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Introduction
Gas exchange in the lung takes place in millions of alve-
oli. The alveolar epithelium consists of cuboidal alveo-
lar type 2 (AT2) pneumocytes, which secrete various 
factors such as surface tension-lowering surfactants, 
and flat AT1 pneumocytes, which make up most of the 
alveolar surface for gas exchange (Milad and Morissette 
2021). The proper interaction of the pneumocytes with 
numerous other cell types such as alveolar fibroblasts is 
essential for normal lung homeostasis but also for the 
regeneration of the lung epithelium after, for example, 
infections. The stem cell properties of AT2 cells are par-
ticularly important here (Juul et al. 2020). Thus, various 
studies have investigated how mesenchymal cells regu-
late the proliferation and differentiation of lung epithelial 
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Abstract
Impaired interaction of fibroblasts with pneumocytes contributes to the progression of chronic lung disease such 
as idiopathic pulmonary fibrosis (IPF). Mucin 5B (MUC5B) is associated with IPF. Here we analyzed the interaction 
of primary fibroblasts and alveolar type 2 (AT2) pneumocytes in the organoid model. Single-cell analysis, histology, 
and qRT-PCR revealed that fibroblasts expressing high levels of fibrosis markers regulate STAT3 signaling in 
AT2 cells, which is accompanied by cystic organoid growth and MUC5B expression. Cystic growth and MUC5B 
expression were also caused by the cytokine IL-6. The PI3K-Akt signaling pathway was activated in fibroblasts. 
The drug dasatinib prevented the formation of MUC5B-expressing cystic organoids. MUC5B associated with AT2 
cells in samples obtained from IPF patients. Our model shows that fibrotic primary fibroblasts induce impaired 
differentiation of AT2 cells via STAT3 signaling pathways, as observed in IPF patients. It can be used for mechanistic 
studies and drug development.
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cells (Yao et al. 2024; Kathiriya et al. 2022; Murthy et al. 
2022; Alysandratos et al. 2022; Lee et al. 2017; Tsukui et 
al. 2024; Barkauskas et al. 2013; Zepp et al. 2017) and, 
conversely, how epithelial cells influence fibroblasts (Yao 
et al. 2024; Murthy et al. 2022; Lee et al. 2017; Ushaku-
mary et al. 2021). For example, at least in mice, fibroblasts 
mediate the growth, self-renewal and differentiation of 
AT2 progenitor cells via the wingless-related integration 
site (WNT)-, fibroblast growth factors (FGF)- and IL-6/
activator of transcription-3 (STAT3)-regulated ways (Yao 
et al. 2024; Lee et al. 2017; Zepp et al. 2017; Ushakumary 
et al. 2021; Riccetti et al. 2020). A central role of the Wnt 
and Fgf pathways has also been demonstrated in the dif-
ferentiation of AT2 cells in interaction with fibroblasts 
in human organoids and by analysis of patient samples 
(Zacharias et al. 2018; Aros et al. 2021; Jacob et al. 2017; 
Konigshoff et al. 2009).

However, defective AT2 and mesenchymal cells are also 
associated with the pathogenesis of chronic lung disease 
such as chronic obstructive pulmonary disease (COPD) 
and idiopathic pulmonary fibrosis (IPF). These diseases 
are characterized by a massive loss of lung function and 
are incurable. In IPF, scarring of the lungs occurs due 
to fibrotic, overactivated fibroblasts and a loss of pneu-
mocytes (Ushakumary et al. 2021; Parimon et al. 2020; 
Tsukui et al. 2020). COPD is characterized by chronic 
pulmonary inflammation and parenchymal destruction 
leading to emphysema (Guarnier et al. 2023). It is likely 
that fibroblasts contribute to the ongoing inflamma-
tion in the lungs of COPD patients by secreting inflam-
matory and senescence-related factors (Woldhuis et al. 
2021; Ghonim et al. 2023). However, the extent to which 
impaired fibroblast interaction with AT2 cells leads to 
lung parenchymal loss remains unclear.

