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We study the Kolmogorov 0 − 1 law for a random sequence 
with prescribed radii so that it generates a Carleson measure 
almost surely, both for the Hardy space on the polydisc and 
the Hardy space on the unit ball, thus providing improved 
versions of previous results of the first two authors and of a 
separate result of Massaneda. In the polydisc, the geometry 
of such sequences is not well understood, so we proceed 
by studying the random Gramians generated by random 
sequences, using tools from the theory of random matrices. 
Another result we prove, and that is of its own relevance, is 
the 0 − 1 law for a random sequence to be partitioned into 
M separated sequences with respect to the pseudo-hyperbolic 
distance, which is used also to describe the random sequences 
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that are interpolating for the Bloch space on the unit disc 
almost surely.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let H be a reproducing kernel Hilbert space of analytic functions on a domain X of 
Cd, d ∈ N. A positive regular measure μ on X is a Carleson measure for H if H embeds 
continuously inside L2(X, μ), namely if there exists a constant Cμ such that

‖f‖L2(X,μ) ≤ Cμ ‖f‖H, ∀f ∈ H. (CM)

Carleson measures have been studied in various settings, as they have important 
applications in harmonic analysis. In this note, we will consider measures generated by 
sequences, which are intimately connected to the study of interpolating sequences (see 
for example [1,2,9,4]). Let k be the reproducing kernel of H, and let Z = (zn)n be a 
sequence in X. Define the measure μZ as

μZ :=
∑
n∈N

‖kzn‖−2 δzn .

Thanks to the reproducing property of the kernels (kzn)n, condition (CM) then becomes
∑
n∈N

|〈f, k̂n〉|2 ≤ Cμ ‖f‖2
H, ∀f ∈ H,

where k̂n := kzn/‖kzn‖ is the normalized kernel at the point zn. The last inequality is 
equivalent to the boundedness of the frame operator T : H → H, defined formally

T (f) :=
∑
n∈N

〈f, k̂n〉 k̂n,

which, in turn, is equivalent to the Gram matrix

G := (〈k̂n, k̂j〉)n,j∈N (1)

inducing a bounded operator G : �2 → �2 (see [1, Chapter 9]). We will refer to sequences 
that generate a Carleson measure for H as Carleson sequences. In the literature these 
sequences are sometimes called Carleson-Newman sequences.

Remarkably, apart from such an operator theoretical reformulation, some well known 
spaces of analytic functions enjoy also a geometric characterization for such measures. 
For instance, let

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


N. Chalmoukis et al. / Journal of Functional Analysis 287 (2024) 110659 3
X = Dd := {z = (z1, . . . , zd) ∈ Cd | |zi| < 1}

denote the d-dimensional polydisc, and let H = H2
d be the Hardy space on Dd, that is, 

the reproducing kernel Hilbert space on Dd with kernel

s(z, w) :=
d∏

i=1

1
1 − wizi

, z, w ∈ Dd.

The scalar product is the following

〈f, g〉H2
d

= sup
0≤r<1

∫
Td

f(rζ)g(rζ)dm(ζ),

where dm is the normalized Lebesgue measure on Td. We will simply write 〈 , 〉 instead of 
〈 , 〉H2

d
if no confusion arises. When d = 1, we use the standard notation H2, rather than 

H2
1 . Carleson showed in [7] that if d = 1 a measure μ satisfies the embedding condition 

(CM) for the Hardy space if and only if it satisfies the one-box condition, namely if there 
exists Cμ > 0 such that

μ(SI) ≤ Cμ|I| (OB)

for all arcs I ⊆ T , where |I| is the arc-length measure and SI is the Carleson square in 
D with basis I:

SI := {z ∈ D \ {0} | z/|z| ∈ I, 1 − |z| ≤ |I|}.

Moreover if Z is a sequence in the unit disc that is separated with respect the pseudo-
hyperbolic distance, then μZ is a Carlson sequence if and only if Z is interpolating, 
that is, if and only if for any sequence of bounded targets (wn)n there exists a bounded 
analytic function f on the unit disc such that f(zn) = wn, for all n [7].

On the other hand, the geometry of Carleson sequences for H2
d and their relation 

to interpolating sequences seems to be much more complicated if d ≥ 2. In general no 
necessary and sufficient condition is known for a measure to be Carleson in the polydisc. 
Regarding this very interesting problem we refer the reader to the work of Chang [11] and 
Carleson’s counterexample [8]. Moreover, in the polydisc an interpolating sequence Z is 
separated with respect the pseudo-hyperbolic distance and it is a Carleson sequence for 
the Hardy space [22], but such two conditions fail to be sufficient for Z to be interpolating 
[4].

In order to understand better Carleson sequences in the multi-variable setting, we 
consider random sequences with prescribed radii in the polydisc, and we study the prob-
ability of such sequences to generate a Carleson measure for H2

d . A random sequence 
with prescribed radii in Dd can be defined as follows. Given a sequence of deterministic 
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radii (rn)n∈N in [0, 1)d and a sequence of i.i.d. random variables (θn)n∈N defined on the 
same probability space (Ω, A, P ) and uniformly distributed in the d-dimensional torus 
Td, let Λ = (λn)n∈N be the random sequence defined by

λn(ω) := (r1
ne

2πiθ1
n(ω), . . . , rdne

2πiθd
n(ω)), n ∈ N, ω ∈ Ω.

