
Computational Materials Science 240 (2024) 113013

Available online 10 April 2024
0927-0256/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Full Length Article 

Improved carbide volume fraction estimation in as-cast HCCI alloys using 
machine learning techniques 

U. Pranav Nayak a,1,*, Martin Müller a,b,1, Noah Quartz a, M. Agustina Guitar a, 
Frank Mücklich a,b 

a Department of Materials Science, Saarland University, Campus D3.3, D-66123 Saarbrücken, Germany 
b Material Engineering Center Saarland (MECS), Campus D3.3, D-66123 Saarbrücken, Germany   

A R T I C L E  I N F O   

Keywords: 
Carbide volume fraction 
High chromium cast iron 
Machine learning 
Metallography 
Microstructure 
Phase quantification 

A B S T R A C T   

An improved approach is presented for the estimation of carbide volume fraction (CVF) in as-cast High Chro-
mium Cast Iron (HCCI) alloys using Machine Learning (ML) techniques. The limitations of existing formulae for 
CVF estimation in HCCI alloys, which relied on a limited number of alloy compositions, are addressed. A 
comprehensive dataset comprising 320 distinct alloy compositions from 60 different sources was compiled. ML 
models trained on this dataset revealed the significant influence of carbon (C), chromium (Cr), and molybdenum 
(Mo) on CVF determination. By leveraging ML algorithms, a predictive model was developed that offers 
enhanced accuracy in estimating CVF across a wider range of compositions. This ML-based approach provides 
researchers with a valuable tool for determining CVF in as-cast HCCI alloys, minimizing the need for resource- 
intensive and time-consuming experimental procedures. The results obtained demonstrate improved CVF esti-
mation accuracy and broader applicability, thus facilitating more efficient and reliable CVF determination in 
HCCI alloys.   

1. Introduction 

High chromium cast irons (HCCIs) are a subset of abrasion-resistant 
white cast irons (WCIs), offering superior wear resistance and toughness 
within the WCI category [1,2]. These alloys, based on the Fe-Cr-C 
ternary system, typically contain 11–30 wt% chromium (Cr) and 2–4 
wt% carbon (C) according to ASTM A532 standards [3], along with 
minor additions of molybdenum (Mo), nickel (Ni), copper (Cu), and 
manganese (Mn) [4]. Characterized by hard eutectic carbides (EC) 
dispersed in a modifiable matrix (austenite, ferrite, martensite), HCCIs 
can possess up to 50 % carbides by volume due to their wide composi-
tional range [5–8]. The carbides exhibit a hardness range of 1200–1600 
HV [9,10], contributing synergistically with the matrix to enhance both 
wear resistance and toughness. These properties make HCCIs suitable for 
various industrial applications, including ore crushers, ball mill liners, 
and grinding equipment [4,11,12]. 

Extensive research has been conducted by numerous researchers to 
identify the optimal carbide volume fraction (CVF) for enhancing 

hardness and wear resistance, with some studies maintaining the matrix 
microstructure relatively unchanged [13–19]. However, an increase in 
hardness does not necessarily correlate with improved wear resistance 
[20]. Zum Gahr et al. [21] and Doǧan et al. [22] observed increased 
material hardness with higher CVF, but without a commensurate 
improvement in wear resistance. Notably, Doǧan et al. [22] noted a 
significant reduction in wear volume loss for a 26 wt% Cr WCI with an 
austenitic matrix and a CVF of 28 % compared to a 16 wt% Cr WCI with 
a pearlitic/bainitic matrix and a CVF of 45 %. 

Moreover, in low-stress abrasion scenarios, where the abrasive was 
softer than the carbides but harder than the matrix, increasing CVF 
improved wear resistance [19,21,23]. Conversely, under high-stress or 
three-body abrasion, microcracking of carbide tips occurred, indicating 
a threshold beyond which further increases in CVF became detrimental 
to wear resistance [4,21,24]. However, accurately predicting the CVF in 
as-cast HCCI alloys is a complex task due to the intricate nature of car-
bide formation and the influence of various alloying elements. 