The occurrence of IPF is associated with a variety 
of risk factors, including genetic risks such as certain 
MUC5B promoter variants, environmental exposures 
(e.g. smoking, viral infections), and aging (Michalski and 
Schwartz 2020). Repeated microinjuries to the alveolar 
epithelium are thought to play a role in the development 
of IPF. These injuries potentially contribute to impaired 
communication between epithelial cells and fibroblasts, 
leading to activation and proliferation of misdirected 
fibroblasts, accumulation of large amounts of extracellu-
lar matrix (ECM), remodeling of the ECM, cellular senes-
cence, and destruction of the lung epithelium (Martinez 
et al. 2017). Signaling pathways important for normal 
lung homeostasis, such as Wnt-signaling, are thought to 
play a critical role in the progression of IPF when imbal-
anced (Aros et al. 2021; Ye and Hu 2021).

The aim of the present study was to analyze the inter-
action of primary human fibroblasts and AT2 cells in 
an organoid model. We show that co-cultivation of 
AT2 organoids with fibrotic fibroblasts leads to STAT3 

activation and aberrant secretory activity characterized 
e.g. by MUC5B. Fibroblasts express factors that activate 
STAT3  pathways in AT2 cells and IL-6 induces cystic 
growth of the organoids.

Results
Co-culture with fibroblasts leads to cystic growth of the 
organoids
To investigate the impact of fibroblasts on alveolar 
organoid differentiation, we isolated AT2 cells and dif-
ferentiated them in co-culture with primary fibroblasts 
for 21 days or control media (Fig.  1a). Immunostain-
ing confirmed the AT2 identity of the cells as well as the 
absence of the airway epithelial markers KRT5 and CCSP 
(S1). Co-cultivation with fibroblasts significantly influ-
enced the morphology of the organoids. In the absence 
of fibroblasts, more than 95% of the organoids showed a 
grape-like growth, while organoids cultured with fibro-
blasts had a cystic morphology (Fig. 1b and c). This was 
accompanied by an increased diameter of the organoids 
co-cultured with fibroblasts (Fig. 1d). Co-culture with the 
fibroblast cell line MRC5 led to larger organoids, but not 
to a cystic growth comparable to primary fibroblasts (S2).

Fibroblasts induce a secretory phenotype in alveolar 
type-2 cells
Next, we characterized alveolar organoids in co-culture 
with fibroblasts obtained from three different donors 
for 21 days by scRNA sequencing using BD Rhapsody™ 
Single-Cell Analysis System. Representative mark-
ers (Sikkema et al. 2023) showed that the cultures were 
composed of epithelial cells (EPCAM) and fibroblasts 
(COL1A1), with the fibroblasts only being found in co-
cultures (S3). The fibroblasts expressed typical fibro-
blast markers, high levels of collagens as well as markers 
specifically produced by fibrotic fibroblasts such as 
CTHRC1, SERPINH1 and TNFRSF12A (Fig.  2) (Tsukui 
et al. 2024; Peyser et al. 2019; Herrera et al. 2022; Guo et 
al. 2024). Since the fibroblasts were isolated from disease-
free regions of the lung (F1: lung cancer; F2: lung cancer 
with COPD; F3: pulmonary fibrosis), the phenotype of 
the fibroblasts is model-related and independent of the 
donor.

For further analysis, we sub-clustered the epithelial 
cells and identified 4 clusters: AT2 cells, aberrant AT2 
cells, proliferating AT2 cells, and dedifferentiated cells 
(Fig. 3a to c). Aberrant AT2 showed reduced expression 
of SFTPC, while other type 2 markers such as NAPSA 
and LAMP3 were increased. In addition, aberrant 
AT2 expressed secretory factors such as MUC5B and 
CXCL8. Dedifferentiated cells showed low expression for 
SFTPC and high expression for SFTPB and SCGB3A2 
and resembled the recently discovered human terminal 
and respiratory bronchiole secretory cells (TRB-SCs) 
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, which can differentiate from AT2 cells (Fig.  3c and d, 
S4a/b) (Murthy et al. 2022). Co-culture with fibroblasts 
resulted in a shift from AT2 cells to aberrant AT2 cells 
(Fig. 3e, S4c). The epithelial clusters were largely negative 
for airway epithelial markers such as S100A2, KRT5, and 
CYP2F1 (S4a/b) (Sikkema et al. 2023). Trajectory analy-
sis for both groups (with and without fibroblasts) showed 
that proliferating cells differentiated in two directions: 
AT2 and dedifferentiated cells (Fig.  3f ). Together, these 
results indicate that fibroblasts drive AT2 cells towards 
MUC5B-expressing AT2-like cells in this model.