In order to state our results, it is convenient to introduce a certain counting function. 
To do so we partition Dd in the dyadic rectangular regions

Am := {z ∈ Dd | 2−(mi+1) ≤ 1−|zi| < 2−mi , i = 1, . . . , d}, m = (m1, . . . ,md) ∈ Nd,

and denote by

Nm := #Λ ∩Am, m ∈ Nd

the (deterministic) number of points of Λ in each Am. Define |m| := m1 + · · · + md for 
all multi-indices in Nd. Observe that being a Carleson sequence is a tail event since it 
is independent of any finite number of random variables. Therefore, by Kolmogorov’s 
0-1 Theorem [5, Theorem 4.5], it has probability either 0 or 1. We would like to find 
necessary and sufficient conditions on the sequence (rn)n such that the corresponding 
random sequence is a Carleson sequence almost surely. In [19] Rudowicz proved that for 
d = 1 a sequence is almost surely Carleson for the Hardy space if

∑
m∈N

2−mN2
m < +∞. (2)

Recently, in [10, Theorem 1.1], with the use of the one box characterization of Carleson 
measures (OB), the authors improved Rudowicz’s sufficient condition, showing that in 
order for a random sequence to be Carleson almost surely it is sufficient that for some 
ε, C > 0

Nm ≤ C2(1−ε)m.

Moreover, in [13, Theorem 1.3], a Rudowicz type sufficient condition has been obtained 
for Carleson sequences for the Hardy space in the polydisc. Our first main result is the 
sharp version of the 0 − 1 law for random Carleson sequences in H2

d , for all d ≥ 1.

Theorem 1.1. Let d be a positive integer and Λ be a random sequence in Dd. Then,

P
(
Λ is a Carleson sequence for H2

d

)
=
{

1 if Nm ≤ C2(1−ε)|m| for some ε, C > 0,
0 otherwise.

(3)
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Notice that for d ≥ 2 the one-box condition (OB) is unavailable, hence the techniques 
used in [10] do not provide insights to the proof of Theorem 1.1. We look instead at the 
random Gram matrix generated by the kernel vectors associated to the random sequence 
Λ as in (1), bypassing the difficulty of not having a geometric characterization of Carleson 
measures for the Hardy space in the polydisc.

Another ingredient for the proof of Theorem 1.1 is the 0 − 1 law of random sequences 
that can be partitioned into finitely many separated sequences with respect to the pseudo-
hyperbolic distance in Dd. More specifically, let

ρ(z, w) := max
i=1,...,d

∣∣∣∣ zi − wi

1 − wizi

∣∣∣∣ , z, w ∈ Dd

denote the pseudo-hyperbolic distance in the polydisc. We say that a sequence Z = (zn)n
in Dd is separated if

inf
n �=j

ρ(zn, zj) > 0. (S)

Random separated sequences have been first studied by Cochran [12] who proved 
that if d = 1 then (2) is a necessary and sufficient condition for a random sequence to be 
separated almost surely. In [13], the authors extended Cochran’s result to the polydisc. 
Our next theorem extends this results to finite unions of separated sequences.

Theorem 1.2. Let Λ be a random sequence in the polydisc. Then for all M ∈ N,

P (Λ is the union of M separated sequences) =

⎧⎪⎨
⎪⎩

1 if
∑

m∈Nd

N1+M
m 2−M |m| < ∞,

0 if
∑

m∈Nd

N1+M
m 2−M |m| = ∞.

(4)

It turns out that ρ(z, w) coincides with the largest absolute value that an analytic 
function on Dd bounded by 1 that vanishes at w can attain at z. The solution of the 
same extremal problem in H2

d gives raise to the distance

ρs(z, w) :=

√
1 − |〈sz, sw〉|2

‖sz‖2‖sw‖2 z, w ∈ Dd.

Since ρ and ρs are comparable, one can replace ρ with ρs in (S), and this describes the 
same sequences. Since any Carleson sequence for H2

d is the finite union of separated se-
quences with respect ρs, [1, Proposition 9.11], the second half of Theorem 1.1 is therefore 
deduced from the second half of Theorem 1.2.

Concerning interpolating sequences for H∞ in the polydisc, a sufficient condition of 
geometric flavor has been obtained by Berndtsson et al. [4]. It states that if a sequence 
Z = (zn)n satisfies the uniform separation condition, i.e.,
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inf
n∈N

∏
j �=n

ρ(zj , zn) > 0, (5)

then it is interpolating. This is in fact an equivalence for d = 1 by Carleson’s Theorem, 
but not for d ≥ 2. In [13, Question 1], the authors asked if a random sequence Λ, which 
is almost surely weakly separated, must satisfy, almost surely, the uniform separation 
condition. Although Theorem 1.1 doesn’t answer the above question, it is coherent with a 
positive answer since both conditions imply the Carleson measure condition. This might 
reinforce the belief that there is an affirmative answer to the aforementioned question.

The last part of this article is devoted to the study of random Carleson sequences for 
the Hardy space on the unit ball. Let Bd := {z ∈ Cd | 

∑d
i=1 |zi|2 < 1} denote the d-

dimensional unit ball on Cd. The definition of a random sequence Λ = (λn)n in the unit 
ball is reminiscent of the analogous construction on the unit disc: given a deterministic 
sequence of radii (rn)n in (0, 1) and a sequence (ξn)n of i.i.d. random variables defined 
on a probability space (Ω, A, P ) and uniformly distributed on the unit sphere ∂Bd, one 
defines

λn(ω) := rnξn(ω), n ∈ N, ω ∈ Ω.

For all m in N, let

Nm := #Λ ∩ {2−(m+1) ≤ 1 − |z| < 2−m} ⊂ Bd.

The question of whether Λ generates almost surely a Carleson measure for some 
significant spaces of analytic functions on the unit ball has been investigated in [13] and 
[16]. For all 0 ≤ a < d, denote by Ba

d the reproducing kernel Hilbert space on Bd having 
kernel

k(a)
w (z) := 1

(1 − 〈z, w〉Cd)d−a
, z, w ∈ Bd,

where 〈z, w〉Cd :=
∑d

i=1 z
iwi. For a = 0, Ba

d is the Hardy space on the unit ball, while 
for 0 < a < d one obtains a range of Besov-Sobolev spaces, including the Drury-Arveson 
space (a = d − 1). For more information about Besov-Sobolev spaces see [23] and [14]
for the Drury Arveson space.

