
Saarland University

Department of Computer Science

Towards Comprehensive Security Assessment in
Machine Learning Pipelines

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

von
Zeyang Sha

Saarbrücken, 2024

Tag des Kolloquiums: 26.11.2024

Dekan: Prof. Dr. Roland Speicher

Prüfungsausschuss:
Vorsitzender: Prof. Dr. Ingmar Weber
Berichterstattende: Dr. Yang Zhang

Prof. Dr. Michael Backes
Prof. Dr. Tianhao Wang
Prof. Dr. Xinlei He

Akademischer Mitarbeiter: Dr. Zheng Li

Zusammenfassung

Maschinelles Lernen (ML) ist zu einem wesentlichen Bestandteil verschiedener kritischer
Anwendungen geworden. Da ML-Modelle zunehmend eingesetzt werden, sind sie auch
einer steigenden Anzahl von Angriffen ausgesetzt, die auf verschiedene Phasen der
ML-Pipeline abzielen. Diese Pipeline kann grob in drei Phasen unterteilt werden: für
das Training verwendete Daten, Modellparameter und die Ergebnisse des trainierten
Modells.

In dieser Arbeit führen wir eine gründliche Bewertung der Sicherheit maschinellen
Lernens durch und untersuchen sie anhand dieser drei Phasen. Wir befassen uns zunächst
mit der Datensicherheit und konzentrieren uns dabei insbesondere auf Backdoor-Angriffe
durch Datenvergiftung. Wir zeigen, dass solche Angriffe mit einfachen Feinabstim-
mungsmethoden effektiv abgeschwächt werden können, und beweisen, dass die getesteten
Backdoor-Angriffe nicht robust gegenüber einfachen Feinabstimmungsansätzen sind. Als
nächstes untersuchen wir die Modellsicherheit, indem wir Modelldiebstahlangriffe unter-
suchen. Ziel dieser Angriffe ist es, die Funktionalität eines Zielmodells mit minimalen
Kosten und Rechenressourcen zu reproduzieren. Wir führen neuartige Modelldieb-
stahltechniken ein, die speziell auf kontrastive Lernmodelle abzielen, und entwickeln
adaptive Abwehrmaßnahmen, um diesen Bedrohungen entgegenzuwirken. Abschließend
wenden wir uns den Ergebnissen des Modells zu. Hier befassen wir uns mit der Erkennung
und Zuordnung gefälschter Bilder und schlagen innovative Erkennungsmethoden vor,
die Eingabeaufforderungen nutzen, um die Leistung zu verbessern. Dieser vielschichtige
Ansatz ermöglicht es uns, die Sicherheit maschinellen Lernens aus einer umfassenden
Perspektive anzugehen und alle kritischen Phasen der ML-Pipeline abzudecken.

iii

Abstract

Machine learning (ML) has become an essential component in various critical applications.
As ML models are increasingly deployed, they also face a rising number of attacks
targeting different stages of the ML pipeline. This pipeline can broadly be divided into
three phases: data used for training, model parameters, and the outputs of the trained
model.

In this dissertation, we conduct a thorough evaluation of machine learning security,
examining it through the lens of these three stages. We begin by addressing data security,
focusing particularly on backdoor attacks through data poisoning. We demonstrate
that such attacks can be effectively mitigated with simple fine-tuning methods, proving
that the backdoor attacks tested lack robustness against straightforward fine-tuning
approaches. Next, we explore model security by investigating model stealing attacks.
These attacks aim to replicate the functionality of a target model with minimal costs
and computational resources. We introduce novel model stealing techniques specifically
targeting contrastive learning models and develop adaptive defenses to counteract these
threats. Lastly, we turn our attention to the outputs of the model. Here, we delve into
the detection and attribution of fake images, proposing innovative detection methods
that utilize prompts to enhance performance. These multifaceted approaches allow us to
tackle machine learning security from a comprehensive perspective, spanning all critical
stages of the ML pipeline.

v

Background of this Dissertation

This dissertation is based on the papers mentioned in the following. I contributed to all
papers as the main author.

The initial idea of using fine-tuning to mitigate backdoor attacks [P1] was proposed
by Yang Zhang, Xinlei He, and Zeyang Sha. Zeyang Sha later refined the threat model
and design the fine-tuning strategies with the support of Xinlei He, Mathias Humbert,
Pascal Berrang, and Yang Zhang. The implementation and evaluation were done by
Zeyang Sha. All authors participated in the writing and reviewing the paper.

The idea of using contrastive-based image encoder as a new attack surface [P2] were
proposed by Yang Zhang. Zeyang Sha developed the contrastive stealing methods with
the support of Xinlei He, Ning Yu, Michael Backes, and Yang Zhang. The implementation
and evaluation were carried out by Zeyang Sha. All authors participated in the writing
and reviewing the paper.

The idea of detecting fake images generated by text-to-image generation models [P3]
were proposed by Yang Zhang. The design, implementation, and evaluation are con-
ducted by Zeyang Sha with the support of Zheng Li, Ning Yu and Yang Zhang. All
authors participated in the writing and reviewing the paper.

[P1] Sha, Z., He, X., Berrang, P., Humbert, M., and Zhang, Y. Fine-Tuning Is All
You Need to Mitigate Backdoor Attacks. CoRR abs/2212.09067 (2022).

[P2] Sha, Z., He, X., Yu, N., Backes, M., and Zhang, Y. Can’t Steal? Cont-Steal!
Contrastive Stealing Attacks Against Image Encoders. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2023.

[P3] Sha, Z., Li, Z., Yu, N., and Zhang, Y. DE-FAKE: detection and attribution of
fake images generated by text-to-image generation models. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM, 2021,
845–863.

Further Contributions of the Author

The author was also able to contribute to the following:

[S1] Chu, J., Sha, Z., Backes, M., and Zhang, Y. Conversation reconstruction attack
against GPT models. CoRR abs/2402.02987 (2024).

[S2] Jiang, Y., Shen, X., Wen, R., Sha, Z., Chu, J., Liu, Y., Backes, M., and Zhang,
Y. Games and beyond: analyzing the bullet chats of esports livestreaming. In:
International AAAI Conference on Web and Social Media (ICWSM). AAAI
Press, 2024.

[S3] Sha, Z. and Zhang, Y. Prompt Stealing Attacks Against Large Language Models.
CoRR abs/2402.12959 (2024).

[S4] Yang, Z., Sha, Z., Backes, M., and Zhang, Y. From Visual Prompt Learning to
Zero-Shot Transfer: Mapping Is All You Need. CoRR abs/2303.05266 (2023).

vii

[S5] Zhang, B., Shen, X., Si, W. M., Sha, Z., Chen, Z., Salem, A., Shen, Y., Backes,
M., and Zhang, Y. Comprehensive Assessment of Toxicity in ChatGPT. CoRR
abs/2402.12959 (2024).

viii

Acknowledgments

First and foremost, I would like to express my deepest appreciation to my advisor,
Yang Zhang, for his unwavering support and guidance. From the beginning of my Ph.D.
journey to its conclusion, Yang has been a constant source of encouragement, always
willing and enthusiastic to assist in any way he could. With a great sense of humor
and remarkable intelligence. I have truly enjoyed working with him and aspire to be as
lively, enthusiastic, and energetic as he is in the future.

I would also like to express my gratitude towards my dissertation committee members:
Yang Zhang, Michael Backes, Tianhao Wang, and Xinlei He, for their effort and time
reviewing this dissertation.

I am deeply grateful to all my collaborators and co-authors that I was lucky enough
to work with. Special thanks go to Yang, Ning, Xinlei, Zheng, Pascal and Mathias.
Thank you all for the very interesting and insightful discussions.

Naturally, I want to thank all of my colleagues and friends inside and outside CISPA
who made this journey fun! Special thanks go to Xinlei, Zheng, Yihan, Raymond,
Edward, Tianshuo, Junjie, and many more!

Most importantly, I must acknowledge my family, particularly my parents, for their
unwavering support in every decision I have made. Their boundless encouragement has
been invaluable throughout this journey.

Finally, for anyone whom I forgot to mention here due to my memory, I am really
grateful and thankful for each and every person who helped me through this long journey,
thank you all!!!

ix

Contents

1 Introduction 1
1.1 Our Contribution . 3

1.1.1 Data Security . 3
1.1.2 Model Security . 4
1.1.3 Output Security . 5

1.2 Organization of the Dissertation . 5

2 Preliminaries and Background 7
2.1 Backdoor Attacks . 9

2.1.1 The Principle of Backdoor Attacks 9
2.1.2 Attack Scenarios . 9

2.2 Pre-training Encoders . 10
2.3 Text-to-Image Geneation Models . 12

3 Data Security 15
3.1 Introduction . 17
3.2 Backdoor Defenses . 20

3.2.1 Defender’s Goals and Capabilities 20
3.2.2 Fine-Tuning to Mitigate Backdoor Attacks 20

3.3 Experimental Setup . 22
3.3.1 Current Attacks and Defenses . 22
3.3.2 Datasets and Evaluation Metrics 24

3.4 Evaluation Results . 25
3.4.1 Encoder-Based Scenario . 25
3.4.2 Transfer-Based Scenario . 25
3.4.3 Standalone Scenario . 27
3.4.4 Comparison to Other Defense Methods 28
3.4.5 Illustration of Why Fine-Tuning and Super-Fine-Tuning Work . 29
3.4.6 Ablation Study . 30
3.4.7 Summary . 32

3.5 Backdoor Sequela . 33
3.5.1 Membership Inference Attack . 33
3.5.2 Backdoor Re-injection Attack . 36
3.5.3 Summary . 37

3.6 Conclusion . 37

xi

CONTENTS

4 Model Security 39
4.1 Introduction . 41
4.2 Threat Model . 44
4.3 Model Stealing Attacks . 45

4.3.1 Conventional Attacks Against Classifiers 45
4.3.2 Conventional Attacks Against Encoders 45
4.3.3 Cont-Steal Attacks Against Encoders 46

4.4 Experiments . 47
4.4.1 Experimental Setup . 48
4.4.2 Performance of the Target Encoder on Downstream Tasks 49
4.4.3 Performance of Conventional Attacks 50
4.4.4 Performance of Cont-Steal . 56
4.4.5 Cost Analysis . 60
4.4.6 Ablation Studies on Adversary Training Process 60
4.4.7 Further Attacks Based on Cont-Steal 64
4.4.8 Defenses . 65

4.5 Conclusion . 67

5 Output Security 69
5.1 Introduction . 71

5.1.1 Our Contributions . 71
5.2 Datasets . 74
5.3 Fake Image Detection . 75

5.3.1 Design Goals . 75
5.3.2 Methodology . 76
5.3.3 Results . 78
5.3.4 Discussion . 80
5.3.5 Ablation Study . 83
5.3.6 Takeaways . 84

5.4 Fake Image Attribution . 85
5.4.1 Design Goals . 85
5.4.2 Methodology . 85
5.4.3 Results . 87
5.4.4 Discussion . 88
5.4.5 Ablation Study . 89
5.4.6 Takeaways . 90

5.5 Robustness Analysis . 90
5.5.1 Adversary Example Attacks . 90
5.5.2 Experimental Results . 91

5.6 Prompt Analysis . 92
5.6.1 Semantics Analysis . 92
5.6.2 Structure Analysis . 95
5.6.3 Takeaways . 96

5.7 Conclusion . 96

xii

CONTENTS

6 Related Work 99
6.1 Backdoor Attacks . 101
6.2 Backdoor Defenses . 101
6.3 Contrastive Learning . 101
6.4 Model Stealing Attack . 102
6.5 Knowledge Distillation . 102
6.6 Text-to-Image Generation . 103
6.7 Fake Image Detection and Attribution 103

7 Summary and Conclusion 105
7.1 Summary . 107
7.2 Conclusion . 107
7.3 Future Research . 108

xiii

List of Figures

3.1 The learning rate scheduler of super-fine-tuning. 21
3.2 The performance of whole model fine-tuning and downstream classifier

fine-tuning on BadEncoder. The X-axis represents training epochs. The
Y-axis represents accuracy. * . 24

3.3 The performance of conventional fine-tuning and super-fine-tuning against
different attacks in the transfer-based scenario. The X-axis represents
training epochs. The Y-axis represents the accuracy. 25

3.4 Accuracy of conventional fine-tuning and super-fine-tuning on backdoor
samples and clean samples in the standalone scenario. The X-axis repre-
sents training epochs. The Y-axis represents the accuracy. Epoch 0 is
the original backdoor ASR and CA before fine-tuning or super-fine-tuning. 26

3.5 Comparison between existing state-of-the-art backdoor defenses and
super-fine-tuning on CIFAR10. The X-axis represents accuracy on clean
samples. The Y-axis represents the attack success rate. Points closer to
the lower right corner indicate better defense performance. 27

3.6 Comparison between existing state-of-the-art backdoor defense methods
and super-fine-tuning on CIFAR100. The X-axis represents accuracy on
clean samples. The Y-axis represents the attack success rate. Points
closer to the lower right corner are better points. 27

3.7 Comparison between existing state-of-the-art backdoor defense methods
and super-fine-tuning on GTSRB. The X-axis represents accuracy on
clean samples. The Y-axis represents the attack success rate. Points
closer to the lower right corner are better points. 27

3.8 The time cost of different defense methods. The X-axis represents different
methods. The Y-axis represents the GPU hours required for this method.
Note that in each box, we include the time cost on all datasets. 28

3.9 The impact of fine-tuning dataset size on defense performance. The first
row shows fine-tuning dataset size’s impacts on attack success rate. The
second row shows fine-tuning dataset size’s impacts on clean samples
accuracy. The X-axis represents the ratio of the fine-tuning dataset,
which is used to conduct fine-tuning. 29

3.10 Schematic diagram of backdoor training and mitigation process. 30
3.11 The impact of different learning rates of conventional fine-tuning on

removing backdoor attacks. The X-axis represents training epochs. The
Y-axis represents the accuracy of backdoor samples and clean samples. 31

xv

LIST OF FIGURES

3.12 Impact of LR MAX1 of super-fine-tuning on defense performance. The
first row shows LR MAX1’s impacts on attack success rate. The second
row shows LR MAX1’s impacts on clean sample accuracy. The X-axis
represents how many data samples are used to conduct fine-tuning. Note
that we only use 10% of the fine-tuning dataset to conduct super-fine-
tuning. 31

3.13 The performance of membership inference attacks on different defended
models and backdoored models. The X-axis represents different attack
methods. The Y-axis represents membership inference attack accuracy. 33

3.14 Performance of BadNets backdoor re-injection attacks on different defense
methods. The X-axis represents training epochs in the re-injection phase.
The Y-axis represents the accuracy of poison samples. Note that epoch 0
represents different defense methods’ results before re-injection. 34

3.15 Performance of Blended backdoor re-injection attacks on different defense
methods. The X-axis represents training epochs in the re-injection phase.
The Y-axis represents the accuracy of poison samples. 35

3.16 Performance of Inputaware backdoor re-injection attacks on different
defense methods. The X-axis represents training epochs in the re-injection
phase. The Y-axis represents the accuracy of poison samples. 35

3.17 Performance of LF backdoor re-injection attacks on different defense
methods. The X-axis represents training epochs in the re-injection phase.
The Y-axis represents the accuracy of poison samples. 35

3.18 Performance of WaNet backdoor re-injection attacks on different defense
methods. The X-axis represents training epochs in the re-injection phase.
The Y-axis represents the accuracy of poison samples. 35

4.1 Model stealing attacks against classifiers (previous) v.s. model stealing
attacks against encoders (ours). Previous works aim to steal a whole
classifier using the predicted label or posteriors of a target model. In
our work, we aim to steal the target encoder using its embeddings. The
target encoder (Et) is pre-trained and fixed as shown in the solid frame.
The surrogate encoder (Es) is trainable by the adversary as shown in the
dashed frame. 42

4.2 Conventional attack (top) vs. Cont-Steal (bottom) against encoders. Con-
ventional attack applies MSE loss to approximate target embeddings for
each sample individually. Cont-Steal (bottom) introduces data augmenta-
tion and interacts across multiple samples: associating target/surrogate
embeddings of the same images closer and repulsing those of different
images farther away. The target encoder (Et) is pre-trained and fixed
as shown in the solid frame. The surrogate encoder (Es) is trainable by
adversary as shown in the dashed frame. 48

xvi

LIST OF FIGURES

4.3 The performance of target classifiers composed by target encoder and
an extra linear layer. The encoders are pre-trained on CIFAR10 (a) and
ImageNet100 (b). The x-axis represents different downstream datasets
for the target encoder and classifier. The y-axis represents the target
model’s accuracy on downstream tasks. 50

4.4 The t-SNE projection of 1, 000 randomly selected samples’ predicted
labels, posteriors, and embeddings respectively. Note that the target
model is pre-trained by SimCLR on CIFAR10. 50

4.5 The performance of model stealing attack against target encoders and
downstream classifiers both trained on CIFAR10. Target models can
output predicted labels, posteriors, or embeddings. The adversary uses
CIFAR10, STL10, Fashion-MNIST (F-MNIST), SVHN to conduct model
stealing attacks. The x-axis represents different kinds of target models.
The first line’s y-axis represents the agreement of the model stealing
attack. The second line’s y-axis represents the accuracy of the model
stealing attack. 51

4.6 The performance of model stealing attack against target encodes and
downstream classifiers trained on CIFAR10 and STL10. Target models
can output predicted labels, posteriors, or embeddings. The adversary
uses CIFAR10, STL10, Fashion-MNIST (F-MNIST), SVHN to conduct
model stealing attacks. The x-axis represents different kinds of target
models. The first line’s y-axis represents the agreement of the model
stealing attack. The second line’s y-axis represents the accuracy of the
model stealing attack. 51

4.7 The performance of model stealing attack against target encodes and
downstream classifiers trained on CIFAR10 and Fashon-MNIST. Target
models can output predicted labels, posteriors, or embeddings. The
adversary uses CIFAR10, STL10, Fashion-MNIST (F-MNIST), SVHN
to conduct model stealing attacks. The x-axis represents different kinds
of target models. The first line’s y-axis represents the agreement of the
model stealing attack. The second line’s y-axis represents the accuracy
of the model stealing attack. 52

4.8 The performance of model stealing attack against target encodes and
downstream classifiers trained on CIFAR10 and SVHN. Target models
can output predicted labels, posteriors, or embeddings. The adversary
uses CIFAR10, STL10, Fashion-MNIST (F-MNIST), SVHN to conduct
model stealing attacks. The x-axis represents different kinds of target
models. The first line’s y-axis represents the agreement of the model
stealing attack. The second line’s y-axis represents the accuracy of the
model stealing attack. 52

xvii

LIST OF FIGURES

4.9 The performance of model stealing attack against target encodes and
downstream classifiers trained on ImageNet and STL10. Target models
can output predicted labels, posteriors, or embeddings. The adversary
uses CIFAR10, STL10, Fashion-MNIST (F-MNIST), SVHN to conduct
model stealing attacks. The x-axis represents different kinds of target
models. The first line’s y-axis represents the agreement of the model
stealing attack. The second line’s y-axis represents the accuracy of the
model stealing attack. 53

4.10 The performance of model stealing attack against target encodes and
downstream classifiers trained on ImageNet and Fashion-MNIST. Target
models can output predicted labels, posteriors, or embeddings. The
adversary uses CIFAR10, STL10, Fashion-MNIST (F-MNIST), SVHN
to conduct model stealing attacks. The x-axis represents different kinds
of target models. The first line’s y-axis represents the agreement of the
model stealing attack. The second line’s y-axis represents the accuracy
of the model stealing attack. 53

4.11 The performance of model stealing attack against target encodes and
downstream classifiers trained on ImageNet and SVHN. Target models
can output predicted labels, posteriors, or embeddings. The adversary
uses CIFAR10, STL10, Fashion-MNIST (F-MNIST), SVHN to conduct
model stealing attacks. The x-axis represents different kinds of target
models. The first line’s y-axis represents the agreement of the model
stealing attack. The second line’s y-axis represents the accuracy of the
model stealing attack. 54

4.12 The relationship between accuracy and agreement. The x-axis is the
agreement number and y-axis is the accuracy number. 55

4.13 The t-SNE projection of 1, 000 randomly selected samples’ embeddings
from target encoder, surrogate encoder under Cont-Steal, and surrogate
encoder under the conventional attack, respectively. Note that the target
encoder is pre-trained by SimCLR on CIFAR10. 55

4.14 The performance of Cont-Steal and conventional attack against target
encoders trained on CIFAR10. The adversary uses CIFAR10, STL10,
F-MNIST, and SVHN to conduct model stealing attacks. The adversary
uses CIFAR10 as the downstream task to evaluate the attack performance.
The x-axis represents different kinds of the target model. The first line’s
y-axis represents the agreement of the model stealing attack. The second
line’s y-axis represents the accuracy of the model stealing attack. 56

4.15 The performance of Cont-Steal and conventional attack against target
encoders trained on CIFAR10. The adversary uses CIFAR10, STL10,
F-MNIST, and SVHN to conduct model stealing attacks. The adversary
uses STL10 as the downstream task to evaluate the attack performance.
The x-axis represents different kinds of the target model. The first line’s
y-axis represents the agreement of the model stealing attack. The second
line’s y-axis represents the accuracy of the model stealing attack. 56

xviii

LIST OF FIGURES

4.16 The performance of Cont-Steal and conventional attack against target
encoders trained on CIFAR10. The adversary uses CIFAR10, STL10,
F-MNIST, and SVHN to conduct model stealing attacks. The adversary
uses F-MNIST as the downstream task to evaluate the attack performance.
The x-axis represents different kinds of the target model. The first line’s
y-axis represents the agreement of the model stealing attack. The second
line’s y-axis represents the accuracy of the model stealing attack. 57

4.17 The performance of Cont-Steal and conventional attack against target
encoders trained on CIFAR10. The adversary uses CIFAR10, STL10,
F-MNIST, and SVHN to conduct model stealing attacks. The adversary
uses SVHN as the downstream task to evaluate the attack performance.
The x-axis represents different kinds of the target model. The first line’s
y-axis represents the agreement of the model stealing attack. The second
line’s y-axis represents the accuracy of the model stealing attack. 57

4.18 The performance of Cont-Steal and conventional attack against target
encoders trained on ImageNet100. The adversary uses CIFAR10, STL10,
F-MNIST, and SVHN to conduct model stealing attacks. The adversary
uses CIFAR10 as the downstream task to evaluate the attack performance.
The x-axis represents different kinds of the target model. The first line’s
y-axis represents the agreement of the model stealing attack. The second
line’s y-axis represents the accuracy of the model stealing attack. 58

4.19 The performance of Cont-Steal and conventional attack against target
encoders trained on ImageNet100. The adversary uses CIFAR10, STL10,
F-MNIST, and SVHN to conduct model stealing attacks. The adversary
uses F-MNIST as the downstream task to evaluate the attack performance.
The x-axis represents different kinds of the target model. The first line’s
y-axis represents the agreement of the model stealing attack. The second
line’s y-axis represents the accuracy of the model stealing attack. 58

4.20 The performance of Cont-Steal and conventional attack against target
encoders trained on ImagNet100. The adversary uses CIFAR10, STL10,
F-MNIST, and SVHN to conduct model stealing attacks. The adversary
uses SVHN as the downstream task to evaluate the attack performance.
The x-axis represents different kinds of the target model. The first line’s
y-axis represents the agreement of the model stealing attack. The second
line’s y-axis represents the accuracy of the model stealing attack. 59

4.21 Heatmap of the agreement scores of model stealing attacks. Target
model’s encoder and downstream classifier are both ResNet18 trained
by SimCLR on CIFAR10. The surrogate dataset is STL10. SurrogaThe
surrogatete dataset’s size refers to the proportion of surrogate data we
used to the whole surrogate dataset. We show the performance of 100
combinations of different training epoch and surrothe gate dataset’s size. 61

4.22 Heatmap of the agreement scores of model stealing attacks. We show the
performance of 16 combinations of different information that the target
model outputs, and the adversary’s knowledge on target training data.
Target models are trained on CIFAR10 63

xix

LIST OF FIGURES

4.23 The performance of different defend methods. Target encoders are trained
on CIFAR10. The downstream dataset and surrogate dataset are both
STL10. The x-axis represents different defense levels. The y-aixs repre-
sents the model’s accuracy. 66

5.1 An illustration of our work, including fake image detection, fake image
attribution, and prompt analysis. Note that the blue space represents
the detection task where the two darkest colored areas represent real
and fake images. The red space represents the attribution task where
different darkest colored areas mean different algorithms. The dotted
boxes represent the prompt analysis where different prompts lead to
different quality images. 72

5.2 An illustration of fake image detection. The red part describes image-only
detection. The green part describes hybrid detection. The blue part
describes fake images generated by other text-to-image generation models. 77

5.3 The performance of the forensic classifier and detectors. 80
5.4 The visualization of frequency analysis on (a) real images, (b) fake

images generated by text-to-image generation models, and (c) fake images
generated by GAN. 81

5.5 The probability distribution of the connection between the real/fake
images and the corresponding prompts. 81

5.6 The performance of hybrid detectors with generated prompts in terms
of the prompts’ descriptiveness. The descriptiveness is grouped into five
equally sized bins. 83

5.7 The performance of detectors in terms of the training dataset size on
SD+MSCOCO. We conduct the evaluation on (a) SD+MSCOCO, (b)
LD+MSCOCO, (c) GLIDE+MSCOCO, and (d) DALL·E 2+MSCOCO. 84

5.8 The visualization of frequency analysis on fake images generated by (a)
SD, (b) LD, (c) GLIDE, and (d) DALL·E 2. 87

5.9 The performance of attributors on an unseen dataset DALL·E 2 in terms
of different thresholds. We conduct the evaluation on (a) MSCOCO and
(b) Flickr30k. 89

5.10 The performance of attributors in terms of the training dataset size on
MSCOCO. We conduct the evaluation on (a) MSCOCO and (b) Flickr30k. 89

5.11 The top twenty topics of prompts in terms of the proportion of the
corresponding generated fake images being classified as real by the image-
only detector. 94

5.12 Examples of fake images generated by SD given prompts with topics
“skis” and “snowboard.” . 95

5.13 The relationship between the length\proportion of nouns in a prompt
and the corresponding image’s authenticity. 96

xx

List of Tables

3.1 Examples of triggered inputs from different backdoor attacks. 24

4.1 The monetary and (training) time costs for normal training and Cont-
Steal attack. Cont-Steal’s monetary cost contains two parts: query cost
and training cost. Note that we ignore the query time cost of Cont-Steal
as it normally has a smaller value than the training time cost. 60

4.2 Cont-Steal attack performance of different surrogate architectures. Target
encoders (ResNet18) and downstream classifiers are trained on CIFAR10.
The surrogate dataset is also CIFAR10. 62

4.3 The agreement and accuracy of different contrastive losses. We use BYOL
trained on STL10 as the target model. 64

4.4 The different methods to create adversary sample to attack on surrogate
model and target model. [Lower is better] 65

4.5 Watermark defense. Pretrain dataset and surrogate dataset are both
CIFAR10. Watermark leverages a watermark rate (wr) to verify the
ownership of target models. [Higher is better] 66

5.1 The text-to-image generation models, datasets, and the number/size of
fake images we consider in this section. Note that the number of fake
images from DALL·E 2 being low is due to its poor image generation
efficiency. 75

5.2 Performance of hybrid detector trained on mixed fake images from Stable
Diffusion and DALL·E 2 . 83

5.3 The performance of image-only attributors and hybrid attributors. . . . 88
5.4 The performance of our proposed detectors and attributors under various

adversary example attacks. 92
5.5 Top five prompts which can generate the most real images, determined

by the image-only detector. Gray cells mean the prompt mainly describe
the details of the subject. 93

5.6 Top five prompts which can generate the most fake images, determined
by the image-only detector. Gray cells mean the prompt mainly describe
the environment where the subject is located. 93

xxi

1
Introduction

1

1.1. OUR CONTRIBUTION

Machine learning (ML) has achieved remarkable advancements and has been in-
tegrated into a wide array of applications, including healthcare, finance, autonomous
systems, and cybersecurity. These models, however, are increasingly becoming targets
of the adversary as they are deployed in real-world environments. The adversary can
target different stages of the ML pipeline, which can be divided into three phases: the
data used for training, the model parameters, and the outputs generated by the trained
model. This dissertation aims to provide a thorough security assessment of ML pipelines,
systematically addressing vulnerabilities at each phase to enhance the robustness and
trustworthiness of ML systems.

1.1 Our Contribution

1.1.1 Data Security

Data is the foundation upon which machine learning models are built. The quality,
quantity, and integrity of the training data significantly influence the model’s performance
and security. In the context of ML security, several challenges and threats are associated
with the training data phase.

In this dissertation, we focus on data poisoning attacks, where the adversary inten-
tionally manipulates the training data to corrupt the learning process. Data poisoning
is a type of attack where a malicious adversary injects carefully crafted examples into
the training dataset to cause the machine-learning model to behave incorrectly. These
attacks can be subtle and difficult to detect, as they exploit the dependency of ML
models on the integrity of their training data.

To address these challenges, we propose a novel fine-tuning method designed to
mitigate the effects of data poisoning. Fine-tuning is a widely adopted technique in
the machine learning training phase, especially for transfer learning and contrastive
learning. Our approach leverages this process to effectively "cleanse" the model from
the influence of poisoned data, restoring its performance and reliability.

Conventional fine-tuning involves taking a pre-trained model and further training
it on a smaller, clean dataset with a standard learning rate. However, we found that
while this can be effective in some scenarios, it is not always sufficient to remove
deeply embedded backdoors. To enhance the efficacy of fine-tuning, we introduce a
technique called super-fine-tuning. Super-fine-tuning is inspired by the concept of
super-convergence, which utilizes a dynamic learning rate to accelerate the training
process. The core idea of super-fine-tuning is to vary the learning rate during the
training process to achieve two goals: a high learning rate to help the model forget
the backdoor triggers and a low learning rate to maintain the model’s utility on clean
samples. Specifically, the training process is divided into two phases with different
learning rate schedules to ensure that the model can effectively unlearn the backdoor
while retaining its performance on legitimate tasks.

In the first phase, we leverage a large learning rate to aggressively update the model
parameters, pushing the model away from the backdoor-embedded local minima. This
helps the model to forget the backdoor triggers. In the second phase, we reduce the
learning rate to fine-tune the model on clean data, ensuring that it maintains high

3

CHAPTER 1. INTRODUCTION

accuracy on legitimate tasks. This dynamic adjustment of the learning rate helps to
achieve a balance between removing the backdoor and preserving model performance.

Our experimental results demonstrate the effectiveness of super-fine-tuning across
various datasets and attack scenarios. In the encoder-based scenario, conventional
fine-tuning has shown to be sufficient to remove almost all backdoor triggers. However,
in the transfer-based and standalone scenarios, where conventional fine-tuning might fall
short, super-fine-tuning has proven to be remarkably effective. It significantly reduces
the attack success rate while maintaining high clean accuracy and requiring minimal
computational resources.

Overall, our findings highlight that fine-tuning, particularly super-fine-tuning, is a
powerful and practical defense against data poisoning attacks. It offers a simple yet robust
solution that can be easily integrated into existing machine learning pipelines, providing
an essential safeguard for the deployment of ML models in real-world applications.

1.1.2 Model Security

Model security is another important topic of machine learning security. As ML models
are increasingly deployed in sensitive applications, they become prime targets for various
types of attacks, with model stealing being one of the most significant threats. Model
stealing attacks aim to replicate the functionality of a target model by using minimal
resources, thereby bypassing intellectual property protections and potentially introducing
further security vulnerabilities.

