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Highlights
The commonly used isomiR format
(mirGFF3) combined with classification
guidelines has been proposed to facili-
tate communication within the field.

New technological and computational
advances have validated certain isomiRs
as biologically relevant. Various experi-
mental studies have shown mediation
of different regulation mechanisms
through isomiRs as opposed to regula-
tion mediated via archetypal miRNAs.

In cancer, isomiRs have been identified
MicroRNAs (miRNAs) and isoforms of their archetype, called isomiRs, regulate
gene expression via complementary base-pair binding to messenger RNAs
(mRNAs). The partially evolutionarily conserved isomiR sequence variations are
differentially expressed among tissues, populations, and genders, and between
healthy and diseased states. Aiming towards the clinical use of isomiRs as diag-
nostic biomarkers and for therapeutic purposes, several challenges need to be
addressed, including (i) clarification of isomiR definition, (ii) improved annotation
in databases with new standardization (such as the mirGFF3 format), and (iii)
improved methods of isomiR detection, functional verification, and in silico anal-
ysis. In this review we discuss the respective challenges, and highlight the
opportunities for clinical use of isomiRs, especially in the light of increasing
amounts of next-generation sequencing (NGS) data.
as promising biomarkers in solid tissue
for prognosis, and in circulatory fluids
for diagnosis. Additionally, an isomiR
has been identified as a promising thera-
peutic target. Similar studies are under
way in the context of neurodegenerative,
cardiovascular, and metabolic diseases.
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IsomiR research as an essential part of miRNA research
MiRNAs are short, widely conserved, non-coding RNA molecules that regulate mRNAs via com-
plementary base pair binding; they therefore play a crucial role in various cellular and metabolic
pathways [1]. For a long time the true complexity of miRNAs remained hidden. MiRNAs were
grouped in families (miRNA families – see Glossary), precursors, and mature forms. However,
with increasing sequencing data, mounting evidence suggested that the number of mature
miRNA variations went beyond what one would expect from biological or technical variations,
that is, spontaneous mutations or sequencing errors. While studying miRNA expression via deep
sequencing in human embryonic stem cells, Morin et al. were the first to refer to miRNAs that
vary from their archetype sequence as ‘isomiRs’ in 2008 [2]. In 2012, a first comprehensive review
was published highlighting the biogenesis and functional significance of isomiRs [3]. As of today,
402 articles are listed on PubMed containing the term isomiR; two thirds of these articles are asso-
ciated with human research. Around 150 articles have been published about isomiRs in various
human diseases – including cardiovascular, neurodegenerative, psychiatric, and chronic inflamma-
tory diseases, and most notably cancer – highlighting their increasing importance in the context of
disease. The most frequently published author (Guo Li) has published 28 papers in this field.

With the growing importance of isomiRs, reviews became available with respect to different as-
pects of isomiR research, from basic principles (such as biogenesis or targetome analysis) to
very specific clinical applications (such as colorectal cancer). These reviews describe the current
state of the art in the respective fields in detail: for example, in colorectal cancer isomiRs hold
promise for new diagnostics and therapies, underscoring the need for comprehensive research
in this specific cancer type [4]. Studies onmiRNA variants reveal their significance in stem-cell reg-
ulation within colorectal cancer, suggesting that isomiRs could influence cancer stem cell pheno-
types and patient outcomes [5]. Similarly, extensive reviews across diverse cancer types,
including breast and prostate cancers, emphasize the potential of isomiRs in advancing onco-
genic understanding and biomarker development [6]. Moreover, the role of isomiRs in
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Glossary
Archetype miRNA: a historically
defined mature miRNA sequence, also
commonly referred to as a reference or
canonical miRNA sequence.
Canonical miRNA: mature miRNA
derived via the defined miRNA
biogenesis pathway mediated by
Drosha and Dicer cleavage.
EpisomiR: a variation of a mature
archetype miRNA defined by chemical
modification.
IsomiR: a mature miRNA with a
sequence variation of the mature
archetype miRNA; nucleotide addition,
deletion, or variation at the 3′ and 5′ end
can arise, or variation within the
sequence, or all these variations are
possible.
MiRNA family: an assembly of
pre-miRNAs with common properties: a
common seed sequence, motif usage,
and therefore secondary structure, or
common ancestry and shared functional
characteristics, such as conserved
miRNA-seed-target-relationship.
neovascularization demonstrates their potential therapeutic impact in cardiovascular diseases,
providing new avenues for enhancing vascular remodeling [7]. Likewise, emerging technologies
have revealed isomiRs as key players in cancer and other diseases, highlighting their roles in cel-
lular processes such as differentiation and homeostasis, and their potential as biomarkers [8,9].
Finally, review articles describe how the discovery of isomiRs enriches our understanding of the
miRNome, offering insights into post-transcriptional gene regulation and the complexity of
miRNA networks beyond humans in plant systems [10,11]. These review articles are great exam-
ples of the growing impact of isomiRs.

