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Abstract.

We are interested in unification problems in free Boolean rings, i.e. we investigate equation solving
over these structures. The two major issues are unification in free Boolean rings and unification in a
combination of a free Boolean ring with free function symbols.

For unification in free Boolean rings we present the two approaches, which are pursued by today's
scientific community. We disclose the origin of those methods, explain and verify them and reveal
their advantages and disadvantages. Finally the acquired knowledge is used to introduce several
improvements to the implementation of the algorithms.

The combination algorithm is a specific application of a more general algorithm operating on the
combination of an arbitrary and a simple theory. Therefore besides describing the ideas and steps of
the general algorithm, properties of the Boolean ring theory are utilized to build additional performance
enhancing procedures into this algorithm. We receive a validation of this algorithm by comparing it to
other algorithms of the relatively new field of combination algorithms.
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Zusammenfassung.

In dieser Diplomarbeit werden Unifikationsprobleme in Bool'schen Ringen untersucht. Sie ist in
zwei Teile gegliedert: Unifikation in freien Bool'schen Ringen, Unifikation in der Kombination eines
freien Bool'schen Rings mit freien (uninterpretierten) Funktionssymbolen.

Für die Unifikation in freien Bool'schen Ringen werden die beiden Ansätze präsentiert, die
heutzutage in der Wissenschaft verfolgt werden. Wir geben Aufschluß über den Ursprung der
Ansätze, erklären und verifizieren die Algorithmen und zeigen ihre Schwächen und Stärken auf. Die
gewonnen Erfahrungen wurden genutzt, um weitere Verbesserungen in die implementierten Versionen
einzubauen.

Der Kombinationsalgorithmus ist eine spezielle Anwendung einer allgemeineren Prozedur, der die
Kombination einer simplen und einer beliebigen Theorie behandelt. Die Ideen und Schritte des
allgemeinen Algorithmus werden erklärt. Der Algorithmus wurde durch Einbau von Prozeduren
weiterentwicklet, die spezielle Eigenschaften der Bool'schen Ringe ausnutzen. Die Einordnung des
Algorithmus wird durch einen Vergleich mit anderen Algorithmen des relativen neuen Feld der
Kombinationsalgorithmen gewonnen.

Schli isselworte:

Bool'sche Ring, Bool'sche Algebra, Unifikation, Gleichheitstheorie, Theorieunifikation,

Kombination von Gleichheitstheorien, Automatischer Beweiser.
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1. MOTIVATION

Solving equations in particular algebraic theories, which is also known as E-unification

(G. Plotkin [Plo 72], J. Siekmann [Sie 78], G. Huet and D.C. Oppen [HD 80], F. Fages and
G. Huet [FH 83, 861), has attracted a great deal of interest in recent years, as it is the basic inference
mechanism in algebraic manipulation of formulae, automated reasoning and logic programming
languages. A detailed account is given by J. Siekmann in his survey paper on unification [Sie 87].

Recently researchers are involved with unification in Boolean rings. They have been enticed both by
its theoretical merits - the unitarity of Boolean ring unification itself (at most one most general unifier)

and the existence of a deterministic normal form for Boolean ring terms - and by the practical
relevance of Boolean ring unification. By enabling the manipulation of hardware descriptions it gives

us the capacity to solve numerous problems in digital hardware design like simulation, verification,

synthesis, simplification, specialization or debugging [Sim 87].
Another important application area is propositional logic. The propositions with their operators ( A,

v, 1 ,  etc.) can be transformed into equivalent Boolean ring terms. To test, if a proposition is a
tautology or unsatisfiable, we do not even need unification. It is sufficient to simplify the term and to

look, if we obtain 1 or 0. For proposition with incorporated variables we are able to determine the
most general values of those variables, which make the proposition a tautology or unsatisfiable, by

unifying the corresponding term with 1 or 0.
Yet another view of Boolean rings is treated by R. Sikorski. In his treatise he stated, that there is

also a set-theoretical aspect of Boolean rings beside its algebraic aspect [Sik 67]. This view regards
Boolean ring theory as a generalization of the set-theoretical notions of a field of sets. Then we can
generate statements on sets and the operators (U, m, \) and use these statements to perform
computations of sets as required in solving combinatorial problems.

Today unification in free Boolean rings is handled in two different fashions. One approach has been
developed by U. Martin and T. Nipkov [MN 86], the other approach by W. Biittner and H. Simonis
[BiiSi 87]. When those methods were presented in papers and various conferences, a discussion
about the origin of these methods arouse. It turned out, that the methods were comparatively old. They
were invented at the turn of the 19® century. Biittner's and Simonis's idea takes the credit of being the
oldest one. It is already described in G. Boole's book "The Mathematical Analysis of Logic" in 1847
[Boo 47]. This is this the book, where Boole introduces the notion of Boolean ring with the primitive
operators <symmetric difference> and <intersection> rather than <union> and <intersection>
(Boolean algebra) for representation of Boolean terms. Boole proceeds by successive elimination of
variables thereby obtaining reduced problems. The Martin/Nipkov approach was first conferred by
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L. Löwenheim in 1908 [Löw 08]. L. Löwenheim gave a formula for the most general solution of a
Boolean equation expressed in terms of a particular solution. The two methods, along with a range of
techniques for finding a particular solution, can be found in S. Rudenau's book on Boolean equations

[Rud 74]. In this paper we aim to give a more detailed and still comprehensive study of Boolean ring
unification. The examined unification methods consist of two versions of "Deducing from a
Particular Solution", which differ in the way the particular solution is computed, and the method
"Successive Variable Elimination". Our study consists of description, verification, comparison and

implementation of the methods. We also give an account of several improvements for the algorithms.
This adds up to a presentation of a set of performance enhanced algorithms with their pros and
contras, which should enable the reader to select the right algorithm for his specific application.

Recently several papers are tackling unification problems in the combination of equational theories.
The first to consider the combination of unification algorithms were M. Stickel [Sti 75, Sti 81],
M. Livesey and J. Sickmann [LS 78] and F. Fages [Fag 84]. They combine associative and
commutative functions (AC) with uninterpreted (free) function symbols. More general combination
problems were examined by several other authors [Yel 87, Kir 85, Tid 86, Hero 86]. Their
algorithms subject to some restrictions. C. Kirchner requires the theories to be cycle free and
K. Yelick and A. Herold manage only regular and collapse free theories. E. Tidén considered the
most general case so far, the combination of collapse free theories. Most recently some new
algorithms have been developed, which have a more loosened restriction on the theories [BJS 88,
Schm 88]. The algorithm by A. Boudet, J.-P. Jouannaud and M. Schmidt-SchauB3 [BJS 88] and the
one by M. Schmidt-SchauB [ Schm 88] handle the combination of an arbitrary and a simple theory. In
the same year M. Schmidt-Schauf3 [ Schm 88] presented another algorithm without any restrictions on
the theories. In the second part of this thesis we study the combination of a free Boolean ring with free
function symbols, a special case of the restricted Schmidt-SchauB3 algorithm. This algorithm was
selected, as it is more suitable for our specific application. It utilizes the characteristics of the simple
theory and thereby the efficiency is increased decisively.

The combination of a free Boolean ring with free function symbols is of particular interest, because
its unification is decidable and finitary. In this paper we recall the combination algorithm as sketched
by Schmidt-Schauß and present some realization possibilities for particular subproblems. We have

‚ Incorporated additional functions based on the properties of the Boolean ring into the algorithm to
improve its efficiency.

This paper is organized as follows. In Section 2 we introduce the necessary theoretical notions in
order to define Boolean ring problems and their solutions. The chapter is divided into an algebraic and
a unification part. The first part recalls the concepts of Boolean algebras and Boolean rings and an





Bernard Crone - Rawe Unification Algorithms for Boolean Rings

important theorem due to M.H. Stone, which discloses their duality [Sto 36]. The second part of this
section covers syntactic and equational unification as well as unification in the combination of
equational theories. For both parts we are consistent with the notations of the common literature as by
G. Grätzer [Grä 79], S. Burris and H. P. Sankappanavar [BS 79], J. Siekmann [Sie 87], G. Huet
and D. C. Oppen [HD 80]. Section 3 deals with unification in free Boolean rings and Section 4 with
unification in the combination of free Boolean rings with free function symbols. The examples chosen
for the combination algorithm are mainly those discussed at the unification workshop at Val d'Ajol in
1987 [Kir 87]. Section 5 describes the implementation of the algorithms. It is aimed at readers, who
intend to utilize our system. We give an account of used datastructures and different procedures
available to the user. We also present some structures of the HADES (Highly Adaptable DEduction
System) [Ohl 88], a theorem proving environment currently being developed at the University of
Kaiserslautern. This is necessary, as we have implemented our algorithm directly in this system. In
Section 6 other applications of our algorithm are discussed. In Chapter 7 we summarize the results. In
the appendix we have included results from our test runs. In particular it consists of comparisons of
the three unification algorithms for Boolean rings and test runs of the already mentioned well-known
examples for the combination of Boolean rings with free function symbols.
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2. INTRODUCTION

2.1 From Boolean Algebras to Boolean Rings

In this chapter I intend to describe briefly the concepts and basic properties of Boolean algebras and
of Boolean rings. To some extent those have been used in designing and improving the unification
algorithms for free Boolean rings. In particular I will recall the definitions of a Boolean algebra and a
Boolean ring, discuss several normal forms of terms of the theories and I will recall the well-known
theorem, which states the equivalence between Boolean algebras and Boolean rings.

Definition: Boolean Algebra
A Boolean algebra is a structure <B, U,  Mm, —, 0, 1>, where B is a set, U:  B xB  >» B and

MN: B x B = B are binary operators called disjunction and conjunction, and —: B > B is an unary
operation called negation. 0 an 1 are elements of B, with 0 # 1. A Boolean algebra is a
complemented distributive lattice. Therefore the following properties have to be satisfied:
for every x ,y ,  ze  B:

commutativity of xVy  = yUx
commutativity of MN xNy  = yNx  <B, U, N>
associativity of U ( xYy )  Vz  = xYyVz
associativity of M xNy )Nz  = xNyNz )  | .

absorption law for) xVY (x Ny) = X Is a lattice
absorption law form x ( x  Vy) = x

distributivity xN iyVz)  = xXNy)yV(xNz)
xU(yNz )  = xVy )NkxVz )

zero element 0 xN0  = 0
unit element 1 xU l  = 1
complementation xUeax = 1

XN=ax = 0
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As we know the following equalities are valid in the Boolean algebra <B, U, N, —, 0, 1>:
idempotency XUX = X

XANAX = X

De Morgan laws —(XUy)  = = XN=Yy
—~(xXNy) = =AXU-AYy

double negation X = X

absorption XU(SXNy)=  XUYy
XN(=xUy )=  xNy

and we have the following equivalences
xuy=0   x=y=0
xNy=1   x=y=1

To be able to work with Boolean algebras we would like to have a representative form of terms. In
Boolean algebras there are two different forms: the conjunctive form and the disjunctive form.
The conjunctive form is defined as (MU i Di ‚ where each P i  is atomic or negated atomic. The
disjunctive form is defined as\J, (1, ®;; , where again each @;; is atomic or negated atomic. Each
term of the Boolean algebra can be transformed into both the conjunctive form and the disjunctive
form.This can easily be proven by induction on the length of the term using the distributivity and the
De Morgan laws. So now we can transform each term into a deterministicly structured term. Yet to
have a deterministic form, there should be only one conjunctive or disjunctive form possible. This is
not the case in a Boolean algebra. For example in the Boolean algebra <B, U, N, —, 0, 1> with
B = {x, y, z}, there are the two equal disjunctive forms t, =(—x My) U ( xNy )  U (x Nz) and
t,=y U (x Nz ) .  The term tz = (y U z) MXN (Xx U — z) can be transformed into another equal and
smaller conjunctive form t, = (y U z) M x. Such a transformation, which reduces the term until no
more reductions are possible, is called min imizat ion and the reduced term is said to be in
normal  form. Several algorithms are known, which minimize terms into a conjunctive or
disjunctive normal form. Now the questions arises, are the normal forms deterministic. Again we have
to deny this attribute. Proof by example: The Boolean algebra <B, U, m, —, 0, 1> with B = {x, y, z}.
The term t; = (=x  U y )N  (ny  VU z) Nn (x U = z) is a conjunctive normal form and the
term t, = (X Uy )  N (y  U =z )  N (=x  U z) is an equal conjunctive normal form.

t, = ( xuyNEEyvz )  NEUazZ)
= ( (xNAay)V(ExnNnz)uyNz))Nxu-az)

xNyNz )U(=xN=aynN=-z )
(xNyYyuExnN=az)Uu(=yN=az)N(=xuz)
xU-y )N (yu -az )N (—xUz)= t ,  mM





Bernard Crone - Rawe Unification Algorithms for Boolean Rings

There also equal disjunctive normal forms like term t, = (=x Ny)  U ( - yNz )U(xNM zz) and
term t4 = (x My )  U (y N=  2) U (=  xN  z). So there is no deterministic minimized form, but

naturally there are maximized disjunctive and conjunctive forms. And those can be deterministic, if we
have defined an ordering on the terms. This is necessary because of associativity and commutativity of

the conjunction and disjunction. To enable the definition of maximized forms, we define the concept

of minterm and maxterm. In the Boolean algebra <B, U, N, —, 0, 1> with B = {$,,...,®?_} a
minterm is NM),ie l . . .n ie l . . .n
Then a disjunction of minterms is the maximized disjunctive form and a conjunction of maxterms the

¢. and a maxterm is U ¢., where each ®, is atomic or negated atomic.

maximized conjunctive from. Provided the generating set B is finite, it is possible to convert each term
into those forms. However the termsizes would grow exponentially, if we work with maximized
terms.

Definition: Boolean Ring
As a Boolean ring we define a structure <B, +, *, 0, 1>, where B is a set, +: B xB  > B
and *: B x B > B, called addition and multiplication. 0 an 1 are two elements of B, with 0 # 1.

The following axioms make a structure a Boolean ring.
for every x ,y ,z  € B:

associativity of + x+y )+z  = x+(y+2z)
commutativity of + X+y = y+X <B, +, 0>
zero element 0 X+0 = 0+x=x  is an abelian group
inverse for + x+x = 0 <B. +. *. 0>

J ’ 9

* is a ring
associativity of * x *y ) * z  = x * ( y *z )  <B, *>

is a semigroup

distributivity X+ (y *z )  = x+y ) * ( x+12 )
X¥y+2  = x *y )+ (x *2z )

commutativity of * x *y  = y¥*x
unit element 1 x *1 ]  = 1 *x=x
idempotency X¥x  = X

10
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The Boolean ring <B, +, *, 0, 1> has some useful properties, which we will make repeatedly use
of in the course of this paper:

(1) Xx=y&&x+y=0
i )  x "=x  n>0
(Bi) x *0=0
(iv) x * x+1 )=0

Proof:
 x=ySx+y=y+yeax+y=0  | addition of y and application of inverse of +
@x"=x "1=x "2=  =x *x=x  | repeated application of idempotency
x *0=x * { y+y )=x *y )+  x * y )=0  | application of idempotency
i Vx *X+D)=x *x+x *1=x+x=0  | application of distributivity and inverse of +

The similarities between Boolean rings and Boolean algebras lead to research aimed to determine
their relationship. M.H. Stone discovered, that every Boolean algebra can be transformed into a
Boolean ring and vice versa (by weak isomorphism [Gri 79]). He denoted this with the following
well-known theorem [Sto 35].

| Theorem 2.1.1:
a) Let B = <B, U, Nn, —, 0, 1> be a Boolean algebra. Let B® be the structure <B, +, *, —, 0, 1>,
where the operations are defined by (x, y € B):

(1.1) X+y  = XN=y )uUu(=xNy )  <symmetric difference>

(1.2) x * y  = xnNy
(1.3) -X  = X

Then B® is a Boolean ring.
b) Let R = <R, +, *, 0, 1> be a Boolean ring. Let R® be the structure <R, U, m, —, 0, 1>,
where the operations are defined by (x, y € R):

(1.4) XUuUy = X+y+x*y
(1.5) XNy  = x *y
(1.6) =X  = x+1 .

Then R® is a Boolean algebra.
c) Given B and R as above we have B®® =B, R®® =R,

11
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Proof:
a) Le t x , y , ze  B

i) zero element 0
X+0 = (XADUHXAN0)=x

ii) evidently: associativity of +
iii) commutativity of +

X+(y+2z) = xNAa(y+z2)V(=xN((y+12z)

= XN=( (YN-2 )U (yN)UExN( (yN-2 )U (=yNnNaz )
= XNYyNZ)UEXN=aYyNazZ)UEXNAYNAZ)U(RXNAYyN2Z)

XNYyNz )UENAayN=Z)UFN=zZzNAaX)VUENAXNAY) )
since this result is symmetric in x, y, z; it follows that

X+(y+z )  = z+(X+y)=(Xx+y)  +z | applyingii)
iv) inverse for +

X+X = (xXN=ax)VU(E=xnNx)=0
v) by hypothesis: associativity, commutativity and idempotency for *
vi) distributivity

X +(y *z) (XA-yA -Z )UHXANyNZz )
xNAay)yNnENaz)uExNAay)NE=xnz)
UEXxNY)NEN=azZ)UEXNY)NE=XN2Z)

=( ( xN=ayVUExNY) )  * ( xN=2 )U(=xN2)
=(X+y)*(x+z)

X*¥(y+z)  = (X  yNZ)U(XANA-yNZ)

(X  Ay )  MX U)  U XUy)NGMNz) )

(X Ay)N--(xXMz))UM(KXAyY)N(KMNz))
(x *y) + (x * z)

vii) unit element1
X*¥]  = 1 *x=xXx

= B® is a Boolean ring.

b) Le t x , y , ze  R
i) evidently: commutativity of U
ii) by hypothesis: commutativity and associativity of N
iil) associativity of U

12
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XUu(yUuz)= x+ (y+z+y*z )+x * ( y+z+y*2z )
= X+y+z+y*z+x *y+x *z+x *y *z

since this result is symmetric in x, y, z; it follows that
XU(yUz )=  zU(XUYy) = (XUy )UZ  | applyingi)

iv) absorption law for U
xUEXNy)=  x+X*y )+x * ( x *y )=x

v) absorption law for m
xNXUy)=  x * ( x+y+x*y )=x

vi) distributivity
sufficient to prove one law, as in a lattice they imply each other:
xNyuz )=  x * ( y+z+y*z )

= x *y+x¥*z+x¥y *z
= x *y+x *z+ (x *y ) * ( x *z )

xNy)uExnNz)
vii) zero element 0

xN0=  x *0  =0
viii) unit element 1

xU l=  x+1+x*1=1
ix) complementation

XU=AX =x+xX+D+x*xX+1 )=x+x+1+x+x=1

XNaXx =x *x+1D)=x+x=0

= R® is a Boolean algebra.

c l ) Le t B = <B, U, N, —, 0, 1> be a Boolean algebra with x , y € B and B® = <B, +, *, —, 0, 1>.
i) x * y  = xNy
ii) x+1  = xNAaDDuE=xnN l )==x
f l i )x+y+x*y  = x+y *@x+1)

= XA=EN=X) )UEXAY NX)
= XN=AyUXU-xNy

XU=-xNy  |absorption
= XUY

ThusB®® = B.

13
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c2 )Le tR = <R, +, *, 0, 1> be a Boolean ring with x, ye  Rand R® = <R, vu, 6 ,  —, 0, 1>.

DENaY)VExNY)  = *+1 )+ ( ( x+D*+ ( ( x *+1 ) * ( ( x+1 ) *y )
=X +Xx*Y )+ (y+x *y )+0=x+y

il) xNy=x*y
Thus R®® =RR. m

The theorem implies that certain properties of terms of a Boolean ring can be transformed into
equivalent properties of terms of a Boolean algebra and vice versa. What that means for the Boolean
ring unification algorithms, which are presented in this thesis, is discussed in Chapter 6, where we
confer several applications of our algorithms.

We decided to use a deterministic minimal form for terms in our algorithms. This has the effect, that
we are able to detect equal terms by a fast syntactical comparıson.The Boolean ring has such a normal
form after we have defined an ordering on terms. This is necessary because of AC properties of
addition and multiplication. In this thesis we use two versions of normal forms for Boolean rings, the
disjunctive normal form and the polynomial form, as introduced by Martin/Nipkov [MN 86].
The polynomial form originates in the disjunctive normal form. The difference will be pinpointed in
the following section.

Let B be a Boolean ring <V U C, +, *, 0, 1>, where C and V are disjoint set of symbols interpreted
as constants and variables. The disjunctive normal form of term in B is defined as I L  Din where

be  VUCU {1}. Every term can be easily transformed to the disjunctive normal form by applying
the distributive laws. The polynomial form can be computed from the disjunctive normal form by
collecting all factors of each element of V"into sums. In other words, the polynomial form is
Zygv CyVy» Where vy; is a product of variables ( I I , _{; x, U € V) and cy is a sum of products of
constants (XII. d.. d;; € OC). A polynomial term is homogeneous, i f  cg = 0. This means, that allj a y
direct subterms have variables in them.

Examples: t,is equal to t,
disjunctive normal form: t , = ( x *y *a )+ (x *y *b )+ (x *z )+ (a *b )
polynomial form: — t = (a+b ) *Gx*y )+ (x *z )+ (a *b )
homogeneous term: t z= (a+b ) * ( x *y )+ (x *z )

Notational Remark;
In this paper from now, we will sometimes omit the multiplication symbols and use only the
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essential parenthesis for Boolean ring terms. This is a common procedure, which enables a better
perception (example: t; = (a + b)xy + xz).

2.2 Unification

This chapter gives a survey of unification as needed in the sequel. For more detailed information see
Siekmann's survey paper on unification [Sie 88]. We sketch the unification concept and introduce
theory-unification. We discuss the attributes of Boolean ring unification as a special case of the
equational theory and the combination of Boolean ring and free theory unification as a case of the
combination of equational theories.

Unification deals with problems of the following kind. Let s, t be two terms. Compute a
substitution 6 of the variables in s and t by terms, whose application to the terms s and t satisfies
os = ot. This substitution is called solution of the equation s = t or unifier of s and t. More precisely
we can define substitutions with the help of some algebraic notions. A signature X is a set of
function symbols, where a non-negative integer, the ar i ty,  is assigned to each function f € }..
Function symbols with arity 0 are also called constants. An algebra A is a pair (A, X), where A is the
carrier and X. a signature, such that every n-ary function f assigns an operation fA: A" — A. With
T(V,  X) we denote the free term algebra over a signature £ and a countably infinite set of

Variables V. A substitution 6 is an endomorphism on T(V, X) such that {x € V | ox # x} is finite.
A substitution is usually represented by a set of variable term pairs 6 = {x, « t;, ..., Xp“ tn} with
x ;# t.. The set DOM(O) = {x,, ..., x ,} is called domain, the set COD(o) = { t ,  ..., t_} is the
codomain and the set VCOD(o) = Variables(COD(0)) is called the variables introduced by ©.

The cardinali ty of a substitution is the number of variables in its domain. The restriction of a
substitution © to a set of variables V is substitution o,yx = ox for x € V and 6yx = x otherwise. A
substitution A is an instance of a substitution ©, if A = TO for a substitution t. The substitution 6 is
more general than substitution A. In order to have access to subterms of term t, we use
occurrences [Hue 80]. The subterm of term t at occurrence x is denoted by t\r and the term
constructed form t by replacing the subterm at the occurrence x by term s is denoted as t x  « s].
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2.2.1 The Syntactic Th

The syntactic theory is the theory of syntactic equality, where terms are equal, if they are syntactical
equal. J. Herbrand [Her 30] was the first to disclose, that there is a most general solution, which is
unique up to variable renaming, to any equation s = t, called most general unifier of s and t,
indicated by mgu (s, t). Then A. Robinson [Rob 65] published a paper on the resolution principle, in
which he presented a unification algorithm and proved that it computes the most general unifier. We
will give a version of the Robinson algorithm by a set of rules being applied to the equation system
I ' = { s ,= t ; , . . . , s ,= t } .  The notation goes back to a similar set by Herbrand [Her 30] (x, y, z; are
variables and p,, q;, s;, t are terms and f, g are different function symbols). Let I" be an equation
system.

(i) Remove equations t =!  t from I".
(ii) Replace every equation f (py, ..., Pa) = f (q,, ..., q,) by the equations p, =q,,  ..., P ,=q , .
(iii) Substitute for every equation x =t, if x  Variables(t), all other occurrences of x in I" by t.
(iv) Replace every equation t = x by x = t, if t is non variable term.

Failure in these two cases:
(v) equation f (p;, ..., Pp) = 8 (Gy . . .»q)  in I .  < failure by clash >
(vi) equation x =tin I" and x occurs in t < failure by occur check >

An equation system I" is solved, if there are only equations of the type z; =s; (1 < i  <n) and all
variables z, are pairwise different and occur nowhere else in I". The most general unifier is the
substitution 6 = {z, « s,, ..., Z « S_}.
The representation of a set of related unification problems cannot only be achieved by an equation
system, but also by an multi-equation system. A multi-equation system (MS) consists of
multi-equations. A multi-equation (ME) t, = ... =t_is shorthand for the equations t, = ty, t, =1t,, ...,
t 1 = t  . Therefore any equation system can be easily converted to a multi-equation system using the
transitivity of the relation "=" and vice versa. A. Martelli and U. Montanari have
developed a unification algorithm [MM 79], which operates on multi-equation systems.