In this dissertation, we introduce novel model stealing techniques that specifically
target contrastive learning models. These attacks, termed Cont-Steal, exploit the inher-
ent vulnerabilities in the contrastive learning framework. Unlike traditional supervised
learning models, contrastive learning models generate the embeddings that contain the
information of the training data as well as the model parameters. By leveraging these
embeddings, the adversary can effectively train surrogate models that closely mimic the
target model.

Cont-Steal queries the target encoder with a series of inputs and collects the
corresponding embeddings. These embeddings serve as the ground truth for training
the surrogate encoder. The attack is structured to maximize the similarity between
the embeddings of the surrogate and target encoders, thus ensuring high fidelity in the
stolen model.

Our experimental evaluation demonstrates that Cont-Steal significantly outperforms
conventional model stealing attacks. By exploiting the rich embeddings generated by
contrastive learning models, Cont-Steal achieves high fidelity with fewer resources.

Overall, our research highlights the severe vulnerabilities of contrastive learning
models to model stealing attacks. By systematically exploiting the embeddings generated
by these models, adversaries can effectively replicate their functionality, posing significant
risks to intellectual property and data privacy. Our findings underscore the need for
robust defenses to protect against such sophisticated threats and ensure the secure
deployment of machine learning systems.

4

1.2. ORGANIZATION OF THE DISSERTATION

1.1.3 Output Security

The outputs of machine learning models, especially those generated by text-to-image
models, are increasingly being scrutinized for authenticity. As generative models
become more sophisticated, distinguishing between real and fake outputs is crucial. The
proliferation of high-quality fake images, often indistinguishable from real images, poses
significant challenges for detection and attribution.

In this dissertation, We propose innovative detection methods that leverage textual
prompts to improve the accuracy and reliability of fake image detection. Our approach
involves a hybrid detection framework that combines image analysis with contextual
information derived from the associated text prompts. This dual-modality approach
enhances the robustness of the detection process, making it more resilient to sophisticated
attacks that might evade traditional image-only detection methods. Additionally, we
employ advanced frequency analysis techniques to detect anomalies in the image’s pixel
distribution, further strengthening our detection capabilities.

In terms of attribution, we develop methods to trace the origins of fake images back
to specific generative models. This involves embedding unique identifiers within the fake
images, akin to digital fingerprints, which can be extracted and analyzed to determine
the source model. This attribution capability is vital for holding creators of malicious
content accountable and for enforcing intellectual property rights.

Our experimental results demonstrate the effectiveness of our detection and attri-
bution methods across various datasets and generative models. The hybrid detection
framework significantly outperforms traditional methods, achieving higher accuracy and
lower false-positive rates. Moreover, our attribution techniques provide a reliable means
of linking synthetic images to their generative sources, thereby enhancing accountability
in the usage of generative models.

Through this comprehensive approach, our contributions to output security provide
practical solutions for detecting and attributing fake images, ensuring the integrity and
trustworthiness of ML model outputs. These advancements are essential for maintaining
public trust in machine learning technologies and for safeguarding against the misuse of
generative models in producing deceptive content.

1.2 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents the necessary
preliminaries and background information, providing a foundation for understanding
the subsequent chapters. Chapter 3 focuses on data security, exploring data poisoning
attacks and proposing novel fine-tuning methods to mitigate these attacks. Chapter 4
addresses model security, investigating model stealing attacks on contrastive learning
models and introducing adaptive defense strategies. Chapter 5 examines output security,
discussing the detection and attribution of fake images generated by text-to-image models.
Chapter 6 reviews related work, situating our contributions within the broader context
of ML security research. Finally, Chapter 7 concludes the dissertation, summarizing the
key findings and suggesting potential future directions for research in ML security.

Through this comprehensive approach, we aim to provide valuable insights and

5

CHAPTER 1. INTRODUCTION

practical solutions for enhancing the security and trustworthiness of machine learning
systems.

6

2
Preliminaries and Background

7

2.1. BACKDOOR ATTACKS

2.1 Backdoor Attacks

2.1.1 The Principle of Backdoor Attacks

In this thesis, we focus on targeted backdoor attacks on image classification tasks, which
is the most common setting of backdoor-related research. The classification tasks can
be formulated as follows: f(x) = c, where x ∈ X, c ∈ C. X is the image domain and C
is the label domain. To inject a backdoor into a target model, an adversary manipulates
the model to learn the trigger pattern. Images with this trigger pattern will be classified
into the target label. The process can be formulated as the following: f(t(x)) = ct,
where t(·) is the pre-defined trigger pattern and ct is the target label.

Currently, different types of backdoor attacks mainly focus on how to design better
trigger patterns [83, 21, 103, 75] or how to improve the backdoor training process [73,
131, 141, 75, 7]. For better trigger patterns, the adversary aims to bypass the existing
defenses to poison the training dataset. With regards to improving the backdoor training
process, the adversary aims to inject the backdoor in an easier and faster way. We will
introduce the representative attacks in detail in Section 3.3.1. Our further experiments
show that all these backdoor attacks can be easily mitigated by either conventional
fine-tuning or our proposed super-fine-tuning method.

2.1.2 Attack Scenarios

We consider three different scenarios in our works, including encoder-based, transfer-
based, and standalone scenarios. Based on these scenarios, we recommend users use
different fine-tuning strategies.

Encoder-Based Scenario: With the quick development of self-supervised learning,
the encoder-based paradigm is becoming popular. The encoder-based paradigm consists
of two key steps: pre-training an encoder and constructing downstream classifiers from
the encoder for various tasks. Current efforts of the attack mainly focus on injecting
backdoors into the encoder and expect downstream classifiers built on the pre-trained
encoder to have good backdoor performance as well as high utility. One representative
encoder-based backdoor attack is BadEncoder [51], where an optimization-based solution
is used to train a backdoored image encoder. Concretely, to obtain the backdoored
encoder, BadEncoder forces the embeddings of the triggered images to be close to a
pre-defined target image’s embedding (increasing attack success rate) while keeping
clean images’ embeddings similar to the corresponding embeddings on the clean model
(maintaining model utility).

Normally, backdoor attacks on this encoder-based paradigm assume the users freeze
the encoder’s parameters and only fine-tune the downstream classifier. In this case, most
attacks survive and achieve a high attack success rate as well as high utility. However, in
common encoder use cases, the encoder is fine-tuned as well [115], which means that the
encoder’s parameters are changed too. This may call for extra difficulty in maintaining
the attack performance.

Transfer-Based Scenario: Another popular scenario is the transfer learning setting,
whereby the user gets a pre-trained model on a large-scale dataset (pre-trained model)

9

CHAPTER 2. PRELIMINARIES AND BACKGROUND

and then fine-tunes the model to adapt to their own downstream tasks (fine-tuned model).
To achieve such adaptation, one common way is to replace the pre-trained model’s
original classification layer with a new classification layer that fits the downstream task
and fine-tune the new model. For backdoor attacks in this scenario, the adversary
injects the backdoor in the pre-trained model by associating a trigger with a certain
class on a subset of the pre-training dataset. After fine-tuning (with the downstream
task dataset), the adversary expects that images with the pre-defined trigger will be
misclassified in the fine-tuned model, and the misclassifications all lead to the same
(but random) class. We consider this setting as multiple attacks can be easily adapted
here like the ones considered in our experiments [39, 21, 137, 83, 84]. Note that there
exists another work on backdoor attacks against transfer learning [131]. We do not use
it as its performance is not strong based on our evaluation as well as the results in [51].

Standalone Scenario: The most common and difficult scenario is the standalone
scenario. In this scenario, the user can directly deploy the model obtained from the
Internet without any modification. Note that the training dataset of the model is usually
publicly available to the user. An alternative case is that the user outsources their data
to a company that offers ML model training service and then obtains the model from
the company (the company being the adversary here). In both cases, the backdoor
injected by the adversary makes the model misclassify any inputs with the trigger into
the pre-defined class. Our evaluation shows that, even if the user fine-tunes the model
with the same dataset that was used to train the backdoored model, the backdoor can
still remain, which calls for more effective defenses.

2.2 Pre-training Encoders

The image encoder can be considered as a feature extractor that generates a representa-
tion (embedding) for a given input. To pre-train the encoder, self-supervised learning
leverages only the unlabeled data and generates the optimization goal in an unsupervised
manner to optimize the encoder. We then introduce four popular self-supervised learning
algorithms considered in this paper, i.e., SimCLR [18], MoCo [42], BYOL [38], and
SimSiam [20].

SimCLR [18]: SimCLR has two major components, a base encoder f(·) and a projection
head g(·). To be more specific, given a mini-batch of N unlabeled images, SimCLR first
generates two augmented views of each image with data augmentation, resulting in 2N
samples. We consider (xi, xj) as a positive pair if both xi and xj are the augmented
views of the same image, and otherwise a negative pair. For a given sample xi, we can
obtain its representation from the base encoder: hi = f(xi). Then, the representation
is projected into a smaller space using the projection head, which is a Multi-layer
Perceptron (MLP): zi = g(hi). SimCLR leverages contrastive loss to optimize the whole
model including the base encoder and the projection head. Formally, for each positive
pair (xi, xj), the contrastive loss can be defined as follows:

ℓ(i, j) = − log esim(zi,zj)/τ∑2N
k=1,k ̸=i e

sim(zi,zk)/τ
(2.1)

10

2.2. PRE-TRAINING ENCODERS

where sim(·, ·) represents the cosine similarity between two vectors and τ is a temperature
parameter.

The final contrastive loss for a mini-batch is calculated over the 2N samples, which
can be defined as the following:

Lcontrastive = 1
2N

N∑
k=1

[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)] (2.2)

Here, 2k − 1 and 2k are the indices for each positive pair.
Once the model is trained, we discard the projection head and only use the encoder

with an extra linear layer to perform the downstream task.

MoCo [42]: MoCo is made up of three components, i.e., an encoder h(·), a momentum
encoder hm(·), and a dictionary Q. Note that the momentum encoder has the same
architecture as the encoder, but is updated with a momentum factor, which means that
it updates much slower than the encoder. The dictionary Q is basically a queue to
store several previous mini-batch samples’ representations generated by the momentum
encoder. Similar to SimCLR, MoCo generates 2N augmented views for a mini-batch of
N samples. Given two augmented inputs (xi, xj) as a positive pair, we feed them into
the encoder and momentum encoder to generate the representation vectors h(xi) and
hm(xj), respectively.

The contrastive loss used to optimize the model can be formulated as follows:

ℓ(i, j) = − log esim(h(xi),hm(xj))/τ

esim(h(xi),hm(xj))/τ + ∑
k∈Q e

sim(h(xi),k)/τ
(2.3)

The final contrastive loss is calculated over all N positive pairs. For each mini-batch,
the dictionary would enqueue the N representations by the momentum encoder and
dequeue the oldest N representations.

BYOL [38]: Different from SimCLR and MoCo, BOYL does not require negative pairs.
Specifically, BYOL has two neural networks, i.e., the online and target networks. The
online network has three components including an encoder ho(·), a projector go(·), and
a predictor qo(·). The target network has the same architecture as the online network
but without the predictor (i.e., an encoder ht(·) and a projector gt(·)). For a given input
sample x, BYOL also generates two augmented views (xi, xj) and feeds xi and xj to
the online network and the target network, respectively. The optimization goal is to
make the output of the online network qo(go(ho(xi))) to be as similar as the output of
the target network gt(ht(xj)). BYOL first normalizes the two outputs and leverages
MSE as the loss function to optimize only the online network. Then, the target network
uses a weighted moving average of the online network to update its parameters. Once
the model is trained, we only leverage the encoder of the online network with an extra
linear layer to perform the downstream task.

SimSiam [20]: SimSiam takes Siamese networks as its architecture to train the model.
Concretely, a Siamese network has two sub-networks that share the same parameters.
In SimSiam, each sub network has an encoder h(·) and a projection head g(·). For two

11

CHAPTER 2. PRELIMINARIES AND BACKGROUND

augmented views xi and xj generated from x, SimSiam feeds xi and xj into the two
sub networks, generating h(xi), g(h(xi)),h(xj), and g(h(xj)), respectively.

Formally, the loss of SimSiam can be defined as follows:

ℓ = −(sim(h(xi), g(h(xj))) + sim(h(xj), (g(h(xi)))))
2 (2.4)

where sim(·) denotes the cosine similarity. Note that to avoid the collapsing solutions,
i.e., model outputs the same for all inputs, SimSiam leverages stop gradient to one
sub-network and shows that it is an important operation to prevent the collapsing.

Supervised Encoders: Besides the encoder pre-trained in a self-supervised manner,
we also consider the encoder trained in a supervised way. Concretely, we first train a
whole classifier for a specific task. Then, we remove the last linear layer and consider
the rest of the model as the (supervised) encoder.

2.3 Text-to-Image Geneation Models

Text-to-image generation models try to reverse the diffusion process starting from a
random noise vector xt to an output image x0 through a denoising process based on the
textual prompt P , which is related to the given prompt representing users’ requirements.
During generation progress, the image is gradually denoised with the predicted noise
via noise estimator ϵθ in the diffusion models, which is trained based on the following
objective to predict the artificial noise in different steps:

min
θ
Ex0,ϵ∼N (0,I),t∼Uniform(1,T)∥ϵ− ϵθ(xt, t, emb)∥2, (2.5)

where emb = ψ(P) here denotes the embedding of the text condition and xt is a noised
sample generated by adding t stemp noise to the sampled images x0. After training,
the diffusion model can generate images x0 by de-noising a random sampled xT with its
noise predictor ϵθ.

Besides operating directly on the pixel space, the diffusion model can also be applied
to the latent space. In this scenario, z0 is a latent embedding encoded from an image
encoder E with z0 = E(x0), where x0 is a sample of the real image. After obtaining
generated latent code z0 via the diffusion model, users can also convert to a real image
with an image decoder E with x0 = D(z0), where x0 is a sample of real images. Due to
the efficiency and flexibility of this kind of diffusion model, most text-to-image models
like Stable-Diffusion use this kind of diffusion model, which is also called the Latent
Diffusion Model. Thus, we mainly consider this kind of diffusion model in our paper.

A primary obstacle in text-guided generation lies in enhancing the influence of the
provided text. Addressing this, Song et al. [110] introduced a novel approach known
as classifier-free guidance. This technique involves unconditional prediction, which is
subsequently combined with conditioned prediction to amplify its impact. Formally, let
∅ = ψ(“′′) represent the embedding of an empty text and denote w as the guidance
scale parameter. Then, the classifier-free guidance prediction is formulated as follows:

ϵ̃θ(zt, t, emb,∅) = w · ϵθ(zt, t, emb) + (1 − w) · ϵθ(zt, t,∅). (2.6)

12

2.3. TEXT-TO-IMAGE GENEATION MODELS

where w is a constant scaler representing the strength of the classifier-free guidance.

13

3
Backdoor Attack Defense

Data Security

15

3.1. INTRODUCTION

3.1 Introduction

In recent years, researchers have shown that machine learning (ML) models are vulnerable
to various security attacks. One common attack in this domain is the data poisoning
attack [39, 90, 39, 21, 73, 51, 125, 106], whereby an adversary aims to insert a backdoor
into a target ML model via malicious training. Taking image classification as an example,
a backdoored model will classify images that embed specific triggers into a pre-defined
class while keeping normal behavior on clean images. So far, most efforts have gone into
the design of effective backdoor attacks against various types of ML models [39, 83, 21,
89, 66]. To mitigate these attacks, intricate defenses have been proposed. Some of the
defenses [121, 16, 72, 48, 41], focus on extracting the trigger from a target ML model
via optimization; some aim to detect the inputs with triggers [118, 14, 33, 119]; others
rely on training a large set of backdoored shadow models to learn how to differentiate
backdoored models from clean ones [130].

As defenses become increasingly complex, the defender needs to be equipped with
powerful computing infrastructures, which is often a bottleneck. Moreover, to remove
the backdoors, some of the defenses need to change the target models’ parameters,
which jeopardizes the models’ performance on the original tasks, i.e., model utility. For
instance, one defense named Activation Clustering (AC) [14] fails to successfully remove
the backdoor (BadNets [39]) from the target model trained on CIFAR100 [1]. Moreover,
AC causes the models’ accuracy on clean samples to drop from 0.672 to 0.582 (see
Section 3.4.4).

Fine-tuning is a widely adopted technique in the ML training pipeline, especially for
transfer learning [143] and encoder-based learning [18, 42, 20, 38]. In this paper, we find
that fine-tuning with a proper learning rate is the most effective defense method for
mitigating backdoor attacks in terms of both defense performance and utility. Moreover,
it is remarkably easy to apply to a variety of machine learning paradigms. Note that
we focus on image classifiers as their backdoor vulnerabilities have been extensively
studied [39, 39, 21, 90].

Scenarios: We consider three types of ML deployment scenarios in this work, namely,
an encoder-based scenario, a transfer-based scenario, and a standalone scenario. These
scenarios constitute most of the ML use cases, and researchers have shown that they
are all vulnerable to backdoor attacks. In the encoder-based scenario, one obtains
a pre-trained encoder and then fine-tunes it for various downstream tasks. These
pre-trained encoders are normally established with self-supervised learning methods,
such as contrastive learning [18]. To deploy a backdoor attack in this case, the backdoor
is implanted in the pre-trained encoder itself and will be activated after the encoder
is fine-tuned for downstream tasks. In the transfer-based scenario, the user gets a
pre-trained classifier, such as a ResNet-18 [43] trained on ImageNet [27]. Then, the
model is fine-tuned (replacing the original classification layer with the new classification
layer) with its own dataset. Similar to the encoder-based scenario, the backdoor here
lies in the pre-trained classifier. The standalone scenario is the most common backdoor
scenario. Here, the user directly interacts with a backdoored model without changing
its parameters.

17

CHAPTER 3. DATA SECURITY

Metrics: To measure the performance of backdoor defenses, we consider three metrics,
including attack success rate (ASR), model utility (measured by clean accuracy, CA),
and computational cost (measured by GPU hours). The former two are the standard
metrics in this field: an effective defense aims to reduce the attack success rate while
maintaining the target model’s utility. Meanwhile, low computational cost implies
the defense can be easily deployed, which is also one of the major advantages of our
approach.

Methodology: We empirically show that, in an encoder-based scenario, conventional
fine-tuning is sufficient for countering backdoors. In the other two scenarios where
conventional fine-tuning is not effective, we further devise super-fine-tuning. Our super-
fine-tuning method is inspired by super-convergence [109]. We find that a large learning
rate significantly helps remove the backdoor, while a small learning rate can maintain the
model utility. Therefore, we combine them together and construct a dynamic learning
rate method to mitigate backdoor attacks.

Evaluation: In the encoder-based scenario, our evaluation shows that the backdoor
cannot survive if the user conducts the whole model (conventional) fine-tuning. For
instance, when fine-tuning the backdoored encoder trained by BadEncoder [51], after
one epoch (which takes about 0.004 GPU hours on an NVIDIA DGX-A100 server),
the attack success rate on STL10 [2] (pre-trained on CIFAR10) drops from 0.998 to
0.127. In this scenario, whole model fine-tuning is sufficient. More importantly, it is a
zero-cost backdoor removal solution, as conventional fine-tuning is a necessary step for
users to adapt the pre-trained encoders to downstream tasks [18, 56, 61].

In the transfer-based scenario, our experiments show that through conventional
fine-tuning, most of the backdoor attacks can be successfully mitigated. On the other
hand, our proposed super-fine-tuning can more effectively remove all backdoors with
fewer epochs and retain the models’ utility. For instance, while conventional fine-tuning
can only decrease the ASR from 0.945 to 0.221 on BadNets [39] attacks of a CIFAR10 [1]
model in 100 epochs (about 0.617 GPU hours), super-fine-tuning can make the ASR drop
to 0.096 within three epochs (about 0.089 GPU hours) while keeping high utility (0.936).
Note that fine-tuning is also necessary for transfer learning to perform downstream
tasks; thus, our defense is still costless, similar to the encoder-based scenario.

Normally, the standalone scenario does not need fine-tuning. Here, fine-tuning is
an extra step intended to remove the backdoor. However, this does not hurt model
utility. In this scenario, conventional fine-tuning does not always work. Instead, by
relying on our super-fine-tuning method, we can achieve excellent performance regarding
mitigating backdoor attacks. For instance, in 0.089 GPU hours, super-fine-tuning can
decrease the ASR of the Blended attack [21] on a CIFAR10 model from 0.997 to 0.082
while keeping a high utility (0.937).

To summarize, our experimental results show that in the encoder-based scenario,
conventional fine-tuning (on the whole model) is sufficient to remove almost all encoder-
based backdoors. For the transfer-based and standalone scenarios, super-fine-tuning
can achieve remarkably strong performance.

We compare the performance between super-fine-tuning and other existing state-of-
the-art defense methods [64, 71, 65, 121, 118]. Our results show that super-fine-tuning

18

3.1. INTRODUCTION

achieves the best performance in all perspectives (attack success rate, clean accuracy, and
computational cost). For instance, the defense method called ABL [64] fails in mitigating
most of the attacks in the standalone scenario. The ASR of BadNets on CIFAR10 will
remain high (0.896) after ABL has been applied. Meanwhile, super-fine-tuning manages
to drop the ASR from 0.954 to 0.069.

Sequela of the Backdoor Defense: Though fine-tuning can effectively eliminate
backdoors from ML models, it changes the models’ parameters. We are interested in
whether such changes will have any effect on the models’ security and privacy. We refer
to this as backdoor defense sequela and consider two attacks, i.e., membership inference
attacks [108, 104, 44] and backdoor re-injection attacks on backdoored models defended
by different methods.

We hypothesize that the fine-tuned model in the standalone scenario may have
higher membership privacy risks due to the fact that during the fine-tuning process, we
drive the model to further memorize the fine-tuning dataset and forget the backdoor
trigger. Note that in the standalone setting, the fine-tuning dataset is a clean version
of the model’s original training dataset. We conduct our experiments by leveraging
existing membership inference attacks on both backdoored models and fine-tuned models.
Surprisingly, our experimental results show that, after super-fine-tuning, the membership
leakage risks are even reduced. For instance, after a BadNets model on CIFAR10 has
been defended by super-fine-tuning, the membership inference attack can achieve 0.569
accuracy, which is lower than the performance on the original backdoored model (0.618).
Therefore, from a privacy leakage perspective, fine-tuning has almost no negative impact
on the target model.

We also consider another backdoor sequela called backdoor re-injection attacks. As
fine-tuning only takes a few steps to mitigate the backdoor attacks, it is worth further
exploring whether the backdoor can be easily injected back. Our experimental results
show that for any defense (both ours and methods from previous works), once it has been
applied to a model, the adversary can easily re-inject the same backdoor to the target
model. For instance, once a BadNets model on CIFAR10 in the standalone scenario has
been fine-tuned (ASR drops from 0.954 to 0.073), the adversary can re-inject BadNets
to the model to achieve a similar ASR (0.935) within two epochs when the poison ratio
is 0.1. To achieve a similar backdoor attack performance on the original clean model,
BadNets requires seven epochs.

Implications: In general, our results show that backdoor defenses can be performed
more easily than previously thought. All one needs is fine-tuning or super-fine-tuning.
Currently, the empirical evaluation suggests that backdoor attacks achieve almost perfect
accuracy (∼100% accuracy [90, 39, 21, 73, 51]), especially for standalone classifiers. By
applying our easy-to-deploy fine-tuning defense, our work will certainly help the model
users/owners mitigate existing backdoor attacks deployed in the real world. It further
calls for the design of more advanced backdoor attacks to better assess the vulnerability
of ML models to such attacks.

19

CHAPTER 3. DATA SECURITY

3.2 Backdoor Defenses

In this section, we first introduce the defender’s goals and capabilities. Then, we will
discuss how fine-tuning and super-fine-tuning work to mitigate backdoor attacks.

3.2.1 Defender’s Goals and Capabilities

Defender’s Goals: A defender’s goal can be summarized from three perspectives.

• Backdoor Performance: The main goal of the defender is to reduce the backdoor
performance. To achieve this goal, the defender can either detect/mitigate the
triggered inputs or purify the model to mitigate the backdoor effect.

• Utility: In addition to reducing the backdoor performance, the defender should
also keep the utility of the backdoored model. That means that, after the defense,
the model should still perform well on clean inputs.

• Computational Cost: As ML models become increasingly complex, training and
testing models both require one to have powerful computing infrastructures. Ideally,
the defender should use minimal computing resources to mitigate backdoors.

Defender’s Capabilities: The defender is supposed to have a clean dataset to
conduct the backdoor defense. For the encoder-based and transfer-based scenarios, this
assumption is straightforward. The user (who is also the defender) is the one who
fine-tunes the model for their downstream tasks, and they should have the clean dataset
already. For the standalone scenario, as mentioned before, the model’s training dataset
is provided or can be obtained by the user. Moreover, in all the scenarios, we assume
the defender has white-box access to the model, which means that they can access and
modify the model’s parameters. Also, as we have stated before, the defender only has
limited computational resources.

3.2.2 Fine-Tuning to Mitigate Backdoor Attacks

In this section, we describe how conventional fine-tuning works and then propose our
super-fine-tuning method.

Conventional Fine-Tuning: Fine-tuning is a strategy originally proposed in the
context of transfer learning. The motivation behind existing fine-tuning is to enable
the pre-trained model to fit new data samples using information learned from the
pre-training phase. In our case, fine-tuning is supposed to mitigate backdoor attacks as
well as leverage the pre-trained model information. Instead of only fine-tuning a few
layers like previous works [51], we adopt whole model fine-tuning in all our scenarios.

20

3.2. BACKDOOR DEFENSES

First Phase Second Phase

LR MAX1

LR BASE

LR MAX2…….

…….

Figure 3.1: The learning rate scheduler of super-fine-tuning.

During the fine-tuning process, we rely on the same learning rate as the one used in the
pre-training process.

In the encoder-based scenario, conventional fine-tuning means that the user conducts
the whole model fine-tuning, which is recommended by various existing works [54,
18, 115]. Our experimental results show that conventional fine-tuning can effectively
mitigate backdoor attacks in the encoder-based scenario, but it does not always work in
the transfer-based and standalone scenarios.

Super-Fine-Tuning: We further propose a super-fine-tuning strategy, a novel fine-
tuning approach focusing on removing backdoor attacks. Super-fine-tuning is inspired
by super-convergence[109], which shows that the regular changes in learning rate can
contribute to fast learning. The main innovation of super-fine-tuning is the scheduler
of the learning rate. Normally, the gradient descent process can be formulated as
x = x− ϵ

`
x f(x) where x represents the weights of the model, ϵ represents the learning

rate, and f(·) represents the loss function. To make the model forget backdoor triggers
while keeping the utility, we make ϵ change according to the schedule shown in Figure 3.1.
The intuition behind our designed function is that large learning rates tend to make the
model forget backdoor triggers while small learning rates maintain the model utility
(see Section 3.4.6 for detailed information). Therefore, we combine the two different
learning rates with the scheduler.

Concretely, we first pre-define a base learning rate (LR BASE) and two maximum
learning rates (LR MAX1 and LR MAX2) for the scheduler of super-fine-tuning. Note
that LR MAX1 is required to be larger than LR MAX2. We separate the training
process into two phases. In the first phase, we make the learning rate linearly increase
from LR BASE to LR MAX1 in several iterations and then drop back to LR BASE.
This way, a learning rate that is close to LR MAX1 is supposed to force the model
to forget backdoor triggers quickly, while the learning rate that is close to LR BASE

21

CHAPTER 3. DATA SECURITY

will keep the model utility on clean samples. The same process should be repeated
until we lower the maximum learning rate after a pre-defined number of epochs (in
our experiments, we find that ten epochs work well). In the second phase, we continue
oscillating between the base learning rate and LR MAX2 for the remaining epochs,
mitigating the overfitting level of the model. Our experimental results show that the
above process can effectively mitigate backdoor attacks while retaining the model’s
utility.

3.3 Experimental Setup

3.3.1 Current Attacks and Defenses

For our evaluation, we consider the following six attacks and six defenses.

• BadNets [39]. BadNets is the most representative and classic backdoor attack
against ML models. The key intuition behind BadNets is to add a visible trigger
to some part of the training images and label them with a target class. When the
model is trained on this poisoned dataset, the backdoor will be injected, and any
inputs with the same trigger will be misclassified into the target class.

• Blended [21]. The Blended backdoor attack is another well-established backdoor
attack. Different from BadNets, Blended aims at creating a trigger that is difficult
to detect even by human eyes. Also, the position of the trigger does not affect the
recognition of the backdoor.

• LF [137]. The Low Frequency (LF) backdoor aims to design backdoor attacks
from a frequency perspective. Previous works’ trigger images are significantly
different from clean images in the frequency domain. LF aims to make the triggered
sample and clean sample consistent in terms of frequency. In this way, backdoor
triggers have better concealment in the frequency domain.

• Inputaware [83]. Inputaware argues that uniform trigger patterns will be easy
to detect by simple pattern recognition methods. Therefore, this attack aims
to design a generator driven by diversity loss to generate personalized triggers.
Through this generator, the triggers for different images are different.

• WaNet [84]. WaNet also focuses on designing undetectable backdoor attacks.
WaNet uses small and smooth deformation technology to generate undetectable
trigger samples.

• BadEncoder [51]. Different from previous attacks, BadEncoder conducts back-
door attacks on the encoders (e.g., encoders established by self-supervised learning).
It injects backdoors into encoders and then expects the corresponding downstream
classifiers to have good backdoor performance as well as high utility.

BadEncoder is designed specifically for the encoder-based scenario, while the other
five attacks can be applied to both transfer-based and standalone scenarios. Note that
although there are also other similar backdoor attacks on encoders [69, 11], they share

22

3.3. EXPERIMENTAL SETUP

a similar poisoning spirit. Therefore, we only take advantage of BadEncoder for the
evaluation.

Defenses: Besides fine-tuning and super-fine-tuning, we also evaluate the following six
state-of-the-art defense methods.

• ABL [64]. Anti-Backdoor Learning (ABL) aims to train the clean model on
the poisoned dataset. The intuition of ABL is that a model tends to remember
backdoor samples fast, and backdoor samples are tied to specific classes. ABL
designs a two-stage gradient ascent method to isolate backdoor samples and makes
the relationship between the backdoor sample and the corresponding label invalid.
In this way, ABL can successfully counter backdoor attacks.

• AC [14]. The intuition behind Activation Clustering (AC) is that clean samples
and backdoor samples will activate different parameters in neural networks. AC
finds the backdoor samples by traversing the parameters of each activation and
comparing their distributions.

• FP [71]. Fine-pruning (FP) is a defense method similar to fine-tuning. However,
fine-pruning argues that only conducting fine-tuning cannot effectively mitigate
the backdoor attack. Therefore, besides fine-tuning, the method will prune the
neural network to eliminate the low influential neurons in order to remove the
backdoor in the model. Later we show that proper fine-tuning is sufficient to
mitigate backdoor attacks (see Section 3.4.1).

• NAD [65]. Neural Attention Distillation (NAD) also argues that simply fine-
tuning is not enough to mitigate the backdoor attack. They use knowledge
distillation with the clean teacher model to guide the fine-tuning process of the
backdoored student model. In this way, the backdoor can be removed but the
computational cost is high.

• NC [121]. Neural Cleanse (NC) is a classic backdoor detection and removal
method. NC optimizes potential triggers in each class and then compares each
class’ minimum perturbation to find the out-of-distribution classes. If this class
exists, the model is backdoored, and this class is the target class. To mitigate
backdoor attacks, NC conducts unlearning by fine-tuning the model using images
with triggers and correct samples.

• Spectral [118]. Spectral signatures detection aims to remove triggered samples
by detecting the spectrum of the covariance of a feature representation learned by
the neural network. Then, the spectral approach will retrain the model with the
remaining clean data.