Regarding random Carleson sequences for Ba
d , for all 0 < a < d the same phenomenon 

observed in [10, Theorem 1.4] for the unit disc occurs on in the unit ball: Λ generates 
a Carleson measure for Ba

d almost surely if and only if it is a finite measure (see [13, 
Theorem 4.3]). We show that this is not the case for a = 0, as the 0 − 1 law for Carleson 
sequences for the Hardy space on the unit ball resembles the one for the unit disc and 
the polydisc, refining a theorem of Massaneda [16, Theorem 3.2].
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Theorem 1.3. Let Λ be a random sequence in the unit ball. Then

P (Λ is a Carleson sequence for B0
d) =

{
1 if Nm ≤ C2d(1−ε)m for some ε, C > 0,
0 otherwise.

The paper is structured as follows. Section 2 contains the proof of Theorem 1.2. An 
analogous result for the unit ball has been obtained by Massaneda in [16, Theorem 3.4]. 
The probabilistic tools that we use are contained in Section 2.1, and they differ from the 
ones used in Massaneda’s work.

As a by-product of our study of random sequences that can be written as the union 
of finitely many separated sequences, we find in Section 3 the 0 − 1 law for a random 
sequence in the unit disc to be interpolating for the Bloch space.

Section 4 contains the proof of the first half of Theorem 1.1. The main tool used, 
Theorem 4.3, comes from the theory of random matrices, and it allows us to estimate 
the probability that some diagonal blocks of the random Gramian G are big in norm. 
Section 4.3 contains some additional remarks on random Carleson sequences for Dirichlet-
type kernels in the polydisc. Finally, in Section 5 we prove Theorem 1.3.

1.1. Notation

If f and g are positive expressions, we will write f � g if there exists C > 0 such 
that f ≤ Cg, where C does not depend on the parameters behind f and g, or �a if the 
implicit constant C depends on a. We will simply write f � g if f � g and g � f . Finally 
when f and g are expressions for which we can consider the limit of their quotient, with 
f ∼ g we mean that lim f/g = 1, while f ∼a g means that lim f/g is equal to a constant 
that depends on a.

2. Union of finitely many separated sequences

2.1. A probabilistic tool

Let N and n be two positive integers, and consider the problem of placing n points at 
random into N boxes, where the boxes are chosen independently for each point, and for 
all points each box has the same probability of being chosen. We are interested in the 
random variable μr(n, N) that counts the number of boxes in which there are exactly 
r points. We want to estimate, for n, N → ∞, the number P (μr(n, N) = 1). The tools 
that we are going to use come from [15]. Define

α := n

N
pr := αre−α

r!

σ2
r := α

1 − pr

(
1 − pr −

(α− r)2

α
pr

)
αr := α− rpr

1 − pr
.
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Consider i.i.d. random variables η1, . . . , ηN having Poisson distribution with parameter 
α and let ζN = η1 + · · · + ηN . Similarly, define η(r)

i , i = 1, . . . , N i.i.d. random variables 
with distribution

P (η(r)
i = l) = P (ηi = l|ηi �= r)

and by ζ(r)
N the sum of the η(r)

i .

Lemma 2.1 ([15, Lemma 1, p.60]).

P (μr(n,N) = k) =
(
N

k

)
pkr (1 − pr)N−k

P (ζ(r)
N−k = n− kr)
P (ζN = n) .

Theorem 2.2 ([15, Theorem 1, p.61]). If m → ∞ and αm → ∞, then for fixed r ≥ 2,

P (ζ(r)
m = l) = 1

σr

√
2πm

e
− (l−mαr)2

2mσ2
r (1 + o(1)),

uniformly with respect to l−mαr

σr
√
m

in any finite interval.

The precise statement of the theorem is the following. Fixed r ≥ 2 and M > 0 and 
consider the domain of parameters

D(M, r) := {(m,α, l) ∈ N × (0,∞) ×N :
∣∣∣∣ l −mαr

σr
√
m

∣∣∣∣ ≤ M}.

Then, for every ε > 0, there exists C0 = C(ε, M, r) > 0 such that

∣∣∣∣P (ζ(r)
m = l)σr

√
2πme

(l−mαr)2

2mσ2
r − 1

∣∣∣∣ < ε,

for all (m, α, l) ∈ D(M, r) such that m, αm > C0.
As a Corollary, we prove the following variation of [15, Theorem 3, p.67].

Corollary 2.3. Suppose that α → 0 and Npr → 0 for n, N → ∞. Then for fixed r ≥ 2,

lim
n,N→∞

P (μr(n,N) = 1)
Npr

= 1.

Proof. From Lemma 2.1 we have that

P (μr(n,N) = 1) = Npr(1 − pr)N−1P (ζ(r)
N−1 = n− r)

. (6)

P (ζN = n)
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We want to use Theorem 2.2 with m = N−1 and l = n −r to estimate P (ζ(r)
N−1 = n −r). 