1 In the algorithm '=' is seen as a directed operation.
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Again we give a version of the algorithm as a set of rules (x, x; are a variables, s;, t. are terms, T is a
set of terms and r; is a term, which is not a variable; a ME is represented as a set):

(1) Merge:
Replace two multi-equations (ME, U x), (ME, U x) by the multi-equation (ME, U ME,)

(ii) Decomposition:
Replace a multi-equation of the form ME = {f  (s,, . . . , s ) ,  f ( t } ,  . . . , t  )} UT
by multi-equations {f (s,, ...,s )} UT ,  {Sp t ; } , . . . ,  (Sp t }

(iii) Occurs in check:
Let there be a set of multi-equations {ME,, ..., ME _} such that there is a variable x; and a
term t. in ME.
If x, € Variables(t,, )  for1 < i<n -1 ,  x € Variables(t,),

then stop with fail.
From the solved multi-equation system, where each multi-equation consists of a set of variables and at
most one non-variable term, we can easily construct the most general unifier. For a detailed account of
the used datastructures see Chapter 5.

2.2.2 Equational Theory

In the previous chapter we discussed syntactical unification, where function symbols have no
properties. We now consider unification, where properties of function symbols are defined by
equations on terms. An equational theory is defined as a pair (X, E), where E is a set of equations,
the axioms, and X is the signature, which contain at least the function symbols occurring in the
axioms. Such symbols are called interpreted function symbols and the remaining ones, those not
occurring in the axioms, free function symbols. We usually drop the signature in the definitions
above, when it is clear from the context. An algebra A satisfies E or is a model of E (A k E), if for
every assignment of elements in A to variables in an equation t, = t_in E, the corresponding equation is
valid in A. We say an equation is a consequence of E (E = s = t), if every model A of E also satisfies
s= t  For EF s = t  we will use s = ; t and instead of saying s = t is a consequence of E we will call
s and t E-equal. Note that the relation = is a congruence relation on the free term algebra T(V, X). A
finite set of equations I'= {(s;, t.) | 1 < i  <n} together with a theory E is called an equation system or
E-unification problem. A substitution 6 is a solution or an E-unifier of T, if os, = ;  ot. (1 < i  <n).
E-equality of substitutions is defined as 0 = 1, if V x € V 0x = tx. E-equality of substitutions,
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which is restricted to a set of variables W (V x W ox = 1x), is denoted by 6 =; © [W] and we say
o and t are E-equal on W. We say a substitution is an E-instance of a substitution t or T is more
general than 6 modulo the theory E on a set variables W (1 < ;  © [W]), if there exists a substitution A

with Atx = ;  ox for all x € W. The set of all E-unifiers for an E-unification problem I' is denoted by
Ug). A complete set cUg(I') of unifiers of I is a set satisfying correctness (cUg(I') € Ug(I)) and
completeness (Vo € Ug(I) 3 t e  cUg(): t Ss; 6 [VM)). Such a complete set is minimal or a set of
most general unifiers, if it additionally satisfies minimality (Vo, Te  cUg(D) t<go [VID] = t=0).
Minimal sets are designated as LU(I).

This following commonly known classification of equational theories and unification problems is
based on the cardinality of pU(I"): A theory E is unitary, if WU(I") exists and has at most one
element, finitary, if fU(I") exists and is always finite, infinitary, if WU(T) exists and is sometimes

infinite and nullary, if WU(T) does not always exist.
Finally we explain some terms, which are generally used to classify equational theories. An

equation s =g t is regular, if Variables(s) = Variables(t). An equation is a collapse equation, if it is
of the form t =¢ x, where t is non-variable term and x is a variables. A theory is regular, if all axioms
are regular and a theory is collapse free, if no axiom is a collapse axiom. A theory is cycle free or
simple, if a term never can be E-equal to one of its proper subterms, which is equivalent to
VxV't x € Variables(t) = Ug(x = t) = @. Note that a cycle free theory is regular and collapse fee, but
that the converse is false [BHS 87].

The Boolean ring theory is a special case of an equational theory. Its unification is unitary and there
are minimal algorithms, which will be presented in Chapter 3. The theory itself is neither regular nor
collapse free nor simple [BHS 87]. 

|

Syntactic unification, which can be seen as unifying equations, where just free function symbols
occur, will be called unification in the empty or free theory. This unification is also unitary and
there are minimal algorithms, which have been described in the previous chapter. The empty theory is
simple (occur check of Robinson algorithm [Rob 65]) and hence collapse free and regular.
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2 mbinationof Equational Theori

Sometimes we have unification problems, which involve function symbols of different theories.
These problems are handled in two totally different manners. On one side we have universal
unification [Sie 88], on the other the idea of combination unification algorithms. While universal
unification algorithms handle problems for a specified class of theories (input: an equation system and
axioms), the combination algorithms try to obtain a unifier for E = E, U E, by combining known
algorithms of E, and E,. Again two cases are distinguishable: (i) the axioms of the two theories may
have common function symbols like for associativity and commutativity [Sti 81] or (ii) the axioms of
the theories cover different function symbols. The second part of this thesis deals with combination of
theories with disjoint function symbols: We combine Boolean ring theory with free theory. This
combination is of particular interest, because its unification is decidable and finitary.

Let all theories E, contain the same set of free constants, but disjoint sets of function symbols. Let
s be a term, then s has the syntactical theory E,, i f the top-level function symbol belongs to theory
E.. A term is a proper E,-term, if s is an E-term but not a variable or a free constant. A subterm s of
t is called E-alien, if every proper superterm of s in t is an E,-term, but s is not an E.-term. A
subterm s o ft is an alien subterm, if s and t have different theories. Note that free variables and free
constants do not count as alien subterms. I f  s is also the maximal subterm with this property, we call it
direct alien subterm. A term is called pure, if it has no alien subterms, otherwise the term is called
mixed or general. An equation, a multi-equation or a multi-equation system is called pure, if only
pure terms of one theory are involved. A term t in the combination of theories E+ has the semantical
theory EI if a ‘maximally collapsed’ term t' with t' = ; _ t has the syntactical theory E;. Maximally
collapsed expresses that a term can not be simplified into a smaller term equal in the combination.

Examples:
Let E+ be our combination of Boolean ring and free functions symbols.
Then t = a + a + f(b) is a mixed term with alien subterm f(b).
Its syntactical theory is Boolean ring; its semantical theory the free theory, as t =p, t' = f(b)

19





Bernard Crone - Rawe Unification Algorithms for Boolean Rings

3. UNIFICATION ALGORITHMS FOR PURE BOOLEAN RINGS

3.1 Method of Successive Var iable El imination

W. Büttner and H. Simonis [BüSi 87] published this algorithm in 1987 with the intention to enable
the embedding of boolean expressions into logic programming. However the origin of the method
goes back to the 19% century, when G.Boole [ Boo 47] and later E.Schröder [Sch 90] conferred its

description. In the algorithm the most general BR-unifier ¢ of two terms t, and t ,  is computed.
This is accomplished by successive elimination of the variables occurring in the terms. Thereby we
obtain a smaller problem after each step. It is sufficient to present a version of it, which computes the
unifier of (t = 0)gp, as every equation of two terms t, =pp t, can be converted into t = t ,  +t, =p  0. In
the following t, a, b are terms of a Boolean ring theory BR.

Algorithm; "Var iable El iminat ion" Method

Input: term t of Boolean ring BR.
Output: most general BR-unifier ¢ of term t and 0.

l e l  Sk i l  de ine  A EEE GN EE  EE  SE .  SE  EN SD SD —— EE A e l l  l i  A SEE  EEE SERPENTIS  SEVER SEA

Step 1) If  t =5; 0, then 6 := { }  is mgu of (t =0)gp.

Step 2) If Variables(t) = @, then stop with fail.
Select a variable x € Variables(t) with t = ax + b and x € Variables(a, b).

Step 4) Compute the most general unifier 1 of the problem (ab + b =0)gp..
Step5) O:=1tT° { x«  b+x ' ( 1+a ) }  is mgu of (t =0)gp.

w
n 1] go
)

W
w

~
~

The algorithm is based on the following lemma.

mma 3.1.1:
Let x, x' be variables and a, b be terms in a Boolean ring BR and x, x' ¢ Variables(a, b).

6=T  { x  b+x ' ( l  + a)} is mgu of (ax + b = 0) ,  if T is mgu of (ab + b = O)pp
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Proof:
by induction on the number of variables occurring in a term t = ax +b.
1, Base Case:
[Variables(t)l = 1

Then t = ax, + b with a and b variable free elements of the ring, 6 = {x; « b + x’; (1 + a)}
and t = {}.
First we prove that 6 is a unifier:
o(ax; +b) =gp a (+x , (1+a )+b

=pp ab + ax’; +ax ' ;  +b
=pg ab+b |

=gr T(ab+Db)
The chain of equations above shows, that there is a unifier y, which satisfies y(ax,+ b) =p  0. Now
we have to prove, that each such unifier is an instance of the most general unifier ©.
I f A := {x, « Y(x,), then Ac =p  1x , ]:
Ao(x,) =g rb+AX ' ) *  (1 +a)

=g rD+ YX) * (a+1)
=gr 0 +a Y(X,) + ¥(X,)
=gR Wax; +b) + ¥(x,)

=pRr Y(Xy)

2. Induction Case:
Suppose the lemma is true for |Variables(t)l = n.
Let now be |Variables(t)l =n + 1.
Then term t = t ; x_ . ,  + t ,  and Tis a most general unifier of ( t , t ,  + t ;  = O)pp With
Variables(t,) U Variables(t,) = {x,, ..., x_}. We will show that 0=7 { x qect+x (1+ t,))
is a most general unifier of (t = 0)g, with Variables(t) = {x,, ..., x ,  x_,,}.
Analogously to the base case we can proof that 6 is a unifier with o(t;x_,, + t5) =p  T (tt, + t,).
Let t be most general unifier of {(t;t, + t,) = pp
then o(x,) =1T(x,) for I < i<n

O(Xn41) =7 ( t )  + (T(t) + 1) x'„,1 Mgu of t and 0.

Again we have to prove, that every unifier y of the unification problem is an instance of the most
general unifier 6. Let y, and A, be the restrictions of y and A to the variables {x,, ..., x_}. Using
induction hypothesis we conclude ¥,=p  AT. Let A be defined as A(x,) = A(x,) for 1< i<n  and
Ax, +1) = V(X,1). As 6(x,) = T(x.) for 1< isn, it is sufficient to show, that y and Ac agree on
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variable x__,.
A(x ,,) =gr AT(L) + (AT(t) + 1) A(x")

=pr At(t,) + AT(t) + 1) V(X.)

=gr Y(t) + (¥(t)) + 1) ¥(x,)
=gr Vz) + V(X)  + V(X)
“BR YıXp+1) Em

This lemma verifies, that the algorithm computes the most general unifier. Yet we still have to

prove, that the algorithm terminates. This is achieved by proving, that the only recursion (step 4) is

finite. Each recursive step decrements the variables occurring in term t. Obviously the recursion has to

end, as a term's variable set is finite. In fact the recursion terminates, i f  one of two conditions is

satisfied: check 2) no more variables occur in examined term t; check 1) the term created in the

recursion is equal to 0, which initiates the finite resubstitution into the solutions (step 5).

This algorithm has one non deterministic step: the selection of a variable. This selection has a

decisive influence on the number of necessary recursions and the termsizes of codomain

and recursion step terms. A recursion step term is a term constructed for equation to be solved in

the recursion step of the algorithm (step 4). The termsize relates to storage space needed and
influences calculation time, as it is more difficult to acquire information out of bigger terms. The
number of recursions is equivalent to the cardinality of the unifier and thereby effects the application of

“the unifier. Obviously the recursions influence the execution time of the algorithm. Therefore special
care is taken to determine a criterion for variable selection resolving the non determinism. As the
termsize of a codomain term directly depends on the termsize of the previous recursion step term, it is
sufficient to keep recursion step terms as small as possible. Terms are represented in the mentioned
disjunctive normal form in the implemented version of the algorithm. The number of summands of a
term in disjunctive normal form is a good measurement of its size. We choose a variable selection
criterion, which keeps such terms as small as possible:

Occurrences of variable in as few as possible summands of term in disjunctive normal form.
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Now we show, how the occurrences influence the size of the next recursion step term:
Let us use Sum(t), the number of summands of the disjunctive normal form of term t, to measure
the size of a term. We assume that terms constructed in the recursion step will not be simplified.
Lett, t,, a, b be terms and x a variable of a Boolean ring. If we compute a unifier for t = 0 with
t=ax + b and x ¢ Variables(a) U Variables(b), then we can calculate Sum(ab + b) of recursion step
term t,= ab + b from the number of summands Sum(a) and Sum(b) of terms a and b.

Sum(t) = Sum(ax + b) = Sum(ax) + Sum(b) = Sum(a) + Sum() *
1 £Sum(a) < Sum(ax + b) A 0 <Sum(b) < Sum(ax +b) — 1

Sum(ab + b) = Sum(a) * Sum(b) + Sum(b) | Sum(b) = Sum(ax +b) - Sum(a) by *)

= - Sum?(a) + (Sum(ax + b) - 1) * Sum(a) + Sum(ax + b)

The extreme can be calculated by deriving Sum(ab + b) with respect to Sum(a).
= maximum at Sum(a) = (Sum( t ) - 1 ) / 2

maximum value is Sum___ (ab + b) = (Sum(t) + 1) / 2)? + Sum (t)

If we have a negated quadratic function with a maximum near the middle of its domain, then the
minima are at the boundaries of the domain. Thereby the recursion step terms are the smallest at the
lower and upper bound. As a variable selection criterion, which has to keep terms as small as
possible, we select lower bound, occurrences of a variable in as few as possible summands,

because this fact can be determined faster. m

Examining the calculation of number of summands Sum(ab + b), one has to be reminded, that is the
number before simplifications. So in reality Sum__ is only the upper margin. Nevertheless we are
still able to use the result. This has two reasons: Primarily simplification process is time consuming
and storage is affected by creation of intermediate terms. Secondly simplification depends heavily on
specific cases, which makes it impossible to get a good general estimate. In the following example we
show, how gravely the selection of the variable influences the behaviour of the algorithm. Two
different selection sequences are presented. In the first one we apply our criterion.
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Example:

Let C = {a, b, c, d, e}, V = {x, y, z, x", y', z'} and t a term of the free Boolean ring BR over

<C,+, *, 0, 1> generated by V. Let R be a sequence of variables and tp a recursion step term,

where R symbolizes the already executed recursion steps with the variables selected, accordingly

unifier Up and Oc(t, x) the number of occurrences of variables x in products of term t.

t =xa+yad+yae+zab+ zc + zd
Oc(t, x) = 1, Oc(t, y) = 2, Oc(t, z) = 3

I .  run: R,  = XZ

t, = ( a+1 ) * ( yad  + yae + zab + zc + zd) | simplifies to

=pp Zac + zad + zc + zd
Oc(t, z) = 4

t,, = ( ac+ad+c+d+1 ) *0  | simplifies to

=gr 0

U, = { x«  x '+yad  + yae + z'ab + z'ac + z'ad + x'a
ze  Zz +2Zac+zad + z'c + z'd }

2.run: R,=yz

t, = (ad + ae + 1) * (xa + + zab + zc + zd) | simplifies to

=pp Xa + xad + xae + zab + zabd + zabe + zacd + zace + zad + zade + zc + zd
Oc(t ,x)=3,0c(t ,z2)=9

ty, = (ab + abd + abe + acd + ace + ad + ade + c +d  + 1) * (xa + xad + xae) | simplifies to

=gg Xa + xab + xabd + xabe + xac + xacd + xace + xad + xade + xae

U,= {x x'a+x'ab + x'abd + x'abe + x'ac + x'acd + x'ace + x'ad + x'ade + x'ae
z « z' + x'ab + x'abd + x'abe + x'ac + x'acd + x'ace + x'ade + z'ab + z'abd+ z'abe

+ z'acd + z'ace + z'ad + z'ade + z'c + z'd
y « x'+ x'ad + x'ae + z'abd + z'abe + z'acd + z'ace + z'ad + z'ade + y'ad + y'ae }

This is a typical example; in the first run, where our criterion is used, we get smaller terms and even

a recursion step less, which in turn generates a unifier with one domain variable less. A comparison of
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the unifiers shows, that the codomain terms of the first run are less complicated. Because of those
reasons the unifiers of the first case are better applicable.

If we examine the unifiers computed by this algorithm we are able to detect the following
properties. Although one would assume, that unifying a term with n variables leads to a unifier
cardinality of n, this is not always the case. Recursion can stop earlier, if simplification produces the
trivial equation <0 = 0>,, or if simplification eliminates variables in a recursion step term. Therefore
the cardinality of the unifier is less or equal to the variables in the term to be unified. The
number of variables introduced is equal to the cardinality of the unifier; one for each domain
variable. Another feature is, that we are able to detect the variable selection sequence of the
"Variable Elimination" method in the unifier. The selected variables are the domain variables of the
unifier. By Lemma 3.1.1 each domain variable has at most one related (renamed) variable in the
variable set of the corresponding codomain term. This related variable does not occur in variable sets
of codomain terms of later selected variables. Yet the related variable may occur in variable sets of
codomain terms of earlier selected variables. Therefore often we can deduce the selection sequence
from the variable sets of codomain terms. Regarding the variable sets of codomain terms we can say,
that those sets belonging to earlier selected variables are often supersets of variable sets of codomain
terms of later selected variables. So the codomain variables are not totally mixed, which is profitable
for application of a unifier.

Until now we have regarded the cases, where there is a unifier for the problem. What is, if there is
none? Then this algorithm will select one variable after another and create the corresponding recursion
terms. At the end we will have a term without variables, which is not equal to 0, and stop with failure.
So in this case we would have wasted a lot of computation time. Therefore, if  it is likely that terms are
not unifiable, we would like to apply a unifiability test first. However is there such a test? The answer
is yes, such a test was developed by G.Boole in 1847 [Boo 47]. This test is incorporated in one of the
following Boolean ring unification algorithm.
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3.2 Method of Deducing from a Particular Solution

U. Martin and T. Nipkov [MN 86] proposed this idea in 1986 for application in set theory and in
propositional calculus. The main idea of this algorithm is to find a particular solution for an equation
(t,=t,)pp and to generate the general solution from this particular solution. The first one to give an
account of this method was L. Léwenheim [Löw 08]. He presented the following theorem:

Theorem 3.2.1:

Let t, and t, be two terms of free Boolean ring BR over the Boolean ring B and let b,, ...,b_ be
elements of B and Variables(t,) U Variables(t,) = {x,, ...,x_} the used variables.
When Ot, =gp Ot, witho = { x  b,| 1 < i  <n}
then the substitution

T :=  {x,« X ;+ Wi, + t )  * x ,  +b) 1< i<n ] }  with y= {x .« x',| 1 Si <n)
is a most general unifier of t, and t,.

Example:
Le t t ,  =ax+byandt, =a. A solution is 6= {x«  1,y« 0}.
Then © = {xe x '+ (ax '+by '+a)  (x'+ 1), y«y  + (ax'+by + a) (y' + 0)}

=pp (Xe x "+bxy  +by'+tax'+a, yey +ax'y + by' + ay'}
is a most general unifier of t; and t,.

Proof of Theorem 3.2.1:
Lstep: T=  {x;« x , + Y(t; +t,) * (x ' ,+ b,)| 1 £ i<n }  with y= {x,« xl 1 < i  <n}is a unifier of
t ,andt , ,  i f 6 = {x,«< b l  1 < i  <n} is a unifier. |

We can split (t,+ t,) into the homogeneous part t, _ and the variable free part c.
Then we can write t,+ t,=gp tom +C.

ot, “BR 7 )  — Olpom * C “BR 0 «< Ol ıom “BR C

T+)  =BR Thom © =pr {Xi X + Y(t,+ ©) * (X; + 0x)  1< i<n ) t ,  +c

=pr (x ;  (1 +1 0 + OX + (+  COX;| 1 S i<n }  +c

=gr (x;— WA + tom +Ox+  (tom +o )ox ) l 1< i<n } t  +c
=gr Y{X;« ((1 + tom * COX;+ (t,  +c)ox)|1<i<n}y +c

“BR (thom (1+  thom +c )  + (thom +C) Oty om) +C
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=BR Yom (1+  bom * c) + (tom +C)C)+C

=BR YC om + Clpom + O+cC

=r  0 =
2, step: Now suppose there exits a d such that 6t, =pp Öt,. Now we have to prove, that it is an
instance of the most general unifier t .  Let Ax'; = öx,for 1 < i  <n.

AT =pp Mx ;  xX + Y(t; + t )  *(x';+ b ) | 1 < i<n }
=pp (x;  AX +Ay(t; +1) *(Ax',+ b )  1 < i<n ]
=pp {X;« 0x,+ d(t, + t )  * (6x, + b ) | 1 <i <n]
=pp (X;¢ 0x, +0 * (0x;+ b )  1 < i<n }
=gr (x;  0x. 11 < i <n }
=p Ölxz , - . ,  x]  m

This theorem allows to compute the general solution from a particular one. Several methods for
determination of a particular solution are known. I have implemented two of these methods, which
will be presented in the following paragraphs. For other methods consult S. Rudeanu’s book on
boolean functions and equations [Rud 74]. Both implemented versions use the polynomial form of a
term. The first one looks for a particular solution in a subring generated by the coefficients of the term,
the other one in a subring generated by the constants occurring in the term.

To explain those methods we recall some definitions and a theorem and present two lemmata:

Definitions:

Let B be a Boolean ring.
A subset D = {d,, .. . ,d_} o f B with d, # 0 is called a basis for B, if

1) each element b € B can be expressed as linear combination of elements of D:
b=2 . ,  bd; with b, € {0, 1}

2) the elements of D are independent:

0 = 2)cicn bid; © V in  0; = 0.
The elements of D are called orthogonal, if and only if

dd  = 0 fori  #j.
So a subset D = {d,, ..., d_} of B is an orthogonal basis, if D is a basis for B and its element
are orthogonal. Let us call the d. the basisvectors of B.
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Lemma 3.2.2: If the elements of a set are orthogonal, then they are also independent.

Proof:
LetD = {d,, ...,d_} be orthogonal.

= b.d; = 0 Id; #0
e&b;=0 m

Theorem 3.2.3:
Let B be a Boolean Ring <C, +, *, 0, 1> with an arbitrary set C and forall G ¢ C let

dg = (Toe 8) Thea  + 1)
Then the non-zero dg are pairwise distinct and form a unique orthogonal basis of B.

Proof;
Experts can deduce this theorem from standard results about semisimple Artinian rings - see
[Hers 68]. We present a direct proof:
a) orthogonality:
dg * dg =dg #0 and, if G # H, then dg * diy = 0, as there is at least one element c € C, which
contributes c to one vector and c + 1 to the other one.
b) linear independency can be deduced from orthogonality by Lemma 3.2.2.
c) distinctiveness:
Let G # H and assume 0 # de = dp. Then dg * dg = dg * diy. By orthogonality da =0. &
d) every element be B is a linear combination of basis D;
Let b = Zc  bycy with by € {0,1} and cy =II yc.

We have cy = cy * 1 = "  cy Zy dy =?  Zwcu dw as linear combination of D.
Thus b is a linear combination of D.

Proof by induction: If C = {c}, then 1 =c¢ + (c + 1). Now let C' = C u {c} with non emtpy C.
Then 1 = Zwec dy =((1 +c) +c) wee  dy = wc  d'y.
d2) cydw = dy. if U © W and 0 otherwise
If one element c of c,, is not in w, then c + 1 appears in dy, making cydw = 0. Otherwise all c
of c,, appear as c in dy,making cdy, = dw.
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e) uniqueness;
We have to prove, if P is another orthogonal Basis then P = D.
Suppose pe  P .Thenp=1*p=  Zwec pd.  There has to be at least one subset WC with
pdy, # 0. As D is orthogonal basis, pdy, =! )  dy, and as P is one, pdw =p. Thus p € D and P cD.
By applying the above argument interchanged, we have D © P. and thereby P =D.

el) I f p = Zw—c bwdw With by, € {0, 1}, then for U CC pdy = bydy € {0, dy}
Multiply the equation with dy;, we have pdy; = dyZwec bwdw = bydy, which is equal to 0,
if buy = 0 and equal to di; otherwise.

|

Lemma 3.2.4:

Let B be a Boolean Ring <C, +, *, 0, 1> with a set C of free constants and for all G ¢ C let

dg = 4) pe g) (Tena (h + 1))

Then the d j  are pairwise distinct and form a unique orthogonal basis of B.

Proof;
This lemma can be deduced from Theorem 3.2.3. We just have to prove, that there is no vector dg,

‘which is equal to 0.
Let b be element of boolean ring B. As neither ¢ * be C nor (c + 1)b can be expressed by the
generating set C without element c, no element ds = (c + 1) ( I ,  G.gec 8) (Ihe og nse Ch + 1)) and
no element da =c (ge, + 8) Iheo nee (N+ 1)) canbe equal to 0. m

Examples:
a) Theorem 3.2.3

Let C= {a, b, a +b}
d i=a *b * (@+b)=0  d ,=a *b * (a+b+1 )=ab
d ,= (a+1 ) *b * (a+b )= (a+1 )b  d ,= (a+1 ) *b * (a+b+1 )=0
d ;=a* (b+1 ) * (a+b )=a (b+1 )  de=a* (b+1 ) * (a+b+1 )=0
d , „= (a+1 ) *  ( b+1 ) * (a+b )=0  da= (a+1 ) * (b+1)* (a+b+1)

= (a+1 ) * 0b +1)
Then basis is se tD = {d,, d,, ds, dg}.

b) Lemma 3.2.4
Le t C= {a,c}
Then basis is set D = {ac, a (c +1), (a +1) c, (a +1) (c +1)}.
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Now we present two methods to determine particular solutions. We recall an approach suggested by
U. Martin and T. Nipkov [MN 86], which is based on Theorem 3.2.3, and present our own
approach, which relies on Lemma 3.2.4. Even though the lemma is derived from the theorem,
technically Martin/Nipkov have to execute an additional test (non-zero condition). Therefore we begin

with a detailed explanation of our approach in Chapter 3.2.1 and then recall the Martin/Nipkov method
in Chapter 3.2.2 as a modification.

