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Abstract

The theoretical framework of conventional contact mechanics is based on idealized as-
sumptions that have shaped the field for more than 140 years. Unfortunately, these
assumptions do not lend themselves to the modelling of thin films, viscoelastic materials
and frictional interfaces. Therefore, the present thesis is concerned with the system-
atic generalization of these assumptions and their GFMD implementation to simulate a
variety of previously inaccessible, realistic contact problems.

First, finite material thickness is considered in the design of film-terminated fibril struc-
tures for skin adhesion. An elastic film resting on a hard foundation is effectively more
stiff than its bulk counterpart, which reduces its ability to conform to counter-faces and
therefore reduces the adhesion to roughness. Second, the velocity-dependence of soft,
adhesive multi-asperity contacts is studied, revealing the importance of topographical
saddle points and the initial configuration, from which detachment is initiated. Further-
more, we identify a scaling relation describing how short-ranged microscopic interactions
slow down the macroscopic relaxation of a contact. Finally, we explore the influence of
interfacial friction, showing that it increases local stress concentrations and impedes the
fluid flow through the interface.

The reported results provide new insight into commonly neglected phenomena, whose
practical significance is reinforced by direct comparisons to experiments.
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Zusammenfassung

Der theoretische Rahmen der konventionellen Kontaktmechanik basiert auf idealisierten
Annahmen, die das Fachgebiet seit über 140 Jahren prägen. Leider eignen sich diese nicht
für die Modellierung von dünnen Filmen, viskoelastischen Materialien und reibungsbe-
hafteten Oberflächen. Daher widmet sich die vorliegende Dissertation der systematischen
Verallgemeinerung dieser Annahmen und ihrer Umsetzung in GFMD, um zuvor unzu-
gängliche, realistische Kontaktprobleme zu simulieren.

Zuerst wird die endliche Materialdicke berücksichtigt bei der Modellierung von filmter-
minierten Fibrillenstrukturen für die Hautadhäsion. Ein dünner, eingeklemmter Film
verhält sich effektiv steifer, was seine Anpassungsfähigkeit verringert und somit auch
seine Haftung auf rauen Oberflächen. Anschließend wird die Zeitabhängigkeit von wei-
chen, adhäsiven Multi-Asperitätskontakten untersucht, wobei topographische Sattel-
punkte und die Anfangskonfiguration die Ablösung beeinflussen. Zudem identifizieren
wir eine Skalierungsbeziehung für die Verlangsamung der makroskopischen Kontaktre-
laxation durch kurzreichweitige mikroskopische Wechselwirkungen. Abschließend erfor-
schen wir den Einfluss von Reibung, die lokale Spannungskonzentrationen erhöht und
den Flüssigkeitsfluss durch die Grenzfläche beeinträchtigt.

Die Ergebnisse bieten neue Einblicke in oft vernachlässigte Phänomene, deren praktische
Relevanz durch direkte Vergleiche mit Experimenten verdeutlicht wird.
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Chapter 1

Introduction

The relevance of studying adhesive contacts is best described by the “adhesion paradox”,
a term coined by Kendall [1] describing a surprising observation about the strength
of attraction between surfaces: Although “all atoms adhere with considerable force”,
“common experience tells us that ordinary objects do not stick together easily” [2].
What makes this realization so intriguing is that we know for a fact that in theory nature
provides us with almost arbitrarily strong adhesion. But in order to take advantage of
this powerful force, we need to understand and control the phenomena which usually
take it away from us.

The study of contact mechanics was pioneered by Heinrich Hertz [3] more than 140 years
ago. Many scientists have since contributed to the field and shaped our current under-
standing of why and how surfaces adhere or not. Throughout this history, roughness has
often been identified as one of the greatest challenges for the accurate description and
prediction of adhesion in theoretical studies as well as practical applications. Roughness
is the reason why the real microscopic area of contact between two surfaces is often con-
siderably smaller than the apparent macroscopic contact area. The only type of adhesive
interaction that is present between all surface pairs regardless of material properties is
the van-der-Waals (vdW) force, which requires very close proximity to produce con-
siderable attraction. Therefore, most materials that we generally perceive as adhesive
are rather soft and consequently deformable enough to conform to the topography of
counter-bodies, allowing the intermolecular forces to act across a large portion of the
entire contact. This mechanism for improving adhesion had already been perfected by
nature itself long before humans even started to study it. One of the most famous ex-
amples for this is the foot of the gecko [4], who is able to effortlessly climb up walls and
even ceilings without falling off. This is achieved by a hierarchical structure of very fine
hair-like setae that provide exceptional flexibility and a very large combined surface area
to interact with counter-faces.

Multiple designs for adhesive gripping devices have been developed based on fibril or pil-
lar patterns mimicing the setae of the gecko [5–14]. They provide a unique combination
of advantages compared to conventional solutions for pick-and-place applications. First
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2 CHAPTER 1. INTRODUCTION

of all, since their adhesion is based on vdW interactions, they work for almost all sur-
faces regardless of chemical or electrical properties and in many different environments,
including vacuum, where suction-based gripping does not work at all. Second, they can
safely handle sensitive or fragile parts, leaving no damage or residue on the surface. This
makes them particularly useful for skin contacts in medical applications. Finally, due
to their specific mechanical properties, they provide relatively good adhesion to rough
interfaces, where suction cups are again likely to fail. To better understand the effect of
roughness on adhesion, recent studies often observe the pillar array while in contact, e.g.
by choice of transparent materials, and try to correlate the observed “contact signature”
with the resulting pull-off force necessary to separate the surfaces. Such predictions have
been based on the the first detached pillar [15], statistical considerations [16] or machine
learning [17]. However, the data obtained for the adhesion on a single surface is not
indicative of other surfaces with a considerably different topography and therefore does
not translate to real-world performance. One of the original motivations of this thesis
was assessing to what extent predictions from contact signatures can be improved by
taking topographical information and contact mechanics into account. This, in turn,
requires a good general understanding of how roughness affects adhesion and what pa-
rameters and phenomena need to be considered for a realistic model, which became the
extended scope of my research.

Rough contact mechanics theories and corresponding numerical methods have improved
significantly over the past decades. Nevertheless, they still mostly rely on the framework
introduced by Hertz and Boussinesq [3, 18], which makes three important assumptions:
The elastic body is i) infinitely thick, ii) deformed quasi-statically and iii) its surface
is free of in-plane stresses. The first condition, the “semi-infinite” geometry, is a very
good approximation as long as the characteristic size of contact patches is much smaller
than the material’s thickness. Consequently, it took many years until thin elastic films
received special attention [19,20], which eventually revealed that geometric confinement
does not only affect adhesion quantitatively but completely changes the detachment
mechanism [21, 22]. In recent years, more attention was drawn to the time dependence
associated with polymer contacts, so that the second assumption is often eliminated
by the introduction of a simple viscoelastic material model [23–25]. In spite of this
progress, theoretical as well as numerical models usually pick two out of three “ingre-
dients”, namely, realistic roughness, adhesion and viscoelasticity. This is because even
in quasi-static systems, any change of contact area comes with an adhesive hysteresis
between attachment and detachment, so that the microscopic state of a multi-asperity
system already depends on its history. Adding viscoelasticity to the mix complicates
this history-dependence to an extent that makes predictions based on macroscopically
known properties almost impossible. Studies tackling the combined problem have re-
cently started to emerge but are still relatively rare [26–28, IV]. Getting rid of the
third assumption requires the incorporation of interfacial friction, which is important
for virtually all interfaces between moving parts. For example, when a gecko climbs
up a vertical wall, the gravitational force is directed parallel rather than normal to the
interface, meaning that the successful ascension depends on static friction. Nevertheless,
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the contribution of in-plane stresses to the elastic deformation is almost never taken into
account in conventional contact mechanics. As recent studies have shown, transverse
stresses can indeed be neglected in the semi-infinite limit if the deforming material is
incompressible [29], which is a reasonable assumption for polymers. Many industrial
applications, however, include frictional contacts between metals, which usually require
lubrication and thin polymeric seals to prevent wear and maximize efficiency. Hence,
the incorporation of lateral tractions as well as the fluid flow through the interface would
greatly improve our ability to model such contacts.

With this history and recent developments in mind, the present study aims to bridge
some of the gaps between theoretical/numerical modeling and reality. For this purpose,
Green’s function molecular dynamics (GFMD) [30] is chosen as a highly efficient state-
of-the-art numerical solution technique, which is applicable to a wide range of linearly
(visco-)elastic contact problems. To approach reality, the existing GFMD implementa-
tion had to be enhanced in a variety of ways: The loading conditions had to be refined
to more closely resemble those of real experiments and a more general viscoelastic mate-
rial model was introduced to better capture the mechanical properties of real polymers.
Furthermore, to allow lateral elastic stresses and deformations to be taken into account,
the Green’s function approach had to be generalized to three dimensions and a model for
interfacial friction had to be implemented. Supported by direct comparisons to experi-
ments, these novel simulation capabilities are put to the test by analyzing the following
phenomena affecting a wide variety of real-world contacts:

1. the influence of finite material thickness and compressibility on contact stiffness,
work of adhesion and detachment mechanisms,

2. the improved adhesion performance of film-terminated fibrillar adhesives compared
to polymer bulk or conventional fibrils,

3. the effect of the preload-force on the adhesion observed in industrial gripping
applications to understand the importance of the specific configuration, from which
detachment is initiated,

4. the dynamics of contact formation as well as rupture resulting from different vis-
coelastic material models and

5. the influence of lateral tractions and displacements on real contact area, effective
friction force, eigenstress distributions and resistance to fluid flow through the
interface.

The common aim of these studies is to understand what ingredients are necessary for an-
alytical and numerical models to provide more reliable predictions of real-world contacts.
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Chapter 2

Theory

2.1 Origins of adhesion

The potential for surfaces to adhere is described by the so-called (Young-Dupré) surface
energy, typically denoted ∆γ (or just γ, for short) with the physical dimension of energy
per area. Particles at an object’s surface do not form bonds in the direction normal to
the surface, putting them in an unfavorable state compared to those particles that reside
in the bulk material surrounded by many of their kind. For this reason, all surfaces and
interfaces “cost” energy. When two objects “1” and “2” come into contact, their two
surfaces (i.e. interfaces with vacuum) with respective surface energies γ1 and γ2 are
replaced by a single interface between them with energy γ12. Therefore, the total energy
per unit area is reduced by

∆γ = γ1 + γ2 − γ12. (2.1)

Although this makes ∆γ a characteristic property of the given material pair, its value
turns out to be in the range of 0.03 to 0.06 J/m2 for a surprisingly large range of different
surface combinations [31, 32]. This generality suggests that adhesion is dominated by
the omni-present van-der-Waals (vdW) type of interaction. In many cases, researchers
have ruled out all other options by process of elimination, most notably for the feet of
the gecko [4], whose capabilities have inspired countless designs in practical adhesive
applications [5–14].

In the introduction, we have already established the adhesion paradox, which basically
asks the question why most surfaces do not stick although local tractions can easily
reach 100MPa even for passivated surfaces. Although there are many factors that can
play a role for specific surface pairings or applications, the two most universal ones are
probably microscopic surface contamination and roughness.

Contamination: Contact theories have proven to provide exceptional quantitative pre-
dictions for contacts in the vacuum of space [33]. However, on Earth, surfaces are typ-
ically not microscopically clean but covered by contamination films, which are difficult
to characterize and can play a crucial role for adhesion. In some cases, these films sub-
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6 CHAPTER 2. THEORY

stantially decrease adhesion because they prohibit intimate contact between surfaces.
For example, the stickiness of conventional fibrillar adhesives almost vanishes in under-
water applications [13]. On the other hand, in the natural environment of the gecko,
its strength of adhesion tends to increase with higher temperature and air humidity due
to capillary effects and material softening [34,35]. The underlying chemical reactions of
these mechanisms are beyond the scope of this thesis but actively investigated in other
theoretical and numerical studies [36–38].

Roughness: In most cases, roughness reduces the real contact area between two sur-
faces. Nevertheless, a certain degree of roughness sometimes seems beneficial for adhe-
sion, because the total available surface area is larger than the projected one [39–42].
When trying to understand and predict the effect of roughness on adhesive contacts, the
problem often starts with the mere characterization of the topography, as will be dis-
cussed in Sect. 2.2. Acquiring accurate information from the largest down to the smallest
length scales requires a combination of multiple imaging techniques and very careful post-
processing of the accumulated data [43, 44]. Depending on the surface properties and
experimental techniques, measurement artifacts further complicate the evaluation [45].
These realizations have spawned the Topography Characterization Challenge [46], the
results of which have not been published at the time of writing of this thesis. It was
inspired by the Contact Mechanics Challenge [47], which compared the contact predic-
tions of several numerical and theoretical models for a well-defined computer-generated
surface topography. For adhesive interactions to take effect, the two contacting surface
topographies must conform as well as possible, which generally requires a certain amount
of deformability. It is for this reason that most practical adhesive applications include
soft polymer materials, whose mechanical properties are discussed in Sect. 2.3 and 2.4.2.
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2.2 Surface topography

The crucial importance of surface topography for adhesive contacts is probably best
illustrated by the simple calculation in the original “adhesion paradox” publication [1]:
If two ideally flat, infinitely large surfaces with surface energy ∆γ were to be pulled
apart, the Van-der-Waals adhesion would be overcome after a displacement less than a
nanometer. This would mean that the pull-off stress σpo can be estimated to be

σpo ≈ ∆γ/0.3 nm. (2.2)

This result is approximately three orders of magnitude larger than anything observed in
nature. To explain this discrepancy, it needs to be taken into account that surfaces are
never infinitely large and the constituent materials are deformable. Since the edge of the
contact constitutes a pre-existing defect in the otherwise flat contact, the detachment
usually does not occur uniformly but rather by propagation of an interfacial crack. This
process can be described by Griffith’s fracture mechanics, where the driving force for
crack opening is proportional to the derivative of the stored elastic energy with respect
to the contact area. For a circular contact with radius a, the pull-off stress is then
calculated to be [48]:

σpo =
√

8E∆γ

(1− ν2)πa, (2.3)

where the circular surface is rigid and the other is a flat, isotropic and semi-infinite
material with Young’s modulus E and Poisson’s ratio ν. Contrary to the previous esti-
mate, Eq. (2.3) can reach values observable in nature, perfectly highlighting that shape
and deformability of the contacting surfaces cannot be neglected. However, Eq. (2.3)
predicts a trend opposite of what we observe in our daily lives: It predicts a hard steel
surface to be much more sticky than a soft polymer with substantially smaller Young’s
modulus. Conversely, the well-known empirical Dahlquist criterion states that materials
only feel sticky if their Young’s modulus is smaller than a threshold of approximately
1MPa [49], which was later rationalized theoretically [8, 50]. This stark contradiction
can only be explained by a combination of two things: i) Almost all real surfaces are mi-
croscopically rough and ii) softer, more compliant materials can easily conform to such
rough counter-faces and achieve a much larger real contact area than hard materials [1].

2.2.1 Self-affine random roughness

Unfortunately, closed-form solutions like Eq. (2.3) only exist for contacts with very sim-
ple mathematical shapes, usually axisymmetric ones. The situation becomes much more
complicated once we have to describe systems of realistic roughness. To this end, the
model of isotropic, statistically self-affine height fluctuations provides exceptional ac-
curacy while still maintaining a certain level of simplicity. A wide range of different
industrial processing methods (e.g. sand blasting [51] and chemical/physical vapor de-
position [43,52]) as well as natural phenomena like plastic deformation [53], fracture [54]
and even plate tectonics [55] all tend to create surface profiles that look random and
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self-affine within their respective ranges of length scales. Furthermore, the model can
easily be implemented numerically [30,45,56] and sometimes even simplifies analytic ex-
pressions into small closed-form solutions [23, 57–59]. Natural exceptions to this broad
applicability of the self-affine model are highly correlated, textured surfaces, which con-
tradict the inherent assumption of randomness [60]. However, in some cases, results
obtained from the random-phase assumption can be systematically generalized to “less
random” profiles, e.g. by evaluating certain properties only over the real contact area
rather than the whole surface [61, 62]. To discuss the properties of self-affine random
surfaces, we choose the representation in Fourier space. For the reader’s convenience, the
most important properties of the Fourier transform (FT) can be looked up in App. A. A
much more detailed overview of spectral surface analysis can be found in the literature,
especially Ref. [44].
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Figure 2.1: Comparison of different Hurst exponents. a) H = 0.3, b) H = 0.5 and c) H = 0.8.
Panel d) shows the respective power spectral densities (PSDs). All surfaces have the same

root-mean-square (rms) height of λr/100.

We assume that for every lateral coordinate r = (x, y), the height of a surface is given by
a well-defined function h(r) with the FT h̃(q), where q is an in-plane wave vector. This
allows us to define the so-called power spectral density (PSD) C(q), which, for isotropic
surfaces, only depends on the absolute value of the wave vector q = |q|:

C(q) := ⟨h̃(q)h̃∗(q)⟩{q | |q|=q}, (2.4)

where h̃∗ is the complex conjugate of h̃. This is equivalent to defining the PSD as the
FT of the height auto-correlation function in real space. An isotropic, self-affine random
height profile is obtained when the PSD has the shape of a power law and the height
coefficients have random phases, i.e. U ∈ (0, 1) and

C(q) ∝ q−2−2H , (2.5a)

h̃(q) =
√
C(q) exp(i2πU(q)), (2.5b)

where H ∈ (0, 1) is the so-called Hurst exponent and related to the fractal dimension
D via H = 3 − D. The above assumption of random phases automatically makes the
resulting height values normally distributed. Since the real-space height h(r) follows from
adding up sinusoidal undulations with random phases, its value at each individual point
r is just a sum of many independent random numbers. The results of such summations
follow a Gaussian distribution according to the central limit theorem.
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As hinted at near the start of this section, real surfaces only look self-affine within
a certain range of length scales. The limits of this range are described by the roll-off
wavelength λr and short-wavelength cut-off λs or their respective wave vectors qr = 2π/λr

and qs = 2π/λs. The name “roll-off” is chosen because to the left of qr, the spectrum is
not cut off abruptly but rather transitions (rolls off) into a constant value. This provides
us with a more realistic model for rough surfaces given by

C(q) = C(qr)


1 if q0 ≤ q ≤ qr(
qr
q

)2+2H
if qr < q < qs

0 else
, (2.6)

where q0 is the minimum wave vector and the phases of all h̃(q) are still chosen randomly
as in Eq. (2.5). Fig. 2.2 aims to show that a PSD with roll-off produces slightly more
“natural” looking surfaces than an abrupt cut-off at q0 = qr. This subjective impression
originates from the fact that natural surfaces usually are not ideally flat on long wave-
lengths (except maybe on length scales corresponding to the physical size of an object,
which would be questionable to still consider as a component of roughness). The exact
shape of the roll-off region only has a marginal influence, where the smoothened option
has a lower intensity around the roll-off wavenumber but a slightly higher contribution
everywhere else. In other words, from Fig. 2.2a to c, the relative significance of the
roll-off wavelength λr is progressively reduced.
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Figure 2.2: Comparison of different roll-off variants. a) is generated according to Eq. (2.5), b) with
an abrupt roll-off as in Eq. (2.6) and c) with a smoothened roll-off. d) shows the respective PSDs. All

surfaces have the same rms height of λr/100.

At this point, neither of the above equations have defined the proportionality factor in
C(q). This is because it unfortunately depends on the exact convention used for the
normalization of the PSD and the underlying FT. For example, Persson [63] defines
C(q) so that its integration over all wave vectors is exactly the mean square height ⟨h2⟩:

⟨h2⟩ =
∫

d2q CPersson(q) (isotropy)= 2π
∫
dq qCPersson(q). (2.7)

On the other hand, Jacobs et. al. [44] use a different convention for the definition of the
continuous FT,

CJacobs(q) = 4π2CPersson(q). (2.8)
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Keeping that in mind, we can simply carry out the integral in Eq. (2.7) to express C(qr)
in terms of ⟨h2⟩, H, q0 and qr, so for Eq. (2.6), we get the prefactor

CPersson(qr) =
H

π

⟨h2⟩
q2r (H + 1)− q20H

. (2.9)

Similarly, Eq. (2.5a) becomes

CPersson(q) = H

π

⟨h2⟩
q20

(
q0
q

)2+2H

. (2.10)

This way, the properties of the self-affine surface are completely described by only a few
scalar parameters with intuitive physical interpretations.

2.2.2 Roughness characterization

The previous section has introduced the PSD as a means of characterizing roughness,
which is defined by at least three parameters: The roll-off qr defines the lateral length
scale, the exponent H contains the spectral properties and the third parameter, the
root-mean-square (rms) height h̄ =

√
⟨h2⟩, defines the proportionality factor, i.e. the

magnitude in the normal direction. Thechnically, there is a fourth parameter, the high
frequency limit qs, which can, however, be considered a resolution limit characteristic of
the numerical or instrumental technique rather than the surface topography.

In industrial/engineering applications, it is often preferred to characterize surface rough-
ness using only a single representative value. Multiple conventions for these values have
been standardized, which, in principle, makes it very easy to compare surfaces to each
other, regardless of processing technique or manufacturer. Those parameters are typi-
cally determined for a single line scan h(x) rather than the complete surface measurement
h(x, y), so the result generally depends on the rotation of the coordinate system and the
y-position, from which the line is taken. Some of the most common conventions shall
be discussed here for reference. The rms height Rq, the arithmetic average height Ra,
Peak-to-valley height Rt and the average maximum height Rz are defined as [64]

Rq = h̄ =
√
⟨h2⟩x − ⟨h⟩2x, (2.11a)

Ra = ⟨|h− ⟨h⟩x|⟩x, (2.11b)
Rt = max(h)−min(h), (2.11c)

Rz =
1
5

( 5∑
i=1

max(hi)−min(hi)
)
, (2.11d)

where the “measurement” h(x) is divided into five partial measurements hi, i ∈ [1, 5]
to determine Rz. Consequently, Rz is simply an average of Rt over multiple sub-
measurements. Compared to a characterization via PSD, all of these parameters lack
any lateral or spectral information. 1 Furthermore, determining them from 1D line scans
might be convenient, but fails to capture any potential anisotropy.

1There are many more roughness parameters, some of which neglect vertical information and use
lateral information like the peak counts instead.
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As mentioned in Sect. 2.2.1, many real surfaces have an approximately Gaussian distri-
bution of height values. Under this assumption, the rms height h̄ = Rq is the standard
deviation of this distribution. It is not only used to define the PSD, but also often turns
up in theoretical descriptions, most notably in Greenwood and Williamson (GW) the-
ory [65] and other bearing-area models (BAMs) [66]. This arguably makes using Rq a
strictly better alternative to the otherwise very similar Ra. The other parameters, which
are based on maxima and minima, have the disadvantage that they depend on the scan
length Lx and resolution ∆x. For a set of n = Lx/∆x ≫ 1 random numbers drawn
from a normal distribution, the expectation value of the maximum is proportional to√
ln(n) [67, p. 17f], which very slowly approaches infinity as n is increased. Based on

a couple of computer-generated self-affine surfaces as in Eq. (2.6), increasing Lx from
the roll-off wavelength λr to 10λr increases Rt and Rz by approximately 50% when
the rms height and resolution are kept constant. Furthermore, maxima and minima in
measurements often suffer from imaging artifacts.

In the scientific literature, it has also been suggested to describe the roughness based on
the energy stored in the deformation of an elastic half-space in full contact with the given
topography [68]. This is equivalent to evaluating a rms fractional derivative: It averages
(|q|n

∣∣∣h̃(q)∣∣∣)2 over all q with n = 1/2, where n = 0 would correspond to the rms height
and n = 1 the rms height gradient. We will refer to this parameter as Rel in Tab. 2.1.
For a self-affine surface as in Eq. (2.6), reducing the Hurst exponent at constant rms
height strongly increases the rms gradient ḡ, while Rz only increases moderately. Ra

stays approximately constant, which is to be expected, given its mathematical similarity
to h̄. Some exemplary values are shown in Tab. 2.1, where the size-dependent parameter
Rz was always evaluated over the same scan size.

Ra/h̄ Rz/h̄ Rel/h̄ ḡ

H = 0.8 0.0800± 0.0004 0.39± 0.01 0.27 0.031
H = 0.5 0.0797± 0.0002 0.50± 0.01 0.52 0.10
H = 0.3 0.0797± 0.0002 0.535± 0.003 0.72 0.16

Table 2.1: Roughness parameters averaged over five individual realizations of statistically identical
self-affine surfaces with roll-off wavelength λr and shortest wavelength λs = 0.004λr. All profiles were

generated with the same rms height of h̄ = 0.01λr. Data for Rel as well as ḡ are exact within
numerical precision.

The necessity to incorporate lateral information in roughness parameters is probably
best highlighted by the examples in Figs. 2.1 and 2.2, where all surfaces have the same
rms height and roll-off wavelength λr but clearly look different to each other, even to
the naked eye. What is probably even more important in engineering applications is to
account for potential anisotropy. Most industrial surfaces undergo directional treatments
like, e.g., 3D printing, milling and grinding, which leave various sizes of patterns and/or
microscopic scratches. To illustrate this, Fig. 2.3 summarizes the properties of an optical
scan of a 3D-printed surface. Although optical scans are prone to image artifacts that
undermine the quantitaive accuracy of the depicted PSDs, the qualitative differences in
Fig. 2.3b clearly highlight the anisotropy of the surface. The spectrum measured parallel
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to the printing motion is almost entirely below the PSD evaluated in the perpendicular
direction. The pronounced peaks in the latter correspond to wavelengths that are integer
multiples of the line spacing of the printing process.

2000 µm

a)

0.025 0.050 0.075
(µm)

101 102 103

q (µm−1)

10−9

10−7

10−5

C
(q

)(
µm

3
)

b)

C1D(qx)

C1D(qy)

C2D-iso(q)q/π

0.00 0.05 0.10

h (µm)

0.0

0.1

0.2

0.3

P
(h

)

c)

Figure 2.3: a) 2D height profile, b) PSDs and c) height histogram obtained from an optical image of
a 3D-printed surface. The surface is clearly anisotropic and not ideally Gaussian.

The examples in this section should make it clear that the characterization via PSD is
much more accurate than the scalar parameters discussed above, which do not capture
lateral length scales or anisotropy. The PSD, on the other hand, only neglects the phase
information for individual wavelengths. For example, flipping a topographical feature
upside-down can be expressed as a phase shift of all Fourier coefficients, so both the
original and the inverted profile would have the same PSD. More generally, the PSD
misses information about the height histogram, which may be slightly skewed like the
one in Fig. 2.3 with a few outliers at the extreme ends, which most likely correspond to
bad data points.

To elaborate on the aforementioned optical artifacts and their effect on the PSD, Fig. 2.4
shows optical and tactile line profiles of the same surface side-by-side. The wild spikes
are so dominant in the optical scan that the two measurements look nothing like each
other and the optical PSD is completely wrong.
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Figure 2.4: a) 1D height profile and b) corresponding 1D PSD obtained from an optical (blue line)
and tactile (orange line) scan, evaluated through the Contact.engineering website [69]. The

measurements were taken along two different lines of the same Vitroskin surface (IMS inc., Portland,
ME). The optical scan shows a lot more spikes, corresponding to large wavenumbers.
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2.3 The linearly (visco-)elastic contact problem

2.3.1 Constitutive equations

Describing the mechanical properties of materials first and foremost requires so-called
constitutive equations, which define the relationship between their deformation state
(usually given by a strain tensor ε) and the corresponding stress tensor σ. Both of
these tensors are of rank 2 and can be represented by symmetric 3 × 3 matrices. The
strain tensor follows from the partial derivatives of the 3-dimensional displacement field
u(x1, x2, x3) as

εαβ = 1
2

(
∂uα

∂xβ
+ ∂uβ

∂xα

)
. (2.12)

For small deformations, thanks to what is effectively a first-order Taylor expansion, the
stress-strain relationship can be very closely approximated as linear, where the propor-
tionality factors are given by the material-specific 4th rank stiffness tensor C. This
most universal form of the linearly elastic constitutive equation is known as generalized
Hooke’s law and can be written in index notation as

σαβ = Cαβγδεγδ (2.13)

via Einstein summation convention. If the material is assumed to be mechanically
isotropic, the number of independent degrees of freedom is significantly reduced, so all
components of C can be expressed using only two independent parameters. We will
use the representation of the Young’s modulus E with the physical dimension of stress
and the dimensionless Poisson’s number ν ∈ (−1, 0.5), so we can simplify Eq. (2.13)
into [70, p. 14]

σαβ = E

1 + ν

(
εαβ +

ν

1− 2ν εγγδαβ
)
. (2.14)

This form of the equation helps to better understand the physical meanings of the two
material parameters: While the Young’s modulus is a global proportionality factor for
the stiffness, the Poisson’s ratio acts as a relative measure for the compressibility of the
material. When it approaches 0.5, the prefactor of the volumetric strain εγγ diverges,
meaning that an infinite stress would be necessary to change the volume of the body.
The resulting material would still be deformable and stable, as long as the deformation
is isochoric. When ν assumes negative values, said prefactor becomes negative, making
it particularly easy to change the volume of the body. The lower limit for ν must be
-1 because that is where the global prefactor diverges and the body would immediately
become unstable once any deformation component is different from 0. Another interpre-
tation for ν is the material’s relative perpendicular contraction under a uni-axial tensile
stress, which, however, is not directly obvious from the equations above.

The condition for equilibrium in the absence of body forces is

∂σαβ

∂xβ
= 0, α ∈ {1, 2, 3}, (2.15)
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into which we can substitute Eqs. (2.12) and (2.14) to get [70, p. 18]

E

2(1 + ν)
∂2uα

∂x2
β

+ E

2(1 + ν)(1− 2ν)
∂2uγ

∂xα∂xγ
= 0, α ∈ {1, 2, 3}, (2.16)

which is known as the Navier(-Cauchy) equation of elasticity and usually given in a more
concise vector notation after cancelling the factor E/2(1 + ν) [23, 71–73]:

∇2u+ 1
1− 2ν∇(∇u) = 0. (2.17)

Ref. [74] applies the same formalism for the more general case of cubic symmetry with
three independent elastic parameters (C11, C12 and C44) rather than just two (E and
ν). However, since the present work is mostly concerned with polymer materials below
the glass transition, the isotropic description is completely sufficient.

As mentioned above, the postulated linearity between stress and strain only holds true
in the limit of small stresses and deformations. What happens beyond the small-
displacement limit heavily depends on the class of material in question. In the case
of polymers, the linear behavior often crosses over into a non-linear elastic regime, while
for metals, the stress-strain relationship often stays approximately linear until plasticity
takes over. Contrary to elastic deformation, the plastic component is not reversible and
therefore unavoidably dissipates energy. The onset of plasticity as a material property
is usually characterized by the so-called yield stress σy, which is measured in a simple
uni-axial tensile test. To predict the equivalent threshold for a more complicated stress
field, σy can be compared to the von Mises stress σvM, which provides a general measure
for the magnitude of stress irrespective of coordinate system [75]. It is defined from the
stress tensor σαβ via

σ2
vM := 1

2
(
(σ11 − σ22)2 + (σ11 − σ33)2 + (σ22 − σ33)2

)
+ 3

(
σ2
12 + σ2

13 + σ2
23

)
(2.18a)

= 1
2
(
(σI − σII)2 + (σI − σIII)2 + (σII − σIII)2

)
, (2.18b)

where σI, σII and σIII are the eigenvalues of the stress tensor.

One of the central features of the research presented in this thesis is that viscoelastic
rather than elastic material models were employed. According to the elastic-viscoelastic
correspondence principle, all of the above equations still apply, except that E and ν

are not considered constants but functions of time t (or excitation frequency ω, which
is an inverse time) [76–78]. This is particularly important for polymers, where defor-
mations are accommodated by the microscopic reordering of chain molecules, which are
processes that are considerably slower than the speed of light [79]. The exact shape of
this time-dependence is usually approximated in terms of a linear ordinary differential
equation (ODE) depending on a displacement u and its time derivative u̇. The standard
linear solid (SLS) model, in particular, has been used extensively for contact mechanics
in recent years [23,25–27,80–84]. The derivation procedure for the Kelvin-Voigt as well
as Maxwell representation of the SLS is detailed in App. E, including all commonly used
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parametrizations and transformations between them. The viscoelastic GFMD imple-
mentation represents a generalized Maxwell model, which can closely reproduce a wide
range of experimentally observed response functions. It is described in Publ. IV and
Sect. 2.4.2.

2.3.2 The Green’s function method

We want to solve Eq. (2.17) under the assumption of certain boundary conditions (BCs)
indicative of contact mechanics. For this purpose, we will transition to using the con-
ventional names for Cartesian coordinates x, y, z in place of x1, x2 and x3. The first BC
is that the elastic body is periodic in the x-y plane, where the period may be arbitrarily
large. Furthermore, the material has a flat top surface at z = 0 and bottom surface
at z = −h, which is fixed to a rigid foundation, i.e. u(x, y,−h) = 0 ∀ x, y. In this
framework, the z = 0 surface will represent the one that can be brought into contact
with a counter-body, as shown in Fig. 2.5a. If body forces (e.g. gravity) are neglected,
the stress and displacement fields in the rest of the volume can only depend on the state
of that one surface. What we want to find now is the law that relates the stress distri-
bution σα3(x, y, 0) with the displacement field u(x, y, 0), resulting from the elasticity of
the material underneath.

Figure 2.5: Illustration of the principle of superposition. The pressure distributions p1(r) and p2(r)
both cause the respective displacement profiles u1(r) and u2(r). The resulting displacement of both
pressures acting concurrently is therefore u1(r) + u2(r). This is only true under the assumption of
small deformations, where all stresses can be assumed to be applied to the undeformed, flat body.

Instead of directly defining the Green’s functions, the underlying idea will first be ex-
plained intuitively. For that purpose, we will focus on the simplest set of boundary
conditions, where all in-plane stresses on the surface are 0 and only the normal stress
and displacement are of interest. This essentially presents us with the task of relating
the cause σ33(x, y, 0) with its effect u3(x, y, 0) across the whole surface. To break the
areal problem down into a more local one, we ask the following question: Given the
stress state at a single in-plane position r′, can we predict how this stress affects the
displacement at a different point r? This simplification is thanks to the linear nature
of the problem, as depicted in Fig. 2.5c. The effect of the entire areal stress distribu-
tion can always be formulated as a linear combination of contributions from arbitrary
subdivisions of itself. In the case of a continuous surface, this “linear combination” be-
comes a two-dimensional integration. We also realize that applying a force F at location
r′ = (x0, 0) will cause the exact same displacement field as an equally large force acting
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at r′ = (0, 0), except that everything is shifted by (x0, 0). This means that the problem
is translationally invariant, and the displacement at a point r can only depend on the
distance |r− r′| from the application point of the force. Consequently, if we call this
cause-effect transmission function G(n), the mathematical solution of the problem must
be of the form

u3(x, y) =
∫
d2r′ G(n)(r− r′)σ33(r′). (2.19)

G(n) is what we call the Green’s function (or fundamental solution) of this particular
boundary value problem (BVP) and Eq. (2.19) represents the convolution of G(n) with
σ33. Although this is technically an answer to the question raised above, it still requires
knowledge of the stress at infinitely many points in the surface, each of which affects the
displacement at infinitely many other points. Based solely on this definition, it would
still be an incredibly difficult task to determine G(n). However, thanks to the convolution
theorem, this equation assumes the simplest imaginable form when it is transformed into
Fourier space:

Eq. (2.19) ⇐⇒ ũ3(q) = G̃(n)(q)σ̃33(q), (2.20)

where q is an in-plane wave vector and ũ3, G̃(n) and σ̃33 are the Fourier transforms of u3,
G(n) and σ33, respectively. This has narrowed down the Green’s function method into
the much more manageable task of determining a proportionality factor in q-space.

For the purely normal contact problem presented here, the solution for G̃(n) has been
known for many years. It has been derived independently by many different authors [21,
71,74]. In the form given by Carbone et. al. [56] and used in Publ. I and II, it reads

G̃(n)(q, h) = 2
qE∗

(3− 4ν) sinh(2qh)− 2qh
(3− 4ν) cosh(2qh) + 2(qh)2 − 4ν(3− 2ν) + 5 , (2.21)

where we have first introduced the contact modulus E∗ := E/(1−ν2), which has become
the de-facto standard measure of stiffness in the context of contact mechanics. For a
detailed description of the derivation procedure, the reader is referred to Ref. [71]. An
approximation to the real-space Green’s function G(n) can be obtained by numerically
evaluating the inverse Hankel transform (defined in App. A) of Eq. (2.21). This is
illustrated in Fig. 2.6 to reveal the influence of the Poisson’s ratio and thickness: If ν
is close to 0.5, the volume of the material (almost) remains constant, so pushing down
on the surface in the center inevitably makes it bulge up in the surrounding area. The
thickness h, on the other hand, is a proportionality factor for the lateral spread of the
displacement field, as indicated by the normalization on the x-axis. The case h → ∞ is
known as an “elastic half-space” or “semi-infinite” body. This is by far the best-known
version and was first used around the same time by both Hertz [3] and Boussinesq [18].
Note that for large qh, i.e. for all wavelengths of deformation considerably smaller than
the thickness of the elastic body, the right-most fraction in Eq. (2.21) quickly approaches
1. Therefore, Eq. (2.21) becomes G̃(n)(q, h → ∞) = 2/qE∗ ∀ q, for which the inverse
Hankel transform results in a closed-form analytic expression given by [18]

G(n)(r− r′) = 1
πE∗|r− r′|

. (2.22)
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Figure 2.6: Graph of the normal Green’s function, i.e. the displacement profile resulting from a
concentrated force in the origin. The graphs represent the inverse Hankel transform of Eq. (2.21). In

this case, they were approximated by GFMD simulations with linear system size L ≫ h.

To derive the Green’s function in Eq. (2.21), it was assumed that the lateral stresses in
the surface vanish, i.e., at z = 0. This makes it inherently impossible for this model
to accurately describe the deformation caused by interfacial friction. Relinquishing that
boundary condition means that now all in-plane stresses and displacements need to be
explicitly considered. Therefore, the previously one-dimensional Eq. (2.20) becomes a
matrix equation defining the (Fourier transform of) the Green’s tensor G̃. What is used
in GFMD, however, is not G̃ but its inverse Φ := G̃−1:

σ̃(q) = Φ(q)ũ(q), (2.23)

with σ̃ being the FT of the in-plane stress vector σ(x, y) = (σ13(x, y), σ23(x, y), σ33(x, y)).

The components of the Φ tensor, as well as its inverse G̃ and all asympotic limits and
scaling relations as h → ∞ or q → 0, are given in App. B. A general solution method
with which Φ can be derived is described in the appendix of Ref. [72]. The authors
implemented it in the form of a Mathematica notebook, which was made available to us
in the context of Publication V.
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2.4 Green’s Function Molecular Dynamics (GFMD)

Almost all simulations reported in Chap. 4 were performed using some variation of the
Green’s function molecular dynamics (GFMD) technique. The source code containing
all of the recent additions necessary to reproduce the obtained results can be found on
GitHub [85]. GFMD is a boundary-value method allowing the numerical solution of
linearly (visco-)elastic contact problems. It requires the fundamental solution (Green’s
function) G(r) describing the relationship between displacements and stresses on the sur-
face to be known. For a given surface stress distribution σ(r), the resulting displacement
distribution u(r) can be calculated as the convolution of σ with G. Assuming periodic
boundary conditions in the plane, this convolution equation can be transformed into
Fourier space, where G̃−1, the inverse of the FT of G, takes on the role of a stiffness:

σ̃(q) = G̃−1(q)ũ(q). (2.24)

This is an inverted (matrix) version of Eq. (2.20). The 3D version of GFMD, as developed
for Publ. V, is described by the same equation, except that σ̃ and ũ are vectors and G̃

is a tensor. The above notation makes this transition straight-forward so that the 3D
version does not need to be introduced separately.

Nowadays, it is a simple task to numerically evaluate forward and backward Fourier
transforms, so Eq. (2.24) allows us to compute the complete surface stress distribution
resulting from an arbitrary displacement profile and vice versa. However, when solv-
ing a general contact problem, neither the correct displacement nor the correct stress
distribution are usually known a priori. In order to determine these numerically, we
also need a method prescribing how to iteratively update both of them until the correct
configuration is reached. We realize that Eq. (2.24) describes an elastic stress response
resulting solely from the constitutive equations of the material, which is only identical to
the externally applied stress σext if the system is in equilibrium. As long as ũ(q) is still
evolving, it must have a non-zero stress σ̃ext(q)− G̃−1(q)ũ(q) acting on it. Hence, solv-
ing the contact problem is equivalent to finding the root of this stress function, which,
in turn, is equivalent to minimizing the underlying function for the potential energy of
the system. Since the numerical minimization of a function is an omnipresent task in
scientific applications, there are many available software packages that provide efficient
algorithms dedicated to this purpose. For example, the contact.engineering website [69]
as well as Bugnicourt et. al. [86] use a conjugate gradient (CG) algorithm to find the
optimal configuration of a contact.

As the name suggests, GFMD follows the principles of molecular dynamics (MD) simu-
lations to update the positional degrees of freedom, ũ(q), according to the forces acting
on them. For this purpose, we artificially introduce the mass m(q) into Eq. (2.24) to
obtain an equation of motion (EOM) that is isomorphic to that of the one-dimensional
harmonic oscillator:

σ̃ext(q, t) = G̃−1(q)ũ(q, t) +m(q)¨̃u(q, t). (2.25)

Note that not only ũ, but also the external stress σ̃ext depends on the time t, because
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the constantly varying displacement of the elastic body also changes where and how
it interacts with the counter-surface. This interaction usually depends on the local
distance between the surfaces according to a cohesive-zone model (CZM), which will be
discussed in detail in Sect. 2.4.3. Finally, for the simulation to finish in the equilibrium
configuration rather than oscillate around it, we also introduce a linear damping term
and get the EOM of a damped harmonic oscillator

σ̃ext(q, t) = G̃−1(q)ũ(q, t) + η(q) ˙̃u(q, t) +m(q)¨̃u(q, t). (2.26)

The choice of the introduced mass and damping terms will be discussed in the following
Sections.

2.4.1 Conventional quasi-static GFMD

Since neither m nor η have any physical implication for the static contact problem to
be solved, they can be arbitrarily adjusted to reach the equilibrium as fast as possible.
If σext were constant, the damped harmonic oscillator would relax fastest when it is
near critically damped, i.e. η2 = 4mG̃−1 ∀ q. This choice is usually referred to as
mass-weighted GFMD (MW-GFMD). In principle, convergence can be improved by
adjusting the masses or the damping over time, because σext is, in fact, not constant.
Such “dynamic mass-weighting” concepts have been tested in the past, but none of the
implementations made it into the next “official” version of the GFMD code. The more
robust approach would probably be to keep the masses constant and dynamically adjust
the damping of each mode instead. This is because G̃−1 is not a free parameter and the
characteristic frequency ωGFMD =

√
G̃−1/m is used to determine the optimal time step

size. Consequently, keeping the masses constant makes it easier to ensure the stability
and efficiency of the algorithm, because only changing η does not affect ωGFMD.

One presently available option in GFMD to further speed up the convergence is the
fast inertial relaxation engine (FIRE) algorithm [87, 88]. This option switches off the
damping term in Eq. (2.26) and increases the time step size for as long as the contin-
uously measured potential energy in the system is decreasing. As soon as this trend
turns around, the program stops the motion of all displacements and restarts with a
smaller time step to more precisely probe the energetic minimum that has just been
passed. By repeating this process and iteratively increasing the temporal resolution,
FIRE typically does not only speed up the convergence but also improves the accuracy
of the final configuration. However, since the global energy is used as a criterion, FIRE
may not provide much benefit over conventional mass-weighting if there are only a few
dominant q vectors in a given contact problem. This is where the aforementioned dy-
namic adjustment of mass or damping values for each individual ũ(q) could potentially
provide a performance advantage.

So far, the methodology relied heavily on Fourier-space, which requires periodic bound-
aries and a uniform discretization for an efficient fast Fourier transform (FFT) algorithm
to be used. Opposed to this are real-space approaches that use a very fine discretiza-
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tion in the vicinity of contact edges and a much coarser grid everywhere else to save
memory and computation time. One example of such an approach is the one pursued
by Putignano et. al. [89], which works in a displacement-controlled manner and was
later generalized to viscoelastic contacts [90]. App. C discusses a similar design for
a non-uniform real-space solver for axisymmetric contacts that follows the principles of
conventional GFMD as closely as possible. In the reported state, it is technically working
but nowhere near the necessary accuracy to compete with its Fourier-based counterpart.
The description was included anyway, since it may provide some important insights or
guidelines for future developments to benefit from.

2.4.2 Viscoelastic GFMD

The MD-inspired nature of GFMD makes it particularly capable of simulating realistic
contact dynamics rather than just quasi-static systems. This is especially important
for applications involving soft polymers, whose mechanical properties are noticeably
affected by the rate (i.e. frequency ω) at which they are deformed. In that regard,
the most general feature that all rubbers and elastomers have in common is that their
Young’s modulus (monotonically) increases from an asymptotic quasi-static value E0 :=
E(ω → 0) to an asymptotic high-frequency value E∞ := E(ω → ∞). While the exact
shape of the underlying function varies, theoretical descriptions usually rely on linear
models because of their mathematical simplicity. The well-known standard linear solid
(SLS) is described in detail in App. E, while the present chapter focuses on the two
employed numerical implementations and the differences between them. For simplicity,
it is assumed that the Poisson’s ratio ν of the material is approximately independent of
ω and only the rate dependence of the Young’s modulus needs to be considered.

The majority of the simulations reported in Publ. IV were performed using the vis-
coelastic material model described in Ref. [25], which is based on the Kelvin-Voigt (KV)
representation of the SLS (see App. E.1). It uses a single EOM obtained by completely
eliminating the internal displacement variable in the KV element using the external
stress and its time derivative. To ensure stability, this derivative has to be smoothed by
a low-pass filter (LPF), which makes the accuracy of the short-term material response
time-step sensitive. However, it also makes the method computationally efficient com-
pared to explicitly simulating the KV elements, especially when mostly the long-term
response is of interest. This made the method particularly suited for the comparisons
to experiments, where the simulations take multiple days to finish. Compared to the
original KV implementation of Ref. [25], the Green’s function of the semi-infinite body
had to be replaced with that of the finite elastic film, i.e. Eq. (2.21). The resulting
EOM can be written as

G̃−1(q, ω = 0)
(
τ ˙̃u(q, t) + ũ(q, t)

)
= σ̃ext(q, t) +

τ

s
˙̃σext(q, t), (2.27)

where τ is the characteristic relaxation time and s = E∞/E0.

