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A B S T R A C T

Established model-based methods often use a combination of state feedback and observer to control complex
systems. They rely on detailed mathematical models that are often hard to derive. Nonetheless, such methods
may achieve a high level of accuracy, which justifies the cumbersome modelling. An alternative approach
is model-free control, in a form introduced by Fliess and Join, where the system is approximated in a short
time interval by a low-order differential equation with unknown parts, a so-called ultra-local model. This
control method is a powerful tool, but the parametrisation and the concrete implementation may require
time, effort, and experience. The present paper investigates the systematic tuning of a model-free controller
for a magnetically supported plate that is modelled as an unstable multiple-input multiple-output system.
Furthermore, the incorporation of model information into the model-free controller is investigated. These
adaptations ultimately improve results by simplifying parameter tuning and interpretation of estimates. Several
experiments are carried out on a test bed to show the capabilities of the proposed algorithms for set point
stabilisation and trajectory tracking. The effects of the different parameters in the model-free controllers are
addressed, and excellent robustness with respect to actuator faults is demonstrated. Filters for estimating
derivatives and unknown quantities are designed using an open-source toolbox.
1. Introduction

Model-free control (MFC) has become a popular term in the broad
field of control engineering and includes approaches based on propor-
tional integral derivative (PID) control, fuzzy control, reinforcement
learning, and data-based control. Fliess and Join (2008, 2009, 2013)
have proposed algorithms that do not rely on physically motivated
mathematical models of the systems considered and do not require
time consuming and data intensive training. In this approach, a sys-
tem is locally approximated by a low-order differential equation with
unknown parts, which is called a ultra-local model. The unknown part
of the system consists of unmodelled dynamics as well as disturbances,
without any distinction between the latter. With the help of algebraic
differentiators (see Mboup et al., 2009 and the survey Othmane et al.,
2022 for an overview) the unknown part can be estimated for a
subsequent compensation in the feedback control.

This simple yet powerful and real-time capable method has been
applied to various systems, ranging from direct fuel injection systems
in Carvalho et al. (2024), unmanned aerial vehicles in Al Younes et al.
(2014), grid-tied inverters in Wachter et al. (2023), wind turbines
in Lafont et al. (2020), active suspensions in Haddar et al. (2019),
proportional valves in Scherer et al. (2023), green houses in Lafont
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et al. (2015) and video streaming in Fliess and Join (2023), to mention
only a small selection of successful simulations and experiments.

The works Li et al. (2022) and Zhang et al. (2022) focus on classical
control theoretical tools in the frequency domain to analyse the MFC,
whereas Hegedűs et al. (2022) investigates the tuning of the input
gain. In Belhadjoudja et al. (2023) the MFC is analysed using meth-
ods from linear systems. An alternative MFC approach is considered
in Tabuada et al. (2017), where the knee joint of a bipedal walking
robot is controlled based on a linear approximation of the nonlinear
system with guarantees on stability depending on the sampling time.
Nonetheless, systematic tuning of the MFC algorithms for unstable
multiple-input multiple-output (MIMO) systems remains a challenging
problem, despite the successful realisation in Bekcheva et al. (2018)
or Neves and Angélico (2021).

In Othmane, Rudolph, and Mounier (2021) the tuning of estimators
used for the approximation of the unknown part of the ultra-local model
is investigated. These estimators are called algebraic differentiators,
the systematic tuning of which has already been analysed in Kiltz
(2017), Kiltz and Rudolph (2013) and Othmane et al. (2022). The
design, analysis, and discretisation of the differentiators is done with
the easy to use open-source toolbox AlgDiff (see Othmane, 2022), the
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use of which has been described in the tutorial-like paper (Othmane &
Rudolph, 2023).

The present paper focuses on active magnetic bearings. This tech-
nology can, for example, be used for flywheels (cf. Lei & Palazzolo,
2008), designed for energy storage, to dampen the vibration of circular
saws (Ellis & Mote, 1977), or for the exact positioning of a tool attached
to a rotating shaft (Eckhardt & Rudolph, 2004). Due to the inherent
nonlinearity and instability in the system, control algorithms are always
needed for the realisation of the technology. These algorithms are
typically based on mathematical models of the magnets (cf. Collon
et al., 2007) and the rigid body dynamics of the rotating shaft. The same
technology of the bearings can also be used for the position control of
a plate as discussed in Kiltz et al. (2014). The magnetically supported
plate described therein is also considered in the present work as an
example for the magnetic bearing technology, dealing with interesting
problems like over-actuation, nonlinearity of the magnets as well as the
unstable MIMO characteristic of the system that is challenging in the
MFC context. The contributions De Miras et al. (2013) and Moraes and
da Silva (2015) have already successfully described the experimental
implementation of MFC techniques for simple lab setups with magnetic
bearings. However, questions such as parametrisation, discrete imple-
mentation, incorporation of physical knowledge into the controller
design, and comparisons with model-based approaches remain open.
The current work explores these issues.

Here, the systematic design and tuning of algebraic differentiators
and MFC algorithms based on a second order ultra-local model is
investigated. The differentiators are essential to online estimate un-
known parts of the ultra-local model as well as velocities that are not
directly measured but needed for the controller. Additionally, details
concerning the implementation of these algorithms are shared that
are necessary for a successful application of the latter. It is shown
that model information, e.g. known input gains or a simple model of
an electromagnet, can be utilised not only to increase the accuracy
of the algorithms, but also to simplify the tuning. In addition to the
systematic analysis, a model-based approach is designed in such a way
that the results of both the MFC and the model-based control (MBC) are
comparable. Several experiments on a test bed depicted in Fig. 1 are
conducted showing the capabilities of the MFC in different scenarios,
such as trajectory tracking and robustness to sensor and actuator faults.

The present paper is organised as follows. In Section 2 the sys-
tem under consideration is introduced and a mathematical model is
provided. A model-based tracking controller, the MFCs using different
inputs as well as information concerning the implementation of the
latter are discussed in Section 3. In Section 4 experimental results on
the test bed are presented and details for the parametrisation of the
algorithms are provided.

2. Magnetically supported plate: problem statement and mod-
elling

The test bed considered, depicted in Fig. 1, consists of a 10 mm
thick, rectangular aluminium plate with four laminated iron packs at
each corner. These packs are acting as the yokes of four electromagnets
mounted at a rigid frame above the plate. The electromagnets generate
four forces that can lift the plate, as depicted in the schematic drawing
in Fig. 2. Four inductive sensors are available to measure the distances
denoted by 𝑦𝑗 , 𝑗 ∈ {1, 2, 3, 4}, between the plate and the outer frame.
This system has already been considered in Kiltz et al. (2014, 2012).
Due to its simple construction this setup could be relatively easily
rebuilt by other groups for use in educational labs.

2.1. Model of the plate

The plate, as shown in the schematic drawing in Fig. 2, is modelled
as a rigid body that can only perform translational motions in the 𝑧0
direction of the space-fixed coordinate system 𝐶 and tilt around the
2

0

Fig. 1. Photo of the considered test bed. The aluminium plate is hovering with an air
gap of 5 mm.

Fig. 2. Schematic drawing of the plate with the body fixed frame 𝐶b and reference
frame 𝐶0.

𝑥b- and 𝑦b-axes of the body-fixed coordinate system 𝐶b, located in the
centre of mass of the plate. Thus, motions in any other direction are ne-
glected. Due to the limited air gaps ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4}, possible tilt angles
are small, resulting in the assumption that the forces 𝐹𝑗 , 𝑗 ∈ {1, 2, 3, 4}
of the magnets are acting at the centre of each yoke as depicted in
Fig. 2. Each force 𝐹𝑗 , 𝑗 ∈ {1, 2, 3, 4} is generated by an electric current
denoted by 𝑖𝑗 , 𝑗 ∈ {1, 2, 3, 4}. However, the dynamics of the magnetic
fields are neglected, because of the lamination of the magnets as well
as the current controllers incorporated in the industrial hardware.

Using the latter considerations, the motion of the plate in the
remaining three degrees of freedom can be modelled by

𝐵𝒇 = 𝑚𝒈 + 𝑃 (𝒚̈ − 𝜼) (1)

with

𝐵 =

⎛
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⎜

⎜
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⎠

,

𝒇 = (𝐹1, 𝐹2, 𝐹3, 𝐹4)T, 𝒚 = (𝑦1, 𝑦2, 𝑦3)T, 𝒈 = (𝑔, 0, 0)T, and the parameters
𝑘1 = 𝐽𝑥

𝑙𝑑𝑦𝑙𝑓𝑦
and 𝑘2 = 𝐽𝑦

𝑙𝑑𝑥𝑙𝑓𝑥
. The mass of the plate is denoted by 𝑚, the

gravitational acceleration by 𝑔, 𝐽𝑥 and 𝐽𝑦 are describing the moments
of inertia with respect to the 𝑥b- and 𝑦b-axes respectively. As depicted
in Fig. 2, the distances from the centre of the plate to the sensors and
the forces are denoted by 𝑙𝑑𝑥 and 𝑙𝑑𝑦 as well as 𝑙𝑓𝑥 and 𝑙𝑓𝑦, respectively.
Unmodelled system dynamics and disturbances are summarised in the
variable 𝜼.
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As usual, the forces generated by the magnets are modelled as

𝐹𝑗 =
𝑖2𝑗

𝑑2𝑗 (ℎ𝑗 )
, 𝑗 ∈ {1, 2, 3, 4}, (2)

ith functions 𝑑𝑗 ∶ R → R depending on the air gaps ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4}.
These functions can be determined in a parameter identification with
an appropriate ansatz. In the following, the air gaps ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4},
have to be calculated using the available measurements. The easiest
way of doing so is to use the assumption that the aluminium plate is a
rigid body. Then it can be mathematically described by a plane defined
by

