
Academic Editor: Adrian Ilinca

Received: 4 December 2024

Revised: 6 January 2025

Accepted: 9 January 2025

Published: 13 January 2025

Citation: Wagner, L.P.; Gehlhoff, F.;

Reinpold, L.M.; Frey, G.; Jepsen, J.; Fay,

A. Methodology for the Automatic

Generation of Optimization Models of

Systems of Flexible Energy Resources.

Energies 2025, 18, 325. https://

doi.org/10.3390/en18020325

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Methodology for the Automatic Generation of Optimization
Models of Systems of Flexible Energy Resources
Lukas Peter Wagner 1,* , Felix Gehlhoff 1 , Lasse Matthias Reinpold 1 , Georg Frey 2 , Julian Jepsen 3,4

and Alexander Fay 5,*

1 Institute of Automation Technology, Helmut Schmidt University, 22043 Hamburg, Germany;
felix.gehlhoff@hsu-hh.de (F.G.); lasse.reinpold@hsu-hh.de (L.M.R.);

2 Chair of Automation and Energy Systems, Saarland University, 66123 Saarbrücken, Germany;
georg.frey@aut.uni-saarland.de

3 Institute of Materials Science, Helmut Schmidt University, 22043 Hamburg, Germany; jepsen@hsu-hh.de
4 Institute of Hydrogen Technology, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
5 Chair of Automation, Ruhr University, 44801 Bochum, Germany
* Correspondence: lukas.wagner@hsu-hh.de (L.P.W.); alexander.fay@ruhr-uni-bochum.de (A.F.)

Abstract: The integration of increasing shares of intermittent renewable energy necessitates
flexibility in both energy generation and consumption. Typically, the operation of flexible
energy resources is orchestrated through optimization models. However, the manual
creation of these models is a complex and error-prone task, often requiring the expertise
of domain specialists. This work introduces a methodology for the automatic generation
of optimization models for systems of flexible energy resources to simplify the modeling
process and increase the use of energy flexibility. This methodology utilizes a modular,
generic model structure designed to depict systems of flexible energy resources. It incorpo-
rates algorithms for model parameter derivation from operational data and an information
model that represents the system’s structure and dependencies of resources. The efficacy
of this methodology is demonstrated in two case studies, highlighting its relevance and
ability to significantly streamline the optimization modeling process by minimizing the
need for manual intervention.

Keywords: automatic model generation; energy flexibility; optimization model

1. Introduction
The energy transition aims at the large-scale electrification of the energy system to

achieve decarbonization. This requires an increasing share of energy generation from
renewable sources, which in turn demands flexibility in both generation and consumption
to address the challenges of intermittent energy supply [1]. The term energy flexibility refers
to the ability of a resource to modulate its power input or output [2]. Therein, it must be
ensured that the modulation of the power input or output of any resource is conducted
such that resource operators’ targets are met. A target can be an energy production or
consumption target or targets for the volume of produced goods [3]. Resource operators
are those who can directly influence the operation of flexible energy resources [4]. A
study by Misconel et al. [5] finds that the additional provisioning of energy flexibility of
up to 12 GW is needed in the German electricity zone by 2030 to maintain the balance
between generation and demand. Various studies also show that providing energy flex-
ibility, such as ancillary services [6] or by adapting schedules to market prices [7], holds
significant financial potential for system operators [6,7]. Furthermore, the German Federal
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Network Agency introduced plans on updating regulations regarding dynamic network
charges to encourage system operators to adjust their energy consumption according to
grid demands [8]. These plans further increase the economic value of energy flexibility.

A systematic review of modeling approaches for flexible energy resources conducted
by Wagner et al. [9] finds that flexible energy resources are usually not operated indepen-
dently, but rather in systems with other flexible energy resources, such as electrolyzers,
combined heat and power plants, or battery energy storage systems. This integration
enhances the overall flexibility potential of the system, surpassing that of the individual
resources involved [10,11]. This review [9] also finds that the majority of models applied
for the operational planning of systems of flexible energy resources are mixed-integer linear
programming (MILP) optimization models. A comparison of (mixed-integer) linear and
nonlinear optimization models has shown that (mixed-integer) linear optimization models
are preferred for generating optimized schedules for systems of energy resources due to
their comparatively short computational times [12] while achieving near globally optimal
solutions with efficient heuristics [13]. However, purely linear models are inadequate
because they fail to capture non-linear resource characteristics, such as discrete operational
states (e.g., “on”, “off”, . . . ), which often need to be incorporated into a model for the
operational optimization of flexible energy resources [14].

Modeling the operational behavior of resources is key for planning their energy flexible
operation. However, an analysis of “obstacles” impeding the use of energy flexibility
conducted by Leinauer et al. [15] finds that there are a number of “competence obstacles”.
Key among these are the insufficient “internal resources to deal intensively with [demand
response] projects” (In contrast to the use of the term resources for parts of a technical system
throughout this work, this quote uses resources in the context of human resources) and
a deficiency in employee skills “to implement [demand response] measures” [15]. Similarly,
Krishnamoorthy and Skogestad [16] state that “developing good [. . . ] models is often challenging
and expensive”. In line with the obstacles and challenges, Allen et al. [17] state that in general,
“[t]he successful construction of a model requires combining expertise in the domain being modeled
with expertise in the practice of building models”. Furthermore, manual modeling could lead
to inaccurate models [18]. The use of inaccurate models for the generation of optimized
schedules for the control of flexible energy resources leads to deviations of optimized and
realized schedules and poses problems to resource operators, e.g., in failing to achieve
production and/or energy conversion targets.

To simplify and increase the use of energy flexibility and to ensure accurate modeling
of the resource behavior, this work investigates how to automate the generation of optimiza-
tion models of systems of flexible energy resources. The focus lies on developing a model
generation methodology that minimizes manual involvement and eliminates the need
for domain-specific knowledge about optimization modeling of flexible energy resources.
To achieve this research objective, the following requirements # must be met:

1 A generic optimization model structure suitable for the representation of a system
of arbitrary (flexible) energy resources and its operational optimization is neces-
sary [3,19–21]. The model structure must be able to capture all necessary flexibility
features identified by Wagner et al. [3], such as operational boundaries, input–output
relationships, energy balances for storage systems, system states, including state
sequences and holding durations, ramp limits, as well as connections between re-
sources [3].

2 To identify suitable parameters for instances of the generic model structure, it is
necessary to apply a methodology for the automatic derivation of parameters
from time series data of the resources’ operation and from an information model-
based representation of the system’s structure for the derivation of connections of
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resources. This ensures that the parameters are reliable and that they fit the model
structure (Requirement 1 ). In this context, a system’s structure refers to the layout of
system elements and their dependencies in the form of the flow of energy, material,
and information [22,23].

3 A methodology for the automatic generation of a parameterized optimization
model instance for a specific system consisting of resources is required. This method-
ology entails choosing the suitable elements of the model structure and their param-
eterization, utilizing the parameter set derived with the methodology that fulfills
Requirement 2 [21,24,25].

4 The traceability and comprehensibility of the resulting model must be ensured
for the end-users of the methodology (Requirement 3 ), meaning that the eventual
model composition is recognizable and the parameters have direct physical meanings.
Additionally, suitable evaluation metrics must be used to convey the accuracy of the
generated models [26–29].

This work is an extension of two previous works [3,23] already covering artifacts
corresponding to Requirements 1 and 2 :

Requirement 1 is already met by the generic model structure described by Wag-
ner et al. [3]. Wagner et al. [3] conduct an analysis on necessary constraints “to sufficiently
model and optimize the operation of a flexible energy resource or a system thereof ”. This research
presented a reusable formulation of sets of MILP constraints as flexibility features [3].

The fulfillment of Requirement 2 demands a methodology for the automatic deriva-
tion of parameters for optimization models. With this objective, the work by Wagner and
Fay [23] investigates how “to reduce the parameterization effort of a generic MILP optimization
model (. . . ) by means of automatic derivation of numerical parameters from time series data of
the resource operation”. The work also investigates how information about connections of
flexible energy resources can be extracted from an information model representing the
system’s structure [23].

Thus, to address the research objective of this work and the previously unaddressed
Requirements 3 and 4 , this work introduces a methodology for the automatic genera-
tion of optimization models for systems of flexible energy resources. Additionally, this
work includes a comprehensive evaluation of the methodology, demonstrating its effec-
tiveness and applicability in real-world scenarios as well as the models’ traceability and
comprehensibility by end-users.

The remainder of this work is structured as follows: Section 2 describes the analysis of
related work as well as the respective fulfillment of the requirements. Section 3 explains the
methodology for the automatic generation of optimization models. Section 4 describes the
evaluation of the methodology via two case studies. Section 5 discusses the methodology
and its evaluation. Section 6 concludes this work and outlines future work.

2. Related Work
This section analyzes related work in automatic model generation, particularly fo-

cusing on the fulfillment of Requirements 3 and 4 . While previous work by the au-
thors presented artifacts for the satisfaction of Requirements 1 [3] and 2 [23], analyz-
ing the fulfillment of Requirements 1 and 2 in related work remains crucial to ensure
their applicability in the context of optimization of systems of flexible energy resources.
This analysis is structured into two main parts: the generation of optimization models
(Section 2.1) and simulation models (Section 2.2). The analysis of related work is extended
to the research area of the automatic generation of simulation models to include a wider
variety of methodological approaches into the analysis. The analyses are summarized in
Section 2.3.
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2.1. Automatic Generation of Optimization Models

Chicco and Mancarella [20] present an approach for automating the modeling of
energy systems utilizing the Energy Hub concept, with a focus on optimizing operations
within the context of an energy market. This concept accounts for the interactions among
resources and external energy networks by using an input–output matrix that represents the
respective conversion efficiencies of resources within the energy system. The automation of
constructing the system’s input–output matrix is realized by employing graph theory and
backtracking techniques to explore the system’s topology, represented by “interconnection
matrices” for each of the resources. Nevertheless, the approach necessitates manual input in
defining the conversion efficiencies of individual resources, which are crucial for the accu-
rate representation and optimization of the system’s operations, thereby not fully meeting
Requirement 2 . The model is nonlinear due to the multiplication of dispatch factors and
power flows and captures only static input–output conversions. Consequently, off-design
characteristics—operational behavior of the resource when it functions under conditions
that deviate from those it was specifically engineered for—are not considered. Additionally,
the modeling concept lacks the capability to depict system states. Conversion factors
depending on the operating point, i.e., complex input–output relationships, and system
states are, however, necessities according to Requirement 1 . Thus, Requirement 1 is only
partially addressed. As the objective of the approach is the automation of model creation,
akin to selecting model parts, but not its parameterization, Requirement 3 is partially met.
In line with the fulfillment of Requirement 3 , Requirement 4 is also partially met because
the creation of the model is traceable. However, since no parameters are derived within
this approach, their traceability cannot be evaluated.