3.2.1 Particular Solution in a Ring Generated by Constants

The first approach to find a particular solution for the equation {t = O)pp, is to look for solutions in
the Boolean ring BR. Yet surely one can restrict the search space to a ring, which subjects to our
specific equation (t = O)pp- This would be a free Boolean ring B over the ring A = <C, +, *, 0, 1>
generated by V, where C = Constants(t) and V = Variables(t). Nevertheless the method presented here

restricts the search space even further. We look for a solution in Boolean ring A. This is derived from
the fact, that the existence of a most general unifier implies the existence of a ground unifier. In a
ground unifier all codomain terms are ground, i.e. the terms contain only constants. The proof for this
fact is obvious, as every variable in the most general unifier can be instantiated by a constant.

The computation of a particular solution © of (t = O)pp is equivalent to solve (0 = 6t)gp.We will
determine another equivalent set of equations and present an approach to solve them:

Let t be a term in the polynomial form t = X;_y c;vyy, Where vy; = I I , i ;  X, x € Variables(t) and
Cy = Ze 1.ml] je 1.n d j  4 ;  € Constants(t) and let A be a Boolean ring <C, +, *, 0, 1> with
C = Constants(t). By Lemma 3.2.4 set D = {d j  = ( I le g) Uli cog + 1G  SC} is the
orthogonal basis with 2° elements. Because every ground solution © can be represented by the

basisvectors of the orthogonal basis, 6 = {x « Z;_x5dg | x € Variables(t)} with d j  € D and
xg € { 0 ,1 } .

Let o be a ground unifier of t and 0. Then we have the following equation chain.

0 =ot =0Xyycyvy
= Zuev Cu I L  y OX | x « ZGeC xgdg (represented by basisvectors)

= Zyev Cu l ieu CoccXado) | the orthogonality of the basisvectors implies:

l d  *dy=da if G=H
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= Zyev Cu Cosc do [ ic u Xa) | integrating c ;  into each sum

= Zyev Zgec Suds Hie u Xo
= Zgec Zuev Cuda eu  Xo

As the basisvectors "ds" are defined to be independent, we can split the equation into 2/0 equivalent
equations:
V ie  C 0 =Zyev cud ;IL ux
The term is divided into an inhomogeneous and a homogeneous part. Hence
Vie  C 0 = cud; + yey veg Cudi I ie u Xi or equivalently

Vie C  cgdi=Zycy yup CudillieuX;
Every c, are expressed by the basisvectors of the orthogonal basis:

¢; « ZgecYigdo Yıc = (0.1)
Hence

Vie C  (EgecY pada) di = Zuev,ump Eosc Yucdo) dillieuX;
The orthogonality of the basisvectors implies that

dg *dy=0 ,  ifG#Hand
dg *dy=ds  i fG=H

Applying these equations we get

Vie C  ygd = Zusv,umg YuldilheuX
Division by d,implies

Vic C Yoi = Zuev,u= Yui l le u Xi

Three different conditions can occur, if we try to solve these equations.

cl) yg; =0 => x ;=0fora l l xe  V.
C2) yg; =1,a l l  yy; =0 => there is no solution, as 1 = Z;_y yg 0 has no solution.
c3) yg; = 1, some yy; = 1 = there is always a solution

From the [], i ;  x; with yı; = 1 select the one with the smallest set of variables S(U") © V.
For all variables x’ of S(U'), set x’, to 1 and the others x" of V\S(U"), set x", to 0.
This leads that all other II, _{; x; with yy; = 1 evalute to 0, as they contain a member x",.

If there always has been a solution, we create the ground unifier ¢ from the independently
computed results.

o={xeZ _ - xd l x  € V} Mm
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Example:
Le t t=ax+ by +a.
Then our Boolean ring A is <C, +, *, 0, 1> with C = {a, b}and the orthogonal basis is the
set D = {d,, d,, d;, d,} with d, = ab, d, =a  (b +1 ) , d ;  = (a +1) band d, = (a +1) (b +1)}.
Then x can be expressed as x = x,d,; + X,d,+ X4d;+ x,d, and the elements y and a acccordingly.
Note that for simplification purposes, we did not choose the set indices of x and d as above.
0 =ax+by+a

= ax,d, + ax,d,+ ax,d,+ ax,d, + by,d, + by,d,+ by,d,;+ by,d, + ad, + ad,+ ad,+ ad,
Now the independency of the basisvectors d. allows us to split the equation in four other ones:
<=> V .1s i s4

0 = ax.d. + byd. + ad, l a=ab+ab+a=d ,+d,
I b=ab+b+ab=d ;+d,

<=> V.1<i1<4
0 =(d,  + d,)x.d. + (d; + d,)y;d. + (d, + d,)d; | orthogonality of d,

1*d ,=1%*x ,d ,+0 *y ,d ,  l 1=1*x ,+0%*y ,  =x ,  0=y,

<=> 1*d ,=1*x ,d ,+0 * yodz <=  1=1*%,+0%y ;  <=>1=x ,  0=y ,
0*d ,=0*x ,d ,  +1 *y,d,  0=0*x ,  +1 *y ;  0=x ,  0=y ,
O0*dy=0*x ,d ,+1 *y ,d ,  0=0*x ,+1%*y ,  0=x ,  O0=y,

<=> x=ab+a (b+1 )=ab+ab+a=a
y=0

The special solution is
0 = {x «a  y«0 }

The most general unifier is
T = {x «x '+  (ax '+by '  + a)(x' + a)

y<y + (ax’ + by' + a)(y' + 0)}
=pg {Xx «x '+ax '+bx 'y '  +aby' +a

y «y '  + ax'y' + by' + ay'}

Above we have outlined an algorithm, which computes a ground unifier 6. The following facts
were used to improve the implemented version of the algorithm: |

1) If we collect the independent solutions x « X._~ x.d; for each variables, we just have to consider
such presolutions x, with value 1. The ones with value 0 do not contribute to the solution, as
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multiplying a basisvector with 0 is equal to 0. Now, if the inhomogeneous part of the term t 1s
expressed by basisvectors d.., equations of basisvectors d; with j #1' (case cl) are not needed, as
the X; are equal to 0 for every x € V. Thereby we create only the subset of the orthogonal basis,
which is necessary to express the inhomogeneous part.
2) After the construction of the polynomial form of term t the homogeneous part is sorted in a
fashion, which is optimal for case c3, where the independant parts of a particular solution are
computed. This means, that the cy.vy. with a smaller variable set vy, are in front of the
term-argumentlist. Under such circumstances the first c v ,  which satisfies any condition, is
always the one with smallest variable set of all satisfying cv .

Now we give a detailed account of the whole algorithm with our modifications.

rithm; "Basis of Constants" Method

Input: term te BR, a free Boolean ring over Boolean ring A = <C, +, *, 0, 1> generated
by V such that V = Variables(t) and C = Constants(t).

Output: BR-unifier ¢ of term t and 0.

i i a  EET  S i  A  SS IE  A SESE SSS SEE ES   ES— — —— —— pe t  SEAS l l  A Se  T IE  EE  EE  EE  A  CES—

|
Step 1) Convert t into the polynomial form |

Step 2) Split t into homogeneous and inhomogeneous part. |

hom * Lye,  U “uVu- |

Linhom = Co |
Step 3) Sort t, with the criterion “smallest” v ;  sets. | |
Step4) Compute the part D' of the orthogonal basis D of initial Boolean ring A, |

which is needed to represent cg. |
D'= {dg= l cc8  Che th +1) 1G © CAcyds#0) |

Step5) Foralld e D', if set {Ul cyd #5, 0} empty, then fail |
else let N(d) = first element of {Ul cyd#pp 0} in order of t ,| |

Ground unifier 6 consists of elements |
(x Z {d |de  D ' , x € N(d)} for each x € V. |

m“

ET — A j——— — Sa  ——— ——— SE A Sohn  EE  A lsde— — EE EEE EEE ETT  SE  i t  i l  EE  CE  CERI  EE  SES
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Example:

Lett = ayx + ax + byx +a.
1) t=(a+b)yx+ax +a
2) tom =(a+Db)yx+ax

Linhom =a
3) thom 3X + (a + b)yx
4) D' = {ab, a + 1)}
5) N(ab) = ( x } , as ab * a =pp ab pp 0

N(a(b + 1)) = { x } , asa (b+1 ) *a=gga (b+1 )#g ,0
6 ={x«ab+a (b+1 )=g ;ay«0 }

3.2.2 Particular Solution in a Ring Generated oefficients

This algorithm, which was presented earlier by Martin/Nipkov [ MN 86], is similar to the one
above. We also look for a particular solution to equation t =g5 0 in a Boolean ring A <C, +, *, 0, 1>.
The difference is that C is not the set of constants of term t, but the coefficients of term t in polynomial
form Xy;_y ¢;vy- Now we have to decide, if we can apply Lemma 3.2.4 as in the previous algorithm
or if we have to use Theorem 3.2.3. To apply the lemma the coefficients have to be free constants.
Because this is not necessarily true, we have to base our algorithm on the theorem. Thereby the
orthogonal basis is set D = {da = ( eq  g) ( I l  gh +1 )  IG cK  = {cy l cye  term} A dg #0).
We may still use the algorithm sketch of the previous chapter, if we extend the computation of the
basisvectors with the test mentioned above. The implemented version of the algorithm is upgraded by
some improvements. For explanation let us recapture the final part of the algorithm, where we solve
these independent equations:

Vie C ygd; = Zycy usp Yuli eu Xi
<=> V ie  C Yai = yey  Usd Yui ILeu X;

We know, that three different conditions can occur while solving these equations.
cl) yg = 0 => x .=0fora l lxe V.
C2) Yai = 1, all y y=0  => there is no solution, as 1 = Zuev,uxg 0 has no solution.
c3) yg; = 1, some yıı = 1 => there is always a solution
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As we use basisvectors based on the coefficients, we are able to relate each case to a set of
basisvectors.

c1) Dj = {dg= (Cg+D ( Lc 8) (Teng (+  1) IG = C' =C \ { cg } }
c2) D, = {dg = {cg [Mico th +1) AC =C \  {cy}}

c3) Dy = {dg = {cy {§ Pye g) Them h+1 ) IG  cC=C\  {cg}}

We already know, that each of the cases fulfils a different task in the algorithm. The equations of
case c1 do not contribute to the solutions, the ones of case c2 conclude non-unifiability and only the
last set determines the ground unifier. This is the foundation for several improvements:

1) Regarding case c2, we discover, that the set D, contains only one element. This makes it
extremely suitable for a unifiability test. In fact this test has been discovered already by
Boole [Boo 47] and is known as Boole's test:

Let term t = 2 ;_  CyVu be element of Boolean ring BR.
If cg * [yey uzg Cy + 1) =p  ©, then the t and 0 are unifiable.

This test is integrated into the procedure, which determines the basisvectors. Thereby
non-unifiability is detected before the time consuming task of solution collection.

| 2) Just like in the other implementation, we do not create equations of case cl. Accordingly just
subset D' =D ,  U D, of the orthogonal basis is constructed. This improvement can be enhanced. In
case c3 we check the summands cv ;  of the homogeneous term part to obtain the "smallest" vy,

~ with cyd; # 0. I f  we use the simplified basisvectors d,, we really would have to execute all the
multiplications. However the d, are products of ¢;, which are inverted or not inverted ¢;;. We know
that by orthogonality c,;.d; is only then not theory-equal to 0, if basisvector d, is a product with
multiplier c,, in non-inverted form. Our idea is to store the basisvector together with the "smallest"
vy part of a non-inverted cy of the basisvector. Thereby a direct link is established between the
equations to be solved and the v ;  parts necessary for the collection of the solutions.
To enable a fast detection of the "smallest" vy;, the homogeneous part is sorted in that fashion in
advance.
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Algorithm; "Basis of Coefficients" Method

Input: term te  BR, a free Boolean ring over Boolean ring A = <C, +, *, 0, 1> generated
by V such that V = Variables(t) and C = Coefficients(t).

Output: BR-unifier ¢ of term t and 0.

Step 1) Convert t into the polynomial form
t = Zyey CuVy- | C is the set of cy.

Step 2) Split t into homogeneous and inhomogeneous part.

thom = Zug, Us  CUVU:

Linhom = Co
Step 3) Sort tom With the criterion "smallest" vy; sets.

If co * Iyev, usp (Cy + 1) #pr 0 then fail.
b) Compute the part D' of the orthogonal basis D of initial Boolean ring A,

which is needed to represent cy
D'= {dg =Cg (Iyeq g) ULcong+1D) IG  €C  =C \  {cy} Adg #5g 0}

c) Le tH= { (dg ,  Vy) l d ;  € D'} with g = first(G) in order of t,
and gv, a summand int, .

Step 5) Ground unifier ¢ consists of elements

|
|
|
|
|
|
|
| Step 4 a) Apply Boole's test
|
|
|
|
|
|
|
| (xe  Z{dg |x € v,, (dg, vg) € H} foreach x € V.

Lett =ayx + ax + byx +a.
1) t = (a+b )yx+ax+a
2) tom =(@a+byx+ax t t ,  =a
3) thom =ax+(a+Db)yx
4) a) a * (a+1 ) * (a+b+1 )=5 ,0  = unifiable

b) dyapy=2a*a*  (a+b) =pra(b +1)
d, =a*a*(@a+b+1)=pgpab

d, =a * (@+1) * (@+b+1 )=3 ,0
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D' = (dyasby d,}
c) H = {<d, 4 )  {x}>, <d,,  {x}>}

5) 6 = ( { x -aßb+1 )+ab=ppa ,  y«0 }

3.3 Some Additional Constraints

When we work with those three different Boolean ring unification algorithms, we discover that they
can be improved. Our work in that area can be splitted in three fields: detection of non-unifiability,
direct generation of a general solution and direct generation of a special solution.

For the detection of non-unifiability the first idea is to modify Boole's test [Boo 47]. However
this test is quite time expensive and expects the terms to be in polynomial form. In case of the
recursive algorithm this means the term to be tested would have to be converted from disjunctive into
polynomial form. Therefore another much faster test is used. This test is able to detect many
non-unifiability cases. It originates in the recursive algorithm. The non-unifiability of term t with 0 is
tested in two steps. First we check for t #5, 0 and then we detect non-unifiability, if we find no
variables in term t. As we use simplifiers for terms, the first examination is really just a syntax check.
The variable check, on the other hand, is supported by the theorem proving environment HADES
[Ohl 88]. Consequently this check was introduced to the iterative algorithms. Note, that a fail of this
test does not imply unifiability of the term with 0.

There are two criterions, which allow an immediate calculation of a general unifier.
1. Let x be a variable, t =t, + x be aterm and x ¢ Variables(t,).

Then tT := {x « t,} is the most general unifier of t and 0.
2. Letx be avariable,t=x*t, beatermand x ¢ Variables(t,).

Then 1 := {x « x" + x't;)} is the most general unifier of t and 0.
Proof:
1. As (t, + x = O)gp is equivalent to (t, = x)pp, We can recall a proof which is valid for every
theory E [BHS 87].
Let mgu be t = {x « t;} and 6 be any unifier of x and t;, where x ¢ Variables(t,).
Then 6 =g o t  [ Variables(x,t,)], as OTX =g Ot; =p ox and Ooty =; oy fory #x .  ®

2. Let tT = {x « x" + X't;) be mgu and let 6 any unifier for the equation (t, *x = Über:
Then 6 =pp At [Variables(x,t,)] with A=06 + {x'« x}, as
MX =0¢  {X'& X}(X' + x't;) =pp O(X + Xt,) =pp OX + OXt; =pp OX and
MY =gp Ay =pp Oy fory #x .  =
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Those checks are implemented in all three algorithms. In the recursive algorithm these checks are
also performed during each recursion step. The specific place in the algorithm is just before variable
selection. Obviously a second possibility would have been to use the checks for improvement of the
variable selection criterion. However for our application we choose to improve the time factor rather
than to stick to the modularity concept.

We found two criterions, which allow the computation of a special unifier.
1. Let t = X, t. be a term in disjunctive normal form, such that term t is homogeneous,

i.e. Variables(t) # @ for every i.
Then 0 : = { x«  01x € Variables(t)} is a unifier of t and 0.

2. Let t be in the polynomial form Xj; _y cv.  If there is a subterm cy; vy, which consist only of
variables and there is no other subterm with a variable set, which is a subset of variable set vy,
then we can select variable x’ € Variables(vy,) and

0: ={x  «cy  l x=x
x «1  Ixe  Variables(vy)\ {x'},
Xx «0  Ix e Variables(t) \ Variables(vy;)} is a unifier of t and 0.

Example: t =xy+ (a+b )xz+bvz+z+a+e
o= {x«a+e ,y«1 l , z<0 , v« 0}

Proof; |

The methods for the proof is application of the unifier:

1.  o t  = Oc  1..n GL
=BR 2 .  1 .q  Ot  | as Variables(t,) = Variables(t)

BR 2ic 1.n 0;
=gR 0 [ |

2.0t = OXycy CyVu

=BR ZyUsv OCyVy

=pR OCg + OV + 2UeV.U«B.U=U' OCUVU | application of unifier 6
— %*
=gR Sg + Cg * Hex)  1 + Zuev.u.uu 0
=BR Cg * Cg
=pr0 =
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These criterions are not applied in the recursive algorithm. Even though one would be able to
generate the most general unifier using Löwenheim's theorem [Löw 08]. This has three reasons: First
the second criterion is very specific and second this criterion is based on the polynomial form. This
information is not directly available, as the "Variable Elimination" method uses the disjunctive normal
form. Yet most importantly it is valid for both criterions, that computation in this fashion is not
necessarily superior to one by the recursive algorithm. A detailed comparison of the methods is given
in the next Chapter 3.4.

3.4 Comparison of the Methods

Comparing the three algorithms the first observation is that there really are only two different
approaches as suggested by the paragraphing of this thesis. The main idea of the
"Variable Elimination" method is a consecutively narrowing of the solution space. We will refer to
this approach as method 1. The other two use properties of the Boolean ring theory, which allow the
construction of a most general unifier from a particular solution. We first compare the two approaches
of the particular solution method.

Let us distinguish the differences with a more complex example.
t=bc + ab + ax + x + bxy + ay + acy
i) "Basis of Constants” method (method 2)
D t  = (bc + ab) + (a + 1)x + bxy + (a + ac)y
2) tom = (a + 1)x + bxy + (a + ac)y thom = (bc + ab)
3) thom = (a+ 1)x + (a + ac)y + bxy
4) tinnom = abc + (a + 1)bc + abc + ab(c + 1) =pp (a + 1)bc + ab(c + 1)

= D'= {(a + 1)bc, ab(c + 1)}
5) N((a + 1)bc) = {x}, as

(a + 1) * (a + 1)bc =pp ( a + 1)bc#g 0
N(ab(c + 1)) = {y}, as

( a+ 1) * ab(c + 1) =zrR0
(a + ac) * ab(c + 1) =p  ab(c + 1) + abc(c + 1) =pp ab(c + 1) #pr0

6 )  = { x«  (a+ 1)bc,
y « ab(c + 1)}
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ii) "Basis of Coefficients" method (method 3)
1) t = (bc+ab)+ (a+ 1)x + bxy + (a + ac)y

2) tpom = (a+ 1)x + bxy + (a + ac)y thom = (BC + ab)
Nt ,  = (+1x+ (a+ac )y+bxy
4)a) (bc +ab) * ( a  +1+1) * (a + ac +1) * (b+1)#530 = unifiable

b) (bc + ab) * (a + 1) * (a + ac + 1) * b =pp abc + bc
(bc + ab) * a * (a + ac) * b =pp abc + ab
D' = {abc + bc, abc + ab}

c) H = {(abc + bc, {x}), (abc + ab, {y})}
5) OO ={x«  abc+ bc =pp(a + 1)bc,

y « abc + ab =pp ab(c + 1)}

Evidently those two algorithms are identical in their first three steps and the last step. Inbetween
those steps the two algorithm progress differently. They use two different Boolean rings. One is a ring
Be generated by the constants C, the other one a ring By generated by the coefficients K. Important to
the complexity are two points: the number of equations to be solved, which is equal to the number of
necessary basisvectors, and the complexity of calculation of a single basisvector.

The number of basisvectors for the "Basis of Constants" method is equal to 2€. Yet in our modified
version we need only the basisvectors describing the inhomogeneous part. The size of this subset D';
can range from 1 (t , ,  =TII__~c¢) to 2€ ( t =  1). The case ( tom = 0) with zero necessary
basisvectors is a handled a special branch of the algorithm, which computes directly a particular
solution. Intuitively the average number of necessary basisvectors can be determined as 2-1. Thereby
an average of N=  2C-1 equations have to be solved. The calculation of one basisvector is easy, as the
basisvectors are constructed from unary and independant constants. Therefore no simplification has to
be executed. Yet in step five of the "Basis of Constants" approach, we perform additional checks for
every basisvector of D' to detect the first coefficient satisfyingthe test condition. During one of these
tests we would detect non-unifiability of terms. So non-unifiability is determined before the
construction of the most general solution from a particular one. The complexity of method 2 is the
product of time needed for one test of step five, the number of tests executable for one basisvector and
the number of necessary basisvectors: O(method 2) = m * k * 2C-1,

The number of basisvectors for the "Basis of Coefficients" method is less or equal to the number of
basisvectors for the "Basis of Constants” method, as By is a subring of Be (Proof: every basisvector
of ring By can be represented as a linear combination of basisvectors of ring B).  If both rings have
the same decriptive power, then they will subject to an identical orthogonal basis (Proof: uniqueness
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of the basis) and thereby will produce the same solution. The smaller cardinality of B's basis might
have been an advantage for method 3. Yet, while computing the basis, we compute several vectors
equal to 0. The number of this vector is v < 2K - 2€ with 2€ the size of the basis of Be. K is limited to
0 £ K < minimum(2V, 2°), where 2° is the number of possible different coefficients and 2V the
number of possible different variable strings. Hence, even though the cardinality of its basis is smaller
compared to method 2, it is extremely probable, that in most cases a lot of the unnecessary vectors
equal to 0 are computed. For our modified version we just need the basisvectors describing the
inhomogeneous part Ny = ID,| < 2C-1. While computing this set D'k of basisvectors we construct
2K-1 vectors, of which w > 2K-1 - 2C-1 are equal to 0. Hence the proportion of basisvectors to vector
equal to 0 are the same as in the unmodified version. Computation of one basisvector is difficult, as it
is computed from n-place coefficients, which might share some constants. Therefore simplifications
have to be executed. After computing the basisvector of D'y, we have to solve a corresponding
number of equations. The equations are easily solved, as the basisvectors are to be compared with the
coefficients they are based on. Non-unifiability is detected before we start to compute any part of the
particular solution by applying Boole's test. The complexity of method 3 is time used to compute a
basisvector multiplied by the number of necessary basisvectors: O(method 3) =1 * 2K-1,

Table 3.4.1: Comparison of particular solution methods

Attributes Method 2 Method 3

ring generators: constants coefficients
unary n-place

# ring generators: C = # constants K = # coefficients
possible basisvectors: 2C 2K
basisvectors: 2C 28. y<2C
vectors computed for D': 1 . . . 2€  2K-1
D': 1...2C 281. w<2¢1
computation of D': fast slow

no simplification simplification
tests detecting, which 1 . . .  K 0
coefficient d.k = 0:

non-unifiability detection: during one of tests before calculation of D'
complexity: Od *K  * 2C-1) O(m * 2K-1)
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To sum up the comparison we have the following advantages and disadvantages for the two
approaches:

1) If the orthogonal form has more coefficients than constants, then the "Basis of Constants"
method is superior to the "Basis of Coefficients" method.
2) An orthogonal form with more constants than coefficients, benefits the "Basis of Coefficients"
method, as the number of constants directly influences the number of the equations to be solved
in the "Basis of Constants" method.
3) Non-unifiability is detected almost at the same time (depends on, which of the 1... k tests of
method 2 fails).

The advantage of method 2 in the calculation of one basisvector is partially used up by the
disadvantage of necessity of computation of one corresponding coefficient. Therefore the time
behaviour of the algorithms is pretty much the same for "normal" cases, where the number of
constants and coefficients are alike. In fact it is exponential in variables and constants. If we extend the
methods with the construction of the most general unifier, then those complexities get even more
similar. Our test runs have proven that most of the time is spent for creation of the most general
unifier. All points considered, method 2 has a slight advantage.