Nonetheless, the number of publications referencing isomiRs is still low compared with the publi-
cations on miRNAs. To allow researchers a convenient and broad access to this topic in general,
in this reviewwe provide an overview of the current knowledge on isomiRswith particular emphasis
on their potential clinical relevance, as the interest in therapeutic application ofmiRNAs is increasing
[12]. Starting with a brief introduction on the biogenesis and classification of isomiRs, we aim to
generate a basic understanding of underlying challenges within the field.We then discuss technical
advances and limitations of currently available analysis tools. Thenwe address comparative studies
across species, and we describe the clinical importance of isomiR research and especially the rel-
evance of isomiRs for cancer diagnosis/prognosis. Finally, we suggest future scenarios, with
isomiR analysis being an essential, even a mandatory, part of NGS-based miRNA studies.

Classification and biogenesis of isomiRs
Classification of isomiRs
Currently, isomiRs are defined as heterogeneous variants of individual miRNAs that can differ in
length or sequence from the archetype miRNA [13]. They arise mostly through variations of
Dicer and Drosha cleavage processes, rather rarely through single-nucleotide polymorphisms
(SNPs) within miRNA genes, or through shortening of mature miRNAs via exoribonucleases,
non-templated nucleotide addition through nucleotidyl transferases, or miRNA editing [8]. Fur-
thermore, chemical post-transcriptional modifications can occur [14]. These variations can affect
miRNA stability, target selection, and loading of the RISC (RNA-induced silencing complex) via,
for example, seed shifting (Figure 1A), while being expressed in a cell-type-specific manner [3].
We herein reference the initially defined miRNA sequence – also known as canonical miRNA
or reference miRNA – as archetype sequence/miRNA. We choose the term archetype miRNA
over canonical miRNA (Box 1) to avoid confusion, as there are also isomiRs of non-canonical
miRNAs [15], such as isomiRs of miR-451a [16].

Historically, miRNAs were grouped in miRNA families such as the miR-29 family (Figure 1B),
based on either ancestry/evolutionary conservation, similar motif usage, similar mature miRNA
and therefore shared functional characteristics, and/or conservedmaturemiRNA–seed-target re-
lationships [17]. Family annotations are stored in the miRBase [18] as well as Rfam [19], a refer-
ence database exclusively curated for RNA family identities. As for the miR-29 family, there are
the three mature archetypes (miR-29a, miR-29b, and miR-29c) that are conserved between
mouse, rat, and humans, sharing identical seed regions. Each of these archetype miRNAs has
a 5p and a 3p mature miRNA form, arising from the 5′ and respectively from the 3′ end of the pre-
cursor miRNA (pre-miRNA) hairpin during miRNAmaturation [20]. Precursors of these miRNAs in
humans are encoded on chromosomes 1 and 7 [21]. As these archetype miRNAs have overlap-
ping targetomes, they fulfill most criteria for a family annotation.

Since mature sequences within an miRNA family (e.g., within the miR-29 family) have high se-
quence similarities, there are several questions about how to correctly annotate isomiRs when
using most common databases like MirGeneDB [22], miRBase [23] or miRCarta [24]. One
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Figure 1. IsomiR annotation within microRNA (miRNA) families. (A) Examples of isomiR properties, such as 3′/5
isomiRs, episomiRs, and polymorphic isomiRs, compared with archetype miRNA, and, respectively, mRNA targeting o
archetype miRNA and altered target spectrum of (for example) 5′ isomiRs caused by seed shifting, created with
BioRender.com. (B) Overview of chromosomal organization of miR-29 family in humans displaying the archetype
sequence of miR-29a, miR-29b and miR-29c and their isomiRs, highlighting one example isomiR that could arise from

(Figure legend continued at the bottom of the next page.
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Box 1. Canonical and non-canonical miRNA biogenesis