We use BackdoorBench1 to implement these attacks and defenses. Also, all the experi-
ments are conducted on an NVIDIA DGX-A100 server. We show triggered examples of
different attacks in Table 3.1. For each attack, we set the poison ratio to 0.1.

1https://github.com/SCLBD/BackdoorBench.

23

https://github.com/SCLBD/BackdoorBench

CHAPTER 3. DATA SECURITY

Table 3.1: Examples of triggered inputs from different backdoor attacks.

BadNets Blended LF Inputaware WaNet

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

A
cc

ur
ac

y

CIFAR10-STL10

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

CIFAR10-SVHN

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

STL10-CIFAR10

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

STL10-SVHN

CA (whole model fine-tuning)

ASR (whole model fine-tuning)

CA (fine-tuning downstream classifier)

ASR (fine-tuning downstream classifier)

Figure 3.2: The performance of whole model fine-tuning and downstream classifier
fine-tuning on BadEncoder. The X-axis represents training epochs. The Y-axis represents
accuracy. *

3.3.2 Datasets and Evaluation Metrics

We leverage five image datasets for our evaluation: CIFAR10 [1], CIFAR100 [1],
STL10 [2], GTSRB [3], and SVHN [4] to measure the effectiveness of fine-tuning
and super-fine-tuning. To evaluate whether backdoor attacks have been successfully
mitigated, we adopt three evaluation metrics following the three goals of the defender
described in Section 3.2.

• Attack Success Rate. Attack success rate (ASR) is used to measure whether
backdoor samples are successfully classified into the target label or not.

• Clean Accuracy. Clean Accuracy (CA) is used to evaluate whether a model can
perform well with clean data.

• Computational Cost. As we have stated before, when the users take advan-
tage of a third party’s pre-trained models, normally, they do not have sufficient
computational resources. Therefore, the backdoor defense methods should use as
little computational resources as possible. Here, we leverage computational cost
(measured by GPU hours) as another new important metric to evaluate defense
methods.

24

3.4. EVALUATION RESULTS

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

A
cc

ur
ac

y

BadNets-CIFAR10

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

Blended-CIFAR10

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

Inputaware-CIFAR10

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

LF-CIFAR10

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

WaNet-CIFAR10

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

A
cc

ur
ac

y

BadNets-GTSRB

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

Blended-GTSRB

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

Inputaware-GTSRB

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

LF-GTSRB

1 21 41 61 81 100

Epoch

0

20

40

60

80

100

WaNet-GTSRB

CA (super-fine-tuning)

ASR (super-fine-tuning)

CA (conventional fine-tuning)

ASR (conventional fine-tuning)

Figure 3.3: The performance of conventional fine-tuning and super-fine-tuning against
different attacks in the transfer-based scenario. The X-axis represents training epochs.
The Y-axis represents the accuracy.

3.4 Evaluation Results

3.4.1 Encoder-Based Scenario

In the encoder-based scenario, we make use of BadEncoder as backdoor attack since it
is the most representative backdoor attack in this setting. The workflow of BadEncoder
is to train a backdoored encoder, freeze the encoder, and use the clean data to train a
classifier for the downstream task. However, according to previous works [18, 54, 114],
fine-tuning the whole model can achieve better performance than only fine-tuning the
downstream classifier. Therefore, our fine-tuning method updates the parameters of the
whole model.

The experimental results are shown in Figure 3.2. We train the encoders on CIFAR10
and STL10. Then, we choose CIFAR10, STL10, and SVHN as downstream tasks. From
Figure 3.2, we first observe that BadEncoder is not stable in all datasets. For instance,
when the encoder is pre-trained on STL10 and then fine-tuned with CIFAR10, even
only fine-tuning the downstream classifier makes the ASR drop to 0.002. Second and
more importantly, with whole model conventional fine-tuning, the injected backdoor
can always be removed immediately, e.g., within one epoch. For instance, for the
encoder pre-trained on CIFAR10 with STL10 as downstream task (shown in Figure 3.2),
when conducting whole model fine-tuning, the ASR drops from 0.998 (fine-tuning
downstream classifiers) to 0.127 within one epoch. Note that, in this scenario, whole
model conventional fine-tuning is a natural step to achieve better performance on
downstream tasks. Therefore, it has zero-cost for mitigating backdoor attacks.

3.4.2 Transfer-Based Scenario

The transfer-based scenario is also one of the most common machine learning deployment
settings. In this scenario, users obtain the model trained on the large dataset and then
fine-tune the model on their own dataset to perform the downstream task. We conduct

25

CHAPTER 3. DATA SECURITY

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

A
cc

ur
ac

y

BadNets-CIFAR10

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

Blended-CIFAR10

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

Inputaware-CIFAR10

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

LF-CIFAR10

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

WaNet-CIFAR10

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

A
cc

ur
ac

y

BadNets-CIFAR100

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

Blended-CIFAR100

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

Inputaware-CIFAR100

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

LF-CIFAR100

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

WaNet-CIFAR100

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

A
cc

ur
ac

y

BadNets-GTSRB

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

Blended-GTSRB

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

Inputaware-GTSRB

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

LF-GTSRB

0 20 40 60 80 100

Epoch

0

20

40

60

80

100

WaNet-GTSRB

CA (super-fine-tuning)

ASR (super-fine-tuning)

CA (conventional fine-tuning)

ASR (conventional fine-tuning)

Figure 3.4: Accuracy of conventional fine-tuning and super-fine-tuning on backdoor
samples and clean samples in the standalone scenario. The X-axis represents training
epochs. The Y-axis represents the accuracy. Epoch 0 is the original backdoor ASR and
CA before fine-tuning or super-fine-tuning.

experiments where the backdoored models are pre-trained on CIFAR100 and fine-tuned
with CIFAR10 and GTSRB. Here, we adopt five different attack methods described in
Section 3.3.1. As we have stated in Section 2.1.2, to verify whether a backdoor has been
removed, we leverage the original triggers and test whether images with such triggers
can be misclassified to a certain class.

The results are shown in Figure 3.3. As we can see, in this transfer-based scenario,
conventional fine-tuning can effectively mitigate backdoor attacks in most cases. For
instance, when the defender conducts fine-tuning to the model backdoored by BadNets
on CIFAR10, the attack can only achieve 0.378 ASR in one epoch and the ASR will
remain around 0.2 after 20 epochs. Our proposed super-fine-tuning method can achieve
even better performance than conventional fine-tuning in this scenario. As shown in
Figure 3.3, in most cases, super-fine-tuning can achieve lower ASR with less epochs. On
BadNets-GTSRB, even after the first epoch, ASR will drop to 0.088. Also, it can be
seen that super-fine-tuning yields better CA than conventional fine-tuning. For instance,
super-fine-tuning on CIFAR10 against Inputaware attacks can achieve 0.798 CA in the
first epoch and 0.937 CA after 100 epochs, both higher than conventional fine-tuning
(0.678 in the first epoch and 0.898 after 100 epochs). This finding demonstrates that
our proposed super-fine-tuning outperforms conventional fine-tuning in this scenario.

26

3.4. EVALUATION RESULTS

0.850 0.875 0.900 0.925 0.950

CA

0.0

0.2

0.4

0.6

0.8

1.0

A
S

R

BadNets

0.850 0.875 0.900 0.925 0.950

CA

0.0

0.2

0.4

0.6

0.8

1.0

A
S

R

Blended

0.850 0.875 0.900 0.925 0.950

CA

0.0

0.2

0.4

0.6

0.8

1.0

A
S

R

Inputaware

0.850 0.875 0.900 0.925 0.950

CA

0.0

0.2

0.4

0.6

0.8

1.0

A
S

R

LF

0.850 0.875 0.900 0.925 0.950

CA

0.0

0.2

0.4

0.6

0.8

1.0

A
S

R

WaNet

ABL

AC

FP

NC

NAD

Spectral

Conventional Fine-tuning

Super-fine-tuning

Figure 3.5: Comparison between existing state-of-the-art backdoor defenses and super-
fine-tuning on CIFAR10. The X-axis represents accuracy on clean samples. The Y-axis
represents the attack success rate. Points closer to the lower right corner indicate better
defense performance.

0.60 0.65 0.70

CA

0.0

0.2

0.4

0.6

0.8

A
S

R

BadNets

0.60 0.65 0.70

CA

0.2

0.4

0.6

0.8

1.0

A
S

R

Blended

0.60 0.65 0.70

CA

0.00

0.25

0.50

0.75

A
S

R

Inputaware

0.60 0.65 0.70

CA

0.00

0.25

0.50

0.75

A
S

R

LF

0.6 0.7

CA

0.00

0.25

0.50

0.75

1.00

A
S

R

WaNet

ABL

AC

FP

NC

NAD

Spectral

Conventional Fine-tuning

Super-fine-tuning

Figure 3.6: Comparison between existing state-of-the-art backdoor defense methods
and super-fine-tuning on CIFAR100. The X-axis represents accuracy on clean samples.
The Y-axis represents the attack success rate. Points closer to the lower right corner are
better points.

0.97 0.98

CA

0.00

0.25

0.50

0.75

1.00

A
S

R

BadNets

0.975 0.980

CA

0.00

0.25

0.50

0.75

1.00

A
S

R

Blended

0.970 0.975 0.980

CA

0.4

0.6

0.8

A
S

R

Inputaware

0.97 0.98

CA

0.00

0.25

0.50

0.75

1.00

A
S

R

LF

0.96 0.98

CA

0.0

0.2

0.4

0.6

0.8

A
S

R

WaNet

ABL

AC

FP

NC

NAD

Spectral

Conventional Fine-tuning

Super-fine-tuning

Figure 3.7: Comparison between existing state-of-the-art backdoor defense methods
and super-fine-tuning on GTSRB. The X-axis represents accuracy on clean samples. The
Y-axis represents the attack success rate. Points closer to the lower right corner are
better points.

3.4.3 Standalone Scenario

The standalone scenario is the most difficult scenario to mitigate backdoor attacks.
Here, a user directly interacts with the model without any modification. Similar to
the transfer-based scenario, we adopt the five attacks in Section 3.3.1. Fine-tuning
is no longer a necessary step. Also, due to the fact that the model is trained on the
desired dataset, it increases the difficulty of mitigating backdoor attacks. Most previous
works [71, 39, 21] that claim backdoor attacks cannot be easily mitigated by fine-tuning

27

CHAPTER 3. DATA SECURITY

A
B

L

A
C

F
P

N
C

N
A

D

S
p

ec
tr

al

F
T

S
up

er
-F

T

0.0

0.5

1.0

G
P

U
H

ou
rs

BadNets

A
B

L

A
C

F
P

N
C

N
A

D

S
p

ec
tr

al

F
T

S
up

er
-F

T

0.0

0.5

1.0

Blended

A
B

L

A
C

F
P

N
C

N
A

D

S
p

ec
tr

al

F
T

S
up

er
-F

T

0.0

0.5

1.0

Inputaware

A
B

L

A
C

F
P

N
C

N
A

D

S
p

ec
tr

al

F
T

S
up

er
-F

T

0.0

0.5

1.0

LF

A
B

L

A
C

F
P

N
C

N
A

D

S
p

ec
tr

al

F
T

S
up

er
-F

T

0.0

0.5

1.0

WaNet

Figure 3.8: The time cost of different defense methods. The X-axis represents different
methods. The Y-axis represents the GPU hours required for this method. Note that in
each box, we include the time cost on all datasets.

are conducted in this scenario.
As shown in Figure 3.4, conventional fine-tuning indeed performs poorly in mitigating

backdoor attacks in this case. For instance, when conducting conventional fine-tuning
on the model backdoored by Blended attacks on CIFAR10, the ASR still remains high
(0.978) even after 100 epochs. However, among all five attacks we have studied, super-
fine-tuning always decreases the ASR significantly while keeping high clean accuracy.
For instance, on CIFAR10, super-fine-tuning can decrease the ASR of Blended backdoor
from 0.998 to 0.081, which is in line with the predicted probability of the clean sample.
We can also conclude from Figure 3.4 that super-fine-tuning maintains the model’s
utility to a large extent. In most cases, the utility does not even drop after the first
epoch.

In general, we empirically demonstrate that, with super-fine-tuning, we can effectively
mitigate the backdoor attacks while keeping the model utility with a limited number of
epochs. Later in Section 3.4.6, we will dive into the details of how the learning rate
modification affects the ASR and CA.

3.4.4 Comparison to Other Defense Methods

Previously, we have shown that super-fine-tuning can effectively mitigate backdoor
attacks with limited computational resources. In this section, we compare super-fine-
tuning with other existing state-of-the-art defense methods to show that super-fine-tuning
is the most effective and efficient one. Note that here we only focus on the standalone
scenario since fine-tuning is a necessary step in the other two scenarios, which means
fine-tuning as a defense is zero-cost. Also, fine-tuning or super-fine-tuning can decrease
the ASR to a large extent while maintaining the model’s utility.

The results on CIFAR10 are shown in Figure 3.5. We also show the results on
CIFAR100 and GTSRB in Figure 3.6 and Figure 3.7 in the appendix. Note that in
Figure 3.5, the X-axis is CA and the Y-axis is ASR. Therefore, in each sub-figure,
the closer to the lower right corner, the better the defense performance. Among all
defense methods against different attacks, super-fine-tuning, in general, achieves the
lowest ASR while maintaining the highest CA. For instance, to mitigate the BadNets
attack on CIFAR10, super-fine-tuning can achieve 0.932 CA with only 0.009 ASR, which
constitutes the best performance among all defense methods. We can also see that other
defense methods cannot always guarantee performance in defending against all attacks.
For instance, although only NC and super-fine-tuning can mitigate Blended attacks on

28

3.4. EVALUATION RESULTS

0.2 0.4 0.6 0.8 1.0

Size of the Fine-tuning Dataset

0

20

40

60

80

100

A
S

R

BadNets

Blended

Inputaware

LF

WaNet

(a) CIFAR10

0.2 0.4 0.6 0.8 1.0

Size of the Fine-tuning Dataset

0

20

40

60

80

100

A
S

R
(b) CIFAR100

0.2 0.4 0.6 0.8 1.0

Size of the Fine-tuning Dataset

0

20

40

60

80

100

A
S

R

(c) GTSRB

0.2 0.4 0.6 0.8 1.0

Size of the Fine-tuning Dataset

0

20

40

60

80

100

C
A BadNets

Blended

Inputaware

LF

WaNet

(d) CIFAR10

0.2 0.4 0.6 0.8 1.0

Size of the Fine-tuning Dataset

0

20

40

60

80

100

C
A

(e) CIFAR100

0.2 0.4 0.6 0.8 1.0

Size of the Fine-tuning Dataset

0

20

40

60

80

100

C
A

(f) GTSRB

Figure 3.9: The impact of fine-tuning dataset size on defense performance. The first row
shows fine-tuning dataset size’s impacts on attack success rate. The second row shows
fine-tuning dataset size’s impacts on clean samples accuracy. The X-axis represents the
ratio of the fine-tuning dataset, which is used to conduct fine-tuning.

CIFAR10, NC cannot detect Inputaware, LF, and WaNet attacks.
We then consider another important aspect, i.e., each defense’s computational cost.

The results are shown in Figure 3.8. We can observe that, among all defenses against
different attacks, NC has the largest computational cost, while super-fine-tuning has the
lowest computational cost. For instance, to detect and remove BadNets on CIFAR100,
NC takes 0.997 GPU hours, while super-fine-tuning only needs 0.147 GPU hours, which
is significantly lower.

In general, we conclude that super-fine-tuning outperforms other defenses in terms
of the lowest ASR, highest CA, and lowest computational cost.

3.4.5 Illustration of Why Fine-Tuning and Super-Fine-Tuning Work

We show the gradient change process in Figure 3.10. In the figure, the orange line
represents the gradient change process of clean samples. The blue line represents the
training gradient process of backdoor samples. The green line denotes the combined
training gradient process. To obtain the backdoored model, we need to make the model’s
parameters (shown as the red point) drop to the local minimum which can achieve both
good clean accuracy and high attack success rate.

To mitigate the backdoor attacks, we further fine-tune the model with clean samples.
There are two cases. In the first case (left sub-figure in Figure 3.10), the combination
local minimum is not the local minimum of the orange line (gradient of clean samples).
In this case, conventional fine-tuning with clean samples will make the red point continue
to drop to the clean samples’ local minimum point which is far away from the backdoor
samples’ best parameters location. In that case, conventional fine-tuning can already

29

CHAPTER 3. DATA SECURITY

°10.0 °7.5 °5.0 °2.5 0.0 2.5 5.0 7.5 10.0

0

200

400

600

800

1000

1200
Backdoor Sample Gradient

Clean Sample Gradient

Combination Gradient

°10.0 °7.5 °5.0 °2.5 0.0 2.5 5.0 7.5 10.0

0

200

400

600

800

1000

1200

1400

Case1: Fine-Tuning works Case2: Super-Fine-Tuning works

Figure 3.10: Schematic diagram of backdoor training and mitigation process.

successfully mitigate backdoor attacks. In the second case, the combination local
minimum point is around the local minimum of clean samples. In this case, conventional
fine-tuning with a small learning rate cannot help the model to jump over this local
minimum. However, with the changed learning rate, super-fine-tuning can better help
the model to jump over the local minimum. In that way, the model’s parameters will
be optimized to another local minimum which is not a good point for backdoor samples.
This demonstrates why super-fine-tuning works better in most cases.

3.4.6 Ablation Study

Here, we conduct some ablation studies to show the impact of fine-tuning dataset size
and learning rate on the backdoor removal performance. Note that we only focus on
the standalone scenario here because: (i) in both encoder-based and transfer-based
scenarios, fine-tuning is a necessary step, so we do not modify the fine-tuning dataset
size and learning rate; (ii) standalone is the most challenging scenario, as we mentioned
before.

Impact of Fine-Tuning Dataset Size: We first explore the impact of fine-tuning
dataset size. Previously, we used the whole dataset to conduct super-fine-tuning.
We have shown that, even with the whole dataset, super-fine-tuning consumes limited
computational resources compared to other methods. Then, we further explore how much
data is sufficient to conduct a successful super-fine-tuning. We show our experimental
results in Figure 3.9. We can see that even with 20% of the fine-tuning dataset, super-
fine-tuning can effectively mitigate the backdoor attacks in most cases. For instance,
with 20% of the fine-tuning dataset (CIFAR10), super-fine-tuning reduces the ASR of
the Blended backdoor attack to 0.044. Also, from Figure 3.9, we can see that the size
of the fine-tuning dataset has a limited impact on the utility of the model. The clean
accuracy remains high with 10% to 100% of the fine-tuning dataset. Therefore, it can
be concluded that super-fine-tuning requires significantly fewer fine-tuning data samples
for a stable performance, which further reduces the computational cost.

30

3.4. EVALUATION RESULTS

1 21 41 61 81 100
Epoch

0

20

40

60

80

100

A
S

R

LR = 0.1

LR = 0.01

LR = 0.001

LR = 0.0001

(a) ASR

1 21 41 61 81 100
Epoch

20

40

60

80

C
A

(b) CA

Figure 3.11: The impact of different learning rates of conventional fine-tuning on remov-
ing backdoor attacks. The X-axis represents training epochs. The Y-axis represents the
accuracy of backdoor samples and clean samples.

0.2 0.4 0.6 0.8 1.0
LR MAX1

0

20

40

60

80

100

A
S

R

BadNets

Blended

Inputaware

LF

WaNet

(a) CIFAR10

0.2 0.4 0.6 0.8 1.0
LR MAX1

0

20

40

60

80

100

A
S

R

(b) CIFAR100

0.2 0.4 0.6 0.8 1.0
LR MAX1

0

20

40

60

80

100
A

S
R

(c) GTSRB

0.2 0.4 0.6 0.8 1.0
LR MAX1

0

20

40

60

80

100

C
A

BadNets

Blended

Inputaware

LF

WaNet

(d) CIFAR10

0.2 0.4 0.6 0.8 1.0
LR MAX1

0

20

40

60

80

100

C
A

(e) CIFAR100

0.2 0.4 0.6 0.8 1.0
LR MAX1

0

20

40

60

80

100

C
A

(f) GTSRB

Figure 3.12: Impact of LR MAX1 of super-fine-tuning on defense performance. The first
row shows LR MAX1’s impacts on attack success rate. The second row shows LR MAX1’s
impacts on clean sample accuracy. The X-axis represents how many data samples are
used to conduct fine-tuning. Note that we only use 10% of the fine-tuning dataset to
conduct super-fine-tuning.

Note that super-fine-tuning is less effective with 10% of the fine-tuning dataset.
For instance, when only using a 10% clean training dataset and 0.1 as LR MAX1, the
defender can only achieve 0.954 ASR with the Blended attack on CIFAR10. We show
later that the backdoor attacks can still be effectively mitigated by increasing LR MAX1
if the defender only has 10% of the fine-tuning dataset.

31

CHAPTER 3. DATA SECURITY

Impact of Learning Rate Change: During our experiments, we first find that
backdoor attacks are very sensitive to different learning rates. We show different
learning rates’ results of conventional fine-tuning in Figure 3.11. It can be seen that if
the defender uses the same small learning rate as in the pre-training phase, the ASR
remains high even after 100 epochs. However, with an increased learning rate (from
0.0001 to 0.001), backdoor triggers are forgotten gradually in 100 epochs. Moreover,
when the learning rate increases to 0.1, the backdoor can be immediately removed
within one epoch. We can conclude that learning rates have a significant impact on
backdoor removal. In particular, larger learning rates tend to mitigate backdoor attacks
faster.

From Figure 3.11, we can also find that although increasing learning rates can
effectively mitigate backdoor attacks, it also causes utility drops. From the utility
perspective, small learning rates lead to higher clean accuracy. Therefore, combining
large and small learning rates becomes a promising idea to achieve both goals. This is
also the general intuition for super-fine-tuning.

In our previous super-fine-tuning experiments, we set LR MAX1 to 0.1 as we find
that 0.1 is enough for removing backdoors with sufficient fine-tuning datasets. Here, we
also explore the impact of LR MAX1 on super-fine-tuning. To better show the learning
rate’s impact, we only use 10% of the fine-tuning dataset. In the previous section, when
the defender only has 10% of the fine-tuning dataset, super-fine-tuning does not achieve
good performance, especially in Blended and LF attacks.

Our experimental results are shown in Figure 3.12. When increasing the LR MAX1
from 0.1 to 0.3, even when using 10% of the fine-tuning dataset, super-fine-tuning can
still successfully remove backdoors. For instance, when the LR MAX1 is 0.1, Blended
attacks on CIFAR100 still achieve 0.988 ASR under super-fine-tuning. However, when
LR MAX1 increases to 0.3, the ASR drops to 0.004. Although increasing LR MAX1 can
more effectively remove the backdoors, it also leads to a small drop in the model’s utility.
We show these results in Figure 3.12. For instance, when the learning rate increases
from 0.1 to 0.3, the utility of the fine-tuned model from Blended on CIFAR10 drops
from 0.919 to 0.881. Therefore, if users have enough clean data, we recommend using
0.1 as the largest learning rate. However, when users only have limited data, increasing
the largest learning rate (e.g., from 0.1 to 0.3) also helps mitigate almost all attacks
without suffering a large utility drop.

3.4.7 Summary

In this section, our empirical study shows that backdoor attacks can be easily defended
by fine-tuning or super-fine-tuning. Concretely, we fine that in the encoder-based and
transfer-based scenarios, fine-tuning as the necessary step can naturally remove the
existing backdoors. Also, our proposed super-fine-tuning method can better mitigate the
backdoor attacks in the transfer-based scenario. In the standalone scenario, super-fine-
tuning can effectively prevent backdoor attacks with a limited size of the training dataset
and limited computational resources compared to other existing defenses. Our ablation
study on the fine-tuning dataset size and learning rate setting further demonstrates the
effectiveness and efficiency of super-fine-tuning.

32

3.5. BACKDOOR SEQUELA

Bad
Nets

Blen
de

d

Inp
uta

ware LF

WaN
et

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Original
Super-Fine-Tuning
ABL
AC
FP
NAD

(a) CIFAR10

Bad
Nets

Blen
de

d

Inp
uta

ware LF

WaN
et

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

(b) CIFAR100

Bad
Nets

Blen
de

d

Inp
uta

ware LF

WaN
et

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

(c) GTSRB

Figure 3.13: The performance of membership inference attacks on different defended
models and backdoored models. The X-axis represents different attack methods. The
Y-axis represents membership inference attack accuracy.

3.5 Backdoor Sequela

We have previously shown that super-fine-tuning outperforms other defenses against
backdoor attacks. However, since the defense modifies the model’s parameters, it is
worthwhile to explore whether the model will be more or less vulnerable to certain attacks
after removing the backdoor attacks. To this end, we coin the term and investigate
backdoor sequela.

Due to the fact that super-fine-tuning needs to use a clean dataset to make the
model forget the backdoor, it is natural to wonder whether the process will lead the
model to better remember the clean dataset. To verify this, we conduct membership
inference attacks against the backdoored models and the models defended by super-
fine-tuning (and other defenses) to see whether the membership leakage becomes larger
after applying the defense. Also, since the backdoors are easily removed after a few
epochs, we are also curious if it is easier to re-inject the backdoor into the model. Note
that, following the same reasons as in Section 3.4.4, we only consider the standalone
scenario in this section.

3.5.1 Membership Inference Attack

We first explore whether the model is more vulnerable to membership inference at-
tacks [108] or not after fine-tuning. Membership inference attacks aim to infer whether
a given sample is in the training set of a target model or not. A successful membership
inference attack can cause severe privacy leakage. Normally, there are three different
ways to conduct membership inference attacks: neural network-based attacks [80, 108],
metric-based attacks [60, 111, 112, 132], and query-based attacks [23, 67]. In this work,
we use the neural network-based attack due to its popularity.

Threat Model: We first assume that the adversary only has black-box access to the
target model, which means they can only query the model and obtain the output. Then,
following previous works [81, 74], we further assume that the adversary has part of the
target model’s training data (treated as members) and testing data (non-members).
The adversary can use them for training an attack model and inferring the membership

33

CHAPTER 3. DATA SECURITY

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

Clean

ABL

AC

NC

NAD

FP

Super-FT

(a) Poison Ratio: 0.1

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(b) Poison Ratio: 0.01

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(c) Poison Ratio: 0.001

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(d) Poison Ratio: 0.0001

Figure 3.14: Performance of BadNets backdoor re-injection attacks on different defense
methods. The X-axis represents training epochs in the re-injection phase. The Y-axis
represents the accuracy of poison samples. Note that epoch 0 represents different
defense methods’ results before re-injection.

status for other data samples. Note that we adopt the strongest attacker assumption
defined in [74] to estimate the worst-case scenario for membership leakage.

Methodology: Our method can be described in two steps:

1. The adversary first queries the target model with both the target model’s (partial)
training and testing samples, and they label the corresponding outputs as members
and non-members.

2. Second, the adversary uses the outputs and the corresponding labels to train their
attack model, which is a three-layer neural network model.

The evaluations are conducted on both the backdoored model and the super-fine-tuned
model to see whether fine-tuning will increase or decrease membership inference risks.

Experimental Settings: We evaluate the membership inference attack in the stan-
dalone scenario, which means that the fine-tuning dataset is the same as the pre-training
dataset. For each dataset, we randomly sample half of its testing samples and the same
number of training samples as the attack training dataset. Then, we select the other
half of its testing samples (serving as non-members) and the same number of training
samples (serving as members with no overlap on the attack training dataset) to evaluate
the attack performance. Note that we use the datasets and backdoor attacks/defenses
introduced in Section 3.3.1.

Results: We show our membership inference results in Figure 3.13. Surprisingly, we
observe that instead of increasing the privacy risks, super-fine-tuning mitigates the
performance of membership inference. In almost all cases, fine-tuned models have
lower attack performance than the original models. For instance, membership inference
attacks on the original model (backdoored by BadNets) on CIFAR10 can achieve 0.618
accuracy, while the performance drops to 0.569 after conducting super-fine-tuning on
the original model. This is contradictory to previous work [104], where more training
epochs led to higher attack performance due to the increasing overfitting level. We
suspect the reason is that super-fine-tuning actually increases the generalization ability
of the model, which leads to a lower overfitting level.

34

3.5. BACKDOOR SEQUELA

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

Clean

ABL

AC

NC

NAD

FP

Super-FT

(a) Poison Ratio: 0.1

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(b) Poison Ratio: 0.01

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(c) Poison Ratio: 0.001

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(d) Poison Ratio: 0.0001

Figure 3.15: Performance of Blended backdoor re-injection attacks on different defense
methods. The X-axis represents training epochs in the re-injection phase. The Y-axis
represents the accuracy of poison samples.

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

Clean

ABL

AC

NC

NAD

FP

Super-FT

(a) Poison Ratio: 0.1

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(b) Poison Ratio: 0.01

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(c) Poison Ratio: 0.001

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(d) Poison Ratio: 0.0001

Figure 3.16: Performance of Inputaware backdoor re-injection attacks on different
defense methods. The X-axis represents training epochs in the re-injection phase. The
Y-axis represents the accuracy of poison samples.

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

Clean

ABL

AC

NC

NAD

FP

Super-FT

(a) Poison Ratio: 0.1

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(b) Poison Ratio: 0.01

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(c) Poison Ratio: 0.001

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(d) Poison Ratio: 0.0001

Figure 3.17: Performance of LF backdoor re-injection attacks on different defense
methods. The X-axis represents training epochs in the re-injection phase. The Y-axis
represents the accuracy of poison samples.

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

Clean

ABL

AC

NC

NAD

FP

Super-FT

(a) Poison Ratio: 0.1

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(b) Poison Ratio: 0.01

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(c) Poison Ratio: 0.001

0 10 20
Epoch

0.0

0.5

1.0

A
S

R

(d) Poison Ratio: 0.0001

Figure 3.18: Performance of WaNet backdoor re-injection attacks on different defense
methods. The X-axis represents training epochs in the re-injection phase. The Y-axis
represents the accuracy of poison samples.

35

CHAPTER 3. DATA SECURITY

Though super-fine-tuning does not cause backdoor sequela with respect to member-
ship inference, we do observe that some of the other defense methods make membership
inference more unstable. For instance, in most cases, ABL makes the model more
vulnerable to membership inference attacks (accuracy increases from 0.765 to 0.815 in
Blended CIFAR10). However, when ABL is used to mitigate LF attacks on CIFAR10,
the membership inference risk drops from 0.726 to 0.653.

From Figure 3.13, we can also see that different kinds of backdoor attacks make a
huge difference in membership inference performance. For example, the adversary can
achieve a 0.765 accuracy when conducting membership inference attacks using CIFAR10
on Blended attacks. However, they can only achieve a 0.618 accuracy when conducting
the same attacks on the BadNets model. We leave it to future work to further explore
the relationship between backdoor attacks and membership inference attacks.

3.5.2 Backdoor Re-injection Attack

Another backdoor sequela we study is the backdoor re-injection attack. Since super-
fine-tuning can easily remove backdoors within a few epochs, it is interesting to see
whether the fine-tuned models are more vulnerable to injecting (the same) backdoor
attacks again. To our knowledge, there is no prior work measuring whether existing
backdoor defense methods will make the re-injection process easier.

Threat Model: We first assume that the adversary has white-box access to the fine-
tuned model. Also, the adversary has knowledge of the previous backdoor attack on the
model. The goal of the adversary is to re-inject the same backdoor into the model while
keeping model utility.

Methodology: To measure the vulnerability of the fine-tuned models on backdoor
re-injection attacks, we take the following steps:

1. The adversary first generates new triggered samples based on the knowledge of
the previous attack.

2. Then, the adversary re-trains the fine-tuned model with the poison dataset and
the corresponding training process to re-inject the backdoor into the fine-tuned
model.

