
UNIF ’89
Extended Abstracts of  the 3dInt.

Workshop on  Unification

H.-J. Biirckert & W.  Nutt (Eds.)
SEKI Report SR-89-#6 13.





UNIFK'89

Third International Workshop on  Unification 1989

PFALZAKADEMIE
Lambrecht, FR  Germany

Monday, June 26th — Wednesday, 28th 1989

organized by  H.-J. Biirckert and W.  Nutt

sponsored by

Deutsches Forschungszentrum fiir Künstliche Intelligenz (DFKI)

Universitit Kaiserslautern, FB  Informatik

Volkswagen-Stiftung



Preface

This is a collection of  extended abstracts of the talks given at the ThirdInternational
Workshop on Unification (UNIF’89) hold during June 26th - 28th, 1989 in the
PFALZAKADEMIE at Lambrecht, Germany. The workshop is a forum for the
researchers that are interested in  Unification Theory and its applications, and we
met since 1986 every year to exchange and discuss results, ideas and new trends in
this area.

Topics of  the unification workshops are

* Narrowing * Typed Unification
* General E-Unification & Calculi * Foundations
* Implementations * Applications

Special Unification Algorithms * Combination Problems
* Disunification * Constraint Solving

This 3rd Workshop on Unification had 49 participants from Belgium, France,
Germany, Great Britain, and the USA. We had 10 short and 18 long talks, several
system demonstrations, and an excursion to the Weingut Schonhof with a wine
tasting presented by  Philip Scammel and a banquet speech about living with limited
vocabulary by  Pierre Lescanne.

The volume is organized as follows. There are seven sections, each with three to
five abstracts, essentially in  the order of  presentation at Lambrecht.

The first section is about General E-Unification & Combination and contains
papers on Higher Order E-Unification (J. Gallier, W.  Snyder, V.  Tannen) and its
connection to first-order rewriting and on  the translation of  proofs from one proof
system into another one (Proof Transformations For  Simple Equational Theories,
T.  Nipkow). These are followed by presentations about combination methods for
regular and collapse-free theories applied to AC-unification (A New Combination
Technique for AC-Unification, A.  Boudet) and combination methods for general
theories (Optimizations of  Schmidt-Schauf3’ General Unification Procedure, M .
Tepp).
The second section is on Applications of unification in the field of  Completion
of  term rewriting systems. It begins with a paper by  P. Watson and A.J.J. Dick on
Least Sorts in Order-Sorted Rewriting. They attack the problem of  non-uniquely
determined sorts of  terms during rewriting by introducing dynamic sorts. The
second paper is by U.  Martin and T. Nipkow on Order-sorted Rewriting and
Confluence. Some ideas in constructing completion procedures are given by
P. Lescanne in  his paper Completion Procedures as Transition Rules + Control at
the end of  this section.

Third section is on Foundations starting with W. Nutt’s Unification in  Modular
Categories. This is followed by  Unification in Commutative Theories, Hilbert's
Basis Theorem, and Grobner Bases (F. Baader). The next paper is by  F .  Klay and



C.  Kirchner, A Note on Syntactic Theories. The section closes with two papers on
decidability: On the Decidability of  the Unification Problem by  A.  Bockmayr and
W.  Nutt with The Unification Hierarchy is Undecidable.

The next section on Typed Unification begins with a paper by G.  Smolka:
Polymorphically Order Sorted Unification. L .  Duponcheel presents a paper on
Typed Algebra, followed by  U.  Waldmann with Unitary Unification in Order-
sorted Signatures. Finally E.  Domenjoud shows a way to do AC-Unification
Through Order Sorted AC1-Unification.

The two sections on  Special Algorithms start with a the contribution of  H .
Abdulrab and J.-P. Pecuchet on Associative Unification followed by two
presentations on solving systems of  diophantine equations. The first of them
contains a generalization of  Fortenbacher's algorithm to solve linear diophantine
equations to a procedure that solves systems of  linear diophantine equations in an
efficient way (E. Contejean, H .  Devie: Solving Systems of  Linear Diophantine
Equations). The second one gives some boundaries on  the size of  Solutions of  a
Linear Diophantine System (J.-F. Romeuf). Finally H.J. Ohlbach presents an
advantageous representation of  terms, Abstraction Tree Indexingfor Terms.

The second section on Special Algorithms is started with S. Holldobler's paper
Unification over Rational Trees, that is unification of  terms that may be cyclic. He
is followed by L.  Pottier and his presentation on Term Generalizations in the AC
Case. H.  LeiB comes up with a procedure for a process that might be seen as a
common generalization of  unification and matching: A Semi-Unification Algorithm.
Finally B .  Gramlich presents some ideas on the Unification of  Term Schemes.

The last section, Equational Problems & Constraint Solving, begins with
C. and H.  Kirchner’s ConstrainedEquationalReasoning. The topic of  Order Sorted
Algebras is again taken up by H .  Comon in  his paper on Equational Problems in

~ Order Sorted Algebras. H.  Ait-Kaci presents his quite technical work on structured
types (Disjunctive y-Term Unification). The last paper of the workshop is by L.
Puel and A.  Suarez, Unification ofRestricted Terms.

The volume is closed with an appendix containing the list of  wines we tasted at
Weingut Schonhof, an abstract of  the banquet speech by  P.  Lescanne on  the Life
with a Limited Vocabulary, and of  course the list of  participants.

We would like to thank the authors, without whom the workshop would never have
taken place. We also thank the staff of  the PFALZAKADEMIE who provided an
inspiring atmosphere and supported the organization of  the workshop. Thanks also
to Dorothea Kilgore and Patricia Sarach who had the not always easy job of
assisting with organization and registration. Gebhardt Pzyrembel prepared the
system demonstrations and SUN  Germany provided machines for these demos.
Finally we thank Volkswagen-Stiftung for their financial support of  the workshop.

We hope to meet most people again at the next Workshop on Unification that will
take place in  Leeds, Great Britain, in  July 1990 and will  be organized by John K.
Truss.

August, 1989 Hans-Jürgen Biirckert and Werner Nutt
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Section 1 :
General E-Unification & Combination

J. Gallier , W. Snyder, V. Tannen:: Higher Order E-Unification

T. Nipkow: Proof Transformations for Equational Theories

A. Boudet: A New Combination Technique for AC-Unification

M.  Tepp: Optimizations of  Schmidt-Schauß' General Combination Procedure



Higher-Order E-Unification
Jean Gallier, Wayne Snyder, and Val Tannen

In this paper we ELE  ibsAPR of  Higher-Order E -  Unification, which seems
to be the most general of  interest i n  automated deduction. A higher-order substi-
tut ion 0 i s  a higher-order E-unifier of  two typed lambda terms e; and e,  iff

Ole )  —8nE  0 (e2 ) ,

where —>gnE is the least congruence on  lambda terms containing ß-  and 7-reduction and
every substitution instance of equations from E .  The point here i s  that the first-order
equations can only rewrite first-order portions of  the lambda terms. The combination of
higher-order types and first-order rewriting has been studied by  Val Breazu-Tannen and
Jean Gallier [1, 2], and has some interesting applications in  reasoning simultaneously about
functional programs and their  da ta  st ructures.  Applications of  this new form of  (very)

general unification remain t o  be  invest igated,  but  i t  appears that the results of  [2] show

. tha t  t he  combination o f  our sets o f  transformations 7 and H7  will result in  a complete set

of  transformations for this new problem, and  i t  also appears that completeness can be proved
along the  l ines of  the  proofs i n  [4] and [5 ] .  Although we  are preparing a preliminary report

[hoeunif !num] o f  these (st i l l  tentat ive)  resu l ts ,  much remains t o  be  done in generalizing

the notion of complete sets of solutions, finding restrictions on the set of  transformations
which improve efficiency while preserving completeness, and determining i f  the problem is
practically interesting and our method is  computationally feasible.

1 References

[1] Breazu-Tannen, V . ,  “Combining Algebra and Higher-Order Types, ”  L ICS  1988, Ed-

inburgh,  Scotland.

[2] Breazu-Tannen, V., and Gallier, J., “Polymorphic Rewriting Conserves Algebraic
Strong Normalization and Confluence,” submitted t o  ICALP 1989.  L ICS 1988 ,  Ed-

inburgh, Scotland.

[3] Gallier, J .H . ,  and Snyder ,  W . ,  “A  General Complete E-Unification Procedure,” Con-

ference on  Rewriting Techniques and Applications, Bordeaux, France (1987).

[4] Gallier, J.H., and Snyder, W., “Complete Sets of Transformations for General E-
Unification,” to  be published i n  a special issue of Theoretical Computer Science
(1989).



Higher Order E-Unification

[5] Gallier, J.H., and Snyder, W . ,  “Higher Order Unification Revisited: Complete Sets of
Transformations,” to  be published i n  a special issue of JSC (1989).



Proof Transformations For Equational Theories*
(Extended Abstract)

Tobias Nipkow
University of Cambridge

Computer Laboratory
Pembroke Street

Cambridge CB2 3QG
England

1 Introduction

We contrast two kinds of  proof systems for a number of equational systems X. On  the one hand there is
the standard one obtained by  combining X with the laws of  equational logic. We know that the resulting
system defines what we want it to define. However, it gives no indication how the word problem,
matching, or  unification can be solved in that theory. On  the other hand we present proof systems
that are not obviously complete for E but which immediately give rise to  matching or  even unification
procedures. ;

Although new matching algorithms for associativity (A), associativity + commutativity (AC), and
associativity + commutativity + identity (AC1) are presented, the emphasis is not so much on  individual
theories but on the general method of proof transformations as a tool for showing the equivalence
of different proof systems. In particular a mechanizable equivalence test and its implementation are
discussed. Although the test is not complete, it is powerful enough to deal with many equational
systems.

The paper comes in two parts. Section 3 compares standard proof systems for the empty theory,
commutativity, left  /right-commutativity, A ,  and AC, with alternative ones. Equivalence is shown by
presenting a terminating set of  rewrite rules which translate proofs from one system into the other.
However, these rewriting systems become more and more complex to  construct and to  prove terminating.
Therefore Section 4 uses the notion of “resolvance” to present a uniform treatment of  the theories in
Section 3. It is shown that resolvant systems of equations directly yield alternative inference systems
which, in certain cases, are terminating matching algorithms. Two powerful criteria for resolvance are
developed and their implementation is discussed. This implementation is used to check a number of
further equational systems for resolvance, which yields new matching algorithms for some of them. It
is also shown that resolvance is a modular property, i.e. putting resolvant sets of  equations together
which do not have function symbols in common does again yield resolvant systems. Finally we discuss
the relationship of  our work with some recent results by  Claude Kirchner.

The reader should be familiar with the basic notions of  equational logic, as defined for example in
[6].

2 Equational Theories, Unification, Matching, and Equality
Equational theories are defined by  inference rules of  the form

s1= t1  . . .  8p=1 t ,
s= t  ) (1)

*This work was supported by the Alvey Diamond project, SERC grants GR/E/02369 and GR/F/10811. At  MIT the
author was supported in part by  NYNEX, NSF grant CCR-8706652, and by the Advanced Research Projects Agency of
the DoD,  monitored by  the ONR under contract N0O0014-83-K-0125.
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A system of  such rules inductively defines a predicate = .  Furthermore, since all rules are Horn clauses,
they constitute a logic program which can be used to solve unification, matching or word problems
w.r. t .  = .  The only problem is termination. Since a set of  Horn clauses merely yields a semidecision
procedure, it depends on  the particular set of  rules whether they actually constitute a decision procedure
for equality, matching or unification. Thus we can separate the question of  correctness (does the given
set of rules axiomatize the desired theory?) from that of termination.

Given a set of equations FE, the equational theory induced by E is defined by E plus reflexivity,
symmetry, transitivity and congruence. This system is denoted by  E t  and the predicate it defines by
=g .  Although E t  is by definition correct, i.e. defines the equational theory generated by E,  it has
a major termination problem: due to  transitivity, any query (in the logic programming sense) will run
forever even after all answer substitutions have been found.

The  rest of  the  paper discusses alternative axiomatigations of  various simple equational theories which
yield decision procedures for matching and, in some trivial cases, even unification. Initially attention is
focussed on correctness. In Section 4 the termination question is addressed and a fairly general answer
is given.

Before we become technical, we have to fix some terminology. We call an  equational theory permu-
tative if all  its equivalence classes are finite. A set of equations is permutative if  its equational theory is.
An  equation s = t is called regular if V (s )  = V ( t ) ,  where V returns the set of  variables in a term. An
equation s = € is called collapse-free if both s and ¢ are proper terms.

3 Proof Transformation by  Rewriting
In  the following we examine different formulations of some well known equational theories. Each alterna-
tive axiomatization D i  of  E*  consists of  a collection of  rules of  the form (1), say D for “decomposition”,
together with congruence rules and reflexivity. D,; and E t  are shown to  be equivalent by  translating
proofs from one into the other. The translation is expressed by rewrite rules on proof trees.

D and E are always chosen such that each element of  D is a derived rule of  E t  and each equation
in E is a derived rule of  D ,x .  Thus the transformation of  proofs in D ,  into E *  is trivial and is briefly
described in Section 4. The translation in the opposite direction needs to  get rid only of  symmetry and
transitivity, the two rules that cause termination problems and do not occur in Dg.

3 .1  The Empty Theory
We start with the basic laws of equational logic, reflexivity (r), symmetry (s), transitivity (t) and
congruence (k) for a single binary function symbol (-). The choice of function symbols is immaterial.

ry = ==

s = a t J
y==

t = 2=Y  V=2
T=2z

k = =u  y=v

In the sequel this system is called B .  B axiomatizes equality in the empty theory. O f  course r alone
suffices for that. A constructive proof of  this fact can be given by  a set of  transformation rules which
eliminate all other rules from a proof in B .

11



r r
rT=2z T=2z

t - _  r
z=2z  ==

r r
= y=y

k — —
zY=zY  zZ Y = ZY

These rules are obviously terminating and cover all cases, i.e. reduce any proof in  B to  reflexivity.
In the sequel FE will be  some set of  equations and D a set of  inference rules. We want to  show that

for given D and E, any proof in E* = EU  B can be rewritten to one in Dy; = DU { r ,k } .  This
transformation can be done on a rule by  rule basis.

Axioms from E can be eliminated in one step because E and D will always be chosen such that all
axioms in X are equivalent to  some combination of  rules in D,  x .

To simplify elimination of s and t ,  we show that B has some further properties:

y=z  z=y
8 8

z=  =2  z=  =z¢ y vy ¢ y y (2)
‘ z=z  z=

8
z==z

T=u  y=v  z=u  yYy=v
k 8 8

Z'y = UV =z  v=
3 y — k y (3)uv  =2zy uv = zy

r r
T=  T=2  z=  z=

t————— — 4 z=2z  t———————— — z=2z2 (4)T=2  r=2z

u=w v=  w=y r=2  u=w w=  v=zx  z=2
k k—Y t LA  :

YY = wz  wzr=yz  = =z
t y k  4 (5)

Uuv=yz  uv  = yz

Rules (2) and (3) show that symmetry can be pushed through transitivity and congruence. Therefore
symmetry can be pushed to the leaves of any proof in BU E,  and hence can be eliminated altogether,
provided that E is closed under s,  i.e. s= t  € E implies t=s € E.  In the sequel E will always have that
property, and elimination of s is automatic. This is the formal justification of the fact that equational
proofs don’t  need explicit symmetry if all axioms can be used in both directions.

The only remaining task is the elimination of  ¢ .  The rules (4)-(5) show that  i t  is sufficient t o  cover
the cases t(p, k) ,  t(k,  p), and t(p, p') for all  rules p, p' in D .

Before we look at  particular systems D and E,  we simplify our notation. Although the above rewrite
rules rules are fairly involved already, they are not quite precise in that they don’t say how the subtrees
are relocated. The proper formulation of, for example, rule (3) is

P Q P Q
r=  = z=u  =

k y 8 Pe
TYy=uv  u=2z  =y

s k
u-v=  zy  uv  =zy

where P and Q are the proof trees that  prove z = u and y = v .  However, this rule is more complicated
‘than it needs to  be. All that is required is the pattern of  proof rules as in

s(k(P, Q)) — k(s(P),s(Q)).

We now assume that r ,  s, t ,  and k are functions on proof trees or skeletons. The actual formulae being
proved are determined by  these proof skeletons. Under this new interpretation the above rewrite rules

12



translate to
s(r) — r ; )

t ( r , r )  — r
k( r , r )  — r

sms)  — owe)  | p
s(k(z,y)) — Kk(s(z), s(y))

Ur, z) — =z
t(z,r) — =z

t(k(z,y), k(u,v)) — k(t{z, u),t(y,v)) |

Notice that z,y, z , . . .  stand for proof skeletons, not terms or formulae. The termination of T can now
be  shown by a mechanical system like LP  [5].

3.2 Commutativity (C)
An  alternative axiomatization of  commutativity is obtained by  adding

z=v  y=u
c

TY = uv

to r  and k .  This system is trivial and well  known. For example Claude Kirchner [8] derives c automatically
from commutativity. Commutativity is proved from c by  composing both premises with reflexivity, i.e.
the conclusion of  ¢(r , r )  is z-y = y-z. The same device works for all subsequent equational theories.

The following further rewrite rules are needed to translate proofs:

t(c(z, y), cu,  v)) — k(t(z,v),t(y,u))
t(c(z, y), k(u,v)) — c(t(z, v), t(y, u))
t(k(z, y),c(w,v)) — c(t(z, u), &(y, v))

Again, LP  manages to  show that the union of  T with the above rules is a terminating system.
It is interesting to  note that both for the empty theory and for commutativity, the system D,x could

be derived from BU  E automatically using the CEC system [2,4] which is a general purpose system for
the completion of  sets of  conditional equations. The following equational theories are more complex and
automatic tools failed to  help. ;

3.3 Left/Right-Commutativity (C,,)
The first non-trivial example is left/right-commutativity. For simplicity we consider only E = {(x:y):z =
(z-2)-y}, right-commutativity. Left-commutativity is symmetric.

I t  turns out that i f D = {¢ , } ,  where

T=wy  wy=u
Cy = y

ZT-Yy=uv

then D,x axiomatizes C,.  The elimination of  t is achieved by the following rules:

t(k(z,y),cr(u,v)) — er (t(z, u), t(k(r,y),v)) (6)
t(er(z,v), k(u,0)) — or(t(z, k(r, v)), ty,  u)) (7)

ter(z,k(yı, v2)  cru,  0)) — tler(z, 7), er (t(k(y1, ya), u), v)) (8)
t l e r ( z ,  cr(Y ı ,  2))s er(uyv)) — t (cr (z ,  r ) ,  er ( t(cr  (v1, ya), u) ,  v)) (9)

t(c,(z, r ) ,  cr-(r, v)) — k(t(z,v),7) (10)
t(cr(z,r),  er(k(u2, ua), v)) — K(t(z, t(k(u1,r),v)),  ua) (11)

t(cr(z, 7), cr(cr(w1, uz), v)) — c.(Hz,cr(u1, r)),  t c (r,u2), v)) (12)

The first two rules cover the cases that either of t’s subtree is labelled with k .  The next two rules
translate from t(c.(.,.), c-(.,.)) to  t(c,(., 7), c - (x ,  .), and the last three rules translate the latter  pattern,
depending on  the form of  z .

13



The above set of  rules is not easily proved to  terminate and systems like LP  fail to  do so. The point
is that the termination argument is hidden in the equations that are being proved, which are not part of
the  proof skeletons. To  exploit this information, we view ¢ as a function defined on  terms over { r ,  k ,  c , } .
Looking at the form of the transformation rules we can see that their termination, or equivalently totality
of t ,  can be shown by  proving that some measure function on  the arguments of  t decreases when going
from left to  right. This measure is the size of  the equation (or either side of  it) that forms the invisible
conclusion of the proof tree rooted in t .  One way to  see that the measure decreases is to decorate the
rewrite rules with the equations being proved. For example rule (10) becomes

Z = U-V  Tey  = uy  Tey  =uy  uwv=2  T=uv  uv=2

TT y=  (uy )  Tu  v=2y t z=z2  EY
t — k

TYy=2yY  TY  =2yY

On  the rhs t proves z = z ,  which is strictly smaller than z-y = 2 .y ,  the conclusion of  the tree labelled
by  ¢ on the lhs.

Alternatively, we notice that the size of  the conclusion of  k and c,  is strictly greater then the size of
their hypotheses. Hence in any rule with lhs ¢ ( . . . k ( z , y ) . . . )  or t ( . . . c - ( x ,  y ) . . . ) ,  the measure of z and
y is smaller than the measure of  the full Ihs. Hence z and y are ok as arguments to ¢t on the rhs.

If the termination proof is done in complete detail, one notices that in rules (8) and (9) the outer
occurrence of  t on  the rhs proves the same formula as the ¢ on  the lhs, i.e. the measure is not decreased.
However, none of  the two  rules can be  applied twice in  a row. Therefore the complexity measure becomes
a pair. I ts first component is what we had before, which all other rules decrease. The second component
indicates the applicability of  rule (8) or (9). It is decreased by  those two rules, which do not change the
first component.

As we have seen, both the transformation rules and their termination proofs become quite complex
even for very simple equational theories. For that reason, both are omitted in the following examples.
The author has carried them out by  hand and found them very similar to the what we saw in  this section,
only more tedious. This prompted him to  look for automatic methods which are presented in Section 4.

3.4 Associativity (A)
Associativity can be axiomatized with k ,  r ,

_Z=UuW wy=v
a = and  az =

r y  = UV ZY  = UV

zw=u  y=  WU

A geometric interpretation of  this fact can be given where terms are interpreted as strings or  lines and
- is concatenation. If the two lines z-y and u-v are equal, there are three cases:

- 8 ©

a1 :  k -u  —— v

k :  | u ©

az :  | u = 
2 < S
L

It can be shown that Plotkin’s associative unification algorithm [13] is an optimization of the algorithm
embodied in the inference rules k ,  r ,  a ;  and a2. Optimization means that a particular search strategy
has been imposed.

3.5 Associativity + Commutativity (AC)
For AC  let D = {¢, a1,  a3,  acy, aca, ac}, where

T=ow wy=u  TW=v  y=  wu
ac ı  = acy =

TYy=uv  TYy=uv

14



T=Z1 'T3  Yy=Yı'Yz2z T1ry1 =u  I ayz= U
TYy=uv  )

ac =

Again thereis a geometric interpretation of these rules, this t imei n  terms of areas or multisets, If z-y
is of the form

and u-v is the same area, there are 7 ways in which they can cover each other:

u“
u v v u u v v u u v v u

v

k [4 a1 aca a2 aca ac

4 - Resolvant Theories

The collection of  equational theories presented above and the complexity of  some of  the completeness
proofs raises the question whether there is some hidden principle behind all of  them which might even
be automated. For some of the simpler examples (C, C;/,) this question was first answered by Claude
Kirchner in [7,8] using the notion of  resolvant theories.

A set of  equational axioms E is resolvent if s. =g  t implies that there is an equational derivation
of this fact which uses at most one application of  an equation at the root of  a term. Notice that by a
“derivation” s =g  t we refer to a list of  terms s = s , . . . , s ,  = t such that s;41 can be obtained from
8 ;  by replacing a subterm which is an instance of one side of an equation in X by the corresponding
instance of  the other side. In particular we call the step sx = f  8x41 a peak if sx is an  instance of  one
side of  an  equation in  E and 8441  the corresponding instance of  the other side. With this terminology
we can say that E is resolvant if s =g  t implies that there is an  equational derivation of  this fact with
at most one peak. For a formal definition of  resolvance we need the following simple predicates:

sp t  © 3f ,  s i t i .  s= f ( s1 , . . . , 8n )  A t= f ( t 1 , . . . ,  ta) As1=E  t i  A . . .As ,  = tn

s=g t  & dp=q€E ,0 . s=opA t=ogq

s=p t  & J ,  t.szps =p t '  =p t

s=p t  & sTp tVs=g t

Notice that in general only =g is decidable, provided E is finite. If E is also permutative, all four
predicates are in  principle decidable, although in  practice a complexity theoretic barrier may quickly be
reached.

Definition 1 FE 3s called resolvant iff s =p  t smplies s =g  t .

An equational theory is called syntactic in [8] if  it  is generated by a finite set of resolvant axioms. In the
sequel we assume tacitly that all equational theories are collapse-free. The theory can be made to  work
without that restriction but  that requires some further case distinctions.

The point is that each equational theory presented above is syntactic but only C' and Cj,  are
resolvant. Although [8] gives some sufficient conditions for syntacticness, they are not  met by  Ci ,  A or
AC. The aim of this section is to present a more powerful criterion for resolvance, its implementation,
and its application t o  both the examples above and some further theories.

For resolvant theories there is  a simple translation from equational axioms to inference rules: an
equation f(sı,..., sm) = g(t1,. . . , ts) yields

Z1=81 .. .  Im=  8 h=Y ı  . . . tn  =Yn (13)

F(@1,-..) Im) = 9(v1,---,¥n)

15



where the z; and y; are new variables. In [8] this translation is called Gen. All the inference rules
presented above can be generated this way. However, in many cases this leads to  rules with trivial
equations of the form z = y among the hypotheses. These can be deleted w.l.o.g. if x is replaced by y
everywhere else.

Starting with C ,  Cj/,, or A we obtain the rules shown in Sections 3.2-3.4. For AC we needed three
more rules. Those are generated by the equations ,

P = { ( z9 )z=  (z :2)y,  z-(yz) =y ( z2 ) ,  (z-y) (u-v) = (z-u)-(yv)}

The reason is that AC  by itself is not resolvant but AC*  = AC  U P is. Note that all elements of P are
equational consequences of AC.

In the sequel let D be the set of inference rules obtained from E as above, let K be the set of all
congruence rules, and let D,x = DU { r }  U K .  In particular let k;  be the congruence rule for function
symbol f .

We can now give a general scheme for translating proofs in D,j to those in E+ ,  the direction that
had not been tackled in  Section 3. For every rule p € D,  p(r,...,r) is the proof of some equation ¢ € E.
If  p is rule (13), we  have the following translation from D,x to  E+:

p (p1 ,  coy  Pmy  l ye  qn) —> t ( ks (p1 ,  . . . ) J  Pm), t(e,kq(q1 ,  . . . y  qn))) ( 14 )

The importance of  resolvant theories stems from the following theorem.

Theorem 1 I f  E is resolvant, D,; is a sound and complete inference system for =g .
Proof Soundness of  D i  follows from the fact that each rule in  D is  a derived rule i n  E*,  as witnessed
by (14). The completeness proceeds by  induction on the length of  equational proofs. Let 8s =g  t and
distinguish 3 cases.

If s = t ,  this has an  immediate proof by  reflexivity.
If s =g  t ,  it follows that s = f ( s1 , . . . , 8 , ) ,  t = f ( t ı , . . . , t n ) ,  and & =p  t; for all 4. Since the

derivation of the latter equations are shorter than the derivation of s =g  t ,  there is a proof skeleton p;
in  Dy  for each of them. Hence there is a proof of s =g  t with the skeleton ks (py, . . . ,pn) .

If s =g  t ,  it follows that there is an equation f(s1,.. . ,8m) =g( t1 , . . . , ts )  in E and

s=f{r1,. . . ,*m) =E  f ( 81 , . - . ,8m) =E 9 ( t 1 , . . . ,th) SE 9 (u1 , . . . ,Un) =?

such that 3} and €’. are instances of  s; and t, respectively and that s; =g  8} and t; =g  ty for al l £ and
J. Since the derivation of  the latter equations are shorter than the derivation of  3 =g  t ,  there are proof
skeletons p; and g; for each of them. Hence the skeleton p(p1, . . . ,Pm,q1,- . . ,4n) ,  Where p is the rule
(13) derived from f ( s1 , . . . , 8m)  = g(t1,...,%s), proves s =g  t .  a]

More than that:

Theorem 2 If E is permutative, the interpretation of D,, as a Prolog program yields a terminating
matching algorithm.
Proof An  equation l =  r is called a matching problem if V (I) = { } .  Because E is permutative, i t must
be regular, and hence any solution o to a matching problem ! = r must be such that V(or) = {}.

Interpreting D,x as a Prolog program means that the goals are kept as a list of  equations. We use
the ML  notation for lists, i.e. [e1,...,en] is a list of length n,  and @ denotes list concatenation.

First we establish that the current goal is always a matching problem if  i t  was one initially. Resolution
of a rule in D,; with a matching problem | = r will always lead to a list of subgoals of the form

H=HQH,  = [lh = 81 , . . . , Im = 8m,t1  =r1yeee tn  = 1a ]  (15)

such that each [; = s; is a matching problem, and U;-_ ı  V(t;)  SUZ, V(s:). The first property follows
from the form of  the rules, the second one is a consequence of  the fact that E is regular. Both properties
together imply that during execution the current goal will always be a matching problem: either it was
one to start with (I; = s;), or a solution of the goals to the left of it have instantiated all variables on its
lhs by ground terms ( t ; = r;).
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To prove termination, we need some more definitions. If S € N,  maz(S) = mif  m € S and all
elementsi n  S are less or  equal m,  and maz(S) = 0 if thereis no  such m.  The function depth computes
the depth of a term, where the depth of variables and constants is 1. The function

mazdg(s) = maz{depth(t) | s =p  t }

computes the maximal depth of any E-equivalent term. Since E is permutative, mazdg(s) is never 0.
The ordering < on N is extended to  multisets over N in the canonical way [3]. Multiset union is written
as Ll, The function C takes two lists of equations and produces a multiset of natural numbers:

CD) = {}
C{([! = r]@R,I) {maz{mazdg(ol) | 7  Fg  L}}  U C(R, LA[!  = r])})

where o Fg  L means that o solves all equations s = t  in L,  i.e. 0s  =g  ot.
Finally we define the complezity of a list of equational goals G by C(G, []). In  words: each goal = r

in G is assigned the maximal depth of  | under instantiations resulting from a solution of  all goals to  the
left; the overall complexityis  the multiset of all these integers.

Some important facts about C are

1. C(oR,0L) < C(R,L)
2. f o  Fg  H implies 0 Hg H'  for all 0 ,  then C(R, H) < C(R,  H ' ) .

Each resolution step transforms the list of goals from [ |  = r]QG to HQG', where G ' = §G, 0 is the unifying
substitution, and H is  defined in (15) above. Since C(HQG',[]) = C(HL 1) u C(H.,  Hı) 1 C(G', H)
and C ( I  = r]@G,[]) = C([! = r],[)) U C(G,][l = r]) ,  it suffices to show C(G' ,H)  < C(G,[ l  = r]),
C(Hy, [)) < C(t  = r), [ ) ,  and C(H,, Hi) < C(fi  = r] ,  [)) in  order to prove C(HQG", []) < C({t = rag, [)).

C(G', H)  < C(G, [I  = r]) follows from the two facts about C above because the  rules in  D,; guarantee
that o Fg  H implies o l  =g  or.

To show C(Hy,[]) < C([ l  = r],{]) and C(H,,  Hı) < C([ l  = r},[]) we notice that C([I = r],[]) =
mazdg(l) # 0. Looking at the equations in Hj, we find that all /; are proper subterms of ! and
hence that mazdg(ok)= mazdg(k) < mazdg(l), which establishes C(H;,[]) < C(I = r],[]). ¥ H,
is nonempty, resolution must have taken place with a rulein  D derived from an  equation 8s = ¢ in EF.
Thus ¢ Fg Hi  implies | =g  0s  =g  ot. Hence ot; is ground and a proper subterm of ot,  and therefore
mazdg(ot;) < mazdg(ot) = mazdg(l). This proves C(H,, H;) < C([l = rl], []) and concludes the
termination proof. (m)

Theorem 2 is important because it is the first time that a subclass of resolvant theories has been
identified which yield terminating matching algorithms. On the other hand, there is a trivial terminating
matching algorithm for permutative theories: in trying to  match the pattern r to the variable free term
8 ,  enumerate the finite set of ¢’s with s =g  t and try to  match r and ¢ in the empty theory. It is beyond
the scope of this paper to compare the time and space complexity of both algorithms.

We will  now stop to think in terms of inference rules and confine our attention to  equations.

4 .1  A Generalized Criterion

Given a set of equations E we want to test whether E is resolvant. Our criterion actually shows how to
go from an  arbitrary derivation s =g  t to  one with at most one peak. The transformation is an inductive
process which combines adjacent peaks.

If we write ¢ ,¢ ’  € E in the sequel, we really mean that there are two equations e and e¢; in E,  such
that e’ = oe;, where o is a renaming of the variables in eı away from those in e. We also assume that
E is closed under symmetry, i.e. s=t € E,  implies t=s € E.

Defining
p=q  l g  u=v = VYo.0¢=g ou  => op=pg ov

we  get

Lemma 1 E is resolvant iff p=q x u=v holds for all  equations p=q, u=v € E where q = f ( . . . )  and
u= f ( . . . ) .
Proof We concentrate on the “if”-part as the “only if”-part is trivial. For E to be resolvant, s =z  t must
imply s =g  t .  We show that  under the given assumptions any derivation s =g  ¢ can be  reduced to  s =z  t.
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The reduction merges adjacent peaks. This means we translate a derivation sg =g 3 ;  =E  92 =E 83  into
one of  the form so =g  83 .  By  induction the number of  peaksin any derivation can always be reduced
toOor 1.  : - ;

A derivation so =E 8 ;  =E  82  =E 83  must be of the form op =g 09  =E  ou  =g ov  for some
p=¢,u=v € E with ¢ = f ( . . . )  and u = f ( . . . ) .  By assumption this implies op =g  ov, which is the
required reduction. a]

We  will now concentrate on  ways of  turning the resolvance criterion embodied in  this lemma into a finite
test .

In the sequel let ¥ denote the instantiation of  every variable in s by  a unique free constants. Thus 3
is equivalent to 7s,  where 7 is a fixed injective substitution from variables to  free constants. Therefore
any first-order formula P holds iff oP  holds for all o .

Lemma 2 Let p=q ,u=v  € E such thatq = f(q1,...,qn), andu = f (uy , . . . ,u , ) ,  and let E'  = EU{qy=
Yı,..., I n = Un}. Then p=g :  0 smplies p=q JE  u=v.
Proof In the following we make use of the fact that if AF P = Q then AF P implies A}  Q.

P=p 0

+ Eu{@i=%5. . . ta=T}Fp=0
+ EF=UA. .AGm=uU=>p=10
& E lg=a=>p=19

=> J=g@=>p=Eg?d
& Vo .0q=g  ou=>0op=gov

+ p=q JE u=v

a]

Example 1 In the presence of commutativity in  E,  we need to test z-y=y-z {5  u-v=v-u. By Lemma 2
i t  suffices to show 2-§ =g /  0-0 where E '  = EU  {§=  8 ,2  = 0 } :  2.9  =p :  0-0.

If E contains zy  = y-z, (z-y)-z = z-(y-2), and (z-y)-2 = (z-2)'y we need to show (z-y)-2=z-(y-2) }g
u-v=v-u  and hence (2-§)-2 =g+ 0-0 where E '  = EU{%  = 8 ,92  = 0 } :  (2-9)-2 =p  (§-2)-2 =p: (9-7)2 =p
0 -4

However, Lemma 2 is not necessary for resolvance:

Example 2 Right-commutativity is resolvant and (z-y)-2=(z-z)-y {¢, (4-v)-w=(u-w)-v holds although
Lemma 2 is not applicable: (2:9)-2 =z .  (0-®)-0, where E '  = C,  U {2-2 = 4-0, § = 1 } ,  does not hold.

The problem stems from the fact that in E’  we only assume that g; = Fj, without any further
distinctions. We have to take into account what the derivation of ¢; =g  ri; looks like. For right-
commutativity i t  is sufficient to  take a closer look at z-z =p  u-v. We can assume that this derivation
has at most one peak.

If z-z = u-v, we have Ei = E 'U  {Zz = 8 ,7 = 0} and therefore (2-3)-2 = :  (0-@)-0.
Otherwise there are terms r,s, t  such that z-z =g  ( r -s ) t  =g (r-t)-s =g  u-v, which gives rise to

Ey=Fvu {z= r32=1 r i=a4 ,  5=1 } .  Therefore (2-3)z=g ,  ((r-w)-8)-t=g; ((F-W)7):3=p ;  (3-0) .
Thus we have shown that (z-9)-3 =p :  (8-w)-0 holds for = 1 ,  2.

The case distinction of  the previous example can be formalized as follows:

Ce( f ( s1 , . . . , 8n )  = f(ts,. vos  tn)) = { { s ı  =11 , . . . ) , 8n  = t a } }  U
{ { s ı  = U1, . . . , 01= t1 , . . . }  | f(U1,..., un)=f(v1,..., un) € E}

Ce(f(s1,---18m) =g(t1,--- , tn)) = Hs ı=  U . . .  01  = t1 , . . . }  | f u1 , - . . , um)=g (v1 , . . . , v , )€ E}
Cz(z=y )  = { { z=y } }

The three clauses that define Cg are ordered in the sense of ML  or Prolog. For example the last one,
which is the default case, applies only if the first two do not. The next two facts show that the definition
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of Cg(s = t) returns exactly those equalities between subterms that can arise if & '  =g  t' for some
instances s' and t' of s and t respectively.

CeCgls=t) = s3p ,o f  (16)
os=go t  => IC  e€Cg(s=t).Vp=gq€C.op=g og (17)

With these facts we can prove the following lemma which formalizes the procedure outlined in  Example 2.

Lemma 3 I f § =g o 0 holds for all  p=g ,u=v  € E such that q = f ( q1 , . . . , qn )  and u = f ( uy , . . . ,  un),
and allCe M = {E ,U . . .UE ,  | E ;  € Cg(q  = ui)}, then p=q Yr  u=v holds for all  p=q,u=v € E,  ie .
E is resolvant,
Proof The proof is similar to the one of Lemma 1 in that it proceeds by  reducing peaks. However,
we are more specific about the order in which adjacent peaks are removed from a derivation and its
subderivations: we reduced a derivation op  =g  0¢  =p  ou  =g ov,  where p=g,  u=v € E,  ¢ = f (q1 , . . . , qn )
and u = f ( uy , . . . ,  un) ,  only if all subderivations og; =g  ou; are normalized, i.e. of  the form 04; =g  ou;.
In that case we know from (17) that there is a C;  € Cg(¢;  = wi) such that os =g  ot  holds for all
s= t  € C;. Letting C = C1  U . . .UC ,  € M we obtain

P=pua® © EF  (V i , s= teC i i= {=>p=0v
= (V i , s= te€C ; .§=g i )=>p=g0
= (Vi ,s=t  € Ci. 08  =p  ot)  => op  =g  ov

+ op=gpov

the required reduction. D
This concludes the exposition of  the theoretical basis for our resolvance checker.

4.2 Automating It
The procedures suggested by  Lemmas 2 and 3 lead to a fairly large number of  cases that have to be
examined. The principal problem with automating this procedure is the undecidability of the concepts
involved, i.e. the predicates =g  etc. As remarked above, these predicates, and hence Lemmas 2 and 3,
become decidable for permutative E.  However, in  practice it turns out that the resulting search space
is far too large for a naive enumeration procedure.

A prototype system for automating these tests has been implemented in Prolog. To  overcome the
problems just mentioned, a number of  heuristics for testing =g  were implemented. If these turn out to
be insufficient (as they have for a number of  equational theories) the predicate =g  can be implemented
separately for each equational theory.

4 .3  More Theories

Using the implementation described in the previous section, the following list of  theories was shown to
be resolvant:

ACT = {(ep) (wo) = (zu) (yo),  1a  =5 ,51=  2)
D = {z (y+2z )=zy+z2 }
I = {zz=2z}

CI  = Cu l
DC = Du {z+y=y+z }

DC, = DuU{ (z+y )+z= (z+2 )+y }
DA = DU{ (z+y )+z=z+ (y+2 ) }
Cs = { ( zz ) y=y (z2 ) }
Cp = { ( z9 )z=2 (zy ) }

I and C I  yield terminating unification algorithms, the rest only terminating matching algorithms. For
D this has already been exploited in [11].

We also conjecture very strongly that ACI* = ACt  UTI and ACI1t  = AC1*  U I  are resolvant
theories. However, the methods of  this paper seem inadequate to  prove it.
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4.4 Combining Resolvant Theories
In  this section we investigate the combination of resolvant theories. We are given a collection of equational
presentations Ej, i € I, over pairwise disjoint signatures X;. Let E = |J;c; Ei and © = UserE i
Adapting the terminology of [10] we call a property P of equational presentations modular if E has
property P iff all E;  have property P .

As an immediate consequence of Lemma 1 we obtain that

‘Lemma 4 Resolvance is modular.
Proof Assume that all X;  are resolvant. Given two equations p=g,  u=v € E such that ¢ = f ( . . . )  and
u = f ( . . . ) ,  disjointness of the X;  implies that both equations must come from the same Ej. Hence
p=q JE, u=v and thus p=¢ Jr  u=v must hold, which implies resolvance of  E.  ;

Now assume that E is resolvant and let s, t be two terms over Ix  with s =g, € and thus in  particular
8 =p  t .  Resolvance of  E implies s = f  t .  Using disjointness of  the signatures and Fact 1 in [12] s =p, ¢
follows... Thus Ex  is resolvant. D

This lemma does for the combination of resolvant theories what [15,14,12] do for the combination of
arbitrary unification or  matching algorithms. The simplicity of  its proof is  partly due to  the fact that i t
says nothing about termination: even if each E;  yields a terminating unification or matching algorithm,
E might not. For permutative theories however we are able to  show that termination carries over. The
reason is that

Lemma 5 Permutativity is modular.
Proof This proof relies heavily onnotions definedin  [12] which appear in quotation marks.

“Assume that all E;  are permutative. The proofis  by  induction on  the “theory height” of  terms over
X, i.e. the maximum number of alternations of signature along some path in a mixed term considered
as a DAG. Any  term s over X can be written as  C[sy,..., 8m] ,  where C is a proper “context” over
some I j  and the s;  are the “immediate alien subterms”. By  induction hypothesis each s; has a finite
E-equivalence class. Since E is  both regular and collapse-free, Fact 2 in [12] shows that any term t with

=g  t is of  the form D[t; , . . . , t , ]  such that  each ty is E-equivalent to  some s; (and vice versa), and
Clls1)=gs---] =Ex  Dl|[t1]=p,...}. Thus there are only finitely many different t ;  and D, and therefore
only a finite number of  t with s =g t ,  i.e. E is also permutative.

‘The reverse implication iis  trivial. . o

Thus we can safely combine permutative resolvant theories to  obtain a matching algorithm for the joint
theory.

5 Related | Work

As was mentioned earlier on,  this paper is strongly related to  the work of  Claude Kirchner, who coined the
term “resolvant” [8]. He also suggested some criteria for checking resolvance and a completion procedure
which turns a non-resolvant theory into a resolvant one. However, for most equational theories discussed
above his criteria are too weak to determine that they are resolvant. This prompted the development
of  the improved tests in this paper. Recently, Claude Kirchner and Francis Klay have given a nice and
simple characterization of  resolvant theories: -

Theorem 3 ([9]) I f  E is a collapse-free set of equations over thesignature X, the set

° {of(z1,. . .)  =og(y1,.-.) | f ,9€8,  oe  Us  ( f ( z .  J) = a ls ,  ) ) }

is a resolvant set of azioms which generates the same equational theory as E .  (The x; and y; are all
distinct and cUg denotes a complete set of E-unifiers).

Thus any equational theory with a finitary unification problem has a finite resolvant presentation. This
presentation can be computed by  means of  a unification algorithm for the theory.

Although this theorem yields very short proofs for the resolvance of the theories in Sections 3.1 to
© 3.5, i t is not easy to apply to some of the theories in Section 4.3. For example D has a fairly involved

“ unification algorithm (see [1]), and the author is not aware of  a published unification algorithm for DC
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or DA.  The problem is that a notion that was conceived to explain and automate the generation of
unification algorithms, namely resolvance, is itself reduced to  unification.

If  a complete unification algorithm for some theory E is not known, it  may still be possible to  compute
a resolvant presentation by  combining Theorem 3 with the results of  this paper: instead of  computing
a complete set of unifiers, enumerate all unifiers one by one and keep on testing whether the resulting
presentation is yet resolvant. O f  course this procedure may still not succeed because we can reach a
resolvant presentation without realising i t ,  due to the incompleteness of the test we described.
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1 The Rules

The following set of  transformations allow to  solve equations in  a combination of regular collapse-
free theories (like AC  theories) provided a complete unification algorithm is known for each theory.

Definition 1 A unification problem P is of the form:

P=FRUPgURUPUPRU: - - -UP ,

where \

Py is the subproblem of non proper equations z = y in P .
Py  is the subproblem of heterogeneous equations s Z t  in P .
P; is the subproblem of proper equations s = t in  P that are pure in E;.
V(P) denotes the set of the variables occurring in  P .

Definition 2 . „
A unification problem P is in  solved form if it is of the form: {zr ı=t1,.. . ,%n = tn} where z; € X
and  x ;  occurs nowhere else in  P f o r i  € [1..n].

„VA  a ,
s= t  + C l z1 , . . . , 2p ) |=t, x1=81,...,Tn = sn
i f  C [ z1 , . . . , z , ]  is a maximal pure term such that s = C [zy , . . . , z ] { z1  — s1 , . . . , 2Zp  6 sn}.

