation. Instead of passing all
outputs to the next layer, this layer sets the value of a predefined number of outputs
of a specific layer to zero during training (in every iteration, random outputs). This is
done to force the model to generalize, to not rely on single features, and to adapt to the
general problem [175, 180].
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Although the activation function was already introduced, some libraries (e.g., Matlab
and Keras) allow users to add layers to the network without an activation function. The
activations are later placed separately and can, therefore, be listed as separate layers.

The fully connected layer, convolutional layer, batch-normalization layer, dropout
layer, and activation layer are the layers used within this work. Nevertheless, a complete
list with more details can be found in [181, 182] (e.g., self-attention layer, LSTM - layer,
GRU - layer). After introducing the primary layers, one important property that all
layers with trainable parameters share is the possibility of applying regularization to
the weights. This can be any regularization function [175, 183]. These regularizations
only differ in the way they penalize overcomplicated models. Throughout this work,
a constant L2 regularization is used. L2 regularization keeps the weights of features
within the network small by punishing large weights to avoid getting overcomplicated
models [183]. The alternative L1 regularization can reduce the number of features. L2
can be interpreted similarly to the C parameter of a support vector machine [113]. With
a large C, all the emphasis is assigned to the error, which leads to overcomplicated
models (overfitting). At the same time, a small C tries to minimize the two-norm of the
separating hyperplane, which leads to simpler models.

2.4.3.4 Hyperparameters

When faced with an ML problem, the first step after analyzing the data is finding a
suitable model. The model can be from the classic ML domain like linear regression
[184], and decision trees [116], or from the DL domain like convolutional neural networks
[185]. In any case, the specific hyperparameters of the model should be optimized with
the help of the training and validation data. If one chooses neural networks, the first
step is to find a suitable architecture. It is recommended to search for similar tasks
already solved with neural networks. After the network is specified, the next step is
to optimize the architecture and corresponding hyperparameters to solve the desired
task, which is commonly referred to as neural architecture search [186–188]. Neural
architecture search can include investigating different types of layers, how they are
interconnected, and optimizing the different hyperparameters of the layers. As covered in
this work, architecture optimization only includes finding the optimum number of layers
and their optimal hyperparameters. The hyperparameters optimized are usually the
tunable parameters specified for the different layers and a few training parameters like
learning rate, regularization, and mini-batch size. Throughout this work, the number of
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neurons in a fully connected layer, the number of filters together with the striding and
kernel size in a convolutional layer, the dropout rate, and the initial learning rate are
optimized. For the optimization task, the first step is to find promising ranges for each
parameter (e.g., tune the number of neurons between 100 - 2000). These ranges can
be determined by analyzing networks used for similar tasks or by first testing which
range provides reasonable results on the validation data. After suitable ranges are
defined for all parameters, searching for a suitable network configuration is possible.
One method would be to test every combination (grid-search), which can be extremely
computationally expensive. Therefore, automated hyperparameter optimization should
be used. Examples include random search, gradient-based optimization, or Bayesian
optimization [188]. Previous studies showed that Bayesian optimization can provide
faster and better results than the other methods [187–189]. This study introduces
Bayesian optimization specifically as a higher order ML model that searches through
the predefined ranges of parameters to find the set of parameters that minimizes the
loss of the network. Unlike an exhaustive grid search, Bayesian optimization selects the
most promising set of hyperparameters for subsequent evaluations instead of searching
iteratively through every combination. This ensures that it is possible to find the
optimum as fast as possible, which is crucial for neural networks, where evaluating one
model can already take several minutes, hours, or even days [Paper 1]. The following
explains how Bayesian optimization identifies the most promising candidates for the
subsequent evaluation.

The Bayesian optimization [190–192] first takes a few uniformly distributed guesses
for the hyperparameters and evaluates the neural network with these parameters (e.g.,
Matlab makes four random guesses [193]). A Gaussian process regression model is built
with the help of these four data points and all subsequent evaluations. This regression
model works similarly to kernel regression. However, the main difference is that this
algorithm returns the expected loss value of the network for the selected hyperparameter
and the standard deviation of this prediction. Because the uncertainty is assumed
to be Gaussian, the response of the Gaussian process can be expressed as shown in
Equation 2.21.17 How the Gaussian process regression works in detail is covered in
Appendix A and in the following publications [194–196].

h(x) ∼ N (µ(x), σ(x)) (2.21)

17N : normal distribution; µ: mean; σ: standard deviation.
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After the first few random evaluations, the Gaussian regression model can estimate
the loss of the neural network together with the corresponding uncertainty for all
possible hyperparameter combinations. Thereby, it is possible to quickly evaluate the
Gaussian regression model for many different sets of hyperparameters and identify
the next most promising set of hyperparameters. Convenient methods are here the
lower confidence bound (xbestNext = argminx(µ(x) − 1.95 ∗ σ(x))), or the improvement
probability (how likely is the next point to be better), or the expected improvement
(expected improvement of point x: sum over all possible values smaller than the current
best times probability) [193]. The more complex improvement estimators can also
consider the specific model’s training time or consider a trade-off between exploitation
and exploration.18 A more in-depth explanation can be found in [193], and an example
is given in Figure 2.11.
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Figure 2.11: Example of Bayesian optimization with a Gaussian Process Regression
(GPR) for multiple steps with lower confidence bound (adapted from
[197]).

18Exploitation focuses on the area where it is more likely to find a minimum, while exploration also
investigates unlikely/new areas.
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2.4.3.5 Advanced Methods

It is widely known that DL works quite well for computer vision and large language
models [169–171]. However, deep neural networks are frequently outperformed when
the neural network is trained from scratch (random initialization). Especially, decision
trees can easily outperform neural networks for tabular datasets [118, 198]. However, if
transfer learning is applied, neural networks can again compete with the other techniques
regardless of the form of the data [199]. Furthermore, neural networks suffer from the
image of being impossible to understand because they are mostly seen as black box
models. Therefore, it is crucial to understand the model’s inner workings to build faith
in its capabilities. Consequently, the following paragraphs introduce transfer learning
and Explainable Artificial Intelligence (XAI) for DL models.

Transfer Learning In general, ML aims to find the optimum of the objective function.
However, as no infinite amount of data is available, and the user designs the optimization
function, which only approximates the real world, it is impossible to find the global
optimum. Nevertheless, the more data available, the more general the model can
become. If only a small dataset is available, this can be problematic. In this case, good
performance may be achieved on the training data while the model fails on the test data
(e.g., overfitting [175]). Still, there are methods to find a suitable model quickly with
only a small dataset. One method that has highly improved the prediction quality of
DL models for computer vision and is frequently used to adapt large language models is
called transfer learning [200–202]. For transfer learning, it is not necessary to train a
new model from scratch every time; instead, an existing model trained on a similar task
can be reused by slightly adjusting it (cf. Figure 2.12).

During the standard training process of a neural network, the weights are adjusted
to resemble the optimal projection from input to output. In the case of training from
scratch, the different layers’ weights are randomly initialized (e.g., Glorot initializer
[153]). For transfer learning, the weights of a previously trained network are used as a
starting point. These old weights usually come from a network trained on a similar task
but on a different dataset. The idea is that the underlying function optimized in the
first model is similar to that optimized for the new model (cf. Figure 2.13).

Therefore, it is unnecessary to search the whole space again; instead, restrict the
search to a more focused and efficient region. This is beneficial if only a small training
set is available and the data is only a sparse representation of the underlying data
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Figure 2.12: Transfer Learning: The effect of transfer learning for different hyperpa-
rameters and number of training samples. Reprinted with permission
from Ref. Paper 2. Y. Robin, 2023.
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reduced, and only limited data is available.

distribution. The restriction is usually done by limiting the learning rate (fine-tuning)
or freezing some weights. An example is shown in Figure 2.13. For larger learning rates,
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the subsequent point reached through backpropagation is far from the starting point set
by the weights of the old model. Small learning rates show that if a suitable starting
point is chosen, it is possible to achieve good results by only adapting slightly to the
new training samples.

Of course, multiple methods from the field of transfer learning have their origin outside
of neural networks and can, therefore, be applied to classical ML and DL (e.g., Direct
Standardization (DS) [73] or instance weighing [203]). However, they do not perform as
well as transfer learning from the field of DL.

Explainable AI The problem with overcomplicated neural networks is that they tend
to be hard to understand. This is unacceptable for some areas that concern human
safety or health (e.g., self-driving cars or medical diagnosis [204–206]). Therefore, XAI
methods have been developed to understand the dependencies between input and output.

For the classical ML methods (e.g., FESR), the features most correlated with the
target or interfering disturbances are easy to extract and understand. This is much
more difficult for neural networks because the feature extraction happens internally and
can not be easily accessed. Thus, new methods have to be developed to get a more
sophisticated understanding of the internally extracted features. These methods can
generally be divided into black box and white box explainer [207]. Black box explainers
do not interfere with the model’s inner workings but determine the relevance score based
on the input and output of a ML model. These methods have the benefit that they
are not restricted to neural networks but can be used with every model. White box
models, on the other hand, take the model’s inner workings into account to determine
in which part of the input most of the information is hidden. A few examples are Local
Interpretable Model-Agnostic (LIME) [208], occlusion map (occlusion sensitivity) [167],
Class Activation Maps (CAM) [209], Gradient Attribution Map (gradient map) [210],
and their derivatives, to only name a few. In the following, the methods used within
this thesis are explained in more detail. One frequently used method in computer vision
is called occlusion map/occlusion sensitivity (cf. Figure 2.14) [167]. This black box
method slides a cover over the image, and the image is reevaluated at each position.
The difference between the prediction with occlusion and the original is calculated,
determining the importance score (IS) (cf. Equation 2.22, 2.23).

IS = Poriginal − Poccluded(classification) (2.22)
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IS = |RVoriginal − RVoccluded

mean(RVtraining) |(regression) (2.23)

The cover usually has a size of a × b, where a represents the number of vertical pixels,
and b represents the number of pixels in the horizontal direction of the cover. The user
usually determines these values specifically for the use case. Furthermore, the elements
within the cover to occlude the image can have multiple values. Either they replace
the original values in the occluded area with a constant value (e.g., grey in picture
classification), or they replace the original value with the expected value for that pixel
(generated from training data) [167, 211, Paper A]. The cover is moved over the picture
based on the striding size (similar to convolutional layers). The striding size determines
the distance the cover is moved over the picture in one step. In the example of a striding
of 5 × 10, the cover would first be moved in the x direction (10 pixels per step) until it
hits the border, then moved 5 pixels down and back to the left of the image. After that,
the cover is again moved in the x direction. With every pixel covered, the process is
finished. Similar to the cover size, the striding depends on the use case.19 This process
results in an occlusion map smaller than the original picture with or without padding.
Therefore, interpolation is needed to bring the occlusion map back to the original form,
which then resembles an importance score of every pixel.

-0.2

0

0.2

0.4

Raw image (224 x 224)

Egyptian cat: 52 %

Occlusion map

Figure 2.14: Example of an occlusion map for computer vision. The task was to identify
the object in the picture and to identify the most important sections for
that prediction (adapted from [211, 212]).

19If the cover and striding size do not fit perfectly, it is possible to perform padding.
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Another promising method is gradient map [210, 213]. This method works as a white
box explainer. The gradient through the network regarding a specific input instance
concerning the class or regression output is calculated. This can be written as shown in
Equation 2.24 [210, 213, 214]. Thereby, IS represents the importance score, RO, the
output layer, I, the input, and S, the specific input instance. The higher the gradient
of the particular pixel, the more critical this pixel is for the prediction. However, this
method can lead to noisy importance scores, and therefore, the resulting gradient map
is smoothed with a moving average filter. As for the occlusion map, the filter size is
specific to the use case.

IS = ∂RO

∂I

∣∣∣∣∣
S

(2.24)

An extension of this algorithm is called Grad-CAM [215] (Gradient-weighted Class
Activation Mapping). In this method, the gradients are not calculated back to the inputs
but to the last convolutional layer. That means an importance score for the output of
the last convolutional layer is calculated. Since this layer has positional encoding and
resembles a specific feature of the input (every filter resembles a feature), it is possible
to map the importance score of these feature maps back to the input. Therefore, the
feature maps are multiplied by the importance score and added to represent a smaller
image with an importance score. Then, the weighted feature map (usually much smaller
than the original picture) is rescaled to the original size, which results in an importance
score for every pixel from the original image, as shown in Figure 2.15.

0 1 8 9

Input Layer

2D Convolution
+2D BatchNorm

ReLU Layer

Output  Regression
(mean-squared-error)

Fully Connected

1 2
Dropout Layer

IS = ∂RO
∂I S

9

Multiply
Accumulate

Rescale

Figure 2.15: Overview of Grad-CAM that illustrates the calculation of the importance
scores (adapted from [215]).

So far, the introduced methods only give insight into the importance score of a single
instance. These methods are called local explainers. They work exceptionally well for
pictures where it is known which features the neural network should look at, as a human
can confirm it. However, this is impossible for sensor calibration because it is unknown
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in which part of the signal the information is embedded. Therefore, these methods
need to be extended to make global interpretations. Thus, the following method from
local to global is used [216, 217]. The mean scores across the independent instances
are calculated, as the region of importance is expected to stay consistent despite the
regression output. Therefore, it should be possible to identify the most crucial part for
sensor calibration. However, a verification scheme is necessary since this task is much
more challenging to verify by a human, compared to pictures where it is known which
features are important [Paper A].

2.5 Data-Driven Sensor Calibration

Every sensor needs proper calibration before it can be accurately used. However,
calibration is especially important for MOS gas sensors because the relationship between
sensor response and gas concentration is much more complex than for other sensors like
temperature sensors [24]. This is because of two points. First, the MOS gas sensor is
based on a chemical process prone to many disturbances. Second, the MOS gas sensor
does not directly measure a specific gas concentration; instead, the sensor’s resistance
is measured under different conditions, and thereby, an indirect measurement is used
to estimate the gas concentrations [18, 23]. The following calibration approach varies
depending on the form of the data on hand and the ML task. For example, if only the
static sensor responses are available, boosted decision trees might be the best option
[55]. If the dynamic response of the sensor can be used, a DL model might be favorable
[Paper 1]. However, the principles are the same for any gas sensor. First, an observation
that is later used for model building needs to be defined. In the specific use case of the
MOS gas sensor operated in TCO, an observation consists of all samples recorded from
all sub-sensors from one sensor during a complete TC. An example of one observation
is presented in Figure 2.16.

In this instance, the TC consists of twelve high and low-temperature steps, and the
sensor response is sampled at 10 Hz (duration 144 s). The high-temperature steps are
always set to 400 °C (duration of 5 s), and the interlaced low-temperature steps are
increased from 100 to 375 °C in 25 °C steps (duration of 7 s). This specific shape is used
because the sensor is "reset" at high-temperature phases (covered with oxygen), and
different gases react with the sensor at different low-temperature phases. An exception
is sub-sensor 3, which is only modulated between 300 °C and 200 °C. In this case,
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one observation consists of a 4 (sub-sensors) × 1440 (samples) Matrix, which can be
displayed as an image (cf. Figure 2.17).

Temperature Cycle Sub-Sensors 0 - 2 Temperature Cycle Sub-Sensor 3
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Figure 2.16: Example of the sensor signals from an SGP40 (Sensirion AG, Stäfa,
Switzerland [218]) with four sensor pixels sampled at 10 Hz. Reprinted
with permission from Ref. Paper 2. Y. Robin, 2023.
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Figure 2.17: Example of the sensor signals displayed as an image from an SGP40
(Sensirion AG, Stäfa, Switzerland [218]) with four sensor pixels sampled
at 10 Hz (adapted from Paper A).

The following calibration can be understood as building the data-driven model that
learns the dependencies between raw sensor signal and target gas concentration based
on multiple observations during training (cf. Figure 2.18).
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Figure 2.18: Evaluation pipeline for ML algorithms.

The model that learns the dependencies between input and output can be from the
FESR or DL domain. In any case, the model is later used in real-world operations to
estimate single gas concentrations. The following subsections discuss the challenges
faced with MOS gas sensor calibration and the state-of-the-art approaches to solve these
challenges in more detail.

2.5.1 Challenges for Sensor Calibration

2.5.1.1 Calibration Time

One of the main reasons MOS gas sensors are not yet widely used to predict single
harmful VOCs for accurate IAQ monitoring is that an extensive calibration is necessary.
It was shown in [15] that a calibration time of multiple weeks is needed to accurately
measure harmful VOCs at ppb level. Because of the lack of selectivity [19, 219] and
stability [220], even more, training samples are required for building a stable model
under a wide variety of conditions [24, 221]. Furthermore, each sensor needs to be
calibrated individually because of the manufacturing tolerances of the sensor itself or the
temperature shifts in the micro hotplate (sensor to sensor variance) [222]. Although the
manufacturers try to reduce this scattering, every sensor still needs multiple weeks of
calibration. This extensive calibration is not suitable for commercial applications. First,
the long calibration times would require massive GMAs that can calibrate hundreds of
sensors simultaneously; otherwise, the amount of calibrated sensors would need to be
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massively reduced. Second, the amount of gas essential to calibrate multiple sensors for
several weeks is costly for the manufacturers. Furthermore, it is not fully understood how
many different gas mixtures a model needs to have seen and which mixtures are necessary
for the specific use cases before the model is accurately calibrated [223, Paper 2].

2.5.1.2 Drift

Another massive problem of MOS gas sensors is that they are based on a physical-
chemical process. This fact in itself is not a problem. However, these processes tend to
be not fully reversible. Therefore, MOS gas sensors tend to drift over time [224]. Drift
can be described by the sensor changing its inner properties over time, thereby making
the calibration partially obsolete. The extent of this problem can be emphasized by the
number of research articles published on this topic [20, 21, 25, 73, 225]. The drift can
be identified when the sensor is operated after multiple weeks in the same condition
as calibrated before. The measured resistance will be different from the beginning.
Figure 2.19 illustrates the quasi-static signal of the sensor operated at 400 °C.
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Figure 2.19: Example of drift for the four sub-sensors of an SGP40 over 70 days.
Different sub-sensors show a different severity of drift over time (@ 400 °C).
Data used for visualization from [226].
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It can be seen that the resistance changes over time, especially when analyzing the
early operation of sub-sensors 0, 1, and 3. For these sub-sensors, it is possible to see
a steep increase in resistance. The first drastic change is associated with burn-in, not
the normal drift over time. However, it shows the challenges faced when building a
data-driven model that needs to be stable over multiple months. While the problem of
the burn-in effect can usually be bypassed by operating the sensor for a more extended
period in normal atmospheric conditions before calibration [227], this is not applicable
for drift. Although it can be seen that the increase in resistance over time is minor,
after some time, it still can be observed and will definitely influence the data-driven
model. Likewise, it can be assumed that this drift over time also affects the dynamic
response, making it harder to find a robust model.

The severity of the difference between a prediction of a linear ML model (PLSR) right
after the training and after several weeks can be seen in Figure 2.20. The prediction
after 30 days shows a significant offset and a different slope (the sensor’s sensitivity
might be altered). More complex models can even amplify this effect since they tend
to show nonlinear effects as well [Paper 1]. Currently, the state-of-the-art approach to
tackle this problem is to use the sensor only as long it is within the specified calibration
time or recalibrate the model after several weeks, which is unsuitable for commercial
applications for the same reasons as long calibration times.
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Figure 2.20: Example of how drift over time can influence the prediction accuracy;
offset and slope can be altered (adapted from [Paper 1, 15]).
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2.5.1.3 Poisoning

Poisoning can be defined as the sensor surface being altered so that oxygen or other
oxidizing gases cannot adsorb at the surface [220, 228]. This implies that the sensor can
no longer be used since the sensor is no longer sensitive to the target gas, or the sensor
response is altered, so a recalibration is necessary. It was shown in [228] that poisoning
with siloxane can help to make a MOS gas sensor more selective to hydrogen but also
eliminates the sensitivity of the sensor towards multiple VOCs. The major drawback
of poisoning of MOS gas sensors is that it can always happen, and it can happen very
quickly. After poisoning, the sensor response is irreversibly changed, and the calibration
is inoperable. Therefore, every calibration model should be able to detect poisoning and
signal that something unusual has happened. The difficulty is distinguishing between
novel gas mixtures and sensor poisoning. There are already publications addressing
sensor poisoning and how it can be dealt with [220, 229, 230]. One example shows that
it is possible to detect sensor poisoning for MOS gas sensors operated in TCO [231, 232].
This thesis only covers sensor poisoning in the Outlook section regarding future work
and how it may be approached but does not provide a novel solution.

2.5.2 State-Of-The-Art

The following subsections introduce state-of-the-art methods to calibrate gas sensors
and solve the issues mentioned above. These methods were previously developed and
described in various publications [16, 25, 27, 53, 68, 69, 121], where they have proven to
be suitable.

2.5.2.1 Calibration

One established approach to build a data-driven regression model for calibrating a MOS
gas sensor is called the FESR approach. This approach is widely used under different
names and describes the general feature extraction, selection, and regression process.
The raw sensor data is transformed into features, and the most important features are
further used together with any regression algorithm to predict the gas concentration [15,
24, 233–235]. They mainly differ in the feature extraction methods (e.g., linear segments,
derivative, time of dynamic processes, min/max values [53]) and the final regression
method (e.g., linear regression, PLSR, XGBoost) [121]. A different approach uses a
regression algorithm directly on the raw sensor signal without feature extraction. This
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is especially successful when analyzing tabular data (e.g., electrochemical sensor arrays)
[55, 236]. Another suitable calibration strategy for gas sensors is to perform classification
instead of regression by either classifying specific concentrations or differentiating
between harmless and harmful concentrations. For this task, it is again possible to
apply feature extraction, selection, and classification or use classification directly on
the raw data of a sensor array. For classification, the most popular approaches are
k-nearest neighbors (k-NN), support vector machines (SVMs), or simple artificial neural
networks, as demonstrated in [236]. A recent review from 2022 by Sagar et al. [121]
summarized the most recent developments regarding gas sensor calibration. In this
thesis, the FESR toolbox is partially used to generate a baseline accuracy to rate all
results based on state-of-the-art methods. The features are extracted with the help of
the methods introduced above (Fourier transformation, adaptive linear approximation,
wavelet transformation, principle component analysis, or statistical moments (with mean
and slope)). Afterward, the features are pre-selected with the help of Pearson correlation
and further reduced in an iterative process with the help of recursive feature elimination
least squares regression. The final regression is performed with PLSR with varying
components [15]. However, the detailed model-building approaches are introduced in
the corresponding papers.

2.5.2.2 Calibration Transfer

As previously mentioned, one of the major drawbacks of MOS gas sensors is that due
to manufacturing tolerances (e.g., differences in a micro hotplate, different doping), it
is not possible to reuse the calibration model of one sensor [25, 73, 237–239]. This
consequently leads to prolonged and independent calibrations, which are costly in terms
of money and time. Therefore, multiple approaches for calibration transfer have been
developed to reuse the same model across sensors to reduce the required calibration
time. The task is usually defined by transferring the calibration model between master
and slave sensors (calibration transfer). Thus, a large dataset of the master sensor and
a smaller dataset from the slave is available. Within the large calibration dataset from
the master sensor, the master sensor system is exposed to many different calibration gas
mixtures. The smaller transfer dataset from the slave sensor contains only the sensor
responses from a subset of the calibration mixtures. The goal is to achieve the best
possible accuracy for the slave sensor on additional, independent test data [25, 73].
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The following introduces the general principles of the most popular methods for
calibration transfer. One approach is called signal standardization and aims to match
the signal of multiple independent sensor systems to get the same response across devices.
In this case, the task described above is solved by building an initial model with the
available data from the master sensor. Afterward, a projection is created between master
and slave responses that modify the slave responses so that after projection, the slave
response resembles the master responses (cf. Figure 2.21) [73, 239].
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Figure 2.21: a) Differential signal between original and adapted signal. b) Sensor
response of the master sensor, the initial sensor response from the slave
sensor, and the adapted signal from the slave sensor (Direct Standardiza-
tion (DS) and Piecewise Direct Standardization (PDS)). Only a section
(0 s - 25 s) of one Temperature-Cycle (TC) is shown for better visibility,
and only the signal of sub-sensor 1 is shown. Reprinted with permission
of Ref. Paper 3. Y. Robin, 2023.

In the gas sensing community, signal standardization is the most popular method
for calibration transfer. Within signal standardization, many different methods were
developed, e.g., Direct Standardization (DS) [240], Piecewise Direct Standardization
(PDS) [241], windowed piecewise direct standardization [242], standardization error-based
model improvement [242], and many more. All of these algorithms build another ML
model that is able to learn the projection and predict the expected master response based
on the slave sensor response. The most significant differences are the ML techniques

47



Data-Driven Sensor Calibration

used to standardize the data (e.g., multi-linear regression, PLS2, neural networks) and
the number of samples used within an observation (e.g., Direct Standardization (DS) vs.
Piecewise Direct Standardization (PDS)) in order to predict the corresponding samples
in the master space [25, 235, 243, 244]. Similar to this approach, methods like orthogonal
signal correction [245] and general least squares weighting are used [73] to project the
master and slave response in a new sub-space to suppress inter-sensor variance in the
signal. Another more high-level approach to solve the task of calibration transfer is
to build the initial model with the calibration data from the master sensor and then
apply the data from the new sensor to this model. This results in having the target
and the new response from the initial model. With this, it is again possible to build a
data-driven model that uses the newly predicted target as input and the original target
as the output target. In this way, it is possible to learn the dependencies between the
two devices (Equation 2.25) [246].

ynew = c ∗ ypredicted + b (2.25)

A fourth approach for calibration transfer is global modeling. In this case, the
calibration data from multiple master sensors is used to build the initial model. Global
modeling can help since there is a broader variety in the data, and thereby, more general
models can be found that can be used directly with new slave sensor systems [55, 233].
Finally, there is model expansion. For this method, the initial model is built with the
data of the master sensors and with the data of the slave. Compared to global modeling,
an essential addition is that additional samples are weighted to ensure the model focuses
explicitly on the new samples from the slave sensor [247]. Different methods have been
developed for this task. Weighting can happen by duplicating the slave responses to
have them multiple times within the training dataset. Another approach is to adapt
the loss function to punish an error more severely for the transfer samples (Tikhonov
regularization [248] or joint-Y partial least squares regression [249]). A review from
2012 from Marco et al. [235] and 2018 from Rudnitskaya [25] showed the principle of all
these approaches.

However, since most of the methods have only been tested and described in their
respective publication, as stated by Rudnitskaya [25], only those most widely used
are further introduced and later used for comparison. For chemical sensing, signal
standardization methods are the most widespread approaches. By Fernandes [237] and
Fonollosa [73, 239], it was shown that DS and PDS could outperform orthogonal signal
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correction and generalized least squares regression. Therefore, the two methods from
the field of signal standardization are introduced in more detail. Compared to other
implementations, the focus lies on the implementation based on multi-linear regression
[240]. The multi-linear multi-variable problem is illustrated in Equation 2.26 [73, 240].

Xnew
slave = C ∗ Xold

slave (2.26)

Parameter C is thereby learned, based on Equations 2.27, 2.28.

Xold
master = C ∗ Xold

slave (2.27)

C = Xold
master ∗ (Xold

slave)+ (2.28)

The only difference to linear regression is that C is not a vector but a matrix due to
the target having more than one dimension. An extension to this approach does not use
the entire slave sensor response at once to predict a specific master response but instead
only a part of the raw signal (PDS [241]). The theory is that with a smaller section to
transform and fewer dependent variables, the inversion of the response matrix should be
more reliable (Equation 2.29 [241]).

CS×o;z = (Xold
Master;S×o)z ∗ (Xold

Slave;S×o)+
z (2.29)

In this case, C is calculated on smaller sub-sets of dimension Ro×S. S stands for the
number of samples used within one observation, while o stands for the size of the transfer
set. Moreover, z represents the number of sections the original signal is divided into.
The complete C is then constructed by placing the independent Cs on the diagonal of a
matrix, as shown in Equation 2.30.

C =



CS×o;1 0 · · · 0
0 . . . ...
... 0
0 · · · 0 CS×o;z

 (2.30)

Although the above-mentioned methods can significantly reduce the calibration time,
they still do not provide the needed decrease in calibration time for accurate quantification
of single VOCs. Currently, around 20 UGMs are required to reach acceptable accuracy,
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but more than five gas tests are not suitable for commercial application (no GMA
needed). This thesis, therefore, aims to develop a method that is capable of surpassing
the existing methods for calibration time reduction to make MOS gas sensor viable for
accurate IAQ monitoring.

2.5.2.3 Drift Compensation

Another major drawback of MOS gas sensors or chemical sensors, in general, is that
they are prone to irreversible effects. That means the electrical property of the sensor
may change over time. This is usually called sensor drift and can be observed for
near-infrared spectroscopy [238] and other chemical sensors [25]. A paper from 2022
addresses the cause of sensor baseline drift from the chemical perspective and suggests
a few possible solutions on the sensor side [224]. However, this work focuses on the
methods to reduce the impact of drift from the data science perspective. In the case
of drift, data is available from the sensor’s starting state to build the initial model.
Additionally, test data is available from the same sensor after multiple weeks. For
gas sensors, it is often the case that the initial model can no longer be used as the
prediction will be inaccurate [25]. The review papers of Rudnitskaya [25] and Sagar
[121] show several methods that have been proven helpful for drift counteraction. One
approach assumes that the drift can always be found in the same direction for multiple
sensors. These methods, therefore, try to find the direction of drift in the raw signal
and then try to remove this effect. One example could be component correction [22].
They use PCA with reference samples from the starting state and reference samples
from later in time (similar to orthogonal signal correction [245]). The first component is
now believed to contain the variation caused by drift. Therefore, the first component
can then be subtracted from the raw signal to be still able to use the initial model.20

Similarly, it is also possible to identify specific features resistant to drift [53]. The ML
model is then only trained on the new features, which results in drift-resistant models.
Another successful method that works similarly, is slope and bias correction. This
method is closely related to the time series domain. In this case, the time information
when a sample was recorded is available (previous samples are known with the target).
Therefore, the raw signal can be corrected if it is known how drift manifests in the
sensor, or it can be used to correct the actual predictions to reduce the drift. Multiple
methods have been developed. Examples are autoregressive moving averages, Kalman
20A few more advanced methods have been developed, e.g., correlated information removing based

interference suppression (CIRIS) [250].
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filters [251], or methods based on recurrent neural networks combined with ensemble
methods [252]. The last subset of methods for drift compensation is global model
building. As for calibration transfer, the approach uses multiple sensors (different ages)
for model building, and the goal is to find a model that can already compensate for
drift as drift-resistant features are extracted. Similar to calibration time reduction, the
improvement still seems insufficient for broad MOS gas sensor deployment. This might
be the case because they usually require frequent reference samples, the models can not
be transferred between use cases, and they also suffer from sensor-to-sensor variation.
In this thesis, drift is only briefly covered. Therefore, the baseline approach to rate the
performance is global model building, as this is reasonably easy to implement. Moreover,
global modeling is most suited for the datasets dedicated to drift because calibration
samples are only available for a certain amount of time before the sensor is again used
in the field. Hence, evaluating other methods with the dataset is not easily possible.21

2.5.2.4 Neural Networks for Gas Sensor Calibration

Another standard approach for calibrating gas sensors is to use neural networks. Neural
networks are used because they are popular and can outperform classic ML algorithms
[236, 253]. The way neural networks are applied for gas sensor calibration varies
extensively. For dynamically operated gas sensors, convolutional neural networks
[Paper 1, 223, 254, 63, 255], or recurrent neural networks [256] are frequently used. Also,
feature extraction and selection can be used to create tabular data and subsequently use
fully connected neural networks or special tabular data neural networks [236, 252, 257] for
regression or classification. Besides the application for sensor calibration, neural networks
are also used directly for drift compensation by generating domain-independent features
[258, 259]. Furthermore, long short-term memory neural networks in combination with
ensemble learning [252] are used to reduce drift over time. They have also been shown
to work slightly better in sensor-to-sensor generalization [253] and are already used
for simple calibration transfer methods (e.g., different target beverages) [260]. Finally,
neural networks in combination with XAI have been used to gain information about the
importance of pre-calculated features [261]. Compared to the mentioned publications,
this thesis shows the use of convolutional neural networks to calibrate a MOS gas sensor
for a regression task and apply transfer learning to perform sensor-to-sensor recalibration
and use XAI method on the raw signal to validate the results all at once. Furthermore,
21Some of those approaches can also be used to deal with sensor poisoning. However, they are also not

yet used in larger commercial applications.
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the exceptionally complex IAQ datasets validate the significance of the results and show
that the introduced methods can be used to tackle the most important tasks for MOS gas
sensing. However, directly comparing all already existing neural network solutions with
the newly proposed methods is problematic as these approaches are often incomparable.
Some publications exclusively try to achieve the best possible performance with the help
of neural networks and rarely try to shorten the calibration time, reduce sensor-to-sensor
variance, or use raw data from TCO in the use case of IAQ monitoring. This problem is
further amplified by different datasets for different use cases with many different gases
and sensor operation modes. Therefore, the approach developed within this thesis is
only compared to the state-of-the-art approaches, and the comparison with other DL
methods should be part of future research.
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3 Results and Discussion

3.1 Results and Discussion: Introduction

Within the following publications, the TCOCNN is developed to investigate the benefits
of deep neural networks and advanced methods from the field of DL for gas sensor
calibration and evaluation in the realm of IAQ monitoring. The TCOCNN is a custom
convolutional neural network tailored explicitly for calibrating MOS gas sensors operated
in TCO. For model building, DL was chosen as advanced methods like transfer learning
can significantly leverage the prediction quality. For the architecture, a convolutional
neural network was selected since the gas sensor response can be interpreted similarly
to an image, and those networks have proven well-suited to extract specific features for
computer vision. The TCOCNN consists of multiple convolutional layers followed by
two fully connected layers, as illustrated in Figure 3.1. The input of the TCOCNN is an
image (cf. Figure 2.16). The picture has the dimensions of n × m, where n represents
the number of sub-sensors or sensors within a sensor array, and m defines the number
of samples in one observation. An example of this can be seen in Figure 2.16. In this
example, one SGP40 with four sub-sensors in TCO (144 seconds @ 10 Hz) was used,
which resulted in a 4 × 1440 input matrix. For the output, a single output neuron is
usually used to predict a specific target gas concentration.22

Besides the general structure of the network, the TCOCNN has many parameters
that were static during every evaluation in the following papers to make them more
manageable. Static parameters were the solver (Adam), the L2 regularization (0.0001),
the learning rate schedule (drop learning rate by 0.9 every second epoch), the number
of epochs (75), and the mini-batch size (50 observations). Furthermore, the shape of
the convolutional layers after the first two layers was fixed23, the ReLU and Batch

22Predicting multiple gases is possible with more than one neuron in the output layer.
23Odd convolutional layer: kernel 2 × 1; striding 2 × 1; even convolutional layer: 1 × 1; striding 1 × 1;

number of filters doubles every second convolutional layer.
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0 1 2 3 4 5 6 7 8 9

Input Layer 2D Convolution
+2D BatchNorm

ReLU Layer Output  Regression
(mean-squared-error)

Fully Connected

1 2

Dropout Layer

Figure 3.1: Neural network architecture of the TCOCNN (adapted from [262]). An
example configuration with ten convolutional layers (later optimized).
Reprinted with permission from Ref. Paper 2. Y. Robin, 2023.

normalization was the default of Matlab, no normalization within the input layer was
utilized, and only one output neuron was used.