The new model implemented for Publ. III and IV follows a different approach based on
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the generalized Maxwell model (see App. E.2). In this case, the internal degrees of free-
dom in the Maxwell elements are explicitly simulated over time, making the short-term
response arbitrarily accurate and stable. Furthermore, due to the adjustable number
of Maxwell elements being joined in parallel, the model can reproduce a much broader
range of relaxation functions. It does, however, come at the cost of a noticeably higher
computational demand and memory consumption. The EOM in Eq. (2.26) still applies,
except that the function G̃ corresponds to the high-frequency limit, i.e. assuming a
contact modulus of E∞/(1 − ν2) instead of E0/(1 − ν2). The stress resulting from the
individual Maxwell elements is simply added to the external stress σ̃ext and the damping
parameters m(q) and η0 are chosen so that all q are critically damped for the stiff-
ness k∞(q) := G̃−1(q, ω → ∞). For each q, there are N additional internal variables
ũn(q, t), n ∈ 1 . . . N corresponding to N Maxwell elements. The Maxwell parameters
ηn(q) and kn(q) are chosen according to the particular shape of the E(ω) curve that is
reproduced, as explained in Publ. IV. The EOM is now a system of equations that reads

σ̃ext(q, t) +
N∑

n=1
kn(q)ũn(q, t) = k∞(q)ũ(q, t) + η0(q) ˙̃u(q, t) +m(q)¨̃u(q, t). (2.28a)

ηn(q)u̇n(q, t) = kn(q)(ũ(q, t)− ũn(q, t)), n ∈ 1 . . . N. (2.28b)

2.4.3 Cohesive-zone model (CZM)

The normal interaction between two surfaces is usually modeled within the small-slope
approximation: If the slopes of both topographies are small, the local normal vector
is approximately the same everywhere at any time, which we define parallel to the z-
direction. This allows us to use a one-dimensional interaction model that is merely a
function of the local gap g between the surfaces evaluated in z-direction. While the
contemporary GFMD implementation technically supports the option to simulate two
elastic surfaces in contact with each other, this section will exclusively assume the case
in which one surface is elastic and movable while the other is rigid and immovable. Note
that within the small-slope framework, two (frictionless) elastic bodies 1 and 2 with
contact moduli E∗

1 and E∗
2 and topographies h1(r) and h2(r) are equivalent to one rigid

surface with h(r) = h1(r) + h2(r) and one flat elastic surface with contact modulus
E∗ = E∗

1E
∗
2/(E∗

1 + E∗
2) [3]. Therefore, without loss of generality, most descriptions of

contact mechanics use one rigid and one deformable solid. This convention was also
assumed for all numerical results reported in Chap. 4.

Probably the most commonly used interaction potential is the adhesion-less “hard wall”,
which simply defines an infinitely large energy barrier at g = 0 preventing the two bod-
ies from interpenetrating. In numerical realizations, this is not achievable by a literal
implementation of such a potential. The GFMD code implements hard-wall interaction
as part of the elastic response rather than a force-separation law in real space. At the
start of one time step, all displacement modes of the elastic body are propagated ac-
cording to the current stress acting on them. After that, all points that now penetrate
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the rigid body are shifted back in z direction to where they sit exactly on the surface.
Only then is the elastic stress response evaluated for the next time step, so it automat-
ically includes the hard-wall component. This is quite efficient given that stresses never
need to be evaluated in real space, saving two Fourier transforms (one forward and one
backward) per time step. However, since forcing individual surface points to different
positions heavily disturbs the natural harmonic oscillation of the displacement modes,
it is prone to becoming unstable. It is also difficult to combine this method with a
displacement control, since the overlap elimination affects the mean displacement in an
unpredictable way. For these reasons, there is also a “soft-wall” potential. It features a
simple repulsive harmonic potential for g < 0, which is evaluated in real space. This is
formally the same as using a surface energy of ∆γ = 0 in the cosine-CZM, which will be
introduced in the following. For example, Publ. I made use of a hard-wall interaction
while Publ. V relied on a soft wall instead.

The CZM employed in all adhesive simulations reported in Publ. I, III and IV was
the cosine-shaped potential proposed by Ref. [91]. It maximizes numerical stability
by defining a continuously differentiable potential, whose second derivative is bounded
everywhere. This inherent threshold to the interaction stiffness also limits the maximum
characteristic eigenfrequency of all degrees of freedom in the system, at least as long as
they are independent of each other. This makes it relatively easy to find an appropriate
time step in the molecular dynamics solver, relaxing towards equilibrium position as
fast as possible without creating instabilities. In addition to ∆γ, we need one other
parameter to uniquely define the interaction law, for which we usually use the range of
adhesion ρ. This way, the cosine interaction potential Γcosine as a function of the local
gap g = g(r) at a point with lateral coordinates r = (x, y) reads

Γcosine(g) = −∆γ ·


{1− (πg/ρ)2/4} for g ≤ 0
{1 + cos(πg/ρ)}/2 for 0 < g < ρ

0 for g ≥ 0
, (2.29)

which approaches the Johnson, Kendall and Roberts (JKR) limit as ρ → 0. The resulting
interfacial stress σcosine and stiffness kcosine are given as

σcosine(g) = −∂Γ(g)
∂g

= −π∆γ

2ρ ·


πg/ρ for g ≤ 0
sin(πg/ρ) for 0 < g < ρ

0 for g ≥ 0
(2.30a)

and kcosine(g) =
∂2Γ(g)
∂g2

= π2∆γ

2ρ2 ·


1 for g ≤ 0
cos(πg/ρ) for 0 < g < ρ

0 for g > 0
. (2.30b)

The stiffness is formally undefined in the singular isolated point g = ρ but both the left-
and right-sided limits exist and are finite. Moreover, the maximum negative stiffness
in the adhesive regime is well-defined and equal to the repulsive stiffness max(kcosine) =
π2∆γ/(2ρ2).
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To ensure the stability of the numerical procedure, the elastic stiffness kel resulting
from the constitutive equation, according to Eq. (2.21), also needs to be taken into ac-
count. The maximum elastic stiffness is that belonging to the maximum wave vector
qmax =

√
max(q2x) + max(qy)2 (assuming that qmax ≫ 1/h). In most cases, the period-

ically repeated simulation cell will either be one-dimensional (D = 1) with length L

and N discretization points, or two-dimensional (D = 2) with dimensions L × L and
discretization N × N . This leads to qmax =

√
DNπ/L and consequently max(kel) =

qmaxE
∗/2 = E∗

√
DNπ/(2L) (again assuming qmax ≫ 1/h). On a slightly oversimplified

level, kel and kcosine can be interpreted as two springs working against each other. To
avoid instabilities equivalent to rupture in the elastic solid, kel must always be larger
than −kcosine, i.e. κpot := −min(kcosine)/max(kel) < 1. κpot is the relative curvature of
the interaction potential acting as a safety factor. The interaction potential in GFMD
simulations is usually set up taking ∆γ and κpot as input parameters and calculating ρ

automatically from Eq. (2.30b), i.e.

ρ =
√√√√ π2∆γ

2κpot max(kel)
=
√√√√ π∆γL

κpotE∗N
√
D
. (2.31)

Since the interfacial interaction is local in real space, it would be more precise to compare
kcosine to the elastic stiffness of a deformation exciting all q-modes equally. That would
correspond to a concentrated displacement in a single point r rather than the amplitude
of a sinusoidal displacement undulation with wavelength 2π/qmax. This could potentially
reduce or even eliminate the need to repeatedly check if κpot has to be adjusted from
one simulation to the next.

To demonstrate the useful properties of the cosine-shaped interaction potential, we will
compare it to some commonly-used alternatives. Probably the best-known adhesive
CZM is the one proposed by Dugdale and Barenblatt [92, 93]. The adhesive part of its
potential energy has a linear shape and is combined with a repulsive hard wall. This
comes with the disadvantage of a diverging second derivative, making the interaction
sensitive to small perturbations wherever the local gap is close to g = ρ. In practice,
this means that either very small time steps and long relaxations are necessary to reach
complete equilibrium, or that the simulation keeps very gently fluctuating around the
equilibrium. These fluctuation usually constitute an error of significantly less than 1%,
seeing that only a very small fraction of the points in the simulation cell are near that
critical g = ρ state. In the context of Publ. III, some simulations were run with a
Dugdale model attraction law combined with harmonic repulsion. As briefly discussed
but not explicitly shown, the scaling relation between time and Tabor parameter is valid
regardless of the exact shape of the interaction potential, at least for indenters with
polynomial height profiles. The displacement and the stress profiles, on the other hand,
look distinctly different in the vicinity of the contact edge, as Fig. 2.7 shows.

The previously discussed potentials are explicitly cut off at a distance of ρ ≥ 0 from
the opposite surface. This leads to small computation times and quickly approaches
the short-ranged limit. Since the most relevant type of adhesive interaction for the real-
world version of the studied systems is the van-der-Waals (vdW) force, the most accurate
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Figure 2.7: a) displacement profile and b) stress distribution obtained for an adhesive Hertzian
contact using two different CZMs. The range of adhesion ρ in the Dugdale model was set to

ρDugdale = 3.8ρcosine to achieve approximately the same far-field displacement.

model to use would probably be a Buckingham or Lennard-Jones (LJ) interaction law.
Both of these potentials describe the interaction between the molecules making up a
macroscopic body, where the attractive component is proportional to the inverse sixth
power of the distance between particles. This relationship is an exact result for vdW,
obtained by averaging the interaction between the random spontaneous and induced
dipole moments occurring in the electron distributions of particles [32, 94]. To derive
an expression for the interaction between points on surfaces, the potential has to be
integrated over the respective area elements [95]. In the case of LJ, this ultimately leads
to the stress-distance relation [83,96,97]

σLJ(g) =
8∆γ

3ρ

(g
ρ
+ 1

)−9

−
(
g

ρ
+ 1

)−3
. (2.32)

Note that compared to Ref. [83], the equilibrium position was shifted to g = 0 instead of
g = ρ. Some contact mechanics studies also use a Morse type of interaction potential [91],
which comprises a sum of two exponential functions:

σMorse(g) =
2∆γ

ρ
(exp(−2g/ρ)− exp(−g/ρ)). (2.33)

This shape of potential also originates from atomic interactions, whereas the attractive
term is more representative of the embedding energy in metallic or covalent bonding
than vdW adhesion. One advantage is that, contrary to LJ, Morse does not diverge in
the repulsive regime.

Fig. 2.8 directly compares the introduced CZMs in terms of their stress-gap curve. The
individual values of ρ were chosen so that they all take on the same slope in g =
0, because this stiffness is what typically limits the efficiency and stability of GFMD
simulations. It is evident that at a given computational workload, the cosine-shaped
potential is by far the most short-ranged option, producing the largest negative stress.
As shown in Fig. 2.7b, this makes it much easier to approach the theoretical JKR limit,
which features stress singularities at the contact edge. The repulsive part of Γcosine, on
the other hand, is relatively soft, which is arguably its most severe disadvantage. The
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interpenetration of the contacting bodies often constitutes a non-negligible deviation
from the usual reference case that is the hard wall limit. In principle, this problem can
be alleviated by adjusting the CZM, albeit only at the cost of computational stability
or efficiency.
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Figure 2.8: Normal stress σ as a function of local gap g according to the Dugdale (black), cosine
(blue), Lennard-Jones (orange) and Morse potential (green). All values of ρ have been adjusted so

that all curves (except Dugdale) have the same stiffness at g = 0, i.e. ρLJ = ρcosine
√
32/π and

ρMorse = ρcosine2/π. Since the Dugdale model does not have a well-defined stiffness,
ρDugdale = 3.8ρcosine was chosen, just as in Fig. 2.7.

2.4.4 Tangential interaction

In the contemporary GFMD implementation, in-plane traction forces are modeled in
terms of Amontons’s law with a velocity-independent Coulomb friction coefficient in
gross slip condition. At each in-plane point r of the elastic body’s surface, the lateral
stress σ = (σxz, σyz) is simply given by

σ(r) = −µcv̂rel(r)|σzz(r)|, (2.34)

where µc is the Coulomb friction coefficient and v̂rel the unit vector in the direction of
the local relative in-plane velocity between the two surfaces. The absolute value of σzz is
considered here to also create traction in adhesive contact elements while avoiding anti-
friction. Publ. V did not consider any adhesive contacts, so |σzz(r)| could be replaced
with the normal pressure pz(r) ≥ 0 ∀ r.

Since only steady-state sliding in gross-slip condition is considered in this work, it per-
tains to relatively large velocities, where the assumption of Coulomb friction is justified.
Most real systems show a velocity-dependent friction coefficient at low values of vrel,
for which there is no universal function. A common case is a Stokes-type drag friction
regime at low velocities, where µ ∝ vrel, which transitions into either a logarithmic or
power-law behavior µ ∝ vβrel with 0 < β < 1 and then eventually levels to a constant
value µc at higher velocities [98, 99]. Consequently, the velocity-independent Coulomb
regime is arguably the most universal feature in solid friction.
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Eq. (2.34) combines the Coulomb model with the empirical law that the friction force
is not proportional to the nominal contact area, but rather to the normal load. This
realization is usually attributed to Amontons, although it had already been discovered
by Leonardo da Vinci two centuries earlier [100, 101]. It needs to be kept in mind that
this principle was observed on the macroscopic scale, and it is still unclear to what
extent it holds when microscopic roughness is taken into account. This is because, for
small average contact pressures, the mean pressure p̄ and the true area of contact Ac

are approximately proportional to each other (see Sect. 3.2). Hence, from a macroscopic
measurement, it is not possible to discern between a microscopic mechanism that is
proportional to Ac and one that is proportional to the local pressure pz(r) (i.e. a locally
valid Amontons’s law as in Eq. (2.34)) [102]. Some studies suggest that the microscopic
friction stress is actually constant within the contact area for low values of p̄, while
a contribution proportional to the local pz(r) only starts to become relevant at large
compressions [103]. The relative influence of these two components seems to depend on
how well the two surfaces adhere to each other [104].



Chapter 3

State of the art

3.1 Quasi-static single asperity contacts

The elastic constitutive equations outlined in Sect. 2.3 are easiest to solve for axisym-
metric systems, where the method of dimensionality reduction can be applied [105]. The
general solution method for non-adhesive contacts in terms of the Hankel transform has
been described by Sneddon [106] and the adhesive case by Yao and Gao [107]. The
first explicit solutions for adhesive contacts were extensions of the Hertz contact theory
for paraboloid bodies [3]. Johnson, Kendall and Roberts (JKR) derived their theory
by adding an inverted flat-punch stress profile to the elliptic Hertzian stress distribu-
tion [108,109]. This produces the characteristic integrable stress singularities at the edge
of the contact that asymptotically scale with the inverse square root of the distance from
the edge, which can also be seen in the numerical data presented in Fig. 3.1b. An alter-
native approach to JKR is to keep the displacement profile unchanged from the purely
repulsive case and only add the adhesive stress distribution outside of the contact area
instead. This method effectively just adds an offset load pressing down the indenter,
which balances the adhesive force acting outside the contact. 1 The corresponding solu-
tion is often credited to Derjaguin, Müller and Toporov (DMT) [110], but was already
published as early as 1932 by Bradley [111]. The respective pull-off force predictions of
JKR and DMT for a rigid sphere of radius R detaching from an elastic half-space are

FJKR = 3
2∆γπR and (3.1)

FDMT = 2∆γπR. (3.2)

Contrary to the pull-off force prediction of the circular flat punch (see Eq. (2.3)), the
result does not depend on the elastic properties of the half-space. The discrepancy in
the prefactor between the two approaches is due to the fact that JKR corresponds to
the limiting case of infinitely short-ranged adhesion and the DMT model to an infinitely

1This equivalence only happens to work out for a parabolic indenter shape. For other shapes, the
integration of the interaction over the infinitely large non-contact area would either vanish or diverge.

27
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large range of interaction ρ. The intermediate case was solved by Maugis and later
Popov et. al. assuming a Dugdale model for the finite-ranged interactions [112,113].

The so-called Tabor coefficient [114]

µT := R1/3
(
∆γ

E∗

)2/3

ρ−1 (3.3)

provides a dimensionless measure for the inverse range of adhesion ρ−1, where JKR corre-
sponds to the limit µT ≫ 1 and DMT to µT ≪ 1. In the literature (e.g. Refs. [115,116]),
µT is sometimes formulated in terms of the maximum adhesive stress σth rather than ρ.
This stress can generally be substituted with α∆γ/ρ, where the dimensionless prefactor
α depends on the specific model used for the normal interaction between the surfaces
(see Sect. 2.4.3). Consequently, the only difference between the σth-based definition and
Eq. (3.3) is effectively a dimensionless prefactor of order unity. Nevertheless, this dis-
crepancy needs to be taken into account when comparing systems with specific values of
µT between different publications. In the case of a Dugdale CZM, both ways to define µT

are exactly equivalent, i.e., α = 1. However, in the present study, most results pertain
to the cosine-shaped attraction model with harmonic repulsion, for which α = π/2, as
indicated by Eq. (2.30a).

The concept of the Tabor parameter can easily be generalized to the flat punch [117],
polynomial indenters [118] and also to randomly rough surfaces by using the rms radius of
curvature in place of R [58,59]. Furthermore, in the appendix of Publ. III, we explicitly
show that the same definition of Tabor parameter applies to both 1D and 2D contacts.
In the JKR limit, the adhesive one-dimensional parabolic indenter can also be solved
analytically [119].
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Figure 3.1: Comparison between the adhesion-less Hertz indenter (solid blue line) and simulations
near the DMT limit (µT ≈ 0.01, dashed orange line) and JKR limit (µT ≈ 3, dashed red line) and an

intermediate case (µT = 1, dashed green line) in terms of a) displacement profile and b) stress
distribution. In all cases, the indenter is pressed down with the force F = 0.01E∗/R2 and the surface

energy was set to ∆γ = 0.01RE∗.

Using the numerical method outlined by Greenwood [120], Ciavarella et. al. [121] have
found that the JKR limit is not yet fulfilled at µT ≈ 5, where they still saw a deviation
of almost 50% in terms of the load-displacement hysteresis. This has recently been
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confirmed by GFMD simulations [91], showing that especially the premature jump into
contact makes it difficult to approach the short-ranged limit. A Tabor parameter of 10
was still very far from the JKR load-displacement relationship, while the detachment
curves are already indiscernible for µT ≈ 2. Convergence of the hysteresis was rather
slow, with the relative error disappearing with the cubic root of the mesh size when ρ is
calculated as in Eq. (2.31).
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3.2 Quasi-static rough contacts

Intuitively, it is tempting to think of rough contacts as a collection of many individual
asperity contacts. The most famous model following this idea is the one developed by
Greenwood and Williamson (GW) [65]. In its original version, it approximates rough
surfaces as infinitely many Hertzian asperities with identical radius R. The normal
(z-)coordinates of the paraboloids are distributed according to a Gaussian distribution
with a standard deviation equal to the known rms height of the surface. Taking adhe-
sion into account is as straight-forward as replacing the Hertz equations with those from
JKR [122], DMT [123] or even a more general single-asperity description with a finite
range of adhesion, like the Maugis-Dugdale model [124]. GW theory was the first suc-
cessful analytical rationalization of the commonly observed linear relationship between
external normal pressure pz and relative contact area ar for small pz/E∗. However, prob-
ing GW’s implications more closely reveals multiple flaws, mostly originating from the
neglected elastic interaction between asperities [47, 125] and poor representation of the
real roughness [126]. Most notably, the predicted range of linearity between pz and ar is
orders of magnitude too small and the corresponding proportionality factor vanishes in
the limit of infinitely large surfaces [127]. The practical applicability of the model fur-
ther suffers from the definition of a representative radius of curvature of the topography.
The second derivative of the height profile strongly depends on the smallest scales, which
are particularly challenging to measure. Nevertheless, probably because of its simplicity
and instructional character, research trying to correct some of GW’s shortcomings is
still ongoing [128–133]. Very similar to GW in spirit but slightly more elaborate is the
model developed by Bush et. al. [134], in which the prediction of linearity between pz
and ar does not vanish in the thermodynamic limit [96].

A completely different approach to the problem was taken by Persson [23]. He started
from the inherent multi-scale nature of roughness and realized that as the magnification
ζ (corresponding to the maximum wave number) is increased and finer length scales of
roughness are added, the stress histogram is smeared out in a diffusive process [135]. This
is because the underlying partial differential equation is isomorphic to Fick’s second law,
where ζ replaces time and the stress replaces the lateral coordinate. Solving this equation
allows the most important contact properties to be calculated either as a closed-form
solution or in the shape of integral equations depending only on the contact modulus E∗

and the PSD of the rough surface C(q). The linearity between external pressure pz and
relative contact area ar is predicted to depend on the rms gradient ḡ of the roughness
profile according to [136]

ar ≈

√
8/π
E∗ḡ

pz (3.4)

for small dimensionless pressures pz/E
∗ḡ. Brute-force numerical studies show the di-

mensionless numerator to be closer to 2 than
√
8/π ≈ 1.6, albeit slightly dependent

on resolution (i.e. maximum magnification ζ) [136, 137]. Eq. (3.4) represents a much
more rigorous explanation for this well-known linearity than GW, especially because it
approximates a much wider range of pressures. Furthermore, describing the topography



3.2. QUASI-STATIC ROUGH CONTACTS 31

based on its complete PSD is a much more accurate representation than the replace-
ment with parabolic asperities in GW. Unsurprisingly, this reliance on the PSD makes
Persson’s original model most accurate near full contact, where the displacement of the
elastic body exactly follows the rough topography. A more recent version of the theory
improves the overall accuracy by explicitly incorporating partial contact [138]. With this
enhancement, good agreement is observed between simulations and most of the theoret-
ical predictions [136,139], although a systematic analysis of the underlying assumptions
reveals that the close agreement is partially thanks to fortuitous error cancellation [135].

Persson applied the same principles to the adhesive case using an effective surface en-
ergy γeff(ζ) in place of the constant (ideally flat) surface energy ∆γ [41, 50]. Its value
depends on magnification and is calculated from the sum of surface energy Uad and the
corresponding elastic strain energy Uel, i.e. Uel+Uad = −γeffA0, where A0 is the nominal
contact area. It is important to note that the calculation of Uad in his description uses
the real contact area rather than the projected one. For this reason, for small rough-
ness amplitudes and/or small elastic moduli, γeff > ∆γ, which implies a macroscopic
increase of adhesion with roughness amplitude. This is in agreement with multiple ex-
perimental studies [39, 40, 42] and provides a rationalization of the empirical Dahlquist
criterion [49,50].

In Persson’s framework for adhesive contacts, the pull-off stress can be calculated by
inserting a magnification-dependent adhesive detachment stress σa. Its determination
can be based on a Griffith approach given the surface energy γeff, e.g. assuming a penny-
shaped crack whose diameter corresponds to the topographical wavelength [41,140]. For
simple geometries, this fracture mechanics approach is exact in the limit of infinitely
short-ranged surface interaction. In the case of finite-ranged adhesion, the interaction
potential Φ(g) depending on the local separation g between the surfaces needs to be
integrated over g for the calculation of γeff [141]. Using this generalization, the theory’s
predictions also match numerical calculations for adhesive rough contacts, except that
the relative repulsive contact area is slightly underestimated and the attractive area
overestimated. A similar result has been observed when Persson’s theory is applied to
1D contacts [139], suggesting that the mismatch in contact area is a small systematic
error arising in the case of partial contact. Joe and Barber [96, 97] presented another
solution of the adhesive contact problem, which closely followed the principles of Pers-
son’s theory. However, they included some simplifications accounting for their choice of
a Lennard-Jones interaction law without hard-wall repulsion. Once again, they found
good agreement with numerical (GFMD) data in terms of γeff and force-displacement
relations.

Except for a few available closed-form expressions, the equations in Persson’s theory
usually require numerical solution techniques. However, even without knowing exact
solutions, some tendencies and limiting cases can easily be justified using simple mathe-
matical arguments. For example, in the limit of infinite magnification, adhesion vanishes
for Hurst exponents H ≤ 0.5. This can be understood in terms of the areal elastic energy
density Vel/A0 that would be necessary to form full contact even at the smallest scales.
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With a strictly self-affine, isotropic PSD C(q) ∝ q−2−2H according to Eq. (2.5) for wave
vectors larger than q0, that energy would equate to

Vel/A0 =
∫
d2q

qE∗

2 C(q) ∝ E∗
∞∫

q0

dqq−2H , (3.5)

which diverges for H ≤ 0.5. On the other hand, for H > 0.5 and a PSD with roll-off
regime following Eq. (2.6), the integrand constituting this energy has a maximum at
q = qr, suggesting that λr = 2π/qr is the most important lateral length scale in the
system. These arguments are based on full contact but provide a reasonable way to
qualitatively rationalize results measured on rough contacts, whether they are adhesive
or not.

When it comes to direct comparisons between the predictive capabilities of various the-
oretical and numerical methods, the most extensive study to date is the Contact Me-
chanics Challenge [47, 142]: any interested research groups were challenged to make
predictions for the same well-defined rough contact problem, which could even be re-
alized experimentally, highlighting the real-world implications of the study [143]. The
combined effort of the challenge’s participants reveals a couple of clear differences be-
tween approaches: computationally expensive brute-force numerical solutions, like those
based on molecular dynamics (MD) or on Green’s functions, are generally the most ac-
curate. Heavily simplified models like the Winkler foundation or GW-based approaches
lead to qualitatively wrong tendencies in terms of the interfacial gap, stress probabilities
and contact patch distributions, with the relative contact area being at least quantita-
tively off. Persson’s theory, on the other hand, provides qualitatively correct predictions
in almost all cases, especially for high external pressures pertaining to large relative
contact areas.
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3.3 Stickiness criteria

Due to the complexity of explicitly solving Persson’s theory, there have been multiple
attempts to narrow down rough surface adhesion into so-called “stickiness criteria”,
which estimate the roughness threshold below which a surface feels macroscopically
sticky. The first such approach was outlined by Persson and Tosatti (PT) [50], based on
the simple idea that the work of adhesion is reduced by the elastic energy required to
form contact. The corresponding closed-form criterion for stickiness can be derived by
neglecting the surface slope in the determination of the adhesive energy and assuming
that the effective surface energy ∆γeff = ∆γ − Vel/A0 > 0 [144]. For a surface with a
self-affine spectrum with Hurst exponent H > 0.5 between wave vectors q0 = 2π/λ0 and
∞ (see Eq. (2.5)), the criterion reads

h̄PT <

√
2H − 1
πH

√
λ0

∆γ

E∗ . (3.6)

Wang and Müser recently confirmed the validity of this criterion, only adjusting it by a
factor of 2 [59]. The central property of Eq. (3.6) is the proportionality to

√
λ0, which

represents the largest lateral length scale in the topography. Microscopic properties have
little effect, except when H ≤ 0.5, in which case Eq. (3.6) is invalid and stickiness is
instead predicted to vanish completely, regardless of h̄.

Ciavarella [66] used the stress-displacement relationship obtainable from a BAM assump-
tion to arrive at a similar criterion. Once again, it depends only on the macroscopic
roughness parameter

√
λ0 and differs from PT solely in the prefactor. The same proce-

dure was later applied to a roughness spectrum that is truncated at a certain maximum
wavevector q1 [144], revealing that the criterion is substantially less sensitive to changes
in ζ = q1/q0 and H than PT, even converging for H ≤ 0.5 and ζ → ∞. Although
this result is questionable from a purely mathematical point of view, it seems reason-
able in real-world applications: Given that the assumptions of continuum mechanics are
fundamentally wrong at the molecular level, it certainly makes sense to terminate the
spectrum at a maximum wavenumber q1 representative of typical atomic distances or
vdW interaction ranges.

Opposed to this group of very similar macroscopic criteria is the criterion by Pastewka
and Robbins (PR) [57]. They assumed that each repulsive area element Arep is enclosed
by a “ring” of attractive contact with width datt, which depends on the typical absolute
value of the surface slope h′ at the contact perimeter as well as the range of adhesion ρ.
The displacement profile in the vicinity of the (repulsive) contact area is described by
the adhesion-less case, where the displacement varies with the 3/2 power of the distance
from the contact perimeter. This assumption puts this theory in the Bradley/DMT
limit of long-ranged adhesion, even though it explicitly takes ρ into account. Arep is
determined assuming a paraboloid with radius of curvature calculated from the rms
curvature h′′ of the surface. Hence, the model depends on both the rms gradient and
rms curvature, making it highly sensitive to small-scale features (large wave numbers,
see Eq. (A.8c)). Finally, a surface is assumed to feel sticky whenever a non-zero relative
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contact area is obtained even at an external pressure of 0, i.e the slope of the contact
area-pressure curve is initially negative. This leads to the criterion

h′ρ

2
E∗

∆γ

(
h′2

h′′ρ

)2/3

< 1, (3.7)

which does not converge for ζ → ∞. Using an explicit value for ζ for the same self-affine
roughness profile as above (Eq. (2.5)), Eq. (3.7) adopts the form

h̄PR < λ
3/5
0 ρ2/5

(
∆γ

E∗ρ

)3/5

f(H, ζ), (3.8)

where f(H, ζ) is a dimensionless geometric factor containing the spectral properties of
the surface. Compared to the previous models, PR explicitly take the range of adhesion
ρ into account and scales with the 3/5 rather than 1/2 power of λ0. Another criterion
with the same exponents was derived by Violano et. al. [145], also using the DMT
assumption but estimating the adhesive contact area based on Persson’s theory rather
than a single asperity description. Consequently, their criterion converges for ζ → ∞,
which makes it more easily comparable to the ones proposed by Persson-Tosatti, Wang-
Müser and Ciavarella. Neglecting the weak dependence on H for H > 0.5, their result
can be written as [145]

h̄Vio < λ
3/5
0 ρ2/5

(
∆γ

E∗ρ

)3/5( 9
8π

)3/5
, (3.9)

which can be seen as a special case of Eq. (3.8) for intermediate magnifications (ζ ≈ 103)
and large Hurst exponents (H ≈ 0.8).

Rigorous comparisons between criteria and precise numerical data are provided in Ref. [59],
making a strong case for the PT and related criteria. However, it should be noted that in
the case of large ∆γ > Vel/A0, the starting configuration is often already in full contact
and detaches uniformly. This scenario is rarely observed in reality and usually overes-
timates the pull-off stress by multiple orders of magnitude, as described in the context
of the adhesion paradox in Sect. 2.1. Furthermore, the authors always start the detach-
ment from a zero load configuration and neglect the effect of the preload, which plays a
critical role in many real systems, especially with viscoelastic dynamics [146, IV].

In summary, simple closed-form expressions for the stickiness of surfaces exist but are not
suited for quantitative adhesion predictions. Estimating the pull-off force or adhesive
hysteresis would require the numerical evaluation of Persson’s theory for the PSD in
question. Applying this procedure to real surfaces, however, is complicated by the
challenges of the precise experimental roughness characterization necessary to determine
the PSD (see Sect. 2.2.2). Furthermore, most practically relevant adhesive materials have
viscoelastic mechanical properties, where the quasi-static theories fail and brute-force
simulations are currently the only available option.
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3.4 Fibrillar adhesives

So far, the elastic body has been assumed to be initially flat, which is a necessary
prerequisite for the translational invariance of the problem, lending itself to the Green’s
function method. The situation changes when the elastic material itself has a topography
that cannot be approximated as flat (i.e. it violates the small-slope approximation), as
is definitely the case for pillar arrays. Therefore, their theoretical description typically
relies on different methods, which shall be roughly outlined here.

For the most part, the improved adhesive performance of fibrillar compared to unstruc-
tured surfaces can be explained by a combination of two factors: i) fibrils are more
compliant than bulk since they have room to expand and contract laterally and can
buckle [5] and ii) a propagating interfacial crack is trapped and has to re-initiate repeat-
edly at every fibril, requiring a larger energy release rate than the propagation of an
ideal straight crack [5, 7, 147]. The latter effect is also referred to as the flaw tolerance
of the structure [148].

a) b)

backing layer

terminating film

Figure 3.2: Schematic image of a simple cylindrical pillar array a) without and b) with a
terminating layer (semi-transparent red).

Hui et. al. [5] have studied pillar structures theoretically and found that for very small
fibril radii, the pull-off process is no longer sensitive to interfacial crack propagation but
rather limited by the theoretical strength σth. However, fibrils this thin are probably not
practical, since the absolute contact area would be very small, and because they would
have a tendency to clump together [9,149]. In practice, the pull-off is most likely limited
by fracture mechanics, in which case the authors derive a pull-off stress σpo under the
assumption of a perfectly sticky interface.

The interaction between fibrils and a propagating crack has multiple aspects, whose
relative contributions depend on the individual system in question. First of all, the fibrils
can be thought of as introducing periodic “notches” in the crack front, effectively blunting
it and reducing the stress concentration. This model has been studied theoretically by
Gao and Rice [150, 151] and later been introduced in a numerical contact mechanics
solver [152]. Second, the fibril interface does not feature a pre-existing crack, each
time requiring the initiation of a new one releasing the entire elastic energy stored
in the fibril. This constitutes a much larger energy barrier than that of conventional
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crack propagation. Finally, the resulting discontinuous detachment sequence leads to
more viscoelastic dissipation in the material, further increasing the load-displacement
hysteresis. As a result of these mechanisms, experimental studies have reported an
increase in the energy release rate compared to a flat interface without fibrils by a factor
of 4-10 [7] and 10-20 [153] for different geometries.

Bio-inspired fibrillar surfaces also provide a lot of different design choices to tweak their
properties into certain directions. For simple homogeneous cylindrical pillars as in
Fig. 3.2a, the adjustable parameters are the thickness of the backing layer, the fibril
distribution pattern (most commonly square or hexagonal), the distribution density and
the aspect ratio, which is the ratio between their height and diameter. These are the
parameters that primarily control the stiffness and effective area on the array level. How-
ever, most of the mechanistic optimization happens at the level of the individual fibril.
One approach is to slow down the detachment by reducing the stress concentrations at
the edges associated with the cylindrical shape. This can for example be achieved by
composite pillar designs that are softer at the edges, which can increase the pull-off force
by (up to) a factor of ∼ 7 in rough contacts [10]. The fibrils’ disadvantage of reduced
absolute contact area compared to a flat block of bulk material is sometimes mitigated
by the introduction of different cup shapes at the tips of pillars [13, 15]. The optimiza-
tion of the cup as well as the individual pillar geometry was even tackled with the help
of machine learning, indicating that the optimal shape is slightly thicker at the base
than near the cup end [12]. However, they only looked at the contact with a rigid flat
counter-face without roughness. The logical continuation of the cup-terminated fibril
is to cover the entire fibril array with a tightly bonded, very soft, continuous film as
sketched in Fig. 3.2b. The mechanical properties of these film-terminated structures
and their adhesive performance in contact with rough surfaces is therefore studied in
Publ. II.

The assumption of translational invariance in the elastic theory becomes less problematic
when the terminating film is added to the fibril array. However, neither the film nor the
fibril layer can be treated as semi-infinite, as assumed in the previous Sections. There
are studies on thin, confined elastic films in contact with a circular flat punch [19, 22,
119,154], albeit mostly focused on asymptotic limits. For incompressible elastomers and
intermediate film thicknesses, some experimental studies have proposed fit functions for
the effective contact modulus, from which the adhesive pull-off force can be derived [20,
154, 155]. Publ. I aims to provide a much simpler model based on analytical scaling
relations, with an approach that is valid for arbitrary Poisson’s ratios. Furthermore, it
provides highly accurate numerical reference data for pull-off force and Poisson’s ratio
measurements. Publ. II uses the stiffness expressions of finite-thickness elastomers to
rationalize the stickiness observed for film-terminated fibrillar adhesives designed for
medical applications.
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3.5 Viscoelastic contacts

As already pointed out in Sect. 2.1, almost all adhesive applications include soft poly-
meric materials, whose mechanical behavior is dominated by molecular relaxation pro-
cesses [79]. Consequently, experimental observations frequently show that even at low
deformation velocities of a few micrometers per second, the measured work of separation
is substantially higher than the quasi-static prediction and further increases with higher
speed [156–158]. Replacing the quasi-static elastic material model with a viscoelastic
one severely complicates the history dependence of adhesive rough contacts. Therefore,
many investigations on viscoelastic adhesives still focus on single asperity contacts and
attempt to identify tendencies that, at least qualitatively, generalize to rough surfaces.

Gent and Schulz [156] tested an adhesive contact with a multitude of wetting liquids,
which let them probe a wide range of surface energies ∆γ, in tack as well as peel tests.
They found that in almost all cases, the effective work of adhesion w(vc) at a crack
velocity vc is of the shape

w(vc) = ∆γ(1 + cvnc ), (3.10)
where c and n are material-specific constants and the temperature-dependent c = kanT
depends on the Williams, Landel and Ferry (WLF) parameter aT. n is often observed to
be between 0.1 and 0.8, where formally deriving it from the diffusion of free elastomeric
chains would suggest that it is exactly 0.5 [159]. The previously defined surface energy
∆γ = w(0) is nothing but the work of adhesion required to separate two flat surfaces
quasi-statically.

The WLF model is an empirical law describing the time-temperature superposition
(TTSP) of viscoelastic material properties [160]: Decreasing the temperature from T1 to
T2 < T1 reduces the thermally activated mobility of the molecular structure and makes
the polymer stiffer. This effect is equivalent to increasing the excitation frequency or
deformation rate by the factor aT2/aT1 relative to the characteristic speeds of internal
relaxation processes. WLF find aT to be well-described by a reference temperature Ts

and the two coefficients C1 and C2 in the relation

log aT = − C1(T − Ts)
C2 + T − Ts

, (3.11)

where using C1 = 8.86, C2 = 101.6K and Ts = Tg + 50K for a polymer with glass
transition temperature Tg has been found to be a surprisingly universal description
applying to many different viscoelastic materials [115,157,161,162].

Maugis [157] applied the Gent-Schulz law andWLFmodel to adhesive fracture mechanics
to derive an expression for the velocity-dependent work of adhesion for two contacting
spheres and for peeling experiments. In classical Griffith fracture, the variation of the
free energy F with respect to the contact area A is given by

dF
dA = G− w, (3.12)

which defines the strain energy release rate G containing information on how all other
energy contributions (all except the surface energy) change with the contact area. For
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a quasi-static, displacement-controlled system, G is simply the derivative of the elastic
strain energy with respect to contact area, where the equilibrium condition is given by
G = w and ∂G/∂A > 0. In a dynamic system, however, assuming that viscoelastic
losses occur predominantly in the vicinity of the contact line, G > w is necessary to
accelerate the crack, where this excess acceleration can be written via Gent-Schulz as

G− w = wf(aTvc) (3.13a)
⇔ G = w(1 + f(aTvc)), (3.13b)

with f(aTvc) = k(aTvc)n. This framework was then used by Muller [115] to derive
a differential equation allowing to calculate the contact area over time, assuming a
displacement-controlled detachment at constant velocity. Violano et. al. [26, 27] have
recently compared Muller’s model to experiments conducted on a patterned surface
comprised of many single asperities and found it to apply reasonably well.

An aspect that has proven difficult in the description by crack propagation is the stress
singularity at the crack front. This singularity can be eliminated either by defining
a cohesive zone at the tip [163, 164] or by an energy-based approach [165]. Hui et.
al. [166] have compared the predictions from these two approaches, finding that the
only significant difference between them is the estimation of the cohesive zone, which,
however, can be used as a fit parameter. Persson and Brener [80] use the maximum
stress given by the employed cohesive-zone model (CZM) to define a quasi-static cut-off
wave vector q0, which is decreased for non-zero velocity v to qc(v) = q0(1− f(E∗(ω), v)),
effectively blunting the crack tip [82]. Their model closely reproduces GFMD results,
showing that the dissipated power has a maximum at intermediate velocities. This is to
be expected, given that the imaginary part of E(ω) vanishes in both the low- and high-
frequency limit. The pull-off force Fpo(v), on the other hand, increases monotonically,
until it reaches Fpo(v → 0)E∞/E0, where Fpo(v → 0) usually corresponds to the JKR
prediction in Eq. (3.1).

Strictly speaking, since both adhesion and viscoelasticity are hysteretic processes, there
is no generally valid relationship for contact radius and crack front speed, which makes
it impossible to provide an exact estimate of the energy release rate. Consequently,
all models have to make assumptions on the branch of the general hysteresis that they
describe. For example, the previously introduced model by Persson and Brener assumes
that detachment starts from a relaxed configuration at an infinitely large initial contact
radius amax. Later on, he adjusted the theory by introducing a low-frequency cutoff
ωL ∼ vc/amax for a crack starting at amax with a speed vc [167]. With this adjustment,
the pull-off force does not grow monotonically with velocity anymore but drops off after
an intermediate maximum, similar to the dissipated energy. Together with Lorenz et.
al. [168], he also postulated that for closing cracks, viscoelasticity reduces the crack
closing energy by the same factor by which it increases the crack opening energy in the
Gent-Schulz equation:

w(closing)(v) = ∆γ

(1 + cvn) , (3.14)

which is supported by recent numerical studies by Violano and Afferrante [83, 169].
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However, the authors also point out that the Persson-Brener approach still falls short
of capturing the influence of the initial configuration of the system. For example, they
observed that when detachment starts from an unrelaxed state, the viscoelastic dissi-
pation is not concentrated in the vicinity of the crack front and the bulk cannot be
neglected anymore. Therefore, they proposed to use the cut-off ωL ∼ v/amax in Pers-
son’s theory with the macroscopic velocity v rather than the crack speed. In the case of
a relaxed starting configuration, they enhanced Persson’s previous approach to account
for the finite initial contact area by also adjusting the stress cut-off σth according to a
semi-empirical description of the stress intensity factor for a finite crack geometry [170].
They found that, due to the finite initial contact size, the pull-off force falls short of
reaching Fpo(v → 0)E∞/E0, even for very high velocities. With these modifications, the
Persson-Brener model is in good agreement with their reference data gathered using a
contemporary finite element method (FEM) implementation.

Once again, a few words on the influence of the range of adhesion are in order, which is
particularly interesting in viscoelastic contacts. At high velocity, the material responds
with a higher elastic modulus, which means an effective reduction of the Tabor param-
eter (see Eq. (3.3)), potentially approaching the behavior of the long-range limit. This
blurs out the stress concentrations at the crack tips, which eventually leads to a uniform
contact rupture instead of a detachment by crack propagation. This has been observed
in GFMD [82] as well as FEM [171] simulations, where the latter also showed that the in-
fluence of the initial configuration becomes almost negligible for small µT. Furthermore,
decreasing the range of adhesion ρ increases the maximum stress σth in the cohesive zone
model, which makes the crack tip sharper and enhances the dissipated energy, which, in
turn, slows down the crack speed. Since it is very challenging to simulate macroscopic
bodies with realistic atomic interaction ranges, it would be very valuable to know how a
result obtained at medium to large ρ can be applied to real systems with a much smaller
ρ. This question was tackled by Publ. III to better rationalize the good agreement
between numerical and experimental data in Publ. IV in spite of a mismatch in their
values of ρ.

The results outlined above mostly pertain to the Hertzian tip geometry, but similar
studies have also been conducted for general polynomial indenters [172] and the circular
flat punch [173,174]. In the latter case, since the contact area at the start of detachment
is always the entire circle, there is (almost) no influence of the initial configuration, so
that the detachment mechanism effectively depends only on the velocity at which the
indenter is pulled off. Publ. III will also feature non-Hertzian indenter shapes but with
focus on the contact formation (crack closure) process rather than detachment (crack
opening).

Applying any of these concepts to real rough surfaces is difficult because of the issues
already outlined in Sect. 3.2: Modeling a collection of single asperities neglects any elastic
interaction between them and is generally not a good representation of roughness. A
more accurate approach would require the inclusion of viscoelasticity in a true multi-scale
model like Persson’s theory. For the adhesion-less case, this is relatively simple, seeing



40 CHAPTER 3. STATE OF THE ART

that Persson’s original publication was already formulated with an arbitrary viscoelastic
modulus [23]. For normal detachment or attachment problems, however, the solution
requires the governing equations to be integrated numerically over time (or an inverse
FT with respect to temporal frequency ω). Only in the case of steady-state sliding at
constant normal pressure and lateral velocity v can the problem be simplified, where for
each wave vector q, the only relevant temporal frequency is qv cosΦ, where Φ is the angle
between v and q [23]. For an adhesive system, however, it seems virtually impossible
to capture the time dependence of the contact, considering that even the quasi-static
case does not allow the determination of a unique relationship between contact area
and external parameters like displacement or pressure. Consequently, research in this
direction has to rely on brute-force simulations for now. Recently, a numerical study on
1D rough contacts found that the adhesive and viscoelastic hystereses are approximately
additive [28], whereas the 2D contact study in Publ. IV shows that the general case is
more complicated than that. It does, however, show a very strong influence of the initial
configuration in good agreement with the included experiments performed under almost
identical conditions.
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3.6 Elastic coupling and friction

In Sect. 2.4, the Green’s function method was applied to solve the equation system of
linear elasticity under the given boundary conditions in Fourier space. As can be seen
from the matrix nature of the equation

σ̃(q) = Φ(q)ũ(q),

lateral stresses can affect the normal displacement and vice versa, a phenomenon which
we refer to as elastic coupling between lateral and normal direction. Consequently, a
contact mechanics problem is uncoupled if one of the following two conditions is met:
i) all lateral stresses are 0 or ii) all off-diagonal terms of Φ vanish. The latter condition
is fulfilled if h ≫ 1/|q| ∀ q and at the same time ν = 0.5, i.e. for semi-infinite,
incompressible elastic solids. This allows many contact problems involving polymer
materials to be closely approximated as uncoupled. In the general case and especially
in frictional contacts, on the other hand, it should be obvious that the effect of coupling
cannot be neglected. The description of these phenomena in terms of Φ, the coefficients
of which are given in App. B, is in the spirit of Publ. V.

Historically, elastic coupling was originally introduced by Flamant [175], who modified
Boussinesq’s solution [18] to describe the stresses and deformations inside an infinitely
large elastic wedge loaded along its edge. In the limiting case where the wedge has an
opening angle of 180°, this represents the first analytical solution for the elastic deforma-
tion of a flat surface, to which normal and tangential stresses are applied simultaneously.
However, the solution was limited to semi-infinite solids and line contacts.

The effects of coupling in axisymmetric contacts were investigated by Hamilton [176,177].
He derived analytical expressions for the entire stress state in the elastic body in frictional
sliding contact with a rigid Hertzian indenter, where x is the sliding direction. The
equation reveals how the lateral stress component σ11 becomes asymmetric along x once
the indenter experiences sliding friction in x-direction. Furthermore, the location of
the maximum von Mises stress depends on the imposed microscopic Coulomb friction
coefficient µc. For small values of µc, it is located underneath the surface of the elastic
body close to the symmetry axis of the indenter, where the trailing edge only shows
a smaller local maximum. As µc is increased past 0.3, the maximum on the trailing
edge becomes global and the local maximum underneath the surface is smeared out
until it vanishes completely for µc > 0.5. To derive these relations, Hamilton made the
simplifying assumption that the elastic body is semi-infinite and constrained the normal
stress σzz(x, y, 0) to exactly follow the Hertzian solution.

Scheibert et. al. [178] derived the stress distribution in an elastically coupled contact
under less stringent boundary conditions. First of all, they did not constrain the normal
pressure but rather just the contact area, revealing that the normal stress also becomes
asymmetric along sliding direction. Furthermore, they limited their analysis to incom-
pressible elastomers, but took the finite thickness of the material into account. This
let them compute the stress on the bottom of the elastic slab opposite to the indenter
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contact, which they could compare to real-world measurements. The good agreement
between their model and experiments was the first direct proof for the practical signifi-
cance of elastic coupling.