Hence we need to show that l−mαr

σr
√
m

remains bounded with our choices. Notice that since 
α → 0 we can assume without loss of generality that α < 1. We have

l −mαr

σr
√
m

= n− r − (N − 1)αr

σr

√
(N − 1)

. (7)

Since pr ∼r αr we have that σ2
r ∼r α and so σr

√
(N − 1) ∼r

√
n. Furthermore

n− r − (N − 1)αr = n− r − (N − 1)α− rpr
1 − pr

= rNpr − npr − r + α

1 − pr

which remains bounded since Npr → 0 and r is fixed. So we have obtained that (7) goes 
to 0 for n, N → ∞ and so it remains bounded. We can finally apply Theorem 2.2:

P (ζ(r)
N−1 = n− r) = 1

σr

√
2π(N − 1)

e
− (n−r−(N−1)αr)2

2(N−1)σ2
r (1 + o(1)) ∼r

1√
2πn

.

Since ζN follows a Poisson distribution, using Stirling formula we have

P (ζN = n) = nn

n! e
−n ∼ 1√

2πn
.

Finally, we have that (1 − pr)N−1 = [(1 − pr)
1
pr ]pr(N−1) ∼r 1. The result now follows 

from (6). �
2.2. Random separated sequences in the polydisc

We shall now show how Corollary 2.3 can be applied to prove Theorem 1.2:

Proof of Theorem 1.2. For all m in Nd, divide the d-dimensional torus Td into 2|m|

dyadic rectangles {Rm
j | ji = 1, . . . , 2mi , i = 1, . . . , d} of side-lengths 2−m1 , . . . , 2−md , i.e.

Rm
j := {x = (x1, . . . , xd) ∈ [0, 1)d | (ji − 1)/2mi ≤ xi < ji/2mi}, ji = 1, . . . , 2mi .

Let’s also label {λm,1, . . . , λm,Nm
} the random points in Am. For any I ⊆ {1, . . . , Nm}, 

let Ω(m, I) be the event that the arguments of the points {λm,i | i ∈ I} are in the same 
dyadic rectangle Rn

j0
. Define

Ωm,M :=
⋃

|I|=M+1

Ω(m, I)

as the event that M +1 of the Nm random arguments of points in Am fall into the same 
dyadic rectangle. Moreover, the θi are independent and identically distributed, so the 
probability of each Ω(m, I) is equal to 2−m(|I|−1).
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Suppose 
∑

m∈Nd N1+M
m 2−|m|M < ∞ for some M ≥ 1. Since for every M ∈ N,

(M + 1)! ≥ (M + 2)M+1

eM+1

then
(

Nm

M + 1

)
≤ NM+1

m

(M + 1)! ≤
(

e

M + 2

)M+1

NM+1
m .

So we finally obtain

P (Ωm,M ) ≤
(

Nm

M + 1

)
2−|m|M ≤

(
e

M + 2

)M+1

NM+1
m 2−|m|M . (8)

This, in principle, doesn’t exclude the possibility that many random arguments are 
very close to each other with high probability, even if they belong to different rectangles. 
To take care of such eventuality, one can just shift the rectangles by 2−mi−1 modulo 1
in each direction and repeat the above argument. Therefore (8) controls the probability 
that M +1 arguments of the points in Am belong to a rectangle (non necessarily dyadic) 
of side-lengths 2−mi , i = 1, . . . , d. Moreover, two points in Am whose arguments are not 
in the same rectangle of such dimensions are at a uniform mutual pseudo-hyperbolic 
distance, hence thanks to Borel-Cantelli’s Lemma, Λ can be almost surely partitioned 
into M weakly separated sequences.

Now suppose 
∑

m∈Nd NM+1
m 2−|m|M = ∞. We will show that Λ is not almost surely 

the union of M weakly separated sequences by showing that for all l in N, almost surely 
there are infinitely many clusters of M + 1 points in Λ in the same pseudo-hyperbolic 
ball of radius 2−l. Fix l in N, and given m in Nd divide Am into 2dl regions by refining 
the dyadic partition that defines Am l times in each direction. Namely,

Aj
m :=

{
z ∈ Am

∣∣∣∣ 2−mi+1 + j − 1
2mi−1+l

≤ 1 − |zi| < 2−mi+1 + j

2mi−1+l
, i = 1, . . . , d

}
,

ji = 1, . . . , 2l.

Since Am contains Nm points of Λ, then there exists one Aj
m, say Jm, that contains 

at least Lm ≥ Nm/2dl points of Λ. If m ⊕ l := (m1 + l, . . . , md + l), then every point 
in Dd whose radii is in Jm and arguments are in the same dyadic rectangle Rm⊕l

k are 
in a ball of pseudo-hyperbolic distance comparable to 2−l. Therefore, we need to apply 
Corollary 2.3 to μM (N, n), with N = 2|m|+dl and n = Lm. By eventually removing 
some radii from the sequence (rm)m∈Nd , we can assume without loss of generality that 
Nm2−|m| →

|m|→∞
0, while 

∑
m∈Nd N1+M

m 2−M |m| is still divergent (clearly if the associated 

random sequences are not the union of M weakly separated sequences almost surely, so 
it won’t be the one associated to the whole sequenced (rm)m∈Nd). In this setting, using 
the notations of Corollary 2.3
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α = αn ≤ Nm2−|m|−dl →
|m|→∞

0, pM = pM,m ∼
|m|→∞

αM
m /M ! →

|m|→∞
0,

thus

P (μM (2|m|+dl, Lm) = 1) ∼M
|m|→∞

L1+M
m 2−M |m| ≥ N1+M

m 2−M |m|−dl(1+M).

Thanks to Borel-Cantelli Lemma and the divergence of the series 
∑

n∈Nd N1+M
m 2−M |m|, 

we obtain that almost surely infinitely many of the regions (Am)m∈Nd contain a cluster 
of M+1 points in a pseudo-hyperbolic ball of radius comparable to 2−l. Since this is true 
for all l, we conclude by taking an intersection of countably many events of probability 
1. �

In particular, this gives the 0-1 for Λ to be the finite union of weakly separated 
sequences almost surely, which for the sake of completeness we formulate via the following 
three equivalent conditions:

Corollary 2.4. Let Λ be a random sequence in Dd. Then the following are equivalent:

(i): Λ can be partitioned almost surely into finitely many weakly separated sequences,
(ii): There exists an M in N such that

∑
m∈Nd

N1+M
m 2−M |m| < ∞,

(iii): There exists an ε > 0 such that

Nm � 2(1−ε)|m|,

(iv): There exists some β > 1 such that
∑

m∈Nd

Nβ
m2−|m| < ∞.