However, many other hyperparameters were tuned throughout the papers with the
help of Bayesian optimization to reach optimal performance for predicting the target gas
(cf. Table 3.1). One of the parameters picked for optimization was the initial learning
rate of the Adam solver. This parameter was varied between 10−5 and 10−3 to adapt to
changing complexity (e.g., number of neurons). Another parameter that was tuned was
the number of convolutional layers. This parameter was varied between 6 and 12, but
only an even number of layers could be chosen.

Table 3.1: One example for possible hyperparameter ranges for the TCOCNN (adapted
from Paper 1).

Initial Learn-
ing Rate
(Log Scale)

Number of
Filters (First
Two Layers)

Kernel Size
(First Two
Layers)

Stride Size
(First Layer)

Dropout Number of
Neurons
(FC)

×10−5 - ×10−3 10 - 100 15 - 100 5 - 35 30 - 50 % 500 - 2500

Additional parameters tuned with Bayesian optimization were the number of filters,
the kernel, and the striding size of the first two convolutional layers. The number of
filters was chosen between 10 and 100, the kernel size was varied between 15 and 100,
and the striding size was varied between 5 and 35. This was done because the features
changed slightly depending on the target, and multiple different features were needed.
Another critical parameter that varied was the dropout rate. Although, in theory, the
batch normalization layer replaces the need for a dropout layer, we found that it still
positively affects the overall performance. The last parameter adjusted was the number
of neurons in the second to last fully connected layer since this parameter significantly
impacts accuracy.

54



Results and Discussion

Within the following publications, the TCOCNN is tested with various IAQ datasets.
Those datasets consist of a selection of VOCs, carbon monoxide, hydrogen, and a wide
variety of humidity as typical interference. The specific datasets are introduced within
the respective paper, and a rough overview is given in Table 3.2.

Table 3.2: Rough overview of the complexity of the datasets used in the respective
paper [Paper 1, Paper 2, Paper 3].

Paper 1 Paper 2 Paper 3
Sensor SGP30 SGP40 SGP40

TC duration 120 s 144 s 144 s
Humidity 25 - 70 % RH 25 - 80 % RH 25 - 75 % RH

Carbon monoxide 150 - 2000 ppb 100 - 2000 ppb 200 - 2000 ppb
Hydrogen 400 - 4000 ppb 400 - 2000 ppb 400 - 2000 ppb
Acetone 14 - 1000 ppb 3 - 500 ppb 0 - 1000 ppb
Ethanol 4 - 1000 ppb 1 - 500 ppb 0 - 1000 ppb

Formaldehyde 1 - 400 ppb 1 - 300 ppb 0 - 600 ppb
Toluene 4 - 1000 ppb 1 - 250 ppb 0 - 2000 ppb

Acetic acid - 1 - 500 ppb 0 - 1000 ppb
Ethyl acetate - 1 - 500 ppb 0 - 1000 ppb
Isopropanol - 1 - 500 ppb 0 - 1000 ppb

Xylene - 2 - 500 ppb 0 - 1000 ppb
Acetaldehyde - - 0 - 1000 ppb

Limonene - - 0 - 300 ppb
n-hexane - - 0 - 1000 ppb

Regarding the computational cost, it has to be stated that during training and
inference, the TCOCNN is much more costly. In a simplified evaluation stack based
on the FESR approach (raw signal same as in Figure 2.16), the computational cost
during inferring can be summarized as follows. For feature extraction, the sensor signal
is split into 144 segments, and the mean and slope are calculated for each segment. This
basically results in no parameters to be stored and a total of roughly 30000 multiply-
accumulate operations during inference. For the final model building, a PLSR with 20
components is chosen, which leads to 1153 parameters to be stored and 1152 additional
multiply-accumulate operations during inference. This means a total of 1153 parameters
need to be stored, and approximately 31000 multiply-accumulate operations need to be
performed. Compared to this approach, an average TCOCNN has 10 million parameters
and requires 100 million multiply-accumulate operations during inference. It still might
be possible to calculate a single output of a TCOCNN in 2 minutes, but this would
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require a microcontroller that can perform 100 million multiply-accumulate operations in
two minutes and store more than 50 megabytes of variables.24 Although the TCOCNN
is more costly in terms of computational cost, it is still expected to help tackle some of
the main challenges regarding MOS gas sensors.

The goal of this thesis is to develop a viable calibration scheme for IAQ monitoring
by tackling the main challenges for MOS gas sensors. The primary target is drastically
reducing the calibration time and sensor-to-sensor variance to make it feasible to quickly
calibrate MOS gas sensors to predict single harmful VOCs with the TCOCNN for
IAQ applications (laboratory and field). The remaining drawbacks of drift over time,
sensor poisoning, and unknown interfering gases are only briefly discussed and should
be analyzed in future research.

The following main questions are tackled in the subsequent publications:

• Is the TCOCNN capable of predicting the concentrations of different VOCs?

• Can the TCOCNN outperform the FESR approach in normal sensor calibration?

• Does the TCOCNN still show acceptable results in real-world environments?

• Is it possible to significantly reduce the calibration cost for IAQ monitoring with
calibration transfer based on DL methods (transfer learning)?

• What are all the hyperparameters for transfer learning that significantly influence
the calibration transfer?

• What is the effect of global model building for initial model building on transfer
learning?

• How does calibration transfer based on transfer learning perform compared to
state-of-the-art methods?

• Can XAI from DL help to better understand the sensor or the used TC?

• Is it possible to transfer all the insights about the TCOCNN to other domains
like condition monitoring?

24Estimates are based on the mathematical equations for the corresponding model [125, Paper 1].
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3.2 Paper 1 – High-Performance VOC Quantification for
IAQ Monitoring Using Advanced Sensor Systems
and Deep Learning

Y. Robin, J. Amann, T. Baur, P. Goodarzi, C. Schultealbert,
T. Schneider, A. Schütze
Lab for Measurement Technology, Saarland University, Campus A5 1, 66123 Saar-
brücken, Germany

Atmosphere 2021, 12(11), 1487;

The original paper can be found in the online version at https://www.mdpi.com/1351366
or DOI: https://doi.org/10.3390/atmos12111487

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open-access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (ht tp : // cr ea ti ve co mm on s .o rg /l ic en se s/ by /4 .0/ ). Reprinted, with
permission, from Y. Robin, J. Amann, T. Baur, P. Goodarzi, C. Schultealbert, T. Schneider,
A. Schütze; High-Performance VOC Quantification for IAQ Monitoring Using Advanced Sensor
Systems and Deep Learning; Atmosphere 2021.
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Paper 1

3.2.1 Synopsis

The first paper introduces the TCOCNN as a specifically tailored CNN for gas sensor
calibration and evaluation. In an initial test, the performance of the TCOCNN regarding
general accuracy, field test capabilities, and stability over time was tested and compared
to state-of-the-art FESR methods. The dataset to test the newly developed model was
first published in [15] and contained data from the laboratory and field. The laboratory
samples were recorded with a custom Gas Mixing Apparatus (GMA) under constant
flow that allows mixing two background gases, four VOCs, and varying the relative
humidity. The two background gases were carbon monoxide and hydrogen, while acetone,
toluene, formaldehyde, and ethanol were used as VOCs. The dataset consisted of three
calibration phases interlaced with two field tests. Multiple UGMs were recorded during
each calibration phase for sensor calibration. Every UGM was constructed with the help
of Latin hypercube sampling, and the uniformly distributed gas concentration ranges
given in Table 3.3.

Table 3.3: Concentration ranges for all gases within gas mixtures during the calibration
phases. Reprinted with permission of Ref. [15, Paper 1]. Y. Robin and
T. Baur, 2023.

Substance Min. Max. Extended
Carbon monoxide 150 ppb 2000 ppb -
Hydrogen 400 ppb 2000 ppb 4000 ppb
Humidity 25 % RH 70 % RH -
Acetone 14 ppb 300 ppb 1000 ppb
Toluene 4 ppb 300 ppb 1000 ppb
Formaldehyde 1 ppb 400 ppb -
Ethanol 4 ppb 300 ppb 1000 ppb
VOCsum 300 ppb 1200 ppb -

During the first two calibration phases, 100 UGMs were recorded, with every gas in
the normal range and an additional 100 UGMs per gas in the extended range. The third
calibration phase consisted of 200 additional UGMs where some gases were exchanged,
and the remaining gases were within the normal range. During each of the 1200 UGMs,
ten TCs were recorded, and five TCs per UGM were available in the final dataset.25 For
the field tests, the sensors were operated in an office over multiple weeks. Field tests are
necessary to test the calibration models in real-world environments. During operation in
the field, release tests were performed to validate the models and to test their capability
25The recording of one UGM took 20 minutes in this case.
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to detect relative changes. For the release tests, controlled amounts of acetone, toluene,
ethanol, isopropanol, and hydrogen were released. The SGP30 gas sensor used within
this dataset is similar to the one shown in the theoretical background section. As before,
the four gas-sensitive layers of the sensor were operated in TCO. The TC used for
this dataset consisted of ten high and low-temperature steps. During high-temperature
phases, the sensor was always heated to 400 °C, and the low-temperature phases ranged
from 100 - 375 °C in 25 °C steps, where the temperatures 225 °C and 250 °C were left out.
The first goal was to find the optimal hyperparameters for the TCOCNN. The parameter
optimization was done with the entire first calibration and the first 100 UGMs from the
second calibration (total of 600 UGMs). The training, validation, and test split was
based on complete UGMs in 70/10/20 fashion. The model was optimized with Bayesian
optimization using training and validation data. A suitable model with a reasonable
RMSE was found for every gas in the dataset. After hyperparameter optimization, the
influence of the number of observations per UGM and independent UGMs on model
building were analyzed. It was shown that the model’s accuracy increases with the
number of observations. However, having additional unique UGMs is more beneficial
than observations per UGM. With the second test, the performance of the TCOCNN
regarding drift was analyzed. First, only the initial calibration was used for model
building (500 UGMs). The second scenario then utilized the first 600 UGMs for training.
In both cases, the remaining UGMs from the second calibration were used for testing. It
was shown that the observed drift can be compensated. However, the TCOCNN needs
multiple UGMs from the second calibration to compensate for drift (training with 600
UGMs), which is similar to the results of the FESR approach. For a more sophisticated
statement on drift compensation with neural networks, a new dataset containing samples
from multiple sensors after extended periods is necessary.

After the general performance of the TCOCNN was analyzed, the following evaluation
focused on comparing the FESR approach as presented in [15] and the TCOCNN. The
FESR approach in [15] consisted of dividing the raw signal into 120 equidistant segments,
calculating the mean and slope of each segment, performing feature selection with the
help of recursive feature elimination least squares regression, and using a PLSR with 20
components for regression. By comparing the performance on the 70/10/20 split, it was
revealed that the TCOCNN outperforms the FESR approach regarding all tested gases
by a significant margin. The most promising improvement was observed for formaldehyde.
There, the RMSE was more than halved. The selected hyperparameter ranges for the
Bayesian optimization can explain the considerable improvement. These ranges were
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selected based on previous studies [221] focusing on formaldehyde measurements, which
resulted in optimal ranges for this gas. Similar improvements for the other gases might
be possible with a more extended Bayesian optimization. Another reason for the superior
performance of the TCOCNN might be the internally generated complex features that
capture more specific characteristics of the sensor response.

This publication’s final evaluation compared the FESR and TCOCNN regarding their
capability to predict the target gases in real-world environments (cf. Figure 3.2). Since
the reference instruments were not calibrated, the aim of this study was to predict
realistic relative concentration changes and natural background concentrations with
minimum noise.
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Figure 3.2: Comparison of the results obtained during field tests with the FESR and
TCOCNN models for formaldehyde and hydrogen. Reprinted with the
permission of Ref. Paper 1. Y. Robin, 2023.

Within the publication, it was possible to demonstrate that the TCOCNN can
predict more stable and realistic gas concentrations. This was especially prominent
when analyzing formaldehyde and hydrogen. The TCOCNN showed much less noise
and a more realistic baseline for formaldehyde and hydrogen, with minimum values
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during ventilation of 30 - 40 ppb for formaldehyde and 500 ppb for hydrogen (natural
background [263]).

Regarding the release tests (cf. Figure 3.3), it was possible to show that the TCOCNN
could reach similar precision in predicting relative changes in the gas concentration
compared to the FESR approach. Similarly, the TCOCNN models did not show
a significant effect during the release of interfering gases, comparable to the FESR
approach. This indicates the robustness of the TCOCNN and FESR to the release of
other VOCs. The results were compared to the reference instruments X-pid 9500 and
TD-GC-MS to validate the results further. It was possible to show that the instruments
used exhibited similar relative changes in gas concentration, and the closest match was
achieved between the TCOCNN and the gold standard TD-GC-MS. However, those
instruments were not calibrated; therefore, making a conclusion about absolute accuracy
is impossible.
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Figure 3.3: Prediction of gas concentrations during release tests 5 and 6 (acetone and
toluene) showing the various models trained compared to the analytical
measurements (adapted from [15]). Reprinted with permission of Ref.
Paper 1. Y. Robin, 2023.
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Consequently, it can only be stated that the TCOCNN performs similarly to the
FESR approach regarding the capability to detect relative concentration changes close
to the expected amount of released gas. As a last experiment, not only trained gases
were released, but also gases from the same chemical group (unknown interfering gases).
This was done to test if it is possible to train with one representative of a chemical
group to predict the sum concentration of the others. Consequently, this would reduce
the need for training with highly toxic gases. However, this was only partly successful.
While this theory was successfully tested for toluene and xylene, it did not work for
ethanol and isopropanol. Therefore, this theory must be further tested to apply to a
broader range of gases.

For IAQ monitoring, the results indicate that the newly developed TCOCNN is a
promising alternative to the FESR approach to predict single VOCs accurately in lab-
oratory conditions and the field. However, many open questions must be addressed
before the model can be widely used in commercial applications. The most critical topic
that must be solved is the long calibration time. The calibration took several weeks
for this experiment, which is unsuitable for broad application. Therefore, the following
papers discuss a possible solution to reduce the calibration time significantly.

The main takeaways of this publication are:

• The TCOCNN can successfully predict gas concentrations in the laboratory and
field.

• It is more important to train a ML model on a manifold of UGMs than having
multiple observations per UGM.

• With samples that contain drift, it is possible to learn to compensate for drift.

• The TCOCNN can outperform classic ML solutions regarding sensor calibration
and evaluation for some aspects, but by the cost of higher computational effort
both during training and inference.

• The TCOCNN provides better prediction quality regarding real-world data.

– Less Noise.

– More realistic baseline.

62



Results and Discussion

• The TCOCNN can predict relative changes in the target gas concentration in
real-world environments.

– Similar performance compared to FESR.

– Predicts similar relative changes in concentration compared to reference
instruments (X-pid 9500 and TD-GC-MS).

Still, open questions/tasks are:

• Calibration still takes multiple weeks.

• Sensor-to-sensor variance was not discussed.
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Abstract: With air quality being one target in the sustainable development goals set by the United
Nations, accurate monitoring also of indoor air quality is more important than ever. Chemiresistive
gas sensors are an inexpensive and promising solution for the monitoring of volatile organic com-
pounds, which are of high concern indoors. To fully exploit the potential of these sensors, advanced
operating modes, calibration, and data evaluation methods are required. This contribution outlines
a systematic approach based on dynamic operation (temperature-cycled operation), randomized
calibration (Latin hypercube sampling), and the use of advances in deep neural networks originally
developed for natural language processing and computer vision, applying this approach to volatile
organic compound measurements for indoor air quality monitoring. This paper discusses the pros
and cons of deep neural networks for volatile organic compound monitoring in a laboratory en-
vironment by comparing the quantification accuracy of state-of-the-art data evaluation methods
with a 10-layer deep convolutional neural network (TCOCNN). The overall performance of both
methods was compared for complex gas mixtures with several volatile organic compounds, as well
as interfering gases and changing ambient humidity in a comprehensive lab evaluation. Furthermore,
both were tested under realistic conditions in the field with additional release tests of volatile organic
compounds. The results obtained during field testing were compared with analytical measurements,
namely the gold standard gas chromatography mass spectrometry analysis based on Tenax sampling,
as well as two mobile systems, a gas chromatograph with photo-ionization detection for volatile
organic compound monitoring and a gas chromatograph with a reducing compound photometer
for the monitoring of hydrogen. The results showed that the TCOCNN outperforms state-of-the-art
data evaluation methods, for example for critical pollutants such as formaldehyde, achieving an
uncertainty of around 11 ppb even in complex mixtures, and offers a more robust volatile organic
compound quantification in a laboratory environment, as well as in real ambient air for most targets.

Keywords: volatile organic compounds (VOCs); indoor air quality (IAQ); deep neural networks;
neural network architecture search; temperature-cycled operation (TCO)

1. Introduction

With indoor air quality (IAQ) being one of the most common and unavoidable threats
to human health and also one of the most difficult to determine accurately, it is more
important than ever to be able to make accurate measurements of IAQ [1]. Especially
dangerous are volatile organic compounds (VOCs), which can lead to serious health
problems. For example, extensive exposure to formaldehyde can cause cancer [2]. Even the
United Nations agree in their goals for sustainable development that pollution is a goal
of the greatest importance and that the number of deaths and illnesses from hazardous
chemicals and air, water, and soil pollution and contamination should be substantially
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reduced by 2030 [3]. Several reasons are making an accurate measurement of IAQ difficult.
First of all, indoor air contains hundreds or even thousands of compounds, some of them
benign, others toxic, even at very low concentrations, making accurate quantification of
each of them impossible, at least for routine and continuous measurements [4]. Second,
analytical measurement systems that are capable of providing measurements of the most
relevant VOCs are very expensive, are too slow for real-time application, and require
expert knowledge to operate and calibrate [5]. Third, due to the difficulty of providing
comprehensive measurements, too little is known about the cause and effect of various
gases and especially of their combined effect [6]. Currently, CO2 is the primary indicator
used for IAQ estimation as there is a direct relation between VOC concentration in room
air and the CO2 concentration if the VOC levels are caused by human presence, as already
described by Pettenkofer in 1858 [7]. However, dangerous VOCs are also released from
building materials, furniture, and activities such as cooking and cleaning, which do not
release CO2 [8–10]. For this study, VOCs represent a diverse spectrum from very volatile
(VVOC) to semivolatile (SVOC) organic compounds [11]. In this study, we concentrated
on VOCs with a high-to-medium vapor pressure including the carcinogens formaldehyde
and benzene, which are considered as two of the most toxic substances in indoor air with
guideline threshold values in the low ppb range according to the WHO [11]. Therefore,
comprehensive VOC monitoring is required to provide a universal indicator for IAQ, e.g.,
as a basis for demand-controlled ventilation to reduce the overall burden on people [12].

We recently reported a new approach for IAQ monitoring based on low-cost metal
oxide semiconductor (MOS) gas sensors (chemiresistor) combined with temperature-cycled
operation (TCO) and pattern recognition to interpret the resulting complex response
patterns [11,13]. In these studies, we used linear machine-learning (ML) models based
on feature extraction followed by feature selection and finally regression (FESR model)
to predict the concentration of various VOCs and other relevant gases individually, as
well as the sum concentration of all VOCs [13]. As deep learning has proven to be very
successful for the interpretation of complex patterns [14], this study provides a first test
of deep-learning-based methods utilizing advanced ML techniques such as convolutional
neural networks (CNNs) [15] in combination with neural architecture search (NAS) [16] for
improved IAQ monitoring.

Previous studies have also successfully addressed the combination of gas sensors
and deep learning [17–23]. Most of these studies have addressed higher concentrations
in the ppm range [19–22] and were based on multisensor arrays [17,18,21]. Only some
also used dynamic operation, but with a simple operating mode for the gas sensor with
two temperatures only [19,20,22]. In some studies, the evaluation target was limited to
the classification of different gases [19,23]. For a more complete overview, the reader is
referred to a recent review paper on smart gas sensing technologies [24].

Therefore, the goal of this study is to show that this new deep-learning model for gas
sensors should be capable of making accurate and reliable predictions for the concentration
of multiple VOCs in indoor air, again based on the raw data obtained from a low-cost
MOS sensor system using TCO to improve their selectivity, sensitivity, and stability [25].
Furthermore, we wanted to confirm that these models can outperform the predictions
of the benchmark [13] (established linear data-driven models) at the ppb level in the
laboratory environment and field tests. The benchmark was based on classic statistical
approaches such as linear segmentation, principal component analysis, and a partial least-
squares regression (PLSR). Finally, we compared the predictions of the deep-learning
model with state-of-the-art analytical measurement systems, which are the gold standard
for IAQ monitoring. Ideally, the novel approach should be considerably less costly, but
able to provide high-quality data with high temporal resolution while requiring less expert
knowledge, thus being easier to use.

The dataset used throughout this study was published by Baur et al. [13], and the
results of the corresponding publication were used as a reference. The dataset was based
on an SGP30 sensor (Sensirion AG, Stäfa, Switzerland) with four gas-sensitive layers [26],
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operated using TCO for improved selectivity, sensitivity, and stability. The sensor was
lab-calibrated using complex random gas mixtures [27] and then tested during operation in
a typical office environment with as little human presence as possible over several weeks.
Several release tests of VOCs and hydrogen were performed to validate the sensor response
and to compare the performance of the model predictions of the MOS sensor system to
analytical instruments [13].

2. Materials and Methods
2.1. Dataset

In order to evaluate the capabilities of the newly developed deep-learning approaches
for accurate quantification of different gas concentrations in indoor air, the dataset pub-
lished in Baur et al. 2021 [13] was used. This dataset utilizes advanced calibration and
operation techniques together with the low-cost sensor system of the SGP30 to generate
a comprehensive dataset for monitoring complex mixtures that are typical of indoor air
situations. In addition to various VOCs (acetone, ethanol, formaldehyde, toluene, with
formaldehyde being highly toxic, while acetone, ethanol, and toluene represent VOCs
with comparatively low hazard potential), relevant inorganic gases, i.e., hydrogen and
carbon monoxide, as well as relative humidity (RH), were also included in the calibration
scheme, as these have a strong influence on MOS sensors (see Figure 1b). Thus, the sen-
sors needed to be calibrated, and a machine learning model needed to be developed to
discriminate interfering gases and various VOCs and to provide quantitative data on the
various gas concentrations, as well as the total VOC concentration to allow comprehensive
IAQ monitoring. Note that we used VOCsum to describe the total VOC concentration to
distinguish this from the TVOC value obtained by analytical measurements, where only
VOCs with medium volatility are considered. Gas sensors, on the other hand, also detect
VOCs with high volatility, so-called very volatile organic compounds (VVOCs), such as
acetone, ethanol, and formaldehyde, which are not considered in the analytical TVOC
value [11]. The dataset was based on random gas mixtures [27] generated in an automatic
gas-mixing system [28]. With the help of this dataset, complex data-driven models for
different gases can be built and evaluated in laboratory environments, as well as in real
indoor air scenarios.

a) b)

ethanol

Figure 1. (a) Temperature-cycled operation ranging from 100–375 °C, together with one example of the logarithmic
conductance of one sensor element (adapted from [13]) and (b) the gas composition for calibration containing background
gases, as well as the target volatile organic compounds (VOCs) (adapted from [27]).

Regarding the sensor setup, the dataset utilizes an SGP30 MOS gas sensor and TCO,
as illustrated in Figure 1. The sensor’s output represents the resistance of the four different
gas-sensitive layers over time sampled at 20 Hz. Thus, a single cycle consists of 2400 raw
data samples for each of the four gas-sensing layers’ resistance during TCO. This complex
operation mode achieves a wide detection spectrum of the sensor system in terms of the
concentration range and the gases that can be detected [29]. For improved data evaluation,
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the sensor resistance patterns were converted to the logarithmic conductance of the sensor
according to the Sauerwald–Baur model [30,31].

The dataset itself consists of multiple recordings of the SGP30 sensor. Those recordings
can be divided into calibration phases performed in the lab with typically hundreds of
well-known unique gas mixtures interlaced with field tests during which the actual gas
composition and the concentrations are not known. With the help of the calibration phases,
it is possible to build data-driven models for individual gases from a single sensor element.
During calibration, the sensor was exposed to various gas compositions that always
contained the six different gases plus relative humidity (RH), as illustrated in Figure 1, to
reflect a simplified indoor environment. The concentration ranges of the various gases are
given in Table 1. Furthermore, extended ranges for the VOCs as stated in Table 1 were
used, to train the model also for gas compositions outside of the normally expected range,
which might occur during specific exposure situations in real life, and were simulated by
release tests performed in the field study (Table 2).

Table 1. Concentration ranges for all gases within gas mixtures during the calibration phases [13].

Substance Min. Max. Extended

Carbon monoxide 150 ppb 2000 ppb -

Hydrogen 400 ppb 2000 ppb 4000 ppb

Humidity 25% RH 70% RH -

Acetone 14 ppb 300 ppb 1000 ppb

Toluene 4 ppb 300 ppb 1000 ppb

Formaldehyde 1 ppb 400 ppb -

Ethanol 4 ppb 300 ppb 1000 ppb

VOCsum 300 ppb 1200 ppb -

Table 2. A subset of all release tests performed in [13]. Specifically listed are the release tests, which were further analyzed
within this study.

Release Time Substance (Type of Release) Released Amount of Substance
(Approx. Increase in Room Conc.)

5 16 October, 14:50
Acetone (evaporation)
Toluene (evaporation)

∼600 ppb
∼600 ppb

6 16 October, 18:00
Acetone (evaporation)
Toluene (evaporation)

∼600 ppb
∼600 ppb

7 2 November, 16:50 Toluene (evaporation) ∼600 ppb

9 4 November, 16:22 Acetone (evaporation) ∼600 ppb

13 10 November, 14:30
Isopropyl alcohol

(evaporation) ∼600 ppb

14 11 November, 15:49 m/p-Xylene (evaporation) ∼600 ppb

15 12 November, 15:08
Toluene (evaporation)

m/p-Xylene (evaporation)
∼600 ppb
∼600 ppb

16 13 November, 14:30
Acetone (evaporation)
Toluene (evaporation)
Ethanol (evaporation)

∼600 ppb
∼600 ppb
∼664 ppb

17 16 November, 17:06 Hydrogen (MFC, gas cylinder) 2000 ppb

During the study, three calibration phases and two field test phases were completed
(see Figure 2). The initial calibration phase and the first recalibration consisted of 100 unique
gas mixtures (UGM) with the typical gas concentration ranges plus 100 additional UGM for
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each of the extended concentration ranges for acetone, ethanol, toluene, and hydrogen. This
resulted in a total of 500 unique gas mixtures for each of these two calibration phases. The
two field test periods were performed between the calibration phases. The recalibrations
were necessary to test the stability of the models, i.e., that these were still capable of reliable
predictions after several weeks and that they could also suppress or compensate the drift
caused by the limited stability of the gas-sensing layers. During calibration, each unique
gas mixture was offered in the custom-built gas mixing apparatus for 20 min, i.e., for ten
temperature cycles, as described above. Because of the nonideal synchronization between
the gas-mixing system and the electronics running the temperature cycle and the delay in
the gas exchange within the system, only 5 out of each 10 temperature cycles were later
used for evaluation, where the gas concentration was constant. These cycles are called core
samples and ensured that all measurements used for model building were recorded under
stable gas compositions.

Overview over measurement campaign

Week 1 2 3 4 5 6 7 8 9 10

initial 
calibration

first field test period second field test periodfirst
recalibration

second
recalibration

Figure 2. An illustration of the complete experiment over ten weeks, including calibration phases and field tests.

After the initial calibration, the first field test was performed in a partly controlled
environment over a period of four weeks. Partly controlled means that the room was
ventilated regularly and that there was no human presence in the room unless required for
the release tests described below. During the field tests, the indoor air concentrations for the
six trained gases were evaluated and compared with the expected values, as well as with
analytical reference instrumentation for VOCs and hydrogen. To validate the quantitative
prediction of the model for various gases, release tests were performed for acetone, ethanol,
toluene, and hydrogen, as listed in Table 2, after thorough ventilation. Note that we did
not release formaldehyde due to its high toxicity during the field tests. These tests were
performed to allow an evaluation of whether the ML models can correctly detect the
released compound and accurately monitor the concentration during release. The released
amount was always chosen so that the concentration in the room should reach 600 ppb
when the released substance was evenly distributed in the room while neglecting any
losses through ventilation or adsorption on surfaces. During some of these tests, analytical
instruments were used to monitor the release in parallel with the MOS sensor system. For
online monitoring, a portable gas chromatograph with photo-ionization detection (GC-PID:
X-pid 9500, Dräger Safety AG & Co KGaA, Lübeck, Germany) was used for VOCs and
a gas chromatograph with a reducing compound photometer (GC-RCP: Peak Performer
1, Peak Laboratories LLC, Mountain View, CA, USA) for hydrogen. In addition, samples
were collected on Tenax tubes (Markes International Ltd, Llantrisant, Wales, UK) for VOC
monitoring in indoor air and later analyzed using thermo-desorption gas chromatography
mass spectrometry (TD-GC-MS, Thermo Fisher Scientific Inc., Waltham, MA, USA). Further
experimental details were given in Baur et al. [13].

2.2. Model Building

Two machine-learning approaches were used for model building. The first method,
which we used as a benchmark here based on [13], utilizes feature extraction (FE) in the
form of linear segmentation, standardization, feature selection (FS) based on recursive
feature elimination (RFE), together with least-squares regression, a gas-mixture-based cross-
validation, and an optimization scheme to find the optimum model regarding the number
of selected features and the components used for the partial least-squares regression
(PLSR) [13]. This approach is called Feature Extraction Selection Regression (FESR). Linear
segmentation means in this case that the four different logarithmic conductance patterns
obtained from the gas-sensitive layers are divided into 120 equidistant segments each and
the mean and slope are calculated for all segments, resulting in a total of 960 features per

Results and Discussion

69



Atmosphere 2021, 12, 1487 6 of 24

temperature cycle. The data from all unique gas mixtures offered during calibration were
then split into 80% for training and 20% for testing. After this step, the 300 most important
features according to the recursive feature elimination (RFE) least-squares regression (LSR)
ranking were selected for further use. To find a suitable number of features and PLSR
components, a gas mixture-based 10-fold cross-validation was performed on the 80%
training data. Here, all core samples from 10% of the unique gas mixtures were excluded
from the training for validation to find a suitable compromise for the hyperparameters, to
achieve a low root-mean-squared error (RSME) with a low number of features and PLSR
components. This ML model was developed using the open-source MATLAB toolbox
DAV³E [32], and the approach was described in more detail in [13].