Building upon the work by Chicco and Mancarella [20], Wang et al. [21] propose an
automated and linearized modeling approach. The focus of their work lies on automating
the modeling process for Energy Hubs by linearizing the input–output matrices, accom-
plished by eliminating ‘dispatch factors’ from the coupling matrices. The achievements
of Wang et al. [21] in terms of requirement fulfillment are similar to those of the approach
introduced by Chicco and Mancarella [20], as the efforts by Wang et al. [21] are directed to-
wards simplifying the optimization process rather than enhancing the parameter derivation
(Requirement 2 ) or incorporating accuracy-enhancing flexibility features like system states
or more intricate input–output relationships (Requirement 1 ). Thus, Requirements 1

and 3 are partially met, whereas Requirement 2 remains unfulfilled. Requirement 4 is
also partially met, as the creation of the matrices is traceable.

Henkel et al. [19] developed a method for the scheduling of modular electrolysis plants,
a type of flexible energy resource, utilizing a multi-agent system. The scheduling agents’
models are parameterized through the use of the Module Type Package (a standardized
information model) and measurement data. The data are employed to calculate parameters
for a quadratic approximation of the input–output relationships. The instantiation of agents
for each electrolysis resource is achieved by analyzing system composition information.
However, the objective of Henkel et al. [19] is the instantiation and parameterization of a
multi-agent system but not the selection of necessary model components, thereby partially
meeting Requirement 3 . Each agent exhibits an identical model. Furthermore, the method
does not include algorithms for the derivation of a complete set of parameters for the model.
Hence, it does not fully satisfy Requirement 2 . The decentralized optimization model
developed by Henkel et al. [19] is specifically designed for the operational optimization
of modular electrolysis plants and includes most of the flexibility features called for by
Requirement 1 , thereby partially fulfilling Requirement 1 . The traceability and compre-
hensibility of the model is given due to is uniform structure and the customization to fit
the parameters from the Module Type Package.
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Kasper et al. [30] introduce a framework for the optimization of a resource used for
the waste heat recovery of a steel production process. Therein, parts of an optimization
model are parameterized based on measurement data, but no model parts are selected.
Thus, Requirement 2 is only partially satisfied. The application of the model used by
Kasper et al. [30] is restricted to this specific resource type; hence, Requirement 1 is also
only partially met. Furthermore, Kasper et al. [30] specifically did not focus on creating
a method for the automatic generation of optimization models (Requirement 3 ). As the
model itself is based on physical principles as well as traceable parameters, the modeling
process satisfies Requirement 4 .

Förderer et al. [31] developed an approach for the representation of “feasible load
profiles” of certain flexible energy resources (combined heat and power and battery en-
ergy storage systems) using artificial neural networks. In contrast to the commonly used
approach of operational optimization [9], the work of Förderer et al. [31] proposes the
rule-based use of these load profiles for the control of energy resources. However, this
approach does not guarantee traceability nor comprehensibility of the model due to it being
a black box model (Requirement 4 ) and does not allow for the explicit modeling of all
necessary flexibility features, thus not meeting Requirement 1 . As data are used for the
modeling but no parameters with direct physical meaning and no information on resource
connections are derived, Requirement 2 is only partially met. As no optimization model is
generated, Requirement 3 remains unsatisfied.

Manna et al. [32] present a data-driven optimization framework designed for the
utilization of the flexibility of an evaporative cooling tower in response to prices from
energy and reserve markets. Manna et al. [32] primarily focus on modeling bidding
strategies for one specific resource type, i.e., cooling towers, thus only partially fulfilling
Requirement 1 . The method of Manna et al. [32] employs neural networks to model
resource behavior, simplifying these nonlinear models into linear constraints for MILP
optimization. Thus, they partially fulfill Requirement 2 by using the neural network
for deriving parameters. However, only one resource is considered instead of a system
of resources. Requirement 3 is met through the transformation of the neural network’s
parameters into MILP constraints. Requirement 4 is not fulfilled due to the model structure
and the parameter derivation approach resulting in a black box model.

2.2. Automatic Generation of Simulation Models

Apart from the related work referenced in Section 2.1, there exist a number of works
focusing on the automatic generation of simulation models. This section outlines works in
this research area. The selected works provide combinations of fulfillments of requirements
mostly not shown by the works analyzed in Section 2.1. None of the works analyzed in this
section fulfill Requirement 1 , as the models are simulation models.

Barth and Fay [24] investigated the automation of the generation of simulation models
using existing engineering data. Therein, they proposed using an object-oriented data
exchange format to facilitate the automatic generation of low-fidelity simulation models
from piping and instrumentation diagrams [24]. This method leverages the simulation
model library of Modelica for equation-based modeling of a system [24] but not for the
modeling of flexible energy resources for optimization, hence not satisfying Requirement 1 .
The topology of the system is extracted from the object-oriented data exchange format,
but additional parameters are manually extracted from other simulation applications [24],
thus not fully meeting Requirement 2 . As the generated model is not fully parameterized,
Requirement 3 is only partially met. The generated model is traceable, as the model is
created based on components present in the piping and instrumentation diagram. Thus,
the approach meets Requirement 4 .
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The work of Ramonat and Fay [33] presents a concept for the automatic calibration and
maintenance of simulation models in brownfield process plants. This includes parameter
alignment, deviation detection, deviation cause detection, and model adaptation to ensure
and maintain high fidelity of simulation models by continuously aligning model parame-
ters with actual measurement data and adjusting for deviations due to plant changes or
model inaccuracies. In subsequent work, Ramonat and Fay [22] describe a method for
the direct or indirect parameterization of an existing simulation model based on measure-
ment data. In the case of indirect parameterization, parameters must be converted using
fluid dynamic formulas, whereas direct parameterization directly uses the measurement
values. The application of their method requires manual effort in selecting the formulas
and assigning the measured values. Therefore, the approach by Ramonat and Fay [22]
partially meets the criteria of Requirement 2 . Requirement 1 is also not satisfied because
Ramonat and Fay [33] suggest using a model library (Modelica) for the simulation of pro-
cess plants, which is not suitable for representing systems of flexible energy resources.
Since the focus is on calibration and maintenance [33], the process excludes automatic
generation, leaving Requirement 3 unmet. Moreover, an extension to the method [33] by
Ramonat et al. [26] highlights the importance of clearly explaining deviations through the
use of an adaptive causal directed graph, thereby addressing part of Requirement 4 . While
it does not enhance the transparency of the model as a whole, it does provide explanations
for parameter adjustments that are necessary to ensure alignment of the model with the
system [26].

Martinez et al. [34] propose a methodology for automatically generating simulation-
based digital twins of industrial process plants based on data from engineering sources,
such as piping and instrumentation diagrams, technical data sheets, and control application
programs. The work of Sierla et al. [35] builds upon the methodology of Martinez et al. [34]
and outlines a seven-step semi-automatic methodology for creating digital twins from exist-
ing brownfield plant data. Information is also extracted from a piping and instrumentation
diagram and converted into a graph. Then, a simulation model is created from this graph,
requiring manual editing to finalize the model, configuring simulation model calculations
and parameterizing the model based on recent process measurements [35]. The focus of the
methodology presented by Sierla et al. [35] is on defining the process for graph preprocessing,
model generation, and manual editing. The methodologies developed by Martinez et al. [34] and
Sierla et al. [35] aim at reducing modeling efforts by automating the creation of simulation
models, which partially fulfills Requirement 3 . However, manual effort is still required for
parameterization, indicating that these approaches do not completely eliminate the need for
human intervention in the modeling process. Thus, Requirement 2 is also only partially
met, as parameters are neither fully nor automatically derived. As the model built is a
simulation model for industrial process plants, Requirement 1 is not met. The step-wise
approach allows for the traceability of the model, thus meeting Requirement 4 .

2.3. Summary of the Analysis of Related Work and Research Gaps

The analysis of related work, summarized in Table 1, shows the fulfillment of Re-
quirements 1 to 4 . The analyses have been split into the analysis of works in automatic
generation of optimization and simulation models.
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Table 1. Fulfillment of requirements for automatic model generation.

Requirement 111 222 333 444

Optimization Models

Chicco and Mancarella [20]

Wang et al. [21]

Henkel et al. [19]

Kasper et al. [30]

Förderer et al. [31]

Manna et al. [32]

Simulation Models

Barth and Fay [24]

Ramonat et al. [22,26,33]

Martinez et al. [34], Sierla et al. [35]

Fulfillment: —full; —partial; —none.

Some studies focus on optimization models for managing the operation of systems of
energy resources [19–21,30–32]. These optimization models (Requirement 1 ) are often
designed to represent specific resource types, such as modular electrolysis plants [19] or
evaporative cooling towers [32], and thus are not generic in their structure. Further, they
often lack the essential model components needed to depict flexibility features, including
precise input–output relationships [20,21], system states [20,21], or ramp limits [19–21].
Methods for automatically deriving sets of parameters (Requirement 2 ) are occasionally de-
scribed, but if so, only use-case specific methods with limited scope are presented [19,30]. This
is also a key finding of the analysis of related work by Wagner and Fay [23]. Information on
the system’s structure is rarely used during parameter derivation. The automatic generation
of a parameterized instance for a system of specific resources (Requirement 3 ) is often
mentioned but seldom fully described [19–21,32].

However, the effectiveness of these methods [19–21,30] is limited by the deficiencies in
the foundational optimization models and the incomplete methods for their parameteriza-
tion, making them not universally applicable for the automatic generation of optimization
models of systems of arbitrary flexible energy resources.