Now let us compare those methods with the "Variable Elimination” method.
Method 1 solves our example in the following fashion:
t = bc+ab+ax+x+bxy+ay+acy

t, = (a+1+by  +1) (bc + ab + ay + acy)
=gg abc + ab + ay + acy + bcy + abcy
ty  = (a + ac + ab+ abc + 1) * (abc + ab)

=pr 0
t ={ }

T = { }e  { y<abc+ab+y '(a + ac + be + abc + 1) }
=gg {y — abc + ab + ay' + acy' + bey’ + abcy' + y'}

t = {(y« abc + ab + ay' + acy' + bcy' + abcy' + y'}
o { x«  (bc + ab + ay + acy) + x'(a + by)}

=pp {X « abx'y' + bx'y' + bex'y' + ax’ + abx' + abex' + abc + ab,
y « abc + ab + ay’ + acy' + bcy' + abcy' + y'}
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Method 2 and Method 3 would compute this most general unifier:
T = {x « ax'y' + abcx'y' + acx'y' + bx'y' + bex'y' + ax’ + abx' + abcx' + abc + ab,

y « X'y' + ax'y' + abx'y' + abcx'y' + bx'y' + ay' + abcy' + acy' + bcy' + ab + abc}

Method 1 consists of two major steps: variable elimination and resubstitution of reproductive
solutions. Mainly the first step with the operation <(a + 1) * b> is responsible for the complexity of
the algorithm. We have already disclosed, that during elimination the termsize n increases squarewise
in the worst case. Mathematically this results in a worst case complexity of ,22*V. Yet the Boolean
ring itself sets a limit to the termsize, which is determined by the free constants C and the available
variables in each recursion step. This limit is approximately (IV1 + ICl)2. Assuming the termsize would
just double during elimination, which may be achieved by good variable selections, we would still
have a complexity of 2” * n. This adds up to an average, which is between exponential and
hyperexponential in variables. If the time behaviour would be really that bad, then method 1 would not

be applicable. Yet one has to remember, that simplification will rigorously cut down the termsizes and
thereby the complexity. This is also true for the resubstitution step, which is similar to the application
of Lowenheim's theorem of method 2 and 3. Method 1 substitutes some variables with terms, while
the other methods mainly multiply the particular solution and the term itself. Therefore simplification is
a vital process in all cases.

Another disadvantage of the first method is its late detection of non-unifiability. The elimination step
has to be executed for all variables. This is especially serious, as this is the most time consuming step

i n  the algorithm. Method 2 discovers non-unifiability, while solving one of its equations. Method 3
executes a special test before even starting the calculation.

Nevertheless method 1 has also some advantages. Those lie in the computed unifier itself. While all
variables of the term are included in the domain of method 2 and 3, it is possible for method 1, that
some variables are not in the domain. This means that the cardinality of method 1's unifier is less or
equal than of the other methods. One of the main objectives of the variable selection for elimination, is
to maximize the occurrences of this effect.
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Example from Chapter 3,1
t=xa+yad+ yae + zab + zc + zd
Method 1

T={x « X '+yad + yae + z'ab + z'ac + z'ad + xa,
zZ & z'+7z'ac + z'ad + z'c + z'd }

Method 2/3
o= {x«0 , z2«<0 ,y«0}
T={x « Xx'+ adx'y' + aex'y' + abx'z' + cx'z' + dx'z'+ ax/,

z « z '+ ady'z' + aey'z' + ax'z' + abz' + cz' + dz’,
y « y' + ax'y' + aby'z' + cy'z' + dy'z' + ady' + aey'}

Another favourable attribute of method1 is, that the newly introduced variables do not occur in all
codomain terms as in the other methods. Therefore there is less interdependency between the
codomain terms and these terms are smaller. This is naturally advantageous for application of a
unifier.

Table 3.4.2: Comparison of three unification algorithm for Boolean rings

attributes —<Cethods Method 1 Method 2 Method3
ununifiability detection late early early

< IV!  normal version: =V( t ) l  | normal version: = V(t)
unifier cardinality < | unifier 23 improved version: < IV(t)l} improved version: < IV(t)l

= 2 | unifier 1 | > | unifier 1 |

unifier codomain smaller terms larger terms larger terms

extremly large small to large middle to large
termoperations <(a + 1) * b> <basisvector test> <calculation of basis>

_ <construction of mgu> | <construction of mgu>|

Summarizing our comparison we draw the following conclusions. Method 2 and 3, which are
variations of the particular solution method, have a similar, almost identical complexity. We favour
Method 2, as it tackles most unification problems slightly better. In comparison to the method of
"Successive Variable Elimination", Method 1, we tend to Method 2 or 3, because they detect
non-unifiability earlier and react exponentially better to variables. There are still some advantages for
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Method 1, which lie in the application of unifiers; especially, i f this method is able to compute a unifier

with a smaller cardinality. Yet our improvements diminish the occurrences of this later effect.
In the appendix we give results of several test runs. We have selected three representative sets from

our test sequences developed during the course of this thesis. The results presented originate in test
runs executed in August 1988 on a Symbolics Lispmachine.

One sequence, Sequence 3, compares the "Variable Elimination” method, method 1, with the

methods of "Particular Solution” method, method 2/3. The comparison covers cpu-time, number of
cons cells used and cardinality of computed unifiers. Technically Sequence 3 is divided into four
subsequences, which have an identical basis structure, where the variable set is increased from one
example to another. The subsequences differ in a "constant" factor, which is added to each term. This
sequence shows, that algorithm] is capable of computing unifiers with a smaller cardinality. Yet, if the
example involves more than four variables, method 1 needs decisively more computation time and
storage cells. Increasing the constant set of the problem term intensifies this effect.

Two typical effects occur in Sequence 3. On the one hand method 1 computes a unifier with a
smaller cardinality, meaning it executes less recursions, on the other hand method 2 and method 3
directly generate a particular solution (special solution 2). Even though those two effects balance each
other, we took care that in the other sequences all unifiers have the same cardinality, which is equal to
the cardinality of the variable set, and that no particular or general unifiers are generated directly. The
latter allows a comparison of all three methods, as method 2 and method 3 proceed differently. In
Sequence 1 we increase the variable set from one example to the next. Here we detect, that method 2 is

~ just slightly better than method 3. Just as in the previous sequence, method 2 and method 3 perform
better than method 1, when we increase the variable set. Sequence 2 consists of unification problems,
where non-unifiability is detected. Just as in Sequence 1, the "Particular Solution” methods perform
equally well and decisively better than the "Variable Elimination" method. This effect is amplified,
when the variable set is incremented form one example to another. This is as expected, because the
number of executed recursions of method1 is directly related to the variable set.

Concluding the interpretation of the test results, we state that all methods perform almost equally
well, if the size of variable set is smaller than four. Yet, if it is bigger, method 1 uses often too much
time and storage. We choose not to present the computed unifiers, as they are too big and not that
expressive to an inexperienced eye. A comparison of the unifiers shows that those for method 2 and
method 3 are almost always identical. This is partially due to the fact, that they produce the same
solution, if the subring relation of the two rings is just a relation of equivalence. Unifiers of method 1
are less complicated, which is already indicated by the smaller cardinality in sequence one. Thereby
we find the conclusions drawn above supported in all aspects.
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3.5 Prospects and Possible Improvements

As discussed in the previous chapter, the unifier's cardinality is of great significance to application

of a unifier. Therefore it is aimed to compute a unifier with a reduced cardinality. This seems only

possible for the method of "Successive Variable Elimination”, as the other method's cardinality is

generally determined by variable set of the term to be unified. The reduction would also decisively

decrease the complexity of the algorithm, as we would execute less recursion steps. To establish this

effect we have to develop a better variable selection criterion. As such a criterion is difficult to discover

theoretically because of the possible simplifications, this leaves only the practical approach with a
massive number of test runs. Both choices do not seem satisfying. Any serious work in the direction
of smaller cardinality should start with exhaustive reflections about a possible minimal unifier, a
unifier with a minimal number of domain variables. Having solved this problem one could search for a
reduction algorithm, which has a unifier as input and computes a BR-equal smaller unifier or even

better the minimal unifier. This algorithm could be applied on the results of the particular solutions
methods. If  the variable selection of the "Variable Elimination" method can not be improved to

compute a minimal unifier, we could apply the reduction algorithm on its solutions as well.
Nevertheless it may be assumed, that such a reduction algorithm would be time intensive; this makes a

sensible use doubtful.
Therefore we presume, that research in the direction "Detection of Most General Unifiers and

Particular Unifiers"” is more rewarding. We have already introduced our results in that area into the
unification algorithms covering a great deal of cases.

An alternative non-algorithmic approach would be the selection of a different datastructure.
R.E.Bryant proposed directed acyclic graphs (DAGS) for representing Boolean functions [Bry 86].
Besides the obvious conversion problems caused by the necessity of connection to the HADES
[Ohl 88], it has some additional disadvantages. Let us sketch his ideas for a better understanding.
With his DAGS he represents a term by describing its value (leafs) with the possible values (arcs) of
all variables (vertices) occurring in a term; identical subgraphs are shared. Bryant offers an associated
set of algorithms for detection of satisfiability, equality, etc. Those algorithms operate directly on the
graph. Thereby he achieves almost linear complexity excluding graph creation. Even though he
considered the Boolean algebra as main application, one can also use them for thé Boolean ring.
Nevertheless Bryant's approach has a disadvantage:

The representation size of the graph depends heavily on the argument ordering.
The following example, where value 1 is represented by a thick line and a value 0 by a thin line,
pinpoints this effect.
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Example in a Boolean ring B<@, +, *, 0, 1> over variables V = {x,, X,, X3, X4, Xs, X¢}:

X1X2  + X1X4 + XsX6 X1X4  + X,Xs + X1Xg6

4 N A

1

2

€ 3

4 4

GY 6

6 6

0 | 1

\_ J N y

Bryant has not found a criterion, which determines the optimal ordering other than by explicitly
testing the possibilities. For his applications it was sufficient to find an acceptable ordering by
analyzing the problem domain. Yet because of the exponential termgrowth connected with problems in
our field we need a criterion, which automatically chooses an optimal ordering.

Nevertheless our main dilemma is, that he expects the algebra to be an initial, or 2-element algebra.
In our application however we have C, a set of constants, in the signature. This decisively increases
the graph size, as not only two arcs originate from every vertex, but 2° arcs. Therefore we used our
datastructure with its structure sharing properties.
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4. COMBINATION OF BOOLEAN  RING & FREE THEORY

4.1 Unification Algorithm

This algorithm is based on an algorithm of M. Schmidt-Schauß, which handles unification in the
combination of an arbitrary and a simple theory [Schm 88]. When he presented this algorithm at the
9% Conference of Automated Deduction, he used the combination of the Boolean ring (arbitrary) and

the free (simple) theory as one of his examples. Our work adapts, realizes and advances his ideas. We
contribute improvements to several steps of the algorithm and change its structure to make it more
suitable to this specific combination of theories. Yet we are consistent with the basic notions of
M. Schmidt-SchauB3 [Schm 88].

The combination algorithm for Boolean ring theory with free function symbols consists of four
major parts. In order of their application these are preprocessing, identification, cycle elimination and
postprocessing. This Chapter 4.1 is structured analogously. The first Section 4.1.1 gives some
introductory notes on the algorithm and presents definitions and standard procedures, which are
applied in all parts of the algorithm. In Section 4.1.2 we present pre- and postprocessing, in
Section 4.1.3 the identification and finally in Section 4.1.4 the cycle elimination.

4.1.1 Introduction

We will consider the process of unification as a sequence of transformation steps that start with a
given system of equations, the unification problem, and stops with a set of systems of equations, the
set of solutions. This complies with the ideas of Martelli/Montanari [MM 82], Kirchner [Kir 85] and
Schmidt-SchauB [Schm 88]. We will use multi-equations instead of equations to represent our
problems. Thereby we have MS as a set of multi-equations, where each multi-equation ME, is a set of
terms {t;;, ..., t, .} also denoted as t., = . . .  = t._.. As mentioned earlier every system of equations can
be transformed into this form. We use s = te  MS synonymously with s, t € ME, where ME is a
multi-equation. By merging we will achieve that, if r = s and s = t are in a multi-equation system MS,
then r =t  in MS or equivalently that all multi-equations are disjoint. Often we will use equations of the
form S = T, where the uppercase letters denote sets of terms and S = T means a conjunction of all
equations S; = t; fors, € S and t e  T.

The terms of the unification problems investigated are in the combination of Boolean ring theory
with free function symbols. We already explained that there are deterministic normal forms for terms
in the Boolean ring, if we have defined an ordering on the terms. The normal form we have selected is
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the disjunctive normal form. Obviously we can extend this deterministic normal form to terms in the
combination of Boolean ring with free function symbols.

This idea has several advantages:
1) We can drop the distinction between syntactical and semantical theory of a term as they are
identical. By Schmidt-Schauß [Schm 88] the syntactical theory of a term is the theory of its
topsymbol and the semantical theory is the theory of the topsymbol of the term in maximal collapsed
form. Thereby in the following we will employ the expression theory of a term.
2) For all theories concerned, the Boolean ring theory, the free theory and their combination
theory-equal terms are also syntactical equal.

We use this classifications of terms:

free term: a term is member of the free theory
boolean term: a term is member of the Boolean ring theory
compound term: a term is not a variable nor a constant
significant variable: a free variable is present in original problem
significant constant: a free constant is present in original problem
auxil iary variable: a free variable is not present in original problem
auxi l iary constant: a free constant is not present in original problem
We will use the expression ‘auxiliaries’ to denote the set of auxiliary variables and auxiliary
constants. 'Auxiliary constants’ are auxiliary variables, which are interpreted as constants on
theory level .
There are two applications of auxiliaries: Renaming (variables only) and Abstraction

A cycle in a multi-equation system (MS) is a set {x; =t.1 1 < i  <n} with x, =t. in MS, where x, is
an auxiliary and t; is a compound term, such that x;, occurs in t, for 1 <i<n-1 and x, occursint_.
A system of multi-equation MS is in sequentially solved form, if every multi-equation has at most
one compound term and contains no cycles. It is in solved form, if no auxiliary of MS occurs in a
compound term of MS. From a multi-equation system in solved form we can obviously construct an
idempotent most general unifier.

The combination algorithm will be described by a set of rules, which transform a multi-equation
system MS, into a set of multi-equation systems in the solved form. For every solution ¢ of MS,
there has to be an element in this set, which can be used to create a solution more general than ©. The
rules of the algorithm work on multi-equations in our own representation, which in Chapter 5 is
denoted by 'theory.termlist' to distinguish them from the multi-equations of the input and output
systems. Our multi-equations have three disjunct components, which are roughly based on the
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theories involved:

ME := MEY = MEF = MEB, where MEX denotes a set of terms of a specific type x € {V, B, F}.
(V) Variables: significant variables
(F) Free: free compound terms, free and boolean constants (0, 1) and auxiliary variables

used in the free compound terms of MS
(B) Boolean: boolean compound terms and auxiliaries used in boolean compound terms of MS.

The multi-equation system MS can be divided accordingly, i.e., when MS = (ME. | 1< i<n } ,  then
MSX = {MEX | 1 <i <n} .  Note that auxiliaries used in boolean and free part are disjunct and
auxiliary constants occur only in the boolean part (see Section 4.1.3). The difference to a
classification, which would have partitioned terms strictly according to their theories, is that boolean
constants are stored together with free constants in the free part. The reasons for this decision are
special properties of the constants: Boolean and free constants can be handled by unification
algorithms of both theories. Unification algorithms of the free theory can regard boolean constants as
free constants and unification algorithms of Boolean ring theory are equipped to handle free constants.
Of course, Boolean ring unification algorithms will have to take into account, that all constants are
stored in the free part.

The following rules are applied in all steps of the algorithm to reduce multi-equation systems to
smaller equivalent systems. They will be referred to as reduction rules:

~ Rule: Trivial Multi-equations.
MS & ME ==> MS,

if ME contains only one element.
Rule: Auxiliaries. MS & ME* ==> MS & ME*\ {z},

i f  z is an auxiliary in ME* and does not occur in any term of MS* or MEX\ {z}; x € {B, F}
Rule: Merge. ME,  = ME,F = ME,P & ME,  =MEF=MEB

==> ME,” UME,"  = MEF UME,F =ME BU ME},
if there are terms t, € ME *and t, € ME,*, which are syntactical equal; x € {B, F, V}

Rule: Equal Terms. ME* ==> MEX\ {t},
if a component x of ME contains term t twice; x € {B, F, V}

Obviously these rules do not change the set of solutions. The restrictions to different components
are legitimate, as the term sets as well as the sets of in terms occurring auxiliaries are disjunct.
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4 - Postpr in

The first goal of preprocessing is to transform the multi-equation system into unfolded normal
form (UNF). Such an equation system has these properties: All terms are pure, all variables

contained in compound terms are auxiliary and compound terms of the free and boolean part have
disjoint sets of variables and every auxiliary of MS occurs in a compound term in MS.

We accomplished this transformation by application of the partitioning rule, the unfolding rule and
the renaming rule:

Rule: Partitioning. ME ==> MEY = MEB = MEF
with MEY= { t | t e  ME is a variable}

MEB = { t | t  € ME is a boolean compound term}
MEF = { t t  € ME is a free compound term or boolean or free constant}

Rule: Unfolding. ME U {t}B==>ME u { t n  « xp]}B & {}Y = (xg)? = (s}F,
if s is a direct alien compound subterm of a boolean term t at occurrence mx and
Xp is a new auxiliary variable. (analogously for a free term t)

Rule: Renaming. MSB ==> {x « xg JMSB & {x}V = {x5}  = (JF,
if x € Variables(t) for some term t of input multi-equation system MS, occurring in MSB and
Xp is a new auxiliary variable. (analogously for free part of MS)

At the start of the algorithm we convert multi-equations of system MS,  which represents the
unification problem, into multi-equations of our internal representation. This achieved by application
of the rule Partitioning, which splits multi-equations into their disjunct components. Then we replace
or unfold occurrences of direct alien compound terms in term t by an auxiliary variable. For every
replacement we add to the system a multi-equation, which has two filled components: The auxiliary
variable is stored in the component related to the theory of term t, while the alien is placed in the
component related to the alien's theory. This unfolding process is also called variable abstraction.
After completion of unfolding we have just pure terms in our multi-equation system. Finally we
rename the significant variables in the boolean and free part of our converted system. Note that
occurrences of a significant variable x in the boolean part is replaced by a different auxiliary variable
than occurrences in the free part. This makes the variable sets of the components of a multi-equation
system disjunctive. Two reduction rules are applicable in this transformation process of a unification
problem into UNF: Merging and Equal Terms. These rules reestablish disjunctiveness of the term sets
of the multi-equations; after unfolding, when we have abstracted the same alien with two different
auxiliary variables, and after renaming, whena significant variable occurs in the free and the boolean
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part of the converted system. All these rules, Partitioning, Unfolding and Renaming do not change the
set of solutions. Thereby these rules and the reduction rules are called 'don't care’ rules.

Example: Transformation of MS, = (f(x) = x + f(y)) into unfolded normal form.
Let BR = <+, *, 0, 1> be a Boolean ring, f a unary free function symbol, x, y are significant
variables and z, x ,  yg, Xp are auxiliary variables.

Partitioning:  ({}V={ fx) }F = { x + f(y) }B)
Unfolding: { }V= ( f x )  }F=({x+z)B

(JV={f(y) }F= {z }B )
Renaming: ( (V= { f xp  }F={xg+2z}®

(WV={f(yp }F= (z )®
{x = ( ye )F= (9
{ y }= ( {  xp ) }F= {xp }P)

The final aim of preprocessing is to transform our multi-equation systems into separated
unfolded normal form. Multi-equations of such a form have theory components (boolean and
free), which contain at most one member. This transformation is achieved by unifying the terms in
these two theory components. There are two rules:

Rule: F-Unification.
(MEY =MEF=MEB|1< i<n }==> {ME,Y=MEF=MEBI1< i<n } ,

if there is a free component of a multi-equation ME; with IME; > 1.
Let of be a free mgu of free part of multi-equation system MSF = ({MEF | 1 < i  <n})..
ME'F := cMEF.

Rule: BR-Unification.
(ME,Y =MEf=MEBI1< i<n }==> {MEY=MEF=ME 'B |1< i<n ) } ,

if the free component of every multi-equation fulfils IMEI < 1 and there is a ME;  > 1 with
ME," =MEPuU({clce MEF is a constant}.
Let o be a Boolean ring mgu of ({ME;” | 1 < i  <n})gp.
If se ME is a constant, then

ME'F := MEF and ME'8 := (},
else if t € OpME.B is a (significant) constant, then

ME'F := MEF U 6gME® and ME'B := {},
else MEF := MEF and ME'B := czMESB.
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Remarks;
After application of a unifier to a component x of a multi-equation (6, MEX) this component consist
of one element.
We do not have to add the unifier to the multi-equation system, as its domain consists of auxiliary
variables, which are no longer present in the system after application of the unifier. Also it is
sufficient to apply the unifier to the corresponding theory component of the system, as the sets of
auxiliary variables occurring in terms of the theory part are disjunct.

Generally after an application of a unification rule we can apply the reduction rules. Reduction rules
ensure that multi-equations stay disjoined and that the theory part of multi-equations, for which we
had executed unification, contains at most one term. The other theory components might consist of
more than one element; either caused by merging or by the transfer of a constants into the free part. In
general this leads to an alternating application of unification rules (F-Unification BR-Unification)”,
until both theory parts of all multi-equations contain at most one term.

The unification algorithm employed, which computes the unifier for F-Unification, is similar to the
approach by Robinson [Rob 65]. Yet our algorithms works on multi-equations and thereby uses
additional information provided by these multi-equations. For the unification algorithm, which
computes the unifier for BR-Unification, we had to choose among the three methods of Chapter 3. All
of them are capable of performing unification in a free Boolean ring, i.e. Boolean ring with free
constants. As the unifiers are often applied to the system, an important characteristic of the unifier is
its complexity. Therefore we decided to use the "Variable Elimination" method, as its unifiers are

~ simpler and have a smaller complexity as the unifier computed by the two "Particular Solution”
methods. The drawback of the "Variable Elimination" method was its speed. Yet we assume that the
combination algorithm will handle mostly equation systems with "small" Boolean ring problems, as
the complexity of the combination algorithm is already enormous (see Section 4.1.3 & 4.1.4). For
cases with small Boolean ring problems the difference in speed is insignificant.
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Example; Transformation of MS; = {f(a + b + x) = f(a + b), y = f(x)) into separated unfolded
normal form. 

|

Let BR = <+, *, 0, 1> be a Boolean ring, f a unary free function symbol, x, y are significant
variables, a, b are free constants and z, w, Xp, Xp are auxiliary variables.

UNF: Execution of partitioning, unfolding and renaming.

({ x W={xg }F= {xp  }B

{ y }V= { f ( xp )  }F={(}B
( }V={  f2). fw) }F= (}®
( JV= {z )F= {a+b+xy ) "
(V= (w) }F= {a+b )B )

F-Unification: of = {z « w}, after application of oO the reduction rules remove third ME, merge
the fourth and fifth ME and delete auxiliary variable w.

( ( x }V= {xg }F= {  x5)"
( y }V= { f ( xp )  }F =) "
(1V={)F={atba+b+xz}B)

BR-Unification: og = {xg « 0}, after application of oy the constant 0 is shifted. Then the reduction
rules remove the third ME.

( { x }V= {xp0 )F= ( )B
(y }V= { f&xp  }F= ( }® )

F-Unification: Of = {xp 0}

( ( x }V= {0 }F= { ( )B
(y  }V= (£0)  }F= { }B )

Beyond postprocessing we have performed the identification and cycle elimination steps. At this
stage of the algorithm the multi-equation systems are in sequentially solved form. The objective of
postprocessing is to transform these systems into solved form. Thereby we have to replace all
occurrences of auxiliaries by their computed values: either by a compound term of opposite theory or a
significant variable. We proceed in two steps. First we eliminate the auxiliaries occurring in the
boolean component of the multi-equation system. After this elimination the components of the system
MSY contain significant variables, MSF pure free terms and boolean constants and MSP mixed
boolean compound terms. Note that the variables occurring in terms of MSF and MSB are no longer
disjunct. Now we eliminate the auxiliaries used in the free part, which converts our system into solved
form. For this form we drop the distinction between the components of multi-equations to get the
form of the input multi-equation system MS,,.
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For the elimination of boolean auxiliaries there are two nondeterministically applicable rules: one
handles the auxiliary (abstraction) constants, the other the auxiliary variables. For elimination of free
auxiliaries we need one rule.

Rule: El iminat iong..  MS & ME ==> MS' & ME,
if c e MEB is an auxiliary constant.
Then MEF = {t} with a pure free compound term t.
MS' :=MSY=MSF=[c  « t] MSB
If MEY UMEFI > 1,

ME':= MEY =MEF={)}B, else
ME' = {}.

Rule: Eliminationg.. MS & ME ==> MS' & ME,
if x € MEB is an auxiliary variable.
Select a significant variable ve MEV.
MS' :=MSY = MSF= [x « v] MSE
I f  MEY UMEF| > 1,

ME':= MEY =MEF={)}B, else
ME':= {}.

Rule:  Eliminationg. MS & ME ==> MS' & ME’,

if x € MEF is an auxiliary variable.
If  MEB = @, select a significant variable ve MEY and lets := v, else

let s := t with t, a mixed boolean compound term of MEB = {t}.
MS' :=MSV = [x « s] MSF = [x « s] MSB
If MEV U MEBI> 1,

ME':= MEV = {}F=MEB, else
ME':= {(}.

To implement the elimination rules of postprocessing we are presented with a choice. We can
implement the rules as explained above, which means we execute one replacement of an auxiliary after
another. Or we combine the replacements into two substitutions (one for the boolean part and one for
the free part), which are applied to the components as in the rules. We decided to use the later
approach, as in that case we create less intermediate terms. We can easily construct an idempotent
substitution from the replacements of the two boolean rules (Eliminationg, and Eliminationg„), as the
domain auxiliaries and the auxiliaries occurring in the codomain terms are disjunct. This is not the
case, when we build the substitution for the free part. Yet we know that all cycles have been removed.
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Therefore we can construct an idempotent unifier from these replacements too.
Postprocessing rules do not change the set of solutions, as they just eliminate auxiliaries, which did

not occur in the input multi-equation system. So they can be included in the set of ‘don't care rules’.