E-Res
FP; H { z1= t1 , . . . , 2n  = t n }

i f  P; is a pure subsystem in  a theory E; and P; is not i n  a solved form,
and 0 = { z ;  — t ) , . . . , Zp  — tn }  is a most general E;-unifier of P; away from V (P).

„ Clash
s= t  + fail
i f  the top function symbols of  s and t are constrained by two different theories.

Merge
r sx  = t  f a i l
i f  the top function symbols of s and t are constrained by two different theories.

Var-Rep

{ z=y }uP  F {e=y }UP{z—y}
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i f  both z and y occur in  P

Definition 3 BN „ \

A compound cycle is a cycle z ı  = 81 ,71  = 82 , . . . ,%n  = Sn  where z; € V(s;_1) for i € [2..n] and
71  € V(s25) and two of s y , . . . , s ,  are non-variable terms pure in different theories.

Combined Occur-Check
P I fail
i f  P contains a compound cycle.

Rep
{ z=s }UP  F { z=s }uP{x+ss}
i f  z occurs i n  P .

Checking that that x does not occur in  P is not necessary here, because of the particular control
described below.

2 Termination

Proposition 1 If the set
S$ = {VA, E-Res, Var-Rep, Clash, Merge, Combined Occur-check, Rep} terminates for
some input  P ,  then the no rma l  form of P is either “fail”, o r  an  equivalent problem in solved form.

We restrict our attention to the following class of controls:

1 .  Apply as long as possible the  rules in § '  = § \ {Rep}.

2 .  Apply Rep as long as possible.

Definition 4 A unification problem P is separated if  it is of the form

P=PrUPUPUPU: - -UP ,

where

e P; is solved for i € [0..n] and

e Ax  = s ,T  Z t  in two different subproblems with s ¢ X and t ¢ X

eo Ifz  z y € Py, then one o f x and y occurs nowhere else in P .

A separated problem is either “ fa i l ” ,  or a solved form, or a problem to  which only Term
Replacement may apply. I f  Term Replacement is removed from § ,  then normal forms are separated
problems.

To prove the termination of S’, we use the following measures:

Definition 5 T H,,,(P) denotes the multiset of theory heightsof the heterogeneous terms in P ,
where the theory height of a term t is the mazimal number of times the theory constraining the
function symbols changes in a path oft.
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Lemma 1 VA  decreases strictly THomu(P). No rule of S’' increases T Hpmu(P).

Shared variables are crucial i n  our termination proof. Intuitively, x and y are shared variables
whenever Var-Rep, applied to  the equation z z y yields a subproblem P; unsolved:

Definition 6 o z ~p, y if  both x and y occur in F;.

e Let P=  PP UPJ  UP ,UP ,U- - -UP , .  The variables z and y are identifiable outside P;,
denoted = zP  y if (z,y) is in the transitive closure of the relation

=y  U~p ,U~p  U - - -U~p ,_  U~p ,  U U SP

where =v  is the equivalence on variables generated by the equations in Py.

When z and y are identifiable outside P;, i t  is possible that some applications of E-Res to
problems other than P; and some applications of Var-Rep yield the equation z = y .  For example,
E;-Res may yield the equations z Z x' and y = z', and Var-Rep generate the equation x I y.
Hence, the following definition:

Definition 7 A variable x is shared in P; if z € V(P;) and z ~F  y for some variable y € V(P),
y # z .  SV(P )  is the multiset {my ,m , , . . . ,m , }  where m;  is the number of  variables shared in  P;.

Here is  an example to  illustrate the definition. Assume the original unification problem is:

Py Po Py
z=y  | z=  f (u)  u= uy + ug

y= f ( v )  | v=v+ v;

In this problem x and y are shared in  Po, u and v are shared in  Po and Pj,  hence SV (P )  = {4,2}.
_ Var-Rep applies to x = y and yields:

Py Po P ı
zy  z=  f (u)  uu  +u

z= f ( v )  v= ,  + vg
?

z2=a

Note that Po is not  solved anymore and that z and y are not shared anymore i n  Po. We now
have SV (P ) = {2 ,2 } ,  the appl icat ion o f  Var-Rep hhas decreased SV  (P ) .  E-Res applies to  Py and

replaces its two first equations by the equations u = u ' ,  v = u ' .  The obtained problemis:

Py Po Py
7 7 7

z=y  | z=a  | u=uy+ us
7 ?u=u v =v ; + vy

v=

The variables u and v are still shared in  P j ,  but no longer in  Po. Now SV (P) = {0,2}.
Var-Rep applied to v = u’ replaces u’ by v and yields:



Py Po Py
z=y  l z=a u=  up +1 up

v= v1 +1  v2

This does not change the shared variables. Var-Rep applied to v Zu  yields:

Py  Po P ı
7 7

z=y | z=a l | u=u  +u2
?

? ?
u=v  u=v”+vw

Again, an application of Var-Rep has made a subproblem unsolved, and as before, i t  has removed
two shared variables. There are no shared variables anymore in  Po or  P ı .  This is a general property
as shown below.

Lemma 2
E-Res does no t  increase SV (P).

proof :
Assume E;-Res is applied to

P=R uUuPyUP UP  U- - -UPU- - -UP ,

yielding
P=P,UPgURUPU- - -UPU- - -UP ,

Note first t ha t  E;  res does no t  change ~p ,  for j # ¢. We can assume that  E;-Res first replaces P; by  a
solved form, then moves the non proper equations from P{ to P;.  The proof proceeds by induction onthe

number of fresh variables occurring in  Pl .  The new equations occurring in  Pj, must be of the form z = x’
where z is a fresh variable, by  definition of  E-Res.
Basic case: Pl, = Py. The variables shared in P! were already shared in  P; (fresh variables added to P!
cannot be shared here since they only occur‚ in  P! ) .

Inductive case: Assume some equations z ;  = z ’ , . . . ,  Zp  ==z ’  are added to  R-  while z , , . . . ,  z,  are removed
from P;. We proceed by introspecting all  the variables sharedi n  P’.

1. z’ is sharedi n  P!. By definition, there exists a variable z € P! such that z '  =!" z. Let z' =v  zw" z
’ .be a shortest proof, forbidding x ’  to  occur in  z =I z. Hence z a t  z.  By  assumption z € V(P;) as

well as z. Hence x was shared i n  P; and does not occur anymore in P;, hence is no more shared in  P,.
Note that z is associated to  x’.

2. Let y be a variable of P;  shared in  P/.  We show that y is already shared in  P;. Assume y &mp" z where

z € V(P!) .  By  singling out the first application of a new equation z = z' € PL, ( i f  none y~7 z andy
is sharedin  P;), the proof must be of the form:

!y l  z=y  az
Note that  y # x since x does not occur anymore in P}, hence y is shared in  P;.

3. Let  y be a variable shared in P} for j #1 .  Then y mT' z for some z € V (P ; ) .  Again, by  singling out
every use of step in  a l  \ ~F  in  a proof we get:

r
ya l  z i  (=v  Unp)d  (=v  Usp) za wf oo  wf  2

because z' is a fresh variable occurring only i n  Py, and P!. z ;  and z;  were bo th  in P;, hence z ;  msl zp
and y was already shared in P;.
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Lemma 3
Var-Rep does no t  increase SV (P).

proof : Assume Var-Rep applies to the equation z £ y in Py and replaces z by  y .  Note first that x
cannot be shared anymmore because i t  occurs only in Py,. For the other variables, i t  is enough to note
that  any proof z ~F" v can be mapped back t o  a proof in P by  replacing appropriate occurrences of y by
occurrences of z .  0

Definition 8 USP(P) is the number of unsolved subproblems in P .

Lemma 4 If  Var-Rep increases USP(P), then it decreases str ict ly SV (P).

p roo f :  For Var-Rep to  make a subproblem P, unsolved, i t must have replaced a variable z by a variable
y,  bo th  occurring in  P;. Hence z and y were sharedi n  P; because of the equation x L y in Pr ,  and z has
disappeared from P;, henceis  no more shared. O

Definition 9 PV  R(P) denotes the number of potential applications of Variable Replacement. A
potential application of Variable Replacement is an equation x z y € P such that both x and y
occur elsewhere in P .

The weight of a unification problem is W(P)  =<  T Hp (P ) , SV (P),USP(P), PVR(P)  > .  Let
<w  be the ordering on wethgts obtained by comparing lexicographically i ts  components from left to
r ight ,  using the multiset extension of  < for the two first, and < for the two others, where < denotes
the ordinary ordering on natural numbers. The ordering <w  is well founded, as a lexicographic
extension of  well founded orderings.

Theorem 1 § '  terminates and yields either a separated problem with no cycle in the graph of the
occur-check relation, or “fail”.

p roo f :  First note that if a problem is not separated, then some rule of § '  applies necessarily. If there is a
cyc lei n  the occur-check graph, then E-Res or Combined Occur-Check apply, If one of the subproblems
is not  solved, then E-Res applies. If a variable x appears in two equations £ = s and z = t ,  then one of
Var-Rep, E-Res, Merge or C lash  applies.
The termination proof is summarized in the following table:

TH, . . (P)  | SV(P) | USP(P) | PVR(P)
VA  }
E-Res = = ]  1
Var-Rep (1 )  = = = |
Var-Rep (2) = I f 1

There is no problem w i th  the rules that return “fail.
Lemma 1 shows that VA  decreases W(P)  and that  no rule increases T H,,,,y(P). This proves the first column
of the table.
Lemmas 2 and 3 show that no rule except VA  increase SV (P).
E-Res decreases US P(P).
Var-Rep decreases PV R(P). If an application o f  Var-Rep does no t  increase USP(P) ,  t hen  i t  decreases
W (P) (case 1). Otherwise, l emma  4 shows tha t  every t ime Var-Rep increases USP(P), i t  decreases s t r ic t ly
SV(P) (case 2). O
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3 A Bound on  the  Number o f  E-Resolut ions

Lemma 4 shows that a shared variable must disappear every time a subproblem is made unsolved.
In the worst case, E-Res is applied to all subproblems and then some applications of Var-Rep
make them all unsolved. in the worst case, this can happen as many times as the number of shared
variables minus one. Hence the number of calls to restricted AC  unification (unification for one AC
symbol) is bounded by the number of  different AC  symbols times the number of shared variables
minus one. This is so because only Variable Replacement may make a solved subproblem unsolved
by  identifying two shared variables.
One may think this is nonsense since the definition of  shared variables depends on the state of the
system. Remember though that  only Variable Abstraction can increase SV (P), hence it is enough
to  apply VA  as long as possible (which is done in  linear time) for knowing the total number of
shared variables.

Theorem 2 The procedure:

1. Apply as long as possible the rules in § ' .

2. Apply Term Replacement as long as possible.

terminates for any input P and computes an equivalent problem in solved form.

This applies to  AC  unification, provided a complete unification algorithm is known for solving
equations in  T ( {+ } ,  X ) ,  modulo the associativity and commutativity of +.
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Optimizations of Schmidt-Schauß' General
Combination Procedure

M.  Tepp, Univ. Kaiserslautern, 6750 Kaiserslautern, FR Germany

In this abstract we want to  present a modification of  the algorithm of  [Schmidt-Schauß]
for unification in  the combination of  arbitrary disjoint equational theories. This algorithm
takes as input a system of  multiequations, an equational theory E and a partition of  this
theory into disjoint subtheories for which already special unification procedures exist.
These special procedures are used to compute the output of  the algorithm which consists
of  a complete set o f  solutions for the system of  equations modulo E. In  the following we
refer to the special subtheories of  the input simply as theories’. Computation proceeds in
six non deterministic steps, where each of  them is performed exactly once. The steps are:

1. UNFOLDING: Replace subterms of  terms in the multiequations by new va-
riables and introduce a new equation for each of  the replaced terms containing
the term and the replacing variable such that all terms in  the resulting system
of  multiequations belong to one of  the special theories and no two terms that
are contained in  different theories have some variable in  common.

2. UNIFICATION AND  IDENTIFICATION: Use the special procedures to unify
all terms belonging to the same theory in  each multiequation of  the system.
Variables are viewed to belong to the theory of  those terms they occur in  (this
is unique). Choose one partition of  the set of  multiequations and identify all
equations that are in  the same set of  the partition. Then again unify all terms
of  same theory in the newly created equations. That identification is done in
order to  be able to  assume in  further processing that existing multiequations
are inequal to  each other.

3. THEORY LABELING: For each multiequation choose one theory as a label.
4. COLLAPSING: For each multiequation choose one new variable x.  This new

variable is regarded as a constant in  all terms that do not belong to the theory
E;  the equation is labelled with. After that each term of  the multiequation that
is not contained in  E;  is matched agaist the variable x (this can be done using
the special unification procedures). So x is a variable that, in contrast to
others, can occur in  terms of  different theory. But  only in  terms of  theory E;
it is indeed treated as a variable but everywhere else as a constant (note: this
can only be done because we may regard different multiequations to be
inequal). In  this way we still preserve some kind of  variable disjointness for
different theories. After this step each equation contains exactly one variable
and one term.

5. CHOOSE CONSTANT ELIMINATION PROBLEM: Choose one set of  pairs
(tx) where f is a term in  a multiequation and x is a variable that is  regarded as
a constant in  terms belomging to the same theory as f.

6. SOLVE CONSTANT ELIMINATION PROBLEM: Let {(t1,x1),....(tn.Xn)} be
the set chosen in  the preceding step. Use the special procedures to compute a
substitution o such that x;  is  not contained in of¢;) for all i and apply it to the
system.
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This is the original algorithm. Now our intention in  creating an optimized version was
based on three things: ;

1. We wanted to loosen the constraint of the original procedure to work only with
disjoint equational theories. I£ we already know algorithms for combinations of some of
the disjoint theories we do not always want to  unfold terms that are contained in one of
those combinations. Assume for example we had a procedure for the combination of  free
constants with semigroups and abelian semigroups. Further on let there exist a program
for the combination of  free constants, semigroups and boolean rings. Now consider the
following example where a is a free constant, g belongs to an abelian semigroup, h is the
function symbol of a semigroup and * is the '’and' of  a boolean ring (v,w,x,y,z are
variables):

g(x,h(z,v),a) = g(y.y,y,y)
u*h(v,z) = a*w

In  this example it is not necessary at all to unfold the terms into disjoint theories, since we
- can solve it only by  unification with our special programs. On  the contrary, i f  we would
use the original procedure we had to transform the above system of  equations by
unfolding and get:

g(x,v1,v2) = g(y,y,¥,¥)
u*v3 = vg*w
v i  =h(z ,v )

v2=v4=a

v3 =h(v,z)
Now the problem g(x,v1,v2) = 8(y,y,),y) gives us 32677 (see [Bürckert et al.]) minimal
unifiers that cause as much new systems of  equations still to  solve.
So our first intention was to  reduce unfolding.
2. Our second reason was to avoid unnecessary identification of terms. Let us
consider the following example:

fi(vı1,Vı2) = f2(v21,v22)
f3(v31,v33) = f4(v41,v42)

f5(v51,V52) = f6(v61,v62)
In  step 2 of  the algorithm we get five alternatives for this system. Besides the above one
itself there are these four:

f1(v11,v12) = f2(v21,v22) = f3(v31,v33) = fa(v41,v42)
fs(v51,v52) = f6(v61,v62)

fi(v11,V12) = f2(v21,v22)
f3(v31,v33) = f4(v41,V42) = f5(v51,v52) = f6(v61,v62)

fi(v11,V12) = f2(v21,v22) = £f5(v51,V52) = f6(v61,V62)
f3(v31,v33) = f4(v41,v42)

f1(v11,v12) = f2(v21,v22) = £3(v31,v33) = £4(v41,v42) = f5(v51,v52) = f6(v61,v62)
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" I t  is obvious that the additional four systems of  equations are superfluous.
We remember that identification in step 2 is necessary in order to be able to regard
variables as constants in step 4. In our new version we preferred a lazy way of
identification. I f  two such 'variable-constants' never occur in  the same subproblem (such
as collapsing one term or solving a constant elimination problem) then what on earth
should induce you to identify them. Therefore we will do identification only when several
such variables occur in  one subproblem we want to solve. We give two examples, one
for the case that we do identification and one where we do not need it.  In  both examples
we use function symbols f,g and h and a symbol i for which i(x,x,y) = y holds. The
terms a and b denote variables that are regarded as constants in  the theory of  i .
In our first example the subproblem is to match i(a,v;,v2) with the variable x in the
system:

i(a,v1,v2) = f(v3,v4)

a= g(vs,ve)
b = h(v7,vg)

The solution is obviously {v;«a, v2&x} and no  identification is  needed at all.
In  the second example the subproblem consists of  matching ifa,b,v2) with x in:

i(a,b,v2) = f(v3,v4)

a = g(vs,ve)
b = h(v7,vg)

Here the solution can only be obtained by  identifying a and b in  i(a,b,v2). This leads to
the term i(a,a,v2) and the solution of  the whole process is {b«—a, v2&x}.

Please note: From the point of  view of the equational system a and b are
variables. From the point of  view of  the special algorithm for the theory of  i
those two symbols are constants. So the process of  identification may be
seen as some kind of  interface between equational system and special
algorithm.

3 .  The third intention was to give up the fixed order of  rules to be applied. In the
algorithm of  [Schmidt-SchauBl] each rule was used exactly once and then never more.
That is why each transformation had to anticipate all cases that could appear in  one of  the
following steps. So, for example there had to be done all possible identifications of
equations in  one step in  order to  provide that no identification would be needed in  further
processing or  all possible theory labellings of  equations had to  be calculated at one point
in  order to  assume fixed theories for all equations for the rest of  computation. Assume for
example we  had the ten theories Ej,...,Ej¢ and there are ten variables x;,...,x;9 where x;
occurs in  terms of  theory E;. Now suppose there is a multiequation in  our system to  solve
that looks like:

X]  = X2 = X3 = X4 = X5 = X6 = X7 = X§ = X9 = X} (

We  do not know what theory this equation will obtain in  a solved system. So we have to
take into account all ten alternatives, that is the multiequations x = x;  for
i e  { l , . . 10 )  where x is a new variable that is viewed as a constant in the theories
{E1,....E10}\E;.
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Now we allow to apply all of  our rules in arbitrary order what leads to interaction
between different steps instead of  anticipation of  all following computation. So in the
above example we can wait until some of  the variables are replaced by  non variable
terms.
After having given these motivating notes we go into the actual description of  the new
version (for details see [Tepp]).
Our version of  the algorithm takes as input the system of  multiequations to solve, an
equational theory E, a partition of  this theory for which special unification procedures
exist (this partition needs not to be disjoint but must have a disjoint continuation) and a
disjoint continuation of  the partition. The output again consists of  a complete set of
solutions modulo E for the system of  equations. The procedure consists of  seven rules
that are ordered by  a priority table. For a given system that rule with the highest priority
is tried to apply. I f  it is not applicable the next one is used. This way we get several
descendents for one equational system. The non determinism in  this version is given by
the different choices which one to take next. If  no rule at all is applicable then the system
is in solved form and can directly be transformed into a substitution. In  the following
‘theory’ denotes an element of  the non disjoint partition whereas one of  the disjoint
continuation is called ‘elementary theory'. The sevenrules are:

1. MERGING: I f  there is a multiequation that has some term in  common with other
equations then all these are identified into a new one.

2. UNITARY UNIFICATION: I f  there is a multiequation containing several va-
riables or several free terms then in  every equation of the system all free terms
are unified and all free variables are unified with one another.

3.  UNIFICATION: In  every multiequation unify all terms whose topsymbol be-
longs to the same elementary theory and that are contained in  some common
theory.

4.  COMMONIZATION: If  there is a multiequation containing two terms with
topsymbols belonging to the same elementary theory but there is  no  common
theory for these terms then do unfolding (see original algorithm) for one term
until there is a common theory. :

5. COLLAPSING: I f  there are two terms in  a multiequation whose topsymbols be-
long to different elementary theories then choose one of  them. Let the
elementary theory o f  its topsymbol be E;. Now we have two alternatives:
label the multiequation to  belong to  theory E;  or  to  belong not to  theory Ej.
The first possibility is  processed by  the next rule. For the second one take the
chosen term and replace all occurences of  one of  its subterms whose
topsymbols are not contained in  the signature of  E;  by a new variable x.  Then
match the term with the variable and add a new equation with x and the
subterm. This is done for each of  those subterms and for the term itself
without replacing. The variable x is then regarded as a constant for the theory
E;.

The second alternative is also taken if an equation is already labelled not to
belong to an elementary theory E;  but contains a term with topsymbol in  E;.

6. UNIQUE COLLAPSING: If there is a multiequation labelled to belong to a
theory E;  and it contains a term whose topsymbol does not belong to that
elementary theory then replace all occurences of  one subterm whose
topsymbol lies in E;  by  a variable x.  Then proceed exactly as in the rule
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COLLAPSING. We  get one new system for each subterm with topsymbol in
E;  and one for matching the non  replaced term itself with x.  The new variable
is regarded as a constant for the elementary theory of  the topsymbol of  the
matched term.

7. CYCLE ELIMINATION: This rule is applied when the current system of
equations is cyclic. There are two kinds of  cycles. One kind consists of  a
variable and a term containing this variable and both of  them are contained in
the same multiequation. This sort of  cycle is simply solved by unification
using the appropriate special procedure. The other kind is formed by terms
t],...tm (=  t;) where each term f; contains a variable x;  that occurs in the
same equation as f;47. In this case we first completely unfold the whole
system into disjoint theories just like in  the original algorithm. Moreover we
transform it such that two neighboring terms in the cycle are in different
elementary theories. This way we get a modified cycle ¢;°,...,t," (=  t1’) with
variables x;’,....x,". Now there are two alternatives to  proceed. In the first
case choose one #;" and label the corresponding multiequation not to belong to
the elementary theory of  ¢;". Here again we have n-1 possibilities each leading
to a new system. In  the second case we label for each 7;  the involved multi-
equation containing this term to belong to the elementary theory of  #;". After
that we choose one f;’  and solve the constant elimination problem (#;',x;’),
where x;’  is regarded as a constant. Once more we have n-1 possibilities.
Elimination problems once solved are recorded and always composed with
new ones and solved all together to prevent that old cycles are reintroduced
by  solving a current one.

This was a short description of  our version of  a combination procedure for unification
algorithms. With our modification of  the original algorithm we were able to achieve more
efficiency for theory unification in  many cases and additionally we attained a more natural
behaviour by  not introducing avoidable complexity for easily solvable problems as we
hope to have shown in  our examples.
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Least Sorts in Order-Sorted Term Rewriting
Extended Abstract

Phil Watson*and Jeremy Dick!

July 28, 1989

Abstract

We consider a problem common to all order-sorted term rewriting systems,
namely the requirement for completeness and soundness that the system must be
compatible and sort-decreasing (also called fair).

These difficulties arise because the semantic and syntactic notions of  what i t
means for a term to belong to  a sort are different. Although in general i t  is only
semi-decidable whether a term is semantically meaningful, we are able to remove
the requirements of compatibility and sort-decreasingness with a new definition of
the least sort of  a term, which bridges the gap between semantics and syntax. This
far we follow [WD89].

We then consider the consequences for unification of using this new definition.
Finally we consider some of  the other approaches to solving this problem.

1 Introduction - Order-Sorted Term Rewriting
We follow [SNGMS87] in our definition of an order-sorted signature, initial algebra, term
rewriting system and so on, and the reader is referred to this paper for all the definitions
‘used here. However, two points are of particular importance to us. .

We shall assume that substition of ’equals for equals’ in the term algebra is always.
sound and always leads to terms which are semantically meaningful (even if sometimes
syntactically ill-formed). This is the key assumption of the Smolka Semantics’ which we
use. We might add that without this assumption, i.e. in  any semantics where substitution
of equals for equals is not always allowed, this work and the other approaches detailed
later are all unsound.

The standard definition of what it  means for a term to belong to a sort is as follows.
For any term t the least sort of ¢, LS(t) is defined to be the least sort to  which we can
mechanically deduce that £ belongs, using just the signature and knowledge of the least
sort of every proper subterm of t .  LS(t) is a purely syntactic measure of the sort(s) to
which t belongs. We assume that the signature is regular, namely that LS(t) is unique
for every t .

*Supported by the Science and Engineering Council under grant GR/E83634, at Department of
Computer Science, Royal Holloway and Bedford New College, University of London

t Informatics Division, Rutherford-Appleton Labs. (now at  RACAL Research L td . )
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We visualise Knuth-Bendix completion operating on the given signature and an initial
set of equations (or axioms) in a series of stages. At  each stage the existing axioms are
oriented into rules by  a given term ordering, and these rules are used to  generate more
axioms in the form of  critical pairs.

2 Problems of  Order-Sorted Rewriting
In [SNGMB8T7] three problems which are specific to order-sorted rewriting are identified,
but all three cases reduce to the same basic problem: terms which may be meaningful
semantically (typically by substitution of equals for equals) may be ill-sorted syntactically.

2 .1  Example

SS!’

f :S5— 8
a :d—>S

g:$S’ '—>S'

Suppose < f(a),a  > is a critical pair. Then any well-founded term ordering will order
f(a)  > a, by the subterm property.

However if we make f (a )  — a a rule then at a later stage we may have to  rewrite
g(f(a)) to g(a). g(f(a)) is well-sorted but g(a) is not well-sorted, although it is seman-
tically meaningful since i t  is equalto g(f(a)). Thus we find ourselves rewriting from a
syntactically well-formed term to an ill-sorted one.

The problem here is that our rewrite rule / — r has LS(!) <LS(r) and LS(r) is not in
the domain of g.

2.2 Example(G.Smolka)

35



zT is a variable of  sort A
f :B—B

Let |

a—b

and

f(z)  — =
be rules.
Then our rewrite system gives no critical pairs, but is not locally confluent, e.g.

ba  f(a) — f(b)
f (b) is in normal form because the rule f (z)  — x cannot be used to reduce f(b).

Note 2.1 We note in passing that a modified version of order-sorted unification solves
the above problem: if we match the left-hand sides of rules of the form | — r where
LS(1) + LS(r) with variables in the other rule then in the ezample above < b, f(b) > is
a critical pair and confluence is achieved. Note also that the example above is completely
general, because we have not assumed any other properties of  a,b or f ,  and the right hand
side o f  the second rule and the fact that B > A are both irrelevant. However this does
not solve the problem of  rewriting to syntactically ill-formed terms.

2.3 Sort-Decreasing Systems
A restriction is generally put on order-sorted term rewriting systems to avoid the problems
above, namely that the rules of the system must be sort-decreasing, i.e. i f l — r i s  a rule
then LS(!) >LS( r ) .  However this is an  unwanted restriction on  the class of  problems we
may solve with term rewriting, and thus on its usefulness.

‚Example 2 .1  Worse still, even without rewriting, semantically meaningful terms can be
syntactically ill-sorted, e.g.

Nat

PosNat

/ : NatPosNat — Nat
— : NatNat — Nat

6 :0  — PosNat
3 :0  — PosNat

Let 6 — 3 = 3 be an aziom. Then the term 6/(6 — 3) is ill-sorted, even though
semantically meaningful.
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3 Syntactic and Semantic Sorts
The only notion we have regarding the sort(s) of a term £ is the syntactic measure LS(%),
defined above. In general this is not the same as the semantic sort defined as follows.

Definition 3.1 Define the semantic sort of a term to be SS(t) = Mı==u LS(u) where ==
means equality (congruence) in the term algebra. We see without difficulty that LS(t) >
SS(t) in all cases.

3

Problem 3.1 In general it is not possible to find the ezact position of  SS(t) in the sort
lattice generated by the sorts in the signature and closed under intersection. Since the
sorts are just domains of (typically partial recursive) functions, finding SS(t) is ezactly
as hard as the Halting Problem.

Proposition 3 .1  I f  two terms are proved equal as an aziom of  our term rewriting system
they have the same semantic sort.

Proof  1 Let s = t  be an aziom and let s have semantic sort A .  Then for any function
f whose domain includes A ,  f (s )  is well-defined in the term algebra. Now we can define
F(t )  = f (s )  and f ( t )  is semantically meaningful because we remain in a conservative ez-
tension of  the term algebra through substitution of  equals for equals. The other properties
of equality (reflexivity, symmetry and transitivity) are trivially proved to apply also to
semantic sort. :

3 .1  Example

B

a :  p>  A
b :¢—>B

Then a = b leads us to deduce SS(a) = SS(b) = B .

3.2 Approximation
We can define an effective approximation to the semantic sort as follows.

Definition 3.2 For any term t ,  define the approzimate least sort of  t at stage n + 1
of  the Knuth-Bendiz procedure, ALS(t,n + 1) to be the greatest lower bound in the sort
lattice of:

(i) ALS(t,n)
(it) ALS(u,n): u = t has been derived by stage n + 1
Then obviously LS(t) > ALS(t,n) > SS(t) for all t ,n.
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Furthermore provided Knuth-Bendix does not fail andis fair,

Limpims ALS(t,n) = SS(t)

for all t. So for every t there exists an n such that ALS(t,n) = SS(t), and if  the
Knuth-Bendix procedure halts at stage n with a canonical rewrite system then obviously
ALS(t,n) = SS(t).

3.3 Sort-Decreasingness
The  main use of  our method is to  painlessly remove the requirement of  sort-decreasingness
in order-sorted term rewriting. There is no longer any danger of rewriting a term to  a
term of higher or incomparable sort, because as soon as two terms are proved equal
(before they need to be oriented into a rule) they take the same ALS, and after this
they always have the same ALS and therefore the same SS. Thus in orienting equations
into rules we can follow the term ordering in every case. We have effectively reduced the
rewriting to single-sorted rewriting, while retaining the expressiveness and flexibility of
an order-sorted signature.

Theorem 3 .1  Rewriting using ALS  is complete and sound under the ‘Smolka semantics’.

Proof  2 This is effectively what is proved by Gallier and Isakowitz in  [GI89] and [IGS].

3 .4  Formalisation
A formalisation into a set of induction rules for calculating the sorts of terms and a
modified Knuth-Bendix procedure with ALS are given in [WD89].

3 .5  Problems

There are inevitably some problems associated with this new method:
- Time has to be spent calculating the ALS of terms at each stage; [WD89] shows how

“this can be minimalised (indeed made effective) but there is still some loss of efficiency.
- If we prove two terms of  incomparable ALS to  be equal then we must place them in

the intersection sort, which may not exist in the original signature. In  the worst case we
may begin with n sorts and finish with 2” sorts.

- Unification is affected by this method of defining sorts.

4 Consequences for Unification

4 .1  Example
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Let

F l  t,...) r l .

and

F l . . . )2,...) — r2

be  rules, where z is a variable of sort B and t is a term of  sort A.  We can never unify
these two rules using the accepted methods of unification with the standard definition of
least sort, LS. However if we prove SS(t) < B ,  we want to  unify or we lose completeness.

Example 4 .1  Let  A ,B ,C ,V ,W be incomparable sorts.

f :V—=A
f :W——B
g :B—>C
h :VoW

Le t t  be a term in V,  x be a variable in B .  Let the rules be

f( t)  — r l
g(x) — r2
h( t )  — t

Then there are no critical pairs using unification by LS, but

g ( r l ) = r2

in the algebra, but we cannot show that

g( r l )  « r2.

It is clear from these two examples that we need unification with ALS.

Problem 4 .1  In the first ezample above, if we attempt to unify f ( . . . , t , . . . )  — r l  and
f( . . . ,z , . . . )  — r2 early in the completion procedure, we cannot unify. However, later we
may prove that SS(t) < B ,  so then we can unify. This threatens to make the completion
procedure very messy.

4.2 Obvious Method

The solution to this given in [WD89] is as follows. Add to the completion procedure an
instruction to the effect that at the end of each stage, any rule | — r for which | has
a subterm t of which some instance a(t )  has changed its sort during that stage must be
returned to the equation set, and hence be unified with al l  other rules once again.

This is not satisfactory as it is horribly expensive.

39



4.3 Better Method

A more careful ezamination of exactly which unifications must be attempted a second time
leads to the following, much more efficient, method.

Le t l  — r be the rule in question and let ty be the smallest subterm of  a given instance
o( l )  of!  whose sort has changed during the previous stage. Let t;+1 be the largest subterm
of  o(1) whose sort has changed, i.e.

tin = f i ls
for some f;, every i = 0,1,.. . ,J.
Then we only have to attempt to match l ’at the second attempt’ with terms with a

variable (x) of sort

> fi(..,ALS(t;,n + 1),...)

but

+ fi(...,ALS(t;, n),...)

for every i ,  or  of  sort

> ALS(t, ,  n+  1 )

and

+ ALS(to,n)

and in each case ty ;  or  to (respectively) must be substituted for x .

4.4 (In)Efficiency
- We have already calculated the ALS of  every subterm of the left hand side of  every rule

“ i n  order to find the ALS  of  the whole Lh.s. during the last stage anyway. Very little extra
work is done in re-using this information.

- It is easy to keep a record for every rule of  the sorts of  the variables occurring in
the left hand side, and their positions. N.B. Variables are the only terms which we can
be certain will never change their sorts!

- Knowing even one substitution (x — t ; )  cuts down the number of  possible unifiers
considerably.

- j may be small, even 0, and we need not try to unify subterms whose ALS has not
changed.

With these advantages we believe this method will be practical.
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4.5 Other approaches to removing sort-decreasingness
The problem of  sort-decreasingness has been widely recognised, and there have been a
number of  different attempts to remove it, within the ‘Smolka semantics’ where substi-
tution of equals for equals preserves semantic meaning. We restrict our interest to the
context of  term rewriting; there have been many attempts to reason with sort information
outside this field.

Probably the earliest version is that of Gallier and Isakowitz [GI89] and [IG88] who
showed that rewriting through syntactically ill-formed, but semantically meaningful, terms
preserves soundness and completeness. They did not pursue this idea as far as giving a
completion procedure, or consider the consequences for unification. The trick used above
to solve Smolka’s example is adequate to make this method practical. However we do not
feel it is aesthetically pleasing to allow rewriting through ill-sorted terms without explicitly
calculating the sort of  the resulting term.

An  approach similar to this paper is taken by [Du89], ezcept that he makes an explicit
declaration of each piece of  sort information and uses this to build a unification algorithm.

FEzplicit declarations are also used by [Ga88], in which sort information is used as
the conditions in conditional rewriting in order to reduce order-sorted rewriting to many-
sorted (effectively single-sorted) rewriting. The drawback to this is that use of conditional
rewriting means completeness can only be proved under certain (undecidable) conditions.
However, Ganzinger’s is the only approach which has yet been implemented, in  the system
CEC.

4.6 Acknowledgements
Thanks to Brian Matthews (R.A.L.) and Mike Lai (R.H.B.N.C.) for useful discussions,
especially on the trick used to solve Smolka’s example.
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1 Introduction

One of the major problems in term rewriting theory is what to  do  with an equation which cannot
be ordered into a rule. Many solutions have been proposed, including the use of special unification
algorithms [7] or  of  unfailing completion procedures [1,6].

If  an equation cannot be  ordered we can still use any instances of  i t  which can be  ordered for rewriting.
Thus for example

THY=Yy*2x

cannot be ordered, but if a, b are constants with b * a > a * b we may rewrite

bxa— axb.

This idea is used in  unfailing completion, and also appears in  Boyer-Moore [2]. In  this paper we define and
investigate completeness with respect to this notion of  rewriting and show that many familiar systems
are complete rewriting systems in this sense. This allows us to  decide equality without the use of  special
unification algorithms. We prove completeness by proving termination and local confluence. We describe
a confluence test based on  recursive properties of  the ordering.

1 .1  Summary
In this section we summarize our results. Precise definitions are given below. An  ordered rewriting
system consists of  a set of  equations E and a monotonic ordering on terms > which is total on ground
terms. We say a term s rewrites to  a term t ,  denoted by  s — ¢, if there is an  equation r = l o r l = r i n
E ,  a substitution o and a subterm o l  of  s such that o l  > or  and € is s with that subterm replaced by
or .  Thus for example i f r + y = y+ zr isin F and a+b > b * a then a*  b — bx  a. We observe that the
usual notion of a rewriting system can be regarded as a special case of our concepts in the case when
the ordering allows all the equations to be ordered into rules.

A ground complete ordered rewriling system is one which is terminating and confluent on ground
terms. This means that any ground term can be rewritten to a unique canonical form, and we can
decide equality between ground terms, and hence between variable terms by regarding the variables
as generalised constants. This process uses only unification in the empty theory. In section 4 we give
examples of  ground complete ordered rewriting systems including AC,  ACI,  Boolean rings, Distributivity
and Abelian Groups.

Example 1 As an  example let E be

( zxy ) * z  = z * ( y *2 )  (1)

*The author acknowledges support of  the UK  SERC under grant GR/E  83634.
This research was supported in part by  NYNEX, NSF grant CCR-8706652, and by  the Advanced Research Projects

Agency of  the DoD,  monitored by  the ONR  under contract N00014-83-K-0125.
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Txy  = y ız  (2)
z * ( y= *z )  = y * ( z *2 )  (3)

and let > be any monotonic ordering on  terms which is total on  ground terms and satisfies for all ground
terms z , y ,  2

(zxy)*xz  > z+(y=*2) (4)
THY > y*2z f z>y  (5)

zx(y*xz) > y * ( z+2 )  ifz>y. (6)

Then (E ,> )  is an ground complete ordered rewriting system. For example suppose that > is the
lexicographic path ordering (see section 3) and a,b, ¢ are constants with ¢ > b > a. Then

bx (c * (bxa ) )— bx(cx(axd)) —bx(ax(c*b)) — a * (b + (c + b)) — ax(bx(bxc)).
To prove completeness we need as usual to  prove termination and confluence. Termination is generally
proved by  showing that the ordering is well-founded!, and the orderings we need to do this for our
examples are discussed in section 3. To prove confluence we need to  prove local confluence, and in
section 2.1 we prove the necessary version of  the critical pairs lemma

The usual notion of  rewriting and confluence allows confluence to  be checked automatically by  com-
putation of normal forms. At  first sight this is not so for ordered rewriting, which appears to  require
infinitely many calculations. However we shall explain in section 2.2 how the confluence test may  indeed
be automated in  many cases by  axiomatising the properties of  the orderings and rewritings that we need.
This automation works for most of the examples of section 4.

Consider the example above. Computing critical pairs between

(z *y ) * xz  — z+* (y*z )  ’

r * xy  = Y*T

we obtain
zx ( z  xy )  — ( zxy )  xz  — zx  ( y *  2),

so we have to  prove that z * ( x  * y) and z * (y  * z) are joinable for all ground terms z ,y ,z .  Now since
z , y ,  z are ground terms we may consider the possible relationships between them under > .  For example
i f z>  z > y then

zx (y *z )  —yx (zxz )  — y * ( zxz )— zx  ( yxz )— zx  ( z  xy )

While our technique allows the computation of canonical forms without a special matching algorithm
we note that it is not always as powerful as rewriting with an equational matching algorithm.

Example 2 Consider the example above together with the equation f(z+*z) = 1. Rewriting with an AC
matching algorithm shows that f ( a *  (a  * ( b *  b))) = 1. However, there is no  equivalent ground complete
ordered rewriting system as any such system would have to  contain infinitely many equations to deal
with

f ( axa ) ,  f (ax(ax(bxd) ) ) ,  f (a *x (a* (a * (a * (b *d ) ) ) ) )
and so on.

On the other hand the advantages of our method are that
® Ground rewriting is possible without E-matching algorithms.

e Ground rewriting is sufficient for theorem proving.

e Completion is possible without E-completion.

It shares these features with unfailing completion as described for example in [6]. Indeed, it is very
similar to  unfailing completion in two technical aspects: both sides on an equation may give rise t o
critical pairs, and complete systems need only be confluent for ground terms. In contrast t o  [6], our
method is specially designed to test for confluence of  ground terms. Thus we obtain many complete
systems which their approach fails to recognize as complete.

I n  fact, i t  i s  sufficient to show well-foundedness within equivalence classes. I f  all equivalence classes are finite, this
follows because any ordering an  a finite set is  well-founded.
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2 Critical Pairs, Confluence, and Completion
We  assume that all concepts and definitions are as in [5] or  [3]. Let X be a set of  function symbols and
V a set of  variables. The set of  all terms in ZU V is denoted by 7 = T(Z UV) ,  and the set of  all
ground terms is the subalgebra 7g  = T(X) .  The function V returns the set of variables in a term. A
term can be  represented as subterms in a contezt by  writing C [s1 , . . . , 5 , ] .  The context C is a A-term
Azy , . . . , z y . t ,  and C [sy , . . . ,  Sn ]  denotes application, i.e. the simultaneous the replacement of  all z ;  by
s;. In  particular we assure that every x ;  occurs exactly once in ¢ .

An  ordering > on a set S is a relation which is irreflexive and transitive, so that i t  is false that x > =z,
and if x > y and y > z then = > z. An  ordering on 7 is monotonic if for all function symbols f and
terms s1 , . . . ,8p, 5,t we have f ( s1 , . . . , 8 , . . . 8n )  > f ( s1 , . . . , t , . . .Sn )  i f s > t .

An  ordered rewriting system is a pair (E,  > )  where E is a set of  equations in 7 and > is a monotonic
ordering on 7 which is total on ground terms. The notation s=t € E is short for s=t € EVi=s € E.  If
for some I+r  € E we have o l  > or  for all substitutions o we write / — r and call i t a rule.

The ordered rewriting system (E,  > )  induces a relation — defined as

Clos] — Clot] i fs=te€E A os>  ot

Since > is monotonic, p — ¢ implies p > ¢ .  The restriction of — to ground terms is denoted by ==.
We use —*  to denote the reflexive transitive closure of  —.  Two terms s and ¢ are called joinable,
written s | ¢, iff there is a term u such that s —*  u and t —*  u .  They are called ground joinable,
written s |} ¢, iff any two ground instances os  and ot  are joinable. An  ordered rewriting system is called
ground terminating if there is no sequence of ground terms {a;| i  € N }  such that a; =>  a j+1  for all i .
An  ordered rewriting system is called ground confluent if whenever r , s ,  are ground terms with r —>* s
and r =>" ¢ then s | t .  If the terminating or confluence conditions hold for all terms rather than just
ground terms we call (E ,  > )  terminating or confluent respectively. An  ordered rewriting system which
is terminating and confluent is called complete; one which is ground terminating and ground confluent
is called ground complete. I t  follows from Newman’s lemma that if (E,  > )  is complete then each term s
has a unique normal form, and if  (E,  > )  is ground complete this is true for ground terms. Thus if  s, t are
terms (ground terms) and (FE, > )  is complete (ground complete) then s =x  t if  and only if their normal
forms are identical. If s and t are arbitrary terms we may still use a ground complete system to  decide
equality if we regard the variables occurring in s and t as new constants.

In the sequel let (F ,> )  denote an ordered rewriting system and let —,  =>  etc. be the rewrite
relations it generates. If there is a second ordering, say > ,  we write —, ,  |}, etc. to denote the
relations induced by (E,  >).

2 .1  The Cri t ical Pair Lemma

This section deals with the extension of the critical pair lemma to ordered rewriting.

Definition 1 Given two  equations Clu] = t and v = w ,  where u € V ,  and a most general unifier vo o f  u
and v such that o(C[u]) £ ot  and ov  £ ow, then (ot, o(C[w])) is a critical pair.

The set of  all critical pairs of  E is the set of  all critical pairs between any two equations p=gq, s=t  € E .

Note that because of  the symmetry of  = both sides of  an  equation can give rise to critical pairs. If >
orders every equation in E into a rule our definition of  critical pairs reduces to  the usual one.

Lemma 1 I f  > is total  within equivalence classes of ground terms, both sides of an equation s= t  € E
are ground joinable.
Proof For any ground substitution o we have os  > ot, os  = ot  or 0s  < ot,  which implies os — ot,
os = ot or os + ot  and henceos | ot. O

We now come to the proof of the critical pair lemma. We cannot directly appeal to the theorems in [4]
because we deal with ordered rewriting. In particular this means that we may have o l  — or  but not
T l  — t r  for two substitutions & and 7 .  Fortunately, — is still compatible: if s — t then C[s] — Ct ]
for any context C .

Lemma 2 An  ordered rewriting system (E,  > )  is locally ground confluent iff al l  critical pairs are ground
joinable.



Proof The proof is very similar to  the one in [4], except that we need t o  take > into account when
rewriting. The =>-direction of the proposition is trivial. For the other direction let all critical pairs
be ground joinable, and let r =>  s and r = t .  Thus there are equations p=q,u=v € E ,  matching
substitutions o and 7 ,  and contexts M and N such that op  =>  09,  ru  = t v ,  and r = M[op] = N[ru] ,
s = Mog), and t = N[rv] .  We distinguish 3 cases.

Case 1: the two  rewrites are at  disjoint occurrences. Then r = Cop,  ru],  s = Clog,  Tu}, t = Clop, Tv],
and therefore s =>  Clog, Tv] <=.

Case 2: the two rewrites overlap each other. W.lo.g.  let r = Cop] where ru  is a subterm of  op.
Then s = Coq].