An analysis including approaches in automatically generating simulation models in
Section 2.2 shows that standardized information models provide the foundation for the
extraction of information on the system’s structure, such as the work of Barth and Fay [24].
This information is then used for the selection of predefined model blocks, commonly
accomplished in applications such as Modelica [24]. Several works introduce techniques
for automatically creating simulation models that do not consider the energy flexibility
of resources [24,33–35]. For high-fidelity models, full parameterization is executed [33]
with parameters obtained from measurement data [22].

The traceability and comprehensibility of the generated models, particularly con-
cerning the selection of necessary model components and the derivation of parameters,
are fully addressed in only a few works [19,24,34,35]. Other studies provide approaches
that are partially traceable, offering some level of transparency in their modeling pro-
cesses [20,21,26,30].

The analyses show that there are works covering parts of the research objective;
however, none of the works analyzed cover all the requirements. Thus, there remains a
significant need for research into the automation of the generation of optimization models
for systems comprising various flexible energy resources. Additionally, ensuring the trace-
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ability and comprehensibility of the generated model is crucial for building trust among
end-users [27]. When users can clearly understand how a model is constructed and follow
the logic behind the parameter derivation, this significantly enhances their confidence in
the results produced by the model. Transparent processes are key to facilitating broader
adoption of energy flexibility and reliance on these models in practical applications, as they
allow users to validate the underlying methodologies themselves.

3. Methodology for the Automatic Generation of Optimization Models
For enhanced clarity of the methodology, Section 3.1 outlines the process for the

generation of optimization models. Next, the methodology for the automatic generation
of optimization models is outlined. This methodology builds upon the results of the
analysis in Section 2, which concludes that existing approaches for the generation of
optimization models do not fully automate this process. Extending the analysis to simulation
models reveals a promising approach for the automatic generation of an optimization
model employing a generic model structure capable of accurately representing the system
of resources under consideration (Section 3.2). This model structure is complemented
by a methodology for the automatic derivation of necessary parameters (Section 3.3.1).
The generic model is then utilized to automatically generate an optimization model instance
for a specified system of resources (Section 3.3.2) using the parameters previously derived.
The implementation of the methodology is described in Section 3.4.

3.1. Process for the Generation of Optimization Models

This section describes the process for the generation of optimization models of systems
of flexible energy resources as well as the necessary steps.

Figure 1 shows the process for the manual generation of an optimization model of
a flexible energy resource for its control. This process can also be applied for multiple
resources within a system. Preceding this process is the in-depth understanding of the
operational behavior of the resource(s) to be modeled. This manual process requires domain
knowledge in optimization modeling of energy resources.

The process for generating an optimization model from scratch, displayed in Figure 1,
involves creating constraints (step 1), such as those for the representation of resource behav-
ior, formulating an objective function (step 2), determining parameters (step 3), and utilizing
these parameters for the parameterization of the constraints (step 4). Constraints and the
objective function are functions of decision variables and parameters. In MILP modeling,
decision variables can be multiplied with parameters but must not be multiplied with other
decision variables. The parameterization of constraints also involves setting production
targets and start parameters, such as initial system states or starting values for the state of
charge (SOC) of (energy) storage systems. It is important to note that without specifying a
target, such as a specific energy amount for the system output flow to be achieved during
the optimization horizon, solving the optimization model instance may result in an ‘empty’
or at least a highly unsuitable schedule. This occurs because minimal costs can typically
be achieved by not operating the resources within the system or, e.g., only in periods of
negative electricity prices.

Next, relevant exogenous signals (step 5), such as electricity price data from markets,
must be incorporated for their use in the objective function.

The optimization model is then solved for a specified optimization horizon, which is
the duration for which an optimized schedule is to be generated, with a selected temporal
resolution (step 6). Based on the temporal resolution, the optimization horizon is segmented
into discrete time steps. Subsequently, the optimized schedule is used for the control of the
flexible energy resource.
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1. Create constraints

2. Formulate objective function

3. Determine parameters

4. Parameterize constraints

5. Incorporate rele-
vant exogenous signals

in objective function

6. Solve optimization model

7. Use of optimized schedule
for the control of resources

Realizable?

New Opti-
mization?

no

yes

yes

no

Figure 1. Process for the manual generation of optimization models.

Step 7 is not within the scope of this work, as approaches for the manual or automated
realization of optimized schedules have already been presented by Wagner et al. [36]
Reinpold et al. [37], and Henkel et al. [38], respectively.

Given that time-dependent data such as electricity price data and specific, change-
able parameters like targets or initial system states are incorporated into the generated
optimization model, it is necessary to regenerate the model for each subsequent use. This
ensures that the model remains accurate and relevant under changing conditions. There-
fore, to accommodate these updated conditions, the process reinitiates at Step 4 (red arrow),
allowing for a systematic update of the model with the latest data and parameters if the
optimized schedule was realizable and whenever a new optimized schedule is required
(‘new optimization?’). This cyclical regeneration is crucial for maintaining the model’s
effectiveness and reliability in dynamic environments.

If the optimized schedule proves to be unrealizable—for instance, due to changes
in operational behavior stemming from degradation—it becomes necessary to determine
new parameters. Accuracy indicators that can be utilized for the evaluation of the model
performance are presented by Wen et al. [28]. In such instances, restarting the process at
step 3 (“no”, dashed line) is required to adjust and recalibrate the optimization model with
updated parameters.
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3.2. Model Structure for the Representation of Systems of Flexible Energy Resources

Based on an analysis of existing generic optimization models, a modular model
structure has been developed by Wagner et al. [3] to represent systems consisting of flexible
energy resources using different flexibility features. Each flexibility feature encapsulates a set
of constraints. This allows for the creation of an optimization model for resources within
a system depending on the necessary level of detail, as not all flexibility features might
be applicable. The validation of the model structure allows for its use without a recurring
validation of the model instance. This model structure fulfills Requirement 1 .

As shown in Figure 2, the model structure can be used to instantiate an MILP opti-
mization model of a system of connected resources. Different resources within the system are
connected via so-called dependencies, which represent the structure of a system. Dependen-
cies are connections of flows of the output of at least one resource with the input of at least
one other resource [3].

OptimizationModel

1

1...*

1

1

1

1
1

0...1

1

0...1

1

1...*

1

0...1

1

1...*

1 1...*
System Dependency

Resource

OperationalBoundaries InputOutputRelationship SetOfSystemStates

SystemState

StorageBalance

Figure 2. Meta-model of the model structure [3], visualized by Wagner and Fay [23]. The numbers
represent cardinalities, indicating the minimum and maximum number of relationships between the
entities connected by the lines (e.g., 1, 0. . . 1, 1. . . *, etc., where “*” denotes “many”).

There are two types of dependencies: either all connected resources of one dependency can
be connected simultaneously (“correlative dependency”), or only exactly two resources can
be connected (“restrictive dependency”) at any time step within the optimization horizon,
i.e., an XOR connection [3]. An example for the restrictive dependency as a connector of
resources is a diverter valve.

The limits of the system and of each resource are characterized by their respective
operational boundaries [39–41]. The characteristics of a resource can furthermore be described
by an input–output relationship [39,41] and a set of system states [39,40]. Each system state is
characterized by flow limits [14], holding durations [39], follower states [40], and ramp
limits [40]. Furthermore, Resources with a storage capacity can also be considered within
the optimization model based on a storage balance [39,41].

The constraints that are encapsulated within each flexibility feature are listed in
Appendix A.1.

3.3. Process for the Automatic Generation of Optimization Models

The model generation process outlined in Section 3.1 demonstrates significant potential
for automation, particularly because its current reliance on domain-specific knowledge and
repetitive user input makes it not universally applicable and prone to errors. Algorithm 1
details the primary function automaticModelGeneration() dedicated to the automatic
production of an optimization model for a system of flexible energy resources. In this
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algorithm, the function getParameters() (see Section 3.3.1) is employed to construct a
data model dataModel that contains all the parameters necessary for an optimization model.
These parameters are derived from time series data tsd and an information model fpd that
represents the structure of the system [23].

This data model is subsequently utilized to instantiate and parameterize an opti-
mization model optModel within the function parameterizeOptModel() (see Section 3.3.2),
drawing on the generic model structure (see Section 3.2). Additionally, it is essential
to define the optimization horizon T . The process of choosing and designing objective
functions falls outside the scope of this work. Hence, specifying an objective function obj
becomes necessary when it differs from the common objective of minimizing the total cost
of electric energy bought from an electricity market [9], as shown in Equation (1), such
as the European intra-day market. Individual values for the cost of electric energy per
time step 𝑐el,𝑡 are used within the objective function. For this case, the reference decision
variable var is typically chosen to be the input flow of the electric energy of the system for
energy consumers.

𝑜𝑏 𝑗 = min
∑︁
𝑡∈T

𝑣𝑎𝑟𝑡 · 𝑐el,𝑡 (1)

Algorithm 1: Automatic Generation of an Optimization Model

Data: TimeSeriesData tsd
Data: InformationModel fpd
Data: ObjectiveFunction obj
Data: OptimizationHorizon T
Result: OptimizationModel optModel
Function automaticModelGeneration(tsd, fpd, obj, T):

DataModel dataModel← getParameters(tsd, fpd) // see Algorithm 2 in

Section 3.3.1

optModel← parameterizeOptModel(dataModel, obj, T ) // see Algorithm 3 in

Section 3.3.2

return optModel

3.3.1. Derivation of Parameters

Algorithm 2 outlines the function getParameters() for automatically deriving pa-
rameters. These parameters are essential for instantiating an optimization model, thereby
meeting Requirement 2 . This methodology has been developed in prior work by Wagner
and Fay [23] and is briefly summarized in this section.

The preprocessing of time series data captured from the operation of each resource
within the system (via the function doPreProcessing()) includes verifying the significance
of correlations among different time series data columns and assessing the dataset’s sta-
tionarity, i.e., assessing whether the statistical properties of the time series data remain
constant over time. If the statistical analysis determines that the time series dataset is
insufficient for deriving parameters, e.g., because the relationships are not significant or
the time series data are non-stationary, a new dataset must be selected, and no further
functions are executed. In this case, Algorithm 2 returns null, and a new dataset needs
to be imported and newly assessed. If the dataset qualifies for parameter derivation, any
inaccurate values, such as outliers, are statistically identified and corrected to guarantee a
high-quality dataset [23].

