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Abstract
This article deals with the development of an elastic tetragonal model for the 2D auxetic rotating units structures in the 
framework of orthogonal transformations. The existing anisotropy in the structure was first determined by numerical 
simulations on the samples with different pattern orientation angles. A suitable representative volume element (RVE), 
which correctly represents the mechanical properties of the whole structure both in macroscale and in microscale, was 
then proposed by implementation of the kinematic periodic boundary conditions. In the next step, with the help of the 
orthogonal transformations relations, an anisotropic elastic model was developed, which correctly reflects the present 
tetragonal symmetry in the structure. Finally, the model parameters were identified and validated with the help of the 
corresponding experiments

Keywords Auxetics · Finite element modeling · Anisotropic elasticity · Constitutive model · Tetragonal symmetry · 
Computational homogenization · Periodic boundary conditions

1 Introduction

Generally, a microstructure can be designed in several manner to achieve different mechanical behaviors at the macro-
scale and that’s the concept embodied by the term metamaterials. Over the past few decades, there has been significant 
research into metamaterials, especially concerning bioinspired and 3D-printed architectural designs, along with their 
characterization and modeling [1–5]. Auxetic materials or "negative Poisson’s ratio materials" abbreviated as NPR materi-
als belong to the category of metamaterials, exhibit an unusual property in which they expand laterally when stretched, 
instead of contracting like most materials [6, 7]. This phenomenon is the opposite of conventional material behavior, and 
can be observed at both the macroscopic and molecular level. However, artificial auxetic structures or so-called man-
made auxetics are found much more frequently than natural ones, often as cellular materials such as honeycombs and 
foams [8, 9]. The unique mechanical properties of auxetic materials like negative Poisson’s ratio, high energy absorption, 
high indentation resistance and large fracture toughness with relatively reduced density make them useful in a wide 
range of applications, such as medical implants, vibration dampers and protective gear [10–14].

As shown in Fig. 1 and based on the deformation mechanism, auxetic structures can be divided into the main groups 
of "rotating units", "chiral" and "re-entrant" structures, where the rotation, rolling up and unfolding of the structure leads 
to the negative Poisson’s ratio respectively [11, 15–19]. A detailed study about the deformation mechanism of 2D auxetic 
rotating units structures can be found in our last article [20]. It has been experimentally shown by thermomechanical 
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analysis that the squares between the perforations undergo rigid body rotation under load. They only transfer the defor-
mation energy through the whole metal sheet without being deformed. The direction of rotation of the squares causes 
the sheet to expand under uniaxial tension, which is called the auxetic effect.

Representative volume element (RVE) is an important concept in the field of computational mechanics. It is a volume of 
material large enough to contain statistically significant amounts of material features at the microscale, yet small enough to be 
computationally inexpensive to properly represent the material’s behavior at a macroscale [21]. Different boundary conditions 
can then be applied on a RVE to determine the effective material properties of the entire system. The concept of RVE was first 
introduced by Hill [22] and it is currently widely used for homogenization of heterogeneous microstructures such as composite 
and porous materials. The shape and size of the RVE depend basically on the randomness of the geometry or microstructure, 
which has been extensively discussed in the framework of homogenization-based multiscale modelling [23–27]. For mechanical 
metamaterials such as auxetics, which are regularly composed of periodic unit cells, it is simpler to obtain an appropriate RVE than 
for materials with arbitrary microstructure. For such materials, the RVE typically consists of one or more unit cells, the number of 
which is to be determined by comparison with the fully resolved sample. The finite element (FE) analysis is one of the most com-
mon methods to deal with these systems. In order for the RVE to be a proper representative for the corresponding infinite system, 
the boundary effects must be eliminated somehow. This can be achieved by implementing Periodic Boundary Conditions (PBCs). 
Kinematic periodic boundary conditions are a set of boundary conditions applied often in a FE program, where all opposite pairs 
of nodes are kinematically coupled with each other, so that they deform in an identical manner and accordingly the boundary 
effects disappear completely [28–30]. Periodic boundary conditions are actually linear couplings between the pairs of nodes, 
which are supposed to be adjusted based on the given load scenario. In strain-controlled simulations, these linear equations 
must result in the relative motion of all pairs of nodes being equal to the specified displacement in the loading direction. This 
can be formulated in general for a single node pair as equation (1), where A denotes the node number, i = (1, 2, 3) is degree of 
freedom and a is the constant coefficient that define the relative motion of nodes and ̂u is a prescribed displacement value [31].