Case 2a: there is a variable z in p such that oz = D[ru]. Let p = A[z™] and q = B[z"] ,  i.e. p
and q contain m and n distinct occurrences of x respectively. Then op = A'[o(z)™] = A'[D[ru]™] and
oq = B'[o(z)"]  = B'[D[ru]"]. By  compatibility oz  ==  D[rv] and thus s =>* C[B'[D[rv]"]]  = :  s’ and
t = C[A'[oz,. . . ,0z,  D[Tv), 0%2, . . . , 0z ] ]  =*  C[A'[D[rv]™]] = :  t ’ .  Thus s’  = C[o'q] and t '  = C[o’p) for
0 ’  = 0 + [xz — D[rv] ] .  Because > is total on  equivalence classes of  ground terms, lemma 1 implies that
o'p | o’q. By  compatibility s | ¢ holds as well.

Case 2b: otherwise op  must be the instance of a proper overlap of  p and u.  Therefore (op, t ; ) ,  where
t = C t ] ,  is a ground instance of  a critical pair between p = q and u = v. Thus op  | ¢ ;  which implies
s | t by  compatibility. O

The proof of this lemma relies on the totality of > within equivalence classes of ground terms. The
following example shows that this requirement cannot be dropped:

Example 3 Let © = {+ }  UC ,  whereC is a set of  constants, E = { r * y  = y xz } ,  and s > t iff the
leftmost constant in s is > the leftmost constant in ¢. Clearly > is not total because a and a * b are
incomparable. Assume that a < b. Then the term r = (b  * a)  * a can be  rewritten to  s = a * ( b *  a)  and
t = ( a *b ) *  a. However, s and t are not joinable because s rewrites only to a * (a  + b), which is in  normal
form, and t is in  normal form already.

On the other hand there is only a single critical pair (y  * z , y  * 2) in E which is trivially ground
joinable. This shows that for non-total > the consideration of  critical pairs does not suffice to  determine
local ground confluence.

Corollary 1 A terminating ordered rewriting system is ground confluent iff al l  critical pairs are ground
Jjoinable.
Proof If  all critical pairs are ground joinable we know by  lemma 2 that = is locally ground confluent.
Termination implies confluence of = .  The other direction is trivial. Oo

2.2 Automating It
In  contrast to  ordinary rewriting systems, where critical pairs are required t o  be joinable, we need
the weaker criterion of  ground joinability. I t  is not at all clear how a test of  the latter property can
be automated since i t  talks about an  infinite set of  ground instances. In fact we believe that ground
joinability is  in general undecidable. The purpose of  this section is to  give some sufficient criteria which
are easily implementable and powerful enough to  solve some non-obvious examples. On  the other hand
they are far from complete. Section 4.9 contains an  example which is easily proved to  be ground joinable
but which is not covered by  our method.

The principle idea underlying the automation has already been sketched in the introduction: given
two terms s and t ,  we consider all possible relationships between the variables in s and ¢ under > and
= and try t o  join s and t for each of  them. Since there are only finitely many relationships, namely all
linear orderings, we only have to  consider a finite, albeit possibly very large, number of  cases. I t  remains
to  be explained how rewriting of  terms with variables is to  proceed if we do not know what the variables
stand for, only how they are related to  each other with respect to  > .  As  an  example take the term y *  z
with the constraint z < y. I t  requires some intimate knowledge of  > to  determine whether this implies
that y * 2 > 2 + y, i.e. whether commutativity is applicable.

Instead of  working with a particular ordering and inferring some of i ts  properties, we assume a small
set of properties of the ordering which allow us to order enough terms for proving ground confluence.
For the AC case we have seen in the introduction that the implications (4)-(6) are sufficient for joining
one of  the critical pairs under a particular set of  constraints. In section 4.2 we show that the equations
(1)-(3) together with any ordering satisfying (4)-(6) are ground confluent.
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The advantage of  this approach is its generality: ground confluence is proved for any ordering sat-
isfying the properties we have assumed. However, it means that one has to  be  careful iin  the choice of
properties. For example they must not violate well-foundedness.

We will now describe a test for ground joinability based on the above ideas. Formally, the “properties”
of the ordering are given as a closure operator C on 7 x T subject to the restriction

(s, t)  €C(>)  => (os,0t) € C(o(>)) ‘ (7)

where o (> )  = { (ou ,  ov)  | u > v } .  The  intuition is that C takes a relation on  terms and returns the set of
consequences implied by  the properties we assumed of  the ordering. The above restriction ensures that
C is well behaved with respect to substitutions. This enforces for example that if z * y > y * z follows
from z > y, then x ’  > y' must imply x ’  + y' > y’  * 2 ’ .  We say that an ordering > is compatible with C if
C(> )  = > .  As  a consequence of  restriction (7)  we  obtain:

Lemma 3 Let  E be a set of equations, let > and > be two relations on  T ,  and let o be a substitution
such that o (> )  © > .  Then u —c(y)  v implies ou  —¢(5)  ov  for a l l  terms u , v .

Proof ;From u —>c(y) v i t  follows that u = C[7l], v = C[rr] and (71, 7r) € C(>) for some I=r € E.
From (r l ,  rr) € C(>) i t  follows by (7) that (or l ,o7r) € C(o(>)). Since C is a closure operator and
o(>) C > we also have (srl,  071 )  € C(>). Thus ou  = o(C)[oTl] —e(>)  o(C)oTr] = ov. {m}

Ordering the variables in a term with respect to  = and > is equivalent to  providing a total order on
equivalence classes of  variables. I f  p is an  equivalence on  a set of  variables, p denotes a substitution which
maps each variable to some fixed representative of its equivalence class. Testing for ground joinability
of  two terms s and ¢ by  considering all total orders on  equivalence classes of  variables in s and t leads
to  the following definition. If ps |¢ ( , )  At holds for all equivalences p on  the variables in s and ¢ and all
total orders > on the range of p, then we write

s Vet.

Restriction (7) ensures that this definition is independent of the particular choice of representatives of
p-equivalence classes.

The next lemma shows that s Je  t does imply ground joinability:

Lemma 4 If  s Je  t then s {5  t holds for al l  orderings > compatible with C.
Proof Let > be compatible with C and let o be some ground substitution with dom(a)= V(s) U V(t).
We have to show that os | ot.

Let  p = ker(o)  and define z > y iff oz  > oy  for z , y  in  the range of  5. Then > is a total order
and s {c  t implies ps Le i )  pt. Since > ,  > ,  and o satisfy the assumptions of lemma 3 i t  follows that
os  = aps le(>)  op t = ot.  Since > is compatible with C we have os 1s ot  0

; From this lemma and the definition of Je i t  follows directly that

Corollary 2 I f  C(> )  is recursive and well-founded for all  recursive and well-founded > ,  then Uc is a
sufficient recursive criterion for ground joinability with respect to  al l  orderings compatible with C.

This is the first step towards automating the test for ground joinability. The second ingredient is lemma 1.
Combining all these criteria we obtain the following set of rules:

s i t  <= s= t
s i t  € se t

s i t  << 3d l= re€eE,o .o l=sA or=t
f 81 , . . .  Sn) $ F l t i , - . . tn) = Vs i t ;

The first clause is obvious, the second and third ones are consequences of  lemmas 4 and 1 respectively,
and the last one follows from compatibility of rewriting.

The prototype implementation of this test is written in Prolog and follows exactly the above four
Horn clauses. C is just another predicate. In all our examples C consists of  the implications (4)-(6) and
further clauses specific to  the example.
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2.3 Completion
The critical pair lemma in the preceding section leads to  a completion algorithm in the usual way: critical
pairs which are not ground joinable are added as new equations. Formally this can be  expressed as an
inference rule between sets o f  equations: ;

E
EU { §=  t }

I f  this process terminates because all critical pairs are ground joinable, we have obtained a ground
complete ordered rewriting system. In addition one may want to  obtain a reduced rewriting system by

"simplifying the right or left hand sides of  equations by  other equations. This can be achieved by the
following rule:

if  (s,t) is a critical pair of  E and not s |}  ¢ .

Eu  {s=t}  . .
—_— it — A s=t¢ FE
Bu{s=u )  [ 1TEY NE

" Since we are only interestedi na ground confluence, ground joinable equations can be removed:

EuU{s=

The applications of these three rules maybe interleaved arbitrarily.
A prototype implementation of this completion procedure has been written in  Prolog and was used

for all the examplesi n  section 4.

3 Orderings
“Our notations and concepts are taken from Dershowitz [3].

. An  orderingi s  called well-founded if thereis  no set {a;] i  € N }  with a ;  > a;+1 for eachi. We have

Lemma 5 Let (E,> )  be an ordered rewriting system. If  > is well-founded then (E,  > )  is terminating.
. Proof The monotonicity condition ensures that if s — ¢ then s > ¢ ,  so if > is terminating there can

be no infinite chain of  rewrites. a

The following orderings will be used in the sequel.

Lexicographic Path Ordering |

Let s = f(81 vey ; Sm) ;  t =  g(t, . .  y l ) .  Let.  > be an ordering on  function symbols. Then

s > t if and only if

es ;  >1  for some i = 1 , . . . ,m ,  or
e f>gands>t; f o r  all j =1 , . . . , n ,  or
eo f = g (son = m) and (sı,..., Sn )  is greater than (#;,...,%,) in the® lexicographic

ordering from the left on sequences induced by > ,  and s > t ;  for i = 2 , . . . , n .

Then we have

Lemma 6

1.  The lexicographic path orderingi s  well-founded, andi s  total  on  ground terms if the operator prece-
dence is total. ;

2,  I f  f , g are binary function symbols with f >>g  and2 ,  u ,v  are any terms andTa y)  > u ,  f ( z , y )  >
then f ( z , y )  > g (u ,v ) .  ;

Proof

1. This is just Theorem 22 of  [3]
2. Follows from the definitions.
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Knuth-Bendix Orderings

The essence of  the Knuth-Bendix orderings is to  compare terms first by weight and then lexicographically
by an operator precedence. For details see [8] or [10], where proofs will be found of

Lemma 7 The Knuth-Bendiz ordering is monotonic and well-founded, and is total  on ground terms if
the operator precedence is total,

Lexicographic Orderings

Let © = { f , a1 , . . . ,  ax }  where f is binary and ay, . . . a ,  are constants. Assume a ;  < a2 . . .  < a i .  Define
> ;  f o r t=1 ,2  by

a; > :  aj if and only if i > ]
f (z,y) >: f(t) if and on lyi f z>zo rz=zandy>1

f as )  >1  a if and only if i > ]
a; >1  f (a,  z)  if and only if i >

fa i , z)  >2 aj  f o ra l l i , j =1 , . . . , k

where z , y ,  z , t  are arbitrary ground terms. Then

Lemma 8 For each of the orderings >1 ,  >2

1 .  > ;  is a monotonic ordering and total  on  ground terms

2. f ( f ( z yy ) , 2 )  >:  f ( z ,  f ( y ,2 ) )  and i f x > y then f ( x , y )  > f (y ,  z )  for a l l  ground terms z,y, z .

8. > ;  is not  well-founded.

Proof The proof is straightforward. For (3) notice that we have

faz ,  a1) > :  F(a1; f(az,a1)) > :  f (a ,  F(a1, f(a2, a1))) > t  . . . .

[m

Notice that > ,  is described by  Boyer and Moore [2], where i t  is expressed in terms of  projecting onto
strings by

s(a;) = a i ,  5(f(z,9)) = fs(z)s(y)
where f denotes function application, and ordering the strings lexicographically.

To  enable us to  use the automatic confluence test described in  section 2.2 we need to  identify orderings
with certain properties.

Definition 2 An  ordering is called AC  compatible for the binary operator f if i t is monotonic, well-
founded and total on  ground terms, and satisfies for all ground terms z , y ,  z

F( f (=z , y ) , 2 )  > f ( z ,  f (y ,  z))
f z )  > f (y ,2 )  i f z>y

f ( z ,  f ( y ,  2)) > f ( y ,  f ( z ,  2)) i f z>y

Lemma 9 Let  > be the Knuth-Bendiz ordering or  the lezicographic path ordering and f any binary
function symbol. Then > is AC-compatible for f .
Proof Follows from the definitions. [a]

4 Examples
We present here examples of ground complete ordered rewriting systems. 4.1-4.9 are standard algebraic
systems. In 4.10 we investigate combination of  rewriting systems. In 4.11 we investigate an  alternative
ordering for which AC  has a ground complete system containing two rules only, and in we give a ground
complete ordered rewriting system for abelian groups.

Examples 4.2-4.9 are all ground complete for any ordering > which

1. is AC-compatible for all AC operators in the system, and
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2. satisfies s > t for all rules s — ¢.

For examples 4.1-4.6 the Knuth-Bendix orderings and the lexicographic path orderings have the required
properties. These examples were all proved ground complete using the method of  section 2.2. The
closure operator C was induced by 1 and 2 above.

Intuitively one reason why all the examples involving AC  work is that we we are doing is using a
sorting algorithm. Any ground term is equal to a product of irreducibles and the AC rules (1)-(3) are
sorting these irreducibles into increasing order using bubble sort. The two rule version is merely using a
different sorting algorithm.

4 .1  Commutativity

Let FE be  { z  * y  = y * 2 }  and > any monotonic ordering total within equivalence classes of  ground
terms. Then (FE, > )  is a ground complete ordered rewriting system. It is confluent because there are
no  (non-trivial) critical pairs. It is terminating since each equivalence class is finite, and so any infinite
chain of  rewrites would contain a loop, which would imply that > was not irreflexive.

4.2 Associativity and Commutativity
This example has been discussed in the introduction. Let E be

(z*y)*2z  — zx (y *2 )
TkYy  = y ız

zx (y *z )  = yx ( z *2 )

(E ,> )  is also ground complete if > is either of the lexicographic orderings > .

4.3 Associativity and Commutativity — Another Version
In the introduction we observed that one of  the critical pairs generated by  4.2 was (z  * ( x  * y),  x * (y  * 2).
We may use this t o  obtain another three rule ground complete ordered rewriting system for AC.  Let E
be

(z*xy) *z  — zx (y *2 )
Txy  = y=

zx (z *y )  = zx ( y *2 )

and > any ordering which satisfies (5) and z * ( z  * y )  > z * ( y  * 2) if 2 > x .  The lexicographic path
ordering and the Knuth-Bendix ordering have this property.

4.4 Associativity, Commutativity, and Idempotence
Let  E be

(z*y)*xz — zx(yx2)
xy  = Yyaz

zx (y *xz )  = y+ * ( z *z )

IKT  — ZX

zx (zxy )  — THY.

4.5 Groups o f  Exponent Two
Let F be

(zxy ) * xz  — zx (y *x2 )

Try  = yYx*xz

zx (yxz )  = yx*(z*2)
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SZ —

z+* ( z *y )  —
r x l  —

8 
8 

8 
=

1*z  —

Then (E,  > )  is a ground complete ordered rewriting system for groups of  exponent two.

4.6  Groups o f  Exponent Two in Disguise
We want to prove that the two laws

( z+z )+y  = y
(z+y )+z  = ( y *2 ) * z  (8)

axiomatize groups of  exponent two. Starting from this system, the completion procedure generated the
following list of  critical pairs, ordering some of them into rules:

( zxy ) * z  — y

(z *y ) * r y  — =
Tr  = Y+y  9)
zxz  — 1 (10)
l x z  — =z
zx l  — =z

zx (zxy )  — y
Ty  = yY*=x

(zxy)*xz — zx (y *2 )
zx(y*xz) = yx*(z*2)

Notice that (10) is the result of “dividing” (9), i.e. introducing the new constant 1. The final set of
equations (all the ones below and including (10)) is the same as in section 4.5. All the other equations
are now joinable.

In [9] the same problem is attacked with the help of the term rewriting system Reve. Because (8)
cannot be oriented into a rule, Reve cannot deal with it directly. Martin obtained the result by working
with consequences of  (8 )  that can be  ordered.

4.7 Distributivity
Let E be

(z*y)*xz — z+(y=*2)
zxy  = y *2

zx(y*xz)  = yx*(z*2)
zx ( y+z )  — zxy t z *xz
(z+y ) *xz  — zxz t y *z

and let > be  any ordering which is AC-compatible for both  + and * .  For example the lexicographic path
ordering fits the bill. Then (E,  > )  is a ground complete ordered rewriting system.

50



4.8 Boolean Rings
The following is a ground complete set of  ordered rewrite rules for Boolean rings.

z+y  = y+=z I *Yy  = Y+z
z+ (y+z )  = y+ (z+z )  zx ( y *z )  = y+(zx*z)

z+z  — 0 z+0  — =z
04+z — = Tr  — 2

l z  — =z z *1  — =z
zx0  — 0 Oxz  — 0

(z*xy)*z — zx(y=*2) ( z+y )+z  — z+ (y+2 )
zx (y+z )  — z ry t+z *z  ( z+y ) * z  — z *z+y+*z
zx (z *xy )  — zxy  z+ (z+y )  — y

The ordering must be AC-compatible for both + and * .  The lexicographic path ordering has these
properties. Ground confluence can be checked by the technique of  of section 2.2.

4.9 Another System
The equation 

; 
;

( z * z ) * y=y=* ( z *2 )  (11)

is an example of a system that is ground confluent for any ordering total and well-founded on ground
terms. The reason is that the only nontrivial critical pair

yx ( ( z *xz )x (z *z ) )= ( ( z *z ) * ( z *z ) ) * y

is an instance of (11). By  lemma 1 this implies ground joinability.
I f  (11) is generalized slightly to

( z * y ) * z=z%(z *xy )  (12)
and we assume that x * y > z implies ( z  * y)  * 2 > z * (2  * y),  the criteria of  section 2.2 fail to  prove
ground confluence, although there is a very simple proof. The two critical pairs are

( zx ( z *y ) ) *u  u * ( ( z  xy) * 2 )  (13)
( ( z *y ) *2 )xu  = ux (z * (z *y ) ) .

Let us just consider the first one. If  (x  * y) = 2 ,  (13) is an instance of (12). If  (x xy )  > z or (x  * y )  < 2,
(13) can be rewritten to (z * (z * y)) *u=ux(z*(z*y)) or ( z * y )  *z )  *u  = ux  ((z * y) * 2), both of
which are instances of (12). Again lemma 1 implies ground joinability. The proof for the second critical
pair is practically identical.

The tests in  section 2.2 cannot cope with these critical pairs because the proof of  ground joinability
is  based on  a case distinction which compares not just variables but  whole subterms, namely z *y  and z .

4.10 Combination o f  Systems
In this section we discuss how a ground complete ordered rewriting system may be combined with a
ground complete rewriting system in the usual sense.

Lemma 10  Suppose that

1.  R is a ground complete rewriting system in the usual sense over a set of function symbols T and
R={ l= r | l—r€R} .

2. (E ,> )  is a ground complete ordered rewriting system over a set of  function symbols T

3. There are no critical pairs between E and R ' .

4. There is a well-founded monotonic total ordering = on T(Z UT )  such that >= D > and o l  > or  for
each rule 1 — r € R and ground substitution o .
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‚Then (E  UR ,  3 )  iisa ground complete orderedrewriting system.
Proof The conditions ensure that (FU  R/,  > )  iis  terminating. Since E and  R have no  non-constant
function symbolsi n  common the only critical pairs are those of  E or of  R and hence are ground joinable.
Thus (EU  R',  > )  is ground complete. oO

As a corollary we see immediately that the combination of  any of  the theories we have considered
above with new free function symbols (so R is empty) gives a ground complete ordered rewriting system.

If  R and E are both proved terminating using the lexicographic path ordering or Knuth-Bendix order-
ing, and assuming that the operator precedences are consistent on NI", we may obtain a total ordering
> by  constructing a total operator precedence on  £ UT  which subsumes the two partial precedences.
Thus we may combine any of  the examples above with any such R.

4 .11  AC  with Two Rules

In this section we show how with a suitable choice of ordering two rules suffice for a ground complete
AC rewriting system. Let E be

(z*xy) *z  — zx(y+*2)
Ty  = yz

and > any monotonic ordering which is total on ground terms and satisfies for all ground terms z,y, 2
and all constants a ,  b

(z*xy)xz > z * ( y *2 )
TY > y *=z  i f z>y

a > b *z  if  a>b.
We show that (F ,> )  is ground complete. Notice that the ordering > ;  of the previous section has
the required properties. ( In fact it is not hard to  see that any ordering with these properties is not
well-founded).

We must first prove termination. Suppose that s ;  =>  s;  =>  - - -  is an  infinite chain of  rewrites.
Since each equivalence class is finite it must contain a loop s;  =>  8 j41  =>  +++  =>  Si4k =>  s;. But
since s =>  t implies s > t we have s; > s;i+1 > +++  > s i ,  which contradicts the definition of  > .  Thus
(E,>) is terminating.

To prove ground confluence we first observe
Lemma 11  Let  ¢ and y be ground terms and let S ;  be the multiset of al l  constants occurring in X .  I f
z=gy  then S;  = Sy.
Proof S;  is invariant when applying the equations of E .  ; a
Then we can prove

Theorem 1 Le t  (E,>) be as above. Then

1. If w € Tg then
w="ay*(ag*---*(@r_1*%ay).. . )

where Sy, = { a1 , . . . , a , }  and a ;  < az < +- -+  < ay, and this expression is irreducible.
2. (E ,> )  is a ground complete ordered rewriting system.

Proof

1. The proof is by  induction on n = |S,,]. If n < 2 the result is clear. Now by applying associativity
we may assume w —>* a * v where S,  = Sy  — {a } .  By  induction we may assume that v has the
required form, so that in particular v = b *u ,  where b < c for each c € Sy = Sy — {b } .  Now i f a  < b
we are done, so assume that a > b. Then

w =>" a+* (b+* u) = "  (b*u) xa="bx (uxa ) .

Now by induction u * a rewrites to  the required form, az + (a3-- - *  an), and since b < aand b<c
for eachc € Sy we have b<  a; for each: =2 , . . . , n .  So

w="  a;  * (ag * ( - - - * a,)),

where a ;  = b. I t  is clear that this expression is irreducible.
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2. Suppose that v =g  w.  Then Sy = Sy, so by  part ( i )

v=>"ay; * (az * ( - - - *a , ) )

and
w="  ay * (a2 * (+++ * an))

where Sy = {a1 , . . . , 8 , }  and a ;  < -:-an. Thus v and w are joinable. Hence (E ,> )  is locally
ground confluent, and as it is terminating i t  is ground complete.

O

4.12 Abelian Groups
Le t E be

TY = yYy*z

zx (y *xz )  = y * ( x *2 )
(z*xy)*xz = z+(y=*2)

zxi(z)  = 1
l x z  = =z
zx1 l  = =z

z+( i (z)*y)  = y
i(z+xy) = i (z ) * i ( y )
i ( i ( z ) )  = =

i l )  = 1

and > any AC  compatible ordering which orders the last seven equations from left to  right for all ground
terms z,y, and has

a ;  < i ( a1 )  < az < i(a2) < - - -  < an  < i la )

where the constants are aj, . . . , a , .  The lexicographic path ordering with precedence + < i <a ;  < . . . <
a ,  will do this. We shall show that (E,  > )  is ground complete.

Unfortunately our automated ground confluence checking procedure fails in this case as it has to
reduce arbitrary terms of  the form x * ( y ı  * (ya * (++ (yn  * ( i ( z )  * 2 ) . . . ) . .  But  we may prove ground
completeness using the technique of  the previous example.

If a is a constant and ¢ is a term we define the polarity of  a in t as p(a,.) : T¢ — Z inductively as

Ka,a) = 1
(a ,b )  0

pa  i(z)) = -pa 2 )

p(a ,s* t )  = pla, s )+  plat)

where s and £ are terms and b is any constant distinct from a. Thus for example p(a,i( i(a) * (€ * a))) =
=p).
Lemma 12 I f z and y are ground terms with x =g  y then for each i p(a;, x) = pa i ,  y)-
Proof It is easy to check that p(a;, z) is invariant under application of  any of the equations. a

Now we have

Theorem 2 Let  (E,>) be as above. Then

1. Ifwe Te and wg  1 then
w=>"e* x eb? - - -  x ebm,

(assumed associated to the right) where for each i we have p;  = |p(a;, w)|, and e; = a; if p(ai,  w) >
0,e; = i(a;) if  pa i ,  w) < 0. Furthermore each such expression is irreducible.
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2. (B ,> )  is a ground complete ordered rewriting system.

Proof

1.  If  w € 7g  then by  applications of  the last seven equations it is easy to  see that

w=>* ej+*(e2*---*en)...)

where each e; € {a;, i(a;) | j = 1 , . . . , n } .  Now as a; < i(a1) < az < i (a3)++ < a, < i(an) an
argument similar to the previous theorem shows that we may assume e ;  < e3 < : - +  < e,;. Now
applying (7) we see that each expression of the form u + (a; * (i(a;) * 2)) reduces to  u # v, and thus

w =>" el! xegpyx ---% el",

where each a;  is a;  or i(a;).  Now by  the lemma each p;  = [p(a;, w)|. It is clear that this expression
is irreducible.

2. Since the ordering is well-founded, (E,  > )  is terminating.
To prove confluence suppose that u =g  v. We have by the lemma that p(a;, u) = p(aj, v) for each
Jj. But  then by  the first part u and v are joinable. Thus (E,  >)  is locally ground confluent and
hence ground confluent. [m]
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1 Completion procedures as sets of  transitions rules

The interest of rewriting techniques in  programming, algebraic and computer algebra spec-
ifications is well-known as is its ability to provide proof environments essentially based on
completion procedures [FG84,KS83,Fag84,GG89,Les83]. In  this introduction, I suppose the
reader is familiar with this concept. Indeed my goal is not to present i t ,  but to study how
methods developed essentially with a theoretical purpose, namely proving completeness can
be used to  present simple short and understandable programs. This paper can also be seen as
a set of exercises on the use of a functional language to program high level procedures and as
a bridge between theory and practice. Readers who want to get more introductory informa-
tions are invited to  look at  Dershowitz survey Completion and its Applications [Der87]. The
completion procedure is a method used in  equational logic to built from a set of identities
an equivalent canonical set of rewrite rules i.e., a confluent, noetherian and interreduced set
of rules used to compute normal forms. If one tracks the history of the presentation of this
procedure, one can notice different methods of description. In their seminal paper [KB70]
Knuth and Bendix describe essentially the procedure in  natural language, in [Hue80] Huet
uses a style similar to Knuth’s book, The Art of Computer Programming, in  [Hue81] he uses
a program structured by while loops, in [Kir84] H .  Kirchner uses a recursive procedure and
in  [For84] Forgaard proposes an organization of the procedure around tasks to  be performed.
In the following, a completion will be seen as a set of inference rules or more precisely a set
of transition rules acting on a data structure. The idea of using inference rules when dealing
with completion is not new and leads to the beautiful proofs of completeness proposed by
Bachmair and Dershowitz [Bac87,BDH86,BD87] and their followers [GKK88,Gan87]. The
completeness is the ability of the procedure to eventually generate a proof by normalization
or a rewrite proof for every equational theorem. In this paper, I want to show how this
description leads to actual, nice and elegant programs when used as a programming method
and I illustrate that by an actual CAML implementation [FOR87a]. Actually the inference
rules one considers in  completion are specific in  the sense that they transform a t-uple of

"The research was sponsored by PRC “programmation avancée et outils de l’intelligence artificielle”,
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objects into a t-uple of objects with the same structure. This is why I refer to them as
transition rules. Thus the basic components of such a procedure are four,

e a data structure on which the transition rules operate, sometimes called the uni-
verse,

e a set o f  transition rules, that are the basic operations on the data structure,

e a control, that is a description of  the way the transition rules are invoked,

e a toolkit that is shared by  several completion procedures.

When one wants to  describe a specific completion procedure, usually one uses the following
method. First one chooses the data structure, then one chooses transition rules and often
at the same time the control. The toolkit is something that remains from one procedure
to  the other in many cases, i t  was partly borrowed from the “CAML Anthology” [FOR87b]
as a natural attempt to reuse pieces of codes already debugged and tested. As we will see
the control is typically data driven and can be easily expressed by rewrite rules. In the
following, the influence of these choices on the efficiency of the procedure will be illustrated
through three refinements of the Knuth-Bendix completion procedures and a two unfailing
completions. Indeed, we will see how, starting from a naive implementation of the comple-
tion, improvements can be obtained by changing the data structure and consequently the
transition rules and the control. These ideas are implemented in my program ORME. A
long version of this abstract can be found in [Les89).

In this extended abstract I am going to give only two controls. One which is relatively
. simple is called KB-completion since its reflects the completion presented in the original

paper due to Knuth and Bendix. Another called the ANS-completion performs optimiza-
tions namely with respect to simplifications and computation of critical pairs. In the full
paper, I present other completions that are intermediate between the KB-completion and
the ANS-completion. I also present unfailing completion.

2 The KB-completion

This completion tries to stick to the control given by Knuth in  his paper. The name of
the inference rules are taken from Dershowitz [Der87] except that some rules are naturally
extended. Normalize computes the normal form of all the identities in  E ,  Delete_all removes
form E all the trivial identities, Orient_all transforms all the identities that can be oriented
into rules, Deduction computes all the critical pairs of R and put them into E .

3 The ANS-completion

The KB-completion can be improved into respects. It should privilege simplifications. This
is the role of  the set S where the rules enter as soon as they are oriented. There first task
is to simplify all the other rules. Since the KB-completion computes at each loop, all the
critical pairs between all the rules in  R.  It can be improved by computing the critical pairs
between only two rules in R. Thus R is split into four parts. T is a waiting room where
rules that have already been used for simplification wait before being used for computation
of critical pairs. The computation of critical pairs is done by three sets C ,  N and A. C
contains zero or one rule; if  i t  contains no rule this means one is not processing critical pair
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let rec KB_Completion ordering = COMP
where COMP (R, E) = ;

match E with

0 =>  (R, I )  ( *  success *)

| (Gi) =>  COMP (Delete all
(Normalize
(Delete_all
(Deduction
((repeat Collapse)
((repeat Compose)
(Orient all ordering) (R, E) ) ) ) ) ) ) )

Figure 1: The KB-completion

computation, if  C contains one rule, this rules will be confronted with all the rules in  N for
computation of critical pairs. After this confrontation, the rules go from N into A. When
N is empty, the computation of critical pairs ends with the computation of the critical pairs
resulting form the superposition of the rule in  C on itself.

e E the set of identities,

e S the set of  simplifiers, where identities enter after being oriented into rules,

e T is a set of rules coming from S and waiting to enter C,

e C is a set that contains one or zero rule and whose critical pairs have to  be computed
with one in  N ,

eo N is the part of R whose critical pairs have not been computed with C,  but whose
critical pairs with AU N have been computed,

e A is a set whose critical pairs with A UN  UC  have been computed.

The transition rules are adapted to work with this new data structure and three new rules
are introduced. Deduction computes the critical pairs between the smallest rule in N and
the rule in C. Internal Deduction computes the critical pairs obtained by superposing the
rule(s) in  C on itself (themselves). A_.C2N moves the rules in  A and C into  N to  start a new
“loop” of computation of critical pairs, according to the emptynessof the components of
the data structure. The procedure has now clearly six parts, namely success, simplification,
orientation, deduction, internal deduction and beginning of a new loop of computation of
critical pairs. Typically this cannot be easily structured by a while loop because at  each time
the iteration on the computations of the critical pairs can be interrupted by a simplification.
A data driven control is then much better (Figure 2).
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let rec ANS_Completion crit ordering = COMP
where rec COMP (A,N,C,T,S,E) = SE

let ORIENT = Orientation crit ordering in
match (N,C,T,S,E) with

0 .0 .0 .0  ->  (AN,C,T,S,E)

| Coniin) —> (COMP (A°,N°,C?,T’Q@S’,[),E?)
where A ’ ,N ’ ,C ’ ,T ’ ,S ’ ,E ’  =

repeat list [Simpl left A _by_S;S imp lright A_by S;
Simpl _left_N_by_S;Simpl right_N_by_S;
Simpl left C_by_S;Simpl right_C_by_S;
Simplleft_T_by_S;Simplright T by_S] (A,N,C,T,S,E))

| Cools)  —> let A ’ ,N ’ ,C ’ ,T ’ ,S ’ ,E ’  = clean_E(A,N,C,T,S,E) in
(match E ’  with

 —> COMP(A’,N’,C’,T’,S’,E’)
| _ =>  (try(COMP(ORIENT (A’,N’,C’,T’,S’,E”)))

: with _ —> try Deduction(A’,N’,C?,T?,S?,E?)
with _ —> try Internal Deduction(A’,N’,C’,T’,S’,E’)

with _ —> failwith "non orientable equation"))

| Ges )  —> COMP (Deduction(A,N,C,T,S,E))

| (Db l )  —> COMP (A_C2N crit (Internal Deduction (A,N,C,T,S,E)))

| ( INT )  —> (COMP([,A@N,[r], T,[},[})
where 1,T’ = least crit T)

Figure 2: The ANS-completion

4 Conclusion

The main idea of the approach presented here is to decompose the algorithm into basic
actions and to describe some kind of abstract machine where these actions as the instruc-
tions. This may remind either Forgaard’s description of REVE based on tasks [For84],
or ERIL [Dic85] where users have access to the basic operations or Huet’s first descrip-
tion [Hue80]. The rigorous and formal approach of this paper gives precision and concision
and leads to a better understanding of the program and therefore to a better confidence.
Since one is closer to the proof of completeness there are more chance that the implemen-
tation is both correct and complete. Another important aspect of this approach is that
modifications and improvements are easily done. Basically this level of programming allows
to study very high level optimizations [Ben82] and when an efficient procedure is discovered,
a low level implementation can be foreseen. Here I made many implementation choices that.
still can be discussed, but since they are rather explicit this discussion is easy and changes
can be quickly made. However, as well illustrated by the ER_completion compared with
the unfailing completion, i t  should also be noticed that the complexity of the completion
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procedures described by transition rules increases exponentially with the size of the number
of components of the data structure, which implies that some kind of modularity has to  be
found. a a

Another interesting aspect of  the programming by transition rules is that simple snap-
shots exist, therefore the process can easily be stopped after each rule and restarted on this
state. Thus backtracking on the choice of the orderings as implemented in REVE or any
kind of  backtracking to  insure fairness [DMT88], backups, breakpoints or integration of an
already completed rewrite system in another equational theory can be easily handled.

But this approach does not address low level controls, for instance refinements that
computes one critical pair at a time. This indeed requires a level of granularity in the
actions that cannot be handled by the current form of the data structure. Attempts to
fully formalize all the tasks, including substitutions and unifications should answer this
question [GS88,HJ88].

All the procedures presented in this paper are a part of ORME, a set of CAML proce-
dures that were run for completing a set of  examples. Both the programs and the examples
can be obtained from the author upon request.

I would like to remember Alain Laville from whom I received wise advices on how to use
CAML. I thank Leo Bachmair, Francoise Bellegarde, Jieh Hsiang, Jean-Pierre Jouannaud,
Jean-Luc Remy, Michael Rusinowitch and the EURECA group at CRIN who provided me
with stimulating discussions and Gérad Huet who gave me access to the CAML Anthology.
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Abstract

Recently, two classes of  equational theories that are intimately related
have been investigated for their unification properties. Monoidal theories as
introduced in [Nutt 1988] are defined in  terms of signatures and identities.
To every monoidal theory corresponds a characteristic algebraic structure, a
semiring, such that solving unification problems in the theory is  equivalent t o
solving linear equation systems in the characteristic semiring.

Baader [1988] called a theory commutative if the category of  free algebras
and homomorphisms is semi-additive. He proved unification properties of such
theories using mainly categorical arguments.

I t  has been proved [Nutt  1988] that every monoidal theory is  commutative
and that every commutative theory can be turned into a monoidal theory by
a signature transformation.

Rydeheard and Burstall [1985] reformulated the basics of unification the-
ory for categories. In  this paper we show that the basic results on  monoidal and
commutative theories can already be obtained in a purely categorical frame-
work. The appropriate generalization of these theories are modular categories
which are defined as having biproducts and being generated by  a single object.

As for monoidal theories, i t  turns out that for every modular category
there exists a semiring determining the structure of  unification problems. More
precisely, the category of  matrices over this semiring is equivalent to  the given
category. As a consequence, unification problems can be treated using methods
from linear algebra as they were already applied to  monoidal theories.



On  the other hand, we can use this fact to make sure that during our
excursion t o  category theory we didn’t generalize too far. Since every semiring
is the characteristic semiring of some monoidal theory, we know that every
unification problem occurring in a modular category can as well occur as an
equational unification problem.
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Extended Abstract

1.  Unification in Commutative Theories

Unification in the empty theory ( which is unitary ) plays an important röle in automated
theorem proving, term rewriting and logic programming. Generalizations to E-unification
usually require that E is finitary. A finitary theory most used in this context is the theory
of abelian monoids, i.e. the theory of  an associative, commutative binary operation with a
neutral element. Unification algorithms for this theory and unification algorithms for the
theory of  abelian groups and for the theory of  idempotent abelian monoids have similar
structures. They depend on the following properties which the three theories have in com-
mon: :

(1.1) There is a binary associative, commutative operation.
(1.2) The finitely generated free objects are direct products of  the free objects in one gen-

erator.
(1.3) Unifiers correspond to solutions of  systems of  linear equations in a certain semiring.

For the theory of abelian monoids we have semiring IN, for the theory of abelian
groups Z and for the theory of  idempotent abelian monoids the 2-element boolean
semiring B.

Category theory can be used as an appropriate level of  abstraction to express the com-
mon structures. Let E be an equational theory and let C(E) be the category which has the
finitely generated E-free algebras Fp(X) as objects and the homomorphisms between
these objects as morphisms. An E-unification problem can be written as a pair < ¢ =
1 >g of morphisms 6, 1 :  Fg(I) — F(X) in the category C(E) and an E-unifiers of  the

unification problem < © = T > is a morphism 8 such that 66  = 15 ( see Baader (1988) ) .
We can now characterize a class of  equational theories E by properties of  the correspon-
ding category C(E): A theoryE is called commutative iff C(E) is  a semiadditive category.
Semiadditive categories are categories which have a zero object, all binary coproducts
and allow an associative, commutative binary operation "+" on morphisms distributing
with the composition of morphisms. It can be shown that the binary coproducts in semad-
ditive categories are also products ( this corresponds to 1.2 above ) and that the operati-
on on morphisms induces an associative, commutative binary implicit operation " "  in the
class of  all finitely generated E-free algebras ( vid. 1.1 ) ( see Baader (1988) or Herrlich-
Strecker (1973) for the exact definition and properties of  semiadditive categories ) .
Werner Nutt ( Nutt (1988) ) observed that commutative theories are ( modulo a transla-
tion of  the signature ) what he calls monoidal theories and that unification in a monoidal
theory E may be reduced to solving linear equations in a certain semiring S(E) ( vid.
1.3).  In  the categorical framework this semiring can be obtained as follows:
Let 1 be an arbitrary set of  cardinality 1. The definition of  semiadditive categories yields
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that hom(Fg(1),F(1)) with addition "+" and composition as multiplication is a semiring,
which shall be denoted by S(E). Any Fg(x) is isomorphic to FED) and for IX = n,  F(X)

is n-th power and copower of  Fg(1) with projections Pp, and injections u_. A morphism ©:

F(X) — Fg(Y) is uniquely determined by the IXIxIYl-matrix Mo  = (u,0Py x XyeY
and the entries of  M may all be considered as elements of  S(E). Hence all morphisms of
C(E) can be written as matrices over the semiring S(E). Addition and composition of
morphisms correspond to addition and multiplication of  matrices over S(E), i.e. Mi r  =

M; + M,  and Ms  =M;  Ms.
The characterizations of  unification type unitary for unification without constants ( finitary
for unification with constants ) for commutative theories, which were given in Baader
(1989), can now be translated into algebraic conditions on S(E):
(2.1) A commutative theory E is  unitary w.r.t unification without constants iff the corre-

sponding semiring S(E) satisfies the following condition: For any n, m 2 1 and any
pair M,. M ,  of  mxn-matrices over S(E) the set

UMM) := { xe  SE;  M;x=M x}
is a finitely generated right S(E)-semimodule, i.e. there are finitely many x,  ..., X; €

S(E)" such that UMM.)  = { X18; + ... + XS;  Sy» ..., 8,  € S(B) }.
(2.2) Let E be a commutative theory which is  unitary w.r.t unification without constants.

Then E is finitary w.r.t. unification with constants, i f  the following condition holds in
S(E):
Let A be any mxn-matrices over S(E) and let b be any element of  S(E)™. Then the
set M : =  { x € SE)™; Ax =)  } i s  a finite union of  cosets of  the ( finitely generated )
right S(E)-semimodule N := { x € SE)"; Ax = 0 } ,  i.e. there exist finitely many m,,
My € S(E)" such thatM = { m; +n ;ne  Nand1s isk } .

(2.3) Let E be a unitary commutative theory such that S(E) is a ring. Then E is unitary
w.r.t. unification with constants

2. The Theory AGnHC of Abelian Groups with n Commuting Homomorphisms.
It is easy to see that S(AGnHC) is isomorphic to the ring ZX...  X 1, i.e. the polynomi-
al ring over Z in the ( commuting ) indeterminates Xs  .... X To establish Condition 2.1,
we have to consider systems of homogeneous linear equations in Z[X,,...X|, ie. sy-
stems f ix ;  + . . .  + friXxx = 0 ( i =1 ,  . . , s ) ,  where the coefficients f i  and the desired solu-

tions are elements of ZX ,  X a]. The set of  solutions I © ZX ,  X DE is a
Z[X,,....X ]-module, which is finitely generated by  Hilbert’s Basis Theorem and the fact

that Z is a noetherian ring. Thus AGnHC is unitary w.r.t. unification without constants.
Since Z[X,.. X ] is a ring, AGnHC is also unitary w.r.t. unification with constants ( see
2.3). This argument does not yield an AGnHC-unification algorithm, because we still do
not know how to solve linear equations in  Z[X,,...X] effectively. Buchberger (1985) de-
scribes an effective method, which constructs finitely many generators of  the solutions of
a single equation fx;  + ... + fix; = 0, where the f, and the desired solutions are elements
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of K[X pp .  X.1] for a field K.  This method may also be used for ZIX X , but the proof
of  its correctness becomes more involved ( see Baader (1989a) ) .

3. The Theory AGnH of  Abelian Groups with n Non-commuting Homomorphisms.
It is easy to see that S(AGnH) is isomorphic to  the ring Z<X,,....X>,  i.e. the polynomi-

al ring over Z in the non-commuting indeterminates X,, ..., X . Unfortunately, for n 2 2
this ring is not noctherian and the membership problem for finitely generated two-sided
ideals is undecidable. Fortunately, we are not interested in two-sided ideals, but only in
right ideals. The solutions of  a homogeneous equation f;x;  + ... + fx. = 0 are only closed
under right multiplication and the inhomogeneous equation fx; +... + fx, = f ;  has a solu-

tion iff f is a member of the right ideal generated by f,; . . . ,  f . Though, for n 2 2,
ZX,,...X > is not even right noetherian ( i.e. there are right ideals in ZX. . .  X >,

which are not finitely generated ) ,  the set of  solutions of  a homogeneous equation f ;x;  +
. .  + £x  = 0 is  a finitely generated right Z<X,,....X >-semimodule and the membership

problem for finitely generated right ideals is decidable in  Z<X,,....X>.  This is proved in
Baader (1989a) by construction of a Grobner base algorithm for finitely generated right
ideals in Z<X,,....X>.  The computation of Gröbner bases for finitely generated right ide-
als in KX...  X >, where K is a field, is very easy ( Mora (1986) ). For ZX,,...X >
one has to be much more careful to obtain a terminating algorithm.

Conclusion

The categorical reformulation of E-unification allows to characterize the class of com-
mutative theories by properties of the category C(E) of finitely generated E-free objects.
The definition of semiadditive categories provides an algebraic structure on the morphism

“sets, which can be used to obtain algebraic characterizations of  the unification types. This
shows the connection between unification in commutative theories and equation solving
in  linear algebra. The very common syntactic approach to equational unification, which on-
ly uses the defining axioms, is  thus replaced by a more semantic approach, which works
with algebraic properties of  the defined algebras. Hence unification algorithms for com-
mutative theories can be derived with the help of well-known algebraic methods.
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.Abstract

We present in this note a necessary and sufficient condition for a collapse free theory to
be syntactic.

1 Preliminaries

We  are using the standard notations in equational logic [4] and unification [6,8]. T (F ,  X )  denotes
the free F-algebra on X ,  where F is any finite set of operator symbols. If  ¢ is a substitution then
I (o )  is the set of variables of the codomain of 0 .  Given a subset V of X ,  we define 0 <4  o '  [V ]
iff Jo”,  Vz € V,0'(z) =4  0".0(z). The qualification [V] is omitted when V = X. If A is a set
of identities and U is a unificand then SU(A,U)  is the set of all A-unifiers of U, CSU(A,U)  is
a complete set of A-unifiers of U and MCSU(A,U) a minimal complete set of A-unifiers of U.
We say that the unificand Us; is A-dependent of U7, or equivalently that U, A-extends Us, iff
for any complete set of A-solutions X of U1, Eva,(uy) is a complete set of A-unifiers of Us and
U,  = 4 U,  means that U, A-extends Uz. |B |  denotes as usually the cardinal of  a set B .

Definition 1 Let W be a set of “protected” variables, f , g  in  F and V = {vı,...,Un+m} where
n and m are the arities of f and g ,  and v;’s are distinct variables. Then UY (f,g,V) (resp.
uUW( f , g ,V ) )  denotes a complete (resp. minimal complete) set of idempotent unifiers, away
from W,  of the equation:

f l v ,  . . .  + Un) = 9 (Vn41 ,  . . .  » Un tm)

We call these equations general and note them Ge( f ,g ,V) .