Fibroblasts induce expression of MUC5B in pneumocytes
Immunofluorescence microscopy and semi-quantitative 
RT-PCR analyzes showed, in addition to the single cell 
analyses, that the co-culture with fibroblasts from all 
three donors led to a reduced expression of SFTPC and 
a significantly increased expression of MUC5B (Fig. 4a to 
c, also Fig. 5d). Increased expression of MUC5B was not 
present in co-cultures with MRC5 cells (S2C). However, 
co-culture with MRC5 cells results in a decreased expres-
sion of SFTPC and thus in a loss of AT2 identity (S2C). 
Consistent with the single cell analysis, the organoids 

Fig. 1 Fibroblasts induce cystic organoid growth. (a) Scheme of the experimental layout. (b) Representative phase contrast images of organoids cultured 
for 21 days (noFB: AT2 cells cultured without fibroblasts (FB); FB: AT2 cells cultured in the presence of fibroblasts, P1: passage 1). (c) Quantification of the 
morphology of the alveolar organoids. Data were compared by unpaired t-test (***p < 0.001). Each data point represents an independent experiment. (d) 
Quantification of the diameter of the alveolar organoids. Pooled results from 3 independent experiments. Data were compared by Mann-Whitney test 
(****p < 0.0001)
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were negative for the airway epithelial markers KRT5 and 
SCGB1A1 (Fig. 4D).

Staining of lung tissue from IPF patients showed 
strong expression of MUC5B in fibrotic lesions partially 
associated with SFTPC-expressing cells (Fig.  5, S5). Re-
analysis of the single-cell data published by Habermann 
et al. (Habermann et al. 2020) revealed around 25% of 
MUC5B-expressing cells in the AT2 cell cluster of IPF 
patients (S6).

IL-6-STAT3 signaling drives MUC5B-expression in AT2 cells
Gene set variation analysis (GSVA, Fig.  6a, S7a) and 
AUCell (Fig.  6b, S7b) showed that IL-6/STAT3 and 
TNF-α/NFκB pathways were activated in aberrant AT2 
cells. The PI3K-Akt signaling pathway was strongly acti-
vated in fibroblasts (S7C). IL-6 concentrations were 
increased in supernatants from co-cultures with primary 
fibroblasts (Fig. 6c) and fibroblasts, but not epithelial cells 
expressed IL-6 (Fig. 6d). STAT3 was highly expressed and 

Fig. 2 Fibroblasts show a pro-fibrotic phenotype. (a) Violin plots showing the expression levels of fibrosis markers for the three donors (F1-3). (b) Heat-
map for markers of pathogenic fibroblasts. Key pro-fibrotic genes are highlighted
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Fig. 3 Fibroblasts drive the differentiation of AT2 cells toward a secretory phenotype. (a) UMAP visualization of different cell types. (b) UMAP visualization 
colored by groups (noFB: AT2 cells cultured without fibroblasts; +FB: AT2 cells cultured in the presence of fibroblasts). (c) Dot plot showing expression of 
epithelial cell type markers and secretory factors markers. (d) Feature plots showing the expression of representative markers for AT2 and secretory cells. 
(e) Proportion of the different cell clusters. (f) Pseudotime trajectory analysis by Monocle 3 of the two groups
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phosphorylated in nuclei of pneumocytes cultured with 
fibroblasts (Fig.  6d and e). Staining of lung tissue from 
IPF patients showed expression of IL-6 in fibrotic lesions 
partially associated with PGFRA-expressing cells (S8).

As fibrotic fibroblasts express IL-6 and induce IL-
6-STAT3 signaling (Fig.  6, S9), we examined, whether 
ongoing stimulation with IL-6 affects the phenotype of 
organoids. Stimulation with IL-6 from the day of seed-
ing resulted in a cystic, MUC5B-expressing phenotype 
with nuclei positive for phosphorylated STAT3. IL-6 
decreased the expression of SFTPC, but not NAPSA 
(Fig. 7, S10).