Subsequently, parameters are derived that describe each resource’s behavior, incor-
porating them into the data model dataModel through the function addResource(). This
parameter set and the accompanying data model was designed to fit the generic model
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structure described in Section 3.2 and encompass operational boundaries, parameters de-
tailing the input–output relationship, and parameters related to system states, such as flow
limits, follower states, holding durations, and ramp limits. Additionally, if a resource has a
storage capacity, parameters describing this aspect are also incorporated through conver-
sion efficiencies for (dis-)charging. The data model also contains information regarding
dependencies within the system via two lists for resources involved in one dependency and
an attribute for the dependency’s type. Furthermore, system-specific parameters, i.e., the
operational boundaries of the system as a whole, and model-specific parameters, such as
the optimal temporal resolution for balancing computational complexity with an accurate
depiction of resource characteristics, are also part of the data model [23].

Algorithm 2: Derivation of Parameters [23]

Data: TimeSeriesData tsd
Data: InformationModel fpd
Result: DataModel dataModel
Function getParameters(tsd, fpd):

for resourceTsd : tsd do
resourceTsdPrePro← doPreProcessing(resourceTsd)
if resourceTsdPrePro == null then

return null

dataModel.addResource(getResourceParameters(resourceTsdPrePro))
dataModel.addSystemParameters( getSystemParameters(
doPreProcessing(tsd.system), dataModel))

dataModel.addDependencies(extractDependencies(fpd))
return dataModel

The function getResourceParameters() employs various algorithms to derive the
specified parameters: it identifies operational boundaries by calculating the minimum
and maximum values within a column of time series data. Parameters that describe the
input–output relationship are ascertained through (piecewise) linear regression, evaluating
whether piecewise linear approximation (PLA) is necessary using a threshold value for the
coefficient of determination (R2) to keep the computational complexity of the optimization
model as low as possible. Additionally, system states are identified from time series data
by utilizing a hidden Markov model. Then, system state-related parameters are calculated
based on the identified system states: holding durations are determined by extracting the
minimum and maximum durations of state activity. The follower states for each state are
identified by analyzing the sequence of active states. Ramp limits per state are established
by examining the rate of change of the input flow over time. The minimum and maximum
storage capacity is determined analogously to the operational boundaries. The efficiencies
of the storage charging and discharging are calculated based on the average quotient of the
flows at the input and output port, respectively, and inside the storage tank [23].

Additionally, the operational boundaries of the system and the optimal temporal
resolution are determined via the function getSystemParameters() and integrated into
the data model. Furthermore, resolution-dependent parameters, namely the minimum and
maximum holding durations for all resources and each of their system states, are recalculated
from time units to the corresponding number of time steps. A temporal resolution is chosen to
convert the time duration to time steps without introducing inaccuracies through the conver-
sion of holding durations from time in hours to time steps or overly increasing computational
complexity. Therefore, the data model is also an input parameter for this function [23].
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The system’s structure is encapsulated within an formalized process description (FPD)-
based information model fpd, which undergoes analysis to extract resource dependencies
through the function extractDependencies() [23].

The modeling concept of the FPD [42] consists of states, namely energy, product,
and information, as well as processes and resources, as shown in Figure 3a. The corre-
sponding symbols are used to visually model the structure of the system by connecting
states and processes via flows. Two types of flows can be used within the FPD modeling
concept: parallel (Figure 3b) and alternative flows (Figure 3c). Resources are then assigned
to processes [42].

Energy E Product P Information I Process O Resource T Flow Assignment

(a) Symbols of the FPD

E1

O Process 1 O Process 2

(b) Parallel Flows

E1

O Process 1 O Process 2

(c) Alternative Flows

Figure 3. Modeling concept of the FPD [42], including symbols and flow types.

During the extraction of dependencies using the function extractDependencies(),
connected processes are identified, and connections between resources within the system
are determined via resources assigned to processes. The type of dependency is categorized
as either ‘correlative’ or ‘restrictive’. The correlative dependency indicates that all linked
resources can be concurrently connected, modeled via parallel flows (see Figure 3b). The re-
strictive dependency is represented by an XOR connection, indicating that only one flow
can actively link exactly two resources at any given time. This is modeled through the
alternative flow (see Figure 3c). The extracted dependencies are then also incorporated into
the data model (function addDependencies()) [23].

Algorithm 2 returns the data model, which is subsequently used by Algorithm 3.

3.3.2. Automatic Generation of a Parameterized Optimization Model Instance

This section describes the function parameterizeOptModel() that is detailed in
Algorithm 3 to automatically create a parameterized instance of the optimization model
structure (presented in Section 3.2) for the fulfillment of Requirement 3 . As shown in
Algorithm 1, the data model created through the application of Algorithm 2 is the main
input of Algorithm 3.

Initially, the optimization horizon (setHorizon()) and the temporal resolution (set-
TemporalResolution()) are set. The objective function (addObjectiveFunction()) is
also added.

As described in Section 3.2, a system consists of one to many resources. Necessary
decision variables for each flexibility feature are created via the function addDecVars(name
of resource, type of flexibility feature) for their representation of system or re-
source characteristics. This function adds an array of decision variables for a specific
variable type/flexibility feature, such as ‘input flow’ (Algorithm 3, line 8) or ‘system states’
(Algorithm 3, line 15), to the optimization model. Decision variables are created for both
the system as a whole (input and output flows, lines 5 and 6) as well as for each of the
resources individually. Decision variables represent the input and output flows of the
system and of individual resources for the optimization and may also include a variable to
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represent the storage capacity of a resource, modeled as the SOC, if the respective resource
exhibits a storage capacity. Each element of a decision variable array represents one time
step within the optimization horizon, except for decision variables for system states and
storage capacities. In these cases, the number of decision variables is (number of time
steps + 1) to accommodate an initial state or an initial SOC.

Algorithm 3: Automatic Generation of an Optimization Model Instance

Data: DataModel dataModel
Data: ObjectiveFunction obj
Data: OptimizationHorizon T
Result: OptimizationModel optModel

1 Function parameterizeOptModel(dataModel, obj, T):
2 optModel.setHorizon(T )
3 optModel.setTemporalResolution(dataModel.temporalResolution)
4 optModel.addObjectiveFunction(obj)
5 optModel.addDecVars(SYSTEM, input)
6 optModel.addDecVars(SYSTEM, output)
7 for resource : dataModel.resources do
8 optModel.addDecVars(resource.name, input)
9 optModel.addDecVars(resource.name, output)

10 if resource.io != null then
11 if resource.io.pla==true then
12 optModel.addDecVars(resource.name, io)

13 optModel.addFlexibilityFeature(resource.name,
input-output-relationship)

14 if resource.systemStates != null then
15 optModel.addDecVars(resource.name, systemStates)
16 optModel.addFlexibilityFeature(resource.name, systemStates)

17 if resource.storage != null then
18 optModel.addDecVars(resource.name, storage)
19 optModel.addFlexibilityFeature(resource.name, storage)

20 for dep : dataModel.dependencies do
21 if dep.type==RESTRICTIVE then
22 optModel.addDecVars(dependency, restrictiveDependency{dep})

23 optModel.addFlexibilityFeature(dependency, dep.type{dep})

24 return optModel

The flexibility feature operational boundaries is already applied during the creation of
decision variables for input and output flows of the system (Algorithm 3, lines 5 and 6)
and resources (Algorithm 3, lines 8 and 9), as a value range is set that corresponds to
the lower and upper boundaries. Similarly, the minimum and maximum capacities of
storage-type resources are set as value ranges for SOC decision variables (Algorithm 3,
line 18), if applicable. The value ranges are set using the respective parameters contained
within the data model.

As described in Algorithm 3, the applicable flexibility features, identified based on the
existence of the respective parameters within the data model, e.g., in line 10, are instantiated
and parameterized by a function addFlexibilityFeature(name of resource, type of
flexibility feature) using parameters contained within the data model created using
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Algorithm 2. This function selects and parameterizes the constraints contained within the
flexibility feature and adds them to the optimization model optModel for each resource
included in the data model.

The adoption of certain flexibility features requires the introduction of additional deci-
sion variables: Additional decision variables comprise binary variables for the modeling
of a set of system states (Algorithm 3, line 15) and for segments of piecewise linear approxi-
mation (PLA, Algorithm 3, line 12) within the flexibility feature input–output relationship.
The PLA within the flexibility feature input–output relationship also necessitates an array of
continuous decision variables (see Equations (A2)–(A5) [3].)

Dependencies among resources within the system, saved to the data model through
Algorithm 2, are also added to the optimization model. ‘Restrictive’ type dependencies
require the generation of additional decision variables for resources involved in one depen-
dency dep (Algorithm 3, line 22). These are essential to accurately model the exclusivity of
a flow of dependencies of the ’restrictive’ type between resources within the optimization
model. For each restrictive dependency, the creation of two types of decision variables is
required: one array of binary variables per resource to signify the activation of the port
(input/output), and one array of continuous variables to represent the connection of flows
between two resources [3].

The function parameterizeOptModel() described in Algorithm 3 returns the opti-
mization model, which can then be solved to generate an optimized schedule. This function
needs to be executed for each new optimization horizon (see Section 3.1).

Changes in operational characteristics over time, such as the degradation of energy
storage systems or electrolyzers, are not explicitly accounted for in the model generation
process. However, these changes can cause deviations between model predictions, i.e., the
optimized schedule, and actual resource behavior, potentially leading to infeasible sched-
ules. To this end, as outlined in Section 3.1, the function described in Algorithm 1 can be
employed to recreate a model instance either cyclically or on demand, ensuring the model
remains aligned with current resource conditions and operational capabilities.

Requirement 4 indicates that it is necessary to guarantee the traceability and com-
prehensibility of the generated model. Traceability and comprehensibility, in this context,
mean that the model is not a black box model, i.e., a model where structures can be recog-
nized and parameters have physical meanings. The sequential model generation process,
summarized in Algorithm 1, allows users to easily verify each stage of the process. The data
model, generated through the application of Algorithm 2, contains all parameters used for
the parameterization of the optimization models. Users can inspect this set of parameters
to fulfill the stated goals. This can include a step to manually verify or modify certain or
all aspects.