The second model-building approach then utilizes the TCOCNN architecture (see
Figure 3), a 10-layer deep convolutional neural network (CNN) [15]. A similar network
was first introduced in [33] and successfully utilized to predict the formaldehyde concen-
tration for the laboratory calibration measurements. For this contribution, the structure
of this network was adapted to predict not only one gas concentration at a time, but the
concentrations of all gases offered during calibration, i.e., acetone, ethanol, formaldehyde,
toluene, the total concentration of all VOCs (VOCsum), and also the inorganic gases carbon
monoxide and hydrogen. The CNN structure was derived from the original ResNet model
from [33] to reduce the overall complexity.

0 1 2 3 4 5 6 7 8 9 1 2

Input Layer 2D Convolution
+2D BatchNormn

ReLU Layer Addition Layer
 +ReLU Layer

Output 
Regression

Average Pooling Fully Connected

0

1 2 3 4 5 6 7 8

1 2

TCOCNN

Figure 3. Original network structure from [33] together with the newly derived general architecture
of the TCOCNN.

To build a gas-specific model, the general architecture as illustrated in Figure 3 was
used. For each gas, the data were randomly split according to the gas mixtures into 70%
training data, 10% validation data, and 20% for testing. After the data split, a neural
architecture search (NAS) was performed on the training and validation data. This ap-
proach searches through a predefined search space of the parameters of the neural network
(Table 3) to find the optimal hyperparameters for each gas concentration to be predicted by
minimizing the RMSE for the validation data [16].

The NAS varies the parameters listed in Table 3 using a Bayesian optimization search
with the remaining parameters, as specified in Table 4. In total, 30 different combinations
of the parameter were tested, and the model with the smallest validation RMSE was
considered the best model. The Bayesian optimization strategy was chosen to speed
up the NAS. Since the training process of one TCOCNN on a GPU already requires up
to 20 min, an extensive search through the complete search space would have not been
feasible. Therefore, Bayesian optimization was performed to find an acceptable solution in a
reasonable time. The optimization that was performed in this specific case was based on the
Gaussian process method [34], and the optimized cost function was the validation RMSE.
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Table 3. Parameter ranges for every neural architecture search (NAS).

Initial Learning
Rate (Log Scale)

Number of Filters
(First Two Layers)

Kernel Size
(First Two Layers)

Stride Size
(First Layer) Dropout Number of

Neurons (FC)

1 ×10−4–9 ×10−3 60–240 40–80 15–45 30–50% 1000–2500

Table 4. Parameters, which are kept constant during the evaluation.

Parameter Value

L2-regularization 0.0001

Stride size, even layer 1 × 2

Kernel size, other layer 1 × 2

Learn rate drop rate 0.9

Mini-batch size 50

Stride size, odd layer 1 × 1

Epochs 75

Learn rate drop period 2

The parameters chosen for this optimization were the initial learning rate, the number
of filters in the first two layers, the kernel size of the first two layers, the stride size of the first
layer, the dropout rate, and the number of neurons in the last fully connected layer [15]. The
initial learning rate had to be a part of the optimization as this parameter should be adjusted
according to the network complexity. The hyperparameters of the first convolutional layers
have proven to have a large influence on the prediction quality and were therefore an
important part of the optimization. Additionally, the dropout rate and the number of
neurons in the fully connected layers are also parameters worth considering. The ranges
for the different target gases were based on the best parameters found in [33]. For carbon
monoxide and ethanol, the NAS had to train 60 different TCOCNNs to reach sufficient
results as the model building seemed to be more difficult for these gases. Furthermore, the
NAS for ethanol had to be restricted to a range from 15 to 35 for the stride size of the first
layer to find a suitable result faster.

2.3. Data Evaluation

As a carcinogenic gas, formaldehyde is of great importance for indoor air quality. Thus,
as the first step, we evaluated the suitability of the model for predicting the formaldehyde
concentration in the ppb range in a complex mixture of other gases [33]. Here, a model for
formaldehyde was trained on the initial calibration dataset with a gas-mixture-based data
split of 70% training, 10% validation, and 20% for testing.

To determine the required complexity of the calibration (note that one hundred unique
gas mixtures offered for 20 min each resulted in a total calibration time of 33 h; the extended
calibration with higher VOC concentrations, therefore, required almost 7 d in total), the
same model was built with fewer core samples and/or fewer unique gas mixtures to
reproduce the results achieved in [33] and also to show the influence of more core samples
compared to more unique gas mixtures (UGM).

In the next step, the effect of sensor drift, which is often observed for chemical and
especially MOS gas sensors [35,36], was examined. Here, three different models were
compared for the prediction of the formaldehyde concentration. For the first model, only
the initial calibration including extended concentrations was used for model building and
the data of the second part of the first recalibration (with extended concentrations) were
used for testing. This model should show significant sensitivity to sensor drift and various
effects on the prediction quality such as offset or linearity errors and increased uncertainty.
The second model then uses only three instead of all four gas-sensitive layers from the
sensor system. The excluded layer is the one most prone to sensor drift as observed in
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previous studies [37], and the model trained on these data was used to investigate the
cause of the different drift effects. The last model then includes all gas-sensitive layers
for training, but extends the calibration data to include the 100 unique gas mixtures of
the first recalibration in the standard concentration range. By including parts of the first
recalibration in the training, it was expected that the model could suppress drift effects,
as these were included in the training data [38]. Again, the second part of the first lab
recalibration was used to test the prediction of these models.

After validating the TCOCNN model in general, the results achieved for the laboratory
tests with the deep-learning approach were compared with the FESR model published
previously [13]. Therefore, TCOCNN models for all seven targets were trained with the
help of the NAS on the initial calibration and the first part of the first recalibration to reduce
the drift effects. The data split was performed as explained before (70% training, 10%
validation, and 20% testing). For comparison, the RMSEs on the test data of the different
models are compared for the different gases. This step allows comparing the prediction
quality and capability of the different data-driven models.

After demonstrating the quality of the prediction of the TCOCNN approach for the
lab data, the deep network was also applied to data from real indoor air environments
during field tests. Again, the models were trained using the lab calibration data with the
complete initial calibration and the first part of the first recalibration to predict all trained
targets during the field test. First, the overall prediction of the TCOCNN for the field
test data was compared to the FESR model. This should indicate if the predictions of the
FESR model and the TCOCNN are consistent. Furthermore, the standard deviations of
both predictions were calculated to estimate the uncertainty of a prediction based on one
temperature cycle assuming that the gas concentration was changing only slowly during
the field test. To determine the standard deviation, a period with minimal signal changes
was selected, here between 4 October 12:00, and 5 October 0:00, and the model predictions
during this period were smoothed with the help of a sliding window with a length of 1 h.
The standard deviation between the original model output and the smoothed data was
calculated as an estimate of the noise level of the different models.

Next, the predictions obtained during release tests were compared to investigate the
quantitative performance of the two different models. Furthermore, the prediction qualities
of the TCOCNN models were analyzed regarding their cross-influence. In addition, the
TCOCNN output was compared with the results obtained from the analytical instruments
to further evaluate the capabilities compared to state-of-the-art systems.

Finally, the models were tested regarding their capability to detect gases not contained
in the calibration, but belonging to the same chemical class as one trained gas (Table 5).
Here, release tests performed with m/p-xylene (an aromatic) and isopropyl alcohol (an
alcohol) were considered to determine the ability of the trained models to extrapolate to
similar chemical compounds. This would show if the systematic approach with the MOS
sensor, dynamic operation, and ML modeling could quantify individual gas components
or provide an estimate of the total concentration of a certain chemical class.

Table 5. Chemical classes investigated in this publication [13].

Chemical Class
(Representative) P90 in µg/m3 (ppb) P95 in µg/m3 (ppb)

Alcohols (ethanol) 320 (∼170) 520 (∼280)

Aldehydes (formaldehyde) 340 (∼270) 480 (∼390)

Aromatics (toluene) 190 (∼50) 370 (∼90)

Ketones (acetone) 250 (∼100) 420 (∼170)
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3. Results
3.1. Calibration Results

Figure 4 shows that, in general, fewer data samples significantly increased the RMSE
and also the uncertainty or rather variation of the RMSE. The specific RMSE mean and
variance values illustrated in Figure 4 were based on the RMSEs achieved on the same
training, validation, and testing data in 10 different runs using the TCOCNN.
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6 Core 500 UGM
7 Core 500 UGM

Figure 4. Obtained root-mean-squared error (RMSE) values for formaldehyde vs. the number of core
samples and unique gas mixtures.

Obviously, fewer data samples degraded the prediction quality. Furthermore, Figure 4
illustrates with the comparison of five core samples for three-hundred UGM and three core
samples for five-hundred UGM, i.e., both with one-thousand five-hundred cycles in total,
that the number of unique gas mixtures is more important to achieve a high prediction
quality than the number of core samples. Thus, a calibration should be biased towards
containing more UGM with a shorter duration, resulting in fewer usable core samples, in
accordance with the results of Robin et al. [33]. Note, however, that reducing the number of
core samples did not decrease the overall duration of the calibration linearly, as temperature
cycles recorded during a change of the gas composition cannot be evaluated. Moreover,
Figure 4 illustrates that the difference between four core samples for five-hundred UGM
and five core samples for four-hundred UGM, i.e., a total of two-thousand cycles each,
resulted in only a minimal difference of the RMSE. Thus, it can be assumed that more
than 500 UGM would not lead to a significant further reduction of the RMSE. This is
also shown by the RMSE stagnating for more than five core samples, in agreement with
previous results [33]. The best RMSE for formaldehyde for this dataset was achieved for
five-hundred unique gas mixtures and seven core samples with an RMSE of 11.7 ppb.
Nevertheless, because of the synchronization errors between the gas-mixing apparatus and
the recording system, all further measurements were based on five core samples only, as
these were always recorded under stable conditions.

For Figure 5a,b, the models were trained on the initial calibration data and the pre-
diction was performed for the second part of the first recalibration (with extended gas
concentrations). Figure 5c shows the results of a TCOCNN model that was trained on
data including the initial calibration and the first part of the first recalibration with the
prediction again performed on the second part of the first recalibration. Figure 5a shows
that without any drift compensation, the prediction performance degraded severely over a
period of six weeks (first field test period in a normal office environment) with a strong
bias towards lower predicted concentrations and much higher uncertainty or variance
of the prediction. Note that the TCOCNN did not predict negative concentration values;
instead, many low concentrations were predicted as 0 ppb. Figure 5b illustrates that the
one gas-sensitive layer that was excluded accounted for most of the drift, i.e., the major
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part of the bias and the higher scatter of the predictions. Thus, excluding this layer already
significantly improved the prediction quality, as indicated by the reduced variance, smaller
linearity error, and reduced offset. The remaining linearity error can be attributed at least
in part to a change of the formaldehyde test gas bottle between the initial calibration and
the first recalibration. The test gas bottle concentrations had an uncertainty of 20%, which
was most probably the cause for the remaining systematic linearity error. However, the
gas-sensitive layer left out for the quantification of formaldehyde is in fact important for
the detection and quantification of other VOCs, such as toluene, and also to reduce the
cross-sensitivity to these gases. Thus, all available information should be used for building
a comprehensive data-based model, and a different approach for reducing the drift is nec-
essary. As previously reported, including data that already contain drift in the calibration,
a so-called extended calibration [38], can improve the performance considerably, so this
approach was also tested here. Figure 5c shows that the prediction based on extending the
calibration dataset to include also data from the first recalibration after four weeks of field
operation significantly improved the prediction quality. This model showed only a slight
increase in the variance and a small offset and linearity error. Again, the linearity error
could also be due to the change of the test gas bottles between the initial calibration and
first recalibration, which would result in a systematic error.

0 100 200 300 400
Target concentration formaldehyde in ppb

0

50

100

150

200

250

300

350

400

450

500

Pr
ed

ic
te

d
 c

on
ce

n
tr

at
io

n
 f

or
m

al
d
eh

yd
e 

in
 p

p
b

a) Initial calibration only

Training data
Test data

0 100 200 300 400
Target concentration formaldehyde in ppb

0

50

100

150

200

250

300

350

400

450

500
b) 3 gas-sensitive layers only

Training data
Test data

0 100 200 300 400
Target concentration formaldehyde in ppb

0

50

100

150

200

250

300

350

400

450

500
c) Initial plus first part recalibration

Training data
Test data

Figure 5. Evaluation of the target gas formaldehyde over several weeks. Test data always consist of the data of the second
part of the first recalibration. (a) Results based on training with initial calibration only. (b) Results based on training with
initial calibration only, but without one gas-sensitive layer that shows large drift over time. (c) Results based on training
with the initial calibration and the first part of first recalibration.

This following section of the results demonstrates the performance achieved with the
TCOCNN approach for the prediction of all gases present in the calibration dataset. The
results obtained for formaldehyde on the number of core samples and unique gas mixtures,
as well as the proven approach for compensating sensor drift were transferred to build the
models for the other target gases. Thus, the presented results were always based on training
with five core samples and extended calibration containing data from the initial calibration
and the first part of the first recalibration. As before, a gas-mixture-based validation was
performed. Accordingly, the data were split into 70% training, 10% validation, and 20%
testing. In Table 6, the hyperparameters selected with the help of the training data, the
validation data, and the NAS are listed. This shows that for most gases, the stride sizes of
the first layer need to be larger than in the following layers.
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Table 6. Optimized hyperparameters found during neural architecture search (NAS).

Substance Initial Learning
Rate (Log Scale)

Number of Filters
(First Two Layers)

Kernel Size
(First Two Layers)

Stride Size
(First Layer) Dropout Number of

Neurons (FC)

Acetone 1 × 10−4 142 48 34 31.65% 1084

Toluene 2 × 10−4 240 69 17 37.06% 2462

Formaldehyde 3 × 10−4 183 55 18 49.75% 1188

Ethanol 2 × 10−4 228 73 34 49.55% 2310

VOCsum 1 × 10−4 77 78 44 30.89% 1373

CO 6 × 10−4 151 52 30 34.96% 2468

Hydrogen 1 × 10−4 77 41 19 49.07% 1088

Figure 6 illustrates the RMSE results of the 70/10/20 data split on the initial calibration
and the first part of the first recalibration for the FESR model (blue) and the mean value
plus the standard deviation of the TCOCNN (orange) with the hyperparameters listed in
Table 6. This shows that the TCOCNN achieved at least the same and often a significantly
lower RMSE compared to the FESR model for all gases. The most significant improvement
was achieved for formaldehyde, where the mean RMSE of the TCOCNN was less than
half of the RMSE of the FESR model (15.4 ppb for TCOCNN vs. 31.3 ppb for FESR). This
significant improvement for formaldehyde was probably due to the fact that the underlying
model of the TCOCNN was originally optimized for formaldehyde quantification, i.e.,
more hyperparameters were optimized for formaldehyde than for the other gases. Thus,
extending the NAS to include also the parameters that were kept constant in this study
might result in similar improvements also for the other gases. Nevertheless, the results
clearly showed that the TCOCNN models outperformed the FESR models regardless of
the gas on which they were trained. Moreover, the variations of the RMSE caused by the
different initializations of the TCOCNN were relatively small; thus, a stable model was
achieved even if the network was trained only once. The variance of the RMSE is not given
for the FESR method as the PLSR is deterministic, i.e., always produces the same result
with the hyperparameters specified during the 10-fold cross-validation.

3.2. General Field Test Results

After showing that the TCOCNN can successfully predict the concentration of various
gases in complex laboratory environments, this part focuses on quantifying the trained
gases in a real indoor air environment. First, the general prediction quality of the TCOCNN
for the various gases was compared to the predictions of the FESR model. Figure 7 illus-
trates the prediction of indoor air between September 26 and October 18 for formaldehyde
and hydrogen. These two gases were chosen as they showed relevant aspects; the results
for the other gases were similar. First, a constant offset was observed between both models,
with the FESR model for formaldehyde indicating significantly higher concentrations than
the TCOCNN model (average offset 140 ppb), while for hydrogen, the prediction of the
TCOCNN was slightly higher with an average offset of 98 ppb. These differences were
probably caused by the presence of additional gases in the room, which were not part
of the calibration and were therefore not (fully) compensated by the data-based models
and/or by the gas concentrations of the trained gases in the indoor environment outside
of the trained ranges. Without reference measurements, it is not possible to determine
which value is correct; in fact, both could be similarly off with one prediction being too
high, the other too low. Nevertheless, at least for hydrogen, the baseline of the TCOCNN
model seemed to be more realistic, as after ventilation events, the TCOCNN model indi-
cated concentrations around 500 ppb, corresponding to the natural background level [39].
For formaldehyde as well, the lower average concentrations indicated by the TCOCNN
model seemed more realistic, as the FESR model indicated concentrations well above the
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WHO recommended limit value of 80 ppb [40]. This will be investigated in the future with
formaldehyde reference measurements as described in the relevant standards [40]. More
importantly, however, both models were in agreement concerning the relative changes
of the gas concentrations, which would be required to indicate changes in the indoor air
quality, e.g., for demand-controlled ventilation.
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Figure 6. Comparison of the RMSE values obtained with FESR (adapted from [13]) and the TCOCNN.

In addition, the FESR models showed much higher noise or short-term fluctuations
compared to the TCOCNN models. This was specifically dominant for hydrogen and
formaldehyde. To quantify this effect further, the standard deviation was calculated for
all gases for both models. For this, a fairly stable time period without release events
(4 October 12:00, to 5 October 00:00) was chosen, and the standard deviation between the
model predictions and their hourly average as the estimated mean signal was calculated,
resulting in the values given in Table 7. The ratio of the noise levels of the FESR model
vs. the TCOCNN model was between 1.4 (for ethanol) and 5.2 (for hydrogen) to 6.2 (for
formaldehyde), which is also evident from Figure 7. Furthermore, some predictions of
the FESR model were below zero, which was not the case for the TCOCNN. These short
events were caused by ventilating the room in which the experiments were performed,
which probably resulted in very low gas concentrations below the calibrated range. Thus,
it was not surprising that the models were not able to quantify the gases correctly in these
conditions. Taking all observations into account, we concluded that for all gases, the overall
quality of the TCOCNN model was more suitable for monitoring real indoor air as no false-
negative values were obtained and the noise in a room where the gas composition changes
only slowly is much lower. The absolute error of both models can only be determined with
calibrated reference measurements, which were not available for this study, but which will
be performed in the near future.
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Figure 7. Comparison of the results obtained during field tests with the FESR and TCOCNN models for formaldehyde
and hydrogen.

Table 7. Standard deviation during the field test of the TCOCNN and FESR.

Standard Deviation
FESR (ppb)

Standard Deviation
TCOCNN (ppb)

Toluene 9.7 2.0

Formaldehyde 9.9 1.6

Carbon monoxide 33.6 5.5

VOCsum 15.8 4.5

Acetone 5.7 2.6

Ethanol 15.0 10.7

Hydrogen 19.0 3.7

3.3. Results of the Release Tests for the Trained Gases

After the general observations of the similarities and differences between both models,
this section focuses on the release tests performed during the field test period. Since
formaldehyde as a carcinogenic gas and carbon monoxide as a toxic gas could not be
actively released, the following results concentrated on release tests of acetone, ethanol,
toluene, and hydrogen.

First, the releases of individual VOCs were analyzed in detail. Figure 8a illustrates
the release of toluene on November 2 (Test 7). Both the FESR and the TCOCNN models
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predicted similar average concentrations over time, but with higher noise for the FESR
model, as observed before. The FESR model indicated an increase of approximately 600 ppb,
which is in accordance with the amount released, cf. (Table 2), while the TCOCNN indicated
a slightly smaller increase of 500 ppb. In addition to the MOS gas sensors, the release was
also monitored with the portable GC-PID (X-pid 9500), which indicated a similar rapid
increase and slow decrease of the toluene concentration, but a higher absolute value with
an increase of approximately 700 ppb. Note, however, that the limit of quantification (LOQ)
for the X-pid 9500 is 1 ppm for toluene according to the manufacturer (500 ppb for acetone).

For acetone, Figure 8b shows an offset between the absolute concentrations predicted
by the TCOCNN and FESR models: the baseline concentration of the TCOCNN model
was approximately 72 ppb, while the FESR model indicated a baseline concentration of
approximately 120 ppb. This difference of 48 ppb was also observed during the release
of acetone with both models indicating the same increase of approximately 450 ppb and
showing the same decline vs. time. The X-pid 9500 indicated a baseline value similar to
the FESR model, but again predicted a larger increase of approximately 700 ppb with the
same shape over time. The expected increase caused by the amount of acetone released
was 600 ppb, but the actual concentration at the site of the sensors could be higher or lower
depending on the distribution in the room and also secondary effects, such as adsorption on
surfaces. Nevertheless, both data-driven models were clearly capable of detecting acetone
with a high temporal resolution.

Figure 8c illustrates the release of hydrogen from a test gas bottle with an expected
maximum concentration increase of approximately 2 ppm. The graphs show the corre-
sponding values indicated by the TCOCNN and FESR models, as well as the GC-RCP
reference instrument. As already observed in Figure 7, the baseline concentration indicated
by the TCOCNN model was slightly higher compared to the FESR model, and the noise
level of the TCOCNN was much smaller compared to the FESR model. The increase of
the hydrogen concentration indicated by both models was similar (around 1500 ppb) and
realistic compared to the amount of released gas, especially considering the relatively slow
release over several hours, where some gas exchange and therefore loss of hydrogen is
unavoidable. The GC-RCP (limit of detection 10 ppb) indicated a similar increase of the
hydrogen concentration, but with an even lower baseline compared to both sensor models.
We suspect that the RCP was underestimating the hydrogen concentration slightly [13],
which was especially evident during ventilation events where the GC-RCP indicated con-
centrations well below the natural background concentration of 500 ppb [41]. Additionally,
the RCP also showed a larger noise level compared to the TCOCNN model. Regarding the
other models, only ethanol and carbon monoxide showed a cross-influence, which was
relatively small compared to the released amount of hydrogen (see Figure A1).

Finally, Figure 8d illustrates the values of the respective TCOCNN models during a
simultaneous release of acetone, ethanol, and toluene. For toluene, the peak increase was
approximately 400 ppb, which is slightly lower than during the release test of toluene only,
similarly for acetone with an increase of approximately 360 ppb. Nevertheless, all three
models detected the release of the various compounds with a high temporal resolution,
which is especially evident when observing the different shapes of the release peaks:
acetone with the lowest boiling point showed the sharpest peak, while toluene with a
comparatively high boiling point showed a much broader and rounded release peak. To
further elucidate the simultaneous evaluation of the various data-based models, Figure A1
shows the behavior of all other models during those release tests, and the following figure
shows as an example all calculated model outputs during a specific release test including
the VOCsum model, indicating the sum concentration of all VOCs.

Paper 1

78



Atmosphere 2021, 12, 1487 15 of 24

15:00 16:00 17:00 18:0019:00 20:0021:0022:00 23:00
Nov 02, 2020   

0

200

400

600

800

1000

1200

C
on

ce
n
tr

at
io

n
 i
n
 p

p
b

a) Toluene (7)

FESR toluene 
TCOCNN toluene 
X-pid 9500 toluene

15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00
Nov 04, 2020   

0

200

400

600

800

1000

1200
b) Acetone (9)

FESR acetone 
TCOCNN acetone 
X-pid 9500 acetone

Nov 16, 18:00 Nov 17, 00:00 Nov 17, 06:00
2020   

0

500

1000

1500

2000

2500

c) Hydrogen (17)

FESR hydrogen 
TCOCNN hydrogen 
RCP hydrogen

12:00 14:00 16:00 18:00 20:00 22:00
Nov 13, 2020   

0

200

400

600

800

1000

1200

d) Toluene, acetone
and ethanol (16)

TCOCNN acetone 
TCOCNN toluene 
TCOCNN ethanol

C
on

ce
n
tr

at
io

n
in

 p
p
b

Figure 8. Prediction of gas concentrations during release tests for various trained gases using different evaluation models
and a comparison with the results of the analytical instruments (adapted from [13]).

Figure 9 illustrates the TCOCNN model output during two simultaneous releases of
acetone and toluene. The increase of the acetone and toluene concentrations indicated by
the models was similar to the previous test shown above (Tests 7 and 9). For toluene and
acetone, the signal increased by approximately 550 ppb, which is close to the expected
value of 600 ppb. For both gases, the X-pid 9500 again indicated a significantly higher
concentration increase, but with a similar shape over time. Parallel TD-GC-MS (LOQ
approximately 50 ppb for toluene) analysis with samples taken over 30 min intervals
showed absolute concentrations, as well as an increase of the toluene concentration of
approximately 550 ppb, which is very similar to the values obtained from the TCOCNN
model; acetone was not evaluated with the TD-GC-MS method in this study as the sampling
protocol would have to be adjusted for accurate quantification of this VVOC. Again, the
FESR model showed an offset compared to the TCOCNN model with slightly higher
baselines and also somewhat larger concentration increases for both gases; the absolute
values of the FESR model were between the results obtained with the X-pid 9500 and the
TD-GC-MS. Note, however, that the GC-MS was not calibrated before these measurements.
Finally, both the FESR and TCOCNN models, as well as the X-pid 9500 indicated that
the toluene increase during the second simultaneous release was much slower (no Tenax
samples were collected during this second release). This slower increase was probably
caused by the significantly lower temperature during the second release (at night), resulting
in much slower evaporation of toluene. Again, all three methods—X-pid 9500 and both
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MOS data-based models—showed the same shape over time, indicating their potential for
monitoring IAQ in real-time.
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Figure 9. Prediction of gas concentrations during Release Tests 5 and 6 (acetone and toluene) showing the various models
trained compared to the analytical measurements (adapted from [13]).

The outputs of the other TCOCNN models are shown in the lower part of Figure 9.
Note that the trained VOCsum model (solid black line) actually showed a nearly identical
behavior compared to adding the concentrations indicated by all four separate VOC
models for acetone, ethanol, formaldehyde, and toluene with an increase of approximately
1100 ppb during the first combined release. The VOCsum model also showed the different
evaporation speeds during the second release with a first fast increase caused by the release
of acetone followed by an almost constant concentration due to the offsetting effects of
increasing toluene and decreasing acetone concentrations.

For the other two VOCs, ethanol and formaldehyde, which were not released and
were therefore expected to have a constant concentration, the TCOCNN models showed
very little cross-sensitivity: a small drop was observed for formaldehyde and a short sharp
increase for ethanol at the first release, but both models recovered their previous baseline
quickly. These short-term effects were probably caused by the person performing the
release test entering the room. However, a significant cross-sensitivity was observed for
carbon monoxide, where the model output dropped by approximately 170 ppb during both
releases and then recovered only slowly. A similar, but opposite effect was observed for the
hydrogen model, which showed a minor increase during both release tests. Furthermore, a
general baseline drift of the indicated hydrogen concentration was observed with a different
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behavior over time compared to the released VOCs. This effect can be attributed to VOC
decomposition, leading to an increase of hydrogen; in fact, the model predictions for
hydrogen over time were in good agreement with the GC-RCP reference instrument [41].

The behavior regarding the cross-influence of different gases was observed for all
release tests. Independent of the specific VOC released, the other VOC models showed only
minor effects, while carbon monoxide showed a significant cross-sensitivity, which was
probably caused by the comparatively low sensitivity of the SGP30 to carbon monoxide [37].
Hydrogen actually showed large variations during the field tests, which were not correlated
with the release tests, indicating other sources inside the room with a diurnal pattern. The
VOCsum signal always accurately indicated the combined concentration of the various
VOCs. The release of hydrogen did not result in a significant response of any other model,
illustrating the high selectivity achieved for hydrogen, as previously reported for the FESR
model [41].

3.4. Results of Release Tests for Gases Not Trained

To further elucidate the selectivity of the various models, release tests were performed
with gases not included in the calibration, but from the same chemical classes, i.e., m/p-
xylene as a second aromatic compound and isopropyl alcohol as a second alcohol. Again,
we compared the performance of the TCOCNN model with the FESR model. Figure 10
illustrates the predictions of both models calibrated for toluene during the release of m/p-
xylene (Test Number 14). Both the FESR model and the TCOCNN model indicated a similar
evolution over time of the toluene concentration. The indicated increase for the FESR was
approximately 450 ppb, so again, close to the theoretically expected increase of 600 ppb,
while the increase with the TCOCNN was slightly smaller with 350 ppb. The X-pid 9500,
on the other hand, showed a large offset with a baseline value of almost 500 ppb and an
increase similar to the FESR model. These results showed that both data-driven models
were capable of quantifying aromatics, i.e., chemicals from the same chemical class as the
calibrated toluene, in agreement with previous results for VOC identification [42]. The
other VOC models were not influenced by the release of m/p-xylene, indicating good
selectivity (see Figure A2 in Appendix A) . The VOCsum model also responded to the
release of m/p-xylene, again similar to toluene. Finally, a significant cross-sensitivity of the
carbon monoxide model was also observed during the release of m/p-xylene, similar to
the release of toluene.
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Figure 10. Prediction of gas concentrations for release tests of gases not contained in the calibration. (a) Release Test
Number 14 of m/p-xylene. (b) Release Test Number 15 of toluene and m/p-xylene. (c) Release Test Number 13 of isopropyl
alcohol (adapted from [13]).

The second release test in Figure 10 illustrates that the combined release of toluene
and m/p-xylene could be detected by both data-based models, as well as the X-pid 9500,
which can also discriminate between both aromatics, while the data-driven models could
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not discriminate the two gases; the indicated increase was close to the sum of the previous
releases. Again, a similar behavior was observed for the other TCOCNN models of the
other target gases (see Figure A2 in Appendix A). Note that discrimination between both
aromatic compounds might be possible with the data-based models if both gases are
included separately in the calibration.

On the other hand, both the TCOCNN, as well as the FESR model did not indicate
the release of isopropyl alcohol as ethanol, as shown in Figure 10c. Only a small upwards
drift for ethanol is visible. We cannot provide a conclusive answer, but the upward drift
already started before the release of isopropyl alcohol, so this was probably due to some
unrelated background event. Interestingly, the FESR model showed a slight decrease when
isopropyl alcohol was released, but otherwise, the same trend as the TCOCNN model.
Regarding the other TCOCNN models, no model showed a significant reaction to this gas
(see Figure A2 in Appendix A) not included in the calibration. Only the X-pid 9500 was
capable of detecting and quantifying isopropyl alcohol as well. This result showed that
the models were not always capable of indicating gases of the same chemical class, in this
case alcohols. While this might be seen as a drawback, because a more complex calibration
would be required to obtain a valid VOCsum model, when considering formaldehyde, a
high selectivity also to other aldehydes such as acetaldehyde is preferable to discriminate
the health impact of the various gases.

4. Discussion

This contribution discussed the application of a deep-learning model for evaluating the
complex data patterns recorded with a metal oxide gas multisensor (SGP30) in temperature-
cycled operation (TCO) to independently determine multiple gas concentrations from a
single sensor element. The novel deep-learning approach named the TCOCNN was based
on a 10-layer CNN design. In this work, the performance of the TCOCNN was studied both
concerning the optimization using different data configurations by varying the number of
temperature cycles per gas mixture (core samples) and the number of unique gas mixtures
(UGM). As expected, the number of UGM is more important to achieve a low RMSE of
the prediction than the number of (basically redundant) samples. Note that, when taking
the number of independent variables into account (six gases plus RH), the number of
unique gas exposures for reliably achieving a stable ML model is actually fairly low. A
full factorial calibration with seven parameters at four levels each would result in a total
of more than 16,000 tests. Second, we studied the potential to suppress drift, which is
often observed for MOS gas sensors, by extending the calibration data to also include
data from an additional one-hundred gas exposures obtained in the second calibration
run after four weeks of operation in the field. This extended calibration succeeded in
greatly reducing the offset, linearity, and noise error observed when only the original
calibration data were used to build the model. With this approach, a stable prediction of the
formaldehyde concentration with an uncertainty of approximately 42 ppb was achieved
over a period of at least 6 wk. Third, the TCOCNN approach was successfully tested not
only for formaldehyde, but also for predicting at the ppb level the concentrations of the
other gases included in the calibration plus an additional model for the sum of all VOCs,
VOCsum. Here, a neural architecture search with Bayesian optimization was performed to
select suitable hyperparameters for the TCOCNN models. The results showed that stable
models were reproducibly obtained with this approach, achieving a performance at least
as good as the previous linear models in terms of the RMSE for the calibration data. The
improvement was most significant for formaldehyde, where the RMSE was more than
halved. The different initializations of the TCOCNN only resulted in negligible variation of
the RMSE between 1 ppb and 8 ppb, indicating the excellent reproducibility of the model-
building approach. Applying these models to data from the field tests showed that the
TCOCNN models had lower noise for real field data compared to the previous FESR model
and did not predict negative gas concentrations even when operated outside the calibrated
gas concentration range. We did observe significant offsets between both ML models,
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which were probably caused by unknown gases not contained in the calibration, but
present during the field tests. This will require further analysis with calibrated reference
instruments to determine which model provides higher absolute accuracy. However,
variations of the gas concentrations can be accurately monitored with high temporal
resolution, as demonstrated with various release tests during the field test period. In fact,
the indicated concentration increases of the released gas closely matched the expected
theoretical values and often significantly outperformed the mobile GC-PID and GC-RCP
instruments used for comparison both when releasing hydrogen or single VOCs and when
simultaneously releasing VOC mixtures. The best absolute agreement was observed for
the TCOCNN model and the gold standard TD-GC-MS for toluene monitoring. Minimal
cross-sensitivity was observed for the six gases tested in this study with only the carbon
monoxide model showing a slightly higher cross-sensitivity to VOCs, probably due to the
low overall sensitivity of the SGP30 to CO. Finally, release tests were performed with gases
not contained in the calibration. Here, two different results were observed for m/p-xylene
and isopropyl alcohol. While the TCOCNN for toluene was also able to detect and quantify
m/p-xylene with reasonable accuracy, neither the ethanol model nor any other reacted to
isopropyl alcohol. This shows that in some cases (toluene and m/p-xylene), the sensor
actually detects a certain chemical class, here aromatics, while in others, the gases (ethanol
and isopropyl alcohol), although belonging to the same chemical group, here alcohols,
induce unique sensor response patterns allowing discrimination and quantification of the
individual components. This aspect will require further examination, as both effects are
beneficial in some ways and undesirable in others. Quantifying all gases from the same
chemical group after the calibration of only a single representative would greatly reduce the
complexity of the sensor calibration. On the other hand, being able to quantify individual
gases even against others from the same chemical class is important for the accurate
determination of relevant indoor pollutants such as formaldehyde (vs. acetaldehyde and
others) or benzene (vs. toluene and xylene). The presented systematic approach could
provide the basis for the development of high-performance application-specific VOC sensor
systems taking target and interfering gases into account.