Over the years, researchers have employed experimental approaches 
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to estimate CVF in HCCI alloys. Initially, based on metallographic as-
sessments of experimental alloy melts, Maratray and Usseglio-Nanot 
established a linear relationship between C, Cr and CVF in 1970 
[25,26]. The equation was deduced from their study of over 40 different 
alloys with varying C (1.95–4.31 wt%) and Cr (10.8–25.82 wt%) con-
tents, encompassing Cr/C ratios between 3.5 and 10.2. The CVF was 
determined through the linear intercept method, with carbides counted 
in a representative specimen using slices taken from different sections of 
an ingot. The equation, featured as Equation #1 (M) in Table 1, stands as 
the prevalent mathematical model for computing CVF in HCCIs and 
have been implemented in various studies [1,27–30]. 

In a manner reminiscent of Maratray’s approach, Doğan et al. in 
1997 formulated an equation establishing a linear relationship between 
C, Cr, and CVF [22]. Their work focused on hypoeutectic, eutectic, and 
hypereutectic cast iron compositions, encompassing Cr contents of 15 
and 26 wt%. The determination of CVF in the castings was conducted 
through both wet chemistry and image analysis, yielding comparable 
results. The resulting equation #2 (D), derived from the analysis pre-
sented in Table 1, demonstrates that CVF increases with rising carbon 
content and experiences a slower increase with higher Cr content. 
Despite similarities to the equation established by Maratray and 
Usseglio-Nanot for up to 4 wt% Mo-containing high Cr WCIs, 

Equation #2 (D) estimates a slightly lower carbide volume fraction 
than its counterpart. However, these simplistic formulae had limitations 
as they were based on a limited number of alloy compositions and 
exhibited linear relationships. 

Chung’s investigation comprised of 53 diverse HCCI alloys, ranging 
in C concentrations from 1 to 6 wt% and Cr concentrations from 5 to 45 
wt% [31]. The analyses highlighted carbon’s predominant influence in 
controlling carbide volume fractions, with an increase in carbon content 
leading to a substantial rise from approximately 15 to 66 %, while a 
parallel increase in overall chromium concentration resulted in a more 
modest average increment of 17 % in carbide volume. The work 
involved surface fitting and comparison with Maratray’s empirical 
equation, revealing that a second-grade polygonal fitting offered a su-
perior adjustment. The proposed empirical equation is presented as 
Equation #3 (C) in Table 1. Notably, the predictive accuracy of the 
proposed equation remained robust, particularly for carbide volume 
contents below 40 %, with deviations increasing somewhat at higher 
volume fractions of carbides. 

Chung, Maratray, and Doğan employed distinct mathematical ap-
proaches in formulating their respective equations for predicting CVF. 

While Maratray and Doğan adhered to a linear relationship, Chung 
introduced a quadratic form. This quadratic equation adds a layer of 
complexity, allowing for a more detailed representation of the non- 
linear interactions between C and Cr, and their influence on CVF. 
Notably, a commonality in the formulations of Maratray, Doğan, and 
Chung’s models is the exclusion of Mo from their equations. Despite the 
acknowledged influence of Mo on CVF, as recognized in Maratray’s al-
loys and the study by Chung, neither model incorporates Mo in its 
mathematical expression. Mo, recognized as a moderately strong car-
bide former comparable to Cr, is believed to partition into carbides 
[30,32,33]. 

To overcome the limitation of neglecting Mo in Maratray’s equation, 
Gates et al. introduced a “chromium equivalent” (CrE) (Equation #4 in 
Table 1; G) [34]. This pragmatic approach involved using CrE instead of 
Cr in Maratray’s formula, defined as Cr + [(Mo − 1.25) × (molecular 
weight of Cr/molecular weight of Mo)]. Subsequently, advancements in 
computing power allowed researchers to explore more sophisticated 
techniques such as multiple regression analysis, incorporating addi-
tional elements such as Mo [35]. The statistical analyses conducted by 
Pourasiabi et al., involving stepwise regression and P-value tests on 
Maratray’s original dataset, confirmed Mo’s significance as a predictor, 
demanding a more explicit evaluation [35]. They addressed this gap by 
integrating the original alloy compositions from Maratray’s work, 
involving 40 different alloys, into their investigation and developed both 
a multiple linear regression (MLR) model (Equation #5 in Table 1; MLR) 
and a multiple non-linear regression (MNLR) model (Equation #6 in 
Table 1; MNLR). The results revealed that the MNLR model, accounting 
for independent and first-order interaction effects of various alloying 
elements, exhibited the best statistical measures, demonstrating supe-
rior goodness of fit, compared to the other models. 