The final simplification that can be dropped is the circularity of the contact area, at
which point the system becomes impossible to describe analytically, and numerical solu-
tions need to be developed, instead. To some extent, this was already done in the original
GFMD implementation of Campaña et. al. [30], where the stiffness tensor components
were fitted to Molecular Dynamics calculations. In the continuum framework, a numer-
ical solver of this kind was first implemented for 1D contacts by Menga et. al. [29, 73].
They also introduced a differentiation between two types of coupling: Material coupling
(compressibility-induced coupling) is due to the deviation of the Poisson ratio ν from
0.5, while geometric coupling (confinement-induced coupling) originates from the finite
thickness of the elastic body. They showed that in the former case, the contact area is
shifted toward the trailing edge, reducing the effective macroscopic friction compared
to the imposed microscopic friction coefficient µc. Geometric coupling has the opposite
effect, where the contact is skewed toward the leading edge and the overall friction in-
creases. The gap is decreased and the total contact area increased for both couplings
when compared to the µc = 0 case. Publ. V represents the next step of generalization,
where realistic two-dimensional contacts are considered and analyzed with respect to
many more contact properties, aiming to provide a comprehensive and detailed study of
coupling with applications to a wide variety of phenomena in engineering and materials
science. The investigated aspects include i) the elastic-plastic transition as indicated by
the von Mises stress fields in realistic rough sliding contacts, ii) localization of defect
initiation sites revealed by local maxima in the most tensile eigenstress and iii) fluid flow
through the interface. Complementing this publication is the perturbation approach pre-
sented in App. D providing a rigorous mathematical approach to identifying the origin
of the observed tendencies.



Chapter 4

Results and discussion

4.1 Effect of Poisson’s ratio and confinement

In Publ. I, we studied a circular flat punch with radius a in contact with an infinitely
large elastic film of thickness h supported by a rigid foundation. In the adhesion-less
case, the contact area does not depend on the external compressive force F , so the total
displacement u0 is simply proportional to F . This allows us to investigate the system in
terms of the effective modulus Ē of the contact, which is defined as the proportionality
factor between the mean stress σ̄ and strain ε̄:

Ē = σ̄

ε̄
= Fh

u0πa2
. (4.1)

Dimensional analysis suggests that this stiffness must be proportional to the contact
modulus E∗ of the elastic material and can otherwise only depend on the dimensionless
measure for confinement, h/a. Unfortunately, there is no known closed-form expression
for this dependence. To provide an analytic approximation of Ē(h/a), we apply a
simple scaling argument to the Green’s function G(n) in Eq. (2.21), which represents a
wavelength-dependent compliance. Since the indenter radius a is the only lateral length
scale in the system, we evaluate G(n) for a single representative wave number which
must be proportional to qa = (2π/a), where the proportionality factor can be derived
from well-known asymptotic limits. This provides us with the analytic prediction shown
in Fig. 4.1, which is compared to numeric data and exact asymptotic limits, showing
that all qualitative tendencies are correctly reproduced. The quantitative error, on the
other hand, is around 50% for h/a ≈ 2 and can become as large as π2/2 for strongly
confined, (almost) incompressible elastic films. In principle, these tendencies allow the
Poisson’s ratio to be determined from measurements of Ē, for which Publ. I provides
useful reference data.

Since the elastic energy stored in the system can be expressed in terms of Ē, it can be
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Figure 4.1: Effective modulus of flat-punch contacts for a variety of Poisson’s ratios as a function of
confinement parameter h/a. Solid lines represent the analytical model, symbols are GFMD data

points and dotted lines are exact asymptotic limits. The figure is adapted from Publ. I.

substituted into the energy balance to derive the adhesive pull-off stress σpo as

σpo =

√√√√ 4Ē(h/a)∆γ/h

2 + ∂ ln Ē(h/a)/∂ln a
. (4.2)

Inserting numerical data for Ē(h/a) into Eq. (4.2), we calculate the curves shown in
Fig. 4.2 for the pull-off stress as a function of Poisson’s ratio and confinement. However,
determining the pull-off stress in this way assumes that the contact area remains circular,
which is not necessarily true for ν > 0.4. This is because the stiffness function 1/G(n)

has a pronounced minimum at intermediate wave numbers q ≈ 1.5 . . . 2/h, favoring
the evolution of wrinkles at the interface. Examples for the complicated detachment
mechanisms are provided at the end of Publ. I based on adhesive GFMD simulations with
thermal noise. Similar configurations have been observed experimentally [22,179–182].
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Figure 4.2: Pull-off stress of flat-punch contacts for a variety of Poisson’s ratios as a function of the
confinement parameter h/a. Solid lines represent interpolated curves calculated inserting the

numerical data in Fig. 4.1 into Eq. (4.2). Dotted lines are exact asymptotic limits and circles are
results obtained from adhesive GFMD pull-off simulations. The figure is adapted from Publ. I.

4.2 Film-terminated fibrillar microstructures

Publ. II studies the adhesion of film-terminated fibrillar adhesives compared to film-
terminated solid blocks and plain fibril structures without the terminal layer. The
blocks and fibril arrays are both manufactured from the same MDX4-4210 silicone ma-
terial with a Young’s modulus of EMDX ≈ 1MPa, while the films consist of a soft skin
adhesive (SSA) with a much smaller modulus of ESSA ≈ 0.1MPa. Experiments on flat
and rough surfaces are complemented by measurements on sinusoidal structures, whose
wavelengths approximately correspond to the roll-off wavelength λr of the roughness
spectra of interest. As explained in Sect. 3.2, the range of wavelengths near λr generally
dominates the elastic energy necessary to form an intimate contact.

In the spirit of Sect. 4.1, we use the Green’s function in Eq. (2.21) to estimate the
wavelength-dependence of the elastic deformation energy. This is a rather qualitative
argument, given that the fibril structure needs to be approximated as a flat continuum
with isotropic properties (see Sect. 2.3.2). Since the fibrils have enough free volume
available to expand and contract laterally, we replace them with a solid with Poisson’s
ratio ν = 0. This description is asymptotically exact for wavelengths that considerably
exceed the distance between adjacent pillars, where both the model and the fibril struc-
ture approach a so-called Winkler foundation. In the case of very short wavelengths, on
the other hand, the St. Venant principle suggests that mostly the soft surface film will
be deformed, for which we can model the fibrils underneath as a rigid foundation. These
two modes of deformation at different wavelengths are depicted in Fig. 4.3a and 4.3b.



46 CHAPTER 4. RESULTS AND DISCUSSION

At intermediate wavelengths, the preferred mode should be the one with the lower corre-
sponding elastic energy, which we then use to roughly approximate the total deformation
energy in Fig. 4.3c.

Figure 4.3: a) and b) schematic representation of two different idealized deformation modes.
c) Minimum of the two elastic energies corresponding to these deformations, evaluated for different
adhesive structures as indicated by the legend. Therein, the abbreviation “CON” stands for a solid
silicone block, while “FT” stands for a fibrillar structure. The numbers behind the hyphen indicate

the thickness of the terminating layer in micrometers. The figure is adapted from Publ. II.

Despite the simplified nature of the model outlined by Fig. 4.3, it can be used to rational-
ize many of the tendencies observed in the adhesion measurements. We consider, once
again, that in order to form intimate contact with a rough counter-surface, the adhesive
structure has to be compliant, i.e. the necessary deformation energy in Fig. 4.3c must
be small. For long wavelength undulations that reach through the surface layer, a sparse
distribution of fibrils is always more compliant than a solid block of the same material.
This is an important part of why the fibril structures generally show a stronger adhesion
in Fig. 4.4. The influence of the terminating film also turns out to be in line with this
stiffness argument: Since the SSA material of the film is much softer than the silicone
underneath, it is usually beneficial to increase the film thickness from 12 to 50 µm. Of
course, this improvement is more noticeable for the films on top of the solid silicone
block than those on top of the fibril structure, because the latter is already much more
deformable on its own.

Given that the beneficial effect of low stiffness results from the necessity to conform to
the counter-face, this advantage disappears when the surfaces are sufficiently flat and
smooth. We can observe this on the far left of Fig. 4.4b, where the stiff, solid silicone
blocks reach much higher pull-off forces than the more compliant fibril structures. For
such flat-on-flat contacts, we can assume that the load-displacement curve resembles
that of the well-known adhesive flat-punch solution, which is linear all the way until
the point of instantaneous detachment. More importantly, the area under the curve is
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exactly the surface energy ∆γ, which can be considered to be constant between all data
points in Fig. 4.4b. Therefore, a higher stiffness implies a larger slope and ultimately
a higher force value at the moment of detachment. This trend is clearly highlighted by
the two exemplary load-displacement curves in Fig. 4.5a. Only the “roundness” of both
curves represents a significant deviation from the ideal model, which can most likely be
attributed to viscoelastic effects.

Based on the previous argument, it would also seem reasonable to expect the overall
stiffer system with the 12 µm layer to show a stronger flat-surface adhesion than the
50 µm layer. However, Fig. 4.4a shows the opposite to be the case. To shed some
light on why this might be, we take another result from Sect. 4.1 into account: If a
confined film with thickness h is brought into contact with a circular flat punch of radius
a < h/2, its mechanical response is almost indiscernible from that of an unconfined
(semi-infinite) body. It is reasonable to assume that in this case, the internal stress field
caused by the punch barely interacts with the opposite interface. In the present system
of fibrillar adhesives, both the silicone and the counter-surface can be approximated
as rigid compared to the much softer SSA. Hence, the film can be considered to be
confined between the counter-surface and a circular flat punch (representing the fibril).
Since the radius of the fibrils was 25 µm, the 50 µm film can just be approximated as
semi-infinite. For the structure with the 12 µm film, on the other hand, the stress field
caused by the fibril reaches the counter-face and may provide an additional driving
force for premature detachment. To validate this hypothesis, the internal stresses were
characterized by FEM simulations. Their results are depicted in Fig. 4.5c.

Figure 4.4: Pull-off stress σpo measured for different film-terminated adhesive structures with two
different film thicknesses (12 and 50 µm). a) σpo for fibrillar structures in contact with a flat or

sinusoidal surface with wavelength λ = 480µm as a function of the compressive displacement from
which detachment is initiated. b) σpo for film-terminated fibrillar and solid block structures as a

function of the average maximum height Rz of the rough counterface. The figures are adapted from
Publ. II.

Fig. 4.4a shows another distinct difference between the two film thicknesses: At very
large compressive displacements, the pull-off stress measured on the sinusoidal surface
reaches the smooth-surface value in the case of the 50 µm film but not the 12 µm layer.
This may be explainable by the lateral stretching of the thin film, which was very obvious
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in the in-situ contact images reported in Fig. 4.5b. However, this remains a somewhat
empirical explanation, since it is not an easy task to incorporate this large-displacement
effect in the first-order deformation models that we have assumed thus far.

Figure 4.5: a) Stress-displacement curve measured for the flat surface detachment of a
film-terminated bulk (“CON”) and fibril (“FT”) structure with 25 µm film thickness. b) In-situ

observation of the detachment of a fibril array with 12 and 50 µm terminal layer. c) FEM result for
the von Mises stress profile in the material when in full contact with a stiff sinusoidal surface with a

wavelength of 480 µm and amplitude of 25 µm. The figures are adapted from Publ. II.
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4.3 Viscoelastic contact formation

Publ. II only briefly touched on the viscoelastic properties of the materials involved,
even though the roundness of the load-displacement curves in Fig. 4.5a indicates a clear
deviation from the ideal quasi-static flat surface detachment. To study the temporal
contact evolution, we consider again the simple model system of a single rigid indenter
in contact with a semi-infinite viscoelastic body. More specifically, we limit ourselves to
axisymmetric indenters for which the local height h is described by the n-th power of
the distance r from the origin:

h(r) = R

n

(
r

R

)n

, (4.3)

where R is a characteristic length, corresponding to the radius of curvature for n = 2.

The mechanical properties of the material are modeled according to the SLS, so that
there is a well-defined configuration at time t = 0 corresponding to the high-frequency
modulus E∞ = 100E0 (see App. E). We employ the viscoelastic GFMD implementation
described in Publ. IV to simulate the evolution of the contact radius rc(t) over time and
report it in terms of a correlation function C(t) defined as

C(t) = rc(t)− rc(0)
rc(∞)− rc(0)

, (4.4)

where the quasi-static and instantaneous radii rc(∞) and rc(0) are obtained from con-
ventional quasi-static GFMD. All simulations are run with an adhesive surface energy
of ∆γ = 0.01E∗R under zero external load. The quasi-static contact modulus E∗ as well
as R are set to 1 and the range of adhesion ρ in the cosine-shaped interaction potential
is adjusted between individual calculations to probe a wide range of different Tabor
parameters µT, see Sect. 2.4.3 and 3.1.

By fitting the final stages of C(t) with an exponential function, we identify a charac-
teristic long-term relaxation time τ . Normalizing the time axis by τ lets the different
measurements superimpose surprisingly well for all values of µT and n, as depicted in
Fig. 4.6a. This agreement can be explained by the increase in local dissipation at the
contact line as the range of adhesion is decreased. A smaller value of ρ increases the
slope of the displacement profile and thereby the local velocity during relaxation, which
is equivalent to changing the viscoelastic time scale. To elaborate on this trend, the
measured relaxation time τ is plotted against µT in Fig. 4.6b, revealing that τ scales
with µ1.8

T for all investigated indenter geometries. The simulations were repeated for
one-dimensional polynomial indenters, with the cosine-potential as well as a Dugdale
interaction, which all showed the same scaling relation.

Due to the uniform lateral discretization in GFMD, it is not feasible to simulate macro-
scopic systems with atomic/molecular interactions. With the identified scaling law,
however, we can systematically extrapolate from relatively cheap simulations to such re-
alistic multi-scale systems: By simply increasing the relaxation time of the viscoelastic
model, a simulation with medium-ranged adhesion can closely reproduce the relaxation
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a) b)

Figure 4.6: a) Contact radius evolution over time, determined in terms of C(t) for different Tabor
parameters µT and polynomial indenters of various exponents n. b) Long-time relaxation times τ
obtained from the exponential model fit, plotted against the Tabor parameter µT. Solid symbols

represent rotationally symmetric indenters, while open open symbols are 1D contacts with the same
polynomial height functions as their 2D counterparts. The figures are adapted from Publ. III.

dynamics the same material with short-ranged interactions. This principle will be ap-
plied in Sect. 4.4, where GFMD simulations are directly compared to experiments.



4.4. COACTION OF VISCOUS AND MULTI-STABILITY HYSTERESIS 51

4.4 Coaction of viscous and multi-stability hystere-
sis

As already discussed in Chap. 1, it has historically challenging to model real contacts
that combine viscoelastic dissipation with adhesive multi-stability. Therefore, Publ. IV
investigates whether the new viscoelastic GFMD version is capable of reproducing the
dynamics of such systems. For this purpose, we define a model system that can be
realized in GFMD as well as the laboratory to run direct comparisons of the contact
signature evolution and load-displacement relationship. We choose a circular flat punch
indenter, to which single-wavelength topography is added, forming a triangular pattern
of small asperities, as shown in Fig. 4.7a. The radius of the punch is a = 375 µm, the
wavelength λ = 150 µm and the “amplitude” z0 = 4 µm. This indenter is then 3D-
printed, where some of the resulting imperfections have to be incorporated back into
the computer model of the surface to be used in simulations. The fabricated indenter is
then installed opposite of a soft polydimethylsiloxane (PDMS) substrate in a dedicated
tack test apparatus with an optical system for in-situ observation. A schematic of this
setup is shown in Fig. 4.7b.

b)a)

Figure 4.7: a) Illustration of the computer-generated topography. b) Sketch of the tack test setup
with the indenter in contact with the PDMS substrate. The figures are adapted from Publ. IV.

The mechanical properties of PDMS are modeled with a quasi-static Young’s modulus of
2MPa and a standard linear solid (SLS). Our best guess for the surface energy between
the two materials is the generic value of 50mJm−2. The center of mass (COM) displace-
ment in the simulation is corrected for the effect of periodic boundary conditions (PBC),
while for experimental data, the finite stiffness of the apparatus has to be eliminated.
Furthermore, the mismatch in range of adhesion originating from the numerical resolu-
tion limit is accounted for as described in 4.3. Since the SLS is not suited to capture
the real viscoelastic properties of PDMS exactly [81], the relaxation time constant τ was
adjusted empirically and then kept constant for all simulations with the same adhesive
interaction model.

The tack tests are conducted in displacement-controlled fashion, approaching at a con-
stant speed vext until a predefined compressive force Fpl is reached, at which point the
velocity is multiplied by −1. Values for vext ranged from 1 to 25 µms−1 and preload
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forces from 1 to 80mN. Fig. 4.8 shows the resulting load-displacement curves from ex-
perimental as well as numerical tack tests. They show very good agreement in all cases,
except maybe for the highest velocity at Fpl = 60mN. Moreover, a certain systematic
mismatch between the overall stiffness in experiments and simulations remains, in spite
of the extensive compliance correction applied to both methods. Both the numerical
and experimental data have in common that the load-displacement hysteresis generally
appears to have two individual contributions: At the smallest velocity, all curves show a
distinct bulge around a compressive displacement of 5 µm followed by the second bulge
near 0 on the x-axis, which corresponds to a rather small pull-off force. As the velocity
and preload increase, the first bulge moves closer to the second one until they coincide,
at which point the observed pull-off force is drastically increased. Owing to the contin-
uous observation of the contact evolution, we identified that the first bulge corresponds
to the detachment of saddle points and the second one to the peaks of asperities. This
will be elaborated on in the following.

Figure 4.8: Load-displacement curves obtained during detachment at different velocities.
Experimental results are on the left and numerical data in the right column. The preload force Fpl is

increased from 40 to 80mN from top to bottom. The figure is adapted from Publ. IV.

Fig. 4.9 compares the real and simulated contact images at different times to show that
even the local evolution of the contact matches reasonably well between them. The
first column of pictures was taken at the time tpl of the preload force and the second
column 12.5% later into the tack test. In the last two columns were synchronized based
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on detachment events rather than time, so that the t values differ slightly between
experiment and GFMD: The third column corresponds to the first bulge in the load-
displacement curves at a displacement of approximately 5 µm and the last column to
the pull-off force. Between these two moments, all the saddle points detach while the
asperities stay in contact.

Figure 4.9: Contact signatures observed during experimental (top row) and numerical tack tests
(bottom two rows) for Fpl = F (tpl) = 40mN and vext = 1µms−1. In the first two rows, the darkest
gray color represents “contact” and the light color “non-contact”, while the medium gray level was

added for simulated data to represent points with a positive interfacial gap smaller than the
wavelength of light (∼ 500 nm). Hence, it is not exactly clear what the dark areas in the experimental
images must be compared to in the numerical pictures: either dark gray, medium gray or something in

between. The figure is adapted from Publ. IV.

Due to the specific properties of the viscoelastic simulation, the COM motion shows a
retardation from the fist to the second column in Fig. 4.9: the contact is still growing
although the surfaces already move apart. To some extend, this phenomenon depends
on the time resolution of the simulation, which affects the inaccuracy introduced by the
LPF in the Kelvin-Voigt solution algorithm (see Sect. 2.4.2). Perhaps more importantly,
the significantly increased relaxation time necessary to match the local dissipation at
the crack front inevitably slows down the macroscopic dynamics, too.

In Publ. IV, we report the same tests for another indenter geometry, where the saddle
points are close enough to the asperities that they always detach concurrently, which
significantly reduces the effect of the preload force. Furthermore, we employ a 3-element
generalized Maxwell model for viscoelasticity, which only marginally affects the detach-
ment process.
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4.5 Significance of elastic coupling and friction

In Publ. V, we investigated the influence of friction at the interface. For this purpose,
the 3D version of GFMD was implemented together with a simple Coulomb friction
model, as described in App. B and Sect. 2.4.4, respectively. Once again, it makes sense
to isolate the phenomenon of interest as much as possible, so that we study it in the
context of non-adhesive contacts and start with a single Hertzian asperity before we
introduce roughness. The investigated system and the corresponding coordinate system
are defined in Fig. 4.10a.

Figure 4.10: a) Schematic of the investigated system of an indenter sliding across the surface of the
elastic body. b) Illustration of the Displacement field (black stripes) caused by a sinusoidal surface

stress, the minima and maxima of which are indicated by the red arrows.

The impact of in-plane friction is mediated on the normal component of the contact by
what is referred to as the “elastic coupling” originating from the off-diagonal components
of the Green’s function tensor. Since these terms vanish when ν = 0.5 and simultaneously
h → ∞, coupling can be induced either by the material’s compressibility or the geometric
confinement (finite thickness) of the elastic body. The two types of coupling in their
isolated forms are illustrated in Fig. 4.10b: For confined elastic bodies, the lateral friction
causes the surface to bulge up in front of the indenter and down at the trailing edge, while
semi-infinite materials with a Poisson’s ratio below 0.5 show the opposite effect. At the
same time, the normal stress at the surface induces a displacement component towards
or away from the symmetry axis of the indenter. The mathematical formulation of this
figure is given as a table in the appendix of Publ. V. From there, all trends observed
for the single asperity contact can be explained using the perturbation-based analysis
presented in App. D, the most important part of which shall be summarized here.

Taking the time derivative of the lateral displacement component in Fig. 4.10b reveals
that inside the contact area, the relative velocity vrel between elastic body and in-
denter increases as a result of confinement-induced coupling and decreases in case of
compressibility-induced coupling. This relative velocity enters into the calculation of
the dissipated power Pdiss according to

Pdiss =
∫

d2r wdiss = µc

∫
d2r pz(r)vrel(r), (4.5)

where wdiss is the areal density of the dissipated power, pz is the normal pressure and
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µc the Coulomb friction coefficient. Consequently, compared to the uncoupled case,
confinement increases the total dissipation by friction while compressibility decreases it.

The calculation in App. D also shows that the normal stress field changes as a result
of coupling: Confinement shifts the pressure maximum towards the leading edge and
compressibility towards the trailing edge of the contact. This, in turn, affects the distri-
bution of the eigenvalues of the stress tensor and the von Mises stress, both of which are
characterized in Fig. 4.11. While the von Mises stress tends to be largest in the center of
contact patches, the maximum tensile stress is always concentrated at the trailing edges
(see panels b and d). Compared to the coupling-free reference case of an incompressible,
infinitely thick elastic body, these stress maxima are typically increased by up to 30%
due to coupling. The inclusion of Fig. 4.11a and Fig. 4.11c is meant to highlight that
explicitly taking friction and 3D elasticity into account yields completely different re-
sults compared to taking the conventional static contact and artificially adding a lateral
component in post-processing.
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Figure 4.11: Results obtained for a self-affine surface with Hurst exponent H = 0.8 with maximum
wavelength λl and rms height 0.01λl, where all calculations pertain to a relative contact area of

ar ≈ 0.2. The compressible material corresponds to ν = 0.25 and the confined one to ν = 0.49 and
thickness h = 0.1λl. All stresses are given in units of the contact modulus E∗, while the current

density is normalized by the maximum value observed under frictionless conditions. Panels a)-d) show
the maximum tensile stress eigenvalue at the surface of a frictional contact, where a) and b) show the
compressible body and c) and d) the incompressible, confined one. a) and c) are calculated from static
simulations, where the friction component was added in post-processing, while b) and d) represent
genuine brute-force 3D GFMD simulations. The images in e)-h) show the current density calculated
through Reynolds flow calculations for different sliding and fluid flow directions, as indicated by the

arrows in each picture.

Another consequence of elastic coupling is that the overall contact area increases and
the interfacial gap decreases for both types of coupling. This naturally brings up the
question how coupling may affect fluid flow through the interface. For a simple model
system with a single type of asperity, Publ. V finds that fluid flow is generally unaffected
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or enhanced in the direction parallel to sliding and impeded in the transverse direction.
In rough contacts, the picture becomes a bit more complicated, since channels parallel to
sliding also contribute to transerse flow and vice versa. Hence, the percolation threshold
is asymptotically isotropic for infinitely large surfaces. Fig. 4.11e-h shows how individual
channels become significantly more or less active depending on the alignment of sliding
and flow direction. Overall, the flow was reduced in all cases, where the average relative
reduction was between 11 and 30% and generally larger in the perpendicular direction.
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4.6 How close are simulations to reality?

One of the central goals of this thesis was to make our contact mechanics models more
realistic. So far, this chapter has summarized published articles, each of which brought
up and answered its own respective questions. This section, on the other hand, will
take some unpublished results and experiences into account and specifically discuss the
individual assumptions and properties of our model, how realistic they are, and how
they could be further improved in the future.

4.6.1 General assumptions

Despite the generalizations introduced throughout this thesis, our analytical and nu-
merical contact models still heavily rely on approximations, most notably the linearity
between stress and strain. This means that certain effects are formally assumed to be
small, namely all displacements u (linear elasticity) and their time derivatives u̇ (linear
viscoelasticity). The model’s accuracy naturally decreases as one of these parameters
becomes very large, although the range of validity of rigorous first-order approximations
is often surprisingly large. More subtle, but just as important, is the assumption of a
flat elastic surface, which we exploit in the form of translational invariance in the deriva-
tion of the Green’s function. Unfortunately, this prevents us from applying GFMD to
the elastic pillar structures investigated in Publ. II, which can at most be considered
piece-wise flat. Furthermore, we always describe the elastic material as a continuum,
which is fundamentally wrong at wavelengths corresponding to molecular distances.

While we certainly stayed clear of atomic length scales in our theoretical investigations,
we did not always stay in the limit of small displacements: in Publ. II, the amplitudes
of the sinusoidal counter-surfaces were often large enough for the pillars to visibly bend.
The experimental side-view images of the contacts suggest that the resulting stretch
of the terminating layer might be the dominant large-deformation contribution. To
account for this effect, the corresponding strain could be estimated by the arc length of
the sinusoidal profile divided by its wavelength.

Another question that comes to mind regarding the model in Publ. II is whether it
produces similar stress fields to the real system. The stress field on the surface of an
elastic pillar (without film termination) in contact with a rigid flat surface depends on the
boundary conditions: if the interface is friction-less, the stress field is uniform, while for
the ideally sticky case, it shows stress singularities proportional to d−0.4, where d is the
distance from the contact edge [5,183]. The elastic model, on the other hand, describes
a laterally infinite, flat body as an isotropic approximation of the entire fibril array.
Hence, a circular contact with a rigid counter-face simply corresponds to a cylindrical flat
punch solution, which produces stress singularities proportional to d−0.5. Interestingly,
this resembles the stress at the interface of a perfectly sticky elastic fibril, even if it is
derived under a slip boundary condition. The 3D GFMD implementation could be used
to analyze the influence of the interfacial boundary condition in more detail. This could
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be compared to experiments controlling the interfacial slip by addition of lubricants or
glue to find out what boundary conditions are closest to reality. Without such a study,
we can only speculate to what extent the model matches the experiment.

4.6.2 Material model

In Sect. 2.3.1, we exploited the elastic-viscoelastic correspondence principle to generalize
the constitutive equation from the quasi-static to the viscoelastic case. In our case, this
is carried out in Fourier space, as it was already done by Persson and many following
studies [23,56,72]. In the case of a semi-infinite block of material, this is not problematic,
since E∗(ω) is the only time-dependent property and depends neither on real-space
coordinate r nor on the wavevector q. For the finite elastic body, on the other hand,
the Green’s function has a non-trivial dependence on the elastic parameter ν, which
must also be substituted with ν(ω). The resulting ν(ω)-dependence of the constitutive
equations is not invariant with respect to a Fourier transform in the spatial coordinate,
at which point it becomes a non-trivial question whether the correspondence principle
applies. This problem could only be avoided if the ω-dependence of the Poisson’s ratio
was negligible, which is generally not true [184]. Unfortunately, there is next to no
experimental data on the q-dependence of E∗(ω) and ν(ω) because most viscometric
testing methodologies correspond to measuring the q → 0 limit. The most promising
approach to analyze the wave-number dependence would probably be to derive the
viscoelastic properties from the propagation of surface waves, as described in Ref. [185].

4.6.3 Numerical resolution limits

There are many effective ways to improve the spatial resolution of simulations beyond
simple extrapolation. To account for the finite spatial resolution, it has been suggested
to reduce the surface energy ∆γ by the areal elastic energy necessary to form full contact
at all wavevectors q > qmax corresponding to the resolution limit [59, 96, 186]. This was
exemplarily done in Fig. 4.12, where a partial contact configuration was chosen to put
this approach to the test. The simulations were run at constant range of adhesion, where
for the highest resolution ∆γ/E∗λr = 0.0002, which was then reduced to 0.000176 and
0.000156 for the earlier spectral cut-offs. The agreement between all three simulations
is rather impressive, considering the significant loss of topographical detail from one
simulation to the next.

Publ. III and IV have shown that temporal resolution can be much improved using
a scaling relation. An aspect that has only been mentioned briefly is the influence of
the parameter s = E∞/E0 of the viscoelastic model on the contact dynamics. Since
polymers in the glassy region usually have a stiffness of a few GPa, realistic values for
s are of the order of 103 to 105 for soft adhesives. The models used in Chap. 4 all use
a smaller value for s, because increasing it would require much shorter time scales to
be resolved (assuming that the slope of the E(ω) curve remains unchanged). However,



4.6. HOW CLOSE ARE SIMULATIONS TO REALITY? 59

101 102

qλr/2π

10−14

10−11

10−8

10−5
C

(q
)

a)

λs = 0.01λr

λs = 0.05λr

λs = 0.10λr

−0.5 0.0 0.5 1.0

x/λr

0.015

0.020

0.025

0.030

0.035

z
/λ

r

b)

λs = 0.01λr

λs = 0.05λr

λs = 0.10λr
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PSDs in a). If the surface energy is adjusted for the elastic energy in the missing part of the spectrum,

the different cut-offs lead to very similar contact topologies, as depicted in b).

these short time scales do not need to be mimicked when the long-term relaxation is of
interest. To illustrate this, Fig. 4.13 compares three viscoelastic models with different
values of s but similar behavior at low frequencies ω. They lead to similar contact
relaxations even for a rough surface contact.
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Figure 4.13: Relaxation of a 1D randomly rough contact at zero external stress with different
viscoelastic models. a) highlights the evolution of the relative contact area ar over time, while b)

shows the corresponding E(ω).

The effect of the slope of the E(ω) relation was briefly discussed in the context of
Publ. III because realistic viscoelastic measurements tend to show a smaller slope than
the one produced by the SLS model. The long-term evolution once again did not show
any significant sensitivity to the exact shape of the rest of the E(ω) curve, as long as the
low-ω regimes are similar. It may even be possible to identify another scaling relation
describing how the slope of the contact radius-time curve depends on the slope of the
E(ω) curve. It is certainly not effective to directly simulate an experimentally measured
viscoelastic relaxation spectrum, which can spread across up to 30 orders of magnitude
in time [81]. Even on the most powerful modern hardware, a GFMD simulation at a
resolution of 4096 × 4096 with 1030 time steps would not finish within the expected
lifetime of our solar system.
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Chapter 5

Conclusions

I have systematically generalized the GFMD simulation technique and applied it to
contact mechanics problems involving thin films, viscoelastic materials and frictional in-
terfaces. Thanks to direct comparisons to well-designed experiments, my colleagues and
I have verified that the implemented changes have significantly improved the agreement
between model and reality. Therefore, the results presented in Chap. 4 provide valuable
insight into a wide range of practically relevant contact phenomena, which are out of
reach of conventional models.

Publ. I introduced a simple estimate for the effective stiffness of a thin elastic slab in
contact with a circular flat punch based on dimensional analysis. The rigid foundation,
on which the deformable film is resting, increases the effective stiffness of the system,
which is particularly noticeable for (nearly) incompressible materials and indentations
whose lateral length scale exceeds the thickness of the film. The derived equation allows
us to predict the adhesive pull-off force as a function of Poisson’s ratio and geometric
confinement. Furthermore, we find and explain a transition in the detachment mecha-
nism from ideal radial crack propagation to the formation of small-scale wrinkles. The
study provides analytical estimates as well as a broad range of reference data for confined
polymer contacts, such as rubber seals and adhesive tapes.

In Publ. II, the above model for thin films was successfully applied to rationalize the
real-world performance of fibril structures which are covered with a soft skin adhesive
(SSA) film. These film-terminated patterns are designed for optimal adhesion to skin in
applications such as wearable electronics or wound dressing. Increasing the thickness of
the terminal film usually provides better adhesion to skin-like rough surfaces, because
the SSA is softer than the fibrillar base structure and can easily conform to the counter-
face. On a flat polished surface, on the other hand, a thinner film and an overall stiffer
structure tends to provide larger pull-off forces.

Publ. IV shows that it is imperative to take the viscoelastic nature of soft adhesion
into account in order to achieve quantitative agreement between model and reality. A
great overlap between numerical and experimental curves is observed, where the contact
images assert that the same trends and features are obtained for the right reasons. The
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viscoelastic velocity-dependence of the hysteresis associated with topographical saddle
points is perfectly captured by the GFMD simulations, leaving an error of at most 20%
in the final pull-off force. Achieving this level of agreement between model and reality
requires the viscoelastic and adhesive model parameters to be re-scaled compared to
the realistic ones. This is because of the relationship between the microscopic range of
interaction and the macroscopic viscoelastic time scale, which Publ. III identifies as a
surprisingly universal scaling law: the macroscopic contact evolution time is proportional
to the 1.8 power of the inverse range of adhesion.

Finally, the description of the elastic properties was generalized to take the coupling
between normal and transverse stresses and displacements into account in Publ. V. Our
numerical results reveal that with coupling taken into account, the presence of interfacial
friction breaks the symmetry of the deformation fields, increases local stress concentra-
tions and reduces the fluid flow through the interface. The variation of these properties
has crucial implications for many practical applications, such as lubrication and wear
in contacts involving coatings, seals and bearings. Especially the observed trends for
local stress maxima imply that calculations that neglect coupling may significantly un-
derestimate the probability of material failure. Unfortunately, the determination of the
interfacial boundary conditions and local friction law is a tall order for experiments,
so that no direct comparisons were performed in the context of this study. Since the
observed coupling effects were often in the range of 10%, the observable changes would
most likely be smaller than the experimental uncertainties connected to the phenomena
that cause them.



Chapter 6

Outlook

In spite of the many improvements and insights reported in this work, the GFMD sim-
ulation method still appears to have a lot of unused potential. First of all, the 3D
implementation has only been used in a purely theoretical study that ignored adhesion.
Applying it to adhesion could finally answer the question whether it is most realistic to
assume friction-less or sticky interfaces or something in between. To what extend the in-
terface relies on friction is a very common source of uncertainty in experimental contacts,
into which further direct comparisons to GFMD could grant valuable insight. To this
end, the implemented friction law should be generalized to a realistic velocity-dependent
model using a Stokes relationship for small sliding speeds (similarly to Refs. [187,188]).
In fact, this has already been implemented, but has not yet been used. Moreover, the 3D
elasticity implementation currently does not make use of the viscoelastic material model,
although it is well known that the viscoelastic contribution to friction is significant for
soft materials [24, 189]. To further highlight this effect, Fig. 6.1 shows the results of a
few exemplary simulations: The contact between elastic body and rough counter-face
was first relaxed at constant pressure for different periods of time trelax. After this initial
relaxation, the rough interface started sliding, at which point the lateral stress (evalu-
ated from the normal stress acting on a slope) becomes anisotropic, amounting to a net
friction in the interface. Depending on the duration of the initial relaxation, the friction
peak at the onset of the sliding motion can take on completely different values. In all
cases, the friction eventually levels off towards the same constant value representative
of steady-state sliding at the given normal pressure. The simulated system represents
a realistic topography of a mechanically processed metallic surface and the elastomer
models a rubber seal inside a machine that is first standing still and then starts moving.
This kind of scenario is comparable to a wide range of applications with great industrial
significance.

For further research into film-terminated adhesives and skin mechanics, it would be
desirable to implement the (friction-less) Green’s function for the coated half-space, as
given in Appendix A2 of Ref. [72]. When modeling the mechanics of skin, the “coating”
would represent the stratum corneum and the half-space underneath the epidermis. This
would be the most accurate model for skin that GFMD is compatible with. Since the
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Figure 6.1: Simulation of a rubber surface forming a contact with a rough interface for a time trelax
before the two surfaces start moving laterally with respect to each other. a) shows the displacement
profiles at the end of the relaxation and b) the time evolution of the lateral stress obtained after the
respective systems start sliding. The simulations used the Kelvin-Voigt SLS model of viscoelasticity

with relaxation time τ . The longer the initial relaxation, the higher the initial friction peak associated
with the viscoelastic dissipation.

Green’s function method inherently assumes translational invariance in the plane, it
cannot directly incorporate the anisotropic features of skin, which would certainly be
required to improve the model further.

From a practical perspective, the GFMD simulation code could be made much easier to
use, potentially even for non-scientists. This would most likely require the addition of a
graphical user interface (GUI), for which the code base would need to be overhauled. As
of the writing of this thesis, the potential for a redesign of the entire program is discussed
but not actively pursued. The subsequent implementation of any of the just-mentioned
improvements would greatly benefit from a more modular layout, allowing individual
units to be tested independently. In the current state, implementing new features can
be quite challenging and new users often need months to familiarize themselves with the
method. In principle, if GFMD could become as easy to use as typical FEM software,
it might be a serious contender for becoming one of the standards for numerical contact
mechanics calculations. At this point, the best widely available option is certainly the
quasi-static solver included in the contact.engineering website [69].
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Appendix

A Properties of the 2D real Fourier transform

The following information can be found in almost any graduate mathematics text book
containing a chapter on the Fourier transform (FT) x∗. However, these books usually
focus on the one-dimensional version rather than its 2D counterpart, which is the one
that is relevant to contact mechanics. Fortunately, the 2D FT simply follows from
two 1D FTs with respect to two independent variables applied one after the other,
requiring no additional mathematics. Therefore, most of the properties that follow can
be directly derived from the 1D definitions with nothing but basic knowledge of calculus
and complex algebra. Nevertheless, for the reader’s convenience, the most important
points necessary to follow some of the arguments of this thesis are summarized here.

Since we often perform the Fourier Transform on height profiles, we define a function h(r)
defined for in-plane coordinates r = (x, y) ∈ R2. Its continuous Fourier transform (CFT)
h̃(q) is then a function of the wavevector q = (qx, qy) ∈ R2 and given by1

h̃(q) := 1
2π

∞∫
−∞

dx
∞∫

−∞

dy h(r) exp(−iqr) (A.1a)

⇔ h(r) := 1
2π

∞∫
−∞

dqx
∞∫

−∞

dqy h̃(q) exp(iqr). (A.1b)

For brevity, we can write this as h̃(q) = FT(h(r)) and h(r) = IFT(h̃(q)).

For the commonly studied case of axisymmetric height profiles h(r) = h(r) without
random roughness, the 2D Fourier transform simplifies into a Hankel transform. Thanks
to qr = qr cos(ϕ) and h as well as h̃ purely depending on r = |r| and q = |q|, we can
show that [190]

h̃(q) =
∞∫
0

dr rJ0(qr)h(r) and (A.2a)

h(r) =
∞∫
0

dq qJ0(qr)h̃(q), (A.2b)

1This is the conventional symmetric definition, meaning that both the forward and inverse FT are
normalized by 2π. Other conventions are equivalent except for dimensionless prefactors.
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with the Bessel function of the first kind and zeroth order

J0(x) :=
1
π

∫ π

0
dϕ exp(ix cos(ϕ)).

Since measurements and simulations require the surface profile to be discretized, it may
be beneficial to also define the discrete Fourier transform (DFT) explicitly. In order to be
able to use the FFT algorithm for its computation, the discretization needs to be uniform,
i.e. xn = n∆x and ym = m∆y, with n,m ∈ N. Furthermore, the discretization in Fourier
space means that instead of working with an infinitely large surface, we have to take
a representative rectangular surface element with dimensions (Lx, Ly) and periodically
repeat it in both lateral directions. This way, the allowed wave numbers in x- and y-
direction are integer multiples of the respective discrete wave numbers ∆qx = 2π/Lx and
∆qy = 2π/Ly corresponding to the size of the chosen representative unit cell. Moreover,
we define the numbers of discretization points Nx and Ny, which define the lower bounds
in real space ∆x = Lx/Nx and ∆y = Ly/Ny and the outer bounds in Fourier space
−π/∆x ≤ qx < π/∆x and −π/∆y ≤ qy < π/∆y. Since h is now discrete in both real and
Fourier space, we can write it as a function of two integer indices rather than continuous
variables, i.e. h(n∆x,m∆y) ≡ h(n,m) and h̃(k∆qx, l∆qy) ≡ h̃(k, l). Consequently, the
forward and backward discrete Fourier transform (DFT) are defined by2

h̃(k, l) =
∑
n

∑
m

h(n,m) exp (−2πi(kn/Nx + lm/Ny)) and (A.3a)

h(i, j) = 1
NxNy

∑
k

∑
l

h̃(k, l) exp (+2πi(kn/Nx + lm/Ny)), (A.3b)

with n ∈ [0, Nx − 1], m ∈ [0, Ny − 1], k ∈ [−Nx/2, Nx/2− 1] and l ∈ [−Ny/2, Ny/2− 1].
The argument of the exponential function is the same as the ±iqr in Eq. (A.1), except
that this time, we have used q = (k∆qx, l∆qy) and r = (n∆x,m∆y) and simplified
the exponent accordingly. Note that the limits given above for the indices n, m, k and
l assume that Nx and Ny are even, which is neither a mathematical nor a numerical
necessity, but rather a common convention. Furthermore, because of 2π-periodicity, the
sum in the inverse transform can just as well be defined from 0 to Nx − 1 and Ny − 1.
The advantage of the above definition is that it automatically guarantees the correct
absolute value of the wave-vector.

Eqs. (A.1) and (A.3) represent the general definitions valid for any scalar function h ∈ C.
Since contact mechanics exclusively deals with real surfaces h ∈ R, both the continuous
and the discrete version of the FT become hermitean, i.e.

h̃(−q) = h̃∗(q). (A.4)

This means that (almost) half of the terms in Eq. (A.3) are redundant for real-valued
functions h. Using this and the Euler identity, exp(ix) = cos(x) + i sin(x), would allow
us to derive a completely equivalent real-valued representation of the DFT containing

2Contrary to the CFT, the most common convention for the DFT is asymmetric, i.e. only the inverse
transform is normalized.
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a sum of sine and cosine functions with real prefactors instead of complex exponentials.
However, the present notation is preferred because complex algebra tends to be much
easier to use than trigonometric formulae.

One of the most important and well-known features of the FT is its interaction with dif-
ferentiation and integration, where especially the derivatives are relevant for the present
work. The corresponding relations also follow from the definitions by assuming that the
order of integration (or summation) and differentiation is interchangeable3:

∂h(r)
∂x

= IFT
(
iqxh̃(q)

)
(A.5a)

∂h(r)
∂y

= IFT
(
iqyh̃(q)

)
. (A.5b)

Strictly speaking, these two equations are only exact in the case of the CFT since
all methods of discrete differentiation are approximations. The resulting error is most
noticeable if h̃(k, l) does not vanish for large absolute values of k and l (i.e. large |q|).

In the following, we need to take advantage of the orthogonality of the FT’s base func-
tions. Intuitively, orthogonality means that basis functions indexed by different wave-
vectors are (linearly) independent, which makes the Fourier representation of a function
exact and unique. Mathematically, this follows from

∞∫
−∞

dx exp(iqxx) exp(−iq′xx) = 2πδ(qx − q′x) and (A.6a)

Nx−1∑
n=0

exp(ixnqk) exp(−ixnqk′) = Nxδkk′ , (A.6b)

where qk = k∆qx, δij is the Kronecker delta and δ(x) the Dirac delta distribution. Of
course, the same equations hold true if x, qx, ∆qx and Nx are replaced by y, qy, ∆qy
and Ny, respectively. These two equations are the origin of the prefactors in Eqs. (A.1)
and (A.3) and can further be used to derive what is known as Parseval’s theorem, which,
in its continuous and discrete versions, reads

∞∫
−∞

dx
∞∫

−∞

dy h2(x, y) =
∞∫

−∞

dqx
∞∫

−∞

dqy h̃(q)h̃∗(q) and (A.7a)

∑
n

∑
m

h2(n,m) = 1
NxNy

∑
k

∑
l

h̃(k, l)h̃∗(k, l). (A.7b)

In the context of contact mechanics, the discrete version is especially useful, because it
can be used to calculate averages across the periodically repeated surface element. In
combination with Eq. (A.5), we obtain three equations which are used extensively to

3This can be considered true for all physically relevant intents and purposes.
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determine statistical properties:

⟨h⟩r =
1

NxNy
h̃(q = 0) (A.8a)

⟨h2(x, y)⟩r =
1

(NxNy)2
∑
k

∑
l

h̃(k, l)h̃∗(k, l) (A.8b)

⟨|∇h(x, y)|2⟩r =
1

(NxNy)2
∑
k

∑
l

|q|2h̃(k, l)h̃∗(k, l). (A.8c)

This is how we can calculate the mean and rms height and gradient directly in Fourier
space without having to apply the inverse transform first. Moreover, Parseval’s theorem
is what makes the calculation of the elastic energy (see Sect. 2.3) according to

Vel =
∫
d3rCαβγδεγδ(r)εαβ(r) (A.9)

equivalent to
Vel =

∫
d2qΦαβ(q)ũα(q)ũβ(q), (A.10)

the formal proof of which would also take the definition of strain (Eq. (2.12)) into
account, as well as Eq. (A.5). However, it is also intuitively understandable that both
real and Fourier space must contain the same information about the system. Note that
the version in Fourier space is only a two-dimensional integral because the influence of
the third dimension is completely contained in Φ, which we call the Green’s stiffness
tensor describing the elastic properties. Its inverse, G̃ = Φ−1 is therefore referred to as
a Green’s compliance tensor.

The property that makes the FT applicable to the Green’s function formalism is known
as the convolution theorem. If f(r) and g(r) are functions just like h(r) with their
respective Fourier transforms f̃(q) and g̃(q), then

FT
(∫

d2r′ f(r′)g(r− r′)
)
= f̃(q)g̃(q). (A.11)
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B The 3D Green’s function tensor

The content of this section has been automatically generated from a Jupyter notebook.
All mathematical operations have been performed by the SymPy [191] computer algebra
package.

B.1 Green’s stiffnesses in Fourier space

Formulation for wavevector parallel to x direction

The stiffness tensor is formulated for q = (qx, 0) with qx > 0. To account for negative
qx, any imaginary components can be multiplied by qx/|q| to ensure that all expressions
remain hermitean. This is automatically achieved later on when the matrix is rotated
into an arbitrary coordinate system.