Regarding the computation time for hyperparameter tuning and model training,
it should be noted that the TCOCNN model training requires much more time. While
the FESR method requires up to 24 h for a full evaluation including hyperparameter
optimization, the TCOCNN including NAS requires several days. Therefore, a reduction
of the computational complexity of the TCOCNN is desirable for future investigations.

5. Conclusions and Outlook

All-in-all, the novel TCOCNN model presented here outperformed state-of-the-art
ML models such as the FESR approach both in laboratory measurements and field tests,
achieving higher accuracy and lower noise with the same temporal resolution, especially
in real application environments. Furthermore, the TCOCNN model achieved similar
quantification performance as the tested analytical systems, which however were more
robust in the case of unknown gases.

On the other hand, the TCOCNN approach is still not fully investigated, as it is not
yet clear on which features the model is basing its decision and how the hyperparameters
influence the model performance for various target gases. Furthermore, the absolute
accuracy has to be determined with calibrated reference instruments, which were not
available for this study. Similarly, the selectivity and quantification performance for gases
from the same chemical group as one of the trained gases needs to be studied further to
make full use of this effect to reduce the calibration complexity while still achieving the
required level of selectivity. Finally, we are planning to investigate methods such as transfer
learning to reduce or even eliminate the required recalibration for drift compensation.
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Figure A1. Prediction of gas concentrations during the release tests for various trained gases using different evaluation
models and comparison with the results of analytical instruments together with all predictions of the TCOCNN for the
other gases. (a) Release Test Number 7 of toluene. (b) Release Test Number 9 of acetone. (c) Release Test Number 17 of
hydrogen. (d) Release Test Number 16 of toluene, acetone and ethanol (adapted from [13]).
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Figure A2. Prediction of gas concentrations for the release tests of gases not contained in the calibration together with all
predictions of the TCOCNN for the other gases. (a) Release Test Number 14 of m/p-xylene. (b) Release Test Number 15 of
toluene and m/p-xylene. (c) Release Test Number 13 of isopropyl alcohol (adapted from [13]).

References
1. Asikainen, A.; Carrer, P.; Kephalopoulos, S.; De Oliveira Fernandes, E.; Wargocki, P.; Hänninen, O. Reducing burden of disease

from residential indoor air exposures in Europe (HEALTHVENT project). Environ. Health 2016, 15, 61–72. [CrossRef] [PubMed]
2. Hauptmann, M.; Lubin, J.H.; Stewart, P.A.; Hayes, R.B.; Blair, A. Mortality from Solid Cancers among Workers in Formaldehyde

Industries. Am. J. Epidemiol. 2004, 159, 1117–1130. [CrossRef] [PubMed]
3. United Nations, Department of Economic and Social Affairs, Sustainable Development. Ensure Healthy Lives and Promote

Well-Being for All at All Ages. Available online: https://sdgs.un.org/goals/goal3 (accessed on 15 October 2021).
4. Valero, E. Advanced Nanomaterials for Inexpensive Gas Microsensors: Synthesis, Integration and Applications; Elsevier: Amsterdam,

The Netherlands, 2020.
5. Molhave, L.; Nielsen, G.D. Interpretation and Limitations of the Concept “Total Volatile Organic Compounds” (TVOC) as an

Indicator of Human Responses to Exposures of Volatile Organic Compounds (VOC) in indoor air. Indoor Air 1992, 2, 65–77.
[CrossRef]

6. Salthammer, T. Very volatile organic compounds: An understudied class of indoor air pollutants. Indoor Air 2014, 26, 25–38.
[CrossRef]

7. Pettenkofer, M. Über den Luftwechsel in Wohngebäuden; Literarisch-Artistische Anstalt der J.G. Cotta’schen Buchhandlung:
München, Germany, 1858.

8. Yeoman, A.M.; Shaw, M.; Carslaw, N.; Murrells, T.; Passant, N.; Lewis, A.C. Simplified speciation and atmospheric volatile
organic compound emission rates from non-aerosol personal care products. Indoor Air 2020, 30, 459–472. doi: 10.1111/ina.12652.
[CrossRef]

Paper 1

86



Atmosphere 2021, 12, 1487 23 of 24

9. Coggon, M.M.; McDonald, B.C.; Vlasenko, A.; Veres, P.R.; Bernard, F.; Koss, A.R.; Yuan, B.; Gilman, J.B.; Peischl, J.; Aikin, K.C.;
et al. Diurnal Variability and Emission Pattern of Decamethylcyclopentasiloxane (D5) from the Application of Personal Care
Products in Two North American Cities. Environ. Sci. Technol. 2018, 52, 5610–5618. [CrossRef]

10. Mølhave, L. Indoor air pollution due to organic gases and vapours of solvents in building materials. Environ. Int. 1982, 8, 117–127.
[CrossRef]

11. Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC
Sensor Systems Based on Semiconductor Gas Sensors: How to? Environments 2017, 4, 20. [CrossRef]

12. Haddad, S.; Synnefa, A.; Marcos, M.Á.P.; Paolini, R.; Delrue, S.; Prasad, D.; Santamouris, M. On the potential of demand-
controlled ventilation system to enhance indoor air quality and thermal condition in Australian school classrooms. Energy Build.
2021, 238, 110838. [CrossRef]

13. Baur, T.; Amann, J.; Schultealbert, C.; Schütze, A. Field Study of Metal Oxide Semiconductor Gas Sensors in Temperature Cycled
Operation for Selective VOC Monitoring in Indoor Air. Atmosphere 2021, 12, 647. [CrossRef]

14. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings
of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe Nevada, CA, USA, 3 December–6
December 2012; Curran Associates Inc.: Red Hook, NY, USA, 2012; Volume 1, pp. 1097–1105.

15. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, L.; Wang, G.; et al. Recent Advances in
Convolutional Neural Networks. arXiv 2017, arXiv:1512.07108v6.

16. White, C.; Neiswanger, W.; Savani, Y. BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture
Search. arXiv 2020, arXiv:1910.11858v3.

17. Vito, S.D.; Massera, E.; Piga, M.; Martinotto, L.; Francia, G.D. On field calibration of an electronic nose for benzene estimation in
an urban pollution monitoring scenario. Sens. Actuators B Chem. 2008, 129, 750–757. [CrossRef]

18. Szczurek, A.; Szecówka, P.; Licznerski, B. Application of sensor array and neural networks for quantification of organic solvent
vapours in air. Sens. Actuators B Chem. 1999, 58, 427–432. [CrossRef]

19. Han, L.; Yu, C.; Xiao, K.; Zhao, X. A New Method of Mixed Gas Identification Based on a Convolutional Neural Network for
Time Series Classification. Sensors 2019, 19, 1960. [CrossRef]

20. Wang, S.; Hu, Y.; Burgues, J.; Marco, S.; Liu, S.C. Prediction of Gas Concentration Using Gated Recurrent Neural Networks. In
Proceedings of the 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Genova, Italy,
31 August–2 September 2020. [CrossRef]

21. Chen, Z.; Zheng, Y.; Chen, K.; Li, H.; Jian, J. Concentration Estimator of Mixed VOC Gases Using Sensor Array With Neural
Networks and Decision Tree Learning. IEEE Sens. J. 2017, 17, 1884–1892. [CrossRef]

22. Xu, Y.; Meng, R.; Zhao, X. Research on a Gas Concentration Prediction Algorithm Based on Stacking. Sensors 2021, 21, 1597.
[CrossRef]

23. Benrekia, F.; Attari, M.; Bouhedda, M. Gas Sensors Characterization and Multilayer Perceptron (MLP) Hardware Implementation
for Gas Identification Using a Field Programmable Gate Array (FPGA). Sensors 2013, 13, 2967–2985. [CrossRef]

24. Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors 2019, 19, 3760.
[CrossRef]

25. Bastuck, M. Improving the Performance of Gas Sensor Systems with Advanced Data Evaluation, Operation, and Calibration
Methods. Ph.D. Thesis, Department Systems Engineering, Shaker Verlag, Saarland University, Düren, Germany, 2019.

26. Rüffner, D.; Hoehne, F.; Bühler, J. New Digital Metal-Oxide (MOx) Sensor Platform. Sensors 2018, 18, 1052. [CrossRef]
27. Baur, T.; Bastuck, M.; Schultealbert, C.; Sauerwald, T.; Schütze, A. Random gas mixtures for efficient gas sensor calibration.

J. Sens. Sens. Syst. 2020, 9, 411–424. [CrossRef]
28. Helwig, N.; Schüler, M.; Bur, C.; Schütze, A.; Sauerwald, T. Gas mixing apparatus for automated gas sensor characterization.

Meas. Sci. Technol. 2014, 25, 055903. [CrossRef]
29. Schultealbert, C.; Baur, T.; Schütze, A.; Sauerwald, T. Facile Quantification and Identification Techniques for Reducing Gases over

a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation. Sensors 2018, 18, 744. [CrossRef] [PubMed]
30. Baur, T.; Schütze, A.; Sauerwald, T. Optimierung des temperaturzyklischen Betriebs von Halbleitergassensoren (Optimization of

temperature-cycled operation of semiconductor gas sensors). TM-Tech. Mess. 2015, 82, 187–195. [CrossRef]
31. Schultealbert, C.; Baur, T.; Schütze, A.; Böttcher, S.; Sauerwald, T. A novel approach towards calibrated measurement of trace

gases using metal oxide semiconductor sensors. Sens. Actuators B Chem. 2017, 239, 390–396. [CrossRef]
32. Bastuck, M.; Baur, T.; Schütze, A. DAV³E a MATLAB toolbox for multivariate sensor data evaluation. J. Sens. Sens. Syst.

2018, 7, 489–506. [CrossRef]
33. Robin, Y.; Goodarzi, P.; Baur, T.; Schultealbert, C.; Schütze, A.; Schneider, T. Machine Learning based calibration time reduction for

Gas Sensors in Temperature Cycled Operation. In Proceedings of the 2021 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021; pp. 1–6. [CrossRef]

34. Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. arXiv 2012,
arXiv:1206.2944v2.

35. Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.A.; Homer, M.L.; Huerta, R. Chemical gas sensor drift compensation using classifier
ensembles. Sens. Actuators B Chem. 2012, 166–167, 320–329. [CrossRef]

Results and Discussion

87



Atmosphere 2021, 12, 1487 24 of 24

36. Artursson, T.; Eklöv, T.; Lundström, I.; Martensson, P.; Sjöström, M.; Holmberg, M. Drift correction for gas sensors using
multivariate methods. J. Chemom. 2000, 14, 711–723. [CrossRef]

37. Amann, J.F. Möglichkeiten und Grenzen des Einsatzesvon Halbleitergassensoren im temperaturzyklischenBetrieb für die
Messung der Innenraumluftqualität-Kalibrierung, Feldtest,Validierung. Master’s Thesis, Universität des Saarlandes, Saarbrücken,
Germany, 2021.

38. Bur, C.; Engel, M.; Horras, S.; Schütze, A. Drift compensation of virtual multisensor systems based on extended calibration.
In Proceedings of the IMCS2014—The 15th International Meeting on Chemical Sensors (Poster Presentation), Buenos Aires,
Argentina, 16–19 March 2014.

39. Schleyer, E.B.R.; Wallasch, M. Das Luftmessnetz des Umweltbundesamtes; Umweltbundesamt: Dessau-Roßlau, Germany, 2013.
40. WHO. WHO Regional Office for Europe Centers of Disease Control, WHO Guidelines for Indoor Air Quality: Selected Pollutants;

World Health Organization: Copenhagen, Denmark, 2010; Volume 9, ISBN 978-92-890-0213-4.
41. Schultealbert, C.; Amann, J.; Baur, T.; Schütze, A. Measuring Hydrogen in Indoor Air with a Selective Metal Oxide Semiconductor

Sensor. Atmosphere 2021, 12, 366. [CrossRef]
42. Schutze, A.; Gramm, A.; Ruhl, T. Identification of Organic Solvents by a Virtual Multisensor System With Hierarchical

Classification. IEEE Sens. J. 2004, 4, 857–863. [CrossRef]

Paper 1

88



Results and Discussion

3.3 Paper 2 – Deep Learning Based Calibration Time
Reduction for MOS Gas Sensors with Transfer
Learning

Y. Robin, J. Amann, P. Goodarzi, T. Schneider, A. Schütze,
C. Bur
Lab for Measurement Technology, Saarland University, Campus A5 1, 66123 Saar-
brücken, Germany

Atmosphere 2022, 13(10), 1614;

The original paper can be found in the online version at https://www.mdpi.com/1864658
or DOI: https://doi.org/10.3390/atmos13101614

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open-access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (ht tp : // cr ea ti ve co mm on s .o rg /l ic en se s/ by /4 .0/ ). Reprinted, with
permission, from Y. Robin, J. Amann, P. Goodarzi, T. Schneider, A. Schütze, C. Bur; Deep
Learning Based Calibration Time Reduction for MOS Gas Sensors with Transfer Learning;
Atmosphere 2022.

89

https://www.mdpi.com/1864658
https://doi.org/10.3390/atmos13101614
http://creativecommons.org/licenses/by/4.0/


Paper 2

3.3.1 Synopsis

After introducing the TCOCNN and demonstrating that the custom neural network
can accurately quantify target VOCs in laboratory conditions as well as field tests, the
next step is to tackle one of the essential issues with MOS gas sensor calibration. This
paper shows that it is possible to significantly reduce the calibration time with the
help of calibration transfer based on transfer learning from DL. A new dataset was
required to analyze the capabilities of transfer learning for calibration transfer in an IAQ
scenario. Therefore, a new dataset containing multiple UGMs from various sensors in a
more complex indoor air scenario with more gases was recorded. The dataset was again
recorded with the help of a custom GMA and consisted of 906 UGMs constructed with
the help of Latin hypercube sampling. The corresponding ranges for the seven VOCs
(acetic acid, acetone, ethanol, ethyl acetate, formaldehyde, toluene, and xylene), the
two background gases (carbon monoxide, hydrogen), and the relative humidity can be
found in Table 3.4. The 906 UGMs were split into three segments to allow for a better
approximation of lower gas concentrations. Each segment used different concentration
ranges for all gases and the relative humidity to build the dataset. Three SGP40 sensors
(sensor A - C) were used to record the dataset across all 906 UGMs.26 Sensors A and B
were from the same batch, while sensor C was from a new batch. The operation mode
for all sensors was once again TCO. Compared to the previous paper, the cycle had a
duration of 144 s with twelve high and low-temperature phases. The high temperature
was again set to 400 °C, and the low temperatures were increased from 100 to 375 °C in
25 °C steps; however, every temperature step was recorded this time. Sub-sensor 3 was
different, as it was only modulated between 200 °C and 300 °C.

After introducing the dataset, explaining transfer learning for calibration transfer is
essential. As presented in the Theoretical Background section, transfer learning is a
technique to reuse a working model on a new but similar dataset. An example of transfer
learning from computer vision would be to reuse an object detection network to detect
new objects in pictures with the help of only a few additional training images. This
publication reused a model built with one sensor for a second sensor by retraining the
model with as few transfer samples/UGMs as possible. Compared to regular training,
transfer learning takes the weights of the previously trained model as a starting point
for retraining. Furthermore, a lower learning rate is applied (fine-tuning), or some
layer weights are frozen. This should guarantee optimal adaption to the new sensor

26It took 24 minutes to record one UGM.
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Table 3.4: Concentration ranges for all target gases and the number of unique gas
mixtures (UGMs) for each range within the dataset. Relative Humidity (RH)
was varied between 25 % and 80 %. Reprinted with permission of Ref.
Paper 2. Y. Robin, 2023.

Segment 1 Segment 2 Segment 3
(1 - 200) (201 - 500) (501 - 906)

Carbon monoxide 100 - 2000 ppb 100 - 2000 ppb 100 - 2000 ppb
Hydrogen 400 - 2000 ppb 400 - 2000 ppb 400 - 2000 ppb
Acetic acid 1 - 50 ppb 1 - 150 ppb 1 - 500 ppb
Acetone 3 - 50 ppb 3 - 150 ppb 3 - 500 ppb
Ethanol 1 - 50 ppb 1 - 150 ppb 1 - 500 ppb
Ethyl acetate 1 - 50 ppb 1 - 150 ppb 1 - 500 ppb
Formaldehyde 1 - 50 ppb 1 - 150 ppb 1 - 300 ppb
Toluene 1 - 75 ppb 1 - 75 ppb 1 - 250 ppb
Xylene 2 - 150 ppb 2 - 150 ppb 2 - 500 ppb

without overfitting to the much smaller transfer dataset. After the general concepts were
discussed within the paper, the first step was to split the data into training, validation,
and testing. Similarly to Paper 1, the data was divided based on the UGMs in 70/10/20
fashion to test the TCOCNN. This split was the same across sensors and evaluations to
guarantee fair comparison. After the data split, the TCOCNN was optimized for the
independent gases with the help of Bayesian optimization, using sensor A’s training and
validation data. By using the optimized hyperparameters, individual calibration models
were built for every gas and sensor. This was done to test the general performance of
the TCOCNN on the new dataset. It was shown that the TCOCNN achieved reasonable
results for all sensors with the hyperparameters found with sensor A. However, sensor C
showed slightly worse performance, which can be attributed to sensor C being from a
new batch.

The next step was to analyze which fine-tuning method works best for this use case.
Therefore, an initial model was built with sensor A, and the transfer samples were
randomly selected from the pool of training samples from sensors B and C. For the
fine-tuning itself, three different learning rates were tested together with freezing the
convolutional part of the neural network. It was demonstrated that selecting the learning
rate reached halfway during the regular learning processes (LR ∗ 0.915)27 is optimal for
small transfer sets (cf. Figure 3.4). For most gases, 50 UGMs were sufficient to reach

27LR represents the initial learning rate which depends on the different target gases.
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acceptable performance compared to training a model from scratch with all 700 training
UGMs (double the RMSE). This suggests that it is possible to reduce the calibration
time by up to 93 % and still find a suitable model. However, this depends on the target
gas and the sensor used for transfer. For example, it was demonstrated that slightly
worse performance was achieved when sensor C from the new batch was used. This
indicates that the model built with one sensor for initial model building cannot be
generalized across batches.
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Figure 3.4: Comparison of different transfer methods for carbon monoxide and formalde-
hyde. Transfer method 1: learning rate set to the value reached at the
end of original training. Transfer method 2: learning rate set to the value
reached halfway through original training. Transfer method 3: learning
rate set to the original value. Transfer method 4: implicit feature extraction
fixed, only fully connected layer can be trained. Reprinted with permission
of Ref. Paper 2. Y. Robin, 2023.

For further validation, the results achieved with the learning rate set to LR∗0.915 were
compared with building the models from scratch. There, it was demonstrated that trans-
fer learning leads to considerably better results than the model built from scratch. This
is especially true for small transfer sets where much smaller RMSE values were achieved
across all gases. Apart from the learning rate, DL-based transfer learning has many
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more parameters that can lead to even better calibration transfer [Paper 2]. Therefore,
the impact of the selected UGMs on the quality of the transferred model was analyzed.
This was done with the help of performing multiple evaluations with a static transfer
set (same UGMs) and a dynamic transfer set (different UGMs from the training set). A
much higher variance was observed for the dynamic set, which showed it is possible to
achieve far better results with "good" 20 UGMs compared to 50 "bad" UGMs. While not
tested in this work, the Kennard-Stone algorithm [25] might be a suitable solution to find
the optimal subset of UGMs. During the evaluation, it was discovered that the results
could be drastically improved with the help of normalizing the input by subtracting
the mean and dividing the result by the standard deviation for every observation and
each sub-sensor independently. In these experiments, the evaluations were repeated
with the normalization, and the results showed an overall improved performance while
also confirming the previous results. The last evaluation compared the results to global
modeling based on the FESR approach. The comparison showed that the performance
of global FESR and transferred TCOCNN are very similar for small datasets. However,
for slightly larger datasets, it could be seen that the TCOCNN outperforms global model
building. This can be attributed to the specifically tailored ML model for the new sensor.

In conclusion, it can be stated that DL-based transfer learning for calibration transfer can
significantly reduce the needed calibration time for IAQ applications (93 %). Although
many parameters are tunable for transfer learning, encouraging results are already
achieved with straightforward methods. For future work, it is necessary to compare
this newly developed method with state-of-the-art approaches (signal standardization)
to estimate the efficiency. Furthermore, optimizing this approach for industrial use is
essential, where only 1 - 5 gas tests are used for sensor calibration (no GMA needed).
Global model building for initial model building is mainly analyzed in the following
paper as this is a promising candidate for finding more general initial models.

The main takeaways of this publication are:

• The same hyperparameter can be used across different sensors.

• Normalization improves the prediction quality significantly.

• Transfer learning can be used for calibration transfer.

• Different transfer strategies perform well for different tasks.
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– Best performance for a small dataset with LR ∗ 0.915.

– Best performance for a large dataset with LR ∗ 0.90.

• Transfer learning can be used to reduce the calibration time significantly.

– Reduction by up to 93 %.

– Performance depends on the target gas.

• The selection of transfer UGMs is highly relevant.

• Transfer learning can generate tailored models that perform better than global
ones.

• Transfer learning comes with additional hyperparameters.

– Transfer strategies (fine-tuning, freezing).

– Selected transfer samples.

Open questions/tasks are:

• Can transfer learning outperform state-of-the-art calibration transfer methods?

• What is the effect on the performance of calibration transfer if multiple sensors
are used for initial model building?
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Abstract: In this study, methods from the field of deep learning are used to calibrate a metal oxide
semiconductor (MOS) gas sensor in a complex environment in order to be able to predict a specific gas
concentration. Specifically, we want to tackle the problem of long calibration times and the problem
of transferring calibrations between sensors, which is a severe challenge for the widespread use of
MOS gas sensor systems. Therefore, this contribution aims to significantly diminish those problems
by applying transfer learning from the field of deep learning. Within the field of deep learning,
transfer learning has become more and more popular. Nowadays, building a model (calibrating
a sensor) based on pre-trained models instead of training from scratch is a standard routine. This
allows the model to train with inherent information and reach a suitable solution much faster or more
accurately. For predicting the gas concentration with a MOS gas sensor operated dynamically using
temperature cycling, the calibration time can be significantly reduced for all nine target gases at the
ppb level (seven volatile organic compounds plus carbon monoxide and hydrogen). It was possible
to reduce the calibration time by up to 93% and still obtain root-mean-squared error (RMSE) values
only double the best achieved RMSEs. In order to obtain the best possible transferability, different
transfer methods and the influence of different transfer data sets for training were investigated. Finally,
transfer learning based on neural networks is compared to a global calibration model based on feature
extraction, selection, and regression to place the results in the context of already existing work.

Keywords: air quality; MOS gas sensors; deep learning; calibration time reduction; transfer learning

1. Introduction

The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 has shown
that air pollution caused the premature death of around 6.7 million people in 2019 [1].
In order to lower the number of premature deaths, it is essential to analyze outdoor and
indoor air regarding their toxic or harmful components. Since air generally consists of
many different components, it is almost impossible to determine every substance within.
Therefore, this contribution focuses on quantifying volatile organic compounds (VOCs),
which are of great importance because there is a large variety of substances, some safe,
like ethanol, and others highly toxic even at low concentrations like formaldehyde [2].
Today, only analytical measurement systems can quantify specific components (e.g., VOCs)
with reasonable accuracy at the ppb level. However, these measurement systems are
costly, require expert knowledge to operate, and are often not capable of real-time mea-
surements. This prevents the widespread use of analytical measurements for reducing the
risk associated with exposure to dangerous VOCs, especially in indoor air. One promising
solution for a low-cost and easy-to-operate measuring system is provided by metal oxide
semiconductor (MOS) gas sensors. Previous studies showed that such systems, together
with complex operating modes and deep learning, can quantify single VOCs in complex
environments at the ppb level [3]. The system, in this case, consists of one or multiple
MOS gas sensors operated dynamically to obtain complex signal patterns. In particular,
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temperature cycled operation (TCO) has been demonstrated to greatly increase sensitivity,
selectivity, and stability [4]. With the help of machine learning, a data-driven calibration
model is built that analyses the complex sensor response patterns and can thereby predict
gas concentrations of individual gases even in complex mixtures. However, due to even
minute production tolerances of the gas sensing layer or the µ-hotplate for setting the
temperature, it is necessary to calibrate every system individually, which requires several
days to reach sufficient accuracy for complex gas mixtures. This greatly increases the cost
and limits the widespread use of these advanced gas sensor systems. There are already
transfer methods to significantly reduce the calibration time, such as direct standardization,
orthogonal signal correction, global modeling, and many more, as shown in [5–11]. These
methods calibrate a global model based on a few master sensors and use this for all addi-
tional sensors. In some cases, they also map the signals of additional sensors to the signals
of the master sensors with the help of a few transfer samples. Thereby, the sensor signal of
the new sensors is altered slightly to match the signal pattern of the master sensors. This
allows for using the same global data-driven model with data from many different sensors.
It was shown that those methods, together with a few transfer samples, can, for example,
account for temperature differences caused by the hotplate or compensate for sensor drift.
Nevertheless, those methods require that the sensor to be calibrated is operated under the
exact same conditions, i.e., gas compositions and concentration ranges, during calibration
as the master model. Thus, it is not possible to transfer models between different use cases.
One promising solution for this problem might be transfer learning from the field of deep
learning [12–14]. This method is often used for image classification tasks [15]. In this case,
classification models are not built from scratch every time; instead, already existing models
are adjusted to classify different objects in a picture.

This study adopts and applies transfer learning to data of a commercially available
MOS gas sensor (SGP40, Sensirion AG, Stäfa, Switzerland). A deep convolutional neural
network is trained on one master MOS gas sensor to build an initial model, which is
then used as the starting point for other sensors to be calibrated. The gases analysed are
the seven target VOCs acetic acid, acetone, ethanol, ethyl acetate, formaldehyde, toluene,
and xylene, and the two background gases carbon monoxide and hydrogen, as well as
the relative humidity. It was previously shown by [16,17] that it is possible to use such
methods to reduce the calibration time of sensors significantly. To the best of our knowledge,
not many scientific publications address deep transfer learning for gas sensor calibration;
therefore, more research is required. Compared to the previous studies, we have tackled
more complex situations, i.e., more than ten independent gas components with a focus on
VOCs at low ppb concentrations are analyzed as a regression problem. The influence of
different hyperparameters on transferability are investigated. For example, the influence of
different transfer learning methods and the gases used for the transfer between sensors
are analyzed. Furthermore, the results are compared with already existing work in the
form of a conventional global calibration model based on feature extraction, selection,
and regression.

2. Materials and Methods
2.1. Dataset

The dataset used throughout this study to evaluate the benefits of transfer learning
in the field of deep learning is generated with our recently developed novel gas mixing
apparatus (GMA), which allows up to 16 independent gases to be arbitrarily mixed over
a wide concentration range. Details about this GMA are described in [18] and further
details can be found in [19,20]. The GMA is used to provide well-known complex gas
mixtures to three commercially available MOS sensors, i.e., SPG40 (Sensirion AG, Stäfa,
Switzerland), with two sensors from one batch and the third from a different one. Every
SGP40 holds four different gas-sensitive layers and is operated using temperature cycled
operation (TCO) as shown in Figure 1. For this study, the temperature of sub-sensors 0–2
from all SGP40 is switched between high-temperature phases at 400 °C for 5 s, followed by

Paper 2
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low-temperature phases varying in 25-degree steps from 100 °C to 375 °C and lasting 7 s
each. The temperature of sub-sensor 3 is only changed between 300 °C and 250 °C due to
the lower temperature stability of this gas-sensitive layer. Each temperature cycle lasted
144 s with the logarithmic sensor resistance sampled at 10 Hz. Temperature cycling of the
independent hotplates and read-out of the four gas-sensitive layers is achieved with the
integrated electronic using custom software based on a protocol provided by Sensirion
under a non-disclosure agreement. Further details are described in [19]. The data used for
building the data-driven models always consists of one full temperature cycle of all gas-
sensitive layers with the raw signal modified based on the Sauerwald-Baur model [21,22],
i.e., a total of 5760 data points. For future reference, one complete temperature cycle is
treated as an observation.
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Figure 1. Temperature cycle together with an example sensor response sampled at 10 Hz. High-
temperature phase with a duration of 5 s and a low-temperature phase of 7 s with an overall duration
of 144 s. (a) temperature cycle for sub-sensor 0–2 and a typical sensor response of sub-sensor 0;
(b) temperature cycle for sub-sensor 3 and a typical sensor response.

In order to calibrate the sensor for a complex environment, the gas mixtures applied
by the GMA represent realistic gas mixtures as found in indoor environments consisting of
eight different VOCs plus two inorganic background gases, CO and hydrogen. Furthermore,
the relative humidity @20 °C is varied between 25–80%, resulting in a total of 11 indepen-
dent variables. The eight VOCs chosen for calibration are acetic acid, acetone, ethanol, ethyl
acetate, formaldehyde, isopropanol, toluene, and xylene, representing various VOC classes.
They contain benign and hazardous VOCs (cf. Figure 2). During the experiment, multiple
unique gas mixtures (UGMs) were randomly defined based on predefined concentration
distributions. Latin hypercube sampling [23,24] was applied to minimize correlations
between the different gases. All gas sensors were simultaneously exposed to these UGMs
for several minutes to record multiple temperature cycles (TCs) or observations for each
mixture. For Latin hypercube sampling, the experiment is divided into three different
sections. For each of these segments, the concentration of every gas is randomly picked
from a uniform distribution, cf. Table 1. The specific gases and concentration ranges used
for this study are based on [19,24,25].

In total, 906 UGMs were set, exposing all three SGP40 sensors simultaneously for
approx. 10 TCs (1440 s), yielding an overall calibration duration of more than 15 days.
Because of synchronization problems between GMA and the sensors’ data acquisition, only
three to four TCs or observations per UGM are used for further evaluation. The target for
the data-driven models is an accurate prediction of the gas concentration for each gas, VOC,
or inorganic background gas individually. As an additional target, the sum concentration
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of all VOCs within the mixtures is also predicted as this TVOCsens value might be a suitable
indicator for indoor air quality. Because of minimal sensor response to isopropanol, it is
excluded as an independent target and contributor to the TVOCsens target.

carbon monoxide

hydrogen

zero air

water vapor

acetic acid

acetone

ethanol

ethyl acetate

isopropanol

toluene

formaldehyde

xylene
target VOCs

interfering
VOCs

humidity

inorganic
backgrounds

zero air

background

TVOCsens

background VOC

Figure 2. Overview of all substances within gas mixtures (adapted from [3,24]).

Table 1. Concentration ranges for all target gases together with the number of unique gas mixtures
(UGMs) for each range within the dataset.

Segment 1 (1–200) Segment 2 (201–500) Segment 3 (501–906)

Carbon monoxide 100–2000 ppb 100–2000 ppb 100–2000 ppb

Hydrogen 400–2000 ppb 400–2000 ppb 400–2000 ppb

Acetic acid 1–50 ppb 1–150 ppb 1–500 ppb

Acetone 3–50 ppb 3–150 ppb 3–500 ppb

Ethanol 1–50 ppb 1–150 ppb 1–500 ppb

Ethyl acetate 1–50 ppb 1–150 ppb 1–500 ppb

Formaldehyde 1–50 ppb 1–150 ppb 1–300 ppb

Toluene 1–75 ppb 1–75 ppb 1–250 ppb

Xylene 2–150 ppb 2–150 ppb 2–500 ppb

This dataset consists of the data of three SGP40 sensors. Throughout this study,
sensor A will be used to build the initial models from which the calibration models for
sensor B (same batch) and sensor C (different batch) are derived. Sensors from different
batches have been chosen to investigate the effect of transferring a data-driven model across
batches, as one would expect larger differences in sensor parameters. Sensors A and B are
from the same batch, and sensor C is from a different one.