4.1.3 Identification

Before executing the identification step preprocessing has to be concluded. Thereby at this stage the
multi-equation system is in separated unfolded form. It consists of multi-equations with theory
components, which contain at most one term. The aim of the two middle steps, identification and
cycle elimination, is to transform this system into a sequentially solved form, where every
multi-equation contains at most one compound term of either theory and no cycles. To fulfill the
second premise is the task of cycle elimination. Identification has to resolve those multi-equations in
the system, which have a compound term in the free part and another compound term in the boolean
part.

Adding different additional auxiliary variables to different multi-equations does not change the
solution space. Therefore we may insert one auxiliary in the boolean part of every multi-equation with
a compound term in the free part and a non-empty boolean part. Provided that all these free compound
terms are non-unifiable, then these auxiliary variables can be treated as constant on the boolean
component level. This method is called constant abstraction and we call such variables auxiliary
"constants" or abstraction "constants". As we get multi-equations with two terms in the boolean part,
BR-Unification is applicable. By the unification rule the boolean compound terms of multi-equations
with compound terms in both theory parts collapse into the auxiliary constants.

Yet to employ constant abstraction, we have to assure the condition of non-unifiable different free
compound terms. This is achieved by identification, which branches our multi-equation system into
several other systems. Let NEW be the set of multi-equations with a free compound term and a
non-empty boolean part. Then for every possible partition of NEW, there is one new multi-equation
system, where the multi-equations are joined according to the sets in the partition. After such an
identification it is sufficient to consider only those systems of multi-equations in our search space,
which do not further identify multi-equations of the set NEW. Those solutions, which further identify
multi-equations, are computed in another branch. Under these circumstances we can execute constant
abstraction, as the free compound terms can no longer be unified, because this would join the
multi-equations. |
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Below we give a detailed description of the identification step. In the identification step we proceed
through this sequence of rules: (IF C (B PY  F and B are the F-Unification and the BR-Unification
rules as previously defined, while the identification rule (I) and the constant abstraction rule (C) are
new.

The new rules:
Let OLD be set of multi-equations ME, of multi-equation system MS, which have a previously
abstracted compound term in the free part MEF and a non-empty boolean part.
Let NEW be set of multi-equations ME, of MS, which have a not yetabstracted compound term
in the free part MEF and a non-empty boolean part.

Rule: Identification.
MS == (MS'; | 1 < j<m] j ,

if set NEW is not empty.
There is one MS’, for every partition j of NEW U OLD, of which every set in the partition j
has at most one member of OLD.
MS f is constructed from MS by joining the multi-equations, which are in the same set of
partition j.

Rule: Constant Abstraction.
(MEY =MEF=MEB!1<i<n}==>{MEY=MEF=ME'BI1<i<n]},

if there is a ME; € NEW, which has no abstraction constant in MES.
Letc, C; be different abstraction constants, i f i # j.
If ME, ¢ NEW or 3 ¢; € ME,  which is an abstraction constant,

then ME'B:= MEB,
else ME'B := {c.} U ME}.

Besides the four rules mentioned above the reduction rules are applied whenever possible. This
would be after the application of the unification rules. 

| 
|

We may restrict sets NEW and OLD to multi-equations with a non-empty boolean part, as those
with one empty theory part and a compound term in the other theory part no longer influence the
algorithm. They only remain in the system to enable postprocessing to construct a complete solution,
as these multi-equations have at least one significant variable in the variable part.

The identification rule handles also recursive identification, where the set OLD is not empty. This
recursive identification is necessary, because the unification rules may transform some multi-equations
into a form with a free compound term and a non-empty boolean part. In recursive identification we
do not have to create partitions, which join two multi-equations that already have been subjected to
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prior identification. Those non-joinable multi-equations, which still can influence the algorithm, have
an abstraction constant in the boolean part and are stored in set OLD. Thereby we restrict the resulting
partitions in a recursive identification to those, which do not join multi-equations of set OLD.

Joining of the multi-equations makes rule F-Unification applicable, as there are multi-equations with
more than one term in the free component. The application of the free unifier on the system might
transform some multi-equations so that they have a free compound term and a boolean compound
term. This will induce the application of the identification rule after the rule sequence of this recursion
level has been concluded. 

|

The constant abstraction inserts auxiliary constants into boolean parts of multi-equations, which
have been previously joined by the identification step. During a recursion we do not have to insert
constants for every set in a partition. I f  there is a member of set OLD in such a set of the partition,
then the joined multi-equation has already the abstraction constant of this member of set OLD in the
Boolean part.

After constant abstraction we start a unification cycle of BR-Unification and F-Unification just as in
preprocessing. We begin with BR-Unification, as all free parts of the multi-equations have at most
one member, which is provided by performance of F-Unification after identification. There are more
than one member in the boolean parts caused by identification or merging induced by unifier
application of F-Unification or constant abstraction. This unification cycle stops, when both theory
parts have at most one member. I f  both theory parts contain a compound term, then we reenter the
identification cycle with identification . Note that the rule BR-Unification is already prepared to
perform unification with the now introduced auxiliary constants. The auxiliary constants are not
shifted into the free part as the significant constant are, because the auxiliary constants are interpreted
as variables on toplevel of the multi-equations.

As clarifying example we continue the first example for preprocessing (Section 4.1.2).

Example; ~~ MS, = (f(x) = x + f(y))
Let BR = <+, *, 0, 1> be a Boolean ring, f a unary free function symbol, x, y are significant
variables and z, x ,  yg, Xp are auxiliary variables and c,, ¢ ,  are auxiliary constants.

Preprocessing: ((VV={(fGxp) FF = { xp+z  }P

(V= { f ( yp  }F={z}P
{ (y)}V={yp}F={()B
{ x  PV={xp }F= {x5 ] )B )

Identification: MS": none joined MS": ME, & ME, joined
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MS":

MS":

Treatmentof MS":
Constant Abstraction:

BR-Unification:

f " ,

'F-Unification:

Constant Abstraction:

BR-Unification:

F-Unification:

The complexity of this identification step is mainly determined by the identification rule, where all
partitions of a set NEW or of set NEW u OLD minus a restriction are computed. As the complexity of
computing all partitions is exponential, we decided not to compute them all. This is possible, if we
combine the Identification rule with the F-Unification rule. We will create only such partitions, which
lead to a system with a unifiable free part. Yet it is not sufficient to unify the free parts of the

( (VW={ f xp  }F= (xg+2z )B
(WV={ f ( yp  FF = { z }P
( yW=( {yeF= (PP
{ x  }V= {xg }F= {x5 ]B )

( ( }V= {  f x  (yp) JF  ={z, xg +z }B

{ (y}V={ye)}F={()B
{ x  }V= {xp }F= {x5 ] )B )

({}=1{( fxp) }F={gxg+2}B
{ )= {  f(yr) YF= (cnz )®
{ yY= ( ye)} = ()P
{ x  }V= {xg }F= {x5 )B )

Op= {Zz « Cy, Xp« C; + C,}

((}V={ f(x) }F={c,  PB
(Y={1f(yp }F= {c , )B
( yV= {ys }F= ( ) "
( x  PV={xg }F= {c ;+c , }B )

op ={y « x}
ME,, ME; are merged after application of Org.

( { } ' =  { fx.) }F= {zxg+z }P
{ x , y  } ' =  ( xp  )F= (  xp }B)

({ }V= { f(xp) JF = { CiaZ Xp + 2Z }B

( x , y  } ' = {  xp ) = (xp }P)
o0p={z « ¢ ; ,  xg « 0}
After application of Op c, is no longer used and thereby removed.
This leads to removal of ME, by rule Trivial Multi-equations'.

( x , y  }V= {xp0 }F= { }B )
( x , y  }V= {0 )F= ( )B )
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multi-equations to be joined before construction of the new multi-equation system.
Regarding the free unification problems of the different partitions, we see that many unification

subproblems exist, which are shared by partitions (Example: partition, { {ME;ME,ME;} {ME ,ME,}}
and partition; ( {ME ,ME,ME; } {ME, } {ME; } }  share the subproblem of unifying the free terms of
{ME,ME,ME,}).Thereby we proceed as follows: We compute the free unifiers of every pairs of free
terms in the multi-equations to be joined. Note that a pair cannot originate in two multi-equations of
set OLD. Then we start with the first partition, the one which joins no multi-equations. For this case
we do not even need F-Unification. Now we check partitions by incrementally increasing the set of
multi-equations to be joined from the empty to the whole set. The free unifiability check is not
executed by unification of the problems, but by merging already computed free unifiers with unifiers
of a pair containing the new element. Another significant effect is that a new identification is only
tested, i f  the free parts of multi-equations of the inner set and the free part of the set extending pair of
multi-equations were unifiable. By this method a lot of time is spared in F-Unification by merging
unifiers and in identification by not constructing all partitions. Our method originates in an approach
by M. Tepp [Tep 881]. Yet our version allows to interrupt and restart the identification. Thereby we
can compute one unifier now and the rest of the unifiers on a later demand (see Chapter 5).

Example: Four multi-equations have to be identified, i.e. INEWI = 4.

Part a) describes MS = (f(x) + f(y) = f(a) + f(z)).
Part b) describes MS = (f(x) + f(y) = f(a) + f(b)).

These abbreviations are used for the free compound terms:
a) 1= f(z), 2 = f(b), 3 = f(x), 4 = f(y)
b) 1=f(a),  2 = f(b), 3 = f(x), 4 = f(y)
Unifiable single equations:
a) 2=1; 3=1; 3=2; 4=1; 4=2; 4=3

b) ---; 3=1; 3=2; 4=1; 4=2; 4=3

Unification tests for Partitions, where more than a single free equation has to be solved.
a) 3=2=1 by merging results of 3=2 and 3=1; 4=1,3=2 by merging results of 4=1 and 3=2;

4=2=1 by merging results of 4=2 and 4=1; 4=2,3=1 by merging results of 4=2 and 3=1;
4=3=2=1 by merging results of 4=3 and 4=2=1; 4=3=2 by merging results of 4=3 and 4=2;
4=3=1 by merging results of 4=3 and 4=1; 4=3,2=1 by merging results of 4=3 and 2=1

b) 3=2=1 non-unifiability detected; 4=1,3=2 by merging results of 4=1 and 3=2;
4=2=1 non-unifiability detected; 4=2,3=1 by merging results of 4=2 and 3=1;
4=3=2=1 not tested; 4=3=2 by merging results of 4=3 and 4=2;
4=3=1 by merging results of 4=3 and 4=1; 4=2,3=1 not tested
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Besides the combination of the identification rule with free unification, there is another difference to
the approach by M. Schmidt-Schauß. He performs the constant abstraction after all identification and
unification induced by that identification has been concluded:

MSS: ( (FB ) ) "C  <=== BCR: (IFC@®RYH*

Our approach has mainly two advantages:

1. We reduce the search space faster by simplifying BR-Unification (B) with the insertion of the
abstraction constant in the boolean part. The boolean compound term collapses into the abstraction
constant.
2. If recursive identification is necessary, we use results of already executed abstractions. Free
compound terms are abstracted on the recursion level, where they are involved in the identification,
i.e. member of set NEW. M. Schmidt-Schauß will abstract free compound terms involved in a
prior identification more often, as he has to perform abstraction for all free compound terms in the
resulting branch and not as we do just the new ones.

4.1.4 le Eliminati

The task of cycle elimination is to bring multi-equation systems into sequentially solved form,
where every multi-equation contains at most one compound term of either theory and no cycles. Prior
to this step the first premise has been fulfilled. Therefore this step is solemnly responsible for
removing the cycles occurring in the multi-equations system. At this stages all cycles are
theory overlapping cycles, which alternate through two types of multi-equations:

a) auxiliary variable in free part and compound term in boolean part
b) auxiliary constant in boolean part and compound term in free part
Example: ( { z )F= {yg *c )B , (f(z) F={ c }P)

Accordingly one could assume that there are two approaches to resolve those cycles:
a) Elimination of an auxiliary constant in a boolean compound term of multi-equation type a
B) Elimination of an auxiliary variable in a free compound term of multi-equation type b

Yet as the free theory is a simple theory, the auxiliary variables cannot be eliminated in the free
compound terms. Therefore only approach & can resolve cycles (Example: term yg * c with constant c
to be eliminated, but not variable z in term f(z)).
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Below a detailed description of the cycle elimination step is given. The basic rules of this step are
the cycle elimination rule, as defined below, and the already defined F-Unification rule. Beside these
two rules the reduction rules are applied whenever possible to reduce the systems’ complexity.

Rule: Cycle Elimination.
MS. ==> (MS';11sssS)}3, if there is a cycle in MS.

To compute one solution s:
— Select one constant elimination problem C__,,..
— If  MS  is a multi-equation system before application of the Cycle Elimination rule,

then MS, :=MS,and CC; := Crew
else determine MS;, the multi-equation system before application of the Cycle Elimination rule,

Cog- the constant elimination problem solved by application of the Cycle Elimination rule,
and select one constant elimination problem C'_. which represents one possibility to track

the constant elimination problem C__, back to MS;
then MS, := MS, and C=C,  U Cold:

— Solve the constant elimination problem C, related toa MS, = {ME.I1sisn}
— Leto, be a solution of C,

I f t = ogME_B is a (significant) constant, then
ME'.V :=ME_Y, ME 'F :=ME_FuUtand ME'B := {},

else ME'.Y:=ME_.Y,  MEF  := ME_F and ME ' B :=1t.

The first important subroutine in cycle elimination is cycle detection. It determines if the cycle
elimination rule has to be applied. Also we need the set of cycles to compute the constant elimination
problems, i.e. the constants to be eliminated to resolve the cycles. For explanation of this routine,
which is based on an algorithm by H. Weinblatt [Wei 72] we need the following definitions:

A directed graph may be described as a set of points (vertices) together with a set of directed line
segments (arcs) such that each arc connects precisely two vertices, "originating" on one vertex and
“terminating” on the other. A path connecting one vertex, vo, to another, v_, is an ordered collection
of vertices vgV , . . .V .  such that for every v,v. , there exists an arc a, which originates on v; and
terminates on v, , (Note that this arcless representation is unambiguous only for graphs, which
contain no parallel arcs). A path is simple if it encounters no vertex twice, and cyclic if it originates
and terminates on the same vertex. The vertices of a cyclic path without regard to its endpoints form a
cycle. A cyclic path is simple-cyclic, if it encounters one vertex twice (the one it originates and
terminates), and no other vertex more than once. A cycle is simple if it corresponds to a simple-cyclic
path.
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For our problem, the breaking of all cycles, it is sufficient to compute the list of simple cycles, as
obviously every other cycle is composed of simple cycles. Those simple cycles are computed by the
algorithm of H. Weinblatt [Wei 72]. The algorithm begins with a preprocessing of the graph, which
reduces the size of the graph by eliminating those vertices, which cannot belong to any cycle.
Preprocessing starts with the removal of any vertices, on which no arc terminates, together with the
arcs originating on these vertices. This step is recursively applied. Then all vertices, on which no arc
originate, are removed together with the arcs terminating on these vertices. This step is also
recursively applied. After this preprocessing the algorithm selects one of the remaining vertices as a
startpoint and begins to examine a path emanating from the vertex. A path is explored, until a vertex is
encountered, which has been previously examined. Then the algorithm tracks back to the last branch
point (a point, where more than one arc originates) and chooses another path. If no branching point
exists then another starting point is selected. The algorithm terminates, if all vertices of the graph have
been examined. The cycles are determined in two fashions. The signal for existence of a cycle is,
when we encounter a vertex, which we have reached before. If the currently examined path still
contains this vertex, then there is one cyclic path: the one, which is a subpath of the examined path
(Example: current path = v,v,vsv, with cycle = v,vsv, ). The other possibility is the construction of
the cycle from subpaths of previously discovered cycles with a subpath of the currently processed
path, which terminates on the last vertex.

Example: cycle, = v,v,v;; cycle, = v,v3v,; current path = v,v, reencounters v,
==> new cycle v,v,v,v,

The advantage of this algorithm is that every individual arc is examined just once and only once.
Sometimes we will have to examine parts of these cycles (but not the individual arcs) a number of
times. For the validity of the algorithm see Weinblatt's paper [Wei 72].

This algorithm is used to compute all simple cycles of the multi-equation system. The vertices of the
graph are the auxiliaries of the system. An arc originates on a vertex v, and terminates on another
vertex v, ,  i f  the auxiliary corresponding to v, is member of one theory component of the
multi-equation ME; and the auxiliary corresponding to v, occurs in a compound term, which is also
member of ME.. If we determine at least one simple cycle, then the rule cycle elimination has to be
applied. From the simple cycles we can easily compute the set of possibilities, which make this graph
cycle free, i.e. break all cycles. Cycles are broken by removing arcs from the graph, i.e. by
eliminating auxiliaries. As only the auxiliary constants in the boolean part can be eliminated, we can
only break cycles after every second vertex.
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Our constant elimination problems C have the following structure:
C:= {c,@£ Constants (t;) | 1Si<n; 1s j sm} ,

where c, are different free constants, in fact auxiliary constants, and t; are boolean compound terms.
The set of solutions for C is the set

Uggr(©) := {oc 13 t ;  =gR Of; and c, € Constants(t';;) f o r1s i sn ;1s j sm) .
A complete set of constant eliminators cU„„(C) is a set of substitutions such that

(1) cUgg(C) < Upg(C)
(2) for every 0 € Upg(C) there exists 6 € cUpp(C) such that 6 <pp 6[ Variables(C)].

A complete set is called minimal or most general, iff additionally
(3) Vo , t e  cUpp(C) T <p; olVariables(C)] = 1 = 6 (minimality).

We have to compute the most general set for the elimination rule. M Schmidt-SchauB [Schm 88]
offered the following method to solve constant elimination problems in a Boolean ring. Let the
constant elimination problem C = {c; ¢ Constants(t;) l 1< i<n ;1< j<m] } .  Let C, be the set of all
constants to be eliminated Cy = {c;| 1 < i  <n} and let V,  be the set of all variables occurring in the
terms of the problems V, = Variables({t;; 11€ i<n ;1< j<m}= {z  l k=1 , . . . ,K } . Le tD  be the set
of all possible products of elements in Co, D = {c;; *c,, * ... * Ci; | { i l , . . . ,  1j} S {1 , . . . , n } .D
contains the element "1" as empty product and hence set D generated by C, has 2"! elements. We try a
'general’ substitution with Dom(o) = Vo. A general representation is oz, = X {y , 4 * d  Ide  D},
where y, 4 are different new variables and stand for terms not containing constants from Co. If we
apply © to C then we get ot; = XZ (t;; 4
from Co. The unification problem I '  corresponds to C as follows:

I o= { t
This unification problem does not contain constants from C, and is to be solved without these

*d l de  D}, where t; ; ; is a term not containing constants

j a=0 lde  D, where c; is a factorof d, 1 s i sn ;  1 £ j<m} .

constants. The obtained most general unifier can be transformed into a solution of the constant
elimination problem C. Since the Boolean ring is unitary unifying, there is at most one general
constant eliminator necessary.

Example: MS; = (x = f(x * y)).
Let BR = <+, *, 0, 1> be a Boolean ring, f a unary free function symbol, x, y are significant
variables, c is an auxiliary constant and z, yg, Ypı> ¥Yg, are auxiliary variables.

MS after identification: { { y }Y= { }F= {  YB }B
(VW={z }= {yg *c )B
{x }V={ f (2)  }F= {c )B )

cycle: zygz
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elimination problem: {c & yp *c }  | |

Let yg := yg; + Yg, * C, where yg, and yg, are variables that stand for terms not containing c.
The problem to be solved is c € yg, * c+ yg, * c, which is equivalent to yg, + yg, =0 ,asc i s  a
free constant and ypı, yg, do not contain c. The unique solution is yg, = yg,. So the constant
eliminator is {yg « yg, + ¥p; * cl.
Constant elimination: Uy  W={ }= {yg ,  +yg  *c}B

(V= (z=0 }F= ( } "
( x }V= { f ( 2 ) }F= {c )B )

F-Unification: { y )V= { ( )F= {yg  t yp  * c }B

( x }V= { ( f 0 ) }F= (c )B )

We improved M. Schmidt-Schaul3 method for constant elimination mainly in two ways:
1) Is there a subproblem c, € t;; w i t h i e  {1 , . . . ,n }  and j e  (1, ..., m} in the constant elimination
problem C with Variables(t;) = (J, then the constant elimination problem is not solvable. No
substitution o can change the structure of t;;» as NO variables, especially no variables of the domain
of ©, occurint;
2) We split the constant elimination problem into independent subproblems, i.e. variable disjoint
subproblems: C = {C},  ..., CN}. Let (c; ¢ t ; ;) € Cfand  (cj  € tp)  € C* with
r,se {1,.. . ,  N}. If Variables(t;..) N Variables(t..,.) # B=  r=s.
This method is advantageous for such cases, where subproblems have different sets of constants to
be eliminated Col, ees  CoN. As we have smaller sets of possible products of elements of Col, we

introduce less new variables to our systems. Also we have to solve simpler unification problems.

Example; C= (ag x+aby , cg av + adc}
Let BR = <+, *, 0, 1> be a Boolean ring, a, d, c are constants and x, y, V, X)» X)  X3, X4, Yı> Yo,
Y3» Yar V1» Vo» V3, V4 are variables.
MSS) o= {xex ;+ax ,+cx ;+acx , ,  y y ,  +ay ,+  Cy; +acy, ,  ve  vy + av, + Cv; + acv,}

problems: x, + by, + by ,=0 ;  x, + by; + by ,=0 ;  v; + v ,+d=0
solution: {x, « by, + by,, x, « by; + by,, v5 « v, + d}
transformed terms: x, + cx; and av, + av,

BCR) Cl={ae¢ x+aby}and C?= {ce av + adc}
0 = {Xe x, + ax), y y ;  +ay,, Ve  vy + cov,
problems: x, + by, +by ,=0 ; v ,+d=0
solution: {x, « by, + by,, v, « d}
transformed terms: x, and av,
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Sometimes new cycles are introduced to a multi-equation system, when the cycles already existing in
the system are removed by application of the cycle elimination rule. Therefore recursive cycle
elimination 1s necessary:

Definitions:
Let MS; be the multi-equation system after identification, i.e. before any application of a constant
eliminator computed by the cycle elimination rule. Let MSc be the multi-equation system to be
examined and Corp is the already solved constant elimination problem of MS;, which lead to the
creation of MSc. Cy ;p = {ci € Constants (t;;) | 1< i<n ;1< j<m}  with t; € MS.  The
reference list R connects the currently valid multi-equation system MS  with MS:

R={ ( t , t ) I 1< r<nw i t h t  € MS,  tt. € MSc? and t, = ot, with 6 the solution of Cy;p,.
The function Refer determines the list of possible original terms for a term x' occurring in the
currently valid system MSc: Refer(x’) = {x | (x, x) € R}.

The main idea for the solution of recursive cycle elimination problems is backtracking:
We have a multi-equation system MSc, whichis cyclic. Then we can determine the constant

elimination problem Cngy = {c; Constants (t}) 1 1< i<n ;  1<j<m]} wi th t ;  € MSB, whose
solution applied to MS, would remove all determined cycles. Yet we do not remove the cycles in
MSc, but in the original system MS;. As we use MS; in the cycle elimination rule, we have to
backtrack the elimination problem Cygy, Which eliminates constants in compound terms of MSc, to
an elimination problem C'ygw» Which eliminates constants in the corresponding original compound
terms of MS;. This backtracking is achieved with the function Refer:

C'new = (ci  € Constants (ty;;) | ty; € Refer(t';,); 1< i<n ;1< j<m}

Note that more than one back tracked elimination problem may exist for an elimination problem Cyew
as the application of the solution of the elimination problem Corp to MS; might have merged several
original compound terms of MS; to a single compound term of MS... The backtracked constant
elimination problem has to be combined with the previously solved constant elimination
problem Cg;  Cs := CoLDY Chew
Now having computed the problem Cg for the cycle elimination rule we can solve it and apply the
solution to the system MS;. If another cyclic system is computed, then the recursive cycle elimination
process 1s reentered.

We use this backtracking method out of termination reasons. What would happen, if we had
decided to solve only the constant elimination problems directly determined by the system? In that case
the algorithm might not terminate, as every application of the solution of an elimination problem to the
system creates a new system, which then again might have a new cycle. Our method on the other hand
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terminates, as we always use the same initial system MS, and only increase the constant elimination
problem (cf. [BJS 88]). We add subproblems of the form "c. ¢ Constants (t;)" to the already
existing problem Cg;p. This obviously terminates, as the set of compound term in the boolean part of
MS; and set of the constants used in MS  are finite.

4.2 Improved Unification Algorithm

There are several possibilities to improve the performance of the combination algorithm. Two of the
implemented improvements, which are not based on some technical tricks, are presented in this
section. Further interesting possibilities, which I have not used in the algorithm, are discussed with
their advantages and outweighing disadvantages in Section 4.3.

The improvements presented here are employed in the preprocessing part of the combination
algorithm; more exactly after renaming and before identification. It is the procedure, where we
alternate syntactic (free) and Boolean ring unification, until the free part and the boolean part of a
multi-equation consists of not more than one element.