Specifically, the inclusion of operational boundaries, input–output relationships,
and the consideration of system states is essential. Operational boundaries and input–
output relationships, commonly known by resource operators, enhance the comprehensibil-
ity through recognition. System states, reflected in resource control mechanisms, also play
a crucial role in understanding the model’s behavior and ensuring its efficient performance.
These aspects directly contribute to the traceability and comprehensibility of the model and
should be incorporated into the evaluation.

Thanks to the modular generic optimization model structure (see Section 3.2), the use
and effect of individual model components (flexibility features) can also be verified by the
end-users. This has already been demonstrated by Wagner et al. [3]. Therefore, Require-
ment 4 is implicitly fulfilled through the methodology outlined in Section 3.
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3.4. Implementation of the Algorithms

Algorithm 1, as well as the functions described in Algorithms 2 and 3, have been im-
plemented in Java (The implementation is available at https://github.com/lukas-wagner/
AutoModelGeneration, accessed on 6 January 2025). Parts of Algorithm 2—in particular, the
PLA and the clustering algorithm—have been implemented by interfacing R and Python,
respectively. The optimization model structure [3] has also been implemented in Java for
the solution with IBM ILOG CPLEX, utilizing CPLEX Concert Technology [43].

The FPD-based information models for the representation of the structure of the
systems have been built and serialized using the web-based modeling tool (https://demo.
fpbjs.net, accessed on 6 January 2025) developed by Nabizada et al. [44]. The .json file
serves as an input and is analyzed using the function extractDependencies() contained
in Algorithm 2.

4. Evaluation of the Methodology
This section demonstrates the applicability of the methodology presented in Section 3

to the automatic generation of optimization models for systems of flexible energy resources.
As described in Section 3.3, the process for the automatic generation comprises two

distinct phases—parameter derivation (Requirement 2 ) and parameterization of an op-
timization model instance (Requirement 3 )—and is constructed in a traceable way (Re-
quirement 4 ). The efficacy and validity of the parts of the methodology corresponding to
Requirement 1 (model structure) and Requirement 2 (parameter derivation) have already
been established through earlier research [3,23,36–38]:

The integrity of the generic optimization model structure and its suitability for de-
picting systems of flexible energy resources have been validated by Wagner et al. [3] and
further confirmed in a previous study by the authors [23,36–38]. Specifically, this model
structure was applied to optimizing systems of electrolyzers [3,38], an experimental distilla-
tion unit [37], a combined heat and power (CHP) system [23], and a waste water treatment
plant [36], demonstrating its effectiveness and applicability to various types of energy
resource systems. During the evaluation of the model structure, the correct instantiation of
constraints encapsulated within one flexibility feature was also demonstrated [3].

The methodology for parameter derivation (Requirement 2 ), as outlined in
Algorithm 2, was developed and validated by Wagner and Fay [23]. The parameter
derivation methodology was also applied for the derivation of parameters in the work of
Henkel et al. [38] for a system of electrolyzers.

Therefore, this section presents the validation of the process for the automatic
generation of a parameterized instance of the generic optimization model, outlined in
Algorithms 1 and 3 (corresponding to Requirement 3 ). The validity of Algorithms 1 and 3
is demonstrated by two case studies of a flexible electric power generation system and a
flexible consumption system. The setup of the validation is outlined in Section 4.1. The case
studies are presented in Sections 4.2 and 4.3. This section concludes with a summary of the
results in Section 4.4. Section 4.4 also describes the fulfillment of Requirement 4 , i.e., the
traceability and comprehensibility of the generated optimization models.

4.1. Setup of the Evaluation

As outlined in the previous section, certain aspects of the methodology have already
been validated. Consequently, the validation in this work focuses on evaluating the
accuracy of the generated decision variables, the appropriate selection of flexibility features
(sets of constraints), their correct parameterization, and ultimately, the generation of a
feasible optimization model.

https://github.com/lukas-wagner/AutoModelGeneration
https://github.com/lukas-wagner/AutoModelGeneration
https://demo.fpbjs.net
https://demo.fpbjs.net
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The results from deriving parameters are presented separately from the creation of a
model instance to improve the clarity of each section, aligning with the functions described
in Algorithms 2 and 3. However, as illustrated in Algorithm 1, these two functions are
actually integrated within the main function automaticModelGeneration() to facilitate an
automatic model generation process without manual intervention.

The following sections are structured similarly:
First, the accuracy of the parameter set is evaluated based on the normalized root

mean square error (nRMSE) of a validation time series data set and the parameters used in
an optimization model with predetermined system input [23].

Following, the correctness of the model instance is evaluated by comparing a manually
created reference model (subsequently referred to as ‘expected model’) to the automatically
generated model instance. The definition of the expected model is achieved by analyzing
the parameter set and manually selecting the necessary flexibility features and associating
parameters. For this purpose, an optimization horizon of 10 hours is selected.

The feasibility of the automatically generated optimization model is demonstrated by
solving each model for the previously selected optimization horizon, with the temporal res-
olution determined by the function getSystemParameters() in Algorithm 2. The objective
function incorporates the dynamic electricity prices illustrated in Figure 4. The solver’s
default optimality gap of 10−4 is used. The optimality gap is a measure of how close a
found solution, i.e., the optimized schedule, is to the theoretically optimal solution.
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Figure 4. Electricity price of the continuous intra-day market [45].

All case study-related calculations are carried out on Windows 11 with an AMD Ryzen
7 PRO 5850U processor and 32 GB of RAM. IBM ILOG CPLEX is used as a solver (see
Section 3.4).

4.2. Automatic Generation of Optimization Model of CHP System

This section describes the application of the method for the automatic generation
of an optimization model presented in Section 3 to a CHP system depicted in Figure 5.
The system comprises two resources: a gas-fired generator and a heat exchanger. First,
the derived parameters are described (Section 4.2.1), then the generated model instance
is verified (Section 4.2.2). Finally, the feasibility of the optimization model instance is
demonstrated in Section 4.2.3.

4.2.1. Derived Parameters of CHP System

This section describes the results of the application of the algorithm for parameter
derivation (Algorithm 2) for the CHP system depicted in Figure 5. The results reported in
this subsection have been previously established as part of the validation in the work of
Wagner and Fay [23].

The time series data used in the following have been captured from resource operation.
During preprocessing, erroneous values have been replaced while retaining the overall
integrity of the dataset, including its size of 30,000 datapoints (1 month, with a temporal
resolution of 1 min) [23].



Energies 2025, 18, 325 18 of 35

S CHP

E Gas

O Elec. Generation
T gas-

fired_generator

E El.

O Th. Generation T heat_exchanger
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Figure 5. FPD information model of the CHP system [23].

Tables detailing the content of the data model, specifically the parameters derived
using Algorithm 2 from the preprocessed time series data, are provided below. These
include operational boundaries and parameters, i.e., slope and intercept, that describe the
linearized input–output relationship of each resource (see Table 2).

Table 2. Parameters of resources within the CHP system [23].

Subset Parameter Gas-Fired Gen. Heat Ex.

Operational boundaries (input)
Lower bound, kW 0 0

Upper bound, kW 2912 1101

Operational boundaries (output)
Lower bound, kW 0 0

Upper bound, kW 1101 1746

IO relationship
Slope, kW/kW 0.38 1.15

Intercept, kW −18.4 55.2

Additionally, two discrete system states 𝑠 for the generator were identified using a
clustering algorithm, and system state-related parameters (boundaries, minimum and
maximum holding duration, follower states, and ramp limits) are listed in Table 3. The
heat exchanger does not have any system states. These parameters were derived using the
function getResourceParameters of Algorithm 2 [23].

Table 3. System states and related parameters of the gas-fired generator within the CHP system [23].

State 𝒔 0 1

𝑃in., min,𝑠 , kW 0 0

𝑃in, max,𝑠 , kW 2912 1452

𝑃out, max,𝑠 , kW 1101 536

𝑡ℎ,min,𝑠 , h 8.15 0.5

𝑡ℎ,max,𝑠 , h ∞ ∞
S𝐹,𝑠 {1} {0}

rampinput, min,𝑠 , kW/h 0 0

rampinput, max,𝑠 , kW/h 128,587 ∞
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Dependencies were extracted from the FPD-based information model of the CHP
system, as depicted in Figure 5, using the function extractDependencies() included in
Algorithm 2 (see Table 4) [23].

Table 4. Dependencies of resources within the CHP system (Figure 5) [23].

Dependency Type Output Resources Input Resources

1 Correlative System input Gas-fired gen.

2 Correlative Gas-fired gen. System output

3 Correlative Gas-fired gen. Heat ex.

4 Correlative Heat ex. System output

To optimally balance computational complexity and accurately match holding dura-
tions, a temporal resolution of 0.125 h was automatically selected [23].

A simulation case study compares these parameters to time series data and demon-
strates very good alignment (see Figure 6), indicated by low nRMSE values (1% for the
gas-fired generator, 6% for the heat exchanger) [23].
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(a) Output of gas-fired generator
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Figure 6. Comparison of generated schedules with corresponding time series data of resources within
the CHP system [23].

4.2.2. Verification of the Generated Model Instance of the CHP System

This section describes the application of Algorithm 3 for the CHP system and verifies
the generated model. The data model presented in the previous section acts as the main
input for the generation of an optimization model instance (parameterizeOptModel()), as
shown in Algorithm 1.

The generation of the model instance is realized through the functions addFlexibility-
Feature() and addDecVars(), respectively. The resulting optimization model instance (this
model instance is available at https://github.com/lukas-wagner/AutoModelGeneration,
accessed on 6 January 2025) is analyzed below.

As described in Section 3.2, continuous (cont.) decision variables are to be created
for system inputs and outputs, resource inputs and outputs, and binary decision variables
for system states. The length of one decision variable array is determined by the duration
of the optimization horizon (10 h) and the temporal resolution (0.125 h), thus resulting in

https://github.com/lukas-wagner/AutoModelGeneration
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80 time steps. The decision variables for system states include one additional time step to
account for starting states; thus, these variables must be of length 81.

Table 5 shows a comparison of the expected and generated decision variables. Therein,
it is shown that all expected decision variables have been created at the expected length,
and the right type was chosen: continuous decision variables are created for input and
output flows, for both resources as well as for the system. Additionally, binary decision
variables are created for the two system states of the generator.