Canonical miRNA biogenesis occurs through transcription via polymerase II, the formation of a pri-miRNA structure,
followed by micro-processing via Drosha into the pre-miRNA hairpin. Exportin mediates transport from the nucleus to
the cytoplasm, Dicer cleaves the hairpin into the miRNA duplex, and the mature sequence is loaded into the Argonaut
(Ago) complex, which mediates mRNA silencing. By contrast with this process, non-canonical miRNAs arise via different
biogenesis processes that are independent from Drosha and/or Dicer-catalyzed cleavage [129]. Canonical and non-ca-
nonical miRNAs can produce isomiRs [15].
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question is whether to classify a sequence as either the archetype expression, for example, of
miR-29a or an isomiR of miR-29b. This problem has not beenmuch discussed in the community.
In 2010, researchers addressed the challenge by dividing isomiR counts equally between homol-
ogous miRNA genes, such as hsa-miR-27a and hsa-miR-27b [25].

Another issue is: which archetype miRNA an isomiR is named after if the sequence could arise
from different archetype miRNAs. In 2020, the mirGFF3 format was finally proposed to unify
miRNA and isomiR research [13]. One possible solution in future research efforts might be to
refer to isomiRs, for which a certain archetype miRNA cannot be defined without doubt, as
isomiRs within the miRNA family with a unique identifier: for example, isomiR-29-#ID, extending
the currently implemented miR-29a-3p∣0∣+1 format (Figure 1B). In our example, the isomiR
could either arise from archetype miR-29c-3p (through an RNA edit combined with an
adenylation) or from archetype miR-29a-3p (through an adenylation). Some isomiRs – such as
isomiRs arising through the addition of a non-templated cytosine – are rather technical artifacts
[26]. But this isomiR is an example for isomiRs expressed stably across various tissues and mul-
tiple datasets (Figure 1C) [27] that should rather be grouped with their miRNA family than one ar-
chetype miRNA. Implementing an isomiR family nomenclature within the miRGFF3 format and
integrating it into common databases can mitigate ambiguity, given the lack of experimental
methods to verify the original pri/pre-miRNA sequence of a mature miRNA [28]. Especially in
the case of clinical applications, a unique name or ID might be superior to mentioning the varia-
tions of archetype miRNAs.

MiRNAs are categorized in five classes that are mutually exclusive, of which four are isomiRs. The
archetype form describes the molecules that match the reference mature miRNA sequence de-
fined in the miRNA database. The other four classes are composed of RNAs with sequence alter-
ations from the archetype form, namely 5′ isomiRs (sequence changes at 5′ end of the archetype
form), 3′ isomiRs (changes at the 3′ end), polymorphic isomiRs (changes within the sequence),
andmixed type isomiRs (at least two of the above listed changes occur) [8,29]. Addition, deletion,
and variation are the three subclasses into which 3′ and 5′ isomiRs can be divided [29].

Biogenesis of isomiRs
IsomiRs can arise through various processes. Deletions at the 3′ end are likely due to exonuclease
trimming [30]. While addition and deletion relate, respectively, to addition and loss of nucleotides
at the respective end, variation refers to a non-template change of the end nucleotide. Depending
on whether the additional nucleotides match the precursor sequence, the subclass is partitioned
into template (matching) and non-template (non-matching) RNAs [29]. Biogenesis of templated
and non-templated isomiRs involves different steps. Templated isomiRs arise due to alternative
or imprecise cleavage processes [31,32]. Structural differences between primary miRNA (pri-
precursor miRNA (pre-miRNA) sequences from either miR-29a or miR-29c. This isomiR displays either an isomiR arising
through an adenylation of miR-29a (through e.g., nucleotidyl transferase activity) or through sequence editing combined
with an adenylation of miR-29c. Sequence differences between miRNAs are highlighted in color, over identical sequences
in gray, created with BioRender.com. (C) Expression data in reads per million from example miR-29–isomiR shown in
(B) grouped and colored by tissue, created with isomiRdb [27]. Abbreviation: RISC, RNA-induced silencing complex.
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miRNA) paralogs or pre-miRNAmodifications, and therefore altered binding to RNA-binding pro-
teins such as heterogeneous nuclear ribonucleoproteins (hnRNPCs), can generate different
isomiR expression patterns through altered cleavage sites [33–35].

Non-templated isomiRsmostly exhibit a 3′ uridylation or adenylation of various lengths, which can
respectively indicate altered stability and change the miRNA–mRNA network in a cell-type-spe-
cific manner. Current studies report insightful results, such as the stabilization of specific miRNAs
through mono-adenylation in human primary fibroblast [36]. However, this was not reproducible
in other cell types [37]. Furthermore, the results vary among cancer cell types [38], calling for fur-
ther investigation to determine the role and linked opportunities of this complex regulation mech-
anism in a diagnostic and therapeutic context.