Example 1 If we consider the set identities A reduced to the commutativity of the symbol +
then pUY  (4 ,  + ,V )  is the minimal complete set of unifiers of the equation v ı  + v2 = v3 + v4 and
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it is equal to:
: f f  v i z

U2—+I2

U3—I1

Var—+>Z2

pUY (+,  + ,  V)  = 4
HH
Vor—=T2

UT

VT,N

Definition 2 Let A be a set of identities, V = {v1,v2,...} and W = {wi,w2,. . . }  two countable
sets of  distinct new variables. For all  f ,  g in  F we define the sets of substitutions X (A ,V ,  W)
and ¥ ( f , 9 ,A ,V ,W)  as follows:

o I f f #g  then: 
|

5( f ,9 ,  AV,  W) = {(vi = t i) iztm | (F t ,  - - ,  tn) = gltn+1,---,tm)) € A }

o If f =g  then: a

( f f , AV, W) = {(vir ti)izr.2n | (F t , ta) = F(tas1,.--, tn) € A}U
{(vi = wi)i=1.n U (Vn4i — Wi) i=1 .n }

TA4,V,W)= | ZI(f,94V,W)
( f 9 )EFXF

Note that by definition the X( f ,  g, A,  V, W)  are subsets of A-solutions of the general equation
Ge(f,9,V). |

1 .1  Definitions of  syntactic theories

Syntactic theories are very interesting because we may deduce automatically a matching algo-
rithm [7] or, under some conditions, a unification procedure for a theory from its identities [5].
We suppose that the theories considered are collapse free, which means that any A-equal terms
are both non variable. A collapse identity is an equation of the form z = t where z is a variable
and t a non variable term. Every presentation of a collapse free theory does not contain collapse
identities [2]. This excludes identities like idempotency (z  +z  = x) or involution (—(—(z)) = z).

In order to define syntactic theories, we first need to introduce some terminology. Let

Alf,  f ) = { { i = r }e  4 | He) = f  and r(e) = f '}
be the subset of A whose top symbols are f and f’.

A set A of identities is resolvent iff for all terms t = f ( t 1 , . . . , t . )  and t' = f ' ( t } , . . . ,1 , )  we
have:

( f = f  and

of Vj  € [L .n ] , t ;  =4  C
or

t =4  t o  { A= re  A(f, f f ) ,  do  such that

-Vj € [L..n),t; =4  0(1/j)
and

| | ke lp ) , t =a  olr/k)
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An equational theory is said syntactic! i f  i t  is generated by a finite and resolvent set of
identities. It can be characterized precisely by the form of the A-equality proof of two terms:

Proposition 1 [5] Let A be a set of collapse free identities. A is resolvent iff for any terms
t= f ( t1 , . . . , tn )  and U = f(t} , . . . ,1,) such tha tt =4 t' there is a proof

= 59 Hay S i  HH... Hm, sk =?

with at the most one of the m;  equal to € for j € [1..k].

Example 2 If we consider the set of identities A reduced to the identity of commutativity of the
symbol + then A is resolvent since: ;

e t )  =4  t3 and tz =4  ta
h i t t a=a t s+ i l y  & or

o t i  =4  14 and t y=413

2 Condition for syntacticness

Lemma 1 Let e = ( f ( t ı , . . . , t n )  = g(tn+1,---,tm)). an equation and W be a set of variables
such that Var(e) C W .  The following transformation rule is sound and complete in the theory
A:

f t ,  . . . ,  ta) = g ( tas1 , - - -tm)
V A ov;  =1 ;

TEHUW(fg,V) i= l .m

Proof: Using variable abstraction which is known to be a sound and complete transformation,
we get

mn = 4

f ( t ,  s tn )  = gltn+1,--. tm) <4  :

Um = im

f(V1,-..,  Un)  = g (Wng1 , . - . ,Ym)

Since replacing a part of a system by an A-dependent unificand preserves A-dependance
[6], we get

( ”  = 4

. v = t
f l ,  tn )  = g ( t a t r ,  tm )  A V 4 on  = ow  )

ceulU¥ ( fav) | !

( Um = (Um)

By definition of W,  (V  U I (c ) )  N Var(e) = 0, thus we can replace v;’s by their values and
then suppress the equations v; = o(v;) and we get

ag(v1 )  = 1

f ( t 1 , . . . , t n )= g(tng1y rtm) <a  V :

ceulU%¥ (f9,V) (vm)  = ty

a
The  definition of syntactic theory has been extended to almost syntactic in [3]
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Definition 3 I f  F is a collapse free theory generated by A then U andLA  are the following set
of  identities:

u = U U  o ( f vs , - . .20) = 0(g(¥ns1,---,¥m))
(F9)EFXF o€ul( fg,V)  

|

A = UUA

Lemma 2 The set of identities A is such that (=4) = (=4).

Proof: =42=aA is obvious by definition of A and =4C=4 stands because for all l =r  € A,
=4  7 by definition of A.  O

Lemma 3 A is a resolvent set of identities.

Proof: The transformation rule presented in  lemma 1 can be rewritten as

f l o tn) = gltn+1,---, tm)
V A s i= t

F(8150048n)=9(Sn41,e-13m Jeu i€{ l . .m]

Since U C A and since this transformation is sound and complete, we get

o(f(t1,. . .  ta )  =a  0 (g ( t ns1s - - - , tm ) )iN

f=g  and Vi  € [L..n], o(t;) =a  0(tn4i)
or
3f(s1,.--, Sn) = gl8n+1,---, Sm) € A, Ip, Vi € [1.m], p(si) = .  (t i)

and this is exactly the definition of a resolvent set of identities. O

Lemma 4 Let E be a collapse free theory. A is a resolvent presentation of E iff for all  f ,  g in
F and for a l l o  in U( f ,g ,V)  there is a proof:

o f ( v i , . . . ,  Un)  Fx  0g (Vn t1 , - . . , Um)

with at most one step in € .

Proof:
=

Since A is a resolvent set of identities, by the proposition 1, there is a proof

o f ,  . . . ,  Un) Fx  og (vny r , . . . ,Um)

with at most one step in € .

=

The notation are those of  Figure 1. Since we can define the A-unifier p = (vi — %;) i=1 . .m

of Ge(f,g,V) from any E-equality (2), thereis a proof of (2) with at most one step in €
because:

° Since U( f ,g ,V)  is a complete set of A-solutions of Ge(f,  g, V),  there is a substitution
o in U( f ,g ,V)  such that p = f  go.
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yd  N = / \ Ge(f,9,V)

1 Un  Un+1 Um

oc€eU(f,g,V)

f g

p / \ —_ / AN (1)

[3] . i n  t n t  . tm

®

f ; g
/ \ _ J \ (2)

U1 Un  Un+1  Um

Figure 1: Composition diagram

e As there is a proof
of(v, . . . ,Un)  Fx  og(vnt1,..., Um)

with at most one step in  € ,  there is a proof

wo f (v i , . . . ,vn)  Fx  @og(vns1,. Um)

with at most one step in € .  Since p = f  wc, there is a proof

pf(v1,..., Un) bx  pg (Vn t1 , . . . ,  Um)

with at most one step in  ¢ and by the proposition 1 we deduce that A is resolvent.

[m]

Lemma 5 Let E be a collapse free theory. A is a resolvent presentation of E iff:

Vf,g€ Fx  F ,YoeU( f , g ,V ) ,  3p € E( f ,9 ,  A,V,W), 0 2g  p [V]

Proof: We have to prove (by the proposition 1) that:
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for some terms t = f ( t i , . . . , t n )  and ¢ = g ( tn41 , - - - ,%m)  such that t =g  t there is a
proof:

t = 50 Hm, S ı  HH... Ham, se =7¢

with at most one of the m;  equal to € for j € [1..k] iff

Vo  € U ( f , g ,V ) ,  doe  Z(f,9,A,V,W), g 2E  Pp 2 !

=
Let 0 € U( f ,9 ;V )  with 0 = (v; — t ; ) i =1 . .m .  By  hypothesis the proof of  gf(v1,..., vn)  = f
9 (¥n41 , - . . ,Ym)  has at most one step in € .

e If no step occursin ¢ then f = g and Vi € [1..n], ti =F  tn+i. In this case there is
peX( f ,  f,  A,V,W) such that 0 >g  p [V] since:

P=  (vi = Wi) i=1 .n  U (Un+i  Lang W i ) i= l . . n  and 0 = (wy — t i h=1 .n  op

e If one step occursin € then there is f ( u , . .  Un)  = ¢ (%n41 , . . . ,%m)  in  A and ¢ such
that Vi € [1..m], pu; = t;. Since p = (vi = Wi) i=1 . .m  is in X( f ,  g ,4,V,W) we have
o =k  pp  [V].

bai
Suppose that for all  € U( f ,g ,V)  there is  p € X( f ,  g,A,V,W) such that vo >g  p [V]. By
definition of  £(f,  g, A ,  V, W)  we have:

pf (v1 , . . . ,  Un)  He pI(Un+1>---; Um)

or
pf(e1,-.-, Un) = pf (Vns1,- Van)

as 0 2g  p [V], we deduce that for all 0 € U( f ,g ,V)  there is a proof

o f , :..Un) FA  0g(Vni1,---, Um)

with at most one step in  £. This means by the lemma 4 that A is resolvent. O

Lemma 6 Let E be a collapse free theory. If there are f , g  € F such that |uU(f,g,V)|  = co
then E is not  syntactic.

Proof: Let f , g  € F be symbols of function such that |uU(f,  g ,V ) |= co. If we suppose that
thereis a finite and resolvent presentation A then since X(f,g,  A,  V, W) is finite ‚we can
deduce by lemma 5 and the pigeon hole principle that:

da,  02  € pU( f ,  9 ,  V ) ,  Jp  € S f .  9 ,  A VW) ,  o1# 02  and .o ı  >E  p and 02  2E  p

As p is an A-unifier of Ge(f, g, V) there is 03 € sU( f , g ,V )  such that p >g  03 .  By
transitivity we have 0 ;  >g  03  and 02  >g  03 .  Since pU( f ,g ,V)  is a minimal complete set
of  A unifiers we deduce 0;  = 0,  = 03. This contradicts the fact that oy #05 .  O

Definition 4 Let  E be a theory and two substitions 0 and p-

oe o0=pp [V] ifo 250  [V] and p 25  0 [V].
o 0>pplV] iff 0 2g  p [V] and voEE p [V].
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Lemma 7 Le t t  and ¢ be two terms with their variables in V .  If  the minimal complete set of
A-solutions MCSU(A,t = t') does not exist then there is in all  CSU(A,t == t )  a decreasing
chain:

01  2E022E  . . -  2E  On 2E-.
in CSU(A,t = t') without lower bound in CSU(A,t = ) .

Proof: (this proof is inspired by [1]) We proceed by contradiction. Suppose that all decreasing
chains in CSU(A,t = U’) have a lower bound in CSU(A,t = t )  (i.e. for all decreasing
chains a >p-minimal element exists). Let M ’  be the set of all >g-minimal elements of
CSU(A,t = ) .  If we define the set M by M = M’/=_ then:

oe M C CSU(A,t=1)  by definition of M.
e Since all decreasing chains in CSU(A,t = t') have a lower bound in CSU(4,t = €)

we have:
Vp e CSU(A, t= t ) ,  Io  eM,  p>go  [V]

and since CSU(A,t =t ')  is a complete set of A-unifiers of ¢ = t’ we deduce:

VpeSUAt= t ) ,  30  eM,  p>E 0 [V]
e Since M’  is a set of >g-minimal elements we have:

Vo1,o02 € M ,  91  FE  02 [V]

and since M is equal to M'/=_ we have:

Vo ,00  € M, 012g  02  = 01  =03 [V ]

Since the three properties above are the definition of a minimal complete set of A-solutions
this contradicts the hypothesis of this lemma. O :

Lemma 8 If the minimal complete set of A-solutions MCSU(4,  t = 1)  does not exist then there
is in all  CSU(A,t = ’ )  a properly decreasing chain:

0)  DE02>F  +... EO DF  . . .

in  CSU(A,t  = U) without lower bound in  CSU(A,t  = ) .

Proof: By the lemma 7 we know there is a decreasing chain without lower bound in  CSU(4, t  =
U’). Since the lower bound does not exist in  CSU(A,t  = t') we can always build a properly
decreasing subchain in CSU(A,t = t') without lower bound in CSU(4 , t= t ) .  O

Lemma 9 Let C be a properly decreasing chain of substitution without lower bound and p any
substitution.

C=01>E02>E . . . >E 0p DE . . .

1. If 30; € C, 0;  =Eg p then there is a subchain C'  of  C without lower bound such that
Vo  eC ,  o; ZE  p.

2. If do; € C, p >E  0; then there is a subchain C'  of C without lower bound such that
Vo; eC ,  0}  2E  p-
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Proof: In  both case consider the subchain:

C'  = 0 j41 >E  0i42 DE ++ .  DE Tin DE --- |

In case 1 i t  is clear that C’  satisfies the required condition.
In case 2, suppose that 35 > i , 0 ;  2g  p. Then, 0 ;  >g  p >E  0;  by hypothesis, which
contradicts the fact that C is strictly decreasing.
a

Lemma 10 Let E be a collapse free theory. If there are f , g  € F such that uU( f ,g ,V)  does not
exist then E is not syntactic.

Proof: Since pU( f ,g ,V)  does not exist, lemma 8 allows us to say that in all U( f ,g ,V)  there is
a properly decreasing chain without lower bound in U(f ,  g,V). We define this chain as:

C=01>g02>E . . .  >EOn  >E . . .

We now suppose that there is a finite and resolvent presentation A of  E .  Since Z( f ,  g,  A ,  V,W)
is finite we deduce a subchain C’ of C as follows:

1. So =3(f ,9,A4,V,W),  Co = C ,  i=0

2. i f  Z; = 0 then C'  = C; end

3. T iy1  = Z i  — {p i }
4. f oc € Cy, 0 2E pi

then deduce Cj;  from Ci; and p; by using the lemma 9
else Ciy1 = Ci

5. 1=1+1  goto 2.

Since Ci+n is a subchain of  C;  we have:

Vo; € Ci ,  0}  ZEM = Vo; € Citn, 0 ;  2E  pi

and we deduce:
Vo; € c', Vp  € Z ( f ,  9 , 4 ,  Vv, Ww), g j  ZE  pp

therefore 30 € U( f ,g ,V) ,  Vp € Z( f ,9,A,V,W),  0 2E  p. This leads to a contradiction by
the lemma 5. O

As a consequence of  the previous lemmas, we get the following result:

Theorem 1 Let E be a collapse free theory, V(f,g) € F x F, pU( f ,g ,V)  exists and is finite iff
E is syntactic.

As an immediate consequence, we get

Corollary 1 Every collapse free and finitary unifying theory is syntactic.
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3 Applications

3 .1  AC-theories are syntactic

If + is an associative and commutative operator then we obtain the following minimal complete
set of  A-solutions of  the equation v ı  + vo = v3 + v4 [9]:

[ vu  [ vu  ( v ı—u,  + ug u
) Va U2 ) Vo  | Voa—u3 Ugo  + U3

U3zH—u1 v3—Uy v3z—U) vz—u]  + U3

| Varu2 | Yamıuz | Var>u2 + u3 U4

pU(+ ,+ ,V )  = {
| r u ,  + ue | au  [ v i g  + ug

) Var  U3 Vab-+ru2 + U3 ) VaUg + Ug

vu  + U3 U3z—U3 v3z—>u, + Ug

{ |  Yar-ıun | Yab+rulı + U2 | va u2 + u3

Since we can compute the resolvent set of identities from pU(f ,  f ,V )  we obtain the following
finite and resolvent presentation:

r

uy + U2 =u ) + U2
Uy + U2 = Us + uy

(u  4+u2)+us 2 = U + (u2+ uz)
A=  u ı  + (uz + us) = (u1 + uz) + u2

(u1 + u2) + u3 = (u1 + u3) + uz
up + ( uz+ u3) = uz + (41 + u2)

| (u1 + ua)+ ( u2+ ug) = (41 + ua) + ( v2+ u3)

3.2 A non-syntactic theory
Finally let us present a simple [2] (also called strict [6]) theory which is not syntactic:

A=  {fg(z)  = f(z)}

Such a theory is not syntactic since uU(f ,  f ,V )  (the minimal complete set of A-solutions of
the equation f (v ; )  = f(v2)) is the infinite set:

ga  = nu = Zz or = HZ go = nT  on  = MT Ve

0 v = oz  vprg(z) 2 vag(g(z))  OT vorrg™(z)

Of  course by theorem 1 one gets many other examples of collapse free and non-syntactic theories
like nullary theories [1].

4 Conclusion

Syntactic theories have been introduced in unification theory in order to automaticaly build
unification algorithms [5]. We have studied in this paper some of the properties of syntactic
theories and in particular we have shown that a resolvant presentation of a syntactic theory
can be obtained as unifier instances of special kinds on equations called general. This gives a
better understanding of what the syntactic theories are and in  particular i t  allows to characterize
them accordingly to the unification type of the general equations. This opens among other the

77



following questions on which we are now working: how to compute minimal complete set of
solutions of general equations, how to prove the termination of the unification algorithm which
is obtained from the resolvant set of identities, is i t  possible to extend our results to collapse
theories?
Acknowledgements: This work has been partly supported by the GRECO de programmation
du CNRS. We would like to thank Héléne Kirchner, E. Domenjoud, P. Marchand for fruitful
discussions concerning this work.
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On  the Decidability of the Unification Problem |

Alexander Bockmayr (e-mail: bockmayr@ira.uka.de)
SFB 314, Universitit Karlsruhe, P.O.Box 6980, D-7500 Karlsruhe 1,  F.R.Germany

Unification is a fundamental operation in  a number of  fields of  computer science including theorem
proving, logic programming, and natural language processing. One of the major theoretical
questions is the decidability of  the unification problem.

Let X be a signature and E a set of  X-equations (see e.g.[Huet/Oppen 80]).
A system of Y-equations

<t ]=  U;  . . .  , ty = Up>, n 2 1, with terms s;, t; € T(Z,X)
is called E-unifiable,iff there is a substitution 6:  X — T(Z,X), such that

O(t;) =g  o(y;) for i=1,. . . ,n.

Here =g  denotes the congruence on T(X,X) generated by E.
We say that the unification problem is decidable for E,  iff we can decide for any system of
2-equations <t1= 41; ... , th = un> Whetheri t  is E-unifiable.

In this note we investigate the decidability of the unification problem from the viewpoint of
mathematical logic. The key to our approach is the following proposition:

PROPOSITION. Two terms t, u € T(E,X) are E-unifiable iff the existential closure 3(t = u) of  the
first-order formula t = u is valid in  the first-order theory E,  i.e. E I= 3(t =u) .

This proposition shows that unification problems correspond to certain first-order formulas.
In  mathematical logic the following classification of formulas is common:

DEFINITION. Let X be a class of X-algebras.
The elementary theory of X is the set of  all closed formulas in first-order predicate logic with
equality that are valid in X .  Any such formula can be represented in  prenex disjunctive normal
form

Q1x1 - . -  QmXm ((t11 =#u11  A. . .  A t j  =#0g j )  Yo .  (ql =#Uq l  A. . .  A tgjq = # Ugjg))
where each Qj  is a universal or existential quantifier, xi,...,  Xm are variables and each atomic
formula has the form tj; = uj; or tjj # uj; with terms t;;, ujj € T(E.X). |

The universal theory of  X is the collection of  those closed formulas valid in X that are of  the form

VX] . . .  Vxm ((t11 =AU11 A. . .  A Qj  =#Uugj1) Ve .  (gl =#Uql A... A tgjg =#  Ugjo))-
The existential theory of  X. is the collection of  those closed formulas valid in X that are of  the form

3x1 . . .  Ixm (11  =#  up ]  ALA  131  =#u41jj) V. . .V  (tq1 =Ug ]  A. . .  A tqja = *  Ugig))-
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Thepositive theory of X is  the collection of those closed formulas valid in X that are of the form
Qix1 ...  QmXm ((t11 =u11 Avo  A 131 =Ugj) Y- . . . .V  (tg1 =Ug1 A.  A tgjq = Ugjg)):

The diophantine theory of X is the collection of  those closed formulas valid in X that are of  the
form

3x1...  Ixm  (tp =U1 A. . .  A tn = Un)
The equational theory of  X is the collection of  those closed formulas valid in X that are of  the form

Vx1 . . .  Vxp  (t=1)

There are numerous results in the literature on the decidability and undecidability of these
fragments, which seem to be widely unknown in  unification theory. We may profit from these
results using the following immediate consequence of  the above proposition.

COROLLARY. Let E be a set of  X-equations. The unification problem for E is decidable if and
only if  the diophantine theory of  the class of  models of  E is decidable.

Now we give some applications. The first theorem, based on [Vazhenin 74] and [Rozenblat 85],
shows how adding a constant symbol to the signature may affect the decidability of  the unification
problem.

THEOREM. The unification problem for the theory
((x*y)*z  = x*(y*2Z), (x19-1  = x,  x = xx  lex ,  x l Ltg = y-layghy-1ax

of  inverse semigroups is decidable in the signature X = < * ,  - 1 ,  a > and undecidable in the
signature X’  =<  *,~1 , a ,b> .

The next result establishes a connection between the decidability of the word problem and the
decidability of  the unification problem. In  general, the decidability of  the equational theory does not
imply the decidability of the diophantine theory, even in theories defined by a canonical term
rewriting system [Bockmayr 87, Heilbrunner/Holldobler 87]. In  locally finite varieties however,
i.e. in  equational theories for which every finitely generated model is finite, we can deduce from
[Vazhenin/Rozenblat 83] the following theorem.

THEOREM. In a locally finite variety E over a finite signature X the unification problem is
decidable if the word problem is decidable. If moreover E is finitely axiomatizable, the word
problem is decidable.

EXAMPLE. The varieties
Al  = { (x*y)*z = x¥*(y*z), x*x  =X  }

of  idempotent semigroups and
ACI  = { (x*y)*z = x*(y*z), x*y  = y*x,  x*x =x  }

of  semilattices are locally finite.
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Therefore, these varieties have a decidable word and unification problem. In  fact, they even have a
decidable positive theory, whereas the elementary theory is undecidable [Vazhenin/Rozenblat 83].

Now we present some results from group theory.
Consider the signature

Y=<* , " l e , ay , . , ap>n21 .
[Makanin 83] showed that unification is decidable in  the theory

{ (x*y)*z = x*(y*z),  e*x =x ,  xl*x =¢  }
of groups on X.
Later he proved the decidability of  the positive theory and the universal theory of  a free group
[Makanin 85]. The decidability of  the elementary theory of  a free group seems still to be open.
For the decidability of the elementary theory of a variety of groups commutativity plays an
important role. It  is well-known that the variety of  abelian groups has a decidable elementary theory
[Szmielew 55]. [Zamyatin 78] showed that every variety of  groups that contains at least one
non-abelian group has an undecidable elementary theory.
What about the unification problem in  non-abelian varieties of  groups ?
The axiom of  commutativity can be weakened in  several ways.
As an abbreviation we use the commutator

[x.y] =gef x l y  I x  y.
A group G is abelian iff

[x,yl =e ,  for all x, y € G.
A group G is nilpotent of  class 2 , iff

[ [x ,y l ,z ]  =e ,  forall x,  y, ze G ,
and metabelian iff

[x,y] ,  [u,v]l =e  forall x , y ,  u ,  ve G .

Obviously, an abelian group is  nilpotent of  class 2, and a nilpotent group of  class 2 is metabelian.
The next  results follow from [Roman'kov 79] and [Repin 85].

THEOREM.
1 .  In  the theory of abelian groups of signature X,  the unification problem is decidable.
2 .  In  the theory of  nilpotent groups of  class 2 of  signature X,  the unification problem for equations

in  one unknown is decidable.
3.  In  the theory of  metabelian groups of  signature X,  the unification problem is undecidable.
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The Unification Hierarchy is Undecidable

WERNER NUTT

Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI),
6750 Kaiserslautern, West Germany

1 Introduction

In unification theory, equational theories are classified according to the existence and cardinality of
minimal complete solution sets for equation systems. For unitary, finitary, and infinitary theories minimal
complete solution sets always exist and are singletons, finite, or possibly infinite sets, respectively. In
nullary theories, minimal complete sets do not exist for some equation systems. These classes form the
unification hierarchy.

Although i t  is widely believed that i t  is not possible to  decide from a finite presentation where a
given equational theory resides in  the unification hierarchy no proof of this fact exists in  the literature.
We give such a proof using undecidability results from group theory. Moreover, we show that the classes
of  nullary and infinitary theories are not even semi-decidable.

2 Basic Definitions and Notation

I f  nothing else is said, we assume standard definitions and notation of unification theory and group theory
(cf. [Biirckert et al. 1989, Rotman 1973)).

A finite presentation of  an equational theory is  a pair £ = (X ,  E )  consisting of  a signature X and
a finite set E of  identities between X-terms. By  abuse of  notation we will identify a presentation with its
corresponding theory.

Siekmann [1978] classified equational theories according to  the existence and cardinality of  minimal
sets of  unifiers. Let £ be  a theory, then:

Ee l ,  iff minimal sets of unifiers exist and have at most one element (£  is unitary)
EeU,  iff finite minimal sets of  unifiers exist and £ ¢ Y ı  ( £  is finitary)
EEUo  iff minimal sets of unifiers exist and £ ¢ Uy UU,  (E is infinitary)
EE iff there is some equation system for which no  minimal set of  unifiers exists

( €  is nullary).

Analogously, one defines a matching hierarchy with classes M ; ,  Mw,  Mo ,  and Mo.
An alphabet is a finite set of symbols. For an alphabet X, we denote the set of  words over X by X*

and the empty word by e. A monoid presentation (or Thue system) is a pair M = (X,  A )  consisting
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of  an  alphabet X and a finite set A of  word identities over X .  Group presentations are defined as special
monoid presentations. By  abuse of  notation we will identify a presentation M with the monoid or group
generated by  i t ,  speaking of  the finitely presented monoid or group M .

A monoid presentation M can be converted into the presentation £ of an equational theory by
considering every symbol of  the alphabet as a unary function symbol and turning every word identity
into a corresponding term identity. This transformation leaves identities invariant, that is if u ,  v are
words that are converted into terms uz ,  vz ,  then u = ,  v iff uz  = ;  vz .

3 The Order Problem

Our proof that the  unification types unitary, finitary, and infinitary are undecidable will be based on an
undecidability result from group theory (cf. [Rotman 1973, Lyndon/Schupp 1977]).

I f  G = (X,  A )  is a finitely presented group and w € X* ,  then ord(w), the order of w, is defined as the
least nonnegative integer n such that w™ = ;  e, if such an  integer exists, and as ord(w) = co otherwise.

Theorem 3 .1 .  There exists a finitely presented group G = (X ,  A )  such that the following problems are
undecidable:
INSTANCE: a word w € X”
QUESTION 1: is ord(w) = 1?
QUESTION 2: is 1 < ord(w) < co ?
QUESTION 3: is ord(w) = co ?
Furthermore, the problem whether ord(w) = co is not even semi-decidable.

4 Undecidability of  Types Unitary, Finitary, and Infinitary

We reduce the problem of  deciding the order of a group element to the problem of deciding the unification
type of an equational theory. ;

Construction 4.1.  Let G = (X ,  A )  be a finitely presented group. For every w € X* we define a finitely
presented monoid

Gu = (BU{ f } ,AU{ fw=  f } )

where f is a symbol not occurring in X.  We denote the finitely presented theory corresponding to G,, as
Ew. O

The idea in defining &,  is best illustrated by the following example.

Example 4.2. Consider the £,-unification problem

( fz  = fy).
Then for every k € Z the substitution ox = [z/w*y,  y/y] is a unifier. If ord(w) = co, then all 0 }  are
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Ew-different on { z , y } .  If ord(w) = n < co, then 00,.. . Onl  are pairwise £,-different on {z ,y } ,  and
Ok =¢, { z , y }  Tk4n  for k € 2 .

Moreover, every &y-unifier of  our problem is an £,-instance of  some 0 .  No oy is an &,-instance
of 7x if ord(w) is infinite and k # I, or if ord(w) is finite and 0 < k < | < ord(w). Hence, the set
{ox | k € Z }  is a minimal complete set of  unifiers if ord(w) = co, and the set {ox | 0 < k < ord(w)} is
minimal and complete i f  ord(w) < co.

In  summary, the &,-unification problem ( fz  = fy) has a minimal complete set of  unifiers of  cardi-
nality ord(w). {m}

The same kind of  argument that we used in the discussion of  the above example applies to  arbitrary
unification and matching problems. To  be more precise, one can show that for a single equation in &,
minimal complete sets of unifiers and matchers, respectively, have at most cardinality ord(w) and that
there exist such sets having exactly cardinality ord(w). Since no theory &,  is nullary, the position of &,
in the hierarchy depends on the order of  w.

Proposition 4.3.
e lu  EM = & e l y  «=  o rdw)=1
ey  EM,  + EvEU + 1<o rd (w )<co
o l y  EMo <=  Ev EU  <=  ord(w) = co

Having established the correspondence between the. order of group elements and the type of an
equational theory, using Theorem 3.1 we can reduce the order problem for groups to the problem of
locating a theory in the hierarchy.

Theorem 4 .4 .
e Uno and My,  are no t  semi-decidable
o Ui ,  Uy ,  Uso, M1 ,  My ,  and My  are undecidable

5 Undecidability of Type Nullary

We reduce the consistency problem for equational theories to  the decision problem whether a theory is
nullary. Since the disjoint combination of  a consistent theory and a nullary theory is again nullary, by
combination of  an arbitrary theory £ with a nullary theory we can construct a theory that is nullary i f
and only if £ is consistent.

We start wi th a well-known result from equational logic, proved by Perkins [1967]. Recall that a
theory £ is inconsistent iff x = ,  y for two distinct variables x and y ,  and consistent otherwise.

Lemma 5.1. The following problem is not semi-decidable:
INSTANCE: a finitely presented equational theory &
QUESTION: is E consistent ?

Theorem 5.2 .  Uy and Mo  are not  semi-decidable.
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Proof. Let £ be a nullary theory. Then there exist an Eo-unification problem I' and a complete set
of  unifiers Uy of  T such that Up has no  minimal complete subset.

Suppose £ is a consistent theory. By  a lemma due to Tidén [1986] and Schmidt-Schauß [1989], Uj
is also a complete set of  unifiers of  I" for the disjoint combination of  theories £ t  :=  £ WE, and Uj  has
no minimal complete subset if £ is consistent. Hence, £1  is nullary i f  £ is consistent. Conversely, the
combined theory £*  is inconsistent if  £ is inconsistent. Thus £*  is nullary iff £ is consistent.

Were Uy semi-decidable, then in  particular the problem whether for a given finitely presented theory
E the combination & WE  is nullary would be semi-decidable. Hence, consistency of £ would be semi-
decidable, contradicting Lemma 5.1.

The proof that Mo  is not semi-decidable is  similar. 0

Corollary 5.3. Uy and Mg  are not decidable.
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Gert Smolka
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The type discipline of the logic programming language TEL [1, 2] combines
the notion of parametric polymorphism known from the  functional programming
language ML  with t he  not ion of  subsor t ing  known from the  specification language

OBJ2. In TEL  one can define sort functions such as lists or pairs and also define
sorts as the nondisjoint union of other sorts. The model-theoretic semantics of
TEL interprets sorts as sets of ground terms and sort functions as functions that
are monotonic wi th  respect to  set inclusion.

To  execute TEL-programs,  constraints consisting of  equations and member-

ships need to  be solved, where a membership has the form z :0  and constrains
the variable z to  the elements of the set denoted by the sort term o .  While the
equations of a constraint can be easily solved with the usual unification rules,
solving memberships turned out to be a tough problem whose decidability is open
in general. The difficulties are due to the presence of subsorts and sort variables
in memberships.

Since TEL-programs are required t o  be well-typed (a  property that is checked
automatically before execution), the constraints that need to be solved during
execution also enjoy a certain weak well-typedness property. Fortunately, for such
constraints there exists an efficient solution method [2].

For weakly well-typed constraints most of  the conditions imposed by  the mem-
berships are redundant. In fact, if a membership contains no subsort i t  can be
completely ignored .  To  avoid as  much redundant sor t  computat ion as  possible,

our  method does no t  work with t he  actual  sort  terms but  with approximations
retaining only the nonredundant information.
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Typed Algebra
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Abstract

In this paper we introduce a theory of specifications in  which types and
equality are treated in  a similar way. We present sound and complete rules for
inferring types and equality. We discuss regularity of  signatures and we present
a unification algorithm for regular signatures. ;

1 Introduct ion

Many Sorted Algebra has been introduced as an  alternative to (One Sorted) Alge-
bra for dealing with specifications. In the Many Sorted Algebra framework equality
declarations are well sorted. There is no difference between syntactic and semantic
sorts.

We introduce Typed Algebra as an alternative to Many Sorted Algebra for dealing
with  specifications in a more flexible way. In the Typed Algebra framework equality
declarations need not be well typed. There is a difference between syntactic and
semantic types.

Our framework is similar to the ones presented in [1] and [2]. Our denotational
semantics is simpler since we deal with total functions.

We present sound and complete rules for inferring types and equality. We discuss
regularity of signatures and we present a unification algorithm for regular signatures.

Our framework is very well suited to  deal with the problem of least sorts in Order
Sorted Algebra. In contrast with the approach of [4] completion procedures gener-
ate critical equality declarations (for dealing with peaks occurring from functional
overlaps) and critical type declarations (for dealing with peaks occurring from vari-
able overlaps). Completion is not treated in this paper. For more information on
completion we  refer to [3] .
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2 Typed Algebra

2.1 S Algebra

2.1.1 Symbols

A symbol set S consists of

eo a finite type symbol set T,

* a finite graded function symbol set F = Lien  F;,

e an infinite variable symbol set X .

Type symbols are denoted by 7 ,  . . .  , function symbols by g, . . .  , and variable symbols
byz , . . . .

A function symbol g is either a constant function symbol c in  F j  or a function symbol
f i n  Fy  =U ;  F; (say f in  F,).

2.1.2  T Sets

A T set is a set A together with

e a function 7 — A,  from T to the powerset of A.

We use the abbreviation

e 'a.7’ for ’a € A ,.

Every quotient set [A] of a T set A i s  a T set using 7 — [A,] and is called a T quotient
set of A.
A T function from A to B is a function h from A to B for which

® a.r implies h(a).7.

The set of T functions from A to  B is denoted by  A —r  B .

2.1.3 F Algebras

An F algebra is a set A together with

e a graded function g — g4  from F to  the graded function space on A.
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An  equivalence = on an F algebra A is a congruence if

® ay =b , . . . , an  = b, implies fa(a,...,an) = fa(by,..., bn).

A quotient [A] for a congruence on an F algebra A is an F algebra using

© qu)  = [a0
oe fla(lai);.--,[an]) = [falas,...,a4)],

and is called an F quotient algebra of A.

2.1.4 Free F Algebras

With the function and variable symbols introduced in 2.1.1 we construct terms.

® every x is a term, called a variable (term),

e every c() is a term, called a constant (term),

e every f ( y , . . . , t , )  is a term whenever { ; , . . . , 1 ,  are terms.

V(t) is the set of  variable symbols of the term t.  If V(t) = 0, then ¢ is called a ground
term.

T(V )  is the set of  terms with V( t )  C V.  This is an F algebra in the usual way, called
the free F algebra over V.
The following rules are sound and complete for inferring syntactic equality on T(V).

F z=x

® FO=0
Fay=tg  A,  AF an=ty

F f (8y , c8n )=F ( t1 , . os tn )

2.1.5 S Algebras

An S algebra is an F algebra and a T set.

Every F quotient algebra [A] of an S algebra A is an S algebra as defined in  2.1.2
and is called an S quotient algebra of A.
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2.2 S Algebra

2 .2 .1  Declarations

A declaration set D consists of

e a finite variable type declaration set DF ,

e a finite term type declaration set Dr ,

e a finite term equality declaration set Dg .

A variable type declaration is of the form ’z  : 7 ’ ,  a term type declaration of the form
' t  : 7 ’  and a term equality declaration of  the form ’s = ¢’.

V(d )  i s  the  set o f  variable symbols of  the declaration d.

We assume that for every z in  X there exists at most one z : 7 in DZ.

Every subset V of the variable symbol set X is a T set as follows

oe z .7 i f fz:7 € Df.

With every t i n  T (V)  and every S algebra A we associate a function t4  from V —1  A
to  A in  the usual way. If A is an S algebra T(W), then 0 € V —¢ T(W)  is called a
typed substi tut ion and we  write 0t  instead of  ty ow)(0)-

- We use the abbreviations

o 'tY.7 for ty (8 ) .  forall 0 in V —r 4°,

o ’s% = 14  for ’sY (6) = t%(0) for all f i n  V —p A’:

Let A be an S algebra.

od  = t : 7 i n  D r i sva l i d i n  A i f  tyD. r ,

od=s= t i n  Dg i s  va l id in  A if s5@ = 149

2.2.2 X Algebras

A signature X consists of a

e a symbol set S,

e a declaration set D with Dg  = 0.

An S algebra A is a ¥ algebra i f  all term declarations of X are valid in A.

An S quotient algebra [A] of a X algebra A is a X algebra and is called a X quotient
algebra of A .



2.2.3 Free X Algebras

Consider an S algebra T(V).  We use the abbreviation

e ’ s -T ’  for ’ there exists ad  = t : rT  in Dr  and a @ in V(d) —T T(V) such that
s = OP.

T(V)  is type reasoning compatible i f

e z .7  ( i n  V )  implies z .7  ( i n  T(V)),

e t - 7  implies 4.7.

Fact 1 A type reasoning compatible S algebra T(V) is a X algebra.

We use the abbreviation

oY  |= t : 7  f o r t :  Tis valid all X algebras’,

Consider the following S algebra T (V)  (denoted by Tx(V))

eLTIEXN E t : r .

Fact 2 Tg(V) is type reasoning compatible.

~ Thus Tg(V) is a X algebra, called the free X algebra over V .

Fact 3 T | t : 7  ifft: 7 is valid in Tx(V).

2.2.4 Inferring Syntactic Types

S algebras T(V)  are ordered in the usual way :

o T(V),  < T(V):  iff

— t. ,7 implies t . 27 .

Fact 4 Tg(V) is the least type reasoning compatible S algebra T(V).

Syntactic types on T(V)  are defined as follows |

o t . p7  iff t.7 in Tx(X).
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We use the abbreviation

e ’X + t.7’ for from X one can infer that £ has type 7 ’ .

I f  6 is a substitution in  W — T(V), then

e from X one can infer that 0 is typed’ means
' L   Ox .T t  for all z in W with z.7’.

We use the abbreviation

oe ’Y I 6 .  for from X one can infer that 9 is typed’.

I t  follows from fact 4 that the following rules are sound and complete for inferring
syntactic types on T(V).

3 . X® sv  i f z : 7  € Dp

oA  f t i r  € Dr

2.2.5 S Algebras

A specification S consists of a

e a symbol set 5 ,

e a declaration set D .

An  S algebra A is an S algebra if all term declarations of S are valid in A .

A quotient S algebra [A] of an S algebra A is also an S algebra and is called an
S quotient algebra of A .

2.2.6 Free S Algebras

Consider an S algebra T(V). We use the abbreviation

® 'u  «» v ’  for ‘there exists ad = s = t i n  Dg  and a @ in V(d) — T(V)  such that
u = 0s and v = 6t’.

An S quotient algebra [T(V)] is reasoning compatible if

e z .7  ( in  V )  implies [z].7 ( in  [T(V))),
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e t-rT implies [t].7,

e s — t implies [s] = [t].

Fact 5 A reasoning compatible S quotient algebra [T(V)] is an S algebra.

We  use the  abbreviations

eo 'S | t :  7 f o r t :  r i s  valid all S algebras’,

eo ’S | s=1  for ’ s  = tis valid all S algebras’.

Consider the following S quotient algebra [T(V)] (denoted by  Ts(V))

o [t].7 iff t4.7 for all 5 algebras A,

o [s] = [t] iff sY = tY for all S algebras A.

Notice that (for well known reasons) we  d id  not  use the definition

o [t)]TiffS |= t : T ,

o [ s ]= [ t ] i f S EE s= t

Fact 6 Ts(V) is reasoning compatible.

Thus Ts(V) is an S algebra, called the free S algebra over V.

Fact 7 S | t : 7  i f f d = t : 7 is valid in Ts(V(d))
andS |= s=1t  iffd = s= t  is valid in Ts(V(d)).

2.2.7 Inferring Types and Equality

S quotient algebras [7(V)] are ordered in the usual way :

o [ 7 (V )h< [T(V)h if
— [t}i.7 implies [#]2.7,
— [sh = [th implies [s]; = [t]2.

Fact 8 Ts(V) is the least reasoning compatible S quotient algebra [T(V)].

Types and equality on T(V)  are defined as follows
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o t.s7 iff [t].7 in Ts(V),

o 3s =g  tiff [s] = [t] i n  Ts(V).

We  use the abbreviations

oe ’S I t . r ’  for from S one can infer that t has type 77,

eo 'S I s =1t for from S one can infer that s and ¢ are equal’.

If  6 is a substitution in W — T(V), then

e from S one can infer that 4 is typed’ means
'S + Ox.r for all z in W with z.7’.

We use the abbreviation

eo ’S } 0 .  for from S one can infer that  8 is  typed’

It follows from fact 8 that the following rules are sound and complete for inferring
types and equality on T(V).

: . X[J s ro  i f z :T  € Dz

SHE.  : .[J SF  ety f t :  r € D r

S t  z=x

SF=)
SkFa= t  A...  AS  ap=t

Shbr=828 AS}  s= t
Stk r= t

SO.  KSLJ S th  I s  =1  € Dg

Ska= tASkE t r
S t  s r

If  p is a position in  the term t,  then i[p « s} is the term obtained by replacing the
subterm t | ,  of u at p by the term s.

In the foregoing inference rules we may replace rules number 5 and 8 by the rule
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2.2.8 Alternative ru les

If S is a specification, then we write X for the signature part of S.
A X quotient algebra [75(V)] i s  equality reasoning compatible i f

eo u « v implies [u] = [v].

Fact 9 An equality reasoning compatible X quotient algebra [T;(V)] is an S algebra.

Consider the following X quotient algebra [75(V)] (denoted by (Tx(V)))

o (s) = (t) iff sY = th  for all S algebras A.

Notice that (for well known reasons) we did not use the definition

o ( s )= ( t ) i fS  | s= t .

Fact 10 (Tx(V)) is equality reasoning compatible.

From fact 9 and fact 10 we may conclude that (Tx(V)) is an S algebra.

Fact 11  S |= t : 7  i f f d = t :  7 is valid in (Tz(V(d)))
and S |= s= t  i f f d = s= t  is valid in (Tg(V(d))).

Fact 12 Ts(V) and (Tx(V)) are isomorphic.

X quotient algebras [7:(V)] are ordered in the usual way :

o [Te(V)h < [Tz(V)l2 iff

~ [sly = [t], implies [s]; = [t]..

Fact 13 (Tx(V)) is the least equality reasoning compatible X quotient algebra [Tx(V)].

I t  follows from fact 13 that the following alternative rules are sound and complete for
inferring equality on T(V). |

° S t  ax==x

* SF0=0
° SkEa i= t1  A. . .  AS}  sp= ty

St f (a1 ,es tn )=F( t1 ,eus tn)
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StH s= t
Shk t=s

SkEr=s ASHI s=t
St r= t

LJ se l  i f s= t  € D r

In the foregoing inference rules we may replace rules number 3 and 6 by the rule

® SF  TE a7  i f s= t  € Dr .

I t  is now also clear that the following rules are sound and complete for inferring types
on T(V).

Tk i t r
® SFe r

Skha= tAS t t r
° S to r

3 Typed Unification

. In  this section we use syntactic types on terms and write s .7  instead of 3.57.

As a variable z may have different types. Whenever we write ’z.7’  this means ’as a
variable symbol x has type 7’.

Types are ordered in the natural way.

Terms are ordered as follows

oe s< t i f s=0 t

3.1 Equations

We work with equations s = t ,  where s and t are terms. If s € X o r t  ¢ X ,  then s = ¢
and ¢ = s are considered to  be the same equation.

An  equation set is a finite set E = {e ; , . . . , e , }  of equations.

An  equation s = t is trivial i f  s € X and s = 1.

An  equation s = t is solved i f  s € X or t € X and s = t is nontrivial.

An  unsolved equation s = t is decomposable if

e s=c ( )andt =¢() or

o s=  f(81,... ,3,) and t = f ( t y , . . .1s).
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The decomposition of e (denoted by D(e)) is defined as follows

e 0 i s  the  decomposition of  c() = c(),

o {sı  = t , . . . , 8 ,  + tn} is the decomposition of f(sy,...,8,)  = f ( t . . .  tn)

Let E be an equation set. For z € X and y € X we write

® TE y if there exists a solved z = s in  E with s ¢ X and y € V(s),

® x xg  y if there exists a solved z =yory =z  in E .