Table 5. Comparison of expected and generated decision variables of the CHP system.

Resource Expected Variable Type Length Generated

System Input Cont. 80 yes
System Output (el.) Cont. 80 yes
System Output (th.) Cont. 80 yes

Generator Input (el.) Cont. 80 yes
Generator Output (th.) Cont. 80 yes
Generator System State 0 Binary 81 yes
Generator System State 1 Binary 81 yes

Heat exchanger Input (th.) Cont. 80 yes
Heat exchanger Output (th.) Cont. 80 yes

Analogously, Table 6 shows a comparison of the expected and instantiated flexibility
features. The instantiation of constraints encapsulated within flexibility features and their
correct parameterization is verified for each applicable flexibility feature. As shown in
the parameter set presented in Section 4.2.1, flexibility features for operational boundaries
(Equation (A1)), a linearized input–output relationship (Equation (A2) with |K | = 1) as well as
system states (state selection) and associated features (holding durations, follower states,
ramp limits) are necessary (Equation (A7)ff). For the heat exchanger, only flexibility features
operational boundaries and a linearized input–output relationship are necessary. Flexibility
features related to system states are not applicable for the heat exchanger, as no system state-
related parameters are contained. As extracted from the FPD information model shown in
Figure 5, the system exhibits four correlative dependencies (see Table 4 and Equation (A15)).

Table 6. Comparison of expected and instantiated flexibility features for the CHP system.

Resource Expected Feature Inst.? Para.?

System Operational boundaries (input) yes yes
System Operational boundaries (output el.) yes yes
System Operational boundaries (output th.) yes yes

Generator Operational boundaries (input) yes yes
Generator Operational boundaries (output) yes yes
Generator Linear input–output relationship yes yes
Generator System state selection yes yes
Generator State sequences yes yes
Generator Holding durations yes yes
Generator Ramp limits yes yes

Heat exchanger Operational boundaries (input) yes yes
Heat exchanger Operational boundaries (output) yes yes
Heat exchanger Linear input–output relationship yes yes

System Correlative dependency: input–generator yes yes
System Correlative dependency: generator–heat ex. yes yes
System Correlative dependency: generator–output el. yes yes
System Correlative dependency: heat ex.–output th. yes yes

Inst.—Instantiated. Para.—Parameterized.
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As shown in Table 6, all expected elements have been correctly instantiated and
parameterized using the parameter set previously derived (see Section 4.2.1).

The analyses in Tables 5 and 6 show that an accurate optimization model instance of
the CHP system has been generated.

4.2.3. Demonstration of Feasibility of Model Instance of CHP System

In addition to the model being used for the verification of the accuracy of the parameter
set, the feasibility of the optimization model is further validated by solving it to generate an
optimized schedule. A target of 85% capacity utilization is established, which corresponds
to the generation of 6000 kWh of electric energy during the optimization horizon. As
described in Section 3.1, this ensures the generation of a useful schedule. The constraint to
enforce a target is also part of the optimization model structure (Equation (A6)) and can be
set by adding the respective parameters (target energy amount, target decision variable) to
the data model.

Figure 7 displays the optimized schedule generated by solving the optimization model
instance, which aims to maximize the total profit from the sale of electric energy 𝑐el (see
Figure 4; output of electric energy is output of the generator in time interval 𝑃 · Δ𝑡) to the
continuous intra-day market. This requires the definition of an objective function (see
Equation (2)). The formulation of this objective function is based on the assumption that
the CHP system acts as a price taker and that the cost of natural gas input remains constant
and can therefore be omitted in this objective function.

𝑜𝑏 𝑗 = max
∑︁
𝑡∈T

𝑃generator, out,𝑡 · 𝑐el,𝑡 (2)

The optimized schedule displayed in Figure 7 demonstrates the feasibility of the
automatically generated optimization model. The energy-flexible operation of the CHP
system yields a monetary benefit of EUR 344.47 from the sale of electric energy. The cost
of natural gas must be deducted from this income. Constant operation with an identical
target of 6000 kWh of electric energy (=600 kW output of electric power) of the CHP
system, with identical price values, as shown in Figure 4, within the operating period under
consideration would have yielded a monetary benefit of EUR 65.5. The computational time
was 0.038 s, mostly due to the low complexity of the model and short optimization horizon.
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Figure 7. Optimized schedule for CHP system.

The input of the heat exchanger is not displayed in Figure 7, as it is equal to the
output of the generator, as shown in Figure 5. The generated operational schedule has
been subjected to a manual, offline analysis. All constraints that are part of the instanti-
ated flexibility features, as detailed in Table 6, have been considered correctly during the
generation of the optimized schedule. This includes input–output relationships, system
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state selection, follower states, holding durations, and ramp limits, as well as dependencies
within the system.

4.3. Automatic Generation of Optimization Model of Refrigeration System

This section describes the second case study, applying the methodology outlined in
Section 3 to a refrigeration system. The structure of the following subsections is similar
to the previous sections: first, the results of the derivation of parameters are described
(Section 4.3.1), then the generated optimization model instance is validated (Section 4.3.2).
The feasibility of the optimization model instance is demonstrated in Section 4.3.3.

The dataset used for this case study has been made available by Cirera et al. [46],
which was also used in the work of Cirera et al. [47].

As shown in Figure 8, the system consists of two vapor-compression refrigeration
machines that work in tandem: Each compressor is responsible for compressing the re-
frigerant vapor, increasing its pressure and temperature. The high-pressure vapor then
moves to a condenser, where it releases heat to the environment and condenses into a
high-pressure liquid. This liquid refrigerant is then expanded and cooled by the thermal
expansion valves before entering the evaporators, where it absorbs heat and evaporates
back into vapor. The cycle continuously repeats. For generating a useful optimization
model of the refrigeration machines as flexible energy resources, some intermediate steps of
the vapor-compression cycle do not need to be modeled explicitly. It is sufficient to model
the refrigeration machines as resources that convert electrical energy (E El.) directly into
cooling energy (E. Th.).

S Refrigeration

E El.

O Refrigeration 1 T Refrigera-
tion machine 1

O Refrigeration 2 T Refrigera-
tion machine 2

E Th.

Figure 8. FPD information model of the refrigeration system.

4.3.1. Derived Parameters of Refrigeration System

This section presents the parameters derived via the application of Algorithm 2 for
the refrigeration system.

The length of the time series dataset was 30,000 data points (roughly 1 month at 1 min
time steps), which was deemed to be sufficiently long to capture a variety of operational
characteristics. A threshold value of 0.9 for the R2 was set to determine whether a linearized
input–output relationship is sufficient [23]. For R2 values below this threshold, PLA would
be necessary [23]. However, for both refrigeration machines, the R2 was above the threshold
(refrigeration machine 1: 0.904, refrigeration machine 2: 0.957). Thus, linearized input–
output relationships are sufficient for both refrigeration machines, and parameters for slope
and intercept were derived (see Table 7).

Three system states were identified for each refrigeration machine, and associated
parameters for limits, holding durations, follower states, and ramp limits were derived (see
Table 8).
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For the system, operational boundaries for power flows (see Table 7) and dependencies
were extracted from the FPD information model shown in Figure 8. As shown in Table 9,
two dependencies were extracted.

Table 7. Parameters of the refrigeration system.

Subset Parameter System

Operational boundaries (input)
Lower bound, kW 0

Upper bound, kW 758.86

Operational boundaries (output)
Lower bound, kW 0

Upper bound, kW 2415.82

Subset Parameter RM1 RM2

Operational boundaries (input)
Lower bound, kW 0 0

Upper bound, kW 460.98 408.57

Operational boundaries (output)
Lower bound, kW 0 0

Upper bound, kW 1598.13 1367.17

IO relationship
Slope, kW/kW 3.95 2.46

Intercept, kW −185.81 0.93
RM—refrigeration machine.

Table 8. System states and related parameters of resources within refrigeration system.

Refrigeration Machine 1

State 𝑠 0 1 2

𝑃in., min,𝑠 , kW 0 200.51 274.21

𝑃in, max,𝑠 , kW 199.88 273.59 460.98

𝑃out, max,𝑠 , kW 457.86 1212.68 1598.13

𝑡ℎ,min,𝑠 , timesteps 0 0 0

𝑡ℎ,max,𝑠 , timesteps ∞ ∞ ∞
S𝐹,𝑠 {1, 2} {0, 2} {0, 1}

rampinput, min,𝑠 , kW/h 0 0 12.4

rampinput, max,𝑠 , kW/h 794.52 1442.99 6370.89

Refrigeration Machine 2

State 𝑠 0 1 2

𝑃in., min,𝑠 , kW 0 202.69 274.07

𝑃in, max,𝑠 , kW 199.5 273.55 408.57

𝑃out, max,𝑠 , kW 0 944.91 1367.17

𝑡ℎ,min,𝑠 , timesteps 0 0 0

𝑡ℎ,max,𝑠 , timesteps ∞ 6 ∞
S𝐹,𝑠 {1, 2} {0, 2} {0, 1}

rampinput, min,𝑠 , kW/h 0 18.9 8.54

rampinput, max,𝑠 , kW/h 2699.03 1765.04 6810.14
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Table 9. Dependencies of resources within the refrigeration system (Figure 8).

Dependency Type Output Resources Input Resources

1 Correlative System input RM1, RM2

2 Correlative RM1, RM2 System output

Furthermore, a temporal resolution of 0.25 h was selected. This was done to optimally
balance computational complexity and accurately match holding durations of all system
states [23].

A full interpretation of the parameters is omitted, as the methodology for parameter
derivation has already been validated and is applied in this case study for the purpose of
generating an optimization model in the following section.

Similar to the validation of the accuracy of the parameters in the work of Wagner and
Fay [23], this section validates the parameter set by solving the parameterized optimization
model in the style of a simulation model, eliminating the need for an objective function. For
comparability, the input time series data for each refrigeration machine are directly linked
to the corresponding decision variables. For this validation, previously unused time series
data are used (validation dataset). The choice of system states and associated constraints,
such as the holding durations for each state, significantly influences the resultant schedule,
as these constraints must be adhered to. As outlined in Section 3.2, these constraints
encompass the selection of system states, adherence to holding durations, and observance
of ramp limits. Furthermore, the maintenance of the input–output relationship, compliance
with operational boundaries, and dependencies of resources are also demonstrated.