Illustrated in Fig. 2 is a schematic representation of the expected structure of couplings and the corresponding linear 
equations among node pairs.

Anisotropy is an important common feature of many heterogeneous structures, describing their properties that differ accord-
ing to the direction in which they are measured. However, by using the topology optimization methods, auxetic structures can 
also be designed in such a way to exhibit isotropic properties [32]. Anisotropic elasticity has been a widely investigated topic 
over the last decades especially due to its application to composite materials. With the exception of the complete anisotropy 
(triclinic system) the anisotropic elasticity is always restricted by symmetry conditions caused by material structure [33, 34]. 
These symmetry conditions result either from special microstructures such as composite materials or, on a macroscale, from a 
special geometry of the structure such as auxetic materials. All solids can be characterized in different material groups based 
on the number of existing symmetry planes in the structure, from triclinic materials without any symmetry plane to isotropic 
materials with infinite symmetry planes. With the help of Tab. 1 and Fig. 3 all possible material groups can be well represented 
in terms of the number of symmetry planes, where the vectors OP and OQ represent the normal vectors of the corresponding 
symmetry planes.

To understand how the symmetry properties affect the elastic behavior of an anisotropic material, we necessarily need to 
consider the orthogonal transformation relationships that describe the rotation about an axis or reflection about a plane math-
ematically. This approach leads to a reduction of the number of independent elastic constants in the fourth order elastic tensor 
depending on the number of symmetry planes present in the structure [35]. Although significant scientific work has been already 

(1)a1u
A1
i
+ a2u

A2
i

= ûi

Fig. 1  Typical auxetic struc-
tures; a rotating units; b chiral; 
c re-entrant structures
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done on the elastic behavior of orthotropic and transverse isotropic materials, there is a distinct deficiency in the other types of 
material symmetries, which are less common and the main goal of this article is the investigation of the tetragonal symmetry 
of auxetic rotating units structures and the resulting elastic properties.

An orthogonal tensor represents a rigid transformation in the sense that it does not distort the shape of a body, i.e., it 
represents a rotary mirror or orientation of objects. Orthogonal tensors have many useful properties, such as the fact that their 
inverse is equal to their transpose, which makes them particularly easy to work with [36]. Let’s consider two orthonormal bases 
B = {e1, e2, e3} and B� = {e�

1
, e�

2
, e�

3
} with an angle � between them related by the orthogonal tensor � . Depending on the type 

of objects to be transformed according to the new base B′ , the following relationships apply:

where e and L denote a first order tensor (vector) and a second order tensor respectively [35]. Existence of a plane 
of symmetry in the structure means that the objects are mirrored over this symmetry plane without changing their 
properties. In this case the orthogonal tensor � should be able to satisfy the following expressions, namely:

(2)e
� = � ⋅ e

(3)L
� = � ⋅ L ⋅�

T

(4)� ⋅ n = −n

(5)� ⋅m = m

Fig. 2  Schematic representa-
tion of the coupling between 
node pairs in order to imple-
ment PBCs within RVE and 
associated linear equations 
for the node pairs AB and CD 
in 2D

Table 1  The groups 
of material symmetry 
in framework of linear 
anisotropic elasticity