Polymorphic isomiRs can either occur due to SNPs or arise through post-transcriptional miRNA
editing. ADARs (adenosine deaminases acting on RNA) can mediate editing of miRNAs [39] and
thereby change several miRNA properties, such as the targetome [40].

The existence of another group of isomiRs, episomiRs (which fall outside of this classification) has
been proposed recently [14]. EpisomiRs are isomiRs with chemical modifications – such as N6-
methyladenosine (m6A) [41], 5-methylcytidine (5mC) [42], or 7-methylguanosine (m7G) [43] – not
detected by standard sequencing methods. These modifications are also associated with altered
functions [14,43,44].

Another important process involved in isomiR biogenesis and respective expression levels is
miRNA arm selection and arm switching. MiRNA arm selection refers to the preferential expres-
sion of either 3p or 5p mature miRNA. Switching of the preference is highly dynamic and tis-
sue-specific [45]. With arm selection and switching, isomiR expression varies accordingly [46].
Studies suggest that isomiR expression profiles were stable in the case of abundant expression
of both mature 3p and 5p miRNAs [47]. However, recent studies suggest that a 3′modification of
pre-miR-324 led to arm switching and altered isomiR profiles [33]. Expression levels of isomiRs
are, moreover, differentially expressed in various biological contexts. IsomiRs of miR-221 and
miR-30a were detected at differing levels in male and female samples, amongst others [48,49],
and gender-specific differing isomiR levels were detected in cancer samples [49]. IsomiR expres-
sion levels also vary between differing population groups [48] and within tissues [27,50,51].

Apart from classification of isomiRs based on biogenesis, agreeing on a common nomenclature is
an important step to facilitate communication between research groups, as mentioned previ-
ously. In 2015, it was proposed that miRNA sequences be organized into three interconnected
levels in databases: a reference mature miRNA sequence, herein referred as archetype miRNA
(unchanging standard for reference), isomiR sequences (all variants of said miRNA plus an acces-
sion number for each isomiR), and the functional mature sequence (most highly expressed
isomiR in a certain context, such as tissue, developmental stage, etc.) [30]. Other papers have
raised concerns that the current archetype miRNA within miRBase is not the most abundant
isomiR in certain cases, or is even incorrect [10,52]. However, this format including isomiRs
was not implemented in the current miRBase update in 2019, which is the most used database
for miRNA sequence annotations [23].

In total, over 90 000 isomiRs have been collected in recent databases from over 50 different tis-
sues and almost 200 cell types [27]. To ease understanding between research groups, an incor-
poration of isomiRs as proposed previously into the miRBase would be rather beneficial. In that
context, it is also crucial to address the issue of assigning isomiRs within a miRNA family, and
788 Trends in Genetics, September 2024, Vol. 40, No. 9
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potentially defining the archetype miRNA as the most abundant isomiR within certain conditions
to ensure comparability. We believe a commonly used database with isomiR annotations will fa-
cilitate usage of isomiR analysis tools and harvest all information generated by technological ad-
vances. This was one of the reasons for us to initiate the development of the isomiRDB [27].
Especially in the light of experimental advances in the past decades, with better computational
tools leading to a higher resolution view on miRNAs, we might anticipate a still growing number
of isomiRs.

Technological advances in isomiR detection and analysis
As isomiRs were first detected with NGS, this method is still the method of choice in isomiR re-
search. It enables the least biased discovery of new miRNA variants [8]. Other methods, such as
qRT-PCR, require prior knowledge of the sequences, and are not as specific for variation of one
nucleotide and are therefore not ideal for isomiR detection. Recently a benchmarking paper com-
pared different small-RNA sequencing protocols and showed that randomized adapter-based
protocols outperform fixed adapter ones in isomiR analysis [26,53]. Specific isomiR detection
is crucial, as isomiRs hold significance not only as potential biomarkers but also in understand-
ing the miRNA targetome. With new miR-crosslinking and immunoprecipitation (CLIP)
methods, the synergistic targeting effects of isomiRs and archetype miRNA forms were
detected [54]. In bioinformatic prediction, incorporation of isomiRs is essential, as (for example)
3′ isomiR forms tune miRNA target specificity [55] or alter the entire targetome and mediate
differential functions [56].