In order to take a closer look at the interaction of 
the fibroblasts with the pneumocytes, ligand-receptor 

analysis was carried out for the pneumocyte-fibro-
blast co-cultures. Fibroblasts expressed HGF, TWEAK 
(TNFSF12) and PTN with predicted receptivity in the 
pneumocytes (Fig. 8a and b, S11a). Autocrine and para-
crine induction of LIF/LIFR signaling, which has been 
shown to mediate IL-6 expression in fibroblasts (Nguyen 
et al. 2017), is predicted in fibroblasts (Fig. 8A, S11a and 
b). GDF15 expressed by epithelial cells (Fig.  8b, S11c) 
is predicted to signal from pneumocytes to fibroblasts 
(Fig. 8a and c). Primary fibroblasts, but not the cell line 
MRC5 expressed increased levels of IL-6 in response to 
GDF15 and LIF (Fig. 8d). Together, our data suggest that 
prolonged release of STAT3-activating factors by fibro-
blasts results in aberrant secretory AT2 cells that further 

Fig. 4 Fibroblasts induce the expression of MUC5B. (a) Organoids were stained for SFTPC and MUC5B by immunofluorescence (Scale bar = 100 μm). (b) 
The expression of SFTPC and MUC5B was confirmed by semi-quantitative RT-PCR. Data were compared by unpaired t test (**p < 0.01, ***p < 0.001). Each 
data point represents an independent experiment. (c) Violin plots showing expression of SFTPC and MUC5B. (d) Immunohistochemistry was performed 
for CCSP and KRT5 (positive control: human lung tissue; scale bar = 100 μm)
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Fig. 5 Strong expression of MUC5B in fibrotic lesions in lungs of IPF patients. MUC5B and SFTPC were detected by immunofluorescence in human lung 
samples obtained from a healthy donor and two IPF patients (scale bar = 100 μm)
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increase IL-6 expression via epithelial factors such as 
GDF15 (Fig. 8E).

Treatment with dasatinib reduces the formation of mucoid 
organoids
The single cell analyzes showed that the fibroblasts 
express markers for senescence and revealed activation 
for the PI3K-Akt signaling pathway (S7c, S12) (Saul et 
al. 2022; Moiseeva et al. 2023; Kohli et al. 2021). Using 
dasatinib (Zhu et al. 2015), we tested to what extent 
our model can be used to test drugs that counteract the 
secretory phenotype induced by fibrotic fibroblasts. 
For this purpose, we pretreated the fibroblasts of the 
three donors with dasatinib or control medium. Subse-
quently, co-cultures were established, with dasatinib still 
being added to the cultures with pretreated fibroblasts. 
In cultures without fibroblasts, dasatinib had no effect 
on grape-like morphology and organoid diameter. In 
contrast, treatment with dasatinib prevented the cystic 
growth of the organoids in the co-culture (Fig. 9a to c). In 
dasatinib-treated cultures, MUC5B expression was sig-
nificantly reduced (9d, S13). However, dasatinib did not 
reverse the fibroblast-induced loss of SFTPC expression, 
but did reduce STAT3 phosphorylation (S13).

Discussion
Here, we investigated the influence of primary fibro-
blasts on the differentiation of AT2 cells in our organoid 
model. We show that culturing AT2 cells in the presence 
of fibrotic fibroblasts results in secretory cystic organoids 
with reduced expression of SFTPC but increased expres-
sion of MUC5B. We identified regulatory circuits in 
which fibroblasts secrete inflammatory mediators such as 
IL-6 and activate pneumocytes, for example, via STAT3-
dependent signaling pathways. We also demonstrate 
that the model is suitable for studying pharmacological 
interventions.

Our organoid model reveals high plasticity of AT2 cells, 
especially when cultured with mesenchymal cells. With a 
strong expression of SFTPB and SCGB3A2, low expres-
sion of SFTPC and no expression of SCGB1A1, the dedif-
ferentiated cells resemble the recently described AT0 
and terminal and respiratory bronchiole (TRB) secretory 
cells, which can differentiate from AT2 cells during lung 
regeneration (Murthy et al. 2022; Sikkema et al. 2023). In 
the presence of activated fibroblasts, the pneumocytes 
cells strongly lost the AT2 identity and developed a pro-
nounced secretory phenotype.

A high plasticity of AT2 cells was also demonstrated 
by Kathiriya et al. in organoid models (Kathiriya et al. 