We know that Boolean ring unification requires more computation time than free unification.
Therefore it is our aim to reduce the search space of Boolean ring unification problems. Previously
this was achieved by executing free unification (F) before Boolean ring unification (B) in the
alternating application of unification: (FB)*

The first of our upgradings consists of the construction of a preunification step (BF) for Boolean
ring unification problems. This preunification step is executed in alternation with free unification, until
neither of them can be applied. Then the alternation of free and Boolean ring unification is executed.
So the new sequence is (FBP*)*  (BF)". In the preunification step we solve Boolean ring unification
problems, which involve only constants and variables on toplevel (e.g.: x = a, x = y). For such
problems it is not necessary to employ Boolean ring unification as presented in Chapter 3. Those
problems are handled, as if they were problems in a empty theory without function symbols. Of
course the computed unifiers are applied to the multi-equation system and our preunification step is
performed, until no more problems of this kind occur. Just as in the BR-Unification step we have to
take into account that the free constants are stored in the free part in a multi-equation.
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Let MEP = ( v I ve  MEB is a variable} U {c lc € MEF is a constant}.

Rule: Preunification.
(ME,Y =MEF=MEPBI1< i<n }==> { (MEY=MEF=MEBI1< i<n ] } ,

if there is a IMEI > 1.
Let 6 be a free mgu of ({{ME.P I 1 < i  <n})p.
If thereisate oME} that is a (significant) constant, then

ME'F := MEF U {t} and ME'B := coMEB\ {t},
else MEF := MEF and ME'B := cME}.

a, b are free constants, x, y variables, f unary free function symbol, B = <+, *, 0 ,  1> Boolean ring

MS, = { f(x) = f(y) = f(b), x + y = a) After application of the rules Partitioning, Unfolding,
Renaming, F-Unification we get the following system:

iy( { ( a } f= { xg+yg )P  BP ( { a ,0 }F
( xy  )Y= ( {b }F= ( xp ya JB) = ( x , y }V= {b ] }F  = 7

The important advantage of preunification is, that we can narrow down the search space of Boolean
ring unification. The number of variables, which effects exponentially the complexity of Boolean ring
unification, is reduced: Variables are eliminated either by substitution with another variable already
occurring in the system or even better with a constant.

The second improvement is connected with the identification process. In the identification process
we get a specific identification by abstracting compound free terms of multi-equations to be joined
with the same abstraction constant, while all other compound free terms are abstracted with pairwise
different constants. Some identifications of compound free terms are not possible, especially those
which cannot be unified. Definite members of this set are free terms, which are different ground
terms. Already during preprocessing we use this property to perform preabstraction of ground
terms. This means different ground free terms are abstracted with pairwise different constants. These
abstractions are executed, provided they have not been performed earlier, before the Boolean ring
unification step of preprocessing. Later in the combination algorithm, when we consider the possible
identifications, we have to remember to combine the multi-equations containing ground free terms
with the multi-equations containing other compound free terms (Example: Let ME,, ME, be
multi-equations with free ground terms, ME;, ME, be multi-equations with other compound free
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terms => Identifications to be tested join these multi-equations: none, ME, with ME,, ME, with ME,,
ME, with ME;, ME, with ME,, ME, with ME,, ME, with ME; and ME,  ME, with ME; and ME,,
ME, with ME; and ME, with ME,  ME, with ME, and ME, with ME,).

Let NEW be set of multi-equations ME, of MS, which have a not yetabstracted compound ground

term in the free part ME.F and a non-empty boolean part.

Rule: Preabstraction.
(ME,Y =MEFf=MEBI1< i<n }==> {MEY=MEF=ME 'B I1< i<n ] ,

if set NEW is not empty.
Let c,, C; be different abstraction constants, i f i # j.

If ME, € NEW then ME'B := {c;} U MEBelse ME'B := MEZB.

Examp lefor preabstraction:
a, b are free constants, X, y variables, f, g unary free function symbols, B = <+, *, 0 ,  1> Boolean

ring, vg an abstraction variables, c, d abstraction constants
MS, = g(x) = g(a), f(b) = y + f(x) ) After application of the rules Partitioning, Unfolding,
Renaming and F-Unification we get the following system:

({ f(b) }F={  Yg + Vg }B (Preabstraction) {{ f(b) }¥={  c, Yg + Vp }B (BR-Unification, (x =a
{ fa) }F= {vg }B  = (f(a) }F= (d ,  vg }P Postprocessing) y = f(b)+£(a))

( x } )= (a }F  { ( x }V= { (a }F  =
{ y }V= {yz }®  { y }V=" { y 1B

Just like in the previous improvement we reduce Boolean ring problems by decreasing the variable
set or we get smaller problems by unifying the abstraction constant with complex Boolean ring term.
In the course of this upgrading we have also introduced a constraint for identification into the
combination algorithm: Free ground terms cannot be identified.

Summarizing Section 4.2 we state that our improvements can make unification problems solvable in
the combination of Boolean ring theory with free function symbols without Boolean ring unification.
Sometimes the problems can be solved before the identification and cycle elimination processes.
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4.3 Theoretical Possibilities

4 i i-

When we solve a multi-equation ME = (t, = ... =t_)gp in a Boolean ring BR, we would normally
proceed as follows. We interpret the multi-equation as a set of equations (t, =t,, ..., t. ; =t  Jpg.
Then we solve one equation after another having applied the composed previously acquired unifiers in
advance; always provided that the equation system was solvable so far. This procedure involves
several applications of unifiers to equations as well as composition of unifiers. Therefore it would be
favourable, if we can transform the multi-equation into a single equation (0 = t)pp. How such a term is
structured, is explained by the next Theorem 4.3.1. In fact the term is a sum of products, which are
the elements of the powerset of the set of equation elements without this set itself and the empty set.

Theorem 4.3.1:
Let ME =(t, =...  =t_)zp be a multi-equation in a Boolean ring BR.
Then (0 = Xo N I  tgp» Where N ={1, ..., n}, is an equivalent equation.

P f l  . | .

Let ME=( t ;= t )gp.  { ; , = ,  0=1, +t,
Now ME ’  = ( t ,  = .  = tn  =t  .1)BR with N'  SS N U {n+1}.

t ,  = . . .  = {+1

S& = . . .  =h  and t=

© 0= Zen les t ;  and O=t  +1 ,
< 0=  (t ,  + tas) + ZscN I cs  ts + ( ty  + the) * ZscN I cs  ty)

& 0=  4 + ta l  + 4 * ZscN I cs  L + ( 1+  tas) * 2ScN I cs  t

 0= t  + 641 +n  tillies t+ 25en se (ne1).59n [ ses  ts
© 0=t; + t ;  + 2sNies  l es  ts + Zsentes Uses ts HEsen 52 (n+1).54N ses ts
SS 0=t; + t ;  +Xsnies  [ ies t+  Lsentes.se1) ses ts + I lse ts + sense (n+1).50N [ ses  ts
 0= t  + t ,  +t, +I Nt, +25" S#(n+1).5¢N Lses bs
&0=250n es  ts =
There are at least two special cases for this theorem, which seem interesting. The first one restricts

the solution enormously, while the second one shows a remarkable resemblance to the theorem itself.
This, of course, allows an easy insertion of those two constraints into the algorithm for the theorem
above.
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Lemma 4.3.2:
Let ME =(t ;  = . . .  = t  )gg be a multi-equation in a Boolean ring BR. N =(1, . . . ,n} ,  N ' =N \  {i}.
a) If there is a t, which equal to 1, in the multi-equation ME, then

(1 = I  pn tpg is equivalent to ME.
b) If there is a t, which is equal to 0, in the multi-equation ME, then

(0=2g nr [ ics tor is equivalent to ME

Proof:
a) t ) = . . . = t ,  S0=2; NIL st; © 0=25 n ies  i es  te + Zscnies [ses ts
Ss 0=1+ 25  [ cs  t+  gen [es  ts
Ss 0=1+  || t + 2SeN' I les t +  ZscN ILes ts
€ l =  n t  [ |

b) t = . . .  = > 0= 2g NIlest; © 0=25cnies Ties ts+Zscnies Thies ts
© 0=0+250onTees ts
& 0=  sen  ges  t =
Of course, we would like to transform a whole multi-equation system into an equation as well. This

can be achieved by transforming the multi-equation system into an equivalent set of equations. Then
this set of equations can be combined to a single multi-equation, which again can be transformed into
an equivalent equation. This procedure is expressed by the following theorem.

Theorem 4.3.3:
LetI'={ME,, ..., ME_} be a multi-equation system in a Boolean ring BR

wi th  ME;  - d t ;  — eee  — to  BR :

Then (0= 2p p I  gr tar  WithM =(1, ..., m} and T = 3c NII st
is an equivalent equation.

Proof:
By Theorem 4.3.1: ME; =(t;; =... = tar  & (0 =35  es  GBR
As every multi-equation of the system I" can be expressed by a term equal to 0, we can transform
these equations to the multi-equation (0 =X I les ts = + .  = Loon les  tns/är: Here we apply
Lemma 4.3.2.b and transform it to (0= Xp I L  cp Tgp With 7, = Zc Iles te ®

Having discovered these possibilities to transform multi-equations and even multi-equation systems
into a single equation, we had to discuss the possible applications. Although no composition of
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unifiers and no application of unifiers to equations are necessary, there are disadvantages:
1) The construction of term t involves a large simplification process.
2) The term t to be constructed might have an enormous size, which has an exponential effect on

the complexity of the final problem (0 = t)pp-
3) We loose the information, that two terms are equal. Such an equation (t, = t)BR might restrict

the search space enormously, especially if one is a constant.
Therefore we came to the conclusion to use the transformations, only if terms of the equations have a
similar constant and variable set. This causes the simplification to be more effective, as there is higher
probability that equal (removable) subterms occurs. Thereby we may obtain a smaller term t for the
final equivalent equation.

Although we do not employ the transformation methods, we make use of another constraint. We
sort our multi-equation such that we start with simple problems. Thereby we can restrict the search
space for the following sequel of equations of this multi-equation. Simple problems are mainly those
involving constants.

4 ntifi

Let us recapture the main ideas of the identification process for the combination algorithm. During
identification we join some multi-equations containing compound free terms. This is achieved in our
version of the algorithm by abstracting the compound free terms of multi-equations to be joined with
the same abstraction constant, while all other compound free terms are abstracted with pairwise
different constants. From the view of Boolean ring unification, one can regard the different
multi-equation systems based on the different identification possibilities as a set of Boolean unification
problems (problem elements are like (abstractionconstant, = booleanringterm;)gy), which differ only
in the used abstraction constants. Therefore we can use multi-equation system MS1 to compute
multi-equation system MS2, which identifies the same compound free terms asMS1 plus the one
from multi-equation ME, with the one from multi-equation ME. This achieved by using almost all
abstraction constants of MS1 but the abstraction constant of ME, for ME. In other word we could
apply a transformation A = {c;«- ¢;} to MS1 to obtain MS2.

Here we see a possibility to save some time in the Boolean ring unification branch. Provided we
store the Boolean ring unifiers of the identification problems and we now have an identification
problem, which joins a superset of multi-equations of an stored identification problem, we could
apply the transformation to the unifier instead of to the system. Thereby we would save considerable
time, as we do not need to solve the Boolean ring problem again. Yet we have to prove, that
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performing the transformation A = {c;« c;}, where c;, c; have to be elements of the constants of the
unification problem, to the problem itself is equivalent to performing the transformation to the unifiers
of the problem; of course provided the problem was previously solvable. This is accomplished by the
following theorem.

Theorem 4.3.4:

Let t be a term of a Boolean ring BR, a, b € constants (t), A = {a « b}be a transformation, t' = A(t)
and t = A(0) [ Variables (t')].
G is a most general unifier of (t = O)pp, iff T is a most general unifier of (t' = O)gp.

Proof;
First we have to prove that, i f ¢ is a unifier of {t = O)pp, then T=  A(0) is a unifier of {t' = O)gp.

ot  =p  0 = Ot =pp (a=) 0
=D 1t =BRu{a=b} 0 = ap)! and t =(2_p}t
=2) t '  = r  0 2) a does not occur in tt'

Now by Löwenheim [Löw 08] the most general unifier of {t = O)pp is
o= {xex '+1  (x +s )  | x  e Variables (t)} and the most general unifier of (t'=0)gg is
T= {xex "+9  (x'+5s') xe Variables (t')}.
Alo) [Variables At)] = {x « AX'+  Vt (x' + s,)) | x € Variables (t)} [ Variables (A(t)]

=pgr {x « x' + YA(t (x' +5,)))  | x € Variables (A(1))}
=pp {X « x' + Yt'(x' + A(s,)))| x € Variables (t')}
=gr © | (as A(s,) =pp S'x for every x € Variables (t))

Bn

As by Theorem 4.3.3 any Boolean ring multi-equation system can be transformed in a single
equation, we could used Theorem 4.3.4 in the following way:

Start the identification process with smallest identification possible (none joined) and continue
up to the biggest identification (all joined together). For each identification ensure, that any subset
of identification, whose solution could be used, has already been computed.

Regretfully during the course of this thesis several reasons were discovered not to employ
Theorem 4.3.4:

1) Joining of multi-equations involves also unification in the free part. This unification is faster than
the Boolean ring unification. Thereby we start the test of the identifications by unifying the free
part. This means that our improvement is not fully applicable, as not all identified multi-equation
systems reach the Boolean ring unification step.
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2) The theorem restricts the substitution to the variables occurring in the transformed term.
Therefore we have to apply the transformation also to the term to determine the variables necessary
for the domain.
3) The recursive character of identification complicates the procedure, as the several levels of
identifications lead to several levels of transformations.
4) A great amount of storage is needed to store the unifiers and the accessors to the unifiers.

Because of these reasons we did not employ Theorem 4.3.4 in the identification process.

4.4 Summary

The combination algorithm with its improvements is divided into four phases:

Phase 1: Preprocessing

Task: Transformation of multi-equation system into separated unfolded normal form
Rules: Partitioning, Unfolding, Renaming,

F-Unification, Preunification, BR-Unification, Preabstraction,
Reduction Rules.

Phase 2: Identification

Task: Transformation of multi-equation system into sequentially solved form (allowing cycles)
Rules: Identification, F-Unification, BR-Unification, Constant Abstraction,

Reduction Rules.

Phase 3: Cycle Elimination

Task: Transformation of multi-equation system into sequentially solved form (no cycles)
Rules: Cycle Elimination, F-Unification,

Reduction Rules.
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Phase 4: Postprocessing

Task: Transformation of multi-equation system into solved form
Rules:  Eliminationg„,Eliminationg„,Eliminationg,

Reduction Rules.

The Reduction Rules are Trivial Multi-equations, Auxiliaries, Merge and Equal Terms.

4.5 History and Related Algorithms

There are several investigations covering the field "Combination Of Unification Algorithms" for
disjoint theories. Most of these approaches have also some restrictions on theories they can be applied
to. K. Yelick's [ Yel 85] algorithm is based upon the variable abstraction method, which was
introduced first by MLE. Stickel [Sti 81] and F. Fages [Fag 84] for problems of the AC theory. For
her approach both of the theories have to fulfill the premises of regularity and collapse freeness.
C. Kirchner [Kir 85] tackles the problem computing decomposition schemes (called mutations) from
the axioms for the theories. We could say, that he does not combine the unification algorithms of the
two theories themselves, but modified versions of them. His work is restricted to theories, which are
simple (cycle free). A. Herold's algorithm [Hero 86] is based upon the constant abstraction method,
which was employed by M. Livesey and J. Siekmann for their AC unification algorithm [LS 78].

~ Herold's approach is limited to regular and collapse free theories. E. Tidén [Tid 86] again uses
variable abstraction for his algorithm, which is restricted to collapse free theories. He was the first one
to introduce eliminators. A. Boudet, J.-P. Jouannaud and M. Schmidt-SchauB [BJS 88] have
developed an algorithm, which employs variable abstraction. In addition they need a variable
elimination algorithm for one of the theories and a constant matching algorithm. Also this theory has
to be cycle free. M. Schmidt-SchauB [ Schm 88] has created an algorithm, which has no restrictions at
all on the theories. The main procedures he uses are unfolding, constant abstraction, identification and
theory labelling. This algorithm is currently being implemented by M. Tepp at the University of
Kaiserslautern [Tep 88]. Our algorithm of Chapter 4 is, as mentioned earlier, based on another
approach by Schmidt-SchauB3. There Schmidt-SchauB restricts one theory to be simple. This allows a
creation of an improved algorithm, because the properties of a simple theory include, that cyclic
systems of equations are not solvable in such a theory. The algorithms differ mainly in that we do not
need theory labelling and that we can use a simpler identification step. For detailed information see
[Schm 88]. As pointed out, there are three different basic approaches: variable abstraction,
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constant abstraction and decomposition. In the table below we try to pinpoint this and the
restrictions on two combined theories E and F. _

Table 4.5.1: Comparison of unification algorithms in the combination of theories

AUTHORS PRIMARY METHODS THEORY RESTRICTIONS

. Variable & Constant Abstraction .
Schmidt-Schauß Theory Labelling No Restrictions

Schmidt-Schauß Variable & Constant Abstraction E arbitrary & F cycle free

Boudet et al Variable Abstraction E arbitrary & F cycle free

Tiden Variable Abstraction | E & F collapse free

E & F regularHerold Constant Abstraction E & F collapse free
E & F regular

E & F collapse freeYelick Variable Abstraction

Kirchner Decomposition E & F cycle free

Earlier we have mentioned, that the Boolean ring theory is neither regular nor cycle free nor collapse
free. Therefore at the moment only the first three different algorithms can be used. We have already
disclosed, that for our specific application the use of the more specialized algorithm of
Schmidt-Schaull is superior, as one can readily make use of the cycle free properties of the free
theory. This is supported by data, which has been exchanged with Tepp, who is implementing this
other method. Therefore the only real competition is Boudet et al. In both algorithms several similar
problems have to be solved. They both need an algorithm for unifying pure free terms as well as for
unifying pure Boolean ring terms. At the moment Boudet et al employ the Martin/Nipkov method for
the Boolean rings. In opposition to them we tend to the Biittner/Simonis approach for the reasons
mentioned in Chapter 3 (smaller unifiers). Also both combination algorithms need similar elimination
algorithms to break theory overlapping cycles. But the most important difference is in the abstraction
method: Variable & Constant Abstraction <===> Variable Abstraction. We argue that our usage of
constant abstraction is superior, as in a Boolean ring variables increase the solution space decisively.
Therefore we assume, that our algorithm would be the better choice, what hopefully will be supported
by the runtime data, which we expect to exchange with the Boudet et al.
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5. DATA STRUCTURES AND SPECIAL FEATURES

In this chapter we give some information about the realization of the unification algorithms. In
particular we explain the datastructures selected for the implementation. Also we describe the top-level
functions available to the user as well as some lower-level functions crucial to the course of the
algorithms. Finally we present a test environment, which has been used to compare and test the three
pure unification algorithms and test and trace the combination algorithm. This environment can also be
used to develop and run test examples in any instantiation of Boolean ring theory with or without free
function symbols.

The algorithms have been implemented Common Lisp and run on Symbolics Machines 36xxx. The
language chosen is the Lisp dialect KK-Lisp, which has been developed at the universities of
Kaiserslautern and Karlsruhe as an Al-oriented extension of Common-Lisp. One of the bigger
features is a more powerful defstruct macro [BC 85] with incorporated flavour system [Bol 87]. This
defstruct is used as basic datastructure in this thesis as well as in the theorem proving environment
HADES [Ohl 88] to which the algorithms are connected to.

Defstruct is similar to the "records" in Pascal or "structures" in PL/1. However it is more than a
datatype. One could describe it as a program environment, in which a definition of a datatype initiates
automatically the construction of several functions and macros applicable to objects of this datatype.
For more detailed information see the KK-Lisp manual [KKL 88].

5.1 Structures of Terms and Subst i tut ions

We chose the datastructures suggested and provided by the theorem proving environment HADES
developed at the University of Kaiserslautern. It has a structure sharing graph approach, which is
extremely suitable for the Boolean ring theory, as its unification algorithms construct exponentially
growing terms.

This approach is realized by storing the terms and substitutions as defstruct objects in a large array,
where each element occurs exactly once. If an object a occurs as a direct subelement of an other object
b, then a counter for object a is increased instead of storing object a twice. Object b receives a pointer
to object a and its other direct subelements.
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Example;
o= {  X«  av + acw

y «av +c}

fable: objects with their reference counter

objects counter | objects counter

o +1 av +2

X + 1 acw +1

y +1  a +3

av + acw +1  Cc +2

av + C +1 V +2

W + 1

From the concrete definition of terms and substitution we just describe the excerpt, which has been
used during implementation. The term class is splitted into several subclasses. The ones we are
concerned with are varnables, constants, function symbols and compound terms. In the following we

list the classes with a short description of their important slots.

1) Variable an nstant:

reference.counter: number of times the object occurs in other objects,
e.g. direct subterm, unifier, ...
this information is used for garbage collection
terms with counter 0 are deleted

type: type of the object, either :constant or :variable
this information is used to distinguish between variables, constants
and compound terms

name: pretty-print name
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2) Function symbol:

reference.counter: number of times the object occurs in other objects
type: type of the object (:functional)
name: pretty-print name
axiom.names: axioms concerned with function symbol

ex.: associativity for addition
allows identification of function symbols

3) Compound term:
reference.counter: number of times the object occurs in other objects
type: type of the object (:c.term)
topsymbol: toplevel function symbol
arguments: a list of the direct subterms
free.variables: variable set of the term
depth: depth of the term

4) Substitution;

reference.counter: number of times the object occurs in other objects
domain: a list of variables
codomain: a list of the corresponding terms

5.2 Simplification of Terms

Simplification is very important, as it keeps the termsize as small as possible. Therefore every term
operation initiates simplification, unless it is explicitly suppressed. In our case simplification is a
rewriting of a term into a sorted disjunctive normal form. We will present the rewrite rules, which are
deduced from the Boolean ring axioms and properties. Let BR = <B, +, *, 0, 1>.

imp-n ment

for: +, 0
rule: (+  > 0
origin: addition with no summands is equal to 0
effect: an internal operation, which is necessary because of recursive simplification calls
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imp-remove.on

for:
rule:
origin:
effect:

+, 0
t +0 ) -1 t

zero element axiom
all zeros are removed

3) Simp-replace.duplicates

for:
rule:
origin:
effect:

+, 0
t +  (+ t )  + t , - 0

inverse axiom
even times occurring terms are removed,
odd times occurring terms are reduced to one term

4) Simp-remove.zero

for:

rule:

origin:
effect:

*0
t * 0 ) ->0
Boolean ring property iii)
one zero in a multiplication makes it zero

5) Simp-remove.one

for:

rule:

origin:
effect:

* 1
t *1 ) -> t
unit element axiom
all ones are removed

6) Simp-remove.duplicates
for:

rule;

origin:
effect;

x

* * %t * t ,  *t))->t*¢,
unit element axiom
all more than one occurrences of an element are removed
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7) Simp-ac,flatten
for: +
example: (t, + (t, + (3 + t6)) > ( t + ,  ++ )

origin: associativity and commutativity
effect: term is flattened and sorted

8)Simp-ac.flatten
for: *
example: (t; * ( t , *  (,*t)) > (t,*L,*¥t,% ty)
origin: associativity and commutativity
effect: term is flattened and sorted

9) Simp-distributivity
for: +, *
rule: L*¥ (L+H) uh + ht, (t, +6) * > t it + Lt,
origin:  distributivity axiom
effect: the distributivity is exploited

These simplifiers are applied in the given order on every newly created term. Simplifier 3 and 6 are
applied again after the flattening to eliminate new double occurrences. I f a simplifier itself creates a

new  term, then all these simplifier are applied to this new term (For example during an application of
simplifier 9 all simplifiers will be applied to the new subterm t,t;). Thereby we prevent the creation of
large intermediate terms.
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5.3 Procedures for Pure Boolean Ring Unification

For the three different unification algorithms (description with improvements in Chapter 3) we took
care that all algorithms have the same input pattern of two terms to be unified and <+, *, 0, 1> from
the signature. The latter ensures, that the algorithms can be applied to problems in different
instantiations of Boolean ring theory. Finally we implemented a main pure unification algorithm,
which allows the selection of one specific algorithm by flag, some unifiability tests and equivalence
tests for Boolean ring unifiers.

1) br-boolean.ring.unifyl

This is the "Variable Elimination” method. The variable selection is determined by
br=select.variable. For this function an alteration is prepared, which allows your own selection by a
menu.
Example: xa + yad + yae + yac + zab + zc + zd | Explanations: term

x 1 | variable and occurrences in subterms

y 2 | If nothing is selected, program chooses lowest

z 3

2) br-boolean.ring.unify2

This is the "Basis of Constants" method.

r-boolean.ring.unif

This is the "Basis of Coefficients" method.

4) br-boolean.ring.unify

This algorithm starts with tests of Section 3.3, which enable a direct generation of a most general
or a particular solution. Then an additional input parameter determines, which of the previous three
algorithm should be used; of course without reexecuting the tests. This function's versatility makes
it optimal for user application, even if it is slightly slower than the others.

1-4) The aim of these methods is to have the smallest possible unifier cardinality. Yet sometimes we
want to have all variables in the domain (e.g. renaming purposes). A menu versatility is provided to
switch this effect on and off (br-determine.br.unifier.cardinality). It is also possible to switch this
effect by an internal function.

82





Bernard Crone - Rawe Unification Algorithms for Boolean Rings

5) br-unifiable
It tests, if two Boolean ring terms are unifiable by applying Boole's test.

6) br-boole.s. test

It tests unifiability by Boole's test. Yet this function has three possible result forms determinable by
the user:

as.flag tt, i f  unifiable
as.term 0, if unifiable, else the term computed by Boole's test.
as.list nil, if unifiable, else the term computed by Boole's test in list representation without

function symbols. An advantage to as.term is, that it does not create unnecessary
terms.

7) br-s.u.same.unifier.p

It compares two br-unifiers to detect equivalence. Both unifiers should be most general unifiers of
the same problem. Otherwise you have to call this function a second time with switched arguments.
It operates in that fashion, as it is primarily used to compare the result of the three different
unification algorithms.
There are two ways of deduction possible:

- explicit unification
- conversion of unification problem into one term and application of Boole's test.