2.2. Model Building and Methods

A ten-layer deep convolutional neural network (TCOCNN [3]) is used to derive the
data-driven model (cf. Figure 3). The input for this neural network is one observation
represented in a 4x1440 array. The first dimension describes the different gas-sensitive
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layers per sensor, and the second dimension covers the time domain (144 s sampled at
10 Hz). In previous studies, it is shown that this TCOCNN achieves similar or slightly
better results than classical approaches based on feature extraction, selection, and regression
(FESR) [3] and can be used for transfer learning [16]. Other contributions also showed
that neural networks can be used to calibrate gas sensors and achieve similar results to
established methods [26]. The focus of this contribution will be on the TCOCNN from [3]
as a starting point for transfer learning. This will also include the normalization of the
input matrix. Currently, this is done by calculating the mean and standard deviation of
the complete 4 × 1440 matrix of one observation and then normalizing this frame. This
standard approach for pictures is not the best for sensor-based data, where normalization
would ideally be done for each sub-sensor.

The hyperparameters of the neural network are optimized independently for each ana-
lyzed gas, similar to the optimization done in [3]. Hyperparameter tuning of the TCOCNN
is performed with Bayesian optimization and neural architecture search (NAS) [27,28].
The optimized parameters are the initial learning rate of the optimizer, the number of
filters, and kernel size, and striding size of the convolutional layers, the dropout rate,
and the number of neurons of the fully connected layer. The optimization for all sensors
is based on sensor A and is performed on 500 randomly chosen UGMs (450 for training
and 50 for validation). The optimization goal was to minimize the root-mean-squared error
(RMSE) on the validation data as described in [3]. In our typical workflow, the final model
would be trained for each individual sensor from scratch after hyperparameter tuning with
700 UGMs and tested on the remaining 200 UGMs.

0 1 2 3 4 5 6 7 8 9

Input Layer 2D Convolution
+2D BatchNorm

ReLU Layer Output  Regression
(mean-squared-error)

Fully Connected

1 2

Dropout Layer

Figure 3. Architecture of the TCOCNN neural network (adapted from [29]).

2.2.1. Transfer Learning

In order to improve the training process of the TCOCNN, primarily by reducing the
number of UGMs required for calibration, transfer learning is now introduced [12–15].
Transfer learning in the scope of deep learning is generally used to adapt the information
of an already existing model to a new task or a new domain. For neural networks, this
information is stored within the weights and biases, as they are used to transform the input
to form the output. Therefore, they contain information on the dependencies between input
and output. Thus, those weights and biases can be used for a similar task and must only
be adjusted with additional training. The exact definition of transfer learning and how it
is used with and without deep learning can be seen in multiple surveys [30–32]. In our
case, we want to maintain the information within the weights and biases about interpreting
different signal patterns for specific gas concentrations and transfer this information to
other sensors [16]. This is done by not initializing the model with random weights and
biases. Instead, the weights and biases from a previously calibrated network (different
sensor or sensors) are used as a starting point (initial/global model). This ensures that
the neural network starts not without any information about the task at hand. This means
that, before the training/calibration starts for the new sensor, the neural network contains
information on how to transform the input. Nevertheless, a further adjustment of the
weights and biases in the form of additional training is necessary because of production
differences between every sensor (new domain).
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The benefits of transfer learning can be seen in Figure 4. This scheme was initially
proposed for classification by [12] and is here adapted to a regression problem for gas
sensor calibration. It shows that, with proper transfer learning together with suitable data,
it is possible to improve the starting accuracy, increase the learning slope, and perhaps
even achieve better results than the initial model. However, it is also illustrated that the
amount of data, here the number of UGMs, and the transfer learning method are essential
to achieve the desired improvement. An improvement means either reaching an acceptable
accuracy, here a required measurement uncertainty expressed as RMSE, with fewer data,
or achieving higher accuracy with a similar amount of data. This study will analyze both
possible improvements for our use case.

Number of UGMs for training
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Initial model
Transferred model (Learning Rate A)
Transferred model (Learning Rate B)

Better starting RMSE

Steeper slope

Better or worse RMSE

Figure 4. Expected effect of transfer learning over the number of training samples and trans-
fer methods.

In order to transfer the gas sensor calibration from one sensor (sensor A) to one of
the others (sensor B or C), multiple methods are available, which were used for other
data-driven problems, like computer vision or speech recognition [15,33]. Throughout
this contribution, four different methods for transfer learning will be tested. Three of
them belong to the field of fine-tuning [34], where not only certain parts of the model are
retrained, but the whole model is adjusted to the new domain (e.g., sensor), which means
that every weight and bias is readjusted. Those three fine-tuning methods vary in the rate
the network parameters are allowed to change, which the initial learning rate can control.
The lower the initial learning rate, the less the parameter within the network will change.
Method one sets the initial learning rate to the learning rate the TCOCNN has reached at
the end of the training of the initial model, which is low because, during TCOCNN training,
the learning rate is decreased after every two epochs by 0.9. The second method sets
the initial learning rate to the value reached halfway through the initial training process,
while the third set the learning rate to the value at the beginning of the initial training.
On the other hand, the fourth method keeps all parameters of the convolutional layers
fixed and only adapts the parameters in the last two fully connected layers to the new
sensors [34]. Thus, this method basically keeps the implicit feature extraction [35] as
derived for the model of sensor A and only retrains the regression part of the network. This
allows for gaining insights if an adaptation of the implicit feature extraction is necessary
for new sensors.
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2.2.2. Global Model

After introducing transfer learning, it is also important to compare this method
with already existing approaches like global model-building [7]. Here, a global model-
building approach means one model trained once on all available data samples, i.e., cov-
ering different gas sensors. Based on this definition, the transfer learning approach based
on neural networks, as introduced above, is not a global calibration method, as individ-
ual models for different sensors are obtained. For practical application, a comparison
between transfer learning and global modeling is important as a valid global model
would completely eliminate the necessity for individual gas sensor calibration. In this
case, we chose not to compare this with neural networks but instead used established
methods based on feature extraction, selection, and regression (FESR). Usually, we use
this approach only on single sensors, as shown in [19], but this approach is extended to
multiple sensors in this study. As for the neural network, the data is split into 700 UGMs
for model building and 200 UGMs for testing data. For feature extraction, adaptive linear
approximation (ALA) is used. This extraction method divides the raw signal into sec-
tions and calculates the mean and slope of these sections as features. The segmentation
is optimized based on the reconstruction error on the full training set that is achieved
with the calculated mean and slope values. Details are given in [36,37]. The feature
selection is performed with 10-fold cross-validation (based on all observations) of the
training data. In this case, the training set is split randomly into ten parts, and the RMSE
is calculated for the different training sets (different numbers of features) across all folds.
First, the features are sorted based on their Pearson correlation to the target gas to reduce
the number of features to a manageable level, here 200. Then, the feature set is gradually
increased from 1–200 features. The resulting sets are tested with the help of a partial least
squares regression (PLSR) with a maximum of 100 components [38,39], and the set with
the smallest RMSE across all ten folds is used for later evaluations (e.g., [37]). The final
regression is then built with the help of a PLSR with a maximum of 100 components and
the data available from multiple sensors.

2.3. Data Evaluation

In order to evaluate the capabilities of transfer learning, this section summarises the
strategies followed to test transfer learning. Before any evaluations are performed, the data
are split into training (700 UGMs) and testing (200 UGMs) data. The 200 test UGMs are the
same throughout all evaluations and also for different sensors to make the comparison fair.

As stated in the modeling section, the TCOCNN is first optimized for the different
gases. In addition, 500 random UGMs are picked from the 700 available training UGMs
from sensor A. The Bayesian optimization is then performed with 450 UGMs for training
and 50 for validation. The model parameters that achieve the lowest validation RMSE are
then chosen for the rest of this contribution for the specific gas. A detailed explanation of
this process can be found in [3], albeit for a different sensor model.

In the next step, the RMSE that these models can achieve is determined, i.e., the
RMSE when training the model with the selected hyperparameters with all 700 training
UGMS and testing on the 200 independent test UGMs. This training process is repeated ten
times for every gas and for all sensors to determine the stability of the achieved models.
The mean RMSE values of the training are used as reference RMSE values for the subsequent
transfer learning.

In the first part, different methods for transfer learning are studied and compared.
Thus, an initial model is built based on the 700 training UGMs for sensor A. Since this
model building was already performed in the previous step for calculating the baseline ten
times, the model picked for transfer is the last model built during the baseline calculation.
With this model and a subset of the UGMs (“transfer samples”), the performance of the
four different transfer learning methods is tested to analyze which method(s) work best for
specific gases. The main question is how many transfer samples are required to reach an
acceptable accuracy. This is analyzed by varying the number of transfer samples from 20 to
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700 UGMs, i.e., up to the full data set of the original training. Furthermore, the methods
are tested for sensors B and C to analyze their performance for sensors from the same
and from a different batch. The metric to compare the different methods and the number
of training samples is the RMSE reached on the test data set, i.e., the 200 testing UGMs,
which are always the same regardless of which scenario is tested. All pieces of training are
performed multiple times to gain insight into the stability of the tested approach. The paper
presents the results for only a few relevant gases, and the remaining results are shown in
Appendix A.

The second part then compares the best model achieved by transfer learning and a
model built from scratch. Therefore, the accuracy in terms of RMSE of the models with
transfer learning and no transfer learning are compared across all sensors. This gives
an overview of the benefits transfer learning can provide. As for the first test scenario,
the number of samples used for training varies from 20 to 700. Furthermore, the influence
of the specific samples used for training the models is compared by randomly picking
20–500 training samples from the 700 available samples and training each specific case
10 times to estimate the variation caused by different training sets (random subsampling).
In order to compare this variation with the variation during normal training with a fixed
set, a static training set is also trained ten times. This allows for estimating how much
variation is caused by the neural network itself and how much by the random subsampling.

In order to confirm the achieved results from the previous sections, the experiments
are repeated with an optimized standardization of the raw data and the different transfer
strategies. For this experiment, the raw signal of each of the four sub-sensors is normalized
independently for each temperature cycle as the raw signals of the sub-sensors differ
significantly because of the gas-sensitive materials and the different temperature ranges.
This experiment shows that the general method is always applicable when used with a
different normalization for the neural network.

The last part of the results compares the transfer learning approach with a simplified
global calibration approach based on established methods like feature extraction, selection,
and regression. Similar to the neural network approach, the data of all sensors are based
on the same split of the data set into training (700 UGMs) and test data (200 UGMs) as
for the evaluation above. As mentioned above, the feature extraction is based on the
adaptive linear approximation. The feature selection is performed by finding the optimal
subset of Pearson sorted features based on the validation set (10-fold cross-validation).
In order to test this method as a global calibration scheme, all training UGMs of one sensor,
together with additional samples from another sensor, are used to build the model. Here,
the same evaluations as for the neural networks are performed: Models are trained with
700 UGMs from sensor A together with 20–700 additional samples from sensor B and tested
on the 200 test UGMs from sensor B. Finally, the evaluation with 20–500 randomly selected
UGMs is repeated ten times to evaluate the influence of different training sets also for the
global approach.

The previously described evaluation steps are visualized in Figure 5, to make the
process easier to understand.
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Figure 5. Schematic of all performed evaluations to gather the necessary results.

3. Results

Before the transfer methods can be compared, the reference values must be obtained
to rate the transfer methods (cf. Figure 6). The mean RMSE values for sensors A and B are
very similar for the different gases. The largest difference regarding the achieved RMSE
divided by the mean concentration of the specific gas is observed for ethanol, where the
relative RMSE for sensor A is 3.2% smaller than sensor B. Thus, the hyperparameter tuning
performed to find an optimized architecture for a specific gas based on sensor A can also
be used as architecture for other sensors from the same batch. For some gases, sensor B
outperforms sensor A, although the network was not optimized for this specific sensor.
On the other hand, the performance of sensor C (different batch), while comparable for
some gases with RMSE values close to the sensors A and B, is significantly reduced for
acetone and hydrogen compared to the other sensors. This effect cannot be attributed to
sensor drift as sensor C was used over a similar period as the other two. The most probable
explanation for the observed difference could therefore be a slight variation of one or more
gas-sensitive layers between the batches.
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As already used above, another important measure to rate the quality of the TCOCNN
is the RMSE divided by the mean concentration. Here, the best result is achieved for
hydrogen with a deviation of only 4%, the average deviation for the other gases is between
10 and 30%, which is still a reasonable result that can be useful for IAQ applications. One
exception is toluene. For this gas, the deviation is 45%, which is still useful but not as
promising as the other gases. Nevertheless, the RMSE of this gas can be significantly
reduced with the adapted normalization (21.7 ppb), and a reasonable RMSE divided by the
mean concentration of 28.6% can be achieved. Thereby, it can be stated that the TCOCNN
can be a useful tool for calibrating gas sensors.

Root Mean Square Error (RMSE) with standard deviation in ppb for 700 UGMs

Acetic acid

Sensor A

Acetone

Sensor B Sensor C

40.5 (2.4)

24.9 (1.0)
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24.7 (0.6)

38.2 (1.1)

41.7 (3.4)

Carbon monoxide 110.9 (4.1) 120.8 (3.0) 153.3 (6.4)

Ethanol 29.6 (1.4) 34.3 (1.2) 33.4 (1.3)

Ethyl acetate 15.5 (1.9) 16.3 (2.7) 19.1 (1.3)

Formaldehyde 23.6 (1.4) 24.6 (1.1) 29.5 (1.6)

Hydrogen 49.6 (1.7) 53.4 (1.5) 72.9 (3.1)

Toluene 34.3 (2.8) 33.4 (3.9) 37.4 (3.7)

TVOCsens 92.4 (5.8) 83.1 (3.1) 97.0 (3.9)

Xylene 25.9 (0.8) 25.0 (1.0) 25.4 (0.7)
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Figure 6. Mean root-mean-squared error (RMSE) and standard deviation for all gases trained with
700 UGMs for later reference.

Figure 7 shows the results of the first test scenario where different transfer learning
methods are compared. The results are shown exemplarily for carbon monoxide and
formaldehyde, two gases that are of great importance for air quality assessments. Carbon
monoxide was chosen because of its toxic properties and also because it is a ubiquitous
background or interfering gas when monitoring VOCs. Formaldehyde was chosen because
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of its carcinogenic properties even at low concentrations [2]. Within Figure 7, the dashed
lines indicate the accuracy achieved with different transfer methods over the number of
training UGMs. The solid lines indicate the best RMSE achieved without transfer learning
using 700 UGMs over ten trials. For sensor B and carbon monoxide, transfer method 2
(learning rate between min and max) performs best across all different transfer sets. Method
1 (initial learning rate at minimum) performs similarly well for small transfer sets, while
method 3 (initial learning rate at maximum) performs slightly better for very large transfer
sets. Similar behavior can be observed for formaldehyde, where methods 1 and 2 are very
similar for small transfer sets, while methods 2 and 3 yield almost identical results for
larger transfer sets. For carbon monoxide and formaldehyde, it can be seen that transfer
method 4 (static feature extraction) performs worst, at least for larger transfer sets. That
allows the assumption that, although the different sensors achieve similar performance
for the full dataset when trained from scratch (Table 1), they rely on slightly different
features. Therefore, the implicit feature extraction, as well as the regression within the fully
connected layers, needs to be transferred between models. Method 4 achieves competitive
results only for formaldehyde and very small transfer sets with 20 UGMs. Furthermore, it
can be observed that method 3, especially for small transfer sets (e.g., 20 UGMs), shows a
large variation of the RMSE values. Thus, the method lacks robustness. This behavior is not
observed for the other methods, which allows the interpretation that learned dependencies
could be maintained more easily when reducing the initial learning rate for the parameters
of the TCOCNN. This behavior for method 3 is counterproductive to the general goal of
this contribution. Since we want to reduce the calibration time, achieving good models for
small transfer sets is the highest priority. Thus, method 2 seems to be the most promising
transfer method for further evaluation. Nevertheless, one should note that method 3
outperforms all other methods for all gases when used with the full 700 UGM transfer
sets. For this scenario, method three, on average, achieves results even better than the
absolute best RMSE obtained for the different gases without transfer learning. This shows
that pre-trained networks can improve the accuracy of different sensors even when not
reducing the calibration time, apparently by using the additional information contained in
measurements of other sensors. Here, results of only the most relevant gases are presented.
Results of the remaining gases are provided in Appendix A.

To compare the benefits of transfer learning with results when models are trained
from scratch, Figure 8 shows the comparison of transfer method 2 for sensors B and C
together with a model trained from scratch on sensor A, again for the two relevant target
gases carbon monoxide and formaldehyde. The solid lines within the figures indicate the
best possible RMSE achieved with 700 UGMs over ten tries and are used as a reference for
all further evaluation. The dashed blue curve illustrates the achieved accuracy for sensor
A, i.e., when no transfer learning is applied, while the dashed orange and yellow lines
show the results achieved with transfer learning. In order to capture the variance caused
by the different UGMs used in the training set, the standard deviation is marked for all
sensors and training sets. The blue line, i.e., sensor A without prior information, always
starts at much higher RMSE values than the yellow and orange lines for sensors B and C
with transfer learning and also shows a larger standard deviation. This implies that the
quality of the results is significantly improved when applying transfer learning, as the
models reproducibly achieve better accuracy. Furthermore, for both gases, the benefit of
transfer learning is most significant when applied to sensors from the same batch. This is
demonstrated by the orange line (sensor B), which is significantly lower than the yellow
line (sensor C) and exhibits a smaller variance similar to results reported previously [16].
This is plausible as the difference in terms of both the various gas-sensitive layers and the
µ-hotplate should be much smaller between sensors A and B compared to sensor C. Note,
however, that the performance of sensor C is not as good as for sensors A and B also when
trained from scratch. Overall, all training curves converge towards the best possible model
achieved with 700 UGMs without transfer learning, with sensor B achieving a slightly
lower RMSE for formaldehyde with additional transfer learning compared to training the
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model from scratch. Note that this demonstrates that more than 700 UGMs would not
improve the accuracy significantly, indicating that 700 UGMs are sufficient even for the
complex gas mixtures (10 gases plus humidity) studied here.
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Figure 7. Comparison of different transfer methods for carbon monoxide and formaldehyde.
Transfer method 1: learning rate set to the value reached at the end of original training.
Transfer method 2: learning rate set to the value reached halfway through original training.
Transfer method 3: learning rate is set to the original value. Transfer method 4: implicit feature
extraction fixed only fully connected layer can be trained.

In conclusion, it can be stated that transfer learning can significantly reduce the re-
quired calibration time by up to 93%, i.e., 50 UGMs instead of 700, while increasing the
RMSE only by approx. a factor of 2 even for sensors from a different batch. In practical ap-
plications, the possible calibration time reduction will depend on the required performance,
i.e., the acceptable RMSE for a specific use case.

After the general findings are discussed above, Table 2 provides quantitative values
for carbon monoxide and formaldehyde. Considering the ambient threshold limit value
for CO of 10 mg/m³ [40], corresponding to approx. 8.5 ppm, the accuracy achieved with
small transfer sets is excellent and significantly lower than a model generated from scratch
without transfer learning, as shown for sensor A. Similarly, for formaldehyde, the WHO
limit of 80 ppb [41] could be monitored with sensors trained by transfer learning on small
calibration data sets.
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Figure 8. Comparison of carbon monoxide and formaldehyde with and without transfer learning
over the different number of training samples and sensors.

Table 2. Detailed RMSE values for carbon monoxide and formaldehyde for Figure 8 with a static
training set or training set with random subsampling.

Carbon Monoxide in ppb Formaldehyde in ppb

Sensor A Sensor B
(Transfer)

Sensor C
(Transfer) Sensor A Sensor B

(Transfer)
Sensor C
(Transfer)

700 UGMs mean RMSE (std) 110.9 (4.1) 121.1 (1.6) 147.3 (3.0) 23.6 (1.4) 21.2 (0.4) 29.4 (0.3)

Initial model before transfer 532.3 782.9 55.1 73.0

75 UGMs mean RMSE (std)
static training set 332.6 (8.4) 194.3 (1.9) 256.3 (2.3) 67.0 (2.5) 36.1 (0.5) 44.4 (0.4)

75 UGMs mean RMSE (std)
random subsampling 359.4 (37.8) 206.8 (16.0) 264.7 (26.3) 75.5 (9.5) 36.6 (2.3) 48.9 (6.0)

50 UGMs mean RMSE (std)
static training set 374.8 (7.3) 206.0 (1.5) 238.1 (2.8) 76.1 (0.9) 36.8 (0.4) 46.7 (0.2)

50 UGMS mean RMSE (std)
random subsampling 392.5 (39.2) 219.8 (19.3) 285.6 (23.3) 76.8 (8.0) 38.5 (3.2) 52.1 (4.9)

20 UGMs mean RMSE (std)
static training set 856.4 (8.0) 268.3 (3.9) 349.1 (2.8) 80.3 (1.4) 53.3 (1.5) 72.4 (2.4)

20 UGMS mean RMSE (std)
random subsampling 831.9 (19.3) 294.4 (43.8) 362.1 (31.6) 95.6 (23.5) 50.8 (6.1) 64.6 (8.8)

Furthermore, Table 2 and Figure 9 also demonstrate the effect of different sets of
transfer samples for transfer learning. The static sets, where the training was repeated ten
times with the same data sample, always show a slightly smaller mean RMSE with a much
smaller variation than the training set with random subsampling. In the example shown, it
seems the randomly chosen static training sets for formaldehyde and carbon monoxide
were a lucky choice as they resulted in a lower mean RMSE. More significant is the standard
deviation, which is significantly larger for the training sets with random subsampling. It
seems clear that the changing UGMs cause additional variance within the training sets.
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A closer look at Figure 9 shows that a poor choice for 75 transfer samples results in a higher
RMSE for CO (207 ppb plus 16 ppb) than a good choice for 50 UGMs (220 ppb minus
19 ppb). This indicates that the choice of samples for transfer learning is important to
obtain the best possible results, i.e., even shorter calibration times or better performance
with the same calibration time. When analyzing the distribution of the different training
sets, a good training set is usually signified by samples spanning the full concentration
range of the target gas. However, the distributions of other gases are also relevant for the
achieved performance. Therefore, the design of experiment (DoE) for optimal transfer
learning-based calibration is a topic for future research.
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Figure 9. Comparison of multiple training instances for carbon monoxide and formaldehyde. Training
and testing were performed 10 times for a static training set with always the same UGMs for training
and testing (blue) and training sets with random subsampling where always different UGMs for
training and the same for testing were used (orange).

The analysis is repeated for sensor B using the adapted normalization strategy with
the results shown in Figure 10 for formaldehyde and xylene. Formaldehyde was chosen to
have one example throughout this study, and xylene was selected because the difference
between both normalization strategies was one of the largest. The figure shows the former
and the adapted normalization results in the upper and lower part, respectively. The best
RMSE for formaldehyde achieved with the adapted normalization is slightly better, and the
improvement for xylene is significant with a reduction of the RMSE of 25%. Thus, normal-
ization substantially impacts model building, and a suitable normalization can significantly
improve the ML model accuracy. At the same time, the general shape of the improvement
in accuracy with an increasing number of transfer samples is very similar for both gases,
independent of the applied normalization. The obtained models can yield slightly higher or
even lower RMSE values for both scenarios depending on the transfer method. The ranking
of the different transfer methods is the same, and in each case, transfer method two achieves
the best overall results. The only significant difference is the smaller mean RMSE achieved
with the adapted normalization, which can be attributed to the improved preprocessing
allowing for a better model accuracy. This result shows that the findings for the transfer
learning method might apply not only to this specific example but might also be a suitable
approach for transfer learning for gas sensors in general.
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Figure 10. Comparison of different normalization methods for transfer learning regarding formalde-
hyde and xylene. The upper figures show the achieved accuracy over the different number of
transfer samples with the former normalization, and the lower part shows the accuracy with the
adapted normalization.

Again, as for the former normalization, the models obtained with transfer learning
show a better performance than without both in terms of overall accuracy and training
stability as indicated by the standard deviation (cf. Table 3).

Table 3. RMSE values together with the standard deviation for the adapted normalization with and
without transfer learning for formaldehyde and xylene.

Mean RMSE (std) in ppb 20 UGMs 50 UGMs 75 UGMs 100 UGMs 150 UGMs 500 UGMs

Without transfer learning (formaldehyde) 87.6 (10.4) 78.5 (3.3) 72.0 (9.3) 61.0 (6.7) 40.3 (5.2) 21.0 (1.0)

Transfer method 2 (formaldehyde) 39.6 (3.2) 34.0 (4.2) 35.6 (5.1) 26.9 (1.0) 26.6 (2.0) 19.9 (0.6)

Without transfer learning (xylene) 65.4 (5.6) 50.9 (9.1) 38.1 (2.0) 32.4 (1.9) 26.5 (1.4) 20.0 (0.5)

Transfer method 2 (xylene) 34.8 (3.7) 26.1 (1.7) 25.5 (0.9) 24.7 (1.6) 22.9 (1.0) 18.8 (0.7)

Finally, we compare results achieved with transfer learning (here with the former,
sub-optimal normalization) and a simplified global model. Figure 11 shows the RMSE
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achieved for formaldehyde for the two models when trained with the same number of
UGMs recorded with two different sensors (sensor A, sensor B) and tested on the same test
data. First, the solid lines indicate the best possible RMSE achieved when training with
only 700 UGMs from sensor A and testing with the test data (200 UGMs) also from sensor A.
In this scenario, the TCOCNN (21.1 ppb) performs slightly better than the established FESR
methods (25.9 ppb), but this also depends on the target gas, and in general, the performance
achieved with both methods is comparable as demonstrated previously [3]). The dashed
lines indicate the accuracies achieved with the additional samples from sensor B and tested
with data from sensor B. Comparing the general trend and the standard deviations, both
approaches are quite similar regarding the number of UGMs. Thus, additional samples
from the new sensor can improve the prediction quality for the global model and the
neural network. The selection of UGMs (DoE) is most important for achieving a low
RMSE. Furthermore, in the stages between 20 and 100 UGMs, the differences between both
approaches are very small. They can most probably be attributed to the slightly better
initial accuracy of the transfer learning model. The largest difference is observed if both
models are trained with 700 additional UGMs. In this case, the transfer model converges
towards the best possible RMSE while the global model settles at a higher RMSE. This can
be attributed to the generalization of the global model, which builds the best possible model
for both sensors simultaneously, thus not achieving the lowest RMSE for a sensor-specific
model. For transfer learning, on the other hand, the new model is specifically adapted
to the new sensor B and will therefore show a higher RMSE for the original sensor A
(84.4 ppb). A larger dataset with more sensors is required to compare the pros and cons
of individual transfer learning and global modeling more in-depth. In addition, methods
for signal correction like direct standardization or orthogonal signal correction should be
analyzed in this context [5,6].
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Figure 11. Comparison between transfer learning and global modeling over the different number of
training samples (additional samples from sensor B).

4. Discussion

This paper demonstrates that a significant reduction of the calibration time for accurate
quantification of multiple gases at a ppb level within complex environments is possible with
transfer learning. Various methods of transfer learning can be applied to reduce the training
time. This study achieved the best results with transfer method 2 (complete adaptation of
all CNN parameters with initial learning rate for transfer learning set to the value reached
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halfway through the original model training). This allowed a reduction of 93% (50 instead
of 700 unique gas mixtures) while increasing the RMSE by less than a factor of 2. However,
the optimal method cannot be generalized as this will vary according to the specific sensor
model, the target gas, and the use case, i.e., concentration range and interfering gases.
Furthermore, we could show that transferring data-driven models from one sensor to
another always results in better accuracy than building the models from scratch, both
when analyzing long or short calibration times. Again, the number of transfer samples
required for building an acceptable data-driven model will vary, i.e., between sensors
from different batches, and also strongly depends on the required accuracy. Furthermore,
the influence of varying transfer samples was analyzed, which demonstrated that transfer
learning could only develop its full potential if the transfer samples were selected with
care. However, the selection of suitable samples is not straightforward and not yet fully
understood. However, it would seem reasonable to follow the same rules as for the design
of experiments in ML model building in general. Finally, transfer learning was compared
with global modeling. For the small dataset with only two sensors studied here, we could
show that both model-building approaches (transfer learning and global modeling) yield
reasonably similar results, especially when using only a few additional samples from a
second sensor. When using the entire dataset, the differences between transfer learning
and global modeling become evident, i.e., transfer learning achieves a higher accuracy for
a sensor-specific model, while global modeling yields greater generalization for different
sensors. For a more in-depth analysis of the benefits and drawbacks of both methods,
a larger dataset with multiple different sensors is required.

5. Conclusions

In conclusion, transfer learning can be used to significantly reduce the calibration time
of MOS gas sensors by up to 93% while maintaining an RMSE that is only double the
best possible. It was shown that different transfer methods provide additional benefits and
drawbacks and that the selection of UGMs is most important. Nevertheless, a suggestion of
which method or UGMs to use could not be made because this highly depends on the use
case. Finally, we compared deep transfer learning with the global modeling approach. We
found that deep transfer learning performs similarly to global modeling, although it might be
essential to analyze this comparison in more detail with a larger dataset (multiple sensors).

For further research, it might be interesting to not only use a single sensor to build the
initial model but to use a global calibration model based on multiple sensors and combine this
approach with transfer learning. Furthermore, a wider variety of transfer methods should
be tested and compared with deep transfer learning, as proposed in this work. Likewise,
transfer learning should include methods from deep learning and extend to complementary
approaches such as direct standardization or other signal-related transfer methods. This
would also allow for combining different datasets with only one or few (target) gases in
common but different backgrounds. This could help analyze the transferability between
backgrounds and improve the understanding of which gases interfere with each other on
the sensor.
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Figure A1. Comparison of acetic acid, acetone, ethanol, and ethyl acetate with and without transfer
learning over the different number of training samples and sensors.
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Figure A2. Comparison of hydrogen, toluene, TVOCsens, and xylene with and without transfer
learning over the different number of training samples and sensors.
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3.4.1 Synopsis

The previous papers demonstrated that the TCOCNN performs superior to the FESR
approach and that transfer learning can significantly reduce the calibration time. Within
this publication, an in-depth comparison of calibration transfer methods was performed,
and global model building for initial model building for calibration transfer was analyzed.
Thereby, the capabilities of the TCOCNN and the FESR approach to generalize across
multiple sensors were studied. Likewise, their general ability to apply to various sensors
simultaneously and their compatibility with calibration transfer methods were tested.
Once again, a new dataset was designed to be able to perform a comprehensive study. The
dataset was recorded with the most recent GMA developed at LMT. This time, eleven
different VOCs were mixed, namely acetaldehyde, acetic acid, acetone, ethanol, ethyl
acetate, formaldehyde, isopropanol, limonene, n-hexane, toluene, and xylene. Acetone
was selected as the target gas because it is relevant for IAQ monitoring and showed
the best overall results. For a realistic background, hydrogen and carbon monoxide
were chosen. Similarly, the relative humidity varied between 25 % and 75 %. The
corresponding ranges and distribution of the 930 UGMs are illustrated in Figure 3.5.
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Figure 3.5: Overview of the gases included in the randomized calibration. Each UGM
contains all of the shown gases. (a) The composition of the different UGMs
(adapted from [24, Paper 2]). (b) All the maximum concentrations during
recording. The lowest concentration for all VOCs during the measurement is
0 ppb, for carbon monoxide 200 ppb, and for hydrogen 400 ppb. Reprinted
with permission of Ref. Paper 3. Y. Robin, 2023.
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Results and Discussion

To be able to test for calibration transfer, a total of seven sensors (SGP40) were
used to record the 930 different UGMs. Those sensors were again operated in TCO
with twelve high-temperature steps (400 °C) interlaced with twelve low-temperature
steps (100 - 375 °C). The same exception as before was applied to sub-sensor 3, which
was only modulated between 200 °C and 300 °C. As in the previous publications, the
first step was identifying the optimal hyperparameter regarding the target gas with the
help of Bayesian optimization for the TCOCNN. Afterward, the algorithm stack for
the reference FESR method was defined. The stack consisted of the Adaptive Linear
Approximation (ALA) feature extractor [129, 130], followed by the Pearson selection to
identify the optimal number of features.28 A PLSR with a maximum of 100 components
was chosen for the final regression algorithm. For this procedure, ALA was used as it
showed excellent performance in [234]. For training, validating, and testing, a 70/10/20
split was used, which was constant throughout all evaluations.