With the recent advancements in Artificial Intelligence (AI) and 
Machine Learning (ML), it has become increasingly apparent that 
implementing these techniques could offer significant improvements in 
CVF estimation for as-cast HCCI alloys. Following the lead of fields like 
autonomous driving [36] and biomedicine [37], which adopted AI and 
ML techniques early on and drove their development, these methods 
have gained traction in materials science and engineering in recent 
years. The various fields of application, in which ML facilitated new and 
improved approaches include, amongst others, discovery and design of 
new materials [38], microstructure characterization [39–41], property 
predictions [42], or surrogate modeling [43]. In general, the importance 
of ML is that it makes problems accessible to automatic processing by 
computers for which full mathematical modeling is hopeless. Among the 
benefits of ML are the discovery of structures and hidden patterns in 
data, and the modeling of unknown, non-linear relationships. In this 
context ML can be used when conventional modeling approaches, e.g., 
metallurgical, or thermodynamic modeling, reach their limits or are not 
accurate enough. This can be process-property correlations or pre-
dictions of mechanical or physical properties or of microstructural 
characteristics. Examples include the prediction of the hardness of 
maraging steels that achieves better accuracy with metallurgical 
modeling [44], the prediction of Curie temperature for certain ferro-
electric compounds [45] or the approximation of phase diagrams for 
ternary alloys [46]. 

The limitations of the existing CVF prediction formulae, their narrow 
applicability, and the desire for enhanced accuracy across a wider range 
of compositions have led to the exploration of ML-based approaches. By 
harnessing the power of ML algorithms, it is possible to analyze large 
datasets, identify complex relationships between alloy composition and 
CVF, and develop predictive models that outperform traditional 
empirical formulae. The objective of this research is to employ ML 
techniques to improve the determination of CVF in as-cast HCCI alloys, 
thereby providing a reliable and accessible method for researchers in the 
field. 

A comprehensive dataset comprising 320 alloy compositions from 
diverse sources was compiled in this study. The dataset spans a broad 

Table 1 
Literature available models with their CVF formulas along with the assigned 
nomenclature for this work. The elemental input is weight percent unless 
otherwise mentioned.  

Equation 
No. 

Model/Year Nomenclature CVF Formula (%CVF = ) 

1 Maratray et al.,  
[25]/1970 

M %CVF = 12.33C + 0.55Cr − 15.2 

2 Doğan et al.,  
[22]/1997 

D %CVF = 14.05C + 0.43Cr − 22 

3 Chung [31]/ 
2014 

C %CVF = − 13.5 + 15.32C +

0.1Cr + 0.08C2 +

0.02Cr2 − 0.23(C*Cr)
4 Gates 

Modification  
[34]/2018 

G %CVF = 12.33C + 0.55Cr +

0.298(Mo − 1.25) − 15.2 

5 Pourasiabi 
Multiple Linear 
Regression  
[35]/2022 

MLR %CVF = 12.52C + 0.54Cr +

1.06Mo − 17.11 

6 Pourasiabi 
Multiple Non 
Linear 
Regression  
[35]/2022 

MNLR %CVF =

9.485C − 0.04Cr − 3.637Mo +

0.132(C*Cr) + 0.479(C*Mo) +
0.159(Cr*Mo) − 4.371  
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spectrum of alloy compositions, with carbon concentrations ranging 
from 1.38 wt% to 5.5 wt%, chromium concentrations ranging from 5 wt 
% to 37 wt%, corresponding to Cr/C ratios ranging from 1 to 17. The 
newly developed ML model was employed for predicting CVF and 
additionally, a rigorous evaluation of existing models was conducted. By 
subjecting this extensive dataset to both our ML model and established 
literature models, we aim to scrutinize their predictive accuracy and 
identify the most robust model for estimating CVF. 