3. γ-Carleson measures in the unit disc and interpolating sequences for the Bloch 
space

Let γ ∈ (0, 1). A sequence of points Z := (zn)n ⊂ D is a γ-Carleson sequence if the 
measure μZ,γ :=

∑
n(1 − |zn|2)γ δzn satisfies the one-box condition

μγ(SI) �Z |I|γ .

In [10, Theorem 1.4] the authors found the 0 − 1 law for a random sequence Λ in the 
unit disc to satisfy the γ - Carleson condition:
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Theorem 3.1. Let Λ be a random sequence in D and let be γ ∈ (0, 1). Then,

P (Λ is γ-Carleson) =
{

1 if
∑

m∈N Nm2−γm < ∞,

0 if
∑

m∈N Nn2−γm = ∞.
.

As an application of Theorem 3.1 and Theorem 1.2, we give the 0 − 1 law for random 
interpolating sequences for the Bloch space on the unit disc.

A holomorphic function f : D → C belongs to the Bloch space B if

‖f‖B = |f(0)| + sup
z∈D

(1 − |z|2)|f ′(z)| < ∞.

We are going to consider interpolating sequences for B as described in [6], where Z =
(zn)n is said to be interpolating for the Bloch space if for every collection of values (an)n
such that

sup
n �=m

|an − am|
β(an, am) < ∞

there exists a function f ∈ B such that f(zn) = an, where β is the hyperbolic distance 
in D. This choice for the trace space is motivated by the fact that if f ∈ B then |f(z) −
f(w)| ≤ ‖f‖Bβ(z, w). In [6] Bøe and Nicolau characterized such interpolating sequences:

Theorem 3.2. A sequence of points Z in the unit disc is interpolating for the Bloch space 
if and only if it can be expressed as a union of at most two separated sequences and there 
exist 0 < γ < 1 and C > 0 such that

#{n ∈ N : ρ(z, zn) < r} ≤ C

(1 − r)γ , (9)

for all z ∈ D.

As proved in [20] and noted also in [18], condition (9) is equivalent to Z being γ-
Carleson for some γ < 1.
The 0 − 1 law for random interpolating sequences for the Bloch space reads as follows:

Theorem 3.3. Let Λ be a random sequence in D. Then

P (Λ is interpolating for B) =
{

1 if
∑

m∈N N3
m2−2m < ∞,

0 if
∑

n∈N N3
m2−2m = ∞.

Proof. Suppose 
∑

N3
m2−2m < ∞. By Theorem 1.2 we know that Λ is almost surely an 

union of 2 separated sequences. Furthermore we know that
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Nm � 2 2
3m.

Take 2/3 < γ < 1, then

∑
m∈N

Nn2−γm ≤
∑
m∈N

2−
(
γ− 2

3
)
< ∞,

and so by Theorem 3.1 we have that Λ is almost surely γ-Carleson for γ > 2/3. By 
Theorem 3.2, we can conclude that Λ is almost surely an interpolating sequence for the 
Bloch space.

Suppose now 
∑

N3
m2−2m = ∞. Then by Theorem 1.2 we know that

P (Λ is the union of 2 separated sequences) = 0,

thus Λ is almost surely not interpolating for B. �
4. Random Carleson measures in the polydisc

4.1. Preliminaries on Gramians

Let H be a Hilbert space, and let V = (vn)n∈N be a sequence in H. The associated 
restriction map RV : H → CN is defined as

RV (h) := (〈h, vn〉)n∈N , h ∈ H.

The sequence V is said to be a Bessel system if RV maps H continuously into �2. In 
particular,

V is a Bessel system ⇐⇒ TV :=(RV )∗RV is bounded ⇐⇒ GV := RV (RV )∗ is bounded.

The operator TV : H �→ H is usually referred to as the frame operator associated to 
V , and acts as follows:

TV (h) :=
∑
n∈N

〈h, vn〉 vn, h ∈ H.

The operator GV : �2 → �2 is the Gramian of the sequence V , and, with respect to 
the standard basis of �2, it is represented by the infinite matrix

(〈vn, vj〉H)n,j∈N

Let H = Hk be a reproducing kernel Hilbert space with kernel k on a set X, and let 
Z = (zn)n∈N be a sequence in X. The measure
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μZ :=
∑
n∈N

‖kzn‖−2 δzn

is a Carleson measure if Hk embeds continuously in L2(X, μΛ). Therefore, Λ generates a 
Carleson measure for Hk if and only if the sequence of normalized kernels (kzn/‖kzn‖)n∈N
forms a Bessel system in Hk, that is, if and only if the Gram matrix

GΛ :=
(〈

kzn
‖kzn‖

,
kzj

‖kzj‖

〉)
n,j∈N

defines a bounded operator from �2 to itself.
The following two Lemmas will be relevant for the proof of Theorem 1.1.

Lemma 4.1. Let N =
⋃

j∈N Ij, where each Ij is finite, and suppose that a sequence 
V = (vn)n∈N in a Hilbert space is such that

〈vn, vk〉 = 0

whenever n ∈ Ij, k ∈ Il, and Ij ∩ Il = ∅. Suppose that

M := sup
j∈N

#{k | Ik ∩ Ij} < ∞. (10)

Then

‖GV ‖ ≤ M sup
j

‖GVj
‖, (11)

where Vj = (vn)n∈Ij .