Type of symmetry Number of symmetry 
planes

Position of normal vectors

Triclinic 0 -
Monoclinic 1 � = 0 or �∕2 or � = �∕2

Orthotropic 3 � = 0 , �∕2 and � = �∕2

Trigonal 3 � = 0 and ±�∕3
Tetragonal 5 � = 0 , ±�∕4 , �∕2 and � = �∕2

Hexagonal 7 � = 0 , ±�∕6 , ±�∕3 , �∕2 and � = �∕2

Cubic 9 � = 0 , ±�∕8 , ±�∕6 , ±�∕4 , �∕2 and � = �∕2

Transverse isotropic ∞ x3 axis of symmetry
Isotropic ∞ ∞

Fig. 3  O represents the mate-
rial origin and the vectors OP 
and OQ are the normals to 
planes of reflection symmetry 
mentioned in Table 1
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where n refers to the unit vector normal to the reflection plane and m to the any vector on the reflection plane. The 
conditions 5 and 6 lead to this expression for tensor � , thus:

where I denotes the second order identity tensor. In general, the vector n in plane can be written as:

which leads to a concrete definition of the tensor � using Eq. 6:

Hooke’s law is a foundational principle used to describe the elastic behaviour of materials under small strains subjected 
to external forces, which can be written in general case as:

where � and � refer to the engineering stress and strain and C and S refer to the fourth order elastic and compliance 
tensor respectively. The superscript 4 denotes the order of the tensor concerned or in other words the number of bases 
that characterize the tensor.

As indicated in Table 1, orthotropic materials as the more occurring type of anisotropy possess three planes of 
symmetry at � = 0 , �∕2 und � = �∕2 . This implies that the elasticity tensor C should remain invariant when subjected to 
the respective reflection transformations in terms of these planes of symmetry. In contracted notation, the corresponding 
orthogonal transformation for a fourth-order tensor such as elastic tensor C , which is sometimes also referred to a six-
dimensional transformation, appears as follows:

where 23
T

 denotes a special transpose in which the second and third bases are swapped. The use of the three angles 
mentioned above for orthotropy in the transformation tensor � and then applying in equation 11 and also the fact C� = C 
lead to the constraints in the elasticity tensor C in such a way, that some components must be zero. In Voigt notation it 
leads to:

This approach can also be employed to characterize all other elastic tensors with respect to the type of symmetry that 
exists in the materials. To calculate the elastic deformation, the compliance tensor S is preferably used instead of the 

(6)� = I − 2n⊗ n
T

(7)n
T =̂ [cos𝜃, sin𝜃, 0]

(8)�(𝜃) =̂

⎡
⎢⎢⎣

−cos2𝜃 − sin2𝜃 0

−sin2𝜃 cos2𝜃 0

0 0 1

⎤
⎥⎥⎦

(9)� =
4

C : �

(10)� = S
4 ∶ �

(11)
4�

C = (Ω⊗Ω)
23

T ∶
4

C ∶
(
ΩT ⊗ΩT

)23

T

Ctriclinic =

⎡⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66

⎤⎥⎥⎥⎥⎥⎥⎦

Corthotropic =

⎡⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

⎤⎥⎥⎥⎥⎥⎥⎦
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elastic tensor (Eq. 9). Finally the so-called engineering constants as the components of the tensor S can be calculated in 
Voigt’s notation as a function of coefficients Sij , which leads to:

As can be seen from the tensor S , there are a total of 9 independent elastic constants describing the elastic behavior of 
an orthotropic material, where Ei , Gij and �ij correspond to the Young’s modulus, shear modulus and Poisson’s ratio’s in 
terms of different directions.

Although the focus of this work is on elastic behavior of the auxetic structures, all stress–strain plots also include the 
plastic regime as additional information that is not considered in the modeling approach so far.

2  Material and methods

The auxetic sample to be examined is shown in Fig. 4. It made of aluminium alloy (AlMg3) with a regular pattern of 
rectangular perforations, which are perpendicular to each other. The perforations are cut out using a micro water jet 
cutter, which is available at the chair of Applied Mechanics (AM) at Saarland University. The machine provides absolute 
precision as well as the possibility of using the entire range of abrasive nozzles from 0.2 - 1.0 mm in micro-cutting scale. 
The sheet metal consists of a cellular core area and two small bulk areas at the two ends with five holes for clamping the 
specimen in the testing machine.