𝒓0 = 𝒓01 + 𝑎(𝒓03 − 𝒓01) + 𝑏(𝒓02 − 𝒓01) (3)

in the reference frame 𝐶0 with the sensor locations 𝒓01 = (−𝑙𝑑𝑥, 𝑙𝑑𝑦, 𝑦1)T,
𝒓02 = (−𝑙𝑑𝑥,−𝑙𝑑𝑦, 𝑦2)T, and 𝒓03 = (𝑙𝑑𝑥, 𝑙𝑑𝑦, 𝑦3)T, whereas the parameters 𝑎
and 𝑏 depend on the point of interest on the plane. With this, only
three of the four sensor values have to be used. Now, (3) can be used
to calculate the midpoint of the yokes, where the forces of the magnets
are acting on, and with this the needed air gaps. This yields

⎛
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⎜
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⎜

⎜

⎜
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⎟

⎠

= 𝐾𝒚, (4)

with 𝑘𝑥 = 𝑙𝑓𝑥
𝑙𝑑𝑥

and 𝑘𝑦 = 𝑙𝑓𝑦
𝑙𝑑𝑦

, which maps the sensor values to the air
aps.

emark 1. The term 𝜼 describes several hard to model dynamics
nd disturbances. These have various origins, such as errors within
he magnetic force model stemming from inaccuracies in the functions
𝑗 ∶ R → R, 𝑗 ∈ {1, 2, 3, 4}, unmodelled hysteresis and magnetic satu-
ation, temperature dependencies within the coils, effects originating
rom magnetic field dynamics, and magnetic flux leakage. Additionally,
igh-frequency oscillations occur due to plate vibrations, as the real
late deviates from the assumed rigid body model.

emark 2. Using a different combination of three sensor values would
e possible, e.g. 𝑦2, 𝑦3, and 𝑦4. In this case, Eq. (3) has to be adjusted,
esulting in a different matrix relating 𝒉 and (𝑦2, 𝑦3, 𝑦4)T. A possible

method of using four sensors is to calculate the centre of gravity of the
plate, where the coordinate system 𝐶b is located, as the mean value
of all measurements. The tilt angles around the 𝑥b- and 𝑦b-axes can be
calculated afterwards using again only three sensor values, and with
this all informations to determine the air gaps are provided. An other
possibility is to use the redundancy of the sensors for fault detection.
For the sake of simplicity, only the suggested choice is considered in
the sequel.

3. Control design

In the following section, a MBC approach is presented in addition
to several MFC algorithms, which differ in the choice of the input.
This choice is based on different degrees of model information used
to determine a feedback law.

3.1. Model-based control

The MBC of the plate is based on (1), which can be rewritten as

𝒚̈ = 𝑃−1(𝐵𝒇 − 𝑚𝒈) + 𝜼 (5)
= 𝒗 + 𝑔

(

1 1 1
) T + 𝜼,

with the new input 𝒗 = 𝑃−1𝐵𝒇 . The latter system of differential
quations can also be written as three independent scalar equations
3

𝑦̈𝑘 = 𝑣𝑘 + 𝑔 + 𝜂𝑘, 𝑘 ∈ {1, 2, 3}. (6) w
Hereafter, the index 𝑘 will be omitted, due to the similarity of the
equations. Based on (6) a stabilising feedback law

𝑣 = 𝑦̈r − 𝑐D𝑒̇ − 𝑐P𝑒 − 𝑔 − 𝜂, 𝑒 = 𝑦 − 𝑦r, (7)

can be calculated to track a sufficiently smooth reference trajectory
𝑡 ↦ 𝑦r(𝑡). Using the control law (7) on system (6) leads to the differen-
tial equation of the error

̈ + 𝑐D𝑒̇ + 𝑐P𝑒 = 0. (8)

The controller parameters 𝑐P and 𝑐D are chosen positive, which results
in a stable closed-loop behaviour. This approach can be interpreted as
a typical flatness-based controller as discussed e.g. in Rudolph (2021).

Since the velocity 𝑦̇ and the acceleration 𝜂 required in the feedback
aw (7) are not measured, an observer is designed, based on the as-
umption of a piecewise constant disturbance 𝜂, which means 𝜂̇ = 0 on
ntervals. To this end, the state representation of (6) can be introduced
s

̇ =
⎛

⎜

⎜

⎝

0 1 0
0 0 1
0 0 0

⎞

⎟

⎟

⎠

𝒙 +
⎛

⎜

⎜

⎝

0
1
0

⎞

⎟

⎟

⎠

(𝑣 + 𝑔) = 𝐴𝒙 + 𝒃(𝑣 + 𝑔) (9a)

𝑦 =
(

1 0 0
)

𝒙 = 𝒄T𝒙 (9b)

ith the input 𝑣 and the tuple 𝒙 = (𝑦, 𝑦̇, 𝜂)T. Discontinuities of 𝜂 cor-
espond to resetting initial conditions. Based on (9) a simple linear
isturbance observer

̇̂ = 𝐴𝒙̂ + 𝒃(𝑣 + 𝑔) + 𝒍
(

𝑦 − 𝒄T𝒙̂
)

(10)

ith 𝒙̂(0) = 𝒙̂0 ∈ R3 provides an estimate 𝒙̂ of the tuple 𝒙. The observer
ains 𝒍 = (𝑙1, 𝑙2, 𝑙3) are chosen such that 𝐴 − 𝒍𝒄T is Hurwitz. With
his choice the error 𝒙̃ = 𝒙 − 𝒙̂ exponentially converges to zero.
sing the feedback law (7) in combination with the observer (10) the
ccelerations 𝒗 can be calculated.

The next step is to exploit the relation 𝒗 = 𝑃−1𝐵𝒇 from (5) to derive
esired forces 𝒇d that can be realised using the electric currents. Due
o the redundancy stemming from the over-actuation of the system,
choice has to be made. One approach is to use the Moore–Penrose

seudo inverse 𝐵† = 𝐵T(𝐵𝐵T)−1 of 𝐵 to calculate

d = 𝐵†𝑃𝒗 = 1
4

⎛
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−𝑚+𝑘2
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𝑘1−𝑘2
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−𝑚−𝑘1
2

−𝑚+𝑘2
2

−𝑘1+𝑘2
2

−𝑚+𝑘1
2

−𝑚−𝑘2
2

𝑘1+𝑘2
2

−𝑚−𝑘1
2

−𝑚−𝑘2
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝒗 = 𝑉 𝒗 (11)

that distributes the input 𝒗 evenly to the four desired forces
𝐹d,𝑗 , 𝑗 ∈ {1, 2, 3, 4}, which is beneficial especially if an abrupt actuator
fault occurs, as discussed in Section 4.4.1.

Remark 3. Using the Moore–Penrose pseudo inverse is equivalent to
minimising the mean variation ∑4

𝑖=1

(

𝐹d,𝑖 −
1
4
∑4

𝑗=1 𝐹d,𝑗

)2
as suggested

in Kiltz et al. (2012).

Solving (2) for the current yields

𝑖d,𝑗 =
√

𝐹d,𝑗𝑑𝑗 (ℎ𝑗 ), 𝑗 ∈ {1, 2, 3, 4}, (12)

hich can be used together with (4) to generate the reference for the
nderlying current controller.

.2. Model-free control

In the following, various MFC approaches are presented, gradually
educing from one subsection to the next the amount of physically mo-
ivated model knowledge. For each controller three decoupled systems
ith identical structure are considered and the corresponding index
ill again be dropped when appropriate.
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3.2.1. Acceleration as input
Hereafter, the input 𝑣 is used just as it has been done in the design of

the MBC law in (7). Each of the decoupled subsystems is described by

𝑦̈ = 𝛾𝑣𝑣 + 𝑓𝑣, 𝛾𝑣 > 0, (13)

where 𝑡 ↦ 𝑓𝑣(𝑡) is a bounded unknown square-integrable function
representing unmodelled dynamics as well as other disturbances. Com-
paring (13) and (6) yields 𝑓𝑣 = 𝜂 + 𝑔 and suggests the choice 𝛾𝑣 = 1.
This means that 𝑓𝑣 has a physical meaning as opposed to a similar case
study discussed in Remark 3 of Scherer et al. (2023).

Remark 4. Comparing (13) and (6) suggests to use 𝛾𝑣 = 1. Neverthe-
less, a different choice of the input gain 𝛾𝑣 is possible (see Fig. 8).

Based on (13), the control input 𝑣 is chosen as

𝑣 = 1
𝛾𝑣

(

𝑦̈r − 𝑘p𝑒 − 𝑘d𝑒̇ − 𝑓𝑣
)

(14)

with 𝑘p, 𝑘d > 0, and estimates 𝑓𝑣 and ̇̂𝑦 of 𝑓𝑣 and 𝑦̇, respectively,
the calculation of which will be discussed in Section 3.3. Under the
assumption that 𝑓𝑣 ≈ 𝑓𝑣, using (14) with the model (13) leads to the
differential equation

𝑒 + 𝑘d𝑒̇ + 𝑘p𝑒 = 0,

which has the same structure as (8).
The controller (14) can then be used together with (4), (11) and (12)

to calculate the desired forces and currents, respectively. An advantage
of this implementation is that there is no need for a model-based
observer to estimate the derivative 𝑦̇ and the disturbance 𝑓𝑣. Instead,
with the algebraic differentiators presented in Appendix A, an approach
that is solely based on the measured signal 𝑦 is used.

Remark 5. This combination of MBC and MFC is also suggested
in Villagra and Herrero-Pérez (2012). Therein the MFC is combined
with a nonlinear flatness-based control.