Proof. Since ⎛
⎝∑

j

GVj

⎞
⎠−GV

is positive semi-definite, one has that

‖GV ‖ ≤

∥∥∥∥∥∥
∑
j

GVj

∥∥∥∥∥∥ .
Thanks to Cotlar-Stein Lemma,

∥∥∥∥∥∥
∑
j

GVj

∥∥∥∥∥∥ ≤
√

C0 C∞,
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where

C0 := sup
j

∑
l

√
‖GVj

G∗
Vl
‖, C∞ := sup

l

∑
j

√
‖G∗

Vj
GVl

‖.

Thanks to (10), fixed any j, GVl
and GVj

have not orthogonal ranges at most M
times, thus (11) holds. �

In what follows, if h ∈ H is a vector of a Hilbert space we will denote by hh∗ the 
rank one operator on H which acts naturally as follows, hh∗(x) = 〈x, h〉h, x ∈ H. Let 
Z = (zn)n∈N be a sequence in Dd, and let, for all n, Sn be the normalized Szegö kernel 
at zn. The measure μZ :=

∑
n Szn(zn)−1δzn is a Carleson measure for H2

d if and only if 
the frame operator T associated to the sequence (Sn)n∈N ⊂ H2

d is bounded, where

T (f) :=
∑
n∈N

〈f, Sn〉 Sn =
(∑

n∈N
SnS

∗
n

)
(f), f ∈ H2.

Define, for all a ≤ b in N,

T[a,b] :=
b∑

|m|=a

∑
zj∈Am

SjS
∗
j ,

as the frame operator of the kernel functions associated to points in the annuli {Am | a ≤
|m| ≤ b}. By writing each Sj in their coordinates with respect to the monomials basis 
of H2

d

Sj(z) =
(

d∏
i=1

√
1 − |zij |2

) ∑
l∈Nd

zj
lzl z ∈ Dd,

we will be able to use some results on the highest eigenvalue of random matrices that 
can be written as the sum of rank-one independent components. Since such components 
must be finite dimensional square matrices (see Theorem 4.3 below), we need first to 
approximate the vectors (Sj)j∈N using partial sums. Fix a L in N, and let

TL
[a,b] :=

b∑
|m|=a

∑
zj∈Am

PL(Sj)(PL(Sj))∗

be the frame operator of the collection 

{
PL(Sj)

∣∣∣∣ zj ∈ b⋃
|m|=a

Am

}
, where

PL(Sj)(z) =
(

d∏√
1 − |zij |2

) ∑
zj

lzl z ∈ Dd.

i=1 l1,...,ld≤L
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Fixed a and b and set N[a,b] :=
∑b

|m|=a Nm. We seek how large must L be for ‖T[a,b]‖
and ‖TL

[a,b]‖ to be close.

Lemma 4.2. For all a < b in N and for any L in N

‖T[a,b]‖ ≤ ‖TL
[a,b]‖ + CN[a,b](1 − 2−b)2L. (12)

Proof. Thanks to orthogonality,

T[a,b] = TL
[a,b] + T̃L

[a,b],

where T̃L
[a,b] is the frame operator of the collection 

{
(Id− PL)(Sj) | zj ∈

⋃b
|m|=a Am

}
. 

Thus ‖T[a,b]‖ and ‖TL
[a,b]‖ differs at most by ‖T̃L

[a,b]‖. Notice that for all f in H2

∥∥∥∥∥∥
b∑

|m|=a

∑
zj∈Am

〈f, (Id− PL)(Sj)〉 (Id− PL)(Sj)

∥∥∥∥∥∥
≤ N[a,b] ‖f‖ sup

⎧⎨
⎩‖(Id− PL)(Sj)‖2

∣∣∣∣ zj ∈
b⋃

|m|=a

Am

⎫⎬
⎭

= N[a,b] ‖f‖ sup

⎧⎨
⎩1 −

d∏
i=1

(1 − |zij |2L)
∣∣∣∣ zj ∈

b⋃
|m|=a

Am

⎫⎬
⎭

≤ N[a,b] ‖f‖
(

1 −
(
1 −

(
1 − 2−b

)2L)d)

�d N[a,b] ‖f‖ (1 − 2−b)2L,

since for all zj ∈ Am, |m| = a, . . . , b, one has that

|zij | ≤ 1 − 2−mi ≤ 1 − 2−|m| ≤ 1 − 2−b, i = 1, . . . d. �
4.2. Random Szegö Gramians

We are now ready for the proof of Theorem 1.1. Thanks to Corollary 2.4, if Nm ��
2(1−ε)|m| for every ε > 0, then Λ is almost surely not the union of finitely many separated 
sequences. Hence, [1, Proposition 9.11], Λ is not a Carleson sequence almost surely.
Let Λ be a random sequence in Dd, and assume that Nm � 2(1−ε)|m|, for some ε > 0. The 
idea is to arrange a (deterministic) decomposition of the associated random Gramian GΛ, 
by writing it as the sum of a sequence of overlapping blocks and the remaining off-blocks 
part. More precisely, set

Ij := [2j−1, 2j/ε] ∩N, j ∈ N.
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Let GΛ = G1+G2, where the entries of G1 coincide with the ones of G on the overlapping 
blocks (Xj)j∈N , Xj being the Gram matrix of the collection

{Sn |λn ∈ Am, |m| ∈ Ij},

and they are zero elsewhere. G2 instead is zero on the overlapping blocks and carries the 
entries of GΛ outside of such blocks. We prove Theorem 1.1 by showing in two separate 
steps that G1 and G2 are bounded almost surely:

Diagonal overlapping blocks estimates The key result that we are going to use from the 
theory of random matrices can be extracted from the matrix Chernoff’s inequality, [21, 
Theorem 1.1]:

Theorem 4.3. Let T be the frame operator of finitely many random independent vectors 
v1, . . . , vN in CL, and let μ := ‖E(T )‖. If ‖vj‖ ≤ 1 for all j almost surely, then

P (‖T‖ ≥ (1 + δ)μ) ≤ L

(
e

1 + δ

)δμ

δ ≥ 0.