The mechanical behavior of such auxetic structures are mainly characterized by two parameters, namely volume 
fraction of perforations or so-called porosity ( Vp ) as well as aspect ratios of the perforations (AR). To calculate the porosity, 
only a single unit cell needs to be considered due to the periodicity. the porosity can be determined as:

where a is the length, b the width and c the distance of the perforations. Ap and Auc represent area of a single perforation 
and area of the unit cell respectively. The auxetic sheet metal used in this study has the parameters a = 5 mm, b = 1 mm, 
c = 1 mm and thickness of 1 mm, which results an aspect ratio of AR =

a

b
= 5 and a porosity of Vp = 31% according to 

Eq. 12.

2.1  Numerical anisotropy investigations

All simulations in this study were carried out by the commercial FE software ABAQUSⓇ (Dassault Systems). To evaluate 
the anisotropy in the structure, the sheets were drawn with different pattern orientation angles from 0 ◦ to 90 ◦ in steps 
of 5 ◦ and simulated under the uniaxial tensile loading.

The element type CPS4R (4-node bilinear plane stress quadrilateral, reduced integration) with a seed size of 0.5 mm is 
used. The Young’s modulus of 60.04 GPa and Poisson’s ratio of 0.33 were applied as input parameters for the simulation, 
which were determined by the experiment on the bulk AlMg3. Strain-controlled tensile tests were performed, where a 
total displacement of 9 mm was specified, which corresponds to approx. 10% global strain for all specimens. As boundary 
conditions, a displacement of U2 = 4.5 mm is applied to both ends of the specimen in clamping holes so that the center 
of the specimen remains stationary during the deformation. The other degrees of freedom, i.e. the displacement in the 
e1-direction and the rotation around the e3-axis, are fixed, as illustrated in Fig. 5.

On the microscale, as shown in Fig. 6 the von Mises stress within the squares has low values, which according to 
the PEEQ-results (equivalent plastic strain) is still below the yield point of the aluminum and confirms the rigid body 

Sii =
1

Ei
, i = 1, 2, 3

Skk =
1

2Gij

, i ≠ j = 1, 2, 3, k = 4, 5, 6

Sij =
−�ij

Ei
, i ≠ j = 1, 2, 3

�
⟹ Sorthotropic =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

E1

−�21
E2

−�31
E3

0 0 0

−�21
E2

1

E2

−�32
E3

0 0 0

−�31
E3

−�32
E3

1

E3
0 0 0

0 0 0
1

G13

0 0

0 0 0 0
1

G23

0

0 0 0 0 0
1

G12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)Vp = 4
Ap
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=
4ab

(a + b + 2c)2
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rotation of the squares during deformation. The maximum von Mises stress occurs in the thin connecting bars for all 
specimens, which for specimens from 0 ◦ to 45 ◦ gradually decreases with increasing orientation angle. This phenom-
enon on the macroscale leads to a decline in the global stress, which is responsible for the deformation of the entire 
sheet. This decrease in global stresses can also be observed in the corresponding global stress–strain curves for the 
specimens with 0 ◦ to 45◦ rotated pattern (see Fig. 7a). The Young’s moduli and yield strengths decrease contineuously 
with increasing orientation angle.

For the specimens from 45◦ to 90◦ rotated pattern, the mechanical properties repeat in such a way that the 
stress–strain curves related to the specimen with � ◦ rotated pattern are quite identical to the specimen with ( 90 − �

)◦ rotated pattern (see Fig. 7b).
It is obvious that after 90 ◦ rotation of the pattern, the initial state is recovered, which corresponds to orthotropic 

materials based on the Table 1. Furthermore referring to the stress-strain curves in Fig. 7, it was also derived that 
the 45◦ axis forms an additional axis of symmetry in this structure, which corresponds to the so-called tetragonal 
materials due to the Table 1. A spatial representation of the tetragonal symmetry is shown in Fig. 8, where four of 
five planes of symmetry lie at distances of 45 ◦ from each other and the fifth plane of symmetry lies transverse to all 
of them. The corresponding normal vectors to the planes of symmetry are denoted as a1 − a5.