Results: To measure how easily the adversary can re-inject a backdoor into the model,
we consider training epochs, poison ratio, and ASR as the evaluation metrics. If the
model is more vulnerable to backdoor re-injection attacks, the adversary only needs
fewer epochs and a smaller poison ratio to achieve a similar (or even better) ASR
compared to injecting the backdoor on a clean model. Note that in this setting, we
assume a very powerful adversary who has knowledge of the previous attack. Thus,
the adversary can follow the same procedure to conduct the attack, i.e., they use the
exact same injection process and strategies, including the same attack method, the same
learning rate, etc.

36

3.6. CONCLUSION

Figure 3.14 shows our results of BadNets backdoor re-injection attacks. Other attacks’
results, including Blended (Figure 3.15), Inputaware (Figure 3.16), LF (Figure 3.17),
and WaNet (Figure 3.18) are shown in the appendix. For the poison ratio, we adjust
it from 0.1 to 0.0001 for completeness. Note that 0.1 is the poison ratio we used in
previous backdoor attacks. For the training process, we only show the first 25 epochs to
see whether the backdoor can be injected within a few epochs.

From Figure 3.14, it can first be observed that almost all defense methods we have
tried can make the defended model more vulnerable to backdoor re-injection attacks. For
instance, when the attack method is BadNets with a poison ratio of 0.01 (Figure 3.14b),
the adversary needs 15 epochs to insert the backdoor into the clean model (ASR=0.819)
while the backdoor re-injection attacks against defended models only need 3-6 epochs to
achieve even higher ASR. We also see that, in all cases, fine-tuned models are not the
most vulnerable models to backdoor re-injection attacks. For instance, when the poison
ratio is 0.001, the adversary can achieve 0.023 ASR in three epochs on models defended
by super-fine-tuning, while other defense methods like ABL increases the ASR to 0.763.

3.5.3 Summary

In this section, we propose the new term, backdoor sequela, to measure how backdoor
defense methods affect a model’s vulnerability to other attacks. Specifically, we consider
membership inference attacks and backdoor re-injection attacks. Our evaluation results
show that super-fine-tuning can even make the model more robust to membership
inference attacks. We also find that, in general, existing defense methods considered in
our experiments make the defended models more vulnerable to backdoor re-injection
attacks compared to the attacks on the clean model. To our knowledge, we are the first
to study backdoor sequela, and we argue that backdoor sequela should be considered as
an important metric to evaluate a backdoor defense’s efficacy. We plan to investigate
more backdoor sequela, i.e., attacks, in the future.

3.6 Conclusion

In this section, we have demonstrated that conventional fine-tuning is a very effective
backdoor removal method. Moreover, we propose super-fine-tuning which can have even
better mitigation performance. We consider three scenarios, namely encoder-based,
transfer-based, and standalone. Our experimental results show that in the encoder-based
scenario, whole model conventional fine-tuning can effectively remove backdoors within
a few epochs. As fine-tuning is a necessary step for users to train downstream classifiers,
it can be argued that fine-tuning as a defense method incurs zero-cost. In the transfer-
based scenario, fine-tuning is still a necessary step. However, we find that conventional
fine-tuning cannot always effectively remove all tried backdoor attacks. However, our
experimental results show that super-fine-tuning can effectively mitigate backdoor
attacks in this scenario. The most difficult scenario is standalone. In this scenario, we
assume the backdoored models are trained exactly on users’ downstream datasets. We
show that even using the same dataset to conduct the fine-tuning, super-fine-tuning can
still remove backdoor attacks in a few epochs. We also compare super-fine-tuning with

37

CHAPTER 3. DATA SECURITY

state-of-the-art defense methods and demonstrate that super-fine-tuning outperforms
them.

Furthermore, we propose a new term, backdoor sequela, to measure the defended
model’s vulnerability to other attacks. Experiments show that super-fine-tuning does
not have a strong impact on the defended models with respect to membership inference
and backdoor re-injection attacks. We hope that, in the future, backdoor sequela will
be considered an important aspect for judging a backdoor defense’s efficacy.

Our results demonstrate that backdoor defenses can be performed in an easier way
than previously considered. Fine-tuning or super-fine-tuning is sufficient in most cases.
We hope our methods can help ML model owners better shield their models from
backdoor attacks. Also, it further calls for the design of more advanced attacks in order
to comprehensively assess machine learning models’ vulnerabilities to backdoor attacks.

38

4
Model Stealing Attacks

Model Security

39

4.1. INTRODUCTION

4.1 Introduction

Recent years have witnessed the great success of applying deep learning (DL) to computer
vision tasks. Supervised DL models, such as image classifiers, rely on large-scale labeled
datasets to achieve good performance. Yet, with the increasing diversity of application
domains, labeled data in limited domains turns out the bottleneck against performance
improvement of supervised models. As a revolutionary breakthrough, representation
learning [29, 34, 142] instead targets pre-training powerful encoders that transform
unlabeled data samples into rich representations and are oblivious to downstream tasks
or human supervision. The pre-trained encoders then serve as feature extractors to
facilitate various downstream tasks with improved performance over classifiers.

Behind its powerful representation, it is non-trivial to obtain a state-of-the-art
image encoder, which involves a massive amount of data, expensive computation, expert
knowledge, and countless failure trials. For instance, SimCLR [18] uses 128 TPU v3
cores to pre-train a ResNet-50 encoder with a batch size of 4096. Therefore, such
pre-trained encoders are usually established by big companies. Clarifai1, OpenAI2, and
Cohere3 provide the embedding API of images and texts for commercial usage.

Demanding requirements make the intellectual properties of image encoders valuable
while consequently vulnerable to potential model stealing attacks, a cheap way to mimic
the well-trained encoder performance while circumventing the demanding requirements.
It has been shown in previous works that supervised DL models are susceptible to model
stealing attacks [117, 120, 13, 88, 50, 57, 124, 107]. In these attacks, the adversary aims
to steal the parameters or functionalities of target models with only query access to
them. Specifically, the adversary can launch a large number of queries and obtain the
corresponding prediction and/or posterior outputs. With the input-output pairs, the
adversary can then train a surrogate model. A successful model stealing attack does not
only threaten the intellectual property of the target model but also serves as a stepping
stone for further attacks such as adversarial examples [8, 37, 12, 92, 116, 126], backdoor
attacks [102, 19, 51], and membership inference attacks [108, 80, 81, 104, 100, 111, 46,
45, 49, 70]. So far, model stealing attacks concentrate on the supervised classifiers, i.e.,
the model responses are prediction posteriors or labels for a specific downstream task.
The vulnerability of unsupervised image encoders is unfortunately unexplored.

Given that image encoders deliver remarkable performance in various downstream
tasks, a successful model stealing attack against them would severely threaten the
intellectual properties of model owners to a larger extent. Also, because the responses of
encoders are the image representations in higher dimensions and with rich information
compared to classifiers’ posteriors or labels, it is unclear whether or not encoders are
vulnerable to conventional attacks. Moreover, it is also unclear whether or not there
exist more effective model stealing attacks against image encoders.

Our Work: To fill this gap, we pioneer the systematic investigation of model stealing
attacks against image encoders. In this section, the adversary’s goal is to steal the

1https://www.clarifai.com/models/general-image-embedding
2https://beta.openai.com/docs/api-reference/embeddings
3https://cohere.ai/

41

https://www.clarifai.com/models/general-image-embedding
https://beta.openai.com/docs/api-reference/embeddings
https://cohere.ai/

CHAPTER 4. MODEL SECURITY

Figure 4.1: Model stealing attacks against classifiers (previous) v.s. model stealing
attacks against encoders (ours). Previous works aim to steal a whole classifier using
the predicted label or posteriors of a target model. In our work, we aim to steal the
target encoder using its embeddings. The target encoder (Et) is pre-trained and fixed
as shown in the solid frame. The surrogate encoder (Es) is trainable by the adversary as
shown in the dashed frame.

functionalities of the target model. See Figure 4.1 for an overview and a comparison
with previous works. More specifically, we focus on encoders trained by contrastive
learning, which is one of the most cutting-edge unsupervised representation learning
strategies that unleash the information of unlabeled data.

We first instantiate the conventional stealing attacks against encoders and expose
their vulnerability. Given an image input, the target encoder outputs its representation
(referred to as embedding). Similar to model stealing attacks against classifiers, we
consider the embedding as the “ground truth” label to guide the training procedure
of a surrogate encoder on the adversary side. To measure the effectiveness of stealing
attacks, we train an extra linear layer for the target and surrogate encoders towards the
same downstream classification task. Preferably, the surrogate model should achieve
both high classification accuracy and high agreement with the target predictions.

We evaluate our attacks on five datasets against four contrastive learning encoders.
Our results demonstrate that the conventional attacks are more effective against encoders
than against downstream classifiers. For instance, when we steal the downstream
classifier pre-trained by SimCLR on CIFAR10 (with posteriors as its responses) using
STL10 as the surrogate dataset, the adversary can only achieve an accuracy of 0.359.
The accuracy, however, increases to 0.500 instead when we steal its encoder (with the
embedding as its responses).

Also, we observe that the attack against the encoder is less dependent on the dataset
used to train the surrogate encoder, i.e., the surrogate dataset. Take the SimCLR
pre-trained target encoder on CIFAR10 as an example, compared to the surrogate
dataset being CIFAR10, when the surrogate dataset is STL10, the accuracy drops by
0.357 if the target model is a classifier with the predicted label as its response. In

42

4.1. INTRODUCTION

comparison, the accuracy drops by only 0.290 when the target model is an encoder with
the embedding as its response. This can be credited to the fact that the robust and
generalizable representations in the embeddings benefit the surrogate encoder more in
mimicking the functionality of the target encoder.

Despite its encouraging performance, conventional attacks are not the most suitable
ones against encoders. This is because they treat each image-embedding pair individually
without interacting across pairs. Different embeddings are beneficial to each other as
they can serve as anchors to better locate the position of the other embeddings in their
space. Contrastive learning [87, 127, 42, 18, 38, 20, 54] is a straightforward idea to
achieve this goal. It is formulated to enforce the embeddings of different augmentations
of the same images closer, and those of different images further.

In a similar spirit, we propose Cont-Steal, a contrastive-learning-based model stealing
attack against the encoder. The goal of Cont-Steal is to enforce the surrogate embedding
of an image close to its target embedding (defined as a positive pair), and also push
away embeddings of different images irrespective of being generated by the target or
the surrogate encoders (defined as negative pairs).

The comprehensive evaluation shows that Cont-Steal outperforms the conventional
model stealing attacks to a large extent. For instance, when CIFAR10 is the target
dataset, Cont-Steal achieves an accuracy of 0.714 on the SimCLR encoder pretrained
on CIFAR10 with surrogate dataset and downstream dataset being STL10, while the
conventional attack only achieves 0.457 accuracy. Also, Cont-Steal is more query-efficient
and dataset-independent (see Figure 4.21 for more details). For instance, when the
target encoder is MoCo pre-trained on CIFAR10, the gap of attack performance between
different surrogate datasets is 0.313 with the conventional attacks while only 0.180
with Cont-Steal. This is because Cont-Steal leverages higher-order information across
samples to mimic the functionality of target encoder. To mitigate the attacks, we
evaluate different defense mechanisms including noise, top-k, rounding, and watermark.
Our evaluations show that in most of the cases, these mechanisms cannot effectively
defend against Cont-Steal. Among them, top-k can reduce the attack performance to
the largest extent. However, it also strongly limits the target model’s utility.

As a takeaway, our attack further exposes the severe vulnerability of pre-trained
encoders. We appeal to our community’s attention to the intellectual property protection
of representation learning techniques, especially to the defenses against encoder stealing
attacks like ours.

Our Contributions: In summary, we make the following contributions:

• We pioneer the investigation of the vulnerability of unsupervised image encoders
against model stealing attacks. We discover that encoders are more vulnerable
than classifiers.

• We propose Cont-Steal, the first contrastive learning-based stealing attack against
encoders that outperforms the conventional attacks to a large extent.

• Extensive evaluation shows that the advantageous performance of Cont-Steal is
consistently amplified in various settings, especially when the adversary suffers

43

CHAPTER 4. MODEL SECURITY

from zero information of the target dataset, limited amount of data, or restricted
query budgets.

4.2 Threat Model

in this section, for the encoder pre-trained with images, we consider image classification
as the downstream task. We refer to the encoder as the target encoder. Then we treat
both the encoder and the linear layer trained for the downstream task together as the
target model. We first introduce the adversary’s goal and then characterize different
background knowledge that the adversary might have.

Adversary’s Goal: Following previous work [50, 57, 107], we taxonomize the adver-
sary’s goal into two dimensions, i.e., theft and reconnaissance. The theft adversary aims
to build a surrogate encoder that has similar performance on the downstream tasks
as the target encoder. By doing this, the adversary can compromise the intellectual
property of the model owner as the target encoder may require dedicated model designs
and a massive amount of data as well as computation resources [18, 42, 38, 20]. Different
from the thief adversary, the goal of the reconnaissance adversary is to construct a
surrogate encoder that behaves similarly to the target encoder. In other words, with any
input, the outputs from the target and surrogate encoder used for the same downstream
task should have a high agreement. In this case, the surrogate encoder not only faithfully
“copies” the behaviors of the target encoder, but also serves as a stepping stone to
conduct other attacks. For instance, it can be used to infer sensitive information about
the training data [117, 108, 104] or be used to craft adversarial examples [91] or conduct
backdoor attacks [51] without taking the risks of being detected by querying the target
model.

Adversary’s Background Knowledge: We categorize the adversary’s background
knowledge into two dimensions, i.e., the knowledge of the target encoder, and the
distribution of the surrogate dataset.

Regarding knowledge of the target encoder, we assume that the adversary only has
black-box access to it, which means that they can only query the target encoder with
an input image and obtain the corresponding output, i.e., the embedding of the input
image.

Regarding the surrogate dataset that is used to train the surrogate encoder, we
consider two cases. First, we assume the adversary has the same training dataset as
the target encoder. However, such an assumption may be hard to achieve as such
datasets are usually private and protected by the model owner. In a more extreme case,
we assume that the adversary has totally no information about the target encoder’s
training dataset, which means that they can only use a different distribution dataset to
conduct the model stealing attacks. We later show that the adversary can still launch
effective model stealing attacks against the target encoder given a surrogate dataset
that is distributed differently compared to the target dataset.

For the model architecture that is used to train the surrogate encoder, we consider
two cases. First, we assume the adversary is aware of the target encoder’s architecture

44

4.3. MODEL STEALING ATTACKS

and can train a same architecture shadow encoder. Then we relax our assumption
that the adversary uses different architectures to train the surrogate encoder. Our
evaluation shows that the choice of architecture does not have much impact on the
attack performance (see Table 4.2), which makes the attack more realistic.

Note that we also compare our attacks against the encoders to the traditional model
stealing attacks that focus on the whole classifier (which has an encoder and a linear
layer). If the attack is targeting a whole classifier, we assume the adversary may obtain
the posteriors or the predicted label for an input image.

4.3 Model Stealing Attacks

In this section, we first describe the conventional attacks against the classifiers and how
to conduct such attacks against the encoders. Then, we propose a novel contrastive
stealing framework Cont-Steal to steal the encoders more effectively.

4.3.1 Conventional Attacks Against Classifiers

The basic idea of model stealing is to use the target classifier’s output as ground truth
to guide the training procedure of the surrogate classifier. The adversary takes two
steps to conduct the model stealing attacks against the target classifier.

Obtain the Surrogate Dataset: To conduct model stealing attacks, the adversary first
needs to obtain a surrogate dataset. Based on the knowledge of the target classifier’s
training dataset (target dataset), we consider two cases. If the adversary has full
knowledge of the target dataset, they can directly leverage the target dataset itself as
the surrogate dataset. Or the adversary has no knowledge of the target dataset, which
means that they can only construct the surrogate dataset which is distributed differently
from the target dataset.

Train the Surrogate Classifier: To train the surrogate classifier, the adversary can
first query the target classifier with the surrogate dataset, then leverage the responses
from the target model as the guidance to train the surrogate classifier. Concretely, the
loss function LMS of model stealing can be defined as follows:

LMS =
N∑

k=1
l(MT (xk),MS(xk)) (4.1)

where MT (·)/MS(·) denotes the target/surrogate classifier and N denotes the total
number of samples on the surrogate dataset. If the response of the target classifier is
the predicted label (posteriors), we leverage Cross-Entropy (MSE) as the loss following
previous work [91, 88, 57, 50].

4.3.2 Conventional Attacks Against Encoders

The adversary takes two steps to conduct the model stealing attacks against the target
encoder and one step for further evaluation.

45

CHAPTER 4. MODEL SECURITY

Obtain the Surrogate Dataset: The adversary first constructs their surrogate dataset
based on their knowledge of the target dataset, which is the same as Section 4.3.1.

Train the Surrogate Encoder: Slightly different from the classifier, the response of
the encoder is an embedding, which is a feature vector. In this case, the adversary can
still leverage a similar loss function to optimize the surrogate encoder, which can be
defined as follows:

LMS =
N∑

k=1
l(hT (xk), hS(xk)) (4.2)

where hT (·)/hS(·) is the target/surrogate encoder, N is the total number of samples on
the surrogate dataset, and l(·) is the MSE loss.

Apply the Surrogate Encoder to Downstream Tasks: To evaluate the effectiveness
of model stealing attacks against the encoder, the adversary can leverage the same
downstream task to both the target and surrogate encoders. Concretely, the adversary
trains an extra linear layer for the target and surrogate encoders, respectively. Note that
we refer to the target/surrogate encoder and the extra linear layer as the target/surrogate
classifiers. Then, the adversary quantifies the attack effectiveness by measuring the
performance of the target/surrogate classifier on the downstream tasks as shown in
Section 4.3.1.

4.3.3 Cont-Steal Attacks Against Encoders

To better leverage the rich information from the embeddings, we propose Cont-Steal,
a contrastive learning-based model stealing attacks against encoders, which leverages
contrastive learning to enhance the stealing performance. Concretely, Cont-Steal aims
to enforce the surrogate embedding of an image to get close to its target embedding
(defined as a positive pair), and also push away embeddings of different images regardless
of being generated by the target or the surrogate encoders (defined as negative pairs).
There are three steps for the adversary to conduct contrastive stealing attacks against
encoders and one step for further evaluation.

Obtain the Surrogate Dataset: The adversary follows the same strategy as Sec-
tion 4.3.1 to obtain the surrogate dataset.

Data Augmentation: Our proposed Cont-Steal leverages data augmentation to
transform an input image into its two augmented views. in this section, we leverage
RandAugment [25] as the augmentation method, which is made up of a group of
advanced augmentation operations. Concretely, we set n = 2 and m = 14 following
Cubuk et al. [25] where n denotes the number of transformations to a given sample and
m represents the magnitude of global distortion.

Train the Surrogate Encoder: Instead of querying the encoders with the original
images, the adversary queries the encoders with the augmented views of them. Concretely,
for an input image xi, we generate two augmented views of it, i.e., x̃i,s and x̃i,t, where

46

4.4. EXPERIMENTS

x̃i,s/x̃i,t is used to query the surrogate/target encoder. We consider (x̃i,s, x̃j,t) as a
positive pair if i = j, and otherwise a negative pair.

Given a mini-batch of N samples, we generate N augmented views as the input
of the target encoder and another N augmented views as the input of the surrogate
encoders. Concretely, the loss of Cont-Steal can be formulated as follows:

D+
encoder(i) = exp(sim(ES(x̃i,s), ET (x̃i,t))/τ)) (4.3)

D−
encoder(i) =

N∑
k=1

(exp(sim(ES(x̃i,s), ET (x̃k,t))/τ)) (4.4)

D−
self (i) =

N∑
k=1

1[k ̸=i](exp(sim(ES(x̃i,s), ES(x̃k,s))/τ)) (4.5)

l(i) = −log
D+

encoder(i)
D−

encoder(i) +D−
self (i)

(4.6)

LCont−Steal =
∑N

k=1 l(k)
N

(4.7)

where es(·) and et(·) denotes the surrogate and target encoder, sim(u, v) = uT v/||u||||v||
represents the cosine similarity between u and v, and τ is parameter to control the
temperature.

As illustrated in Figure 4.2, conventional attack treats each embedding individually
without interacting across pairs. However, different embeddings are beneficial to each
other as they can serve as anchors to better locate the position of the other embeddings
in their space. Cont-Steal maximizes the similarity of embeddings generated from
the target and surrogate encoders for a positive pair (x̃i,s, x̃i,t) (orange arrows in
Figure 4.2). For the embedding generated from the target and surrogate encoders for a
any pair (x̃i,s, x̃j,t), contrastive stealing aims to make them more distant (green arrows
in Figure 4.2). Besides, as pointed out by Chen et al. [18], contrastive learning benefits
larger negative samples. To achieve this goal, we also consider the embeddings generated
from the surrogate encoder for augmented views of different images, i.e., (x̃i,s, x̃j,s), as
negative pairs minimize their similarity (blue arrows in Figure 4.2). We later show that
such design can enhance the performance of contrastive stealing (see Table 4.3).

In each batch, given N training samples, we first generate 2N augmented views and
feed target encoder and surrogate encoder with different views generated by the same
samples. Then, we optimize the surrogate encoder by minimizing LCont−Steal.

Apply the Surrogate Encoder to Downstream Tasks: We follow Section 4.3.2 to
evaluate the effectiveness of model stealing on downstream tasks.

4.4 Experiments

In this section, we first describe the experimental setup in Section 4.4.1. Then we show
the performance of the target encoders on the downstream tasks in Section 4.4.2. Next,
we summarize the performance of conventional attacks against classifiers and encoders

47

CHAPTER 4. MODEL SECURITY

Figure 4.2: Conventional attack (top) vs. Cont-Steal (bottom) against encoders. Con-
ventional attack applies MSE loss to approximate target embeddings for each sample
individually. Cont-Steal (bottom) introduces data augmentation and interacts across
multiple samples: associating target/surrogate embeddings of the same images closer
and repulsing those of different images farther away. The target encoder (Et) is pre-
trained and fixed as shown in the solid frame. The surrogate encoder (Es) is trainable
by adversary as shown in the dashed frame.

in Section 4.4.3. Lastly, we evaluate the performance of Cont-Steal and conduct ablation
studies to demonstrate its effectiveness under different settings in Section 4.4.4.

4.4.1 Experimental Setup

Datasets: We leverage four image datasets to conduct our experiments.

• CIFAR10 [1]: This dataset contains 50, 000 training images and 10,000 testing
images in 10 classes. Each image in this dataset has the size of 32 × 32 × 3.

• ImageNet100 [27]: We leverage the ImageNet100 dataset to pre-train the
encoder. The ImageNet100 dataset is a subset of the ImageNet dataset that
contains about 160,000 training images distributed in 100 classes. Each sample
has the size of 224 × 224 × 3.

• Fashion-MNIST [128]: Fashion-MNIST (abbreviated as F-MNIST) is an image
dataset containing 10 classes. It has 60,000 training samples and 10,000 testing
samples. Each sample has the size 28 × 28 × 1.

48

4.4. EXPERIMENTS

• SVHN [82]: This dataset contains 73,257 training images and 26,032 testing
images distributed in 10 classes. Each image in this dataset has the size of
32 × 32 × 3.

• STL10 [24]: This is a 10-classes dataset where each class contains 500 labeled
training images and 800 labeled testing images. It also contains 100,000 unlabeled
images. The size of each image is 96 × 96 × 3.

Pre-training Target Encoders: We use CIFAR10 and ImageNet100 as our target
encoder’s pre-training datasets. We use SimCLR, MoCo, BYOL, and SimSiam to train
a ResNet18 [43] as our target encoders. Our implementation is based on a PyTorch
framework of contrastive learning.4 We train our encoders for 400 epochs with the
Adam [55] optimizer and initial learning rate 0.001.

Training Downstream Classifiers: We use the pre-trained encoders to train extra
linear layers as the classifiers using the above-mentioned datasets as well. For encoders
pre-trained on CIFAR10, we will reshape each sample’s size to 32 × 32 × 3. For encoders
pre-trained on ImageNet100, we will reshape each sample’s size to 224×224×3. We will
conduct the whole model fine-tune instead of fine-tuning extra linear layer to make the
model perform better on the specific dataset. We train our downstream classifiers for
100 epochs with the initial learning rate of 3e−4. We use cross-entropy loss to optimize
the linear layer’s parameters.

Note that to evaluate the attack performance against encoders, we train the linear
layers for both target and surrogate encoders on the same downstream task, i.e., with
the same dataset used to pre-train the target encoder.

Evaluation Metrics: We use agreement and accuracy to evaluate the model stealing
attack’s performance. The agreement will evaluate the similarity of surrogate encoders
and target encoders in downstream tasks. The accuracy will evaluate the practicality of
surrogate encodes on downstream tasks.

• Agreement: We calculate agreement by the following formula. The agreement will
evaluate the similarity of surrogate encoders and target encoders in the downstream
task which is also the most important metric to evaluate model stealing attack’s
performance. It can be definded as: Agreement =

∑n

i=1 fs(xi)==ft(xi)
n . Where fs

is surrogate model contains surrogate encoder and surrogate classifier, ft is target
model.

• Accuracy: Accuracy evaluates the practicality of surrogate encodes on down-
stream tasks. In model stealing attacks, accuracy depends on the target model.

4.4.2 Performance of the Target Encoder on Downstream Tasks

We first show the target encoder’s performance in various downstream tasks. The results
are summerized in Figure 4.3. We observe that encoders pre-trained by contrastive

4https://github.com/vturrisi/solo-learn

49

https://github.com/vturrisi/solo-learn

CHAPTER 4. MODEL SECURITY

F-M
NIST

CIFAR10
STL10

SVHN
0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y SimCLR

MoCo

BYOL

SimSiam

(a) CIFAR10

F-M
NIST

CIFAR10
STL10

SVHN
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) ImageNet100

Figure 4.3: The performance of target classifiers composed by target encoder and
an extra linear layer. The encoders are pre-trained on CIFAR10 (a) and ImageNet100
(b). The x-axis represents different downstream datasets for the target encoder and
classifier. The y-axis represents the target model’s accuracy on downstream tasks.

(a) Label (b) Posterior (c) Embedding

Figure 4.4: The t-SNE projection of 1, 000 randomly selected samples’ predicted labels,
posteriors, and embeddings respectively. Note that the target model is pre-trained by
SimCLR on CIFAR10.

learning can achieve remarkable performance even when downstream tasks are completely
different from pre-training datasets. For instance, given the encoder pre-trained by
SimCLR on the ImageNet100 dataset, the downstream accuracy is 0.838, 0.641, 0.673,
and 0.429 when the downstream dataset is F-MNIST, CIFAR10, STL10, and SVHN,
respectively. This indicates that such pre-trained encoders can generate embeddings
that has high representation ability and can be easily generalized to other tasks. We
later show that model stealing attacks can build surrogate encoders that achieve similar
accuracy levels as the target encoders but with much less cost.

4.4.3 Performance of Conventional Attacks

We conduct our experiments to explore whether the encoders are more vulnerable
to model stealing attacks. We show our results of target encoders and downstream
classifiers both trained on CIFAR10 in Figure 4.5. In all cases, the adversary can get
better attack performance by stealing encoders rather than classifiers. This gap becomes
especially apparent when the adversary has absolutely no knowledge of the train data.
For instance, when surrogate dataset is CIFAR10 (the same as target downstream

50

4.4. EXPERIMENTS

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.5: The performance of model stealing attack against target encoders and
downstream classifiers both trained on CIFAR10. Target models can output predicted
labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10, Fashion-MNIST
(F-MNIST), SVHN to conduct model stealing attacks. The x-axis represents different kinds
of target models. The first line’s y-axis represents the agreement of the model stealing
attack. The second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0
A

gr
ee

m
en

t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.6: The performance of model stealing attack against target encodes and
downstream classifiers trained on CIFAR10 and STL10. Target models can output pre-
dicted labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10, Fashion-
MNIST (F-MNIST), SVHN to conduct model stealing attacks. The x-axis represents different
kinds of target models. The first line’s y-axis represents the agreement of the model
stealing attack. The second line’s y-axis represents the accuracy of the model stealing
attack.

dataset), stealing SimCLR’s embeddings can achieve 0.785 agreement when stealing
predicted labels can achieve 0.712 agreement. However, when the surrogate dataset is
totally different from target downstream dataset, e.g., SVHN, stealing embeddings from

51

CHAPTER 4. MODEL SECURITY

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.7: The performance of model stealing attack against target encodes and
downstream classifiers trained on CIFAR10 and Fashon-MNIST. Target models can output
predicted labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10, Fashion-
MNIST (F-MNIST), SVHN to conduct model stealing attacks. The x-axis represents different
kinds of target models. The first line’s y-axis represents the agreement of the model
stealing attack. The second line’s y-axis represents the accuracy of the model stealing
attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.8: The performance of model stealing attack against target encodes and
downstream classifiers trained on CIFAR10 and SVHN. Target models can output pre-
dicted labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10, Fashion-
MNIST (F-MNIST), SVHN to conduct model stealing attacks. The x-axis represents different
kinds of target models. The first line’s y-axis represents the agreement of the model
stealing attack. The second line’s y-axis represents the accuracy of the model stealing
attack.

SimCLR can still achieve 0.507 agreement while the agreement of stealing predicted
labels drops to 0.192.

52

4.4. EXPERIMENTS

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.9: The performance of model stealing attack against target encodes and
downstream classifiers trained on ImageNet and STL10. Target models can output
predicted labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10, Fashion-
MNIST (F-MNIST), SVHN to conduct model stealing attacks. The x-axis represents different
kinds of target models. The first line’s y-axis represents the agreement of the model
stealing attack. The second line’s y-axis represents the accuracy of the model stealing
attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.10: The performance of model stealing attack against target encodes and
downstream classifiers trained on ImageNet and Fashion-MNIST. Target models can
output predicted labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10,
Fashion-MNIST (F-MNIST), SVHN to conduct model stealing attacks. The x-axis represents
different kinds of target models. The first line’s y-axis represents the agreement of the
model stealing attack. The second line’s y-axis represents the accuracy of the model
stealing attack.

To better understand this phenomenon, we extract samples’ predicted labels (one-
hot), posteriors, and embeddings from the SimCLR model on CIFAR10 and project

53

CHAPTER 4. MODEL SECURITY

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Label

Posterior

Embedding

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Label

Posterior

Embedding

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.11: The performance of model stealing attack against target encodes and
downstream classifiers trained on ImageNet and SVHN. Target models can output
predicted labels, posteriors, or embeddings. The adversary uses CIFAR10, STL10, Fashion-
MNIST (F-MNIST), SVHN to conduct model stealing attacks. The x-axis represents different
kinds of target models. The first line’s y-axis represents the agreement of the model
stealing attack. The second line’s y-axis represents the accuracy of the model stealing
attack.

them into a 2-dimension space with t-Distributed Neighbor Embedding (t-SNE) [76].
Figure 4.4 shows the results for the predicted label, posteriors, and embedding. Different
colors represent different classes. From Figure 4.4a, we observe that samples from
different classes may be mapped into the same area since they have the same predicted
label. For instance, the green and orange points are mapped into the right area although
they do not have the same ground truth labels. Regarding posteriors (Figure 4.4b),
we find that different colors are more separable compared to the predicted labels
(Figure 4.4a). However, samples from different classes are still likely to mix with each
other. For instance, the points from the upper left area cannot be separated easily.
Regarding the embeddings (Figure 4.4c), we find that samples with different classes are
mostly projected into different spaces, which makes it easier for the surrogate encoders
to learn the distribution of different samples. This indicates that the embeddings from
the target model indeed leak more information than posteriors and labels and can
facilitate the model stealing process.