A computation shows that by our choice of the sequence (Ij)j , the number of overlaps 
of the blocks that compose G1 is uniformly bounded by Mε := log2(1/ε) + 1. Therefore, 
thanks to Lemma 4.1 in order to show that G1 is bounded almost surely it suffices to 
show that

sup
j

‖Xj‖ < ∞ (13)

almost surely. Notice that Xj is the Gram matrix associated to the frame operator 
T[aj ,bj ], where aj = 2j−1 and bj = 2j/ε. Consider TLj

[aj ,bj ], where Lj = 23bj so that

N[aj ,bj ](1 − 2−bj )2Lj �ε 22(1−ε)bj (1 − 2−bj )2
3bj →

bj→∞
0. (14)

Thanks to Lemma 4.2, ‖Xj‖ and ‖TLj

[aj ,bj ]‖ are closer than an uniform constant. We 

have, with respect to the coordinates given by the monomials in H2
d ,

T
Lj

[aj ,bj ] =
bj∑

|m|=aj

∑
λn∈Am

PLj
(Sn)(PLj

(Sn))∗

=
bj∑

|m|=aj

∑
λn∈Am

(
d∏

i=1
(1 − (rin)2

)(
rk+l
n e−iθn(k−l)

)Lj

|l|,|k|=0
,

where
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rk+l
n e−iθn(k−l) =

d∏
i=1

(rin)ki+lie−iθi
n(ki−li).

Hence the expectation of TLj

[aj ,bj ] is diagonal, and its norm is

μj :=
∥∥∥E(TLj

[aj ,bj ]

)∥∥∥ �
bj∑

|m|=aj

Nm2−|m| �
bj∑

|m|=aj

2−ε|m| � 2−
εaj
2 .

Fix a positive number A, to be determined later. By applying Theorem 4.3, δj :=
A
μj

− 1, we obtain

P
(∥∥∥TLj

[aj ,bj ]

∥∥∥ ≥ A
)
≤ Ld

j

(μj e

A

)A−μj

∼
j→∞

Ld
j

(μj e

A

)A
�A 23dbj−

Aεaj
2

= 2aj

( 6d
ε −Aε

2
)
,

since bj = 2aj/ε. It suffices then to pick A > 12d
ε2 , and Borel-Cantelli Lemma gives (13).

Off diagonal estimates We are left with showing that G2 is bounded almost surely, 
under the assumption that Nm � 2(1−ε)|m|. The advantage of taking overlapping blocks 
in the first step of our proof is that the entries that are left composing G2 are far away 
from the diagonal, hence we can exploit the decay of their expectation. We show that 
E(‖G2‖HS), the expectation of the Hilbert-Schmidt norm of G2, is finite, concluding the 
proof of Theorem 1.1. Thanks to [13, Remark 3.2], if λn is in Am and λl is in Ak, then

E(| 〈Sλn
, Sλl

〉 |2) =
(1 − r2

n)(1 − r2
j )

1 − rnrj
�

d∏
i=1

1
2mi + 2ki

. (15)

Thus the expectation of the square of the Hilbert-Schmidt norm of the off-diagonal block

(〈Sn, Sl〉)λn∈Am,λl∈Ak

of GΛ is controlled by NmNl∏
m l . Hence
i 2 i+2 i
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E(‖G2‖2
HS) �

∞∑
j=1

2j∑
|m|=2j−1

∑
|l|≥2j/ε

NmNl

d∏
i=1

1
2mi + 2li

�
∞∑
j=1

2j∑
|m|=2j−1

∑
|l|≥2j/ε

2(1−ε)(|m|+|l|)

2|m| + 2|l|

≤
∞∑
j=1

2j∑
|m|=2j−1

2(1−ε)|m|
∑

|l|≥2j/ε

2−ε|l|

�
∞∑
j=1

2j∑
|m|=2j−1

2(1−ε)|m|
∑

s≥2j/ε

sd−12−εs

�
∞∑
j=1

2j∑
|m|=2j−1

2(1−ε)|m|−2j(1−ε/2)

�
∞∑
j=1

2j∑
r=2j−1

rd−12(1−ε)r−2j(1−ε/2)

≤
∞∑
j=1

2dj−ε2j−1
< ∞.

This concludes the proof of Theorem 1.1.

4.3. Random Dirichlet Gramians

Given a random sequence Λ in the polydisc, one can ask whether it generates a 
Carleson measure for a reproducing kernel Hilbert space other than the Hardy space. 
As in the one variable setting, for all 0 ≤ a ≤ 1, let Da

d be the associated Dirichlet-type 
space on Dd, that is, the reproducing kernel Hilbert space having kernel

k(a)
w (z) :=

⎧⎨
⎩
∏d

i=1
1

(1−wizi)1−a
a ≤ 0 < 1∏d

i=1
1

ziwi
log 1

1−wizi
a = 1

Let S(a)
w (z) := k

(a)
w (z)/ 

∥∥∥k(a)
w

∥∥∥ denote the associated normalized kernel. The case a = 0
corresponds to the Hardy space, while the case a = 1 corresponds to the Dirichlet space 
on the polydisc. In order to study random sequence on the polydisc that are Carleson 
for the spaces D2

d, we first extend (15) to this setting:
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Lemma 4.4. Let Λ = (λn)n be a random sequence in the polydisc. Then

E(|S(a)(λn, λj)|2) �
d∏

i=1
(1 − rin)1−a(1 − rij)1−a

⎧⎪⎪⎨
⎪⎪⎩

1
(1−rinr

i
j)1−2a 0 ≤ a < 1/2

log 1
1−rinr

i
j

a = 1/2

1 1/2 < a ≤ 1

.