Fig. 4  Auxetic sheet sample 
with rectangular perforations. 
From left to right: full sample 
including clamping area, 
auxetic area (area of inter-
est) and unit cell including 
geometry parameters. All 
perforations have the same 
dimensions (a, b) and distance 
to its neighbours (c) within 
the entire sheet

Fig. 5  the corresponding 
boundary conditions for the 
auxetic sheet without pattern 
orientation (left) and the 
auxetic sheet with 45 ◦ pat-
tern orientation angle (right) 
used to simulate a numerical 
uniaxial tensile test
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2.2  Numerical homogenization

As discussed in section 1, a suitable RVE for periodic structures as auxetics may consist of one or more unit cells. 
The exact number of unit cells considered as RVE can be determined by numerical investigations by comparing the 
global stress–strain curves as well as the existing type of anisotropy of each proposed homogenized RVE with the fully 
resolved sample. The central point of homogenization is the implementation of Periodic Boundary Conditions (PBCs) 
to each proposed RVE. Thus, the boundary effects are completely eliminated and the results can be representative 
for a system consisting of an infinite number of unit cells.

2.2.1  Periodic boundary conditions (PBCs)

Periodic Boundary Conditions (PBCs) are actually a set of boundary conditions in form of linear equations between 
the pairs of nodes, which lying on opposite position on the boundary. In ABAQUSⓇ these equations can either be 

Fig. 6  The results of numerical simulation of a uniaxial tensile test in terms of local von Mises stress [MPa] on the specimen with 0 ◦ pattern 
orientation (left) and on the specimen with 45◦ pattern orientation angle (right) after 10% global strain

Fig. 7  Global stress–strain curves related to the specimens with different pattern orientation angles ( �)
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written directly in the input file or set in ABAQUS-CAE in the interaction module under the constraint-equations. 
Depending on how the loads and corresponding deformations should look like, these linear equations have to be 
adjusted. To implement PBCs, all edge nodes must first be selected and stored under the various SETS. The edge 
nodes, which are opposite to each other, should be easily identified by a meaningful naming as in Fig. 9. In order 
to automatically identify the opposite pairs of nodes in the rotated samples based on the preferred direction, a 
coordinate transformation must be performed. Then we need to define a reference point (RP) somewhere outside 
the model where the desired global displacement of the unit cell is to be applied. To avoid rigid body motion of the 
whole part, one point on the model must be fixed.

So finally after the above steps we are able to establish the linear equations based on the loading scenario. In 
general, the equations can be written in four columns, where two columns refer to the node pairs in the loading direc-
tion and other two columns refer to the node pairs perpendicular to the loading direction. The necessary number of 
equations depends on the number of the edge nodes or in other words, it depends on the discretization of the model. 
The finer the model, the more equations have to be set up. The exact number of equations using the procedure in 
Fig. 10 is equal to n +m , where ’n’ and ’m’ correspond to the total number of the nodes on a horizontal and vertical 
boundary. For almost all loading scenarios, the form of the equations remains the same and the only thing that needs 
to be adjusted based on the loading is the displacement vector of the reference point (RP).

For better understanding, we consider two simple load cases, uniaxial tensile load and pure shear load on a single 
unit cell, which are supposed to be realized by the implementation of PBCs instead of the usual boundary conditions. 
Figure 10 illustrates the form of the equations as well as the associated displacement vectors based on these loading 
conditions. As can be seen in the equations, the relative displacement of the East–West node pairs should be a con-
stant value (l) and not zero, otherwise, for example, in the uniaxial tensile test, the expansion in transverse direction 
(auxetic effect) cannot be reproduced. This constant should be formulated as l1 = urE

1
− urW

1
 and l2 = urE

2
− urW

2
 , where 

the node number ’r’ refers to a random node pair exists in East–West direction. The results of the above two loads in 
terms of the von Mises stress distribution are exhibited in the Fig. 11.