3.2.2. Magnetic force as input
Instead of choosing the acceleration 𝑣 as an input, it is possible

to directly calculate the magnetic forces 𝐹𝑘, 𝑘 ∈ {1, 2, 3}. Based on this
consideration, the model (5) can be written as

𝑦̈𝑘 = −𝜌𝐹𝑘 −𝜛𝑘(𝐹≠𝑘) + 𝑔 + 𝜂𝑘, (15)

with 𝐹≠𝑘 = {𝐹1, 𝐹2, 𝐹3, 𝐹4}∖{𝐹𝑘}, where 𝜛𝑘(𝐹≠𝑘) is a weighted sum of
the different magnetic forces acting on the plate and the parameter
𝜌 = 1∕𝑘1 + 1∕𝑘2 + 1∕𝑚 resulting from 𝑃−1𝐵. The structure of (15) leads
to ultra-local models

𝑦̈𝑘 = 𝑓𝐹 ,𝑘 − 𝛾𝐹𝐹𝑘, 𝛾𝐹 > 0, (16)

with 𝛾𝐹 = 𝜌 and the unknown parts are 𝑓𝐹 ,𝑘 = 𝜛𝑘(𝐹≠𝑘) + 𝑔 + 𝜂𝑘. With
(15) in mind, (16) can be interpreted as a model of three implicitly
coupled point masses.

Remark 6. As an alternative to the considerations based on the model
(5), assuming that there is no unknown part 𝑓𝐹 , the model (16) would
be 𝑦̈ = −𝛾𝐹𝐹 . The force 𝐹 and the parameter 𝛾𝐹 are assumed to
be always positive, which means that if the force is increased the
acceleration 𝑦̈ is negative and the resulting position 𝑦 will decrease.
This matches the physical behaviour, because the air gap of the magnet
is getting smaller if the force is increased and the magnet pulls the plate
towards the rigid outer frame.

A controller that directly commands the forces is

𝐹 = 1
𝛾𝐹

(

−𝑦̈r + 𝑘p𝑒 + 𝑘d𝑒̇ + 𝑓𝐹
)

, (17)

where the estimate 𝑡 ↦ 𝑓𝐹 (𝑡) is derived according to (24) by substitut-
̃

4

ing 𝑣 with 𝐹 .
Fig. 3. Graphical representation of the identified functions 𝑑𝑗 (ℎ𝑗 ), 𝑗 ∈ {1, 2, 3, 4} and the
pproximation with the parameter 𝜆 used to further simplify the design of the MFC
pproach.

Again, the remaining degree of freedom, caused by the over-actuation
f the system, has to be considered. The transformation resulting from
he pseudo inverse is not a valid solution for this. To see this, assuming
he plate hovers horizontally with a constant distance to the frame.
hen, the available forces have to compensate the gravitational forces
nd are approximately equal to 𝐹𝑘 ≈ 𝐹 > 0, 𝑘 ∈ {1, 2, 3}. In this case,

the last row of the pseudo inverse reads 𝐹d,4 =
1
4 (𝐹1 − 𝐹2 − 𝐹3) = − 1

4𝐹 ,
hich cannot be realised on the test bed because the magnetic forces
𝑗 , 𝑗 ∈ {1, 2, 3, 4} are restricted to positive values. Instead of directly

coupling all forces, one can use 𝐹d,𝑘 = 𝐹𝑘, 𝑘 ∈ {1, 2, 3} and get the
remaining force as

𝐹d,4 =
3
∑

𝑘=1
𝑎𝑘𝐹𝑘, (18)

with ∑3
𝑘=1 𝑎𝑘 = 1 and 𝑎𝑘 ≥ 0. Thereafter, (4) and (12) can again be used

to calculate the desired electrical currents.

3.2.3. New input 𝑢 = (𝑖∕ℎ)2

To further simplify the design of the MFC, the functions 𝑑𝑗 ∶ R → R
in (2) can be approximated with 𝑑𝑗 ≈ 𝜆−1∕2ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4}, 𝜆 > 0, as
depicted in Fig. 3, which results in

𝐹 ≈ 𝜆
( 𝑖
ℎ

)2
= 𝜆𝑢.

Considering this relation, the quantity 𝑢 = (𝑖∕ℎ)2 is chosen as a new
nput and can be interpreted as a special case of the considerations from
ection 3.2.2.

Thus, according to the model (16) it follows that

𝑦̈ = 𝑓𝑢 − 𝛾𝑢𝑢,

ith 𝛾𝑢 = 𝜆𝛾𝐹 . The control input 𝑢 can be derived using (17) and by
substituting 𝐹 and 𝛾𝐹 with 𝑢 and 𝛾𝑢, respectively, which yields

𝑢 = 1
𝛾𝑢

(

−𝑦̈r + 𝑘p𝑒 + 𝑘d𝑒̇ + 𝑓𝑢
)

. (19)

As described in Section 3.2.2 the estimation of 𝑓𝑢 is realised according
to (24) by substituting 𝑣 with 𝑢. Similar to (18) the remaining input
𝑢4 can be calculated. Finally, using 𝑖d,𝑗 =

√

𝑢𝑗ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4} together
with (4), the desired currents for the underlying current controller are
obtained.

Remark 7. From an engineering perspective the input 𝑢 is a reasonable
choice if no identified model of the force (2) is available. From a
physical understanding of the system it is known that the force of the
magnets is approximately proportional to (𝑖∕ℎ)2.
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3.2.4. Current as input
Using even less model information, the equation

𝑦̈ = 𝑓𝑖 − 𝛾𝑖(𝑦)𝑖 (20)

can be assumed to describe the system. In this case, however, the input
gain

𝛾𝑖(𝑦) =
𝛾𝑖,0
𝑦

s a function of the position, with 𝛾𝑖,0 > 0, obviously inspired by the
nput 𝑢 from Section 3.2.3. For the implementation of this gain the
ingularity of 𝛾𝑖 is not an issue, because of a safety routine that limits
he air gaps ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4} to a minimum of 0.8mm. The MFC law

can be derived as

𝑖 = 1
𝛾𝑖(𝑦)

(

−𝑦̈r + 𝑘p𝑒 + 𝑘d𝑒̇ + 𝑓𝑖
)

, (21)

and again the estimation of 𝑓𝑖 is realised by substituting 𝑣 with 𝑖 in (24).
The additional input can be derived as in (18).

Remark 8. Choosing a constant input gain in (20) works in simulation,
but it was not leading to a stable closed-loop behaviour on the test bed.

3.3. Implementation of the MFC algorithms

In the following section, details about the implementation of the
MFC are shared. For additional information about the algebraic differ-
entiators used in the implementation of the proposed algorithms, the
interested reader is referred to Appendix A and the references therein.

3.3.1. Estimation of the disturbance 𝑓
The proposed MFC algorithms, i.e. (14), (17), (19) and (21), are

designed for continuos-time systems. Nevertheless, for a discrete-time
realisation of the control algorithms, a evaluation at equidistant time
instants is needed. In the following the MFC law (14) will be considered
as an example, but all remarks can be applied to the other approaches
in a similar way.

Estimation of 𝑓𝑣 can be done with

𝑓𝑣(𝑡) =
5!
2𝑇 5 ∫

𝑡−𝜀

𝑡−𝑇−𝜀

(

𝑇 2 − 6𝑇𝜎 + 6𝜎2
)

𝑦(𝜏) −
𝛾𝑣
2
𝜎2(𝑇 − 𝜎)2𝑣(𝜏)d𝜏, (22)

here 𝜎 = 𝑡−𝜏−𝜀 and 𝜀 > 0, which is based on algebraic considerations
nd commonly used in the literature, e.g. Bekcheva et al. (2018)
r Barth et al. (2020). In Appendix B it is shown that (22) can be
nterpreted as

𝑣̂(𝑡) = ∫

𝑡−𝜀

𝑡−𝑇−𝜀
𝑔̈(2,2)0,𝑇 ,𝜗(𝑡 − 𝜏 − 𝜀)𝑦(𝜏) − 𝛾𝑣𝑔

(2,2)
0,𝑇 ,𝜗(𝑡 − 𝜏 − 𝜀)𝑣(𝜏)d𝜏. (23)

In the latter 𝑔(2,2)0,𝑇 ,𝜗 denotes an algebraic differentiator as first developed
in Mboup et al. (2009), using here the notation from Othmane et al.
(2022) with the parameters 𝛼 = 𝛽 = 2 and 𝑁 = 0. With these
considerations, (23) can thus be generalised to

𝑓𝑣(𝑡) = ∫

𝑡−𝜀

𝑡−𝑇−𝜀
𝑔(𝑡 − 𝜏 − 𝜀)𝑓 (𝜏)d𝜏, (24a)

= ∫

𝑡−𝜀

𝑡−𝑇−𝜀
𝑔̈(𝑡 − 𝜏 − 𝜀)𝑦(𝜏) − 𝛾𝑣𝑔(𝑡 − 𝜏 − 𝜀)𝑣(𝜏)d𝜏, (24b)

where 𝑔 = 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗 is the algebraic differentiator with parameters as
discussed in Appendix A. As seen in Section 4, in some cases this
generalisation is needed to realise the MFC.

The convolution integrals in (24b) have to be approximated using a
suitable quadrature method. The open-source toolbox AlgDiff (see Oth-
mane, 2022) provides all necessary features for the design and analysis
as well as the discretisation of algebraic differentiators used for the
estimation of 𝑓𝑣 and the time derivatives of 𝑦. The tutorial Othmane and
Rudolph (2023) offers an introduction with examples to the toolbox
5

and the systematic parametrisation of these differentiators.
As discussed in Scherer et al. (2023), the formulation in (24b) can
be derived by integrating (24a) by parts using (13). Again (24b) can be
implemented, because it depends on quantities known in the interval
[𝑡 − 𝑇 − 𝜀, 𝑡 − 𝜀] only.