2. Materials and methodology 

Fig. 1 represents a schematic overview of the applied workflow. The 
comprehensive dataset compiled from literature data is split into a 
training and a test set. A ML regression model for predicting CVF is 
trained using the training set. This model is evaluated with regard to the 
test data, the importance of the features and is benchmarked against 
existing literature formulas for calculating CVF. 

2.1. Data compilation from literature 

A dataset comprising 320 unique HCCI alloys was compiled from a 
diverse set of almost 60 sources, including manuscripts and theses. The 
comprehensive list of references for the compiled dataset is available 
separately in the Zenodo repository [47]. The dataset included the re-
ported bulk chemical composition from each source and specifically 
considered CVF values determined through metallography. Notably, 
CVF values obtained through alternative methods, such as XRD or 
simulations, were intentionally excluded. The information was orga-
nized into an Excel file, offering a breakdown of the chemical compo-
sition for each alloy and the metallographically determined CVF, 
alongside its respective source. The Excel file can also be found in the 
Zenodo repository [47]. 

The elemental distribution among the 320 alloys is visually pre-
sented in Fig. 2. The bar graph illustrates the count of each element, with 
the ordinate indicating the frequency and the abscissa representing the 
individual elements. In line with expectations for HCCI alloys, iron (Fe), 
carbon (C), and chromium (Cr) are present in 100 % of the alloy com-
positions. Meanwhile, silicon (Si), manganese (Mn), and molybdenum 
(Mo) are found in approximately 70 % of the alloys. Nickel (Ni) is pre-
sent in about 50 % of the alloys, whereas the presence of copper (Cu) and 
niobium (Nb) falls below 25 %. Elements tungsten (W), vanadium (V), 
titanium (Ti), and boron (B) make up smaller fractions, appearing in 
approximately 6 %, 4 %, and 2 % of the alloys, respectively. 

2.2. Literature available models 

In the exploration of HCCI alloys, six available models predicting 
CVF using diverse methodologies were identified in the literature. 
Maratray and Usseglio-Nanot’s foundational linear equation (Equation 
#1) initiated this exploration, followed by Doğan’s work with a similar 
linear framework (Equation #2). Chung introduced quadratic elements 

to capture non-linear interactions between C and Cr (Equation #3). 
Addressing the oversight of Mo in Maratray’s equation, Gates proposed a 
’chromium equivalent’ (CrE) (Equation #4). Pourasiabi et al. further 
refined the understanding, explicitly considering Mo and introducing 
both multiple linear regression (MLR) and multiple non-linear regres-
sion (MNLR) models in their study (Equations #5 and #6). Table 1 
provides a brief overview of the CVF prediction formulas, along with the 
assigned nomenclature for each model. The elemental input is weight 
percent unless otherwise mentioned. 

The alloy compositions’ C, Cr, and, where applicable, Mo content 
served as inputs for each model. For every alloy composition in the 
dataset, the experimental CVF was compared with the values obtained 
from each literature model, and the corresponding deviation (%) was 
calculated. 

2.3. Machine learning approaches 

Since not every literature source specifies every alloying element, 
values of missing elements are set to zero. Besides data standardization 
no other data preprocessing was performed. The dataset was randomly 
split into a training set (80 %) and a test set (20 %). Training of the ML 
regression models was done in MATLAB regression learner app (Version 
R2023a). 

During tests for finding the optimal model parameters, 5-fold cross- 
validation was used. Firstly, various typical ML algorithms were tested 
in preliminary trials (e.g., decision tree, random forest, support vector 
machine, artificial neural network). Ultimately, a Gaussian Process 
Regression (GPR) model with an exponential kernel performed best. 
Additionally, it gives the benefit of a probabilistic approach to predic-
tion by giving the mean and standard deviation as output when pre-
dicting. Secondly, a feature reduction was carried out. For higher 
confidence in the feature selection, three feature ranking algorithms 
were combined: F-Test, Minimum Redundancy Maximum Relevance 
(MRMR) algorithm, and RReliefF algorithm. For each feature (i.e., 
chemical element) scores from all three rankings were normalized be-
tween 0 and 1 and then an average score was calculated. Based on this 
average score, the final feature ranking was performed. An iterative 
manual feature elimination down to two chemical elements was carried 
out and was then matched against the metallurgical domain expertise. 
For the final model a hyperparameter optimization was performed 
(Bayesian optimization with 200 iterations in MATLAB regression 
learner app). 