To harvest the entire information provided within an miRNA sequencing dataset, it is essential to
have tools that account for the multidimensional structure of isomiRs. Identification and quantifi-
cation of isomiRs in datasets is possible using tools such as isomiRmap [57], sRNAbench and
sRNAtoolbox 2022 [58], and miRMaster 2.0 [59], amongst others [60–67]. A detailed overview
of current isomiR tools was published in 2021 [68]. Furthermore, a standard data format called
mirGFF3 has been proposed to facilitate downstream analysis and comparison between tools
[13]. In recent updates of previous tools, new tools, and databases, this format has been imple-
mented or is now supported [57,59,69–71].

Most tools offer different additional analysis functionalities, and a few examples are listed as fol-
lows. IsomiRex has the option to identify de novomiRNA and isomiRs [72]. MiFrame can perform
control/case studies [73]. MiR-isomiRExp enables analysis of expression patterns at miRNA/
isomiR level [74]. IsomiR-SEA additionally provides miRNA–mRNA interaction sites [75]. Several
downstream analyses-only tools have been developed and tested within the last years, for exam-
ple: multivariate differential expression by Hotelling’s T2 test (MDEHT) to identify differentially
expressed miRNAs and isomiRs between control and disease samples [76]. Benchmarking ef-
forts in different settings have been published for isomiR tools [77,78], but no gold standard
tool for all applications has been established to date.

Several isomiR web services and databases are available: for example, miR-isomiRExp [74],
isomirDB [27], Tumor IsomiR Encyclopedia [50], and IsomiR Bank [79], in which isomiR expression
patterns over various studies were collected. However, concerns have been raised that a certain
amount of isomiRs detected so far are results of sequencing errors rather than being true biological
(and functionally relevant) molecules. Using a pipeline comparing small-RNA paired endwith single-
sequencing reads, a systematic difference between these sequencing data forms has been
detected. This especially manifests in the putative internally edited isomiRs and terminal-length-
changed isomiRs to a lesser degree [80]. During a batch correction study of The Cancer Genome
Atlas (TCGA), the usage of different sequencing platforms is named as a relevant source of bias. A
Trends in Genetics, September 2024, Vol. 40, No. 9 789

CellPress logo


Trends in Genetics
OPEN ACCESS
significant platform-dependent isomiR length difference, GC content at first position, and general
GC content were reported.

Another challenge – apart from technical bias identification – is determining whether detected isomiR
expression levels have functional consequences or are by-products of other processes. Therefore, it
is crucial to be able to associate isomiR expression changes with changes in isomiR-generating pro-
teins, such as RNA-binding proteins, or variations in miRNA degradation. Detected isomiRs can be
products of target-directedmiRNA degradation (TDMD), amechanism of miRNA decay [81]. Alterna-
tively, differing expression of TAR RNA-binding protein (TRBP) and protein activator of PKR (PACT),
RNA-binding proteins modulating Dicer cleavage [82] as well as increased ADAR expression, impact
isomiR expression levels [39] with unclear functional consequences.

To advance the isomiR field frommere detection of putative functionally relevant isomiRs in health
and disease towards diagnostic biomarkers and therapeutic targets, studies that validate
isomiRs are necessary [83]. Few studies to date have been published validating isomiR–mRNA
interactions, compared with archetype miRNA–mRNA interaction, supporting functional impor-
tance of detected isomiRs (Figure 2, Key figure) [52,84–86]. As an example, sequence-specific
miRNA sponges were used to specifically suppress the effect of the archetype miRNA and con-
firm the differing isomiR targetome within a luciferase assay [84]. Furthermore, it has been shown
that uridylated isomiRs can regulate non-canonical miRNA targets [87]. Studies validating the
functional role of isomiRs must be completed by studies exploring the mechanisms mediating
these properties to generate a thorough understanding of isomiRs. For 5′ isomiR altered target
genes compared with the archetype miRNA are explained mainly by the occurring seed shifting
[34,84]. In isomiRs with a 3′ uridylation, alternative targeting can be achieved via tail-U-
mediated repression [87]. However, generally for 3′ isomiRs and other possible modification pat-
terns detailed studies are needed to understand the mechanisms mediating their differing func-
tions. Additionally, it is important to extend previous studies on how these isomiR/archetype
miRNA unique functions can act cooperatively [88]. In another study, the impact of isomiRs on
global gene regulatory networks was assessed [89].