As can be clearly seen in Fig. 11, the edges of the samples with PBC remain straight during deformation and accordingly 
the stress distribution at the edges is no longer close to zero as in the case of the unit cell without PBCs, but is already 
under stress, which could represent a unit cell surrounded by many other unit cells in a larger sheet. This is what needs 
to be considered to determine an appropriate RVE.

2.2.2  Representativ volume element (RVE)

As discussed in section 1, the RVE is in general the smallest volume fraction that represents the properties of the whole 
system. For periodic systems like auxetics, the RVE consists of one or more unit cells. As demonstrated in Sect. 2.1, the 
auxetic structure studied in this work exhibits tetragonal symmetry in terms of the anisotropy. This property must also 
be exhibited by the RVE we are looking for. Moreover, the other mechanical properties such as Poisson’s ratio and Young’s 
modulus must be in good agreement as the total system.

Fig. 8  Spatial illustration of 
the five planes of symmetry 
characterizing tetragonal sym-
metry. The normals to the five 
planes are denoted by a1-a5
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Fig. 9  Typical way of numbering the node sets at the edges that appear in pairs in the equations when implementing PBCs in case of the 
standard unit cell (left) and the rotated unit cell (right)

Fig. 10  Implementation of equations related to the PBCs based on the numbering in Fig. 9 and the displacement vector corresponding to 
the giving loading condition

a Uniaxial tensile load b Pure shear load

Fig. 11  The deformed unit cell after the given loads in Fig. 10 respectively with conventional boundary conditions (without PBC) and with 
Periodic Boundary Conditions (PBCs). The contour represents the local von Mises stress
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First a single homogenized unit cell was considered. To investigate the anisotropy, the uniaxial tensile test was also 
simulated for the homogenized 45◦ and 90◦ rotated unit cell. In all three cases, a displacement in e2-direction was speci-
fied until 2% global strain is achieved. As can be seen in Fig. 12, the resulting von Mises equivalent stress in the sample 
with � = 0 ◦ and � = 90 ◦ differ significantly, which as an RVE, may not be the case based on the existing tetragonal sym-
metry in the overall system. This deviation can also be clearly seen in the global stress–strain curves shown in Fig. 12. 
According to the resulting displacement fields in the Fig. 12, the 1 × 1 unit cell without rotation has a Poisson’s ratio of 
ca. −0.4 in contrast a value of around −0.8 was found for the corresponding fully resolved sample. From these results it 
can be concluded that the 1 × 1 unit cell cannot be a correct RVE for the whole system, because the 1x1 unit cell does 
not reflect the required symmetry.

As the next step, a homogenized 2 × 2 unit cell was considered. In contrast to the 1 × 1 unit cell and as can be seen 
in Fig. 13, the 2 × 2 unit cells with � = 0 ◦ and � = 90 ◦ have both quite identical local von Mises equivalent stress and 
global stress–strain behavior. Both of them also have quite the same Poisson’s ratio of about −0.8, which agrees with the 
Poisson’s ratio of the fully resolved sample. It means that the 2 × 2 unit cell also approximates a tetragonal symmetry 
like the fully resolved sample. Moreover, the stress–strain curves of the 2 × 2 unit cell and fully resolved sample without 
orientation ( � = 0 ◦ ) exibit excellent agreement with each other. For the 2 × 2 unit cells with � = 45 ◦ , the local stresses 
and displacements look the same as the corresponding fully resolved sample with 45 ◦ pattern orientation angle. All this 
information confirms that the 2 × 2 unit cells can be chosen as a correct RVE for the whole structure.

After determining the 2 × 2 unit cell as a suitable RVE, uniaxial tensile tests were performed on the homogenized RVE 
with different orientation angles ( � ) in 5 ◦ steps. Accordingly, the corresponding Young’s modulus and Poisson’s ratio 
could be determined as the important elastic parameters for each angle. The calculated Young’s modulus and Poisson’s 
ratios are represented in Fig. 14 in form of polar diagrams. According to the Fig. 14, there are four symmetry axes on the 
polar diagrams at intervals of 45◦ and a fifth symmetry axis transverse to the plane, which corresponds to the tetragonal 
material symmetry on the basis of Fig. 8.