The metrics mean absolute error (MAE), root mean squared error 
(RMSE) and coefficient of determination (R2) are used to evaluate the 
regression models. The reported models are evaluated on the held-out 
test set. After determining the optimal parameters, the final model 
was trained with the entire data set for its series application. For a suf-
ficiently large sample, the benchmark against existing literature 
formulae for determining the CVF was also performed on the entire data 
set. 

Fig. 1. Schematic overview of the process flow: the data compiled from literature is split into training and test data – after training the model, its evaluation yields 
the performance on the test set, a feature ranking, and a benchmark against existing formulas from the literature. 
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3. Results and discussion 

3.1. Model development and selection 

The first model with all 11 elements as input (GPR with exponential 
kernel, beta = 44.3484, sigma = 1.8454, other model parameters set to 
default according to MATLAB regression learner app) reaches a MAE of 
2.40 %, a RMSE of 3.71 % and a R2 of 0.896. Generally speaking, a 
simpler ML model with fewer but relevant features promises better 
generalization [48]. Table 2 shows the cumulative feature ranking, 
while Fig. 3 shows the performance of the separate models after the 
iterative feature elimination. The feature ranking agrees with the 
domain expertise, i.e., the metallurgical point of view, as the top three 
elements C, Cr, Mo coincide with the consensus on the important carbide 
forming elements in HCCI [1,4,31,49,50]. 

The interplay between the number of features and model perfor-
mance is illustrated in Fig. 3. This graph showcases how MAE, RMSE, 
and R2 vary across different features, providing insights into the model’s 
sensitivity. By reducing the number of features, first a decrease in model 
performance can be noticed (decrease of R2, increase of MAE and 
RMSE). However, by further reducing the number of features, the per-
formance improves again and keeps a similar level as the first model 
with all features. Indeed, the lowest values of MAE and RMSE are ach-
ieved for the model with only three features. Only by reducing the 
number of features to only two elements (C, Cr) the performance drops 
again. 

Therefore, the three features C, Cr, and Mo are considered for the 
final model, as the performance closely aligns with the performance of 

the comprehensive 11-feature model, but the simpler model promises a 
better generalization on new data during serial application. To sum-
marize, Fig. 3 offers a visual understanding of the model’s adaptability 
to varying features, emphasizing the practical benefits of a streamlined, 
three-feature model for optimal predictive accuracy. The three-feature 
model also reflects the metallurgical domain knowledge. This involves 
the fact that some elements such as Ni, Cu, Mn etc., have a negligible 
influence on carbide formation [1,4,51] as well as that the two elements 
C and Cr alone don’t have enough predictive power [34,35]. 

A hyperparameter optimization (Bayesian optimization with 200 
iterations) did not yield a performance improvement compared to the 
default settings of the initial GPR model in the MATLAB Regression 
Learner App. Table 3 highlights the efficiency of the final, three-feature 
model with an MAE of 2.44 %, RMSE of 3.56 %, and an R2 of 0.905. 

For a serial application as well as the benchmarking against existing 
literature formulas, the final model was trained using the entire data set 
and the three features (C, Cr, Mo) with the GPR hyperparameters 
specified in Table 4. 

3.2. Model evaluation 

To compare our developed ML model with existing literature for-
mulas, CVF for the entire dataset has been calculated according to all 
literature formulas, and performance metrics have been assessed. In 
Fig. 4, the performance of all existing literature formulas and our ML 
model is depicted, emphasizing MAE, RMSE, and R2 values. An inter-
esting observation emerges when considering the MLR and MNLR 
models. Their respective MAE, RMSE and R2 values demonstrate notable 
similarities. This consistency between the MLR and MNLR models sug-
gests a robustness in predictive performance, highlighting a stable pre-
dictive framework across these two regression approaches. Notably, the 

Fig. 2. Elemental count of the 320 HCCI alloys considered in this work.  

Table 2 
Cumulative feature ranking of chemical elements.  