The resulting comparison is shown in Figure 9. This figure shows the output of each
of the refrigeration machines. Therein, a very good alignment can be seen, measured
with nRMSE values of 5.22% (refrigeration machine 1, Figure 9a) and 5.34% (refrigeration
machine 2, Figure 9b). This not only validates the accuracy of the parameter set but also
further validates the methodology for parameter derivation (Algorithm 2).
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Figure 9. Comparison of generated schedules with corresponding time series data of refrigeration
machines within refrigeration system.
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4.3.2. Verification of the Generated Model Instance of the Refrigeration System

In this section, the same verification approach is used as described in Section 4.2.2, and
an expected model is compared to the generated model (this model instance is available at
https://github.com/lukas-wagner/AutoModelGeneration, accessed on 6 January 2025).

Table 10 shows a comparison of the expected and generated decision variables. Con-
tinuous decision variables are necessary for system and resource inputs and outputs.

Table 10. Comparison of expected and generated decision variables of the refrigeration system.

Resource Expected Variable Type Length Generated

System Input Cont. 40 yes
System Output (th.) Cont. 40 yes

RM 1 Input (el.) Cont. 40 yes
RM 1 Output (th.) Cont. 40 yes
RM 1 System State 0 Binary 41 yes
RM 1 System State 1 Binary 41 yes
RM 1 System State 2 Binary 41 yes

RM 2 Input (el.) Cont. 40 yes
RM 2 Output (th.) Cont. 40 yes
RM 2 System state 0 Binary 41 yes
RM 2 System state 1 Binary 41 yes
RM 2 System state 2 Binary 41 yes

RM—refrigeration machine.

For both refrigeration machines, binary decision variables are also needed for the
representation of each of the system states. In Table 10, it is shown that all expected decision
variables have been created at the expected length, and the right type was chosen. This was
achieved, as described in Algorithm 3, through an analysis of the data model (for contents,
see Tables 7–9).

Table 11 shows the comparison of expected and instantiated flexibility features to
verify the correct instantiation of flexibility features and their correct parameterization. The
expected flexibility features for both refrigeration machines are identical, as a similar set of
parameters was derived (see Tables 7–9). The expected model contains operational boundaries
for the system as well as for both refrigeration machines (Equation (A1)). Both refrigeration
machines are represented by a linearized input–output relationship (Equation (A2) with
|K | = 1) as well as system states and associated constraints (Equation (A7)ff). Furthermore,
two dependencies for the representation of the system structure were extracted from the FPD
information model (see Figure 8 and Equation (A15)).

As shown in Table 11, all expected flexibility features were instantiated as well as pa-
rameterized.

The analyses in Tables 10 and 11 demonstrate the accuracy of the automatically
generated optimization model instance for the refrigeration system.

4.3.3. Demonstration of Feasibility of Model Instance of Refrigeration System

In this section, an optimized schedule is calculated for the refrigeration system using
the optimization model that was automatically generated and subsequently verified in
Section 4.3.2. This is done to demonstrate the feasibility of the optimization model. The
optimization model was solved using the default objective function to minimize the total
cost of electric energy, shown in Equation (1), with price data shown in Figure 4. With a
target of 6000 kWh of thermal energy for each of the refrigeration machines (set as described
in Section 4.2.3), the total cost of electric energy was EUR 157.1. A constant operation of the
refrigeration system with the same target within the operating period under consideration

https://github.com/lukas-wagner/AutoModelGeneration
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would have resulted in an electric energy cost of EUR 202.23. The computational time was
0.2 s.

Table 11. Comparison of expected and instantiated flexibility features for refrigeration system.

Resource Expected Feature Inst.? Para.?

System Operational boundaries (input) yes yes
System Operational boundaries (output) yes yes

RM 1 Operational boundaries (input) yes yes
RM 1 Operational boundaries (output) yes yes
RM 1 Linear input–output relationship yes yes
RM 1 System state selection yes yes
RM 1 State sequences yes yes
RM 1 Holding durations yes yes
RM 1 Ramp limits yes yes

RM 2 Operational boundaries (input) yes yes
RM 2 Operational boundaries (output) yes yes
RM 2 Linear input–output relationship yes yes
RM 2 System state selection yes yes
RM 2 State sequences yes yes
RM 2 Holding durations yes yes
RM 2 Ramp limits yes yes

System Correlative dependency Input—{RM1, RM2} yes yes
System Correlative dependency {RM1, RM2}—output yes yes

Inst.—Instantiated. Para.—Parameterized.

The optimized schedule is shown in Figure 10. Therein, Figure 10a shows the electric
power input of both refrigeration machines and Figure 10b shows the thermal power
output. As described in the Section 4.2.3, offline analysis shows that all constraints of the
optimization model are satisfied.

A comparison of the coefficients of performance (COPs) of refrigeration machines 1
and 2 shows that refrigeration machine 2 (COPRM2: 2.7 vs. COPRM1: 3.2) is less efficient.
This is not reflected in the optimized schedule shown in Figure 10, as identical targets
were set.

To achieve more efficient resource utilization, a combined target for both resources
could be set, setting a target of 12,000 kWh of thermal energy instead of separate targets of
6000 kWh for each refrigeration machine.

Even though targets on the system level are not part of the model structure (Section 3.2),
the extension of the model instance to incorporate use case-specific constraints, such as a
target for specific flows, further demonstrates the user friendliness of the model generation
methodology. The constraint for this target 𝑇 is shown in Equation (3) and is analogously
modeled as shown in Equation (A6).

Δ𝑡 ·
∑︁
𝑡∈ |T |

𝑃RM1, out,𝑡 + 𝑃RM2, out,𝑡 = 𝑇 (3)

The resulting optimized schedule is shown in Figure 11. Compared to the schedule
with equivalent targets for both refrigeration machines (Figure 10), this schedule operates
the more efficient refrigeration machine 1 more frequently than refrigeration machine 2.
Specifically, as shown in Figure 11a, refrigeration machine 1 generated 10,354 kWh, whereas
refrigeration machine 2 produced only 1646 kWh of thermal energy, primarily during pe-
riods of low electricity prices (see Figure 11b). Operating the system with this optimized
schedule resulted in electric energy costs of EUR 135.16. Therefore, the costs for coopera-
tive operation leveraging heterogeneous efficiencies are lower than those for standalone
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operation (see Figure 10). The computational time for the generation of this optimized
schedule was 0.18 s.
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Figure 10. Optimized schedule for refrigeration system.
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Energies 2025, 18, 325 28 of 35

4.4. Summary of the Evaluation

The case studies presented in Sections 4.2 and 4.3 demonstrate the applicability of the
methodology presented in Section 3 to different kinds of systems of flexible energy resources.

The parameters derived using Algorithm 2 show very good alignment with resource
behavior (nRMSE values of 1–6%).

The verification of the generated model instances show that all expected elements of
the model structure have been instantiated and subsequently parameterized by applying
Algorithm 3. Eventually, the feasibility of the models for the generation of optimized
schedules underlines the applicability of the methodology to the generation of usable
optimization models.

The optimization case studies in Sections 4.2.3 and 4.3.3 highlight the economic bene-
fits of energy-flexible resource operation, demonstrating that flexible operation is financially
more advantageous than constant operation. Furthermore, the case study on the refrig-
eration system demonstrates the usefulness of aggregating resources within a system
and the integrated planning of resource operation compared to the parallel planning of
resource operation.

In summary, the evaluation shows the applicability of Algorithm 1. The optimization
models for the CHP and the refrigeration system were generated without requiring manual
involvement in the model creation process. This automation significantly accelerates
the model generation process and reduces the potential for errors. In contrast, manual
modeling is an error-prone, time-consuming process that relies heavily on the expertise
of the practitioner [3,37]. As described in Section 1, the uptake of energy-flexible resource
operation needs to be accelerated in the face of increasing shares of volatile renewable
energy generation. This can only be achieved when domain knowledge in optimization
modeling is not necessary for the creation of optimization models for systems of flexible
energy resources.

As described in Section 1, MILP models are favored for the operational planning
of flexible energy resources. Building upon this model type, reducing the complexity of
the models is crucial [48] and thus is the focus during the generation process, e.g., when
selecting an appropriate temporal resolution for the model [23]. This ensures that the
generated optimization models are practical for near real-time operations, where short
computational times are necessary. This is underlined by the short computational times of
both case studies. Such efficiency allows the models to be used for real-time optimization
to adapt resource operation swiftly to dynamic conditions, like changing forecasts in
wind power. Henkel et al. [38] further demonstrate the usability of the model structure
(Section 3.2) for the dual-use of an optimization model in both site-wide optimization
(resource operation planning for durations of approx. 1 day, as shown in Sections 4.2
and 4.3) and real-time optimization. Thus, the automatically generated optimization
models can also be applied for real-time optimization to incorporate volatile, hard-to-
forecast renewable energy, such as wind power.

As described in Section 1, the traceability and comprehensibility of the model instances
must be ensured (Requirement 4 ). The model structure and its parameters represent the
physical behavior of resources: operational boundaries and input–output relationships
correspond to recognizable limits of resources. System states and corresponding param-
eters are also identifiable by resource operators, as they align with resource properties.
Dependencies within the system represent connections between resources. Validating these
elements does not require an in-depth understanding of optimization modeling but is
feasible with knowledge of the system in question. Thus, the model’s traceability and
comprehensibility are ensured. Additionally, as outlined in Section 3.3.2 and demonstrated
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in Section 4.3.3, adapting specific model elements is easily feasible due to the modular
model structure and the sequential model generation process.

In comparison with related work analyzed in Section 2, this work presents a methodol-
ogy for the automatic generation of optimization models, covering a wider range of flexibility
features and a comprehensive methodology for the automatic derivation of parameters.
These two key components are then leveraged to facilitate the fully automated generation
of models. As concluded in Section 2, existing approaches currently only focus on a subset
of constraints and most often do not present methods for complete parameterization of
models of systems or for the complete automation of model generation, thus limiting the
ability of the methods to automatically create models.