Fig. 6 Fibroblasts activate IL-6/STAT3 pathways. Signaling pathways were analyzed by (a) GSVA and (b) AUCell. (c) IL-6 was measured in supernatants 
of the cultures at day 18 and 21. (d) Dot plot showing expression of IL-6 and STAT3. (e) Immunohistochemistry was performed for P-STAT3 (scale bar 
= 100 μm)
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2022). The authors showed that human AT2 cells, but not 
murine AT2 cells, transdifferentiate into basaloid cells 
when cultured in the presence of activated mesenchymal 
cells. Unlike the basaloid cells, the aberrant AT2 cells in 
our model did not show any expression of markers for 
airway epithelial cells such as KRT5 (Kathiriya et al. 2022; 
Adams et al. 2020). The differences between our study 
and Kathiriya et al. could be result from the different cul-
ture media used. The WNT-activator used in our study 
might prevent the differentiation of AT2 cells to KRT5+ 

basal cells. In our model there was also no evidence 
of intermediate steps, such as KRT17+/KRT8High cells 
(S4) (Kathiriya et al. 2022), on the transdifferentiation 
pathway. Rather, there was a continuum from SFTPC-
expressing to MUC5B-expressing cells. Future studies 
must show to what extent fibroblasts modulate the dif-
ferentiation of AT2 cells towards a secretory phenotype 
in chronic lung diseases such as IPF, without further dif-
ferentiation into basaloid cells.

Fig. 7 IL-6 induces the differentiation of AT2 cells towards a MUC5B+ cystic phenotype. The organoid cultures were stimulated with IL-6 from the day 
of seeding. (a) Representative phase contrast images of organoids cultured for 21 days. (b) Quantification of the morphology of the alveolar organoids. 
(c) Quantification of the diameter of the alveolar organoids. (d) Immunohistochemistry was performed for MUC5B and P-STAT3 (scale bar = 100 μm). (e) 
Quantification of MUC5B staining. Data were compared by one-way ANOVA (**p < 0.01, ****p < 0.0001)
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The secretory aberrant AT2 cells in our model 
expressed MUC5B. MUC5B is typically produced by air-
way epithelial cells such as goblet cells and not by pneu-
mocytes (Sikkema et al. 2023). Numerous preclinical and 
clinical studies indicate an important role of MUC5B in 
the pathogenesis of IPF. MUC5B promoter variants are a 
dominant risk factor for the development of IPF (Moore 
et al. 2019; Borie et al. 2013, 2022; Seibold et al. 2011; 

Fingerlin et al. 2013; Zhang et al. 2011; Stock et al. 2013; 
Peljto et al. 2015). Furthermore, MUC5B is abundantly 
expressed in honeycomb cysts, which are characteristic 
structures in fibrotic lesions, as well as in the distal air-
ways of IPF patients (Conti et al. 2016; Hancock et al. 
2018). We also could detect a strong MUC5B expression 
which partially associated with SFTPC+ cells. Hancock et 
al. showed that, in IPF patients, MUC5B is co-expressed 

Fig. 8 Fibroblasts activate IL-6/STAT3, TNF-α and HGF pathways in aberrant AT2 cells. (a) Heatmap (prediction of the CellChat algorithm) with outgoing 
and incoming signals in the different cell types. (b) Dot plot showing expression of selected ligands and receptors. (c) Signaling activity of GDF15 be-
tween epithelial cells and fibroblasts predicted by CellChat algorithm. (d) Primary fibroblasts and the cell line MRC5 were incubated for 24 h with GDF15 
(200 ng/ml) and LIF (100 ng/ml) and IL-6 concentrations were measured in the supernatants. (e) Proposed schematic diagram of fibroblast-epithelial cell 
interaction.

 



Page 11 of 15Yao et al. Molecular Medicine          (2024) 30:227 

with SFTPC in epithelial cells lining the honeycomb cyst 
and in AT2 cells, suggesting that epithelial cells in the 
lung parenchyma express MUC5B in IPF (Hancock et al. 
2018). Forced expression of Muc5B under the control of 
the Sftpc promoter in the distal lung worsened the out-
come in the bleomycin-induced mouse model (Hancock 
et al. 2018; Kurche et al. 2019). Although numerous cell 
types in the IPF lung likely contribute to deleterious 
expression of MUC5B, our results suggest that fibrotic 
fibroblasts drive AT2 cells toward MUC5B-expressing 
AT2 cells, as described for honeycomb cysts (Conti et al. 
2016; Hancock et al. 2018).