These studies can be used as example workflows for systematic isomiR validation benchmarking
efforts. Another possible option to investigate biological functionality and importance of isomiRs
are cross-species analyses of conserved expression patterns.

Comparative studies of isomiRs across species
IsomiRs have been detected in various species: plants (Arabidopsis thaliana, Oryza sativa, and
Ricinus communis L.), human, cow, pig, rat, mouse, zebra fish, fruit fly, and worm) [90–97]. Func-
tionalities of isomiRs are at least partially conserved: the influence on miRNA stability and effi-
ciency of target repression occurring during 3′ addition of nucleotides, generating isomiRs, is
evolutionarily conserved between species, ranging from Caenorhabditis elegans to humans
[95]. Moreover, 5′-isomiRs were produced for over 70% of all miRNAs in human, mouse, fruit
fly, and worm [91]. In humans and the mouse, a 5′-isomiR preference was proposed [91]. This
5′ isomiR preference can change during evolution, which is called ‘seed shifting’. This process
of creating a new archetype miRNA is one mechanism during evolution for duplicated miRNA
genes to acquire new functionalities. Mostly between distant species, seed shifting in miRNA
orthologs was detected [98]. For example, miR-100, the most ancient metazoan miRNA, expe-
rienced seed shifting, as at the 5′ end of the mature archetype miRNA experienced a one-base
shift in Nematostella vecetensis (sea anemone) compared with all bilaterians [99]. Another
study also claims that isomiRs are important players in adjusting to evolutionary pressure, as
they observed complex patterns across the animal kingdom. These researchers observed that
790 Trends in Genetics, September 2024, Vol. 40, No. 9
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Figure 2. Schematic overview of main topics. (i) Differential regulation of mRNAs mediated by isomiRs of one archetype microRNA (miRNA). Incorporation of isomiRs within
Argonaut (AGO) can vary due to sequence alterations. (ii) Differential expression across various species of archetype miRNA and its isomiRs. (iii) Expression changes of
archetype miRNA and its isomiRs in different diseases. Depending on the cell type or state and disease, different expression patterns of archetype miRNA and isomiRs have
been reported, identifying isomiRs as important diagnostic and therapeutic targets, created with BioRender.com. Abbreviation: C. elegans, Caenorhabditis elegans.
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dominant isomiRs were consistent across species, but the most abundant isoform varied
between species [100] (Figure 2). The conservation of miR-27 across different species and its
isoforms have been studied in detail, revealing that the diversity of isomiRs exhibited patterns
comparable to the diversity of homologous miRNA genes [101].

Overall, few studies have addressed isomiRs across species, even though studies in different or-
ganisms have lately created new insights [102–104]. This might be due to previously discussed
isomiR nomenclature issues even within one species, and the lack of incorporation in commonly
used databases hinders comprehensive cross-species studies. This underlines the importance of
facilitating communication within the field to enable further research on the evolution and conser-
vation of isomiRs.
Trends in Genetics, September 2024, Vol. 40, No. 9 791
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In turn, these results – especially by comparing model organisms – would facilitate the trans-
lation of research findings to humans. Easy translation is crucial, as most studies of disease
and all clinical therapies are first tested in mice as model organisms. Cancer was amongst
the first diseases in which isomiR expression patterns were studied. Already early in isomiR re-
search in 2012, the first study was published investigating isomiR expression patterns in
breast cancer [105].

IsomiRs in cancer diagnosis and prognosis
IsomiR expression has been extensively studied over the last decade, and databases for compa-
rable analysis and easy access of large datasets have been created [50,106]. In malignant cuta-
neous melanoma (CM), for instance, an isoform of miR-125 (hsa-miR-125a-5p∣0∣–2) was
enriched tenfold over the archetype form (Figure 2). Moreover, only this isoform of the miRNA,
and not the archetype form, is dysregulated in multiple melanomas [107]. This isomiR is just
one example of many isomiRs distinctly expressed in certain cancer types and deregulated be-
tween cancer and healthy tissues [108]. In 2017, a paper was published using over 10 000 can-
cer datasets to build a classifier that could distinguish among 32 cancer types, as well as between
cancer and healthy samples, just based on isomiR expression. The classifier was based on a bi-
nary labeling of isomiRs as either present or absent [109], which underlines – in combination with
other similar studies – the strongly specific isomiR expression in cancer [110]. Furthermore, iden-
tification of cancer subtypes was possible through isomiR expression in breast cancer patients.
This classification method even outperformed the previous classification based on published
gene expression profiling [111].