2.3  Anisotropic elasticity

Using the procedure explained in Sect. 1, the corresponding elastic tensor for the auxetic structure studied in this work 
with tetragonal symmetry can now be determined. It should be noted that in tetragonal materials the orthotropic 
properties are already included, since � = 0 ◦ and � = 90 ◦ also build symmetry planes in these structures. In other words, 
tetragonal symmetry can be interpreted as a special case of orthotropy. The difference is that in tetragonal materials 
there exists an additional symmetry plane at � = 45 ◦ , which leads to further restrictions in elastic tensor compared to 
orthotropic materials. It means we assume the orthotropic elastic tensor as the initial situation and we consider now the 
transformation (11) using the orthogonal tensor � in (8) with respect to � = 45 ◦ , thus:

Fig. 12  Local and global results of uniaxial tensile tests in y-direction on the homogenized 1x1 unit cell with different orientation angles 
until 2% global strain
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The transformation 11 can be written in index notation as follows:

The zeros in tensor (13) do not contribute to the corresponding summation using the transformation (14). Therefore 
only the components Ω12 , Ω21 and Ω33 have to be taken into account. Due to the symmetry properties of the elasticity 
tensor C and also the orthogonal tensor � , the number of components to be considered is reduced to two, i.e. only Ω12 
and Ω33 , which correspond to either −1 or +1 respectively. Now we consider all possible cases in the transformation (14) 
in which these two components can appear:

(13)Ωij(�∕4) =

⎡⎢⎢⎣

0 − 1 0

−1 0 0

0 0 1

⎤⎥⎥⎦

(14)Cijkl = ΩipΩjqΩkrΩltCpqrt

Fig. 13  Local and global results of uniaxial tensile tests in y-direction on the homogenized 2 × 2 unit cell with different orientation angles 
until 2% global strain

Fig. 14  Polar diagrams of the homogenized 2 × 2 unit cell as the appropriate RVE of the investigated auxetic structure in terms of Young’s 
modulus and Poisson’s ratio
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The transformation results of (16) and (18) do not give any new information since these components are already zero in 
the orthotropic tensor shown in section (1) and therefore they can be treated as trivial equations. However, the other 
three results (15), (17) and (19) make the orthotropic tensor even more restrictive in that they must be pairwise equal. 
Finally the tetragonal compliance tensor S based on the results of (15), (17) and (19) looks like this:

Based on the results, the number of independent elastic constants that appear in the compliance tensor S is reduced 
from 9 (orthotropic) to 6 (tetragonal).

3  Implementation and experimental validation

As demonstrated in section 2.3, the corresponding compliance matrix of tetragonal materials has 6 independent elastic 
constants, namely E1 , E3 , G12 , G13 , �12 and �13 , which are to be determined experimentally. In a plane stress state, which is 
the case with the studied auxetic sheet, the number of necessary elastic constants is reduced to 3, namely E1 , G12 and �12 . 
In order to determine E1 and �12 , quasi static uniaxial tensile tests were performed experimentally. To calculate the Pois-
son’s ratio, the local displacement fields were observed by the Digital Image Correlation system (DIC). The commercial DIC 
software ISTRA4D V4.4 by Dantec Dynamics (Skovlunde, Denmark) was employed for post-processing and visualization 
of the displacements during the deformation. For the computation of homogenized results, the displacements of a 2 × 
2 unit cell in the center of the sheet in both directions were considered, where the edge effects have minimal influence. 
The global stress–strain curve and DIC evaluations are presented in Fig. 15, resulting in a Young’s modulus and a Poisson’s 
ratio of 1.9 GPa and −0.76 , respectively.

The shear modulus G12 was also obtained by a corresponding shear test simulation on the homogenized RVE repre-
sented in Fig. 16, which results 980 MPa.