In the following, the time window of length 𝑇 is an integral multiple
of the sampling time 𝑡s, i.e. 𝑇 = 𝑛s𝑡s and the parameter 𝜀 in (24) is
chosen to be equal to 𝑡s. The abbreviation 𝑣[𝑘] = 𝑣(𝑘𝑡s), 𝑘 ∈ N is used
or 𝑣 evaluated at the time 𝑘𝑡s. With this abuse of notation, (14) yields
n a discrete-time setting

[𝑘] = 1
𝛾𝑣

(

𝑦̈r[𝑘] − 𝑘p𝑒[𝑘] − 𝑘d ̇̂𝑒[𝑘] − 𝑓𝑣[𝑘]
)

(25)

with 𝑒(𝑛)[𝑘] = 𝑦̂(𝑛)[𝑘] − 𝑦(𝑛)r [𝑘], 𝑛 ∈ {0, 1}. Applying the mid-point rule, 𝑓𝑣
and the estimates of the derivatives 𝑦(𝑛), 𝑛 ∈ {0, 1} can be computed as

𝑓𝑣[𝑘] =
1
𝛷2

𝐿−1
∑

𝑗=0
𝑤2[𝑗]𝑦[𝑘 − 𝑗 − 1] −

𝛾𝑣
𝛷0

𝐿−1
∑

𝑗=0
𝑤0[𝑗]𝑣[𝑘 − 𝑗 − 1]

𝑦̂(𝑛)[𝑘] = 1
𝛷𝑛

𝐿−1
∑

𝑗=0
𝑤𝑛[𝑗]𝑦[𝑘 − 𝑗],

with 𝛷𝑛 =
𝑡𝑛s
𝑛!
∑𝐿−1

𝑗=0 𝑤𝑛[𝑗](−𝑗)𝑛, 𝑤𝑛[𝑗] = 𝑡s𝑔(𝑛)[𝑗 + 1∕2], 𝑛 ∈ {0, 1}, and
𝐿 = 𝑛s.

4. Experimental results

The following, experiments are carried out on the test bed de-
picted in Fig. 1. Four inductive sensors manufactured by Intronik
GmbH are measuring the distance between the rigid outer frame
and the 4.69 kg weighing aluminium plate. For safety reasons, the air
gaps ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4} of the magnets are limited to 0.8 − 5.5mm and
the currents to 0 − 8A. The real-time hardware used is a GIN-SAM3
from Indel. The proposed algorithms are executed with a sampling
rate of 𝑓s = 1∕𝑡s = 32 kHz. The power electronics are included in a
GIN-SAC3x3 also from Indel.

4.1. Parameters of algebraic differentiators and MFC

The algebraic differentiators used depend on the design parameters
𝛼, 𝛽,𝑁 , and 𝜔c that have to be chosen in such a way that the accuracy
of the resulting approximation as well as the rejection of measurement
noise are high and the error stemming from the delay 𝛿𝑡 is as small
as possible (see Appendix A for more information about the algebraic
differentiators used). To achieve a high noise rejection the parameters 𝛼
and 𝛽 are chosen equal (see Othmane et al., 2022, Sec. 4 and Mboup &
Riachy, 2018). Additionally the parameter 𝑁 describing an 𝑁-th order
truncated generalised Fourier expansion is set to zero, thus, resulting
in an estimation delay of 𝛿𝑡 = 𝑇 ∕2.

With these choices, several experiments are made using different
parameter combinations for 𝛼 = 𝛽 ∈ {2, 3,… , 8} and 𝜔c ∈ {540, 640,… ,
1440} rad/s. The MFC from (14) is implemented with the parameters
𝑘p = 5000 s−2, 𝑘d = 195 s−1 and 𝛾𝑣 = 1. At the beginning, the plate rests
on four screws at a distance of approximately 5.5 mm and individual
polynomial reference trajectories 𝑡 ↦ 𝑦r,𝑘(𝑡), 𝑘 ∈ {1, 2, 3} of degree 5 are
planned, connecting the rest position with a vertical position at 2 mm
and a transition time of 2 s. If the algorithm can lift and afterwards
stabilise the plate, the experiment will continue, otherwise it is aborted.
Thereafter, a set point transition from 2 mm to 5 mm and back again to
2 mm with polynomial trajectories of degree 5 are calculated, having a
transition time of 0.5 s as well as a holding time of 0.2 s (see Fig. 11
for a visualisation of the reference trajectory).

For this set point change, the root mean square (RMS) of the delayed
errors 𝑒𝑘 = 𝑦̂𝑘 − 𝑦r,𝑘, 𝑘 ∈ {1, 2, 3}, is calculated and used as a quality
gauge of the resulting parametrisation. Fig. 4 shows the variation of
the RMS values of the errors for different combinations of the param-
eters 𝛼 = 𝛽 and 𝜔 . The experiments show that the RMS values are
c



Control Engineering Practice 148 (2024) 105950P.M. Scherer et al.

s

T

𝜔
h

h
𝛾
p
m

Fig. 4. Evaluating the RMS values of the delayed error 𝑒𝑘 , 𝑘 ∈ {1, 2, 3} for varying
parameter combinations of 𝜔c and 𝛼 = 𝛽 for the algebraic differentiators.

Table 1
Comparison of the cost function values 2 for 𝜔c = 840 rad∕s and varying 𝛼 = 𝛽 with
the discretisation methods used.

Method 𝛼 = 𝛽 = 2 𝛼 = 𝛽 = 3 𝛼 = 𝛽 = 4

mid-point −67.1 dB −130.6 dB −222.1 dB
trapezoidal −56.5 dB −120.7 dB −220.7 dB
Simpson’s rule −22.5 dB −33.4 dB −31.2 dB

significantly larger for 𝛼 = 𝛽 ∈ {2, 3} compared to the results of the
experiments for 𝛼 = 𝛽 > 3. This confirms the general choice of the
formulation with algebraic differentiators in e.g. (14) compared to the
restriction to 𝛼 = 𝛽 = 2 as discussed in Appendix B, at least for the
current application. The large discretisation error is the reason for the
results from Fig. 4, which can be seen in Fig. 5, where the amplitude
spectra of the continuous-time and discrete-time differentiators used for
the approximation of a second order derivative are depicted for the
choice 𝜔c = 840 rad∕s, 𝑁 = 0, and varying 𝛼 = 𝛽. The differentiator
has been discretised using the mid-point rule. Specifically, for very low
frequencies compared to 𝜔c the estimation of 𝑦̈ is bad, resulting in an
inaccurate estimation and compensation of 𝑓𝑣 in the controller. Using
the cost function 𝑛 introduced in Kiltz (2017, Sec. 3.4.2) and discussed
in Othmane et al. (2022), as a measure for the discretisation reveals
that for values above -200 dB the discretisation error is unacceptable.
In Table 1 results obtained using the mid-point rule, the trapezoidal rule
and Simpson’s rule for the discretisation are compared. The comparison
shows that the trapezoidal rule or Simpson’s rule result in even higher
values for 𝑛. Therefore, the mid-point rule is used in the sequel. In
addition, using the latter, fewer filter parameters have to be stored and
fewer calculations have to be done as discussed in Kiltz (2017, Sec.
3.4.2) or Othmane, Rudolph, and Mounier (2021, Sec. 3.3).

Remark 9. The plate has a dominant mechanical resonance frequency
at approximately 942 rad/s, which causes instability of the closed loop
if not suppressed correctly. Choosing 𝑁 = 0 and 𝛼 = 𝛽, the amplitude
pectrum of the algebraic differentiator shows a distinct stopband
6

t

Fig. 5. Comparison of the amplitude spectra of the continuous-time and discrete-time
differentiators used for the approximation of a second order derivative for different
𝛼 = 𝛽 and 𝜔c = 840 rad∕s. The mid-point rule is considered in the discretisation,
the corresponding error of which is dominant for 𝛼 = 𝛽 ∈ {2, 3}, resulting in a bad
estimation of the second order derivative of 𝑦𝑘 , 𝑘 ∈ {1, 2, 3}.

ripple, as depicted in Fig. 5. In this case, the transfer function has
zeros which correspond to those of the Bessel function of the first kind
and order 𝛼 + 1∕2 as mentioned in Kiltz and Rudolph (2013) or Kiltz
(2017, Sec. 3.3.3). Because of the sampling in combination with the
logarithmic scale of the plot these zeros are not correctly displayed in
Fig. 5. Nevertheless, this property can be used to design filters that
have the same effect as a notch filter. Unfortunately, in this case, it
is not suitable to use this effect for the dominant mechanical resonance
frequency. The reason for this is the large window length 𝑇 resulting
in a computational burden that is too high for the computational
capabilities of the hardware used. Therefore, a conventional notch filter
will later be used to suppress this frequency.

The available computation time of the real-time hardware used is
limited. Therefore, some parameter combinations, e.g. 𝜔c = 540 rad∕s
and 𝛼 = 𝛽 = 8, required large filter window lengths which are not
realisable since the computation time becomes too large. The parameter
range covered is depicted in Fig. 6 . Green and red squares are marking
the parameter combinations resulting in a stable and unstable closed-
loop behaviour, respectively. Parameter combinations marked with a
black square are unrealisable with the hardware used. It is noticeable
that Fig. 6 shows some kind of pattern for a stable and realisable
combination. Nevertheless, the discretisation error is not the reason for
this pattern, because it mainly effects combinations with 𝛼 = 𝛽 ∈ {2, 3}.

he origin of this phenomenon is still up to further investigation.
For the following experiments, the parametrisation 𝛼 = 𝛽 = 4 and

c = 840 rad∕s is chosen, because according to Fig. 4, this combination
as resulted in the smallest RMS values.