5. Discussion
The methodology introduced in this work effectively minimizes manual intervention

by automatically generating accurate optimization models, making the process more acces-
sible and error-free. It can accommodate various types of flexible energy resources using
a modular optimization model structure and sequential generation process, enhancing
traceability and model management. This automation streamlines the optimization of en-
ergy resources, expediting the integration of renewable energy and contributing to energy
system resilience and reduced operational costs.

The systematic review by Wagner et al. [9] of modeling approaches for flexible energy
resources indicates that resources involving thermal dynamics typically require higher
levels of detail in their models to adequately capture these dynamics. Consequently, using
the model structure depicted in Figure 2 for resources influenced by thermal dynamics
might lead to discrepancies between the model and actual resource behavior. The under-
lying optimization model structure draws on an analysis of existing generic models [3]
and an examination of the required level of detail for optimization models [48]. Thus,
this structure reflects a consensus within the scientific community and strives to balance
modeling accuracy with computational efficiency. Despite potential deviations, these are
within the acceptable range established by current standards [49]. Additionally, research
by Reinpold et al. [37] demonstrates that even complex resources, such as distillation
units, can be effectively represented by this model structure, highlighting its versatility
and robustness. Therefore, despite the relatively simple model structure serving as the
foundation for the automatically generated optimization model, the model sufficiently
captures the operational behavior for the purposes of operational planning, such as in
the context of energy markets, as long as the discrepancies between model predictions
and actual performance, measured by the nRMSE [28], remain within acceptable margins.
Moreover, the suitability of using simple models for such applications was confirmed by
the findings of Wagner et al. [9], who based their conclusion on an analysis of 674 models
of flexible energy resources.

Another limitation is the dependency on the operational behavior captured within
time series datasets. The parameter set and thus the optimization model itself only reflects
the operational behavior present in the data, necessitating comprehensive datasets that
cover a wide array of operational scenarios to enhance model robustness. This limitation
underscores the importance of utilizing a representative data set.

The computational complexity of MILP models scales close to exponentially [13].
Thus, optimizing large systems with a high number of flexible energy resources can be
computationally challenging. However, optimization models for larger systems can be
solved quickly and in time for their conversion into setpoints, i.e., between the disclosure
of energy prices and the first time step of the optimization horizon, on consumer-grade
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computers [38,48]. Thus, leveraging more powerful computing technology is a feasible
way of ensuring timely generated schedules.

User trust in the automated process is also critical. To address this, the resulting opti-
mization models are made traceable and understandable through a step-wise generation
approach. Since the underlying data model for model parameters is constructed in such
a way that parameters reflect the real behavior of the system, trust is fostered through
transparency. This is pivotal, as users need to rely on the models for decision-making in
real operational settings.

While the methodology advances the field significantly, it does not fully bridge the gap
in domain knowledge necessary for operating energy resources flexibly, which might limit
the use of generated models. This area, while outside the current scope of this research,
highlights the potential for future advancements.

6. Conclusions
This work introduces a novel methodology for the automatic generation of optimiza-

tion models for systems of flexible energy resources, significantly reducing the need for
manual intervention. The methodology employs a generic optimization model structure to
accommodate diverse systems of flexible energy resources. Parameters are automatically
derived from time series data and a standardized information model of the system’s struc-
ture, which are then used to create a parameterized optimization model for the generation
of an optimized schedule for subsequent control of the system.

Two case studies—one with a CHP system and another involving multiple refrigera-
tion machines of a refrigeration system—illustrate the methodology’s broad applicability
and effectiveness. These studies confirm the accuracy of the derived parameters, the cor-
rect instantiation and parameterization of constraints, and the feasibility of the generated
optimization models.

By automating the model generation process, the methodology addresses significant
challenges such as “competence obstacles” [15] and the intricacies of model develop-
ment [16–18]. Moreover, the automated process fosters understanding and trust among
users, which are critical for adopting such advanced models in practical energy manage-
ment scenarios.

Future work could focus on enhancing the method’s adaptability and user-friendliness.
Developing a catalogue of objective functions will allow users to tailor models to specific
environmental or operational goals, such as minimizing carbon dioxide emissions or
optimizing load balancing. Additionally, integrating this methodology into existing opti-
mization frameworks like pycity_scheduling [50] could further streamline its adoption and
maximize its impact across the energy sector. The proposed methodology could also be
applied to larger systems of heterogeneous energy resources.
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The following abbreviations are used in this work:

CHP combined heat and power

COP coefficient of performance

FPD formalized process description
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nRMSE normalized root mean square error

PLA piecewise linear approximation

R2 coefficient of determination

SOC state of charge

Appendix A
Appendix A.1 Constraints Encapsulated Within Flexibility Features

The constraints encapsulated within the flexibility features described in this section
are reproduced from Wagner et al. [3].

Operational boundaries are modeled as shown in Equation (A1) [3].

𝑃min ≤ 𝑃𝑡 ≤ 𝑃max ∀𝑡 (A1)

The piecewise linear approximation of the input–output relationship is realized using
binary variables 𝑥𝑘 for each segment 𝑘 ∈ K and time step 𝑡 (Equations (A2)–(A4). Only one
segment can be active per time step (Equation (A5)). For a linearized representation of the
input–output relationship, Equations (A3)–(A5) are omitted and |K | = 1 in Equation (A2).
The total energy output (target) 𝐷 over the optimization horizon is set by Equation (A6).
Depending on whether a target for the input or the output of the resource is to be set, 𝑃𝑡

in Equation (A6) corresponds to the respective decision variable, i.e., either 𝑃input𝑘 ,𝑡 or
𝑃output,𝑡 [3].

𝑃output,𝑡 =
∑︁
𝑘∈K

(
𝑎𝑘 · 𝑃input𝑘 ,𝑡 + 𝑏𝑘 · 𝑥𝑘,𝑡

)
∀𝑡 (A2)

lb𝑘 · 𝑥𝑘,𝑡 ≤ 𝑃input𝑘 ,𝑡 ∀𝑡, 𝑘 (A3)

𝑃input𝑘 ,𝑡 ≤ ub𝑘 · 𝑥𝑘,𝑡 ∀𝑡, 𝑘 (A4)∑︁
𝑘∈K

𝑥𝑘,𝑡 = 1 ∀𝑡 (A5)

Δ𝑡 ·
∑︁
𝑡∈T

𝑃𝑡 = 𝐷 (A6)

System states 𝑠 ∈ S are characterized by lower and upper flow limits (Equations (A8)
and (A9)), follower states S𝐹,𝑠 (Equation (A10)), holding durations of each state 𝑠

(Equations (A11) and (A12)), and ramp limits (Equations (A13) and (A14)) [3].
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∑︁
𝑠∈S

𝑥𝑠,𝑡 = 1 ∀𝑡 (A7)

𝑃𝑡 ≥
∑︁
𝑠∈S

𝑃min,𝑠 · 𝑥𝑠,𝑡 ∀𝑡 > 𝑡0 (A8)

𝑃𝑡 ≤
∑︁
𝑠∈S

𝑃max,𝑠 · 𝑥𝑠,𝑡 ∀𝑡 > 𝑡0 (A9)

𝑥𝑡−1,𝑠 − 𝑥𝑡 ,𝑠 ≤
∑︁

𝑓 ∈S𝐹,𝑠

𝑥 𝑓 ,𝑡 ∀𝑠, 𝑡 > 𝑡0 (A10)

𝑡ℎ,min,𝑠 ·
(
𝑥𝑡 ,𝑠 − 𝑥𝑡−1,𝑠

)
≤

∑︁
𝜏∈Tℎ

𝑥𝜏,𝑠 ∀𝑠, 𝑡 > 𝑡0 (A11)

𝑡ℎ,max,𝑠 ≥
∑︁
𝜏∈Tℎ

𝑥𝜏,𝑠 ∀𝑠, 𝑡 > 𝑡0 (A12)

Δ𝑡 ·
∑︁
𝑠∈S

(
rampmin,𝑠 · 𝑥𝑠,𝑡

)
≤ |𝑃𝑡 − 𝑃𝑡−1 | ∀𝑡 > 𝑡0 (A13)

Δ𝑡 ·
∑︁
𝑠∈S

(
rampmax,𝑠 · 𝑥𝑠,𝑡

)
≥ |𝑃𝑡 − 𝑃𝑡−1 | ∀𝑡 > 𝑡0 (A14)

The correlative dependency relationship of resources within the system is modeled as
shown in Equation (A15). Therein, the direction of the flows involved in one dependency
relation is retained through the use of the respective decision variables corresponding to
the input and output flows of the resources. This is done per energy carrier 𝑒. One resource
cannot be involved on both input and output sides simultaneously (𝑟𝑘 ≠ 𝑟 𝑗 ). [3]∑︁

𝑟𝑘 ∈R𝑘

𝑃output,𝑟𝑘 ,𝑒,𝑡 =
∑︁

𝑟 𝑗 ∈R 𝑗

𝑃input,𝑟 𝑗 ,𝑒,𝑡 ∀𝑡, 𝑒, 𝑟𝑘 ≠ 𝑟 𝑗 (A15)

For restrictive dependencies, the constraints are modeled as shown in Equations (A16)–(A20).
Equations (A16) and (A17) ensure that only one flow of one resource is active per side of the
dependency through the use of binary decision variables. Equations (A18)–(A20) connect
the active flows of the dependency relation by intermediate decision variables 𝑃input,𝑡 and
𝑃output,𝑡 [3]. ∑︁

𝑟𝑘 ∈R𝑘

𝑥𝑟𝑘 ,𝑒,𝑡 = 1 ∀𝑒, 𝑡 (A16)

∑︁
𝑟 𝑗 ∈R 𝑗

𝑥𝑟 𝑗 ,𝑒,𝑡 = 1 ∀𝑒, 𝑡 (A17)

𝑃output,𝑟𝑘 ,𝑡 = 𝑃output,𝑡 , if 𝑥𝑟𝑘 ,𝑡 = 1 ∀𝑟𝑖 , 𝑡 (A18)

𝑃input,𝑟 𝑗 ,𝑡 = 𝑃input,𝑡 , if 𝑥𝑟 𝑗 ,𝑡 = 1 ∀𝑟 𝑗 , 𝑡 (A19)

𝑃output,𝑒,𝑡 = 𝑃input,𝑒,𝑡 ∀𝑒, 𝑡 (A20)
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