Of note, the distinct expression of isomiRs is not limited to solid tissue samples, its potential as
a diagnostic biomarker extends also to non-invasive methods. To detect prostate cancer in a
non-invasive manner, miRNA expression profiles of urine extracellular vesicles were analyzed,
and isomiRs of miR-21, miR-204, and miR-375 were found to be discriminatory between
patients and healthy controls. However, expression analysis of archetype miRNAs was not
sufficient to identify diseased individuals [112]. In lung cancer, early detection is crucial for
prognosis. Using the expression of isomiRs in serum amongst other RNAs enabled re-
searchers to detect lung cancer up to 10 years before manifestation of disease symptoms in
smokers [113]. These findings highlight the importance of isomiRs as potent biomarkers for
cancer diagnostics.

The usage of isomiR expression data is not limited to diagnostics alone; isomiR expression can
be a useful tool for prognosis of cancer patients and can offer novel therapy targets. For instance,
survival of liver cancer patients was significantly associated with expression of two isomiRs of
miR-21-5p∣+/–1. Another isoform of this miRNA targets and suppresses the growth hormone
receptor because of the shifted seed sequence. In mouse models, a treatment with an antagomir
specifically against this isomiR showed promising results, as tumorigenesis was inhibited [35].
IsomiRs of miR-21-5p, amongst others, were also identified to be influential for survival of lung
cancer patients, and likely even have opposite effects compared with the archetype miRNA ex-
pression [114]. Other studies focused on understanding the specific regulation mechanisms of
isomiRs in cancer development. As an example, researchers identified that isomiR miR-183-
5p|+2 is involved in a negative feedback loop by targeting E2F1 to prevent uncontrolled cell pro-
liferation [115]. Another study identified anmiR-451a isomiR as a tumor suppressor in melanoma,
acting through retardation of cell migration and invasion [16]. These in-depth studies to under-
stand the specific mechanisms of isomiRs in cancer are crucial first steps in developing therapeu-
tics using them as targets or targeting the regulated pathways [108,116]. In addition to cancer,
other fields have also gained rapid traction in considering the role of isomiRs.
792 Trends in Genetics, September 2024, Vol. 40, No. 9
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Outstanding questions
What could be a widely accepted and
used isomiR nomenclature that
accounts for all possible variations of
mature archetype miRNA, including
episomiRs? And how can this
complexity of miRNA and isomiRs be
incorporated into miRBase and other
widely used databases in an easily
understandable and accessible manner?
How can even further information of
cross-species conservation/expression
and expression patterns within different
tissues be provided?

How can nomenclatures like mirGFF3
account for the uncertainty from
which archetype miRNA certain
isomiRs arise? What could be a
standard way for analysis tools to
deal with such uncertainties if miRNAs
are not separated into isomiRs
without introducing bias into the data?

How can further technological advances,
together with computational tools,
facilitate the identification of true
biologically functional isomiRs with
clinical relevance? Which previously
identified validation experiment to
identify functional isomiRs and their
targets can be scaled for benchmarking
studies? Which computational tools will
become the gold standard tool for
isomiR quantification in NGS datasets?

How can isomiR research advance into
clinical application? How conserved are
mechanisms and expression patterns of
isomiRs between humans and mice,
the mostly used model organisms?
Which isomiRs are useful only as
diagnostic biomarkers and which have
the potential to become therapeutic
targets? Is differential isomiR expression
as important in diseases other than
cancer (e.g., neurodegenerative, cardio-
vascular, or metabolic diseases)? How
do population and gender differences in
isomiR expression arise, and how can
we account for these differences in clini-
cal applications?
IsomiRs in non-cancer diseases
Aside from cancer, most patients nowadays die because of metabolic, neurodegenerative, or
cardiovascular disease. IsomiR research within these diseases is rather sparse, but also provides
a promising outlook on their potential as diagnostic tools or even as therapeutic targets. Three 5′-
shifted isomiRs were identified as highly expressed in beta cells, and they likely impact gene
regulation in type 2 diabetes through their differing targeting mechanisms [117]. Another study
identified circulating isomiRs as potential biomarkers between diabetes patients and non-
diabetes controls [118].