With 𝛾𝑣, 𝑘p, and 𝑘d, the MFC law (14) has three parameters that
ave to be chosen. As discussed in Remark 4, the model (6) suggests
𝑣 = 1, which leaves only two parameters to vary. Fig. 7 shows a
arameter sweep in the 𝑘p-𝑘d-plane carried out on the test bed. Every
ark represents a unique parameter combination and an experiment
hat was made. The maximal currents as well as the RMS values in
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Fig. 6. Visualisation of the different parameters 𝜔c ∈ {540, 640,… , 1440} rad/s and
𝛼 = 𝛽 ∈ {2, 3,… , 8} for the algebraic differentiators covered. Green and red squares
are marking the parameter combinations resulting in a stable and unstable closed-
loop behaviour, respectively. Parameter combinations marked with a black square are
unrealisable with the hardware used. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Results of the parameter sweep of the MFC from (14) with 𝛾𝑣 = 1, to determine
stable tracking behaviour. The red dot marks the parameter combination 𝑘p = 5000 s−2

and 𝑘d = 195 s−1 used for further experiments. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

dB of each error 𝑒𝑘, 𝑘 ∈ {1, 2, 3} are shown. In the region marked with
A the RMS values are high and the maximal current is not exceeding
4.2 A, which is not enough to even lift the plate, whereas region C
shows the maximum current of 8 A and also high RMS values. For
parameter combinations in this region the feedback is not resulting
in a stable closed-loop behaviour. Between these two areas, in the
region marked with B, the combinations result in low error values and
a medium current. There, the closed loop is stable and a local optimum
of the RMS values can be found. For the experiments in region D, the
maximal current is low but the RMS values are high. This is because the
aforementioned safety routine has been activated and the experiment
was aborted. In this region the MFC cannot achieve a stable closed loop.

For further experiments the choice 𝑘p = 5000 s−2 and 𝑘d = 195 s−1 is
made, because according to Fig. 7 (see the red dot) this combination is
near a minimum of all three RMS values.
7

Fig. 8. Parameter sweep of the input gains 𝛾𝑣, 𝛾𝐹 , 𝛾𝑢 and 𝛾𝑖 with fixed 𝑘p = 5000 s−2

and 𝑘d = 195 s−1 to validate the suggestions made by the mathematical model (1). The
blue square is marking the parameter used for further experiments. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Based on the model (1) and (2), several choices for the input
gains 𝛾𝑗 , 𝑗 ∈ {𝑣, 𝐹 , 𝑢, 𝑖} have been discussed in Section 3. Therefore,
the proposed algorithms are verified by performing experiments using
various parameter combinations. Fig. 8 shows that with a value of
𝛾𝑣 = 0.6 the lowest RMS value could be obtained. Nevertheless, 𝛾𝑣 = 1
is chosen to compare the results with the MBC algorithm. A value of
0.5 is resulting in an unstable closed loop. This shows that the choice
of the input gain has also an influence on the stability of the MFC.
According to (15) and the model parameters summarised in Table 2,
𝛾𝐹 = 0.84 kg−1 is a suitable choice. Unfortunately, this combination
is resulting in an unstable closed-loop behaviour on the test bed. This
observation might point to model errors. For that reason, 𝛾𝐹 = 1 kg−1.
As explained in Section 3.2.3, with the choice of 𝛾𝐹 = 1 kg−1 and the
parameter 𝜆−1∕2 = 250 As/(kgm3)

1
2 stemming from the identification of

the force model, 𝛾𝑢 =1.6−5 m3∕(A2s2). Again Fig. 8 shows that with a
value of 1.4−5 m3∕(A2s2) a better result can be obtained, but for the
sake of comparison this value is not chosen. For the MFC law (21) the
input gain is set to 𝛾𝑖,0 = 40 m∕(As2). This choice is made only according
to Fig. 8, because no model information can be used in this case.

For the MFC algorithms (17), (19), and (21) the free parameter is
set to 𝐹d,4 =

1
2 (𝐹2 + 𝐹3) and similarly for 𝑢 and 𝑖.

4.2. Implementation of the MBC

The goal of the following section is to tune the MBC in such a
way that it is suitable for a fair comparison with the proposed MFC
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Table 2
Parameters of the model (1) used for the MBC.

Param. Value Param. Value

𝐽𝑥 5.13 ⋅ 10−2 kgm2 𝑚 4.69 kg
𝐽𝑦 8.19 ⋅ 10−2 kgm2 𝑔 9.81m∕s2

𝑙𝑑𝑥 135mm 𝑙𝑓𝑥 182.5mm
𝑙𝑑𝑦 144mm 𝑙𝑓𝑦 117mm

algorithms. Table 2 summarises the model parameters required by the
MBC law in (7), (11), and (12). The gains 𝑐P = 5000 s−2 and 𝑐D = 195 s−1

of the MBC are chosen such that they match the parameters 𝑘p and
d of the MFC. The control law is implemented in a quasi-continuous
anner, which means that the control inputs are sampled and held.

The observer gain 𝒍 is chosen such that the eigenvalues of the
rror dynamics are at 820 s−1, 840 s−1, and 860 s−1. With this choice the
utoff frequency of transfer functions, 𝜔 ↦ ̂𝑘

 (j𝜔), 𝑘 ∈ {1, 2, 3}, from
he measurement 𝑦 to the estimate 𝑥̂𝑘, 𝑘 ∈ {1, 2, 3} of the observer
10) is also around 840 rad∕s. Furthermore, a notch filter, as described
n Tietze et al. (2008, Sec. 13.8), is used to eliminate the dominant
echanical resonance frequency 942 rad/s of the plate corrupting the
osition measurement.

Comparing the amplitude spectrum of the transfer functions of the
bserver and the algebraic differentiators combined with the notch
ilter in Fig. 9, called ̄̂𝑘

 (j𝜔), 𝑘 ∈ {1, 2, 3} and ̂ (𝑛)

 (j𝜔), 𝑛 ∈ {0, 1, 2},
espectively, shows similar results up to the cutoff frequency 𝜔c. For
igher frequencies, according to Othmane et al. (2022, Sec. 4.2.2), the
lgebraic differentiators have a stopband slope of 20(𝜇 − 𝑛) dB with
= 1 + min{𝛼, 𝛽} for the 𝑛-th order derivative, which would result,

ccording to Fig. 9, in an unfair comparison of MBC and MFC. For this
eason, additional low-pass filters are added to the estimations of the
bserver, to match the stopband slope of the algebraic differentiator.
he resulting transfer functions of the observer, the low-pass, and the
otch filter are denoted by ̃̂𝑘

 (j𝜔), 𝑘 ∈ {1, 2, 3}.
A block diagram in Fig. 10 illustrates the estimation algorithms

sed. The observer (10), the notch filter, and the low-pass filters are
iscretised using Tustin’s method with frequency prewarp of their
espective cutoff frequency, resulting in a sharp drop of the transfer
unction near the Nyquist frequency 𝜔N = 𝜋

𝑡s
≈ 1.0 ⋅ 105 Hz in Fig. 9 (see

lso Oppenheim & Schafer, 1975, Sec. 5.1.3).
As mentioned before, the computational burden differs in the pro-

osed algorithms. The MBC takes approximately 11.6% of the con-
roller cycle, whereas the MFC law (14) with 𝑁 = 0, 𝛼 = 𝛽 = 4 and
c = 840 rad∕s takes 49.7% of the cycle. The reason for this is the
valuation of several discrete convolutions, needed for the estimation.
onetheless, a more efficient implementation of the MFC might be
ossible, but is out of the scope of this paper.

.3. Trajectory tracking

In the following, the capabilities of the different algorithms de-
igned in Section 3 are compared for different trajectory tracking
cenarios.

.3.1. Vertical motion
This experiment uses the same set point transition as described

n Section 4.1 for the parametrisation of the algebraic differentiator.
ig. 11 shows the measured position 𝑦1 in green and the reference
rajectory 𝑦r,1 in red when the MFC law (14) is used. Interestingly,
he green graph is ahead of the reference, which will be clear by look-
ng at the error 𝑒1(𝑡) = 𝑦1(𝑡) − 𝑦r,1(𝑡). According to the discrete control

law (25) the filtered measurement 𝑦̂1(𝑡) is used to calculate the error
̂1(𝑡) = 𝑦̂1(𝑡) − 𝑦r,1(𝑡). The reason of being ahead of the reference is the
known delay 𝛿𝑡 of the algebraic differentiator and the suggested choice
to only filter the measured signals and not the errors as in Scherer
8

et al. (2023). This results in a prediction of the reference signal and
Fig. 9. Comparison of the amplitude spectra of the observer in combination with a
notch filter 𝜔 ↦

|

|

|

|

̄̂𝑘
 (j𝜔)

|

|

|

|

, 𝑘 ∈ {1, 2, 3}, the same combination extended with additional

ow-pass filters according to Fig. 10 𝜔 ↦ |

|

|

̂ (𝑛)

 (j𝜔)||
|

, 𝑛 ∈ {0, 1, 2}, and the algebraic

ifferentiators with the notch filter 𝜔 ↦
|

|

|

|

̃̂𝑘
 (j𝜔)

|

|

|

|

, 𝑘 ∈ {1, 2, 3}.

he behaviour seen in Fig. 11, because the delay 𝛿𝑡 of the algebraic
ifferentiator is known and independent of the filtered signal. This
ffect can be compensated by also delaying the reference signal, which
esults in the blue graph marked with 𝑦̄1(𝑡) matching the dashed refer-
nce. By also delaying the reference by 𝛿𝑡, the error 𝑒1(𝑡) = 𝑦̄1(𝑡) − 𝑦r,1(𝑡)
hows the same course as 𝑒1(𝑡) up to more disturbances on 𝑦̄1(𝑡). The
BC is showing the same behaviour, because of the additional filters,

ut in this case the delay is unknown. Therefore, knowing exactly the
ignal independent delay of the algebraic differentiator is a significant
dvantage compared to a conventional low-pass filter.