Our single-cell data showed that the fibroblasts in the 
co-culture model adopted an IPF-like phenotype, similar 
to fibroblasts in IPF lungs and the mouse fibrosis model 
(Kathiriya et al. 2022; Peyser et al. 2019; Adams et al. 
2020; Jia et al. 2023). The analysis also showed that fibro-
blasts activate signaling pathways (e.g. STAT3-, NFκB-, 
and HGF-dependent pathways) in pneumocytes that 
have a strong influence on cell differentiation. Conversely, 
pneumocytes had an influence on signaling pathways 
(e.g. LIF/LIFR signaling) related to the expression of IL-6 
in fibroblasts (Nguyen et al. 2017). In vitro and mouse 

studies suggest that IL-6 released by fibroblasts promotes 
AT2 self-renewal and lung regeneration through STAT3-
signaling (Zepp et al. 2017; Liang et al. 2016; Yao et al. 
2023; Paris et al. 2020). However, IL-6-STAT3 signaling 
has been shown to play a central role in murine pulmo-
nary fibrosis models (Le et al. 2014; O’Donoghue et al. 
2012; Pedroza et al. 2016) and phosphorylated STAT3 
was detected in nuclei of pneumocytes next to fibrotic 
lesions in the lungs of IPF patients (Pedroza et al. 2016). 
Thus, it is conceivable that an out-of-control activation of 
signaling pathways that are initially important for pneu-
mocyte regeneration, such as IL6/STAT3-sighnaling, 
leads to a dysregulated pneumocytes with a secretory 
pneumocyte.

Our finding that profibrotic fibroblasts cause loss of 
AT-2 identity is also supported by further ex vivo stud-
ies showing that treatment of precision-cut lung slices 
(PCLS) and organoids with a fibrosis cocktail leads to 
reduced expression of AT-2 markers such as SFTPC 
(Alsafadi et al. 2017; Ptasinski et al. 2023; Lehmann 
et al. 2018). Kastlmeier showed that pluripotent stem 
cell-derived organoids lose AT2 identity when co-cul-
tured with lung fibroblasts from fibrotic ILD patients 

Fig. 9 Dasatinib reduces cystic organoid formation. The organoid cultures were incubated with dasatinib (200 nM) from the day of seeding. (A) Represen-
tative phase contrast images of organoids cultured for 21 days. (B) Quantification of the morphology of the alveolar organoids. Each data point represents 
an independent experiment. (C) Quantification of the diameter of the alveolar organoids. (D) Immunohistochemistry was performed for MUC5B (scale 
bar = 100 μm). (E) Quantification of MUC5B staining. Pooled results from 3 independent experiments. Data were compared by one-way ANOVA (*p < 0.05, 
***p < 0.01, ****p < 0.0001)
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(Kastlmeier et al. 2023). Bleomycin- and H2O2-treated 
human fibroblasts also reduced the progenitor potential 
of alveolar epithelial stem cells in the organoid model 
(Melo-Narvaez et al. 2024). Thus, organoid models depict 
aspects of disease and are therefore suitable for testing 
pharmacological compounds, especially in preclinical 
research before animal experiments (Brand et al. 2024).

Senescence is thought to play a role in the pathogenic-
ity of chronic lung disease (Barnes et al. 2019; Hamsana-
than et al. 2019). Our single cell analyzes showed strong 
expression of markers associated with senescence (e.g. 
CDKN2A, TIMP2, IL-6) and activation of the PI3K-Akt 
signaling pathway in fibroblasts. Thus, to test whether 
our model is suitable for pharmacological interventions, 
we treated the cultures with the drug dasatinib, which, 
among other things, is considered a senolytic agent that 
acts on the PI3K signaling pathway (Chaib et al. 2022). 
Dasatinib treatment resulted in increased expression of 
SFTPC and decreased expression of MUC5B in cultures 
lacking fibroblasts. Furthermore, dasatinib counteracted 
the cystic phenotype and fibroblast-induced expression 
of MUC5B without leading to an AT2 phenotype compa-
rable to cultures without fibroblasts, at least with respect 
to the expression of SFTPC. Further studies are needed 
to elucidate the exact mechanism of action of agents such 
as dasatinib and other approved drugs (e.g. metformin) as 
well as natural compounds in relation to impaired pneu-
mocyte differentiation and the formation of the recently 
discovered basaloid cells (Kathiriya et al. 2022; Adams et 
al. 2020; Jaeger et al. 2022). Moreover, the question arises 
to what extent the expression of MUC5B contributes sig-
nificantly to pulmonary fibrosis and whether drugs that 
suppress the expression of MUC5B are helpful. Cell cul-
ture models, such as ours, can undoubtedly make a sig-
nificant contribution to the testing of active ingredients 
with respect to their effects on diverse cell types and cel-
lular mechanisms within the human system.