Let >g  be the transitive closure of - g  and ~g  and let =g  be the transitive closure
of =r. We write

oe z>py i f z>gyandz xy .

E is circular i f  >g is not irreflexive.

3.2 Unification

A substitution 0 is a unifier of  E i f  8s = 0t for all equations s = t of E .

3 .2 .1  Solved Case

Aso l vede  = z = 3s € E is  isolatedif = ¢ V(s) and = ¢ V(¢') for all ¢ '  # e in E.
An  equation set E 's solved i f  all  i ts equations are solved and isolated.

IE  = {z ;  = 8 ; , . . . ,%n  = Sn}  is a solved equation set, then u(E)  is the substitution
[ €1 /31 ,  . . . ) J )  Zn  /Sn ) -

3 .2 .2  Transformation Rules

Equation sets are transformed using rules E — FE’ as follows. (We use a special
equation set V which is not unifyable.)

For circular £

eo EV

For noncircular E

oe EUe  — E i f  e i s  trivial
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e EUe — V if  e is indecomposable

e EUe — EU  D(e) i f  e is decomposable

oe EUe  — Elp«—s]Ue ife = x = sis solved, and E| ,  =z

These rules are terminating.!

3 .2 .3  General  Case

Let E be an equation set, and let (E,).<,  be a finite sequence of equation sets such
that Ey = E and Ey —» Ey, for all k < s using the rules of 3.2.2 and such
that no rule can be applied to E,.  If E,  # V ,  then i t  is a solved equation set and
WE)  = u(E,), is a most general unifier of E .

3.3 Strongly Typed Unification

We use the abbreviation

eo ' t .7 ’  for ' t  has a least type 7 ’ .

0 is a strongly typed substitution i f  8z.,7 for all z in  X with z .7 .  0 is a strongly typed
unifier of E i f  i t  is a unifier of E and a strongly typed substitution.

We also work with sets E = {E , , . . . ,  En} of equation sets. 0 is a strongly typed
unifier of E i f  i t  is a strongly typed unifier of one of the equation sets of E .

3.3.1 Strongly Typed Case

A solved equation x = s is strongly typed i f  z .7  implies s . ; 7 .  A solved equation set is
strongly typed if all i ts equations are strongly typed.

I fE  = {1  = 3 ı , . . . ,%  = Sn}  is a strongly typed solved equation set, then pu(E) is
the sirongly typed substitution [x1/sı,...,  n /  Sn ] .

Let ¢( E) be the multiset of all (function and variable) symbols in  E .  Let (En)nen be an infinite
sequence with BE, — Ej ,  for all k .  Let > ;  be the following ordering on (function and variable)
symbols :
- 2 > g if z is a variable symbol and g is a function symbol and
- z > y i f  = and y are variable symbols with z >g ,  v.
There exists an ordering > and an m in N such that > ;  = > for all k > m.  I t  is clear that
c(Er) >um c(Er+1) for all k > m,  where >ps is the multiset extention of > .

101



3 .3 .2  Transformation rules

If  E is an arbitrary equation set, then Solve(E) is a solved equation set obtained from
E using the rules of 3.2.2. In this subsection we work with solved equation sets. All
solved equation sets E are a disjoint union of  a ’to be worked of ’  equation set E,  and
a 'worked of’  equation set. All  strongly typed equations are worked of’.

All rules E — E ,  where E is an equation set and E is a set of equation sets must
be interpreted as EUE' — EUE'".

Let e = © = 3s be a ' to be worked off’ equation with z .7 .  There are two cases :

® s is  a variable or a ground term,

e s i s  not a variable and not a ground term.

In the first case we  use the rule

e EUe — 0.

Consider now the second case. If s.o for some 0 < 7 ,  then we use the rule

e EUe — 0.

Let T!  = max{t € T (X ) \  X | t :  7 € Dr } .?  (We use new variable symbols and new
variable type declarations for the terms in T?(X).)

We use the rule

oe EUe  — User; Solve(E U e U s =)

and e becomes worked of’.

3.3.3 Constraints

X is linear if all t with t : 7 € D r  are linear.

p is an open function position in a term t if the subterm t | ,  of ¢ at p is not a variable
and not a ground term. Let P,(t) be the set of all open function positions in ft.

We  write

31f there does not exist declarations s : 7 and £ : 7 in D r  with 5 < 4, then, obviously 77 = { t  €
T (X ) \X | t : r  € Dr} .
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e f > gif there exists a f ( t , , . . . , t . )  : 7 in D r  and ap  € P,(f(ts,. . . , ts)) with
tp  = g ( s1 , . . .  Sm):

Y i s  circular if the transit ive closure of  > on  F is not irreflexive.

From now on we assume that

° X is noncircular,

eo X is linear.

The rules of  3.3.2 are terminating.

Conjecture 1 The linearity constraint is not needed.

3.3.4 General Case

Let E be an equation set wi th V = V(E)  and let (E,)a<, be a finite sequence of
. sets of solved equation sets such that Eo = {Solve(E)} and Ex — Egy, for all

° k < s using the rules of  3.3.2 and  such that no rule can be applied to E, .  E ,  is a set
of strongly typed solved equation sets and Ug,cg, 4#(E,)lv, is a most general set of
strongly typed unifiers of E .

3.4 Regularity

A signature I is regular i f  every term has a least type.

A renaming of variables p is a weakening on V if for all z inV

oe 2.7 implies pz.  for some 0 < 7 .

s i s  a weakening of  t i f  there exists a weakening pon  V ( t )  with s = p t .

Fact 14  A signature X is regular iff for all  least strongly typed common instances s
of weakenings s ı  ands;  o f  terms t ,  and t ;  witht,  : 7,  and tz : 72 in  D r  there ezists
ao  witho <n ,  and 0 < 79 such that s.o.

3.5 Typed Unification

From now on we assume that ¥ is regular.

0 i s  a typed substitution i f  0z.7 for all z in  X with z .7 .  f i s  a typed unifier of  E if i t
is a unifier of E and a typed substitution.
0 i s  a typed unifier of E i f  i t  is a typed unifier of one of the equation sets of E .

3Let  ¢(E) be the multiset of  all open function: symbols in  E, .  E — F implies ¢(E) >mM c(F),
where > is  the multiset extention of  > .
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3.5.1 Typed Case

A solved equation x = s is typed if z .7  implies 5 .7 .  A solved equation set is typed i f
all its equations are typed.
KE  = {z ,  = 3 ı , . . . ,  Zn  = Sn} is a typed solved equation set, then u(E) is the typed
substitution [z1/s1,...,Zn/3n].

3.5 .2  Transformation rules

The transformation rules are similar to the ones in 3.3.2.

There are three cases :

® s i s  a variable,

e s i s  a ground term,

e s i s  not a variable and not a ground term.

Consider now the first case (say s is a variable y with y.o). Let zAy  consist of new vari-
able symbols z wi th  new variable type declarations z : x for all x in  max(]—, 7]N]—, o]).

We use the rule

e EUe — U eon ,  Solve(E Uz =2  U y=2)

and both z = z and y = z become worked off’.

In the second case we use the rule

oe EUe — 0.

Consider now the  third case.

Let T,  = maz{t  € T (X ) \  X | 3o  <7  t : 7  € Dr} (We use new variable symbols
and new variable type declarations for the terms in T(X).)

We use the rule

oe EUe  — User, Solve(S U e U s= t )

and e becomes worked of’.
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3 .5 .3  Terminat ion

Under the assumptions of 3.3.3 the rules of 3.5.2 are terminating.

3 .5 .4  General Case

Let E be an equation set with V = V(E)  and let (En)n<, be a finite sequence of sets
of solved equation sets such that Eq = {Solve(E)} and Ex — Egy, for all k < s
using the rules of 3.5.2 and such that no rule can be applied to  E , .  E,  is a set of
typed solved equation sets and Ug, cg, #(E,)|v, is a most general set of typed unifiers
of E .
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1 Foundations

In this paper we give a decidable necessary and sufficient criterion for unitary unification in  order-
sorted algebras. By lack of space we omit all the proofs; these can be found in  [Wal89].

We shall first summarize some basic results about order-sorted signatures and algebras, follow-
ing [SNGM87]. :

An  order-sorted signature is  a tr iple (5,  < ,X ) ,  where S is  a set of  sorts, < a partial ordering over
S,  and T a family {Zw  | w € S*,5 € S }  of  (not necessarily disjoint) sets of  operator symbols. The
ordering < is extended componentwise to  strings s ;  . . . s ,  € S*, so we have 51  . . . 5 ,  < 8,  . . . s ,  if  and
only if 8;  < st for 1 < i  < n .  In order to  make the notation simpler and more intuitive we shall often
write f : w — s instead of  f € Zw ,  and f : — s instead of  f € I ,  , .  We shall also use T as an
abbreviation for both (S,  < ,  XE) and J , , Zu,s-

An  S-sorted variable set is a family V = { V; | s € S }  of  disjoint sets. A variable z € Vj is written
z : s. We shall use V as an abbreviation for |J ,¢5  Vs.

Let (S, < ,  X)  be an order-sorted signature and V be a variable set disjoint from X.  The set Tg(V),
of terms over X and V with sort s is the least set with the following properties:

(i) ze  Tg(V), i f z :50  € V and so < s.

(ii) fE€Tg(V), i f  f: — sg and sp < s.

(i i i) f ( t 1 , . . . , t n )  € Tg (V) ,  i f  f : 51 . . . 8 ,  — so such that sp < s and t ;  € Tg(V) , ;  for every
i e { l , . . . , n } .

Tx(V)  : =  Uses  Te (V ) ,  denotes the set of  all  terms over £ and V .  The set o f  all ground terms over
X is Tg  : =  Tg(0). The set of all variables in  a term t € Tg (V )  is abbreviated by Var(t).

Let (5,  < ,  I )  be an order-sorted signature. A (5,  < ,  X)-algebra A consists of a family { A ,  | s € S }
of sets and a function A j  : D f  — Ca for every f € X such that the following conditions are fulfilled:

(i) As C Ay,  i f s  <
(ii) D4 is a subset of  (Ca)* where Ca :=  J , es As-

(ii i) I f  f € Zy,s, then Aw C D f  and A j (Aw)C  As.

We use A , , . . , .  as an abbreviation for As, x - - -  x A , , ,  Ar  is some one-point set. (A  function with
domain A,  may be considered as a constant.)
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Obviously we can make Tg  (which we shall abbreviate by  T') a X-algebra. We  define T,  : =  Tg,;
for f € X the function 77 maps the tuple ( 1 , . . . , t , )  € D7 to f ( t1 , . . . , ts ) ,  where D f  is the union of
all Ty, such that f :  w — s.

Let A and B be two (5,  < ,  X)-algebras. An  (S, < ,  X)-homomorphism h : A — B is a function
h : C4 — Cp so that h(A,) C B,  for each s € S and so that h(D4) C D f  and h(Ay(a1,...,an)) =
By (h(ay), . . . ,  h(an)) for all f € X and (a1,...,an) € Df. A homomorphism h : A — B is called an
isomorphism, if  and only if  a homomorphism h’  : B — A exists satisfying h’ oh = id4 and ho  A’ = idp.

As in the unsorted case, the term algebra Tg  is the initial X-algebra, i t  is determined uniquely
(up to isomorphism).

An  assignment v from a variable set V into a Z-algebra A is an S-sorted family of  functions
{vs : V; = A,  | s € S } .  The algebra Tx(V)  is the free T-algebra generated by V ,  i.e., for every
Y-algebra A and every assignment v from V to A there is exactly one homomorphism v *  : Tg(V) — A
that extends v.

A substitution o is  an  assignment from a variable set Y into the term algebra Tg(X ) .  In  general the
uniquely determined extension o* : Tg (Y )  — Tx(X) of  gr wil l  also be denoted by  o .  I f  the substitution
0 :  { z1 , . . . , 2n }  — Tx(X)  maps the variables z1 , . . . , z ,  to the terms #3, . . . , 1 , ,  respectively, we write
Tg = ( z1  —11, . . . , 2  np ) .

A substitution 0 :  X — Tg(Y) is called a renaming, if  i t  is injective and i f  i t  maps every variable
z : 5s from X to a variable of  the same sort s. A substitution o : X — Tg(Y)  is called a specialization,
i f  i t  is  injectiveand i f  i t  maps every variable z : s from X to  a variable (of the same or  of  a smaller
sort).

2 Unifiers and Weakenings
From now on  we shall always assume that (S,  < ,  X)  is a signature such that there is a ground term
t € Tg,  for every sort s € S.

Let t € Te (Y) ,  ’ € Tg (Y ’ ) .  We say that t /  is an instance of  t (abbreviated by  t /  > t), if there is
a substitution 8 : Y — Tg(Y’) such that ¢/  = 0(t). Let 0 : X — Tg(Y) and o/ : X — Tg(Y’) be two
substitutions. We say that 0 ’  is an instance of  vo (abbreviated by  vo’ > 7), i f  there exists a substitution
6 :Y  — Tg(Y')  such that ¢ /  = 0 oo. The quasi-ordering > is called subsumption ordering.

An  equation system over Tg(X)  is a finite multiset of  equations ¢ = t / ,  where t , t ’  € Tg(X) .  Let
T be an equation system over Tg (X ) .  A substitution ¢ : X — Tg(Y)  is said to  be a unifier of  T,  i f
a(t) = o(t’) holds for all equations t = ’  € I". The set of all unifiers of I" is denoted by SU(T). A
unifier o of  an equation system { t  =1'}  is also called a unifier of  t and ¢ ' .

A subset U C SU(T) is called complete, i f  for every unifier 0 ’ :  X — Tg(Y ’ )  there exists a
0 :  X — Tg(Y)  from U such that o’ is an instance of 0 .  We write CSU as an abbreviation for a
complete set of  unifiers.

A signature X is said to be unitary unifying, i f  for all  terms ¢,#’ € Tg(X) there is a CSU containing
at  most one element; i t  is  called finitary unifying,  i f  there exists a finite CSU  for all terms t , t ’  € Tg(X).

Let (S,  < ,  I )  be  a signature, £ a term in  Tg(X), and s a sort i n  S .  A substitution o : X — Tx(Y)
is called a weakening from t to  s, if o( t )  € Tg(Y)s.  The set of  all weakenings from ¢ to s is denoted
by SW(t, s). Complete sets of weakenings (CSWs) are defined analogously to  CSUs.

I t  is well-known that order-sorted unification may be infinitary even if the signature is finite
[SNGM87]. In  order to avoid the problems arising from infinite minimal CSUs we have to restrict the
class of  signatures to be considered:

A signature X is called regular, i f  every term t € Tx(V) has a least sort, which is denoted by
LS(t). (We assume that V contains at least one variable of  every sort.) As proved by  G .  Smolka, the
regularity of  a finite signature is decidable [Smo86).

Regular signatures have the following important property: If (S ,< ,X )  is a finite and regular
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signature, then for every term £ € Tg(X)  and every sort s € S there is  a finite complete set of
weakenings from ¢ to  s such that each of  these weakenings is a specialization.

3 Computation o f  a CSU
The unification algorithm that wi l l  now be demonstrated is split  into several passes. The first pass,
which is described by the following inference system, makes no use of the sorts of the terms to be
unified, thus i t  does not differ from an  unsorted unification algorithm.

Inference System 3.1  Let X be a regular signature. The following rules transform an equation
system over Tg(X)  into a new equation system.

TU{ f ( t 1 , . . - tn) = 2% -»tn)}(Ul) Decomposition TUL  = f ,  tn =F7

ru {z= t , z= t }
TU{z= t , t =0 ] )

(U2) Merging i f  depth(t) < depth(t’) and v(t) < v(z).

(U3) Commutation Tust s  2 i f  v(t) < v(z).

(U4) Deletion ru t=g

Without loss of  generality le t  X = { z ı , 72 , . . . } ;  the function v is  defined by  v(z;)  : =  i and v(t)  : =  0
f o r t  ¢ X .

Lemma 3 .2  I f  an equation system I ;  is  transformed into an equation system TI';y; using one of
the inference rules (U1)—(U4), then TI; and T;41 have the same set of unifiers. The inference system
terminates, i.e., start ing with an arbitrary equation system Ig i t  yields after finitely many steps an
equation system I ,  t o  which no  rule can be applied. Provided that I'; does not contain an equation
of the form f ( t y , . . . , t , )  = g( t } , . . . , t , , )  where f # g or n # m,  then all equations in  I'; have the form
x = t where v( t )  < v(z), and every variable occurs at  most once on  the left hand side of  an  equation.

In  the unsorted case an  equation x == t where x # t is unifiable i f  and only if does not occur in  ¢,
the most general unifier is 0 = ( z  «— t ) .  In order-sorted signatures i t  may happen that LS(t) £ LS(z)
holds (thus the substitution (z  — t )  would not be well-formed), on the other hand there may exist
instances of t having a sort that is less or equal to LS(z). In  such cases i t  is therefore necessary to
compute a CSW from t to LS(z).

Lemma 3.3 Let X be a finite regular signature and let T' = {y ı  =11 , . . . , ¥m  = tm}  be an equation
system over Tg(X)  such that y; does not  occur i n  ¢; for j < i and such that every variable occurs at
most once on  the left hand side of  an  equation. For i < m we recursively define sets U; of  substitutions
as follows:

Us  = { i dx  }

Ui = { l yn  U ( v  — atl)) o f  | 0 :  X — Tg(Y)  € Ui-a, 9} == Oy,

th=0 t , 0 :Y  oY  € CSW( t : ,LS(y ) ) )  }

where CSW(t,8) denotes a fixed complete set of  weakenings from ¢ to s such that each o f  these
weakenings is a specialization. Then Up, is a CSU of I .

The subsequent theorem originates from M. Schmidt-Schau8 [SS85].
Theorem 3.4 Given a finite regular signature (5,<, I )  for every equation system I’ over Tz(X) a
finite CSUi s  effectively computable.
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4 Downward Uniqueness
In finite regular signatures unification is finitary. But  unfortunately in certain signatures the problem
to determine whether two terms are unifiable in NP-complete, just as the problem to determine
whether there is a weakening from a term to  a sort. Even if  there are only twosorts (then the weakening
problem is solvable in  linear time), the size of a minimal CSU or CSW can grow exponentially with
the number o f  variables in the terms [SS88]. We  shall now give a criterion, under which circumstances
the unification in a signature is unitary.

Definition 4 .1  Let S’  be a subset of  (S, < ) .  The set 1bd(S") of  the lower bounds of S’  is defined by
1bd (S ' ) : = { s€S |s<s  foreach s’ € S'} .
Definition 4.2 A set of sorts (S,<) is called downward complete, i f  for all s ı , s2  € S the set
1bd({s1, 52} )  is either empty o r  contains a greatest element.

Definition 4.3 A regular signature (5,  < ,  X) is called downward unique, i f  (S, < )  is downward com-
plete and i f  for all s € S,  w € S* ,  f: w® — 5°  where s < s° and w < w® the set

{ v ' eS* |3weS* ,  5€Sso tha t  f : T5—5,5<s  vw<w ,  vw <T }
is empty or  contains a greatest element.

Lemma 4.4 Given a regular signature (5,  < ,  x) the following properties are equivalent:
(i) (S, <, X) is downward unique.
( i i )  For each term t € Tg(X)  and every sort s € S we have: Either there is no  weakening from t

to s or  there exists a substitution o% such that LS(o t )  <s <=> cv > 0% for all substitutions
oc: X —-Tg(Y).

For a term ¢ and a sort s the most general weakening vo! can be computed in O(nlogm) time
where n is the size of t and m is the cardinality of Var(t).

Theorem 4.5 Let (5,  < ,  X) be a regular signature, then (S, < ,  X) is downward unique i f  and only if
for every equation system I' over Ty(X) there is a complete set of  unifiers having at  most one member.

5 Remarks

Meseguer, Goguen, and Smolka have shown [MGS87], that unification in an order-sorted signature is
unitary, provided that (S, < )  is downward complete and that foral l  f € Z , s  € SU{maz},andne N
the set {s1 . . .5n  €S* | f : 51 . . . 5 ,  — §, § < s }  is either empty or contains a greatest element, where
s < mar holds for each s € S. This criterion is sufficient, however, i t  is necessary only if unsorted
variables are permitted in  the terms that are to be unified, and at least one of the terms to be unified
is not an unsorted variable. The following example demonstrates how unsorted variables may affect
unitary unifiability.

Example 5.1 Let (S,< ,X)  be defined by

(S, < )  = { s2  <Sı1, $5 <s  }

S={ f : s—s ,
f : 81  —s1,
f : 82—8,
f : sh—s2}

The equation f (z  : untyped) = £ : s2 has the minimal complete set of  unifiers { ( z  — y : 52 ,  Z — f(v)),
( z  —y  : 8 ,  — f ( y ) ) } .  We can never encounter such a situation, however, i f  the variable z has a
sort: I f  = has the sort s ;  or s j ,  i t  cannot be mapped to a variable with the sort s5, hence only the
first substitution remains, similarly the first substitution must be excluded, i f  x has the sort s} or s5.
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Unification in the Associative Commutative theory is a major topic in automated deduction since
many mathematical operators have these properties. AC-unification is a very complex problem which
was shown NP-complete by Kapur and Narendran in 1986 [10], and M .  Stickel [17] and M .  Livesey & J.
Siekmann [15] discovered concurrently in  1975 the first AC unification algorithm whose termination was
proved by F.  Fages [5] in  1984. After them, many authors studied intensively this problem, including A.
Fortenbacher [3], A.  Herold & J. Siekmann [6], C. Kirchner [11], J. Christian & P. Lincoln [2], D.  Kapur,
H.  J. Biirckert et al. [1].

The AC unification algorithm involves usually the solving of a linear homogeneous diophantine equation
over IN" followed by  a combination step of i ts solutions. Each of these steps was studied independently
but only the first one was significantly improved. In  1978, Huet [7] proposed an algorithm to solve a linear
homogeneous diophantine equation over IN" by searching for the solutions in a bounded domain, and the
bound was then improved by Lambert in 1987 [14]. At  last, in  1987, Clausen & Fortenbacher [3] proposed
a new very efficient algorithm. The only significant improvements of  the combination step were proposed
by J.M. Hullot in 1979 [8] and J. Christian & P. Lincoln in 1987 [2]. Hullot gave criteria to eliminate
early some combinations which do not lead to a solution, while J. Christian & P. Lincoln proposed a
particular very fast AC unification algorithm for the case of equations without repeated variables. This
last solution may however not be used as a general AC unification algorithm. In the general case, even
simple equations may be solved by no current algorithm because of the huge amount of their minimal
AC-unifiers. For example, i f  + is associative and commutative, then

z t z+ r+z=p1+y2+ys  + Ya has 34 359 607 481 minimal unifiers

as shown in  [4], and the computation of these minimal unifiers, required in an implementation of the
equational Knuth Bendix’s completion procedure [13,9] for example, is thus untractable. A solution
to such problems is to introduce an identity for +,  and to perform unification modulo Associativity,
Commutativity and Identity, as proposed by Herold & Siekmann [6]. The theory defined by these axioms,
called AC1, is then unitary unifying when only variables and one ACl-operator are involved in  terms to
unify. This works well as long as no other operators are involved and no other axioms are taken into
account but  i n  general, we do not get a conservative extension of the quotient algebra. For example, i f
we consider the theory defined by  the following axioms

(z-y):-z2 = z-(y-2)
zy  = yz
zz  = A

A = A

*This work was partly supported by  the GRECO de programmation (CNRS) .
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where A is a constant, and if we assume the existence of an identity for -, that is to say, if we add the
axiom z - 1 = z ,  where 1 i s  a new constant, then we can prove u = A for any term u as follows:

u = u - l

u-(1-1)
u -A
A

N
N

but this does not hold modulo the previous axioms because no axiom may be applied to u. The trouble is
due to  the fact that the new axiom z - 1 = x may be overlapped with the previous ones, by instanciating
some variables with 1. Such instanciations should thus be forbidden. The first solution to this new
problem is to compute the AC unifiers from the AC1 unifiers when they are needed, as made by Herold &
Siekmann [6]. We loose then the benefit of the Identity, and complexity of unification does not decrease
as we would expect. An other solution is to handle constraints expressing that some variables should not
be instanciated with the identity. Although this solution works well, it has some drawbacks:

e We do not really perform unification in an algebra.

® The constraints are disequations which may, in general, never be removed because unlike for equa-
tions, instances of  solutions of  a disequation are not necessarily solutions.

o We must deal with constrained equational logic. See [12] for more details.
We found a third solution by studying the combination step of Stickel’s algorithm. when solving

z + y = z + t  for example, we first solve the diophantine equation X,  + X,  = X3 + X,  over IN*. The
matrix of  minimal solutions of this equation is

©
 

©
 

= 
=

b
i  

A
 

©
 

©

S
o 

=
O

=

o
=

 
oo

1

and we must then find all subset of  the set of  this minimal solutions which form a matrix without a zero
column. In our case, there are 7 such subsets. Considering each column, we see that a matrix without a
zero column is obtained i f  and only i f  we take the 1°!  or  the 2"? row, the 37% or  the  4 ,  the 1°! o r  the 37%,
and the 2"¢ or the 4%. That is to say, we have to take rows 1 and 4 or rows 2 and 3, other rows being
“free” in  each case. For each of  these two possibilities, we associate witheach constrained row, a “normal”
new variable u ; ,  and with each “free” row, a “special” new variable u }  which may be instanciated with
the identity. We get then two solutions

=u  +u l  z=u l  +u ,
y=  uf +uq  d y = ug +uf

— + an  n tz2= U +43  zZz= U ,  +u3z
t =u f+uw4  t=u+u f

instead of seven. We see on this example that we have variables of two sorts: ”special” variables may be
instanciated with the identity while “normal” ones may not. Since the second sort is embedded i n  the
first one, we will work in  an order-sorted framework with the semantic introduced by G.Smolka in  [16].
Applying the same method,

z+z t+z+z=y+y2+ys+ys  has 437 minimal unifiers

and this may now be used for practical purpose. One may notice that this third point of view is very
similar to the second one, but as we will see later, sorting terms avoids the drawbacks mentioned above.
Indeed, we deal with constrained equational logic, but without disequations.

This idea is developed in the paper, and given an equational theory, we design an order-sorted ex-
tension of this theory in which every AC-operator has an identity. We prove then that this extension
is conservative, and give a unification procedure for this theory. The soundness, completeness and ter-
mination of the procedure are then proved and some comparisons are given which show clearly that the
complexity of  the unification drastically decreases.
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Special Algorithms I

H.  Abdulrab, J.-P. Pecuchet: Associative Unification

E. Contejean,H.  Devie: Solving Systems of Linear Diophantine Equations

J.-F. Romeuf: Solutions of  a Linear Diophantine Systems

H.J. Ohlbach: Abstraction Tree Indexing for Terms
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ASSOCIATIVE UNIFICATION

Habib Abdulrab* Jean-Pierre Pécuchet**
Faculté des Sciences, B.P. 118, 76134 Mont-Saint-Aignan Cedex }

Notat ions

An  algebra equipped with a single associative law is a semigroup. I t  is a
monoid when i t  has a unit. The free monoid generated by the set A (also called
alphabet) is denoted by  A*.  I ts elements are the words written on the alphabet A, the
neutral element being the empty word denoted by 1. The operation is the concatenation
denoted by juxtaposition of words. The length of a word w (the number of letters
composing i t) is denoted by  |w|. For a word w = wy . . .  wy, with |w| = n ,  we denote by
w(t] = w; the letter at the ith position.

In this terminology, the term algebra ( in the sense of Fages & Huet (1986),
Kirchner (1987)) built on  a set of  variables V ,  a set C of  constants, and a set of  operators
constituted of an associative law, is nothing else than the free monoid T = (V |JC)*
over the alphabet of letters L =V  | JC.

A unifier of  two terms e;,e2 € T is a monoid morphism a : T — T (i.e. a
mapping  satisfying a(mm')  = a(m)a(m') and a(1) = 1), leaving the constants invariant

(i.e. satisfying a(c)  = c for every c € C') and satisfying the equality a(e1) = a le ) .
The pair of words e = (e1,e€2) is called an equation and the unifier a is a

solution of this equation.
. A solution a : T — T'  divides a solution 8 : T — T"  i f  there exists a

continuous morphism 8 : T' — T"  (i.e. satisfying 8(z) # 1 for every z) such as
B = af .  We also say that a is more general than 8. A solution a is said to be
principal (or minimal) when it is divided by no other but itself (or by an equivalent
solution, i.e. of  the form a '  = a f  with 0, an  isomorphism).

* Laboratoire d’Informatique de Rouen et LITP. E.m.: inrialgeocublabdulrab.

** Laboratoire d’Informatique de Rouen, LITP . E.m.: inrialgeocub!pecuchet.

t This work was also supported by  the Greco de Programmation du  CNRS and
the PRC Programmation Avancee et Outils pour I'Intelligence Artificielle.
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Main problems

The three main problems concerning systems of equations are the existence of a
solution, the computation of the set of minimal solutions (denoted by uCSU,4 in  Fages
& Huet (1986)) and the computation of the rank. All these problems reduce to  the case
of  a single equation, as by  Albert & Lawrence (1985) every infinite system of  equations
is equivalent to  one of  its finite subsystems, and a finite system can be easily encoded
in  a single equation (cf. Hmelevskii (1971)).

The study of  properties and structure of  the set of  solutions of  a word equation
was initiated by  Lentin and Schiitzenberger (1967),  Lentin (1972) in  the case of  constant-
free equations (C  = 0).

In particular, Lentin shows that every solution is divided by  a unique minimal
one and gives a procedure (known as the pig-pug: paire initiale gauche, paire ultime
gauche) allowing to  enumerate the set of  minimal solutions. This procedure extends
without difficulty to  the general case of an equation with constants (cf. Plotkin (1972),
Pécuchet (1981)). The minimal solutions are obtained as labels of some paths of a graph.
When this graphi s  finite, as in the case when no  variable appears more than twice, we
obtain a complete description of all solutions.

It can be shown that the rank of an equation is the maximum rank of its
principal solutions, that is, the maximum number of variables V'  appearing in its
principal solutions. The computation of the rank of  certain types of constant-free
equations was solved by Lentin (1972). Then Makanin (1977) showed that one can
compute the rank of an  equation with constants in the case of  four variables and in
the general case (cf. Makanin (1978)). Pécuchet (1984) shows that one can compute the
rank of  any equation as soon as one knows how to  decide the existence of  a solution,
showing thus that the two algorithms of Makanin (1977, 1978) given by Makanin are
not independent.

The problem of the existence of a solution was first tackled by Hmelevskii
(1971) who solved i t  in the case of three variables, then by  Makanin (1977) who solved
the general case. He gave an algorithm to decide whether a word equation with constants
has a solution or  not.

All the problems linked to  word equations are very close to those linked to
equations in the free group. Thus the computation of  minimal solutions by  the pig-
pug method uses transformations close to  those used by  Nielsen (1918) in  the study
of automorphisms in free groups, then taken up again by Lyndon (1960). Finally, an
adaptation of his first algorithm allowed Makanin (1983) to solve the problem of the
existence of  a solution to  an  equation in a free group. This paper also gives a bound on
the length of a solution of minimal length in the case of free monoid, allowingto use
the pig-pug method as an algorithm to solve the problem. However, no proof of this
bound independent of  Makanin’s algorithm is  known, and the value of  this bound makes
the pig-pug method almost inoperating in the general case. So the original algorithm of
Makanin seems still to give the most reasonable implementation.

We present here the pig-pug method, we assume first without loss of generality,
that the alphabets of variables V = {vi  . . . v , }  and of constants C = {c ı  . . .  cm} are finite
and disjoint. We make the convention to represent the variables by lower-case letters,
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as , y , z . . . ,  and the constants by  upper-case letters as A ,B ,C  . . . .  We call length of
an  equation e = (e ; ,  ez) the integer d = [ej ez].

The projection of an equation e over a subset Q of V is the equation obtained
by  ”erasing” all the occurrences of  V \Q .  Consequently, an  equation has 2 "  projections
(Age,  Hge2) where I g  : (V|JC)* — (QU  C)*  is the projection morphism.

One easily proves the following proposition which reduces the research of a
solution to  that of a continuous one.

PROPOSITION 1.1 An  equation e has a solution iff one of  its projections has a
continuous solution. |}

The pig-pug method consists in searching for a continuous solution « in the
following manner: i t  visits the lists e;[1],...,e1[|e1]|] and ez[1],...,ez2[|e2|] of symbols
of e from left to  right and at the same time, one tries to guess how their images can
overlap. A t  each step, one makes a non deterministic choice for the relative lengths of
the images of the first two symbols e;[1] et e2[1]. According to the choice made :

la(er[1])] < le(e2(1])], |a(er[1]] = la(ez[1])], la(er[1])] > |ofe2[1])]

one applies to the equation one of  the three substitutions to  variables :

e2[1] — e1[l]ez[l], e2[1]&— eı[l], eıfl]&— ez[1e1[1].
The process is repeated until the trivial equation (1,1) is obtained.
The following result, a proof of which can be found in Pécuchet (1981), shows

that this graph enumerates all the minimal solutions.

THEOREM 1.2 (cf. Lentin (1972)) The set of  minimal solutions of  a word equation
is given by  the labels of  the paths linking the root to the trivial equation in the pig-pug
graph. 1

When the graph associated with an equation is finite, the pig-pug method
provides a particularly simple unification algorithm. That is the case when no variable
appears more than twice. In fact, i t  is easy to prove the following proposition:

PROPOSITION 1.3 When each variable appearing in the equation e has at  most two
occurrences, the length of  all the equations derived by the pig-pug method is bounded
by the length of  e.

In the general case, the pig-pug’s graph will  be infinite. However one can always
decide the existence of a solution by:
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THEOREM 1.4 (cf. Makanin (1983)) = One can construct a recursive function F such
that, i f  an equation of  length d has a solution, then there exists one in which the lengths
of  the components are bounded by  F(d). 1

Note that the only known function F is that derived from Makanin’s algorithm
(1977). Another reason for the study of  this algorithm is that i t  leads to  a better pruning
of the graph, and is more efficient than the pig-pug method in some cases.

Note also that this bound concerns the solutions of minimal length, and allows
to  use the pig-pug as a decision procedure. When the set of minimal solutions is finite,
the pig-pug’s graph is not necessarily finite, and no bound concerning the length of
minimal solutions is known. In this case the pig-pug cannot be used as a unification
procedure, because i t  is not known how to stop the graph construction. The only known
unification procedure is that of Jaffar (1989), based on Makanin’s algorithm.

Application in a programming system

We describe here an application of the resolution of word equations in a
programming system.

I t  is well-known that the algorithm of unification (cf. Robinson (1965)) is
the heart of PROLOG language. PROLOG-3 propose a major modification to this
algorithm. In this section the modification is discussed and the potential role of
Makanin’s algorithm in this area is demonstrated.

Here is an example, given in  Colmeraur (1987), of  a program written in
PROLOG-3:

{z :10 ,  < A ,B ,C  > . z  = 2 .  < B ,C ,A> }?

The result of running of this program is

{ z  =<  A,B ,C ,  A ,B ,C ,  A ,B ,C ,  A > }

More precisely, this program computes the l ist  z, which produces the same list if
i t  is appended at the right of  the list < A ,  B ,C  > and at the left of  the list < B ,C ,  A > ,
such that the length of z is equal to 10.

In  other terms, this program computes a solution a to  the equation ABCz =
2BC A, such that |a(z)| = 10. A solution satisfying this condition is z = ABCABC ABCA.

I t  must be observed from this example that PROLOG-3 takes into account the
associativity of  the operation of  concatenation (denoted by  . ) .  In  equational terms, this
implies that the value of a variable given by the solution a may be a sequence of terms,
not simply one term as in the case of  a classic PROLOG. This major difference provides
a very powerful tool of  formal computation.

However, there is an  important restriction: i t  is necessary to  specify the length
I of each variable z ,  used in  the operation of concatenation, by  the condition x : I.
In the program given above, z : 10 is an  example of  a constraint which must be given
explicitly. Note that the classic unification algorithm is replaced by  an algorithm solving
a system of  constraints which becomes the heart of PROLOG-3. Of  course, this
must be efficient, which is why Colmeraur (1987) justifies, the necessary condition on
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the length of variables mentioned above. Note that this restriction avoids solving word
equations which have no solution.

New results and implementaion

In our paper (1989), we gave a complete description of  Makanin’s algorithm
which allows to  decide whether a word equation has a solution or  not.

New concepts, such as equations with schemes and position equations are
introduced in our description. A new presentation of Makanin’s algorithm permitting
to  all its steps to  be  illustrated graphically, is described in this paper. The fundamental
point is that our version has been effectively implemented.

When a word equation has a solution, one can use the pig-pug method to
compute the set of all the minimal solutions of e. This set is presented as a language
accepted by  a deterministic automaton (not necessarily finite). The families of languages
accepted by  such automata are described.

Some improvements concerning the reduction of  the number of  types of  position
equations, and the reduction of the complexity of the algorithm by  one exponential, are
given in (1989). Other technical results concerning our work in this area can be found
in Abdulrab (1987a) Pécuchet (1981). We prove, for example, that one of the three
conditions of the normalization is always satisfied. The size of the tree A is greatly
reduced in our version. Our construction of  A is based on  the notion of a solution of
an  equation with scheme, which allows the elimination of  some types of  equations with
schemes which have no  solution.

The first implementation of the version of Makanin’s algorithm is described in
Abdulrab (1987a,b).

| This implementation is an interactive system written in LISP and running
on VAX780 under UNIX, and on  LISP Machine. This system visualizes the position
equations, computes effectively a solution of  the initial equation whenever there exists
one, and provides a tool permitting to understand, experiment and study introdthe
algorithm. Our implementation has also been coded in CAML by  Rouaix (1987).

We show in Abdulrab (1987b) that the present implementation is not efficient
enough to be used as a unification module in  a programming system. We also describe
the characteristics of a new version which could realize this goal.

The purpose of the algorithm being to decide whether an equation admits
a solution or not, we provide an algorithm (cf. Abdulrab (1989)) which, by taking
advantage of the tree A ,  effectively computes a solution to  the initial equation. The
idea is to compute a solution to the equation e, from the equation with scheme which
generates the root of the subtree containing a simple position equation.

Here is in milliseconds some execution results on  a LMI  LISP Machine.

1 )  Equation (zzzyC  Bzzzz ,yAByzzB)  has no  solution: (433 ms).

2) Equation (zAByC Bzatzuz,yABytzuzB) has no solution: (757 ms).
3) Equation (zz AyBy,C AyvABD) has solution x = CAABD,
v=CAABDAABDB,  y = ABD: (19 ms).

120



H. Abdulrab, J.P. Pécuchet

4) Equation (BIABIABIA,rouDouDou) has solution | = ADABADAB, o = ABA,
r=  BADABADABABADABADAB, u = 1: (43 ms).
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We discribe an algori thmfor solving systems of linear diophantine equations which
extends Fortenbacher’s algorithm [For Clau 87], the best one currently known for solving
a single equation. Such systems naturally arise in  automated theorem proving on one
hand (AC unification and matching) and in Petri nets on the other hand (for deciding
reachability).
Let us introduce some terminology, starting wi th a linear homogenous system S with  p
equations and q unknowns denoted:

(dy  1 )  + . . .  + dy  gz, = 0

| dp .171  + . . .  + dp  4 ,  = 0

where the coefficients d;; 1 <1 <p ,  1 < j  <q  a re in  Z ,  and the unknowns =;  1 < j  <¢
range over N .
We denote by é¢; the j - th  canonical g-tuple in N%:

& = (0 , . . . , 0 , 1 ,0 , . . . , 0 )
7 -1  t imes

Let Z = ( z ı , . . . ,ze) be in  NY. The p-tuple d3(Z) of N”  such that d¥(z) = (2%, d;;z; )j =1
for 1 < 7 < pis called the defect of  T for S .  So, the  defect o f  T i s  a vector whose components
are the value of  the p linear forms defining S .  Hence, a g-tuple Z is a solution for S i f  and
only i f  d5(Z) = 0.
Note that d°(Z) = X} . ,  z;d*(¢;) and let |

D = {d%(&),...,d%(&)}

As usual, we are not interested in  generating al l  solutions, a basis will suffice to  represent
them all.

Let <? be the ordering on tuples i n  N !  extending the ordering on N :

(Sız...58q) <¥  (t1y..-5ty) i f f  Si  < tj for j€[ l . .g]
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Fact 1 A non-null solution of S is a linear combination of  minimal (with respect to <7)
solutions with coefficients in N .

Our algorithm therefore searches N?  for minimal solutions. The basic idea is to  compute
these minimal solutions by incrementing one by one the components of the canonical g-
tuples unt i l  the defect becomes null .  This can be seen as summing vectors taken from D
unti l  the resulting sum is 0. The only subtlety in the algorithm comes from the policy
for choosing the vectors from D .  Since there are several possibilities, this choice is non-
deterministic, hence can be easily expressed by a tree construction. Let us see N? as a
labelled tree.

Definition 1 Let N? be the infinite tree whose nodes are labelled by vectors of N? as
follows:

o the root is labelled by O..

o if v i s  the label of  a node, its successors from left to right are labelled by

t e l . . .  v+él
Note that the deepth of  a node is exactly the sum of the components of its label. Hence
if  a tuple is greater than another tuple for < ’ ,  its depth is greater.
We search N? bread-first. I f  a node is labelled by  a vector ¥ which is a solution for S,  there
is no need to visit the infinite branches of N? starting at that node,since they would not
yield minimal solutions. Since we are searching the tree bread-first, we know for each node
whether i ts  label  is  greater than a solut ion.  Again,there is no  need to  v is i t  the  branches
issued from such a node.
The heart of the algorithm is i n  the following restriction: i f  a node is labelled by a vector
7, no solution is omitted by keeping only its successors labelled by v + el such that

d3(v).d%(&;) < 0

where . denotes the scalar product in  RP. This means that the vector di  (e;) is in  a halfspace
delimited by an hyperplan perpendicular to the vector d°(7). Intuitively, the new defect

halfspace forbidden

dS(5+6;) should not go too far from 0.
Now, the following theorem holds:
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Theorem 1 The algorithm sketched above

® is correct

e is complete

e terminates (there is no infinite branch in  the search tree).

Correctness is tr iv ial .  Completness is by  induction on the depth of a solution in  the tree.
The hard point is to  prove termination. The proof is not constructive, hence we do not
know a bound for the depth of the tree ( in  the case of a single equation, Fortenbacher’s
algorithm yields such a bound).
Let us now show our algorithm at work on  the following example:

z + 2y — 2z  — t = 0
x — 2z  = 0

I t  generates the following tree:

ee

( 1 ,0 ,0 ,0 )  ( 0 ,1 ,0 ,0 )  ( 0 ,0 ,1 ,0 )  ( 0 ,0 ,0 ,1 )

PEN TN | / N
(1,0,1,0) (1,0,0,1) (0,1,1,0) (0,1,0,1) (1,0,1,0) (0,1,1,0) (1,0,0,1) (0,1,0,1)

A 
NE ZZ U

(2,0,1,0)| (1,1,1,0) (1,0,1,1) (1,1,1,0) (0,1,1,1) | (0,1,0,2) already
81 | | DS  / NU  S2 found

(1,1,1,1) (2,0,1,1) (1,1,1,1) | (1,1,1,1) (0,2,1,1)

EEE VAAN
(2,1,1,1) fore? (12,11)  (0,2,1,2)

> 81  yd  AN  > 83

(1,2,2,1) (1,2,1,2)
| >82

(2,2,2,1)
> 8

One can also solve non homogenous systems with this algorithm by turning them into
homogenous ones. Solving

| duz ı  + . . .  + dy  474  + by  = 0

dp  173  + . . .  + dp  aTq  + bp  = 0\
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is equivalent to  solve

( dy  1 + . . .  + dy  47 ,  + byzg+1  = 0

where z ,4 ,  is bound to the value 1, which can be easily checked on the tree.
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The study of  linear diophantine systems arises in many domains, such as inte-
ger optimization, associative-commutative unification, and even pure associative
unification, since the resolution of  such systems appears in Makanin’s algorithm
[Mak].

Let n ,  k be two  positive integers. A system of  n linear inhomogeneous diophan-
t ine equations with k unknowns may be  written Az  = b, where:

A = (0ij)1cicn, 1c j<k  € ZW,  and b=  (bi) g ic ,  € Z "

The set of  solutions of  such a system is then: S = { z  € N*  : Az  = b}.

We recall that one can decide whether S is empty or  not, and that this problem
is NP-complete [BT]. [GS] indicates various upper bounds of a minimal height
element of S, and some algorithms may be found in [GN] which find a minimal
length element of S.

We are interested here in  computing a representation of all solutions of a given
system. When the system is homogeneous, S is a substractive submonoid of  N*.
This submonoid may be represented by its finite basis Y ,  which is the subset of
minimal elements of S \ {0} for the natural partial order on N*. In the general
case, S is a rational part of N*  [GSp,ES), of the form X 4+Y®, where X is the finite
set of  minimal elements of  S ,  and Y is the basis of  solutions of  Az  = 0. Forn  =1,
the problem has already been treated by Huet [Hu], improved by Lambert [Lam].
The more recent algorithm are by  Fortenbacher [CF] and Lankford [Lan].