Φ(x)
11 (q, h) =

E∗q (1− ν)2 (−2hq + (3− 4ν) sinh (2hq))
−h2q2 + (3− 4ν)2 sinh2 (hq)

Φ(x)
12 (q, h) = 0

Φ(x)
13 (q, h) =

iE∗q (1− ν)
(
−h2q2 + (1− 2ν) (3− 4ν) sinh2 (hq)

)
−h2q2 + (3− 4ν)2 sinh2 (hq)

Φ(x)
22 (q, h) =

E∗q (1− ν)
2 tanh (hq)

Φ(x)
23 (q, h) = 0

Φ(x)
33 (q, h) =

E∗q (1− ν)2 · (2hq + (3− 4ν) sinh (2hq))
−h2q2 + (3− 4ν)2 sinh2 (hq)

Φ(x) =


Φ(x)

11 (q, h) 0 Φ(x)
13 (q, h)

0 Φ(x)
22 (q, h) 0

−Φ(x)
13 (q, h) 0 Φ(x)

33 (q, h)



We find the limiting cases for h → ∞:

Φ(x)
11 (q,∞) = −2E∗q (ν − 1)2

4ν − 3

Φ(x)
13 (q,∞) = −iE∗q (ν − 1) (2ν − 1)

4ν − 3

Φ(x)
22 (q,∞) = −E∗q (ν − 1)

2

Φ(x)
33 (q,∞) = −2E∗q (ν − 1)2

4ν − 3
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and the limiting cases for q → 0:

Φ(x)
11 (0, h) =

E∗ (1− ν)
2h + E∗hq2 (−4ν2 + 7ν − 3)

6 · (2ν − 1) +O
(
q3
)

Φ(x)
13 (0, h) =

iE∗q (−4ν2 + 5ν − 1)
4 · (2ν − 1) +O

(
q3
)

Φ(x)
22 (0, h) =

E∗ (1− ν)
2h + E∗hq2 · (1− ν)

6 +O
(
q3
)

Φ(x)
33 (0, h) =

E∗ (−ν2 + 2ν − 1)
h (2ν − 1) + E∗hq2 (−4ν2 + 7ν − 3)

6 · (2ν − 1) +O
(
q3
)

The elastic energy stored in the deformation at a certain wave vector is generally given
by:

Vel(q, h, ũ1, ũ2, ũ3) =
∑

1≤β≤3
1≤α≤3

ũαΦαβ(q, h)ũ∗
β

or in the above case:

V
(x)
el (q, h, ũ1, ũ2, ũ3) =

ũ1Φ(x)
11 (q, h)ũ∗

1
2 + ũ1Φ(x)

13 (q, h)ũ∗
3

2 + ũ2Φ(x)
22 (q, h)ũ∗

2
2 − ũ3Φ(x)

13 (q, h)ũ∗
1

2 +
ũ3Φ(x)

33 (q, h)ũ∗
3

2

Derivation of the normal Green’s function G(n)

The traditional Green’s function G(n) is derived for normal (z-) direction under the
assumption that the stresses in the lateral directions vanish. Mathematically, this means
that the first derivates of the above energy with respect to the lateral displacement
components are 0:

∂

∂Re(ũ1)
V

(x)
el (q, h,Re(ũ1), Im(ũ1),Re(ũ2), Im(ũ2),Re(ũ3), Im(ũ3)) = 0

∂

∂Im(ũ1)
V

(x)
el (q, h,Re(ũ1), Im(ũ1),Re(ũ2), Im(ũ2),Re(ũ3), Im(ũ3)) = 0

∂

∂Re(ũ2)
V

(x)
el (q, h,Re(ũ1), Im(ũ1),Re(ũ2), Im(ũ2),Re(ũ3), Im(ũ3)) = 0

∂

∂Im(ũ2)
V

(x)
el (q, h,Re(ũ1), Im(ũ1),Re(ũ2), Im(ũ2),Re(ũ3), Im(ũ3)) = 0
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Solving the resulting equation system gives:

Re(ũ1) =
iIm(ũ3)Φ(x)

13 (q, h)
Φ(x)

11 (q, h)

Im(ũ1) = −iRe(ũ3)Φ(x)
13 (q, h)

Φ(x)
11 (q, h)

Re(ũ2) = 0

Im(ũ2) = 0

and, for the elastic energy,

V
(n)
el =

(Im(ũ3)2 + Re(ũ3)2)
(
Φ(x)

11 (q, h)Φ
(x)
33 (q, h) +

(
Φ(x)

13

)2
(q, h)

)
2Φ(x)

11 (q, h)

Sanity check

If the above equations were implemented correctly, the resulting compliance should be
exactly identical to Eq. A.9 in Ref. [56]:

G̃(n)(q, h) = Im(ũ3)2 + Re(ũ3)2

2V (n)
el

G̃(n)(q, h) = − 2 · (4ν sinh (2hq) + 2hq − 3 sinh (2hq))
E∗q (8ν2 − 4ν cosh (2hq)− 12ν + 2h2q2 + 3 cosh (2hq) + 5)

Formulation for arbitrary wavevector

In isotropic systems, the stiffness matrix calculated above must hold true irrespective
of what we define as the x direction. Therefore, the stiffness matrix for an arbitrary
orientation of q with the same absolute value q = |q| simply follows from rotation:

Φ(x) =


Φ(x)

11 (q, h) 0 Φ(x)
13 (q, h)

0 Φ(x)
22 (q, h) 0

−Φ(x)
13 (q, h) 0 Φ(x)

33 (q, h)


q =

[
q cos (α)
q sin (α)

]
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R =


cos (α) − sin (α) 0
sin (α) cos (α) 0

0 0 1


σ̃ = Φũ

Rσ̃(x) = ΦRũ(x)

σ̃(x) = R−1ΦRũ(x)

Φ = RΦ(x)R−1

we substitute

cos (α) = qx
q

sin (α) = qy
q

to get

Φ =


q2xΦ

(x)
11 (q,h)
q2

+ q2yΦ
(x)
22 (q,h)
q2

qxqy

(
Φ(x)

11 (q,h)−Φ(x)
22 (q,h)

)
q2

qxΦ(x)
13 (q,h)
q

qxqy

(
Φ(x)

11 (q,h)−Φ(x)
22 (q,h)

)
q2

q2xΦ
(x)
22 (q,h)
q2

+ q2yΦ
(x)
11 (q,h)
q2

qyΦ(x)
13 (q,h)
q

− qxΦ(x)
13 (q,h)
q

− qyΦ(x)
13 (q,h)
q

Φ(x)
33 (q, h)



B.2 Green’s compliance tensor in Fourier space

Once again, only the matrix aligned with x direction is considered. Invert stiffness matrix
to get the compliance (which is usually considered to be the actual Green’s tensor):

G(x) =
(
Φ(x)

)−1

G(x) =



Φ(x)
33 (q,h)

Φ(x)
11 (q,h)Φ(x)

33 (q,h)+
(
Φ(x)

13

)2
(q,h)

0 − Φ(x)
13 (q,h)

Φ(x)
11 (q,h)Φ(x)

33 (q,h)+
(
Φ(x)

13

)2
(q,h)

0 1
Φ(x)

22 (q,h)
0

Φ(x)
13 (q,h)

Φ(x)
11 (q,h)Φ(x)

33 (q,h)+
(
Φ(x)

13

)2
(q,h)

0 Φ(x)
11 (q,h)

Φ(x)
11 (q,h)Φ(x)

33 (q,h)+
(
Φ(x)

13

)2
(q,h)


G̃

(x)
11 (q, h) =

2 (−4ν sinh (2hq) + 2hq + 3 sinh (2hq))
E∗q (8ν2 − 4ν cosh (2hq)− 12ν + 2h2q2 + 3 cosh (2hq) + 5)
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G̃
(x)
13 (q, h) =

i
(
8ν2 sinh2 (hq)− 10ν sinh2 (hq)− h2q2 + 3 sinh2 (hq)

)
E∗q (ν − 1)

(
4ν2 − 4ν sinh2 (hq)− 8ν + h2q2 + 3 sinh2 (hq) + 4

)
G̃

(x)
22 (q, h) = − 2 tanh (hq)

E∗q (ν − 1)

G̃
(x)
33 (q, h) = − 8ν sinh (2hq) + 4hq − 6 sinh (2hq)

E∗q (8ν2 − 4ν cosh (2hq)− 12ν + 2h2q2 + 3 cosh (2hq) + 5)

Calculate limiting cases for h → ∞:

G̃
(x)
11 (q,∞) = 2

E∗q

G̃
(x)
13 (q,∞) = − i (2ν − 1)

E∗q (ν − 1)

G̃
(x)
22 (q,∞) = − 2

E∗q (ν − 1)

G̃
(x)
33 (q,∞) = 2

E∗q

Calculate limiting cases for q → 0:

G̃
(x)
11 (0, h) = − 2h

E∗ (ν − 1) +
h3q2 (−4ν − 3)

3E∗ (ν2 − 2ν + 1) +O
(
q3
)

G̃
(x)
13 (0, h) =

ih2q (4ν − 1)
2E∗ (ν2 − 2ν + 1) +O

(
q3
)

G̃
(x)
22 (0, h) = − 2h

E∗ (ν − 1) +
2h3q2

3E∗ (ν − 1) +O
(
q3
)

G̃
(x)
33 (0, h) =

h (1− 2ν)
E∗ (ν2 − 2ν + 1) +

νh3q2 · (1− 4ν)
3E∗ (ν3 − 3ν2 + 3ν − 1) +O

(
q3
)

The formulation of G for arbitrary q is completely analogous to Φ since the principles
of isotropy and rotation invariance still apply.
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C Real-space GFMD (rGFMD)

While working on Publ. III, the idea came up to simulate the axisymmetric contacts
with a more efficient method that takes advantage of dimensional reduction. The idea
was to apply the Green’s function in real space rather than Fourier space and use a non-
uniform discretization that is automatically adjusted on the fly as the contact changes.
This section will explain the underlying theory of the approach and compare the per-
formance of its numerical implementation against conventional Fourier-based GFMD
(called fGFMD in the context of this Section). The latter option clearly comes out on
top in the following analysis, which is why the development of the real-space method was
not pursued much further. Nevertheless, it is possible that minor modifications could
significantly boost its efficiency in the future.

C.1 The real-space convolution kernel

This section derives the convolution kernel used in rGFMD for axisymmetric contacts
including one rigid and one initially flat, semi-infinite, isotropic, linearly elastic body.
The function in question represents the cause-effect relationship between the normal
displacement field u(r) and the normal stress field σ(r) for all in-plane coordinates r.
As discussed in Sect. 2.3.2, the solution in terms of their Fourier transforms ũ and σ̃ is
given by

σ̃(q) = qE∗

2 ũ(q), (C.1)

which we can interpret as the Fourier transform of the following convolution equation
with kernel K:

σ(r) =
∫

d2r′ u(r′)K(r− r′) (C.2a)

= IFT(σ̃(q)) = IFT
(
qE∗

2 ũ(q)
)

(C.2b)

= 1
2π

∫
d2q exp(iqr)qE

∗

2
1
2π

∫
d2r′ exp(−iqr′)u(r′) (C.2c)

⇒ K(r− r′) = E∗

8π2

∫
d2q q exp(iq(r− r′)). (C.2d)

Note that this defines the convolution with K as the inverse operation to the convolu-
tion with the Green’s function G in Sect. 2.3.2. We now want to derive the algebraic
expression for K in rotationally symmetric systems, which we denote as K ′. The coef-
ficient K ′ relates the stress at distance r from the origin and the normal displacement
concentrated within an infinitesimally thin ring with radius r′. Defining ∆r := |r− r′|
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and q(r− r′) = q∆r cos(α), α being the angle between q and ∆r, we get

K ′(r, r′) = E∗

8π2

∞∫
0

dq q2
2π∫
0

dα exp(iq∆r cos(α)) (C.3a)

= E∗

4π∆r3

∞∫
0

dx x2J0(x) (C.3b)

= − E∗

4π∆r3
, (C.3c)

where we have introduced x ≡ q∆r and J0(x), which is the Bessel function of the
first kind and zeroth order, as defined in Eq. (A.2). The integral in Eq. (C.3b) might
formally diverge by oscillation, although rigorously testing this hypothesis is beyond the
scope of this thesis. WolframAlpha can determine its indefinite version in terms of the
generalized hypergeometric function, which, however, it cannot compute in the limit of
x → ∞. Instead, we opt to take the pragmatic approach and introduce convergence by
multiplying the integrand with an exponential factor that rapidly approaches 0 for very
large values of x and realize that, regardless of the the factor in the exponent, the integral
evaluates to −1. We can now insert this expression into Eq. (C.2) and reformulate it
using the law of cosines (∆r2 = r2 + r′2 − 2rr′ cos(ϕ), where ϕ is the angle between r
and r′):

σ(r) =
∫

d2r′ u(r′)K ′(r, r′) (C.4a)

=
∞∫
0

dr′ u(r′)−E∗

4π r′
2π∫
0

dϕ
(
r2 + r′

2 − 2rr′ cos(ϕ)
)−3/2

(C.4b)

=
∞∫
0

dr′ u(r′)−E∗

4π r′
−2(ρ2 + 1)−3/2

2π∫
0

dϕ

1− 2ρ
ρ2 + 1︸ ︷︷ ︸

=:k

cos(ϕ)


−3/2

︸ ︷︷ ︸
=:I(ρ)

, (C.4c)

where ρ = r/r′. The integral I(ϕ) converges only for k < 1, i.e. for all ρ ̸= 1, to:

I(ρ) = 4(ρ2 + 1)3/2
(ρ+ 1)2|ρ− 1|E

(
−4ρ

(ρ− 1)2

)
, (C.5)

where E is the complete elliptic integral of the second kind, not to be confused with the
Young’s modulus of the material. The combination of Eqs. (C.4) and (C.5) provides us
with the final expressions for K ′ and the “axisymmetric convolution”,

K ′(r, r′) = −E∗

πr′2
E
(

−4ρ
(ρ−1)2

)
(ρ+ 1)2|ρ− 1| and (C.6a)

σ(r) =
∞∫
0

dr′ u(r′)K ′(r, r′). (C.6b)
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As should be expected, K ′ diverges in the continuum limit at r = r′ (i.e. ρ = 1). This
problem can be avoided by discretizing the problem, dividing the radial axis into N

“bins”, where the i’th bin represents a ring of width ∆ri at a distance ri from the origin.
This way, Eq. (C.6) becomes

σ(ri) ≈
N∑
j=1

∆rju(rj)
−E∗

πrj2

E
( −4ρij
(ρij−1)2

)
(ρij + 1)2|ρij − 1| (C.7a)

=:
N∑
j=1

u(rj)K ′
ij, (C.7b)

with ρij = ri/rj. Since N is finite in the numerical implementation, this sum ends
at a finite maximum radial coordinate rN . In principle, this inaccuracy can be made
arbitrarily small thanks to non-uniform discretization. At large r, far away from the ax-
isymmetric indenter at the origin, ∆r can be chosen much larger than inside the contact.
Furthermore, to some extent, it should be possible to continue the sum analytically by
adding the continuous integral from Eq. (C.6) with boundaries rN +∆rN/2 and ∞. In
this regime of large rj, it can be assumed that u(rj) converges as 1/rj and for ρ ≪ 1,
the Kernel can be replaced by its Taylor series expansion (see Eq. (C.10)). Issues can
potentially arrive at intermediate values of ρ, where the integrand cannot be replaced
by an analytic expression that can easily be integrated analytically. Note that while the
simulation has not yet reached the static solution, the stress does not vanish outside the
contact area and therefore needs to be calculated everywhere with maximum possible
precision.

0 1 2 3 4 5

ρ

10−1

101

103

−
K
′ (
r,
r′

)
r′

2
/E
∗

Kij/∆rj fGFMD
K ′(r, r′) analytic
asymptotes

Figure C.1: The analytical kernel K ′(r/r′) and its asymptotes compared to numerical results
obtained from conventional Fourier-based GFMD (fGFMD).

The previously neglected case of r = r′ or i = j can be treated in the discrete case by
recalling that we have assumed the elastic body to be semi-infinite. Therefore, a uniform
COM displacement u(rj) = u0 ∀ j must not give rise to any stress, i.e. σi = 0 ∀ i. This
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is equivalent to the sum rule
N∑
j=1

K ′
iju0 = 0 (C.8a)

K ′
ii = −

∑
j ̸=i

K ′
ij. (C.8b)

It is possible to rationalize another sum rule: At any given state of displacement and
stress field, for the surface to not experience a net acceleration, the total force Ftot

resulting from the elastic response must be 0. With the area element Ai = 2πri∆ri, this
condition becomes

Ftot =
∑
i

AiK
′
ij = 0. (C.9)

This equation turns out to be equivalent to Eq. (C.8) becauseK ′
ij has the useful property

that AjK
′
ji = AiK

′
ij, which can be seen by simply substituting in the definition.

The above derivation was tested by comparing the analytically predicted K ′
ij with the

result of a conventional Fourier-GFMD (fGFMD) simulation, which simply reads in
a ring-shaped initial displacement field and calculates the corresponding elastic stress
in a single time step. For the result to be representative, the simulation cell must be
significantly larger that the radius r′ of the displacement ring. At sufficient distance from
the periodic boundaries, the corresponding simulation result is in very good agreement
with the theory, as shown in Fig. C.1. The plotted asymptotic relations are given by

K ′(r/r′) ≈ −E∗

r′2


(
1
2 +

9
8ρ

2 + 225
128ρ

4
)

for ρ ≪ 1
1
2π (ρ− 1)−2 for |ρ− 1| ≪ 1
1
2ρ

−3 for ρ ≫ 1
. (C.10)

Finally, it may be useful to point out a technical detail concerning the determination
of the transcendental function E. Although there are many scientific libraries provid-
ing a numerical implementation for this function, most of them do not take negative
arguments into account. Care needs to be taken to determine whether a given package
defines E for the argument k or m = k2 (following the nomenclature of WolframAlpha).
Implementations using k usually do not take complex arguments, i.e. negative values
of m, which is the only case relevant to Eqs. (C.6) and (C.7a). For example, the scien-
tific Python module scipy.special uses the exact convention used above, even defined
for negative arguments m, while the gsl and boost libraries for C/C++ both provide
only the version for positive real values of k. The latter definition can be extended to
complex k using the relationships between E and other elliptic functions, as described
in the Handbook of mathematical functions [192, p. 593].

C.2 Numerical performance

The accuracy of the real-space solution is compared to the Fourier-based method in
terms of the quasi-static Hertzian contact with radius R = 1 and force F = 0.1E∗R2,
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where the analytical solution is known [193, p. 59ff]. Note that in this case, the final
result of both approaches is independent of the algorithm used for the numerical solution.
Fig. C.2 shows how the real-space solution converges toward the target displacement and
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Figure C.2: Convergence of the a) displacement and b) pressure field with N for the real-space
solution (calculated using GFMD) compared to the analytical solution. From the dashed to the

dash-dotted line, the system size L stays constant and the resolution is doubled, mostly improving the
accuracy of the stress field. On the contrary, the dotted line doubles L at constant resolution, which
considerably improves the displacement field. pH, uH and aH are the analytical solutions for the
maximum contact pressure, macroscopic displacement and contact radius, respectively. The black

solid line corresponds to the solution calculated in Fourier space at 256× 256 resolution with period
L = 6R ≫ aH.

stress profiles, where increasing the circular system size mostly improves the accuracy in
displacement and the refining the discretization affects the pressure field. However, the
resolution as well as the system size would need to be drastically increased to approach
the exceptional accuracy that is obtained when the problem is solved in Fourier space.
This is especially true for the stress field, but surprisingly also applies to the displacement
as long as the periodic boundaries of the Fourier method are sufficiently far away.

We also want to compare the computational efficiency of the corresponding GFMD
implementations. At the given resolution of N = 256, the rGFMD method was approx-
imately four times faster than fGFMD, although it should be noted that fGFMD was
sped up by the FIRE algorithm, which had not been implemented in rGFMD. Reducing
the period length (at constant N) would make fGFMD almost equally efficient, while
sacrificing accuracy only in terms of the displacement field. Computational complexity
scales approximately with N2 for both the Fourier and real-space method. This is be-
cause a 1D convolution in real-space is an N2 operation and fGFMD needs to simulate
two dimensions, both with asymptotic complexity of the FFT proportional to N log(N).
In summary, with uniform spacing, rGFMD cannot compete with fGFMD. The slight
advantage in computation time does not make up for the significant loss in accuracy,
especially with respect to the stress field.

To assess the improvement expected from non-uniform spacing, Fig. C.3 shows four
different variants in terms of their deviation from the analytical solution. Making ri a
quadratic function of the grid index i at constant N improves the local resolution inside
the contact area and wastes less computation time for points outside the contact. This
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Figure C.3: Comparison of uniform and non-uniform real-space discretizations for a) displacement
and b) pressure field. All cases use 256 discretization points, where the dashed blue line represents
uniform spacing, the orange line increases spacing quadratically and the green lines start with a very
fine uniform discretization and then switch to a logaritmic spacing outside (green dashed) or inside
(green dotted) the contact. Non-uniform grids tend to improve accuracy, but introduce artifacts at

the points where the discretization changes.

leads to an overall improvement in stress and displacement fields, except for the center
(r = 0), where it introduces an artifact in the form of a stress peak. The partially
logarithmic grid takes this idea one step further and introduces a transition index jc, at
which the shape of ∆rj as a function of j suddenly changes. This introduces artifacts
at the exact location rc = rjc of the discretization transition. If rc lies inside the contact
region, a kink is introduced in the stress field (dotted green line). Otherwise, a disconti-
nuity shows up in the displacement field (dashed green line). Given these observations, it
is not really clear how well a self-adjusting non-uniform grid would perform in practice.
Once again, these results pertain to the described real-space method, irrespective of the
algorithm used for computation.

Although the issues arising from non-uniform discretization already make the real-space
method impractical, the concept of changing the discretization on the fly was still tested.
To this end, Fig. C.4 shows the displacement evolution over time step, where two con-
stant uniform discretizations are compared to a simulation that switches between the
same two grids halfway through the calculation. The grid update requires an extrapola-
tion of the previous field to the new coordinates, which was realized by the accelerated
cubic spline interpolation of the gsl library. With this method, the re-equilibration after
the grid update takes less than 10% of the total simulation time, as indicated by the
duration of green line’s jump in Fig. C.4. When replacing the cubic spline with a sim-
ple piecewise-linear interpolation, this process took significantly more time (not shown
explicitly). The perturbation resulting from grid update would certainly lead to a sig-
nificant error in the case of viscoelastic systems, where a realistic time evolution is much
more important than in the quasi-static case. As of the writing of this thesis, the first
attempt at a viscoelastic implementation has not proven to yield quantitatively correct
dynamics even for a constant uniform grid, which is why it is not explicitly discussed
here.
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Figure C.4: Displacement trajectories for two rGFMD simulations with constant uniform N = 256
and N = 313 grids and one simulation that switches from N = 256 to N = 313 discretizations at time

t = 600. It takes only a few time steps to re-equilibrate after the interpolation.

D Perturbation approach to elastic coupling

In Publ. V, the discussion of the coupling effect in single asperity systems was rather
qualitative in nature, focusing on intuitive access in favor of mathematical precision.
This section treats the single wavelength undulation and its implications on friction
more rigorously in what can be considered a perturbation theory approach.

We consider the friction-less case (µc = 0) as the known reference and interpret µc as a
small perturbation. We assume that the indenter predominantly causes a deformation
of a single representative wavevector Q = (Q, 0). Since this choice aligns the coordinate
system with the sliding direction, we assume the representation in App. B, except the
superscript “(x)” on the tensor components is omitted for brevity. Furthermore, G̃αβ

and Φαβ imply G̃αβ(Q) and Φαβ(Q), respectively, where G̃(Q) = Φ−1(Q) is the Green’s
compliance tensor corresponding to Q.

In 0th and 1st order (indicated by the superscript in round brackets), we get

σ̃(0)(Q) =
(

0
σ̃
(0)
z (Q)

)
(D.1a)

ũ(0)(Q) = G(Q)σ̃(0)(Q) (D.1b)

∆σ̃(1)(Q) =
(
−µcσ̃

(0)
z (Q)
0

)
(D.1c)

∆ũ(1)(Q) = G(Q)∆σ̃(1)(Q) (D.1d)

Carrying out the matrix multiplication with the coefficients given by App. B, we obtain:

ũ(1)(Q) ≈ ũ(0)(Q) + ∆ũ(1)(Q)

=
(
G̃13 − µcG̃11

G̃33 − µcG̃31

)
σ̃(0)
z (Q). (D.2)
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Note that σ̃
(0)
z = −p3 is negative by engineering convention for a compressive normal

load (σz = −p3 cos(Qx)) and the indenter, which is moving in positive x-direction, causes
a positive frictional shear stress ∆σ

(1)
x . This is why the x-component in Eq. (D.1c) needs

a minus sign. Consequently, in steady-state sliding, the local velocity variation is given
as

dux

dt ≈ −v0
∂u

(1)
x

∂x
= v0p3Q

(
µcG̃11 sin(Qx)− Im

{
G̃13

}
cos(Qx)

)
. (D.3)

The (0-th order) cosine term amounts to a negative velocity inside the contact for the
confined, incompressible body, where Im

{
G̃13

}
> 0. Since the indenter is moving in

positive x-direction, this negative velocity of the elastic surface increases the relative ve-
locity vrel between the two bodies and enhances the dissipated energy Pdiss and thereby
the effective friction coefficient. Im

{
G̃13

}
becomes negative for semi-infinite, compress-

ible materials, which means that vrel and Pdiss are reduced instead. Furthermore, the
(first-order) sine term in Eq. (D.3) reduces the local velocity on the leading half of the
contact and increases it on the trailing side. All of these tendencies can be observed
throughout Publ. V.

In the next step, we need to take the constraint into account that the indenter imposes
on the displacement. In our model and simulation, a local overlap between the bodies
gives rise to a stress in normal direction, which is trying to reduce the overlap to 0.
The lateral stress changes simultaneously to ensure that Amontons’s law remains locally
fulfilled in the entire surface. In our single-wavelength displacement system, we can
write this as:

∆σ̃(2)(Q) = Φ(Q)
(
µc

−1

)
∆ũ(1)

z (D.4)

= Φ(Q)
(
−µ2

cG̃31

µcG̃31

)
σ̃(0)
z (Q) (D.5)

=
(
−µ2

cΦ11G̃31 + µcΦ13G̃31

−µ2
cΦ31G̃31 + µcΦ33G̃31

)
σ̃(0)
z (Q) (D.6)

In first-order approximation (i.e. µc ≪ 1), the normal stress is primarily modified by

∆σ(2)
z (x) ≈ Re

(
µcΦ33G̃31σ̃

(0)
z (Q) exp(iQx)

)
= µcp3Φ33Im(G̃31) sin(Qx). (D.7)

Due to the symmetry (or “hermitean-ness”, to be precise) of the tensors, Im(G̃31) has
the same sign as Im(Φ̃13), as shown in Figure SI-1 of Publ. V: Im(G̃31) is negative for
confined elastic bodies and positive for semi-infinite ones. Therefore, for the confined
case, the pressure (negative stress) is larger on the right-hand side (leading edge) of the
contact, while for the semi-infinite case, it is larger on the left-hand side (trailing edge).
Once again, this matches the results in Figure SI-2, this time the second row.
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E The standard linear solid (SLS)

The content of this section has been automatically generated from a Jupyter notebook.
All mathematical operations have been performed by the SymPy [191] computer algebra
package.

k0

k1

u1

η1

u0, Fext(t)

k2

k1
u2

η1

u1, Fext(t)
a) b)

Figure E.1: Schematic of the Standard Linear Solid (SLS) in a) Kelvin-Voigt and b) Maxwell
representation.

E.1 Kelvin-Voigt representation

System of differential equations:

η

(
d

dt
u1(t)−

d

dt
u2(t)

)
+ k1 (u1(t)− u2(t)) = Fext

(
F̂ , ω, t

)

η

(
− d

dt
u1(t) +

d

dt
u2(t)

)
+ k1 (−u1(t) + u2(t)) + k2u2(t) = 0

Ansatz:

Fext
(
F̂ , ω, t

)
= F̂ eiωt[

u1(t)
u2(t)

]
=
[
û1e

iωt

û2e
iωt

]
Substitute ansatz into ODE system:

F̂ eiωt = (û1 − û2) (iηω + k1) eiωt

(−iηω (û1 − û2) + û2k2 − k1 (û1 − û2)) eiωt = 0

Divide by the Ansatz and rewrite into a matrix equation:[
û1 (−iηω − k1) + û2 (iηω + k1)

û1 (−iηω − k1) + û2 (iηω + k1 + k2)

]
=
[
−F̂

0

]
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Invert the equation, find û:

û1 = − F̂ (−ηω + ik1 + ik2)
ηωk2 − ik1k2

Determine the complex stiffness:

F̂ = û1kKV(ω)

kKV(ω) =
k2 (ηω − ik1)
ηω − ik1 − ik2

kKV(ω) =
iηωk2

2

η2ω2 + (k1 + k2)2
+ k2 (η2ω2 + k1 (k1 + k2))

η2ω2 + (k1 + k2)2

|kKV(ω)| =
k2
√
η2ω2 + k2

1√
η2ω2 + k2

1 + 2k1k2 + k2
2

Reformulate using τ = η/k1:

kKV(ω) =
k1k2 (ωτ − i)

ωτk1 − ik1 − ik2

kKV(ω) =
iωτk1k

2
2

ω2τ 2k2
1 + (k1 + k2)2

+ k1k2 (ω2τ 2k1 + k1 + k2)
ω2τ 2k2

1 + (k1 + k2)2

|kKV(ω)| =
k1k2

√
ω2τ 2 + 1√

ω2τ 2k2
1 + k2

1 + 2k1k2 + k2
2

Reformulate using a = k2/k1:

kKV(ω) = − ak1 (ωτ − i)
−ωτ + ia+ i

kKV(ω) =
iωτa2k1

ω2τ 2 + (a+ 1)2
+ ak1 (ω2τ 2 + a+ 1)

ω2τ 2 + (a+ 1)2

|kKV(ω)| =
ak1

√
ω2τ 2 + 1√

ω2τ 2 + a2 + 2a+ 1

Limiting cases (in different representations):

kKV(∞) = k2
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kKV(0) =
k2

a+ 1

kKV(0) =
k1k2

k1 + k2

Reformulate using k0 = k(0) and s = k(∞)/k(0):

s = a+ 1

kKV(ω) =
k0s (iωτ + 1)

iωτ + s

kKV(ω) =
iωτk0s (s− 1)
ω2τ 2 + s2

+ k0s (ω2τ 2 + s)
ω2τ 2 + s2

|kKV(ω)| =
k0s

√
ω2τ 2 + 1√

ω2τ 2 + s2

tan (ϕ) = ωτ (s− 1)
ω2τ 2 + s

10−1 100 101 102 103 104 105

ωτ

100

101

102

103

k
K

V
(ω

)/
k
(0

)

k(∞)/k(0) = 1000

k(∞)/k(0) = 100

k(∞)/k(0) = 10

Re(k(ω))/k(0)

Im(k(ω))/k(0)

Figure E.2: Absolute value (solid), real part (dashed) and imaginary part (dotted line) of the
stiffness of the SLS in KV representation with relaxation time τ and different ratios k∞/k0.

E.2 Maxwell representation

System of differential equations:
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k0u0(t) + k1 (u0(t)− u1(t)) = Fext
(
F̂ , ω, t

)
η
d

dt
u1(t) + k1 (−u0(t) + u1(t)) = 0

Ansatz:[
u0(t)
u1(t)

]
=
[
û0e

iωt

û1e
iωt

]
Substitute ansatz into ODE system:

F̂ eiωt = (û0k0 + k1 (û0 − û1)) eiωt

(iηû1ω − k1 (û0 − û1)) eiωt = 0

Divide by the Ansatz and rewrite into a matrix equation:

F̂ = û0k0 + k1 (û0 − û1)

iηû1ω − k1 (û0 − û1) = 0[
û0 (−k0 − k1) + û1k1
−û0k1 + û1 (iηω + k1)

]
=
[
−F̂

0

]

Invert the equation, find û:

û0 = − F̂ (−ηω + ik1)
ηωk0 + ηωk1 − ik0k1

Determine the complex stiffness:

F̂ = û0kMW(ω)

kMW(ω) = ηωk0 + ηωk1 − ik0k1
ηω − ik1

kMW(ω) = iηωk2
1

η2ω2 + k2
1
+ η2ω2 (k0 + k1) + k0k

2
1

η2ω2 + k2
1

|kMW(ω)| =

√
η2ω2k2

0 + 2η2ω2k0k1 + η2ω2k2
1 + k2

0k
2
1√

η2ω2 + k2
1

Reformulate using τ = η/k1:

η = τk1

kMW(ω) = ωτk0 + ωτk1 − ik0
ωτ − i
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kMW(ω) = iωτk1
ω2τ 2 + 1 + ω2τ 2 (k0 + k1) + k0

ω2τ 2 + 1

|kMW(ω)| =

√
ω2τ 2k2

0 + 2ω2τ 2k0k1 + ω2τ 2k2
1 + k2

0√
ω2τ 2 + 1

Limiting cases:

kMW(∞) = k0 + k1

kMW(0) = k0

Reformulate using s = k∞/k0:

s = k0 + k1
k0

kMW(ω) = k0 (ωτs− i)
ωτ − i

kMW(ω) = iωτk0 (s− 1)
ω2τ 2 + 1 + k0 (ω2τ 2s+ 1)

ω2τ 2 + 1

|kMW(ω)| = k0
√
ω2τ 2s2 + 1√
ω2τ 2 + 1

tan (ϕ) = ωτ (s− 1)
ω2τ 2s+ 1

Compare Maxwell to Kelvin-Voigt:

kMW

(
ω

s

)
= kKV(ω)
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Figure E.3: Absolute value (solid), real part (dashed) and imaginary part (dotted line) of the
stiffness of the SLS in Maxwell representation with relaxation time τ and different ratios k∞/k0.
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Analytical and numerical results for the elasticity and 
adhesion of elastic films with arbitrary Poisson’s ratio and 
confinement
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ABSTRACT
We present an approximate, analytical treatment for the linearly 
elastic response of a film with arbitrary Poisson's ratio ν, which is 
indented by a flat cylindrical punch while resting on a rigid 
foundation. Our approach is based on a simple scaling argu-
ment allowing the vast changes of the elastomer’s effective 
modulus �E with the ratio of film height h and indenter radius a 
to be described with a compact, analytical expression. This 
yields exact asymptotics for large and small reduced film 
heights h=a, whereby it also reproduces the observation that 
�Eðh=aÞ has a pronounced minimum for ν> 0:49 at h=a � 1:6. 
Using Green’s function molecular dynamics (GFMD), we demon-
strate that the predictions for �Eðh=aÞ are reasonably correct and 
generate accurate reference data for effective modulus and pull- 
off force. GFMD also reveals that the nature of surface instabil-
ities occurring during stable crack growth as well as the crack 
initiation itself depend sensitively on the way how continuum 
mechanics is terminated at small scales, that is, on parameters 
beyond the two dimensionless numbers h=a and ν defining the 
continuum problem.
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1. Introduction

This paper revisits the contact mechanics of confined, linearly elastic layers of 
height h sandwiched between a rigid surface and a circular rigid punch of 
radius a. A central quantity of such films is the effective modulus �E [1] as 
a function of the reduced height h=a and the Poisson’s ratio ν. �E is defined as 
the ratio of mean contact stress and relative height change. The arguably most 
important reason for wanting to know �Eðh=aÞ is that it allows the pull-off 
stress σp �

[2,3] and the fracture mechanisms of confined elastomers to be 
determined.[4–8] For large h=a or small ν, adhesive contact failure is sudden, i. 
e., the tensile force drops discontinuously from its maximum value to zero 
under quasi-static loading, even when the system is displacement driven. 
However, stable crack growth occurs for (nearly) incompressible elastomers 
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once h=a falls below approximately two. As h=a drops below unity, the contact 
shape is no longer circular during stable crack growth but clearly symmetry 
broken[4,6–9] so that contact features have a characteristic linear dimension λ 
minimizing the total energy.[4,8,10–13]

The limits of unconfined (h=a!1)[14] and incompressible (ν ¼ 0:5), 
highly confined (h=a! 0)[15] elastomers were solved more than half 
a century ago. Over time, amendments to the latter case were made with 
respect to boundary conditions, the geometry of the elastomer, and other 
details.[1,4,12,16] However, intermediate confinements h=a � 1 have not yet 
been solved analytically for extended two-dimensional films, although solu-
tions for poker-chip specimens[17,18] as well as elastomeric strips[19] can be 
found. Extended films have only been treated numerically with finite-element 
(FE) simulations,[2,3,5,7,20,21] which lead to the suggestion of semi-empirical 
relationships between �E=E� and h=a,[3,5,20] where E� ¼ E=ð1 � ν2Þ is the con-
tact modulus and E the Young’s modulus. They turn out to benefit the 
interpretation of real-laboratory experiments, in particular, to explain differ-
ent crack propagation mechanisms during detachment.[4,6–8] A deeper under-
standing of the �Eðh=aÞ dependence might also prove useful in interpreting 
observations made on confined elastomers in contact with rough 
indenters.[22–24]

Unfortunately, most existing semi-empirical �Eðh=aÞ relations were 
only designed for Poisson’s ratios equal to or just below 0.5 so that 
confinement effects of various soft materials with small Poisson’s ratios, 
such as foams, corks or soft isotropic metamaterials with negative 
Poisson's ratio are not quantitatively understood. Moreover, as demon-
strated in this work, the extreme confinement limit, in which deviations 
from ideal incompressible matter have not yet been described satisfacto-
rily for the given elastic film geometry. While instabilities of the elasto-
mer surface were studied analytically for arbitrary Poisson’s ratios,[10,25] 

the focus was quickly laid on ideally incompressible elastomers.[10,12,21] 

In addition, no physically motivated, closed-form expressions for the 
dependence of the effective modulus on the reduced film height have 
been proposed.

The original main motivation for this article was to identify a non- 
empirical relationship for �Eðh=a; νÞ, which allows us to easily rationalize 
the minimum in �Eðh=a; νÞ and estimate the range of Poisson’s ratios, in 
which an elastomer film behaves as if it were incompressible. To this 
end, we propose that the energy needed to deform the elastic film should 
be most sensitive to the stiffness of a surface undulation with 
a wavevector in the order of the inverse punch radius. Even if such 
a simple scale argument may not outperform existing, more empirical 
models for all possible combinations of h=a and ν, it should improve our 
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ability to estimate �Eðh=a; νÞ, in particular in the limit of extreme con-
finement and/or small Poisson’s ratio. It certainly behoves us to examine 
numerically the accuracy of any scaling relation, which we do by run-
ning Green’s function molecular dynamics (GFMD) simulations.[26] This 
also allows us to produce reference data for the pull-off stress as 
a function of h=a and ν. While simulating the detachment process, we 
realized that the analysis of surface instabilities that occur during stable 
crack growth at h=a ,< 1 is interesting in its own right. We therefore 
include an in-depth analysis of how substrate symmetry, lattice trapping, 
and stochastic irregularities in the form of thermal noise, as well as their 
interplay affect the patterns that occur when the surface morphology 
becomes unstable during detachment.

The remainder of this article is organized as follows: Model and 
numerical methods are introduced in Section 2. Our scaling approach is 
presented in Section 3. Section 4 contains a comparison between theory 
and simulations as well as additional simulation results. Conclusions are 
drawn in Section 5.

2. Model and methods

2.1. Model

The investigated model system consists of isotropic, linearly elastic films of 
varying film height h resting on a perfectly flat and perfectly rigid foundation 
with a surface normal in the z direction. The in-plane extent of film and 
foundation are taken to be infinitely large and a no-slip condition is assumed 
between them. The opposite surface of the elastomer interacts with a rigid 
circular punch of radius a through a hard-wall constraint with a slip condition. 
Such systems can be effectively simulated by assuming periodic boundary 
conditions in the xy plane, as long as the linear dimension L of the periodically 
repeated simulation cell exceeds the punch radius a by a sufficiently large 
padding, which is most effectively chosen to be larger than but of 
order minðh; aÞ.

In the just-defined setup, the elastic energy of the elastomer is given 
by[27–29] 

Vela ¼
X

q

qE�

4
cðν; qhÞ ~uðqÞj j

2 (1) 

where q is an in-plane wave vector with absolute value q, ~uðqÞ is the Fourier 
coefficient of the displacement field of the elastomer’s surface facing the 
indenter and 
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c ν; qhð Þ ¼
3 � 4νð Þ cosh 2qhð Þ þ 2ðqhÞ2 � 4ν 3 � 2νð Þ þ 5

3 � 4νð Þ sinh 2qhð Þ � 2qh
: (2) 

For an infinitely large system without periodic boundaries, the sum on the r.h. 
s. of Eq. (1) will be replaced with an appropriate integral. For some of the 
calculations presented in this study, knowledge of the asymptotes of cðν; qhÞ is 
useful. A Taylor expansion reveals them to be 

cðν; qhÞ ¼
1 for qh� 1
c1ðνÞ=ðqhÞ for qh� 0:5 � ν and ν< 0:5
1:5=ðqhÞ3 for qh� 1 and ν ¼ 0:5:

8
<

:
(3) 

with 

c1ðνÞ ¼
2ð1 � νÞ2

1 � 2ν
: (4) 

In our analytical treatment, the interaction between indenter and elastomer is 
a non-overlap constraint. In addition, a surface energy γ is gained per unit area 
where surfaces touch. The model is then replaced with a cohesive zone model 
for the numerical solution of the contact problem, which is described next.

2.2. Methods

The contact problems were solved numerically using Green’s function mole-
cular dynamics (GFMD) simulations.[26] GFMD is a boundary-value method, 
in which Newton’s equations of motion for the displacement fields are solved 
in their Fourier representation. In compression simulations, we use an exact 
non-overlap constraint in conjunction with the fast-inertial relaxation 
(FIRE)[30] algorithm as described in Ref.[31] Typical simulations assume the 
linear dimension of the periodically repeated simulation cell to be three times 
the punch diameter and a discretization of the displacement field into 2; 048�
2; 048 elements. While exploiting the circular symmetry of the problem would 
have allowed us to reduce the computational cost of the simulations substan-
tially, we found it more time effective to use the implemented methods.

Although knowledge of Vela as a function of normal displacement and h=a 
determined from purely repulsive experiments is sufficient to deduce the 
adhesive pull-off force, see Section 3.3, simulations mimicking tensile loading 
were also conducted. This was not only done to double-check our pull-off 
force calculations but also to investigate the dynamics and failure mechanisms 
that occur during the detachment of confined elastomers. For this purpose, 
adhesion is modeled with a cohesive zone model (CZM), in which the gap- 
dependent surface energy has the form[32] 
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γðgÞ ¼ � γ� fcosðkgÞ þ 1g=2 for 0 � kg � π=Δa
1 � ðkgÞ2=4
� �

for g < 0

�

(5) 

and zero else, where g is the gap between elastomer and punch. The parameter 
k was generally set such that the maximum stiffness of surface undulations was 
slightly more than twice the maximum (negative) curvature of the potential 
defining the CZM, i.e., k2 ¼ 0:4

r qmax E�cðν; qmaxhÞ, where qmax ¼
ffiffiffi
2
p

π=Δa and 
Δa the linear mesh discretization. In this way, the interaction is effectively as 
short ranged as possible while avoiding lattice trapping. The latter refers to 
a situation, where an individual degree of freedom, e.g., a GFMD discretization 
point, can have two or more mechanically stable positions, while all other 
points remain fixed. When addressing lattice trapping, the parameter k was set 
to 3.75 times its default value. To improve the convergence rate, the mass- 
weighting GFMD variant was used for adhesive simulations.[31] Computing 
time is furthermore reduced by progressively increasing spatial resolution and 
decreasing the rate of retraction upon approaching the point of maximum 
tensile force.

To also model the response of elastomers to small perturbations, some 
simulations were conducted at finite temperature with the help of a recently 
introduced GFMD thermostat.[33] To this end, the thermal energy was kept at 
about 0.1% of the adhesive energy gained in a single mesh element in which 
the elastomer makes perfect contact with the indenter.

2.2.1. Finite-size corrections
If the origin of the coordinate system coincides with the center of the flat 
punch, the macroscopic displacement u0 is defined as uð0Þ � uðr !1Þ. 
Thus, the best simple estimate for u0 when using a finite square-shaped 
simulation cell with length L is to replace u1;uðr!1Þ with uðL=2; L=2Þ.

To reduce the finite-size error, we use a correction appropriate for semi- 
infinite elastomers[34] but damp it with the weight function wðh=aÞ ¼
tanhðh=aÞ for small h=a: 

u1 � uðL=2; L=2Þ þ 5wðh=aÞfuðL=2; L=2Þ � uðL=2; 0Þg: (6) 

The damping of the usual correction is needed because for finite h=a, the 
displacement field approaches u1 exponentially quickly with increasing dis-
tance r from the origin rather than with 1=r.

3. Theory

As has been done before,[2,3,35] we define the effective modulus �E as the ratio of 
the mean (compressive) contact stress �σ ¼ F=ðπ a2Þ and the relative height 
change of the elastomer to the contact area, �ε ¼ u0=h, even if the uncom-
pressed elastomer is a film rather than a free-standing cylinder of radius a, for 
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which �E was originally introduced.[35] Here, u0 is the normal displacement of 
the elastomer’s surface right below the punch from its equilibrium height in 
the absence of an indenter. Thus, �E is given by 

�E ¼
�σ
�ε
¼

Fh
u0πa2 : (7) 

Since a does not change with u0 for a flat punch under compression, it follows 
that F is proportional to u0 within linear elasticity. Thus, the elastic energy is 
simply given by Vela ¼ Fu0=2 so that 

Vela ¼ πa2� � �E
2h

u2
0: (8) 

As already argued in the introduction, the only in-plane length defining the 
contact problem is the punch radius a. Thus, under compression, dimensional 
analysis suggests that the elastic energy should predominantly reside in undu-
lations with wave numbers of the order of qa ¼ 2π=a given that q! 0 or q!
1modes are not dominant. In this case, a good estimate for the elastic energy 
would be 

Vela ¼ πa2� �
O qað ÞE�c ν;O qað Þhf gu2

0: (9) 

In order to eliminate the big-O notation in Eq. (9), we introduce two propor-
tionality factors α and β. Comparing the resulting elastic energy to Eq. (8) 
yields 

�E
E�
�

1
2

αβqahc ν; βqahf g; (10) 

which is the central analytical result of this work. Sections 3.1 and 3.2 
are concerned with a parametrization of α and β, while Section 3.3 
summarizes how to deduce depinning forces from the h=a dependence 
of �E.

To further motivate our approach, Figure 1 shows displacement and stress 
fields in real space for the various confinements, which range from small 
(h=a� 1) and intermediate (h=a ¼ 1) via large (1 � 2ν� ðh=aÞ2 � 1) to 
extreme (ðh=aÞ2 � 1). These data are complemented by the elastic energy 
associated with individual ~uðqÞ modes in the right column of Figure 1, which 
clearly supports the scaling hypothesis that energy predominantly resides in 
modes with wavelengths of order a.