We also find that all model stealing attacks’ accuracy and agreement are highly
correlated. As shown in Figure 4.12, the agreement is highly correlated with to the
accuracy. This indicates that besides accuracy, agreement can also be used as a metric to
evaluate the performance of model stealing attacks. We show the result on Figure 4.12.
It can be obviously seen that agreement is highly related to accuracy. We use the linear
regression method to describe the relationship between agreement and accuracy and
find that the relation function is y=0.940 * x.

Takeaways: In conclusion, encoders are more vulnerable to model stealing attacks
than classifiers. This is because the rich information in embeddings can better facilitate

54

4.4. EXPERIMENTS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Agreement

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ac

cu
ra

cy

Label
Posterior
Representation
Cont-Steal

Figure 4.12: The relationship between accuracy and agreement. The x-axis is the
agreement number and y-axis is the accuracy number.

(a) Target encoder (b) Cont-Steal (c) Conventional

Figure 4.13: The t-SNE projection of 1, 000 randomly selected samples’ embeddings from
target encoder, surrogate encoder under Cont-Steal, and surrogate encoder under
the conventional attack, respectively. Note that the target encoder is pre-trained by
SimCLR on CIFAR10.

the learning process of surrogate encoders. The more useful information the target
model gives out, the more vulnerable the target model is to model stealing attacks.
Although model stealing attacks against encoders can achieve great performance, our
study shows that encoders leak more information for the adversary to learn to make
surrogate encoders more similar to target encoders. To fully use the encoder’s output,
we conduct our attacks by leveraging Cont-Steal.

55

CHAPTER 4. MODEL SECURITY

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.14: The performance of Cont-Steal and conventional attack against target
encoders trained on CIFAR10. The adversary uses CIFAR10, STL10, F-MNIST, and SVHN to
conduct model stealing attacks. The adversary uses CIFAR10 as the downstream task
to evaluate the attack performance. The x-axis represents different kinds of the target
model. The first line’s y-axis represents the agreement of the model stealing attack. The
second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.15: The performance of Cont-Steal and conventional attack against target
encoders trained on CIFAR10. The adversary uses CIFAR10, STL10, F-MNIST, and SVHN
to conduct model stealing attacks. The adversary uses STL10 as the downstream task
to evaluate the attack performance. The x-axis represents different kinds of the target
model. The first line’s y-axis represents the agreement of the model stealing attack. The
second line’s y-axis represents the accuracy of the model stealing attack.

4.4.4 Performance of Cont-Steal

As shown in Section 4.4.3, encoders are more vulnerable to model stealing attacks since
the embedding usually contains richer information compared to the predicted label

56

4.4. EXPERIMENTS

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.16: The performance of Cont-Steal and conventional attack against target
encoders trained on CIFAR10. The adversary uses CIFAR10, STL10, F-MNIST, and SVHN to
conduct model stealing attacks. The adversary uses F-MNIST as the downstream task
to evaluate the attack performance. The x-axis represents different kinds of the target
model. The first line’s y-axis represents the agreement of the model stealing attack. The
second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0
A

gr
ee

m
en

t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.17: The performance of Cont-Steal and conventional attack against target
encoders trained on CIFAR10. The adversary uses CIFAR10, STL10, F-MNIST, and SVHN
to conduct model stealing attacks. The adversary uses SVHN as the downstream task
to evaluate the attack performance. The x-axis represents different kinds of the target
model. The first line’s y-axis represents the agreement of the model stealing attack. The
second line’s y-axis represents the accuracy of the model stealing attack.

or posteriors. We then show that our proposed Cont-Steal can achieve better attack
performance by making deeper use of embeddings’ information.

Figure 4.14 shows the attack performance when the target pre-training dataset
is CIFAR10. Note that we also show the attack performance on other settings in

57

CHAPTER 4. MODEL SECURITY

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.18: The performance of Cont-Steal and conventional attack against target
encoders trained on ImageNet100. The adversary uses CIFAR10, STL10, F-MNIST, and
SVHN to conduct model stealing attacks. The adversary uses CIFAR10 as the down-
stream task to evaluate the attack performance. The x-axis represents different kinds of
the target model. The first line’s y-axis represents the agreement of the model stealing
attack. The second line’s y-axis represents the accuracy of the model stealing attack.

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0
A

gr
ee

m
en

t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.19: The performance of Cont-Steal and conventional attack against target en-
coders trained on ImageNet100. The adversary uses CIFAR10, STL10, F-MNIST, and SVHN
to conduct model stealing attacks. The adversary uses F-MNIST as the downstream task
to evaluate the attack performance. The x-axis represents different kinds of the target
model. The first line’s y-axis represents the agreement of the model stealing attack. The
second line’s y-axis represents the accuracy of the model stealing attack.

the appendix. We discover that compared to conventional attacks against encoders,
Cont-Steal can consistently achieve better performance. For instance, as shown in
Figure 4.14d, when the target encoder is MoCo trained on CIFAR10, if the adversary
uses STL10 to conduct model stealing attacks against encoders, the surrogate encoder

58

4.4. EXPERIMENTS

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

Conventional

Cont-Steal

(a) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(b) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(c) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
gr

ee
m

en
t

(d) SVHN

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Conventional

Cont-Steal

(e) CIFAR10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(f) STL10

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(g) F-MNIST

SimCLR
MoCo

BYOL

SimSiam
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(h) SVHN

Figure 4.20: The performance of Cont-Steal and conventional attack against target
encoders trained on ImagNet100. The adversary uses CIFAR10, STL10, F-MNIST, and
SVHN to conduct model stealing attacks. The adversary uses SVHN as the downstream
task to evaluate the attack performance. The x-axis represents different kinds of the
target model. The first line’s y-axis represents the agreement of the model stealing
attack. The second line’s y-axis represents the accuracy of the model stealing attack.

can achieve 0.841 agreement in CIFAR10 downstream tasks with the Cont-Steal but
only 0.479 with conventional attacks. Another finding is that compared to the same
distribution surrogate dataset, our Cont-Steal can better enhance the performance when
the surrogate dataset comes from a different distribution from the pre-trained dataset.
For instance, when the target encoder is SimCLR trained on CIFAR10, Cont-Steal
outperforms conventional attack by 0.055 agreement when the surrogate dataset is
also CIFAR10, while the improvement increases to 0.207 and 0.214 when the surrogate
dataset is STL10.

To better understand why Cont-Steal can always achieve better performance, we
extract samples’ embeddings generated by different encoders, i.e., the target encoder,
surrogate encoder trained with the conventional attack, and surrogate encoder trained
with the Cont-Steal, and project them into a 2-dimensional space using t-SNE. From
the results summarized in Figure 4.13, we find that Cont-Steal can effectively mimic
the pattern of the embeddings as the target encoder. However, the conventional attack
fails to capture such patterns for a number of input samples, e.g., the outer circle in
Figure 4.23c. This further demonstrates that Cont-Steal benefits from jointly considering
different embeddings as they can serve as anchors to better locate the position of the
other embeddings in their space.

Takeaways: Our proposed Cont-Steal can achieve much better attack performance than
conventional attack. This is because Cont-Steal can leverage higher order information
across samples and then learn more about the target model.

59

CHAPTER 4. MODEL SECURITY

Table 4.1: The monetary and (training) time costs for normal training and Cont-Steal
attack. Cont-Steal’s monetary cost contains two parts: query cost and training cost.
Note that we ignore the query time cost of Cont-Steal as it normally has a smaller value
than the training time cost.

Monetary Cost Time Cost
Model Normal ($) Cont-Steal ($) Normal (h) Cont-Steal (h)
SimCLR 58.68 11.83 (1.83 + 10) 20.01 0.62
MoCo 54.83 12.13 (2.13 + 10) 18.69 0.73
BYOL 61.46 12.08 (2.08 + 10) 20.96 0.71
SimSiam 57.14 12.00 (2.00 + 10) 19.46 0.68

4.4.5 Cost Analysis

As we mentioned before, pre-train a state-of-the-art encoder is time-consuming and
resource-demanding. We wonder if the model stealing attacks can steal the functionality
of the encoder with much less cost. To this end, we evaluate the time and monetary cost
of training an encoder from scratch or stealing a pre-trained encoder via Cont-Steal.
The monetary cost of model stealing includes querying the target model and training
the surrogate model. We refer to the query price as $1 for 1,000 queries based on AWS.5
Our experiment is conducted on 1 NVIDIA A100 whose price is $2.934 per hour based
on google cloud.6

The monetary and time cost is shown in Table 4.1. We observe that Cont-Steal
can obtain a surrogate encoder with much less monetary and time cost than training
the encoder from scratch. For instance, a ResNet18 trained by SimCLR on CIFAR10
takes 20.01 hours and 58.68$ on 1 NVIDIA A100 GPU while Cont-Steal only takes
0.62 hours and 11.83$ to steal an encoder that performs similarly on downstream tasks.
The results demonstrate that Cont-Steal is able to construct surrogate encoders that
perform similarly as the target encoders but with much less time and monetary cost.

4.4.6 Ablation Studies on Adversary Training Process

Impact of Surrogate Encoder’s Architecture: Previous experiments are based
on the assumption that the adversary knows the target encoder’s architecture. We
then investigate whether the attack against the encoder is still effective when the
surrogate encoder has different model architectures compared to the target encoder.
Concretely, we perform Cont-Steal against the ResNet18 encoder with surrogate en-
coder’s architecture as ResNet18, ResNet34, ResNet50, DenseNet161, and MobileNetV2,
respectively. As shown in Table 4.2, we can see that the architecture of the surrogate
model only has limited influence on the attack performance. For instance, the adversary
can achieve 0.839 accuracy using the same architecture as the target model while

5https://aws.amazon.com/rekognition/pricing/
6https://cloud.google.com/compute/gpus-pricing

60

https://aws.amazon.com/rekognition/pricing/
https://cloud.google.com/compute/gpus-pricing

4.4. EXPERIMENTS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Surrogate dataset size

100

90

80

70

60

50

40

30

20

10

N
um

be
r o

f t
ra

in
in

g
ep

oc
hs

0.37 0.4 0.41 0.43 0.44 0.46 0.46 0.48 0.49 0.48

0.37 0.39 0.41 0.43 0.44 0.45 0.46 0.47 0.48 0.48

0.37 0.39 0.4 0.42 0.44 0.44 0.46 0.47 0.48 0.48

0.36 0.39 0.41 0.42 0.43 0.45 0.46 0.46 0.48 0.49

0.37 0.4 0.41 0.42 0.43 0.44 0.46 0.47 0.47 0.48

0.36 0.4 0.4 0.41 0.42 0.43 0.45 0.46 0.47 0.47

0.37 0.39 0.39 0.41 0.42 0.44 0.46 0.45 0.47 0.47

0.37 0.39 0.39 0.41 0.42 0.43 0.44 0.45 0.46 0.46

0.37 0.38 0.38 0.39 0.4 0.42 0.43 0.44 0.44 0.45

0.39 0.37 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42
0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ag
re

em
en

t

(a) Conventional

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Surrogate dataset size

100

90

80

70

60

50

40

30

20

10

N
um

be
r o

f t
ra

in
in

g
ep

oc
hs

0.71 0.75 0.78 0.79 0.79 0.8 0.8 0.8 0.81 0.81

0.71 0.75 0.77 0.78 0.79 0.79 0.81 0.8 0.81 0.81

0.7 0.74 0.77 0.78 0.79 0.79 0.79 0.81 0.81 0.81

0.69 0.73 0.76 0.77 0.78 0.79 0.8 0.79 0.8 0.8

0.69 0.72 0.75 0.76 0.77 0.79 0.79 0.79 0.79 0.8

0.67 0.71 0.74 0.76 0.76 0.77 0.78 0.79 0.79 0.79

0.64 0.7 0.72 0.75 0.75 0.76 0.77 0.78 0.78 0.78

0.62 0.68 0.71 0.73 0.75 0.75 0.76 0.77 0.78 0.78

0.59 0.65 0.68 0.69 0.72 0.74 0.73 0.75 0.75 0.76

0.56 0.61 0.63 0.65 0.67 0.68 0.69 0.7 0.7 0.72
0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ag
re

em
en

t

(b) Cont-Steal

Figure 4.21: Heatmap of the agreement scores of model stealing attacks. Target
model’s encoder and downstream classifier are both ResNet18 trained by SimCLR on
CIFAR10. The surrogate dataset is STL10. SurrogaThe surrogatete dataset’s size refers to
the proportion of surrogate data we used to the whole surrogate dataset. We show
the performance of 100 combinations of different training epoch and surrothe gate
dataset’s size.

it can even achieve 0.840 accuracy when using a more complex model architecture
(ResNet50) on SimCLR. The attack performance will drop a little if the adversary uses
DenseNet161 and MobileNetV2. This might because the architectures of DenseNet161
and MobileNetV2 have larger differences compared to ResNet18. However, the accuracy
with DenseNet161/MobileNetV2 as the surrogate encoder’s architecture can still achieve
0.828/0.811. This demonstrate that the model architectures of the surrogate encoder
only has limited impact on the attack performance, which makes the attack a more
realistic threat.

Impact of Surrogate Dataset’s Size and Surrogate Model’s Training Epoch:
We conduct ablation studies here to better illustrate the effectiveness of Cont-Steal.
Concretely, we investigate whether conventional attacks and Cont-Steal are still effective
under limited surrogate dataset size and number of training epochs. Ideally, we consider
the attack that can reach similar performance but with less surrogate dataset size and
fewer training epochs as a better attack as it require less query and monetary costs. As
shown in Figure 4.21, we observe that both conventional attacks and Cont-Steal can have
better performance with a larger surrogate dataset size and more number of training
epochs. For instance, Cont-Steal reaches 0.675 agreement when the surrogate encoder is
trained with 10% surrogate dataset for 50 epochs, while the agreement increase to 0.812
with 100% surrogate dataset and 100 training epochs. The second observation is that
Cont-Steal outperforms conventional attacks even with limited data and training epochs.
For instance, even with only 10% surrogate dataset and 10 training epochs, surrogate
encoder built by Cont-Steal can reach 0.562 agreement, while the conventional attack
can only achieve 0.479 agreement with the full surrogate dataset and 100 training epochs.

61

CHAPTER 4. MODEL SECURITY

Table 4.2: Cont-Steal attack performance of different surrogate architectures. Target
encoders (ResNet18) and downstream classifiers are trained on CIFAR10. The surrogate
dataset is also CIFAR10.

Framework Architectures Agreement Accuracy

SimCLR
ResNet18 0.835 0.839
ResNet34 0.837 0.842
ResNet50 0.844 0.840
DenseNet161 0.831 0.828
MobileNetV2 0.815 0.811

MoCo
ResNet18 0.857 0.849
ResNet34 0.858 0.849
ResNet50 0.867 0.856
DenseNet161 0.813 0.811
MobileNetV2 0.796 0.801

BYOL
ResNet18 0.845 0.842
ResNet34 0.850 0.847
ResNet50 0.857 0.855
DenseNet161 0.845 0.821
MobileNetV2 0.839 0.847

SimSiam
ResNet18 0.856 0.835
ResNet34 0.858 0.839
ResNet50 0.860 0.848
DenseNet161 0.791 0.783
MobileNetV2 0.812 0.832

As we mentioned before, this is because Cont-Steal can enforce the surrogate embedding
of an image close to its target embedding, and also push away embeddings of different
images irrespective of being generated by the target or the surrogate encoders (see also
Table 4.3 for the necessity of introducing negative pairs from the surrogate encoder).
This makes Cont-Steal a more effective model stealing attack against encoders.

Impact of Surrogate Dataset’s Correlation with the Target Dataset: In
the meanwhile, since the adversary cannot always have knowledge about the target
dataset, the impact of surrogate dataset’s correlation with the target dataset is also
worth consideration. We find that Cont-Steal depends less on the surrogate dataset’s
distribution and can always achieve stable performance. We plot the attack agreement
in Figure 4.22 where the target encoders and downstream classifiers are trained on
CIFAR10. We can see that when the adversary conducts a conventional attack against
the classifier, the adversary’s knowledge of target training data is crucial. For example,
when the adversary can only get predicted label from target model, he/she can only
achieve 0.182 agreement when using F-MNIST to attack the model trained by SimCLR,
while it can achieve 0.711 agreement when using CIFAR10 as the surrogate dataset,
which is same as target dataset. However, compared to predicted label or posterior

62

4.4. EXPERIMENTS

CIFAR10
STL10

SVHN

F-MNIST

Label

Poste
rior

Embedding

Contrastiv
e

0.71 0.37 0.19 0.17

0.74 0.39 0.21 0.17

0.79 0.5 0.51 0.49

0.85 0.83 0.7 0.69
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ag
re

em
en

t
(a) SimCLR

CIFAR10
STL10

SVHN

F-MNIST

Label

Poste
rior

Embedding

Contrastiv
e

0.71 0.35 0.2 0.16

0.76 0.41 0.24 0.18

0.79 0.48 0.49 0.48

0.87 0.84 0.7 0.69
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ag
re

em
en

t

(b) MoCo

CIFAR10
STL10

SVHN

F-MNIST

Label

Poste
rior

Embedding

Contrastiv
e

0.72 0.36 0.2 0.13

0.74 0.41 0.22 0.19

0.78 0.47 0.47 0.48

0.86 0.83 0.69 0.68 0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ag
re

em
en

t

(c) BYOL

CIFAR10
STL10

SVHN

F-MNIST

Label

Poste
rior

Embedding

Contrastiv
e

0.74 0.38 0.25 0.18

0.79 0.43 0.31 0.19

0.79 0.45 0.51 0.49

0.87 0.85 0.75 0.73
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ag
re

em
en

t

(d) SimSiam

Figure 4.22: Heatmap of the agreement scores of model stealing attacks. We show the
performance of 16 combinations of different information that the target model outputs,
and the adversary’s knowledge on target training data. Target models are trained on
CIFAR10

as the response, embedding depends less on the surrogate dataset distribution, and
Cont-Steal can better leverage the embedding information, contributing to the less
dependent on the surrogate dataset’s distribution. For instance, when the target model
is trained by SimCLR, Cont-Steal can achieve 0.832 agreement when the surrogate
dataset is STL10, which is even better than the best conventional attack (0.781) using
the exact same target training dataset as the surrogate dataset and embedding as the
response. Such observation better implies that Cont-Steal can always achieve good
performance regardless of the surrogate dataset’s distribution and can also achieve more
generalized performance in practice.

Impact of Negative Pairs Generated from the Surrogate Encoder: In Cont-
Steal’s loss functions, besides D−

encoder, we also consider the distance of negative pairs
generated from the surrogate encoder itself, i.e., D−

self . To evaluate the necessity of
D−

self , we take the target encoder trained by BYOL on CIFAR10 and downstream task
on STL10 as an example and study the attack performance with and without D−

self . The

63

CHAPTER 4. MODEL SECURITY

results are summarized in Table 4.3. We find that adding D−
self greatly improves the

attack performance in both accuracy and agreement. For instance, when the surrogate
dataset is STL10, the surrogate model stolen by Cont-Steal with D−

self achieves 0.817
agreement while only 0.314 if without D−

self . The reason behind is that the negative
pairs generated from the surrogate encoder can serve as extra “anchors” to better locate
the position of the embedding, which leads to higher agreement. Such observation
demonstrates that it is important to introduce D−

self in Cont-Steal as well.

Takeaways: We show that both conventional attacks and our Cont-Steal are effective
even under different restrictions, which means the threat of model stealing attacks
against encoders is largely underestimated. Cont-Steal’s outstanding performance
further amplifies the threat by leveraging a more powerful way to conduct the model
stealing attacks against the target encoder.

Table 4.3: The agreement and accuracy of different contrastive losses. We use BYOL
trained on STL10 as the target model.

Dataset Method BYOL
Agreement Accuracy

CIFAR10 w/o D−
encoder 0.242 0.242

w D−
encoder 0.844 0.843

F-MNIST w/o D−
encoder 0.215 0.217

w D−
encoder 0.647 0.641

STL10 w/o D−
encoder 0.314 0.320

w D−
encoder 0.817 0.811

SVHN w/o D−
encoder 0.176 0.175

w D−
encoder 0.655 0.650

4.4.7 Further Attacks Based on Cont-Steal

As we have mentioned in the introduction part, model stealing can be used as a stepping
stone for furthre attacks. In this section, we select adversary sample as a case study
to show the importance of model stealing for further attacks on the target model.
Normally, the adversary can not obtain the gradient from the target model. But to
conduct adversary sample attacks, the adversary needs to obtain the gradient in most of
attack scenarios. Therefore, the adversary can construct a surrogate model to generate
the adversary sample and transfer it to the target model to perform the attack. We
consider three widely used mechanisms to generate adversarial examples including Fast
Gradient Sign Attack (FGSM) [37], Basic Iterative Methods (BIM) [58], and Projected
Gradient Descent (PGD) [77]. Our target model is SimCLR pre-trained on CIFAR10
and the last layer classifier trained on STL10. We also use STL10 as the surrogate
dataset to conduct Cont-Steal and generate adversary samples. Experiments show that
the surrogate model can generate adversary samples that are valid for the target model

64

4.4. EXPERIMENTS

(Table 4.4). To show the necessity of the surrogate model as a springboard for attack, we
also conduct the baseline attack which use another model as the springboard to attack
the target model. We choose normal ResNet18 model trained on SVHN as our baseline
model and then apply the adversary example to attack the target model. We observe
that compare to the adversarial examples generated from the baseline model, those
adversarial examples generated from the surrogate model constructed by Cont-Steal can
better transfer to the target model. For instance, with PGD, the adversarial examples
obtained from the surrogate model can lead to a lower classification accuracy (0.203)
on the target model than those generated from the baseline model (0.246). This implies
that the model stealing attack can be a valid stepping stone for more effective further
attacks.

Table 4.4: The different methods to create adversary sample to attack on surrogate
model and target model. [Lower is better]

Method Surrogate model (acc) Target model (acc) Baseline (acc)
FGSM [37] 0.097 0.131 0.194
BIM [58] 0.054 0.192 0.235
PGD [77] 0.092 0.203 0.246

4.4.8 Defenses

In this section, we will consider different defenses against model stealing attacks on
encoders to evaluate the robustness of our proposed attack. We divided all defenses
into three categories: perturbation-based defense [88], watermark-based defense [5], and
distribution detection-based defense [52].

Perturbation-based Defense: In this defense setting, the defender aims to perturb
the output of the target model to limit the information the adversary can obtain. The
common practice of this kind of defense includes adding noise [88], top-k [88], and
feature rounding [117].

Adding noise means that the defender will introduce noise value to the original
output of the model. In our case, we consider adding Gaussian noise to the embeddings
generated by the target encoder. We set the mean value to 0 and different noise levels
represent different standard deviations of the Gaussian distribution. For Top-k, the
defender will only output the first k largest number of each embedding (and set the
rest as 0). In this way, the high-dimensional information of the image contained in
embeddings can be appropriately reduced. Regarding feature rounding, the defender
will truncate the values in the embedding to a specific digit. As a case study, we consider
a ResNet18 encoder pre-trained on CIFAR10 with SimCLR and take STL10 to train its
downstream classifier. The experimental results are summarized in Figure 4.23. We
can observe that while adding noise and top-k can reduce the model stealing attacks’
performance, it may also degrade the target model performance to a large extent. For
instance, when the noise increases from 0 to 10, the attack performance of Cont-Steal

65

CHAPTER 4. MODEL SECURITY

0 0.01 0.1 0.5 1 2 10
Noise

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Target

Conventional

Cont-Steal

(a) Adding noise

512 200 50 10 1
Top-k

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(b) Top-k

None 5 4 3 2 1
Round

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(c) Rounding

Figure 4.23: The performance of different defend methods. Target encoders are trained
on CIFAR10. The downstream dataset and surrogate dataset are both STL10. The x-axis
represents different defense levels. The y-aixs represents the model’s accuracy.

decreases from 0.729 to 0.410, while the target encoder’s performance drops from 0.734
to 0.098. On the other hand, rounding only has limited effect on both target model
performance and attack performance. This indicates that perturbation-based defense
cannot defend against encoder’s model stealing attack effectively since they cannot
reach a good trade-off between attack performance and model utility.

Table 4.5: Watermark defense. Pretrain dataset and surrogate dataset are both CIFAR10.
Watermark leverages a watermark rate (wr) to verify the ownership of target models.
[Higher is better]

Dataset Target model (acc/wr) Cont-Steal (acc/wr) Baseline (acc/wr)
CIFAR10 0.864 / 0.998 0.769 / 0.130 0.871 / 0.095
STL10 0.721 / 0.999 0.702 / 0.034 0.733 / 0.111
SVHN 0.501 / 0.999 0.535 / 0.303 0.492 / 0.103
F-MNIST 0.857 / 0.999 0.813 / 0.061 0.850 / 0.099

Watermark-based Defense: Watermark-based defense is also one of the most popular
defense methods against model stealing attacks (ref). Watermark provides copyright
protection by adding some specific identification to the target model. If the surrogate
model is stolen from the watermarked target model, then ideally, it will contain the
same watermark as well, which can be used to verify the ownership of the model. As
illustrated in [5], backdoor technology can be used as the watermark to protect the
model. In that sense, BadEncoder [51], a backdoor mechanism against encoder, can be
leveraged as a watermarking technology to our target encoder as well. The defenders
first will train the watermarked (backdoored) encoder where images with a certain
trigger will cause misclassification. Then, if they find the surrogate model can also
misclassify images with the same trigger, the defenders can claim the ownership of the
surrogate model.

In our experiments, we leverage BadEncoder to watermark the encoder pre-trained on
CIFAR10 by SimCLR, and leverage different downstream datasets to perform different

66

4.5. CONCLUSION

tasks. We assume a strong adversary that has the same downstream dataset as the
surrogate dataset. Also, we consider the baseline cases where the trigger samples are
fed into the clean model to calculate the watermark rate (wr). As shown in Table 4.5),
the watermark cannot preserved as the surrogate models constructed by Cont-Steal
have similar wr as the baseline model. For instance, when the downstream dataset is
CIFAR10, Cont-Steal builds a surrogate model with 0.769 accuracy while only 0.130 wr,
which is closed to the baseline model. This indicates that Cont-Steal can bypass the
watermarking technique as it can reach similar utility while reducing the wr to a large
extent.

Distribution Detection-based Defense: During the querying phase, one common
defense method is out-of-distribution data detection [52]. This kind of model requires
the query data to be in the same distribution as the target dataset. However, in our
settings, it is hard to justify whether the data is in-distribution as the self-supervised
learning pre-trained encoders are suitable for various downstream tasks. Therefore,
the distribution detection-based defense may not suitable against our model stealing
attacks.

Takeaways: In conclusion, perturbation-based defense, watermark-based defense, and
distribution-based defense cannot effectively defend against Cont-Steal. Most effective
defend method is adding noise to the embeddings. However, adding noise will also
largely decrease target model’s performance. We leave it as our future work to further
explore more effective defenses.

4.5 Conclusion

in this section, we conduct the first model stealing risk assessment towards image
encoders. Our evaluation shows that the encoder is more vulnerable to model stealing
attacks compared to the classifier. This is because the embedding provided by the
encoder contains richer information than the posteriors or predicted labels returned
by the whole classifier. Such embedding can be leveraged by the surrogate encoder to
better learn the distribution of representations from the target encoder.

To better unleash the power from the embeddings, we propose Cont-Steal, a con-
trastive learning-based model stealing method against encoders. Concretely, Cont-Steal
introduces different types of negative pairs as “anchors” to better navigate the surrogate
encoder learn the functionality of the target encoder. Extensive evaluations show that
Cont-Steal consistently performs better than conventional attacks against encoders.
And such an advantage is further amplified when the adversary has no information of
the target dataset, a limited amount of data, and restricted query budgets. Our work
points out that the threat of model stealing attacks against encoders is largely under-
estimated, which calls for effective intellectual property protection of representation
learning techniques, especially to the defenses against encoder stealing attacks like ours.

67

5
Deepfake Detection

Output Security

69

5.1. INTRODUCTION

5.1 Introduction

Text-to-image generation models have made tremendous progress during the past few
months. State-of-the-art models in this field, like Stable Diffusion [99] and DALL·E 2 [96],
are able to generate high-quality images ranging from artworks to photorealistic news
illustrations. Traditional image generation models, such as generative adversarial
networks (GANs) [36, 53, 94, 40, 79], generate synthetic/fake images with latent code
sampled from a Gaussian distribution. On the other hand, text-to-image generation
models [138, 99, 96, 134, 101] require users to provide textual inputs, namely prompts,
and generate images that match the prompts.

The high-quality synthetic images created by text-to-image generation models can
be used for various purposes. For instance, they can facilitate the materialization of a
novelist’s envisioned scene, perform the automated generation of illustrations for adver-
tising campaigns, and create physical scenes that cannot be captured photographically.
However, these synthetic images also pose severe threats to society. For instance, such
images can be used by malicious parties to disseminate misinformation. As reported by
TechCrunch, Stable Diffusion is able to generate realistic images, e.g., images on the
war in Ukraine, that may be used for propaganda.1 Also, these images can jeopardize
the art industry. BBC reported that some fake artworks generated by text-to-image
generation models won first place in an art competition, which caused the complaints of
the involved artists.2

5.1.1 Our Contributions

There are multiple approaches to alleviate the concerns brought by advanced generation
models. In particular, one can build a detector to automatically detect whether an
image is real or fake. Moreover, one can build an attributor to attribute a synthetic
image to its source generation model, so the model owner can be held responsible for
its misuse. So far, various efforts have been made in this field; however, they only focus
on traditional generation models, represented by GANs [122, 135, 35, 140]. To the
best of our knowledge, no study has been done on text-to-image generation models.
Also, whether the prompts used in such models can facilitate fake image detection and
attribution remains unexplored.

in this section, we present the first study on detecting and attributing fake images
generated by text-to-image generation models. Concretely, we formulate the following
three research questions (RQs).

• RQ1: Can we differentiate the fake images generated by various text-to-image
generation models from the real ones, i.e., detection of fake and real images?

• RQ2: Can we attribute the fake images to their source text-to-image generation
models, i.e., attribution of fake images to their sources?

1https://techcrunch.com/2022/08/12/a-startup-wants-to-democratize-the-
tech-behind-dall-e-2-consequences-be-damned/.

2https://www.bbc.com/news/technology-62788725.

71

https://techcrunch.com/2022/08/12/a-startup-wants-to-democratize-the-tech-behind-dall-e-2-consequences-be-damned/
https://techcrunch.com/2022/08/12/a-startup-wants-to-democratize-the-tech-behind-dall-e-2-consequences-be-damned/
https://www.bbc.com/news/technology-62788725

CHAPTER 5. OUTPUT SECURITY

Fake image detection space

Fake image attribution space

Real image

Text-to-image generation models

Prompts that can generate low-quality image

Prompts that can generate High-quality image

Figure 5.1: An illustration of our work, including fake image detection, fake image
attribution, and prompt analysis. Note that the blue space represents the detection
task where the two darkest colored areas represent real and fake images. The red
space represents the attribution task where different darkest colored areas mean
different algorithms. The dotted boxes represent the prompt analysis where different
prompts lead to different quality images.

• RQ3: What kinds of prompts are more likely to generate authentic images?