When trained with one sensor and tested with the corresponding test data, the
TCOCNN reached a baseline RMSE of around 15 ppb while the FESR approach reached
an RMSE of ∼ 20 ppb. When the setup for both methods was completed, it was
first analyzed which method generalizes best. Consequently, models with each method
were built with 1 to 6 sensors and tested with the combined test data. There, it was
demonstrated that the FESR method struggles to find a model that performs well for
multiple sensors simultaneously. This differs from the TCOCNN, which found better
models with every sensor added (RMSE 12 ppb). This indicates that the TCOCNN
can find more general features independent of the sensor. The next step was to train
a model on one sensor and test it with another to see if the model could be used for
multiple sensors. Therefore, models were built with only one of the sensors, 1 to 6,
and tested with sensor 7. There, it was revealed that the similarity between sensors
strongly influences the accuracy. Furthermore, the selection of the model also had a
significant influence. This can be attributed to the different features selected with the
FESR and TCOCNN. Consequently, this indicates that training a model on one sensor
and applying it to another does generally not work. The next task was to analyze the
effect of global modeling on generalization. Therefore, models were built with 1 to 6
sensors and tested on sensor 7. Compared to the previous evaluation, multiple sensors
were used simultaneously to construct the model. It was shown that the FESR approach
and the TCOCNN can be used to build a global initial model that can generalize across
sensors. Similarly to the previous evaluation, the TCOCNN performed best in finding

28Wrapper method from the FESR toolbox was used to identify the optimal subset.
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more general models. For acetone, it was possible to reduce the RMSE from 70 ppb
(one sensor) to 30 ppb with the help of the TCOCNN and all six sensors. Although the
RMSE was doubled compared to training from scratch with the complete training data,
the results indicate promising performance. To improve the results even further, the
effect of calibration transfer methods was analyzed in detail. In the following evaluation,
multiple calibration transfer methods were tested to evaluate their performance. The
initial models were built with 1 to 6 sensors. The four calibration transfer methods,
Direct Standardization (DS), Piecewise Direct Standardization (PDS), transfer learning,
and global model building with transfer samples, were tested with 5, 25, 125, and 600
transfer UGMs (cf. Figure 3.6).
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Figure 3.6: Comparison of Direct Standardization (DS), Piecewise Direct Standard-
ization (PDS), transfer learning for DL (TL), and global model building
concerning the TCOCNN. Different numbers of UGMs for transfer learning
are used in the different sub-plots. Reprinted with permission of Ref.
Paper 3. Y. Robin, 2023.
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Multiple conclusions were drawn from this experiment. It was obvious that, for the
TCOCNN, using more sensors for initial model building significantly improved the
generalization capabilities. The best method to achieve low RMSE values for very small
datasets was to take six sensors for initial model building and use transfer learning from
DL. This combination achieved an RMSE with only five transfer UGMs of 17.7 ppb
(calibration time reduction of 99.3 %).29 Similarly, global model building and PDS
reached decent results of around 25 ppb. The slightly better performance of transfer
learning can be attributed to the model being specially trained for the new sensor. DS
needed 25 transfer UGMs to achieve reasonable results but then achieved similar results
to transfer learning. The poor performance of DS can be attributed to the complex
calculation of the correction matrix C. When using the largest dataset of 600 transfer
UGMs, transfer learning and global modeling became ever closer, and DS and PDS
started to saturate at slightly higher RMSE values. The saturation of those two methods
can be attributed to the specific projection that is calculated (considering all sensors).
At the same time, global model building and transfer learning can focus more on the
target sensor. Besides the results achieved for the TCOCNN, similar outcomes were
observed by applying the methods to the FESR approach. However, because of the worse
baseline from the first two evaluations, the results were never quantitatively comparable
to the TCOCNN. Furthermore, PDS did not work well for the FESR approach.

The initial evaluations showed that the TCOCNN outperforms the FESR approach
regarding its capability to generalize across sensors. This was especially prominent when
building a model with six sensors and testing it on the remaining. There, the TCOCNN
showed the capability to find universally applicable features. In the final comparison
of all calibration transfer methods, it was shown that it is possible to further reduce
the long calibration time and sensor-to-sensor variance compared to Paper 2. The most
significant improvement for calibration transfer was achieved with the help of global
model building, which further leverages the performance of DL-based transfer learning.
Moreover, it was demonstrated that this method outperforms state-of-the-art approaches
like signal standardization. The improvement was especially prominent for small transfer
datasets, which are most important for industry (calibration time reduction of 99.3 %).
For IAQ monitoring, this indicates that it is possible to calibrate a MOS gas sensor
within two hours for a wide range of applications.30 Two hours or five UGMs is suitable
29A 15 ppb baseline is achieved by training the TCOCNN with 700 UGMs.
30One UGM had a duration of 24 minutes. Usually, ten observations are recorded per UGM, and only

stable observations are later used.
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for large-scale calibration since no GMA is needed (gas test), and productivity can be
maintained compared to today’s standards. To better understand how this significant
improvement was possible, the following paper introduces XAI methods, which allows
for a detailed insight into the model’s inner workings, the sensor itself, and the used TC.

The main takeaways of this publication are:

• TCOCNN is better for finding a model applicable to multiple sensors simultane-
ously.

• Calibration transfer between sensors without global model building or calibration
transfer is rarely possible.

• Global model building without transfer samples helps the model generalize.

– With multiple sensors in training, decent results can be achieved.

– TCOCNN outperforms the FESR approach.

• All calibration transfer methods show promising results.

• Best result for five transfer UGMs is achieved with six sensors for initial model
building and transfer learning from DL.

– Most important for industry and IAQ monitoring.

– RMSE: 17.7 ppb.

– r-squared: > 0.99.

– Calibration time reduction of 99.3 % (8 days down to 2 hours).

– Suitable for industrial application.

– Next best methods are global modeling with transfer samples and Piecewise
Direct Standardization (PDS) with an RMSE: ∼ 25 ppb.

• Similar results can be achieved with the FESR approach.

Open questions/tasks are:

• Is it possible to explain the inner workings of the TCOCNN to understand why it
outperforms the FESR approach?

• Can the TCOCNN be applied to different fields (e.g., condition monitoring)?
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Abstract: Although metal oxide semiconductors are a promising candidate for accurate indoor air
quality assessments, multiple drawbacks of the gas sensors prevent their widespread use. Examples
include poor selectivity, instability over time, and sensor poisoning. Complex calibration methods and
advanced operation modes can solve some of those drawbacks. However, this leads to long calibration
times, which are unsuitable for mass production. In recent years, multiple attempts to solve calibration
transfer have been made with the help of direct standardization, orthogonal signal correction, and
many more methods. Besides those, a new promising approach is transfer learning from deep learning.
This article will compare different calibration transfer methods, including direct standardization,
piecewise direct standardization, transfer learning for deep learning models, and global model
building. The machine learning methods to calibrate the initial models for calibration transfer are
feature extraction, selection, and regression (established methods) and a custom convolutional neural
network TCOCNN. It is shown that transfer learning can outperform the other calibration transfer
methods regarding the root mean squared error, especially if the initial model is built with multiple
sensors. It was possible to reduce the number of calibration samples by up to 99.3% (from 10 days to
approximately 2 h) and still achieve an RMSE for acetone of around 18 ppb (15 ppb with extended
individual calibration) if six different sensors were used for building the initial model. Furthermore,
it was shown that the other calibration transfer methods (direct standardization and piecewise direct
standardization) also work reasonably well for both machine learning approaches, primarily when
multiple sensors are used for the initial model.

Keywords: indoor air quality; metal oxide semiconductor; volatile organic compounds; calibration
transfer; deep learning; direct standardization

1. Introduction

As early as 2005, people spend up to 90% of their time indoors [1,2]. Since then,
multiple studies have shown that indoor air quality is paramount for human health [2–4].
Within indoor air, volatile organic compounds (VOCs) can be harmful components that
can cause severe health issues [3–5]. Contamination of only a few parts per billion (ppb)
over an extended period with the most dangerous VOCs like formaldehyde or benzene
can already have serious consequences [3,4]. However, since not every VOC is harmful
(e.g., ethanol or isopropanol), the WHO sets the maximum allowed concentration and
maximum exposure for every VOC separately. The difficulty with measuring VOCs in
indoor air is that hundreds of different VOCs and many background gases (ppm range) are
present and interfere with the measurement [4,6]. Therefore, selectively detecting single
harmful VOCs at the relevant concentration levels (e.g., formaldehyde < 80 ppb [5]) in front
of complex gas mixtures with a high temporal resolution is essential for advanced indoor air
quality monitoring. Today the most common approach for indoor air quality assessments
is to estimate indoor air quality based on the CO2 concentration [7]. However, this does not
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allow for the detection of single harmful VOCs since most of the time, a mixture of VOCs
is emitted, and not all VOC sources emit CO2 [3,8]. The current state-of-the-art systems
capable of solving the task of being selective to multiple single harmful VOCs are GC-MS
or PTR-MS systems. Unfortunately, those systems cannot provide the needed resolution
in time (except PTR-MS), they require expert knowledge to operate, they require accurate
calibration, and they are expensive. One popular alternative is gas sensors based on metal
oxide semiconductor (MOS) material. They are inexpensive, easy to use, highly sensitive
to various gases, and provide the needed resolution in time. However, they come with
issues that prevent them from being even more widely used in different fields (e.g., breath
analysis [9,10], outdoor air quality monitoring [11,12] or indoor air quality monitoring [13]).
Those problems are that they need to be more selective to be able to detect specific gases [14];
they drift over time [15], making frequent recalibrations necessary (time and effort); and
they suffer from large manufacturing tolerances [16], which has a significant effect on the
sensor response. Some of those issues have already been addressed. The following publi-
cations have covered the problem regarding selectivity [17,18]. Moreover, in [19–21], drift
over time was analyzed, and in [20,22], the calibration of those sensors when considering
manufacturing tolerances was studied.

Compared to those studies, this work analyzes multiple methods that claim to reduce
the needed calibration time. As a first approach, the initial calibration models trained
on single sensors are tested regarding their ability to generalize to new sensors [23,24].
The methods used are either from classic machine learning like feature extraction, selection,
and regression or advanced methods from deep learning. Afterward, calibration transfer
methods are tested to improve those results with as few transfer samples/observations as
possible (e.g., direct standardization and piecewise direct standardization [21,25]). Direct
standardization and piecewise direct standardization are used to match the signal of
different sensors in order to use the same model for various sensors. Thus, it is possible to
eliminate the need for extensive calibration for new sensors. Direct standardization and
piecewise direct standardization in their most basic forms were selected because they are
easy to apply and can be used with any model since the input is adjusted. Furthermore,
those methods showed superior performance over other transfer methods like orthogonal
signal correction or Generalized Least Squares Weighting [25] if MOS gas sensors operated
in temperature cycled operation were used. More advanced versions of those methods, like
direct standardization based on SVM [22], are not used since the first comparison should be
with the most basic method to achieve an appropriate reverence. Fur future experiments,
the comparison can be extended to more sophisticated techniques. As a different transfer
method, baseline correction was specifically not used because the TCOCNN produces
highly nonlinear models that might not be suitable for this approach. Similarly, adaptive
modeling, as shown in [26], is not used because it is not suited for performing random
cross-validation (no drift over time). However, in order to still take a wider variety of
approaches into account, global models are built that take the calibration sensor and the
new sensor into account. A more thorough review of the broad field of calibration transfer
can be found in [27].

As the new method for calibration transfer, transfer learning is used to transfer an
initial model to a new sensor [28,29]. Transfer learning was chosen as it showed excellent
results in computer vision for a long time [30–33] and recently showed promising results
for calibration transfer for dynamically operated gas sensors [28,29]. Furthermore, this
method helps overcome the problem of extensive recalibration of sensors used in different
conditions. Specifically, the benefit is that the new calibration can still rely on large datasets
recorded previously but also be relatively specific to the new environment because of the
retraining, which is more challenging to achieve in global modeling.

Afterward, the results are compared to analyze the benefit of the different calibration
transfer methods.
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Different methods and global modeling for initial model building are analyzed and
compared to those in different articles. Furthermore, the calibration transfer between
various sensors is studied. The gas chosen for this work is acetone, which is not as harmful
as formaldehyde or benzene but provides the most detailed insight into the desired effects,
as the initial models showed the most promising accuracy.

2. Materials and Methods
2.1. Dataset

The dataset used throughout this study was recorded with a custom gas mixing
apparatus (GMA) [34–36]. The GMA allows us to offer precisely known gas mixtures
to multiple sensors simultaneously. The latest version of the GMA can generate gas
mixtures consisting of up to 14 different gases while also varying the relative humidity [37].
A specific gas mixture of predefined gas concentrations and relative humidity is called
a unique gas mixture (UGM). Within this work, a unique gas mixture consists of zero
air, two background gases (carbon monoxide, hydrogen), relative humidity, and eleven
different VOCs, as illustrated in Figure 1. Since many different UGMs are required to build
a regression model for a gas sensor, multiple UGMs are necessary. This dataset consists
of 930 UGMs, randomly generated with the help of Latin hypercube sampling [38,39].
Latin hypercube sampling implies that each gas concentration and the relative humidity is
sampled from a predefined distribution (in this case, uniformly distributed) such that the
correlation between the independent targets is minimized. This prevents the model from
predicting one target based on two or more others. This method has been proven functional
in previous studies [39]. However, this process is extended with extended and reduced
concentration ranges at low (0–50 ppb) and very high (e.g., 1000 ppb) concentrations. All
concentration ranges can be found in Figure 1b. The range for the relative humidity spanned
from 25% to 75%. A new Latin hypercube sampling was performed every time a specific
range was adjusted. Moreover, because only one observation per UGM is not statistically
significant, ten observations per UGM are recorded. However, the GMA has a time constant
and the new UGMs could not be applied immediately, so five observations had to be
discarded. Nevertheless, this resulted in 4650 observations for the calibration dataset.
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Figure 1. Overview of the gases included in the randomized calibration. Each UGM contains all of the
shown gases. (a) The composition of the different UGMs (adapted from [29,39]). (b) All the maximum
concentrations during recording. The lowest concentration for all VOCs during the measurement is
0 ppb; for carbon monoxide, 200 ppb, and for hydrogen, 400 ppb.
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After discussing the UGMs applied to the different gas sensors, the next important
part of the dataset is the sensor used and how the sensor is operated. The sensors used
within this dataset are SGP40 sensors from Sensirion (Sensirion AG, Stäfa, Switzerland).
Those sensors have four different gas-sensitive layers on four individual micro-hotplates.
A non-disclosure agreement made it possible to operate the sensors in temperature cycled
operation (TCO) [40]. Temperature cycled operation means that with the help of the micro-
hotplates of the sensor, the independent gas-sensitive layers can be heated in specific
temperature patterns during operation. One temperature cycle for sub-sensors 0–2 (gas-
sensitive layer) consists of 24 phases. First, the sub-sensor is heated to 400 ◦C for 5 s,
followed by a low-temperature phase at 100 ◦C for 7 s. This pattern is repeated twelve times
in one full temperature cycle with increasing low-temperature phases (an increase of 25 ◦C
per step). This leads to twelve high- and low-temperature steps, as illustrated in Figure 2.
The temperature cycled operation for sub-sensor 3 is slightly different; here, the temperature
cycle repeats the same high and low-temperature levels. The high temperature is always
set to 300 ◦C, and the low temperature to 250 ◦C (cf. Figure 2). As described earlier,
a temperature cycled operation was used to increase the selectivity of the different sensors.
Therefore, the whole temperature cycle takes 144 s, resulting in 1440 samples (sample rate
set to 10 Hz). The sensor response during one temperature cycled operation results in a
matrix of 4 × 1440 and represents one observation. In total, the response of seven SGP40
sensors (S1–S7) for all UGMs is available for this study.
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Figure 2. Sensor response of one SGP40 operated in temperature cycled operation. (a) Temperature
cycle for sub-sensors 0–2 in blue with the corresponding sensor response of sub-sensor 0 in red.
(b) Temperature cycle for sub-sensor 3 in blue with the corresponding sensor response of sub-sensor
3 in red (Reprinted with permission from Ref. [29]. 2022, Y. Robin).

2.2. Model Building

In the first step, the calibration dataset is divided into 70% training, 10% validation,
and 20% testing. A crucial point regarding the data split is that the splits are based on the
UGMs rather than observations. In order to make the fairest comparison possible, this split
is static across all different model-building methods and sensors throughout this study,
which means that for every evaluation, the same UGMs are in either training, validation,
or test set.

After the data split, two different methods for model-building are introduced. One
model-building approach is feature extraction, selection, and regression (FESR), which was
intensively studied earlier [13,40,41]. The other method, TCOCNN, was developed recently
in [29,42] and has already proven to challenge the classic methods.
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2.2.1. Feature Extraction, Selection, and Regression

The first machine learning approach introduced is feature extraction, selection, and re-
gression (FESR). This method first extracts sub-sensor-wise features from the raw signal,
selects the most important ones based on a metric, and then builds a regression model to
predict the target gas concentration. The algorithm can learn the dependencies between
raw input and target gas concentration during training. If multiple SGP40 sensors are used
for training, the input size of the model does not change. Instead, the model only gets more
observations to learn.

This study uses the adaptive linear approximation as a feature extraction method [43].
Although the algorithm can identify the optimal number of splits, this time, the algorithm is
forced to make exactly 49 splits for each sub-sensor independently, which ensures that every
temperature step can be accurately reconstructed. The position of the optimal 49 splits
is determined by the reconstruction error, as described in [44], cf. Figure 3. The mean
and slopes are calculated on each resulting segment. Since there are four sub-sensors and
50 segments each, this results in 400 features per observation.
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Figure 3. Raw signal in blue together with the reconstructed signal in red from features extracted
from adaptive linear approximation for sub-sensor 0. Only a section (0 s–45 s) of one temperature
cycle is illustrated for better visibility, and only the signal of sub-sensor 0 is shown.

Afterward, features are selected based on their Pearson correlation to the target gas
to reduce the number of features to the most essential 200. After that, a partial least
squares regression (PLSR) [45] with a maximal number of 100 components was trained
on 1–200 Pearson-selected features in a 10-fold cross-validation based on training and
validation data to identify the best feature set. Finally, another PLSR was trained with the
best feature set on training and validation data to build the final model. This combination
of methods achieves reasonable results, as reported earlier [46].

2.2.2. Deep Learning: TCOCNN

The TCOCNN is a convolutional neural network [42,47] specifically tailored for MOS
gas sensors operated in temperature cycled operation. Figure 4 gives an example of
the network. The TCOCNN takes as an input a 4 × 1440 matrix. Four represents the
number of sub-sensors per gas sensor, and 1440 is the number of sample points in the
temperature cycles.
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Figure 4. Neural network architecture of the TCOCNN (adapted from [48]). One example configuration
with ten convolutional layers (later optimized) (Reprinted with permission from Ref. [29]. 2022, Y. Robin).

The network consists of multiple hyperparameters that can be tuned with the help of
the training data, the validation data, and a neural architecture search. The hyperparameters
adjusted within this study are the kernel width (10–100) of the first two convolutional layers,
the striding size (10–100) of the first two convolutional layers, the number of filters in the
first layer (80–150), the depth of the neural network (4–10; including the last two fully
connected layers), the dropout rate during training (10–50%), the number of neurons in the
fully connected layer (500–2500), and the initial learning rate. A more detailed explanation
of the neural architecture search based on Bayesian optimization can be found in [42,49,50].
In order to optimize the hyperparameter, the default setup for the Bayesian optimization
of Matlab is used for 50 trials. The optimization of the validation error is conducted only
once with sensor 1. Afterward, the same parameters are used throughout the study, and all
further tests are performed on the test data, which prevents the results from overfitting.
The parameters found for this study are listed in Table 1. The derived parameters are given
as follows: the number of filters is doubled every second convolutional layer; the striding
size after the first two convolutional layers follows the pattern 1 × 2 then 1 × 1, and the
same is applied for the kernel size; and finally, the initial learning rate decays after every
second epoch by a factor of 0.9.

Table 1. Values of all hyperparameters. The number of filters, striding size, and kernel size concern
the first two layers, the number of neurons concerns the second to last fully connected layer, and the
number of layers includes the convolutional layer and the last two fully connected layers.

Filters Striding Size Kernel Size Layer Number of Neurons Initial Learning Rate Dropout Rate

83 34 63 8 1312 4.3 · 10−4 13.83%

2.3. Calibration Transfer

Because of manufacturing tolerances, the responses of two sensors (same model) will
always show different responses [51]. Therefore, calibration of every sensor is necessary to
predict the target gas concentration. In our case, this calibration was carried out with the
data recorded under laboratory conditions. However, many calibration samples are necessary
before a suitable calibration is reached. Therefore, the idea is to reuse the calibration models
of different sensors instead of building a new one every time (calibration transfer) [22,52,53].
The goal is to significantly reduce the number of samples needed for calibration.

The calibration transfer is usually performed based on a few transfer UGMs. In order
to make the comparison as fair as possible, the transfer samples are always the same for
every evaluation. However, they are chosen randomly (but static) from all available training
and validation UGMs.

2.3.1. Signal Correction Algorithms

As described above, the goal is to use the same model for different sensors to reduce
calibration time. However, because the differences between sensors are usually too sig-
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nificant, it is impossible to use the same model immediately. One common approach is to
match the signal of the new sensor to the sensors seen during training [21,25,27]. The sensor
(or sensors) used for building the initial model is called the master sensor, and the new
sensor, which is adapted to resemble the master sensor (or sensors), is called the slave.
In the matching process, the signal of the slave sensor is corrected to resemble the signal
of the master. This is usually done by taking multiple samples (transfer samples) where
the master and slave sensors are under the exact same conditions and then calculating a
correction matrix (C) that can be used to transform the slave signal to match that of the
master also under different conditions.

Direct standardization is one of the most common methods used for calibration
transfer in gas sensor applications [21,25,27]. The correction matrix is calculated for direct
standardization, as shown in Equation (1) [25,54,55].

C = R+
S · RM (1)

Here, C represents the correction Matrix, R+
S stands for the pseudoinverse of the

response matrix of the slave sensor, and RM resembles the response matrix of the master
sensor. The response matrices are of the shape Rn×m, and n resembles the number of sam-
ples needed to apply for calibration transfer (e.g., 25 observations or 5 UGMs), and m stands
for the length of one observation, e.g., 1440 for one sub-sensor. Therefore, the resulting
Matrix C is of the size Rm×m and is applied to new samples as given in Equation (2).

RS;C = C · RS (2)

Since the SGP40 consists of multiple sub-sensors, this approach is used for each sub-
sensor independently. However, suppose various sensors (multiple SGP40) are used as the
master sensors for signal correction. In that case, the slave responses are repeatedly stacked,
and the different master sensors (all under the same condition) are stacked into one tall matrix.

As an example, the responses of two master sensors and one slave sensor under the
same condition led to the correction matrix given in Equation (3).

C =

[
RS
RS

]+
·
[

RM1
RM2

]
(3)

The drawback of this method is that the construction of C requires the pseudoinverse
of the response matrix, and the number of available transfer samples determines the
quality. Since this study aims to reduce the number of transfer samples as much as possible,
another signal correction algorithm is introduced. Piecewise direct standardization [55]
uses the same approach as direct standardization, but the C parameter is calculated for
small subsections of the raw signal. This means that before piecewise direct standardization
(PDS) is applied, the signal is divided into z segments of length p.

Therefore, C can be calculated as shown in Equation (4) on small segments of length p.

CP = R+
S;p×n · RM;n×p (4)

CP has the shape Rp×p, and the final C matrix is calculated by assembling those smaller
Cs (total z different Cs) on the diagonal. This means that C for a small segment of length p
is calculated based on Equation (5).

C =




CP1 0 · · · 0

0
. . .

...
... 0
0 · · · 0 CPz




(5)
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The final C is again of the shape Rm×m and can be used as before. However, this leads
to the conclusion that piecewise direct standardization has one hyperparameter that can
be tuned. For this study, p is chosen to be 10. This was defined by testing a calibration
model with one master and one slave sensor on multiple different window sizes (also two
windows of different possible sizes) and choosing the window size with the smaller RMSE,
as listed in Table 2.

Table 2. RMSE values for different window sizes for the piecewise direct standardization. Piecewise
direct standardization was performed with five transfer samples. The RMSE was achieved by training
the model with data from one master sensor, and testing was performed on the adapted data of the
slave sensor. Entry 50;70 represents alternating window sizes to precisely cover the TCO shape.

Window width 5 10 20 50;70

RMSE in ppb TCOCNN 28.3 26.3 43.8 59.1

RMSE in ppb FESR 47.9 55.4 123.6 209.0

Although piecewise direct standardization is expected to achieve better results [25] as
the calculation of C is more robust than direct standardization, both approaches are analyzed
in this study. This is reasonable, as indicated by Figure 5, which illustrates the original
signal of the master and slave sensor, together with the adapted (corrected) signal and the
differential signal. Although the purple line (corrected signal PDS) follows the master signal
more precisely, it is possible to spot small jumps that might influence the prediction quality.
This is not visible for direct standardization, but in this case, the corrected signal is further
apart from the master signal, especially when analyzing the peaks in the differential signal.
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Figure 5. (a) Differential signal between original and adapted signal. (b) Sensor response of the
master sensor, the initial sensor response from the slave sensor, and the adapted signal from the slave
sensor (DS and PDS). Only a section (0 s–25 s) of one TC is shown for better visibility, and only the
signal of sub-sensor 1 is shown.

A significant benefit of signal correction methods is that they are independent of the
used model and can be applied to the FESR approach and the TCOCNN.
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2.3.2. Transfer Learning for Deep Learning

Compared to the signal correction methods, the transfer learning method for deep
learning can only be applied to the TCOCNN. This method adjusts the whole model to
the new sensor instead of correcting the raw signal of the new (slave) sensor. Transfer
learning is a common approach in deep learning, especially in computer vision [31–33].
Multiple works have shown that this approach can significantly reduce errors and speed
up training [33,56]. In previous studies, it was demonstrated that transfer learning could
also be used to transfer a model trained on gas sensor data based on many calibration
samples to a different sensor with relatively few transfer samples [28,29,53] (calibration
sample reduction by up to 97% (700 UGMs–20 UGMs). An essential extension to previous
studies is that the initial model is built with the help of multiple sensors, which should
increase the performance even more.

The idea is illustrated in Figure 6. While the blue line resembles a model trained from
scratch, the other two show the expected benefit when adjusting (retraining) an already
working model to a new sensor. The modified model needs much fewer UGMs to get to a
relatively low RMSE, and the improvement is much steeper. The hyperparameter to tune
transfer learning is typically the learning rate. All hyperparameters of the TCOCNN are the
same as before, and only the initial learning rate is set to the learning rate typically reached
halfway through the training process. Of course, it would also be possible to tune this
process with the help of Bayesian optimization to achieve even better results. However, this
was not tested in this study, and the optimal value obtained in other studies is used [29].

A significant benefit compared to signal correction methods is that for this approach,
the transfer can happen even if the sensors were never under the same condition, which
makes even a transfer between datasets possible.
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Transferred model (Learning Rate B)
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Better or worse RMSE

Figure 6. The effect of transfer learning for different hyperparameters (Reprinted with permission
from Ref. [29]. 2022, Y. Robin).

2.4. Evaluation

After introducing the general methods used throughout this study, this section intro-
duces the techniques to benchmark the different methods.

The first part will evaluate the performance of the FESR and TCOCNN approach
regarding their ability to predict the target gas concentration. This will be done by using
multiple sensors to build the models. The training and validation data of one to six sensors
will be used to train six FESR and six TCOCNN models (increasing the number of sensors).
Afterward, the models will be tested on the corresponding sensors’ test data. This will then
be used as a baseline for all further evaluations.
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In the next step, the performance of a model trained with each of the available six
sensors (trained independently) is tested with the test data of sensor 7. This is done to
test the generalizability of a model trained with one sensor and tested with another sensor.
Afterward, the models are trained on one to six sensors (same as baseline models), and
after that, the generalizability is tested with the test data of sensor 7.

The last part then focuses on methods to improve generalizability. Therefore, multiple
methods from the field of calibration transfer will be used. The initial models are again
built with the training and validation data of sensors 1–6. This results in twelve initial
models, which are used to test transfer learning, direct standardization, and piecewise
direct standardization (six FESR models, and six TCOCNNs). After the initial models
are built, transfer learning and the signal correction algorithms are applied as explained
above with 5, 25, 100, and 600 transfer UGMs. In order to have a more sophisticated
comparison, a global model is also trained on 1-6 sensors plus the transfer samples. This
means the transfer data are already available during initial training to determine if that
also improves the generalizability. Those results then allow a general comparison of the
most promising methods.

For comparing the different methods, the root mean squared error (RMSE) is used
as the metric to rate the performance of the various models. Also, other methods like
R-squared, mean absolute error (MAE), or mean absolute percentage error (MAPE) can
been used. However, the main goal in indoor air quality monitoring is to know if a certain
threshold is exceeded and how far the estimation can be off the target value to account
for a margin. Therefore, the RMSE as an interpretable metric is used. Furthermore, this
study should mainly focus on the prediction quality’s general trend rather than analyzing
every aspect of the regression model. At the beginning of the results section, a scatter plot
illustrating the target vs. the predicted value is shown, and the r-squared values are given
to prove that the models work as intended.

As a final remark, the evaluations with the TCOCNN are repeated five times to
consider the model’s uncertainty.

3. Results

As described above, the first step is to create a baseline to interpret the following results.
Figure 7 shows the results when training the initial model with 1–6 sensors (744 UGMs per
sensor). For any number of sensors, the TCOCNN outperforms FESR. With an increasing
number of sensors used to build the model, the RMSE value decreases for the TCONN,
while it increases for FESR. This means the model can generalize and find a better model
with more data from multiple sensors. The reason for the TCOCNN outperforming the
FESR approach might be the more advanced feature extraction compared to the static
extraction of the FESR. In order to give the RMSE values more context, the prediction on
the test data for the FESR and TCOCNN models are shown in Figure 7b. There, it can be
seen that despite the worse RMSE, the FESR approach still shows a suitable relationship
between target and prediction (r-squared > 0.96). However, it must be mentioned that at
high concentrations, the accuracy worsens for both models. This is because this region has
fewer data points (extended concentration range). Nevertheless, this is not a problem since
the threshold for the target gases is usually at smaller concentrations (more data points).
It is essential to be very precise in lower regions, and beyond that point, it is sufficient to
identify that the threshold is exceeded. Therefore, an RMSE of around 25 ppb can still be
interpreted as a suitable model since the error is in an acceptable range, and the correlation
is always (also for the upcoming results) clearly visible, like in Figure 7b (r-squared > 0.96).
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Figure 7. Achieved test RMSE values for the initial model trained with a different number of master
sensors (1–6) and tested on the test data of the corresponding sensors. (a) RMSE over the number of
sensors used for training and testing. (b) Scatter plot to illustrate target vs. prediction.

After analyzing the performance of the initial model on the test data of the corre-
sponding sensors, the next step is to test the initial model on the test data of a completely
different sensor. The first evaluation is carried out by training an independent model with
one sensor each and testing the performance on the test data of sensor 7. The results are
depicted in Figure 8a. It can be seen that it strongly depends on the sensor if the TCOCNN
or FESR approach can find a general model to apply to multiple sensors. For example,
the TCOCNN for sensor 6 achieves good results with sensor 7, while the model for sensor 1
applied to sensor 7 does not work. As seen by sensor 3, this also depends on the evaluation
method. For example, sensors 3 and 7 are deemed similar by the FESR approach, while
the TCOCNN indicates differently. This might be because both ways rely on different
features. While the TCOCNN generates features independently, the FESR approach has
fixed features based on the adaptive linear approximation. Since the scope of this article
is not to highlight the different features used within the various methods, this will not
be discussed in more detail. However, it was already shown in [51] that different meth-
ods are available (e.g., occlusion map) to identify the different feature sets used by the
methods, depending on the sensor. Nevertheless, this does not mean that a model that
is useful for multiple sensors can be applied to all SPG40 sensors—only to those similar.
Therefore, Figure 8b illustrates the results that can be achieved with the initial models
when trained with 1-6 sensors simultaneously. It can be seen that with increasing sensors,
the TCOCNN model generalizes more and can be applied more successfully to sensor 7.
However, the improvement does not directly correlate with the independent performance
(Figure 8), which might be because the model needs to generalize more to suit all sensors,
which then generalizes too much and causes the performance to drop (e.g., the TCOCNN
with sensor 5).

However, the model trained with six sensors achieves an RMSE of 31 ppb, close
to the suitable RMSE of 25 ppb from the baseline of the FESR method. In comparison,
the TCOCNN achieves almost acceptable results without calibration transfer, while the
FESR approach trained with multiple sensors struggles. Though the RMSE also generally
shrinks in the case of sensor 7 when more sensors are used for training with the FESR
approach, the results are worse than those of the TCOCNN. This can have multiple reasons.
One reason could be that the approach of adaptive linear approximation, Pearson selection,
and PLSR are not optimal for this task. A more sophisticated FESR approach based on a
more sophisticated feature extraction and recursive feature elimination least squares as
a feature selection might yield more promising results. However, because of the limited
performance of the FESR approach for this specific setup in the baseline and the initial model
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building, the remaining results will only cover the results achieved with the TCOCNN.
The results of the FESR approach are listed in Appendix A.
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Figure 8. Achieved RMSE values for the TCOCNN and FESR approach if data from sensor seven
are tested without any transfer. (a) Only one sensor is used to build the initial model. (b) Different
number of master sensors are used to build the initial model.