The top row of Figure 1 shows the well-established properties of the 
flat-punch solution for semi-infinite elastomers. On the other end, in the 
two bottom rows, Figure 1 reveals a qualitative difference between large 
and extreme confinement, which may often be underappreciated, 
although the principle is known from works addressing poker-chip and 
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Figure 1. Displacement field (left column), stress field (center column), and energy spectrum (right 
column), i.e., individual summands of the r.h.s. of Eq. (1), for ν ¼ 0:4995 at different values of the 
reduced height h=a. The ordinate axis is linear in all cases.
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elastic-strip geometries.[17–19] Specifically, for 1 � 2ν< ðh=aÞ2 � 1, the 
stress profile at the origin is close to an inverted parabola while for 
ðh=aÞ2 � 1 � 2ν, the stress is constant within (most of) the contact. It 
should also be noted that in all cases, a stress singularity occurs at the 
contact edge, which in our numerical treatment – and in reality – is cut 
off by the finite range of the interaction potential, whose precise effective 
value can be a function of the microscopic roughness.[33] In addition, the 
corresponding intensity decreases with decreasing h=a and thus disap-
pears in the limit of h=a! 0.

3.1. Asymptotic scaling

In many cases, nearly incompressible elastomers are treated as perfectly 
incompressible and their Poisson's ratio is approximated with ν ¼ 0:5.[4–6,35] 

However, analyzing the asymptotic behavior of �E for h=a! 0 reveals a more 
concise picture, which is presented in the following.

The ratio �E=E� can only be a function of the two dimensionless numbers 
defining the problem, namely ν and h=a. The asymptotic limits for �E=E� at 
extreme and small confinement can be deduced from existing solutions for the 
considered confined elastomer. As will be shown in the remaining part of this 
Section 3.1, they turn out to be 

�E
E�
¼

2h=ðπaÞ for h=a� 1
c1ðνÞ=2 for h=a�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2ν
p

and ν< 0:5
3a2=ð32h2Þ for h=a� 1 and ν ¼ 0:5;

8
<

:
(11) 

where c1ðνÞ was introduced in Eq. (4).
The condition ðh=aÞ2 � 1 � 2ν for ν< 0:5 in Eq. (11) is motivated by the 

observation that for ν close to 0.5, the scaling of the function cðν; h=aÞ has two 
different small-h=a scaling regimes. The threshold between these regimes is 
characterized by the transition from a parabolic to a constant stress distribu-
tion as illustrated by Figure 1. Based on this we introduce the terminology that 
a film is extremely confined if h=a is small compared to 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2ν
p

and largely 
confined if this condition does not hold but h is still small compared to a.

3.1.1. Unconfined limit
The unconfined limit is nothing but a regular flat punch in contact with 
a semi-infinite half space.[14] Inserting its well-known stress–displacement 
relation F ¼ 2aE�u0 into Eq. (7) yields the first case given in Eq. (11).
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3.1.2. Extreme confinement limit
For h=a! 0 and ν< 0:5, the proportionality between the elastic energy of 
a single height undulation and j~uðqÞj2 does not depend noticeably on the wave 
number q. Due to Parseval’s theorem, a linear relation between local displace-
ment and local stress occurs within most of the contact. This is why the stress 
is approximately constant within the contact in the bottom row of Figure 1 and 
zero outside so that its Fourier transform is 

~σðqÞ ¼
�σ

2π

ð

d2r eiq�r Θða � rÞ (12) 

¼ �σaJ1ðaqÞ=q; (13) 

Θð. . .Þ being the Heaviside step function, r ¼ ðx; yÞ the in-plane position with 
r ¼ jrj and Jnð. . .Þ the Bessel function of the first kind of order n. Using the 
stress–strain relation that follows from Eq. (1) yields a displacement at the 
origin u0;uðr ¼ 0Þ of 

u0 ¼
1

2π

ð

d2q
a
q

J1ðaqÞ
2

qcðν; qhÞ
�σ
E�

(14) 

)
u0=h

�σ
¼

2
~hE�

ð1

0
d~q

J1ð~qÞ

~qc ν; ~q~h
� � ; (15) 

where ~h ¼ h=a is the reduced height and ~q ¼ qa. By definition, the l.h.s. of Eq. 
(15) and thus its r.h.s. is nothing but the inverse of the effective elastic 
modulus �E.

The integral on the r.h.s. of Eq. (15) probably has no closed-form analytical 
solution and is even difficult to solve numerically because of the oscillations of the 
Bessel function. To reduce the effect of the oscillations, we rewrite the integral as 

I ¼
ð1

0
d~q

f ð~qÞ þ f ð~qþ πÞ
2

þ
1
2

ðπ

0
d~qf ð~qÞ; (16) 

f ð~qÞ being the integrand on the r.h.s. of Eq. (15). In its rewritten form, the integral 
can be easily seen to have its dominant contribution from small ~q when ~h is small. 
This property does not change after using the appropriate small-~q approximation 
for cðν; ~qÞ in the integrand. As a consequence, I can be solved analytically to be 
~h=c1ðνÞ in the large-confinement limit for ν< 0:5, which ultimately translates into 
the corresponding expression stated in Eq. (11).
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3.1.3. Large-confinement limit
For ν ¼ 0:5 and h sufficiently small compared to a, or, alternatively, ν< 0:5 
and h=a in the intermediate scaling regime, the stiffness of a mode is no 
longer independent of q but instead proportional to q� 2. As a consequence, 
the stress is no longer constant in the contact area but assumes the 
functional form[35] 

σðrÞ ¼ σ0 1 � r2=a2� �
Θða � rÞ (17) 

with σ0 ¼ 2�σ, see also the second to last row in Figure 1. It should be noted 
that this stress distribution was originally derived for a finite elastomer of 
originally cylindrical shape sandwiched between two rigid planes and assum-
ing a stick condition. However, Gent[35] already expected the functional 
dependence of �E on h=a for his set-up to be similar to that of films.

Proceeding as in Section 3.1.2, we first determine ~σðqÞ to be 

~σðqÞ ¼
ða

0
dr rJ0ðqrÞσðrÞ ¼ σ0a2 J1ð~qÞ

~q
� 2

J2ð~qÞ
~q2 þ

J3ð~qÞ
~q

� �

: (18) 

The displacement in the origin then becomes 

u0 ¼
2aσ0

E�

ð1

0
d~q

1
cðν; ~q~hÞ

J1ð~qÞ
~q
� 2

J2ð~qÞ
~q2 þ

J3ð~qÞ
~q

� �

(19) 

)
Eq:ð3Þ u0=h

�σ
¼

8~h
2

3E�

ð1

0
d~q ~q2J1ð~qÞ � 2~qJ2ð~qÞ þ ~q2J3ð~qÞ
� �

: (20) 

As in the previous section, the integral cannot be solved analytically and the 
integrand oscillates too much to allow for a numerically robust integration. We 
therefore proceed again as described in the text around Eq. (16). This time, we did 
not identify a closed-form expression for the small-q expansion, but found 
a numerical value of 4 with six significant digits, so that we believe 4 to be the 
exact value for the integral on the r.h.s. of Eq. (20). Thus, comparing the r.h.s. of 
Eq. (20) with the definition of �E yields the large-confinement limit for �E 
and ν ¼ 0:5.

3.2. Intermediate reduced film heights

In the previous section, we derived the asymptotic dependence of �E on h=a at 
large and small h=a. We now want to ascertain how to chose α and β. To this 
end, we define ~Es ¼ �Es=E� as the r.h.s. of Eq. (10). Inserting the asymptotes of 
cðν; qhÞ from Eq. (3) into Eq. (10) yields 

�Es

E�
¼

αβqah=2 for h=a� 1
c1ðνÞα=2 for h=a�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2ν
p

and ν < 0:5
3α= 4β2ðqahÞ2
� �

for h=a� 1 and ν ¼ 0:5:

8
<

:
(21) 
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Comparing this result to Eq. (11) reveals that �Es scales properly with h=a in the 
asymptotic limits. However, when expressing the elastic energy of the system 
and the subsequent effective modulus, there are three equations and just two 
parameters 

αβ ¼ 2=π2 for any ν (22a) 

α ¼ 1 for ν< 0:5 (22b) 

αβ� 2 ¼ π2=2 for ν ¼ 0:5: (22c) 

Thus, Eqs. (22b) and (22c) give conflicting optimum parameter choices for 
ν< 0:5 and ν ¼ 0:5. They are α ¼ 1, β ¼ 2=π2 for ν< 0:5 and α ¼ 2=π, β ¼
ffiffiffiffiffiffiffiffiffiffi
4=π43

p
for ν ¼ 0:5.

An exact representation of �Eðh=aÞ=E� may be achievable by adding (infi-
nitely) many summands as they occur on the r.h.s. of Eq. (10). To make these 
sums satisfy the asymptotic limits, Eq. (22) must be generalized to sum rules. 
However, we did not find that proceedings along those lines appeared to be 
promising. Therefore, we will only use the single wave-number, asymptotically 
correct approximations for �Eðh=aÞ.

3.3. Deducing depinning force and range of stable crack growth from the 
effective modulus

Refs.[3–6,8] relate �Eðh=aÞ (or its inverse) to the energy release rate G, from which 
the pull-off force and crack propagation dynamics can be deduced. Similar to 
Yang and Li,[36] we start from the total energy formulation rather than the 
energy release rate, as we find this more direct and more intuitive.

The total potential energy of our system in an externally potential produ-
cing a constant force F reads 

U ¼
�Eðh=acÞ

2
u0

h

� �2
ðπha2

cÞ � πa2
cγ � Fu0; (23) 

where a negative value of F implies a (positive) tensile force causing a negative 
displacement u0. In this nomenclature, ac is the actual contact radius, which 
may now be different from the punch radius a.

In equilibrium, u0 and contact radius ac both minimize the potential energy, i. 
e., @U=@a ¼ @U=@u0 ¼ 0. In stable equilibrium, the Hessian produced by 
the second-order derivatives of U w.r.t. u0 and ac must be positive definite. 
When the system is displacement-driven, this condition reduces to @2U=@a2

c > 0.
The generalized force acting on the radius ac, Fa; � @U=@ac, is easily 

deduced as 
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Fa ¼ 2πγac � π�Eðh=acÞ
u2

0
h

ac þ
π
2
@�Eðh=acÞ

@ac

u2
0 a2

c
h

: (24) 

This equation allows ac to be determined self-consistently for a given u0. 
However, it has to be kept in mind that ac cannot grow for positive Fa when 
ac is equal to the punch radius a. This is why the case of ac ¼ a and ac < a must 
be treated separately.

The contact radius starts shrinking when Faðu0; ac ¼ aÞ ¼ 0� on retraction. 
Inserting this condition into Eq. (24) and solving for u0 yields 

u0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γh

2�Eðh=acÞ þ ac@�Eðh=acÞ=@ac

s

; (25) 

which has to be evaluated at ac ¼ a to deduce the normal displacement at the 
point, where the contact is just about to start shrinking for the first time. The 
normal force acting on the punch can then be deduced from @U=@u0 ¼ 0 to be 

FðacÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�Eðh=acÞγ=h
2þ @ ln �Eðh=acÞ=@ ln ac

s

πa2
c : (26) 

Evaluating this force at ac ¼ a gives the depinning or pull-off force Fp; � FðaÞ, 
which is the maximum tensile force occurring right before the contact radius 
starts shrinking. Different representations of the same equation can also be 
found using the energy release rate and/or assuming the load-driven case.[2,16]

As mentioned above, the previously determined contact radius ac is only 
stable if @2U=@a2

c > 0, which can be written in a convenient form that repro-
duces @U=@ac, which is 0 in equilibrium: 

@2U
@a2

c
¼

1
ac

@U
@ac
þ

πu0�E
2h

@2 ln �E
ð@ ln acÞ

2 þ
@ ln �E
@ ln ac

� �2

þ 2
@ ln �E
@ ln ac

 !

> 0: (27) 

The dividing line between stable and unstable crack propagation is defined by 
the condition @Fa=@ac ¼ 0. It can be cast 

@2 ln �Eðh=acÞ

ð@ ln acÞ
2 þ

@ ln �Eðh=acÞ

@ ln ac

� �2

þ 2
@ ln �Eðh=acÞ

@ ln ac
¼ 0: (28) 

This criterion together with Eq. (21) can be used to explain why there is no 
stable crack growth in an adhesive contact between a flat punch and a semi- 
infinite elastomer. For confined bodies, especially when ν is close to 0.5, this 
procedure is no longer applicable, since the contact area is usually not circular.
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4. Results and discussion

4.1. Effective modulus

Figure 2 compares numerical results for �E=E� to the analytical results from the 
previous section using adjustable parameters α and β following from Eq. (22). 
It is shown that the simple scaling approach reproduces the overall trends 
fairly well. By design, the asymptotic limits are matched for ν< 0:5. Moreover, 
the location of the minimum in �Eðh=aÞ=E�, so it exists for a given Poisson’s 
ratio, almost coincides between theory and simulation. However, the value of 
�E=E� in the minimum has an error of a few 10%. Errors are largest in the 
regime where a ν ,< 0:5 elastomer shows similar behavior to an ideally incom-
pressible solid. This can be rationalized by the h=a! 0 asymptotics of a ν ¼
0:5 body, which would require the parameters α and β to be redefined. For 
reasons of completeness, we note that the minimum of �Eðh=aÞ=E� for ν ¼ 0:5 
is located at h=a ¼ 1:665 in our analytical treatment and at h=a � 1:23� 0:02 
in the GFMD data. The relatively large numerical uncertainty of the minimum 
location results from the minimum being shallow.

To better resolve the discrepancies between the scaling approach and the 
numerical data, Figure 3 shows the ratio �EGFMD=�Es as a function of reduced 
height. For ν< 0:45, relative errors turn out to be quite insensitive to ν for any 
h=a. They can be approximated reasonably well with a single Gaussian con-
structed according to 

10−3 10−2 10−1 100 101 102
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101
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∗

ν = 0.0
ν = 0.4
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ν = 0.4995

ν = 0.5

Figure 2. Reduced effective modulus �E=E� as a function of the reduced film height h=a for 
different Poisson’s ratios ν. Solid lines are theoretical predictions based on our scaling approach, 
symbols represent numerical results. Dotted lines indicate the asymptotic limits described in Eq. 
(21).
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�EGFMD
�Es
� 1 ¼ A exp � ln2 ~h=~h0

� �
= 2B2� �n o

(29) 

with A ¼ 0:46, B ¼ 0:75, and ~h0 ¼ 2. A similar insensitivity of �EGFMD=�Es on ν 
holds for large ν only as long as h=a � 1. Interestingly, all �EGFMD=�Es curves 
almost coincide at �h=a ¼ 1, where they assume the value of 4=3 within a 3% 
margin. Unfortunately, the relative errors can exceed a factor of 1.5 for 
ðh=aÞ2 > 1 � 2ν while h=a� 1. Nonetheless, they always remain below 
a factor of π2=2.

Since previous works[2,3,5,7,21] considered mostly stick conditions for the 
elastomer-punch interface, comparing our numerical data to existing data or 
(semi-) empirical approximations for �Eðh=aÞ may not appear meaningful at 
first sight. However, we note that the overall trends are similar and that 
comparisons between different boundary conditions and comparisons 
between FEM and GFMD data may yet be insightful. We find Hensel et al.’s[3] 

(well, ugly) fit function to match our data most beautifully, which is shown 
exemplarily for ν ¼ 0:495 in Figure 3, in particular for 0:5< h=a< 10. 
Interestingly, for h=a< 0:5, their fit function is close to our analytical result. 
Thus, it does not capture the minimum associated with the large Poisson’s 
ratios, which may well be because Hensel et al. assumed stick conditions 
between punch and elastomer.

10−3 10−2 10−1 100 101 102
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Ē
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Gaussian fit
Hensel 2018

ν = 0.5
ν = 0.4995
ν = 0.495
ν = 0.45
ν = 0.4
ν = 0.0

Figure 3. Ratio of numerical and theoretical effective modulus, �EGFMD=�Es. The solid line reflects Eq. 
(29) and the dashed line represents the empirical fit function from Ref.[3] evaluated for ν ¼ 0:495. 
Dotted lines are drawn to guide the eye.
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4.2. Pull-off stress

In order to deduce the adhesive pull-off stress σp ¼ Fp=ðπa2Þ from �Eðh=aÞ, we 
replace @ ln �E=@ ln ac in Eq. (26) with � @ ln �E=@ ln ~h so that 

σp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�Eð~hÞγ

a~h 2 � @ ln �Eð~hÞ=@ ln ~h
� �

v
u
u
t : (30) 

The derivatives are evaluated numerically from the GFMD data shown in 
Figure 2 using cubic spline interpolation. Results for the pull-off stress are 
shown in Figure 4. To ensure their correctness, the pull-off stresses were also 
computed for selected values of ν at h=a ¼ 0:1 with simulations mimicking 
tack tests. Agreement was always within 2%. Since direct adhesive simulations 
are much more demanding and more prone to discretization errors than 
computations of �E using non-overlap constraints, we believe the presented 
results to have errors well below 2%.

Using our analytical expression for �Eðh=aÞ directly to estimate the pull-off 
stress turned out to be disappointing. However, using the asymptotic scaling 
for σp yields relatively satisfactory results, because it allows one to transition 
from ν< 0:5 to ν ¼ 0:5 scaling when crossing over from extreme to large 
confinement. Likewise, it is beneficial to transition from ν ¼ 0:5 to h=a!
1 scaling when crossing over from confined to unconfined.
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Figure 4. Computed pull-off stress as a function of confinement h=a for a wide range of Poisson’s 
ratios ν. Dotted lines, full lines, and circles represent asymptotic limits, analysis of the numerical 
�Eðh=aÞ curves, and results from adhesive GFMD simulations, respectively.
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The asymptotic solutions for σp can be obtained from Eq. (30) by exploiting 
once more Eq. (11): 

σp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8γE�=ðπaÞ

p
for h=a� 1 ð31aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1ðνÞγE�= a~h
� �r

for h=a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2ν
p

and ν< 0:5 ð31bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3γE�= 32ta ~h
3� �r

for h=a� 1 and ν ¼ 0:5: ð31cÞ

8
>>>><

>>>>:

Related scaling relations have been proposed before[1,4,7,12,13,15,16,36] for 
varying boundary conditions (BCs), however, generally assuming ν ¼ 0:5. 
Historically first, Kendall[15] identified Eq. (31a) for the unconfined system 
using, as we do, a frictionless elastomer-punch interface. In the opposite limit, 
h=a! 0, he found σp / 1=

ffiffiffi
h
p

, which differs from our Eq. (31c) because 
Kendall used a slip condition for the elastomer–substrate interface, while we 
assumed a stick condition. Yang and Li[36] confirmed Kendall’s scaling rela-
tion, albeit they corrected the numerical prefactor by multiplying Kendall’s 
result with 

ffiffiffiffiffiffiffiffiffiffiffi
E�=K

p
, where K is the bulk modulus. In the case where Yang and 

Li employ our BCs, they also find Eq. (31c). In fact, Yang and Li considered all 
four possible combinations of elastomer-punch and elastomer-substrate BCs. 
However, they only considered ν ¼ 0:5.

4.2.1. Deducing ν from mechanical measurements
In order for our calculations to benefit the determination of the Poisson’s ratio 
from mechanical measurements or, rather that of Δν ¼ 0:5 � ν, our results for 
�E and σp are best represented as functions of ν for fixed values of h=a, as is 
done in Figure 5. This way E� and/or σp only need to be determined once for 

Figure 5. GFMD results for the dimensionless, effective modulus �E=E� and the predicted reduced 
pull-off stress σp=

ffiffiffiffiffiffiffiffiffiffiffi
γE�=a

p
for Poisson’s ratios ν ¼ 0:4999 to 0.4 for the confinements h=a ¼ 0:02 

and h=a ¼ 0:05.
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a semi-infinite elastomer and once more for a confined elastomer. Similar 
approaches to determine Δν experimentally from �Eðh=aÞ have already been 
pursued successfully.[37,38]

Information as that presented in Figure 5 is certainly only beneficial as long 
as we are not yet too deep in the extreme confinement limit since �E and σp are 
no longer sensitive to logðΔνÞ in that regime.

Using very small h=a from the beginning is not necessarily effective either, 
since it might be equally important and infeasible to accurately align the flat 
punch as well as to account for the effects arising from the combined com-
pliance of substrate, punch, and driving apparatus. Thus, for Δν suspected to 
exceed 10 � 3 and 10 � 4, we would recommend to use h=a ¼ 0:05 and 
h=a ¼ 0:02, respectively.

Determining Poisson’s ratios of confined layers to less than 10 � 4 might be 
possible through optical measurements of the bulge arising right next to the 
indenter.[39] However, we could not identify bulge characteristics, i.e., appro-
priately undimensionalized bulge widths or heights, which appear to be 
promising candidates. The thin slit between the indenter and elastomer 
seems to have the largest sensitivity to logðΔνÞ. Unfortunately, its determina-
tion would require extremely smooth surfaces and a high-accuracy measure-
ment of the buried gap.

4.3. Crack formation and propagation

Crack growth during punch retraction becomes stable for sufficiently confined 
elastomers and large Poisson’s ratios, i.e., below a critical film height hcðνÞ. 
Evaluating the stability condition, Eq. (28), for ν ¼ 0:5, we locate the transition 
near hcð0:5Þ=a ¼ 3:44 from the GFMD data and at hcð0:5Þ=a ¼ 3:692 from 
our scaling ansatz. As ν decreases, the estimates for hcðνÞ=a move to smaller 
values. However, hcðνÞ=a becomes tedious to evaluate numerically from 
GFMD data once the elastomer is no longer very close to being 
incompressible.

Once h=a is well below unity, elastic instabilities, so-called fingering 
instabilities, occur for (nearly) incompressible elastomers,[4,6–9] which result 
in wavy displacement fields below the indenter. Their characteristic wave 
number q was related to a minimum in the stiffness of surface undulations, 
κ ¼ qE� cðqh; νÞ=4.[4,8,10–13] It is located at q ¼ 2:12=h for ν ¼ 0:5 and at q ¼
1:553=h for ν ¼ 0:4. These values translate to wavelengths of λ ¼ 2:964h and 
λ ¼ 4:046h, respectively. The minimum moves to larger wavelengths, with 
further decreasing ν and disappears completely at ν ¼ 0:25.

Simulations[12,13] reveal elastic instabilities similar to those observed experi-
mentally, thereby supporting the theoretical analysis. It yet seems unclear why 
and how the simulated patterns in two-dimensional contacts[13] break the 
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symmetry of the mathematical problem, which has circular symmetry in the 
absence of discretization and periodic boundary conditions. To elucidate this 
issue further, we simulated the detachment process for three different 
Poisson’s ratios using different ways in which the continuum model was 
terminated at small scales. Some of the most intriguing snapshots taken during 
detachment are compiled in Figure 6.

Every graph in a row in Figure 6 reflects the same continuum model in that 
ν and h=a is kept constant. However, they differ in terms of their discretiza-
tion – leading to or suppressing lattice trapping at small scales – and in terms 
of the absence or presence of random noise, which is introduced with 
a Langevin thermostat. Despite representing the same continuum limit, all 
four graphs within a row look qualitatively different with the exception of the 
two right panels in the bottom row, which are both singly connected contact 
domains with the four-fold symmetry of the discretized model.

Figure 6. Stress heat maps at selected moments during detachment for a confined elastomer with 
reduced height h=a ¼ 0:06. Bright colors indicate high stress, black represents non contact. 
Poisson’s ratios are kept constant in each row and take the values ν ¼ 0:499; 0:48; 0:4 from top 
to bottom. Columns differ in the way how continuum mechanics is terminated at the small scale, i. 
e., with and without thermal noise, and with and without lattice trapping.
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The most highly symmetric patterns are obtained when thermal noise and 
lattice trapping are absent. While the ν ¼ 0:4 and ν ¼ 0:48 systems have 
circular symmetry, the ν ¼ 0:499 configuration reduces to a four-fold sym-
metry axis. The symmetry reduction is not due to the presence of periodic 
boundary conditions in our square domain but results from the discretization 
of the elastomer’s surface into grid points forming a square lattice. We come to 
this conclusion because increasing the buffer between the punch and the 
boundary of the simulation cell does not change the point at which circular 
symmetry is broken. However, we observed that the rate of retraction can 
matter. For example, a complete loss of symmetry can occur even in the 
absence of thermal noise when decreasing from very small to extremely 
small retraction rates. Since our four-fold symmetry axis is only broken by 
the order in which numbers are added up, the complete loss of symmetry can 
only result from an accumulation of round-off errors. We suspect that 
a similar round-off error progression to significant digits is responsible for 
the low-symmetry configurations produced by Gonuguntla et al.,[13] owing to 
them using a highly efficient conjugate gradient minimization method and/or 
because computers used smaller data precision in 2006 than they do nowadays. 
Given our results, we predict that instability patterns assume a quasi-circular 
symmetry, when elastomers are retracted quickly if the original surfaces are 
sufficiently planar.

Switching on temperature yield configurations similar to those observed 
experimentally and more so for a fine discretization avoiding lattice trapping. 
Specifically, the snapshots shown in the “no-trapping, T > 0” column resemble 
typical experimental images[4,6–9] for ν> 0:45 and the contact shown for ν ¼
0:4 in that column is similar to that depicted in Fig. 9a of Ref.[8] for ν ¼ 0:4. 
Due to lattice trapping, the non-contact patches show 90 � corners oriented w. 
r.t. the microscopic shape, similar to but substantially stronger than in the 
pioneering simulations by Gonuguntla et al.,[13] who thus must have also 
discretized their domain into squares.

In the presence of thermal noise, the width of contact and of non- 
contact domains is similar in size. Their combined width indeed satisfies 
λ � 3h, which is the expected wavelength for nearly incompressible elas-
tomers introduced at the beginning of this section. However, contact 
generally appears broader than non-contact due to (close-to) circular 
symmetry. This difference might matter for a comparison between single- 
wavelength pen-on-paper theory and real or realistic patterns. In addition, 
the surface tension can shift the characteristic wavelength to larger 
values.[9,13]

We also analyze the effect of lattice trapping. For this phenomenon to occur, 
it does not matter whether the range of adhesion is decreased at fixed dis-
cretization Δx ¼ Δy or the mesh size is increased at fixed range of adhesion, as 
long as Δx is clearly less than typical contact and non-contact widths. Lattice 
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trapping also counteracts symmetry reduction, as revealed most clearly in the 
bottom row of Figure 7, where thermal fluctuations are no longer strong 
enough to roughen the contact line during the course of the simulation. In 
other words, symmetry reduction can become an activated process in the case 
of lattice trapping whereby contact domains become thicker than non-contact 
regions upon retraction.

Unfortunately, our simulations do not correlate very well with some experi-
ments regarding one aspect: for ν> 0:45, we usually observe the nucleation of 
non-contact below the punch center, while experiments often find finger- 
shaped non-contact regions to emerge from the rim of the punch and then 
to move inward.[4,6–8]

Reasons for this discrepancy might be (i) the simulations ignore the effect of 
air pressure, which certainly favors the primary detachment to occur at the 
contact edge, (ii) the simulations neglect shear stress, which can be large near 
the contact periphery, (iii) no attempts were made to model viscoelastic effects, 
and (iv) the edge singularities in the normal stress are cut off too early due to 
a coarse discretization. Nonetheless, other experiments observed, as we did, 
crack nucleation in the center,[9,11,13,38] especially in cases where h=a� 0:1.

It is beyond the scope of this work to test all four hypotheses for why our 
non-contact domains nucleate in the centerin particular, as testing the first 
three does not fall into the realm of our model. However, we did investigate 
the fourth hypothesis by increasing the resolution from our default value to 
4096� 4096 for a h=a ¼ 0:1 punch and ν ¼ 0:495 elastomer while decreasing 
the range of adhesion and the rate of retraction so that the ratio of local elastic 
stiffness and maximum curvature of the tensile potential remained constant. 
As a consequence, the detachment nucleates at the periphery of the contact as 
is revealed in Figure 7 for the fine discretization, while it nucleated in the 
center for the coarser simulation.

Figure 7. Stress heat maps showing the nucleation of edge cracks and their motion toward the 
punch center. The number of time steps between subsequent images were 9000, 2000 and 14000 
from left to right.
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5. Summary

In this work, we combine and streamline existing approaches to the mechanics 
of confined elastomers interacting with a flat punch. In doing so, we identify 
a relatively simple, yet physically motivated expression for how the effective 
modulus of the confined layer, �E, depends on its Poisson’s ratio ν and the ratio 
of elastomer height and punch radius h=a. Using our approach, the Poisson’s 
ratios no longer have to be close to 0.5. One consequence of this is that large 
confinement can be distinguished from extreme confinement, for which 
deviations from ideal incompressibility cannot be ignored. A central benefit 
of the pursued scaling ansatz is that the asymptotic dependence of �Eðh=a! 0Þ
allows the simulated pull-off force to be estimated reasonably well for any 
combination of ν and h=a. Of course, in real-laboratory experiments, the 
compliance of the substrate, the indenter, or, more generally speaking, the 
system must be considered when deducing �E in the extreme-confinement 
limit. Moreover, eliminating viscoelastic retardation implies (unrealistic?) 
requirements on the patience of experimentalists.

The central assumption of the analytical part of our study is that the elastic 
energy of a confined elastomer stems predominantly from surface undulations 
with wavelengths in the vicinity of the punch radius. This leads to a closed- 
form expression in Eq. (10) for �Eðh=aÞ with two parameters of order unity, 
whose precise value can be fixed by demanding the asymptotic limits of h=a!
0 and h=a!1 to be exactly reproduced. The pursued treatment can be 
repeated for boundary conditions (BCs) other than ours, which is a slip BC 
between the elastomer-punch interface and a stick BC for the elastomer– 
substrate interface. In these cases, the relation for the stiffness of the surface 
undulation of the wave vector q has to be derived or looked up in the 
literature,[11,27–29,36] i.e., the replacement of Eq. (2). All remaining steps to 
estimate �Eðh=aÞ for other BCs can certainly be done by repeating the proce-
dures worked out in this study. However, if both interfaces have slip boundary 
conditions, qualitatively different behavior ensues and other scaling relations 
apply than in the remaining three cases.[20,36] Investigating those is beyond the 
scope of this paper.

The analytical calculations are augmented with Green’s function molecular 
dynamics (GFMD) simulations. They yield accurate reference data for the 
reduced elastic modulus and pull-off force as functions of reduced height and 
Poisson’s ratios. In particular, the latter can be useful to determine experi-
mentally the deviation of ν from ν ¼ 0:5.

The GFMD simulations also reveal that the initiation and the formation 
of cracks that occur during stable crack growth depend sensitively on the 
way in which continuum mechanics is terminated at small scales. For 
example, the (effective) range of interaction can determine whether cracks 
initiate from the punch center or from its periphery. Moreover, if 

668 C. MÜLLER AND M. H. MÜSER

126 APPENDIX



interactions are so short ranged that lattice pinning ensues, small-scale 
features of the substrate, e.g. its crystallinity, can be reflected in the crack 
at coarse scales.
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ABSTRACT: Adhesives for interaction with human skin and
tissues are needed for multiple applications. Micropatterned dry
adhesives are potential candidates, allowing for a conformal contact
and glue-free adhesion based on van der Waals interactions. In this
study, we investigate the superior adhesion of film-terminated
fibrillar microstructures (fibril diameter, 60 μm; aspect ratio, 3) in
contact with surfaces of skin-like roughness (Rz 50 μm). Adhesion
decays only moderately with increasing roughness, in contrast to
unstructured samples. Sinusoidal model surfaces adhere when their
wavelengths exceed about four fibril diameters. The film-
terminated microstructure exhibits a saturation of the compressive
force during application, implying a pressure safety regime
protecting delicate counter surfaces. Applications of this novel
adhesive concept are foreseen in the fields of wearable electronics and wound dressing.
KEYWORDS: skin adhesives, bioinspired structures, soft layer, dry adhesion, roughness

1. INTRODUCTION
Skin-attachable adhesives are experiencing rising demands in
healthcare, where potential applications range from flexible and
wearable electronics for monitoring and diagnosing biological
signals1−3 to therapeutic devices and wound dressings.4,5

Biological surfaces and tissues are challenging counter surfaces
to stick to, as surface roughness is one key factor for reduced
adhesion.1 This is primarily due to the difficulty of achieving
fully conformal contact, which decreases the real contact area
and causes heterogeneous stress distributions at the interface.6

Roughness requires high local deformations and hence
counteracts the short-range adhesive molecular forces.7,8 As a
consequence, new adhesives for reliable yet delicate interaction
with skin-like surfaces are urgently required.

The efficiency and versatility of several attachment systems
in nature, e.g., in geckos, beetles, spiders, or snails, have been a
source of inspiration to material scientists and engineers: in
many cases, their outstanding locomotion and clinging ability,
to various smooth and rough surfaces, are due to patterned
micro- and nanostructures on their contact organs. The
bioinspired microfibrillar patterns derived from these examples
have been widely studied in the past few years.9−11 More
recently, they have proven to be potential candidates as dry
and glue-free adhesives to skin. Current solutions for skin
adhesives offer too strong adhesion causing damage while
being removed,12,13 in addition to being of single use and
leaving residues that can cause skin irritation and allergies.

Therefore, a reliable adhesive with sensitive detachment is
needed.14,15

Dry adhesion is mediated by conformal contact, enhanced
by a low effective elastic modulus, and Van der Waals (vdW)
interactions, both of which contribute to useful adhesion even
to rough surfaces.16−19 For skin applications, a film-terminated
design was proposed, which modifies the microfibril array by
adding a continuous terminal layer made of softer material.
This modified microstructure has shown enhanced adhesion by
modulating the interfacial stresses and generating a crack
trapping mechanism; the result is an interesting synergy
between the subsurface microstructure and the soft, thin
terminal layer.19−22 The added layer also performs auxiliary
functions: in wound dressings, it can aid in the closure of the
wound; and in the treatment of eardrum perforations, it closes
the fissure in the membrane, which is important to block
pathogens from entering the middle ear during the treat-
ment.5,23

As the largest organ in humans, the skin presents an
especially complex topography, which can vary over several
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orders of magnitude. The detailed structure depends on many
factors, such as body location, age, and humidity.24−26 Explicit
studies that take into account the roughness of skin when
optimizing skin adhesives have rarely been published in the
literature.

In this paper, we aim to investigate the adhesion mechanism
of novel film-terminated microstructures designed to adhere
specifically to rough skin without the need for chemical glues,
thus not leaving residues on the surface or causing adverse
reactions. We conduct a systematic investigation of such
microstructures, consisting of two biomedical silicones, on a
series of surfaces with random and single-wavelength rough-
ness. Adhesion is analyzed in comparison to unstructured films
as control samples. We evaluate experimentally and numeri-
cally the effect of the terminal layer thickness and the role of
the fibrillar microstructure on the adhesion performance. In
this way, we provide a scientific base for this new class of
micropatterned skin adhesives.

2. EXPERIMENTAL SECTION
2.1. Fabrication of Film-Terminated and Control Samples.

Film-terminated microstructures were fabricated, and the respective
unstructured samples with the terminal layer were used as a control to
investigate the effect of the subsurface microstructure on adhesion.

Arrays with fibrils of nominal height of 180 μm and diameter of 60
μm (aspect ratio 3) were fabricated by replica molding. The fibrils
were arranged hexagonally with center-to-center distances of 120 μm
(surface density approximately 23%). A silicon master template
(Institute of Semiconductors and Microsystems, TU Dresden,
Germany) was used to prepare the negative silicone mold (Elastosil
M4601 A/B silicone, Wacker Chemie AG, Munich, Germany). The
prepolymer was mixed (ratio 9:1) and poured on the master template.
The silicone was then cured in an oven at 75 °C for 3 h. The silicone

mold was treated by air plasma (Atto low pressure plasma system,
Electronic Diener, Ebhausen, Germany) for 3 min and then coated
with tridecafluoro-1,1,2,2-tetrahydrooctyl-trichlorosilane (AB111444,
ABCR, Karlsruhe, Germany) through vapor deposition at 3 mbar for
45 min. The microfibrillar array was made from the biomedical-grade
elastomer MDX4-4210 (Dow Silicones, Midland, Michigan). The
prepolymer was mixed in a ratio of 10:1, poured on the Elastosil mold,
and degassed for 5 min. The mold was then spun at 3000 rpm for 2
min (Spincoater Laurel l WS 650 MZ-23NPPB, North Wales,
Pennsylvania) and then placed on a glass substrate, which was
previously plasma-treated and coated with MDX4 silicone (3000 rpm
for 2 min). The whole set was placed in an oven at 95 °C for 1 h.
Finally, the mold and the glass were gently demolded. For the
unstructured control samples, a foil of the MDX4-4210 was prepared
by spin coating at 500 rpm for 2 min to achieve a thickness
comparable to the sum of the backing layer and fibril height for the
fibrillar microstructure.

In the second step, the microfibrillar array, or the respective flat
film, was film-terminated. Accordingly, a soft skin adhesive film, SSA
MG7-1010 (Dow Silicones, Midland, Michigan), was used. Previous
reports use a softer material by changing the mixing ratio of the
“stiffer” silicone.27,28 However, this approach makes the product
unsuitable for medical applications, as the manufacturer does not
predict the reactivity and curing conditions, being, therefore, not
medically certified. The SSA was coated on a release foil (Siliconature,
SILFLU S 75 M 1R88002 clear) at 800, 2000, and 6000 rpm. The
SSA layer was cured at 95 °C for 1 h. To combine the microfibrillar
array with the SSA layer, fibril tips were dipped in an uncured MDX4-
4210 layer (spun on a glass substrate at 400 rpm) and placed on the
cured SSA film. The unstructured control sample was terminated
using the same method, dipping the film in an uncured MDX4 layer
before placing it on the cured SSA layer. Upon curing in an oven at 95
°C for 1 h, the final specimen was peeled from the release foil. The
fibril height increased from 180 to 200 μm (and the aspect ratio from
3 to 3.3) due to the fabrication described above. Considering

Figure 1. Film-terminated microfibrillar samples. (a) Representation of the film-terminated microstructure fabrication process by integrating an
SSA film with a microfibril sample. The tips of the fibrils are dipped in an uncured film and then placed on a cured SSA layer. (b) Schematic cross
section of a soft skin adhesive (SSA) film (pink) terminating a silicone microfibrillar array of MDX4-4210 (blue) and of the unstructured control
samples. The terminating film has various thicknesses of 12, 25, and 50 μm. (c) Representative scanning electron micrographs of the different
samples.

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.2c12663
ACS Appl. Mater. Interfaces 2022, 14, 46239−46251

46240

134 APPENDIX



biomedical applications, only certified medical products MDX4-4210
and MG7-1010 were used.

Specimens were characterized using an optical microscope (Eclipse
LV100ND, Nikon, Tokyo, Japan) and a scanning electron microscope
(FEI Quanta 400 ESEM, Thermo Fisher). The specimens were
analyzed under low vacuum at 100 Pa and 10 kV voltage for the latter.

Figure 1a presents a summary of the fabrication process of the film-
terminated microstructure. The fibrils are fabricated by replica
molding and yield precise copies by a relatively inexpensive method.
Unlike simple porosity, the fibrils offer an additional advantage of a
controlled, periodic structure suitable for subsequent integration of
other systems. The cross sections of the film-terminated and
respective control samples are illustrated in Figure 1b. The MDX4-
4210 fibrillar array (in blue) consisted of a 100 μm backing layer and
fibril arrays of 200 μm height and 60 μm diameter, and the SSA MG7-
1010 terminating layer (in pink) varied in thickness of 12, 25, and 50
μm. The chosen materials are medically certified for wound dressings

and implantable devices, widening the possibility of application of
these microstructured adhesives for different purposes, including
wound dressings. For brevity, we denote the samples according to
their terminal layer thickness, for instance, FT�12 μm for the film-
terminated microstructure with a 12 μm thick terminal layer. The
respective unstructured reference samples were fabricated with the
MDX4-4210 backing layer of 300 μm and the terminal layer
equivalent to the microstructures (12, 25, or 50 μm thickness). In
addition, microfibrils without thin film as the terminal layer were also
used for control measurements. Scanning electron microscopy (SEM)
images of different samples are presented from 45° tilt side view
(Figure 1c). We observe that the thinnest film is slightly deformed
due to stress relaxation.
2.2. Rheometry. Frequency-dependent storage and loss moduli

(G′, G″) and the damping factor tan δ = G″/G′ of the polymers were
determined using a rheometer (Physica MCR-300, Anton Paar, Graz,
Austria) equipped with a cone/plate setup (diameter, 25 mm; gap

Figure 2. Surface profile and topography of counter surfaces. (a) Scan of skin-like rough surface, in comparison to (b) sinusoidal model surface
with 480 μm wavelength. (c) and (d) SEM micrographs of the printed surfaces with the sinusoidal model surface of wavelengths 480 μm and 60
μm, respectively. (e) Power spectral density (PSD) of the Vitro-Skin surface, determined from line scans along different surface directions. Solid
markers indicate reliable data, while empty markers indicate unreliable data as limited by the tip radius.34 The isotropic one-dimensional PSD
(C1D) is defined as given in ref 35. The dashed vertical red lines represent the wavelengths of the model surfaces.
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height, 0.054 mm). The prepolymer mixture of components A and B
(in a mixing ratio of 10:1 for MDX4-4210 and 1:1 for the SSA) was
placed on the device. The polymer was cured between the plates at 90
°C for 30 min. Upon cooling to 25 °C, a frequency sweep
measurement from 0.01 to 100 Hz at a constant amplitude of 0.1%
was carried out.

The Young’s modulus, E, for both materials was calculated from the
measured storage modulus in shear, G, considering E = 2G (1 + ν),
with ν = 0.5. The elastic modulus values obtained were EMDX4‑4210 =
1.01 MPa and ESSA = 0.102 MPa. Overall, the terminating film was
made from softer silicone than the microfibrillar array.
2.3. Adhesion Measurements. Probe tack tests, in which a flat

probe is retracted from the adhesive in the perpendicular direction,
were performed using a custom-built adhesion testing device.16,29

Specimens and the counter surface were approached at a rate of 30
μm/s until a predetermined compressive preload or displacement was
reached. Contact was held for 1 s, followed by retraction at a rate of
10 μm/s. Measurements were performed at three different positions
on each surface. Mean values and standard deviation (error bars) were
reported. Counter surfaces were always smaller than specimens;
therefore, stresses were calculated by dividing force values by the area
of the counter surface. All surfaces were made from epoxy (Reśine

Epoxy R123, Soloplast-Vosschemie, Fontail-Cornillon, France), as
described in previous reports,30,31 to keep surface chemistry constant.
Epoxy replicas were made from smooth and frosted glass slides
(Marienfeld, Lauda Königshofen, Germany) and the front and back
sides of Vitro-Skin foil (IMS inc., Portland, ME). Vitro-Skin foil was
chosen as it mimics the topography of the human skin.32,33

A contour map of the skin-like surface and a cross-sectional profile
are depicted in Figure 2a. It presents arithmetic roughness (Ra) of
9.48 μm and a peak-to-valley distance of ∼50 μm in accordance with
the statistical value Rz = 50 μm. Adhesion to such high roughness has
not yet been described in the literature; for the film-terminated
microstructure, adhesion has only been reported in the literature
against the roughness of maximal Ra 2.3 μm.20 A sinusoidal model
surface of wavelength 480 μm is depicted in Figure 2b. The surfaces
were imaged using a confocal microscope (MarSurf CM explorer, 50×
objective, Mahr, Göttingen, Germany). At a constant peak-to-valley
distance of 50 μm, corresponding to the skin-like surface, the
following different wavelengths were chosen: λ = 480, 240, 120, and
60 μm. The model surfaces were fabricated using two-photon
lithography (Photonic Professional GT2, Nanoscribe, Eggenstein−
Leopoldshafen, Germany). SEM images of the printed sinusoidal
model surfaces are presented in Figure 2c,d.

Figure 3. Results of adhesion tests against a smooth epoxy surface. (a) Pull-off stress and (b) normalized pull-off stress (by the pull-off stress at zero
compression) as a function of maximum compressive displacement for film-terminated (FT) microfibrils (blue) in comparison to nonterminated
fibrillar arrays (orange). The dashed-dotted line indicates the onset of fibril buckling. (c) Force vs displacement display of measurement of the film-
terminated sample with 12 μm thick film and a schematic representation of the measurement principle. Points highlight fibril buckling (1),
maximum compression (2), unbuckling of fibrils (3), and maximum pull-off force (4). (d) Compressive stress as a function of compressive
displacement. Dashed-dotted lines mark three regimes: (1) low preload, (2) compression-tolerant regime, and (3) overload regime, and correspond
to the lines in panel (c).
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To rationalize the choice of model surface wavelengths, we
analyzed the Vitro-Skin topography using a profilometer (SURFCOM
1500SDS, ACCTee Software, Ostfildern, Deutschland) with a tip of 2
μm diameter and a measuring speed of 0.3 mm/s and characterized by
the surface topography analyzer.35 The corresponding power spectral
density (PSD) is shown in Figure 2e, where the reliability of data
points was explicitly determined from the curvature of the
profilometer’s tip radius.34 Since line scans along different directions
look very similar, the surface can be considered isotropic. Assuming a
self-affine fractal topography, the slope of the curve would suggest a
Hurst exponent of approximately 1.2, outside the range of [0,1],
indicating that the surface is not in fact fractal. Recently, Gujrati et al.
connected an exponent of −4 in the PSD to macroscopic patterns in
surface coatings.36 The exponent −3.4 could indicate the presence of
similar features overlapping with a self-affine power law. Regardless of
the exact interpretation, a decrease with a large exponent equivalent to
H > 0.5 still indicates that long wavelength features within this range
have a much more significant influence on contact mechanics than
short wavelength features.37 The sinusoidal model surfaces are chosen
close to the roll-off point on the left end of the spectrum, where the
graph transitions from the power law behavior to being almost
constant. This range is decisive for the elastic energy to contact
nominally flat surfaces, as we use in normal tack tests. This condition
for the choice of the model surface is explained in more detail in
Section 4.3.
2.4. Finite-Element Analysis (FEA). Finite-element analyses

(FEA) were carried out using Abaqus (Dassault Systems, Simulia
Corporation, RI).38 The two-dimensional model consisted of an
elastic film-terminated sample meshed with a CPS4R element and a
rigid sinusoidal surface meshed with R2D2 elements. The dimensions
of the model remained the same as in the experiments (all dimensions
are normalized by the fibril diameter of 60 μm), i.e., fibril height = 3,
center-to-center distance = 2, terminal layer thicknesses = 1/5 or 5/6,
sinusoidal amplitude = 5/6, and wavelengths = 4 and 8, separately.
Both fibrils and the terminating film were modeled as incompressible
neo-Hookean elastic solids with Young’s moduli of 1.1 and 0.102
MPa, respectively. Two relative configurations of the fibrils and
sinusoidal surface were considered: fibrils were either centered on the
maxima or shifted by 60 μm. The interaction property between the
film-terminated sample and the wavy surface was defined as “hard
contact” for normal contact and “friction with penalty” for tangential
contact. To avoid slippage after the contact, the penalty coefficient μ
was set to 0.5, corresponding to the friction coefficient in the
Coulomb friction law, τfric = μP, where P is the normal contact
pressure between the contacting surfaces. The step “dynamic,
implicit” was used to calculate the actual deformation by uniaxial
loading, during which only the vertical displacement of the top surface
of the backing layer was set while other translational degrees of

freedom were fixed to mimic the constraint of the backing layer in the
experimental sample.