Methodology: To differentiate fake images from real ones (RQ1), i.e., fake image
detection, we train a binary classifier/detector. To validate the generalizability of
the detector, we especially train it on fake images generated by only one model and
evaluate it on fake images generated by many other models. We consider two detection
methods, i.e., image-only and hybrid, depending on the detector’s knowledge. The
image-only detector makes its decision solely based on the image itself. The hybrid
detector considers both images and their corresponding prompts. Hybrid detection is a
brand-new detection method, and it is designed specifically for detecting fake images

72

5.1. INTRODUCTION

created by text-to-image generation models. Concretely, we leverage the image and text
encoders of the CLIP model [93] to transfer an image and its prompt to two embeddings
which are then concatenated as the input to the detector. Note that in the prediction
phase, an image’s natural prompt may not be available. In such cases, we leverage an
image captioning model BLIP [62] to generate the captions for the image. Note that
in this section, we name the text used to generate fake images as prompts and text
generated by BLIP to describe the images as captions.

To attribute a fake image to its source model (RQ2), we propose fake image
attribution by training a multi-class classifier (instead of a binary classifier), and we
name this classifier as an attributor. Specifically, the attributor is trained on fake images
generated by multiple text-to-image generation models. Fake images from the same
model are labeled as the same class. Moreover, we also establish the attributor by two
methods, i.e., image-only and hybrid, which are the same as the detector to address
RQ1.

Different from RQ1 and RQ2, RQ3 focuses on the impact of prompts on the
authenticity of generated images. To this end, we conduct prompt analysis from
semantic and structural perspectives. In the former, we design two semantic extraction
methods to analyze the impact of prompt topics on the authenticity of fake images. More
specifically, the first one directly uses the ground truth topics provided in the dataset
for each prompt, and the second one automatically clusters the various prompts into
different groups and extracts topics from these groups. From the structural perspective,
we conduct the study based on the length of prompts and the proportion of nouns in
prompts, respectively. Figure 5.1 presents an overview of our methods to address the
three research questions.

Evaluation: We perform experiments on two benchmark prompt-image datasets
including MSCOCO [68] and Flickr30k [133], and four popular pre-trained text-to-image
generation models including Stable Diffusion [99], Latent Diffusion [99], GLIDE [85],
and DALL·E 2 [95].

In fake image detection, extensive experimental results show that image-only detec-
tors can achieve good performance in some cases, while hybrid detectors can always
achieve better performance in all cases. For example, on MSCOCO [68], the image-
only detector trained on fake images generated by Stable Diffusion can achieve an
accuracy of 0.834 in differentiating fake images generated by Latent Diffusion from
the real ones, while it can only achieve 0.613 and 0.2454 on GLIDE and DALL·E 2,
respectively. Encouragingly, the hybrid detector trained on fake images from Stable Dif-
fusion achieves 0.885/0.890/0.930 accuracy on Latent Diffusion/GLIDE/DALL·E 2 with
natural prompts and 0.877/0.838/0.781 accuracy with BLIP-generated prompts. These
results demonstrate that fake images from various models can indeed be distinguished
from real images. We further extract a common feature from fake images generated
by various models in Section 5.3.4, which implies the existence of a common artifact
shared by fake images across various models.

In fake image attribution, our experiments show that both image-only and hybrid
attributors can achieve good performance in all cases. Similarly, the hybrid attributor is
better than the image-only one. For instance, the image-only attributor can achieve an
accuracy of 0.815 in attributing fake images to the models we consider, while the hybrid

73

CHAPTER 5. OUTPUT SECURITY

attributor can achieve 0.880 with natural prompts and 0.850 with BLIP-generated
prompts. These results demonstrate that fake images can indeed be attributed to their
corresponding text-to-image generation models. We further show the unique feature
extracted from each model in Section 5.4.4, which implies that different models leave
unique fingerprints in the fake images they generate.

We further extensively evaluate the robustness of our proposed detectors and at-
tributors. In particular, since our detectors and attributors are essentially classifiers,
we evaluate them using the most popular and severe attacks against classifiers, i.e.,
adversary example attacks. Experimental results show that our detectors and attributors
can achieve significant robustness unless the adversarial noise is too visible, however,
this visible noise can be easily detected by humans.

In prompt analysis, we first find that prompts with the topics of “skis,” and
“snowboard” tend to generate more authentic images through our first semantic extraction
method, which relies on the ground truth information from the dataset. However, by
clustering various prompts over embeddings by sentence transformer [98], we find that
prompts with the “person” topic can actually generate more authentic images. Upon
further inspection, we discovered that most of the images associated with “skis” and
“snowboard” are also related to “person.” These results indicate that prompts with the
topic “person” are more likely to generate authentic fake images. From the structural
perspective, our experiments show that prompts with a length between 25 and 75 enable
text-to-image generation models to generate fake images with higher authenticity, while
the proportion of nouns in the prompt has no significant impact.

Implications: in this section, we make the first attempt to tackle the threat caused by
fake images generated by text-to-image generation models. Our results on detecting
fake images and attributing them to their source models are encouraging. This suggests
that our solution has the potential to play an essential role in mitigating the threats.
We will share our source code with the community to facilitate research in this field in
the future.

5.2 Datasets

We use the following two benchmark prompt-image datasets to conduct our experiments.

• MSCOCO [68]: MSCOCO is a large-scale objective, segmentation, and caption-
ing dataset. It is a standard benchmark dataset for evaluating the performance
of computer vision models. MSCOCO contains 328,000 images distributed in 80
classes of natural objects, and each image in MSCOCO has several corresponding
captions, i.e., prompts. in this section, we consider the first 60,000 prompts due
to the constraints of our lab’s computational resources.

• Flickr30k [133]: Flickr30k is a widely used dataset for research on image
captioning, language understanding, and multimodal learning. It contains 31,783
images and 158,915 English prompts on various scenarios. All images are collected

74

5.3. FAKE IMAGE DETECTION

Table 5.1: The text-to-image generation models, datasets, and the number/size of fake
images we consider in this section. Note that the number of fake images from DALL·E 2
being low is due to its poor image generation efficiency.

Model Dataset Images Image Size

SD MSCOCO 59,247 512×512
Flickr30k 13,231 512×512

LD MSCOCO 31,276 256×256
Flickr30k 17,969 256×256

GLIDE MSCOCO 41,685 256×256
Flickr30k 27,210 256×256

DALL·E 2 MSCOCO 1,028 256×256
Flickr30k 300 256×256

from the Flickr website, and the prompts are written by Flickr users in natural
language.

Note that the prompts from these datasets are also important as they will be used to
generate fake images or serve as inputs for the hybrid classifiers (see Section 5.3 for
more details).

In summary, the text-to-image generation models and datasets we consider in this
section are listed in Table 5.1. Since different models are trained on images of different
sizes and fake images usually appear in the real world at different resolutions. Therefore,
we adopt the default settings of these available models and perform experiments on fake
images of different sizes.

5.3 Fake Image Detection

In this section, we present our fake image detector to differentiate fake images from
real ones (RQ1). We start by introducing our design goals. Then, we present how to
construct the detector. Finally, we show the experimental results.

5.3.1 Design Goals

To tackle the threats posed by the misuse of various text-to-image generation models,
the design of our detector should follow the following points.

• Differentiating Between Fake and Real Images: The primary goal of the
detector is to effectively differentiate fake images generated by text-to-image
generation models from real ones. Successful detection of fake images can reduce
the threat posed by the misuse of these advanced models.

• Agnostic to Models and Datasets: As text-to-image generation models have
undergone rapid development, it is likely that more advanced models will be

75

CHAPTER 5. OUTPUT SECURITY

proposed in the future. As a result, it is difficult for us to collect all text-to-
image generation models to build our detector. Moreover, building the detector
on various models (even though we can collect many) inevitably leads to more
resource consumption. Therefore, it is crucial to explore whether our detection
based on very few text-to-image generation models is generalizable to other models.
Also, since we have no knowledge of the distribution of prompts used to generate
fake images, it is also important for our detector to identify fake images generated
by prompts from other prompt-image datasets.

5.3.2 Methodology

To achieve the primary goal of differentiating fake images from real ones, we construct a
detector by training a binary classifier. Furthermore, to make our detector agnostic to
unseen models and datasets, we consider a more realistic and challenging scenario where
the detector can collect fake images generated by only one text-to-image generation
model given prompts from one dataset. The detector then trains its binary classifier
on these fake/real images and evaluates its generalizability on fake images from other
models and datasets.

In addition, based on the background knowledge available to the detector, we propose
two different approaches to establish the detector, namely image-only and hybrid. The
image-only detector accepts only images as input. In contrast, the hybrid detector
accepts both images and their corresponding prompts as input. See Figure 5.2 for an
illustration of how to conduct fake image detection.

Image-Only Detection: The red part of Figure 5.2 shows the work pipeline of our
image-only detector. The process of training our image-only detector can be divided into
three stages, namely, data collection, dataset construction, and detector construction.

• Data Collection: We first randomly sample 20,000 images from MSCOCO and
treat them as real images for the next stage. Then, we use the prompts of these
20,000 images to query one model (we choose SD here) to get 20,000 fake images.
In this way, our fake images are from one text-to-image generation model given
prompts from one dataset, referred to as SD+MSCOCO.

• Dataset Construction: We label all fake images as 0 and all real images as 1.
We then create a balanced training dataset containing a total of 40,000 images.

• Detector Construction: We build the detector (i.e., a binary classifier) that
accepts an image as input and outputs a binary prediction, i.e., 0-fake or 1-
real. Lastly, we train the detector from scratch with fake and real images in
conjunction with classical training techniques. Note that we use ResNet18 [43] as
our image-only detector’s architecture.

76

5.3. FAKE IMAGE DETECTION

CLIP Image
Encoder

A man is in a kitchen
making pizzas

A man is in a kitchen
making pizzas

CLIP Text
Encoder

+ Classification
Layer

Image-Only detection

Hybrid detection
Fake images generated by other text-to-image
generation models

Real images

Fake images
generated by SD

Input

CNN

Image embedding

Prompt embedding

Figure 5.2: An illustration of fake image detection. The red part describes image-only
detection. The green part describes hybrid detection. The blue part describes fake
images generated by other text-to-image generation models.

After we have trained the detector, we evaluate the generalizability of the trained
detector on images from other models, i.e., LD, GLIDE, and DALL·E 2, given prompts
from the other dataset, i.e., Flickr30k. For completeness, we also include the detection
results on fake images from the same model and/or the same dataset. Table 5.1 shows
the total number of fake images generated by four models and two datasets. Besides the
20,000 images (out of 59,247) from SD+MSCOCO, which are used to train the detector,
all the others are used to test the performance of the detector. Note that in all cases,
we sample the same number of real images as the fake ones for training and testing the
detector (and the attributor in Section 5.4).

Hybrid Detection: We now present the hybrid detector, which considers both images
and their corresponding prompts. This is motivated by the observation that real images
always carry a wide range of contents that the prompts cannot fully and faithfully

77

CHAPTER 5. OUTPUT SECURITY

describe. However, since fake images are generated based on prompts, they may not
contain additional content beyond what is described, i.e., not as informative as real
images. Therefore, introducing prompts together with images enlarges the disparity
between fake and real images, which in our opinion can contribute to differentiating
between the two. We further show in Section 5.3.4 that the disparity between real and
fake images is indeed huge from the prompt’s perspective. Note that using prompts as
an extra signal for fake image detection is novel and unique to text-to-image generation
models, as prompts do not participate in the image generation process of traditional
generation models, like GANs.

The green part of Figure 5.2 shows the work pipeline of our hybrid detection.
Specifically, the process of training our hybrid detector can also be divided into three
stages, i.e., data collection, dataset construction, and detector construction.

• Data Collection: To collect the real and fake images, we follow the same step
as the first step for the image-only detector.

• Dataset Construction: Since our hybrid detector takes images and prompts as
input, we label all fake images and their corresponding prompts as 0 and label
real images and their corresponding prompts as 1. Similarly, we then create a
training dataset containing a total of 40,000 prompt-image pairs.

• Detector Construction: To exploit the prompt information, we take advantage
of CLIP’s image encoder and text encoder as feature extractors to obtain high-level
embeddings of images and prompts. Note that CLIP is trained on the image-text
pair to align the embeddings of the image and text, thus creating a link between
them. Then, we concatenate image embeddings and text embeddings together
as new embeddings and use these embeddings to train a binary classifier, i.e., a
2-layer multilayer perceptron, as our detector.

To evaluate the trained hybrid detector, we need both images and their corresponding
prompts. Typically, a user may attach a description to an image they post on the
Internet. Therefore, we can directly consider this attached description as the prompt
for the image. In our experiments, we adopt the original/natural prompts from the
dataset to conduct the evaluation.

In a more realistic and challenging scenario where the detector cannot obtain the
natural prompts, we propose a simple yet effective method to generate the prompts
ourselves. Concretely, we leverage the BLIP [62] model (an image captioning model) to
generate captions for the queried images and then regard these generated captions as
the prompts for the images. Note that BLIP has been proven to show great performance
in captioning real-world images by previous works [62].

5.3.3 Results

We now present the performance of our proposed image-only detection and hybrid
detection for fake image detection.

78

5.3. FAKE IMAGE DETECTION

Image-Only Detection: For a convincing evaluation, we adopt the existing work [122]
on detecting fake images generated by various types of generation models, including
GANs and low-level vision models [15, 26], as a baseline. The authors of [122] name their
classifier as forensic classifier. Note that this forensic classifier is the state-of-the-art
fake image detector for generation models, and the authors show that it has strong
generalizability. For instance, it can achieve an accuracy of 0.946 on differentiating fake
images generated by StarGAN [22], which is not considered during the model training,
from real images.

Figure 5.3 depicts the evaluation results. First of all, we can observe that the
forensic classifier cannot effectively distinguish fake images (generated by text-to-image
generation models) from real ones. In all cases, the forensic classifier only achieves an
accuracy of 0.24, which is equivalent to a random guess. Based on this observation,
we can conclude that the forensic classifier cannot be generalized to text-to-image
generation models. We attribute this observation to the differences between traditional
generation models and text-to-image generation models. This result also prompts the
urgent need for counterpart solutions against the misuse of text-to-image generation
models.

Furthermore, we can observe that the image-only detector performs much better
in all cases than the forensic classifier. For example, the image-only detector can
achieve an accuracy of 0.871 in distinguishing fake images generated by LD+Flickr30k
(querying the prompts of Flickr30k to LD) from real images. We emphasize here that
the image-only detector is trained only on fake images generated by SD+MSCOCO
and has never seen fake images generated by other models given prompts from other
datasets. We conjecture that this is due to some common properties shared by all
fake images generated by text-to-image generation models (see Section 5.3.4 for more
details).

Lastly, another interesting finding is the much larger variation in detection perfor-
mance due to the effect of the model compared to the effect of the dataset. E.g., in
Figure 5.3a, the image-only detector achieves an accuracy of 0.913 on SD but only
0.2426 on DALL·E 2. In contrast, comparing Figure 5.3a and Figure 5.3e, the image-
only detector achieves very close accuracy on different datasets over all text-to-image
generation models. We attribute this observation to the unique fingerprint of fake
images generated by text-to-image generation models (see Section 5.4.4).

Hybrid Detection: Although the image-only detector achieves better performance in
all cases compared to the forensic classifier, we acknowledge that the current detection
performance is far from the design goal due to the lack of good performance on other
models, such as GLIDE and DALL·E 2. As mentioned earlier, using prompts as an
extra signal may boost the fake image detection performance.

We report the performance of our proposed hybrid detection in Figure 5.3. First, we
can find that the hybrid detector can always achieve much better performance than the
image-only detector, especially on models like GLIDE and DALL·E 2. For instance, the
hybrid detector with natural prompts can achieve an accuracy of 0.909 on DALL·E 2
+MSCOCO, which is much higher than the 0.2422 achieved by the image-only detector.
Moreover, even without natural prompts, the hybrid detector with BLIP-generated
prompts can still have a strong performance. For example, on fake images generated

79

CHAPTER 5. OUTPUT SECURITY

SD LD GLIDE DALL·E 2
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Forensic classifier

Image-Only

Hybrid (natural prompts)

Hybrid (generated prompts)

(a) MSCOCO-
Accuracy

SD LD GLIDE DALL·E 2
0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

(b) MSCOCO-Recall

SD LD GLIDE DALL·E 2
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

(c) MSCOCO-Precsion

SD LD GLIDE DALL·E 2
0.0

0.2

0.4

0.6

0.8

1.0

A
U

C

(d) MSCOCO-AUC

SD LD GLIDE DALL·E 2
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(e) Flickr-Accuracy

SD LD GLIDE DALL·E 2
0.0

0.2

0.4

0.6

0.8

R
ec

al
l

(f) Flickr-Recall

SD LD GLIDE DALL·E 2
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

(g) Flickr-Precision

SD LD GLIDE DALL·E 2
0.0

0.2

0.4

0.6

0.8

1.0

A
U

C

(h) Flickr-AUC

Figure 5.3: The performance of the forensic classifier and detectors.

by GLIDE+MSCOCO, the hybrid detector with natural prompts achieves an accuracy
of 0.891, and encouragingly, the hybrid detector with BLIP-generated prompts also
achieves a high accuracy of 0.838. These results indicate that introducing prompts
together with images can indeed enlarge the disparity between fake and real images,
which is beneficial to fake image detection. We further investigate in more depth why
using the prompt as a new signal can improve detection performance (see Section 5.3.4
for detailed information).

Besides, we can find that the performance of the hybrid detector on other models
is much less influenced by prior knowledge of the known model than the image-only
detector. For example, on the MSCOCO dataset, the hybrid detector with natural
prompts can achieve an accuracy of 0.958 on SD, while the accuracy only drops to 0.909
on DALL·E 2. We can also find that the hybrid detector is not heavily influenced by the
dataset compared to the image-only detector. For instance, on SD, the hybrid detector
with generated prompts can achieve quite a similar accuracy between MSCOCO and
FLickr30k (0.930 vs. 0.904). These results show that our proposed hybrid detector is
strong regarding model and dataset independence.

5.3.4 Discussion

The above results fully demonstrate the effectiveness of our fake image detection. Next,
we delve more deeply into the reasons for successfully distinguishing fake images from
real ones. We conjecture that there exist some common properties shared by fake
images from various text-to-image generation models. We verify this conjecture by
visualizing the common artifact shared across fake images. Besides, based on the better
performance achieved by hybrid detection, we further explore why additional prompt
information can enhance detection performance. In the end, we also test whether our
trained detector can be directly applied to fake images from other domains, in particular,
fake artwork detection.

80

5.3. FAKE IMAGE DETECTION

(a) Real (b) Text-to-Image (c) GAN

Figure 5.4: The visualization of frequency analysis on (a) real images, (b) fake images
generated by text-to-image generation models, and (c) fake images generated by
GAN.

0.0 0.2 0.4 0.6 0.8 1.0

Probability

0

200

400

600

800

1000

N
um

b
er

of
sa

m
pl

es

Fake

Real

Figure 5.5: The probability distribution of the connection between the real/fake images
and the corresponding prompts.

Artifact Visualization: Inspired by Zhang et al. [140], we draw the frequency spectra
of fake and real images. Frequency spectra can serve as a useful tool in characterizing
the properties of images. In particular, fake images generated from the model have been
observed to frequently exhibit anomalous global structure and color transitions that
deviate from natural images. As the number of model-generated images grows, these
anomalies become increasingly apparent. Therefore, frequency spectra can provide a
valuable method to visualize and quantify the differences between real and generated
images. For the four text-to-image generation models we consider in this section, we

81

CHAPTER 5. OUTPUT SECURITY

randomly select 1,000 fake images from each model given prompts from MSCOCO. In
total, we have obtained 4,000 fake images. Also, we collect 4,000 real images of the same
prompts from MSCOCO. We then calculate the average of Fourier transform outputs of
real and fake images, respectively. We leverage Fourier transform here due to its ability
to reveal latent features of the given images.

As shown in Figure 5.4, we can clearly observe that there are distinct patterns in real
and fake images. Concretely, the central region of the fake image has higher brightness
and more concentrated frequency spectra. This observation verifies the existence of
the common artifact shared by the fake images generated by various text-to-image
generation models. Note that we also visualize the frequency spectra of fake images
from traditional GANs in Figure 5.4. We can observe a significant difference between
the frequency spectra of fake images from text-to-image generation models and GANs.
Even with that huge gap, our detector, built on the text-to-image diffusion model, can
still achieve 0.863 accuracy on detecting fake images generated by StyleGAN, showing
the generalization ability of our proposed method.

Why Does Prompt Enhance Detection Performance: We conduct a more in-
depth study on why using prompts as a new signal can improve detection performance.
As mentioned before, a prompt cannot completely reflect the contents of a real image.
Meanwhile, a fake image is purely based on the prompt information. This suggests
the connection between a fake image and its prompt is stronger than the connection
between a real image and its prompt. This is essentially the reason why the hybrid
detector has a better performance than the image-only detector.

To verify this, we first randomly sample 2,000 prompts from MSCOCO. For each
prompt, we collect its corresponding real image from the dataset and let SD generate
a fake image for it. Then, we rely on CLIP’s text encoder to transfer the prompt to
an embedding and CLIP’s image encoder to transfer the real and fake images to two
embeddings, respectively. Then, we calculate two cosine similarities, one is between
the prompt’s embedding and its real image’s embedding, and the other is between the
prompt’s embedding and its fake image’s embedding. Finally, the two cosine similarities
are normalized into a probability distribution via a softmax function [93]. Higher
probability implies a stronger connection between the image and the prompt. Figure 5.5
shows the similarity distribution between the 2,000 prompts and the real/fake images.
We can see that the similarity between the fake image and the corresponding prompt is
closer than that between the real image and the same prompt, leading to a clear gap in
the similarity distribution between fake and real images. This verifies our aforementioned
intuition. Furthermore, we can also conclude that it is not the prompt information
itself that enhances the performance of the detector, but the prompt information can
be exploited as an extra “anchor” to provide a new signal to distinguish between real
and fake images. Such signals can be effectively captured by a multilayer perceptron.

Combination of Different Text-to-Image Models: We further demonstrate the
effectiveness of our hybrid detector trained on fake images generated from different
models. More specifically, we use Stable Diffusion and DALL·E 2 to generate fake
images as the training set for our hybrid detector, which is then evaluated on all four

82

5.3. FAKE IMAGE DETECTION

−0.50 −0.25 0.00 0.25 0.50
Descriptiveness

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

SD

LD

GLIDE

DALL·E 2

(a) MSCOCO

−0.50 −0.25 0.00 0.25 0.50
Descriptiveness

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

SD

LD

GLIDE

DALL·E 2

(b) Flickr30k

Figure 5.6: The performance of hybrid detectors with generated prompts in terms of
the prompts’ descriptiveness. The descriptiveness is grouped into five equally sized bins.

text-to-image generation models that we consider in this section. autoreftab:combine-
performance shows that, encouragingly, our detector can perform better when trained
on more models than on only one model.

Table 5.2: Performance of hybrid detector trained on mixed fake images from Stable
Diffusion and DALL·E 2

.

Models Accuracy AUC F1 Score
SD 0.933 0.923 0.793
LD 0.915 0.951 0.879
GLIDE 0.891 0.909 0.883
DALL·E 2 0.944 0.877 0.904

5.3.5 Ablation Study

Impact of Generated Prompt: In hybrid detection with generated prompts, we
rely on the BLIP model. Here, we explore whether the quality of the BLIP-generated
prompts affects the detection performance. To measure the quality of the generated
prompts by BLIP, we leverage a new term called prompt descriptiveness [105, 78,
30, 31]. Prompt descriptiveness can be quantitatively measured by computing the
cosine similarity between a prompt’s embedding and its image’s embedding generated
by CLIP.3 Such similarity demonstrates the degree of match between the generated
prompts and the given images. Figure 5.6 depicts the relation between the detection
performance and the descriptiveness of the generated prompts. We can see that in

3Note that the descriptiveness is the same as the one used in the previous analysis regarding why
prompts can enhance detection performance.

83

CHAPTER 5. OUTPUT SECURITY

500 1000 5000 10000 20000 40000
Train dataset size

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Image-Only

Hybrid (natural prompts)

Hybrid (generated prompts)

(a) SD

500 1000 5000 10000 20000 40000
Train dataset size

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) LD

500 1000 5000 10000 20000 40000
Train dataset size

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(c) GLIDE

500 1000 5000 10000 20000 40000
Train dataset size

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(d) DALL·E 2

Figure 5.7: The performance of detectors in terms of the training dataset size on
SD+MSCOCO. We conduct the evaluation on (a) SD+MSCOCO, (b) LD+MSCOCO, (c)
GLIDE+MSCOCO, and (d) DALL·E 2+MSCOCO.

general, higher descriptiveness leads to better detection performance. Also, after a
certain descriptiveness value, the detection performance becomes stable across all models
and datasets. This shows the robustness of using BLIP-generated prompts in our hybrid
detector.

Impact of Training Dataset Size: In this section, we explore the impact of the
training dataset’s size on the performance of our proposed fake image detection. More
concretely, for each text-to-image generation model, we train the detector on fake images
from SD+MSCOCO by varying the size of the training dataset from 500 to 40,000 (half
is real, half is fake). Note that the default size we use in the previous evaluation is
40,000.

We report the detection performance in terms of the training dataset size in Figure 5.7.
As expected, the performance of different detectors is indeed affected by the size of the
training dataset, and the general trend is that all the detectors perform better with the
increase in the training dataset size. For instance, as shown in Figure 5.7b, when the
training dataset size is 1,000, the hybrid detector can achieve an accuracy of 0.792 while
the accuracy can be improved to 0.885 when the training dataset size is 40,000. More
encouragingly, we can also find that the hybrid detector achieves strong performance
even with a small training dataset of only 500 images, which is much fewer than 40,000
images. For example, in Figure 5.7a, the hybrid detector achieves a high accuracy of
0.830 with only 500 training images. Finally, we again find that the hybrid detector
performs much better than the image-only detector, even with different sizes of the
training dataset. For example, in Figure 5.7c, the hybrid detector achieves an accuracy
of 0.714 with 500 training images, while the image-only detector achieves only 0.2423
with 40,000 training images. These results again demonstrate that introducing prompts
together with images is beneficial to differentiate between fake and real images.

5.3.6 Takeaways

In summary, to answer RQ1, we propose fake image detection by training a binary
detector to differentiate fake images generated by text-to-image generation models from
real images. Specially, we propose two methods to construct the binary detector, namely
image-only and hybrid. Our evaluation shows that the fake images from various models
can indeed be differentiated from the real ones. Moreover, the hybrid detector can obtain

84

5.4. FAKE IMAGE ATTRIBUTION

much better performance compared to the image-only detector, which demonstrates that
introducing prompts together with images can indeed amplify the differences between
fake and real images.

5.4 Fake Image Attribution

The previous section has shown that fake image detection, especially the hybrid detection
we have proposed, can achieve remarkable performance. In this section, we explore
whether fake images generated by various text-to-image generation models can be
attributed to their source models, i.e., fake image attribution. We start by introducing
our design goals. We then describe how to construct the fake image attributor. Finally,
we present the evaluation results.

5.4.1 Design Goals

To attribute fake images to their source models, we follow two design goals.

• Tracking Sources of Fake Images. The primary goal of fake image attribution
is to effectively attribute different fake images to their source generation models.
The aim of attribution is to let a model owner be held responsible for the model’s
(possible) misuse. Previously, fake image attribution has been studied in the
context of traditional generation models, like GANs [135].

• Agnostic to Datasets. In the real world, a fake image can be generated
by a text-to-image generation model based on a prompt from any distribution.
Therefore, to be more practical, the attribution should be independent of the
prompt distribution.

5.4.2 Methodology

To attribute the fake images to their sources, we construct fake image attribution by
training a multi-class classifier, referred to as an attributor, with each class corresponding
to one model. As aforementioned, the attributor should be agnostic to datasets; thus,
we establish the multi-class classifier based on prompts from only one dataset, e.g.,
MSCOCO, and test it on prompts from other datasets like Flickr30k.

Similar to fake image detection, we propose two different approaches to establish
the attributor, namely image-only and hybrid. The image-only attributor accepts only
images as input, and the hybrid attributor accepts both images and their corresponding
prompts as input.

Image-Only Attribution: The process of establishing our image-only attributor can
also be divided into three stages, namely, data collection, dataset construction, and
attributor construction.

• Data Collection: We first randomly sample 20,000 images from MSCOCO as
real images. Then, we use the prompts of these 20,000 images to query each model

85

CHAPTER 5. OUTPUT SECURITY

to get 20,000 fake images accordingly. Here, we adopt SD, LD, and GLIDE to
generate fake images. In total, we have obtained 60,000 fake images. The reason
we do not consider DALL·E 2 is that we will use DALL·E 2 for the experiments
regarding adaptation to other models (see Section 5.4.4).

• Dataset Construction: We label all real images as 0 and all fake images from
the same model as the same class. Concretely, we label the fake images from
SD/LD/GLIDE as 1/2/3. We then create a training dataset containing a total of
80,000 images with four classes.

• Attributor Construction: We build the fake image attributor, i.e., a multi-class
classifier, that accepts images as input and outputs the multi-class prediction,
i.e., 0-real, 1-SD, 2-LD, or 3-GLIDE. We train the attributor from scratch using
the created training dataset in conjunction with classical training techniques.
Similar to the fake image detector, we leverage ResNet18 [43] as the attributor’s
architecture.

After we have trained the attributor, we evaluate the performance of the trained
attributor for attributing images from various sources (i.e., real, SD, LD, and GLIDE)
given prompts from the other dataset (i.e., Flickr30k). For testing the attributor, we
sample the same number of images for all four classes, i.e., 10,000 each and 40,000 in
total.

Hybrid Attribution: The previous evaluation in fake-image detection has demon-
strated the superior performance of the hybrid detector, verifying that introducing
prompts together with images can amplify the differences between fake and real images.
We now conduct the study to investigate whether a similar enhancement can be observed
in the case of hybrid attribution.

The hybrid attributor is quite similar to the above image-only attributor, which
also consists of three stages, i.e., data collection, dataset construction, and attributor
construction.

• Data Collection: To collect the images from various sources, we follow the same
step as the first step for the image-only attributor.

• Dataset Construction: Since our hybrid attributor takes images and prompts
as input, we label all real images with their corresponding prompts as 0 and all
fake images from the same model with their corresponding prompts as the same
class. Similarly, we then create a training dataset containing a total of 80,000
prompt-images pairs with four classes.

• Attributor Construction: To exploit the prompt information, we again use
CLIP’s image encoder and text encoder as feature extractors to obtain high-level

86

5.4. FAKE IMAGE ATTRIBUTION

(a) SD (b) LD (c) GLIDE (d) DALL·E 2

Figure 5.8: The visualization of frequency analysis on fake images generated by (a) SD,
(b) LD, (c) GLIDE, and (d) DALL·E 2.

embeddings of images and prompts. Then, we concatenate image embeddings
and text embeddings together as new embeddings and use these embeddings to
train a multi-class classifier, which is also a 2-layer multilayer perceptron, as our
attributor.

In order to evaluate the trained hybrid attributor, we need images and their correspond-
ing prompts. We again consider two scenarios here, one in which we can directly obtain
prompts for the images from the dataset and the other in which we can only generate
prompts for the images relying on BLIP.

5.4.3 Results

In this section, we present the performance of our proposed two types of fake image
attribution.

Image-Only Attribution: We report the performance of image-only attribution in
Table 5.3. Note that the random guess for the 4-class classification task is only 0.245. We
can find that our proposed image-only attributor can achieve remarkable performance.
For instance, the image-only attributor can achieve an accuracy of 0.864 on images
from various sources given the prompts sampled from MSCOCO. These results indicate
that the fake images can be effectively attributed to their corresponding text-to-image
generation models. We further show the unique feature extracted from each model in
Section 5.4.4, which implies that different models may leave unique fingerprints in the
fake images they generate.