Cumulative Feature Rank Feature Cumulative Score 

1 C  1.00 
2 Cr  0.32 
3 Mo  0.27 
4 V  0.24 
5 Nb  0.20 
6 W  0.17 
7 Cu  0.16 
8 Ti  0.14 
9 Ni  0.13 
10 Si  0.13 
11 Mn  0.08  Fig. 3. Variation in model performance with different feature combinations.  
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lowest MAE and RMSE values are observed in our ML model, empha-
sizing its superior accuracy. A substantial R2 value of 0.91 is achieved by 
the ML model, affirming its reliability in predicting CVF when compared 
to other models (see Fig. 4). 

The distribution plot (Fig. 5a), featuring the ML model as a solid 
black line and other models as dotted lines, delineates the absolute de-
viation (%) against the relative frequency, with an inset focusing on 
values up to 5 % deviation. The peak of the ML model’s distribution 
curve (essentially the mode), closer to zero, indicates a higher concen-
tration of alloys with lower deviations. As deviation increases, the 
steepest reduction in relative frequency is observed with the ML model, 
emphasizing its capability to yield fewer alloys with higher deviations. 
This trend is better visualized with the rug plot, where a notable con-
centration of alloys for lower deviations for the ML model (black bars) 
compared to the rest. 

Complementing this, the cumulative distribution plot (Fig. 5b), 

inclusive of an inset capturing values up to 20 %, reveals that at a 20 % 
deviation threshold, 95 % of alloys fall within this range for the ML 
model, compared to 85 % for the MNLR model and approximately 70 % 
for the M model. Notably, at a 10 % deviation threshold, around 80 %, 
70 %, and 45 % of alloys fall under this range for the ML, MNLR, and M 
models, respectively. The combined insights from the distribution rug 
plot and cumulative distribution plot offers a comprehensive view of the 
precision of CVF predictions and underscores the value of integrating 
these graphical representations to gain a more holistic understanding of 
the predictive performance of ML models in materials characterization. 

The scatter box plot analysis depicted in Fig. 6 vividly illustrates the 
deviations observed across different models for all the alloys. Notably, 
the ML model emerges with the least spread, indicating a more 
concentrated and reliable predictive performance. Moreover, the inset 
table in the graph indicates that the absolute median deviation is the 
least for the ML model at 4.67 %, highlighting its consistent accuracy, 
especially in handling diverse datasets. The absolute median deviation 
serves as a robust metric, providing insight into the central tendency of 
the model’s predictive performance, particularly beneficial when 
considering a diverse dataset. Furthermore, comparing this metric, 
which excludes outliers, with the MAE, adds depth to the evaluation, 
reinforcing the ML model’s predictive accuracy. 

As mentioned earlier, in this study, we broadened the chemical 
composition range, resulting in a Cr/C ratio spanning 1 to 17. In com-
parison, Maratray’s original model focused on a narrower range of C and 
Cr, with Cr/C ratios ranging from 3.5 to 10. This expansion enriched the 
dataset, allowing for a comprehensive evaluation of the various models’ 
predictive capabilities across a wider alloy composition spectrum, 
capturing variations in C, Cr and Cr/C ratios more thoroughly. 

The heatmap in Fig. 7 illustrates the distribution of alloy counts 
across various deviation ranges and Cr/C ratios. The x-axis spans Cr/C 
values ranging from 1 to 15, reflecting the alloy compositions, while the 
y-axis represents deviation ranges, extending up to 30 %. Each deviation 
range, with a width of 2.5 %, is color-coded to indicate the corre-
sponding count of alloys falling within that particular bin. For a given 
Cr/C value, the number of alloys falling within a certain deviation range 
using the various models can be observed. The intensity of the colour 
reflects the count of alloys within each bin, providing a visual repre-
sentation of the model’s predictive performance across different 
composition ranges. 

A comparative analysis between the ML model and the M model, 
underscores the superior predictive performance of the ML model. 
Notably, the ML model demonstrates a more concentrated distribution 
of alloys within lower deviation ranges, indicative of its enhanced ac-
curacy in predicting CVF values. For instance, at a Cr/C ratio of 6, the 
ML model displays a focal point of alloys with a deviation between 0 and 
5 %, contrasting with the M model’s broader dispersion across higher 
deviation ranges. This concentrated clustering towards lower deviations 
in the ML model suggests a more precise alignment between predicted 
and experimentally determined CVF values. The M model, in contrast, 
exhibits a more scattered distribution, particularly in the mid-range Cr/ 
C ratios, implying a tendency for higher deviations in its predictions. 