3. RESULTS
3.1. Adhesion to Smooth Counter Surfaces. Figure 3

shows a summary of adhesion results of the FT�12 μm, FT�
50 μm, and fibril samples without the terminal layer against a
smooth flat epoxy surface. In Figure 3a, the adhesion of the FT
samples ranged between 24 and 30 kPa, which was 3−5 times
larger than samples without a terminating layer. The FT�50
μm sample consistently led to a higher pull-off stress than that
of the FT�12 μm sample, which could be attributed to the
vastly reduced influence of the much stiffer fibrils in
comparison to the terminal layer.

Compressive load is an important factor for adhesion to
achieve optimal contact with the counter surface.39 We observe
that the microfibrils without terminating film exhibited a
substantial reduction in adhesion at about 50 μm maximum
compressive displacement (dashed-dotted line). This reduc-
tion is even clearer in Figure 3b, where the pull-off stress was
normalized by its value at zero compression. The initial
buckling position (point 1) is shown in an example of force−
displacement curve on the FT�12 μm sample in Figure 3c;
located at a compression displacement at 50 μm, it
corresponds to the position with the large drop in adhesion
in Figure 3b. After buckling, the decrease of the compressive
force is attributed to the postbuckling instability.40,41 When the
deformed fibrils topple over and contact the backing layer, the
compressive load increases again until the maximum
compressive load is reached (point 2). Point 3 in the graph
marks the elastic recovery of the buckled fibrils. The hysteresis
between points 1 and 3 can most likely be attributed to
viscoelastic properties of the materials. Finally, detachment
occurred, and the pull-off force was obtained from the
maximum in the tensile force (point 4).

The evaluation of the compressive load in terms of the
maximum compressive displacement is depicted in Figure 3d.
Three regimes can be identified: a low preload, a force tolerant,
and an overload regime. In the first regime, the pull-off force
increases linearly with increasing displacement; the force
saturates in regime 2, where the compressive force is
insensitive to the displacement; and in regime 3, the

Figure 4. Contact surface imaging during detachment from the smooth surface. (a) Schematic representation of the experimental setup, in which a
prism for observation of the contact surface is mounted on the load cell. (b) Screenshots of the contact surface of FT�12 (above) and FT�50
(below) against a smooth surface during detachment (left to right). The detachment front is highlighted by the yellow dotted line.
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compressive force increases linearly again with a higher slope,
indicating densification of the fully compressed fibrils.

The experimental setup, as well as the detachment process of
the film-terminated structure from the smooth epoxy surface,
can be seen in Figure 4. The large circular margin in Figure 4b
illustrates the surface position and darker regions enclosed by
the dashed lines represent the edge of the contact area. The
crack initiates from the edge of the counter surface and moves
inward for both samples. The crack path (dashed lines) is more
tortuous for the thinner backing layer (FT�12 μm) and
reflects the underlying fibrillar structure.
3.2. Adhesion Results to Surfaces with Random

Roughness. Next, adhesion tests on randomly rough surfaces
were conducted to investigate the advantage of the terminal
layer design. Figure 5a shows the pull-off stress in terms of the
surface roughness Rz (mean peak-to valley distance) ranging
from 0.1 to 50 μm. The pull-off stresses for the FT samples
with different terminal layer thicknesses are all located between
25 and 30 kPa for the smoothest surface (Rz = 0.1 μm). Under
the same measurement conditions, the effect of the terminal
layer thickness is not distinguishable. The unstructured control
samples, on the other hand, present pull-off stresses between
80 and 90 kPa, up to 3 times higher than the microstructure. In
Figure 5b, examples of stress−displacement curves for the
microstructured FT�25 sample and the respective unstruc-
tured control are presented.

As the roughness Rz was increased to 1.1 μm, we observed a
slight increase of pull-off stress for the microstructured
samples, more pronounced for the samples FT�50 and
FT�25 (27 and 28 kPa to 32 and 33 kPa, respectively) than
for FT�12 (26−28 kPa). The control samples, on the other
hand, showed a reduction in pull-off stress (88−64 kPa for
FT�50 and 81−22 kPa for FT�12).

Further increase in surface roughness led to a decline in pull-
off stress for all samples. The decay for the control samples
was, however, much more substantial: for roughness Rz = 50
μm (skin-like), CON�50 had the adhesion reduced by 88%,
going from 88 kPa to around 10 kPa, and CON�12 had a
reduction by 98%, reaching 1.1 kPa at high roughness.
Microstructured samples, on the other hand, had a less
pronounced decay; FT�50 went to 15 kPa, losing around
43% of the adhesion performance in comparison to a smooth
counter surface, and FT�12 went to around 8.5 kPa, a
reduction to 32% of its initial value.

3.3. Adhesion Results to Sinusoidal Model Surfaces.
Pull-off stresses as a function of compressive displacement for
FT�12 μm and FT�50 μm against the different sinusoidal
model surfaces are presented in Figure 6a,b. As before, the
sample with the thicker terminal layer (FT�50 μm) showed
higher adhesion values. The wavelength of the counter surface
modulated the adhesive behavior in the following ways.

For wavelengths of 60 and 120 μm, i.e., close to the fibril
diameter, the pull-off stress was almost insignificant (around 4
kPa for FT�12 μm and 7.5 kPa for FT�50 μm) and
increased only slightly with increasing compressive displace-
ment.

For the longer wavelengths of 240 and 480 μm, adhesion
was generally higher and increased in a more pronounced way
with a compressive displacement between 30 and 70 μm. The
final plateau values were 13 and 25 kPa for FT�12 and 17 and
35 kPa for FT�50.

The transition from low to high adhesion for the long-
wavelength surfaces occurred at a compressive displacement of
about 50 μm, which corresponds to the amplitude of the
sinusoidal surface shape.

In Figure 6c−f, we present in-situ lateral views of the sample
FT�50 μm in a compressed state against all of the counter
surfaces. A physical impediment to full contact is observed for
the counter surfaces with wavelengths 60 and 120 μm, where
contact was achievable only near the surface peaks, even at
high compression. By contrast, the terminal layer of the
microstructure eventually achieved “full” contact with the
counter surfaces of wavelengths 240 and 480 μm. The
transition between the two different kinds of adhesion behavior
seems to occur at the following empirical condition

D4 (1)

where D is the fibril diameter and λ is the wavelength. For λ <
4D, the pull-off stress is low and insensitive to the compressive
preload as full contact with the counter surface is always
prevented. On the other hand, for λ ≥ 4D, the microstructure
could deform almost conformally to the rough surface and the
pull-off stress increased with the preload. The performance of
the adhesive in the case λ ≥ 4D was further investigated.

Figure 7a presents a comparison of adhesion results for
FT�12 and FT�50 samples against the smooth surface and
the model surface of wavelength 480 μm. For the smooth
surface, the slight increase of pull-off stress, mostly at the initial

Figure 5. Adhesion against rough surfaces. (a) Pull-off stress of the film-terminated microstructure and control samples, as a function of roughness
Rz of the counter surface, from smooth (Rz = 0. 1 μm) to skin-like roughness (Rz = 50 μm) at a preload of 10 kPa and a hold time of 1 s. (b)
Example of stress−displacement curve of FT�25 μm and of reference CON�25 μm, subjected to a larger compressive preload.
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compressive displacement, can be explained by full contact
formation and, possibly, by a contribution of the material’s
viscoelasticity.42,43 For the sinusoidal model surface, three
regimes can be distinguished: In regime 1, the sample and
counter surface have low contact; next, in regime 2, the fibrils
undergo bending, which allows them to form progressively
more contact with inclined areas of the counter surface and
creates higher adhesion; finally, in regime 3, the sample reaches
close-to-full contact and adhesion enters a plateau. For sample
FT�12, the plateau stress values amount to approximately
70% of the values obtained for the smooth surface.

Interestingly, the FT�50 sample reaches, within the error
margin, similar adhesion as on the smooth surface.

In Figure 7b, side views of detachment from the model
surface with wavelength 480 μm are presented for a single row
of fibrils for better visualization. The ability of the fibrillar
microstructure to conform to the wavy counter surface is well
illustrated and will be discussed below.
3.4. Finite-Element Simulation Results. To obtain

better quantitative insights into the contact behavior,
information not accessible by the experimental setup, we
analyzed the numerical results of our finite-element simulations
for samples FT�12 and FT�50 μm in contact with the λ =

Figure 6. Adhesion of film-terminated microstructures on sinusoidal model surfaces. Pull-off stress vs compressive displacement for the sample with
the terminal layer: (a) 12 μm and (b) 50 μm for the surfaces with different wavelengths. Snapshots show side view of FT�50 against surfaces with
wavelengths: (c) 480 μm, (d) 240 μm, (e) 120, and (f) 60 μm in the compressed state. Scale bar is 100 μm. Blue dashed lines mark the model
surface boundary, and yellow dashed lines indicate the microstructure’s terminal layer boundary.
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480 μm surface. Contact fraction (i.e., percentage contact area
of the total surface) and compressive force were calculated

with increasing compressive displacement for two different
alignments: in one case, a fibril was centered on a wave valley

Figure 7. Adhesion of microstructures on model surface 480 μm in comparison to the smooth surface. (a) Pull-off stress as a function of
compressive displacement for FT�50 and FT�12 against the smooth surface and model surface of wavelength 480 μm. (b) Side view of single
row FT�50 in full contact (A) and detachment (B) and FT�12 in full contact (C) and detachment (D) against the 480 μm wave model. Scale
bar is 100 μm.

Figure 8. Simulation of compressive force and contact fraction for model surface 480 μm (a and b) and surface 240 μm (c and d). (a) Relations of
contact fraction and compressive force vs compressive displacement for FT�12 and FT�50 samples with λ = 480 μm, in centered and shifted
alignment. (b) Snapshots of deformation processes of FT�12, with the highlighted region of the terminal layer of both samples in positions
marked “b1” and “b2” in panel (a). (c) Relationship between the contact fraction and compressive force vs compressive displacement for surface λ
= 240 and 480 μm separately. (d) Snapshots at a contact fraction of about 70% and a displacement of about 70 μm of the critical deformation
moment when the neighboring fibrils touch each other under centered and shifted arrangements when λ = 240 μm.
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and, in the other, the space between was centered, as indicated
in the insets in Figure 8a. The force results overlapped for
displacements smaller than 30 μm and subsequently diverged
somewhat; the shifted arrangement produced slightly higher
force values, but the overall fibril alignment did not strongly
affect contact fractions. Full contact was achieved for
compressive displacement larger than 55 μm. Figure 8b
presents a snapshot of FT�12 samples in full-contact
configuration, as well as the terminal layer in both cases in
the highlighted region. The FT�12 fibrils underwent severe
bending in accordance with the experimental observations in
Figure 7.

Subsequently, we compared the simulation results for the
cases λ = 240 and 480 μm (Figure 8c). Here, all of the curves
represent the average results of the centered and shifted
alignments. While, in most cases, the contact area increased
monotonically until full contact was reached, significantly
higher forces were required for the 240 μm surface. A new
event was observed for the λ = 240 μm surface: the contact
fraction of the FT�12 sample leveled off at 77% (at a
compressive displacement of 65 μm). The snapshots in Figure
8d explain this inability to achieve full contact: at a critical
displacement of about 70 μm, severely bent neighboring fibrils
start to impinge, which prevents further contact from forming.
Although the optical observation in Figure 7b (λ = 240 μm)
seems to indicate full contact, the numerical result in Figure 8c
reveals that the system may not be able to reach this state in
the model topography. This may, to some extent, explain the
earlier detachment and lower pull-off stress for λ = 240 μm
compared to λ = 480 μm.

Figure 9a shows the pull-off stress for FT�50 and FT�12
on the counter surfaces of λ = 480 and 240 μm. Similarly, for
all cases, the pull-off stress increases with increasing displace-
ment and saturates to a plateau value. Although camera images
(Figure 6c,d) suggest that the microstructures have contact
with both surfaces, 240 and 480 μm, numerical simulations
showed that, in fact, the surface 240 μm only reaches 80% of
its full contact surface when the maximum displacement is 80
μm. This could possibly cause the lower pull-off stress values
when detaching from the 240 μm surface for both FT�12 and
FT�50 samples.

The correlations between the contact fraction and pull-off
stress are plotted with the help of both experimental and

simulation results (Figure 9b), in which the pull-off stress is
obtained from experiments, the contact fraction is only
acquired by simulations, and the compressive displacement is
the bridge. The pull-off stress goes up linearly with the increase
of contact fraction in each case. For FT�12 samples, the pull-
off stress at the same contact fraction is not significantly
influenced by the wavelength λ. On the contrary, FT�50
samples show a wavelength λ dependence: larger λ leads to a
higher pull-off stress.

4. DISCUSSION
Envisioning a self-adhesive microstructure for biomedical
applications, especially on skin, we propose, in this
investigation, a fibrillar array terminated by a soft, thin film,
using biomedically certified materials. Roughness of the
counter surface is a well-known obstacle for adhesion because
it increases the elastic strain energy penalty in the adhesive,
attempting to conform to the rough topography. As skin
exhibits roughness to various degrees, this paper explores the
adhesion of novel skin adhesives to counter surfaces of various
roughnesses. The counter surfaces investigated exhibited
randomly distributed irregularities, from glass-like to skin-like
roughness, complemented by sinusoidal model roughness. The
essential observations will now be discussed in turn.
4.1. Comparison of Smooth vs Rough Counter

Surfaces: The Benefit of Fibrillar Microstructures. The
first result of our work is the observation that the micro-
structure did not always lead to improved adhesion: in contact
with smooth counter surfaces, unstructured control samples
were about three times more adhesive than fibrillar micro-
structures (Figure 5a). As the unstructured films can adapt well
to a smooth counter surface, the micropatterning of the film-
terminated microstructure does not add any advantage to the
adhesive behavior; on the contrary, it may be argued that the
reduced areal density of the fibrils (about 22.5% of the nominal
area) will reduce the effective contact stiffness by a similar
factor. Such a difference was observed in Figure 5b, where the
slope of the stress−displacement data during compression
differed by a factor of approximately 2. Additional contribu-
tions may be due to the fibril-induced inhomogeneous stress
fields at the interface, which could favor the initiation and
propagation of interfacial cracks.

Figure 9. Adhesion on model surfaces 480 and 240 μm. (a) Pull-off stress for FT�50 and FT�12 as a function of maximum displacement for the
waves of λ = 480 and 240 μm. A similar trend is observed for the wave 240 μm, in comparison to the larger one, described in detail in the main text.
(b) Measured pull-off stress as a function of contact fraction during compression, obtained from the simulations. Linear fit is indicated for FT�50
for both surfaces 480 and 240 μm.
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The situation changes considerably when a counter surface
with roughness is considered. Here, the higher compliance of
the micropatterned sample with graded modulus will allow
much better conformity to the peaks and valleys of the counter
surface; this mechanism is clearly illustrated in the side view
pictures of Figure 6b for the case of a single-wavelength model
surface. It is noteworthy that, for a surface wavelength of 480
μm, the “plateau” value of the thicker terminal layer was about
twice that of the thinner layer (Figure 6a). In the full contact
state (Figure 7A,C), the sample with the thinner terminal layer,
FT�12, exhibits more pronounced fibril bending than sample
FT�50. This suggests that the thicker terminal layer
contributes more elastic accommodation and requires less
fibril bending. As presented in Figure 7 b (B,D), the
detachment initiates preferentially in the valley rather than
along the surface edges as previously described for the smooth
surface. Empirically, it was found that the wavelength must
exceed four fibril diameters (eq 1).
4.2. Compressive Behavior of Microstructures: The

Benefit of Overload Protection. The behavior of a skin
adhesive during attachment is also decisive for its applicability
in a biomedical context. The fibrillar microstructures presented
here exhibited a beneficial characteristic (Figure 3d): during
compression, a plateau regime was encountered (marked
“regime 2”), in which the compressive stress acting on the
counter surface was insensitive to compressive displacement.
Mechanistically, the force plateau is linked to the buckling
instability of the microfibrillar array (Figure 3c,d). Considering
the Young’s modulus, E, of 1.1 MPa, n = 513 microfibrils, a
fibril radius, R, of 30 μm, and the fibril height, h, of 200 μm,
the critical buckling load can be estimated by Euler buckling
theory Pb = αnEπ3R4/4h2, where α = 4 for clamping of both
ends.40,41 Thus, Pb = 0.177 N, and the buckling stress for the
surface of 6.2 mm2 is 28.5 kPa, which is in the same range as
obtained experimentally.

This buckling event creates a “cushioning” or “overload
protection”, which allows for dissipation of any extra applied
force through the deformation of the subsurface micro-
structure.44 This effect will protect the counter surface against
damage when applying a medical device on sensitive or injured
tissue.5 The film-terminated design did not show loss of
adhesion even after the fibrils were buckled, which is

advantageous for reliable adhesion compared to microfibrils
without film termination. This behavior differs from simple
fibril microstructures, in which an overload can lead to elastic
instability of the fibrils and hence detachment from the counter
surface.45,46

4.3. Theoretical Considerations of the Effects of
Microstructure and of the Terminal Layer. It is finally
attempted to explain some of our observations in the light of
theoretical concepts. It was recently found that rough surfaces,
both random and sinusoidal, become sticky when their surface
energy is more than half the elastic energy needed to bring the
surfaces into conformal contact.47 Since the elastic energy for
contacting nominally flat surfaces is dominated by the surface
undulations near the “roll-off” wavelengths,48 it is sufficient to
consider a single representative undulation with a wavelength
near roll-off. While the exact treatment of a multilayered
system would require complicated transfer-matrix techni-
ques,49,50 simple scaling arguments are presented here. We
approximate the mechanics of the fibril structure (with an areal
density of 22.5%) as a homogeneous elastic medium with a
Young’s modulus E that is 22.5% of that of the bulk and
Poisson’s ratio of zero. It is further considered that surface
undulation of wavelength λ penetrates roughly a distance λ/2π
into a semi-infinite solid, which is sometimes referred to as
Saint-Venant’s principle and is backed up by analytical
solutions.51

Figure 10 illustrates two modes to be considered: When λ is
small compared to the terminal layer thickness h = hlayer, the
layer deforms elastically as if the body below, with much
greater Young’s modulus, provided a rigid constraint (Figure
10a, mode a). Thus, the energy of deformation is given by52,53
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0

2
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where ũ is the displacement amplitude, E* = E/(1 − υ2) is the
contact modulus, q = 2π/λ is the magnitude of the wave vector,
and c(υ, qh) is a dimensionless geometric prefactor. At large
wavelengths (relative to the film thickness, Figure 10b, mode
b), the entire sample including the layer is fully deformed and
follows the undulation of the counter surface. Since the bottom
medium is much stiffer than the layer, we estimate this

Figure 10. Theoretical model cases for elastic bodies with a sinusoidal counter surface. (a) Mode a: wavelength λ much smaller than layer
thickness, (b) mode b: wavelength λ substantially exceeds layer thickness, (c) calculated deformation energies (per area) as functions of wavelength
λ or wave vector q. The underlying “bulk/fibril” material is assumed to be stiffer than the terminal layer, providing a rigid constraint. In agreement
with the experiment, the best confirmation to a counter surface with a wavelength between 240 and 480 μm (lowest deformation energy) is
predicted for FT�50 (shaded).
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deformation energy by evaluating eq 2 only for the bulk/fibril
body below the layer. In summary, we obtain Vel,mode(a) (q) =
Vel,1 (q, hlayer, νlayer) and Vel,mode(b) (q) ≈ Vel,1 (q, hbottom,
νbottom).

Figure 10c displays the calculated areal deformation energies
as a function of wavelength for the two different terminal layer
thicknesses with and without fibril structures. It is generally
seen that, with increasing wavelength (decreasing wave
vector), the deformation energy decreases at first and then
increases again; there is hence a defined wavelength for which
adhesion is expected to be optimal. This is a result of the trade-
off between higher displacement gradients at low λ and near-
incompressibility at large λ. In the experimental wavelength
range near the roll-off of the PSD (Figure 2e), fibril structures
are predicted to require less deformation energy; consequently,
they will more easily form intimate adhesive contact and
exhibit a higher pull-off stress. It is also seen that the difference
between 12 and 50 μm layer thickness is more noticeable for
control specimens (dashed and dash-dotted line, CON�12
and CON�50) than for the fibrillar structures (solid lines
FT�12 and FT�50), matching the behavior visible in Figure
5a.

Considering the difference between the 12 and 50 μm film-
terminated samples, we have also observed in the finite-
element simulations (Figure 8b) that the thinner terminal layer
creates higher stress concentrations reaching the interface to
the counter surface. If the counter surface is considered rigid
and the fibrils are treated as flat punches in contact with the
film, a thickness of about twice the fibril radius can already be
approximated as infinitely thick in linear elastic theory.52 This
is roughly fulfilled by the 50 μm layer (FT�50), whereas in
the FT�12 sample, the stress concentrations due to the fibrils
will favor interfacial crack initiation and hence lead to earlier
detachment. The fibrillar structure still improves adhesion in
comparison to the control samples because it provides a more
compliant background medium.6,54

Additionally, we estimated the conditions, in which mode a
dominates at all wavelengths,52 i.e., the effect of the patterned
background would become negligible. The terminal layer
thickness for this condition is approximately 450 μm, which is
larger than the fibril length.

5. CONCLUSIONS
The adhesion of fibrillar microstructures terminated by a soft
film was investigated against surfaces of different roughness
(from smooth to skin-like), as well as against sinusoidal model
surfaces of varying wavelengths, with roughness Rz = 50 μm
mimicking the skin. The effects of varying terminal layer
thicknesses and subsurface microfibrils were investigated. The
following conclusions can be drawn:

• Improved tolerance to roughness: The film-terminated
fibrillar microstructures exhibit improved adhesion to
counter surfaces of finite roughness, typical of skin, in
comparison to flat samples. Microstructured samples
show decay of up to 43% with increasing roughness,
while unstructured control samples have a decay of up to
98%. The reason is the better conformity of the
microstructures to the surface topography due to their
higher effective compliance. We presented a theoretical
model of the interaction with a rough surface.

• Threshold wavelength of the counter surface: Our
experimental results suggest that, to ensure sufficient

contact, the wavelength of the roughness must obey λ >
4D, where D is the fibril diameter. The empirical
threshold is attributed to a geometrical impediment of
the fibrils to achieve the furthest point in the counter
surface. Above this limit, adhesion can be tuned by
increasing the contact area through compressive preload.
These results are in agreement with finite-element
simulations, in which contact fraction during compres-
sion was evaluated.

• Terminal layer thickness effect: A thinner terminal layer
creates local stress concentrations and leads to earlier
detachment. The thicker terminal layer reduces the
influence of the stiffer background material, making the
structure more compliant. A simple preliminary model
consideration is presented to explain these effects.

• Overload protection: When sufficiently compressed, the
film-terminated microstructure exhibits elastic instability
of the fibrils without loss in adhesion. This mechanism
leads to a stress plateau, which protects the counter
surface against overload and damage during application,
a feature relevant for medical applications.
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Martin Müser is acknowledged for valuable input on the
analytical discussions. Yue Wang and Julian Weiß are thanked
for fabrication of rough surfaces. Joachim Blau is thanked for
building the adhesion measurement setup. The authors thank
Biesterfeld Spezialchemie GmbH (Hamburg, Germany) for
providing polymers. Dr. Xuan Zhang acknowledges support by
a Humboldt Research Fellowship for Postdocs. The research
leading to these results has received funding from the
European Research Council under the European Union’s
HORIZON-EU.1.1 program/ERC PoC Grant Agreement No.
842 613, Advanced Grant “Stick2Heal” to E.A.

■ REFERENCES
(1) Kwak, M. K.; Jeong, H. E.; Suh, K. Y. Rational Design and

Enhanced Biocompatibility of a Dry Adhesive Medical Skin Patch.
Adv. Mater. 2011, 23, 3949−3953.
(2) Tian, L.; Zimmerman, B.; Akhtar, A.; Yu, K. J.; Moore, M.; Wu,

J.; Larsen, R. J.; Lee, J. W.; Li, J.; Liu, Y.; Metzger, B.; Qu, S.; Guo, X.;
Mathewson, K. E.; Fan, J. A.; Cornman, J.; Fatina, M.; Xie, Z.; Ma, Y.;
Zhang, J.; Zhang, Y.; Dolcos, F.; Fabiani, M.; Gratton, G.; Bretl, T.;
Hargrove, L. J.; Braun, P. V.; Huang, Y.; Rogers, J. A. Large-Area
MRI-Compatible Epidermal Electronic Interfaces for Prosthetic
Control and Cognitive Monitoring. Nat. Biomed. Eng. 2019, 3,
194−205.
(3) Chung, H. U.; Kim, B. H.; Lee, J. Y.; Lee, J.; Xie, Z.; Ibler, E. M.;

Lee, K. H.; Banks, A.; Jeong, J. Y.; Kim, J.; Ogle, C.; Grande, D.; Yu,
Y.; Jang, H.; Assem, P.; Ryu, D.; Kwak, J. W.; Namkoong, M.; Park, J.
B.; Lee, Y.; Kim, D. H.; Ryu, A.; Jeong, J.; You, K.; Ji, B.; Liu, Z.; Huo,
Q.; Feng, X.; Deng, Y.; Xu, Y.; Jang, K. I.; Kim, J.; Zhang, Y.; Ghaffari,
R.; Rand, C. M.; Schau, M.; Hamvas, A.; Weese-Mayer, D. E.; Huang,
Y.; Lee, S. M.; Lee, C. H.; Shanbhag, N. R.; Paller, A. S.; Xu, S.;
Rogers, J. A. Binodal, Wireless Epidermal Electronic Systems with in-
Sensor Analytics for Neonatal Intensive Care. Science 2019, 363,
No. eaau0780.
(4) Boyadzhieva, S.; Sorg, K.; Danner, M.; Fischer, S. C. L.; Hensel,

R.; Schick, B.; Wenzel, G.; Arzt, E.; Kruttwig, K. A Self-Adhesive
Elastomeric Wound Scaffold for Sensitive Adhesion to Tissue.
Polymers 2019, 11, No. 942.
(5) Moreira Lana, G.; Sorg, K.; Wenzel, G. I.; Hecker, D.; Hensel,

R.; Schick, B.; Kruttwig, K.; Arzt, E. Self-Adhesive Silicone
Microstructures for the Treatment of Tympanic Membrane
Perforations. Adv. NanoBiomed Res. 2021, 1, No. 2100057.
(6) Davis, C. S.; Martina, D.; Creton, C.; Lindner, A.; Crosby, A. J.

Enhanced Adhesion of Elastic Materials to Small-Scale Wrinkles.
Langmuir 2012, 28, 14899−14908.
(7) Fischer, S. C. L.; Arzt, E.; Hensel, R. Composite Pillars with a

Tunable Interface for Adhesion to Rough Substrates. ACS Appl.
Mater. Interfaces 2017, 9, 1036−1044.
(8) Persson, B. N. J.; Albohr, O.; Creton, C.; Peveri, V. Contact Area

between a Viscoelastic Solid and a Hard, Randomly Rough, Substrate.
J. Chem. Phys. 2004, 120, 8779−8793.
(9) Arzt, E.; Quan, H.; McMeeking, R. M.; Hensel, R. Functional

Surface Microstructures Inspired by Nature�From Adhesion and
Wetting Principles to Sustainable New Devices. Prog. Mater. Sci. 2021,
119, 1−105.
(10) Hensel, R.; Moh, K.; Arzt, E. Engineering Micropatterned Dry

Adhesives: From Contact Theory to Handling Applications. Adv.
Funct. Mater. 2018, 28, No. 1800865.
(11) Eisenhaure, J.; Kim, S. A Review of the State of Dry Adhesives:

Biomimetic Structures and the Alternative Designs They Inspire.
Micromachines 2017, 8, 1−38.
(12) Cutting, K. F. Impact of Adhesive Surgical Tape and Wound

Dressings on the Skin, with Reference to Skin Stripping. J. Wound
Care 2013, 17, 157−162.

(13) Zulkowski, K. Understanding Moisture-Associated Skin
Damage, Medical Adhesive Related Skin Injuries and Skin Tears.
Adv. Skin Wound Care 2017, 30, 372−381.
(14) Hwang, I.; Kim, H. N.; Seong, M.; Lee, S. H.; Kang, M.; Yi, H.;

Bae, W. G.; Kwak, M. K.; Jeong, H. E. Multifunctional Smart Skin
Adhesive Patches for Advanced Health Care. Adv. Healthcare Mater.
2018, 7, No. 1800275.
(15) Karp, J. M.; Langer, R. Dry Solution to a Sticky Problem.
Nature 2011, 477, 42−43.
(16) Fischer, S. C. L.; Kruttwig, K.; Bandmann, V.; Hensel, R.; Arzt,

E. Adhesion and Cellular Compatibility of Silicone-Based Skin
Adhesives. Macromol. Mater. Eng. 2017, 302, No. 1600526.
(17) Drotlef, D. M.; Amjadi, M.; Yunusa, M.; Sitti, M. Bioinspired

Composite Microfibers for Skin Adhesion and Signal Amplification of
Wearable Sensors. Adv. Mater. 2017, 29, No. 1701353.
(18) Bae, W. G.; Kim, D.; Kwak, M. K.; Ha, L.; Kang, S. M.; Suh, K.

Y. Enhanced Skin Adhesive Patch with Modulus-Tunable Composite
Micropillars. Adv. Healthcare Mater. 2013, 2, 109−113.
(19) Noderer, W. L.; Shen, L.; Vajpayee, S.; Glassmaker, N. J.;

Jagota, A.; Hui, C. Y. Enhanced Adhesion and Compliance of Film-
Terminated Fibrillar Surfaces. Proc. R. Soc. A 2007, 463, 2631−2654.
(20) He, Z.; Moyle, N. M.; Hui, C. Y.; Levrard, B.; Jagota, A.

Adhesion and Friction Enhancement of Film-Terminated Structures
against Rough Surfaces. Tribol. Lett. 2017, 65, 1−8.
(21) Jagota, A.; Hui, C. Y. Adhesion, Friction, and Compliance of

Bio-Mimetic and Bio-Inspired Structured Interfaces. Mater. Sci. Eng.,
R 2011, 72, 253−292.
(22) Glassmaker, N. J.; Jagota, A.; Hui, C.-Y.; Noderer, W. L.;

Chaudhury, M. K. Biologically Inspired Crack Trapping for Enhanced
Adhesion. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 10786−10791.
(23) Boyadzhieva, S.; Sorg, K.; Danner, M.; Fischer, S. C. L.; Hensel,

R.; Schick, B.; Wenzel, G.; Arzt, E.; Kruttwig, K. A Self-Adhesive
Elastomericwound Scaffold for Sensitive Adhesion to Tissue. Polymers
2019, 11, 1−15.
(24) Korn, V.; Surber, C.; Imanidis, G. Skin Surface Topography and

Texture Analysis of Sun-Exposed Body Sites in View of Sunscreen
Application. Skin Pharmacol. Physiol. 2017, 29, 291−299.
(25) Adabi, S.; Hosseinzadeh, M.; Noei, S.; Conforto, S.; Daveluy,

S.; Clayton, A.; Mehregan, D.; Nasiriavanaki, M. Universal in Vivo
Textural Model for Human Skin Based on Optical Coherence
Tomograms. Sci. Rep. 2017, 7, No. 17912.
(26) Jones, I.; Currie, L.; Martin, R. A Guide to Biological Skin

Substitutes The Function of Normal Skin. Br. J. Plast. Surg. Br. Assoc.
Plast. Surg. 2002, 55, 185−193.
(27) Shahsavan, H.; Zhao, B. Biologically Inspired Enhancement of

Pressure-Sensitive Adhesives Using a Thin Film-Terminated Fibrillar
Interface. Soft Matter 2012, 8, 8281−8284.
(28) Bai, Y.; Jagota, A.; Hui, C. Y. Frictional Auto-Roughening of a

Surface with Spatially Varying Stiffness. Soft Matter 2014, 10, 2169−
2177.
(29) Kroner, E.; Blau, J.; Arzt, E. Note: An Adhesion Measurement

Setup for Bioinspired Fibrillar Surfaces Using Flat Probes. Rev. Sci.
Instrum. 2012, 83, 2−5.
(30) Fischer, S. C. L.; Boyadzhieva, S.; Hensel, R.; Kruttwig, K.;

Arzt, E. Adhesion and Relaxation of a Soft Elastomer on Surfaces with
Skin like Roughness. J. Mech. Behav. Biomed. Mater. 2018, 80, 303−
310.
(31) Eubel, J. M.Design Und Herstellung Eines Haftsystem Zur
Anwendung Auf Dem Trommelfell; Universitaẗ des Saarlandes, 2019.
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ABSTRACT

While viscoelastic, adhesive contact rupture of simple indenters is well studied, contact formation has received much less attention. Here,
we present simulations of the formation of contact between various power law indenters and an adhesive, viscoelastic foundation. For all
investigated indenters, we find that the macroscopic relaxation time τ scales approximately with 1/ρ1.8, where ρ is the range of adhesion. The
prolongation of contact formation with Tabor parameter is rationalized by the increased dissipation that short-range adhesion causes on a
moving crack.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0174379

I. INTRODUCTION

The modeling of mechanical contacts between elastomers
and rigid counterfaces has advanced substantially in the recent
past.1–3 In particular, the comparison between simulated contact
configurations and real-laboratory images has reached new levels,
mainly thanks to improved capabilities of computing and measur-
ing detailed features in partial contacts of nominally flat surfaces.1,4–8

However, the progress made pertains mostly to situations where
either the experiment is conducted quasi-statically or multi-scale
roughness is insignificant. Viscoelastic simulations with roughness
on separate length scales remain scarce.8–10 As a consequence, it
remains difficult to ascertain or to predict when contact hystere-
sis in a given system is mostly viscoelastic in nature11 or caused
by elastic multistability12–14 and whether their effects are deemed
additive10 or inseparable.8 When assessing contact hysteresis, it is
as important to describe contact formation as contact rupture.15

However, despite continuous progress in the simulation of viscoelas-
tic, adhesive contacts,16–20 contact formation is explored rather little
although it is similarly important as contact rupture. It could be
one reason for the so-called Monday morning problem, which refers
to the sticking of valves in production engines after resting over
the weekend. Further applications, where (slow) contact formation
matters, are hydraulic and pneumatic seals or adhesive gripping
devices.

The difficulty of simulating adhesion-driven contact forma-
tion involving soft matter is that the short-range nature of adhesion
must be accounted for, even for macroscopic objects. First, non-
contact puts much greater demands on the range of adhesion than
contact:15,21 While a Tabor parameter μT ≈ 5 (μT is a dimension-
less measure inversely proportional to the range of adhesion and
introduced in detail further below) suffices to reproduce the μT →∞
load–displacement curves under retraction, the energy loss would be
less than 50% of the real value, due to a premature jump into con-
tact. Unfortunately, short-range adhesion requires a modeler to use
small mesh sizes to avoid discretization artifacts, most notably lattice
trapping.15 Making matters worse, the errors in energy hysteresis
disappear only with the inverse cube of the linear mesh-element
size.15 Second, short-range adhesion enhances the dissipation of a
moving crack or contact line,22–26 whereby not only crack opening
but also crack closure is impeded, which in turn puts large demands
on the computing time.

The discussion above implies that simulating effectively vis-
coelastic processes using relatively coarse scales might be achievable
by reinterpreting the time scales used in the viscoelastic model.This
would be possible if multiplying the range of adhesion by a factor
s accelerated the dynamics by a power of s. Testing for the possibil-
ity of such a mapping was the original motivation for the research
reported in this work. However, the simulations can also serve as
a test for theoretical predictions on contact closure and extend the
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number of geometries, for which gap closure is investigated. In this
context, our focus is on indenter shapes, where the height of the
indenter is a power law of the distance from the indenter’s symmetry
axis. This problem class offers the greatest potential for us to exploit
the similarity of solutions.

The remainder of this work is organized as follows: The meth-
ods used are laid out in Sec. II, results are presented in Sec. III, and
conclusions are drawn in Sec. IV. Some scaling arguments allow-
ing the Tabor parameter to be generalized to adhesive power law
indenters are given in the Appendix.

II. METHODS

We use Green’s function molecular dynamics (GFMD),27

which is a boundary-element method for the simulation of lin-
early (visco)elastic contact problems assuming elastic bodies to be
isotropic in planes normal to their (originally flat) surface and to be
periodically repeated in that plane. We focus on normal, friction-
less contacts within linear elasticity. Our systems consist of various
perfectly rigid indenters and a homogeneous and isotropic, linearly
viscoelastic body described in the continuum limit.

The shape of the indenter is given by

h(r) = R
n
( r

R
)n

, (1)

where R has the unit of length and corresponds to a radius of curva-
ture for a Hertzian (n = 2) indenter, while r is the distance from the
indenter’s symmetry axis. For a conical indenter (n = 1), h(r) could
be written as h(r) = r tan φ, in order to implement different open-
ing angles φ. Investigated exponents are n = 1 for a conical indenter,
n = 2 for a Hertzian indenter, and n = 3 as well as n = 4 as crude
approximations for a flat punch. A true flat punch has no interest-
ing contact formation dynamics, as its instantaneous contact radius
is identical to the relaxed one.

Indenter and elastic body interact through a cohesive-zone
model that is twice differentiable everywhere but in one isolated
point, which proves to be useful for numerical or stability reasons.15

It is given by an interaction potential density of

Vint(g) = −γ ×
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if ρ ≤ g,

{1 + cos (πg/ρ)}/2 if 0 < g < ρ,
{1 − (πg/2ρ)2} else.

(2)

Here, g refers to the gap or interfacial displacement between elas-
tomer and indenter, γ is the energy gained per unit area when
indenter and elastomer touch, while ρ is the range of adhesion.
In all investigated systems, a numerical value of γ = 0.01 E∗R is
assigned. The numerical value of ρ was adjusted according to the
individual Tabor parameters. In principle, ρ could be set to a smaller
value for negative than for positive gaps to better mimic hard-wall
repulsion. However, since all reported simulations addressed rather
short-ranged adhesion and thus small ρ, we used the same value for
ρ for attraction and repulsion.

The elastic energy of a relaxed body (under an external surface
stress) is given by

Vela =∑
q

qE∗
4
∣ũ(q)∣2, (3)

where q is an in-plane wave vector, or wave number for one-
dimensional interfaces, q is its magnitude, while E∗ is the static
contact modulus and ũ(q) the Fourier transform of the displace-
ment field. However, as we study a viscoelastic system, E∗ is made
frequency dependent. Our default model consists of a single Maxwell
element in parallel with a spring, yielding a frequency-dependent
contact modulus of

E∗(ω) = E0
1 + sω2τ2

Mxw + i(s − 1)ωτMxw

1 + ω2τ2
Mxw

(4)

with s ≡ E∗∞/E∗0 = 100, where E∗0 and E∗∞ are the quasi-static and
the high-frequency elastic moduli, respectively. The model is imple-
mented as described in Ref. 8. E∗0 is used as the unit for pressure,
while times are reported in units of τMxw, unless stated otherwise.
Any deviation from our default model is explicitly pointed out. For
example, in one case, the surface modes are coupled to three rather
than to one Maxwell element. The real and imaginary parts of E∗(ω)
are shown in Fig. 1 for the three-element model and the default, one-
element model. The “weights” E(n)0 and relaxation times τ(n)Mxw in the
three-element models are chosen as En+1

0 = 6En
0 and τ(n+1)

Mxw = τ(n)Mxw/6.
While a “brute-force” Fourier method is certainly not the

most effective approach to address the questions in this paper, it

FIG. 1. Absolute value ∣E∗′(ω)∣ (top), real part E∗′(ω) (middle), and imaginary
part E∗′′(ω) (bottom) of the contact modulus for a one-element (1-el, solid lines),
standard linear-solid model and a three-element (3-el, dashed and dotted lines)
model. The frequency is expressed in inverse units of τMxw of the one-element
model (blue line), while the data for the three-element are shifted one time to have
a similar high-frequency (dashed, blue line) and one time to have a similar low-
frequency (dotted, orange line) modulus as the one-element model.
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is sufficiently efficient to obtain satisfying answers. Moreover, by
addressing primarily line contacts having a formal interfacial dimen-
sion of D = 1, much of the computational overhead spent on not
exploiting the symmetry of the problem in D = 2 is alleviated.

The most critical dimensionless parameter for a (force-free)
adhesive contact of a Hertzian indenter is the Tabor parameter μT. It
is inversely proportional to the range of adhesion and is designed
such that μT ≫ 1 makes a (quasi-static) contact behave as in the
limit for zero-range adhesion, which was first solved analytically by
Johnson, Kendall, and Roberts (JKR)28 for n = 2 and D = 2. For arbi-
trary n at D = 2, the contact problem can be solved using Sneddon’s
method.29,30 Less relevant for most real purposes, but easier to tackle
numerically and theoretically, is long-range adhesion. For D = n,
adhesion effectively acts like an external load that does not depend
on ρ for ρ→∞ or μT → 0 when γ and R are fixed, as is readily
seen using the Bradley model,31 which becomes exact in the long-
range limit. Its analysis also reveals that a physically meaningful
long-range-adhesion limit does not exist for n ≠ D, because the offset
load vanishes (n > D) or diverges (n < D) for a diverging ρ at fixed
γ and R.

Zheng and Yu32 generalized the Tabor parameter for arbitrary
power law indenters to

μT = R
ρ
( γ

RE∗ )
n/(2n−1)

. (5)

after solving the contact mechanics of adhesive power law inden-
ters in the Dugdale approximation. In the Appendix, we identify the
same expression using rather simple, dimensional analysis, which is
also valid for an interfacial dimension of D = 1. In the following, we
will usually report μT rather than the range of adhesion ρ. Note that
the precise value for μT would differ if the ratio γ/σmax were used
instead of ρ in Eq. (5).

In this work, we study exclusively crack closure dynamics under
zero external load. We focus on the time evolution of the contact
radius rc(t), which we define to be the distance from the indenter’s
symmetry axis to the point where the tensile stress takes its maxi-
mum, specifically, the distance in a direction parallel to a main axis
of the simulation cell rather than its diagonal, though the two mea-
sures are very close to each other and thus show identical scaling.
A small relaxation run is done first, using “regular” rather than vis-
coelastic GFMD, during which the elastomer is allowed to relax to
the shape that it would have under the assumption that E∗∞ rather
than E∗0 was its static contact modulus. The estimates of quasi-static
contact properties are obtained from similar calculations with the
proper static contact modulus E∗0 . This way, initial contact radii
rin ≡ rc(t = 0) and quasi-static contact radii rqs ≡ rc(t →∞) can be
determined with high accuracy. Results for rc(t) are reported in
terms of a relaxation function defined as

C(t) ≡ rc(t) − rin

rqs − rin
. (6)

While we do not yet have experimental reference data, it might
be important to stress that it might be difficult to rigorously define rin
in real experiments, since contact with a rigid counter body cannot
be simply switched on as in a computer simulation, while iner-
tial effects would prevent an immediate contact at t = 0+ with the
high-frequency modulus from occurring. Thus, we expect deviations

between our idealized model and real experiments in the very early
stages of contact formation to be unavoidable.

III. RESULTS

While this study focuses on contact formation for different
tip geometries, we first wish to analyze how details of the vis-
coelastic model affect the dynamics. To this end, Fig. 2 contrasts
the gap closure for the one-element model and the three-element
model introduced in Sec. II. Both rheological models reveal the same
generic features of the crack closure process for power law inden-
ters: Early-time dynamics, in the specific example for t ≲ 10τMxw,
a regime where the contact radius depends approximately loga-
rithmically on time, i.e., for times 10 ≲ t/τMxw ≲ 104, and a final
regime at t ≳ 104τMxw, which has an exponential time dependence
according to

C(t →∞) − C(t)∝ exp (−t/τ), (7)

which defines the macroscopic or largest relaxation time τ. While
the relaxation in the intermediate time curve is somewhat flattened
for the three-element model compared to the one-element model,
the contrast in different rc(t) curves in Fig. 2 appears somewhat
less noticeable to the eye than those of the frequency-dependence
of the elastic modulus shown in Fig. 1. Interestingly, though per-
haps not surprisingly, the early-time (later-time) dynamics of the
two models superimpose reasonably well when the relaxation times
of the three-element model are scaled such that the high-frequency
(low-frequency) E′′(ω) or ∣E(ω)∣ exhibits similar behavior. In the
following, we will merely consider the one-element model, widely
known also as the standard linear solid (SLS).

Similar crack closure dynamics as those just discussed are
maintained when extending the range of Tabor parameters. To this
end, C(t) rather than rc(t)/R is shown for different μT, one time for
two-dimensional interfaces in Fig. 3 and one time, as before, for one-
dimensional interfaces in Fig. 4. Similar behavior is revealed in both
figures. A double logarithmic representation was chosen for them

FIG. 2. Contact formation of the one-element model and the three-element
model(s), whose frequency-dependent elastic modulus is shown in Fig. 1; D = 1,
n = 2, μT = 7.2. Thin gray lines indicate the instantaneous contact radius for t → 0
as well as the final exponential approach (exp) to the quasi-static value rqs reached
at t →∞.
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FIG. 3. Crack closure dynamics for different axisymmetric tips.

FIG. 4. Crack closure dynamics for different one-dimensional tips.

as to highlight differences in the functional form of C(t) during the
early-time dynamics. Note that the time is expressed in units of τ,
which allows us to reveal that C(t/τ) is quite insensitive to μT at suf-
ficiently large t. The collapse of curves when represented as C(t/τ)
improves with increasingly large μT. Factors and related informa-
tion helpful to reconstruct the full rc(t/τ) are collected in Table I,
however, each time only for the largest Tabor parameter.

The increase in relaxation time compared to the times asso-
ciated with the Maxwell element can certainly be related to the
increased dissipation that short-range adhesion causes in a prop-
agating crack.22,24,25 Initial dynamics are relatively fast, when the
crack-tip radius is large and thus dissipation small10,26 but then slows
down as the crack-tip radius becomes smaller, while the slopes of
the displacement field increase. For the investigated tip shapes, we
find the relaxation times to scale approximately with μ1.8

T . This is true

TABLE I. Quantities needed to reconstruct the full rc(t) dependence, for each inves-
tigated geometry at the largest investigated Tabor parameter μT. Radii are given in
units of the (generalized) radius of curvature R and times in units of τMxw. τ1/2 is
defined implicitly by C(τ1/2) = 1/2.

D n rin rqs τ1/2 τ μT s

1

1 0.0021 0.062 130 1060 4.1 19
2 0.11 0.46 23 910 41 5.9
3 0.28 0.67 9.8 670 65 4.1
4 0.41 0.78 6.6 750 79 3.5

2

1 0.013 0.10 23 110 0.30 24
2 0.17 0.52 3.7 83 3.0 7.2
3 0.35 0.71 1.6 45 4.8 4.9
4 0.48 0.81 1.0 36 5.8 4.2

for the ultimate relaxation time τ as well as intermediate relaxation
times τx defined by C(τx) = x with x ≳ 0.5. To make the different
data sets appear in a rather narrow range, the Tabor parameter was
scaled (multiplied) with a scaling variable s, while the relaxation time
was divided by s1.8 (Fig. 5).