Let © = {0 ; : 1  < i  < k }  be the basis of N*. § being a rational part of N*,
there exists a finite L-automaton which recognizes S. For n = 1,2, we give here a
method for constructing explicitly such an  automaton.
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Let k be a positive integer, A = ¥(a;);¢;x € Zk  be  Z ,and  § = {x € N* :
Az = b}. a

We  assume that b < 0, and we set: a;41 = —b. Let:

o l ,  = max a i ,  and I = max a; |

e Q=] -104 ,L ] ) i f l ;  >0 ,  and [0,1] if I, = 0 (integer intervals)

eo F=  { ( g ,000+a ) :q€  Q ,  1 < i<k ,  qg+a ;  € Q }

We show that S is recognized by  the S-automaton: A = (Q, { - b } ,  { 0 } ,F)

This result and its proof are similar to  Fortenbachers’ [CF], only the terminol-
ogy changes.

Let k be a positive integer, A = (a i j ) ,¢ic0 1<j¢ € Z°**, b=  (bı,bz) € Z%, and
S = { ze  N*: Az = } .

We set: a j  x41  = —b1, 02 ,4+1  = —bs, and for all i ,  1 < i  < k ,  a; = (az, az:). Let:

e [;  = max|ay;l, l o  = maxay ;  = max |as;], and p; = maxay;1 max| 1 i l s  2 PA  1 i y  D1 max  | 2il, D2 Po  2 i

e Q = ([-yh] x [=p1,pal) U (1= I, h]x Ip22p0])  U ([-2h, —h[x] — pr,  pa] U
([—&, lo[x[—2p, —pil) U (142, 222] X [—p1,p2[) (integer intervals), and

eo F= { (g ,0 i , 0+a ) :9€Q,  1< i<k  g+a€Q}
Then S is recognized by the T-automaton: A = (Q, { - b } ,  {0} ,  F).

Let A r  = b be a system of n diophantine equations with k unknowns, n = 1,2,
S the set of  i ts solutions, and X + Y® the rational expression of  S .  Let A be the
Y-automaton defined above. Then the following results hold:

Proposit ion 1 z is a minimal length element o f S iff i t  is the label of a shortest
path from —b to 0 in A .

Proposit ion 2 For a l l  z in S,  z € X iff no path from —b to 0 in A with label x
passes twice by the same state.

Proposit ion 3 For a l l  z in S\ { 0 } ,   € Y iff no path from 0 to 0 in A with label
z passes twice by the same state after leaving 0.

We use these results to  conceive, in the cases n = 1,2,  new efficient algorithms
to  compute a minimal length solution, the set X of  minimal solutions, or the basis
Y of the solutions of Az = 0. So, we get an efficient algorithm to compute, for
n = 1,2, the rational expression of the solutions of an inhomogeneous diophantine
system.

For n = 1, our algorithm has the same theoretical basis than Fortenbacher’s
algorithm [CF], but the methods for computing minimal elements differ notably.

As a corollary of  propositions 2 and 3, in the case n = 1, we get:

128



Proposition 4 max|z |  < +1 ;  — 1, and max  |y| < 1 +h .
eX  yeY

Moreover, as in [CF], if we give a closer look at the form of some paths recog-
nizing the elements of Y ,  we get a trivial proof of Lambert’s result [Lam]:

Proposition 5 (Lambert)  Fo ra l l y  in Y,  Dy ;  <1  and Y_ 4;  < Is.
a ;>0  2 ;<0

In the case n = 2, we get:

Proposition 6 Let L=(l; +1 ,  + 1)(p1 + p2 +1 )  +2 (h  + L2)(p1 + p2)- Then:
max |z| < L—-1, and max [y| <UL.
z y

Let Az  = b be  a system of two equations. We set: | = max(l; ,  I ,  pı, p2). Using
a slightly different automaton, we get the bound 1272.

We give methods to  compute the rational expression of the solutions of any
linear diophantine system using the algorithms for systems of  one or two equations.
Let Az  = b be a diophantine system. We set: a;r41 = —b; for alli, 1 < i  < n .
Let: | = r ie BX  |a;;|. By  iterating over one equation, we get the following
bound:

Proposition 7 max|z| < (2)*"™! — 1, and max|y| < (20?zeX yeY

[GS] indicates, for a minimal height element of S, bounds in  height of the order
of  ( k+1 )n ! / "  and I "* ,  which are smaller by  one exponantial. However, our bound
concerns all the terms of  the rational expression of  S .  Moreover, we obtain here a
boundi n  length whichi s  independent from k.

If we iterate over two equations, we get a more efficient algorithm, and the
3_

bound lowers to  ( v  12 1 ) ’  ' n even.
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In t roduc t ion
I n  many deduction systems large databases of  first-order predicate logic terms and literals have to be

maintained. Typical queries to such a database are:
- For a given term t, find out all terms which are unifiable with t.
Th i s  is necessary for example for finding all resolution partners for a clause.
- Backward subsumption tests and demodulation (for a new demodulator find all terms to rewrite)
re ly on fast access to all  instancesof  a term.
- Forward subsumption tests and demodulation again (for a new literal find all applicable

demodulators) rely on fast access toall generalizations of  a term.

Since the state of  the art in  implementation techniques for deduction systems allows to generate millions of
- terms during a run, the efficiency of  term indexing contributes considerably to the overall efficiency of  the

deduction system. Various techniques have been developed for this purpose- discrimination tree indexing,
FPA /Path indexing, bit  pattern, hashing etc. [HD82, L080,  BLC86, WP84].In  general these techniques work
only for free terms, i .e .  no theory unification algorithms are supported, they need large and complex
datastructures, and a query evaluation has to touch at least all “answer terms”,

Abstraction tree (AT) indexing as it is proposed in this paper has none of  these shortcomings. It works for all
finitary unification theories, i t  uses a small and simple datastructure, and in  the best case a few unification and
matching operations are sufficient to access thousands of  answer terms.
In  the sequel X,y,z,u,v,w denote variables, a,b,c,d,e constants and f,g,h functions.

The Abstraction Tree Datastructure
‘Terms together with the usual instance relation form a partial ordering. For example the three terms t) =

+ f(g(x),b), t, = f(g(a),b) and t3 = f(g(b),b) can be ordered according to theirinstance relation:

f(g(x), b)

 f g@b)  fg), b
In  principle this structure is  already an abstraction tree. Since both terms t,  andtz are instances o f  t ; ,  however,

this representation is somewhat redundant. It suffices to represent the two matchers which reproduce t, and tz
from t,. A more compact representation is therefore:

f(g(x),b)
X sa common domain of  the matchers

a * b = codomain of  the matchers
g of
t y  t -9

Now t ;  and t, are uniquely determined by the term atthe  root node and the matchers obtained from the variable
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list attached to the root node and the corresponding termlists of  the leaf nodes. When we adopt the convention
that leaf nodes only represent terms, the tree is  a representation o f  the two terms t, and t3 only. That means, in
order to  represent t,  and tg, the term t ,  has to  be generated as a common abstraction of  t,  and tz. For free terms
there is  always a unique (up to renaming) most specific common abstraction and there are algorithms to
compute i t  [Re69], [P169]. For interpreted terms there may be more than one most specific common abstraction.
If f is associative, for example, the two terms f(a,b,a,b,a) and f(a,c,a,c,a) have at least the two different most
specific common abstractions f(a,x,x) and f(x,a,y). For our purpose, however, the existence of  at least one is
sufficient and i t  even needs not necessarily be most specific. The selection of  the “wrong” one may cause the
abstraction tree to grow more than necessary, but this is  no principle problem.

Let us consider some more examples:
For the three terms f(g(a),b), f(g(c),b) and f(g(c),d) there are two different abstraction trees:

f(g(x),y) f(g(x).y)
X,y  X

z,b cd  a,b CZ

{ N,
If  h is a commutative function symbol, an abstraction tree for the two terms h(a,b) and h(b,c) looks as follows:

h(b.x) |

. X

TN
a Cc

That means the syntactic structure of  the original terms needs no  longer be represented in the tree. I t  is,

however, still guaranteed that the represented terms are equivalent to the original ones in the underlying

equational theory.

In  general, an AT  is a tree where the nodes are labelled with termlists such that the free variables of  the termlist
at node N and the termlists of  Ns  subnodes form the domain and codomain of  a substitution, or more
precisely, a matcher. In  particular the root node can also be labelled with a termlist. In the examples below,

however, only singleton termlists, i.e. terms, will  be used. In order to have for the matchers represented by the
free variables of  a node N and the termlists of  Ns  subnodes a precise assignment of  a domain term to a

codomain term, we assume the variables to be an ordered set. In  an implementation this variable list should be

attached as a second component to the node.

As we have seen, a leaf node represents a term, or a termlist respectively when the root node has also a termlist.

All intermediate nodes, however, represent also terms, namely the term obtained by instantiating the root node’s
term with all  substitutions on the path to that particular node. To distinguish between this term, the term

represented by  the whole path down to the node, and the termlist attached to the node itself, we shall call the

represented term a nodes r-term (or r-termlist respectively) and the termlist attached to the node directly the

node’s a-termlist. Furthermore, when we speak of  a nodes variables the free variables of  a nodes a-termlist

are meant.

Finding Unifiable Terms
The algorithm for finding all terms in  an AT  which are unifiable with a given term is a straightforward recursive

procedure for traversing the tree. We introduce i t  with a few examples.
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Example: ATs with free terms only.
Consider again the tree for the three terms t ;  = f(y,c), t,  = f(g(a),b) and tz = f(g(b),b):

1 f v )
u , V

tw  yc  2 3 g(w),b
w

/ \
In  order to find all terms in the tree which are unifiable with f(g(x),x) we start with the root node, unifying
f(u,v) with f(g(x),x). The unifier, 6 ,  = { u r  g(v), v > x}, is  the applied to the variable list (u,v) yielding the
termlist s = (g(x),x). Taking this termlist as a new query termlist we map over all subnodes of  the current node
and ask recursively for all unifiable terms. Unification of  s with node 2°s a-termlist, (y,c), yields {y  > g(c),
x > c } ,  and this is  actually the unifier for f(y,c) and f(g(x),c), i.e. the first unifiable term together with the

unifier has been found. Continuing with node 3 we get 6 ,  = {w+  b ,  x» b }  as a unifier for the termlists
(g(x),x) and (g(w), b). Application of  6 ,  to the variable w yields b which has to be unified with the a-terms a
and b at the nodes 4 and 5.  Node 5 is  the only successful one therefore the term t is  the second answer term
and the unifier is 0px }  = {x b} .

Example: ATs with interpreted terms.
Assume now the function f is  commutative. The AT  for the two terms f(a,b) and f(c,d) is

1 (c3))
X,Y

/N
2 ab cd  3

To  retrieve the terms unifiable with s = f(d,z), we unify s with f(x,y). Commutative unification yields the two
unifiers { x  > d ,  y+» z }  and { x  > z,  y + d } .  Both unifiers have to be  applied to the variable l ist (x,y). We

obtain (d,z) and (z,d). The main difference to the case with free terms only i s  that we  enter the recursion not

with a single termlist, but with a set of  termlists, in  this case {(d,z), (z,d)} and the recursive query is  “give all
termlists which are unifiable with at  least one of  the query termlists”. In  this case node 2 fails completely while
node 3 succeeds with (z,d), i.e. f(c,d) is  unifiable with f(d,z) and the unifier is { z  — d}.
The general procedure for accessing unifiable terms now takes a node N and a set of  termlists. It  computes a
new set of  termlists by  unifying every termlist in the set with the label o f  N and applying each unifier to N’s

variables. If the set is not empty, the search goes down into every subnode of  N until the leaf nodes are
reached. In  this case one positive unification with one query termlist is sufficient to determine unifiability itself.
In  order to find also a complete set of  unifiers, all unifiers with all query termlists have to be computed. I f  the
unifier happens to be a matcher which instantiates into the query termlist only, the recursion may stop before
reaching a leaf node because all subnodes of  the actual node represent unifiable terms. This is easy to check and
may considerably improve the performance of  the query mechanism.

Finding Generalizations o f  Terms (Forward Subsumption)
The algorithm for finding generalizations of  a term in an AT  is the same as the unification query algorithm
except that instead of  unification, matching has to be used in  order to prevent instantiation in the query terms.

We must, however, follow the tree down to the leaf nodes because only the leaf nodes contain the full
information about the variable bindings. For deciding whether this term is  more general than a given query term

the complete binding is  needed.
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Finding Instances of  Terms (Backward Subsumption)
The instance query algorithm is again almost exactly like the unification query algorithm, except that matching
instead of  unification is  used at the leaf nodes. It might be a little bit  surprising that that unification instead of
matching has to be used at the intermediate nodes, but the following example shows why. The AT  for the two
terms f(a,b) and f(c,d) is

1: fy )
X,Y

TN
2: ab  3: cd

The first term, f(a,b), is  an instance of  the query term f(a,z). Matching f(a,z) against the root node term, f(x,y),
fails because x cannot be instantiated. In the “real” term, f(a,b), as represented by node 2, however, x is
instantiated. Therefore preventing variables at intermediate nodes from becoming instantiated is  not adequate in
this case. Except for the leaf nodes we have to apply full unification.

If, however, the unifier happens to be a matcher which instantiates in the query term only, we can apply the
same optimization as in  the query unification algorithm and take all subnodes as instances without further
unification or matching. This is  in  particular useful when the instances of  a given term are to be removed from
the index (backward subsumption). Simply removing the node with all its subnodes does the job in this case.

Completeness of  the Query Evaluation Algorithms
An  important issue is the question whether the algorithms really find all  possible answer terms and all unifiers
or matchers respectively. In the case of  interpreted functions the answer is  not at all obvious. What we do,
however, is nothing else than unification with variable abstraction. The abstracted terms are unified first and the
unifiers are then merged with the variable bindings. Whenever this technique is complete, our query evaluation
is also complete. This view shows also where the efficiency of  the procedure comes from: A considerable part
o f  the unification of  the terms represented by all the subnodes of  a node has already been done when the
common abstracted term has been unified.

Insertion of  Terms into ATs
The price we have to pay for efficient query evaluation is a relative complex and, compared with other methods,
more expensive insertion procedure. In most applications, however, insertion is combined with forward
subsumption (insert unless subsumed) and backward subsumption (remove all instances from the tree). In  this
case, insertion together with the two subsumption tests can be combined to a quite efficient procedure.

The basic idea for the insertion procedure is to search the node N in the tree representing the most specific
generalization of  the term t to be inserted. I f  for some subnode M of  N,  there exists an “allowed” common
generalization with t then M is replaced by a new node M ’  with a modification of  M and the new term as
subnodes. I f  no allowed common generalization exists, t is  made an additional subnode of  N .  The trivial
generalization x,y for the two termlists a,b and c,d, for example, is  not considered as an allowed generalization.
For free terms, generalization of  this kind are the only ones which are not allowed. For interpreted terms there
may be more.

An Example: The AT  for the two terms f(a) and f(b) is:

1: fx)
X



To insert the term t = f(g(a)), we find f(x) as the most specific generalization of  t. The matcher, { x  ~g(a)} is
applied to x yielding g(a). Since there is no allowed common generalization, neither for a and g(a) nor for b and
g(a), g(a) is made a new subnode of  1, i.e. we obtain

1: fx)
X

2: a 3: b 4: g(a)
If  the next term, s = f(g(b)), is  to be inserted, we find again f(x) as most specific generalization. Now there is

an allowed common generalization between g(a) (node 4) and g(b). Therefore node 4 is  replaced by
g(z) and the whole tree is now 1: f(x)

Z X

\
a bb 2: a 3: b 4: 8(z)

yA

ZN
a b

This procedure contains two nondeterminisms whose solution influences the growth of  the tree. First of  all the
node representing the most specific generalization o f  the term to be inserted is not necessarily unique. One node
has to be selected heuristically. I f the insertion procedure is  combined with forward subsumption where all
nodes have to be checked whether they represent a generalization of  the term to be inserted, all  interesting nodes

have to be visited anyway. In  this case an optimal node can be selected according to some heuristical criteria,
depth in  the tree for example, or number of  subnodes etc. The second nondeterminism comes from the problem

to find a term with an optimal allowed common generalization. For this purpose, an heuristic assessment of  the

generalization possibilities which prefers stronger instantiated terms is  necessary. There is a third kind of

nondeterminism when interpreted terms are present. Since there need not be a unique most specific common

generalization for two interpreted terms, one possibility has to be selected. Again, heuristical assessment is

necessary. The heuristical solution of  the nondeterminisms influence the structure of  the generated AT  and

therefore its discriminative power - in  the worst case the whole tree consists of  a variable x as root node and a

flat list of  terms as subnodes. Complex heuristics may produce a well balanced tree, but slow down the

insertion algorithm. As always, a good compromise has to be found.

AT-Indexing has not yet been implemented. Therefore no empirical experience about its performance is

available at the time being.
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It was Robinson’s (1965) celebrated idea to put the unification process at the heart
of the deduction mechanism. By that time unification was considered as the process of
determining bindings for the variables occurring in  two or more expressions such that their
respective instances become equal within the Herbrand universe (or the domain of finite
trees). In the meantime we have achieved a much broader view under which the original
unification algorithm can be regarded as a special case of a more general constraint solver.
Such a constraint solver computes solutions for a given set of constraints (i.e. a set of
atoms and equations) over domains different from the Herbrand universe.

The development of such procedures was motivated, for example, by the need to solve
linear equations or to evaluate boolean expressions within logic languages (see e.g. [Jaffar
and Lassez, 1987; Büttner and Simonis, 1987]) or by the observation that the propagation
of constraints may reduce the search space considerably [van Hentenryck and Dincbas,
1986]. But there was yet another reason.

Many implementations of logic languages such as Prolog have the following bug.
Though a unification algorithm linear in time and space is known for the traditional
unification problem [Paterson and Wegman, 1978], most existing Prolog systems incor-

° rectly dispense with the so-called occur check for efficiency reasons. The occur check tests
whether, for the unification of the variable x with the term t ,  x occurs in  ¢. Techniques
have been developed to determine for programs whether the occur check may safely be
avoided or  not (e.g. [Plaisted, 1984]). Though these methods reduce the costs connected
with the occur check, i t  stil l  has to  be carried out i t  in certain cases.

Prolog programmers have argued that the need for the occur check arises in  unnatural
cases only and, thus, it is not worth to perform i t .  Hence, i t is up to the programmer
to write programs that still work in its absence. However, if an occur check problem
occurs, then the user often cannot predict how the Prolog system will react. Marriott and
Sondergaard [1988] have shown that the unification procedures, which are actually used
in various Prolog implementations, do not deal uniformly with the occur check problem.
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Even worse, in Poplog! — for example — a query causing an occur check problem will
succeed, fail, or run forever depending on the query.

Colmerauer [1982] fixed this problem by computing unifiers in Prolog II no longer
within the domain of finite trees, but within the domain of rational trees. His unification
algorithm is based on the following transformations on a (multi-) set S of equations:
Compaction: Eliminate any equation of the form z=z from 5,  where z is a variable.
Merging: If z=y i s i n  S, z and y are distinct variables, and x has further occurrences in
S, then replace these further occurrences of z by occurrences of y.
Variable Anteposition: Replace t=z  by  z=t  in S i f  x is a variable, and t is not a variable.

Confrontation: Replace z=s,z=t  by z=s,s=t in S if z is a variable, s and t are not
variables and |s |  < | t |  where |s| denotes the number of  occurrences in s .

Splitting: Replace f(s1,...,8n)=f(t1,...,tn) by 81= t1 , . . . , 8s= t ,  in S.
These transformations preserve the solutions of a set of equations. They are termi-

nating, i.e. there is no infinite sequence of transformations which can be applied to a
set of equations. If no transformation can be applied, then the set S of equations either
contains an equation of the form f(sı,...,  Sn)=g ( t1 , . . . ,  tm), where f and g are different
function symbols, and is said to be unsolvable, or S is in the form {z ;= t ; , . . . ,  z ,=t , } ,
where the z;’s are different variables, and is said to  be  solved over the domain of  rational
trees.

Several problems remain. The unification procedures actually used in various Pro-
log implementations do not perform an occur check and are not based on Colmerauer’s
transformations either. In  many cases we simply do not know how a Prolog system deals
with an  occur check problem (see [Marriott and Sondergaard, 1988]). This is unfortunate,
especially because any solved set of equations over the domain of rational trees either in-
herits an occur check problem or it  can be transformed into a solved set over the domain
of finite trees. This transformation can be achieved by applying
Variable Elimination: If z=t  is an element of S ,  x is a variable which does not occur in
the term t ,  and x has further occurrences in S, then replace these further occurrences of
z by occurrences of  £.

I t  is easy to see that an application of variable elimination to a set S of equations,
which is solved over the domain of rational trees, yields again a set solved over the domain
of rational trees and preserves the solutions for S. Furthermore, since S is finite and each
application eliminates a variable in the right-hand sides of the equations in S, i t  can be
applied only finitely many times (see also [Martelli and Montanari, 1982]).

So why do we not answer queries posed to Prolog programs over the domain of rational
trees first and, i f  the questioner is not satisfied, apply then variable elimination to  obtain
an answer over the domain of finite trees provided that such an answer exists?

There are other problems as well. The semantics of Prolog I I  is still unclear. Van
Emden and Lloyd [1984] proved the soundness of Prolog I I  by viewing i t  as a logic language

1Poplog 9.3 on Vax 750 under UNIX BSD 4.3; see [Marriott and Sondergaard, 1988]
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augmented with a special equational theory. Jaffar et al. [1985] showed that Prolog I I
is an instance of their logic programming language scheme. But neither do we have a
strong completeness result for Prolog I I  so far nor is the question answered how the
negation—as—failure rule can be added to Prolog I I  (see [Clark, 1988]).

However, in  this talk, we concentrate on unification over rational trees. What happens
if we consider unification problems under special equational theories such as associativity,
commutativity, associativity and commutativity, etc. over the domain of rational trees?
Are these problems decidable? Does there exist a set of most general unifiers? Is the
set of solutions enumerable? Can we find a minimal or type conformal unification proce-
dure? Can we increase the efficiency of special unification procedures over the Herbrand
universe?

Looking at universal unification procedures over the Herbrand universe we almost
always find that the search space contains far too many redundant or irrelevant inferences.
As pointed out by Gallier and Snyder [1988] and by Hélldobler [1988], many of these
inferences are linked to the way of how equations of the form z=t  are treated. Can
we eagerly eliminate the variable z i f  i t  does not occur in  ¢? If so, what happens with
equations of  the form z=t,  where x occurs in ¢? Much of the inefficiency of complete sets
of transformations for equational theories has its cause in  the transformations additionally
to be applied to equations of the form z=t in order to ensure the completeness of the
calculus.

A typical example is an equational theory which contains a non-permutative axiom
like

f(z,a) =a.
Now, if we want to solve an equation like

y=c ( f ( y , a )

over the Herbrand universe, then narrowing or some similar inference rule have to be
applied upon the proper subterm f(y,a) of the left-hand side of the equation and we
obtain

y = c(a),

which is in solved form over the Herbrand universe. Though this example terminates
after one additional step, in  general, the need to apply rules like narrowing upon proper
subterms of the elements of an equation may lead to infinite derivations. But observe
that the initial equation is already in solved form over the domain of rational trees.

Now look at complete sets of  transformations for non-trivial (conditional) equational
theories as developed by Gallier and Snyder [1988] and Hélldobler [1988]. Besides the
rules to handle equations like z=t and to unify equations syntactically there is only one
transformation rule:
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Lazy Narrowing: Replace f(t1,...,  tn)=tn+41 by s1=t1, ..., Snp1=tn41 In  S,  if  f(31,...) Sn)=Sn41

is a new variant of an equational axiom and #,4; is a not a variable? (Similarily for
t o r1=1 ( t1 ,  . . . . .  t a ) .

Together with Colmerauer’s transformations lazy narrowing can be used to solve prob-
lems like the following. Let : be a binary function symbol written in infix notation and
denoting the list constructor. Consider the axiom

int(z) =z : int(s(z)),

which can be used to generate an infinite list of integers. Now, if we want to compare
a partially instantiated list with a list of integers, we may ask whether there exists a
solution for

i n t ( 0 )=0 :y .

Applying lazy narrowing we obtain

z=0 ,  z :  int(s(z)) =0 : y .

Applying splitting and anteposing y yields

z=0 ,  z=0 ,  y= in t ( s (0 ) ) .

Finally, applying confrontation followed by compaction we obtain the solved set

z=0 ,  y=int(s(z))

and the answer “y is bound to int(1)”.
I t  should be observed that the search space generated is finite, whereas the search

space generated by  - for example - Gallier and Snyder’s transformations is infinite. This
gives rise to several questions as follows.

For which class of equational theories are Colmerauer’s transformations together with
the lazy narrowing rule a complete unification procedure over the domain of rational
trees? Can we solve interesting problems with such a unification procedure? Can we im-
plement these transformations efficiently? Can we use these transformations to compute
solutions for universal unification problems over the domain of  finite trees by first solving
these problems over the domain of rational trees and, afterwards, checking whether these
solution can be extended to solutionsb over finite trees?

In this talk we focus on these problems and show that Colmerauer’s transformations
and lazy narrowing are complete over the domain of rational trees for (conditional) canoni-
cal theories. This result is proven by transforming refutations with respect to the inference
rules defined in  [Holldobler, 1988] into sequences of Colmerauer’s transformations and lazy
narrowing yielding solved forms. Moreover, we demonstrate that from these solved forms
all solutions for unification problems over the domain of finite trees can be computed.

2In [Gallier and Snyder, 1988) and [Hélldobler, 1988] ¢ ,4 ;  may also be a variable.
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Ex tended  abs t rac t

1 Introduct ion.

Generalization is the  dual  notion of  unification. The problem is t o  study and compute the upper
lower bounds of  two terms, relative to  the preorder of  substitutions modulo an equationnal theory.
We recall results in  the init ial  algebra of terms, and present new results in  the general case of quo-
tient algebras, in  the  syntactic case, and in  the associative, commutative, associative-commutative
cases.

We use the notation of [G.Huet 80], and the following:

T(F ,V ) ,  T i n  short, is  the algebra of terms built wi th a graduated set of  functions F and a
denumerable infinite set of  variables V .

E = {e1 , . . . ,€a}  is a set of equations theory, which generates a equivalence relation =g  (=  in
short), the smallest equivalence relation compatible with functions of F and substitutions of V .
When name E o r  = f  indifferently equational theory.

t = f '  is the syntactic equality of terms.

E( t )  is the equivalence class of t modulo = E-

The substitution preorder modulo E is <g ,  defined by  ¢ <g  t '  if and only if there exists a
substitution g such that ot  =g  t’ or equivalently ¢ ’  € E(ot).
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This preorder define naturally a part ial  order <g ,  < in  short, on the quotient set To f  T by
the relation ~ ,  with ¢ ~ t '  if and only i f t <g  t '  and #’ <gt.

" T is named the set of quotient terms.

We define now the principal generalizations of  Fand  # ,  noted tA  # ,  as the set of upper lower
bounds of  and #':

I n t = MAX{f; | ;  < tand f ,  < i }

Then generalization can be viewed as the dual notion of unification.
The problem we address now is t o  determine properties and algorithms for FA t .  We will give
results in  general, trivial,  finite, associative, commutative, associative-commutative, and syntactic
cases, without proofs (which can be found in [L.Pottier 89]). In the following we will use the
notation £ A £’ to  represent a set of  elements of  each class of {A t .

2 General  case

In general we don’t  know i f  f Af" is empty or  not .  In some cases i t  can be infinite, as in  the
following example:
E = {A (X ,X )  = X ,V (X ,X )  = X }  (idempotent theory),
t = A(a,b) , t '  = v (a ,b )  (lower case letters are constants, others are variables)
ag = A(V(a, X) ,  v(Y, b ) )

ao = V (A (a ,  Y ) ,  A (X ,  b ) )

an41  = V (ag ,  A (ag ,  an )

Then the do, dy,...,dy,,... are an infinity of principal generalisation of  f and  #.
Some worki s  neededfo  find‘properties of FAP i n  the general case.

3 Initial algebra: E = §.
In  this case we have no  equation, and then = # & 3obi ject ive,ot  = 1 (equality up  to  variables’
renaming).
We have then ( #5  denoting the cardinal of S) :

Property 1 [G.Plotkin 70],[Reynolds 70]
Vit HEAT = 1

We describe now two algorithms to  compute A # .

3 .1  Hnue t ’ s  a l go r i t hm

From [G.Huet 76].
Let ® :  Tx  T > V bijective, we define inductively ¢ A i by:

F l i e r  ta) A SEE) = FUE ABest AES)
else t AL  = $(t,1 ) .

This gives a recursive algorithm wi th  linear complexity (on the size of terms).

144



3 .2  Jouannaud ’ s  a l go r i t hm

From [J.P.Jouannaud 89].
We use inference rules on generalization problems. A generalization problemiis G | Ss where G i s

a term, S i s  a list of  t ;  =x , t} , the  X ;  being variables of  G .
The inference system is SG with two inference rules :

Ri :

Gf ( 1 ,  - t n )=  X f  ( t ] , - t p ) ,S
[X  = f (Y1 , . . . , .Yn) ]G  lt1=y, # ] , - s t n=  Yoth :S

where Y; are new variables.

Ra:

Glu=xv ,u=yy ,S
[X  —Y]G  Ju=yy ,S

We  have then :

Theorem 1 se SG is noetherian.

e G |S  is a normal  form of X | t =x  t '  implies that G is the principal generalization of  t and
t l .  ;

When have then a O(nlog(n)) complexity algorithm, but  the rule X ,  allows factorization of
work, and can make the work of the bijection ® of Huet.

4 Fin i te classes theories.

When all the classes E( t )  are finite, i t  is easy t o  show that  At  is non empty and finite. By
enumerating the classes and the terms below a given term, one can compute the principal gen-
eralization. However, this algorithm is intractable in  cases l ike associativity or  commutativity, in
which classes are of exponential size. Some improvements can be made in  these cases, which we
detail  now.

5 Associat ive,  Commutative,  Associative-commutative the-
ories.

In  these cases, classes E ( t )  are finite, so we have always a non zero and finite number of  principal
generalizations.

5 .1  Assoc ia t i v i t y

We use the canonical form of a A-term : fA  where f is associative, A is a non-empty l ist of
A-terms which have not the root f .

Like in  the tr iv ial  case, we define a system o f  inference rules on generalization problems,
SGA = {R ı ,Ra, Ra}, with the new rule: :
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Ra:

G l fAA '=x fBB ' s

[X —>f(Y,2) |G| fA=yfB. fA '=z fB!Ss
where f is associative, A ,  A ’ ,  B ,  B '  are non empty, one of A and B have only one element , Y and
Z are new variables.

We define FN4(t ,# ' )  = {G  | G | § is a normal form of X | t =x  #'}. Then :

Theorem 2 eo SGA is noetherian.

o tA = MAX(FN4( t , t " ) .

o At  = FN, ( t , t ' )  is possible.

o H#iA t is  in  general exponential in the size o f t and t ' .

5.2 Commnu ta t i v i t y

We have the same results as w i th  associativity, w i th  the system SGC = {R ı ,  Ra, Rc }  , where :

Re:

Gl f ( t o , t 1 )= x f(th,t}),s
[X  = f  (Y ,2 ) IG to=y t j t 1=z t ] _ ; ,S

where f is commutative , Y and Z are new variables.

5 .3  Aassoc ia t i v i t y -Commuta t i v i t y

We use the canonical form of a AC-term : fA  where f is associative-commutative, A is a non-
empty multi-set of  AC-terms which have not  the root f .

We have the same results as with associativity, with the system SGAC = {R ı ,  Rs, Rac } ,
where :

Rac :

G| fAA '=x fBB 'S

[X= f (Y ,2 ) |G | fA=y fB , fA '=z fB 'S
where f is associative-commutative, AA’  and BB ’  are partitions of multisets, A, A’, B, B’ are

non empty, one of A and B has only one element, Y and Z are new variables.

5 .4  A+ C + AC

We can use the system {R ; ,  Ra,  Ra ,  Rc ,  Rac }  in mixed theories, and we obtain the same results -
as previously.

Remark : if we only want linear principal generalizations, it suffices t o  omit the rule Rg; in
this case the matching is much faster when computing the function MAX on the normal forms
of generalization problems.
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6 Syntactic theories.
Let E = {e, , . . . ,en} a syntactic theory [C.Kirchner 85]. Let S$I,ynt = {R1, Ra, Rayn t } ,  where :

R aynt  : i

Gl t=x t ' . s
G|t"=xt!,s

where ¢” is obtained by  using an equation of E at  the root of  ¢.

Then f A # is inclued in the set of first parts of  generalization problems derived from X | t =x t
by  S Gayn t -

7 Extensions, applications
We can extend this research in  the following ways :

F ind one principal generalization.

e Find non trivial, but non principal generalizations.

e Find more results on  the structure of  Af’ in  the general case.

° . . .

We have applications of  term generalization modulo equations in these domains :

e Compiling terms rewrite systems.

e Automated induction, rules learning [L.Pottier 89].

e Infinite Knuth-Bendix completion [H.Kirchner 87].
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Abstract

Semi-unification is a common generalization of unification and matching.
I t  seems to  be a new concept introduced independently by several authors to
overcome a limitation of unification-based type inference algorithms (cf. [1],
[2], [6]). We present a new reduction calculus for semi-unification problems
and discuss partial results on  termination.

Motivation. Milner’s unification-based type-inference algorithm, used in
functional languages l ike ML or Miranda, forces the recursion operator to be
monomorphic: a recursive definition for a function f is considered well-typed
only i f  the type of the defining term equals the type of f used in  the definition. A
more powerful typing scheme would be polymorphic recursion, where the types of
f inside the definition may be instances of the type of the defining term (cf.[4]).
To infer the type of a polymorphic recursive function f ,  one first infers a type
of  the defining term from type assumptions for f ’s occurences in  this term, and
then uses semi-unification to  refine these types i n  order to  make the refined types
of the occurences of f be instances of the refined type of the defining term.

In general, semi-unification can be formulated as follows.

Definition 1 Let § be a finite set of equations and inequalities between first-
order terms, using different inequality symbols < ; , . . . , < , .  A substitution R is  a
semi-unifier for § i f

e R(s) = R(t) for each equation s = t € § ,  and

o there are residual substitutions T3, . . . ,T;  such that for 1 <i < ¢
T;R(s) = R(t)  for each inequation s < ; t  € S.

S is  called a uniform semi-unification problem, if g < 1 ,  and non-uniform other-
wise. A semi-unifier R for S is most general, i f  for any semi-unifier U for S there
is a substitution U such that U = U o R .
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It is obvious that matching and unification are special cases of semi-unification
where R and T ı , . . . ,Ty are the identity, respectively. Semi-unification is un-
symmetric: x semi-unifies wi th f ( z )  as i t  matches with f ( z ) ,  but f ( z )  neither
matches, unifies nor semi-unifies with z .

Due to  the existence condition for residual substitutions, semi-unification is
much more difficult than unification. We elaborate on

Conjecture 1 ([5], [1]) There is an algorithm semi-unify that, given a finite set
S of  equalities and inequalities, decides whether there is a semi-unifier for 5 ,  and
in  case there is, returns a most general one.

It is necessary to  construct the residual substitutions along with the most gen-
eral unifier. During the construction, the residual substitutions are represented
by unknowns that operate as homomorphisms on terms, and any combination of
these homomorphisms may occur. Therefore, we extend the original language L ,
say, by non-atomic variables z*1-*» representing the term Tin Ti, R (z ) ,  where
Ti; and R are the substitutions to  be constructed. Inequalities between L-terms
are translated into equalities between L*-terms. A reduction calculus is  used to
solve generalized semi-unification problems, i.e. finite sets of L*-equations.

Definition 2 Let I = {1 , . . . , q } ,  and let {< ; |  ¢ € I}  be the binary relation
symbols of L .  Let I* be the set of finite words over I ,  and define a new set of
variables by  Var(I*) = { x  | x € Var,w € I * } .  L*-terms are build like L-terms,
but with variables taken from Var(I*). The set of variables free in  an L*-term
t is defined using free(z*) = {z*  | u € I'*,uv = w for some v € I * } .  For each
u € I* and L*-term t define an L*-term t* via (z ' ) *  = x “  and f(s1,...,80)% =
f(s%,..., 85).

Definition 3 Let T = {T; | i  € I }  be a sequence of substitutions 7; : Var —
L*-term, and R : Var — L-term. For any L*-term s, define T'(s) and R(s) by

T(z )=z ,  T (z * )=T(T ( " ) ) ,  T(f(s1,-r8n)) = f(T(51); T(30),
and R(z")  = R(x)",  R(f(s1,..s3n)) = f(R(31),---, R(3n))-

For any set S of equations between L*-terms, we say (T,  R)  solves S, i f

TR(s )=TR( t )  fo reachs=teS.

We say (T, R) is a most general solution (mgs) of S, i f  whenever (T,  R) solves S
there is R'  : Var — L-term such that R = R'R.

Lemma 1 Let § be a set of  atomic L-formulas. R is  a most general semi-unifier
(mgsu) for S iff there is a sequence T = {T; | £ € I } ,  with T; : Var — L-term,
such that (7,  R)  is a most general solution of

S *= {s= t | s= teS }u {s= t | i e l , s< ; t  € 8S}.
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Example 1 Let § be { z  < ;  y ,  f (z )  < i  z } .  Then §*  = {z*  = y ,  f (z )  = z }  has
most general solution (T,  R) ,  where

R=[ f ( z ) / z ,  S(z2)/yl, T = [z/z ı ,  21/2],

with fresh variables z; and za. So R is a mgsu of S .  The simpler (T ,  R )  =
(Id , [ f ( z ) / =z ,  f(2)/y]) also solves S*, but R is not a mgsu of S.

The following reduction calculus has been designed so that at most one reduc-
tion rule applies to a selected equation of S. Hence the conditions which make
the rules look complicated. If we would drop the equations used in  substitution
rules (6) and (10), the calculus would certainly be incomplete.

Definition 4 A basic reduction is any triple S$; EiR S2 between sets S i ,  52 of
sets of L*-equations and a substitution R : Var — L-term of the following form:

1. Elimination of  structure:

SU{f(51,  r r  $n) = f(t1y wr  tn) }  —2 SU{ts = 81 ,  oo r ,  tn = sn} (1)
SU  { f ( s ı ,  on  80) = g(t1, ve ry  tm)} => fail (2)

2. Normalization of  basic equations:

Su f t=z " }  2% Su{z *=1 } ,  (3)
i f t g Var(I*)

Su  {y¥ = z*}  X su {z¥ = y*}, (4)
i f  length(w) < length(v)

3. Elimination of  variables:

Su{z *=2 " }  AS 
; (5)

SU  {2  = y"}) = Sly“/z*]U {z*  = y “ } ,  (6)
i f  0 # length(v) > length(w), S[y“/x”) A S

SU  { z¥=s }  2 fail, (7)
i f  x” € free(s), s & Var(I*)

Su{z=s }  “3 ssa)  (8)
i f  z g free(s), s € L-term (9)

Su{z *=s }  4 S[s/x*]U {z”  = s}, (10)
i f  z¥ ¢ free(s), s ¢ Var(I*), S[s/z"] # S,
and v # € or 3s g L-term
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Define a relation S Rs  S2 by finite sequencing of  basic reductions, where
R is  the composition of the substitutions involved. A set § of  L*-equations is
called reduced i f  none of  the basic reductions can be applied to  § .

Theorem 1 1. If Sa EL  So, then (T,  Rp) solves Sj, iff (T,  RyR,) solves S,.

2. Let (T,  R.) be a mgs of S,, and S,  EL  Se. Then (T,  RR) is a mgs of S,,.

3. If S # fail is reduced, there is a mgs (T,  R)  of S.

Thus every set of L*-equations that can be reduced has a most general semi-
unifier. We conjecture that any reduction sequence ‘is finite. It is not hard to
see that any reduction sequence not using rule (10) is finite. Some termination
results for restricted classes of  semi-unification problems and proofs of  the above
lemma and theorem are given i n  [6]. In particular, we there give a termination
proof of  reductions for uniform semi-unification, which was solved earlier by [1]
and [2]. Our reduction method is an extension of the method of Kapur e.a.[2], but
has been developped independently. However, the (proof of the) polynomial time
bound of [2] does not extend to  non-uniform problems, as i t  rests on a cancellation
reduction rule that is unsound in  the nonuniform case.

In addition, we have a proof of the following special case, which will be pub-
lished elsewhere.

Theorem 2 The semi-unification problem restricted to  instances with at most
two variables is decidable.

The proof constructs a most general semi-unifier for solvable instances, but
does not extend to the generalized semi-unification problem in two variables in
an obvious way.

Kfoury e.a.[3] give a solution of the semi-unification problem with linear left-
hand sides, i.e. where variables may occur at most once in  s of each s < ;  t i n
S. (They do not allow equations in  S, so the linearity condition applies to the
set obtained after solving the equations by unification.) Pudläk [7] shows that
semi-unification with many inequality relations can be reduced to semi-unification
with two inequality relations.
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Extended Abstract

We present a new approach for solving certain infinite sets of  first order unification problems
represented by term schemes. Within the framework of  second order equational logic solving such
scheme unification problems amounts exactly to  solving (variable-) restricted unification problems.
A method known for solving first order restricted unification problems (cf. [Bü87]) is  generalized
to the second order case. Essentially this is achieved by transforming a restricted unification
problem into an unrestricted one, solving the latter and retransforming the solutions obtained. The
results on second order restricted unification are then used to solve the original problem, namely to
decide the solvability of  scheme unification problems and - in the positive case - to compute the
corresponding most general unifiers.

The motivation for this work stems from the analysis of  the divergence phenomenon in
Knuth-Bendix like completion procedures for term rewriting systems (cf. [KnBe70]). Consider for

example the equations A:  f(h(u),v) = f(u,h(v)) and Bo: f(w,g(w)) = w.  Completion with input

{A ,  Bo} and an appropiate reduction ordering diverges, i.e. does not terminate, producing the

following infinite sequence of  rewrite rules:
A f(h(u),v) > f(u,h(v))

By f(w,g(w))->w
B,  f(w,h(g(h(w)))) > h(w)
B, f(w.h(h(gh(h(w)))))) > h(h(w))
0essessasssse rcs r ssss renssanse

00000000  0000000000000000000

The reason for divergence obviously comes from the fact that any left hand side | of  B ,  is  unifiable
with the left hand side 1 of  A yielding via critical pair construction 1 ,  > r  , .  One might
conjecture that this “repeated unifiablity” of  1 with every 1, is due to the fact that 1is unifiable with
every "instance of  the term scheme" f(w,Y(w)) producing as new left hand side 1 ,, again a term
of  this form.

A formal definition of  this kind of  unification problems as well as solution methods for them
are developed within the framework of  second order logic. The "scheme variable" Y above will

154



become a unary second order (function) variable. Let  us give a rough sketch of  our approach and its
main results assuming familiarity with the basic notions and results o f  A-calculus (cf. [Hu76],
[GaSn88]). A detailed presentation of  this work including proofs and various examples can be
found in [Gr88].

Scheme Unification and  Restricted Unification

Let T = NC,V) be the set of  restricted second order terms built as usual over some set C o f
function constants and some family 9'=U_,,¥), of  sets 9,  of  n-ary (function) variables. General
second order terms are obtained by completing T into Z_ using A-abstraction (cf. [Hu76]). Z_
may be regarded as the restriction of  the language of  extensional normal forms of  A-calculus to
second order terms. Terms are compared via their extensional normal forms and modulo
Oo. -conversion, i.e. renaming of  bound variables. For instance X € V,, Auv.X(u,v) and
Ayz.X(y,z) are considered to be equal (u,v,  y,  z € Vo) The set of  free variables of  a term t € Z is
denoted by V( t ) .  In a straightforward way we then define second order substitutions 6 with
domain D(6)  and set o f  introduced variables I (6) .  The restriction o f  a substitution 6 to a set W of

variables i s  denoted by  6 | y .6  is said to be st r ic t  i f  for all Xe  D (6 )  with
6(X)  = Aug. Uy  we have {Uys Ur i }  € V(v).

A scheme unification problem (SUP) is  represented by  a finite set E of  (unordered) term
pairs with its set V(E) of  free variables partitioned into a set W € 4,  of  ordinary first order
variables and a set W°  : =  V(E)\W of  (possibly second order) scheme variables. Solving such an
SUP denoted by  <E/W> consists in deciding whether every first order unification problem (UP)
<y(E)>, where y is a substitution with D(y) € WS, I(y) m W =@  and V(y(W°)) € 4), is  solvable,
and if  so, in  computing the unifiers for all these problems.

In order to be able to handle SUP's we consider the following generalized form of
(second-order) unification problems.

A (variable-) restricted unification problem (RUP) is  given by <E/W>, where E i s  a
finite set of  (unordered) term pairs and W < V(E). A solution (or variable-restricted unifier) of  the
RUP <E/W> is  any substitution 6 that solves the equations from E but leaves the variables from W“
untouched, i.e. 6(s) = 6(t) for all (s,t) € E and D(6) m W°  = @.