The heatmap representing the MNLR model, the second-best model 
after ML, reveals distinct patterns in comparison to the ML model. 
Notably, the MNLR model demonstrates competitive predictive capa-
bilities, particularly evident in its concentration of alloys toward lower 
deviation ranges. At a Cr/C ratio of 6, akin to the ML model, the MNLR 
model exhibits a focal point of alloys with lower deviations, indicating a 
robust predictive alignment with experimentally determined CVF 
values. However, it’s essential to note that while the ML model dem-
onstrates a more consolidated clustering towards lower deviations, the 
MNLR model maintains a competitive performance with a dispersion 
across various Cr/C ratios. 

Upon closer examination of the MNLR model at higher Cr/C ratios, 
particularly beyond a value of 10, a more dispersed distribution of alloy 
counts is observed across deviation ranges. In comparison to the ML 

Table 3 
Comparison of model metrics (MAE, RMSE and R2) with 11 and 3 features.  

Model MAE [%] RMSE [%] R2 [-] 

Initial model with all features  2.40  3.71  0.896 
Final optimized model with 3 features  2.44  3.56  0.905  

Table 4 
Hyperparameters of final GPR model with 3 features.  

Basis function Kernel function Kernel parameters Beta Sigma 

Constant Exponential 84.51, 34.14  49.49  3.91  

Fig. 4. MAE, RMSE and R2 values for all models.  
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model, which maintains a concentrated clustering of alloys towards 
lower deviations even at higher Cr/C ratios, the MNLR model displays a 
broader distribution. This suggests that, while both models exhibit 
competitive performance, the ML model may demonstrate a slightly 

more robust predictive accuracy, especially in scenarios characterized 
by high Cr/C ratios. The MNLR model’s tendency towards a wider dis-
tribution at higher ratios indicates a potential challenge in achieving 
precision in CVF predictions in alloys with richer chromium content. 
This analysis highlights the comparative strengths and considerations of 
the ML and MNLR models across varying composition ranges. 

Table 5 presents a comprehensive overview of the alloy counts 
distributed across the distinct Cr/C ranges, with a specific emphasis on 
pinpointing the model exhibiting the least % absolute deviation in 
counts within each range. The various models are evaluated across three 
Cr/C ranges: 1.0–5.0, 5.1–10.0 and 10.1–15.0. Notably, the ML model 
emerges as the optimal performer, demonstrating the least percentage 
deviation in counts in all three ranges. Expanding on this analysis, when 
considering only the ML model across all three Cr/C ranges, the calcu-
lated absolute median deviation increases gradually from 3.92 % in the 
1.0–5.0 Cr/C range to 4.6 % in the 5.1–10.0 Cr/C range and further to 
6.54 % in the 10.1–15.0 Cr/C range. The observed trend indicates a 
gradual rise in median error with the widening Cr/C range, underscoring 
the necessity for a nuanced model evaluation and the importance of 
considering Cr/C range implications for prediction reliability. 

3.3. CVF estimation challenges: Metallography and data compilation 

Metallography, while a valuable technique for studying microstruc-
tures, exhibits limitations that impact the accuracy of estimating the 
CVF. The method is subject to potential inaccuracies due to sample 
preparation artifacts, manual counting errors, and inherent subjectivity 

Fig. 5. (a) Distribution rug plot showing absolute deviation (%) against relative frequency for the ML model (solid black line) and other models (dotted lines). Inset 
focuses on deviations up to 5 %. (b) Cumulative distribution plot with inset (up to 20 %), comparing the percentage of alloys falling within deviation thresholds for 
ML and other models. 

Fig. 6. Scatter box plot showing the deviations obtained for all alloys using the 
various models. Inset table indicates the absolute median deviation (%) for 
each model. 
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in analysis [52–55]. The small sample size and limited representative-
ness of the chosen samples may compromise the statistical significance 
of the results. Additionally, variations in etching solutions, limited 
spatial resolution, and the influence of surface effects contribute to 
uncertainties in the observed microstructure [56–58]. 