After discussing the capability of the different machine learning methods to generalize
across sensors, the next step is to evaluate the signal correction methods, transfer learning,
and global model building (all available data used for training). Figure 9 depicts the
results achieved with different initial models (built with 1–6 sensors) on the x-axis of
each sub-figure, and it also shows the effect of the different number of transfer UGMs.
In Figure 9a (five transfer UGMs), it can be seen that direct standardization does not achieve
any reasonable results, which might be correlated with the problem of not having enough
transfer samples to invert the matrix. As expected, the piecewise direct standardization
performs much better as, from theory, the pseudoinverse should be much more manageable
to calculate. However, the best method, in this case, is the transfer learning approach.
While this approach does not perform exceptionally well if only one sensor is used to build
the initial model, with six sensors for the initial model building, an RMSE of 17.7 ppb can be
achieved, which is better than the FESR baseline cf. Figure 9. That would mean a suitable
model was created with only 5 UGMs (instead of 744). The reason that transfer learning
can outperform the other method might be because of the advanced feature extraction that
generalizes well across sensors and because only small adjustments inside the model are
necessary. Similar but less impressive results can be observed for global model building
and piecewise direct standardization (six sensors for the initial model); there, a reasonable
RMSE of 24.3 ppb was achieved (again, smaller than the baseline FESR). The slightly
worse performance compared to transfer learning can be attributed to the nonspecific
model. While transfer learning generates a specific model for the new sensor, the global
approach tries to find a model to fit all. Figure 9b (25 UGMs for transfer) indicates that
if enough transfer samples are available, direct standardization can perform much better
than piecewise direct standardization and achieves results similar to transfer learning.
This might be because the pseudo inverse can now be calculated appropriately. However,
with six sensors for the initial model, each method achieves an RMSE below 25 ppb, which
is again better than the FESR approach’s baseline, which indicates that all methods are
suitable. Nevertheless, the best performance is again shown by transfer learning.

The two sub-figures at the bottom show the benefit of more transfer samples. Figure 9c
(125 transfer samples) indicates that direct standardization and transfer learning perform
similarly for this case, and that piecewise direct standardization does not improve sig-
nificantly. Furthermore, global modeling and transfer learning has become ever so close.
Moreover, it can be derived that the amount of transfer samples is now always sufficient
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for the pseudo inverse of direct standardization. While 25 UGMs with one sensor is almost
insufficient, the improvement between one and two sensors for 125 UGMs is much smaller.
Figure 9d then concentrates on the results if 600 transfer samples (almost all training sam-
ples) are used. Global modeling and transfer learning perform more or less similar and
now even achieve results smaller than the baseline of the TCOCNN from earlier, which was
12.1 ppb. This aligns with the baseline results of the TCOCNN as the RMSE also dropped
by adding more sensors. Furthermore, more transfer samples do not improve the direct
standardization and piecewise direct standardization results. This might be because it does
not help to make the slave sensor more similar to the master sensors anymore (as already
seen for 125 UGMs).

Since the sensor manufacturers are most interested in significantly reducing calibration
time, the most suitable method seems to be transfer learning, as this method achieves a
reduction in calibration UGMS of 99.3%. For small transfer sets, piecewise direct stan-
dardization and global model building also achieve good results. However, it has to
be noted that global model building outperforms transfer learning and piecewise direct
standardization regarding small initial datasets.
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Figure 9. Comparison of direct standardization (DS), piecewise direct standardization (PDS), transfer
learning for deep learning (TL), and global model building concerning the TCOCNN. Different
numbers of UGMs for transfer learning are used in the different sub-plots.
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To emphasize the benefit of transfer learning compared to global modeling, Figure 10
illustrates the side-by-side comparison of both approaches over the different number of
transfer UGMs regarding an initial model built with one sensor, and one where the initial
model was constructed with all six sensors. The most important part is in relation to
the five transfer UGMs. While the benefit of transfer learning compared to global model
building is not apparent when the initial model is built with only one sensor, the effect can
be seen when six sensors are used. Figure 10b indicates that transfer learning shows its full
potential when trained with more sensors. While global model building achieves an RMSE
of only 24.9 ppb, transfer learning can get as low as 17.7 ppb. This is in accordance with the
theory that a model trained simultaneously with the initial and transfer data cannot adapt
to the new sensor like the specifically tailored model obtained by transfer learning.
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Figure 10. Comparison of transfer learning (in blue), and global model building (in red) with respect
to the TCOCNN. (a) shows the results if only one sensor is used to build the initial model. (b) shows
the results if six sensors are used to build the initial model.

After showing that transfer learning is a very promising method to reduce the calibra-
tion time significantly, it can be seen in Appendix A that for the FESR approach, the same
phenomena as explained above can be observed. However, the results of the FESR approach
are not as good as those of the TCOCNN since the baseline is worse. Furthermore, it seems
that the FESR approach does not work well with piecewise direct standardization, possibly
because of the small edges in the adapted signal.

4. Discussion

After analyzing the baseline results and the calibration transfer methods, the TCOCNN
shows the most promising result when it comes to generalizability. Furthermore, it was
shown that, especially with the TCOCNN, using multiple sensors for the initial model
building could be beneficial. Even without calibration transfer methods, applying a model
trained with six sensors to a new sensor was possible, and suitable results of around
32 ppb were achieved. This can be attributed to the more flexible feature extraction of
the TCOCNN, which allows for better generalizability. Furthermore, different sensors’
effects on the initial model building were investigated. Here, it was shown that it makes a
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significant difference which sensors are used to build the initial model. It was shown that
when only one sensor is used for model building, the results can differ by up to 45 ppb
concerning the new sensor (for difference in the sensor response, see [51]). This might
be interesting to investigate in future experiments. Nevertheless, it was shown that the
most effective way to achieve the lowest RMSE values possible is to use calibration transfer.
Transfer learning proved to be the best option since this method outperformed every other
approach when the initial model was trained with many sensors and only a few transfer
samples were available. It was shown that with less than 99.3% of the calibration UGMs,
results of 18 ppb are still possible (better than the FESR baseline). Compared to the other
methods, the exceptional performance can be attributed to the specifically retrained net-
work. However, the other methods showed decent results as well. As expected, piecewise
direct standardization performs well for minimal transfer sets and can even outperform
direct standardization since the calculation of the pseudo-inverse is more straightforward.
Direct standardization showed the full potential if 25 transfer UGMs were available (man-
ageable pseudo inverse) and surpassed transfer learning if smaller initial datasets were
investigated. Global model building performed very similarly, although transfer learning
outperformed global model building significantly when large initial and small transfer
datasets were concerned. This might be because a more general model is appropriate for
this task. Moreover, the calibration methods for signal correction and global model building
also worked for the FESR approach, although further improvements need to be made to be
compatible with transfer learning.

5. Conclusions

This study’s results allows the conclusion that transfer learning is a powerful method
to reduce the calibration time by up to 99.3%. It was shown that transfer learning could
outperform the other techniques, especially with small transfer sets and initial models
trained on multiple sensors. Furthermore, it was shown that the other calibration transfer
methods are comparable, especially for the most important case of 5 transfer UGMs. Piece-
wise direct standardization or global model building with many sensors for initial model
building also achieved decent results with 5 UGMs for transfer (24.3 ppb). In comparison,
direct standardization needed at least 25 transfer UGMs. The FESR approach did not show
optimal results, but this might be possible if a method combination is found that is more
tailored to calibration transfer. This would be beneficial because the computational effort
would be much smaller.

For further research, it would be exciting to see how the TCOCNN performs in
combination with (piecewise) direct standardization and transfer learning. Furthermore, it
was not investigated if something similar is possible if two different datasets with different
gases (same target gas) are used. One interesting extension of this work is to analyze how
the models differ (explainable AI) when using multiple sensors and whether it is possible
to generate FESR methods based on insights gained with techniques from explainable AI.
It is also possible to build an error model based on multiple sensors’ raw signals to apply
data augmentation and further improve the results. It should also be determined in future
work if transfer learning can be used to compensate for drift. Furthermore, this study
only covers the specific case of indoor air quality monitoring. Future research should also
extend this approach to breath analysis, outdoor air quality monitoring, and other sensor
calibration tasks.
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Figure A1. Comparison of direct standardization (DS), piecewise direct standardization (PDS),
transfer learning for deep learning (TL), and global model building concerning FESR. Different
numbers of UGMs for transfer learning are used in the different sub-plots.
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Paper A

3.5.1 Synopsis

Since DL is constantly faced with skepticism, it is necessary to use XAI techniques
to understand the TCOCNN better. With XAI, it is possible to learn from the inner
workings of the network and understand the sensor, comprehend the Temperature-
Cycle (TC), as well as build simpler models with more advanced features based on the
FESR approach. As before, it is vital to introduce the dataset. The dataset used in this
publication was the same as in Paper 1. All evaluations were based on 1200 UGMs of
two SGP40 sensors with four sub-sensors in TCO. While the data was recorded within
the same measurement as the data of Paper 1, different sensors were used. The TC was
the same as in Paper 1; the only exception was sub-sensor 3, which was only modulated
between 200 °C and 300 °C. The dataset was split into training and testing. The last 60
UGMs were used for testing, and the remaining UGMs for training. The target gas was
formaldehyde, essential for IAQ monitoring.

This publication presented two XAI techniques to analyze the TCOCNN and the
SGP40 sensor in more detail. The XAI techniques used in this publication were the
occlusion and gradient maps from computer vision. Those methods identify the most
crucial section within a TC by training a model on the training data while using the
respective method and test data to obtain an importance score for each input pixel.
Afterward, the mean importance scores across multiple test observations were calculated
to highlight the most critical sections of the TC. However, it is challenging to verify
if the selected sections contain meaningful information (cf. Figure 3.7). Therefore, a
new approach was introduced to confirm the selected regions. This approach trains new
models with and without the most essential part of the signal. Suppose the selected
section contains the most important information; the prediction quality should decrease
drastically for the model trained without the most important sections. Thereby, it was
possible to validate the importance score and rate the different XAI methods.

As a result, it was demonstrated that the occlusion map provides a more helpful
importance score. However, both methods showed similar results. Furthermore, it was
possible to demonstrate that only 7 % of the TC was sufficient to build a model almost
as good as the original (RMSE: 15.8 ppb vs. 19.3 ppb). This indicates that the occlusion
map can be used to identify which sub-sensor, and even which temperature step in the
TC, is most important for the target gas. Those results were further validated with a
second sensor, which indicates those methods also allow for analyzing the differences
between sensors. The results also suggest it might be possible to reduce the calibration
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Figure 3.7: Comparison of importance scores occlusion map (Occ) vs. gradient map
(Grad) standardized and rescaled from 0 to 1 for sensor A (two evaluations
per method). Marked areas indicate regions with significant differences
between methods (see text for details). Reprinted with permission of Ref.
Paper A. Y. Robin, © 2023 IEEE.

time by an additional 50 % by removing unnecessary temperature steps. However,
those results must be verified with actual modified TCs and more XAI methods. It is
important to mention that, specifically, the occlusion map can also be used together
with the FESR approach to make the same observations.

In conclusion, this newly developed validation scheme, together with the XAI tech-
niques, demonstrated that it is possible to understand the TC and which temperature
steps are essential for predicting a specific target gas. Furthermore, extracting the
optimal duration of the temperature steps and which sub-sensor contains the most
critical information was possible. Similarly, XAI opens up the possibility of analyzing
the sensor and the differences between sensors. Moreover, it allows future evaluations
to study the effect of different gases at different temperature steps to explore which
mixtures can be measured with the sensor. However, it should be mentioned that this
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was only one experiment with one gas on one dataset. More tests must be conducted
to understand better which XAI method works best and which one is applicable for
real-world evaluation. This paper concludes the application of the TCOCNN for gas
sensing applications by showing that the TCCOCNN, although complex, can still be
verified and understood. Paper B now analyses the performance of the TCOCNN for
different data-driven tasks.

The main takeaways of this publication are:

• A new method for validating XAI techniques for gas sensor calibration was intro-
duced.

• XAI techniques can be used to understand the sensor and the TCO.

• XAI can be used to estimate the capability of a sensor to analyze specific gases.

• It is possible to highlight differences between sensors.

• Occlusion map performs slightly better. However, this has to be further validated.

• The TC could be reduced by up to 50 % while maintaining performance.

Open questions/tasks are:

• Can the TCOCNN be applied to different fields (e.g., condition monitoring)?
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Abstract—Metal oxide semiconductor (MOS) gas sensors op-
erated in temperature cycled operation (TCO) and calibrated
with machine learning algorithms are increasingly promising for
indoor air quality (IAQ) assessments. This can be attributed
to the cost-efficient sensors, with a broad sensitivity spectrum
and the possibility of continuous measurements. However, with
the ever-increasing complexity of data-driven models used to
calibrate the MOS gas sensors, understanding the connection
between the raw input and the predicted gas concentration is
especially important. In this work, two methods from the field
of explainable AI are applied to our custom neural network
(TCOCNN) and compared regarding their capability to identify
essential parts of the raw input signal. For this purpose, a
validation scheme is introduced to rate the explanation methods.
Finally, it is shown that with only 7 % of the original raw
input, root-mean-squared error (RMSE) values for formaldehyde
that are only 22 % worse compared to the absolute best
(15.8 ppb vs. 19.3 ppb) can be achieved. This more profound
understanding of the sensor can then be used to show differences
between sensors, allow more accessible models to be built, and
optimize the temperature-cycled operation regarding the number
of temperature steps.

Index Terms—volatile organic compounds, indoor air quality,
deep neural networks, temperature cycled operation, explainable
machine learning algorithms.

I. INTRODUCTION

With people spending almost 90 % of their time indoors [1],
[2], it is ever more critical to ensure suitable indoor air quality
to maintain good health conditions. The U.S. Environmental
Protection Agency states that indoor air pollutants can cause
a wide range of health problems, from mild symptoms like
headaches to severe illnesses like cancer if contaminated
with carcinogenic volatile organic compounds (VOCs) like
formaldehyde [2], [3]. However, continuously monitoring in-
door air quality concerning all dangerous VOCs, most promi-
nent formaldehyde and benzene [4], is difficult as there are

many different interfering gases present (e.g., ethanol or CO2)
[5]. It is still an open research field where much progress must
be made. The current problem with accurate indoor air quality
monitoring is that the systems capable of monitoring indoor
air concerning single dangerous VOCs (e.g., GC/MS or PTR-
MS) are expensive, require expert knowledge to operate, or
do not provide online monitoring. Metal oxide semiconductor
(MOS) gas sensors are one promising solution for accurate,
real-time quantification of single dangerous VOCs that would
allow advanced indoor air quality assessment systems to be
widely used. They have proven affordable, easy to operate,
and sensitive to various VOCs [6]. Nevertheless, those systems
suffer from significant drawbacks, like lack of selectivity,
manufacturing tolerances, long calibration times, and drift over
time. Those problems must first be overcome before they can
be universally used for predicting individual VOCs accurately.
Previous studies showed that deep learning models could be
used to calibrate a MOS gas sensor to accurately predict indi-
vidual gases with only a few calibration samples to overcome
long calibration times of multiple weeks [6], [7]. Further-
more, advances in deep neural networks could be utilized
to overcome other challenges, like manufacturing tolerances
[8], [9]. Nevertheless, the drawback of increasingly complex
evaluation methods is that the origin of the prediction is lost.
In our case, the MOS gas sensor is operated dynamically
(temperature cycle operation (TCO)), and one entire cycle is
used to predict the specific gas concentrations. Therefore, it is
not apparent which temperature steps are the most important.
That is because the computation path is too complex for a
human to understand. Thus, this work shows two methods
from the field of deep learning that can be used to gain this
information and allow the user to optimize the data-driven
model or the operation mode of the gas sensor. It also allows

This full text paper was peer-reviewed at the direction of IEEE Instrumentation and Measurement Society prior to the acceptance and publication.
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gaining other insights into how the model works and allows
the user to understand the sensor itself better. Furthermore, a
validation scheme is introduced to rate different explanation
methods to find the best possible method for virtual gas
sensor arrays. There is already some work trying to explain
deep neural networks for gas sensor data like [10], [11].
This work extends those studies because deep convolutional
neural networks are used, the focus is on comparing different
explanation methods, and the raw signal is used instead of
extracted features. Specifically, formaldehyde was chosen as a
reference because of its carcinogenic properties [4], making it
of utmost importance for indoor air quality assessments.

II. MATERIALS AND METHODS

A. Dataset

The dataset consists of multiple sensors and their response
to complex gas mixtures (simulate indoor air), which are
used to calibrate the sensors (build a data-driven model). For
this work, we use the data of two SGP40 sensors (Sensirion
AG, Stäfa, Switzerland), sensors A and B, consisting of
four sub-sensors each. During data recording, the sensors are
operated in temperature cycled operation (TCO), resulting in
a combination of real and virtual sensor arrays to improve
the selectivity and sensitivity [5], [12]. Each sub-sensor is
individually heated with the underlying micro-hotplate and is
sampled at 10 Hz. This operation mode was possible through
specific commands given by Sensirion under a non-disclosure
agreement. The temperature cycle (TC) has a duration of 120 s
and comprises high and low-temperature phases specific to the
independent sub-sensors. For sub-sensors 0-2, the ten high-
temperature phases last 5 seconds and are set at 400 °C, and
the corresponding ten low-temperature phases are increased
from 100 °C to 375 °C in 25 °C steps where the steps at
225 °C, 250 °C, and 275 °C are left out. For sub-sensor
3, the high-temperature state is set at 300 °C, and the low
temperature is increased in 5 steps from 100 °C to 200 °C
(25 °C). The temperature setpoints were chosen based on
previous experiments to be selective to dangerous VOCs [5].
The temperature cycle is depicted in Figure 1 together with
gas sensor data recorded in synthetic air.

The two SGP40 sensors operated in TCO are exposed to var-
ious gas mixtures simulating indoor air (laboratory conditions)
and natural environments with release tests. The first part of
the dataset is recorded in the laboratory for approximately
one week. Thereafter, the sensors are operated for four weeks
in the field and, afterwards, moved back to the laboratory to
recalibrate for drift (one week). Subsequently, the sensor is
moved in the field for three weeks to analyze the stability
again, and then a final calibration dataset is recorded in the
laboratory (one week). During calibration, the sensors are ex-
posed to complex and randomized gas mixtures [13] consisting
of four VOCs (acetone, ethanol, formaldehyde, and toluene)
together with two background gases (carbon monoxide and
hydrogen), and the relative humidity (varied between 25 % and
70 % (at 20 °C)). In order to generate a unique gas mixture
(UGM), each gas concentration and the relative humidity was

200 400 600 800 1000 1200
Samples

Sub-Sensor1

Sub-Sensor2

Sub-Sensor3

Sub-Sensor4

Lo
g
ar

it
h
m

ic
 r

es
is

ta
n
ce

 o
f 
th

e 
se

n
so

rs
 i
n
 a

.u
.

100

150

200

250

300

350

400

Te
m

p
er

at
u
re

 i
n
 °

C

Sensor signal

20 40 60 80 100 120

Time in s

Fig. 1. One sensor response during temperature cycled operation of the
SGP40 in synthetic air for all sub-sensors is given in orange together with
the temperature setpoint in grayscale intervals (sampled at 10 Hz).

TABLE I
CONCENTRATION RANGES FOR THE UNIQUE GAS MIXTURES DURING

LABORATORY MEASUREMENTS [6], [16].

Substance Minimum Maximum Extended

Carbon monoxide 150 ppb 2000 ppb -

Hydrogen 400 ppb 2000 ppb 4000 ppb

Humidity 25 % RH 70 % RH -

Acetone 14 ppb 300 ppb 1000 ppb

Toluene 4 ppb 300 ppb 1000 ppb

Formaldehyde 1 ppb 400 ppb -

Ethanol 4 ppb 300 ppb 1000 ppb

TVOCsens 300 ppb 1200 ppb

randomly picked from a predefined uniform distribution (latin
hypercube sampling) [14]. In total, 1200 UGMs are measured
(500 UGMs first calibration, 500 UGMs second calibration,
200 UGMs last calibration), with ten TCs recorded per gas
mixture. However, because of synchronization errors between
the gas mixing apparatus (GMA) and the recording system,
together with the delay of the GMA until a stable gas mixture
is applied to the gas sensors, only the five core temperature
cycles (those in the middle) per UGM are used for calibrating
the sensor (model-building). The concentration ranges for the
single gases are based on studies for indoor air performed with
analytical methods [15] and can be found in Table I. An in-
depth explanation of the dataset and the experimental setup,
albeit with data recorded for a different sensor, can be found
in [6], [16]. In this work, only the highly reliable data from
the three calibration phases are used to build the data-driven
models and evaluate the deep learning methods.

B. Methods

In order to calibrate single sensors to predict a specific gas,
the data recorded with the sensor is passed through a machine-
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learning model, which learns the dependencies between the
raw input signal and target gas concentration. The model used
in this work is the TCOCNN [16], a custom convolution neural
network (cf. Figure 2) consisting of ten convolutional layers
followed by two fully connected layers [16]. The input for
the TCOCNN is a 4x1200 matrix where the four represents
the four sub-sensors of one SGP40 and 1200 represents the
number of samples in one full TC (resulting in 4800 samples
or pixels). The resulting data was then standardized (zscore:
subtract mean and divide by standard deviation for each sub-
sensor in each observation) to have a similar value range for
each sub-sensor before it was provided to the TCOCNN. The
hyperparameters of the neural network are optimized for every
target gas independently based on Bayesian optimization as
explained in some previous work [16] to guarantee optimal
network performance. The training (only laboratory samples)
is always performed with the first 1140 UGMS, and testing
(only laboratory samples) is done with the last 60 UGMs. This
approach is reasonable because of the randomized UGMs.

Input Layer 2D Convolution
+2D BatchNorm

ReLU Layer

Output  Regression
(mean-squared-error)

Fully Connected Dropout Layer

1 20 - 9

Fig. 2. Architecture of the TCOCNN (adapted from [7]).

After introducing the TCOCNN to calibrate the gas sensor
for a specific gas, the methods to explain those models
are introduced. First, a standard method for explaining the
TCOCNN from the field of deep learning called occlusion
map [17] is introduced. This method operates as a black-
box explainer, where only the model’s input and output are
required, and no internal access is needed. For this method, the
model needs to be trained first. Afterwards, one data sample
(one full TCO) is fed through the network. The observation
is passed multiple times through the network, while different
parts of the network are occluded with a reference sample
in each iteration. The occluded area is specified similarly to
a convolutional layer in a neural network. It has a striding
and kernel size, which can be of any rectangular shape. The
kernel size specifies the size of the occluded area, while the
striding size specifies the distance the kernel is moved over
the matrix after each iteration. For this use case, the kernel
size was set to 1x30 and the striding size to 1x10. The
striding size was chosen so that the frame fits in the 4x1200
array during evaluation, and the kernel size is smaller than
the high-temperature phases of sub-sensors 0-2 (50 samples).
Every sample point (or pixel) is occluded at least once with a
reference sample during all iterations. For image processing,
the occluded pixels are often replaced with a grey-valued pixel.
However, this is not possible for gas sensor data. Therefore,
a reference observation for each sample point in the input

matrix (4x1200), based on the mean value across the full
training data, is built. This allows a mean sensor response of
4x1200 to be created and used for occluding the observation
evaluated. After evaluating an occluded frame, the difference
between the actual output and the new output is calculated and
repeated for all iterations (calculating the error). This results
in an error matrix smaller than the original input matrix (due
to the fact that the striding size is larger than one), which
is then interpolated to reproduce the same size as the input.
The resulting array is then referred to as the occlusion map.
Each sample within the observation has a corresponding value
from the occlusion map that resembles an importance score.
The higher this value is, the more critical that sample is
since occluding this sample causes a more significant deviation
from the original prediction. Investigating only one sample
has the problem that this might only represent parts of the
dataset as only a local explanation is gained. In this work,
multiple samples are tested to obtain a global explanation
and to gain insights into the overall dependencies between
input data and output prediction [18], [19]. To be able to
compare the resulting importance scores between multiple
runs, the absolute mean is calculated across all samples, and
the resulting 4x1200 matrix is then standardized (zscore).

The second method also originates from the field of deep
learning and is called a gradient map [20]. A gradient map
is a white box model that requires access to the model’s
inner workings and is also instance-based (local explanation).
This algorithm calculates the gradient of the input layer (I)
to the regression output (RO) concerning the analyzed sensor
response (S), which then resembles the importance score (IC)
for the 4x1200 matrix [20]. The higher the absolute value of
the gradient, the more critical this pixel is for the TCOCNN.

IC =
∂RO

∂I

∣∣∣∣
S

(1)

A more detailed explanation can be found in [20]. As for
the occlusion map, this provides only a local explanation as
it examines one instance at a time. Therefore, this approach
is also extended to a global model by analyzing multiple in-
stances [18], [19] and calculating the mean absolute response.
Furthermore, the resulting IC is smoothed by a sliding window
to obtain regions instead of single vital pixels. The window
size for the sliding window was set to 30 pixels across each
sub-sensor independently. The value of 30 was chosen to
be comparable to the occlusion map and much smaller than
the high-temperature phases of sub-sensors 0-2 (50 samples).
These two methods (occlusion map and gradient map) have
been chosen as they are complementary concerning white and
black box access and are fast to calculate. Since both require
samples to be operated on, the results are based on the first
60 UGMs and the last 60 UGMS (test data). Using a reduced
number of UGMs from the training and test set for evaluating
the two methods was possible because the randomized UGMs
guaranteed similar distributions. Furthermore, a reduction was
necessary to speed up the evaluation process, which, although
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fast methods were used, still required a long computation time
(multiple hours).

C. Evaluation

In order to test those two methods together with the
TCOCNN, multiple evaluations are performed. First, it was
tested if the TCOCNN achieves stable results in multiple
runs (reproducibility). After that, the two methods are tested
to determine if they are consistent regarding the regions of
importance. Therefore, a model is trained on Sensor A, and
the importance scores from the two methods are compared.
In order to verify those results and show reproducibility
and generalizability, this procedure is repeated four times.
The repetition is done with the same data to consider the
variation caused by the neural network. After verifying the
reproducibility and generalizability and comparing the two
approaches, the next step is to verify that the selected samples
are indeed the most important parts of the input signal. For
pictures, that can often be done by analyzing the selected
region [21]. Since this is not possible for gas sensors, where it
is unknown where the most crucial section is, a new validation
scheme is introduced. This is done by training the TCOCNN
on the data where the most crucial 7 % are occluded with
a reference frame (93 % of data still available). The value
of 7 % was selected after multiple trials because this was
the minimum number of samples needed for the TCOCNN
to successfully train with the X % most important samples
and outperform the model trained with the remaining part.
Occluding the 7 % of the most important samples ensures
that all the essential information can not be used to train
and test the model. Furthermore, the reference frame is the
mean frame across the training set (4x1200). Thereafter, this
approach is reversed. This means that for this experiment, only
the 7 % best samples are used for training, and the remaining
93 % are occluded with a reference frame (do not contain any
information). This is done based on the importance score of
the occlusion map and gradient map, respectively. Afterward,
the achieved root-mean-squared error (RMSE) on the test set
is analyzed and compared to the accuracy when the whole
frame is used. In order to make a reliable comparison, each
evaluation is repeated four times on the same data, and the
mean RMSE and the standard deviations are compared. This
was done to consider the variation a random initialization of
the TCOCNN and the adam solver causes.

III. RESULTS

As stated before, the first step is to compare the repro-
ducibility based on the RMSE over multiple runs. Table II
shows that for sensors A and B during multiple runs (full
dataset 4x1200), the achieved RMSE on the test data varies
only slightly (RMSE: 15.8 ppb and 18.8 ppb; standard devia-
tion: 0.3 ppb and 0.6 ppb for sensors A and B, respectively).
Those RMSE values are suitable for the indoor air quality
task if considering the range for formaldehyde (1 - 400 ppb),
the complex background, and the limit of 80 ppb set by
the WHO [22]. Furthermore, the minor variation ensures that

multiple runs result in reasonably similar models, which is
supported by Figure 3. This figure shows the importance score
obtained with the occlusion and gradient maps. Each sub-
sensor is plotted on top of the other, and each sub-sensor
plot, in turn, consists of four importance scores (two for
each method). The two importance scores per method result
from repeated evaluations (at least twice). Comparing the
importance scores of the occlusion maps and gradient maps
for the two independent runs, they show that similar features
across multiple evaluations are obtained. This confirms that
the TCOCNN uses similar features from the same sensor (only
sub-sensor 2) in every run. In the next step, the importance
scores between the two methods are compared based on
Figure 3. In order to make the comparison more accessible,
the scores are rescaled from 0 to 1. It is shown that both
methods highlight the same sub-sensor as the most critical
sensor. However, when analyzing in more detail, the gradient
map highlights a different set of samples as the most crucial
section (dark red). Furthermore, it can be observed that in
some cases, they even highlight entirely different sections of
the input. With 7 % of the essential samples selected, both
methods only agree on 57 % of the most critical samples.
Each method provides 43 % different ones, which shows that
the two methods do not entirely agree.
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Fig. 3. Comparison of importance scores occlusion map (Occ) vs. gradient
map (Grad) standardized and rescaled from 0 to 1 for sensor A (two evalua-
tions per method). Marked areas indicate regions with significant differences
between methods (see text for details).

After comparing the occlusion and gradient maps, the
next step is to compare the importance scores between the
TCOCNN for different sensors. Figure 4 and Figure 5 show
the importance score for the occlusion map and gradient map
for two separate runs on sensors A and B. As stated above,
the models trained on the same sensor have similar importance
scores and differ only slightly (sensors A and B). Furthermore,
it can be seen that the importance score (occlusion map
and gradient map) between sensors differ slightly. This is
reasonable since it is impossible to use the same model on
multiple sensors as, for example, shown in [7], [9] without
recalibration.
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After analyzing the two methods for calculating the im-
portance score based on their reproducibility, generalizability,
and stability across sensors and multiple evaluations, the next
step is to analyze the performance of the different methods.
The goal is to investigate which method provides the most
accurate importance score. As explained above, the TCOCNN
is evaluated multiple times without the most critical samples
(93 % of the input signal (TC)) and with only the most
critical samples (7 %). The results are listed in Table II.
For the occlusion map, it can be observed that without the
most critical samples for sensor A, the mean RMSE increases
significantly from 15.8 ppb to 23.8 ppb. The next row then
indicates the mean RMSE achieved with only 7 % of the
samples in one full TCO. For the occlusion map, it is shown
that the mean RMSE only increases from 15.8 ppb to 19.3 ppb,
which is much smaller compared to training with 93 % of
the TC. This confirms that this part of the TC contains the
essential information and that the occlusion map provides
significant insights into the sensor and the TC. This insight

could, for example, be used to shorten the TC and thereby
shorten the calibration time or extract specific features from
a critical area for a model with reduced complexity (e.g.,
feature extraction, selection, and regression (FESR) [16]).
This is slightly different for the gradient map. Although the
importance score is similar to the occlusion map, it shows
a different performance. For this use case, the dataset with
only the most critical 7 % performs similarly to the dataset
without the most critical samples ( 21.8 ppb vs. 21.2 ppb).
This shows that the not overlapping 43 % (occlusion map vs.
gradient map) of the most critical samples is the cause of the
drop in performance. The main factor might be the difference
at the beginning of the TCO in sub-sensor one, cf. Figure 3.
Therefore, the gradient map cannot be used as successfully as
the occlusion map in its most basic form. The reason might be
that the gradient map does not consider the variation the input
samples can have. This is different from the occlusion map,
where this is taken into account with the reference sample.
Therefore, it is necessary to use advanced versions of this
method like guided backpropagation [23] or gradCam [24] to
maybe reach a similar performance, which will be done in
future work. All evaluations are repeated for sensor B, cf.
Table II, in order to verify the results. Similar results for
sensor B were achieved, which means that the occlusion map
outperforms the gradient map for all the other evaluations.
However, the gradient map shows a slightly better performance
for sensor B, but it is still worse than the occlusion map.
Furthermore, this indicates that if more advanced methods are
used, and the difference is smaller than in this comparison,
multiple virtual sensor arrays are necessary to identify the best
method.