Note that second order unification is in general undecidable ([Go81]) and - unlike the first
order case - most general unifiers (mgu's) do not necessarily exist any more for solvable problems.
Instead appropiate notions of  complete and minimal sets of  unifiers (csu/cmsu) can be defined (cf.
[Hu76], [SnGa88]). We generalize these definitions as well as that of  solved forms to the case of
RUP's. Then we show how to transform bijectively an arbitrary RUP <E/W> into an equivalent
unrestricted UP <$(E)> by interpreting the forbidden variables from W“  as distinct new funcion
constants of corresponding arity. I t  is proved that the properties of substitutions to be (most
general) solutions and of  solution sets to be complete (and minimal) are preserved under this
transformation (see figure, where ® ,  is the induced transformation function for substitutions 6 with
D(6) m W° = and & !  its inverse ) .
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<E/W> > P(E)»
|
| I

: $b !  |
8 )  < U
cmsu for <E/W> cmsu for <$(E)>

If only the forbidden variables from W¢  are allowed to be of second order, the transformed
problem <®(E)> essentially is  a first order UP  (over a different signature). And  for such problems it
is  well-known that they are either unsolvable or possess an mgu which may be computed by any of
the well-known first order unification algorithms.

Since for SUP's we are interested in  unrestricted UP's (obtained by  instantiating the original
UP) we next investigate the connection between RUP's and their unrestricted versions. Clearly
every solution of  the restricted problem also solves the unrestricted one, but not vice versa in
general. For the solution sets we have the following results. An  mgu for a first order RUP <E/W>,
i.e. V(E) € 1 ,  also is  an mgu for the unrestricted UP  <E>. But this result cannot be generalized to

“the case that E contains second order variables. To  be more precise: If  a set S of  substitutions is  a
csu for <E/W> with V(E) ¢ % then S i s  not necessarily a csu for <E>. Thisis shown by  a simple
counterexample.

From now on we consider only RUP's <E/W> with W € 9,  i.e. the variables allowed for
substitution are first order ones. For the purpose of  solving the corresponding SUP <E/W> we have
to  consider the unrestricted versions <y(E)> of  RUP-instances <y(E)/W> with D(y) € V(E)\W,
IY ) "  W=>@and Viy(VENW)) = v,. We proceed incrementally and investigate first the
restricted versions of  RUP-instances <y(E)/W> still allowing second order variables to be
introduced by vw.

Theorem (solving instantiated RUP's)
Let <E/W> withEc 72, We  V(E), Ws % be a solvable RUP and 6 be a mgu for it
(w.lo.g. let I(6) © V(E)). Assume further that w is  a substitution with D(y) € V(E)\W,
I(y) "NW =@. Then (¥6)Ip) is a solution for the RUP <y(E)/W> which is  most general for
strict yy.

This first main result establishes a uniform kind of  computing the solutions for instantiated RUP's
(for strict y)  in  the following sense. Provided that <E/W> is solvable, say with mgu 6 ,  we need not
explicitely solve <y(E)/W> again but can directly compute an mgu for it from w and 6 as described.
As an immediate consequence of  this result we obtain the following

Corollary
ForEc 2,  We  V(E), W € % the RUP <E/W> is solvable iff <y(E)/W> is solvable for every
y with D(y) € V(EN\W and I(y) m W = @, and if so, for any such w which is  strict the mgu
for <y(E)/W> may be computed from the mgu for <E/W> as described by the above theorem.
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In order to solve our original SUP <E/W> we have to restrict the substitutions y with
D(y) € VENW and  I(y) "NW = @ to the case V(y(V(ENW)) € % and to  investigate the resulting

unrestricted UP's <w(E)>.

Theorem (solving scheme unification problems)
Let Es XC‚V?, We  V(E), We  % be given. Assume further that the underlying signature C
contains at least one function constant of  arity > 1 and another one of  arity 2 2. Then the RUP
<E/W> is solvable iff the SUP <E/W> is solvable, i.e. <y(E)> is solvable for every y with
D(y )s  VENW,  I(y)  m W = @ and V(y(VENW)) © ¥,  and if so, for any such y which is _

strict the mgu for <y(E)> may be computed from the mgu 6 for <E/W> as (VS)

Thus it turns out that solvability of  the (infinitely many) ordinary first order UP's defined by an
SUP <E/W> is equivalent to solvability of the corresponding RUP <E/W> provided that the
underlying signature i s  rich enough. And  moreover, in the case of  solvability, we get a uniform
way of  computing the respective mgu's of  the instantiated (unrestricted) UP's.

Based on these general results we finally show how to get sufficient conditions for a property
of  "repeated unifiability” which may be applied for instance to  divergence analysis of  completion. In
the introductory example we can thus explain and describe divergence for every starting set of  rules
consisting o f  A :  f(h(u),v) > f(u,h(v)) and Bo:  yo  ( f (w,Y(W))) > Ww, where wg  is  any (strict)

substitution with D(y)  = {Y ) ,  (yy)  € ¥,  and I(yy)  N {w )  = ,  e.g. Wo= {YeAx.gx)} .

By the same technique we can explain and describe divergence even for more general starting
situations, e.g. for A of  the form f(h(u),v) > @(f(u,Z(v))) such that @ is any (strict) substitution

with D(@g) = {Z } ,  Kg)  € Vpand (Py)  N {u,v} = @ (indeed, here we should require that @,

does not introduce any new variable, otherwise A would contain extra variables on the right hand

side).
A more detailed presentation of  this kind of  applications of  the theoretical framework can be

found in  [Gr88]. 
| |
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Abstract

Equational reasoning is based on replacement of equal
by equal and these replacements use substitutions de-
termined as solutions of equations. Constrained equa-
tional reasoning takes advantage from the information
contained into the equation itself to develop equational
reasoning, avoids instantiations as much as possible and
solve equations as late as possible. For theories like
associativity-commutativity this can lead to a consid-
erable reduction of the substitution computation over-
head, bringing some problems, untractable in  practice,
to the realm of computational reality.

1 Introduction
Equational reasoning and term rewriting, its opera-
tional realization, are quite important in  today com-
puter science. They play a central role in  theorem prov-
ing [27,30] and in  programming languages like OBJ [11].
Extensions of standard term rewriting like rewriting
modulo associativity-commutativity [29] (AC in short)
are quite powerful in  theory but  limitated in  application
because of the computational cost involved in comput-
ing (e.g. associative-commutative) unifiers and match-
ers (bo th  problems are NP-complete for AC  [20}) or  in
checking equality. We focuss here on completion pro-
cesses modulo a theory T and on their two basic opera-
tions involving equational reasoning, namely rewriting
and computing critical pairs by unification.

This work relies for one part on the remark that
rewriting or  computing critical pairs amounts t o  solve
equations; however, in  some cases, not the whole in-
formation contained in the solution is needed. I t  may
happen that the equation, as i t  stands, contains enough
information to continue the reduction or the completion
process. Especially when an equation has an infinite,
or at least a huge set of solutions, one can keep the
equation and try to reason formally with i t ,  instead of
effectively computing the solutions.

Assuming that we also express the orientation prob-
lem of an equation into a rule as an inequation between
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two terms in  a given ordering, such as the recursive
path ordering for instance, we shall get as a by-product
the expression of completion modulo a theory as a pure
equational problem.

Beyond equations and inequations, another type of
constraints considered here are disequations. They can
be introduced for termination problem of class rewriting
as in  [33]. Disequations can also be used to translate
equational problems into another equational theory for
which the problem is simpler to solve, or for which the
expression of  the solutions is simpler. A typical case is
for associativity, commutativity and identity (AC1 in
short) in which an AC problem can be expressed and
solved more simply [9].

Moreover the accumulation of equational constraints
in a given problem decreases the size of the search space
quite a lot. This is quite similar to what has been done
for logic programming with constraints [14,8].

These ideas are exploited here, using constrained
equational reasoning, for giving another method for
completion modulo a theory T .

2 A simple example

Let us first develop a simple example that illustrates
constrained equational reasoning.

Let a be a constant, let the operator * be associative
and commutative i.e. satisfying:

zx (yxz )= ( r xy ) * z
T*Y=yY*ZT

and let R be the following term rewriting system:

( 1 )  z * zsz *z—=x
( 2 )  uxv *xwxa—a

In an equational completion process [2,16], aimed to
build from R a canonical term rewriting system modulo
AC, the critical pairs of the rule (1) on rule (2) have to
be computed. For that, the equation

THAT HTHT ==4C UV*W *a



has to be solved modulo AC. Unfortunately, this equa-
tion has a huge number of AC-unifiers, which makes
the completion process untractable.

A first solution, developped in [9], consists in  us-
ing the fact that AC1-unification is simpler than AC-
unification [4] and to  solve the previous equation i n  a
protected enrichment in which i t  has considerably less
solutions.

But here we shall rather consider the equation
( z * z *z +z  ==4cu*v*wx*a) as a constraint that
the variables z ,  u , v , w must satisfy and we do  not  solve
i t  for now. Instead, we only test its satisfiability and
build a constrained critical pair:

([z, al, {53 +2  * 5 * 1 =4cuxv *w=*a } ) .

This pair is directed into a constrained rule

( z—>a , { zxz *xz *xz=pcuxvsw+a ,  z #a } ) .

where the new constraint (x # a) is added in order
to avoid a trivial rewrite rule (a — a) as a possible
instantiation. This constrained rule can then be used
to  simplify other rules. Checking if  a term t is reducible
on top amounts to solve a match equation (zr <<ac t )  .
together with the contraints already associated to z.
During the completion process, it is needed to assume
that rewrite rules do not have common variables. For
that, the second rule is renamed into (u/*v'*w'xa — a).
Its left-hand side is reducible at top occurrence by  the
constrained rule because the set of constraints £:

THT TXT  T=4CcU*V*W*a

T#a
TKac tW xv  xu  2a

is satisfiable, for instance by the substitution

( zu xv" *w  xa)
(uu xv %w xa)
( vu xv xu xa)

(w r  uu  sv xv xw '  xv ’  xa).

The left-hand side reduces to the constrained term
(a,E) and the constrained pair resulting from this sim-
plification (a = a,E) can then be deleted.

On the contrary the first rule (z'  xz ’  +z ’  *2 '  — 2’) is
not reducible by the constrained rule, because the set
of constraints

THT X IRT  ==AC UXV XW XQ

z#a
zT «ac  x xx ’  x2" x2 ’

is not satisfiable. The (constrained) rule system is now

za ,  {T * r r r z * rT== cu*vrw=xa, Ta }
gmxxz’ xz’ = 2,

However obviously some critical pairs have not been
computed: precisely those coming from superposition

of the second rule into a possible instantiation of z.
At  this point,  two directions are possible: either try to
go on with formal reasoning on constraints and express
conditions stating that such critical pairs are or are not
convergent, or solve constraints. This is the last solu-
tion that we propose here. A midterm is to solve con-
straint lazily, that is to transform the set of constraints
into another equivalent one and try to reason on this
more solved form. For instance, the set of  constraints

THAT XT  XT  =— Cc U*VU*W*a

z#a

is equivalent modulo AC  to

z=ax*z

A*XAXAKRIRZXZXZ==40 UXV*W.

Using this new set of constraints, one can find the su-
perpositions of the rule (z’  * x ’  * x ’  x x’ — x’) into the
constrained solved form of z at top occurrence, because
the set of constraints

T=a*z

Q*A*B* ZH ZX 2H ZT=40 Uk V*W -
z==ac 2’ xz  +z" x2’

is satisfiable.

3 Foundations

We assume the reader familiar with equational
logic [32],  class rewriting systems, also called equational
term rewriting systems [13,1,16], and equational prob-
lems [21,5,6,3,23].

We use the following usual notations: given a set T'
of  equalities and a set R o f  rewrite rules, ——7 denotes
one step o f  replacement of equal by  equal i n  T ,  «—
or =7  denotes the reflexive symmetric transitive closure
of the previous relation, and RT  denotes equational
rewriting modulo T with rules in R [29].

3.1 Equational problems
Given an equational theory 7 ’  and an arbitrary subthe-
ory T of  T ' ,  an  equational problem is built from dis-
junctions (V) and conjunctions (A) of elementary prob-
lems of the form:

1. u ==r  v ,  called an equation,

2. u =ErT v,  called a disequation,

3. u K r  v,  called a match-equation,

where u and v are. terms.
The set of T-solutions of the above elementary prob-

lems are defined as follows: a substitution o is solution
of
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1. u =>7 v, iff o(u) =T  o(v),

2. us r  v, iff 0(u) #1  o(v),

3. u <«<T v ,  iff o(u) =7v ,

If £, and &;  are equational problems then Ei  VEz and
Ei A &; are also equational problems. A substitution o
is solution of an equational problem &, V &, iff is solu-
tion of E ı  or  E2. o is solution of  an  equational problem
& A & iff o is solution of Ei and & .  The set of solu-
tions of an equational problem £ is denoted by Sol(£).
Substitutions in Sol(€) are assumed to be idempotent.

The trivial equational problem for which any sub-
stitution is 7’-solution is denoted by T .  Any equational
problem E such that Sol(£) = 0 is equivalent to the un-
satisfiable equational problem denoted by 1 .

For example, if  7”  is the associative-commutative the-
ory (T'  = AC),

f ( z , a )  =c  f ( y ,9 (c ) )V

(9(u,v) =ac g(z,8)  Az =p  a +b )

is an equational problem.
Whenever T” is the empty theory, we allow omitting

the subscript @ in an equational problem.
Two important concerns on equational problems are

first their satisfiability with respect to the considered
class of models, second their solving, that is the com-
putation of (minimal) complete sets of solutions or of
solved forms of these problems [5,6], when the set of
solutions is not stable by instantiation. For equational
problems composed only of equations and disequations
in the empty theory (T  = 0), these questions are fully
solved by  [5,6], in the general case of equational prob-
lems including parameters (i.e. universally quantified
variables). For equational problems containing only
equations and disequations without parameters in  AC
theories, these questions are also solved in  [5]. However
i t  is a challenging problem to get satisfiability and solv-
ing decision procedures for general equational problems
in  other equational theories.

Definition 1 A canonical solved system is a con-
junction of  equations and match-equations of the form
(z i  = t i )  and (z; << t j )  such that (J ;  {z:}) N
(U;  V( t )  = 8, where z ;  are variables and V(t;) de-
notes the set of variables occurring in t ; .

An  equational problem E is said in  canonical solved
form iff € is T ,  L or a disjunction of canonical solved
systems.

V(E) denotes the set of variables (|J,{z:}).

Note that this definition forbids systems containing
for instance (z = f (y) )  and (y ==  g(z)). that are often
said in (quasi) solved form. The canonical solved form
would be (z ==  f(g(2))) A (y = g(z))-

We assume given in  the following a process that com-
putes, for any equational problem £, i ts  canonical solved
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form, denoted £ ] .  Such a process does not exists in
general, since for example equational unification is un-
decidable, but i t  exists for several theories of interest
like associativity-commutativity.

3 .2  Schematization

The schematization by an equational problem of a set
of substitutions allows delaying as much as possible the
computation of the substitutions themselves, so that
only the equational information about them is known
and used.

Let U be a multiset of terms. U is said constrained
by  the equational problem £ iff the substitutions
allowed for the variables of U are only the solutions of
E. The pair (U,£) is called a constrained multiset.

The multiset of terms schematized by a constrained
multiset is thus by definition:

SW,E)  = { {o ( t ) |  t € U }  | Yo € Sol(E)}.

In practice i t  is often sufficient to consider only a com-
plete (if  possible minimal) set of solutions for the con-
straints, denoted CSS(E):

Sc(U,&) = {{o(t) | t  € U}  | Vo € CSS(E)}.

The definition of constrained multiset of terms cap-
tures the notions of:

1. constrained term, when U is reduced to a single
element;

2. constrained rewrite rule, when U consists of two
ordered terms,

3. constrained critical pair, when U consists in two
elements,

4. constrained equational proof with n steps of con-
strained equational replacement, when U consists
of n elements.

3.3 Constrained rewriting
Let us see what kind of  constraints are introduced by
different processes such as reduction, superposition and
completion and how to  handle them.

A term t is reducible modulo T by a rewrite rule
(g  — d)  at  occurrence m iff there exists a match o mod-
ulo T from g to  tm ,  that is there exists a solution to the
equational problem (g < r  tm).  So match-equations
are introduced by applying a rewrite rule.

Example 1 For the rule 2x1  — z ,  the term (a*(1+*a))
rewrites modulo AC  into the constrained term

(axz , z+1  << 4c  1%a).

More generally, the notion of constrained rewrite rule
is needed.



Definition 2 A constrained rewrite rule is given
by two ordered terms | — r and an equational problem
E. A constrained rewrite rule ( I  — r ,E)  schematizes the
following set of rewrite rules:

R l  — rE )  = {o ( l )  — o(r)lo € Sol(£)}.

A constrained term (¢;,£;) is reducible modulo T by
a constrained rule ( I  — r ,E )  if there exists a solution
p of EAE ,  such that u( l )  = r  t im.  So pis actually a
solution of EAE; A ( l  <T  tm)  that must be satisfiable.
This is the set of constraints associated to the new term
tz resulting from the constrained rewriting process.

Definition 3 Let ( I  — r ,E)  be a constrained rewrite
rule. A constrained term (1,,&;) rewrites modulo the
theory T, at occurrence m into (t2,E2), and we denote
(t1,&1) — ( t2 ,  2 ) ,  iff ta = tm  — r] and & = (EA
&1 A ( I  K1  t im )  is satisfiable.

Note that constrained rewriting needs to check first
that the set of  constraints £,  is satisfiable. Otherwise
obviously termination problems arise. To check satis-
fiability of an equational problem is in general much
simpler than the problem of finding a complete set
of solutions or a solved form, especially in  equational
theories. For instance, a criteria to check the satisfi-
ability of a system of equations modulo associativity-
commutativity is given in [34]. Finding complete sets
of AC-solutions of equation systems is much more dif
ficult.

The notion of constrained rewriting is powerful
enough to  strictly include the notion of conditional
rewriting. In  order to show this, let us consider the the-
ory T' generated by a set of conditional rewrite rules
(c = | — r )  where c is a conjonction of equalities
Ai=1,....nt%i = v i .  I n  order t o  apply such a rule on the
term € at occurence m ,  one has to  check that there ex-
ists a redex, i.e. that the match-equation | <« 4m is
satisfiable, and that there exists a solution of the previ-
ous match-equation that satisfies (in the whole theory
T') the conditions in ¢ .  Thus one looks for solutions of
the system

Il «9  t im
um = r  on

Un ==T I  Un

This is obviously an equational problem and thus the
notion of constrained rewriting captures the notion
of conditional rewriting: the constrained rewrite rule
( I  = 7,Ai=1,...a 8i ==7  vi) acts as the conditional rule
(A i=1, . .n t i  = v ;  => | — r ) .  Constrained rewriting
is strictly more general, since i t  allows using arbitrary
equational problems and not only those consisting in
equations in  the empty theory or the whole theory 7”
but also in any subtheory of 7’. Note by the way that

the notion of constraint introduced in this paper can
easily be enlarged e.g. by using also type constraints.

After a discussion with M .  Okada, we have introduced
in this paper a more general notion of equational prob-
lem than in [22], in order to be able to  cover also the
notion of conditional rewriting. But from now on, we
shall consider the case where 7‘  is a set of uncondi-
tional identities with a subset of (usually) unorientable
identities E ,  and we shall deal only with constraints
consisting of equational problems built on equations in
the theory T = E .  This specific case rules out the case
of conditional rewriting.

The following results give the semantics of con-
strained rewriting. Given a set R of constrained rewrite
rules, let R = {R(l  — r,E)|(I — r,E) € R}  be the set
of schematized rules. The associated rewriting relation
modulo T is denoted by RT ,

Proposition 1 If (t1,Ei) — (t2,E2) with the con-
strained rewrite rule ( ( I  — r) ,E),  then for any solution
o of & ,  o(t1) PT  a(ts) using (o(l) — o(r)).

Proof: Since ¢ is solution of & ,  o(I) = r  tıjm and
o(tym) =r  o(a(])). So o(t1) RT  o(t1)[m —
o(o(r))] = o(t1)[m &— o(r)]  = a(t2), because 0 is
idempotent. 0

Note that, according to the definition of E2, a( t )  €
S( t ,  &) ,  (0(!) = a ( r ) )  € SC!  — 7 ) ,E) and o(t2) €

S(t2,&2).
Considering complete sets of solutions, instead of

sets of  solutions, leads to  refine this result. We write
o = r  0 ' [X]  (resp. 0 <7  0'[X])  to say that for any vari-
able z in the set of variables X ,  o(z) = r  o/(z) (resp.
B(o(z)) = r  o/(z) for some substitution 3) .

Proposi t ion 2 If  ( 1 ,& )  — (t2,E2) with the con-
strained rewrite rule ( I  — r),E),  then for any solu-
tion 0 € CSS(E2), there exists a € CSS(E) such that
a ( t )  RT  g'(t2) =1  o(tz) using (a l l )  — a(r)), with
o =r  o[V(!) UV(r)].

Proof: Since the set of variables of  ¢; and ! can al-
- ways be  chosen disjoint,  any solut ion o o f  & can

be decomposed into  Boy  with y being the restric-
tion of o to the variables of / and r ,  denoted by
y = o(V(!) UV( r ) ] ,  and 8 = o[V(t))]. Since
y € Sol(£), there exists a € CSS(E) such that
v=r  wo a[V(!)  U V(r) .
Since o is solution of & ,  a(l) = r  pla(l))  = r
t im  and B(p(a()))) = r  Bltym). So B( t i )  PT
Bt)[m — Blp(a(r))] = Bti [m — p(a(r)))) =
Bouoa ( t )  = r  o(tz). Indeed Bopoa  =r
o lV )u  V ( r ) .  O

Example 2 Consider the constrained rewrite rule

( z * z *z +z  > z,{z #a}).
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The constrained term (bx bdxbxbxyxyxyxyT) with
the trivial constraint T rewrites to another constrained
term

(bxbsbxbxz,{zxzrz*+z Ky * r y *y *y , z#a } )

then to (z'  * z,E) withE being

THT*T*T  <KY*xYy*xy*y

za
Tez ’  zz  <<bxb*bxb

z’  Aa.

Note that the substitution (z — y)(z’ — b) is solution
of the last constraint. By using this instantiation , we
get the usual rewriting derivation:

b rb rbxb rysy+y *xy  —bxb rxb rxb ry—bxy .

A constrained equational replacement step is the
symmetric closure of —.  Its reflexive symmetric tran-
sitive closure is called constrained equational replace-
ment.

Definition 4 A constrained equational proof us-.
ing a constrained set of rewrite rules R modulo
a theory T is a sequence of constrained terms
{(t0,&0);---, (En, En)} such that for 0 < i < n, either
( t i e r ,  Eim1) +7  (4 ,  &) ,  or  ( t i o ,  Ein) — (4,  Ei) ,  or
( t i -1,  Eim1) #+— ( t i ,Ei).

A constrained rewrite proof using a constrained
set of  rewrite rules R modulo a theory T is a constrained
equational proof

( to ,Eo) — wo — (61, Ei) +>  (43 ,E;) 4 vo  c=  (tn, En).

When it is more convenient, we also denote a con-
strained equational proof by ({tg,...,tn},E0 A ... A Ep).

An  equational proof can be considered as a con-
strained one in which all the constraints are the triv-
ial equational problem. A constrained equational proof
schematizes a family of equational proofs.

Proposition 3 Let {(to,Eo),..., (tn,  En)} be a con-
strained equational proof. Then for any substitution
0 € Sol(E A.. .  AER), {o(ts),. . . ,0(ta)} is an  equational
proof with standard rules.

Proof: By  induction on the number of elementary
steps in the constrained equational proof and ap-
plying Proposition 1. O

A constrained rewrite proof schematizes a family of
rewrite proofs with standard equational rewriting.

Remind that, given a class rewriting system (R ,T) ,  a
proof {tg =1t,...,tn = t'} of ( t  = ’ )  is a rewrite proof
for — RT  iff there exist s,s’ such that

RT . T R,T
t— se  eH
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Proposition 4 Let { ( to,Eo), . . . ,(tn, En)} be a con-
strained rewrite proof. Then for any substitution og €
Sol(Eg A. . .  A En), {7(to),..., 7(tn)} is a rewrite proof
with standard rules.

Proof: Again by  induction on the number of elemen-
tary steps in  the constrained rewrite proof and ap-
plying Proposition 1.  U

3.4 Constrained superposition
The computation of critical pairs introduces equations
or unification problems.

Two given constrained rewrite rules ( !  — r ,£)  and
(g  — d,E&’) superpose at  some occurrence m in  g i f  there
exists a solution x of £ A £’  such that u(gm) = r  Al).
So there exists at least a solution for the new set of
constraints (E A E’  A (gym ==r  1)), associated to the
pair [gm « r],d].

Definition 5 The constrained rewrite rule ( I  — r,E)
overlaps (g — d,E’) at occurrence m in g iff the equa-
tional problem (E AE' A (gym ==1  1)) is satisfiable. The
constrained critical pair obtained by superposition
of I = r,E) into (g — d,E') at occurrence m is by
definition: ([g[m — 7],d],E A E’ A(gjm ==1 1)).

A constrained critical pair of the form

([glm — 7] ,d],(E A E’ A (gm ==T1)))

schematizes the following set of pairs:

CP = {[o(glm — r]),0(d)]lo € SOl(EAE'A(gjm = 1))}-

The semantics of constrained superposition is given
by the following results:

Proposition 5 Let ([g[m — r ] , d ] ,EAE A(gjm =T  1)
be the constrained critical pair obtained by superposi-
tion of ( I  — r ,E )  into (g  — d,E') at occurrence m .
Then for any solution a of (EA E' A (gm =T  1),
o(g[m — r ] )  «RT  g(g) —R a(d) is a critical peak of
(a(l) — a(r)) into (o(g) — o(d)) at m.

Proof: Since o is solution of (E A &' A (gm ==T
1)), o(gym) = r  o(l) .  So there is a superposi-
tion of  (o ( l )  — o ( r ) )  into ( o (g ) — o(d)) at oc-
currence m.  The corresponding critical peak is
o(glm + 7]) PT  a(g) —* o(d). O

Note that (o(l) — o(r)) € S(l — r ,€)  and (o(g) —
o(d)) € S(g — d,  €” ) .

Considering now complete sets of solutions, we get
that for any critical peak, obtained as in Proposition 5,
there exists a critical pair between two schematized
rules, in  the set of pairs schematized by the constrained
critical pair.



Proposition 6 Let ([g[m — r7],d],£AE’A(gım ==T1))
be the constrained criticalpair obtained by superposition
of (1 = r ,E)  into (g — d,E') at occurrence m .  Then for
any solution 0 € CSS(EAE' A(gjm = 1 ) ,  there exist
a € CSS(E), B € CSS(E) and o ’  L r  o [V ( I )UV( r )U
V(g)UV(d)] such that [o’(g[m + r]),0'(d)] is a critical
pair of (a(l) — a(r))  into (B(g) — B(d)) at occurrence
m.

Proof: Assuming that the variables of the two con-
strained rules are disjoint, and using the facts that
o is solution of £ and E’, we get a,  pu1,8,  u2 such
that o =p  pyoa[V()UV(r)land 0 =r  u20ß[V(g)U
V(d)]. Since o(gjm) = r  ( I ) ,  #1  © 2 T-unifies a( l)
and B(g)|m- So there exist p is in a complete set
of T-unifiers of these two terms, and some substi-
tution 7 such that 0 =r  yo  po  ao  3 .  Note that
poao  f i s  a solution of  (EAE  A (gym =>r  1)). So
there is a critical pair [u(8(g)fm — a(r)]), #(S(d))]
obtained by superposition of (a(l) — a(r ) )  into
(B(g) — B(d)) at occurrence m.  This critical pair
can be written as [o’(g[m + r]),0'(d)}, with 0 ’  =
Boao ,  and 0 ’  <r o[V(!) U V(r)  U V(g) U V(d)].
(m)

Example 3 Consider again the two rewrite rules

THT XT *T  — ZT
ukv *w*a — a.

By  constrained superposition at top occurrence, the con-
strained critical pair ( [z ,a ] , {z*T  x z  xT  ==4C u *v *

w * a } )  is computed. It schematizes for instance the
trivial critical pair [a,a] by using the solution of the
equational problem (z — a)(u — a)(v — a)(w — a);
i t  also schematizes the critical pair [a * z’,a], by con-
sidering the solution (z — a +z ’ )(u  — a * x ’  * z’)(v —
a*z')(w — a * x’).

Since we would like to deal with completion modulo
a theory T,  the superposition of a constrained rule into
an axiom of T has to be considered too.

Definition 6 The constrained rewrite rule ( I  — r ,£ )
overlaps the aziom (g = d) € T at occurrence m in g iff
the equational problem (€ A (gjm ==r l)) is satisfiable.
The constrained extended rule obtained by superpo-
sition of  ( I  — r ,& )  into (g = d) at occurrence m is by
definition: (g[m — 1] = g[m « r],E A (gm =T11))-

The semantics of constrained extended rules is given
in  a similar way:

Proposition7 Let (gm — I,gim « r},&") be
the constrained extended rule obtained by superposi-
tion of I — r,E) into (g = d) at occurrence m .
Then for any solution o of E* = (EN  (gm =T

1),  the critical cliff a(g[m — r ] )  RT  o (g )  —7  a(d)

satisfies o(d) —R ıT  o(g[m —r]) using an instance
o(g[m « 1]) — o(g[m + r ])  of the constrained extended
rule.

Proof: Since o is solution of (E A (gm = r
D), o lgm) = r  o ( ) -  So there is a
cliff o(glm + r]) «RT g(g) ~—T o(d). Since
o(d) =T  o(g) = o(g[m + 1]), the rule o(g[m —
I}  — o(g[m — r])  reduces o(d) on top into
o(g lm —r]). DO

Considering now complete sets of solutions, we get
that for any critical cliff obtained as in  Proposition 7,
there exists an extended rule of a schematized rule, in
the set of pairs schematized by the constrained extended
rule.

Proposition 8 Let (g[m + lI],g[m — r],E") be the
constrained extended rule obtained by superposition of
( I  = r,E) into (g = d) at occurrence m .  Then for
any solution 0 € CSS(E A (gym = r  1)), there ez-
ist a € CSS(E), a < r  o[V(l) U V( r ) ]  such that
(af(g[m — 1]) — a(g[m — r]))  is an extended rule for
(a(l) = a f r ) .

Proof: Assuming that the variables of the contrained
rule and the axiom are disjoint, and using the facts
that o is solution of £ ,  we get a ,  pu, such that
o = r  poa lV ( )U  V( r )  and v = B[V(g) U V(d)].
Since o(gjm) = r  o( l ) ,  B © p T-unifies al)  and
gim- So there exist x in a complete set of T-
unifiers of  these two terms, and some substitu-
tion y such that 0 =7  qo  pu’ oa .  Note that
p '  oa  is  a solution of  (E  A (gym = 7)). So
there is an extended rule for (a(!) — a(r)),  namely
(g[m — a(l)] = g[m — a(r)]). It can also be writ-

. ten as (a (g [m — 1]) = a(g[m &— r ] ) ) .  O

Example 4 In the considered AC-theory, the con-
strained rule (z — a, {zT*T*T*z ==4C urvrw*a}) needs
an  extension (Tz  — a*z ,  {TXTXT*T == 4C urV*W*a}).

However all critical pairs computed by a (non-
constrained) completion procedure modulo T are not
yet taken into account: other superpositions need to
be considered, namely superpositions of  a constrained
rewrite rule (I — r ,£ )  into the canonical solved form
of  the constraints £’| associated to  the constrained rule
(9 — d,  €’) .

Example 5 Consider again the two (constrained)
rules:

T—a, {T *T*TxT= ,cu rv rwxa ,  z#a }
xz ’ xx’ xz’ — 2 .

A possible instantion of  the first rule is given by the
substitution a defined as (x — a *bx  bx  bx 2) and the
subterm bx bx bx z is unifiable with x’  xz ’  * 2 ’  » 2 ’  using
(z '  — b)(z — b) This superposition yields a critical pair
[o(z),a] where o(z) = a * b.
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Definition 7 The constrained rewrite rule (I — r,E)
..pverlaps in constraints (g — d,E']) at occurrence m in
( x  = t )  € EY iff the equational problem

(EAE  Altım =1  1)

is salisfiable. The critical pair in constraints ob-
tained by superposition of ( I  — r,E) into (g — d,E'l)
at occurrence m in (z ==)  € E'] is by definition:

([g,d],EAE) —(z = t))A(z ==  t[m — r )A( t jm  ==T I).

The semantics of superposition in  constraints is given
by  the following result:

Proposition 9 Let ([g,d],£") be the critical pair in
constraints obtained by superposition of ( I  — r,£) into
(g — d,€’']) at occurrence m in (z  = t )  € £ ' | .  Let
n be an occurrence of z in g .  Then for any solution
co f &" = ENE]  —(z = t)) A(z  = tlm —
rh) A ( tm = 1), there ezist a substitution a solu-
tion of (EAE)  Atm = r  1)) and a critical peak
a(g)fn.m — a(r)] =®7T  a(g) =®  a(d) such that

a(g)lnm — a(r)]) ==o(g) and a(d) = o(d).

Proof: From o ,  let deduce a such that a(y) = o(y) for
y # z and a(z) = t. Since a is solution of (£€ A E
Altım ==1  1 ) ,  a(tım) =T  a(l).  Let n be one of the
(possibly many) occurrences of the variable z in g.
Then a(g)jn.m = r  a(l). Thus a(g) — a(d) and
a(l)  = a( r )  superpose at occurrence n.m in  a(g)
with the identity substitution. This yields the crit-
ical peak a(g)[n.m — a(r)] =®7  a(g) =% a(d).
Because of the possible non-linearity of g, i t  possi-
bly remains some terms a(z) which are yet R ,T -

reducible into a(z). So a(g)[n.m — a(r) ]  RT

og)  and a(d) = o(d). O

Considering now complete sets of  solutions, we get
that for any critical peak, obtained as in  Proposition 9,
there exists a critical pair between two schematized
rules.

Proposition 10  Let ([9,d],EA (El  —~(z = t ) )A (z  =
= {m  « r]) A (tim = r  1)) be the critical pair in
constraints obtained by superposition of ( I  — r,£) into
(g — d,&'}) at occurrence m in (x ==1t) € £' | .  Le tn
be an occurrence of x in g. Then for any solution o €
CSS(E A E'L Altım ==T 1)), there ezist a ’  € CSS(E),
p' € CSS(EL) and 0 ’  <r  a[V()UV(r)UV(g)U  V(d)]
such that [0'(g)[n.m « o’(r)],0’'(d)] is a critical pair of
(e'(1) — a’(r))  into (B'(g) — B'(d)) at occurrence n.m.

Proof: As in the proof of Proposition 9, from og, let
deduce a such that a(y) = o(y) for y # z and
a(z) = t .  Since a is solution of (EAE'  A ( tm =T
1 ) ,  a(t\m) = r  a(l). Let n be one of the (possibly
many) occurrences of the variable z in g. Then
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a(g)ja.m = r  a(l). Assuming that the variables of
the two constrained rules are disjoint, and using
the facts that a is solution of (£ A E’] Altım =
=r  1)), we get a ’ ,  u1, 0’,  u2 such that a =7  py 0

a'[V(!) U V(r) ]  and a = r  pp 0 B'[V(g) U V(d)].
Since a(g)|n.m =T  a(l), #1  © p2  T-unifies o’(!) and
B'(g)in.m- So there exist u in a complete set of T-
unifiers of  these two terms, and some substitution
y such that a =r  yopoa’of'.  Note that uoa 'o§ ’
is a solution of  (€  A &'| A( t ) ,  ==  1)). So there
is a critical pair [u(ß'(g)[n.m + a’(r)]),  u(8(d))]
obtained by superposition of (a’(l) — a’(r)) into
(8'(g) — B'(d)) at occurrence n.m. This critical
pair can be written as [o'(g)[n.m + o'(r)}),o'(d)],
with ¢ /  = poa ’  e f ,  and 0 ’  <r  o [V ( )UV( r )U
V(g)U V(d)]. OD

3.5 Constrained critical pair lemma
Computation of constrained critical pairs and of criti-
cal pairs in constraints allows turning constrained peaks
and cliffs into rewrite proofs. Note that we are inter-
ested only in constrained peaks and cliffs that schema-
tize peaks and cliffs relevant for completion modulo T
(cf. for instance [1]). This justifies the following defini-
tion.

Definition 8 The constrained proof

(€,  EAELA(l <<T tym) +— (E,E) = (t',EAEIA(g K t a )

is a constrained peak of the constrained rewrite rules
(1 —=r,&) and (g — d ,& ) ,  iff

Vo € So l (EAE  A (g K t a )  AE  A ( I  KT  t im) ,
a(t")  — AT  o(t) > )  g ( t ) .

where the — -rewrite step modulo T occurs below the
—-rewrite step.

The constrained proof .

( t " ,  EAEA( KT  t im )  + (£,E) — T( t ,  EA(g K t n )
is a constrained cliff of the constrained rewrite rule
( I  = r ,Ei)  and the aziom (g = d), iff

Vo € Sol(E A (g < tin) ANE A l  x t im ) ,
o ( t " )  nO)  —o(7),T o t )  —y9(g)=c(d) o ( t ) .

where the «——-rewrite step modulo T occurs below the
——-equalily step.

Lemma 1 Consider any constrained peak

(FE, EAELA(l KT  tym) w= (E,E) = (t',EAEA(g K t a )

of the constrained rewrite rules ( I  — r , £ , )  and (g —
d ,& ) .  Then Vo € SO(EAE  A (9 L t )  ANE A l  LT

. t im ) ,



R,T T R,T
To) ,

o or there ezists a constrained critical pair or a crit-
ical pair in constraints of the constrained rewrile
rules (I  — r,&,) into ( g  — d,&), say ([p,ql, €’),
such that there are substitutions a € CSS(E ' )

« RT  . T
and ß satisfying o(t") —  +«— ß(a(p)) and

a(t) =" nT Blade).

eo  either a(t") —

Consider any constrained cliff

( t "EAEA( l  K1  tym) «— (8, E )  — T ( t ,  EA(g <<  En )

of the constrained rewrite rule ( I  — r,&;) and the aziom
(9 = d). Then Vo € Sol(E A (g « tn )  AEA  KT
tm ) ,

«RT  T . RT
e cithero(t') — = «— — a(t),
eo o r  there ezists a constrained extended rule (gm —

I} — g[m — r],E") of the constrained rewrite rule
( I  — r,&,) into (g = d), such that there are substi-
tutions a € CSS(E")  and ß satisfying ot) =
Bla(gm — 1])) and a(t") +=" Bla(g lm — r])).

Proof: Consider first the case of a constrained peak.
If the constrained rewritings apply on disjoint sub-
terms of t ,  then they simply commute. The other
case to be considered is when one constrained
rewriting applies above the other. Without lost of
generality, we can assume that (g — d ,& )  applies
at  occurrence € in  ¢, thus = d,  and ( I  — r ,& ; )
applies at some occurrence m below. The proof is
by case on the position of m.

1. m is a non-variable occurrence in  g:
Since o is solution of EAEAEIA(g «EAN <
<T tim), 0(9) = t ,  0(9)|m = tim = r  0 ( ) .  So
the equational problem & A £ A (gim =7  |)
is satisfiable and there exists a constrained
critical pair between the two rules, namely
(lg[m — 7], dl, Eo A&A  (9m = r  1)). Now
there exists a € CSS(& A & A (gm =T
I) such that a <7  o[V(g) U V(d) U V(!) U
V(r)]. This yields: a( t " )  >"  B(a(p)) and

a(t)  ="Bala) .
2. m = n.p with n being an occurrence of a

variable z in g, (z ==  to) € & l  and p be-
ing an occurrence of  tg: since m is solution
of EAE] AEA  <« A l  <r  tim)»

o(g) =t, (9)  im = lim = top =T  o(l). So
the equational problem Eol A& A (to), = r  1)
is satisfiable and there exists a critical pair
in constraints between the two rules, namely
(lg,d),€") with & = A (&]l - ( z  =
to)  A (z = to[p — r]) A (to}p = r  1)). Now

a(t )  = RT o'(t') and o(t") = RT a(t")

where 0 ’  is  a solution of € ’ .  Then there ex-
ists a € CSS(E’) such that a <7  o’[V(E')].
Thus we get: a(t”)  RT ,  B(e(p)) and

RT x

aft) =" = Bala) .
3. m does not belong to o(g):

then there exists a variable y at some occur-
rence n of og )  and a constraint (y = up) € £1
where £'  = EAEA (9g K AE  A(I KT  tim),
such that ug »®T  ug.
Let 0 ’  be the substitution defined by  0’(z) =
o(z) i f  z # y and ¢ ' (y)  = ug. Then

« RT « RT
o(t"y — ” J'(t") =0o'(t) and a( t )  —
a'(t') = o'(d).
Let also define £ ”  = E I  —(y = uo )A (y = ug).
Then go’ is a solution of £” and (t,E”) —
(d, €”) using (g — d ,&) .  This implies that
S(t )  = o t )  = o(d) = a ’ ) .

‘Let consider now the case of a constrained cliff. If
the constrained rewriting and replacement apply
on disjoint subterms of  ¢, then they simply com-
mute. The other cases, assuming that (g — d,&)
applies at occurrence € in  ¢ ,  depend on the occur-
rence m of the rewriting.

1. m is a non-variable occurrence in  g:
Since o is solution of EA (g K t )  AE  A l  <
<r  tim), o(g) = t, 0(g)|m = tim =7  o(l).
So there exists a constrained extended rule
gm  = 1] = g[m — r],&1 A ( I  KT  gjm)- Since
g is solution of & A ( I  KT  g|m), there ex-
ists a € CSS(& A (gym = r  | )  such that
a < r  o[V(g) U V(d) U V(I) U V ( r ) .  This
yields: a ( t " )  «=  B(a(g im — r ] ) )  and

a( t )  ==" Blatglm — 1) .
2. m does not belong to o(g):

then there exists a variable y at some occur-
rence n of o(g) and a constraint (y  = ug) € E1
where &' = EA  (9 Kt) AE  A (I KT  Em);
such that ug —>RT uj.
Let go’ be the substitution defined by o/(z) =
o(z) i f  z # y and o'(y) = wi. Then
o(t") = o'(t") = o'(t) and a(t’) =
a'(t') = o'(d).
Let also define E”  = E') —(y = uo )A (y = ug).
Then ¢ '  is a solution of £”  and ( t ,£")  «7
(d,€") using (g = d). This implies that
a(t")  = o'(t) «7  o'(d) = o'(t').

[=]

Corollary 1 If all constrained critical pairs and all
critical pairs in constraints have constrained rewrite
proofs, then any critical peak schematize rewrite proofs.

If all constrained extended rules are added, then any
critical peak schematize rewrite proofs.
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Proof: This is easily deduced from Lemma 1 just by
noticing that constrained rewritings will occur in
p or q and thus, after instantiation, the T-equality
steps around are emboddied into the corresponding
rewriting steps modulo T'.

A similar reasoning holds for constrained cliffs and
constrained extended rules. O

3.6 Constrained completion
Constrained completion is quite similar to standard
completion, except that instead of terms, equalities and
rules, it manipulates constrained terms, constrained
equalities and constrained rewrite rules. Informally the
activities of completion are turning constrained equal-
ities into constrained rewrite rules, simplifying con-
strained terms and computing constrained critical pairs.
The differences detailed below are due to the fact that
the substitutions involved in the constraints must also
be taken care of.

1. A first difference is that a new deletion rule is
added. A constrained equality (p = q,E) can be
deleted if for any solution o of E, o(p) = r  o(q).
Which is negated by: there exists o solution of
E such that o(p) =f=r o(g). So the constrained
equality (p = q,E) is deleted whenever the equa-
tional problem £ A (p = r  ¢) has no solution (as
we already pointed out, this problem is decidable
for the unparametrized AC  problems for instance).

2. A second difference is introduced in the orienta-
tion rule: turning a constrained equality (p =
¢,€) into a constrained rule must be precised.
Assume given a reduction ordering > on terms.
Since it is closed by substitutions, i f  p > q then
Vo € Sol(€),o(p) > o(q). The constrained rule
(p — q,E) can be added. A similar case holds i f
q > p .  However it may happen that some instances
of p = q satisfy o(p) > o(g), while others satisfy
o(q) > o(p) or a(p) = r  o(q). The last case can
be ruled out by considering the new set of con-
straints €’ = EA  (p =fr  ¢), restricting thus to
non-trivial instances. I f  it remains conflicts, then
constraints have to be lazily solved and a family
of rewrite rules may be introduced in that step of
constrained completion.

3. The third difference concerns the completeness of
critical pair computation. Superpositions in  the
constrained part of rules must not be forgotten.
This is why a new deduction inference rule that
adds critical pairs in  constraints is introduced. Be-
cause this inference rule asks solving constraints, i t
should be applied lazily, when all the constrained
critical pairs have been computed.

4. This leads to the last difference that concerns the
completion strategy. Since constraints are solved
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lazily, this induces a superposition strategy that is
mainly top-down.

Let P be a set of constrained equalities denoted
(p = q,E), C the current set of constrained rules, E
the current set of constrained extended rules, and >
a T-commuting reduction ordering [18]. R will denote
CUE.  Assume that P contains (¢ = p,€) whenever
it contains (p = ¢,£). Since we are considering equa-
tional completion through the constraint formalism, we
must take care of the application of the collapse infer-
ence rule [1] and we need a well-founded ordering on
constrained terms denoted hereafter by I>. I t  can be
deduced from any well-founded ordering on terms [>
(for instance the  specialization ordering used in [1]) by
defining: (t,E) > (t',E’) iff Vo € Sol(£),30’ € Sol(E’)
such that a(t) by  o'(¥').