Furthermore, collecting chemical composition data from diverse 
sources introduces challenges associated with data inconsistency, lack of 
standardization, and varying levels of data quality. The absence of 
standardized reporting formats and units across different manuscripts 

and theses can complicate the integration and comparison of informa-
tion. Variability in measurement techniques and reporting methodolo-
gies adds another layer of complexity, impacting the harmonization of 
data. Addressing these issues requires meticulous attention to data 
cleaning, normalization, and documentation, as well as transparent 
reporting of any limitations in the dataset’s reliability and generaliz-
ability. In general, it should be emphasized that valuable data is avail-
able in the literature, but the bottleneck for exploiting this data is the 
collection and preparation of the data. This once again highlights the 
need for FAIR (Findability, Accessibility, Interoperability, Reusability) 
data principles with accompanying, relevant metadata [59]. 

3.4. Outlook 

In future advancements of CVF estimation models, there is an op-
portunity to refine predictions by accounting for the distinct influence of 
heat treatment on the alloy’s microstructure. While the bulk chemical 
composition proves effective in forecasting CVF in the as-cast state, the 
introduction of heat treatment introduces a nuanced complexity. Unlike 

Fig. 7. Heatmap depicting the distribution of alloy counts across deviation ranges and Cr/C ratios.  

Table 5 
Comparative analysis of alloy counts and model performance across different 
Cr/C ranges.  

Cr/C range Total alloy count Model with the least % deviation (counts) 

M D G MLR MNLR C ML 

1.0–5.0 66 7 10 1 7 7 12 22 
5.1–10.0 228 28 32 16 29 36 26 61 
10.1–15.0 23 4 1 1 5 4 1 7  
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eutectic carbides (EC) that tend to stay unaffected during heat treat-
ment, it might be worthwhile to focus on the matrix composition as a key 
player in influencing the formation of secondary carbides (SC). The 
evolution of the alloy’s microstructure, especially the precipitation of SC 
within the matrix, becomes a critical aspect to consider during heat 
treatment, the amount and distribution of which can lead to variation in 
the properties [11,20,60]. By fine-tuning the model to integrate both 
bulk and matrix compositions, it is anticipated that the predictive ac-
curacy of CVF, particularly in the context of heat treatment-induced 
changes, can be significantly improved. 

3.5. Data and model availability 

The dataset as well as the trained ML model are available at 
https://doi.org/10.5281/zenodo.10654150 [47]. The repository in-
cludes the comprehensive dataset with all compositions and corre-
sponding experimental CVF compiled from literature as well as the train 
and test splits used for training and evaluating the ML model. It also 
contains the final trained model and a MATLAB script for applying the 
model to calculate the CVF of new, unknown HCCI compositions. A list 
of all references that have been included in the dataset is also provided. 

4. Conclusion 

This study significantly broadened the scope of HCCI alloy compo-
sitions by encompassing a more extensive range of C and Cr content. 
Specifically, our dataset now spans alloys with carbon concentrations 
ranging from 1.38 wt% to 5.5 wt%, chromium concentrations ranging 
from 5 wt% to 37 wt%, and corresponding Cr/C ratios from 1 to 17. In 
comparison, Maratray’s original model focused on a narrower range, 
with C concentrations from 1.95 wt% to 4.31 wt%, Cr concentrations 
from 10.8 wt% to 25.82 wt%, and Cr/C ratios from 3.5 to 10. This 
expansion allows for a comprehensive exploration of the predictive ca-
pabilities of our models within a broader spectrum of alloy composi-
tions, capturing variations in Cr, C, and Cr/C ratios more thoroughly. 

In conclusion, the implementation of ML techniques has brought 
forth a refined strategy for the estimation CVF in as-cast HCCI alloys. By 
leveraging ML algorithms and training models on a comprehensive 
dataset encompassing diverse alloy compositions, the accuracy of CVF 
estimation has been significantly improved across a broader spectrum of 
compositions. The influential role of C, Cr and Mo in determining CVF 
has been successfully identified, enabling more precise predictions. The 
ML-based methodology presented in this study provides a valuable tool 
that empowers researchers in the field to determine CVF in HCCI alloys 
without the need for laborious and resource-intensive experimental 
procedures. 
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