TABLE II
THE ACHIEVED RMSE VALUES WITH THE FULL DATASET AND THE

DATASET WITH A REDUCED NUMBER OF FEATURES BASED ON
IMPORTANCE SCORES FROM SENSORS A AND B FOR THE OCCLUSION MAP

AND THE GRADIENT MAP.

mean RMSE in ppb
± standard deviation in ppb

training data set occlusion map gradient map

se
ns

or
A all data 15.8 ± 0.3

w/o most important 7 % 23.8 ± 1.0 21.2 ± 1.3

most important 7 % only 19.3 ± 1.0 21.8 ± 0.7

se
ns

or
B all data 18.8 ± 0.6

w/o most important 7 % 26.3 ± 0.5 26.2 ± 1.1

most important 7 % only 19.9 ± 1.0 24.3 ± 1.0

IV. DISCUSSION AND CONCLUSION

This study showed two approaches for analyzing a neural
network for gas sensor data. The goal was to understand which
samples of one full TC are most significant for the TCOCNN
and which methods provide the most reliable information
based on the validation scheme. It was possible to show that
both methods provide reproducible results and highlight the
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same sub-sensor as the most important. The results were re-
produced within multiple runs (same data) across two different
sensors. It was shown that the most critical samples differ
slightly according to the importance score. For both methods,
the most important 7 % of samples showed an overlap of
only 57 %. In order to analyze which method is better at
identifying the most critical samples, a new validation scheme
was introduced. Here, the TCOCNN was evaluated multiple
times without the most critical samples (93 % of the original
TC) and with only the most critical samples (7 % of the
original TC). This evaluation showed that the occlusion map
is better suited for calculating the importance score since even
with only 7 % of the actual TC, better results were achieved
than with the remaining 93 % (19.8 ppb vs. 23.8 ppb). This
was not possible for the gradient map, where the most critical
7 % for sensor A showed slightly worse performance than the
dataset with 93 % of the TC (21.8 ppb vs. 21.2 ppb). These
results enable the TCOCNN to be used to gain insights into
the sensor, sensor differences (sensor A vs. sensor B), and the
TC. For example, these results could reduce the number of
temperature steps in the TC by up to 50 % for formaldehyde
and still obtain similar results. The 50 % of TC is needed
to cover almost the complete 7 %. Additionally, the essential
sub-sensors can indicate which sensors are sensitive to which
gas. Furthermore, new and more specific features could be
extracted from the most critical sections of the TC to build
a less complex model based on feature extraction, selection,
and regression (FESR), where it is not even necessary to
recalibrate the model for different sensors. These methods
and the validation scheme could also be used in future work
to understand the effect of different features regarding drift
compensation and find robust features against sensor poisoning
[25]. This is possible because the TCOCNN will adapt to
the new situation, and by comparing the resulting importance
score with the importance score from the sensor in its basic
form, insights can be gained. Furthermore, more methods
like gradCam or guided backpropagation with more complex
datasets should be tested to gain even more precise insights.

ACKNOWLEDGMENT

This work was supported by the German ministry for
education and research (BMBF) in the project KI-PREDICT
(16ME0030K).

REFERENCES

[1] S. Brasche and W. Bischof, “Daily time spent indoors in german
homes – baseline data for the assessment of indoor exposure of german
occupants,” International Journal of Hygiene and Environmental Health,
vol. 208, no. 4, pp. 247–253, jul 2005.

[2] “Indoor air quality,” https://www.epa.gov/report-environment/indoor-air-
quality, united States Environmental Protection Agency, Sep. 2021,
[Online; accessed 15-November-2022].

[3] M. Hauptmann, J. H. Lubin, P. A. Stewart, R. B. Hayes, and A. Blair,
“Mortality from Solid Cancers among Workers in Formaldehyde Indus-
tries,” American Journal of Epidemiology, vol. 159, no. 12, pp. 1117–
1130, 06 2004.

[4] D. A. Sarigiannis, S. P. Karakitsios, A. Gotti, I. L. Liakos, and
A. Katsoyiannis, “Exposure to major volatile organic compounds and
carbonyls in european indoor environments and associated health risk,”
Environment International, vol. 37, no. 4, pp. 743–765, may 2011.

[5] A. Schütze and T. Sauerwald, “Dynamic operation of semiconductor
sensors,” in Semiconductor Gas Sensors (Second Edition). Woodhead
Publishing, 2020, pp. 385–412.

[6] T. Baur, J. Amann, C. Schultealbert, and A. Schütze, “Field study of
metal oxide semiconductor gas sensors in temperature cycled operation
for selective VOC monitoring in indoor air,” Atmosphere, vol. 12, no. 5,
p. 647, may 2021.

[7] Y. Robin, J. Amann, P. Goodarzi, T. Schneider, A. Schütze, and C. Bur,
“Deep learning based calibration time reduction for MOS gas sensors
with transfer learning,” Atmosphere, vol. 13, no. 10, p. 1614, oct 2022.

[8] S. Feng, F. Farha, Q. Li, Y. Wan, Y. Xu, T. Zhang, and H. Ning, “Review
on smart gas sensing technology,” Sensors, vol. 19, no. 17, p. 3760, aug
2019.

[9] Y. Robin, J. Amann, P. Goodarzi, A. Schutze, and C. Bur, “Transfer
learning to significantly reduce the calibration time of MOS gas sensors,”
in 2022 IEEE International Symposium on Olfaction and Electronic
Nose (ISOEN). IEEE, may 2022.

[10] S. A. Schober, Y. Bahri, C. Carbonelli, and R. Wille, “Neural network
robustness analysis using sensor simulations for a graphene-based semi-
conductor gas sensor,” Chemosensors, vol. 10, no. 5, p. 152, apr 2022.

[11] Y. Robin, J. Morsch, T. Schneider, A. Schuetze, and C. Bur, “Insight
in dynamically operated gas sensor arrays with shapley values for data
segments,” In: Micro and Nano Engineering- Eurosensors (MNE-ES)
(Leuven, Belgium, 2022-09-19), 2022.

[12] P. Reimann and A. Schütze, Sensor Arrays, Virtual Multisensors, Data
Fusion, and Gas Sensor Data Evaluation. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 67–107.

[13] T. Baur, M. Bastuck, C. Schultealbert, T. Sauerwald, and A. Schütze,
“Random gas mixtures for efficient gas sensor calibration,” Journal of
Sensors and Sensor Systems, vol. 9, no. 2, pp. 411–424, nov 2020.
[Online]. Available: https://jsss.copernicus.org/articles/9/411/2020/

[14] W.-L. Loh, “On Latin hypercube sampling,” The Annals of Statistics,
vol. 24, no. 5, pp. 2058 – 2080, 1996.

[15] H. Hofmann and P. Plieninger, “Bereitstellung einer datenbank zum
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forschungsinstitute (agöf) e. v,” 2008.
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Paper B

3.6.1 Synopsis

The previous papers introduced the whole processing chain for gas sensor calibration.
Different ML solutions were introduced, and several improvements were achieved with
the help of DL. Furthermore, XAI was introduced to provide an in-depth explanation of
those models and allow the optimization of several parts of sensor calibration. However,
sensor calibration is only one of many domains where ML can be used with cyclic sensor
data. One additional domain is condition monitoring, which is applied to predict the
current system state of a complex machine. Usually, data-driven condition monitoring is
applied if the state of a system cannot be measured directly or if frequent maintenance is
too costly. Most of the time, sensor data is used together with an ML model to predict
the system’s condition [120, 133]. Examples of such systems and the corresponding
ML solution can be found in [120, 133, 264, 265]. In [264], it was already shown that
DL could tackle condition monitoring problems, as introduced above. Paper B aims to
use the newly obtained knowledge regarding the TCOCNN and tries to transfer this
knowledge to the condition monitoring domain. The system analyzed in Paper B was
a hydraulic testbed [133] capable of producing different pressure levels. Within the
system, various components could wear down and cause system failure. This could be
the cooler for the system, the main valve within the system, the pump that generates the
pressure, or the accumulator used for pre-charging. The specific target for this work was
to identify the state of the accumulator.31 Since the condition of every component could
be controlled in this specific testbed, a pre-defined set of system states was recorded. In
total, 144 system states were recorded (Paper B Figure 1) with ten working cycles each.
This dataset’s working cycle (similar to the TC) consisted of six different pressure levels
varied within 60 seconds (10 seconds duration each), representing one observation. The
working cycle was monitored with 17 sensors from various domains (e.g., pressure, vibra-
tion, temperature). Although the different sensors varied according to their sampling
rate, an interpolation was performed to combine all sensors in a matrix of 17 × 6000 (60
s @ 100 Hz). The goal was to train a classifier capable of identifying the accumulator
state correctly. In the first step of this paper, a baseline was generated with the help
of the FESC method to rate the TCOCNN performance. The FESC toolbox achieved
excellent results with an error rate of only 1 %. In contrast, the TCOCNN achieved
an error rate of 20 % with all 17 sensors. To better understand the TCOCNN’s poor
performance and analyze if a general problem is the reason the model does not learn
the intended dependencies, the TCOCNN was retrained with only one sensor (1 × 6000
31Optimal pressure, severely reduced pressure, close to total failure.
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input). With this test, it was demonstrated that the TCOCNN could achieve an error
rate of 1.7 % while only using one of the system’s pressure sensors. However, if the
TCOCNN was trained with multiple sensors from different domains, this result could
not be reached again. The conclusion is that because of the significant difference in the
input pattern, the TCOCNN could not select the sensor with the most information and
was distracted by others. This effect is similar to the normalization of Paper 2. There,
the normalization made learning features from every sub-sensor easier because the raw
signals were in a similar range after normalization. Further experiments showed that
combining the best sensor with a simulated static sensor with the same shape but a
higher amplitude already worsened the results. This very poor performance was traced
back to the early sensor fusion. While the FESC approach extracts features sensor-wise
and selects the most promising features afterward, the TCOCNN tries to find a feature
extraction that applies to all sensors simultaneously. This leads to the conclusion that
for condition monitoring with signals from multiple domains, it is impossible to use the
TCOCNN without any modifications to achieve compatible results. A possible solution
to achieve reasonable results could be the multi-lane input network that independently
performs feature extraction (convolutional layer) per sensor. However, more research
should be conducted to create a model that can outperform the FESC approach for this
task.

In conclusion, it can be stated that the TCOCNN cannot be easily transferred to
different applications. Therefore, it is still necessary to have the domain knowledge to
analyze the data and the problem to build an appropriate model for the task. Further-
more, it is recommended to test simpler models for the first evaluation as they naturally
provide system insights without XAI methods.

The main takeaways of this publication are:

• It is impossible to use the TCOCNN for condition monitoring if the sensors have
significantly different characteristics.

• The TCOCNN struggles to build a feature extraction that focuses on the features
of the sensors that contain the information.

• Multi-lane CNNs might be a possible solution.

• The FESR approach works best for condition monitoring.
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Open questions/tasks that are not covered in the following are:

• Find neural networks that are better suited for condition monitoring.

• Apply also other methods used for the TCOCNN (e.g., XAI, transfer learning) to
condition monitoring to achieve better and more understandable solutions.

• One of the biggest problems in condition monitoring is domain shift. Can methods
like meta-learning from the field of DL help to solve those problems?
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Abstract—Predictive maintenance plays a critical role in en-
suring the uninterrupted operation of industrial systems and
mitigating the potential risks associated with system failures. This
study focuses on sensor-based condition monitoring and explores
the application of deep learning techniques using a hydraulic
system testbed dataset. Our investigation involves comparing
the performance of three models: a baseline model employing
conventional methods, a single CNN model with early sensor
fusion, and a two-lane CNN model (2L-CNN) with late sensor
fusion. The baseline model achieves an impressive test error
rate of 1% by employing late sensor fusion, where feature
extraction is performed individually for each sensor. However,
the CNN model encounters challenges due to the diverse sensor
characteristics, resulting in an error rate of 20.5%. To further
investigate this issue, we conduct separate training for each sensor
and observe variations in accuracy. Additionally, we evaluate
the performance of the 2L-CNN model, which demonstrates
significant improvement by reducing the error rate by 33%
when considering the combination of the least and most optimal
sensors. This study underscores the importance of effectively
addressing the complexities posed by multi-sensor systems in
sensor-based condition monitoring.

Index Terms—Predictive maintenance, hydraulic system, deep
learning, convolutional neural network

I. INTRODUCTION

Industrial systems and factories operate continuously, ne-
cessitating uninterrupted performance to avoid process down-
time, significant financial losses, and potential safety hazards.
To mitigate these risks, companies employ various main-
tenance approaches, including corrective maintenance, pre-
ventive maintenance, and predictive maintenance. Predictive
maintenance (PdM) heavily relies on monitored signals from
diverse sensors, with machine learning methods playing a
pivotal role in data-driven PdM. These methods can be catego-
rized into two groups: conventional approaches and deep learn-
ing techniques. Conventional methods involve preprocessing,
feature extraction (FE), feature selection (FS), and the subse-
quent application of classification or regression algorithms [1],
commonly referred to as FESC/FESR in this study. In contrast,

modern deep neural networks have demonstrated exceptional
performance across various applications, including PdM [2]–
[4].

In line with these advancements, gas mixture measurement
has emerged as a promising application for deep neural net-
works in recent research. Notably, Robin et al. [5] introduced a
convolutional neural network (CNN) specifically designed for
indoor air quality monitoring (TCOCNN), accurately predict-
ing volatile organic compounds using temperature-cycled op-
eration sensors. The proposed method surpassed existing data
evaluation techniques, underscoring the effectiveness of CNNs
in this domain. It is worth noting that the signals utilized in
their study bear resemblance to the typical data encountered in
condition monitoring and predictive maintenance applications,
i.e. multiple sensors with periodic or cyclic data.

Motivated by the aforementioned findings, the objective of
our study is to compare our previously published method,
TCOCNN, with a benchmark method in a different application
context. To achieve this, we utilize a publicly available dataset
from a hydraulic system testbed [6]. Recent research has
applied various deep learning techniques to the dataset under
investigation [7]–[11]. Prakash et al. [7] employed a 1D CNN
model to analyze the pressure difference between two pressure
sensors. Huang et al. [12] took a parallel approach by utilizing
multiple independent convolutional neural networks to extract
features from individual sensors. Furthermore, Berghout et al.
[10] introduced a novel neural network model specifically de-
signed to process the extracted features. In a distinct approach,
Zhang et al. [9] demonstrated the application of a Transformer
model with self-attention, originally trained on natural lan-
guage, to the task of sensor fusion. Collectively, these studies
contribute to the exploration of diverse methodologies for
analyzing sensor data and extracting meaningful insights. The
primary goal of our comprehensive evaluation is to assess
the performance of the air quality model when applied to the
field of condition monitoring. In doing so, we aim to address
potential challenges and difficulties associated with multiple
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sensors of different types, thereby providing valuable insights
for future research in this area. The remaining structure of
this paper is outlined as follows: Section II describes the
materials and methods, including details about the dataset and
the utilized convolutional neural network. Section III reports
the results, and finally, Section IV presents the conclusions
derived from this study.

II. MATERIALS AND METHODS

A. Dataset
This study utilizes a dataset that captures the behavior of

a hydraulic system (HS) testbed, which has been specifically
designed to simulate various common faults encountered in
such systems [6]. The ZeMA1 dataset includes simulated faults
such as decreased cooler performance, main valve switching
degradation, internal pump leakage, and accumulator pre-
charge pressure reduction with the control system enabling in-
dependent adjustment of each fault condition. Fig. 1a provides
an illustration of the conditions of the cooler, valve, pump, and
accumulator within the dataset, which consists of recordings
from 17 sensors over a constant operating cycle lasting 60 sec-
onds as would be typical, e.g. for a hydraulic press operation.
These sensors measure process values, including pressure (PS1
- PS6), flow (FS1, FS2), temperature (TS1 - TS5), electrical
power (EPS1), and vibration (VS1). Additionally, the dataset
includes three virtual sensors, namely cooling efficiency (CE),
cooling power (CP), and system efficiency (SE). These virtual
sensors are calculated using a physical model that combines
various measured values. The dataset comprises sensors of
various types, and their sampling rates vary based on the
measured parameter. The sampling frequencies range from 1
to 100 Hz, resulting in observations with 60 to 6000 data
samples per sensor per cycle. Fig. 1b effectively showcases
the distinct characteristics exhibited by two sensors through
three cycles, highlighting the multimodality of the sensor data
[13]. In the context of the present study, the target is to predict
the condition of the accumulator. Specifically, the model aims
to classify the hydraulic accumulator pre-charge pressure into
categories, i.e., ”optimal pressure,” ”lightly reduced pressure,”
”severely reduced pressure,” and ”close to total failure.”
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Fig. 1: ZeMA dataset control variables (a), and three cycles
of two selected sensors (b).
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GmbH

B. Algorithms

Conventional ML: The baseline model for this study is
selected from [14], where an AutoML toolbox is employed
to analyze the dataset. The AutoML toolbox explores various
combinations of FESC methods to identify the most effective
approach. In this study, we utilize the method identified
by the toolbox, which achieved the highest cross-validation
accuracy. The selected method involves extracting statistical
moments (mean, standard deviation, skewness, and kurtosis)
from the raw data as the features. Pearson correlation is used
as the feature selector, and linear discriminant analysis with
Mahalanobis distance serves as the classifier.

Deep learning methods: Deep learning techniques were
employed as the second approach to construct the models.
Specifically, two CNN models were utilized: TCOCNN and
2L-CNN, as depicted in Figure 2. TCOCNN is a deep network
comprising 10 convolutional layers, and we also evaluated
the late fusion version of TCOCNN, which has demonstrated
its effectiveness in various multimodal systems [12], [15]. In
the 2L-CNN model, each sensor was assigned its own set of
convolutional filters. The resulting feature maps from each
convolutional lane were concatenated, and a fully connected
layer was then applied.

Fig. 2: Architecture of the TCOCNN and 2L-CNN.

In a previous study [5], the employed model was utilized to
predict multiple gas concentrations, such as acetone, ethanol,
formaldehyde, toluene, the total concentration of all volatile
organic compounds (VOCsum), as well as the inorganic gases
carbon monoxide and hydrogen. However, in the present study,
a different approach is adopted as it focuses on a classification
task. Consequently, the last fully connected layer and output
function differ from those used in [5]. To determine the
network’s hyperparameters, a hyperparameter (HP) tuning pro-
cess is employed. Due to computational resource limitations,
the HP tuning involves conducting 50 iterations within a
predefined search space for the HPs, as detailed in Table I.

To address the issue of multiple sensors having different
sampling rates and, thus, lengths, a preprocessing step is
employed where all sensors are upsampled to 6000 data
points, ensuring the same number of raw data for each sensor.
These upsampled sensor readings are then combined to form
a 2D matrix, enabling the application of a 2D convolutional
network. Following the preprocessing step, a random split
is performed on the dataset. The data is divided into three
subsets: 70% of the data is allocated for training, 10% for
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TABLE I: The hyperparameter ranges for the CNN.

Initial Learning
Rate (Log Scale)

Number of Filters
(First Two Layers)

Kernel Size (First
Two Layers)

Stride Size (First
Layer)

Dropout Number of
Neurons (FC)

Number of Neurons
(FC)

1×10−7−1×10−4 10-100 100-300 100-175 30-50% 500-2500

validation, and 20% for testing. This partitioning ensures
that the model is trained on a substantial portion of the
data while having separate datasets for validation and testing.
The HP tuning is then exclusively performed on the training
data, enabling the identification of optimal HPs based on
minimizing the validation loss. This ensures the model is fine-
tuned and optimized for performance on unseen data.

III. RESULTS

The results obtained from the baseline model, which utilizes
conventional methods, showcased excellent performance for
the defined task. When all 17 sensors were used as input,
the model achieved a test error rate of 1%. The conventional
method applies feature extraction to each sensor individually,
thereby avoiding any challenges associated with multiple vari-
ant sensors.

In contrast, the CNN model incorporating all 17 sensors
and the mentioned preprocessing steps exhibited lower per-
formance, achieving an error rate of 20.5%. This outcome
highlighted the challenges arising from the multimodal charac-
teristics of the sensors. To highlight this issue, we trained the
network separately for each sensor and observed varying error
rates. Fig. 3a displays the error results, with PS1 achieving the
best error rate of 1.7% and PS2 obtaining the highest error of
73.4%.
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Fig. 3: Test error when only single sensors are used (a), and
when combinations of sensors are used (b). Each HP tuning
is repeated 5 times, and the error bars represent the range for
the standard deviation of the results.

To further investigate the impact of dissimilar sensors on
the deep neural network model, we conducted a series of
tests using different combinations of sensors. In order to keep
the experiments manageable, we focused on two sensors and
trained the network using all possible combinations involving
the best sensor (PS1) and the remaining sensors. The results
are illustrated in Figure 1, where the most notable findings are
highlighted. The worst combination, involving PS1 and PS5,
exhibited a significantly higher error rate of 39.8% (B&W).

Moreover, when comparing the performance of using the
best sensor alone to using it twice (B&B), we observed that
increasing the input size (2x6000) did not have a significant
impact on the results. However, introducing a second sensor
with uniform noise (B&N) as an input resulted in a substantial
increase in the error rate, reaching 30.3%.

Fig. 3b provides an illustration of the result achieved by
this new model, denoted as ”2L-CNN,” using the best and
worst sensors as input. The new model demonstrated improved
performance compared to the normal single-lane network,
achieving error rates of 39.8% and 6.5% respectively. This
finding provides additional support for the importance of
effectively addressing the challenges associated with dissimilar
sensors and multimodal learning in order to maintain and
improve performance.

IV. CONCLUSION

In conclusion, this study aimed to assess the performance of
a network originally designed for temperature-cycled gas sen-
sors in a different application, namely the fault classification of
a hydraulic system, and compare it with conventional methods.
The conventional baseline model demonstrated impressive
performance in handling the 17 diverse sensors, achieving an
outstanding error rate of 1%. This method utilizes independent
late data fusion after extracting features individually from each
sensor.

In contrast, the CNN model that incorporated all 17 sensors
and utilized preprocessing to achieve the same raw data length
demonstrated significantly lower performance, resulting in an
error rate of 20.5%. This outcome highlighted the challenges
arising from the dissimilar characteristics of the sensors, which
hindered the network’s ability to effectively handle them. No-
tably, training the network separately for each sensor revealed
substantial variations in error rates, ranging from 1.7% for PS1
to 73.4% for PS2.

To emphasize the importance of pertinent input data, we
performed experiments using various sensor combinations.
These tests provided clear evidence that incorporating irrel-
evant sensors in the input data significantly compromised the
results. Additionally, we evaluated the performance of a 2L-
CNN model that utilizes late-sensor fusion, which proved to be
a viable strategy for addressing the issues caused by irrelevant
sensors. This discovery underscores the crucial significance
of meticulously choosing and prioritizing relevant sensors to
enhance the model’s performance.

Overall, this study underscores the challenges posed by the
multimodal nature of sensor data. It emphasizes the signifi-
cance of effectively addressing these challenges to unlock the
full potential of sensor-based applications and enhance their
overall performance. Future research endeavors can focus on
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exploring advanced techniques to overcome these obstacles
and further enhance the accuracy of fault detection models.
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4 Conclusion

This work aimed to develop a new DL-based calibration strategy for MOS gas sensors.
The main focus was to show the capabilities of the DL model TCOCNN regarding
laboratory and field tests and tackle long calibration times. A significant reduction of the
calibration time is necessary to commercialize MOS gas sensors for selectively measuring
harmful VOCs for IAQ monitoring. Within the first publication, the TCOCNN was
introduced for gas sensor calibration. The TCOCNN showed superior performance
over classic ML (e.g., FESR) regarding prediction quality under laboratory conditions
and field tests. This was demonstrated by achieving much smaller RMSE values under
laboratory conditions and predicting the gas concentration with less noise and a more
realistic baseline during the field tests. This superiority was further improved with the
help of transfer learning. The second paper showed that suitable models can be built with
only 93 % of the data. As an additional result, it was revealed that this process can be
optimized with additional hyperparameters that arise from the application of this method.
Hyperparameters can be the transfer learning method (e.g., fine-tuning, freezing), the
initial model, the number of UGMs, and the specific UGMs themselves. Subsequently,
the third paper demonstrated that the results could be further improved with the help of
global initial modeling. With this approach, it was even possible to reduce the calibration
time by up to 99.3 %, which indicates that only five UGMs (∼ 120 minutes) are sufficient
to find a model that provides similar results to the models trained with 600 - 700 UGMs
(∼ 1 - 2 weeks).32 Finally, those results were compared with state-of-the-art classic ML
and calibration transfer methods. It was shown that the TCOCNN can outperform
classic ML regarding sensor-to-sensor generalization. Furthermore, transfer learning
showed that it is the best approach for calibration transfer by surpassing state-of-the-art
methods like Direct Standardization (DS), Piecewise Direct Standardization (PDS),
and global model building. In the additional fourth paper, a common issue of DL was
addressed. Usually, DL is faced with skepticism if classical ML achieves similar results,
32The model trained with 700 UGMs without transfer learning achieved an RMSE of 15 ppb, while the

model with transfer learning (5 UGMs) achieved an RMSE of 17.7 ppb.
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as FESR methods tend to be easier to understand. Therefore, different approaches from
XAI were introduced to tackle this problem. It was shown that with advanced XAI
methods, it is likely to obtain deep insights into the model. It was possible to gain a
more profound understanding of which parts of the TC and sub-sensor are essential for
which gas and even allow for verification. This paper showed that optimizing the TC
for specific gases can reduce the calibration time by around 50 % if the TC is shortened.
However, it should be mentioned that some methods from XAI likewise work for the
FESR approach and are, therefore, universally applicable. The last paper showed how
the TCOCNN can be adapted for other use cases like condition monitoring. Within
this publication, it was discovered that although similar problems are faced, more than
a simple one-by-one adaptation is needed. This was obvious if sensors from different
domains were mixed to create an input image for the TCOCNN. It was shown that
it is necessary to make further improvements to the TCOCNN to apply to condition
monitoring and compete with state-of-the-art approaches (e.g., FESC).

Concentrating on the results of the core papers regarding gas sensor data, the summary
above shows that it is possible, with the help of advanced DL techniques, to calibrate
MOS gas sensors successfully and to significantly tackle the drawback of long calibration
times for IAQ assessments. Transfer learning enables calibration transfer between sensors,
simultaneously allowing for shorter calibration times. The newly developed method
surpasses state-of-the-art approaches and suggests that it is possible to calibrate a large
batch of sensors quickly (120 minutes or five gas tests). Two hours or five gas tests can
be deemed suitable for industry as two hours are adequate for commercial applications,
and with five test gases, no complex UGMs are needed (no GMA needed). With the
necessary global initial models, it is possible to quickly deploy the MOS gas sensors
and the trained TCOCNNs to a wide range of use cases where VOCs are the primary
target. This is interesting for the industry as it allows for a wider field of customers,
ranging from monitoring outdoor air quality in industrial applications to consumer use
cases like IAQ monitoring and health monitoring. Furthermore, the transfer learning
approach can be used to transfer between datasets, which would leverage DL-based
MOS gas sensor calibration even further. However, this thesis only builds the basis
for future development of gas sensor calibration. Many open questions still need to
be discussed, like the effect of unknown interfering gases, drift over time, and sensor
poisoning. Possible extensions are discussed in the following chapter.
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5 Outlook

Although this thesis already showed the impact that DL can have on the field of MOS
gas sensor applications, it only scraped roughly on the surface of what is possible with
the help of DL for MOS gas sensor calibration. In the following, the open research task
will be elaborated. One open question from the first paper is the absolute accuracy of
the FESR and TCOCNN methods in real-world applications. Therefore, a new dataset
with laboratory calibration and field tests is required. During the field test, calibrated
reference instruments are mandatory to be able to rate the ML models. From the first
paper, another open question is whether detecting multiple gases from one chemical
group with a model trained only on one representative (unknown interfering gases) is
possible. This has currently only been done with two examples with inconsistent results.

The second and third papers leave the optimal method for selecting transfer samples
open. For this task, it is suggested to test different methods, like random sub-sampling
and the Kennard-Stone algorithm. Likewise, the full potential of hyperparameter
selection for transfer learning, e.g., learning rate, freezing vs. fine-tuning, and learning
drop factor, must be further explored. Another open question from those two papers is
whether achieving similar transfer results between GMAs and datasets is possible and
whether the calibration model would work with data recorded in a different laboratory
with additional unknown interfering gases. Cross-GMA and laboratory tests are necessary
to validate the effectiveness of the newly developed methods. Although papers 2 and 3
already compared the newly developed method with state-of-the-art approaches, more
models and techniques should be compared to establish a rating between the different
strategies. Another point that was not thoroughly covered in this thesis was drift
compensation. It should be investigated if transfer learning can reduce this effect as
well. Therefore, an initial model should be trained on data containing drift. Afterward,
the transfer should happen with a few transfer samples that do not contain drift. After
multiple weeks, the model performance can be evaluated with data collected from the
new sensor. Similarly, sensor poisoning should be analyzed to prevent undetected sensor
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failure. To solve this problem, it might be possible to apply novelty detection that
detects a sudden and unexpected change in the sensor response pattern.

Regarding the fourth paper, only the general concept of XAI was introduced, and
therefore, much room for research is present. Possible continuations can be to generate
new TCs based on the insights obtained by XAI and test their performance compared
to the long cycles used in this publication. Another possibility would be to generate new
features for FESR based on the importance scores. Furthermore, a comprehensive study
can be conducted on the effectiveness of different XAI methods for the optimization of
gas sensor calibration. In this context, the XAI methods can be used to understand the
sensor, which might also help to understand the different responses of the gas sensor to
different environments (e.g., different gases from the same chemical group, drift).

In the fifth paper, the realm of condition monitoring was introduced. Neural networks
are already widely used in this field. However, they also suffer from domain shifts similar
to sensor-to-sensor variance. A possible continuation will be to analyze if it is possible to
use methods developed within this thesis to tackle significant problems within condition
monitoring.

The following discusses a few DL methods that can help to improve the ML models.
A data augmentation approach is often used for DL and describes the generation of
additional samples with the help of an error model. An example for gas sensor data
could be to model the variance in sensitivity between sensors and generate new samples
that contain this variation [261]. Although some different neural networks have already
been used for gas sensor calibration, no study has been conducted that analyzes different
neural network architectures for gas sensor calibration. This can be done using one
of the introduced datasets and testing different architectures (e.g., LSTMs, ResNet,
Transformer architecture, MLPs). Simultaneously, the performance of decision trees
and transfer learning should be tested. The computational complexity might be one
of the most critical challenges for deploying the TCOCNN. It needs to be analyzed
if it is possible to deploy the TCOCNN on a microcontroller and how powerful the
microcontroller needs to be. In this context, the truncation and quantization of weights
need to be analyzed.

A general open topic, not yet thoroughly analyzed, is the usable concentration range
for the MOS gas sensors in combination with the different calibration schemes and ML
models.
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Appendix: Gaussian Process

A Appendix: Gaussian Process

In ML, especially in linear regression, the task is to find a projection of the input to the
output that minimizes some loss function. This can be described as shown in Equation
A.1 with w being the model parameter, ŵ all possible w, D the training data, and L a
loss function (e.g., Equation 2.1).

w = argminŵLŵ(D) (A.1)

One way to get to this point is by maximizing the conditional probability of w given
the training data D (P (W |D)). However, the drawback of this approach is that the
result from Equation A.1 returns only a single value (the most probable value given
the most probable w). Therefore, Gaussian processes are introduced on a fundamental
level. A more profound derivation can be found in [266], and the core elements of
this derivation are based on the sources [114, 194–196]. In Gaussian processes, we do
not want to obtain the most probable w; instead, the goal is to directly predict the
distribution of the test point, as shown in Equation A.2. This can be done by integrating
over every possible w (D: Dataset, x: test point, y: predicted label).

P (ytest|xtest, D) =
∫

w
P (ytest|xtest, w) ∗ P (w|D)dw (A.2)

This means it is necessary to integrate all possible projections or functions (infinite
dimensional) to get the probability of y given x and D. Therefore, not a single w is
calculated; instead, every possible w gets a probability. The real benefit now from a
Gaussian process is that it is assumed that P (ytest|xtest, W ) and P (w|D) are Gaussian
distributed, allowing the assumption that P (ytest|xtest, D) is Gaussian distributed. It is
no longer necessary to compute the integral as shown in Equation A.3. Instead, it is
possible to model the probability of y directly since the probability has to be Gaussian
distributed, as shown in Equation A.1.
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Appendix: Gaussian Process

P (ytest|xtest, D) ∼ N (µtest, Σtest) (A.3)

This can be interpreted that for each test point, it is possible to calculate a Gaussian
distribution with µtest and Σtest. Before showing how to calculate those values, it is
necessary to go one step back and look at where this formula is derived from. For
Gaussian processes, it is assumed that all labels are drawn from a Gaussian distribution
with µ = 0 (can be constructed) and Σ. This is reasonable since P (ytest|xtest, D) is
Gaussian as shown above. Therefore, it can be stated that :


y1

y2
...

ytest

 ∼ N (0, Σall) (A.4)

Where Σall defines the correlation of every combination of y’s. Furthermore, Σ is
constructed as follows:

Σall =
Ktrain,train Ktrain,test

Ktest,train Ktest,test

 (A.5)

In this case, K is the kernel function that takes two x-inputs and outputs the correlation
between two y’s (returns a matrix). The user defines this kernel function that makes a
statement about the correlation and can be interpreted as the user-defined function of
what correlation should be assigned to similar or dissimilar points. More abstractly, the
kernel can be interpreted as a definition of the shape of all possible fitted functions (all
possible w). The RBF kernel is the most popular for Bayesian optimization as it allows
for relatively smooth functions with not overly high peaks. Furthermore, it assigns a
high correlation to two y’s if their x’s are similar. This means that similar points should
have a similar label. With the help of this Σall for all drawn samples, it is now possible
to calculate µtest and Σtest of the joint probability of P (ytest|xtest, D). The derivation to
obtain µtest and Σtest can be found in [266]. The results are given as follows:

µtest = KT
test,train ∗ (Ktrain,train + σ ∗ I)−1 ∗ ytrain (A.6)

Σtest = Ktest,test − KT
test,train ∗ (Ktrain,train + σ ∗ I)−1 ∗ Ktest,train (A.7)
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After the general functions are introduced, a few remarks are made. Although a
Gaussian process is, in theory, parameter-less, the kernel still has a few parameters that
need to be learned with the training data to fit the training points optimally, or σ is
defined as noise to guarantee that K is invertible.
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