Proof. First, observe that it is enough to prove the Lemma for the case d = 1, since the 
d coordinates of each random variable θn are independent, and the expectation of the 
product of independent random variables factorizes. Write then

k(a)
w (z) =

∞∑
l=0

cl(zw)l z, w ∈ D

where cl � (1 + l)−a. Hence

E(|S(a)(λn, λj)|2)

�(1 − rn)1−a(1 − rj)1−a
∞∑

l,r=0

clcr(rnrj)l+rE(ei(l−r)(θn−θj))

=(1 − rn)1−a(1 − rj)1−a
∞∑
l=0

c2l (rnrj)2l,

and the Lemma follows. �
Since all the kernels involved are invariant under rotations, Λ generates for all ω in Ω

a finite measure for Da
d if and only if
∑
n∈N

‖k(a)
rn ‖−2 =

∑
m∈Nd

Nm2−(1−a)|m| < ∞. (16)

Recall that for d = 1 and 0 < a ≤ 1, (16) is also sufficient for Λ to generate a Carleson 
measure for Da, see [10, Theorem 1.4]. Thanks to Lemma 4.4, this can be seen to be true 
also in the multi-variable case, though our argument covers only the case 1/2 < a ≤ 1. 
Indeed, if (16) holds, thanks to Lemma 4.4, 1/2 < a ≤ 1, one obtains that

E

⎛
⎝∑

n �=j

|S(a)(λn, λj)|2
⎞
⎠ =

∑
n �=j

E
(
|S(a)(λn, λj)|2

)

�
∑
n �=j

‖k(a)
rn ‖−2‖k(a)

rj ‖−2 < ∞,

hence the Gram matrix of Λ in Da
d
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Ga
Λ :=

(
S(a)(λn, λj)

)
n,j

is almost surely a Hilbert-Schmidt perturbation of the identity. In particular,

Corollary 4.5. Let d ≥ 1, and let Λ be a random sequence in Dd. For all 1/2 < a ≤ 1,

P (Λ is a Carleson sequence for Da
d) =

{
1 if

∑
m∈Nd Nm2−(1−a)|m| < ∞

0 if
∑

m∈Nd Nm2−(1−a)|m| = ∞
(17)

We conjecture that Corollary 4.5 holds also for 0 < a ≤ 1/2. The random matrix 
argument used in Theorem 1.1 for the case a = 0 can’t be used to prove (17) for 
0 < a ≤ 1/2, since it requires that the sequence (Nm2−|m|)m∈Nd decay exponentially. A 
geometric sufficient condition for Carleson measures for Da

d in the deterministic setting 
is only available for d = 2, 3: see [17] for the case 0 < a < 1 and [3] for the case a = 1.

5. Random Carleson measures on the unit ball

The proof of Theorem 1.3 relies on some properties of positive semi-definite matrices. 
An infinite matrix A = (anj)n,j , is positive semi-definite, A ≥ 0, if for any N > 0 and 
c1, . . . , cN in C

N∑
n,j=1

cncjanj ≥ 0.

For instance, any Gram matrix associated to a sequence of vectors (vn)n in a Hilbert 
space is positive semi-definite. A noteworthy result about positive semi-definite matrices 
is that if A = (anj)n,j and B = (bnj)n,j are positive semi-definite, then A � B :=
(anjbnj)n,j is positive semi-definite as well. As a corollary, one proves the following:

Lemma 5.1. Let A : �2 → �2 be a bounded infinite matrix, and let H be a positive semi-
definite infinite matrix having all the entries on its main diagonal equal to 1. Then 
‖A �H‖ ≤ ‖A‖.

Proof. The norm of A is the least C > 0 such that

C2Id−A ≥ 0. (18)

By Schur multiplying the left hand side of (18) by H, we obtain that C2Id −A �H ≥ 0, 
hence ‖A �H‖ ≤ C. �

This, together with [13, Theorem 4.3] and [16, Theorem 3.4], provides the proof of 
Theorem 1.3:
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Proof of Theorem 1.3. If Nm �� 2d(1−ε)m for every ε > 0, then thanks to [16, Theorem 
3.4] Λ is not the union of finitely many separated sequences almost surely with respect 
to the pseudo-hyperbolic metric

ρ(z, w)2 := 1 − (1 − |z|2)(1 − |w|2)
|1 − 〈z, w〉Cd |2

hence the Gram matrix

GΛ :=
(

(1 − |z|2) d
2 (1 − |w|2) d

2

(1 − 〈z, w〉Cd)d

)
n,j

is not bounded almost surely, and Λ does not generate a Carleson measure for the Hardy 
space. On the other hand, if there exists a positive ε such that Nm � 2d(1−ε)m, then 
Λ generates a finite measure for Bν

d for some 0 < ν. Hence, [13, Theorem 4.3], Λ is a 
Carleson sequence for Bν

d almost surely, and the Gram matrix

GΛ :=
(

(1 − |z|2) d−ν
2 (1 − |w|2) d−ν

2

(1 − 〈z, w〉Cd)d−ν

)
n,j

is bounded almost surely. But since GΛ is the Schur product between Gν
Λ and Gd−ν

Λ then 
GΛ is bounded almost surely thanks to Lemma 5.1, hence Λ is Carleson for the Hardy 
space almost surely. �
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