(15)C1111 = Ω12Ω12Ω12Ω12C2222 ⟶ C1111 = C2222
Voigt notation
����������������������������������������������→ C11 = C22

(16)C1113 = Ω12Ω12Ω12Ω33C2223 ⟶ C1113 = −C2223
Voigt notation
����������������������������������������������→ C15 = −C25

(17)C1133 = Ω12Ω12Ω33Ω33C2233 ⟶ C1133 = C2233
Voigt notation
����������������������������������������������→ C13 = C23

(18)C1333 = Ω12Ω33Ω33Ω33C2333 ⟶ C1333 = −C2333
Voigt notation
����������������������������������������������→ C53 = −C43

(19)C1313 = Ω12Ω33Ω12Ω33C2323 ⟶ C1313 = C2323
Voigt notation
����������������������������������������������→ C44 = C55
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After determining the elastic parameters, the developed model was implemented in ABAQUSⓇ as the FE software used 
in this study. ABAQUSⓇ provides some anisotropic elastic models, which are already implemented in the program, such 
as for orthotropic material. As discussed in section 2.3, tetragonal symmetry is a special case of orthotropy. Therefore, 
the implemented model for orthotropic materials can be applied to our auxetic structures. The model for the 2D case 
can be found in ABAQUSⓇ-CAE under the name "Lamina". Despite the plane stress state defined in Lamina’s model, the 
parameters G13 and G23 must also be entered in the case of out-of-plane deformations. Due to the present tetragonal 
symmetry, these two parameters should actually be the same, which was determined by an additional shear test 
simulation on the RVE in corresponding direction. Finally all input parameters are listed in Table 2, which are used to 
model the elastic behavior of the auxetic structure.

There is also a possibility to model auxetic sheets with different pattern orientation angles by entering the local coor-
dinate system in material through the module "Property" under the "Assign Material Orientation". The model results are 
illustrated in Fig. 17 as well as the results of corresponding experiments subjected to uniaxial tensile test on sheets with 
0 ◦ , 15 ◦ , 30 ◦ and 45 ◦ orientation angle. In all cases, a global strain of 0.5% in e2-direction is specified, which is definitely 
still within the elastic range of the material. The contours correspond also to the resulting transverse displacements in 
e1 direction. As can be seen in Fig. 17, the model results reproduced the experimental results quite well with respect to 
the displacement distributions showing a local deviation of less than 1%.

Fig. 15  Local displacement fields of the 2 × 2 unit cell in the center of the auxetic sheet after about 5% global strain evaluated by DIC and 
corresponding global stress–strain curve of the sheet caused by uniaxial tensile test

Fig. 16  Shear test simulation on the homogenized 2 × 2 unit cell as RVE to obtain the shear modulus of the structure

Table 2  Elastic parameters of the auxetic structure as the input parameters of the applied Lamina’s model

E1 E2 �12 G12 G13 G23

1.9 GPa 1.9 GPa −0.76 0.98 GPa 1.3 GPa 1.3 GPa
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4  Conclusion and future work

Auxetic structures are recently developed man-made metamaterials, which due to their exceptional features could have 
a great bandwidth of applications. A successful deployment of these structures requires detailed and precise research 
in many areas. In this work, the mechanical behavior of the so-called rotating units auxetic sheet metal was mainly 
investigated. In this regard an anisotropic tetragonal elastic material model has been developed, which can reproduce the 
elastic behavior of the structure quite well. Moreover, a convenient Representative Volume Element (RVE) was determined 
by a numerical homogenization procedure, which represents the effective mechanical properties of these structures 
as an infinite system. These attainments can be considered and employed as the basic knowledge of these 2D auxetic 
structures in terms of their mechanical behavior. Obviously, to ensure reliable implementation of these components, 
further progress would be necessary such as extension of the model to plasticity and even fracture. Furthermore, the 
development of an anisotropic plastic model for the auxetic sheet would lead also to gain valuable information regarding 
the behavior of the sheet under different forming processes in which the extended 2.5D or 3D cases such as curved 
auxetic shell structures and tubes can be manufactured respectively. Therefore, future work will focus on extending the 
developed elastic model to elasto-plasticity, which is to be experimentally validated under different multi-axial loading 
conditions.
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