In further experiments the RMS values of 𝑒𝑘, 𝑘 ∈ {1, 2, 3}, are used
or a fair comparison of the algorithms, because 𝑒𝑘, 𝑘 ∈ {1, 2, 3}, are
he errors the corresponding controller can react on. The values are
ummarised in Table 3 and marked with different colours. The MBC
s seen as a benchmark, therefore, the values of this algorithm are
iven in black. If an algorithm can achieve a smaller RMS value, it
s marked with green, otherwise with red. For the MBC and the MFC
aw (14) the experiment was repeated ten times, to calculate the mean
alue as well as the standard deviation of the RMS values. For both
lgorithms and all sensors, the standard deviation was smaller than
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Fig. 10. Diagrams of the proposed estimation algorithms. (a) model based disturbance
observer with additional low-pass and notch filters to ensure a fair comparison between
the MBC and MFC, (b) estimation using algebraic differentiators and a notch filter for
the proposed MFC.

30 nm, which is negligible in view of the resolution of the sensors.
Therefore, only one experiment is performed and the resulting RMS
values are compared. Table 3 reveals that the proposed MFC algorithms
(14), (17), and (19) are outperforming the MBC. The RMS values of
the errors obtained with the MFC control law (14) are approximately
half as high as those observed with the MBC approach. It is also
noticeable that in general using less model information results in higher
RMS of the errors. Nonetheless, the control laws (17) and (19), with
exception of the error in 𝑦3, are still showing better results than the
MBC. Only the MFC of the current (21) shows errors the RMS values
of which are approximately five times higher than those with the other
algorithms. This can be explained by the amount of model information
used. Instead of the air gaps, the sensor values are used to calculate
the input gains 𝛾𝑖,𝑘, 𝑘 ∈ {1, 2, 3}. Moreover, a linear current model is
ssumed for the nonlinear behaviour of the magnets. Nevertheless, with
his algorithm steady state accuracy is guaranteed.

.3.2. Tilting of the plate
At the start of a tilting experiment, the plate hovers horizontally at

position of 2 mm. After that, three individual reference trajectories,
ith different transition times marked with dashed vertical lines, are
lanned as depicted in the first row of Fig. 12. The MBC and MFC
aw (14) use the pseudo inverse 𝐵† to decouple the three points where
he sensors are located. This model-based method is in contrast to
he remaining MFC algorithms that have to realise the decoupling by
he estimate of the disturbance 𝑓 . The reason for this is that these

algorithms are based on three ultra-local models that are only implicitly
coupled by the disturbance 𝑓 , as discussed in Section 3. Fig. 12 shows
9

the results of tilting the plate using the MFC law (17). The second row t
Fig. 11. Results for the trajectory tracking of MFC law (14), to show the effect of the
known delay 𝛿𝑡 introduced by the algebraic differentiator and how to compensate it.

of this figure shows the errors 𝑒𝑘(𝑡), 𝑒𝑘(𝑡), 𝑘 ∈ {1, 2, 3}, and the third row
the estimates 𝑓𝐹 ,𝑘(𝑡), 𝑘 ∈ {1, 2, 3}. Especially the plots of 𝑒2(𝑡) and 𝑓𝐹 ,2(𝑡)
are displaying the decoupling of the MFC. The transition of 𝑦2(𝑡) is
completed after 0.25 s, resulting in an error oscillating around zero and
an estimation of the disturbance of approximately 13m∕s2. Nonetheless,
after 0.5 s the transition of 𝑦3(𝑡) is completed as well and the estimate
𝑓𝐹 ,2(𝑡) starts converging to 14m∕s2, even though, the error 𝑒2(𝑡) still
oscillates around zero. This example demonstrates that the MFC ensures
the decoupling.

The RMS values in Table 3 show similar results as the vertical
movement of the plate. The MFC law (14) is almost twice as accurate
as the MBC and the algorithms (17) and (19) can obtain better results,
except for 𝑦3(𝑡). Again the MFC law (21) cannot achieve results that are
as good as the other MFC laws. Nevertheless, the experiments show that
a combination of the MFC with additional model information can lead
to excellent results and outperform the MBC.

4.4. Robustness against sensor and actuator faults

The robustness with respect to actuator and sensors faults of the
algorithms from Section 3 shall now be investigated. Therefore, the
plate hovers horizontally at a position of 2 mm for each experiment.

4.4.1. Abrupt constant and multiplicative actuator fault
To investigate the robustness against abrupt actuator faults, these

faults are modelled using the shifted Heaviside step function

𝜃(𝑡, 𝜏) =

{

0, 𝑡 < 𝜏,
1, 𝜏 ≤ 𝑡.

(26)

For the abrupt fault at time 𝜏 the current 𝛥𝑖1(𝑡, 𝜏) = 𝐾𝑖𝜃(𝑡, 𝜏) is added to
𝑖1(𝑡), whereas 𝐾𝑖 = 400mA, which corresponds to 5% of the maximal
current. To simulate a multiplicative fault, the current 𝑖1(𝑡) is changed
o (1 + 𝐾̄𝑖𝜃(𝑡, 𝜏))𝑖1(𝑡), with 𝐾̄𝑖 = 0.4.

Fig. 13 shows the results of the abrupt constant actuator fault
ver time for the proposed algorithms. All have in common that after
pproximately 150 ms the measured values are back at the reference of
mm, which is the result of the same parametrisation of the controllers.
he direct comparison in Table 3 shows that the quality gauge of
he MFC law (14) is almost half as high compared to that of the
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Fig. 12. Experimental results for the tilting of the plate with MFC law (17). The graphs show that the proposed MFC is capable of decoupling the three ultra-local models.
MBC. Additionally the minimal error of min(𝑒1(𝑡)) = −114.1 μm is
significantly smaller than the value of min(𝑒1(𝑡)) = −184.1 μm for the
MBC. This behaviour can be seen for all MFC algorithms, but for the
remaining algorithms (17), (19) and (21) a decaying oscillation around
the position 2 mm can be observed, which cannot be observed for the
MBC and MFC law (14). Probably the reason for this is the choice of
parameter 𝐹d,4 and similarly for 𝑢 and 𝑖, because the reaction to the
disturbance resulting form the abrupt error is not distributed equally on
all four magnets, as depicted in Fig. 14. The estimate of the disturbance
for the MFC law (17) is shown with solid lines. For 𝑓𝐹 ,1 the reaction
to the fault is immediate and can be compared to the reaction of the
MBC depicted in the blue dashed line. The estimates 𝑓𝐹 ,2 and 𝑓𝐹 ,3 on
the other hand are oscillating around 14.3m∕s2 and 15m∕s2, the values
that they converge to, after the motion of the plate has stabilised after
approximately 150 ms. The reaction of the MBC is different, because the
control input 𝒗 is split evenly to all magnets using the pseudo inverse
𝐵†. After the fault occurs, all estimates converge to lower values. This
shows that in this case the implicit decoupling of the MFC algorithms
(17), (19), and (21) is resulting in a different transient behaviour,
whereas the MFC law (21) again provides results that are not as good
compared to the other MFC algorithms.

According to Table 3, similar behaviour can be seen as for the
abrupt actuator fault. Interestingly, the results from MFC law (17) show
higher RMS values than the algorithm using the input 𝑢. This is because
the plate started oscillating after the stabilisation. The reason for this
behaviour is unknown.

4.4.2. Abrupt sensor fault
To simulate an abrupt sensor fault, the Heaviside step function

(26) is used again. An error in the sensor value 𝑦1 is modelled as
𝛥𝑦1(𝑡, 𝜏) = 𝐾𝑦𝜃(𝑡, 𝜏) with 𝐾𝑦 = 0.2mm, which corresponds to 10% of
the current sensor value. With this change, the sensor value becomes
𝑦1(𝑡) + 𝛥𝑦1(𝑡, 𝜏). The results of this experiment in Table 3 show that
the MFC cannot outperform the MBC. Comparing the estimate of the
disturbance 𝑓𝑣,1(𝑡) with 𝜂̂1(𝑡) + 𝑔 in Fig. 15 shows that the peaks of
𝑓𝑣,1(𝑡) are almost twice as high. This results from the additional low-
pass filters depicted in Fig. 10, which will be clear by comparing
the responses to a unit step in Fig. 15. There, the step responses of
−𝜔2{𝑔̈}(j𝜔) and ̂3

 (j𝜔) show almost the same maximum values, but
adding the notch and low-pass filters changes the peaks of ̃̂3

 (j𝜔) to
approximately half of the values of ̂ (2)

 (j𝜔), which makes the MBC
less sensitive to abrupt changes in the sensor value.
10
Fig. 13. Response of the different proposed controllers to an abrupt constant actuator
fault. The MFC approaches show a high robustness against these faults.

5. Conclusion and future work

In this paper, a systematic tuning approach of a MFC algorithm for
an unstable MIMO system that can be approximated by three implicitly
coupled second-order differential equations is investigated. Numerous
experiments carried out on a test bed show the capabilities of the MFC
approaches combined with physically motivated model knowledge. The
experiments show that the proposed algorithms can achieve a high level
of robustness with respect to actuator faults and much better results if
they are coupled with model information.