Based on the activation status of the included cells, our 
organoid model has limitations. Fibroblasts are highly 
activated in such models (Kathiriya et al. 2022; Melo-Nar-
vaez et al. 2024), probably because they activate different 
pathways, such as repair programmes, in this unnatural 
environment. The required expansion of patient-derived 
fibroblasts for one to two weeks in conventional 2D cul-
ture also induces a fibrosis-like phenotype (Habermann 
et al. 2020). It is therefore almost impossible to introduce 
fibroblasts into 3D co-culture models as they exist in the 
donor lung, and difficult to study the extent to which 
fibroblasts from healthy and diseased tissue differ. How-
ever, the model allows direct assessment of pro-fibrotic 
activity without the need for exogenous application of 
additional fibrosis-inducing factors such as a fibrosis 
cocktail (Alsafadi et al. 2017; Ptasinski et al. 2023; Lehm-
ann et al. 2018). Moreover, the medium contains several 

components (e.g., the WNT activator CHIR99021) that 
can affect fibroblast behavior in a complex manner, such 
as the release of growth and fibrotic factors. Due to donor 
variability, independent experiments with cells from dif-
ferent donors should always be performed in complex 
models using primary cells for drug testing. The complex 
isolation and cultivation of primary organoids is a signifi-
cant additional effort in comparison to cell line models 
and conventional 2D cultures.

In summary, our results show that activated fibroblast 
induce a secretory phenotype characterized by MUC5B 
expression in AT2 organoids. Remarkably, this was not 
accompanied by the expression of respiratory epithelial 
markers. Excessive fibroblast-induced activation of sig-
naling pathways associated with epithelial regeneration 
leads to a pathogenic AT2 phenotype in our model, as 
might also be the case in chronic lung diseases such as 
IPF. The model is well suited for testing active ingredi-
ents, e.g. in pre-clinical research.

Materials and methods
Sex as a biological variable
Sex was not considered as a biological variable.

Human lung alveolar epithelial cell isolation and sorting
Alveolar epithelial cells were isolated from surgically 
removed lung tissue from the patient. The protocol for 
human material has been approved by the Landesärz-
tekammer des Saarlandes Ethics Committee and 
informed consent has been obtained from all patients. 
The tissue was cut into small pieces and digested with a 
digestion solution containing 2.5 mg/ml collagenase type 
I (Life technologies, 17100-017), 1  ml dispase (Corn-
ing, 354235), 1  mg/ml DNase1 (Roche, 10104159001) 
for 35  min at 37  °C. The obtained cell suspension was 
filtered through a 70  μm cell strainer and centrifuged 
at 450 x g for 10  min at 4  °C. The red blood cells were 
then lysed with ACK buffer (Gibco, A1049201), and the 
remaining cells were washed twice with PBS containing 
1% FBS (Gibco, 10270106), 1 mM EDTA (Roth, 8043.2). 
Then, HT2-280+ cells were obtained by incubating with 
HT2-280 antibody (Terrance, TB-27AHT2-280) for 1  h 
and afterwards with anti-mouse IgM beads (Miltenyi, 
130-047-302) for 30 min in the dark at 4 °C. Labeled cells 
were sorted by MACS column (Miltenyi).