I-  me.unifier.withsamedomain.
It works exactly as br-s.u.same.unifier.p with an additional condition: set-equalness of domains.
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5.4 Structures and Procedures for the Combination Algorithm

The combination algorithm problems are presented to us in a different form as the pure unification
problems. There we had an equation, two single terms, and we computeda unifier for this equation.
Here we have a multi-equation system (MS), represented as list of termlists, and we transform it into
another, a solved, multi-equation system. Besides an internal representation for a multi-equation (ME)
we require datastructures for the identification and the elimination problem. This leads to the definition
of three different classes with increasing descriptive power. All classes are defstruct objects, which
are stored together with terms and substitutions of HADES [Ohl 88]. In the following we present the
classes with the slots, which are of interest to the user.

1) theory. termlist: represents one multi-equation splitted into theory parts.
variables: the variable terms; only significant variables from input MS
free: compound terms, auxiliary variables used in free part

and all constants (free and Boolean ring)
boolean: compound terms and auxiliaries used in Boolean ring part

2) iddata represents identification problems of a theory.termlists (MS)
theory.termlists: the theory.termlists
abstractionsdone: a list of theory.termlist with constants used to abstract their free terms
abstractionsnew: a list of theory.termlist with constants proposed to abstract their free terms
pointer: a pointer on resultlist determining the identification stage
pairlist: working memory of simple identification solutions

(unifier of free part of two theory.termlists)
addlist: buffer of identification solutions
resultlist: memory of identification solutions

3)umdata
eliminationlist: a list of elimination problems

one problem is a list of terms with to be eliminated constants
theorytermlists: the cyclic theorytermlists
iddatalist: a list of identification problems <objects of iddata>
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In the following we will describe the functions, which are either available to the user or important to
the algorithm itself. Let be B = <B, +, *, 0, 1> be a Boolean ring and t; be terms of the Boolean ring.
We start with two function used in pure Boolean ring unification.

br-boolean.ring.unify.termlist:

It computes a unifier for a list of Boolean ring terms representing a multi-equation. We can choose
between two methods:
a) Transformation of the multi-equation into the corresponding equation system and solving this

equation system t, = . . . = t  2 t,=t, . . , t ; = t
b) Transformation of the multi-equation into one term ty, representing the multi-equation and

solving the equation ty; =0
The second method should be used, if the terms in the multi-equation are similar.

br-boolean.ring.unify.termlists:
It computes a unifier for a list of lists of Boolean ring terms representing a multi-equation system.
We can choose between three methods:
a) Transformation of the multi-equation system into the corresponding equation system and

solving this equation system:
LS  Sp  ee  TE Stan  154240  415 4m JOEY SUNN SIE 3

b) Transformation of each multi-equation ME, of the multi-equation system into a term tyg;
representing the multi-equation and solving the equation system te l  = 0s + os typ = 0

¢) Transformation of the multi-equation system into one term ty; representing the system and
solving the equation ty, =0

The second method should be used, if the terms are similar in the multi-equations, and the third, if
the terms are similar in the whole multi-equation system. Tests have shown that the applications for
the third method are very limited.
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There are four functions, which handle un i f i ca t i onin the free theory.They compute unifiers for two

terms br- robinson.uni fy . twoterms,  for a termlist representing a multi-equation
br-robinson.unify.termlist, for a list of termlists representing a multi-equation system
br-robinson.unify.termlists, or they merge two unifiers into one br-robinson.merge.two.unifier. The
basic concept used is Robinson unification [Rob 65], but these functions work on multi-equations
making use of their properties (multiple clash check, etc.).

The cycle elimination process of the combination algorithm needs some functions of graph theory.
In particular we employ a function to detect simple cycles (br=ce.find.cycles) and one to check the
connections in a graph (br=ce.connectiveness). The function br=ce.find.cycles is based on an
algorithm of H. Weinblatt [Wei 72]. This algorithm computes all simple cycles of a graph. A simple
cycle is a cycle, where just one vertex is encountered twice. We have used a variation of Weinblatt's
algorithm, where cycles are represented only by their vertices (without arcs). This function is used by
the function br=ce.find.cycle.elimination.points.from.graph, which computes the possibilities to
break all cycles. Usually cycles can be broken by removing any arc of the graph. Yet sometimes there
are constraints for breaking cycles. For example let there be two types of vertices and all paths in the
graph should alternate between the two types (Fl — E2 — F3 — E4 — F1). Assuming that cycles
can only be broken by removing arcs of a certain type (F — E or E — F), then
br=ce find.cycle.elimination.points from.graph will calculate this smaller set of possibilities to break
all cycles, if we supply the function with a predicate capable of identifying this type. In our application
the two types are Boolean ring and free terms and cycles can be only be broken after Boolean ring
terms. The function br=ce.connectiveness computes a list of all subgraphs, which are not connected to
each other. The function br-ce.el iminate.al iens, which computes a unifier solving elimination
problems in Boolean rings as offered by br=ce.find.cycle.elimination.pointsfrom.graph, uses this
function to divide the elimination problems into smaller independant subproblems. The function
br-ce.eliminate.aliens is independant from our specific datastructure for multi-equation systems and
therefore it may be used separately [Tep 88].

The most important function for identification is br=um.get.one.solution.identification. The task of
this function is to perform the identifications and to compute a theorytermlists representing a
multi-equation system, where the identification process has been successfully concluded. It operates
like a finite automat. Its stages corrolates to the identification stages, which are determined by the slots
pointer, pairlist, addlist and resultlist of iddata. For more detailed information see program
documentation.

The combination algorithm of Boolean rings with free function symbols is accessable with the name
br-unify.mixed.termlists. The input of this function is a unification problem, represented as a
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multi-equation system consisting of mixed terms of a specific Boolean ring B' and an arbitrary set of
free functions, and the signature of the Boolean ring B' = <+, *, 0, 1>. It computes the set of most

general unifiers for the unification problem and transforms the multi-equation system into a set of
solved multi-equation systems by application of the unifiers. There is an additional option, which
allows to interrupt the computation of unifiers after having computed the first one. The computed
value in this case is one solved multi-equation and an object of um.data, where the data about the
current stage of the algorithm is stored. We can reenter the combination algorithm by calling the
function br-unify mixed.termlists from.data with the um.data. This function may be interrupted in the
same fashion as the previous one. Thus the unifier of a unification problem can be computed one by
one.

Our implementation is independant from the datastructure chosen by HADES for multi-equations
and multi-equation systems, as it uses its own internal representations. Nevertheless our combination
algorithm processes a muliti-equation system to a set of multi-equation systems. The processed
multi-equation systems are lists of termlists and a multi-equation a termlist. If the implementors of
HADES or other users of our system decide to employ a different datastructure for multi-equations
and systems of multi-equations, then the following three functions have to be changed:
br=calc.variables.of .termlists, which computes all variables inside of the multi-equation system's
terms; br=um.split.in.var free.and.boolean.part.termlists, which divides each multi-equation of the
system into its theory parts (variable, Boolean ring and Free theory); and
br=um.convert.to.multiequation, which converts our internal representation of a multi-equation
system, the theorytermlists, to the external representation of list of termlists. The first two functions

receive the external representation as input. By alteration of these three functions our combination
algorithm can be adapted to any external datastructure for multi-equations and and systems of
multi-equations.

5.5 Test Environment

The pure unification algorithms and the combination algorithm are primarily designed for application
as subprocedures in HADES [Ohl 88]. Therefore the test environment has been mainly developed for
internal use like debugging, tracing and comparison of runtime behaviour. Its second task is to enable
a direct use of our system. For this purpose we created procedures, which allow to perform
unification in a user-defined environment. In regard to those two different concepts this chapter is
divided into two parts: one aimed at a programmer, who either intends to connect our algorithms to his
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system or wants to enhance the performance of our algorithms; the other one aimed at a user trying to

solve particular unification problems.

5.5.1 Test Environment as a Debugging Tool

The test environment is defined by selecting names for variables, free constants, the signature of
one Boolean ring <+, *, 0, 1> and, if necessary, a set of free function symbols with their arities. This
can be done in two ways, either interactively with a menu (br-testing.of.boolean.unifier), or by an
internal function (br=testing.of.boolean.unifier) selecting standard default values: f,g,h as free

function symbols, x,y,z as variables, a,b,c as constants and <+, *, 0, 1> as signature for Boolean

ring. Terms are created with (br-create), which transfers a term from a list representation into our
internal representation. Sometimes, especially during debugging, you require the internal address of a
symbol, which you have defined while initializing the environment. For this purpose you can use
(br-show.addresses), which will print all self-defined constants, variables and functions with their
addresses. On the other hand, if you need to know, what the meaning of a symbol in your
environment is, you may call (br-print.test.environment). This function pretty-prints the environment,
as you have defined it.

There are two test functions: one for unification in free Boolean rings and the other one for
unification in a combination of a free Boolean ring with free function symbols. The main task of
br-test is to compare the three pure unification algorithms. It computes the unifiers of an input term
with the boolean constant 0 and measures the computation time needed for the three algorithms. There
are two additional parameters. The parameter "apply" controls the application of the unifier computed
by the "Basis of Coefficients" method to the input term. This option is used to check, if the computed
most general unifier really unifies the input term with boolean constant 0. Its default is nil, as in
general application of a unifier needs more time than computing the unifier itself. The second
parameter "unifier.print” determines the presentation of the computed unifiers. Usually
(unifier.print = T) the unifiers are printed with domain variables and the codomain terms in a list
representation. Yet sometimes the unifier is too big. We are able to print just the cardinality of the
unifiers, if we switch this option to NIL.br-test.unify.mix is the test algorithm for the combination
algorithm. It calculates the computation time needed to solve such a unification problem consisting of
a multi-equation system represented as list of termlists and pretty-prints the resulting multi-equation
systems. The complexity of this algorithm lead to the introduction of several additional parameters. A
"time"-flag decides, if the algorithm should be timed. A "pprint"-number, if given, enables a trace
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pretty-printing the transformed multi-equation system after each major step of the algorithm, which is
executed before the identification process. The higher the number (1 - 4), the more detailed is the
information. The last parameter gets his importance from internal processes. With "same.address” we
have the choice between :0ld, :new and :environment, where :0ld means that no garbage collection is
performed in the term area, :environment that garbage collection is performed in term area, :new
reinitializes the environment in advance. We choose :old, if we just want to check, if the algorithm
computes the right values. Assuming the garbage collection of HADES works correctly, we may also
select environment. It is slightly slower, but then we can also check, if the reference counter of
objects created by our algorithms is correct. If we select :new, then the storage, where terms,
substitutions and other objects of the HADES and of our algorithms are stored, is cleared

and then reinitialized as defined with the init ial ization function for our environment
(see br-testing.of .boolean.unify). All other data is lost. The advantage of this selection is, that it
ensures, that before calling our algorithms everything is in the correct state. A disadvantage is, that a
definition of a Boolean ring needs comperatively too much time.

5.5.2 Test Environment as a Tool for Solving Boolean Unification Problems

To enable the user to solve unification problems in a self-defined environment, we offer him the
function br-select.example. Some of its interna are based on features mentioned in Section 5.5.1. It is
totally menu controlled, which makes it perfect for presentation purposes. The problems to be solved,
the multi-equation systems, can be input in two fashions: either interactively on demand of this
function or in advance as an argumentlist to br-select.example. This versality allows to prepare certain
unification problems in advance. Of course there are no restrictions on the definition of the Boolean
ring and the free theory. The test configuration (timing, pprint, ...) can be changed after each run. In
the following we will explain, how this function proceeds.

At the start a menu appears on the screen, by which the test environment for the following tests can
be defined. With this menu one selects the names for variables, free constants and the signature of a
Boolean ring necessary to create unification problems in a free Boolean ring.
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Menu 1

INSTANTIATION OF A BOOLEAN RING
VARIABLES : (UV WKY Z)

: INFORMATION
CONSTANTS : (ARBCDE)

: INFORMATION
MULTIPLICATION : x

: INFORMATION
NEGATION HE

: INFORMATION
ADDITION : +

: INFORMATION
UNIT ELEMENT HE |

: INFORMATION
ZERO ELEMENT : 0

: INFORMATION
INSTANTIATE [J ABORT [ I

Then we are confronted with a menu, which defines a set of free function symbols. If we choose to
mark "Instantiate”, then the function symbols are defined. In this case we can create unification
problems in the combination of a Boolean ring with free function symbols. (Remark: Even if we
choose to define none, the combination algorithm is executed. This is done because of internal
reasons.).

Menu 2

DEFINITION OF FREE FUNCTION SYMBOLS
FUNCTIONS: (F G H J)

: INFORMATION
ARITIES : (1 2 3 3)

: INFORMATION
INSTANTIATE [J] NO FUNCTIONS 0]

Of course, if we choose to input some problems in advance, we have to define our terms using the
provided default names for the symbols.

The next menu defines, how the tests shall be executed. We can insert pretty-prints in different parts
of the algorithm, measure the algorithm, compute all solutions at once or one after another and decide
on garbage handling.
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Menu 3
DEFIN IT ION OF THE TEST CONFIGURATION FOR THE COMBINAT ION ALGORITHM

Do i t
Abort

PPRINT FIRST STEPS
PPRINT IDENTIFICATION

PPRINT ELIMINATION
DO YOU WANT TO TIME THE PROCESS ?

DO YOU WANT TO COMPUTE ONE SOLUTION AT A TIME 7
DO YOU WANT TO GARBAGE COLLECT OR TO REINITIALIZE THE SYSTEM ?

The first three selectors determine, if pretty-prints should be executed. "Pprint First Steps" activates
the pretty-prints of the multi-equation system after each major step executed before identification.
"Pprint Identification” prints the system before identification with the possible identification pairs.
During identification it informs, if identification is succesful or if it leads to recursive identifications.
"Pprint Elimination” describes the cycle elimination process. It prints cycles of the multi-equation
system with constant elimination problems to be solved. It also describes recursive cycle checks. With
the other selectors we can decide to measure the combination algorithm or to compute one solution at a
time. If we choose to measure and compute one solution at a time, then each computation of a solution
is timed seperately. The last selector controls the garbage collection in the term area. If we click the left
mouse button (Garbage Collect), then the computed objects are deleted. I f we click the middle button
(Reintialize), then the area, where terms, substitutions, etc. are stored is reinitialized. We keep
computed results, if the right button (Results Are Not Deleted) is clicked.

Now having determined a test configuration, we may start the test runs. With the help of the
following menu we select our example.

nud with exampl al

THE TESTSYSTEM PROPOSES THIS MULTI-EQUATION SYSTEM AS NEXT EXAMPLE
(+ (F X) (F ¥) )  == (+ (FR)  (F B))

WHAT DO YOU WANT FOR YOUR NEXT TEST 7?
NO MORE TESTS

NEW CONFIGURATION
PROPOSED EXAMPLE

NEW EXAMPLE
OWN EXAMPLE

OWN EXAMPLE WITH NEW CONFIGURATION
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The first predefined multi-equation system, which is displayed on terminal, can be selected by
"Proposed Example". If there are more predefined examples, we can switch to the next one selecting
"New Example". If we want to define an example on our own, we select "Own Example". In this case
we are provided with a special editor, in which we may create a new multi-equation system. If we
want to execute our test in a new configuration, we select "New Configuration".

The last two menus occur alternatively, allowing either to change the configuration or the example.
The process is stopped by selecting "No More Tests" in Menu 4. The course of function
br-select.example is summarized in the next diagram.

|
Menu 1 Definiton Of Free Boolean Ring

v
Menu 2 Definition Of Free Function Symbols

v
Menu 3 Definition Of Test Configuration

|
« Menu 4 Selection Of Example

v
Stop

Some test runs of important examples, which were introduced Martin/Nipkov, are included in the
appendix. Those test runs have been executed with all possible pretty-prints activated. This enables a
good understanding of the examples as well as of the algorithm itself.
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6. APPLICATIONS

6.1 Application Fields for Boolean Ring Unification Algori thms

There are three major application fields for pure unification algorithms: digital hardware design,

set theory and propositional logic.
As previously stated, the "Variable Elimination” method has been rediscovered by W. Büttner and

H. Simonis [BüSi 87]. They intend to improve logic programming (using Prolog as an example) by
embedding data types. For integration of the data type "Boolean expression", they need the Boolean
ring unification. The embedding of this data type is comperatively easy because of the unitarity of
Boolean ring unification. Now with this enhanced Prolog they can comfortably describe digital

circuits, as they can represent boolean expressions (and, xor) at term level. This opens their system to

a wide range of application in digital hardware design consisting of verification, simulation,

synthesis, simplification, specialization and debugging. In his report of the unification workshop at

Val d'Ajol 1987 Simonis conferred in great detail a verification of a complete sixteen bit adder
described at the logic gate level [ Sim 87]. Other examples are simulation of executable specifications,
synthezing terms or equations from truth tables, simplification induced by design rule changes
(ECL -> MOS) or specialization of circuits like from an adder to increment by augmenting the

description. Most of these different applications may also be realized directly with systems capable of

solving pure Boolean ring equation systems. The foundation of this application possibility is the

one-to-one correspondence between the two-element Boolean ring and the truth-functional calculus in

digital hardware (+ © ©, * & 1,  0 &F,  1 T).

Example: Specialization of a four bit adder to a four bit increment [Sim 87]

Let be B be a Boolean ring <@, ©, A, F, T> and x, y, Cin» Cours Xp +++»  Kar Yq» +++»  Ya» Co +++»  Car
S;» - . -» Sy are variables.

An adder computes the sum s and the carry c_ . of two binary digits x and y and a carry Cc;.out

It is described as s=x © y@c  andc ,=xAy®xac ,  Dyac ,  .out

A four bit adder computes the sum S = s,sS3S,S, and out-carry c, of two four bit numbers
X = X4X3X,X;, Y = yıy3Y,yı and an in-carry co. A four bit adder is constructed out four adders.
Thereby it is described by the following equation system:
V.1S is4  s5=x@y.®c  andc,=x,Ay,® X,AC;  Dy. AC
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Xy Ya X3 Y3 X Y% 1 nN
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41  Adder a Adder 2 Adder =H  Adder A 0

| | | J T

54 5 5 5

Figure 6.1.1: A four bit adder
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|
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Figure 6.1.2: An adder.

A four bit increment adds 1 to the binary number X = x,x3X,X,, computing results S = s,5,5,5,
and out-carry c , . This means we can add the following equations to the equation system: y, = T,
y, =F, y3 =F, y ,=F ,  co= F. After unification and simplification we get the following
equation system describing the four bit increment:

si =X, DT and¢, =x,
V.2si<s4 5, =x,®c¢; and  c, =x, AC;
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Figure 6.1.3: A four bit increment.

For more detailed information see Simonis' paper on digital hardware design applications [Sim 87].

95





Bernard Crone - Rawe Unification Algorithms for Boolean Rings

Another application field is proposit ional logic. The set of well formed formulae of the
propositional calculus on propositional symbols P = {p,, ... , pn} forms a Boolean ring, which is
isomorphic to T(P, X)g. Thereby propositions with their operators (A, v, = ,  —, ...) can be
transformed into equivalent Boolean ring terms. Unification is not necessary to determine, if a
proposition is a tautology or unsatisfiable. It is sufficient to simplify the corresponding Boolean term
and to check, if the term is equal to 1 or 0. Unifying a term involving variables with 1 or 0 relates to
finding the most general values of these variables, which make the corresponding proposition a
tautology or unsatisfiable.

We recall an application presented by U. Martin and T. Nipkov: Construction of Derived Rules.

Example: [MN 86]
Determine the most general value of x, which will make the following rule into a derived rule.

(Pq  AX

qv r

This means we compute the most general solution of (p ~» q) A x = (q vr )  = 1. Applying transfer
rules (a v b) = (a + b + ab), (a A b) = ab, (a — b) = (1 + a + ab), we can translate the equation
into a Boolean ring equation :

1+x (1+p+pqg )+x (1+p+pq )  ( q+ r+q r )=1
© x ( l 1+p+pq ) l 1+q+ r+q r )=0
 x ( ( I +p+p  A+  ( 1+1=0
© x (Q+p  A+ A+1 )=0 .
The most general solution is T= {x « x' (1 + (1 +p) (1 + q) (1 + r))}, which is equivalent to
Tp = {X & X' A =(=p Aq  A—T)} = {x & x" A (p Vv qv 1)}. Thus we have shown that for any x,

P=>PA(pvqVvr )Ax
qv r

is a derived rule.
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Boolean ring unification can also be employed in set theory. In particular the powerset of any set

S = {Sı> ..., Sn} forms a Boolean ring under the operations symmetric difference (A) and
intersection (mM). The Boolean ring unit element 0 relates to the empty set, the unit element 1 to set S

and the boolean functions +, * to set operators A, m. In general the operators intersection (N),

union (U) and complement (\) are used in set theory. Terms using such operators are also
transferable, just as we have explained for Boolean algebra in introductory Chapter 2 (Let t,, t, be

terms. t, Ut, = t ,  At, Att, \t, =S A t ) .  Therefore it is sufficient to solve unification problems in a

Boolean ring B =< SU, A, m, @, S >, where S = {s,, ..., s_} and SU) is a set of one element sets
{ {s , } ,  ..., {s , } } .  Nevertheless we can not directly use the unification algorithms of Chapter 3.

They have be modified, as the operators (A, MN) are also defined on the elements of generating set SJ.
Chapter 3: SMS)  = N s, As ,  = 58,45, = 81759U 8,59

set theory: { s ; } n { s , }=0  {s;}A{s,} = {s;}A{s,} = { s i }U {s,}
In the Büttner/Simonis method we have to adjust the operators, while for the Martin/Nipkov method

we also compute a different orthogonal basis and thereby a different specific solution. Those changes
are demonstrated by the following example, where we employ both methods to compute the most
general unifier for an equation in Boolean ring B' =< SU, A, m, @, S >, where S = {a, b, c, ...},
with Variables = {x, y} (To abbreviate we will write for the one element set like {c} the expression c
and for a mb the expression ab).

Example: Compute the mgu for the equation { cxy A ax A by Ac =0)g.
a) "Variable Elimination" method
t =cxyAaxAayAbyAc=g  ( cyAa )xAayAbyAc  | eliminate variable x

t = ( cyAaAS) (ayAbyAc )=gbyAcyAc=g (bAc)yAc eliminate variable y
t = (bAcAS)c=gcAc=40

Resubstitution of solutions

t = {}
t = { } ° { ( y«&cAy6bAcAS) }= (y«&cAy(bAcAS)}

T={y—cAy  (bAcAS) } - { x—ayAbyAcAx ' ( cyAaAS) )
=g  { ye  cAby 'Acy 'Ay

x & (@aADb)(cAby'Acy' Ay )AcAx ' ( c ( cAby 'Acy 'Ay )AaAS) }
=p  {y <cAy Aby' Acy'

Xx «—cAx 'Aay 'A ax'A cx'}
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b) "Basis of Constants" method (as an example for the "Particular Solution" approach)
1) Conversion of term t = cxy A ax A ay A by A c into polynomial form.

t=cxyAaxA(@aAb)yAc
2) Splitting t into its homogeneous part t, and its inhomogeneous part t. ,

tom =CXyA(aAb)yAby

Linhom 7 °
3) Sort the homogeneous part with the criterion "smallest variable part”.

thom = (a A b)y A by A cxy
4) Compute the part D' of orthogonal basis necessary to representtot. nom:

The orthogonal basis for ring B' is the set S, as every element of ring B'(the power set of S)
can be written as a linear combination of elements of S and the elements of S are trivially
orthogonal. Therefore D' = {c}.

5) The solution we collect for c is N(c) = {xy}, as ca = .  0, c(a A b) = .  0 and cc #5. 0.
Therefore the particular solution is 6 = {y « ¢ ,  x «c }

6) The most general solution is
tT= {yeyA(x ' yAax 'Aay '  Aby'Ac) ( y 'Ac )

xe  Xx A(x ' yAax 'Aay 'Aby '  Ac) (x' A c)}
=p { ye  cAy  Aay' Aby  Acy' A ax'y'

x cAXx'Aax'Acx'A ax'y' A bx'y'}.

Summarizing the presentation of those three different applications, we come to the following
conclusions. The greatest possible impact lies in the field of digital hardware design. In this wide field
we find several practical applications for our algorithms, which directly support the developer of
digital circuits. The other two fields, propositional logic and set theory, are of a more theoretical
relevance.

6.2 Extending the Algorithms to Another Theory

Quite often boolean problems are not formulated in terms of a Boolean ring, but in a signature I" of
different theory B. As long as the signature of theory B is expressive as the Boolean ring theory, i.e.
theory B is weak isomorphic to Boolean ring theory, there is no problem, because we can translate in
either direction. In this chapter it will be discussed, if and how our unification algorithms can be made
applicable to such a theory B. As an example we have selected the Boolean algebra with
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signature I” = {U , M,—, 0, 1}.

The first naive approach would be to translate the unification problem from the Boolean algebra into
the Boolean ring, to solve it there, and then to transform the solution back into Boolean algebra. The

transformations from Boolean ring (BR) to Boolean algebra (BA) and back are defined by T and T‘!.
They are equivalent to the ® operator of Stone's theorem (Theorem 2.1.1)[ Sto 36].

Tl :  BRS BA t r  tg, =T (tgp)

The transformations have these properties, which are used in the sequence:
T1(T(tg,)) = tg ,  and T(T-Y(tgp)) = tpg

From Stone's theorem we can obviously deduce the following facts also used sequently:
Let ©, Y be substitutions and s, t be terms of either theory.