It remains to be discussed to what degree our results depend on
the precise form of the cohesive-zone model (CZM). To address this
issue, we repeated some simulations using a Dugdale model33 and
found the same τ ∝ μ1.8

T scaling law as when using Eq. (2). Prefactors
of the scaling laws cannot be compared directly because the length
scale used in the definition of the Tabor parameter can be either the
literal range of adhesion ρ or the ratio of surface energy and maxi-
mum tensile stress. Taking the geometric mean of those two options
makes the Dugdale potential relax roughly 15% more slowly than
the default CZM with the same Tabor parameter. We attribute the
slight increase in relaxation time and thus dissipation by the Dug-
dale model to the discontinuity of the CZM at the cutoff. It leads to

FIG. 5. Scaled relaxation time as a function of a scaled Tabor parameter for differ-
ent power law indenters and interfacial dimensions. Open and filled symbols refer
to D = 1 and D = 2, respectively. Moreover, n = 1 (blue circles), n = 2 (orange
squares), n = 3 (green diamonds), and n = 4 (red triangles). The dashed, gray
line shows the power law (sμT)1.8.
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a diverging second derivative, which in turn induces enhanced local
surface velocity for a moving crack and thus enhanced velocity gra-
dients in the material and increased total dissipation compared to
more smoothly evolving CZMs.

IV. CONCLUSIONS

In this work, we confirmed numerically that the crack closure
dynamics of indenters with power law profile in contact with an
adhesive, linearly viscoelastic foundation has a universal behavior,
at least at the late stages of the contact formation process when the
contact radius has grown to a size that adhesion can be labeled short-
ranged. Analysis of the final stages of the contact formation reveals
that the relaxation times increase approximately with the inverse
range of adhesion to the power of 1.8. Since Tabor parameters
can be quite large in practical applications, this means that crack
closure can last rather long times. To give an admittedly extreme
example, assuming E∗ = 10 MPa, γ = 40 mJ/m2, R = 20 μm, and a
range of adhesion typical for Lennard-Jones interactions, say ρ = 3.5
Å, yields μT = 195. Thus, using the data for D = n = 2 in Table I,
we obtain τ/τMxw ≈ 83 ⋅ (195/3)1.8 ≈ 0.15 ⋅ 106. Making the link
to real viscoelastic materials is challenging, because they have a
broad distribution of relaxation times, which are quite sensitive to
temperature and materials composition. This in turn makes it diffi-
cult if not impossible to state a generally valid numerical value for
τMxw. However, if a dynamical analysis is known, an upper estimate
for τMxw should be given by the equation E′′(1/τMxw) = E0 on the
small-frequency branch of the loss modulus.

Unfortunately, it is not clear to what degree the scaling might
be affected by small-scale roughness. In the extreme case, there
will be contact line pinning due to elastic multistability, which can
be caused by structural heterogeneity.14 In this case, our estimates
would only imply a crude lower bound for the contact formation
time. A hint in this direction comes from previous simulations.8
They mimicked successfully dynamical experiments on the adhesion
between an elastomer and a flat punch to which (single-sinusoidal)
small-scale roughness was added. In that work, we had identified
a steeper dependence of relaxation times on the range of adhesion
than in the present work, although our old estimate was based on
an analysis, which was much less systematic than the one presented
here.
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APPENDIX: SCALING ANALYSIS AND GENERALIZED
TABOR PARAMETER

While the contact mechanics of both short-range30 and finite-
range32 adhesive power law indenters have been solved, it might be
beneficial to have simple arguments allowing one to estimate pull-
off forces, work of adhesion, and Tabor parameters in simple terms
up to prefactors of order unity without having to embark on the
high level of complexity pioneered by Maugis.34 For this purpose,
it is helpful to realize that the crack closure dynamics for a given
E(ω) can only depend on the dimensionless numbers describing the
problem, i.e., n and μT. In the following, we derive an expression,
which, up to constants of order unity, gives the generalized Tabor
parameter. To this end, we define μT such that μT ≡ 1, when simple
estimates for the stress-standard deviation in the limit of short-range
adhesion match the maximum tension for finite-range adhesion.
Our treatment also allows us to identify scaling relations for power
law indenters. While similar relations can be deduced from existing
literature, we believe our derivation to be original while requiring
close to the least possible amount of prior background on contact
mechanics and graphite, chalk, ink, or toner in order to arrive at
generally valid scaling relations.

For a given shape (shp) of the displacement field, be it the zero-
load (zl) or the pull-off (po) shape, the elastic energy Uel in areal
contacts (D = 2) or its line density uel ≡ ΔUel/ΔLy in line contacts(D = 1) can only be of the form

Uel = gshp
n,2 E∗ah2(a) for D = 2, (A1a)

uel = gshp
n,1 E∗h2(a) for D = 1, (A1b)

in the limit of short-range adhesion. Here, a is the contact radius,
while the gshp

n,D are constants that depend on the exponent n, the inter-
facial dimension D, and on the shape of the displacement field. The
corresponding total surface energy Us or line density us gained on
making contact are

Us = −πa2γ for D = 2, (A2a)

us = −2aγ for D = 1. (A2b)

Eliminating h(a) with the help of Eq. (1) and minimizing the
total energy in the load-free case w.r.t. a yield a zero-load radii of

azl

R
= 2n−1

√
cγ

E∗R
with c =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2πn2

(2n + 1)gzl
n,2

for D = 2,

n/gzl
n,1 for D = 1.

(A3)

For the surface of a semi-infinite solid, the stress variance
is nothing but Δσ2 = (E∗/2)2⟨(∇u)2⟩, where ⟨⋅ ⋅ ⋅⟩ denotes spa-
tial average. This relation is heavily exploited in Persson’s contact
mechanics theory for the contact mechanics of randomly rough con-
tacts. However, it also turns out useful for deterministic tip shapes,
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in particular power law indenters, when restricting the spatial aver-
age over the true contact. Since the mean-square height gradient
ḡ2

c averaged over the contact satisfies

ḡ2
c = ⟨(∇u)2⟩

c

= ( a
R
)2n−2 × ⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/n for D = 2,
1

2n − 1
for D = 1,

(A4)

the stress variance in the limit of short-range adhesion is roughly on
par with the square of the maximum tension if

E∗( γ
E∗R
)(n−1)/(2n−1) = γ

ρ
, (A5)

where we suppressed all numerical prefactors, which are deemed to
be usually of order unity. We define the Tabor parameter to be unity
for the range of adhesion satisfying Eq. (A5) so that

μT = γ
E∗ρ
( γ

E∗R
)(1−n)/(2n−1)

, (A6)

which is identical to Eq. (5).
As a side comment, we note that our scaling analysis also allows

the pull-off force Fpo and the work of adhesion Wpo in D = 2 and
their corresponding line densities using lower-case letters in D = 1
to be estimated. To this end, we assume that the mean contact stress
at pull-off scales linearly with the stress-standard deviation at zero
load. Thus, Fpo ∝ a2

0E∗ḡc for D = 2 while fpo ∝ a0E∗ḡc for D = 1 so
that

Fpo ∝ E∗R2( γ
E∗R
)(n+1)/(2n−1)

for D = 2, (A7a)

fpo ∝ E∗R( γ
E∗R
)n/(2n−1)

for D = 1, (A7b)

which satisfies well-known relations like Fpo ∝ γR for a regular

Hertzian geometry (n = 2, D = 2) or Fpo ∝√E∗γR3 for a regular flat
punch (n→∞, D = 2). The work of adhesion of a power law inden-
ter can only scale as the product of surface energy and (zero-load)
contact area so that

Wpo ∝ γR2( γ
E∗R
)2/(2n−1)

for D = 2, (A8a)

wpo ∝ γR( γ
E∗R
)1/(2n−1)

for D = 1. (A8b)

Thus, the work of adhesion for a flat punch in D = 1 and D = 2 alike
is the same when conducted very slowly or very quickly, i.e., when
probing it with the high- or the low-frequency modulus, but it would
be large at intermediate pull-off velocities, as argued, for example, in
Ref. 26.
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A B S T R A C T

Viscoelasticity is well known to cause significant hysteresis of crack closure and opening when
an elastomer is brought in and out of contact with a flat, rigid, adhesive counterface. A separate
origin of adhesive hysteresis is small-scale, elastic multistability. Here, we study a system in
which both mechanisms act concurrently. Specifically, we compare the simulated and exper-
imentally measured time evolution of the interfacial force and the real contact area between
a soft elastomer and a rigid, flat punch, to which small-scale, single-sinusoidal roughness is
added. To this end, we further the Green’s function molecular dynamics method and extend
recently developed imaging techniques to elucidate the rate- and preload-dependence of the
pull-off process. Our results reveal that hysteresis is much enhanced when the saddle points of
the topography come into contact, which, however, is impeded by viscoelastic forces and may
require sufficiently large preloads. A similar coaction of viscous- and multistability effects is
expected to occur in macroscopic polymer contacts and to be relevant, e.g., for pressure-sensitive
adhesives and modern adhesive gripping devices.

1. Introduction

Bringing two surfaces into contact and separating them again is generally associated with a net, rate-dependent energy loss.
Several processes can cause this hysteresis to occur, in particular, physicochemical interfacial aging (Chen et al., 1991; Liu
and Szlufarska, 2012), such as chain interdigitation in polymer–polymer contacts (Maeda et al., 2002), viscoelastic relaxation
in the vicinity of and far from true contact (Giri et al., 2001; Shull, 2002; Lorenz et al., 2013; Tiwari et al., 2017), and the
formation of capillaries (Pickering et al., 2001; Feiler et al., 2006; Israelachvili, 2011), to name a few. Over the years, elastic
multistability (Prandtl, 1928; Tomlinson, 1929) has also received much attention as a potential adhesive dissipation mechanism
occurring during the relative motion of nominally flat surfaces, i.e., the discontinuous jump of small-scale asperities in and out
of contact (Tomlinson, 1929; Thomson et al., 1971; Gao and Rice, 1989; Zheng and Ya-Pu, 2004; Guduru, 2007; Glassmaker
et al., 2007; Kesari et al., 2010; Xia et al., 2012; Carbone et al., 2015; Dalvi et al., 2019; Wang et al., 2021) during quasi-static
motion, or the discontinuous motion of a contact line during approach and retraction resulting from chemical or structural surface
heterogeneity (Sanner and Pastewka, 2022).
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Ascertaining what adhesion-hysteresis mechanism dominates under what circumstances is a difficult task, because analytical
solutions for the rate- and/or the preload dependence of the pull-off force scarcely exist, even when only one relaxation process
dominates. Moreover, it is certainly conceivable that competing mechanisms, e.g., contact aging and contact growth, lead to a
similar, for example, logarithmic time dependence of the pull-off force on the waiting time. The validity of models and theories,
irrespective of whether they are solved analytically or numerically, should therefore be tested against information additional to
load–displacement relations and their dependence on rate, waiting time, and preload. A central quantity to be known is the time
evolution of true contact, including its size and shape.

While small-scale features of adhesive experimental and in-silico contacts have been successfully compared in the recent past,
such as in the contact-mechanics challenge (Müser et al., 2017; Bennett et al., 2017) or to demonstrate the breakdown of Amonton’s
law at the small scale in soft-matter contacts (Weber et al., 2018), we are not aware of similarly sophisticated studies involving
time-dependent phenomena as they occur during adhesion hysteresis. Detailed comparisons between simulations and experiments
are often conducted only during compression but not during retraction. This may be the case because simultaneously simulating
multi-scale roughness, viscoelasticity, and adhesion has only been tackled recently (Afferrante and Violano, 2022; Pérez-Ràfols et al.,
2022). Perez-Rafols et al. simulated a parabolic tip with single-wavelength roughness and found contributions of viscoelasticity and
waviness to adhesion hysteresis to be nearly independent and additive as long as the viscoelasticity was confined to the edges
of the wavy contact. However, despite being cutting edge, the study lacks comparison to experiments and is limited a single
relaxation time and one-dimensional interfaces. Violano et al. (2021b,a) also modeled two surface dimensions with a bearing-area
model and successfully compared to experiments. However, the surfaces were designed to have random asperity heights without
spatial correlation, which formally corresponds to a Hurst exponent of 𝐻 = −2. For 𝐻 ≤ −1, scaling laws deduced from rigorous
simulations (Campañá et al., 2008) or Persson theory (Persson, 2008) predict spatial correlations to be absent at large distance so
that one can get away with bearing-area models in this atypical situation.

The central difficulty when conducting rigorous, two-dimensional simulations lies in the short-range nature of adhesion, whose
range of interaction 𝜌 critically affects not only the viscoelastic losses caused by propagating cracks (Müser and Persson, 2022)
but also the energy hysteresis induced by elastic instabilities (Ciavarella et al., 2017; Wang et al., 2021). Unfortunately, using
realistically small values for 𝜌 requires extremely fine discretization to be used so that lattice instabilities are avoided (Wang et al.,
2021). The latter would lead to Coulomb friction for propagating cracks rather than to the more realistic polynomial crack-speed
dependence (Schapery, 1975; Persson and Brener, 2005). As of now, it does not seem to be clear how to reproduce reliably realistic
dynamics of viscoelastic adhesion theory with continuum-theory based simulations.

In this work, we study the contact between a viscoelastic film and a nominally flat, cylindrical punch to which single-wavelength,
small-scale roughness is added. Depending on the relative orientation of different wavevectors 𝐪, which all have the same magnitude
𝑞, different patterns can be produced for which the local height maxima form either a hexagonal or a triangular lattice. The questions
to be addressed in this study are manifold. Can simulations reproduce experimentally observed dependencies, such as the normal
force as a function of time and the concomitant contact-area evolution? How does the unit of time, or retraction velocity, have to be
renormalized for a successful comparison between simulation and experiment when it is computationally unfeasible to work with
realistically small values of 𝜌? Is it possible to clearly discriminate between dissipation due to elastic instabilities and viscoelastic
crack propagation? And last but not least, can visualizing the contact area aid the prediction of imminent contact failure? The
latter question can be relevant for modern adhesive gripping devices coupled with machine learning and robotics for performance
prediction and automation (Tinnemann et al., 2019; Samri et al., 2022).

The remainder of this paper is organized as follows: Section 2 summarizes the ideal reference model, the computational approach,
and the experimental methods. Results are presented in Section 3. A detailed discussion is given and conclusions are drawn in
Section 4.

2. Models and methods

2.1. Reference model

In this work, we compare simulations and experiments mimicking an ideal (mathematical) reference model, which is sketched
in Fig. 1. It consists of a flat, cylindrical, perfectly rigid punch of radius 𝑎 to which single-wavelength corrugation 𝑧(𝑥, 𝑦) is added.
The punch is indented into a homogeneous, isotropic, and elastomeric film with linear viscoelasticity. Inspired by the experimental
realization, we will call this material PDMS, although the theoretical model does not necessarily imply a specific polymer compound.
The elastomer has a finite height ℎ, infinite in-plane dimension with a frequency-dependent Young’s modulus 𝐸(𝜔) and a constant
Poisson’s ratio 𝜈. ‘‘PDMS’’ and punch interact through a cohesive-zone model, which is characterized by a surface energy per unit
area 𝛾 and a small but finite interaction range 𝜌. Punch and elastomer are frictionless and cannot interpenetrate.

Numerical values of the reference model are 𝑎 = 375 μm, ℎ = 2 mm, 𝐸(0) = 2 MPa, 𝐸(∞) = 2 GPa, 𝜈 = 0.495, and 𝛾 = 50 mJ/m2,
which are admittedly our best guesses for the values of the laboratory version of the reference model. The precise frequency
dependence of 𝐸(𝜔) as well as the interaction range cannot be well matched between the laboratory and the in-silico realization of
the reference model, which is why we abstain from defining reference values here. The experimental range of adhesion can certainly
be classified as short-ranged, while that used in the simulations is merely as short-ranged as computationally feasible.
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Fig. 1. Illustration of the reference system. Normal and lateral dimensions are not to scale. However, 𝑢(𝑥, 𝑦) and the indenter shape represent data obtained
from the simulation during compression. The used height profile reflects deviations from the target and the true sinusoidal undulations of the flat punch.

Fig. 2. Top view of the flat indenter with (a) triangular and (b) hexagonal waviness. Height and lateral dimensions are not to scale.

Two different height topographies are added to the punch, a triangular (tri) and a hexagonal (hex) one. Redefining prefactors
compared to previous work (Dapp and Müser, 2015), they are given by

𝑧hex(𝑥, 𝑦 −
√
3𝜆∕4)

𝑧0(hex) = 4
9

{
3
2
+ 2 cos (𝑞𝑥) cos

(
1√
3
𝑞𝑦

)
+ cos

(
2√
3
𝑞𝑦

)}
(1a)

𝑧tri(𝑥, 𝑦)
𝑧0(tri)

= 2 −
𝑧hex(𝑥, 𝑦)
𝑧0(hex) , (1b)

where 𝑞 = 2𝜋∕𝜆 is the wave vector and 𝜆 = 150 μm. The amplitude of the undulations—defined as half the difference between
maximum and minimum—are set to 𝑧0(hex) = 9.2 μm and 𝑧0(tri) = 4 μm. Resulting punch profiles are shown in Fig. 2. Different
amplitudes were chosen, because the jump into contact of saddle points occurs much earlier for hexagonal than for triangular
corrugations (Dapp and Müser, 2015). With these choices of 𝑧0, the radii of curvature of the asperities turned out to be 𝑅c ≈ 150 μm
for both profiles. Moreover, the dimensionless surface energy �̃� ≡ 𝛾∕𝑣full

ela , where 𝑣full
ela is the areal elastic energy in full, static contact,

𝑣full
ela , are approximately �̃�(tri) ≈ 0.32 and �̃�(hex) ≈ 0.061 for the respective, periodically repeated wave patterns. These values are

less than 1∕2, which has been identified as the (approximate) dividing line between sticky and non-sticky for many surfaces with a
symmetric height distribution (Wang and Müser, 2022).

The indenter is moved from non-contact at different constant velocities 𝑣ext ranging from 0.5 to 25 μm/s into the elastomer until
a target force, or preload, 𝐹pl, is reached, at which point the velocity is reverted quasi-instantaneously to initiate detachment. The
preload is varied between 1 and 10 mN for the hexagonal and between 40 and 80 mN for the triangular surface.

A brief note on the choice of the frequency- and wavenumber-independent Poisson’s ratio is in order. Real elastomers deviate
from ideal incompressibility at high frequency much more than at low frequency, i.e., their Poisson’s ratio falls from just below 0.5
at 𝜔 → 0 to typically around 0.3 for large 𝜔 (Caracciolo and Giovagnoni, 1996; Tschoegl et al., 2002). In the present study, we can
ignore this effect, because the film thickness clearly exceeds the punch radius, which means that all relevant modes, other than the
center-of-mass mode, can be treated as if the film was semi-infinite. In this case, the contact modulus, 𝐸∗(𝜔) = 𝐸(𝜔)∕

{
1 − 𝜈2(𝜔)

}
,

which is not very sensitive to the frequency dependence of the Poisson’s ratio, becomes the central elastic parameter determining
the viscoelastic response.
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Fig. 3. Illustration of the rheological model employed, which consists of one Kelvin–Voigt element (𝑘0 , 𝜂0) and 𝑁 Maxwell elements (𝑘𝑛 , 𝜂𝑛) in parallel plus an
inertial mass 𝑚. In GFMD, each mode �̃�(𝐪)=̂𝑢0 is represented with such a model.

2.2. Numerical model and methods

The solution of the dynamics defined implicitly in Section 2.1 requires some idealizations to be given up, while other
specifications can be perfectly realized, at least to numerical precision. The latter include linear elasticity, the topographies,
velocities, loads, and any other specified number. Compromises are related to the numerical solution of the problem, which include
the necessity to discretize space and time as well as the use of periodic boundary conditions for reasons of efficiency.

2.2.1. Reproducing viscoelastic properties using GFMD
The time evolution of an isotropic and linearly elastic bottom layer, being infinitely large in the plane or periodically repeated,

can be cast as

�̃�(𝐪, 𝑡) = ∫
𝑡

−∞
d𝑡′ �̃�(𝑞, 𝑡 − 𝑡′) 𝑓 (𝐪, 𝑡′), (2)

for reasons of symmetry. Here, �̃�(𝑞, 𝑡) is the spatial Fourier transform of the displacement field as a function of time 𝑡, 𝑓 (𝐪, 𝑡) is the
spatial Fourier transform of the external force per unit area acting on the elastomer, and �̃�(𝑞, 𝑡− 𝑡′) is the Green’s function conveying
the effect that this Fourier transform, at time 𝑡′ ≤ 𝑡 has on (the Fourier transform of) the displacement at time 𝑡. For a half space,
�̃�(𝑞, 𝑡) is formally given by

�̃�(𝑞, 𝑡) = 2
𝑞 ∫

∞

−∞
d𝜔 1

𝐸∗(𝜔)
𝑒𝑖𝜔𝑡. (3)

The time dependence of the Green’s functions �̃�(𝑞, 𝑡) or the response functions they produce can be represented via a Prony series,
which in turn can be realized through rheological models, as that depicted in Fig. 3, where stiffness (𝑘𝑛) and damping (𝜂𝑛) terms
are introduced. An appropriate choice of weights 𝜅𝑛 = 𝑘𝑛∕𝑘0 and relaxation times 𝜏𝑛 = 𝜂𝑛∕𝑘𝑛 allow the target frequency dependence
𝜅(𝜔) = 𝐸(𝜔)∕𝐸(0) to be approximated through

𝜅(𝜔) = 1 +
𝑁∑
𝑛=1

𝜅𝑛

{
𝜔2𝜏2𝑛

1 + 𝜔2𝜏2𝑛
+ 𝑖

𝜔𝜏𝑛
1 + 𝜔2𝜏2𝑛

}
. (4)

An example of a system producing such a target dependence is shown in Fig. 4a.
An inertia 𝑚 and damping 𝜂0 were added to the rheological elements, which allowed us to implement the final rheological

model into a Green’s function molecular dynamics (GFMD) (Campañá and Müser, 2006) based code. The two added elements alter
the frequency dependence to

𝜅GFMD(𝜔) = 𝜅(𝜔) − 𝜔2 𝑚
𝑘0

+ 𝑖𝜔
𝜂0
𝑘0

. (5)

By replacing 𝑘0 with 𝑘0(𝑞) = 𝑞𝐸∗∕2 for each �̃�(𝐪, 𝑡), all 𝑘𝑛 and 𝜂𝑛 turn into 𝑘𝑛(𝑞) and 𝜂𝑛(𝑞), with the exception of 𝜂0(𝑞), whose
parametrization will be discussed separately.

The resulting equations of motion for each mode and its associated extra degrees of freedom 𝑢𝑛(𝐪, 𝑡) read:

𝑚(𝑞) ̈̃𝑢(𝐪, 𝑡) + 𝜂0(𝑞) ̇̃𝑢(𝐪, 𝑡) + 𝑘∞(𝑞)�̃�(𝐪, 𝑡) = 𝑓 (𝐪, 𝑡) +
𝑁∑
𝑛=1

𝑘𝑛(𝑞)𝑢𝑛(𝐪, 𝑡), (6a)

𝜂𝑛(𝑞)�̇�𝑛(𝐪, 𝑡) = 𝑘𝑛(𝑞)
{
�̃�(𝐪, 𝑡) − 𝑢𝑛(𝐪, 𝑡)

}
, 𝑛 ∈ 1...𝑁, (6b)
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Fig. 4. (a) Frequency-dependent target stiffness 𝑘(𝜔) as a function of frequency 𝜔 using 𝑘𝑛+1 = 60.8𝑘𝑛, 𝜏𝑛+1 = 𝜏𝑛∕6, and 𝑁 = 5. Dotted lines show the relaxation
process of individual Maxwell elements and the solid, gray line a 𝜔0.8 power law. A more realistic 𝜔0.5 power law is shown for comparison. (b) Associated
response function 𝑢(𝑡) to a point force 𝑓 (𝑡) = 𝑓0𝛩(𝑡) using different auxiliary masses leading to different eigenfrequencies 𝜔GFMD =

√
𝑘∞∕𝑚. The full black line

shows the ideal or target response function, while dashed colored lines reflect the implemented response function. In each case, the auxiliary damping was
chosen to satisfy the condition for critical damping 𝜂0 = 2 𝑚𝜔GFMD.

with 𝑘∞(𝑞) ≡ ∑𝑁
𝑛=0 𝑘𝑛(𝑞), which is nothing but 𝑘∞(𝑞) = 𝐸(∞)𝑘0(𝑞)∕𝐸(0), where only one of the two ‘‘arrays’’ 𝑘0(𝐪) and 𝑘∞(𝐪) needs to

be stored in memory. Even for a single Maxwell element, the solution of the equations of motion turned out simpler and more stable
(but not necessarily faster) than our previous extension to GFMD (Sukhomlinov and Müser, 2021), which was similar in spirit to that
proposed by Van Dokkum and Nicola (2019) in that the first-order time derivatives of the external forces were needed. Our current
approach rather resembles that pursued by Bugnicourt et al. (2017), who used Zener instead of Maxwell models and a conjugate
gradient (CG) minimization method for the solution of the instantaneous or high-frequency response instead of the auxiliary masses.

Before proceeding, a few additional notes of clarification might be in order. First, tildes on the 𝑢𝑛(𝐪, 𝑡) are omitted, as they are
not subjected to an inverse Fourier transform. Second, the equations of motion solved in conventional GFMD are recuperated by
setting 𝑁 = 0, while the standard linear solid is obtained when using 𝑁 = 1 and (infinitesimally) small values for 𝑚 and 𝜂0. Third,
the presented methodology is readily extended to more general situations, even if the above treatment merely targets the specialized
problem defined in Section 2. For example, if the elastic properties were anisotropic in the 𝑥𝑦-plane, as they would be if the elastomer
were prestrained in 𝑥 but not in 𝑦 direction, the coefficients 𝑘0(𝑞) and thereby 𝑘𝑛(𝑞) and 𝜂𝑛(𝑞) would be functions of the vector 𝐪
and not merely of its amplitude. Similarly, if the elastic properties changed with depth, as is the case when the crosslinking and
thus the stiffness depends on the depth (Müser et al., 2019), but similarly when the elastomer is confined by a hard wall (Carbone
and Mangialardi, 2008; Carbone et al., 2009), the term 𝑘0(𝑞) = 𝑞𝐸∗∕2 would have to be replaced or multiplied with an appropriate
𝑞-dependent function. Last but not least, using 𝑁 Maxwell elements does not imply a single time step to take 𝑁 times longer than
a conventional GFMD time step, because the most demanding operation is the fast Fourier transform. For example, using 𝑁 = 5
Maxwell elements per mode only increases the CPU time per time step by roughly 50%, compared to a regular GFMD time step for
a discretization of 2048 × 2048. Relative costs on memory are clearly larger. The reason why we do not go beyond five Maxwell
elements in this study is that almost four decades of relaxation times can be covered when choosing 𝜏𝑛+1 = 𝜏𝑛∕6, which requires
the time step 𝛥𝑡 to be chosen very small assuming 𝜏1 to remain fixed. Mimicking an even broader relaxation-time spectrum would
impose further and eventually unfeasible demands on the used time step 𝛥𝑡.

While the values of 𝑘0(𝑞) as well as 𝑘𝑛(𝑞) and 𝜂𝑛(𝑞) for 𝑛 ≥ 1 are predetermined by 𝜅𝑛, 𝜏𝑛, and 𝐸∗, the remaining parameters 𝑚(𝑞)
and 𝜂0(𝑞) should be chosen such that they provide a compromise between accuracy and efficiency. The goal must be to find the
high-frequency elastic response as quickly as possible, albeit without making it necessary to dramatically reduce 𝛥𝑡. Under the made
assumption that 𝐸(𝜔) does not depend on 𝑞, each free surface mode must have the same response function. This implies 𝑚(𝑞) ∝ 𝑘0(𝑞),
which is the choice made in so-called mass-weighted GFMD (Zhou et al., 2019). The period associated with the resulting frequency
𝜔GFMD =

√
𝑘∞(𝑞)∕𝑚(𝑞) is best chosen such that it is not much larger than 1∕𝜏min = 1∕𝜏𝑁 = 1∕min(𝜏𝑛). We found the ‘‘aggressive’’

choice of 𝜔GFMD𝜏min = 2𝜋 to be sufficient. If, however, the pulling velocity is so large that the time step 𝛥𝑡 is no longer limited by
𝜏min but by a large pulling velocity, e.g., by the ratio of a characteristic height amplitude and the pulling velocity, we recommend
to set 𝑚(𝑞) such that 𝜔GFMD𝛥𝑡 ≈ 𝜋∕10 as to achieve a numerically stable but fast relaxation of the high-frequency response to its
exact solution. After realizing that the left-hand side of Eq. (6a) represents a damped harmonic oscillator, 𝜂0(𝑞) is set to satisfy the
condition for critical damping, i.e., 𝜂0(𝑞) = 2𝑚(𝑞)𝜔GFMD.

As a consequence of the just-made choices, the target viscoelastic response, for example, to an indenter exerting a force on a
single (grid) point starting at time 𝑡0, is mimicked quite accurately at times satisfying 𝑡 > 𝑡0 + 𝜏min, which can be achieved within
one or two dozen time steps. The validity of this claim is demonstrated in Fig. 4b for our system with 𝑁 = 5 Maxwell models. It can
be seen that even 𝜔GFMD𝜏min = 2𝜋 leads to quite satisfactory results, although the time step, 𝛥𝑡 was set by default to 𝛥𝑡 = 𝜏min∕20.
The ratio 𝑘∞∕𝑘0 was reduced from its reference value of 1000 to 250 because this made the 𝜅(𝜔) dependence at small 𝜔 be closer to
the real PDMS (Tiwari et al., 2017) when using a single Maxwell element. When using five Maxwell elements, in addition to the 𝑘0
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spring, we can produce a response function 𝐸′(𝜔) that roughly scales proportional to 𝜔𝛽 with 𝛽 ≈ 0.8 at an intermediate frequency
𝜔int defined through 𝐸′(𝜔int) =

√
𝐸′(0)𝐸′(∞), where 𝐸′(𝜔) is the storage modulus, i.e., the real part of the complex function 𝐸(𝜔).

A single element yields 𝛽 ≈ 2, while experimental systems are often close to 𝛽 ≲ 0.5 (Tiwari et al., 2017). An exponent of 𝛽 = 0.8
thus appeared a good trade-off between computational efficiency and reality.

2.2.2. Modeling adhesion
The adhesive and repulsive interaction between elastomer and indenter is modeled by the cohesive zone model (CZM) proposed

in Ref. Wang et al. (2021). Assuming their two surfaces with nominal surface energy 𝛾 to have a gap 𝑔(𝑥, 𝑦), the interaction potential
𝛤 (𝑔) is given by

𝛤 (𝑔) = −𝛾 ⋅
⎧
⎪⎨⎪⎩

{1 + cos(𝜋𝑔∕𝜌)}∕2 for 0 ≤ 𝑔 < 𝜌{
1 − (𝜋𝑔∕𝜌)2∕4

}
for 𝑔 < 0

0 else,
(7)

where 𝜌 is the range of adhesion. Our CZM allows two surfaces to overlap marginally but penalizes the overlap with a harmonic
function. Enforcing a strict non-overlap constraint might be possible, albeit only at a much enhanced numerical cost, since this
would certainly require all internal modes 𝑢𝑛(𝐪) to be Fourier transformed. Moreover, the quadratic dependence of the potentials
implies an upper bound for the stiffness of the equation to be solved, thereby ensuring stable integration with an appropriately
chosen time step. The maximum adhesive stress 𝜎th = max(d𝛤∕d𝑔) that can locally occur using this model is 𝛾𝜋∕(2𝜌).

The range of adhesion is generally chosen such that it is as small as possible for a given discretization but not so small that lattice
pinning and subsequent instabilities of the grid points at a propagating crack front would occur. This can be achieved when the
maximum curvature of the potential is set to approximately 0.2𝑞ref𝐸∗, where 𝑞ref ≡ 2𝜋𝑛∕𝐿, 𝑛 being the number of discretization points
parallel to one spatial direction and 𝐿 the linear dimension of the periodically repeated simulation cell (Wang et al., 2021). Given a
default choice of 𝐿 = 1.5 mm and discretizations of the elastomer surface into grid points whose number ranged from 2048 × 2048 to
4096 × 4096, 𝜌 turned out to lie in between 0.187 and 0.264 μm, which is not only much more than typical Lennard-Jones interaction
ranges of 3 Å but also exceeds recent estimates (Thimons et al., 2021), which were obtained from experimentally measured pull-off
forces between ruby and diamond, by a little more than a factor of ten.

To meaningfully compare simulations and experiments, it is necessary to assess whether the adhesive interactions used in the
model are short- or long-ranged. This can be done using a (generalized) Tabor parameter, which is defined as the ratio 𝜇T = 𝜌c∕𝜌,
where 𝜌c is a characteristic interaction range at which the cross-over from short- to long-ranged adhesion takes place. Assuming
that 𝛾∕𝐸∗ and a characteristic radius 𝑅c are the only two independent length scales that can be constructed from the model, the
only possible dependence of 𝜇T on the two length scales is

𝜇T = 1
𝜌
𝑅𝛽

c

( 𝛾
𝐸∗

)1−𝛽
, (8)

assuming either a flat punch with radius 𝑅c or an indenter whose shape is a power law in the radius, i.e., ℎ(𝑟) = 𝑅c(𝑟∕𝑅c)𝑛∕𝑛. It
will be shown in a separate work that the exponent 𝛽 turns out to be 𝛽 = (𝑛− 1)∕(2𝑛− 1) so that 𝛽 = 1∕3 for a parabolic (𝑛 = 2) and
𝛽 = 1∕2 a flat-punch (𝑛 → ∞) indenter. These two limiting cases agree with the definition of the conventional Tabor parameter for a
parabolic indenter (Tabor, 1977) and for the parameter allowing one to assess if the high-velocity retraction of a flat-punch indenter
fails through crack propagation or through uniform bond breaking. They correspond to the limits of 𝜇T ≫ 1 and 𝜇T ≪ 1, where the
high-frequency rather than the small-frequency modulus is used in the calculation of the Tabor parameter (Persson, 2003).

The numerical Tabor parameters at the scale of local parameters turns out to be 𝜇T ≈ 2 for either profile when using the default
discretization of 4096 × 4096 and thus 𝜌 = 0.187 μm. This is because the radii of curvature associated with the peaks of the (ideal)
profiles have similar values, namely 𝑅c = 163 μm (triangular) and 𝑅c = 142 μm (hexagonal). While 𝜇T ≈ 2 produces (quasi-static)
load–displacement curves in contact similar to short-range adhesion (Müser, 2014; Wang et al., 2021), it must be considered long-
ranged in non-contact (Ciavarella et al., 2017; Wang et al., 2021). This is because the jump-into contact occurs at a relatively
large separation so that the adhesion hysteresis is about 50% of the true hysteresis for parabolic indenters with 𝜇T = 4. From that
point on, adhesion hysteresis converges only with the cubic root of the linear mesh size to the exact result (Wang et al., 2021).
Consequently, simulations cannot be expected to reproduce experimental results with close-to-perfect precision, at least not using
currently available methods and computers. If surfaces were not corrugated, the generalized Tabor parameter for the flat punch
would be reasonably large, i.e., 𝜇T ≈ 10 for the 2048 × 2048 resolution and 𝜇T ≈ 14 for 4096 × 4096. It may also be of interest to
calculate the Tabor parameter at a coarse scale, i.e., the one that is obtained when using the measured quasi-static pull-off force (from
which an effective surface energy can be constructed) and the given range of adhesion while assuming a perfectly flat punch. For
the hexagonal surface, these ‘‘effective’’ Tabor parameters turn out to be 0.880 and 1.24 for 2048×2048 and 4096×4096, respectively.
The triangular variant shows a 40% smaller quasi-static pull-off force and hence an equally reduced effective Tabor parameter.

2.2.3. Refinements and corrections
A few adjustments were made to the numerical model in order to facilitate the comparison between simulations and experiments.

Firstly, the velocity inversion was not abrupt but happened over a few but sufficiently many time steps to yield a smooth force–
distance relation. Secondly, the 3D printing process introduces deviations from the ideal reference model, most notably an undesired
macroscopic curvature, which was reflected in the numerical model. This curvature is a result of shrinkage induced by cross-linking
during UV-curing. In selected simulations, we also accounted for the quasi-discrete height steps of 𝛥𝑧 = 0.2 μm, which result from
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Fig. 5. (a) Illustration of the different displacements considered for compliance correction. (b) Linear fit of 𝑢∞ for stiffness evaluation.

the layer-by-layer nature of the printing process. Final results were only marginally affected by this since 𝛥𝑧 is of similar order of
magnitude as our interaction ranges 𝜌 = 0.187 to 0.264 μm and the steps in the topography are not very sharp.

A final technical aspect deserves mentioning. For reasons of computational efficiency, the buffer between the indenter and its
periodic image should be made as small as possible but large enough so that the stress field on the indenter is not significantly
affected. This is achieved quite well with our choice of 𝐿 = 4𝑎, supposedly because the displacement field of standard indenters
approach the 1∕𝑟 asymptotes quite closely at a distance from the symmetry axis being twice the contact radius. However, the center-
of-mass mode of a periodically repeated surface, �̃�(𝑞 = 0), deviates from the real 𝑢∞ = 𝑢(𝑟 ≫ 𝑎) that would be obtained in a real
system without periodic boundary conditions (PBC) and with respect to which the indenter penetration is measured. An example
for this difference is depicted in the form of the dashed and solid red lines in Fig. 5a. Given that 𝑎∕ℎ = 5 yields a contact stiffness
only 20% in excess of the semi-infinite case (Hensel et al., 2019; Müller and Müser, 2022), the system can be approximately treated
as semi-infinite so that the correction

𝑢∞ ≈ 6𝑢(𝐿𝑥∕2, 𝐿𝑦∕2) − 5𝑢(𝐿𝑥∕2, 0) (9)

can be used, which was originally identified for sharp indenters in square simulation cells (Müser, 2014).
The described adjustment can also be thought of as a correction of an unwanted finite stiffness in the system, which does

not always require a change of the experimental/numerical procedure. If the mismatch between ideal and measured indenter
penetration, 𝑢ideal and 𝑢ind, is caused by a quasi-static elastic stiffness 𝑘cc, it can be accounted for by adding the missing displacement
during data post-processing with the correction 𝑢ideal(𝑡) ≈ 𝑢ind(𝑡)+𝛥𝑢cc with 𝛥𝑢cc = 𝐹 (𝑡)∕𝑘cc and 𝑘cc determined from 𝑢ideal(𝑡)−𝑢ind(𝑡) =
𝑢∞(𝑡) = 𝐹 (𝑡)∕𝑘cc as shown in Fig. 5b. Similarly, the experimental curves must be corrected for the machine compliance or machine
stiffness 𝑘M to 𝑢ideal = 𝑢ind(𝑡) −𝐹 (𝑡)∕𝑘M. It turned out that the visualization of differences between experiments and simulations was
best when subtracting the correction 𝛥𝑢cc from the experiments rather than adding it to the simulations.

An issue to keep in mind regarding compliance corrections is that the occurrence of local instabilities, e.g. pull-off events,
generally depends on the global system compliance. As such, the effect of 𝑘cc on the load–displacement curves cannot be rigorously
accounted for in post-processing (Booth and Hensel, 2021; Hensel et al., 2021). For viscoelastic systems, it may also happen that
a simulation or measurement performed at constant speed 𝑢ind(𝑡) = 𝑣ext𝑡 implies that d𝑢ideal(𝑡)∕d𝑡 is not exactly constant but varies
over time as (1∕𝑘cc)d𝐹 (𝑡)∕d𝑡 or (−1∕𝑘M)d𝐹 (𝑡)∕d𝑡.

2.3. Experimental methods

The development of optical observation techniques has benefited a wide range of applications, notably for assessing the true con-
tact area between solids. Frustrated total internal reflection (FTIR) started to be applied to image the contact in the 1960s (Harrick,
1962; McCutchen, 1964). FTIR and related methods are routinely employed nowadays to measure stress distributions (Eason et al.,
2015), contact area of rough surfaces (Bennett et al., 2017; McGhee et al., 2017), or to visualize the contact formation and separation
of fibrillar microstructures (Tinnemann et al., 2019; Samri et al., 2021; Thiemecke and Hensel, 2020; Samri et al., 2022; Booth
and Hensel, 2021). Despite the successful use of FTIR to determine multiple contact properties, obtaining high contrasts is limited
to observing the contact of an opaque specimen through a transparent counter-surface. Another technique that was employed for
contact measurement is the optical interference observed as Newton’s rings (McCutchen, 1964; Wahl and Sawyer, 2008; Sawyer and
Wahl, 2008). This technique became more and more relevant in contact mechanics and tribology after Krick et al. (2012) employed
it to develop an in-situ optical micro tribometer, which allowed them to visualize the intimate contact between solids during loading
and sliding experiments. In this work we use a new approach for contact observation based on the coaxial lighting principle, as
illustrated in Fig. 6. Using light from a collimated light source (collimated LED, Thorlabs, New Jersey, USA), a parallel light beam
is created for homogeneous lighting. The parallel beam is scattered at the contact points between indenter and substrate, reducing
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Fig. 6. Schematic representation of the experimental setup.

the intensity that is reflected back to the camera. This enhances the contrast between contact and non-contact areas compared to
non-parallel or transmitted light. It also makes it easy to keep the optics in focus, because the reflecting surface remains static during
the experiment.

In preparation of the 3D printing process, the computer-generated topographies shown in Fig. 2 were converted to STL file
format, vertically sliced into slabs with an adaptive thickness of 0.2 to 1.0 μm and laterally hatched with a fixed width of 0.5 μm. The
resulting models were then printed by a two-photon lithography direct laser writing device (Photonic Professional GT2, Nanoscribe,
Karlsruhe, Germany), using a 25x objective, writing speed of 100 mm/s, and a laser power of 40 mW. The printing material was a
commercial photoresist (IP-S, Nanoscribe, Karlsruhe, Germany) used in dip-in mode, with an elastic modulus of 𝐸IP-S = 1.34 GPa.
After being printed, the indenter topographies were measured using a confocal microscope (MarSurf CM expert, Mahr, Göttingen,
Germany).

The substrate was fabricated from PDMS (Sylgard 184, Dow, Midland, MI, USA) by mixing the base and the curing agent in a
ratio of 10 ∶ 1. The pre-polymer was degassed using a Speed-Mixer (DAC600.2 VAC-P, Hauschild Engineering, Hamm, Germany)
with 2350 rpm at 1 mbar for 3 min and then cured at 95 ◦𝐶 for 1 h. Fig. 6 shows the employed custom setup for tack tests with
optical contact imaging. The normal displacement was controlled by a SMARPOD hexapod (SmarAct, Oldenbug Germany) and the
force was measured by a 2 N load cell. The PDMS substrate was glued to the bottom of a transparent sample holder containing a
mirror allowing the side-mounted optical system to see through. This holder was mounted to a modular positioning system with six
degrees of freedom (SmarAct, Oldenbug Germany) for precise surface alignment using two side-view cameras. The whole mechanical
setup was measured to have an effective machine stiffness of 𝑘M = 38.1 kN/m. Videos of the contact evolution during the tack tests
were recorded at 50 frames per second using a digital camera (DFK 33UX273, Imaging Source Europe GmbH, Bremen, Germany).
All experiments were performed in a laboratory with regulated temperature of 21 ± 0.2 ◦C and relative humidity at 50 ± 5%.

3. Results

3.1. 3D printing

We first analyze optical images of the experimental topographies obtained by the 3D printing process. Fig. 7a shows the difference
between targeted and measured height profile exemplarily for the triangular surface. The main deviation between them is a mean
curvature, which is supposedly due to shrinkage of the resin after 3D printing. This global curvature was reflected in the topographies
used for the simulations. Ignoring it substantially reduces the agreement between simulations and experiment, because stresses in
the flat-punch solution are largest where the correction is most noticeable. Ideal, simulated, and experimental height profiles are
compared in Fig. 7b.

3.2. Tack tests for the triangular surface

Fig. 8 shows the measured and simulated load–displacement curves obtained for the triangular surface. The loading process,
shown as a gray dashed line, is smooth and rather insensitive to the approach velocity. The more interesting detachment parts of
the curves are highlighted in color. Experiments and simulations show similar trends: Two bulges occur at small velocity 𝑣ext and
small preload 𝐹pl. A bulge located at slightly compressive force is related to the detachment of saddle points—as revealed in more
detail further below—while the bulge at a tensile force relates to the final pull-off process. Their locations approach each other when
either 𝑣ext and/or 𝐹pl is increased. Ultimately, they merge into a single minimum, whose value corresponds to the (negative) pull-off
force. Although experimental and simulated curves agree only semi-quantitatively, the tensile pull-off force is increased from about
𝐹po = 2.5 ± 0.5 mN for a preload force of 𝐹pl = 40 mN to up to 𝐹po = 14 ± 2 mN for 𝐹pl = 80 mN in both cases.
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Fig. 7. (a) Deviation of an experimental line profile from the ideal model and (b) absolute heights of model, simulated and experimental indenter, shown
exemplarily for the triangular pattern. The curvature correction shown in (a) proved necessary for a successful comparisons between simulations and experiments.

Fig. 8. Load–displacement curves recorded during the detachment of the triangular surface at different velocities. The left column always shows experimental
results, while the right column shows single-relaxation time simulations. From the first to the last row, the preload is increased from 40 to 60 and then 80 mN.
Semi-quantitative agreement is achieved across the board, despite a slight mismatch in macroscopic contact stiffness and the intermediate preload case.

One qualitative difference between the experimental and the simulation data is that the simulation data is more rugged. The
smoother experimental data arises for three reasons: first, symmetry-related peaks in the real punch do not have the exact same
height so that they depin at slightly different moments, while symmetry is perfect in simulations yielding sharper signals. Second,
the real viscoelastic response function is based on a broader range of relaxation times. Third, the experimental data was low-pass
filtered with a resolution of approximately 0.1 μm.
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It is quite noticeable that the comparison for 𝐹pl = 60 mN in Fig. 8 is substantially less good than for the other two preloads. This
is because a jump into full contact occurs in the simulations a little before 60 mN were reached, while valleys are a nudge short of
making contact in the experiments. One effect potentially contributing to the later, experimental jump-into-full-contact instability
— in addition to the single-relaxation time approximation — could be the drag forces exerted by the air that needs to be squeezed
out of the thin gap between elastomer and indenter before reaching full contact. To indirectly account for, or, fake, the absence
of full contact at intermediate loads, we added a dotted line from a simulation with a slightly reduced preload of 𝐹pl = 50 mN,
whereby agreement with experiments was much enhanced.