A constrained completion procedure is expressed by
the following inference rules:

1 .  DeDeduce ,,  ~

PUG  = ,0 ) ,CE
if ([p,g],€) is  a constrained critical pair o f  R

2. Deduce in constraints

PU{ (p=0 .6 ) l ,C ,E
i f  ([p,q],€) 1s a critical pair  in  constraintsof R

"Pu{(p=4q,6)},C,E
i f  p = r  q or € A (p Fr  q) unsatisfiable

4. Simplify
PU{ {p=4 ,8 ) } ,C ,E
PU{ (p '=q , ) } ,C .E
i f  ( , € )  = (®',&')

5. Orienting a pair
PUu{(p=4¢,6},CE
P,CU{(p— gq)ELE
ifp>gq

6. Add a constrained extended rule
P ,C .E

PC EU{(l—-ré&)}
if  (1 = r,E) is  a constrained extended rule o f  R

7. Compose rule
PCu{ ( l—- r& } ,E

PCu{ ( l—- r ,EN} ,F
i f  ( r ,& )  — (+',&")

8. Compose extension
P,C ,E  U {(1 — rE}

P ,C ,E  u { ( !  — r ' ,  € ' ) }
i f  (r,E) — (r’,E’)

9. Collapse
PCuU{(l—-ré&}E
Pu { ( l ' = r¢ ) } ,C FE
if  (1,€) — (I',€') with (g — d,€") st .  ( , € )  >
(9,€")



10. Develop an unorientable pair
PU{(p=4,6)} ,C,E

PU {(7(p) =0c(q),T)loc € CSS(€)},C,E
HEAT,pt  qandg¥p

The correctness of these inference rules comes from
the fact that each of them (except the last one) repre-
sents a family of  inference rules of  the completion mod-
ulo T.  This is a consequence of previous propositions 2,
6, 8, 10. The correctness of the last inference rule is
obvious.

Each inference rule allows computing (P ır ı ,  Ci+1,
E;,,)  from (P ; ,Ci, Ei), which is denoted by

(Pi, Ci, Ei) F (Pig1, Cig, Biya).

Let C* be the set of all generated constrained rules, E *
the set of  all generated constrained extended rules, and
P*  the set of all generated constrained pairs.

Let C®,  E®  and P *  be respectively the set of per-
sisting constrained rules, extended rules and pairs, i.e.
the sets effectively generated by completion starting
from (Po ,Co,Eo). Formally

Pe  = UN By C*=U iN ;5 :Cj
E==J ;N , . .Ej, R®  = CS  UES.

The set of rules schematized by R ”  is denoted by R*.

Definition 9 A derivation

(Po, Co, Eo) FE (P ,C1 ,Ei)  FE...

is fair if

e the set of all constrained critical pairs and critical
pairs in constraints of R ” ,  denoted CCP(R®), is
a subset of P* ,

o and the set of  all constrained extended rules of  R ” ,
denoted EXT(R®),  is a subset of E”.

A derivation (Py, Ro) F (Py, Ry) I .... does not fail
if  PP  is empty.

The following result states the completeness of con-
strained completion for equational logic.

Theorem 1 Let > be an T-commuting reduction or-
dering and Py be a set of  equalities with the trivial
equational problem T as constraints. If the derivation
(Po, Co, Ep) F (P1,C1, Er) F .... is fair and does not fail
for inputs (Py, 0,8) and > ,  then any equational theorem
(t  =t ' )  using Py has a rewrite proof using R>  modulo
the theory T .

Proof: (Sketch) Let us consider any provable equali-
ties ( t  = ft’) with the initial unconstrained set of
equalities Po UT .  Such a proof can be consid-
ered as a constrained proof using the same equali-
ties with the trivial equational problem T as con-
straints. To each (P;, Ci, E;) is associated a proof

of ( t  = ¥) using constrained rules in  R; = C;U E;,
constrained equalities in P;  and axioms in T'. Fol-
lowing [15,1], to  each inference rule is associated
a transformation rule on constrained proofs using
(P* ,C*,E*,T) .  Proving that the relation =>  in-
duced by these transformation rules is terminat-
ing is achieved by finding a complexity measure
c((P,E)) for each constrained proof (P,€) and a
well-founded ordering > on these measures, that
satisfy the following property: (P,E) = (P',£')
implies ¢((P, £)) > ¢((P’,E")), for each proof trans-
formation rule. Let co be a complexity measure
that allows proving the termination of proof order-
ing  for completion modulo T .  Then the complexity
of a constrained proof is defined as the multiset of
the complexities of its intances:

«(P,  £)) = {co(0(P))IVo € CSS(£)}.

The next step is to show that each constrained
proof has a constrained rewrite proof for (R*°, T),
by noetherian induction on ==>. Assume that
the constrained proof is not a constrained rewrite
proof:

e If  a non-persisting equality or a non-persisting
rule is used, by definition, there exists a step
i such that i t  belongs to P;  U R ;  and not t o
Pipa U Rip. Since = reflects i ,  the con-
strained proof is reducible by ==  to a con-
strained proof that does not use i t  any more.

e If the proof contains a constrained peak
( t " ,€" )  «— (t,E) —» (¥',E’) or a constrained
cliff ( t " ,£)  — T(t,E) —= (t’,E’), i t  is also
reducible, due to Lemma 1, the fairness hy-
pothesis, and the induction hypothesis.

e i t  contains no constrained equality step using
P° ,  since the corresponding derivation does
not fail.

a

Thus, from the result of a fair derivation, it is possible
to deduce a set of rewrite rules R®> with the Church-
Rosser property.

4 Conclusion

The theory of constrained equational reasoning is pre-
sented in this paper. Of course many questions and
prolongations of this work arise. Let us mention:

1. The general notion of equational problem has to be
more deeply investigated, i n  particular in order to
get satisfiability and solving decision procedures for
a larger class of theories with respect to the class
of models considered. The initial model will be in
particular useful for inductive completion [24,17,1].
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2. Constrained equational reasoning allows dealing
with finite representations of infinite complete sets
of unifiers or matchers and i t  will be interesting to
consider the specific problems of equational com-
pletion modulo a theory that has infinite sets of
unifiers, like associativity [28]. In this respect,
the notion of  rewriting with meta-rules [25,26] is
strongly connected to constrained rewriting.

3. We have seen that constrained equational reason-
ing covers the notion of conditional and contextual
rewriting [10,7,19]. The relation between condi-
tional completion and constrained completion has
to  be invastigated now.

4. The notion of constrained equational reasoning
uses the notion of  symbolic constraint in  contrast
with constrained logic programming [14] where nu-
merical constraints are mainly used. We are now
investigating the combination of the two concepts
as a component of a language of constraints [31]
and its use for the design and the implementation
of functional, logic constrained and safe program-
ming language environments.

5. To check the real power and efficiency of this pro-
cess, an implementation of constrained completion
is needed. More generaly, the application of the
concept of constrained reasoning has to  be investi-
gated in the context of theorem provers.

Finally it must be emphasized that the concepts de-
veloped here are general enough to go beyond equa-
tional logic and can be adapted to typed Horn clauses
logic with equality.
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Solving Equational Formulas in an Order-Sorted Algebra
(Preliminary Notes)

Hubert COMON*

1 Introduction

Equational formulas are first order formulas which only involve one predicate symbol: the
equality. Solving equational formulas in  the algebra of terms leads to many applications (see
[CL89,Com88 ‚Mah88]). This has been studied in  [CL89,Mah88] where it  is shown (in particular)
that i t  is possible to  turn any equational formula into a solved form which either is 1 or possesses
at least one solution in T (F ) ,  the Herbrand Universe, leading to  a complete axiomatization of
finite trees under a finite alphabet.

In this paper, we investigate transformation rules for equational formulas in  order sorted
algebras as they are defined in [KKM88,SNMG8T]. Actually, we show how to extend the results
of [CL89,Mah88] to the order-sorted case. As we will see, an order-sorted signature is just a
finite tree automaton. Therefore, solving equational formulas in order-sorted algebras provides
a complete axiomatization of any recognizable subset of T'(F).

Such an extension allows to  extend the applications of equational formulas simplification to
the order-sorted case. For example, specification transformations as in  [Com89a] can be applied
to order-sorted specifications.

What is  the problem ?

We know how to solve equational formulas in  the many-sorted case. The first idea for solving
equational formulas in  the order-sorted case is therefore to reduce it to the many-sorted one.
This is, roughly, the method used in Schmidt-Schauss unification algorithm [Sch86] which
proceeds in the following way: in  order to unify s and ¢, first unify the many-sorted terms,
then postprocess the unifiers, only keeping the well-sorted solutions. However, such a method
does not work for equational formulas since forgetting the sorts enlarge the set of solutions of
an equation but restricts the set of solutions of a disequation s # t.  After forgetting some
solutions of s £ t, i t  is no longer possible to retrieve them.

That is the reason why we have to take into account the sort structure during the trans-
formation. Therefore, we merely use the rules given in [Kir88] for unification. Then, some .
rules for solving equations have to introduce “new” variables which are implicitly existentially
quantified. Thus, turning them by negation into rules for solving disequations, leads to the in-
troduction of universally quantified variables. On the other hand, the control in [CL89] mainly

*Laboratoire d'Informatique fondamentale e t  d’Intelligence Artificielle, Institut IMAG, 46  Ave.  Félix Viallet, 38031 Grenoble
cedex, France. E-mail : comon@lifia.imag.fr
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states that we have first to eliminate the universally quantified variables (called parameters).
We now come to the first difficulty: there are termination problems with the cycle elimination-
introduction of  parameters.

The second difficulty comes from problems such as: Vy : 8 : = :  8’ # y whose solutions in
T(F) are all the ground terms which have sort s’  and not s. Such a problem cannot occur in
the many sorted case neither in  unification problems. We have to propose a rule for solving
such “sort complement” problems.

2 Syntax

2.1 Equational Formulas

An equationis an unordered pair of terms denoted s = t .  An  equational formula (as defined
in  [Com89b])is an arbitrary first order formula whose atoms are equations. An  elementary
formulais  an equational formula that may be written

V 33,Vi :  P
j e J

where P is a quantifier free equational formula. As shown in e.g. [Com89b], we have only to
consider such formulas and i t  is possible to assume P in conjunctive normal form.

In this paper, we add one more syntactic construction: each variable occurring in an ele-
mentary formula is followed by  an expression “€  s” where s is a symbol from a given set of sort
symbols S. Moreover, we assume here that two occurrences of x in a same formula: z € s and
z € sg’ satisfy the condition s = £.

2.2 Order-Sorted Signatures and Tree Automata

(Finite) Order-Sorted signatures are defined in  e.g. [SNMG87]. Such signatures are actually
tree automata and we will adopt both point of view for some reasons that will appear later,

A signature is a triple (S,  D , ,  Ds) where S is a finite set of sort symbols (or states), D,  is a
finite set of  sort declarations s > s' (or e-transitions s(t)  — s ( t ) ) , ).- . i s  a graduate alphabet
F together with function declarations f : 5; x . . . x s ,  — s (or transitions f(s,(¢1),-..,8,(tx)) —
s(f(t , . . . , ta)))-

For every sort s,  T(F),  (also denoted T,)i s  the set of ground terms of sort s (equivalently,
thisis  the subset of T'(F') recognized by the finite ascending tree automaton, with final state
8). T i s  the union of all 7,  for s € S (equivalently, thisis  the subset of T(F)  of all terms that
are recognized by the automaton in  which all states are final states).

Example 1 Let us illustrate both point of view on a simple example. This is a specification
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of integers:

S = {pos ,neg, zero, int} S = {py Gn» 42,I r }

pos > zero qz(t) — gp(2)
_ J) reg > zero _ g(t)  — gn(t)De=1Tmi>pos Po = g(t) — ¢-(t)

int > neg gn(t) — ¢-(t)

F = {0 , s ,p }  F = {0 ,  8, p }

0 :  — zero 0 — g¢.(0)
s :  zero — pos s(g: ( t ) )  — go(s(2))

Dr=< s :  pos — pos Pr = s(g( t ) )  — gs(s(t))
p :  zero — neg p(a:(t)) — an(p(t))
p :  neg — neg p(qn(t)) — ga(p(t))

The automaton point of  view is useful for some problems, for example:

e For comparing the expressiveness of specifications. For example, the sets T(F) /  =x  that
can be defined in  the many sorted case by a canonical left-linear term rewriting system
R are a strict subclass of the sets T' that can be defined by an order-sorted signature
(without equations). ! In the same way, every term algebra T /  =x  where R is a left
linear convergent term rewriting system, is an algebra T ’  for some (other) order-sorted
signature...(see [Com89a] for more information on specifications transformations)

e For performing some operations on sets of ground terms that are well-known in  the au-
tomata field. For example, i t  is possible to  compute the set of all ground terms that have
the sort s and not the sort s' (this is just the computation of the complement of a regular
tree language into another regular tree language).

3 Semantics

Given an  order-sorted signature,  we  define [-] by  [x € s] = T,  and [f(t4,...,tx)]  = f([t1],---, [ta])-
A term t is  well-sorted i f  [ t ]  CT .

In this paper, we will assume that all terms occurring in an equational formula are
well-sorted

The semantics of an equational formula is the set of i ts solutions S(¢,U)  defined in  the
following way:

S(t =u ,U )  = { o ]  ois an assignment from U to T(F) s.t. o(z € 8) € T,  and o(t) = o(u)}
S(T,U) = { o |  ois an assignment from U to T(F) s.t. o(x € 3) € Ts}

S(dy Ady ,U) = S (d ,U )N S(d2,U)
S(-d,U) = S(T ,  U)-S(d,uU)

§@z, 4 )  = lowlo€ SGU {z}}
1Because the class of languages that are the set of irreducible ground trees for some left linear term rewriting system is a strict

subclass of recognizable tree languages (see [GB85,FV88]).
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The definition for other logical connectives can be obtained from the above ones in a standard
way.

4 Solved Forms

As in the many-sorted case described in [CL89,Com89b,Mah88], we are interested in  transform-
ing any elementary formula into a simpler one called solved form. Such solved forms are, in  the
case we consider here, either T ,  L or formulas

V 3 ;  H=SHA AZ  = t ,  ALF  UA  AZ ,  FE Um
j e J

(For convenience, we omit sometimes the expressions “ €  3 ” )  with the following properties:

e J is finite

e Vi, [6:1] © [=i]

® Z1 , . . . , Zm are variables and occur only once

o Vi,  2;  £ u ;

o Vz  € Va r ( z1 ,u1 , . . . , 2m ,  Un), [2] i s  infinite

oe Va r ( z ,u1 , . . . , 2m ,um)  © Var(ts,..., t n )

The main property of solved form is their solvability:

Proposition 1 Any solved form distinct from L has at least one solution.

5 A set o f  rules

We now design a set of transformation rules for elementary formulas that are correct (i.e. they
transform a formula ¢ into a formula 1 that has the same set of solutions), terminating and
complete (i.e. any formula is eventually transformed into a solved form). We use the same
formalism than in [CL89,Com89b]. (We do not recall all definitions in  this abstract).

We mainly use the same rules than in the many-sorted case (see [CL89]) except that replace-
ments are correct ( in our semantics) only i f  z is replaced with a term ¢ such that [t] © [z].
Adding this restriction, all rules given in the many-sorted framework hold in the order-sorted
case. However, because of this restriction, the set of rules is no longer complete. We have to
add some new rules for solving e.g. problems Vy € s :  € 8’  # y when 8 # sg.

The rules we add are given in  figures 1 and 2. In figure 1 we recall the main rules for
unification (similar to those given in [Kir88]).

In figure 2 we give other rules (for quantifiers elimination) mainly obtained by negating
the rules in  figure 1 or by some operation on automata. Such operations on automata may
introduce new sorts and new function declarations (and thus change the signature) but do not
change the languages T,  and therefore do not alter the set of solutions. Also note, that each
sort (introduced during the transformation or not) may be assumed to  have a non-empty carrier
(i.e. T,  # 8) and even to have an infinite carrier, since finiteness of the generated language
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Solving equations z = t  (SE)

(SE)  Pls es  = €82] — 3ws € 83, P[z ı  = ws A z ı  = wa]

If zı  et zı  are unknowns, ws g Var(P),  To, €T,,, Ts, €T,, and Ts, =T,, NT,,.

(SE2) P l z=  f ( t1 , . . . , tn ) }  — Vai  EB(2) TW E815. Wn € 84, Plz = f(wW1,...,Wn) Aun = th A Aun = ]

If
1. zis an unknown

2. [ f ( ta , . . . , tn ) )  Z [2]
3.

E(z) = max{s;...s, | f :8 ;  x . . .  xs, —+s and T,  C [2]}

4.  1 , . . . , 1 ,  do  not contain any parameter’s occurrence

(SE3) z1 :8  =22 :8 )  +— L

KT,  NT,  =%

Figure 1 :  Rules for solving equations z = t in  OSA

can be checked in a standard way for finite tree automata and, if  the language is finite, i t  is
easy to  replace any variable of the corresponding sort by  all the possible values i t  may take.
Finally, all boolean operations on sorts are easy to perform as they are well known for regular
tree languages. We use them without any more comment.

Proposit ion 2 Al l  rules given in figures 1 and 2 are correct.

6 Termination and Completeness

As mentioned in the introduction, we must be careful when applying the rules if we want to
obtain termination. We have no room for giving the control here (see [Com88]).

Theorem 1 There is a set of  rules (together with a control), which does terminate and such
that irreducible equational problems are in solved form.

This proves the following result:

Corollary 1 The theory of T is decidable.

Actually, i t  is possible to give a complete and recursive axiomatization of any such algebra.
Also, this result can be reformulated:

Corollary 2 Any  regular tree language has a decidable first order theory.
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Parameters elimination

(UP)  V i :  PA(y1  ES  £#y2E82Vd) —VWVi,ys Es3: PAd {y ı  — ys; ya — ya}

I
1. Ta, =T,, NT,, and T,, is neither equal to T ,  nor equal to T,, nor empty.

2. y3 g Var(P,yı, y ı , d )

(UPY) V i :  PA (yes#  f l ,  ..,ta) Vd) —
V i :  PAY Es  ALV. . .VynE Sn # ta Vd {y  — f (u r , - . . , 9n ) } )

If

1. stands f o r f :8; x . . . x 8, — 8,  Ts  CTs, 81 . . .  5,maximal

2 .y€Fandy , . . . , . yn Ey |

3. gny  =90

4. DZ  f ( t . . . t0)]

“Sort Complement” rules (SC)

(SC) P l yes t zes ]  — wes "  Plyzwes'  Az=u )

If

1. y is a parameter and z is an unknown

2 .  Ty  -T, = Tar  # 0

(CS2) yes#zes  — T

If y is a parameter, z is a variable and Ty  — T ,  = 0.

Figure 2: Parameter elimination in OSA : complementary rules
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1 Introduction
I first briefly recall basic notions of the y-calculus—~a calculus
of structured type inheritance. In the talk, I shall then detail
unification algorithms in the -calculus, one without disjunction,
and one with disjunction.

The w-calculus consists of a syntax of structured types called ı-
terms together with subtyping and type intersection operations.
Intuitively, as expounded in  [3], the y-calculus is an attempt at
obtaining a convenience for representing record-like data struc-
tures in  logic and functional programming more adequate than
first-order terme without loss o f  the  well-appreciated instantia-
tion ordering and unification operation.

The natural interpretation of  a -term is that  of  a data struc-
ture built out of constructors, access functions, and subject pos-
sibly to  equational constraints which reflect access coreference—
sharing of structure. Thus, the syntactic operations on ¢-terms
which stand analogous to  instantiation and unification for first-
order terms simply denote, respectively, sub-algebra ordering and
algebra intersection, modulo type and equational constraints.
This scheme even accommodates type constructors which are
known to be partially-ordered with  a given subtyping relation. As
a result, a powerful operational calculus of  structured subtypes is
achieved formally without resorting to  complex translation trick-
ery. In  essence, the y-calculus formalizes and operationalizes data
structure inheritance, all in a way which is  quite faithful to  a pro-
grammer’s perception.

Let us take an example to illustrate. Let us say that one has in
mind to  express syntactically a type structure for a person with
the property, as expressed for the underlined symbol in Figure 1,
that  a certain functional diagram commutes.

One way to specify this information algebraically would be to
specify i t  as a sorted equational theory consisting of  a functional
signature giving the sorts of  the  functions involved, and an equa-
tional presentation. Namely,

X : person with

functions

name : pe rson— id
first : i d  — str ing
last : id — string
spouse : pe rson— person

equations

*hak@decprl.dec.com

last(name(X)) = last(name(spouse(X)))
spouse(spouse(X)) = X

The syntax of y-terms is one simply tailored to express as a
term this specific kind of  sorted monadic algebraic equational pre-
sentations. Thus, in  the t-calculus, this information of Figure 1 is
unambiguously encoded into a formula, perspicnously expressed
as the y-term:

X : person(name => id(first => string,
last => S : string),

spouse => person(name => id(last = 5),
spouse = X)).

Since i t  is beyond the informal scope of  this summary, we shall
abstain from giving a complete formal definition of  ¢-term syntax.
(Such may be found elsewhere [4,3].) Nevertheless, i t  is important
to  distinguish among the  three kinds of  symbols which participate
in a t-term expression. Thus we assume given a signature I of
type constructor symbols, a set A of access function symbols (also
called attribute symbols), and a set R of reference tag symbols.
In the y-term above, for example, t he  symbols person, i d ,  string
are drawn from I ,  the symbols name, first, last, spouse from 4,
and the symbols X ,S  from R.}

A -term is  either tagged or  untagged. A tagged w-term is
either a reference tag in  R or an expression of the form X : t
where X € R and t is an untagged y-term. An untagged w-

"term is either atomic or  attr ibuted. An atomic y-term is a type
symbol  in X .  An attributed -term is an expression of the form
s(ly = t1 , . . . , ln  => tn) where s € T and the y-term principal
type, the I; ’s are mutually distinct attribute symbols in A, and
the t;’s are y-terms (n  > 1).

Reference tags may be  viewed as typed variables where the
type expressions are untagged y-terms. Hence, as a condition to
be well-formed, a %-term must have all occurrences of reference
tags consistently refer to  the same structure. For example, the
reference tag  X in

person(id = name(first = string,
last => X : string),

father => person(id = name(last = X : string)))

refers consistently to  the atomic &-term string. To  simplify mat-
ters and avoid redundancy, we shall obey a simple convention of
specifying the type of  a reference tag at most once as in

1We shall use the  lexical convention of  using capitalized identifiers
for reference tags.
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name

spousd

Figure 1: A Functional Diagram

person(id => name(first = string,
last = X : string),

father = person(id = name(last => X)))

and understand that other  occurrences are equally referring to  the
same structure. In  fact, th is  convention is necessary i f  we have cir-
cular references as in  X : person(spouse => person(spouse = X) ) .
Finally, a reference tag appearing nowhere typed, as in
junk(kind => X )  is implicitly typed by a special universal type
symbol T always present in I .  This symbol will be  left invisible
and not written explicitly as in (age => integer, name => str ing).
In the sequel, by  w-term we shall always mean well-formed ¥-
term.

Similarly to first-order terms, a subsumption preorder can be
defined on ¢-terms which is  an ordering up  t o  reference tag  re-
naming. Given that  the signature X is partially-ordered (with a
greatest element T ) ,  i ts partial ordering is  extended t o  the set
of attr ibuted ¢- terms.  Informally, a t)-term t i  is subsumed by
a w-term t2 if (1) the principal type of { ;  is a subtype in  X of
the principal type of t2; (2) all attributes of £2 are also attributes
o f t ;  with -terms which subsume their homologues in  #;; and,
(2) all coreference constraints binding in t 2  must also be binding
in 2;.

For example, i f  student < person and austin < cityname in ©
then the  ¢-term

student(id = name(first = string,
last => X : string),

Kves_at = Y : address(city => austin),
father = person(id = name(last = X),

livesat = Y))

is subsumed by  the ¢-term

person(id = name(last = X : string),
l ives_at => address(city = cityname),
father => person( id  => name(last => X))).

In fact,  i f  the signature I is such that greatest lower bounds
(GLB’s) exist for any pair of type symbols, then the subsump-
tion ordering on -term is also such that GLB’s exist. Such are
defined as the unification of two t-terms. Consider for example
the signature displayed in Figure 2 and the two w-terms
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X : student( advisor => faculty(secretary => Y : staff,
assistant => X),

roommate => employee(representative = Y))

and

employee advisor => f1{secretary=> employee,
assistant => U : person),

roommate = V : student(representative = V),
helper = wi  (spouse = U)).

Their unification (up to tag renaming) yields the term?

W : workstudy( advisor => fi(secretary=> Z : workstudy(repres
assistant => W,

roommate => Z ,
helper => w,(spouse = W)).

Thus,

Theorem 1 If the type signature is a lattice, then so is the set of
yY-terms.

I shall detail unification algorithm for ¢-terms in  my  talk. This
algorithm is an adaptation of  an efficient unification algorithm
based on a rooted labelled (directed) graph representation of w-
terms, such as is illustrated in Figure 1. The nodes are labelled
with type symbols from I ,  and the arcs are labelled with attribute
symbols. The  root  node  is one from which  every other is reachable
and is labelled wi th  the  principal type of  the y-term (underlined
in  Figure 1). Nodes which are shared in the graph correspond to
tagged subterms. Such graphs are quite like finite-state automata

Incidentally, i f  least upper bounds (LUBs) are defined as well in £ ,
so are they for ¢-terms. For example for these two  ¢-terms, their  LUB
(most specific generalization) is

person{ advisor => faculty(secretary = employee,
assistant => person),

roommate => person)).

Thus, a lat t ice structure can be  extended from X to  y-terms |2,4].
Although i t  may turn ou t  useful  i n  other contexts, we shall ignore
this generalization operation here.
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employee

student
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orkstud
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Figure 2: A Signature with Well-Defined GLB’s

[employee] | student |

1 john | | mary |

Figure 3: A non-lattice

with Z-sorted nodes (Moore machines) and where the transitions
are attr ibute symbols. In  fact, the w-term unification algorithm is
an immediate adaptation of  the  algorithm deciding equivalence of
finite-state automata [1]. This algorithm merges nodes which are
reached by  equal transition paths into  coreference classes, starting
from the roots and following all reachable strings of attr ibutes
from them.

8 Each merged class is assigned the type symbol in © which is
the GLB of the types of all nodes in the class. The inconsistent
type L ( the  least element in X)  may  result which makes the whole
unification fail.

A technicality arises if X is  not a lower semi-lattice. For exam-
ple, given the (non-lattice) type signature of Figure 3 the GLB
of student and employee is not uniquely defined, in  tha t  i t  could

SI t  is  not qui te true that y-term graphs are finite-state since an
essential difference is that  the attribute set is  unbound. Indeed, transi-
tions which do  not  appear in  the  graph are implicitly present leading to
infinitely many dist inct states, each of  which is labelled w i t h  T .  Merg-
ing two  nodes which  both  possess out-going attributes w i l l  proceed by
materializing such invisible transitions and states as needed should a
transition out  of  one node not be  present out of  the  other node. Nev-
ertheless, t he  process is always terminating since this materialization
does not  happen i f  at least one of  t he  two  nodes has no  out-going arcs.
This subt le point i s  essential as finite-state automata inequivalence is
decidable by  guessing non-deterministically a string of  transitions and
following i t  in  both graphs while this i s  not possible for (even  first-order
term) unification as transitions out of  “variable” nodes are not a priori
known [6].

be john or mary. That is, the set of their common lower bounds
does not admit one greatest element. However, the set of their
maximal common lower bounds offers the most general choice of
candidates. Clearly, the disjunctive type {john;  mary} is an ade-
quate interpretation.“ Thus the  y-term syntax may be enriched
with disjunction denoting type union.

For a more complete formal treatment of  disjunctive y-terms,
the reader is referred to [4] and to [3]. It will suffice to indicate
here that a disjunctive y-term is a set of  incomparable ¥-terms,
written { f 1 ; . . . ; t n }  where the t;’s are basic y-terms. A basic ¢-
term is one which is non-disjunctive. The subsumption ordering
is extended to disjunctive (sets of) y-terms such that D ;  < D;
iff V t ;  € D ı , 3 t 2  € D j  such that t ;  < £3. This justifies the
convention that a singleton { t }  is the same as t ,  and that the
empty set is  identified with .L. Unification of two disjunctive
y-terms consists in  the  enumeration of  the set of  all maximal %-
terms obtained from unification of all elements of one with all
elements of the other.  For example, limiting ourselves to  dis-
junctions of atomic ¢-terms in the context of signature in Fig-
ure 2, the unification of {employee; student} with {faculty; staff }
is {faculty; staff}. It is the set of maximal elements of the set
{faculty; staff;L ;  workstudy} of pairwise GLB’s.

Therefore,

Theorem 2 Given any partially-ordered type signature, the set of
e-terms is always a distributive latiice.

In practice, i t  is convenient to  allow nesting disjunctions in the
structure of  y-terms. For instance, to  denote a type of person
whose friend may be  an astronaut with same first name, or  a
businessman with same last name, or a charlatan with first and
last names inverted, we may write such expressions as:

person(id => name(first = X : string,
last = Y : string),

friend = {astronaut(id => name(first > X))
; businessman(id = name(last = Y))
; charlatan(id => name(first = Y,

last = X))} )

4See [5] for a description of  an  efficient method for computing such
GLB ’s .
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Tagging may even be chained or circular within disjunctions as
in:

P :{charlatan
; person(id = name(first => X : ‘john’,

last =Y  : { ‘doe’; X}),
friend = {P;  person(id => name(first = Y,

last = X) ) } ) }

which expresses the type of  either a charlatan, or  a person named
either “John Doe” or “John John” and whose friend may be either
a charlatan, or himself, o r  a person with his first and last names
inverted. These are no longer graphs but  hypergraphs.

Of  course, one can always expand out  all nested disjunctions in
such an expression, reducing i t  t o  a canonical form consisting of
a set of non-disjunctive y-terms. The process is described in [2],
and is akin to  converting a non-deterministic finite-state automa-
ton to  i ts deterministic form, or  a first-order logic formula to i ts
disjunctive normal form. However, more for pragmatic efficiency
than just notational convenience, i t  is both desirable to  keep ¢-
terms in  their  non-canonical form. In my  talk, I shall describe an
and/or graph unification algorithm with lazy expansion (saving
expansions in case of  failure or  unification against T).
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Introduction
A term t with variables, is a representation of all ground terms got by replacing its variables by ground
terms. A subset of a given set can be defined either by a description of its elements or as the complement
of another subset. For example, the set {a,  f (a) ,  f ( f ( a ) ) , . . . }  of ground terms over the alphabet contain-
ning the constant a and the unary function f can be represented by  the variable x .  A representation of
{ f(a),  f(f(a)), . . . }  is either f (z)  or z such that z # a. Following this idea, we define the concept of restricted
terms where structural constraints are associated to variables and we use it to  define partitions on a set of
ground terms. Thus, in  order t o  compute with these terms, we describe two operations on  restricted terms:
unification and decomposition with respect to  an  ordered set of  patterns.

1 Restr icted Term

The term t = f ( z , y )  where f belongs to X and z , y are variables stands for the set T = { f (a  ( z ) ,  0(y))|Vo :
X — T(X) } .  We  want to  deal with terms that represent an  arbitrary set of  ground terms. For ex-
ample, let © = { f , a ,b } .  Let  us consider the subset of f ( z , y )  of all terms different from f (a,b)  ( ie.
{f(o(z),0(y))|Vo such that o(z) # a or o(y) # b}). This subset can be represented by the union of f(b,  a),
fF ,  f (z ,  9 ) ,  f(a,  a), £(b,b), F(f(2,7),a) and f(f(u,v),  f(w,s)). On the other hand, the union of f ( f (z ,y) ,  a)
and f ( f ( u , v ) ,  f (w , s ) )  stands for the subset of  f ( z , y )  where z is different from a and b and y from b. These
examples suggest us to  represent such a set by a term with variables on which there are some structural
constraints. This can be illustrated as following:

1 .  { t =  f ( z , y )  such that  t # f ( a ,  0) }  ={ f ( z#  a ,y ) ,  f ( z ,  y # b ) }

2 .  { £ (b ,  a), f ( b ,  Fw ,  s)); F(F (w ,v ) ,  a), f ( f ( u , v ) ,  f (w ,  s))} = { f (=  #a , y#  b ) }

3. {£(f(u,v),0), f(f(u,v),  f(w,5))} = { f (z  # ( a ,b ) ,y # b)}
Let us notice that even in case of an infinite alphabet term representation with constraints can be finite
where i t  is not with the classical representation. We formalize this notion of  restricted term.

Definition 1 Let Q be a symbol of arity 0 not belonging to X. An  Q-term is a term belonging to T(X,Q).

In  such an Q-term variables’ name is not relevant and we call this kind of term a pattern. When we compute
with an Q-term, for example in order to unify i t  with a term, we replace each occurrence of  2 by  a new
variable.
Definition 2 (Restricted term) A restricted variable, denoted Rvariable, is defined as a variable with a
list of Q-terms associated to. A restricted term, denoted Rterm, is recursively defined as either a Rvariable
o r  f ( t 1 , . . . , t n )  where f EX  and t y , . . . , t ,  are Rtems.

Rvariable := (variable, List of —terms)
Rterm :=  Ruvariable

| symbol (Rterm,. . . ,  Rterm)
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In fact in our representation, we associate to variables a list of patterns to  characterize some unallowed
substitutions. More generally we define constraints on terms. Notice that we deal with three different kinds
of  terms: those that belong to  T (X ,  X ) ,  the restricted terms and the -terms in  which variables’ names are
not relevant.

2 Constraints

Definition 3 (Atomic Constraint, Variable Atomic Constraint) An  atomic constraint (resp. a vari-
able atomic constraint) is a pair (term, l ist  of  Q—terms) (resp. (variable,list o f  Q—terms))

Definition 4 (Constraint) A constraint is recursively defined as either an atomic consiraint or the dis-
junct ion of two constraints o r  the conjunction of  two consiraints.

Constraint  : =  (term, list of Q—terms)
| (Constraint V Constraint)
| (Constraint A Constraint)

Using these connectors or (V) and and (A), a constraint can always be written as a disjunction of
conjunction of  atomic constraints named a normal form. The notation z # I is often more convenient than
the pair ( z , / )  and will be used instead of  that last one if  necessary in the examples.

Definition 5 (Substitution over a constraint) Le to  be a substi tut ion, P = (t, £) an  atomic constraint,
Py,Pa two constraints. By definition o(P) = (o(t) ,L),  o(Pı V Pa) = o(Pı) V o(P,) and o(Pı AP )  =
o(P ı )  Ao(Pa)

Note that there is no variables belonging to  X in the right part of a constraint. Such constraints are said to
be structural.

Constraint Valuation

We  define a function from the set of  constraints to  a two-elements set, called a valuation, in  order to  formalize
the fact that an  atomic constraint ( t ,  £ )  is satisfied if and only if there is no  term | € £ such that ¢ is an
instance of  I.

Definition 6 (Fi l ter on  Terms) The relation < over terms is defined by t < t '  i f and only if there exists
a subst i tut ion o such that  o ( t )  = t ' .

Definition 7 (Fi l ter  on  Subst i tut ions) The relation < over substitutions is defined by o < o '  if and
only if there exists a substitution n such that 0 ’  = noo .  o is said to be more general than o’.

Definition 8 (Valuation) Le t  P be a set o f  constraints and  {T ,F }  a two-elements set. The valuation
v :P  — {T ,F }  is defined as following: Le t  (t,L) be an  a tomic  constraint.

v((t, £)) F i f  Ae  L such that | < t
T i f  notH

N

Connectors V and A are interpreted as usually.

Notat ion We write |} P when v(P) = T .  The empty list [] is written instead of (¢,[]) when £ is  empty.
Remarks For every term t ,  v((¢,[Q2])) = F and v((t, ] ) )  =v ( ( ) )  =T .

Definition 9 A substitution o satisfies a constraint P if  and only i f  o (P) .

Lemma 1 Let P be a constraint and o a substitution such that  o(P). For every substitution p more
general than o ,  F p(P).
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3 Restricted Terms and Unification

Definition 10 (Restricted Term, Structurally Restricted Term) A restricted term is defined as a
pair (term, constraint) where the atomic constraints are variable atomic constraints.

When F P the restricted term ( t ,  P)  is denoted by T = t s.t. P ,  otherwise T is a representation of the
empty set and thus T=  @. When P = (|[]), the restricted term (¢, P)  is in fact unrestricted and is written
t .

Definition 11  (Allowed Substitution) Let T = t s.t. P be a restricted term in which by definition
F P .  Le to  be a substitution. I f  o(P), the substitution o is said to be allowed for T and o(T) =
o(t) s . t .  s impl (o(P)) .  Otherwise the subst i tut ion o is no t  al lowed for T and  o(T) = 0.

Definition 12  Let T be a restricted term and o a substitution allowed for T.  The restriction o f T by o is
the restricted term To  = t 5.8. PAV ecpom(oynvar()(%:0(2)) where Var(t) means the set of  t's variables.

Let Id  be the identical substitution. Note that T| ;4  = 0.

Proposition 1 For every restricted term T and every allowed substitution o for T ,  T = o(T)U T , .

Definition 13  (Unification on  restricted terms) Let Ti  = t ;  s.t. P and Ta = ty s.t. Q be two restricted
terms. A substitution o is a unifier of  Ty and Tz if and only if  o unifies t ,  and t2 and or satisfies both
constraints P and Q (i.e. o(t1) = o(t2) and + o(P),  0(Q)). The unified restricted term is o ( t1 )(= o(t2))
s.t. o(P) A 0(Q).

Proposition 2 (Most general unifier) The most general unifier of  two restricted terms t s.t. P and
t '  s.t. Q is the most general unifier of  the unrestricled term t and t '  if this unifier exists and satisfies the
constraint P AQ.

Algorithm
Unify(Ty,Ta) = case of
(X=zs t  P , ,Y=ys t .  Py) —

If z = y then () else let vo = mgu(z,y), (X  — z s.t, Pr A ooP,)
(X  =z  s t  Pr, f( t1,. . . , tn) s t .  Py) —

Let go = mgu(z, f ( t1 , . . . , tn) ) ,  if  F 00  Ps
then (X  « f ( t 1 , . . . , t n )  8.t. simpl(coPz A Py))
else fail

 (F t i , . . . , t n )  s t .  Pp ,X =x  s t .  Py )  —
Unify(X =z  s.t. Pg, f ( t 1 , . . . , t , )  8.8. Pr)

(F t . . . , tn) s t .  Py, (8),  . . . , 1 , )  s t .  Pp) —
Unify(ty s t .  Py,t) s t .P ; )o . . . oUn i f y ( t s  s.t. Py,ty, s.t.P))

( f ( t1 , . - .  ta )  8.2. Py, fH , ..., 4 )  s t .  Pp) —
fail.

The function simpl represents the process that transforms a constraint P into a variable constraint or
(t, [Q]) or  (¢,1)-

4 Term Decomposition -

Let  S = (s1 , . . . ,8n )  be an ordered list of  Q — terms named patterns and T' = t s.t. P a restricted term.
As already said T is a representation of a set of ground terms. To decompose T with respect to S is t o
split the set associated to T i n to  disjoirit subsets such that each subset contains instances of at most one
element of S. For example, let S$ = { f ( a ,g ( ) ) ,  f (a,  2 ) }  and T = f ( x , y )  s.t. [|]. T is the disjoint union of
Ty, Ta and T3 where Ti = f(a,9(2)) s.t. [], Tz = f(a,y) s.t. [y # 9(Q)] and Ts = f(x,y) s t .  [x # a]. We
generalize this concept of decomposition looking for instances of patterns not only at the root of the tree .

185



but also at an internal node (i.e. a node different from the root). For example, let S = {f(a,Q),h(2)} and
T=  g(f(z,y),2) s t . [}. T=T iUT2U  Ts where Ty = g(f(a,y),2) s.t. [], T ı  = g(f(2,9), h(k)) s.t. [x # a],
Ts = 9(f(z,9),2) s t .  [z # a, z # KQ)].

4.1 Decomposit ion at  a Vertex
Definition 14  (Decomposition w. r . t .  a Pattern at a vertex) Let T =1t s.t. P be a restricted term, u
a vertex oft and s a pattern. If  T/u and s are unifiable with o as their most general unifier, the decomposition
o f T w.r . t .  s at u,  denoted decomp(T,s,u), is equal to o(T).

With this definition, decomp(T, 2 ,  u) = T.

Definition 15 (Decomposition w.r . t .  an  Ordered Set of  Patterns at a Vertex) Let T = t s.t. P
be a restrictéd term, u a vertez o f t  and S = { s ı , . . . , sn }  an ordered set of patterns. The decomposition of
T wrt. S at u,  Decomp(T,S,u), is recursively defined as

Decomp(0,S,-) = 0
Decomp(T,0,u) = 0
Decomp(T, S, u )  Decomp(T,{s2,.. . ,8n},u) if  T/u and s ı  are not unifiable

decomp(T, s1 ,u )  U Decomp(T|, , ,S,  u)
where oy is the m.g.u. of T/u and s otherwise

Proposition 3 Let  T =t s . t .  P be a restricted term,u a vertex o f t  and S = { s1 , . . . , 5 , }  a set of patterns.
Then T = Decomp(T, { s1 , . . . ,  Sn ,  0 } ,  u ) .

4.2 Decomposition w. r . t .  a Set  o f  Patterns
More generally, we decompose a term with respect to  a set of  patterns not only at a given vertex u but
successively at each element of  an ordered set of  vertices (by the hierarchical ordering for example). Let
T|s,u = Decomp(T, {s1, . . . ,  sn, 2 } ,  u)  — Decomp(T, S, u).

Definition 16  (Decomposit ion w.r.t. a Set  o f  Patterns) Let  U = {u , , . . . , u , }  an ordered set of ver-
tices. Let DECOM P(T, S,U) = Decomp(T, S, u1) \UDECOMP(T|s,u,,S, {uz,...,up}).

decomp(T, S,  U )  =

DECOMP(T,S,U) |  J U decomp(T|sului — f i ( l . . . ) ]1<1<plh,S,{ . . . ,w.1,. .  u i .ar( f ) ,  DD
( f 1 , . - , f p )EZ?

where T|s,y denotes the remainder of DECOM P(T,  S, U).

decomp(z,  S,¢) gives all the different decompositions of a the variable z.  Let S be unavoidable (i.e.
there exists an integer k such that for every tree t € T (X , X)  wi th depth(t) > k there exists s € S fac-
tor of t).  decomp(z,S,¢€) stops and allows us to compute by unification the decompositions of any tree
[Pue87],(P ue89].
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WINE  TASTING AT  WEINGUT SCHÖNFELD, JUNE 27,  1989

Philip Scammel

1. 1988er DIEDESFELDER REBSTÖCKEL
RIESLING KABINETT TROCKEN

2. 1988er WOLLMESHEIMER MÜTTERLE
KERNER SPÄTLESE TROCKEN

3, 1987er DIEDESFELDER REBSTÖCKEL
SILVANER HALBTROCKEN

4.  1988er WOLLMESHEIMER MÜTTERLE
RIESLING KABINET HALBTROCKEN

5. 1988er DIEDESFELDER PARADIES _
SCHEUREBE  KABINETT

6. 1987er DIEDESFELDER BERG
KERNER SPÄTLESE

7. 1988er DIEDESFELDER REBSTÖCKEL
WEIßBURGUNDER SPÄTLESE

8. 1988er WOLLMESHEIMER MUTTERLE
+ HUXELREBE AUSLESE TROCKEN

9. 1988er DIEDESFELDER OLGASSEL
GEWURZTRAMINER AUSLESE

10. 1983er WOLLMESHEIMER MUTTERLE
RIESLING EISWEIN
Goldene Kammerpreismiinze 1984
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Life with a limited vocabulary*

Pierre LESCANNE
Centre de Recherche en Informatique de Nancy

LORIA
Campus Scientifique, BP  239,

54506 Vandeuvre-lés-Nancy, France
email: lescanne@loria.crin.fr

In this paper we show that a limited vocabulary can lead to strange and irregular
situations. A complete analysis is given using five simple canonical case studies.

The referee report

I read this paper completely, I noticed it gets harder and harder as the complexity increases
monotonically. But since the author adopts a canonical point of view and the style is
regular and simple, I recommend its acceptance.

The love letter

My  simple happiness is not complete since my  love for you increases regularly and mono-
tonically every day. Do the canonical thing, simply marry me!

The letter to  the bank

I received your complete account. It is not canonical since there is something irregular.
My  credit increases monotonically then all of a sudden starts to decrease. Is there a simple
explanation?

A t  the restaurant

She (he) takes a complete menu. She (he) orders a simple entree. As she (he) is in  France, she
(he) drinks a “canon de vin” and ends with a regular coffee. The tip increases monotonically
with her (his) degree of satisfaction.

Title of  the communication for the next workshop

A simple and complete procedure for monotonically generating canonical solved forms for
regular theories.

*This paper was presented at banquet speech at the Third International Workshop on Unification
UNIF’89.
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