Fact 1) T(os) =gg T(0)T(s) and T-'(os) =5, T(0)T-1(s)
Fact2) s=p,t & T(s)=pp T(t) ands =pp t & Ts)  = ,  T(t)
Fact3) T(yo) =pg T()T(0) and T*!(yo) =p, T'()T (0)
Fact4) Let F be the set of free function symbols

VieF T(f(s;, ..., s,)) =gg f(T(s,), ..., T(s,))) and
VfeF T(f(s,, ..., 5 )  =pa (Ts ,  ..., T(s.)))

Lemma 6.2.1 states, that the most general unifier of an equation, which has been converted from
Boolean algebra to Boolean ring, is in his reconverted form a most general unifier of the original
equation.

Lemma 6.2.1: WU CS A= tga )  = {og A=  T- (ogg) | Opr € HUppr(T(sgA) = T(tgNJ}

Proof:
First we prove that Op. is a unifier:
OpaSea =BAOBAT (T (SpA) | by fact 1

=pa T 1(Opg(T (Sg) by fact2
=pa T1(Ogr(T (tg) | by fact1

=pa Opa l (T (tg ) )

=BA OBalBA
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Now let Tg, € Upa(Spa =tpa)- Then there is a Ag, with Ag,Tg, =p, Opa [Variables (sg,, tpa)l.
T(tg,) € Ugr(T(sga) = T(tg,)), so there is a T(Ag,) with
T(Ag,) T(tg,) =pg T(og,) [Variables (Spa, tg,)] | by fact 3
=> T(AgsTga) =pr T(Opa)
=  AgaTga “BA Opa MI

Yet this method has a decisive disadvantage: The translation of the unification problems as well as
of the resulting codomain terms will exponentially blow up the size of the formulae. This can be
suppressed, if we leave the formulae untouched and transform the algorithms instead. In their
converted forms we present the lemma necessary for the "Variable Elimination" method and the
theorem for the "Particular Solution" method.

Lemma 6.2.2;
Let x, x' be variables and c, d, e terms of Boolean Algebra BA and x ¢ Variables (c, d, e).

0 :=T  {xe (—cN=adNn=e)Nnx 'udue)N—=x ' "U( -cNdn—e)} ismgu of
(cnx)udnNn-x)ue=0)g ,

eo tismguof ((cNnd)ue=0)g,

Proof:
The original lemma for the "Variable Elimination" method is Lemma 3.1.1:

G=1tT° {xe  b+x ' ( 1  + a)} is mgu of (ax + b =0)pp <> Tis mgu of (ab + b = Obpp-
It is either possible to prove Lemma 6.2.2 analogously to Lemma 3.1.1 or to use the
transformations of Stone's theorem (Theorem 2.1.1). We apply the second method:

cnx)uldnNn—-x)ue = (x+d -x )uUe=cx+d -x+e+cxe+dxe
=CcX+dx+d+e+cxe+dxe+ de
=(c+d+ce+de )x+d+e+de
= (cc Md) U (cM—d) MN =e) x + (d ve)

=> a = (—CcMd) U (cM—-d) Mm —e) and b = (d ve)

ab + b= a NM b= ((—c md) U (ce NM -d) Me )  MN (d U ee)
= ((c Md) U (cc M —-d) Ve) M(d ve)
=(cnNnd)udne)ulcnNndnNne)u(-cNn=dne)ue
=(cnNnd)ue
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b+x (1+a )  =b+(Xx'M —a) = (=b Mi x' Ma )  U (0b Mm a(x'N =a)
= (—a Mb  NM x) U 0b nm=-x') U ( ab )
= ( ( ( c MM d )  U ( cm  dd) U e ) M (-d M =—=e) AM x )  U ( due  Nx )  U

(((—c Md) U (cM —-d) M =—=e) M(d U e))
= (CM -d Me)  Ax 'U (dve )N x U (-cAdNM=—e) =

Theorem 6.2,3:

Let t, and t, be two terms of free Boolean algebra BR over the Boolean algebra B and let by, . . . . b ,
be elements of B and Var(t,) U Var(t,) = {X,, ..., X} the used variables.
When ot, =p, Ot, with 6 = {x ; -  b,| 1 <i <n}
then the substitution

T=  {x ,«  (bi U t )  Nx ,  Ub, NY)  N—x" ) I 1< i<n ]

with y= {x;« x11 < i  <n}
and t=  (—t; N t )  U (t; N t )

is the most general unifier of t, and t,.

Proof;
The original theorem for the "Particular Solution” method is Theorem 3.2.1. Again it is possible to
prove Theorem 6.2.3 analogously to Theorem 3.2.1. Yet we will transform the theorem:

X’; + YO) *& +b )  = (X; Ny )  NE  +b )  U (x ,  nE) NE  + b;))
= (X; NM (=y(t) UE  + by) U (=x, N b; N y())
= (X MN (YM) U (x; Nb )  U (=x, Nab )  U (—=x'; N b; N Y(t))
= (KO (Y(=t) U ( x ;  bY) U (b; NY)  NXT
= (b; U l t )  NM x’; U (0b; Ny t )  Nx ’ )

t=t; ,  + )  = (St, " LUE , NL)  =
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The "Variable Elimination" method can be constructed directly from the lemma. Yet for the
"Particular Solution" methods, which are based on the theorem, other approaches have to be selected
to determine a special solution. The "Basis of Constants" and "Basis of Coefficients" methods use
properties of the polynomial form, which is not available in Boolean algebra. Therefore we present
the full conversion of the "Variable Elimination" method.

Algorithm: "Variable Elimination" Method for Boolean Algebra
Input: term t € Boolean algebra BA.
Output: most general BA-unifier 6 of term t and 0.

|
| Stepl) Ift=g,0, then o := { }  is mgu of (t =0)g 4.
| Step2) If Variables (t) = @, then stop with fail.

| Step 3) Select a variable x € Variables (t) with t = (cn x) U (dm x )  Ue
| and x ¢ Variables (c, d, e)
| Step 4) Compute the most general unifier T of the problem ((c Nd) Ue =0)g,.
| StepS5) O:=1T° {Xe (CM -d Me)  Mx' U (dUe)  N x ’  U (-CcNd Mm —e)}
| is mgu of (t =0)g,.

Besides the unification algorithms for pure Boolean rings, we would also like to adapt the
combination algorithm. To modify the algorithm, that it can handle problems in the combination of
Boolean algebra and free theory, we need the following lemma:

Lemma 6.2.4;
Let BA be a Boolean algebra, BR a Boolean ring andF the free theory.
Let + indicate the combination of theories.

HUpA+r(Spa+k = pay )  = {Opasr = T(Opr.p) | Oprir € WUpg, H(T(Spr.p) = T(tppap))}

Proof:
Lemma 6.2.1 has established the assertion above for pure problems. In this lemma we have
additionally the free function symbols. Fact 4 deduced from Stone 's theorem allows to extend the
transformation to a combination with the free function symbols.
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By this lemma it is sufficient to replace the Boolean ring part of the combination algorithm with
Boolean algebra part. Then the algorithm is able to handle problems in the combination of Boolean

algebra and free theory.
In this chapter we have shown, that it is possible to extend the unification algorithms from Boolean

ring to another theory, the Boolean algebra. An imperative condition is, that the expressiveness of the
new theory is equivalent to the expressiveness of Boolean ring theory. A second condition, which
would improve the performance of the new algorithm, is the availablity of a deterministic normal
form. Then we can detect term equality very quickly. This has no effect on the adaption of the
algorithm itself, as seen in the Boolean algebra case. Yet it influences internal processes like
simplifcation and term equality and thereby it will slow down the performance of the algorithm.

Remark:
The unification algorithms can also be adapted to Boolean algebras with other operators (ex.: the
one with just the operator = ,  i.e. nand), as long as the premises mentioned are fulfilled. This
makes the procedures ideal for applications in digital hardware design.
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7. CONCLUSION

In this thesis we accomplished to confer a thorough presentation of the two major approaches to
unification in free Boolean rings. By rigorous scrutinization and comparison of the methods we
revealed their weaknesses, which sequently were removed or at least diminished. Also we
successfully suppressed some of the exponential term growth related to the unification algorithms. Yet
under some circumstances, especially while handling bigger problems (terms with more than five
variables and five constants), we still get a too high computational complexity. Our research here
disclosed some tendencies, which should be promising for the future. Regrettably we were only to
start off in those directions, as a complete coverage would have gone beyond the scope of this thesis.
We preferred to equip the reader with sufficient data, that he is able to select the best algorithm for his
applications.

The second part of this thesis, the combination algorithm, is of significant relevance, as previous
combination algorithms were not able to solve the open problem of combining a simple theory
(free theory) and arbitrary one (Boolean ring theory). The foundation of our method is an algorithm
by M.Schmidt-SchauBl. After an examination of his ideas and propositions we developed their
realization. Furthermore we enhanced the performance of the algorithm by introducing some of our
ideas, which are partially due to properties of the Boolean ring. The basic components of the
algorithm are E-unification algorithms for the two involved theories and a method solving
constant-elimination problems in the Boolean ring. For unification of pure Boolean ring terms we
selected algorithms from our improved set of algorithms. Mainly we employed the "Variable
Elimination" method, because its computed unifiers are often smaller.

With our current system we are able to solve the test examples known from the literature with a
satisfactory run time. For more complex examples we offer a feature, which allows to compute the
most general unifiers one at a time instead of the standard procedure of computing the set of most
general unifiers all at once.

Finally we explained, how to extend our algorithms from Boolean rings to Boolean algebras. This
enlarges their application fields decisively.
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9. APPENDIX

In the appendix three testsequences for the unification algorithms for pure Boolean Rings are
presented. Method 1 denotes the "Variable Elimination" method, Method 2 the "Basis of Constants”
method, Method 3 the "Basis of Coefficients" method. Method 2 and Method 3 are combined to
Method 2/3, when the performance of the "Particular Solution” methods is identical.

We conclude the appendix with the results of four test runs of the unification algorithm for the
combination of Boolean ring and free theory.

Testsequence 1:

Method 1 Method 2 Method 3
Term

Abbrev. time (sec.) | cons cells | time (sec.) | cons cells [time (sec.) | cons cells

t |[(+(*xa)(*ab)(*ac))] 0.032 231 0.086 565 0.092 506
t" JF t ( * xyc ) ( * yb ) )  0.215 1341 0.293 1770 0.297 1821
t" (+t (*xyza)(*xzb)]  1.745 8887 | 0.502 2942 0.564 3150
t e "  [ + t  (* wx yac)) 13.155 | 49901 | 0.659 3904 | 0.713 4056

Testsequence 2:

Method 1 Method 2 Method 3
Term

~bbrev | time (sec.) | cons cells {time (sec.) | cons cells [time (sec.) | cons cells

t (+ ( * xabc ) ( *ad ) )  0.042 241 0.005 58 0.004 34
t“ (+ t ( * ybe ) )  0.133 719 | 0.008 98 | 0.009 69
t "  (+t (*zcde)) 0.435 2035 | 0.012 121 | 0.026 140t +  (*vacd) 0.944 | 4045 | 0.027 228 | 0.077 208
t +  rt” wb ff) 1.877 7792 0.030 240 0.116 476
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TEST COMBINATION ALGORITHM:

MACHINE: MYSTIC
DATE: 13.10.1988

TEST ENVIRONMENT:

BOOLEAN  THEORY:
function ADDITION
function MULTIPLICATION
constant UNIT ELEMENT
constant ZERO ELEMENT

FREE THEORY:
function F with arity 1

VARIABLES:

FREE CONSTANTS:

->  +
> *

--> 1
--> 0

UV,  WX YZ

A, B, C, D , E

THE PROBLEM SPLITTED IN THE THEORYPARTS
ME 411
BOOLEAN

UNFOLDING OF ALIENS OF INITIAL SYSTEM
ME 411
BOOLEAN
ME 491
FREE
BOOLEAN
ME 474
FREE
BOOLEAN
ME 445
FREE
BOOLEAN
ME 428
FREE
BOOLEAN

| (+ (FA) (FB )  == (+ FX )  (F Y))

| (+1V_41811V_435]) == (+ IV_464I IV_4811)

| (FY)
| IV_481!

| (FX)
| IV_4641

| (FB)
| IV_4351

| (FA)
| IV_418lI
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RENAMING OF INTITIAL SYSTEM
ME 561
VARIABLES |Y
FREE | IV_520l
ME 554
VARIABLES | X
FREE | IV_510
ME 411
BOOLEAN | (+IV_41811V_435l) == (+ IV_464l IV_481])
ME 491
FREE | (FIV_520I)
BOOLEAN | IV_481l
ME 474 |

FREE | (FIV_510I)
BOOLEAN | IV_464|
ME 445
FREE | (FB)
BOOLEAN | IV_435]
ME 428
FREE | (FA)
BOOLEAN | [V_418l

UNIFICATION OF FREE PART AND PREUNIFICATION OF BOOLEAN  RING PART
ME 561
VARIABLES |Y
FREE | 1V_520I
ME 554
VARIABLES | X
FREE | [V_510i
ME 411
BOOLEAN | (+1V_418I1V_435]) == (+ IV_4641 IV_481))
ME 491
FREE | (FIV_520I)
BOOLEAN | IV_481!
ME 474
FREE | (FIV_510})
BOOLEAN | IV_464
ME 445
FREE | (FB)
BOOLEAN | IV_435I
ME 428
FREE | (FA)
BOOLEAN | IV_418I
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UNIFICA TION OF BOOLEAN  RING AND FREE PART
ME 561
VARIABLES |Y
FREE | IV_520l
ME 554
VARIABLES | X
FREE | IV_S10l
ME 491
FREE 1 (FIV_5200)
BOOLEAN | IV_659)
ME 474
FREE | (FIV_510l)
BOOLEAN | (+ IV_659I IC_5821 IC_592))
ME 445
FREE | (FB)
BOOLEAN I IC_582I
ME 428
FREE | (FA)
BOOLEAN | IC_5921

identification is necessary
those identifications of two free terms are possible
IDENTIFICATIONPAIR: <(F IV_520l) (F B)>
IDENTIFICATIONPAIR: <(F IV_520l) (F A)>
IDENTIFICATIONPAIR: <(FIV_510l) (F B)>
IDENTIFICATIONPAIR: <(FIV_510l) (F A)>
IDENTIFICATIONPAIR: <(FIV_510l) (FIV_520l)>

the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: <>
the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_520l) (FB) >
the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_5200) (F A) >
this identification of free terms is not possible:
IDENTIFICATIONLIST: < (F IV_520l) (F A) (FB) >
the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_510l) (FB) >
the following identification of free terms IS A SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (FIV_520)) (FA) > <(FIV_510) (FB) >

TOPLEVEL CYCLE CHECK
NO CYCLES DETECTED

THIS IS A SOLUTION WITHO YCLE
ME 805
VARIABLES |Y
FREE | A
ME 770
VARIABLES | X
FREE | B
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the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (FiV_510l) (F A) >
this identification of free terms is not possible:
IDENTIFICATIONLIST: < (FIV_510) (FA) (FB) >
the following identification of free terms IS A SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_520l) (FB) > <(FIV_510l) (F A) >

TOPLEVEL CYCLE CHECK
NO CYCLES DETECTED

THIS IS A SOLUTION WITHOUT CYCLES
ME 812
VARIABLES |Y
FREE | B
ME 770 

|

VARIABLES | X
FREE | A

the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (FIV_510) (FIV_520!) >
the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_510l) (F IV_520)) (F A) >
the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_510l) (FIV_520l) (FB) >

the problem:
one multiequation:
(+ (FX) (F Y)) == (+ (FA) FB )

one solution:
one multiequation:
Y —_——

one multiequation:
X==A

one solution:
one multiequation:
Y==A
one multiequation:
X==B
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THE PROBLEM SPLITTED IN THE THEORYPARTS
ME 411
BOOLEAN | (* (F A) (F B)) == (* (F X) (F Y))

UNFOLDING OF ALIENS OF INITIAL SYSTEM
ME 411
BOOLEAN | (*IV_418I1V_435l) == (* IV_464I IV_481))
ME 491
FREE | FY)
BOOLEAN | IV_481l
ME 474
FREE | (FX)
BOOLEAN | IV_464l
ME 445
FREE | (FB)
BOOLEAN | IV_435|
ME 428
FREE | (FA)
BOOLEAN | IV_418l

RENAMING OF INITIAL SYSTEM
ME 561 _
VARIABLES |Y
FREE | IV_520l
ME 554
VARIABLES |X
FREE | IV_510I
ME 411
BOOLEAN | (* IV_418IIV_435) == (* IV_4641 IV_481I)
ME 491 

|

FREE | (FIV_520l)
BOOLEAN | IV_48l1I
ME 474
FREE | (FIV_510l)
BOOLEAN | IV_464l
ME 445
FREE | (FB)
BOOLEAN | IV_435]
ME 428
FREE | (FA)
BOOLEAN | IV_418

AT
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UNIFICA TION OF FREE PART AND PREUNIFICATION OF BOOLEAN  RING PART
ME 561
VARIABLES
FREE
ME 554
VARIABLES
FREE
ME 411
BOOLEAN
ME 491
FREE
BOOLEAN
ME 474
FREE
BOOLEAN
ME 445
FREE
BOOLEAN
ME 428
FREE
BOOLEAN

| ¢
| IV_S520I

| X
| IV_S510I

| (* IV_41811V_435l) == (* IV_46411V_481l)

| (F TV_520I)
| IV_481l|

| (FIV_5100)
| IV_464I

| (FB)
| IV_433l

| (FA)
| {V_418I

UNIFICATION OF BOOLEAN RING AND FREE PART
ME 561
VARIABLES
FREE
ME 554
VARIABLES
FREE
ME 491
FREE
BOOLEAN
ME 474
FREE
BOOLEAN

ME 445

BOOLEAN
ME 428

BOOLEAN

| ¢
| IV_520l

| X
| IV_510I

| (F1V_520i)
| (+ IV_7071 (* IV_70711C_5821 IC_592) (* IC_582I IC_592l))

| (FIV_5101)
| (+ IV_7411

(*IV_70711V_741l)
(* IV_70711V_7411 1C_5821 IC_592I)
(* IV_74111C_5821 1C_592I)
(* IC_5821 1C_592l))

| (FB)
| 1C_582I

| (FA)
| 1IC_592I

AS
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identification is necessary
those identifications of two free terms are possible
IDENTIFICATIONPAIR: <(F IV_520l) (F B)>
IDENTIFICATIONPAIR: <(F IV_520l) (F A)>
IDENTIFICATIONPAIR: <(F IV_510l) (F B)>
IDENTIFICATIONPAIR: <(F IV_510l) (F A)>
IDENTIFICATIONPAIR: <(FI1V_510l) (F IV_520)>

the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: <>
the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_520!) (FB) >
the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_520) (F A) >
this identification of free terms is not possible:
IDENTIFICATIONLIST: < (F IV_520) (F A) (FB) >
the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_510)) (FB) >
the following identification of free terms IS A SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_520l) (F A) > <(FIV_510l) (FB) >

TOPLEVEL CYCLE CHECK
NO CYCLES DETECTED

THIS IS A SOLUTION WITHOUT CYCLES
ME 922
VARIABLES |Y
FREE | A
ME 950
VARIABLES | X
FREE | B

the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_510l) (F A) >
this identification of free terms is not possible:
IDENTIFICATIONLIST: < (F IV_510l) (F A) (FB) >
the following identification of free terms IS A SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_520l) (FB) > <(FIV_S10) (FA) >

TOPLEVEL CYCLE CHECK
NO CYCLES DETECTED

THIS IS A SOLUTION WITHOUT CYCLES
ME 950
VARIABLES |Y
FREE | B
ME 1065
VARIABLES | X
FREE | A

the following identification of free terms IS NO SOLUTION <no cycle check>
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IDENTIFICATIONLIST: < (F IV_5101) (F IV_520)) > |

the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_510)) (F IV_5200) (F A) >
the following identification of free terms IS NO SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (F IV_5101) (F IV_520I) (F B) >

the problem:
one multiequation:
(* (FX) (FY)) == (* (F A) (FB))

one solution:
one multiequation:
Y ==B
one multiequation:
X==A

one solution:
one multiequation:
Y==A
one multiequation:
X ——
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THE PROBLEM SPLITTED IN THE THEORYPARTS
ME 363
VARIABLES |X
FREE | (F(* X Y))

UNFOLDING OF ALIENS OF INITIAL SYSTEM
ME 380
FREE | IV_370I
BOOLEAN | (* X Y)
ME 363
VARIABLES | X
FREE | (FIV_370l)

RENAMING OF INITIAL SYSTEM
ME 431
VARIABLES |Y
BOOLEAN | IV_409I
ME 380
FREE | IV_370I
BOOLEAN | (* IV_3991 IV_409I)
ME 363
VARIABLES | X
FREE | (FIV_370l)
BOOLEAN | 1V_3991

UNIFICA TION OF FREE PART AND PREUNIFICATION OF BOOLEAN  RING PART
ME 431
VARIABLES |Y
BOOLEAN | 1V_409I
ME 380
FREE | IV_370l
BOOLEAN | (* IV_39911V_409I)
ME 363
VARIABLES | X
FREE | (FIV_370l)
BOOLEAN | IV_399I

UNIFICATION OF BOOLEAN  RING AND FREE PART
ME 431
VARIABLES |Y
BOOLEAN | IV_409I
ME 380
FREE | 1V_370
BOOLEAN | (* IV_39911V_4091)
ME 363
VARIABLES | X
FREE | (FIV_370l)
BOOLEAN | IV_399
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identification is necessary

the following identification of free terms IS A SOLUTION <no cycle check>
IDENTIFICATIONLIST: <>

TOPLEVEL CYCLE CHECK
CYCLES ARE DETECTED IN FOLLOWING SYSTEM:
CYCLES: (IV_3701 1IC_4591 IV_370l)

ME 496
VARIABLES |Y
BOOLEAN | IV_409I
ME 503
FREE | IV_3701
BOOLEAN | (*TV_4091 1C_459))
ME 510
VARIABLES |X
FREE | (FIV_370))
BOOLEAN | IC_459|

WE TRY TO BREAK CYCLES AT FOLLOWING POINTS
TERM (* IV_4091 IC_4591) ALIENS IC_459I
THE CYCLES ARE BREAKABLE

RECURSIVE CYCLE CHECK
NO CYCLES DETECTED

THIS IS A SOLUTION WITHOUT CYCLES
ME 647
VARIABLES |Y
BOOLEAN | (+1V_6371 (* IV_63711C_4591))
ME 692
VARIABLES | X
FREE | (FO)
BOOLEAN | 1C_459I

the problem:
one multiequation:
X == (F(* X Y))

one solution:
one multiequation:

one multiequation:
X == (F 0)
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THE PROBLEM SPLITTED IN THE THEORYPARTS
ME 375
FREE | (F X)
BOOLEAN | (+ X (F Y))

UNFOLDING OF ALIENS OF INITIAL SYSTEM
ME 375
FREE | (F X)
BOOLEAN | + X IV_382))
ME 392
FREE | (F Y)
BOOLEAN | I'V_382

RENAMING OF INITIAL SYSTEM
ME 484
VARIABLES | X
FREE | 1V_421I
BOOLEAN | IV_455I
ME 477
VARIABLES |Y
FREE | IV_411l
ME 375
FREE | (FIV_421})
BOOLEAN | (+1V_382I1V_455I)
ME 392
FREE | (FIV_4111)
BOOLEAN | IV_382l

UNIFICATION OF FREE PART AND PREUNIFICATION OF BOOLEAN RING PART

VARIABLES | X
FREE | IV_421I
BOOLEAN | IV_455I
ME 477
VARIABLES |Y
FREE | IV_411]
ME 375
FREE | (FIV_4211)
BOOLEAN | (+1V_38211V_455I)
ME 392
FREE | (FIV_411I)
BOOLEAN | IV_382l
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UNIFICA TION OF BOOLEAN  RING AND FREE PART
ME 4384
VARIABLES | X
FREE | IV_421I
BOOLEAN | IV_45S5I
ME 477
VARIABLES |Y
FREE | IV_411I
ME 375
FREE | (FIV_421))
BOOLEAN | (+1V_382l IV_455l)
ME 392
FREE | (FIV_411I)
BOOLEAN | IV_382

identification is necessary
those identifications of two free terms are possible
IDENTIFICATIONPAIR: <(F IV_4111) (FIV_421)>

the following identification of free terms IS A SOLUTION <no cycle check>
IDENTIFICATIONLIST: <>

TOPLEVEL CYCLE CHECK
CYCLES ARE DETECTED IN FOLLOWING SYSTEM:
CYCLES: (IV_4211IC_5221IV_421l)

ME 566
VARIABLES | X
FREE | IV_421]
BOOLEAN | (+IC_5121IC_522I)
ME 573
VARIABLES |Y
FREE | IV_411I
ME 580
FREE | (FIV_4111)
BOOLEAN | IC_512l
ME 587
FREE | (FIV_421))
BOOLEAN | IC_522

WE TRY TO BREAK CYCLES AT FOLLOWING POINTS
TERM (+ IC_5121 IC_522l) ALIENS IC_522I
THE CYCLES CAN'T BE BROKEN

the following identification of free terms IS A SOLUTION <no cycle check>
IDENTIFICATIONLIST: < (FIV_411)) (F IV_421)) >

TOPLEVEL CYCLE CHECK
NO CYCLES DETECTED
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THIS IS A SOLUTION WITHOUT CYCLES
ME 573
VARIABLES | Y==X
FREE | 0

the problem:
one  multiequation:

+X  (F Y)) == (F X)

one solution:
one multiequation:
V ==  X ==

A 15