The sensitivity of the load–displacement curves w.r.t. range of adhesion and the viscoelastic model will be scrutinized after
establishing that the semi-quantitative agreement between experimental and simulated load–displacement curves is not fortuitous:
experimental and simulated contact topographies evolve in concert, as is revealed exemplarily in Fig. 9 for the preload of 𝐹pl = 40 mN
and the retraction velocity of 𝑣ext = 1 μm/s. In the simulations representing two differently parametrized single-relaxation time
models, dark gray means contact (negative gap), medium gray is experimentally indistinguishable from contact (0 ≤ 𝑔 ≲ 500 nm),
while light gray is non-contact and very light gray the background color. The gray shades in the real-laboratory, optical images do
not allow us to determine the true interfacial separation to a high precision. Yet, very dark pixels can be assumed to indicate contact,
while less dark and bright pixels certainly imply non-contact. Hence, the medium-gray color level was introduced to represent gaps
smaller than the medium wavelength of visible light, which we expect to appear quite dark in the optical images. To better visualize
details of the gap distribution in the in-silico surface, heat maps of the interfacial stresses are included in Fig. 9 and in later related
figures for the hexagonal surface.

Experiments and simulations reveal similar characteristics: at the point of maximum preload, contact occurs in all peaks but only
in those saddle points that are close to the outer rim, despite the slightly convex macroscopic surface curvature. The snapshots in
the last two columns of Fig. 9 were taken right before and after the bulge in the force–displacement curve near a displacement of
6 μm. Hence, we can associate this bulge with the saddle-point detachment at the outer rim of the corrugated punch whenever it
did occur.

Similar qualitative agreement of the contact evolution in real-laboratory and in-silico was found for all load–displacement curves
shown in this study. Nonetheless, quantitative differences exist: for example, while the initial experimental and simulated frames
at the maximum preload in the left column of Fig. 9 look astoundingly similar, given that the simulations cannot be seen as short-
range adhesion on approach, the experimental contact barely changes to the next shown image. In contrast, the in-silico contact
reveals a noticeable retardation or aftereffect from the moments of high compression during the initial decompression in that the
contact keeps growing slightly. We attribute this to the necessity of large viscoelastic relaxation times for a proper reproduction of
the dissipation caused by moving cracks. This makes the response to simple indentation be too sluggish so that aftereffects of the
compression branch are noticeable shortly after inverting the direction of motion. Upon further decompression, the trend reverses
and the contact evolves slightly more slowly in the experiments than in the simulations: the destruction of contact at the saddle
points between the last two columns of Fig. 9 happens earlier in the simulations than in the experiments.

To elucidate the role of the range of adhesion on the dynamics, we contrast the contact formation obtained in two simulations
based on slightly different models, which both assume a single relaxation time and the same 𝐸∞∕𝐸0 ratio. The second model uses
a range of adhesion that is increased by a factor of

√
2 w.r.t. the first model while the relaxation time was multiplied with 2.5

to achieve close agreement between the dynamics of the two models. A slightly different redefinition of the relaxation time might
have lead to even better agreement. However, even with the made choice, the second and the third row of Fig. 9, representing the
alternative and the default single-relaxation time model, respectively, barely allow the naked eye to distinguish the contact break-up
between the two models. Only the second contact images, taken at a time 1.125 𝑡pl, where 𝑡pl is the time elapsed between initial
contact and maximum compressive load, differ slightly: in the given time of 0.125 𝑡pl, the contact with the smaller relaxation time
has grown more than the other one.

The reason why changing the viscoelastic relaxation time can be ‘‘compensated’’ by a change in the range of adhesion 𝜌 during
the retraction process is an interplay between the range of adhesion and the viscoelastic properties of the elastomer (Schapery,
1975; Müser and Persson, 2022). The dissipation caused by the propagating opening cracks must be reproduced in simulations in
order to yield accurate load–displacement curves. Since steeper slopes at the contact edge imply larger (relative) velocities in a
moving crack and thus enhanced dissipation, a shorter range of adhesion, leading to steeper slopes, can be compensated by shorter
relaxation times used in the viscoelastic model.

To elucidate the role of viscoelasticity, three different viscoelastic models were considered in addition to the purely elastic model
reflecting the quasi-static limit. Their frequency-dependent contact moduli are depicted in Fig. 10a with model 1 having a single
relaxation time of 𝜏 = 400 μs and 𝐸∞∕𝐸0 = 250, while model 2 and 3 contain five relaxation times—with ratios and weight chosen
as described in Section 2.2 and 𝜏min = 40 μs. Moreover, 𝐸∞∕𝐸0 = 8 in model 2 and 𝐸∞∕𝐸0 = 250 in model 3. Panels (b–d) in Fig. 10
reveal that all three viscoelastic models increase the adhesion hysteresis with respect to the quasi-static model, which shows a rather
small pull-off force of 0.7 mN independent of the preload. While the effect is relatively minor for model 2 with its relatively small
𝐸∞∕𝐸0 ratio, the preload sensitivity is largest for model 3 with a large 𝐸∞∕𝐸0 ratio and a tail of the ‘‘excess’’-𝐸(𝜔) extending to
small frequencies. Interestingly, the changes to the viscoelastic model in that range of frequencies seems to have a larger impact
than the change associated with the high-frequency end of the spectrum. For the intermediate preload of 60 mN, the maximum
tensile force occurs at slightly positive displacement and is clearly associated with the detachment of saddle-points rather than with
that of asperity peaks.
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Fig. 9. Contact observation during retraction in a tack test at 1 μm∕s and a maximum compressive load of 𝐹pl = 40 mN. The upper row shows experimental
data, while the two center rows represent simulations using different relaxation time 𝜏 and range of adhesion 𝜌. The darker areas represent points with interfacial
separations less than 500 nm, while the lighter areas represent larger gaps. The last row shows the pressure distribution associated with the previous row. 𝑡pl
denotes the time between first contact and preload for the respective row. The times for the last two columns are located just before and past the bulge in the
force–displacement curve on the compressive part of the unloading curve, i.e. at 𝑢 ≈ 5 μm. Similar features are observed in all cases, e.g., the loss of contacts
start with the saddle points at the edges and contact exists in all asperities but in no saddle point before the maximum tensile force during detachment is
reached, i.e., at a displacement near −1 μm.

3.3. Tack tests for the hexagonal surface

The tack tests on the hexagonal surface were carried out similarly as on the triangular surface, however using smaller preloads.
The resulting load–displacement curves are shown in Fig. 11, this time only for two velocities but including the loading part. The
𝑣ext = 1 μm/s contact evolution is depicted in Fig. 12 with an emphasis on the loading rather than the detachment process.

The force–displacement curves on separation contain only one minimum at all investigated velocities for the hexagonal surface.
The extra bulge related to the saddle-point detachment in the triangular surface has disappeared for the hexagonal pattern, because
their detachment coincided in all investigated cases with that of the asperity peaks. This is because saddle points are almost as high
as the peaks in the hexagonal lattice. In fact, they are so high that contact formation of saddle points between asperities occurs
shortly after (0.7 μm) contact formation at the peaks even in the quasi-static limit on approach. This, in turn, is due to the fact that
the height of the contact line of a zero-load isolated asperity (in the Hertzian, i.e., parabolic approximation) almost extends down
to a height where the corrugated profile crosses over from convex to concave. Due to the large dissipation of a propagating closing
crack, viscoelastic saddle-point contact formation is far from being instantaneous.
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Fig. 10. Load–displacement curves obtained for the triangular surface exposed to a preload of (b) 40 mN, (c) 60 mN and (d) 80 mN using different rheological
models defined in panel (a). The detachment speed is 1 μm∕s in all cases. Larger stiffness at small frequencies leads to larger pull-off forces.

While the detachment curve shows fewer features for the hexagonal than for the triangular pattern, the approach curves for the
operating velocities of 1 and 25 μm/s no longer superimpose within line width in Fig. 11. More interestingly, the load–displacement
curves under compression start to be quasi-linear at a load of roughly 4 mN, at which point all saddle points have made contact.
Upon decompression, the quasi-linear dependence applies to normal loads well below 4 mN and ends when saddle points start to
jump out of contact.

Increasing the preload past the point of saddle point formation changes the load–displacement relation for the hexagonal pattern
only moderately, particularly little between panels c and e of Fig. 11, corresponding to 𝐹pl = 5 and 10 mN, respectively. This can
be rationalized by the contact image obtained at the maximum tensile force in the last column of Fig. 12, where most saddle
points are still in contact. Those panels also corroborate the statement made at the beginning of the results section that correcting
for the ‘‘macroscopic’’ surface curvature induced during cooling after the printing process was needed to achieve reasonable or,
depending on viewpoint, good agreement between the laboratory and in-silico samples: the contact area close to the rim of the
punch is noticeably reduced by the ‘‘macroscopic’’ curvature correction.

4. Discussion and conclusions

This work addressed the interplay between viscoelastic hysteresis in contact mechanics and the hysteresis due to elastic
multistability being responsible for the quasi-discontinuous snap into and out of individual contact patches observable during quasi-
static driving. To elucidate the coaction of viscoelastic and multistability effects, we studied numerically and experimentally a flat
punch to which small-scale corrugation—in the form of either a hexagonal or a triangular height profile—was added. The two height
spectra are identical although the profiles are their mutual negatives, i.e., the phases of the height Fourier coefficients are shifted
by 𝜋. This makes the saddle points, which are located between two maxima and which turn out crucial for the contact mechanics,
be closer to the asperity summits in the hexagonal than in the triangular lattice.

Contact of an ideal flat punch forms quasi-instantaneously so that both viscoelastic losses due to closing cracks and multi-stability
effects are negligible on approach. Consequently, preload effects of ideal-punch detachment are minor. However, the detachment
requires a crack to propagate from the rim to the center, which leads to a viscoelasticity-enhanced work of separation at intermediate
pull-off velocities (Jiang et al., 2014; Müser and Persson, 2022): the work of separation approaches 2𝛾𝐴 at very small and very large
velocities, assuming high- and low-frequency contact moduli to be well defined.

After small-scale roughness was added to the flat punch, the wavelength of the pattern being one fifth of the punch diameter,
strong preload effects occurred at intermediate operating velocities but not under quasi-static driving. Thus, preload and multi-
stability effects are intertwined in the corrugated punches. The preload effects were distinctly larger for the triangular than for the
hexagonal pattern. Specifically, the pull-off force for the hexagonal lattice saturated at roughly 6 (experiment) and 7 mN (simulation)
once the preload had reached 5 to 10 mN at an operating velocity of 25 μm∕s. These two forces were roughly twice and ten times
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Fig. 11. Load–displacement curves obtained during detachment at different velocities for the hexagonal pattern. The left column shows experimental results,
while the right column shows single-relaxation-time simulations. The preload increases from 1 to 5 and then to 10 mN from the first to the last row,. A
quasi-static reference calculation with the same adhesive interaction resulted in a pull-off force of 1.2 mN and a tensile force of 0.8 mN immediately after the
jump-into-contact instability. Preload effects are distinctly reduced compared to the triangular surface in experiment and simulation alike.

larger, respectively, for the triangular pattern. Despite these quantitative differences, pull-off forces saturated in both cases once the
preload had been large enough to induce contact at the saddle points and retraction was fast enough so that saddle-points were still
in contact at the point of maximum tensile force. Since the saddle-point heights are rather close to (far from) the height maxima
in the hexagonal (triangular) lattice, preload effects saturated earlier in the hexagonal than in the triangular system, although the
hexagonal amplitude was chosen more than twice that of the triangular corrugation.

A purely spectral approach to our system assuming random phases, as pursued in Persson’s contact mechanics theory (Persson,
2001, 2002), would not be in a position to reproduce or predict the observed trends. In the quasi-static case, the hexagonal surface
pattern even shows a substantially larger pull-off force than the triangular one, despite its 2.3 times larger height amplitude.
In principle, phase-correlation effects can be included into the theory (Müser, 2008; Zhou and Müser, 2020), which might
fix this shortcoming. Furthermore, Persson’s rough surface contact theory only takes either viscoelasticity (Persson, 2001) or
adhesion (Persson, 2002) into account, but not (yet) both simultaneously. Both effects have to be accounted for in a proper
description of our system.

Can our results be rationalized with bearing-area models (BAMs), such as the popular approach by Fuller and Tabor (1975) for
nominally flat, adhesive contacts? BAMs assume the highest asperity to come into contact first and out of contact last, the second-
highest peak to come into contact second and out of contact second last, and so on and so forth. The load–displacement laws of the
individual peaks, whose shapes are approximated as paraboloids, are then added up to yield a global load–displacement curve. While
BAMs are commonly used to describe quasi-static contact loading, generalization to dynamics seems to be straightforward, e.g., by
‘‘feeding’’ the time-dependent force–displacement relation of an isolated asperity contact at the given operating velocity into the
model, see also Ref. Violano et al. (2021b). For our system, the radii of curvature of the hexagonal and the triangular lattice turned
out quite similar. (The minor curvature corrections w.r.t. the ideal model changes things quantitatively but not qualitatively.) Thus,
the depinning force of a corrugated (ideal) punch would be expected to scale linearly with the number of maxima given fixed heights
and fixed radii of curvature at a fixed operating velocity. Since the number density of maxima in the hexagonal lattice is twice that
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Fig. 12. Contact observation during a tack test at 1 μm∕s and a maximum compressive load of 10 mN. The upper row is taken from the experiment, the center
row from a simulation with a single relaxation time (𝜏 = 200 μs and 𝜌 = 2.642 μm) and the last two rows from a quasi-static simulation with the same range of
adhesion 𝜌. Gray scales as in Fig. 9. Frames are taken from the approach part of the tack test, except for the last ones, which reflect the moment of maximum
tensile force. In real-laboratory and in-silico contacts, all maxima are always in contact while saddle points close to the rim only come into contact with increasing
load. The attachment of saddle points and asperities is clearly separated on approach, but their detachment occurs quasi-simultaneously.

of the triangular lattice, BAMs predict roughly twice the adhesion force for our hexagonal than for our triangular patterned punch,
again assuming identical velocities in both cases. Finite-size effects and cut-off asperities at the rim of the punch renormalize that
ratio but do not affect the trend. Unfortunately, things turn out the other way around in the viscoelastic case, i.e., the triangular
surface with the fewer peaks has clearly greater (viscoelastic) pull-off forces, due to the pivotal role of saddle points. Obviously,
BAMs approximating each peak as parabolic intrinsically fail to account for saddle points, which is why we are beyond skeptical
on studies reporting models in the spirit of Fuller and Tabor to be quantitative for nominally flat contacts, even if agreement can
be fudged during the post-diction of experimental data.

This leaves numerical approaches, such as the here-reported number-crunching exercise, as the least problematic non-
experimental tool to tackle adhesive problems similar to that investigated here. Nonetheless, number-crunching is not entirely
unproblematic either. We also gauged the model parameters on the experiments that were reproduced, even if the few adjustable
parameters were kept constant throughout all simulations. One problem in the attempt to make quantitative predictions is the
multi-scale nature of the dissipation during viscoelastic crack propagation. The range of adhesion critically affects the dissipation of
moving cracks, which must be reproduced correctly to model the formation and the failure of adhesive contacts reliably (Schapery,
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1975; Hui et al., 1998; Persson and Brener, 2005; Müser and Persson, 2022). This means that the vicinity of the crack must be
resolved with a computationally unfeasible large resolution or the viscoelastic properties of the elastomer relaxation times must be
rescaled, which, however, implies that the time-dependent response of the elastomer to a point indenter would no longer be correct.
For experimental in-situ contact observation, one challenge was to keep the focus on a moving indenter and to obtain good contrast
between contact and non-contact with a lateral resolution close to the wavelength of light. Another difficulty was to remove artifacts
from the confocal-microscopy measurements of the height profiles, which would have been even more challenging if the surfaces
had relevant roughness on finer length scales (Jacobs et al., 2022).

Despite all difficulties related to the numerical modeling, we would argue that the simulations matched the experiments not
only qualitatively but almost quantitatively, that is, both force–distance relationships and contact images correlated quite well
between simulations and experiments. This was accomplished not for fortuitous reasons but because (a) the simulations captured
all the essential ingredients of real contacts, (b) imperfections in the 3D printing process were accounted for so that the adhesion
at pull-off originated on the contact rim for the triangular pattern but in the center of the contact for the hexagonal pattern. It is
noteworthy that this was achievable entirely within linear response theory, neglecting in-plane stresses as well as large displacement
effects. For the observed system, we would expect these phenomena only change results quantitatively but not qualitatively as in
other systems (Hui and Jagota, 2016; Liu et al., 2021).

Before concluding, we would like to answer the questions raised at the end of the introduction in the order of their occurrence.
First, yes, simulations can reproduce the experimental dependencies, however, at this stage, only semi-quantitatively. Second, for
the current system, reducing the range of adhesion by a factor of

√
2 required the relaxation times to be divided by approximately

2.5 to yield similar dynamics. This scaling might differ for other geometries. Third, we find that the dissipation due to elastic
and viscoelastic instabilities cannot generally be discriminated, due to their coaction. And last but not least, contact visualization
can certainly help to determine if a contact is about to break, e.g., loss of saddle points in the given system indicates imminent
detachment at small retraction velocity. However, details may differ from system to system.

Due to the good correlation between experimental and simulation results, we are confident that any (qualitative) conclusion
drawn in this work is on solid grounds. This makes us hopeful that simulations like the ones presented here will soon be in a
position to address systems beyond the demonstrator model considered here, such as pressure-sensitive adhesives or hydraulic seals
in contact with surfaces having complex and not only single-sinusoidal micro-scale roughness. Likewise, optically studying the time
evolution of contacts, in particular their saddle points, as done in this work, bears much promise to predict if a given contact is
close to detachment.
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Significance of Elastic Coupling for Stresses and Leakage in Frictional Contacts
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We study how the commonly neglected coupling of normal and in-plane elastic response affects
tribological properties when Hertzian or randomly rough indenters slide past an elastic body. Compress-
ibility-induced coupling is found to substantially increase maximum tensile stresses, which cause materials
to fail, and to decrease friction such that Amontons’ law is violated macroscopically even when it holds
microscopically. Confinement-induced coupling increases friction and enlarges domains of high tension.
Moreover, both types of coupling affect the gap topography and thereby leakage. Thus, coupling can be
much more than a minor perturbation of a mechanical contact.

DOI: 10.1103/PhysRevLett.131.156201

Explaining and predicting the properties of interfaces
between solid bodies requires a proper description of
mechanical contacts at microscopic scales. This is because
small-scale roughness, which is even present on nominally
flat solids, makes true contact be smaller, often distinctly
smaller than if the contacting surfaces were atomically flat
[1–3]. The zones of noncontact cause interfacial electric-
and heat-flow resistances [4,5] as well as extra mechanical
compliances in normal and tangential directions [6,7].
Adhesion can be strongly reduced [8–10] and fluid may
leak through the thin gap between a surface and a seal
[11,12]. To assess structural and mechanical properties of
contacts—most notably, contact area, stress, and gap
distributions—in the important limiting case of linearly
(visco-) elastic solids, the in-plane and out-of-plane elastic
coupling, in the following simply referred to as coupling, is
commonly neglected [13]. Yet, shear stresses acting on
originally flat surfaces do induce normal displacements or
stresses already in linear order, unless the solid is semi-
infinite and incompressible. Without coupling, the sound of
friction, be it caused by violins or squealing breaks [14],
would often be different and Schallamach waves [15,16],
which are kinetic-friction induced buckling instabilities of
elastomers, would not be possible. Generally speaking,
coupling has a destabilizing effect on sliding friction and
weakens frictional cracks [17].
While a description of the just-mentioned phenomena

requires approaches beyond either linear elasticity or quasi-
static conditions, quite a few questions related to linear
coupling have not yet found satisfactory answers even for
steady-state sliding. For instance, how does friction affect
size and shape of the true contact during sliding [18,19],
do moving seals seal better than static seals, and, given a
microscopic friction coefficient for planar surfaces,
does roughness increase or decrease the macroscopically

measured friction? How do changes compare to those
induced by loading configuration in soft-matter systems,
which were reported to be of order Oð10%–30%Þ and
sometimes substantially more [20,21]?
In this Letter, we explore these and related questions for

various rigid indenters sliding past an elastic solid with
arbitrary contact modulus E#, Poisson’s ratio ν, and height
h [see Fig. 1(a)], assuming steady-state conditions and
Amontons’ microscopic friction. Although some of the
issues raised here have already been addressed in line
contacts [22–24], load-area and other relations do not
generalize from line to areal contacts, neither in simple
indenter geometries [25] nor in randomly rough contacts
[26,27], so that the effect of roughness on the friction
coefficient can differ between the two cases. More impor-
tantly, the analysis of how coupling affects leakage cannot
be addressed in line contacts, since they automatically seal

FIG. 1. (a) Contact setup: a rigid indenter sliding along the
x axis at constant velocity v0. Vector components in the x, y, and
z direction are called longitudinal, transverse, and normal,
respectively. (b) Cross sections of a compressible (left) and
confined (right) body loaded by sinusoidal surface stresses,
whose extrema are indicated by red arrows. Stripes and shapes
represent coupling-induced longitudinal (top) and normal
(bottom) displacements, respectively.

PHYSICAL REVIEW LETTERS 131, 156201 (2023)

0031-9007=23=131(15)=156201(6) 156201-1 © 2023 American Physical Society

V. SIGNIFICANCE OF ELASTIC COUPLING AND FRICTION 175



in the lateral (sliding) direction, while they are open in the
transverse direction. In contrast, percolation of randomly
rough two-dimensional surfaces is isotropic, even if rough-
ness and flow factors are not [28]. Moreover, still unex-
plored is the important effect of linear coupling on either
von Mises or maximum tensile stresses in rough contacts,
although they are crucial for the onset of plastic deforma-
tion and the mechanical failure of materials, respectively.
We solve the contact problem numerically using Green’s

function molecular dynamics (GFMD) [29], which is a
Fourier-based boundary value method to calculate elastic
surface displacements under periodic boundary conditions.
To elucidate the effects of coupling, the continuum de-
scription of the normal displacement in Sec. 2.2.1 of
Ref. [30] was generalized to compute the full three-dimen-
sional stress tensor and displacement field for a solid with
arbitrary thickness and compressibility. The needed ana-
lytical (inverse) Green’s functions [23,31] are summarized
in the Supplemental Material [32], along with model and
methods details, including the topography generation for
rigid, randomly rough indenters and the procedure for the
leakage calculation [33]. The essence of coupling effects is
depicted in Fig. 1(b). Codes, input files, and results are
available [34].
The default value for the microscopic friction coefficient

is set to μc ¼ 1. A Poisson’s ratio of ν ¼ 0.25 is used to
analyze the generic behavior of compressible materials and
ν ¼ 0.49 for (nearly) incompressible ones. The first value is
halfway between that of many metals with ν≳ 0.3 and that
of many ceramics with ν≲ 0.2.

To set the stage for this work, we first establish in Fig. 2
that coupling affects areal and line contacts in a similar
fashion [23,24]. For example, for a Hertzian geometry,
Fig. 2(a) reveals that coupling destroys the normal pressure
symmetry also in areal contacts, which now entails non-
circular contact shapes. More specifically, confinement-
induced coupling skews the pressure to the leading edge so
that it carries more load than the trailing edge, as in line
contacts [24,35]. This effect can be deduced directly from
Fig. 1(b) showing that the shear stress in the center—
pointing to the right as does the shear force in Fig. 1(a)—
makes the displacement field “want” to lift up near the
leading edge, which, to keep the normal load constant and
steady sliding conditions, the indenter must counteract with
an increased constraint force, in a similar fashion as in
viscoelastic contacts [36–38]. By virtue of what could be
called a downhill-slope force [39], the leading edge
opposes sliding more than the trailing edge pushes the
indenter forward, which increases the global friction
coefficient from the microscopic value μc to μc þ Δμ.
These trends reverse for compressible elastomers, for
which the pressure maximum shifts to the trailing edge,
resulting in smaller friction. Changes in global friction can
also be related to an interplay of coupling-induced loss of
(anti-) symmetry in velocity and stress fields, which alters
the local heat production. This argument is presented in
detail in the Supplemental Material [32] (Sec. 2b) together
with a compilation of linescans for displacement, velocity,
and stress fields (Fig. SI-2 of [32]).

FIG. 2. Panels (a),(b),(d) and (c),(e) relate to Hertzian indenters of radius R and randomly rough indenters, respectively. (a) Contact
pressure pz (top row) normalized to the maximum regular Hertzian contact pressure pH, relative longitudinal vrell (second row),
transverse u̇t (third row) velocity, and the maximum principal surface stress σmax

I (bottom row) for the reference (ν ¼ 0.49, h → ∞, left
column), the semi-infinite compressible (middle column), and the confined nearly incompressible (right column) elastomer. The applied
normal load is Fz ¼ 0.01E#R2 yielding a Hertzian contact radius of rH ≈ 0.2R (gray circles). Coupling-induced relative changes in
(b) contact area ΔAc=Ac and (d) friction coefficient Δμ=μc as functions of dimensionless normal load Fz=E#R2. (c) Rough contact cross
section, and (e) normalized relative change of the friction coefficient vs the dimensionless normal pressure ph=E#λl for confinement-
induced coupling. Moreover, ḡ and λl are the rough surface’s root-mean-square gradient and long-wavelength cutoff, respectively.
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In the case of compressibility-induced coupling, the
increase of a normal constraining pressure on the trailing
edge (preventing surfaces from interpenetrating) and the
decrease of the compressive stress on the leading edge can
only be proportional to the original normal stress.
Ultimately, this is because the coupling correction, as
described by the variable Φ13 introduced in the
Supplemental Material [32], only depends on qx=q but
not explicitly on q when the elastomer is semi-infinite.
Consequently, the correction to the downhill force and thus
to the friction coefficient is proportional to the mean
absolute slope, which, in the case of Hertzian indenters,
is proportional to the contact radius rc and thus to F1=3, as is
confirmed in Fig. 2(d). Algebraic scaling relations for the
confinement-induced coupling do not arise, because the
amplitudes of coupling terms have a nonalgebraic depend-
ence on film thickness and wave number.
Simulations similar to those for Hertzian indenters were

repeated for randomly rough indenters, a cross section of
which is depicted in Fig. 2(c) along with an elastic,
confined counterbody. The characteristics of its displace-
ment fields resemble those of Hertzian indenters; however,
Fig. 2(e) reveals that the friction coefficient now increases
only initially with load before it starts to decrease at high
loads. When coupling is caused by finite compressibility,
the friction coefficient of a randomly rough indenter is also
nonmonotonic in load, but trends are inverted again, i.e., it
is always μc but increases after the initial decrease with load
(not shown explicitly). The predominant reason for the
nonmonotonicity is that the normal displacement gradients
at trailing and leading edges first increase with load, as in a
Hertzian geometry, but eventually become smaller with
increasing contact dimension due to sinusoidal character-
istics of the roughness profile, thereby reducing the down-
hill-slope effect.
In addition to friction, von Mises and tensile stresses are

central tribological quantities, since they affect the failure
of materials. Roughly speaking, ductile solids deform
plastically first near defects where the von Mises stress,
which is

ffiffiffiffiffiffiffiffi
3=2

p
times the standard deviation of the stress-

tensor eigenvalues, is largest, while polymers and brittle
materials like ceramics break near points of high tension,
given by the largest stress-tensor eigenvalue. So far,
analytical solutions for stress distribution below frictional
Hertzian indenters have been obtained neglecting coupling
[40,41], in which case the maxima of tensile and von Mises
stresses are located in the surface at the trailing edge for
μc > 0.3, as depicted in Fig. SI-2, row six, second column
[32]. Experiments confirm these trends for line contacts
with thin elastomers [35]. For this reason, and because
crack initiation is most effective in the near-surface region
[42], we focus on surface stresses in the following
discussion of coupling effects.
Analysis of the stress profiles—details are shown in

Fig. SI-2, row 6 [32] being most relevant to this paragraph

—reveals a remarkable 30% increase in the tensile stress
due to coupling for ν ¼ 0.25 and rH=R ¼ 0.2, whereas the
von Mises stress is barely affected. Changes in the stress
due to confinement-induced coupling are more difficult to
evaluate, because confinement reduces the contact area at
given normal load so that the semi-infinite, incompressible
elastomer is no longer a good reference. The reduced
contact area leads to a dramatic increase of σvM. In addition,
the zone where the tensile stress is close to its maximum
value increases substantially in size. Thus, both types of
coupling can strongly enhance the likelihood of crack
formation. Of course, linear elasticity can only be used to
estimate the onset of plasticity and/or material failure. Once
triggered, additional phenomena, which are likely dissipa-
tive in nature, occur, thereby altering friction further.
To highlight the importance of in-plane stress and

deformations, we redefine the reference to which numerical
results are compared. To this end, we first conduct a regular
contact-mechanics calculation for a frictionless interface
and then add the interfacial shear stress in postanalysis as a
perturbation under the assumption that all material points at
the interface have the same relative in-plane velocity v0.
The top row of Fig. 3 reveals that this procedure substan-
tially underestimates tension. One effect missing in the
pursued approach is symmetry breaking, which makes
maximum tensile stresses move to the trailing edge for
both couplings. Besides this qualitative effect, quantitative
differences between the true tensile stress and the one
obtained in postanalysis are factors easily surpassing two to
four in the studied systems.
Coupling does not only alter stresses but also displace-

ments and thereby the interfacial separation, which will be
called gap g in the following. The gap determines the local
resistance ρ to in-plane fluid flow in between a rigid surface
and a seal. In the Reynolds thin film equation, ρ ∝ 1=g3

[12,43]. The bottom row of Fig. 3 shows the fluid current
for our confined elastomer in four cases, i.e., for two sliding
and two flow directions. Leaking matters in the sliding
direction for applications like scrubbers and syringes and in
the orthogonal direction for rotary seals and journal
bearings. The shown images reveal that fluid flow is
affected by the sliding direction and thus by coupling.
The flow patterns depicted in Fig. 3 are in line with the

idea that fluid flow is impeded predominantly by a few
constrictions [43,44], where current densities are high and
which become critical just before they block fluid flow
completely. The average effect of coupling on the fluid flow
suffers from large statistical uncertainties near the perco-
lation threshold, since the number of relevant constrictions
per unit area is minuscule. Therefore, we studied an
individual constriction to isolate the effect of coupling
on it. For this purpose, we choose a roughness of square-
lattice symmetry having the form hðrÞ ¼ h0fcosðqxÞþ
cosðqyÞg, because its relative contact area at the percolation
threshold, a#c ≈ 0.405 [33], is close to that of randomly
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rough surfaces, a#c ≈ 0.42 [12], while the exponent ζ ¼
69=20 with which the total current disappears near the
percolation threshold, I ∝ ða#c − acÞζ was found to be
identical for square [33] and random roughness in the case
of semi-infinite elastic bodies [45].
Using q ¼ 2π=λ, where the wavelength λ coincides with

the linear dimension of the periodically repeated simulation
cell, and h0 ¼ λ=ð2πÞ2, we obtain a radius of curvature at
the peaks of R ¼ λ. The indenter is then squeezed against
either a semi-infinite elastomer with ν ¼ 0.25 or a ν ¼ 0.49
elastomer slab of height h ¼ λ=10. In the first case, a#c does
not change in a frictionless reference, while it increases to
essentially a#c ¼ 0.5 for the confined elastomer. This
“canonical percolation threshold” is the one that applies
to square or random roughness if points above the mean
height are (assumed to be) in contact, while those below it
are not. Because of coupling, the contact area increases in
both cases compared to the frictionless reference at fixed
pressure, i.e., from 0.405 to 0.416 for the ν ¼ 0.25
elastomer and from 0.5 to 0.556 for the confined elastomer.
In addition, flow factors are enhanced parallel to the sliding
direction in an isolated constriction but blocked in the
transverse direction, as depicted in Figs. 3(j)–3(m). Thus, at
loads slightly smaller than those needed to reach the
percolation threshold in a random surface, roughly half
of the critical constrictions would start to block fluid due to
friction and coupling, while some previously closed con-
strictions would open up.
The implications that results in isolated constrictions

have for flow in randomly rough contacts cannot be easily
ascertained: while the opening of channels in parallel

direction facilitates fluid flow in that direction, the perco-
lation is isotropic in the thermodynamic limit [28] so that
the blocking of previously open channels in the transverse
direction can prevent complete percolation. In fact, after
averaging results over eight independent surface realiza-
tions using Bruggeman’s self-consistent equation [12,28],
we find a reduction of fluid flow in both directions in all
cases. For compressibility coupling, under given normal
load, it turned out to be 11% and 20% in longitudinal and
transverse directions, respectively. For confined elastomers
these numbers changed to 27% and 30%. All numbers
apply to a relative contact area of ac ≈ 0.2, which is still far
from the percolation threshold, i.e., relative corrections will
be much enhanced as the pressure is further increased.
The simulations presented in this Letter reveal that linear

coupling can strongly affect all central tribological proper-
ties by 10% and even much beyond when the materials in
contact are either sufficiently thin or compressible.
Specifically, we find that coupling counteracts the validity
of Amontons’ law and increases both contact area and in-
plane tensile stresses at fixed normal load compared to the
uncoupled case. Leakage is also impacted by coupling-
induced changes in the gap distribution and contact stiff-
ness, entailing an overall reduction of the fluid flow and
shifting the percolation threshold to smaller nominal
pressures. Thus, the common practice of neglecting cou-
pling can indeed lead to substantial errors in the prediction
of interfacial properties as foreseen by Johnson [46].
Seeking for experimental confirmation of our findings

may be a challenging task, because nonlinear elasticity is
likely to play a role in sliding contact tests [47]. Some

FIG. 3. Top row: maximum tensile stress normalized to E# for a (a),(b) compressible and (c),(d) confined elastomer. Panels (a),(c) were
deduced from static simulations and lateral stress added in postprocessing, whereas (b),(d) are based on full sliding simulations. Bottom
row: (e)–(h) leakage current density for different fluid flow and sliding directions for the confined layer at a relative contact area of
approximately 19%. Each panel was produced using the same randomly rough indenter and, for (e)–(h), the same fluid-pressure
difference. Results are normalized to the maximum value in frictionless conditions. (i) 3D contact around the critical constriction for the
square roughness profile against either (j),(l) a semi-infinite, ν ¼ 0.25 elastomer or (k),(m) a confined, ν ¼ 0.49 elastomer. Blue color
indicates the frictionless contact area, while orange marks the case with friction. The purple region is the overlap of the two.
Constrictions open in sliding direction (j),(k) but close in the transverse direction (l),(m).
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studies [35,48], however, seem to have successfully
avoided nonlinear phenomena (e.g., contact shrinking),
which makes us optimistic that our findings can be
experimentally verified after all. However, we expect them
to matter in a broad variety of systems, i.e., for any rough
solid with a Poisson’s ratio clearly different from 0.5 or any
system of finite thickness, including coatings and confined
elastomers. Particular examples would be MEMS, hard
antiwear–antifriction or other protective coatings, e.g., on
photovoltaic panels but also thin static seals or electric
brushes used in sliding electrodes.
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Supplementary materials

Model and method

Model and method are similar to those used in many
previous studies using GFMD, most notably in the origi-
nal work [29], which, however, relied on atomistic Green’s
functions of Cu [111] surfaces rather than those valid in
the continuum limit and on interfacial potentials lacking
explicit interfacial dissipation. GFMD is contained in a
few open source packages, however, the features needed
to perform the simulations presented in our manuscript
are not publically available to the best of our knowledge.

In principle, GFMD is a boundary-value method,
which solves Newton’s equation of motion for the Fourier
coe�cients of the surface displacements ũ(q). Conver-
gence to the desired elastic deformation state can be
achieved quickly by assigning inertia to surface modes
with well-designed dependencies on the wave vector q of
a given mode [27]. Calculation of stresses or forces acting
on the surface mesh elements requires the elastic Green’s
functions and the interactions with the counterbody to
be known. These aspects as well as other model and
method details are described next in separate sections.

Before going into details, we alert the reader to a
change of notation. In the main manuscript, a position
in the interface is denoted as r = (x, y) and the (default)
sliding direction is parallel to x. We switch to index no-
tation r = (r1, r2) in the more technical appendix and
assume the (default) sliding direction to be parallel to
the unit vector e1, while using Einstein summation con-
vention. Thus, the (default) sliding velocity would be
denoted as v0 = v0e↵�↵1 in our notation. Since Carte-
sian indices run from 1 through 3, the index 0 in v0 is
not a Cartesian index.

Green’s functions

In linear, continuum theory, the elastic properties of an
isotropic medium are defined by its Young’s modulus E
and the Poisson’s ratio ⌫. For a frictionless contact of a
semi-infinite linear elastomer, the relevant modulus is the
contact modulus E⇤ = E/(1�⌫2), which is kept constant
(unity) throughout this paper. For isotropic and homo-
geneous elastomers of thickness h, whose surface is flat
in the absence of external stress, the Fourier coe�cients
or transforms of stress and strain are related through

�̃3↵(q) = qE⇤�↵�(q, ⌫, h, cos �)ũ�(q), (1)

where �↵�(...) = �⇤
�↵(...) and the interface normal is

parallel to e3. Moreover, � is the angle formed by q =
(q1, q2) and the in-plane displacement vector r = (r1, r2).

To simplify the dependencies of �↵�(...) on the orienta-
tion between q and u, it is easiest to express them in a co-
ordinate system, in which q points parallel to the r1 axis.
Note that the current r1-axis is, in general, not aligned
with the sliding velocity v0e1. Thus, for q = (q1, 0), the
coe�cients become [23, 31]

�11(hq, ⌫)

(1 � ⌫)2
=

(3 � 4⌫) sinh(2qh) � 2qh

(3 � 4⌫)2 sinh2(qh) � (qh)2
(2a)

�13(hq, ⌫)

(1 � ⌫)
=

iqx

q

(3 � 4⌫)(1 � 2⌫) sinh2(qh) � (qh)2

(3 � 4⌫)2 sinh2(qh) � (qh)2

(2b)

�22(hq, ⌫)

1 � ⌫
=

1

2 tanh(qh)
(2c)

�33(hq, ⌫)

(1 � ⌫)2
=

(3 � 4⌫) sinh(2qh) + 2qh

(3 � 4⌫)2 sinh2(qh) � (qh)2
(2d)

and �12(...) = �23(...) = 0. Except �13, which is purely
imaginary up to isolated points where it vanishes, co-
e�cients in Eq. (2) are real and positive. In this latter
case, displacements and stresses are in phase. The purely
imaginary nature of �13 implies a phase shift of ±⇡/2.
Their e↵ect is represented graphically in Fig. 1 and can
moreover be summarized as follows, where G̃ is the in-
verse matrix of �:

cause coupling e↵ect

u1(x) = û cos(qx) ��3 = +Im(�13)û sin(qx)

u3(x) = û cos(qx) ��1 = �Im(�13)û sin(qx)

�1(x) = �̂ cos(qx) �u3 = �Im(G̃31)�̂ sin(qx)

�3(x) = �̂ cos(qx) �u1 = +Im(G̃31)�̂ sin(qx)
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FIG. 1: Imaginary part of the (purely imaginary) cou-
pling term �13 for di↵erent ⌫ as a function of the product
of wavevector q and height h.

Indenter geometries

The slider is assigned a height profile h(r), which ei-
ther is parabolic, consists of a square geometry or is ran-
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domly rough. In the first case, h(r) = r2/(2Rc), Rc

being the radius of curvature, while in the second case
h(r) = h0{cos(q0x) + cos(q0y)}/2 with q0 = 2⇡/� and
h0 = �/(2⇡)2, where � is the linear dimension of the
periodically repeated simulation cell.

To generate the rough surface, the squared magni-
tude of a height Fourier coe�cient, |h̃(q)|2, is set to
the height spectrum C(q) / q�2�2H for wave vectors
q whose magnitude satisfies 2⇡/�l  q  2⇡�s, while all
other h̃(q) = 0. Here H = 0.8 is the Hurst roughness
exponent, �l = L/2 is the long-wavelength cuto↵, while
�s = �l/128 the short wavelength cuto↵. The phase of
the Fourier coe�cient of the height h̃(q) is 2⇡ times an
independent, uniform random number U(q) 2 (0, 1) so
that a height Fourier coe�cient reads

h̃(q) =
p

C(q)ei2⇡U(q). (3)

The proportionality factor for C(q) was chosen such that
the root-mean square height is hRMS = 0.01�l, which
produces a root-mean-square gradient of ḡ = 0.28. More-
over, rough surface simulations were conducted with lin-
ear mesh resolutions of �x = �y = �s/8.

Results presented on stresses pertain only to one spe-
cific surface realization. Since stresses arise mostly in
response to height gradients, stress distribution self-
average quite quickly so that they do not change substan-
tially from one random realization to the next, also be-
cause the system size was twice �l. Specifically, standard
deviations of second moments are of order 5% of stress-
tensor measures. Fluctuations are more significant for
flow factors deduced from leakage calculations, because
leakage currents are sensitive to long-wavelength undula-
tions, in particular near the percolation threshold. This
is why results for mean flow factors were averaged over
eight roughness realizations.

Interactions between elastomer and slider

To obtain the quasi-static solution of the frictional con-
tact, we take advantage of the spatio-temporal invari-
ance, x(t) = x(0) + v0t, which results from the employed
in-plane periodic boundary conditions and the elastomer
initially being flat. Thus, in our simulations, the two
surfaces are not explicitly moved with respect to each
other. Instead, the in-plane velocity field of the elastic
body (relative to the rigid indenter) is calculated as

vrel(r) = v0e1 �
du(r)

dt
= v0e1 �

@u(r)

@x
v0. (4)

The Coulomb shear stress ⌧C on a surface element is
assumed to be antiparallel to vrel, but independent of its
magnitude v rel:

⌧C(r) = �µcpzv̂
rel(r), (5)

where µc is the microscopic friction coe�cient, and
v̂rel(r) is the in-plane unit vector parallel to the relative
velocity.

The interaction between slider and elastomer is mod-
eled with a potential increasing quadratically with the
local overlap, i.e., the interaction potential (before dis-
cretization) reads:

Uif =

Z
d2r

kif

2
{z(r) � h(r)}2

⇥{z(r) � h(r)}, (6)

where kif is set close to the normal sti↵ness of the sti↵est
elastic mode, i.e., kif = 2E⇤/�x, while ⇥(...) denotes the
Heaviside theta function. A short- but finite-range repul-
sion was chosen so that forces on mesh elements could be
computed directly without having to deduce constraint
forces first. The repulsion was made harmonic since this
allows the time step to remain essentially as large as
for a free-standing surface subjected to a simple time-
dependent stress, which does not need to be determined
self-consistently. Normal stresses can be deduced from
first order (functional) derivatives of Uif with respect to
z(r).

Observables

Stress tensor calculation in rough interfaces

To evaluate the stress-tensor at the interface, we use
“Hooke’s law”

�↵� = C↵���"��,

with the symmetric strain tensor

"↵� =
1

2

✓
@u↵

@r�
+

@u�

@r↵

◆
.

Under the assumption of isotropy, the components of
C↵��� can be expressed in dependence of only the known
parameters of Young’s modulus E and Poisson’s ratio ⌫.
Thus, we are provided with six equations for six known
and six unknown variables. The known variables are the
dispacement derivatives @u↵/@r� 6=3 and the stress-tensor
elements �↵3 = �3↵, making it possible to solve the lin-
ear system of 6 equations for the 6 unknown quantities
�↵ 6=3� 6=3 and @u↵/@r3.

Friction force

The kinetic friction Fk can be deduced from the dissi-
pated power via [19]

Pdiss = µc

Z
d2r pz(r)vr(r) (7)
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through Fk = Pdiss/v0. Here, pz(r) is the normal pressure
and vr(r) the absolute in-plane velocity of a point on the
surface of the elastomer relative to the slider and the
integral taken over the contact area. The microscopic
friction coe�cient equals the macroscopic one, as long
as the pressure profile is symmetric and deviations of
the relative velocities from the center-of-mass velocity v0

are antisymmetric, which is the case in the absence of
coupling for a Hertzian tip and steady-state sliding.

The lateral force associated with a downhill-slope force
is given by [35, 38]

�F = �
Z

d2rrh(r)pz(r). (8)

We explicitly verified that our code produced the same
corresponding total friction Fk = µcFz + �F via the
downhill-slope argument as through a dissipation calcu-
lation.

Flow factors

The flow factors or leakage current are determined by
solving the Reynolds thin-film equation, in which the lo-
cal resitance to fluid flow scales with the inverse third
power of the interfacial separation. To this end, we use
a house-written code, which was developped for earlier
work [32]. Mechanical stresses on the elastomer originat-
ing from fluid gradients are neglected.

Critical relative contact areas a⇤
c were determined

through nested intervals: The external pressure was it-

eratively adjusted and each time a flow calculation was
performed until we found the exact pressure (and cor-
responding contact area), at which the flow factor in a
given direction drops to 0.

Details on Hertzian contact properties

Some of the discussions in the main text may benefit
from line plots of data that was previously shown only
as heat map. Fig. SI 2 summarizes the most important
results for Hertzian contacts. Moreover, as alluded to in
the main text and described in Eq. (7), changes in fric-
tion can also be rationalized by analyzing changes in the
local dissipation. Without coupling, the normal stress is
axisymmetric while the excess velocity field u̇ is antisym-
metric with respect to a 180° rotation around the z-axis.
With coupling, the only remaining plane of (anti-) sym-
metry is the xz plane, which is most easily visible for the
transverse velocity. In principle, an asymmetry is needed
in the stress field and/or a symmetric component in the
excess velocity in order for coupling to a↵ect the overall
heat production. In practice, it turns out that the cou-
pling of the symmetric preexisting normal stress to the
induced symmetric excess velocity is the dominating ef-
fect, which decreases friction for compressibility coupling
but increases it for confinement coupling. The coupling of
the induced antisymmetric stress field with the antisym-
metric preexisting velocity field has the opposite e↵ect
but is of smaller magnitude.
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FIG. 2: Profile plots of contact properties for a rigid parabolic indenter in contact with an elastic material of varying properties.
The microscopic friction coe�cient was set 1, except for columns 1 and 4, which represent static cases without sliding or friction.
Columns 1-3 represent semi-infinite elasomers, the first two cases being incompressible, whereas the third one has a Poisson’s
ratio of 0.25. Columns 4-6 show confined elastomers with finite thickness, where the last one is thinner than the first two. The
seven rows represent the areal distributions of normal displacement, normal pressure, dissipated power, relative longitudinal
velocity, transverse velocity, internal stresses and stress eigenvectors, respectively. Solid blue lines indicate a plot along the
longitudinal (sliding) direction, dashed orange lines the transverse direction. In the last two rows, all properties are only shown
in longitudinal (sliding) direction Data marked with “(*)” (last plot in the second and third row) was divided by 2.5 in order
to match the scales of the other cases. Note that the plot on the far right in the sixth row also contains one rescaled data
set. The last row contains the components of the normalized eigenvector belonging to the maximum eigenstress plotted in the
row above. As introduced before, the indices l, t and z stand for longitudinal (parallel to sliding), transverse (perpendicular to
sliding) and normal (to the surface), respectively.
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