Human lung fibroblasts isolation and culture
Lung (~ 1 cm3) tissue was cut into 6–8 individual pieces 
and cultured in petri dishes in DMEM medium (Gibco, 
41965039) containing 10% FBS and 1% penicillin/strep-
tomycin (Gibco, 1514). Media were changed every 4 days. 
Once the fibroblasts reached 80–90% confluence, cells 
were stored at -80 °C for future use.
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Human AT2 organoid culture and assay
AT2 organoid cultures were cultivated as described 
previously (Katsura et al. 2020). Briefly, HT2-280+ cells 
were resuspended in GFR-Matrigel and 5 × 103 cells were 
seeded in each well of a 24-well plate. After 30  min of 
incubation at 37 °C to solidify the Matrigel, cells were cul-
tured for 21 days with 500 µL of Advanced DMEM/F12 
medium (Thermo Fisher Scientific, 12634010) containing 
10 µM SB431542 (Abcam, Ab120163), 3 µM CHIR99021 
(Tocris, 4423), 1 µM BIRB796 (Tocris, 5989), 50 ng/mL 
human EGF (Gibco, PHG0313), 10 ng/mL human FGF10 
(BioLegend, 559304), 5  µg/mL heparin (Sigma-Aldrich, 
H3149), 1x B-27 supplement (Thermo Fisher Scientific, 
17504044), 1x antibiotic-antimycotic (Gibco, 15240062), 
15 mM HEPES (Thermo Fisher Scientific, 15630080), 1x 
GlutaMAX (Thermo Fisher Scientific, 35050061), and 
1.25 mM N-acetyl-L-cysteine (Sigma-Aldrich, A9165). 
10 µM of Y-27,632 (Sigma-Aldrich, Y0503) was added 
on the first 3 days of culture. The medium was changed 
every 3 days. For passaging, Matrigel was disrupted by 
incubation with dispase at 37 °C for 45 min, followed by 
single cell dissociation through the addition of TrypLE™ 
Express Enzyme (Gibco, 12605010) for 5  min at 37  °C. 
The cells were centrifuged at 450 x g for 5 min and resus-
pended in fresh GFR-Matrigel as before. In co-culture 
experiments, HT2-280+ and human lung fibroblasts were 
cultured in GFR-Matrigel at a 1:1 ratio for 21 days. In the 
IL-6 (PeproTech, 200-06-20UG) and Dasatinib (BMS-
354825) experiments, 1 ng/ml or 10 ng/ml of IL-6 and 
200 nM of Dasatinib were added to the medium for 21 
days, respectively.

Immunofluorescence (IF) and immunohistochemistry (IHC) 
staining
Organoids were embedded with 3% agarose as described 
before (Brand et al. 2024; Sprott et al. 2020). Primary 
antibodies for pro-SFTPC (Abcam, ab90716, 1/100) and 
MUC5B (Santa Cruz Biotechnology, sc-393952, 1/100) 
were used in IF staining. Primary antibodies for pro-
SFTPC (1/5000, ab90716), MUC5B (1/500, sc-393952), 
KRT5 (1/1000, ab75869), NAPSA (1/1000, ab133249), 
CCSP (1/2000, ab307666) and STAT3 (1/500, 9145  S) 
were used in IHC staining. MUC5B staining inten-
sity was quantified using ImageJ (National Institutes of 
Health, Bethesda, MD, USA) software and related to the 
area occupied by the organoid.

qRT-PCR
Gene expression levels were quantified by qRT-PCR on 
the CFX 96TM Real-Time PCR Detection System (Bio-
Rad) as described previously (Yao et al. 2024). Primers 
are listed in Table 1 in the online supplement.

Single cell sequencing analysis
Organoids were digested into single cells using the meth-
ods described for passaging. Single cell analysis was per-
formed using the BD Rhapsody™ Single-Cell Analysis 
System (Becton Dickinson, San Jose, CA, USA) accord-
ing to manufacturer’s protocols. Samples were individu-
ally labelled using the Human Single-Cell Multiplexing 
Kit (BD, Cat. 633781) and subsequently pooled. Cells 
were captured, cell-specific mRNAs were transferred to 
barcoded capture beads, libraries were generated by use 
of the BD Rhapsody™ WTA Amplification Kit (BD, Cat. 
633801) and finally sequenced on the Novaseq 6000 plat-
form (Illimina, USA) with about 50,000 reads per cell. 
Raw sequencing reads were processed with the BD Rhap-
sody™ WTA Analysis Pipeline on the Sevenbridges cloud 
platform.

Data were processed with the Seurat package (version 
5.0.1) in R software (version 4.3.1). Low-quality cells with 
gene expression < 2000 or > 10,000 genes or the percent 
of mitochondrial reads over 15% of total reads per cells 
were filtered out. The filtered dataset was normalized 
and scaled by using Seurat NormalizeData (scale fac-
tor 10,000) and ScaleData function with default param-
eters. Cell clusters were identified using a shared nearest 
neighbors (SNN)-based algorithm (resolution was set to 
0.3). Nonlinear dimensional reduction was performend 
to generate UMAP plots as illustrated. GSVA (1.50.0) 
and AUCell (1.24.0) package in R was used for pathway 
activities analysis. The gene sets for signaling pathway 
activities were derived from “KEGG_2021_Human” list. 
CellChat (1.6.1) was used with default parameters for 
ligand-receptor interaction analysis. Single-cell pseu-
dotime trajectories were generated with the Monocle3 
package (Version 1.3.4) in R (Qiu et al. 2017).
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