Further, the image-only attributor can also achieve a high accuracy of 0.863 on
images from various source models given the prompts sampled from the other dataset
Flickr30k. Note that we construct the attributor based on MSCOCO only. This result
indicates that our proposed image-only attribution is agnostic to datasets.

Hybrid Attribution: Table 5.3 also depicts the performance of our proposed hybrid
attribution. We can clearly see that hybrid attribution, no matter with or without
natural prompts, achieves better performance than image-only attribution regardless of
the dataset. These results demonstrate once again that fake images can be successfully
attributed to their corresponding text-to-image generation models. Also, they verify
that using prompts as an extra signal can improve attribution performance.

87

CHAPTER 5. OUTPUT SECURITY

Table 5.3: The performance of image-only attributors and hybrid attributors.

MSCOCO Flickr30k

I
mage-Only 0.864 0.863

Hybrid (natural prompts) 0.936 0.933
Hybrid (generated prompts) 0.903 0.892

5.4.4 Discussion

The above evaluation demonstrates the effectiveness of our fake image attribution. We
conjecture that each text-to-image generation model leaves a unique fingerprint in the
fake images it generates. Next, we verify this conjecture by visualizing the fingerprints
of different models. Besides, in the previous evaluation, the training and testing images
for our attributor are disjoint but generated by the same set of text-to-image generation
models. We further explore how to adapt our attributor to other models that are not
considered during training.

Fingerprint Visualization: Similar to visualizing the shared artifact across fake
images (see Section 5.3.4), we also draw the frequency spectra of different text-to-image
generation models built on MSCOCO. For each text-to-image generation model, we
randomly select 2,000 fake images and then calculate the average of their Fourier
transform outputs.

As shown in Figure 5.8, we can clearly observe that there are distinct patterns in
images generated by different text-to-image generation models, especially in GLIDE
and DALL·E 2. We can also find that the frequency spectra of SD is similar to that of
LD, which can explain why the image-only detector built on SD can also achieve very
strong performance on LD (see Figure 5.3). The reason behind this is that SD and LD
follow similar algorithms, although trained on different datasets and different model
architectures. In conclusion, the qualitative evaluation verifies that each text-to-image
generation model has its unique fingerprint.

Adaptation to Unseen Models: In previous experiments, we evaluate attribution
on fake images generated by models considered during training. However, there are
instances when we encounter fake images that are not from models involved in training,
i.e., unseen models. Next, we explore how to adapt our attributor to unseen models.

To this end, we propose a simple yet effective approach named confidence-based
attribution. The key idea is to attribute the unconfident samples from the attributor
prediction, i.e., lower than a pre-defined threshold, to unseen models. Here, all unseen
models are considered as one class.4 In our evaluation, we treat DALL·E 2 as one unseen
model (as mentioned before). We first divide the datasets into training, validation, and
testing parts. To find a suitable threshold, we experimented with values from 0 to 1 in
a step of 0.1 on our validation part. Note that here we extend the evaluation from four
classes to five: real, SD, LD, GLIDE, and unseen; the testing dataset is still balanced.

4In the current version, our approach cannot differentiate fake images from multiple unseen text-to-
image generation models. We will leave this as future work.

88

5.4. FAKE IMAGE ATTRIBUTION

0.0 0.2 0.4 0.6 0.8
Threshold

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Image-Only

Hybrid (natural prompts)

Hybrid (generated prompts)

(a) MSCOCO

0.0 0.2 0.4 0.6 0.8
Threshold

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

(b) Flickr30k

Figure 5.9: The performance of attributors on an unseen dataset DALL·E 2 in terms of
different thresholds. We conduct the evaluation on (a) MSCOCO and (b) Flickr30k.

5000 10000 20000 40000 80000
Size

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Image-Only

Hybrid (natural prompts)

Hybrid (generated prompts)

(a) MSCOCO

5000 10000 20000 40000 80000
Size

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

(b) Flickr30k

Figure 5.10: The performance of attributors in terms of the training dataset size on
MSCOCO. We conduct the evaluation on (a) MSCOCO and (b) Flickr30k.

Also, the attributor remains unchanged, i.e., it is still a 4-class classifier. Figure 5.9
shows that both image-only and hybrid attributors can achieve good performance in all
cases. Encouragingly, the 0.9 thresholds can lead to the best attribution performance.
We also find that after finding the best threshold in evaluation datasets, one can still
achieve 0.855 accuracy on the test part. Moreover, we can still conclude that hybrid
attribution can achieve better performance than image-only attribution in both settings.
These results indicate that with a simple modification, our attribution can be adapted
to unseen models.

5.4.5 Ablation Study

Impact of Training Dataset Size: Here, we explore the effect of the training data
size on attribution performance. The experimental results are depicted in Figure 5.10.

89

CHAPTER 5. OUTPUT SECURITY

We can see that the size of training data indeed has a great influence on attribution
performance. For example, when the training dataset size is 5,000, the hybrid attributor
can achieve an accuracy of 0.736, while the accuracy can be improved to 0.946 when
the training dataset size increases to 80,000. Besides, we can find that the hybrid
attributor requires less data to achieve a stable performance compared to the image-only
attributor. For example, hybrid attribution achieves a huge performance improvement
from 10,000 to 20,000 in training dataset size, while for image-only attribution, a
similar improvement happens when the training dataset size increases from 40,000 to
80,000. From this phenomenon, we can conclude that hybrid attribution achieves good
performance even with a small amount of training data.

5.4.6 Takeaways

In summary, to answer RQ2, we propose image-only attribution and hybrid attribution
to track the source of fake images. Empirical results indicate that fake images can be
successfully attributed to their sources. We further conduct a qualitative analysis that
verifies the existence of unique fingerprints left by different text-to-image generation
models in their generated images. Also, we show that our method can be easily adapted
to other unseen models.

5.5 Robustness Analysis

Previous evaluations have demonstrated the excellent performance of our proposed
methods in detection and attribution tasks. In this section, we further conduct a
systematic robustness analysis of our proposed methods. Specially, we evaluate the
robustness of detectors and attributors against adversarial example attacks, which are
the most common and severe attacks against machine learning models. We leverage
three representative adversarial example attacks, namely FGSM [37], BIM [58], and
DI-FGSM [129] to conduct the robustness analysis. Furthermore, given that our hybrid
detector and attributor consider both the image and its corresponding prompt, we
propose HybridFool, which maximizes the distance between the embedding of a given
image and the prompt by adding perturbations to the image. In the following, we first
present each adversarial example attack we consider in this robustness analysis. Then,
we show the evaluation results.

5.5.1 Adversary Example Attacks

In this section, we present the methodologies for each of the adversarial example
attacks considered in this section, namely FGSM [37], BIM [58], DI-FGSM [129], and
HybridFool.

FGSM [37]: Fast gradient sign method (FGSM) is one of the most representative
attacks in adversary example domain. FGSM can be formed as the following equations:

x′ = x+ ϵ · sign(∇xJ(θ, x, y)) (5.1)

90

5.5. ROBUSTNESS ANALYSIS

x is the input, y is the true label of x, θ is our detector’s or attributor’s parameters,
and J(θ, x, y) is its cost function. The main idea of FGSM is to maximize the loss for
the given model by adding a small and scaled version of the sign of the gradient to the
original image.

BIM [58]: Basic iterative method (BIM) is another popular adversary example attack,
which actually is an extension of FGSM. Instead of computing the gradient in one epoch,
BIM uses multiple interactions with smaller step sizes to generate the adversarial noise,
which can be formulated as follows:

x(0) = x, x′(t+1) = x′(t) + α · sign(∇x′J(θ, x′(t), y)) (5.2)

DI-FGSM [129]: FGSM and BIM are white-box attacks where the adversary must
access the model’s gradient. Here, we further consider black-box attacks where the
adversary does not need to access the model’s gradient, i.e., Diverse Inputs Iterative
Fast Gradient Sign Method (DI-FGSM [129]). The main idea behind DI-FGSM is to
train a surrogate model that mimics the victim model’s property and then search for
the adversarial noise on the surrogate model. In this way, the adversarial noise can also
mislead the victim models.

The DI-FGSM can be described using the following equation:

x′ = x+ ϵ · sign(∇xJs(θs, x+ η, y)) (5.3)

Here, x is the input, y is the true label of x, θs is the surrogate detector’s or
attributor’s parameters, Js(θ, x, y) is its cost function, ϵ is the perturbation magnitude,
and η is a random noise vector.

HybridFool: Note that our hybrid detectors and attributors accept images and their
corresponding prompts as input. Thus, in addition to existing representative attacks
that only mislead classification by adding noises to images, we propose HybridFool,
a newly designed black-box attack that additionally aims to maximize the distance
between the embeddings of the images and their corresponding prompts by adding
noises. Our proposed HybridFool can be formulated as follows:

x′ = x+ ϵ · sign(∇xJ(Ei(x), Et(t))) (5.4)

Where J(Ei(x), Et(t)) here represents the distance function, Ei is CLIP’s image encoder,
Et is CLIP’s text encoder, and t the corresponding prompt of x.

5.5.2 Experimental Results

In this section, we present the robustness performance of our proposed detectors and
attributors by reporting the accuracy under various adversarial example attacks. Note
that higher accuracy means better robustness and vice versa.

Table 5.4 displays the accuracy of our detectors and attributors under various noise
levels applied by each attack. We can find that our proposed detectors and attributors
demonstrate remarkable robustness against adversarial example attacks unless the added

91

CHAPTER 5. OUTPUT SECURITY

Table 5.4: The performance of our proposed detectors and attributors under various
adversary example attacks.

Attacks Noise Detection Attribution

FGSM
0.001 0.963 0.896
0.005 0.691 0.2493
0.01 0.367 0.340

BIM
0.001 0.963 0.812
0.005 0.691 0.478
0.01 0.367 0.392

DI-FGSM
0.001 0.938 0.833
0.005 0.742 0.463
0.01 0.691 0.2468

HybridFool
0.001 0.846 0.811
0.005 0.329 0.495
0.01 0.323 0.390

noise level is sufficiently large, e.g., 0.005 and 0.01. However, it is worth noting that
FGSM, BIM, and HybridFool are white-box attacks, meaning they require access to the
internal gradients to execute successfully. Since these gradients of our detectors and
attributors are not accessible in the real world, these attacks cannot be executed in
practical scenarios. Furthermore, even for black-box attacks like DI-FGSM, the noise
added to the images is clearly visible when the noise level is set to 0.005 and 0.01. This
renders the images unrealistic and makes them easy to detect, further highlighting the
robustness of our proposed detector and attributor against adversarial example attacks.

5.6 Prompt Analysis

One of the major differences between text-to-image generation models and traditional
generation models is that the former takes a prompt as input. In this section, we
investigate which kinds of prompts are more likely to generate authentic images (RQ3).
To answer this question, we perform a comprehensive prompt analysis from semantic
and structural perspectives. Note that when exploring the impact of prompts, it is
not appropriate to use a hybrid detector that accepts prompts as input to detect fake
images. In contrast, the image-only detector is independent of the given prompt. Thus,
we conducted prompt analysis on image-only detectors.

5.6.1 Semantics Analysis

We first conduct semantic analysis on prompts based on their topics. Concretely, we
group prompts into different clusters by topic. Then, for each cluster/topic, we calculate
the proportion of the corresponding fake images being classified as real images by our
image-only detector (Section 5.3). A cluster with a higher proportion indicates the

92

5.6. PROMPT ANALYSIS

Table 5.5: Top five prompts which can generate the most real images, determined by
the image-only detector. Gray cells mean the prompt mainly describe the details of
the subject.

Rank Image Description

Top1 A dog hanging out of
a side window on a car

Top2 A pan filled with food
sitting on a stove top

Top3 A birthday cake with English
and Chinese characters

Top4 There is an elephant-shaped figure
next to other decorations

Top5 there is a cake and donuts
that look like a train

Table 5.6: Top five prompts which can generate the most fake images, determined by
the image-only detector. Gray cells mean the prompt mainly describe the environment
where the subject is located.

Rank Image Description

Top1 A green bus is parked
on the side of the street

Top2 THERE IS A ZEBRA THAT IS
EATING GRASS IN THE YARD

Top3 I sign that indicates the street
name posted above a stop sign

Top4 A group of skiers as they
ski on the snow

Top5 A bench is surrounded by
grass and a few flowers

93

CHAPTER 5. OUTPUT SECURITY

sk
is

sn
ow

b
oa

rd

gi
ra

ff
e

sh
ee

p

ki
te

bi
rd ca

t

ze
br

a

si
nk

ai
rp

la
ne

su
it

ca
se

ba
na

na

te
dd

y
b

ea
r

ch
ai

r

to
ile

t

b
ot

tl
e

b
ow

l

p
er

so
n

um
br

el
la

fr
is

b
ee

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

p
or

ti
on

of
fa

ke
im

ag
es

cl
as

si
fie

d
as

re
al

Figure 5.11: The top twenty topics of prompts in terms of the proportion of the corre-
sponding generated fake images being classified as real by the image-only detector.

prompts with the underlying topic have a higher chance of generating authentic images.
It is worth noting that we define authenticity as the confidence score of the detector in
determining whether a given fake image can be classified as real. As we focus on the
authenticity of an image itself, we adopt the image-only detector instead of the hybrid
detector. Note that our analysis is conducted on fake images generated by SD given
prompts from MSCOCO.

We first utilize a straightforward method to group prompts relying on the topics
provided by MSCOCO. In total, there are 80 topics in MSCOCO. We select the top
twenty topics with the highest real image proportion decided by the image-only detector
and report the results in Figure 5.11. We can clearly observe that among the top twenty
topics, “skis” and “snowboard” are ranked the highest. Also, there are many topics
related to animals, such “sheep,” “cat,” “zebra,” etc.

Though the topics from MSCOCO are straightforward, they may not be able
to represent the full semantics of the images. Therefore, we take another approach.
Specifically, we take advantage of sentence transformer [98] based on BERT [28] to
generate embeddings for the prompts and then group the embeddings with DBSCAN [32],
an advanced clustering method. The advantage of the second approach is that it can
implicitly reflect the in-depth semantics of the prompts, which is also a common practice

94

5.6. PROMPT ANALYSIS

(a) Skis (b) Snowboard

Figure 5.12: Examples of fake images generated by SD given prompts with topics “skis”
and “snowboard.”

in the natural language processing literature. We also manually check the cluster results.
It can be seen that different clusters share similar objects and similar scenes. However,
the disadvantage of this approach is that the concrete topic of each cluster needs to be
manually summarized. By manually checking, the cluster with the highest real image
proportion is related to the topic “person.” Ostensibly, this is different from the results
of the first approach (“skis” and “snowboard” ranked the highest), which is based on the
topics provided by MSCOCO. However, by manually checking fake images by prompts
with topics “skis” and “snowboard,” we discover that most of them depict “person” as
well. We show some examples in Figure 5.12. This indicates the prompts related to
“person” are likely to generate authentic fake images.

We further extract the top 5 prompts that can generate the most real and fake
images, respectively, according to the image-only detector, and list them in Table 5.5
and Table 5.6. We can also find that detailed descriptions of the subjects contribute
to the generation of authentic images. For example, of the top five real prompts, four
provide a detailed description of the subject, while four of the top five fake prompts
describe the environment where the subject is located, rather than the subject itself.
In the future, we plan to investigate in-depth the relationship between the prompts’
semantics and the generated images’ authenticity.

5.6.2 Structure Analysis

After semantic analysis, we now conduct the structure analysis. Specifically, we study
prompt structure from two angles, i.e., the length and the proportion of nouns. The
length of the prompt reflects the prompt complexity. The proportion of nouns is related
to the number of objects appearing in the fake image. Here, we use Natural Language
Toolkit (NLTK) [9] to compute the proportion of nouns in a prompt.

95

CHAPTER 5. OUTPUT SECURITY

50 100 150 200 250
Length

0.0

0.2

0.4

0.6

0.8

1.0

A
ut

he
nt

ic
it

y

(a) Length

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Proportion of nouns

0.0

0.2

0.4

0.6

0.8

1.0

A
ut

he
nt

ic
it

y
(b) Proportion of nouns

Figure 5.13: The relationship between the length\proportion of nouns in a prompt and
the corresponding image’s authenticity.

In our experiments, we randomly select 5,000 prompts from MSCOCO and then
feed these prompts to SD to generate fake images. Results are shown in Figure 5.13. We
can see from Figure 5.13a that both extremely long and short prompts cannot generate
authentic images. In addition, almost all high-authenticity images are generated by
prompts with lengths between 25 to 75. On the other hand, Figure 5.13b shows that
the proportion of nouns in prompts does not have a significant impact on fake images’
authenticity.

5.6.3 Takeaways

In summary, we conduct semantic analysis and structure analysis to study which types
of prompts are more likely to drive text-to-image generation models to generate fake
images with high authenticity. Empirical results demonstrate that a prompt with the
topic “person” or length between 25 and 75 is more likely to produce authentic images,
thus leading to difficulties in detection by our designed detectors.

5.7 Conclusion

in this section, we delve into three research questions concerning the detection and
attribution of fake images generated by text-to-image generation models. To solve the
first research question of whether we can distinguish fake images apart from real ones,
we propose fake image detection. Our fake image detection consists of two types of
detectors: an image-only detector and a hybrid detector. The image-only detector
utilizes images as the input to identify fake images, while the hybrid detector leverages
both image information and the corresponding prompt information. In the testing
phase, if the hybrid detector cannot obtain the natural prompt of an image, we take
advantage of BLIP, an image captioning model, to generate a prompt for the image.
Our extensive experiments show that while an image-only detector can achieve strong

96

5.7. CONCLUSION

performance on certain text-to-image generation models, a hybrid detector can always
have better performance. These results demonstrate that fake images generated by
different text-to-image generation models share common features. Also, prompts can
serve as an extra “anchor” to help the detector better differentiate between fake and
real images.

To tackle the second research question, we conduct the fake image attribution to
attribute fake images from different text-to-image generation models to their source
models. Similarly, we develop two types of multi-class classifiers: an image-only
attributor and a hybrid attributor. Empirical results show that both image-only
attributor and hybrid attributor have good performance in all cases. This implies
that fake images generated by different text-to-image generation models enjoy different
properties, which can also be viewed as fingerprints.

Finally, we address the third research question, i.e., which kinds of prompts are
more likely to generate authentic images? We study the properties of prompts from
semantic and structural perspectives. From the semantic perspective, we show that
prompts with the topic “person” can achieve more authentic fake images compared to
prompts with other topics. From the structural perspective, our experiments reveal
that prompts with lengths ranging from 25 to 75 allow text-to-image generation models
to create more authentic fake images.

Overall, this work presents the first comprehensive study of detecting and attributing
fake images generated by state-of-the-art text-to-image generation models. As our
empirical results are encouraging, we believe our detectors and attributors can play an
essential role in mitigating the threats caused by fake images created by the advanced
generation models.

97

6
Related Work

99

6.1. BACKDOOR ATTACKS

6.1 Backdoor Attacks

Backdoor attacks, as one of the major threats to ML systems, have been widely studied.
BadNets [39] is the first work to show that the adversary can insert a backdoor into the
machine learning model via poisoning training datasets. Then, targeted backdoor [21]
was proposed to show that with undetectable and random-position triggers, the adversary
can still successfully launch backdoor attacks. After that, more works focus on how
to design better trigger patterns for backdoor attacks [83, 103, 75]. Zheng et al. [137]
propose backdoor attacks that are undetectable from the frequency perspective. Nguyen
et al. [83] argue that different images should have different triggers. Therefore, they
propose the generator to produce triggers for different images. Besides better trigger
patterns, there are also many works focused on designing better injection processes [73,
131, 141, 75, 7]. In these works, they find that the adversary can even inject a backdoor
into the model without changing the label of the poison samples. Other studies on
backdoor attacks in various scenarios include [51, 106].

6.2 Backdoor Defenses

Following the increasing popularity of backdoor attacks, various defense methods have
been proposed. Current defense methods can be divided into three categories. The
most popular defense methods are based on reverse engineering, where the defender
aims to reverse the possible backdoor triggers to judge whether the given model is the
backdoored model or not [121, 16, 72, 48, 41]. Besides reverse engineering, another
line of works [118, 14, 33, 119] focuses on mitigating the backdoor by detecting the
poison samples. Due to the fact that backdoor attacks may involve more carefully
designed triggers to bypass potential defenses, such detection methods look like the
arms race with evolving attacks. The last type of backdoor defense method is based
on meta-learning to learn the difference between the backdoored models and the clean
models by training with a large number of backdoored shadow models [130]. Besides
different detection methods, fine-tuning has also been proposed to mitigate backdoor
attacks. Previous fine-tuning-based methods either adapt pruning [71] or distillation [65].
Liu et al. [71] argue that fine-tuning itself cannot effectively mitigate backdoor attacks.
However, pruning, distillation, or other methods based on fine-tuning will cost much
more computational resources and sacrifice the models’ utility. In this work, we show
for the first time that carefully designed fine-tuning is sufficient to remove the backdoor
and maintain the model’s utility with limited cost (e.g., with limited epochs).

6.3 Contrastive Learning

Contrastive learning is one of the most popular methods to train encoders. Oord et
al. [87] proposed Contrastive Predictive Coding, where probabilistic contrastive loss is
used to capture information. Wu et al. [127] used a memory bank to store the instance
class representation vector and then conducted prediction based on these representations.
He et al. [42] proposed a new framework, MoCo, which adds momentum technique
to prevent contrastive collapse while maintaining the diversity of negative samples.

101

CHAPTER 6. RELATED WORK

Chen et al. [18] proposed SimCLR, which reveals the importance of data augmentation
and projector behind encoder. Grill et al. [38] proposed BYOL where negative pair is
unnecessary. BYOL also adopts the momentum technique. Chen et al. [20] proposed
SimSiam. SimSiam removed the momentum encoder on the basis of BYOL. To avoid
contrastive collapse, SimSiam uses the stop gradient technique. SimCLR, MoCo, BYOL,
SimSiam are currently the mainstream frameworks of contrastive learning, thus we
concentrate on them in this paper.

Previous work also evaluate the security and privacy risks stemming from contrastive
learning. He et al. [46] conducted membership inference and attribute inference attacks
against contrastive models and showed that contrastive models are less vulnerable to
membership inference attacks but more prone to attribute inference attacks. Jia et al. [51]
proposed backdoor attacks against contrastive models and showed that the backdoor can
be effectively injected into the encoder to perform abnormally in specific downstream
tasks. Liu et al. [70] proposed a membership inference attack against encoders trained by
contrastive learning. Concretely, they leveraged different augmentations of a sample to
query the target encoder and calculated the similarity scores among those embeddings.
Intuitively, if the sample is a member, different embeddings should be closer, which
leads to higher similarity scores.

6.4 Model Stealing Attack

In model stealing attacks, the adversary’s goal is to steal part of the target model.
Tramèr et al. [117] proposed the first model stealing attack against black-box machine
learning API to steal its parameters. Wang et al. [120] proposed the first hyperparameter
stealing attacks against ML models. Oh et al. [86] also tried to steal machine learning
model’s architectures and hyperparameters. Orekondy et al. [88] proposed knockoff
nets, which aim at stealing the functionality of black-box models. Krishna et al. [57]
formulated the model stealing attack against BERT-based API. Besides, Wu et al. [124]
and Shen et al. [107] perform model stealing attacks against Graph Neural Networks
where Wu et al. [124] focus on the transductive setting and Shen et al. [107] concentrate
on the inductive setting. These works often have relative strong assumptions such as
model family is known and victim’s data is partly available while we conduct model
stealing attacks against encoders and relax the above assumption as well.

6.5 Knowledge Distillation

Knowledge distillation aims to transfer the knowledge from the larger “teacher” model
to the smaller “student” model. Hinton et al. [47] introduced the idea of knowledge
distillation. The basic motivation of knowledge distillation is to achieve fast and
lightweight learning. Yuan et al. [136] extended the knowledge distillation to the self-
learning field by proposing a Teacher-free Knowledge Distillation(Tf-KD) framework.
Tian et al. [114] proposed contrastive representation distillation where contrastive loss
is used to do knowledge distillation. Knowledge distillation is similar to model stealing
attacks, but it always assumes the adversary knows everything about the target model,
whereas model stealing attacks only have limited assumptions.

102

6.6. TEXT-TO-IMAGE GENERATION

6.6 Text-to-Image Generation

Typically, text-to-image generation takes a text description (i.e., a prompt) as input
and outputs an image that matches the text description. Some pioneer works of text-to-
image generation [97, 139] are based on GANs [36]. By combining a prompt embedding
and a latent vector, the authors expect the GANs to generate an image depicting the
prompt. These works have stimulated more researchers [10, 59, 123, 138, 113] to study
text-to-image generation models based on GANs, but using GANs does not always
achieve good generation performance [96, 99].

Recently, text-to-image generation has made great progress with the emergence of
diffusion models [6, 99, 85, 101]. Models in this domain normally take random noise
and prompts as input and reduce noisy images to clear ones based on the guidance
of prompts. Currently, text-to-image generation based on diffusion models, such as
DALL·E [96], Stable Diffusion [99], Imagen [101], GLIDE [85] and DALL·E 2 [95], has
achieved state-of-the-art performance compared to previous works. This is also the
reason why we focus on such models in this work.

6.7 Fake Image Detection and Attribution

Wang et al. [122] find that a simple CNN model can easily detect fake images generated
by various types of traditional generation models (e.g., GANs [36] and low-level vision
models [15, 26]) from real images. The authors argue that these fake images have some
common defects that allow us to distinguish them from real images. Yu et al. [135]
demonstrate that fake images generated by various traditional generation models can be
attributed to their sources and reveal the fact that these traditional generation models
leave fingerprints in the generated images. Girish et al. [35] further propose a new
attribution method to deal with the open-world scenario where the detector has no
knowledge of the generation model.

We emphasize here that almost all existing works focus only on traditional generation
models, such as GANs [36], low-level vision models [15, 26], and perceptual loss generation
models [17, 63]. Detecting and attributing fake images generated by text-to-image
generation models are largely unexplored. In this theis, we take the first step to
systematically study the problem.

103

7
Summary and Conclusion

105

7.1. SUMMARY

7.1 Summary

This dissertation investigates the security issues that happened in the whole pipeline
of machine learning models. Specifically, the pipeline of the machine learning models
can be divided into the data for training, the model parameter, and the output of
the trained model. In this dissertation, we evaluate the possible risks of the machine
learning models at each of the above stages. Specifically, we proposed novel defense
methods against possible data poisoning attacks to reduce the risks in data security. We
proposed the novel model stealing attacks and the adaptive defenses to provide a deeper
understanding of the model security. Additionally, we proposed deepfake detection
methods to address one of the most pressing issues in digital security.

Data Security: The study explores the efficacy of fine-tuning methods to defend against
backdoor attacks, particularly focusing on scenarios such as encoder-based, transfer-
based, and standalone models. Empirical results demonstrate that fine-tuning and a
novel super-fine-tuning approach can effectively remove backdoors. The effectiveness is
further validated through ablation studies on dataset size and learning rate.

Model Security: The dissertation introduces Cont-Steal, a contrastive learning-based
model stealing attack that significantly outperforms conventional attacks. It shows that
encoders are more vulnerable than classifiers due to the rich information in embeddings.
This dissertation proposed the Cont-Steal attacks against embeddings to leverage the
rich information. Moreover, this dissertation also discussed the possible defenses against
the proposed attacks.

Output Security: The research delves into detecting and attributing fake images
generated by text-to-image models. It proposes a hybrid detection framework combining
image and textual prompt analysis, which improves the robustness of detection methods.
The dissertation also discusses techniques for embedding unique identifiers within
generated images to trace their origins, thereby enhancing accountability for the misuse
of generative models.

7.2 Conclusion

This dissertation provides a comprehensive examination of the vulnerabilities in machine
learning models, particularly focusing on the pipeline of machine learning models. It of-
fers significant contributions to defending against these threats through novel fine-tuning
and super-fine-tuning methods. The findings indicate that fine-tuning can effectively
eliminate backdoors, but defenses must also account for potential vulnerabilities like
backdoor sequela.

In the context of model security, the study highlights the severe risks posed by
model stealing attacks, especially against contrastive learning models. Cont-Steal,
the proposed attack method, showcases the need for robust defenses to protect the
intellectual property and data privacy associated with these models.

The output security section underscores the importance of detecting and attributing
fake images generated by advanced generative models. The hybrid detection framework

107

CHAPTER 7. SUMMARY AND CONCLUSION

proposed in this work significantly enhances the ability to differentiate between real and
fake images, ensuring the integrity and trustworthiness of ML model outputs.

Overall, this research underscores the critical need for robust security measures
across various aspects of machine learning to safeguard against evolving threats. The
proposed methods and findings provide a foundation for future research and development
in securing machine learning systems against sophisticated attacks.

7.3 Future Research

In this dissertation, we conducted a comprehensive security assessment during the whole
pipeline of machine learning models. We also would like to discuss some future research
directions here.

Firstly, in this dissertation, we mainly focus on the pipeline of computer vision
models. However, with the widespread application of large generative models in natural
language processing, computer vision, and other fields, risk assessment and intelligent
defense are particularly important. Compared with previous models, large generative
models usually have a huge parameter scale, which may reach hundreds of millions or
even billions of parameters, and usually rely on a large amount of training data for
training, which may contain diverse information and a wide range of contexts. This
makes these models extremely complex, making it difficult to deeply understand their
internal mechanisms and decision-making processes, and also increases the hidden risks.
Therefore, conducting the overall assessment of security issues of these newly emerged
large models can bring us some different discoveries and revelations. Moreover, advanced
attacks and defenses based on the pipeline of large models should also be studied to
help the community achieve a more fair and efficient AGI.

Secondly, although this dissertation has conducted a comprehensive assessment of
the machine learning models pipeline, one universal platform is still needed to better
demonstrate the robustness of different models. The platform will provide comprehensive
datasets, benchmarks, and tools to provide resources and support for researchers and
developers. This will help to better evaluate the security of models and promote
continued innovation in the field of trusted machine learning security. Through this
large platform, I look forward to promoting progress in the field of machine learning
security and building a safer and more trustworthy artificial intelligence future.

Thirdly, it is crucial to make the attacks on deep learning models more practical and
grounded. This involves moving from theoretical research to real-world applications,
where the impacts and defenses can be more accurately assessed. Developing realistic
attack scenarios and conducting experiments in practical environments will help in
understanding the true effectiveness and limitations of both attacks and defenses. This
practical approach will provide valuable insights and drive the development of more
robust and reliable security measures for deep learning models.

Overall, these future directions aim to enhance the security and trustworthiness
of machine learning systems, ensuring they can be safely and effectively deployed in
real-world applications.

108

Bibliography

Author’s Papers for this Thesis

[P1] Sha, Z., He, X., Berrang, P., Humbert, M., and Zhang, Y. Fine-Tuning Is All
You Need to Mitigate Backdoor Attacks. CoRR abs/2212.09067 (2022).

[P2] Sha, Z., Li, Z., Yu, N., and Zhang, Y. DE-FAKE: detection and attribution of
fake images generated by text-to-image generation models. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM, 2021,
845–863.

[P3] Sha, Z., He, X., Yu, N., Backes, M., and Zhang, Y. Can’t Steal? Cont-Steal!
Contrastive Stealing Attacks Against Image Encoders. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2023.

Other Papers of the Author

[S1] Chu, J., Sha, Z., Backes, M., and Zhang, Y. Conversation reconstruction attack
against GPT models. CoRR abs/2402.02987 (2024).