It could be seen that the MFC needs more computational power
compared to the model based approach, because multiple convolutions
have to be carried out. This has limited the choice of the cutoff
frequency 𝜔 and the parameters 𝛼 = 𝛽 of the algebraic differentiators.
c
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Table 3
Summary of the experimental results with the RMS values of 𝑒𝑘 , 𝑘 ∈ {1, 2, 3} as a quality gauge. The values of the
MBC are seen as a benchmark and therefore depicted in black. If an algorithm can achieve lower RMS values it is
marked in green, otherwise in red.

Experiment Sensor MBC MFC, 𝑣 MFC, 𝐹 MFC, 𝑢 MFC, 𝑖

Horizontal movement 𝑦1 8.1 μm 5.1 μm 6.0 μm 6.6 μm 31.4 μm
𝑦2 11.7 μm 6.2 μm 7.8 μm 8.6 μm 31.4 μm
𝑦3 7.5 μm 4.2 μm 6.5 μm 8.8 μm 31.0 μm

Tilting the plate 𝑦1 6.2 μm 3.6 μm 4.6 μm 4.5 μm 24.6 μm
𝑦2 4.7 μm 2.3 μm 3.8 μm 4.0 μm 15.9 μm
𝑦3 3.4 μm 1.8 μm 3.8 μm 5.0 μm 19.9 μm

Abrupt actuator faults, 𝑖1 𝑦1 37.2 μm 20.1 μm 22.3 μm 23.8 μm 29.9 μm
𝑦2 6.5 μm 3.6 μm 5.0 μm 6.3 μm 10.9 μm
𝑦3 10.7 μm 5.6 μm 5.3 μm 6.7 μm 16.8 μm

Multiplicative actuator fault, 𝑖1 𝑦1 46.4 μm 27.2 μm 42.8 μm 29.4 μm 35.3 μm
𝑦2 8.6 μm 4.9 μm 7.7 μm 6.3 μm 12.0 μm
𝑦3 13.5 μm 7.2 μm 11.3 μm 6.9 μm 18.6 μm

Abrupt Sensor fault, 𝑦1 𝑦1 41.9 μm 56.4 μm 45.8 μm 17.0 μm 46.1 μm
𝑦2 10.6 μm 8.8 μm 21.0 μm 14.6 μm 28.6 μm
𝑦3 10.4 μm 5.7 μm 24.9 μm 19.2 μm 50.3 μm
Fig. 14. Estimation of the disturbance of MFC laws (14) and (17) caused by an abrupt
onstant actuator fault. The plot illustrates the different decoupling strategies used, on
he one hand the pseudo inverse 𝐵† and on the other hand 𝐹d,4 =

1
2
(𝐹2 + 𝐹3).

Fig. 15. Estimation of the disturbance of MBC and MFC law (14) for an abrupt sensor
fault and the responses of several filters to a unit step starting at 𝑡 = 2ms. The reaction
of the MBC is less dominant compared to the MFC.
11
As stated before, a more efficient implementation of the convolution
integrals of the MFC is possible, e.g. by using dedicated signal proces-
sors. However, this is out of the scope of the present paper. Nonetheless,
using the differentiators has shown to be beneficial, because this signal
based approach does not rely on a model of the system to estimate
unknown quantities, compared to a classical observer based approach.
However, this comes with the price that results of the estimates of the
disturbance 𝑓 are harder to interpret, if no mathematical model of the
system is available. To realise a fair comparison of the proposed MBC
and the MFC law (14), additional low-pass filters are added to the
disturbance observer, to match the filter order of the used algebraic
differentiators.

Future work should investigate why some parameter combinations
of the algebraic differentiator are resulting in an unstable closed-loop
system, or respectively what the parameter combinations resulting in
a stable closed loop have in common. Further, the estimation delay
should explicitly be taken into account during the controller design.
Additionally, a systematic tuning approach without parameter sweeps
that are carried out on the test bed would be beneficial. Similarly, ap-
proximations with higher order systems are still open for investigation.
This also goes along with the estimation of higher order derivatives,
which probably needs more computation time, a problem that has to
be tackled as must be the discretisation of the algebraic differentiators.
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Appendix A. Information about algebraic differentiators

In this section, useful background information on algebraic differ-
entiators, initially developed in Mboup et al. (2007, 2009) are recalled.
The interested reader is referred to Othmane et al. (2022) for an
overview on this topic and Szegö (1939) for the discussion and analyses
of the required orthogonal polynomials.

In the sequel 𝛤 denotes the gamma function and

(𝛼,𝛽)(𝜏) =

{

(1 − 𝜏)𝛼(1 + 𝜏)𝛽 , 𝜏 ∈ [−1, 1],
0, otherwise,

with real scalar parameters 𝛼, 𝛽 > −1, is the weight function associated
with the orthogonal Jacobi polynomial of degree 𝑁 ∈ N defined as

𝑃 (𝛼,𝛽)
𝑁 (𝜏) =

𝑁
∑

𝑘=0

(

𝑁
𝑘

)

𝑐(𝛼,𝛽)𝑘 (𝜏 − 1)𝑘,

𝑐(𝛼,𝛽)𝑘 =
𝛤 (𝛼 +𝑁 + 1)𝛤 (𝛼 + 𝛽 +𝑁 + 𝑘 + 1)
2𝑘𝑁!𝛤 (𝛼 + 𝛽 +𝑁 + 1)𝛤 (𝛼 + 𝑘 + 1)

.

Denote by 𝑥(𝑛) the 𝑛-th order derivative of a function 𝑥, where
𝑥(0) denotes the function 𝑥 itself. Assume for an arbitrary 𝑛 that 𝑥(𝑛)

is square Lebesgue integrable and let 𝛼, 𝛽 ∈ R be arbitrary such
that min(𝛼, 𝛽) > 𝑛 − 1. Then, 𝑥(𝑛) can be approximated by a 𝑁-th order
truncated generalised Fourier expansion as

̂ (𝑛)(𝑡) = ∫

𝑡

𝑡−𝑇
𝑔(𝑛)(𝑡 − 𝜏)𝑥(𝜏)d𝜏, 𝑔(𝜏) = 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗(𝜏) (A.1)

with the kernel

𝑔(𝜏) =

⎧

⎪

⎨

⎪

⎩

2𝑤(𝛼,𝛽)(𝜈(𝜏))
𝑇

∑𝑁
𝑗=0

𝑃 (𝛼,𝛽)
𝑗 (𝜗)

‖

‖

‖

𝑃 (𝛼,𝛽)
𝑗

‖

‖

‖

2 𝑃
(𝛼,𝛽)
𝑗 (𝜈(𝜏)), 𝜏 ∈ [0, 𝑇 ],

0, otherwise,

depending on 𝜗 parametrising the approximation delay and
𝜈(𝜏) = 1 − 2𝜏∕𝑇 , where ‖𝑧‖ =

√

⟨𝑧, 𝑧⟩ is the norm induced by the inner
roduct

𝑧, 𝑦⟩ = ∫

1

−1
𝑤(𝛼,𝛽)(𝜏)𝑧(𝜏)𝑦(𝜏)d𝜏.

ll calculations are based on the sliding time window [𝑡−𝑇 , 𝑡], where 𝑇
describes the filter window length, associated with the cutoff frequency
𝜔c, as discussed in Kiltz and Rudolph (2013). As first pointed out
in Mboup et al. (2009), the estimate is delayed by a small but known
delay given as

𝛿𝑡 =

{ 𝛼+1
𝛼+𝛽+2𝑇 , 𝑁 = 0,
1−𝜗
2 𝑇 , 𝑁 ≠ 0.

A delay-free estimation is possible by choosing 𝑁 > 0 and 𝜗 = 1. How-
ver, accepting a delay increases the accuracy of the approximation and
ields desirable frequency-domain properties (see Mboup et al., 2009;
boup & Riachy, 2014, 2018 and Othmane et al., 2022).

The estimate of 𝑥̂(𝑛) can be interpreted as the output of a finite
mpulse response (FIR) filter driven by the input 𝑥. The kernel 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗
as also a system theoretic interpretation. As shown for example in Kiltz
2017) or Othmane et al. (2022) and used in Section 4.1, 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗 can be
nterpreted as a low-pass filter driven by the sought derivative 𝑥(𝑛) and
ith cutoff frequency 𝜔c. This interpretation makes the filter design
ore intuitive.

All considerations so far were done in a continuous time setting.
onetheless, for the implementation of the algorithms suggested in

his contribution, a discrete-time realisation of the estimators is re-
uired. Therefore, the integral (A.1) has to be discretised using an
ppropriate quadrature method. For that, equidistant sampling with 𝑡s
s considered. This results in a filter window of length 𝑇 that is of an
ntegral multiple of the sampling time 𝑡s, i.e. 𝑇 = 𝑛s𝑡s. The abbreviation
[𝑘] = 𝑥(𝑘𝑡s), 𝑘 ∈ N is used for 𝑥 evaluated at the time 𝑘𝑡s. With this
otation, the convolution (A.1) can be approximated with
12
̂ (𝑛)[𝑘 + 𝜃] = 1
𝛷

𝐿−1
∑

𝑗=0
𝑤𝑛[𝑗]𝑥[𝑘 − 𝑗], 𝛷 =

𝑡𝑛s
𝑛!