In neurodegenerative diseases (e.g., in Alzheimer’s disease) significant changes in isoform levels
have been observed between early and late disease stages [119]. In Parkinson’s disease, differ-
ential isomiR expression could be used to separate controls from early- and late-stage patients
[120]. Deregulated isomiRs were also detected in Huntington’s disease and causally linked to ab-
errant gene expression based on their putative targets [121]. Another study explored the possi-
bility of 5′-isomiRs regulating the HTT transcript [122]. Likely there are several polymorphic
miRNAs with functional roles in metabolic and neurodegenerative diseases. These edited
miRNAs arise through activities of ADAR proteins, and their impact via RNA editing has already
been found to play an important role in these pathologies [123]. Therefore, more detailed studies
of isomiR expression within these diseases are of utmost importance. In tuberous sclerosis com-
plex (TSC), another neuropsychiatric disorder, circulating isomiRs have been identified as poten-
tial early risk biomarkers [124].

In cardiovascular disease, researchers identified circulating isomiRs as discriminatory markers
opposed to corresponding archetype miRNAs. Furthermore, due to altered seed sequences, dif-
ferent targets were predicted, which were enriched in disease-related pathways [125]. In human
blood vessels in ischemia, a 5′-isomiR of miR-411 is upregulated. This isomiR has a widely differ-
ing targetome from the archetype miRNA, which influences vascular cell migration and results in
decreased in vitro wound healing and a different response in acute ischemia in mouse models
[85]. Furthermore, consideration of isomiR changes is pivotal, especially in studying miRNA
roles in immune responses, where systematic shifts in isomiR proportions have been observed,
such as upon viral challenge [126]. Widespread isomiR expression alterations have also been
observed in psoriasis [127]. In rheumatoid arthritis, a long-term auto immune disorder, miR-22-
3p isomiRs were positively associated with disease-related parameters [128].

Concluding remarks and future perspectives
While extensively studied in cancer, insights into isomiR biology suggest significant potential in
other disease contexts. Several issues need to be addressed to advance the field (see
Outstanding questions). Currently, several isomiR databases exist, but no isomiR annotation is
incorporated within the miRBase, the most used database within the miRNA research field.
The inclusion of isomiR references and the critical evaluation of currently annotated archetype
miRNAs within the database plays a crucial role in advancing the isomiR field. It will be highly ben-
eficial for isomiR research to add information on frequently detected isomiRs in differing biological
settings into this database. Furthermore, adding information on expression of different isomiRs in
special biological settings will raise awareness of isomiRs and their biological function, and hope-
fully encourage people to analyze isomiR expression within their studies.

It is equally important to settle for a common nomenclature. Incorporating isomiR family identity
ensures accurate naming, preventing misattribution to a single archetype miRNA and instead as-
sociating it with themiRNA family it belongs. We also propose the usage of archetypemiRNA as a
standard nomenclature to avoid confusion, as canonical miRNA nomenclature excludes miRNAs
Trends in Genetics, September 2024, Vol. 40, No. 9 793

CellPress logo


Trends in Genetics
OPEN ACCESS
with different biogenesis pathways. These efforts – alongside established guidelines in nomencla-
ture and annotation –will facilitate comparative studies across species and help to translate func-
tional findings between species, thereby also easing clinical research.

While the functional relevance of certain isomiRs has been demonstrated in comparison with their
respective archetype miRNAs, there is a lack of comprehensive comparative studies to validate
functional isomiRs across a wide range of archetype miRNAs, or for all detectable isomiRs of a
single archetype miRNA. The functional relevance of isomiRs has been proved for few isomiRs
of certain archetype miRNAs. However, there are no comparative studies to validate functional
isomiRs over a broad number of archetype miRNAs, or for all detectable isomiRs of one arche-
type miRNA. These future studies could bring insight into properties of functional isomiRs and
ease the distinction between biological functional isomiRs and sequences without any functional
implication or even ‘isomiRs’ detected due to sequencing errors. Previously mentioned studies
used different approaches to validate functionality of isomiRs and can be used as a blueprint
for workflows of benchmarking studies. Results of such studies would also advance studies of
isomiRs in the disease context, because functional isomiRs could be easily distinguished from
non-functional ones and enable the usage of isomiRs as therapy targets.

In conclusion, isomiR research represents an evolving field with discoveries such as episomiRs,
emphasizing the need for a clear cross-species nomenclature and the incorporation of isomiRs
into miRBase to enhance communication within the research field. Overcoming these challenges
will facilitate the usage of isomiRs as biomarkers and therapeutic targets in clinical applications.
Given the varyingmodes of action and biological activities of isomiRs, we advocate for mandatory
isomiR analysis in all current and future miRNA studies, particularly those with potential clinical
applications.
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