[S2] Jiang, Y., Shen, X., Wen, R., Sha, Z., Chu, J., Liu, Y., Backes, M., and Zhang,
Y. Games and beyond: analyzing the bullet chats of esports livestreaming. In:
International AAAI Conference on Web and Social Media (ICWSM). AAAI
Press, 2024.

[S3] Sha, Z. and Zhang, Y. Prompt Stealing Attacks Against Large Language Models.
CoRR abs/2402.12959 (2024).

[S4] Yang, Z., Sha, Z., Backes, M., and Zhang, Y. From Visual Prompt Learning to
Zero-Shot Transfer: Mapping Is All You Need. CoRR abs/2303.05266 (2023).

[S5] Zhang, B., Shen, X., Si, W. M., Sha, Z., Chen, Z., Salem, A., Shen, Y., Backes,
M., and Zhang, Y. Comprehensive Assessment of Toxicity in ChatGPT. CoRR
abs/2402.12959 (2024).

Other references

[1] https://www.cs.toronto.edu/~kriz/cifar.html.
[2] https://cs.stanford.edu/%7Eacoates/stl10/.
[3] http://benchmark.ini.rub.de/?section=gtsrb.

109

https://www.cs.toronto.edu/~kriz/cifar.html
https://cs.stanford.edu/%7Eacoates/stl10/
http://benchmark.ini.rub.de/?section=gtsrb

BIBLIOGRAPHY

[4] http://ufldl.stanford.edu/housenumbers/.
[5] Adi, Y., Baum, C., Cisse, M., Pinkas, B., and Keshet, J. Turning Your Weakness

Into a Strength: Watermarking Deep Neural Networks by Backdooring. In:
USENIX Security Symposium (USENIX Security). USENIX, 2018, 1615–1631.

[6] Atwood, J. and Towsley, D. Diffusion-Convolutional Neural Networks. In: Annual
Conference on Neural Information Processing Systems (NIPS). NIPS, 2016, 1993–
2001.

[7] Barni, M., Kallas, K., and Tondi, B. A New Backdoor Attack in CNNS by Training
Set Corruption Without Label Poisoning. In: IEEE International Conference on
Image Processing (ICIP). IEEE, 2019, 101–105.

[8] Biggio, B., Corona, I., Maiorca, D., Nelson, B., Srndic, N., Laskov, P., Giacinto, G.,
and Roli, F. Evasion Attacks against Machine Learning at Test Time. In: European
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML/PKDD). Springer, 2013, 387–402.

[9] Bird, S. and Loper, E. NLTK: The Natural Language Toolkit. In: Annual Meeting
of the Association for Computational Linguistics (ACL). ACL, 2004.

[10] Bodla, N., Hua, G., and Chellappa, R. Semi-supervised FusedGAN for Condi-
tional Image Generation. In: European Conference on Computer Vision (ECCV).
Springer, 2018, 689–704.

[11] Carlini, N. and Terzis, A. Poisoning and Backdooring Contrastive Learning. In:
International Conference on Learning Representations (ICLR). 2022.

[12] Carlini, N. and Wagner, D. Towards Evaluating the Robustness of Neural Net-
works. In: IEEE Symposium on Security and Privacy (S&P). IEEE, 2017, 39–
57.

[13] Chandrasekaran, V., Chaudhuri, K., Giacomelli, I., Jha, S., and Yan, S. Model
Extraction and Active Learning. CoRR abs/1811.02054 (2018).

[14] Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Edwards, B., Lee, T., Molloy,
I. M., and Srivastava, B. Detecting Backdoor Attacks on Deep Neural Networks
by Activation Clustering. CoRR abs/1811.03728 (2018).

[15] Chen, C., Chen, Q., Xu, J., and Koltun, V. Learning to See in the Dark. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2018, 3291–3330.

[16] Chen, H., Fu, C., Zhao, J., and Koushanfar, F. DeepInspect: A Black-box Trojan
Detection and Mitigation Framework for Deep Neural Networks. In: International
Joint Conferences on Artifical Intelligence (IJCAI). IJCAI, 2019, 4658–4664.

[17] Chen, Q. and Koltun, V. Photographic Image Synthesis with Cascaded Refine-
ment Networks. In: IEEE International Conference on Computer Vision (ICCV).
IEEE, 2017, 1520–1529.

[18] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. E. A Simple Framework
for Contrastive Learning of Visual Representations. In: International Conference
on Machine Learning (ICML). PMLR, 2020, 1597–1607.

110

http://ufldl.stanford.edu/housenumbers/

OTHER REFERENCES

[19] Chen, X., Salem, A., Backes, M., Ma, S., Shen, Q., Wu, Z., and Zhang, Y. BadNL:
Backdoor Attacks Against NLP Models with Semantic-preserving Improvements.
In: Annual Computer Security Applications Conference (ACSAC). ACSAC, 2021,
554–569.

[20] Chen, X. and He, K. Exploring Simple Siamese Representation Learning. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2021, 15750–15758.

[21] Chen, X., Liu, C., Li, B., Lu, K., and Song, D. Targeted Backdoor Attacks on
Deep Learning Systems Using Data Poisoning. CoRR abs/1712.05526 (2017).

[22] Choi, Y., Choi, M., Kim, M., Ha, J., Kim, S., and Choo, J. StarGAN: Unified
Generative Adversarial Networks for Multi-Domain Image-to-Image Translation.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2018, 8789–8797.

[23] Choo, C. A. C., Tramèr, F., Carlini, N., and Papernot, N. Label-Only Membership
Inference Attacks. In: International Conference on Machine Learning (ICML).
PMLR, 2021, 1964–1974.

[24] Coates, A., Ng, A. Y., and Lee, H. An Analysis of Single-Layer Networks
in Unsupervised Feature Learning. In: International Conference on Artificial
Intelligence and Statistics (AISTATS). JMLR, 2011, 215–223.

[25] Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. RandAugment: Practical Auto-
mated Data Augmentation with a Reduced Search Space. In: Annual Conference
on Neural Information Processing Systems (NeurIPS). NeurIPS, 2020, 18613–
18624.

[26] Dai, T., Cai, J., Zhang, Y., Xia, S., and Zhang, L. Second-Order Attention
Network for Single Image Super-Resolution. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2019, 11065–11074.

[27] Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L. ImageNet: A large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2009, 248–255.

[28] Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In: Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT). ACL, 2019, 4171–4186.

[29] Doersch, C. and Zisserman, A. Multi-task Self-Supervised Visual Learning. In:
IEEE International Conference on Computer Vision (ICCV). IEEE, 2017, 2070–
2079.

[30] Dognin, P. L., Melnyk, I., Mroueh, Y., Padhi, I., Rigotti, M., Ross, J., Schiff, Y.,
Young, R. A., and Belgodere, B. Image Captioning as an Assistive Technology:
Lessons Learned from VizWiz 2020 Challenge. Journal of Artificial Intelligence
Research (2022).

[31] Elisa, K., D, G. N., and Christopher, P. Concadia: Tackling Image Accessibility
with Descriptive Texts and Context. CoRR abs/2104.08376 (2021).

111

BIBLIOGRAPHY

[32] Ester, M., Kriegel, H., Sander, J., and Xu, X. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In: International
Conference on Knowledge Discovery and Data Mining (KDD). AAAI, 1996, 226–
231.

[33] Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D. C., and Nepal, S. STRIP: A
Defence Against Trojan Attacks on Deep Neural Networks. In: Annual Computer
Security Applications Conference (ACSAC). ACM, 2019, 113–125.

[34] Gidaris, S., Singh, P., and Komodakis, N. Unsupervised Representation Learn-
ing by Predicting Image Rotations. In: International Conference on Learning
Representations (ICLR). 2018.

[35] Girish, S., Suri, S., Rambhatla, S. S., and Shrivastava, A. Towards Discovery
and Attribution of Open-World GAN Generated Images. In: IEEE International
Conference on Computer Vision (ICCV). IEEE, 2021, 14094–14103.

[36] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. Generative Adversarial Nets. In: Annual Conference
on Neural Information Processing Systems (NIPS). NIPS, 2014, 2672–2680.

[37] Goodfellow, I., Shlens, J., and Szegedy, C. Explaining and Harnessing Adversarial
Examples. In: International Conference on Learning Representations (ICLR).
2015.

[38] Grill, J., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E.,
Doersch, C., Pires, B. Á., Guo, Z., Azar, M. G., Piot, B., Kavukcuoglu, K.,
Munos, R., and Valko, M. Bootstrap Your Own Latent - A New Approach to Self-
Supervised Learning. In: Annual Conference on Neural Information Processing
Systems (NeurIPS). NeurIPS, 2020.

[39] Gu, T., Dolan-Gavitt, B., and Grag, S. Badnets: Identifying Vulnerabilities in
the Machine Learning Model Supply Chain. CoRR abs/1708.06733 (2017).

[40] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C.
Improved Training of Wasserstein GANs. In: Annual Conference on Neural
Information Processing Systems (NIPS). NIPS, 2017, 5767–5777.

[41] Guo, W., Wang, L., Xing, X., Du, M., and Song, D. TABOR: A Highly Accurate
Approach to Inspecting and Restoring Trojan Backdoors in AI Systems. CoRR
abs/1908.01763 (2019).

[42] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. B. Momentum Contrast for
Unsupervised Visual Representation Learning. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2020, 9726–9735.

[43] He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning for Image
Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2016, 770–778.

[44] He, X., Li, Z., Xu, W., Cornelius, C., and Zhang, Y. Membership-Doctor: Compre-
hensive Assessment of Membership Inference Against Machine Learning Models.
CoRR abs/2208.10445 (2022).

112

OTHER REFERENCES

[45] He, X., Wen, R., Wu, Y., Backes, M., Shen, Y., and Zhang, Y. Node-Level Mem-
bership Inference Attacks Against Graph Neural Networks. CoRR abs/2102.05429
(2021).

[46] He, X. and Zhang, Y. Quantifying and Mitigating Privacy Risks of Contrastive
Learning. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2021, 845–863.

[47] Hinton, G. E., Vinyals, O., and Dean, J. Distilling the Knowledge in a Neural
Network. CoRR abs/1503.02531 (2015).

[48] Huang, X., Alzantot, M., and Srivastava, M. B. NeuronInspect: Detecting Back-
doors in Neural Networks via Output Explanations. CoRR abs/1911.07399
(2019).

[49] Hui, B., Yang, Y., Yuan, H., Burlina, P., Gong, N. Z., and Cao, Y. Practical
Blind Membership Inference Attack via Differential Comparisons. In: Network
and Distributed System Security Symposium (NDSS). Internet Society, 2021.

[50] Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., and Papernot, N. High
Accuracy and High Fidelity Extraction of Neural Networks. In: USENIX Security
Symposium (USENIX Security). USENIX, 2020, 1345–1362.

[51] Jia, J., Liu, Y., and Gong, N. Z. BadEncoder: Backdoor Attacks to Pre-trained
Encoders in Self-Supervised Learning. In: IEEE Symposium on Security and
Privacy (S&P). IEEE, 2022.

[52] Kariyappa, S. and Qureshi, M. K. Defending Against Model Stealing Attacks
With Adaptive Misinformation. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2020, 767–775.

[53] Karras, T., Laine, S., and Aila, T. A Style-Based Generator Architecture for
Generative Adversarial Networks. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2019, 4401–4410.

[54] Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot,
A., Liu, C., and Krishnan, D. Supervised Contrastive Learning. In: Annual
Conference on Neural Information Processing Systems (NeurIPS). NeurIPS,
2020.

[55] Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. In:
International Conference on Learning Representations (ICLR). 2015.

[56] Kornblith, S., Shlens, J., and Le, Q. V. Do Better ImageNet Models Transfer
Better? In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2019, 2661–2671.

[57] Krishna, K., Tomar, G. S., Parikh, A. P., Papernot, N., and Iyyer, M. Thieves
on Sesame Street! Model Extraction of BERT-based APIs. In: International
Conference on Learning Representations (ICLR). 2020.

[58] Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial Examples in the Physical
World. CoRR abs/1607.02533 (2016).

113

BIBLIOGRAPHY

[59] Lao, Q., Havaei, M., Pesaranghader, A., Dutil, F., Di-Jorio, L., and Fevens, T.
Dual Adversarial Inference for Text-to-Image Synthesis. In: IEEE International
Conference on Computer Vision (ICCV). IEEE, 2019, 7566–7575.

[60] Leino, K. and Fredrikson, M. Stolen Memories: Leveraging Model Memoriza-
tion for Calibrated White-Box Membership Inference. In: USENIX Security
Symposium (USENIX Security). USENIX, 2020, 1605–1622.

[61] Li, H., Chaudhari, P., Yang, H., Lam, M., Ravichandran, A., Bhotika, R., and
Soatto, S. Rethinking the Hyperparameters for Fine-tuning. In: International
Conference on Learning Representations (ICLR). 2020.

[62] Li, J., Li, D., Xiong, C., and Hoi, S. C. H. BLIP: Bootstrapping Language-Image
Pre-training for Unified Vision-Language Understanding and Generation. CoRR
abs/2201.12086 (2022).

[63] Li, K., Zhang, T., and Malik, J. Diverse Image Synthesis From Semantic Layouts
via Conditional IMLE. In: IEEE International Conference on Computer Vision
(ICCV). IEEE, 2019, 4219–4228.

[64] Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B., and Ma, X. Anti-Backdoor Learning:
Training Clean Models on Poisoned Data. In: Annual Conference on Neural
Information Processing Systems (NeurIPS). NeurIPS, 2021, 14900–14912.

[65] Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B., and Ma, X. Neural Attention Distilla-
tion: Erasing Backdoor Triggers from Deep Neural Networks. In: International
Conference on Learning Representations (ICLR). 2021.

[66] Li, Y., Li, Y., Wu, B., Li, L., He, R., and Lyu, S. Invisible Backdoor Attack
with Sample-Specific Triggers. In: IEEE International Conference on Computer
Vision (ICCV). IEEE, 2021, 16443–16452.

[67] Li, Z. and Zhang, Y. Membership Leakage in Label-Only Exposures. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS). ACM,
2021, 880–895.

[68] Lin, T., Maire, M., Belongie, S. J., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
and Zitnick, C. L. Microsoft COCO: Common Objects in Context. In: European
Conference on Computer Vision (ECCV). Springer, 2014, 740–755.

[69] Liu, H., Jia, J., and Gong, N. Z. PoisonedEncoder: Poisoning the Unlabeled
Pre-training Data in Contrastive Learning. In: USENIX Security Symposium
(USENIX Security). USENIX, 2022, 3629–3645.

[70] Liu, H., Jia, J., Qu, W., and Gong, N. Z. EncoderMI: Membership Inference
against Pre-trained Encoders in Contrastive Learning. In: ACM SIGSAC Con-
ference on Computer and Communications Security (CCS). ACM, 2021.

[71] Liu, K., Dolan-Gavitt, B., and Garg, S. Fine-Pruning: Defending Against Back-
dooring Attacks on Deep Neural Networks. In: Research in Attacks, Intrusions,
and Defenses (RAID). Springer, 2018, 273–294.

114

OTHER REFERENCES

[72] Liu, Y., Lee, W.-C., Tao, G., Ma, S., Aafer, Y., and Zhang, X. ABS: Scan-
ning Neural Networks for Back-Doors by Artificial Brain Stimulation. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS). ACM,
2019, 1265–1282.

[73] Liu, Y., Ma, S., Aafer, Y., Lee, W.-C., Zhai, J., Wang, W., and Zhang, X.
Trojaning Attack on Neural Networks. In: Network and Distributed System
Security Symposium (NDSS). Internet Society, 2018.

[74] Liu, Y., Wen, R., He, X., Salem, A., Zhang, Z., Backes, M., Cristofaro, E. D.,
Fritz, M., and Zhang, Y. ML-Doctor: Holistic Risk Assessment of Inference
Attacks Against Machine Learning Models. In: USENIX Security Symposium
(USENIX Security). USENIX, 2022, 4525–4542.

[75] Liu, Y., Ma, X., Bailey, J., and Lu, F. Reflection Backdoor: A Natural Backdoor
Attack on Deep Neural Networks. In: European Conference on Computer Vision
(ECCV). Springer, 2020, 182–199.

[76] Maaten, L. van der and Hinton, G. Visualizing Data using t-SNE. Journal of
Machine Learning Research (2008).

[77] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards Deep
Learning Models Resistant to Adversarial Attacks. In: International Conference
on Learning Representations (ICLR). 2018.

[78] Micah, H., Peter, Y., and Julia, H. Framing Image Description as a Ranking
Task: Data, Models and Evaluation Metrics. Journal of Artificial Intelligence
Research (2013).

[79] Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral Normalization
for Generative Adversarial Networks. In: International Conference on Learning
Representations (ICLR). 2018.

[80] Nasr, M., Shokri, R., and Houmansadr, A. Machine Learning with Membership
Privacy using Adversarial Regularization. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM, 2018, 634–646.

[81] Nasr, M., Shokri, R., and Houmansadr, A. Comprehensive Privacy Analysis
of Deep Learning: Passive and Active White-box Inference Attacks against
Centralized and Federated Learning. In: IEEE Symposium on Security and
Privacy (S&P). IEEE, 2019, 1021–1035.

[82] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. Read-
ing Digits in Natural Images with Unsupervised Feature Learning. In: Annual
Conference on Neural Information Processing Systems (NIPS). NIPS, 2011.

[83] Nguyen, T. A. and Tran, A. Input-Aware Dynamic Backdoor Attack. In: Annual
Conference on Neural Information Processing Systems (NeurIPS). NeurIPS, 2020.

[84] Nguyen, T. A. and Tran, A. T. WaNet - Imperceptible Warping-based Backdoor
Attack. In: International Conference on Learning Representations (ICLR). 2021.

[85] Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B.,
Sutskever, I., and Chen, M. GLIDE: Towards Photorealistic Image Generation
and Editing with Text-Guided Diffusion Models. CoRR abs/2112.10741 (2021).

115

BIBLIOGRAPHY

[86] Oh, S. J., Augustin, M., Schiele, B., and Fritz, M. Towards Reverse-Engineering
Black-Box Neural Networks. In: International Conference on Learning Represen-
tations (ICLR). 2018.

[87] Oord, A. van den, Li, Y., and Vinyals, O. Representation Learning with Con-
trastive Predictive Coding. CoRR abs/1807.03748 (2018).

[88] Orekondy, T., Schiele, B., and Fritz, M. Knockoff Nets: Stealing Functionality
of Black-Box Models. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2019, 4954–4963.

[89] Pang, R., Shen, H., Zhang, X., Ji, S., Vorobeychik, Y., Luo, X., Liu, A. X., and
Wang, T. A Tale of Evil Twins: Adversarial Inputs versus Poisoned Models. In:
ACM SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 2020, 85–99.

[90] Pang, R., Zhang, Z., Gao, X., Xi, Z., Ji, S., Cheng, P., and Wang, T. TROJAN-
ZOO: Everything You Ever Wanted to Know about Neural Backdoors (But Were
Afraid to Ask). CoRR abs/2012.09302 (2020).

[91] Papernot, N., McDaniel, P. D., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A.
Practical Black-Box Attacks Against Machine Learning. In: ACM Asia Conference
on Computer and Communications Security (ASIACCS). ACM, 2017, 506–519.

[92] Papernot, N., McDaniel, P. D., Jha, S., Fredrikson, M., Celik, Z. B., and Swami,
A. The Limitations of Deep Learning in Adversarial Settings. In: IEEE European
Symposium on Security and Privacy (Euro S&P). IEEE, 2016, 372–387.

[93] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. Learning
Transferable Visual Models From Natural Language Supervision. In: International
Conference on Machine Learning (ICML). PMLR, 2021, 8748–8763.

[94] Radford, A., Metz, L., and Chintala, S. Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks. In: International
Conference on Learning Representations (ICLR). 2016.

[95] Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. Hierarchical
Text-Conditional Image Generation with CLIP Latents. CoRR abs/2204.06125
(2022).

[96] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and
Sutskever, I. Zero-Shot Text-to-Image Generation. In: International Conference
on Machine Learning (ICML). JMLR, 2021, 8821–8831.

[97] Reed, S. E., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., and Lee, H. Gen-
erative Adversarial Text to Image Synthesis. In: International Conference on
Machine Learning (ICML). JMLR, 2016, 1060–1069.

[98] Reimers, N. and Gurevych, I. Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks. In: Conference on Empirical Methods in Natural Lan-
guage Processing and International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP). ACL, 2019, 3980–3990.

116

OTHER REFERENCES

[99] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-
Resolution Image Synthesis with Latent Diffusion Models. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022, 10684–10695.

[100] Sablayrolles, A., Douze, M., Schmid, C., Ollivier, Y., and Jégou, H. White-box vs
Black-box: Bayes Optimal Strategies for Membership Inference. In: International
Conference on Machine Learning (ICML). PMLR, 2019, 5558–5567.

[101] Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour,
S. K. S., Ayan, B. K., Mahdavi, S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet,
D. J., and Norouzi, M. Photorealistic Text-to-Image Diffusion Models with Deep
Language Understanding. CoRR abs/2205.11487 (2022).

[102] Salem, A., Backes, M., and Zhang, Y. Don’t Trigger Me! A Triggerless Backdoor
Attack Against Deep Neural Networks. CoRR abs/2010.03282 (2020).

[103] Salem, A., Wen, R., Backes, M., Ma, S., and Zhang, Y. Dynamic Backdoor
Attacks Against Machine Learning Models. In: IEEE European Symposium on
Security and Privacy (Euro S&P). IEEE, 2022, 703–718.

[104] Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz, M., and Backes, M.
ML-Leaks: Model and Data Independent Membership Inference Attacks and
Defenses on Machine Learning Models. In: Network and Distributed System
Security Symposium (NDSS). Internet Society, 2019.

[105] Santurkar, S., Dubois, Y., Taori, R., Liang, P., and Hashimoto, T. Is a Caption
Worth a Thousand Images? A Controlled Study for Representation Learning.
CoRR abs/2207.07635 (2022).

[106] Shen, X., He, X., Li, Z., Shen, Y., Backes, M., and Zhang, Y. Backdoor Attacks
in the Supply Chain of Masked Image Modeling. CoRR abs/2210.01632 (2022).

[107] Shen, Y., He, X., Han, Y., and Zhang, Y. Model Stealing Attacks Against
Inductive Graph Neural Networks. In: IEEE Symposium on Security and Privacy
(S&P). IEEE, 2022, 1175–1192.

[108] Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Membership Inference
Attacks Against Machine Learning Models. In: IEEE Symposium on Security
and Privacy (S&P). IEEE, 2017, 3–18.

[109] Smith, L. N. and Topin, N. Super-Convergence: Very Fast Training of Neural
Networks Using Large Learning Rates. CoRR abs/1708.07120 (2018).

[110] Song, J., Meng, C., and Ermon, S. Denoising diffusion implicit models. In: 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021.

[111] Song, L. and Mittal, P. Systematic Evaluation of Privacy Risks of Machine
Learning Models. In: USENIX Security Symposium (USENIX Security). USENIX,
2021.

[112] Song, L., Shokri, R., and Mittal, P. Privacy Risks of Securing Machine Learning
Models against Adversarial Examples. In: ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 2019, 241–257.

117

BIBLIOGRAPHY

[113] Souza, D. M., Wehrmann, J., and Ruiz, D. D. Efficient Neural Architecture for
Text-to-Image Synthesis. In: International Joint Conference on Neural Networks
(IJCNN). IEEE, 2020, 1–8.

[114] Tian, Y., Krishnan, D., and Isola, P. Contrastive Representation Distillation. In:
International Conference on Learning Representations (ICLR). 2020.

[115] Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., and Isola, P. What Makes
for Good Views for Contrastive Learning? In: Annual Conference on Neural
Information Processing Systems (NeurIPS). NeurIPS, 2020.

[116] Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., and McDaniel,
P. Ensemble Adversarial Training: Attacks and Defenses. In: International Con-
ference on Learning Representations (ICLR). 2017.

[117] Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., and Ristenpart, T. Stealing
Machine Learning Models via Prediction APIs. In: USENIX Security Symposium
(USENIX Security). USENIX, 2016, 601–618.

[118] Tran, B., Li, J., and Madry, A. Spectral Signatures in Backdoor Attacks. In: An-
nual Conference on Neural Information Processing Systems (NeurIPS). NeurIPS,
2018, 8011–8021.

[119] Udeshi, S., Peng, S., Woo, G., Loh, L., Rawshan, L., and Chattopadhyay, S.
Model Agnostic Defence Against Backdoor Attacks in Machine Learning. IEEE
Transactions on Reliability (2022).

[120] Wang, B. and Gong, N. Z. Stealing Hyperparameters in Machine Learning. In:
IEEE Symposium on Security and Privacy (S&P). IEEE, 2018, 36–52.

[121] Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., and Zhao, B. Y.
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks.
In: IEEE Symposium on Security and Privacy (S&P). IEEE, 2019, 707–723.

[122] Wang, S., Wang, O., Zhang, R., Owens, A., and Efros, A. A. CNN-Generated
Images Are Surprisingly Easy to Spot... for Now. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2020, 8692–8701.

[123] Wang, Z., Quan, Z., Wang, Z., Hu, X., and Chen, Y. Text to Image Synthesis
With Bidirectional Generative Adversarial Network. In: International Conference
on Multimedia and Expo (ICME). IEEE, 2020, 1–6.

[124] Wu, B., Yang, X., Pan, S., and Yuan, X. Model Extraction Attacks on Graph
Neural Networks: Taxonomy and Realization. CoRR abs/2010.12751 (2020).

[125] Wu, B., Chen, H., Zhang, M., Zhu, Z., Wei, S., Yuan, D., Shen, C., and Zha, H.
BackdoorBench: A Comprehensive Benchmark of Backdoor Learning. CoRR
abs/2206.12654 (2022).

[126] Wu, H., Wang, C., Tyshetskiy, Y., Docherty, A., Lu, K., and Zhu, L. Adver-
sarial Examples for Graph Data: Deep Insights into Attack and Defense. In:
International Joint Conferences on Artifical Intelligence (IJCAI). IJCAI, 2019,
4816–4823.

118

OTHER REFERENCES

[127] Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. Unsupervised Feature Learning via
Non-Parametric Instance Discrimination. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2018, 3733–3742.

[128] Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms. CoRR abs/1708.07747 (2017).

[129] Xie, C., Zhang, Z., Zhou, Y., Bai, S., Wang, J., Ren, Z., and Yuille, A. L.
Improving Transferability of Adversarial Examples With Input Diversity. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2019, 2730–2739.

[130] Xu, X., Wang, Q., Li, H., Borisov, N., Gunter, C. A., and Li, B. Detecting
AI Trojans Using Meta Neural Analysis. In: IEEE Symposium on Security and
Privacy (S&P). IEEE, 2021.

[131] Yao, Y., Li, H., Zheng, H., and Zhao, B. Y. Latent Backdoor Attacks on Deep Neu-
ral Networks. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2019, 2041–2055.

[132] Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. Privacy Risk in Machine
Learning: Analyzing the Connection to Overfitting. In: IEEE Computer Security
Foundations Symposium (CSF). IEEE, 2018, 268–282.

[133] Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. From image descriptions
to visual denotations: New similarity metrics for semantic inference over event
descriptions. Transactions of the Association for Computational Linguistics
(2014).

[134] Yu, J., Xu, Y., Koh, J. Y., Luong, T., Baid, G., Wang, Z., Vasudevan, V., Ku, A.,
Yang, Y., Ayan, B. K., Hutchinson, B., Han, W., Parekh, Z., Li, X., Zhang,
H., Baldridge, J., and Wu, Y. Scaling Autoregressive Models for Content-Rich
Text-to-Image Generation. CoRR abs/2206.10789 (2022).

[135] Yu, N., Davis, L., and Fritz, M. Attributing Fake Images to GANs: Learning and
Analyzing GAN Fingerprints. In: IEEE International Conference on Computer
Vision (ICCV). IEEE, 2019, 7555–7565.

[136] Yuan, L., Tay, F. E. H., Li, G., Wang, T., and Feng, J. Revisiting Knowledge Dis-
tillation via Label Smoothing Regularization. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2020, 3903–3911.

[137] Zeng, Y., Park, W., Mao, Z. M., and Jia, R. Rethinking the Backdoor At-
tacks’ Triggers: A Frequency Perspective. In: IEEE International Conference on
Computer Vision (ICCV). IEEE, 2021, 16453–16461.

[138] Zhang, H., Koh, J. Y., Baldridge, J., Lee, H., and Yang, Y. Cross-Modal Con-
trastive Learning for Text-to-Image Generation. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE, 2021, 833–842.

[139] Zhang, H., Xu, T., and Li, H. StackGAN: Text to Photo-Realistic Image Synthesis
with Stacked Generative Adversarial Networks. In: IEEE International Conference
on Computer Vision (ICCV). IEEE, 2017, 5908–5916.

119

BIBLIOGRAPHY

[140] Zhang, X., Karaman, S., and Chang, S. Detecting and Simulating Artifacts in
GAN Fake Images. In: IEEE International Workshop on Information Forensics
and Security (WIFS). IEEE, 2019, 1–6.

[141] Zhao, S., Ma, X., Zheng, X., Bailey, J., Chen, J., and Jiang, Y.-G. Clean-
Label Backdoor Attacks on Video Recognition Models. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2020, 14443–144528.

[142] Zhuang, C., Zhai, A. L., and Yamins, D. Local Aggregation for Unsupervised
Learning of Visual Embeddings. In: IEEE International Conference on Computer
Vision (ICCV). IEEE, 2019, 6001–6011.

[143] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., and He, Q. A
Comprehensive Survey on Transfer Learning. CoRR abs/1911.02685 (2019).

120

	Introduction
	Our Contribution
	Data Security
	Model Security
	Output Security

	Organization of the Dissertation

	Preliminaries and Background
	Backdoor Attacks
	The Principle of Backdoor Attacks
	Attack Scenarios

	Pre-training Encoders
	Text-to-Image Geneation Models

	Data Security
	Introduction
	Backdoor Defenses
	Defender's Goals and Capabilities
	Fine-Tuning to Mitigate Backdoor Attacks

	Experimental Setup
	Current Attacks and Defenses
	Datasets and Evaluation Metrics

	Evaluation Results
	Encoder-Based Scenario
	Transfer-Based Scenario
	Standalone Scenario
	Comparison to Other Defense Methods
	Illustration of Why Fine-Tuning and Super-Fine-Tuning Work
	Ablation Study
	Summary

	Backdoor Sequela
	Membership Inference Attack
	Backdoor Re-injection Attack
	Summary

	Conclusion

	Model Security
	Introduction
	Threat Model
	Model Stealing Attacks
	Conventional Attacks Against Classifiers
	Conventional Attacks Against Encoders
	Cont-Steal Attacks Against Encoders

	Experiments
	Experimental Setup
	Performance of the Target Encoder on Downstream Tasks
	Performance of Conventional Attacks
	Performance of Cont-Steal
	Cost Analysis
	Ablation Studies on Adversary Training Process
	Further Attacks Based on Cont-Steal
	Defenses

	Conclusion

	Output Security
	Introduction
	Our Contributions

	Datasets
	Fake Image Detection
	Design Goals
	Methodology
	Results
	Discussion
	Ablation Study
	Takeaways

	Fake Image Attribution
	Design Goals
	Methodology
	Results
	Discussion
	Ablation Study
	Takeaways

	Robustness Analysis
	Adversary Example Attacks
	Experimental Results

	Prompt Analysis
	Semantics Analysis
	Structure Analysis
	Takeaways

	Conclusion

	Related Work
	Backdoor Attacks
	Backdoor Defenses
	Contrastive Learning
	Model Stealing Attack
	Knowledge Distillation
	Text-to-Image Generation
	Fake Image Detection and Attribution

	Summary and Conclusion
	Summary
	Conclusion
	Future Research