𝐿−1
∑

𝑗=0
𝑤𝑛[𝑗](−𝑗)𝑛,

where the parameters 𝜃, 𝐿, and 𝑤𝑛[𝑗] depend on the numerical inte-
ration method used, as described in Othmane, Mounier, and Rudolph
2021). For instance, for the mid-point rule 𝜃 = 1∕2, 𝐿 = 𝑛s, and
𝑛[𝑗] = 𝑡s𝑔(𝑛)[𝑗 + 1∕2]. The design and discretisation of the differentia-

ors are done using the open-source toolbox AlgDiff (see Othmane,
022), which comes with detailed examples for a correct application
f the filters.

ppendix B. Derivation of the MFC

In the following, the MFC for a second order ultra-local model is
erived using the Laplace transformation and it is shown that it is a
pecial case of the considerations made in Section 3.3.

.1. An algebraic point of view

Consider the second order ultra-local model

̈(𝑡) = 𝛾𝑢(𝑡) + 𝑓 (𝑡), (B.1)

ith measurement 𝑦(𝑡), input 𝑢(𝑡), input gain 𝛾 ∈ R and piecewise
onstant disturbance 𝑓 (𝑡). Applying the Laplace transform to (B.1)
nder the assumption that 𝑓 (𝑡) is constant on the interval [0, 𝑇 ] yields

2𝑌 (𝑠) − 𝑦̇(0) − 𝑠𝑦(0) = 𝛾𝑈 (𝑠) + 1
𝑠
𝐹 (B.2)

with 𝑌 (𝑠), 𝑈 (𝑠) and 𝐹 the Laplace transform of 𝑦(𝑡), 𝑢(𝑡) and 𝑓 (𝑡), respec-
ively, and the initial conditions 𝑦(0) and 𝑦̇(0). To get rid of the initial
onditions, (B.2) is differentiated twice with respect to 𝑠 yielding

𝑌 (𝑠) + 4𝑠d𝑌
d𝑠

(𝑠) + 𝑠2 d
2𝑌
d𝑠2

(𝑠) = 𝛾 d
2𝑈
d𝑠2

(𝑠) + 2
𝑠3

𝐹 . (B.3)

In the latter equation the expressions 𝑠2 d2𝑌
d𝑠2 (𝑠) and 4𝑠 d𝑌d𝑠 (𝑠) are hindering

an implementation. Therefore, (B.3) is multiplied by 𝑠−2 and again by
−1 to remove differentiation in the time domain and increase the noise
ttenuation, respectively, which results in

2
𝑠3

𝑌 (𝑠) + 4
𝑠2

d𝑌
d𝑠

(𝑠) + 1
𝑠
d2𝑌
d𝑠2

(𝑠) = 𝛾 1
𝑠3

d2𝑈
d𝑠2

(𝑠) + 2
𝑠6

𝐹 . (B.4)

With this, only integrals of measured signals occur when the expres-
sions are transformed back into the time domain, which will be the
next step. Therefore, the following inverse transformations

d𝑛
d𝑠𝑛

𝑋(𝑠) r b (−𝑡)𝑛𝑥(𝑡) (B.5a)

1
𝑠𝑛

r b 𝑡𝑛−1

(𝑛 − 1)!
(B.5b)

𝑋(𝑠)
𝑠

r b
∫

𝑡

0
𝑥(𝜎)d𝜎. (B.5c)

are used (see e.g. in the appendix of Doetsch, 1974). Applying them
to (B.4) and rearranging the expressions yields

2𝑡5
5!

𝑓 = 2∫

𝑡

0 ∫

𝜎1

0 ∫

𝜎2

0
𝑦(𝜏)d𝜏d𝜎1d𝜎2

− 4∫

𝑡

0 ∫

𝜎1

0
𝜏𝑦(𝜏)d𝜏d𝜎1 + ∫

𝑡

0
𝜏2𝑦(𝜏)d𝜏

− 𝛾 ∫

𝑡

0 ∫

𝜎1

0 ∫

𝜎2

0
𝜏2𝑢(𝜏)d𝜏d𝜎1d𝜎2.

ow the Cauchy-formula for repeated integration (see e.g. Chapter
1 in Doetsch (1974)) can be used to simplify the expression for 𝑓 ,
esulting in
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A
e
c

𝑓

l

𝑓

I
s

𝑔

𝑢
e

T
d

H

K

K

K

K

L

L

L

L

𝑓 = 5!
2𝑡5 ∫

𝑡

0

[

(𝑡 − 𝜏)2 − 4(𝑡 − 𝜏)𝜏 + 𝜏2
]

𝑦(𝜏) −
𝛾
2
(𝑡 − 𝜏)2𝜏2𝑢(𝜏)d𝜏.

Considering only the interval [0, 𝑇 ] instead of [0, 𝑡] and further simpli-
fying the equation yields

𝑓 = 5!
2𝑇 5 ∫

𝑇

0

(

𝑇 2 − 6𝑇 𝜏 + 6𝜏2
)

𝑦(𝜏) −
𝛾
2
(𝑇 − 𝜏)2𝜏2𝑢(𝜏)d𝜏.

moving time window [𝑡 − 𝑇 − 𝜀, 𝑡 − 𝜀], 𝜀 > 0 can be introduced by
valuating the signals 𝑦 and 𝑢 at 𝜎 + 𝑡 − 𝑇 − 𝜀 instead of 𝜎. With this
hange, the expression

̂(𝑡) = 5!
2𝑇 5 ∫

𝑇

0

(

𝑇 2 − 6𝑇𝜎 + 6𝜎2
)

𝑦(𝜎 + 𝑡 − 𝑇 − 𝜀)

−
𝛾
2
(𝑇 − 𝜎)2𝜎2𝑢(𝜎 + 𝑡 − 𝑇 − 𝜀)d𝜎

is now a function of time. Thereafter, the substitution 𝜏 = 𝜎 + 𝑡 − 𝑇 − 𝜀
eads to

̂(𝑡) = 5!
2𝑇 5 ∫

𝑡−𝜀

𝑡−𝑇−𝜀

(

𝑇 2 − 6𝑇 (𝑡 − 𝜏 − 𝜀) + 6(𝑡 − 𝜏 − 𝜀)2
)

𝑦(𝜏)

−
𝛾
2
(𝑡 − 𝜏 − 𝜀)2(𝑇 − (𝑡 − 𝜏 − 𝜀))2𝑢(𝜏)d𝜏. (B.6)

This expression for the estimation of 𝑓 is slightly different from that
commonly used in the literature (e.g. Bekcheva et al., 2018 or Barth
et al., 2020) in the sense that the current time 𝑡 appears in the filter
kernel and the parameter 𝜀 is explicitly considered.

B.2. A system theoretic point of view

The estimation of 𝑓 (𝑡) according to the ultra-local model (B.1) reads

𝑓 (𝑡) = ∫

𝑡−𝜀

𝑡−𝑇−𝜀
𝑔(𝑡 − 𝜏 − 𝜀)𝑓 (𝜏)d𝜏, 𝜀 > 0, (B.7a)

= ∫

𝑡−𝜀

𝑡−𝑇−𝜀
𝑔̈(𝑡 − 𝜏 − 𝜀)𝑦(𝜏) − 𝛾𝑔(𝑡 − 𝜏 − 𝜀)𝑢(𝜏)d𝜏 (B.7b)

with 𝑔 = 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗 denoting the kernel of the algebraic differentiator
presented in Appendix A. Now consider the special parametrisation
𝑁 = 0, which leads to the kernel

𝑔(𝛼,𝛽)0,𝑇 ,𝜗(𝜏) =

{ (𝛼+𝛽+1)!
𝛼!𝛽!𝑇 𝛼+𝛽+1 𝜏𝛼(𝑇 − 𝜏)𝛽 , 𝜏 ∈ [0, 𝑇 ],

0, otherwise.
(B.8)

f the parameters 𝛼 = 𝛽 = 2 are chosen, the kernel (B.8) further
implifies to

(2,2)
0,𝑇 ,𝜗(𝜏) = 𝑔̄(𝜏) =

{

1
2

5!
2𝑇 5 𝜏2(𝑇 − 𝜏)2, 𝜏 ∈ [0, 𝑇 ],

0, otherwise.
(B.9)

Calculating the second derivative of 𝑔̄ with respect to 𝜏 leads to

d2𝑔̄
d𝜏2

(𝜏) =

{

5!
2𝑇 5 (6𝜏2 − 6𝑇 𝜏 + 𝑇 2), 𝜏 ∈ [0, 𝑇 ],
0, otherwise.

(B.10)

Using both (B.9) and (B.10) in (B.7) results in an expression that is
equivalent to (B.6). This shows, that the propositions made in this
paper are a generalisation of the ansatz that is commonly used in the
literature. As seen in Section 4 this generalisation is needed in some
cases to realise the MFC.

B.3. Validation of the derivation

To validate the calculations made in this section, consider the
differential equation

𝑦̈(𝑡) = 𝐹 , (B.11)

with 𝐹 ∈ R, the solution of which is 𝑦(𝑡) = 1
2𝐹 𝑡2. The relation (B.6) with

(𝑡) = 0 can now be used together with the solution of the differential
quation (B.11) to estimate the parameter 𝐹 resulting in

𝐹 (𝑡) =
𝑡−𝜀

̈̄𝑔(𝑡 − 𝜏)𝑦(𝜏)d𝜏
13

∫𝑡−𝑇−𝜀
= 5!
2𝑇 5 ∫

𝑡−𝜀

𝑡−𝑇−𝜀

(

𝑇 2 − 6𝑇 (𝑡 − 𝜏 − 𝜀) + 6(𝑡 − 𝜏 − 𝜀)2
)

1
2𝐹𝜏2d𝜏

= 𝐹 .

he reason for this result lies in the approximation of the second order
erivative of 𝑦(𝑡) with a constant according to the choice of 𝑁 = 0. For

further theoretical analysis the degree of exactness introduced in Kiltz
(2017) can be considered (see also Othmane et al., 2022). The results
𝐹 = 𝐹 shows that the calculations made in this section are correct.
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